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Abstract
Dans ce manuscrit nous nous concentrons sur l’auto-étalonnage des systèmes à rayons X. Par auto-

étalonnage nous considérons la situation où nous devons définir des paramètres pour les modèles de

projection de rayons X avec des marqueurs dans une mire à géométrie inconnue ou sans marqueurs.

Nous considérons quelques modèles géométriques classiques de systèmes radiologiques. Tout d’abord,

le modèle 3D en faisceau conique avec les faisceaux divergents où la trajectoire générale de la source

est calibrée avec la méthode d’ajustement de faisceaux. On montre théoriquement dans le cas de la

géométrie conique 3D que tout système avec un tel modèle intégral ne peut être calibré qu’à une simil-

itude près. Deuxièmement, pour la géométrie parallèle 2D et la géométrie en éventail 2D avec des

sources alignées, nous proposons la calibration basée sur les conditions de cohérence des données

(DCC) sur les distributions. Dans ce cas, nous étendons les DCC connues des fonctions aux distri-

butions, nous modélisons des marqueurs avec des distributions de Dirac et construisons les nouvelles

procédures analytiques pour calibrer à l’aide de mires de calibration spéciales. Enfin, par analogie avec

le cas 2D, nous construisons les procédures de calibration similaires pour les cas en faisceau conique

avec des sources alignées et les cas en faisceau conique avec des sources dans le plan parallèle au plan

du détecteur. Nous présentons des simulations numériques dans chaque cas.

In this manuscript, we concentrate on self-calibration of X-ray systems. By self-calibration, we

consider the situation when we need to define parameters of X-ray projection models with markers

in a calibration system of unknown geometry or without markers. We consider few classical X-ray

models. Firstly, the 3D cone-beam model with divergent beams and with the general source trajectory is

calibrated with the bundle adjustment method. It’s shown theoretically in the 3D cone-beam geometry

that any system with such an integral model cannot be geometrically calibrated better then up to a

similarity transformation. Secondly, for the 2D parallel geometry with parallel beams and the 2D fan-

beam geometry with divergent beams and sources on a line we propose a geometric calibration based

on data consistency conditions (DCC) on distributions. In this case, we extend the known DCC from

functions to distributions. We model markers with Dirac distributions and construct new analytical

procedures to calibrate using special calibration cages. Lastly, by the analogy with the 2D case, we

construct similar calibration procedures for the cases of the cone-beam with sources on a line and the

cone-beam with sources in the plane parallel to the detector plane. We present numerical simulations

in each case.
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1 Introduction

1.1 French summary of the chapter

Le premier chapitre est consacré à l’introduction à la vision par ordinateur et à l’imagerie médicale.

Dans la section 1.2 nous commençons par la brève histoire de la tomographie, la description des

systèmes à rayons X et les principales géométries utilisées pour la modélisation des systèmes à rayons

X. Les systèmes à rayons X sont généralement constitués d’une source et d’un détecteur. Les rayons X

traversant un objet sont atténués par l’objet. Pour un objet hétérogène, cette atténuation des rayons X

est différente selon les parties plus ou moins denses d’objet, créant un contraste dans l’image de pro-

jection. Un patient est ainsi modélisé par sa fonction d’atténuation f à reconstruire à partir des images

de projection. Différentes configurations des sources sont introduites : les trajectoires circulaires et

spirales dans les systèmes CT rotatifs, les trajectoires linéaires comme en tomosynthèse [DG03] et le

cas des sources multiples comme par exemple dans les systèmes CT rotatifs à deux sources [Flo+06].

Plus de détails historiques peuvent être trouvés dans [Kal06].

La première génération de systèmes à rayons X a été construite suivant la géométrie en faisceau

parallèle, plus tard avec des géométries en faisceau divergent. Dans notre travail nous nous concen-

trons sur la géométrie parallèle 2D décrite par la transformée de Radon. Nous rappelons également

dans la section 1.2 la transformée en faisceau divergent 2D (dite transformée en éventail) et 3D (dite

transformée en faisceau conique). Pour toutes les géométries nous considérons des détecteurs plans.

Nous présentons également les trois familles de systèmes tomographiques aux géométries divergentes

: les scanners CT, les systèmes C-arm et les systèmes de contrôle non destructif.

Dans la section 1.3 nous décrivons le modèle de caméra et la matrice de projection qui permet de

projeter un point 3D de l’espace vers un point 2D dans le plan d’image. Les paramètres géométriques

du modèle de projection doivent être définis. S’ils ne sont pas connus, la caméra doit être calibrée

géométriquement. L’étalonnage (ou la calibration) peut être effectué avec des marqueurs dont la

géométrie et la position sont connues [Stu12]. En tomographie, les marqueurs sont généralement de pe-

tits objets ronds denses (semblables à des billes de roulement) ajoutés à la scène. Dans certains cas, ces

billes sont positionnées sur ou à l’intérieur d’un fantôme de sorte à connaı̂tre les coordonnées 3D : on

connaı̂t ainsi les coordonnées 3D relatives des centres des marqueurs entre eux. Ainsi, l’étalonnage va

consister à estimer les éléments de la matrice de projection, connaissant les coordonnées des points 3D

et les coordonnées des points projetés 2D respectifs, détectés dans l’image. Dans certaines situations,

nous ne connaissons pas non plus les coordonnées des points 3D, alors nous avons deux ensembles

d’inconnues : les matrices de projection Pi pour différentes vues de caméra et les coordonnées 3D des

8
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marqueurs Q j. Dans ce cas, nous pouvons résoudre le problème d’ajustement de faisceaux (”bundle

adjustment” en anglais) en utilisant différentes techniques d’optimisation [Tri+00].

En vision par ordinateur, les méthodes d’étalonnage basées sur l’image peuvent être divisées en

deux groupes : avec marqueurs et sans marqueurs. Le dernier groupe est généralement appelé un

groupe d’algorithmes d’auto-étalonnage. En l’absence de marqueurs, il est classique de rechercher

des points d’intérêt dans les images. Pour cela, nous pouvons utiliser des algorithmes spéciaux pour

la détection de coin ou la détection de singularités. Ensuite, il est possible de définir un ensemble

de correspondances des points d’intérêt dans les vues différentes en fonction de la proximité et de

la similitude de leur intensité dans les voisinages [HZ04]. Certaines techniques d’auto-calibration

décrites dans [HZ04] sont également présentées dans notre introduction dans la section 1.3. Nous y

définissions la transformation projective et la similitude. D’après [HZ04], nous savons que nous avons

une solution du problème d’ajustement de faisceaux à une transformation projective près. La classe

de telles solutions nous donne une reconstruction projective de la scène. Parfois, nous pouvons avoir

ce qu’on appelle la reconstruction métrique de la scène. Pour la reconstruction métrique, nous avons

une solution à une similitude près. En général, il est facile d’obtenir une reconstruction projective (par

exemple, à partir d’ajustement de faisceaux) à partir de l’ensemble des points d’intérêt. Ensuite pour

l’auto-calibration, il faut estimer l’homographie rectifiant H, la transformation pour laquelle on peut

obtenir une reconstruction métrique PiH, H−1Q j à partir de la reconstruction projective Pi, Q j.

Le processus de calibration est une étape essentielle, entre autres, pour la reconstruction d’images

3D. Par analogie avec la vision par ordinateur, les chercheurs en tomographie envisagent des méthodes

de calibration basées sur l’image avec marqueurs et sans marqueurs [Les18]. Pour le premier groupe,

les coordonnées 3D des centres de marqueurs peuvent être connues ou inconnues. Dans nos travaux

d’auto-étalonnage en tomographie, nous utilisons à la fois les approches des algorithmes avec mar-

queurs de géométrie inconnue et les algorithmes sans aucun marqueur.

Dans la section 1.4 nous passons en revue deux types de méthodes existantes pour calibrer différents

systèmes à rayons X. Pour le premier groupe, les propriétés de projection aident à dériver des procédures

de calibration [WT04], [RGG94], [LW12]. Très souvent, les procédures d’auto-calibration aboutissent

dans ce cas à des optimisations numériques non linéaires comme dans le cas d’ajustement de faisceaux.

Dans de nombreux travaux, des mires d’étalonnage avec des propriétés spéciales ont été conçues en

plus [Cho+05], [Noo+00], [MCN09]. Certaines méthodes analytiques de ce groupe ont été récemment

proposées dans [TSH19] pour la géométrie en faisceau conique avec la trajectoire de source circulaire

et dans [Jon18] pour les géométries en éventail et en faisceau conique avec des trajectoires générales

de source.

Le deuxième groupe de méthodes est basé sur les conditions de cohérence des données (DCC pour

”Data Consistency Conditions” en anglais). Les DCC sont des équations qui doivent être satisfaites par

les données de projection. Nous mentionnons les DCC dans la géométrie parallèle 2D en présentant

les conditions de cohérence de Helgason-Ludwig (HLCC) [Hel65; Lud66] et quelques méthodes de

9
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calibration développées à partir de celles-ci dans [BB00b; BB00a], [Pan+08] et [DS14]. Nous men-

tionnons également les DCC de [Cla13] pour la géométrie en éventail avec des sources alignées avec

la procédure de calibration de [NDC20] que nous souhaitons généraliser dans notre travail. Pour le

cas 3D, il est important de parler de DCC pour le cas du faisceau conique avec des sources alignées

de [NDC20], et dans le plan parallèle au plan du détecteur de [CD13]. Ce sont des géométries que

nous aborderons dans les prochains chapitres. Le principal avantage des méthodes basées sur les DCC

est qu’elles peuvent aider à construire une procédure analytique basée uniquement sur des images pro-

jetées. L’inconvénient est qu’elles ne peuvent généralement pas gérer la troncature des données.

Puisque notre travail est principalement dédié aux algorithmes hybrides, c’est-à-dire aux méthodes

qui combinent l’utilisation de marqueurs et de DCC, nous mentionnons également dans la section 1.4

l’algorithme hybride et l’idée de calibrer avec des données tronquées de faisceaux coniques présentées

par Unberath et ses collègues dans [Unb+17], l’article dont nous nous sommes inspirés. Nous illustrons

également le problème de la troncature des projections et pourquoi il est crucial pour les DCC.

1.2 Tomography and some acquisition geometries

X-ray computed tomography (CT) was widely developed in the second half of the 20th century [Kal06].

Usually, in X-ray systems there are an X-ray source and a detector. X-rays passing through a patient

modelled by its attenuation map f produce projected images in the detector. The principal task of

tomography is the reconstruction of f from the projected images.

The first generation of X-ray systems was built with pencil beam, single source, single detector,

later the production moved to geometries with divergent beams. First detectors in 1970s were flat with

one or few rows, but later X-ray systems were equipped with a ring-like detector. In 2000s more rows

were added to the detector to have simultaneous acquisition of few slices leading to well-known CT

scanners (see fig. 1.1 for different detector configurations). Different source configurations were intro-

duced during the history of tomography: circular and spiral trajectories in rotating CT systems, linear

trajectories as in tomosynthesis [DG03], multiple sources in one system as in [Flo+06]. Nowadays,

with the relative low cost of X-ray micro-sources, new configurations are studied, for example, the sta-

tionary CT with the rectangular imaged region and multiple sources [Gon+13], the case of multi-source

CT with the cube structure [Gon+18]. More historical details can be found in [Kal06]. In our work, we

consider different 2D and 3D geometries of X-ray systems with different source trajectories with flat

detectors.

We usually suppose that f ∈ D(R3) or f ∈ D(R2) (in other words, f belongs to the space of

compactly supported smooth functions in R3 or R2, where the smoothness is classically defined by the

infinite number of continuous derivatives), but very often the mathematical theory can be done in a

much larger mathematical framework such as f ∈ S (R3) or f ∈ S (R2) (in other words, f belongs to

the Schwartz space or to the space of rapidly decreasing smooth functions). It’s important to know here

10



Chapter 1 – Introduction Anastasia Konik

Figure 1.1: Left: flat detector system with single row, center: flat detector system with multiple rows,

right: ring-like detector system with multiple rows.

that D(RN)⊂S (RN) for any dimension N. In fact, the integral projection, see, for example, Eq. (1.1),

is naturally well defined for the Lebesgue integrable function f .

One class of X-ray systems with parallel acquisition is described by the Radon transform. We

can define the Radon transform of the function from the Schwartz space in any dimension (see, for

example, [Nat01]):

Definition 1.1. For f ∈ S (RN) the Radon transform is

R f (⃗θ ,s) =
∫

θ⃗ ·⃗x=s
f (⃗x)d⃗x =

∫
y⃗∈θ⃗⊥

f (s⃗θ + y⃗)d⃗y, (1.1)

where s ∈R, θ⃗ ∈ SN−1, SN−1 is the unit sphere in the N-dimensional Euclidean space; θ⃗ · x⃗ is the usual

scalar product of two vectors.

When N = 2, the integral over a hyperplane in the Definition 1.1 can be rewritten in the simple way:

Definition 1.2. For f ∈ S (R2) the Radon transform is

R f (α,s) =
∫

∞

−∞

f (s⃗θα + lη⃗α)dl =
∫

∞

−∞

f (scosα − l sinα,ssinα + l cosα)dl, (1.2)

where α ∈ [0,2π), s ∈ R, θ⃗α = (cosα,sinα), η⃗α = (−sinα,cosα).

The geometric parameters of this 2D model are shown in the fig. 1.2.

The Radon transform is well-defined for Lebesgue integrable functions for which we can calculate

the integral from Eq. (1.2). For example, when the function is an indicator function f = fΩ, Ω is a

11
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Figure 1.2: The 2D parallel geometry.

compact, its Radon transform is easy to calculate for particular cases. A simple case to calculate is

the case of Ω to be the closed circular disc of radius R > 0 centered at the origin. Then the indicator

function of Ω is given by

fR(x,y) =

1, if x2 + y2 ≤ R2,

0, otherwise.
(1.3)

Then the Radon transform in Eq. (1.2) of this function is computed in many lecture notes in tomog-

raphy:

R fR(α,s) =

2
√

R2 − s2, if |s| ≤ R,

0, otherwise.
(1.4)

Now suppose Ω is a disc of radius R > 0 centered at c⃗ = (a,b) with the indicator function fR,⃗c.

Suppose that fR,⃗c := fR(⃗x− c⃗) is the translation of the function fR, then

R fR,⃗c(α,s) =
∫

∞

−∞

fR(s⃗θα + lη⃗α − c⃗)dl =
∫

∞

−∞

fR((s− c⃗ · θ⃗α )⃗θα +(l − c⃗ · η⃗α )⃗ηα)dl

=
∫

∞

−∞

fR((s− c⃗ · θ⃗α )⃗θα + tη⃗α)dt =R fR(α,s− c⃗ · θ⃗α). (1.5)

It follows from Eq. (1.5) that for the translation of the indicator of the ball with radius R fR,⃗c:

R fR,⃗c(α,s) =

2
√

R2 − (s− s0(α,a,b))2, if |s− s0| ≤ R,

0, otherwise,
(1.6)

where s0(α,a,b) = acosα +bsinα = c⃗ · θ⃗α .

12
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Here we described known properties, other properties of the 2D Radon transform and details can

be found in [Fee10].

Also, it’s clear that R is a linear operator: R(αg+βh) = αRg+βRh, where α and β are scalars.

Thus, we can easily calculate the Radon transform of the linear combination of disk indicators on the

plane.

Note that the parallel acquisition is a simplified model of geometry which is difficult to meet in

real systems. The closest example might be the synchrotron as a parallel beam [Hel+05] where the

source-detector distance is huge. We can also define a divergent-beam transform in any dimension. For

example, for 2D we have the so-called fan-beam transform:

Definition 1.3. Fan-beam data (or divergent projection) of the object f ∈ S (R2)

D f (λ , ζ⃗ ) =
∫ +∞

0
f (⃗sλ + lζ⃗ )dl, (1.7)

where λ ∈R is the trajectory parameter of the source s⃗λ ∈R2, ζ⃗ defines the direction of the beam line.

In the standard theory we have that ζ⃗ ∈ S1 and we have so-called non-weighted projections, where

S1 is the unit sphere in R2, but in our work we also consider the situation when ζ⃗ has an arbitrary

length. The last situation corresponds to so-called weighted projections in the definition of the integral

transform.

For the 3D case of divergent X-rays researchers define:

Definition 1.4. Cone-beam data (or divergent projection) of the object f ∈ S (R3)

D f (⃗sλ , ζ⃗ ) =
∫ +∞

0
f (⃗sλ + lζ⃗ )dl, (1.8)

where λ ∈R is the trajectory parameter of the source s⃗λ ∈R3, ζ⃗ - the direction of the integration line.

We should note here the same: in the standard theory we have that ζ⃗ ∈ S2, where S2 is the unit

sphere in R3, but in our work we also consider the situation with non-unit ζ⃗ .

For the last two definitions we can parameterize differently s⃗λ and obtain different geometries. For

example, let us consider the 2D fan-beam geometry from [Cla13] with sources on a line that we plan

to use later. In this case, the source trajectory s⃗λ = (D,λ )T is on the line x1 = D, D > 0 (fig. 1.3).

The detector is in the x2-axis, the non-unit direction of the integration line ζ⃗ = (0,y)T − (D,λ )T , y

is a parameter of the detector, then s⃗λ + lζ⃗ = (D,λ )T + l(−D,y−λ )T . Then we can rewrite that the

fan-beam data of f are

D f (λ ,y) =
∫ +∞

0
f (D− lD,λ + ly− lλ )dl. (1.9)

In this case, we usually consider f as a smooth function of compact support with support in

(D1,D2)×R, 0 < D1 < D2 < D, because our object should be between the detector and the source
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Figure 1.3: The fan-beam geometry with sources on a line.

line. But it’s also possible to define the fan-beam transform of another functions, for example, for

indicator functions as we did for the 2D Radon transform.

In the same way, we can construct different 3D cone-beam geometries. In the next chapters we will

describe in details different modeling approaches for the 3D divergent geometry. But let us present here

in details the situation from [CD13] when we have sources moving in the plane parallel to the detector

plane. In the case of the fig. 1.4, the source trajectory is s⃗λ = (λ1,λ2,0)T , the detector is in x3 = D,

the non-unit direction of the integration line ζ⃗ = (u,v,D)T − (λ1,λ2,0)T , u and v are parameters of the

detector. Then we can rewrite that the cone-beam data of f are

D f (λ1,λ2,u,v) =
∫ +∞

0
f (λ1 + l(u−λ1),λ2 + l(v−λ2), lD)dl. (1.10)

We are considering three families of tomographic systems with divergent geometries: CT scanners,

C-arm systems and non-destructive testing systems. CT scanners have a ring shape and a translation

table for patients (fig. 1.5), they are mainly intended for diagnosis. The most popular CT scanners

are produced by Siemens (SOMATOM family), Phillips (for example, Incisive CT), GE (for example,

Revolution CT). A C-arm connects an X-ray source and an X-ray detector by a C-shaped arm and ro-

tates around its isocenter (fig. 1.6). A patient is usually placed at the isocenter. Projected images after

C-arm rotations are collected. C-arms are intended for interventional operations. C-arms are produced

by Phillips (Zenition mobile C-arm platform), Siemens (Cios family), Ziehm (Ziehm Vision RFD 3D).

With non-destructive X-ray systems we want to present the case of non-medical X-ray systems with the

line source trajectory, see fig. 1.7 for the example of a baggage screening system produced by Safeagle.

Other systems for non-destructive testing are produced for detecting defects or the inspection of ma-

terials (see, for example, Shimadzu company, https://www.shimadzu.com/an/products/non-destructive-

testing/index.html). C-arm systems are described by the 3D cone-beam model, while CT scanners and

baggage screening systems can be sometimes reduced to the 2D geometry.
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Figure 1.4: The cone-beam geometry with sources on a plane parallel to the detector.

Figure 1.5: A CT scanner SOMATOM Edge Plus by Siemens, picture from https://www.siemens-

healthineers.com/fr/computed-tomography.

Note that in order to perform the reconstruction, we need to know the geometric parameters of

the model of an X-ray system. Thus, a calibration of X-ray systems should be performed to estimate

the geometric parameters. The reconstruction can be performed analytically or with some iterative

procedures. For the 2D parallel geometry, filtered backprojection (FBP) is the most famous analytical
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Figure 1.6: A prototype of C-arm in the TIMC lab by Surgivisio.

Figure 1.7: A baggage screening system HP-SE6040C by Safeagle, picture from

https://www.safeagle.com/product-1233-x-ray-baggage-scanner-hp-se6040.html.

reconstruction method [Nat01]. The iterative or algebraic reconstruction technique (ART) for Radon’s

integral equations based on Kaczmarz’s method can be also found in [Nat01]. The FPB inversion

formula was derived also for the fan-beam geometry with a circular trajectory of the source (see, for

example, [KS01]). The 2D FBP algorithm was extended to the 3D case to the Feldkamp-Davis-Kress

(FDK) algorithm [FDK84]. In the case of linear source trajectories, iterative techniques are more

preferred [DG03].
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In this section we introduced different geometries of X-ray systems, provided mathematical defini-

tions of the corresponding models. We also briefly discussed the reconstruction procedure and several

reconstruction methods to solve this specific inverse problem to estimate a specific object from the

set of its projections. The calibration should be performed before the reconstruction. We will discuss

different calibration techniques in tomography and in computer vision world in the next sections.

1.3 Geometric calibration of a camera in computer vision

1.3.1 Pinhole camera model and projection matrix

In the section 1.3, we want to discuss different calibration techniques in computer vision. Later we will

show the connection between the calibration process in computer vision and in tomography.

The description of a popular pinhole camera model can be found in [Stu12]. This model represents

a perspective projection and helps to project the 3D world to a 2D image. An optical center and an

image plane describe the pinhole model. The 3D point Q is projected along a line to the point q in the

image plane (fig. 1.8).

Figure 1.8: The pinhole camera model.

In order to algebraically describe this geometric camera model, we need to introduce coordinate

systems and coordinates. Homogeneous coordinates with 4 coordinate systems are usually used. These

coordinate systems are:

1. the fixed coordinate system in the 3D scene or the world system;
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2. the 3D coordinate system of the camera with the origin in the optical center and Z-axis as the

optical axis (the optical axis is the line through the optical center and perpendicular to the image

plane), X and Y axes are chosen as being parallel to the image plane;

3. the 2D coordinate system for the image plane with the origin in the intersection of the optical

axis and the image plane, x and y are chosen as being parallel to the X and Y axes of the camera

system;

4. the 2D pixel coordinate system in pixel units.

Let us start with main equations that should connect coordinates of the 2D point q in the pixel sys-

tem and the 3D point Q in the world system. Let us denote homogeneous coordinates of the optical

center in the world system as

(
t

1

)
, the orientation of the camera as R. We usually say that

x

y

1

 are

homogeneous coordinates for the Cartesian point

(
x

y

)
(for 2D, for example, but we can also define in

3D). The same Cartesian point can be represented in homogeneous coordinates as

x

y

1

 or

kx

ky

k

 for

any non-zero k. Thus, a point can be represented by many homogeneous coordinates. This representa-

tion is commonly used in computer vision in order to simplify computations.

The connection between coordinates

Xc

Y c

Zc

 of Q in the camera system and

Xw

Y w

Zw

 in the world

system can be written with a rotation matrix of the camera R and a translation of the camera t as:Xc

Y c

Zc

= R

Xw

Y w

Zw

−Rt. (1.11)

Or in homogeneous coordinates:
Xc

Y c

Zc

1

=

(
R −Rt

0T 1

)
Xw

Y w

Zw

1

 . (1.12)

The model provides the connection between Q in the camera system and q in the image system by

knowing some parameter. Let us denote the distance between the principal point (the intersection of

the optical axis and the image plane) and the optical center as the focal length f (fig. 1.9). We have
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x
Xc =

f
Zc (the same for y and Y c), thus with a scalar k, where k = Zc, kx = f Xc and ky = fY c. Thus,

there is a connection:

q =

x

y

1

∼

 f 0 0 0

0 f 0 0

0 0 1 0




Xc

Y c

Zc

1

 . (1.13)

Here we use ∼, it means that the equality between vectors from the left and right sides is up to a

scale.

Figure 1.9: The perspective projection.

Now we can connect coordinates of q in the image system and in the pixel system. Pixels also have

coordinates. The origin of the pixel coordinate system is usually the lower left corner of the image, the

first coordinate axis is horizontal, the second is vertical. We can count pixels in horizontal and vertical

directions starting from the origin. Thus, the transformation between image and pixel systems requires

a translation and a change of unit. Let us denote the density of pixels in the u (v respectively) direction

as ku (kv respectively). Using

x0

y0

1

 as the translation, we can obtain coordinates of q in the pixel

system: u

v

1

=

ku 0 0

0 kv 0

0 0 1


1 0 x0

0 1 y0

0 0 1


x

y

1

 . (1.14)
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Thus, we can combine Eq. (1.11), (1.12), (1.13) and simplify results:

u

v

1

∼

ku f 0 kux0 0

0 kv f kvy0 0

0 0 1 0

( R −Rt

0T 1

)
Xw

Y w

Zw

1

 . (1.15)

If we define K =

ku f 0 kux0

0 kv f kvy0

0 0 1

, then

u

v

1

∼
(

K 0
)( R −Rt

0T 1

)
Xw

Y w

Zw

1

∼ P


Xw

Y w

Zw

1

 . (1.16)

Definition 1.5. A projection matrix P of the pinhole camera model is defined as P ∼ KR
(

I −t
)
. The

matrix K is called a calibration matrix. We can write this matrix as:

K =

αu 0 u0

0 αv v0

0 0 1

 . (1.17)

Four parameters αu, αv, u0, v0 are called intrinsic parameters of the camera. Extrinsic parameters are

elements of R and t.

Usually we don’t know the parameters of the model and we have to define them with a good ac-

curacy. The calibration is a task to find the parameters of the model. It differs in the literature, but

sometimes calibration means just finding the intrinsic parameters, sometimes both intrinsic and extrin-

sic parameters. There are two main methods to calibrate in computer vision: with markers and without

markers. Markers usually mean points or small round objects added to the scene modeling points.

They form the so-called calibration cage. We give few examples in the next subsections. Let us note

that any object that leads to the detection of marker points can serve as a calibration cage. The ex-

ample in the computer vision is the calibration with a chessboard after the detection of the chessboard

corners [Hof+17].

1.3.2 Camera calibration with known markers

Theory. The simple calibration process with markers consists of taking few images of a set of points

with known 3D coordinates. Let us describe the simple algorithm to solve this calibration task as
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presented in [Stu12]. We want to use the correspondence between each marker in the world system and

its projection. Let us consider N points (markers). For each point with index j from Eq. (1.16) we have

q j =

u j

v j

1

∼ PQ j. (1.18)

Here P is unknown. Firstly, we need to compute 12 elements of the projection matrix P. After

intrinsic and extrinsic parameters can be found from P.

We can go from homogeneous equations to actual:

u j =
(PQ j)1

(PQ j)3
, v j =

(PQ j)2

(PQ j)3
, (1.19)

or

u j(P31Q j,1 +P32Q j,2 +P33Q j,3 +P34Q j,4) = P11Q j,1 +P12Q j,2 +P13Q j,3 +P14Q j,4

v j(P31Q j,1 +P32Q j,2 +P33Q j,3 +P34Q j,4) = P21Q j,1 +P22Q j,2 +P23Q j,3 +P24Q j,4.

In the matrix form it will be:

Ax = 0, (1.20)

where

x =



P11
...

P14

P21
...

P24

P31
...

P34


and

A =



Q1,1 . . . Q1,4 0 . . . 0 −u1Q1,1 . . . −u1Q1,4

0 . . . 0 Q1,1 . . . Q1,4 −v1Q1,1 . . . −v1Q1,4
...

...
...

...
...

...

QN,1 . . . QN,4 0 . . . 0 −uNQN,1 . . . −uNQN,4

0 . . . 0 QN,1 . . . QN,4 −vNQN,1 . . . −vNQN,4


.

The vector x contains 12 elements of P, from each point correspondence we have 2 equations.

Thus, 6 correspondences should be sufficient to find P. The calibration cage with the markers can be
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degenerate or singular, meaning that the identification problem has a non-unique solution. Moreover,

data could contain a noise. In this case, there is no exact solution of the system Eq. (1.20). Thus,

researchers propose to compute a solution in the least squares sense. We also need to avoid the trivial

solution x = 0 of the system Eq. (1.20). So, we need to add a constraint on x, for example ||x||2 = 1.

Thus, we need to solve the following problem:

min
x

2N

∑
i=1

((Ax)i)
2 s.t. ||x||2 = 1. (1.21)

It’s possible to solve it with a singular value decomposition (SVD) of the matrix A. Let us recall

SVD.

Definition 1.6. The singular value decomposition (SVD) of an m×k real matrix A is a factorization of

the form UΣV T , where U is an m×m orthogonal matrix, Σ is an m× k rectangular diagonal matrix

with singular values Σii ≥ 0 on the diagonal, V is an k× k orthogonal matrix.

We can rewrite Eq. (1.21) as

min
x

2N

∑
i=1

((Ax)i)
2 = min

x
xT AT Ax = min

x
xTV Σ

TUTUΣV T x = min
x

xTV Σ
T

ΣV T x.

If we denote y =V T x, S = ΣT Σ, then yT y = xTVV T x = xT x and we need to solve

min
y

yT Sy s.t. yT y = 1. (1.22)

Usually, the number of zero singular values (and zero diagonal values of S) is equal to 1 (when the

calibration cage isn’t degenerate). We can solve the optimization task in the following way: since the

diagonal matrix S consists of the squares of singular values from the biggest to smallest, we need to find

and take the smallest non-zero singular value. Then in the usual case with non-degenerate calibration

cage we take ŷ =



0
...

0

1

0


. After we can calculate the corresponding x̂ =V ŷ.

The problematic situations appear, for example, when all markers are in a plane, then we have more

than one non-zero vector in the null-space of A. In this case, we need to change initial points (markers)

in order to have a unique solution of Eq. (1.21).

Once the projection matrix P is found, we can compute intrinsic and extrinsic parameters or ele-

ments of K, R and t. Suppose that P̄ is the 3×3 sub-matrix of P of its first 3 columns. Then

P̄ ∼ KR. (1.23)
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From P̄P̄T ∼ KRRT KT we have

P̄P̄T ∼ KKT . (1.24)

We can use the Cholesky decomposition P̄P̄T ∼ BBT , where B is an upper triangular matrix. Let

recall that with the Cholesky decomposition each symmetric and positive definite matrix of size m×m

can be decomposed as BBT , where B is upper triangular of the size m×m. K is also upper triangular

by construction. Since the element K33 equals 1, thus all elements of B should be divided by B33. Once

this is done, we can extract K.

For the computation of the extrinsic parameters from P ∼
(

KR −KRt
)

we have

K−1P ∼
(

R −Rt
)
. (1.25)

Denote C ∼ R be the 3×3 sub-matrix of the first three columns of K−1P, then

λC = R. (1.26)

Then det(λC) = λ 3detC = detR = 1. So, λ = 3
√

1
detC . Thus, we can simply compute R from C and

then t from

λK−1P =
(

R −Rt
)
. (1.27)

Numerical experiments. Let us illustrate the first step of the algorithm with our simulation in

Python. We didn’t use noise, but we took 7 markers (as in the figure 1.10), thus we can just search a

solution in the least squares sense. We took true values:

• Ktrue =

1 0 3

0 1 3

0 0 1

,

• ttrue =

1

0

0

,

• Rtrue is a rotation matrix of 45 degrees around Z-axis,

• then Ptrue =

0.707 −0.707 3 −0.707

0.707 0.707 3 −0.707

0 0 1 0

 .

We simulated projections of the markers, thus as an input of our algorithm we have the coordinates

of the markers in the world system and coordinates of the projections of markers in the pixel system.

We obtained:
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Figure 1.10: The image plane, camera coordinate system and non-coplanar markers used in our numer-

ical simulation.

• P̂ =

−1.51×10−1 1.51×10−1 −6.40×10−1 1.51×10−1

−1.51×10−1 −1.51×10−1 −6.40×10−1 1.51×10−1

−1.11×10−16 6.11×10−16 −2.13×10−1 5.76×10−16

 as the solution to the op-

timization problem Eq. (1.21);

• since P̂/P33 =

 7.07×10−1 −7.07×10−1 3.00 −7.07×10−1

7.07×10−1 7.07×10−1 3.00 −7.07×10−1

2.86×10−15 −6.01×10−17 1.00 −1.61×10−14

 , then P̂ equals to Ptrue

up to a scale.

During our numerical simulation for the second step we calculated very precisely the calibration

parameters from P̂ obtained after the first step of the algorithm, see the table 1.1.

Elements of KKK Elements of RRR Elements of ttt

5.88×10−15 2.86×10−15 9.33×10−15

Table 1.1: Maximum absolute errors (maximum absolute difference between estimated values and true

values) for calibration parameters.

In the realistic setting, we usually know projections just approximately, for example, after the detec-

tion of singularities of the image. In this situation, we will have more significant errors in the calibration

algorithm. Nevertheless, if we know coordinates of the markers in the world system, we can use this
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algorithm, since it’s easy to implement. Disadvantages are that we need to design a calibration cage

carefully and we need to disturb scene by introducing this calibration cage of additional objects.

1.3.3 Calibration with markers with unknown geometry: bundle adjustment
problem

Although in applications it’s important to know only parameters of the system, sometimes we may face

the mathematical problem to find two sets of unknowns: unknown 3D points Q̂ j, j = 1, . . . ,Nmarkers,

and projection matrices for different cameras P̂i, i = 1, . . . ,Nprojections, which project exactly to known

detected image points qi
j. In order to do that, we minimize the distance between the projected point and

the detected image point for every view, i.e.

min
x

D(x) := min
Pi,Q j

∑
i, j

d(PiQ j,qi
j)

2, (1.28)

where d(x,y) is any geometric image distance between the homogeneous points x and y. This is the

general formulation of the so-called bundle adjustment (BA) problem.

In [Tri+00] the authors summed up basic optimization methods to solve the BA problem. We

consider a differentiable cost function D(x) over parameters x. Usually, from the initial estimate x0 we

want to find a displacement δx which locally minimizes D(x). We can replace D(x) by the following

quadratic local model based on the Taylor expansion:

D(x+δx)≈ D(x)+gT
δx+

1
2

δxT Hδx, (1.29)

where g is a gradient vector of D at x and H is a Hessian matrix at x.

According to [Tri+00], it’s possible to use different methods for the optimization of the local model:

• the Newton’s method with the estimation of δx as −H−1g for each iteration. The inversion leads

to the high cost per iteration. Also, we need to calculate the matrix H with second derivatives.

Moreover, it could be hard to achieve a convergence starting from the far initial point.

• damped Newton’s methods which solve the regularized system

(H +λW )δx =−g, (1.30)

where λ is a weighting factor and W is a positive definite weight matrix. This is a basis for trust

region methods where we limit δx and introduce some constrains by this. Levenberg-Marquardt

method is a famous algorithm from this family.

• if we consider the weighted sum of squared error with the particular cost function D(x) =
1
2∆q(x)TW∆q(x), then we can apply the Gauss-Newton method. Here W is a symmetric positive
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definite matrix, ∆q(x) is the vector of differences between projected by the model and detected

image points. Then we can approximately find H ≈ JTWJ, where J = d∆q
dx . In this case, we need

to solve normal equations

JTWJδx =−JTW∆q. (1.31)

• first order methods as conjugate gradient method, BFGS (which builds an explicit approximation

of H) or limited-memory BFGS (which maintains only a low-rank approximation of H).

The bundle adjustment is still widely used in the literature: to identify the trajectory of the camera in

the real-time tracking in [ESN06], to calibrate cameras described by models different from the pinhole

camera model in [Urb+17], to take into account other sensors than cameras in the joint calibration

by the bundle adjustment in robotics in [PKB14], to calibrate the Microsoft Kinect system in [CL13],

to move from the bundle adjustment to photometric bundle adjustment with the minimization of some

photometric energy functional and the estimation of the shape, camera parameters and the scene texture

in [DP14].

1.3.4 Camera calibration without markers: some approaches

In computer vision, there is a division of image-based calibration methods into two groups: with mark-

ers and without markers. The last group is usually called a group of self-calibration algorithms. Usually

researchers replace markers with interest points. In order to compute interest points in each image we

can use special algorithms for corner detection or singularity detection. After this, it’s possible to de-

fine a set of matches in different views of the interest points based on proximity and similarity of their

intensity in neighbourhoods [HZ04]. Let us describe few methods to calibrate without markers.

Homography based algorithm. Let us start with the simple calibration without markers from [Stu12].

Suppose that we don’t have a calibration object and have two images from the same viewpoint, but with

different camera orientations R1 and R2, where R1 and R2 are different rotations of the camera coordi-

nate system with respect to the world coordinate system. We can assume that t = 0. With the calibration

matrix K we can compute projection matrices as P1 ∼
(

KR1 0
)

and P2 ∼
(

KR2 0
)

. If we take a

3D point Q =


X

Y

Z

T

, then projections q1 ∼ KR1

X

Y

Z

 and q2 ∼ KR2

X

Y

Z

 or RT
1 K−1q1 ∼

X

Y

Z

 and

RT
2 K−1q2 ∼

X

Y

Z

. From that we have

RT
2 K−1q2 ∼ RT

1 K−1q1, (1.32)
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q2 ∼ KR2RT
1 K−1q1. (1.33)

Definition 1.7. The transformation H which links two projections of the same 3D point is called a

homography:

H ∼ KR2RT
1 K−1. (1.34)

If we know at least two homographies, then we can find intrinsic calibration parameters from this

knowledge. We don’t need to introduce calibration objects into the scene, but we need to know ho-

mographies. Note that the simplest way to estimate homographies is through point correspondences

in different views, but for that we don’t need to use real calibration objects, we can only use interest

points to replace real marker points. For intrinsic calibration parameters:

1. after few manipulations we have HKKT HT ∼ KKT ;

2. let us denote A = KKT , then HAHT ∼ A;

3. we calculate a scalar λ from the equality of two determinants: det((λH)A(λHT )) = detA or

λ 6(detH)2detA = detA, then λ = 3
√

1
detH ;

4. with λH = H̄

H̄AH̄T = A; (1.35)

5. we need to solve this linear equation in the elements of A (for two or more homographies) and

extract from A the calibration matrix K via the Cholesky decomposition of A.

This method is simple to implement, but we need to know at least two homographies.

Classification of Hartley and Zisserman. Let us start with basic definitions from [HZ04]. We

introduce different classes of transformations of 3D space which form a hierarchy.

Definition 1.8. A projective transformation is a transformation defined by the matrix

(
A t

vT k

)
, where

A is an invertible 3×3 matrix, v is a general 3-vector.

Definition 1.9. An affine transformation is a transformation defined by the matrix

(
A t

0T 1

)
, where A

is an invertible 3×3 matrix.

Definition 1.10. A similarity transformation is a transformation defined by the matrix

(
σR t

0T 1

)
,

where R is a 3×3 rotation matrix and σ ̸= 0.

Definition 1.11. An Euclidean transformation is a transformation defined by the matrix

(
R t

0T 1

)
,

where R is a 3×3 rotation matrix.
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From [HZ04] we know that we have a solution to the BA problem up to a projective transformation.

The class of such solutions gives us the so-called projective reconstruction of the scene. Sometimes

we can have the so-called metric reconstruction of the scene. For the metric reconstruction we have a

solution up to a similarity transformation.

Some sophisticated self-calibration methods were summarized in one of the main books for spe-

cialists in computer vision [HZ04]. Usually, it’s easy to receive a projective reconstruction Pi and Q j

(for example, from bundle adjustment) from the set of interest points. The rectifying homography H

is a transformation for which we could obtain a metric reconstruction PiH, H−1Q j from the projective

reconstruction. Since similarity transformations preserve matrix K, with the metric reconstruction we

receive true intrinsic calibration parameters. According to the authors, there are two approaches to

camera calibration without markers: those who directly determine the rectifying homography H and

stratified.

Let us introduce two examples of algorithms for calibration without markers from two classes. We

define the metric reconstruction Pi
M ∼Ki

(
Ri t i

)
for the view number i, Nprojections views in total, Pi

M =

PiH. If we choose the coordinate system to be connected with the first camera, then P1
M ∼ K1

(
I 0

)
,

P1 ∼
(

I 0
)

. We need to find the rectifying homography H. Suppose that

H =

(
A t

vT k

)
. (1.36)

From P1
M = P1H we receive

(
K1 0

)
∼
(

I 0
)

H, then A = K1, t = 0. Because H should be

non-singular, we can consider k = 1. Then from A = K1, t = 0, k = 1 we have

H =

(
K1 0

vT 1

)
. (1.37)

Let us define

π∞ := H−T


0

0

0

1

=

(
(K1)−T −(K1)−T v

0 1

)
0

0

0

1

=

(
−(K1)−T v

1

)
=

(
p

1

)
, (1.38)

where p =−(K1)−T v. Then

H =

(
K1 0

−pT K1 1

)
, (1.39)

where p consists of coordinates of π∞ defined in Eq. (1.38). If we know 3 parameters p and 5 parameters

K1 (for the camera with skew, i.e. with K12 ̸= 0), we can find H. If Pi ∼
(

Ai ai
)

, then PiH ∼(
Ai ai

)
H ∼ Ki

(
Ri t i

)
or

KiRi ∼ (Ai −ai pT )K1. (1.40)
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From Ri(Ri)T = I

Ki(Ki)T ∼ (Ai −ai pT )K1(K1)T (Ai −ai pT )T . (1.41)

Let us replace Ki(Ki)T = ω∗i, then

ω
∗i ∼ (Ai −ai pT )ω∗1(Ai −ai pT )T (1.42)

with unknown ω∗i and p (or it’s the same to say with unknown Ki and π∞). Usually, researchers use

constraints on Ki to produce equations on p, ω∗i to find them.

An example of the algorithm from the first class. This algorithm is applicable for the situation

when we have the same intrinsic parameters or Ki = K. Since each side of Eq. (1.41) is a 3 × 3

symmetric matrix and the equation is homogeneous, each view i > 1 gives 5 constraints on K. So, we

want 5(Nprojections −1)≥ 8 or Nprojections ≥ 3 to find eight parameters p and K.

An example of the algorithm from the second class. Let us describe the logical steps of a stratified

algorithm also for the case Ki = K. We search for H in few steps: we firstly find π∞, then K. It could

be shown that each view pair gives a quartic equation in the coordinates of π∞ or a modulus constraint.

It looks like

f3 f 3
1 = f 3

2 , (1.43)

det(λ I −Ai +ai pT ) = λ
3 − f1λ

2 + f2λ − f3, (1.44)

where the elements of p appear only linearly in the determinant and linearly in each of f1, f2, f3.

Thus, it’s a quartic equation. The authors told that modulus constraints could be combined with scene

information, it helps to kill ambiguity in the solution of Eq. (1.43). Thus, we could obtain p.

We can rewrite Eq. (1.42) with H i
∞ = Ai −ai pT :

ω
∗i ∼ H i

∞ω
∗1(H i

∞)
T . (1.45)

It’s interesting that H i
∞ represents the homography from a camera

(
I 0

)
(the first camera) to the

camera
(

Ai ai
)

. For the case of the same intrinsic parameters we can rewrite Eq. (1.45) as

ω
∗ ∼ H i

∞ω
∗(H i

∞)
T . (1.46)

We can normalize H i
∞ to have det(H i

∞) = 1, then we have an equality instead of ∼, for that we need

to use the similar reasoning as we used to produce Eq. (1.35). Thus, we need to solve a linear system

Ac = 0 with a 6-vector c formed by elements of ω∗. Some special tricks and a sufficient number of

views help to avoid ambiguity in the solution. Thus, from the Cholesky decomposition of the solution

ω∗ we can obtain K.

Besides bundle adjustment, there are other ways to obtain a projective reconstruction. As an exam-

ple, one popular method is based on so-called fundamental matrices and is connected with the epipolar

geometry [HZ04].

29



Chapter 1 – Introduction Anastasia Konik

In this section we presented the literature review of the classical calibration methods in computer

vision. We can perform the calibration with markers and without markers, when markers are replaced

by interest points. We detailed different methods that can be transferred to tomographic systems.

1.4 Geometric calibration of acquisition systems in tomography

1.4.1 Geometric calibration with markers

By analogy with computer vision, researchers in tomography consider image-based calibration methods

with markers and without markers (see [Les18] as an example of such division). For the first group,

3D coordinates of marker centers could be known in the world coordinate system or unknown as in the

BA problem. In our work in tomography, we bring together for X-ray systems the second subgroup

of algorithms where we don’t know the geometry of markers and algorithms without markers to self-

calibration algorithms.

If we use markers, then we need to design the special calibration cage introduced in the scene only

for the calibration. This can add the work to medical practitioners, but also disturb patients during

the acquisition, because some X-ray systems require online calibration when the source and detector

trajectories aren’t reproducible. Note that the calibration can be also an offline procedure when the

source and detector trajectories are reproducible, in this case we shouldn’t calibrate each acquisition,

we can only do it once per some period (a week or a month). Note also that the calibration cage usually

should be very precise. Often this is only possible during the experimental studies.

In marker-based calibration methods the centers of spherical markers are usually considered as

points and projection properties help to derive calibration procedures. Very often self-calibration pro-

cedures end up in this case with numerical nonlinear optimizations as was in the case of bundle adjust-

ment in computer vision. For example, in [WT04] a single point source and few scans helped to end up

with the optimization procedure to define unknown geometrical parameters such that the focal distance,

the rotation radius of the detector, coordinates of the focal point and the center of the rotation on the

detector. The authors used non-classical description of the fan-beam geometry. In their algorithm they

need to know the difference in the radius for two scans. In [RGG94] only extrinsic parameters were

calibrated with nonlinear minimization in the case of the circular cone-beam geometry. The bundle

adjustment with the numerical optimization is used also in the cone-beam geometry, the example can

be found in [LW12].

In many works calibration cages with special properties were designed in addition, these properties

allow to derive calibration procedures. In [Cho+05] the fact that the projection of the circular pattern

of round markers lies on an ellipse was used to estimate all unknown geometrical parameters. The

same principle was used for the analytical partial calibration in the previous work [Noo+00]. The

special calibration cage was proposed in [MCN09] in order to build the analytical procedure for the full

30



Chapter 1 – Introduction Anastasia Konik

calibration.

More analytical approaches with markers recently appeared in the literature in [TSH19] for the

cone-beam geometry with circular source trajectory and in [Jon18] for fan-beam and cone-beam ge-

ometries with general source trajectories. In both articles the authors used non-standard description of

geometry and designed calibration cages. In [TSH19] the method required two scans acquired after

the precise rotation of the calibration cage by 180 degrees. In [Jon18] proper calibration cages were

discussed and it was shown that non-standard acquisition parameters can be identified with linear sys-

tems of equations. To perform the conversion to standard parameters, nonlinear inversions must be

performed which can cause problems in the noisy situations when we don’t have an exact detection of

the markers on projected images.

The extensive overview of calibration methods with markers can be found in [YLC16].

1.4.2 Calibration with DCC

Now we describe self-calibration techniques without markers based on data consistency conditions

(DCC) and introduce the problem of truncations. The summary of the articles with DCC and corre-

sponding calibration methods is also presented in the table 1.2.

Let start with the case of the 2D Radon transform of a function. It’s known that the projection

data should satisfy special equations or data consistency conditions. Data consistency conditions or

range conditions in this case are known in the literature as Helgason-Ludwig consistency conditions

(HLCC) [Hel65; Lud66]:

Theorem 1.1. A function p is the Radon transform of f ∈ S (R2) if and only if:

1. p ∈ S (S1 ×R), where S1 is a unit sphere,

2. p is even: ∀s ∈ R,∀θ⃗α ∈ S1 p(−θ⃗α ,−s) = p(⃗θα ,s),

3. for k = 0,1,2, . . . , for all θ⃗α ∈ S1 we have the moment conditions:∫ +∞

−∞

p(⃗θα ,s)skds = Pk(⃗θα), (1.47)

Pk(⃗θα) is a homogeneous polynomial of degree at most k in the coordinates of θ⃗α .

Moreover, p(⃗θα ,s) = 0 for all |s|> a and θ⃗α ∈ S1 ⇔ f (⃗x) = 0 for |⃗x|> a.

Note that we want to use these DCC in the 2D case, but they were formulated for an arbitrary

dimension.

The notion of truncation is very important in tomography. Obviously, in realistic settings, objects

of interest during the acquisition have compact supports. Usually we have a set of source positions

(infinitely far for parallel geometry) and for each source or each projection the set of integration lines
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Geometry Papers with DCC Papers with cali-
bration methods

For trun-
cated data

Analytical
or with op-
timization

2D parallel HLCC: [Hel65; Lud66] Basu and

Bresler: [BB00b;

BB00a], Panetta:

[Pan+08]

no optimization

2D parallel HLCC: [Hel65; Lud66] Desbat and

Spencer: [DS14]

no analytical

fan-beam on a line DCC by Clackdoyle:

[Cla13]

Nguyen:

[NDC20]

no analytical

fan-beam on a circle DCC by Yu: [Yu+06;

YW07]

no no -

fan-beam on a circle DCC by Clackdoyle:

[CD15]

no yes -

fan-beam DCC by Yu: [Yu+15] no yes -

cone-beam ECC by Aichert:

[Aic+15], DCC by

Lesaint: [Les+17], DCC

by Panetta: [Pan+08]

same no optimization

cone-beam on a line DCC by Nguyen:

[NDC20]

same no analytical

cone-beam on a circle

in the plane perpen-

dicular to the detector

DCC by Clackdoyle:

[Cla+16]

no no -

cone-beam on a circle

in the plane parallel to

the detector

DCC by Nguyen:

[Ngu21]

no no -

cone-beam arbitrary in

the plane perpendicu-

lar to the detector

DCC by Nguyen:

[Ngu21]

no no -

cone-beam arbitrary in

the plane parallel to

the detector

DCC by Clackdoyle and

Desbat: [CD13]

no no -

Table 1.2: DCC and corresponding calibration methods.
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to measure. For each source we associate a field of view, the subspace visible from the source position.

The global field of view is the intersection for all sources of such fields of view. We say that the

projection is truncated if there is an associated integration line which intersects the support of the

object, but isn’t measured. It means that in this case not all non-zero projections are known. Then, for

example, in the 2D parallel case we can’t correctly calculate moments (integrals from −∞ to +∞ over

s of the projection data) in the moment conditions Eq. (1.47) and can’t exploit HLCC.

In [BB00b; BB00a] Basu and Bresler used HLCC in order to derive the calibration procedure

without markers and based on non-truncated data. They estimated the set of unknown projection angles

α and the set of shifts sα of the lattice of s for each projection angle with the numerical optimization

technique. In [Pan+08] a partial self-calibration with unknown projection angles was performed with

periodicity relations of HLCC and nonlinear optimization. Iterative nonlinear optimization techniques

are a priory time-consuming, and it’s usually hard to answer which solution from the class of all possible

solutions we receive. To overcome this, a partial self-calibration (projection angles were known) with

a closed form solution was derived from HLCC and proposed in [DS14]. The disadvantage of these

methods using HLCC is the requirement to have non-truncated data which isn’t usually satisfied in

X-ray systems where a patient isn’t completely in the field of view.

The modern data consistency conditions for non-truncated fan-beam data with sources on a line

mentioned in the section 1.2 were proposed in [Cla13]:

Theorem 1.2. Define

Pk(λ ) =
∫ +∞

−∞

g(λ ,y)ykdy (1.48)

for all k = 0,1,2, ... The function Pk(λ ) is a polynomial in λ of degree k if an only if g =D f for some

smooth function of compact support f .

The corresponding self-calibration algorithm with a closed form solution was proposed in [NDC20].

Note that this algorithm requires three known source positions and non-truncated data. Fan-beam data

consistency conditions applied to the motion correction in the case of the circular trajectory were pre-

sented in [Yu+06; YW07]. Some DCC can handle the problem of truncated data, they were presented

for 2D parallel geometry and fan-beam geometry with sources on a circle in [CD15] and for the fan-

beam geometry with an arbitrary source trajectory - in [Yu+15]. It’s difficult to derive an analytical

solution to the calibration problem from these conditions.

The good overview of DCC in the case of 3D divergent geometry can be found in [Ngu21]. The

author states that there are three types of DCC for the cone-beam geometry: derived from the John’s

equation, polynomial-type consistency conditions and derived for pairs of projections. Note that for

the cone-beam geometry different DCC are also widely used for non-truncated data and help to build

calibration procedures with nonlinear optimization, for example, in [Aic+15; Les+17; Pan+08]. Nev-

ertheless, we are mostly interested in the polynomial-type consistency conditions. In [NDC20] such

consistency conditions helped to derive an analytical calibration procedure for non-truncated data for
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the cone-beam geometry with sources on a line. As for the fan-beam case, some known additional

information is needed for such calibration procedure.

The polynomial-type consistency conditions for the cone-beam case for the popular circular source

trajectory in the plane perpendicular to the detector plane were presented in [Cla+16], for the popular

circular source trajectory in the plane parallel to the detector plane were presented in [Ngu21]. The

generalisation of the first DCC to the case of the arbitrary source trajectory in the plane was described

in [Ngu21], the generalisation of the second DCC to the case of the arbitrary source trajectory in the

plane - in [CD13]. The DCC from [CD13] that we want to use:

Theorem 1.3. Define

Jk(λ1,λ2,U,V ) =
∫ +∞

−∞

g(λ1,λ2,u,v)(uU + vV )kdudv (1.49)

for all k = 0,1,2, ... Then Jk(λ1,λ2,U,V ) = Pk(U,V,−λ1U −λ2V ), Pk(U,V,W ) is a homogeneous

polynomial of degree k and g(λ1,λ2, ·, ·) has a compact support for all (λ1,λ2) if and only if g =D f

with compactly supported f in z > 0.

The source of truncations could be different, but usually we have truncations because the size of the

detector isn’t sufficient to cover the body. In 3D, if the patient body is too long compare to the field of

view, the detector height isn’t sufficient, we have the axial truncation. If the length of the detector isn’t

sufficient, then we have the transverse truncation (see, for example, [Gin22]). The situation with the

axial truncation is common in practice, because the body of the patient is always too long, but it’s less

critical, because for the reconstruction the FDK algorithm can work with this type of truncation.

1.4.3 The idea of the hybridization

Our work is mostly dedicated to hybrid algorithms, i.e. methods that combine the use of markers

and DCC. We were inspired by the hybrid algorithm and the idea to calibrate with truncated cone-

beam data presented by Unberath and his colleagues in [Unb+17]. The authors introduced an algo-

rithm to calibrate a cone-beam system with truncated cardiac data and epipolar consistency conditions

(ECC). ECC is data consistency conditions for the cone-beam transform derived by Aichert in [Aic+15;

Aic+16; Aic19]. ECC was successfully applied for different tasks: calibration and motion compensa-

tion, but also later for beam-hardening reduction in [Wur+17; Wur+18; Wur+19] and scatter correction

in [Hof+18]. With the beam hardening only higher energy photons contribute to the projection im-

age. This could cause artifacts, but parameters of a polynomial model of the beam hardening could

be estimated with ECC. For the scatter correction, we need to estimate scatter components which also

cause artifacts such as blurring of images. It’s also possible to estimate the scatter components with

ECC. Moreover, a new approach to combine ECC with a convolutional neural network for the motion

compensation was proposed recently in [Pre+19]. Of course, each time with pure ECC the researchers

work with non-truncated data.
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For cardiac data, doctors don’t acquire the whole patient body, thus only truncated data are available.

Data are truncated in cardiology imaging because the chest of a patient is large and the doctor spare

the dose. However, we could add a contrast to vessels and assure vessels to be in the field of view.

Thus, the main idea of the algorithm from [Unb+17] is to use contrasted vessels as markers and apply

known ECC to non-truncated images of the contrasted vessels. For that, the authors need to separate

the contrasted vessels from the background on projected images. The Unberath’s article suffers from

the lack of theoretical explanations, especially for the fact that the projected images with the contrasted

vessels extracted by their method with non-linear filtering are in the range of the cone-beam transform

(only in this case we can apply ECC).

1.4.4 Description of the problem

We started our research with the aim to improve the mathematical justification of the method from [Unb+17]

and to generalize this idea to other images (not just cardiac) and other geometries. Let us illustrate and

describe in more details the problem with the application of DCC to truncated data.

Figure 1.11: Left: truncated object and round markers in R2, right: their 2D Radon transform.

As we told, there is the huge group of self-calibration methods for X-ray systems with different

geometries in tomography based on different DCC. The huge disadvantage of these methods is that

they usually can’t work when the support of f isn’t in the field of view of the system. In this case, we

need to work with truncated data. It’s possible to see an example of such situation for the 2D Radon

transform in the fig. 1.11. The patient body (ellipse) isn’t in the field of view completely, so we don’t

have all non-zero projection data. Thus, we can’t exploit the moment conditions Eq. (1.47). The same
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problem we have with the integrals in the moment conditions Eq. (1.48) and Eq. (1.49) for the fan-beam

and cone-beam geometries.

However, in the fig. 1.11 all the round markers are in the field of view and we can have all non-zero

projection information about markers. Thus, in our work we want to build new calibration methods for

the case when the whole object is truncated, but markers are not.

In this section we explained the problem of truncated data and the need to use non-truncated markers

in the calibration process. We presented the state of the art in the calibration with markers and image-

based calibration without markers with DCC. Also, we explained and illustrated the idea of the hybrid

algorithm combining the use of markers and DCC.

In the chapter 2 we discuss the detection of the markers on projected images and one self-calibration

approach which is based on the bundle adjustment and came from the computer vision theory. In the

chapters 3, 4 and 5 we want to generalize existing data consistency conditions to distributions for

different X-ray geometries and as in [Unb+17] apply them to the information about non-truncated

markers.
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2 Cone-beam geometric calibration based on
computer vision approach

2.1 French summary of the chapter

Dans ce chapitre nous commençons par décrire le modèle du C-arm. La projection du faisceau conique

d’un C-arm est décrite par une matrice de projection similaire à celle d’une caméra. Il existe deux

principaux types de C-arm : les C-arms chirurgicaux mobiles (qui se déplacent dans différentes salles

d’opération) et les C-arms statiques utilisés, par exemple, en radiologie interventionnelle. En général,

les C-arms chirurgicaux mobiles nécessitent un étalonnage en ligne car leur mécanique est moins ro-

buste. Lors de l’étalonnage nous devons trouver l’ensemble des 9 paramètres d’étalonnage pour chaque

projection. Dans le cas de marqueurs dont nous ne connaissons pas les coordonnées 3D, nous pouvons

appliquer la méthode de l’ajustement de faisceaux. Dans la section 2.2, nous effectuons des simula-

tions numériques pour résoudre le problème d’ajustement de faisceaux pour cette géométrie en faisceau

conique. Nous avons mentionné le résultat de la vision par ordinateur dans le chapitre précédent selon

lequel si nous avons l’ensemble des matrices de projection comme solutions du problème d’ajustement

de faisceaux, elles diffèrent des vraies matrices de projection par une transformation projective. De

plus, si on considère que l’inclinaison entre les axes est nulle et si la séquence de vues est suff-

isamment générale (incluant les vues spécifiques), cette transformation projective doit être une simili-

tude [PKV99]. Cela doit également être vrai pour les C-arms, car ils peuvent être décrits de la même

manière que les caméras. Numériquement, nous remarquons que si nous initialisons la solution de

notre problème d’optimisation avec une estimation très éloignée de la distance source-détecteur, nous

obtenons la solution différente de la vraie par une similitude. La solution est obtenue avec la méthode

de Levenberg-Marquardt.

Dans la section 2.3, nous étudions le modèle intégral en faisceau conique afin de trouver le lien entre

la théorie de la représentation matricielle et la représentation intégrale. En effet, nous montrons que tout

système en faisceau conique décrit par le modèle intégral (y compris C-arm) ne peut être auto-calibré

géométriquement qu’à une similitude près avec n’importe quelle méthode d’auto-étalonnage. Nous

mentionnons que la même propriété est vraie dans la géométrie divergente 2D pour les systèmes en

éventail. Avec la démonstration numérique et les estimations de la section précédente, nous montrons

que nous pouvons toujours effectuer la reconstruction avec des paramètres estimés, mais l’image recon-

struite, évidemment, diffère de l’image de référence, obtenue avec les vraies paramètres d’étalonnage.

Nous vérifions numériquement la formule, le lien entre les images reconstruites et de référence. Dans
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le cas réel, nous ne connaissons pas les coordonnées des points 3D, nous ne pouvons donc pas estimer

la similitude qui relie les points 3D vrais et estimés comme nous avons fait dans notre démonstration

numérique. Notre contribution a été décrite dans l’article [KDG21].

Dans la section 2.4, nous parlons de l’étape de la détection des marqueurs. Lorsqu’on parle de la

détection de traces de marqueurs sur les images projetées, on ne peut pas utiliser la définition stan-

dard des singularités liées à la continuité des fonctions. Nous devons parler de la discontinuité de

Hölder. Nous montrons sur l’exemple de la géométrie parallèle 2D que pour la transformée de Radon

de l’indicateur de disque nous avons deux points avec discontinuité de Hölder sur l’image projetée qui

nous aident à définir le centre de la projection du marqueur rond. Ces deux points peuvent être détectés

avec l’algorithme standard pour trouver les discontinuités de Hölder à l’aide d’ondelettes.

2.2 Bundle adjustment for a cone-beam system

In the next two sections we describe our contribution [KDG21] presented at the 16th International

Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine.

Theory. In the article we considered a C-arm X-ray imaging system (fig. 1.6). Note that there

are two types of C-arms: mobile surgical C-arms (which move to different operating rooms) and static

C-arms used, for example, in interventional radiology. Usually, mobile surgical C-arms need online

calibration because their mechanics is less robust.

Thanks to IEC 61217 standard, the geometry of the C-arm can be described in the similar way as

the pinhole camera. As in computer vision, the projection matrix of the C-arm is

P = K
(

R t
)
, (2.1)

K =

− f 0 u0

0 − f v0

0 0 1

 , f =
SDD

dimpixel
, u0 =

sposx −dx
dimpixel

, v0 =
sposy −dy

dimpixel
, (2.2)

R =

cz −sz 0

sz cz 0

0 0 1


1 0 0

0 cx −sx

0 sx cx


 cy 0 sy

0 1 0

−sy 0 cy

 , (2.3)

cα = cos(−θα), sα = sin(−θα), α ∈ {x,y,z}, (2.4)

t =

−sposx

−sposy

−SID

 . (2.5)

Here parameters are:
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• SDD: source-detector distance,

• SID: source-isocenter distance,

• sposx: x-coordinate of the position of the source in the rotated frame,

• sposy: y-coordinate of the position of the source in the rotated frame,

• dx: x-coordinate of the center of the detector in the rotated frame,

• dy: y-coordinate of the center of the detector in the rotated frame,

• θx: orientation of the rotated frame relative to the world frame along the x axis,

• θy: angle of scan,

• θz: orientation of the rotated frame relative to the world frame along the z axis.

Notice that the calibration matrix K has zero skew (s = K12 = 0), because flat panel digital detectors

unlike previous analog detectors have no skew. The rotation matrix R is here a rotation around the

isocenter, defines the position of the rotated frame, the translation −t is the source position in the

rotated frame. The meaning of the parameters of the model could be better understood from the fig.

2.1.

Figure 2.1: Geometric parameters of a C-arm in a schematic view.

In order to derive this model, we need to consider few coordinate systems:
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• Firstly, we need to move from the world coordinate system fixed in the isocenter to the virtual

coordinate system differing from the world one only by a rotation. Note that this corresponds

to the rotation of the C-arm around isocenter. Thus, coordinates of the 3D point in the world

coordinate system and the virtual coordinate system are connected:Xv

Y v

Zv

= R

Xw

Y w

Zw

 . (2.6)

• Secondly, we need to move from the virtual coordinate system to the 3D system of the source.

They differ only by translation by the vector −t, so in homogeneous coordinates we have
X s

Y s

Zs

1

=


1 0 0 −sposx

0 1 0 −sposy

0 0 1 −SID

0 0 0 1




Xv

Y v

Zv

1

 . (2.7)

• The projected point belongs to the detector. We can define the coordinate system of the detector,

but also the 2D coordinate system of the source, they differ by the vector connecting their centers.

In the words of homogeneous coordinates, for the 2D point in different coordinate systems we

have: xd

yd

1

=

1 0 sposx −dx

0 1 sposy −dy

0 0 1


xs

ys

1

 . (2.8)

• Thus, we have the 3D coordinate system of the source and the 2D coordinate system of the

source, see connection in the fig. 2.2. We can find the coordinate of the projection q of the point

Q in the 2D system of the source. From ratios SDD
−Zs = ys

Y s and SDD
−Zs = xs

X s the connection between

the 3D coordinates of Q and 2D coordinates of q in these systems is:

xs

ys

1

∼

−SDD 0 0 0

0 −SDD 0 0

0 0 1 0




X s

Y s

Zs

1

 . (2.9)

• Taking into account also the transition from the 2D detector coordinate system to the 2D pixel

coordinate system, we obtain exactly the projection matrix as indicated above.

Since the projection matrix of the C-arm has the same structure as for the pinhole camera, we can

apply all calibration algorithms from computer vision to C-arms, for example, we can solve the BA

problem if we need to identify projection matrices and 3D coordinates of markers simultaneously. We
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Figure 2.2: Projection of the 3D point Q into q and coordinate systems of the source.

already mentioned that we have a solution to the BA problem in computer vision up to a projective

transformation, but sometimes we can have a metric reconstruction up to a similarity transformation.

In [PKV99] authors explained in details when we have a metric reconstruction. We have that for special

calibration matrices with K12 = 0 (which is a case for the described pinhole camera model and C-arm),

the solution to BA could be calculated up to a similarity transformation. In general case, the camera

projection matrix can be factorized as follows

P =
(

H e
)
= KR

(
I −t

)
, (2.10)

where H = KR, e =−KRt, K =

 fx s u

0 fy v

0 0 1

 is a calibration matrix, R and t - the camera rotation and

translation correspondingly. Here s is the skew.

The authors used in [PKV99] the following lemma to find the equivalent algebraic condition for

s = 0:

Lemma 2.1. The absence of skew in K is equivalent with (h1×h3) · (h2×h3) = 0, where hi denotes the

i-th row of H.

After they proved the following theorem:

Theorem 2.1. The class of transformations which preserves the absence of skew is the group of simi-

larity transformations.

For that, they showed that the similarity transformations preserve the calibration matrix K. After,
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it was sufficient to show that the class of projective transformations of the type

(
A b

cT d

)
which pre-

serve the condition (h1 × h3) · (h2 × h3) = 0 is at most the group of similarity transformations. The

authors used that the absence of skew should be preserved for all possible views. It is equivalent

with the fact that we can transform the set of all possible projection matrices to the set of all possible

projection matrices. Thus, it was possible to choose specific R and t in order to translate conditions

(h1 ×h3) · (h2 ×h3) = 0 for the elements of the projection matrix to conditions for the projective trans-

formation

(
A b

cT d

)
and to show that this projective transformation should have a form of a similarity

transformation.

So, it’s true that if we have the set of projection matrices as solutions of the BA problem, they differ

from the true projection matrices by a projective transformation. Moreover, if we consider just zero

skews and if the sequence of views is general enough (includes the specific views that Pollefeys used

in the proof), this projective transformation should be a similarity transformation.

Numerical experiments. For numerical experiments we used the C++ package Ceres [AM+]. We

used parameters presented in the table 2.1 in order to simulate data for 181 different projections:

1. we took 20 markers (fig. 2.3) and call them Q j,true;

2. we computed the initial values for the 9 calibration parameters f i, ui
0, vi

0, θ i
x, θ i

y, θ i
z, t i

x, t i
y, t i

z

for each projection i from the parameters in the table 2.1 in order to use them to initialise the

optimization algorithm;

3. with the set of initial calibration parameters we build a set of real calibration parameters to which

estimations with the algorithm will be compared, we added a uniform noise to each parameter

from the table 2.1 for each projection to construct real calibration parameters and real projection

matrices Pi
real, we used the uniform distribution with bounds as in the table 2.1 and we added

noise to the base of realistic values, for the uniform noise we used random.uniform() in Python’s

numpy with equally likely outcomes from the inteval [low,high);

4. we simulated projections qi
j by Pi

realQ j,true, after we simulated detection errors by adding a uni-

form noise with bounds ±0.3 pix to the image points Pi
realQ j,true;

5. we calculated with the basic triangulation algorithm (triangulatePoints() in Python’s OpenCV)

the initial estimations for 3D points from two known initial projection matrices and known pro-

jections for 0 and 90 degrees for the initialisation of the algorithm, so if we have projection

matrices and projections, then we can reconstruct 3D points from the system of linear equations,

see more details about this basic method in [HZ04].

Note that with the presented parameters the isocenter is placed in (0,0,0)T , there are almost no

rotations of the rotated frame in the isocenter relative to the world frame along x and z axes, only along
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Parameter Initial
value

Base for
realistic
values

Noise
bounds

SDD (mm) 1000 1300 ±3.5

SID (mm) 700 700 ±6.9

sposx (mm) 0 0 ±6.9

sposy (mm) 0 0 ±6.9

dx (mm) 0 0 ±13.9

dy (mm) 0 0 ±13.9

θx (degrees) 0 0 ±1.4

θz (degrees) 0 0 ±1.4

θy (degrees) iδ iδ ±0.7

dimpixel (mm) 0.5 - -

δ (degrees) 2 - -

Nprojections 181 - -

Table 2.1: Initial values of the C-arm parameters, the base for their realistic values, their noise bounds

of mechanical vibrations and some parameters for the simulation. Here i is the projection index, δ is

the angular step.

y axis, the position of the source is defined by SID, the distance from the isocenter (0,0,0)T in the

positive direction of R⃗ez, so we have almost a circular trajectory of the source, then the position of the

detector is defined by SDD, the distance from the source in the negative direction of R⃗ez, and depends

on the position of the source.

Trajectories of projections of 20 markers in the case without noise and in the case with the described

noise are presented in the fig. 2.4. It’s possible to see that the noise level was high, so we tested the

worst case. Note that it’s possible to smooth the noise in order to better approximate real systems where

we often have a smaller spread of positions.

In order to solve numerically the optimization problem inside the BA we used the Levenberg-

Marquardt method. The final cost for the Levenberg-Marquardt method was 0.003. We used the Eu-

clidean distance inside the cost and normalized the cost with 1
NmarkersNprojections

, so we solved the following

BA:

min
Pi,Q j

1
NmarkersNprojections

∑
i, j

d(PiQ j,qi
j)

2. (2.11)

We observed high maximum errors in the calibration parameters (especially for the extrinsic pa-

rameter t): 9.784 pix for f , 10.279 pix for u0, 9.650 pix for v0, 102.085 mm for t. From the error
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Figure 2.3: True and estimated 3D points (markers) for the Levenberg-Marquardt method in the world

coordinate system.

Figure 2.4: Trajectories of projections of markers without noise and for simulations with noise. Each

marker out of 20 does the whole circle without noise, but because of the symmetry of markers we can

see the half of the trajectory for each marker in the first image.

rotation matrix Ri
err = (Ri

real)
−1R̂i for each projection i we calculated ψi as in the Euler rotation the-

orem: |ψi| = arccos tr(Ri
err)−1
2 . The maximum error defined by |ψi| through all projections was 0.790

degrees. Similarly, true and estimated 3D points were far (fig. 2.3) with the maximum error 16.888

mm. But we found that we could obtain the true points from the estimated points with a scaling, a

rotation and a translation. For that:

1. we found the barycenters btrue and best of the true and the estimated points, the mean of ||Q j,true−btrue||2
||Q̂ j−best||2
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gave us the estimation of the scaling;

2. after the scaling correction, we computed the rotation and translation with the algorithm described

in [AHB87].

It is possible to see almost the coincidence of the true 3D points and the estimated 3D points after

the similarity transformation in the fig. 2.3, the maximum error is 0.013 mm. There is nothing strange

in this result, since we have a non-uniqueness of the solution to the BA problem for this C-arm matrix

model as for the pinhole camera. In the next section we will show that this non-uniqueness is also

typical for the integral model of the cone-beam system.

2.3 Non-uniqueness in the cone-beam self-calibration

As we told before, researchers in tomography consider image-based calibration methods with markers

and without markers. For the first group, 3D coordinates of marker centers could be known in the world

coordinate system or unknown as in the BA problem. In the part describing tomography, we unite for

X-ray systems the second subgroup of algorithms where we don’t know the geometry of markers and

algorithms without markers to self-calibration algorithms.

Theory. Cone-beam computed tomography is the basis of many X-ray systems and helps to obtain

detailed images of a patient noninvasively. We showed the integral definition of this divergent geometry

in the introduction for f ∈ S (R3). Note here that we want to show our result for the general source

trajectory and for ζ⃗ as a unit vector inside the definition in Eq. (1.8) D f (⃗sλ , ζ⃗ ) =
∫+∞

0 f (⃗sλ + lζ⃗ )dl.

We use any rotation R and any translation vector t⃗ ∈ R3.

Our main contributions from the article [KDG21] are the following two theorems which show the

link between the limits of self-calibration in computer vision and cone-beam computed tomography:

Theorem 2.2. Let fR,⃗t (⃗x) = f (R⃗x+ t⃗), then

D fR,⃗t (⃗sλ , ζ⃗ ) =D f (R⃗sλ + t⃗,Rζ⃗ ). (2.12)

Proof. We have

D fR,⃗t (⃗sλ , ζ⃗ ) =
∫ +∞

0
fR,⃗t (⃗sλ + lζ⃗ )dl =

∫ +∞

0
f (R⃗sλ + lRζ⃗ + t⃗)dl =D f (R⃗sλ + t⃗,Rζ⃗ ).

Thus, the cone-beam data D fR,⃗t of the function fR,⃗t from the source s⃗λ in the direction ζ⃗ are equal

to the cone-beam data D f of f from the source position R⃗sλ + t⃗ in the direction Rζ⃗ . If we denote
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v⃗λ = R⃗sλ + t⃗, then s⃗λ = RT (⃗vλ − t⃗
)
, if η⃗ = Rζ⃗ , then ζ⃗ = RT η⃗ . Then for all v⃗λ and all unit η⃗ Eq. (2.12)

is equivalent to

D fR,⃗t
(
RT (⃗vλ − t⃗

)
,RT

η⃗
)
=D f (⃗vλ , η⃗) . (2.13)

Thus, the data D f of f from the source position v⃗λ in the direction η⃗ are equal to D fR,⃗t from the

source position RT (⃗vλ − t⃗
)

in the direction RT η⃗ for any R and t⃗. In other words, any cone-beam system

(including C-arm) can not be geometrically self-calibrated better than up to an Euclidean transforma-

tion.

Moreover, we can add the scaling factor σ , then

Theorem 2.3. Let fσR,⃗t (⃗x) = f (σ R⃗x+ t⃗), with σ > 0, then

D
(
σ fσR,⃗t

)(⃗
sλ , ζ⃗

)
=D f

(
σ R⃗sλ + t⃗,Rζ⃗

)
. (2.14)

Proof. We have

D fσR,⃗t (⃗sλ , ζ⃗ ) =
∫ +∞

0
fσR,⃗t (⃗sλ + lζ⃗ )dl =

∫ +∞

0
f (σ R⃗sλ +σ lRζ⃗ + t⃗)dl

=
∫ +∞

0
f (σ R⃗sλ +nRζ⃗ + t⃗)d

n
σ

=
1
σ
D f (σ R⃗sλ + t⃗,Rζ⃗ ).

Thus, the cone-beam data D(σ fσR,⃗t) of σ fσR,⃗t from the source s⃗λ in the direction ζ⃗ are equal

to the cone-beam data D f of f from the source position σ R⃗sλ + t⃗ in the direction Rζ⃗ . If we denote

v⃗λ = σ R⃗sλ + t⃗, then s⃗λ = 1
σ

RT (⃗vλ − t⃗
)
, if η⃗ = Rζ⃗ , then ζ⃗ = RT η⃗ . Then for all v⃗λ and all unit η⃗

Eq. (2.14) is equivalent to

D
(
σ fσR,⃗t

)( 1
σ

RT (⃗vλ − t⃗
)
,RT

η⃗

)
=D f (⃗vλ , η⃗). (2.15)

Similarly, we could obtain for σ < 0:

D(|σ | fσR,⃗t)

(
1
σ

RT (⃗vλ − t⃗
)
,−RT

η⃗

)
=D f (⃗vλ , η⃗). (2.16)

Thus, we can see that any cone-beam system (including C-arm) can not be geometrically self-

calibrated better than up to a similarity transformation with any self-calibration method (including the

BA method that we saw in the previous section).

Since the definition of the integral projection in the 2D fan-beam case is described by the similar

integral in Eq. (1.7) as in the 3D cone-beam case in Eq. (1.8), if we define in the similar way different

transformations in 2D, we can repeat the proof of the Theorem 2.2 and 2.3. Note that we work in the

case of non-weighted projections or when ζ⃗ is a unit vector. So, in this case we also have the similar
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fact in 2D: any fan-beam system can not be geometrically self-calibrated better than up to a scaling,

a rotation and a translation. Thus, our result is very general: it’s true in the 3D and 2D cases and

regardless of the chosen algorithm to self-calibrate.

Numerical experiments. For the numerical demonstration we used the same simulated data from

the previous section and the solution showed there to the BA problem (estimated calibration parameters

and estimated 3D points). Note that we can use the estimated calibration parameters of the C-arm

in the reconstruction process. We took the 3D Shepp–Logan phantom as f (⃗x). With the help of the

Python package RTK [Rit+14] we simulated projections with true calibration parameters and computed

a FDK reconstruction g(⃗x) with the estimated calibration parameters. If we want to compare f (⃗x) and

g(⃗x) without a similarity correction, we can see that our reconstruction doesn’t match with the true

Shepp–Logan phantom (see fig. 2.5 and some profiles in the fig. 2.7 and 2.8). Since the initial source-

detector distance (SDD) that we use as the first guess for our optimization procedure differs a lot from

the true values of SDD, we can achieve a similarity error in the solution obtained with our optimization

procedure.

Figure 2.5: Slices z = 6.5 mm of: left: the initial 3D Shepp–Logan phantom f (⃗x), center: the recon-

struction g(⃗x) from the estimated acquisition geometry and right: | f (⃗x)−g(⃗x)|. Yellow lines corre-

spond to the profile from 2.7, green lines - to the profile from 2.8.

From Eq. (2.14), the reconstructed image should correspond to the function σ fσR,⃗t (⃗x). Since g(⃗x)

should be equal to σ fσR,⃗t (⃗x) = σ f (σ R⃗x+ t⃗), thus f (⃗x) should be equal to 1
σ

g
( 1

σ
RT (⃗x− t⃗

))
. Since we

know the reference and we have from the previous step with the BA estimated positions of markers, we

can estimate σ ,R,⃗ t as we did in the previous section and we know the similarity correction in this case.

Note that in order to compute f in x⃗ from g we need to interpolate: we used the linear interpolation

method from SciPy package. The result of such similarity correction applied to the image g is shown

in the fig. 2.6. It’s possible to compare profiles after similarity correction for fixed y and z as we did

in the fig. 2.7 and 2.8. We also computed the root-mean-square error (RMSE) between the initial 3D

image and the reconstructed one after the similarity correction, it was equal to 0.076. To understand

the order of the error, we can compute RMSE for the case of the reconstruction with the set of true
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Figure 2.6: Slices z = 6.5 mm of: left: the initial 3D Shepp–Logan phantom f (⃗x), center: the recon-

struction from the estimated acquisition geometry after the similarity correction 1
σ

g
( 1

σ
RT (⃗x− t⃗

))
and

right:
∣∣ f (⃗x)− 1

σ
g
( 1

σ
RT (⃗x− t⃗

))∣∣. Yellow lines correspond to the profile from 2.7, green lines - to the

profile from 2.8.

Figure 2.7: Profiles of the reconstruction (blue) before and after similarity correction and the initial

phantom (red) for z = 6.5 mm, y =−13.5 mm.

calibration parameters, in this case the normal reconstruction error of RTK is equal to 0.091. Thus, we

can see that the reconstruction with the estimated parameters is correct. Moreover, we verified that in

this case the reconstructed image has the form σ fσR,⃗t (⃗x). Note that usually we don’t have true values

of the positions of markers, so we can’t make the estimation of the similarity correction.

In these sections we showed that we can apply bundle adjustment to the C-arm calibration, since

C-arms can be described with the same algebraic model as cameras. Unfortunately, we can obtain the

solution just up to a projective transformation (and up to a similarity transformation in the case of the

general sequence of views). From the other side, C-arm is also described by the integral cone-beam
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Figure 2.8: Profiles of the reconstruction (blue) before and after similarity correction and the initial

phantom (red) for z = 6.5 mm, y = 1.5 mm.

model. We also showed that the self-calibration problem for any system with the cone-beam geometry

and fan-beam geometry can not be solved better than up to a similarity transformation.

2.4 Marker detection difficulty in X-ray projections

In the previous sections we supposed that we have already the information about markers in projected

images. But as in computer vision, in self-calibration in tomography we have 3 main tasks:

1. to detect interest points in the projected images (introduced markers or natural singularities in

data if we perform the calibration without markers), it’s the detection step;

2. to associate same markers in different projected images;

3. to compute the geometric parameters of the model, it’s the calibration step.

Here we want to explain why it’s not trivial to detect markers in X-ray projection images on the

example of the 2D Radon transform. Suppose that markers are small balls. Then, the Radon transform

of one marker, i.e. the indicator of a disk of radius R centered at (a,b) denoted by fR,(a,b), for fixed α

is the function from Eq. (1.6). Let us denote f1 =Rα fR,(a,b):

f1(s) =

2
√

R2 − (s− s0(α,a,b))2, if |s− s0| ≤ R,

0, otherwise,
(2.17)

where s0(α,a,b) = acosα +bsinα .
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We want to study f1 more carefully. Usually, when we talk about singularities we think about

discontinuities. But f1 is continuous! What kind of singularity of f1 can we detect? In order to answer

to this question, we want to use the Hölder (Lipschitz) continuity. As far as we know, this function has

not been investigated before in the context of Hölder regularity, although its other properties were used

in the similar task of the watershed segmentation [TDK05].

Let us start with basic definitions.

Definition 2.1. Let 0 ≤ α ≤ 1. A function f is pointwise Hölder (Lipschitz) α at x0, if there exists A > 0

and h0 > 0 such that for any h < h0

| f (x0 +h)− f (x0)| ≤ A|h|α . (2.18)

A Hölder (Lipschitz) regularity of f at x0 is a maximal α: f is Hölder (Lipschitz) α at x0.

If there exists a constant A such that Eq. (2.18) is satisfied for any x0 and x0 +h within an interval

of R, then the function f is uniformly Hölder (Lipschitz) α over this interval.

Definition 2.2. A function f is singular at x0 if it’s not Hölder 1 at x0.

It’s well known that:

• A Hölder α function, 0 < α < 1, is continuous, but non-differentiable.

• A C1 function in a neighborhood of x0 is Hölder 1 at x0.

The main contribution of this section:

Theorem 2.4. The function f1 is Hölder 1/2 at ±R+ s0 and Hölder 1 otherwise.

Proof. It’s obvious that infinitely differentiable function is Hölder 1. Thus, we need to explain just

the situation with the points ±R+ s0. Let us start with the case of R = 1 and s0 = 0 in order to better

understand the logic of the proof; f1 becomes

f0(s) =

2
√

1− s2, if |s| ≤ 1,

0, otherwise.
(2.19)

For the point 1 we have

| f0(s)− f0(1)|= | f0(s)| ≤ 2
√

1− s
√

2 = K1|s−1|1/2. (2.20)

Suppose that we can find K2 > 0 and ε > 0: | f0(s)− f0(1)| = | f0(s)| = 2|s− 1|1/2|s+ 1|1/2 ≤
K2|s−1|1/2+ε , then for s from [1−h0,1], h0 > 0

|s+1|1/2 ≤ K2

2
|s−1|ε . (2.21)
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But in the limit s → 1− we have
√

2 ≤ 0. Then Eq. (2.21) can’t be true for all s from [1− h0,1].

Thus, f0 is Hölder 1/2 at 1. Similarly, the function f0 is also Hölder 1/2 at −1.

Let us consider our function for arbitrary R and s0. Then, from Eq. (2.20) we automatically have

for R+ s0:

| f1(s)− f1(R+ s0)|= | f1(s)| ≤ 2
√

R− (s− s0)
√

2R = K3|s− (R+ s0)|1/2. (2.22)

And as in Eq. (2.21) we have a contradiction if we suppose | f1(s)− f1(R+ s0)| ≤ K4|s− (R+

s0)|1/2+ε for some K4 > 0 and ε > 0, then

|s+(R− s0)|1/2 ≤ K4

2
|s− (R+ s0)|ε , (2.23)

because in the limit s → (R+ s0)
− we have

√
2R ≤ 0. Thus, f1(s) is Hölder 1/2 at R+ s0. Similarly,

the function f1 is also Hölder 1/2 at −R+ s0.

A disk indicator is Hölder 0 at the boundary. We have shown that its Radon projection is Hölder

1/2 at the projection of the boundary, thus more regular and probably more difficult to detect. The

similar behaviour was already described in the case of Sobolev regularity in [Nat01], pp. 42-44. Let

Hβ (Ω2) of an open set Ω2 ∈ R2 denotes the Sobolev space, β is real and represent the smoothness

of the function. We can also define the Sobolev space for Z2 = S1 ×R, S1 is the unit sphere in the

2-dimensional Euclidean space. Then the author states in the case of the dimension N = 2 that if we

have the smooth function f of compact support in Hβ

0 (Ω2), then R f belongs to Hβ+1/2(Z2), where

Hβ

0 (Ω2) is the Sobolev space of order β of functions of support in the closure of Ω2, Hα+1/2(Z2) is the

Sobolev space of the higher order β + 1/2 on Z2. Thus, the projection is smoother (by 1/2) than the

object.

If we have a patient body described by a function from D(R2), the whole scene is the sum of this

function and an indicator of a disk, then the measured Radon transform for each projection has a form

Φ+ f1, where Φ ∈ D(R). In this case, we have everywhere Hölder 1 regularity except two special

points of f1 where we still have Hölder 1/2:

Lemma 2.2. If f = Φ+ f1, where Φ ∈ D(R), f1 is from Eq. (2.17) (Hölder 1 everywhere except 2

points, where it’s Hölder 1/2), then f is also Hölder 1 everywhere except these two points, where it’s

Hölder 1/2.

Proof. It’s obvious except the fact about two points. Let’s take one ŝ. For this point in some neighbour-

hood

| f (s)− f (ŝ)|= |Φ(s)−Φ(ŝ)+ f1(s)− f1(ŝ)| ≤ |Φ(s)−Φ(ŝ)|+ | f1(s)− f1(ŝ)|

≤C1|s− ŝ|1 +C2|s− ŝ|1/2 ≤C1|s− ŝ|1/2 +C2|s− ŝ|1/2 ≤ (C1 +C2)|s− ŝ|1/2.
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Suppose that we can find C3 > 0 and ε > 0: | f (s)− f (ŝ)| ≤C3|s− ŝ|1/2+ε , then in some one-sided

neighbourhood (suppose s < ŝ for it)

|Φ(s)−Φ(ŝ)+ f1(s)− f1(ŝ)|
|s− ŝ|1/2 ≤C3|s− ŝ|ε . (2.24)

Then lims→ŝ−
Φ(s)−Φ(ŝ)
|s−ŝ|1/2 = 0 from the Taylor expansion, lims→ŝ−

f1(s)− f1(ŝ)
|s−ŝ|1/2 =

√
2R as before for our

special function. Thus, we again have the contradiction, since in the limit s → ŝ− in Eq. (2.24) we have√
2R ≤ 0. Thus, f is Hölder 1/2 at ŝ.

We can detect these singularities with wavelets, for example, by applying the canonical algorithm

of Mallat [MZ92; MH92; Mal09]. The corresponding numerical results are presented in the Appendix

A.1. This algorithm gives 2 singular points −R+ s0 and R+ s0. If we know these 2 points, we can

compute the center s0 of the marker in the projected image. If we have 2 markers, we will detect 4

singular points. Thus, we want to have the markers far from each other in projected images in order

to be able to match 2 pairs correctly. To assure this, their centers s1
0 and s2

0 should be far from each

other, radius of markers R should be as small as possible. But centers s1
0 and s2

0 in projected images

aren’t the same with centers (a1,b1) and (a2,b2) of the markers in the scene! We know that s1
0 =

a1 cosα + b1 sinα , s2
0 = a2 cosα + b2 sinα for each projection angle α . If two markers belong to one

horizontal line b1 = b2, then |s1
0−s2

0|= |(a1−a2)cosα|. It’s obvious that we can’t have then cosα = 0,

where s1
0 = s2

0. When we are in the discrete setting, we can assure to have |cosα| ≥ |cosα0| ≠ 0, then

|s1
0 − s2

0| ≥ |(a1 −a2)cosα0|. We need |s1
0 − s2

0|> 2R. If |cosα0|= 2R, then we should have

|a1 −a2|> 1. (2.25)

If two markers belong to another line, we need to assure |s1
0−s2

0|= |(a1−a2)cosα+(b1−b2)sinα|=
|
√
(a1 −a2)2 +(b1 −b2)2 sin(α +β )| > 2R, β is defined by sinβ = a1−a2√

(a1−a2)2+(b1−b2)2
and cosβ =

b1−b2√
(a1−a2)2+(b1−b2)2

. Thus, we can’t have sin(α +β ) = 0, where s1
0 = s2

0. If we assure |sin(α +β )| ≥
|sin(α0 +β )| ̸= 0, take |sin(α0 +β )|= 2R, then we should have√

(a1 −a2)2 +(b1 −b2)2 > 1. (2.26)

If we have 3 or more markers, we need to assure Eq. (2.26) for each pair of markers.

We illustrated that projections in tomography are usually smoothed by the integral transform, thus

this makes it difficult to detect the traces of markers in projected images, hence the centers of markers in

projected images also. We justified in this section the application of the canonical algorithm of Mallat

to detect the Hölder irregularities of f1 for fixed projection angle. From the detected irregularities

we can detect the centers of markers in projected images. This detection can be performed just with

some assumptions. However, this gives us hope that the task of markers’ detection can be solved, for

example, by applying the theory of wavelets.
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3 Calibration with DCC on distributions for
2D Radon transform

3.1 French summary of the chapter

Ce chapitre débute par la présentation des motivations de ce travail (la section 3.2). Nous revenons au

problème des données tronquées. Les DCC sur les fonctions ne peut pas gérer les données tronquées.

Nous prévoyons d’utiliser l’information locale sur les marqueurs, de modéliser les marqueurs avec

Diracs et de construire les DCC pour les marqueurs non tronqués. C’est pourquoi nous devons rappeler

la théorie de la distribution.

Nous rappelons ensuite les définitions de base liées aux distributions et présentons les notations que

nous utiliserons dans ce chapitre. Dans la section 3.3, nous décrivons qu’une distribution agissant sur K

est une fonctionnelle linéaire continue sur K. L’espace de toutes les distributions agissant sur l’espace

K est noté K′. On rappelle que les distributions générales agissent sur l’espace des fonctions lisses de

support compact, mais on ne s’intéresse qu’aux distributions de support compact. Elles sont définies

en agissant sur l’espace des fonctions lisses. Aussi, nous mentionnons que dans ce cas la preuve de

continuité de la fonctionnelle linéaire peut être remplacée par la preuve que la fonctionnelle linéaire est

bornée.

Dans la section 3.4 nous parlons de la définition connue de la transformée de Radon sur les dis-

tributions présentée par Ramm et Katsevich dans leur ouvrage [RK96]. Ils y présentent également les

conditions de cohérence des données nécessaires et suffisantes pour la transformée de Radon sur les

distributions, la généralisation des conditions de cohérence de Helgason-Ludwig bien connues. Dans

la section 3.5 nous simplifions cette définition de la transformée de Radon sur les distributions, nous

définissons la transformée de Radon sur les distributions de support compact pour l’angle de projection

fixe. Cela nous aide à construire les conditions de cohérence simplifiées qui sont faciles à appliquer.

L’application de ces DCC pour les moments d’ordre 0, 1 et 2 nous conduit à la nouvelle procédure

analytique pour estimer deux ensembles d’inconnues dans le problème de la calibration classique en

géométrie en faisceau parallèle : les décalages et les angles de projection. Dans cette procédure, nous

concevons également la mire d’étalonnage de deux lignes perpendiculaires de marqueurs qui nous aide

à dériver les formules analytiques. Nous discutons également de la non-unicité de la solution et mon-

trons quelle solution de la classe de toutes les solutions possibles nous pouvons trouver avec notre

procédure de la calibration. Nous présentons les simulations numériques avec et sans bruit.
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3.2 Introduction

In this chapter we return to the problem of truncated data described in the section 1.4.4. We mentioned

the example of the problem to calibrate with truncated data with DCC for the 2D Radon transform.

When markers are in the field of view, we have non-truncated information about markers, while com-

plete data for the object of interest are truncated. We want to use this advantage of non-truncated

markers to build the set of new calibration algorithms.

In order to derive these algorithms, we need to choose how to model markers. In the clinical

settings, round markers are usually used. If these markers are sufficiently small, we can model them

with Dirac distributions. Let us remind that the Dirac distribution is used to model a narrow spike

function. Since we plan to produce hybrid methods, we want to use markers and build DCC for them.

In order to describe DCC in mathematically correct way, we need to start in the section 3.3 with basic

facts about distributions. More precisely, with the definition of distributions and some useful properties.

Distribution can be defined as a continuous linear functional for different spaces of test functions, but

for us it will be important to consider distributions acting on spaces of smooth functions or distributions

of compact support. We will remind that the Dirac distribution is the distribution of compact support.

For distributions of compact support we can define the Radon transform, the fan-beam and cone-

beam transforms as another distributions. In order to understand properly these definitions of trans-

forms, the continuity of the linear functional acting on the space of smooth functions should be de-

fined. For that, we need to consider the space of smooth functions as a Fréchet space equipped with

the set of semi-norms. Then in the topology induced by these semi-norms continuity is equivalent with

boundedness which is easy to check.

In the section 3.4 we will show the existing definition in the literature for the Radon transform

of distribution of compact support described by Ramm and Katsevich. The authors also introduced

necessary and sufficient DCC for distributions to be in the range of the Radon transform. These DCC

are hard to apply, that’s why in the section 3.5 we will introduce our definition of the Radon transform

of distribution of compact support for fixed projection angle. In order to apply these DCC to the

calibration task, we need only the necessary part. Our DCC can be applied to Diracs, thus they use

only the local non-truncated information about markers. DCC will help us as usually to produce the

analytical calibration procedure, but the specific calibration cage will be introduced to the scene to use

the advantage of markers too. Thus, we will design the hybrid method.

Similar calibration procedures will be designed for the case of the fan-beam transform on a line

in the chapter 4, the cone-beam transform on a line and the cone-beam transform on a plane parallel

to the detector in the chepter 5. In each case we need to start with proper definitions of transforms of

distributions of compact support, to prove necessary DCC and apply these DCC to Dirac distributions

(markers) to design calibration procedures. The goal of this chapter is to show how DCC applied to

Diracs can be defined and used in the calibration process for the simple case of the 2D Radon transform.
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3.3 Distributions

In this section we introduce notations and basic facts about distributions that we use below. We use the

following notation in this chapter:

• SN = S (RN) for Schwartz spaces of rapidly decreasing smooth functions,

• DN = D(RN) =C∞
0 (RN) for spaces of compactly supported smooth functions,

• EN =C∞(RN) for spaces of smooth functions.

We have the inclusions: DN ⊂ SN ⊂ EN .

Definition 3.1. A distribution acting on a set of functions K is a continuous linear functional T : K →R.

The space of all distributions acting on the space K is denoted by K′.

Thus, we can define different spaces of distributions S ′
N , D ′

N , E ′
N . According to [Hel99], we have

the inclusions: E ′
N ⊂ S ′

N ⊂ D ′
N . Since D ′

N is the largest set, we will write ”any distribution” with the

meaning that it’s a distribution belonging to D ′
N . Moreover, each function f ∈ DN can be seen as a

distribution Tf acting on EN with Tf (φ) = ( f ,φ), where (·, ·) is the usual scalar product in L2(RN)

defined by the integral:

( f ,φ) =
∫
RN

f (⃗x)φ (⃗x)d⃗x, (3.1)

where we compute here the Lebesgue integral. Thus, DN ⊂ E ′
N . Also, each function f ∈ EN can be

seen as a distribution Tf acting on DN with Tf (φ) = ( f ,φ), thus EN ⊂ D ′
N .

If we have any functional, then it’s usually easy to check its linearity. But the situation is more com-

plicated with continuity. Note that we can also define for an arbitrary open set ΩN ⊂ RN D ′(ΩN) and

E ′(ΩN). We will focus on distributions from E ′(ΩN) in the next sections, thus it’s good to understand

better the continuity of the functional T : E (ΩN) → R. We will replace the check of continuity with

the check of boundedness. In the literature (see, for example, the basic introduction to distributions in

French [Bon01]), E (ΩN) is usually considered as the so-called Fréchet space, the special topological

vector space equipped with the set of semi-norms. Note that semi-norms are characterized by similar

three properties as norms: for them we have the triangle inequality as for norms, the absolute homo-

geneity as for norms and non-negativity without point separation inherent in norms. More precisely:

Definition 3.2. For the vector space X a real-value function P : X → R is a semi-norm if it satisfies:

1. P( f +g)≤ P( f )+P(g), f ,g ∈ X,

2. P(λ f ) = |λ |P( f ), f ∈ X and a scalar λ ,

3. P( f )≥ 0, f ∈ X.
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The set of semi-norms in our case is defined by

Pj(φ) = ∑
|βββ |≤ j

sup
x⃗∈K j

|∂βββ
φ (⃗x)|, (3.2)

where φ ∈ E (ΩN), |βββ | = β1 + ...+ βN , βk ∈ N, k = 1, . . . ,N, N is the set of non-negative integers,

βββ = (β1, ...,βN) ∈ NN and ∂βββ = ∂
β1
1 ...∂

βN
N , {K j} j=0,1,... - a set of compacts with ∪ jK j = ΩN , K j is in

the interior of the set K j+1. So, in order to fix the concrete definition of semi-norms, we usually fix the

set of compacts. For example, in the case of Ω1 =R researches usually use K j = [− j, j]. This set helps

to define a proper topology in E (ΩN).

For spaces with semi-norms we know that the continuity of T is equivalent with the boundedness

of T [NB10]. Thus, we can check the boundedness of T or if T maps a bounded subset of E (ΩN) to a

bounded subset of R. A subset Φ ⊂ E (ΩN) is bounded iff Pj(Φ) is bounded for each j or we can find

M j < +∞ such that each Pj(φ) ≤ M j for φ ∈ Φ. Moreover, the boundedness of all Pj(Φ) for all j is

equivalent with the boundedness of all P̃j,βββ (Φ) for all j and βββ :

P̃j,βββ (φ) = sup
x⃗∈K j

|∂βββ
φ (⃗x)|. (3.3)

Definition 3.3. A sequence of distributions {Tj} j∈N acting on K converges to T if for each φ ∈ K

lim j→+∞(Tj,φ) = (T,φ).

Definition 3.4. Any distribution T is null on open set O if T (φ) = 0 for each function φ : supp(φ)⊂ O.

The support of T is the complement of the largest open set for which T is null.

According to [Hel99], E ′(ΩN) as defined before is equal to the subspace of D ′(ΩN) of all distribu-

tions of compact support. This is also true in the case of ΩN = RN . An example of the distribution of

compact support is a Dirac distribution.

Definition 3.5. A Dirac distribution (or just Dirac) δ⃗c is a distribution from D ′
N: ∀φ ∈ DN δ⃗c(φ) =

φ (⃗c).

It’s true that δ⃗c is a distribution of compact support, thus δ⃗c ∈ E ′
N . Also, the finite sum of Diracs is

a distribution of compact support (see [GW99]). Let us show these facts in the following theorem:

Theorem 3.1. supp(∑n
i=1 λiδ⃗ci) = {⃗c1, ..., c⃗n}.

Proof. Denote T = ∑
n
i=1 λiδ⃗ci . We should show that T is null on RN \ {⃗c1, ..., c⃗n}. Indeed, for each φ

with supp(φ)∩{⃗c1, ..., c⃗n}=∅ we have φ (⃗ci) = 0 for all ci, i = 1, . . . ,n, then T (φ) = ∑
n
i=1 λiφ (⃗ci) = 0.

Thus, supp(T )⊂ {⃗c1, ..., c⃗n}.

If ∃k : c⃗k /∈ supp(T ), thus c⃗k is in the complement of supp(T ), thus in an open set where T is null.

Then we can take a neighborhood I of c⃗k in this open set: c⃗i /∈ I for all other indices i, T is null on I.

We can choose φ with supp(φ) ⊂ I and φ (⃗ck) = 1, then T (φ) = 0, because T is null on I. From the

other side, T (φ) = ∑
n
i=1 λiδ⃗ci(φ) = λkφ (⃗ck) = λk. Thus we have a contradiction, since λk ̸= 0. Thus,

supp(T ) = {⃗c1, ..., c⃗n}.
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According to [Bon01], a convolution of any distribution with a smooth function of compact support

can be defined:

Definition 3.6. For any distribution T and g ∈DN , a convolution T ∗g is defined and it’s a distribution

defined by a function f (⃗x) = (T (⃗t),g(⃗x− t⃗)).

Note that the notation g(⃗x) usually means that we consider the value of the function g in the point

x⃗. Here we put the point inside the function to point out that g is a function depending on x⃗− t⃗. We also

add the variable t⃗ to the distribution to point out that the distribution T acts on functions of the variable

t⃗, x⃗ is a parameter. It’s possible to find the following properties of convolution with proofs in [Bon01]:

Theorem 3.2. Let T ∈ D ′
N , g ∈ DN , then supp(T ∗g)⊂ supp(T )+ supp(g).

Theorem 3.3. Let T ∈D ′
N , g∈DN such that their supports are closed compact sets. Then T ∗g belongs

to DN .

Theorem 3.4. Let T ∈ E ′
N , g,h ∈ DN , then (T ∗g)∗h = T ∗ (g∗h).

With this, researchers did the following generalization of the convolution to two distributions of

compact support:

Definition 3.7. T1,T2 ∈ E ′
N , then ∃!T ∈ E ′

N: ∀g ∈ DN T1 ∗ (T2 ∗g) = T ∗g. We call T a convolution of

T1 and T2 and write T = T1 ∗T2.

Moreover, we will use the following definition from [Bon01]:

Definition 3.8. A translation t⃗ of any distribution T is defined for each test function φ by

(T (⃗x− t⃗),φ (⃗x)) = (T (⃗x),φ (⃗x+ t⃗)). (3.4)

Here we use the generalisation of the definition of the translation of a function. Since each function

f ∈ EN can be seen as a distribution Tf on DN with Tf (φ) = ( f ,φ), then after the change of variables

from x⃗ to x⃗′ with x⃗′ = x⃗− t⃗

( f (⃗x− t⃗),φ (⃗x)) =
∫
RN

f (⃗x− t⃗)φ (⃗x)d⃗x =
∫
RN

f (⃗x′)φ (⃗x′+ t⃗)d⃗x′ = ( f (⃗x′),φ (⃗x′+ t⃗)). (3.5)

In the next section we recall known results about the Radon transform on distributions using the

results presented in this section.

3.4 The work of Ramm and Katsevich

The Radon transform on distributions in arbitrary dimension was firstly defined by Gelfand and col-

leagues in [GGV66]. But in this section we use the later book by Ramm and Katsevich [RK96], where
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the authors introduced DCC for the Radon transform on distributions. We concentrate just on the

2D Radon transform on distributions in this section in order to present the contribution of Ramm and

Katsevich, but in their book they described their results in arbitrary dimension.

Definition of Ramm and Katsevich. Let us introduce the adjoint (or dual of the Radon transform

R) operator R∗ for functions φ from the Schwartz space S ([0,2π]×R):

R∗
φ (⃗x) :=

∫ 2π

0
φ(α, x⃗ · θ⃗α)dα ∀⃗x ∈ R2. (3.6)

Here as before α ∈ [0,2π), θ⃗α =(cosα,sinα), η⃗α =(−sinα,cosα). We define the space S ([0,2π]×
R) as a restriction of functions in S (R2) to [0,2π]×R. So, the Schwartz space on [0,2π]×R is the

space of smooth functions φ in all variables and such that φ and all its derivatives are fast decreasing

according to the second variable.

Note that for functions f ∈S2,φ ∈S ([0,2π]×R) we have with the change of variables from (s, l),

s ∈ R, l ∈ R to x⃗ ∈ R2 with s⃗θα + lη⃗α = x⃗:

(R f ,φ) =
∫ 2π

0

∫
∞

−∞

R f (α,s)φ(α,s)dsdα =
∫ 2π

0

∫
∞

−∞

∫
∞

−∞

f (s⃗θα + lη⃗α)dlφ(α,s)dsdα

=
∫ 2π

0

∫
R2

f (⃗x)φ(α, x⃗ · θ⃗α)d⃗xdα =
∫
R2

f (⃗x)
∫ 2π

0
φ(α, x⃗ · θ⃗α)dα d⃗x = ⟨ f ,R∗

φ⟩, (3.7)

where (·, ·) is the scalar product in L2([0,2π]×R), ⟨·, ·⟩ is the scalar product in L2(R2).

We can generalize the definition in Eq. (3.6) to φ ∈C∞(Z2), Z2 = [0,2π]×R. Note that we usually

consider functions defined on open sets, but we decided to keep the notation from the book where the

authors considered also distributions acting on C∞(Z2). This space can be also seen as a Fréchet space

with the set of semi-norms of the type Eq. (3.2), where ∪ jK j = Z2 with K j = [0,2π]×K′
j, ∪ jK′

j = R,

K′
j is in the interior of the set K′

j+1.

If φ ∈C∞(Z2), then R∗φ ∈ E2. To show the last fact, let us use the following basic theorems from

analysis:

Theorem 3.5. If I is the interval in R, J ⊂ RN is the measurable set, f is the measurable function

defined on I × J. Suppose that we can properly define the Lebesgue integrals

F(t) =
∫

J
f (t, y⃗)d⃗y.

• Continuity. If two hypotheses are true:

1. f is continuous on t on I for y⃗ almost everywhere,

2. ∃g ∈ L1(J) : ∀t ∈ I | f (t, y⃗)| ≤ g(⃗y) for y⃗ almost everywhere.

Then F is continuous on I.

• Differentiability. If two hypotheses are true:
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1. f is differentiable on t on I for y⃗ almost everywhere,

2. ∃h ∈ L1(J) : ∀t ∈ I |∂ f
∂ t (t, y⃗)| ≤ h(⃗y) for y⃗ almost everywhere.

Then F is differentiable on I and

F ′(t) =
∫

J

∂ f
∂ t

(t, y⃗)d⃗y.

For each [0,2π]×A2, A2 = [a1,a2]× [b1,b2] with a1,a2,b1,b2 ∈ R we have:

1. φ(α, x⃗ · θ⃗α) is continuous on x⃗ for each α ,

2. maxα ,⃗x∈[0,2π]×A2 |φ(α, x⃗ · θ⃗α)| = M < +∞, since φ(α, x⃗ · θ⃗α) is continuous on the compact set

[0,2π]×A2. The constant M is integrable on the compact [0,2π], thus we have an integrable

majorant M: |φ(α, x⃗ · θ⃗α)| ≤ M for each parameter x⃗,

then the parameter-dependent integral R∗φ is a continuous function of x⃗ on each A2 by the theorem

about the continuity of parameter-dependent Lebesgue integrals ⇒R∗φ is continuous on R2. Similarly:

1. φ(α, x⃗ · θ⃗α) is differentiable on x⃗ for each α ,

2. since each partial derivative is continuous on the compact set [0,2π]× A2, then it attains its

maximum and minimum values, then for each partial derivative we have a majorant M < +∞

(a constant, the maximum of the absolute values for α, x⃗ ∈ [0,2π]×A2), it’s integrable on the

compact [0,2π], since it’s a constant,

then we can differentiate the parameter-dependent integral R∗φ as
∫ 2π

0
∂φ

∂x1
dα and

∫ 2π

0
∂φ

∂x2
dα by the

theorem about the differentiability of parameter-dependent Lebesgue integrals. After, we can apply

the theorem about the continuity and differentiability to obtain continuous and differentiable integrals

again and again. Thus, we showed that R∗φ ∈ E2.

Firstly, Ramm and Katsevich justified in their book that the Radon transform can be defined for

f ∈ S ′
2 and f ∈ D ′

2:

Definition 3.9. The Radon transform R f for f ∈S ′
2 ( f ∈D ′

2) is a bounded linear functional acting on

the space KRS2 (KRD2) of test functions according to

(R f ,φ) = ⟨ f ,R∗
φ⟩, (3.8)

where K =− 1
4π

H ∂

∂ s with a Hibert transform H g(s) =
∫

∞

−∞

g(q)
q−s dq.

In this case, ⟨ f ,R∗φ⟩ is well defined for any f ∈ S ′
2 ( f ∈ D ′

2) just when φ = KRφ̃ , φ̃ ∈ S2 (or

D2), when from the property of K that R∗KR= I: R∗φ =R∗KRφ̃ = φ̃ ∈ S2 (or D2).

Since R∗φ ∈ E2 for φ ∈C∞(Z2), then ⟨ f ,R∗φ⟩ is well defined for f ∈ E ′
2:
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Definition 3.10. The Radon transform R f for f ∈ E ′
2 is a bounded linear functional acting on the space

C∞(Z2) of test functions according to

(R f ,φ) = ⟨ f ,R∗
φ⟩. (3.9)

The linearity of such functional is obvious. Moreover, R f is bounded. Let us introduce logical

steps of the proof. We need to start with the fact that any bounded subset Φ ⊂ C∞(Z2) becomes a

bounded subset R∗(Φ) ⊂ E2. In brief, the function φ(α, x⃗ · θ⃗α) corresponds to each φ ∈ Φ, then it’s

true that the obtained smooth functions of the type φ(α, x⃗ · θ⃗α) depending on x⃗ form a bounded subset

of E2, since each semi-norm P̃j,βββ corresponding to the supremum on the compact set K j (∪ jK j = R2,

K j is in the interior of the set K j+1) of the βββ -derivatives of the obtained functions is still bounded. The

detailed proof of this fact will be presented later during the proofs of our definition of the 2D Radon

transform for fixed α . The next logical step: after the integration of each φ(α, x⃗ · θ⃗α) in R∗φ (⃗x) =∫ 2π

0 φ(α, x⃗ · θ⃗α)dα , it’s true that the subset R∗(Φ) is bounded, again because of the boundedness of

semi-norms of functions of the type R∗φ . Lastly, since f is bounded, thus f (R∗(Φ)) is bounded for

the bounded R∗(Φ). Then R f (Φ) is bounded for any bounded Φ using Eq. (3.9), so R f is a bounded

functional.

We will denote E (Z2) =C∞(Z2) and the set of distributions on this space as E ′(Z2) in the following.

DCC of Ramm and Katsevich. As far as we know, the authors first introduced DCC for the Radon

transform on distributions. We again consider just the 2D case. The following analogue of HLCC is

true:

Theorem 3.6. A distribution p is the Radon transform of f ∈ E ′
2 if and only if:

1. p ∈ E ′(Z2),

2. p is even: the distributions p(α+π,−s) and p(α,s) act identically on E (Z2) (or the correspond-

ing distributions p(−θ⃗α ,−s) and p(⃗θα ,s) act identically),

3. for k = 0,1,2, . . . , ∀ψ ∈C∞([0,2π]) we have the moment conditions:

(p(α,s),sk
ψ(α)) =

∫ 2π

0
Pk(α)ψ(α)dα, (3.10)

where Pk(α) is a homogeneous polynomial of degree at most k in cosα , sinα .

Moreover, if p(α,s) = 0 for |s| > a, then supp( f ) ⊂ Ba, Ba - the ball of the radius a centered at the

origin.

The logical steps of the proof can be found in the sketch of the proof presented in the book of

Ramm and Katsevich [RK96], pp. 313-314. This result is theoretically beautiful, but it’s hard to use

the moment conditions Eq. (3.10) in practice.
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In this section we presented the known definition of the 2D Radon transform on distributions from

Ramm and Katsevich. The Theorem 3.6 gives necessary and sufficient conditions for the distribution

p to be in the range of R. But for practical applications only necessary conditions are required. In the

next section we will give necessary conditions more practical than Eq. (3.10). Indeed, they can be used

if the number of projections R f is finite or if only the finite number of αi, i = 0, ...,P−1, is available

or when R f (α,s) is discretized in α .

3.5 Radon transform on distributions

3.5.1 Definition and DCC

Our definition for fixed α . Let us consider Rα f (s) :=R f (α,s) for f ∈ S2, thus Rα f is a function

of one variable s for fixed α . Let us introduce the adjoint (or dual of the Radon transform Rα ) operator

R∗
α for functions from S1:

R∗
αφ (⃗x) := φ (⃗x · θ⃗α) = φ(x1 cosα + x2 sinα) ∀φ ∈ S1. (3.11)

For f ∈ S2,φ ∈ S1, we have with the change of variables from (s, l), s ∈ R, l ∈ R to x⃗ ∈ R2 with

s⃗θα + lη⃗α = x⃗:

(Rα f ,φ) =
∫

∞

−∞

Rα f (s)φ(s)ds =
∫

∞

−∞

∫
∞

−∞

f (s⃗θα + lη⃗α)dlφ(s)ds

=
∫
R2

f (⃗x)φ (⃗x · θ⃗α)d⃗x = ⟨ f ,R∗
αφ⟩, (3.12)

where (·, ·) is the scalar product in L2(R), ⟨·, ·⟩ is the scalar product in L2(R2).

We can generalize the definition in Eq. (3.11) to φ ∈ E1. In this case, R∗
αφ ∈ E2. Thus, we can

define:

Definition 3.11. The Radon transform Rα f for f ∈ E ′
2 is a bounded linear functional acting on the

space E1 of test functions according to

(Rα f ,φ) = ⟨ f ,R∗
αφ⟩. (3.13)

The linearity is obvious. Moreover, let us detail why Rα f is bounded. For any bounded subset

Φ ⊂ E1 each P̃1
j,β (Φ) from Eq. (3.3) is bounded with M j,β , where P̃1

j,β (φ) corresponds to the supremum

on the compact set K1
j of the β -derivative of φ of one variable s, ∪ jK1

j = R, K1
j is in the interior of the

set K1
j+1, and it doesn’t depend on the test function φ ∈ Φ. We need to show that the operation R∗

α

preserves boundedness. Let us show that for any bounded subset Φ ⊂ E1 R
∗
α(Φ)⊂ E2 is also bounded.

Since α is fixed, then for each compact set K2
j (∪ jK2

j =R2, K2
j is in the interior of the set K2

j+1) we can

find j′: x⃗ · θ⃗α = x1 cosα + x2 sinα is in K1
j′ for all x⃗ ∈ K2

j . Thus

sup
x⃗∈K2

j

|φ (β )(⃗x · θ⃗α)| ≤ sup
s∈K1

j′

|φ (β )(s)| ≤ M j′,β . (3.14)
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For each function ψ ∈R∗
α(Φ): ψ (⃗x)= φ (⃗x · θ⃗α) with βββ =(β1,β2)∈N2 we obtain that ∂

β1
1 ∂

β2
2 ψ (⃗x)=

(cosα)β1(sinα)β2φ (|βββ |)(⃗x · θ⃗α). Thus, we have that each P̃2
j,βββ (R

∗
α(Φ)) is bounded with |(cosα)β1(sinα)β2|M j′,|βββ |.

Since f is a bounded functional, thus f (R∗
α(Φ)) is bounded for the bounded R∗

α(Φ). Rα f (Φ) is

bounded for any bounded Φ using Eq. (3.13), so Rα f is a bounded functional.

We can’t do a definition of the adjoint operator for an arbitrary f ∈ D ′
2: if we take φ ∈ D1, then

R∗
αφ is not of compact support and ⟨ f ,R∗

αφ⟩ isn’t defined. Let us consider φ ∈ D1: φ(s) = 0 for

|s|> M, φ(s) ̸= 0 for |s| ≤ M. If we consider φ(x1 cosα + x2 sinα), then φ(x1 cosα + x2 sinα) ̸= 0 for

−M ≤ x1 cosα + x2 sinα ≤ M or for (x1,x2) such that

x1 cosα + x2 sinα ≤ M ⇒ x2 ≤
M

sinα
− x1 cotα (3.15)

and

x1 cosα + x2 sinα ≥−M ⇒ x2 ≥− M
sinα

− x1 cotα. (3.16)

From Eq. (3.15) and Eq. (3.16) we receive that (x1,x2) is in the band between two parallel lines

(at least for the case α ∈ (0,π/2)), thus we can take any arbitrarily large x1 and x2 and have that

R∗
αφ (⃗x) = φ(x1 cosα + x2 sinα) ̸= 0 ⇒ R∗

αφ /∈ D2, because R∗
αφ is not of compact support.

DCC for our definition for fixed α . Let us prove the following necessary condition for the case of

our definition:

Theorem 3.7. For f ∈ E ′
2, if pα :=Rα f is the Radon transform of f for fixed α , then:

1. pα ∈ E ′
1,

2. pα is even: the distributions pα+π(−s) and pα(s) act identically on E ′
1 (or the corresponding

distributions p−θ⃗α
(−s) and p

θ⃗α
(s) act identically),

3. for k = 0,1,2, . . . we have the necessary moment conditions:

(pα(s),sk) = Pk(α) ∀α, (3.17)

where Pk(α) is a homogeneous polynomial of degree at most k in cosα , sinα .

Moreover, pα(s) = 0 for |s|> a, if supp( f )⊂ Ba.

Proof. Take any f ∈ E ′
2 with supp( f )⊂ Ba. Let us take the same smooth positive function of compact

support W1 ∈ C∞
0 (B1),

∫
B1

W1(⃗x)d⃗x = 1, Wε (⃗x) = ε−2W1(⃗x/ε) as Ramm and Katsevich took in their

proof of their theorem for the similar convolution step. Then fε = Wε ∗ f and fε ∈ C∞
0 (Ba+ε) from

the Theorem 3.2 and Theorem 3.3. According to [Bon01], for such regularisation function Wε we

have fε −−→
ε→0

f in the sense of distributions. From HLCC (Theorem 1.1) for the function fε we have

that R fε ∈ C∞
0 (Z2,a+ε), where Z2,a+ε = [0,2π]× [−(a + ε),a + ε]. If we fix α , we build Rα fε ∈

C∞
0 ([−(a+ ε),a+ ε]). We have ∀φ ∈ E1

(Rα fε ,φ) = ⟨ fε ,R
∗
αφ⟩. (3.18)
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It’s true that

lim
ε→0

⟨ fε ,R
∗
αφ⟩= ⟨ f ,R∗

αφ⟩. (3.19)

Form the definition (Rα f ,φ) = ⟨ f ,R∗
αφ⟩, Eq. (3.18) and Eq. (3.19) limε→0Rα fε = Rα f in E ′

1.

Thus, we can transfer properties of Rα fε : Rα f (s) = 0 for |s| > a, Rα f is even (in the sense as

described before).

Now we want to derive the moment conditions. For sk ∈ E1

(Rα f (s),sk) = ⟨ f (⃗x),R∗
α(s

k)(⃗x)⟩= ⟨ f (⃗x), (⃗x · θ⃗α)
k⟩= ⟨ f (⃗x),(x1 cosα + x2 sinα)k⟩

= ⟨ f (⃗x),
k

∑
i=0

C(k, i)(x1 cosα)k−i(x2 sinα)i⟩=
k

∑
i=0

C(k, i)⟨ f (⃗x),xk−i
1 xi

2⟩(cosα)k−i(sinα)i = Pk(α).

We can see the connection between our definition and the definition of Ramm and Katsevich. For

any φ ∈ E (Z2), φα ∈ E1, where φα(s) = φ(α,s), let us denote

Fφ (α) = (Rα f (s),φα(s)), (3.20)

Fφ ,ε(α) =
∫
R
Rα fε(s)φα(s)ds. (3.21)

Thus, we showed in the proof that

Fφ (α) = lim
ε→0

(Rα fε(s),φα(s)) = lim
ε→0

∫
R
Rα fε(s)φα(s)ds = lim

ε→0
Fφ ,ε(α). (3.22)

In the proof of the Theorem 3.6 Ramm and Katsevich used the same functions fε . They showed the

similar equality:

(R f (α,s),φ(α,s)) = lim
ε→0

(R fε(α,s),φ(α,s))

= lim
ε→0

∫ 2π

0

∫
R
R fε(α,s)φ(α,s)dsdα = lim

ε→0

∫ 2π

0
Fφ ,ε(α)dα,

where we use that Rα fε(s) =R fε(α,s).

Let us consider Fφ ,ε(α) =
∫
RRα fε(s)φα(s)ds =

∫ a+ε

−(a+ε)Rα fε(s)φα(s)ds for fixed ε . Using the

Theorem 3.5:

1. Rα fε(s)φα(s) is continuous on α for each s as a product of two continuous functions,

2. Rα fε ·φα is continuous on the compact set [0,2π]× [−(a+ ε),a+ ε], thus there is an integrable

majorant (a constant, the maximum of the absolute values for α,s ∈ [0,2π]× [−(a+ ε),a+ ε]),
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then the parameter-dependent integral Fφ ,ε(α) is a continuous function on [0,2π] by the theorem about

the continuity of parameter-dependent Lebesgue integrals. For the differentiability:

1. Rα fε(s)φα(s) is differentiable on α for each s as a product of two differentiable functions,

2. ∂

∂α
(Rα fε · φα) is continuous on the compact set [0,2π]× [−(a+ ε),a+ ε], thus there is an in-

tegrable majorant (a constant, the maximum of the absolute values for α,s ∈ [0,2π]× [−(a+

ε),a+ ε]),

then the parameter-dependent integral Fφ ,ε(α) is differentiable on [0,2π] by the theorem about the

differentiability of parameter-dependent Lebesgue integrals. In the same way, we can show with the

basic analysis the smoothness of Fφ ,ε(α).

Thus, for each function φ (and the corresponding φα ) we have the sequence of smooth functions

Fφ ,ε(α) on [0,2π] defined by Eq. (3.21), thus they are Riemann integrable. Also, limε→0 Fφ ,ε(α) =

Fφ (α) for each α . In the case when this convergence is uniform, we can change the order of the limit

and the integral, we will have

(R f (α,s),φ(α,s)) = lim
ε→0

∫ 2π

0
Fφ ,ε(α)dα =

∫ 2π

0
lim
ε→0

Fφ ,ε(α)dα

=
∫ 2π

0
Fφ (α)dα =

∫ 2π

0
(Rα f (s),φα(s))dα. (3.23)

In Eq. (3.23) we can see the connection between two definitions of the Radon transform on distri-

butions. Some thoughts about the reverse implication of the Theorem 3.7 can be found in the Appendix

A.2.

3.5.2 Calibration algorithm

Now we want to show how we can apply the moment conditions Eq. (3.17) from our DCC to calibrate

with the specific calibration cage with unknown position in the world. This algorithm was described

in our work in preparation [KD23]. We want to apply our algorithm in the case when projection data

are truncated as in the fig. 3.1, but projections of markers from the calibration cage are not truncated.

Suppose that we work with a lattice of s, but the system is moving, so we have errors. For P projections

for unknown angles α0, ...,αP−1 our measurements are

mi(s) =Rαi f (s− sαi), (3.24)

where sαi are unknowns too.

We want to model the centers of markers with Dirac distributions, thus we want to understand what

will be the projection of the center of one marker on the projected image. For one marker f = δ⃗c we

can calculate:

(Rα δ⃗c(s),φ(s)) = ⟨δ⃗c,R
∗
αφ⟩= ⟨δ⃗c(⃗x),φ (⃗x · θ⃗α)⟩= φ (⃗c · θ⃗α) = δc⃗·⃗θα

(φ). (3.25)
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Figure 3.1: Left: truncated object and our specific calibration cage in R2, right: their 2D Radon trans-

form.

We can see that the Radon transform for fixed α of one Dirac is again a Dirac in the projected image.

Note that markers are usually small balls, not points. We can compute analytically the Radon transform

for the indicator function fR,⃗c of the closed circular disc of radius R > 0 centered at c⃗ = (c1,c2)
T with

Eq. (1.6) (the function corresponding to the ball of the marker). From this theoretical result we see that

the support of Rα fR,⃗c(s) is [−R+ s0,R+ s0], where s0 = c1 cosα +c2 sinα = c⃗ · θ⃗α . Thus, the obtained

projected Dirac δc⃗·⃗θα
is in the center s0 of the α-projection of the marker.

Since we have few markers in the scene, then f = ∑
n
j=1 δ⃗c j , where n is the number of markers, c⃗ j

is the 2D center of the marker j. We admit that we can detect the centers of round markers for each

projection, then in practice our measurements are of the form mi(s) = ∑
n
j=1 δqi j(s).

With the linearity for f = ∑
n
j=1 δ⃗c j we can compute that Rαi f = ∑

n
j=1 δc⃗ j ·⃗θαi

. So, the Radon trans-

form for fixed α of finite sums of Diracs is well-defined, thus the moment conditions Eq. (3.17) from

our DCC can be applied. We also can show the following beautiful property:

Theorem 3.8. The center of mass cα of the Radon transform for fixed α of the distribution f is the

projection c⃗ · θ⃗α of the center of mass c⃗ of the distribution f .

Proof. Let us define c⃗ = (c11+...+cn1
n , c12+...+cn2

n ), cα = M1(α)
M0(α) =

(Rα f ,s)
(Rα f ,1) , where Mk(α) denotes the mo-

ment of order k from Eq. (3.17). Then:

cα =
(Rα f ,s)
(Rα f ,1)

=
(∑n

i=1 δc⃗i ·⃗θα
,s)

n
=

c⃗1 · θ⃗α + ...+ c⃗n · θ⃗α

n
=

(⃗c1 + ...+ c⃗n) · θ⃗α

n
= c⃗ · θ⃗α .
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For the calibration cage we chose two perpendicular lines of markers. An example of such calibra-

tion cage is presented in the fig. 3.1. Suppose that we perform the detection step separately: we have n

centers of ”horizontal” markers qh
i j and n centers of ”vertical” markers q v

i j for each projection i. For our

figure n = 3. Note that we chose different radii of markers for different groups in order to guarantee

the detection step. As we can see in Eq. (1.6), the trace of the round marker has the same radius in the

projected image. Thus, we can guarantee that we can correctly associate each marker with its group

using radii of traces.

As explained in the section 2.4, in this detection task we have two forbidden integration directions

or four forbidden angles, each of them is perpendicular to the line with markers. We must avoid these

projection angles, because it’s not possible for them to distinguish different markers from one group in

the projected image.

Non-uniqueness of the solution. The complete explanation of non-uniqueness can be found

in [BB00b; BB00a]. Here we only want to remind that after a rotation Rγ and a translation t⃗ of the ob-

ject we obtain the same data, but for another parameters of the system, so we can’t calibrate better than

up to an Euclidean transformation. It was shown before for functions. So, with fRγ ,⃗t (⃗x) := f (Rγ x⃗+ t⃗),

Rγ :=

(
cosγ −sinγ

sinγ cosγ

)
, α ′ = α + γ we have

R fRγ ,⃗t(α,s) =
∫ +∞

−∞

fRγ ,⃗t(s⃗θα + lη⃗α)dl =
∫ +∞

−∞

f (Rγ(s⃗θα + lη⃗α)+ t⃗)dl

=
∫ +∞

−∞

f (sRγ θ⃗α + lRγ η⃗α + t⃗)dl =
∫ +∞

−∞

f (s⃗θα ′ + lη⃗α ′ +(⃗θα ′ ·⃗ t )⃗θα ′ +(⃗ηα ′ ·⃗ t )⃗ηα ′)dl

=
∫ +∞

−∞

f ((s+ θ⃗α ′ ·⃗ t )⃗θα ′ + l ′⃗ηα ′)dl′ =R f (α ′,s+ θ⃗α ′ ·⃗ t).

The equivalent form is

R fRγ ,⃗t(α − γ,s− θ⃗α ·⃗ t) =R f (α,s). (3.26)

This fact is also true for one Dirac f = δ⃗c and for finite sums of Diracs. Let us prove this. We

can define from the Dirac f a new distribution fRγ ,⃗t : ⟨ fRγ ,⃗t (⃗x),φ (⃗x)⟩ = ⟨ f (⃗x),φ(R−1
γ (⃗x− t⃗)⟩. We have

this definition for distributions from the generalization of the same fact for functions. For function f ∈
D(R2) and φ ∈ E (R2) with the change of variables from x⃗ to x⃗′ with x⃗′ = Rγ x⃗+ t⃗ and the determinant

of the Jacobian matrix equal to 1:

( f (Rγ x⃗+ t⃗),φ (⃗x)) =
∫
R2

f (Rγ x⃗+ t⃗)φ (⃗x)d⃗x =
∫
R2

f (⃗x′)φ(R−1
γ (⃗x′− t⃗))d⃗x′ = ( f (⃗x′),φ(R−1

γ (⃗x′− t⃗)).

(3.27)

We can show that fRγ ,⃗t is a distribution δR−1
γ (⃗c−⃗t) for f = δ⃗c:

⟨ fRγ ,⃗t (⃗x),φ (⃗x)⟩= ⟨ f (⃗x),φ(R−1
γ (⃗x− t⃗)⟩= ⟨δ⃗c(⃗x),φ(R

−1
γ (⃗x− t⃗)⟩= φ(R−1

γ (⃗c− t⃗)) = ⟨δR−1
γ (⃗c−⃗t)(⃗x),φ (⃗x)⟩.

(3.28)
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Then for the rotation and the translation of one Dirac:

(Rα(δ⃗c)Rγ ,⃗t(s),φ(s)) = ⟨(δ⃗c)Rγ ,⃗t (⃗x),φ (⃗x · θ⃗α)⟩= ⟨δR−1
γ (⃗c−⃗t)(⃗x),φ (⃗x · θ⃗α)⟩= φ((R−1

γ c⃗−R−1
γ t⃗) · θ⃗α)

= φ((⃗c− t⃗) ·Rγ θ⃗α) = φ((⃗c− t⃗) · θ⃗α ′) = (δc⃗·⃗θ
α ′
(s),φ(s− t⃗ · θ⃗α ′))

= (Rα ′ δ⃗c(s),φ(s− t⃗ · θ⃗α ′)) = (Rα ′ δ⃗c(s+ t⃗ · θ⃗α ′),φ(s)).

The equivalent form is

Rα−γ(δ⃗c)Rγ ,⃗t(s− θ⃗α ·⃗ t) =Rα δ⃗c(s). (3.29)

So, we have the same projection data after the rotation and the translation of a Dirac with another

parameters of the system, thus with the access to projection data only we have non-uniqueness of the

self-calibration problem, we can’t say from which configuration of the system we obtained our data.

We can try to find only one configuration of the system among all possibilities. Since we have these

degrees of freedom for functions and for Diracs (the solution is up to a rotation and a translation), we

can fix the coordinate system in the scene as we want, and by this we wish to find just one solution

among all possible solutions.

Our calibration algorithm requires few coordinate systems. Firstly, let us define the aligned coordi-

nate system: suppose that the horizontal coordinate axis is parallel to the ”horizontal” line of markers,

the vertical coordinate axis - to the ”vertical” line of markers, the center of mass of the system of all

markers is in (0,0)T . We will estimate shifts in this coordinate system. Secondly, we will also consider

two coordinate systems with the center in the center of mass of each group of markers and same di-

rection of axes, so the first coordinate system with the center in the center of mass of the ”horizontal”

group, the second - in the center of mass of the ”vertical” group. We will estimate angles in these co-

ordinate systems. Each coordinate system differs from the aligned coordinate system by a translation,

so in them we will have the same set of projection angles. Thus, the calibration parameters will be

estimated in relation to the aligned coordinate system. In the following, we will use superscript l = h

or l = v, h will correspond to the ”horizontal” group of markers, v - to the ”vertical” group of markers.

Shift correction. Here we want to adapt the logic of the self-calibration algorithm from [DS14] for

functions to Diracs to find all sαi as defined in Eq. (3.24). If we consider all markers, so 2n = 6, we can

compute the moments of order 0 and 1 for i = 0, ...,P−1:

M0(i) = (mi(s),1) = (Rαi f (s− sαi),1) = (
2n

∑
j=1

δc⃗ j ·⃗θαi
(s− sαi),1) = (

2n

∑
j=1

δc⃗ j ·⃗θαi
(s),1) = 2n, (3.30)

M1(i) = (mi(s),s) = (Rαi f (s− sαi),s) = (Rαi f (s),s+ sαi) = (
2n

∑
j=1

δc⃗ j ·⃗θαi
,s+ sαi) =

2n

∑
j=1

c⃗ j · θ⃗αi + sαi2n.

(3.31)
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The last equation gives us

sαi =
M1(i)−∑

2n
j=1 c⃗ j · θ⃗αi

2n
. (3.32)

We plan to calibrate in the aligned coordinate system. In this system the center of mass of all markers

in the scene is in zero and ∑
2n
j=1 c⃗ j = 0⃗, then

sαi =
M1(i)

2n
=

(∑2n
j=1 δqi j(s),s)

2n
=

∑
2n
j=1 qi j

2n
, (3.33)

where we can compute M1(i) from the detected centers of all markers qi j.

Note that we can apply the same logic for each group of markers separately and compute sl
αi

,

l ∈ {h,v}. For each group l we can have:

sl
αi
=

Ml
1(i)−∑

n
j=1 c⃗ l

j · θ⃗αi

n
. (3.34)

Now we can fix coordinate systems connected to each group of markers and compute two corre-

sponding set of shifts. Let us fix for l = h a coordinate system in the center of mass of the first group of

markers, x1 axis should be aligned with the first line of markers. After let us fix the coordinate system

in the center of mass of the second group l = v of markers, x2 axis should be aligned with the second

line of markers. Then we have:

sl
αi
=

Ml
1(i)
n

=
(∑n

j=1 δql
i j
(s),s)

n
=

∑
n
j=1 ql

i j

n
, (3.35)

where ql
i j states for the detected center of the marker j of the line l in the projection i. For the ”hor-

izontal” and ”vertical” groups of markers we perform the shift corrections sh
αi

and sv
αi

separately. So,

during the next step of finding of angles we will use two sets of corrected input data in two different

coordinate systems.

Finding of angles. Here we start with the measurements ml
i(s) = Rαi f l(s). We need to find un-

known αi. Note that we want to propose a new algorithm, the previous algorithm [DS14] designed for

non-truncated data covered only shift corrections. We can compute the moments of order 2 for each l,

l ∈ {h,v}:

Ml
2(i) = (ml

i(s),s
2) = (Rαi f l(s),s2) = (

n

∑
j=1

δc⃗ l
j ·⃗θαi

,s2) =
n

∑
j=1

(⃗c l
j · θ⃗αi)

2 =
n

∑
j=1

(cl
j1 cosαi + cl

j2 sinαi)
2

=
n

∑
j=1

((cl
j1)

2 cos2
αi +2cl

j1cl
j2 cosαi sinαi +(cl

j2)
2 sin2

αi)

= al
20 cos2

αi +2al
11 cosαi sinαi +al

02 sin2
αi, (3.36)

where al
20 = ∑

n
j=1(c

l
j1)

2, al
11 = ∑

n
j=1 cl

j1cl
j2, al

02 = ∑
n
j=1(c

l
j2)

2. We know that c⃗h
j = (ch

j1,0)
T for the

first group of markers in the corresponding coordinate system, c⃗ v
j = (0,cv

j2)
T for the second group of
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markers in the corresponding coordinate system. Thus, we can simplify the second moments:

Mh
2(i) = ah

20 cos2
αi, Mv

2(i) = av
02 sin2

αi. (3.37)

As before we can compute from the available data ql
i j and know the moments Ml

2(i)= (∑n
j=1 δql

i j
(s),s2)=

∑
n
j=1(q

l
i j)

2 > 0. For two different angles α0 and α1 from (0,π/2) from the system of 4 equations we

can compute 4 unknowns ah
20, av

02, α0, α1:
Mh

2(0) = ah
20 cos2 α0

Mv
2(0) = av

02 sin2
α0

Mh
2(1) = ah

20 cos2 α1

Mv
2(1) = av

02 sin2
α1

⇔


Mh

2(0) = cos2 α0 ·Mh
2(1)/cos2 α1

Mv
2(0) = sin2

α0 ·Mv
2(1)/sin2

α1

ah
20 = Mh

2(1)/cos2 α1

av
02 = Mv

2(1)/sin2
α1

. (3.38)

From the second equation

cos2
α1 = 1− sin2

α1 = 1−
Mv

2(1)sin2
α0

Mv
2(0)

=
Mv

2(0)−Mv
2(1)sin2

α0

Mv
2(0)

,

then from the first equation

Mh
2(0)

Mv
2(0)−Mv

2(1)sin2
α0

Mv
2(0)

= Mh
2(1)cos2

α0 ⇒

Mh
2(0)M

v
2(0)−Mh

2(0)M
v
2(1)sin2

α0 = Mh
2(1)M

v
2(0)(1− sin2

α0)⇒

(Mh
2(0)M

v
2(1)−Mh

2(1)M
v
2(0))sin2

α0 = Mh
2(0)M

v
2(0)−Mh

2(1)M
v
2(0),

then

sinα0 =

(
Mh

2(0)M
v
2(0)−Mh

2(1)M
v
2(0)

Mh
2(0)M

v
2(1)−Mh

2(1)M
v
2(0)

)1/2

(3.39)

uniquely defines α0 ∈ (0,π/2). Here Mh
2(0)M

v
2(1)−Mh

2(1)M
v
2(0) ̸= 0. Indeed, ql

i j = c⃗ l
j · θ⃗αi and

Mh
2(0)M

v
2(1)−Mh

2(1)M
v
2(0) =

n

∑
j=1

(⃗ch
j · θ⃗α0)

2 ·
n

∑
j=1

(⃗c v
j · θ⃗α1)

2 −
n

∑
j=1

(⃗ch
j · θ⃗α1)

2 ·
n

∑
j=1

(⃗c v
j · θ⃗α0)

2

=
n

∑
j=1

(ch
j1 cosα0)

2 ·
n

∑
j=1

(cv
j2 sinα1)

2 −
n

∑
j=1

(ch
j1 cosα1)

2 ·
n

∑
j=1

(cv
j2 sinα0)

2

=
n

∑
j=1

(ch
j1)

2
n

∑
j=1

(cv
j2)

2(cos2
α0 sin2

α1 − cos2
α1 sin2

α0)

=−
n

∑
j=1

(ch
j1)

2
n

∑
j=1

(cv
j2)

2 sin(α0 −α1)sin(α0 +α1) ̸= 0,

because we have two positive sums, sin(α0 −α1) and sin(α0 +α1) aren’t zeros, because α0 ̸= α1 and

they are in the same quadrant.
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Then the coefficients can be computed

ah
20 =

Mh
2(0)

cos2 α0
, av

02 =
Mv

2(0)
sin2

α0
. (3.40)

From the moments of order 3

Ml
3(i) = (ml

i(s),s
3) = (Rαi f l(s),s3) = (

n

∑
j=1

δc⃗ l
j ·⃗θαi

,s3) =
n

∑
j=1

(⃗c l
j · θ⃗αi)

3 =
n

∑
j=1

(cl
j1 cosαi + cl

j2 sinαi)
3

=
n

∑
j=1

((cl
j1)

3 cos3
αi +3(cl

j1)
2cl

j2 cos2
αi sinαi +3cl

j1(c
l
j2)

2 cosαi sin2
αi +(cl

j2)
3 sin3

αi)

= al
30 cos3

αi +3al
21 cos2

αi sinαi +3al
12 cosαi sin2

αi +al
03 sin3

αi (3.41)

we have

Mh
3(i) = ah

30 cos3
αi, Mv

3(i) = av
03 sin3

αi, (3.42)

where ah
30 = ∑

n
j=1(c

h
j1)

3, av
03 = ∑

n
j=1(c

v
j2)

3. It’s easy to obtain ah
30, av

03:

ah
30 =

Mh
3(0)

cos3 α0
, av

03 =
Mv

3(0)
sin3

α0
(3.43)

and uniquely compute αi from the second and the third moments:

cosαi =
ah

20Mh
3(i)

ah
30Mh

2(i)
, sinαi =

av
02Mv

3(i)
av

03Mv
2(i)

, (3.44)

where Ml
3(i) can be computed with ql

i j as Ml
3(i) = (∑n

j=1 δql
i j
(s),s3) = ∑

n
j=1(q

l
i j)

3. Note that to apply

these formulas we should have ah
30 ̸= 0 and av

03 ̸= 0. We should take it into account during the design

of the calibration cage.

Thus, our algorithm consists of Eq. (3.33), (3.39), (3.40), (3.43) and (3.44). We designed the

analytical procedure to compute all unknown acquisition parameters. Our approach is based on the

local information of the centers of non-truncated markers, the rest of data can be truncated. So, the

algorithm is suitable for the situation of data truncation.

Numerical experiments. We chose the calibration cage as it’s presented in the fig. 3.1. The

coordinates of the centers of the markers in the aligned coordinate system in cm are:

• (−2.4,0)T , (0.4,0)T , (2.3,0)T for the horizontal line,

• (−0.1,−2.5)T , (−0.1,0.5)T , (−0.1,2)T for the vertical line.

Thus, our calibration cage satisfies the conditions: we have two perpendicular lines of markers, the

sums of cubes of coordinates aren’t zeros, thus ah
30 ̸= 0 and av

03 ̸= 0. The initial coordinate system is

produced from the aligned coordinate system by the rotation of π/6. So, we operate with the following

coordinates of the centers of the markers in the initial coordinate system:
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• (−2.079,−1.200)T , (0.346,0.200)T , (1.992,1.150)T for the first line,

• (1.163,−2.215)T , (−0.337,0.383)T , (−1.087,1.682)T for the second line.

The coordinates above are presented with 3 digits precision. We simulated the calibration parame-

ters to be estimated.

1. We took P = 80 random different projection angles in the initial coordinate system in [π/6,π +

π/6] as true values, but we avoided the forbidden directions discussed before and in the section

2.4. We must avoid integration directions perpendicular to the line with markers, because it’s not

possible for them to distinguish markers from the same group in the projected image. To avoid

these directions, the first half of projections was from (π/6,π/2+π/6), the second half - from

(π/2+π/6,π +π/6).

2. We had the grid on s ∈ [−5,5] with the step 0.01. We simulated sαi with the random uniform

noise on the interval [−0.05,0.05).

In realistic settings, the information that we have is usually the combination of the projections of

the truncated body and non-truncated markers, but in our experiment we only used as an input the

information about the centers of the traces of the markers on projected images. Thus, as an input we

had two arrays for each marker line with projections of markers of the size (3,P) each.

All computations were performed in Python 3. If we know projections ql
i j exactly, then our algo-

rithm was almost perfect (see the first line in the table 3.1). Note that we subtracted π/6 from the

true angles to be able to compare them with the estimated angles, because we found estimations in

the aligned coordinate system which differs from the initial one with true angles. For the case of the

detection of ql
i j as in the realistic setting, we have some errors after the detection of ql

i j. We modelled

these detection errors as a Gaussian noise N(0,σ) added to ql
i j. Here σ = 0.01 ·Nl, where Nl is the

noise level, 0.01 is the pixel size of the initial image in cm. In the table 3.1 we can also see the results

of noisy experiments. We present the mean absolute errors of 100 realisations of the Gaussian noise for

each Nl. Thus, for shifts we computed

1
100

100

∑
k=1

1
P

P−1

∑
i=0

∣∣ŝαi,k − sαi

∣∣ , (3.45)

where sαi is the true value for the projection i, ŝαi,k is the estimation with our algorithm of the shift

for the projection i with the realisation of the Gaussian noise number k added to projections ql
i j. For

projection angles we computed
1

100

100

∑
k=1

1
P

P−1

∑
i=0

∣∣α̂i,k −αi
∣∣ , (3.46)

where αi is the true value for the projection i, α̂i,k is the estimation with our algorithm of the projection

angle i with the realisation of the Gaussian noise number k added to projections ql
i j. We show that the

errors are proportional to Nl.
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In this section we presented our definition for fixed α of the 2D Radon transform on distributions,

we proved DCC for our definition. We also showed that our DCC combined with the proper calibration

cage allow to perform the full analytical self-calibration with truncated data when markers are not

truncated. In the next chapter we will extend this approach to the fan-beam geometry with sources on

a line.

Noise level NlNlNl Noise std in cm Error for shifts in cm Error for angles in rad

0% 0 5.08×10−17 3.15×10−16

10% 0.001 3.24×10−4 2.20×10−3

50% 0.005 1.61×10−3 1.10×10−2

100% 0.01 3.26×10−3 2.31×10−2

200% 0.02 6.53×10−3 6.52×10−2

Table 3.1: Mean absolute errors of calibration parameters (shifts and angles) for numerical experiments

with non-noisy and noisy projections.
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4 Calibration with DCC on distributions for
fan-beam transform

4.1 French summary of the chapter

Dans ce chapitre nous appliquons la même logique pour la géométrie en éventail avec des sources

alignées que pour la géométrie parallèle 2D. Nous commençons par la définition de la transformée en

éventail sur les distributions avec des sources alignées pour une position de source fixe. Après nous

pouvons généraliser les DCC de [Cla13] pour les fonctions aux distributions. Ces nouvelles DCC avec

les moments d’ordre 0, 1 et 2 et la mire d’étalonnage de deux ensembles de marqueurs sur deux lignes

parallèles nous donnent la procédure de calibrage analytique. Cette procédure nous aide à construire

l’algorithme en trois étapes simples pour estimer les paramètres d’étalonnage et les positions inconnues

des centres de masse des lignes de la mire. Nous supposons que nous connaissons la structure de la mire

d’étalonnage. Puisque nos DCC ne fonctionnent qu’avec les marqueurs non tronqués, nous pouvons

appliquer notre procédure dans la situation où les données complètes sont tronquées.

Nous testons numériquement notre algorithme pour estimer les paramètres d’étalonnage inconnus

(les positions de la source λ̂i et les décalages du détecteur ŷλi) avec et sans bruit. Nous discutons de

la non-unicité de la solution de notre problème de calibration. Nous expliquons quelle solution de

la classe de toutes les solutions nous trouvons avec notre algorithme (la solution dans le système de

coordonnées alignées).

Pour comprendre comment les erreurs de calibration peuvent influencer le processus de la recon-

struction, nous calculons l’erreur suivante. Puisque nous avons les estimations pour chaque projection i

dans le système de coordonnées aligné λ̂i et ŷλi , dans le système de coordonnées initial, ils peuvent être

recalculés comme λ̂ ′
i = λ̂i+λ0 et ŷ′

λi
= ŷλi +yλ0 . Connaissant la position de la source λ̂ ′

i et la projection

du marqueur 2D c⃗ l
j corrigée q̂l

i j = ql
i j − ŷ′

λi
pour chaque ligne avec les marqueurs l et chaque marqueur

j nous pouvons tracer la ligne reliant λ̂ ′
i et q̂l

i j. Si nous avons l’estimation exacte des paramètres

d’étalonnage, la distance entre le marqueur 2D c⃗ l
j dans le système de coordonnées initial et cette ligne

est essentiellement nulle, car q̂l
i j doit être la projection perspective 2D exacte de c⃗ l

j sur cette ligne.

Nous pouvons voir ce comportement pour les simulations sans bruit. Dans le cas de données d’entrée

bruitées, on observe le transfert des erreurs d’estimation des paramètres de calibration au décalage de

la droite de projection par rapport à sa vraie position dans le plan. Ce décalage influencera également

le processus de la reconstruction.
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Notre algorithme pour la géométrie parallèle 2D du chapitre précédent et l’algorithme pour la

géométrie en éventail de ce chapitre sont décrits dans notre article en cours [KD23].

4.2 Fan-beam transform on distributions with sources on a line

4.2.1 Definition and DCC

In this section about the fan-beam transform with sources on a line, we refer to the geometry presented

in the fig. 1.3. The fan-beam transform on functions for this case was described by the integral model

Eq. (1.9).

Our definition for fixed λ . Let us denote Dλ f (y) := D f (λ ,y) for f ∈ D2 with support in X2 =

(D1,D2)×R, 0 < D1 < D2 < D. We can consider Dλ f as a function of one variable y. Firstly, we want

to define the adjoint operator D∗
λ

for functions from E1:

D∗
λ

φ (⃗x) :=
1

D− x1
φ

(
x2D− x1λ

D− x1

)
. (4.1)

For the described functions f and φ we have:

(Dλ f ,φ) =
∫ +∞

−∞

Dλ f (y)φ(y)dy =
∫ +∞

−∞

∫ +∞

0
f (D− lD,λ + ly− lλ )dlφ(y)dy

=
1
D

∫ +∞

−∞

∫ D

−∞

f
(

u,
uλ

D
+

(D−u)y
D

)
duφ(y)dy =

∫ D

−∞

∫ +∞

−∞

f (u,v)φ
(

vD−uλ

D−u

)
1

D−u
dvdu

=
∫ D2

D1

∫ +∞

−∞

f (u,v)φ
(

vD−uλ

D−u

)
1

D−u
dvdu = ⟨ f ,D∗

λ
φ⟩, (4.2)

where (·, ·) is the scalar product in L2(R), ⟨·, ·⟩ is the scalar product in L2(X2), we used the change

of variables u = D− lD, dl = −du
D , λ + l(y− λ ) = uλ

D + (D−u)y
D and v = uλ

D + (D−u)y
D , dv = D−u

D dy,

y = vD−uλ

D−u .

If φ ∈ E1, then from Eq. (4.1) we have D∗
λ

φ ∈ E (X2) and can define:

Definition 4.1. A fan-beam transform on a line Dλ f for f ∈ E ′(X2) is a bounded linear functional

acting on the space E1 of test functions according to

(Dλ f ,φ) = ⟨ f ,D∗
λ

φ⟩. (4.3)

We justify why this definition is properly formulated in the Appendix A.3.

If we model markers with Dirac distributions, then we can obtain weighted Diracs in projections.

For f = δ⃗c we have:

(Dλ δ⃗c(y),φ(y)) = ⟨δ⃗c,D
∗
λ

φ⟩=
〈

δ⃗c(⃗x),φ
(

x2D− x1λ

D− x1

)
1

D− x1

〉
= φ

(
c2D− c1λ

D− c1

)
1

D− c1
=

1
D− c1

δc̃(φ), c̃ =
c2D− c1λ

D− c1
. (4.4)
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Figure 4.1: Intersection of the integration line with the round marker.

Note that this c̃ is also the usual 2D perspective projection of the point c⃗ j, see [DC19].

If we consider the non-weighted fan-beam transform with sources on a line with the normalized

vector ζ⃗ in the definition Eq. (1.7), then we can analytically calculate the non-weighted fan-beam

transform of the indicator function of a disk. It’s interesting, since a marker can be considered as a

small disk. The fan-beam integral in Eq. (1.7) over the integration line (y−λ )x1 +Dx2 −Dy = 0 for

the indicator function of a disk is equal to the length of the chord in the intersection of the integration

line with the disk of the center (c1,c2)
T and the radius R. The distance between the center of the

disk and this integration line can be expressed with the standard formula from geometry as d(λ ,y) =
|(y−λ )c1+Dc2−Dy|√

(y−λ )2+D2
. Thus, the non-weighted fan-beam transform of the indicator function of a disk is the

length of the chord in the intersection that can be found from the Pythagorean theorem (fig. 4.1):

D fR,⃗c(λ ,y) =

2
√

R2 −d2(λ ,y) if d(λ ,y)≤ R

0 otherwise.
(4.5)

Let us find for which y d2(λ ,y) = R2. We need to solve

((y−λ )c1 +Dc2 −Dy)2 = R2((y−λ )2 +D2)⇔ Ay2 +By+C = 0,

where A = (c1 −D)2 −R2 and it’s positive, because the marker is between the source line and the

detector line, B = 2(c1 −D)(c2D− c1λ )+2λR2, C = (c2D− c1λ )2 −R2λ 2 −R2D2. The discriminant

can be computed ∆ = B2

4 −AC = D2R2(c2
1 − 2c1D+D2 + c2

2 − 2c2λ +λ 2 −R2) = D2R2((c1 −D)2 +
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(λ − c2)
2 −R2). It’s positive, because the marker is between the source line and the detector line. So,

we have 2 different solutions y1 =
−B/2−

√
∆

A and y2 =
−B/2+

√
∆

A . The support of the non-weighted fan-

beam transform Dλ fR,⃗c(y) is (y1,y2), thus we can say that − B
2A is the center of the marker’s trace on

the projected image. In the limit we have

lim
R→0

−B
2A

= lim
R→0

−2(c1 −D)(c2D− c1λ )−2λR2

2((c1 −D)2 −R2)
=

c2D− c1λ

D− c1
= c̃, (4.6)

so we can approximate c̃ with the detected center of the marker’s trace on the projected image when R

is small.

DCC for our definition for fixed λ . As in the case of the 2D Radon transform, we plan to use

only necessary consistency conditions. For that, we want to prove the generalisation to distributions of

known for functions DCC from the Theorem 1.2 mentioned in the first section:

Theorem 4.1. If f ∈ E ′(X2), gλ :=Dλ f is the fan-beam transform on a line of f for fixed λ , then:

1. gλ ∈ E ′
1,

2. for k = 0,1,2, . . . we have the necessary moment conditions:

(gλ (y),y
k) = Pk(λ ), (4.7)

where Pk(λ ) is a polynomial of degree at most k in λ .

Proof. The first point is showed in the Appendix A.3. Now we prove the moment conditions. For

yk ∈ E1

(Dλ f (y),yk) = ⟨ f (⃗x),D∗
λ
(yk)⟩=

〈
f (⃗x),

(
x2D− x1λ

D− x1

)k 1
D− x1

〉

=

〈
f (⃗x),

1
(D− x1)k+1

k

∑
i=0

C(k, i)(x2D)k−i(−x1λ )i

〉

=
k

∑
i=0

C(k, i)
〈

f (⃗x),
(x2D)k−i(−x1)

i

(D− x1)k+1

〉
λ

i = Pk(λ ).

4.2.2 Calibration algorithm

Now we want to show how we can apply the moment conditions Eq. (4.7) from our DCC to calibrate

with the specific calibration cage with unknown position in the world. This algorithm was also de-

scribed in our work [KD23]. The purpose of this algorithm is to calibrate with truncated data as in the

fig. 4.2. Suppose that we work with a lattice of y, but the system is moving, so we have errors. For
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Figure 4.2: Left: truncated object (the union of big disks) and our specific calibration cage (8 small

disks) in R2, the detector is in the red line, the line with source positions is yellow, right: their fan-beam

transform.

P projections for unknown source positions λ0, ...,λP−1 our measurements are mi(y) =Dλi f (y− yλi),

where yλi are unknowns too.

If our calibration cage is modelled by f = ∑
n
j=1 δ⃗c j , then Dλi f = ∑

n
j=1

1
D−c j1

δc̃(⃗c j,λi,D), where

c̃(⃗c j,λi,D) defined by Eq. (4.4) is the projection onto the detector of the 2D center c⃗ j of the marker j.

We again want to solve the calibration task with the specific calibration cage (fig. 4.2) consisting of

two lines of 4 markers. These two lines should be parallel to the detector and source lines. Also, we

want to place the calibration cage as close as possible to the detector in order to have non-truncated

projections of the markers. Moreover, the calibration cage should be attached to the support of the

main object and move with the object (if there is any movement of the object). The patterns of two

lines are known, but we don’t know positions of these lines in the scene. Suppose that the first line has

the coordinates of the centers of markers c⃗1
1 = (C1, p1−k1L)T , c⃗1

2 = (C1, p1−L)T , c⃗1
3 = (C1, p1+L)T ,

c⃗1
4 = (C1, p1 + k1L)T , the centers for the second line are c⃗2

1 = (C2, p2 − k2L)T , c⃗2
2 = (C2, p2 − k3L)T ,

c⃗2
3 = (C2, p2 + k3L)T , c⃗2

4 = (C2, p2 + k2L)T . Then the center of mass ordinates of each marker line p1,

p2 and abscissas of lines C1, C2 are unknown, but we know L, k1 > 0, k2 > 0, k3 > 0. Thus, we want

to exploit some known properties of the calibration cage. Thus, by knowing the detected i-projection

of the center of the marker j from the group l (l ∈ {1,2}) ql
i j we want to compute unknowns λi, yλi , D,

p1, p2 and C1, C2.

Non-uniqueness of the solution. As in the case of the 2D Radon transform for functions, we

don’t have a unique solution to the self-calibration task for functions in this fan-beam geometry. The

explanation of some ambiguities was described in [DC19]. For now, it’s important to see that after
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the special shearing and translation of the object with fM,⃗t (⃗x) := f (Mx⃗+ t⃗), M :=

(
1 0

(y′+λ ′)/D 1

)
,

t⃗ := (0,−y′)T , we obtain the same data for another calibration parameters. In [DC19] the shearing and

the translation were described separately, here we want to combine these two results in one formula.

So, we have for functions:

D fM,⃗t(λ ,y) =
∫ +∞

0
fM,⃗t(D− lD,λ + ly− lλ )dl

=
∫ +∞

0
f (D− lD,

y′+λ ′

D
(D− lD)+λ + ly− lλ − y′)dl

=
∫ +∞

0
f (D− lD,y′− ly′+λ

′− lλ ′+λ + ly− lλ − y′)dl

=
∫ +∞

0
f (D− lD,λ +λ

′+ l(y− y′)− l(λ +λ
′))dl =D f (λ +λ

′,y− y′), (4.8)

We see that projection data for fM,⃗t are the same as for f with the translated source by λ ′ and the

translated line of detector by y′. Thus, we can’t estimate the calibration parameters and f using only

projected images better than up to M and t⃗. It’s also true for Dirac distributions. Let us show this. Let

us define for f = δ⃗c ∈ E ′(X2) a new distribution fM,⃗t as ⟨ fM,⃗t (⃗x),φ (⃗x)⟩= ⟨ f (⃗x),φ(M−1(⃗x− t⃗)⟩, where

M−1 =

(
1 0

−(y′+λ ′)/D 1

)
, thus M−1(⃗x− t⃗) =

(
x1

−(y′+λ ′)x1/D+ x2 + y′

)
. It’s easy to see that fM,⃗t

is a distribution δM−1(⃗c−⃗t) ∈ E ′(X2). Then we can show for one Dirac f = δ⃗c:

(Dλ fM,⃗t(y),φ(y)) =
〈

fM,⃗t (⃗x),φ
(

x2D− x1λ

D− x1

)
1

D− x1

〉
=

〈
δM−1(⃗c−⃗t)(⃗x),φ

(
x2D− x1λ

D− x1

)
1

D− x1

〉
=

1
D− c1

φ

(
(−(y′+λ ′)c1/D+ c2 + y′)D− c1λ

D− c1

)
=

1
D− c1

φ

(
c2D− c1(λ +λ ′)

D− c1
+ y′

)
= (Dλ+λ ′ δ⃗c(y),φ(y+ y′)) = (Dλ+λ ′ δ⃗c(y− y′),φ(y)) = (Dλ+λ ′ f (y− y′),φ(y)). (4.9)

Thus, we can fix the aligned coordinate system in the scene such that in this system λ0 = 0 and

yλ0 = 0. Thus, we want to find just one solution in the aligned coordinate system among all possible

solutions. This solution will correspond to another object obtained from the initial one by a transfor-

mation including a sharing and a translation.

Moreover, we can’t uniquely compute D. As in 3D divergent geometry, we also have the scaling

ambiguity in the 2D case. Indeed, the fan-beam data D f (λ ,y) =
∫+∞

0 f (kD − lkD,λ + ly − lλ )dl

for the function f (x1,x2) and the source-detector distance kD, k ̸= 0 are the same with D f̃ (λ ,y) =∫+∞

0 f (k(D− lD),λ + ly− lλ )dl for the function f̃ (x1,x2) = f (kx1,x2) and the source-detector distance

D. We can easily see the same for Diracs: the 2D perspective projection c2kD−c1λ

kD−c1
of (c1,c2)

T in the

geometry with kD is equal to c2D−c1λ/k
D−c1/k of (c1/k,c2)

T in the geometry with D. Thus, we can fix any D

for the solution. Suppose that we fix D equal to the initial value that we know after the installation of

the X-ray system.
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Our algorithm. We will compute separately the moments Eq. (4.7) for each line of markers, we

will use the superscript l = 1 for the first line, l = 2 for the second line. The moments of order 0

for the markers (Diracs) on the line l corresponding to the projection data ml
i(y) = Dλi f l(y− yλi),

f l = ∑
4
j=1 δ⃗c l

j
:

Ml
0(i) = (ml

i(y),1) = (Dλi f l(y− yλi),1) =

(
4

∑
j=1

1
D− c l

j1
δc̃(⃗c l

j ,λi,D)(y− yλi),1

)
=

4
D−Cl

. (4.10)

The moments of order 1 using the fact that c l
j1 =Cl for each l:

Ml
1(i) = (ml

i(y),y) = (Dλi f l(y− yλi),y) = (Dλi f l(y),y+ yλi)

=

(
4

∑
j=1

1
D− c l

j1
δc̃(⃗c l

j ,λi,D)(y),y+ yλi

)
=

4

∑
j=1

c̃(⃗c l
j,λi,D)

D− c l
j1

+
4

∑
j=1

yλi

D− c l
j1

=
4

∑
j=1

c l
j2D− c l

j1λi

(D− c l
j1)

2
+

4

∑
j=1

yλi

D− c l
j1
=−λi

4Cl

(D−Cl)2 + yλiM
l
0(i)+

4

∑
j=1

c l
j2D

(D−Cl)2 . (4.11)

In the chosen aligned coordinate system in the scene λ0 = 0, yλ0 = 0, then

M1
1(0) =

4

∑
j=1

c1
j2D

(D−C1)2 , M2
1(0) =

4

∑
j=1

c2
j2D

(D−C2)2 . (4.12)

Let us remind that we know the detected centers of the markers ql
i j, then

Ml
1(i) =

(
4

∑
j=1

1
D− c l

j1
δql

i j
,y

)
=

4

∑
j=1

ql
i j

D− c l
j1
=

1
D−Cl

4

∑
j=1

ql
i j. (4.13)

Let us use Eq. (4.12) and (4.13) in Eq. (4.11) and multiple each side of the equation by D−Cl .

Then we have

−λi
4Cl

D−Cl
+4yλi =

4

∑
j=1

ql
i j −

4

∑
j=1

ql
0 j. (4.14)

If we introduce new unknown variables r1 > 0 and r2 > 0 with

r1 =
C1

D−C1
, r2 =

C2

D−C2
, (4.15)

then we can rewrite Eq. (4.14) as

yλi −λirl = ∆M̃l
1(i), ∆M̃l

1(i) :=
1
4

(
4

∑
j=1

ql
i j −

4

∑
j=1

ql
0 j

)
. (4.16)

Here we see that ∆M̃l
1(i) can be computed from the projection data. Now we have the set of un-

knowns: yλi , λi, r1, r2, p1, p2. Note that Eq. (4.16) contains only yλi , λi, r1, r2, but not p1, p2.
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Let us exploit the moment conditions of order 2 to complete our algorithm using c l
j1 =Cl:

Ml
2(i) = (ml

i(y),y
2) = (Dλi f l(y),(y+ yλi)

2) =
4

∑
j=1

(c̃(⃗c l
j,λi,D)+ yλi)

2

D− c l
j1

=
1

D−Cl

4

∑
j=1

(
c l

j2D− c l
j1λi

D− c l
j1

+ yλi

)2

=
1

D−Cl

4

∑
j=1

(
c l

j2D

D−Cl
+ yλi −λirl

)2

=
1

D−Cl

4

∑
j=1

(
c l

j2D

D−Cl
+∆M̃l

1(i)

)2

. (4.17)

From Eq. (4.12), (4.13) and (4.15) we obtain

4

∑
j=1

c l
j2D

D−Cl
=

D
D−Cl

4

∑
j=1

c l
j2 = (1+ rl)

4

∑
j=1

c l
j2 =

4

∑
j=1

ql
0 j, (4.18)

then we have
4

∑
j=1

c l
j2D

D−Cl
=

4

∑
j=1

ql
0 j, (4.19)

but also from ∑
4
j=1 c l

j2 = 4pl and Eq. (4.18)

(1+ rl)4pl =
4

∑
j=1

ql
0 j. (4.20)

For the chosen markers ∑
4
j=1(c

1
j2)

2 = 4p2
1 +(2+ 2k2

1)L
2 and ∑

4
j=1(c

2
j2)

2 = 4p2
2 +(2k2

2 + 2k2
3)L

2,

then we can compute using Eq. (4.15):

4

∑
j=1

(
c l

j2D

D−Cl

)2

= (1+ rl)
2

4

∑
j=1

(c l
j2)

2 =

(1+ r1)
2(4p2

1 +(2+2k2
1)L

2) if l = 1

(1+ r1)
2(4p2

2 +(2k2
2 +2k2

3)L
2) if l = 2.

(4.21)

We can develop Eq. (4.17), after the multiplication of each side of the equation by D−Cl:∑
4
j=1(q

1
i j)

2 = (1+ r1)
2(4p2

1 +(2+2k2
1)L

2)+2∆M̃1
1(i)∑

4
j=1 q1

0 j +4[∆M̃1
1(i)]

2

∑
4
j=1(q

2
i j)

2 = (1+ r2)
2(4p2

2 +(2k2
2 +2k2

3)L
2)+2∆M̃2

1(i)∑
4
j=1 q2

0 j +4[∆M̃2
1(i)]

2.

Using Eq. (4.20), we have the following system to find r1 and r2:∑
4
j=1(q

1
i j)

2 = (1+ r1)
2(2+2k2

1)L
2 + 1

4

[
∑

4
j=1 q1

0 j

]2
+2∆M̃1

1(i)∑
4
j=1 q1

0 j +4[∆M̃1
1(i)]

2

∑
4
j=1(q

2
i j)

2 = (1+ r2)
2(2k2

2 +2k2
3)L

2 + 1
4

[
∑

4
j=1 q2

0 j

]2
+2∆M̃2

1(i)∑
4
j=1 q2

0 j +4[∆M̃2
1(i)]

2.
(4.22)

Using only one projection i, we can estimate from Eq. (4.22) (1+ r1)
2 and (1+ r2)

2. In the case of

noisy data we can perform the estimation from few projections. If the solution of the system is Rl =
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(1+ rl)
2, then rl = −1±R1/2

l . We know that rl > 0. Then we can uniquely calculate rl = −1+R1/2
l .

From that, Eq. (4.15) gives us C1 and C2 for fixed D, Eq. (4.20) gives us p1 and p2. For each i ≥ 1 we

have two lines of markers, so we have the system of two equations from Eq. (4.16), l = 1 or 2. From

this system we can compute yλi , λi. This system gives a unique solution, since:

det

(
1 −r1

1 −r2

)
= r1 − r2 =

C1

D−C1
− C2

D−C2
=

C1(D−C2)−C2(D−C1)

(D−C1)(D−C2)

=
D(C1 −C2)

(D−C1)(D−C2)
̸= 0.

With Eq. (4.22), (4.15), (4.20), (4.16) we can analytically compute all calibration parameters and the

location of two lines with markers from the local information about detected markers on the projected

images.

Numerical experiments. We chose the calibration cage as it’s presented in the fig. 4.2. We measure

distances in cm. For this cage in the initial coordinate system the known parameters of the pattern are

L = 0.4, k1 = 3, k2 = 1, k3 = 2.

We generated true values of unknown parameters:

1. p1 = 0, p2 = 3.2, C1 = 1.5, C2 = 0.5,

2. for geometric parameters of the system λi and yλi (calibration parameters) we fixed P = 30 ran-

dom values for source positions λi in [−5,5], the grid on y ∈ [−5,5] had the step 0.01, yλi were

generated as random uniform noise on the interval [−0.05,0.05).

Note that the x2-distance between the last point of the first group and the first point of the second group

was 3L. We suppose that D is fixed to its initial value 10.

We want to calibrate in the aligned coordinate system and compare our estimations with true values.

In order to perform this comparison correctly in the aligned coordinate system, we need to subtract λ0

from the true λi and yλ0 from the true yλi , because in the aligned coordinate system we have λ0 = 0

and yλ0 = 0. We also need to perform some transformation to p1 and p2 in order to compare correctly

estimated values with true values. We know the connection between ordinates in the aligned and in

the initial coordinate systems from the discussion of the non-uniqueness of the solution of the current

calibration problem xaligned
2 = xinit

2 − (λ0/D + yλ0/D)xinit
1 + yλ0 . With this formula we can compare

correctly initial and estimated ordinates of the centers of mass p1 and p2 of markers on each line in the

aligned coordinate system.

All computations were performed in Python 3. For exact projections ql
i j our algorithm was almost

perfect (see the first line of the table 4.1). To mimic realistic settings, we introduced the detection

noise as a Gaussian noise N(0,σ) added to ql
i j. Here σ = 0.01 ·Nl, where Nl is the noise level, 0.01

is the pixel size of the initial image. In the table 4.1 we can also see the results of noisy experiments.
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We present the mean absolute errors of 100 realisations of the Gaussian noise for each Nl. Thus, for

calibration parameters, for example, for source positions we computed

1
100

100

∑
k=1

1
P

P−1

∑
i=0

∣∣∣λ̂i,k −λi

∣∣∣ , (4.23)

where λi is the true value for the projection i, λ̂i,k is the estimation with our algorithm of the source

position for the projection i with the realisation of the Gaussian noise number k added to projections ql
i j,

so k states for the experiment number. For marker positions, for example, for abscissas we computed

1
100

100

∑
k=1

1
2

2

∑
l=1

∣∣Ĉl,k −Cl
∣∣ , (4.24)

where Cl is the true value, Ĉl,k is the estimation with our algorithm of the position of the marker line

number l with the realisation of the Gaussian noise number k added to projections. We show that the

errors are proportional to Nl.

Noise level NlNlNl Noise std Error for λiλiλi Error for yλi
yλiyλi Error for plplpl Error for ClClCl

0% 0 2.10×10−14 3.62×10−15 1.17×10−15 3.39×10−15

10% 0.001 2.32×10−2 3.40×10−3 1.26×10−3 4.58×10−3

50% 0.005 1.01×10−1 1.52×10−2 5.86×10−3 2.12×10−2

100% 0.01 2.20×10−1 3.13×10−2 1.15×10−2 4.32×10−2

200% 0.02 5.19×10−1 7.45×10−2 2.63×10−2 9.66×10−2

Table 4.1: Mean absolute errors for calibration parameters and the positions of the markers with non-

noisy and noisy projections, all errors are in cm.

In order to understand how these errors of the calibration can influence the reconstruction process,

let us compute the following error. Since we estimated for each projection i in the aligned coordinate

system λ̂i and ŷλi , in the initial coordinate system they can be recalculated as λ̂ ′
i = λ̂i +λ0 and ŷ′

λi
=

ŷλi + yλ0 . Knowing the source position λ̂ ′
i and the corrected projection q̂l

i j = ql
i j − ŷ′

λi
for each marker

line l for each point j we can draw the line connecting λ̂ ′
i and q̂l

i j. If we have the exact estimation of

calibration parameters, then the distance from the 2D marker point c⃗ l
j in the initial coordinate system

to this line is essentially zero, because q̂l
i j should be the exact 2D perspective projection of c⃗ l

j along

this line. We can see this behaviour in the first line of the table 4.2 when we don’t have any noise in

the input values of our algorithm. In the case of noisy input data, we see the transfer of errors of the

estimation of calibration parameters to the shift of the projection line from its true position in the plane.

This shift will also influence the reconstruction process.

In this section we presented our definition for fixed λ of the fan-beam transform on distributions

with sources on a line, we proved necessary DCC for our definition. As in the case of the 2D Radon
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Noise level NlNlNl Noise std Distance between the marker
point and the projection line

0% 0 1.11×10−15

10% 0.001 1.70×10−3

50% 0.005 7.96×10−3

100% 0.01 1.62×10−2

200% 0.02 3.76×10−2

Table 4.2: Mean distances between the 2D marker point c⃗ l
j and the projection line through λ̂ ′

i and q̂l
i j,

all distances are in cm.

transform, our DCC combined with a proper calibration cage allow to perform the full analytical self-

calibration with truncated data when markers are not truncated.
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5 Calibration with DCC on distributions for
cone-beam transform

5.1 French summary of the chapter

Ce chapitre est consacré à la géométrie en faisceau conique avec des sources alignées et des sources

dans le plan parallèle au plan du détecteur. Dans le premier cas, nous utilisons le fait présenté en [NDC20]

que la tâche de calibration dans ce cas peut être réduite à la calibration 2D en éventail dans un plan

oblique. Donc, nous pouvons réutiliser l’algorithme 2D de la section 4.2 pour calibrer dans le plan

oblique dans ce cas. Nous discutons également de la conception de la mire d’étalonnage correspon-

dante afin d’effectuer cet étalonnage en situation réelle et d’avoir la disposition de marqueurs souhaités

dans le plan oblique. Cette contribution a été décrite dans l’article [KDG22].

Dans le second cas, nous définissons la transformée en faisceau conique sur les distributions pour

la position de la source fixe et les DCC correspondantes, la généralisation des DCC de [CD13]. La

mire d’étalonnage spéciale nous permet de séparer la tâche en deux tâches indépendantes pour chaque

coordonnée. Nous pouvons à nouveau obtenir les procédures d’étalonnage analytiques.

Nous présentons également les simulations numériques dans ce chapitre et montrons que nos ap-

proches peuvent être appliquées dans les situations réelles. Nous résolvons en fait dans chaque cas la

tâche d’auto-étalonnage, car nous utilisons les mires d’étalonnage avec des marqueurs avec des modèles

connus, mais des coordonnées inconnues dans le système de coordonnées mondial. De plus, nos al-

gorithmes sont basés sur les informations locales sur les marqueurs non tronqués, nous pouvons donc

appliquer nos approches dans la situation où les données complètes sont tronquées.

5.2 Cone-beam transform on distributions with sources on a line

5.2.1 Definition

In this section we describe our contribution presented at the IEEE Nuclear Science Symposium and

Medical Imaging Conference 2022 [KDG22]. The case of 3D divergent geometry we start with the

simple case when the source trajectory is a line parallel to the detector plane as you can see in the fig.

5.1. Suppose that u and v are parameters of the detector placed in the plane x1 = 0. The position of the

source (D,λ ,0)T is described with the parameter λ ∈ R. Thus, the source position is moving along a
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line parallel to the x2 axis at a distance D > 0 to the detector. The u axis is the same as the x2 axis and

the v axis is the same as the x3 axis, see fig. 5.1. Then we can define:

Definition 5.1. Cone-beam data with sources on a line

Dλ f (u,v) =
∫ +∞

0
f (D− lD,λ + l(u−λ ), lv)dl, (5.1)

where f ∈ D3.

Figure 5.1: The 3D cone-beam geometry with sources on a line with the calibration cage of 8 vertical

sticks.

Suppose that f ∈ D3 with support in X3 = (D1,D2)×R2, 0 < D1 < D2 < D. We consider Dλ f as

a function of two variables. In order to define the adjoint operator D∗
λ

, we need to note that for the

described function f and φ ∈ E2:

(Dλ f ,φ) =
∫
R2

Dλ f (u,v)φ(u,v)dudv =
∫
R2

∫ +∞

0
f (D− lD,λ + lu− lλ , lv)dlφ(u,v)dudv

=
1
D

∫
R2

∫ D

−∞

f
(

t1,λ +
D− t1

D
(u−λ ),

D− t1
D

v
)

dt1φ(u,v)dudv

=
∫ D

−∞

∫
R2

f (t1, t2, t3)φ
(

t2D− t1λ

D− t1
,

Dt3
D− t1

)
D

(D− t1)2 dt2dt3dt1 = ⟨ f ,D∗
λ

φ⟩, (5.2)

where (·, ·) is the scalar product in L2(R2), ⟨·, ·⟩ is the scalar product in L2(X3), we used the change

of variables t1 = D− lD, dl = −dt1
D , l = D−t1

D ; t2 = λ + D−t1
D (u−λ ), dt2 =

D−t1
D du; t3 =

D−t1
D v, dt3 =

D−t1
D dv.
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Now we can define the adjoint operator for functions from E2, it should be equal to

D∗
λ

φ (⃗x) :=
D

(D− x1)2 φ

(
x2D− x1λ

D− x1
,

Dx3

D− x1

)
. (5.3)

Definition 5.2. The cone-beam transform on a line of a compactly supported distribution f ∈ E ′(X3)

at fixed λ is a distribution from E ′
2 defined by the same duality Eq. (4.3) with the adjoint operator

Eq. (5.3).

We justify why this definition is properly formulated in the Appendix A.4.

If we again model markers with Dirac distributions, then

(Dλ δ⃗c(u,v),φ(u,v)) = ⟨δ⃗c,D
∗
λ

φ⟩=
〈

δ⃗c(⃗x),
D

(D− x1)2 φ

(
x2D− x1λ

D− x1
,

Dx3

D− x1

)〉
=

D
(D− c1)2 φ

(
c2D− c1λ

D− c1
,

Dc3

D− c1

)
=

D
(D− c1)2 δc̃(φ), c̃ =

(
c2D− c1λ

D− c1
,

Dc3

D− c1

)
. (5.4)

So, the cone-beam projection with sources on a line of a Dirac is again a weighted Dirac. The point

c̃ that we found is actually the usual perspective projection of the point c⃗. To understand this, let us

look at similar triangles in the fig. 5.2. From the left picture we have two similar triangles △AH2Q′
par

and △QparH ′
2Q′

par, where A is the source position, Qpar is the projection of the marker point Q with

coordinates (c1,c2,c3)
T onto the plane Ox1x2, Q′

par is the projection of the projected to the detector

point Q′ onto the line Ox2. Then we have AH2
QparH ′

2
=

Q′
parH2

Q′
parH ′

2
or D

c1
= λ−u

c2−u , thus we have for the projected

point the first coordinate u = c2D−c1λ

D−c1
. From the right picture we have two similar triangles △AQH1

and △AQ′Opar, where as before Q′ is the projection of the point Q along the line AQ. Then we have
QH1

Q′Opar
= AH1

AOpar
or c3

v = D−c1
D , thus we have for the projected point the second coordinate v = Dc3

D−c1
.

5.2.2 Calibration procedure

Suppose that the detector is moving along the x2 axis, so v is known, but shifts uλi for each unknown

source position λi are unknown. Let us fix known v = v0. Moreover, we have an ambiguity with the

estimation of D as we showed previously for the calibration of the cone-beam system, then let us fix D

as known. We want to use a specific calibration cage of 8 sticks parallel to the detector plane (see fig.

5.1). We want again to find unknown calibration parameters. The pattern of sticks is known, but we

don’t know the position of the calibration cage in the scene.

Let us show that we can reduce this 3D task of the self-calibration to the 2D fan-beam self-

calibration that we described in the previous chapter. We want to propose a similar method as in [NDC20],

but suitable for the case of truncation, since we plan to use only the information about markers.

Let us define an oblique plane as a plane passing through the source line and the line v = v0. Thus,

this plane should pass through the point (D,0,0)T and should be perpendicular to (v0,0,D)T , where

(v0,0,D)T is the vector product of two vectors (0,1,0)T and (0,u,v0)
T −(D,λ ,0)T = (−D,u−λ ,v0)

T .
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Figure 5.2: Left: the view in the plane Ox1x2, right: the view in the plane passing through A and Q,

parallel to Ox1x3. A is the source position, Qpar is the projection of the marker point Q with coordinates

(c1,c2,c3)
T onto the plane Ox1x2, Q′ is the perspective projection of Q onto the detector plane, Q′

par is

the projection of Q′ onto the line Ox2.

Thus, the equation of the oblique plane is v0x1+0+Dx3+d = 0, where d is unknown. Since (D,0,0)T

belongs to the plane, then d = −v0D and the equation of the oblique plane is v0x1 +Dx3 − v0D = 0.

Thus, each point in the plane can be presented as (x1,x2,v0 − v0
D x1)

T .

With similar computations as in [NDC20], we can show that for our different coordinate systems

we also have that the cone-beam data of some function f is the fan-beam data of another function fob

in the oblique plane. To see that, we need to note that the 3D point (x1,x2,v0 − v0
D x1)

T in the oblique

plane goes to the 2D point (x1

√
1+ v2

0
D2 ,x2)

T in the coordinate system of the oblique plane (see fig.

5.3). Then in the oblique plane:

f
(

x1,x2,v0 −
v0

D
x1

)
= fob

x1

√
1+

v2
0

D2 ,x2

 . (5.5)

Then for the projection data:

Dλ f (u,v0) =
∫ +∞

0
f (D− lD,λ + lu− lλ , lv0)dl

=
∫ +∞

0
f
(

D− lD,λ + lu− lλ ,v0 −
v0

D
D(1− l)

)
dl =

∫ +∞

0
fob

D(1− l)

√
1+

v2
0

D2 ,λ + lu− lλ

dl

=
∫ +∞

0
fob(Dv0 − lDv0,λ + lu− lλ ) =Dλ fob(u), (5.6)

where

Dv0 = D

√
1+

v2
0

D2 , (5.7)
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Figure 5.3: The blue line is the line in the intersection of the oblique plane v0x1 +Dx3 − v0D = 0 and

Ox1x3. We can compute AB =

√
1+ v2

0
D2 (D− x1) and from two similar triangles △ABC and △AEO we

find BE = x1

√
1+ v2

0
D2 . BE will be the first coordinate of the point in the oblique plane in the coordinate

system Ex′1x′2 connected with the oblique plane and introduced in the fig. 5.1.

so the fan-beam and the cone-beam data in this equation correspond to different source-detector dis-

tances. We need to find the same type of connection for Diracs. Note that if we know v0, thus we know

the second coordinate of the projection c̃ in Eq. (5.4). The first coordinate of c̃ in Eq. (5.4) has exactly

the same form as in the fan-beam case, then it corresponds to the fan-beam projection for fixed λ of

some point.

To be more precise, let us introduce the coordinate system in the oblique plane. Suppose that the

center is in (0,0,v0)
T . We know that the source point (D,0,0)T belongs to the plane, then the first

coordinate vector in the oblique plane (along x′1) is 1√
D2+v2

0
(D,0,−v0)

T , the second coordinate vector

is (0,1,0)T . Then the point with 3D coordinates (c1,c2,c3)
T at the intersection of the calibration stick

with the oblique plane has coordinates (t1, t2)T in the coordinate system of the oblique plane such thatc1

c2

c3

=

 0

0

v0

+ t1
1√

D2 + v2
0

 D

0

−v0

+ t2

0

1

0

 .

Then c1 =
t1√

1+v2
0/D2

, c2 = t2, c3 = v0− v0t1√
D2+v2

0
. From Eq. (5.4) our data c2D−c1λ

D−c1
depending on 3D

coordinates of the point on the stick become
t2D− t1√

1+v2
0/D2

λ

D− t1√
1+v2

0/D2

=
t2Dv0−t1λ

Dv0−t1
with Dv0 from Eq. (5.7). So,

we reduced our 3D calibration task to the 2D fan-beam calibration task with the same type of data, but

the source-detector distance Dv0 . Moreover, we showed the connection between the marker point in the

3D coordinate system in the scene and in the 2D coordinate system of the oblique plane.

Non-uniqueness of the solution. As in the case of the 2D fan-beam transform, we have the non-
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uniqueness of the solution and the ambiguity represented by the special shearing and translation of the

object with fM,⃗t (⃗x) := f (Mx⃗+ t⃗), M :=

 1 0 0

(u′+λ ′)/D 1 0

0 0 1

, t⃗ := (0,−u′,0)T . It’s true for functions:

Dλ fM,⃗t(u,v0) =
∫ +∞

0
fM,⃗t(D− lD,λ + lu− lλ , lv0)dl

=
∫ +∞

0
f (D− lD,

u′+λ ′

D
(D− lD)+λ + lu− lλ −u′, lv0)dl

=
∫ +∞

0
f (D− lD,u′− lu′+λ

′− lλ ′+λ + lu− lλ −u′, lv0)dl

=
∫ +∞

0
f (D− lD,λ +λ

′+ l(u−u′)− l(λ +λ
′), lv0)dl =Dλ+λ ′ f (u−u′,v0). (5.8)

With the projection data of f , if the detector is shifted by u′ and the source positions are all shifted

by −λ ′, then there exists an object fM,⃗t having the same projection data from the original source and de-

tector positions. Thus, we can’t estimate the calibration parameters and f better than up to M and t⃗. It’s

also true for Dirac distributions. For f ∈ E ′(X3) we define fM,⃗t as ⟨ fM,⃗t (⃗x),φ (⃗x)⟩= ⟨ f (⃗x),φ(M−1(⃗x−

t⃗)⟩ with M−1 =

 1 0 0

−(u′+λ ′)/D 1 0

0 0 1

, thus M−1(⃗x− t⃗) =

 x1

−(u′+λ ′)x1/D+ x2 +u′

x3

. This is the

extension to distributions of the same equality for function f , true for any invertible matrix M and

vector t⃗. Thus (δ⃗c)M,⃗t is the distribution δM−1(⃗c−⃗t) ∈ E ′(X3). Then we can show for δ⃗c:

(Dλ (δ⃗c)M,⃗t (u,v),φ(u,v)) =
〈
(δ⃗c)M,⃗t (⃗x),φ

(
x2D− x1λ

D− x1
,

Dx3

D− x1

)
D

(D− x1)2

〉
=

〈
δM−1(⃗c−⃗t)(⃗x),φ

(
x2D− x1λ

D− x1
,

Dx3

D− x1

)
D

(D− x1)2

〉
=

D
(D− c1)2 φ

(
(−(u′+λ ′)c1/D+ c2 +u′)D− c1λ

D− c1
,

Dc3

D− c1

)
=

D
(D− c1)2 φ

(
c2D− c1(λ +λ ′)

D− c1
+u′,

Dc3

D− c1

)
= (Dλ+λ ′ δ⃗c(u,v),φ(u+u′,v))

= (Dλ+λ ′ δ⃗c(u−u′,v),φ(u,v)). (5.9)

Since we have the similar ambiguity as in the fan-beam calibration, we can choose the solution to

the self-calibration problem such that λ0 = 0 and uλ0 = 0.

Numerical experiments. We fixed v0 = 1, D = 10, then we can compute the new source-detector

distance that we should use in the fan-beam task Dv0 = 10.050. We chose the same type of the calibra-

tion cage as we used for the fan-beam case. For this cage L = 0.4, k1 = 3, k2 = 1, k3 = 2, the x2-distance

in the oblique plane between the last point of the first group and the first point of the second group was

3L. For other parameters in the coordinate system of the oblique plane: p1 = 5, p2 = 8.2, C1 = 1.5,
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C2 = 0.3. We fixed P = 30 random values for source positions λi in [0,10], in order to simplify the final

comparison of results we fixed λ0 = 0. We chose the grid on u ∈ [0,10] with the sampling step 0.01,

uλi were generated as random uniform noise on the interval [−0.05,0.05), in order to simplify the final

comparison of results we fixed uλ0 = 0.

We reused our algorithm written in Python 3 for the fan-beam case. For exact projections our

algorithm was almost perfect (see the table 5.1). As in the fan-beam case, we introduced the detection

noise as a Gaussian noise N(0,σ) added to projections, σ = 0.01 ·Nl, where Nl is the noise level, 0.01

is the pixel size of the initial image. The table 5.1 also represents the results of noisy experiments.

We present the mean absolute errors of 100 realisations of the Gaussian noise for each Nl. Thus, for

calibration parameters, for example, for source positions we computed

1
100

100

∑
k=1

1
P

P−1

∑
i=0

∣∣∣λ̂i,k −λi

∣∣∣ , (5.10)

where λi is the true value for the projection i, λ̂i,k is the estimation with our algorithm of the source

position for the projection i with the realisation of the Gaussian noise number k added to projections.

For marker positions, for example, for abscissas in the oblique plane we computed

1
100

100

∑
k=1

1
2

2

∑
l=1

∣∣Ĉl,k −Cl
∣∣ , (5.11)

where Cl is the true value, Ĉl,k is the estimation with our algorithm of the position of the marker group

number l with the realisation of the Gaussian noise number k added to projections. We show that the

errors are proportional to Nl. In the table we compared the calibration parameters, but also estimated

coordinates of the markers in the oblique plane. Note that with the theory introduced in this section we

can recompute 3D coordinates of the markers with known D and v0 if it’s needed.

Noise level NlNlNl Noise std Error for λiλiλi Error for uλi
uλiuλi Error for plplpl Error for ClClCl

0% 0 1.34×10−13 9.27×10−15 1.02×10−14 1.61×10−14

10% 0.001 2.19×10−2 2.98×10−3 2.98×10−3 3.94×10−3

50% 0.005 1.37×10−1 2.04×10−2 1.91×10−2 2.51×10−2

100% 0.01 2.63×10−1 3.91×10−2 3.65×10−2 4.79×10−2

200% 0.02 4.59×10−1 6.61×10−2 6.37×10−2 8.50×10−2

Table 5.1: Mean absolute errors for calibration parameters and the positions of the markers in the

oblique plane with non-noisy and noisy projections, all errors are in cm.
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5.2.3 Design of a calibration cage and numerical experiments

In this subsection we simulate a calibration cage and test our algorithm from the previous subsection.

Before any production of a calibration cage we provide numerical simulations including the construc-

tion of projections, detection of traces of markers on projected images, estimation of calibration param-

eters and verification of the result of the calibration step.

For our numerical experiments we simulated the use of an X-ray system installed in the INSA Lyon.

This system consists of a flat detector and a source which can move horizontally in order to adjust the

source-detector distance (see fig. 5.4). We propose that we fix positions of the detector and the source in

numerical experiments (just like in X-ray baggage screening systems). Moreover, we have a translation

table that can be moved vertically. We want to calibrate the translation of the table with the calibration

object. The movement of the translation table is equivalent with the common movement of the source

and the detector in the problem statement we have described in the previous section. Thus, we want to

calibrate as before two sets of parameters uλi and λi, but each set should represent the same movement

of the translation table.

Figure 5.4: The X-ray system proposed by INSA Lyon for experiments with real data.

In order to mimic the situation with real measurements, we use the following real parameters of the

X-ray system:

• the source-detector distance is fixed and equal to 100 cm,

• the size of the detector is 43 cm×43 cm,

• the pixel size is 0.015 cm.

In order to produce projections of the calibration cage, we used the RTK package in Python [Rit+14]

and the random set of P = 10 source positions λi from 0 cm to 7 cm, we chose λ0 = 0 to simplify the
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verification step. We used the same values for the shifts of the detector uλi as source positions, since

they correspond to the same shift of the translation table that we want to estimate.

Figure 5.5: Configuration of the experiment.

The calibration cage as before consists of two sets of parallel sticks in two parallel planes (see fig.

5.5), it’s possible to see dimensions of the calibration cage in the fig. 5.6. This cage should consist of

the plexiglass plate or few plates assembled to each other in order to satisfy dimensions in the figure.

Each line can be produced from the metal cylindrical stick, the diameter of each cylinder is 0.1 cm. In

the middle between two sets of sticks we add a small ball in order to check after the calibration step the

reprojection error, we will talk about this verification later. The chosen radius of the metal ball is 0.2

cm. For the RTK package we described our phantom (which is the calibration cage) in the file, so the

initial position of the object is the following:

• for the line l1 x = 10 cm, y = 14 cm, z = 0 cm,

• for the line l2 x = 10 cm, y = 15 cm, z = 0 cm,

• for the line l3 x = 10 cm, y = 16 cm, z = 0 cm,

• for the line l4 x = 10 cm, y = 17 cm, z = 0 cm,

• for the point p1 x = 10 cm, y = 20 cm, z = 15 cm,

• for the line l5 x = 20 cm, y = 23 cm, z = 0 cm,
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Figure 5.6: The calibration cage with all dimensions.

• for the line l6 x = 20 cm, y = 24 cm, z = 0 cm,

• for the line l7 x = 20 cm, y = 26 cm, z = 0 cm,

• for the line l8 x = 20 cm, y = 27 cm, z = 0 cm.

For our calibration algorithm it means that we know the pattern of the calibration cage, thus for this
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cage L = 0.5 cm, k1 = 3 cm, k2 = 2 cm, k3 = 4 cm when there is no inclination. We know that for the

calibration we need to solve our task just in one oblique plane or we need to fix v0, we can fix this value

for the algorithm manually, we took the detector line number 10.

For the step of the generation of projections we started with the case when the cage and lines are

parallel to the axis Oz, it corresponds to the angle of inclination of 0 degrees in the table 5.2. Often it

can be false, thus there is a small non-zero angle of inclination (see fig. 5.7). We simulated with RTK

both situations in our numerical experiments.

Figure 5.7: The possible position with the inclination of the calibration cage.

For the second step of the detection of the traces of markers in projected images we can work

directly with gray values in projected images. We know that the projection of the set of these sticks

is the set of stripes, each stripe has non-zero gray value. For the point we have the ellipse in the

projection with non-zero gray value, while the rest (the background) is zero. By knowing this, we can

simply extract by checking the gray value these non-zero strips and the ellipse. Moreover, we know

that the line order is preserved, so we can simply numerate each stripe from 1 to 8 from the left to the

right.

We need to build one value as the input of the calibration algorithm for each stripe for each projec-

tion. We can compute the direction of each stripe. For that, we use the built-in function of Python’s

skimage.transform to compute the well-known Hough transform. This transform helps us to identify

two lines in the boundary for each stripe with a voting procedure. We describe each line with two
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parameters: the distance between the line and the center of coordinates and the angle of the line. For

each line defined by these two parameters we check if the input picture has non-zero pixels on this line.

Thus, the Hough transform returns the set of more probable lines in the input pictures for which we

voted a lot. It also helps to estimate the angle of inclination or the direction of the stripe. Then we

can find the center of mass of each stripe and with the direction of the stripe we can compute for the

necessary line of the detector the estimation of the Dirac in the projection. If this estimation is good or

not we can see during the verification step.

The detection of lines in images can be done with Hough transform, but also with other techniques,

for example, with the help of the Radon transform. The set of corresponding algorithms was described

in [Spe15] and they performed better than the standard combination of the Canny edge detector plus

the Hough transform to detect lines in projections of edges of colimators.

Since we can estimate the angle of inclination, we can correct the value of L needed for the calibra-

tion algorithm. Since we still take the oblique plane through the line parallel to Oz, then L should be

replaced with L/cosγ , where γ is the angle of inclination estimated with the Hough transform for each

line and set as the mean value for all stripes for all projections.

We show the errors of estimations of the calibration parameters in the table 5.2 for different angles

of inclination. We show mean absolute errors, thus, for example, for source positions we computed
1
P ∑

P−1
i=0

∣∣∣λ̂i −λi

∣∣∣, where λi is the true value for the projection i, λ̂i is the estimation with our algorithm

of the source position for the projection i. We put both results for λi and uλi , but for the final calibration

of the translation of the table we propose to use the estimations for uλi , since they are slightly better.

Since the translation of the table can be known very precisely, then it could be possible to verify the

estimated shifts with their true values in realistic settings.

The second verification is the reprojection error. For that, we need to use the detected projection

of the introduced to the calibration cage point p1. We use only one value for each projection for

this point, we chose this value as the center of mass of the corresponding detected ellipse. We know

from [Des+06] that the cone-beam projection of the center of mass of a ball is not exactly the center of

mass of the projection but the error is very small unless the cone angle is huge. We model the detected

point as a Dirac. For each projection we know that the 3D point (c1,c2,c3)
T should go to the 2D point

(u,v)T with u = c2D−c1λ̂

D−c1
+ ûλ , v = Dc3

D−c1
, we use here the estimated calibration parameters. From the

first equation we have the equation for c1 and c2 (u− ûλ − λ̂ )c1 +Dc2 = (u− ûλ )D. We can estimate

ĉ1 and ĉ2 with 10 projections with the least square method. For the second equation we can estimate ĉ3.

Then with the estimated calibration parameters we can reproject the 3D point that we computed with

such method, this reprojected 2D point we can compare with the true 2D point in order to evaluate the

precision of the calibration parameters. We computed the mean reprojection error over all projections.

We described how we calculated the reprojection error from the table 5.2.

From all numerical experiments, we can see that the results of the calibration are good, thus we can

use this method for the real system. It’s also possible to see that the calibration is better in the case of
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non-zero angle of inclination. We suppose that this situation occurs because of the better compensation

of discretization errors during the computation of the center of mass of each stripe on the projected

image. In the case of zero angle of inclination we have systematic errors of discretization while non-

zero angle of inclination implies non-regular errors, thus we have less error during the computation of

the center of mass. One disadvantage of this algorithm is that we need to place the calibration cage to

have planes with sticks parallel to the detector plane (and the line of sources).

Angle γ , degrees Error for λiλiλi Error for uλi
uλiuλi Reprojection error

−10 1.33×10−3 2.94×10−4 2.45×10−5

−7 6.82×10−4 9.71×10−5 3.47×10−5

−5 1.76×10−4 6.87×10−5 4.05×10−5

0 2.17×10−2 5.20×10−3 3.24×10−4

5 2.37×10−4 9.23×10−5 5.67×10−5

7 4.57×10−4 1.43×10−4 5.08×10−5

10 4.71×10−4 2.89×10−4 4.50×10−5

Table 5.2: Mean absolute errors for calibration parameters and reprojection errors for different angles

of inclination γ , all errors are in cm.

In this section we presented our definition for fixed λ of the cone-beam transform on distributions

with sources on a line. We showed that as in the case of functions, the cone-beam calibration problem

can be reduced to the fan-beam calibration problem in one oblique plane. Using a proper calibration

cage, we can perform the analytical self-calibration with truncated data when the set of markers is not

truncated. This calibration procedure can be tested with the real X-ray system.

5.3 Cone-beam transform on distributions with sources on a plane

5.3.1 Definition and DCC

In this section about cone-beam transform with sources on a plane parallel to the detector, we refer

to the geometry presented in the fig. 1.4. The cone-beam transform on functions for this case was

described by the integral model Eq. (1.10).

Our definition for fixed λ1, λ2. In this section we use the same coordinate system introduced in

the fig. 1.4. The geometry can be also seen in the fig. 5.8. There the source position has coordinates

s⃗λ = (λ1,λ2,0)T , the detector is at x3 = D, u and v are the parameters of the detector. We want to

generalize this definition to distributions and provide the generalization of known DCC of the Theorem

1.3 to distributions.
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Figure 5.8: The 3D cone-beam geometry with sources on a plane with the calibration cage of two

groups of 8 parallel sticks each.

As before we can denote the cone-beam transform for fixed λ1 and λ2 with Dλ1,λ2 f (u,v) :=D f (λ1,λ2,u,v)

for f ∈D3 with support in Y3 =R2× (D1,D2), 0 < D1 < D2 < D. Then we consider Dλ1,λ2 f as a func-

tion of two variables. We need to define the adjoint operator D∗
λ1,λ2

. Note that for f ∈ D3 and φ ∈ E2:

(Dλ1,λ2 f ,φ) =
∫
R2

Dλ1,λ2 f (u,v)φ(u,v)dudv

=
∫
R2

∫ +∞

0
f (λ1 + l(u−λ1),λ2 + l(v−λ2), lD)dlφ(u,v)dudv

=
1
D

∫
R2

∫ +∞

0
f
(

λ1 +
t3
D
(u−λ1),λ2 +

t3
D
(v−λ2), t3

)
dt3φ(u,v)dudv

=
∫ +∞

0

∫
R2

f (t1, t2, t3)φ
(

Dt1 −λ1(D− t3)
t3

,
Dt2 −λ2(D− t3)

t3

)
D
t2
3

dt1dt2dt3 = ⟨ f ,D∗
λ1,λ2

φ⟩, (5.12)

where (·, ·) is the scalar product in L2(R2), ⟨·, ·⟩ is the scalar product in L2(Y3), we used the change of

variables t3 = lD, dl = dt3
D ; t1 = λ1 +

t3
D(u−λ1), du = D

t3
dt1; t2 = λ2 +

t3
D(v−λ2), dv = D

t3
dt2.

Now we can define the adjoint operator for functions from E2:

D∗
λ1,λ2

φ (⃗x) :=
D
x2

3
φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)
. (5.13)

Definition 5.3. The cone-beam transform on a plane of a compactly supported distribution f ∈ E ′(Y3)

at fixed λ1 and λ2 is a distribution from E ′
2 defined by the standard duality

(Dλ1,λ2 f ,φ) = ⟨ f ,D∗
λ1,λ2

φ⟩ (5.14)

with the adjoint operator from Eq. (5.13).
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We justify why this definition is properly formulated in the Appendix A.5.

If we model markers with Dirac distributions, then

(Dλ1,λ2 δ⃗c(u,v),φ(u,v))= ⟨δ⃗c(⃗x),D
∗
λ1,λ2

φ (⃗x)⟩=
〈

δ⃗c(⃗x),
D
x2

3
φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)〉
=

D
c2

3
φ

(
Dc1 −λ1(D− c3)

c3
,
Dc2 −λ2(D− c3)

c3

)
=

D
c2

3
δc̃(φ),

where c̃ =
(

Dc1 −λ1(D− c3)

c3
,
Dc2 −λ2(D− c3)

c3

)
. (5.15)

So, the cone-beam projection with sources on a plane of a Dirac is again a weighted Dirac. The point

c̃ that we found is actually the usual perspective projection of the point c⃗. To understand this, let us look

at similar triangles in the fig. 5.9. From the left picture we have two similar triangles △A2parH2Q2par

and △A2parH ′
2Q′

2par, where A2par is the projection of the source position with coordinates (λ1,λ2,0)T

onto the plane Ox1x3, Q2par is the projection of the marker point Q with coordinates (c1,c2,c3)
T onto the

plane Ox1x3, Q′
2par is the projection of the projected to the detector point Q′ onto Ox1x3. Then we have

A2parH2
A2parH ′

2
=

Q2parH2
Q′

2parH
′
2

or c1−λ1
u−λ1

= c3
D , thus we have for the projected point the first coordinate u= Dc1−λ1(D−c3)

c3
.

From the right picture we have two similar triangles △A1parH1Q1par and △A1parH ′
1Q′

1par, where A1par

is the projection of the source position with coordinates (λ1,λ2,0)T onto the plane Ox2x3, Q1par is

the projection of the marker point Q with coordinates (c1,c2,c3)
T onto the plane Ox2x3, Q′

1par is the

projection of the projected to the detector point Q′ onto Ox2x3. Then we have A1parH1
A1parH ′

1
=

Q1parH1
Q′

1parH
′
1

or
c2−λ2
v−λ2

= c3
D , thus we have for the projected point the second coordinate v = Dc2−λ2(D−c3)

c3
.

Figure 5.9: Left: the view in the plane Ox1x3, right: the view in the plane Ox2x3.

DCC for our definition. As before, we plan to use only the necessary part of DCC. So, we want to

show the generalisation to distributions of DCC from the Theorem 1.3:

Theorem 5.1. If f ∈ E ′(Y3), gλ1,λ2
:=Dλ1,λ2 f is the cone-beam transform on a plane of f for fixed λ1,

λ2, then:
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1. gλ1,λ2 ∈ E ′
2,

2. for k = 0,1,2, . . . we have the moment conditions:

(gλ1,λ2(u,v),(uU + vV )k) = Pk(U,V,−λ1U −λ2V ), (5.16)

where Pk(U,V,W ) is a homogeneous polynomial of degree k.

Proof. The first point is showed in the Appendix A.5. Now we prove the moment conditions. Obviously

(u,v) 7−→ (uU + vV )k ∈ E2, then

(Dλ1,λ2 f (u,v),(uU + vV )k) = ⟨ f (⃗x),D∗
λ1,λ2

((uU + vV )k)(⃗x)⟩

=

〈
f (⃗x),

D
x2

3

(
Dx1 −λ1(D− x3)

x3
U +

Dx2 −λ2(D− x3)

x3
V
)k
〉

=

〈
f (⃗x),

D
xk+2

3
(Dx1U +Dx2V +(D− x3)(−λ1U −λ2V ))k

〉

=

〈
f (⃗x),

D
xk+2

3
∑
i, j,l

i+ j+l=k

k!
i! j!l!

(Dx1U)i(Dx2V ) j((D− x3)(−λ1U −λ2V ))l

〉

= ∑
i, j,l

i+ j+l=k

k!
i! j!l!

U iV j(−λ1U−λ2V )l

〈
f (⃗x),

D
xk+2

3
(Dx1)

i(Dx2)
j(D− x3)

l

〉
=Pk(U,V,−λ1U−λ2V ).

5.3.2 Calibration algorithm

We can again try to use the moment conditions to provide a calibration procedure. We want to use

the same logic in the derivation as for the fan-beam case. We also want to calibrate with the spe-

cific calibration cage with unknown position in the world. The purpose of our new algorithm is to

calibrate with truncated data. Suppose that we work with a lattice of u,v, but the system is mov-

ing. For P projections for unknown coordinates of source positions λ1i, λ2i our measurements are

mi(u,v) =Dλ1i,λ2i f (u−ui,v− vi), where ui, vi are unknown detector jitters.

Our purpose now is to show that our task can be separated into two independent tasks to find the

couple of λ1i and ui for the first task and λ2i and vi for the second task. Since we have same shifts ui and

vi for each detector point for fixed source position, then we can solve each task in one oblique plane

containing the current source position and the appropriate detector line as for the case with sources on

a plane.

Our calibration cage consists of two parts: the first part of 8 vertical sticks for the first calibration

task, the second part of 8 horizontal sticks for the second calibration task (see fig. 5.8). We placed these
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sticks as close as possible to the detector and these two groups are separated such that it’s possible to

find one detector line for each part (horizontal detector line for the vertical sticks and vertical detector

line for horizontal sticks) containing only projections of one part of our calibration cage. In this case,

we can work separately with the projection of vertical sticks for the fixed detector line and the projection

of horizontal sticks for another fixed detector line. So, as the first step the selection of two appropriate

detector lines (one horizontal and one vertical) for the current source position should be done.

Let us talk only about the first task to estimate λ1i and ui with the group of vertical sticks. For each

group of 8 sticks we have the known pattern, the same as we used for the case with sources on a line.

Thus, each group of 4 sticks belongs to one plane. We will use the superscript l = a or l = b to label the

each group of 4 sticks. So, the first 4 sticks are in the unknown plane x3 =Ca
3 , the second 4 sticks are

in the unknown plane x3 = Cb
3 . Moreover, since sticks are perpendicular to the x1-axis, then from the

known pattern of sticks we know for the first coordinates of the marker points (points in the intersection

of sticks and the fixed oblique plane) that ca
11 = pa − k1L, ca

21 = pa −L, ca
31 = pa +L, ca

41 = pa + k1L,

cb
11 = pb − k2L, cb

21 = pb − k3L, cb
31 = pb + k3L, cb

41 = pb + k2L, where pa, pb are unknown, but we

know L, k1 > 0, k2 > 0, k3 > 0. Note that unknowns Ca
3 , Cb

3 , pa, pb doesn’t depend on i. Thus, we want

to exploit these known properties of the calibration cage and known detected points of the sticks ql
i j in

the projection for one fixed detector line, where i is the projection number, j is the index of the point, l

is the group of sticks, l ∈ {a,b}.

Non-uniqueness of the solution. As before, we have a non-uniqueness of the solution. As before,

we will search for the solution such that λ10 = 0 and u0 = 0. The ambiguity is represented by the special

shearing and translation of the object with fM,⃗t (⃗x) := f (Mx⃗+ t⃗), where

M :=

1 0 −(u′+λ ′
1)/D

0 1 −(v′+λ ′
2)/D

0 0 1

 , t⃗ := (λ ′
1,λ

′
2,0)

T . (5.17)

It’s true for functions:

D fM,⃗t(λ1,λ2,u,v) =
∫ +∞

0
fM,⃗t(λ1 + l(u−λ1),λ2 + l(v−λ2), lD)dl

=
∫ +∞

0
f (λ1 + lu− lλ1 −

u′+λ ′
1

D
Dl +λ

′
1,λ2 + lv− lλ2 −

v′+λ ′
2

D
Dl +λ

′
2, lD)dl

=
∫ +∞

0
f (λ1 +λ

′
1 + l(u−u′)− l(λ1 +λ

′
1),λ2 +λ

′
2 + l(v− v′)− l(λ2 +λ

′
2), lD)dl

=D f (λ1 +λ
′
1,λ2 +λ

′
2,u−u′,v− v′). (5.18)

With the projection data of f , if the detector is shifted by u′, v′ and the source positions are all

shifted by −λ ′
1, −λ ′

2, then there exists an object fM,⃗t having the same projection data from the original

source and detector positions. Thus, we can’t estimate the calibration parameters and f better than

up to M and t⃗. It’s also true for f = δ⃗c ∈ E ′(Y3). Let us consider for f ∈ E ′(Y3) the distribution
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fM,⃗t ∈ E ′(Y3) defined as ⟨ fM,⃗t (⃗x),φ (⃗x)⟩= ⟨ f (⃗x),φ(M−1(⃗x− t⃗)⟩, where M−1 =

1 0 (u′+λ ′
1)/D

0 1 (v′+λ ′
2)/D

0 0 1

,

thus M−1(⃗x− t⃗) =

x1 −λ ′
1 +

u′+λ ′
1

D x3

x2 −λ ′
2 +

v′+λ ′
2

D x3

x3

. It’s true that (δ⃗c)M,⃗t is the distribution δM−1(⃗c−⃗t) ∈ E ′(Y3).

Then we can show

(Dλ1,λ2 (δ⃗c)M,⃗t (u,v),φ(u,v)) =
〈
(δ⃗c)M,⃗t (⃗x),

D
x2

3
φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)〉
=

〈
δM−1(⃗c−⃗t)(⃗x),

D
x2

3
φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)〉
=

D
c2

3
φ

(
D(c1 −λ ′

1 + c3(u′+λ ′
1)/D)− (D− c3)λ1

c3
,
D(c2 −λ ′

2 + c3(v′+λ ′
2)/D)− (D− c3)λ2

c3

)
=

D
c2

3
φ

(
Dc1 − (D− c3)(λ1 +λ ′

1)

c3
+u′,

Dc2 − (D− c3)(λ2 +λ ′
2)

c3
+ v′

)
= (Dλ1+λ ′

1,λ2+λ ′
2
δ⃗c(u,v),φ(u+u′,v+ v′)) = (Dλ1+λ ′

1,λ2+λ ′
2
δ⃗c(u−u′,v− v′),φ(u,v)). (5.19)

Thus, if the distribution is sheared and translated with M and t⃗ given in Eq. (5.17), then it’s equiva-

lent to translate sources by −λ ′
1, −λ ′

2 and the detector by u′, v′.

Our algorithm. We compute moments from Eq. (5.16) for each group of 4 markers separately. We

will provide the similar formulas with the fan-beam case for this cone-beam geometry. We will provide

all formulas for the first task to estimate λ1i, ui, pa, pb, Ca
3 , Cb

3 . But these formulas are also applicable

for the second task of the estimation of λ2i, vi, pc, pd , Cc
3, Cd

3 , we only need to replace λ1 with λ2, u

with v and indices a, b with indices c, d.

The moments of order 1 for ml
i(u,v) =Dλ1i,λ2i f l(u−ui,v− vi) and f l = ∑

4
j=1 δ⃗c l

j
using c l

j3 =C l
3:

Ml
1(i) = (ml

i(u,v),u) = (Dλ1i,λ2i f l(u−ui,v− vi),u) = (Dλ1i,λ2i f l(u,v),u+ui)

=

(
4

∑
j=1

D
(c l

j3)
2

δc̃(⃗c l
j ,λ1i,λ2i)

(u,v),u+ui

)
=

4

∑
j=1

D2c l
j1 −λ1iD(D− c l

j3)

(c l
j3)

3
+

4

∑
j=1

uiD
(c l

j3)
2

=
4

∑
j=1

D2c l
j1 −λ1iD(D−C l

3)

(C l
3)

3
+

4

∑
j=1

uiD
(C l

3)
2
. (5.20)

Since for the solution λ10 = 0, u0 = 0, then

Ma
1(0) =

4

∑
j=1

D2ca
j1

(Ca
3)

3 , Mb
1(0) =

4

∑
j=1

D2cb
j1

(Cb
3)

3
. (5.21)

101



Chapter 5 – Calibration with DCC on distributions for cone-beam transform Anastasia Konik

Since we know abscissas ql
i j of the detected points (ql

i j,s
l
i j), then we have

Ml
1(i) =

(
4

∑
j=1

D
(c l

j3)
2

δ(ql
i j,s

l
i j)
,u

)
=

4

∑
j=1

Dql
i j

(c l
j3)

2
=

D
(C l

3)
2

4

∑
j=1

ql
i j. (5.22)

Let us use Eq. (5.21) and Eq. (5.22) in Eq. (5.20) and multiple each side of the equation by (C l
3)

2

D . If

we introduce new unknown variables ra > 0 and rb > 0 with

ra =
D−Ca

3
Ca

3
, rb =

D−Cb
3

Cb
3

, (5.23)

then we have

ui −λ1irl = ∆M̃l
1(i), ∆M̃l

1(i) :=
1
4

(
4

∑
j=1

ql
i j −

4

∑
j=1

ql
0 j

)
. (5.24)

We need to add the moment conditions of order 2 to complete our algorithm. Using c l
j3 = C l

3, we

have

Ml
2(i) = (ml

i(u,v),u
2) = (Dλ1i,λ2i f l(u,v),(u+ui)

2) =
4

∑
j=1

D
(c l

j3)
2
(c̃1(⃗c l

j,λ1i,λ2i)+ui)
2

=
D

(C l
3)

2

4

∑
j=1

(
Dc l

j1 −λ1i(D− c l
j3)

c l
j3

+ui

)2

=
D

(C l
3)

2

4

∑
j=1

(
Dc l

j1

C l
3

+ui −λ1irl

)2

=
D

(C l
3)

2

4

∑
j=1

(
Dc l

j1

C l
3

+∆M̃l
1(i)

)2

. (5.25)

From Eq. (5.21), (5.22) and (5.23) we obtain

4

∑
j=1

Dc l
j1

C l
3

=
D
C l

3

4

∑
j=1

c l
j1 = (1+ rl)

4

∑
j=1

c l
j1 =

4

∑
j=1

ql
0 j, (5.26)

then we have
4

∑
j=1

Dc l
j1

C l
3

=
4

∑
j=1

ql
0 j, (5.27)

but also from ∑
4
j=1 c l

j1 = 4pl and Eq. (5.26)

(1+ rl)4pl =
4

∑
j=1

ql
0 j. (5.28)

For chosen markers ∑
4
j=1(c

a
j1)

2 = 4p2
a +(2+2k2

1)L
2 and ∑

4
j=1(c

b
j1)

2 = 4p2
b +(2k2

2 +2k2
3)L

2. Then

we can compute using Eq. (5.23):

4

∑
j=1

(
Dc l

j1

C l
3

)2

= (1+ rl)
2

4

∑
j=1

(c l
j1)

2 =

(1+ ra)
2(4p2

a +(2+2k2
1)L

2) if l = a

(1+ rb)
2(4p2

b +(2k2
2 +2k2

3)L
2) if l = b.

(5.29)
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We can develop Eq. (5.25), multiply each side of the equation by (C l
3)

2

D , use Eq. (5.28), then we

obtain the same system of equations to find ra and rb as for the fan-beam case:∑
4
j=1(q

a
i j)

2 = (1+ ra)
2(2+2k2

1)L
2 + 1

4

[
∑

4
j=1 qa

0 j

]2
+2∆M̃a

1(i)∑
4
j=1 qa

0 j +4[∆M̃a
1(i)]

2

∑
4
j=1(q

b
i j)

2 = (1+ rb)
2(2k2

2 +2k2
3)L

2 + 1
4

[
∑

4
j=1 qb

0 j

]2
+2∆M̃b

1(i)∑
4
j=1 qb

0 j +4[∆M̃b
1(i)]

2.
(5.30)

As before, with only one projection i we can estimate from Eq. (5.30) ra and rb, then C a
3 and C b

3 for

fixed D from Eq. (5.23). Then Eq. (5.28) gives us pa and pb. For each i ≥ 1 from the system of two

equations Eq. (5.24) we can compute ui, λ1i. This system gives a unique solution, since:

det

(
1 −ra

1 −rb

)
= ra − rb =

D−Ca
3

Ca
3

−
D−Cb

3

Cb
3

=
Cb

3(D−Ca
3)−Ca

3(D−Cb
3)

Ca
3Cb

3
=

D(Cb
3 −Ca

3)

Ca
3Cb

3
̸= 0.

Thus, the equations Eq. (5.30), (5.23), (5.28), (5.24) form the analytical procedure to estimate

calibration parameters ui, λ1i and the locations Ca
3 , Cb

3 , pa and pb of the first part of the calibration cage.

The same procedure can be developed for the second part of the calibration cage and the second group

of calibration parameters vi, λ2i.

Numerical experiments. We made numerical simulations for the described task to estimate the

half of parameters, since simulations for the second half should be essentially the same. We measure

distances in cm. For the calibration cage we chose as before L = 0.4, k1 = 3, k2 = 1, k3 = 2, the x1-

distance between the last point of the first group and the first point of the second group was 3L. For

other parameters: pa = 5, pb = 8.2, Ca
3 = 8, Cb

3 = 9.5. We fixed P = 30 random values for source

positions λ1i in [0,10]. We chose the grid on u ∈ [0,10] with the sampling step 0.01. The detector jitters

ui were generated as random uniform noise on the interval [−0.05,0.05). In order to simplify the final

comparison of results we fixed λ10 = 0, u0 = 0.

We wrote our algorithm in Python 3. For exact projections our algorithm was almost perfect (see

the first part of the table 5.3). For noisy experiments, we used a Gaussian noise N(0,σ) added to ql
i j,

σ = 0.01 ·Nl, where Nl is the noise level, 0.01 is the pixel size of the initial image. In the first part of

the table 5.3 we can also see the results of noisy experiments. We present the mean absolute errors of

100 realisations of the Gaussian noise for each Nl. Thus, for calibration parameters, for example, for

source positions we computed
1

100

100

∑
k=1

1
P

P−1

∑
i=0

∣∣∣λ̂1i,k −λ1i

∣∣∣ , (5.31)

where λ1i is the true value for the projection i, λ̂1i,k is the estimation with our algorithm for the pro-

jection i with the realisation of the Gaussian noise number k added to projections, so k states for the

experiment number. For marker positions, for example, for x3-coordinates we computed

1
100

100

∑
k=1

1
2 ∑

l∈{a,b}

∣∣∣Ĉ l
3,k −C l

3

∣∣∣ , (5.32)
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where C l
3 is the true value, Ĉ l

3,k is the estimation with our algorithm of the position of the marker group

l with the realisation of the Gaussian noise number k added to projections. The numerical experiments

show that the errors are proportional to Nl.

Note that the estimation of λ2i and vi can be made with the same code. We also fixed P= 30 random

values for source positions λ2i in [0,10], the grid on v∈ [0,10] with the sampling step 0.01. The detector

jitters vi were generated as random uniform noise on the interval [−0.05,0.05). We also fixed λ20 = 0,

v0 = 0. We chose pc = 4, pd = 7.2, Cc
3 = 8, Cd

3 = 9.5. The numerical results are represented in the

second part of the table 5.3.

Noise level NlNlNl Noise std Error for λ1iλ1iλ1i Error for uiuiui Error for plplpl Error for C l
3C l
3C l
3

0% 0 6.95×10−13 1.74×10−13 1.18×10−13 1.37×10−13

10% 0.001 1.92×10−2 4.02×10−3 3.66×10−3 4.61×10−3

50% 0.005 1.03×10−1 2.08×10−2 1.81×10−2 2.28×10−2

100% 0.01 1.91×10−1 3.76×10−2 3.34×10−2 4.31×10−2

200% 0.02 3.84×10−1 8.12×10−2 7.20×10−2 9.17×10−2

Noise level NlNlNl Noise std Error for λ2iλ2iλ2i Error for vivivi Error for plplpl Error for C l
3C l
3C l
3

0% 0 7.71×10−14 1.93×10−14 1.20×10−14 1.60×10−14

10% 0.001 1.67×10−2 3.55×10−3 2.86×10−3 4.22×10−3

50% 0.005 1.01×10−1 2.07×10−2 1.51×10−2 2.22×10−2

100% 0.01 1.87×10−1 3.79×10−2 2.30×10−2 4.43×10−2

200% 0.02 3.89×10−1 7.82×10−2 5.73×10−2 8.65×10−2

Table 5.3: Mean absolute errors for calibration parameters and the positions of the markers with non-

noisy and noisy projections, all errors are in cm.

In this section we presented our definition for fixed source position of the cone-beam transform

on distributions with sources on a plane parallel to the detector plane. We showed that the calibration

task can be separated to two independent calibration procedures. Each procedure consists of analytical

equations similar to the fan-beam calibration solution. Thus, with the special calibration cage we can

solve analytically this 3D calibration problem based only on the local information about markers when

the complete data are truncated.
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6 Conclusions

6.1 French version

Dans notre travail nous avons élargi les connaissances sur l’auto-étalonnage des systèmes radiologiques.

Dans les deux parties avec les résultats, nous avons présenté deux approches différentes de l’auto-

calibration, mais les résultats montrent des liens entre l’imagerie médicale et la vision par ordinateur.

• Dans le chapitre 2 nous avons présenté l’application de la méthode d’ajustement de faisceaux

de la vision par ordinateur aux systèmes d’imagerie rayons X en faisceau conique tels que les

C-arms. Nous avons montré que nous n’avons pas l’unicité de la solution à ce problème résolue

par une optimisation non-linéaire et nous ne pouvons auto-calibrer qu’à une similitude près. Ce

résultat est le même avec la vision par ordinateur. De plus, nous avons montré quelles données

d’entrée nous donnent la solution différant par une similitude. Nous avons également montré

numériquement que nous pouvons toujours effectuer la reconstruction dans ce cas. En revanche,

nous ne pouvons généralement pas trouver cette similitude dans la situation réelle car nous

ne connaissons évidemment pas les vraies valeurs des coordonnées 3D des marqueurs. Notre

expérience avec les simulations numériques indique que si nous commençons notre procédure

d’optimisation avec des valeurs initiales proches des vraies, nous devons obtenir une solution

exactement vraie. Mais la question des valeurs initiales qui nous donnent la vraie solution exacte

devrait être étudiée plus en profondeur.

• Dans les chapitres 3, 4 et 5 nous avons présenté une série d’algorithmes hybrides basés sur la

même idée de combiner les DCC et les marqueurs dans les mires d’étalonnage. Grâce aux DCC,

nous pouvons obtenir les procédures analytiques pour calibrer à l’aide des moments. Grâce

aux marqueurs, nous pouvons réduire l’application de DCC aux informations locales sur les

marqueurs, ce qui est courant en vision par ordinateur. Ainsi, nous pouvons utiliser les DCC

pour les données tronquées. Notons également que nos procédures sont basées sur les DCC

appliquées à des distributions prouvées dans ce travail, correspondant à la généralisation de

DCC connues. Contrairement aux algorithmes précédents, nous n’avons généralement pas be-

soin d’une connaissance partielle des paramètres d’étalonnage, mais nous devons connaı̂tre les

modèles de mires d’étalonnage. Un inconvénient est que pour les géométries divergentes dans

les chapitres 4 et 5, nous devons placer les mires d’étalonnage parallèlement au plan ou à la ligne

du détecteur. La possibilité d’appliquer ces algorithmes dans des contextes réalistes nécessite des

tests supplémentaires.
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6.2 English version

In our work we expanded the knowledge about the self-calibration of radiological systems. In the

two parts with results we presented two different approaches to self-calibrate, but both results show

connections between the world of medical imaging and computer vision.

• In the chapter 2 we presented the application of the bundle adjustment method from computer

vision to the cone-beam system C-arm. We showed that we don’t have the uniqueness of the

solution to this problem completed with the non-linear optimization and we can’t self-calibrate

better than up to a similarity transformation. This result is the same with computer vision world.

Moreover, we showed what input data give us the solution differing by a similarity transforma-

tion. We also showed numerically that we can still perform the reconstruction in this case. The

bad news is that we usually can’t find this similarity transformation in the realistic settings when

we obviously don’t know true values of 3D coordinates of markers. Our experience with numer-

ical simulations says that if we start our optimization procedure with the initial values close to

true ones, we should obtain exactly a true solution. But the question of initial values that give us

the exact true solution should be studied more deeply.

• In the chapters 3, 4 and 5 we presented a series of hybrid algorithms based on the same idea

to combine DCC and markers in the calibration cages. Because of DCC, we could obtain the

analytical procedures to calibrate using moments. Because of markers, we could reduce the

application of DCC to the local information about markers which is common in computer vision.

Thus, we could use DCC for truncated data. Note also that our procedures are based on DCC on

distributions proved in this work, the generalisation of known DCC. Unlike previous algorithms,

we usually don’t require the partial knowledge of calibration parameters, but we need to know

the patterns of calibration cages. One disadvantage is that for the divergent geometries in the

chapters 4 and 5 we need to place the calibration cages as parallel as possible to the detector

plane or line. The possibility of applying these algorithms in realistic settings requires further

testing.
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A Appendix

A.1 Marker detection on projected images with wavelets in 2D
parallel geometry

The goal of this section is to show how we can detect Hölder singularities of the Radon transform of

the indicator of a disk from Eq. (2.17) with the help of wavelet theory.

Theory. The basic theory of wavelets was developed around 1980s. A continuous wavelet trans-

form was defined by Grossmann and Morlet [GM84]. Later Mallat introduced a canonical method to

detect singularities from the continuous wavelet transform of signals. Let us use the main publications

of Mallat [MZ92; MH92], his famous book [Mal09] in this section and start with the definition of a

wavelet in 1D:

Definition A.1. A wavelet or mother wavelet ψ(s) is a function whose average is zero
∫

∞

−∞
ψ(s)ds = 0.

Let us denote a dilation of ψ(s) or a wavelet ψu(s) = 1
uψ( s

u), u > 0.

Definition A.2. A continuous wavelet transform of a function f (s) ∈ L2(R) at the scale u is defined by

a 1D convolution:

W f (s,u) =Wu f (s) = f ⊛ψu(s). (A.1)

Sometimes we consider u = 2 j, j ∈ Z, then ψ2 j(s) = 1
2 j ψ( s

2 j ) and we can define in 1D:

Definition A.3. A dyadic wavelet transform of f (s) is a set of functions

W f = {W2 j f (s)} j∈Z. (A.2)

In practice, we also have a discretization for s, because we usually know the signal f in some

discrete lattice. But in order to have a basis of wavelets on L2(R), we need to consider a proper

discretization of ψ2 j(s) on s. Thus, the theory of discrete wavelet transform and construction of bases

of wavelets appeared along with the theory of wavelets in other dimensions.

Wavelets in different dimensions were applied in different scientific fields, including tomography.

In 1994, Berenstein and Walnut [BW94] used the theory of the continuous wavelet transform to receive

inversion formulas for the Radon transform in even dimensions. Received inversion formulas were

local. Thus, it was possible to recover a function f from the continuous wavelet transform of its Radon

transform in a ball about x⃗0 with the error ε > 0 just by knowing projections only on lines through a ball

of some bigger radius about the same x⃗0. Another local inversion formulas for the 2D Radon transform
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were obtained later with the discrete wavelet transform: in 1994 by Olson and DeStefano [OD94], in

1995 by Delaney and Bresler [DB95], in 1996 by Berenstein and Walnut [BW96], in 1997 by Rashid-

Farrokhi and colleagues [Ras+97], in 2000 by Bonnet and colleagues [Bon+00]. You can see that the

history of the use of wavelets in tomography is extensive.

Now we want to show that we can detect markers with wavelets by applying the canonical algorithm

of Mallat to detect irregularities of signals. In the Theorem 2.4 we showed that we have only 2 Hölder

singularities for f1. We can apply the canonical algorithm of Mallat to detect them.

From [Mal09] we know:

Theorem A.1. Suppose that ψ is C1 wavelet with a compact support, ψ = θ ′ for θ with non-zero

average. Let f ∈ L1(R). If there exists a scale u0 such that |W f (x,u)| has no local maximum for

x ∈ [a,b] and u < u0, then f is uniformly Hölder 1 on [a+ ε,b− ε] for any ε > 0.

From [MH92] we know:

Theorem A.2. Let use a function θ(x) whose integral is non-zero and ψ = θ ′. We suppose that the

wavelet ψ(x) is continuously differentiable and has a compact support. Let f ∈ L2(R) and α ≤ 1. If

f (x) is Hölder α at x0, then there exists a constant A such that for all x in the neighborhood of x0 and

any scale u = 2 j

|W2 j f (x)| ≤ A((2 j)α + |x− x0|α). (A.3)

Thus, for x = x0 we should have:

|W2 j f (x)| ≤ A(2 j)α . (A.4)

According to the Theorem A.1, we can detect all singularities of f1 by choosing local maximum

points of |W2 j f1| for the smallest for us resolution j = 1. Since the algorithm of Mallat computes just the

dyadic wavelet transform, we don’t have any information for scales u< 21, thus we can speak just about

singularities at the resolution 1. If we detect no local maximum of |W21 f1| for some neighbourhood of

x0, then x0 should be Hölder 1 at the resolution 1, otherwise we have a singularity (it could be Hölder

α , α < 1, or not Hölder at all). The good thing is that Mallat and Zhong [MZ92] built in their article a

special wavelet ψ in such a way that they normalize the finest scale to be 21. It could be useful to know

a regularity of each singular point and keep just Hölder 1/2 points. According to the Theorem A.2,

we can try to estimate the regularity α for such points with a linear regression from the dyadic wavelet

transform, since

log2 |W2 j f (x)| ≤ log2 A+α j. (A.5)

Simulations. We constructed a special wavelet ψ and calculated the dyadic wavelet transform as

described in [MZ92]. We implemented everything in Python.
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Let us define a reconstructing wavelet χ(x) as any function whose Fourier transform satisfies

∑
+∞

j=−∞
ψ̂(2 jω)χ̂(2 jω) = 1. We use the definition of the Fourier transform as f̂ (ω) =F f (ω) =F(ω) =∫+∞

−∞
f (x)e−iωxdx and the inverse Fourier transform as F−1(F(ω))= f (x)= 1

2π

∫+∞

−∞
F(ω)eiωxdω . Then,

the function f (x) could be recovered with f (x) = ∑
+∞

j=−∞
W2 j f ∗χ2 j(x). Let us define a smoothing func-

tion φ(x) to normalize the finest scale to be 21 as

|φ̂(ω)|2 =
+∞

∑
j=1

ψ̂(2 j
ω)χ̂(2 j

ω). (A.6)

Firstly, Mallat and Zhong managed to express the smoothing function in the Fourier space through

a 2π-periodic differentiable function H(ω) such that |H(ω)|2 + |H(ω + π)|2 ≤ 1, |H(0)| = 1. Then

ψ(x) was associated with G(ω):

ψ̂(2ω) = e−iωwG(ω)φ̂(ω), (A.7)

where w = 1/2 is the sampling shift. And χ(x) was associated with K(ω):

χ̂(2ω) = eiωwK(ω)φ̂(ω). (A.8)

Then the authors calculated H, G and K from different conditions that our wavelet needs to fulfill:

H(ω) = eiω/2(cos(ω/2))3, G(ω) = 4ieiω/2 sin(ω/2), K(ω) =
1−|H(ω)|2

G(ω)
. (A.9)

And finally:

φ̂(ω) =

(
sin(ω/2)

ω/2

)3

, ψ̂(ω) = iω
(

sin(ω/4)
ω/4

)4

. (A.10)

Thus, they received a quadratic spline with a compact support ψ(x), it’s the first-order derivative of

the function θ(x) defined by θ̂(ω) =
(

sin(ω/4)
ω/4

)4
. It’s possible to see the constructed with the inverse

Fourier transform wavelet ψ(x) and its primitive θ(x) in the fig. A.1.

We started with the discrete signal dn, n ∈ Z. Let S1 f (n) = dn. If S2 j f (x) = f ⊛ φ2 j(x), then

W d
2 j f = {W2 j f (n+w)}n∈Z, Sd

2 j f = {S2 j f (n+w)}n∈Z.

For the implementation, the original discrete signal has a finite number N of values. Denote Hp,

Gp the discrete filters obtained by putting 2p− 1 zeros between each of the coefficients of the filters

H and G. It’s possible to implement these filters with the table of impulse responses from [MZ92]. To

compute W d
2 j+1 f and Sd

2 j+1 f from the resolution level j to level j+1 we used:

W d
2 j+1 f =

1
λ j

Sd
2 j f ∗G j, Sd

2 j+1 f = Sd
2 j f ∗H j. (A.11)

Values λ j we again took from the corresponding table of the article [MZ92]. We detected correctly

singularities with local maximum points of |W21 f | for different functions. We present one example
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Figure A.1: The wavelet ψ and its primitive θ .

in the figure A.2. It was computed for the sum of two functions of the type f1. The first one with

s0 =−1.5, R = 0.1 mimics a marker, the second one with s0 = 0, R = 5 mimics a smooth function on

(−2,2), since its support is (−5,5) and we played with data just for (−2,2). We can check by eye and

we checked in the code local maximum points corresponding to the marker, we found them correctly:

x1 = −1.598 (for the true one x1 = −1.6) and x2 = −1.402 (for the true one x2 = −1.4) with 3 digits

precision. Nevertheless, the method to estimate α didn’t work perfectly, with the linear regression

estimation for x1 we received that α is equal to 0.146 and for x2 α is equal to 0.402. Indeed, there is

no contradiction, since in Eq. (A.5) we have just the inequality. More exact method to estimate α with

other wavelets (foveal wavelets) can be found in [Mal03].

In this section we showed that we can easily detect points with 1/2 Hölder regularities for the func-

tion f1 with the help of the canonical algorithm from Mallat including dyadic wavelet transform. This

can help to detect the centers of traces of round markers in projected images in 2D parallel geometry.
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Figure A.2: Absolute values of the dyadic wavelet transform for few first levels ( j ≤ 5) for the test

signal.

111



Chapter A – Appendix Anastasia Konik

A.2 Sufficiency of DCC for the Radon transform on distributions
for fixed projection angle

In this section we introduce some thoughts when we can have the sufficiency for our DCC for the

Radon transform on distributions for fixed projection angle. Since our Theorem 3.7 is less strict than

the Theorem 3.6 of Ramm and Katsevich, we can’t prove the reverse implication in our case without

additional assumptions. Moreover, Ramm and Katsevich showed in [RK96] the following fact used in

the proof of their DCC:

Theorem A.3. R∗C∞(Z2) is dense in E2 in the topology of E2.

Let us remind that the subset A ⊂ E2 is dense in E2 if ∀ε > 0,∀φ̃ ∈ E2 B(φ̃ ,ε)∩A ̸= ∅, where

B(φ̃ ,ε) is the ball in the topology of E2 with the center φ̃ and the radius ε .

The analogue of the Theorem A.3 isn’t true for arbitrary α ∈ [0,2π] in our case, thus we have:

R∗
αE1 isn’t dense in E2 in the topology of E2. If it’s dense, then we need to have that ∀ε > 0,∀φ̃ ∈ E2,

∀ compact U ∈ R2, ∀ j ( j = 0,1, ...) we can find φ ∈ E1 such that the element R∗
αφ is inside the ball of

radius ε or

sup
x⃗∈U,|βββ |≤ j

|∂βββ
φ̃ (⃗x)−∂

βββ (R∗
αφ (⃗x))| ≤ ε. (A.12)

We can show the counterexample: ∃ε = 1,∃φ̃ ∈ E2 : φ̃ (⃗x) = x1 + x2, ∃ j = 1: ∀φ ∈ E1 we have

|∂ 2
φ̃ −∂

2(R∗
αφ)| ≥ ε. (A.13)

Indeed, ∂ φ̃

∂x1
= ∂ φ̃

∂x2
= 1. If α = 0, then R∗

αφ (⃗x) = φ(x1) and ∂ (R∗
α φ)

∂x2
= 0 ⇒ | ∂ φ̃

∂x2
− ∂ (R∗

α φ)
∂x2

|= 1 ≥ ε .

Thus, we can’t reuse directly the proof of Ramm and Katsevich in our case, but we want to present

under which hypotheses we can reduce the proof of sufficiency in our case to the proof of Ramm and

Katsevich. We will reuse few logical steps from the proof of Ramm and Katsevich. Note that we also

want to use the following theorem form [Bon01]:

Theorem A.4. If T ∈ E ′
N , g,φ ∈ DN , then

(T ∗g,φ) = (T, g̃∗φ), (A.14)

where g̃(⃗x) = g(−⃗x).

Let us start with pα ∈ E ′
1 which is even (in the sense as described in the Theorem 3.7), pα(s) = 0

for |s|> a. For φ ∈ E (Z2), φα ∈ E1 with φα(s) = φ(α,s) (pα ,φα) defines a function on α . We want to

be able to define a distribution p:

(p(α,s),φ(α,s)) =
∫ 2π

0
(pα ,φα)dα. (A.15)
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We also suppose that ∀k = 0,1,2, . . . the moment conditions (3.17) hold, then we want to understand

when ∃ f ∈ E ′
2 with supp( f )⊂ Ba and R f = p.

The first stage is to define functions pα,ε and pε , pα,ε(s) = pε(α,s), from pα such that we can have

all 3 properties of HLCC (Theorem 1.1) for pε and have R fε = pε for some functions fε . Moreover,

we need pε −−→
ε→0

p in E ′(Z2). Then from the density in the Theorem A.3 we have the limit limε→0 fε

in E ′
2. This limit will give us exactly f such that R f = p.

1. Let us consider wε(s)= ε−1w(s/ε), w∈C∞
0 ([−1,1]) is a positive even function with

∫ 1
−1 w(s)ds=

1. Since pα ∈ E ′
1, wε is a continuous function of compact support, then ∃wε ∗ pα : pα,ε =

wε ∗ pα ∈ D1 from the Theorem 3.3, by the definition pα,ε(s) = (pα(t),wε(s− t)). Let us intro-

duce the first hypothesis: suppose that (pα ,φα) defines a smooth function on [0,2π] for each

test function. Then pα,ε is smooth on α . Then we can define a smooth and even pε(α,s) ∈
C∞

0 (Z2,a+ε), Z2,a+ε = [0,2π]× [−(a+ ε),a+ ε], where pα,ε(s) = pε(α,s). Here we also used

the Theorem 3.2 about the support of the convolution.

According to [Bon01], for such regularisation function wε limε→0 pα,ε = pα . Now we need to

show that the moment conditions from HLCC are fulfilled for pε . We want to calculate (pα,ε ,φ).

Let us start just with the smooth test function of compact support ψ , thus we can apply the

Theorem A.4:

(pα,ε ,ψ) = (wε ∗ pα ,ψ) = (pα , w̃ε ∗ψ),

where w̃ε(s) = wε(−s). We can calculate directly

w̃ε ∗ψ(s) =
∫
R

ψ(s′)w̃ε(s− s′)ds′ =
∫
R

ψ(s′)wε(s′− s)ds′ =
1
ε

∫
R

ψ(s′)w((s′− s)/ε)ds′

=
∫
R

ψ(s+εt)w(t)dt =
∫ 1

−1
ψ(s+εt)w(t)dt ⇒ (pα,ε(s),ψ(s))= (pα(s),

∫ 1

−1
ψ(s+εt)w(t)dt).

For φ ∈ E1: since pα,ε is a function with support in [−(a+ ε),a+ ε], then we can consider

(pα,ε ,φ) =
∫ a+ε

−(a+ε)
pα,ε(s)φ(s)ds =

∫
R

pα,ε(s)ψ(s)ds = (pα,ε ,ψ),

where ψ = χ1φ is with support in [−(a+3ε),a+3ε], χ1(s) = 1 in [−(a+2ε),a+2ε] and χ1 is

defined on the remaining intervals to be a smooth function with compact support. This choice of

2ε is important in the further computations in Eq. (A.17). We have

(pα,ε(s),φ(s)) = (pα,ε(s),ψ(s)) = (pα(s),
∫ 1

−1
ψ(s+ εt)w(t)dt) = (pα(s),θψ,ε(s)), (A.16)

where θψ,ε(s) =
∫ 1
−1 ψ(s+ εt)w(t)dt, we will write θφ ,ε(s) and θψ,ε(s) to denote the same inte-

gral. Let us show the smoothness θψ,ε ∈ E1. Note that ψ has the support in [−(a+3ε),a+3ε].

We fix the neighbourhood of 0 for ε , suppose that |ε| ≤ εM. Then we know that |t| ≤ 1, then

ψ(s+ εt) is non-zero when −(a+3ε)≤ s+ εt ≤ a+3ε or −(a+4εM)≤ s ≤ a+4εM, then
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(a) ψ(s+ εt)w(t) is continuous on s for all t,

(b) maxs,t∈[−(a+4εM),a+4εM ]×[−1,1] |ψ(s+ εt)| = M < +∞, since ψ(s+ εt) is continuous on the

compact set [−(a+4εM),a+4εM]× [−1,1]. The function Mw(t) is integrable on the com-

pact [−1,1], thus we have an integrable majorant Mw(t) for each parameter s,

then the parameter-dependent integral θψ,ε is a continuous function on [−(a+4εM),a+4εM] by

the theorem about the continuity of parameter-dependent Lebesgue integrals. Similarly:

(a) ψ(s+ εt)w(t) is differentiable on s for all t,

(b) since each partial derivative of ψ(s+ εt) on s is continuous on the compact set [−(a+

4εM),a+ 4εM]× [−1,1], then it attains its maximum and minimum values, then for each

partial derivative of ψ(s+εt)w(t) we have a majorant Mw(t) (M is a constant, the maximum

of the absolute values of the partial derivative of ψ(s+εt) for s, t ∈ [−(a+4εM),a+4εM]×
[−1,1]), it’s integrable on the compact [−1,1],

then we can differentiate the parameter-dependent integral θψ,ε by the theorem about the differ-

entiability of parameter-dependent Lebesgue integrals. We can apply the same theorem about the

continuity and differentiability to show the existence and the continuity of higher derivatives.

Note that pα has a compact support in [−a,a]. Then in order to compute (pα ,θψ,ε) we need to

know the function θψ,ε only in the interval [−(a+ ε),a+ ε]. Indeed:

(pα ,θψ,ε) = (pα ,θψ,ε χ2 +θψ,ε(1−χ2)) = (pα ,θψ,ε χ2)

+(pα ,θψ,ε(1−χ2)) = (pα ,θψ,ε χ2)+0,

where χ2(s) = 1 in [−(a + ε),a + ε] and smooth outside this interval. Moreover, the value

(pα ,θψ,ε χ2) doesn’t depend on the continuation of χ2 outside the interval [−(a + ε),a + ε]

(see [Hel99]). Since for −(a+ ε)≤ s ≤ a+ ε we have −(a+2ε)≤ s+ εt ≤ a+2ε , then

ψ(s+εt) = φ(s+εt),
∫ 1

−1
ψ(s+εt)w(t)dt =

∫ 1

−1
φ(s+εt)w(t)dt, s∈ [−(a+ε),a+ε].

(A.17)

Then we justified that we can write for the function φ ∈ E1: φ(s) = sk that (pα,ε(s),sk) =

(pα(s),
∫ 1
−1(s+ εt)kw(t)dt), since the value of (pα(s),

∫ 1
−1(s+ εt)kw(t)dt) doesn’t depend on∫ 1

−1(s+ εt)kw(t)dt outside the interval [−(a+ ε),a+ ε]. Thus, using the fact that w is even and

each integral of the type
∫ 1
−1 tk− jw(t)dt is zero for each odd k− j, we have
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∫
R

pε(α,s)skds =
∫
R

pα,ε(s)skds = (pα,ε(s),sk) = (pα(s),
∫ 1

−1
(s+ εt)kw(t)dt)

= (pα(s),
k

∑
j=0,k− j even

K js j) =
k

∑
j=0,k− j even

K j(pα(s),s j) =
k

∑
j=0,k− j even

K jP j(α)

=
k

∑
j=0,k− j even

K jP j(α)(cos2
α + sin2

α)
k− j

2 = Qk(α),

where Qk(α) is a homogeneous polynomial of degree at most k in cosα , sinα . Here we used

the moment conditions Eq. (3.17) that (pα(s),s j) = P j(α) ∀α , j = 0,1,2, . . . , P j(α) is a ho-

mogeneous polynomial of degree at most j in cosα , sinα .

We need to show pε −−→
ε→0

p in E ′(Z2). Under the first hypothesis
∫ 2π

0 (pα ,φα)dα is properly

defined. Let us introduce the second hypothesis: if we can change the limit and the integral for

each α for each test function φα

lim
ε→0

∫ 2π

0
(pα,ε ,φα)dα =

∫ 2π

0
lim
ε→0

(pα,ε ,φα)dα, (A.18)

then

lim
ε→0

∫ 2π

0
(pα,ε ,φα)dα =

∫ 2π

0
lim
ε→0

(pα,ε ,φα)dα =
∫ 2π

0
(pα ,φα)dα = (p(α,s),φ(α,s))⇒

lim
ε→0

(pε(α,s),φ(α,s)) = lim
ε→0

∫ 2π

0
(pα,ε ,φα)dα = (p(α,s),φ(α,s)).

2. Thus, we showed that we have properties 1− 3 of HLCC (Theorem 1.1) for each pε(α,s), so

∃ fε ∈C∞
0 (Ba+ε): R fε = pε .

3. As in the proof of Ramm and Katsevich, from the previous step and pε −−→
ε→0

p in E ′(Z2) we have

R fε −−→
ε→0

p in E ′(Z2).

4. Since R∗E (Z2) is dense in E2, then we can apply the Theorem A.3. Let us detail this appli-

cation mentioned briefly in the book of Ramm and Katsevich. For φ ∈ E (Z2) ⟨ fε ,R
∗φ⟩ =

(R fε ,φ) −−→
ε→0

(p,φ), ⟨ fε ,R
∗φ⟩ =

∫
R2 fε (⃗x)R∗φ (⃗x)d⃗x =

∫
Ba+ε

fε (⃗x)R∗φ (⃗x)d⃗x. For this com-

pact Ba+ε ∀µ ∈ E2 ∃φ ∈ E (Z2): supBa+ε
|µ −R∗φ | ≤ ε or −ε +R∗φ ≤ µ ≤ ε +R∗φ . Then for

each ε ∫
R2

fε (⃗x)(−ε +R∗
φ (⃗x))d⃗x ≤

∫
R2

fε (⃗x)µ (⃗x)d⃗x ≤
∫
R2

fε (⃗x)(ε +R∗
φ (⃗x))d⃗x.

The left and the right sides in the limit go to (p,φ), thus ∃ limε→0 fε in E ′
2.

115



Chapter A – Appendix Anastasia Konik

5. Denote f = limε→0 fε in E ′
2, then supp( f )⊂ Ba and R f = p for it.

In this section we showed under which hypotheses we have the reduction of the sufficiency for our

definition of the Radon transform on distributions for fixed α to the proof of sufficiency of Ramm and

Katsevich presented earlier for their definition.
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A.3 Justification of the definition of the fan-beam transform on
distributions with sources on a line

In this section we explain why our definition Eq. (4.3) of the fan-beam transform on distributions with

fixed source position and sources on a line is properly formulated. Inside this definition we use the

specific adjoint operator defined in Eq. (4.1). To justify our definition, we need to show that Eq. (4.3)

defines a distribution or we need to show that Dλ f for f ∈ E ′(X2) is a bounded linear functional. Note

that we discussed before that we replace everywhere the check of continuity of the linear functional

with the check of boundedness.

The linearity of such functional is obvious. We only need to show that Dλ f is bounded. For that,

we will prove that any bounded subset Φ ⊂ E1 becomes a bounded subset D∗
λ
(Φ)⊂ E (X2). In this case

from the boundedness of f we will have that f (D∗
λ
(Φ)) is bounded. Then we will have that Dλ f (Φ)

is bounded for any bounded Φ using Eq. (4.3) or Dλ f is bounded.

For any bounded Φ ⊂ E1 each P̃1
j,β (Φ) from Eq. (3.3) is bounded with M j,β , where ∪ jK1

j = R with

compacts K1
j , K1

j is in the interior of the set K1
j+1, M j,β doesn’t depend on φ ∈ Φ. If we consider

K2
j = [d j

1,d
j
2]× [−b j,b j] with ∪ jK2

j = X2, 0 < d j
1,d

j
2 < D, b j > 0, b j ∈ R with d j+1

1 ≤ d j
1, d j

2 ≤ d j+1
2 ,

b j ≤ b j+1, then we need to prove that for each function ψ ∈ D∗
λ
(Φ), ψ (⃗x) = 1

D−x1
φ

(
x2D−x1λ

D−x1

)
, we

have the boundedness of P̃2
j,βββ (ψ) = sup⃗x∈K2

j
|∂βββ ψ (⃗x)| ≤ M̃ j,βββ , where M̃ j,βββ doesn’t depend on ψ .

• When βββ = (0,0):

P̃2
j,(0,0)(ψ) = sup

x⃗∈K2
j

|ψ (⃗x)|= sup
x⃗∈K2

j

∣∣∣∣φ (x2D− x1λ

D− x1

)
1

D− x1

∣∣∣∣
≤ sup

x⃗∈K2
j

∣∣∣∣φ (x2D− x1λ

D− x1

)∣∣∣∣ 1
D−D2

≤ sup
y∈K1

j′

|φ(y)| 1
D−D2

≤ M j′,0
1

D−D2
,

where∣∣∣∣x2D− x1λ

D− x1

∣∣∣∣= ∣∣∣∣λ +D
x2 −λ

D− x1

∣∣∣∣≤ |λ |+D
∣∣∣∣x2 −λ

D− x1

∣∣∣∣≤ |λ |+D
|x2|+ |λ |
D−D2

≤ |λ |+D
b j + |λ |
D−D2

,

thus we can find j′ and K1
j′ such that {y : |y| ≤ |λ |+Db j+|λ |

D−D2
} ⊂ K1

j′ .

Note that for each β ≥ 1, for each K2
j we can find K1

j′ such that

sup
x⃗∈K2

j

∣∣∣∣φ (β )

(
x2D− x1λ

D− x1

)
(x2 −λ )p1

(D− x1)p2

∣∣∣∣≤ sup
y∈K1

j′

|φ (β )(y)|(b
j + |λ |)p1

(D−D2)p2

≤ M j′,β
(b j + |λ |)p1

(D−D2)p2
, p1, p2 ≥ 0. (A.19)
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• The case βββ = (0,β ). When β = 1:

∂
1
2 ψ (⃗x) = φ

′
(

x2D− x1λ

D− x1

)
D

D− x1

1
D− x1

.

For β > 1 by induction:

∂
β

2 ψ (⃗x) = φ
(β )

(
x2D− x1λ

D− x1

)
Dβ

(D− x1)β+1 .

Since P̃2
j,(0,β )(ψ) is of the type Eq. (A.19), thus it’s bounded with some constant which doesn’t

depend on ψ .

• The case βββ = (β ,0). When β = 1:

∂
1
1 ψ (⃗x) = φ

′
(

λ +D
x2 −λ

D− x1

)
D(x2 −λ )

(D− x1)2
1

D− x1
+φ

(
λ +D

x2 −λ

D− x1

)
1

(D− x1)2

= φ
′
(

λ +D
x2 −λ

D− x1

)
D(x2 −λ )

(D− x1)3 +φ

(
λ +D

x2 −λ

D− x1

)
1

(D− x1)2 .

When β = 2:

∂
2
1 ψ (⃗x) = φ

′′
(

λ +D
x2 −λ

D− x1

)
D(x2 −λ )

(D− x1)2
D(x2 −λ )

(D− x1)3 +φ
′
(

λ +D
x2 −λ

D− x1

)
· 3D(x2 −λ )

(D− x1)4

+φ
′
(

λ +D
x2 −λ

D− x1

)
D(x2 −λ )

(D− x1)2
1

(D− x1)2 +φ

(
λ +D

x2 −λ

D− x1

)
2

(D− x1)3

= φ
′′
(

λ +D
x2 −λ

D− x1

)
· D2(x2 −λ )2

(D− x1)2·2+1 + c2
1φ

′
(

λ +D
x2 −λ

D− x1

)
D1(x2 −λ )1

(D− x1)2+1+1

+φ

(
λ +D

x2 −λ

D− x1

)
2!

(D− x1)2+1 .

We can use this equation as the base of induction with c2
1 = 4, then for β ≥ 2 we have:

∂
β

1 ψ (⃗x) = φ
(β )

(
λ +D

x2 −λ

D− x1

)
Dβ (x2 −λ )β

(D− x1)2β+1 +
β−1

∑
i=1

cβ

i φ
(i)
(

λ +D
x2 −λ

D− x1

)
· Di(x2 −λ )i

(D− x1)β+1+i
+φ

(
λ +D

x2 −λ

D− x1

)
β !

(D− x1)β+1 , (A.20)

where cβ+1
1 = cβ

1 (β + 1+ 1)+ β !, cβ+1
β

= 2β + 1+ cβ

β−1 and cβ+1
i = cβ

i (β + 1+ i)+ cβ

i−1 for

i = 2, ...,β − 1. Indeed, from the differentiation of Eq. (A.20), we have the expression of the

same type:
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∂
β+1
1 ψ (⃗x) = φ

(β+1)
(

λ +D
x2 −λ

D− x1

)
D(x2 −λ )

(D− x1)2
Dβ (x2 −λ )β

(D− x1)2β+1

+φ
(β )

(
λ +D

x2 −λ

D− x1

)
Dβ (x2 −λ )β (2β +1)

(D− x1)2β+2

+
β−1

∑
i=1

[
φ
(i+1)

(
λ +D

x2 −λ

D− x1

)
D(x2 −λ )

(D− x1)2 cβ

i
Di(x2 −λ )i

(D− x1)β+1+i

+φ
(i)
(

λ +D
x2 −λ

D− x1

)
cβ

i
Di(x2 −λ )i(β +1+ i)

(D− x1)β+2+i

]
+φ

′
(

λ +D
x2 −λ

D− x1

)
D(x2 −λ )

(D− x1)2
β !

(D− x1)β+1

+φ

(
λ +D

x2 −λ

D− x1

)
(β +1)!

(D− x1)β+2 = φ
(β+1)

(
λ +D

x2 −λ

D− x1

)
Dβ+1(x2 −λ )β+1

(D− x1)2(β+1)+1

+
β

∑
i=1

cβ+1
i φ

(i)
(

λ +D
x2 −λ

D− x1

)
Di(x2 −λ )i

(D− x1)(β+1)+1+i
+φ

(
λ +D

x2 −λ

D− x1

)
(β +1)!

(D− x1)(β+1)+1
.

Thus, P̃2
j,(β ,0)(ψ) is bounded with some constant which doesn’t depend on ψ , since ∂

β

1 ψ (⃗x) is

the finite sum of expressions of the type Eq. (A.19).

• To handle mixed derivatives of ψ we need to apply two previous steps. Since each P̃2
j,(β1,β2)

(ψ) is

the sum expressions of the type Eq. (A.19), then it’s bounded with some constant which doesn’t

depend on ψ .

Thus, we properly defined the fan-beam transform for fixed λ on distributions of compact support.
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A.4 Justification of the definition of the cone-beam transform on
distributions with sources on a line

In this section we explain why our definition of the cone-beam transform on distributions with fixed

source position and sources on a line is properly formulated. To justify our definition, we need to show

that the duality Eq. (4.3) defines a distribution or we need to show that Dλ f for f ∈ E ′(X3) is a bounded

linear functional.

The linearity of such functional is obvious. We only need to show that Dλ f is bounded. For each

bounded Φ ⊂ E2 we have each P̃1
j,βββ (Φ) from Eq. (3.3) is bounded with M j,βββ , where ∪ jK1

j = R2 with

compacts K1
j , K1

j is in the interior of the set K1
j+1. Let us consider K2

j = [d j
1,d

j
2]× [−a j,a j]× [−b j,b j]

with ∪ jK2
j = X3, 0 < d j

1,d
j
2 < D, a j,b j > 0, a j,b j ∈ R with d j+1

1 ≤ d j
1, d j

2 ≤ d j+1
2 , a j ≤ a j+1, b j ≤

b j+1, then we need to prove for each function ψ ∈ D∗
λ
(Φ): ψ (⃗x) = D

(D−x1)2 φ

(
x2D−x1λ

D−x1
, Dx3

D−x1

)
the

boundedness of P̃2
j,βββ (ψ) = sup⃗x∈K2

j
|∂βββ ψ (⃗x)| ≤ M̃ j,βββ , where M̃ j,βββ doesn’t depend on ψ .

• When βββ = (0,0,0):

P̃2
j,(0,0,0)(ψ) = sup

x⃗∈K2
j

|ψ (⃗x)|= sup
x⃗∈K2

j

∣∣∣∣φ (x2D− x1λ

D− x1
,

Dx3

D− x1

)
D

(D− x1)2

∣∣∣∣
≤ sup

x⃗∈K2
j

∣∣∣∣φ (x2D− x1λ

D− x1
,

Dx3

D− x1

)∣∣∣∣ D
(D−D2)2 ≤ sup

(y1,y2)∈K1
j′

|φ(y1,y2)|
D

(D−D2)2 ≤M j′,(0,0)
D

(D−D2)2 ,

where ∣∣∣∣x2D− x1λ

D− x1

∣∣∣∣= ∣∣∣∣λ +D
x2 −λ

D− x1

∣∣∣∣≤ |λ |+D
a j + |λ |
D−D2

,∣∣∣∣ Dx3

D− x1

∣∣∣∣≤ Db j

D−D2
,

thus we can find j′ and K1
j′ such that {(y1,y2) : |y1| ≤ |λ |+Da j+|λ |

D−D2
, |y2| ≤ Db j

D−D2
} ⊂ K1

j′ .

Note that for each |βββ | ≥ 1, for each K2
j we can find K1

j′ such that

sup
x⃗∈K2

j

∣∣∣∣∂βββ
φ

(
x2D− x1λ

D− x1
,

Dx3

D− x1

)
(x2 −λ )p1xp2

3
(D− x1)p3

∣∣∣∣≤ sup
(y1,y2)∈K1

j′

|∂βββ
φ(y1,y2)|

(a j + |λ |)p1(b j)p2

(D−D2)p3

≤ M j′,βββ
(a j + |λ |)p1(b j)p2

(D−D2)p3
, p1, p2, p3 ≥ 0. (A.21)

• The case βββ = (0,β ,0). When β = 1:

∂
1
2 ψ (⃗x) = ∂

1
1 φ

(
x2D− x1λ

D− x1
,

Dx3

D− x1

)
D

D− x1

D
(D− x1)2 .
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For β > 1 by induction:

∂
β

2 ψ (⃗x) = ∂
β

1 φ

(
x2D− x1λ

D− x1
,

Dx3

D− x1

)
Dβ+1

(D− x1)β+2 .

Since P̃2
j,(0,β ,0)(ψ) is of the type Eq. (A.21), thus it’s bounded with some constant which doesn’t

depend on ψ .

• The case βββ = (0,0,β ). When β = 1:

∂
1
3 ψ (⃗x) = ∂

1
2 φ

(
x2D− x1λ

D− x1
,

Dx3

D− x1

)
D

D− x1

D
(D− x1)2 .

For β > 1 by induction:

∂
β

3 ψ (⃗x) = ∂
β

2 φ

(
x2D− x1λ

D− x1
,

Dx3

D− x1

)
Dβ+1

(D− x1)β+2 .

Since P̃2
j,(0,0,β )(ψ) is of the type Eq. (A.21), thus it’s bounded with some constant which doesn’t

depend on ψ .

• The case βββ = (β ,0,0). When β = 1:

∂
1
1 ψ (⃗x) = ∂

1
1 φ

(
λ +D

x2 −λ

D− x1
,

Dx3

D− x1

)
D(x2 −λ )

(D− x1)2
D

(D− x1)2

+∂
1
2 φ

(
λ +D

x2 −λ

D− x1
,

Dx3

D− x1

)
Dx3

(D− x1)2
D

(D− x1)2 +φ

(
λ +D

x2 −λ

D− x1
,

Dx3

D− x1

)
2D

(D− x1)3 .

For the first derivative we have the sum of expressions of the type Eq. (A.21), thus we have

boundedness of P̃2
j,(1,0,0)(ψ). Let us show that all higher derivatives will be finite sums of expres-

sions of the same type Eq. (A.21). For that, we can show that the derivative of Eq. (A.21) is the

finite sum of expressions of the type Eq. (A.21):

∂
1
1

(
∂

β1
1 ∂

β2
2 φ

(
λ +D

x2 −λ

D− x1
,

Dx3

D− x1

)
(x2 −λ )p1xp2

3
(D− x1)p3

)
= ∂

β1+1
1 ∂

β2
2 φ

(
λ +D

x2 −λ

D− x1
,

Dx3

D− x1

)
D(x2 −λ )

(D− x1)2
(x2 −λ )p1xp2

3
(D− x1)p3

+∂
β1
1 ∂

β2+1
2 φ

(
λ +D

x2 −λ

D− x1
,

Dx3

D− x1

)
Dx3

(D− x1)2
(x2 −λ )p1xp2

3
(D− x1)p3

+∂
β1
1 ∂

β2
2 φ

(
λ +D

x2 −λ

D− x1
,

Dx3

D− x1

)
p3(x2 −λ )p1xp2

3
(D− x1)p3+1 .

• To handle mixed derivatives of ψ we need to apply three previous steps. Since each P̃2
j,(β1,β2,β3)

(ψ)

is the sum expressions of the type Eq. (A.21), then it’s bounded with some constant which doesn’t

depend on ψ .
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As for the fan-beam case, we will have from the boundedness of f that f (D∗
λ
(Φ)) is bounded for

bounded D∗
λ
(Φ). Then Dλ f is bounded from the definition.

Thus, we properly defined the cone-beam transform for fixed λ on distributions of compact support

with sources on a line.
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A.5 Justification of the definition of the cone-beam transform on
distributions with sources on a plane

In this section we explain why our definition of the cone-beam transform on distributions with fixed

source position and sources on a plane parallel to the detector is properly formulated. To justify our

definition, we need to show that the duality Eq. (4.3) defines a distribution or we need to show that

Dλ1,λ2 f for f ∈ E ′(Y3) is a bounded linear functional.

The linearity of such functional is obvious. We need to show that Dλ1,λ2 f is bounded. For each

bounded Φ ⊂ E2 we have each P̃1
j,βββ (Φ) from Eq. (3.3) is bounded with M j,βββ , where ∪ jK1

j = R2 with

compacts K1
j , K1

j is in the interior of the set K1
j+1. Let us consider K2

j = [−a j,a j]× [−b j,b j]× [d j
1,d

j
2]

with ∪ jK2
j =Y3, 0 < d j

1,d
j
2 < D, a j,b j > 0, a j,b j ∈R with d j+1

1 ≤ d j
1, d j

2 ≤ d j+1
2 , a j ≤ a j+1, b j ≤ b j+1,

then we need to prove for each function ψ ∈D∗
λ1,λ2

(Φ): ψ (⃗x) = D
x2

3
φ

(
Dx1−λ1(D−x3)

x3
, Dx2−λ2(D−x3)

x3

)
the

boundedness of P̃2
j,βββ (ψ) = sup⃗x∈K2

j
|∂βββ ψ (⃗x)| ≤ M̃ j,βββ , where M̃ j,βββ doesn’t depend on ψ .

• When βββ = (0,0,0):

P̃2
j,(0,0,0)(ψ) = sup

x⃗∈K2
j

|ψ (⃗x)|= sup
x⃗∈K2

j

∣∣∣∣φ (Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)
D
x2

3

∣∣∣∣
≤ sup

x⃗∈K2
j

∣∣∣∣φ (Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)∣∣∣∣ D
D2

1

≤ sup
(y1,y2)∈K1

j′

|φ(y1,y2)|
D
D2

1
≤ M j′,(0,0)

D
D2

1
,

where ∣∣∣∣Dx1 −λ1(D− x3)

x3

∣∣∣∣= ∣∣∣∣Dx1 −λ1

x3
+λ1

∣∣∣∣≤ D
a j + |λ1|

D1
+ |λ1|,∣∣∣∣Dx2 −λ2(D− x3)

x3

∣∣∣∣≤ D
b j + |λ2|

D1
+ |λ2|,

thus we can find j′ and K1
j′ such that {(y1,y2) : |y1| ≤Da j+|λ1|

D1
+ |λ1|, |y2| ≤Db j+|λ2|

D1
+ |λ2|}⊂K1

j′ .

Note that for each |βββ | ≥ 1, for each K2
j we can find K1

j′ such that

sup
x⃗∈K2

j

∣∣∣∣∂βββ
φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)
(x1 −λ1)

p1(x2 −λ2)
p2

xp3
3

∣∣∣∣
≤ sup

(y1,y2)∈K1
j′

|∂βββ
φ(y1,y2)|

(a j + |λ |)p1(b j + |λ2|)p2

Dp3
1

≤ M j′,βββ
(a j + |λ1|)p1(b j + |λ2|)p2

Dp3
1

, p1, p2, p3 ≥ 0. (A.22)
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• The case βββ = (β ,0,0). When β = 1:

∂
1
1 ψ (⃗x) = ∂

1
1 φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)
D
x3

D
x2

3
.

For β > 1 by induction:

∂
β

1 ψ (⃗x) = ∂
β

1 φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)
Dβ+1

xβ+2
3

.

Since P̃2
j,(β ,0,0)(ψ) is of the type Eq. (A.22), thus it’s bounded with some constant which doesn’t

depend on ψ .

• The same is true for βββ = (0,β ,0). When β = 1:

∂
1
2 ψ (⃗x) = ∂

1
2 φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)
D
x3

D
x2

3
.

And for β > 1 by induction:

∂
β

2 ψ (⃗x) = ∂
β

2 φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)
Dβ+1

xβ+2
3

.

• The case βββ = (0,0,β ). When β = 1:

∂
1
3 ψ (⃗x) = ∂

1
1 φ

(
λ1 +D

x1 −λ1

x3
,λ2 +D

x2 −λ2

x3

)
−D(x1 −λ1)

x2
3

D
x2

3

+∂
1
2 φ

(
λ1 +D

x1 −λ1

x3
,λ2 +D

x2 −λ2

x3

)
−D(x2 −λ2)

x2
3

D
x2

3

+φ

(
λ1 +D

x1 −λ1

x3
,λ2 +D

x2 −λ2

x3

)
−2D

x3
3

.

The first derivative is the sum of expressions of the type Eq. (A.22), thus we have boundedness

of P̃2
j,(0,0,1)(ψ). As for the case of sources on a line, let us show that the derivative of Eq. (A.22)

is the finite sum of expressions of the type Eq. (A.22):

∂
1
1

(
∂

β1
1 ∂

β2
2 φ

(
λ1 +D

x1 −λ1

x3
,λ2 +D

x2 −λ2

x3

)
(x1 −λ1)

p1(x2 −λ2)
p2

xp3
3

)
= ∂

β1+1
1 ∂

β2
2 φ

(
λ1 +D

x1 −λ1

x3
,λ2 +D

x2 −λ2

x3

)
−D(x1 −λ1)

x2
3

(x1 −λ1)
p1(x2 −λ2)

p2

xp3
3

+∂
β1
1 ∂

β2+1
2 φ

(
λ1 +D

x1 −λ1

x3
,λ2 +D

x2 −λ2

x3

)
−D(x2 −λ2)

x2
3

(x1 −λ1)
p1(x2 −λ2)

p2

xp3
3

+∂
β1
1 ∂

β2
2 φ

(
λ1 +D

x1 −λ1

x3
,λ2 +D

x2 −λ2

x3

)
−p3(x1 −λ1)

p1(x2 −λ2)
p2

xp3+1
3

.

Then all higher derivatives are sums of expressions of the type Eq. (A.22).
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• To handle mixed derivatives of ψ we need to apply three previous steps. Since each P̃2
j,(β1,β2,β3)

(ψ)

is the sum expressions of the type Eq. (A.22), then it’s bounded with some constant which doesn’t

depend on ψ .

Then we have from the boundedness of f that f (D∗
λ1,λ2

(Φ)) is bounded for bounded D∗
λ1,λ2

(Φ).

Then Dλ1,λ2 f is bounded from the definition.

Thus, we properly defined the cone-beam transform for fixed λ1 and λ2 on distributions of compact

support with sources on a plane parallel to the detector.

125



Bibliography
[AHB87] K. S. Arun, T. S. Huang, and S. D. Blostein. “Least-squares fitting of two 3-D point sets”.

IEEE Transactions on Pattern Analysis and Machine Intelligence (1987), pp. 698–700.

DOI: 10.1109/TPAMI.1987.4767965.

[Aic+15] A. Aichert, M. Berger, J. Wang, N. Maass, A. Doerfler, J. Hornegger, and A. Maier. “Epipo-

lar consistency in transmission imaging”. IEEE Transactions on Medical Imaging. 34.10

(2015), pp. 1–15. DOI: 10.1109/TMI.2015.2426417.

[Aic+16] A. Aichert, K. Breininger, T. Kohler, and A. Maier. “Efficient epipolar consistency”. In:

Proceedings of the Fourth CT-Meeting. 2016, pp. 383–386. URL: https://www5.informatik.

uni-erlangen.de/Forschung/Publikationen/2016/Aichert16-EEC.pdf.

[Aic19] A. Aichert. “Epipolar consistency in transmission imaging”. PhD thesis. 2019.

[AM+] S. Agarwal, K. Mierle, et al. Ceres Solver. URL: http://ceres-solver.org.

[BB00a] S. Basu and Y. Bresler. “Feasibility of tomography with unknown view angles”. IEEE

Transactions on Image Processing. 9.6 (2000), pp. 1107–1122. DOI: 10.1109/83.846252.

[BB00b] S. Basu and Y. Bresler. “Uniqueness of tomography with unknown view angles”. IEEE

Transactions on Image Processing. 9.6 (2000), pp. 1094–1106. DOI: 10.1109/83.846251.

[Bon+00] S. Bonnet, F. Peyrin, F. Turjman, and R. Prost. “Tomographic reconstruction using non-

separable wavelets”. IEEE Transactions on Image Processing. 9.8 (2000), pp. 1445–1450.

DOI: 10.1109/83.855441.
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