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This Ph.D. thesis is devoted to the development of advanced machine learning techniques for 
the modeling of properties of molecules and reactions. Coupling the Multi-Instance machine 
Learning (MIL) method with the pharmacophoric 3D descriptors enabled the construction of 
predictive models accounting for an ensemble of molecular conformations. This 3D approach 
does not require the selection and alignment of conformers and was validated in the case studies 
of (i) the bioactivity of compounds and (ii) the enantioselectivity of chiral organic catalysts. In 
many cases, 3D multi-conformation MIL models overperformed classical approaches involving 
popular 2D descriptors. In the second part, a concept of conjugated machine learning was intro-
duced and applied to the modeling of thermodynamic and kinetic characteristics of reactions. 
Conjugated machine learning integrates fundamental equations with machine learning algo-
rithms, which distinguishes it from traditional multi-task learning capturing only the statistical 
relationship between the tasks. 
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urs 3D. Cette pratique ignore donc 

  

Apprentissage Automatique Multi-Instance (Multi-Instance Machine 

Learning (MIL)) [1] (Figure I-1). Dans 
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Figure I-1. Approche -instances. 
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[2]

 

 

 

 

-23. Chaque ensemble de 

 

 

 
Figure I.I-1.  

2D- -

par des descripteurs 3D et (c) la nouvelle approche QSAR multi-

-instances. 

 

Figure I.I-1): une approche 

une approche 3D mono-
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mono- -

-  3D). Des signatures pharmacophores 3D [3] (package pmapper) ont 

g

dantes. 

 

Tableau 1. Performances -23 : valeurs 

2
Test). 

 R2
Test moyen R2

Test  

 0.39 0.45 

-  -0.01 0.04 

multi-  0.47 0.48 

 

Tableau 2. Top- -2 est le 

- le 

e 

R2
Test > 0.4) 

 Top-1 Top-2 Top-3 

 50 136 139 

-  1 8 140 

-  88 139 139 

 

 
Figure I.I-2. 2

Test 
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le nombre de signatures de quadruplets d

  

2
test 

ba  Table 3 2
Test moyen (coefficient de 

2
Test moyen=-0.01), ce qui peut s'expliquer 

2
Test m

-

siques (R2
Test - 2

Test le plus 

  

Figure 

I.I-2, Tableau 2).  

 
Figure I.I-3. (a) Architecture multi-

rithme MIL. 

 

-

d'attention (Figure I.I-3a), 
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-ligand

culaire, 

-

cules (Figure I.I-4). 

 
Figure I.I-4. Identification des conform re t pour 4 jeux de 

n 3D/MI/Bag- -

 Bag-Attention net - Challeging com-

pounds -

Le R2
test 3D/MI/Bag-

AttentionNet est de 

and CHEMBL4802, respectivement. 

 

-

(ii) surpasse souvent l'approche 2D (l'information 3D est importante), et (iii) identifie potentielle-
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I.II -  

ment pour la production 

- 

rales capables de catalyser efficacement 

-

vrir de nouveaux catalyseurs. Ici, l'approche multi-

-

plets d'atomes 3D (Figure 

I.II-1a pmapper

Figure 

I.II-1b).  

 
Figure I.II-1. (a)  

est une pseudo-

Des des-

 

 



12 

 

L'application de quadruplets pharmacophoriques (H-donneur, H-accepteur, hydrophobes, ou 

- descripteurs pmapper 

ont deux vecteurs de des [4]

 (Figure I.II-3a). Des 

d'atomes. 

 
Figure I.II-2. qui encodent talyseurs correspondants 

m descripteurs fragmentaires 

N ar n descripteurs 3D pmapper. La 

m n 

de taille (m+n). Au-  

 

 

 
Figure I.II-3. 

 hosphorique chiral 

. 
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c

s [5] -

Figure I.II-3a). Cet en-

- c-

 

Tableau 3) p -

-

-

[5] 

par Glorius [6] et Miyao [7].  

 

Tableau 3. E G, obtenue pour les ensembles de test 

 

 (descripteurs) 
Test 1 

Nouvelles 
 

Test 2 
Nouveaux 
catalyseurs 

Test 3 
Nouvelles 

nouveaux 
catalyseurs 

Approches 
 

 (ISIDA fragments) 0.15 0.27 0.30 

 (CircuS fragments) 0.14 0.32 0.34 

-   0.21 0.38 0.48 

-   0.13 0.22 0.21 

Approches 
alternatives 

 

Glorius (Empreintes MFFs)* 0.14 0.25 0.28 

 (Mol2vec) ** 0.13 0.34 0.40 

 (ECFP6) ** 0.14 0.22 0.21 

-  (Dragon) ** 0.14 0.42 0.47 

-  (MOE) ** 0.15 0.48 0.55 

 de Denmark 
 *** 

0.16 0.21 0.24 

 

- Tableau 3) 

-  absents de l'ensemble 
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-  

 

 
Figure I.II-4. 

 

 

o- -

ee 

ee 

ee des catalyseurs haute-

Figure I.II-4) au- -

Test=0.19 kcal/mol) et fonctionne encore 

Test=0.33 kcal/mol). 

L'app

-

(Figure I.II-3b [8]

 un RMSE de 13,4 % sur les ee sur 18 catalyseurs de 

test. L  unique c

rablement moins bons avec un RMSE de 18 %. L'inclusion de plusieurs  de catalyseur 

-  

avec un RMSE de 8,8 % (Figure I.II-5c

de 15,6 %, Figure I.II-5a) et CircuS (18,5 %, Figure I.II-5b). 
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Figure I.II-5. Pourcentage de ee  18 catalyseurs de test 

- - 2D (fragments 

- -  (triplets 

es par Melville [8]. 

 

autres app

- -

3D. 

 

-  

structure-

 [9], concept dans 

sage automatique (Figure II-1). L'apprentissage 

ression - 

Network - 
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nius pour des 

E2 and SN2. 

 
 Figure II-1.  
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 I.II-a  

 

 

 

 I.II-b 
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bioorganique. 

.  

 
Figure II.I-1. Un exem  

 

 (Figure II.I-1)  

(logKT), pKa

partageant un anion commun: 

 II.I-a 

 

 

1) ) en construisant la fonction de perte 

. 

: 

 II.I-b 

 

: 

 II.I-c 

 II.I-d 
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2)   avec les fonctions de perte indivi-

duelles de la  (pKa 

 

pKa: 

 II.I-e 

 

 

 II.I-f 

 

 

.  

3)  

 II.I-g 

 

w 

 de descente de gradient. 

T 

T 

T et (iii) 

le logKT et l  

 
Figure II.I-2.  T de reaction et du 

T 

-  
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 logKT=-

T + 

Figure II.I-2b) 

logKT en -a. T T mais le 

(Figure II.I-2b). 

bien le logKT Figure II.I-2b). Le 

-a. La non-

 -2a), 

T (Figure II.I-2b). 

 

 

que la constante de vitesse ( -exponentiel ( ) 

 

 II.II-a 

 

 
Figure II.II-1. Un exemple de reaction de  

 

 : 

 II.II-b 

 

[10] 

 , du   . Des 
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 relations thermodyna-

us).  

 

Tableau 4

 (Figure II.II-3). 

 
Figure II.II-2. Dans l'apprentissage mono-

-

qu
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Tableau 4. Coefficient R2
Test

 

 logk logA Ea 

 0.78 0.46 0.91 

 0.76 0.48 0.83 

 0.75 0.57 0.90 

 

 
Figure II.II-3. Logk et c

 

 

II.III  concurrentes 

Figure II.III-1). 

 
Figure II.III-1. N  

 

 /   
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 II.III-a 

 

 : 

 II.III-b 

 



22 

 

 individuel . Les performances des 

Tableau 5

  

 

 ,  and 

 , 

 et . 

 

Tableau 5. Coefficient de R2
Test

 et , et l

  

Approche     

M   0.37 - - 

M   - -0.11 - 

M   - - 0.89 

M   ,  0.37 -0.11 -0.93 

 , ,  0.60 0.31 0.72 

 

 

 
Figure II.III-2.   
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Conclusions 

d'apprentissage multi-instance 

et de descripteurs 3D (pmapper) 

-

-  

sponible sur https://github.com/dzan-

kov/3D-MIL-QSAR et https://github.com/dzankov/3D-MIL-QSSR. 

 

ponible sur https://github.com/dzankov/CoLearn. 
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Structure-property modeling
with advanced machine learning techniques 

 

Introduction 

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that focuses on learning and 

predicting from data. Machine learning is applied in finance, marketing, self-driving cars, social 

media, language translation, healthcare, education, drug discovery, etc. Machine learning concepts 

and methods often emerged as a way to solve specific problems from the real world. For example, 

in 1989 LeCun [1] presented the first application of Convolutional Neural Networks (CNN) trained 

with a backpropagation algorithm for the recognition of handwritten digits. CNN was inspired by 

the visual nervous systems of living organisms and is based on such operations as feature extrac-

tion, pooling, and convolution.  As a result, modern CNN architectures outperform humans in the 

tasks of image recognition. In 1986, Rumelhart presented Recurrent Neural Networks (RNN) [2], 

which were enhanced by the LSTM mechanism (Schmidhuber [3], 1997) and then by the attention 

mechanism (Bahdanau [4], 2015). RNNs are successful in sequence modeling tasks such as text 

classification, language translation, voice recognition, and DNA analysis. In 1997, Dietterich in-

troduced the concept of Multi-Instance machine Learning (MIL) [5], which deals with problems 

where an object cannot be represented by a single instance and a single feature vector. This pivotal 

work was motivated by the drug prediction problem, in which a compound can be represented by 

multiple alternative conformations, and it is not known which conformation is responsible for the 

observed bioactivity of a given compound. Dietterich proposed an Axis-Parallel Rectangles (APR) 

approach to solving the MIL problem and demonstrated that addressing the MIL problem can 

significantly increase the performance of predictive models. Since then, numerous MIL algorithms 

have been developed and applied in various real-world tasks, such as computer vision, time series 

analysis, text processing, bioinformatics, etc. 

However, while MIL was first introduced for the drug activity prediction problem, it has 

not become a popular approach in chemoinformatics and only a few papers on the application of 

MIL to structure-activity modeling were known before this Ph.D. project. In this Ph.D. project, a 

new 3D structure-property modeling approach was developed based on ensembles of molecular 

conformations and multi-instance learning algorithms. This 3D approach does not require the se-

lection and alignment of conformers and can be applied to both classification and regression tasks. 

Additionally, models obtained with the of this 3D approach not only predict molecular activity but 

are also can identify some key conformations (for example, bioactive conformations) responsible 
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for observed experimental values of the target property. The modeling protocol is written in Python 

3 and is based only on free software packages and is fully automated, allowing the developed 3D 

approach to be integrated into desktop or WEB applications for the automatic construction of pre-

dictive models. The developed approach was tested in the modeling of (i) the bioactivity of com-

pounds from the ChEMBL-23 database and (ii) the enantioselectivity of organic chiral catalysts in 

asymmetric synthesis - these properties critically depend on the 3D structure of the molecule. 

The second part of the thesis is devoted to the development of conjugated models, which 

integrate thermodynamic and kinetic laws with machine learning algorithms. Some quantitative 

characteristics of chemical reactions are related by mathematical equations (e.g., the Arrhenius 

equation). In conjugated machine learning, such equation-related characteristics are embedded into 

the machine learning algorithm, i.e., equation-based and individual models are algorithmically 

combined into one conjugated model. As a result, conjugated models provide accurate predictions 

of reaction characteristics that strictly satisfy fundamental equations. In such a way, the chemical 

laws integrated with the machine learning algorithm act as a regularizer for predictive models. In 

this research project, conjugated machine learning was applied to three types of reactions (and 

equations): the tautomeric reactions (tautomeric equation), the cycloaddition reactions (Arrhenius 

equation), and the competing E2/SN2 reactions (selectivity equation). 

This Ph.D. project contributes to the development of machine learning approaches that con-

sider the complexity of chemical objects (molecules) and processes (chemical reactions). Multi-

instance machine learning in combination with 3D descriptors allows the construction of 3D mod-

els, which does not require the selection and alignment of conformations. Conjugated QSPR mod-

els for predicting reaction characteristics are based on thermodynamic and kinetic laws, which 

bridge chemistry with machine learning. 
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Part 1. Multi-instance machine learning in chemoinformatics and
bioinformatics 

Multi-Instance Learning (MIL) problem was formalized in 1997 and has since been successfully 

applied in 

, bankruptcy 

prediction (economy), etc. Although one of the first applications of MIL was drug activity predic-

tion, MIL has not become a popular approach in structure-activity modeling. On the other hand, 

there are many examples of MIL applications to bioinformatics tasks for modeling interactions 

between biological macromolecules such as proteins, DNA and RNA. However, there is still no 

systematic review of MIL applications in chemoinformatics and bioinformatics. For this reason, 

this review on the application of MIL to modeling the properties and functions of small molecules 

(chemoinformatics) and biological macromolecules (bioinformatics) has been prepared. It also in-

cludes a description of the MIL framework, the type of tasks in MIL, and the MIL algorithms.  

 

1.1 Introduction 

The properties of chemical compounds are a function of their structure. Structure-property mod-

eling approaches apply special algorithms to extract the correct relationship between the structure 

of the molecule and its properties. In the traditional structure-property modeling approaches each 

molecule is encoded with a set of numerical chemical descriptors followed by the application of 

special algorithms like machine learning algorithms to establish the correlation between de-

scriptors and the property values. One of the key limitations of traditional structure-property mod-

eling is the requirement that each molecule has to be represented by a single instance with a fixed 

conformation, protonation state, tautomer, stereoconfiguration, etc. As a result, a molecule has to 

be associated with a single vector of descriptors. However, a molecule is a dynamic object and 

simultaneously exists in many forms/instances in equilibrium. This raises the problem of the se-

lection of the molecular form for structure-property modeling, as the actual molecular form re-

sponsible for the observed property is often unknown. 

 The same problem exists in the structure-function  modeling of biological functions of 

macromolecules (proteins, DNA and RNA). Biological macromolecules are sequences of mono-

mers  (amino acids or nucleotides) and can interact each with other to perform various biological 

functions. However, only particular subsequences/segments of a macromolecule of limited length 

are responsible for the interaction between macromolecules, and experimental information on 



28 

 

these key segments and their exact location often is not available. This also leads to the problem 

of many alternative representations of the object, which is often neglected in traditional structure-

function  modeling approaches. 

 
Figure 1. Single-instance vs. multi-instance learning approach 

 

The problem of the selection of relevant molecular forms in predictive modeling can be han-

dled by Multi-Instance machine Learning (MIL) [5]. The main idea of the MIL approach (Figure 

1) is that an object can be represented as a set of alternative entities/instances, where each instance 

is encoded with a single vector of features (descriptors). The label of the object is associated with 

one or more entities/instances from the entire set, but it is not known which one. In the terminology 

of MIL, the set of entities/instances of the object is called a bag. The task is to establish the corre-

lation between the bag of the instances and the label of the bag. In this context, traditional super-

vised learning, where an object is represented by a single vector of features can be attributed to 

Single-Instance machine Learning (SIL).  Within the MIL framework, a molecule can be repre-

sented by multiple instances simultaneously, that are processed by special MIL algorithms. Multi-

instance learning includes modeling techniques in which feature vectors representing instances of 

an object are directly processed by multi-instance machine learning algorithms.  

In conventional MIL, models generate the prediction for the bag, but it is also desirable to 

identify labels of individual instances, especially labels of key instances that determine a label of 

the whole bag. The Key Instance Detection (KID) problem was formulated in [6] and is more 

challenging than the prediction of bag labels since not all MIL algorithms can solve the KID prob-

lem. 

The MIL framework was formalized in the seminal paper of Dietterich and co-workers [16], 

where they formalized the MIL problem and considered it in the context of the drug activity clas-

sification problem. In their study, each molecule was represented as a bag of conformations asso-

ciated with an activity label.  

Although the first publication on MIL focused on the modeling of drug activity based on 

ensembles of conformations, only a few papers on the application of MIL to structure-activity 
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modeling have been published then [7 13]. As part of this Ph.D. project, a large-scale comparison 

of MIL models based on an ensemble of conformations and traditional 2D models based on pop-

ular 2D descriptors was published for the task of modeling the bioactivity of compounds from 175 

datasets extracted from the ChEMBL-23 database [12 14]. In another part of this Ph.D. project, 

the first application of MIL for modeling the enantioselectivity of chiral organic catalysts in asym-

metric organic synthesis [15] is recently published. Another illustrative example is paper [16], 

where molecules were represented by a bag of atoms (instances) for the modeling of the acidity of 

compounds. In bioinformatics, MIL has attracted significantly more attention, because of a large 

number of tasks [17 30] perfectly fitting the MIL framework.  

Despite the attractiveness of the MIL approach, there is still no comprehensive review of the 

application of MIL in modeling the properties and functions of molecules. This part of the Ph.D. 

project provides a detailed description of MIL approaches and their applications. This review in-

cludes a description of the MIL framework and the main MIL algorithms, as well as examples of 

MIL applications in chemoinformatics and bioinformatics. 

 

1.2 Origins of multi-instance learning 

The first examples of multi-instance problems were known before Dietterich  seminal paper in 

1997 [5]. The first examples of such projects concern chemical structure determination by mass 

spectroscopy [31], phoneme recognition [32],  recognition of handwritten characters [33], dynamic 

reposing in drug activity prediction [34], and modeling DNA promoter sequences [35].  

The application of MIL to solve a particular machine learning problem is conditioned by the 

structure of the data. Multi-instance learning is a suitable learning framework in tasks where the 

modeled object is difficult to represent with a single feature vector. The sort of problems, where 

an object can exist in several alternative representations, can be attributed to polymorphism ambi-

guity (Figure 2). In structure-property modeling, this type of ambiguity arises when the molecule 

can be represented by alternative instances, such as conformations, tautomers, protonation states, 

etc. The wrong choice of the key molecular form can result in the poor performance of predictive 

models. MIL is a suitable framework for this problem because it can handle all available instances 

simultaneously. 

Another problem where MIL is applicable is characterized by a part-to-whole ambiguity 

when only one or several parts of a modeled object are responsible for its observed property. A 

molecule can be represented as a set of connected atoms/instances and its physicochemical or 
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biological properties are generally influenced by a single atom or group of atoms, and it is often 

unknown which particular atom determines the observed property [16]. 

 
Figure 2. Types of ambiguity in molecule structure data: (a) polymorphism ambiguity, (b) part-to-whole ambiguity, 

and (c) segment-to-sequence ambiguity. 

 

MIL is also a quite popular modeling approach in bioinformatics, where modeled objects are 

sequences, such as protein, DNA, and RNA. Often only a certain segment of the sequence is re-

sponsible for the function of the whole sequence, but the length and boundaries of such a segment 

may be unknown. Consequently, biological sequences can be represented by multiple segments, 

which can overlap with each other. Each segment of the sequence is an instance encoded with a 

special feature vector. This type of problem can be attributed to segment-to-sequence ambiguity. 

Other multi-instance problems include multi-multi-instance learning [36], multi-instance 

multi-label learning [37], key instance detection in multi-instance learning [6], multi-instance clus-

tering [38], multi-instance ranking [39]. Comprehensive reviews of the MIL concept and its appli-

cations can also be found in [40 47]. 

 

1.3 Multi-instance learning algorithms 

The growing number of MIL algorithms requires their systematization. This review follows a cat-

egorization of algorithms similar to [44] (other types of categorization of MI algorithms are de-

scribed in [42,45,48,49]) and distinguishes two major groups of MIL algorithms: instance-based 

and bag-based algorithms. Instance-based algorithms consider each instance as a separate training 

object and generate predictions for each instance in the bag, and then apply a predefined rule to 

aggregate the instance predictions to obtain a prediction for the entire bag.  

In contrast to instance-based algorithms, bag-based algorithms consider the whole bag as 

a training object and do not explicitly provide predictions for individual instances. The bag-level 
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algorithms consider the bag as a whole object and define the distance between bags [50], bag 

kernels [51], bag dissimilarities [52] or explicitly pooling operators.  

 

Naive MIL algorithms 

Naive MIL algorithms such as wrappers transform multi-instance data into single-instance repre-

sentation and apply a traditional machine learning algorithm to train the model. Following the 

chosen categorization of MIL algorithms, there are two types of wrapper algorithms: instance-

based and bag-based wrapper algorithms (Figure 3).  

In Instance-Wrapper (Figure 3a) each training instance of a bag is assigned the same label 

as the parent bag. This results in a standard single-instance dataset in which each instance is man-

ually labeled and any single-instance machine learning algorithm can be applied to build the 

model. To obtain a prediction for a new bag, the model first predicts a label for each instance of 

the bag and then aggregates obtained instance predictions (e.g., averages) to produce a prediction 

for the given bag.  

 

 
Figure 3. Prediction scheme in instance- and bag-wrapper MIL algorithms. 

 

In Bag-Wrapper (Figure 3b) algorithm, there is no need to identify a label for each instance 

in a bag. Instead, there is an operation that aggregates the instances to obtain a single vector rep-

resenting the bag. Then, any single-instance algorithm can be applied to train the model. In pre-

diction mode, all instances of the new bag are aggregated into a single vector, which is used to 

obtain a prediction for a given bag.  
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Traditional MIL algorithms  

Naive MIL algorithms such as wrappers transform multi-instance data into single-instance data 

and use a standard single-instance machine learning algorithm to train the model. However, several 

classic machine learning approaches have been adapted to directly process raw multi-instance data. 

These algorithms are instance-based approaches such as maximum likelihood-based methods [53

56], decision rules and tree-based methods [57 60], SVM-based methods [43], and evolutionary-

based methods [61]. Bag-based algorithms include the adapted nearest neighbor methods [50,62] 

and bag-level SVM methods [43].  

For example, MILogisticRegression [63] is an adaptation of logistic regression, DPBoost 

[64] and MIBoosting [63] are adaptations of boosting approach, ID3-MI and RipperMI [57] are 

the MIL extensions of the decision tree, and decision rules approaches, MI-SVM is the multi-

instance version of SVM [65], Citation-kNN [50] is a multi-instance version of standard kNN, 

bag-level SVM methods are based on the bag-level kernels [51]. There are also multi-instance 

adaptations of neural networks (section 1.3.3). 

The Diverse Density [53] is a maximum likelihood-based algorithm that implements the 

assumption that positive instances occupy a specific area in the feature space. Diverse Density 

searches for the area in the feature space where the difference between the density of instances of 

positive and negative is maximal. For example, if one of the instances in a positive bag is close to 

the prototype and no negative bags are close to the prototype, then the prototype will have a high 

Diverse Density.  The DD algorithm searches for the prototype instance that is a generalization of 

a positive instance. Expectation-Maximization Diverse Density (EM-DD) uses the EM algorithm 

to locate prototype instances more efficiently. There are several other MI algorithms based on the 

Diverse Density approach, such as DD-SVM [66] and MILES [67]. 

 

Neural network MIL algorithms 

Neural networks are appealing for solving MIL problems. Neural networks perform multi-instance 

learning in an end-to-end, which takes a bag with a various number of instances as input and gen-

erates the bag label. Multi-instance neural networks were first described by Ramon et al. [68] for 

classification problems where instance probabilities are computed to be further aggregated by the 

log-sum-exp operator to calculate the bag probability. Zhou et al. [69] modified multi-instance 

neural networks by employing a new loss function capturing the nature of multi-instance learning, 

i.e. weights of the network are updated for each training bag, not for each training instance. Later, 

this neural network was improved by adopting feature scaling with Diverse Density and feature 

reduction by principal component analysis [70]. In [71] and [72] ensemble neural networks and 
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RBF neural networks were introduced to solve MIL problems. Zhang et al. [73] extended multi-

instance neural networks by implementing a loss function for the MIL regression task. 

Wang et al. [74] revisited multi-instance neural networks and proposed a series of novel 

neural network frameworks for MIL. In contrast to previous multi-instance networks, their method 

focuses on generating bag representations instead of inferring instance labels. The proposed net-

work consists of three fully-connected layers followed by one pooling layer that aggregates in-

stance representations learned by previous layers into a single embedding vector. A final fully-

connected layer takes the obtained embedding vector as input and calculates the bag probability. 

The authors examined three typical pooling operators for aggregation instance feature vectors - 

max, mean and log-sum-exp pooling and concluded that all pooling operators demonstrate similar 

classification accuracy on benchmark datasets. Besides that, they integrated popular deep learning 

tricks (deep supervision and residual connections) into MIL networks, which improved the 

 accuracy. The important outcome of this paper is that bag-level networks (Figure 4b) 

outperform instance-level networks (Figure 4a) on popular MIL benchmark datasets. 

 
Figure 4. Examples of instance- and bag-based multi-instance neural networks. 

 

Traditional pooling operators have a clear limitation, i.e. they are pre-defined and non-learn-

able. The max-pooling operator could be effective to aggregate instance scores but might be inap-

propriate for the aggregation of instance feature vectors in bag-level algorithms. Similarly, the 

mean pooling operator might be unsuitable to aggregate instance scores but could succeed in gen-

erating the aggregated bag representation.  Ilse et al. proposed an attention-based pooling operator, 
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that replaces pre-defined pooling operators with a trainable attention network that can generate

instance weights [75]. Instance weights quantify the importance of each instance and its contribu-

tion to the aggregated bag representation.   

 
Figure 5. The architecture of the attention-based multi-instance algorithm 

 

However, most MIL algorithms ignore the structural relationship among instances in the 

bag because they consider the instances as independently and identically distributed (i.i.d) samples 

[76]. In this context, instances are i.i.d if they have the same probability distribution and all are 

mutually independent. For example, considering molecules as i.i.d data samples is reasonable, but 

the conformation distribution of a molecule is not independent and identical because it depends on 

predefined physical laws. Nevertheless, multi-instance neural networks that can capture structural 

information within a bag have been proposed. 

Tu et al. [77] proposed a multi-instance learning approach with graph neural networks. In 

this approach, each bag of instances is converted to an undirected graph which is processed by 

Graph Neural Network (GNN) to learn the aggregated bag representation. The authors claimed 

that the graph representation of a bag allows for capturing the structural information within the 

bag and demonstrated that it can improve the classification accuracy of the algorithm. 

In [78] recurrent neural networks were proposed to model underlying structure among in-

stances. In this approach each bag is converted into an unordered sequence of instances, which is 

processed by the recurrent neural network, that can memorize instances.  In [79], a new pooling 

operator based on the LSTM recurrent neural network was proposed. In this pooling operator, the 

LSTM memory mechanism allows accumulating of information after processing each instance 

representation to iteratively update the bag representation. 
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In [80] a new dynamic pooling was proposed, which was inspired by the Routing Algorithm

from Capsule Networks [81]. The dynamic pooling iteratively updates instance contribution to 

aggregated bag representation and captures the contextual information among instances.  

Set Transformer [82], which is based on Transformer architecture [83], was proposed for 

solving problems where data samples are organized as sets of instances, including multi-instance 

learning. Set Transformer model pairwise interactions between instances in a bag using the multi-

head self-attention mechanism. Each head in multi-head self-attention highlights local relation-

ships between groups of instances in the bag. 

 

Key instance detection algorithms 

The main goal of MIL algorithms is to predict labels for bags. However, it is often desirable to 

predict not only the bag label but also to infer labels of the instances in the bag. It is particularly 

important to determine labels for the key instances that primarily contribute to the label of the bag. 

This problem was called Key Instance Detection (KID) and was first formalized in [6]. The devel-

opment of MIL algorithms that can predict the label of a bag and identify key instances of this bag 

is an attractive area of research. KID problem related to the problem of explainability of MIL 

models. Following the categorization of [84], explainable approaches of MIL models can be di-

vided into model-specific and model-agnostic. 

Model-specific approaches include MIL algorithms that can infer instance labels or estimate 

the importance of instances (instance weights). These algorithms can be roughly divided into tra-

ditional and neural network-based algorithms. Most traditional instance-level algorithms can be 

used to identify key instances. Instance-level algorithms rely on some process, which determines 

the labels or probabilities of instances in a bag. In such algorithms [53,54,65,67,85,86][87], KID 

is a subtask and instance labels are provided as by-products of the learning process. Other algo-

rithms are based on some key instance identification mechanism and specifically focused on solv-

ing the KID problem [6,88,89]. 

 
Figure 6. Multi-instance learning with key instance detection 
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Multi-instance neural networks are an attractive technology for solving the KID problem. 

An important element of such neural networks is the pooling operator, which aggregates instance 

representations and can also serve as a detector of key instances. In [75] Ilse et al. proposed a 

pooling operator based on the attention mechanism [90], which was implemented as a two-layered 

neural network followed by the softmax function that receives instance scores and generates in-

stance weights that sum to 1 (the higher the instance attention weight, the more important the 

instance). The instances are then aggregated according to the attention weights. Both neural net-

works are trained consistently using a backpropagation algorithm. Li et al [91] proposed a deep 

multiple instance selection frameworks (DMIS) based on hard attention [92] with Gumbel softmax 

or Gumbel top-k functions. In contrast to soft attention, where continuous attention weights are 

assigned to the instances, including negative instances, the proposed approach selects several key 

instances, filtering out potential negative (non-key) instances. This approach is more efficient for 

some tasks than standard attention-based MIL pooling [91]. Yu et al [93] applied a neural network 

inversion mechanism [94] to the MIL classification problem and demonstrated that it can signifi-

cantly improve KID performance. In this approach, the attention-based multi-instance neural net-

work is first trained in standard mode and then neural network inversion is applied for each positive 

bag, which changes the input instances, enhancing the probable key instances and attention 

weights are recomputed for the updated bag. As a result, after neural network inversion, the key 

instances are assigned higher attention weights. 

There are also multivariate neural networks based on other types of pooling that can also 

identify key instances. Gaussian pooling [95] applies a Gaussian radial basis function to calculate 

instance weights, which is the main difference from attention-based pooling, which applies soft-

max for this purpose. Inspired by the Routing Algorithm from Capsule Networks [81], a new type 

of pooling operator was proposed in [80], called dynamic pooling. This pooling operator iteratively 

updates the instance contribution to its bag representation during each feed-forward step. Based 

on these instance contributions, dynamic pooling highlights the key instance and models the con-

textual information among instances.  Tu et al. [77] implemented an approach, where each instance 

of a bag is a node in a graph that was processed by a graph neural network (GNN) and converted 

to a fixed-dimensional representation by differentiable graph clustering pooling. This approach 

can capture interactions between instances in a bag, which can improve KID performance in some 

cases [77]. 

However, the interpretation of attention mechanisms in MIL is still an open question, since 

validation of KID solutions requires labeled data at the instance level, and the amount of such data 

is still scarce. A study [96] addresses this issue and concludes that models with high prediction 
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accuracy can have poor key instance identification accuracy. This fact complicates the selection 

of models that can be used to solve the KID problem. In the same paper [96] it was demonstrated 

that using an ensemble of models instead of a single model, can improve the robustness of KID 

models. These conclusions can be considered general and be extended to the case of other pooling 

operators. It is necessary to further develop approaches that will increase the validity of KID mech-

anisms. 

The model-agnostic approach for the interpretation of any MIL model in classification tasks 

was proposed in [84]. This approach can be divided into methods that ignore interactions between 

instances and methods that recognize these interactions. The first group of methods includes sim-

ple strategies such as single instance prediction or one instance removed prediction or their com-

bination. The second method is represented by the Multiple Instance Learning Local Interpreta-

tions (MILLI) approach, which is similar to the popular single-instance machine learning LIME 

and KernelSHAP approaches for model interpretability. Interestingly, model-agnostic approaches 

performed significantly better in the identification of key instances [84] than model-specific in-

herent KID mechanisms of popular MIL algorithms. 

Boltzmann distribution. The distribution of conformers (fractional occupancy) in time and 

space is described by the Boltzmann distribution function: 

 

 (1) 

 

where E is the energy of the conformer, k is the Boltzmann constant, and T is the temperature of 

the system. The Boltzmann distribution relates the energy of the conformer to its probability of 

occurring. The distribution shows that conformers with lower energy always have a higher proba-

bility of occurring. The same distribution can be applied to an ensemble of tautomers. Boltzmann's 

law implies that all molecular forms (conformers/tautomers) contribute to the observed property 

of the molecule.  

 Having accurate ligand-target binding energies, the Boltzmann distribution can be used for 

weighted averaging of the calculated or predicted properties of the molecules. For example, in [97] 

the Boltzmann distribution (applied to the energies of an ensemble of ligand-target complexes) 

was used to average the docking scores for the ensemble of each binding pose. As a result ligand 

ranking accuracy was improved by Boltzmann weighting applied to the energies of an ensemble 

compared to the straightforward averaging. The more accurate the estimated energies of the system 
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(conformer, tautomer, ligand-target complexes), the higher the chance of identifying the key mo-

lecular form. However, the accuracy of the assessment of these energies is limited by the high 

computational costs, limited force field accuracy, and technical challenges related to computa-

tional resources. 

 

1.4 Multi-instance learning applications 

Polymorphism ambiguity modeling 

Bioactivity modeling with multiple tautomers. Many compounds exist as tautomers, which can 

exhibit different physicochemical and biological properties. There are many examples [98] where 

a minor tautomer binds to the target and is responsible for the observed bioactivity of a compound.  

Several papers have studied the influence of tautomerism on QSAR modeling. In [99], it was 

demonstrated that tautomerism significantly influences the descriptor selection process, as well as 

in some cases the performance of QSAR models. The same authors later concluded [100] that the 

inclusion of keto-enol tautomerism in the modeling of antimalarial activity does not affect the 

performance of the models, but enables retrieving additional useful information on the relation 

between structure and activity. Another study [101] demonstrated that inclusion in the modeling 

of both the keto-form and the enol-form of compounds improves the prediction accuracy of the 

anxiolytic activity, in comparison to models which are built using only one of the two tautomeric 

forms.   

 
Figure 7. Possible tautomeric forms of tetracycline [102] are inputs to the MIL model. All tautomeric forms of each 

molecule can be assembled into bags, which are used for structure-activity modeling using multi-instance learning 

algorithms. 
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Tautomerism can affect not only the accuracy of in-house QSAR/QSPR models but also the 

output predictions of external models when they are applied to new compounds. It is well known 

that logP and pKa can differ for different tautomeric forms of the compound. Recently, the Syn-

genta group has demonstrated [103] that logP and pKa predicted by industry-standard programs 

(clogP program and ACD software) depend on the input tautomer of the compound, and using 

more sophisticated QM calculations to find the correct tautomer significantly improves the accu-

racy of logP and pKa predictions. 

Multi-instance learning can potentially solve the problem of selection of the relevant tauto-

mer by generating models that are trained on all available tautomers of a molecule. MIL models 

(Figure 7) can be independent of input tautomer form and even can identify the key tautomer of 

the compound. 

Bioactivity modeling with conformation ensembles. 2D descriptors ignore the spatial mo-

lecular structure of compounds and their conformational flexibility. Therefore, some important 

structural information that could increase the performance of predictive models may be lost. This 

issue motivated the development of 3D modeling approaches. The Achilles' heel of these ap-

proaches is that the molecule is represented by a single generated conformation, which may not be 

identical to the bioactive conformation. Therefore, it is important to consider the conformational 

flexibility of the compound, since an incorrect choice of conformation for modeling can signifi-

cantly reduce the accuracy of the predictive models. 

The idea of considering multiple molecule conformations in modeling bioactivity was im-

plemented in Compass [34], an algorithm that automatically selects bioactive conformations and 

their alignments. Compass is based on a neural network that iteratively selects a more suitable 

conformation of a molecule to improve a prediction of its bioactivity. The neural network marks 

the best pose of each molecule according to the highest predicted activity. The best poses are then 

used to iteratively update the neural network weights. As a result, the trained model can simulta-

neously predict both the bioactivity of a compound and its bioactive pose. Compass first was ap-

plied to predict the human perception of musk odor. The dataset contained 102 molecules, includ-

ing active (musk) and inactive (non-musk) examples. The model built with a single conformation 

per molecule demonstrated performance of 71%, while the model generated from multiple confor-

mations demonstrated a significantly higher performance of 91%. This result is an illustrative ex-

ample of the importance of the representation of the conformational space of molecules. 

In the seminal paper [5], Dietterich et al. first introduced the problem of multi-instance learn-

ing, motivated by the task of predicting drug activity. In this work, they proposed three basic ap-

proaches for the design of axis-parallel hyper-rectangles (APR) classification algorithms, which 



40 

 

are based on the selection of the relevant features and the determination of optimal bounds along 

these features. The standard  APR bounds the positive examples and ignores the MIL problem. 

The outside-in and inside-out

timal hyper-rectangles avoiding negative examples. APR algorithms were compared on one arti-

ficial and two real Musk-1 and Musk-2 datasets. Additionally, the traditional single-instance neu-

ral network and C4.5 algorithms were chosen for comparison. The results indicated that the algo-

rithms ignoring the instance problem performed inferior to the multi-instance APR algorithms on 

all three datasets. Although there were previously related works on MIL problems, Dietterich for-

malize the problem of multi-instance learning using drug activity prediction as an example and 

propose the first MIL algorithm that directly solves the MIL problem, in contrast to earlier ap-

proaches that simply converted a multi-instance problem to a single-instance one.    

Although Compass and APR algorithms had proven that consideration of the MIL problem 

can improve the performance of models for predicting the bioactivity of compounds, MIL algo-

rithms had not become ubiquitous.  In [11] Inductive Logic Programming (ILP) approach was used 

to learn pharmacophores formulated as logical rules, which are used to encode conformations as a 

binary vector, in which 1 means that the conformation satisfies a specified rule, that is has a cor-

responding pharmacophore. As a result, the molecule was represented by a set of conformers en-

coded by binary pharmacophore features, then multi-instance regression was used to construct a 

linear model. The prediction of the bioactivity of a molecule can be obtained by weighted averag-

ing of the predicted activity of its conformations. The authors tested their approach on three da-

tasets on the activity of dopamine agonists, thermolysin inhibitors, and thrombin inhibitors and 

demonstrated that the models built on the multiple conformers outperform single-conformer mod-

els in all three cases. 

The popular multiple-instance learning via embedded instance selection (MILES) algo-

rithm was applied to construct models for the classification of bioactive chemical compounds [9]. 

MILES was applied to model the bioactivity of molecules against GSK-3, P-gp, and CBrs recep-

tors and demonstrated competitive with analogous approaches performance. MILES can inher-

ently identify key instances, which can be exploited to recognize bioactive conformations. For 10 

of the 12 test molecules from the GSK-3 dataset, the MILES model was able to rank the experi-

mental bioactive conformation higher than the generated conformations. In a later paper [8], the 

authors proposed a modification of the MILES algorithm based on the joint instance and feature 

selection. The proposed approach demonstrated slightly lower classification accuracy than the 

original MILES, but could efficiently select a representative subset of instances and features. 
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Recently, the results of this Ph.D. thesis were published in a series of studies [12 14] de-

voted to modeling the bioactivity of compounds using conformer ensembles and multi-instance 

algorithms. In paper [14], an adaptation of the algorithm of Zhou and Zhang [104] was proposed 

to build 3D multi-conformer classification models, which were compared with traditional 2D mod-

els. A comparative analysis on a collection of >150 datasets extracted from the ChEMBL-23 da-

tabase showed that 2D models outperformed 3D multi-conformer models in most cases. Never-

theless, 2D and 3D models are comparable when the dataset size is less than 1000 compounds.  

Catalysts enantioselectivity modeling with conformation ensembles. In 2021 D. Mac-

Millan and B. List received the Nobel Prize for the development of asymmetric organocatalysis. 

In 2000 [105,106] they contemporaneously demonstrated that small chiral organic molecules can 

catalyze asymmetric reactions to produce enantiopure compounds. The design of new chiral cata-

lysts is based on the iterative improvement of the reaction enantiomeric purity by reasonable mod-

ification of the catalyst structure. This process is guided by the chemical intuition and background 

knowledge of the experimentalist and often culminates in the desired performance of the reaction.  

However, computational approaches, such as quantum chemistry [107] and chemoinformatics are 

especially attractive and can be used for screening virtual libraries of candidate catalysts, reducing 

the time and overheads needed to discover highly enantioselective catalysts.  

In Quantitative Structure-Selectivity Relationships (QSSR) approach descriptors encoding 

catalysts structures are correlated with their experimental enantioselectivities using machine learn-

ing algorithms. The earliest studies on QSSR are based on Molecular Interaction Fields (MIF) 

approaches such as CoMFA [108,109]. The main problems of MIF-based 3D structure-selectiv-

ity modeling approaches are (i) the selection of catalyst conformers and (ii) their alignment. The 

selection of irrelevant conformers can reduce model performance and alignment of conformers 

becomes challenging if the dataset includes catalysts with different scaffolds. In the case of align-

ment-independent 3D descriptors, there is also (iii) the problem of the choice of relevant de-

scriptors. In this Ph.D. project, a new 3D-QSSR approach multi-instance learning was proposed 

[15]. 

MIL algorithms can process all available catalyst conformers, solving the problem of con-

formers selection. Each catalyst conformer was encoded with 3D pmapper descriptors, which are 

independent of translation and rotation of the conformer (do not require conformers alignment). 

The developed 3D modeling approach was validated on the reaction of asymmetric nucleophilic 

addition catalyzed by chiral phosphoric acids [110] and phase-transfer asymmetric alkylation cat-

alyzed by cinchona alkaloid-based catalysts [111]. The 3D multi-conformer model was compared 
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with the state-of-the-art 3D conformer-dependent approach published by Denmark [110], and the 

set of traditional 2D models based on popular 2D descriptors [112,113]. 

 

Part-to-whole ambiguity modeling 

Property modeling with atoms as instances. A molecule can be represented as a set of connected 

atoms. In this context, the molecule is characterized by part-to-whole ambiguity, where a particular 

atom or group of atoms is responsible for an observable property of the molecule. Within this 

framework, each atom of a molecule is represented by a separate vector of atom descriptors. 

Bergeron et al. [39,114] introduced a novel learning framework called Multi-Instance Rank-

ing (MIRank). The proposed approach was applied to the problem of identification of metabolic 

sites of molecules, i.e. atomic groups from which a hydrogen atom is removed. The experimental 

data show only to which group the removed hydrogen atom belongs, and it is not known which 

hydrogen atom is removed. Each hydrogen atom was represented by a set of descriptors such as 

the charge, the surface area, hydrophobic moment, etc. For each molecule (box), the ranking func-

tion separates at least one instance (hydrogen) of the preferred bag (group) from the remaining 

instances belonging to the box. Using a dataset of 227 compounds metabolized by the enzyme 

cytochrome CYP3A4 [115] it was demonstrated that the MIRank model performs slightly better 

than the standard classification model [39]. In a later work, Bergeron et al. [114] upgraded their 

algorithm to analyze large datasets and validated it on an extended database of 10 CYP datasets. 

 

 
Figure 8. A general approach to multi-instance modeling of the properties of molecules represented by atom instances. 

Vectors of atoms can include physico-chemical or quantum-chemical descriptors or can be extracted using graph 

neural networks [16].  

 

Recently, Xiong et al. [16] proposed a graph neural network based on multi-instance learning 

to predict both the macro-pKa of the molecule and the micro-pKa of individual atoms. In their 

approach, a molecule is a bag, which contains instances of the ionizable atoms of this molecule. 
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Each atom of the molecule is described by a vector of features extracted with a graph neural net-

work. The extracted instance features are used to predict the micro-pKa of atoms, which are then 

aggregated to derive a macro-pKa. Their model predicted the acidity of organic compounds with 

high accuracy and provided reasonable micro-pKa of atoms. 

 

Segment-to-sequence ambiguity modeling 

Protein-protein interactions. Protein-protein interactions (PPI) play an important role in biolog-

ical processes.  These interactions can occur between single proteins or groups of proteins (protein 

complexes). In general, only particular segments of proteins (domains) determine the structure and 

function of the protein and are involved in the interaction between proteins. For this reason, 

knowledge of which domains of proteins can interact with each other enables the prediction of 

new protein-protein interactions. 

 
Figure 9. Macromolecule data structures (a) generating a bag from an amino acid sequence using the sliding window 

approach and (b) generating a bag from probable domain-domain pairs from protein-protein pairs. 

 

Experimental PPI data provide information on the interacting protein pair and the type of 

interaction (activation, ingestion, phosphorylation, dissociation, etc.), but information on the in-

teracting domains (key domains) is often not available. This scenario fits the MIL framework, 

where each potential domain pair is an instance (Figure 9) and the whole collection of domain 

pairs in a given protein-protein complex is a bag and at least one of these domain pairs interacts 

defining the type of interaction (e.g. phosphorylation). If the proteins do not interact, there is no 

pair of interacting domains in the bag. 

Yamakawa et al. [116] used a dataset of 1279 PPI records labeled with ten different interac-

tion types (state, dephosphorylation, dissociation, inhibition, phosphorylation, binding association, 
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indirect, activation, compound). They considered the simplified task of classification on whether 

the PPI is phosphorylation or not. To solve this problem, they proposed a Voting Diverse Density 

(VDD) algorithm based on the Diverse Density (DD) algorithm and demonstrated that their 

method outperformed several other popular MIL algorithms and required much less time for train-

ing [116].  

Multi-domain proteins can also perform many different functions. To predict the biological 

functions of proteins, Wu et al. [22] used a Multi-Instance Multi-Label (MIML) framework, where 

instances are protein domains and the protein (bag) is associated with multiple biological functions 

(multiple labels). They demonstrated the applicability of the MIML approach to seven real-world 

datasets on the main biological systems: archaea, bacteria, and eukaryotes. 

Isoform isoform interactions. Constructing and analyzing protein-protein interactions 

helps to understand biological processes, enabling the development of more effective drugs. In 

protein biosynthesis, a gene in a DNA sequence generates a particular protein with an inherent 

structure and biological function. However, the alternative splicing (AS) mechanism makes it pos-

sible for the same gene to synthesize several proteins (protein isoforms) that have a similar amino 

acid sequence and structure but sometimes perform different biological functions. Many compu-

tational tools neglect this aspect (mainly because of the lack of experimental data on isoform-

isoform interactions) and only consider the canonical (or the longest) protein derived from a gene 

when constructing PPIs.  

This may cause interactions between canonical proteins (gene-gene interactions) to be erro-

neously predicted as negative (false negative), in cases where alternative proteins (isoforms) of 

two genes interact. This case is also suitable for the MIL framework, in which a gene (bag) gener-

ates several protein isoforms (instances). The interaction between a gene-gene pair is positive if at 

least one of the isoform-isoform interactions (IIIs) is positive. To address these tasks Li et al. [117] 

proposed a single-instance bag MIL (SIB-MIL) algorithm based on a Bayesian network classifier. 

SIB-MIL works at the instance level and assigns each instance (isoform pair) a probability to be 

positive (interactive). In SIB-MIL, the Bayesian network classifier is initially trained on positive 

bags with single-instance (gene pairs with single pair of isoforms) and negative instances from 

negative bags. The obtained classifier is then used to assign probability scores to the remaining 

isoform pairs in multi-instance bags.  Using the obtained probability scores, a witness (key in-

stance) is selected from each positive bag and labeled as positive. The instances with the highest 

probability score from the negative bags are labeled as negative. Updated labels are used to retrain 

the Bayesian network classifier. The instance labels are updated until the accuracy of the validation 
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set stops to improve. At the gene-pair level, the label of a bag is defined as the maximum proba-

bility score of its instances. Zeng et al. proposed a DMIL-III method [25] based on a deep neural 

network with convolutional layers. They demonstrated using a benchmark dataset that DMIL-III 

significantly outperforms SIB-MIL and mi-SVM algorithms.  

PPIs and IIIs databases include identified interactions, whereas classification algorithms for 

training also require negative examples, which are usually generated artificially. This strategy of-

ten results in significantly more negative examples than positive ones, leading to imbalanced da-

tasets. Therefore Zeng et al. [17] implemented a novel loss function to handle the imbalanced data 

and proposed the IDMIL-III method. They also enhanced the IDMIL-III with an attention mecha-

nism, which improved the accuracy of identification of isoform-isoform pairs. In general, IDMIL-

III improves the prediction accuracy of gene-gene pairs (bag level) in comparison to DMIL-III. 

MHC-II-peptide interactions. The main function of major histocompatibility complex 

(MHC) protein is the binding of short peptide fragments derived from proteins produced inside 

(MHC-I) or outside (MHC-II) a cell and the presentation of these peptides at the cell membrane 

for recognition by T-cell (white blood cells of the immune system) receptors. In the context of 

vaccine design, it is very important to know which peptides bind to MHC molecules to initiate the 

desired immune response. MHC molecules have a binding groove where peptide fragments bind. 

MHC-I has a closed groove and usually binds peptides of lengths between 9 and 11 amino acids. 

In contrast to MHC-I, the binding groove of the MHC-II molecules are open at both ends and can 

bind peptides commonly with length from 11 to 30 amino acids [35], but it was established that 

for binding of protein with MHC-II is responsible a 9-mer segment of peptide and there is often 

no experimental information about which segment binds to the MHC-II molecule. This problem 

motivated studies on the application of multi-instance learning for the prediction of binding pep-

tides. 

Multi-instance learning was adapted to predict peptide binding activity to MHC-II in classi-

fication [118] and regression tasks [119]. Both approaches used bags of segments of 9 amino acids. 

In [21], a new multi-instance approach for predicting MHC-II binding was proposed in which 

flanking amino acids (11-mers) were considered in addition to the 9-mer segments. Also, the au-

thors used experimental information that amino acids at positions 1, 4, 6, 7, and 9 may be crucial 

for peptide binding and integrated this information into the learning algorithm. In addition, their 

study revealed that amino acids at position 2 may also influence peptide binding. 

Each human has multiple MHC-II molecules, which can be represented in assays. Often, 

experimental methods cannot precisely identify which MHC-II molecule was bound to a given 

peptide. Malone et al. [18] formulated the MIL problem, where the bag contains multiple MHC-II 
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molecules and is positive if at least one MHC-II molecule binds a given peptide and negative if 

there are no binding MHC-II molecules in the bag. They used a combined dataset [120] of SA 

(single-allele) and MA (multi-allele) data to train a transformer neural network BERTMHC and 

showed that models trained on SA data only are inferior to MIL models. 

Calmodulin-protein interactions. Calmodulin (CaM) is a calcium-binding protein that is 

148 amino acids long. CaM can interact with more than 300 proteins and peptides [121], thereby 

regulating many biological processes. The biological significance of CaM and the high diversity 

of proteins that can interact with CaM have motivated the development of computational methods 

for predicting both the proteins that can bind to CaM and the binding sites within these proteins. 

Minhas et al. [28] used a dataset of 153 proteins with 185 experimentally annotated binding 

sites. In a single-instance scenario, the subsequences annotated as binding sites were marked as 

positive examples and all other parts of the protein (obtained using a sliding window approach) as 

negative. However, experimental methods do not always accurately determine the position of the 

binding site, which introduces ambiguity into the learning process of the classification model. 

Therefore, in the multi-instance model, all subsequences overlapping the binding site formed a 

positive bag, and all other subsequences formed a negative bag. As a result, it was demonstrated 

[28,122] that the MIL approach slightly improves the accuracy of binding site prediction. For CaM 

binding prediction, they used a dataset of experimentally identified 236 proteins that bind CaM 

and achieved improvement in prediction accuracy in comparison with competing methods 

Modeling genomic sequences. Transcription of genes is the process of copying a DNA se-

quence into an RNA molecule. A Transcription Factor (TF) is a special protein that binds to a 

DNA sequence and activates or represses the expression of certain genes. Regions of DNA se-

quences that are bound by a transcription factor are called Transcription Factor Binding Sites 

(TFBS). Modern experimental techniques [24] enable the identification of DNA segments that are 

bound by the TF protein, but the precise identification of TFBS is still a challenge. Typically, a 

DNA sequence may contain one or more binding sites and usually, the exact location of the TF is 

not known (although preference information is sometimes available). Therefore, it is natural to 

represent the DNA sequence as a bag of possible binding sites. In the MIL classification setting, a 

bag (DNA sequence) is positive if it contains at least one TF and negative if it contains no TF. A 

bag is generated by a sliding window of length n through the whole DNA sequence. The typical 

length of a TF is 6-12 base pairs, which conditions the length of the subsequences (instances) 

included in the bag. 
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The in vitro protein binding microarray (PBM) experiments allow high-throughput screening 

of DNA sequences that bind to a given TF. The typical length of DNA sequences in such experi-

ments is 35 base pairs (bp), whereas TF lengths normally vary from 6 to 12 bp. PBM data provide 

an excellent source for modeling TF-DNA interactions and predicting in vivo binding. To model 

in vitro binding, Gao and Ruan [19] used a dataset of the measured binding affinities of DNA 

sequences against 20 mouse TFs. This dataset was obtained from the Dialogue on Reverse-Engi-

neering Assessment and Methods (DREAM) competition [123]. They compared SIL (whole DNA 

sequence) and MIL (bag of DNA subsequences) based models. For building MIL models, they 

used the Instance-Wrapper algorithm implemented in the WEKA package with the C4.5 decision 

tree as the basic single-instance algorithm. They considered each candidate binding site with a 

length of 5-8 ba as an instance and all possible subsequences as a bag. Consequently, the MIL 

model outperformed the SIL model for each of the 20 mouse TFs (average AUC score 0.94 vs. 

0.71). Later Gao and Ruan [27] proposed a MIL version of the TeamD (one of the best algorithms 

in the DREAM5 competition) algorithm. Using a PBM dataset of 86 mouse TFs as in their previ-

ous work, they demonstrated that for 78 of the 86 TFs, MIL-TeamD outperformed SIL-TeamD 

(average AUC score 0.94 vs. 0.90). 

Zhang continued to further improve the performance of models to predict TF-DNA binding. 

They considered DeepBind [29] algorithm based on a deep convolutional neural network (CNN), 

which has been successfully applied to predict DNA- and RNA-protein binding, and proposed its 

MIL version called Weakly-Supervised CNN (WSCNN). A single-instance learning algorithm 

(SIL-CNN), had the same architecture as DeepBind. They took the same PBM dataset of 86 mouse 

TFs and found that the SIL-CNN model performed better than the MIL-TeamD. However, as ex-

pected the WSCNN (MIL-CNN) model performed better than the SIL-CNN. 

Another source of information on TF-DNA binding sites is in vivo experiments performed 

in living cells. Compared with in vitro PBM data, in vivo DNA sequences can be a few hundred 

bp (genome-scale studies) in length, which makes their experimental analysis and modeling chal-

lenges. However, DNA-protein binding models built on PBM data can be applied to predict bind-

ing DNA in vivo data. It was demonstrated in the works described above that MIL algorithms 

(MIL-TeamD, WSCNN) built on PBM or directly on in vivo data can significantly improve the 

accuracy of DNA binding predictions in vivo experiments.  

Pan and Shen proposed the iDeepE method [26] based on MIL and deep convolutional neural 

networks. In their approach, instances are generated from RNA sequences using a sliding window 

method and the bag is positive if the RNA interacts with the protein. For validation of their method, 
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they used the RBP-24 dataset (http://www.bioinf.uni-freiburg.de/Software/GraphProt) that in-

cludes 24 experiments of 21 RNA-protein binding sites and RBP-47 which reports 502 178 binding 

sites for 67 RNA-protein pairs. They compared iDeepE with eight of its modifications (based on 

convolutional neural network, long-term memory network, and residual net) and three alternative 

machine learning-based approaches (GraphProt, Deepnet-rbp, Pse-SVM).  The authors concluded 

that iDeepE performs better than its eight variants and other four state-of-the-art approaches and 

demonstrated that iDeepE can identify binding motifs. 

RNA modification is the process by which the nucleotides in synthesized RNA are chemi-

cally modified. Traditional supervised learning approaches for predicting RNA modifications re-

quire base-resolution data, which often are not available. Huang et al. [124] proposed the weakly 

supervised learning framework (WeakRM) for modeling RNA modifications from low-resolution 

datasets. Each RNA was considered as a bag consisting of regions (instances) obtained by a sliding 

window approach. They examined their approach to three different types of RNA modification 

and demonstrated that WeakRM outperforms traditional supervised approaches and can identify 

regions containing the RNA modifications (key instances). 

miRNA-mRNA interactions. mRNA regulates the synthesis of the peptides during gene 

expression, while microRNAs (short non-coding RNA with 18-25 nucleotides) binds to the spe-

cific sites of the target mRNA, and deactivates part of the mRNA or initiate its degradation and 

thereby inhibit gene expression. mRNA has a large number of potential binding sites (PBS) that 

can be bound by given miRNA, but experimental identification of functional binding sites (FBS, 

actual binding 2-8 nucleotide segments) is time- and money-consuming. In this context, computa-

tional approaches for predicting miRNA targets and their binding sites are highly desirable. In the 

MIL framework, each miRNA-mRNA pair is considered as a bag and each PBS of target mRNA 

as an instance. In the classification task, a bag is positive if it contains at least one FBS (key in-

stance), and negative if there is no FBS in the bag (given that miRNA-mRNA does not interact). 

Using the MIL framework, Bandyopadhyay et al. [30] developed the MBSTAR (Multiple 

instance learning of Binding Sites of miRNA TARgets) approaches, which is based on the MIL 

Random Forest algorithm (MIL-RF) and can predict both miRNA-mRNA pairs (bag predictions) 

and target binding sites (instance predictions). They compared MBSTAR with popular miRNA 

target prediction tools: TargetScan, miRanda, MirTarget2, and SVMicrO. As a result, they demon-

strated that MBSTAR outperforms competing algorithms in accuracy in predicting miRNA-

mRNA interactions (bag level), and especially by a large margin in predicting binding sites (in-

stance level). 
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1.5 Toolkits and software

The availability of new machine learning algorithms for testing them on different problems and 

comparison with other algorithms is very important. Due to the rapid development of MI methods 

in recent decades, many of their open-source implementations in different programming languages 

and tools have been proposed. 

WEKA [125] is a freely available software for data analysis, building machine learning mod-

els, and visualization of results of experiments. WEKA is written completely in Java and has a 

simple API and user-friendly graphical interface. WEKA supports several popular MI classifiers, 

including the aforementioned CitationKNN, Diverse Density algorithm, multi-instance extensions 

of SVM, and wrappers.  

KEEL (Knowledge Extraction based on Evolutionary Learning) [126], is another open-

source machine learning software written in Java and supported by a graphical interface. KEEL 

provides a set of tools for building predictive models using machine learning algorithms, including 

multi-instance learning algorithms. KEEL provides different variations of the APR algorithm and 

several popular multi-instance methods, such as EM-DD, G3PMI, CitationKNN, and methods 

based on evolutionary algorithms.  

JCLEC (Java Class Library for Evolutionary Computation) [126] is a Java framework for 

evolutionary computing that is executed via the command-line interface. JCLEC provides imple-

mentation of grammar-based genetic programming (GGP) algorithm. 

MATLAB implementations of multi-instance algorithms can be found in the Matlab 

Toolbox for Multiple Instance Learning [127]. Multiple-Instance Learning Python Toolbox [128] 

is inspired by MATLAB Toolbox and provides popular multi-instance algorithms written in Py-

thon.  

Various multi-instance modifications of SVM [43] methods are available online in Python. 

Also, a lot of implementations of multi-instance deep neural networks can be obtained from 

GitHub repositories: classical multi-instance neural networks [12], multi-instance neural networks 

with attention mechanisms (https://github.com/AMLab-Amsterdam/AttentionDeepMIL), graph 

multi-instance neural networks (https://github.com/KostiukIvan/Multiple-instance-learning-with-

graph-neural-networks), and Transformer-based multi-instance architectures 

(https://github.com/juho-lee/set_transformer). 
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Part 2. 3D structure-property modeling with multi-instance
machine learning 

A key limitation of traditional 3D structure-property modeling approaches is that the molecule has 

to be represented by a single conformer and a single vector of descriptors. The most popular strat-

egy is to represent the molecule with a lowest-energy conformer, which, however, may differ from 

the true conformer that is responsible for the observed property of the molecule. The representation 

of molecules by irrelevant conformers makes it difficult to establish the correct relationship be-

tween the 3D structure of the molecule and its property. This problem can be solved by the appli-

cation of Multi-Instance machine Learning (MIL), in which an object (molecule) is represented by 

a bag of instances (conformers) each encoded with its vector of chemical descriptors. Within this 

Ph.D. project, a new 3D structure-property modeling protocol has been developed. It is based on 

an ensemble of conformers and multi-instance learning algorithms, which does not require the 

selection and alignment of conformers. Furthermore, this 3D modeling approach generates models 

that not only predict the property of molecules but also can identify the key conformers responsible 

for the observed molecular property. 

 

2.1 Methodological developments 

This chapter provides a detailed description of the 3D structure-property modeling approach based 

on multi-instance machine learning. 

 

 
Figure 10. The pipeline of generation of 3D multi-instance models 

 

The process of building 3D models includes several steps (Figure 10). First, for a given molecule, 

a set of conformers is generated which are encoded with alignment-independent 3D descriptors. 

The sets of 3D descriptors are then used to build the model using special multi-instance algorithms. 

1) Data. The input data can be stored in any standard format, e.g. as a CSV table (Figure 

11), which contains the SMILES of the molecule and the value of the target property. The imple-

mented 3D modeling approach handles both regression and classification tasks, that is, the target 

property can be defined as a continuous or binary variable. The implemented MIL algorithms can 
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also be extended to solve multi-instance multi-task problems, where a molecule is represented by 

multiple instances and is associated with multiple properties that are modeled cooperatively. 

 

 
Figure 11. Example of an input data table for building 3D MIL models 

 

2) Conformer generation. onformers representing each molecule were generated using 

the distance geometry algorithm implemented in RDKit [129], which is claimed by its authors to 

be able to reproduce bioactive conformations of ligands from the Protein Data Bank (PDB) data-

base with reasonable accuracy. This algorithm is based on stochastic conformer generation which 

is constrained by geometric patterns derived from experimental data. Precise bond lengths, bond 

angles, and torsion angles are used to determine lower and upper distance bounds for all pairs of 

atoms in the molecule. These distance bounds are collected in a distance bounds matrix, which is 

used in combination with a conformation optimization using a Merck Molecular Force Field 

(MMFF). If the RDKit algorithm failed to generate the conformers, then a systematic conformer 

generator from the Open Babel package [130] is used and the full energies of obtained conformers 

are recalculated using RDKit. 

 
Figure 12. Conformers generated by RDKit for the example molecule. Only conformers within the energy window 

of 100 kcal/mol are selected for modeling. 
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The diversity of the generated conformers depends on the width of the energy window, which is 

specified manually. All conformers that differ in energy from the most stable conformer more than 

the width of the energy window are discarded. Conformations with 

the remaining ones are removed to reduce redundancy. Figure 12 demonstrates an example input 

molecule and the corresponding generated conformers using the RDKit package. 

3) Descriptors. The generated conformers of the molecule then can be encoded using 3D 

descriptors. Several 3D alignment-independent descriptors (WHIM [131], GETAWAY [132], 

MORSE [133], RDF [134]), which do not depend on the translation and rotation of molecules in 

3D space are implemented in RDKit. The problem with the majority of alignment-independent 3D 

descriptors developed so far is that not all of them can distinguish stereoisomers and not all of 

them are interpretable. The developed 3D approach is based on novel 3D pharmacophore de-

scriptors [135], which are implemented in the pmapper package (https://github.com/Drr-

Dom/pmapper). 

 
Figure 13. Examples of input files containing SMARTS of combinations of atoms that are encoded for a given 3D 

structure: (a) pharmacophore features used to build 3D models for prediction of bioactivity of molecules and (b) 

individual atom features used to build 3D models for prediction of catalyst enantioselectivity. 
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In the default setting of the pmapper package, each conformation is encoded by a set of 

pharmacophore features (H-bond donor/acceptor, the center of positive/negative charge, hydro-

phobic, and aromatic) determined by the corresponding SMARTS notation. For a given confor-

mation, all possible quadruplets of predefined features were enumerated. Distances between fea-

tures are binned to allow fuzzy matching of quadruplets with small differences in the position of 

features. In the default setting binning step of is used as it demonstrated reasonable perfor-

mance in previous studies [15,135 137]. Then 3D pharmacophore signatures are generated for 

each quadruplet according to the algorithm in details described in the original publication [135]. 

These signatures encode distances between features and their spatial arrangement to recognize the 

stereo configuration of quadruplets. The number of identical 3D pharmacophore quadruplet sig-

natures is counted for each conformation and the obtained vectors are used as descriptors for model 

building.  

 

 

 

Figure 14. An example of the calculation of the pmapper descriptor vector for a phosphoric acid catalyst. For demon-

stration, combinations of three features (SMARTS:a1aaaaa1 (aryl) and [P, Br]) were set in the input file. 

 

However, the pmapper descriptors are customizable and any combination of atoms and 

groups of atoms that encode the relevant 3D patterns in a given structure can be used instead of 
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the default pharmacophore features. For example, the original 3D pharmacophore descriptors (Fig-

ure 13a) were used in this project to model the bioactivity of compounds extracted from the 

ChEMBL-23 database. In another study on modeling the enantioselectivity of chiral organic cata-

lysts, more abstract triplets of individual atoms were chosen (Figure 13b, Figure 14). 

4) Multi-instance learning algorithms. The implemented in this research MIL algorithms 

can be divided into two groups. The first group includes two wrapper algorithms (Instance-Wrap-

per and Bag-Wrapper), which transform a multi-instance dataset into a single-instance dataset that 

can be processed by any traditional single-instance machine learning method. The second group 

of algorithms includes MIL algorithms that can directly process a multi-instance dataset. These 

algorithms are either adaptations of traditional ML algorithms, or algorithms specially designed 

[5] to solve MIL problems. In this project, MIL adaptations of neural networks (Instance-Net, Bag-

Net, and BagAttentionNet) were implemented and tested in several studies. A basic component of 

some MIL algorithms is a pooling operator that aggregates instances (bag-level algorithms) or 

instance predictions (instance-level algorithms). The pooling operators used in this study were 

mean, max, log-sum-exp, and attention-based pooling. 

Traditional pooling operators. In bag level algorithms mean pooling aggregates instances 

by averaging the instance vectors resulting in an embedding vector, which is used for predicting 

bag labels. In instance-level algorithms, mean pooling averages instance predictions to produce a 

bag prediction. Max pooling selects the max value of each descriptor across all instance vectors in 

bag-level algorithms or the max value of instance predictions in instance-level algorithms. The 

convex version of max pooling is the log-sum-exp operator [68]. 

Attention-based pooling operators. Key instances define the observed bag label. In the 

context of modeling the bioactivity of molecules with MIL approaches, it is considered that a 

molecule is bioactive if at least one of its conformers is bioactive (binds to the target), and inactive 

if none of the conformers is bioactive. Therefore, it is desirable not only to predict molecule prop-

erty but identify key conformations responsible for observed target property. 

Traditional pooling operators (mean, max) are predefined and ignore the importance of 

individual instances. This motivated the development of advanced pooling operators that adapt 

during training and focus on the most important instances. In bag-level algorithms, these pooling 

operators generate instance weights, which determine the contribution of each instance to the final 

embedding vector. Such pooling operators are especially desirable because they make MIL models 

interpretable, i.e., they allow not only the prediction of a bag label but also the identification of 

key instances. 
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Attention-based pooling. In [75] Ilse et al. proposed a pooling operator based on the atten-

tion mechanism [90], which was implemented as a two-layered neural network followed by the 

softmax function that receives instance scores and generates instance weights that sum to 1 (the 

higher the instance attention weight, the more important the instance). Instances are then aggre-

gated according to the attention weights (weighted mean). In this project, the attention neural net 

is coupled with a fully-connected three-layered neural network, which generates instance repre-

sentations and predicts bag labels based on bag embedding. Both neural networks are trained con-

sistently using a backpropagation algorithm. 

GatedAttention-based pooling. The default version of the Attention-based neural network 

includes a tangent hyperbolic activation function (tanh), which is approximately linear for x in the 

range of [-1, 1]. Therefore, in the same paper [75] Ilse and co-workers also proposed to use of a 

gating mechanism [138] to increase the non-linearity of learned relationships. GatedAttention-

based pooling consists of two neural networks: one with a tanh and another with a sigmoid activa-

tion function and the resulting representation is calculated as element-wise multiplication tanh  

sigmoid. 

Self-attention pooling. Attention-based MIL pooling is flexible and suitable for aggregat-

ing information from individual instances. However, the contribution of each instance in the label 

of the bag is evaluated by the attention neural network independently of the other instances in the 

bag. This is an acceptable scenario when considering a standard assumption, where a bag is given 

a positive label if it contains at least one positive instance. More complicated is the threshold-

assumption, when a bag is positive only when it contains at least N positive instances. The Pres-

ence-based assumption assumes that a bag is positive if it contains several instances of different 

concepts. For example, the standard assumption is suitable for predicting the bioactivity of a com-

pound represented by multiple conformations, since a compound is active if at least one of its 

conformations is bioactive, i.e. binds to the target. Another example relates to the presence-based 

assumption. Let a compound is active when it contains an amide group, which consists of C, O, 

and N atoms. In this case, the MIL method must be forced not only to identify the C, O, and N 

atoms separately but also to be sensitive to cases when instances representing atoms C, O, and N 

occur in the bag simultaneously. To handle tasks in which threshold - and presence-based assump-

tions prevail, more advanced pooling types are needed. These pooling functions must take into 

account interactions between instances in the bag. 

One of the approaches to solving this problem is to apply the self-attention mechanism. 

The main idea of self-attention is to take into account the similarity between instances when cal-

culating the attention weights of bag instances.  Thus, the weight of each instance depends on the 
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composition of the bag, i.e. the presence of other instances in the bag. A possible architecture of a 

MIL neural network combines a self-attention mechanism with attention-based pooling. First, the 

input bag runs through a set of fully connected neural network layers, resulting in learned repre-

sentations of the instances. Next, the self-attention layer accepts the representations of the bag 

instances as input and outputs new vectors of instance features, which contain information about 

the interdependencies of instances. New vectors of instances generated by the self-attention layer 

are fed into attention-based pooling, which aggregates them into an embedding vector under the 

attention weights of the instances.  

Attention weights regularization. Since only a few instances are responsible for the ob-

served bag label, the distribution of attention weights across instances is supposed to be sparse and 

sharp, i.e., the attention mechanism must focus mainly on the key instances. The sparsity requires 

that most of the attention weights are close to 0.0. The sharpness requires that the attention weight 

of the key instances should be as high as possible. However, examples from other machine learning 

tasks [139] and preliminary results obtained in this research project demonstrate that the standard 

version of the attention mechanism tends to generate uniformly distributed attention weights with 

a poor focus on key instances. This motivated the development of regularization techniques that 

constrain the weights distribution, forcing the attention mechanism to focus on the fewest in-

stances. Details of the regularization techniques implemented within this project are provided in 

this section. 

Temperature softmax. In the standard attention mechanism, the weight  of instance i is 

calculated using the softmax function: 

 

 (2) 

 

The modification of standard softmax is a temperature softmax, which includes the parameter of 

temperature : 

 

 (3) 

 

The lower the  value, the sharper the attention weights distribution, and the higher the  value, 

the more uniform the distribution. At , the temperature softmax is identical to the standard 

softmax. 
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Gumbel-Softmax. Originally, the Gumbel-Softmax function was proposed by Jang et al.

[140] to provide a continuous approximation to sampling from the categorical distribution in a 

way that is differentiable and suitable for backpropagation algorithm in deep learning: 

 

 (4) 

 

 

Gumbel-Softmax combines the deterministic part of sampling with the stochastic part  by add-

ing Gumbel noise (0, 1), which can be sampled as two logs of some uniform distribution.  

Minimum Entropy Regularizer. In the attention-based mechanism sparse and sharp 

weights distribution has low entropy, which is calculated as: 

 

 (5) 

 

Thus, minimizing the entropy of attention weights during the training of the neural network forces 

the attention mechanism to generate a sharp attention weights distribution. 

Attention weights dropout. In attention weights dropout the weights generated by the 

attention mechanism are sorted and N % (N is set manually) of the instances with the lowest atten-

tion weights are discarded. The attention weights of the remaining instances are recalculated again 

using a softmax so that they sum to 1. As a result, only a fixed number of instances with the highest 

attention weights contribute to the embedding vector. 

Other pooling operators. There are other types (non-attention) of pooling operators that 

can estimate instance weights.  

Gaussian weighting. Another type of pooling based on an additional neural network is 

pooling with Gaussian weighting [95]. Gaussian pooling applies a Gaussian radial basis function 

to calculate instance weights, which is the main difference from attention-based pooling, which 

applies softmax for this purpose. As a result, each weight can independently take values from 0 to 

1. This variant of pooling can be considered soft pooling in comparison with attention-based one. 

Dynamic pooling. Inspired by the Routing Algorithm from Capsule Networks [81], a new 

type of pooling operator was proposed in [80], called dynamic pooling. This pooling operator 

iteratively updates the instance contribution to its bag representation during each feed-forward 

step. Based on these instance contributions, dynamic pooling highlights the key instance and mod-

els the contextual information among instances. The multi-instance neural network with dynamic 
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pooling is optimized with the margin loss in an end-to-end manner. Besides the ability to highlight 

the key instance, the dynamic pooling function makes instance-to-bag relationships interpretable.  

5) Model optimization. The developed 3D modeling protocol is fully automated, but some 

parameters of this protocol (Table 1) can be configured manually for each particular task. Table 1 

lists recommended values for the parameters of the modeling protocol which were obtained based 

on preliminary experiments, except for the 

which has to be specified for each task or kept as default. 

 

Table 1. The main parameters of the developed 3D multi-instance modeling protocol. 

 Parameters Default value 

Conformer generation 

Number of conformers From 1 to 200 (or more) 50 or 100 

Energy window From 10 to 100 kcal/mol 100 kcal/mol 

Pmapper Descriptors 

Number of feature points Atom pairs (2), triplets (3), quadruplets (4)  Quadruplets (4) 

Binning parameter 1 or more (less probable) 1 

Feature composition (input SMARTS) Any combinations [C, N, O, S, P, F, Cl, Br, I] 

MIL algorithm 

Descriptors scaling No or Yes Yes 

Type of algorithm 
Instance-Wrapper, Bag-Wrapper,  
Instance-Net, Bag-Net, BagAttention-Net, 
BagDynamic-Net, etc. 

Instance-Wrapper 

 

6) Software. The developed 3D modeling protocol is based on open-source packages avail-

able using Python 3. The in-house modules of the modeling protocol are also written in Python 3. 

The program code for the developed modeling protocol was organized in a miqsar python package 

(https://github.com/cimm-kzn/3D-MIL-QSAR) (Figure 15).  

MIL Wrappers. The simplest algorithms that convert a multi-instance dataset into a single-

instance dataset. Then any standard ML algorithm is used to build the model (standard neural 

network as default). 

Instance-Wrapper. The algorithm transforms a multi-instance dataset into a single-instance 

dataset by assigning all instances labels of the parent bag. Then any single-instance ML algorithm 

is used to build the model. For a new object, the predictions of each instance are obtained, which 

are then averaged to get the bag prediction. 
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Bag-Wrapper. The algorithm transforms a multi-instance dataset into a single-instance da-

taset by mapping (i.e. averaging) a bag of instances to a single embedding vector. Then any single-

instance ML algorithm is used to build the model. 

Upgraded MIL algorithms. These are multi-instance adaptations of the SVM algorithm 

(MISVM, miSVM, NSK, STK, MissSVM, MICA, sMIL, stMIL, sbMIL) published by Doran and 

Ray [43] (https://github.com/garydoranjr/misvm). 

MI neural networks. Neural networks adapted to MIL framework. 

Instance-Net. Hidden layers of neural networks transform instance features into instance 

representations, from which instance scores are derived, that are aggregated to final bag prediction. 

Bag-Net. Hidden layers of neural networks transform instance features into instance repre-

sentations, that are aggregated by pooling operator to a single embedding vector, which are pro-

cessed to derive bag prediction. 

 

 
Figure 15. Structure of the miqsar package for building 3D models using machine learning algorithms. 

 

AttentionNet. Hidden layers of neural networks transform instance features into instance 

representations, that are aggregated by an attention-based pooling operator (weighted mean) to a 

single embedding vector, that is processed to derive bag prediction. 

GatedAttentionNet. Two types of hidden layers are used to transform instance features into 

instance representations: one with a tanh and another with a sigmoid activation function and the 

resulting instance representations are calculated as element-wise multiplication tanh  sigmoid. 
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Instance representations that are aggregated by an attention-based pooling operator (weighted 

mean) to a single embedding vector, are processed to derive bag prediction. 

TempAttentionNet. The algorithm applies temperature softmax instead of a standard soft-

max function to calculate attention weights in attention-based pooling. The temperature parameter 

is used to adjust the sharpness of attention weights distribution. 

GumbelAttentionNet. The algorithm applies Gumbel softmax instead of a standard softmax 

function to calculate attention weights.  

SelfAttentionNet. Hidden layers of neural networks transform instance features into in-

stance representations, that are aggregated by a self-attention-based pooling operator to a single 

embedding vector, that are processed to derive bag prediction. 

DPNet. Hidden layers of neural networks transform instance features into instance represen-

tations, that are aggregated by a dynamic pooling operator to a single embedding vector, that are 

processed to derive bag prediction. 

GPNet. Hidden layers of neural networks transform instance features into instance repre-

sentations, that are aggregated by the gaussian weighting pooling operator (weighted mean) to a 

single embedding vector, that are processed to derive bag prediction. 
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2.2 Multiple conformer descriptors for QSAR modeling

Multi-instance algorithms can be categorized into instance-based and bag-based algorithms. In-

stance-based algorithms apply a predefined rule to aggregate the predicted instance scores to ob-

tain a single prediction for the entire bag. Bag-based algorithms aggregate instances of the bag into 

a single vector, resulting in single-instance representation. Mapped bag-based algorithms use a 

special mapping function, to transform multi-instance data into single-instance representations of 

bags. Mapping methods can be based on bag statistics, representative instance concatenation, 

counting, or distance [42]. In this study MIL-kmeans algorithm, which is similar to the approach 

published by Zhou and Zhang [104] was developed and validated for the task of classification of 

bioactive compounds. 

In MIL-kmeans algorithm, all conformers of all compounds represented by corresponding 

3D descriptors are clustered using the k-means algorithm. The obtained clusters are used to gen-

erate a new descriptor vector of a given compound (mapping process): the descriptor value was 

equal to 1 if at least one conformer of the molecule fell into the corresponding cluster or 0 other-

wise. As a result er of 

clusters) is generated. Any conventional regression or classification machine learning algorithm 

then can then be applied to build models based on this descriptor matrix. Two approaches were 

considered as alternatives for comparison. MIL-mean algorithm averages the descriptor vectors of 

conformers transforming multi-instance data to single-instance data and applies the Random For-

est algorithm to build a model.  The MIL-max approach also transforms data to single-instance 

representation by a selection of the maximum value of each descriptor over conformers of a par-

ticular compound and then applies the Random Forest algorithm to build a model. 

 3D MIL classification models based on the proposed MIL algorithm were compared with 

single-conformer models and 2D models based on 2D descriptors available in RDKit (Morgan 

fingerprints, pharmacophore fingerprints, and physicochemical descriptors). The comparison was 

performed on three types of datasets extracted from the ChEMBL-23 database: (i) collection of 6 

chiral datasets containing only chiral molecules, (ii) collection of 5 achiral datasets containing only 

achiral molecules, and (i) collection of 162 datasets, including both chiral and achiral molecules. 

Compounds were labeled active if their pKi or pIC50 was 6 for enzyme targets and 7.5 for 

membrane proteins, and inactive otherwise. 
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Conclusion 

In this study, the clustering-based classification algorithm MIL-kmeans was compared with sim-

pler alternative MIL-mean and MIL-max algorithms. The MIL-kmeans and MIL-max algorithms 

perform similarly to or better than the traditional MIL-mean algorithm. MIL-kmeans is a more 

sophisticated method that requires the optimization of additional hyperparameters but can outper-

form the simpler MIL-max algorithm in some cases. Based on the comparison results, MIL-

kmeans was chosen as the main algorithm for analyzing 3D models trained with multiple conform-

ers. 

3D models based on a single conformer were expectedly worse than 2D models. The inclu-

sion of multiple conformers in combination with the MIL-kmeans algorithm significantly in-

creased the accuracy of 3D models in almost all cases. A comparison of 3D multi-conformer mod-

els and traditional 2D models was performed on three collections of datasets: 5 achiral, 6 chiral, 

and 162 mixed datasets. For 4 of the 5 achiral datasets, 2D models outperformed 3D multi-con-

former models based on 3D pharmacophore descriptors. In the case of chiral datasets, 3D multi-

conformer models significantly improved prediction accuracy only for the CHEMBL232 dataset, 

whereas in the other datasets, 2D models based on Morgan fingerprints or physicochemical de-

scriptors from RDKit were the best. For an additional collection of 162 datasets containing both 

achiral and chiral molecules, 2D models outperformed 3D multi-conformer models in most cases. 

Nevertheless, 2D and 3D models are comparable when the dataset size is less than 1000 com-

pounds. In larger datasets (>1000), 2D models are consistently better. 

In general, the developed MIL-kmeans algorithm in combination with 3D pharmacophore 

descriptors can be considered as an alternative approach for modeling the bioactivity of com-

pounds in cases where traditional 2D models fail to accurately classify bioactive compounds. 
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2.3 Modeling of compounds bioactivity with conformation ensembles

A common technique in ligand-based modeling approaches is based on correlating the ligand 

structure with their experimental bioactivity using machine learning methods. The structure of 

ligands can be encoded with 2D or 3D chemical descriptors. 2D descriptors are the more popular 

because they are quick and easy to calculate as well as often predictive models based on 2D de-

scriptors demonstrate good performance. But, in special cases where the bioactivity of the mole-

cule is strongly related to the 3D structure, 3D descriptors are preferable. 

However, the wide application of 3D descriptors is limited by a long-standing problem 

related to the selection of probable bioactive conformers of the molecule. Molecules can be repre-

sented by multiple alternative conformers, but only a single bioactive conformer, which binds to 

the target, is responsible for the observed bioactivity. Bioactive conformers can be determined 

experimentally (e.g. with X-ray or NMR methods), but the amount of experimental data is still 

limited. Therefore, often the lowest-energy conformer, generated using methods of geometry op-

timization, is selected for modeling. However, the independently optimized lowest-energy con-

former can significantly differ from the actual bioactive conformer, which makes it difficult to 

establish a correct relationship between the structure and bioactivity of the compound. 

To overcome this problem, a new 3D modeling approach based on multi-instance machine 

learning (MIL), which does not require the selection of conformers, was developed within this 

research project. In this approach, all available conformers of the molecule are processed simulta-

neously by special MIL algorithms, some of which can also automatically identify bioactive con-

formers. In this study, 3D multi-conformer models were compared with 3D single-conformer mod-

els as well as with traditional 2D models based on popular 2D descriptors. A large-scale compar-

ison analysis was performed on 175 datasets on the bioactivity of compounds extracted from the 

ChEMBL-23 database. In addition, 4 datasets including experimental 3D ligand structures from 

Protein Data Bank (PDB) database were used to test MIL algorithms in the task of identification 

of bioactive conformers. 
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Conclusion 

A new 3D modeling approach based on conformer ensembles was applied to build 3D multi-con-

former models which were compared with 3D single-conformer and 2D models on the collection 

of 175 datasets extracted from the ChEMBL-23 database. In a pairwise comparison, 3D multi-

conformer models almost for all datasets (99%) outperformed 3D single-conformer models. In 

total, 3D multi-conformer model demonstrated the highest performance in 63 % of datasets, while 

the 2D model was the best in 36% of datasets. Nevertheless, there were a few datasets in which 

2D models failed to predict the bioactivity of compounds, while 3D multi-conformer models pro-

vided accurate predictions. This may indicate special cases where 3D structural information is 

crucial for the correct prediction of bioactivity. 

It was demonstrated, that the 3D multi-conformer models, built with the attention-based 

multi-instance neural network, can also identify the bioactive conformers. For 3 of the 4 datasets, 

the 3D multi-conformer model identified more bioactive conformers than the standard docking 

approach. For example, for 15 experimental 3D structures from the CHEMBL2820 dataset, the 

7 molecules, 

which is even worse than the random selection (9 molecules). Meanwhile, the 3D multi-conformer 

model correctly identifies bioactive conformers for 12 molecules. 

The developed 3D modeling approach does not require selection and alignment of con-

formers, which excludes manual configuration of the modeling protocol (but there are still options 

to improve the performance of the 3D models, such as optimization of the number of confor-

mations, hyperparameters of machine learning algorithms, adjustment of descriptors, validation 

strategy, etc.). Concerning future research, there are still many other popular 2D descriptors that 

can be tested in the described benchmark. In the case of the 3D models, apart from the lowest-

energy conformation, there are other strategies (docking or other conformer generators) to select 

a single conformer for modeling. Also, the benchmark analysis was designed to isolate the influ-

ence of the machine learning algorithm (as much as possible), and all 2D and 3D models were 

built using the standard fully-connected neural network or its multi-instance modification. How-

ever, there are many other traditional single-instance algorithms and multi-instance algorithms that 

can be used for building 2D and 3D models. 
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2.4 Modeling of catalysts enantioselectivity with conformation ensembles

Introduction 

Synthesis of enantiopure compounds is a hot topic of modern organic chemistry because highly 

effective drugs can be chiral and enantiomers often have different biological activities.  In 2021, 

B. List and D. McMillan were awarded the Nobel Prize for the development of asymmetric or-

ganocatalysis. In 2000 they demonstrated [105,106] that chiral organic molecules can effectively 

catalyze asymmetric reactions with production enantiopure compounds. Since these seminal pub-

lications, numerous chiral catalyst systems have been designed [141]. The pursuit of perspective 

catalysts is traditionally conducted by iterative modification of the catalyst structure aiming to 

increase the enantioselectivity of the considered reaction. In this process, chemists rely on their 

professional experience, chemical intuition, and available experimental data. This approach, albeit 

often culminates in the desired result, still depends on the professional background of the re-

searcher. Despite significant progress in experimental studies of asymmetric organocatalysis, com-

putational chemistry is an appealing technology aiming to empower experimentalists in the quest 

for developing new catalysts. Theoretical calculations may suggest the structure of promising cat-

alysts before their synthesis, and experimental testing, thus, reducing the time and overheads 

needed to achieve their desired performance.  

A perspective computational approach to the theoretical discovery of new catalysts is Quan-

titative Structure-Selectivity Relationship (QSSR) analysis, which applies machine learning algo-

rithms to find the relation between experimental enantioselectivity and the catalyst structure en-

coded by numerical descriptors. If a correct relationship between structure and selectivity is estab-

lished, the obtained model can be used for the virtual screening of candidate catalysts. The first 

notable example of the application of QSSR in enantioselective catalysis was published by Norrby 

et al. [142], where computational steric molecular descriptors (bond lengths, bond angles, and 

dihedral angles of metal complex) and multivariate regression were used to analyze palladium-

catalyzed allylation.  

Most other early studies on QSSR applied 3D modelling techniques based on the Molecular 

Interaction Fields (MIF) [143] approaches. MIF approaches locate molecule in the 3D grid and 

compute interaction energies between molecule and probe atoms/charges fixed on the grid around 

the molecule. The most popular MIF-based approach is a Comparative Molecular Field Analysis 

(CoMFA), in which 3D molecular structures (one conformer per molecule) are aligned and then 

placed in a 3D grid where steric and electrostatic energies with a probe are calculated in the grid 

nodes. Obtained steric and electrostatic descriptors are then correlated with experimental activity. 
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In 2003 Lipkowitz et al. [108] demonstrated the first application of CoMFA to the prediction of 

catalyst enantioselectivity in Diels-Alder reactions. Kozlowski et al. [109] described a QSSR ap-

proach for aldehyde alkylation with aminoalkoxide zinc catalysts, where semi-empirical methods 

(PM3) were used to obtain reaction transition structures, which then were aligned and processed 

in the calculation of interaction energies with 2s electron probe grid points.  

In 2004 Melville et al. [111] published a 3D-QSSR approach based on the classic CoMFA 

for the glycine imine alkylation with quaternary ammonium ion catalysts in asymmetric phase-

transfer catalysis (APTC). They validated the proposed approach on a library of 88 cinchona alka-

loid-based catalysts and obtained accurate predictions of catalyst enantioselectivity on an external 

test set, which contained catalysts with a new substituent not occurring in the training set. Consid-

ering the same reaction, later in 2005 Melville and coworkers [144], focused on the conformation 

diversity of catalysts and applied 4D-QSAR to model the enantioselectivity of biphenyl catalysts, 

thereby improving the accuracy of predictions in comparison with the standard 3D-QSSR model. 

In the same paper, they proposed an advanced 3.5D-QSSR approach with Boltzmann-weighting 

of selected catalyst conformers and obtained enantioselectivity predictions even more accurately 

than in 4D-QSSR. Their results demonstrated the importance of molecular flexibility in enantiose-

lectivity modelling, which was addressed in later studies [110,145]. In 2011 the asymmetric gly-

cine imine alkylation catalyzed with a pyrrolizidine-based system was analyzed by Denmark group 

[146] using CoMFA-based approach. To account for conformation diversity, they generated five 

libraries with different combinations of scaffold conformers. This approach generates accurate 

predictions if a proper conformer library is selected. 

The development of various methods and approaches to QSSR analysis in asymmetric syn-

thesis culminated in the general chemoinformatics-based approach published by Denmark

[110,145] in 2019. In this work, they explicitly state the necessity of incorporating conformation 

diversity into the modelling process and propose novel 3D Average Steric Occupancy (ASO) de-

scriptors accumulating steric information from multiple catalyst conformers. They tested their ap-

proach to predicting enantioselectivity in the reaction of asymmetric addition of thiols to imines 

catalyzed by phosphoric acids and demonstrated that multiple conformer descriptors outperform 

single conformer variants. 

Besides the selection of relevant conformers, the other important limitation of MIF ap-

proaches is conformers alignment. If analyzed molecules share a common scaffold, conformers 

alignment is a trivial process. Otherwise, if the molecules have different scaffolds, conformers 

alignment becomes problematic. This issue initiated the development of alignment-free 3D de-

scriptors that are invariant to the position or orientation of the molecule in space. The first example 
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of the use of MIF-based alignment-independent descriptors in asymmetric catalysis was the appli-

cation of GRid Independent Descriptors (GRIND)[147] demonstrated in 2005 by Sciabola and 

Morao [148] for examples of asymmetric reactions previously studied by Lipkowitz et al. [108], 

Kozlowski et al. [109] and Damen et al. [149]. GRIND uses MIF-based approaches to compute 

interaction fields that are encoded by alignment-independent variables with autocorrelation trans-

form. In general, the predictive models generated with GRIND show comparable results to MIF 

alignment-dependent approaches [148]. Also, GRIND models are still interpretable, contrary to 

other models based on alignment-independent 3D descriptors, which apparently for this reason 

have not been widely used in the 3D-QSSR analysis. Other details on the approaches and de-

scriptors used in QSSR can be found in the comprehensive review of Zahrt et al. [150] 

Recently Asahara and Miyao [112] compared different 2D (ECFP6 and Mol2vec) and 3D 

descriptors (Dragon and MOE) to model the enantioselectivity of chiral acid catalysts. 

The 3D descriptors were generated from the most stable conformers of reactants, products, and 

catalysts obtained with the force-field approach. As a result, the authors concluded that ECFP6 

descriptors are found to be the best representation. 

The above studies revealed three main drawbacks of existing 3D-QSSR approaches to the 

modelling of catalyst enantioselectivity: (i) selection of catalyst conformers, (ii) their alignment, 

and (iii) relevance of 3D descriptors with respect to the enantioselectivity problem. Inheriting pre-

vious conceptual progress in computational catalyst design, we have suggested a new protocol for 

the building of predictive models for catalyst enantioselectivity. In our approach, the catalysts are 

represented by an ensemble of conformers, encoded by new alignment-independent pmapper 3D 

descriptors which were successfully used in the modeling of ligands activity against 175 biological 

targets [12,14]. In order to consider an ensemble of catalyst conformers instead of a single selected 

conformer, the models were built using Multi-Instance machine Learning (MIL) algorithms. In the 

MIL approach, a molecule (catalyst) is presented by a bag of instances (set of conformers), and a 

label (experimental enantioselectivity) is associated with the bag (catalyst), but not with individual 

instances (conformers).  In contrast to conventional single-instance learning where the object is 

represented by a single vector of descriptors, MIL determines a correlation between the bag de-

scriptors and the labels. Thus, the application of MIL algorithms solves the problem of conformer 

selection and allows using all the generated catalyst conformers for the model building. 

In this study, we demonstrate that the MIL-based 3D modelling approach can successfully 

be used to predict the enantioselectivity of homogeneous and phase-transfer reactions catalyzed 

by structurally different catalyst families. In both cases, the obtained models outperform traditional 

2D models and previously reported 3D state-of-the-art approaches. 
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Datasets 

Over the past two decades, numerous chiral organic catalysts have been designed for different 

types of reactions. Thus, -Binaphthol) derivatives are popular catalysts in asymmetric 

synthesis because of their backbone flexibility, which enables the proper orientation of the reagents 

in 3D space. The Cinchona quaternary ammonium salts are extensively used in asymmetric phase-

transfer catalysis (APTC) due to their capability to dissolve simultaneously in aqueous and organic 

liquids.  

The catalyst enantioselectivity is often provided in enantiomeric excess (ee %) of the reac-

tion which is defined as the difference between the amount of each enantiomer: 

 

 (6) 

 

The formula for calculating ee % depends on the type of the experimental datasets published in 

source papers. In this study, the ee % was converted to G (kcal/mol) - a difference in free energy 

between competing reaction transition states leading to different enantiomers: 

 

 (7) 

 

To test our 3D modelling protocol, we selected two datasets on the chiral catalyst enantiose-

lectivity - homogenous asymmetric nucleophilic addition and phase-transfer alkylation - used in 

previous modeling studies [110,111]. The phosphoric acid catalysts (PAC) dataset reported by 

Zahrt et al. [110] contains the enantioselectivity values for 43 catalysts used in 25 reactions of 

asymmetric addition of imine to thiol (Figure 16a) resulting in 43  25 = 1075 data points. Re-

ported ee % (in favor of R enantiomer) ranged from -34 to 99 and for modelling were converted 

to G (kcal/mol). A detailed description of the catalyst and reactant structures can be found in 

the original paper [110].  

This dataset was divided into training and several test sets, as suggested by Zahrt et al. [110] 

The training set consisted of 24 catalysts combined with 16 reactants resulting in 

training reactions. Then, three test sets simulating different scenarios of the potential application 

of the models in real campaigns of catalyst design were prepared. The reaction-out test set con-

taining 216 data points (24 training catalysts combined with 9 new reactions) is used to predict the 
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enantioselectivity of new reactions with known (presented in the training set) catalysts. The cata-

lyst-out test set containing 304 data points (19 new catalysts combined with 16 training reactions) 

examines the potential of the model to predict the enantioselectivity of known reactions with new 

catalysts. The both-out test set represents the most challenging scenario where the model is used 

to predict the enantioselectivity of new reactants with new catalysts. This test set consists of 171 

data points corresponding to combinations of 19 test catalysts and 9 test reactions. 

Asymmetric phase transfer catalysis (APTC) enables reactions between reactants located in 

two immiscible phases with chiral catalysts to produce enantiopure substances.  A classic example 

of APTC is the asymmetric synthesis of -amino acids catalyzed by quaternary ammonium salts, 

particularly the alkylation of glycine-derived Schiff bases (R1R2C=NR3) (Figure 16b).  

We considered an example of asymmetric alkylation of -amino acid derivatives catalyzed 

by cinchona alkaloid-based quaternary ammonium salts reported by Melville et al. [111] A cata-

lysts library was generated by a variation of 13 substituents resulting in 88 catalysts. One substit-

uent was presented only in a test set of 18 catalysts while the remaining 12 substituents were used 

to generate a training set of 70 catalysts. The reported ee ranged from 16 to 93 % (in favor of the 

S enantiomer). 

 

 

 
Figure 16.  Examples of published reactions (datasets) considered for modeling in this study: (a) asymmetric addition 

of thiols to imines catalyzed by chiral phosphoric acid catalysts (PAC dataset) and (b) asymmetric alkylation of gly-

cine-derived Schiff bases catalyzed by cinchona alkaloid-based ammonium salts (APTC dataset). 
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Computational details 

Generation of 3D models 

Reactant and catalyst descriptors 

Catalyst conformers generation. Each catalyst was represented by an ensemble of conformers gen-

erated using the distance geometry algorithm implemented in the RDKit package [129]. If the 

RDKit algorithm failed to generate the conformers, we used a systematic conformer generator 

from the Open Babel package [130] and recalculated the full energies of conformers using RDKit. 

For each catalyst, we generated up to 50 conformers within an energy window of 50 kcal/mol.  

 

 
Figure 17. (a) Preparation of pmapper 3D descriptors for a given catalyst conformer: (1) given 2D catalyst structure; 

(2) generation of 3D catalyst conformer; (3) generation of a 3D fully connected graph of atoms (for demonstration, 

the graph of four atoms is chosen); (4) enumeration of all atom triplets; (5) counting of enumerated atom triplets in 

given conformer; (b) addition of thiols to imines and related Condensed Graph of Reaction (CGR). A CGR contains 

one created bond between the atoms S3 and C2 and one double bond transformed into a single one between the atoms 

N1 and C2. 

 

Catalyst 3D descriptors. The generated catalyst conformers were encoded by pmapper de-

scriptors [135], representing 3D pharmacophore quadruplets [12,14]. The pharmacophore labels 

(H-donor, H-acceptor, hydrophobic, positive or negative charges) are assigned to atoms, functional 

groups, or rings. Rings are characterized by either hydrophobic or aromatic features. The applica-

tion of pharmacophore quadruplets enables encoding the stereoconfiguration of a molecule, which 
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guarantees that two enantiomers of a molecule have two different descriptor vectors. In our previ-

ous paper [15], we demonstrated that a combination of 3D pharmacophore quadruplets and MIL 

generates accurate models for the PAC dataset. However, in this work, instead of pharmacophore 

features, we used quadruplets and triplets of individual atoms (and centers of 5- and 6-membered 

aromatic rings) - atom quadruplets and atom triplets. Preliminary experiments (which will be dis-

cussed later) revealed that atom triplets significantly reduce the number of descriptors, and demon-

strate even better performance than atom quadruplets. However, if a dataset contains catalysts in 

both R and S configurations - the application of atom quadruplets is mandatory to distinguish the 

two enantiomers. The atom triplets are applicable in this study because all catalysts in the consid-

ered datasets have the same stereoconfiguration. 

The atom triplets are specified by (1) the list of the individual atoms (C, N, O, S, P, F, Cl, 

Br, I) or 5-membered and 6-membered aromatic ring and (2) the distances between atoms and/or 

center of rings in a triplet. The list of encoded atoms can be customized depending on the task. To 

enable fuzzy matching of atom triplets and identify similar ones, the distances between atoms are 

binned with the step of Figure 17a). Then the number of occurrences of each unique atom 

triplet is counted for each conformer, resulting in an integer descriptor matrix (Figure 17a).  

 

 
Figure 18. Preparation of descriptors encoding a combination of reactants and corresponding catalysts in a 3D mod-

eling approach. A reactant transformation is encoded by m CGR/ISIDA fragment descriptors. A catalyst is represented 

by its N conformers, each encoded by n of 3D pmapper descriptors. Concatenation of m 2D reactant descriptors and 

n 3D catalyst descriptors results in the set of vectors of (m + n) size. The Python 3 libraries used in the modeling 

workflow are indicated in bold near the arrows. 
 

Reactant 2D descriptors calculation. Each structural transformation of reactants is trans-

formed into a Condensed Graph of Reaction (CGR)[151] with a CGRtools package [152]. CGR 
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considers a chemical reaction as one single pseudo molecule (Figure 17b) and contains conven-

tional chemical bonds (e.g. single, double, triple, aromatic, etc.) and so-

describing chemical transformations, i.e. breaking or forming a bond or changing bond order. Ob-

tained CGRs then are processed with In Silico Design and Data Analysis (ISIDA) tool to calculate 

2D fragment descriptors [153]. ISIDA fragment descriptors count the occurrence of particular sub-

graphs (structure fragments) in given CGRs. ISIDA provides several strategies for molecule frag-

mentation. In this study, we used atom-centered subgraphs (atoms with first, second, etc. coordi-

nation spheres) where the radius varied from 2 to 5 atoms. 

Reaction profile descriptors. Vectors of 2D fragment descriptors for reactions and 3D atom 

triplets for catalysts were then concatenated to form reaction profile descriptor vectors (Figure 18). 

If the dataset contained a single reactant transformation, there is no concatenation of catalyst and 

reactant descriptors. Figure 18 shows the general scheme of our 3D modelling protocol. 

 

Multi-instance learning algorithms 

For the MIL algorithms benchmark, we used a PAC dataset, which was divided into 25 subsets 

according to the number of reactant transformations. Each subset contained 43 catalysts with ex-

perimental G measured in a given reactant transformation. Middle Absolute Error (MAE) of 

G predictions was evaluated in a 5-fold cross-validation repeated 5 times (5 5-CV). The com-

parison results show that the Instance-Wrapper algorithm considerably outperforms other algo-

rithms, including the most complex Bag-AttentionNet one. 

The basic machine learning algorithm in Instance-Wrapper was a fully connected neural 

network with three hidden layers of 256, 128, and 64 neurons and a ReLU activation function. The 

optimized hyperparameters were weight decay (0.0001, 0.001, 0.01, 0.1) and learning rate (0.001 

or 0.01). The maximum number of learning epochs was 1000. 

 

Generation of 2D models 

As an alternative to our 3D approach, we also considered the 2D modeling approach where the 

reactants and catalyst structures are encoded by different fingerprint and fragment 2D descriptors. 

The following fingerprints were generated using the RDKit library: Atom-Pairs (1024 bits) [154],  

Avalon (1024 bits)[155], and Morgan fingerprints of radius 2 (1024 bits) [156]. Fragment ISIDA 

[153] and CircuS [157] (Circular Substructures) descriptors can be calculated with different frag-

mentation strategies. For ISIDA, both atom-centered and linear fragments were used. CircuS are 
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similar to ISIDA atom-centered fragments, but explicitly consider encountered branching or cy-

clical structures, which makes them more efficient for catalyst structures enriched with cyclical 

groups and reduces the noise in the training data. 

For a PAC dataset containing multiple reactant transformations, there were two encoding 

strategies: (a) reactant transformations were converted to CGR and then encoded by ISIDA or 

CircuS (fingerprints tools are unable to process CGR) fragment descriptors (Imine/Thiol CGR, 

Table 2) or (b) imine and thiol were encoded by fingerprints or fragment descriptors and then 

concatenated to a single descriptor vector (Imine/Thiol concatenation, Table 2). Then the resulting 

reactant transformation vectors were concatenated with fingerprint or fragment descriptor vectors 

of the catalysts. 

Fragment-based descriptors can be calculated using different strategies and fragment 

lengths, generating multiple sets of descriptors. In order not to be biased towards specific de-

scriptor sets, we applied a consensus method to calculate the final predictions. First, for each de-

scriptor type (ISIDA, CircuS, or fingerprints), we selected models with R2
Train > 0.7 to discard 

descriptor sets that poorly describe the training set. Then the predictions of the filtered models for 

the test set were averaged to obtain final consensus predictions of enantioselectivity. For model 

training, the same fully connected neural network was used as in the Instance-Wrapper algorithm 

in multi-instance models.   

The following metrics were used to assess the performance of the models: Root-Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), determination coefficient (R2), Spearman 

correlation coefficient measuring the correlation between predicted and experimental catalyst 

ranks (ranking accuracy, RA). 

 

Results and Discussion 

Using the described datasets and modelling protocols, various 2D and 3D models for enantiose-

lectivity prediction were generated. The 3D single-conformer model was built on the lowest-en-

ergy catalyst conformers, while 3D multi-conformer model included all the generated conformers.  

 

Benchmarking of 2D/3D descriptors and MIL algorithms 

We were interested in how effectively existing 2D and 3D descriptors encode catalyst structure 

isolating the influence of reactants transformation descriptors. For the comparison, we used the 

PAC dataset divided into 25 subsets. Each subset included a particular chemical transformation in 

presence of one of 43 catalysts. We choose ISIDA [153] and CircuS [157] fragment descriptors, 
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2D fingerprints, and 3D descriptors available in RDKit, as well as our 3D atom triplets and quad-

ruplets descriptors. A set of 3D RDKit descriptors included Radial Distribution Function (RDF) 

descriptors, Molecule Representation of Structure-based on Electron diffraction (MoRSE) de-

scriptors, Weighted Holistic Invariant Molecular (WHIM) descriptors, GETAWAY and Auto-

Corr3D descriptors. We compared 3D descriptors in a multi-instance setting, i.e., the considered 

pmapper and RDKit 3D descriptors were generated for multiple conformers. The Instance-Wrap-

per MIL algorithm was used as a machine-learning method to build 3D models. In the case of 2D 

descriptors, the MIL bag contained only one instance. 

The performance of 2D and 3D models (MAE of G predictions, kcal/mol) was evaluated 

in a 5-fold cross-validation repeated 5 times (5 5-CV). As a result, 25 MAE values of predicted 

G for 43 catalysts were collected for each type of descriptor for each reactant transformation 

(Figure 19). 

 

 
Figure 19. Comparison of different classes of 2D and 3D descriptors available online. Each catalyst was encoded by 

2D fingerprint or fragment descriptors, 3D RDKit descriptors, or pmapper 3D descriptors. 3D descriptors were cal-

culated for multiple catalyst conformers (i.e. there is a set of 3D multi-conformer models). Each box contains a cross-

validated MAE of G predictions for 43 catalysts obtained from 25 models (25 reactant transformations). The red 

horizontal line shows the accuracy of the default model, which constantly predicts G as the average experimental 

G across all catalysts.  

 

The comparison results show (Figure 19) that only 2D fingerprints and fragment descriptors, 

as well as pmapper 3D quadruplets and triplets descriptors, generate predictive models (better than 

the baseline null model - the model that predicts enantioselectivity always as an average value of 
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the training experimental enantioselectivities - with MAE = 0.47 kcal/mol) for all 25 reactant 

transformations, while 3D RDKit descriptors fail to predict the catalyst enantioselectivity for the 

most reactant transformations (Figure 19). 3D atom triplets and quadruplets demonstrate similar 

performance (median MAECV = 0.27 vs. MAECV = 0.31 kcal/mol), but the use of atom triplets 

radically reduces the number of catalyst descriptors compared to atom quadruplets from 42824 to 

2886 descriptors.  

Generally, pmapper 3D descriptors generated from atom triplets perform slightly better (me-

dian MAECV = 0.27 kcal/mol) than all other 2D descriptors (median MAECV = 0.30-0.35 kcal/mol). 

Thus, 3D RDKit descriptors were found unsuitable for modelling the catalyst enantioselec-

tivity and are inferior even to 2D descriptors. The proposed 3D atom triplets demonstrated the best 

performance. 

Comparison of multi-instance learning algorithms. We compared the five MIL algo-

rithms[12]. The comparison was performed using the same setting as the benchmark of descriptors 

mentioned in Figure 19. The -CV) are as fol-

lows: Instance-Wrapper (0.28 kcal/mol), Bag-Wrapper (0.31 kcal/mol), Instance-Net (0.31 

kcal/mol), Bag-Net (0.32 kcal/mol) and BagAttention-Net (0.35 kcal/mol). Based on the obtained 

results, Instance-Wrapper was chosen as the main algorithm for further experiments. 

 

Asymmetric addition of thiols to imines 

We compared the performance of our 2D and 3D models with the previously reported results. 

Sandfort et al. [113] published a structure-based machine learning platform, where reactants and 

catalysts were encoded by multiple ngerprint features (MFFs) resulting from the concatenation 

of 24 fingerprints sets calculated with RDKit. Zahrt's conformer-dependent 3D approach [110] is 

based on the ASO descriptors, accumulating steric information from an ensemble of catalyst con-

formers. Asahara and Miyao [112] benchmarked 2D (ECFP6 and Mol2vec) and 3D (Dragon and 

MOE) single-conformer descriptors. 

Our models. In the reaction-out test set, all generated 2D and 3D models demonstrated good 

results. The 2D models accurately predict enantioselectivity with MAE = 0.14-0.18 kcal/mol. The 

3D single-conformer model also provides accurate predictions with MAE = 0.21 kcal/mol, while 

the inclusion of multiple conformers in the 3D multi-conformer model considerably increases the 

prediction accuracy up to MAE = 0.13 kcal/mol. In contrast to the reaction-out test set, in the 

catalyst-out test set the 3D multi-conformer model performs significantly better (MAE = 0.22 

kcal/mol) than the 3D single-conformer model (0.38 kcal/mol) and 2D models (0.26-0.36 

kcal/mol). Similar to the catalyst-out test set, in the both-out test set the 3D multi-conformer model 
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is significantly more accurate (MAE = 0.21 kcal/mol) than the 3D single-conformer model (0.48 

kcal/mol) and 2D models (0.28-0.34 kcal/mol).  

 

 

 
Figure 20. Observed and predicted ee % for 18 test catalysts from the APTC dataset comparing the performance of 

the 3D-CoMFA model by Melville et al [111] with: ( ). 2D model (ISIDA fragments), (b) model (CircuS fragments), 

and ( ) 3D multi-conformer model (atom triplets). 

 

Alternative approaches. The 3D single-conformer model based on 3D atom triplets (MAE 

 kcal/mol) and MOE (0.55 

kcal/mol) single-conformer descriptors displayed low performance on the both-out test set, which 

Table 2. the phos-
phoric acid catalysts (PAC) dataset. a 2D modelling approach published by Sandfort et al. [113], b 2D and 3D models 
published by Asahara and Miyao [112], and c 3D conformer-dependent approach published by Zahrt et al. [110]. 
 
Reactants  
representation 

Model (descriptors) Reaction-out Catalyst-out Both-out 

Imine/Thiol  
concatenation 

2D model (Morgan fingerprints) 0.18 0.29 0.33 

2D model (Avalon fingerprints) 0.15 0.26 0.28 

2D model (Atom-Pairs fingerprints) 0.16 0.36 0.33 

2D model (ISIDA fragments) 0.14 0.27 0.28 

2D model (CircuS fragments) 0.14 0.31 0.33 

Imine/Thiol  
CGR 

2D model (ISIDA fragments) 0.15 0.27 0.30 

2D model (CircuS fragments) 0.14 0.32 0.34 

3D single-conformer model (Atom triplets) 0.21 0.38 0.48 

3D multi-conformer model (Atom triplets) 0.13 0.22 0.21 

Alternative  
approaches 

a 0.14 0.25 0.28 

2D model (Mol2vec) b 0.13 0.34 0.40 

2D model (ECFP6) b 0.14 0.22 0.21 

3D single-conformer model (Dragon) b 0.14 0.42 0.47 

3D single-conformer model (MOE) b 0.15 0.48 0.55 
-dependent model 

(ASO descriptors) c 
0.16 0.21 0.24 
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demonstrates that a single conformer was not sufficient to generate accurate models irrespective 

of the type of 3D descriptors (Table 2). In contrast, 3D multi-conformer model based on atom 

triplets was significantly more accurate (MAE = 0.21 kcal/mol) and perform slightly better than 

3D conformer-dependent approach reported by Zahrt et al [110] (0.24 kcal/mol) (Table 2). Inter-

estingly that Miyao's 2D model based on ECFP6 descriptors achieved high accuracy (MAE = 0.21 

kcal/mol) similar to our 3D multi-conformer model. 

To summarize, for the case of asymmetric addition of thiols to imines, the 3D multi-con-

former model outperforms the 3D single-conformer models, especially in the prediction of enan-

tioselectivity for new test catalysts, which proves the importance of accounting for conformational 

flexibility. We suppose that the difference in the performance of 3D single-conformer and 3D 

multi-conformer models will increase with the flexibility of modeled catalysts. The 3D multi-con-

former model outperforms the 2D models, generated with popular fingerprints and fragment de-

scriptors, which highlights the importance of 3D information in enantioselectivity modelling. 

 

Asymmetric phase transfer catalysis 

The dataset of asymmetric alkylation (APTC dataset) was divided into 70 training and 18 test 

catalysts as described by Melville et al [111]. To build the models, the original enantioselectivities 

were converted to G, then the predictions on the test set were converted to ee % to be compared 

with the predictions of the competing approach. Melville and co-workers proposed a 3D CoMFA-

based approach based on minimal energy catalyst conformers and reported RMSE of ee predic-

tions on 18 test catalysts as 13.4 %. Our 3D single-conformer model performed considerably worse 

(RMSE = 18%). Consideration of the ensemble of conformers in the 3D multi-conformer model 

significantly reduced RMSE to 8.8% (Figure 20). The substantial difference in the performances 

of 3D single-conformer and 3D multi-conformer models (RMSE of 18.0% vs. 8.8%), can be ex-

plained by the high conformation flexibility of the given catalysts  the average number of rotata-

ble bonds in the dataset was 10. The 2D models built on ISIDA and CircuS descriptors demon-

strated poor performance with RMSE of 15.6 and 18.5 %, respectively. This example demon-

strated that our modelling protocol without any modifications or manual adjustment can be applied 

to catalysts with a new scaffold. 

In a computational screening of candidate catalysts, the predictive model should effectively 

identify potential highly selective catalysts, i.e. the model should rank them higher than the other 

candidates. To quantify this characteristic of the model, we also calculated ranking accuracy (RA) 

which is the coefficient of correlation between predicted and experimental catalyst ranks (Spear-

man correlation coefficient). Figure 20 shows that despite large prediction error (RMSE) the 2D 
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models achieve high RA > 0.90, i.e. they well capture the general trend in enantioselectivity vari-

ation (Figure 20). The high absolute accuracy of 3D multi-conformer models in comparison to 

other approaches is achieved by more accurate predictions for low-selective catalysts (Figure 20).  

 

Enantioselectivity prediction beyond the training set 

A new round of catalyst screening is expected to reveal more enantioselective catalysts. In this 

context, it is desirable to prevent under-predictions where the predicted enantioselectivity is sig-

nificantly lower than the actual value. Incorrect behavior of the model in these examples can cause 

underestimation of most perspective catalysts, which may not be sampled for experimental testing 

in the next rounds of screening. Thus, the predictive model should be specially configured to avoid 

under-predictions ( ) of enantioselectivity. To increase the prediction accuracy for 

highly selective catalysts, we propose to train the model with a special quantile loss function: 

 

 (8) 

 

Quantile loss function (3) asymmetrically penalizes over-predictions ( ) and under-

predictions ( ). For  equal to 0.5, under-predictions and over-predictions are penal-

ized equally. The lower the value of , the more under-predictions are penalized compared 

to over-predictions. In this study,  was fixed at 0.1 which means that over-prediction is penalized 

by a factor of 0.1, and under-predictions by a factor of 0.9, and, thus, the model tries to avoid 

under-predictions. 

 

 
Figure 21. Predicted and observed catalyst enantioselectivity ( G, kcal/mol) for (a) 2D model, (b) 3D single-con-

former model, and (c) 3D multi-conformer model. The training set included reactions with ee < 80% and the test set 

with ee >= 80%. 2D and 3D models were trained with quantile loss. 
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To examine the potential of the models to predict enantioselectivity values beyond the train-

ing set, we followed the validation strategy proposed  in their original paper 

[110]. The PAC dataset on 1075 reactions was divided into a training set of reactions with ee below 

80% (718 reactions) and a test set of highly selective reactions with ee above 80% (357 reactions). 

Then we built 2D and 3D models with classic mean squared error loss (MSE) and quantile loss. 

All 2D models (ISIDA, CircuS, and RDKit fingerprints) built with MSE loss fails to predict 

enantioselectivity beyond the training set (R2
Test < 0), while the 3D single-conformer model (R2

Test 

= 0.36) and 3D multi-conformer model (R2
Test = 0.44) performs significantly better. Model training 

with the quantile loss function considerably improved 3D single-conformer (R2
Test = 0.59) and 3D 

multi-conformer models (R2
Test = 0.74). The 2D models built with the quantile loss function are 

still worse than the null model (R2
Test < 0) (Figure 21). 

Thus, the 3D multi-conformer model better predicts catalyst enantioselectivity beyond the 

training set than 2D models. Furthermore, the proposed 3D multi-conformer model trained with 

the quantile loss is better  (MAETest = 0.19 kcal/mol) compared to the results by Zahrt et al. ap-

proach (MAETest = 0.33 kcal/mol) [110]. 

 

Conclusion 

In this study, multi-instance machine learning in combination with pmapper 3D descriptors was 

applied to model and predict the enantioselectivity of chiral catalysts in asymmetric addition of 

thiols to imines (BINOL-derived catalysts) and alkylation of glycine imine (cinchona alkaloid-

based ammonium salts). The catalysts were represented either by the lowest-energy conformer 

(3D single-conformer model) or by multiple conformers (3D multi-conformer model). The catalyst 

conformers were encoded by pmapper 3D descriptors, which in this study are configured to count 

particular atom triplets and do not require alignment of the conformers. The developed 3D models 

were compared with traditional 2D models built with popular fingerprint and fragment descriptors 

and the state-of-the-art 3D approaches published in chemoinformatics papers. 

In general, the inclusion of multiple catalyst conformers in the modeling process signifi-

cantly increases the accuracy of enantioselectivity predictions in comparison with single-con-

former modeling. The comparison analysis showed that the 3D atom triplets outperform other 

RDKit alignment-independent descriptors and 2D RDKit fingerprints, ISIDA, and CircuS frag-

ment descriptors. The generated 3D multi-conformer models perform the same or better than pub-

lished state-of-the-art 3D approaches. This work demonstrates that the developed 3D modelling 

protocol does not require the selection and alignment of conformers and applies to two different 
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catalyst systems (BINOL derivatives and ammonium salts), showing the best performance. The

proposed pmapper 3D descriptors are customizable, i.e. one can manually specify the atom groups 

or relevant 3D patterns that are responsible for observed enantioselectivity. 
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Part 3. Modeling reaction characteristics with conjugated machine
learning 

Conjugated machine learning is a new concept in reaction QSPR modeling that integrates funda-

mental thermodynamic and kinetic laws with machine learning algorithms. Conjugated models 

can be built using ridge regression or artificial neural networks. This part demonstrates how fun-

damental chemical equations can be integrated with a learning algorithm to model the character-

istics of binary tautomerism reactions, cycloaddition reactions, and competing E2/SN2 reactions. 

 

3.1 Methodological developments 

1) Design of conjugated learning algorithms. Fundamental thermodynamic and kinetic equa-

tions can be integrated with machine learning algorithms by designing special loss functions. This 

process can be divided into several steps: 

1. Design an equation-based loss function in which the main characteristic A is calculated 

using an integrated equation and the related characteristics B and C. 

Define equation F relating main characteristic A with characteristics B and C: 

 

 (9) 

 

Design equation-based quadratic loss function for A: 

 

 (10) 

 (11) 

 

2. Combine equation-based loss function with individual loss functions of related charac-

teristics B and C. 

Individual B model: 

 

 (12) 

 

Individual C model: 

 

 (13) 
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Conjugated model: 

 

 

 
(14) 

 

where , , and  are trade-off coefficients that control the contribution of each loss function to 

the conjugated loss function. 

3) Estimate regression weights (parameters)  and  of the conjugated model: 

 

 (15) 

 

Regression weights can be estimated either analytically by calculation of the analytic derivative of 

E and setting it equal to 0, or the solution can be found numerically by gradient decent approach. 

The obtained optimal parameters  and  can be used to generate predictions that satisfy the 

equation embedded in the conjugated model. 

2) Contribution coefficients optimization. The conjugated machine learning algorithms 

(ridge regression and neural networks) are based on specially designed multi-objective loss func-

tions. In the optimization process, multiple objectives optimization is balanced by adjusting the 

contribution coefficients (trade-off coefficients) in equation (14). In this research, several ap-

proaches were applied to adjust the contribution coefficients. 

Grid search. Grid search is a standard method for the optimization of hyperparameters of 

machine learning methods. In grid search, all available combinations of hyperparameters are tested 

and the best combination is selected according to a prediction accuracy metric. Grid search can be 

adapted to find optimal contribution coefficients, but this method can be computationally expen-

sive because of the large number of tested combinations. In this study, the grid search method was 

used to build conjugated models for predicting the tautomeric constant in Section 3.2, where the 

conjugated model had a single contribution coefficient 

grid search technique. This type of grid search is based on several consecutive sessions of scanning 

possible values of the optimized parameter (Figure 22).  
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Figure 22. An example of optimization of a single continuous parameter using nested grid search. The range of pos-

sible parameter values is iteratively specified until the optimal value is found. 

 

The conjugated models for the tautomeric constant have a single contribution coefficient 

, which ranged from 0 to 1. It was observed that the possible optimal value of  was between 0.9 

and 1 and to precise it, new values ([0.95, 0.975, 0.9875, 0.99375, 0.996875, 0.9984375, 

0.99921875, 0.999609375, 0.9998046875, 0.99990234375]) were scanned, calculated using the 

following equation , where  is  value and  ranged from 1 to 11. 

Thus, the grid search is a suitable method for optimizing the small number (1 or 2) of contribution 

coefficients. 

Bayesian optimization. A bayesian optimization is an efficient approach for optimizing the 

objective function when traditional optimization methods such as gradient descent are not appli-

cable, due to time and computational cost. The idea of bayesian optimization is to build a proba-

bility model of the objective function and use it to select the most promising hyperparameters to 

evaluate in the true objective function. Optimization of hyperparameters of machine learning al-

gorithms is a suitable task for bayesian optimization approaches because to test each combination 

of hyperparameters one needs to train and validate the model, which can be a time-consuming 

process, especially for deep learning algorithms. In addition, hyperparameters can be real-valued, 

discrete, or conditional variables and the simultaneous optimization of which is impossible in tra-

ditional optimization methods but is feasible in bayesian optimization. Hyperopt [158] is a Python 

package for the bayesian optimization of ML hyperparameters, based on the Tree-of-Parzen-Esti-

mators (TPE) algorithm [159]. 

In this research, hyperopt was used to optimize the hyperparameters of the ridge regression 

conjugated models for predicting Arrhenius equation parameters. The values of contribution co-

efficients were sampled from a continuous space defined between 0 to 1, and the regularization 
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coefficients took discrete values between 10-10 to 105. The hyperopt algorithm adjusts the hyperpa-

rameters by maximizing the validation accuracy of the model. 

Genetic algorithm. Evolutionary algorithms are stochastic search methods that seek to im-

prove search performance by exploring a set of promising areas in the solution space [160]. They 

are based on the mechanisms of evolution of biological organisms. A genetic algorithm is a type 

of evolutionary computation. A distinctive feature of the genetic algorithm is the emphasis on the 

use of the crossover operator, which operates by recombining candidate solutions. Genetic algo-

rithm manipulates several solutions simultaneously, which reduces the probability of getting 

trapped in local optima compared with optimization methods that proceed from point to point in 

the solution space. Also, genetic algorithms can work with almost any type of optimized function, 

because it does not require the differentiability of the function. In this research project, the basic 

implementation of the genetic algorithm (https://github.com/dzankov/GenOpt) was adapted to op-

timize the hyperparameters of machine learning algorithms, including the contribution coefficients 

in the conjugated models. Preliminary experiments indicated that the developed genetic algorithm 

approach for optimization of hyperparameters of machine learning algorithms performs similarly 

to the hyperopt approach. 

Optimization of contribution coefficients with gradient decent. Contribution coeffi-

cients in conjugated neural network algorithms can be automatically adjusted during neural net-

work training using gradient descent. In this approach, contribution coefficients are not fixed be-

fore training the neural network as hyperparameters but are internal global parameters of the neural 

network, which are optimized along with neural network weights. As a result, a single training of 

the conjugated neural network is enough to obtain optimal values of the contribution coefficients. 

3) Descriptors. Each reaction was transformed into the Condensed Graph of Reaction 

(CGR) [153] generated with the CGRtools module [152]. CGR is derived from the superposition 

of products and reactants and contains both conventional chemical bonds (single, double, triple, 

aromatic, etc.) and so- ions, i.e. breaking 

or forming a bond or changing bond order. Generated CGRs were processed by the ISIDA tool 

[161,162] to calculate fragment descriptors by counting the occurrence of particular subgraphs 

(structural fragments) of different topologies and sizes.  

The vector of fragment descriptors for each reaction was concatenated with the vector of 

solvent descriptors, which included 14 descriptors, describing such properties of solvent as polar-

ity, polarizability, Catalan constants SPP, SA, SB, Kamlet-Taft constants , , *, dielectric con-

stants, function of the refractive index. These descriptors were successfully applied in previous 

publications [163 166].  
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4) Software. The conjugated ridge regression and neural network algorithms are imple-

mented using the PyTorch package [167]. Ridge regression algorithms are implemented using 

PyTorch tensor objects, which perform matrix calculations using the graphics processing unit 

(GPU). Neural network algorithms were implemented using standard PyTorch modules. 

CGR/ISIDA descriptors were generated using CGRTools [152] and CIMTools 

(https://github.com/cimm-kzn/CIMtools) packages. The open-source code of the implemented 

conjugated ridge regression and neural networks algorithms is available at 

(https://github.com/dzankov/CoLearn). 
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3.2 Modeling of tautomeric constant

If two tautomeric forms share a common anion, the tautomeric equilibrium constant can be ex-

pressed as the difference between the acidity constants of the corresponding tautomers. The tauto-

meric equation is used in calculating the tautomeric equilibrium constant in commercially availa-

ble tools for predicting the population of tautomeric forms in water [168,169] (equation-based 

models). But, in previous works [170,171] it was demonstrated that direct prediction of the tauto-

meric equilibrium constants often is more accurate. The poor performance of equation-based mod-

els in predicting the tautomeric equilibrium constant stems from the fact that it is extremely diffi-

cult to measure the acidity of all tautomeric forms which leads to the lack of training data on minor 

tautomers.  

In this study, a tautomeric equation relating the tautomeric equilibrium constant and the 

acidity of the corresponding tautomers was integrated with ridge regression and neural network 

algorithms. Three models for predicting the  tautomeric constant was compared: 

1)  The individual  model, which is trained with the  data on 639 tautomeric 

reactions. The individual  the model directly predicts the  for a given reaction. 

2) The equation-based model, which calculates the prediction of  using the tauto-

meric equation and the  of tautomers predicted by the individual  model trained with  

data on 2371 organic compounds. 

3) The conjugated model, which is trained on both  and  datasets.  
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Conclusion 

In this study, a tautomeric equation relating the tautomeric equilibrium constant and the acidity of 

the corresponding tautomers was integrated with ridge regression and neural network algorithms. 

Three main approaches for predicting the tautomeric constant were compared: the individual 

model, the equation-based model, and the conjugated model. The individual  the model 

predicts the tautomeric constant more accurately than the equation-based model, which calculates 

the tautomeric constant based on the predicted acidities of tautomers and the tautomeric equation. 

The reason for the poor performance of the equation-based model is that the  predictions of 

minor tautomers (e.g., enols) have a high prediction error since they are not represented in the 

training set. However, the conjugated model accurately predicts the acidity of the minor forms 

and, consequently, the tautomeric constant. 

Conjugated models can be built using ridge regression and neural network algorithms. The 

current architecture of the conjugated ridge regression ignores the conditions (solvent, tempera-

ture) of tautomerism reactions, which decreases the predictions accuracy of . On the con-

trary, the conjugated model based on neural networks takes into account these conditions, which 

leads to slightly higher accuracy in predicting . In addition, in the case of large datasets, 

matrix calculations in ridge regression can be significantly slower, as well as require more memory 

resources. In this case, neural networks can be trained on batches of data, which makes it possible 

to use them to build conjugated models on large datasets. 
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3.3 Modeling of Arrhenius equation parameters

Introduction 

A chemical reaction can be quantitatively described by such kinetic characteristics as the rate con-

stant ( ), the pre-exponential factor ( ), and activation energy ( ). Their knowledge is of 

particular importance because the distribution of reactants and product concentration at any mo-

ment can be calculated based on known kinetics. QSPR modeling of chemical reactions has made 

significant progress in recent years [172 174]. QSPR methodology employs machine learning al-

gorithms to the data on reaction characteristics measured in the experiment to predict the same 

characteristics for new reactions. Many approaches were proposed for reaction rate calculation. 

Usually, quantum chemistry approaches are used for the search for elementary reaction mecha-

nisms and estimate reaction barriers and rates [175 177]. Computationally efficient machine learn-

ing potentials were shown to be a valuable alternative to quantum chemistry in the estimation of 

local minima and transition states energy [178]. Machine learning is currently widely used to pre-

dict reaction rate constants based on structural features of reactants and products represented by a 

set of chemical descriptors [179]. Thus approach may be dated back to early studies based on the 

Linear Free Energy Principle [180] and the application of substituent constants as descriptors 

[181]. It has also been shown that quantum chemical descriptors are a good alternative to structural 

descriptors [182].  

In our previous publications, we reported predictive models for the rate constants of SN2 

[183,184] and E2 [185,186] reactions. There are also examples of machine learning applications 

for predicting the activation energies of reactions. Singh et al. applied popular machine learning 

algorithms to predict the activation barriers of hydrogenation/dehydrogenation reactions [187]. 

Gambow and coworkers developed a deep graph convolutional neural network trained on the ac-

tivation barriers of gas-phase reactions obtained with quantum-chemical calculations [175,188]. 

Jorner et al. proposed an approach that combines traditional DFT transition state modeling and 

machine learning [182] and trained the model using different machine learning algorithms to ac-

curately predict the reaction barriers of the nucleophilic aromatic substitution reaction (SNAr). 

Previously, the temperature dependence of the reaction rate was mostly modeled by adding 

the temperature to the set of structural descriptors [186]. In this case, the dependence of the rate 

constant ( ) on the temperature known to be expressed by the Arrhenius equation (1) that re-

lates reaction rate with the temperature and two other parameters that are assumed to be tempera-

ture independent: the pre-exponential factor ( ), and activation energy ( ) was assumed to be 

learnt by the machine learning model. 
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In our previous study [166] we reported SVR (Support Vector Regression) and GTM (Gen-

erative Topographic Mapping) modeling of ,  and  of cycloaddition reactions. Two 

scenarios for  assessment was examined. In the first scenario, the SVR algorithm learns to 

predict  directly from descriptors. In the second scenario, two independent individual models 

are built: (i) for predicting the  and (ii) for predicting the , which were used to calculate 

 using the Arrhenius equation: 

 (16) 

 

We observed that the predicted values of  calculated using the Arrhenius equation (Arrhenius-

based model) were less accurate in comparison to the individual model built using the experi-

mental values of .  

Models with embedded thermodynamic and kinetic laws were called conjugated QSPR mod-

els and were proposed in our previous paper [165]. In a follow-up study, we proposed a machine 

learning model that combines ridge regression and a neural network with an equation that relates 

tautomer acidities with their equilibrium constants. The predictive performance of such conjugated 

models was shown to be as good as for the individual ones, while the former had some additional 

benefits like a good prediction of acidities for minor tautomers. Motivated by the above project, 

here we demonstrate that the Arrhenius equation can be embedded into the ridge regression and 

neural network algorithms for building QSPR models. 

 

 
Figure 23. Approaches to modeling kinetic characteristics related by Arrhenius equation. In ordinary single-task 

learning (I) each characteristic is modeled independently. Multi-task learning (II) performs simultaneous prediction 

of all three characteristics, whereas conjugated learning (III) embeds the strict mathematical relationship relating the 

kinetics characteristics (Arrhenius equation) into the machine learning algorithm. 
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We used the dataset from our previous study [166] to build individual (single-task), equa-

tion-based (Arrhenius-based), multi-task, and conjugated models for predicting ,  and  

of cycloaddition reactions. Individual models were built independently for each kinetic character-

istic (Figure 23, I). The Arrhenius-based model uses the Arrhenius equation to calculate the  

with  and  predicted by individual models (Figure 23, I). The multi-task approach (Figure 

23, II) uses all available data across the different reaction characteristics and models them cooper-

atively in contrast to single-task learning. Multi-task learning can improve the prediction accuracy 

of modeled characteristics when tasks correlate or share some information. Conjugated learning 

(Figure 23, III) uses all available data on multiple tasks, but, in contrast to the multi-task approach, 

explicitly embeds a mathematical equation (in this study it is the Arrhenius equation) relating the 

tasks to the machine learning algorithm. This approach ensures that the predicted reaction charac-

teristics satisfy the fundamental chemical laws and empowers the conjugated QSPR models with 

new capabilities. 

 

Design of conjugated learning algorithms 

Ridge regression individual models 

Ridge regression (RR) is a popular machine learning algorithm that was extensively used in prac-

tice [189]. In ridge regression, the prediction of reaction characteristic  is performed by mul-

tiplying the reaction descriptors  by the vector of regression coefficients : 

 

 (17) 

 

The regression coefficients  can be calculated using the following expression: 

 

 (18) 

 

where  is the descriptor matrix of training reactions associated with experimental values  of 

the target characteristic. Hyperparameter  is a regularization coefficient controlling the complex-

ity of the model. We used ridge regression to independently build three individual models for 

predicting the ,  and  of cycloaddition reactions. The regularization coefficient was 

adjusted using the grid search technique. 
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Ridge regression conjugated models 

In conjugated models, fundamental chemical laws are integrated with machine learning algo-

rithms. In this study, we consider the Arrhenius equation, which can be embedded into the ridge 

regression algorithm. Let us consider an equation-based (Arrhenius-based) model, where the rate 

constant  is calculated using the Arrhenius equation applied to the values of  and  

predicted by individual QSPR models: 

 

 (19) 

 

where  is the diagonal matrix with the elements that are calculated as: 

 

 (20) 

 

and  is the temperature of the i-th reaction. On the other hand, if experimental data on  are 

available, the Arrhenius equation can be integrated with ridge regression using a special quadratic 

loss function: 

 

 (21) 

 

In the case of , there are two sets of regression coefficients,  (for predicting ) 

and  (for predicting ), which can be optimized to predict the . To enable correct prediction 

of  and the , loss function  can be combined with individual quadratic loss func-

tions for the  and  and regularization terms: 

 

 (22) 

 (23) 

 

resulting in a conjugated model loss function: 

 

 (24) 
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where , , are trade-off coefficients that control the contribution of each type of the loss func-

tion to conjugated loss ,  and  are regularization coefficients. After differentiation of 

the loss function , the optimal regression weights  and  can be calculated using the 

following analytical expressions: 

 (25) 

 (26) 

where matrices  are obtained as follows: 

 

 

 

 

(27) 

 

As a result, regression coefficients  and  in the conjugated model are estimated using the 

training sets of   ( ),  ( ) and  ( ) data. 

 

Neural network individual, multi-task and conjugated models 

Individual, multi-task, and conjugated models can be built using neural networks (NN). In indi-

vidual models, each characteristic is modeled independently using a standard multilayer neural 

network with one or more hidden layers and one output neuron (Figure 24a). Multi-task models 

can be built using a neural network with three output neurons, each predicting one of the kinetic 

characteristics (Figure 24b). Such neural network can be trained using the multi-task loss: 

 

 (28) 

 

where , ,  are coefficients that control the contribution of each type of error to the multi-task 

loss. 

The conjugated models can be built using the neural networks shown in Figure 24c. This 

neural network has two output neurons. The first output neuron predicts  and the second one 

predicts  (Figure 24c).  The predicted values of  and  are then used to calculate the pre-

diction of  using the Arrhenius equation. Finally, the obtained predicted values of ,  

and  are used to calculate the conjugated loss: 

 (29) 
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Individual, multi-task, and conjugated NN models discussed hereafter had one hidden layer 

with 256 neurons. Neural network weights were optimized using a gradient descent algorithm at a 

learning rate of 0.001. The complexity of the individual and conjugated NN models was controlled 

by the weight decay parameter (L2 regularization), which took values from 10-3 to 101. Neural 

networks were implemented using the PyTorch package [167]. 

 
Figure 24. Neural network architectures for building an individual (a), multi-task (b), and conjugated (c) model for 

prediction of the kinetic characteristics related by the Arrhenius equation. 

 

Computational details 

Data 

The data on cycloaddition reactions were taken from our previous paper [166]. The dataset in-

cludes 1849 reactions with 1849 experimental values of , 1236 experimental values of , 

and 1350 experimental values of  (kJ/mol). The rate constants  were measured in different 

solvents and at different temperatures . The dataset contains Diels-Alder (4+2) cycloaddition, 

(3+2) dipolar cyclization, and (2+2) cycloadditions. Within the 1849 reactions, there are 763 

unique structural transformations (Table 3).  

The dataset was divided into training and test sets (in the proportion of 90/10) so that the test 

set contained structural transformations which did not occur in the training set (Table 3). As a 

result, the test set contained 73 unique structural transformations that were not represented in the 

training set, which consisted of 690 unique structural transformations (Table 3). The training set 

was used to build the individual, Arrhenius-based, multi-task, and conjugated models, while the 

test set was used to evaluate the predictive performance of the models. 

 

Table 3. Description of the training and test set on cycloaddition reactions. 

 # reactions 
# unique structural 

transformations 
# kinetic characteristics 

   

Training set 1478 690 1478 1008 1120 

Test set 371 73 371 228 230 
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Descriptors 

Each cycloaddition reaction was transformed into the corresponding Condensed Graph of Reaction 

(CGR) (Figure 25) [153] generated using the CGRtools package [152]. A CGR is derived from the 

superposition of products and reactants and contains both conventional chemical bonds (single, 

double, triple, aromatic, etc.) and so-

i.e., breaking or forming a bond or changing bond order.  

 
Figure 25. A cycloaddition reaction from the dataset and the corresponding CGR describing the structural transfor-

mation. The formed bonds are denoted with a circle, while the broken ones are crossed. 

 

All generated CGRs were processed using the ISIDA tool [161,162] to calculate fragment de-

scriptors by counting the occurrence of particular subgraphs (structural fragments) of different 

topologies and sizes. We tested different types of fragment descriptors and selected atom-centered 

descriptors with a radius from 2 to 5. The total number of fragment descriptors was 3733. The 

vector of fragment descriptors for each reaction was concatenated with the vector of solvent de-

scriptors, which included 14 descriptors describing such properties of solvent as polarity, polar-

izability, Catalan constants SPP, SA, SB, Kamlet-Taft constants , , *, dielectric constants, func-

tion of the refractive index. These descriptors were successfully applied in our previous publica-

tions [163 166].  

To build individual and multi-task models, the fragment/solvent descriptor matrices were 

concatenated with the temperature descriptor. In conjugated models, only fragment and solvent 

descriptors were used as reaction descriptors, while reaction temperatures were included in the 

model using the Arrhenius equation. The calculated descriptors constituted three matrices: ,  

and  , where the number of rows in each matrix corresponds to the number of experimental 

values of ,  and  for cycloaddition reactions (Table 3). 

 

Model building 

The best models were selected with the coefficient of determination (R2) calculated using the 5-

fold transformation-out cross-validation procedure [190] implemented in the in-house CIMtools 

package (https://github.com/cimm-kzn/CIMtools). Transformation-out cross-validation prepares 

test folds that include structural transformations that are not presented in training folds. This cross-
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validation strategy provides an unbiased estimation of the predictive performance of the models 

for novel types of structural transformations. 

Building ridge regression models. Individual and conjugated RR models were imple-

mented using PyTorch tensors [167], which enabled the training of RR models on both CPU and 

GPU. Individual RR models have hyperparameter , the regularization coefficient, which controls 

the model complexity. For individual models, we tested values of  between 10-10 to 105 and found 

the optimal value using the grid search technique.   

Conjugated RR models have hyperparameters ,  and  that balance the prediction error 

of the ,  and  characteristics. The other two hyperparameters of the conjugated model 

are the regularization coefficients  and  (Figure 26). To optimize the hyperparameters of the 

RR conjugated models, we used the hyperopt package [158], which applies advanced optimization 

algorithms to navigate in the hyperparameters space. The values of coefficients ,  and  were 

sampled from a continuous space defined between 0 to 1, while the regularization coefficients  

and  took discrete values between 10-10 to 105 (Figure 26). The hyperopt algorithm adjusts the 

hyperparameters by maximizing the value of the objective function which was calculated as an 

average prediction accuracy of all characteristics: [R2( ) + R2( ) + R2( )] / 3. The hyperopt 

algorithm takes the average accuracy and proposes the next combination of possible optimal hy-

perparameters (Figure 26). 

 
Figure 26. The workflow for optimization of hyperparameters of ridge regression conjugated models using hyperopt 

package. The trade-off coefficients were sampled from continuous space defined between 0 to 1. The regularization 

coefficients  and  took values from discrete 10-10 to 105. Conjugated models were built with sampled hyperpa-

rameters and evaluated using internal 5-fold cross-validation.  

 

Building neural network models. Individual, multi-task, and conjugated NN models were 

built with the architectures depicted in Figure 24. In NN multi-task and conjugated models, the 

coefficients , , and  were automatically adjusted together with other neural network weights 

using the gradient descent algorithm. This means that the trade-off coefficients are learned directly 
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from the training set, rather than being fixed as hyperparameters before model training as in RR 

conjugated models.  This approach to optimization of the trade-ff coefficients in the NN multi-

task and conjugated models significantly reduces the computational resources required for model 

training and hyperparameters optimization. 

 

Results and discussion 

Comparison of individual, Arrhenius-based, multi-task, and conjugated models 

This section reports the results of the performance comparison of individual, Arrhenius-based, 

multi-task, and conjugated models. The prediction accuracy of the models on the external test set 

is presented in Table 4. For clarity, we discuss NN models only, whereas the results obtained for 

RR models are available in Table 2 and share similar trends. We tested two single-task approaches 

for the prediction of : (1) direct modeling of , when the individual model was built on 

experimental data on  and (2) Arrhenius-based model when first individual models for pre-

dicting the  and  were built and then used to calculate the prediction of  with the Ar-

rhenius equation. The results demonstrate (Table 4) that the direct predictions of  by the indi-

vidual model are more accurate (R2
Test = 0.76) than those calculated with the Arrhenius equation 

in the Arrhenius-based model (R2
Test = 0.35). The prediction accuracy of the conjugated model 

(R2
Test = 0.71) is close to the individual (R2

Test = 0.76) and multi-task model (R2
Test = 0.76).  

 

 

Table 4. Predictive performance of individual, Arrhenius-based, multi-task, and conjugated models. RR  Ridge 
Regression models and NN  Neural Network models. 
 

Model Training set Method 
R2 (Test set) 

   

Individual model  
RR 0.78 - - 

NN 0.76 - - 

Individual model  
RR - 0.46 - 

NN - 0.56 - 

Individual model  
RR - - 0.91 

NN - - 0.90 

Arrhenius-based model  
RR 0.27 - - 

NN 0.35 - - 

Multi-task model ,  NN 0.76 0.48 0.83 

Conjugated model ,  
RR 0.75 0.57 0.90 

NN 0.71 0.56 0.84 
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Individual and Arrhenius-based models often disagree and provide significantly different 

predictions of  for the same reaction. The assessment of this difference in  predictions is 

illustrated in Figure 27. For demonstration,  of each reaction in the test set was predicted by 

both the individual model and the Arrhenius-based model, while the difference between the pre-

dicted values was calculated as: 

 

 (30) 

 

The conjugated model predicts ,  and  with similar accuracy as the individual 

models, while the predictions exactly follow the Arrhenius equation (Figure 27b), which is em-

bedded into the conjugated learning algorithm. This feature of conjugated models is important 

because it bridges QSPR models with fundamental chemical laws.  

 

 
Figure 27. The difference between the  values predicted directly and with the Arrhenius-based model according 

to eq. 15. Two scenarios are considered: predicted values obtained with the individual (a) and conjugated (b) models. 

 

Table 4 demonstrates that the RR and NN conjugated models have similar accuracy. Ridge 

regression models are easy to build since the optimal regression weights are calculated using ana-

lytical expressions. However, more sophisticated optimization of the hyperparameters (trade-off 

and regularization coefficients) may require a lot of time. On the other hand, the single NN model 

trains slower than the RR model, but the trade-off coefficients ( ,  and ) in the NN model are 

optimized automatically during model training, which reduces the number of optimized hyperpa-

rameters. In addition, the current implementation of RR conjugated models requires a lot of com-

putational resources in the case of large training sets (large sizes of descriptor matrices), while NN 

models can be trained on large datasets divided into smaller training batches. 

 



133 

 

Building models with limited data 

As follows from Table 4, individual, multi-task, and conjugated models perform similarly if a 

training set is big enough. We hypothesized that in multi-task and conjugated models, abundant 

data for one modeled characteristic (e.g. ) can compensate for the lack of training data for 

another characteristic (e.g.  or ). In contrast to the standard case, we simulated a scenario 

in which the training sets for the  or  characteristics were significantly reduced and tested 

the performance of the models under these conditions. We used the same test set of 371 reactions 

for the model evaluation (Table 4) but varied the size of the training set.  For the sake of clarity, 

only results for NN models are reported.   

 
Figure 28. Predictive performance of an individual, multi-task, and conjugated neural network models on test set 

reactions at different sizes  (a) and  (b) training sets.  

 

The initial training set contained 1480 experimental values of , 1008 values of  

and 1120 values of . We gradually reduced the number of  and  training data and evalu-

ated the resulting models on the test set. For this purpose, we randomly selected and removed N% 

(N = 90, 80, 70, 60, 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) of training reactions associated 

with  and  from the initial training set and used reduced training sets to build individual  

 and  models. The same reduced training sets on  and , as well 

as all available training data for , were used to build the multi-task 

 and conjugated  model. The models built on the reduced 

training sets were then used to predict the  and  for reactions from the test set.  

To alleviate the effect of random reduction of the training sets, the above procedure was 

repeated 20 times, followed by the averaging of related R2 values. Figure 28 reports the average 

R2 on the test set at different sizes of the training set of  and . For  models 

built on small training sets, conjugated learning has no advantages over single and multi-task 

learning. The performance of all models gradually decreases as the  and  training sets were 
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reduced until the models lose their predictive power at extremely small training sets < 6% (< 70 

training reactions). Notice that conjugated models are more stable toward data shrinkage than other 

approaches. 

Similar behavior is observed in modeling  on reduced training sets. When the size of the 

training set is large (e.g. 1120 training reactions with known , Figure 28b), the individual 

 (R2
Test = 0.90) and multi-task model  (R2

Test = 0.83) 

demonstrate the accuracy comparable with the conjugated model  

(R2
Test = 0.84). However, for significantly reduced  training set (11 training reactions corre-

sponding to 1% of the initial set), the conjugated models were still predictive (R2
Test = 0.33), 

whereas the individual (R2
Test = -0.60) and multi-task (R2

Test =-0.30) models failed. 

Thus, conjugated models can correctly predict a target characteristic of reactions even for a 

few training instances if data on another characteristic related to the target characteristic by a strict 

mathematical relationship is available.  

 

Modeling the temperature dependence of the reaction rate constant 

The dependence of the reaction rate constant on temperature is described by the Arrhenius equa-

tion. In the conjugated model, the Arrhenius equation is directly embedded into the machine learn-

ing algorithm (ridge regression or neural network). In the Arrhenius-based model, the  is cal-

culated using individual  and  predictions and Arrhenius equation. 

In building individual and multi-task models, the reaction temperature is a descriptor along 

with fragment and solvent descriptors. Therefore, the individual and multi-task model can only 

capture the statistical relationship between  and temperature. In this context, we were inter-

ested to examine the models  performance as a function of reaction temperature. For this purpose, 

we generated a new temperature test set. The initial test set (Table 3) contained 1 reaction in 1,4-

dioxane, 3 reactions in chlorobenzene, 4 reactions in benzene, and 53 reactions in toluene (a total 

of 61 reactions) for which  and  were experimentally determined. We used the experimental 

 and  values of these 61 reactions to calculate new  using the Arrhenius equation at 

hypothetical temperatures, which significantly deviates from the temperature range of the training 

set. For example, for each cycloaddition reaction in toluene, the  was calculated for a list of 

temperatures that start with the freezing temperature of toluene, change in increments of 5K, and 

end with the boiling temperature of toluene. Thus, for each cycloaddition reaction in toluene,  

were calculated at 42 hypothetical temperatures (from freezing to the boiling point of toluene). 

The same procedure was repeated for reactions in 1,4-dioxane (18 hypothetical temperatures), 

chlorobenzene (36 hypothetical temperatures), and benzene (15 hypothetical temperatures). As a 
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result, the temperature test set consisted of 61 reactions associated with 2412  values calcu-

lated from the Arrhenius equation for hypothetical temperatures; all remaining reactions with ex-

perimental temperatures were included in the training set.  

The lists of hypothetical temperatures were used in the  predictions by the NN models. 

In the conjugated and Arrhenius-based models, the hypothetical temperatures were directly used 

in predicting the , while in the individual and multi-task models, these temperatures were used 

as a descriptor. Then, predicted with each model  values were compared with  for hypo-

thetical temperatures. As a result, the conjugated and Arrhenius-based models had similar perfor-

mance with mean RMSE of  predictions of 0.24 and 0.29, respectively. However, the individ-

ual and multi-task models demonstrated errors (0.56 and 0.57, respectively) of  predictions 

almost twice as high as the conjugated model.  

 
Figure 29. Calculated with experimental Arrhenius equation and predicted  with individual and conjugated mod-

els for the cycloaddition reaction at different hypothetical temperatures in toluene. 

 

To take a closer look at the reasons for this behavior of the models we extracted one of the 

test cycloaddition reactions in toluene, for which we plotted the  predicted at hypothetical 

temperatures by the individual and the conjugated models (Figure 29). We can see (Figure 29) that 

both models perfectly predict the rate constant at temperatures inside the training temperature 

range (for all reactions in all solvents). However, in the range beyond the training temperatures, 

the  predicted by the individual model significantly deviate from the experimental ones, while 

the conjugated model predicts the  accurately, even at extremely low temperatures close to 

the freezing point of the solvent. This can be explained by the fact that the individual model 

accounts for only the statistical relationship between the reaction rate constant and the temperature 

descriptor, whereas the conjugated model includes the true relationship in the form of the 

Arrhenius equation. 
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Conclusion 

In this study, the concept of conjugated learning was applied to model kinetic characteristics re-

lated by the Arrhenius equation: rate constant , pre-exponential factor  and activation 

energy  of cycloaddition reactions. In conjugated QSPR models, the Arrhenius equation was 

embedded into ridge regression and neural network machine learning algorithms. The conjugated 

models were compared with individual (single-task) models that were trained independently for 

each characteristic and multi-task model, where the kinetic characteristics were modeled cooper-

atively. An equation-based (Arrhenius-based) model was also considered in which the rate con-

stant  is calculated using the Arrhenius equation and predicted by individual models  and 

. 

It was observed that the individual  model is more accurate in predicting the rate con-

stant than the Arrhenius-based model, which calculates  using the Arrhenius equation. The 

predictions of the  of individual and Arrhenius-based models often disagree, which demon-

strates that the standard QSPR models do not always obey the fundamental chemical laws. How-

ever, the conjugated model predicts ,  and  with similar accuracy to the individual 

models, but the predicted characteristics exactly comply with the Arrhenius equation. Furthermore, 

the conjugated models are more accurate in predicting  at the wide range of reaction temper-

atures. In the individual model, the temperature is treated as a descriptor, whereas in the conjugated 

models the exact relationship between the rate constant and the temperature is embedded into the 

model in the form of the Arrhenius equation. To validate the models in new scenarios, a new 

temperature test set was generated which included  values associated with virtual  tempera-

tures significantly deviating from the temperature range of the training set. It was demonstrated 

that the individual model cannot correctly predict the values of  at temperatures that are sig-

nificantly different from the training data, while the conjugated model correctly predicts  even 

for the temperatures close to the freezing and boiling points of the solvent.  
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3.4 Modeling of selectivity constant of competing reactions

Introduction 

The ratio of products  (selectivity constant) of competing for  reactions can 

be estimated as the difference between the rate constants of the corresponding reactions: 

 

 (31) 

 

This equation can be used to calculate the prediction of the selectivity constant using the  

and  values predicted by the individual models. On the other hand, in conjugated learning, 

this equation can be directly integrated with a machine learning algorithm, which allows all three 

characteristics to be predicted simultaneously. 

Conjugated model building. Conjugated models can be built based on ridge regression 

algorithms and neural networks. 

1) Integrate the equation of the main characteristic ( ) by constructing an equation-

based loss function . 

Individual  model: 

 

 (32) 

 

Equation-based  model: 

 

 (33) 

 (34) 

 

2) Combine equation-based loss function  with individual loss functions of related char-

acteristics (  and ) and regularization terms of model complexity. 

Individual  model: 

 

 (35) 

 

Individual  model: 
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(36) 

 

Conjugated model: 

 

 (37) 

 

where , ,  are coefficients that control the contribution of each type of loss function into conju-

gated loss  and  and  are the regularization coefficients.  

3) Then derivatives wrt to weights  were calculated and were set equal to 0 in the 

extremum point. After some mathematical operations one has: 

 

 
 

 
(38) 

 

where matrices  can be obtained as follows: 

 

 

 

 

 

(39) 

 

Optimal regression weights  and  (parameters) can also be found by the gradient de-

scent method. Also, conjugated models can be built using special neural networks with conjugated 

loss functions (Figure 30). 

 
Figure 30. The general architecture of neural networks for building (a) individual and (b) conjugated models for 

predicting the selectivity constant of competing for  reactions. 
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Conjugated ridge regression models can be built quickly by calculating optimal weights 

using matrix equations (38) and (39). However, in the case of large datasets, the standard imple-

mentation of conjugated ridge regression can be expensive on memory resources due to the large 

matrices in equations (39). In this case, conjugated neural networks can be trained on batches of 

data using gradient descent. Contrary to linear ridge regression, neural networks can capture the 

nonlinear relationship between reaction descriptors and rate constant. 

 

Model building 

Data. There were two types of data to build individual, equation-based, and conjugated models: 

(i) competing reactions  and  (489 reactions) with known reaction rates  and  

and selectivity constants  for these reactions and (ii) reactions E2 (1275 reactions) 

with known  (and unknown ) and reactions  (4830 reactions) with known  

(and unknown ). In the second type of data the selectivity constant of the competing  and 

 reactions are unknown. A dataset of 489 reactions with known  was randomly divided 

into a training and test set in the proportion of 90/10. The second type of data (1275  reactions 

and 4830  reactions) were included in the training set.  

Descriptors. Each  and  reaction was converted into a condensed graph of the reac-

tion, which was encoded with ISIDA fragment descriptors. The total number of descriptors was 

1922. 

Model optimization. Individual, equation-based and conjugated models were imple-

mented using the PyTorch package, in which matrix operations can be executed using CPUs and 

GPUs. Regularization and contribution coefficients , ,  were optimized using the in-house im-

plementation of the genetic algorithm. 

 

Results and discussion 

Three types of models for predicting the selectivity constant were compared: the individual model, 

the Equation-based model, and the conjugated model. The performance of the models is reported 

in Table 5. The development of neural networks for building conjugated models is part of future 

research. 

The  the individual model demonstrated moderate performance (R2
Test = 0.37, Figure 

31a), while the accuracy of  individual model was unnaceptable (R2
Test = -0.11, Figure 

32a). Due to the low accuracy of the individual models for  and , the values of the 

selectivity constant  calculated from equation (31) in the equation-based model were 
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also inaccurate (R2
Test = -0.93). In contrast to equation-based models, an individual model built 

directly on experimental data on  provides very accurate predictions (R2
Test = 0.89).  

 

Table 5. Performance (R2
Test) of the individual, equation-based and conjugated models on 49 test reactions. 

Approach Training data    

Individual model  0.37 - - 

Individual model  - -0.11 - 

Individual model  - - 0.89 

Equation-based model  ,  0.37 -0.11 -0.93 

Conjugated model , ,  0.60 0.31 0.72 

 

 
Figure 31. Experimental and predicted values of the rate constant  for 49 test reactions. 

 

The conjugated model built on the data on ,  and  significantly 

improved the accuracy of predictions of  and  in comparison with individual models 

(R2
Test = 0.37 vs. 0.60 and R2

Test = -0.11 vs. 0.31) (Figure 31 and Figure 32). However, the predic-

tion accuracy of the  of the conjugated model is lower than that of the individual 

model (R2
Test = 0.72 vs. 0.89). For clarity, the experimental and predicted by the individual and 

conjugated model selectivity constants  were converted to E2 reaction yield and plot-

ted in Figure 33. 

Thus, the conjugated ridge regression algorithm increases the prediction accuracy of the rate 

constants of  and  reactions compared with independently constructed individual models. 
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Figure 32. Experimental and predicted values of the rate constant  for 49 test reactions. 

 

 
Figure 33. Experimental and predicted values of the yield for 49 test reactions. 

 

Conclusion 

In this project, the concept of conjugated learning was applied to model the selectivity constant of 

competing  reactions. The kinetic equation relating the rate constants of  and  reac-

tions were integrated with the ridge regression method. The conjugated models significantly im-

proved the accuracy of  and  predictions compared to the individual models. 
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Conclusion

1. This project is devoted to the development of advanced machine learning approaches accounting 

for the complexity of chemical objects (molecules) and processes (reactions). Two approaches and 

related software tools have been developed: (i) multi-instance machine learning (MIL) considering 

an ensemble of conformers of each considered molecule, and (ii) conjugated machine learning 

algorithms accounting for fundamental thermodynamic and kinetic relationships in the modeling 

of reaction characteristics. 

2. A set of multi-instance algorithms, including a naive Wrapper and several multi-instance neural 

network architectures based on the attention mechanism, dynamic pooling, and gaussian pooling, 

have been implemented. Various techniques for regularization of instance weights for better iden-

tification of key instances have been applied. The developed tools: (i) do not require selection and 

alignment of conformers, (ii) use only open-source software based on Python 3 packages, and (iii) 

are fully automated. 

3. The MIL-kmeans algorithm for the classification modeling of bioactive compounds has been 

developed. In this algorithm, each conformer of a given molecule was represented by the 3D pmap-

per descriptors followed by the clustering with the k-means algorithm. The obtained clusters were 

used to generate a new descriptor vector of a given compound (mapping process) further used in 

any conventional regression or classification machine learning algorithm.  

4. The developed MIL algorithms in combination with the pmapper descriptors were applied to 

the modeling of (i) the bioactivity of compounds from the ChEMBL-23 database and (ii) the en-

antioselectivity of chiral organic catalysts in asymmetric reactions. The obtained models per-

formed better than related 3D single-conformer models and models involving 2D descriptors. 

(i) In a large-scale benchmark on 175 datasets from ChEMBL-23, we have demonstrated 

that the 3D multi-conformer models approach performed better than 3D single-conformer models 

built with the lowest-energy conformer and in most cases (>60%) better than the models built on 

2D descriptors. In some cases, 2D models completely failed to predict bioactivity whereas 3D 

multi-conformer models demonstrated a reasonable performance. It has also been demonstrated 

that the attention-based multi-instance neural network was able to identify bioactive conformers 

that are similar ( ) to experimental structures extracted from Protein Data Bank. 

(ii) The developed 3D modeling approach was applied to the modeling of enantioselectivity 

in the reaction of asymmetric nucleophilic addition catalyzed by chiral phosphoric acids and phase-
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transfer asymmetric alkylation catalyzed by cinchona alkaloid-based catalysts. The descriptor vec-

tors resulted from the concatenation of the reaction descriptors generated for ondensed Graphs 

of Reaction and pmapper descriptors encoding the catalyst conformers. Obtained results demon-

strated that the 3D multi-conformer models performed similarly or better than the alternative state-

of-the-art 2D and 3D approaches reported in the literature. 

5. In the conjugated learning approach mathematical equations relating thermodynamic or kinetic 

characteristics of chemical reactions were used in combination with two different machine learning 

algorithms - ridge regression and artificial neural networks. The new approach was applied to the 

modeling of (i) equilibrium constants of tautomerism reactions, (ii) parameters of the Arrhenius 

equation for cycloaddition reactions, and selectivity constant for competing for E2/SN2 reactions. 

In tautomeric equilibria, the conjugated models provide a reasonable estimation of the pKa of 

minor tautomers, which can hardly be measured experimentally. In cycloaddition reactions, con-

jugated models were able to predict the experimentally unreachable rate constant of reactions at 

extremely low and high temperatures. In some cases, conjugated learning helps to increase the 

prediction accuracy of the characteristics related by the equation, as demonstrated in the case study 

of competing E2 and SN2 reactions. 
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List of abbreviations

AI - Artificial Intelligence 

ML - Machine Learning 

SIL - Single-Instance Learning 

MIL - Multi-Instance Learning 

MIML - Multi-Instance Multi-Label 

KID - Key Instance Detection 

RF - Random Forest 

SVM - Support Vector Machines 

LSTM - Long Short-Term Memory 

RNN - Recurrent Neural Network 

GNN - Graph Neural Network 

CNN - Convolutional Neural Network 

ILP - Inductive Logic Programming 

PPI - Protein-Protein Interactions 

III - Isoform-Isoform Interactions  

PDB - Protein Data Bank 

PBM - Protein Binding Microarray 

PBS - Potential Binding Sites 

FBS - Functional Binding Sites 

TF - Transcription Factor 

TFBS - Transcription Factor Binding Sites 

MHC - Major Histocompatibility Complex  

QM - Quantum Mechanics 

MIF - Molecular Interaction Fields 

MMFF - Merck Molecular Force Field  

DFT  Density Functional Theory  

CGR - Condensed Graph of Reaction 

ISIDA - In Silico Design and Data Analysis  

ECFP - Extended Connectivity Fingerprints 

QSAR - Quantitative Structure-Activity Relationship 

QSPR - Quantitative Structure-Property Relationship 

QSSR - Quantitative Structure Selectivity Relationship 
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AUC - Area under the ROC Curve

MAE - Mean Absolute Error 

RMSE - Root Mean Square Error 

RMSD - Root Mean Square Deviation 

API - Application Programming Interface 

GPU - Graphics Processing Unit 
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This Ph.D. thesis is devoted to the development of advanced machine learning techniques for 
the modeling of properties of molecules and reactions. Coupling the Multi-Instance machine 
Learning (MIL) method with the pharmacophoric 3D descriptors enabled the construction of 
predictive models accounting for an ensemble of molecular conformations. This 3D approach 
does not require the selection and alignment of conformers and was validated in the case studies 
of (i) the bioactivity of compounds and (ii) the enantioselectivity of chiral organic catalysts. In 
many cases, 3D multi-conformation MIL models overperformed classical approaches involving 
popular 2D descriptors. In the second part, a concept of conjugated machine learning was intro-
duced and applied to the modeling of thermodynamic and kinetic characteristics of reactions. 
Conjugated machine learning integrates fundamental equations with machine learning algo-
rithms, which distinguishes it from traditional multi-task learning capturing only the statistical 
relationship between the tasks. 
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