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Résumé

Une grande part de l’électricité consommée en France étant produite par des
réacteurs nucléaires, la recherche dans ce domaine constitue un enjeu industriel
important. Ce travail de thèse s’inscrit dans ce contexte et est le résultat d’une
collaboration entre le CEA et l’Université Paul Sabatier (Toulouse, France).

Cette thèse a pour objet l’étude d’un code industriel modélisant un accident
nucléaire grave, l’interaction corium-eau, et plus précisément le traitement des
incertitudes sur les paramètres de modélisation de ce code. Pour étudier ce code,
une méthodologie basée sur différents outils statistiques avancés a été proposée.
Elle se décompose en cinq grandes étapes :

1. Échantillonnage de l’espace des entrées. Connaissant le domaine de
variation des paramètres d’entrée, l’espace de ces paramètres a été échan-
tillonné. Une exécution du code a été ensuite effectuée sur chaque point
du plan d’expérience ainsi construit. Le jeu de données entrées/sorties
obtenu constitue l’échantillon d’apprentissage. Le but ici est d’explorer
avec cet échantillon l’espace des entrées et d’obtenir autant d’informations
que possible sur le comportement des sorties du code. Ne disposant que
d’un budget limité pour les simulations, nous avons utilisé une méthode
d’échantillonnage quasi aléatoire, appelée Latin Hypercube Sampling (LHS),
au lieu d’une méthode Monte Carlo classique. Cette méthode assure une
meilleure couverture spatiale des distributions marginales tout en conservant
certaines propriétés de l’échantillonnage purement aléatoire. La conver-
gence asymptotique des statistiques utilisées dans notre méthodologie sous
LHS a également été discutée, avec notamment un travail théorique sur la
convergence asymptotique de la classe des Z-estimateurs avec un LHS.

2. Analyse de sensibilité des échecs de code. Au cours de l’exploration
de l’espace d’entrée, nous avons constaté qu’une proportion importante des
exécutions du code ne convergeait pas. Nous avons donc analysé ces échecs
de code pour voir quelles entrées ont le plus d’influence sur eux, ce qui nous
a permis de mieux comprendre le fonctionnement du code.
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3. Sélection des entrées à partir de l’analyse de sensibilité des sorties.
À partir du jeu de données d’apprentissage, un tri a été effectué en utilisant
deux outils d’analyse de sensibilité. Le premier outil de sélection est basé sur
l’estimation des indices de Sobol’ de premier ordre. Ces indices quantifient
la contribution de chaque entrée, seule (indépendamment des autres entrées),
à la variance de la sortie. En pratique, un estimateur basé sur le rang a été
utilisé pour les estimer. Pour détecter plus de formes de dépendance entre
les entrées et la sortie (notamment les interactions entre entrées), un autre
outil d’analyse sensibilité reposant sur une mesure de dépendance basée sur
un noyau, à savoir le critère d’indépendance de Hilbert Schmidt (HSIC), a
été utilisé. Ces deux critères de sélection ont permit d’identifier un ensemble
d’entrées ayant une influence considérée comme significative sur les sorties
du code.

4. Approximation des sorties par des modèles de régression (appelés
métamodèles). A partir de l’échantillon d’apprentissage, des métamodèles
ont été construits pour ajuster les sorties du simulateur. Ces modèles sont
destinés à remplacer le code initial dans les études de sensibilité. Pour
cela, des modèles de type processus gaussien ont été utilisés. Ces modèles
présentent plusieurs avantages par rapport aux autres modèles de régression,
comme la possibilité d’évaluer l’incertitude des prédictions effectuées.

5. Utilisation des modèles de régression (construits à l’étape 4) pour
effectuer une analyse de sensibilité plus précise. Une analyse de sensi-
bilité a ensuite été réalisée en utilisant les modèles de régression construits
précédemment. Ces métamodèles, par leur temps d’évaluation négligeable,
permettent une exploration approfondie de l’espace d’entrée. Par conséquent,
ils ont pu être utilisés pour estimer les indices de Sobol’ de premier ordre et
les indices totaux. Ces derniers quantifient l’effet total (seul et en interaction)
de chaque entrée sur chaque sortie. Les informations obtenues sont donc
beaucoup plus complètes que celles fournies par l’estimation des seuls indices
de premier ordre effectuée à l’étape 3.

Mots clés: statistiques appliquées, accidents nucléaires graves, analyse sensibilité,
simulations numériques, métamodélisation, apprentissage automatique.
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Abstract

An important part of the electricity produced in France is supplied by nuclear
reactors. Research in this field is therefore an important industrial challenge. The
topic of this PhD thesis fits into this context and is the result of a collaboration
between the CEA and the Paul Sabatier University (Toulouse, France).

The subject of this thesis is the study of an industrial code modeling a severe
nuclear accident, namely the fuel-coolant interaction, and more precisely the
treatment of uncertainties on the modeling parameters of this code. To achieve
this goal, various statistical tools of the uncertainty quantification framework were
used into a global methodology consisting in five main steps:

1. Exploration of the input space using sampling methods. Knowing
the variation domain of the input variables, the input space was randomly
sampled. A code run was then performed on each sampled point of the
experimental design. The obtained sample of inputs/outputs constituted
the learning sample. The goal is here to explore with this sample the input
space and get as much information as possible about the behavior of the
code output. Only having a limited budget for simulations, we used a near
random sampling method, named Latin hypercube sampling (LHS) instead
of a classic random sampling method. This method ensures a better space
coverage of the marginal distributions while maintaining some properties of
classical Monte-Carlo sampling. Asymptotic convergence of statistics used in
our methodology under LHS were also discussed. In particular, a theoretical
work on the asymptotic convergence of Z-estimators under LHS has been
carried out.

2. Sensitivity analysis of code failures. Running the simulations of the
experimental design defined in step 1 revealed that a significant portion of
the code executions did not converge. We therefore analyzed these code
failures to understand which of the inputs have the most influence on them.
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3. Selection of the inputs from sensitivity analysis of the outputs.
From the learning sample, the main influential inputs were identified using
two sensitivity analysis tools. The first one is based on the estimation of
first-order Sobol’ indices. They quantify the contribution of each input,
alone (independently from the other inputs), to the output variance. In
practice, a rank based estimator is used to compute the indices. These indices
identified the impact of the main effects of the variables. In addition, to detect
a broader dependence between input and output (including interactions),
another sensitivity tool relying on a kernel based dependency measure, namely
the Hilbert Schmidt Independence Criterion, was used. From the analysis of
Sobol’ inidices and HSIC measures, a pool of significantly influential inputs
were deduced.

4. Emulation of the outputs by regression models (called metamodels).
From the learning sample, regression models were built to fit the simulator
outputs. These models are intended to replace the initial code. For this,
Gaussian Process (GP) regression method was used. This method has
several advantages compared to other regression methods notably its ability
to propose both a prediction and a quantification of the uncertainty on its
predictions.

5. Use of metamodels (built at Step 4) to perform a more com-
plete sensitivity analysis. A quantitative sensitivity analysis were then
performed using the regression models instead of computer code. These
metamodels, by their negligible evaluation time, allow an intensive explo-
ration of the input space. This is made possible by the negligible evaluation
time of the metamodels. Hence, they were used to estimate both first-order
and total Sobol’ indices. The latter quantify the effect of variables alone and
in interaction with the other inputs. The information provided is therefore
much more complete than that resulting from the previous estimation of the
first-order indices alone performed in Step 3.

Key words: applied statistics, sensitivity analysis, numerical simulations, severe
nuclear accidents, metamodeling, machine learning.
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Introduction

A major part of the electricity produced in France is supplied by nuclear reactors.
Research in this field is therefore an important industrial challenge. This work is
within this context and is the result of a collaboration between the CEA, a major
actor in nuclear research, and the Paul Sabatier University (Toulouse, France).

The subject of this thesis is the study of an industrial code modeling a severe
nuclear accident, namely the fuel-coolant interaction, and more precisely the
treatment of uncertainties on the modeling parameters of this code. To achieve
this goal, various statistical tools of the uncertainty quantification framework
are used. Since the industrial context is a crucial factor in the methodological
decisions made, it is important to detail it. Therefore, a complete description of
the fuel-coolant interaction and its modeling by the simulation code MC3D is first
provided in Chapter 1. The operational objective of this work is then presented.
Finally, the framework of uncertainty quantification and the methodology proposed
to meet these operational objectives are introduced. The next three chapters of
the manuscript are devoted to the five main steps of the proposed methodology:

1. Exploration of the input space using sampling methods, in Chapter 2.
2. Sensitivity analysis of code failures to understand which inputs have the

most influence on them, in Chapter 3.
3. sélection of significant inputs and global sensitivity analysis of the code

outputs of interest, in Chapter 4.
4. Emulation of the outputs by regression models (metamodeling), in Chapter

4.
5. Use of metamodels (built at Step 4) to perform a more complete sensitivity

analysis, in Chapter 4.

The deployment of statistical tools to study this code has required the automated
launch of many code simulations. As the MC3D code is not initially designed for
this, several algorithms in shell and R have been written during this thesis to fulfill
this task. These developments being purely computational and far from statistical
and methodological contributions, they are not detailed in this manuscript.
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There has been several communications regarding the work presented in this
manuscript. Chapter 3 of this manuscript is the subject of an article accepted by
the Nuclear Science and Engineering journal. It is also planned to submit a second
paper on the convergence of Z-estimators under the Latin Hypercube Sampling
method (work detailed in Chapter 2), by early 2023. The main communications
(preprints and conferences) are listed below.

Preprints

Hakimi, F., Brayer, C., Marrel, A., Gamboa, F., and Habert, B. (2022), Statistical
methods for the study of computer experiments failures: Application to a fuel-coolant
interaction simulation code, accepted in Nuclear Science and Engineering.

Conferences

Hakimi, F., Brayer, C., Marrel, A., Gamboa, F., and Habert, B. (2022), High
Dimensional Sensitivity Analysis Method for a Computationally Expensive Code.
In SIAM Conference on Uncertainty Quantification (UQ22), Atlanta, USA.

Hakimi, F., Brayer, C., Marrel, A., Gamboa, F., and Habert, B. (2022), Poster:
Statistical methods for the study of computer experiments failures: application to
a fuel-coolant interaction simulation code. In GDR Mascot Num 2022, Clermont
Ferrand, France.
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Chapter 1

Context, objectives and
methodology

In France, around 70% of the electricity consumed in a year is ensured by the nuclear
energy (International Energy Agency, 2021). This represents 56 reactors currently
in operation. The construction of six new reactors has also been announced for
the coming years. Research in nuclear energy is so a major challenge for French
electricity production. In France, an important part of the research on this subject
is done at the CEA (French Alternative Energies and Atomic Energy Commission).

Almost all existing reactors use the energy released by a fission reaction of a
heavy uranium 235 atom by a neutron. This reaction is highly exothermic and
can produce new neutrons, leading under certain conditions to a chain reaction.
The energy produced is converted into heat by a coolant. All french nuclear
power plants are Pressurized Water Reactor (PWR). For this kind of reactor, the
coolant is water maintained under high pressure (155 bars) for a temperature
that can reach 350◦C. This hot water flows in the core of the reactor in a closed
circuit, called primary circuit, and exchanges thermal energy with a second closed
water circuit. This second circuit generates steam that is used to drive turbines
connected to generators that produce electricity. A third open water circuit cools
the secondary circuit to condense the steam after it passes through the turbines.
Figure 1.1 depicts the operation of a pressurized water reactor.

Many safety systems have been developed and implemented to allow the proper
operation of these nuclear reactors and thus avoid accidental situations or limit
their effects. In addition to the basic components mentioned above, reactors are
equipped with several independent and redundant safety systems. These systems
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Figure 1.1: Schematic diagram of the operating principle of a pressurized water
nuclear reactor. From wikipedia: Pressurized water reactor.

operate in parallel to mitigate the risks associated with malfunctions or operational
errors. They also prevent such situations from escalating into more important
accidents.

However, the effectiveness of any safety system depends on the accident for which
it is designed. Accident sequences that are outside the scope of existing safety
devices may occur. Indeed, several accidents of this type happened in history.
We can mention in particular the accidents of Three Mile Island (USA, 1979),
Chernobyl (Ukraine, 1986) and more recently Fukushima Daiichi (Japan, 2011).
These events have stressed the need to adopt measures to mitigate the occurrence
of scenarios that could lead to what is called severe accidents.

An accident is deemed severe when the energy released by the core of the reactor
is greater than the energy dissipated by the coolant and when safety systems fail
to cool down the system. In this case, the core temperature increases and can
reach its melting temperature leading to the loss of core integrity. The hot magma
(around 3000 K) composed of molten elements of the core and of the structures
thus generated is called by the generic name corium. This magma may flow down,
out of the core, to form a pool in the lower plenum of the reactor pressure vessel.
Due to the high temperature of the corium, the vessel wall is ablated by the pool.
If the vessel is breached, the corium can then relocate in the reactor pit, reach the
basemat and interact with its concrete. The corium also interacts with the water
that may be present. This interaction is called the fuel-coolant interaction (FCI).
Figure 1.2 depicts these different stages of corium progression in the reactor.
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The study of the FCI is the industrial motivation of this work. This chapter aims
at presenting this industrial context. We also discuss on how to address industrial
stakes of this work. Adapted statistical methods proposed to give some answers to
these industrial problems are then presented.

Figure 1.2: Stages of corium progression during a severe accident in a pressurized
water reactor.
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1.1 Industrial context: study of the fuel-coolant
interaction (FCI)

The corium-water interaction is one of the important phenomena that can occur
during a severe accident. Improving the understanding of this phenomenon is a
major issue for nuclear safety.

As for most physical phenomena, two types of tools are available to handle the
FCI. On one hand, some experimental facilities are available. They allow direct
observation of the phenomenon and its consequences. However, experimental
facilities are generally not fully representative of a reactor case. In fact, they are
often smaller than an actual nuclear reactor and the materials used are not identical.
They can also be expensive to operate: up to several million euros for an experiment
simulating corium-water interaction with prototypical materials. Finally, the type
and amount of experimental data that can be collected is limited. On the other
hand, we have simulation softwares to model and predict physical phenomenon.
They allow the process of much more data. However, it is important to make sure
that the modeling they provide is faithful to the simulated phenomenon.

This section aims at presenting the FCI phenomenon and the way it is studied. The
experimental tool (KROTOS) and the numerical tool (MC3D: Multicomponent
Code 3D) used to study this phenomenon at the CEA will also be presented.

1.1.1 Description of the phenomenon
As stated before, the fuel-coolant interaction in a PWR severe accident context
corresponds to the contact between the hot corium and the surrounding cooling
water. This interaction can lead, under certain conditions, to a fine fragmentation
of the corium leading to a violent vaporization of the coolant and the propagation
of a pressure wave. This phenomenon, called steam explosion, may threaten the
reactor integrity and lead to the dispersion of radio-elements in the environment.

The main steps of this kind of phenomenon, as described in details by Corradini
(1988), are the following (cf. Figure 1.3):

• fuel-coolant premixing;
• steam explosion triggering;
• shock wave propagation;
• vapor expansion.

Let us describe the different phases of this phenomenon.
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Figure 1.3: Main steps of steam explosion (Hansson, 2007).

1.1.1.1 Fuel-coolant premixing

In pressurized water reactor conditions, the fuel-coolant premixing can be defined
as the phase where the molten fuel jet breaks up in the coolant into droplets
of a few millimeters in diameter (cf. Figure 1.4). Under these conditions, the
fragmentation is mainly due to two types of instabilities. The first one is the
Kelvin–Helmholtz instability (Helmholtz, 1868; Kelvin, 1871) that develops along
the jet. It is a fluid instability that occurs when there is a velocity difference across
the interface between two fluids, here fuel jet and the surrounding water. The
other one is the Rayleigh-Taylor instability (Rayleigh, 1883), occurring at the jet
front. This instability is due to the density difference between corium and water,
when the heavier fluid is pushing the lighter fluid. During the fragmentation, the
more droplets there are, the larger the fuel-coolant exchange surface is and the
greater the chance of a vapor explosion occurs.

During this phase, the corium temperature is high enough to have the coolant in
a film boiling regime around the corium jet and droplets. This means that there is
a vapor film surrounding the molten corium that separates the two liquids.

1.1.1.2 Steam explosion triggering

Steam explosion triggering is due to the local destabilization and collapse of the
vapor film surrounding the melted corium drops. It has two main consequences
(Fletcher, 1995):

• Some liquid-liquid contact between fuel and water can occur, enhancing the
heat exchanges.

• A fine fragmentation of the corium takes place, leading to an increase of the
exchange surface between fuel and coolant.

Both phenomena drastically increase the heat transferred by the molten fuel. These
heats transfers reach such intense rapid level that the time scale for heat transfer
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Figure 1.4: Corium jet overview on the left. Zoom on a molten fuel droplet on the
right.

is shorter than the time scale for pressure relief. This may lead to the initialization
of a pressure wave.

Triggering can be spontaneous, meaning that the film-collapse process begins
naturally due to local conditions (Corradini et al., 1988). It can also be externally
triggered, by a pressure wave or the impact of the jet on structures for example. In
experimental conditions, this triggering is manually proceeded in order to ensure
the observation of the steam explosion.

Some conditions can make steam explosions more difficult to trigger (Corradini et
al., 1988), because of their stabilizing effects on the vapor film:

• ambient pressure in the coolant is high;
• the coolant temperature is close to its saturation temperature (Tsat);
• the surface temperature of the molten fuel (TW ) is high compared to the

saturation temperature of the coolant;
• presence of non condensable gas in the vapor film (eg. H2 coming from water

hydrolysis during corium oxidation).

Figure 1.5 shows, on the left, the experimental results of the temperature conditions
to have the spontaneous explosion of a tin/water mixture (Dullforce et al., 1976),
and on the right side, the trigger pressure necessary to initiate an explosion in a
Fe2O3/water mixture (Nelson and Duda, 1985).
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Figure 1.5: Temperature interaction zone for 12g of molten tin dropped into water
on the left (Dullforce et al., 1976). Mandatory trigger pressure depending on
ambient pressure for Fe2O3 drops on the right (Nelson and Duda, 1985).

1.1.1.3 Shock wave propagation and vapor expansion

The pressure peak generated by the local destabilization of the vapor gradually
propagates in the fuel coolant mixture destabilizing vapor films and fragmenting
them into fluid droplets. This may lead to new coolant pressurization cycles.
Hence, the shock wave is propagating. The pressure wave is thus maintained by
the fragmentation of the fuel as it passes through (cf. Figure 1.6).

An analogy can be made between a chemical explosion and this shock wave
propagation. Indeed, both follow a pressure wave behind which a subsonic reaction
zone exists. The detonation model of Von Neumann has therefore been used to
model the explosion propagation (Board et al., 1975 ; Scott, 1978). But its analogy
has some limitations:

• the fuel-coolant mixing is heterogeneous, and the two liquids are in-miscible
which has an impact on the sound speed computation and the Von Neumann
pressure spike;

• the corium fragmentation might be incomplete, which has an impact on the
mass of corium involved in the explosion and on the wave propagation.
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Figure 1.6: Propagation of a steam explosion in a mixture of molten tin drops and
water (Ciccarelli and Frost, 1988).
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These limitations are especially present in reactor conditions where the fuel-coolant
mixing is done around the corium jet.

The pressure drop following the passage of the explosion allows vapor generation
and expansion. In addition, when the pressure wave reaches the free surface, an
expansion wave propagates in the opposite direction, decreasing the pressure. It
then enables the vapor generation and expansion.

1.1.2 The KROTOS experimental facility
The KROTOS installation allows to observe a real fuel-coolant interaction involving
prototypic corium (same chemical composition as real corium but with depleted
uranium). Formerly located at the JRC Ispra (Huhtiniemi et al., 1999 ; Huhtiniemi
and Magallon, 2001), the facility has been moved to the CEA Cararache in the early
2000s. At Cadarache, an X-ray radioscopy system has been added to characterize
the corium-water mixture during the premixing phase.

This installation is a seven meters high experimental facility built on two levels of
the plinius experimental platform located at CEA Cadarache (Brayer et al., 2012).
It is composed of 2 main elements:

• a resistive furnace to heat the fuel;
• a test vessel housing the corium jet formation device, the test tube, the

trigger and caption tools.

The main measured quantities of the installation and their associated sensors for
this experiment are summarized in Table B.1.

Other quantities can be deduced from the aforementioned observables. For instance,
we can mention the impulsion of the explosion corresponding to the integral of the
pressure over the explosion time. This quantity can be deduced using the measured
explosion pressure. Drop properties (mass, size, etc.) during the premixing and
the explosion can also be estimated using the collected corium fragments. For
more details on the KROTOS installation and KROTOS experiments, please refer
to (Brayer et al., 2012 ; Bouyer et al., 2015).

In the context of this work, we mainly focus on the KROTOS experiment KS4.
Figure 1.7 locates all of the sensors along the test section of the facility for the
KS4 experiment.
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Figure 1.7: Test section instrumentation of the KROTOS installation for KS-4
(Grishchenko et al., 2011).
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Table 1.1: Main measured quantities on the KROTOS facility.

Measured quantity Caption method Comments
Shape of the jet (con-
tinuous/fragmented),
jet diameter and
Velocity

Video camera only on reduced view
window

Premixing global visu-
alisation

X-ray radioscopy only on reduced view
window

Located explosion
pressure

Dynamic pressure transducers 7 sensors distributed
along the wall of the
test tube, with 1 dedi-
cated to the trigger

Melt front detection Sacrificial thermocouples 5 sensors on the axis of
the test section

Fragment properties
(mass,size, etc.)

Collected at the end of the experiment None

Water level Water level transducer None
Water temperature Thermocouple None

1.1.3 The MC3D simulation code
Several simulation codes have been developed around the world to model corium-
water interaction (Meignen and Magallon, 2005). Initially MC3D was developed
by the CEA (Berthoud and Valette, 1994 ; Brayer and Berthoud, 1997). The
code is now owned by the IRSN who is pursuing its maintenance and development
(Meignen, Picchi, et al., 2014 ; Meignen, Raverdy, et al., 2014). The developments
of the last versions were mainly carried out in the context of the multi-year RSNR-
ICE project led by IRSN, responding to the so-called post-Fukushima project. It
involves the CEA and is co-financed by EDF, Framatome and the ANR (french
National Research Agency). The version 3.09 of MC3D has been used for this
work. A new version of the code, the 3.10, has been released in 2022.

MC3D is an Eulerian multiphase multicomponent computer code devoted to
the simulation of corium water interactions. It uses a Cartesian or cylindrical
meshing in 2D or 3D. It is organized around a common kernel and modules to
model each component. The kernel manages the numerical scheme, the solver and
the input/output problem. Each module describes, for a model component, the
equations of mass, momentum and energy and the closure equations necessary to
describe the model.

MC3D models the FCI through 2 applications. The first one, PREMIX, allows the
assessment of the premixing step. However, this application is general enough to
be used in other fields. The second application, EXPLO, is restricted in its use to
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the study of the steam explosion phase. A complete calculation is thus performed
in two steps, a premixing calculation followed by an explosion using as input the
output data of the premixing calculation.

1.1.3.1 Format of the inputs and outputs of the code

All the inputs and outputs are defined in the MC3D datafile.

The inputs

In MC3D, the inputs are scalar or categorical. Nevertheless, we can distinguish
several types of inputs regarding their role in the simulation process. First we
have the geometrical and physical conditions. They allow to describe the situation
that we wish to simulate.

Then, we have the numerical parameters: time step, grid size, etc. They influe
on the precision of the simulation, but also on its duration and stability. Then
we have the modeling parameters. They influe on the behavior of the models
implemented on MC3D. In this work, we are interested in this type of inputs.
More details are given below.

The outputs

There are two types of outputs:

• time evolution of physical quantities averaged over the whole mesh or specif-
ically located in the calculation domain (to emulate a sensor for instance).
They are called type 1 outputs.

• representation of physical quantities on each cell of the domain at different
moments of the numerical experiment. They are called type 2 outputs.

The direct comparison of type 2 outputs to experimental results is more difficult
because these results are given by located sensor (except for the video film and
the X-Ray radioscopy). We don’t have access to the evolution of the observed
quantities on each location of the domain.

1.1.3.2 Models used by MC3D

For the record, MC3D uses to model the fuel-coolant interaction the classical
Eulerian multicomponent method where each component/mixture is described by
its mass, momentum and energy equations. These balance equations are solved
with an adapted version of the implicit continuous-fluid Eulerian numerical method
(Harlow and Amsden, 1975 ; Mercier, 1989). A staggered grid is used (Cartesian or
cylindrical) where velocities are expressed at the faces and other variables at the
center of cells. In addition, several models are used to describe specific phenomena
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of corium-water interaction. This section aims to present the models used in both
premixing and explosion applications.

The main specific phenomena modeled in MC3D are the coolant and the fuel flow
description, the melt fragmentation, the heat transfers and drop solidification.

Premixing modeling

In the premixing application, MC3D focuses on the jet fragmentation and mixing.
Mass, momentum and energy equations are solved for the following components:
liquid water, steam and non condensable gas mixture, corium in a continuous
phase (corium jet) and the fragmented corium. In addition, physical models are
associated with the various phenomena involved in the FCI.

Fuel flow description and fragmentation

The fuel is modeled by a continuous jet breaking into drops. Figure 1.8 depicts
this modeling. Two jet fragmentation models are available in MC3D. The first one,
CONST, assumes a constant jet fragmentation rate. The second one, KHELMOLTZ,
is based on the Kelvin-Helmholtz theory for tangential instability (Kelvin, 1871 ;
Helmholtz, 1868).

Figure 1.8: Corium flow modeling in MC3D (Meignen and Magallon, 2005).

The generated drops can also be fragmented by the surrounding medium (water-gas
mixture) (Berthoud, 1996). To model this phenomenon, the code uses a correlation
derived from Pilch (1981).

Drops solidification

Drops solidification is an essential mechanism for the reduction of the mass of
corium that may be involved in the steam explosion. This phenomenon may
therefore reduce the loads of an explosion. The standard approach in MC3D is to
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compare the drop temperature to the melt solidification temperature. Below this
temperature, the drop is assumed solid and there is no more fragmentation. As it
is a purely parametric approach, no hypothesis on the physic of solidification is
used.

Coolant flow description

Another model handles the description of the coolant flow (water) and its interaction
with the discrete fuel particles. First of all, only the local volume of water (gaz or
liquid) is considered. Further, MC3D considers three different coolant flows: the
droplet flow, the bubbly flow and a transitional flow between the aforementioned
states. Figure 1.9 depicts these different coolant flows.

Figure 1.9: The three regimes of the coolant flow map in MC3D (Meignen and
Magallon, 2005).

Heat and mass transfer

Heat transfers from the fuel to the coolant and the subsequent coolant mass
transfers are very important phenomena to model. The two major mechanisms
driving those phenomena are film boiling and thermal radiation. In MC3D, the
film boiling around fuel drops is modeled through a correlation law derived from
Epstein-Hauser correlation (Epstein and Hauser, 1980). Concerning radiation,
only in-cell radiation heat transfers are modeled.

Water phase transitions

Mass transfers between liquid water and steam is derived from the energy balance
at the water steam interface, assumed to be at saturation temperature.
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Corium oxidation

Corium temperature is so high that it may hydrolyze the surrounding water. The
chemical reaction generates H2. It also adds energy to the mixture as the reaction
is exothermic. Here, the dioxygene O2 is the oxidant of the reaction. The modeling
of this phenomenon was still under development at the beginning of the thesis. It
is now included in the latest version of MC3D (V3.10).

Steam explosion modeling

The basic aspects of the flow patterns established for the PREMIX application
is conserved for the explosion phase. However, we have the important following
differences:

• Differences in the handling of the fragment field;
• No continuous fuel jet: the eventual jet remaining at the end of the premixing

step is transferred into fuel drops.

Moreover, to handle specific phenomena happening during steam explosion, new
models are added. The main one is the drop fine fragmentation.

Drop fine fragmentation

The drop fine fragmentation corresponds to the fragmentation into fine drops
(diameter of around 50 − 100µm ) of the bigger ones (between 1 and 10mm
diameter) previously generated. It is initiated by a parametric model. The
considered driving mechanisms of the fine fragmentation is hydrodynamic. As
for the large droplets, the Pilch correlation (Pilch, 1981) is used to calculate the
characteristic time for fragmentation.

1.2 Objectives and proposed methodology
In Section 1.1, we described the fuel-coolant interaction, a phenomenon that
can happen in a severe nuclear accident sequence. Further, we presented the
experimental installation used at CEA to observe this phenomenon. Finally, a
global overview of the IRSN software that simulates this phenomenon, MC3D, has
been described.

As described, many models interact with each other in MC3D to simulate the
corium-water interaction. A set of parameters is required to built each of these
models. These modeling parameters are calibrated independently via dedicated
experiments. We can cite for example the TREPAM experiment for the study of
film boiling (Berthoud and Gros D’Aillon, 2009) and DROPSG or GALAD for
drops fragmentation (Achour, 2017 ; Malmazet, 2009). However, these studies
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do not take into account the interactions between models. There is therefore
epistemic uncertainties concerning these parameters. To account for these model
interactions, experimental programs such as KROTOS have been developed. They
allow the observation of the whole Fuel Coolant Interaction.

In this context, the main objective of this thesis is to study the simulation of
the FCI in the KROTOS facility by MC3D. In particular, we will be interested
in the evaluation of the influence of the different modeling parameters and their
interactions on the outputs of the MC3D code. This work also prepares the
calibration of these parameters on KROTOS experiments in order to improve the
reliability of the code.

To meet these objectives, we propose to use some advanced statistical methods
within the general framework of uncertainty quantification. The first part of
this section aims to give an overview of this framework. Then, we introduce the
formalism used in our manuscript. In addition, we provide a description of the
studied MC3D configuration and variables. Finally, we present the methodology
proposed in this work to achieve our operational goals.

1.2.1 The uncertainty quantification framework
The physical models that describe the process of a severe nuclear accident such as
FCI are complex and represented by deterministic equations. They lead, during
the numerical modeling phase, to the development of numerical simulation codes.

These software tools take many input parameters characterizing the studied
phenomenon. These parameters can be subject to uncertainty according to the
degree of knowledge and characterization of the phenomenon. Generally speaking,
two main sources make up uncertainty:

• one due to a lack of information (epistemic uncertainty);
• one that are inherent to the random nature of the modeling parameters

(stochastic uncertainty).

Whatever their nature, it is important to quantify these uncertainties and study
their impact on the code outputs. This analysis allows to validate the mathematical,
physical or numerical model, to guide characterization efforts on the most influential
parameters and more generally to better understand the modeled phenomenon.

To take into account the uncertainties of the inputs of numerical simulators, a
general approach has been developed for more than ten years (Rocquigny, 2008) and
remains an active research topic. We can mention in particular the CNRS Research
Group MASCOT-Num (French acronym of Méthodes d’Analyse Stochastique pour
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les COdes et Traitements Numériques)1 which brings together most of the academic
and technological actors such as the CEA, around the development of stochastic
approaches for the analysis of numerical simulators.

In this framework, the usual modeling methodological approach can be divided
into several important steps, as depicted in Figure 1.10.

The step A of problem specification consists in defining the system to be studied
(model, simulator or measurement process), identifying the uncertain or fixed
inputs, as well as the quantities of interest to be studied. These quantities are
derived from the output variables of the model. The simulator can be assimilated
to a function linking inputs to outputs. See equation (1.1) below.

f : X → Y
X 7−→ f(X, c) = Y

(1.1)

Here,

• X is the vector of uncertain inputs evolving in a measurable space X , d ∈ N∗

its dimension ;
• c ∈ Rdc is the vector of fixed inputs considered deterministic and dc ∈ N∗ its

dimension ;
• f is measurable function representing the model that links the inputs to the

outputs;
• Y is the output of interest evolving in a measurable space Y ⊂ Rp, p ∈ N∗.

The second step B consists in quantifying the inputs uncertainty. In the proba-
bilistic framework, the uncertainties of the random input variables are modeled
by fully or partially known probability distributions (Helton, 1997). These proba-
bility distributions can be chosen by using any available data and estimating the
parameters of the distributions on these data, by formalizing the expert opinion
(elicitation) or by using bibliographical data.

The uncertainty quantification is supported by a calibration step, the step B’.
In this context, this step aims to characterize the uncertainty on the estimated
parameters defining the physical model. Indeed, some parameters are not directly
measurable, but must be estimated in a regression framework. This step can also
integrate the detection and estimation of a model bias term. This bias takes into
account the fact that the model is not an absolutely faithful representation of
reality. Classically, regression methods based on maximum likelihood are used

1website: http://www.gdr-mascotnum.fr/
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Figure 1.10: General scheme for the methodology of uncertainty treatment, adapted
from De Rocquigny et al. (2008).

to perform this calibration step (Trucano et al., 2006). More recently, Bayesian
calibration methods by data assimilation have also been introduced (Carmassi,
2018). This framework allows us to consider the a priori information about the
parameters to be calibrated and their uncertainties. In addition, the parameters
calibrated using Bayesian methods are associated with a probability distribution
that quantifies their post-calibration uncertainties.

The purpose of the step C is to measure how the input variables uncertainty are
propagating through the studied model. The aim of this step is to quantify the
impact of the input uncertainties on the outputs predicted by the model. More
precisely, it mesures the effect on the quantities of interest associated with the
outputs. These quantities of interest depend on the objectives of the study. It
can be for example a measure of the output mean or dispersion, a quantile or a
probability to exceed a critical value (Cannamela, 2007).

In parallel and complement of the uncertainty propagation, a global sensitivity
analysis (GSA), the step C’ of the approach, is also important to carried out.
Sensitivity analysis aims to determine how the variability of the input parameters
affects the value of the output or the quantity of interest (Da Veiga et al., 2021;
Iooss and Lemaître, 2015; Saltelli et al., 2004). It thus allows to identify and
perhaps quantify, for each input parameter or group of parameters, its contribution
to the variability of the output.
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In support of these major steps, two cross-cutting themes are addressed as part of
the process of dealing with uncertainties.

• Numerical experiments design: it consists in choosing where to carry
out the simulations to sample the input modeled distributions in order to
maximize the information collected in a minimum of (numerical) experiments.
To do so, many approaches are possible, from simple random draws (Monte
Carlo type) to more elaborate constructions (Fang et al., 2005), such as
Latin Hypercube Samplings (Mckay et al., 1979) for example.

• The approximation of the simulator by a regression model: from
simulated observations defined by a design of experiments, a statistical
learning model is constructed. These simplified models are sometimes called
a metamodel. They approximate as closely as possible the simulator under
study and require negligible calculation time. These metamodels are then
used to predict the outputs of the simulation code for any set of input values
and thus allow a very intensive exploration of the model.

This methodological context adequately meets the objectives of the thesis. Indeed,
the tools of global sensitivity analysis can be used to understand the influence of
different modeling parameters on the outputs of the MC3D code. In addition, the
calibration methods presented above will allow to robustly adjust the modeling
parameters of the code to experimental data in a future work.

1.2.2 Formalism and notations
In order to fit in the framework of uncertainty quantification, it is first necessary
to present our application case in an adapted formalism. In the following, the
model functions of the two applications of the code, PREMIX and EXPLO, will
be denoted by f[1] and f[2] respectively.

We distinguish two categories of inputs. First there are the inputs we want to study
and thus considered as uncertain for the model functions f[1] and f[2]. We denote
by X[1] the inputs of the code 1 and X[2] the inputs of the code 2. Inputs common
to codes 1 and 2 are denoted by X[1,2]. Then, there are the inputs considered
as fixed. Similarly, we denote by c[1], c[2] and c[1,2] the fixed inputs respectively
associated to the model function f[1], the model function f[2] and common to the
two model functions. We also denote by X the vector containing all the inputs of
the MC3D code.

Finally, the type 1 output for the model f[i] will be designated by Y I
[i] and the type

2 outputs will be designated by Y II
[i] . Figure 1.11 summarizes this formalism and

presents the links between the inputs, the codes and the outputs.
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Figure 1.11: Diagram summarizing the formalism used for this work.

1.2.3 The application case
Let us give specifications on the application case: the MC3D configuration for this
work, the chosen inputs, their variation domain and the studied outputs.

1.2.3.1 MC3D configuration

In this work, we focus on the simulation by MC3D of the KS4 experiment. Thus,
the spacial mesh used for simulations corresponds to the facility KROTOS.

Figure 1.12 depicts the used spacial mesh at the beginning of the simulation. It
is 2D axisymmetric with 27R axis meshes and 103Z axis meshes. Working in 2
dimensions limits the calculation time. The global geometry describes the test
section of the KROTOS facility. In this figure, the corium pool in the crucible is
represented in red and the water pool in the test tube is represented in blue. The
gray areas correspond to solid structures (crucible and jet formation device, or
conical bottom of the test tube).
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Figure 1.12: On the left: representation of the spatial mesh for the numerical
experiment.The R-axis is expanded with respect to the Z-axis for better visibility.
On the right: schematic view of the KROTOS installation.

40



1.2.3.2 Considered uncertain inputs

In our work, we focus on the parameters related to the models of the code described
above. These parameters can strongly influence the general behavior of the code
and the knowledge about their uncertainties is quite limited.

The operating parameters (temperatures, pressures, sizes) have been fixed on
the measurements of the KS4 experiment. The uncertainty concerning these
parameters are not taken into account in this work. In addition, some of these
parameters are known to have a great influence on the stability of the MC3D code
and thus on its propensity to converge correctly. The remaining d = 57 parameters
considered as uncertain here are distributed as follow:

• 39 inputs for f[1];
• 11 inputs of both codes;
• 7 inputs of f[2].

There is very little knowledge about the uncertainty of these inputs. A uniform
distribution centered around their nominal value is therefore assumed to character-
ize their uncertainty. Their variation domains have been discussed with physicists.
In particular, these intervals have been chosen considering the physical plausibility
and the limits of use of numerical models. The stability of the MC3D code has
also been taking into account.

Furthermore, in our work, all the inputs are considered independent,except for
two groups of parameters linked with the corium solidification. First, the material
solidification temperatures are defined by their solidus and liquidus temperatures,
T liquidus being greater than Tsolidus. To remove this dependency, The solidifica-
tion interval, TDIFF = T liquidus− Tsolidus, with TDIFF > 0, has been used
instead of T liquidus. Second, MC3D solidification models use a solidification tem-
perature, Tsolid, Tsolid being between Tsolidus and T liquidus. To lift the depen-
dency of Tsolid with Tsolidus and T liquidus, we introduced the temperature ratio
KTDROP , such that Tsolid = Tsolidus + KTDROP (T liquidus − Tsolidus),
with 0 < KTDROP < 1.

Tables 1.2, 1.3 and 1.4 give a summary of the information concerning respectively
the inputs X[1], X[1,2] and X[2].
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Table 1.2: Details about uncertain inputs X[1]. The unit of the input is specified
when it has one.

Input number Input name Nominal value Variation domain
1 KELMHOLTZ_FRAGNUM (-) 0.15 [0.1,0.2]
2 KELMHOLTZ_CDIACRE (-) 5 [4,6]
3 TXMIN (-) 0.3 [0.3,0.4]
4 TXJMIN (-) 0.8 [0.7,0.9]
5 KELMHOLTZ_C_VELFRA (-) 5 [4,6]
6 KELMHOLTZ_RADIUS (m) 0.03 [0.02,0.04]
7 K (-) 0 [0,1]
8 TXMAX (-) 0.5 [0.4,0.7]
9 COTX (-) 200 [150,250]
10 COEF_TFI (-) 0.99 [0,1]
11 DRAMULLD (-) 1 [0.5,1.5]
12 DRAMULGD (-) 1 [0.5,1.5]
13 CFRAG (-) 0 [0,0.5]
14 SBUTRI (-) 0.3 [0.25,0.35]
15 SLITRI (-) 0.7 [0.65,0.75]
16 DBUMIN (m) 0.0005 [0.0004,0.0006]
17 DLIMIN (m) 0.0005 [0.0004,0.0006]
18 DBUMAX (m) 0.05 [0.04,0.06]
19 DLIMAX (m) 0.05 [0.04,0.06]
20 DDRMIN (m) 0.0002 [0.0001,0.0003]
21 DDRMAX (m) 0.05 [0.04,0.06]
22 CONMUL (-) 1 [0.9,1.1]
23 NU_BUL (-) 150 [10,300]
24 NU_LIQ (-) 10 [10,300]
25 DRAMUL (-) 1 [0.5,1.5]
26 DRAMULLG (-) 1 [0.5,1.5]
27 WECRBUL (-) 12 [3,21]
28 WECRLIQ (-) 12 [3,21]
29 WECRDL (-) 12 [3,21]
30 CRAD (-) 0.1 [0,0.2]
31 CONTACT (W/m2/K) 0 [0,100000]
32 MULTEH (-) 1 [0.5,1.5]
33 APPRWE (-) 20 [10,30]
34 COMPRE (s2/m2) 0.000004 [3E-7,4E-7]
35 LIFT (-) 0 [0,1]
36 DISTU (-) 0 [0,1]
37 LIFTB1 (-) 0 [0,1]
38 LIFTB2 (-) 0 [0,1]
39 DISTUB1 (-) 0 [0,1]
40 DISTUB2 (-) 0 [0,1]
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Table 1.3: Details about uncertain inputs X[1,2]. The unit of the input is specified
when it has one.

Input number Input name Nominal value Variation domain
41 TLIQUIDUS (K) 2920 [2850,2950]
42 TDIFF (K) 50 [30,70]
43 CPLIQUID

(J/Kg/K)
510 [460,560]

44 CPSOLID (J/Kg/K) 450 [400,500]
45 TENSURF (N/m) 0.45 [0.4,0.5]
46 EFUSION (J/kg) 3E5 [2.7E5,3.3E5]
47 CONDUCT (K) 2.88 [2.7,3]
48 VISCODYN (Pa.s) 0.008 [0.007,0.009]
49 EMISSIV (-) 0.75 [0.7,0.9]
50 ROSOLIQ (kg/m3) 7500 [7000,8000]

Table 1.4: Details about uncertain inputs X[2]. The unit of the input is specified
when it has one.

Input number Input name Nominal value Variation domain
51 VISCART (-) 5 [4,6]
52 CMFRHY (-) 0.5 [0.3,0.7]
53 DFRAG (m) 7.5E-5 [5E-5,1E-4]
54 DTMFB (K) 10 [5,15]
55 DMINEXP

(m)
5E-4 [4.5E-4,5.5E-4]

56 DMAXEXP
(m)

0.05 [0.03,0.07]

57 HFRAGFB
(W/m3/K)

1E10 [5E9,1.5E10]

In practice and without loss of generality, the statistical tools will be applied here
on the inputs scaled on the unit hypercube [0, 1]d. A preliminary re-scaling is
performed before running the simulation. Hence, we will consider in the following
that all the d inputs vary uniformly in [0, 1]: X ∼ U[0,1]d .

As stated before, these parameters are associated to different models in MC3D.
Table B.2 presents the parameters associated to each sub-model of MC3D code.
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Table 1.5: List of uncertain inputs associated to each MC3D sub-model.

MC3D sub-model inputs concerned
Jet fragmentation 1-6
Drop solidification 7-9
Drop fragmentation and heat transfers 10-33
corium compressibility 34
Drop momentum equations parameters 35-40
Corium physical properties 41-50
artificial viscosity 51
General explosion parameters 51-57

1.2.3.3 Studied outputs

In this work, we decided to focus only on scalar outputs of type 1. There are
two main reasons for this. First, there are more uncertainty quantification tools
developed for this kind of output. They are also easier to set up and test. Second
and more importantly, one of the objectives of this thesis is the preparation of
the calibration of the MC3D code on KROTOS experiments. However, the vast
majority of the experimental outputs which are available on different KROTOS
experiments are scalar outputs. Some time series (point data measured over time)
can also be obtained. Extending the proposed methodology to this type of data
could be an interesting prospect.

The output vector is denoted Y = (Y1, Y2, Y3, Y4). Two outputs of f[1] and two
outputs of f[2] are considered. These four outputs are representative of what can
be observed experimentally. Table 1.6 gives a brief description of these outputs.

The outputs are processed independently from each other. The notation Y = f(X)
is used to denote a scalar output without specifying which one. We denote by f
the measurable function linking the inputs X to the scalar output Y .
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Table 1.6: Details about the four studied outputs. Their unit is specified.

Output
number Model

Output
name Description

1 f[1] vm (kg) vapor mass at the end of the premix
2 f[1] dsauter_p

(m)
average corium drop diameter at the end of
the premix

3 f[2] im_k (P.s) maximum impulsion estimated using the
k = 6 pressure captors

4 f[2] mf (kg) mass of the fragment at the end of the
explosion

1.2.4 Aims and methods
The work proposed in this thesis aims to address the two following operational
objectives:

1. Understand the influence of modeling parameters on code outputs.
2. Prepare a calibration of these modeling parameters on experimental data.

The purpose is to develop and apply a methodology within the uncertainty quantifi-
cation framework to meet these objectives. To do so, it necessary to face different
challenges. As a matter of fact, the modeling of the fuel-coolant interaction (FCI)
involves the use of a large amount of models with different time scales and linked
together in a global model simulator. As a consequence, this makes the code simu-
lating the FCI very computationally expensive. That means that only a limited
number of code runs can be performed. Further, there is also a large number of
input parameters. These two drawbacks limit the exploration of the input space.
Moreover, the interweaving of the modeled phenomena with sometimes opposite
effects make pre-analysis of physicists difficult to provide. Indeed, the physical
relation between the inputs and the outputs is highly non-linear. This can even
lead, for a plausible input data set at first glance, to code failures.

To meet the aforementioned objectives taking into account the special frame of
our industrial problem, a sequential methodology is proposed. Adapted from the
ICSREAM (acronym of Identification of penalizing Configurations using SCREen-
ing And Metamodel) methodology of Marrel et al. (2022), it consists in five main
step:

• Step 1: Exploration of the input space. Knowing the variation domain
of the input variables, the inputs space is randomly sampled. A code run
is then performed on each sampled point of the experimental design. The

45



obtained sample of inputs/outputs constitutes the data set (also referred
as learning sample). The goal is here to explore with this sample the input
space and get as much information as possible about the behavior of the
code output. Only having a limited budget for simulations, we use a near
random sampling method, named Latin hypercube sampling (Mckay et al.,
1979) instead of a classic random sampling method. This method ensures a
better space coverage of the marginal distributions while maintaining some
properties of classical Monte-Carlo sampling.

• Step 2: Sensitivity analysis of code failure. During the input space
exploration, we find that a significant proportion of the code runs fail to
converge. Analyzing these code failures to understand which of the inputs
have the most influence on them leads to a better understanding of how the
code works. It could also help to better identify the possible input domain
of use.

• Step 3: Screening of the inputs from sensitivity analysis of the
outputs. From the data set, a screening is proceed using two sensitivity
analysis indices. The first one is the Sobol’ first order index. It is based on
the conditional variance of the outputs regarding the inputs (Sobol’, 1993).
The other one is the Hilbert Schmidt Independence criterion (HSIC). It is
based on dependence mesures between inputs and outputs (Gretton et al.,
2005). A pool of significant inputs is then selected using these indices.

• Step 4: Outputs approximation by regression models. From the data
set, regression models are built to fit the simulator outputs. These models
are intended to replace the initial code. For this, Gaussian Process (GP)
regression method is used (Rasmussen and Williams, 2005). This method has
several advantages over other regression methods: probabilistic prediction
and exact interpolation property, as well as the evaluated numerical simulator
modeling capabilities (Santner et al., 2003 ; Marrel et al., 2008).

• Step 5: Use of the regression models to perform a more complete
sensitivity analysis. A quantitative sensitivity analysis is performed
using the regression models instead of the computer model based on an
intensive exploration of the input space. This is made possible by the
negligible evaluation time of the metamodels. We are particularly interested
in estimating variance-based sensitivity indices, the Sobol’ first order (as in
step 3) and, much more informative, the total indices. This quantitative
sensitivity analysis prepares the calibration by ranking the inputs by level of
influence on the outputs.
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The following chapters correspond to the different steps of this methodology.
More precisely, Chapter 2 deals with the exploration of the inputs space by Latin
Hypercube samplings (LHS). An overview of samplings methods and a justification
of the use of LHS in our case is given. New and existing results concerning the
convergence of different statistics using LHS are also presented. In Chapter 3,
we focus on the analysis of code failures. Tools to perform a sensitivity analysis
on these code failures are presented and used in our industrial context. Finally,
Chapter 4 presents the three last steps of this methodology and their applications.
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Chapter 2

Exploration of the input space:
the use of Latin Hypercube
Sampling Method

Numerous researchers are confronted with the difficult problem of the optimal
organization of their numerical or physical experiments. In other words, how to
obtain a good amount of information with a reasonable number of experiments (or
model evaluation)? Design of experiments (DoE) methods, also called sampling
methods, try to give answers to this challenging question.

The experiments for which DoEs are designed can be real (physical experiments)
or, as in the context of this work, simulated with a computer code. Numerous
methods have been developed in order to explore the space of the input variables
(or parameters) involved in the simulation. Numerical designs have several charac-
teristics in the general framework of DoE. Indeed, in the experimental context, it
is often assumed that there are random errors due to the measurements or the
experimental conditions. In general, this is not the case for numerical simulations,
which are primarily deterministic 1. Moreover, in numerical experiments, it is
possible to consider high variations on a very large number of uncertain parameters.
Thus, the input space of a numerical experiment can be much bigger than the
one feasible for a physical experiment. In the framework of uncertainty treatment,
numerical designs of experiments can be support of various and different objectives,
among which:

1Numerical errors and stochastic codes are not considered here.
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• the study of the propagation of uncertainties (see step C of Figure 1.10);
• sensitivity analysis (cf. step C’ of 1.10);
• approximation of code outputs by a metamodel.

In the context of our work, sensitivity analysis and metamodeling of the outputs
are part of the proposed methodology to study the MC3D simulation code. In
order to efficiently perform these two steps, a good numerical design of experiments
is needed. This sampling step consists of defining a design of n experiments for
the inputs and then performing the corresponding runs with MC3D. The obtained
inputs/outputs sample constitutes the data set (also called the learning sample)
on which the rest of our analysis is performed. As mentioned before, the MC3D
code is very time consuming and the number of input considered is large (d = 57
inputs). It is therefore important to effectively explore, with a reasonable number
of simulations, this very large variation domain of inputs. A wise choice of the
method generating our DoE is then crucial for a good exploration.

In the following section, we provide an overview of the main methods to generate a
design of experiments. We also motivate the use of the Latin Hypercube Sampling
(LHS) method (Mckay et al., 1979) for our industrial case. Then, in Section
2, we present some new convergence results under LHS for an important class
of estimators: the Z-estimators. Indeed, this class of estimators covers a large
number of estimation methods, including for instance the maximum likelihood.
Finally, we discuss in Section 2.3 the behavior of statistics specifically used in our
methodology, under LHS.

2.1 Review of sampling methods
In this section we present a brief overview of the existing sampling methods for
the input space of a simulation code. We later provide a rationale for our choice
to use LHS in our application.

Before presenting these different methods, let us introduce some notations that will
be used throughout the rest of the chapter. We first denote by X = (X1, . . . , Xd)
the vector of the d independent inputs evolving in a measurable space X ⊂ Rd.
For simplicity and without loss of generality, we assume that the d inputs vary
uniformly in [0, 1] so we have that, for j = J1, dK, Xj ∼ U[0,1] . Indeed, one
can always work under uniformity and then apply the inverse transformation to
place the support back on the original scale and retrieve the original distribution
(Devroye, 1986). In our case study, only a preliminary re-scaling before running
the simulation is needed.
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A DoE associated to X and generated using a sampling method, generically
denoted “METHOD” is written as follows:

• XMETHOD =
(
x(1), . . . ,x(n)

)T
∈ Mn,d([0, 1]). Here, n ∈ N∗ is the sample

size. We also recall that Mn,d([0, 1]) denotes the space of matrices of size
n× d with coefficients in [0, 1].

• xMETHOD
j =

(
x

(1)
j , . . . , x

(n)
j

)T
with j ∈ J1, dK is the jth column of XMETHOD

corresponding to the effective generated sample of the input Xj.

If no sampling method is mentioned, it means that the results presented do not
depend on the sampling method.

We also define the measurable function f : X → Rq with q ∈ N∗ such that
f(X) = Y . This function represents in practice the studied simulation code.
YMETHOD = f(XMETHOD) = (y(1), . . . ,y(n))T is the matrix of output samples
corresponding to the DoE XMETHOD.

For a = (a1, . . . , aq) ∈ Rq with q ∈ N∗, we denotes by ||a|| the Euclidean norm of
a such that ||a||2 = ∑q

i=1 a
2
i . Similarly, for any matrix A ∈ Mq,q(R), we denote by

||A|| the pseudo Euclidean norm (Frobenius norm) such that ||A||2 = ∑
1≤i,j≤q A

2
i,j .

Here, Ai,j with i, j ∈ J1, qK are the components of the matrix A. A pseudo
Euclidean norm ||.|| is finally associated to the tensor space Tq,q,q(R). This norm
is defined, for all T ∈ Tq,q,q(R), by ||T ||2 = ∑

1≤i,j,k≤q T
2
i,j,k. Here, Ti,j,k with

i, j, k ∈ J1, qK are the components of the tensor T .

We denote by o(1) (“small oh-one”) a deterministic sequence that converges to
0 and O(1) (“big oh-one”) a deterministic sequence that is bounded. We denote
by op(1) (“small oh-P-one”) a sequence of random variables that converges in
probability to 0. The expression Op(1) (“big oh-P-one”) denotes a sequence of
random variables that is bounded in probability. We recall that a sequence of
random variables (Wn)n∈N is bounded in probability if, for any scalar ϵ > 0, there
exist M and N such that, ∀n > N , P(||Wn|| > M) < ϵ.

Finally, a multivariate normal distribution of dimension q (q ∈ N∗) with a mean
equal to µ ∈ Rq and a covariance matrix equal to Σ ∈ Mq,q(R) is denoted Nq(µ,Σ).

2.1.1 Simple Random Sampling (SRS)
Simple Random Sampling (SRS), also called Monte Carlo sampling, is one of the
first methods that have been used in the context of uncertainty quantification. It
is indeed an intuitive method with good properties.
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This method simply consists in independently drawing n realizations of each input
random variable. The sample obtained for an input Xj is of the form xSRS

j =
(u(1)

j , . . . , u
(n)
j )T . Here, (u(i)

j )
i∈J1,nK are independent and identically distributed (i.i.d.)

realizations of the distribution U[0,1]. Figure 2.1 shows an example of a Monte
Carlo DoE in dimension 2 with n = 20 and n = 100 points.

Figure 2.1: SRS of dimension d = 2 with n = 20 on the left and n = 100 points on
the right.

This method has several advantages. First, its computational cost is low, even for
very high sample sizes and input dimensions. Moreover, the obtained samples are
by construction i.i.d. Due to this property, one can add or remove points to a given
data sample without losing the i.i.d. characteristic. In addition, the convergence
results of statistics are usually settled in this context. Thus, using a SRS design
allows the user to write theoretical properties of the objects at hand. In particular,
one knows exactly quantities as asymptotic mean, variance or distribution.

Nevertheless, as one can observe in Figure 2.1, the coverage of the input space can
be irregular. This is due to the purely random nature of the method. This is even
more true when the dimension increases.
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2.1.2 Low-discrepancy sequences
The discrepancy is a measure quantifying the difference between a design and the
uniform distribution (Thiémard, 2000). In other words, the discrepancy of a DoE
X can be viewed as the largest absolute difference between the continuous uniform
probability and the X taken over all possible sub-cubes of [0, 1]d. The lower a
discrepancy measure is, the better a sample is distributed. Several discrepancy
measures have been established. For instance, the extreme discrepancy of X is
defined as follow:

Discn(X) = sup
s∈S

∣∣∣Q(s,X)
n

− λ(s)
∣∣∣.

Here,

• S is the set of all d-dimensional rectangles of the form ∏d
j=1[aj, bj [=

∏d
j=1{x ∈

Rd, aj ≤ xj < bj} where 0 ≤ aj < bj ≤ 1, j ∈ J1, d K;
• λ is the d-dimensional Lebesgue measure;
• Q(s,X) is the number of points of the DoE X in the subset s ∈ S.

Another discrepancy measure, the star discrepancy Disc∗
n(X) can be defined simi-

larly by replacing the set S by the set S∗ = ∏d
j=1[0, cj[, cj being in the half-open

interval [0, 1[. Only the sub-class of rectangles containing the origin are taking into
account for the star discrepancy. An interesting thing is that these two discrepancy
measures are related through the following inequality:

Disc∗
n(X) ≤ Discn(X) ≤ 2dDisc∗

n(X).

Low-discrepancy suites are designed to minimise a discrepancy measure such as
Discn or Disc∗

n . More formally, a low-discrepancy sequence (v(i))i∈N is built such
that for any integer k, the sub-sequence v(1), . . . v(k) has an optimal discrepancy.
To obtain an n-sample of a variable Xj, we simply take the n first elements of
the low discrepancy sequence: xLDS

j = (v(1), . . . , v(n))T . The samples of the other
inputs are obtained similarly, only changing the initialization of the sequence.

Thus, designs generated by low discrepancy sequences well cover, by construction,
the input space. They also have the particularity of being purely deterministic.
Halton (1964) and Sobol’ (1967) gave examples of low discrepancy sequences.
Figure 2.2 shows two DoE in dimension d = 2 generated by the Sobol’ sequence,
with n = 100 points and n = 1000 points respectively.
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Figure 2.2: Sobol’ sequence of dimension d = 2 and size n = 100 on the left and
size n = 1000 on the right.

These DoE generation methods have a low computational cost, while allowing
a very good space coverage. Moreover, as numerical sequences, they guarantee
a perfect sequentiality and are easily reproducible. Only the first term of the
sequence is needed to rebuild the whole DoE.

However, the main weakness of these methods is the presence of patterns or
alignments, when generating many points or when the input space is large. Figure
2.2 illustrates this problem well. These patterns artificially create a form of
interdependence between the inputs. In practice, this can affect the analysis of the
code studied. Scrambling methods can nevertheless partially address this problem.
The idea is to slightly disturb the numerical structure of the sequence to mitigate
the patterns initially observed. For detailed description of scrambling methods,
see (Chi et al., 2005) for instance. Another major disadvantage of this approach is
the lack of theoretical convergence properties. This is in contrast to the simple
Monte Carlo method, for which most asymptotic results are known.

2.1.3 Latin Hypercube Samplings (LHS)
Latin Hypercube Sampling (LHS), proposed in (Mckay et al., 1979), is another
method for generating DoE. The idea of LHS is to divide the range of variation of
each input into n intervals of size 1/n and then randomly generate a coordinate in

53



each interval of each dimension. Mapping these draws along each dimension allows
the design of experiments to be obtained. For a better understanding, let us give
an example. Imagine we are dealing with a square area in dimension 2. The LHS
method consists of three steps. The first is to subdivide the domain into a grid of
n2 squares of equal area. The second is to randomly choose n squares such that no
pair of squares has the same row or column. Finally, a point is randomly chosen
in each square previously selected. Figure 2.3 gives schematic examples of LHS of
dimension 2 and size n = 4. The process is similar in higher dimensions.

Figure 2.3: Three schematic examples of LHS of dimension 2 and size n = 4.

Mathematically, to obtain the sample corresponding to an input Xj, we segment
the interval [0, 1] into n intervals of the same length and we randomly choose a
point in each one. To do so, we denote:

1. πj = (πj(1) . . . πj(n))T , j ∈ J1, dK as a random permutation of J1, nK, accord-
ing to the uniform distribution on the set of a all possible permutations of
J1, nK. The random permutations (πj)j∈J1,dK are assumed to be independent.

2. uj = (u(1)
j , . . . , u

(n)
j )T , j ∈ J1, dK as an i.i.d. sample of the uniform distribu-

tion U[0,1]. The samples (uj)j∈J1,dK are assumed to be independent.

Note that the random permutations (πj)j∈J1,dK and the samples (uj)j∈J1,dK are also
assumed to be independent. The n-sized sampling xLHSj of the input Xj, j ∈ J1, dK,
is then defined as follow:

xLHS
j =

(
x

(1)
j , . . . , x

(n)
j

)T
=
(
(πj(1) − u

(1)
j )/n, . . . , (πj(n) − u

(n)
j )/n

)T
. (2.1)
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The corresponding Latin Hypercube of dimension d and size n is then XLHS =
(xLHS

1 , . . . ,xLHS
d ).

The LHS method leads to a good point repartition in the sub-projections of
dimension 1. Indeed, one has by definition,

min
1≤i,i′≤n

(|x(i)
j − x

(i′)
j |) ≤ 2/n.

As a result of its stratified nature, the realizations of the LHS design are not i.i.d.
However, LHS designs still ensure good statistical properties. Several results have
been indeed established for the convergence of estimators under LHS. Most of
them concern mean statistics (first order U-statistics). For instance, it has been
shown that the estimator of µf = E(f(X)) is unbiased (Mckay et al., 1979):

Property 2.1 Let f : [0, 1]d → Rq with d, q ∈ N∗ be a measurable function such
that E(||f(X)||) < +∞. Denote

f̄LHSn = 1
n

n∑
i=1

f(x(i)),

where x(i), i ∈ J1, nK is such that XLHS =
(
x(1), . . . ,x(n)

)T
with XLHS being defined

using Equation (2.1). Then, f̄LHSn is an unbiased estimator of µf = E(f(X)).

In the sequel, we denote by f̄METHOD
n the empirical mean defined by analogy with

the one of Property 2.1, but using the sampling method “METHOD”.

A second interesting characteristic of the mean value estimators using LHS is
their variance. Indeed, Stein (1987) showed that if f is a real-valued function
such that E[f 2(X)] < +∞, then Var(f̄LHSn ) is always asymptotically smaller than
Var(f̄SRSn ). This result is generalized to multidimensional outputs in Loh (1996).
Property 2.2 summarizes the main results regarding the covariance matrix of f̄LHSn ,
in a similar manner to what is presented in Loh (1996):

Property 2.2 Let f : [0, 1]d → Rq, d, q ∈ N∗ be a measurable function such that
E(||f(X)||2) < +∞. Let Σf̄SRS

n
and Σf̄LHS

n
be the covariance matrices of f̄SRSn and

f̄LHSn respectively, with Σf̄SRS
n

= 1
n
E
((
f(X) − µf

)(
f(X) − µf

)T)
.

We also define, for x = (x1, . . . , xd) ∈ [0, 1]d:

• f−j(xj) =
∫

[0,1]d−1 [f(x) − µf ]
∏

1≤k≤d,k ̸=j
dxk with j ∈ J1, dK.

• frem(x) = f(x) − µf −∑d
j=1 f−j(xj)
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Then we have, when n → +∞ :

• Σf̄LHS
n

= 1
n

∫
[0,1]d frem(x)frem(x)Tdx + 1

n
o(1).

• Σf̄SRS
n

= 1
n

∫
[0,1]d frem(x)frem(x)Tdx + 1

n

∑d
j=1

∫
[0,1] f−j(xj)f−j(xj)Tdxj.

We therefore have that Σf̄SRS
n

− Σf̄LHS
n

is asymptotically positive semidefinite, that
is,

∀ξ ∈ Rp, lim
n→+∞

nξT (Σf̄SRS
n

− Σf̄LHS
n

)ξ ≥ ∑d
j=1

∫
[0,1] ξ

Tf−j(xj)f−j(xj)T ξdxj ≥ 0.

Notice that the normalized quantity n(Σf̄SRS
n

− Σf̄LHS
n

) is also asymptotically
positive semidefinite, according to the last equation of Property 2.2.

Since f̄SRSn converges in quadratic mean to µf , we can therefore conclude that
f̄LHSn converges in quadratic mean to µf , lim

n→+∞
E
(
||f̄LHSn − µf ||2

)
= 0. Thus,

f̄LHSn converges in probability to µf .

In addition, Owen (1992) showed a Central Limit Theorem (CLT) for this class of
estimators under LHS when the model function f is bounded. This was generalized
to any function with finite third moment in (Loh, 1996). Let us introduce, in
the framework of Property 2.2, Rf =

∫
[0,1]d frem(x)frem(x)Tdx. Notice that

asymptotically we have Σf̄LHS
n

= 1
n

(
Rf + o(1)

)
. It is important to note that,

unlike Σf̄LHS
n

, Rf does not depend on n. The CLT can be then expressed as follow:

Theorem 2.1 Let f : [0, 1]d → Rq, with d, q ∈ N∗ be a measurable function such
that E

(
||f(X)||3

)
< +∞. Then assuming that Rf is non-singular, we have that

√
nR

−1/2
f (f̄LHSn − µf ) n→+∞−−−−→ Nq(0, Iq). Here, Iq is the identity matrix of size q.

Notice that we also have that, under the same conditions,
√
n(f̄LHSn − µf ) n→+∞−−−−→

Nq(0,Rf ). Theorem 2.1 will be used in this form later.

Thus, even if LHS samples are not i.i.d., the convergence properties are preserved
for the estimators of a mean value. Moreover, the variance of mean estimators is
lower under LHS than under SRS.

A way to get even better space-filling properties is to optimize an initial LHS ac-
cording to a criterion describing the spatial mapping, such as discrepancy measures
presented above (Damblin et al., 2013). The counterpart of LHS optimization
is that the dependencies between the realizations become more complex to char-
acterize. Moreover, as for low discrepancy sequences, there are no theoretical
guarantees concerning the convergence of statistics for this type of DoE.

Figure 2.4 depicts a pure Monte Carlo (SRS), a LHS and an optimized LHS
regarding the star discrepancy (Damblin et al., 2013). We can observe from these
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figures that the mapping is better with an LHS than with a pure Monte Carlo
sample. It is even better with an optimized LHS, but as expected, the repartition
of the points seems more structured.

Figure 2.4: From left to right: examples of SRS, LHS and optimized LHS, all with
dimension d = 2 and size n = 20 realizations.

Consequently, for our industrial application, the selected DoE method is the classic
LHS. In fact, it allows a good compromise between space coverage regardless
of dimension and theoretical convergence properties. The rest of this chapter
therefore discusses the convergence of different statistics under LHS.

2.2 M- and Z-estimators under LHS
M -estimators are a broad class of estimators. In general, they are obtained by
optimizing an empirical mean. The definition of M -estimators was motivated by
robust statistics. We refer to Rousseeuw et al. (1986) for a more general discussion
on the subject. The Z-estimator class is directly related to the M -estimator class.
The brief overview given here is mainly inspired by the fifth chapter of Van der
Vaart (1998).

Let X = (x(1), . . . ,x(n))T be the vector of n realizations of a random variable X
evolving in a measurable space X ⊂ Rp, with p ∈ N∗. Its law is parameterized by a
vector θ ∈ Θ ⊂ Rq, q ∈ N∗. The statistic θ̂n = θ̂n(x(1), . . . ,x(n)) is a M -estimator
of θ if it maximises a function of the type

θ → Mn(θ) = 1
n

n∑
i=1

mθ(x(i)). (2.2)
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Here, mθ is a known real-valued function on X . The maximum value of a function
is often found by setting a derivative (or a set of derivative) to 0. In this case, the
maximisation problem can be reformulated by the following vectorial equations,
with ψθ corresponding to the vector of derivatives of mθ:

Ψn(θ) = 1
n

n∑
i=1

ψθ(x(i)) = 0. (2.3)

More generally, we may consider in Eq. (2.3) the function ψθ as a known measurable
and vector-valued map evolving from Rp to Rq. ψθ is not necessarily a derivative of
another function in the general case. The name Z-estimator is used for estimators
θ̂n satisfying the vectorial equations (2.3). In this section, we are focusing on this
kind of estimator. Thus in the following, the notation θ̂n will always refer to an
estimator defined by Equation (2.3). This equation may not have an exact solution.
Then it is natural to use as estimator a value that is close to zero. Estimators that
are sufficiently close to being a zero often have the same asymptotic behavior.

Many known estimators can be defined as Z-estimator. For instance, let X have
a distribution function fθ with a continuous first derivative in θ ∈ Θ. In this case,
the maximum likelihood estimator of θ can be written as a Z-estimator as defined
by 2.3 with, for x ∈ Rp, p ∈ N∗, ψθ(x) = (∂ log(fθ(x))

∂θ1
, . . . , ∂ log(fθ(x))

∂θq
)T .

The aim of this section is to extend the results on the convergence of empirical
mean estimators under LHS, namely Properties 2.1, 2.2 and Theorem 2.1, to the
class of Z-estimators. First, useful general results concerning the convergence of
Z-estimators are discussed. Then, we give original results regarding the asymptotic
normality of this class of estimators under LHS.

2.2.1 Known properties of Z-estimators
The first useful properties regarding Z-estimators concern the link between the
consistency of Ψn(θ) and the consistency of θ̂n. These properties set assumptions
on the objective function Ψn(θ) that ensure convergence of the parameter θ we
aim to estimate.

For instance, if the parameter θ is a scalar, Proposition 2.3 presented in (Van der
Vaart, 1998) gives sufficient conditions for the convergence of θ̂n:

Property 2.3 Let Θ be a subset of the real line. Let Ψn(θ) be random functions
and Ψ(θ) a fixed function of θ ∈ Θ such that Ψn(θ) converges to Ψ(θ) in probability
for every θ. Assume also that each map θ → Ψn(θ) is continuous and has exactly
one zero θ̂n, or is nondecreasing and converges to 0 in probability. Let θ0 be a point
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such that Ψ(θ0 − ϵ) < 0 < Ψ(θ0 + ϵ) for every ϵ > 0.

Then θ̂n is a consistent estimator of θ0, meaning that θ̂n
p−−−−→

n→+∞
θ0.

This property has the advantage of holding under simple assumptions. However,
as mentioned, it is limited to the scalar case. In Dacunha-Castelle and Duflo
(1986), one can find assumptions for which the consistency of θ̂n is ensured in the
multidimensional case:

Property 2.4 Let Θ be a compact subset of Rq with q ∈ N∗. Let also assume that
the following hypotheses are true, for any θ ∈ Θ, :

• the functions Ψn(θ) and Ψ(θ) are continuous functions of θ ∈ Θ;

• each function θ → Ψn(θ) has exactly one zero θ̂n ∈ Θ;

• Ψn(θ) converges to Ψ(θ) in probability;

• Ψ(θ) vanishes only at θ0 with θ0 ∈ Θ;

• denoting, for η ≥ 0, wn(η) = sup{||Ψn(θ1)−Ψn(θ2)||; ||θ1 −θ2|| ≤ η,θ1,θ2 ∈
Θ} ; there exists two sequences (ηk) and (ϵk) both decreasing to 0 such that,
for all k ∈ N, P(wn(ηk) > ϵk) −−−−→

n→+∞
0.

Then θ̂n is a consistent estimator of θ0, that is θ̂n
p−−−−→

n→+∞
θ0.

The assumption on wn(η) seems difficult to grasp at first glance. However, as
mentioned in (Dacunha-Castelle and Duflo, 1986), if we find a function ϕ from
R+ to R such that lim

η→0+
ϕ(η) = 0, this assumption on wn can be obtained through:

P(wn(η) ≥ 2ϕ(η)) −−−−→
n→+∞

0 for each η ≥ 0. For instance, wn(η) −−−−→
n→+∞

ϕ(η), or
lim

n→+∞
wn(η) ≤ ϕ(η) give both sufficient conditions.

In addition to these convergence properties, several central limit theorems for
Z-estimators have been proved. Here we give one of them, proposed in (Van
der Vaart, 1998). Theorem 2.2 relies on the so-called classic conditions. They
were formulated in the 1930s and 1940s to mathematically tighten the informal
derivation of the asymptotic normality of maximum likelihood proposed earlier by
Fisher (1922). These conditions are stringent but they are simple. They lead to a
simple proof of the central limit theorem. This simplicity will allow us to adapt
this theorem to the LHS case.

In particular, a needed assumption for the application of this theorem concerns
the existence of a first and a second order derivatives in θ for ψθ. Let us introduce
these terms, assuming they exist.
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We consider that Θ is an open subset of an Euclidean space of dimension q, q ∈ N∗.
The first order partial derivative ψθ in θ ∈ Θ is a size q × q matrix is denoted ψ̇θ.
Its components are such that ψ̇θ,j,k = ∂ψθ,j

∂θk
.

The second order partial derivative is a tensor of size q × q × q (a q-vector of q × q

matrices) denoted ψ̈θ such that ψ̈θ,j,k,l = ∂2ψθ,j

∂θk∂θl
.

Theorem 2.2 Let Θ be an open subset of an Euclidean space of dimension q, q ∈
N∗ and X be a measurable subspace of Rp, p ∈ N∗. Assume that, for all θ ∈ Θ and
for all x ∈ X , the function θ → ψθ(x) is twice continuously differentiable in θ.

Let XSRS = (x(1), . . . ,x(n))T be the vector of i.i.d realizations of a random variable
X = (X1, . . . Xp) evolving in X .

Suppose also that the following assumptions are fulfilled:

1. ΨSRS
n (θ̂SRSn ) = 1

n

∑n
i=1 ψθ̂SRS

n
(x(i)) = 0,∀n ∈ N;

2. there exists a unique θ0 ∈ Θ such that E(ψθ0(X)) = Ψ(θ0) = 0 with θ0 ∈ Θ;

3. E(||ψθ0(X)||2) < +∞;

4. E( ˙ψθ0(X)) exists and is nonsingular;

5. the function θ → ψ̈θ(x) is dominated in norm by a fixed integrable function
ψ̈(x) for every θ in the neighborhood of θ0.

Then, if θ̂SRSn is a consistent θ0 , we have:

(θ̂SRSn − θ0) = −[E( ˙ψθ0(X))]−1 1
n

n∑
i=1

ψθ0(x(i)) + 1√
n
op(1).

Moreover, we have that the sequence
√
n(θ̂SRSn − θ0) is asymptotically normal with

mean zero and a covariance matrix equal to [E( ˙ψθ0(X))]−1E
(
ψθ0(X)ψθ0(X)T

)
[E( ˙ψθ0(X))]−T .

For the following, it is important to note that we have

1
n
E
(
ψθ0(X)ψθ0(X)T

)
= ΣΨSRS

n (θ0).

Here, ΣΨSRS
n (θ0) is the covariance matrix of ΨSRS

n (θ0). It is also important to notice
that among the results presented in this subsection, only Theorem 2.2 shown here
requires the use of an i.i.d sample, since its proof relies on the classical Central
Limit Theorem (CLT).
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2.2.2 Convergence of Z-estimators under LHS
In this section, we extend the convergence properties of Z-estimators to LHS
designs. The idea is to combine all the properties mentioned above. Indeed, we
notice that the Z-function Ψn(θ) is written as an empirical mean of ψθ. Moreover,
as mentioned in Subsection 1.1.3, the convergence of this kind of statistics under
LHS holds. This is what we exploit here. In particular, a central limit theorem for
Z-estimators under LHS is proposed.

As before, the covariance matrix of ΨLHS
n (θ) and ΨSRS

n (θ) are denoted
by ΣΨLHS

n (θ) and ΣΨSRS
n (θ) respectively. We also introduce the term

Rψθ
=

∫
[0,1]p ψθrem(x)ψθrem(x)Tdx, with ψθrem being defined as in Prop-

erty 2.2. Let us now give some noteworthy convergence properties on ΨLHS
n (θ).

Property 2.5 Let Θ be an open bounded subset of Rq and X = [0, 1]p (q, p ∈ N∗).
Let XLHS = (x(1), . . . ,x(n))T be the vector of LHS realizations of a random variable
X = (X1, . . . Xp) evolving in X such that X ∼ U[0,1]p. Assume also that, for all
θ ∈ Θ, ψθ is a measurable function from X to Rq. We then have the following
properties on ΨLHS

n (θ) = 1
n

∑n
i=1 ψθ(x(i)):

1. If, for all θ ∈ Θ, E(||ψθ(X))||) < +∞, ΨLHS
n (θ) is an unbiased estimator

of Ψ(θ) = E(ψθ(X));

2. If, for all θ ∈ Θ, E(||ψθ(X))||2) < +∞, we also have, when n → +∞:

ΣΨLHS
n (θ) = 1

n
Rψθ

+ 1
n
o(1).

Moreover, we have that n(ΣΨSRS
n (θ) − ΣΨLHS

n (θ)) is asymptotically positive
semi-definite and that ΨLHS

n (θ) converges in quadratic mean to Ψ(θ). In
other words, we have lim

n→+∞
E
(
||ΨLHS

n (θ) − Ψ(θ)||2
)

= 0;

3. If, for all θ ∈ Θ, E(||ψθ(X))||3) < +∞ and if Rψθ
is non-singular, then√

n(ΨLHS
n (θ) − Ψ(θ)) is asymptotically normal with mean 0 and covariance

matrix equal to Rψθ
.

Proof. Let us show these properties one by one:

1. Since, for all θ ∈ Θ, the function x → ψθ(x) with x ∈ X is measurable and
E(||ψθ(X))||) < +∞, ΨLHS

n (θ) is an unbiased estimator of Ψ(θ) by Property
2.1.

2. This is a direct consequence of Property 2.2.
3. This is a direct consequence of Theorem 2.1. ■
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All these properties on ΨLHS
n (θ) allow to show the convergence of θ̂LHSn . Indeed,

the assertion 2 of Property 2.5 ensures the convergence in probability of ΨLHS
n (θ)

to Ψ(θ). As mentioned before, Properties 2.3 and 2.4 do not impose any other
conditions on the sampling scheme. We therefore have, under the conditions
of application of at least one of these properties, that θ̂LHSn converges to θ0 in
probability. Let us now establish a central limit theorem for Z-estimators under
LHS.

Theorem 2.3 Let Θ be an open subset of an Euclidean space of dimension q with
q ∈ N∗ and X = [0, 1]p with p ∈ N∗. Assume that, for all θ ∈ Θ and for all x ∈ X ,
the function θ → ψθ(x) is twice continuously differentiable in θ. The first order
derivative is a size q × q matrix denoted ψ̇θ and the second order partial derivative
is a size q× q× q tensor denoted ψ̈θ. Let XLHS = (x(1), . . . ,x(n))T be the vector of
LHS realizations of a random variable X = (X1, . . . Xp) evolving in X such that
X ∼ U[0,1]p.

Suppose also that the following hypotheses are fulfilled:

1. ∀n ∈ N,Ψn(θ̂LHSn ) = 1
n

∑n
i=1 ψθ̂LHS

n
(x(i)) = 0 ;

2. there is θ0 ∈ Θ such that E(ψθ0(X)) = Ψ(θ0) = 0;

3. E(||ψθ0(X)||2) < +∞;

4. E( ˙ψθ0(X)) is nonsingular and such that E(|| ˙ψθ0(X)||2) < +∞;

5. the function θ → ψ̈θ(x) is dominated in norm by a fixed integrable function
ψ̈(x) for every θ in the neighborhood of θ0.

Then, if θ̂LHSn is a consistent estimator of θ0, we have:

(θ̂LHSn − θ0) = −[E( ˙ψθ0(X))]−1 1
n

n∑
i=1

ψθ0(x(i)) + 1√
n
op(1).

In particular, we have that the covariance matrix of θ̂LHSn , Σθ̂LHS
n

=
[E( ˙ψθ0(X))]−1ΣΨLHS

n (θ0)[E( ˙ψθ0(X))]−T + 1
n
o(1), with ΣΨLHS

n (θ0) = 1
n
Rψθ0

+ 1
n
o(1)

asymptotically. Moreover, we have that n(Σθ̂SRS
n

− Σθ̂LHS
n

) is asymptotically
positive semi-definite.

In addition, if the function ψθ0 is such that E(||ψθ0(X)||3) < +∞ and if Rψθ0
is

non-singular, we have that the sequence
√
n(θ̂LHS − θ0) is asymptotically normal

with mean zero and a covariance matrix equal to [E( ˙ψθ0(X))]−1Rψθ0
[E( ˙ψθ0(X))]−T .

Proof. The reasoning of this proof is adapted from the one given in (Van der Vaart,
1998) to demonstrate Theorem 2.2.
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By Taylor’s theorem, as Ψn(θ) is continuous and twice differentiable, ∃ θ̃LHSn

between θ0 and θ̂LHSn such that:

ΨLHS
n (θ̂LHSn ) = 0 = ΨLHS

n (θ0) + Ψ̇LHS
n (θ0)(θ̂LHSn − θ0)

+1
2(θ̂LHSn − θ0)T Ψ̈n

LHS(θ̃LHSn )(θ̂LHSn − θ0).

We have, since E(||ψθ0(X)||2) < +∞ that ΨLHS
n (θ0) = 1

n

∑n
i=1 ψθ0(x(i)) converges

in probability to E(ψθ0(X)) = 0, thanks to Property 2.5: ΨLHS
n (θ0)

p−−−−→
n→+∞

E(ψθ0(X)) = 0.

Similarly, since Ψ̇LHS
n (θ) is the empirical mean of the matrix ψ̇θ over XLHS =

(x(1) . . .x(n))T , then Ψ̇LHS
n

p−−−−→
n→+∞

E(ψ̇θ0(X)) (with E(||ψ̇θ0(X)||2) < +∞). In
addition, thanks to assumption 4, we also have that E(ψ̇θ0(X)) is nonsingular.

The term Ψ̈n
LHS(θ) corresponds to the empirical mean of the q × q × q tensor ψ̈θ

over XLHS = (x(1) . . .x(n))T . By assumption 5, there is a ball B around θ0 such
that ψ̈θ is dominated in norm by ||ψ̈||. Since we have θ̂LHSn

p−−−−→
n→+∞

θ0, we also
have P(θ̃LHSn ∈ B) −−−−→

n→+∞
1. Moreover, if θ̃LHSn ∈ B, we have:

||Ψ̈LHS
n (θ̃LHSn )|| = || 1

n

∑n
i=1 ψ̈θ̃LHS

n
(x(i))|| ≤ 1

n

∑n
i=1 ||ψ̈(x(i))||.

Since ||ψ̈|| is integrable and the right term is an empirical mean, it converges to a
finite value thanks to Property 2.4. Hence it is the case for the left term.

So that, we can rewrite the Taylor’s expansion as follow:

−ΨLHS
n (θ0) =

[
E(ψ̇θ0(X)) + op(1) + 1

2(θ̂LHSn − θ0)TOp(1)
]
(θ̂LHSn − θ0).

Since θ̂n converges in probability to θ0, we have that (θ̂n − θ0)Op(1) converges to
0 and thus:

−ΨLHS
n (θ0) =

[
E(ψ̇θ0(X)) + op(1)

]
(θ̂LHSn − θ0).

This leads to the equation given in 2.3, considering that E(ψ̇θ0) is nonsingular and
that we have asymptotically ΨLHS

n (θ0) = 1√
n
Op(1):

(θ̂LHSn − θ0) = −[E( ˙ψθ0(X))]−1 1
n

n∑
i=1

ψθ0(x(i)) + 1√
n
op(1).
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Using this result, we directly have Σθ̂LHS
n

= [E( ˙ψθ0(X))]−1ΣΨLHS
n (θ0)[E( ˙ψθ0(X))]−T .

Moreover, we have that n(ΣΨSRS
n (θ0) − ΣΨLHS

n (θ0)) is asymptotically positive semi-
definite thanks to Property 2.5. Thus, this is also the case for n(Σθ̂SRS

n
− Σθ̂LHS

n
).

Finally, if we suppose that E(||ψθ0(X)||3) < +∞ and that Rψθ0
is nonsingu-

lar, we have thanks to the assertion 3 of Property 2.5 that
√
n(θ̂LHSn − θ0)

is asymptotically normal with mean zero and a covariance matrix equal to
[E( ˙ψθ0(X))]−1Rψθ0

[E( ˙ψθ0(X))]−1. ■

Recall that, even if the results of Property 2.5 and Theorem 2.3 are given for
X ∼ U[0,1]p for simplicity, they can be easily generalized using the quantile
transformation (Devroye, 1986).

These results give an asymptotic convergence for θ̂LHSn with, in the univariate
case, a lower asymptotic variance of estimation than θ̂SRSn (corresponding to
n(Σθ̂SRS

n
− Σθ̂LHS

n
) being asymptotically positive semi-definite in the multivariate

case). Moreover, it gives a central limit theorem for Z-estimators under LHS.
While strong regularity conditions on ψθ are needed for these results to be valid,
it remains very useful in many practical cases (eg. for the estimation of maximum
likelihood). In the next subsection we give an example of application.

2.2.3 Application for the parameters estimation of gen-
eralized linear models: the example of the logistic
regression

In the context of the statistical analysis of a computational code, it is common
that one wants to approximate its outputs with a regression model. This is an
important step in the methodology presented in this work (see Section 4.2 for
more details). If the estimation of the modeling parameters can be expressed as
a Z-estimator and the other conditions of use are satisfied, Theorem 2.3 ensures
that the estimation variance of these parameters is asymptotically lower under
LHS than under SRS. It also provides a central limit theorem under LHS.

Consider the case of generalized linear models (GLM), proposed in (Nelder and
Wedderburn, 1972). They were formulated as a way of unifying various statistical
models, including linear regression, logistic regression and Poisson regression. To
estimate the parameters of a GLM, one generally uses a Maximum Likelihood
Estimator (MLE). It is therefore a special case of Z-estimation. Thus, the results
presented above can be applied to parameters estimation of a GLM. To illustrate
this, we focus here logistic regression, which is a simple example of GLM.
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Logistic regression or logit model is a binary regression model. This model aims
to explain a binary variable Z with a covariable X evolving in a measurable space
X ⊂ Rd, d ∈ N∗. For simplicity and without loss of generality we assume that
X ∼ U[0,1]d . Logistic Regression is widely used as a classification algorithm in
machine learning.

Z is supposed to follow a Bernoulli distribution such that P (Z = 1|X = x,θ) is
a function of x ∈ Rd and the modeling parameter is θ = (θ1, . . . , θd)T ∈ Θ with
Θ being an open bounded subset of Rd. This function, called pθ(x), is defined as
follow:

pθ(x) = 1

1 + e−
∑d

j=1 xjθj

= 1
1 + e−xθ

.

Let X =
(
x(1), . . . ,x(n)

)T
be the n realizations of X and Z =

(
z(1), . . . , z(n)

)T
be

the n realizations modeled by the logistic regression.

Suppose that one wants to estimate the optimal value θ0 = (θ0,1, . . . , θ0,d)T of
the parameter θ regarding the observations of x and Z. The likelihood of an
observation z(i) with i ∈ J1, nK and a vector of parameters θ is

l(z(i)|x(i),θ) = pθ(x(i))z(i)(1 − pθ(x(i)))1−z(i) .

If the n realizations are independent, the global likelihood of the observations
corresponds to L(Z|X,θ) = ∏n

i=1 l(z(i)|x(i),θ). The maximum likelihood estimator
corresponds then to θ̂n = argmax

θ∈Θ
(L(Z|X,θ)). Since the log function is strictly

increasing on ]0,+∞[, we also have that θ̂n = argmax
θ∈Θ

(∑n
i=1 log

[
l(z(i)|x(i),θ)

]
).

The log-likelihood can be written as follow:

log
[
L(Z|X,θ)

]
= ∑n

i=1 log
(
l(z(i)|x(i),θ)

)
= ∑n

i=1

[
z(i) log(pθ(x(i))) + (1 − z(i)) log(1 − pθ(x(i)))

]
= ∑n

i=1

[
z(i)x(i)θ − log(1 + ex(i)θ)

]
.

Since log[l(z(i)|x(i),θ)] is differentiable in θ, the maximum likelihood estimator θ̂n
is a solution of the vectorial equation:

n∑
i=1

∇ log[l(z(i)|x(i),θ)] = 0 (2.4)
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with ∇ log[l(z(i)|x(i),θ) = (∂ log[l(z(i)|x(i),θ)]
∂θ1

, . . . , ∂ log[l(z(i)|x(i),θ)]
∂θd

)T .

The quantity θ̂n is therefore a Z-estimator of θ0 as defined in Equation (2.3),
with ψθ(x(i)) = (ψθ1(x(i)), . . . , ψθd

(x(i)))T = ∇ log[l(z(i)|x(i), θ). Here we have, for
j ∈ J1, dK, ψθj

(x(i)) = ∂ log[l(z(i)|x(i),θj)]
∂θj

= x
(i)
j

(
z(i) − pθ(x(i))

)
.

We can see that the estimation of the parameters of a logistic regression by MLE
fits into the framework of Z-estimation. Thus, let us suppose that the observations
of X are obtained by a LHS. We consider the Z-estimator defined by the equation
2.4, even if in this case the realization are not independent anymore. Let us discuss
the convergence of this estimator under LHS.

Let XLHS = (x(i), . . .x(n))T be the realizations of X generated by a LHS. If we
suppose that X and θ are different from zero and since they are bounded, we have
that ΨLHS

n = ∑n
i=1 ψθ(x(i)) converges in probability to E(ψθ(X)) = Ψ(θ). As we

have seen, the other conditions concerning the convergence of θ̂n to θ0 are not
specific to the type of DoE. The conditions of application of Property 2.3 (resp 2.4)
are verified both in the case of an SRS or a LHS design. We can thus conclude,
thanks to Property 2.3 that θ̂n converges in probability in θ0.

Let us now verify that the conditions of application of theorem 2.3 are fulfilled. First,
we see that Ψn is continuous and infinitely differentiable in θ. Plus, E(ψθ0) = 0 by
construction.

We also have, for j, j′ ∈ J1, dK, that ∂ψθ0,j
(x)

∂θj′
= xjxj′e−xθ0

(1+e−xθ0 )2 . Thus, we have that the
matrix of partial derivatives ˙ψθ0 is such that E( ˙ψθ0(X)) is defined and nonsingular
since X ̸= 0. Since the values of X and θ are bounded in norm, the function ψθ0

is bounded and thus E(||ψθ0(X)||3) < +∞. Finally, we have that ||ψ̈θ(x)|| can be
bounded by an integrable function since the values of θ and X are bounded.

All of these allows us to apply Theorem 2.3. We therefore have that the covariance
matrix of estimation of θ̂LHSn is equal to Σθ̂LHS

n
= [E( ˙ψθ0(X))]−1ΣΨLHS

n (θ0)[E( ˙ψθ0(X))]−T
and that n(Σθ̂SRS

n
− Σθ̂LHS

n
) is asymptotically positive semidefinite. Note that

we have, with the previously introduced notations, ΣΨLHS
n (θ0) = 1

n
(Rψθ0

+ o(1))
asymptotically.

Finally, if we suppose that E(||ψθ0(X)||3) < +∞, we have that
√
n(θ̂LHSn −

θ0) is asymptotically normal with mean zero and a covariance matrix equal to
[E( ˙ψθ0(X))]−1Rψθ0

[E( ˙ψθ0(X))]−1, assuming that Rψθ0
is non-singular.

A similar reasoning can be made regarding the maximum likelihood estimation of
other models belonging to the GLM family. However, it will be necessary to check
the applicability conditions of Theorem 2.3.
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2.3 Some other statistics under LHS
In the previous section, we established convergence properties for the class of
Z-estimators. However, within the presented work, some other statistics have to
be estimated. The objective of this section is to discuss their convergence under
LHS. A complete presentation of each of these tools is made in the next chapters.
Thus, we first discuss the Kolmogov statistic (see Chapter 3 for more details).
Then, we focus on the estimation of the first order Sobol’ indices by the Chatterjee
method (Gamboa et al., 2022) (see Chapter 4 for more details on Sobol’ indices).

2.3.1 Kolmogorov-Smirnov statistic under LHS
The Kolmogorov–Smirnov (KS) statistic (Shiryayev, 1992) is a rescaled distance
between a known reference continuous distribution and the sample under study.
A goodness-of-fit test is built upon this statistic. In this section, we focus on
the convergence of the KS statistic under LHS. For more information about this
statistic and its use, one can refer to Section 3.1 of this manuscript.

Let X be a continuous random variable with values in a set X ⊂ R. Let F : R →
[0, 1] be the cumulative distribution function of X. We define x = (x(1), . . . , x(n))T
as a sampling of X. Thus, the empirical cumulative distribution function of X
is Fn(t) = ∑n

i=1 1x(i)≤t, t ∈ R. Here, the notation 1 corresponds to the indicator
function. We also define x̃ = (x(σ(1)), . . . , x(σ(n)))T as the ordered realizations of X
such as x(σ(1)) ≤ . . . ≤ x(σ(n)).

The KS statistic is equal to SKSn (Fn, F ) =
√
nDn(Fn, F ). Here,

Dn(Fn, F ) = max1≤i≤n[max(| i
n

− F (x(σ(i)))|, |F (x(σ(i))) − i−1
n

|)].

Most of the theoretical results concerning the convergence of Dn and the Kol-
mogorov statistic are only true if x = (x(1), . . . , x(n))T is an i.i.d sample of X.
A summary of these results is given in Section 3.1. The goal here is to find the
distribution function of DLHS

n (Fn, F ) under LHS.

Let xLHS =
(
x(1), . . . , x(n)

)
be realizations of X generated by a LHS and x̃LHS

be the ordered realizations of xLHS. We have, by definition of LHS, that
(F (x(σ(1))), . . . F (x(σ(n))))T = ( i−u(σ(1))

n
, . . . , i−u

(σ(n))

n
)T . Here, (u(σ(1)), . . . , u(σ(n)))T

is a i.i.d sample of the uniform distribution U[0,1].

Thus the distance DLHS
n can be written as follow:

DLHS
n (Fn, F ) = max1≤i≤n[max(| i

n
− i− u(σ(i))

n
|, |i− u(σ(i))

n
− i− 1

n
|)]
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= max
1≤i≤n

[max(|u
(σ(i))

n
|, |1 − u(σ(i))

n
|)].

Moreover, since u(σ(i)) ∼ U[0,1] for all i ∈ J1, nK, w(i) = max(|u(σ(i))

n
|, |1−u(σ(i))

n
|)

follows uniform distribution U[1/2n,1/n].

Let us now find the cumulative distribution function of DLHS
n (Fn, F ). By def-

inition, FDLHS
n

(t) = P(DLHS
n ≤ t), t ∈ R. Thus, FDLHS

n
(t) = P(DLHS

n ≤ t) =
P(max1≤i≤n(w(i)) ≤ t). Since the (w(1), . . . , w(n)) are i.i.d, we have: FDLHS

n
(t) =∏n

i=1 P(w(i) ≤ t).

The cumulative distribution function of DLHS
n (Fn, F ) can therefore be written:

FDLHS
n

(t) = ∏n
i=1

t−1/2n
1/2n 1[1/2n,1/n](t) = (2nt − 1)n1[1/2n,1/n](t) (with FDLHS

n
(t) = 1

for t > 1/n)

Finally, the corresponding density is fDLHS
n

(t) = 2n2(2nt− 1)n−11[1/2n,1/n](t), t ∈ R.
we can note that the values taken by DLHS

n are bounded between 1/2n and 1/n.
This is due to the stratified character of LHS samples.

A plot of this density function for n = 10 is given on Figure 2.5. We also plot the
histogram of DSRS

n for comparison. It was estimated using L = 1000 SRS designs.
It is interesting to observe that the values taken by DLHS

n are overall much smaller
than the DSRS

n ones.

One can build a Kolmogorov test under LHS using these results by replacing the
cumulative distribution of the statistics under SRS by FDLHS

n
. This work was done

because the Kolmogorov-Smirnov statistic is used in Chapter 3 of this thesis and
the experimental design used in our industrial case is an LHS. Nevertheless, our
case is a bit different from the one presented here (see Section 3.1 for more details).
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Figure 2.5: Theoretical density of DLHS
n for n = 10 on the left. Empirical histogram

of DSRS
n for n = 10 on the right.

2.3.2 Sobol’ first order indices: Chatterjee estimator under
LHS

Variance-based indices are often used for sensitivity analysis in the framework
of uncertainty quantification. These tools are used in the screening step and
sensitivity analysis step of our methodology. For a complete overview, see Section
4.1 of this manuscript. Here we focus on the convergence of an estimator of some of
these indices, called first-order Sobol’ indices, under LHS. Introduced by F.Gamboa
(Gamboa et al., 2022) following the work of Chatterjee (Chatterjee, 2020), this
estimator is based on Rank Statistic (RS). This estimator is used in Chapter 4
to evaluate the first order indices of MC3D inputs in the screening step of our
methodology.

Let us consider again a vector of independent inputs X = (X1, . . . , Xd)T evolving
in a measurable space X ⊂ Rd and a measurable function f such that Y = f(X),
Y ∈ Y, with Y being a measurable space of dimension 1. We also suppose that
E(f(X)2) < +∞. For an input Xj, j ∈ J1, dK, the first order Sobol’ index Sj is
defined as follow:

Sj =
Var

(
E(Y |Xj)

)
Var(Y ) . (2.5)
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Let ((x(1)
j , y(1)), . . . , (x(n)

j , y(n))) be a series of n i.i.d observations of (Xj, Y ), j ∈
J1, dK. If we note σj(i) the rank of the realization x

(i)
j such that x(σj(1))

j ≤ . . . ≤
x

(σj(n))
j , we can define Nj(i) by (2.6):

Nj(i) =
{
σ−1
j (σj(i) + 1) if σj(i) < n;
σ−1
j (1) if σj(i) = n.

(2.6)

We denote by (y(Nj(1)), . . . , y(Nj(n))) the permuted sample through the permutation
function Nj. From this, Gamboa et al. (2022) proposed an estimator of the first
order Sobol’ index Sj defined by the following formula (2.7):

Ŝnj
RS =

1
n

∑n
i=1 y

(i)y(Nj(i)) − ( 1
n

∑n
i=1 y

(i))2

1
n

∑n
i=1(y(i))2 − ( 1

n

∑n
i=1 y

(i))2 . (2.7)

The aim of this subsection is to investigate the convergence of the statistic Ŝnj
RS

under LHS and other sampling methods. For this, two numerical tests are processed
with analytical functions classically used in GSA. Three types of DoE are compared:

• Simple random sampling (SRS);
• Classic Latin Hypercube Sampling (LHS) ;
• LHS designs optimizing a space-filling criterion, the star discrepancy

(Damblin et al., 2013).

Note that even if the observations are not i.i.d under LHS and optimized LHS, we
always consider the same estimator Ŝnj

RS.

2.3.2.1 Test 1: Design comparison based on usual analytical functions
in GSA

For the first numerical study, we compare the performances of the estimation
procedure depending on the DoE type on three classical analytic functions used
for GSA: the Ishigami function (Saltelli, 2008), the Sobol’ function (Saltelli, 2008)
and the Morris function (Morris, 1991).

Here, we only display the results of the Sobol’ function. The results for the Ishigami
function and the Morris function can be found in Appendix A. The Sobol’ function
(Saltelli, 2008) is defined in dimension d = 8 as follow:

fS(X1, . . . , X8) =
8∏
j=1

|4Xj − 2| + aj
1 + aj
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with:

• Xj, j ∈ J1, 8K following uniform distributions in [0, 1];
• aj ∈ a = [0, 1, 4.5, 9, 99, 99, 99, 99] with j ∈ J1, 8K.

The true Sobol’ first order indices values for the Sobol’ function are: S =
[0.759, 0.146, 0.025, 0.003, 0, 0, 0, 0]

For each input Xj, j ∈ J1, 8K of the test function three metrics are used to compare
the convergence behavior of the estimator regarding the different sampling methods.
The first one is the square bias, Bias2(Ŝnj

METHOD) = (E(Ŝnj
METHOD

−Sj))2 with Sj
being the true value of the Sobol’ index j ∈ J1, 8K. The second one is the variance
of estimation, Var(Ŝnj

METHOD). The last one is the sum of the other two, the Mean
Square Error (MSE): MSE(Ŝnj

METHOD) = Bias2(Ŝnj
METHOD) + Var(Ŝnj

METHOD).
For each sampling method, the average value of these three metrics is computed
over L = 500 independent designs with sample sizes n being from 20 to 100 (by
steps of 20).

Figure 2.6 shows the evolution of the bias2, the variance and the MSE for the
Sobol’ index estimator of the inputs of the Sobol’ function. For sake of brevity,
results are only displayed for X1, X4 and X8 which corresponds respectively to
the min, median and max values of the true Sobol’ indices.

As expected, the estimators converge for all three designs. We observe a slightly
lower average variance for the classic LHS design compared to SRS, for a similar
square bias. Globally, the variance of estimation is even lower under optimized
LHS, at a cost of a higher square bias. Optimal LHS-type structured designs are by
their nature more deterministic and therefore have a lower variance of estimation,
so their structure may induce a potentially significant bias depending on the test
function. The MSE is equivalent for the three designs on average. The results are
similar for the three functions tested.
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Figure 2.6: Sobol’ model function: square bias, variances and MSE of the estimators
of first Sobol’ indices, according to the numerical experiment design for 3 inputs
(those with max, median and min indices values), according to the design experiment
type.

72



2.3.2.2 Test 2: comparison based on a randomized version of the
Ishigami function

To broaden the base of test functions tested, we propose to consider the Ishigami
function with a randomization of its parameters. Let us consider the Ishighami’s
function:

fI(X1, X2, X3) = sin(X1) + A sin2(X2) +BX4
3 sin(X1)

where A and B are given parameters of the function, and the three random
variables X1, X2 and X3 are independent and uniformly distributed in [−π, π].

The behavior of this function highly depends on its two parameters A and B. A
reparametrization is considered here with B and the ratio C = B/A. The idea is
therefore to draw randomly a large number of pairs (B,C) in order to observe the
behavior of the estimator Ŝnj

RS in a large number of different configurations.

For each comparison between estimators from structured designs and pure Monte
Carlo ones, a set of parameters (B,C) is randomly drawn. The choice of the
distribution followed by (B,C) relies on the variance of the Ishigami function and
its variance decomposition. More precisely, variance and terms of the decomposition
are given by:

• Var(fI(X1, X2, X3)) = 1
2 + A2

8 + B2π8

18 + Bπ4

5 ;

• V1 = Var
(
E(fI(X1, X2, X3)|X1)

)
= 1

2

(
1 + Bπ4

5

)
;

• V2 = Var
(
E(fI(X1, X2, X3)|X2)

)
= A2

2 ;

• V13 = Var
(
E(fI(X1, X2, X3)|X1, X3)

)
= 8B2π8

225 ;

• V3 = V12 = V123 = 0.

The corresponding Sobol’ indices are easily computable by dividing them by the
total variance of the function. We notice that the value V1 = 0 is possible when B
is equal to −5

π4 ≈ −0.05. We also remark that A >> B leads to high values of V2
while B >> A leads to low values of V2. Therefore, we have chosen the following
distributions for B and C:

f :
{
B ∼ U[−1,1]
C = B/A = 10D with D ∼ U([−2, 2]). (2.8)
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The density of C is fC(t) = 1
4ln(10)t1(t)[10−2,102] with t ∈ R and A = B × C so

E(A) = 0 and Var(A) = 104−10−4

24 ln(10) .

With these ranges of variations for A and C = B/A in the Ishigami function, there
is a great amount of different configurations taken into account. As in test 1, we
compare over L = 500 repetitions of the average square bias, variance and the
mean square error (MSE) with the sampling sizes n growing (20 ≤ n ≤ 100 in
steps of 20). The complete test procedure is described in detail in Algorithm 1.

Algorithm 1 Procedure of Test 2: Comparison based on a randomized version of
the Ishigami function
Require: number of repetitions L

1: for n = 20 to n = 100 in steps of 20 do
2: for l = 1 to L do
3: Draw a couple (A,B) according to the previously

established distributions (2.8).
4: for each sampling method (SRS, LHS, optimized LHS) do
5: Generate a design of size n and dimension d = 3 and run

the model function on each sample.
6:
7: For each of the d = 3 inputs, compute Ŝnj

METHOD using equation
(2.7).

8:
9: end for

10: end for
11: Compute the bias, the variance and the MSE of estimation
12: end for
13: For each of the d = 3 inputs and each sampling method, plot the average

square bias, variance and MSE as a function of n

Note that the term average square bias (resp variance and MSE) is a bit imprecise.
For this to be accurate, it would be necessary, for each value of (A,C), to compute
square bias (resp variance and MSE) and then average the results. However, the
obtained results would be similar to those presented, thanks to the law of total
expectancy.

Figure 2.7 shows the evolution of the average square bias, variance and MSE of the
Sobol’ index estimator of the three inputs of the Ishigami function. The results of
this test are similar to Test 1. The MSE appears to be equivalent for the three
design types. If we look closely at the graphs, we can observe that the variance of
estimation under optimized LHS tends to be better than under SRS and LHS for
high valued Sobol’ first order indices. However, they have more bias2. Therefore,
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they are less efficient for low valued indices where bias2 error is more detrimental
(in terms of index value). In summary, classic LHS designs again offer a good
compromise, regardless of the theoretical value of the Sobol’ indices.

Figure 2.7: Randomized version of the Ishigami function: square bias, variances
and MSE of the estimators of 1rst Sobol’ indices, for the three inputs, according to
the design experiment type.
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2.3.3 Discussion on the convergence of other statistics used
in the methodology

In addition to the Kolmogorov statistic and the first-order Sobol’ indices, two other
statistics are estimated under LHS in this work. First, there is the Hilbert-Schmidt
Independence Criterion (HSIC). In the context of a sensitivity analysis, this
criterion is used as a dependence measure to distinguish the inputs that influence
the outputs of the code. For this, independence test built upon HSIC statistics
are used. A complete presentation of this criterion and associated independence
test can be found in Section 3.2. As it is often the case, most of the convergence
properties of this statistic were established under the i.i.d sampling assumption.
However, a numerical study proposed in El Amri and Marrel (2021) seems to
indicate that using an LHS instead of an SRS does not change the distribution of
the HSIC statistic under the hypothesis of independence.

Gaussian Process (GP) regression is also performed. This regression method is
introduced in detail in Chapter 4. The optimization of GP regression parameters
is usually performed by maximum likelihood. These parameters are also estimated
under LHS in this work. As we saw in Section 2.2, maximum likelihood estimators
can be written as Z-estimators. An interesting perspective is to identify whether
Theorem 2.3 presented in Section 2.2 can be applied to GP parameters estimation,
and if so, under what conditions.

2.4 Conclusion of the chapter and prospects
In this chapter, sampling methods were discussed. In the framework of uncertainties
quantification, they constitute an essential preliminary step to the analysis. Indeed,
it is through the use of these sampling methods that one establishes the input-
output data set. This data set therefore allows the exploration of the inputs space
of the studied code but also often constitute a learning sample for metamodeling
step. In Section 2.1, an overview of classical sampling methods used to explore the
inputs space of a simulation code was given. We also justified our choice to use
one of these methods, the Latin Hypercube Sampling (LHS). Indeed, it presents a
good compromise between space-filling and theoretical convergence properties.

The asymptotic convergence of most statistics has been established under Sim-
ple Ramdom Samplings (SRS), which are i.i.d (independent and identically dis-
tributed). The other sections of this chapter have been dedicated to the study of
the convergence of different estimators under LHS. Thus, in Section 2.2, a work
done on the theoretical convergence of Z-estimators under LHS has been presented.
A reduction of the asymptotic estimation variance as well as a central limit theorem
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for this class of estimators under LHS has been established. Nevertheless, some
restrictive regularity conditions have been imposed on these estimators to establish
this convergence. A possible perspective on this work could be to lift some of
these restrictions, such as the existence of the Z−function second derivative for
instance.

In Section 2.3, we discussed the convergence under LHS of the other statistics
used to carry out the work presented in this manuscript. Some theoretical work on
Kolmogorov statistic was presented. This work constitutes an important step in the
theoretical construction of a Kolmogorov test under LHS. Numerical experiments
have also been performed to study the convergence of a rank based estimator
of Sobol’ first order indices, recently proposed. They allowed us to empirically
compare the asymptotic behavior of this estimator under Simple Random Sampling
(SRS), under LHS and under optimized LHS. According to this work, classical
LHS seems to be a good compromise for an efficient rank based estimation of first
order Sobol’ indices.

Finally, the convergence under LHS of two other statistics used in this work are
discussed, namely the estimator of the Hilbert Schmidt Independence Criterion
(HSIC) and of the parameters estimators of Gaussian Process (GP) regression
models. No theoretical results have been established concerning these statistics
under LHS. However, promising empirical studies have been proposed regarding
HSIC estimator convergence. Moreover, the estimation of GP regression parameters
is performed through maximum likelihood, which is a special case of Z-estimation.
Another perspective of this work could be therefore to study theoretically the
convergence of these statistics under LHS.
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Chapter 3

Understanding code failures using
sensitivity analysis tools

After defining the design of numerical experiments, the next step of code anal-
ysis in the Uncertainty Quantification (UQ) framework is classically to run the
corresponding simulations with the code. The objective of this step is to explore
the code behavior and more especially the inputs/outputs relationship. However,
sometimes some of the code runs fail to converge.

These code failures can be due to numerical problems or suitability of the models
used by the simulation code. Analyzing the occurrence of failures to understand
which inputs have the most influence on these unexpected events allows a better
understanding of how the code works. This will also provide valuable information
on the values of the input parameters that can prevent code failures. Moreover,
these failures may have an influence on the rest of the code study. It is therefore
important to process this analysis in order to adapt the rest of the methodology.
More generally, analysis of code failures intends to improve the robustness of
simulation software and code computations. The objective of this chapter is thus
to propose a method to analyze code failures and apply it to our industrial case.

This work was motivated by the results obtained during the exploration of the
MC3D inputs space. Indeed, when we launched a first design of experiments, we
realized that nearly a third of the simulations did not converge. These code failures
on MC3D has motivated the study presented in this chapter. A preprint on this
topic has been accepted by the Nuclear Science and Engineering Journal (Hakimi
et al., 2022). This article gathers most of the methods presented here.

To perform the code failure analysis, we place ourselves in the framework of
global sensitivity analysis (GSA). For this, we can consider failure occurrence as a
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binary output coding the failure occurrence and apply on it GSA methods. The
purpose of the latter is to determine how the variability of model’s inputs affects
the fluctuation of its output (see Chapter 4 for more details). Many methods
have been developed for this purpose (Iooss and Lemaître, 2015 ; Da Veiga et
al., 2021). However, most of classic tools used for sensitivity analysis, such as
Sobol’ indices (Sobol’, 1993) or the Elementary Effect method (Brayer et al., 2020;
Morris, 1991) are not well tailored for the case of code failures. Indeed, in this case
the studied output is binary while most sensitivity analysis tools are designed to
study continuous outputs. Furthermore, the use of some of these methods require
a large number of simulations.

Recently, tools based on dependence measures have been proposed for global
sensitivity analysis. These tools remove some of these limitations (Da Veiga,
2015). Among them, the Hilbert-Schmidt Independence Criterion (Gretton et
al., 2005) denoted by HSIC, generalizes the notion of covariance between two
random variables. The HSIC can be used with many different types of variables,
including binary ones. Moreover, it fully characterizes the independence between
two variables and its estimation only requires a limited budget of simulations. Last
but not least, statistical tests of independence can be built upon HSIC measures.

In this context, we explored two methods to perform a variable selection (screening)
by sensitivity analysis on code failures:

• a first approach is based on goodness-of-fit tests and compares the conditional
probability distributions knowing the code failures to the initial one;

• a second approach, based on the HSIC, measures the global dependence
between the inputs and the occurrence of code failures.

Then, a graphical analysis and a physical interpretation of the results is given. After
this study, the sample considered in the rest of the methodology is conditioned
by the absence of code failures. It is therefore important to have an idea of the
eventual dependence between the inputs sampling induced by this conditioning.
The final section of this chapter is devoted to the study of the the interdependence
between the inputs samples knowing the code failures through the HSIC.

Since in our industrial case code runs are very computationally expensive, the
proposed method only relies on the inputs/outputs sample used for the whole
methodology.

Let us now introduce the notations used in this chapter. As a reminder, a simulation
code like MC3D can be viewed as a measurable model function f linking the inputs
to one (or more) output(s):
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f : X → Y
X 7−→ f(X) = Y.

Here,

• X = (X1, ...Xd) is the vector containing the d random variables of the
uncertain inputs evolving in a measurable space denoted by X ;

• Y is the vector of the code outputs evolving in a measurable space denoted
by Y .

We are studying in this chapter the quantity of interest Z representing the occur-
rence of code failures. It is defined by the function gZ(X) : X → {0, 1}:

Z = gZ(X) =
{

1 if the model f(X) fails
0 otherwise. (3.1)

In this section, the observed sample is (X,Z), where:

• X =
(
x(1), . . . ,x(n)

)T
with x(i) =

(
x

(i)
1 , . . . , x

(i)
d

)
denotes, as mentioned in

the first chapter of the manuscript, the matrix containing a sample of size n
also called the Design of Experiments (DoE), X ∈ Mn,d(R);

• xj =
(
x

(1)
j , . . . , x

(n)
j

)T
with j ∈ J1, dK denotes the observed samples for the

input Xj;

• Z =
(
z(1), . . . , z(n)

)T
is the vector of outputs corresponding to the DoE X

with z(i) = gZ(x(i)).

In the context of code failures, the DoE is divided into two sub-designs. The
first sub-design contains the simulations for which the code fails while the second
sub-design contains the successful simulations. Thus, we define:

• A = {l1, . . . , l|A|}: subset of the indices taken from {1, . . . , n} such that the
corresponding simulations fail (Z = 1);

• Ā = {1, . . . , n} \A the subset of the indices taken from {1, . . . , n} such that
the corresponding simulations do not fail (Z = 0);

• XA =
(
x(l1), . . . ,x(l|A|)

)T
the matrix containing the elements of X such that

the code fails, XA ∈ M|A|,d(R);
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• xA,j =
(
x

(l1)
j , . . . , x

(l|A|)
j

)
the values of the jth variable for the failing part of

the sample;

• XĀ the matrix containing the elements of X such that the code does not fail.

As a reminder, the number of input parameters of the MC3D code considered
here is d = 57. We also consider that all the d inputs are independent and vary
uniformly in [0, 1]: X ∼ U[0,1]d . A DoE of n = 2000 simulations of the code has
been performed. Among them, l|A| = 744 failed. This represents 37% of the code
runs. Considering the computational cost of each code simulation, this significant
number of code failures justifies in practice this in-depth study.

The chapter is divided in five sections. The two first sections are dedicated to the
presentation of the tools used for the screening by sensitivity analysis regarding
code failures occurrences. Section 3.3 aims at presenting the graphical and the
physical analysis of the results. In Section 3.4, we present how we used these
results in order to detect groups of interdependence regarding code failures. Finally,
Section 3.5 aims at presenting conclusion and perspectives regarding the presented
work.

3.1 Assessment of the inputs impact on code
failures based on comparisons of conditional
distributions

A first way to measure the influence of the inputs Xj on code failures can be the
study of the realizations xA,j such that the code fails. Indeed, if we suppose that
an input Xj has no effect on code failures, then Xj and Z are independent. Thus
the random variables Xj and Xj|Z (Xj conditioned by Z) should be identically
distributed. This implies that the realizations such as the code fails xA,j follow
the same distribution as the realizations xj .

The first proposed approach to detect the inputs influencing the code failure is
thus to compare the distributions of each xA,j to the theoretical distribution of
xj using a statistical goodness-of-fit test.

Several methods can be used to perform this comparison. We can cite the Wasser-
stein metric (Villani, 2003) or the Cramér-von Mises criterion (Cramér, 1928) for
instance. Here, the classical Kolmogorov-Smirnov (KS) (Shiryayev, 1992; Smirnov,
1948) goodness-of-fit test is used. However, our method can be directly extended
to the two other metrics presented above.
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The Kolmogorov-Smirnov statistic is well suited to compare a sample distribution
to a reference continuous one. It is sensitive to differences in both location and
shape of the cumulative distributions functions. The conservative aspect of this
test method is not an issue here. Indeed, the tests will only discriminate the input
parameters whose distribution is really different from the uniform distribution and
thus the most likely to have a significant effect on code failures. For a first analysis
and given the large number of variables involved in the application case, potentially
missing a few influential variables may be less of a problem than wrongly selecting
one.

The next subsection gives a review on the Kolmogorov-Smirnov (KS) statistic
and the associated test method. Then, the methodology is adapted to sample
generated by the Latin Hypercube Sampling (LHS) method. Finally, the results
obtained with this approach for our application case are briefly presented.

3.1.1 Comparison of the marginal of each input to the
uniform distribution using Kolmogorov-Smirnov test

The Kolmogorov–Smirnov statistic compares the cumulative distribution function
of a known reference distribution with the empirical distribution of sample 1 using
a distance measure.

Thus, let F be the distribution function associated to a continuous random variable
X. We define x =

(
x(1), . . . , x(n)

)
as an independent and identically distributed

(i.i.d) sampling of X. For any set A, we define 1A as the indicator function of A.
Thus, the empirical distribution of X is Fn(t) = ∑n

i=1 1x(i)≤t(t∈R).

To measure the difference between the empirical distribution Fn and F , we can
use the L∞ distance (already introduced in Chapter 2):

Dn(Fn, F ) = ∥Fn(t) − F (t)∥∞ = sup
t

|Fn(t) − F (t)|. (3.2)

The Glivenko-Cantelli theorem ensures that we have Dn(Fn, F ) −−−→
n→∞

0 almost
surely. In practice, Dn can be easily computed using the following formula:

Dn(Fn, F ) = max1≤i≤n[max(|i/n− F (x(i))|, |F (x(i)) − (i− 1)/n|)] (3.3)

Here,
(
x(1), . . . , x(n)

)
corresponds to the ordered realizations of x.

1Note that the KS statistic can also be used to compare the empirical distribution of two
samples. This will not be discussed here.
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The Kolmogorov-Smirnov (KS) statistic is defined using this distance. Indeed, it
corresponds to the rescaled distance SKSn = n1/2Dn(Fn, F ).

There is two important properties on the asymptotic convergence of SKSn (Shiryayev
(1992)):

1. SKSn converges in distribution to the random variable K when n → ∞ with
K having a cumulative distribution function defined by FK(t) = P(K ≤ t) =
1 + 2∑+∞

k=1(−1)ke−2k2t2 . Note that FK(t) does not depend on F .

2. If F0 is a continuous distribution function such as F ̸= F0, the quantity
SKSn (Fn, F0) −−−→

n→∞
+∞ in probability.

Thanks to these two properties, one can associate a test procedure to the
Kolmogorov-Smirnov statistic SKSn (Fn, F0). This test answers the question: does
the cumulative distribution of the tested samples F is the same as a reference
cumulative distribution F0. The test hypotheses are:

• the null hypothesis ‘H0: F = F0’,

• the alternative hypothesis ‘H1: F ̸= F0’.

To process the test, the observed value sKSn,obs(Fn, F0) = n1/2 supt |Fn(t) − F0(t)| is
computed. This observed value is then compared to the theoretical distribution K
associated to the Kolmogorov statistic under H0.

Under H0, we have that SKSn converges in law to K. Further, under H1,
SKSn (Fn, F0) −−−→

n→∞
+∞ in probability. So that, the critical region {K > sKSn,obs}

can be associated to the test when n is large enough.Thus, the p-value associated
to the test corresponds to the quantity P(K > sKSn,obs|H0).

The p-value drives the decision process. The lower the p-value, the stronger the
null hypothesis is rejected. A significance level α ∈ [0, 1] is classically associated
to the test procedure. This significance level corresponds to the probability of
rejecting wrongly the null hypothesis H0. For a given sample, if the observed
p-value is lower than the chosen significance threshold α, then the null hypothesis
is rejected at the chosen level of significance α. It is important to note that this
significance level is chosen arbitrarily. In practice, it is usually set depending on
the application and the consequences of wrongly rejecting H0.

In our case, we wish to compare each of the d samples (xA,j)j∈{1,..d} to the uniform
distribution U[0,1]. Thus, the idea is to apply the Kolmogorov-Smirnov test to assess
the marginal influence of each input. For each input sample (xA,j)j∈{1,..d}, the
statistic sKSn,obs(Fj,n, FU[0,1]) is computed. Here, Fj,n(t) is the empirical distribution
function of xA,j. The p-values {pKS1 ...pKSd } associated with these tests are then
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calculated. The obtained p-values allow us to select the inputs regarding the
likelihood of the null hypothesis. The p-values below the chosen threshold α
correspond to the inputs for which the hypothesis of a uniform distribution of xA,j

is rejected. These inputs are therefore considered to have a significant impact on
the code failures.

3.1.2 Impact of the use of a Latin Hypercube Sampling
As discussed in Chapter 2, the LHS method has been used to sample the inputs
space. We saw in Chapter 2 what shape the Kolmorogov statistic takes if the
sample under study was generated using the LHS design. Unfortunately, we are
not exactly in this case here. Indeed, if the initial xj samples were effectively
generated by an LHS, the samples xA,j are not a LHS anymore because of the code
failures, even under the null hypothesis H0. To illustrate this, Figure 3.1 shows
the empirical distribution of the distance Dn(Fn, F ), estimated using L = 100000
classic Simple Random Sampling (SRS) designs, LHS designs, and finally LHS
designs from which we have randomly selected 1/3 and 2/3 of the realizations.
The sampling size used for the illustration is relatively small (n = 10) to better
visualize the differences between the different distributions. In particular, we can
observe that the distributions of Dn(Fn, F ) for the truncated LHS are multimodal.
The number of modes seems to depend on the proportion of samples selected. The
theoretical expression of these particular statistics have not been studied here.

Hence, we do not have access to the theoretical distribution of the KS statistic
associated with truncated LHS. To overcome this issue, the natural solution to
process the test is to simulate samples under the null hypothesis H0. By doing so
we get the empirical cumulative distribution of the statistic under H0. Then we
use it to estimate the p-value associated to the observed statistic.

Let us describe more precisely the procedure. We generate L LHS of size n and
dimension 1 corresponding to samples xj, j ∈ J1, dK and L vectors of n independent
Bernoulli realizations B(l|A|/n) representing samples of Z under the null hypothe-
sis. We then estimate the L associated statistics {SKS|H0,(1)

n , ..., SKS|H0,(L)
n } using

Formula (3.3). From the resulting L-size sample of KS statistics, the empirical
cumulative distribution Fn,SKS|H0 (t) = 1

n

∑L
l=1 1

S
KS|H0,(l)
n ≤t. Note that the higher

is L, the better is the estimation of the cumulative distribution. In our case, we
took L = 10000. We then estimate, for each sample (xA,j)j∈{1,..d}, the statistic
sKSn,obs(Fj,n, FU[0,1]). Here, Fj,n(t) is the empirical distribution function of xA,j and
FU[0,1] is the uniform cumulative distribution function. Finally and for each of
the d statistics, we estimate the p-value associated to the test pKS. Algorithm 2
summarizes the whole procedure.
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Figure 3.1: Histograms of the distance Dn for different sampling methods: Simple
Random Sampling (SRS), LHS, and two truncated LHS.
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Algorithm 2 Corrected K-S test for truncated LHS designs
Require: Sample size n, number of repetitions L and design XA

1: for l = 1 to L do
2: Generate an LHS sample of size n and dimension 1 to simulate a sample of

type xj.
3: Generate an i.i.d sample of size n following Bernoulli distribution of pa-

rameter (l|A|/n) that corresponds to a sample of the output Z under the
null hypothesis

4: Deduce a replica under the null hypothesis of xA|H0 form this drawn
5: Compute the observed Kolmogorov statistic SKS|H0

n =√
nDn(FxA|H0 , FU[0,1]). Here, FxA|H0 is the empirical cumulative dis-

tribution of xA|H0
6: end for
7: Estimate the empirical distribution F

S
KS|H0
n

(t) = ∑L
l=1 1

S
KS|H0,(l)
n ≤t of the KS

statistic under H0 from the L observed Kolmogorov statistics.
8: Compute the d Kolmogorov statistic on xA,j and the corresponding statistics

{sKS,(1)
n,obs , ...s

KS,(d)
n,obs }

9: Get the d p-values {pKS1 ...pKSd }, using the empirical distribution of the KS
statistic under the null hypothesis FsKS

n,obs
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3.1.3 Results for the case study
Figure 3.2 presents the result of KS-test process procedure given by Algorithm 2
and applied to the n = 2000-size sample of the MC3D code. The obtained p-values
are given by increasing order. The number of the corresponding input is indicated
right next the colored circle.

Figure 3.2: Ordered p-values of the KS-tests performed for each of the d = 57
inputs.

In our study we choose the threshold α = 0.125 (red line on Figure 3.2). This
choice is supported by the jump in p-values observed around this threshold. The
p-value of X36 (pKS23 = 0.114) is indeed just followed by the one of X18 such as
pKS54 = 0.19. Two groups of inputs are clearly identified: a first one made up of
21 variables for which the uniform distribution hypothesis is rejected (p < α) and
a second one with the 36 remaining inputs for which the test cannot reject the
hypothesis of a uniform distribution.

In conclusion, a first method based on KS test and adapted for truncated LHS
has been introduced to study the implication of each input in code failures. This
method allowed us to identify which variables are most likely to have an impact
on code failure.
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3.2 Sensitivity analysis of code failures based on
dependence measures

In this section, we present another way to study the global influence of each input
on code failures. This metric is based on a dependence measure. The idea is to
study the probabilistic dependence between the random variable (Xj)j∈J1,dK and
the binary random variable Z characterizing the code failures. The key point is to
select a dependence measure that detects the variables whether they are influential
on Z alone or in interaction with other variables.

A probabilistic dependence corresponds to any relationship between two random
variables. More formally, two random variables are designated as dependent if the
realization of one affects the distribution of the other. To measure the dependence
between two variables, several tools have been proposed. The simplest of them is
the correlation coefficient (Pearson, 1895). It measures the normalized covariance
between two variables. Formally, for two random variables X and Y , the correlation
ρX,Y is defined by:

ρX,Y = Cov(X, Y )
σXσY

=
E
(
(X − E(X))(Y − E(Y ))

)
√
Var(X)Var(Y )

(3.4)

Unfortunately, there is no equivalence between correlation and independence. In
fact, if two variables X and Y are correlated (ρX,Y ≠ 0) , they are dependent,
but the reciprocal is false. Thus, the use of this tool is limited. To address this
issue, several measures of global dependence have been proposed. We can cite
for instance those based on the f-divergence (Csiszár, 1972) or the ones based on
the notion of entropy (Shannon, 1948). Among these dependence measures, the
ones based on Reproducing Kernel Hilbert Space (RKHS) distinguish themselves
(Aronszajn, 1950). Indeed, they can be used for any type of random variable
(continuous, categorical, graphs, etc.). These methods can also be easily adapted
to the multidimensional case. In addition, the size of the sample required to
accurately estimate this dependence measure is relatively low.

One of the most interesting kernel based dependence measure is the Hilbert Schmidt
Independence Criterion (HSIC). The HSIC yields efficient results even on small
sample sizes and seems to numerically outperform other RKHS measures (Gretton
et al., 2005). This explains why it has been widely used in the context of sensitivity
analysis recently (Da Veiga, 2015 ; De Lozzo and Marrel, 2017). HSIC are also
inherently good at measuring dependencies between continuous variables and a
binary variable, such as code failures (Marrel and Chabridon, 2021).
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The next subsection gives a presentation of this criterion and the associated test.
We will also discuss how this criterion might be used to measure the impact of the
input parameters on the code failures.

3.2.1 HSIC-based independence test between each input
and the code failures

The Hilbert-Schmidt Independence Criterion (HSIC) aims to detects the depen-
dence between two random variables. This criterion is based on the cross-covariance
operator that generalizes the notion of the classical covariance (Gretton et al.,
2005). In fact, under certain conditions, the nullity of the HSIC is equivalent to
the independence. It thus corrects the main default of the Pearson coefficient
presented above.

Before defining the HSIC, we need to introduce the concepts of Reproducing Kernel
Hilbert Spaces (RKHS), characteristic kernels and generalized cross-covariance
operator.

3.2.1.1 Reproducing Kernel Hilbert Spaces (RKHS) and characteristic
kernels.

Let F be an Hilbert space (a complete vector space equipped with an inner product
⟨, ⟩F) of real-valued functions on a set X . F is a Reproducing Kernel Hilbert Space
(RKHS), if there is a unique symmetric function k : X × X → R such that:

1. ∀x ∈ X , k(x, .) ∈ F ;

2. ∀f ∈ F , ∀x ∈ X , ⟨f, k(x, .)⟩ = f(x) (reproducing property).

This function k is called the reproducing kernel of F . Moreover, a kernel k is said
characteristic for F if, for all probability measures P defined on F , the function
P →

∫
k(., x)dP(x) is injective. See (Fukumizu et al., 2008) or (Sriperumbudur et

al., 2010) for details.

3.2.1.2 Cross-covariance operator

Now we can define the cross-covariance operator. Let X ∈ X (resp Y ∈ Y) be a
random variable and F (resp G) be the RKHS associated to X (resp Y). Let k(., .)
(resp. l(., .)) be the characteristic kernel of F (resp. G). We also define ⟨·, ·⟩F and
⟨·, ·⟩G as their inner products.

The generalized cross-covariance operator is defined as the operator mapping from
F to G and verifying for all (f, g) ∈ F × G:
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⟨f, CX,Y (g)⟩F = Cov(f(X), g(Y )). (3.5)

This operator generalizes the notion of the covariance between X and Y .

3.2.1.3 HSIC

To summarize the information provided by CX,Y , we consider its squared Hilbert-
Schmidt norm, called HSIC:

HSIC(X, Y )F ,G = ∥CX,Y ∥2 =
∑
p,q

⟨up, CX,Y (vq)⟩2
F =

∑
p,q

Cov(up(X), vq(Y ))2,

(3.6)

where (up), p ≥ 0 and (vq), q ≥ 0 are some orthonormal bases of F and G respec-
tively. Using RKHS properties, Gretton et al. (2005) has shown that HSIC can
also be expressed in a convenient form using kernels, as shown in Eq. (3.7).

HSIC(X, Y )F ,G = E(k(X,X ′)l(Y, Y ′)) + E(k(X,X ′))E(l(Y, Y ′))

−2E
(
E(k(X,X ′)|X)E(l(Y, Y ′)|Y )

)
. (3.7)

Here, (X ′, Y ′) is an independent copy of (X, Y ).

The use of characteristic kernels enable us to to have an equivalence between these
two propositions:

1. HSIC(X, Y ) = 0 ;

2. Cov(f(X), g(Y )) = 0 ∀(f, g) ∈ F × G.

Besides, it has been shown that two variables X and Y are independent if and
only if Cov(f(X), g(Y )) = 0 for all continuous functions (f, g) ∈ F × G (see Jacod
and Protter (2004) for instance).

Thus, for characteristic kernels k and l, we get the equivalence between the nullity
of HSIC(X, Y )F ,G and the independence between X and Y . In this case, the
HSIC generalizes the notion of covariance in the sense presented at the beginning
of this section.
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3.2.1.4 Two examples of characteristic kernels

For a real variable X, one of the most useful characteristic kernel is the Gaussian
kernel. It is defined, for (x, x′) ∈ R × R, by: k(x, x′) = exp(−λ

2 (x− x′)2) with a
bandwidth parameter λ > 0. This parameter is often set at λ = 1/σ2 with σ2

being the empirical variance.

For categorical variables, the Dirac kernel can be appropriate. Let Y be a categor-
ical variable with K + 1 modalities {0, . . . , K}. The Dirac kernel is defined, for
(y, y′) ∈ {0, ...K}2, by l(y, y′) = 1y=y′ . Here,1 is the indicator function.

These two characteristic kernels are used in our application. Note that it is possible
to use a kernel similar to k for categorical variables by defining a distance between
the different modalities. We also notice that the kernel l is related to the kernel k
with λ → +∞. For more information about kernels and categorical inputs, the
interested reader can refer to (Roustant et al., 2020).

3.2.1.5 Estimation of the HSIC

In practice, the computation of HSIC is processed using Eq. (3.7). For instance,
Gretton et al. (2005) proposed to estimate the quantities written in this equation.
Let {(x(1), y(1)), ..., (x(n), y(n))} ⊆ X × Y be a series of n independent realizations
of (X, Y ).

According to (Gretton et al., 2005), an HSIC estimator is given by the following
formula:

ĤSIC(X, Y ) = 1
n2 tr(KHLH) (3.8)

with:

• H ,K,L three matrices in Rn×n, such as: Ki,i′ = k(x(i), x(i′)), Li,i′ =
l(y(i), y(i′)) and Hi,i′ = δ(i, i′) − 1

n
, δ(i, i′) being the dirac distribution. Here,

(i, i′) ∈ J1, nK × J1, nK.

• tr the trace operator, for A ∈ Rn×n, tr(A) = ∑n
i=1 Ai,i.

Gretton et al. (2005) showed that this estimator is asymptotically unbiased.

3.2.1.6 HSIC-based statistical independence test

A statistical independence test can be built on the fundamental property of the
HSIC to test the independence between two variables (Gretton et al., 2008). For a
given variable X and another variable Y , it aims at testing the null hypothesis
H0: ‘The input X and the output Y are independent’ against the alternative
hypothesis H1: ‘There is a dependency structure between X and Y ’. Since there

91



is an equivalence between the independence of variables and the nullity of HSIC
(with characteristic kernels), the two hypotheses can be reformulated as follows:

• H0: ‘HSIC(X, Y )F ,G = 0’;

• H1: ‘HSIC(X, Y )F ,G > 0’.

The quantity SHSICn (X, Y ) = n× ĤSIC(X, Y ) is a natural statistic for this inde-
pendence test. If X and Y are independent and under asymptotic convergence
(i.e if n is large enough), it has been proven that the law of SHSICn can be asymp-
totically approached by a Gamma distribution with shape and scale parameters
(γ, β) (Gretton et al., 2008). These parameters can be estimated by:

γ̂ =
E
(
ĤSIC(X, Y )

)2

Var
(
ĤSIC(X, Y )

) , β̂ =
n.Var

(
ĤSIC(X, Y )

)
E
(
ĤSIC(X, Y )

)
The interested reader can refer to (Gretton et al., 2008) for more details.

As for the Kolmogorov-Smirnov test, the decision process is driven by the p-value.
Here, the p-value corresponds to the probability, under H0, that the statistic
SHSICn becomes greater or equal to the value observed on the studied data (here
sHSICn,obs ). Formally, the p-value is defined by:

pHSIC = P(SHSICn > sHSICn,obs |H0)

As for the previous method, the idea in our case is to process the HSIC test for
each inputs (Xj)j∈J1,dK. We measure the dependence between each input and Z
through the comparison of the observed quantity sHSICn,obs and the approximated
Gamma probability distribution. To do this, a kernel must be chosen for each
input Xj and the binary output Z. As usual, a Gaussian kernel is associated to Xj

since this is a continuous variable. For Z, a Dirac kernel is used. After computing
the statistic sHSICn,obs , the associated p-value pHSIC is estimated. The inputs with
the lowest p-values regarding this procedure are the ones for which the assumption
of independence with Z is the least compatible with the observed data. These
inputs are therefore the most likely to explain the failures of the code.
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3.2.2 Results for the case study
We have applied the HSIC-based independence test method to our case study.
Recall that in our application, the design of experiment for X has been performed
using the Latin hypercube sampling method. As discussed in the previous chapter,
the convergence of the HSIC statistic under H0 is well ensured using a LHS method
(El Amri and Marrel, 2021). The classic procedure can then be reasonably applied.

Figure 3.3 shows the obtained results. For reasons similar to those for the KS
test, a threshold α = 0.125 is chosen, to screen the significantly lowest p-values
for which the independence hypothesis is rejected. Thus, 18 inputs are selected.
These are the inputs most likely to have a direct impact on code failures regarding
the HSIC tests.

Figure 3.3: Ordered p-values of the HSIC tests performed for each of the d = 57
inputs, from the n = 200-size sample of MC3D code.
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3.3 Graphical and physical analysis of the results

Table 3.1 summarizes the results obtained with the KS and the HSIC methods
of Section 3.1 and 3.2, respectively. It presents the set of variables selected by at
least one of the two test methods. We find that the 18 variables selected by the
HSIC test method are also selected by the KS test method. Confidence in this
variable selection is thus increased by the consistency between the results of the
two test procedures.

Table 3.1: Summary of the results obtained with the KS and the HSIC tests.

Input number Pvalues KS Pvalues HSIC
6 0.000 0.000
51 0.000 0.000
29 0.002 0.018
25 0.003 0.000
39 0.003 0.000
5 0.005 0.004
27 0.008 0.08
37 0.012 0.023
56 0.015 0.018
34 0.036 0.029
17 0.037 0.059
32 0.037 0.027
22 0.046 0.177
19 0.049 0.065
9 0.056 0.049
16 0.059 0.166
57 0.075 0.355
50 0.096 0.088
11 0.098 0.089
36 0.108 0.028
23 0.114 0.137
54 0.19 0.081

To go further in the analysis, the estimated density of xA,j (marginal sample such
as the code fails) is compared to the density of xj for the variables with the lowest
p-values regarding both tests. The results are given in figure 3.4. Both densities
are estimated with a kernel-based non parametric approach. For more information
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about this method of estimation, one can refer to M. Rosenblatt (1956) or Parzen
(1962).

Figure 3.4 provides information on how the occurrence of failure impacts the
density of each input. Therefore, thanks to Bayes formula, it directly informs on
the probability distribution of code failure occurrence depending on the values of
each input. Without being exhaustive, we give bellow a physical interpretation of
these graphics.

Figure 3.4: Plots of empirical densities of xA,j (in red) and xj (in blue) for 6
inputs having the lowest p-values regarding the two test methods.

Among these 6 inputs, let us first focus on the two implicated in the jet fragmen-
tation during the premixing step (modeled by the model function f1): the input
X5 (KELMHOLTZ_C_VELFRA) and the input X6 (KELMHOLTZ_RADIUS).
As a reminder, the model used for the jet fragmentation in our case is based on a
Kelvin-Helmoltz instabilities model. In this model, the drop ejection velocity Ve is
assumed to be proportional to the fragmentation rate Γf :
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Ve ≈ CvitΓf .

Here, Cvit corresponds to the modeling parameter KELMHOLTZ_C_VELFRA
(X5). The fragmentation Γf is a function of the densities and mean velocities of
the jet and the surrounding water (liquid and vapor). To prevent an impact of the
calculation grid size on the jet fragmentation, the liquid water, the steam water den-
sities and velocities are averaged on a parametric radius KELMHOLTZ_RADIUS
(X6).

We can see on the corresponding plot of Figure 3.4 that the sample distribution of
X5 such as the code fails to converge is a growing function of X5. This is consistent
with the modeled physics. Indeed, the higher KELMHOLTZ_C_VELFRA, the
higher the drop velocity and heat exchange between the drops and surrounding
water. As the premixing model of MC3D is not developed to handle violent physics,
which is more the role of the explosion model, this may be a reason why the number
of failures increases.

The sampling distribution of X6 such as the code fail is a decreasing function
of X6. Again, this is consistent with the physics modeled. A high value of
KELMHOLTZ_RADIUS corresponds to an averaging of the velocities over a
larger space. This makes the fragmentation rate less sensitive to local variations
and thus makes the code output more stable. The slight increase in the density
function for the highest values of X6|Z = 1 is more difficult to explain.

Finally, we can examine the input X51. Among the 6 inputs presented, this is the
only input of the explosion application f[2]. It corresponds to the artificial viscosity
VISCART. This pseudo-viscosity has been added in order to limit numerical
instabilities inherent to the modeling explosion shock wave. Naturally, the higher
this pseudo-viscosity, the more stable the code. This is what we observe on the
second plot of Figure 3.4.
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3.4 Measure of interdependence between the in-
puts conditioned by failure occurrence

As seen previously, the inputs are assumed to be independent and initially sampled
according to this assumption. However, the analysis that will be carried out after
will be performed only on the simulations that have converged. Therefore, the
considered samples of inputs will be conditioned by the absence of code failures.
This may induce dependences between input variables. It is therefore interesting
to measure the eventual interdependences between inputs conditioned by failure
occurrence.

For this, we propose to analyze the pairs of inputs such as the code fails to converge.
Interdependent variables could be then grouped together for the remaining steps
of our methodology. The screening step performed in the previous sections can be
useful in order to reduce the number of interactions to be studied. Indeed, if we
consider the d = 57 inputs, we would have to study a total of

(
d
2

)
= 1596 pairs

of inputs, compared to only
(
d′

2

)
= 231 if we limit ourselves to the d′ = 22 inputs

which have been identified as significantly influential on failures. To study the
dependence between a couple of inputs (Xj, X

′
j), j, j′ ∈ J1, d′K and the occurrence

of failures Z, we proposed again HSIC based tests.

Let Xj|Z and Xj′|Z be two input variables conditioned by failure occurrence
in the pool of the d′ selected inputs. To assess if an interdependence has been
induced by the conditioning, we consider the HSIC statistic applied on Xj|Z = 1
and Xj′ |Z = 1. More precisely, we estimate the quantity sHSICn,obs (xA,j ,xA,j′). For
each of the

(
d′

2

)
= 231 pairs of inputs and associated statistic sHSICn,obs , a p-value is

estimated using the approximated Gamma probability distribution. As before, we
associate a significance level to these tests. Considering the high number of tests
performed here, the level is set to a quite low value, α = 0.01. It allows us to only
focus on the main interdependencies regarding the test procedure. Selecting too
many interdependencies (with a higher level α) would make the results difficult to
analyze.

Figure 3.5 shows the results obtained in the form of a graph. Each node j represents
the variable Xj|Z. The pairs of variables for which the independence is rejected
are linked by a line. This representation enables to easily locate the groups of
interdependent variables.
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Figure 3.5: Graph representing the interdependence between pairs of inputs regarding
the results of the HSIC tests for a level α = 0.01.

We observe on the graph three groups of interdependent inputs. In the first group,
dependences have been detected between X23, X56 and X57. They corresponds
respectively to NU_BUL, DMAXEXP and HFRAGFB. The second group of inter-
dependent inputs is composed of the inputs X6,X51 (KELMHOLTZ_RADIUS and
VISCART) and the input X32 (MULTEH). Finally, a last group of interdependent
inputs composed of the pair X29 and X50 (WECRBUL and VISCART) can be
observed. From a physical point of view, these results are difficult to analyze. This
would require in-depth investigations outside the scope of this thesis.

For the screening step of our global methodology, we will consider these variables
as a component of their groups of dependences. It means that if one of them is
considered as “significant” regarding a studied output, the whole sub-group will
be.
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3.5 Conclusion of the chapter and prospects
In the context of the exploration of the MC3D input space, a sample of n = 2000
code runs have been performed. Among them, more than a third failed to converge.
We aimed to understand the origin of these code failures. More generally, the
existence of code failures is a common problem in the context of the numerical
simulation of complex physical phenomena. To improve the robustness of these
simulation codes, it is useful to understand which inputs are involved in these
code failures and how they are involved. Considering code failures as a binary
output in its own right, the principles of global sensitivity analysis can be used to
identify the variables that have the greatest effect on the failures. Since the output
under study is a categorical variable, most classic tools of sensitivity analysis such
as Sobol’ indices or Morris method are not adapted. Moreover, in the case of a
computationally expensive simulation code like MC3D, the number of possible
simulations is limited. This also prevents the direct use of common methods of
sensitivity analysis. In addition, the number of studied inputs is large in our
application case (d = 57). This makes the use of methods whose cost depends on
the dimension even more difficult to apply.

Within this framework, we first introduced two methods to detect which input vari-
ables might be involved in code failures. The first method consisted in comparing
the initial distribution of each input against its distribution such as the code fails.
It has been done using a goodness-of-fit test based on the Kolmogorov-Smirnov
(KS) statistic. This test method allowed to detect the variables for which the
distribution such as code fails is different from the initial one. Since our original
test design is an LHS, the test procedure has been adjusted accordingly. A second
method, based on the Hilbert Schmidt Independence Criterion (HSIC), has been
then proposed. This criterion measures the dependence between two variables.
This method allows the detection of the probabilistic dependence between each
input variable and occurrence of a code failure. The latter is therefore represented
as a categorical output variable. The parametrization of HSIC (i.e kernels) was
adapted in consequence. These methods have the advantage of being usable for
general design of experiments and perform well even in small sample sizes. The
two methods gave consistent results and allowed the selection of 22 variables.

After that, we exploited the results of the KS test and HSIC based test in two
different ways. First, a graphical analysis of the conditional densities of the
inputs selected as influential on code failures has been done. This allowed a
physical analysis of the role of some of the significant variables regarding the
failures. Then, we used the previously obtained results to facilitate the detection
of possible dependences between inputs conditioned by code failures. To measure
these dependences, we reused the Hilbert Schmidt Independence Criterion (HSIC).
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This criterion is fully adapted to this task. We were thus able to detect groups of
interdependent inputs if we only keep the converged simulations.

Some extensions of this work can be considered. A first interesting perspective
could be to distinguish the different causes of code failures in the analysis. The
use of classification algorithms to learn the occurrence of failures as a function of
the selected inputs could also provide valuable additional information.

The work presented in this section is part of the general methodology of simulation
code analysis developed in this thesis. Thus, in addition to the contribution in
terms of understanding the code, the tools developed and used in this section will
be useful in the continuation of our work. Indeed, as we have seen, the dependences
between inputs due to code failures will be partially taken into account in the rest
of the methodology.
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Chapter 4

Sensitivity analysis in high
dimension

In the context of uncertainty quantification, sensitivity analysis aims to determine
how variations in the inputs of a computational code contribute to the variations
of its outputs. Sensitivity analysis is therefore useful for validating, simplifying,
or better understanding models. It can also guide efforts to characterize the
input parameters in order to reduce the uncertainties the most efficiently. Many
reviews of sensitivity analysis methods have been conducted (Da Veiga et al., 2021;
Iooss and Lemaître, 2015; Saltelli et al., 2004). Two types of methods are often
distinguished: Local Sensitivity Analysis (LSA) and Global Sensitivity Analysis
(GSA).

Local Sensitivity Analysis studies the variability of the output for small variations
of the inputs around their nominal values. Among the approaches for LSA, the
main methods are based on partial derivatives (Pujol, 2009). The idea behind
these methods is to estimate the partial derivatives of the numerical model relative
to each input at the nominal point. These partial derivatives represent the effect
of the perturbation of each input on the total perturbation of the output. Thus,
they are directly interpreted as indices of local sensitivity relative to each input.
These quantities can be estimated by the code itself (when physical equations are
solved) or by using sampling methods based on One-At-a-Time (OAT) designs.
OAT methods consist of disturbing a single input at a time while setting the other
inputs to their nominal values. See Morris (1991) for more details.

However, these LSA methods do not take into account the uncertainties of the
inputs in their full range of variation. In order to quantify the overall impact of
each input on the output and characterize their probabilistic dependence, statistical
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methods of Global Sensitivity Analysis (GSA) have been developed. In contrast to
LSA, the global approach requires the characterization of inputs uncertainty over
their range of variations. For this purpose, a probabilistic framework is usually
considered and probability distributions are associated to the uncertain inputs. In
this context, a classic GSA method is based on a decomposition of the variance
of the output, where each term of the decomposition represents the fractional
contribution of an input or a group of inputs to the variance of the output (Sobol’,
1993). The sensitivity indices obtained by this decomposition are called Sobol’
indices. They have the advantage of being easily interpretable. However, they are
computationally expensive to evaluate, even if efforts have been made to reduce
this cost (Gamboa et al., 2022, 2016).

As mentioned in Chapter 3, tools based on dependence measures also have been
proposed for Global sensitivity analysis (Da Veiga, 2015). The objective of
these measures is to evaluate, from a probabilistic point of view, the dependence
between the random variable representing the output value and the random
variables representing the input parameters. In this frame, the Hilbert-Schmidt
independence criterion (HSIC) presented in Chapter 3 distinguished itself by its
capacity to capture a very broad spectrum of dependence forms between the
variables while being relatively computationally inexpensive compared to other
methods. Nevertheless, it has the disadvantage of being less easily interpretable
from a quantitative point of view.

The objective of this last chapter is to present the methods used to perform a
quantitative and global sensitivity analysis of the MC3D code from our initial
experimental design. After having dealt with the first two steps in Chapter 2 and 3,
the current chapter now tackles the last three steps of the methodology presented
in Chapter 1. Thus, given the large number of input parameters of the MC3D
code (d = 57), a screening step is first performed in Section 4.1 to reduce the
number of inputs considered. The outputs are then approximated by regression
models. This is discussed in Section 4.2. Finally, the resulting metamodels are
used to perform a more refined sensitivity analysis of the outputs in Section 4.3.
This work is processed on the n = 1137 MC3D converged simulations.
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4.1 Screening by sensitivity analysis
The objective of screening is to distinguish inputs that have a significant impact
on the outputs of the code from the others. This step is essential in the context
of the presented work. As we have seen, the MC3D code actually takes into
account a very large number of modeling parameters which can interact with each
other. This screening step allows to focus on the most important parameters. This
simplifies the following steps of our methodology, namely the metamodeling and
the quantitative sensitivity analysis steps.

To perform this screening, two complementary GSA approaches from the Uncer-
tainty Quantification (UQ) framework are used. The first one is the HSIC-based
GSA (Gretton et al., 2005). As a reminder, the underlying idea of HSIC is to
measure the statistical dependence between two random variables. This criterion
can therefore capture the global influence of an input Xj on an output Y . Never-
theless, the information given by the HSIC is difficult to interpret. In other words,
we know whether there is dependence between the variables tested or not, but we
have limited information on the nature of this dependence. For a full description
of HSIC and its use in sensitivity analysis, see Section 3.2 of this manuscript.

The second approach relies on variance-based sensitivity indices. These indices give
a more complete and easy to interpret information about the dependency between
the inputs and an output. Nevertheless, as mentioned before, their estimation is
computationally expensive. In fact, only the causal relationship between the output
and each input alone (without its interaction with the others) can be estimated
using our MC3D input/output sample through the so called first order Sobol’
indices. A full description of these Sobol’ indices is given in the next subsection
(subsection 4.1.1). Note that the first order Sobol’ indices do not allow a screening
as such since their nullity is not equivalent to independence. However, they provide
additional information to the HSIC one, as it will be detailed later.

Finally, subsection 4.1.2 aims at presenting our approach, based on these two tools,
to perform a variable selection on the MC3D modeling parameters. It describes
how important inputs were distinguished from the others using HSIC and the
complementary information on the additive part of the model of first order Sobol’
indices. The obtained results are then analyzed.
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4.1.1 Variance-based sensitivity analysis
Variance-based sensitivity analysis, proposed in (Sobol’, 1993), gives a general
framework to study the relationship between each input Xj and an output Y . To
achieve this, the idea is to decompose the variance of the model function output
into fractions which can be attributed to inputs or sets of inputs.

4.1.1.1 Sobol’ indices: definition and properties

Let us consider a vector of independent inputs X = (X1, . . . , Xd)T and a mea-
surable model function f : Rd → R such that E(f(X1, . . . , Xd)2) < +∞. This
function can be decomposed into a sum of functions of increasing dimensions:

Y = f(X1, . . . , Xd) = f0+
d∑
j=1

fj(Xj)+
∑

1≤j<j′≤d
fjj′(Xj, Xj′)+. . .+f1,...,d(X). (4.1)

Here:

• f0 = E(Y );
• fj(Xj) = E(Y |Xj) − E(Y );
• fj,j′(Xj, Xj′) = E(Y |Xj′ , Xj) − E(Y |Xj) − E(Y |Xj′) + E(Y ) and so on.

This decomposition was first introduced in Hoeffding (1948) and taken over in
Efron and C. (1981). To simplify writing, we define u as a subset J1, dK. The
decomposition (4.1) can therefore be written as a sum over all the subsets of J1, dK:

Y =
∑

u⊂J1,dK
fu(Xu). (4.2)

Here, Xu is the vector of the inputs {Xj}j∈u.

Using the decomposition 4.2, the variance of Y can be then written as follow:

Var(Y ) =
∑

u⊂J1,dK
Var

(
fu(Xu)

)
. (4.3)

This decomposition leads to variance-based sensitivity indices. For a vector of
inputs Xu, u ⊂ J1, dK, the so-called Sobol’ index (Sobol’, 1993) is thus defined as
follow:
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Su =
Var

(
fu(Xu)

)
Var(Y ) . (4.4)

In particular, if we take u = {j} with j ∈ J1, dK, we obtain the first order Sobol’
indices of the input Xj briefly introduced in Chapter 2,

Sj =
Var
(
fj(Xj)

)
Var(Y ) =

Var
(
E(Y |Xj)

)
Var(Y ) .

The interpretation of these indices is straightforward. Indeed, all the indices are
positive and, thanks to eq. (4.3), their sum is equal to 1. The index Su quantifies
the influence of the vector u on the output, independently from the other variables.
An index Su close to 1 indicates a high influence of Xu on the output. Conversely,
an index close to 0 indicates a low influence of Xu alone on the output. Note that
the nullity of Su is not equivalent to the independence between Xu and Y since it
does not include the interaction effects between Xu and the other inputs.

For a function with d inputs, there is a total of 2d − 1 Sobol’ indices. Thus in
practice, when the dimension of the input space is large, the estimation of all the
indices can be very tedious. To address this problem, Homma and Saltelli (1996)
introduced the so called total Sobol’ indices. These indices quantify the global
influence of each input on the output, including their interactions with the other
inputs. Formally, the total sensitivity index STj

associated with the input Xj is
defined as the sum of all sensitivity indices related to the variable Xj:

STj
=

∑
u⊂J1,dK,j∈u

Su (4.5)

Let X−j = (X1 . . . Xj−1, Xj+1, . . . Xd) be the vector of all the inputs except the
input Xj. Using the variance decomposition presented above, one can also define
the Sobol’ total index of the input Xj as follow:

STj
= 1 − Var(E(Y |X−j))

Var(Y ) . (4.6)

These total indices summarize the global impact of an input on an output, including
its interactions with other parameters. As for the other indices, their interpretation
is direct. A high (resp. low) value of STj

indicates that, in total, the impact of
Xj on the studied output is important (resp. negligible). The nullity of STj

is
equivalent to the independence between Xj and and Y .
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4.1.1.2 Monte-Carlo estimation of the Sobol’ indices

Many Monte-Carlo methods, named Monte-Carlo Pick-freeze methods or simply
Pick-freeze methods, have been proposed to estimate the Sobol’ indices (Saltelli,
2002). These estimators are based on the following equality:

Var
(
fu(Xu)

)
= Cov(Y, Y ′

u), (4.7)

with Y = f(X) = f(Xu,X−u) and Y ′
u = f(Xu,X−u

′).

Here, X−u is the vector of all inputs except the inputs Xu and X−u
′ is an

independent copy of X−u. The name of the method, Pick-Freeze (PF), comes from
the way the input parameters are used to compute Y ′

u from those used to compute
Y . In fact, the picked inputs X−u

′ are frozen and all the others are replaced by
independent copies with the same distributions. An underlying hypothesis for
this decomposition is that Y and Yu

′ are following the same distribution and are
independent conditionally to Xu. This is the case if the inputs are independent.

Thanks to the decomposition (4.7), we have Su = Cov(Y,Y ′
u)

Var(Y ) under the assumptions
described previously. By using the empirical estimator of the covariance, an
estimator for Su can be built. For instance, let {(y(1), y

′(1)
j ), . . . , (y(n), y

′(n)
j )} be

n independent realizations of (Y, Yj ′). The statistic Ŝnj
PF defined by (4.8) is an

estimator of the Sobol’ first order index associated to the input Xj, j ∈ J1, dK:

Ŝnj
PF =

1
n

∑n
i=1 y

(i)y
′(i)
j − ( 1

n

∑n
i=1 y

(i))( 1
n

∑n
j=1 y

′(i)
j )

1
n

∑n
i=1(y(i))2 − ( 1

n

∑n
i=1 y

(i))2 . (4.8)

Higher order indices as well as total indices STj
can be estimated similarly using

equation (4.7).

The total estimation cost of the first order and total indices is O(n × (d + 1)).
With this estimation method, the number of code calls increases linearly with the
number of input variables. This is a practical problem for domains with large input
dimensions and CPU-expensive simulations. Another limitation of this estimation
scheme arises from the need for the special pick-freeze design, which is not always
available. For instance, regarding the computational cost of MC3D and the number
of inputs considered, the direct use of the pick-freeze method is not an option for
our application case. In fact, only one MC3D input/output sample is available
for the whole presented methodology so the design used has to more generic (like
Monte Carlo Sampling or Latin Hypercube Sampling for instance).
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To address this problem, we have turned to a new estimator based on a rank
statistic recently proposed by (Gamboa et al., 2022). This method enables the
estimation of all the first-order indices from a Monte Carlo simple inputs/outputs
sample. This estimator has been previously introduced (in Chapter 2 of this
manuscript). Naturally, we will consider this estimation method for the screening
step. The first order and the total indices of the built metamodels will be then
computed using the classic Pick-Freeze method.

4.1.2 Application on MC3D
The HSIC statistics and the first-order Sobol’ indices are estimated from the
learning sample of the MC3D case. As mentioned before, Latin Hypercube
Sampling method has been used to built this learning sample. The convergence of
these statistics under LHS have been discussed in Chapter 2. Numerical studies
indeed show good convergence capabilities of these statistics estimated from LHS
design.

Regarding the values taken by each of these two indicators, a subset of inputs
will be selected. An input selected by at least one of these two selection criteria
is considered as influential in the rest of the study. In addition, as stated in
Chapter 3, MC3D code failures caused dependencies between the inputs of the
code. If at least one of the inputs selected by the procedure belongs to a group of
dependencies, the whole set of variables belonging to this group is also considered
as influential. Note that it is not possible to estimate directly the Sobol’ indices of
variables associated with each group. Indeed, the rank based estimation method
only allows to estimate the first order indices.

For the HSIC test, the classic screening procedure based on p-values is processed
again: variables whose p-values are below the level α = 0.05 correspond to
influential variables. For the Sobol’ first-order indices, the selection process is quite
similar. As a reminder, the higher the Sobol’ index of an input, the higher the
sensitivity of the output to that input (taken individually). Therefore, we consider
inputs with a Sobol’ index greater than Smin = 0.05 are influential. As mentioned
in Chapter 3, these thresholds are fixed arbitrarily. Here they have been empirically
established to facilitate metamodeling while maintaining a sufficient number of
explanatory variables. On one hand, letting too many explanatory variables can
lead to overfitting (in linear regression for instance) and/or optimization problems
(in Gaussian process modeling notably) in the metamodeling. On the other hand,
if we use too few explanatory variables, the part of the variance explained by
the unaccounted for variables can become too important, which can lead to poor
predictivity of the metamodel.
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The results, obtained for the four outputs of interest, are summarized in Table 4.1.
The mention Total (Sobol’ + HSIC) corresponds to the number of inputs selected by
at least one of the two approaches. The last line includes the group of dependencies.
For each output, around fifteen inputs are initially identified as influential by the
variable selection procedure. Taking into account the dependencies brings this
total to about twenty inputs.

Table 4.1: Number of inputs selected either by the HSIC based method or the first
order Sobol’ indices based method for the four studied outputs.

Y1 Y2 Y3 Y4

HSIC 10 16 17 15
Sobol’ 3 6 5 5
Total (Sobol’ + HSIC) 12 19 18 16
Total with dependent variables 17 23 20 17

4.2 Metamodeling
The term regression analysis gathers all statistical processes for estimating the
relationships between a set of variables (often called features or inputs) and a target
variable (often called response variable or output). These methods address two
main objectives. First, regression analysis is widely used for prediction, especially
in machine learning. Second, regression analysis can be used to infer causal
relationships between the inputs and the outputs. Many regression methods have
been proposed. For example, Generalized Linear Models briefly introduced in
Chapter 2 (Nelder and Wedderburn, 1972), Support Vector Regression (Cortes
and Vapnik, 1995), Neural Networks (F. Rosenblatt, 1962) or Gaussian processes
(Rasmussen and Williams, 2005) are all regression methods. Each regression
method has specific constraints, related to the amount and type of data we have
access to and what we want to do with it.

In the context of uncertainty quantification, we use regression models, often called
surrogate models or metamodels, to approximate or emulate expensive simulation
codes. Simulation codes such as MC3D are indeed very computationally expensive.
It is therefore difficult to perform analysis that require many simulation runs, such
as sensitivity analysis (Da Veiga et al., 2021) or risk assessment (Marrel et al.,
2022) for instance, directly using the code. To address this, surrogate models are
trained on a reasonable number of simulations to emulate the outputs of interest.
Once trained and validated, these metamodels can produce a large amounts of
predictions of the code output with negligible computational effort. They can
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therefore be interestingly used to perform the aforementioned analyzes (GSA and
risk assessment).

In this work, surrogate models are used to perform a quantitative and global
sensitivity analysis of the MC3D code outputs. This section aims to introduce the
tools used for metamodeling in our work. An application on our industrial case
and an analysis of the results is then provided.

Regression models are associated with a learning base. In our industrial context,
it is Dn = (X,Y) =

(
(x(1), y(1)) . . . , (x(n), y(n))

)
with a sample size n = 1137 and

an input space dimension d = 57.

Here, Y = f(X) ∈ Rn with f the model function and X ∈ Mn,d(R) the input data
set. Formally, the objective of the metamodeling is to approximate the function f
by a regression model denoted f̂ : Rd → R. The next subsection is dedicated to
the simplest and the most common regression method, the linear regression. In
our industrial application, it is used as a reference (in sense of basic) metamodel
for benchmark.

4.2.1 Linear regression
4.2.1.1 Classic linear regression

Linear regression is a very common tool to approximate a response variable. The
idea is to suppose that the response variable and the features are linked through a
linear relationship. The model function f is approximated by a linear function of
the d inputs f̂LR : Rd → R defined by the equation (4.9):

f̂LR(X) = Xβ =
d∑
j=0

Xjβj, (4.9)

with X0 = 1 1. Here, β = (β0, . . . , βd)T ∈ Rd+1 is the vector of regression
coefficients.

The values of β is estimated using the data set. For instance, a classic estimation
method consist in minimizing the quadratic loss function 2 (4.10):

β̂ = argmin
β∈Rd+1

(
n∑
i=1

(
y(i) − x(i)β

)2
)
. (4.10)

1To simplify the notations, the vector (X0, X1, . . . , Xd)T is also written X.
2As mentioned in Owen (1992), the convergence of β̂ is ensured under LHS (Latin Hypercube

Sampling) and its variance of estimation is lower than under pure Monte Carlo sampling.
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Then, the least squares estimate of this regression can be computed using the
formula (4.11):

β̂ = (XTX)−1XTY (4.11)

To improve the prediction accuracy and interpretability of linear regression models,
parameter regularization can be performed. We present here three methods
classically used for this: the ridge, the LASSO and the Elastic net regularization
(which is a mix of the LASSO and the ridge). All three methods rely on a
penalization of the coefficients of the regression β to reduce the overfitting risk.

4.2.1.2 Linear regression with LASSO regularization

Introduced in Tibshirani (1996), the LASSO (Least Absolute Shrinkage and
Selection Operator) regularization is based on a L1-penalization of β which is
written, for λ1 ≥ 0:

β̂LASSO = argmin
β∈Rd+1

(
n∑
i=1

(
y(i) − βTx(i)

)2
+ λ1||β||1

)
. (4.12)

Here, ||.||1 is the L1 norm. The higher the λ, the more coefficients are set to zero
and therefore the fewer inputs are used in the regression. The LASSO regularization
therefore allows to perform a variable selection. In practice, the parameter λ1
is often estimated by cross-validation (Hastie et al., 2009). Cross validation is a
re-sampling method that uses different portions of the data to test and train a
model over different iterations.

4.2.1.3 Linear regression with Ridge regularization

The ridge regularization, introduced in Hoerl and Kennard (1970), relies on a
L2-penalization of β which is written, for λ2 ≥ 0:

β̂Ridge = argmin
β∈Rd+1

(
n∑
i=1

(
y(i) − βTx(i)

)2
+ λ2||β||22

)

.{#eq:LossBeta_Ridge}

Here, ||.||2 is the L2 norm (the Euclidean norm). The higher is λ2, the stronger
the regularization and thus the lower are the absolute values of the coefficients
of the regression. In practice, the ridge regularization lowers the coefficients of
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correlated inputs towards each other. As for the LASSO method, the parameter
λ2 is also estimated by cross-validation.

4.2.1.4 Linear regression with Elastic-net regularization

Finally, the Elastic-net regularization, introduced in Trevor Hastie (2005), combines
the LASSO and the ridge regularization. The elastic-net minimization equation is
written as follow:

β̂Elastic−net = argmin
β∈Rd+1

(
n∑
i=1

(
y(i) − βTx(i)

)2
+ λ1||β||1 + λ2||β||22

)
(4.13)

with λ1, λ2 ≥ 0.

Linear regression, particularly with parameters regularization, is widely used
as regression model because it offers very good results when the input/output
relationship is linear. However, for industrial code like MC3D, this is rarely the
case. More complex models such as Gaussian process regression might be better
suited.

4.2.2 Gaussian process regression
Gaussian process regression (Rasmussen and Williams, 2005), sometimes called
kriging, is widely used in the uncertainty quantification framework to emulate code
outputs (Santner et al., 2003). The idea behind Gaussian process (GP) regression
is to consider the (unkown) model function as a realization of a Gaussian process.
Before defining more formally GP regression, let us first introduce the key concepts
necessary to understand it, namely Gaussian vectors and Gaussian processes.

4.2.2.1 Gaussian vectors

Gaussian vectors, sometimes called multivariate Gaussian distribution or joint
normal distribution, are a generalization of the univariate normal distributions to
higher dimensions. More formally, a real valued random vector W = (W1, . . . ,Wm)
with m ∈ N∗ is a Gaussian vector if, for any λ = (λ1, .., λm) ∈ Rm, λT W has
a Gaussian distribution. A Gaussian vector is fully characterized by its mean
E(W ) = µ ∈ Rm and its covariance matrix Cov(W ) = Σ ∈ Mm,m(R).

An interesting property about Gaussian vectors concerns the conditioning. Let
us consider a size m Gaussian vector W = (WA,WB)T such that: W =

(
WA

WB

)
∼

Nm

((
µA

µB

)
,
(

ΣA,A ΣA,B

ΣA,B
T ΣB,B

))
. Here,
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• WA and WB are Gaussian vectors of size mA and mB respectively, such that
mA +mB = m;

• µA and µB are vectors of size mA and mB respectively;
• ΣA,A ∈ MmA,mA

(R), ΣA,B ∈ MmA,mB
(R) and ΣB,B ∈ MmB ,mB

(R).

Thus, the conditional random vector WA|WB is also a Gaussian vector. Suppos-
ing that ΣB,B is invertible, the mean of this Gaussian vector is equal to µA +
ΣA,BΣ−1

B,B(WB − µB) and its covariance matrix is equal to ΣA,A− ΣA,BΣ−1
B,BΣT

A,B.
This result is called the conditioning property of Gaussian vectors.

4.2.2.2 Gaussian processes

Let us now consider a probability space (Ω,F ,P). Here, Ω is a sample space,
F a σ-algebra on Ω and P a probability measure on F . A stochastic process is
a sequence {V (x)}x∈Rp , p ∈ N∗. The random process {V (x)}x∈Rp is said to be
indexed by x. At x fixed, the application V : Ω → R is a random variable. At
ω ∈ Ω fixed, the application x → V (x) is a trajectory of the stochastic process.

A random process {V (x)}x∈Rp is a Gaussian process if and only if for every finite
set {x1, . . . ,xm} in Rp, (V (x1), . . . V (xm)) is a Gaussian vector. A Gaussian
process is characterized by a mean and a covariance function (also called kernel).
They are defined, for x,x′ ∈ Rp, as follow:

• m(x) = E(V (x)),
• c(x,x′) = C ov(V (x), V (x′)).

4.2.2.3 Covariance function in Gaussian processes

The covariance function mostly defines the Gaussian process as it controls its
smoothness and its scale. Classically in emulation of computer experiments, chosen
covariance functions are stationary, which means that they only depends on (x−x′),
for x,x′ ∈ Rp, p ∈ N∗.

For x, x′ ∈ R they are of the form:

c(x, x′) = σ2kl(x− x′). (4.14)

Here, σ2 ∈]0,+∞[ is the variance parameter of the function and kl is a symmetric
and positive semi-definite function parametrized by the correlation length l ∈ R∗.
kl is called correlation function. A convenient way to extend this definition to
the multidimensional case (p > 1) is to take the tensor product of 1D correlation
functions and a global variance parameter σ2 > 0. It is defined, for l = (l1, . . . , lp) ∈
R∗p, as follow:

112



c(x,x′) = σ2kl(x − x′) = σ2
p∏
j=1

klj (xj − x′
j). (4.15)

This is the method used in this work to handle the multidimensional case. Let us
now give some examples of classic correlation functions.

The nugget correlation function

This correlation function, which yields to the white Gaussian noise, is defined by:

kl(x, x′) = 1x−x′=0, for x, x′ ∈ R. (4.16)

Here, 1 is the indicator function. Note that the nugget correlation function does
not depend on any correlation length. This kernel is rarely used alone, but it is
often added to other covariance functions in GP regression. More details are given
below.

The Gaussian correlation function

This function, for a correlation length l ∈ R∗, is defined by:

kl(x, x′) = exp
(

− (x− x′)2

l2

)
, for x, x′ ∈ R (4.17)

This covariance function is infinitely differentiable. This means that a GP with
this covariance function has trajectories that have mean square derivatives of all
orders. This strong regularity yields to very smooth trajectories which can be
unrealistic in practice.

The ν-Matérn correlation function

The ν-Matérn correlation function is defined by:

kl(x, x′) =
(
√

2ν (x−x′)
l

)ν

Γ(ν)2ν−1 Kv

(√
2ν (x− x)′

l

)
, for x, x′ ∈ R (4.18)

Here,

• l ∈ R∗ is the correlation length ;
• ν ∈ R+∗ is the regularity parameter;
• Γ : R+∗ → R+ the gamma function;
• Kv : R → R is a modified Bessel function (see Abramowitz and Stegun

(1964) for details).
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The parameter ν controls the smoothness of the GP. In fact, a GP with a ν-
Matérn correlation function is continuous and q-time differentiable if and only
if ν > q (Rasmussen and Williams, 2005). Besides, for ν → +∞, we obtain
the aforementioned Gaussian covariance function. In metamodeling, two popular
choices for the regularity parameter are ν = 3

2 and ν = 5
2 . They respectively yield

to GP trajectories once and twice differentiable. Another special case is the one
with ν = 1

2 , also referred to as the exponential covariance function. This last
covariance function only provides continuous GP trajectories.

4.2.2.4 GP regression

We have now all the material necessary to define Gaussian process regression.
The idea behind GP regression is to consider the sample Y = (y(1), . . . , y(n))
we want to model as realizations of a Gaussian process indexed by the inputs
sample X =

(
x(1), . . . ,x(n)

)T
. This GP is denoted {YGP (x)}x∈Rd , d being the

dimension of the input space. This GP is completely specified by its mean function
m(x) and its covariance function c(x,x′). The conditional distribution for any
x = (x1 . . . xd) ∈ Rd of YGP (x) can be obtained analytically from the following
joint distribution:

(
YGP (x)
Y GP (X)

)
∼ Nn+1

((
m(x)
m(X)

)
,

(
c(x,x) c(x,X)
c(x,X)T C(X)

))
. (4.19)

Here,

• Y GP (X) =
(
YGP (x(1)), . . . YGP (x(n))

)T
;

• m(X) = (m(x(1)), . . . ,m(x(n)))T ;
• c(x,X) = (c(x,x(1)), . . . c(x,x(n)));
• C(X) is a matrix of Mn,n(R) such that Ci,i′ = c(x(i),x(i′)), (i, i′) ∈ J1, nK2.

By applying the aforementioned conditioning property of Gaussian vectors to
the joint distribution (4.19), we obtain that the conditional random process
YGP (x)|YGP (X) = Y is still a GP characterized by its mean f̂GP : Rd → R and
its covariance function ĉ : R × R → R. They are defined as follows:

• f̂GP (x) = E
[
YGP (x)|YGP (x) = Y

]
= m(x) + c(x,X)C−1(X)(Y − m(X))

• ĉ(x,x′) = Cov
[
YGP (x), YGP (x′)

]
= c(x,x′) − c(x,X)C−1(X)c(x′,X)T

Therefore, the predictive distribution for a new (unobserved) point x is the Gaus-
sian distribution N (f̂GP (x), ĉ(x,x)). Moreover, from the Gaussian predictive
distribution and the explicit formulations of f̂GP (x) and ĉ(x,x), confidence inter-
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vals (CI) in prediction can be built for any given α-level. This can be useful for
uncertainty quantification framework.

To completely define the model, the mean function (also called trend) as well as
the correlation function need to be specified. It is common to suppose that the
trend is constant or linear: m(x) = β0, β0 ∈ R or m(x) = Xβ = ∑n

j=0 Xjβj with
β = (β0, . . . βd)T ∈ Rd+1 and X0 = 1. Here, β (resp β0) is the parameter used to
control the learning process of the linear part of the model. The covariance function
is often parameterized by a correlation length l = (l1, . . . , ld) ∈ R∗d and a variance
parameter σ2 > 0. These parameters are also supposed unknown and need to be
estimated. The choice of the type of correlation function is also crucial. Indeed, as
mentioned above, it controls the smoothness and the scale of the approximation.
In practice, several covariance functions (Gaussian, 5/2-Matérn, 3/2 Matérn, etc.)
are tested and the one with the best predictivity is chosen.

4.2.2.5 Parameters estimation

Several approaches are possible to estimate GP regression parameters (β, σ2, l),
including the minimization of the model error with cross-validation strategy
(Bachoc, 2013) or more classically the maximization of the model likelihood
(Rasmussen and Williams, 2005). In our application case, the parameters will
be estimated using the second method. In the GP regression framework, the
observations are considered as realizations of a Gaussian process, YGP (X) = Y.
The distribution of the vector of observations Y can thus be written:

Y|β, l, σ2 ∼ Nn(m(X),C(X)) (4.20)

Here,

• m(X) = (m(x(1)), . . . ,m(x(n)))T with m being parametrized by β;
• C(X) is a matrix of Mn,n(R) such that Ci,i′ = c(x(i),x(i′)), (i, i′) ∈ J1, nK2

and c(x,x′) = σ2kl(x − x′), (x,x′) ∈ (Rd)2.

The corresponding log-likelihood is therefore a function of the parameters and
the observations. Suppose that the GP trend is linear such m(x) = Xβ with
β = (β0, . . . βd) ∈ Rd+1 and X0 = 1. Let also Kl(X) be a matrix of Mn,n(R)
such that C(X) = σ2Kl(X). To simplify the notations, the matrix Kl(X) is
written in the following Kl. Note that, since the function kl is symmetric and
positive-definite, Kl is invertible. The log-likelihood can be thus written as follow:

L(Y,X,β, l, σ2) = −1
2
[

log |σ2Kl| − 1
σ2 (Y − Xβ)TK−1

l (Y − Xβ)
]

(4.21)
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The Maximum Likelihood (ML) estimator of these parameters corresponds the
values of the model parameters that maximize the function L over the parameters
β, σ2 and l. The maximum values of L, for β and σ2, can be found by canceling
the partial derivatives of L, given the other parameters. The derivatives of the
function L regarding β and σ2 can indeed be explicitly expressed:

∂L(Y,X,β, l, σ2)
∂β

= 1
2σ2 XTK−1

l (Y − Xβ) (4.22)

∂L(Y,X,β, l, σ2)
∂σ2 = − n

2σ2 + 1
2σ4 (Y − Xβ)TK−1

l (Y − Xβ) (4.23)

Using equation (4.23) and (4.22) to solve ∂L
∂β

= 0 and ∂L
∂σ2 = 0 allows the ML

estimators β̂n and σ̂2
n to be explicitly computed, given the parameter l:

β̂n(l) = (XTKlX)−1XTK−1
l Y (4.24)

σ̂2
n(l) = 1

n
(Y − Xβ̂n)TK−1

l (Y − Xβ̂n) (4.25)

By injecting β̂n(l) and σ̂2
n(l) in the log-likelihood expression (4.21), the parameter

l can be estimated by solving numerically:

l̂n = argmin
l∈Rd

|σ̂2
n(l)Kl| (4.26)

Finally, the values of β̂n and σ̂2
n are deduced using the estimated value of l̂n with

Eq. 4.25 and Eq. 4.26.

4.2.2.6 Additional nugget effect

An additional nugget effect can also be considered in the kernel. This means that
one assumes an additive, independent, constant white noise (such as defined in Eq
(4.16)). This noise is different from the noise which can affect the observations. In
most cases, it is assumed to be independent of the input: its variance is constant.
This nugget effect both relaxes the interpolation properties of the GP regression and
improves the conditioning number of the covariance matrix (GP regularization).
This additional noise is parametrized by a scalar variance parameter τ . This
parameter can be fixed or estimated (by maximum-likelihood for instance).
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4.2.3 Metamodeling validation criteria
4.2.3.1 Predictivity coefficient Q2 and y/ŷ plot

To evaluate the accuracy of a regression model f̂ , a common method consists
in calculating, on a test sample DnT EST

TEST =
(
(x(1), y(1)), . . . , (x(nT EST ), y(nT EST ))

)
independent from the learning sample Dn, the coefficient of determination in
prediction, denoted Q2

TEST in this case:

Q2
TEST = 1 −

nT EST∑
i=1

(y(i) − f̂(x(i)))2

(y(i) − ȳnT EST
)2 , (x

(i), y(i))j∈J1,nT EST K ∈ DnT EST
TEST , (4.27)

with ȳnT EST
= 1

nT EST

∑nT EST
i=1 y(i).

The interpretation of this coefficient is straightforward. The closer to 1 this
coefficient, the better the accuracy of the metamodel. In practice, a validation
sample is not always available and the predictivity coefficient can then be calculated
by a cross-validation procedure (Hastie et al., 2009). In particular, a Leave-One-
Out (LOO) approach can be used. The idea of LOO is to estimate, for each point
i at our disposal, the regression model f̂ ∗(x(i)), where f̂ ∗ represents the model
trained on Dn without the ith sample. By repeating this n times, one can obtain
another estimation of this predictivity coefficient Q2

LOO:

Q2
LOO = 1 −

n∑
i=1

(y(i) − f̂ ∗(x(i))2

(y(i) − ȳn)2 , (y(i),x(i))i∈J1,nK ∈ Dn. (4.28)

In the following, we will only use Q2
LOO, which we will write Q2 to simplify the

notations.

Another way to evaluate the quality of a regression model is to plot the true values
of the model output Y as a function of the values predicted by your model by
LOO Ŷ ∗ = f̂ ∗(X). This plot gives us information on the prediction quality of the
metamodel according to the value taken by the output. The interpretation of this
graphic is also straightforward. The more points there are around the identity
line (first bisector), the more points are such that ŷ∗ ≈ y and so the better is the
predictivity of the metamodel. This graph is called in this document the y/ŷ plot.
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4.2.3.2 α-CI plot for GP regression models

GP regression has the specificity of not only giving a predicted value, but also
associating it with a probability distribution. It can therefore be interesting to
compare the predicted confidence intervals (CI) of GP regression models with
the proportions of observations that actually fall within these intervals. This was
suggested in Demay et al. (2021). In practice, for a given theoretical confidence
level α ∈ [0, 1], the observed CI level ∆̂(α) is calculated by Leave-One-Out (LOO)
as follows:

∆̂(α) = 1
n

n∑
i=1

1y(i)∈CIα,−i

Here, the notation 1A denotes, for any set A, the characteristic function of A.
CIα,−i is the α-level of confidence interval for the point x(i) built from the Gaussian
distribution N (f̂ ∗

GP (x(i)), σ̂∗(i)). f̂ ∗
GP (x(i)) and σ̂∗(i) are the mean and the variance

of the predicted distribution when (x(i), y(i)) is removed from the observations.
Roughly speaking, the quantity ∆̂(α) corresponds to the rate of realizations which
fall within the α-predicted intervals.

This observed rate ∆̂(α) can be plotted as a function of the theoretical levels of
prediction α. In Demay et al. (2021), this plot is called the α-CI plot. The more
points there are around the identity line (meaning that the intervals ∆̂(α) are
close to the α), the more accurate the estimated GP intervals are. If the ∆̂(α) are
above the identity line, it means that the confidence intervals predicted are too
large (the model is underconfident). At the contrary, if the ∆̂(α) are under the
identity line can mean, if the predictivity Q2 is good, that the confidence intervals
predicted are too small (the model is overconfident). It can also mean, if the Q2

is low, that the GP mean is badly predicted. More generally, poorly predicted
confidence intervals can also mean that the modeling assumptions (covariance
and mean functions) or the Gaussian hypothesis are invalid for the output we are
trying to approximate.

4.2.4 Application to our case study
Due to the large number of inputs and the CPU time for running MC3D, the use
of metamodels is required to perform a complete quantitative sensitivity analysis
of the code. They will also be very useful for the calibration of the code with
experimental results, this step being the continuation of this thesis work. In this
subsection, we detail the procedure followed to build the metamodels on the four
MC3D outputs of interest. This process is performed on each output independently.
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Thanks to the screening step, the input variables are divided into two groups for
each output:

• the explanatory inputs, which corresponds to the inputs identified as signifi-
cantly influential by the screening and denoted Xexp,

• the other inputs, denoted Xϵ with Xϵ = {X \ Xexp}.

The metamodeling process is focused on fitting each output only considering the
explanatory inputs Xexp. The method used to perform this metamodeling is a
Gaussian process regression. In theory, the GP regression could be made directly
on the d = 57 inputs. However in practice, building the GP in such large dimension
without preliminary variable selection often leads to issues in the optimization
procedure required for the estimation of the GP hyperparameters (resolution of
Eq. 4.21). This most often yields to a GP with poor predictivity.

Furthermore and as discussed before, the choice of the covariance function can
greatly influence the accuracy of regression. Several covariance functions have
been therefore tested: the exponential, the Gaussian, the 3/2-Matérn and the
5/2-Matérn. A linear trend function is considered (with a preliminary Elastic-net
based selection for the trend). The constant trend have also been tested, but
the GP models obtained gave less good results. All the GP hyperparameters are
estimated by maximum likelihood on the learning sample. The residual effect of
the inputs Xϵ is captured using an additional nugget effect, also estimated by
maximum likelihood.

The quality of the regression models is then assessed. The main quantitative tool
used for this is the predictivity coefficient Q2, estimated by Leave-One-Out. The
performances of GP regressions with different covariance functions are compared
through this index. A simple linear regression (with Elastic net variable selection)
is also performed for benchmarking.

Table 4.2 summarizes the results of this comparison. The first thing we can observe
is that linear regression does not fit well three of the four outputs. GP models
provide better results. Indeed, we see for example that the predictivity of the GP
models of the maximum impulsion (Y3) is at least 31% better than that of the
linear regression. These results underline the highly non-linear behavior of the
MC3D code.

Let us now examine the influence of the choice of the covariance function on the
results. First of all, we denote that the exponential kernel gives significantly worse
prediction results than the other covariance functions. The other three seem to be
equivalent with respect to the Q2. However, the 5/2-Matérn covariance appear to
be slightly better in general.
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Table 4.2: Predictivity coefficient Q2 estimated by LOO for each GP regression
and the four MC3D studied outputs.

Y1(vm) Y2(dsauter_p) Y3(im_k) Y4(mf)
Linear regression 0.36 0.68 0.38 0.54
GP with exponential kernel 0.59 0.79 0.50 0.63
GP with Gaussian kernel 0.60 0.84 0.51 0.67
GP with 3/2-Matérn kernel 0.60 0.84 0.53 0.66
GP with 5/2-Matérn kernel 0.61 0.84 0.52 0.67

Let us go further in the analysis of the metamodeling performances. Figure 4.1 and
Figure 4.2 provide the y/ŷ and α-CI plots obtained for each of the approximated
outputs, with a 5/2-Matérn GP. The results obtained for the other covariance
functions, not displayed here for concision, are similar. Experimentally observed
values and their uncertainties are shown in red on the y/ŷ plots.

The best approximated output is Y2. Its predictivity Q2 is indeed over 80% and the
prediction levels are also well approximated according to the α−CI plot. For this
output, linear effects seem to be important, as indicated by its good approximation
by a linear regression. This can explain these good results. Y4 is also correctly
approximated, although not as well as Y2. The GP has a predictivity close to 70%
and the prediction levels are also well approximated (cf. Figure 4.2, bottom right).

The output Y1 is not correctly predicted by the GP regression. First, we observe
that only 60% of the variance of the output is explained by the GP metamodel
(Q2 = 0.6). Furthermore its α-CI plot shows that the model tends to overestimate
the confidence intervals (especially around α = 0.5). This may indicate that the
modeling assumptions (the stationarity of the covariance for example) are not
verified by the output Y1. We also observe on the y/ŷ plot, that the values taken
by Y1 are very unevenly distributed. In fact, we may remark that the majority of
the realizations are located on very low values (around 0.005), corresponding to
experimental results.
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Figure 4.1: Evaluations of GP performances of the two outputs Y1 and Y2. On the
left: predicted vs. values simulated by MC3D. Experimentally observed values and
their uncertainty are in red. On the right: α-CI plots.
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Figure 4.2: Evaluations of GP performances of the two outputs Y3 and Y4. On the
left: Predicted vs. values simulated by MC3D. Experimentally observed values and
their uncertainty are in red. On the right: α-CI plots.

122



Finally, the output Y3 is the most poorly fitted by GP regression regarding the
predictivity (Q2 = 0.53). This means that almost half of the output variance is
not explained by our GP metamodel. As mentioned in Chapter 1, the output
Y3 (named im_K ) corresponds to the maximum impulsion measured on the
different sensors of the installation. The steam explosion is a highly non linear and
chaotic phenomenon. It is therefore understandable that this output is difficult
to approximate. An interesting thing to notice is that the confidence intervals
are well estimated by the GP. But as mentioned previously, it is not sufficient to
ensure accurate prediction intervals since the Q2 is low.

Now let us focus on the metamodeling around the experimental values. A first
observation we can make is that the areas of interest, including the observed
values and their associated uncertainties, are on average much smaller than the
set of observed values. We also observe empirically on the y/ŷ plots that current
metamodeling is not better in these areas of interest, except perhaps for Y1. An
interesting perspective could be to start new MC3D simulations with reduced input
variation ranges to better focus on around observed values in the metamodeling
process.

In summary, the approximation of at least two of the four outputs studied (Y1 and
Y3) could be significantly improved. As it is, the built metamodels are difficult to
use for calibration. They remain interesting for sensitivity analysis. However, it
should be kept in mind that a non-negligible part of the output variance is not
taken into account by these surrogate models.

Several hypotheses can explain the obtained metamodeling results. The most
obvious is the lack of training data. This explanation is explored in the subsection
4.2.5. Another hypothesis concerns a poor estimation of the hyperparameters. Even
if dimension reduction was performed, the number of inputs considered remains
important in our case (about 20 parameters per output). However, estimating GP
hyperparameters by maximum likelihood in high dimension is a difficult problem.
See (Basak et al., 2021) for more information. Another explanation could be
that the GP modeling hypothesis are not well suited for the poorly approximated
outputs. In particular, the stationarity hypothesis may be unadapted, at least
over the whole input range of variation. As already mentioned, it might also be
interesting to reduce the input space to focus more on the experimental values.

Several other possibilities have been explored to improve GP regression modeling.
In particular, we tried to apply transformations to the output variables before
metamodeling. We also considered joint metamodeling of the outputs using a PCA
(Principal Component Analysis) of the vector of outputs before emulating the
main PCA components by GP regression. Nevertheless, these different attempts
did not significantly improve the accuracy of the GP metamodels.
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4.2.5 Impact of the data size on metamodeling perfor-
mances

As mentioned previously, an intuitive idea to improve metamodeling is to add new
training data. Enrichment of learning base is often a good way to improve the
accuracy of metamodels. Nevertheless and as we have seen, the MC3D code is
very expensive in terms of computation time. Therefore, before launching new
simulations, it is important to assess and evaluate the interest of adding data to
the GP metamodels.

For this purpose, we measured the prediction quality of metamodels with Q2

for data sets of different sizes. These data sets are obtained by re-sampling the
database available. For each sub-sample and for each output, a GP metamodel
is trained and its Q2 prediction coefficient is evaluated. The trained GPs are the
same as before: a 5/2-Matérn GP with a linear trend and an additional nugget
effect. This process is repeated L = 10 times to get an average Q2 for each sample
size and each output. The number L of repetitions is quite low, but it already gives
a first idea of the evolution of the Q2 regarding sample size. Figure 4.4 depicts
the results for the four studied outputs.

First, we can observe a stagnation of the Q2 for all the four outputs from n = 400
or 600 according to the output. For example, the average Q2 associated with Y2
increases by 0.09 (a 12% gain) when the database increases from 200 to 600 points.
Between 600 and 1000 points it is only 0.02 (2.5% gain).

Second, the sample size affects the Q2 differently depending on the output. In
fact, for the least well-fitted output Y3, going from n = 200 to n = 1000 actually
improves Q2 by only 0.03 (+6%). Going from n = 200 to n = 1000 increases the
Q2 of Y2 by 0.11 (+15%). We can therefore suppose that increasing the learning
base affects the predictive ability of well-approximated outputs more than the
poorly approximated ones. To conclude, it is reasonable to think that adding new
simulations will not yield to significative improvements of GP performances.
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Figure 4.3: Evolution of the GP’s predictivity Q2 for each output regarding the
training set size.
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4.3 Quantitative sensitivity analysis on the built
Gaussian process

The computation of total Sobol’ indices in addition to first-order indices provides
a more complete and quantitative sensitivity analysis since they take into account
the effect of interactions. Moreover, their interpretation is easier than the HSIC.
However, estimating Sobol’ total indices, as we saw in Section 4.1, requires a large
number of model evaluations. This is unmanageable for time-consuming computer
codes like MC3D.

To address this issue, we can use surrogate models to have a good estimate of
these indices. Note that, as mentioned before, a link can be made between the
estimation error of the Sobol’ indices estimated by a metamodel and the prediction
coefficient Q2 of this surrogate model. In fact, when the Q2 is estimated under the
probability distribution of the inputs, it provides an estimate of the part of the
variance explained by the metamodel. Metamodel-based GSA provides sensitivity
indices of the true model only on this explained part of variance. Thus, the more
accurate a metamodel, the more relevant the metamodel-based sensitivity analysis.
This must be taken into account when interpreting the Sobol’ indices estimated
with surrogate models.

Therefore, we estimated all first-order and total Sobol’ indices using the GP
regression models of the MC3D outputs built in Section 4.2. The GP considered
is again with a 5/2-Matérn covariance, a linear trend and an additional nugget
effect. Dependencies between inputs caused by code failures are neglected here
for the sake of simplicity. Furthermore, the estimate of the Sobol’ indices is only
based on the trend of the GP metamodels 3. Figure ?? summarizes the results
obtained in the form of two colored tables. For a better understanding, the GP
metamodels predictivity Q2 of the four outputs is recalled on the first line, next to
the output name.

A first thing to note is that first order effects represent an important part of the
variance explained by the GP. Indeed, the sum of the first order indices represents,
for each of the four outputs, between 65% and 90% of the total variance. We also
observe that the least well-fitted outputs Y1 and Y3 have the lower part of their
variances explained by first order effect (65% and 77% respectively).

Three inputs distinguish themselves regarding these results: X29 (corresponding to
WECRDL), X13 (corresponding to CFRAG) and X7 (corresponding to KTDROP).

3Several methods have been developed to associate an uncertainty to Sobol’ estimates using
GP metamodels (Marrel et al., 2009 ; Gratiet et al., 2014). They are not considered here.
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Figure 4.4: Sobol’ first order (on the left) and total (on the right) indices estimated
on the GP metamodels. The line “Total” corresponds to the sum of all the first
order indices for each output.

In particular, the first order indices related to X29 are all around 0.25. This means
that around 25% of the GP-explained variance of each output is due to this input
alone. The Sobol’ first order indices of the two other inputs are comprised between
0.09 and 0.22. This remains high regarding the number of inputs considered
(between 17 and 23). For these inputs, the total indices are generally significantly
larger than the first order indices. For X29, we have ST29 −S29 = 0.23. For X13 and
X7, this difference is equal to 0.16 and 0.18. This means that these three inputs
not only influence the outputs individually, but also through their interactions
with each other.

These three inputs are related in the code to the mechanism of drop fragmentation.
Indeed, the input WECRDL (X29) corresponds to the critical Weber number under
which there is no fragmentation of the molten corium droplets surrounded by
liquid water. The Weber number is an adimensionnal number representing the
ratio of the inertial forces applied on the drops by the surrounding fluid to the
forces of surface tension that stabilize the droplets. The input CFRAG (X13) is
the coefficient related to the Pilch’s model of the drop fragmentation mentioned
in Chapter 1. Finally, KTDROP (X7) is related to the solidification temperature
of the drops. Since only melted drops can be fragmented, it is also linked to the
drops fragmentation. This indicates that the drop fragmentation model is one of
the most influential mechanisms on the MC3D code output.
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Let us go further in the analysis. Figure 4.5, 4.6 and 4.7 show scatterplots of
the four outputs according to the three inputs X29, X13 and X7 respectively. An
additional local regression using a first degree polynomial model (Wand and Jones,
1994) is added on each scatterplot. For each input Xj, j ∈ [29, 13, 7] and each
output Yk, k ∈ J1, 4K, this gives a rough estimate of E(Yk|Xj) and therefore allows
a first interpretation of the primary influence of each input. A general observation
that can be made is that the outputs are, on average, monotonic functions of the
three studied inputs.

Let us now analyze the relationship between WECRDL (X29) and the four studied
outputs (Figure 4.5). The Weber number is defined by the following formula:

We = ρv2D

σ
, (4.29)

with:

• ρ is density of the surrounding fluid, here liquid water (kg/m3);
• v is the difference of velocity between the drop and the surrounding fluid

(m/s);
• D is the drop diameter (m);
• σ is the surface tension (N/m).

We can notice that the this number is proportional to the diameter of the droplets.
This means that the higher the critical Weber, the higher the drop diameter can
be. This explain why the output dsauter_p (Y2), representing the average drop
diameter in the premixing step, appears to be a growing function of WECRDL
(X29). A possible consequence of bigger drop diameter is that the interfacial area
(the average drop surface area per unit volume of the drops) is smaller. It means
that there is less thermal exchange between drops and liquid water and therefore
less vapor is produced. This hypothesis seems to be confirmed by the first plot of
Figure 4.5. We indeed observe that the vapor mass (Y1) is a decreasing function
of X29. Finally, we observe that high values of X29 amplify the vapor explosion.
Indeed, we observe that the maximum impulse (Y3) and the fragment mass are
growing functions of X29. This can be explained from a physical point of view by
the fact that only the molten drops of corium in liquid water are involved in the
steam explosion phenomenon. However, the less steam there is, the more drops
are in direct contact with the liquid water and can be fragmented by the explosion.
The steam can also mitigate the pressure wave generated by the explosion.
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Figure 4.5: Scatterplots with local polynomial regression (in blue) for the four
outputs according to the input X29, from the learning sample.

129



Now let us examine Figure 4.6. As indicated above, the CFRAG coefficient (X13)
parameterizes the fragmentation of the drops. The higher it is, the more the drops
are fragmented and therefore the smaller they are. This is what we observe on the
second plot of the figure (Y2 versus X13). For the other plots, the previous physical
analysis seems to apply. Thus, we see that the vapor mass is an increasing function
of the fragmentation coefficient. The smaller the drops are, the more vapor there
is. We also observe that the maximum impulse and the fragment mass reflecting
the intensity of the vapor explosion phenomenon are decreasing functions of X13.

Figure 4.6: Scatterplots with local polynomial regression (in blue) for the four
outputs according to the input X13, from the learning sample.
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Finally, Figure 4.7 depicts the scatterplots of the four outputs according to X7
(KTDROP). The input X7 corresponds to the solidification temperature of the
drops. For X7 = 1, the drops solidify directly after reaching the temperature
Tliquidus of the corium. For X7 = 0, it must reach the temperature Tsolidus of the
corium before solidifying. This means that it must have transferred all its latent
heat (3.105J) to the surrounding water before solidifying. We therefore understand
that the closer X7 is to 0, the more the drops will tend to stay liquid. Moreover,
only liquid drops can be fragmented (and thus become smaller). This reasoning
can explain what we observe on the second plot of Figure 4.7. Indeed, we observe
that the diameter of the drops in the premixing step (Y2) is a decreasing function
of X7. The analysis of the other graphs is similar to what we have seen before:
the amount of vapor (Y1) is an increasing function of X7, and thus a decreasing
function of the size of the drops. We also observe that the intensity of the explosion
(through Y3 and Y4) is a decreasing function of X7.

Figure 4.7: Scatterplots with local polynomial regression (in blue) for the four
outputs according to the input X7, from the learning sample.
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4.4 Conclusion of the chapter and prospects
In this chapter, we performed the last steps of a modern and applicative approach
for a quantitative sensitivity analysis of CPU-expensive simulation codes. This
operational approach is well suited for complex industrial codes such as MC3D. A
first screening step allowed the classification of the variables in two categories: the
explanatory variables of the code and the others. This step is essential when the
studied code has a large number of input parameters (several dozens for instance),
as it is the case with MC3D. To perform this selection step, two advanced sensitivity
analysis tools have been used: the HSIC and the first order Sobol’ indices estimated
with rank based statistics. These tools are well tailored to analyse non-linear
model functions.

After this screening step, regression models have been built to approximate the code
outputs. These metamodels only stand on the variable identified as explanatory
by the screening step. Classic Gaussian process (GP) regression have been used
to perform this metamodeling. As the choice of the kernel highly influences the
behavior of GP models, several kernels have been tested. Among them, the 5/2-
Matérn covariance was preferred. A complete analysis of prediction performances
of these metamodels has been then carried out. This analysis showed that among
the four studied outputs, an output is well fitted by GP metamodels, a second one
is a little less well emulated and the GP metamodels are clearly inaccurate for the
last two. Several hypothesis have been proposed to explain these results and some
of them have been explored. Ways of improvements have been considered and are
discussed further bellow.

Finally, we exploited the built metamodels to obtain a quantitative global sensitivity
analysis (GSA) on the MC3D studied outputs. To process this GSA, the classic
Sobol’ first order and total indices have been estimated using the built metamodels.
This second analysis allowed us to distinguish three inputs that are the most
influential on the outputs of the code. All three are directly related to the
fragmentation of the corium drops. Among the different models present in MC3D,
this phenomenon seems to dominate in the modeling of the corium-water interaction.
Scatterplots of the four outputs regarding these three inputs have been given.
They allowed thus to understand more precisely the impact of these three inputs
on the outputs.

The main developments foreseen in this work concern the improvement of the
quality of the metamodeling. As mentioned at the end of Section 4.2, several
possibilities can be envisaged to improve it. A first idea could be to smartly
increase the size of the learning set to improve the GP learning, using the so-called
expected improvement criterion for instance (Jones et al., 1998). However, the
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significative probability of code failures could limit the interest of this approach
for our application case. Relaxing some assumptions of GP models, such as the
stationarity of GPs, is also a promising possibility. For instance, the use of Deep
GP (Damianou, 2015) with a larger dataset and only taking into account the
most influential inputs might provide interesting results. As the metamodeling
are built in perspective and support of the calibration of the code, relaxing the
GP interpolation constraints far from the values experimentally observed could be
considered. It could lead to better predictivity results in the outputs ranges of
interest. Recent approaches on relaxed Gaussian process (Petit et al., 2021) has
shown promising results in this regard. Finally, considering completely different
regression methods (SVR, neural networks) could also open new possibilities. How-
ever, the use of Gaussian processes offers advantages for calibration, in particular
for Bayesian calbration since GP metamodels provides uncertainties in prediction.
GP predictive distributions can be then included in Bayesian calibration framework
(see for instance Carmassi (2018) or Damblin (2015) for details).

Another interesting perspective of this work is to better account for the interaction
between inputs caused by code failures in sensitivity analysis. For example, the
use of Generalized Sobol indices (Chastaing et al., 2014) is a promising approach
for this task.
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Conclusion and prospects

The industrial context of this PhD is the simulation of severe nuclear accidents in
pressurized water reactors. More precisely, we focused on the modeling of the fuel-
coolant interaction (FCI) that can lead to the steam explosion phenomenon. This
explosion could damage the structures and compromise the integrity of the nuclear
reactor. The calculation code used at the CEA to simulate this phenomenon is
MC3D (MultiComponent Code 3D software). However, the methods proposed in
this work are general enough to be applied to other simulation codes.

The FCI is a complex and non-linear phenomenon in which many mechanisms
interact. This complexity induces a large number of model parameters to be
managed and a relatively long computation time for each simulation with MC3D
code. In this context, the main objective of this work is to investigate the simulation
of the FCI by MC3D. In particular, we are interested in evaluating the impact
of the uncertain modeling parameters on the outputs of the MC3D code in the
general framework of uncertainty quantification. This study also aims to prepare
the future calibration of these parameters on experimental data to improve the
reliability of the code. To investigate the impact of uncertain modeling parameters,
we proposed a methodology based on several advanced statistical methods. This
methodology consists in five main steps:

1. Exploration of the input space using sampling methods.
2. Sensitivity analysis of code failures to understand which inputs have the

most influence on them.
3. Selection of significant inputs and global sensitivity analysis of the code

outputs of interest.
4. Emulation of the outputs by regression models (metamodeling).
5. Use of metamodels (built at Step 4) to perform a more complete sensitivity

analysis.

In the first chapter of the thesis, we detailed the industrial context, the objectives
of the thesis and the statistical methodology proposed to address them. We also
specified the case study. In fact, we only focused on model parameters of the code,
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which we considered as uncertain. The simulated conditions are those of a real
experiment allowing the observation of the FCI, KROTOS KS4. We also focused
only on a limited number of scalar outputs of the MC3D code. The other chapters
of the thesis dealt with the different steps of our statistical methodology.

In Chapter 2, sampling methods were discussed. In the context of our work,
choosing a sampling method is essential to perform the analysis of the code. A
sampling method indeed determines the way in which the input space is explored
and thus the properties of the input-output data set. In this chapter, an overview
of the classical sampling methods was first given. In our application, we used
the Latin hypercube sampling (LHS) because it has both good space-filling and
theoretical convergence properties. An original work done on the convergence
of Z-estimators under LHS was then presented. A reduction of the asymptotic
estimation variance as well as a central limit theorem for this class of estimators
under LHS were established. However, some restrictive regularity conditions were
imposed on these estimators in order to obtain this convergence. Removing some
of these limitations is an interesting prospect for future work.

After that, we discussed the convergence under LHS of other statistics used in
our methodology. Some theoretical work about the Kolmogorov statistic was
first presented. Numerical experiments on the convergence of a Sobol’ first order
indices rank based estimator have also been proposed. We empirically compared
the asymptotic behavior of this estimator under pure Monte Carlo sampling, LHS
and optimized LHS. According to this work, classical LHS appears to be a good
compromise between bias and variance for rank based estimation of first order Sobol’
indices. Finally, the convergence under LHS of two other statistics used in this
work were discussed, namely the Hilbert Schmidt Independence Criterion (HSIC)
and the hyperparameters of Gaussian Process (GP) regression models, the latter
being estimated by maximum likelihood, which is a special case of Z-estimation.
The theoretical study of their convergence is an interesting perspective.

The topic of Chapter 3 is the step 2 of our methodology, namely the analysis of
code failures through the prism of sensitivity analysis. Code failures are common
problems in the context of numerical simulation of complex physical phenomena.
Detecting the inputs involved in these code failures and their implication is therefore
helpful to improve the robustness of these simulation codes. Results obtained
during the exploration of the input space of the MC3D code motivated this work.
In fact, after defining our design of experiments, we ran the code on the sample
points and observed that a third of the simulations did not converge. So, our aim
was to investigate this issue.
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Considering the occurrence of a code failure as a binary output in its own right,
the principles of global sensitivity analysis can be used to identify the variables
that have the greatest impact on the failures. Within this framework, we first
introduced two methods to detect the inputs that might be involved in code failures.
First, we studied the input distribution of the samples such as the code fails. It
has been done using the Kolmogorov-Smirnov (K-S) goodness-of-fit test. This
test method allows to detect the variables whose distribution conditional on code
failures differs significantly from their initial distribution. Since our initial design
of experiment is a LHS, the test procedure has been adapted for this frame. A
second method, based on the Hilbert Schmidt Independence Criterion (HSIC), has
been then proposed. This kernel-based method allows the detection of probabilistic
dependencies between the input variables and code failures. Moreover, HSIC-based
statistical tests of independence can be built for screening and ranking of inputs
(by order of influence on code failures). From results of K-S and HSIC-based tests,
a set of significantly influential inputs was selected. A graphical analysis of the
densities conditional on code failures has been proceeded for these inputs. We
then analyzed the obtained results from a physical point of view.

Then, a second sensitivity analysis was performed to detect and identify the
interdependencies that appear between the inputs when considering the sample
of only converged simulations. For this purpose, we reused the HSIC dependence
measure, but this time between each pair of input variables conditioned on the
occurrence of a code crash. Hence, three groups of interdependencies between the
conditioned inputs have been detected with this method. A continuation of this
work could be to distinguish the different causes of code failures in the analysis.
The use of classification algorithms to identify the domains of input values leading
to code crashes is also an interesting perspective. It would be indeed very useful in
practice to predict code failures in order to avoid wasting computational resources.

Finally in Chapter 4, we discussed the three other steps of our global methodology:
the screening, the metamodeling and the quantitative sensitivity analysis. Given
the large number of inputs considered in our study, the selection (or screening) step
is essential. It results in the classification of the input variables into two subgroups:
the explanatory variables with respect to code outputs and the others. Given
the limited number of available simulations, two advanced sensitivity analysis
tools have been used to perform this preliminary selection of inputs: the HSIC
and the first order Sobol’ indices. Both tools are well tailored to analyze non-
linear model functions and provide complementary information. HSIC (with
associated independence test) is a screening method which allows to detect the
non-significantly influential inputs. The first order Sobol’ indices provide additional
information on the proportion of variance explained by each of these variables
individually and thus on the additive part of the input/output relationship.

136



Then, considering only the inputs selected as explicative, regression models (also
called metamodels) were built in order to emulate the code outputs according to
the inputs. Classical Gaussian process regression has been used to perform this
metamodeling. Once trained on the set of available simulations, these metamodels
can produce large amounts of predicted results with negligible computational
effort. They thus allow an intensive exploration of the input variation domain.
However, a validation of their predictive capacity, i.e. their capacity to correctly
predict the results of the code with reliable predictive intervals, is necessary.
This validation step revealed that some studied MC3D outputs were correctly
reproduced while for others, only half of the output variance is explained by the
metamodel. Despite these contrasting results, a complete, easily interpretable
and quantitative sensitivity analysis of the outputs has been carried out using the
metamodels. More precisely, the classic Sobol’ first order and total indices have
been estimated with the metamodels. As a result, three inputs were identified as
the main and most influential on the code’s outputs. All three are directly related
to a specific phenomenon of the FCI, the fragmentation of the corium drops in
water. In addition, scatterplots enabled a more exhaustive physical understanding
of the impact of these three inputs on the outputs.

To summarize, we proposed in this work a modern and applicative approach to
perform a quantitative sensitivity analysis on complex industrial codes (such as
MC3D), in support of a thorough physical interpretation of the effects of uncertain
inputs.

The perspectives regarding our methodology are numerous. The most prominent
one is the calibration of the code on the KROTOS experiments. Our work allowed
the identification of a restrained number of inputs that seem to have a significant
impact on the global behavior. The next step is naturally to adjust the code,
in a robust way, to the experimental data at our disposal. The major challenge
concerning this perspective concerns the quantity of data on which we have to
perform this calibration. In fact, little experimental data is available because
KROTOS experiments are very expensive. To achieve this calibration, Bayesian
methods are promising. They have indeed several advantages. First of all, the
bayesian framework will allow us to consider the information we have a priori about
the parameters and their uncertainty. This information is essential in our case
given the small amount of experimental data available. Additionally, in this frame,
the calibrated parameters are associated with a probability law that quantifies
their post-calibration uncertainties.
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However, many code runs are necessary to perform this Bayesian calibration. The
use of metamodels thus appears to be essential given the high computing time of the
MC3D code. In particular, GP regressions provide a good theoretical framework
for the Bayesian calibration (see for instance (Carmassi, 2018) or (Damblin, 2015)
for details). However, the currently built metamodels are not good enough for
some outputs, to allow an accurate calibration of the code on experimental data.
Thus, a preliminary step to the calibration is the improvement of the metamodels.

Increasing the learning base using Expected Improvement techniques (Jones et
al., 1998) is a promising approach to do so, but its application in high dimension
remains complicated. The results of sensitivity analysis might be used to reduce
the search space. Moreover, the significative probability of MC3D code failure
must also be taken into account. Another solution to improve the accuracy of
GP metamodel could lies in relaxing the assumption of stationarity. The use of
Deep GP (Damianou, 2015) with a larger dataset and focusing on the main inputs
of the code for instance could be an interesting option. Another possibility is to
relax the GP interpolation constraints far from the region of interest regarding
the calibration, using relaxed Gaussian process (Petit et al., 2021) for example.
Finally, running new calculations on a smaller input space may also be interesting.
This can be done in two ways. First, one can reduce the number of inputs by
taking only those that influence the FCI. Our sensitivity analysis will thus be very
useful. The variation spaces of the considered inputs can also be reduced to better
focus on obtained experimental values. Reducing the size of the input space could
indeed improve the metamodeling in the areas of interest for calibration.
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Appendix A

Complementary results on the
first test of Subsection 2.3.2

In this appendix, we display the results of the first test performed to investigate
the convergence of the Sobol’ first order indice rank estimator Ŝnj

RS under different
sampling methods. In the main document (Section 2.3.2), we shown the obtained
results for the Sobol’ function. The results for the Ishigami function (Saltelli, 2008)
and the Morris (Morris, 1991) function are displayed here.

The classic Ishigami function (Saltelli, 2008) is defined as follow:

fI(X1, X2, X3) = sin(X1) + b sin2(X2) + bX4
3 sin(X1)

with:

• Xj j ∈ [1, 2, 3] following uniform distributions in [−π, π];
• a = 7 and b = 0.1.

The theoretical values of the first Sobol’ indices for the classic Ishigami function
are S = [0.305, 0.4356, 0].

The Morris function (Morris, 1991) is defined as follow:

fM(X1, . . . , X20) = β0 +
20∑
j=1

βjwj +
20∑
j<j′

βjj′wjwj′ +
20∑

j<j′<j′′
βjj′j′′wjwj′wj′′

+
20∑

j<j′<j′′<j′′′
βjj′j′′j′′′wjwj′wj′′wj′′′
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with:

• wj = 2(Xi − 1/2) except for i = 3, 5 and 7, where wj = 2(1.1Xi/(Xi + 0.1) −
1/2);

• the first order coefficients βj = 20 for j ∈ J1, 10K;
• the second order coefficients βj,j′′ = −15 for j, j′ ∈ J1, 6K;
• the third order coefficients βj,j′,j′′ = −10 for j, j′, j′′ ∈ J1, 5K;
• the fourth order coefficients βj,j′,j′′,j′′′ = 5 for j, j′, j′′, j′′′ ∈ J1, 4K;
• Xj, j ∈ J1, 20K following uniform distributions in [0, 1].

The remainder of the first and second order coefficients are generated indepen-
dently from a normal distribution N (0, 1). The remainder third and fourth order
coefficients are set to 0.

The theoretical values of the first Sobol’ indices for the Morris function are equal
to:

S = [0.012, 0.008, 0.019, 0.015, 0.021, 0.005, 0.07, 0.138, 0.138,

0.129, 0.007, 0.007, 0.007, 0.007, 0.008, 0.009, 0.007, 0.009, 0.008, 0.008].

Figures A.1 and A.2 show the evolution of the bias2, the variance and the mean
square error (MSE) of the Sobol’ index estimator of the inputs of the Ishigami
function and the Morris function respectively. The estimation of these three criteria
are done with Ntests = 500 for each value of n. For the Morris function, we only
display here the errors of the inputs that have the maximum (input 9), the median
(input 15) and the minimum (input 6) true S1 values for concision.
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Figure A.1: Ishigami model function: square bias, variances and MSE of the
estimators of 1rst Sobol’ indices, according to the numerical experiment design for
the 3 inputs, according to the design experiment type.
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Figure A.2: Morris model function: square bias, variances and MSE of the
estimators of 1rst Sobol’ indices, according to the numerical experiment design for
3 inputs (those with max, median and min indices values), according to the design
experiment type.
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Appendix B

Synthèse du manuscrit en français

Cette synthèse en français est composée d’un résumé complet du Chapitre 1
(Contexte, objectifs et méthodologie) et d’une traduction de la conclusion.

B.1 Contexte, objectif et méthodologie
En France, environ 70 % de l’électricité consommée annuellement est produite
par des réacteurs nucléaires (International Energy Agency, 2021) (56 réacteurs
en fonctionnement ). La construction de six nouveaux réacteurs a également
été annoncée pour les années à venir. La recherche dans ce domaine est donc
d’une importance majeure pour la production d’électricité en France. Une part
significative de ce travail de recherche est assurée par le CEA (Commissariat à
l’Énergie Atomique et aux énergies alternatives).

La quasi-totalité des réacteurs existants utilisent l’énergie libérée par la réaction
de fission d’un atome lourd d’uranium 235 par un neutron. Cette réaction est
fortement exothermique et produit de nouveaux neutrons, conduisant dans certaines
conditions à une réaction en chaîne. L’énergie produite est transformée en chaleur
par un liquide de refroidissement. En France, le caloporteur est de l’eau maintenue
sous pression (155 bars) et ayant une température pouvant atteindre 350◦C. On
parle ainsi de Réacteurs à Eau Pressurisée (REP). Cette eau chaude circule dans
le cœur du réacteur dans un circuit fermé, appelé circuit primaire, et échange de
l’énergie thermique avec l’eau d’un autre circuit, appelé circuit secondaire. Ce
deuxième circuit génère de la vapeur qui est utilisée pour actionner des turbines
reliées à des générateurs qui produisent de l’électricité. Enfin, un circuit de
refroidissement permet de refroidir et condenser la vapeur après son passage
dans les turbines. La Figure B.1 illustre le fonctionnement d’un réacteur à eau
pressurisée ainsi décrit.
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Figure B.1: Schéma de principe du fonctionnement d’un réacteur nucléaire à eau
pressurisée. Tiré de wikipedia : Réacteur à eau pressurisée

De nombreux systèmes de sécurité ont été développés et mis en œuvre pour
permettre le bon fonctionnement de ces réacteurs nucléaires et ainsi éviter les
situations accidentelles ou limiter leurs effets. Ainsi, en plus des composants
de base mentionnés ci-dessus, les réacteurs nucléaires sont équipés de plusieurs
systèmes de sécurité indépendants et redondants. Ces systèmes opèrent en parallèle
pour atténuer les risques liés aux anomalies de fonctionnement ou aux accidents
d’exploitation. Ils empêchent également ces situations accidentelles de dégénérer.

Cependant, l’efficacité de tout système de sécurité dépend de l’accident pour lequel
il est conçu. Des séquences accidentelles sortant du cadre des dispositifs de sécurité
existants peuvent se produire. En effet, plusieurs évènements de ce genre ont eu
lieu dans l’histoire. On peut notamment citer Three Mile Island (USA, 1979),
Tchernobyl (Ukraine, 1986) et plus récemment Fukushima Daiichi (Japon, 2011).
Ces événements ont souligné la nécessité d’adopter des mesures pour atténuer
l’occurrence de scénarios pouvant conduire à ce que l’on appelle des accidents
graves.

Un accident est considéré comme grave lorsque l’énergie libérée par le cœur du
réacteur est supérieure à l’énergie dissipée par le fluide de refroidissement, et ce
malgré tous les systèmes de sécurité. Dans ce cas, la température du cœur augmente
et peut atteindre sa température de fusion, entraînant la perte de l’intégrité du
cœur. Le magma chaud (environ 3000 K) composé d’éléments fondus du cœur
et des structures ainsi formé est appelé par le nom générique corium. Ce magma
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peut se propager hors du cœur et former un bain au fond de la cuve du réacteur.
En raison de sa température élevée, le corium ainsi accumulé peut ablater la paroi
de la cuve. Si celle-ci est percée, le corium peut alors se propager dans le reste du
réacteur, atteindre le radier en béton et interagir avec celui-ci. Le corium peut
également interagir avec l’eau environnante étant utilisée pour refroidir le réacteur.
C’est ce qu’on appelle l’Interaction Corium-Eau (ICE). La figure B.2 illustre les
différentes étapes de la progression du corium dans le réacteur.

Figure B.2: Progression du corium lors d’un accident nucléaire grave dans un
réacteur à eau pressurisée.

Cette thèse s’inscrit dans le contexte industriel de l’étude de l’ICE. Ce chapitre
vise ainsi à présenter ce contexte, ainsi que la problématique de travail relative
à celui-ci. Nous présenterons également la méthodologie, basée sur des outils
statistiques, qui a été proposée pour y répondre.
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B.1.1 Contexte industriel : étude de l’Interaction Corium
Eau (ICE)

Comme pour la majorité des phénomènes physiques, deux types d’outils sont
disponibles pour étudier l’interaction corium eau. D’une part, il y a les installations
expérimentales. Elles permettent une observation directe du phénomène et de ses
conséquences. Cependant, ces installations ne sont généralement pas entièrement
représentatives du cas réacteur. En effet, elles sont souvent plus petites qu’un
réacteur nucléaire réel et les matériaux utilisés expérimentalement ne sont pas les
matériaux réels. Les expériences effectuées sur ces installations peuvent également
être très coûteuses : jusqu’à plusieurs millions d’euros pour une expérience simulant
l’interaction corium-eau avec des matériaux prototypiques (même composition
chimique que le corium réel mais avec de l’uranium appauvri). Enfin, le type et la
quantité de données expérimentales qui peuvent être recueillies sont limités. D’autre
part, nous avons à notre disposition des logiciels de simulation pour modéliser
et prédire les phénomènes physiques comme l’ICE. Le faible coût d’exploitation
de ces outils de simulations comparativement aux expériences réelles permet de
traiter beaucoup plus de cas différents. Cependant, il est important de s’assurer
que la modélisation du phénomène étudié par ces codes de calcul est fidèle à la
réalité.

L’objectif de cette section est de décrire l’interaction corium-eau. L’installation
expérimentale (KROTOS) et l’outil numérique (MC3D : Multicomponent Code
3D) utilisés pour analyser le phénomène au CEA seront également présentés.

B.1.1.1 Description du phénomène

Comme indiqué précédemment, l’ICE dans le contexte d’un accident grave (en
REP) correspond au contact entre le corium chaud et l’eau de refroidissement
environnante. Cette interaction peut conduire, sous certaines conditions, à une
fragmentation fine du corium entraînant une vaporisation violente du liquide de
refroidissement et la propagation d’une onde de pression. Ce phénomène, appelé
explosion de vapeur, peut menacer l’intégrité du réacteur et conduire à la dispersion
d’éléments radioactifs dans l’environnement.

Les principales étapes de l’ICE, décrites en détail par Corradini (1988), sont les
suivantes (cf. Figure B.3) :

1. Prémélange. Cette étape correspond au premier contact entre l’eau et le
corium fondu, qui se fragmente alors en gouttes. La température du corium
est telle que le réfrigérant est en régime d’ébullition en film à son contact.
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2. Déclenchement. Le déclenchement de l’explosion résulte d’une déstabil-
isation locale des films de vapeur entourant les gouttes de corium. Cette
déstabilisation induit une fragmentation fine de ces gouttes, augmentant la
surface d’échange et donc les échanges thermiques entre le corium et l’eau.

3. Propagation. Les transferts de chaleur entre le corium et l’eau sont si
rapides qu’une onde de pression est générée et se propage, déstabilisant les
gouttes voisines. Celles-ci se fragmentent à leur tour et génèrent des ondes
de pressions s’additionnant entre elles. On a alors une réaction en chaîne :
une onde de pression se propage dans le mélange et s’amplifie, fragmentant
rapidement l’ensemble des gouttes de corium.

4. Détente. La chute de pression qui suit le passage de l’explosion permet
la génération et la détente de la vapeur d’eau. De plus, lorsque l’onde de
pression atteint la surface libre, une onde de détente se propage dans la
direction opposée, diminuant la pression. Celle-ci permet la génération et la
détente de la vapeur.

Figure B.3: Principales étapes de l’ICE conduisant à une explosion vapeur. (Hans-
son, 2007).

B.1.1.2 L’installation expérimentale KROTOS

L’installation KROTOS permet d’observer expérimentalement l’interaction entre
un corium prototypique et de l’eau servant de liquide de refroidissement. Ancien-
nement située au CCR d’Ispra (Huhtiniemi et al., 1999 ; Huhtiniemi and Magallon,
2001), l’installation a été déplacée au CEA de Cararache au début des années 2000.
À Cadarache, un système de radioscopie à rayons X a été ajouté pour caractériser
le mélange corium-eau pendant la phase de prémélange.

Cette installation fait sept mètres de haut et est construit sur deux niveaux de la
plateforme expérimentale plinius située au CEA Cadarache (Brayer et al., 2012).
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Table B.1: Principales quantités mesurées sur l’installation KROTOS.

Quantité mesurée Méthode Commentaires
Forme du jet (con-
tinu/fragmenté),
diamètre du jet et
Vitesse

Camera Uniquement sur un
champ de vision réduit

Vue d’ensemble du
prémélange

Radioscopie par rayons X Uniquement sur un
champ de vision réduit

Pression explosion (lo-
cal)

Transducteurs de pression dynamique 7 capteurs répartis le
long de la paroi du
tube à essai, dont 1
dédié au déclencheur

Détection du front de
jet

Thermocouples sacrificiels 5 capteurs sur l’axe de
la section d’essai

Propriétés des frag-
ments (masse, taille,
etc.)

Collecté à la fin de l’expérience Aucun

Niveau d’eau Transducteur de niveau d’eau Aucun
Température de l’eau Thermocouple Aucun

Elle est composée de 2 éléments principaux :

• un four résistif pour chauffer le combustible ;
• une cuve abritant le dispositif de formation du jet de corium, l’éprouvette,

le déclencheur et les outils de légende.

Les principales grandeurs mesurées par l’installation et les capteurs associés sont
présentés dans le Tableau B.1.

D’autres quantités peuvent être déduites des observables précitées. Par exemple,
l’impulsion de l’explosion correspond à l’intégrale de la pression sur le temps
d’explosion. Cette quantité peut donc être calculée à partir de la pression mesurée
lors de l’explosion. Les propriétés des gouttes (masse, taille, etc.) pendant le
prémélange et l’explosion peuvent également être estimées à partir des fragments de
corium collectés. Pour plus de détails sur l’installation KROTOS et les expériences
KROTOS, on peut se référer à (Brayer et al., 2012 ; Bouyer et al., 2015). Dans le
cadre de ce travail, nous nous focalisons essentiellement sur l’expérience KROTOS
KS4.

156



B.1.1.3 Le code de simulation MC3D

MC3D est l’un des codes ayant été développés dans le monde pour modéliser
l’interaction corium-eau (Meignen and Magallon, 2005). Initialement, celui-ci a
été créé par le CEA (Berthoud and Valette, 1994 ; Brayer and Berthoud, 1997).
Le code est maintenant la propriété de l’IRSN qui en poursuit sa maintenance et
son développement (Meignen, Picchi, et al., 2014 ; Meignen, Raverdy, et al., 2014).
Le développement des dernières versions a été effectué dans le cadre du projet
pluriannuel RSNR-ICE mené par l’IRSN, répondant au projet dit post-Fukushima.
Il implique le CEA et est cofinancé par EDF, Framatome et l’ANR (Agence
Nationale de la Recherche). La version 3.09 de MC3D a été utilisée pour ce travail.
Une nouvelle version du code (la 3.10) a été publiée en 2022.

MC3D est un code multiphasique multi-composants eulérien dédié à la simulation
de l’interaction corium-eau. Il utilise un maillage cartésien ou cylindrique en 2D
ou en 3D. MC3D est organisé autour d’un noyau commun et de modules pour
modéliser chaque composant. Le noyau gère le schéma numérique, le solveur et le
problème entrées/sorties. Chaque module décrit, pour les différents composants,
les équations de conservation de masse, de quantité de mouvement et d’énergie
ainsi que les équations de fermeture nécessaires à la description du modèle.

MC3D modélise l’ICE à l’aide de deux applications chainées. La première, PRE-
MIX, modélise l’étape de prémélange. Cependant, cette application est suffisam-
ment générale pour être utilisée pour d’autres applications. La seconde application,
EXPLO, est limitée dans son utilisation à l’étude de la phase d’explosion de vapeur.
Un calcul complet est donc effectué en deux étapes, un calcul de prémélange suivi
d’une explosion utilisant en entrée les données de sortie du calcul de prémélange.
Toutes les entrées et sorties du code sont définies dans le fichier de données de
MC3D.

Les entrées

Dans MC3D, les entrées sont scalaires ou catégorielles. De plus, nous pouvons
distinguer plusieurs types d’entrées en fonction de leur rôle dans le processus de
simulation. Tout d’abord, nous avons les conditions géométriques et physiques.
Elles permettent de décrire la situation que l’on souhaite simuler.

Ensuite, nous avons les paramètres numériques : pas de temps, taille de la grille,
etc. Ces paramètres influent sur la précision de la simulation, mais aussi sur sa
durée et sa stabilité. Ensuite, nous avons les paramètres de modélisation. Ils
influencent le comportement des modèles implémentés dans MC3D. Dans ce travail
de thèse, nous nous intéressons à ce type d’entrées.
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Les sorties

On distingue deux types de sorties dans MC3D :

• les sorties dites de type 1 correspondant à l’évolution temporelle de quantités
physiques moyennées sur l’ensemble du maillage ou localisées à un endroit
spécifique du domaine de calcul (pour émuler un capteur par exemple).

• les sorties dites de type 2 correspondant à la représentation des quantités
physiques dans chaque maille du domaine à différents instants de la simula-
tion.

La comparaison directe des sorties de type 2 aux résultats expérimentaux est
difficile parce que ces résultats sont donnés par des capteurs localisés (sauf pour le
film vidéo et la radioscopie). Nous n’avons donc pas accès à l’évolution de toutes
les quantités observées à chaque endroit du domaine.

Modèles utilisés dans MC3D

Pour rappel, MC3D utilise pour modéliser l’ICE la méthode classique eulérienne
multicomposants où chaque composant/mélange est décrit par ses équations de
conservation de masse, de quantité de mouvement et d’énergie. Ces équations sont
résolues avec une version adaptée de la méthode numérique eulérienne implicite à
fluide continu (Harlow and Amsden, 1975 ; Mercier, 1989). Un maillage cartésien
ou cylindrique est utilisé où les vitesses sont exprimées aux faces et les autres
variables au centre des mailles. En outre, plusieurs modèles sont utilisés pour
décrire des phénomènes spécifiques de l’interaction corium-eau.

Les principaux phénomènes spécifiques modélisés dans MC3D sont la description
des flux de réfrigérant et de combustible, la fragmentation de la masse fondue, les
transferts thermiques et la solidification des gouttes.

L’application prémélange

Dans l’application de prémélange, MC3D se focalise sur la modélisation de la
fragmentation et du mélange du jet du corium. Les équations de conservation de
masse, de quantité de mouvement et d’énergie sont résolues pour les composants
suivants : eau liquide, mélange de vapeur et de gaz non condensables, corium en
phase continue (jet de corium) et le corium dispersé. De plus, des modèles physiques
sont associés aux différents phénomènes impliqués dans l’ICE : fragmentation du
jet, fragmentation et solidification des gouttes, comportement et transitions de
phase de l’eau, oxydation du corium, etc.
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Modélisation de l’explosion de vapeur

Les aspects fondamentaux des schémas d’écoulement numériques établis pour
l’application prémélange sont conservés pour la phase d’explosion. Cependant, il
existe des différences importantes :

• le corium dispersé est traité par deux champs distincts, les gouttes/débris
issus du prémélange et les fragments fins créés par l’explosion ;

• il n’y a pas de jet de corium continu : l’éventuel jet restant à la fin de l’étape
de prémélange est transformé en gouttes de combustible.

De plus, de nouveaux modèles sont ajoutés pour traiter les phénomènes spécifiques
qui se produisent pendant l’explosion de vapeur. Le plus important d’entre eux
est la fragmentation fine des gouttes de corium.

B.1.2 Objectifs et méthodologie proposée
Nous avons décrit précédemment l’interaction corium-eau, un phénomène qui
peut se produire lors d’un accident nucléaire grave. Nous avons ensuite présenté
l’installation expérimentale utilisée au CEA pour observer ce phénomène. Enfin,
un aperçu global du logiciel de l’IRSN qui simule l’ICE, MC3D, a été donné.

Ainsi, on comprend que de nombreux modèles physiques interagissent entre eux
dans le code MC3D pour simuler l’interaction corium-eau. Un ensemble de
paramètres est nécessaire pour construire chacun de ces modèles. Ces paramètres
de modélisation sont calibrés indépendamment via des expériences dédiées. On
peut citer par exemple l’expérience TREPAM pour l’étude de l’ébullition en films
(Berthoud and Gros D’Aillon, 2009) et DROPSG ou GALAD pour la fragmentation
des gouttes (Achour, 2017 ; Malmazet, 2009). Cependant, ces études ne prennent
pas en compte les interactions entre modèles. Il existe donc une incertitude
épistémique importante concernant ces paramètres. Pour prendre en compte ces
interactions entre modèles, des programmes expérimentaux tels que KROTOS
ont été développés. Ils permettent d’observer l’ensemble de l’interaction entre le
combustible et le liquide de refroidissement.

Dans ce contexte, le principal objectif de ce travail de thèse est d’étudier la
simulation de l’ICE dans l’installation KROTOS par MC3D. En particulier, on
s’intéresse à l’évaluation de l’influence des différents paramètres de modélisation
et de leurs interactions sur les sorties du code MC3D. Ce travail a également pour
but de préparer la calibration de ces paramètres sur les expériences KROTOS afin
d’améliorer la fiabilité du code.
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B.1.2.1 Le contexte de la quantification des incertitudes

Comme on l’a vu précédemment, les modèles physiques qui décrivent la
phénomènologie d’un accident nucléaire grave tel que l’ICE sont complexes et
représentés par des équations déterministes. Ils conduisent, lors de la phase de
modélisation numérique, au développement de codes de simulation.

Ces outils de simulation prennent en compte de nombreux paramètres d’entrée
caractérisant le phénomène étudié. Ces paramètres peuvent être sujets à des incer-
titudes en fonction du degré de connaissance et de caractérisation du phénomène.
De manière générale, deux sources principales composent l’incertitude :

• l’une due à un manque d’information (incertitude épistémique) ;
• l’autre inhérente à la nature aléatoire des paramètres de modélisation (incer-

titude stochastique).

Quelle que soit leur nature, il est important de quantifier ces incertitudes et
d’étudier leur impact sur les sorties du code. Cette analyse permet de valider
le modèle mathématique, physique ou numérique, de guider les efforts de car-
actérisation sur les paramètres les plus influents et plus généralement de mieux
comprendre le phénomène modélisé.

Pour prendre en compte les incertitudes des entrées des simulateurs numériques,
une approche générale a été développée depuis plus de dix ans (Rocquigny, 2008)
et reste un sujet de recherche actif. On peut notamment citer le Groupement De
Recherche CNRS MASCOT-Num (acronyme de Méthodes d’Analyse Stochastique
pour les COdes et Traitements Numériques)1 qui regroupe la plupart des acteurs
académiques et technologiques autour du développement d’approches stochastiques
pour l’analyse des simulateurs numériques.

Dans ce contexte, la démarche méthodologique habituelle de modélisation peut
être divisée en plusieurs grandes étapes, comme le montre la Figure B.4.

L’étape A de spécification du problème consiste à définir le système à étudier
(modèle, simulateur ou processus de mesure), à identifier les entrées incertaines
ou fixes, ainsi que les quantités d’intérêt à étudier. Ces quantités sont dérivées
des variables de sortie du modèle. Le simulateur peut être assimilé à une fonction
reliant les entrées aux sorties. Voir l’équation (B.1) ci-dessous.

f : X → Y
X 7−→ f(X, c) = Y

(B.1)

Ici,
1site web : http://www.gdr-mascotnum.fr/
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• X est le vecteur aléatoire des entrées incertaines évoluant dans un espace
mesurable X , d ∈ N∗ sa dimension ;

• c ∈ Rdc est le vecteur des entrées fixes considérées comme déterministes et
dc ∈ N∗ sa dimension ;

• f est une fonction mesurable représentant le modèle reliant les entrées aux
sorties ;

• Y est la sortie d’intérêt évoluant dans un espace mesurable Y ⊂ Rp, p ∈ N∗.

Figure B.4: Schéma général de la méthodologie de traitement des incertitudes,
adapté de Rocquigny (2008).

La deuxième étape B de cette méthodologie consiste à quantifier l’incertitude
des entrées. Dans le cadre probabiliste, les incertitudes des variables d’entrée
aléatoires sont modélisées par des distributions de probabilité entièrement ou
partiellement connues (Helton, 1997). Ces distributions de probabilité peuvent être
choisies en utilisant toutes les données disponibles et en estimant les paramètres
des distributions sur ces données, en formalisant l’opinion de l’expert (élicitation)
ou en utilisant des données bibliographiques.

La quantification des incertitudes est accompagnée par une étape de calibration,
l’étape B’. Dans ce contexte, cette étape vise à caractériser l’incertitude sur les
paramètres estimés définissant le modèle physique. En effet, certains paramètres
ne sont pas directement observables, mais doivent être estimés. Cette étape peut
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également intégrer la détection et l’estimation d’un terme de biais de modèle. Ce
terme de biais rend compte du fait que le modèle n’est pas une représentation
parfaitement fidèle de la réalité. Classiquement, des méthodes de régression basées
sur le maximum de vraisemblance sont utilisées pour effectuer cette étape de
calibration (Trucano et al., 2006). Plus récemment, des méthodes de calibration
bayésienne par assimilation de données ont également été proposées (Carmassi,
2018). Ce type de méthodes permet de prendre en compte les informations a priori
sur les paramètres à calibrer et leurs incertitudes. De plus, les paramètres calibrés
par les méthodes bayésiennes sont associés à une distribution de probabilité qui
quantifie leurs incertitudes post-calibration.

L’objectif de l’étape C de la méthodologie est de mesurer comment l’incertitude
des variables d’entrée se propage dans le modèle étudié. L’objectif de cette étape
est de quantifier l’influence des incertitudes d’entrée sur les sorties prédites par le
modèle. Plus précisément, elle mesure l’effet sur les quantités d’intérêt associées
aux sorties. Ces quantités d’intérêt dépendent des objectifs de l’étude. Il peut
s’agir par exemple d’une mesure de la moyenne ou de la dispersion des sorties,
d’un quantile ou d’une probabilité de dépasser une valeur critique (Cannamela,
2007).

En parallèle et en complément de l’étape de propagation de l’incertitude, il est
également important de procéder à une Analyse de Sensibilité Globale (ASG),
l’étape C’ de la méthodologie. L’analyse de sensibilité vise à déterminer comment
la variabilité des paramètres d’entrée affecte la valeur de la sortie ou la quantité
d’intérêt (Saltelli et al., 2004 ; Iooss and Lemaître, 2015 ; Da Veiga et al., 2021).
Elle permet ainsi d’identifier voire de quantifier, pour chaque entrée ou groupe
d’entrées, sa contribution à la variabilité de la sortie. En support de ces grandes
étapes, deux thèmes transversaux sont abordés dans le cadre du traitement des
incertitudes.

• La planification d’expériences numériques : il s’agit de choisir où
réaliser les simulations pour échantillonner les distributions modélisées en
entrée afin de maximiser l’information collectée en un minimum d’expériences
(numériques). Pour ce faire, de nombreuses approches sont possibles, depuis
de simples tirages aléatoires i.i.d (type Monte Carlo) jusqu’à des constructions
plus élaborées (Fang et al., 2005), telles que les Latin Hypercube Sampling
(Mckay et al., 1979) par exemple.

• L’approximation du simulateur par un modèle de régression : à
partir d’observations simulées définies par un plan d’expériences, un modèle
d’apprentissage statistique est construit. Ces modèles simplifiés sont parfois
appelés modèles de substitution ou métamodèles. Ils se rapprochent le plus
possible du simulateur étudié et nécessitent un temps de calcul négligeable.
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Ces métamodèles sont ensuite utilisés pour prédire les sorties du code de
simulation pour tout ensemble de valeurs d’entrée et permettent ainsi une
exploration très intensive du modèle.

Ce contexte méthodologique semble bien répondre aux objectifs de la thèse. En
effet, les outils d’analyse de sensibilité globale peuvent être utilisés pour comprendre
l’influence de différents paramètres de modélisation sur les sorties du code MC3D.
De plus, les méthodes de calibration présentées ci-dessus permettront d’ajuster de
manière robuste les paramètres de modélisation du code aux données expérimentales
dans un travail ultérieur.

B.1.2.2 Le cas d’application

Paramètres d’entrée incertains considérés

Dans ce travail, nous nous concentrons sur les paramètres de modèles d’MC3D
présentés précédemment. Ces paramètres peuvent fortement influencer le com-
portement général du code.

Les paramètres de fonctionnement (températures, pressions, tailles) ont été fixés
sur les mesures de l’expérience KS4. Les incertitudes concernant ces paramètres
ne sont pas prises en compte dans ce travail. De plus, certains de ces paramètres
sont connus pour avoir une grande influence sur la stabilité du code MC3D et
donc sur sa propension à converger correctement. Les d = 57 paramètres restants
considérés comme incertains ici sont répartis comme suit :

• 39 entrées de l’application prémélange (code 1) ;
• 11 entrées des deux codes ;
• 7 entrées de l’application explosion (code 2).

Le tableau B.2 présente les paramètres associés à chaque modèle du code MC3D.

On a très peu d’informations concernant l’incertitude de ces entrées. On suppose
donc une distribution uniforme centrée autour de leur valeur nominale pour
caractériser leur incertitude. Leurs domaines de variations ont été choisis en
fonction de la plausibilité des valeurs prises d’un point de vue physique et des
limites d’utilisation des modèles numériques. La stabilité du code MC3D a
également été prise en compte.
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Table B.2: Liste des entrées incertaines associées à chaque sous-modèle MC3D.

Modèle de MC3D Entrées concernées
Fragmentation du jet 1-6
solidification des gouttes 7-9
Fragmentation des gouttes et transferts thermiques 10-33
Compressibilité du corium 34
Paramètres équation de conservation des moments des
gouttes

35-40

Propriétés physiques du corium 41-50
viscosité artificielle 51
Paramètres généraux de l’explosion vapeur 51-57

B.1.2.3 Objectifs de thèse et méthodologie

Le travail proposé dans ce doctorat vise à répondre aux deux besoins opérationnels
suivants :

1. Comprendre l’influence des paramètres de modélisation sur les sorties du
code.

2. Préparer une calibration de ces paramètres de modélisation sur des données
expérimentales.

Ainsi, l’objectif de ce travail est de développer et d’appliquer une méthodologie
dans le cadre de la quantification d’incertitude pour répondre à ces besoins. Pour
ce faire, il est nécessaire de prendre en compte les spécificités du contexte industriel
décrit précédemment. En effet, la modélisation de l’interaction corium eau requiert
l’utilisation d’un grand nombre de modèles reliés entre eux dans un simulateur de
modèle global. Par conséquent, le code MC3D est très coûteux en termes de calcul
(nombre limité de simulations possibles). De plus, le nombre de paramètres d’entrée
considérés est assez important (57). Ces deux spécificités limitent l’exploration de
l’espace d’entrée. L’imbrication des phénomènes modélisés avec des effets parfois
opposés rend en outre le comportement global du code difficile à anticiper d’un
point de vue physique. En effet, la relation entre les entrées et les sorties est
fortement non-linéaire. Cette complexité peut même conduire, pour un ensemble
de données d’entrée plausible à première vue, à des échecs de code.

Pour répondre aux objectifs mentionnés ci-dessus en tenant compte du contexte
particulier de notre problème industriel, une méthodologie séquentielle est proposée.
Adaptée de la méthodologie ICSREAM (acronyme de Identification of penalizing
Configurations using SCREening And Metamodel) de Marrel et al. (2022), elle
consiste en cinq grandes étapes :
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1. Échantillonnage de l’espace d’entrée. Connaissant le domaine de varia-
tion des variables d’entrée, l’espace des entrées est échantillonné de manière
aléatoire ou pseudo aléatoire. Une exécution du code est ensuite effectuée
sur chaque point échantillonné du plan d’expérience. Le jeux de données
entrées/sorties obtenu constitue l’échantillon d’apprentissage. Le but est ici
d’explorer avec cet échantillon l’espace d’entrée et d’obtenir un maximum
d’informations sur les sorties du code. Ne disposant que d’un budget limité
pour les simulations, nous utilisons une méthode d’échantillonnage quasi
aléatoire, appelée Latin Hypercube Sampling (LHS) (Mckay et al., 1979), au
lieu d’une méthode d’échantillonnage aléatoire classique. Cette méthode
assure une meilleure couverture spatiale des distributions marginales tout en
conservant certaines propriétés de l’échantillonnage Monte-Carlo classique.

2. Analyse de sensibilité des échecs de code. Pendant l’exploration
de l’espace d’entrée, il a été constaté qu’une proportion significative des
simulations d’MC3D n’a pas convergé. L’analyse de ces échecs de code pour
comprendre quelles entrées ont le plus d’influence sur eux permet de mieux
comprendre le fonctionnement du code. Cette étape a donc été intégrée
à cette méthodologie. Cela pourrait également aider à mieux identifier le
domaine d’utilisation possible des entrées.

3. Sélection des entrées à partir de l’analyse de sensibilité des sorties.
À partir de l’ensemble des données, une sélection est effectuée en utilisant
deux outils d’analyse de sensibilité. Le premier est l’indice de Sobol’ de
premier ordre. Cet indice est basé sur la variance conditionnelle des sorties
par rapport aux entrées (Sobol’, 1993). L’autre est le critère d’indépendance
de Hilbert Schmidt nommé HSIC (acronyme de Hilbert Schmidt Independence
Criterion). Cet outil est basé sur la mesure des dépendances entre les entrées
et les sorties (Gretton et al., 2005). Un groupe d’entrées considérées comme
significatives est ensuite sélectionné en utilisant ces outils.

4. Approximation des sorties par des modèles de régression (appelés
métamodèles). À partir du jeux de données entrées/sorties et en utilisant
la sélection réalisée à l’étape 3, des modèles de régression sont construits
pour ajuster les sorties du simulateur. Ces métamodèles sont destinés à
remplacer le code initial. Pour cela, la méthode de régression par processus
gaussien (GP) est utilisée (Rasmussen and Williams, 2005) dans ce travail.
Cette méthode présente plusieurs avantages par rapport aux autres méthodes
de régression : prédiction probabiliste et propriété d’interpolation exacte,
ainsi que l’évaluation des capacités de modélisation du simulateur numérique
(Santner et al., 2003 ; Marrel et al., 2008).
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5. Utilisation des modèles de régression (construits à l’étape 4) pour
effectuer une analyse de sensibilité plus précise. Une analyse de sensi-
bilité quantitative basé sur une exploration intensive de l’espace d’entrée est
effectuée en utilisant les modèles de régression au lieu du code de simulation.
Ceci est rendu possible par le temps d’évaluation négligeable des métamod-
èles. Nous sommes focalisés sur l’estimation des indices de sensibilité basés
sur la variance, les indices de Sobol’ de premier ordre (comme à l’étape 3)
et, beaucoup plus informatif, les indices de Sobol’ totaux. Cette analyse
de sensibilité quantitative prépare la calibration en classant les entrées par
niveau d’influence sur les sorties.

166



B.2 Conclusion du manuscrit et perspectives
Le contexte industriel de cette thèse est la simulation d’accidents nucléaires
graves dans les réacteurs à eau pressurisée. Plus précisément, nous nous sommes
concentrés sur la modélisation de l’Interaction Corium-Eau (ICE) pouvant conduire
au phénomène d’explosion de vapeur. Cette explosion peut endommager les
structures et compromettre l’intégrité du réacteur nucléaire. Le code de calcul
utilisé au CEA pour simuler ce phénomène est le logiciel MC3D (MultiComponent
Code 3D). Cependant, les méthodes proposées dans ce travail sont suffisamment
générales pour être appliquées à d’autres codes de simulation.

L’ICE est un phénomène physique complexe et non-linéaire faisant intervenir de
nombreux mécanismes. Pour simuler ce phénomène, le code MC3D utilise un
grand nombre de paramètres modélisant ces différents mécanismes. Un temps de
calcul relativement long est également nécessaire pour chaque simulation. Dans ce
contexte, l’objectif principal de ce travail a été d’étudier la simulation de l’ICE
par MC3D. En particulier, nous nous sommes intéressés à l’évaluation de l’impact
des paramètres de modèles considérés comme incertain sur les sorties du code
MC3D dans le cadre général de la quantification des incertitudes. Cette étude
vise également à préparer la calibration future de ces paramètres sur des données
expérimentales afin d’améliorer la fiabilité du code. Pour étudier l’impact de ces
paramètres de modèles, nous avons proposé une méthodologie basée sur des outils
statistiques avancées, décomposée en cinq grandes étapes :

1. Échantillonnage de l’espace d’entrée.
2. Analyse de sensibilité des échecs de code.
3. Sélection des entrées à partir de l’analyse de sensibilité des sorties.
4. Approximation des sorties par des modèles de régression (appelés métamod-

èles).
5. Utilisation des modèles de régression de l’étape 4 pour effectuer une analyse

de sensibilité plus précise.

Dans le premier chapitre de la thèse, nous avons présenté en détail le contexte
industriel, les objectifs de la thèse et la méthodologie proposée pour y répondre.
Nous avons également décrit le cas d’application. En effet, nous nous sommes
focalisés uniquement sur paramètres de modèles du code, que nous avons considérés
comme incertains. Les conditions physiques des simulations ont ainsi été fixées
et correspondent à une expérience réelle permettant l’observation de l’interaction
corium-eau, KROTOS KS4. Nous nous sommes également concentrés uniquement
sur un nombre limité de sorties scalaires du code MC3D. Les autres chapitres de
la thèse ont traité des différentes étapes de notre méthodologie.

167



Le thème du chapitre 2 a été la planification d’expériences numériques
(l’échantillonage), correspondant à la première étape de la méthodologie présentée.
Une méthode d’échantillonnage caractérise la manière dont l’espace d’entrée
est exploré et donc les propriétés de l’ensemble des données entrée-sortie. Pour
analyser un code comme MC3D, il est donc crucial de bien la choisir. Dans ce
chapitre, nous avons d’abord donné un aperçu des méthodes de planification
d’expériences numériques classiques. Dans notre application, nous avons utilisé la
méthode Latin Hypercube Sampling (LHS) car elle présente à la fois de bonnes
propriétés de couverture d’espace et des propriétés de convergence asymptotique.
Un travail théorique original réalisé sur la convergence des Z-estimateurs sous
LHS a ensuite été présenté. Une réduction de la variance asymptotique ainsi
qu’un théorème central limite pour cette classe d’estimateurs sous LHS ont été
établis. Cependant, d’importantes conditions de régularité sont supposées pour
obtenir ces résultats. Généraliser ces travaux en levant certaines de ces restrictions
est une perspective intéressante.

Nous avons ensuite discuté de la convergence sous LHS d’autres statistiques utilisées
dans notre méthodologie. Des travaux théoriques sur la statistique de Kolmogorov
ont d’abord été présentés. Des expériences numériques sur la convergence d’un
estimateur des indices de Sobol’ de premier ordre basé sur une statistique de rang
ont également été proposées. Nous avons comparé empiriquement le comportement
asymptotique de cet estimateur sous échantillonnage pur Monte Carlo, LHS et LHS
optimisé. D’après ces travaux, le LHS classique semble être un bon compromis
entre le biais et la variance pour l’estimation des indices de Sobol’ du premier
ordre.

Enfin, la convergence sous LHS de deux autres statistiques utilisées dans ce travail
a été discutée, à savoir le Hilbert Schmidt Independence Criterion (HSIC) et les
hyperparamètres des modèles de régression par Processus Gaussien (PG), ces
derniers étant estimés par maximum de vraisemblance, qui est un cas particulier de
la Z-estimation. L’étude théorique de leur convergence asymptotique est également
une perspective à considérer.
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Le chapitre 3 a porté sur l’étape 2 de notre méthodologie, à savoir l’analyse des
échecs de code par analyse de sensibilité. Les échecs de code sont des problèmes
courants dans le contexte de la simulation numérique de phénomènes physiques
complexes. Détecter les entrées impliquées dans ces défaillances et leur niveau
d’implication est donc utile pour améliorer la robustesse de ces codes de simulation.
Les résultats obtenus lors de l’exploration de l’espace d’entrée du code MC3D
ont motivé ce travail. En effet, après avoir déterminé notre plan d’expériences,
nous avons exécuté le code sur les points d’échantillonnage et observé qu’un tiers
des simulations ne convergeaient pas. Notre objectif était donc de comprendre ce
phénomène.

En considérant l’occurrence d’un échec de code comme une sortie binaire à part
entière, les principes de l’analyse de sensibilité globale peuvent être utilisés pour
identifier les variables qui ont le plus d’impact sur les défaillances. Dans ce
contexte, nous avons d’abord introduit deux méthodes pour détecter les entrées
qui pourraient être impliquées dans les défaillances du code. Premièrement, nous
avons étudié la distribution des entrées des échantillons tels que le code échoue à
converger. Cela a été fait en utilisant le test d’adéquation de Kolmogorov-Smirnov
(K-S). Cette méthode de test permet de détecter les variables dont la distribution
conditionnelle aux échecs du code diffère significativement de leur distribution
initiale. Comme notre plan d’expérience initial est un LHS, la procédure de test a
été adaptée à ce cas.

Une deuxième méthode, basée sur le HSIC, a ensuite été proposée. Cet outil
permet de détecter les dépendances probabilistes entre les variables d’entrée et les
échecs de code. De plus, un test statistique d’indépendance peut être construit
à partir de ce critère. Celui-ci permet d’effectuer une sélection et un classement
des entrées par ordre d’influence sur la sortie (ici les échecs de code). À partir des
résultats des tests K-S et HSIC, un ensemble d’entrées significativement influentes
a été sélectionné. Une analyse graphique des densités conditionnelles aux échecs
de code a été effectuée pour ces entrées. Nous avons ensuite analysé les résultats
obtenus d’un point de vue physique.

Une deuxième analyse de sensibilité a ensuite été réalisée pour détecter et identifier
les interdépendances qui apparaissent entre les entrées lorsque l’on considère
l’échantillon des simulations qui ont convergé. En effet, seules ces données-là sont
utilisées dans la suite de la méthodologie. Pour cela, la mesure de dépendance
HSIC a été à nouveau utilisée, mais cette fois entre chaque paire de variables
d’entrée conditionnées à l’occurrence d’un échec de code. Ainsi, trois groupes
d’interdépendances entre les entrées conditionnées ont été détectés avec cette
méthode.
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Une suite à ce travail pourrait être de distinguer les différentes causes de défaillances
du code dans l’analyse. L’utilisation d’algorithmes de classification pour identifier
les domaines de valeurs d’entrées conduisant à des échecs de code est également
une perspective intéressante. Il serait en effet très utile en pratique de pouvoir
prédire les échecs de code afin d’éviter le gaspillage des ressources de calcul.

Enfin, dans le chapitre 4, nous avons abordé les trois autres étapes de notre
méthodologie : la sélection de variables d’entrée importantes, la métamodélisation
des sorties et l’analyse de sensibilité sur ces métamodèles. Étant donné le grand
nombre de paramètres considérés dans notre étude, l’étape de sélection (appelé
aussi criblage) est essentielle. Elle aboutit à la classification des variables d’entrée
en deux sous-groupes : les variables explicatives par rapport aux sorties du code
et les autres. Étant donné le nombre limité de simulations disponibles, deux outils
avancés d’analyse de sensibilité ont été utilisés pour effectuer cette sélection des
entrées : le HSIC et les indices de Sobol’ de premier ordre. Ces deux outils sont
bien adaptés à l’analyse des fonctions de modèles non linéaires et fournissent des
informations complémentaires. Le HSIC (avec le test d’indépendance associé)
est une méthode de sélection qui permet de détecter les entrées dont l’influence
n’est pas significative. Les indices de Sobol’ de premier ordre fournissent des
informations supplémentaires sur la proportion de variance expliquée par chacune
de ces variables individuellement et donc sur la partie additive de la relation
entrée/sortie.

Ensuite, en ne considérant que les entrées considérées comme explicatives, des
modèles de régression (également appelés métamodèles) ont été construits afin
d’approximer les relations entre les entrées et les sorties étudiées. La méthode
classique de régression par processus gaussien a été utilisée pour effectuer cette
métamodélisation. Une fois entraînés sur l’ensemble des simulations disponibles,
ces métamodèles peuvent produire de grandes quantités de résultats prédits avec
un coût de calcul négligeable. Ils permettent donc une exploration intensive du
domaine de variation des entrées. Cependant, une validation de leur capacité de
prédiction, c’est-à-dire de leur capacité à prédire correctement les résultats du
code avec des intervalles de prédiction fiables, est nécessaire.
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Cette étape de validation a révélé que certaines sorties de MC3D étudiées ont été
correctement reproduites alors que pour d’autres, seule la moitié de la variance
de la sortie est expliquée par le métamodèle ainsi construit. Malgré ces résultats
contrastés, une analyse de sensibilité complète, facilement interprétable et quan-
titative des sorties a été réalisée à l’aide de ces métamodèles. Plus précisément,
les indices classiques de premier ordre et totaux de Sobol’ ont été estimés avec
les métamodèles. Cela a permis d’identifier trois entrées ayant une influence
majeure sur les différentes sorties du code. Toutes trois sont directement liées à un
phénomène spécifique de l’ICE, la fragmentation des gouttes de corium dans l’eau.
En outre, des diagrammes de dispersion ont permis une compréhension physique
plus exhaustive de l’impact de ces trois entrées sur les sorties.

En résumé, nous avons proposé dans ce travail une approche moderne et applicative
pour effectuer une analyse de sensibilité quantitative sur des codes industriels
complexes (tels que MC3D) avec une interprétation physique approfondie des effets
des entrées incertaines.

Les perspectives concernant notre méthodologie sont nombreuses. La plus im-
portante est la calibration du code sur les expériences KROTOS. Notre travail
a permis d’identifier un nombre restreint d’entrées qui semblent avoir un impact
significatif sur l’ICE simulée par MC3D. L’étape suivante consiste naturellement
à ajuster le code MC3D, de manière robuste, aux données expérimentales dont
nous disposons. Le défi majeur concernant cette perspective concerne la quantité
de données sur lesquelles nous devons effectuer cette calibration. En effet, peu de
données expérimentales sont disponibles car les expériences KROTOS sont très
coûteuses (plusieurs millions d’euros par expérience). Pour réaliser cette calibra-
tion, les méthodes bayésiennes peuvent ainsi être prometteuses. Elles présentent
en effet plusieurs avantages. Tout d’abord, le cadre bayésien permet de prendre en
compte de façon probabiliste les informations dont nous disposons a priori sur les
paramètres et leur incertitude. Cette information est essentielle dans notre cas
étant donné la faible quantité de données expérimentales disponibles. De plus,
dans ce cadre, les paramètres calibrés sont associés à une loi de probabilité qui
quantifie leurs incertitudes post-calibration.

Cependant, de nombreuses simulations sont nécessaires pour effectuer cette cali-
bration bayésienne. L’utilisation de métamodèles apparaît donc essentielle compte
tenu du temps de calcul élevé du code MC3D. En particulier, les régressions
par processus gaussiens fournissent un bon cadre théorique pour la calibration
bayésienne (voir par exemple (Carmassi, 2018) ou (Damblin, 2015) pour plus de
détails). Hors, les métamodèles actuellement construits ne sont pas assez bons
pour permettre une calibration précise du code sur des données expérimentales.
Ainsi, une étape préliminaire à la calibration est l’amélioration des métamodèles.
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L’augmentation de la base d’apprentissage à l’aide des techniques d’Expected Im-
provement (Jones et al., 1998) est une approche prometteuse, mais son application
en dimension élevée reste compliquée. Les résultats de l’analyse de sensibilité
pourraient être utilisés pour réduire l’espace des entrées sur lequel travailler. De
plus, la probabilité non-négligeable d’échec de code doit également être prise en
compte. Une autre possibilité pour améliorer la précision de la métamodélisation
pourrait consister à alléger l’hypothèse de stationnarité. L’utilisation des Deep
Gaussian Process (Damianou, 2015) avec un ensemble de données plus important
et en se concentrant sur les principales entrées du code par exemple pourrait être
une option intéressante. Une autre possibilité consiste à alléger les contraintes
d’interpolation des PG loin de la région d’intérêt concernant la calibration, avec les
relaxed Gaussian process introduit dans (Petit et al., 2021) par exemple. Enfin, il
peut être intéressant d’effectuer de nouveaux calculs sur un espace des entrées plus
restreint. La réduction de l’espace à considérer peut être fait de deux manières.
Premièrement, on pourrait réduire le nombre d’entrées considéré en ne prenant que
celles qui influencent l’ICE d’après l’analyse sensibilité effectuée. Les domaines de
variations des entrées considérées peuvent également être réduits pour mieux se
focaliser sur les valeurs expérimentales observées. Une réduction de la taille de
l’espace d’entrée pourrait en effet améliorer la métamodélisation dans les domaines
d’intérêt pour la calibration.
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- Everything.
- What did it cost?
- Yes.
- Did you do it?

https://www.youtube.com/watch?v=mSdGrwVdWNo

