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Anglais

This Ph.D. thesis is devoted to the development of advanced machine learning techniques for the modeling of properties of molecules and reactions. Coupling the Multi-Instance machine Learning (MIL) method with the pharmacophoric 3D descriptors enabled the construction of predictive models accounting for an ensemble of molecular conformations. This 3D approach does not require the selection and alignment of conformers and was validated in the case studies of (i) the bioactivity of compounds and (ii) the enantioselectivity of chiral organic catalysts. In many cases, 3D multi-conformation MIL models overperformed classical approaches involving popular 2D descriptors. In the second part, a concept of conjugated machine learning was introduced and applied to the modeling of thermodynamic and kinetic characteristics of reactions. Conjugated machine learning integrates fundamental equations with machine learning algorithms, which distinguishes it from traditional multi-task learning capturing only the statistical relationship between the tasks.

idea of conjugated machine learning. Dr. Polishchuk initiated the project on multi-instance machine learning and proposed the first ideas and implementations. par Glorius [6] et Miyao [7]. 

Structure-property modeling with advanced machine learning techniques Introduction

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that focuses on learning and predicting from data. Machine learning is applied in finance, marketing, self-driving cars, social media, language translation, healthcare, education, drug discovery, etc. Machine learning concepts and methods often emerged as a way to solve specific problems from the real world. For example, in 1989 LeCun [1] presented the first application of Convolutional Neural Networks (CNN) trained with a backpropagation algorithm for the recognition of handwritten digits. CNN was inspired by the visual nervous systems of living organisms and is based on such operations as feature extraction, pooling, and convolution. As a result, modern CNN architectures outperform humans in the tasks of image recognition. In 1986, Rumelhart presented Recurrent Neural Networks (RNN) [2], which were enhanced by the LSTM mechanism (Schmidhuber [3], 1997) and then by the attention mechanism (Bahdanau [4], 2015). RNNs are successful in sequence modeling tasks such as text classification, language translation, voice recognition, and DNA analysis. In 1997, Dietterich introduced the concept of Multi-Instance machine Learning (MIL) [5], which deals with problems where an object cannot be represented by a single instance and a single feature vector. This pivotal work was motivated by the drug prediction problem, in which a compound can be represented by multiple alternative conformations, and it is not known which conformation is responsible for the observed bioactivity of a given compound. Dietterich proposed an Axis-Parallel Rectangles (APR) approach to solving the MIL problem and demonstrated that addressing the MIL problem can significantly increase the performance of predictive models. Since then, numerous MIL algorithms have been developed and applied in various real-world tasks, such as computer vision, time series analysis, text processing, bioinformatics, etc. However, while MIL was first introduced for the drug activity prediction problem, it has not become a popular approach in chemoinformatics and only a few papers on the application of MIL to structure-activity modeling were known before this Ph.D. project. In this Ph.D. project, a new 3D structure-property modeling approach was developed based on ensembles of molecular conformations and multi-instance learning algorithms. This 3D approach does not require the selection and alignment of conformers and can be applied to both classification and regression tasks.

Additionally, models obtained with the of this 3D approach not only predict molecular activity but are also can identify some key conformations (for example, bioactive conformations) responsible for observed experimental values of the target property. The modeling protocol is written in Python 3 and is based only on free software packages and is fully automated, allowing the developed 3D approach to be integrated into desktop or WEB applications for the automatic construction of predictive models. The developed approach was tested in the modeling of (i) the bioactivity of compounds from the ChEMBL-23 database and (ii) the enantioselectivity of organic chiral catalysts in asymmetric synthesis -these properties critically depend on the 3D structure of the molecule.

The second part of the thesis is devoted to the development of conjugated models, which integrate thermodynamic and kinetic laws with machine learning algorithms. Some quantitative characteristics of chemical reactions are related by mathematical equations (e.g., the Arrhenius equation). In conjugated machine learning, such equation-related characteristics are embedded into the machine learning algorithm, i.e., equation-based and individual models are algorithmically combined into one conjugated model. As a result, conjugated models provide accurate predictions of reaction characteristics that strictly satisfy fundamental equations. In such a way, the chemical laws integrated with the machine learning algorithm act as a regularizer for predictive models. In this research project, conjugated machine learning was applied to three types of reactions (and equations): the tautomeric reactions (tautomeric equation), the cycloaddition reactions (Arrhenius equation), and the competing E2/SN2 reactions (selectivity equation). This Ph.D. project contributes to the development of machine learning approaches that consider the complexity of chemical objects (molecules) and processes (chemical reactions). Multiinstance machine learning in combination with 3D descriptors allows the construction of 3D models, which does not require the selection and alignment of conformations. Conjugated QSPR models for predicting reaction characteristics are based on thermodynamic and kinetic laws, which bridge chemistry with machine learning.

Part 1. Multi-instance machine learning in chemoinformatics and bioinformatics

Multi-Instance Learning (MIL) problem was formalized in 1997 and has since been successfully applied in , bankruptcy prediction (economy), etc. Although one of the first applications of MIL was drug activity prediction, MIL has not become a popular approach in structure-activity modeling. On the other hand, there are many examples of MIL applications to bioinformatics tasks for modeling interactions between biological macromolecules such as proteins, DNA and RNA. However, there is still no systematic review of MIL applications in chemoinformatics and bioinformatics. For this reason, this review on the application of MIL to modeling the properties and functions of small molecules (chemoinformatics) and biological macromolecules (bioinformatics) has been prepared. It also includes a description of the MIL framework, the type of tasks in MIL, and the MIL algorithms.

Introduction

The properties of chemical compounds are a function of their structure. Structure-property modeling approaches apply special algorithms to extract the correct relationship between the structure of the molecule and its properties. In the traditional structure-property modeling approaches each molecule is encoded with a set of numerical chemical descriptors followed by the application of special algorithms like machine learning algorithms to establish the correlation between descriptors and the property values. One of the key limitations of traditional structure-property modeling is the requirement that each molecule has to be represented by a single instance with a fixed conformation, protonation state, tautomer, stereoconfiguration, etc. As a result, a molecule has to be associated with a single vector of descriptors. However, a molecule is a dynamic object and simultaneously exists in many forms/instances in equilibrium. This raises the problem of the selection of the molecular form for structure-property modeling, as the actual molecular form responsible for the observed property is often unknown.

The same problem exists in the structure-function modeling of biological functions of macromolecules (proteins, DNA and RNA). Biological macromolecules are sequences of monomers (amino acids or nucleotides) and can interact each with other to perform various biological functions. However, only particular subsequences/segments of a macromolecule of limited length are responsible for the interaction between macromolecules, and experimental information on these key segments and their exact location often is not available. This also leads to the problem of many alternative representations of the object, which is often neglected in traditional structurefunction modeling approaches. The problem of the selection of relevant molecular forms in predictive modeling can be handled by Multi-Instance machine Learning (MIL) [5]. The main idea of the MIL approach (Figure 1) is that an object can be represented as a set of alternative entities/instances, where each instance is encoded with a single vector of features (descriptors). The label of the object is associated with one or more entities/instances from the entire set, but it is not known which one. In the terminology of MIL, the set of entities/instances of the object is called a bag. The task is to establish the correlation between the bag of the instances and the label of the bag. In this context, traditional supervised learning, where an object is represented by a single vector of features can be attributed to Single-Instance machine Learning (SIL). Within the MIL framework, a molecule can be represented by multiple instances simultaneously, that are processed by special MIL algorithms. Multiinstance learning includes modeling techniques in which feature vectors representing instances of an object are directly processed by multi-instance machine learning algorithms.

In conventional MIL, models generate the prediction for the bag, but it is also desirable to identify labels of individual instances, especially labels of key instances that determine a label of the whole bag. The Key Instance Detection (KID) problem was formulated in [6] and is more challenging than the prediction of bag labels since not all MIL algorithms can solve the KID problem.

The MIL framework was formalized in the seminal paper of Dietterich and co-workers [START_REF] Xiong | Multi-instance learning of graph neural networks for aqueous pKa prediction[END_REF],

where they formalized the MIL problem and considered it in the context of the drug activity classification problem. In their study, each molecule was represented as a bag of conformations associated with an activity label.

Although the first publication on MIL focused on the modeling of drug activity based on ensembles of conformations, only a few papers on the application of MIL to structure-activity modeling have been published then [7 13]. As part of this Ph.D. project, a large-scale comparison of MIL models based on an ensemble of conformations and traditional 2D models based on popular 2D descriptors was published for the task of modeling the bioactivity of compounds from 175 datasets extracted from the ChEMBL-23 database [ 12 14]. In another part of this Ph.D. project, the first application of MIL for modeling the enantioselectivity of chiral organic catalysts in asymmetric organic synthesis [START_REF] Zankov | Multi-Instance Learning Approach to Predictive Modeling of Catalysts Enantioselectivity[END_REF] is recently published. Another illustrative example is paper [START_REF] Xiong | Multi-instance learning of graph neural networks for aqueous pKa prediction[END_REF],

where molecules were represented by a bag of atoms (instances) for the modeling of the acidity of compounds. In bioinformatics, MIL has attracted significantly more attention, because of a large number of tasks [17 30] perfectly fitting the MIL framework.

Despite the attractiveness of the MIL approach, there is still no comprehensive review of the application of MIL in modeling the properties and functions of molecules. This part of the Ph.D. project provides a detailed description of MIL approaches and their applications. This review includes a description of the MIL framework and the main MIL algorithms, as well as examples of MIL applications in chemoinformatics and bioinformatics.

Origins of multi-instance learning

The first examples of multi-instance problems were known before Dietterich seminal paper in 1997 [5]. The first examples of such projects concern chemical structure determination by mass spectroscopy [START_REF] Buchanan | Dendral and meta-dendral: Their applications dimension[END_REF], phoneme recognition [START_REF] Aikawa | Phoneme recognition using time-warping neural networks[END_REF], recognition of handwritten characters [START_REF] Rumelhart | A Self-Organizing Integrated Segmentation and Recognition Neural Net[END_REF], dynamic reposing in drug activity prediction [34], and modeling DNA promoter sequences [35].

The application of MIL to solve a particular machine learning problem is conditioned by the structure of the data. Multi-instance learning is a suitable learning framework in tasks where the modeled object is difficult to represent with a single feature vector. The sort of problems, where an object can exist in several alternative representations, can be attributed to polymorphism ambiguity (Figure 2). In structure-property modeling, this type of ambiguity arises when the molecule can be represented by alternative instances, such as conformations, tautomers, protonation states, etc. The wrong choice of the key molecular form can result in the poor performance of predictive models. MIL is a suitable framework for this problem because it can handle all available instances simultaneously.

Another problem where MIL is applicable is characterized by a part-to-whole ambiguity when only one or several parts of a modeled object are responsible for its observed property. A molecule can be represented as a set of connected atoms/instances and its physicochemical or biological properties are generally influenced by a single atom or group of atoms, and it is often unknown which particular atom determines the observed property [START_REF] Xiong | Multi-instance learning of graph neural networks for aqueous pKa prediction[END_REF]. MIL is also a quite popular modeling approach in bioinformatics, where modeled objects are sequences, such as protein, DNA, and RNA. Often only a certain segment of the sequence is responsible for the function of the whole sequence, but the length and boundaries of such a segment may be unknown. Consequently, biological sequences can be represented by multiple segments, which can overlap with each other. Each segment of the sequence is an instance encoded with a special feature vector. This type of problem can be attributed to segment-to-sequence ambiguity.

Other multi-instance problems include multi-multi-instance learning [START_REF] Tibo | Learning and interpreting multi-multi-instance learning networks[END_REF], multi-instance multi-label learning [START_REF] Zhou | Multi-instance multi-label learning with application to scene classification[END_REF], key instance detection in multi-instance learning [6], multi-instance clustering [START_REF] Kriegel | An EM-approach for clustering multi-instance objects[END_REF], multi-instance ranking [START_REF] Bergeron | Multiple instance ranking[END_REF]. Comprehensive reviews of the MIL concept and its applications can also be found in [ 40 47].

Multi-instance learning algorithms

The growing number of MIL algorithms requires their systematization. This review follows a categorization of algorithms similar to [START_REF] Amores | Multiple instance classification: Review, taxonomy and comparative study[END_REF] (other types of categorization of MI algorithms are described in [START_REF] Mans | Multiple instance learning: Foundations and algorithms[END_REF][START_REF] Foulds | A review of multi-instance learning assumptions[END_REF][START_REF] Xu | Statistical Learning in Multiple Instance Problems[END_REF][START_REF] Foulds | Learning instance weights in multi-instance learning[END_REF]) and distinguishes two major groups of MIL algorithms: instance-based and bag-based algorithms. Instance-based algorithms consider each instance as a separate training object and generate predictions for each instance in the bag, and then apply a predefined rule to aggregate the instance predictions to obtain a prediction for the entire bag.

In contrast to instance-based algorithms, bag-based algorithms consider the whole bag as a training object and do not explicitly provide predictions for individual instances. The bag-level algorithms consider the bag as a whole object and define the distance between bags [START_REF] Wang | Solving Multiple-Instance Problem: A Lazy Learning Approach[END_REF], bag kernels [START_REF] Smola | Multi-instance kernels[END_REF], bag dissimilarities [START_REF] Cheplygina | Multiple instance learning with bag dissimilarities[END_REF] or explicitly pooling operators.

Naive MIL algorithms

Naive MIL algorithms such as wrappers transform multi-instance data into single-instance representation and apply a traditional machine learning algorithm to train the model. Following the chosen categorization of MIL algorithms, there are two types of wrapper algorithms: instancebased and bag-based wrapper algorithms (Figure 3).

In Instance-Wrapper (Figure 3a) each training instance of a bag is assigned the same label as the parent bag. This results in a standard single-instance dataset in which each instance is manually labeled and any single-instance machine learning algorithm can be applied to build the model. To obtain a prediction for a new bag, the model first predicts a label for each instance of the bag and then aggregates obtained instance predictions (e.g., averages) to produce a prediction for the given bag. In Bag-Wrapper (Figure 3b) algorithm, there is no need to identify a label for each instance in a bag. Instead, there is an operation that aggregates the instances to obtain a single vector representing the bag. Then, any single-instance algorithm can be applied to train the model. In prediction mode, all instances of the new bag are aggregated into a single vector, which is used to obtain a prediction for a given bag.

Traditional MIL algorithms

Naive MIL algorithms such as wrappers transform multi-instance data into single-instance data and use a standard single-instance machine learning algorithm to train the model. However, several classic machine learning approaches have been adapted to directly process raw multi-instance data.

These algorithms are instance-based approaches such as maximum likelihood-based methods [53 56], decision rules and tree-based methods [57 60], SVM-based methods [START_REF] Doran | A theoretical and empirical analysis of support vector machine methods for multiple-instance classification[END_REF], and evolutionarybased methods [START_REF] Zafra | G3P-MI: A genetic programming algorithm for multiple instance learning[END_REF]. Bag-based algorithms include the adapted nearest neighbor methods [START_REF] Wang | Solving Multiple-Instance Problem: A Lazy Learning Approach[END_REF][START_REF] Zhang | A k-nearest neighbor based multi-instance multi-label learning algorithm[END_REF] and bag-level SVM methods [START_REF] Doran | A theoretical and empirical analysis of support vector machine methods for multiple-instance classification[END_REF].

For example, MILogisticRegression [START_REF] Xu | Logistic regression and boosting for labeled bags of instances[END_REF] is an adaptation of logistic regression, DPBoost [START_REF] Andrews | Multiple instance learning via disjunctive programming boosting[END_REF] and MIBoosting [START_REF] Xu | Logistic regression and boosting for labeled bags of instances[END_REF] are adaptations of boosting approach, ID3-MI and RipperMI [START_REF] Chevaleyre | Solving multiple-instance and multiple-part learning problems with decision trees and rule sets. Application to the mutagenesis problem[END_REF] are the MIL extensions of the decision tree, and decision rules approaches, MI-SVM is the multiinstance version of SVM [START_REF] Andrews | Support Vector Machines for Multiple-instance Learning[END_REF], Citation-kNN [START_REF] Wang | Solving Multiple-Instance Problem: A Lazy Learning Approach[END_REF] is a multi-instance version of standard kNN, bag-level SVM methods are based on the bag-level kernels [START_REF] Smola | Multi-instance kernels[END_REF]. There are also multi-instance adaptations of neural networks (section 1.3.3).

The Diverse Density [START_REF] Maron | Lozano--instance learning[END_REF] is a maximum likelihood-based algorithm that implements the assumption that positive instances occupy a specific area in the feature space. Diverse Density searches for the area in the feature space where the difference between the density of instances of positive and negative is maximal. For example, if one of the instances in a positive bag is close to the prototype and no negative bags are close to the prototype, then the prototype will have a high Diverse Density. The DD algorithm searches for the prototype instance that is a generalization of a positive instance. Expectation-Maximization Diverse Density (EM-DD) uses the EM algorithm to locate prototype instances more efficiently. There are several other MI algorithms based on the Diverse Density approach, such as DD-SVM [START_REF] Chen | Image categorization by learning and reasoning with regions[END_REF] and MILES [START_REF] Chen | MILES: Multiple-instance learning via embedded instance selection[END_REF].

Neural network MIL algorithms

Neural networks are appealing for solving MIL problems. Neural networks perform multi-instance learning in an end-to-end, which takes a bag with a various number of instances as input and generates the bag label. Multi-instance neural networks were first described by Ramon et al. [START_REF] Ramon | Multi Instance Neural Networks[END_REF] for classification problems where instance probabilities are computed to be further aggregated by the log-sum-exp operator to calculate the bag probability. reduction by principal component analysis [START_REF] Zhang | Improve Multi-Instance Neural Networks through Feature Selection[END_REF]. In [START_REF] Zhang | Ensembles of multi-instance neural networks[END_REF] and [START_REF] Zhang | Adapting RBF neural networks to multi-instance learning[END_REF] ensemble neural networks and RBF neural networks were introduced to solve MIL problems. Zhang et al. [START_REF] Zhang | Multi-instance regression algorithm based on neural network[END_REF] extended multiinstance neural networks by implementing a loss function for the MIL regression task.

Wang et al. [START_REF] Wang | Revisiting multiple instance neural networks[END_REF] revisited multi-instance neural networks and proposed a series of novel neural network frameworks for MIL. In contrast to previous multi-instance networks, their method focuses on generating bag representations instead of inferring instance labels. The proposed network consists of three fully-connected layers followed by one pooling layer that aggregates instance representations learned by previous layers into a single embedding vector. A final fullyconnected layer takes the obtained embedding vector as input and calculates the bag probability.

The authors examined three typical pooling operators for aggregation instance feature vectorsmax, mean and log-sum-exp pooling and concluded that all pooling operators demonstrate similar classification accuracy on benchmark datasets. Besides that, they integrated popular deep learning tricks (deep supervision and residual connections) into MIL networks, which improved the accuracy. The important outcome of this paper is that bag-level networks (Figure 4b) outperform instance-level networks (Figure 4a) on popular MIL benchmark datasets. that replaces pre-defined pooling operators with a trainable attention network that can generate instance weights [START_REF] Ilse | Attention-based deep multiple instance learning[END_REF]. Instance weights quantify the importance of each instance and its contribution to the aggregated bag representation. However, most MIL algorithms ignore the structural relationship among instances in the bag because they consider the instances as independently and identically distributed (i.i.d) samples [START_REF] Zhou | On the relation between multi-instance learning and semi-supervised learning[END_REF]. In this context, instances are i.i.d if they have the same probability distribution and all are mutually independent. For example, considering molecules as i.i.d data samples is reasonable, but the conformation distribution of a molecule is not independent and identical because it depends on predefined physical laws. Nevertheless, multi-instance neural networks that can capture structural information within a bag have been proposed.

Tu et al. [START_REF] Tu | Multiple instance learning with graph neural networks[END_REF] proposed a multi-instance learning approach with graph neural networks. In this approach, each bag of instances is converted to an undirected graph which is processed by Graph Neural Network (GNN) to learn the aggregated bag representation. The authors claimed that the graph representation of a bag allows for capturing the structural information within the bag and demonstrated that it can improve the classification accuracy of the algorithm.

In [START_REF]-instance learning using recurrent neural networks[END_REF] recurrent neural networks were proposed to model underlying structure among instances. In this approach each bag is converted into an unordered sequence of instances, which is processed by the recurrent neural network, that can memorize instances. In [START_REF] Wang | In Defense of LSTMs for Addressing Multiple Instance Learning Problems[END_REF], a new pooling operator based on the LSTM recurrent neural network was proposed. In this pooling operator, the LSTM memory mechanism allows accumulating of information after processing each instance representation to iteratively update the bag representation.

In [START_REF] Yan | Deep Multi-instance Learning with Dynamic Pooling[END_REF] a new dynamic pooling was proposed, which was inspired by the Routing Algorithm from Capsule Networks [START_REF] Sabour | Dynamic routing between capsules[END_REF]. The dynamic pooling iteratively updates instance contribution to aggregated bag representation and captures the contextual information among instances.

Set Transformer [START_REF] Lee | Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks[END_REF], which is based on Transformer architecture [START_REF] Polosukhin | Attention is all you need[END_REF], was proposed for solving problems where data samples are organized as sets of instances, including multi-instance learning. Set Transformer model pairwise interactions between instances in a bag using the multihead self-attention mechanism. Each head in multi-head self-attention highlights local relationships between groups of instances in the bag.

Key instance detection algorithms

The main goal of MIL algorithms is to predict labels for bags. However, it is often desirable to predict not only the bag label but also to infer labels of the instances in the bag. It is particularly important to determine labels for the key instances that primarily contribute to the label of the bag.

This problem was called Key Instance Detection (KID) and was first formalized in [6]. The development of MIL algorithms that can predict the label of a bag and identify key instances of this bag is an attractive area of research. KID problem related to the problem of explainability of MIL models. Following the categorization of [START_REF] Early | Model Agnostic Interpretability for Multiple Instance Learning[END_REF], explainable approaches of MIL models can be divided into model-specific and model-agnostic.

Model-specific approaches include MIL algorithms that can infer instance labels or estimate the importance of instances (instance weights). These algorithms can be roughly divided into traditional and neural network-based algorithms. Most traditional instance-level algorithms can be used to identify key instances. Instance-level algorithms rely on some process, which determines the labels or probabilities of instances in a bag. In such algorithms [START_REF] Maron | Lozano--instance learning[END_REF][START_REF] Zhang | Em-dd: An improved multiple-instance learning technique[END_REF][START_REF] Andrews | Support Vector Machines for Multiple-instance Learning[END_REF][START_REF] Chen | MILES: Multiple-instance learning via embedded instance selection[END_REF][START_REF] Wang | Multiple-instance learning via random walk[END_REF][START_REF]-supervised learning on directed graphs[END_REF][87], KID is a subtask and instance labels are provided as by-products of the learning process. Other algorithms are based on some key instance identification mechanism and specifically focused on solving the KID problem [6,[START_REF] Liu | Witness detection in multi-instance regression and its application for age estimation[END_REF][START_REF] Li | A convex method for locating regions of interest with multi-instance learning[END_REF]. An important element of such neural networks is the pooling operator, which aggregates instance representations and can also serve as a detector of key instances. In [START_REF] Ilse | Attention-based deep multiple instance learning[END_REF] Ilse et al. proposed a pooling operator based on the attention mechanism [START_REF] Lin | A structured self-attentive sentence embedding[END_REF], which was implemented as a two-layered neural network followed by the softmax function that receives instance scores and generates instance weights that sum to 1 (the higher the instance attention weight, the more important the instance). The instances are then aggregated according to the attention weights. Both neural networks are trained consistently using a backpropagation algorithm. Li et al [START_REF] Li | Deep multiple instance selection[END_REF] proposed a deep multiple instance selection frameworks (DMIS) based on hard attention [START_REF] Xu | Show, attend and tell: Neural image caption generation with visual attention[END_REF] with Gumbel softmax or Gumbel top-k functions. In contrast to soft attention, where continuous attention weights are assigned to the instances, including negative instances, the proposed approach selects several key instances, filtering out potential negative (non-key) instances. This approach is more efficient for some tasks than standard attention-based MIL pooling [START_REF] Li | Deep multiple instance selection[END_REF]. Yu et al [START_REF] Shin | Sparse network inversion for key instance detection in multiple instance learning[END_REF] applied a neural network inversion mechanism [START_REF] Kindermann | Inversion of neural networks by gradient descent[END_REF] to the MIL classification problem and demonstrated that it can significantly improve KID performance. In this approach, the attention-based multi-instance neural network is first trained in standard mode and then neural network inversion is applied for each positive bag, which changes the input instances, enhancing the probable key instances and attention weights are recomputed for the updated bag. As a result, after neural network inversion, the key instances are assigned higher attention weights.

There are also multivariate neural networks based on other types of pooling that can also identify key instances. Gaussian pooling [START_REF] Looks | Deep Multiple Instance Learning With Gaussian Weighting[END_REF] applies a Gaussian radial basis function to calculate instance weights, which is the main difference from attention-based pooling, which applies softmax for this purpose. Inspired by the Routing Algorithm from Capsule Networks [START_REF] Sabour | Dynamic routing between capsules[END_REF], a new type of pooling operator was proposed in [START_REF] Yan | Deep Multi-instance Learning with Dynamic Pooling[END_REF], called dynamic pooling. This pooling operator iteratively updates the instance contribution to its bag representation during each feed-forward step. Based on these instance contributions, dynamic pooling highlights the key instance and models the contextual information among instances. Tu et al. [START_REF] Tu | Multiple instance learning with graph neural networks[END_REF] implemented an approach, where each instance of a bag is a node in a graph that was processed by a graph neural network (GNN) and converted to a fixed-dimensional representation by differentiable graph clustering pooling. This approach can capture interactions between instances in a bag, which can improve KID performance in some cases [START_REF] Tu | Multiple instance learning with graph neural networks[END_REF].

However, the interpretation of attention mechanisms in MIL is still an open question, since validation of KID solutions requires labeled data at the instance level, and the amount of such data is still scarce. A study [START_REF][END_REF] addresses this issue and concludes that models with high prediction accuracy can have poor key instance identification accuracy. This fact complicates the selection of models that can be used to solve the KID problem. In the same paper [START_REF][END_REF] it was demonstrated that using an ensemble of models instead of a single model, can improve the robustness of KID models. These conclusions can be considered general and be extended to the case of other pooling operators. It is necessary to further develop approaches that will increase the validity of KID mechanisms.

The model-agnostic approach for the interpretation of any MIL model in classification tasks was proposed in [START_REF] Early | Model Agnostic Interpretability for Multiple Instance Learning[END_REF]. This approach can be divided into methods that ignore interactions between instances and methods that recognize these interactions. The first group of methods includes simple strategies such as single instance prediction or one instance removed prediction or their combination. The second method is represented by the Multiple Instance Learning Local Interpretations (MILLI) approach, which is similar to the popular single-instance machine learning LIME and KernelSHAP approaches for model interpretability. Interestingly, model-agnostic approaches performed significantly better in the identification of key instances [START_REF] Early | Model Agnostic Interpretability for Multiple Instance Learning[END_REF] than model-specific inherent KID mechanisms of popular MIL algorithms.

Boltzmann distribution. The distribution of conformers (fractional occupancy) in time and space is described by the Boltzmann distribution function:

(

) 1 
where E is the energy of the conformer, k is the Boltzmann constant, and T is the temperature of the system. The Boltzmann distribution relates the energy of the conformer to its probability of occurring. The distribution shows that conformers with lower energy always have a higher probability of occurring. The same distribution can be applied to an ensemble of tautomers. Boltzmann's law implies that all molecular forms (conformers/tautomers) contribute to the observed property of the molecule.

Having accurate ligand-target binding energies, the Boltzmann distribution can be used for weighted averaging of the calculated or predicted properties of the molecules. For example, in [START_REF] Paulsen | Scoring ensembles of docked protein: ligand interactions for virtual lead optimization[END_REF] the Boltzmann distribution (applied to the energies of an ensemble of ligand-target complexes) was used to average the docking scores for the ensemble of each binding pose. As a result ligand ranking accuracy was improved by Boltzmann weighting applied to the energies of an ensemble compared to the straightforward averaging. The more accurate the estimated energies of the system (conformer, tautomer, ligand-target complexes), the higher the chance of identifying the key molecular form. However, the accuracy of the assessment of these energies is limited by the high computational costs, limited force field accuracy, and technical challenges related to computational resources.

Multi-instance learning applications

Polymorphism ambiguity modeling

Bioactivity modeling with multiple tautomers. Many compounds exist as tautomers, which can exhibit different physicochemical and biological properties. There are many examples [START_REF] Milletti | Tautomer preference in PDB complexes and its impact on structurebased drug discovery[END_REF] where a minor tautomer binds to the target and is responsible for the observed bioactivity of a compound.

Several papers have studied the influence of tautomerism on QSAR modeling. In [START_REF] Masand | Does tautomerism influence the outcome of QSAR modeling?[END_REF], it was demonstrated that tautomerism significantly influences the descriptor selection process, as well as in some cases the performance of QSAR models. The same authors later concluded [START_REF] Masand | Tautomerism and multiple modeling enhance the efficacy of QSAR: Antimalarial activity of phosphoramidate and phosphorothioamidate analogues of amiprophos methyl[END_REF] that the inclusion of keto-enol tautomerism in the modeling of antimalarial activity does not affect the performance of the models, but enables retrieving additional useful information on the relation between structure and activity. Another study [START_REF] Toropova | QSAR modeling of anxiolytic activity taking into account the presence of keto-and enol-tautomers by balance of correlations with ideal slopes[END_REF] demonstrated that inclusion in the modeling of both the keto-form and the enol-form of compounds improves the prediction accuracy of the anxiolytic activity, in comparison to models which are built using only one of the two tautomeric forms. Tautomerism can affect not only the accuracy of in-house QSAR/QSPR models but also the output predictions of external models when they are applied to new compounds. It is well known that logP and pKa can differ for different tautomeric forms of the compound. Recently, the Syngenta group has demonstrated [START_REF] Baker | Tautomer Standardization in Chemical Databases: Deriving Business Rules from Quantum Chemistry[END_REF] that logP and pKa predicted by industry-standard programs (clogP program and ACD software) depend on the input tautomer of the compound, and using more sophisticated QM calculations to find the correct tautomer significantly improves the accuracy of logP and pKa predictions.

Multi-instance learning can potentially solve the problem of selection of the relevant tautomer by generating models that are trained on all available tautomers of a molecule. MIL models (Figure 7) can be independent of input tautomer form and even can identify the key tautomer of the compound.

Bioactivity modeling with conformation ensembles. 2D descriptors ignore the spatial molecular structure of compounds and their conformational flexibility. Therefore, some important structural information that could increase the performance of predictive models may be lost. This issue motivated the development of 3D modeling approaches. The Achilles' heel of these approaches is that the molecule is represented by a single generated conformation, which may not be identical to the bioactive conformation. Therefore, it is important to consider the conformational flexibility of the compound, since an incorrect choice of conformation for modeling can significantly reduce the accuracy of the predictive models. Although Compass and APR algorithms had proven that consideration of the MIL problem can improve the performance of models for predicting the bioactivity of compounds, MIL algorithms had not become ubiquitous. In [START_REF] Davis | An integrated approach to feature invention and model construction for drug activity prediction[END_REF] Inductive Logic Programming (ILP) approach was used to learn pharmacophores formulated as logical rules, which are used to encode conformations as a binary vector, in which 1 means that the conformation satisfies a specified rule, that is has a corresponding pharmacophore. As a result, the molecule was represented by a set of conformers encoded by binary pharmacophore features, then multi-instance regression was used to construct a linear model. The prediction of the bioactivity of a molecule can be obtained by weighted averaging of the predicted activity of its conformations. The authors tested their approach on three datasets on the activity of dopamine agonists, thermolysin inhibitors, and thrombin inhibitors and demonstrated that the models built on the multiple conformers outperform single-conformer models in all three cases.

The popular multiple-instance learning via embedded instance selection (MILES) algorithm was applied to construct models for the classification of bioactive chemical compounds [9].

MILES was applied to model the bioactivity of molecules against GSK-3, P-gp, and CBrs receptors and demonstrated competitive with analogous approaches performance. MILES can inherently identify key instances, which can be exploited to recognize bioactive conformations. For 10 of the 12 test molecules from the GSK-3 dataset, the MILES model was able to rank the experimental bioactive conformation higher than the generated conformations. In a later paper [8], the authors proposed a modification of the MILES algorithm based on the joint instance and feature selection. The proposed approach demonstrated slightly lower classification accuracy than the original MILES, but could efficiently select a representative subset of instances and features.

Recently, the results of this Ph.D. thesis were published in a series of studies [12 14] devoted to modeling the bioactivity of compounds using conformer ensembles and multi-instance algorithms. In paper [START_REF] Nikonenko | Multiple Conformer Descriptors for QSAR Modeling[END_REF], an adaptation of the algorithm of Zhou and Zhang [START_REF] Zhou | Solving multi-instance problems with classifier ensemble based on constructive clustering[END_REF] was proposed to build 3D multi-conformer classification models, which were compared with traditional 2D models. A comparative analysis on a collection of >150 datasets extracted from the ChEMBL-23 database showed that 2D models outperformed 3D multi-conformer models in most cases. Nevertheless, 2D and 3D models are comparable when the dataset size is less than 1000 compounds.

Catalysts enantioselectivity modeling with conformation ensembles. In 2021 D. Mac-Millan and B. List received the Nobel Prize for the development of asymmetric organocatalysis.

In 2000 [105,[START_REF] List | Proline-catalyzed direct asymmetric aldol reactions [13[END_REF] they contemporaneously demonstrated that small chiral organic molecules can catalyze asymmetric reactions to produce enantiopure compounds. The design of new chiral catalysts is based on the iterative improvement of the reaction enantiomeric purity by reasonable modification of the catalyst structure. This process is guided by the chemical intuition and background knowledge of the experimentalist and often culminates in the desired performance of the reaction.

However, computational approaches, such as quantum chemistry [START_REF] Guan | AARON: An Automated Reaction Optimizer for New Catalysts[END_REF] and chemoinformatics are especially attractive and can be used for screening virtual libraries of candidate catalysts, reducing the time and overheads needed to discover highly enantioselective catalysts.

In Quantitative Structure-Selectivity Relationships (QSSR) approach descriptors encoding catalysts structures are correlated with their experimental enantioselectivities using machine learning algorithms. The earliest studies on QSSR are based on Molecular Interaction Fields (MIF) approaches such as CoMFA [START_REF] Lipkowitz | Computational studies of chiral catalysts: A Comparative Molecular Field Analysis of an asymmetric Diels-Alder reaction with catalysts containing bisoxazoline or phosphinooxazoline ligands[END_REF][START_REF] Kozlowski | Quantum mechanical models correlating structure with selectivity: Predicting the enantioselectivity of -amino alcohol catalysts in aldehyde alkylation[END_REF]. The main problems of MIF-based 3D structure-selectivity modeling approaches are (i) the selection of catalyst conformers and (ii) their alignment. The selection of irrelevant conformers can reduce model performance and alignment of conformers becomes challenging if the dataset includes catalysts with different scaffolds. In the case of alignment-independent 3D descriptors, there is also (iii) the problem of the choice of relevant descriptors. In this Ph.D. project, a new 3D-QSSR approach multi-instance learning was proposed [START_REF] Zankov | Multi-Instance Learning Approach to Predictive Modeling of Catalysts Enantioselectivity[END_REF].

MIL algorithms can process all available catalyst conformers, solving the problem of conformers selection. Each catalyst conformer was encoded with 3D pmapper descriptors, which are independent of translation and rotation of the conformer (do not require conformers alignment).

The developed 3D modeling approach was validated on the reaction of asymmetric nucleophilic addition catalyzed by chiral phosphoric acids [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF] and phase-transfer asymmetric alkylation catalyzed by cinchona alkaloid-based catalysts [START_REF] Melville | Computational screening of combinatorial catalyst libraries[END_REF]. The 3D multi-conformer model was compared with the state-of-the-art 3D conformer-dependent approach published by Denmark [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF], and the set of traditional 2D models based on popular 2D descriptors [START_REF] Asahara | Extended Connectivity Fingerprints as a Chemical Reaction Representation for Enantioselective Organophosphorus-Catalyzed Asymmetric Reaction Prediction[END_REF][START_REF] Sandfort | Strieth--Based Platform for Predicting Chemical Reactivity[END_REF].

Part-to-whole ambiguity modeling

Property modeling with atoms as instances. A molecule can be represented as a set of connected atoms. In this context, the molecule is characterized by part-to-whole ambiguity, where a particular atom or group of atoms is responsible for an observable property of the molecule. Within this framework, each atom of a molecule is represented by a separate vector of atom descriptors.

Bergeron et al. [START_REF] Bergeron | Multiple instance ranking[END_REF][START_REF] Bergeron | Fast bundle algorithm for multiple-instance learning[END_REF] introduced a novel learning framework called Multi-Instance Ranking (MIRank). The proposed approach was applied to the problem of identification of metabolic sites of molecules, i.e. atomic groups from which a hydrogen atom is removed. The experimental data show only to which group the removed hydrogen atom belongs, and it is not known which hydrogen atom is removed. Each hydrogen atom was represented by a set of descriptors such as the charge, the surface area, hydrophobic moment, etc. For each molecule (box), the ranking function separates at least one instance (hydrogen) of the preferred bag (group) from the remaining instances belonging to the box. Using a dataset of 227 compounds metabolized by the enzyme cytochrome CYP3A4 [START_REF] Sheridan | Empirical regioselectivity models for human cytochromes P450 3A4, 2D6, and 2C9[END_REF] it was demonstrated that the MIRank model performs slightly better than the standard classification model [START_REF] Bergeron | Multiple instance ranking[END_REF]. In a later work, Bergeron et al. [START_REF] Bergeron | Fast bundle algorithm for multiple-instance learning[END_REF] upgraded their algorithm to analyze large datasets and validated it on an extended database of 10 CYP datasets. Vectors of atoms can include physico-chemical or quantum-chemical descriptors or can be extracted using graph neural networks [START_REF] Xiong | Multi-instance learning of graph neural networks for aqueous pKa prediction[END_REF].

Recently, Xiong et al. [START_REF] Xiong | Multi-instance learning of graph neural networks for aqueous pKa prediction[END_REF] proposed a graph neural network based on multi-instance learning to predict both the macro-pKa of the molecule and the micro-pKa of individual atoms. In their approach, a molecule is a bag, which contains instances of the ionizable atoms of this molecule.

Each atom of the molecule is described by a vector of features extracted with a graph neural network. The extracted instance features are used to predict the micro-pKa of atoms, which are then aggregated to derive a macro-pKa. Their model predicted the acidity of organic compounds with high accuracy and provided reasonable micro-pKa of atoms.

Segment-to-sequence ambiguity modeling

Protein-protein interactions. Protein-protein interactions (PPI) play an important role in biological processes. These interactions can occur between single proteins or groups of proteins (protein complexes). In general, only particular segments of proteins (domains) determine the structure and function of the protein and are involved in the interaction between proteins. For this reason, knowledge of which domains of proteins can interact with each other enables the prediction of new protein-protein interactions. Experimental PPI data provide information on the interacting protein pair and the type of interaction (activation, ingestion, phosphorylation, dissociation, etc.), but information on the interacting domains (key domains) is often not available. This scenario fits the MIL framework, where each potential domain pair is an instance (Figure 9) and the whole collection of domain pairs in a given protein-protein complex is a bag and at least one of these domain pairs interacts defining the type of interaction (e.g. phosphorylation). If the proteins do not interact, there is no pair of interacting domains in the bag.

Yamakawa et al. [START_REF] Yamakawa | Predicting types of protein-protein interactions using a multiple-instance learning model[END_REF] used a dataset of 1279 PPI records labeled with ten different interaction types (state, dephosphorylation, dissociation, inhibition, phosphorylation, binding association, indirect, activation, compound). They considered the simplified task of classification on whether the PPI is phosphorylation or not. To solve this problem, they proposed a Voting Diverse Density (VDD) algorithm based on the Diverse Density (DD) algorithm and demonstrated that their method outperformed several other popular MIL algorithms and required much less time for training [START_REF] Yamakawa | Predicting types of protein-protein interactions using a multiple-instance learning model[END_REF].

Multi-domain proteins can also perform many different functions. To predict the biological functions of proteins, Wu et al. [START_REF] Wu | Genome-wide protein function prediction through multiinstance multi-label learning[END_REF] used a Multi-Instance Multi-Label (MIML) framework, where instances are protein domains and the protein (bag) is associated with multiple biological functions (multiple labels). They demonstrated the applicability of the MIML approach to seven real-world datasets on the main biological systems: archaea, bacteria, and eukaryotes.

Isoform isoform interactions. Constructing and analyzing protein-protein interactions helps to understand biological processes, enabling the development of more effective drugs. In protein biosynthesis, a gene in a DNA sequence generates a particular protein with an inherent structure and biological function. However, the alternative splicing (AS) mechanism makes it possible for the same gene to synthesize several proteins (protein isoforms) that have a similar amino acid sequence and structure but sometimes perform different biological functions. Many computational tools neglect this aspect (mainly because of the lack of experimental data on isoformisoform interactions) and only consider the canonical (or the longest) protein derived from a gene when constructing PPIs.

This may cause interactions between canonical proteins (gene-gene interactions) to be erroneously predicted as negative (false negative), in cases where alternative proteins (isoforms) of two genes interact. This case is also suitable for the MIL framework, in which a gene (bag) generates several protein isoforms (instances). The interaction between a gene-gene pair is positive if at least one of the isoform-isoform interactions (IIIs) is positive. To address these tasks Li et al. [START_REF] Li | A Network of Splice Isoforms for the Mouse[END_REF] proposed a single-instance bag MIL (SIB-MIL) algorithm based on a Bayesian network classifier.

SIB-MIL works at the instance level and assigns each instance (isoform pair) a probability to be positive (interactive). In SIB-MIL, the Bayesian network classifier is initially trained on positive bags with single-instance (gene pairs with single pair of isoforms) and negative instances from Multi-instance learning was adapted to predict peptide binding activity to MHC-II in classification [START_REF] Pfeifer | Multiple instance learning allows MHC class II epitope predictions across alleles[END_REF] and regression tasks [START_REF] El-Manzalawy | Predicting MHC-II binding affinity using multiple instance regression[END_REF]. Both approaches used bags of segments of 9 amino acids.

In [START_REF] Xu | MHC2MIL: A novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide Flanking Region and residue positions[END_REF], a new multi-instance approach for predicting MHC-II binding was proposed in which flanking amino acids (11-mers) were considered in addition to the 9-mer segments. Also, the authors used experimental information that amino acids at positions 1, 4, 6, 7, and 9 may be crucial for peptide binding and integrated this information into the learning algorithm. In addition, their study revealed that amino acids at position 2 may also influence peptide binding.

Each human has multiple MHC-II molecules, which can be represented in assays. Often, experimental methods cannot precisely identify which MHC-II molecule was bound to a given peptide. Malone et al. [START_REF] Cheng | BERTMHC: improved MHC peptide class II interaction prediction with transformer and multiple instance learning[END_REF] formulated the MIL problem, where the bag contains multiple MHC-II molecules and is positive if at least one MHC-II molecule binds a given peptide and negative if there are no binding MHC-II molecules in the bag. They used a combined dataset [START_REF] Reynisson | NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data[END_REF] of SA (single-allele) and MA (multi-allele) data to train a transformer neural network BERTMHC and showed that models trained on SA data only are inferior to MIL models.

Calmodulin-protein interactions. Calmodulin (CaM) is a calcium-binding protein that is 148 amino acids long. CaM can interact with more than 300 proteins and peptides [START_REF] Andrews | Structural aspects and prediction of calmodulin-binding proteins[END_REF], thereby regulating many biological processes. The biological significance of CaM and the high diversity of proteins that can interact with CaM have motivated the development of computational methods for predicting both the proteins that can bind to CaM and the binding sites within these proteins.

Minhas et al. [START_REF] Abbasi | CaMELS: In silico prediction of calmodulin binding proteins and their binding sites[END_REF] used a dataset of 153 proteins with 185 experimentally annotated binding sites. In a single-instance scenario, the subsequences annotated as binding sites were marked as positive examples and all other parts of the protein (obtained using a sliding window approach) as negative. However, experimental methods do not always accurately determine the position of the binding site, which introduces ambiguity into the learning process of the classification model.

Therefore, in the multi-instance model, all subsequences overlapping the binding site formed a positive bag, and all other subsequences formed a negative bag. As a result, it was demonstrated [START_REF] Abbasi | CaMELS: In silico prediction of calmodulin binding proteins and their binding sites[END_REF][START_REF] Minhas | Multiple instance learning of Calmodulin binding sites[END_REF] that the MIL approach slightly improves the accuracy of binding site prediction. For CaM Pan and Shen proposed the iDeepE method [START_REF] Pan | Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks[END_REF] based on MIL and deep convolutional neural networks. In their approach, instances are generated from RNA sequences using a sliding window method and the bag is positive if the RNA interacts with the protein. For validation of their method, they used the RBP-24 dataset (http://www.bioinf.uni-freiburg.de/Software/GraphProt) that includes 24 experiments of 21 RNA-protein binding sites and RBP-47 which reports 502 178 binding sites for 67 RNA-protein pairs. They compared iDeepE with eight of its modifications (based on convolutional neural network, long-term memory network, and residual net) and three alternative machine learning-based approaches (GraphProt, Deepnet-rbp, Pse-SVM). The authors concluded that iDeepE performs better than its eight variants and other four state-of-the-art approaches and demonstrated that iDeepE can identify binding motifs.

RNA modification is the process by which the nucleotides in synthesized RNA are chemically modified. Traditional supervised learning approaches for predicting RNA modifications require base-resolution data, which often are not available. Huang et al. [START_REF] Huang | Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data[END_REF] proposed the weakly supervised learning framework (WeakRM) for modeling RNA modifications from low-resolution datasets. Each RNA was considered as a bag consisting of regions (instances) obtained by a sliding window approach. They examined their approach to three different types of RNA modification and demonstrated that WeakRM outperforms traditional supervised approaches and can identify regions containing the RNA modifications (key instances).

miRNA-mRNA interactions. mRNA regulates the synthesis of the peptides during gene expression, while microRNAs (short non-coding RNA with 18-25 nucleotides) binds to the specific sites of the target mRNA, and deactivates part of the mRNA or initiate its degradation and thereby inhibit gene expression. mRNA has a large number of potential binding sites (PBS) that can be bound by given miRNA, but experimental identification of functional binding sites (FBS, actual binding 2-8 nucleotide segments) is time-and money-consuming. In this context, computational approaches for predicting miRNA targets and their binding sites are highly desirable. In the MIL framework, each miRNA-mRNA pair is considered as a bag and each PBS of target mRNA as an instance. In the classification task, a bag is positive if it contains at least one FBS (key instance), and negative if there is no FBS in the bag (given that miRNA-mRNA does not interact).

Using the MIL framework, Bandyopadhyay et al. [START_REF] Bandyopadhyay | MBSTAR: Multiple instance learning for predicting specific functional binding sites in microRNA targets[END_REF] 

MATLAB implementations of multi-instance algorithms can be found in the Matlab

Toolbox for Multiple Instance Learning [START_REF] Tax | A Matlab Toolbox for Multiple Instance Learning[END_REF]. Multiple-Instance Learning Python Toolbox [START_REF] Arrieta | MILpy: Multiple-Instance Learning Python Toolbox[END_REF] is inspired by MATLAB Toolbox and provides popular multi-instance algorithms written in Python.

Various multi-instance modifications of SVM [START_REF] Doran | A theoretical and empirical analysis of support vector machine methods for multiple-instance classification[END_REF] that not only predict the property of molecules but also can identify the key conformers responsible for the observed molecular property.

Methodological developments

This chapter provides a detailed description of the 3D structure-property modeling approach based on multi-instance machine learning. The process of building 3D models includes several steps (Figure 10). First, for a given molecule, a set of conformers is generated which are encoded with alignment-independent 3D descriptors.

The sets of 3D descriptors are then used to build the model using special multi-instance algorithms.

1) Data. The input data can be stored in any standard format, e.g. as a CSV table (Figure 11), which contains the SMILES of the molecule and the value of the target property. The implemented 3D modeling approach handles both regression and classification tasks, that is, the target property can be defined as a continuous or binary variable. The implemented MIL algorithms can also be extended to solve multi-instance multi-task problems, where a molecule is represented by multiple instances and is associated with multiple properties that are modeled cooperatively. The diversity of the generated conformers depends on the width of the energy window, which is specified manually. All conformers that differ in energy from the most stable conformer more than the width of the energy window are discarded. Conformations with the remaining ones are removed to reduce redundancy. Figure 12 demonstrates an example input molecule and the corresponding generated conformers using the RDKit package.

3) Descriptors. The generated conformers of the molecule then can be encoded using 3D

descriptors. Several 3D alignment-independent descriptors (WHIM [START_REF] Todeschini | The Whim Theory: New 3D Molecular Descriptors for Qsar in Environmental Modelling[END_REF], GETAWAY [START_REF] Consonni | Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies[END_REF],

MORSE [START_REF] Schuur | The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity[END_REF], RDF [START_REF] Hemmer | Deriving the 3D structure of organic molecules from their infrared spectra[END_REF]), which do not depend on the translation and rotation of molecules in 3D space are implemented in RDKit. The problem with the majority of alignment-independent 3D

descriptors developed so far is that not all of them can distinguish stereoisomers and not all of them are interpretable. The developed 3D approach is based on novel 3D pharmacophore descriptors [START_REF] Kutlushina | Ligand-based pharmacophore modeling using novel 3D pharmacophore signatures[END_REF], which are implemented in the pmapper package (https://github.com/Drr-Dom/pmapper). individual atom features used to build 3D models for prediction of catalyst enantioselectivity.

In the default setting of the pmapper package, each conformation is encoded by a set of pharmacophore features (H-bond donor/acceptor, the center of positive/negative charge, hydrophobic, and aromatic) determined by the corresponding SMARTS notation. For a given conformation, all possible quadruplets of predefined features were enumerated. Distances between features are binned to allow fuzzy matching of quadruplets with small differences in the position of features. In the default setting binning step of is used as it demonstrated reasonable performance in previous studies [15,135 137]. Then 3D pharmacophore signatures are generated for each quadruplet according to the algorithm in details described in the original publication [START_REF] Kutlushina | Ligand-based pharmacophore modeling using novel 3D pharmacophore signatures[END_REF].

These signatures encode distances between features and their spatial arrangement to recognize the stereo configuration of quadruplets. The number of identical 3D pharmacophore quadruplet signatures is counted for each conformation and the obtained vectors are used as descriptors for model building. Attention-based pooling operators. Key instances define the observed bag label. In the context of modeling the bioactivity of molecules with MIL approaches, it is considered that a molecule is bioactive if at least one of its conformers is bioactive (binds to the target), and inactive if none of the conformers is bioactive. Therefore, it is desirable not only to predict molecule property but identify key conformations responsible for observed target property.

Traditional pooling operators (mean, max) are predefined and ignore the importance of individual instances. This motivated the development of advanced pooling operators that adapt during training and focus on the most important instances. In bag-level algorithms, these pooling operators generate instance weights, which determine the contribution of each instance to the final embedding vector. Such pooling operators are especially desirable because they make MIL models interpretable, i.e., they allow not only the prediction of a bag label but also the identification of key instances.

Attention-based pooling. In [START_REF] Ilse | Attention-based deep multiple instance learning[END_REF] Ilse et al. proposed a pooling operator based on the attention mechanism [START_REF] Lin | A structured self-attentive sentence embedding[END_REF], which was implemented as a two-layered neural network followed by the softmax function that receives instance scores and generates instance weights that sum to 1 (the higher the instance attention weight, the more important the instance). Instances are then aggregated according to the attention weights (weighted mean). In this project, the attention neural net is coupled with a fully-connected three-layered neural network, which generates instance representations and predicts bag labels based on bag embedding. Both neural networks are trained consistently using a backpropagation algorithm.

GatedAttention-based pooling. The default version of the Attention-based neural network includes a tangent hyperbolic activation function (tanh), which is approximately linear for x in the range of [-1, 1]. Therefore, in the same paper [START_REF] Ilse | Attention-based deep multiple instance learning[END_REF] Ilse and co-workers also proposed to use of a gating mechanism [START_REF] Dauphin | Language modeling with gated convolutional networks[END_REF] to increase the non-linearity of learned relationships. GatedAttentionbased pooling consists of two neural networks: one with a tanh and another with a sigmoid activation function and the resulting representation is calculated as element-wise multiplication tanh sigmoid.

Self-attention pooling. Attention-based MIL pooling is flexible and suitable for aggregating information from individual instances. However, the contribution of each instance in the label of the bag is evaluated by the attention neural network independently of the other instances in the bag. This is an acceptable scenario when considering a standard assumption, where a bag is given a positive label if it contains at least one positive instance. More complicated is the thresholdassumption, when a bag is positive only when it contains at least N positive instances. The Presence-based assumption assumes that a bag is positive if it contains several instances of different concepts. For example, the standard assumption is suitable for predicting the bioactivity of a compound represented by multiple conformations, since a compound is active if at least one of its conformations is bioactive, i.e. binds to the target. Another example relates to the presence-based assumption. Let a compound is active when it contains an amide group, which consists of C, O, and N atoms. In this case, the MIL method must be forced not only to identify the C, O, and N atoms separately but also to be sensitive to cases when instances representing atoms C, O, and N occur in the bag simultaneously. To handle tasks in which threshold -and presence-based assumptions prevail, more advanced pooling types are needed. These pooling functions must take into account interactions between instances in the bag.

One of the approaches to solving this problem is to apply the self-attention mechanism.

The main idea of self-attention is to take into account the similarity between instances when calculating the attention weights of bag instances. Thus, the weight of each instance depends on the Temperature softmax. In the standard attention mechanism, the weight of instance i is calculated using the softmax function:

(

The modification of standard softmax is a temperature softmax, which includes the parameter of temperature :

(3)

The lower the value, the sharper the attention weights distribution, and the higher the value, the more uniform the distribution. At , the temperature softmax is identical to the standard softmax.

Gumbel-Softmax. Originally, the Gumbel-Softmax function was proposed by Jang et al. [START_REF] Jang | Categorical reparameterization with gumbel-softmax[END_REF] to provide a continuous approximation to sampling from the categorical distribution in a way that is differentiable and suitable for backpropagation algorithm in deep learning:

(4)

Gumbel-Softmax combines the deterministic part of sampling with the stochastic part by adding Gumbel noise (0, 1), which can be sampled as two logs of some uniform distribution.

Minimum Entropy Regularizer. In the attention-based mechanism sparse and sharp weights distribution has low entropy, which is calculated as:

(5)

Thus, minimizing the entropy of attention weights during the training of the neural network forces the attention mechanism to generate a sharp attention weights distribution.

Attention weights dropout. In attention weights dropout the weights generated by the attention mechanism are sorted and N % (N is set manually) of the instances with the lowest attention weights are discarded. The attention weights of the remaining instances are recalculated again using a softmax so that they sum to 1. As a result, only a fixed number of instances with the highest attention weights contribute to the embedding vector.

Other pooling operators. There are other types (non-attention) of pooling operators that can estimate instance weights.

Gaussian weighting. Another type of pooling based on an additional neural network is pooling with Gaussian weighting [START_REF] Looks | Deep Multiple Instance Learning With Gaussian Weighting[END_REF]. Gaussian pooling applies a Gaussian radial basis function to calculate instance weights, which is the main difference from attention-based pooling, which applies softmax for this purpose. As a result, each weight can independently take values from 0 to 1. This variant of pooling can be considered soft pooling in comparison with attention-based one.

Dynamic pooling. Inspired by the Routing Algorithm from Capsule Networks [START_REF] Sabour | Dynamic routing between capsules[END_REF], a new type of pooling operator was proposed in [START_REF] Yan | Deep Multi-instance Learning with Dynamic Pooling[END_REF], called dynamic pooling. This pooling operator iteratively updates the instance contribution to its bag representation during each feed-forward step. Based on these instance contributions, dynamic pooling highlights the key instance and models the contextual information among instances. The multi-instance neural network with dynamic pooling is optimized with the margin loss in an end-to-end manner. Besides the ability to highlight the key instance, the dynamic pooling function makes instance-to-bag relationships interpretable.

5) Model optimization. The developed 3D modeling protocol is fully automated, but some parameters of this protocol (Table 1) can be configured manually for each particular task. Table 1 lists recommended values for the parameters of the modeling protocol which were obtained based on preliminary experiments, except for the which has to be specified for each task or kept as default. The program code for the developed modeling protocol was organized in a miqsar python package (https://github.com/cimm-kzn/3D-MIL-QSAR) (Figure 15).

MIL Wrappers.

The simplest algorithms that convert a multi-instance dataset into a singleinstance dataset. Then any standard ML algorithm is used to build the model (standard neural network as default).

Instance-Wrapper. The algorithm transforms a multi-instance dataset into a single-instance dataset by assigning all instances labels of the parent bag. Then any single-instance ML algorithm is used to build the model. For a new object, the predictions of each instance are obtained, which are then averaged to get the bag prediction.

Bag-Wrapper. The algorithm transforms a multi-instance dataset into a single-instance dataset by mapping (i.e. averaging) a bag of instances to a single embedding vector. Then any singleinstance ML algorithm is used to build the model. AttentionNet. Hidden layers of neural networks transform instance features into instance representations, that are aggregated by an attention-based pooling operator (weighted mean) to a single embedding vector, that is processed to derive bag prediction.

Upgraded

GatedAttentionNet. Two types of hidden layers are used to transform instance features into instance representations: one with a tanh and another with a sigmoid activation function and the resulting instance representations are calculated as element-wise multiplication tanh sigmoid.

Instance representations that are aggregated by an attention-based pooling operator (weighted mean) to a single embedding vector, are processed to derive bag prediction.

TempAttentionNet. The algorithm applies temperature softmax instead of a standard softmax function to calculate attention weights in attention-based pooling. The temperature parameter is used to adjust the sharpness of attention weights distribution.

GumbelAttentionNet. The algorithm applies Gumbel softmax instead of a standard softmax function to calculate attention weights.

SelfAttentionNet. Hidden layers of neural networks transform instance features into instance representations, that are aggregated by a self-attention-based pooling operator to a single embedding vector, that are processed to derive bag prediction.

DPNet. Hidden layers of neural networks transform instance features into instance representations, that are aggregated by a dynamic pooling operator to a single embedding vector, that are processed to derive bag prediction.

GPNet. Hidden layers of neural networks transform instance features into instance representations, that are aggregated by the gaussian weighting pooling operator (weighted mean) to a single embedding vector, that are processed to derive bag prediction.

Multiple conformer descriptors for QSAR modeling

Multi-instance algorithms can be categorized into instance-based and bag-based algorithms. Instance-based algorithms apply a predefined rule to aggregate the predicted instance scores to obtain a single prediction for the entire bag. Bag-based algorithms aggregate instances of the bag into a single vector, resulting in single-instance representation. Mapped bag-based algorithms use a special mapping function, to transform multi-instance data into single-instance representations of bags. Mapping methods can be based on bag statistics, representative instance concatenation, counting, or distance [START_REF] Mans | Multiple instance learning: Foundations and algorithms[END_REF]. In this study MIL-kmeans algorithm, which is similar to the approach published by Zhou and Zhang [START_REF] Zhou | Solving multi-instance problems with classifier ensemble based on constructive clustering[END_REF] was developed and validated for the task of classification of bioactive compounds.

In MIL-kmeans algorithm, all conformers of all compounds represented by corresponding Compounds were labeled active if their pKi or pIC50 was 6 for enzyme targets and 7.5 for membrane proteins, and inactive otherwise.

Conclusion

In this study, the clustering-based classification algorithm MIL-kmeans was compared with simpler alternative MIL-mean and MIL-max algorithms. The MIL-kmeans and MIL-max algorithms perform similarly to or better than the traditional MIL-mean algorithm. MIL-kmeans is a more sophisticated method that requires the optimization of additional hyperparameters but can outperform the simpler MIL-max algorithm in some cases. Based on the comparison results, MILkmeans was chosen as the main algorithm for analyzing 3D models trained with multiple conformers.

3D models based on a single conformer were expectedly worse than 2D models. The inclusion of multiple conformers in combination with the MIL-kmeans algorithm significantly increased the accuracy of 3D models in almost all cases. A comparison of 3D multi-conformer models and traditional 2D models was performed on three collections of datasets: 5 achiral, 6 chiral, and 162 mixed datasets. For 4 of the 5 achiral datasets, 2D models outperformed 3D multi-conformer models based on 3D pharmacophore descriptors. In the case of chiral datasets, 3D multiconformer models significantly improved prediction accuracy only for the CHEMBL232 dataset, whereas in the other datasets, 2D models based on Morgan fingerprints or physicochemical descriptors from RDKit were the best. For an additional collection of 162 datasets containing both achiral and chiral molecules, 2D models outperformed 3D multi-conformer models in most cases.

Nevertheless, 2D and 3D models are comparable when the dataset size is less than 1000 compounds. In larger datasets (>1000), 2D models are consistently better.

In general, the developed MIL-kmeans algorithm in combination with 3D pharmacophore descriptors can be considered as an alternative approach for modeling the bioactivity of compounds in cases where traditional 2D models fail to accurately classify bioactive compounds.

Modeling of compounds bioactivity with conformation ensembles

A common technique in ligand-based modeling approaches is based on correlating the ligand structure with their experimental bioactivity using machine learning methods. The structure of ligands can be encoded with 2D or 3D chemical descriptors. 2D descriptors are the more popular because they are quick and easy to calculate as well as often predictive models based on 2D descriptors demonstrate good performance. But, in special cases where the bioactivity of the molecule is strongly related to the 3D structure, 3D descriptors are preferable.

However, the wide application of 3D descriptors is limited by a long-standing problem related to the selection of probable bioactive conformers of the molecule. Molecules can be represented by multiple alternative conformers, but only a single bioactive conformer, which binds to the target, is responsible for the observed bioactivity. Bioactive conformers can be determined experimentally (e.g. with X-ray or NMR methods), but the amount of experimental data is still limited. Therefore, often the lowest-energy conformer, generated using methods of geometry optimization, is selected for modeling. However, the independently optimized lowest-energy conformer can significantly differ from the actual bioactive conformer, which makes it difficult to establish a correct relationship between the structure and bioactivity of the compound.

To overcome this problem, a new 3D modeling approach based on multi-instance machine learning (MIL), which does not require the selection of conformers, was developed within this research project. In this approach, all available conformers of the molecule are processed simultaneously by special MIL algorithms, some of which can also automatically identify bioactive conformers. In this study, 3D multi-conformer models were compared with 3D single-conformer models as well as with traditional 2D models based on popular 2D descriptors. A large-scale comparison analysis was performed on 175 datasets on the bioactivity of compounds extracted from the ChEMBL-23 database. In addition, 4 datasets including experimental 3D ligand structures from Protein Data Bank (PDB) database were used to test MIL algorithms in the task of identification of bioactive conformers.

Conclusion

A new 3D modeling approach based on conformer ensembles was applied to build 3D multi-conformer models which were compared with 3D single-conformer and 2D models on the collection of 175 datasets extracted from the ChEMBL-23 database. In a pairwise comparison, 3D multiconformer models almost for all datasets (99%) outperformed 3D single-conformer models. In total, 3D multi-conformer model demonstrated the highest performance in 63 % of datasets, while the 2D model was the best in 36% of datasets. Nevertheless, there were a few datasets in which 2D models failed to predict the bioactivity of compounds, while 3D multi-conformer models provided accurate predictions. This may indicate special cases where 3D structural information is crucial for the correct prediction of bioactivity.

It was demonstrated, that the 3D multi-conformer models, built with the attention-based multi-instance neural network, can also identify the bioactive conformers. For 3 of the 4 datasets, the 3D multi-conformer model identified more bioactive conformers than the standard docking approach. For example, for 15 experimental 3D structures from the CHEMBL2820 dataset, the 7 molecules, which is even worse than the random selection (9 molecules). Meanwhile, the 3D multi-conformer model correctly identifies bioactive conformers for 12 molecules.

The developed 3D modeling approach does not require selection and alignment of conformers, which excludes manual configuration of the modeling protocol (but there are still options to improve the performance of the 3D models, such as optimization of the number of conformations, hyperparameters of machine learning algorithms, adjustment of descriptors, validation strategy, etc.). Concerning future research, there are still many other popular 2D descriptors that can be tested in the described benchmark. In the case of the 3D models, apart from the lowestenergy conformation, there are other strategies (docking or other conformer generators) to select a single conformer for modeling. Also, the benchmark analysis was designed to isolate the influence of the machine learning algorithm (as much as possible), and all 2D and 3D models were built using the standard fully-connected neural network or its multi-instance modification. However, there are many other traditional single-instance algorithms and multi-instance algorithms that can be used for building 2D and 3D models. ] that chiral organic molecules can effectively catalyze asymmetric reactions with production enantiopure compounds. Since these seminal publications, numerous chiral catalyst systems have been designed [START_REF] Han | Asymmetric organocatalysis: An enabling technology for medicinal chemistry[END_REF]. The pursuit of perspective catalysts is traditionally conducted by iterative modification of the catalyst structure aiming to increase the enantioselectivity of the considered reaction. In this process, chemists rely on their professional experience, chemical intuition, and available experimental data. This approach, albeit often culminates in the desired result, still depends on the professional background of the researcher. Despite significant progress in experimental studies of asymmetric organocatalysis, computational chemistry is an appealing technology aiming to empower experimentalists in the quest for developing new catalysts. Theoretical calculations may suggest the structure of promising catalysts before their synthesis, and experimental testing, thus, reducing the time and overheads needed to achieve their desired performance.

A perspective computational approach to the theoretical discovery of new catalysts is Quan- [START_REF] Melville | Exploring phase-transfer catalysis with molecular dynamics and 3D/4D quantitative structure -Selectivity relationships[END_REF], focused on the conformation diversity of catalysts and applied 4D-QSAR to model the enantioselectivity of biphenyl catalysts, thereby improving the accuracy of predictions in comparison with the standard 3D-QSSR model.

In the same paper, they proposed an advanced 3.5D-QSSR approach with Boltzmann-weighting of selected catalyst conformers and obtained enantioselectivity predictions even more accurately than in 4D-QSSR. Their results demonstrated the importance of molecular flexibility in enantioselectivity modelling, which was addressed in later studies [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF][START_REF] Henle | Development of a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset Selection, and Training Set Analysis[END_REF]. In 2011 the asymmetric glycine imine alkylation catalyzed with a pyrrolizidine-based system was analyzed by Denmark group [START_REF] Denmark | A systematic investigation of quaternary ammonium ions as asymmetric phase-transfer catalysts. Synthesis of catalyst libraries and evaluation of catalyst activity[END_REF] using CoMFA-based approach. To account for conformation diversity, they generated five libraries with different combinations of scaffold conformers. This approach generates accurate predictions if a proper conformer library is selected.

The development of various methods and approaches to QSSR analysis in asymmetric synthesis culminated in the general chemoinformatics-based approach published by Denmark [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF][START_REF] Henle | Development of a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset Selection, and Training Set Analysis[END_REF] Morao [START_REF] Sciabola | Theoretical prediction of the enantiomeric excess in asymmetric catalysis. An alignment-independent molecular interaction field based approach[END_REF] for examples of asymmetric reactions previously studied by Lipkowitz et al. [START_REF] Lipkowitz | Computational studies of chiral catalysts: A Comparative Molecular Field Analysis of an asymmetric Diels-Alder reaction with catalysts containing bisoxazoline or phosphinooxazoline ligands[END_REF],

Kozlowski et al. [START_REF] Kozlowski | Quantum mechanical models correlating structure with selectivity: Predicting the enantioselectivity of -amino alcohol catalysts in aldehyde alkylation[END_REF] and Damen et al. [START_REF] Hoogenraad | Oxazaborolidine mediated asymmetric ketone reduction: Prediction of enantiomeric excess based on catalyst structure[END_REF]. GRIND uses MIF-based approaches to compute interaction fields that are encoded by alignment-independent variables with autocorrelation transform. In general, the predictive models generated with GRIND show comparable results to MIF alignment-dependent approaches [START_REF] Sciabola | Theoretical prediction of the enantiomeric excess in asymmetric catalysis. An alignment-independent molecular interaction field based approach[END_REF]. Also, GRIND models are still interpretable, contrary to other models based on alignment-independent 3D descriptors, which apparently for this reason have not been widely used in the 3D-QSSR analysis. Other details on the approaches and descriptors used in QSSR can be found in the comprehensive review of Zahrt et al. [START_REF] Zahrt | Quantitative Structure-Selectivity Relationships in Enantioselective Catalysis: Past, Present, and Future[END_REF] Recently Asahara and Miyao [START_REF] Asahara | Extended Connectivity Fingerprints as a Chemical Reaction Representation for Enantioselective Organophosphorus-Catalyzed Asymmetric Reaction Prediction[END_REF] compared different 2D (ECFP6 and Mol2vec) and 3D descriptors (Dragon and MOE) to model the enantioselectivity of chiral acid catalysts.

The 3D descriptors were generated from the most stable conformers of reactants, products, and catalysts obtained with the force-field approach. As a result, the authors concluded that ECFP6 descriptors are found to be the best representation.

The above studies revealed three main drawbacks of existing 3D-QSSR approaches to the modelling of catalyst enantioselectivity: (i) selection of catalyst conformers, (ii) their alignment, and (iii) relevance of 3D descriptors with respect to the enantioselectivity problem. Inheriting previous conceptual progress in computational catalyst design, we have suggested a new protocol for the building of predictive models for catalyst enantioselectivity. In our approach, the catalysts are represented by an ensemble of conformers, encoded by new alignment-independent pmapper 3D descriptors which were successfully used in the modeling of ligands activity against 175 biological targets [START_REF] Zankov | QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach[END_REF][START_REF] Nikonenko | Multiple Conformer Descriptors for QSAR Modeling[END_REF]. In order to consider an ensemble of catalyst conformers instead of a single selected conformer, the models were built using Multi-Instance machine Learning (MIL) algorithms. In the MIL approach, a molecule (catalyst) is presented by a bag of instances (set of conformers), and a label (experimental enantioselectivity) is associated with the bag (catalyst), but not with individual instances (conformers). In contrast to conventional single-instance learning where the object is represented by a single vector of descriptors, MIL determines a correlation between the bag descriptors and the labels. Thus, the application of MIL algorithms solves the problem of conformer selection and allows using all the generated catalyst conformers for the model building.

In this study, we demonstrate that the MIL-based 3D modelling approach can successfully be used to predict the enantioselectivity of homogeneous and phase-transfer reactions catalyzed by structurally different catalyst families. In both cases, the obtained models outperform traditional 2D models and previously reported 3D state-of-the-art approaches.

Datasets

Over the past two decades, numerous chiral organic catalysts have been designed for different types of reactions. Thus, -Binaphthol) derivatives are popular catalysts in asymmetric synthesis because of their backbone flexibility, which enables the proper orientation of the reagents in 3D space. The Cinchona quaternary ammonium salts are extensively used in asymmetric phasetransfer catalysis (APTC) due to their capability to dissolve simultaneously in aqueous and organic liquids.

The catalyst enantioselectivity is often provided in enantiomeric excess (ee %) of the reaction which is defined as the difference between the amount of each enantiomer:

The formula for calculating ee % depends on the type of the experimental datasets published in source papers. In this study, the ee % was converted to G (kcal/mol) -a difference in free energy between competing reaction transition states leading to different enantiomers: (7) To test our 3D modelling protocol, we selected two datasets on the chiral catalyst enantioselectivity -homogenous asymmetric nucleophilic addition and phase-transfer alkylation -used in previous modeling studies [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF][START_REF] Melville | Computational screening of combinatorial catalyst libraries[END_REF]. The phosphoric acid catalysts (PAC) dataset reported by Zahrt et al. [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF] contains the enantioselectivity values for 43 catalysts used in 25 reactions of asymmetric addition of imine to thiol (Figure 16a) resulting in 43 25 = 1075 data points. Reported ee % (in favor of R enantiomer) ranged from -34 to 99 and for modelling were converted to G (kcal/mol). A detailed description of the catalyst and reactant structures can be found in the original paper [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF].

This dataset was divided into training and several test sets, as suggested by Zahrt et al. [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF] The training set consisted of [START_REF] Emamjomeh | DNA protein interaction: identification, prediction and data analysis[END_REF] Asymmetric phase transfer catalysis (APTC) enables reactions between reactants located in two immiscible phases with chiral catalysts to produce enantiopure substances. A classic example of APTC is the asymmetric synthesis of -amino acids catalyzed by quaternary ammonium salts, particularly the alkylation of glycine-derived Schiff bases (R 1 R 2 C=NR 3 ) (Figure 16b).

We considered an example of asymmetric alkylation of -amino acid derivatives catalyzed by cinchona alkaloid-based quaternary ammonium salts reported by Melville et al. [START_REF] Melville | Computational screening of combinatorial catalyst libraries[END_REF] A catalysts library was generated by a variation of 13 substituents resulting in 88 catalysts. One substituent was presented only in a test set of 18 catalysts while the remaining 12 substituents were used to generate a training set of 70 catalysts. The reported ee ranged from 16 to 93 % (in favor of the S enantiomer). guarantees that two enantiomers of a molecule have two different descriptor vectors. In our previous paper [START_REF] Zankov | Multi-Instance Learning Approach to Predictive Modeling of Catalysts Enantioselectivity[END_REF], we demonstrated that a combination of 3D pharmacophore quadruplets and MIL generates accurate models for the PAC dataset. However, in this work, instead of pharmacophore features, we used quadruplets and triplets of individual atoms (and centers of 5-and 6-membered aromatic rings) -atom quadruplets and atom triplets. Preliminary experiments (which will be discussed later) revealed that atom triplets significantly reduce the number of descriptors, and demonstrate even better performance than atom quadruplets. However, if a dataset contains catalysts in both R and S configurations -the application of atom quadruplets is mandatory to distinguish the two enantiomers. The atom triplets are applicable in this study because all catalysts in the considered datasets have the same stereoconfiguration.

The atom triplets are specified by (1) the list of the individual atoms (C, N, O, S, P, F, Cl, Br, I) or 5-membered and 6-membered aromatic ring and (2) the distances between atoms and/or center of rings in a triplet. The list of encoded atoms can be customized depending on the task. To enable fuzzy matching of atom triplets and identify similar ones, the distances between atoms are binned with the step of Figure 17a). Then the number of occurrences of each unique atom triplet is counted for each conformer, resulting in an integer descriptor matrix (Figure 17a). Reactant 2D descriptors calculation. Each structural transformation of reactants is transformed into a Condensed Graph of Reaction (CGR) [START_REF] Hoonakker | Condensed Graph of Reaction: Considering a Chemical Reaction as One Single Pseudo Molecule[END_REF] with a CGRtools package [START_REF] Nugmanov | CGRtools: Python Library for Molecule, Reaction, and Condensed Graph of Reaction Processing[END_REF]. CGR considers a chemical reaction as one single pseudo molecule (Figure 17b) and contains conventional chemical bonds (e.g. single, double, triple, aromatic, etc.) and sodescribing chemical transformations, i.e. breaking or forming a bond or changing bond order. Obtained CGRs then are processed with In Silico Design and Data Analysis (ISIDA) tool to calculate 2D fragment descriptors [153]. ISIDA fragment descriptors count the occurrence of particular subgraphs (structure fragments) in given CGRs. ISIDA provides several strategies for molecule fragmentation. In this study, we used atom-centered subgraphs (atoms with first, second, etc. coordination spheres) where the radius varied from 2 to 5 atoms.

Reaction profile descriptors. Vectors of 2D fragment descriptors for reactions and 3D atom triplets for catalysts were then concatenated to form reaction profile descriptor vectors (Figure 18).

If the dataset contained a single reactant transformation, there is no concatenation of catalyst and reactant descriptors. Figure 18 shows the general scheme of our 3D modelling protocol.

Multi-instance learning algorithms

For the MIL algorithms benchmark, we used a PAC dataset, which was divided into 25 subsets according to the number of reactant transformations. Each subset contained 43 catalysts with experimental G measured in a given reactant transformation. Middle Absolute Error (MAE) of G predictions was evaluated in a 5-fold cross-validation repeated 5 times (5 5-CV). The comparison results show that the Instance-Wrapper algorithm considerably outperforms other algorithms, including the most complex Bag-AttentionNet one.

The basic machine learning algorithm in Instance-Wrapper was a fully connected neural network with three hidden layers of 256, 128, and 64 neurons and a ReLU activation function. The optimized hyperparameters were weight decay (0.0001, 0.001, 0.01, 0.1) and learning rate (0.001 or 0.01). The maximum number of learning epochs was 1000.

Generation of 2D models

As an alternative to our 3D approach, we also considered the 2D modeling approach where the reactants and catalyst structures are encoded by different fingerprint and fragment 2D descriptors.

The following fingerprints were generated using the RDKit library: Atom-Pairs (1024 bits) [START_REF] Smith | Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications[END_REF],

Avalon (1024 bits) [START_REF] Gedeck | QSAR -How good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets[END_REF], and Morgan fingerprints of radius 2 (1024 bits) [START_REF] Rogers | Extended-connectivity fingerprints[END_REF]. Fragment ISIDA

[153] and CircuS [START_REF] Tsuji | Predicting Highly Enantioselective Catalysts Using Tunable Fragment Descriptors[END_REF] (Circular Substructures) descriptors can be calculated with different fragmentation strategies. For ISIDA, both atom-centered and linear fragments were used. CircuS are similar to ISIDA atom-centered fragments, but explicitly consider encountered branching or cyclical structures, which makes them more efficient for catalyst structures enriched with cyclical groups and reduces the noise in the training data.

For a PAC dataset containing multiple reactant transformations, there were two encoding strategies: (a) reactant transformations were converted to CGR and then encoded by ISIDA or CircuS (fingerprints tools are unable to process CGR) fragment descriptors (Imine/Thiol CGR, Table 2) or (b) imine and thiol were encoded by fingerprints or fragment descriptors and then concatenated to a single descriptor vector (Imine/Thiol concatenation, Table 2). Then the resulting reactant transformation vectors were concatenated with fingerprint or fragment descriptor vectors of the catalysts.

Fragment-based descriptors can be calculated using different strategies and fragment lengths, generating multiple sets of descriptors. In order not to be biased towards specific descriptor sets, we applied a consensus method to calculate the final predictions. First, for each descriptor type (ISIDA, CircuS, or fingerprints), we selected models with R 2 Train > 0.7 to discard descriptor sets that poorly describe the training set. Then the predictions of the filtered models for the test set were averaged to obtain final consensus predictions of enantioselectivity. For model training, the same fully connected neural network was used as in the Instance-Wrapper algorithm in multi-instance models.

The following metrics were used to assess the performance of the models: Root-Mean Squared Error (RMSE), Mean Absolute Error (MAE), determination coefficient (R 2 ), Spearman correlation coefficient measuring the correlation between predicted and experimental catalyst ranks (ranking accuracy, RA).

Results and Discussion

Using the described datasets and modelling protocols, various 2D and 3D models for enantioselectivity prediction were generated. The 3D single-conformer model was built on the lowest-energy catalyst conformers, while 3D multi-conformer model included all the generated conformers.

Benchmarking of 2D/3D descriptors and MIL algorithms

We were interested in how effectively existing 2D and 3D descriptors encode catalyst structure isolating the influence of reactants transformation descriptors. For the comparison, we used the PAC dataset divided into 25 subsets. Each subset included a particular chemical transformation in presence of one of 43 catalysts. We choose ISIDA [153] and CircuS [START_REF] Tsuji | Predicting Highly Enantioselective Catalysts Using Tunable Fragment Descriptors[END_REF] fragment descriptors, 2D fingerprints, and 3D descriptors available in RDKit, as well as our 3D atom triplets and quadruplets descriptors. A set of 3D RDKit descriptors included Radial Distribution Function (RDF) descriptors, Molecule Representation of Structure-based on Electron diffraction (MoRSE) descriptors, Weighted Holistic Invariant Molecular (WHIM) descriptors, GETAWAY and Auto-Corr3D descriptors. We compared 3D descriptors in a multi-instance setting, i.e., the considered pmapper and RDKit 3D descriptors were generated for multiple conformers. The Instance-Wrapper MIL algorithm was used as a machine-learning method to build 3D models. In the case of 2D descriptors, the MIL bag contained only one instance.

The performance of 2D and 3D models (MAE of G predictions, kcal/mol) was evaluated in a 5-fold cross-validation repeated 5 times (5 5-CV). As a result, 25 MAE values of predicted G for 43 catalysts were collected for each type of descriptor for each reactant transformation (Figure 19). The comparison results show (Figure 19) that only 2D fingerprints and fragment descriptors, as well as pmapper 3D quadruplets and triplets descriptors, generate predictive models (better than the baseline null model -the model that predicts enantioselectivity always as an average value of the training experimental enantioselectivities -with MAE = 0.47 kcal/mol) for all 25 reactant transformations, while 3D RDKit descriptors fail to predict the catalyst enantioselectivity for the most reactant transformations (Figure 19). 3D atom triplets and quadruplets demonstrate similar performance (median MAECV = 0.27 vs. MAECV = 0.31 kcal/mol), but the use of atom triplets radically reduces the number of catalyst descriptors compared to atom quadruplets from 42824 to 2886 descriptors.

Generally, pmapper 3D descriptors generated from atom triplets perform slightly better (median MAECV = 0.27 kcal/mol) than all other 2D descriptors (median MAECV = 0.30-0.35 kcal/mol).

Thus, 3D RDKit descriptors were found unsuitable for modelling the catalyst enantioselectivity and are inferior even to 2D descriptors. The proposed 3D atom triplets demonstrated the best performance.

Comparison of multi-instance learning algorithms. We compared the five MIL algorithms [START_REF] Zankov | QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach[END_REF]. The comparison was performed using the same setting as the benchmark of descriptors mentioned in Figure 19. The -CV) are as follows: Instance-Wrapper (0.28 kcal/mol), Bag-Wrapper (0.31 kcal/mol), Instance-Net (0.31 kcal/mol), Bag-Net (0.32 kcal/mol) and BagAttention-Net (0.35 kcal/mol). Based on the obtained results, Instance-Wrapper was chosen as the main algorithm for further experiments.

Asymmetric addition of thiols to imines

We compared the performance of our 2D and 3D models with the previously reported results.

Sandfort et al. [START_REF] Sandfort | Strieth--Based Platform for Predicting Chemical Reactivity[END_REF] published a structure-based machine learning platform, where reactants and catalysts were encoded by multiple ngerprint features (MFFs) resulting from the concatenation of 24 fingerprints sets calculated with RDKit. Zahrt's conformer-dependent 3D approach [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF] is based on the ASO descriptors, accumulating steric information from an ensemble of catalyst conformers. Asahara and Miyao [START_REF] Asahara | Extended Connectivity Fingerprints as a Chemical Reaction Representation for Enantioselective Organophosphorus-Catalyzed Asymmetric Reaction Prediction[END_REF] benchmarked 2D (ECFP6 and Mol2vec) and 3D (Dragon and MOE) single-conformer descriptors.

Our models. In the reaction-out test set, all generated 2D and 3D models demonstrated good results. The 2D models accurately predict enantioselectivity with MAE = 0.14-0.18 kcal/mol. The Alternative approaches. The 3D single-conformer model based on 3D atom triplets (MAE kcal/mol) and MOE (0.55 kcal/mol) single-conformer descriptors displayed low performance on the both-out test set, which Table 2. the phosphoric acid catalysts (PAC) dataset. a 2D modelling approach published by Sandfort et al. [START_REF] Sandfort | Strieth--Based Platform for Predicting Chemical Reactivity[END_REF], b 2D and 3D models published by Asahara and Miyao [START_REF] Asahara | Extended Connectivity Fingerprints as a Chemical Reaction Representation for Enantioselective Organophosphorus-Catalyzed Asymmetric Reaction Prediction[END_REF], and c 3D conformer-dependent approach published by Zahrt et al. [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF]. demonstrates that a single conformer was not sufficient to generate accurate models irrespective of the type of 3D descriptors (Table 2). In contrast, 3D multi-conformer model based on atom triplets was significantly more accurate (MAE = 0.21 kcal/mol) and perform slightly better than 3D conformer-dependent approach reported by Zahrt et al [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF] (0.24 kcal/mol) (Table 2). Interestingly that Miyao's 2D model based on ECFP6 descriptors achieved high accuracy (MAE = 0.21 kcal/mol) similar to our 3D multi-conformer model.

Reactants

To summarize, for the case of asymmetric addition of thiols to imines, the 3D multi-conformer model outperforms the 3D single-conformer models, especially in the prediction of enantioselectivity for new test catalysts, which proves the importance of accounting for conformational flexibility. We suppose that the difference in the performance of 3D single-conformer and 3D multi-conformer models will increase with the flexibility of modeled catalysts. The 3D multi-conformer model outperforms the 2D models, generated with popular fingerprints and fragment descriptors, which highlights the importance of 3D information in enantioselectivity modelling.

Asymmetric phase transfer catalysis

The dataset of asymmetric alkylation (APTC dataset) was divided into 70 training and 18 test catalysts as described by Melville et al [START_REF] Melville | Computational screening of combinatorial catalyst libraries[END_REF]. To build the models, the original enantioselectivities were converted to G, then the predictions on the test set were converted to ee % to be compared with the predictions of the competing approach. Melville and co-workers proposed a 3D CoMFAbased approach based on minimal energy catalyst conformers and reported RMSE of ee predictions on 18 test catalysts as 13.4 %. Our 3D single-conformer model performed considerably worse (RMSE = 18%). Consideration of the ensemble of conformers in the 3D multi-conformer model significantly reduced RMSE to 8.8% (Figure 20). The substantial difference in the performances of 3D single-conformer and 3D multi-conformer models (RMSE of 18.0% vs. 8.8%), can be explained by the high conformation flexibility of the given catalysts the average number of rotatable bonds in the dataset was 10. The 2D models built on ISIDA and CircuS descriptors demonstrated poor performance with RMSE of 15.6 and 18.5 %, respectively. This example demonstrated that our modelling protocol without any modifications or manual adjustment can be applied to catalysts with a new scaffold.

In a computational screening of candidate catalysts, the predictive model should effectively identify potential highly selective catalysts, i.e. the model should rank them higher than the other candidates. To quantify this characteristic of the model, we also calculated ranking accuracy (RA) which is the coefficient of correlation between predicted and experimental catalyst ranks (Spearman correlation coefficient). Figure 20 shows that despite large prediction error (RMSE) the 2D models achieve high RA > 0.90, i.e. they well capture the general trend in enantioselectivity variation (Figure 20). The high absolute accuracy of 3D multi-conformer models in comparison to other approaches is achieved by more accurate predictions for low-selective catalysts (Figure 20).

Enantioselectivity prediction beyond the training set

A new round of catalyst screening is expected to reveal more enantioselective catalysts. In this context, it is desirable to prevent under-predictions where the predicted enantioselectivity is significantly lower than the actual value. Incorrect behavior of the model in these examples can cause underestimation of most perspective catalysts, which may not be sampled for experimental testing in the next rounds of screening. Thus, the predictive model should be specially configured to avoid under-predictions ( ) of enantioselectivity. To increase the prediction accuracy for highly selective catalysts, we propose to train the model with a special quantile loss function:

Quantile loss function (3) asymmetrically penalizes over-predictions ( ) and underpredictions ( ). For equal to 0.5, under-predictions and over-predictions are penalized equally. The lower the value of , the more under-predictions are penalized compared to over-predictions. In this study, was fixed at 0.1 which means that over-prediction is penalized by a factor of 0.1, and under-predictions by a factor of 0.9, and, thus, the model tries to avoid under-predictions. To examine the potential of the models to predict enantioselectivity values beyond the training set, we followed the validation strategy proposed in their original paper [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF]. The PAC dataset on 1075 reactions was divided into a training set of reactions with ee below 80% (718 reactions) and a test set of highly selective reactions with ee above 80% (357 reactions).

Then we built 2D and 3D models with classic mean squared error loss (MSE) and quantile loss.

All Test < 0) (Figure 21). Thus, the 3D multi-conformer model better predicts catalyst enantioselectivity beyond the training set than 2D models. Furthermore, the proposed 3D multi-conformer model trained with the quantile loss is better (MAETest = 0.19 kcal/mol) compared to the results by Zahrt et al. approach (MAETest = 0.33 kcal/mol) [START_REF] Zahrt | Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[END_REF].

Conclusion

In this study, multi-instance machine learning in combination with pmapper 3D descriptors was applied to model and predict the enantioselectivity of chiral catalysts in asymmetric addition of thiols to imines (BINOL-derived catalysts) and alkylation of glycine imine (cinchona alkaloidbased ammonium salts). The catalysts were represented either by the lowest-energy conformer (3D single-conformer model) or by multiple conformers (3D multi-conformer model). The catalyst conformers were encoded by pmapper 3D descriptors, which in this study are configured to count particular atom triplets and do not require alignment of the conformers. The developed 3D models were compared with traditional 2D models built with popular fingerprint and fragment descriptors and the state-of-the-art 3D approaches published in chemoinformatics papers.

In general, the inclusion of multiple catalyst conformers in the modeling process significantly increases the accuracy of enantioselectivity predictions in comparison with single-conformer modeling. The comparison analysis showed that the 3D atom triplets outperform other RDKit alignment-independent descriptors and 2D RDKit fingerprints, ISIDA, and CircuS fragment descriptors. The generated 3D multi-conformer models perform the same or better than published state-of-the-art 3D approaches. This work demonstrates that the developed 3D modelling protocol does not require the selection and alignment of conformers and applies to two different catalyst systems (BINOL derivatives and ammonium salts), showing the best performance. The proposed pmapper 3D descriptors are customizable, i.e. one can manually specify the atom groups or relevant 3D patterns that are responsible for observed enantioselectivity.

Part 3. Modeling reaction characteristics with conjugated machine learning

Conjugated machine learning is a new concept in reaction QSPR modeling that integrates fundamental thermodynamic and kinetic laws with machine learning algorithms. Conjugated models can be built using ridge regression or artificial neural networks. This part demonstrates how fundamental chemical equations can be integrated with a learning algorithm to model the characteristics of binary tautomerism reactions, cycloaddition reactions, and competing E2/SN2 reactions. The conjugated models for the tautomeric constant have a single contribution coefficient , which ranged from 0 to 1. It was observed that the possible optimal value of was between 0.9 and 1 and to precise it, new values ([0.95, 0.975, 0.9875, 0.99375, 0.996875, 0.9984375, 0.99921875, 0.999609375, 0.9998046875, 0.99990234375]) were scanned, calculated using the following equation

Methodological developments

, where is value and ranged from 1 to 11.

Thus, the grid search is a suitable method for optimizing the small number (1 or 2) of contribution coefficients.

Bayesian optimization. A bayesian optimization is an efficient approach for optimizing the objective function when traditional optimization methods such as gradient descent are not applicable, due to time and computational cost. The idea of bayesian optimization is to build a proba- Optimization of contribution coefficients with gradient decent. Contribution coefficients in conjugated neural network algorithms can be automatically adjusted during neural network training using gradient descent. In this approach, contribution coefficients are not fixed before training the neural network as hyperparameters but are internal global parameters of the neural network, which are optimized along with neural network weights. As a result, a single training of the conjugated neural network is enough to obtain optimal values of the contribution coefficients.

3) Descriptors. Each reaction was transformed into the Condensed Graph of Reaction (CGR) [153] generated with the CGRtools module [START_REF] Nugmanov | CGRtools: Python Library for Molecule, Reaction, and Condensed Graph of Reaction Processing[END_REF]. CGR is derived from the superposition of products and reactants and contains both conventional chemical bonds (single, double, triple, aromatic, etc.) and so-ions, i.e. breaking or forming a bond or changing bond order. Generated CGRs were processed by the ISIDA tool [START_REF] Horvath | ISIDA Fragmentor -User Manual[END_REF]162] to calculate fragment descriptors by counting the occurrence of particular subgraphs (structural fragments) of different topologies and sizes.

The vector of fragment descriptors for each reaction was concatenated with the vector of solvent descriptors, which included 14 descriptors, describing such properties of solvent as polarity, polarizability, Catalan constants SPP, SA, SB, Kamlet-Taft constants , , *, dielectric constants, function of the refractive index. These descriptors were successfully applied in previous publications [ 163 166].

4) Software. The conjugated ridge regression and neural network algorithms are implemented using the PyTorch package [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF]. Ridge regression algorithms are implemented using PyTorch tensor objects, which perform matrix calculations using the graphics processing unit (GPU). Neural network algorithms were implemented using standard PyTorch modules.

CGR/ISIDA descriptors were generated using CGRTools [START_REF] Nugmanov | CGRtools: Python Library for Molecule, Reaction, and Condensed Graph of Reaction Processing[END_REF] and CIMTools (https://github.com/cimm-kzn/CIMtools) packages. The open-source code of the implemented conjugated ridge regression and neural networks algorithms is available at (https://github.com/dzankov/CoLearn).

Modeling of tautomeric constant

If two tautomeric forms share a common anion, the tautomeric equilibrium constant can be expressed as the difference between the acidity constants of the corresponding tautomers. The tautomeric equation is used in calculating the tautomeric equilibrium constant in commercially available tools for predicting the population of tautomeric forms in water [START_REF] Szegezdi | Tautomer generation. pKa based dominance conditions for generating dominant tautomers[END_REF][START_REF] Milletti | Tautomer enumeration and stability prediction for virtual screening on large chemical databases[END_REF] (equation-based models). But, in previous works [START_REF] Gimadiev | Assessment of tautomer distribution using the condensed reaction graph approach[END_REF][START_REF] Glavatskikh | Visualization and Analysis of Complex Reaction Data: The Case of Tautomeric Equilibria[END_REF] it was demonstrated that direct prediction of the tautomeric equilibrium constants often is more accurate. The poor performance of equation-based models in predicting the tautomeric equilibrium constant stems from the fact that it is extremely difficult to measure the acidity of all tautomeric forms which leads to the lack of training data on minor tautomers.

In this study, a tautomeric equation relating the tautomeric equilibrium constant and the acidity of the corresponding tautomers was integrated with ridge regression and neural network algorithms. Three models for predicting the tautomeric constant was compared:

1) The individual model, which is trained with the data on 639 tautomeric reactions. The individual the model directly predicts the for a given reaction.

2) The equation-based model, which calculates the prediction of using the tautomeric equation and the of tautomers predicted by the individual model trained with data on 2371 organic compounds.

3) The conjugated model, which is trained on both and datasets.

Modeling of Arrhenius equation parameters Introduction

A chemical reaction can be quantitatively described by such kinetic characteristics as the rate constant ( ), the pre-exponential factor ( ), and activation energy ( ). Their knowledge is of particular importance because the distribution of reactants and product concentration at any moment can be calculated based on known kinetics. QSPR modeling of chemical reactions has made significant progress in recent years [172 174]. QSPR methodology employs machine learning algorithms to the data on reaction characteristics measured in the experiment to predict the same characteristics for new reactions. Many approaches were proposed for reaction rate calculation.

Usually, quantum chemistry approaches are used for the search for elementary reaction mechanisms and estimate reaction barriers and rates [ 175 177]. Computationally efficient machine learning potentials were shown to be a valuable alternative to quantum chemistry in the estimation of local minima and transition states energy [START_REF] Kang | Reaction prediction via atomistic simulation: from quantum mechanics to machine learning[END_REF]. Machine learning is currently widely used to predict reaction rate constants based on structural features of reactants and products represented by a set of chemical descriptors [START_REF] Madzhidov | Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow[END_REF]. Thus approach may be dated back to early studies based on the Linear Free Energy Principle [START_REF] Wells | Linear Free Energy Relationships[END_REF] and the application of substituent constants as descriptors [START_REF] Hansch | A survey of Hammett substituent constants and resonance and field parameters[END_REF]. It has also been shown that quantum chemical descriptors are a good alternative to structural descriptors [START_REF] Jorner | Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies[END_REF].

In our previous publications, we reported predictive models for the rate constants of SN2 [START_REF] Nugmanov | involving azides[END_REF][START_REF] Madzhidov | Structure-reactivity relationships in terms of the condensed graphs of reactions[END_REF] and E2 [START_REF] Polishchuk | Structure reactivity modeling using mixture-based representation of chemical reactions[END_REF][START_REF] Madzhidov | Structure reactivity relationship in bimolecular elimination reactions based on the condensed graph of a reaction[END_REF] Gambow and coworkers developed a deep graph convolutional neural network trained on the activation barriers of gas-phase reactions obtained with quantum-chemical calculations [START_REF] Grambow | Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry[END_REF][START_REF] Grambow | Deep Learning of Activation Energies[END_REF].

Jorner et al. proposed an approach that combines traditional DFT transition state modeling and machine learning [START_REF] Jorner | Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies[END_REF] and trained the model using different machine learning algorithms to accurately predict the reaction barriers of the nucleophilic aromatic substitution reaction (SNAr).

Previously, the temperature dependence of the reaction rate was mostly modeled by adding the temperature to the set of structural descriptors [START_REF] Madzhidov | Structure reactivity relationship in bimolecular elimination reactions based on the condensed graph of a reaction[END_REF]. In this case, the dependence of the rate constant ( ) on the temperature known to be expressed by the Arrhenius equation (1) that relates reaction rate with the temperature and two other parameters that are assumed to be temperature independent: the pre-exponential factor ( ), and activation energy ( ) was assumed to be learnt by the machine learning model.

In our previous study [START_REF] Glavatskikh | Predictive Models for Kinetic Parameters of Cycloaddition Reactions[END_REF] we reported SVR (Support Vector Regression) and GTM (Generative Topographic Mapping) modeling of , and of cycloaddition reactions. Two scenarios for assessment was examined. In the first scenario, the SVR algorithm learns to predict directly from descriptors. In the second scenario, two independent individual models are built: (i) for predicting the and (ii) for predicting the , which were used to calculate using the Arrhenius equation:

We observed that the predicted values of calculated using the Arrhenius equation (Arrheniusbased model) were less accurate in comparison to the individual model built using the experimental values of .

Models with embedded thermodynamic and kinetic laws were called conjugated QSPR models and were proposed in our previous paper [START_REF] Zankov | Conjugated Quantitative Structure-Property Relationship Models: Application to Simultaneous Prediction of Tautomeric Equilibrium Constants and Acidity of Molecules[END_REF]. In a follow-up study, we proposed a machine learning model that combines ridge regression and a neural network with an equation that relates tautomer acidities with their equilibrium constants. The predictive performance of such conjugated models was shown to be as good as for the individual ones, while the former had some additional benefits like a good prediction of acidities for minor tautomers. Motivated by the above project, here we demonstrate that the Arrhenius equation can be embedded into the ridge regression and neural network algorithms for building QSPR models. We used the dataset from our previous study [START_REF] Glavatskikh | Predictive Models for Kinetic Parameters of Cycloaddition Reactions[END_REF] to build individual (single-task), equation-based (Arrhenius-based), multi-task, and conjugated models for predicting , and of cycloaddition reactions. Individual models were built independently for each kinetic characteristic (Figure 23,I). The Arrhenius-based model uses the Arrhenius equation to calculate the with and predicted by individual models (Figure 23,I). The multi-task approach (Figure 23, II) uses all available data across the different reaction characteristics and models them cooperatively in contrast to single-task learning. Multi-task learning can improve the prediction accuracy of modeled characteristics when tasks correlate or share some information. Conjugated learning (Figure 23, III) uses all available data on multiple tasks, but, in contrast to the multi-task approach, explicitly embeds a mathematical equation (in this study it is the Arrhenius equation) relating the tasks to the machine learning algorithm. This approach ensures that the predicted reaction characteristics satisfy the fundamental chemical laws and empowers the conjugated QSPR models with new capabilities.

Design of conjugated learning algorithms

Ridge regression individual models

Ridge regression (RR) is a popular machine learning algorithm that was extensively used in practice [START_REF] Gruber | Improving efficiency by shrinkage: the James-Stein and ridge regression estimators[END_REF]. In ridge regression, the prediction of reaction characteristic is performed by multiplying the reaction descriptors by the vector of regression coefficients :

The regression coefficients can be calculated using the following expression: [START_REF] Cheng | BERTMHC: improved MHC peptide class II interaction prediction with transformer and multiple instance learning[END_REF] where is the descriptor matrix of training reactions associated with experimental values of the target characteristic. Hyperparameter is a regularization coefficient controlling the complexity of the model. We used ridge regression to independently build three individual models for predicting the , and of cycloaddition reactions. The regularization coefficient was adjusted using the grid search technique.

where , , are trade-off coefficients that control the contribution of each type of the loss function to conjugated loss , and are regularization coefficients. After differentiation of the loss function , the optimal regression weights and can be calculated using the following analytical expressions:

where matrices are obtained as follows:

As a result, regression coefficients and in the conjugated model are estimated using the training sets of ( ), ( ) and ( ) data.

Neural network individual, multi-task and conjugated models

Individual, multi-task, and conjugated models can be built using neural networks (NN). In individual models, each characteristic is modeled independently using a standard multilayer neural network with one or more hidden layers and one output neuron (Figure 24a). Multi-task models can be built using a neural network with three output neurons, each predicting one of the kinetic characteristics (Figure 24b). Such neural network can be trained using the multi-task loss:

where , , are coefficients that control the contribution of each type of error to the multi-task loss.

The conjugated models can be built using the neural networks shown in Figure 24c. This neural network has two output neurons. The first output neuron predicts and the second one predicts (Figure 24c). The predicted values of and are then used to calculate the prediction of using the Arrhenius equation. Finally, the obtained predicted values of , and are used to calculate the conjugated loss:

Individual, multi-task, and conjugated NN models discussed hereafter had one hidden layer with 256 neurons. Neural network weights were optimized using a gradient descent algorithm at a learning rate of 0.001. The complexity of the individual and conjugated NN models was controlled by the weight decay parameter (L2 regularization), which took values from 10 -3 to 10 1 . Neural networks were implemented using the PyTorch package [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF]. 

Computational details Data

The data on cycloaddition reactions were taken from our previous paper [START_REF] Glavatskikh | Predictive Models for Kinetic Parameters of Cycloaddition Reactions[END_REF]. unique structural transformations (Table 3).

The dataset was divided into training and test sets (in the proportion of 90/10) so that the test set contained structural transformations which did not occur in the training set (Table 3). As a result, the test set contained 73 unique structural transformations that were not represented in the training set, which consisted of 690 unique structural transformations (Table 3). The training set was used to build the individual, Arrhenius-based, multi-task, and conjugated models, while the test set was used to evaluate the predictive performance of the models. validation strategy provides an unbiased estimation of the predictive performance of the models for novel types of structural transformations.

Building ridge regression models. Individual and conjugated RR models were implemented using PyTorch tensors [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF], which enabled the training of RR models on both CPU and GPU. Individual RR models have hyperparameter , the regularization coefficient, which controls the model complexity. For individual models, we tested values of between 10 -10 to 10 5 and found the optimal value using the grid search technique.

Conjugated RR models have hyperparameters , and that balance the prediction error of the , and characteristics. The other two hyperparameters of the conjugated model are the regularization coefficients and (Figure 26). To optimize the hyperparameters of the RR conjugated models, we used the hyperopt package [START_REF] Bergstra | Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures[END_REF], which applies advanced optimization algorithms to navigate in the hyperparameters space. The values of coefficients , and were sampled from a continuous space defined between 0 to 1, while the regularization coefficients and took discrete values between 10 -10 to 10 5 (Figure 26). The hyperopt algorithm adjusts the hyperparameters by maximizing the value of the objective function which was calculated as an average prediction accuracy of all characteristics: [R 2 ( ) + R 2 ( ) + R 2 ( )] / 3. The hyperopt algorithm takes the average accuracy and proposes the next combination of possible optimal hyperparameters (Figure 26). Building neural network models. Individual, multi-task, and conjugated NN models were built with the architectures depicted in Figure 24. In NN multi-task and conjugated models, the coefficients , , and were automatically adjusted together with other neural network weights using the gradient descent algorithm. This means that the trade-off coefficients are learned directly

Building models with limited data

As follows from Table 4, individual, multi-task, and conjugated models perform similarly if a training set is big enough. We hypothesized that in multi-task and conjugated models, abundant data for one modeled characteristic (e.g. ) can compensate for the lack of training data for another characteristic (e.g. or ). In contrast to the standard case, we simulated a scenario in which the training sets for the or characteristics were significantly reduced and tested the performance of the models under these conditions. We used the same test set of 371 reactions for the model evaluation (Table 4) but varied the size of the training set. For the sake of clarity, only results for NN models are reported. To alleviate the effect of random reduction of the training sets, the above procedure was repeated 20 times, followed by the averaging of related R 2 values. 

Modeling the temperature dependence of the reaction rate constant

The dependence of the reaction rate constant on temperature is described by the Arrhenius equation. In the conjugated model, the Arrhenius equation is directly embedded into the machine learning algorithm (ridge regression or neural network). In the Arrhenius-based model, the is calculated using individual and predictions and Arrhenius equation.

In building individual and multi-task models, the reaction temperature is a descriptor along with fragment and solvent descriptors. Therefore, the individual and multi-task model can only capture the statistical relationship between and temperature. In this context, we were interested to examine the models performance as a function of reaction temperature. For this purpose, we generated a new temperature test set. The initial test set (Table 3) contained 1 reaction in 1,4dioxane, 3 reactions in chlorobenzene, 4 reactions in benzene, and 53 reactions in toluene (a total of 61 reactions) for which and were experimentally determined. We used the experimental and values of these 61 reactions to calculate new using the Arrhenius equation at hypothetical temperatures, which significantly deviates from the temperature range of the training set. For example, for each cycloaddition reaction in toluene, the was calculated for a list of temperatures that start with the freezing temperature of toluene, change in increments of 5K, and end with the boiling temperature of toluene. Thus, for each cycloaddition reaction in toluene, were calculated at 42 hypothetical temperatures (from freezing to the boiling point of toluene).

The same procedure was repeated for reactions in 1,4-dioxane (18 hypothetical temperatures), chlorobenzene (36 hypothetical temperatures), and benzene (15 hypothetical temperatures). As a [START_REF] Tibo | Learning and interpreting multi-multi-instance learning networks[END_REF] Conjugated model: [START_REF] Zhou | Multi-instance multi-label learning with application to scene classification[END_REF] where , , are coefficients that control the contribution of each type of loss function into conjugated loss and and are the regularization coefficients.

3) Then derivatives wrt to weights were calculated and were set equal to 0 in the extremum point. After some mathematical operations one has: [START_REF] Kriegel | An EM-approach for clustering multi-instance objects[END_REF] where matrices can be obtained as follows:

(39)

Optimal regression weights and (parameters) can also be found by the gradient descent method. Also, conjugated models can be built using special neural networks with conjugated loss functions (Figure 30). 4. The developed MIL algorithms in combination with the pmapper descriptors were applied to the modeling of (i) the bioactivity of compounds from the ChEMBL-23 database and (ii) the enantioselectivity of chiral organic catalysts in asymmetric reactions. The obtained models performed better than related 3D single-conformer models and models involving 2D descriptors.

(i) In a large-scale benchmark on 175 datasets from ChEMBL-23, we have demonstrated that the 3D multi-conformer models approach performed better than 3D single-conformer models built with the lowest-energy conformer and in most cases (>60%) better than the models built on 2D descriptors. In some cases, 2D models completely failed to predict bioactivity whereas 3D multi-conformer models demonstrated a reasonable performance. It has also been demonstrated that the attention-based multi-instance neural network was able to identify bioactive conformers that are similar ( ) to experimental structures extracted from Protein Data Bank.

(ii) The developed 3D modeling approach was applied to the modeling of enantioselectivity in the reaction of asymmetric nucleophilic addition catalyzed by chiral phosphoric acids and phase-transfer asymmetric alkylation catalyzed by cinchona alkaloid-based catalysts. The descriptor vectors resulted from the concatenation of the reaction descriptors generated for ondensed Graphs of Reaction and pmapper descriptors encoding the catalyst conformers. Obtained results demonstrated that the 3D multi-conformer models performed similarly or better than the alternative stateof-the-art 2D and 3D approaches reported in the literature.

5. In the conjugated learning approach mathematical equations relating thermodynamic or kinetic characteristics of chemical reactions were used in combination with two different machine learning algorithms -ridge regression and artificial neural networks. The new approach was applied to the modeling of (i) equilibrium constants of tautomerism reactions, (ii) parameters of the Arrhenius equation for cycloaddition reactions, and selectivity constant for competing for E2/SN2 reactions.

In tautomeric equilibria, the conjugated models provide a reasonable estimation of the pKa of minor tautomers, which can hardly be measured experimentally. In cycloaddition reactions, conjugated models were able to predict the experimentally unreachable rate constant of reactions at extremely low and high temperatures. In some cases, conjugated learning helps to increase the prediction accuracy of the characteristics related by the equation, as demonstrated in the case study of competing E2 and SN2 reactions. 
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 2 Figure 2. Types of ambiguity in molecule structure data: (a) polymorphism ambiguity, (b) part-to-whole ambiguity, and (c) segment-to-sequence ambiguity.
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 3 Figure 3. Prediction scheme in instance-and bag-wrapper MIL algorithms.
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 4 Figure 4. Examples of instance-and bag-based multi-instance neural networks.
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 5 Figure 5. The architecture of the attention-based multi-instance algorithm
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 6 Figure 6. Multi-instance learning with key instance detection
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 7 Figure 7. Possible tautomeric forms of tetracycline [102] are inputs to the MIL model. All tautomeric forms of each molecule can be assembled into bags, which are used for structure-activity modeling using multi-instance learning algorithms.

  The idea of considering multiple molecule conformations in modeling bioactivity was implemented in Compass [34], an algorithm that automatically selects bioactive conformations and their alignments. Compass is based on a neural network that iteratively selects a more suitable conformation of a molecule to improve a prediction of its bioactivity. The neural network marks the best pose of each molecule according to the highest predicted activity. The best poses are then used to iteratively update the neural network weights. As a result, the trained model can simultaneously predict both the bioactivity of a compound and its bioactive pose. Compass first was applied to predict the human perception of musk odor. The dataset contained 102 molecules, including active (musk) and inactive (non-musk) examples. The model built with a single conformation per molecule demonstrated performance of 71%, while the model generated from multiple conformations demonstrated a significantly higher performance of 91%. This result is an illustrative example of the importance of the representation of the conformational space of molecules.In the seminal paper[5], Dietterich et al. first introduced the problem of multi-instance learning, motivated by the task of predicting drug activity. In this work, they proposed three basic approaches for the design of axis-parallel hyper-rectangles (APR) classification algorithms, which are based on the selection of the relevant features and the determination of optimal bounds along these features. The standard APR bounds the positive examples and ignores the MIL problem.The outside-in and inside-out timal hyper-rectangles avoiding negative examples. APR algorithms were compared on one artificial and two real Musk-1 and Musk-2 datasets. Additionally, the traditional single-instance neural network and C4.5 algorithms were chosen for comparison. The results indicated that the algorithms ignoring the instance problem performed inferior to the multi-instance APR algorithms on all three datasets. Although there were previously related works on MIL problems, Dietterich formalize the problem of multi-instance learning using drug activity prediction as an example and propose the first MIL algorithm that directly solves the MIL problem, in contrast to earlier approaches that simply converted a multi-instance problem to a single-instance one.
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 8 Figure 8. A general approach to multi-instance modeling of the properties of molecules represented by atom instances.
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 9 Figure 9. Macromolecule data structures (a) generating a bag from an amino acid sequence using the sliding window approach and (b) generating a bag from probable domain-domain pairs from protein-protein pairs.

  negative bags. The obtained classifier is then used to assign probability scores to the remaining isoform pairs in multi-instance bags. Using the obtained probability scores, a witness (key instance) is selected from each positive bag and labeled as positive. The instances with the highest probability score from the negative bags are labeled as negative. Updated labels are used to retrain the Bayesian network classifier. The instance labels are updated until the accuracy of the validation set stops to improve. At the gene-pair level, the label of a bag is defined as the maximum probability score of its instances. Zeng et al. proposed a DMIL-III method[START_REF] Zeng | DMIL-III: Isoform-isoform interaction prediction using deep multi-instance learning method[END_REF] based on a deep neural network with convolutional layers. They demonstrated using a benchmark dataset that DMIL-III significantly outperforms SIB-MIL and mi-SVM algorithms.PPIs and IIIs databases include identified interactions, whereas classification algorithms for training also require negative examples, which are usually generated artificially. This strategy often results in significantly more negative examples than positive ones, leading to imbalanced datasets. Therefore Zeng et al.[START_REF] Yu | Imbalance deep multi-instance learning for predicting isoform isoform interactions[END_REF] implemented a novel loss function to handle the imbalanced data and proposed the IDMIL-III method. They also enhanced the IDMIL-III with an attention mechanism, which improved the accuracy of identification of isoform-isoform pairs. In general, IDMIL-III improves the prediction accuracy of gene-gene pairs (bag level) in comparison to DMIL-III.MHC-II-peptide interactions. The main function of major histocompatibility complex (MHC) protein is the binding of short peptide fragments derived from proteins produced inside (MHC-I) or outside (MHC-II) a cell and the presentation of these peptides at the cell membrane for recognition by T-cell (white blood cells of the immune system) receptors. In the context of vaccine design, it is very important to know which peptides bind to MHC molecules to initiate the desired immune response. MHC molecules have a binding groove where peptide fragments bind.MHC-I has a closed groove and usually binds peptides of lengths between 9 and 11 amino acids.In contrast to MHC-I, the binding groove of the MHC-II molecules are open at both ends and can bind peptides commonly with length from 11 to 30 amino acids[35], but it was established that for binding of protein with MHC-II is responsible a 9-mer segment of peptide and there is often no experimental information about which segment binds to the MHC-II molecule. This problem motivated studies on the application of multi-instance learning for the prediction of binding peptides.

  binding prediction, they used a dataset of experimentally identified 236 proteins that bind CaM and achieved improvement in prediction accuracy in comparison with competing methods Modeling genomic sequences. Transcription of genes is the process of copying a DNA sequence into an RNA molecule. A Transcription Factor (TF) is a special protein that binds to a DNA sequence and activates or represses the expression of certain genes. Regions of DNA sequences that are bound by a transcription factor are called Transcription Factor Binding Sites (TFBS). Modern experimental techniques[START_REF] Emamjomeh | DNA protein interaction: identification, prediction and data analysis[END_REF] enable the identification of DNA segments that are bound by the TF protein, but the precise identification of TFBS is still a challenge. Typically, a DNA sequence may contain one or more binding sites and usually, the exact location of the TF is not known (although preference information is sometimes available). Therefore, it is natural to represent the DNA sequence as a bag of possible binding sites. In the MIL classification setting, a bag (DNA sequence) is positive if it contains at least one TF and negative if it contains no TF. A bag is generated by a sliding window of length n through the whole DNA sequence. The typical length of a TF is 6-12 base pairs, which conditions the length of the subsequences (instances) included in the bag.The in vitro protein binding microarray (PBM) experiments allow high-throughput screening of DNA sequences that bind to a given TF. The typical length of DNA sequences in such experiments is 35 base pairs (bp), whereas TF lengths normally vary from 6 to 12 bp. PBM data provide an excellent source for modeling TF-DNA interactions and predicting in vivo binding. To model in vitro binding, Gao and Ruan[START_REF] Gao | A structure-based Multiple-Instance Learning approach to predicting in vitrotranscription factor-DNA interaction[END_REF] used a dataset of the measured binding affinities of DNA sequences against 20 mouse TFs. This dataset was obtained from the Dialogue on Reverse-Engineering Assessment and Methods (DREAM) competition[START_REF] Stolovitzky | Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference[END_REF]. They compared SIL (whole DNA sequence) and MIL (bag of DNA subsequences) based models. For building MIL models, they used the Instance-Wrapper algorithm implemented in the WEKA package with the C4.5 decision tree as the basic single-instance algorithm. They considered each candidate binding site with a length of 5-8 ba as an instance and all possible subsequences as a bag. Consequently, the MIL model outperformed the SIL model for each of the 20 mouse TFs (average AUC score 0.94 vs. 0.71). Later Gao and Ruan[START_REF] Gao | Computational modeling of in vivo and in vitro protein-DNA interactions by multiple instance learning[END_REF] proposed a MIL version of the TeamD (one of the best algorithms in the DREAM5 competition) algorithm. Using a PBM dataset of 86 mouse TFs as in their previous work, they demonstrated that for 78 of the 86 TFs, MIL-TeamD outperformed SIL-TeamD (average AUC score 0.94 vs. 0.90).Zhang continued to further improve the performance of models to predict TF-DNA binding.They considered DeepBind[START_REF] Alipanahi | Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning[END_REF] algorithm based on a deep convolutional neural network (CNN), which has been successfully applied to predict DNA-and RNA-protein binding, and proposed its MIL version called Weakly-Supervised CNN (WSCNN). A single-instance learning algorithm (SIL-CNN), had the same architecture as DeepBind. They took the same PBM dataset of 86 mouse TFs and found that the SIL-CNN model performed better than the MIL-TeamD. However, as expected the WSCNN (MIL-CNN) model performed better than the SIL-CNN.Another source of information on TF-DNA binding sites is in vivo experiments performed in living cells. Compared with in vitro PBM data, in vivo DNA sequences can be a few hundred bp (genome-scale studies) in length, which makes their experimental analysis and modeling challenges. However, DNA-protein binding models built on PBM data can be applied to predict binding DNA in vivo data. It was demonstrated in the works described above that MIL algorithms (MIL-TeamD, WSCNN) built on PBM or directly on in vivo data can significantly improve the accuracy of DNA binding predictions in vivo experiments.
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 10 Figure 10. The pipeline of generation of 3D multi-instance models
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 11 Figure 11. Example of an input data table for building 3D MIL models
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 12 Figure 12. Conformers generated by RDKit for the example molecule. Only conformers within the energy window of 100 kcal/mol are selected for modeling.
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 13 Figure 13. Examples of input files containing SMARTS of combinations of atoms that are encoded for a given 3D structure: (a) pharmacophore features used to build 3D models for prediction of bioactivity of molecules and (b)
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 14 Figure 14. An example of the calculation of the pmapper descriptor vector for a phosphoric acid catalyst. For demonstration, combinations of three features (SMARTS:a1aaaaa1 (aryl) and [P, Br]) were set in the input file.

  composition of the bag, i.e. the presence of other instances in the bag. A possible architecture of a MIL neural network combines a self-attention mechanism with attention-based pooling. First, the input bag runs through a set of fully connected neural network layers, resulting in learned representations of the instances. Next, the self-attention layer accepts the representations of the bag instances as input and outputs new vectors of instance features, which contain information about the interdependencies of instances. New vectors of instances generated by the self-attention layer are fed into attention-based pooling, which aggregates them into an embedding vector under the attention weights of the instances.Attention weights regularization. Since only a few instances are responsible for the observed bag label, the distribution of attention weights across instances is supposed to be sparse and sharp, i.e., the attention mechanism must focus mainly on the key instances. The sparsity requires that most of the attention weights are close to 0.0. The sharpness requires that the attention weight of the key instances should be as high as possible. However, examples from other machine learning tasks[START_REF] Zhang | Attention with sparsity regularization for neural machine translation and summarization[END_REF] and preliminary results obtained in this research project demonstrate that the standard version of the attention mechanism tends to generate uniformly distributed attention weights with a poor focus on key instances. This motivated the development of regularization techniques that constrain the weights distribution, forcing the attention mechanism to focus on the fewest instances. Details of the regularization techniques implemented within this project are provided in this section.

6 )

 6 Software. The developed 3D modeling protocol is based on open-source packages available using Python 3. The in-house modules of the modeling protocol are also written in Python 3.

  MIL algorithms. These are multi-instance adaptations of the SVM algorithm (MISVM, miSVM, NSK, STK, MissSVM, MICA, sMIL, stMIL, sbMIL) published by Doran and Ray [43] (https://github.com/garydoranjr/misvm). MI neural networks. Neural networks adapted to MIL framework. Instance-Net. Hidden layers of neural networks transform instance features into instance representations, from which instance scores are derived, that are aggregated to final bag prediction. Bag-Net. Hidden layers of neural networks transform instance features into instance representations, that are aggregated by pooling operator to a single embedding vector, which are processed to derive bag prediction.

Figure 15 .

 15 Figure 15. Structure of the miqsar package for building 3D models using machine learning algorithms.

  3D descriptors are clustered using the k-means algorithm. The obtained clusters are used to generate a new descriptor vector of a given compound (mapping process): the descriptor value was equal to 1 if at least one conformer of the molecule fell into the corresponding cluster or 0 otherwise. As a result er of clusters) is generated. Any conventional regression or classification machine learning algorithm then can then be applied to build models based on this descriptor matrix. Two approaches were considered as alternatives for comparison. MIL-mean algorithm averages the descriptor vectors of conformers transforming multi-instance data to single-instance data and applies the Random Forest algorithm to build a model. The MIL-max approach also transforms data to single-instance representation by a selection of the maximum value of each descriptor over conformers of a particular compound and then applies the Random Forest algorithm to build a model. 3D MIL classification models based on the proposed MIL algorithm were compared with single-conformer models and 2D models based on 2D descriptors available in RDKit (Morgan fingerprints, pharmacophore fingerprints, and physicochemical descriptors). The comparison was performed on three types of datasets extracted from the ChEMBL-23 database: (i) collection of 6 chiral datasets containing only chiral molecules, (ii) collection of 5 achiral datasets containing only achiral molecules, and (i) collection of 162 datasets, including both chiral and achiral molecules.

2. 4

 4 Modeling of catalysts enantioselectivity with conformation ensembles Introduction Synthesis of enantiopure compounds is a hot topic of modern organic chemistry because highly effective drugs can be chiral and enantiomers often have different biological activities. In 2021, B. List and D. McMillan were awarded the Nobel Prize for the development of asymmetric organocatalysis. In 2000 they demonstrated [105,106

  in 2019. In this work, they explicitly state the necessity of incorporating conformation diversity into the modelling process and propose novel 3D Average Steric Occupancy (ASO) descriptors accumulating steric information from multiple catalyst conformers. They tested their approach to predicting enantioselectivity in the reaction of asymmetric addition of thiols to imines catalyzed by phosphoric acids and demonstrated that multiple conformer descriptors outperform single conformer variants.Besides the selection of relevant conformers, the other important limitation of MIF approaches is conformers alignment. If analyzed molecules share a common scaffold, conformers alignment is a trivial process. Otherwise, if the molecules have different scaffolds, conformers alignment becomes problematic. This issue initiated the development of alignment-free 3D descriptors that are invariant to the position or orientation of the molecule in space. The first example of the use of MIF-based alignment-independent descriptors in asymmetric catalysis was the application of GRid Independent Descriptors (GRIND)[START_REF] Pastor | GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors[END_REF] demonstrated in 2005 bySciabola and 

Figure 16 .

 16 Figure 16. Examples of published reactions (datasets) considered for modeling in this study: (a) asymmetric addition of thiols to imines catalyzed by chiral phosphoric acid catalysts (PAC dataset) and (b) asymmetric alkylation of glycine-derived Schiff bases catalyzed by cinchona alkaloid-based ammonium salts (APTC dataset).

Figure 18 .

 18 Figure 18. Preparation of descriptors encoding a combination of reactants and corresponding catalysts in a 3D modeling approach. A reactant transformation is encoded by m CGR/ISIDA fragment descriptors. A catalyst is represented by its N conformers, each encoded by n of 3D pmapper descriptors. Concatenation of m 2D reactant descriptors and n 3D catalyst descriptors results in the set of vectors of (m + n) size. The Python 3 libraries used in the modeling workflow are indicated in bold near the arrows.

Figure 19 .

 19 Figure 19. Comparison of different classes of 2D and 3D descriptors available online. Each catalyst was encoded by 2D fingerprint or fragment descriptors, 3D RDKit descriptors, or pmapper 3D descriptors. 3D descriptors were calculated for multiple catalyst conformers (i.e. there is a set of 3D multi-conformer models). Each box contains a crossvalidated MAE of G predictions for 43 catalysts obtained from 25 models (25 reactant transformations). The red horizontal line shows the accuracy of the default model, which constantly predicts G as the average experimental G across all catalysts.

  3D single-conformer model also provides accurate predictions with MAE = 0.21 kcal/mol, while the inclusion of multiple conformers in the 3D multi-conformer model considerably increases the prediction accuracy up to MAE = 0.13 kcal/mol. In contrast to the reaction-out test set, in the catalyst-out test set the 3D multi-conformer model performs significantly better (MAE = 0.22 kcal/mol) than the 3D single-conformer model (0.38 kcal/mol) and 2D models (0.26-0.36 kcal/mol). Similar to the catalyst-out test set, in the both-out test set the 3D multi-conformer model is significantly more accurate (MAE = 0.21 kcal/mol) than the 3D single-conformer model (0.48 kcal/mol) and 2D models (0.28-0.34 kcal/mol).

Figure 20 .

 20 Figure 20. Observed and predicted ee % for 18 test catalysts from the APTC dataset comparing the performance of the 3D-CoMFA model by Melville et al [111] with: ( ). 2D model (ISIDA fragments), (b) model (CircuS fragments), and ( ) 3D multi-conformer model (atom triplets).

Figure 21 .

 21 Figure 21. Predicted and observed catalyst enantioselectivity ( G, kcal/mol) for (a) 2D model, (b) 3D single-conformer model, and (c) 3D multi-conformer model. The training set included reactions with ee < 80% and the test set with ee >= 80%. 2D and 3D models were trained with quantile loss.
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 192 Design of conjugated learning algorithms. Fundamental thermodynamic and kinetic equations can be integrated with machine learning algorithms by designing special loss functions. This process can be divided into several steps: 1. Design an equation-based loss function in which the main characteristic A is calculated using an integrated equation and the related characteristics B and C. Define equation F relating main characteristic A with characteristics B and C: (Design equation-based quadratic loss function for A: Combine equation-based loss function with individual loss functions of related characteristics B and C.

Figure 22 .

 22 Figure 22. An example of optimization of a single continuous parameter using nested grid search. The range of possible parameter values is iteratively specified until the optimal value is found.

  bility model of the objective function and use it to select the most promising hyperparameters to evaluate in the true objective function. Optimization of hyperparameters of machine learning algorithms is a suitable task for bayesian optimization approaches because to test each combination of hyperparameters one needs to train and validate the model, which can be a time-consuming process, especially for deep learning algorithms. In addition, hyperparameters can be real-valued, discrete, or conditional variables and the simultaneous optimization of which is impossible in traditional optimization methods but is feasible in bayesian optimization. Hyperopt[START_REF] Bergstra | Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures[END_REF] is a Python package for the bayesian optimization of ML hyperparameters, based on the Tree-of-Parzen-Estimators (TPE) algorithm[159].In this research, hyperopt was used to optimize the hyperparameters of the ridge regression conjugated models for predicting Arrhenius equation parameters. The values of contribution coefficients were sampled from a continuous space defined between 0 to 1, and the regularization coefficients took discrete values between 10 -10 to 10 5 . The hyperopt algorithm adjusts the hyperparameters by maximizing the validation accuracy of the model. Genetic algorithm. Evolutionary algorithms are stochastic search methods that seek to improve search performance by exploring a set of promising areas in the solution space[START_REF] Popa | Genetic algorithms in applications[END_REF]. They are based on the mechanisms of evolution of biological organisms. A genetic algorithm is a type of evolutionary computation. A distinctive feature of the genetic algorithm is the emphasis on the use of the crossover operator, which operates by recombining candidate solutions. Genetic algorithm manipulates several solutions simultaneously, which reduces the probability of getting trapped in local optima compared with optimization methods that proceed from point to point in the solution space. Also, genetic algorithms can work with almost any type of optimized function, because it does not require the differentiability of the function. In this research project, the basic implementation of the genetic algorithm (https://github.com/dzankov/GenOpt) was adapted to optimize the hyperparameters of machine learning algorithms, including the contribution coefficients in the conjugated models. Preliminary experiments indicated that the developed genetic algorithm approach for optimization of hyperparameters of machine learning algorithms performs similarly to the hyperopt approach.

  reactions. There are also examples of machine learning applications for predicting the activation energies of reactions. Singh et al. applied popular machine learning algorithms to predict the activation barriers of hydrogenation/dehydrogenation reactions [187].

Figure 23 .

 23 Figure 23. Approaches to modeling kinetic characteristics related by Arrhenius equation. In ordinary single-task learning (I) each characteristic is modeled independently. Multi-task learning (II) performs simultaneous prediction of all three characteristics, whereas conjugated learning (III) embeds the strict mathematical relationship relating the kinetics characteristics (Arrhenius equation) into the machine learning algorithm.

Figure 24 .

 24 Figure 24. Neural network architectures for building an individual (a), multi-task (b), and conjugated (c) model for prediction of the kinetic characteristics related by the Arrhenius equation.

Figure 26 .

 26 Figure 26. The workflow for optimization of hyperparameters of ridge regression conjugated models using hyperopt package. The trade-off coefficients were sampled from continuous space defined between 0 to 1. The regularization coefficients and took values from discrete 10 -10 to 10 5 . Conjugated models were built with sampled hyperparameters and evaluated using internal 5-fold cross-validation.

Figure 28 .

 28 Figure 28. Predictive performance of an individual, multi-task, and conjugated neural network models on test set reactions at different sizes (a) and (b) training sets.

Figure 28

 28 reports the average R 2 on the test set at different sizes of the training set of and . For models built on small training sets, conjugated learning has no advantages over single and multi-task learning. The performance of all models gradually decreases as the and training sets were reduced until the models lose their predictive power at extremely small training sets < 6% (< 70 training reactions). Notice that conjugated models are more stable toward data shrinkage than other approaches. Similar behavior is observed in modeling on reduced training sets. When the size of the training set is large (e.g. 1120 training reactions with known , Figure 28b), the individual (R 2 Test = 0.90) and multi-task model (R 2 Test = 0.83) demonstrate the accuracy comparable with the conjugated model (R 2 Test = 0.84). However, for significantly reduced training set (11 training reactions corresponding to 1% of the initial set), the conjugated models were still predictive (R 2 Test = 0.33), whereas the individual (R 2 Test = -0.60) and multi-task (R 2 Test =-0.30) models failed. Thus, conjugated models can correctly predict a target characteristic of reactions even for a few training instances if data on another characteristic related to the target characteristic by a strict mathematical relationship is available.

Figure 30 .

 30 Figure 30. The general architecture of neural networks for building (a) individual and (b) conjugated models for predicting the selectivity constant of competing for reactions.

Figure 32 .

 32 Figure 32. Experimental and predicted values of the rate constant for 49 test reactions.

Figure 33 .Conclusion 1 .

 331 Figure 33. Experimental and predicted values of the yield for 49 test reactions.

  Silico Design and Data Analysis ECFP -Extended Connectivity Fingerprints QSAR -Quantitative Structure-Activity Relationship QSPR -Quantitative Structure-Property Relationship QSSR -Quantitative Structure Selectivity Relationship

  

  developed the MBSTAR (Multiple instance learning of Binding Sites of miRNA TARgets) approaches, which is based on the MIL The availability of new machine learning algorithms for testing them on different problems and comparison with other algorithms is very important. Due to the rapid development of MI methods in recent decades, many of their open-source implementations in different programming languages

	and tools have been proposed.
	WEKA [125] is a freely available software for data analysis, building machine learning mod-
	els, and visualization of results of experiments. WEKA is written completely in Java and has a
	simple API and user-friendly graphical interface. WEKA supports several popular MI classifiers,
	including the aforementioned CitationKNN, Diverse Density algorithm, multi-instance extensions
	of SVM, and wrappers.
	Random Forest algorithm (MIL-RF) and can predict both miRNA-mRNA pairs (bag predictions)
	and target binding sites (instance predictions). They compared MBSTAR with popular miRNA
	target prediction tools: TargetScan, miRanda, MirTarget2, and SVMicrO. As a result, they demon-
	strated that MBSTAR outperforms competing algorithms in accuracy in predicting miRNA-

mRNA interactions (bag level), and especially by a large margin in predicting binding sites (instance level).

1.5 Toolkits and software KEEL (Knowledge Extraction based on Evolutionary Learning)

[126]

, is another opensource machine learning software written in Java and supported by a graphical interface. KEEL provides a set of tools for building predictive models using machine learning algorithms, including multi-instance learning algorithms. KEEL provides different variations of the APR algorithm and several popular multi-instance methods, such as EM-DD, G3PMI, CitationKNN, and methods based on evolutionary algorithms. JCLEC (Java Class Library for Evolutionary Computation) [126] is a Java framework for evolutionary computing that is executed via the command-line interface. JCLEC provides implementation of grammar-based genetic programming (GGP) algorithm.

  methods are available online in Python. key limitation of traditional 3D structure-property modeling approaches is that the molecule has to be represented by a single conformer and a single vector of descriptors. The most popular strategy is to represent the molecule with a lowest-energy conformer, which, however, may differ from the true conformer that is responsible for the observed property of the molecule. The representation of molecules by irrelevant conformers makes it difficult to establish the correct relationship between the 3D structure of the molecule and its property. This problem can be solved by the application of Multi-Instance machine Learning (MIL), in which an object (molecule) is represented by a bag of instances (conformers) each encoded with its vector of chemical descriptors. Within this

	Part 2. 3D structure-property modeling with multi-instance
	machine learning				
	Also, a lot of implementations of multi-instance deep neural networks can be obtained from
	GitHub repositories: classical multi-instance neural networks [12], multi-instance neural networks
	with attention mechanisms (https://github.com/AMLab-Amsterdam/AttentionDeepMIL), graph
	multi-instance neural networks (https://github.com/KostiukIvan/Multiple-instance-learning-with-
	graph-neural-networks),	and	Transformer-based	multi-instance	architectures
	(https://github.com/juho-lee/set_transformer).		

A Ph.D. project, a new 3D structure-property modeling protocol has been developed. It is based on an ensemble of conformers and multi-instance learning algorithms, which does not require the selection and alignment of conformers. Furthermore, this 3D modeling approach generates models

Table 1 .

 1 The main parameters of the developed 3D multi-instance modeling protocol.

		Parameters	Default value
	Conformer generation		
	Number of conformers	From 1 to 200 (or more)	50 or 100
	Energy window	From 10 to 100 kcal/mol	100 kcal/mol
	Pmapper Descriptors		
	Number of feature points	Atom pairs (2), triplets (3), quadruplets (4) Quadruplets (4)
	Binning parameter	1 or more (less probable)	1
	Feature composition (input SMARTS)	Any combinations	[C, N, O, S, P, F, Cl, Br, I]

  In 2003 Lipkowitz et al.[START_REF] Lipkowitz | Computational studies of chiral catalysts: A Comparative Molecular Field Analysis of an asymmetric Diels-Alder reaction with catalysts containing bisoxazoline or phosphinooxazoline ligands[END_REF] demonstrated the first application of CoMFA to the prediction of catalyst enantioselectivity in Diels-Alder reactions. Kozlowski et al.[START_REF] Kozlowski | Quantum mechanical models correlating structure with selectivity: Predicting the enantioselectivity of -amino alcohol catalysts in aldehyde alkylation[END_REF] described a QSSR approach for aldehyde alkylation with aminoalkoxide zinc catalysts, where semi-empirical methods (PM3) were used to obtain reaction transition structures, which then were aligned and processed in the calculation of interaction energies with 2s electron probe grid points.

	In 2004 Melville et al. [111] published a 3D-QSSR approach based on the classic CoMFA
	for the glycine imine alkylation with quaternary ammonium ion catalysts in asymmetric phase-
	transfer catalysis (APTC). They validated the proposed approach on a library of 88 cinchona alka-
	loid-based catalysts and obtained accurate predictions of catalyst enantioselectivity on an external
	test set, which contained catalysts with a new substituent not occurring in the training set. Consid-
	ering the same reaction, later in 2005 Melville and coworkers
	catalyzed allylation.
	Most other early studies on QSSR applied 3D modelling techniques based on the Molecular
	Interaction Fields (MIF) [143] approaches. MIF approaches locate molecule in the 3D grid and
	compute interaction energies between molecule and probe atoms/charges fixed on the grid around
	the molecule. The most popular MIF-based approach is a Comparative Molecular Field Analysis

titative Structure-Selectivity Relationship (QSSR) analysis, which applies machine learning algorithms to find the relation between experimental enantioselectivity and the catalyst structure encoded by numerical descriptors. If a correct relationship between structure and selectivity is established, the obtained model can be used for the virtual screening of candidate catalysts. The first notable example of the application of QSSR in enantioselective catalysis was published by Norrby et al.

[142]

, where computational steric molecular descriptors (bond lengths, bond angles, and dihedral angles of metal complex) and multivariate regression were used to analyze palladium-(CoMFA), in which 3D molecular structures (one conformer per molecule) are aligned and then placed in a 3D grid where steric and electrostatic energies with a probe are calculated in the grid nodes. Obtained steric and electrostatic descriptors are then correlated with experimental activity.

  catalysts combined with 16 reactants resulting in training reactions. Then, three test sets simulating different scenarios of the potential application of the models in real campaigns of catalyst design were prepared. The reaction-out test set containing 216 data points (24 training catalysts combined with 9 new reactions) is used to predict the enantioselectivity of new reactions with known (presented in the training set) catalysts. The catalyst-out test set containing 304 data points (19 new catalysts combined with 16 training reactions) examines the potential of the model to predict the enantioselectivity of known reactions with new catalysts. The both-out test set represents the most challenging scenario where the model is used to predict the enantioselectivity of new reactants with new catalysts. This test set consists of 171 data points corresponding to combinations of 19 test catalysts and 9 test reactions.

Table 3 .

 3 Description of the training and test set on cycloaddition reactions.

		# reactions	transformations # unique structural		# kinetic characteristics	
	Training set	1478	690	1478	1008	1120
	Test set	371	73	371	228	230
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Computational details

Generation of 3D models

Reactant and catalyst descriptors

Catalyst conformers generation. Each catalyst was represented by an ensemble of conformers generated using the distance geometry algorithm implemented in the RDKit package [START_REF] Riniker | Better Informed Distance Geometry: Using What We Know to Improve Conformation Generation[END_REF]. If the RDKit algorithm failed to generate the conformers, we used a systematic conformer generator from the Open Babel package [130] and recalculated the full energies of conformers using RDKit.

For each catalyst, we generated up to 50 conformers within an energy window of 50 kcal/mol. Catalyst 3D descriptors. The generated catalyst conformers were encoded by pmapper descriptors [START_REF] Kutlushina | Ligand-based pharmacophore modeling using novel 3D pharmacophore signatures[END_REF], representing 3D pharmacophore quadruplets [START_REF] Zankov | QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach[END_REF][START_REF] Nikonenko | Multiple Conformer Descriptors for QSAR Modeling[END_REF]. The pharmacophore labels (H-donor, H-acceptor, hydrophobic, positive or negative charges) are assigned to atoms, functional groups, or rings. Rings are characterized by either hydrophobic or aromatic features. The application of pharmacophore quadruplets enables encoding the stereoconfiguration of a molecule, which Conjugated model: [START_REF] Nikonenko | Multiple Conformer Descriptors for QSAR Modeling[END_REF] where , , and are trade-off coefficients that control the contribution of each loss function to the conjugated loss function.

3) Estimate regression weights (parameters)

and of the conjugated model: [START_REF] Zankov | Multi-Instance Learning Approach to Predictive Modeling of Catalysts Enantioselectivity[END_REF] Regression weights can be estimated either analytically by calculation of the analytic derivative of E and setting it equal to 0, or the solution can be found numerically by gradient decent approach.

The obtained optimal parameters and can be used to generate predictions that satisfy the equation embedded in the conjugated model.

2) Contribution coefficients optimization. The conjugated machine learning algorithms (ridge regression and neural networks) are based on specially designed multi-objective loss functions. In the optimization process, multiple objectives optimization is balanced by adjusting the contribution coefficients (trade-off coefficients) in equation [START_REF] Nikonenko | Multiple Conformer Descriptors for QSAR Modeling[END_REF]. In this research, several approaches were applied to adjust the contribution coefficients.

Grid search. Grid search is a standard method for the optimization of hyperparameters of machine learning methods. In grid search, all available combinations of hyperparameters are tested and the best combination is selected according to a prediction accuracy metric. Grid search can be adapted to find optimal contribution coefficients, but this method can be computationally expensive because of the large number of tested combinations. In this study, the grid search method was used to build conjugated models for predicting the tautomeric constant in Section 3.2, where the conjugated model had a single contribution coefficient grid search technique. This type of grid search is based on several consecutive sessions of scanning possible values of the optimized parameter (Figure 22).

Conclusion

In this study, a tautomeric equation relating the tautomeric equilibrium constant and the acidity of the corresponding tautomers was integrated with ridge regression and neural network algorithms.

Three main approaches for predicting the tautomeric constant were compared: the individual Conjugated models can be built using ridge regression and neural network algorithms. The current architecture of the conjugated ridge regression ignores the conditions (solvent, temperature) of tautomerism reactions, which decreases the predictions accuracy of . On the contrary, the conjugated model based on neural networks takes into account these conditions, which leads to slightly higher accuracy in predicting . In addition, in the case of large datasets, matrix calculations in ridge regression can be significantly slower, as well as require more memory resources. In this case, neural networks can be trained on batches of data, which makes it possible to use them to build conjugated models on large datasets.

Ridge regression conjugated models

In conjugated models, fundamental chemical laws are integrated with machine learning algorithms. In this study, we consider the Arrhenius equation, which can be embedded into the ridge regression algorithm. Let us consider an equation-based (Arrhenius-based) model, where the rate constant is calculated using the Arrhenius equation applied to the values of and predicted by individual QSPR models: [START_REF] Gao | A structure-based Multiple-Instance Learning approach to predicting in vitrotranscription factor-DNA interaction[END_REF] where is the diagonal matrix with the elements that are calculated as: [START_REF] Zhang | Using the multi-instance learning method to predict protein-protein interactions with domain information[END_REF] and is the temperature of the i-th reaction. On the other hand, if experimental data on are available, the Arrhenius equation can be integrated with ridge regression using a special quadratic loss function:

In the case of , there are two sets of regression coefficients, (for predicting )

and (for predicting ), which can be optimized to predict the . To enable correct prediction of and the , loss function can be combined with individual quadratic loss functions for the and and regularization terms:

resulting in a conjugated model loss function:

(24)

Descriptors

Each cycloaddition reaction was transformed into the corresponding Condensed Graph of Reaction (CGR) (Figure 25) [153] generated using the CGRtools package [START_REF] Nugmanov | CGRtools: Python Library for Molecule, Reaction, and Condensed Graph of Reaction Processing[END_REF]. A CGR is derived from the superposition of products and reactants and contains both conventional chemical bonds (single, double, triple, aromatic, etc.) and soi.e., breaking or forming a bond or changing bond order. All generated CGRs were processed using the ISIDA tool [START_REF] Horvath | ISIDA Fragmentor -User Manual[END_REF]162] to calculate fragment descriptors by counting the occurrence of particular subgraphs (structural fragments) of different topologies and sizes. We tested different types of fragment descriptors and selected atom-centered descriptors with a radius from 2 to 5. The total number of fragment descriptors was 3733. The vector of fragment descriptors for each reaction was concatenated with the vector of solvent descriptors, which included 14 descriptors describing such properties of solvent as polarity, polarizability, Catalan constants SPP, SA, SB, Kamlet-Taft constants , , *, dielectric constants, function of the refractive index. These descriptors were successfully applied in our previous publications [163 166].

To build individual and multi-task models, the fragment/solvent descriptor matrices were concatenated with the temperature descriptor. In conjugated models, only fragment and solvent descriptors were used as reaction descriptors, while reaction temperatures were included in the model using the Arrhenius equation. The calculated descriptors constituted three matrices: , and , where the number of rows in each matrix corresponds to the number of experimental values of , and for cycloaddition reactions (Table 3).

Model building

The best models were selected with the coefficient of determination (R 2 ) calculated using the 5fold transformation-out cross-validation procedure [START_REF] Rakhimbekova | Cross-validation strategies in QSPR modelling of chemical reactions[END_REF] 

The conjugated model predicts , and with similar accuracy as the individual models, while the predictions exactly follow the Arrhenius equation (Figure 27b), which is embedded into the conjugated learning algorithm. This feature of conjugated models is important because it bridges QSPR models with fundamental chemical laws. Table 4 demonstrates that the RR and NN conjugated models have similar accuracy. Ridge regression models are easy to build since the optimal regression weights are calculated using ana- The lists of hypothetical temperatures were used in the predictions by the NN models.

In the conjugated and Arrhenius-based models, the hypothetical temperatures were directly used in predicting the , while in the individual and multi-task models, these temperatures were used To take a closer look at the reasons for this behavior of the models we extracted one of the test cycloaddition reactions in toluene, for which we plotted the predicted at hypothetical temperatures by the individual and the conjugated models (Figure 29). We can see (Figure 29) that both models perfectly predict the rate constant at temperatures inside the training temperature range (for all reactions in all solvents). However, in the range beyond the training temperatures, 

Modeling of selectivity constant of competing reactions Introduction

The ratio of products (selectivity constant) of competing for reactions can be estimated as the difference between the rate constants of the corresponding reactions:

This equation can be used to calculate the prediction of the selectivity constant using the and values predicted by the individual models. On the other hand, in conjugated learning, this equation can be directly integrated with a machine learning algorithm, which allows all three characteristics to be predicted simultaneously.

Conjugated model building. Conjugated models can be built based on ridge regression algorithms and neural networks. Conjugated ridge regression models can be built quickly by calculating optimal weights using matrix equations [START_REF] Kriegel | An EM-approach for clustering multi-instance objects[END_REF] and [START_REF] Bergeron | Multiple instance ranking[END_REF]. However, in the case of large datasets, the standard implementation of conjugated ridge regression can be expensive on memory resources due to the large matrices in equations [START_REF] Bergeron | Multiple instance ranking[END_REF]. In this case, conjugated neural networks can be trained on batches of data using gradient descent. Contrary to linear ridge regression, neural networks can capture the nonlinear relationship between reaction descriptors and rate constant.

Model building

Data. There were two types of data to build individual, equation-based, and conjugated models: Model optimization. Individual, equation-based and conjugated models were implemented using the PyTorch package, in which matrix operations can be executed using CPUs and GPUs. Regularization and contribution coefficients , , were optimized using the in-house implementation of the genetic algorithm.

Results and discussion

Three types of models for predicting the selectivity constant were compared: the individual model, the Equation-based model, and the conjugated model. The performance of the models is reported in 

Anglais

This Ph.D. thesis is devoted to the development of advanced machine learning techniques for the modeling of properties of molecules and reactions. Coupling the Multi-Instance machine Learning (MIL) method with the pharmacophoric 3D descriptors enabled the construction of predictive models accounting for an ensemble of molecular conformations. This 3D approach does not require the selection and alignment of conformers and was validated in the case studies of (i) the bioactivity of compounds and (ii) the enantioselectivity of chiral organic catalysts. In many cases, 3D multi-conformation MIL models overperformed classical approaches involving popular 2D descriptors. In the second part, a concept of conjugated machine learning was introduced and applied to the modeling of thermodynamic and kinetic characteristics of reactions. Conjugated machine learning integrates fundamental equations with machine learning algorithms, which distinguishes it from traditional multi-task learning capturing only the statistical relationship between the tasks.