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Résumé du Manuscrit

Le sillage produit en aval des corps non profilés a été étudié à plusieurs reprises pendant
les dernières décennies. Ses applications se retrouvent dans un grand nombre de domaines
tel que le transport pour n’en citer qu’un. Pour des raisons pratiques, les véhicules du
transport routier sont généralement dit à culot droit, ce qui entrâıne le décollement de
la couche limite produit autour du véhicule, ce qui est à l’origine de pertes de perfor-
mances aérodynamiques. Dans le cas d’un véhicule, ce décollement entrâıne non seule-
ment un impact négatif sur la consommation de carburant, mais aussi dans sa stabilité
et sa contrôlabilité. Le décollement peut être retardé dans le cas de géométries simples
à courbure continue et finie. Un archétype se trouve être la géométrie cylindrique où le
décollement à grands nombre de Reynolds peut être mâıtrisé, ce qui permet d’obtenir des
effets positifs sur la force de trâınée. La situation est différente pour une géométrie avec
un bord saillant, ou pour une courbure suffisamment importante, où le décollement est
fixé sur le bord d’attaque et/ou sur la borde de fuite. Dans ce travail, on considère une
géométrie simple en forme de ”D” avec un bord de fuite à angle droit, fixant le point de
décollement. La partie frontale à un bord d’attaque circulaire afin de minimiser les effets
de décollement. Le corps a aussi une longueur suffisante pour maintenir une couche limite
laminaire jusqu’au décollement.

Le sillage en aval des corps non profilés fait apparâıtre des structures instationnaires
et cohérentes dans le sillage, plus connues sous le nom d’Allées de tourbillons de von
Kármán”. Ici, on parle de structures cohérentes, car ces dernières font apparâıtre une
périodicité en espace et/ou en temps. Ce phénomène se manifeste une fois que le nombre
Reynolds dépasse une valeur limite, peu importe la section ou la géométrie de l’objet.
En augmentant le nombre de Reynolds, le sillage passe par de nombreuses déformations
menant au développement d’instabilités. L’apparition de ces structures est associée à une
réduction de la pression à l’arrière du corps et par conséquent, une augmentation de la
trâınée de pression, qui est la contribution principale à la trâınée totale. Les méthodes
de contrôle pour réduire la trâınée peuvent être divisées en deux catégories, c’est-à-dire
passive ou active. Le contrôle passif vise à modifier la géométrie par des appendices qui
visent à affaiblir où à supprimer les structures cohérentes. La seconde correspond aux
méthodes utilisant des actionneurs fonctionnant suivant une loi de contrôle basée sur un
modèle ad hoc ou un modèle d’ordre réduit.

Bien que de nombreux travaux soient dédiés à la réduction de la trâınée, avec une at-
tention particulière apportée aux structures cohérentes, plusieurs zones d’ombres restent
encore à lever afin de fournir des caractéristiques basées sur la physique pour concevoir les
méthodes efficaces pour le contrôle de la trâınée. C’est tout l’enjeu de cette thèse de doc-
torat dont l’objectif principal est de caractériser finement le sillage, permettant d’identifier
les régions importantes et les plus sensibles pour comprendre les mécanismes physiques
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qui contrôlent les structures cohérentes et, par conséquent, la trâınée. Pour cela, ce tra-
vail s’appuie sur les démarches expérimentales où des approches hybrides numériques sont
développées pour l’analyse des équations de la physique. Les combinaisons de ces outils
originaux ont permis d’expliquer les phénomènes observés et à proposer des mécanismes
pertinents associés à la trâınée. Afin de faciliter la lecture, les détails de ces travaux
sont organisée en sept chapitres, traduit en langue anglaise, ou chacun aborde un sujet
spécifique. De plus, une annexe décrit la méthode suivie pour le développement des outils.

Chapitre 1: est une introduction générale du sujet. La première partie de ce chapitre
explique le choix du corps épais bi-dimensionnel avec le bord de fuite à angle droit par
rapport aux autres modèles plus complexes. Les caractéristiques clés du sillage, présentant
les diffèrent régimes de l’écoulement selon le nombre de Reynolds est introduit en référence
à plusieurs études déjà menées. Ensuite, les méthodes de contrôle de la trâınée issues de
la littérature sont présentées en expliquant les stratégies utilisées pour atténuer les effets
des structures cohérentes sur la trâınée, suivi par des références aux travaux menés sur
l’étude des mécanismes d’interaction des structures cohérentes avec d’autres structures
cohérentes ou son rôle dans la production de turbulence dans le sillage. Ce chapitre se
termine par la description des objectifs de cette thèse.

Chapitre 2 fournit les détails sur les méthodes expérimentales utilisées pour obtenir
les données dans le sillage. L’homogénéité de l’écoulement sans le corps est vérifiée en
mesurant le profil de vitesse moyen par la technique d’anémométrie par fil chaud. Le
modèle en forme de ”D” est installé dans la soufflerie en maintenant un angle d’attaque
proche de zéro afin de pouvoir obtenir un sillage symétrique. La pression autour du
corps est mesurée par les capteurs installés autour de ce dernier. La technique utilisée
pour mesurer le sillage est celle de la ”Vélocimétrie par Images de Particules” (PIV) où
l’écoulement est ensemencé de particules qui suivent le fluide de manière fidèle. L’écoulement
est illuminé par une nappe laser et deux photos successives haute résolution sont analysées
pour obtenir le champ de vitesse instantané. En plus, la technique d’anémomètre par
fil chaud est aussi utilisée pour vérifier les données obtenues à partir de la PIV. Les
paramètres de contrôle sont le nombre de Reynolds et la turbulence dans l’écoulement
amont, la dernière utilisant une grille régulière placée dans la veine d’essai.

Chapitre 3 présente un nouvel outil pour l’estimation précise du champ de pression
moyen dans le sillage. L’objet du développement de cet outil est la fermeture du bilan
de quantité de mouvement moyen afin de pouvoir répondre aux questions concernant les
mécanismes associés à la trâınée. Le champ de pression moyen est estimée en utilisant les
champs de vitesse moyenne et les contraintes de Reynolds obtenus à partir de la technique
de PIV, par l’inversion de l’opérateur Laplacien et en utilisant les conditions aux limites
de type Neumann. En exploitant une méthode de contrôle optimal, la pression moyenne
obtenue à partir des capteurs de pression installés sur le corps sont utilisés afin de réduire
la propagation des erreurs des conditions aux limites au champ de pression moyenne. La
précision de ce champ de pression corrigé est estimée en comparant la trâınée obtenue à
partir des bilans autour des surfaces de contrôle et ceux obtenus utilisant des capteurs,
où les deux sont en excellent accord.
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Chapitre 4 présente en première partie les caractéristiques qualitatives des champs de
vitesse moyen, contraintes de Reynolds et pression moyenne du sillage. En utilisant l’outil
développé dans le chapitre 3 et en exploitant la linéarité de l’opérateur Laplacien, la pres-
sion est décomposée. Le bilan révèle le processus d’échange de quantité de mouvement
dans le sillage proche. Les composantes normales du tenseur des contraintes Reynolds
jouent un rôle de source et de puits pour la trâınée, tandis que la composante de cisaille-
ment redistribue la quantité de mouvement. La décomposition de la pression moyenne
montre que la condition initiale du sillage est importante proche de la base du corps
alors que la contrainte normale transversale du tenseur de Reynolds contrôle la pression.
Cependant, l’analyse de l’équation de transport des contraintes de Reynolds moyennes
ne peut pas être menée à son terme en raison des termes non résolus, issues des termes
relatifs à la pression fluctuante et de la dissipation.

Chapitre 5 aborde la question des mécanismes de transport des contraintes de Reynolds
en décomposant les fluctuations totale en structures cohérentes et en fluctuations in-
cohérentes. Leurs contributions respectives sont comparables dans le bilan de trâınée.
Cependant, ce sont les structures cohérentes qui contribuent principalement à la pression
moyenne, qui en retour est la contribution principale à la trâınée. La décomposition des
fluctuations est effectuée par l’intermédiaire de la technique de ”Décomposition Orthogo-
nale aux valeurs Propres” (POD) qui capture les structures les plus énergétiques à partir
de la PIV. Une nouvelle méthode est développée pour reconstruire le champ de pression
cohérent. La dérivée temporelle des champs de vitesse cohérente est estimée à partir de la
dérivée temporelle de la fonction de courant, la dernière est estimée par l’inversion d’un
problème de Poisson.

La pression des structures cohérentes permet d’estimer la portance et la trâınée insta-
tionnaire cohérente qui sont en bon accord avec les mesures de pression obtenues par les
capteurs. La dissipation induite par les structures cohérentes étant négligeables, la pres-
sion des structures cohérentes permet de clore le bilan du transport des contraintes de
Reynolds cohérentes. Le bilan révèle que les termes de diffusion et d’étirement induits par
la pression cohérente jouent un rôle important dans la redistribution de l’énergie spatiale
et parmi les composants normales des contraintes de Reynolds cohérentes. En résume,
les couches de cisaillement moyennes jouent un rôle de production et alimentent les struc-
tures cohérentes. De plus, la zone de recirculation forme une zone importante pour la
redistribution d’énergie inter-composante à travers les termes de production normaux, et
les termes de diffusion et redistribution par la pression cohérente. Son interaction avec
la couche de cisaillement apparâıt donc comme l’ingrédient principal pour la production
d’énergie et donc de l’allée tourbillonnaire de von Kármán dans le sillage turbulent.

Chapitre 6 présente les effets de ces mécanismes identifiés dans les chapitres précédents.
L’écoulement est perturbé par le biais de l’augmentation du nombre de Reynolds et par
l’introduction de turbulence homogène et isotrope au moyen d’une grille régulière in-
stallée à l’entrée de la section d’essai. Dans le première cas, l’augmentation du nombre
de Reynolds, le changement de condition à l’entrée du sillage entrâıne une augmentation
de l’énergie transférée vers les structures incohérentes. Cela mène une augmentation de
la trâınée par des contraintes de Reynolds incohérentes.

l’ajout de turbulence avec une échelle intégrale Lx/h < 1, interagit avec les structures
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cohérentes, entrâınant une dislocation qui interrompt principalement le processus de re-
distribution par les termes associés à la pression cohérente. Ce phénomène de disloca-
tion mène à une réduction des contraintes de Reynolds cohérentes, et par conséquent,
à une réduction de la trâınée. La longueur de la zone de recirculation augmente suite
à l’affaiblissement des structures cohérentes, mais cette élongation n’est pas proportion-
nelle à la réduction de la trâınée. Lorsque la perturbation induite par la turbulence agit à
réduire la trâınée, l’effet de blocage tend à l’augmenter, ce qui montre que les conditions
initiales du sillage sont aussi importantes que les structures cohérentes pour contrôler la
trâınée.

Chapitre 7 conclut cette étude en résumant ces mécanismes. Des perspectives de
recherche sont également proposées. L’un des point discutable de cette étude est la
manière dont les structures cohérentes sont calculées, c’est-à-dire en utilisant la technique
POD. Mais, on peut facilement surmonter cette difficulté en utilisant une méthode dite de
PIV résolue en temps. L’analyse présentée dans cette étude peut facilement être étendue
à des formes géométriques plus complexes. Par exemple, en changeant les conditions
initiales du sillage, en introduisant plusieurs échelles, en variant la proximité au sol, ou
en changement de l’angle de l’attaque. Les outils présentés dans cette étude peuvent
être d’avantage utilisés pour le développement des lois-d’échelles ou pour améliorer les
modelés d’ordres réduits, par exemple les modèles de Galerkin empiriques, qui forment
les ingrédients principaux pour une méthode de contrôle de trâınée efficace. Enfin, une
extension des outils et des analyses actuels à un sillage complexe 3D tel que le corps
d’Ahmed, représentatif des caractéristiques de sillage d’un véhicule réel, serait d’une valeur
significative dans le développement des dispositifs de contrôle de la trâınée.
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∗
& ṽ2
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Chapter 1

Introduction

1.1 Bluff body wake - An introduction

Bluff body wakes have been extensively studied for the past century. The term bluff-
ness, according to [146], simply refers to the degree to which the body tends to diverge
the incoming flow relative to another body with the same frontal area. Despite its simple
geometry, a bluff body has significant engineering applications such as efficient design of
bridges or structures [54, 203, 106, 49], combustion [115, 160, 116, 9, 126], offshore struc-
tures and pipe-lines [185, 170, 78, 204], energy harvesting from vortex induced vibration
[63, 205, 168], road vehicles [72, 70] amongst others. The interested reader may also refer
to the review in [46] and references therein for details on the applications.

The problem of flow separation from the surface of the bluff body is associated with
the loss of aerodynamic performances of a bluff body, which for a vehicle has a negative
impact not only for its fuel consumption, but also regarding its stability and controlla-
bility characteristics as described by [17]. Most road vehicles (ex: sports utility vehicle,
trucks, buses) are three dimensional bluff bodies with a bluff trailing edge. Adding to the
complexity of the three-dimensional body are the presence of detailed features such as side
mirrors, wheels, wheel housing, rear diffuser etc.[100, 8, 87]. Although there exists several
bluff-body models, the so called ‘Ahmed Body’ introduced by [2] with a rear slant angle
has become one of the most studied laboratory scale model that can represent the flow
features of a road vehicle. It is a three-dimensional model with an inherently complex
three-dimensional wake, primarily because of the interactions between the top/bottom
and lateral shear layers resulting in wake oscillations in the spanwise and transverse di-
rections. Further, the ground proximity and the bi-stable pattern of the wake occurring
for long time scales adds to the complex dynamics of the wake [65]. The complexity
can be reduced significantly by isolating the interactions of the lateral shear layers, by
extending the body in the spanwise direction making it two dimensional, and neglecting
the ground proximity to yield a statistically two-dimensional symmetric flow. The work
carried out on two-dimensional bluff bodies, representing road vehicles, are numerous.
The current study is focused on a two-dimensional bluff body and the following sections
describe the main features of the flow, extracted from a literature survey, in order to
describe the topology of the mean flow and the mechanisms which couple the mean flow
with perturbations’ dynamics.
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1.2 Flow over two dimensional bluff bodies

The flow over two-dimensional bluff bodies may be separated into two categories based
on the shape of their cross section. It is an important factor when the point of flow sep-
aration is taken into account. As mentioned by [46], the cross-sectional shapes may be
divided into shapes of (i) continuous and finite curvature (for example, circular or ellip-
tical cylinders), (ii) sharp edged structures of an infinitely large curvature (for example,
square or triangular cylinders) or (iii) a combination of the first two (for example, D-
shaped cylinders). The differentiation is primarily based on the nature of the boundary
layer separation and will become clear in the proceeding discussions.

Attempts for predicting the drag of a bluff body dates back to the nineteenth century.
One of the oldest attempts by Kirchoff (1869) based on the aspects of flow separation,
uses the potential theory and the technique of conformal mapping to predict the drag
experienced by a flat plate normal to the flow. The model, constructed for a steady flow,
gives a drag coefficient Cd = 0.88 with the pressure inside the cavity or the dead flow
region (the region immediately behind the body) Cpb = 0 (see for example [202, 36]). The
model assumes that the wake bubble does not close and extends to infinity, which however
is not the case in actual flows. The consequence of the closure of the wake bubble in actual
flows is negative pressure within the wake bubble resulting in a higher drag coefficient.
This had been considered in the improved model by Riabouchinsky [143], where the wake
closure is taken in to account by introducing the ‘image body’. This introduces the wake
length which is an important length-scale considering the bluff body flows and has been
further used by [147] to develop a model for drag prediction for bluff body flows without
the presence of unsteady vortex shedding.

The flow over bluff bodies has mostly been studied over a circular cylinder, because
of its relative simplicity and engineering significance. The flow can be broadly classified
into regimes based on the incoming flow Reynolds number which is the ratio of relative
strength of inertial forces to viscous forces where it is defined as Reh = U∞h/ν with
h, U∞, ν being the height of the body, the free-stream velocity of the incoming flow and
the kinematic viscosity of the fluid respectively.

1.2.1 Boundary layer separation

Near-wall flows over the surface of the bluff body, must respect a zero velocity in order
to satisfy the no-slip boundary condition. The fluid’s viscosity causes the fluid parcels
close to the boundary to slow down. Moving away from the surface, the resistance felt by
the layer of fluid diminishes and at a certain distance the velocity of the fluid becomes
equal to that of the fluid in the external flow. The distance at which this occurs is known
as the thickness of the boundary layer, and the distance over which the gradient of the
flow exists due to influence of the viscosity is known as the boundary layer. This is the
simplest case with laminar boundary layers. When it comes to turbulent boundary layers,
the viscous effects are felt only in a thin layer, much thinner than the entire boundary
layer, known as the laminar sublayer. The turbulent boundary layer is much more com-
plex than its laminar counterpart and is not treated here. In fact, in order to reduce the
level of complexity introduced by the turbulent boundary layers, we opted to maintain
laminar boundary layer along the surface of our bluff body. However, an interested reader
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may refer to [152] or [161] and the references therein for a comprehensive analysis on
turbulent boundary layers.

The thickness of the laminar boundary layer grows downstream as more and more fluid
particles are influenced by the resistance due to the viscosity. The momentum is relatively
low within the layer, due to the viscous resistance, and is sensitive to external pressure
gradients. The presence of an adverse pressure gradient, said to exist when the pressure
increases in the flow direction tending to decelerate the flow, initiates the separation of
the previously attached flow at the body surface. This phenomenon is called as boundary
layer separation. Once separated, the layer develops into the so called shear layer which
may or may not reattach to the body surface depending on the incoming flow. This often
sets the development of a low-pressure wake. The circular cylinder has an additional
complexity due to its continuous and finite curvature that the flow separation point is
not fixed, may oscillate and heavily depends on the flow conditions and other factors such
as the surface roughness etc. This is one of the main reason why a D-shaped cylinder
was adopted for this study, in order to simplify or reduce the number of parameters
governing the problem. However, the salient features of the circular cylinder wake are
briefly presented in the hope of providing a background on the nature of wake flows,
mostly because of the substantial number of studies regarding the topic.

1.2.2 Flow over circular cylinder

The flow around the circular cylinder is divided into several regimes based on the
Reynolds number. In order to describe it, we resort to the works of [147, 200] and refer-
ring to figures 1.1, 1.2, and 1.3a. For a Reynolds number Re→ 0, the flow is steady and
smooth without separation. This type of flow is generally known as creeping flow and the
drag experienced is mainly due to the viscous resistance in the boundary layer.

Figure 1.1: Variation of base suction coefficient with Reynolds number for the case of
circular cylinders. Adopted from [147].

At a Reynolds number 4 < Re < 49 (Regime upto A in figure 1.1), the wake comprises
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of a recirculating flow region with two symmetric vortices on the upper and lower half of
the wake. The length of the wake is observed to grow with an increase in Re in this regime,
and the base suction decreases. In the regime A - B for the Reynolds number Re ≈ 49
to 194, the wake instabilities starts to develop at Re ≈ 49 initially from the end of the
recirculating flow region. From now on, the flow becomes permanently unsteady. With
an increase in Re, the vortices begin to separate regularly from the alternate sides of the
cylinder, forming the “Von Karman vortex street” shown in figure 1.3a (c) . The strength
of the instabilities increases with Re and as a result the Reynolds stresses increases as
well, with a decrease in the length of the formation region, a characteristic length of the
recirculation region, and a corresponding increase in the base suction. In this regime, the
wake oscillations are purely periodic, subject to the end conditions of the cylinder, and
can extend until Re ≈ 194.

In the regime B - C in figure 1.1, from Re ≈ 190 to 260, three dimensional effects are
observed. Near Re = 180 to 194 where the first discontinuity is observed in base suction
as well as in the shedding Strouhal number, figures 1.1 and 1.2, inception of mode A
instabilities, which are streamwise vortex loops shown in figure 1.3b, and the formation
of streamwise vortex pairs, due to the deformation of the primary Karman vortices, are
observed. At the second second discontinuous range in the St− Re relation in figure 1.2
near Re ≈ 230 to 250, there is a gradual transfer of energy from mode A to mode B shed-
ding, which are finer scale streamwise vortices. A large-scale intermittent low-frequency
wake velocity fluctuations are also observed, due to the presence of large-scale vortex dis-
locations. The vortex dislocations are local phase dislocations of the shed-vortices. These
small scale modes and the large scale dislocations are shown in figure 1.3b. The base
suction and the Strouhal shedding frequency continues to increase in this regime.

Figure 1.2: Variation of the non-dimensional vortex shedding frequency expressed in terms
of Strouhal number as a function of Reynolds number for the case of circular cylinders.
Adopted from [144]

In the regime that follows, C - D, the base suction is found to decrease with a cor-
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responding increase in the formation length, due to the increasingly disordered fine-scale
three dimensional structures appearing to cause a reduction in the Reynolds stresses.

In between D and E, the base suction is observed to increase with a corresponding
reduction in the formation length. It is found to be due to the development of insta-
bilities in the shear layer, shown in figure 1.3b, which increases the Reynolds stresses.
With an increase in Re, the turbulent transition point in the shear layer moves upstream
resulting in a turbulent wake shown in figure 1.3a(d), the Reynolds stresses increases with
a corresponding increase in the base suction. The shear-layer vortices are basically two
dimensional which eventually transition to turbulence with a rise in Re by the action
of three-dimensional small-scale fluctuations [24, 197]. The transition mechanism of the
shear layer is an important topic and many studies in the past were devoted to it. Most of
this work was based on the circular cylinder starting with [24] who proposed a power-law
scaling of the shear-layer vortex frequency, i.e. fkh/fvk ∝ Re0.5 where fkh and fvk are the
frequency of the shear layer and Karman vortices respectively, based on dimensional con-
siderations. Later, several studies considered the scaling and reported similar or slightly
different exponents [197, 86, 134]. Nevertheless, these shear-layer vortices interacts with
the primary von Karman vortices and aids in the entrainment of fluid into the formation
region [197, 86]. With an increase in Re and with the transition taking place earlier, the
entrainment process is even more enhanced with a corresponding increase in the Reynolds
stresses and the base suction. Beyond E in figure 1.1, there is a steep decrease of base
suction which occurs due to energized turbulent boundary layer reattaching onto the body
forming a separation reattachment bubble and the final separation point is pushed further
downstream to about 140o which is known as the drag crisis phenomenon.

1.2.3 Flow over square cylinder

The brief presentation of the flow over a circular cylinder showed some of the salient
features of wake flows such as boundary-layer separation, shear layer, vortex shedding,
shear-layer vortices, transition etc. However, these features need not be the same when
there is a change in the flow geometry such as the second category of bluff bodies, (i.e.
sharp edged structures of an infinitely large curvature). The regimes in the flow over such
a simple cross section (square cylinder) from the works of [10] is briefly presented. The
various regimes are schematically presented in the figure 1.4a. At Re ∼ 1, the flow around
square cylinder is steady without any separation [157]. The separation starts at Re ∼ 2
at the trailing edge of the square cylinder with the appearance of the recirculating flow
bubble. The first regime according to [10] until Re < 50 is steady in nature with the two
symmetric vortices appearing directly behind the base with the flow separating at the
trailing edge. The length of the recirculating flow region grows in this regime while the
drag coefficient is found to decline in figure 1.4b. The flow soon becomes unsteady within
50 < Re < 160 with the appearance of laminar two dimensional vortex shedding. The
trailing edge separation continues until Re < 120 after which the flow permanently sepa-
rates from the leading edge of the body. There is a drop in the length of the recirculation
region as well and the drag coefficient as well. Within the range 160 < Re < 220, the
prevalence of mode A and mode B instabilities causes the transition from two to three
dimensional fluctuations in the wake with the drag coefficient reaching a minima while
the length of the formation region remains unchanged. In between 220 < Re < 1000, the
transition to turbulence is found to occur in the shear layer beyond the trailing edge of
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(a) (b)

Figure 1.3: Schematic of different flow regimes in the wake of a circular cylinder depending
on the Reynolds number of the flow (a) - adopted from [23], and the schematic showing
the primary vortex shedding, small-scale modes and the large-scale vortex dislocations
(b) - adopted from [200].
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the body with the formation length decreasing and the drag coefficient found to increase.
Beyond Re > 1000, the transition within the shear layer takes place upstream of the trail-
ing edge corner of the body, with the shear layer alternatively reattaching on the cylinder
side-surface. The formation length and the drag coefficient asymptotically reaches a con-
stant value of 1 and 2.21 respectively. An interesting comparison with the wake of the
circular cylinder is that the sudden dip in the drag coefficient in case of circular cylinder,
due to boundary layer transition and postponement of the flow separation, is not found
in case of square cylinder because of the fixed separation point and insensitivity to Re.

Influence of Aspect ratio

An additional degree of complexity is added to the wake of the square cylinder with
a varying aspect ratio. A recent study [101] highlights the effects of aspect ratio on rect-
angular cylinder, at low Reynolds number ranging from 30 ≤ Re ≤ 200. The primary
findings are summarised in the schematic from the same study shown in figure 1.2. The
elongated bodies were found to have a stabilizing effects on the wake that the critical Re
for the onset of vortex shedding increased with the aspect ratio. Increasing the aspect
ratio increased the probability of the separated flow to reattach at the side surface of
the body. The aspect ratio is found to have significant effects on the flow structure as
well, for example at the smallest aspect ratio of 0.25 in the study at the smallest and
intermediate Re, changing the aspect ratio to 4 made the flow steady with or without
separation reattachment bubbles. At the largest Re considered in the study, starting from
an aspect ratio of 0.25 to 4 made the three-dimensional flow change to a two-dimensional
flow. The aerodynamic parameters, such as the drag or the shedding frequency, were
found to be influenced strongly with a change in the aspect ratio as well. The strength of
the shed vortices increased with Re, decreased with an increase in the aspect ratio. The
influence of the leading-edge flow separation on the ensuing wake was studied by [107] at
high Re ∼ O(104). At high Re, the sharp leading edge corners induce the flow separation
regardless of the pressure gradient. With a sufficiently long body, the separated flow,
initially laminar in nature, soon undergoes transition to turbulence and reattach onto
the side surface of the body. The influence of the leading edge separated and reattached
shear layer on the wake formed after separation from the trailing edge diminished with
an increasing aspect ratio.

This goes on to say that our bluff body was designed such that (i) the final flow
separation is fixed at the trailing edge, as mentioned previously, (ii) a semicircular leading
edge is chosen in order to minimize massive leading edge separation and (iii) an aspect
ratio of 4 is chosen such that the boundary layer remains laminar at separation, even with
the addition of free-stream turbulence, and to minimize the influence of the leading edge
separation on the wake that develops after flow separation at the trailing edge.

1.2.4 Sources of drag and reduction strategies

The drag of the bluff body such as circular or a square cylinder, as briefly discussed
above based on the vast amount of available literature, is seen to be dependent on many
flow features starting with the nature of flow separation, appearance of unsteadiness,
primary vortex shedding, development of spanwise instabilities, shear layer vortices, tran-
sition to turbulence etc. For example, the delay of separation on the circular cylinder
caused the base suction to drop drastically whereas this was not witnessed in the case of
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(a)

(b)

Figure 1.4: Variation of the recirculation length and the formation length (a) and the
drag coefficient (b) as a function of Re. Figures adopted from [10]. For the works cited
in the figure, one may refer to the references in [10].
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Figure 1.5: Influence of the aspect ratio of rectangular cylinder on the wake dynamics.
Adopted from [101]

square cylinders which displays a fixed separation point, emphasizing the role of separa-
tion in drag. The onset of periodic motion caused a rise in the drag for both the circular
and the square cylinder emphasizing the role of periodic vortex structures on the drag.

Further, these aerodynamic features are also found to change with the cross section
of bluff bodies, for example: with a variation in the aspect ratio of the rectangular cross-
sections, the bluff body with a combination of circular and rectangular cross section etc.
In order to understand the mechanisms of drag and how to implement successful control
strategies, it is important to identify the essential mechanisms that control drag and eval-
uate how successful previous control strategies performed.

Since the observation of vortex shedding lowering the base pressure by [144], several
studies aimed at suppressing or manipulate the vortex shedding in order to reduce drag.
The objective of the control strategies generally aims at delaying the onset of separation
or the formation of vortices or reducing the strength of vortices. One of the earliest drag
reduction strategies involved the use of splitter plates in the wake of the circular cylinder
[146], shown in figure 1.6. It is placed along the center of the cylinder, parallel to the
direction of the flow. This resulted in the interruption of interaction between the shear
layers and subsequently influenced the vortex formation. The vortex formation took place
at a larger distance which varied with the length of the splitter plate, for bluff bodies with
fixed or moving separation, with the mean base pressure found to inversely vary with the
length of the vortex formation region[16, 98]. The length of the splitter plate, be it short
(for example : one sixteenth the height of the body) or long ( for example: five times the
height of the body) , modified significantly the near wake features [6, 5, 3].

The mechanics of the vortex formation, as explained by [61], involves the mutual
interaction of the shear layers playing a key role. The end of the formation region, as
defined by [24], is the streamwise position where the irrotational fluid first crosses the
wake centerline by the action of the growing vortex. The growing vortex is continuously
fed by circulation from the shear layer until it becomes strong enough to draw the opposite
shear layer across the wake. The growing opposite shear layer with a sufficient amount of
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Figure 1.6: Influence of splitter plate on the vortex formation for experiments carried out
at Re = 5700. Adopted from [3]

opposite circulation, relative to that of the first shear layer, further decreases the supply to
the growing vortex which is then shed into the wake. A sketch adopted from [61], shown in
figure 1.7 at the instant when the irrotational fluid first crosses the wake-centerline, shows
the principal mechanism involved in the formation region. The irrotational fluid entering
the wake, is partly entrained by the growing vortex itself, denoted by the arrow (a), in
part by the shear layer upstream of the growing vortex, denoted by (b) and the remaining
into the interior of the formation region (c). It is the balance between the entrainment
into the shear layer and the reverse flow that determines the size of the formation region.
By this argument [61] was able to explain the size of the shrinking formation region in
the presence of free-stream turbulence and an elongated formation region in the presence
of a splitter plate.

Figure 1.7: Sketch depicting the mechanics of the vortex formation region according to
[61]. Adopted from [61]

The drag control strategies in the literature are numerous and can be classified into
passive, active open or closed loop control strategies according to [37], which may further
be divided as shown in the schematic adopted from [37] in figure 1.8. The passive control
strategy generally does not require an external source of energy. It may be implemented
in the form of surface/geometry modifications or by external attachments on the body.
The splitter plate mentioned above is an example of passive control which requires no
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additional input of energy. Active control methods involve some additional input in the
form of steady or unsteady energy in order to influence/ manipulate a flow variable. Ac-
tive control is further divided into open and closed loop controls of which the former does
not involve sensors but actuators with power input. The later involves sensors and actua-
tors and involves for example, comparing a measured flow variable with at some strategic
location which is then used to trigger an actuator using some form of control law. An
interested reader may refer to [7] for details on active flow control methods.

The control strategy is further divided into two-dimensional or three-dimensional forc-
ing, and boundary-layer control or direct wake control. Two dimensional forcing for ex-
ample normally refers to a modification of the surface of the body which is uniform in the
spanwise direction whereas this is not the case for three dimensional forcing. The classifi-
cation based on boundary layer control or direct wake control depends on the manner in
which the control changes the boundary layer nature such as its state or modify directly
the properties of the wake. The reader may refer to [37] for an excellent review on these
strategies.The objective here is not to discuss the various control methods, but to un-
derstand the physical mechanism of the flow that is manipulated by the control strategy
leading to reduction of drag. Therefore, a few out of the many cases of drag control shall
be described with the hope of presenting the principal features of the wake flow which
upon manipulation leads to reduction of drag. Further, the case of boundary layer control
on continuous and finite curvature bodies such as the circular cylinder is avoided since it
involves non-stationary separation points.

Figure 1.8: Classifications of flow control strategies with the objective of drag reduction.
Adopted from [37].

The control strategies implemented in the literature mostly involve suppressing or
manipulating the coherent von Karman vortices. The efficient control strategies, among
the passive 2D and 3D forcing methods, recognised in the literature are those of three
dimensional forcing type. The passive 3D forcing is normally implemented in the form of
external attachments or leading/trailing edge modifications of the bluff body geometry.
One of the earlier studies such as those of [173], installed segmented trailing edges to
increase the base pressure and hence reduce the drag. The studies by [178] installed wavy
trailing edge on a blunt edged model and found that the waviness increased the base pres-
sure reducing the drag. The wavy trailing edge was found to induce vortex dislocations.
The vortex dislocations come into existence when the shedding frequency is non uniform
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in the spanwise direction. Neighboring ‘vortex cells’ at a specific frequency move either
in phase or out of phase with each other due to its difference in shedding frequency with
the adjacent cell. It appears as a consequence of the fact that a vortex line cannot end
abruptly in a fluid. In order to accommodate this variations in the phase, the vortex from
one cell links up with the vortices, with the same sign, of the adjacent cells which are in
different phase, resulting in the appearance of twisted tangle of vortices [199, 178]. Nu-
merical simulations conducted by [42] revealed interesting phenomena for square cylinder
with wavy edges both at the leading as well as trailing edge. The wavy trailing edges were
found to force vortex dislocations. Further, it induced three-dimensional fluctuations in
the developing shear layer which made it less susceptible to roll up into von Karman vor-
tices thereby reducing the drag. A recent study by [121] installed rectangular tabs along
the spanwise direction, shown in figure 1.9, at Re ∼ O(104). The role of the rectangular
tabs was to induce spanwise dislocations of the vortices which lead to the disruption of
the nominally two-dimensional nature of the von Karman vortices and increasing the base
pressure.

Figure 1.9: Instantaneous vorticity (iso-λ2 surfaces) without control (a) and with control
(b). Figures on the right shows the instantaneous iso-pressure surfaces. Adopted from
[121].

The suppression of vortex shedding at low Re has been achieved in the studies of
[166], where a relatively small cylinder is used to interrupt the vortex shedding. They
explained that a properly placed control cylinder smears the vorticity contained in the
shear layers (i.e. by spreading the velocity gradient over a larger distance). Similar studies
were undertaken by [150] for a square cylinder at Re ∼ O(104) and reported reductions
in the mean as well as fluctuating forces when the control cylinder was located within
a small region localised on the outer boundary of the separated shear layer. Numerical
simulations performed by [105] showed similar results for the control cylinder, where they
argued that the control cylinder locally stabilizes the shear layer by inducing a favorable
pressure gradient, which led to the suppression of the von Karman vortex street at low
Re. A similar kind of drag reduction strategy was studied by [120] in the wake of a D-
shaped bluff body where reductions in mean drag was interpreted in terms of differences
in shear layer diffusion and entrainment, with a corresponding changes in the length of
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the recirculating flow region as well as dampening of the Reynolds stresses - especially
the component related to the cross-stream mixing.

The modification of the boundary layer, prior to separation, also brings about changes
in the vortex shedding frequency, strength and also the pressure drag [148, 181]. All the
studies introduced in the above were passive drag control methods, and there exits nu-
merous other studies based on passive control methods as well as active control methods.
For example, [125] proposed open- and closed- loop control strategies based on a reduced-
order vortex model which resolves the large scale energetic coherent flow structures. The
control strategy synchronised the roll-up of upper and lower shear layers, decoupling the
vortex formation from the shear layers, mitigating the appearance of asymmetries and
therefore suppresses the effects of instability. A 40% increase in the base pressure cor-
responding to 15% reduction in drag was achieved in their study. A recent study used
closed loop flow control strategy by using ‘pulsed Coanda blowing’ to reduce the drag
[155]. During their open loop based test, to yield optimal non dimensional frequencies
of forcing, vortex shedding was found to be suppressed/attenuated consequently an at-
tenuation in the Reynolds stresses with a corresponding reduction in drag, however the
extent of the recirculating flow region diminished due to the ‘Coanda’ effect deflecting
flow into the near wake region. This attenuation is exploited as the feedback signal in the
closed-loop control. For a review and detailed read of drag control strategies, one may
refer to the review by [37] or the recent study by [155] and the references therein.

The literature shows the dominance of the primary mode of vortex shedding in de-
termining the drag. Most of the studies, as seen above, are directed to attenuate or
suppress the dominant vortex shedding process in order to yield favorable reductions in
the drag. However, the dominance of vortex shedding is questioned in the studies of
[113, 114], where multiple scales are introduced into an axisymmetric wake, by the use
of fractal edges on polygonal plates normal to the flow, generated by non-axisymmetric
bodies such as square plates. As the fractal dimensions and the iterations increased, the
vortex intensity dropped, however with an increased in the drag. They explained that
the function of the fractal edges were to re-distribute energy from the large scale coherent
vortex structures to a broad range of scales in the flow.

1.2.5 Mathematical framework for the analysis of coherent struc-
tures

The role of coherent structures in the wake of the bluff body has been studied by
several authors. Starting with the works of [142] who introduced the concept of triple
decomposition, i.e. splitting the instantaneous velocity signal into its mean, a coherent
periodic signal and a random component in order to better understand the role of orga-
nized waves in turbulent shear flows, there has been a steady interest to understand the
mechanics of the coherent and the random flow structures, and their interactions, in a
wide variety of flow settings through formal physical equations. The formalism followed
by [142] allowed the splitting of total time averaged fluctuating stresses into the part
that arises from organized wave like motions and random turbulence, and consequently
to understand the interactions between them through transport equations for the energy
arising from the coherent wave motions and the random turbulence.
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One of the earliest notable works in this regard is of [32] where much of the effort
was devoted to understanding the mechanics of large-scale vortex structure in the wake
of a circular cylinder at Re ∼ O(105). The large-scale vortex here is described as an
organized structure with concentrated vorticity, energized primarily by entrainment. The
terminology entrainment is used to refer to the transport of quantities such as mass or
momentum across an interface. The instantaneous streamlines, for an observer moving
the flow, forms a pattern of centers and streamline delineating the shed vortices between
each other, and [32] explained that its formation and evolution is a dominant feature in
the wake that controls the entrainment and the turbulence production process. Similar
mechanisms can also be found in the studies of [75, 76], where they explained the im-
portance of saddle (braids) and the smaller scale longitudinal vortices called as ribs, that
resides on the braids, in the production of turbulence. According to [76], the large-scale
spanwise vortices, three-dimensional in nature due to the distortions induced by the ribs,
induces the motion of external irrotational fluid towards the wake, directed towards the
saddles. This irrotational fluid attains some of the rotation due to the influence of the ribs
and is subjected to the vortex stretching along the braided region, resulting in smaller
scale turbulence production[75, 76]. The produced turbulence is advected into the rolls
increasing the small-scale turbulence intensity near the center and back of the primary
large scale structures. The most effective turbulence mixing, according to [76], is deduced
to take place in regions A and B in figure 1.10 due to the interaction between the rib, of
longitudinal vorticity, with the spanwise vorticity of the primary large scale structures.
Similar findings, in the near wake region of a circular cylinder at high Re ∼ O(105), on
the role of large-scale coherent flow structures in the production of smaller scale turbu-
lence has been reported in a recent study by [29], where the production terms, in a time
averaged sense, was high in the strong shear regions (within the separated shear layer)
whereas the smaller scale turbulence intensity peaked at the wake centre suggesting a
transport of energy towards the wake center.

The works of [149] considers the energy exchange mechanisms between the mean, co-
herent and incoherent structures through the budget of coherent kinetic energy in the
wake of a square cylinder at Re ∼ O(102), where they notice that the work done due to
pressure fluctuations, production term and the convection term play an important role in
the energy exchange mechanism. A recent study [133], utilising DNS (Direct numerical
simulation) data set in the wake of a square cylinder at Re ∼ O(103), explains the role of
coherent structures in the inter-scale and inter-space energy exchanges using the so called
‘Karman-Howarth-Monin-Hill’ equation. They find that the turbulent fluctuations are
not directly fed by the mean flow, but through the coherent fluctuations which extract
energy directly from the mean flow. Another interesting work by [12] studies the nature of
multi-scale flows, where a number of primary coherent structures exists within the wake of
multiple bodies. The kinetic energy budgets using the flow decomposition methodology of
[142] performed at various strategic locations in the wake revealed that it is the coherent
fluctuations that plays an important role in exciting the turbulent fluctuations because of
the energy feeding mechanism by the coherent to the turbulent fluctuations. Further, sec-
ondary coherent structures were also recognized, and was found to be energized primarily
by the nonlinear interactions between the primary shedding structures.
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Figure 1.10: Schematic of the mechanisms of turbulence production within the wake
consisting of alternatively shed vortices. Adopted from [76].

1.3 Thesis objective

The literature points to the role of the shear layer [166, 175, 120, 99] and the dominance
of the coherent flow structures [146, 37, 125] in governing the base pressure, and hence
the drag force, and its key role in driving the entrainment process or in the generation of
turbulence [32, 75, 149]. The physical mechanism that drives the drag, or link the drag
force to the coherent/ incoherent structures or to the entrainment process in the wake is
a subject that still needs further research. It is hoped that identifying these mechanisms,
at least those that involve the dominant coherent structures, would prove to be a valuable
resource in the further design and development of efficient flow control strategies based
on the physics of the flow. However, this remains a vast topic, as evident from the works
briefed above, since the wake involves complex interactions between various flow features
such as the boundary layer developing over the surface of the body, separated flow, the
dominant primary large scale flow structures (for example: von Karman vortices), the
shear layer vortices, the remaining small-scale coherent/incoherent flow structures, the
interactions between them, mean pressure contributions arising out of it, and further
adding to the complexity is the body geometry/cross section.

The principal objective of this thesis is to finely characterise the wake identifying the
physical mechanisms which drives the mean drag. For this, a bluff body is designed, as
already mentioned, so as to focus only on the wake problem and to avoid/minimize the
influence of complex phenomenon such as those linked to leading edge separation. The
wake flow behind the bluff body is measured using Particle Image Velocimetry (PIV) tech-
nique and analyzed using the governing equations for mean momentum. A new method
for the accurate estimation of mean pressure field, based on sparse-sensor measurements
of pressure allows for closing the mean momentum equation and therefore to identify the
dominant contributions to the mean drag through mean momentum budgets.

Another novelty of the study is the introduction of a method to estimate the pressure
of the coherent structures, based on the triple decomposition using Proper Orthogonal
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Decomposition (POD)[192], which further allows the closure of the equation governing
the energy exchange between the mean flow and coherent stresses, both in a phase aver-
aged and time-averaged sense. These new tools form the foundation to understand the
dominant driving mechanism of drag. Once the physical driving mechanism for drag is
identified for the case of natural flow, it is then disturbed/perturbed by the addition of
turbulence in the free stream in order to understand how this disturbance influences the
identified mechanism.

The thesis is structured as following:

• Chapter 2 presents the experimental setup describing the D shaped bluff body,
measurement techniques and equipment, the flow parameters used in this study and
the background flow characterisation.

• Chapter 3 introduces the new method for accurate mean pressure field estimation
from the wake measurements obtained by the PIV technique and using sparse sensor-
measurements of pressure.

• Chapter 4 introduces the natural/baseline wake flow behind the D-shaped bluff
body, identify the contributions to the mean base pressure drag through integral
mean momentum budgets, using the numerical tools developed in Chapter 3, and
discusses on the principal driving factor of the dominant contributor to the mean
base pressure drag.

• The contribution of the spatially coherent/incoherent structures to the mean base
pressure drag is identified in Chapter 5. The novel method of coherent pressure
estimation is introduced in chapter 5 which permits the closure of transport equa-
tions that helps understand the energy exchange mechanism, primarily between the
mean flow and coherent structures.

• Chapter 6 discusses on the influence of increasing the flow Reynolds number on
the mean base pressure drag and the energy exchange mechanism, identified in
chapter 5. Further, the influence of flow perturbation, by the addition of background
turbulence, and the effects of blockage are discussed in Chapter 6, using the novel
tools developed in the thesis.

• Finally, conclusions are drawn in chapter 7 and future outlook and extensions of the
current study are briefly discussed.
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Chapter 2

Experimental Setup

Measurement Techniques - Introduction

The fundamental equations of fluid flow presents us with variables like velocity and
pressure. Understanding and analyzing the flow behaviour requires the knowledge of these
variables. The flow behind the bluff body involves fluctuating velocities and pressure. It
can soon transition to a turbulent wake depending on the flow Reynolds number, wake
inlet or the external flow conditions. The wake is then composed of a multitude of scales
ranging from the size of the body down to the viscous Kolmogorov scales. The scales
in this context refer to an average size of eddying motion. In practise, it is extremely
difficult to obtain measurements resolving the smallest scales in both space and time.
Therefore, simplified approaches which statistically reduces the flow into mean and time
averaged fluctuating quantities, has to be adopted. Even then, a single measurement
technique cannot be used to yield information both in space and time. This calls for
other techniques to fill the gap and provide complementary information.

The primary measurement technique used in this study is the so-called particle image
velocimetry commonly abbreviated as PIV. It provides a whole field of velocity mea-
surements. Time-averaged PIV measurements are compared with those acquired by the
point-wise hot wire anemometry technique to verify the acquired data. Further, pressure
measurements are obtained by wall-mounted sensors and pitot tubes, which are also used
to estimate an accurate mean pressure field in the wake.

The objective of this chapter is to provide a brief summary of the flow measurement
techniques used in this study. The working principles are also briefly described, an un-
derstanding of which forms a prerequisite to obtain flow data of satisfactory quality.

2.1 Hot-Wire Anemometry

Hot wire anemometry is an inexpensive form of pointwise flow measurement technique
used by the fluids community over the years. The technique is capable of measuring
flow velocity with high resolution in time, making it an attractive option for obtaining
measurements that are beyond the capabilities of conventional low-speed PIV systems
and at a lower cost. However, its application in the very near-wake of a bluff body is
limited because of its intrusive nature and inability to measure reverse flow velocities.
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Figure 2.1: The calibration-curve of hot-wire. The squares represent the measured Ew
for various reference velocities. The black circles and the inverted triangles represent the
velocity estimated using the measure Ew with the King’s law given by equation (2.1) and
a fourth order polynomial given by the equation (2.2) respectively.

2.1.1 Operation and calibration

The operating principle of the Hot-wire anemometry is based on the concept of heat
transfer from a small heated wire to the flow it is exposed to. For this purpose, the wire
that forms the heating element is made up of material whose electrical resistivity depends
on the temperature. The measurement of velocity is based on its relationship with the
voltage across the sensor wire, the latter is temperature dependent and therefore on the
heat transferred to the flow, known as King’s law [30] which reads

E2
w = A+BUn. (2.1)

One may refer to [30] for an in-depth treatise on the working principle and derivation
of the relation (2.1). The calibration procedure to determine the constants A and B
requires the input of a flow with known velocity and preferably without turbulence. This
can be done in the wind tunnel test section or by a dedicated calibrator(e.g., Dantec
90H02 flow unit). In this study, the dedicated calibration unit is used which generates a
low-turbulence jet that is used as the velocity reference. The hot wire is aligned with the
centre line of the jet nozzle and flush with the upper surface of the nozzle. A wide range
of reference velocity is spanned, and the corresponding Ew is measured and recorded.
The constants and the exponent of equation 2.1 are then determined by data-fitting. The
exponent n ≈ 0.4306 so obtained lies well within the optimal range reported in [30]. An
alternative is to express the velocity as the powers of the hot-wire voltage Ew using a
polynomial,

U =
N∑
n=0

AnE
n
w, (2.2)

as reported in the work of George et al. (1989) [60]. The best results reported in the
literature [30] were for the solutions of polynomials of fourth order in Ew. Due to the
simple nature and straightforward applicability, the polynomial form (2.2) is used in the
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Figure 2.2: Typical arrangement of an X-Probe

present study for the calibration of hot wire. Figure 2.1 shows the calibration curves of
the hot wire sensor for flow velocities in the range 0− 60 m/s, in which both calibration
methods seem equivalent. The error levels of the reference velocities remain below 0.5%,
which is acceptable given the numerical errors that may be present.

The calibration is carried out at a particular ambient temperature and it is not actively
maintained in the wind-tunnel. The operation of electrical machineries, changes in the
external environment, surface friction, etc. can influence the ambient temperature whose
variation can lead to errors in the measured velocities. Slight drift, however, can be
compensated using temperature-correction laws, see for instance [80]. In order to minimise
such errors, as a rule of thumb, the hot-wire was re-calibrated if the temperature exceeded
±30C from the initial ambient temperature at which calibration was carried out. The
ambient temperature was monitored using an external thermometer.

Measuring two velocity components using X-wire probe

To measure two components of the flow, a Dantec 55P61 X-wire probe is used in this
study. The figure 2.2 shows a typical arrangement of X probe. It simply consists of two
inclined wire-probes arranged closed together with a space in between them. It is assumed
that the two inclined wires are in the same plane for signal-analysis purposes, however the
thermal wake of one wire can interfere with the output of the other leading to erroneous
measurements ([30] and references therein). Previous work (e.g., Jerome et al. (1971)
has shown that thermal-wake interference can be minimised by placing the wires 1 wire-
length apart. In addition, one may refer to Bruun (1996) [30] and the references therein
for a detailed understanding of the interference caused by the stems and the prongs of
the probe, and also the steps followed to minimise such disturbances.

As illustrated in figure 2.2, the two inclined wires of the probe are arranged so that
an angle of 90 degree is maintained between their normals. Conventionally, the hot wire
responds only to the velocity magnitude and not to its direction.

The probe is installed such that the probe axis is aligned with the streamwise velocity
in the laboratory coordinate system indicated by (x, y) in figure 2.2. The conversion from
the wire-coordinate system (axes aligned with the wires) to the laboratory co-ordinate
system can be carried out as,

u = U1cos(α2) + U2cos(α1), & v = U1sin(α2)− U2sin(α1). (2.3)
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Since the hot wire velocity-voltage calibration is carried out with the velocity vector
aligned with the probe axis, U1 and U2 can be found by solving,

U2
1cal

(
1 + k21

)
cos2(90− α1) = U2

1 + k21U
2
2 & U2

2cal

(
1 + k22

)
cos2(90− α2) = k21U

2
1 +U2

2 .
(2.4)

Hot-wire anemometry remains, however, a pointwise measurement. With a single hot-
wire probe, it is possible only to measure the velocity at a single point of interest at a
specific time. Yet, the high response of the hot-wire sensor to the fluctuating velocities
makes it an ideal tool to obtain time resolved velocity measurements.

2.2 Particle Image Velocimetry (PIV)

The technique of PIV is used for the whole field measurement of velocity, unlike
the pointwise measurement carried out by hot wire anemometry. It is an optical flow
measurement technique where the velocity of particles, that faithfully follow the flow, are
measured and is therefore known as an indirect mode of measurement. The following
section shall briefly introduce the velocity measurement using the PIV technique.

2.2.1 Working principle

The method simply consists of imaging a set of particles that trace the flow at two
closely spaced time instants, i.e., at time t and t+∆t. The knowledge of their positions at
these two instants forms the displacement vector which when divided by the time interval
∆t gives the velocity vector and is given by,

u =
xA − xB

∆t
. (2.5)

The region of interest of the seeded flow is illuminated twice by a thin laser sheet, separated
in time by ∆t. The time duration of exposure of the particles to the illumination has to
be significantly smaller than its displacement, so that the particles appear as frozen spots
rather than as streaks. The laser sheet is formed by shaping the circular cross section
beam delivered by the laser light source by means of cylindrical and spherical lenses. The
light sheet so generated has to be thin otherwise it risks the particles external to the sheet
being illuminated by the laser and contributes to the measurement noise. Furthermore,
the generated light sheet has to have sufficient energy at each pulse, allowing the scattered
light from the particles to be detected by the imaging device.

The images are captured on a CCD (Charge Coupled Device) camera. The light falling
on the pixels during the exposure time creates electrons that forms a charge which is then
converted to voltage, amplified, digitized, transferred and stored in the computer memory
for further processing. In each image, the particle is illuminated only once.

To estimate displacements, the image I1 at time t is divided into a regular mesh formed
by smaller regions defined by interrogation windows. For one of such window W of size
2K × 2L, after a short duration ∆t, the particles should have moved by ∆x in the same
window of the second image captured at time t+∆t. If the light intensity of particles in
W of I1 and I2 are represented as f(i, j) and g(i, j) respectively with f(i, j) ̸= g(i, j) due
to movement, then an average particle displacement can be estimated using the statistical
measure of cross-correlation and is given by,

Cfg =

∑K
i=−K

∑L
j=−L (f(i, j)− µf ) (g(i+ δx, j + δy)− µg)

σfσg
=

Rfg

σfσg
, (2.6)
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where µ and σ2 represent the average and variance of the intensity in the respective
windows f and g. The location of the average displacement shall correspond to the
location of the peak on the cross-correlation map formed by the equation 2.6. For two
1D functions of length N , the computation of the cross-correlation coefficient requires N2

operations, whereas in 2D it increases to N4 operations. This is computationally very
expensive especially for a high-resolution image and when a large number of images have
to be processed. Therefore, the Fourier theory, which reads

Rfg = F−1 (F ∗G) , (2.7)

where F ,G, F−1 and the superscript ∗ represents the Fourier transform of f(i, j), g(i, j),
the inverse Fourier transform, and the conjugate complex, respectively. It reduces the
number of operations to O (Nlog2N) operations for 1 dimensional and O (2N2log2N)
for 2 dimensional signals (see for eg.: [14]). The first run with the initial window gives
an integer estimate of the average particle movement on a large scale. The displacement
estimate can further be improved by employing multiple runs where the estimate from the
preceding run is used as a pre-shift for the smaller sized windows in the subsequent runs.
A further subpixel refinement in displacement estimation is obtained by approximating
the particle image distribution to be a continuous Gaussian-shaped function with its peak
corresponding to the particle image centre (see, e.g.: [137]). For a velocity field in regions
of high gradients, the deformation of windows based on the local gradients after the
first run and prior to the subsequent runs provides improved results with better spatial
resolution [71].

In order to obtain reliable velocity measurements of the fluid, the tracer particles have
to fulfil certain criteria such that the fluid flow properties/velocities are not altered by
it. In short, the tracer particles have to be inert to the surrounding fluid with its size
small enough to respond instantaneously to changes in fluid flow and large enough for the
scattered light to be of sufficient intensity for its detection.

The velocity lag of the particles with respect to the surrounding flow using Stokes’ drag
law for a continuously accelerating fluid and under the assumption (DU/Dt = dvp/dt),
where vp refers to the velocity vector of the particle, reads [137, 184],

vp −U =
d2p
18µ

(ρp − ρf )
dvp
dt

, (2.8)

where the subscript p refers to the particle and dp refers to its diameter. Equation (2.8)
serves as a guide to choose the tracer particle. The choice of neutrally buoyant particles,
i.e. ρf = ρp leads to the particle that follows the fluid flow accurately; however, it is
difficult to find such particles for gaseous flows. Therefore, the particle size, given by
its mean diameter dp, can be very small for the velocity-lag to become negligible. In
the present study, the mean diameter of the particles corresponds to dp ≈ 1.2µm and is
generated by the PIVTech seeding device utilizing olive oil as the seeding fluid.

A convenient measure of the particle’s ability to faithfully follow the field is given
by the Stoke’s number, which is the ratio of the time response of the particles to the
characteristic time-scale of the flow. According to Raffel et al. (2018) [137] and Tropea
et al. (2007) [184], it is given by

Stk =
τp
τf

=

(
d2p (ρp − ρf )

18µ

)
1

τf
, (2.9)
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where µ = 1.7894 × 10−5m2/s, ρp = 917kg/m3 and ρf = 1.225kg/m3 are the dynamic
viscosity of air, the particle density (olive oil droplets) and air density at 15oC respectively.
The flow time scale τf is that which characterises the smallest scales the flow can have,
and can be estimated by the Kolmogorov time scale, τη = (ν/ϵ)0.5, which represents
the smallest scales at which the turbulent kinetic energy is dissipated into heat by the
action of viscosity. Under the equilibrium hypothesis for a turbulent flow, i.e., when the
produced turbulent kinetic energy is lost by viscous dissipation, τη scales as Re

−0.5, where
Re = ul/ν, u and l characterises the turbulent velocity fluctuations and the largest scale
in the flow (e.g., integral length scale), respectively [174]. Ideally, the particle response
time has to be much smaller than the smallest time scale of the flow. Then, the use
of τη implies that changing flow conditions, such as fluid type and increase in Reynolds
number, put additional restrictions on the particle response time and to the choice of
tracer particles as well.

2.2.2 Wall-pressure measurements

The wall pressure measurements along the bluff body surface in the streamwise and
spanwise directions were carried out by the miniature pressure scanners manufactured by
Scanivalve. The scanner incorporates piezoresistive pressure sensors for measurements.
The resistance of the piezoresistive strain gauges changes when strained and is typically
attached to a diaphragm. The scanner was operated at a frequency of 800Hz in order to
distinguish the energetic peaks in the spectrum at least that occurs below 400Hz. Before
measurements, for each set of experiments, the zero offset was performed at zero velocity
inside the wind tunnel.

2.3 Experimental setup

2.3.1 Wind tunnel

The experiments to measure the velocity in the wake of the bluff body were carried
out in the open type subsonic wind tunnel at the PRISME lab facility, Orleans. The
maximum velocity of the attainable free stream is close to 50m/s with zero blockage of
the test section. The test section measured 2000mm in length with a cross section of
500 × 500mm2, preceded by a contraction 16 : 1, ensuring a uniform flow at the inlet.
The inlet of the wind-tunnel is equipped with honeycomb structures that suppresses /
dissipates any possible large scale turbulent structures before it reaches the inlet of the
test section. The velocity in the test section is set by a tri-phase centrifugal fan whose
speed is controlled by a potentiometer. The velocity is monitored by measuring the
differential pressure across the contraction using a FC014 micro-manometer manufactured
by Furnace Controls Ltd. The differential pressure is indicated inmm of water column and
is converted to Pascal units for estimating the inlet velocity. The inlet velocity assuming
zero friction losses in the contraction follows from the Bernoulli’s principle as,

∆Pin =
1

2
ρairU

2
inlet = ρwaterghwater, (2.10)

where hwater represents the height of the water column in millimetres directly obtained
from the manometer reading. Being analogue, the lowest count of the manometer for
∆Pin ∈ (0, 10) mm H2O and ∆Pin > 10 mm H2O is 0.1 and 1 mm H2O respectively.
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(a) Homogeneity of the mean velocity profile in the
vertical direction.

(b) Homogeneity of the mean velocity profile in the
span-wise direction.

Figure 2.3: The streamwise mean velocity normalised by the spatial average of the profile
measured at various location in the wind-tunnel test section. Ls = 2000mm and Hs =
500mm denotes the length and height of the test-section.

The uncertainty in the reading of an analogue device is usually half its least count, thus
making the uncertainty due to the user setting as 0.05 and 0.5mm H2O for ∆Pin ∈ (0, 10)
mm H2O and ∆Pin > 10 respectively.

The experiments are carried out for inlet velocities in the range Uinlet ∈ (10, 30) and are
set using a manometer. Once the wind tunnel is operational with the set velocity, the inlet
velocity is precisely measured using the pressure scanner for each velocity measurement,
by connecting the reference port of the pressure scanner to the stable static port at the
inlet of the wind tunnel. Exception is only for the case while flow homogeneity of the
wind tunnel is verified.

Verification of flow homogeneity

The single normal hot-wire probe mounted on a traverse is used to verify the flow
homogeneity in the wind tunnel at three stations in the streamwise direction for the
lowest and the intermediate inlet velocity used for the experiments Uin ≈ 10m/s and
Uin ≈ 20m/s respectively. Figure 2.3 with the mean streamwise velocity measured along
the vertical and spanwise directions at 40mm, 400mm and 638mm from the inlet shows
that the flow is homogeneous with variations as large as ±0.5%. The prospective place-
ment of the experimental bluff body model is at X ≈ 418mm from the test section inlet.

2.3.2 D-shaped bluff-body model

Figure 2.4 shows the details of the experimental model used in the study of bluff body
wake. The leading edge of the body is circular in shape with a diameter of h = 40mm
followed a flat surface leading to a rectangular sharp base all the while maintaining the
body height at 40mm. The length-wise aspect ratio of the body length was chosen as
l/h = 4. The objective was to limit the leading edge separation and to minimise its effect
on the wake formed after the flow separates at the trailing edge.
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Figure 2.4: Details of the D shaped bluff body experimental model

The span-wise aspect ratio of the body (along z direction) is 12, chosen such that it
fits the entire width of the wind-tunnel cross section. The body being long in the span-
wise direction, it was fabricated by 3D printing in five parts labelled as Part 1 to 5 in
the base view of the model in figure 2.4. The parts were fabricated such that each of
them can be attached with the other through grooves and extrusions (not shown in the
figure 2.4). The assembled parts are then held together using two M5 threaded rods that
pass through two designated holes, one close to the leading and the other close to the
trailing edges, respectively. Small holes of diameter 2.3mm × 52 no. are made on the
body, included in the design while passed over to the 3D printer, to install the vinyl tubes
for pressure measurement. The 52 vinyl tubes exit from the body through the hollow
shaft provided at one end, which are then numbered using labels and then installed on
the pressure scanner device. The length of the vinyl tubes is limited to a maximum of
1000mm.The body is mounted in the middle of the cross section of the wind tunnel test
section at X/Ls ≈ 0.21, so that the hollow shaft remains outside of the test section and
that the wake of the body is not disturbed by the measuring devices and its associated
parts.

2.4 Parameters of the experiment

The experiments on the bluff body model are carried out by varying two parameters.
The first parameter is the bluff body Reynolds number defined as,

Reh = Uinh/ν, (2.11)

where h, Uin and ν refers to the height of the body, the inlet velocity at the inlet of the
wind tunnel test section and the kinematic viscosity of air respectively. Reh is varied in
the range Reh ∈ (2.8× 104, 8.2× 104) corresponding to the inlet velocities in the range
Uin ∈ (10, 30)m/s.

The second parameter is the level of free stream turbulence. Two sets of experi-
ments varying the second parameter are conducted. The first set is with the presence of
background turbulence existing in the wind-tunnel test section without any means of tur-
bulence generation. The background turbulence level in this case was measured and found
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Figure 2.5: Illustration of the experimental setup. The abbreviation WT refers to wind
tunnel, the inset cloud shows the dimensions of the regular meshed turbulence generating
grid with d- the size of the bar and M referring to the mesh size. The wind-tunnel
coordinate system is placed at the mid-point of the test section inlet and is denoted by
(X, Y, Z), where Z is not explicitly shown. The bluff body is placed at approximately
10.45h from the inlet of the test section. Ls and Hs refers to the length and height of the
test section. The test section being a square cross section, its width is also denoted by
Hs. X0 refers to the center of the turbulence generating grid in the streamwise direction.
The reference port of the pressure scanner is connected to a static port close to the inlet
of the test section and prior to the grid placement.

to be smaller than 0.1%. The second set of experiments are carried out at the Reynolds
number specified in the range (2.8× 104, 6.8× 104) in the presence of free-stream turbu-
lence generated by a regular grid.

2.4.1 Characteristics of the flow in the presence of the grid

Turbulence generating grid is fabricated using square cross sectioned wooden rods
of dimension d = 13 mm placed apart such that it forms a regular mesh of dimension
M = 63 mm. The solidity of the mesh, which is the ratio of its frontal area to the initial
area without the mesh and given by σM = (1− β), where β = (1− d

M
)2 is the porosity of

the grid, is found to be 0.37. The leading edge of the bluff body is installed such that it
is approximately 4.9 mesh lengths away from the grid. The length of the body measures
approximately 2.5 mesh length, thus keeping the trailing edge at 7.4 mesh lengths from
the grid. The figure 2.6a shows the verification of the homogeneity of the mean flow in an
upstream location close to the leading edge and at a location immediately downstream
to the trailing edge of the body. These mean profiles were measured using a single nor-
mal hot wire probe with a low pass filter of 6kHz filtering all the smaller scales of the flow.

The mean velocity profile is highly irregular with a maximum positive and negative
variations of 6% and 2% respectively from the inlet velocity, atXM/M ≈ 4.6. The velocity
deficits due to the bars of the grid are clearly visible. The strong inhomogeneities smooths
out moving further downstream but still exists at XM/M ≈ 8.4 as evidenced in figure
2.6a. The deviation from homogeneity is higher away from the centre-line of the flow field.
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(a) Homogeneity of mean streamwise flow along the
vertical Y and the span-wise Z directions. The white
and the grey shaded symbols denote the streamwise
location XM/M ≈ 4.6 and XM/M ≈ 8.4 respec-
tively.

(b) Decay of kinetic energy along the streamwise di-
rection. The dashed line denotes the limits of the
leading and trailing edge of the bluff body.

Figure 2.6: Mean flow homogeneity (a) and the decay of kinetic energy (b) defined as
k = (u′2+ v′2+w′2)/2, along the streamwise direction. The circles and pentagrams in (a)
denotes the two inlet velocities of Uin ≈ 10 m/s and 20 m/s respectively at which data
was acquired. XM and Hs denotes the shifted streamwise coordinate, i.e. XM = X −X0,
and to the height of the wind tunnel test-section respectively. The superscript ∗ and the
angular brackets in (b) denotes normalization with the inlet velocity Uin and the spatial
averages respectively. The uncertainty in spatial averaging is denoted by its average
variance and represented as error bars in (b).

A span-wise deviation of the homogeneity in the mean velocity profile is also observed.
The persisting mean strain implies the continued production of turbulence kinetic energy.
The present study being focused on the near wake of the flow field, which is considered to
extend ±1.5h from the bluff body wake centerline, and not the far field in the transverse
direction, the effects due to in-homogeneity in the far transverse direction is neglected.
This is to say, no corrections to the inlet velocity are applied.

The figure 2.6b shows the decay of the kinetic energy generated by the grid. The
measurement in this case is carried out using a hot-wire probe, capable of measuring
three components of the flow, sampling the velocity signal at 60kHz to obtain a discrete
signal of length 220. The peak of the produced kinetic energy, which falls in the range
XM/M ≈ 2 to 3 (see [77] for example), is not visible in our data due to insufficient
measurement points. Upon attaining the peak, it starts to decay. The solid lines cor-

respond to a power law fit of the form k∗ = A
(
XM−X0

M

M

)n
, where X0

M , n and A refers

to the virtual origin, decay exponent, and the decay coefficient, respectively (see [187]
for example). The virtual origin is set to zero here such that it coincides with the grid
location. In order to perform the fit, logarithmic transform is applied to the power in
order to have a first approximation of the power exponent and the decay coefficient. Fur-
ther, a curve is fit using the non linear regression routine of Matlab ‘nlnfit’ which outputs
the decay coefficient A and the power exponent n by performing iterative least squares
estimation. The power law constants obtained for each case of ReM are then averaged
to perform the final fit shown by the solid lines in the figure 2.6b. The region after the
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Uin(m/s) ReM Lx(m) Tu(%)
10.58 4.56× 104 0.0154 14
20.39 8.79× 104 0.0151 14
24.97 10.77× 104 0.0144 14

Table 2.1: Details of the incoming flow past the turbulence generating grid, with solidity

σ ≈ 0.37, at the location XM/M ≈ 4.9. Turbulence intensity is defined as Tu =
√
u′2/U∞.

peak that falls within at least 10 mesh lengths is classed as the near-field region, where
the turbulent kinetic energy decay is faster (see [77] for example). This is evidenced in
the figure 2.6b where the slope of the decay changes. The power law exponent changes
from n ≈ −1.81 to −1.36 and the decay coefficient changes from A ≈ 0.6 to 0.24 from the
near to the far field, respectively. It is within the near field region that our body is placed.

While studying the effects of free-stream turbulence on the bluff-body wake, the most
often considered length scale is that of the largest energy-containing scales represented
by the integral length scale (see, for example, [19, 82]) and is given by

L =

∫ ∞

0

ρ(∆x)d(∆x), (2.12)

where ρ(∆x) = u′(x)u′(x+∆x)/u′2(x) and τ refers to the auto-correlation coefficient and
the spatial lags in computing the auto-correlation coefficient respectively. Though the
upper limit of integration is specified to be at infinity, for practical purposes this limit
is taken to be the first zero crossing of the auto-correlation coefficient.The values are
reported in table 2.1.

2.5 Data acquisition

The experiments are carried out in the wind tunnel with varying parameters, as briefly
explained in section 2.4. Principally, the PIV technique and the hot wire anemometry
using the ‘X probe’ are used to acquire velocity data in the bluff body wake, such that one
complements the other. The pressure measurement is carried out by the pressure sensors
through vinyl tubes installed on the body.

2.5.1 Velocity data acquisition using the hot-wire ‘X probe’

Referring to the figure 2.5, the origin of the body coordinate system (x, y, z) is located
at the mid-point of the base of the body to denote streamwise, transverse, and spanwise
directions, respectively. The Reh of the flow is set using the manometer in the range
specified in section 2.4. Profiles of 2 components of velocity were acquired at various
locations in the wake through point-wise measurements, details of which are given in
table 2.2. Statistically well converged data was acquired which was further processed in
the commercial software package MATLAB.

2.5.2 Velocity field acquisition using the PIV technique

The PIV velocity field measurements are carried out using a Quantel Evergreen double
pulsed monochromatic Neodym-YAG laser operating at a wavelength of 532 nm, with a
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X probe measurements x∗ y∗ ∆x∗ ∆y∗ Acquisition time (s)
Transverse profile (u(y, t), v(y, t)) 3,6,9 -3:3 - 0.125 {−0.5 ≤ y∗ ≤ 0.5} ≥ 104 Tx

0.25 {−0.5 > y∗ > 0.5}
Streamwise profile (u(x, t), v(x, t)) 2:9 0 0.375 - ≥ 104 Tx

Table 2.2: Details of hot wire measurements of velocity in the wake of the bluff body. The
superscript ∗ denotes normalization with the body-height h and Tx denotes the integral
time-scale of the longitudinal fluctuations estimated at the wake centerline.

set of integrated hard-mounted optics which transforms the cylindrical laser beam into
spatially aligned thin laser sheets. The flow is seeded with fine droplets of olive oil. Time-
scale of the smallest fluctuation, Kolmogorov time-scale τη, is estimated using the velocity
measurements acquired by hot-wire anemometry, following local isotropy assumptions
(see [174]). The Stokes number (2.9), for an average diameter of olive oil droplets of
1.2µm, estimated along the wake centre line at x∗ ≈ 2 & 8 for the range of Reh used,
is found to be much less than 0.05, indicating that the droplets indeed follow the flow
faithfully. Labview software is used to programme the National Instruments NI 9402
input/output module to generate two low voltage TTL signals of different frequency to
trigger PIV and wall pressure acquisition simultaneously. The TTL trigger signal of
0.5 Hz generated for PIV acquisition is used as an external trigger connected to the
TSI Model 610035 LASERPULSE Synchronizer programmed through the INSIGHT 3G
software. The synchroniser controls firing of the lasers and the image capture by the
camera. IMPERX Bobcat 2.0 B6620 CCD camera of 29 Mpx, with a bit-depth of 16
bits, is used to capture the instantaneous position of the illuminated particles in the flow.
Acquisition was carried out in sets of 602 seconds to minimise the effects of thermal noise
due to camera overheat. The measurements are restarted after a few minutes to allow the
camera to cool down. The TTL signal for triggering the PIV is recorded in order to obtain
the time-stamp of individual velocity field measurements. The second TTL signal of 800
Hz is used to trigger the pressure scanner which acquires the pressure signal at 800 Hz.
The timestamp of the pressure signal in millisecond accuracy is obtained in the output file
from the pressure scanner. A total of 5000 image pairs were captured in order to obtain
converged statistics for double-decomposed (mean and fluctuating) fields, as well as triple-
decomposed (mean, coherent and incoherent signal) fields. The time interval between the
two laser pulses were set so that the maximum particle displacements of 10 pixels were
obtained. This ensures that the low velocity regions are represented with a sufficiently
high pixel displacement in order to be captured by the cross-correlation algorithm. The
consequence is that the overall dynamic range of the technique is increased, which depends
on the maximum and minimum resolvable displacements.

Image pre-processing

Prior to the cross-correlation process to extract displacement information, the images
are pre-processed to improve the signal-to-noise ratio. It is carried out in two stages.
In the first stage, the image is corrected for perspective mapping. The perspective map-
ping is used to refer to the situation when particles that are separated by a distance in the
real life appears to be nearer or farther away from each other depending on the distance
from the camera and its orientation with respect to the imaging plane. The correction
procedure projects the captured image to a plane that is normal to the optical axis of
the camera. It is achieved by capturing the image of a chequerboard with known square

44



size such that the pixels in the captured image can be mapped onto an image where the
chequerboard should have been normally orientated with the optical axis of the camera.
For the mapping, the four corner points of the captured chequerboard image are selected
and the corresponding four corner’s in the normally oriented image is specified with the
knowledge of the dimensions of the chequerboard square. Further, the transformation
matrix of the form, x′y′

1

 =

a b c
d e f
g h i

 xy
1

 , (2.13)

where the (x′, y′) and (x, y) denotes the points in the normally oriented image plane
and the captured image respectively. Usually, i in the transformation matrix is assumed
to be 1. The linear system of equations so formed is solved in order to estimate the
transformation matrix, which is then applied to transform the captured image. The
procedure is explained in a simple manner in [163]. The projective transform is a linear
transformation and cannot correct non-linear distortions (for example: radial distortion)
due to the imperfections in imaging optics.
The radial distortion is corrected by using the model,(

xd
yd

)
= L(r)

(
x̃
ỹ

)
, (2.14)

where L(r) is generally the distortion function of the form,

L(r) = 1 + κ1r
2 + κ2r

4 + h.o.t, (2.15)

and (xd, yd), (x̃, ỹ) denotes the distorted and non-distorted image coordinates, respec-
tively (see [69] for example). The lens distortion function (2.15) involves higher order
terms (h.o.t), but the choice was limited to second order for convenience. The coefficients
κ in equation (2.15) are found by forming a system of equations by selecting a set of points
(xd, yd) from the image and with the knowledge of its corresponding points in the non-
distorted image (x̃, ỹ). The resulting over determined system of equations are generally
solved by employing a least squares method. Once the coefficients are found, an inverse
geometric transformation can be applied to the image. The corrected image is shown in
figure 2.7a where a horizontal straight line is also shown in order to visualise the effects
of correction.
The second stage of image processing consists of high-pass filtering of the image by sub-
tracting the same image convolved with a Gaussian smoothing kernel resulting in the
image shown in figure 2.7b, using the MATLAB routine ‘imgaussfilt’. The corrected im-
ages were then processed using the DPIV Software [104, 123] using multiple interrogation
passes, the first and second passes using 64 × 64 px2 and 32 × 32 px2 respectively with
50% overlap.
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(a) The image resulting after the application of image
corrections shown in magenta. A straight line at 00

to the horizontal axis is shown in white color to visu-
alize the effects of correction. Only a portion of the
image, where the effects of correction are maximum,
is shown.

(b) A portion of the image close to the base-
wall of the body, where laser reflections are high,
prior and post high-pass filtering operation.

Figure 2.7
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Chapter 3

Mean pressure field estimation based
on planar PIV

3.1 Introduction - Mean pressure

Pressure plays an important role in the dynamics of fluid flows. It is linked to various
physical flow phenomena such as the formation of coherent structures [50, 110], vorticity
fluctuations [27, 136], wake topology of separated flows [146, 147, 164, 52], inception of
cavitation [140, 96], aero-acoustics [85] to only name a few. Pressure is also a key com-
ponent to obtain aerodynamic force estimated from near-field wake data for immersed
bodies [186, 191, 43, 138]. Alternative approaches have been proposed to circumvent the
requirement for pressure. An earlier example can be found in the works of Antonia &
Rajagopalan [4] where the transverse momentum equation is used to approximate the
pressure in the wake and estimate drag. But it fails in the near wake because of strongly
non-parallel-shear component of the Reynolds stress tensor. A model to predict the mean-
drag coefficient of bluff bodies in the absence of vortex shedding can be found in the works
by Roshko [147] where a parameter characterizing the base suction is used to predict the
drag coefficient. While these approximations are valid in specific cases, pressure still plays
an important role in the physical examination of flow in wake regions. The role of mean
pressure is especially evident from the mean-momentum and energy equations where it is
responsible for the transport of momentum as well as energy respectively [131]. A review
of some applications of pressure can be found in the work by van Oudheusden 2013[190].
The estimation of pressure has been conventionally carried out by sensors either mounted
on surfaces or by Pitot-type probes. While the reliability and accuracy is high, depending
on the sensors used, their presence may disturb the flow field. In addition, the achievable
spatial resolution is often limited. This becomes undesirable while studying complex flow
phenomena such as bluff body wakes, inception of cavitation among others. However, the
advent of PIV offers a solution to estimate pressure from the two-dimensional and three-
dimensional experimental PIV velocity fields using flow-constitutive equations. PIV is
becoming increasingly popular with the accessibility of robust algorithms [190]. Estimat-
ing pressure solely based from velocity data in incompressible flows remains challenging
since pressure requires both speed and acceleration locally with a high level of precision,
which is restricted by the technology available to perform such measurements. Therefore,
accurate pressure estimation, even calculated from mean-field quantities can be difficult
to achieve. In particular, turbulent flows such as shear-dominated flows may prove to
necessitate large amounts of snapshots to obtain well-resolved velocity fields. While this
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can be commonly achieved from planar PIV, it can become prohibitively expensive for
tomographic three-dimensional applications. In this scope, several methods have been
developed to improve the accuracy of pressure reconstruction from experimental data.

Pressure estimation can be sub-divided by means of equations used, algorithms and
the framework in which the pressure is computed (Eulerian and Lagrangian). While more
details can be found in the review paper by Oudheusden [190], it is summarized to provide
an overall insight to the reader. On the basis of equations, the pressure field is generally
estimated in two ways [190]. The first method estimates the pressure gradient using the
velocity derivatives in the Navier-Stokes (NS) equations subsequently integrating it in
space. It requires the knowledge of, at least, one value of pressure in order to eliminate
the constant arising from the integration (e.g. [15]). This method is known to suffer
from the error propagation based on the integration path and several works have been
conducted to minimize the path dependency and consequently the errors therein [95, 39,
88, 183, 189, 138]. Very recent works show that this method is akin to a least-squares
approximation and shows very promising potential to time-resolved measurements [79, 97].
The second method solves a second-order partial differential equation, also known as the
Poisson problem for pressure, which is obtained by applying the divergence operator to the
momentum equations [66, 131, 190]. The boundary conditions utilised to solve the Poisson
problem are either Dirichlet (solution specified at the boundary), Neumann (solution
gradient specified at the boundary), or of mixed type (Dirichlet & Neumann). The Poisson
formulation has been used by several authors to estimate mean, as well as instantaneous
pressure from turbulent flows [66, 62, 44, 188]. It was used to estimate pressure for load
estimation on immersed bodies [103, 26] as well as in the domain of aeroacoustics [85].
Details of both the methods can be found in the review paper by Oudheusden [190]. For
both formulations, different approaches or algorithms were proposed by several authors
(see for instance [95, 183, 79]). These methods were extended to compressible regime
of flows (e.g. Oudheusden [189]), Ragni et al. [138]. Recent developments include fast
algorithms based on FFT integration of pressure gradient proposed by Huhn et al. [73]
and the spectral decomposition based pressure-gradient integration algorithm by Wang
et al. [194].

Although various algorithms and approaches exist to reduce the errors in the estimated
pressure field, the quality of the estimation essentially depends on the intrinsic quality of
the velocity field used to compute pressure. Since velocity fields reconstructed using PIV
algorithms inherently introduce noise (see [137, 176, 201]), the error propagates inherently
in the pressure field [117, 118, 190, 44, 102]. A brief review on some of the factors affecting
the accuracy of estimated pressure (resolution, flow specification, out of plane components
etc.) can be found in the work by Oudheusden [190]. Guidelines on the type of pressure
solvers to be used based on error sensitivity analysis were provided by McClure et al.
[102]. A comparative assessment of the methods and algorithms for PIV-based pressure
estimation was carried out by Charonko et al. [35] where the estimation accuracy depends,
for instance, on the type of flow, resolution, and form of equation used. They concluded
that there exists no universal method for pressure estimation, but it was flow dependent.
Their work suggests that the use of conservative form of Poisson equation is much less
sensitive to noise, specially for external flows such as those of immersed bodies.This is
especially relevant to the present study concerning bluff-body wakes.

The low-pass filtering effect of Poisson equation and the finite difference scheme was
noted by Oudheusden [190] implying that the low-frequency errors compared to their
high-frequency counterparts from PIV data has to be minimized. In a recent work by
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Pan et al. [117], a guideline on the optimal spatial resolution for the Poisson solver
is proposed to limit the error propagated. A notable work commenting on the error
propagation dynamics of PIV Poisson-based pressure estimation has been carried out by
the same author [118]. Different factors such as the geometry of the domain and the type
of boundary conditions was found to have a considerable effect on the estimated pressure
field. The essence of this work emphasizes the importance of boundary condition in
obtaining an accurate pressure estimate. They noted that the Neumann type of boundary
conditions is prone to errors and is to be avoided wherever possible. However, it becomes
mandatory in PIV domain focusing on rotational flow regions.

In this light, our current work aims at minimizing the error propagated to the esti-
mated pressure field using sparse pressure sensors available from the experiment. To the
best of our knowledge, only a single study considered the use of sparse measurements
to improve the pressure estimated from PIV. In fact Wang et al. [194] essentially used
sensor measurements to set the unknown constant, arising from the definition of the pres-
sure problem itself. In this work, we consider a different approach and use reliable and
accurate measurements from such sensors to correct for the whole pressure field. The
method is based on the concept of optimal control where the Poisson model for the pres-
sure is used to compute an optimal correction to the pressure field estimated from the
PIV. Although optimal control was applied to numerous optimization problems (see for
instance [93, 182, 67]),a formulation to correct the pressure estimated from PIV-based
velocity fields using sparse reliable pressure measurements is first reported in this study.
The method proposed hereafter is validated using a synthetic mean flow field and applied
to experimental data. It does not involve any dependence on numerical simulation data
and is computationally inexpensive. The sensitivity of the method tested against various
types of noise shows that it is robust and produces an unbiased error minimizer. The
only requirement for its application is the presence of at least one pressure measurement
on the boundary, near the computational domain, which can normally be obtained using
surface-mounted or Pitot-type probes.

3.1.1 Theoretical background - Mean pressure estimation

The Poisson approach of pressure estimation is used in this study to estimate the
mean pressure from a 2D mean flow [131]. The mean pressure gradient from the Reynolds
Averaged Navier-Stokes (RANS) equation given by

∂

∂xj
(Pδij) = −ρ

(
∂

∂xj
(UiUj − 2νSij + uiuj)

)
, (3.1)

where P , U , ν, Sij and uiuj denotes the mean pressure, mean flow velocity, fluid kinematic
viscosity, mean strain rate and the Reynolds stress components respectively, undergoes a
transformation with the divergence operator to yield a second-order Poisson equation for
pressure as

∂

∂xi

(
∂

∂xj
(Pδij)

)
= −ρ ∂

∂xi

(
∂

∂xj
(UiUj − 2νSij + uiuj)

)
. (3.2)

It is to be noted that equations (3.1) and (3.2) are in their conservative form following
the advice of Charonko et al. [35] with respect to its robustness to error propagation.
Therefore the equations for mean pressure estimation can be formulated from (3.2) and
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(3.1) respectively in a convenient form as

∆P = f (U, uiuj) in Ω (3.3)

∇P · n = g (U, uiuj) on Γ (3.4)

where ∆ and ∇ denotes the Laplacian and gradient operators respectively, Γ and Ω
represent the computational boundary and domain respectively, and n is the unit normal
to the boundary. The right hand side (RHS) of the Poisson equation (3.3) shall be
referred as ‘source term’ hereafter. The second order Poisson equation requires boundary
conditions in order to solve for a unique solution. While the pressure specified on the
boundary using Bernoulli’s equation (Dirichlet boundary) is limited to irrotational flow
regions which is seldom not the case with experiments, the pressure gradient (Neumann
boundary) is always directly estimable from the velocity fields. Therefore, the current
study focuses on the Poisson approach with Neumann boundary conditions because of its
applicability for a wider range of experiments.

As a consequence of solving the second-order Poisson equation with Neumann-type
boundary conditions on all boundaries, the computed pressure is defined up to a constant
[131]. Furthermore, with such boundary conditions, the compatibility condition given as∫

Ω

f (U, uiuj) dΩ =

∫
Γ

g (U, uiuj) dΓ (3.5)

must be satisfied for the solution to be unique up to a constant, such that the computed
pressure given by Pc(x, y) = Ptrue(x, y) +K holds true and where K is a constant. Note
that the compatibility condition naturally follows from Gauss’s divergence theorem. This
is the ideal case but restricted to noise-free data. However in real PIV experiments, the
velocity fields obtained will always be contaminated by noise [137, 201, 176] and thus
(3.5) is hardly ever verified in such circumstances. As such, the equation for computed
pressure writes

Pc(x, y) = Ptrue(x, y) +K + ϵ(x, y), (3.6)

where ϵ(x, y) represents the error propagated from the noisy PIV velocity fields.

In the present work, pressure is computed using a spectral decomposition method in
which the solution is approximated by a linear combination of orthogonal basis functions.
This method is used for a two-dimensional flow in the current work, but can be easily
extended to three-dimensional flows. The Poisson operator is diagonalized and inverted
in the spectral space to yield the solution. The numerical scheme adopted to compute
the derivatives is of second order. This decomposition method is adopted from [130] and
a simple implementation can also be found in [180, 122]. The details of this method is
provided in the appendix.

3.1.2 Optimal control approach

Satisfying the compatibility condition (3.5) while specifying the Neumann boundary
may not be likely when the data contains noise. The constant K arising from the pressure
estimation (3.6) can be eliminated by a single known pressure measurement but the resid-
ual error remains. The minimization of these errors are addressed in the proposed method.

The optimal control approach corrects the Neumann boundary while minimizing a
quadratic cost functional. The quadratic cost functional is formulated as the difference
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between estimated and experimentally available pressure measurements. The approach is
developed to utilize the available sparse pressure measurements on the boundary to correct
the estimated pressure field. These measurements can be conveniently extracted using
surface mounted or Pitot-type probes in a typical PIV experiment. The pressure being
measured on the boundary, the cost functional to be minimized is along the boundary
and is formulated as

J (P, φ) =
1

2

∫
Γ

H (Pc − Ptrue)
2 dΓ +

γ

2

∫
Γ

φ2dΓ. (3.7)

Here, φ ∈ R is the control that is applied on the boundary to minimize the cost functional.
It can be viewed as a forcing or a correction term applied on the boundary to drive the
estimated pressure close to the measurements. γ > 0 can be viewed as a constant which
quantifies the effort to apply the control. Pc denotes the computed pressure by the solver,
Ptrue refers to the true value of pressure (e.g. measured by a probe), Γ represents the
boundary of the domain and H is a Boolean matrix with value 1 where Ptrue exists and 0
otherwise. The state constraints governing the minimization problem can be rewritten as

∆P = f (U, uiuj) in Ω, (3.8)

∇P · n = g (U, uiuj) + φ on Γ, (3.9)

which are the mean pressure Poisson equation and Neumann boundary conditions re-
spectively. The control φ appears in (3.9) with the aim to correct Neumann boundary
conditions.
The formal Lagrange multipliers method [182] is used to augment the cost function (3.7)
together with the state constraints (3.8) and (3.9) using co-state variables known as
Lagrange multipliers, thus forming a Lagrangian function written

L(P, φ, λ+, φ+) = J (P, φ)− ⟨∆P − f(U, uiuj), λ
+⟩Ω − ⟨∇P · n− g(U, uiuj)− φ, φ+⟩Γ.

(3.10)

The angle bracket ⟨·, ·⟩Ω in (3.10) represents inner products defined by

⟨f1, f2⟩Ω =

∫
Ω

f1f2 dΩ,

while ⟨·, ·⟩Γ represents inner products defined by

⟨f1, f2⟩Γ =

∫
Γ

f1f2 dΓ,

and the additional variables λ+ and φ+ are the Lagrangian multipliers. The problem
reduces to minimizing L(P, φ, λ+, φ+), such that its derivative with respect to P and the
control φ vanish, that is

DPL = 0, (3.11)

and
DφL = 0, (3.12)

where D represents the Fréchet derivative with respect to the variable. From equa-
tion(3.11), the adjoint-state equations for pressure is derived as

∆λ+ = 0 in Ω, (3.13)

∇nλ
+ = H(Pc − Ptrue) on Γ, (3.14)

λ+ = −φ+ on Γ. (3.15)
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Using (3.12), the gradient of the cost function writes

∇φJ = γφ− λ+ on Γ. (3.16)

Setting (3.16) to zero leads to the optimal solution for the control given as

φ =
λ+

γ
on Γ. (3.17)

A first guess Kest. of constant K is computed using the available Ptrue as

Kest. =
1

N

N∑
i=1

Pc,i − Ptrue,i, (3.18)

where N represents the total number of available pressure measurements. It is then sub-
tracted from the computed pressure Pc prior to the application of control and is updated
in an iterative manner. The Neumann boundary is corrected until the Pc−Kest. converges
to Ptrue, or when |Pc − Kest. − Ptrue| < ε. The values of ε where chosen to be 10−4 for
synthetic data while 10−2 was more appropriate for experiments and corresponds to the
uncertainty of the sensors.

3.1.3 Divergence correction for two-dimensional velocity field

Turbulent flows are known to be rotational and three dimensional. However, the flow
over a two dimensional body at high Reynolds number can be made statistically two
dimensional using Reynolds averaging provided there is no external disturbances. In a
typical two-dimensional two-component (2D-2C) PIV experiment, the acquired velocity
field is generally contaminated with noise making it non-divergence free. The impact
of the out of plane components in a 2D velocity field on pressure estimation has been
studied by many authors and a few can be found in the references [45, 35, 102, 103]. Also,
the inherent measurement errors can lead to erroneous estimation of velocity gradients
[56]. The velocity gradient directly influences the error level in the source and boundary
terms [117] and hence affect the pressure estimate. As such, it is of interest to compute a
divergence-free velocity field to reduce the accumulated error while estimating the total
mean pressure. Statistically 2D flow implies a null mean spanwise velocity component
and hence the resulting pressure estimation can be referred as ‘total’ and not ‘planar’
pressure.

In this section, a divergence-free correction based on the Helmholtz decomposition is
proposed. Any smooth vector field may be decomposed as the sum of gradients of a scalar
potential and curl of a vector potential, that is

U = ∇ϕ+∇× ψ. (3.19)

Here the vector potential ψ is divergence free by construction. For an incompressible
irrotational flow, the curl of the vector potential vanishes whereas for an incompressible
rotational flow, the gradient of the scalar potential is zero. Thus, for a two-dimensional
incompressible rotational flow, with velocity vector field U = (U, V, 0), the scalar poten-
tial part vanishes and the vector potential becomes ψ = (0, 0, ψ). Hence the velocity
components are given by

(U, V, 0) =

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)
, (3.20)
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where the vector potential ψ becomes the streamfunction. Using vector identities equation
(3.19) can be rewritten as

∇×U = −∆ψ. (3.21)

The new velocity vector is found, solving the Poisson equation for stream function ψ
(3.21), with Neumann boundary conditions (3.20).

To summarize, the divergence correction for the velocity field is accomplished in three
steps:

1. Acquire the mean velocity fields for an incompressible 2D flow by PIV experiment,

2. Solve the Poisson equation for the streamfunction (3.21) using Neumann boundary
condition (3.20),

3. The new mean 2D velocity field vector is found using (3.20), such that (Unew, Vnew, 0) =(
∂ψ
∂y
,−∂ψ

∂x
, 0
)

Whence the reconstructed mean velocity field is divergence free. i.e., ∇ · Unew =
∇ · ∇ × ψ = 0. Note that this correction only applies for flow over a two-dimensional
body. A pseudocode of the pressure correction strategy is presented in Algorithm 1.
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Algorithm 1: Pressure reconstruction

Input: PIV Velocity fields Upiv

Output: Accurate pressure field P

1. Retrieve divergence free mean velocity field U0;

Solve for streamfunction ψ;

∆ψ = −∇×Upiv ,

(
∂ψ

∂y
,−∂ψ

∂x

)
= Upiv (3.22)

New velocity field U0;

U0 =

(
∂ψ

∂y
,−∂ψ

∂x

)
(3.23)

2. Solve for initial pressure guess P 0;

∆P 0 = f(U0), ∇P 0 · n = g(U0). (3.24)

3. Apply Optimal control;

Initialize j = 1, set γ > 0, and ϵ=10−2 (i.e. where ϵ is the relative sensors’
uncertainty);

Compute the cost function J j;

while J j > ϵ do
Solve for the adjoint state λ+;

∆λ+j = 0, ∇λ+j · n = H
(
P j−1 − Ptrue

)
. (3.25)

Set control φj = λ+j /γ;

Update pressure;

∆P j = f, ∇P j · n = g + φj. (3.26)

Update the constant and pressure;

Kest,j =
1

N

N∑
i=1

P j − Ptrue,i, P j = P j −Kest,j, (3.27)

j = j + 1;

Update J j;

end
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3.1.4 Test case description

Synthetic data generation

Synthetic flow fields are used to validate the method proposed in the section 3.1.2.
The database is generated using the ANSYS Fluent software package, for a prototype 2D
flow over a D-shaped bluff body. Figure 3.1 shows the bluff body used for the simulation.
The body is constructed with a circular leading edge and a rectangular base such that
the body height d measures 40mm with a lengthwise aspect ratio of 4. The x and y
axis represent the streamwise and transverse directions respectively. A structured mesh
is generated using the ANSYS meshing tool with a maximum and average skewness of
0.59 and 1.25 · 10−2 respectively. The minimum orthogonal quality of the mesh is 0.95
with an average value of 0.99. The domain extended 7d upstream from the leading edge,
transverse extent of 7d from the top and bottom surface of the body and 20d from the
trailing edge or base of the body.

The planar, two-dimensional flow domain was simulated using a transient pressure
based solver with an absolute velocity formulation and using the k − ω SST turbulence
model [55]. The fluid was set to ‘air’ with a dynamic viscosity and density of µ =
1.789 · 10−5 kg/ms and ρ = 1.225 kg/m3 respectively. The Reynolds number based on the
body height defined as

Red =
ρU∞d

µ
, (3.28)

where U∞ is the inlet free-stream velocity, is set to 5.5 · 104 at the inlet. The outlet is
specified to be ‘pressure outlet’ with gauge pressure set to 0. Turbulence at the inlet and
outlet is specified using turbulence intensity (5%) and viscosity ratio (10). Symmetric
flow condition was imposed at the transverse boundaries of the domain and ‘no slip’ con-
ditions imposed at the bluff body wall. A SIMPLE scheme of pressure-velocity coupling
was used with a second-order spatial discretization and second-order implicit transient
formulation. The gradients are evaluated using the ‘least-squares cell based’ method (see
[55] for details). Default values set by Fluent were used for the under-relaxation factors in
solution controls. The convergence criteria given by the scaled residuals were set to 10−6.
The time step chosen for the simulation is 0.001 seconds which when normalized using the
free-stream velocity and the body height gives t∗ = 0.5, where the superscript (∗) denotes
a normalized quantity and the same convention is adopted for further discussions. The
flow was simulated for 1000 time steps with a maximum of 300 iterations per time step.

The origin of the coordinate system is defined at the mid height of the bluff-body
base [See figure 3.1] and the coordinates are normalised with the body height d. The
synthetic instantaneous flow fields extracted every four time steps are interpolated onto
a uniform rectangular grid with extents x∗ ∈ [0, 6], y∗ ∈ [−1.5, 1.5] and uniform spacing
of dx∗ = dy∗ = 0.025 in the streamwise and transverse directions. The flow is then
time-averaged in a RANS sense to obtain the mean flow fields. The goal is to assess the
performance of the proposed pressure correction schemes and is not to serve as reference
data for comparison with experiments, especially since RANS model is a low fidelity model
and suffers from inaccuracies in the prediction of complex flow fields (see for instance [74]).

Noise addition to synthetic data

The synthetic mean velocity and Reynolds stress fields generated in §3.1.4 are modified
with the addition of different types of noise since the Poisson solver and the numerical
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Figure 3.1: Sketch of the bluff body and flow domain used for simulation. The shaded
region represents the D-shaped bluff body while the continuous lines represent the bound-
ary of the computational domain.

scheme are sensitive to the noise color (see [45, 56] for instance). Therefore, two types of
noise are selected based on their spectral energy content. The first one shall be referred
to as ‘Noise I’ with a higher low-frequency spectral energy and the second one is ‘White
noise’ with a uniform spectral energy distribution. Addition of two types of noise shall
be tested separately to examine the sensitivity and robustness of the proposed method.
The error levels are estimated by the L∞ norm defined as

ϵ∞ = max (| ϵ1 |, | ϵ2 |, ..., | ϵn |) , (3.29)

where ϵ denotes the difference between the exact and estimated value, to quantify the
maximum error level. The L2 norm defined as

ϵ2 =

√∑N
k=1 | ϵ |2

| Ω |
, (3.30)

where, | Ω | represents the region of the domain over which the norm is computed, to
quantify the root mean square error level. The noise level input to the velocity and
Reynolds stresses and the corresponding error level in the pressure estimation are given
in the Table 3.1.

These noise levels were chosen independently and arbitrarily high to witness sufficient
departure from the reference pressure field. It also represents the pressure error levels
resulting from a combination of flow field uncertainties introduced by the computational
methods or algorithms used for velocity reconstruction (see for instance [35]). The re-
sulting noise-contaminated flow fields are input to the Poisson solver to compute ‘Noisy’
pressure.

3.1.5 Results based on synthetic data

Pressure solver

Mean velocity and Reynolds stress fields are input to the pressure solver to compute
pressure. Figure 3.2 shows the evolution of the pressure coefficient, defined as
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Noise level input (%) Output error (%)

Ui uiuj Cp
Noise type ϵ∞ ϵ2 ϵ∞ ϵ2 ϵ∞ ϵ2

a Noise I 16 12 7 5 39 12

b White 5 2 2 1 27 10

Table 3.1: Input noise level and output error level

Figure 3.2: Evolution of the mean Cp along the wake centerline at y∗ = 0. ‘Reference’
represents the pressure directly obtained from the turbulent solver and ‘Estimated’ rep-
resents the pressure computed using the synthetic flow fields.

Cp =
P

1/2ρU2
∞
, (3.31)

along the wake centerline. The verification of the compatibility condition (3.5) shows
that the pressure is uniquely defined up to a constant K. On subtraction of the constant
K, computed using a single value of reference pressure, from the whole pressure field the
estimated pressure profile is seen to match the reference (see figure 3.2). The maximum
error level defined by equation (3.29) is found to be less than 0.2% percent which is
attributed to the accuracy of the numerical scheme.

Thus in a scenario where pressure is estimated using Poisson pressure equation and
Neumann boundary conditions, a unique solution of pressure estimate can be retrieved,
using a single known pressure value, subject to satisfying the compatibility condition.

Pressure correction

In order to mimic experimental data, noise is added as described in 3.1.4. In the
following sections, the results of optimal control applied to the ‘Noise I’ contaminated data
shall be presented as figures whereas the results in the case of ‘white noise’ contaminated
data shall be quantified.
Comparing the noisy pressure estimate ( ) from figure 3.3 to the noise-free pressure esti-
mate ( ) in the same figure, pressure is not only offset by a constant. In this situation,
the constant K cannot be eliminated using a single known pressure measurement and
residual errors remain (see eq. (3.6)) and contaminate the whole pressure field. In this
context, the optimal control minimizes simultaneously the offset and the residual errors
through the Neumann boundary condition. The only requirement for this approach is
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Figure 3.3: Profile of Cp along the boundary at x∗ = 0. ‘Noisy’ represents the pressure
computed from the synthetic mean flow fields corrupted with noise. (See §3.1.4) .

Figure 3.4: Probe locations Ptrue in a typical PIV experiment in the bluff body wake. The
solid circles represents the pressure sensors. The dashed rectangle represents the region
over which the control is applied.

the availability of, at least, one pressure measurement Ptrue. From an experimental point
of view, Ptrue is readily available from wall-mounted pressure taps, but remains sparse
compared to the spatial resolution of the PIV.

In order to apply the optimal control, few virtual pressure measurements (Ptrue) are
used at the base of the bluff body, similar to the wind-tunnel experiment (see figure 3.4).
These measurements are sparse with the mean spacing being 0.092d compared to the
spatial resolution 0.025d of the synthetic data.
In the following discussion, the control is applied on two different pressure fields named
as ‘φ App. 1’ and ‘φ App. 2’. The details of their generation are as follows.

• φ App. 1 : ‘Noise I’ is added to Synthetic mean flow fields. It is then input to the
pressure solver.

• φ App. 2 : ‘Noise I’ added to Synthetic mean flow fields. Further, divergence
correction is applied to the resulting mean velocity field. Finally the divergence
corrected mean velocity field Ui (see §3.1.3) and the noisy Reynolds stress fields
uiuj are input to the pressure solver.

The value of the constant γ in (3.7) was chosen based on trial and errors in order to ensure
a fast convergence of the algorithm. For this particular problem, a value of 1 · 10−4 was
used.
Figure 3.5 shows that the control minimises the error drastically on the boundary.

58



(a) (b)

Figure 3.5: Comparison of reference Cp to the control (φ) applied and the noise contam-
inated Cp along the inlet boundary (a) and the wake centerline (b). The black diamonds
on the inlet boundary (a) represents the location of sensor pressure measurements (Ptrue).

Although the measurements are sparse, the correction by the control is not only limited to
the location of the measurements but also to the nearby boundary locations. A matching
fit to the reference Cp is observed for both the pressure fields ‘φ App. 1’ and ‘φ App. 2’ on
the region of the boundary in the vicinity of the measurements (see figure 3.5a). Moving
away from the boundary, the corrected pressure profile ‘φ App. 1’ does not match the
reference but is shifted by a constant.

While the control fits the boundary to the reference in the vicinity of Ptrue, the effect
is limited in the distant region. Additional wall measurements Ptrue may prove to be an
effective solution. However, the error is negligible. Moreover, in a wind-tunnel experiment,
this additional Ptrue obtained by Pitot sensors may disturb the flow and hence may be
avoided. The error levels (see table 3.2) indicate that although a good match with the
reference is observed (see figure 3.5) the maximum error (ϵ∞) remains higher in case of
‘φ App. 1’. These higher levels are caused by the high-frequency peaks, passed from the
original noisy Cp. This is confirmed by examining the corresponding rms error level in
table 3.2. The best results are seen for ‘φ App. 2’ where the pressure field is estimated using
the divergence corrected mean velocity field along with the noisy Reynolds stresses. It is
observed that the divergence correction of velocity field indirectly smooths the pressure
field. In order to have a better insight, it would be worth examining the effect of noise in
the source term for each case.

Figure 3.6 compares the source term estimated from Noisy and divergence corrected
(Div. corrected) velocity fields which leads to the cases ‘φ App. 1’ and ‘φ App. 2’ re-
spectively. The source term is normalized using the body height (d) and the free-stream
dynamic pressure (ρU2

∞/2). The error levels are quantified to be 255% (ϵ∞) and 105% (ϵ2)
for the Noisy source term whereas it drastically reduces to 105% and 14% respectively on
applying the divergence correction to the velocity fields.

According to Pan et al. the error level in the source term is directly influenced by the
velocity gradients [117] which amplifies the noise [56] and can become very large. This
explains the error levels in the source term even though the input noise level is considerably
lower (see table 3.1). Further, the spatial high-frequency content of the errors in the
source term is attenuated by the pressure Poisson solver through its low-pass filtering
effect [66, 45]. This process outputs the pressure coefficient solution Cp contaminated
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Figure 3.6: Evolution of non dimensional source term along the wake centerline y∗ = 0

Error level in Cp (%)

φ App.1 φ App.2

Noise type ϵ∞ ϵ2 ϵ∞ ϵ2
a Noise I 24.9 4.8 9.8 2.8

b White 17 4.4 7.7 4.2

Table 3.2: Cp error level obtained after pressure correction.

by noise, shown in figures 3.3 and 3.5 respectively with a considerable lower error level
compared to the source term. Applying the control further reduces the error level by
limiting the error propagated from the Neumann boundary giving the pressure field ‘φ
App. 1’ shown in figure 3.5.

In case of ‘φ App. 2’, the noise contaminated velocity field undergoes filtering by
the numerical scheme and the Poisson solver [56, 45] involved in enforcing divergence
free condition (see §3.1.3). The process fits a second-order smooth surface on to the
noisy velocity fields. This ensures minimum noise amplification and better derivative
estimations thus leading to a smoother source term as shown in figure 3.6. The residual
peaks observed are further filtered by the pressure Poisson solver to output a smooth
pressure field. In the final step, the optimal control corrects the boundary and minimises
the global error in the pressure field.

The results indicate that the optimal control acts not only on the points where Ptrue
is available but also on its nearby locations. This effect can be simply explained by the
harmonic nature of the formulated control. (i.e. satisfying Laplace equation ∆φ = 0).
Intuitively, this means that the average variation of the function at a point with respect to
its neighborhood is zero. Also, the properties of harmonic functions shows that these are
smooth and infinitely differentiable functions. As such, the control peaks at the location
of Ptrue, due to the boundary conditions involved in solving for it, and also spreads to
the neighborhood. This can also mean that for a high magnitude of pressure gradient
along the length of the boundary, the distribution of true pressure measurements Ptrue
determines the extent of optimal control effect.

From the preceding results and discussions it is seen that the divergence correction
indirectly acts as a source term corrector and the optimal control approach minimises
boundary error propagation. The results also shows that the control is unbiased to the
type of noise. Although the low-pass filter properties of the Poisson solver [45] do not filter
low-frequency errors, the control acts in a different way and is able to compensate for the
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remainder of the error. Although Neumann boundary conditions are not recommended
(see [117]), it is mandatory in case of experiments focusing on rotational regions of the
flow. The optimal control approach is attractive in such cases subject to the availability
of a few reliable pressure measurements. An accurate near field pressure estimate would
mean that the approximations for pressure (e.g: [4, 26]) can be avoided to estimate drag
of immersed bodies.

The optimal control approach can be naturally extended to instantaneous flow fields
acquired using low-speed planar PIV. The source term to determine the instantaneous
pressure field is independent of time derivatives and the time dependent information is
required only to specify boundary conditions (see for instance [190]). In this framework,
the multi-directional integration approach introduced by Liu & Katz [95, 97] to solve
for the pressure problem may represent an interesting alternative to obtain an accurate
instantaneous pressure field. The data assimilation methods such as those proposed by
He et al. [68] can also prove valuable in this regard. But, these methods involve large
computational efforts. The present approach can be beneficial when combined with the
Taylor’s hypothesis approach proposed by de Kat et al. (2012)[44]. As such, the optimal
control may be used to reinforce these weaknesses (see [188]) and improve the detrimental
effect of noise associated with time-dependent PIV measurements. However, the 2D
divergence correction to correct the source term may not be applicable in such cases as the
flow may be inherently three dimensional. The situation is made more difficult because
of the unknown third velocity component. In such cases, to avoid noise amplification
while estimating source terms, one may filter the velocity fields using typical low-pass
filters or use hybrid derivative estimation schemes (see [51]) which offers a better trade-
off between error and precision. Further, estimating instantaneous pressure field [95], the
local acceleration which is the only remaining unknown in the 2D NS equations, may be
estimated. Although the method seems attractive for instantaneous fields, the number
and location of sensors to obtain Ptrue in order to optimally correct the boundary, is not
known and remains to be investigated.

3.1.6 Application to wind-tunnel experimental data

The following section demonstrates the application of mean-pressure correction meth-
ods discussed in §3.1.2 and §3.1.3 on experimental data. The method is applied on PIV
measurements of a two-dimensional mean flow over a D-shaped bluff body in operating
conditions similar to that of the numerical simulation (see §3.1.4). Sparse pressure mea-
surements available at the bluff body base (see figure 3.4) are used to apply the pressure
correction and the extent and quality of the correction is analysed as a function of the
domain size.

Bluff body flow - Experimental setup and procedure

The low-speed PIV experimental setup uses a TSI PIV systems depicted in figure
3.7. The D shaped bluff body described in §2.3.2 is used for the experiments. The bluff
body was installed at approximately 14d from the inlet of the test section, where d is the
height of the body. The background turbulence level in the test section was measured
by a hot-wire anemometer and found to be less than 0.5%. The flow seeded with olive
oil droplets was illuminated by a double-pulsed Nd:YAG laser with a pulse delay short
enough to limit the in-plane movement to a quarter of the interrogation window size. Up
to 2500 flow image pairs were acquired using the INSIGHT 4G-2DTR Data Acquisition
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(a) Schematic of the experimental setup (b) Bluff body model

Figure 3.7: Schematic of the experimental setup (a) and the D shaped bluff body model
(b)

software package at a rate of 7.25 Hz, located sufficiently far apart in time to recover
time-uncorrelated data sets to obtain turbulent quantities. Two CCD cameras of 4 Mpx
each were synchronized with the laser using a TSI LaserPulse Synchronizer Model 610036.
The cameras were aligned with an overlap of approximately 25% of the length of a single
image, ensuring the continuity of the flow captured. A laser engraved checkerboard was
used to calibrate both cameras, to correct the acquired images for perspective [167]. The
common region of both the perspective corrected checkerboard images were found using
a simple cross correlation. The overlapping region from both the images are then blended
using a weighing function and then stitched together. The setting used to stitch the
checkerboard images were then carried over to stitch each of the 2500 PIV image pairs.
The corrected and stitched images are then processed using DPIVSoft software [104, 123],
using multiple passes of interrogation with the final interrogation window size being 32 ×
32 px2 with a 75% overlap, resulting in a vector resolution of 0.014d. From the boundary
layer theory for flat plates [152], one may note that the length of the body is insufficient
for the laminar boundary layer transition. Hence, Blasius approximations can be used to
compute the displacement thickness and to express the vector field resolution in terms
of this smaller length scale. The estimated displacement thickness prior to separation
could be indicative of the shear layer thickness at separation and hence would give better
insight into the vector field resolution. As such, the vector field resolution reported
in terms of displacement thickness is ≈ 0.97δ1, where δ1 represents the displacement
thickness. Finally, the Reynolds number of the flow was set to Red ≈ 5.5 · 104. The mean
velocity fields and the Reynolds stress fields obtained from the PIV experiments are input
to the solver to compute a first approximation of the pressure. The experiment setup
described here is different than that used for the physical analysis. The reason is that the
current set of experiment is higher in uncertainties than that described in the ‘Experiment
Setup’, with the data later found to be corrupted due to insufficient dt between the laser
pulses, resulting in noisy mean fields and consequently to a noisy pressure field. The
noisy pressure estimated from these data sets makes it suitable for the application of the
adjoint method, in order to show that a clean estimate of pressure can be obtained from
a noisy data using the proposed method.
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Figure 3.8: Control volume (CV) for momentum balance. L and H represents the stream-
wise and the transverse extent of the closed Control volume A′BCC ′A′.

3.1.7 Computation of Drag and comparison between two inde-
pendent estimates

Methodology

The mean pressure is estimated from the pressure Poisson equation which is derived
from the mean momentum equations (RANS). Therefore, momentum is always conserved
on any arbitrary control volume inside the domain. In an experiment, verification of
momentum conservation cannot be considered as a tool to examine the accuracy of the
pressure estimate. Alternatively, the drag coefficient from two independent sources are
compared in order to obtain an estimate of the uncertainty in the pressure measurements.
At this point, it is worth noting that uncertainties in drag estimation can be due to the
uncertainties in the pressure field as well as the non divergence-free velocity field [103].

The drag of a bluff body in a high-Reynolds number flow is dominated by pressure
forces (see for e.g: [38]). This is verified from the synthetic database generated in §3.1.4
where the total drag is composed of 95% of pressure drag and a negligible 5% for the
viscous drag. In an experiment, a good estimate of the drag coefficient (Cd) can be
obtained using the measurements from the surface pressure taps mounted on the body
and is defined as

CI
d =

∫
Surface

Cp (n̂ · î) dA∗, (3.32)

where n̂ is the unit normal vector to the surface with area dA and î is the unit vector in
the direction of the free-stream flow. An equivalent way to estimate the drag coefficient is
by evaluating the momentum budget on an arbitrary Control Volume (CV) enclosing the
body under consideration, for instance given in Figure 3.8 (see [4] [88] [43]). The origin
of the coordinate system is at the mid point of the body base, depicted in figure 3.1. The
PIV experiment being conducted at the wake, information upstream the PIV domain is
not available and is represented by the domain bounded by dashed lines in figure 3.8.
Applying the momentum budget, the equation for Cd reads

CII
d = 4

∫
DC

(1− U∗)V ∗dx∗ + 2

∫
BC

(1− U∗)U∗dy∗ −
∫
BC

Cpdy
∗ − 4

∫
DC

u′v′
∗
dx∗ − 2

∫
BC

u′2
∗
dy∗,

(3.33)
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Since, the upstream data is not available, we use the following approximations:

• the flow is advected with a constant velocity U∞ along the lateral sides (DC ′ &
AA′), and

• free-stream turbulence in these regions is assumed to be null.

The momentum budget hence writes

CII
d ≈ 4

∫
C′C

(1− U∗)V ∗dx∗ + 2

∫
BC

(1− U∗)U∗dy∗ −
∫
BC

Cpdy
∗ − 4

∫
C′C

u′v′
∗
dx∗ − 2

∫
BC

u′2
∗
dy∗.

(3.34)

Both the independent drag estimates given by equations (3.32) and (3.34) must coincide.
Comparisons are conducted where the former is treated as the reference and the latter is
used to obtain the error in the estimated pressure.

Results and discussions

In order to compute Cd from PIV data, pressure is required. It is estimated following
the Poisson approach with Neumann boundary conditions. Verifying the compatibility
condition, a difference of 17% was found between the normalised source term and bound-
ary term contributions, where the normalisation is with respect to the free-stream dynamic
pressure

(
1
2
ρU2

∞
)
. This indicates the presence of residual errors (see equation (3.6)) which

might arise from both the source and boundary terms.
In the following discussions, two cases shall be discussed. The first case referred as

‘Original’ hereafter considers the pressure field estimated without application of correc-
tions. In this case, the constant Kest is estimated using a pressure measurement at the
wall. In a typical PIV experiment without wall treatment for laser-light reflections, ob-
taining near-wall PIV measurements is not trivial. This is particularly true in the case of
our experimental data where a near-wall region equivalent of 18% of the body height d
is overexposed with laser reflections. To recover the pressure estimate close to the body
base, a second-order polynomial of the form

P (x) = ax2 + bx+ c,

is used to extend the estimated pressure corresponding to the location of the reference
base-pressure measurement. The polynomial coefficients are found with the conditions

∂

∂n
P (0) = 0 , P (x1) = Pc and

∂

∂n
P (x1) = k1 on Γ.

where x1 represents the location on the computational boundary Γ. The constant Kest

is computed as the difference between the Ptrue at the wall and the polynomial extended
pressure estimate (see figure 3.9).

In the second case which shall be referred to as ‘φ Applied’ hereafter, the pressure is
estimated with the application of pressure corrections discussed in §3.1.2 and §3.1.3. As a
first step, the mean velocity fields are divergence corrected. The corrected mean velocity
fields together with the Reynolds stress components are used to estimate the pressure
field. The polynomial is used to extend the pressure estimate to the wall at 9 locations
corresponding to the location of the 9 base-pressure measurements.
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Figure 3.9: Sketch of the near-wall polynomial interpolation. The continuous black line
represents the polynomial interpolation. ‘Original’ and ‘Div. corrected’ refer respectively
to the pressure field estimated without and with corrections.‘Ref. base’ represents the
reference pressure obtained from the wall-mounted sensors and the red arrows represent
the constant Kest.

Difference in the extension is clearly visible in figure 3.9 between both cases, where
the constant Kest also differs. These differences can have implications on the estimated
drag. The smooth velocity fields obtained on applying the divergence correction indirectly
corrects the source term and improves the pressure estimate as demonstrated in §3.1.5
and is thus expected to perform better.

Figure 3.10b compares the maximum deviation of estimated Cd from the reference,
represented by δCd defined as

δCd =
CII
d − CI

d

CI
d

× 100. (3.35)

The CV chosen is a simple square such that L∗ = H∗ and its size is progressively in-
creased until either one of the CV extents reaches the domain extent and is schematically
illustrated in figure 3.10a. The error in Cd is estimated using equation (3.35) for each CV
and the results are presented in figure 3.10b.

The Cd obtained from the simulations shows that the contribution of viscous drag is
only 5% to the total drag. From Schlichting (1960) [152], the critical Reynolds number
based on the streamwise distance, for a flat plate, is Rexp ≈ 3.2 · 105. The surface of
the body being equivalent to that of a flat plate, it is noted that this critical Rexp is
never achieved for the present case, where xp is the streamwise distance measured from
the leading edge of the body. This is verified by experimental measurement of boundary
layer close to the body base at −1.5 < x∗ < −1.3 where the streamwise pressure gradient
∂P
∂xp

≈ 0. The boundary layer is found to be laminar with a shape factor H ≈ 2.3. Hence,

invoking the Blasius approximation, one finds that the viscous drag stays well within 5%
of the total drag. Since the reference Cd from equation (3.32) constitutes only the pressure
drag, a 5% uncertainty region, shaded in red color, is provided in figure 3.10b to account
for the viscous drag.

Figure 3.10b shows the error in Cd estimate which is under-predicted by approximately
10% in the region close to the body. The error substantially increases with the CV size
for the ‘Original’ case, where the pressure is estimated without any corrections. The
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(a) (b)

Figure 3.10: Choice of CV for computing Cd (a) and the corresponding error estimate in
Cd (b). The dashed line in (a) represents the boundary of CV. The red shaded region in
(b) represents the additional 5% in drag coefficient attributed to viscous drag.

implementation of pressure corrections significantly improves the Cd estimate both in the
near as well as far fields. The improvement is specially relevant in the region within
L∗ ≈ 1.7 which is proportional to the region over which Ptrue is available for control
application (see figure 3.4). Also in this region, the error remains within the 5% bound
which accounts for viscous drag. The deteriorating accuracy with the increasing CV
size beyond L∗ ≈ 1.7 is connected to the limitation of control as demonstrated with the
synthetic data in §3.1.5. If further accuracy for pressure is required in the far field, one
may require additional Ptrue to be made available from sensors. It is also worth noting
that in the far field, one may also use approximations for pressure such as those given by
Antonia et al. (1990) [4], provided that the Reynolds shear stress term uv decays to zero.

In order to further investigate the regions over which Cd estimate is reasonably good
and for those where it shows large deviations, two CV with different heights H∗ = 1.4
and H∗ = 3 are selected based on the observations from figure 3.10b and correspond to
the former and latter regions respectively. The choice of CV and the corresponding Cd
error estimate are presented in figures 3.11a and 3.11b respectively. It is seen that the
pressure field without any corrections, introduces large errors in Cd estimates while the
CV size extends far from the body (H∗ = 3), also observed in figure 3.10b. As discussed
in §3.1.5, one of the reasons for the high-error level can be due to the derivative effect
[56] which subsequently affects the estimation of velocity gradients in the source term and
consequently propagates to the pressure field [117]. Also, the equation for Cd (3.34) is
derived such that the momentum on the upstream inlet side is approximated using the
momentum flux along the lateral side and the outlet such that the mass is conserved (see
equation (3.33)). This implies that mass imbalance which may be caused from three-
dimensional flow features, statistical convergence issues, experimental errors etc. can lead
to an erroneous Cd estimate (see [103] for instance). For the experimental case prior to the
application of pressure correction schemes, the residual of the mass balance is found to be
4% for a CV of size H∗ = 3. Therefore, the corrupt Cd estimate observed for ‘Original’
in figure 3.11b is a combined effect resulting from experimental errors, imbalance of mass
and corrupted pressure field.

According to Pan et al.[117], the error contribution from the source term is higher
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(a) (b)

Figure 3.11: Choice of CV size for computation of Cd (a) and Cd computed with a constant
CV inlet height H∗ and a varying outlet location L∗ (b). The red and black dashed line
in (a) represent the extent of H∗ and L∗ respectively.

with a larger domain area, where the area is normalised by the body height. The non-
dimensional area of the domain used for pressure estimation in this study corresponds to
A∗ ≈ 18 implying a higher error contribution from the source term. Further, the aspect
ratio in this study corresponds to α ≈ 0.5 deviating from the recommended value of 1 by
Pan et al.[117] and thus increasing the contribution of the Neumann boundary to the error
propagation. Therefore, the errors introduced in the ‘Original’ pressure field arise from
the combined effect of source and boundary errors, and are expected to be the principal
reasons for the erroneous estimates of Cd observed in figures 3.10b and 3.11b.

The improvement of Cd estimate on implementing pressure correction schemes is es-
pecially relevant for the large CV with H∗ = 3 in figure 3.11b, where the mean error
reduction is approximately 35%. As demonstrated in §3.1.5, the limitation of the control
is such that the Cd estimate improves only in the region closer to the region where the
control is applied. Further, the streamlines in figure 3.11a indicate almost free-stream
conditions when moving away from the body. This implies lesser velocity gradients and
consequently reduces the expected errors in the Neumann inlet boundary[117]. Thus ad-
ditional measurements Ptrue are not necessary in such far regions. Therefore, a good Cd
approximation within 10% error is observed although the CV extent is farther downstream
from the control applied region.

For a mean flow around a bluff body, the near wake which comprises of the entire
recirculation region [202] is of fundamental importance and is of particular interest to
understand the interplay between the recirculation zone and its surrounding environment
(see for e.g: [18]). Figure 3.11b shows the errors in Cd estimate with a smaller CV of size
H∗ = 1.4. In this case, it is worth noting that the lateral sides of the CV approximately
runs through the shear layer emanating from the body base. Although this region is
highly susceptible to measurement errors [137, 201], a reasonably good Cd estimate is
obtained prior to the correction schemes, especially close to the body base within L∗ =
1. However, the error is not consistent and the maximum deviation reaches close to
20%. On implementation of pressure corrections, the Cd estimated with the smaller CV
(H∗ = 1.4) shows good agreement, especially closer to the body base where the control is
applied.The deviations remain within the shaded region with slight deviations observed
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further downstream. But, the maximum error remains approximately within 6%. The
obvious reason for this slight deviation is the limitation of the control as demonstrated in
§3.1.5.

As the uncertainties in Cd can be attributed both to the velocity and pressure field, it is
difficult to quantify the error levels in pressure field through Cd comparisons. Nevertheless,
the drag estimate is observed to be significantly improved on application of pressure
corrections schemes, shown in figures 3.10b and 3.11b. The control (φ) acts not only to
limit the errors propagated from the boundary where Ptrue is available but also corrects
the nearby regions as demonstrated with synthetic data (see §3.1.5). A better estimate
in near-wake pressure is obtained and is reflected in the Cd computed in the near wake.
The source term indirectly corrected by the smooth divergence free velocity fields reduces
the global uncertainties in the pressure field and is reflected through a relatively better
estimate in Cd with the larger H∗. The limitation of the control is the reason for a
relatively higher error level with a large H∗ compared to the smaller CV as shown in
figure 3.10b. Better accuracy may be achievable using additional Ptrue, but the optimal
locations and numbers of probe has to be determined in order to design the experiment in
such a way that an accurate whole field pressure is obtained with minimal flow intrusion
and efforts. This remains a topic for further investigations.

The near wake of the bluff body being of considerable importance, improved accuracy
must be achieved compared to the far field and is attainable using the conveniently avail-
able base pressure measurements as demonstrated in the previous discussions (see figure
3.10b and 3.11b). As such, additional Ptrue may be avoided, but becomes mandatory if
good accuracy is desired over the far field. One may also use Bernoulli’s equation to ap-
proximate Ptrue on the boundary to improve far-field pressure estimate but this estimate
has to be computed along a streamline and the computational domain deformed to follow
this particular streamline.

3.1.8 Conclusion

In this section, a method is derived for accurate total pressure reconstructions com-
bining intrusive and non-intrusive sparse pressure sensors which can be included in an
experimental setup at a minor cost. A Helmholtz-based divergence correction for two-
dimensional flows is also applied. The methodology is validated using a noisy synthetic
pressure field in the wake of a D-shaped bluff body. The results show more than 70%
reduction in error level by using only the virtual pressure measurements from the body
base. The control approach shows less sensitivity to different types of noise making it a
robust error minimizer. Further, the approach is implemented on a matching PIV wind-
tunnel experiment data, comparing the drag estimates from two independent methods. In
particular, the drag coefficient is estimated with less than 5% error when using appropri-
ate control volumes. The results show that the divergence correction combined with the
optimal control approach using only sparse pressure sensors from pressure taps located at
the bluff body base, provides an accurate pressure field.

It is worth noting that the present approach could become particularly relevant for the
estimation of pressure in a time-dependent setting. While the present analysis is focused
on steady mean flows, allowing for a first evaluation of the technique with a minimum
number of assumptions, the method naturally extends to time-dependent flows, provided
that the flow acceleration can be obtained. Methods including quadruple laser expo-
sure technique [95] might strongly benefit from the present method where noise from the
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boundaries is expected to increase compared to well-converged mean flows. As such, the
optimal control method can be adapted to the omnidirectional integration method where
the control would have to be adapted to Dirichlet-type boundary conditions, providing
a minimizer for instantaneous pressure measurements. The CFD-based data assimilation
methods [93, 68] to retrieve the instantaneous pressure field presents an interesting alter-
native, but is probably more suitable for off-line applications. The present method can
be applied for real time applications since the Poisson equation can be solved within 0.5
seconds on a single core machine, for instance using optical flow techniques that allow real
time planar velocity measurements (see [58]). Finally, the present method is independent
of the way of solving the Poisson problem and therefore applies to most solvers already
proposed in the literature (see for instance [124] for an application in the case of the near
wake behind an Ahmed Body).
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Chapter 4

Mean flow characterisation and the
driving mechanism of mean drag

Introduction

The chapter is organised into two parts. The objective of the first part is to present the
main features of the bluff body wake under study. The second part of the chapter focuses
on understanding the mechanism that drives the drag in the very near wake.The flows
shall be differentiated by the Reynolds number based on the body height Reh = Uinh/ν,
varied in the range specified in the details of the Experiments. The baseline flow without
any external perturbations such as free-stream turbulence shall be presented first, serving
as a reference case.

4.1 Characterisation of the mean flow - Introduction

The flow meets the body at it’s leading edge where it separates and reattaches further
downstream developing into a boundary layer. Further, the developing boundary layer
separates at the trailing edge of the body due to it’s sharp edge. The separated flow is
principally characterized by the free shear layer that develops on either sides of the body
and the region of recirculating flow that is enclosed by these shear layers.

4.1.1 Boundary layer

It is well understood that the nature of the boundary layer at separation forms the
inlet conditions to the wake. The state of the boundary layer and it’s thickness has been
reported to significantly influences the near wake topology. For example, [159] reports a
decrease in the vortex shedding frequency and a widening of the corresponding spectrum
when the boundary layer changes it’s state from laminar to turbulent. A thick turbu-
lent boundary layer is seen to increase the organization of the shed vortices, decrease
it’s strength and lead to a reduction in the base pressure drag [48]. With the decrease
in thickness of the turbulent boundary layer, the effective diffusion length between the
boundary layers on either sides of the body at separation decreases, shrinking the wake
and increasing the base pressure [148]. Whereas [181] reports a higher drag for the thinner
laminar boundary layer due to a larger mean velocity gradient ∂U/∂y in the ensuing shear
layer.
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In order to reduce the complexity of the developing wake and to have one less param-
eter, the state of the boundary layer is maintained such that the transition to turbulence
is avoided as best as possible. For the bluff body of height h = 40 mm and a length-wise
aspect ratio of 4, the boundary layer developing over it’s surface can be compared to the
case of the flat plate. Since the background turbulence level is very low < 0.1%, the state
of the boundary layer can simply be understood by considering the critical Reynolds num-
ber, based on the streamwise distance from the leading edge, Rextr of the flat plate(see
[152]). For the experiments conducted without the addition of free-stream turbulence,
the Rex at separation, for the bluff body, remains far from the critical Reynolds number
Rextr . This holds even for the highest Reh tested without FST.

However, the addition of FST complicates the determination of the state of the bound-
ary layer and it’s transition location without any boundary layer measurements. A sat-
isfactory and reliable prediction of the transition location of the boundary layer in the
presence of free-stream turbulence is a question yet to be answered, due to it’s intrinsic
complex nature (see [57, 151] and the references therein). As briefed in [57], the complex
nature is due to the difference in the forcing by the decaying turbulence, with growing
length-scales, on the growing boundary layer. The integral length scales of the incoming
turbulent flow has been shown to advance or progress the transition location depending
on the level of the turbulence intensity present (see for example [81, 57, 151]). The em-
pirical model proposed by [57] to predict the onset of transition of boundary layer in the
presence of free-stream turbulence, with the knowledge of only three parameters, i.e the
integral length-scale and the turbulent intensity at the leading edge, though developed
at low ReLx = UinLx/ν, tells us that the maximum Rex attainable in the case of our
body surface is far from the transition Reynolds number Rextr . This being the case, the
boundary layer developing over the body-surface is expected to be laminar in the entire
range of Reh in the presence of free stream turbulence.

4.1.2 Mean velocity fields - Baseline flow

Figure 4.1 shows the fields of streamwise and transverse velocity fields of the baseline
flow at the lowest Reh. Here, the term ‘Baseline flow’ shall be used to refer to the
cases of bluff body flow without the addition of FST. The flow being almost symmetric,
only one of the symmetric planes are shown. The superscript asterisk is used to denote
normalization using the inlet velocity Uin, body height h and the density ρ wherever
applicable. The boundary layer after separation develops into a free-shear layer whose
upper limit is demarcated by a black solid line defined as U∗(x∗, y∗sl) = 0.95U∗

max(x
∗). The

colormap in figure 4.1 for the streamwise velocity U∗ shows a strong shear that exists close
to the separation which then weakens on moving downstream. The shear layer from both
the sides of the bluff body grows by entraining fluid from the external flow and merges
downstream marking the end of the recirculating flow region enclosed by it. The growth
of shear layer by entrainment can be visually seen in the velocity field in figure 4.1 where
there is a strong positive V ∗ oriented towards the geometric wake centerline of y∗ = 0. The
merging occurs in figure 4.1 where the streamlines, that separates the recirculating flow
from the external flow, converges towards the wake interior after separation. The dashed
line in figure 4.1 demarcates a portion of the recirculating flow region containing negative
streamwise velocities and is defined as the isoline of U∗ = 0, following the convention
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Figure 4.1: The streamwise mean velocity U∗ (top) and the transverse mean velocity V ∗

(bottom) at Reh ≈ 28× 104. The superscript asterisk ∗ denotes normalization by the
inlet velocity Uin and the body height h.

used by [165]. The minimum of the streamwise velocity U∗ exists within the wake bubble
along the geometric wake centerline which then decays downstream represented by the
changing colors in figure 4.1. Typically, in the far wake, the mean wake is represented by
a function,

f(ζ) =
Umax(x)− U(x, y)

Us(x)
=

Umax(x)− U(x, y)

Umax(x, y)− U(x, 0)
, (4.1)

where U(x, 0) and Us(x) represents the minimum steam-wise velocity along the geometric
centerline of a symmetric wake. The variable ζ = y/yδ in equation (4.1) is the transverse
direction normalized by the wake width yδ, where wake width is defined such that f(±1) =
0.5 (see [131]).

Figure 4.2b shows the decay of the velocity deficit along the streamwise direction. In
the region very close to the body x∗ < 1, the velocity deficit increases reaching a peak
value close to the center of the wake bubble defined by U = 0. Most of the contribution
to the shape of the evolution of velocity deficit comes from the minimum streamwise ve-
locity U∗(x∗, 0), shown in figure 4.2, at the geometric wake centerline. The magnitude of
Umax(x

∗) reaches a maximum value at separation, due to the blockage offered by the body
to the flow, which then relaxes and tends to the free-stream velocity as the flow decelerates
downstream. The minimum velocity in the wake is found to be set by the Reh in the cur-
rent study and remains at U∗

min ≈ −0.308± 0.0058 as shown in figure 4.2a. The velocity
gradient in the wake can be said to scale as ∂U∗ ∼ U∗

s . Then, the velocity deficit is scaled
by it’s maximum value which occurs along the geometric centerline of a symmetric wake
denoted by U∗

smax
and it scales as U∗

smax
∼ U∗

sl − U∗
min, where U

∗
max ∼ U∗

sl and U
∗
sl denotes

the maximum streamwise velocity that occurs at the edge of the shear layer at separation.

After reaching the peak the velocity deficit undergoes a fast decay which exists at 0.5 ≤
x∗ ≤ 2 in figure 4.2b. This region is found to evolve as U∗

s (x
∗) ∼ ceax

∗
, showing good

72



(a) Evolution of the streamwise velocity along the
wake centerline. The inset on the left and right
shows a close-up of the centerline streamwise ve-
locity close to the body within the recirculating
flow region and the variation of the it’s peak value
with Reh.

(b) The decay of mean velocity deficit in the wake
represented by square symbols and the evolution of
wake width represented by circular symbols. The
straight lines in the log plot represents fits of the
form y = A(x − x0)

n whereas the curved line is of
the form y = ceax.

Figure 4.2

agreement fit to the data with an error less than 0.3% for all cases of Reh, represented by
red solid line in figure 4.2b. The constant a is negative for a decaying wake. The decay
rate of the velocity deficit in the region scales as dU∗

s (x
∗)/dx∗ ∼ c1e

ax∗ . The coefficient
c1 is found to decrease with the Reh implying a faster decay of the velocity deficit in this
region. The entrainment hypothesis introduced by G.I. Taylor in this context relates the
mean flow towards the wake to the characteristic velocity scale of the wake denoted by
Us here. This is to say that the increase in U∗

smax
with Reh is an indication of increased

transport of mass/mean-momentum towards the wake centerline.

When the velocity deficit has decayed sufficiently such that the ratio U∗
s /U

∗
max tends

to zero, the wake is said to reach a self-similar state, depending on the wake-generator,
and can be described simply by the velocity scale U∗

s (x) and the length-scale y∗δ (see Pope
[131] for details).Further, achieving self-similarity has the consequence that the product
Us(x)yδ(x) be independent of x in-order for the momentum deficit to be conserved, dis-
playing a growth rate of xn with n = 0.5 and n = −0.5 for yδ(x) and Us(x) respectively
[131]. Within the streamwise extent of our domain, this product was not found to be
constant and decreased with the streamwise distance. Nevertheless, the curve-fit of the
form y = A(x − x0)

n was performed on the evolution of wake-width and the velocity
decay, sufficiently far from the body, with the starting point selected by specifying a
threshold for d

dx
(Us(x)yδ(x)). The exponents so obtained are n = −0.543 ± 0.0175 and

n = 0.321± 0.0455, for the decay of the velocity deficit and the evolution of wake-width
respectively, which are far from the theoretical predictions. It is to be noted that for a
robust fit of the form y = A(x− x0)

n, the virtual origin x0 set to zero.
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Mean shear layer

The laminar boundary layer developing over the surface of the body separates at the
base of the body which then evolves as a free shear layer. The upper boundary of the
shear layer is represented by a black solid line in figure 4.1. It is characterized by a region
of intense transverse gradient of mean streamwise velocity (∂U/∂y) and develops between
the external flow and a recirculating flow region. The figure 4.3a shows the profile of
mean streamwise velocity close to the separation point. The dividing streamline ψ = 0
passes approximately through the center of the region of intense mean shear (∂U/∂y),
and this region is seen to overlap with a portion of the recirculating flow region. The
recirculating flow region consists of the backflow region, where the streamwise velocity is
negative, and the portion immediately above bounded by the dividing streamline ψ = 0.
From the figure 4.3a, the lower velocity side of the shear layer, below ψ = 0 line, has
a direct influence on the recirculating flow whereas the higher velocity side of the mean
shear layer is primarily concerned about the interaction with the external flow.

The characteristics of the mean free-shear layer is significantly different from it’s clas-
sical counterpart ‘the mixing layer’, where the development of the thickness of the latter
is found to be linear with the downstream distance (see for eg.: [21]) whereas it is non-
linear for the former. Numerous differences were noted in other studies as well (see for
eg.: [33]). Since the intention is not to compare but to say that the separated shear layer
in the wake of the bluff body is significantly different from it’s classical counterpart, due
to the complex nature of interactions with the recirculating flow region and the separated
shear layer that develops from the diametrically opposite side of the bluff body on the
trailing edge, further discussions on mixing layer is avoided.

Following [41], the measure of the shear layer thickness is typically computed using
the vorticity thickness defined as,

δw(x) = Us(x)/max (|∂U/∂y|), (4.2)

Note that equation (4.2) takes into consideration the back-flow in the near wake (see
figure 4.1 and 4.3a). The evolution of vorticity thickness is shown in figure 4.3b, until
the streamwise location of recirculation region where the mean shear layers from the top
and bottom trailing edges merge together. From figure 4.3b, at-least three regions can
be readily identified. The first region close to the body between 0 ≤ x∗ ≤ 0.1, where
the vorticity thickness remains roughly a constant, followed by the second region where
the thickness evolves exponentially i.e. δ∗w ∼ exp(cx+ d), and connects the third re-
gion where the thickness evolves in a logarithmic fashion i.e., δ∗w ∼ log(ax∗b). Most of
the evolution in this region is dominated by the exponential growth i.e. a region cover-
ing 0.05 ≤ x∗ ≤ 0.45, after which the log-growth, covering a relatively shorter domain
0.45 ≤ x∗ ≤ 0.65, takes over before the shear layers merge. The growth of the shear layer
in the log region i.e., dδ∗w/d (log(x

∗)) = b is found to decrease with Reh A potential length-
scale which marks the transition from the first to the third region, denoted by l∗p in figure
4.3b, though not monotonically, is found to increase with the Reh (see inset of figure 4.3b).
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(a) The profile of streamwise velocity U close to
the separation at x∗ ≈ 0.16, normalized by it’s
maximum value.

(b) Evolution of vorticity thickness along the
streamwise direction.

Figure 4.3

Figure 4.4: Evolution of local mass flux along the recirculating flow region interface (rri)
defined by the isoline U = 0. The rri is taken at the upper half of the symmetric wake.

Recirculating flow region

The mean shear layer formed after the separation of flow at the trailing edge of the
body encloses a region of low momentum where the flow recirculates. It is characterized
by a nearly constant pressure in the transverse direction and it is within this region that
the minimum wake-pressure can be found [202]. The extent of the recirculating flow re-
gion is denoted by l∗r and has been the subject of several studies in the past because of
it’s observed variation with the drag (See for example [146, 120, 99, 147]). For example,
Roshko (1993) [147] proposed a model linking the increase in bubble length to a drag de-
crease, based on the streamwise momentum budget along the wake bubble enclosed by the
dividing or zero streamline. A recent study on the sensitivity of the drag to modifications
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in the near wake by means of control cylinder by Parezanovic (2012) [120] reports the
inverse relationship between drag and the recirculation region length. Similar conclusion
is also reported by Mariotti (2015) [99] that a direct correlation between the length of the
recirculating flow region and the base pressure drag. Further, lr has been established as
an important length-scale which scales the evolution of shear layer [165] or the evolution
of quantities in the wake [109, 195]. For example, Wang et al. (2019) [195] was able to
successfully scale the evolution of velocity deficit and the wake width of bluff bodies with
varying geometries.

Generally, the recirculating flow region is defined in two ways. The first one considers
the entire recirculating flow region and is defined by the area enclosed by the dividing
streamline or by stream function ψ = 0 [13, 109]. The second manner is simpler to im-
plement than the first and is defined as the area enclosed by the isoline of zero mean
streamwise velocity U = 0 [109, 165]. The second definition does not completely enclose
the recirculating flow but captures only the back-flow region where the mean streamwise
velocity is negative.

Closer to the body, from figure 4.3a, the lower velocity side of the shear layer overlaps
with a portion of the recirculating flow region. The former is known to influence the
properties of the latter (see [165] and references therein). Figure 4.4 shows the evolution
of local mass flux U ·n, where the local normal n is obtained from the co-ordinates of the
recirculating flow region interface (rri) defined by the isoline U = 0. The extent of the
recirculation region is denoted by a length-scale l∗r . The negative mass flux indicates mass
entering the recirculation region whereas the positive indicates mass exit. The region
of mass exit from the wake bubble is characterized by a negative vertical velocity V ∗ in
figure 4.1 oriented away from the geometric wake centerline. At equilibrium, the mass
that enters the recirculation region is the same as the mass that exits the recirculating
flow region and hence conserving it [34]. This is not completely evident from figure 4.4
due to the missing data very near to the wall. It is verified that the mass that enters the
rri is then completely balanced by the mass that exits through a portion of the rri close
to the body and through the inlet side of the control volume bounded by rri. The value
of l∗r observed in the range 0.83 ≤ l∗r ≤ 0.865 agrees well with the l∗r = 0.82±0.04 reported
in the experiments of [120]. It increases with Reh except for the lowest Reh, shown in the
inset of figure 4.4.This trend is similar to that displayed by l∗p in the insets of figure 4.3b,
indicating a possible link between them, which will be described later in the chapter 6.

4.1.3 Reynolds stress fields - Baseline flow

Figures 4.5 and 4.6 shows the Reynolds stress fields for the lowest Reh in case of base-
line flow fields. The Reynolds normal stress u′2

∗
field in figure 4.5 displays a two lobed

structure at either sides of the geometric wake centerline reaching a peak of approximately
0.15 at y∗ ≈ ±0.3 and are symmetric. Most of the u′2

∗
is contained within the upper limit

of the mean shear layer, demarcated by the black solid line, and the mean rri, demarcated
by the black discontinuous line. The peak of u′2

∗
is contained within the recirculating

flow region demarcated by the dividing stream line (ψ = 0).

The Reynolds shear stress in figure 4.6a is largely composed of two lobe shaped struc-
tures and are anti-symmetric. Considering the upper wake, i.e y∗ ≥ 0, the negative peak
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Figure 4.5: Streamwise Reynolds stress field for Reh ≈ 2.8× 104. The black solid line,
the discontinuous black line and the discontinuous white denotes the upper edge of the
shear layer, the rri and the dividing stream line (ψ = 0) respectively.

of u′v′
∗
is reached outside of the recirculating flow region, whereas it’s positive peak is

contained within the back-flow region. Unlike u′2
∗
, u′v′

∗
seems to be completely contained

within the mean shear layer and due to a symmetric flow, it is zero along the geometric
wake centerline (y∗ = 0). Overall, the structure of the Reynolds stress fields are similar

to that of the cylinder wake reported in [29]. However, the lobe shaped structures of u′2
∗

and u′v′
∗
are oriented towards the wake centerline in [29] whereas it seems to orient away

from the wake, probably due to the difference in nature of the separation in both the
flows. The intensity reported in [29] is even higher than that of our case, for example the

maximum value of u′2
∗
in [29] reaches approximately as high as 0.35, whereas it is limited

to approximately 0.15 in our case (from figure 4.5) . It is to be noted that the our present
study is limited to Reh < 105 and the blockage ratio is much lesser than that reported in
[29], probable cause of decreased intensities of Reynolds stresses.

The Reynolds vertical normal stress v′2
∗
in figure 4.6b displays a single lobed struc-

ture, reaching peak values near the end of the recirculating flow region at the geometric
wake centerline. Note that it’s peak value is significantly higher than that of u′2

∗
. Figure

4.7 shows the turbulent kinetic energy, defined as k =
(
u′2

∗
+ v′2

∗
)
/2 displaying a single

lobed structure. The peak of k is reached near the end of the recirculating flow region,
with v′2

∗
taking up the dominant role similar to that reported in [193]. Local peaks are

observed near the rri and k locally spikes on the dividing streamline. This observation is
slightly different to that of the k field in [193], where local peaks in k, close to the body,
are observed on the dividing streamline. Figure 4.8 shows the profile of Reynolds normal
stresses obtained by PIV as well as Hot wire experiments. Both the hot wire and the PIV
measurements are in agreement with each other for u′2

∗
. In case of v′2

∗
, at x∗ ≈ 3, there

is a slight disagreement between the hot-wire and PIV measurements with hot-wire mea-
suring approximately 7% lesser value compared to that of the PIV measurement. This is
to be expected because of the limited angular sensitivity of the hot-wire in the near wake.
From the PIV instantaneous fields, it is seen that the instantaneous flow angles can reach
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(a) (b)

Figure 4.6: Reynolds stress fields u′v′
∗
(a) and v′2

∗
(b) for Reh ≈ 2.8× 104.

as high as 80o at x∗ ≈ 3, whereas the hot-wire saturates approximately between ±30o and
±35o, and hence the discrepency in the v′2

∗
values.

Figure 4.7: Turbulent kinetic energy field, and profiles at various downstream locations
in the wake for Reh ≈ 2.8× 104.

Finally, the figure 4.9 shows the field of production of turbulent kinetic energy defined
as Pk = −uiuj ∂Ui

∂xj
. The general structure is similar to that of the circular cylinder wake

in [29], however the intensities differ in magnitude. Near the body, it peaks close to the
center of the shear layer at the dividing streamline, and remains within the vicinity of
the dividing streamline further downstream. The peak of the production occurs close
to the body, due to the intense mean shear, and close to the end of the recirculation
region due to the intense v′2

∗
acting along with the vertical velocity gradient ∂V/∂y. The

production is negligible in the first half of the recirculating flow region, approximately
between 0 ≤ x∗ ≤ 0.5, which then rises to its peak value in the second half. It is
interesting to note that the upper extent of the shear layer correctly wraps around the
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Figure 4.8: Comparison of Reynolds normal stresses, u′2
∗
(circles) and v′2

∗
(squares) at

various downstream locations in the wake, measured by PIV and hot-wire experiments
for Reh ≈ 2.8× 104.

Figure 4.9: Field of turbulent kinetic energy production for Reh ≈ 2.8× 104.

production in the near wake. However, certain amount of k∗ is leaked out of it, suggesting
that the upper extent, defined only based on the mean streamwise velocity profile, may
not be considered as an interface that separates the external irrotational flow from the
wake.
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Figure 4.10: Cp(x
∗, y∗) field at Reh ≈ 2.8× 104 (left) and its evolution along y∗ ≈ 0

(right). Cp0 denotes the minimum Cp along y
∗ ≈ 0. l∗r and l

∗
v represents the extent of the

recirculation region and center of the recirculating vortex respectively.

4.1.4 Mean pressure field

Pressure is an important quantity relating to the dynamics of fluid and to the force
exerted by it on a body [66, 15, 191, 103, 190] and its importance is stressed in Chapter
3 briefly reviewing the studies in this regard or the alternative approaches to circumvent
it’s requirement. The following section however, discusses on the features of the wake
pressure field estimated using the approach discussed in Chapter 3. Figure 4.10 shows the
coefficient of the mean pressure field. The profiles at x∗ ≈ 0.16, 0.41, 0.86, 3 corresponds
to the location close to the body, the center of the recirculating flow vortex, end of the
recirculation region and farther downstream. Globally, the minimum pressure region in
the wake is localised within the recirculation region with its global minima indicated by a
solid white circle in figure 4.10. Close to the point of separation at y∗ ≥ 0.5, one may see
an adverse pressure gradient, i.e, the Cp rises, causing the flow to decelerate and expand
downstream to fill the space, after separation. As one moves towards the wake along the
vertical direction, i.e y∗ < 0.5, the pressure dips to a lower value, following which it starts
to rise, as shown in figure 4.10.

Along the geometric wake centerline, the Cp with a value of −0.8 at the body base dips
to a minimum of approximately −1.05 close to the streamwise location of the recirculating
vortex center. The pressure rises gradually after reaching a minimum along the centerline
in figure 4.10. The growth rate changes indicated by an inflection point close to lr, which
marks the decay of pressure gradient and hence the flow recovers. Farther downstream,
after x∗ ≈ 1.5, the pressure recovery is seen to be considerably slower. Further, within
the back flow region the pressure remains roughly a constant in the vertical direction.

Contributions to the mean pressure

It is already known that the pressure in the far wake can be approximated by the
vertical normal Reynolds stress v′2, valid only where the Reynolds shear stress is negligi-
ble [4, 131]. Recent studies by [26] in the wake of an oscillating airfoil reports that this
assumption is indeed true in the near wake. This is verified in figure 4.11 at various loca-
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Figure 4.11: Verifying the balance of pressure at various downstream locations such as at
the streamwise location of Cp0, close to l∗r at x∗ ≈ 0.79, at x∗ ≈ l∗r and at x∗ ≈ 3.

tions in the near wake and farther downstream, where except at the streamwise location
of Cp0, the pressure is balanced by v′2. Then, near and beyond l∗r it follows that,

∂y∗P
∗ ≈ −∂y∗v′2

∗
. (4.3)

Equation (4.3) when integrated from y∗ = 0 to ∞ gives the established relation [4, 131],

P ∗ ≈ −
(
v′2

∗ − v′2
∗
FST

)
+ P ∗

FS. (4.4)

The subscript FS and FST denotes free-stream condition and free stream turbulence

respectively, where, P ∗
FS ≈

(
1− U∗

FS +∆u′2
∗
FS

)
/2, from the Bernoulli’s equation. Equa-

tion (4.4) does not hold very close to the body and hence a different approach is necessary.

The mean flow content of the Poisson equation for pressure, using the divergence
condition of the two dimensional velocity fields, may be simplified to,

∆P ∗ = −2

(
∂U∗

∂x∗

2

+
∂V ∗

∂x∗
∂U∗

∂y∗

)
︸ ︷︷ ︸

∆P ∗
M

−∂
2(u′2

∗
)

∂x∗2︸ ︷︷ ︸
∆P ∗

uu

−∂
2(v′2

∗
)

∂y∗2︸ ︷︷ ︸
∆P ∗

vv

−2
∂2(u′v′

∗
)

∂x∗∂y∗︸ ︷︷ ︸
∆P ∗

uv

, (4.5)

meaning that the mean flow contribution to the mean pressure is caused by the mean
velocity gradients. Along the wake centerline owing to the wake symmetry, the mean
strain terms are zero. The streamwise velocity exhibits a local minima along the centerline
(figure 4.2a) and roughly coincides with the local minima of the pressure (figure 4.10),
such that (∂U∗/∂x∗) ≈ 0. Therefore, on the centerline,

∆P ∗ ≈ −
{
∂2/∂y∗2

(
v′2

∗
)
+ 2∂2/∂x∗∂y∗

(
u′v′

∗)}
, (4.6)

implying that the pressure minima is solely caused by the Reynolds transverse normal and
shear stresses. Verifying equation (4.6) is difficult with the experimental data, because of
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Figure 4.12: Balance of the pressure Poisson equation (4.5) using only the Reynolds
stress terms. The inset shows the profile of non-dimensional pressure P ∗ evolving along
the streamwise coordinate normalized by l∗r .

the second derivative operation amplifying any noise present in the data. Therefore, the
synthetic RANS data from Chapter 3 is used in order to qualitatively understand the role
of the Reynolds stresses in forming the pressure minima.

Figure 4.12 shows the balance of equation 4.5 using the Reynolds stress terms only.

Confirming the assumption near x∗/l∗r ≈ 0.5, that ∂2/∂x∗2
(
u′2

∗
)
≈ 0, the pressure min-

ima appears to be primarily due to the Reynolds shear stress. From figure 4.6a in the
upper half of the wake, the Reynolds shear stress close to the body is positive and implies
an out-flux of momentum away from the wake centerline. Moving downstream along the
centerline, roughly after the center of the recirculation region, the sign changes implying
a mean inward momentum flux due to fluctuations. Moving farther along the centerline,
as implied from the inset of figure 4.12, it is ∂2y∗P

∗ that becomes important due to the
local minima formed by the pressure profile in the vertical direction (see figure 4.10). The
role of Reynolds shear stress is non negligible until at least 80% of the recirculating flow
region after which it is mostly the Reynolds vertical normal stress that plays a major role
as is evident from the figure 4.11.

We may alternatively split the solution of pressure based on the contribution from the
mean field and the various Reynolds stress components. The Poisson operator being a
linear operator, we may write the solution of pressure as a sum comprising of the mean
and the Reynolds stress components as shown in equation (4.5) [131]. The source term
is solved with Neumann boundary conditions split in the same manner as equation (4.5).
For example, the source term due to mean flow is solved as,

∂2/∂x2i (P
∗
Mδij) = −∂/∂xi (∂/∂xj (UiUj)) , (4.7)

with the Neumann boundary condition, ∂/∂xi (P
∗
Mδij) = −∂/∂xj (UiUj) . The constant

is eliminated by comparing with P ∗. Only the pressure due to the mean flow P ∗
M is ex-

pected to be non-zero in the free-stream, whereas the constant shift for the pressure due
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(a) (b)

Figure 4.13: Decomposition of pressure, where P ∗
M , P

∗
uu, P

∗
uv, P

∗
vv, P

∗ and ΣP ∗ represents

the pressure due to mean flow, u′2
∗
, u′v′

∗
, v′2

∗
, corrected pressure (from the optimal

control algorithm) and the sum ΣP ∗ = P ∗
M + P ∗

uu + P ∗
uv + P ∗

vv respectively .

to Reynolds stresses is zero since the Reynolds stresses are zero in the free stream. Figure
4.13 shows the pressure decomposition based on the solution of equation (4.5) at two
streamwise locations. As expected, slight differences exist between ΣP ∗ and P ∗. From
figure 4.13a, P ∗

FS representing the free stream pressure causes an overall shift in P ∗
M . The

dip in P ∗
FS due to the blockage induced by the body, drives the flow in the free stream

and hence is subtracted from P ∗
M in order to obtain the contribution from the mean flow

deformations to the mean pressure.

At the streamwise location of minimum pressure, most of the integral contribution
to the mean pressure comes from v′2

∗
arising from the cross-stream mixing, followed by

the mean-flow deformations P ∗
M − P ∗

FS. Moving transversely towards the wake core, the
mean flow pressure contribution peaks at the location of maximum mean shear. Within
the wake core, most of the pressure profile is due to v′2

∗
, consistent with the observations

in figure 4.11. Moving further downstream, at x∗ ≈ l∗r in figure 4.13a, the pressure due
to mean flow deformations P ∗

M −P ∗
FS tends to increase the pressure P ∗. At this location,

most of the pressure contribution comes from v′2
∗
, as observed in figure 4.11.

4.1.5 Evolution of pressure and momentum exchange process
along the centerline

The evolution of pressure can be understood from the balance of streamwise momen-
tum at the centerline, (see figure 4.14) Note that the source/ sink of momentum in this
case is the drag force and it may only appear through a global momentum balance along
a control volume enclosing the source/sink of momentum. The balance along the cen-
terline, describes the local momentum exchange process for which the pressure forms the
key component and its evolution depends on this exchange process.

The sink of momentum created by the drag force is transported by the terms in the lo-
cal balance in figure 4.14. The largest contribution to momentum is through the Reynolds
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Figure 4.14: Evolution of the streamwise mean momentum budget along the wake center-
line, along the streamwise direction scaled by the length of the recirculating flow region.

shear stress gradient, which is indicative of momentum-diffusion by the fluctuations peak-
ing at l∗r where U = 0. The pressure gradient is exactly balanced by the Reynolds shear
stress gradient term, i.e,

∂P ∗

∂x∗
= −∂u

′v′
∗

∂y∗
. (4.8)

It means that the pressure rise near x∗ ≈ l∗r is governed by the intensity of the Reynolds
shear stress within the shear layer and reducing its intensity would be a possible strategy
to increase l∗r [165]. The momentum transported by the Reynolds shear stress decreases
beyond l∗r . The role of pressure gradient is dominantly to transfer the mean momentum
upstream the recirculation region to the wake. Beyond lr, the flow evolution is dominated
by the Reynolds shear stress gradient which decays slowly compared to the pressure gra-
dient.

From the momentum budget along the wake centerline, the evolution of pressure min-
ima is seen to depend on the momentum transferred by the Reynolds shear stress gradi-
ent. The observations suggests that a reduction in the momentum transferred through the
Reynolds shear stress gradient, while influencing the properties of the recirculating region
may also reduce the amount of momentum fed upstream hence influencing the drag.

4.2 Budget of mean drag

The aerodynamic drag estimated using the integral momentum budget is a useful
and a basic approach in order to identify contributions of various terms in the integral
momentum transport equation. The budget are performed over three rectangular control
volumes, shown in figure 4.15a:

• CVL - Control volume with lateral sides approaching the free-stream flow,

• CVS - Control volume with lateral sides close to the body,
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(a) (b)

Figure 4.15: Estimate of δCd (b), refer equation (3.35) in Chapter 3 for the definition, and
the schematic of the control volumes (CV ) used to estimate it (a). H∗ and L∗ represents
the height and the location of the CV from the body base respectively.

• and CVI - Control volume with lateral sides in between the CVL and CVS, with it’s
outlet displaced in the streamwise direction with a corresponding estimate of drag
and compared with the measured drag is shown in figure 4.15b.

The approach is a useful metric, introduced in chapter 3, to quantify the accuracy of the
estimated pressure. As briefed in Chapter 3, the viscous friction drag estimated using a
laminar boundary layer accounts for a maximum of 5% of the total drag and hence shown
as a shaded region in figure 4.15b corresponds to the viscous drag.

For the three cases of control volume, it is seen that the error in Cd estimate for the
smallest control volume remains within the shaded uncertainty region. For the large and
the intermediate control volumes, CVL and CVI respectively, the error remains roughly
within the uncertainty region close to the body. As one moves the CV outlet downstream,
the error is seen to increase but remains within 10% until L∗ ≈ 6 after which it goes be-
yond 10%. The method for pressure estimation and the reason for increased error in δCd
with an increasing H∗, is detailed in Chapter 3. The error level remaining within 10% is
considered to reflect an accurate pressure estimation and hence L∗ = 6 is considered to
be the limit until which the mean pressure is considered acceptable.

4.2.1 Requirement of flow similarity to perform integral budgets
of momentum

In order to compare the integral budget between different flows, the chosen control
volume has to be similar or of universal form for all the flows under consideration. In
addition, the chosen CV should enclose the body such that the total drag force experi-
enced by the body can be estimable. Similarity requires identification of length-scales.
Alternatively, one may choose the physical boundary such as the streamline enclosing the
recirculating flow region or the recirculating flow region defined by the isoline U = 0. The
computation of the streamfunction depends on the resolution of the velocity fields, while
the rri is relatively simple to define with lesser uncertainties than the former. However,
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both of these choices can include only budget of the base pressure drag, which is largely
sufficient as it forms the dominant contributor to the total drag.

Length scales

It has been known from the past studies that the recirculating flow region forms an
important feature of the wake flows. For example, the length of the recirculating flow re-
gion scales the velocity deficit in the wake of bluff bodies with differing geometries [195].
In the studies of [165], the l∗r , which in their study depends highly on the state and thick-
ness of the incoming boundary layer prior to separation, has been found to be the most
important lengthscale in the near wake which scales the development of the near wake.
Earliest studies such as [91, 169, 1, 31] have also used this quantity in order to scale the
evolution of quantities such as the static pressure in the near wake of either backward
facing step flows or that of bluff bodies.

Figures 4.16a shows the evolution of the velocity deficit, normalized by the maximum
velocity deficit, along the streamwise direction scaled by l∗r . The normalized velocity
deficit rises from 0.9 to the peak approximately at half the l∗r for all the Reh cases, after
which it decays reaching 70% of the maximum at l∗r . The data for all Reh collapses
perfectly until l∗r after which a very small scatter is observed. It is to be noted that the
maximum l∗r variation with respect to the baseline Reh is only 1.5% approx.
Figure 4.16b shows the evolution of the pressure deficit defined by

P ∗
d = P ∗(x∗, 0)− P ∗

FS(x
∗), (4.9)

where the subscript FS denotes the free-stream. The evolution of the wake pressure
deficit is scaled by its minimum value near half the l∗r . As expected, the pressure deficit
term decays faster than the velocity deficit. The figures indicate that the l∗r , characteristic
of the shear layer evolution, organises the flow field not only in the region after separation,
but also a few l∗rs away from it. Thus, any change in the shear layer evolution is expected
to change the wake structure (see [165]).

The evolution of flow quantities such as the mean velocity deficit in figure 4.16a and
the pressure deficit in figure 4.16b along the symmetric wake centerline is interesting as
the influence of any transverse length scale is minimized or null. The dominant term
that influences the evolution of flow according to figure 4.14 is the transverse variation of
Reynolds shear stress term. Figure 4.17b shows the profiles of Reynolds shear stress at
various streamwise locations in the similarity coordinate, i.e. in the streamwise direction
normalised by l∗r , varying along the vertical direction normalised by half the wake width
y∗δ . The peaks of the Reynolds shear stress in the near as well as the far wake align itself
at the edge of the wake-width y∗δ . Note that the wake width is a local length scale, and
the alignment of Reynolds shear stress peaks near the edge of the wake width means that
it scales the variation of flow in the transverse direction.

Figure 4.17a shows the mean streamwise velocity profiles, upstream x∗ ≈ l∗r , centered
at the shear layer and normalized by the vorticity thickness defined in (4.2). The velocity
profiles collapse between 0.2 ≤ U∗ ≤ 1 within −0.5 to +0.5 in the normalized coordinates.
Then, from profiles in figures 4.17b and 4.17a, while the wake width scales the large scale
features of the flow, the vorticity thickness is localized in the shear layer.
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(a) (b)

Figure 4.16: Scaling the evolution of the mean velocity deficit (a) and the pressure deficit
(b), using it’s peak values, along the streamwise direction scaled by l∗r .

(a) (b)

Figure 4.17: The mean streamwise velocity profiles centered at the shear layer center and
normalized by the local vorticity thickness δ∗w (a) and the shear stress profiles, in the
upper half of the symmetric wake, y∗ scaled by the local wake width y∗δ (a).

Figure 4.18 shows the evolution of wake width for different Reh cases scaled by its
minimum value found near l∗r . The wake width drops from a higher value at separation
to its minimum value close to lr due to the presence of the recirculating flow region.
Further, there is a linear increase, implying that the peaks of the Reynolds shear stress
also evolves linearly in this region. It is seen that that l∗r scales the evolution of the wake
width, the magnitude of which is scaled by its characteristic value that occurs close to the
end of the recirculating flow region. In [195], the wake width magnitude is scaled by the
maximum thickness of the recirculating flow bubble (i.e. the lateral distance between the
two separating streamlines). Since the wake width follows the recirculating flow bubble,
then the characteristic lengthscale used in figure 4.18 should be equivalent to that of the
recirculating flow bubble thickness used in [195].
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Figure 4.18: Evolution of the wake width yδ(x
∗) scaled by it’s minimum value, y∗δmin

.

Figure 4.19: The control volume (CV ) defined using the stream function ψ = 0 that
encloses the recirculating flow region (left) and the budget of base pressure drag (right).
Here, L∗ refers to the streamwise location of the CV outlet and l∗r forms the streamwise
extent of the recirculating flow region.

4.2.2 Recirculating flow region - a universal choice of control
volume

Figure 4.19 shows a control volume defined using the stream function ψ = 0 corre-
sponding to the streamline forming the lateral side of the control volume, impermeable
to mass or mean momentum transported by the mean flow. The inlet is fixed close to
the body and the outlet location L∗ varied in the streamwise direction. The momentum
budget is performed at each location of L∗. Note that the performed budget is for the base
pressure drag which forms the largest component of the total drag. The budget may be
compared with any other bluff body flows since the CV definition is based on the common
physical feature to all such flows. Note that the viscous contribution is neglected. The
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integral momentum budget along the CV defined in figure 4.19 reads,

2

∫
Γ

U∗ (U∗ · n) ds∗

︸ ︷︷ ︸
tMD

−2

∫
Γ

u′2
∗
nxds

∗

︸ ︷︷ ︸
tRN

−2

∫
Γ

u′v′
∗
nyds

∗

︸ ︷︷ ︸
tRS

−
∫
Γ

Cpnxds
∗

︸ ︷︷ ︸
tP

≈ −
∫
ab

Cpdy
∗

︸ ︷︷ ︸
tbaseP

,

tbaseP ≈ (TP + TRN
+ TRS

+ TMD)× tbaseP ,

(4.10)

whose contributions are shown in figure 4.19, with a residual ϵ close to zero indicating
the quality of the PIV measurements and the estimated mean pressure. In equation
(4.10), nx and ny represents the streamwise and vertical component of the unit normal
vector to the streamline computed as,

n̂ = (dy/ds)̂i− (dx/dy)ĵ, (4.11)

by the rotation of unit tangent vector by 90 degrees in the clockwise direction since the
sense of integration around the CV is in the anti clockwise direction.

At L∗ ≈ 0.2l∗r , the budget is dominated by pressure. All the remaining terms are
zero. As the outlet L∗ is displaced further downstream towards the center of the re-
circulating bubble, TMD ≈ 12% reaches a peak due to the intense backflow. TRN

also

reaches a peak ≈ 12% here, because u′2
∗
reaches a peak within the recirculating flow

region, shown in figure 4.5. TRN
and TMD tend to reduce the base-pressure drag which

is compensated by TP which peaks near the center of the recirculation region. As L∗ is
displaced further downstream, the outlet term contributions decreases and tends to zero
due to decreasing size of the outlet. This is compensated by the corresponding terms
acting on the lateral side of the CV . The lateral side being a streamline, the contribution
of the mean momentum along it is null causing TMD to decrease to zero beyond L∗ ≈ 0.5l∗r .

Now, if the budget in equation (4.10) is written as,

1− (T
(o)
P + TMD + T

(o)
RN

) = T
(c)
P + T

(c)
RN

+ TRS
, (4.12)

where the superscript (o) and (c) represents the terms split into contributions from the
outlet and the lateral side respectively, then the R.H.S of equation (4.12) is a sink or
source of momentum depending on the sign. Figure 4.20 shows the evolution of the terms
on the R.H.S of equation (4.12). All terms are close to zero within L∗ < 0.3l∗r . The

contribution from T
(c)
RN

falls keeping the overall contribution of Reynolds normal stress a
constant beyond 0.5l∗r . It is roughly balanced by the rise in TRS

, same term as in figure
4.19. The contribution of the Reynolds shear stress to TRS

saturates beyond 0.9l∗r as the
lateral side of the contour tends to reach the wake centerline. Splitting the contributions
of TP and TRN

into those in equation (4.12) may not bring any new information than
already shown in figure 4.19. However, it may shed light on the curvature effect of the
recirculating flow bubble. For example, from the streamwise momentum balance along the
centerline in figure 4.14, it is understood that the intensity of the Reynolds shear stress
is crucial in determining l∗r and this is supported by several studies [165, 120, 181]. In

that case, this would cause an increase in magnitude of T
(c)
RN

and T
(c)
P as well (see equation

(4.7) and figure 4.13) , and tend to increase the base pressure drag [120, 181].
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Figure 4.20: Contributions of the Reynolds stresses and the mean pressure to the base
pressure drag while acting along the walls of the CV defined by the streamline ψ = 0

It is clear that the dominant contribution to the drag in the near wake comes from
the pressure. Globally, the Reynolds streamwise normal stress and the mean momentum
act to decrease the drag whereas the Reynolds shear stress increase it.The Reynolds shear
stress contribution diminishes if a relatively larger CV is considered, whereas the Reynolds
normal stress contribution is not affected significantly implying that the role of the for-
mer is to redistribute the momentum, while the latter always remain a sink. In addition,
decomposing the mean pressure shows that it is driven primarily by the mean flow defor-
mation close to the body, whose intensity is high in the separated shear layer, whereas
near l∗r the role switches to the Reynolds transverse normal stressAll these observations
points to the significant role of Reynolds stresses, specially the normal components, in
driving the drag and therefore it is necessary to understand its driving mechanism, more
precisely the energy exchange mechanism or interplay between the mean flow and the
Reynolds stresses.

4.3 Transport mechanism of Reynolds stresses

The Reynolds stress transport equation is given in equation (4.13). The numerical
subscripts in the equation 4.13 represents the component of the Reynolds stress tensor.
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where,

s′ij =
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(4.14)

is the fluctuating strain rate tensor. The left hand side of the equation (4.13) represents
the net rate of increase or decrease of the Reynolds stress component, due to the spatial
advection by the mean flow and it depends on the mechanism given on the right hand side
(R.H.S) of the equation. The first term on the R.H.S, Pij, represents the production
term for the Reynolds stress component which extracts energy from the mean flow by
the action of the Reynolds stresses resisting the deformation by the mean flow gradients
[59].It is similar in form to the complete production term, P = −ρu′iu′j ∂Ui

∂xj
is responsible

for energy exchange between the mean and fluctuating kinetic energy.
The terms Dij, Dp

ij and Dν
ij represent the diffusion of Reynolds stresses by the fluctu-

ations, diffusion by the fluctuating pressure and the viscous diffusion respectively. These
diffusion terms can be expressed in the divergence form while integrating over a control
volume. They disappear while integrating over a large control volume, meaning that it
cannot produce or destroy energy but merely redistributes the energy spatially and hence
is considered a transport term. The term εij is considered a dissipation (heat/entropy
production) term since it is always positive, acting to remove energy from the fluctua-
tions, due to its negative sign in equation (4.13).Finally, the term PS ij is known as the
pressure strain or the pressure redistribution term because its function is to re-distribute
energy between the Reynolds stress normal components. This can be understood from the
transport equation of fluctuating kinetic energy, where the pressure strain is zero due to
the divergence-free nature of the velocity field, but is non zero in the transport equations
of Reynolds stresses. However, for the transport equation of Reynolds shear stresses, the
pressure strain term serves as a source or a sink term depending on its sign. The viscous
diffusion term in equation (4.13) is neglected for the local balance since its contribution
is negligible. In addition, the sum of terms Dp

ij, PS ij and −εij shall be represented by
the residuals due to it’s inaccessibility from the 2D planar PIV measurements.

4.3.1 Transport mechanism of streamwise Reynolds normal stress

The transport equation for Reynolds streamwise normal stress is derived from (4.13)
and given in (4.15). Note that the third term of D11 is cancelled out since the flow is
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statistically two-dimensional.
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Figure 4.21: Local balance of the transport equation for the streamwise Reynolds normal
stress performed close to the body after separation.

Figure 4.21 shows the local balance of the transport equation for streamwise Reynolds
normal stress u′2

∗
close to the flow separation point. The transverse extent of local wake

width and the recirculating bubble width are marked by black and red arrows respectively.
The transport of u′2 is zero in the region of external flow 0.6 ≤ y∗ < ∞, beyond the
width of the wake. It is toward the center of the mean shear layer, denoted by the
wake width and the local height of the bubble, that the majority of the energy exchange
takes place. Within the wake 0.4 ≤ y∗ < 0.6, the major energy gain is due to the shear
production P(2)

11 whereas normal production P(1)
11 tends to oppose it. Towards the wake

centerline, the normal production shows a slight gain balanced by the residual. Since the
role of diffusion is energy-redistribution, it can be thought as carrying the energy from
the residuals, near the wake centerline, to elsewhere such as the shear-layer center here.
However, it’s magnitude is relatively small compared to the shear and normal production
terms.
Towards the center of the recirculating flow region at x∗ ≈ 0.5l∗r , in figure 4.22, the energy
drained to −A11 is non zero over a larger transverse distance y∗ relative to the terms in
figure 4.21. Approaching the wake from the free stream, in the range 0.5 ≤ y∗ ≤ ∞, there
is a gain in energy through R∗

11 and D∗
11 which is balanced by −A∗

11. All the remaining
terms are negligible here.Moving towards the wake centerline, there is a significant energy
gain due to the shear production P(2)

11 peaking at 0.5y∗δ . The residual R∗
11 shows a sink in
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Figure 4.22: Local balance of the transport equation for the streamwise Reynolds normal
stress performed close to the center of the recirculating flow region x∗ ≈ 0.5l∗r . The
average view is shown in the bar plot, where the terms are averaged in the transverse
direction in the range 0 ≤ y ≤ ∞ and then normalized by the highest gain term.

the range 0.3 ≤ y∗ ≤ 0.5. Note that the shear production P(2)
11 , compared to the location

close to separation in figure 4.21, is spread over a larger area attributed to the growing
shear layer.

There is a significant sink of energy through the normal production P(1)
11 , peaking at

0.5y∗δ , opposing the shear production P(2)
11 . Towards the wake centerline, the residual

shows a significant energy sink balanced by the normal production. The shear production
shows a sink, close to the centerline, due to the presence of positive u′v′

∗
within the first

half of the recirculating flow region. D∗
11 redistributes energy in the vertical direction, and

hence it shows up as a negligible value in the bar plot of figure 4.22.
On average, the flow is driven by the residual terms. The averaged shear production

P(2)
11 is comparatively lesser than the residuals, its local contribution is the highest, because

it is highly localized close to the shear layer center and at this position, the shear layer
is in the growing stage and hence it’s thickness is expected to be small compared to its
thickness at the end of the recirculating flow region (see figure 4.3).

At the streamwise location l∗r in figure 4.23, similar to the case in figure 4.22, advection
of u′2 is balanced by R11 within 0.6 ≤ y∗ < ∞. The role of diffusion is the transverse
energy redistribution which is why its spatial average is negligible, shown in bar plot
of figure 4.23. There is a significant generation of energy by the shear production P(2)

11

which is the largest of all terms, and thus the highest spatially-averaged value in the bar
plot of figure 4.23. Similar to the case in figure 4.22, the normal P(1)

11 opposes the shear

production P(2)
11 . The energy gained by the shear production is redistributed transversely

by the diffusion D∗
11. The loss in advection A∗

11 towards the wake centerline can either be

due to R∗
11 or P(1)

11 , but not D∗
11 because of its redistribution role. However, the residual

terms seem to be of primary importance in order to completely understand the underlying
physical mechanism.

At separation, the laminar boundary layer along leads to an intense mean shear within
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Figure 4.23: Local balance of the transport equation for the streamwise Reynolds normal
stress performed close to the end of the recirculating flow region.

the separated mean shear layer. The Reynolds shear stress, which shows a peak corre-
sponding to the location of maximum shear, while resisting this mean shear leads to an
intense shear production P(2)

11 in figure 4.21. The drain in energy through P(1)
11 occurs

slightly below the body height and is due to the u′2 which peaks close to this location
as well as due to the intense positive ∂U/∂x due to the growing shear layer (see figure 4.24).

As the flow expands downstream the mean shear decreases. However, the Reynolds
shear stress exerted onto the flow continues to grow in intensity until close to l∗r . There
is a small region close to the body, where the Reynolds shear stress remain positive
due to the presence of the recirculating flow region, resulting in a sink by P(2)

11 (shown
as a negative peak along the rri in figure 4.24). The diminished mean shear with the
intensifying Reynolds shear stress contribution leads to a persisting and dominating energy
gain through the production term P(2)

11 at l∗r . Figure 4.24 shows the evolution of the normal
as well as the shear production terms, where both are initially concentrated along the mean
shear layer center and is smeared beyond 0.75l∗r with the growing shear layer. The latter
locally peaks roughly along the local wake-width whereas the former along the streamline
ψ = 0.

4.3.2 Transport mechanism of transverse Reynolds normal stress

The transport equation for the transverse Reynolds normal stress is given in equation
(4.16). The local balance of the transport equation is performed at two streamwise lo-
cations. These locations correspond to the maximum contribution of the pressure to the
overall budget of drag in figures 4.19, i.e. near the center of the recirculating flow region,
and at l∗r where the Reynolds normal stress v′2

∗
is seen to be a dominant driving factor
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Figure 4.24: Colormap of the normal (top) and shear (bottom) production terms involved
in the transport of Reynolds streamwise normal stress.

of mean pressure in figure 4.13b.
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Figure 4.25 shows the local balance of transport equation of v′2
∗
at x∗ ≈ 0.5l∗r , which also

corresponds to the streamwise location of mean pressure minimum along the wake center-
line. Along the vertical direction, approaching from the free stream, −A22 is balanced by
the residual terms only. Moving towards the wake centerline, the net gain in energy due
to the residual term is drained by the diffusion term. Note that the shear production P(1)

22

remains relatively small throughout the budget (see figure 4.26b). The highest gain in

energy is the normal production P(2)
22 peaking close to the center of the mean shear layer

(see figure 4.22 for the position of the mean shear layer-center). The shape of the curves
of diffusion and the residual term behaves as if they redistribute the energy in the vertical
direction. This should be the reason why their transverse spatial average is negligible in
figure 4.25. The majority of the produced energy by P(2)

22 is then gained by the advection
term.

Considering the normal production terms P(2)
22 = −2v′2

∗ ∂V ∗

∂y∗
and P(1)

11 = −2u′2
∗ ∂U∗

∂x∗
,

the two-dimensional incompressible mean flow demands that the energy drained by the
P(1)

11 during the transport of u′2
∗
, be at least partially be transferred to contribute to

the transport of v′2
∗
. This can be found near the center of the recirculating flow region,

where the energy extracted by the P(2)
11 from the mean flow is partially drained by the
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Figure 4.25: Local balance of the transport equation for the transverse Reynolds normal
stress performed near the center of the recirculating flow region.

P(1)
11 which is subsequently injected to the transport of v′2

∗
through P(2)

22 , as shown in

figure 4.26a where the sum of P(1)
11 + P(2)

22 is close to zero. The gain due to P(2)
22 forms a

sort of feedback mechanism, where the Reynolds stress v′2
∗
resisting the deformation of

the mean field through ∂V ∗/∂y∗ results in a net increase of v′2
∗
through −A22 .

(a) (b)

Figure 4.26: Comparison of the production terms P(1)
11 and P(2)

22 in the transport of u′2
∗

and v′2
∗
respectively at the center of the recirculating flow region (a), and color-map of

the normal (top) and shear (top) production terms involved in the transport of Reynolds
transverse normal stress (b).

Figure 4.27 shows the local balance of v′2
∗
transport near x∗ ≈ l∗r , where v′2

∗
is

close to its maximum (see figure 4.6b). Approaching the wake from the free stream
0.4 ≤ y∗ ≤ ∞ , the residual term remains negligible and the gain by the diffusion is
balanced by the advection.Moving further towards the wake centerline for 0 ≤ y∗ < 0.4,
the diffusion switches to a sink along with the residual terms, which together balances
the normal production P(2)

22 . The advection −A22 becomes zero at y∗ ≈ 0, meaning that

the transported v′2
∗
reaches its maximum at this location. The peak V ∗ close to l∗r in a
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Figure 4.27: Local balance of the transport equation for the transverse Reynolds normal
stress performed near the end of the recirculating flow region.

symmetric wake implies higher mean strain due to ∂V ∗/∂y∗, or −∂U∗

∂x∗
because the flow

transitions from the recirculating flow to the wake, and thus v′2
∗
resists this deformation

which results in a gain in energy through P(2)
22 .

The local balance and the spatial average show that the advection of v′2
∗
is primarily

driven by the normal production and the redistribution is due to the diffusion and the
residual terms. The energy produced by the mean flow through the production terms P(1)

11

and P(2)
11 , primarily in the growing shear layers, may be transferred inter-componently

through the pressure strain terms. But, this information remains out of reach within
the residual, the description of the physics remains incomplete. Further, a mechanism
near 0.5l∗r is noticed wherein the normal production P(1)

11 , draining energy from shear

production P(2)
11 , transfers it inter-componently through the normal production P(2)

22 .

4.4 Conclusion

The objective of this chapter was to characterize the mean flow and to understand
the various contributions to the mean drag. The qualitative features of the mean fields
such as those of Reynolds stresses or velocity fields were found similar to that reported in
the literature. The minima of the mean pressure is found to be localized within the recir-
culation region due to the switching in momentum redistribution by the Reynolds shear
stress. Decomposing the pressure showed that the mean flow deformations contribute
significantly to the mean pressure especially within the mean shear layer during it’s ini-
tial stage of growth whereas it is the transverse Reynolds normal stresses that drives it
while approaching the end of the recirculation region. Performing integral mean momen-
tum budget over the recirculation region reveals the physical mechanism of drag through
the momentum exchange process. The mean pressure remains the dominant momentum
source throughout the budget. The mean momentum and the streamwise Reynolds nor-
mal stress acts as a sink of momentum, with it peaks near the center of the recirculation
region. The role of Reynolds shear stress is to redistribute the momentum balancing the
sink by Reynolds normal stress near the end of recirculation region, while the transverse
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Reynolds normal stress, though not explicit in it’s contribution, acts as a key source for
the mean pressure.

An attempt is made to identify the transport mechanism of Reynolds normal stresses.In
case of the normal stress component, the energy is primarily produced within the growing
shear layer due to the dominant shear production term, which is then redistributed by
the residuals and the diffusion terms. In case of transverse Reynolds stresses, the energy
production is dominant near the wake-centerline, by the normal production term, where
the opposite side shear layers interacts and merges with each other. Further, near the
vicinity of the center of recirculation region, the energy produced within the shear layer
is transferred through the normal production terms of both streamwise and transverse
normal stresses, from former to the latter. The description of the energy exchange mech-
anism however is incomplete due to the unresolved residual terms and this issue will be
addressed in the following Chapter.
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Chapter 5

Coherent and incoherent structures

5.1 Introduction

The objective of this chapter is to understand the contribution of the large scale
coherent structures to the mean base-pressure. The chapter is organised into four parts.
The objective of the first part is to present the method of flow decomposition used in this
study and describe the main features of the large-scale coherent structures. The second
part of this chapter focuses on isolating the contributions of the dominant coherent and the
remaining incoherent structures to the mean drag. The third part introduces the method
of estimating coherent pressure fields, also utilising a novel approach for estimating the
temporal derivative of the coherent velocity fields from non-time-resolved data. Finally,
the fourth part is focused on understanding the mechanism that drives the transport of
coherent Reynolds stresses.

5.1.1 Coherent structures and incoherent motions decomposi-
tion

The wake of bluff bodies is dominated by large scale coherent structures. The term
large scale is specified in order to focus on structures with size of the order of the height of
the body, specifically on the von-Kàrmàn type vortex streets, observed in the bluff body
wake (see the review by Williamson (1996) [200]. Several studies in the past aimed at
attenuating such large coherent structures in order to reduce the drag force experienced
by the body. For example, placing splitter plates, rigid [145] or flexible [158], along the
wake centerline thereby interfering with the shear layer and disrupting the formation of
large-scale vortices. Further examples include three dimensional forcing such as geomet-
rical modifications of the bluff body. Examples include spanwise wavy leading edge [20],
distorting shear layers in the spanwise direction and making it less susceptible to roll up
into a von-Kàrmàn street [42], [148] interfered with the incoming boundary layer to affect
the formation of the vortex street (see the review by Choi et al. (2008) [37]).

A recent study by Nedic et al. (2013) [113] reports both increased drag and vortex
shedding increased, introducing a variety of turbulence lengthscales in the flow by means
of fractal edged geometries. In the follow-up study by Nedic et al. (2015) [114], the effect
of multi-scale fractal edges was found to redistribute the energy from the dominant mode
of vortex shedding to a broad range of scales, which opened new alleys to study the role
of vortex shedding in a turbulent bluff-body wake. However, the dominant terms in the
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(a) Relative energy contribution of the POD modes
for Reh ≈ 2.8× 104.

(b) POD time coefficients of the first 2 modes for ap-
proximately 5100 snapshots.

Figure 5.1: Modal energy contribution of POD modes (a) and the time coefficients of the
first two modes (b). The color codes in (b) represent the flow split into 12 phases to sort
the flow based on the time coefficients in (a1, a2) plane (a) and to phase average for the
extraction of coherent structures.

transport of coherent motions have remained out of reach because the associated coherent
pressure plays a major role in the momentum budget. In this chapter, pressure is calcu-
lated and analysed to obtain the coherent forces on the body and close the transport of
coherent stresses in the near wake.

Following the work of Reynolds and Hussain (1972)[142], the fluctuating velocity is
split between a coherent and incoherent motions. i.e.,

u = U + ũ+ u′′, (5.1)

where ũ and u′′ denotes the coherent and incoherent part respectively. The aim is to
analyse the fundamental transport equations that govern the coherent part in a complex
flow geometry.

Coherent structure extraction

In the current study, the method proposed by van Oudheusden et al. (2005) [192]
is used to compute spatially coherent structures in the flow field. The term ‘spatially
coherent’ is used to emphasize that the obtained structures do not represent coherent
structures that evolve temporally and spatially, instead it represents the spatial mode
that captures most of the fluctuating or turbulent kinetic energy in the flow field (see for
example [184] for the application of POD technique on velocity fields). Figure 5.1a shows
the normalized spectrum of the POD modes. The first two modes represent approximately
51% of the total energy, that is mode 1 and 2 take up 25.82% and 25.42% respectively.
The remaining is distributed into higher modes. This is similar to that reported in [192]
or [29] where the first two modes capture the highest energy levels. But the magnitudes of
the energy levels, compared to our case, are different. In the former study, the geometry is
a square cylinder (blockage ratio 7%) experiencing massive separation at the leading edge
with the mode 1 and 2 taking up 42 and 32% of the total energy at Reh = 1× 104, and
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(a) Coherent vorticity ω̃z at an arbitrary phase
extracted using the POD technique, at Reh ≈
2.8× 104.

(b) Incoherent vorticity ω′′
z at an arbitrary time and

at the same phase as that of (a).

Figure 5.2: The coherent (a) and incoherent (b) spanwise vorticity . The coherent vorticity
is computed at an arbitrary phase ϕ1, while the incoherent vorticity is computed at an
arbitrary time but occurs at the same phase ϕ1 as that of (a). The white solid circles in
(a) denotes the center of the vortex formation and the streamlines represents that which
is seen by an observer travelling at Uin.

in our studies the Reh and blockage ratio are similar but the massive leading edge sepa-
ration is absent and the wake forms post separation of a laminar boundary layer. In the
later study, the geometry is a circular cross section (blockage ratio 20%) with the mode 1
and 2 taking up more than 30 and 20% of the total energy respectively at Reh = 1.4×105.

According to [192], the time coefficients a1 and a2, of the first two modes with similar
energy levels form an elliptic limit cycle:

a1(i)
2

2λ1
+
a2(i)

2

2λ2
= r2i , (5.2)

This is verified in this study in figure 5.1b, where the values are clustered on the edge of
the (normalised) unit circle (see figure 5.1b, where the quantities a1/

√
2λ1 and a2/

√
2λ2

are normalized by the means of the local radii ri). The unit circle is further split into 12
phases. Each phase is within π/6 rad. Further, the velocity fields are phase-sorted based
on the time coefficient values in the (a1, a2) plane, for example the flow fields with the
time-coefficients that fall in between the first angular section in figure 5.1b, demarcated
by dashed lines, are sorted to form the first phase. The procedure is then repeated for
the other 11 phases.

Figure 5.2a shows the coherent spanwise vorticity defined as ω̃z = ∂ṽ/∂x − ∂ũ/∂y.
Alternating vortices are denoted by red for positive and blue for negative magnitudes.
The small intense vorticity bearing vortices close to the body becomes larger on moving
downstream and the vorticity is diffused into the surrounding flow. The streamlines as ob-
served by an observer travelling at the same speed as that of the inlet flow Uin, shows the
vortex patterns clearly, similar to that reported in an earlier study [129]. Some qualitative
features are also visible such as the quasi-instantaneous alleyway that penetrates into the
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Figure 5.3: Trajectory of the alternating vortices. The squares and circles indicate indicate
the current study at Reh ≈ 2.8× 104 and the results reported in [29] at Reh ≈ 1.4× 105

respectively. l∗v and l∗r represents the streamwise distance of the center of the mean
recirculating flow vortex and the extent of the recirculating flow respectively.

wake interior that represents the transport of fluid from the irrotational flow region to
and across the wake, induced by these coherent structures. Within the flow domain, the
vortex centers are observed to be displaced laterally, and the size of the vortices becomes
larger, entraining fluid from the free stream. A qualitative discussion on the entrainment
mechanism by the vortices can be found in [119]. The rapid growth of the vortex street
indicates a stronger entrainment which decreases further downstream due to decreased
strength of the vortices. Overall, the discussion highlights the importance of the coherent
structures observed, in the entrainment process. Figure 5.2b shows the incoherent vortic-
ity computed as ω′′

z = ∂v′′/∂x − ∂u′′/∂y at an arbitrary time, but at the same phase as
the coherent vorticity shown in figure 5.2a. Small eddying motions are clearly visible and
the interactions between them are intense closer to the vortex center until approximately
x∗ ≤ 4.5, after which it slowly begins to diffuse outwards from the vortex center. Further,
the incoherent motions are seen to follow the path of the coherent structures, indicating
that the coherent structures interact with the incoherent structures while transporting
them.

Figure 5.3 shows the trajectory followed by alternating vortices during travel travel
downstream. The vortices are detected by the Γ(2) criterion following [64], defined as,

Γ(2) =
1

N
ΣS

PM ∧ (UM −UP)

∥PM∥ · ∥UM −UP∥
, (5.3)

where N is the number of points in a rectangular window within the PIV domain centered
at P with M being the distance from the local center P, UM is the local velocity vector
at M and UP = 1

S

∫
S
UdS is the local convection velocity around P. Vortex centers are

identified as the weighted center of the vorticity (see [22]) or from the Γ(2) function as

xiΓ =
1∫

S
Γ(2) dx dy

∫
S

xi Γ(2) dx dy, (i = 1, 2) (5.4)
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where S refers to the area of the vortex, detected using some threshold values over the
computed Γ(2) values from equation (5.3).

Figure 5.3 shows that the vortices move towards the wake centerline, while forming,
and then their centers starts to be displaced laterally during its growth by entrainment.
The trajectory shows good agreement with the results in [29] at least in the initial stages
of vortex formation in figure 5.3, when the origin shifted to the center of the recirculating
flow and normalised by the extent of the recirculating flow region. One may also notice
that in the initial stages, the vortex trajectory is scaled by the body height. Figure 5.3
further suggests the importance of l∗v and l∗r as potential length-scales.

Finally, it is to be noted that the POD methods computes orthogonal modes which are
based on the energy content only. The temporal dynamics may be therefore partially lost
in the process. Spatially uncorrelated structures may be contained within the large-scale
structures embedded, thus obscuring its physical significance [207]. One may circumvent
this problem by the conventional phase averaging technique, where a sufficiently time
resolved reference signal is used [127], or more advanced methods, for example: based
on Dynamic Mode Decomposition (DMD) [153], Spectral POD modes (SPOD) [179], or
Optimal Mode Decomposition (OMD) [11] in a multi scale flow, to isolate the coher-
ent structures at a specific frequency which is more representative of a single coherent
structures.

Coherent and incoherent Reynolds stresses

Following the work of Reynolds and Hussain (1972) [142], the Reynolds stress terms
can be split into coherent and incoherent contributions such that

u′iu
′
j = ũiũj + ⟨u′′i u′′j ⟩+���������:0

⟨u′′i ⟩ũj + ũi⟨u′′j ⟩, (5.5)

where · and ⟨·⟩ represents time averaging and phase averaging respectively. Note that the
last two terms result from the coherent-incoherent structure interaction. It was found to
be negligible and is not taken into account in the following discussion. This can be the
consequence of the triple decomposition used in this study where temporal periodicity is
enforced using POD, resulting in coherent structures that are spatially uncorrelated with
the remaining POD modes.

Figure 5.4 shows the topology of the coherent and incoherent stresses at a phase ϕ1.
The qualitative features are generally seen to be similar to those reported in an earlier
study by Cantwell and Coles (1983) [32]. The coherent streamwise normal stress ũ2 in
figure 5.4a shows symmetry about the wake centerline and peaks away from the vortex
center, close to its edges. The peaks observed are a result of positive and negative peaks
of ũ due to the local rotation of the vortices at this location.

The incoherent streamwise normal stress ⟨u′′2⟩∗ shown in figure 5.4b follows the path
of the shed vortices and displays a wavy structure, however these stresses are nor negli-
gible close to the wake centerline nor exhibits symmetry unlike its coherent counterpart.
As observed in [32], the ⟨u′′2⟩∗ peaks close to the center of the vortices and the peaks are
connected by thick strips of lower ⟨u′′2⟩∗ close to the saddle point of the vortices. The
amplitude levels of the coherent and the incoherent stresses in figures 5.4a and 5.4b are
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approximately comparable, with the coherent component slightly higher than the inco-
herent part.

The coherent component of the Reynolds shear stress ũṽ in figure 5.4c displays an
anti-symmetric behaviour. Unlike the coherent ũ2 which displays peaks close to the top
and bottom edges, the coherent ũṽ displays peaks close to the side-wise edges of the
vortices where the saddle points are located. As observed in [32], there are regions of
strong momentum influx towards the wake interior and regions where relatively weaker
momentum outflux away from the wake observed with a thin layer separating the two.
In addition and similar to that reported in [32], regions of high coherent shear stresses
are also observed where the fluid from the external flow enters the wake, represented by
alleyways between the stream lines directed towards the wake interior. The incoherent
component of Reynolds shear stress ⟨u′′v′′⟩∗ on the other hand displays a wavy structure
similar to that of ⟨u′′2⟩∗. Unlike the associated coherent part, the incoherent Reynolds
shear stress components are mainly composed of regions with strong influx of momentum
towards the wake interior. It tends to peak closer to the saddle points, similar to that
observed in [32, 29]. The maximum magnitude of the coherent and incoherent component
of the Reynolds shear stress appear to be closer in comparison. In addition, unlike the
coherent part, the ⟨u′′v′′⟩∗ does not display a region of strong outflux of momentum away
from the wake interior in the region close to body.

Figure 5.4e shows the coherent component of the transverse Reynolds normal stress
at phase ϕ1. The peaks in ṽ2 appear as islands separated by small strips and displays
symmetry about the geometric wake centerline. The peaks form away from the vortex
center and close to its edges on the wake centerline due to the positive and negative peaks
of ṽ arising out of local rotation of the vortices. In addition, these peaks are located at
regions where the external flow penetrates to the wake. Comparatively, the peak values
of ṽ2 appears to be more than twice that of ũ2, in agreement with [32]. The incoherent
component ⟨v′′2⟩∗ in figure 5.4f of vertical Reynolds normal stress displays a wavy structure
similar to that of ⟨u′′2⟩∗. The amplitude of the wavy structure is similar closer to the body
whereas it goes higher while moving down-stream. The ⟨u′′2⟩∗ unlike ⟨v′′2⟩∗ is spread over
a relatively larger region. The ⟨v′′2⟩∗ similar to ⟨u′′2⟩∗ is observed to follow the path of
the coherent structures and peaks closer to the vortex centers, whereas the incoherent
Reynolds shear stress component is found to peak near the saddles, in agreement with
the observations of [29, 32]. The magnitude of the peaks of ⟨v′′2⟩∗ and ⟨u′′2⟩∗ are found to
be comparable, however with the former displaying slightly higher values and indicating
anisotropy in the turbulent incoherent fluctuations.
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(a) ũ2∗. (b) ⟨u′′2⟩∗.

(c) ũṽ∗ . (d) ⟨u′′v′′⟩∗.

(e) ṽ2∗ . (f) ⟨v′′2⟩∗.

Figure 5.4: Coherent and incoherent components of the total Reynolds stress fields at
a single phase ϕ1 for Reh ≈ 2.8× 104. Similar to figure 5.2a, the streamlines are that
observed by an observer travelling at Uin. The red contours and white solid circles denote
the vortices detected by the Gamma -2 criterion (5.3) and the vortex centers respectively.

105



(a) u′2∗ profiles. (b) u′v′
∗
profiles.

(c) v′2
∗
profiles.

(d) Vorticity of incoherent structure convected by
the mean field i.e. ∇× (u− ũ), at an arbitrary time
within the phase ϕ1 defined for the coherent struc-
ture.

Figure 5.5

Figure 5.5 shows profiles of Reynolds stress components split between coherent and
incoherent part, based on equation (5.5). The wake being symmetric, only the profiles in

the upper half is shown. The profiles of u′2
∗
and v′2

∗
profiles are symmetric whereas u′v′

∗

profiles are anti-symmetric as shown in figure 4.6a. The locations at which these profiles
were taken corresponds approximately to (a) the region close to separation, (b) the end
of the recirculating flow region at x∗ ≈ 0.85 where the normal and shear stresses reaches
its maximum values and (c) a location farther away where the Reynolds stresses decay.

In figure 5.5a, close to the body at x∗ ≈ 0.16, u′2
∗
is dominated by the incoherent stress.

The coherent component is negligible and zero especially at the center. At x∗ ≈ 0.16 and
roughly close to the center of the shear layer (see figure 4.3a), a peak in u′2

∗
is observed.

The incoherent stresses further increase and reach roughly a constant value close to the
centre. In case of u′v′

∗
, similar to that of u′2

∗
, it is dominated by the incoherent component

at the transverse location close to the shear layer center and close to the body at x∗ ≈ 0.16.
On moving further towards the center of the wake, the coherent component dominates
the Reynolds shear stress and is positive indicating an out-flux of streamwise momentum
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away from the wake.
In case of v′2

∗
close to the body at x∗ ≈ 0.16 in figure 5.5c, similar to the other two

Reynolds stress components, a peak close to the shear layer center, lesser in magnitude,
is visible. Here, the incoherent stresses dominate. Towards the wake core, the incoherent
component of v′2

∗
rises to reach roughly a constant value and u′2

∗
is dominated by the

coherent component. The centerline values of ⟨u′′2⟩
∗
and ⟨v′′2⟩

∗
, close to the body, are

comparable. The peaks observed in the incoherent component of the Reynolds stresses
relates to the signature of some high wave number energetic structure buried in the in-
coherent motions, quite similar to the peaks observed in the coherent Reynolds stress
components (for example, the peaks in case of ũ2∗ due to the solid body rotation of the
vortex structure in figure 5.4a). Figure 5.5d shows the vorticity of incoherent motion ad-
vected by the mean flow and estimated at phase ϕ1. Closer to the body at the locations
where the peaks in Reynolds shear and normal stresses exists, the signature of energetic
structures, within the incoherent motions, in the shear layer are found in figure 5.5d rep-
resented by intense vorticity regions. It appears as a slight wavy motion. An eddying
motion exists at (x∗, y∗) ≈ (0.5,−0.2) carrying the fluid towards the wake center. This
streamwise location approximately corresponds to the center of the mean recirculating
vortex. It is well known that an inflection point in the mean velocity profile such as
in figure 4.3a forms a necessary condition for the appearance of instabilities according
to Rayleigh’s inflection point criterion [154]. In addition, the experimental results and
observations made by previous studies mention the appearance of Kelvin-Helmholtz type
instabilities (vortex rollup) occurring within the shear layer. For example, the flow visu-
alization and spectral measurements in the wake reveal such structures which interacts
with vortex shedding [197, 86], or in the studies of [139] where they observe traces of
such structures in the spectra of velocity fluctuations [134]. The studies of [139] also
concludes that such type of structures in the shear layer decides the initial development
of the wake before vortex shedding dominate the flow. The observations and arguments
from all these studies leads to a conclusion that the small scale structures in figure 5.5d,
are associated with the secondary peaks observed in the incoherent part of the Reynolds
shear and normal stresses in figures 5.5a, 5.5b and 5.5c at the location near separation,
could possibly be the structures associated to Kelvin-Helmholtz instability typically ob-
served in the shear layers (see [139] and the references therein).

Another striking feature of the Reynolds normal stress u′2
∗
and shear stress u′v′

∗
pro-

files in figures 5.5a and 5.5b, near the streamwise end of the recirculating flow region, is
that the double lobed structure observed in figure 4.5 is mainly due to the contribution
from the coherent structures formed by the shear layer roll up. The symmetric pattern
found in figure 5.4a together with the rotation of the coherent vortex structures leads
to a negligible time averaged contribution of ũ2 along the wake centerline, whereas the
incoherent contribution is nearly constant while approaching the core of the wake. The
normal stress u′2

∗
is mostly dominated by the incoherent structures in the near wake, near

the end of the recirculating flow region at x∗ ≈ 0.85, as well as farther downstream, at
x∗ ≈ 3. In case of Reynolds shear stress, both the incoherent and coherent contributions
are comparable in the near as well as farther downstream. In case of v′2

∗
, the upper

hand is for the coherent component of the Reynolds stress in the near wake as well as
farther downstream. Similar to that of u′2

∗
, the incoherent part of v′2

∗
is approximately

a constant close to the wake core and roughly twice higher than that of ⟨u′′2⟩
∗
. Whereas,

farther downstream, the incoherent component of both the Reynolds normal stress com-
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(a) ∇× (u′ − ũ) at phase ϕ3. (b) ∇× (u′ − ũ) at phase ϕ6.

(c) ∇× (u′ − ũ) at phase ϕ9. (d) ∇× (u′ − ũ) at phase ϕ12.

(e) Decomposition of u′2∗ along the wake cen-
terline .

(f) Decomposition of v′2
∗
along the wake cen-

terline .

Figure 5.6: Vorticity of incoherent structure convected by the mean field i.e. ∇× (u− ũ),
at an arbitrary time within the phase ϕ3 (a), ϕ6 (b), ϕ9 (c), ϕ12 (d) defined for the
coherent structure. The red solid line denotes the rri defined by the isoline U = 0.
Decomposition of streamwise (e) and transverse (f) Reynolds normal stress respectively
along the geometric wake centerline.

ponents approaches comparable values.

Finally, figures 5.6a to 5.6d shows the instantaneous vorticity of the flow field with
the coherent structures, in the respective phases, removed. This reveals the vorticity due
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(a) (b)

Figure 5.7: Contributions of coherent and incoherent Reynolds stresses to the base pres-
sure drag (a) and its evolution along the streamline ψ = 0 (b).

to incoherent structures advected by the mean flow field, similar to that of figure 5.5d.
The purpose is to show the existence of energetic structures within the shear layer which
are entrained in the recirculation region. These structures are known to interact with
the Karman vortices (see for example [197]). The resulting incoherent Reynolds normal

stress component ⟨u′′2⟩
∗
dominates along the centerline of the wake, displaying two peaks

close to the center of the recirculating flow region where the influence of these incoherent
structures in the shear layer remains strong. Similarly, ⟨v′′2⟩

∗
also reaches a peak close

to the center of the recirculating flow region, due to the influence of energetic structures
within the shear layer, that dominates within the incoherent structures. It is also seen
that the magnitude of the peak of ⟨v′′2⟩

∗
is higher than that of ⟨u′′2⟩

∗
. But this differ-

ence decreases farther downstream and the flow slowly tends an isotropic state in the wake.

5.2 Contributions of the coherent and incoherent

structures to the mean base pressure drag.

The contributions of the streamwise Reynolds normal and shear stresses, split into
the coherent and incoherent structures and their contributions to the time averaged base
pressure drag is shown in figure 5.7a. The contributions from the coherent and incoherent
structures are represented by the superscripts (̃·) and (·′′) respectively. Near separation,
the coherent structures are in their forming stage. Their contributions to the Reynolds
stresses are therefore negligible. Incoherent structures, on the other hand, are active near
the shear layer center with a strong contribution to the Reynolds stresses. They grow
faster that coherent structures within the streamwise extent of the first half of the recir-
culating flow region (see figures 5.5 and 5.6 and 5.7b). This causes a higher contribution
of the incoherent structures to the Reynolds shear and normal stresses near separation,
in figure 5.7a growing rapidly until 0.3l∗r after which they roughly remains a constant
throughout except for the incoherent shear stress which tends to zero near l∗r as the
streamline ψ = 0 reaches the wake centerline. Coherent structures grow relatively slowly
gradually reaching a peak closer to l∗r but tending to zero at l∗r as the streamline touches
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(a) (b)

Figure 5.8: Decomposition of the mean pressure along the streamline defined by the
stream function ψ = 0, which forms the lateral boundary of the CV shown in figure 4.19.
All the terms are normalized by the spatially averaged base pressure. The description of
the legends are same as that given in figure 4.13.

the wake centerline (see figure 5.7b). T ′′
RN

reaches −7% near 0.4l∗r after which it remains
constant and T̃RN

grows to approximately −11% near the center of the recirculating flow
region. For the Reynolds shear stress, its initial magnitude near separation is important
since the transverse normal component ny is the highest near separation and tends to
zero as the bubble curves inward near l∗r . Hence, the contribution of incoherent Reynolds
shear stress is higher than that of its coherent counterpart and peaks at 11% while the
latter peaks at 7% at l∗r .

The mean pressure along the streamline, defined by ψ = 0, is also split and each part
is shown in figure 5.8a. Note that the mean pressure here is normalised by the mean base
pressure

1

h∗

∫
Base

P ∗dy∗.

A marginal difference between the sum of pressure solutions represented by ΣP ∗ and the
pressure reconstructed using the optimal control algorithm P ∗ can be seen, which is to be
expected. The magnitude of the mean pressure P ∗, along the streamline ψ = 0, is seen to
be greater than or equal to the average base pressure of the body, however its magnitude
remains approximately a constant.

The term P ∗
FS which represents the free-stream pressure, primarily due to the blockage

by the body and by the test-section wall boundary layer, remains a constant at 15% of
the average base pressure. Near the body-base, the mean pressure due to u′2

∗
and u′v′

∗

tends to cancel each other until 0.4l∗r , after which P
∗
uu and P ∗

uv remains negligible. Close
to the end of the recirculating flow region, the P ∗

uv peaks close to 15% of the average mean
base pressure.

P ∗
vv may further be split into coherent and incoherent contributions, along the stream-

line ψ = 0 (see figure 5.8b). Closer to the separation point, the 30% contribution of
P ∗
vv to the base pressure, is driven by 50% from coherent and incoherent structures. It

remains roughly a constant until 0.4l∗r after which the contribution of coherent structures
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to P ∗
vv increases owing to the developing coherent structures. The contribution from the

incoherent structure also increases after 0.5l∗r and peaks at 0.9l∗r providing close to 30%
of the base pressure.
The integral contribution of the mean pressure to the budget of the base pressure drag
may also be decomposed but, conclusions are similar to that in figure 5.8a.

The average contribution to the base pressure drag between mean flow,coherent and
incoherent structures, can be defined by,

I =
1

l∗r

l∗r∫
0

T dL∗, (5.6)

where T represents the total contribution of a term at each L∗. For example, Iuu =
1
l∗r

∫ l∗r
0
(TRN

) dL∗ represents the total contribution of the streamwise Reynolds normal stress

u′2
∗
to the base-pressure drag in the budget performed in figure 4.19. The resulting in-

tegral contributions are shown in figure 5.9a. The direction of the arrows represent the
source or sink of the base pressure drag. The mean pressure contribution acts to increase
the mean base pressure drag with a dominant contribution of 112%. The streamwise
Reynolds normal stress u′2

∗
acts to reduce the mean base pressure drag, and hence the

arrow pointing away from the main node CdBase, with an integral contribution of 13.6%,
out of which 43% of Iuu comes from the incoherent structures and the remaining from the
coherent part. The Reynolds shear stress tends to increase the base drag contributing up
to 7.6% of the mean base pressure drag, out of which the incoherent stress dominates with
66% and the remaining 34% Reynolds shear stress comes from the coherent structures.
The least contribution comes from the mean momentum term with only 5% of the mean
base pressure drag. Note that the mean momentum term IU tends to decrease the mean
base pressure drag and hence it is shown with an arrow pointing away from the main node
CdBase.

The dominant pressure contributions to the mean base pressure drag are split between
its constituent building blocks and its integral contribution, using the definition given in
equation (5.6), is shown in figure 5.9b. The least contributors to IP is due to the mean
pressure contributions arising from the Reynolds streamwise normal stress (2%) and from
the Reynolds shear stress (8.9%). The blockage contributes up to 16% of the integral
mean pressure contribution IP . The contribution to IP from the mean flow deformations,
which is intense close to the body, due to a strong shear layer, and dies down while nearing
the end of the recirculating flow region, contributes on an average 29% of the total IP .
The transverse Reynolds normal stress, though it does not contribute explicitly to the
base pressure drag, acts through the mean pressure tending to increase the mean base
pressure drag. The mean pressure due to the transverse Reynolds normal stress v′2

∗
is

the dominant one (44% of IP on an average) driving the total mean pressure contribu-
tions IP , out of which the effect of the large scale von-Kàrmàn like vortex shedding is
the dominant one contributing upto 57% of the IPvv , whereas the incoherent structures,
though not dominant, has a significant contribution of 43% of IPvv .

The simple integral momentum budget along the CV defined using the streamline
ψ = 0 shows that the coherent structures as well as the incoherent ones has a significant
contribution to the mean base pressure drag, both explicitly and implicitly through the
Reynolds streamwise normal stress, the Reynolds shear stress and the mean pressure due
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(a)
(b)

Figure 5.9: The integral contributions of Reynolds stress, pressure and the mean momen-
tum to the base pressure drag, based on the integral momentum budget performed in
figure 4.19 (a), the integral quantification of the constituent building blocks of the mean
pressure contributions to the base pressure drag (b).

to the transverse Reynolds normal stress. Therefore, it is necessary to understand the
mechanism that drives the coherent structures. The strategy is similar to that followed in
section 4.3 but for the coherent Reynolds stresses in order to understand how energy from
the mean flow is redistributed amongst the coherent Reynolds stress components. Further,
this may reveal the mechanism by which energy is fed to the incoherent structures since it
is believed that the coherent structures feed the incoherent ones [133, 149, 12]. However,
it is to be noted that the method of triple decomposition followed, as briefly mentioned in
section 5.1.1, extracting the coherent structures by ensemble averaging of instantaneous
velocity fields in the corresponding phase-bin simplifies the transport equation since few
terms becomes zero similar to that in equation (5.5).
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5.2.1 Coherent Reynolds stress transport

The transport equation for the coherent Reynolds stresses reads:

Uk
∂ũiũj
∂xk︸ ︷︷ ︸
Ãij

=−
{
ũjũk

∂Ui
∂xk

+ ũiũk
∂Uj
∂xk

}
︸ ︷︷ ︸

P̃ij

D̃p̃
ij︷ ︸︸ ︷

−1

ρ

∂

∂xk

(
p̃ (δikũj + δjkũi)

)
+

2

ρ
p̃s̃ij︸ ︷︷ ︸

P̃Sij

− ∂

∂xk

(
ũiũjũk

)
︸ ︷︷ ︸

D̃ij

− ∂

∂xk

(
⟨u′′i u′′k⟩ũj + ⟨u′′ju′′k⟩ũi

)
︸ ︷︷ ︸

D′′
ij

−
(
−⟨u′′i u′′k⟩

∂ũj
∂xk

− ⟨u′′ju′′k⟩
∂ũi
∂xk

)
︸ ︷︷ ︸

P ′′
ij

− 2ν

(
∂ũi
∂xk

∂ũj
∂xk

)
︸ ︷︷ ︸

ε̃ij

+
∂

∂xk

(
ν
∂

∂xk
ũiũj

)
︸ ︷︷ ︸

(Dνij )

,

Ãij = P̃ij + D̃p̃
ij + P̃S ij + D̃ij + D′′

ij − P ′′
ij − ε̃ij + Dνij

(5.7)

where the subscript refers to the component of the Reynolds stress tensor. The interpre-
tation of various terms are similar to that of equation (4.13). For instance, the left-hand
side of equation (5.7) is the spatial transport of the coherent Reynolds stress ũiũj in a
time averaged sense, whereas the right hand side of the equation describes its mechanism.
The term ε̃ij is expected to be extremely small, because the dissipation essentially takes
place at the smallest scales (see for instance [132]). The viscous diffusion of the coherent
Reynolds stress is seen to be extremely small and hence it shall not be shown in the
balance plots. P̃ij is similar to Pij in equation (4.13) acting as a source term extracting
the energy from the mean flow and injecting it to the coherent structures. The terms D̃p̃

ij,
Dij and D′′

ij respectively, represent the turbulent diffusion of Reynolds stresses, due to
coherent pressure, coherent and incoherent motions respectively, since its integral over a
large control volume vanishes (see [142]), or in other words it merely redistributes stresses
within the flow.

The pressure strain term P̃Sij, similar to PS ij, merely acts to redistribute energy
within the Reynolds normal stress components. However, in the case of coherent Reynolds
shear stress components, it may act as a sink or source causing a net rate of change of
the Reynolds shear stresses. Finally the term P ′′

ij, is a production term as the integral
of it over a large control volume does not vanish, and it acts to extract energy from the
coherent structures passing it on to the incoherent structures since this term is positive
in the equation for transport of incoherent Reynolds stresses.

The mean flow being two dimensional, the mean spanwise component of the velocity
is zero and hence, the advection term can be estimated accurately. Further, the mean two
dimensional flow field eliminates the mean spanwise gradient of the mean spanwise veloc-
ity and hence the production term P̃ij can be estimated accurately. Among the diffusion
terms, if the coherent structures are predominantly two dimensional, then the spanwise
gradient terms can be assumed to be very small. This is also the case for the production
term P ′′

ij. The pseudo-dissipation and the viscous diffusion terms, being negligibly small,
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is not important such that the equation shall be in balance even if those terms are not
included. Therefore, the only terms that remains are those with the coherent pressure

in it, such as the coherent pressure diffusion D̃ij
p̃
and the coherent pressure strain P̃S ij

terms, which may not be negligible.

In the following section, the method to compute the coherent pressure fluctuations
from the 2D planar PIV velocity fields is discussed.

5.3 Pressure of coherent structures

The fluctuating pressure is an important quantity that determines the fluctuating
forces experienced by the bluff body. However, the effect of fluctuating pressure on the
mean drag is not well documented. The reduction of fluctuating pressure was found to lead
to a reduced mean drag (see [40]) and therefore represents an important quantity for flow
control purposes. Similar to the decomposition of the fluctuating velocity, the fluctuating
pressure can also be decomposed between a coherent and an incoherent part. This allows
for analysing flow fields in a phase-averaged sense. Similar to the mean pressure gradient,
the coherent pressure gradient may also be estimated directly from the knowledge of co-
herent and incoherent velocity fields. This allows for performing a phase-by-phase local
momentum budget and understand the mechanism responsible for its transport. However,
the knowledge of coherent pressure rather than its gradient is still required to perform a
global phase-by-phase momentum budget (along a control volume) in order to estimate
the quasi-instantaneous drag force and to understand the role of various transport terms.

The mean drag force of the bluff body is due to contribution from various transport
terms such as the mean momentum, the Reynolds stresses and mean pressure. The driving
mechanism of mean momentum may be understood by performing local mean momen-
tum budget at specific streamwise locations, for which the knowledge of mean pressure
gradient, estimable directly from the PIV obtained velocity fields, is the only necessary in-
formation. In order to understand the driving mechanism of Reynolds stresses, attention
has to be turned onto the Reynolds stress transport equation which permits identifying
the mechanism of transport of individual Reynolds stress terms. This is unlike the turbu-
lent kinetic energy budget equation, where it doesn’t yield information on the transport
of individual Reynolds stress terms. The budget of Reynolds stress transport requires the
knowledge of certain terms such as diffusion due to the third component of fluctuating
velocity, dissipation and the fluctuating pressure, for its closure. The dissipation in the
near wake is typically found to be negligible in the near wake (see [132]). However, the
residual terms including that due to fluctuating pressure and the third component of fluc-
tuating velocity remains unknown.

An alternative is to split the Reynolds stresses into coherent and incoherent part and
analyse the transport equations for both separately. Since it is the coherent structures
that dominate a two-dimensional bluff body wake, the budget of coherent Reynolds stress
transport can already reveal important driving mechanisms and may also shed light on
the energy exchange between the coherent and the incoherent structures since the sink
term in the coherent Reynolds stress transport equation acts as a source term in the
incoherent Reynolds stress transport equation. In [12], where they study the interac-
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tion of multiple coherent structures produced by multiple wakes of bluff bodies and the
mechanism of energy transfer between them, it is speculated that the diffusion due to the
coherent pressure along with the other residual terms could be an important contribu-
tor to the transport of coherent turbulent kinetic energy, however it was not estimated
in their works and hence its contribution was not quantified. [149] observed that the
fluctuating pressure plays an important role in the energy exchange between mean and
fluctuating motion in the wake of a square cylinder at Re ∼ O(102). Examining the
transport equation for coherent Reynolds stress transport, one may notice that the co-
herent dissipation term is not important as the dissipation largely takes place at smaller
scales or at the level of incoherent structures. If the coherent structures are predominantly
two-dimensional in nature, we may notice that the only dominant terms that needs to be
determined are those with the coherent pressure included in it. The estimation of coher-
ent pressure should allow for the partial closure of the Reynolds stress transport equation.

This section focuses on estimating the coherent pressure from the knowledge of two
dimensional velocity fields readily available from the PIV experiment.

5.3.1 Theoretical background and coherent pressure estimation

Similar to the mean pressure, we may estimate the coherent pressure by inverting the
Poisson’s operator for the coherent pressure. From the transport of coherent momentum,
one may write the local gradient of coherent pressure as,

∂

∂xj
(p̃δij) = −ρ

{
∂ũi
∂t

+
∂

∂xj

(
ũjUi + Ujũi − 2νs̃ij + ũiũj + ⟨u′′i u′′j ⟩ − ũiũj − ⟨u′′i u′′j ⟩

)}
,

(5.8)
where U , ũ and u′′ are the mean, coherent and incoherent velocities respectively. Applying
the divergence operator to equation (5.8) results in a Poisson’s equation for the coherent
pressure given as,

∂

∂xi

(
∂

∂xj
(p̃δij)

)
= −ρ ∂

∂xi

{
∂

∂xj

(
[ũjUi + Ujũi] +

[
ũiũj + ⟨u′′i u′′j ⟩ − ũiũj − ⟨u′′i u′′j ⟩

])}
,

(5.9)
where the time dependency and the viscous term vanishes owing to the divergence-free
velocity fields. The second-order source term formed by the Poisson’s equation for the
coherent pressure (5.9) can be solved using Neumann type boundary condition (5.8).
However, it is to be noted that the boundary terms involve a time dependent term. The
time derivative of the coherent velocity ũ(x, ϕ, t), while extracting the coherent structures
based on a time resolved signal that indicates the phase of the periodic coherent signal,
may be written as,

∂ũ

∂t
=
∂ũ

∂ϕ

∂ϕ

∂t
= 2πf

∂ũ

∂ϕ
, (5.10)

where f is the frequency of the band-passed time resolved signal based on the phase av-
eraging is carried out [190]. In the present set of experiments, phase averaging method
based on a pressure signal sampled at a high frequency, sufficient to capture the dominant
mode, was not successful. As such, the coherent structures in this study are obtained by a
POD based method that represents phase averaging, where the phase selection is carried
out based on the time coefficients of the first two modes with very similar energy levels
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(see [192]). This method of phase averaging, suitable for flow data that are arbitrarily
spaced in time, provides a fairly good representation of the well documented von-Kàrmàn
vortex street. The disadvantage is that the time dependency of the coherent structure is
lost. However, the time derivative may be approximated using equation (5.10) using the
frequency information available from the pressure signals, since the dominant frequency
captured by the pressure signal corresponds to the well documented von-Kàrmàn vortex
street and the POD-based phase average extracts the spatially coherent modes that repre-
sents the von-Kàrmàn vortex street (see [128] for instance). Therefore, the time derivative
of the coherent velocity ũi at phase ϕi may be approximated using a second-order central
difference scheme as,

∂ũi
∂t

|ϕk= 2πf

(
ũi |ϕk+1

−ũi |ϕk−1

2∆ϕ

)
= fNϕ

(
ũi |ϕk+1

−ũi |ϕk−1

2

)
, (5.11)

where Nϕ represents the number of phases that the periodic signal is split into. This is a
first approximation of the temporal derivative. It can be further improved by considering
the temporal derivative of spanwise vorticity, i.e.,

∂ω̃z
∂t

=
∂

∂x

(
∂ṽ

∂t

)
− ∂

∂y

(
∂ũ

∂t

)
= −∆

(
∂ψ

∂t

)
, (5.12)

where ψ is the streamfunction and ω̃ = ∇ × ũ. Rearranging the transport equation for
the coherent momentum and representing the right-hand side of the time derivatives as,

∂ũ

∂t
=−

{
ũ
∂U

∂x
+ ṽ

∂U

∂y
+ U

∂ũ

∂x
+ V

∂ũ

∂y

}
− 1

ρ

∂p̃

∂x
− ∂

∂x

(
ũ2 + ⟨u′′2⟩ − ũ2 − ⟨u′′2⟩

)
− ∂

∂y

(
ũṽ + ⟨u′′v′′⟩ − ũṽ − ⟨u′′v′′⟩

)
+

∂

∂x
(2νs̃11) +

∂

∂y
(2νs̃12) = ft(ũ)

and

∂ṽ

∂t
=−

{
ũ
∂V

∂x
+ ṽ

∂V

∂y
+ U

∂ṽ

∂x
+ V

∂ṽ

∂y

}
− 1

ρ

∂p̃

∂y
− ∂

∂x

(
ũṽ + ⟨u′′v′′⟩ − ũṽ − ⟨u′′v′′⟩

)
− ∂

∂y

(
ṽ2 + ⟨v′′2⟩ − ṽ2 − ⟨v′′2⟩

)
+

∂

∂x
(2νs̃21) +

∂

∂y
(2νs̃22) = ft(ṽ),

(5.13)

the problem is to solve the Poisson equation for the temporal derivative of the stream-
function in the interior of the domain, i.e.,

∆

(
∂ψ

∂t

)
= −

(
∂

∂x
(ft(ṽ))−

∂

∂y
(ft(ũ))

)
, in Ω, (5.14)

with Neumann-type boundary conditions,

∇
(
∂ψ

∂t

)
· n =


∂
∂x

(
∂ψ̃
∂t

)
= −∂ṽ

∂t
= −ft(ṽ) on the transverse domain-boundaries,

∂
∂y

(
∂ψ̃
∂t

)
= ∂ũ

∂t
= ft(ũ) on the lateral domain-boundaries.

(5.15)
Once the solution ∂ψ

∂t
is found, the temporal velocity derivative can be estimated simply

by the spatial derivative,

∂ũ

∂t
=

∂

∂y

(
∂ψ

∂t

)
and

∂ṽ

∂t
= − ∂

∂x

(
∂ψ

∂t

)
. (5.16)
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The advantage of estimating the temporal derivative of streamfunction to estimate
the temporal derivative of velocities in equation (5.14) is that the coherent pressure in-
formation is not required in the interior of the domain, because ∇ × ∇p̃ = 0. But, the
coherent pressure information is required at the boundary. Therefore, a first estimation
of the pressure is carried out by solving the Poisson equation for coherent pressure (5.9)
and by specifying boundary conditions that involve the temporal derivative of velocities,
approximated using the finite difference estimation (5.11). Further, this first estimate
of coherent pressure is used to recompute the temporal derivative of velocity, using the
equation (5.16), which is then input to the coherent pressure solver in order to re-estimate
the coherent pressure. The vectors of temporal velocity derivatives estimated using equa-
tion (5.16) are divergence free by construction and are based on the assumption that the
coherent velocity fields are 2D.

The assumption of coherent structures being predominantly two-dimensional in na-
ture is also used, in order to compute the source and the boundary terms for estimation
of coherent pressure. The PIV experiment in this study being planar, the only velocity
components obtained are the streamwise and the transverse ones. This leads to certain
missing terms while computing the source and the boundary terms. For example, con-
sidering the source term, we may simplify the first set of terms on the right hand side
of equation (5.9) in the square brackets, using zero divergence condition of the coherent
velocity fields, as,

∆p̃Mc = −2ρ

{
∂U

∂x

∂ũ

∂x
+
∂V

∂y

∂ṽ

∂y
+
∂U

∂y

∂ṽ

∂x
+
∂V

∂x

∂ũ

∂y

}
, (5.17)

where it is free of any three-dimensional effects. Expanding the second set of terms on
the right-hand side of the equation (5.9),

∆p̃Rs =− ρ

{
∂2

∂x2

[
ũ2 + ⟨u′′2⟩ −

(
ũ2 + ⟨u′′2⟩

)]
+ 2

∂2

∂x∂y

[
ũṽ + ⟨u′′v′′⟩ −

(
ũṽ + ⟨u′′v′′⟩

)]
+2

∂2

∂x∂z

[
ũw̃ + ⟨u′′w′′⟩ −

(
ũw̃ + ⟨u′′w′′⟩

)]
+

∂2

∂y2

[
ṽ2 + ⟨v′′2⟩ −

(
ṽ2 + ⟨v′′2⟩

)]
+2

∂2

∂y∂z

[
ṽw̃ + ⟨v′′w′′⟩ −

(
ṽw̃ + ⟨v′′w′′⟩

)]
+

∂2

∂z2

[
w̃2 + ⟨w′′2⟩ −

(
w̃2 + ⟨w′′2⟩

)]}
,

(5.18)

where all the time-averaged cross Reynolds stress terms involving the third dimensional
velocity component w̃ or w′′ is zero owing to the two-dimensional mean flow (see [128]).
Due to the time averaged mean two-dimensional flow, the spanwise variation of spanwise
normal Reynolds stresses w̃2+ ⟨w′′2⟩ also has to be null. The phase averaged contribution
of cross Reynolds stress terms involving the third dimensional velocity component need
not be zero (see [208]). These terms are not accessible by the conventional two-dimensional
planar PIV. Further, assuming a two dimensional dominant mode, their spanwise gradi-
ents are assumed to be zero. Owing to these assumptions, we are finally left with three
terms from equation (5.18) as,

∆p̃Rs =− ρ

{
∂2

∂x2

[
ũ2 + ⟨u′′2⟩ −

(
ũ2 + ⟨u′′2⟩

)]
+ 2

∂2

∂x∂y

[
ũṽ + ⟨u′′v′′⟩ −

(
ũṽ + ⟨u′′v′′⟩

)]
+
∂2

∂y2

[
ṽ2 + ⟨v′′2⟩ −

(
ṽ2 + ⟨v′′2⟩

)]}
.

(5.19)
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Figure 5.10: Divergence of the coherent velocity fields at phase ϕ1.

Similarly, for the boundary terms involving the pressure gradient terms, the spanwise
gradients of the phase and time averaged cross stream Reynolds stress terms involving
the third dimensional velocity component, are assumed to be zero. Finally, the boundary
condition projected along the normal of the planar surface written as,

∂p̃

∂z
≈ −ρ

{
∂w̃

∂t
+

∂

∂x
(Uw̃ + ũw̃ + ⟨u′′w′′⟩) + ∂

∂y
(V w̃ + ṽw̃ + ⟨v′′w′′⟩)

}
, (5.20)

where the two-dimensional assumption is again used to remove the spanwise variation of
phase averaged cross stream Reynolds stresses, the terms involving mean spanwise veloc-
ity W , and the time averaged cross stream Reynolds stresses - found to be zero in the
cylinder wake by [128]. The spanwise coherent velocity shows a pattern similar to that of
ũ in [208] but is out of phase with respect to ũ. This implies that the remaining terms
in equation 5.20 is non zero. The terms contributing to the spanwise coherent pressure
gradient, though not accessible in this study, is written in order to emphasize that the
three-dimensional effects may not be negligible. However, if the flow is really two di-
mensional and since we are estimating pressure on a very thin plane, then the terms in
equation (5.20), that forms the Neumann boundary condition in the spanwise direction(
∂p̃
∂z

)
, gets cancelled out because of the surface normal that points in the opposite direc-

tions, i.e. in +z and −z directions respectively. We may verify the assumption of two
dimensional modes by estimating the two-dimensional divergence of the coherent velocity
fields. Figure 5.10 shows the divergence computed using the coherent streamwise and
transverse velocity field at phase ϕ1. The residual resulting from the divergence opera-
tion seems to be mild (lower than unity) especially in the near-wake region, close to the
body until at least x∗ ≈ 2. The PIV obtained velocity fields inherently contain noise.
Even though the phase averaging reduces the noise levels, it may still be present and the
derivative operation can amplify the noise level present [56].

Figures 5.11a and 5.11b shows the coherent streamwise and transverse velocity pro-
files, and the 2D divergence at the streamwise locations of x∗ ≈ 0.5 and x∗ ≈ 0.8. Note
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(a) (b)

(c) Terms of the divergence operation on the coherent
velocity vector ũ.

Figure 5.11: Comparison of the components of the velocity vector (a) and (b), where
the circular black, white diamonds and the red squares represents the original, smoothed
and the divergence corrected velocity profiles at streamwise locations of x∗ ≈ 0.5(a) and
x∗ ≈ 0.8(b) marked by dashed lines in figure 5.10. The smoothing is carried out by
a Savitzky-Golay type filter for 2D data. The corresponding residual of the divergence
operation is shown on the third subplot. (c). The individual terms resulting from the
divergence operation on the coherent velocity vectors.

that these locations approximately correspond to the edge and the center of the forming
vortices respectively. These locations were selected because high residuals of the 2D diver-
gence were observed at these respective locations, in figure 5.10. In order to check if the
derivative operations were responsible for the non-negligible amount of divergence resid-
uals observed, the coherent velocity fields were smoothed by a Savitzky-Golay filter for
2D data and the derivative operations applied to the smoothed fields. Figures 5.11a and
5.11b shows that the smoothing operation does not considerably alter the velocity fields,
and helps reduce the amplified noise level that resulted from the divergence operations in
the original non-smoothed field. In the very near wake at x∗ ≈ 0.5, the divergence residual
has dropped significantly by the smoothing operation, indicating the flow is dominantly
2D at this location. This observation can also be inferred from figure 5.11c, from which
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(a) (b)

Figure 5.12: Comparison of the source term estimated using the original coherent velocity
fields (a) and the divergence corrected coherent velocity fields (b).

it is clear that the residuals resulted from the noise level present.

On moving downstream, close to the location at which the vortex is fully formed
prior to shedding, the smoothing operation has reduced the noisy peaks resulting from
the divergence operation. However, the residuals remain high close to the center of the
vortex. This can also be seen in figure 5.11c at x∗ ≈ 0.8, where close to the center
of the wake, the flow is essentially 2D, while moving towards the vortex center, there is
a slight imbalance of ∂x∗ũ

∗ and ∂y∗ ṽ
∗ resulting in a residual as high as 0.3 after smoothing.

Figure 5.12 shows the source term of the coherent pressure Poisson equation without
and with the divergence correction applied. The contours representing the boundary of
the vortices detected using the Γ(2) criterion are overlaid on top of the source term map.
It is known that the Laplacian of the pressure shows positive values within the region of
lower pressure and is related to the positive values of Q, where Q is the second invariant
of the symmetric velocity gradient tensor. The positive value of Q indicates the dominant
role of the vorticity compared to that of the local straining motion and is used to detect
rotational vortices (see [47]). The Laplacian of the coherent pressure, which is also called
the source term here, computed without any corrections applied on the coherent velocity
field, does not accurately capture the low pressure region within the vortices in the near
as well as the far wake. Moreover, the source term seems to be corrupted by an intense
high frequency type noise. Even though the inversion of the Poisson operator acts as a
filter, the noise still propagates to the estimated coherent pressure field. Figure 5.12b
shows the source term of the coherent pressure computed using the divergence corrected
coherent velocity fields. It shows that the divergence correction significantly reduces the
noise level in the source term. The source term is now able to clearly distinguish the vor-
tex regions even farther downstream, even though the field looks noisy with smeared out
peaks close to the vortex center, capturing the essential physics, compared to figure 5.12a.

Figure 5.13 shows the pressure field induced by the coherent structures. The figure
5.1b shows that the two modes obtained by the POD technique is not perfectly periodic
in nature because the points in the (a1, a2) plane does not follow a circular path and there
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(a) .

(b) .

Figure 5.13: Pressure coefficient due to the coherent structures at phase 1 and phase 4.
The contours with continuous black line denotes the boundary of the vortices identified
using Γ(2) criterion and the white solid circles denote its centre. The black discontinuous
line close to the body represents the rri.

exists a considerable amount of scatter. However, the periodicity is enforced by the POD
method of coherent structure extraction. The estimated pressure p̃∗, also being periodic
in nature, using a waveform representation then consists of a real part and a complex
part. Therefore, it is sufficient to obtain the real and complex part of the waveform to
describe it completely. Here, pressure coefficient c̃p of the phases ϕ1 (the real part) and
phase ϕ4,

π
2
radians apart from ϕ1 forming its complex part (see figure 5.1b), are shown

in figures 5.13a and 5.13b respectively.

As expected, pressure decreases at the center of the vortices. As the vortices are ad-
vected downstream, the pressure minima is also advected along. In figure 5.13b, there is
an abnormal pressure rise in the upper region of the wake and pressure dip in the lower
region. This is thought to be not physical and arising from the noise from the source as
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(a) (b)

Figure 5.14: The spectrum of the fluctuating lift coefficient as a function of the Strouhal
number St = fh/U∞ (a), and the phase averaged lift and drag coefficients, phase averaged
based on the band pass filtered fluctuating lift signal centered on the peak at St ≈ 0.24
(b).

well as boundary terms of the coherent pressure Poisson equation.

5.3.2 Fluctuating lift and drag

Figure 5.14 shows the phase-averaged coherent lift and drag coefficient. Note that
twice the number of phases, used for POD based averaging of velocity fields, has been
used here in order to better represent the fluctuating C̃d. The fluctuating lift and drag
coefficient write,

C ′
l =

∫
Γ

C ′
pny dΓ, and C ′

d =

∫
Γ

C ′
pnx dΓ, (5.21)

where Γ, represents the surface of the body and C ′
p the fluctuating pressure coefficients

respectively which is estimated using the fluctuating pressure measurements obtained
from the pressure sensors installed around the body. The spectrum of the fluctuating lift
estimate, as a function of the Strouhal number, is shown in figure 5.14a, where a clear
dominant peak at a Strouhal number St ≈ 0.24, representing a periodic wake structure
is seen. The fluctuating lift signal is then phase shifted using the Hilbert transform in
order to determine the phase, and the fluctuating lift and drag estimate is then averaged
based on the identified phase to obtain the phase averaged lift C̃l and drag C̃d coefficient
shown in figure 5.14b. The periodic lift coefficient C̃l, due to the periodic wake structure,
varies in between ±0.315. The phase averaged drag coefficient C̃d also displays a periodic
variation, but with its period approximately half that of the phase averaged lift coefficient
C̃l.

Phase-averaged lift and drag may also be computed using the phase averaged integral
momentum budgets. Note that the pressure signal is phase averaged using the time series
of the fluctuating lift signal, whereas in order to perform the integral phase averaged
momentum budgets we use the flow fields phase averaged using the POD method.

Figure 5.15 shows the coherent lift computed using the integral budget of the vertical
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coherent momentum transport equation, integrated over a series of simple rectangular
control volumes (CV ), with the CV height h∗CV kept constant and its size varied by
displacing the outlet boundary in the streamwise direction, similar to the case in figure
3.11. Considering the CV in figure 3.8, the integral of the transport equation for the
vertical momentum writes

C̃l =− 2

U2
∞h


∫
S

(
∂ṽ

∂t

)
dS +

∫
CD

(
2V ṽ + ṽ2 + ⟨v′′2⟩ − ṽ2 − ⟨v′′2⟩+ p̃

ρ

)
dx

−
∫
AB

(
2V ṽ + ṽ2 + ⟨v′′2⟩ − ṽ2 − ⟨v′′2⟩+ p̃

ρ

)
dx

+

∫
BC

(
V ũ+ ṽU + ũṽ + ⟨u′′v′′⟩ − ũṽ − ⟨u′′v′′⟩

)
dy

 ,

(5.22)

where the temporal derivative term is integrated over the surface of the control volume and
S represents the surface area of the control volume. While estimating the coherent lift,
the constant appearing from the solution of the coherent pressure estimate gets cancelled
out due to the difference of the pressure terms on the lateral sides of the CV in equation
(5.22). The only missing contribution from the lateral sides due to the missing upstream
data is expected to be from the coherent pressure fluctuations. The C̃l estimated by using
the finite difference approximated temporal derivative and the subsequent coherent pres-
sure computed, reveals a very noise estimate in figure 5.15a. Close to the body, the C̃l for
all the phases are centered around zero, whereas as one moves downstream the estimate
worsens. The red dashed lines represent the minimum and maximum values of C̃l com-
puted from the pressure signals, phase averaged based on the fluctuating lift estimate.
The residual resulting from the integral momentum budget over the selected control vol-
umes, shown in figure 5.15b, is seen to be very large, with the values in the range ±30%.
Comparing the figures 5.15a and 5.15b, the noisy shape of the lift estimate results from
the large residuals in the integral momentum balance. This shows that the finite differ-
ence approximation of the temporal derivative and the coherent pressure estimated using
this temporal derivative term on the boundaries does not provide a satisfactory balance of
the integral momentum budget. The sources of the error in the estimate are numerous in
figure 5.15a. It may arise from the approximation of the temporal derivative of velocity,
estimated coherent pressure, inherent noise in the data or because of the two-dimensional
approximations.

Once the temporal derivative is estimated using the Poisson equation for the temporal
derivative of stream function, which is then used to recompute the coherent pressure, the
coherent lift estimation improves significantly (see figure 5.16a). Close to the body as well
as farther downstream, the noisy fluctuating lift estimate observed in figure 5.15a is cor-
rected and the coherent lift estimate for each phase roughly settles to roughly a constant
value, except for the wavy behaviour. Figure 5.16b shows the residual arising from the
integral momentum budget of the phase averaged transverse momentum equation over the
selected control volumes. The wavy behaviour in figure 5.16a is found to result from the
residual in the transverse phase averaged integral momentum balance. Comparing figures
5.15b and 5.16b, it is seen that the residuals arising from the integral momentum budget
has improved significantly. The value of the residuals was within the range ±30% using
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(a) Lift force coefficient due to the coherent struc-
tures, non corrected version.

(b) Residual arising from the phase averaged integral
transverse momentum balance.

Figure 5.15: Coherent lift computed using the integral budget of vertical momentum
transport over a series of rectangular control volumes, (a) estimated using the finite
difference approximation of the temporal derivative and the coherent pressure, computed
using this first estimate of ∂ṽ

∂t
, and (b) Residual arising from the phase averaged integral

transverse momentum balance, along the rectangular CV . The red dashed line in (a)
represents the maximum and the minimum values of the lift coefficients as obtained from
the pressure sensors. The height of the rectangular control volumes chosen are kept
constant at H∗ = 6 with only the outlet displaced in the streamwise direction and C̃l
computed for each CV .

the non corrected temporal derivative and the coherent pressure estimate, whereas once
those are corrected, the residual in the budget drops down significantly to remain within
the values ±4%. Therefore, the velocity temporal derivative estimated using equation
(5.14) and (5.15) is seen to improve the momentum budget and it further limits the errors
propagated to the coherent pressure through the boundaries, as the temporal derivative
appears on the boundary condition for solving the coherent pressure Poisson equation.

The C̃d due to the coherent structures can be estimated by performing the integral
budget of the phase-averaged version of the streamwise momentum equation (5.23) that
reads:

C̃d =− 2

U2
∞h


∫
S

(
∂ũ

∂t

)
dS +

∫
CD

(
Uṽ + V ũ+ ũṽ + ⟨u′′v′′⟩ − ũṽ − ⟨u′′v′′⟩

)
dx

−
∫
AB

(
Uṽ + V ũ+ ũṽ + ⟨u′′v′′⟩ − ũṽ − ⟨u′′v′′⟩

)
dx

+

∫
BC

(
2Uũ+ ũ2 + ⟨u′′2⟩ − ũ2 − ⟨u′′2⟩+ p̃

ρ

)
dy

 .

(5.23)

Note that the pressure in equation (5.23) may be shifted due to the constant that arises
from the integration of the Poisson equation using Neumann-type boundary condition.
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(a) Lift force coefficient due to the coherent struc-
tures, corrected version.

(b) Lift force coefficient due to the coherent struc-
tures, corrected version.

Figure 5.16: Coherent lift computed using the integral budget of vertical momentum
transport over a series of rectangular control volumes, (a) estimated using the temporal
derivative, estimated by solving the Poisson equation for ∂ψ

∂t
, and the coherent pressure,

computed using this corrected temporal derivative ∂ṽ
∂t

and (b) Residual arising from the
phase averaged integral transverse momentum balance, along the rectangular CV using
the corrected temporal derivative and the coherent pressure estimate. The red dashed
line represents the maximum and the minimum values of the lift coefficients as obtained
from the pressure sensors. The height of the rectangular control volumes chosen are kept
constant at H∗ = 6 with only the outlet displaced in the streamwise direction and C̃l
computed for each CV .

Figure 5.17a shows the C̃d using the equation (5.23), using a series of simple rectangu-
lar control volumes of height H∗ and the streamwise outlet location at L∗. At the lower
H∗, where the lateral sides of the CV are closer to the body, the C̃d estimate displays a
wavy behaviour along the position of the L∗. As the CV height is increased, for example
from H∗ ≈ 2 to 3, this behaviour decreases. At high enough H∗, the wavy behaviour
is seen to disappear completely. From the coherent pressure field shown in figure 5.13a,
the peaks and dips in the C̃d estimate is seen to correspond to the streamwise center or
the space in between of the shed vortices. The figure 5.17b shows the residual RX̃ , in
performing the integral momentum budget over the closed control volume defined by the
height H∗ and lateral side length L∗. It is seen that the residual also displays a wavy
behaviour similar to that seen in the C̃d estimate in figure 5.17a. Th amplitude of the
wavy behaviour also corresponds to that seen in the C̃d budget and hence if the residual
is subtracted from the C̃d, we may suppress this behaviour to obtain a constant C̃d over
the L∗ considered. As the CV height is increased, this wavy behaviour decreases. Note
that nevertheless, the normalised residual remains within 4%.

Considering the average of the C̃d represented as ⟨C̃d⟩ over the entire L∗ for each
choice of H∗, the ⟨C̃d⟩ is seen to increase, which could be caused by the coherent pressure
estimate corrupted by the constant arising out of integrating pressure Poisson’s equation
using Neumann-type boundary condition.
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(a) (b)

Figure 5.17: The drag coefficient due to the coherent structures estimated using the
phase averaged streamwise integral momentum budget (5.23) using a series of rectangular
control volumes of heightH∗ and length L∗ (a), and the residual of the integral momentum
budget carried out along those rectangular control volumes (b). The budget is performed
using the corrected temporal derivative and the coherent pressure estimated using these
corrected temporal derivatives.

The variation of ⟨C̃d⟩ with various choices of H∗ is shown in the figure 5.18a. A linear
trend, ⟨C̃d⟩ = mH∗ + k where m is the slope, is observed. This means that the constant
in the coherent pressure estimate increases the ⟨C̃d⟩ with increasing H∗ due to the inte-
gration over a larger height H∗. In order to make the C̃d estimate CV independent, the
slope of the linear trend, m, seen in figure 5.18a is subtracted from the phase averaged
streamwise integral momentum budget equation (5.23), i.e., C̃d,cor. = C̃d −

∫
BC

m dy∗,

and the corrected C̃d,cor. estimate is seen to be CV independent as shown in figure 5.18b.
Similarly, the C̃d estimate is made CV size independent and its estimate for the largest
CV size possible for the current data-set, is shown in figure 5.19a. The maximum and
minimum limits of the C̃d estimated using the pressure signal data, shown in figure 5.14b,
is shown by red dashed line. The estimated C̃d is seen to be within the limits of the refer-
ence C̃d obtained from measurements. Further, the C̃d is seen to be not a constant along
the L∗, which is due to the residual arising from the integral momentum budget along
the control volume. The residual of the integral phase averaged streamwise equation of
momentum, is shown in figure 5.19b for all 12 phases and is found to be within ±2%.

The coherent pressure estimation may further be corrected using the adjoint method
proposed in section 3.1.2. However, this requires the pressure signal to be in phase with
the PIV velocity fields. Moreover, unlike the pressure signal, the PIV velocity fields are
not phase averaged using a time resolved reference signal, but relies on the POD technique
which enforces periodicity using the first two spatially energetic modes. The result is that
the time information is lost. As such, a matching coherent pressure signal for a coherent
pressure field at a specific phase may not be feasible and hence the adjoint method was not
applied to correct the coherent pressure field. Note that other methods such as dynamic
mode decomposition [153], spectral POD [179], or least-squares-estimation POD [177]
could circumvent this issue.
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(a) (b)

Figure 5.18: Variation of the average C̃d over the outlet location L∗ for a single selected
H∗, denoted by ⟨C̃d⟩, as a function of various choices of control volume height H∗ (a),
where the black dashed line represents the linear trend ⟨C̃d⟩ = mH∗ + k, and (b) the
corrected C̃d estimate, C̃d,cor. = C̃d −

∫
BC

m dy∗, which is independent of the size of the
control volume.

(a) (b)

Figure 5.19: The corrected C̃d, ⟨C̃d⟩, estimated using a control volume of height H∗ with
varying CV outlet L∗ shown for all the 12 phases (a), where the red dashed line represents
the limit of the maximum and minimum C̃d estimated using the phase averaged pressure
signals, and (b) the residuals resulting from the phase averaged integral streamwise mo-
mentum budget performed over the rectangular control volumes.

5.4 Transport of coherent Reynolds normal stresses

The primary motive of estimating the coherent pressure is to analyse the balance of
Reynolds stresses, at-least partially, in order to identify the dominant mechanisms that
drive the dynamics.
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5.4.1 Streamwise coherent stress transport

The transport equation for the first component of the coherent Reynolds stress tensor
from its general form of equation (5.7) writes
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ũ2ṽ

)}
︸ ︷︷ ︸

D̃11

−2

{
∂

∂x

(
⟨u′′2⟩ũ
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∂y
+

})
︸ ︷︷ ︸

P ′′
11

−�
�>
0

ε̃11 +�
�>
0

Dν .

(5.24)

The interpretation of the equation (5.24) is given in section 5.2.1. In P ′′
11 and D̃11, since

the coherent structures are assumed to be predominantly two dimensional, the third com-
ponent which involves the out of plane gradient vanishes and hence not shown in equation
(5.24). Therefore, the only remaining component inaccessible from planar PIV measure-
ments is the third component of the diffusion term D′′

11 = ∂/∂z(⟨u′′w′′⟩ũ). which will be
small only if the residuals R11 are close to null.

Figure 5.20a shows the balance of the transport equation for Reynolds streamwise
normal stress ũ2 performed at l∗r/4. The naming corresponds to various terms described
in the equation (5.24). Ideally, with the advection term carried over to the right-hand
side of equation (5.24), the sum of all the terms should be zero. Approaching the wake
transversely from the free stream, all the terms are zero until y∗ ≈ 0.8. In between
0.5 ≤ y∗ ≤ 0.6, there is a gain in energy due to the production P̃11 and due to the
pressure diffusion term D̃p̃

11, where the latter dominates, which in part is drained away by

the pressure strain term P̃S11 and −Ã11. Note that all these terms peak near the center
of the mean shear layer, as denoted by the local half wake-width and the height of the
recirculating flow bubble. Within the wake width, the largest gain due to D̃p̃

11 → 0 as

y∗ → 0 is balanced by the losses due to P̃S11 and P̃11. The remaining terms are small and
their magnitudes are comparable to that of the residual term R11 and hence no conclusion
may be reached for them.

Figure 5.20b shows the local balance of the transport of ũ2
∗
at 0.5l∗r , which corresponds

to the streamwise location where ũ2
∗
has a maximum contribution to the base pressure

drag, figure 5.7a. Approaching the wake along y∗ from the free-stream, −Ã11 is exactly
balanced by P̃S11 and D̃p̃

11, until y∗ ≈ 0.5. As y∗ → 0 from 0.5, the flow is highly
inhomogeneous with all the terms playing a significant role. The residual R11 rises and
has the same shape of D̃11 + D′′

11. Its magnitude is similar to that of D̃11 + D′′
11 and the

combined magnitude of P̃S11 and P ′′
11. The residual may arise from the uncertainty in

the coherent pressure or from the missing out of plane term from D′′
11. Nevertheless, P̃S11

may remain an energy sink. Near the center of the mean shear layer, energy is gained by
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(a) (b)

Figure 5.20: Balance of equation for the transport of Reynolds streamwise normal stress
ũ2 performed at x∗ ≈ l∗r/4 and at x∗ ≈ l∗r/2 for the flow at Reh ≈ 2.8× 104

(a) (b)

Figure 5.21: Splitting the production term at x∗ ≈ l∗r/2 (a) and the colormap showing
the two constituent terms of the production P̃11 (b) for the flow at Reh ≈ 2.8× 104

P̃11, and it is not redistributed elsewhere but lost to P̃S11, P ′′
11 and −Ã11. Approaching

y∗ → 0, a large gain due to D̃p̃
11 is observed whose majority is lost to P̃11 within the

recirculating flow bubble. A part of this gain is redistributed by D̃11 + D′′
11 transversely,

which is injected to incoherent structures through P ′′
11 and across components through

P̃S11. If R11 had resulted from the pressure term, then for R11 to be zero, either sink
through P̃S11 increases or gain through D̃p̃

11 decreases. Then, even if R11 arises from
the missing out of plane term, the conclusions reached is not much affected. Within the
transverse centre of the recirculating flow bubble (see the schematic in figure 4.19), there
seems to be a reverse flow of energy where relatively small amount of energy is gained by
P ′′

11.
.
The production term P̃11 in the local balance at l∗r/2 acts as a source of energy near

129



Figure 5.22: Balance of equation for the transport of Reynolds streamwise normal stress
ũ2 at x∗ ≈ l∗r and for the flow at Reh ≈ 2.8× 104

the center of the shear layer whereas it acts as a sink near the wake centerline. Figures
5.21a and 5.21b show the production term split into its two components - normal P̃(1)

11 and

shear component P̃(2)
11 . They tend to oppose each other, specially within the mean growing

shear layer. It is the shear component that dominates, due to the nonlinear interaction
between the coherent Reynolds shear stress and the intense mean shear, peaking near
the shear layer center. Within the recirculating flow bubble, they both tend to work
together, resulting in a large energy sink shown in figure 5.21a. The shear component
P̃(2)

11 , as a source of energy, is intense within the shear layer especially near separation
and l∗r , the latter is associated with the length of vortex formation region. Within 3/4
of the recirculating region, the shear component acts as a sink, shown in figure 5.21b,
peaking near the streamwise center of the bubble, primarily due to the momentum outflux
represented by the positive Reynolds shear stress. The normal component P̃(1)

11 , on the
other hand, always acts as an energy sink. It is larger within the mean shear layer,
specially near separation due to a higher spatial acceleration of the mean flow, and is
weakened as the shear layer grows in space.

The coherent streamwise Reynolds normal stress peaks near the streamwise extent of
the recirculating flow region (see figures 5.5a and 4.5), which also corresponds approxi-

mately to the peak of shear component of production P̃(2)
11 - the dominant energy source.

The location balance at x∗ ≈ l∗r is therefore worth investigating, and is shown in figure
5.22.

Approaching the wake from the free-stream towards the wake centerline, −Ã11 spans
a greater transverse distance compared to that at l∗r/2 shown in figure 5.20b. It drives

the spreading of the wake, driven by P̃S11 and D̃p̃
11 where the former dominates until

y∗ ≈ 0.6. As y∗ → 0 from 0.6, a large gain in energy is obtained through P̃11 peaking
at the half wake-width and gradually declining to zero at the wake-centerline. The shear
component P̃(2)

11 , as shown in figure 5.21b, which is large here because of the interaction
of coherent Reynolds shear stress, attaining its peak at x∗ ≈ l∗r (see figures 4.6a and
5.5b), with the diffused shear layer. Most of the gain is absorbed by D̃p̃

11. Similar to the
balances performed upstream, the shape of the D̃11 + D′′

11 curve shows that its function
is to redistribute the energy transversely. This redistributed energy is further injected to
the incoherent structures through P ′′

11 at the wake centerline and at y∗ ≈ 0.5, the latter
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Figure 5.23: Colormap of the pressure diffusion D̃p̃
11 and the pressure strain P̃S11 fields

for the flow at Reh ≈ 2.8 × 104. The fields being symmetric, only one of the symmetric
planes is shown.

location may correspond to the outer edge of the shear layer (see figure 5.21b or 4.9). This
observation confirms the well known fact that the coherent structures drives the energy
cascade [32, 75, 133, 174]. Further, it is known that the saddle points between the vortices
play an important role in the production of turbulence [32]. The saddle points are not
shown here, since our interest is in much simplified time averaged flow.

The colormap of the pressure diffusion D̃p̃
11 and the pressure strain term P̃S11 is shown

in figure 5.23. The fields being symmetric, only one of the symmetric planes is shown.
The pressure strain term P̃S11 is seen to be intense along the mean shear layer especially
near the point of flow separation. It mostly acts as a sink of energy, which is supplied by
the pressure diffusion term near separation, and is intense along the shear layer within a
streamwise distance of l∗r/2. This drained energy, as mentioned earlier, is redistributed
among the normal components of the Reynolds stress. The pressure diffusion term D̃p̃

11

continues to act as s source of energy, compensating the energy sink created by the produc-
tion term P̃11 within the recirculating flow region (see figure 5.20b), within a streamwise
distance of 3/4l∗r , after which it switches to receive energy from the production term P̃11

as seen in figure 5.22.

The pressure diffusion term D̃p̃ is a transport term in divergence form which merely
redistributes the energy extracted from the mean flow. This can be seen from the map
5.23, where it receives energy in the region close to l∗r which is then redistributed in the
region close to separation. This indicates that the energy associated with the transport
of ũ2 is through the production term P̃11 from the mean flow, and the pressure diffusion
term plays a major role in redistributing the energy or back-feeding this energy upstream.
The energy fed upstream is then redistributed by the pressure strain term.
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Figure 5.24: Local balance of equation for the transport of Reynolds streamwise normal
stress ũ2 for the flow at Reh ≈ 2.8× 104, carried out along the wake centerline.

Figure 5.24 shows the balance in the transport equation for ũ2 along the wake cen-
terline y∗ ≈ 0. The wake centerline is an interesting location for local balances analyses
because of the similarity. However, all the terms except D̃11+D′′

11 and P ′′
11 are of the same

order of magnitude as the residuals. The balance is between the D̃11+D′′
11 and P ′′

11, where
the former injects energy to the incoherent structures through the latter with peaks at
l∗r . This trend is seen to continue until at least x∗ ≈ 3/2l∗r after which the noise from the
data takes over.

In order to obtain a global picture, an average integral contribution at a streamwise
location is defined as,

It(x
∗) =

1

L∗
y

L∗
y∫

y∗=0

t(x∗, y∗) dy∗, (5.25)

where t denotes the term whose average contribution is taken. For example, the term
I−Ã11

represents the average integral contribution of the advection term. Similarly, the
contribution from the remaining terms are averaged and its streamwise evolution is shown
in figure 5.25. Note that the residual terms are close to zero indicating a satisfactory bal-
ance. The average of the incoherent production term I−P ′′

11
is very small and close to the

magnitude of the averaged residuals. The diffusion term ID̃11+D′′
11
remains negligibly small,

indicating that this term is responsible only for the transverse redistribution of the energy,
as observed in figure 5.20b or 5.22. The production term IP̃11

remains small close to the
body, whereas moving downstream it drains energy peaking at l∗r/2 after which it switches
at x∗ ≈ 0.7l∗r to act as a source of energy. The main sink here is due to the presence of
recirculating flow region, as seen in figure 5.21b. It continues to decay downstream after
attaining a peak at l∗r . The energy gained through the production term, in part feeds
the advection term I−Ã11

. Since the residual is thought to arise from the inaccuracies in
the coherent pressure affecting the pressure strain or pressure diffusion term, it can be
said that a portion of the energy gained by the production term IP̃11

is injected to the
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Figure 5.25: Transversely averaged balance of equation for the transport of Reynolds
streamwise normal stress ũ2 for the flow at Reh ≈ 2.8×104 along the streamwise direction
normalized by the length of the recirculating flow region l∗r .

incoherent stresses through the incoherent production term I−P ′′
11
. The remaining energy

is redistributed by the pressure diffusion term ID̃p̃
11
, feeding it upstream and forming a

feedback loop. This redistributed energy is taken by the pressure strain term IP̃ S11
to be

supplied to the other normal coherent Reynolds stress component.

5.4.2 Transverse coherent stress transport

The transport equation for the transverse normal component of the coherent Reynolds
stress tensor from equation (5.7) reads,
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ũṽ
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∂y

})
︸ ︷︷ ︸

P ′′
22

−�
�>
0

ε̃22 +���*
0

Dν22 .

(5.26)

Similar to the case of coherent streamwise Reynolds stress transport in equation (5.24),
the third component of P ′′

22 and D̃22 vanishes due to bi-dimensionality and hence not
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shown. Hence the only remaining component inaccessible from planar PIV measurements
is the third component of the diffusion term D′′

22 = ∂/∂z(⟨v′′w′′⟩w̃) which will be small
only if the residuals R22 are close to null.

The transport equation for the transverse coherent Reynolds stress ṽ2
∗
is carried out

at three streamwise locations, l∗r/4, l
∗
r/2 and l∗r , similar to the case of ũ2

∗
. The budget

of the base pressure drag shows that initially, at L∗ ≈ l∗r/4, the mean pressure due to
ṽ2 contributes approximately 25% to the budget, which increases monotonically to 30%
at l∗r/2 continuing to rise and finally peak at l∗r contributing 40% to the base pressure
drag budget. The first streamwise location, l∗r/4, is chosen to analyse the Reynolds stress
transport balance in order to understand the initial development of the transverse co-
herent Reynolds stress. The streamwise location l∗r/2 shall serve to compare with the

transport of streamwise coherent Reynolds stress ũ2
∗
, and the final location of l∗r is chosen

because ṽ2, which is the major contributor to the mean pressure here, peaks close to this
location.

Figure 5.26a shows the balance in the transport equation for the Reynolds normal
stress ṽ2 performed at x∗ ≈ l∗r/4. Note that R22 remains negligible indicating that the
third component of D′′

22 is essentially negligible.Comparing figures 5.20a and 5.26a, the

energy drained through the pressure strain term P̃S11 from the former is injected as a
source of energy in transporting ṽ2

∗
through P̃S22 in the latter. Here, the primary energy

source is P̃S22 with its peak near the center of the mean shear layer. The gain is essentially
balanced by D̃p̃

22, which primarily redistributes the transverse energy. Above the mean
shear layer, the redistributed energy is mostly absorbed by −Ã22 and a small portion
is given back to P̃S11. The energy absorbed by −Ã22 is sent to the incoherent stresses
through −P ′′

22 within the recirculation region. The remaining energy is diffused towards
the centerline through D̃p̃

22 and lost to the sink by P̃22. The diffusion terms D̃22 + D′′
22

have a negligible role to play here.

The local balance of transport budget for ṽ2 at the streamwise location of l∗r/2 is
shown in figure 5.26b. Comparing figures 5.20b and 5.26b, the pressure strain terms,
though small, inter exchange energy from streamwise to transverse coherent Reynolds
normal stress within the wake width whereas it occurs in the opposite direction above the
wake width. The residual R22 remains negligible. Unlike the case upstream (figure 5.26a),
the energy is dominantly produced by P̃22, within the recirculating flow bubble. There
is a complex network of redistribution processes through the ensemble of diffusion terms.
Nevertheless, the dominant carrier of the energy produced by P̃22 is the pressure diffusion
term D̃p̃

22, which distributes this energy to −Ã22. A small portion of this energy is injected
to incoherent stresses through P ′′

22 within the transverse center of recirculating flow. A
reverse process may also be observed above the center but within the height of the bub-
ble, where the incoherent structures feed energy, though small, to the coherent structures.

Figure 5.27a shows the production term P̃22 split into its components at x∗ ≈ l∗r/2,

along with the normal production P̃(1)
11 of the streamwise stress transport equation. Unlike

the case of streamwise coherent normal stress, the shear and the normal components, P̃(1)
22

and P̃(2)
22 respectively, tends to work together as a sink. The latter, similar to P(2)

22 in figure
4.26b, has a global peak along the wake centerline near l∗r , where the shear layers interact,
and a sink within the first half of the recirculating flow bubble x∗ < 0.5l∗r (see figure
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(a) (b)

Figure 5.26: Local balance of equation for the transport of Reynolds transverse coherent
normal stress ṽ2 for the flow at Reh ≈ 2.8×104, carried out at x∗ ≈ l∗r/4 (a) and x∗ ≈ l∗r/2
(b) .

5.27b). This region is where the mass is entrained, by the lower side of the developing
shear layer, resulting in a positive transverse gradient of the mean vertical velocity ∂V ∗

∂y∗

which while interacting with the momentum out-flux, represented by positive coherent
Reynolds shear stress (figure 5.5b), results in a sink of P̃(2)

22 . The former has similar fea-

tures as that of P(1)
22 (see figure 4.26b), is significantly smaller than the normal component

and has a global peak oriented along the rri (isoline U = 0). In figure 5.27a, it tends to

oppose the normal production P̃(2)
22 near the shear layer center but soon switches role due

to the presence of back flow. It is due to the dominating normal production P̃(2)
22 , which

peaks along the bubble periphery, that a major share of the energy is produced by P22.

Using the divergence-free mean flow, i.e. ∂U∗/∂x∗ = −∂V ∗/∂y∗, the second term of
the production may be written as

−2ṽ2
∗∂V ∗

∂y∗
= 2ṽ2

∗∂U∗

∂x∗
.

Considering the normal production P̃(1)
11 = −2ũ2

∗ ∂U∗

∂x∗
which drains energy at x∗ ≈ l∗r/2

while transporting ũ2
∗
, in figure 5.20b, comparing it with the normal production term

P̃(2)
22 = 2ṽ2

∗
∂U∗/∂x∗, is roughly equal and opposite in magnitude (figure 5.27a). This

implies that at the center of the recirculation region, the term P̃(1)
11 acts to redistribute

the energy among the streamwise and the transverse coherent normal Reynolds stresses.
Further, comparing the profiles of coherent Reynolds normal stress components in figures
5.5 and 5.5, both the normal stress components are not of similar nature and magni-
tude. This means that the behaviour of the normal production term seen in figure 5.27a
is primarily due to the mean flow gradient within the recirculating bubble. Then, in
comparison with P11 and P22 in figure 4.26a the energy produced by the interaction of
incoherent stresses with the mean flow, for example: P11−P̃(1)

11 , shall be of similar nature,
i.e. an inter-component energy transfer through the normal production term.
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(a) (b)

Figure 5.27: Splitting the production term P̃22 into its constituent parts (a) & (b) and

comparison with the production term P̃(1)
11 at x∗ ≈ l∗r/2 (a) for the flow at Reh ≈ 2.8×104.

The production terms P̃(1)
22 and P̃(2)

22 being symmetric, only one of the symmetric planes
is shown. The thick and thin dashed lines represent the streamline ψ = 0 and the rri
respectively.

Figure 5.28 shows the local balance of the transport equation for ṽ2
∗
at x∗ ≈ l∗r .

The residual R22 remains negligible throughout. Similar to the case at 0.5l∗r a complex
energy redistribution process may be seen. The dominant energy source is due to the
normal production of P̃22, with a peak at y∗ = 0. The produced energy is redistributed
by D̃p̃

22 for the entrainment of ṽ2
∗
from the external flow, whereas D̃22 + D′′

22 serves to

transport ṽ2
∗
towards the wake-interior through −Ã22. Advection −Ã22 → 0 as y∗ → 0

implying that the ṽ2
∗
has reached its peak at the wake centerline. The intercomponent

energy redistribution through P̃S22 is week, while also taking place in both directions, i.e.
supplying energy to ũ2

∗
above the edge of the shear layer and in the reverse direction within

the wake. A considerable amount of energy is also injected to the incoherent structures
through P ′′

22, which peaks close to the shear layer center, presumably by D̃22 +D′′
22.

The map of the pressure diffusion and the pressure strain terms are shown in figure
5.29, where the pressure strain term P̃S22 is found to be equal and opposite to P̃S11,
shown in figure 5.23, due to the two dimensional nature of the coherent structure. The
map of the pressure diffusion term D̃p̃

22 shows that the sink through the pressure diffusion
term is dominant near the end of the recirculating flow region at the center of the wake,
which also corresponds roughly to the intense source of energy through the production
term P̃(2)

22 . In the region near the base of the body, corresponding to the sink of P̃(2)
22

at the first half of the recirculating flow region, the pressure diffusion term is seen to
supply energy which is transported from elsewhere. The map indicates that the pressure
diffusion term redistributes the energy that it primarily gains, from the production term
P̃(2)

22 x∗ ≈ l∗r and also from the pressure strain term P̃S22 along the mean shear layer close
to separation.

Finally, figure 5.30 shows the balance of the terms in the transport of ṽ2
∗
along the

centerline.The residual R22 remains close to zero throughout. The dominant terms are
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Figure 5.28: Local balance of the transport equation for the coherent transverse normal
stress ṽ2

∗
performed at x∗ ≈ l∗r for the flow at Reh ≈ 2.8× 104.

Figure 5.29: Pressure diffusion D̃p̃
22 field and the pressure strain P̃S22 field for the flow at

Reh ≈ 2.8× 104. The fields being symmetric, only one of the symmetric planes is shown.
The thick and thin dashed line represents the streamline ψ = 0 and rri respectively.

P̃22, D̃p̃
22 and D̃22 + D′′

22. The advection −Ã22 is negligible on the centerline implying

the local peaks of ṽ2
∗
, except in a small region within the bubble where energy is lost to

diffusion and incoherent structures. Near l∗r , a reverse flow in energy, from incoherent to
coherent, may be seen through −P ′′

22. The energy produced by P̃22, with peak at l∗r , is
redistributed by the pressure diffusion term D̃p̃

22, peaking near 0.75l∗r , which also feeds it
back to the region close to the body base near l∗r/2. The diffusion term D̃22 + D′′

22 be-
comes active after l∗r/2 and it redistributes the energy drained from the production term
P̃22 within the near wake l∗r/2 ≤ x∗ ≤ l∗r as well as beyond l∗r .

Similar to the case of Reynolds streamwise normal stress, an average balance of the
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Figure 5.30: Local balance of the transport equation for the coherent transverse normal
stress ṽ2

∗
performed along the wake centerline for the flow at Reh ≈ 2.8× 104.

transverse coherent normal Reynolds stresses can be performed by defining the average
quantity as per equation (5.25). The resulting balance is shown in figure 5.31. The
residuals IR22 are negligibly small throughout. The diffusion terms including those of
the coherent pressure remains negligible on averaging in the transverse direction. It was
seen that the pressure diffusion term D̃p̃

22 is active in the region close to separation (see
figure 5.26a) and towards the center of the recirculating flow region (see figure 5.26b) in
redistributing the energy gained by the production as well as the pressure strain term.
At the streamwise location of l∗r/2, the sum of the diffusion terms D̃22 +D′′

2 is active and
at l∗r it becomes dominant in redistributing the energy. The average of these terms in the
transverse direction remaining close to zero indicates that they are involved only in the
transverse redistribution of the energy. Close to the body base in figure 5.31, the pressure
strain shows an average gain, which is the energy taken from the transport of coherent
streamwise Reynolds normal stress (see figure 5.25).

There is a negligible, but non zero sink of energy through the production term within
0 ≤ x∗ ≤ 0.3l∗r , due to the first half of the recirculating flow region. Moving further
downstream, the production term acts as a source of energy which continues to rise mono-
tonically to reach a peak near l∗r , close to the point where the shear layers interact with
one another. This gain in energy decays past x∗ ≈ 1.2l∗r . The dominant gain in energy
through the production term is mostly transported by the advection term I−Ã22

resulting

in a net rise in ṽ2
∗
peaking near l∗r . The remaining energy is fed to the incoherent stresses

through the production term I−P ′′
22
, which is close to zero until l∗r/2 after which, it rises to

peak near l∗r . This observation is in line with the well known conventions of turbulence, i.e.
the energy is primarily produced at the larger scales and fed to the smaller ones. However,
energy flow in the reverse direction has also been observed, though negligible, for example
at 0.5l∗r . Beyond l

∗
r , the incoherent stresses are constantly fed by the production term IP̃22

.
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Figure 5.31: Transversely averaged balance of equation of the transport of Reynolds
transverse normal coherent stress ṽ2 for the flow at Reh ≈ 2.8×104, along the streamwise
direction scaled by l∗r .

5.5 Conclusion

The decomposition of the flow revealed many qualitative features of the dominant vor-
tex shedding generally observed in the wake of a bluff body [32, 29]. It permits to quantify
the contribution due to various structures, and their interactions, to the drag. However,
the POD method of flow decomposition computes uncorrelated modes and the coherent
structures thus extracted which approximate the dominant vortex shedding but can be
contaminated with other higher modes. The resulting decomposition of the Reynolds
stress tensor does not contain information on those that arises from the interactions be-
tween the decomposed structures.

Decomposing the Reynolds stresses, the explicit contributions of the coherent and
incoherent structures to the base pressure drag through coherent Reynolds shear and
streamwise normal stresses were seen to be comparable. The incoherent stress contribu-
tion were primarily observed to result from the motions resembling the shear layer vortices
generated immediately after separation.

The streamline ψ = 0 enclosing the recirculating flow region is characterized by a con-
stant mean pressure in order to maintain force-equilibrium of the bubble. Exploiting the
linear property of the Poisson equation for decomposition of mean pressure revealed that
immediately after separation, the mean pressure is dominated by the mean flow deforma-
tions within the mean shear layer. As it continues to decay downstream, its contribution
is compensated principally by the transverse Reynolds normal stress, which is dominated
by the coherent structures. This shows the importance of the initial conditions of the
separating shear layer, or the state of the boundary layer at separation, on the mean
base pressure drag. Further, it also stresses on the importance of initial conditions on the
developing coherent structures, which is a primary ingredient of the base pressure drag.
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These observation are consistent with the literature (for example [148, 181, 120, 166]),
where manipulating the boundary layer at separation or the properties of the separated
shear layer led to drag reduction.

A novel method is introduced in order to estimate the coherent pressure through the
coherent pressure Poisson equation, utilising only the triple decomposed flow fields and
the proper orthogonal decomposition method to compute the spatial modes. This novel
approach allows for estimating the temporal derivative of the coherent velocity fields
by solving the Poisson equation for the temporal derivative of the streamfunction. The
method significantly reduced the residuals arising out of the integral coherent momentum
budget, both streamwise and transverse. The coherent drag and the lift coefficients es-
timated by performing the integral momentum budgets are seen to be within the range
obtained by the coherent lift and drag estimated from the phase averaged fluctuating pres-
sure signal. Since the method is used for the POD based modal decomposed flow, where
temporal information is lost during the process but reconstructed using the method, the
proposed method is a robust approach extendable to any modal decomposition such as by
using OMD [12], image based flow decomposition methods [141], wavelet based methods
[172, 53], conditional average using cross-correlation technique [84] or phase averaging
using reference signal [128, 132, 83] providing a low-cost alternative to expensive time-
resolved PIV.

The coherent pressure allows for the closure of the coherent Reynolds stress transport
budget. It also allows for explaining the energy exchange mechanism between the mean
flow and the coherent structures, and the manner in which it is redistributed to the com-
ponents of normal stresses.

For coherent Reynolds streamwise normal stresses, the energy produced is primarily
within the mean shear layer owing to the shear-production term. It is intense near sepa-
ration. However, based on a local average, there exists a large sink of energy, formed by
the total production term, immediately after separation due to the presence of the recir-
culation region. Based on the local average view, two important regions can be identified
in the streamwise direction.

• Starting from the second region, near the end of the recirculating flow region 0.75l∗r ≤
x∗ ≤ 1.2l∗r , the coherent production term provides the dominant source of energy.
The upper limit of this region is vaguely defined based on peaks observed in the
dominant energy transport mechanisms, and may correspond to the extent of vortex
formation region.

• Most of the energy is fed upstream the first region, which extends from the separa-
tion until 0.75l∗r . The pressure diffusion term drives a feedback loop, that feeds the
pressure strain term and transfers energy to the other (transverse) normal coherent

stress ṽ2
∗
.

• A subregion is located in the vicinity of l∗r/2, where the sink through the produc-
tion term transfers the energy, redistributed by the pressure diffusion term, to the
transverse normal coherent Reynolds stress ṽ2

∗
.

In the balance of coherent transverse normal stress, the pressure diffusion is a dominant
factor in the transverse energy redistribution process, both in the first and the second
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regions. The diffusion due to coherent motion, is not active near separation but develops
downstream. The primary source of energy, within the first region is due to the pressure
strain, which connects the streamwise to the transverse coherent normal stress, where the
energy produced within the shear layer is transported from the former to the latter. There
is a gradual transition in the source of energy, while moving from the first to the second
region, where now the normal production becomes the primary source of energy. Note
that within the sub-region identified, the normal production from the coherent streamwise
normal stress, transfers energy intercomponently. This transfer is primarily due to the
nature of the mean flow gradient within the recirculating bubble and hence the property
of the bubble. The dominant normal production for the transverse normal stress peaks
near the end of the recirculating bubble, a major portion of which is taken up by the co-
herent and the remaining by the incoherent motion, where the shear layer interacts with
each other. Finally, the dominant energy flow path is mean flow → coherent structures
→ incoherent structures, supported by many studies in the literature. However, local
regions were identified where the energy transfer, though negligible, is from incoherent →
coherent motions. This point is not investigated further.

To summarize, the shear layer forms an important feature of the bluff body wake where
energy required to sustain the coherent motions are produced, either within the shear
layer for streamwise normal stresses or near the region of their mutual interaction, the
disruption or modification of which has been already reported to provide beneficial results
of reduced drag such as the use of splitter plates [98, 16] or by control cylinders[166, 120,
175]. The recirculating bubble forms an important site for the inter-component/ spatial
energy redistribution process through the normal production terms, diffusion terms and
the pressure strain terms. Further, its interaction with the shear layer may form the main
ingredient for energy production (for example: curvature effects [181, 28, 108]).
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Chapter 6

Effects of perturbations on pressure
drag and associated mechanisms

6.1 Reynolds number (Re) effects - Introduction

The increase in Reh for the bluff body case under consideration witnesses certain
changes in the flow properties, as mentioned in the Chapter 1 - Introduction. The ob-
jective of this part of the chapter is to identify the Re effects on the base pressure drag
of the D-shaped bluff body under consideration, limited to within Re ∼ O(104), and its
associated mechanisms discussed in the previous chapters.

6.1.1 (Re) effects on the mean flow features

Starting with the boundary layer, it is well known that the laminar boundary layer
evolves as xRe−0.5

x [152], where Rex = U∞x
ν

(In our case, x = xsep, where xsep is the
streamwise location of the trailing edge of the bluff body at which the flow separates, is
constant for all the flows). Since boundary layer measurements are not taken, the distance
from the body surface y∗ = 0.5 to the maximum value of the mean streamwise velocity
profile at separation U∗(x∗Sep, y

∗) is taken to be the distance that characterises the bound-
ary layer thickness denoted by δSep. The evolution of δSep in figure 6.1b is linear with
Re−0.5

x conforming to the prediction using the streamwise Reynolds number Rex for the
laminar boundary layer. A direct consequence is that the ensuing shear layer is enhanced
in its strength as the mean shear increases. This change may have profound effects in the
ensuing wake structure and shall be discussed in the following sections.

Another effect of Reh is on the base pressure drag shown in figure 6.1a. It varies
roughly in a linear fashion and the maximum variation with respect to the Cd at the
lowest Reh ≈ 2.8 × 104 is approximately 7%. A few other points require attention as
well. The maximum velocity deficit U∗

s shows a linear increasing trend with Reh in figure
4.2b, whereas the minimum streamwise velocity in the wake U∗

min remains roughly the
same. The length-scales related to the growth of the mean shear layer, for eg: l∗r or l∗p
in figure 4.3b, is also seen to increase with Reh, however the maximum variation remains
very small within approximately 1.5% with respect to the l∗r of the lowest Reh.

Comparison of the mean streamwise velocity at the similarity co-ordinate x∗/l∗r ≈ 0.2,
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(a) (b)

Figure 6.1: The variation of CdBase
(a) and δSep (b) along with the Reh and RexSep

respectively for the baseline flow.

(a) (b)

Figure 6.2: Profile of mean streamwise velocity at x∗ ≈ 0.2l∗r (a) and the variation of the
free stream velocity U∗ (b) for the lowest and highest Reh test cases.

near the point of separation, is shown in the figure 6.2a. The profiles of U∗ is seen to
evolve similarly along the vertical direction from the centerline until y∗ ≈ 0.5. Beyond
y∗ ≈ 0.5, the mean velocity U∗ shows a slight increase. The peak of U∗, which was at
y∗ ≈ 0.7 for the lowest Reh, has also decreased to y∗ ≈ 0.6, evidently due to the decrease
in the inlet boundary layer thickness.

Figure 6.2b shows the variation of the free-stream velocity along the streamwise di-
rection. It is high close to the separation, due to the blockage offered by the body, and
decreases downstream due to the expansion of the flow. At the higher Reh ≈ 6.91× 104,
U∗
FS remains roughly the same, indicating a negligible blockage effect due to the wind

tunnel wall boundary layers. The profiles of the Reynolds shear stress for cases of two
Reh, scaled by the transverse length scale y∗δmin

, are shown in the figure 6.3a. The profiles
are taken at the streamwise location of l∗r since the Reynolds shear stress reaches its peak
near it. The peaks of the u′v′

∗
are seen to scale with the square of the velocity deficit

(shown in the inset of figure 6.3a). The coherent and the incoherent contributions to
the Reynolds shear stress are comparable in magnitude, and both of them peak near the
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(a) (b)

Figure 6.3: Profile of the Reynolds shear stress at x∗ ≈ l∗r with the inset showing its peak
evolving with the square of the velocity deficit (a) and the evolution of the Reynolds stress
peak values (b) for all the Reh test cases.

wake width y∗δmin
/2. The peaks of the Reynolds normal stresses, shown in figure 6.3b,

also varies linearly with each other’s peaks. This is to say that a velocity scale may be
defined for the rms value of the fluctuations such that it is linearly related to the mean
wake velocity deficit, i.e. u ∼ Usmax , and that the transverse variation of quantities scales
with the characteristic scale of the wake width y∗δmin

.

6.1.2 (Re) effects on the mean base pressure drag

The integral mean momentum budget and the mean pressure decomposition showed
that the Reynolds normal stresses, other than the mean flow, contributes significantly to
the mean base pressure drag. Further, the mean pressure contributions due to T PM−PFS

can be expected to increase with Reh due to the effect of enhanced shear and the velocity
deficit acting through the terms T

(1)
m and T

(2)
m . This suggests that the mean base pressure

drag is scaled by the square of the velocity deficit.

The scaled contributions to the mean base pressure drag is shown in figure 6.4. The
superscript ·× represents the scaling of the mean base pressure contributions, for example:

T P× =
1

U∗2
smax

h∗CVin

tP , (6.1)

where division by the CV height is performed in order to for the terms to be devoid of the
effect of integration height. All the contributions seems to scale as per (6.1). The total
average contribution of the scaled mean pressure T P× remains approximately at 0.42.
Note that the Reynolds normal and shear stress contributions are not shown as it is clear
that an increase in one results in a proportional change in the other since their peaks are
proportional as per figure 6.3b. Changes may be noted in figure 6.4b, where the scaled
coherent contributions to the drag decreases while the incoherent ones increases, which
is to be expected since the increase in Reynolds number is known to enhance the three
dimensional nature of the flow (see for example [206]).
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(a) (b)

Figure 6.4: Decomposed and scaled mean pressure contributions to the mean base pressure
drag for the flows at Reh ≈ 2.89 × 104 & Reh ≈ 6.91 × 104 (a) and the split and scaled
contributions of the coherent and incoherent transverse normal stresses to the mean base
pressure drag (b).

6.1.3 (Re) effects on the transport mechanism of coherent Reynolds
stresses

The effects of the Reynolds number is particularly interesting here in order to under-
stand the change in transport mechanisms of the Reynolds stresses. It is expected that
the transport mechanism of the Reynolds stress resulting from the total fluctuations does
not change drastically, since u′iu

′
j

∗
evolves with the mean velocity deficit squared and the

transport terms, especially the dominant source of energy - production, are expected to
scale with a certain combination of velocity deficit and the length-scales identified. Since,
the residuals remain substantial, the physical mechanism is not discussed further.

The figure 6.4b shows the separation between the mean pressure due to coherent and
incoherent stresses, i.e. to say that there is an increase in incoherent Reynolds stresses
whereas the coherent ones remain more or less unchanged. The vertically integrated bud-
get of the transport equation for the coherent normal Reynolds stresses are as shown in
figure 6.5. Integration height is chosen as L∗

y ≈ 3y∗δmin
in order to extend to the external

free-stream flow. The residuals arising from the budgets remains close to zero and are
similar for both the cases of Reh, shown in figures 6.5b and 6.5d. The streamwise evolution
of the transport terms is scaled by the length of the recirculating flow region l∗r . Also,
as expected, the variation in Reh doesn’t bring about a drastic change in the physical
mechanism of Reynolds stress transport. The spatial redistribution terms such as ID̃p̃

11

and ID̃11+D′′
11
remains more or less the same, except close to the body, the former decreases

slightly which is reflected as a slight decrease in the energy drained by the pressure strain
term IP̃ S11

( resulting in a slight reduction in the energy injected to transport ṽ2
∗
through

IP̃ S22
). The most noticeable change is in the increase in the energy extracted from the

mean flow at l∗r by the action of coherent stresses resisting mean flow deformation, which
is then injected to the incoherent stresses through the production term I−P ′′

11
.

In the case of transport of coherent transverse normal Reynolds stress ṽ2
∗
, the effect
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(a)

(b)

(c)

(d)

Figure 6.5: Comparison of the integrated transport terms involved in transporting coher-
ent streamwise Reynolds normal stress ũ2

∗
(a) & (b) and the coherent transverse Reynolds

normal stress ṽ2
∗
(c) & (d) for Reh ≈ 2.89×104 (solid circles) and Reh ≈ 6.91×104 (solid

triangles). Their streamwise evolution is scaled by the extent of the recirculating flow
region l∗r .

of Reh on the energy redistribution mechanisms are not seen, because they are concerned
with the transverse distribution of energy only. Similar to the case of the transport mech-
anisms of ũ2

∗
, the noticeable difference is visible in the energy extracted through the

production term IP̃22
, which is then injected to the incoherent stresses through I−P ′′

22
.

The impact of the wake inlet conditions on the base pressure drag has been docu-
mented in many studies. For example, [48] observed reduced base pressure drag while the
boundary layer was thickened. They observed the weakening of the shed vortices with an
increased boundary layer thickness and attributed these to the base pressure drag reduc-
tion observed. Another study by [148] had also observed decreased base pressure drag
with an increased boundary layer thickness. All these studies point to the influence of the
boundary layer in modifying the wake dynamics that influences the base pressure drag.
Here, the increase in production terms is to be expected because of the wake inlet condi-
tions. The thinner boundary layer enhances the shear layer strength, increasing the mean
flow deformation and tending to increase the production. Going along the lines of [148],
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the decreasing boundary layer thickness makes the time required , for the vorticity from
one of the separating boundary layer in sufficient concentration, to initiate the shedding
of the vortex of opposite sign, shorter thereby increasing the non dimensional shedding
frequency. In the present study, the non-dimensional shedding frequency in terms of the
Strouhal number, is found to increase with the Reh. This implies that, as the vortices are
enhanced in strength due to the wake-inlet conditions resulting in a higher non dimen-
sional shedding frequency, the incoherent stresses increasingly resist the deformation of
these large coherent structures resulting in a higher amount of energy being injected to
the incoherent part through the production term I−P ′′

22
. This is consistent with the view

that the decreasing time scale of the large scale eddies enhancing the energy supplied
to the smaller scales [174]. Therefore, the effect of Reh on the Reynolds stresses is to
increase the incoherent stresses, the energy for which is extracted from the mean flow by
the coherent structures.

6.2 Effects of free-stream turbulence (FST ) on the

base pressure drag and associated mechanisms

6.2.1 Introduction

The effects of free-stream turbulence on the bluff body drag has been a complex subject
of research, probably due to the large parametric space spanned by the length scales and
the turbulence intensity level of the oncoming flow. Many studies in the past has shown
that the mean drag coefficient is sensitive to the intensity and the scales of the turbulence
[92, 19, 90, 111, 112, 82, 89]. Speaking about the scales, the most commonly used is the in-
tegral length-scale Lx, where the subscript x refers to the longitudinal integral lengthscale,
whose relative size with the body height has been observed to have a significant influence
the the developing wake. For example, when the lengthscale of the incoming turbulence is
small, (i.e when the ratio Lx/h≪ 1), the incoming turbulent flow was found to primarily
interact with the separating shear layer at the trailing edge of the body inducing vorticity
fluctuations, enhancing mixing and forcing it to reattach or merge with the shear layer
developing from the opposite side [90, 19, 82] . This led to the decrease of the length of
the recirculating flow region, the shear layer curvature increased and as a consequence
the drag was found to increase[90, 19]. With the scale of the incoming turbulent flow
large, i.e Lx/h ≫ 1, the bluff-body wake is sensitive to the ambient turbulent flow as a
quasi unsteady mean flow with slowly fluctuating velocities and without any significant
interactions with the wake [19, 112]. The influence of the turbulent intensity, with the
Lx/h ≈ 2 held constant [82], showed that the increasing turbulence intensity amplified
the turbulent content of the shear layer, with the accelerated breakdown of shear layer
vortices and earlier transition to turbulence thereby increasing entrainment and earlier
merging of shear layers increasing its curvature. Another study [94] considering the ef-
fect of lengthscales, found minimal influence of integral length-scales on the mean drag
coefficient. A recent study [89] with the integral lengthscale, Lx/h ≈ 0.3, observed the
extension of the vortex formation region and a damping of the cross-stream mixing, in
the presence of free-stream turbulence as high as 6.5%, with the corresponding reduction
in drag. All these studies point to the complexities in understanding the influence of the
free-stream turbulence on bluff body wakes.
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In the present study, the bluff body experiences an inhomogeneous and high intensity
incoming turbulent flow Tu ≈ 13% with the integral length-scale not so large, Lx/h ≈ 0.3.
The objective of this section is to understand the influence of the free-stream turbulence
on the mean drag coefficient and the transport mechanisms of the coherent Reynolds
stresses that dominantly contribute to the drag. The FST dampens the fluctuating lift
coefficient, and reduces the mean drag coefficient (once the blockage effect is removed)
together with an increase of the recirculating region. Using our mean pressure reconstruc-
tion technique, the mean vertical momentum budget is performed over the recirculating
flow region interface in order to explain the mechanism for the recirculating flow region
increase. The intimate relation between the diffusion lengthscale and the recirculating
flow region lengthscale, as per [61], is also considered. Further, the novel coherent pres-
sure reconstruction is used to close the time averaged coherent Reynolds normal stress
budget in order to understand the influence of FST on the transport mechanism of the
coherent Reynolds stresses.

6.2.2 Effects of perturbations on the mean flow characteristics

The boundary layer, as mentioned in section 4.1.1, is expected to be laminar at sep-
aration for the current case. The velocity profile for the two cases of the lowest Reh,
for baseline (without FST ) and the perturbed (with FST ) flow cases under study, are
shown in figure 6.7a. An increase of the mean velocity U∗ is observed in the free stream,
compared to the baseline case. Approaching the wake center transversely from the free
stream, U∗ increases with FST and this increase occurs at a distance relatively lesser,
compared to that of the baseline case, from the body-surface. The evolution of this dis-
tance, denoted as δ∗Sep , which was chosen as a length scale characterising the boundary
layer thickness in the absence of boundary layer measurements, is shown in the inset of
figure 6.7a. Expecting a laminar boundary layer separation, the decrease of δ∗Sep for the
perturbed flow compared to the baseline cases, indicates the thinning of the boundary
layer.The increase in the maximum U∗ at δ∗Sep indicates the increase of the velocity deficit.
There seems to be a rise in the free-stream velocity U∗

FS in the case of perturbed flow,
shown in figure 6.7b, approximately 5% to that of the baseline flow case. An increase
in such magnitude may not be neglected, and may be a result of the increased blockage
due to the wind-tunnel boundary layer, which might have transitioned to turbulent ones
earlier than that of the baseline case and increased in thickness. As such, the increase in
velocity deficit indicated by the increase in U∗ at δ∗Sep should be the result of this blockage.

The effects of blockage on the drag may be isolated. However, there could be other
effects on the wake dynamics. For example, [162] noted a decrease in non dimensional
shedding frequency of a square cylinder, with a 2.5% decrease in blockage at low Reynolds
number O(102). An earlier study [198] reports an increase in shedding frequency and a
distortion of the mean flow for the case of a cylinder at a higher Reynolds number O(104)
for a blockage ratio in the range 0.06 to 0.16. The studies of [156] also reports an increase
in shedding frequency, decreased size of the shed vortex and increased drag for the case of
a square cylinder for blockage ratio varying in the range 0.15 and 0.3. In a recent study
by [196], the range of blockage ratios on different bluff cylinders were reported, including
the increase in shedding frequency, increase in drag, lengthening of the recirculating flow
region etc, however the blockage ratios used were very high, from 0.25 up to 0.5. All
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these studies point to the fact that increasing the blockage ratio has a clear effect on
the mean flow properties as well as the wake dynamics. Figure 6.6a shows the variation
in non-dimensional shedding frequency in terms of Strouhal number Stv, with the mean
characteristic time-scale which indicates the time period of diffusion of the shear layers
[61]. The mean velocity deficit scale, used to form the characteristic time scale, scales
with the maximum mean streamwise velocity at the edge of the separated shear layer,
which tends to increase with blockage. As expected, an almost perfect linear trend is seen.
Following [61], It also indicates that the increase in non-dimensional shedding frequency
could be due to the increased effective blockage, as evidenced in the literature.

The spectrum of lift coefficient in figure 6.6b, in the case of the baseline flow shows
dominant peak of vortex shedding. Adjacent peaks are also seen, corresponding to vari-
ous frequency cells in the spanwise direction which interact with each other in a nonlinear
fashion [18]. The peak of the vortex shedding is strongly decreased with the addition of
free-stream turbulence shown in the same figure. The energy is now distributed among
various adjacent peaks and the spectrum around the dominant shedding frequency is
broadened. The appearance of various modes with frequency centered around the domi-
nant ones is the classic case of vortex dislocation in the wake, where the phase mismatch
between the adjacent ‘frequency cells ’causes twisted entanglement of adjacent vortices
increasing their three-dimensional nature (see for example [18, 199, 121, 42]). With the
addition of FST, these dislocations become even more pronounced leading to an increased
three-dimensional wake.The time series of the fluctuating-lift signal for both the baseline
and the FST perturbed flow fields, obtained from the pressure sensors, are shown in figure
6.6c. For the baseline case, the lift shows smooth periodic fluctuations with significant
low frequency modulations indicating a quasi-periodic nature of the shed vortex shedding.
Moving onto the perturbed case, these smooth periodic fluctuations seem to be disrupted
by high-frequency events, while the low frequency modulations are still present. The
disruptions witnessed from the fluctuating lift signal could possibly be due to significant
three-dimensional motions generated by the FST interfering with the vortex shedding.

In our study, in the case of perturbed flow fields, the minimum increase in blockage is
approximately 5% whereas the maximum goes up to 9% for the highest Reh considered.
For the observed increase in blockage ratio, the gap between the wall and the body is
sufficiently large (see [135]), such that the modification of the wake flow by the increase in
blockage may be considered negligible. In addition, it has to be the free-stream turbulence
that directly influences the wake.

The base pressure drag is normally computed assuming a non varying free-stream
pressure along the entire streamwise length of the body. The bluff body being very short
in our case, i.e. 0.07Hs, the growth of wind tunnel boundary layer within this distance is
assumed negligible and as a consequence, the change in free-stream velocity U∗

FS within
this distance is assumed negligible as well. While adding FST , assuming negligible effect
due to the free-stream velocity, the decay in streamwise turbulence intensity on the free-
stream pressure has to be accounted for. That is, according to the Bernoulli’s equation,

P∞(xl + l)− P∞(xl) =
1

2
ρ
(
u′2(xl)− u′2(xl + l)

)
, (6.2)

where xl and l denote the leading edge and the streamwise length of the body respectively
and with P∞(xl) = 0. The decay of turbulence intensity squared given by ∆u′2 over this
distance, in the present case, is approximately 0.02U2

in. The base pressure drag corrected
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(a) (b)

(c)

Figure 6.6: Spectrum of the fluctuating lift (a), Coherent lift extracted by the ensem-
ble average of band-pass filtered signal (b), Variation of the dominant non dimensional
shedding frequency with the mean diffusion time-scale (Inset of (b)) and the time series
of the fluctuating lift signal compared for the baseline and the perturbed flow cases at
Reh ≈ 2.8× 104 (c).

for this variation in free-stream pressure, according to equation (6.2), is shown in the
inset of figure 6.7b. The base pressure drag is seen to increase with the addition of FST .
However, this may just be an artifact due to the reduced free-stream pressure resulting
from the increased blockage, witnessed in the evolution of free-stream velocity U∗

FS(x
∗)

in figure 6.7b. The base pressure drag isolating the blockage and other contributions,
accounting for the effects of the FST, shall be discussed in the following sections.

6.2.3 Effects of FST on the characteristic lengthscales

Changes in the length of the recirculating flow region

.
FST affects the wake in several ways; For example, a 15% increase in the length of the re-
circulating flow region is observed, indicating that the growth of shear layer is influenced
by the FST . The mass locally transported by the mean flow ρ (U · n̂) from the shear

150



(a) (b)

Figure 6.7: The comparison of mean streamwise velocity U∗ profiles at separation at
Reh ≈ 2.8× 104 for the baseline and the perturbed flow fields (a), where the inset shows
the variation of δ∗Sep with Reh, and the evolution of free-stream mean streamwise velocity
U∗
FS for the baseline and perturbed flow cases (b), where the inset shows the variation of

base pressure drag with Reh with and without addition of FST .

layer, close to the end of the recirculating flow region, for the cases of baseline and the
perturbed flow fields are shown in figure 6.8a. Comparing the baseline and the perturbed
flow case, the center of the recirculating flow region where the mass flux crosses zero,
is shifted in the streamwise direction with the presence of FST . Denoting the stream-
wise location of the center of the recirculating flow vortex as l∗v, it varies linearly with l∗r
as shown in the inset of figure 6.8a. The difference between l∗r and l∗v seems to remain
approximately at 0.44 for all the cases. Further, the peak of the mass influx does not
seem to vary considerably for the cases of Reh considered. The main difference seen is
in the upstream, within 0.1l∗r ≤ x∗ ≤ 0.5l∗r , where the mass entrained by the shear layer
decreases for the case of flow with the presence of FST .

The mechanism of the shear layer rolling up into vortices, following [61], consists of
three principal steps where the fluid drawn across the wake by a growing vortex, on one
side, is entrained partly by the growing shear layer and the growing vortex on the opposite
side and a part of this fluid is drawn into the interior of the formation region. This means
that the length of the mean shear layer, is influenced by the mechanism of the entrainment
by the coherent shear layer that finally ends up as shed vortices.Figures 6.9a and 6.9b
shows the coherent and incoherent Reynolds stress profiles close to the separation, at
x∗ ≈ 0.2. Comparing the cases of baseline and perturbed flows, the Reynolds shear stress
component, peaking at the wake-width, has been dampened with the addition of FST .
This is also true in the interior of the wake where the positive peak of ũṽ is reduced by
at least 30%. Decrease of ṽ2, within the wake interior, by at least 40% is also visible.
Further, the damping of coherent Reynolds stress above the wake-width is also observed.
Comparing the Reynolds incoherent stresses, note that the FST is included with the
ensemble of incoherent motions. Reduction in the peak of incoherent stresses, comparing
the baseline and perturbed flow fields, are also observed. In addition, from the profiles of
incoherent transverse Reynolds normal stress ⟨v′′⟩

∗
, beyond the wake width, it seems to

be what looks like an erosion of incoherent momentum due to the presence of FST .
The evolution of Reynolds stress components, split into coherent and incoherent
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(a) (b)

Figure 6.8: The comparison of mass entrained by the mean flow along the mean rri,
defined by the isoline U = 0, at Reh ≈ 2.8× 104 for the baseline and the perturbed
flow fields (a), where the inset shows the variation of the length scale l∗v with l∗r , and the
evolution of wake-width for the baseline and perturbed flow cases (b), where the inset
shows the variation of the characteristic length scale yδmin

, which scales the transverse
evolution of the flow, with Reh with and without addition of FST .

(a) (b)

Figure 6.9: Transverse evolution of the coherent (a) and Incoherent (b) Reynolds shear
and transverse normal stresses for the baseline and perturbed flow cases at Reh ≈ 2.8×104

at the streamwise location close to separation. The circles and the pentagrams represent
the baseline and perturbed flow respectively.

stresses, along the rri, in the similarity coordinates, is shown in figure 6.10. The Reynolds
shear stress along the first half of the bubble, i.e. upstream of l∗v, is positive implying a
momentum outflux from the recirculating flow region which is then taken up by the devel-
oping shear layer. This momentum outflux is dominantly due to the coherent structures,
whereas the incoherent structures act to entrain momentum towards the interior of this
region. This is qualitatively shown in figure 5.6. With a turbulent ambient condition,
the incoherent shear stresses are expected to increase, since the entrained fluid includes
the external flow and the superimposed background turbulence. The increased influx of
momentum due to the incoherent structures and the decreased momentum outflux due
to dampened coherent structures, reduces the overall fluctuating momentum outflux, in-
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(a) (b)

Figure 6.10: Evolution of Reynolds shear stress (a) and the Reynolds transverse normal
stress (b) along the rri and split into coherent and incoherent contributions. The inset
in (a) shows the variation of positive peak of Reynolds shear stress with l∗v.

dicated by the reduction in the positive peak of u′v′
∗
.

A simple integral-mass balance,
∫
CV

(U∗ · n) where the mass is unity due to normali-
sation, and transverse momentum balance,∫

CV

(
U∗V ∗nx + V ∗2ny

)
= −

∫
CV

(
P ∗ny + u′v′

∗
nx + v′2

∗
ny

)
, (6.3)

neglecting the viscous terms and performed along the control volume enclosing the recir-
culating flow region, with its lateral bounds defined by the rri, may be carried out.

The resulting balance is shown in figure 6.11a, from which the transport of vertical
mean momentum close to the body results from the balance of Reynolds shear as well
as the transverse normal stress. The shear stress tends to increase the vertical mean
momentum transport, while the transverse normal Reynolds stress tends to decrease it.
The role of the mean pressure term is negligible here. The mean vertical momentum rises
with the increase in magnitude of Reynolds normal and shear stresses. In the similarity
streamwise coordinate, at the streamwise location of 0, the Reynolds shear stress starts
to decrease to negative values reaching a peak at l∗r . The pressure term also switches sign,
starts to increase, to reach a peak value by the end of the bubble and is balanced by the
transverse Reynolds normal stress. The residual is close to zero throughout the balance.
The mean vertical momentum continues to increase and reaches a peak by the end of the
recirculating flow region. It seems to be balanced by the Reynolds shear stress only. This
may also be understood from the local vertical momentum balance, where it was seen
that in the vicinity of the bubble, ∂P ∗/∂y∗ ≈ ∂v′2/

∗
/∂y∗. The streamwise gradient of the

Reynolds shear stress is responsible for the local advection of the vertical momentum.

For FST , the reduction in the Reynolds shear stress and the transverse normal stress,
close to the body (shown in figure 6.10), is then expected to reduce the vertical mean
momentum entrained. The vertical momentum entrained along the rri interface in its
first half, (i.e. x∗ ≤ l∗v, given by

∫
Γ
V ∗2nydΓ), is expected to scale with the mass entrained
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(given by
∫
Γ
V ∗nydΓ). This is shown in figure 6.11b, where the mass entrainment is seen

to be proportional to the vertical momentum entrained. The scaling of mean vertical
momentum in the second half of the recirculating flow region is also expected to vary
proportionally to the mass entrained by the mean recirculating flow.

The Reynolds shear stress resulting from the total fluctuations, in the second half of
the recirculating flow region, i.e. x∗ ≥ l∗v, from figure 6.10a remains unchanged for the
baseline and the perturbed flow cases. This means that the vertical momentum and the
mass transported by the mean flow remains unchanged too. Moving over to the first half,
the Reynolds shear stress and the transverse normal stress decreases for the perturbed
flow. The coherent Reynolds shear stress arises out of the transport of the coherent mo-
mentum due to the coherent fluctuations. Then the observations shows that the coherent
mixing, close to the body is dampened with the presence of FST . This acts to reduce
the vertical momentum and also the mass transported by the mean flow. However, since
the mass entrained into the recirculating flow region remains more or less unchanged, the
same amount of mass has to exit through the first half of the recirculating flow region,
which in turn leads to a downstream shift of recirculating flow region manifesting itself as
an increase in l∗v. For this reason, l

∗
v is seen to vary proportionally with the mass entrained

by the shear layer from the recirculating flow region, shown in the inset of figure 6.11b.

Similar reductions in the Reynolds shear stress, with the increase of the formation
region was observed by [171], where they experimented with porous cylinders and observed
increase in formation region with increasing porosity. Also, in the studies of [120], where
a control cylinder was inserted in the near wake to modify the near wake properties, the
increase of the recirculating flow region was associated with a damping of the Reynolds
stresses within the near wake region. The study of [175], highlights that the reduction
of drag was associated with a increase in the recirculating flow region, where they also
observed reduction in the energy level of the streamwise velocity fluctuations. All these
studies indicates that the length-scale l∗r is strongly linked to the amplitude of the Reynolds
stresses in the near wake. Following [61], it may be said that owing to the reduced strength
of the shear layer, there is a reduced pull of fluid, from one of the shear layers towards the
interior of the formation region or towards the first half of the recirculating flow region,
and hence the vortices are shed further downstream compared to the baseline flow cases.
This is thought to be the reason that causes an increase in l∗r . Further, this means that
manipulating the intensity of the Reynolds shear stress may be an effective way to change
the properties of the mean shear layer by influencing its entrainment capacity. In addition,
the decrease in Reynolds normal stress component in the near wake may also influence
the base pressure drag, since it is the major contributor to the mean pressure.

The evolution of the wake width in the similarity coordinate and normalised by its
characteristic lengthscale y∗δmin

is shown in figure 6.8b. It collapses for all cases flow
fields. The characteristic lengthscale y∗δmin

is seen to decrease with the addition of FST
, shown in the inset of figure 6.8b, and it further decreases with Reh similar to the
case of baseline flow fields. The deformation of the vortices in the presence of FST
and with minimal blockage effects, has been reported in [89], where the shed vortices
are seen to be elliptically deformed. Similarly, in the current study, since y∗δmin

/2 is
the transverse location where the Reynolds shear stress peaks, its decrease is associated
with a distorted vortex which is formed farther away from the body. The decrease in
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(a) (b)

Figure 6.11: Balance of the vertical mean momentum budget carried out on a CV defined
by the rri (shown in the inset) (a) and the variation of mean momentum and mass
transported by the mean flow, with the inset showing the variation of l∗v with the mass
entrained by the shear layer.

y∗δmin
facilitates the interaction between the shear layers and according to [145], it leads

to an increase in the non-dimensional shedding frequency which is consistent with the
observations in this study (figure 6.6a). Further, this lengthscale is a diffusion lengthscale
and is inversely related to the formation length [61]. A decrease in the former would imply
a decreased time for the vorticity to be carried across the wake to initiate shedding, tending
to increase the shedding frequency. The formation length associated with the extent of
the recirculating flow region, in the present study, increases with the addition of FST
while the characteristic wake-width lengthscale decreases, which follows the argument of
[61] implying that both lengthscales y∗δmin

and l∗r are equivalent, i.e. y
∗
δmin

∼ 1/l∗r, consistent
with other studies as well (see for example [89]) .

6.2.4 Effects of FST on the Reynolds stresses and the base pres-
sure drag

The addition of perturbations to the flow was primarily to understand its influence
on the mechanism driving the drag. The primary contributor to the base-pressure drag
was understood to be due to the Reynolds transverse normal stresses which tends to in-
crease the base pressure drag by driving the mean pressure. The damping of the Reynolds
stresses by the influence of FST , as visible from figure 6.9, is then expected to lower its
contribution to the mean pressure and hence reduce the mean base pressure drag. The
amplitude of Reynolds stresses within the first half of the recirculating flow region being
directly correlated to the lengthscale l∗v, then if the peak v′2

∗
, attained near the end of the

recirculating flow region, scales with the amplitude of v′2
∗
in the first half of the recircu-

lating flow region, then the lengthscale l∗v could become directly correlated to the drag as
reported in many studies in the past (see for example [99, 120]). However, this is not the
case here.

The centerline evolution of the coherent and incoherent components of v′2
∗
is shown in

figure 6.12. The coherent stress ṽ2
∗
grows slowly in the first half of the recirculating flow

region , i.e. x∗ ≤ l∗v, when the coherent structures are in their initial stages of formation.
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In the second half, the growth rate is exponential after which it reaches a peak near the
end of the recirculating flow region and decays downstream. The location where it reaches
a peak has been known as the formation length and corresponds to the streamwise loca-
tion where the external free-stream flow is carried across the wake by the action of the
growing vortices [25]. It is seen to be proportional to the extent of the recirculating flow
region. In case of incoherent stress, there is an initial period of slow growth, until −0.5 in
the similarity coordinates, after which there is an exponential growth and peaks within
the second half of the recirculating flow region, i.e. l∗v < x∗ < l∗r due to the entrainment
by the shear layer vortices, as seen in figure 5.6.

With the addition of FST , the vortex shedding is disrupted, as observed in figures
6.6c and 6.6b, damping the fluctuating coherent lift. The damping of ṽ2

∗
as well as the

coherent Reynolds shear stress in the first half of the recirculating flow region is seen to be
a determining factor in the lengthscale l∗v.Comparing the lowest case of Reh ≈ 2.89× 104

for both the baseline and perturbed flow cases, there seems to be a difference between
the peak of ṽ2

∗
at x∗ ≈ 1.2l∗r and at the trailing edge, i.e. the difference approximates to

0.2 and 0.23 for the baseline and perturbed flow fields respectively. It is even higher at
the highest Reh for the case of perturbed flows. It is even significantly different in case of
incoherent transverse Reynolds stresses, shown in the inset of figure 6.12. This indicates
that the peak of v′2

∗
at x∗ ≈ 1.2l∗r may not be used to scale its evolution in the first half

of the recirculating flow region and indicates a change in the physical mechanism within
the initial region and the proceeding region.

As the non dimensional shedding frequency increases with Reh for the case with FST
(figure 6.6a), the longitudinal separation between the vortices decrease. The decrease
in wake-width which facilitates shear-layer interactions, also brings the vortices closer.
Combined with the decreased longitudinal spacing they increase their tendency to mutu-
ally entrain fluid.This may be thought as the reason for the increase in coherent stresses
with Reh for the perturbed flow fields. In case of incoherent stresses, the peaks align
well in the similarity coordinates. With the addition of FST , the incoherent shear layer
vortices are dampened during its initial development, as seen in section 6.2.3, and towards
x∗ ≈ l∗v, where the incoherent shear-layer vortices entrain the external free-stream fluid.
Turbulent fluid is entrained by the shear layer vortices and hence, it leads to a rise in
peak of incoherent Reynolds stress.

From the integral momentum budget, the highest contributor to the base pressure
drag comes from the mean pressure near x∗ ≈ 0.5l∗r , the base pressure drag is expected
to scale with the mean pressure at that location. Figure 6.13 shows the evolution of the
pressure deficit, defined in equation (4.9), in similarity coordinates. Since, the velocity
deficit is influenced by the increase in average streamwise velocity due to the blockage
effect, a correction is applied to remove the excess momentum as,

(U∗2
smax

)cor = U∗2
s −

(
U∗2
0,∞ −

(
U∗2
0,∞

)
ref

)
, (6.4)

where
(
U∗2
0,∞

)
ref

refers to the free-stream velocity of the reference flow field, without per-

turbation, at the lowest Reh ≈ 2.89×104. The deficit pressure P ∗
d evolution along the wake

centerline, seems to scale with the effective momentum deficit, where U∗
smax

∼ U∗
max−U∗

min

comprises the effect of shear layer through U∗
max at the outer edge of the shear layer at
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Figure 6.12: The evolution of transverse normal component of Reynolds stress at Reh ≈
2.89× 104 for the baseline (circle) and perturbed flow (pentagram) and at Reh ≈ 6.8× 104

for the perturbed flow (hexagram).

separation and the recirculating flow region through U∗
min at the center of the recirculating

flow bubble. The collapse of curves are almost perfect until the end of recirculating flow
region after which a slight departure is noted. The inset on the top left shows the variation
of mean pressure deficit P ∗

d with Reh, showing the reduction of base pressure drag (with-
out considering blockage), especially at the lowest case of Reh among the perturbed flows.

Performing the integral momentum budget along the CV defined by the streamline
ψ = 0 reveals that the contributions to the mean base-pressure drag have changed within
various terms. However, it is sufficient to understand the changes in contributions to
the mean pressure through its different terms. Figure 6.14a shows the mean pressure
decomposed into its constituent parts. Note that the pressure contribution to Reynolds
shear stress and streamwise normal stress are not shown because they were negligible.
The different terms are normalized by the spatially averaged base pressure, of the lowest
Reh case in the baseline flow, multiplied by the inlet height of the CV . From figure 6.14a,
an increase in blockage of ≈ 5% is seen. This translates into an increase in free-stream
pressure coefficient of 10%. When compared with the base-pressure drag of approximately
0.54 at Reh ≈ 2.89 × 104 this has to translate to approximately 20% relative increase in
the blockage for the perturbed flow case compared with the baseline flow at the same Reh.

Comparing the contribution of the mean pressure due to the mean flow deformation
T (PM−PFS), it seems slightly higher in the first half of the recirculating flow region, i.e.
x∗ < l∗v. Expecting a thin boundary with the decrease in δ∗Sep and with the rise in the
average streamwise velocity due to an increased blockage, the mean flow deformation is
expected to increase. However, towards the end of the recirculation region, there is a
relative decrease in T (PM−PFS) for the case of the perturbed flow compared to the baseline
flow.The pressure due to the transverse normal Reynolds stress is relatively lower com-
pared to the baseline flow, close to the trailing edge of the body, which was observed to
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be the influence of the FST on the vortex shedding. Pressure increases to reach a peak
at l∗r . Note that the rate of increase is relatively higher compared to the baseline flow.
The difference in T Pvv at l∗r and the trailing edge, is seen to be proportional to the relative
decrease of T (PM−PFS) observed while nearing the end of the recirculating flow region.
Splitting T Pvv into coherent and incoherent contribution in figure 6.14b shows that the
incoherent contributions, though relative smaller compared to that of the baseline flow, at
the trailing edge, becomes similar in amplitude beyond the first half of the recirculating
flow region. The major change is in the coherent contribution which remains comparable
to that of the incoherent contribution but rises towards the end of the recirculating flow
region. The difference in T Pvv between the end of the recirculating flow region and the
trailing edge observed in figure 6.14a is primarily due to the rise in contribution from the
coherent structures. The observations indicate that the rise in coherent contribution to
the mean pressure is intimately linked to the initial condition, i.e. at the trailing edge,
where the T (PM−PFS) remains at 0.5 and its deterioration close to l∗r is then compensated

by a rise in the coherent contribution. Comparing the evolution of ṽ2
∗
in figure 6.12 and

the coherent contributions to the mean pressure in figure 6.14b, it may be said that the
influence of free-stream turbulence is principally felt in the trailing edge, whereas nearing
the end of the recirculating flow region, there is an influence of the relatively increased
blockage, for the case of perturbed flow.

Since, the base pressure drag reduction observed for the lowest Reh case is primarily
due to the observed reduction of coherent transverse normal Reynolds stress, it would
be interesting to understand the influence of FST on the transport mechanism of the
coherent transverse Reynolds normal stress. However, the transport of transverse and
streamwise normal stresses are linked as it was seen that there exists inter-component
transfer of energy, extracted from the growing shear layer, due to redistribution by the
coherent pressure diffusion and strain terms. This necessitates the investigation of the
influence of FST on the transport mechanisms of both the coherent normal stresses.

6.2.5 Influence of FST on the transport mechanism of coherent
normal Reynolds stresses

The transport mechanism in the case of perturbed flow fields for the streamwise
coherent Reynolds normal stress is compared with that of the baseline flow field at
Reh ≈ 2.89 × 104, in figures 6.15a and 6.15b. The residuals resulting from the bal-
ance remains almost at the same level for both the cases. The peak of all the terms are
seen to align well. For example, the gain in energy due to the production term I(P̃11)

and
the sink due to the pressure diffusion term IDp̃

11
peaks at l∗r where the mean-shear layer

from both sides of the bluff body merges together. The sink due to the production term
peaks at l∗v and the incoherent production term and the advection term peaks in between
l∗v ≤ x∗ ≤ l∗r . Finally the inter-component transfer due to the pressure strain term is
active in the first half of the recirculating flow region (i.e. x∗ < l∗v).

Similar to the baseline flow, the transverse integration of diffusion terms are negligible
for the perturbed flows since they act to redistribute the energy vertically. With the addi-
tion of FST , the production term does not seem to change much. A significant amount of
this energy is redistributed upstream the recirculating flow region by the pressure diffusion
term, whose peak at l∗r does not seem to vary. The change is seen in the advection term as
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Figure 6.13: The evolution of the pressure deficit ∆P ∗, scaled by the corrected mean
deficit momentum. The inset on the top left shows the variation of the mean pressure
deficit with Reh.

well as the incoherent production term, meaning that the net increase of ũ2
∗
has reduced

slightly, and the remaining energy input by the production term is injected into the inco-
herent structures through the incoherent production term I(−P ′′). At l∗v, the diffusion by
coherent pressure is dampened in presence of FST due to a higher extraction of energy by
the incoherent structures. Since lesser amount of energy is available to be redistributed
by the pressure diffusion term, the subsequent drain in energy through the production
term and the pressure strain term is also reduced. This is also the case upstream of l∗v,
where less energy is made available to the pressure strain term to be transferred between
normal stress components. Since at l∗v, a major portion of the drain through production

term IP̃11
is injected to transport the transverse normal coherent Reynolds stress ṽ2

∗
, a

decrease in its magnitude is also expected to influence the transport of ṽ2
∗
.

Figures 6.15c and 6.15d shows the comparison of the transport mechanism of coherent
transverse Reynolds normal stress ṽ2

∗
of the perturbed flow-field with that of the base-

line flow at Reh ≈ 2.89 × 104. Similar to the case of streamwise coherent Reynolds
normal stress ũ2

∗
, the length-scales originating from the recirculating flow region scales

the evolution of transport mechanism of ṽ2
∗
, with the coherent production IP̃22

and the
advection term I−Ã22

reaching their respective peaks close to l∗r . The residuals, for both
the cases investigated, remains close to zero throughout the balance. Near the trailing
edge of the body, where the flow separates, the energy input by the pressure strain term is
decreased, due to the influence of FST on transport mechanisms of ũ2

∗
(figures 6.15a and

6.15b), reflected in the decreased advection of ṽ2
∗
. Close to l∗v, the incoherent production

has increased, turning from a sink to a source. Moving closer to l∗r , the coherent production
shows a relative decrease for the perturbed flow and consequently results in a decreased
advection of ṽ2

∗
. This is also true beyond l∗r , where it is the coherent production that drives

the advection and also feeds the incoherent structures through the incoherent production
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(a) (b)

Figure 6.14: The evolution of decomposed components of the mean pressure integral
contributions to the base pressure drag, normalised by the spatially averaged base pressure
at lowest Reh ≈ 2.89× 104 of the baseline flow (a), and the decomposed contribution of
transverse Reynolds normal stress from that of the coherent and incoherent structures (b)
at Reh ≈ 2.89× 104 for the baseline (circles) and the perturbed (pentagram) flow cases.

term. Close to l∗r , a slight increase in advection is seen, however this relative increase is
approximately of the same magnitude of the residual.

Note that the transverse averaged view gives a global picture on the local evolution
of the transport mechanism. A cumulative integral of the curves then shall be equiva-
lent to the integral budget performed over a control volume. Then, the advection term
remaining similar in amplitude for both the perturbed and the baseline cases in figure
6.15c, while the amplitude of ṽ2

∗
decreases for the former in figure 6.12, implies increased

local entrainment presumably due to the increase in blockage. On a global view, the
effect of FST is to damp the redistribution of energy through the pressure diffusion and
strain terms, influencing the transport of coherent Reynolds normal stresses. However,
the integral picture is incomplete as it hides the transverse redistribution mechanisms. A
local balance is therefore necessary.

Three streamwise locations are selected for the local balance of transport equation.
The end of the recirculating flow region x∗ ≈ l∗r is selected to investigate the balance of

transport equation for ũ2
∗
since it corresponds to the peak of coherent production P̃11,

whose integral contribution does not vary with perturbation but changes are are noticed
in the incoherent production. Similarly, the streamwise location close to the trailing edge
of the body (x∗ ≈ 0.16) is selected to investigate the balance of transport equation for ṽ2

∗

since the integral input of energy, through the pressure strain term, is seen to be damped
with FST .

Figure 6.16 shows the energy balance of the transport mechanism for ũ2
∗
carried out

at x∗ ≈ l∗r . The peaks of the terms are seen to align well when scaled with the local
wake width. Comparing the cases, the input of energy through production shows an
increase. The dominant term being the shear production , since the coherent shear stress
does not vary much for the perturbed flow and the mean shear is expected to increase
with the thin separating boundary layer, the increase in P̃11 for the perturbed flow is
to be expected. Local advection −A11 is not altered. Reduction in amplitudes of the
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(a) (b)

(c) (d)

Figure 6.15: Comparison of Integral contributions to the transport of coherent streamwise
(a) & (b), and transverse (c) & (d) Reynolds normal stresses, for the baseline flow (circles)
and the perturbed flow-field (pentagram) at Reh ≈ 2.89× 104. The integration is carried
out from y∗ ≈ 0 to y∗ ≈ ky∗δmin

, where k is a constant multiplier and is simply chosen
such that the integral extends to the free-stream and lies within the PIV domain.

energy redistribution mechanism is also noted. The pressure strain term shows a relative
decrease in amplitude, implying a reduction in the energy transferred to ṽ2. Further, the
diffusion terms (D̃11 + D′′

11) shows an increase to redistribute the net increase in energy
input to the incoherent structures through the incoherent production term −P ′′

11 close to
the wake centerline. A portion of the energy gained by the advection term −A11 above
the wake width is lost in the wake interior. The extraction of this energy by the incoherent
production is relatively higher, showing a relative increase close to the edge of the wake.
Further, the reduction in the pressure strain term above the wake width is balanced by
an increase in the incoherent production term.

Splitting the diffusion terms (D̃11 +D′′
11) into its constituent components, in the inset

of figure 6.16b, the diffusion of coherent Reynolds stresses by the coherent fluctuations D̃11

are opposed by the diffusion of incoherent Reynolds stresses by the coherent fluctuations
D′′

11, with the latter dominating the former in the exterior and the interior of the wake. The
dominant diffusion is due to the latter D′′

11. With the addition of FST , the diffusion term
D̃11 does not vary, however an increase in the diffusion of incoherent Reynolds stresses are
noted. With the ambient free-stream turbulence, the incoherent structures present in the
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(a) (b)

Figure 6.16: Comparison of Local contributions to the transport of coherent streamwise
Reynolds normal stresses (a) & (b) at the streamwise location x∗ ≈ l∗r , for the baseline flow
(circles) and the perturbed flow-field (pentagram) at Reh ≈ 2.89 × 104. The transverse
distance is normalised by the local width of the upper symmetric plane of the wake (y∗δ/2).

Figure 6.17: Comparison of the local contributions to the transport of coherent transverse
Reynolds normal stress at the streamwise location x∗ ≈ 0.16 close to the trailing edge
of the body, for the baseline flow (circles) and the perturbed flow-field (pentagram) at
Reh ≈ 2.89×104. Only the dominant terms are shown and the remaining are of the order
O(R22). The transverse distance is normalized by the local width of the upper symmetric
plane of the wake (y∗δ/2).

ambient fluid causes an increase in the incoherent Reynolds stresses due to the momentum
flux between the free-stream turbulence and the bluff body wake. The relative increase
in coherent production causes these incoherent stresses to be diffused towards the wake
interior by the action of coherent structures.

The transport mechanism of ṽ2
∗
at the streamwise location close to the flow separa-

tion is shown in figure 6.17. Note that certain terms such as incoherent production and
the diffusion terms are not shown as they are negligible and of the same order of mag-
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nitude as the residual term. Comparing the baseline and the perturbed flow cases, the
pressure strain shows a significant decrease at the wake edge. Since, the available energy
input through the pressure strain term is less, the energy redistributed by the pressure
diffusion term is also very less, with a significantly decreased peak at the wake-edge, and
consequently the net rate of increase/decrease of ṽ2

∗
through the advection term −Ã22 is

negligible. Further, the energy given off to the production term by the coherent pressure
diffusion term has also been significantly decreased.

Whence, the effect of FST on the transport mechanism of coherent Reynolds stresses
damps the energy redistribution through the coherent pressure diffusion and the pressure
strain terms. It increases the energy fed to the incoherent structures, thus disrupting the
net increase in coherent energy gain through the advection term.

6.3 Summary

This chapter focused on investigating the influence of the free-stream turbulence on
the mean and the POD-phase-averaged wake. The fluctuating signal of the lift coefficient
showed clear signs of interference due to FST . The peak of the lift coefficient in the
frequency spectrum dropped and broadened, hinting to signs of pronounced vortex dislo-
cations causing increased wake three-dimensionality, while the non dimensional shedding
frequency increased. The frequency continued to increase with Reh in the presence of
FST . The non-negligible increase in blockage complicates the problem, since it is diffi-
cult to isolate its effect on the wake dynamics and comment on the influence of FST .
The lowest Reh test case showed a minimal increase in blockage and since the open area
between the body and the presumed thick wind tunnel boundary layer is large, the influ-
ence of blockage can be assumed minimal.

The length of the recirculating flow region was found to increase in the presence of
FST , which was also observed in the studies of [89] where the integral lengthscale of the
incoming turbulence is similar to that of the current study. Local profiles show weak
Reynolds stresses existing at separation. The integral mean vertical momentum budget
showed a weakened mean momentum detrainment caused by the balance of a weakened
Reynolds shear and transverse normal stresses in comparison with the baseline flow case.
The flow decomposition showed that the weak Reynolds stress effect is due to the weak
coherent structures at separation which reduced the strength of the shear layer thereby
reducing its entrainment capacity. The reduction in coherent Reynolds transverse normal
stress, being the dominant driving factor of the mean pressure, is expected to decrease
the mean base-pressure drag. But, the incoherent transverse Reynolds normal stress,
which peaks close to the end of the recirculating flow region, increases due to the en-
trainment of turbulent fluid. At the lowest Reh test case, the peak of the incoherent
transverse Reynolds normal stress is similar to that of the baseline flow, which combined
with a reduced coherent Reynolds stress leads to the reduction of mean base-pressure
drag. However, with an increase in Reh in the presence of FST , the coherent transverse
Reynolds normal stress continues to increase, probably due to the induced velocity as-
sociated with an increased shedding frequency. The decomposition of the integral mean
pressure contribution, in comparison with the centerline evolution of the coherent trans-
verse Reynolds stress showed that while the turbulent flow acts to weaken the coherent
stresses at the trailing edge post separation, the effect of the blockage causes it to rise by
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the end of the formation region, strengthening the coherent structures. The entrainment
of the turbulent external fluid is enhanced in the presence of stronger coherent structures
and hence the incoherent stresses also increase with Reh in the presence of FST , thus
contributing to the mean pressure and hence the mean base pressure drag increases as
well. The drag reduction observed is approximately 10% at the lowest Reh test case with
FST , due to the decreased cross-stream mixing.

An investigation into the transport mechanism of coherent Reynolds stresses revealed
that the influence of the FST is primarily felt in the first half of the recirculating flow
region x∗ < l∗v. The transverse integral budget revealed that, the energy produced in
the mean shear layer while transporting coherent streamwise Reynolds normal stress,
essentially through shear production, is increasingly injected to the incoherent structures
through the incoherent production term. As such, the energy redistribution mechanism
by the coherent pressure diffusion and the inter-component energy transfer through the
coherent pressure strain is interrupted, resulting in a decreased energy transferred to
transport the coherent transverse Reynolds stress. A further investigation of the local
balance of coherent streamwise Reynolds normal stress revealed an increase in the coherent
diffusion of the Reynolds incoherent stresses which redistributed the produced energy to
be injected to the incoherent stresses. The observations suggest that the redistribution
through the coherent pressure is an important mechanism that contribute to the overall
increase/decrease of the coherent Reynolds stresses, and that the influence of the incoming
turbulent field with an integral lengthscale comparable to that of the body size, was to
disrupt this energy transfer mechanism thus damping the coherent Reynolds stresses and
consequently tending to decrease the mean base pressure drag.
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Chapter 7

Concluding remarks and brief
outlook

The wake of a two-dimensional bluff body at Re ∼ O(104) is investigated, primar-
ily using the measurements obtained by 2D planar PIV technique. The objective is to
identify the physical mechanisms in the wake that drive the drag. The D-shaped body is
designed in order to minimize the influence of leading edge separation on the wake.

The strategy is to analyze the physical equations governing momentum and energy
transports. A method for combining sparse sensors and PIV-based measurements for an
accurate estimation of the mean pressure field, required for the closure of mean momen-
tum transport equation, is discussed in Chapter 3. Qualitative features of the estimated
pressure field were discussed in Chapter 4. The dominant contribution to the mean drag
is from the mean pressure, identified through an integral momentum budget over the re-
circulation region. Exploiting the linearity of the Poisson operator, the mean pressure is
found to be driven by the mean flow deformation immediately after separation whereas
the transverse component of the Reynolds normal stress becomes the main contributor
once the shear layer has grown sufficiently. The mean momentum budget, both local and
integral, further reveals that it is the Reynolds normal stress components that play a key
role in the mean drag, acting as a source/sink of mean pressure/drag whilst the Reynolds
shear stress re-distribute the momentum. The primary source of energy for these normal
components are found to be localized within the growing mean shear layer and near the
region where they mutually interact and merge. However, the description of transport
mechanism is incomplete due to unresolved terms such as pressure terms and dissipation.

The closure of the transport of the Reynolds stresses is addressed in Chapter 5 where
the flow is decomposed into coherent and incoherent motions using the POD based ap-
proach, both of whose contributions to the sink of base pressure are comparable whilst the
former dominates in driving the mean pressure. A novel method of pressure reconstruc-
tion for the coherent structure is introduced, extendable to any kind of modal decomposed
flows. The availability of coherent pressure permits the estimation of coherent fluctuating
lift and drag through the budgets of coherent fluctuating momentum, whose values are
in agreement with those measured by a set of pressure sensors. It further allows the es-
timation of coherent pressure diffusion and strain terms which forms important physical
mechanisms, amongst others, while considering the energy exchange process between the
mean flow and the coherent fluctuations. One of the advantage of the method is that
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even at high Reynolds number one may analyse the modal energy budgets without the
requirement of expensive numerical simulations. One may further improve the method by
simply using a time resolved reference signal to accurately extract the coherent structure
of choice without relying on POD technique, the latter which mixes up the energy content
of various higher order physically significant modes. The method can further be extended
for the study of multi-scale flows where the interaction between multiple coherent struc-
tures are of interest.

The energy exchange between the mean and the coherent structure, similar to the
total normal Reynolds stress components, is localized within the mean shear layer, im-
mediately after separation and near the region of their mutual interaction. The role of
coherent pressure diffusion and pressure strain terms are to redistribute the extracted
energy spatially, feeding the incoherent structures in the process, as well as between the
normal coherent stress components. The existence of the well-known energy cascade is
also seen where the large scale coherent structures are mostly responsible for feeding the
energy to the incoherent structures. Increasing the Reynolds number Re the turbulence
kinetic energy was found to increase thereby resulting in an increased drag due to the
incoherent structures.

The drag was found to decrease with the addition of free-stream turbulence, with an
integral length-scale Lx/h < 1 (h refers to the body-height), in Chapter 6. The spectrum
of fluctuating lift signal shows signs of pronounced vortex dislocations which is known to
increase the three-dimensional nature of the wake. This leads to a weakening of coher-
ent structures. The integral transverse mean momentum budget over the recirculation
region shows that the integral mean momentum and mass flux evolves proportionally, the
weakening of the former due to weakened coherent structures leads to lengthening of the
recirculation region. The decrease in drag is not in proportion to this weakening because
of the blockage of the wind tunnel, identified by decomposing mean pressure and showing
the importance of mean wake-inlet condition on the drag. The transport equation of
coherent Reynolds stresses showed that the FST interacts with the shear layer immedi-
ately after separation tampering with the energy redistribution mechanism leading to a
decrease in the coherent normal stress components near separation. This decrease how-
ever is not sustained downstream due to the blockage, visible through the local increase
of advection. The observations further suggest that the identified mechanism of coherent
Reynolds stress transport is robust to perturbations.

In brief, it is very well known that the mean drag of the bluff body wake is determined
by properties of the incoming boundary layer, the separated shear layer, their mutual
interaction and the recirculating flow region. The perturbation of any of these features
reflects as changes in the other and consequently in the mean force components as well.
The current study adds to the existing knowledge, by the comprehension of momentum
exchange process within the very near wake that leads to drag. Further, the coherent
structures are identified as the key contributors to the drag and the novel tools presented
allows the identification of the energy-exchange mechanism between the coherent struc-
tures and the mean flow. The mechanism is interrupted by the FST interacting with the
separated shear layer consequently tending to reduce the mean drag, whilst the influence
of the blockage tends to oppose it.
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One of the evident drawbacks of the study is the relatively simple nature of the flow
and the method by which flow is decomposed to coherent / incoherent structures, the
latter which greatly simplifies the problem while also obscuring the physics. The latter
may however be overcome by carefully planning the experiments. The study was limited
to time-averaged properties only, owing to time-schedule constraints, which further sim-
plified the problem. One may deepen the analysis by considering a quasi-unsteady energy
exchange mechanism, in particular since the quasi-temporal term acts as a inter-phase
momentum/energy exchange term, and in case of transverse coherent momentum it has
been observed as a dominant term responsible for the coherent lift. This may also be
of interest in various other applications of bluff body such as those centered around the
phenomenon of vortex induced vibrations.

Considering the number of inherent degrees of freedom in the bluff body wake, the
current study takes a small step while making a solid contribution in the comprehension
of the problem, although several questions remain unanswered. One may easily extend
the present similar analysis to a more complex situation in case of 2D bluff body-wakes,
for example by manipulating the wake inlet conditions, introduction of multiple scales, or
by decreasing the ground proximity in order to gain insights into the changes in dominant
mechanism of drag. The mechanism presented can further motivate the development of
simple and low-cost scaling laws for the prediction of mean flow properties in a control-
applied scenario, or for the improvements in reduced order modelling approaches, for
example: by the empirical Galerkin models, which forms a key ingredient nowadays for
an efficient, active closed-loop flow control in order to reduce drag. Finally, a successful
extension of the present tools and analysis to a 3D complex wake such as those of ”Ahmed
Body”, representative of the wake features of a real vehicle, would be of a significant value
in the development of efficient and practical drag control devices.

167



Appendix A

Appendix

A.1 Appendix

A.1.1 Pressure Estimation - Methodology

To describe the methodology, consider a 2-dimensional flow field with data distributed
on qx × py Cartesian grid, i.e. the data forms an py × qx matrix , where x and y denotes
the streamwise and transverse directions respectively. We rewrite equations (3) and (4)
conveniently as:

∇P · n = g
(
U, uiuj

)
on Γ (A.1)

∆P = f
(
U, uiuj

)
in Ω (A.2)

where Γ and Ω represents the computational boundary and domain respectively, and n is
the unit normal to the boundary.

The Laplace operator of the Poisson pressure equation can be approximated by a
discretizing matrix as:

∆ ≈ D2D =

[
1

h2x
Kx ⊗ Iy + Ix ⊗

1

h2y
Ky

]
(A.3)

where ⊗ represents the kronecker delta product of matrices and Ix ∈ Rq×q and Iy ∈ Rp×p

represents Identity matrices. The letter h with subscripts x and y represents the grid
spacing in the streamwise and transverse directions respectively.

Here, Kx ∈ Rq×q and Ky ∈ Rp×p denotes the finite order discretizing matrix in x and
y directions respectively. For example, Kx forms a matrix:

Kx =



2 −5 4 −1
1 −2 1

1 −2 1
. . .

1 −2 1
−1 4 −5 2


(A.4)

Where a second order four point forward and backward finite difference scheme is employed
at the boundary and a second order central difference scheme is employed at the internal
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grid nodes. A similar matrix is formed forKy. To implicitly insert the Neumann boundary
conditions to the discretization matrix, it is approximated by a using a second order one-
sided difference scheme and inserted it into the respective discretization matrix. For
example, considering 1 single dimension and the boundary with normal in the streamwise
direction, we have:

∇P · nx=0 ≈
1

hx

(
− 3

2
P0 + 2P1 −

1

2
P2

)
= g0 (A.5)

and

∇P · nx=q∆x ≈
1

hx

(
1

2
Pq∆x−2 − 2Pq∆x−1 +

3

2
Pq∆x

)
= gq∆x (A.6)

These boundary approximations (A.5) and (A.6) are inserted into the interior of the
discretization matrix. Considering the 1 dimensional case on the first interior grid node
after the boundary grid node, we have:

∆Px=1 ≈
1

h2x

(
P0 − 2P1 + P2

)
= f1 (A.7)

Eliminating the boundary value of P0 in (A.7) using (A.5):

∆Px=1 ≈
1

h2x

((4
3
− 2

)
P1 +

(
− 1

3
+ 1

)
P2

)
= f1 +

2

3

g0
hx

(A.8)

In a similar manner, the boundary conditions in the 2 dimensions are approximated
and implicitly inserted into interior of the respective discretization matrix.New discretiza-
tion matrices Dx and Dy are formed from the original Kx and Ky respectively, taking in
only the interior of the original with the implicitly implemented boundary conditions,
such that Dx ∈ R(q−2)×(q−2) and Dy ∈ R(p−2)×(p−2) . The RHS matrix of the Poisson
pressure equation is formed implementing the boundary values implicitly as in (A.8) and
is represented by F . The modified discretized form of Laplace operator can be written
as:

∆ ≈ B2D =

[
1

h2x
Dx ⊗ IDy + IDx ⊗

1

h2y
Dy

]
(A.9)

where IDx and IDy are identity matrices with the same dimensions as that of discretization
matrices Dx and Dy respectively. Now, the Poisson pressure equation (A.2) can be finally
expressed in discretized form as:

∆P ≈ B2Dvec(P ) = vec(F ) (A.10)

where vec denotes a column vector matrix.
The x and y discretization matrices Dx and Dy can be decomposed in the Eigen-

domain as Dx = SxΛxSx and Dy = SyΛySy, where S represents the Eigen-vector matrix
and Λ represents the Eigen-value matrix of the respective Discretizing matrix. Using the
properties of inverse matrix and Kronecker delta products, we find the Eigen-vector and
Eigen-values of B2D matrix of (A.9) as:

B2D =
(
Sx ⊗ Sy

)( 1

h2x
Λx ⊗ IDy + IDx ⊗

1

h2y
Λy

)(
S−1
x ⊗ S−1

y

)
(A.11)

169



From (A.10) and (A.11), the numerical approximation of pressure poisson equation is
given by:

(
Sx ⊗ Sy

)( 1

h2x
Λx ⊗ IDy + IDx ⊗

1

h2y
Λy

)(
S−1
x ⊗ S−1

y

)
vec(P ) = vec(F ) (A.12)

Equation (A.12) can be inverted and simplified using matrix inversion and Kronecker
delta product properties:

(
S−1
x ⊗ S−1

y

)
vec(P ) =

(
1

h2x
Λx ⊗ IDy + IDx ⊗

1

h2y
Λy

)−1

vec(S−1
y FS−1

x ) (A.13)

The pq × pq matrix with the eigen values can be reshaped to form a p × q Λ matrix
for computational efficiency.

Eigen value matrix : Λ(i, j) =
Λy,i
h2y

+
Λx,j
h2x

The inverse of the eigen basis matrices on the LHS of equation (A.13) can be inverted
to finally yield the solution as:

vec(P ) = vec(Sy(S
−1
y FS−1

x · /Λ)Sx) (A.14)

Equation (A.14) can be implemented equivalently as:

P = Sy(S
−1
y FS−1

x · /Λ)Sx (A.15)

A.1.2 Pressure Estimation - Validation

Synthetic velocity and pressure field data a time-decaying vortex is generated using
the Lamb-Oseen vortex model. As the model provides analytic expressions for velocity
and pressure, it is an ideal candidate to be used as a reference for comparing the solver
accuracy. The model expresses the velocity components of the vortex in cylindrical co-
ordinates (r, θ, z) representing radial, tangential and axial directions respectively, with
the only nnon-zero component in tangential direction given as :

Vθ(r, t) =
σ

2πr

(
1− exp

[
−r2

4νt

])
(A.16)

and

Vr = 0 Vz = 0

The analytic expression of pressure field is given by:

∂p

∂θ
= ρ

v2

r
(A.17)

where σ, ν, t and ρ represents the circulation of the vortex core, kinematic viscosity of
the fluid, time and the fluid density respectively. The tangential velocity field represented
by (A.16) is simply projected into a 2 dimensional Cartesian grid (x,y) to yield Vx and Vy
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velocity components in x and y respectively.The pressure field to be used as a reference,
is obtained on integrating equation (A.17) as:

p = ρ
σ2

4π2

{
Ei

(
r2

2νt

)
1

4νt
− 1

2r2
− Ei

(
r2

4νt

)
1

4νt
− exp{(−r2/2νt)}

2r2

+
exp{(−r2/4νt)}

r2

} (A.18)

Three instantaneous velocity fields sufficiently close in time were generated, such that
a good estimate of the velocity time derivative is obtained.

(a) Velocity field. (b) Estimated Cp field.

Figure A.1: Synthetic data generated by Lamb Oseen vortex model.

Figure A.1a and A.1b shows the synthetic instantaneous velocity and pressure field
at initial time t0 generated using the Lamb-Oseen model (A.16) and (A.18) respectively.
The superscript * represents normalized variable. Here, the x and y co-ordinates are
normalized with the vortex core radius and the velocity field is normalized with the
circulation per unit span. The pressure coefficient Cp is defined as:

Cp =
p

1
2
ρU2

where, U is the absolute maximum value of the velocity component in x direction. The
synthetic pressure field is referred to as exact Cp field hereinafter.

The instantaneous pressure field is estimated with the Poisson pressure equation and
Neumann boundary condition by using the synthetic velocity fields.
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(a) Exact Cp field. (b) Estimated Cp field.

Figure A.2: Cp field zoomed in on the vortex core region. (a) represents the exact Lamb-
Oseen Cp field and (b) represents the Cp field estimated from the Lamb-Oseen velocity
fields.

The Fig. A.2a and A.2b above zooms in on the vortex core region. The coordinate
axes of the contour plot is normalized by the vortex core radius and the dashed black line
denotes the streamwise extent of the vortex core. On a closer look at the Estimated Cp
field, there exists a slight dissimilarity, to the Exact Cp field where the contours inside the
vortex core ,represented by yellow colour, are shifted relatively. The difference is clear in
Fig. A.3a where the Estimated Cp represented by black solid circles is offset with respect
to the Exact Cp.

(a) Exact Cp field. (b) Estimated Cp field.

Figure A.3: A global view of the evolution of the pressure coefficient Cp along the vortex
centerline. (a) Identifies the shift between the exact and the estimated pressure field and
(b) represents the estimated pressure field coinciding with the exact one on removal of
the constant K.

On verifying the compatibility condition, the difference is less than 0.2 percent, which
is the consequence of numerical scheme used and thus represents the solver inaccuracies.
Verification of the compatibility condition implies that the pressure estimated is offset to
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the exact pressure by a constant K, as shown in A.3b. The results prove to be consistent
with the theory in 3.1.1. Also, The maximum error level defined by:

∥ ϵ ∥∞:= max(| ϵ1 |, | ϵ2 |, ..., | ϵn |)

where ϵ denotes the difference between the exact and estimated value, is found to be less
than 0.2 percent.

Further, the numerical scheme used is tested for its convergence using a simple analytic
function and comparing the numerical solution with the exact analytic solution.

Figure A.4: Convergence test of Numerical scheme

Figure A.4 above shows that the error level denoted in percentage decreases log linearly
with the square of the grid spacing indicating the convergence of the numerical scheme.
Therefore from the above tests, it is concluded that the pressure solver gives consistent
and accurate results.

A.1.3 Comparison of pressure between simulation and experi-
ment.

A difference is observed in the pressure coefficient Cp computed from the experimental
data and the synthetic pressure field output by the k − ω SST turbulent solver (figure
3.2). The evolution of Cp shown in figure 3.9 prior to the application of pressure correc-
tion strategies. Note that the flow develops differently along the body’s surface prior to
separation, for the simulation and the experiment. In the experiment, boundary layers
are laminar whereas in the simulation, the k−ω SST model implicitly assumes turbulent
boundary layers. The result is a shorter mean recirculation region for the synthetic data
(l∗r ≈ 0.62) relative to the experiment (l∗r ≈ 0.92).
This behaviour observed in the simulation data is to be expected in real experiments with
turbulent boundary layers since the increase of growth rate of the separated shear layers
induced by the turbulent boundary layer leads to a shorter reattachment length, indicated
by the length of the mean recirculation region lr (see for instance [1, 165]). This is also
related to the dip in the minimum base pressure observed in the wake [202]. In order to
compare Cp for both the simulation and the experiment, we compute the reduced pressure
coefficient defined by Chapman et al. [34] as

C̃p =
Cp − Cp,m
1− Cp,m

, (A.19)

where Cp,m refers to the minimum value of pressure observed on the wake centerline.
Figure A.5 shows the evolution of reduced pressure coefficient Cp,m along the wake cen-
terline with the streamwise distance normalized by the mean recirculation region length
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Figure A.5: The evolution of reduced pressure coefficient ˜Cp,m along the wake centerline.
The streamwise distance x is normalized with the mean recirculation region length lr.
‘Reference’ represents the pressure directly obtained from the turbulent solver and ‘Exp.’
refers to the pressure from the experimental data obtained after the application of pressure
correction scheme.

(lr). It is observed that both cases agree well until x/lr ≈ 1.5, after which a mismatch
is observed. The mismatch observed in the regular Cp (3.31) between the synthetic data
and the experimental data is expected to be induced by the difference in the development
of the upstream boundary layer. An interested reader may refer to earlier works [202, 1]
in this regard.
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visualization around a circular cylinder near to a plane wall. Journal of Fluids and
Structures, 16(2):175–191, 2002.

183



[136] A. Pumir. A numerical study of pressure fluctuations in three-dimensional, incom-
pressible, homogeneous, isotropic turbulence. Physics of Fluids, 6(6):2071–2083,
1994.

[137] M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompen-
hans. Particle image velocimetry: a practical guide. Springer, 2018.

[138] D. Ragni, A. Ashok, B. Van Oudheusden, and F. Scarano. Surface pressure and
aerodynamic loads determination of a transonic airfoil based on particle image ve-
locimetry. Meas. Sci. and Tech., 20(7):074005, 2009.

[139] S. Rajagopalan and R. Antonia. Flow around a circular cylinder—structure of the
near wake shear layer. Experiments in fluids, 38(4):393–402, 2005.

[140] B. Ran and J. Katz. Pressure fluctuations and their effect on cavitation inception
within water jets. J. Fluid Mech., 262:223–263, 1994.

[141] J. Ren, X. Mao, and S. Fu. Image-based flow decomposition using empirical wavelet
transform. Journal of Fluid Mechanics, 906, 2021.

[142] W. Reynolds and A. Hussain. The mechanics of an organized wave in turbulent
shear flow. part 3. theoretical models and comparisons with experiments. Journal
of Fluid Mechanics, 54(2):263–288, 1972.

[143] D. Riabouchinsky. On steady fluid motions with free surfaces. Proceedings of the
London Mathematical Society, 2(1):206–215, 1921.

[144] A. Roshko. On the development of turbulent wakes from vortex streets. 1953.

[145] A. Roshko. On the drag and shedding frequency of two-dimensional bluff bodies.
1954.

[146] A. Roshko. On the wake and drag of bluff bodies. Journal of the aeronautical
sciences, 22(2):124–132, 1955.

[147] A. Roshko. Perspectives on bluff body aerodynamics. Journal of Wind Engineering
and Industrial Aerodynamics, 49(1-3):79–100, 1993.

[148] A. Rowe, A. Fry, and F. Motallebi. Influence of boundary-layer thickness on base
pressure and vortex shedding frequency. AIAA journal, 39(4):754–756, 2001.

[149] A. K. Saha, K. Muralidhar, and G. Biswas. Vortex structures and kinetic en-
ergy budget in two-dimensional flow past a square cylinder. Computers & fluids,
29(6):669–694, 2000.

[150] H. Sakamoto, K. Tan, and H. Haniu. An optimum suppression of fluid forces by
controlling a shear layer separated from a square prism. 1991.

[151] W. S. Saric, H. L. Reed, and E. J. Kerschen. Boundary-layer receptivity to
freestream disturbances. Annual review of fluid mechanics, 34(1):291–319, 2002.

[152] H. Schlichting. Boundary layer theory, volume 960. Springer, 1960.

184



[153] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data.
J. Fluid Mech., 656:5–28, 2010.

[154] P. J. Schmid and D. S. Henningson. Stability and transition in shear flows, volume
142. Springer Science & Business Media, 2000.

[155] T. Shaqarin, P. Oswald, B. Noack, and R. Semaan. Drag reduction of a d-shaped
bluff-body using linear parameter varying control. Physics of Fluids, 33(7):077108,
2021.

[156] E. M. Sharify, H. Saito, H. HARASAWA, S. Takahashi, and N. Arai. Experi-
mental and numerical study of blockage effects on flow characteristics around a
square-section cylinder. Journal of the Japanese Society for Experimental Mechan-
ics, 13(Special Issue):s7–s12, 2013.

[157] A. Sharma and V. Eswaran. Heat and fluid flow across a square cylinder in the two-
dimensional laminar flow regime. Numerical Heat Transfer, Part A: Applications,
45(3):247–269, 2004.

[158] K. Sharma and S. Dutta. Flow control over a square cylinder using attached
rigid and flexible splitter plate at intermediate flow regime. Physics of Fluids,
32(1):014104, 2020.

[159] C. Sieverding and H. Heinemann. The influence of boundary layer state on vortex
shedding from flat plates and turbine cascades. 1990.

[160] A. Sjunnesson, C. Nelsson, and E. Max. Lda measurements of velocities and tur-
bulence in a bluff body stabilized flame. 1991.

[161] A. J. Smits, B. J. McKeon, and I. Marusic. High–reynolds number wall turbulence.
Annual Review of Fluid Mechanics, 43:353–375, 2011.

[162] A. Sohankar, C. Norberg, and L. Davidson. Low-reynolds-number flow around
a square cylinder at incidence: study of blockage, onset of vortex shedding and
outlet boundary condition. International journal for numerical methods in fluids,
26(1):39–56, 1998.

[163] C. Solomon and T. Breckon. Fundamentals of Digital Image Processing: A practical
approach with examples in Matlab. John Wiley & Sons, 2011.

[164] G. R. Spedding and A. Hedenström. PIV-based investigations of animal flight. In
Animal Locomotion, pages 187–201. Springer, 2010.

[165] F. Stella, N. Mazellier, and A. Kourta. Scaling of separated shear layers: an inves-
tigation of mass entrainment. Journal of Fluid Mechanics, 826:851–887, 2017.

[166] P. J. Strykowski and K. R. Sreenivasan. On the formation and suppression of vortex
‘shedding’at low reynolds numbers. Journal of Fluid Mechanics, 218:71–107, 1990.

[167] P. Sturm. Some lecture notes on geometric computer vision. University Lecture,
2013.

185



[168] G. Sui, X. Shan, H. Tian, L. Wang, and T. Xie. Study on different underwater
energy harvester arrays based on flow-induced vibration. Mechanical Systems and
Signal Processing, 167:108546, 2022.

[169] R. Sullerey, A. Gupta, and C. Moorthy. Similarity in the turbulent near wake of
bluff bodies. AIAA journal, 13(11):1425–1429, 1975.

[170] B. M. Sumer et al. Hydrodynamics around cylindrical strucures, volume 26. World
scientific, 2006.

[171] C. Sun, A. M. Azmi, T. Zhou, H. Zhu, and Z. Zang. Experimental study on wake
flow structures of screen cylinders using piv. International Journal of Heat and
Fluid Flow, 85:108643, 2020.

[172] X. Sun, C. Yu, A. Rinoshika, L. Li, and Y. Zheng. Phase averaging on square cylin-
der wake based on wavelet analysis. In 2018 International Conference on Wavelet
Analysis and Pattern Recognition (ICWAPR), pages 168–174. IEEE, 2018.

[173] M. Tanner. A method for reducing the base drag of wings with blunt trailing edge.
Aeronautical Quarterly, 23(1):15–23, 1972.

[174] H. Tennekes and J. Lumley. First course in turbulence. First Course in Turbulence,
1972.

[175] B. Thiria, O. Cadot, and J.-F. Beaudoin. Passive drag control of a blunt trailing
edge cylinder. Journal of fluids and structures, 25(5):766–776, 2009.

[176] B. H. Timmins, B. W. Wilson, B. L. Smith, and P. P. Vlachos. A method for au-
tomatic estimation of instantaneous local uncertainty in particle image velocimetry
measurements. Exp. fluids, 53(4):1133–1147, 2012.

[177] C. E. Tinney, F. Coiffet, J. Delville, A. M. Hall, P. Jordan, and M. N. Glauser. On
spectral linear stochastic estimation. Exp. Fluids, 41(5):763–775, 2006.

[178] N. Tombazis and P. Bearman. A study of three-dimensional aspects of vortex
shedding from a bluff body with a mild geometric disturbance. Journal of Fluid
Mechanics, 330:85–112, 1997.

[179] A. Towne, O. T. Schmidt, and T. Colonius. Spectral proper orthogonal decompo-
sition and its relationship to dynamic mode decomposition and resolvent analysis.
J. Fluid Mech., 847:821–867, 2018.

[180] L. N. Trefethen. Spectral methods in MATLAB, volume 10. Siam, 2000.

[181] R. Trip and J. H. Fransson. Bluff body boundary-layer modification and its effect
on the near-wake topology. Physics of Fluids, 29(9):095105, 2017.

[182] F. Tröltzsch. Optimal control of partial differential equations: theory, methods, and
applications, volume 112. American Mathematical Soc., 2010.

[183] T. Tronchin, L. David, and A. Farcy. Loads and pressure evaluation of the flow
around a flapping wing from instantaneous 3D velocity measurements. Exp. fluids,
56(1):7, 2015.

186



[184] C. Tropea, A. L. Yarin, J. F. Foss, et al. Springer handbook of experimental fluid
mechanics, volume 1. Springer, 2007.

[185] D. Tsahalis. The effect of seabottom proximity of the vortex-induced vibrations and
fatigue life of offshore pipelines. 1983.

[186] M. Unal, J.-C. Lin, and D. Rockwell. Force prediction by PIV imaging: a
momentum-based approach. Journal of fluids and structures, 11(8):965–971, 1997.

[187] P. Valente and J. C. Vassilicos. The decay of homogeneous turbulence generated
by multi-scale grids. In Seventh International Symposium on Turbulence and Shear
Flow Phenomena. Begel House Inc., 2011.

[188] J. Van der Kindere, A. Laskari, B. Ganapathisubramani, and R. De Kat. Pressure
from 2d snapshot PIV. Exp. fluids, 60(2):32, 2019.

[189] B. Van Oudheusden. Principles and application of velocimetry-based planar pressure
imaging in compressible flows with shocks. Exp. fluids, 45(4):657–674, 2008.

[190] B. Van Oudheusden. PIV-based pressure measurement. Meas. Sci. and Tech.,
24(3):032001, 2013.

[191] B. Van Oudheusden, F. Scarano, and E. Casimiri. Non-intrusive load characteriza-
tion of an airfoil using piv. Experiments in Fluids, 40(6):988–992, 2006.

[192] B. Van Oudheusden, F. Scarano, N. Van Hinsberg, and D. Watt. Phase-resolved
characterization of vortex shedding in the near wake of a square-section cylinder at
incidence. Experiments in Fluids, 39(1):86–98, 2005.

[193] J. J. C. Villanueva and L. F. F. da Silva. Study of the turbulent velocity field in the
near wake of a bluff body. Flow, Turbulence and Combustion, 97(3):715–728, 2016.

[194] C. Y. Wang, Q. Gao, R. J. Wei, T. Li, and J. J. Wang. Spectral decomposition-based
fast pressure integration algorithm. Exp. fluids, 58(7):84, 2017.

[195] Q.-Y. Wang, S.-J. Xu, L. Gan, W.-G. Zhang, and Y. Zhou. Scaling of the time-
mean characteristics in the polygonal cylinder near-wake. Experiments in Fluids,
60(12):1–15, 2019.

[196] X. Wang, J. Chen, B. Zhou, Y. Li, and Q. Xiang. Experimental investigation of
flow past a confined bluff body: Effects of body shape, blockage ratio and reynolds
number. Ocean Engineering, 220:108412, 2021.

[197] T. Wei and C. R. Smith. Secondary vortices in the wake of circular cylinders.
Journal of Fluid Mechanics, 169:513–533, 1986.

[198] G. S. West and C. J. Apelt. The effects of tunnel blockage and aspect ratio on
the mean flow past a circular cylinder with reynolds numbers between 104 and 105.
Journal of Fluid Mechanics, 114:361–377, 1982.

[199] C. H. Williamson. Oblique and parallel modes of vortex shedding in the wake of a
circular cylinder at low reynolds numbers. Journal of Fluid Mechanics, 206:579–627,
1989.

187



[200] C. H. Williamson. Vortex dynamics in the cylinder wake. Annual review of fluid
mechanics, 28(1):477–539, 1996.

[201] B. M. Wilson and B. L. Smith. Uncertainty on PIV mean and fluctuating velocity
due to bias and random errors. Meas. Sci. and Tech., 24(3):035302, 2013.

[202] T. Y.-T. Wu. Cavity and wake flows. Annual Review of Fluid Mechanics, 4(1):243–
284, 1972.

[203] J. Xie. Aerodynamic optimization of super-tall buildings and its effectiveness as-
sessment. Journal of Wind Engineering and Industrial Aerodynamics, 130:88–98,
2014.

[204] W. Xu, S. Zhang, Y. Ma, and B. Liu. Fluid forces acting on three and four long side-
by-side flexible cylinders undergoing flow-induced vibration (fiv). Marine Structures,
75:102877, 2021.

[205] K. Yang, T. Qiu, J. Wang, and L. Tang. Magnet-induced monostable nonlinearity for
improving the viv-galloping-coupled wind energy harvesting using combined cross-
sectioned bluff body. Smart Materials and Structures, 29(7):07LT01, 2020.

[206] M. W. Yiu. Turbulent structures in the wake of circular cylinders. Hong Kong
Polytechnic University (Hong Kong), 2005.

[207] Q. Zhang, Y. Liu, and S. Wang. The identification of coherent structures using
proper orthogonal decomposition and dynamic mode decomposition. Journal of
Fluids and Structures, 49:53–72, 2014.

[208] T. Zhou, S. M. Razali, Y. Zhou, L. Chua, and L. Cheng. Dependence of the wake on
inclination of a stationary cylinder. Experiments in fluids, 46(6):1125–1138, 2009.

188



Roshan SHANMUGHAN

Contribution to the analysis of turbulent wakes of bluff bodies: Impact on the aerodynamic
drag.

Abstract: Flow separation is a phenomenon at the origin of aerodynamic performance-losses
such as drag increase for a vehicle. This work focuses on understanding the physical mechanism
driving the drag of a simplified vehicle – a 2D bluff body, by the balance of mean momentum
and Reynolds stress equations in its wake. A tool for accurate estimation of mean pressure field
is developed which allows the closure of the mean momentum equation. The method utilizes the
concept of optimal control to correct the mean pressure, estimated from PIV-based velocity fields,
using sparse reliable pressure measurements. The budget of mean momentum, along a control
volume in the near wake, reveals the role and contribution of mean pressure and the Reynolds
stress components to the mean drag. The normal components of the Reynolds stress tensor act as a
dominant source, through the mean pressure, and a sink for the mean drag. On the other hand, the
Reynolds shear stress component redistributes the momentum spatially. The mechanisms driving
the normal Reynolds stresses are addressed partially by decomposing the fluctuations into coherent
and incoherent contributions. A novel method of coherent pressure reconstruction is presented,
allowing for the closure of the coherent Reynolds-stress transport equation. The balance shows that
the coherent pressure diffusion and strain terms play key roles in redistributing the energy spatially
as well as between the normal stress components. The perturbation of this mechanism leads to the
decrease of coherent normal Reynolds stresses, and consequently, a drag reduction. The study also
highlights the regions playing key roles in the interplay between the mean flow and the coherent
structures.
Keywords: Drag reduction, momentum transport, coherent structures, Reynolds-stress transport,
pressure reconstruction.

Contribution à l’analyse du sillage turbulent d’un corps épais : Impact sur la trâınée
aérodynamique.

Résumé: Le décollement massif est un phénomène à l’origine de la perte de performance
aérodynamique comme l’augmentation de la trâınée pour un véhicule. Ce travail contribue à la
compréhension des mécanismes qui contrôlent la trâınée d’un véhicule simplifié, un corps épais bidi-
mensionnel. Les équations de transport de quantité de mouvement moyen et des contraintes de
Reynolds dans le sillage sont analysées à partir de la vélocimétrie obtenue par imagerie de partic-
ules. Un outil d’estimation précise du champ de pression moyen est développé, permettant la clôture
du bilan de quantité de mouvement moyenne. La méthode utilise le concept de contrôle optimal
pour corriger la pression, estimée à partir de la PIV, et utilisant des mesures de pression fiables et
éparses. Le bilan révèle le processus d’échange de quantité de mouvement dans le sillage proche.
Les composantes normales du tenseur des contraintes Reynolds jouent un rôle de source et de puits
pour la trâınée, tandis que la composante de cisaillement redistribue la quantité de mouvement.
Les mécanismes de transport des composantes normales des contraintes de Reynolds sont abordés
partiellement en décomposant les fluctuations en structures cohérentes et incohérentes. Une nou-
velle méthode d’estimation de la pression des structures cohérentes est introduite. Les équations
de transport des contraintes de Reynolds associées aux structures cohérent révèlent que les termes
associés à la pression cohérente jouent un rôle important dans la redistribution de l’énergie. La per-
turbation de ce mécanisme entrâıne la diminution des contraintes de Reynolds et, par conséquent,
la réduction de la trâınée. L’étude met également en évidence les régions qui jouent un rôle clé dans
l’interaction entre l’écoulement moyen et les structures cohérentes.
Mots clés: Réduction de trâınée, transport de quantité de mouvement, structures cohérentes,
transport des contraintes de Reynolds, reconstruction du champ de pression.
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