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Introduction

a Concentration of the measure as an hypothesis on the data

A history of concentration
Let us describe here a phenomenon concerning distributions as diverse as the Gaussian distribution, the
uniform distribution on the ball, on the discrete cube, and leading to extensively used statistical concentration
inequalities like Hoeffding inequality, Bernstein inequality, Hanson Wright inequality... Although being lately
mentioned in advanced statistical courses, concentration of the measure appears as a core justification for a
lot of statistical phenomena and rightly deserves the increasing attention it gained in the last decades. Its
appearance and first formalization is quite recent if we consider the long story of mathematics. Originally,
Vitali Milman introduced this notion as an outburst of a geometrical result of isoperimetric inequalities on
the sphere owned to Paul Lévy [Lév67] and brought up to date in [Mil71]. The formulation of the objective to
bound the measure of ε-blowup of measurable sets [MS86] then opened the path to probabilistic development
of this geometrical result. Some interpretation with Ricci curvature was brought by Gromov [GM83] and
the active work of Talagrand [Tal88, Tal95] in the 80’s provided a subtle understanding of independence
under this theory. One further needs to mention the interpretation with log-Sobolev inequalities [Led05]
and very recent work to give full characterization of dimension free concentration of product measure with
transportation inequalities [GRST17, GRS+18].

Those fifty years of active research in the field brought very powerful, diverse and accurate concentration
inequalities and our thesis make use of a very small amount of them. Our goal here is indeed not to contribute
to the general theory of concentration of the measure but more modestly to employ some of its important
results to deduce inferences on statistical object found in the theory of random matrices and useful for the
understanding of basic machine learning methods.

Concentration of the measure in Statistics
One could regret that statistical course easily turn out into tedious catalogues of inequalities quite far from the
mathematical aestheticism we cherish. It is somehow disappointing to see that the beautiful formalism issued
from Lebesgue theory to express probability concept ends with such specific and scattered notions. We rather
advocate here – when possible – for a standard approach to address statistical issue. The concentration of
measure theory and the objects it naturally brings forwards seems well fitted to this role. To obtain optimal
bounds, one often naturally needs to be slightly specific, it might however sometimes be relevant to lose
accuracy at the benefit of generality, it gives the picture some reassuring unity and more importantly, it
opens the path to multiple easily reachable side inferences.

To give a precise idea of the concentration inequalities we will be working with, let us start with a famous
result of Talagrand. Given a random vector X = (x1, . . . , xn) ∈ [0, 1]n having independent entries, for any
convex mapping f : Rn → R, 1-Lipschitz for the euclidean norm:

∀t > 0 : P (|f(X)− E[f(X)]| ≥ t) ≤ Ce−ct
2

, (1)

with C = 2 and c = 1/4. A same inequality is obtained for a Gaussian vector with independent, zero mean,
unit variance entries – this time true for any 1-Lipschitz mappings f (no need to be convex). A straight
forward proof of this result with non-optimal constants can be found in [Tao12, Theorem 2.1.12] that presents

vii



viii INTRODUCTION

in one page a very efficient justification provided by Maurey and Pisier. Since this kind of results are valid for
any t > 0, one can then play on this parameter to give bounds on the moments of f(X) with Fubini inequality
(Proposition A.20). One could also consider other mappings f that would have different Lipschitz parameter.
In a way it could be seen as a kind of Hoeffding inequality that would concern far more “observations” of the
random vector than the mere sum of its entries.

In all our work this kind of inequality will serve both to express the hypotheses and the results. It will
often be the starting point and the goal. We will develop to help us a wide range of tools that will explore
the stability of the class of vectors satisfying this kind of inequality through concatenation, sum, product
and some implicit formulation. But before developing these aspects principally needed for random matrix
estimations, let us provide a geometric interpretation.

Geometric interpretation - notion of observable diameter
Let us consider the historical result of concentration of measure owned to Lévy and that states that any
random vector X, uniformly distributed on the sphere

√
nSn−1 satisfies (1) for C = 2 and c = 1

2 and for any
1-Lipschitz mappings (not just the convex mappings). We schematically represented some drawings of this
distribution on Figure 1, and the images of these drawings through 1-Lipschitz mappings for the euclidean
norm that are traditionally called observations. We choose for our illustration a normalized sum and the
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Observations

O(1)

O(1)

Figure 1: Schematic representation of the uniform distribution on the sphere
√
nSn−1 and some of its 1-

Lipschitz observations. The observable diameter is 1/
√
n smaller than the diameter of the distribution.

infinite norm. What should be noted is that inequality (1) being independent with n we see that the two
1-Lipschitz functionals of the random vector X both have a standard deviation of order O(1) (when n tends
to infinity). However, the diameter of the distribution that one could define as being equal to E[∥X −X ′∥],
for X ′, an independent copy of X, is of order O(

√
n). The essence of concentration of measure is exactly this

big order difference between the distribution diameter and what Gromov called “observation diameter” and
that we want to define here more simply as the quantity

Do(X) ≡ sup
f:Rn→R

1-Lipschitz

E [|f(X)− f(X ′)|] , (2)

for X ′ an independent copy of X. In this theory, the concentration of a vector can be strictly defined through
the concentration of its observation that in a sense precipitate in R the high dimensional concentrated
structure.

Example of non concentrated random vectors
The presentation would be incomplete without counterexample. One may consider for instance the random
vector Z = [X, . . . ,X] ∈ Rn where X ∼ N (0, 1). Here the metric diameter is of order O(

√
n), which is the
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same as the diameter of the observation 1√
n
(X + · · ·+X) (the mapping (z1, . . . , zn) 7→ 1√

n
(z1 + · · ·+ zn) is

1-Lipschitz).

√
n

X

+ =

Y
2
√
n

P(X + Y = 0) = 1
2

Figure 2: The sum of two concentrated random vectors can be non concentrated

Actually in this last example, any sub-sequence of the entries of Z would form a non concentrated random
vector. For the sake of completeness, let us now be slightly more crafty and present as depicted on Figure 2,
an example where X and Y are concentrated but not (X,Y ). This example is obtained considering a random
vector X, uniformly distributed on the sphere

√
nSn−1 and an other random vector Y ∈ Rn defined as

Y = ϕ(X) where, for any x = (x1, . . . , xn) ∈ Rn, ϕ(x) = x if x1 ≥ 0 and ϕ(x) = −x otherwise. All linear
observations of X + Y are concentrated (it can be shown that the linear concentration is stable through
summation) but this is not the case for all Lipschitz observations. The observation ∥X + Y ∥ has a one-out-
of-two chance to be equal to 0 or to be equal to 2

√
n which means that:

P
(
|∥X∥ − ∥X ′∥| ≥

√
n
)
=

1

2
.

One can then show that the observable diameter is at least of order O(
√
n), which is the metric diameter of

X + Y . This effect is due to the fact that f is clearly not Lipschitz, and Y in a sense “defies” X.

Relevant hypothesis for machine learning regular data sets
Apart from its structural flexibility that will be demonstrated in the first chapter of this manuscript, the
theory of concentration of the measure also appears, for several aspects, to be well adapted to the study
of regular machine learning problems. When X is Gaussian with zero mean and unit variance or when it
is uniformly distributed on the sphere

√
nSn−1 (which is a very similar hypothesis thanks to a well known

result of Poincaré) inequality (1) is satisfied for any 1-Lipschitz mapping. That means in particular that
any 1-Lipschitz transformation Φ(X) ∈ Rn of such vector satisfies the same inequality. This aspect is of
capital importance because it opens the possibility to construct a lot of concentrated vectors that would not
present independence relation between the entry or any symmetry relation as the one imposed by Gaussian
distribution or uniform distribution on the sphere. In particular it allows us to believe that this concentration
hypothesis can be adopted to a lot of diverse machine learning problems.

To give a partial but somehow convincing justification for the adoption of this assumption as a basis
to machine learning theoretical inferences, we resort to the fundamental example of Generative adversarial
neural network (GAN) that are able to construct realistic image as Lipschitz transformation of a Gaussian
noise, demonstrating this way that some distribution of concentrated random vectors are very close to the
data encountered in machine learning problems ([SLTC20]). Figure 3 presents some interesting samples of
some of these artificially generated images.

Actually what seems to limit the range of application is the exponential concentration function on the
right of the inequality in (1). It imposes that all the moments of the entries are bounded which exclude most of
heavy tailed distribution from the scope of our study. Some inferences could be made with other concentration
functions, but since these uses are quite marginal we did not take the time to explore these possibilities. Still,
in Part III we study the performances of a robust estimation of scatter matrices of distribution presenting
an exponentially concentrated component and an heavy tailed component (like Student distributions for
instance). In that case, we adopt some light hypotheses on the first moments of the heavy tailed component
to be able to infer some convergence bounds.
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Figure 3: GAN generated images built from Gaussian noise with Lipschitz transformations. They follow a
concentrated distribution.

More generally, it should be pointed out that because of the averaging effects it introduce, the concentra-
tion of measure phenomenon is perceptible in almost any machine learning algorithm and should therefore
be kept in mind, the same way that data scientist keep constant concern of over-fitting to produce efficient
algorithm. In particular concentration of the measure might explain how the number of weights in neural
networks is related to the variability of the outputs and speed of exploration.

b Resort to Random Matrix Theory to predict performances

Performances related to first statistics of the data
When looking forward to express the performances of a given algorithm, one has to wonder with which
elements of the problem he will be able to express the result. For modern image classification tasks for
instance, to be able to accurately distinguish images of cats from images of dogs, it is not easy to assess
what are the relevant elements of the distribution of cats and dogs on which depends the efficiency of the
algorithm. The truth is that it relies on feature extraction which is peculiar to each kind of data, therefore
attempts to formalize such tasks and, in a sense, “measure their difficulty” seems rather arduous.

Hopefully there exists still a wide range of algorithms whose performances is still under question and that
appear to rely on the first statistics of the distributions, that is to say the expectation and the covariance
of the different populations. These algorithms are the one that we targeted for our approach. This concerns
mere ridge regression, but also kernel methods, support vector machine, and more elaborated regularized
empirical risk minimization problems (see Chapter J in Part III).

A first reason to justify this ultimate dependence on the first statistics that we could put forward –
although we could not rigorously apply it – is a result from [KGC18, NBA+18] that states that concen-
trated random vector projections have all the chances to behave like Gaussian vectors after projection on a
deterministic or independent random vector.

Theorem 0.1 (CLT for concentrated vectors [Kla07, FGP07]). Let X ∈ Rn be a random vector with E[X] = 0
and E[XXT ] = Ip, and ν be the uniform measure on the sphere Sn−1 ⊂ Rp of radius 1. If X satisfies (1)
for any 1-Lipschitz mapping f : Rn → R and for two constants C, c > 0 independent with n, then there exist
three other constants C, c, κ > 0 independent with n and a set Θ ⊂ Sn−1 such that ν(Θ) ≥ 1 −

√
nCe−c

√
n

and ∀θ ∈ Θ:

sup
t∈R

∣∣P(θTX ≥ t)−G(t)
∣∣ ≤ κn−1/4,

for G(t) = 1√
2π

∫∞
t
e−u

2/2du.

What prevents practical application of this theorem is the fact that one generally needs this central limit
theorem for specific deterministic vectors θ that could sadly be part of the low probability set Θc. Therefore,
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although one can note in practice that all the projections of concentrated random vectors have Gaussian
distributions, there is no way to resort to this theorem.

Hopefully there exists an other rigorously established reason to justified why all the studied methods lead
to a mere formula on the covariance. It is to be found in random matrix theory thanks to results similar
to the free central limit theorem that states that sufficient independence between the entries leads to the
convergence of the spectral measure to a law depending only on the two first statistics.

Random Matrix Theory for Machine Learning
The well known “curse of dimensionality” imposes to take into account both the number of data and the size
of the data to provide rigorous estimations. This is the natural setting of random matrices hence the resort
to this theory for a rigorous study of machine learning algorithm. The random matrices we study are the
same as the one introduced by Wishart at the beginning of the 20st century [Wis28]. They write 1

nXX
T

for given random matrices X = (x1, . . . , xn) of independent columns that typically represent the different
samples of a data set (Wishart was rather considering Matrices with independent Gaussian entries). The non
centered sample covariance matrix 1

nXX
T naturally appears in a lot of supervised or unsupervised machine

learning problem because it contains a lot of information regarding the relations between the means and the
covariances of the different populations of the (xi)i∈[n] but also about the “signals” that might be carried by
several of the xi’s. In addition, it can be related to kernel matrices 1

nX
TX or 1

nϕ(X
TX) where ϕ : R → R

acts entry-wise, as it has been shown in [CB16].
The core objective of the theory is the understanding of the law of the eigen values. Without looking

at the mutual dependencies of the random eigen values, we will be particularly interested here in the mere
spectral distribution

1

p

p∑
i=1

δλi ,

where λ1, . . . , λp are the eigen values of 1
nXX

T . The spectral distribution is traditionally estimated thanks
to the Stiltjies transform g : C \ {λ1, . . . , λp} → C defined for any z ∈ C \ {λ1, . . . , λp} as:

g(z) ≡ 1

p

p∑
i=1

1

λi − z
.

However, the problems that interest us generally require to look at the projection on the eigen spaces of
1
nXX

T . Insights on this matricial projection are provided thanks to the so-called resolvent R(z) = ( 1nXX
T −

zIp)
−1 that satisfies in particular g(z) = 1

p Tr(R(z)). Without going to far into details provided at the
beginning of Part II, let us simply state that one needs at what point to estimate quantities of the form:

Tr(AR(z))

for deterministic matrices A satisfying ∥A∥F ≤ 1 (where ∥ · ∥F denotes the Frobenius norm i.e. the natural
euclidean norm on Mp,n, also called the Hilbert-Schmidt norm). One of our important achievement is the
expression of tight convergence bounds of the resolvent towards a so-called “deterministic equivalent” which
is a deterministic matrix allowing to estimate linear forms of the resolvent. In particular we introduce a
deterministic matrix R̃(z) such that, given a constant ε > 0 independent with n, for all z at a distance bigger
than ε to the spectrum of 1

nXX
T , we have the concentration inequality:

P
(∣∣∣Tr(A(R(z)− R̃(z)))

∣∣∣ ≥ t
)
≤ Ce−cnt

2

+ Ce−cn,

for some constants C, c > 0 independent on n. It is easy to show that R̃(z) = E[R(z)] would satisfy this
inequality, the main difficulty is actually to show the convergence of E[R(z)] towards a computable estimate.
This computable deterministic equivalent is introduced thanks to a well known fixed point equation displayed
in (3) below.
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Natural hypotheses on the data matrix

We spend a lot of time on the choice of a good trade-off between the generality of the hypotheses and the
efficiency of the result. Several settings were tried and for simplicity we will just present in this manuscript
two of them. All over the manuscript, we will use the notations:

mi = E[xi], Ci ≡ E[xixTi ] and Σi ≡ Ci −mim
T
i .

First we assume that p = pn seen as a sequence of integer numbers depending on n satisfies p ≤ O(n). Some
authors also require that n ≤ O(p) but we did not see the importance in our proof since the normalization
of XXT is done with n and not with p.

Second, we require supi∈[n] ∥E[xi]∥ to be bounded independently with n (and p). We provided some results
for the case when the data x1, . . . , xn could share a finite number of signals of order O(

√
n) in [Lou21] but

we eventually decided not two mention them here because the estimation of Tr(AR(z)) when ∥A∥F ≤ 1 with
good convergence bounds requires the hypothesis supi∈[n] ∥E[xi]∥ ≤ O(1) mainly because of Proposition B.50

When the columns x1, . . . , xn follows a non bounded number of distributions, we needed to assume that
for all i ∈ [n], Σi ≥ κIp, for some constant κ > 0. However we are not sure that this assumption is necessary.

Finally the most important hypothesis is of course the concentration of the data matrix X that can follow
two kind of assumptions (i) the Lipschitz concentration where X satisfies (1) for any 1-Lipschitz mapping
for the Frobenius norm and (ii) the convex concentration where X satisfies (1) only for 1-Lipschitz and
convex mappings. One could have wished to take advantage of the independence of the data x1, . . . , xn to
only adopt assumptions on the distributions of the x′is and not on the whole matrix. One can indeed find
in the literature some log-concave hypotheses that are stable through product of measures. But the natural
optimal hypotheses should rather be found in [GRST17, GRS+18] where it is shown that some transportation
inequalities ensures what they call “dimension free concentration inequalities”. More precisely, they give a
necessary and sufficient condition on the laws of the xi for the matrixX to be concentrated independently with
n (with conditions provided both for Lipschitz and convex concentration). This result is of high importance,
however, we will not make use of it for the sake of simplicity and merly assume the concentration of the
matrix X as a whole.

c Notation and operation with concentration inequalities

Notations

Originally, concentration of the measure was introduced thanks to geometrical ideas concerning very general
object expressed with measures and integrals signs rather than probabilities (with P) and expectations (with
E). At that time, the resort to the conceptual formalism of probabilities would have been useless and inefficient
since the theory was first conceived from a subtle control on the measurable sets. However, once the important
theorem on fundamental concentrated class of distributions are introduced, it appears appropriate to let the
formalism conceptually evolve in order to simplify calculus.

We meet in the study of concrete statistical problems (the best exemple might be the study of (Ip −
1
nXDX

T )−1 withX,D concentrated non independent in Part G) the constant resort to the kind of inequalities
depicted in (1). This kind of equality admits diverse variants that are not valid for the same class of function f ,
for the same parameters C, c > 0 nor for the same concentration function t 7→ Ce−ct

2

. For this reason, instead
of rewriting each time the same heavy formulation or mentioning an equation reference with specifications on
the precise setting, we pretentiously introduce a graphic personal notation that will hopefully simplify and
clarify the inferences.

The central object when looking at concentration of the measure (that only concerns big dimension) is
the observable diameter that is given by the parameter c in (1). The parameter C is generally – at least
in our applications – a numerical constant that we maintain to be independent with the dimensions of the
problem (mainly p and n). Therefore we chose a notation able to (i) provide the class of function f for which
(1) is valid, (ii) display the concentration function and (iii) the observable diameter.

As an example (full rigorous precision is given in Part I, Definitions 9, 14 and 18 for respectively the
Lipschitz, linear and convex concentration), if (1) is valid for any 1-Lipschitz mappings f , and c writes c′/σ2

n
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for a given sequence σ = (σn)n∈N ∈ RN
+ depending on n and a constant c′, independent with n, we note:

X ∝ E2 (σ) .

Operations
To justify the choice and demonstrate the efficiency of such a notation, let us briefly present its combination
with some of the operation on concentrated vectors. Let us consider X,Y ∈ Rn satisfying X ∝ E2(σ) and
Y ∝ E2(θ) for given sequences σ = (σn)n∈N and θ = (θn)n∈N of ∈ RN

+. One can express the concentration of
different operations:

• The Lipschitz transformation : given a sequence of λn-Lipschitz transformations Φn : Rn → Rn:

Φ(X) ∝ E2(λσ).

• The sum:

X + Y ∝ E2(σ + θ).

• The product. Given a product Rn × Rn → Rn satisfying ∀x, y ∈ Rn, ∥xy∥ ≤ ∥x∥∥y∥, we have the
concentration:

XY ∝ E2(E[∥Y ∥]σ + E[∥Y ∥]θ) + E1(σθ),

where E1(σ) denotes a concentration function t 7→ Ce−ct/σn .

• The argmin of a convex problem. Given a deterministic C1 mapping Φ(X,Y ) : Rn×Rn → Rn such that
∀x, y ∈ Rn ×Rp, ∥ ∂ϕ∂X (x,y)

∥ ≤ ν and ∂ϕ
∂Y (x,y)

is a positive symmetric matrix satisfying ∂ϕ
∂Z (x,y)

≥ κIp,
for some sequences ν, κ ∈ RN

+, the unique solution to the equation:

ϕ(X,Z) = 0, Z ∈ Rp

satisfies the concentration inequality Z ∝ E2(σνκ )

d Outline of the work

Concentration basics
The first part of the thesis aims at setting the ground for a concentration of measure approach to Machine
learning algorithms. The definitions and basic properties are mainly taken from [Led05] and we added a lot
of personal contribution that can be found in [LC18, LC22a]. The presentation first gives a lot of diverse
inferences that can be obtained for random variables, we adapt them to the high dimension case in a second
step with the introduction of three notions of concentration (Lipschitz, convex and linear) that are equivalent
in low dimension. We then provide the concentration rules for the major operations that will be necessary
in the study of machine learning algorithms. Mainly we look at norms, concatenations, products (and more
importantly pseudo products allowing control on the variability towards each variable), solutions to convex
minimization problems and contractive fixed point equations...

We display at the end of this presentation of concentration our personal approach to convex concentration
with the introduction of the transversal concentration to lighten the convexity hypotheses required for an
observation to concentrate under this rigid concentration setting. Our contribution in this last part is purely
formal since most of the results (in particular the concentration of the product of convexly concentrated
random vectors) was already known. It is however useful for the next part of the thesis that will set in
particular the concentration and the estimation of the resolvent under convex concentration settings.
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Concentration and estimation of the resolvent

The second part of the manuscript employs the different tools and notations of concentration of the measure
to state the concentration and estimation of the resolvent, it mainly relies on the paper [LC22c]. If one
introduces the notations:

Iz : ∆ 7→ Diagi∈[n]

(
z − Tr

(
ΣiQ̃

∆
))

and Q̃∆ ≡

(
Ip −

1

n

n∑
i=1

Σi
∆

)−1

, (3)

then the matrix Q̃Λ̃z

, where Λ̃z satisfies Λ̃z = Iz(Λ̃z), is a deterministic equivalent of the matrix Qz ≡
(In− 1

znXX
T )−1. To be able to show the existence and uniqueness of Λ̃z, but also to get efficient bounds on

the concentration in the case where the columns of X are not identically distributed, one needs to introduce
a semi-metric quite close to the hyperbolic metric and that writes for two diagonal matrices D,D′ ∈ Dn(C):

ds(D,D
′) =

∣∣∣∣∣ D −D′√
ℑ(D)ℑ(D′)

∣∣∣∣∣ .
On a subset of Dn(C), the mapping Iz is 1-Lipschitz for the semi metric ds.

Quite interestingly, a very analog semi-metric defined on Dn(R+) (therefore without the imaginary parts)
is used to prove in Part III, Chapter I the validity of some robust estimators of scatter matrices. That is why
we present at the beginning of the part on the resolvent a full chapter on these two semi-metrics that share
strong properties of stability.

With the semimetric ds at hand it is possible after elaborate inferences to set the quasi-asymptotic
convergence of the resolvent R(z) ≡ (zIp − 1

nXX
T )−1 towards its deterministic equivalent for a parameter

z being possibly close to the spectrum (but independent with n) and with convergence bounds provided in
O(1/

√
n) for the Frobenius norm.

We then estimate the power of the resolvent that appears in the expression of the mean square error of the
Ridge regression and of ELMs studied in Part III, Chapter H. Actually the estimation of the square is enough
but we decided to put the estimation a little bit further since we found the formulas somehow inspiring.

We further provide a brief study of the resolvent under convex concentration hypotheses that was con-
ducted in [Lou21]. The results are naturally weaker than what could be obtained under Lipschitz concen-
tration hypotheses, in particular we could just obtain the linear concentration of Q but we provide some
techniques to deduce similarly the concentration of matrices of the form QAX for given deterministic matrix
A ∈ Mp or any QP (XXT ) for a polynomial P having coefficient in Mp

We end this part with an important chapter relying on the previous estimation of the resolvent and some
inferences on the concentration of the product of random vectors to set conditions that allow to estimate
resolvents (Ip − XDXT )−1 when X and D are random and non independent. It requires a fine work of
estimation that, to our knowledge, was not done before and that takes advantage of the short notations of
concentration we introduced. Under certain condition on the dependence of D towards each of the columns
xi of X, it is possible to devise a deterministic equivalent for (In − 1

nXDX
T )−1. It relies on the estimation

of (In− 1
nXD̃X

T )−1 for a deterministic matrix D̃, which is solved by the previous study of (In− 1
nXX

T )−1

when the columns of the x1, . . . , xn are not identically distributed. This estimation is at the core of the
justification of the leave-one-out method exposed in Part III, Chapter J.

Applications to machine learning

The last part is dedicated to a selection of application in machine learning. Following the work presented
in [LLC18], we first study the so-called “extreme learning machines” (ELM) where one wants to fits a label
vector Y = (y1, . . . , yn) ∈ Md,n that associates to each datum xi a label yi ∈ Rd that could characterize its
class or a specific feature that one wants to estimate. The method consists in solving the problem:

Minimize
1

n

n∑
i=1

∥βTσ(WTxi)− yi∥2 + γ∥β∥2F , β ∈ Rq,
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for given γ > 0, σ : R → R applied entry-wise and W ∈ Mp,q, a random matrix aiming at providing “random
features” of the data X. This work does not take into account the randomness of X, it basically shows that
the algorithm acts asymptotically like a kernel method whose performances closely depends on the matrix
1
nE[σ(WTX)Tσ(WTX)] that we express for different activation functions σ.

A second work that is taken from [LC22b] builds some bridge with heavy tailed statistics. The goal is to
estimate a Scatter matrix which is defined as a surrogate for covariance matrices for distribution that does
not admit second order moment. The data matrix we consider decomposes:

X = Z
√
τ +m1T ,

where m ∈ Rp is a deterministic mean, Z ∝ E2(1) has zero mean and τ might not admit a second order
moment, we just need to assume that 1

n

∑n
i=1 τi ≤ O(1). The diagonal matrix τ is seen here like a noise and

one wants to retrieve m and statistical properties of Z.
This is done thanks to the computation of Ĉ, the M -estimator of the scatter matrix defined as unique

solution to the equation:

Ĉ = ϕ(Ĉ) where ϕ :M 7→ 1

n

n∑
i=1

u

(
1

n
xTi (M + γIp)

−1xi

)
xix

T
i ,

where u : R+ → R+ satisfies limx→∞ u(x) = 0. The resolution of the problem starts from the remark that ϕ
is 1-Lipschitz for the semi-metric ds defined for any D,D′ ∈ Dn(R+):

ds(D,D
′) = sup

i∈[n]

∣∣∣∣∣Di −D′
i√

DiD′
i

∣∣∣∣∣ .
Then one can deduce properties that u has to satisfies to enure existence, uniqueness and concentration of
Ĉ. We eventually provide an estimation of the the resolvent Ĉ from which we can deduce the convergence of
its spectral distribution.

The study of extreme learning machines is quite simple because β admits an explicit form
1
nΣ
(
1
nΣ

TΣ+ γIn
)−1

Y T . In a last work, we study the implicit formulation of solutions to empirical risk
minimization that writes:

Minimize
1

n

n∑
i=1

hi(β
Txi)∥2 + γ∥β∥2, β ∈ Rq,

where h1, . . . , hn : R → R are n deterministic convex mappings. We got our main inspiration from [Kar13]
who introduces a technique called “leave-one-out” to be able to estimate properly the statistics of β. The
idea is to set a relation between β and a vector β−i that would be deprived of the contribution of xi, then,
replacing βTxi with βT−ixi, it should be possible to obtain, under Gaussian hypotheses on xi, a pseudo-fixed
point equation on the first statistics of the Gaussian random variable βT−ixi.

We were able to set rigorously the leave-one-out method validity without Gaussian hypotheses and thanks
to the estimations we did on the resolvent (Ip − 1

nXDX
T )−1 in Part II. However we are still not able to

show the existence and uniqueness of the final fixed point equation providing estimates for the first statistics
of β. We believe that the Gaussian hypotheses are not necessary and we could heuristically design a simpler
fixed point equation that was verified empirically and that we hope to mathematically verify soon, with the
widest hypotheses possible.

e Open questions, next steps
Our main efforts in this thesis were dedicated to the devise of a proper concentration of measure and random
matrix framework to study machine learning algorithms. Although both theory were quite advanced, some
work still needed to be done among which we can mention the estimation of the resolvent of matrices 1

nXDX
T

with D and X random and non independent or the concentration of the solution of convex minimization
problems and pseudo-product of random vectors. Most of the time was spent on up-stream theoretical
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demonstrations, and as a consequence, practical results on machine learning performances sometimes lack
thorough study of the possible improvements of the method. It would be however very interesting to compare
the different methods and identify a standard approach leading to possible generalization, the same way that
ELM asymptotically meet mere Kernel methods. This question is not easy in such an active field of research
where the high rate of publication and the need to follow day-to-day technical development imposes a fast
pace that undermine any attempt to unify a possible theory of Machine learning. Some replica methods
already allowed to express the minimal classification error that an algorithm could reach for very simple
linear Gaussian models [BKM+17, LM19]. We can then wonder if these inferences can generalize to more
complex models, and the concentration of measure framework might be perfectly fitted to this task.

Naturally, the more elaborate an algorithm becomes, the harder it is to find a valid theoretical formal-
ization. In particular, we do not envision clearly which random matrix theory inferences might be employed
to solve modern machine learning problems evolving neural networks. Mainly because of the aforementioned
reason that the performances depends on complex features very specific to the data and quite far from the
traditional objects seen in random matrices. After working with classical deep learning neural networks one
might have the impression that the main subtlety is to be found in the feature design (which could be more
related to traditional sound processing, image processing...) and the dense layers at the end of the network
just work as highly weighted regressors of low interest that merely try to approach multivariate mappings
with piecewise linear mappings (in case of a ReLu activation).

The more advanced (and successful) methods relying on the mechanism of attention [VSP+17] look far
more interesting. This mechanism is a natural improvement of the “blind” convolutions in image processing
because it allows to find correlation inside the data relevant for the given task. The so-called “transformer
neural networks”, after becoming state-of-the-art language processing algorithms, shew high performances on
image processing and other diverse tasks thanks to an impressively flexible architecture able to adapt to a
high variety of data. Their modular architecture and the simple scaling it allows seems perfectly fitted to
interesting mathematical formalism that might require some information theory inferences.

Finally, if we do not look at the methods but at the data, an interesting development might be to try to
adapt the tools we presented to sparse settings. It is quite fascinating to see that under sparse assumptions the
spectral distribution of the sample covariance matrix still converges to a law but not to the Marcenko Pastur
law. The asymptotic spectral distribution was computed with some physician inferences thanks to so called
“cavity method” [RCKT08] or “replica method” [Küh08]. More complex work was done to understand the
behavior of the largest eigen values of Wigner-like sparse matrices [EKYY13, HLY20] and sample covariance
matrices in [HLS19]. In the case of Wigner-like matrices it seems complicated to remove the hypothesis of
independence between the entries but for sample covariances matrices, it would be interesting to keep our
concentration of measure approach to understand sparse statistics appearing in a lot of practical examples
(PCA with sparse data, adjacency matrix of directed graph). In particular, one would like to know what is
the structural difference, in terms of concentration, that introduces a transition in the shape of the spectral
distribution between non-sparse and sparse data.

In a field of research where the quantity is often provided at the expense of quality, rigorous theoretical
insights are more than necessary to put some order and identify the meaningful axes of research. The task
seems enormous but we hope that its theoretical attractiveness will bring data scientists to have a more
sensible approach to their work.
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iif “if and only if”
E Typical normed vector space over R, endowed with the norm ∥ · ∥.
E∗ Dual space of E (the set of linear maps from E to R).
Conv(A) Convex hull of A ⊂ E (i.e., Conv(A) = ∩{C ⊂ E, C convex, C ⊃ A}).
A∗ A \ {0}
Ac Complementary of A. If A ⊂ E, Ac = E \A = {x ∈ E, x /∈ A}.
1A Indicator function of A ⊂ E, 1A : E → {0, 1} and 1A(x) = 1 ⇔ x ∈ A. If A is not a

set but an assertion (like A = A(t) = (t ≥ 1)), 1A = 1 if A is true and 1A = 0 if A is
false. If 1 presents no index, it designates a vector full of one with a convenient size
for the context.

F(A,B) Set of mappings from A to B, F(A) = F(A,B).
L(E,F ) Given two vector spaces E,F , L(E,F ) is the set of continuous linear mappings from

E to F .
A(E,F ) Given two vector spaces E,F , A(E,F ) is the set of continuous affine mappings from

E to F . If f ∈ A(E,F ), f − f(0) ∈ L(E,F ).
N Set of natural numbers
[n] for n ∈ N, [n] = {1,. . . , n}
R Set of real numbers ; R+ = {x ∈ R | x ≥ 0} ; R− = −R+. If x ∈ Rp, one notes [x]i,

or more simply xi, 1 ≤ i ≤ p, the ith entry of the vector x
⌊x⌋ Integer part of x ∈ R, ⌊x⌋ ∈ N and verifies ⌊x⌋ ≤ x ≤ ⌊x⌋+ 1 = ⌈x⌉.
Sp−1 Sphere of Rp (Sp−1 = {x ∈ Rp | ∥x∥ = 1}).
i Integer or complex number satisfying i2 = −1
C Set of complex numbers.
ℜ(z),ℑ(z) Real and Imaginary part of z ∈ C, if z = ℜ(z) + iℑ(z) where ℜ(z),ℑ(z) ∈ R
H Poincaré half plane H = {z ∈ C,ℑ(z) > 0}.
z̄ conjugate of z, z̄ = ℜ(z)−ℑ(z)i
Mp,n Set of real matrices of size p× n. If M ∈ Mp,n, one notes [M ]i,i or more simply Mi,j

the entry at the line i and column j. If n = p, we simply note Mp = Mp,n. Given a
set A, Mp,n(A) is the set of matrices with entries in A

Diag Diagonal operator. If M ∈ Mp,n, Diag(M) = (Mi,i)1≤i≤min(p,n) ; if x ∈ Rp,
Diagq,n(x) ∈ Mp,n, [Diagp,n(x)]i,i = xi if 1 ≤ i ≤ min(p, q, n) and [Diagp,n(x)]i,j = 0
if i ̸= j, for 1 ≤ i ≤ p, 1 ≤ j ≤ n.

Sp(M) Spectrum of the matrix M .
Tr Trace operator on Mp, ∀M ∈ Mp,TrM =

∑p
i=1Mi,i.

·T Transpose operator on Mp, ∀M ∈ Mp,n, [MT ]i,j =Mj,i, 1 ≤ i ≤ p, 1 ≤ j ≤ n.
Ip Identity matrix of Mp, ([Ip]i, j = 0 if i ̸= j and [Ip]i,i = 1, 1 ≤ i, j ≤ j).
Sp Set of permutations of {1, . . . , p} ; Sp,n = Sp ×Sn.
≺ Majorization relation, see Definition 19
x↓ Decreasing version of x ∈ Rp, ∃σ ∈ Sp such that ∀i ∈ {1, . . . , p}, [x↓]i = xσ(i) and

[x↓]i ≤ [x↓]i−1 for i ≥ 2.

xvii



xviii Symbols

Sp Set of symmetric matrices of Mp : S ∈ Sn ⇔ Si,j = Si,j , 1 ≤ i ≤ p ; S ∈ S+
p ⇔ ∀u ∈

Rp, uTSu ≥ 0 ; S ∈ S−
p ⇔ −S ∈ S+

p . Given S1, S2 ∈ Sp, we say that S1 is greater
than S2 and we note S1 ≥ S2 if S1 − S2 ∈ S+

p .
S1/2 Square root of the nonnegative symmetric matrix S ∈ S+

p (with the diagonalization
S = PTΛP , P ∈ Op, Λ ∈ Dp, we define S1/2 = PTΛ1/2P where [Λ1/2]i,i = Λ

1/2
i,i ).

Op Set of orthogonal matrices of Mp : P ∈ Op,n ⇔ P−1 = PT ; Op,n = Op ×On.
Dp,n. Set of diagonal matrices of Mp,n : D ∈ Dp,n ⇔ D = Diagp,n(Diag(D)) ; D ∈ D+

p,n ⇔
Di,i ≥ 0, 1 ≤ i ≤ min(p, n) ; D ∈ D−

p,n ⇔ −D ∈ D+
p,n, we further note D+

n ≡ Dn(R+).
Given a set A, Dp,n(A) is the set of diagonal matrices with entries in A. When n = p,
we simply note Dp = Dp,p.

Pp Set of permutation matrices of Mp : P ∈ Pp ⇔ P ∈ On and (∃σ ∈ Sp, Pi,j =
1 ⇔ σ(i) = j) ; we also define Pp,n = {(U, V ) ∈ Pp × Pn | UIp,nV T = Ip,n} where
Ip,n = Diagp,n(1).

∥ · ∥q ℓq-norm on Rp for two integers p, q ∈ N∗ ; ∥x∥q = (
∑p
i=1 x

q
i )

1/q.
∥ · ∥ Classical norm of the vector space E one is working on : if E = Rp, the euclidean

norm ∥ · ∥2 ; if E =Mp,n, the spectral norm (∀M ∈ Mp,n : sup∥u∥=1 ∥Mu∥).
∥ · ∥1 on Rp, the ℓ1 ; on Mp,n, the nuclear norm (∀M ∈ Mp,n, ∥M∥1 = Tr((MMT )1/2)).
∥ · ∥F Frobenius norm, ∀M ∈ Mp,n : ∥M∥F =

√
Tr M̄TM =

√∑p
i=1

∑n
j=1 |Mi,j |2.

∥ · ∥∗ Dual norm on E∗. If f ∈ E∗, ∥f∥∗ = sup∥x∥≤1 f(x).
∥ · ∥ℓ∞ Depends on the use, given p normes vector spaces (E1, ∥ · ∥1), . . . , (Ep, ∥ · ∥p), given

any x1, . . . , xp ∈ E1 × · · · × Ep, ∥(x1, . . . , xn)∥ℓ∞ = supi∈[p] ∥xi∥i.
∥ · ∥d Diagonal euclidean norm. For M ∈ Mn,p, ∥M∥d =

√∑
i∈min(n,p) |Mi,i|2

∥ · ∥∞, ∥ · ∥B(y0,r) Infinite norm and infinite semi-norm on subset. Given f : E → (F, ∥ · ∥F ), ∥f∥∞ =
supx∈E ∥f(x)∥F , ∥f∥B(y0,r) = supx∈B(y0,r) ∥f(x)∥F .

∥ · ∥L Lipschitz semi-norm. Given f : (E, ∥ · ∥E) → (F, ∥ · ∥F ), ∥f∥L = supx ̸=y
∥f(x)−f(y)∥F

∥x−y∥E
.

∥ · ∥A,B For A ∈ Mp, B ∈ Mn, M ∈ Mp,n, M ∈ Mp,n, ∥M∥A,B ≡ ∥AMB∥F
Bt Closed ball of E of size t > 0, Bt = {0}t = {x ∈ E | ∥x∥ ≤ 1}, when t = 1, we note

B = B1. We also use the notation B∥·∥(x, t) = {x}t = {y ∈ E ∥ ∥x − y∥ ≤ t}, the
index ∥ · ∥ could be of course a distance d or simply unspecified when we implicitly
consider the classical norm of E.

P We implicitly suppose that there exists a probability space (Ω,F ,P) where F is a
sigma-algebra of the set Ω and P, a probability measure defined on the elements of
F . The random vectors we consider are then P-measurable applications defined on Ω
and taking value in normed vector spaces endowed with the Borel σ-algebra. In that
setting, given a random vector X ∈ E (i.e. X : Ω → E), for any Borel set A ⊂ E, we
note P(X ∈ A) = P({ω ∈ Ω, X(w) ∈ A}) and for any measurable function f : E 7→ R
and t ∈ R, we note P(f(X) ≥ t) = P({ω ∈ Ω, f(X(ω)) ≥ t})...

E The expectation operator. For any random vectorX ∈ E and any measurable function
f : E → R, we define E[f(X)] =

∫
Ω
f ◦ XdP. When E has finite dimension, it is

possible to define EX by integrating all the coordinates of X.
X(A) Given a rndom vector X and an event A ⊂ Ω, X(A) ≡ {x(ω), ω ∈ Ω}.
a.s. Almost surely, an event (i.e., an element of F) A is true almost surely iff P(A) = 1.

We will often abusively mix up random vectors and classes of almost surely equal
random vectors.

i.i.d. “independent and identically distributed”.
σ(X) If X ∈ Mp,n, σ(X) ∈ Rmin(p,n)

+ is the vector constituted of the singular values of X
in increasing order (i.e. the eigenvalues of (XXT )1/2). If X ∈ E is a random vector,
σ(X) is the σ-algebra generated by X (i.e., the σ-algebra of sets of Ω containing all
the sets X−1(B) when B is a Borel set of E).
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E[·|·] Conditional expectation. Given a random variable X ∈ R F-measurable and G, a sub
σ-algebra of F , E[X|G] is the a G-measurable random variable that satisfies for any
additional G-measurable random variable Y , E[Y E[X|G]] = E[Y X]. verifies for any
G-measurable random variable Y , E[Y X] = E[Y E[X|G]]. Given two random variables
X,Y ∈ R, E[X|Y ] = E[X|σ(Y )].

P(·|·) Conditional probability. Given a Borel set A ⊂ R and a random variable X ∈ R,
P(A|X) = E[1A|X].

∈,± Concentration around a pivot or around a deterministic equivalent, see Definitions 3
and 14.

O(σ),≤,≥ see Definition 8.
∝ Lipschitz concentration, see Definitions 2 and 9 respectively for random variables and

random vectors.
∝c Convex concentration, see Definition 17.
∝T· Transversal concentration, see Definition 20.
Do(X) Observable diameter of a random vector X, see (2)
dµ If µ is a probability law defined on E, for any function f : E → R, such that µ(f) =∫

fdµ = 1, we note fdµ the measure verifying for all Borel set B : fdµ(B) =
∫
1Bfdµ.

λp Lebesgue measure on Rp.
σp Uniform measure on Sp.
νp Exponential measure. If p = 1 ν1 = e|·|

2 dλ1, for p ≥ 1, νp = ν1 ⊗ . . .⊗ ν1 (p times).
βpq Uniform measure on the ball B∥·∥q

of Rp.
N (0, Ip) Distribution of Gaussian vectors of Rp with zero mean and covariance Ip.
η(E,∥·∥) Norm degree, see Definition 16.
g Stieltjes transform of a probability law µ on R. Let D ⊂ R be the maximal Borel set

such that µ(R \D) = 0, then ∀z ∈ C \D, the Stieltjes transform is defined with the
formula g(z) =

∫
D
dµ(w)
w−z .

ds Stable semi metric. Given z, z′ ∈ R+, ds(z, z
′) =

∣∣∣ z−z′√
zz′

∣∣∣, given z, z′ ∈ H,

ds(z, z
′) =

∣∣∣∣ z−z′√
ℑ(z)ℑ(z′)

∣∣∣∣, given D,D′ ∈ D(A), with A = R+ or A = H, ds(D,D′) =

supi∈[n](ds(Di, D
′
i)).

dϕ x Differential of ϕ taken on x, given t ∈ R tending to zero, ϕ(x + th) − ϕ(x) = tdϕ x ·
h+ o(t), d2ϕ x = dψ x for ψ : x 7→ dϕ x.

Rγ(S,∆), Iγ(S,∆) Given S ∈ Snp , ∆ ∈ D+
n , Rγ(S,∆) ≡

(
1
n

∑n
i=1 ∆iSi + γIp

)−1 ∈ Mp, Iγ(S,∆) ≡
Diag

(
1
n Tr (SiRγ(S,∆))

)
1≤i≤n ∈ D+

n , R̃
C

z (∆) ≡ Rz

(
C, ∆

In+∆ΛC

)
and for X ∈ Mp,n,

IX(∆) ≡ I(X ·XT ,∆)
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Assumptions

Chapter F
Assumption 1. p ≤ O(n).

Assumption 2. X ∝ E2.

Assumption 3. X has independent columns x1, . . . , xn ∈ Rp.

Assumption 4. supi∈[n] ∥µi∥ ≤ O(1).

Assumption 5. infi∈[n] Σi ≥ O(1)Ip.

In Section F.2, we replace Assumption 2 with:

Assumption 2c. X ∝c E2.

Chapter H
Assumption 1 bis. p ≤ O(n), m ≤ O(n). In addition:

Assumption 2 bis. The matrix W = (w1, . . . , wm) has independent identically distributed columns.

Assumption 3 bis. W ∝ E2.

Assumption 4 bis. supi∈[m] ∥E[wi]∥ ≤ O(1), ∥X∥ < O(1) and ∥Y ∥∞ < O(1).

Assumption 6 (Function σ). The function σ is Lipschitz continuous with parameter λσ independent of n.

Chapter I
Assumptions 1, 4, 5 and:

Assumption 7. u ∈ S(R+) and there exists u∞ > 0 such that ∀t ∈ R+, u(t) ≤ u∞.

Assumption 2 ter. Z ∝ E2.

Assumption 3 ter. The random vectors z1, . . . , zn are all independent.

Assumption 8. ∥m∥ = O(1).

Assumption 9. 1
n

∑n
i=1 τi ≤ O(1).

Chapter J
Assumptions 1-5 and:

Assumption 10. The mappings fi : R → R, i ∈ [n], are twice differentiable and supi∈[n] ∥fi∥∞,
supi∈[n] ∥f ′i∥∞, supi∈[n] ∥h

(3)
i ∥∞ ≤ O(1).
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Part I

Concentration of the measure framework

1





3

The original theorem owed to Paul Pierre Levy and concerning the concentration of the uniform distri-
bution σp on the sphere Sp writes:

Theorem .2 (Normal concentration of σp, [Led05, Theorem 2.3]). Given a degree p ∈ N and a random
vector Z ∼ σp, for any 1-Lipschitz function f : Rp+1 → R, we have the inequality:

P (|f(Z)−mf | ≥ t) ≤ 2e−(p−1)t2/2, (4)

where mf is a median of f(Z) verifying by definition P(f(Z) ≥ mf ),P(f(Z) ≤ mf ) ≥ 1
2 .

There exist plenty of other distributions that verify this inequality like the uniform distribution on the
ball, on [0, 1]n, or the Gaussian distribution N (0, Ip) that are presented in [Led05] ; more generally, for
Riemannian manifolds, the concentration can be interpreted as a positive lower bound on the Ricci curvature
(see Gromov appendix in [MS86] or [Led05, Theorem 2.4]).

The concentration inequality verified on the sphere will structure our approach in a way that we will try
to express our result with that form as often as possible to pursue Levy’s idea; we will thus choose the short
notation f(Z) ∈ mf ± 2e−(p−1) · 2/2 to express it in a simple way.

As Milman was the first to advocate it ([MS86]), the concentration of a random object appears to be an
essential feature leading immediately to a lot of implications and controls on the object. We do not present
here the historical introduction of concentration of the measure. Rather than the geometric, distribution-
oriented approach, we directly adopt a probabilistic point of view on the notion. That does not mean that
the presentation of the theory will be incomplete. On the contrary, we display here, almost always with their
proofs, all the important theorems and propositions necessary to apprehend the theory and set rigorously
Part II about the sample covariance. The usual approach to the concentration of measure is to start with
geometric inequalities ruling high dimensional Banach spaces and then track from these powerful results some
probabilistic properties on the real functionals, the “observable world”. We propose here a reversed approach
where we start from the probabilistic results on R which offer us some interesting reasoning schemes all the
same. Then, once the reader convinced by the direct computation improvements offered by the theory, we
perform the fundamental step consisting in considering high dimensional concentration properties. Many of
the results are derived from the complete presentation of the theory made by Ledoux in [Led05].
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Chapter A

Concentration of a random variable

A.1 Definitions and first Properties
Given a random variable X ∈ R, any function t 7→ P (|X| ≥ t) satisfies some important features that will
form the definition of the notion of concentration function as a class of objects measuring the concentration
of random variables (the same way as the modulus of continuity measure the continuity of mappings).

Definition 1 (Concentration function). Any non-increasing and left continuous function α : R+ → [0, 1], is
called a concentration function.

Given a random variable Z and a concentration function α, we choose first to express the α-concentration
of Z through the introduction of an independent copy Z ′.

Definition 2 (Concentration of a random variable). Given a concentration function α, the random variable
Z is said to be α-concentrated, and we write Z ∝ α, iff for any independent copy Z ′:

∀t > 0 : P (|Z − Z ′| ≥ t) ≤ α(t). (A.1)

In particular, if we often deal with concentration functions α that take values outside of [0, 1], it is
implicitly understood that we consider in the calculus t 7→ min(min(α(u))u≤t, 1) instead of α.

In Definition 2, we see that α basically limits the variations of the random variable Z. The faster α
decreases, the lower the variations of Z. Instinctively one might hope that this limitation of the variation
would be equivalent to a concentration around some central quantity that will be called a pivot of the
concentration in the following sense:

Definition 3 (Concentration around a pivot). Given a ∈ R, the random variable Z is said to be α-
concentrated around the pivot a, and we write Z ∈ a± α, iff :

∀t > 0 : P (|Z − a| ≥ t) ≤ α(t).

We call the parameter a a pivot because the concentration around a provides similar concentration around
other values close to a. Given θ > 0, let us denote τθ the operator defined on the set of concentration functions
that verifies for any concentration function α:

τθ · α(t) =

{
1 if t ≤ θ

α(t− θ) if t > θ.

Then we have the simple Lemma:

Lemma A.1. Given a random variable Z ∈ R, a concentration function α, two real numbers a, b ∈ R and
θ > 0, we have the implication:{

Z ∈ a± α

∥a− b∥ ≤ θ
=⇒ Z ∈ b± τθ · α.

5
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At first sight, there exists no pivot a ∈ R such that Definition 2 and Definition 3 are equivalent. We can
however find an interesting relation considering the case a = mZ where mZ is a median of Z, verifying by
definition P(Z ≥ mZ) ≥ 1/2 and P(Z ≤ mZ) ≥ 1/2.

Proposition A.2 (Concentration around the median, from [Led05, Corollary 1.5]). Given a random variable
Z, a median mZ of Z and a concentration function α, we have the implications :

Z ∝ α =⇒ Z ∈ mZ ± 2α =⇒ ∃a ∈ R | Z ∈ a± 2α =⇒ Z ∝ 4α( · /2)

where α( · /2) is defined as being the function t 7→ α(t/2).

We see here that if Z is α-concentrated, the tail of Z, i.e., the behavior of Z far from the median, is
closely linked to the decreasing speed of α.

Proof. We need to consider the fact that P (Z = mZ) = ϵ may be non zero. Therefore there exist ϵ1, ϵ2 such
that ϵ = ϵ1 + ϵ2 and:

P (Z < mZ) =
1

2
− ϵ1 P (Z > mZ) =

1

2
− ϵ2.

Let us take t > 0. The first result follows from the inequalities:

P (|Z − Z ′| ≥ t) = P (|Z − Z ′| ≥ t, Z ′ < mZ) + P (|Z − Z ′| ≥ t, Z ′ > mZ)

+ P (|Z −mZ | ≥ t, Z ′ = mZ)

≥ (1/2− ϵ1)P (Z ≥ t+ Z ′ | Z ′ < mZ)

+ (1/2− ϵ2)P (Z ′ ≥ t+ Z | Z ′ > mZ)

+ ϵ P (|Z −mZ | ≥ t)

≥ (1/2− ϵ) (P (Z ≥ t+mZ) + P (mZ ≥ t+ Z))

+ ϵ P (|Z −mZ | ≥ t)

=
1

2
P (|Z −mZ | ≥ t) .

We prove the last implication setting that for any a ∈ R:

P (|Z − Z ′| ≥ t) ≤ P (|Z − a+ a− Z ′| ≥ t)

≤ 2P (|Z − a| ≥ t/2) .

The reason why Definition 2 was presented firstly and thus given the importance of the naturally un-
derlying definition, even though Definition 3 might seem more intuitive, lies in its immediate compatibility
to the composition with any Lipschitz function and more generally with any uniformly continuous function.
The uniform continuity of a function is sized by its modulus of continuity.

Definition 4 (Uniform continuity). Any non decreasing function ω : R+ → R+ continuous and null in 0 is
called a modulus of continuity. Given two normed vector space (E, ∥·∥E) and (F, ∥·∥F ), a function f : E → F
is said to be continuous under the modulus of continuity ω if:

∀x, y ∈ E : ∥f(x)− f(y)∥F ≤ ω(∥x− y∥E).

Of course a function admits a modulus of continuity iff it is uniformly continuous.

Lemma A.3. Let us consider a random variable Z, a concentration function α, and a function f : R → R
continuous under a modulus of continuity ω.We allow ourselves to write ω−1 the pseudo inverse of ω defined
(for ω bijective or not) as : ω−1(w) = inf{t, ω(t) ≥ w}. We have the implication:

Z ∝ α =⇒ f(Z) ∝ α
(
ω−1 ( · )

)
.
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Proof. It is straightforward to write:

P (|f(Z)− f(Z ′)| ≥ t) ≤ P (ω(|Z − Z ′|) ≥ t)

≤ P
(
|Z − Z ′| ≥ ω−1(t)

)
≤ α

(
ω−1 (t)

)
,

since for any w, t > 0, ω(t) ≥ w =⇒ t ≥ ω−1(w) by definition of the pseudo inverse.

The stability with respect to ω-continuous functions reflects the fact that a ω-continuous function contains
the spreading of the distribution up to the modulus of continuity.

One property that we could expect from α-concentration is a stability towards the sum. Up to a multi-
plying factor of 2, this is the case :

Lemma A.4. Given two random variables Z1 and Z2 and two concentration functions α, β, we have the
implication:

Z1 ∝ α and Z2 ∝ β =⇒ Z1 + Z2 ∝ α( · /2) + β( · /2).

Proof. Recall that Z ′
1 and Z ′

2 are two independent copies respectively of Z1 and Z2. There is no reasons for
Z ′
1 to be independent of Z2 (resp., Z ′

2 of Z1). The idea is to decompose the threshold t > 0 in t
2 + t

2 :

P (|Z1 + Z2 − Z ′
1 − Z ′

2| ≥ t)

≤ P
(
|Z1 − Z ′

1| ≥
t

2

)
+ P

(
|Z2 − Z ′

2| ≥
t

2

)
≤ α

(
t

2

)
+ β

(
t

2

)
.

Remark A.5. This time the idea of the demonstration works the same with the setting of Definition 3, and
we have:

Z1 ∈ a± α and Z2 ∈ b± β =⇒ Z1 + Z2 ∈ a+ b± α( · /2) + β( · /2).

In a first approach, α-concentration performs badly with the product, as it requires a bound on both
random variables involved which greatly reduces the number of possible applications.

Lemma A.6. Given two bounded random variables Z1 and Z2 such that |Z1| ≤ K1 and |Z2| ≤ K2 and two
concentration functions α, β:

Z1 ∝ α and Z2 ∝ β =⇒ Z1Z2 ∝ α

(
·

2K2

)
+ β

(
·

2K1

)
.

Proof. Given t > 0:

P (|Z1Z2 − Z ′
1Z

′
2| ≥ t) ≤ P

(
|Z1(Z2 − Z ′

2)| ≥
t

2

)
+ P

(
|(Z1 − Z ′

1)Z
′
2| ≥

t

2

)
≤ P

(
|Z2 − Z ′

2| ≥
t

2K1

)
+ P

(
|Z1 − Z ′

1| ≥
t

2K2

)
.

Actually, the setting of Definition 3 is more convenient here than the setting of Definition 2 because it
allows us to only require one random variable to be bounded:

Lemma A.7. Given two random variables Z1 and Z2 such that |Z1| ≤ K1, two pivots a, b ∈ R and two
concentration functions α, β, if b ̸= 0 one has the implication:

Z1 ∈ a± α and Z2 ∈ b± β =⇒ Z1Z2 ∈ ab± α

(
·

2 |b|

)
+ β

(
·

2K1

)
,

if b = 0, then the concentration of Z1 and Z2 implies that Z1Z2 ∈ 0± β( ·
K1

).
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We may even go further and dispense with the bounding hypothesis to get in this case a slightly more
complicated concentration form:

Proposition A.8. Given two random variables Z1 and Z2, two pivots a, b ∈ R and two concentration
functions α, β such that Z1 ∈ a±α and Z2 ∈ b± β, if a ̸= 0 and b ̸= 0, then Z1Z2 is concentrated around ab
with :

Z1Z2 ∈ ab± α

(√
·
3

)
+ α

(
·

3 |b|

)
+ β

(√
·
3

)
+ β

(
·

3 |a|

)
.

If a = 0 and b ̸= 0, we get Z1Z2 ∈ 0±α
(√ ·

2

)
+α

(
·

2|b|

)
+β

(√ ·
2

)
and if a = b = 0, Z1Z2 ∈ 0±α

(√
·
)
+

β
(√

·
)
.

Proof. We just prove the result for a, b ̸= 0 since the other cases are simpler. The idea is to use the algebraic
identity: xy − ab = (x− a)(y − b) + a(y − b) + b(x− a) and the implication xy ≥ t⇒ x ≥

√
t or y ≥

√
t (for

x, y, t ≥ 0):

P (|Z1Z2 − ab| ≥ t) ≤ P

(
|Z1 − a| ≥

√
t

3

)
+ P

(
|Z2 − b| ≥

√
t

3

)

+ P
(
|Z1 − a| |b| ≥ t

3

)
+ P

(
|Z2 − b| |a| ≥ t

3

)
.

In the case of the square of a random variable or even an integer power of any size, the concentration
given by Proposition A.8 can simplify.

Proposition A.9. Given m ∈ N and a random variable Z ∈ a ± α with a ∈ R and α, one has the
concentration:

Zm ∈ am ± α

(
·

2m |a|m−1

)
+ α

(( ·
2

) 1
m

)
.

Proof. Let us employ the algebraic identity:

Zm = (Z − a+ a)
m

=

m∑
i=0

(
m

i

)
am−i(Z − a)i = am + am

m∑
i=1

(
m

i

)(
Z − a

a

)i
.

If
∣∣Z−a

a

∣∣ ≤ 1, for any i ∈ {1, . . .m},
∣∣Z−a

a

∣∣i ≤ ∣∣Z−a
a

∣∣ and conversely, if
∣∣Z−a

a

∣∣ ≥ 1, then
∣∣Z−a

a

∣∣i ≤ ∣∣Z−a
a

∣∣m.
This entails:

|Zm − am| ≤ (2 |a|)m
(∣∣∣∣Z − a

a

∣∣∣∣+ ∣∣∣∣Z − a

a

∣∣∣∣m) (A.2)

and therefore:

P (|Zm − am| ≥ t) ≤ P

(
|Z − a| ≥ t

2m |a|m−1

)
+ P

(
|Z − a| ≥

(
t

2

) 1
m

)
.

We conclude this section by setting the continuity of the concentration property. We adopt the classical
formalism for the convergence of a random variable (or vector).

Definition 5. We say that a sequence of random variables (or random vectors) Zn converges in law (or “in
distribution” or “weakly”) to Z if for any real valued continuous function f with compact support:

lim
n→∞

E[f(Zn)] = E[f(Z)].
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Although we rather find in the literature the definition mentioning continuous and bounded functions, this
equivalent definition relying on the class of continuous functions with compact support is more adapted to the
convergence of concentration inequality (see the proof of Proposition A.11). We start with the preliminary
lemma:

Lemma A.10 ([Ouv09], Proposition 14.17). Let us consider a sequence of random variables Zn, n ∈ N,
and a random variable Z with cumulative distribution functions respectively noted FZn

, n ∈ N, and FZ . The
sequence (Zn)n≥0 converges in law to Z iff for any t ∈ R such that FZ is continuous on t, (FZn

(t))n≥0

converges to FZ(t).

Proposition A.11. Consider a sequence of random variables (Zn)n≥0 that converges in law to a random
variable Z, a sequence of pivot (an)n≥0 converging to a pivot a ∈ R and a sequence of concentration functions
(αn)n≥0 that point-wise converges to a continuous concentration function α. If we suppose that, for any
n ∈ N, Zn ∈ an ± αn then Z ∈ a± α.

Proof. For any n ∈ N, let us note Yn = |Zn − an| and Y = |Z − a|. We wish to show first that (Yn)n≥0

converges in law to Y . Let us consider for that purpose a continuous function f : R → R with compact
support S and ε > 0. We know from the Heine-Cantor theorem that f is uniformly continuous, therefore
there exists η > 0 such that:

|x− y| ≤ η =⇒ |f(x)− f(y)| ≤ ε

2
.

Moreover, since limn→∞ an = a, there exists n0 > 0 such that for any n ≥ n0, |an − a| ≤ η. Eventually, if
we introduce the function g : x→ |x− a|, we know that f ◦ g has a compact support S′ = a+S ∪ a−S, and
thus there exists n1 ∈ N such that if n ≥ n1:

|E[f(|Zn − a|)]− E[f(|Z − a|)]| = |E[f ◦ g(Zn)]− E[f ◦ g(Z)]| ≤ ε

2
.

Therefore if we consider n ≥ max(n0, n1):

|E[f(Yn)]− E[f(Y )]| ≤ |E[f(|Zn − an|)− f(|Zn − a|)]|
+ |E[f(|Zn − a|)− f(|Z − a|)]| ≤ ε.

Then we know from Lemma A.10 that for any t such that the cumulative distribution function FY =
P (|Z − a| ≤ · ) is continuous around t:

P (|Z − a| ≥ t) = lim
n→∞

P (|Zn − an| ≥ t) ≤ lim
n→∞

αn(t) = α(t).

Since α is continuous and t→ P (|Z − a| ≥ t) is decreasing, we recover the preceding inequality for any t > 0,
and Z ∈ a± α.

In the setting of Definition 2, we can show the continuity of the concentration the same way introducing
this time the random variables Yn = |Zn − Z ′

n| (Z ′
n being a sequence of independent copies of Zn). We

present the next proposition without proof.

Proposition A.12. In the setting of Proposition A.11, if for any n ∈ N Zn ∝ αn, then Z ∝ α.

A.2 Exponential concentration
In [Led05], Ledoux defines a random variable as normally concentrated when the concentration function is
of the form Z ∝ Ce−( · /σ)2 for two given constants C ≥ 1 and σ > 0. The form of the concentration function
has no real importance on small dimensions since the result ensues from a mere bound on the Gaussian Q-
function; it is however surprising that this form naturally appears for the uniform distribution on the sphere
(see Theorem .2) and others in high dimensions.

In order to present a general picture that will be helpful later (when dealing with the concentration of
products as already seen in Propositions A.8, A.9), let us include the general case of q-exponential concen-
trations.
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Definition 6. Given q > 0, a random variable Z is said to be q-exponentially concentrated with head
parameter C ≥ 1 and tail parameter σ > 0 iff there exists a pivot a ∈ R such that Z ∈ a± Ce−(·/σ)q .

Example A.13. A random variable Z following a Gaussian distribution with zero mean (i.e. zero median)
and unit variance is 2-exponentially concentrated with a tail parameter equal to

√
2 : Z ∈ 0± 2e−(·)2/2.

In practice, the random variables will depend on a random vector whose dimension, say p, tends to infinity,
the tail parameter is then a function of p that represents the asymptotic speed of concentration since it has
the same order as the standard deviation of Z. If the q-exponential concentration functions are employed
reasonably, the asymptotic information can be transmitted from the head parameter to the tail parameter
so that the head parameter would stay mainly uninformative and close to 1. For that purpose, the following
lemma gives us an easy way to bound a given concentration to a close one with a head parameter equal to e.

Lemma A.14. Given x, q > 0 and C ≥ e, we have the inequality:

min(1, Ce−x) ≤ ee−x/2 log(C).

Proof. If x ≤ 2 log(C) the inequality is clear, and if x ≥ 2 log(C) ≥ 2, we deduce the result of the lemma
from the equivalence

log(C)− x ≤ − x

2 log(C)
⇐⇒ x ≥ 2 log(C)2

2 log(C)− 1
,

since 2 log(C)2

2 log(C)−1 ≤ 2 log(C)2

log(C) ≤ x.

To place ourselves under the hypotheses of Lemma A.14 and as it appears rather convenient in several
propositions below we will suppose from now on that the tail parameter C is greater than e.

Exponential concentrations offer simple expressions of the concentration through shifting the pivot thanks
to the following lemma.

Lemma A.15. Given the parameters C ≥ e and q, σ, θ > 0:

∀t > 0 : τθ · Ce−(· /σ)q ≤ max
(
e(θ/σ)

q

, C
)
e−(· /2σ)q .

Proof. When t ≥ 2θ, the increasing behavior of t 7→ tq ensures that (t− θ)
q ≥ (t/2)q which implies the

functional inequality on [2θ,∞). When t ≤ 2θ:

max
(
e(θ/σ)

q

, C
)
e−(t /2σ)q ≥ e(θ/σ)

q

e−(2θ /2σ)q ≥ 1 ≥ τθ · Ce−(· /σ)q ,

(by definition of τθ).

This lemma, combined with lemma A.1, clarifies the notion of tail parameters. The next corollary shows
that it can be seen as the diameter of a “black hole” centered around any pivot of the concentration, in a
sense that each value inside this “black hole” can be considered as a satisfactory pivot for the concentration ;
this will be called later, in the case of random vectors, the observable diameter of the distribution, following
Gromov terminology [Gro79].

Corollary A.16. Given C ≥ e and three positive parameters σ, λ, q > 0, two real a and b such that |a− b| ≤
λσ and a random variable Z, one has the implication:

Z ∈ a± Ce−(·/σ)q =⇒ Z ∈ b± C ′ exp
(
−
( ·
2σ

)q)
,

where C ′ = max(C, eλ
q

).

Note that the interesting aspect of the result is the independence of the head parameter C ′ = max(C, eλ
q

)
to the tail parameter σ. Moreover the tail parameter stays unmodified when q < 1.

We now have all the elements to show that, due to the high concentration of exponentially concentrated
random vectors, every median plays a pivotal role among the different constants that can localize the con-
centration.
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Proposition A.17 ([Led05, Proposition 1.8]). Given a random variable Z, and a median mZ of Z, if we
suppose that Z ∈ a± Ce−( · /σ)q for a pivot a ∈ R, then:

Z ∈ mZ ± 2C exp
(
−
( ·
2σ

)q)
.

Proof. For some ε > 0, we choose t0 > σ (log(2C) + ε)
1/q. We know that P (|Z − a| ≥ t0) <

1
2 and conse-

quently |a−mZ | ≤ t0. Indeed if we suppose that mZ ≥ a+ t0, then:

1/2 ≤ P (Z ≥ mZ) ≤ P (Z − a ≥ t0) ≤ P (|Z − a| ≥ t0) ,

and we get the same absurd result if we suppose that a ≥ mZ + t0. We can thus conclude thanks to
Corollary A.16 (with C ′ = max(C, exp(

tq0
σq )) = 2Ceε), letting ε tend to zero.

The tails of q-exponentially concentrated random variables can be controlled rather easily and roughly
thanks to the next lemma that is based on the same simple mathematical inequalities that lead to Corol-
lary A.16.

Lemma A.18. Given a random variable Z, two parameters C ≥ e and σ > 0 an exponent q > 0 and a pivot
a ∈ R, if Z ∈ a± Ce−( · /σ)q then:

∀t ≥ 2 |a| : P (|Z| ≥ t) ≤ Ce−(t/2σ)q

(for any t > 0, P (|Z| ≥ t) ≤ Ce(|a|/σ)
q

e−(t/2σ)q).

Remark A.19. [Led05, Proposition 1.7] This lemma implies in particular that any exponentially concentrated
random variable admits a bounded expectation. Thanks to Fubini identity, if Z ∈ a ± Ce−( · /σ)q , one has
indeed:

|E[Z]| ≤ E[|Z|] ≤
∫ ∞

t=0

P (|Z| ≥ t) ≤ 2|a|+
∫ ∞

t=2|a|
Ce−(t/2σ)q ≤ ∞.

Very interestingly, exponential concentration is of great computation convenience to manage Hölder’s
inequality. For instance a general issue is to bound:

E [(Z1 − a1)
r1 · · · (Zm − am)rm ] .

For any θ1, · · · , θm ∈ (0, 1) such that θ1 + · · ·+ θm = 1, Hölder’s inequality gives us directly:

E [(Z1 − a1)
r1 · · · (Zm − am)rm ] ≤

m∏
i=1

(
E |Zi − ai|

ri
θi

)θi
. (A.3)

As we will see in the next proposition, the quantities E |Zi − ai|r can be bounded easily when Zi = ai ±
Ce−( · /σ)qi , and we will even show in the next proposition that the bounds on E |Zi−ai|r for r > 0 can become
a characterization (it is actually a pseudo-characterization since there is no equivalence) of q-exponential
concentrations.

Proposition A.20 (Moment characterization of concentration, [Led05, Proposition 1.10]). Given a random
variable Z, a pivot a ∈ R, two exponents r, q > 0, and two parameters C ≥ e and σ > 0, we have the
implications :

Z ∝ Ce−(·/σ)q ⇒ ∀r ≥ q : E
[
|Z − Z ′|r

]
≤ C

(
r

q

) r
q

σr ⇒ Z ∝ Ce−
(·/σ)q

e

and

Z ∈ a± Ce−(·/σ)q ⇒ ∀r ≥ q : E [|Z − a|r] ≤ C

(
r

q

) r
q

σr ⇒ Z ∈ a± Ce−
(·/σ)q

e ,

where Γ : r 7→
∫∞
0
tr−1e−tdt, (if n ∈ N, Γ(n+ 1) = n!).
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In both results, the first implication consists in bounding an expectation with a probability; it will involve
the Fubini relation, giving for any positive random variable Z:

EZ =

∫
Z

(∫ ∞

0

1t≤Zdt

)
dZ =

∫ ∞

0

P (Z ≥ t) dt,

where 1t≤Z is equal to 1 if t ≤ Z and to 0 otherwise.
The second implication consists in bounding a probability with an expectation; it is a consequence of

Markov’s inequality, for any non decreasing function f : R → R:

P (Z ≥ t) ≤ Ef(Z)
f(t)

.

These two key indications given we leave the proof to next subsection where we set a result treating more
elaborate concentration function and omitting the factor /e in the exponential power to set an equivalence
relation (see Proposition A.30).

Inspiring from Proposition A.9 one can get with Proposition A.20 combined with Hölder inequality some
interesting bound one the variations of the product of concentrated random variables.

Lemma A.21. Given an integer m ∈ N, m random variables Z1, . . . , Zm and m parameters a1, . . . , am,
σ1 > 0, . . . , σm > 0 such that for all i ∈ [m], Zi ∝ ai ± Ce(·/σi)

q

:

E
[
|Z1 · · ·Zm − a1 · · · am|l

]
≤ C2ml

(
ml

q

)ml
q

(σl1 + |a1|l) · · · (σlm + |am|l),

for some universal constant C > 0.

Proof. Let us start to write as in the proof of Proposition A.9:

Z1 · · ·Zm = (Z1 − a1 + a1) · · · (Z1 − a1 + a1)

=

m∑
i=0

∑
0≤j1<···<ji≤m

aj1 · · · aji(Zj̄1 − aj̄1) · · · (Zj̄m−i
− aj̄m−i

)

where {j̄1, . . . , j̄m−i}∪{j1, . . . , ji} = [m]. For simplicity, let us introduce the notation Pmi = {j1, . . . , ji | 1 ≤
j1 < · · · < ji ≤ m} and given j = (j1, . . . ji), aπj = aj1 · · · aji . We can first deduce, using the convexity of
t 7→ tl:

E
[∣∣Zπ[m] − aπ[m]

∣∣l] ≤ (m−1∑
i=0

#Pmi

)l
|a|lπ[m]

m−1∑
i=0

∑
j∈Pm

i

1∑m−1
i=0 #Pmi

E

[∣∣∣∣ |Z − a|
|a|

∣∣∣∣l
πj̄

]
.

Hölder inequality and Proposition A.20 allows us to set that:

E
[
|Z − a|lπj̄

]
≤ C

(
(m− i)l

q

) (m−i)l
q

σlj̄1 · · ·σ
l
j̄m−i

,

and the identity
∑m
i=0 #P

m
i = 2m allows us bound:

E
[∣∣Zπ[m] − aπ[m]

∣∣l]
≤ 2m(l−1)

(
ml

q

)ml
q
m−1∑
i=0

∑
0≤j1<···<ji≤m

|aj1 |l · · · |aji |lCσlj̄1 · · ·σ
l
j̄m−i

≤ C

(
ml

q

)ml
q

2m(l−1)
(
(σl1 + |a1|l) · · · (σlm + |am|l)− |am|l

)
.
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The main use of Lemma A.21 is to replace in expectation of a product estimation some elements with
some of their pivots, in a lot of cases, we do not replace some of the random variable, that is where the
following corollary can be usefull.

Corollary A.22. In the setting of Lemma A.21, let us consider an integer k ∈ N and a partition
{{j1, . . . , jk}, {j̄1, . . . , j̄m−k}} of [m], we have the bound:

E
[∣∣Z1 · · ·Zm − Zj1 · · ·Zjkaj̄1 · · · aj̄m−k

∣∣l] ≤ C2ml
(
ml

q

)ml
q

(σl1 + |a1|l) · · · (σlm + |am|l),

for some universal constant C > 0.

The following Lemma gives an alternative result to the aforementioned sufficiency of bounds on E [|Z − a|r]
(or on E [|Z − Z ′|r]) for r ∈ N.

Lemma A.23. Given a random variable Z ∈ R+ and three parameters C > e, q, σ > 0 one has the
implication:

∀m ∈ N, E[Zm] ≤ C

(
m

q

)m
q

σm =⇒ ∀r ≥ 0, E[Zr] ≤ Ce
1
e

(
r

q

) r
q (
σ(2/q̄)

1
q

)r
,

where q̄ = min(q, 1).

Proof. When r ≤ 1, we already know thanks to Jensen’s inequality, by concavity of t 7→ tr, that:

E[Zr] ≤ (E[Z])r ≤ C

(
1

q

) r
q

σr ≤ Ce
1
e

(
r

q

) r
q

(
σ

q
1
q

)r
,

since ∀t > 0, tt ≥ 1

e
1
e
.

When r ≥ 1, one can invoke the well known result concerning ℓr norms, where in our case, ∥Z∥ℓr =

E [|Z|r]1/r. Let us consider the general case where we are given p1, p2 > 0 such that p1 ≤ r ≤ p2 and we
consider θ ∈ (0, 1) satisfying 1/r = θ/p1 + (1− θ)/p2. We then have the inequality :

∥Z∥ℓr ≤ ∥Z∥θℓp1 ∥Z∥
1−θ
ℓp2 .

This implies:

E [Zr]
1
r ≤

(
C

1
p1 σ

(
p1
q

) 1
q

)θ (
C

1
p2 σ

(
p2
q

) 1
q

)1−θ

≤ C
1
r σ

q
1
q

p
θ
q

1 p
1−θ
q

2 .

We would like to bound p
θ
q

1 p
1−θ
q

2 with r
1
q . Unfortunately, for θ ∈ ]0, 1[, pθ1p

1−θ
2 > 1/(θ/p1 + (1 − θ)/p2) = r

(this is due to the inequality of arithmetic and geometric means, itself a consequence of the concavity of the
log function). However, for the particular setting under study:(

θ

p1
+

1− θ

p2

)
pθ1p

1−θ
2 ≤

(
1

p2
+

(p2 − p1)θ

p1p2

)
p2 ≤ 1 +

p2 − p1
p1

.

As a consequence, taking p1 = ⌊r⌋ and p2 = ⌈r⌉, one obtains:

E [|Z|r] ≤ Cσr
(
2r

q

) r
q

.

Remark A.24. In Proposition A.20, we saw that if Z ∈ a ± Ce−( · /σ)q then |EZ − a| ≤ E |Z − a| ≤

C
(

1
q

)1/q
σ <∞. Therefore any q-exponentially concentrated random variable admits a finite expectation.
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Now that we know it exists, we are going to show that the expectation EZ plays the same pivotal role as
any median.

Corollary A.25 ([Led05, Proposition 1.9]). With the notations of the previous proposition, one has:

Z ∈ a± Ce−( · /σ)q =⇒ Z ∈ EZ ± e
Cq

q e−( · /2σ)q .

Proof. We suppose that Z ∈ Ce−( · /σ)q for a pivot a ∈ R. Proposition A.20 applied in the case r = 1 gives
us |a− EZ| ≤ C( 1q )

1
q σ. One can then invoke Corollary A.16, to get the concentration:

Z ∈ EZ ± C ′e−( · /2σ)q ,

with C ′ = max(C, e
Cq

q ). It is then interesting to note that the function q 7→ Cq

q has a minimum in 1
log(C)

where it takes the value e logC. Then we see that

C = elogC ≤ ee logC ≤ e
Cq

q ,

and we can simplify the head parameter to obtain the result of the corollary.

If Z ∈ a± Ce−( · /σ)p , we can then employ EZ as a pivot of Z to get a bound on the centered moments:

Corollary A.26. With the notations of Corollary A.25, if we suppose that Z ∈ a±Ce−( · /σ)q , then we have:

E |Z − EZ|r ≤ e
Cq

q (2σ)
r

(
r

q

) r
q

.

A.3 Multi-exponential regimes of exponential concentration
If one employs Proposition A.8 to exponentially concentrated random variables, one sees that the concentra-
tion function of the product lets appear different order exponential concentration functions. In particular:

Corollary A.27. Given two random variables X,Y ∈ R, if X ∈ a± Ce−c(·/σ)
q

and Y ∈ b± Ce−ct
q

, then:

XY ∈ ab± 2Ce−c(·/3σmax(|a|,|b|))q + 2Ce−c(·/3σ
2)q/2

This corollary can be proven thanks to an other lemma that will be of multiple use when dealing with
random vectors and that allows us to set the concentration of a functionnal of a concentrated random variable
f(Z) when the variation on Z can be controlled with an other concentrated random variable. For instance
for the product Z1Z2 of Corollary A.27 the variation of Z1Z2 towards Z1 are bounded with |Z2|. To bound
the concentration of P(|Z1Z2− ab| ≥ t) it is possible to decompose divide the probability in two parts with
the introduction of the events Au ≡ {|Z1|, |Z2| ≤ u} and Ac

u = {|Z1|, |Z2| > u} that we can bound thanks
to Lemma A.18 when u ≥ 2µ0 ≡ 2max(E[|Z1|],E[|Z2|]). Depending on the values of t, one then just have to
choose for u a good trade-off to retrieve a similar concentration to the one given by Corollary A.27.

The following lemma is provided for exponential concentration function, it could however be adapted to
any other concentration function. The bound P(Ac

u) ≤ Ce−c(µ/σ)
q

is however generally obtained thanks to
Lemma A.18 controlling the tail of exponential concentrations.

Lemma A.28. Let us consider a random variable X such that:

∀t > 0 : P(|X −X ′| ≥ t | Au) ≤ Ce−c(t/σu)
q

,

where (Au)u>0 is a family of events such that for some µ0 > 0:

∀u ≥ µ0 : P(Ac
u) ≤ Ce−c(u/σ)

q

then we have the concentration:

P(|X −X ′| ≥ t|) ≤ 2Ce−c(t/σµ0)
q

+ Ce−c(t/σ
2)q/2



A.3. MULTI-EXPONENTIAL REGIMES OF EXPONENTIAL CONCENTRATION 15

Proof. Let us first consider t ∈ [0, µ2
0], in that case µ0 ≥ t/µ0, thus e−c(u/σ)

q ≤ e−c(t/µ0σ)
q

and we can then
bound:

P (|X −X ′| ≥ t) ≤ P(|X −X ′| ≥ t | Aµ0 |) + P(Ac
µ0
) ≤ 2Ce−c(t/σµ0)

q

When t > µ2
0 one still has:

P (|X −X ′| ≥ t) ≤ P(|X −X ′| ≥ t | Au|) + P(Ac
u)

≤ Ce−c(t/σu)
q

+ Ce−c(u/σ)
q

Then, if we chose u ≡
√
t ≥ µ0 by hypothesis on t, we obtain the inequality:

P (|X −X ′| ≥ t) ≤ Ce−(t/σ)q/2 .

Extending this lemma to more complex decompositions where the variability of X depends on multi-
ple variables through multiple events Au1

, . . . ,Aum
, for each t, the trade-off choice between the variables

u1, . . . , um produces at the end what we call a “multiple regime of concentration”, and that can take the form
(as in Theorem B.34):

Z ∝ max
l∈[m]

C exp
(
−c(·/σlµ(m−l))q/l

)
(A.4)

where for all l ∈ [m], we noted µ(m−l) = max{µi1 · · ·µim−l
, 0 ≤ i1 < · · · < im−l < m}. In the case m = 2,

we retrieve of course the result of Corollary A.27. In the multi-regime concentration (A.4), generally, σ, that
represents the variation of the studied variables is generally lower than the µ1, . . . , µm that represent the
mean of the variables, therefore generally:

k ≤ l =⇒ σlµ(m−l) ≤ σkµ(m−k).

One can then note that the exponential terms with the bigger tail (l large) have the smaller tail parameter.
It is quite reassuring because if it was not the case, with a small modification of the head parameters, one
could simply remove the low tail components. Next lemma presents an other relation that should respect
different components of a canonical multi-regime concentration expression as defined in Definition 7.

Lemma A.29. Given c > 0, C ≥ 1, an integer m ∈ N and 2m parameters q1 > · · · > qm > 0 and
σ1 > · · · > σm > 0, we note for any k < l ∈ {0, . . . ,m+ 1}:

tk,l ≡
(
σqkk
σqll

) 1
qk−ql

if 1 ≤ k < l ≤ m

t0,l ≡ σl

(
logC

c

) 1
q

if l ≤ m

tk,m+1 ≡ +∞ if k ≥ 1

(A.5)

then for any1 t ∈ [tl−1,l, tl,l+1):

max
l∈m

(C exp (−c(t/σl)ql)) = C exp (−c(t/σl)ql) ,

Therefore, given a subset {l1, . . . , lk} ⊂ [m] such that l1 < · · · < lk, t0,l1 < tl1,l2 < · · · < tlk−1,lk and for all
i ∈ [k], h ∈ {li + 1, · · · , li+1}, tli,k ≥ tli,li+1

, we have the identity for any t ∈ R+:

max
l∈m

(
C exp

(
−c(t/σl)q/l

))
= max

i∈[k]

(
C exp

(
−c(t/σli)qli

))
. (A.6)

1It is implicitly understood that [tl−1,l, tl,l+1) = ∅ if tl−1,l > tl,l+1



16 CHAPTER A. CONCENTRATION OF A RANDOM VARIABLE

Definition 7. Given m ∈ N∗, a set of m couples of parameters (q1, σ1), . . . , (qm, σm) ∈ (R2)m is called a
sensible family of multi-regime parameters if:

• q1 > · · · > qm

• σ1 > · · · > σm

• ∀k, l ∈ [m], k < l:

tk,k+1 ≤ tk,l ≤ tl−1,l,

where we noted:

tk,l ≡
(
σqkk
σqll

) 1
qk−ql

.

It is called a free family of multi-regime parameters if in addition ∀k, l ∈ [m], k < l:

tk−1,k < tl−1,l.

With this formalism, let us present a characterization with the moments of the concentration inequality
(A.4).

Proposition A.30 (Moment characterization of multi-regime concentration). Given an integer m ∈ N, and
a sensible family of 2m multi-regime parameters σ1, . . . , σm > 0, q1, . . . , qm > 0, a random variable Z ∈ R
satisfies the concentration:

Z ∝ max
l∈[m]

C exp (−c(·/σl)ql)

for some constants C, c > 0 if and only if there exist two constants C ′, c′ > 0 depending only on C, c such
that for all r > 0, we have the bound:

E [|Z − E [Z]|r] ≤ C ′ max
l∈[m]

(
r

qlc′

) r
ql

σrl . (A.7)

Proof. This proof is mainly a rewriting of [Led05, Proposition 1.10] with a fine study of the different concen-
tration regimes. We start with the direct implication which is easier to prove. Assume that there exists two
constants C, c > 0 such that:

∀t > 0, P (|Z − E[Z]| ≥ t) ≤ C max
l∈[m]

e−c(t/σl)
ql
.

Given r > 0:

E [|Z − E[Z]|r] =
∫ ∞

0

P (|Z − E[Z]|r ≥ t) dt

=

∫ ∞

0

rtr−1P (|Z − E[Z]| ≥ t) dt

≤ max
l∈[m]

Cr

∫ ∞

0

tr−1e−(t/σlc
−1/ql )qldt

= max
l∈[m]

C
( σl
c1/ql

)r
r

∫ ∞

0

tr−1e−ct
ql
dt,

and, if we assume that r ≥ q1 (≥ ql for all l ∈ [m]):

r

∫ ∞

0

tr−1e−t
ql
dt =

lr

q

∫ ∞

0

t
r
ql

−1
e−tdt =

r

ql
Γ

(
r

ql

)
≤
(
r

ql

) r
ql

,
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when r < q1, one can still bound with Jensen’s inequality (since r
q1

≤ 1):

E [|Z − E[Z]|r] ≤ E [|Z − E[Z]|q1 ]
r
q1 ≤ C

r
q1 max
l∈[m]

l
r
ql (cσl)

r ≤ C
r
q1mm(cσ1)

r.

Since mm,max(C, 1) ≤ O(1), we can choose cleverly our constants to set the first implication of the propo-
sition.

Let us now assume (A.7). We deduce from Markov inequality and basic integration calculus that ∀r > 0:

P (|Z − E[Z]| ≥ t) ≤ E [|Z − E [Z]|r]
tr

≤ C max
l∈[m]

(
r(σl/t)

ql

qlc

) r
ql

. (A.8)

Given any k, l ∈ [m], we employ the notation of (A.5):

tk,l ≡
(
σqkk
σqll

) 1
qk−ql

and we note tl ≡ tl−1,l. We know in particular that 0 = t0 ≤ t1 ≤ · · · ≤ tm+1 = ∞. Given l ∈ [m] and
t ∈ [tl, tl+1] if we chose r = cqm

e ( tσl
)ql , then, for all k ∈ [m], we want to bound with a El decay the quantity:

ck(t) ≡ C

(
r

cqk
(σk/t)

qk

) r
qk

= C

(
qm
eqk

(
σqkk σ

−ql
l

tqk−ql

)) qm
eqk

( t
σl

)ql

to be able to bound the concentration inequality (A.8).
If k = l, we have directly:

ck(t) = cl(t) = C

(
qm
eql

) cqm
eql

( t
σl

)ql

≤ Ce
− cqm

eq1
( t
σl

)ql
.

If k ≤ l − 1, qk ≥ ql then tk,l ≤ tl ≤ t which implies 1/tqk−ql ≤ 1/tqk−qlk,l and:

ck(t) ≤

(
qm
eqk

(
σqkk σ

−ql
l

tqk−qlk,l

)) cqm
eqk

( t
σl

)ql

≤ Ce
− cqm

eq1
( t
σl

)ql
.

And the same way, when k ≥ l+1, qk ≤ ql, then t ≤ tl+1 ≤ tl,k, and we can bound 1/tqk−ql = tql−qk ≤ tql−qkl,k

which allows us to conclude again that ck(t) ≤ Ce
cqm
eq1

( t
σl

)ql . When t ∈ (0, t1], choosing r = qm
e ( t

cσ1
)q1 , we show

the same way that ∀k ∈ [m], ck(t) ≤ Ce−
k

me (
t

cσ1
)q1 . We eventually obtain for all t ∈ ∪0≤l≤m(tl, tl+1] ⊃ R+

∗ :

P (|Z − E[Z]| ≥ t) ≤ max
l∈[m]

Ce
−c′( t

σl
)ql
,

with c′ = cqm
eq1

. This is the looked for concentration.

The previous development of q-exponential concentration primarily aims at providing a versatile and
convenient “toolbox” (note that most introduced inequalities could have been enhanced, however to the
expense of clarity) for the subsequent treatment of large dimensional random vectors, rather than random
variables. This analysis will be performed through resorting to concentrated functionals of the random
vectors, i.e., real images of through a mapping with different levels of regularity (linear, Lipschitz, convex..).
For large dimensional vectors, one is mostly interested in the order of the concentration, thus the various
constants appearing in most of the previous propositions and lemmas do not have any particular interest; of
major interest instead is the independence of the concentration with respect to the random vector dimension,
as observed for instance in Theorem .2 and that we will extend to other type of random vectors in what
follows.
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Chapter B

Lipschitz and linear concentration of a
random vector

To generalize the notion of concentration to the case of a random vector of a normed vector space (E, ∥·∥),
one might be tempted to follow the idea of Definition 3 and say that a vector Z ∈ E is α-concentrated if one
has for instance P

(∥∥∥Z − Z̃
∥∥∥ ≥ t

)
≤ α(t) for a deterministic vector Z̃, well chosen. This would describe a

notion of a concentration around a vector.
However, this basic notion would not be compatible with the fundamental example of the uniform distri-

bution on the sphere of radius √
p presented in Theorem .2 or the Gaussian vectors of identity population

covariance matrices. When the dimension grows, those random vectors concentrate around a growing sphere
which is the exact opposite behavior of being concentrated around a point. Yet, they present strong di-
mension free concentration properties that we will progressively identify through the presentation of three
fundamental notions:

1. The Lipschitz concentration which is the concentration of f(Z)− f(Z ′) for any i.i.d. copy Z ′ of Z and
any Lipschitz map f : E 7→ R.

2. The weaker notion of the linear concentration which is the concentration of u(Z−Z̃) for some determin-
istic vector Z̃ ∈ E (the so-called deterministic equivalent) and for any bounded linear form u : E 7→ R.
For instance, we know from Theorem .2 that any random vector Z uniformly distributed on the sphere
admits Z̃ = EZ = 0 as a deterministic equivalent. This means that most drawings of Z are close to the
equator when the dimension grows.

3. We will further present in Chapter D the more complex notion of convex concentration which is the
concentration of f(Z) − f(Z ′) for any Lipschitz and weakly convex map f : E 7→ R. It is a notion
weaker that the Lipschitz concentration and stronger than the linear concentration.

To discuss concentration of measure for high dimensional random vectors, we choose here to adopt the
viewpoint of Levy families where the goal is to track the influence of the vector dimension over the con-
centration. Specifically, given a sequence of random vectors (Zp)p≥N where each Zp belongs to a space of
dimension dp (typically dp = p and Rp, but our definition concerns also sequences of random variables for
which dp = 1), we wish to obtain inequalities of the form:

∀p ∈ N,∀t > 0 : P (|fp(Zp)− ap| ≥ t) ≤ αp(t), (B.1)

for a given sequence of concentration functions αp; fp : Rdp → R is a 1-Lipschitz function; and ap is
either a deterministic variable (typically E[fp(Zp)]) or a random variable (for instance fp(Z ′

p) with Z ′
p an

independent copy of Zp). The sequences of random vectors (Zp)p≥0 satisfying inequality (B.1) for all sequences
of 1-Lipschitz functions (fp)p≥0 are called Levy families or more simply concentrated vectors (with this
denomination, we implicitly omit the dependence on p and abusively call “vectors” the sequences of random
vectors of growing dimension).

19
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To control the convergence speeds, we will extensively use the notation O(an) in inequalities. We properly
define this notation in the following definition.

Definition 8 (Definition and order relation of O(·)). Given two sequences a = (an)n∈N and b = (bn)n∈N in
RN

+, we introduce the relation:

aRb⇔ ∃κ,K > 0, ∃N ∈ N | ∀n ≥ N : κan ≤ bn ≤ Kan

Then we note O
(
RN

+

)
the quotient space RN

+/R, and given a ∈ RN
+, we note O(a) = {b ∈ RN

+, bRa}.
The order relation “≤” is defined on O

(
RN

+

)
followingly:

O(a) ≤ O(b) ⇔ ∃K > 0, ∃N ∈ N | ∀n ≥ N : an ≤ Kbn,

the order relation “≥” is defined the same way. It is easy to see that this order relation is independent of the
representent of the class.

We extend these relations to relation between seqences of RN
+ and classes of O(RN

+) with the definition:

a ≤ O(b) ⇔ O(a) ≤ O(b) and a ≥ O(b) ⇔ O(a) ≥ O(b).

Concentrated vectors admitting an exponentially decreasing concentration function αp or a combination
of such functions are extremely flexible objects, more importantly they are directly given by some important
theorem of the theory that we will present in next section.

B.1 Lipschitz concentration

We will work with normed (or semi-normed) vector spaces, although concentration of measure theory is
classically developed in metric spaces. The presence of a norm (or a semi-norm1) on the vector space is
particularly important when establishing the concentration of a product of random vectors.

Definition/Proposition 9. Given a sequence of normed vector spaces (Ep, ∥ · ∥p)p≥0, a sequence of random
vectors2 (Zp)p≥0 ∈

∏
p≥0Ep, a sequence of positive reals (σp)p≥0 ∈ RN

+ and a parameter q > 0, we say that
Zp is Lipschitz q-exponentially concentrated with observable diameter of order O(σp) iff one of the following
three equivalent assertions is satisfied:3

• ∃C, c > 0 | ∀p ∈ N,∀ 1-Lipschitz f : Ep → R,∀t > 0 :

P
(∣∣f(Zp)− f(Z ′

p)
∣∣ ≥ t

)
≤ Ce−c(t/σp)

q

,

• ∃C, c > 0 | ∀p ∈ N,∀ 1-Lipschitz f : Ep → R,∀t > 0 :

P (|f(Zp)−mf | ≥ t) ≤ Ce−c(t/σp)
q

,

• ∃C, c > 0 | ∀p ∈ N,∀ 1-Lipschitz f : Ep → R,∀t > 0 :

P (|f(Zp)− E[f(Zp)]| ≥ t) ≤ Ce−c(t/σp)
q

,
1A semi-norm becomes a norm when it satisfies the implication ∥x∥ = 0 ⇒ x = 0.
2A random vector Z of E is a measurable function from a probability space (Ω,F ,P) to the normed vector space (E, ∥ · ∥)

(endowed with the Borel σ-algebra); one should indeed write Z : Ω → E, but we abusively simply denote Z ∈ E.
3Aside from the fact that they all give interesting interpretation of the concentration of a random vector, all three charac-

terizations can be relevant, depending on the needs:

• the characterization with the independent copy is employed in Remark B.5 and in the proof of Theorem B.34;

• the characterization with the median is employed in the proof of Lemma B.4;

• the characterization with the expectation, likely the most intuitive, is used to establish Proposition B.50, Theorem G.1
and Lemma G.8.
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where Z ′
p is an independent copy of Zp and mf is a median4 of f(Zp); the mappings f are 1-Lipschitz for

the norm (or semi-norm) ∥ · ∥p. We denote in this case Zp ∝ Eq(σp) (or more simply Z ∝ Eq(σ)).

Remark B.1 (Multi-regime notation). When several regimes of exponential concentration appear in the con-
centration function as in (A.4); for example when for any f : Ep → R, 1-Lipschitz one has the concentration:

P
(∣∣f(Zp)− f(Z ′

p)
∣∣ ≥ t

)
≤ Ce−c(t/σ

(1)
p )q1 + · · ·+ Ce−c(t/σ

(m)
p )qm ,

one can note:

Z ∝ Eq1(σ(1)) + . . .+ Eqm(σ(m))

Remark B.2 (Quasi-asymptotic regime). Most of our results will be expressed under the quasi-asymptotic
regime where p is large. Sometimes, it will be natural to index the sequences of random vectors with two
(or more) indices (e.g., the numbers of rows and columns for random matrices): in these cases, the quasi-
asymptotic regime is not well defined since the different indices could have different convergence speeds.
This issue is overcome with the extensive use of the notation O(σt), where t ∈ Θ designates the (possibly
multivariate) index. Given two sequences (at)t∈Θ, (bt)t∈Θ ∈ RΘ

+, we will denote at ≤ O(bt) if there exists a
constant C > 0 such that ∀t ∈ Θ, at ≤ Cbt and at ≥ O(bt) if ∀t ∈ Θ, at ≥ Cbt. For clarity, when dealing with
a “constant” K > 0, we will often state that K ≤ O(1) and K ≥ O(1) (depending on the required control).
For a concentrated random vector Zt ∝ Eq(σt), any sequence (νt)t∈Θ ∈ RΘ

+ such that σt ≤ O(νt) is also an
observable diameter of Zt. When σt ≤ O(1), we simply write Zt ∝ Eq.

The equivalence between the three definitions is a consequence of the combination of Proposi-
tions A.2, A.17 Corollary A.16 and A.25). In the last item of Definition 9, the existence of the expectation
of fp(Zp) is guaranteed if any of the other two items holds as explained in Remark A.24.

In the last item of Definition 9, the existence of the expectation of fp(Zp) is guaranteed if any of the other
two items holds thanks to Remark A.19 (besides there always exists a median mfp ∈ R). For the existence
of the expectation of a random vector in a reflexive space or in a functional space of mappings aving value
in a reflexive space, refer to Definitions 12 and 13.

Remark B.3 (Metric versus normed spaces). It is more natural, as done in [Led05], to introduce the notion
of concentration in metric spaces, as one only needs to resort to Lipschitz mappings which merely require a
metric structure on E. However, to express the concentration of a product (Theorem B.34), we will need
to control the amplitude of concentrated vectors which is easily conducted under mere linear concentration
assumptions when the metric is a norm.

At one point of our stuy, it will be useful to invoke concentration for semi-norms in place of norms.
Definition 9 is still consistent for these weaker objects.

When a concentrated vector Zp ∝ Eq(σp) takes values only on some subset Ap ≡ Zp(Ω) ⊂ Ep (where Ω is
the universe), it might be useful to be able to establish the concentration of observations fp(Zp) where fp is
only 1-Lipschitz on Ap (and possibly non Lipschitz on Ep \Ap). This would be an immediate consequence of
Definition 9 if one were able to extend fp Ap into a mapping f̃p Lipschitz on the whole vector space Ep; but
this is rarely possible. Yet, the observation fp(Zp) does concentrate under the hypotheses of Definition 9.

Lemma B.4 (Concentration of locally Lipschitz observations). Given a sequence of random vectors Zp :
Ω → Ep, satisfying Zp ∝ Eq(σp), for any sequence of mappings fp : Ep → R, which are 1-Lipschitz on Zp(Ω),
we have the concentration fp(Zp) ∝ Eq(σp).

Proof. considering a sequence of median mfp of fp(Zp) and the (sequence of) sets Sp = {fp ≤ mfp} ⊂ Ep, if
we note for any z ∈ Ep and U ⊂ Ep, U ̸= ∅, d(z, U) = inf{∥z − y∥, y ∈ U}, then we have for any z ∈ A and
t > 0:

fp(z) ≥ mfp + t =⇒ d(z, Sp) ≥ t

fp(z) ≤ mfp − t =⇒ d(z, Scp) ≥ t,

4P
(
f(Zp) ≥ mf

)
≥ 1

2
and P

(
f(Zp) ≤ mf

)
≥ 1

2
.
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since fp is 1-Lipschitz on A. Therefore, since z 7→ d(z, Sp) and z 7→ d(z, Scp) are both 1-Lipschitz on E and
both admit 0 as a median (P(d(Zp, Sp) ≥ 0) = 1 ≥ 1

2 and P(d(Zp, Sp) ≤ 0) ≥ P(fp(Zp) ≤ mfp) ≥ 1
2 ),

P
(∣∣fp(Zp)−mfp

∣∣ ≥ t
)
≤ P (d(Zp, Sp) ≥ t) + P (d(Zp, Sp) ≥ t) ≤ 2Ce−(t/cσp).

One could argue that, instead of Definition 9, we could have posed hypotheses on the concentration of
Zp on Zp(Ω) only; however, we considered the present definition of concentration already quite complex as
it stands. This locality aspect must be kept in mind: it will be exploited to obtain the concentration of
products of random vectors.

Lemma B.4 is particularly interesting when working with conditioned variables.5

Remark B.5 (Concentration of conditioned vectors). Given a (sequence of) random vectors Z ∝ Eq(σ) and
a (sequence of) events A such that P(A) ≥ O(1), it is straightforward to show that (Z | A) ∝ Eq(σ), since
there exist two constants C, c > 0 such that for any p ∈ N and any 1-Lipschitz mapping f : Ep → R, ∀t > 0:

P
(∣∣f(Zp)− f(Z ′

p)
∣∣ ≥ t | A

)
=

1

P(A)
P
(∣∣f(Zp)− f(Z ′

p)
∣∣ ≥ t,A

)
≤ 1

P(A)
P
(∣∣f(Zp)− f(Z ′

p)
∣∣ ≥ t

)
≤ Ce−c(t/σ)

q

.

This being said, Lemma B.4 allows us to obtain the same concentration inequality for any mapping f : Ep → R
1-Lipschitz on Zp(A) (later on, we will sometimes abusively say that f is 1-Lipschitz on A).

A simple but fundamental consequence of Definition 9 is that, as announced in the introduction, any
Lipschitz transformation of a concentrated vector is also a concentrated vector. The Lipschitz coefficient of
the transformation controls the concentration.

Proposition B.6 (Stability through Lipschitz mappings). In the setting of Definition 9, given a sequence
(λp)p≥0 ∈ RN

+, a supplementary sequence of normed vector spaces (E′
p, ∥·∥′p)p≥0 and a sequence of λp-Lipschitz

transformations Fp : (Ep, ∥ · ∥p) → (E′
p, ∥ · ∥′p), we have

Zp ∝ Eq(σp) =⇒ Fp(Zp) ∝ Eq(λpσp).

There exists a range of elemental concentrated random vectors, which may be found for instance in the
monograph [Led05]. We recall below some of the major examples. In the following theorems, we only consider
sequences of random vectors of the normed vector spaces (Rp, ∥·∥). For readability of the results, we will
omit the index p.

Theorem B.7 (Fundamental examples of concentrated vectors). The following sequences of random vectors
are concentrated and satisfy Z ∝ E2:

• Z is uniformly distributed on the sphere √
pSp−1.

• Z ∼ N (0, Ip) has independent standard Gaussian entries.

• Z is uniformly distributed on the ball √pB = {x ∈ Rp, ∥x∥ ≤ √
p}.

• Z is uniformly distributed on [0,
√
p]p.

• Z has the density dPZ(z) = e−U(z)dλp(z) where U : Rp → R is a positive functional with Hessian
bounded from below by, say, cIp with c ≥ O(1) and dλp is the Lebesgue measure on Rp.

Some fundamental results also give concentrations Z ∝ E1 (when Z ∈ Rp has independent entries with
density 1

2e
−|·|dλ1, [Tal95]) or Z ∝ Eq

(
p−

1
q

)
(when Z ∈ Rp is uniformly distributed on the unit ball of the

norm ∥ · ∥q, [Led05]). .

The same way that an exponentially concentrated random variable admits an expectation (see Re-
mark A.19), we are going to show in next section how the expectation of a random vector can be defined.

5Letting X : Ω → E be a random vector and A ⊂ Ω be a measurable subset of the universe Ω, A ∈ F , when P(A) > 0, the
random vector X |A designates the random vector X conditioned with A defined as the measurable mapping (A,FA,P/P(A)) →
(E, ∥ · ∥) satisfying: ∀ω ∈ A, (X | A)(ω) = X(ω). When there is no ambiguity, we will allow ourselves to designate abusively
with the same notation “A” the actual A ⊂ Ω and the subset X(A) ⊂ E.
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B.2 Definition of the expectation in vector space

Thanks to the characterization of exponential concentration with a bound on moments (Proposition A.20),
we already know that, if Z ∝ Eq(σ), then for any Lipschitz mapping f : E 7→ R, the functional f(Z) admits
an expectation E[f(Z)] =

∫
E
f(z)dP(Z = z). This definition can be first generalized when E is a reflexive

space (see Definition 11).
Given a normed vector space (E, ∥ · ∥), we denote (E′, ∥ · ∥) the so-called “strong dual” of E, composed of

the continuous linear forms of E for the norm ∥ · ∥. The norm ∥ · ∥ (written the same way as the norm on E
for simplicity – no ambiguity being possible) is called the strong norm of E′ and defined as follows.

Definition 10. Given a normed vector space (E, ∥ · ∥), the strong norm ∥ · ∥ is defined on E′ as:

∀f ∈ E′, ∥f∥ = sup
∥x∥≤1

|f(x)|.

The notion of reflexive vector space relies on the notion of “topological bidual” of E, denoted (E′′, ∥ · ∥)
and defined by E′′ = (E′)′ with norm the strong norm of the dual of E′.

Definition 11 (Natural embedding, Reflexive space.). The “natural embedding” of E into E′′ is defined as
the mapping:

J : E −→ E′′

x 7−→ (E′ ∋ f 7→ f(x)).

It can be shown that J is always one-to-one, but not always onto; when J is bijective, we say that E is
reflexive.

If E is reflexive, then it can be identified with E′′ (this is in particular the case of any vector space of
finite dimension but also of any Hilbert space). One can then define the expectation of any concentrated
vector X ∝ Eq(σ) as follows:

Definition 12. Given a random vector Z of a reflexive space (E, ∥·∥), if the mapping E′ ∋ f 7→ E[f(Z)] ∈ R
is continuous on E′, we define the expectation of Z as the vector:

E[Z] = J−1(f 7→ E[f(Z)]). (B.2)

Remark B.8. A reflexive space is a complete space (since it is in bijection with a dual space). It satisfies in
particular the Picard Theorem which states that any contractive mapping f : E → E (∀x, y ∈ E, ∥f(x)−f(y) ≤
(1− ε)∥x− y∥ with ε > 0) admits a unique fixed point y = f(y).

Lemma B.9. Given a reflexive space (E, ∥·∥), a random vector Z ∈ E and a continuous linear form f ∈ E′:

f(E[Z]) = E[f(Z)].

Proof. It is just a consequence of the identity:

f(E[Z]) = J(E[Z])(f) = J
(
J−1(f 7→ E[f(Z)])

)
(f) = E[f(Z)].

Proposition B.10. Given a reflexive space (E, ∥ · ∥) and a random vector Z ∈ E, if Z ∝ Eq(σ), then E[Z]
can be defined with Definition 12.

Proof. We just need to show that f 7→ E[f(Z)] is continuous. There exists Kp > 0 such that P(∥Zp∥ ≤
Kp) ≥ 1

2 , so that for any f ∈ E′, P(f(Zp) ≤ Kp∥f∥) ≥ 1
2 . Therefore, by definition, for any median mf

of f(Zp), mf ≤ Kp∥f∥. The two concentrations f(Z) ∈ E[f(Z)] ± Eq(σ) and f(Z) ∈ mf ± Eq(σ) then
allows us to obtain a similar bound on |E[f(Z)]| which allows us to state that the mapping f 7→ |E[f(Z)]| is
continuous.
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It is still possible to define a notion of expectation when E is not reflexive but is a functional vector space
having value on a reflexive space (F, ∥ · ∥); for instance a subspace of FG, for a given set G.

Definition 13. Given reflexive space (F, ∥ · ∥), a given set G, a subspace E ⊂ FG, and a random vector
ϕ ∈ E, if for any x ∈ F , the mapping F ′ ∋ f 7→ E[f(ϕ(x))] is continuous, we can defined the expectation of
ϕ as:

E[ϕ] : x 7→ E[ϕ(x)].

Remark B.11. When the space E ⊂ FG is endowed with a norm ∥ · ∥ such that (E, ∥ · ∥) is reflexive and
∀x ∈ G, E ∋ ϕ 7→ ϕ(x) is continuous, then there is no ambiguity on the definitions. Indeed, if we note E1[ϕ]
and E2[ϕ], respectively the expectation of ϕ given by Definition 12 and Definition 13, we can show for any
x ∈ F and any f ∈ F ′:

f(E1[ϕ](x)) = f̃(E1[ϕ]) = E[f̃(ϕ)] = E[f(ϕ(x))] = f(E[ϕ(x)]) = f(E2[ϕ](x)),

where f̃ : E ∋ ψ → f(ψ(x)) is a continuous linear form. Since this identity is true for any f ∈ E′, we know
by reflexivity of E that ∀x ∈ E: E1[ϕ](x) = E2[ϕ](x). This directly implies that E1[ϕ] = E2[ϕ].

Remark B.12. Given a random mapping ϕ ∈ E ⊂ FG with (F, ∥ · ∥) reflexive, we can then deduce from
Proposition B.10 that if for all x ∈ G, ϕ(x) ∝ Eq(σ) in (F, ∥ · ∥) then we can define E[ϕ]. With a different
formalism, we can endow FG with the family of semi-norms (∥ · ∥x)x∈G defined for any f ∈ FG as ∥f∥x =
∥f(x)∥; then if for all x ∈ G, ϕ ∝ Eq(σ) in (FG, ∥ · ∥x), it is straightforward to set that E[ϕ] is well defined.
This is in particular the case if E = B(G,F ) is the set of bounded mappings from G to F and ϕ ∝ Eq(σ) in
(FG, ∥ · ∥∞) where for all f ∈ FG, ∥f∥∞ = supx∈G ∥f(x)∥.

The Lipschitz-concentrated vectors described in Definition 9 belong to the larger class of linearly concen-
trated random vectors that only requires the linear observations to concentrate. This “linear concentration”
presents less stability properties than those described by Proposition B.6 but is still a relevant notion because:

1. although it must be clear that a concentrated vector Z is generally far from its expectation (for instance
Gaussian vectors lie on an ellipse), it can still be useful to have some control on ∥Z − E[Z]∥ to express
the concentration of product of vectors; linear concentration is a sufficient assumption for this control,

2. there are some examples (Proposition B.41 and B.48) where we can only derive linear concentration
inequalities from a Lipschitz concentration hypothesis. In that case, we say that the Lipschitz concen-
tration “degenerates” into linear concentration that appears as a “residual” concentration property.

These properties of linear concentration are discussed in depth in the next section.

B.3 Linear concentration and control on high order statistics
Definition 14 (Linearly concentrated vectors). Given a sequence of normed vector spaces (Ep, ∥ · ∥p)p≥0,
a sequence of random vectors (Zp)p≥0 ∈

∏
p≥0Ep, a sequence of deterministic vectors (Z̃p)p≥0 ∈

∏
p≥0Ep,

a sequence of positive reals (σp)p≥0 ∈ RN
+ and a parameter q > 0, Zp is said to be q-exponentially linearly

concentrated around the deterministic equivalent Z̃p with an observable diameter of order O(σp) iff there
exist two constants c, C > 0 such that ∀p ∈ N and for any unit-normed linear form f ∈ E′

p (∀p ∈ N, ∀x ∈ E:
|f(x)| ≤ ∥x∥):

∀t > 0 : P
(∣∣∣f(Zp)− f(Z̃p)

∣∣∣ ≥ t
)
≤ Ce−(t/cσp)

q

.

When the property holds, we write Z ∈ Z̃±Eq(σ). If it is unnecessary to mention the deterministic equivalent,
we will simply write Z ∈ Eq(σ). If we just need to control its amplitude, we can write Z ∈ O(θ)±Eq(σ) when
∥Z̃p∥ ≤ O(θp). Of course we adopt also to linearly concentrated random vectors the multi regime notation
defined in Remark B.1.
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When q = 2, we retrieve the well known class of sub-Gaussian random vectors. We need this definition
with generic q to prove Proposition B.41 which involves a weaker than E2 tail decay.

Of course linear concentration is stable through affine transformations.

Proposition B.13 (Stability through affine mappings). Given two (sequences of) normed vector spaces
(E, ∥·∥E) and (F, ∥·∥F ), a (sequence of) random vectors Z ∈ E, a (sequence of) deterministic vectors Z̃ ∈ E
and a (sequence of) affine mappings ϕ : E → F such that ∀x ∈ E : ∥ϕ(x)− ϕ(0)∥F ≤ λ∥x∥E:

Z ∈ Z̃ ± Eq(σ) =⇒ ϕ(Z) ∈ ϕ(Z̃)± Eq(λσ).

When the expectation can be defined, there exists an implication link between Lipschitz concentration
(Definitions 9) and linear concentration (Definition 14).

Lemma B.14. Given a normed space (E, ∥ · ∥) and a random vector Z ∈ E admitting an expectation (see
Section B.2), we have the implication:

Z ∝ Eq(σ) =⇒ Z ∈ E[Z]± Eq(σ).

This implication becomes an equivalence in law dimensional spaces (i.e. when the sequence index “p” is
not linked to the dimension of the vector spaces Ep); then the distinction between linear concentration and
Lipschitz concentration is not relevant anymore. To simplify the hypotheses, we will assume that the normed
vector space does not change at all with p.

Proposition B.15. Given a normed vector space of finite dimension (E, ∥ · ∥), a sequence of random vectors
(Zp)p∈N ∈ EN and a sequence of positive values (σp)p∈N ∈ RN, we have the equivalence:

Z ∝ Eq(σ) ⇐⇒ Z ∈ E[Z]± Eq(σ)

Proof. We already know from Lemma B.14 that Z ∝ Eq(σ) ⇒ Z ∈ E[Z]± Eq(σ), so let us now assume that
Z ∈ E[Z] ± Eq(σ). Let us note d, the dimension of E and introducing (e1, . . . , ed) ∈ Ed, a basis of d, we
note ∥ · ∥ℓ∞ , the norm defined for any x =

∑d
i=1 xiei as ∥x∥ℓ∞ = maxi∈[d] |xi|. There exists a constant α

(α ≤ O(1)) such that for all x ∈ E, ∥x∥ ≤ α∥x∥ℓ∞ and therefore, one can bound for any 1-lipschitz mapping
f : E → R and any sequence of random vectors Z ′, independent with Z:

P (|f(Z)− f(Z ′)| ≥ t) ≤ P (∥Z − Z ′∥ ≥ t) ≤ P

(
α sup
i∈[d]

|Zi − Z ′
i| ≥ t

)
≤ dCe−(t/cσα)q ,

where C, c > 0 are two constants. Since dC, αc ≤ O(1), we retrieve the Lipschitz concentration of Z.

Apart from Lipschitz concentration cases, Linear concentration is also provided by classical concentration
inequalities like Bernstein’s or Hoeffding’s inequalities. It is what is called sub Gaussian random vectors (see
[Ver18] for instance)

Example B.16. [Bernstein’s inequality, [Ver17, Theorem 2.8.2]] Given p independent random variables
(Zi)1≤i≤p ∈ Rp, and three parameters C ≥ e and c, q > 0, for any deterministic vector a ∈ Rp, we have the
implication:

∀i ∈ {1, . . . , p}, Zi ∈ E[Zi]± E ⇒ aTZ ∈ aTE[Z]± E2(∥a∥) + E1(∥a∥∞),

where c is a numerical constant depending only on C and C = (Z1, . . . , Zp). If we want to express it as a
linear concentration, one can just obtain: Z ∈ E[Z]± E1.

Example B.17. [Hoeffding’s inequality, [Ver17, Theorem 2.2.6]] Given p independent random variables
Z1, . . . , Zp ∈ [0, 1], the random vector Z = (Z1, . . . , Zp) ∈ Rp is linearly concentrated and verifies Z ∈
E[Z]± E2 in (Rp, ∥·∥).

The next lemma is a formal expression of the assessment that “any deterministic vector located at a
distance smaller than the observable diameter to a deterministic equivalent is also a deterministic equivalent”,
it is a simple consequence of Lemma A.1.
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Lemma B.18. Given a random vector Z ∈ E, a deterministic vector Z̃ ∈ E such that Z ∈ Z̃ ± Eq(σ), we
have the equivalence:

Z ∈ Z̃ ′ ± Eq(σ) ⇐⇒
∥∥∥Z̃ − Z̃ ′

∥∥∥ ≤ O(σ)

With the notations of Lemma B.18, when ∥Z̃∥ ≤ O(σ), one can note that 0 ∈ E is also a deterministic
equivalent of Z which lead to the following useful tool, principally applied to random variables.

Lemma B.19. Given a random vectors Z ∈ E satisfying: Z ∈ O(σ) ± Eq(σ), any random vector Y ∈ E
satisfying ∥Y ∥ ≤ ∥Z∥ also satisfies:

Y ∈ O(σ) + Eq(σ).

Proof. Since Z ∈ 0± Eq(σ), there exists some constants C, c > 0 such that for any (sequence of) 1-Lipschitz
mapping f : E → R:

∀t > 0 : P (|f(Y )| ≥ t) ≤ P (|f(Z)| ≥ t) ≤ Ce−c(t/σ)
2

.

Definition 15 (Centered moments of random vectors). Given a random vector X ∈ Rp and an integer
r ∈ N, we call the “rth centered moment of X” the symmetric r-linear form CXr : (Rp)r → R defined for any
u1, . . . , ur ∈ Rp by

CXr (u1, . . . , up) = E

[
r∏
i=1

(
uTi X − E[uTi X]

)]
.

When r = 2, the centered moment is the covariance matrix.

We define the operator norm of an r-linear form S of Rp as

∥S∥ ≡ sup
∥u1∥,...,∥ur∥≤1

S(u1, . . . , up).

When S is symmetric, we employ the simpler formula ∥S∥ = sup∥u∥≤1 S(u, . . . , u). We then have the following
characterization, consequence of Proposition A.20 and Lemma A.23.

Proposition B.20 (Moment characterization of linear concentration). Given q > 0, a sequence of random
vectors Xp ∈ Rp, and a sequence of positive numbers σp > 0, we have the following equivalence:

X ∈ Eq(σ) ⇐⇒ ∃C, c > 0,∀p ∈ N,∀r ≥ q : ∥CXp
r ∥ ≤ C

(
r

q

) r
q

(cσp)
r

In particular, if we note C = E[XXT ]−E[X]E[X]T , the covariance ofX ∈ Eq(σ), we see that ∥C∥ ≤ O(σ2),
if in addition X ∈ O(σ)± Eq(σ) (which means that ∥E[X]∥ ≤ O(σ)), then ∥E[XXT ]∥ ≤ O(σ2)

With these results at hand, we are in particular in position to explain how a control on the norm can be
deduced from a linear concentration hypothesis.

B.4 Control of the norm of linearly concentrated random vectors

Given a random vector Z ∈ (E, ∥ · ∥), if Z ∈ Z̃ ± Eq(σ), the control of ∥Z − Z̃∥ can be done easily when the
norm ∥·∥ can be defined as the supremum on a set of linear forms; for instance when (E, ∥ · ∥) = (Rp, ∥·∥∞):



B.4. CONTROL OF THE NORM OF LINEARLY CONCENTRATED RANDOM VECTORS 27

∥x∥∞ = sup1≤i≤p e
T
i x (where (e1, . . . , ep) is the canonical basis of Rp). We can then bound thanks to

Lemma A.14:

P
(
∥Z − Z̃∥∞ ≥ t

)
= P

(
sup

1≤i≤p
eTi (Z − Z̃) ≥ t

)
≤ min

(
1, p sup

1≤i≤p
P
(
eTi (Z − Z̃) ≥ t

))
≤ min

(
1, pCe−c(t/σ)

q
)

≤ max(C, e) exp

(
− ctq

2σq log(p)

)
,

for some constants c, C > 0 (C ≤ O(1), c ≥ O(1)).
To manage the infinity norm, the supremum is taken on a finite set {e1, . . . ep}. Problems arise when this

supremum must be taken on an infinite set. For instance, for the Euclidean norm, the supremum is taken
over the whole unit ball BRp ≡ {u ∈ Rp, ∥u∥ ≤ 1} since for any x ∈ Rp, ∥x∥ = sup{uTx, ∥u∥ ≤ 1}. This
loss of cardinality control can be overcome if one introduces so-called ε-nets to discretize the ball with a net
{ui}i∈I (with I finite i.e. |I| <∞) in order to simultaneously :

1. approach sufficiently the norm to ensure

P
(
∥Z − Z̃∥∞ ≥ t

)
≈ P

(
sup
i∈I

uTi (Z − Z̃) ≥ t

)
,

2. control the cardinality |I| for the inequality

P
(
sup
i∈I

uTi (Z − Z̃) ≥ t

)
≤ |I|P

(
uTi (Z − Z̃) ≥ t

)
not to be too loose.

In the case of Rp, endowed with the euclidean norm, the number of ε- nets |I| is of order O(p), one can then
show thanks to Lemma A.14 (more precisions are given in the proof of Proposition B.22) that there exist two
constants C, c > 0 such that:

P(∥Z − Z̃∥ ≥ t) ≤ max(C, e) exp

(
− ctq

pσq

)
. (B.3)

The approach with ε-nets in (Rp, ∥ · ∥) can be generalized to any normed vector space (E, ∥ · ∥) when the
norm can be written as a supremum through an identity of the kind :

∀x ∈ E : ∥x∥ = sup
f∈H

∥f∥≤1

f(x), with H ⊂ E′ and dim(Vect(H)) <∞, (B.4)

for a given H ⊂ E′ (for E′, the dual space of H) and with Vect(H) the subspace of E′ generated by H. Such
a H ⊂ E′ exists in particular when (E, ∥ · ∥) is a reflexive6 space [Jam57].

When (E, ∥·∥) is of infinite dimension, it is possible to establish (B.4) for some H ⊂ E when E is reflexive
thanks to a result from [Jam57], or for some choice of semi-norms ∥ · ∥. We introduce the notion of norm
degree which will help us adapt the concentration rate p appearing in the exponential term of concentration
inequality (B.3) (concerning (Rp, ∥ · ∥)) to other normed vector spaces.

Definition 16 (Norm degree). Given a normed (or semi-normed) vector space (E, ∥·∥), and a subset H ⊂ E′,
the degree ηH of H is defined as:

• ηH ≡ log(|H|) if H is finite,

• ηH ≡ dim(VectH) if H is infinite.
6Introducing the mapping J : E → E′′ (where E′′ is the bidual of E) satisfying ∀x ∈ E and ϕ ∈ E′: J(x)(ϕ) = ϕ(x), the

normed vector space E is said to be “reflexive” if J is onto.
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If there exists a subset H ⊂ E′ such that (B.4) is satisfied, we denote η(E, ∥ · ∥), or more simply η∥·∥, the
degree of ∥ · ∥, defined as:

η∥·∥ = η(E, ∥ · ∥) ≡ inf

{
ηH , H ⊂ E′ | ∀x ∈ E, ∥x∥ = sup

f∈H
f(x)

}
.

Example B.21. We can give some examples of norm degrees:

• η (Rp, ∥ · ∥∞) = log(p) (H = {x 7→ eTi x, 1 ≤ i ≤ p}),

• η (Rp, ∥ · ∥) = p (H = {x 7→ uTx, u ∈ BRp}),

• η (Mp,n, ∥ · ∥) = n+ p (H = {M 7→ uTMv, (u, v) ∈ BRp × BRn}),

• η (Mp,n, ∥ · ∥F ) = np (H = {M 7→ Tr(AM), A ∈ Mn,p, ∥A∥F ≤ 1}),

• η (Mp,n, ∥ · ∥∗) = np (H = {M 7→ Tr(AM), A ∈ Mn,p, ∥A∥ ≤ 1}).7

Just to give some justification, if E = Rp or E = Mp,n, the dual space E′ can be identified with E through
the representation with the scalar product. Given a subset H ′ ⊂ E such that:

∀x ∈ Rp, ∥x∥∞ = sup
u∈H′

uTx,

we can set that all u ∈ H ′ satisfy ∥u∥1 =
∑p
i=1 |ui| ≤ 1 because if we note u′ = (sign(ui))i∈[p], we can

bound ∥u∥1 = uTu′ ≤ supv∈H′ vTu′ ≤ ∥u′∥∞ ≤ 1. Then, noting H = {e1, . . . , ep}, we know that H ⊂ H ′,
otherwise, if, say ei /∈ H ′, then one could bound ∥ei∥∞ = supu∈H′ uT ei < 1 (because if ∥u∥1 ≤ 1 and u ̸= ei,
then ui < 1). Therefore H ⊂ H ′ and it consequently reaches the minimum of ηH′ . The value of the other
norm indexes is justified with the same arguments.

Depending on the ambient vector space, one can employ one of these examples along with the following
proposition to establish the concentration of the norm of a random vector. The following result is well know
in the case of Euclidean norm of vectors or spectral norm of matrices, and the proof is almost a mere rewriting
of [Tao12], Corollary 2.3.5.

Proposition B.22. Given a reflexive vector space (E, ∥ · ∥) and a concentrated vector Z ∈ E satisfying the
linear concentration Z ∈ Z̃ ± Eq(σ):

∥Z − Z̃∥ ∝ Eq
(
η
1/q
∥·∥ σ

)
and E

[
∥Z − Z̃∥

]
≤ O

(
η
1/q
∥·∥ σ

)
.

Proof. To prove the first implication, let us consider H ′ ⊂ E∗ such that ∀x ∈ E, ∥x∥ = supf∈BH′ f(x).
When H is finite, the bound is obtained the same as for the infinite norm. We know assume that H is
infinite and we further note H ≡ Vect(H ′). Given ε ∈ (0, 1), a set A ⊂ BH is said to be an ε-net of BH if
x, y ∈ A⇒ ∥x− y∥ ≥ ε. We consider here N1/2, a maximal 1

2 -net of BH with respect to inclusion. We know
that the balls of radius 1

4 centered on the points of N1/2 are all disjoint by hypothesis, and their volume is
equal to VBH

/4p (where VBH
is the volume of BH). Since they all belong to the ball of radius 2 and centered

at the origin, we know that their number cannot exceed 8dim(H).
Besides, given a drawing of Z, there exists f0 ∈ BH such that Z − Z̃ = f0(Z − Z̃) (since BH is compact).

Then there exists f ∈ BH such that ∥f − f0∥∗ is bounded by 1
2 (otherwise f0 could be added to N1/2).

Furthermore : ∥∥∥Z − Z̃
∥∥∥− f

(
Z − Z̃

)
≤
∣∣∣f (Z − Z̃

)
− f0

(
Z − Z̃

)∣∣∣
≤ ∥f − f0∥∗

∥∥∥Z − Z̃
∥∥∥ ≤ 1

2

∥∥∥Z − Z̃
∥∥∥ .

7∥ · ∥∗ is the nuclear norm defined for any M ∈ Mp,n by ∥M∥∗ = Tr(
√
MMT ); it is the dual norm of ∥ · ∥, which means that

for any A,B ∈ Mp,n, Tr(ABT ) ≤ ∥A∥∥B∥∗. One must be careful that Proposition B.22 is rarely useful to bound the nuclear
norm as explained in footnote 9.
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Therefore: ∥∥∥Z − Z̃
∥∥∥ ≤ 2 sup

{
f ∈ N1/2 : f

(
Z − Z̃

)}
and this inequality being true for any drawing of Z, we have then by hypothesis the existence of two constants
C, c > 0 such that:

∀t > 0 : P
(∥∥∥Z − Z̃

∥∥∥ ≥ t
)
≤
∑
N1/2

Ce
tq

c ≤ 8dim(H)Ce
tq

c ≤ C ′e
tq

c′η∥·∥ ,

for some constant C ′, c′ > 0, thanks to Lemma A.14.

Remark B.23. In Proposition B.22, if in addition, Z satisfies the Lipschitz concentration Z ∝ Eq(σ), the
norm satisfies the same concentration as it is a Lipschitz observation, and one gets8:

∥Z − Z̃∥ ∈ O
(
η
1/q
∥·∥ σ

)
± Eq (σ) .

Example B.24. Given two random vectors Z ∈ Rp and X ∈ Mp,n:

• if Z ∝ E2 in (Rp, ∥·∥), then E ∥Z∥ ≤ ∥E[Z]∥+O(
√
p),

• if X ∝ E2 in (Mp,n, ∥ · ∥), then E ∥X∥ ≤ ∥E[X]∥+O(
√
p+ n),

• if X ∝ E2 in (Mp,n, ∥ · ∥F ), then E ∥X∥ ≤ ∥E[X]∥F +O(
√
pn).

• if X ∝ E2(
√
min(p, n)) in (Mp,n, ∥ · ∥∗), then E ∥X∥∗ ≤ ∥E[X]∥∗ +O(

√
pn
√
min(p, n)).9

Example B.25. Let us consider the semi norm ∥ · ∥d that will be useful later and that satisfies:

∀M ∈ Mn : ∥M∥d =

(
n∑
i=1

M2
i,i

) 1
2

= sup
D∈Dn

∥D∥F ≤1

Tr(DM).

where Dn is the set of diagonal matrices of Mp, note that for all D ∈ Dn, ∥D∥d = ∥D∥F , and for A ∈ Mp,
Tr(AD) ≤ ∥A∥d∥D∥d. We see directly that η(Mn,∥·∥d) = #Dn = n and therefore for a given X ∈ Mn such
that X ∝ E2, we can bound E∥X∥d ≤ ∥E[X]∥d +O(

√
n).

Proposition B.22 is not always the optimal way to bound norms. For instance, given a vector Z ∈ Rp and
a deterministic matrix A ∈ Mp, if Z ∝ Eq, one is tempted to bound naively thanks to Proposition B.22:

• if ∥E[Z]∥ ≤ O(p1/q), E[∥AZ∥] ≤ ∥A∥E[∥Z∥] ≤ O(∥A∥p
1
q );

• if ∥E[Z]∥ ≤ O(1), decomposing A = PTΛQ, where P,Q ∈ Op, Λ = Diag(λ), λ = (λ1, . . . , λp) ∈ Rp and
setting Ž = (Ž1, . . . , Žp) ≡ QZ:

E[∥AZ∥] = E[∥ΛQZ∥] = E

√√√√ p∑
i=1

λ2i Ž
2
i

 ≤ ∥λ∥E
[
∥Ž∥∞

]
≤ ∥A∥FO

(
(log p)

1
q

)
.

Note indeed that Ž ∝ E2 and therefore E[∥Ž∥∞] ≤ ∥E[Ž]∥∞ +O
(
(log p)

1
q

)
≤ ∥E[Z]∥+O

(
(log p)

1
q

)
.

8The notation Z ∈ O(θ) ± Eq(σ) was presented in Definition 14 for linearly concentrated vectors, it can be extended to
concentrated random variables.

9One must be careful here that Theorem B.7 just provides concentration in the Euclidean spaces (Rp, ∥ · ∥) or (Mp,n, ∥ · ∥F )
from which one can deduce concentration in (Rp, ∥ · ∥∞) or (Mp,n, ∥ · ∥) since for all x ∈ Rp, ∥x∥∞ ≤ ∥x∥ and for all
M ∈ Mp,n, ∥M∥ ≤ ∥M∥F . However one cannot obtain a better bound than ∥M∥∗ ≤

√
min(n, p)∥M∥F : this for instance

implies that a random matrix X = (x1, . . . , xn) with x1, . . . , xn i.i.d. satisfying ∀i ∈ [n], xi ∼ N (0, Ip) follows the concentration
X ∝ E2(

√
min(p, n)) in (Mp,n, ∥ · ∥∗).



30 CHAPTER B. LIPSCHITZ AND LINEAR CONCENTRATION OF A RANDOM VECTOR

However, here, Proposition B.22 is suboptimal: one can reach a better bound thanks to the following lemma.
We give a result for random vectors and random matrices, they are actually equivalent.

Lemma B.26. Given a random vector Z ∈ Eq in (Rp, ∥ · ∥) such that ∥E[Z]∥ ≤ O(1) and a deterministic
matrix A ∈ Mp:

E[∥AZ∥] ≤ O (∥A∥F ) .

and given a random matrix X ∈ E2 in (Mp,n, ∥ · ∥F ) such that ∥E[X]∥F ≤ O(1) and a supplementary
deterministic matrix B ∈ Mn:

E[∥AXB∥F ] ≤ O (∥A∥F ∥B∥F ) .

Proof. Denoting Σ = E[ZZT ] = CZ2 + E[Z]E[Z]T , we know from Proposition B.20 that ∥Σ∥ ≤ O(1); we can
then bound with Jensen’s inequality:

E[∥AZ∥] ≤
√

E[ZTATAZ] =
√
E[Tr(ΣATA)] ≤

√
∥Σ∥∥A∥F ≤ O(∥A∥F ).

The second result is basically the same. If we introduce X̌ ∈ Rpn satisfying X̌i(j−1)+j = Xi,j , we know that
X̃ ∝ E2 like X (since ∥X̃∥ = ∥X∥F ) and thanks to the previous result we can bound:

E[∥AXB∥F ] = E[∥A⊗BX̃∥] ≤ O (∥A⊗B∥F ) = O (∥A∥F ∥B∥F ) .

B.5 Linear concentration through finite and infinite sums

Independence is known to be a key elements to most of concentration inequalities. However, linear con-
centration behaves particularly well for the concatenation of random vectors whose dependence can not be
disentangled.

The next proposition sets that the observable diameter for the ℓ∞ norm remains unchanged through
concatenation. Given a product E ≡

∏
1≤i≤mEi, where (E1, ∥ · ∥∞), . . . , (Em, ∥ · ∥∞) are m normed vector

spaces we define the ℓ∞ norm on E with the following identity:

(z1, . . . , zm) ∈ E : ∥(z1, . . . , zm)∥ℓ∞ = sup
1≤i≤m

∥zi∥i. (B.5)

Proposition B.27. Given two sequences m ∈ NN and σ ∈ RN
+, a constant q, m sequences of normed vector

spaces (Ei, ∥ · ∥i)1≤i≤m, m sequences of deterministic vectors Z̃1 ∈ E1, . . . , Z̃m ∈ Em, and m sequences
of random vectors Z1 ∈ E1, . . . , Zm ∈ Em (possibly dependent) satisfying, for any i ∈ {1, . . . ,m}, Zi ∈
Z̃i ± Eq(σ), we have the concentration:

(Z1, . . . , Zm) ∈ (Z̃1, . . . , Z̃m)± Eq(σ), in (E, ∥ · ∥ℓ∞).

In other word, the linear observable diameter of (Z1, . . . , Zm) can not be bigger than the observable
diameter of (Z, . . . , Z), where Z is chosen as the worse possible random vector satisfying the hypotheses
of Z1, . . . , Zm. The same results hold of course if the different Z1, . . . , Zm follow the same combination of
exponential concentration.

Remark B.28. An example provided at the beginning of Section B.6 proves that this stability towards con-
catenation is not true for Lipschitz (nor convex concentration).

Proof. Let us consider a linear function u : E → R, such that

∥u∥∞ ≡ sup
∥z∥∞≤1

|u(z)| ≤ 1.



B.5. LINEAR CONCENTRATION THROUGH FINITE AND INFINITE SUMS 31

Given i ∈ [m], let us note ui : Ei → R the function defined as ui(z) = u((0, . . . , 0, z, 0, . . . , 0)) (where z is in
the ith entry). For any z ∈ E, one can write:

u(z) =

m∑
i=1

niu
′
i(zi),

where ni ≡ ∥ui∥ = sup∥z∥i≤1 ui(z) and u′i = ui/ni (∥u′i∥ = 1). We have the inequality:

m∑
i=1

ni =

m∑
i=1

ni sup
∥zi∥i≤1

u′i(zi) = sup
∥z∥∞≤1

u(z) ≤ 1.

With this bound at hand, we plan to employ the characterization with the centered moments. Let us conclude
thanks to Proposition A.20 and the convexity of t 7→ tl, for any l ≥ 1:

E
[∣∣∣u(Z)− u(Z̃)

∣∣∣l] ≤ E

( m∑
i=1

ni

∣∣∣u′i (Zi)− u′i

(
Z̃i

)∣∣∣)l


≤

(
m∑
i=1

ni

)l
E

[
m∑
i=1

ni∑m
i=1 ni

∣∣∣u′i (Zi)− u′i

(
Z̃i

)∣∣∣l]

≤ sup
l∈[m]

E
[∣∣∣u′i (Zi)− u′i

(
Z̃i

)∣∣∣l] ≤ Cl
l
q σl.

If we want to consider the concatenation of vectors with different observable diameters, it is more
convenient to look at the concentration in a space (

∏m
i=1Ei, ℓ

r), for any given r > 0, where, for any
(z1, . . . , zm) ∈

∏m
i=1Ei:

∥(z1, . . . , zm)∥ℓr =

(
m∑
i=1

∥zi∥ri

)1/r

.

Corollary B.29. Given two constants q, r > 0, m ∈ NN, σ1, . . . , σm ∈ (RN
+)
m, m sequences of (Ei, ∥ ·

∥i)1≤i≤m, m sequences of deterministic vectors Z̃1 ∈ E1, . . . , Z̃m ∈ Em, and m sequences of random vectors
Z1 ∈ E1, . . . , Zm ∈ Em (possibly dependent) satisfying, for any i ∈ {1, . . . ,m}, Zi ∈ Z̃i ±E2(σi), we have the
concentration:

(Z1, . . . , Zm) ∈ (Z̃1, . . . , Z̃m)± E2(∥σ∥r), in (E, ∥ · ∥ℓr ),

Remark B.30. When E1 = · · · = Em = E in the setting of Corollary B.29, then for any vector a =
(a1, . . . , am) ∈ Rm+ , we know that:

m∑
i=1

aiZi ∈
m∑
i=1

aiZ̃i ± E2(|a|Tσ),

where |a| = (|a1|, . . . , |am|) ∈ Rm+
Proof. We already know from Proposition B.27 that:(

Z1

σ1
, . . . ,

Zm
σm

)
∈

(
Z̃1

σ1
, . . . ,

Z̃m
σm

)
± E2, in (E, ∥ · ∥ℓ∞).

Let us then consider the linear mapping:

ϕ : (E, ∥ · ∥ℓ∞) −→ (E, ∥ · ∥ℓr )
(z1, . . . , zm) 7−→ (σ1z1, . . . , σmzm),

the Lipschitz character of ϕ is clearly ∥σ∥r = (
∑m
i=1 σ

r
i )

1/r, and we can deduce the concentration of Z =
ϕ(σ1Z1, . . . , σmZm).
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Corollary B.29 is very useful to set the concentration of infinite series of concentrated random variables.
For that, we resort to Proposition A.11 that sets that the observable diameter of a limit of random vectors is
equal to the limit of the observable vectors. Be careful that rigorously, there are two indexes, n coming from
Definition 14 that only describes the concentration of sequences of random vectors, and m particular to this
lemma that will tend to infinity. For clarity, we do not mention the index n in the following adaptation of
Proposition A.11 to the case of concentrated random vectors.

Lemma B.31. Given a sequence of random vectors (Zm)m∈N ∈ EN, a sequence of positive reals (σm)m∈N ∈
RN

+ and a sequence of deterministic vectors (Z̃m)m∈N ∈ EN such that:

Zm ∈ Z̃m ± E2(σm),

if we assume that (Zm)m∈N converges in law10 when m tends to infinity to a random vector (Z∞) ∈ E, that
σm −→

n→∞
σ∞ and that Z̃m −→

n→∞
Z̃∞, then:

Z∞ ∈ Z̃∞ ± E2(σ∞).

(The result also holds for Lipschitz and convex concentration but without deterministic equivalent)

Corollary B.32. Given two constants q, r > 0, σ1, . . . , σm . . . ∈ (RN
+)

N, a (sequences of) normed vector
spaces (E, ∥ · ∥), Z̃1 . . . , Z̃m, . . . ∈ EN deterministic, and Z1 . . . , Zm, . . . ∈ EN random (possibly dependent)
satisfying, for any n ∈ N, Zm ∈ Z̃m ± E2(σm). If we assume that Z ≡

∑
n∈N Zm is pointwise convergent11,

that
∑
m∈N Z̃m is well defined and that

∑
n∈N σi ≤ ∞, then we have the concentration:∑

m∈N
Zm ∈

∑
m∈N

Z̃m ± E2

(∑
m∈N

σm

)
, in (E, ∥ · ∥),

Proof. We already know from Corollary B.29 that for all m ∈ N:
M∑
m=1

Zm ∈
M∑
m=1

Z̃m ± E2

(∑
m∈N

σm

)
, in (E, ∥ · ∥).

Thus in order to employ Lemma B.31 let us note that for any bounded continuous mapping f : E → R, the
dominated convergence theorem allows us to set that:

E

[
f

(
M∑
m=1

Zm

)]
−→
M→∞

E

[
f

( ∞∑
m=1

Zm

)]
,

thus (
∑M
m=1 Zm)N∈N converges in law to

∑∞
m=1 Zm, which allows us to set the result of the corollary.

The concentration of infinite series directly implies the concentration of resolvents and other related
operators (like (In − X/

√
p)−1Xk for instance) as it will be exposed at the beginning of Part C.3 (see

Theorem C.3). To be more precise, this approach to the resolvent with infinite sum is particularly interesting
for convexly concentrated random matrices for which the product is only linearly concentrated (see Chapter D,
Theorem D.21) Part II, that this corollary finds its relevancy under convex concentration hypotheses, where
the linear concentration seems to be the best concentration property to obtain on the resolvent Qz = (zIp −
1
nXX

T )−1.

Returning to Lipschitz concentration, in order to control the concentration of the sum X + Y or the
product XY of two random vectors X and Y , a first step is to express the concentration of the concatenation
(X,Y ). This last result is easily obtained for the class of linearly concentrated random vectors but a tight
concentration of the product with good observable diameter is in general not accessible. In the class of Lips-
chitz concentrated vectors, the concentration of (X,Y ) is far more involved, and assumptions of independence
here play a central role (unlike for linear concentration).

10For any n ∈ N, for any bounded continuous mapping f :
∏
m≥0 Ep → RN:

sup
n∈N

|E[f(Zn,m)− E[f(Zn,∞)]| −→
m→∞

0

11For any w ∈ Ω,
∑
m∈N ∥Zm(w)∥ ≤ ∞ and we define Z(w) ≡

∑
m∈N Zm(w)
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B.6 Concentration of vector concatenation

One must be careful because, we saw in the introduction that the concatenation of two random vectors can
be not concentrated. There exist two simple ways to obtain the concentration of (X,Y ). The first one follows
from any identity (X,Y ) = ϕ(Z) with Z concentrated and ϕ Lipschitz. It is also possible to deduce the
concentration of (X,Y ) from the concentration of X and Y when they are independent.

Proposition B.33 (Stability through independent concatenation). [Led05, Proposition 1.11] Given (E, ∥·∥)
a sequence of normed vector spaces and two sequences of independent random vectors X,Y ∈ E, such that
X ∝ Eq(σ) and Y ∝ Er(ρ) (where q, r > 0 are two positive constants and σ, ρ ∈ RN

+ are two sequences of
positive reals), then:

(X,Y ) ∝ Eq (σ) + Er (ρ) in (E2, ∥ · ∥ℓ∞),

where, for all x, y ∈ E2, ∥(x, y)∥ℓ∞ = max(∥x∥, ∥y∥).12
Following our formalism, this means that there exist two positive constants C, c > 0 such that ∀p ∈ N and

for any 1-Lipschitz function f : (E2
p , ∥ · ∥ℓ∞) → (R, | · |), ∀t > 0:

P
(∣∣f(Xp, Yp)− f(X ′

p, Y
′
p)
∣∣ ≥ t

)
≤ Ce−(t/cσp)

q

+ Ce−(t/cρp)
r

.

The sum being a 2-Lipschitz operation (for the norm ∥ ·∥ℓ∞), the concentration of X+Y is easily handled
with Proposition B.6 and directly follows from the concentration of (X,Y ). For products of vectors, more
work is required.

B.7 Concentration of generalized products of random vectors

To treat the product of vectors, we provide a general result of concentration of what could be called “multi-
linearly m-Lipschitz mappings” on normed vector spaces. Instead of properly defining this class of mappings
we present it directly in the hypotheses of the theorem. Briefly, these mappings are multivariate functions
which are Lipschitz on each variable, with a Lipschitz parameter depending on the product of the norms
(or semi-norms) of the other variables and/or constants. To express the observable diameter of such an
observation, one needs a supplementary notation.

Given a vector of parameters (νl)l∈[m] ∈ Rm+ , for any k ∈ [m], recall the notation given before the proof
of Proposition A.30:

ν(k) ≡ max
1≤l1<···<lk≤m

νl1 · · · νlk = ν(m−k+1) · · · ν(m),

where {ν(l)}l∈[m] = {νl}l∈[m] and ν(1) ≤ · · · ≤ ν(m).

Theorem B.34 (Concentration of generalized product). Given a constant m (m ≤ O(1)), let us consider:

• m (sequences of) normed vector spaces (E1, ∥ · ∥1), . . . , (Em, ∥ · ∥m).

• m (sequences of) norms (or semi-norms) ∥ · ∥′1, . . . , ∥ · ∥′m, respectively defined on E1, . . . , Em.

• m (sequences of) random vectors Z1 ∈ E1, . . . , Zm ∈ Em satisfying

Z ≡ (Z1, . . . , Zm) ∝ Eq(σ)

for some (sequence of) positive numbers σ ∈ R+, and for both norms13 ∥z1, . . . , zm∥ℓ∞ = supmi=1 ∥zi∥i
and ∥(z1, . . . , zm)∥′ℓ∞ = supmi=1 ∥zi∥′i defined on E = E1 × · · · × Em.

12One could also have considered a number of equivalent norms such as ∥(x, y)∥ℓ1 = ∥x∥+ ∥y∥ or ∥(x, y)∥ℓ2 =
√

∥x∥2 + ∥y∥2.
13One just needs to assume the concentration ∥Zi∥′i ∈ µi ±Eq(σ); the global concentration of Zi for the norm (or semi-norm)

∥ · ∥′i is not required.
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• a (sequence of) normed vector spaces (F, ∥ · ∥), a (sequence of) mappings ϕ : E1, . . . , Em → F , such
that ∀(z1, . . . , zm) ∈ E1 × · · · × Em and z′i ∈ Ei:

∥ϕ(z1, . . . , zm)− ϕ(z1, . . . , zi−1, z
′
i, . . . , zm)∥ ≤

∏m
j=1 max(∥zj∥′j , µj)
max(∥zi∥′i , µi)

∥zi − z′i∥i .

where µi > 0 is a (sequence of) positive reals such that µi ≥ E[∥Zi∥′i]. We further assume µi ≥ O(σ).14

Then we have the concentration :15

ϕ (Z) ∝ max
l∈[m]

Eq/l
(
σlµ(m−l)

)
(B.6)

One can deduce from the moment characterization given in Proposition A.30 that, in the setting of
Theorem B.34, the standard deviation (resp. the rth centered moment with r ≤ O(1)) of any 1-Lipschitz
observation of ϕ(Z) is of order O

(
σµ(m−1)

)
(resp. O

(
(σµ(m−1))r

)
) thus the observable diameter, in the

sense given by (2) in the introduction, is given by the first exponential decay, Eq
(
σµ(m−1)

)
, which represents

the guiding term of (B.6).
We give later a more general setting with Theorem B.46 where the variations of ϕ are not controlled

with norms (or semi-norms) (∥ · ∥′j)j∈[m]\{i} but with concentrated variables. The setting is somehow more
complex, but sometimes more easy to apply; the proof is morally the same.

One can relax the hypothesis “m constant” and reach good concentration rates when m tends to infinity:
this is done in Section B.9.

Proof. We use here again the notation µ(i) of the ordered µ1, . . . , µm. Let us consider Z ′
1, . . . , Z

′
m, m inde-

pendent copies of Z1, . . . , Zm and a 1-Lipschitz (for the norm ∥·∥) mapping f : F → R. For simplicity, we
will note ϕ(Z) ≡ ϕ(Z1, . . . , Zm) (and ϕ(Z ′) = ϕ(Z ′

1, . . . , Z
′
m)). Given t > 0, we wish to bound:16

P (|f(ϕ(Z))− f(ϕ(Z ′))| ≥ t) . (B.7)

The map Z 7→ f(ϕ(Z)) is not Lipschitz, unless Z is bounded. We thus decompose the probability argument
into two events, one with bounded ∥Z∥′ℓ∞ and ∥Z ′∥′ℓ∞ and the complementary with small probability. For
all i ∈ [m], since ∥Z∥′i ∈ E[∥Z∥′i]± Eq(σ) and E[∥Z∥′i] ≤ µi (and the same hold for Z ′

i), we can then employ
for all t ≥ µi the identity:

P
(
∥Z∥′i ≥ 2t

)
= P

(
∥Z ′∥′i ≥ 2t

)
≤ P

(∣∣∥Z∥′i − E
[
∥Z∥′i

]∣∣ ≥ 2t− µi
)
≤ Ce−(t/cσ)q ,

for two constants C, c > 0. The bounds on each of the ∥Zi∥′i and ∥Z ′
i∥′i, i ∈ [m], depend on the value of t.

Let us note for all i ∈ [m]:

ti ≡ µ(m−i)µii = µ(m−i+1)µi−1
i =

(µ(m−i+1))i

(µ(m−i,))i−1
and tm+1 = ∞,

and remark that t1 ≤ · · · ≤ tm, (see Lemma B.36 for some details). The parameters t1, . . . , tm define the
different regime of the concentration and will play the same role as in the proof of Proposition A.30. If
t ∈ [ti, ti+1], we decompose the probability (B.7) playing on the realization the events {Z ∈ Bi}∩ {Z ′ ∈ Bi},
where we defined:

Bi ≡

{
z ∈ E1 × · · · × Em | ∥z1∥′1 ≤ 2

(
t

µ(m−i)

) 1
i

; . . . ; ∥zi∥′i ≤ 2

(
t

µ(m−i)

) 1
i

; ∥zi+1∥′i+1 ≤ 2µi+1; . . . ; ∥zm∥′m ≤ 2µm

}
.

Noting that for j ∈ [m]:
14This is a very light assumption: it is hard to find any practical example where µi ≪ σ, because, as pictured by Corollary B.35,

µi will generally writes in our applications C′ση
1/q

∥·∥′i
, where η is a norm degree bigger than 1 by definition.

15Here since m ≤ O(1), taking the maximum over l ∈ [m] is equivalent to taking the sum, up to a small change of the
constants; we will thus indifferently write ϕ (Z) ∝ maxl∈[m] Elq/m

((
σµ(l−1)

)m
l

)
or ϕ (Z) ∝

∑m
l=1 Elq/m

((
σµ(l−1)

)m
l

)
.

16We choose here to employ the characterization of the concentration with the independent copy, because, at some point of the
proof, we restrict ourselves to an event AK and then P (|f(ϕ(Z))− f(ϕ(Z′))| ≥ t | AK) can be bounded directly from the concen-
tration (ϕ(Z) | AK) ∝ Eq(K(m−1)σ) resulting from Lemma B.4 and Remark B.5. To bound P (|f(ϕ(Z))− E[f(ϕ(Z))]| ≥ t | AK),
one would have needed to show first that |E[f(ϕ(Z))]− E[f(ϕ(Z)) | AK ]| ≤ O(K(m−1)σ) to then employ Lemma B.18.
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• if j ≤ i:
(

t
µ(m−i)

) 1
i ≥

(
ti

µ(m−i)

) 1
i

= µi ≥ µj ,

• if j ≥ i+ 1: µj ≥ µi+1 =
(

ti+1

µ(m−i)

) 1
i ≥

(
t

µ(m−i)

) 1
i

,

we can first bound, on the first hand:

P (|f(ϕ(Z))− f(ϕ(Z ′))| ≥ t, Z ∈ Bci or Z ′ ∈ Bci ) ≤ 2P (Z ∈ Bci )

≤ 2

i−1∑
j=1

P (∥Zj∥ ≥ 2µj) + 2

m∑
k=i

P

(
∥Zk∥ ≥ 2

(
t

µ(m−i)

) 1
i

)

≤ 2mC exp

(
− t/(cσ)

i

µ(m−i)

) q
i

. (B.8)

On the other hand, one can show that f ◦ ϕ Bi
is λi-Lipschitz with:

λi ≡ m2m−1

(
t

µ(m−i)

) i−1
i

µ(m−i).

Therefore, following Remark B.5, since P(Z ∈ Bi) ≥ O(1):

(f(ϕ(Z)) | Z ∈ Bi) ∝ Eq (λi) ,

which allows us to bound (for all t ∈ [ti, ti−1]):

P (|f(ϕ(Z))− f(ϕ(Z ′))| ≥ t, Z, Z ′ ∈ Bi) ≤ C exp

(
− t

(2mcσ)iµ(m−i)

) q
i

. (B.9)

If t ∈ (0, t1] = (0, µ(m)], we introduce:

B0 ≡{z ∈ E1 × · · · × Em | ∥z1∥′1 ≤ 2µ1; . . . ; ∥zm∥′m ≤ 2µm} ,

one can still bound ∀i ∈ [m], µi ≥ µ1 = t1
µ(m−1) ≥ t

µ(m−1) , and therefore P(Z /∈ B0) ≤ mCe
−( t

cσµ(m−1)
)q

,
besides, ϕ B0

is m2m−1µ(m−1)-Lipschitz, therefore we retrieve:

P (|f(ϕ(Z))− f(ϕ(Z ′))| ≥ t, Z, Z ′ ∈ B0) ≤ C exp
(
−t/2mcσµ(m−1)

)q
.

Combining these bounds for t ∈ (0, t1] with (B.8) and (B.9), we obtain the result of the theorem (since
mC, 2mc ≤ O(1)).

Corollary B.35. In the setting of Theorem B.34, when ∀i ∈ [m], ∥E[Zi]∥′i ≤ O(ση
1/q
∥·∥′), we have the simpler

concentration:

ϕ (Z) ∝ max
l∈[m]

Eq/l
(
σmη(m−l)

)
,

where we denoted η =
(
η
1/q
∥·∥′

1
, . . . , η

1/q
∥·∥′

m

)
.

Proof. Proposition B.22 allows us to choose µi = C ′ση
1/q
∥·∥′

i
for some constant C ′ > 0; we thus retrieve the

result thanks to Theorem B.34.

It is possible to characterize the concentration provided by Theorem B.34 with the bound on the moments
provided in Proposition A.30. One just has to show that the parameters of the concentration from a family
of canonical multi-regime parameter as defined in Definition 7.
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Lemma B.36. Given two parameters σ, q > 0, an integer m ≥ 1 and m parameters µ1, . . . , µn such
that for all i ∈ [m], µi ≥ σ, if for any l ∈ [m], we note σl ≡ σlµ(m−l), then the sets of couples
(q, σ1), (

q
2 , σ2), . . . , (

q
m , σm) forms a sensible family of canonical multi regime parameters.

Proof. The inequalities q > q
2 > · · · > q

m and σ1 > · · · > σm are obvious. For simplicity, let us reorder the
indexing of the argument of ϕ such that (µ1, . . . , µm) = (µ(1), . . . , µ(m)) (i.e., µ1 ≤ · · · ≤ µm). One can then
bound for any k, l ∈ [m]:

tk,l =

(
(µ(m−k))l

(µ(m−l))k

) 1
l−k

=
(
(µ(m−l))l−k(µ(k+1) · · ·µ(l))

l
) 1

l−k ≤ µ(m−l)µl(l) =
(µ(m−l+1))l

(µ(m−l))l−1
= tl−1,l

And we show the same way:

tk,l =
(
(µ(m−k))l−k(µ(k+1) · · ·µ(l))

k
) 1

l−k ≥ µ(m−k)µk(k+1) =
(µ(m−k))k+1

(µ(m−k−1))k
= tk,k+1.

Remark B.37 (Regime decomposition). Lemma B.36 states that (q, σ1), . . . , ( qm , σm) is a family of sensible
multi-regime parameters, however it could be non free (i.e. it could happen that tl−1,l = tl,l+1), in which case
there would be less than m regimes.

In particular, when µ(1) = · · · = µ(m) ≡ µ0,17 ∀i ∈ [m], ti = µm0 . In this case, there are only two regimes
and we can more simply write :

Φ(Z) ∝ Eq(σµm−1
0 ) + E q

m
(σm).

Let us give examples of “multilineary Lipschitz mappings” that would satisfy the hypotheses of Theo-
rem B.34.

Example B.38 (Entry-wise product). Letting ⊙ be the entry-wise product in Rp defined as [x ⊙ y]i = xiyi
(it is the Hadamard product for matrices), ϕ : (Rp)m ∋ (x1, . . . , xm) 7→ x1 ⊙ · · · ⊙ xm ∈ Rp is multilinearly
Lipschitz since we have for all i ∈ [m]:

∥x1 ⊙ · · · ⊙ xi−1 ⊙ (xi − x′i)⊙ xi+1 ⊙ · · · ⊙ xm∥ ≤

 m∏
j=1
j ̸=i

∥xj∥∞

 ∥xi − x′i∥ ,

for all vectors x1, . . . , xm, x
′
1, . . . , x

′
m ∈ Rp. As a practical case, if (Z1, . . . , Zm) ∝ E2 and ∀i ∈ [m],

∥E[Zi]∥∞ ≤ O(1), then Corollary B.35 and Remark B.37 imply:

Z1 ⊙ · · · ⊙ Zm ∝ E2
(
log(p)

m−1
2

)
+ E 2

m
.

In this case, the observable diameter of Z1 ⊙ · · · ⊙ Zm is provided by E2
(
log(p)

m−1
2

)
: as such, under this

very common setting, the entry-wise product has almost no impact on the rate of concentration.

Example B.39 (Matrix product). The mapping ϕ : (Mp)
q ∋ (M1, . . . ,Mq) 7→ M1 · · ·Mm ∈ Mp is multi-

linearly Lipschitz since for all i ∈ [m] :18

∥M1 · · ·Mi−1(Mi −M ′
i)Mi+1 · · ·Mm)∥F ≤

 m∏
j=1
j ̸=i

∥Mj∥

 ∥Mi −M ′
i∥F ,

for all matrices M1, . . . ,Mm,M
′
1, . . . ,M

′
m ∈ Mp. Given m random matrices X1, . . . , Xm ∈ Mp such that

(X1, . . . , Xm) ∝ E2 and ∀i ∈ [m], ∥E[Xi]∥ ≤ O(
√
p), Corollary B.35 implies:

X1 · · ·Xm ∝ E2
(
p

m−1
2

)
+ E 2

m
.

In particular, for a “data” matrix19 X = (x1, . . . , xn) ∈ Mp,n satisfying X ∝ E2 and E[∥X∥] ≤ O(
√
p+ n),

17To be precise, it is sufficient to assume µ(2) = · · · = µ(m), since µ(1) never appears in the definition of the ti for i ∈ [m].
18One could have equivalently considered, for even m ∈ N, the mapping ϕ : Mm

p,n → Mp,n satisfying ∀M1, . . . ,Mm ∈ Mp,n,
ϕ(M1, . . . ,Mm) = M1MT

2 · · ·Mm−1MT
m.

19That is, a matrix whose columns contain vectors of “data”, as per data science terminology.
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the sample covariance matrix satisfies the concentration:

1

n
XXT ∝ E2

(√
p+ n

n

)
+ E1

(
1

n

)
,

which provides an observable diameter of order O(1/
√
n) when p ≤ O(n).

Example B.40 (Composition). We study here the concentration of the composition of random Lipschitz
functions. Beyond the linear case, consider the composition of functions defined on Lip(R), the set of Lipschitz
and bounded functions of R. Given f ∈ Lip(R), we denote:

∥f∥∞ = sup
x∈R

|f(x)| ∥f∥L = sup
x ̸=y

|f(x)− f(y)|
|x− y|

(∥f∥L is not a norm but a semi-norm). The mapping ϕ : (Lip(R))m ∋ (f1, . . . , fm) 7→ f1 ◦ · · · ◦ fm ∈ Lip(R)
is multilinearly Lipschitz and ∀f1 . . . fm, f ′i ∈ Lip(R):

∥(f1 ◦ · · · ◦ fm)− (f1 ◦ · · · ◦ fi−1 ◦ f ′i ◦ fi+1 ◦ · · · ◦ fm)∥∞
≤ ∥f1∥L · · · ∥fi−1∥L ∥fi − f ′i∥∞ .

Therefore, assuming f1, . . . , fm all O(1)-Lipschitz and satisfying the concentration (f1, . . . , fm) ∝ Eq(σ),
thanks to Theorem B.34, the following concentration holds :

f1 ◦ · · · ◦ fm ∝ Eq(σ) + Eq/m(σm).

When f1 = · · · = fm ≡ f and f is λ-Lipschitz with 1 − λ ≥ O(1), we can follow the dependence of the
concentration of f ◦ · · · ◦ f on m thanks to Theorem B.52 that induces for any sequence of integers m the
concentration inequality:

fm ∝ Eq (σ(1− ε)m) + Eq/m ((κσ)m)

for some constants κ, ε > 0.

B.8 Generalized Hanson-Wright theorems and concentration of
XDY T

To give some more elaborate consequences of Theorem B.34, let us first provide a matricial version of the
popular Hanson-Wright concentration inequality, [HW71]. It was already proven in [Ada15] for random
vectors, which is a quite similar setting. The same Proposition can be set in convex concentration setting as
it is done in Proposition D.6.

Proposition B.41 (Hanson-Wright, [Ada15]). Given two random matrices X,Y ∈ Mp,n, assume that
(X,Y ) ∝ E2 (say, in20 (M2

p,n, ∥ · ∥ℓ∞)) and ∥E[X]∥F , ∥E[Y ]∥F ≤ O(1) (as n, p → ∞). Then, for any
deterministic matrix A ∈ Mp, we have the linear concentration (in (Mp,n, ∥ · ∥F )):

Y TAX ∈ E2 (∥A∥F ) + E1(∥A∥).

This proposition, which provides a result in terms of linear concentration, points out an instability of
the class of Lipschitz concentrated vectors which (here through products) degenerates into a mere linear
concentration. This phenomenon fully justifies the introduction of the notion of linear concentration: it will
occur again in Proposition B.48 and Lemma G.8. We present the proof directly here as it is a short and
convincing application of Theorem B.34.

20The norm ∥ · ∥ℓ∞ has been defined in Proposition B.33 providing the concentration of the concatenation of random vectors,
here for any A,B ∈ Mp,n, ∥(A,B)∥ℓ∞ ≡ max(∥A∥F , ∥B∥F ). A lot of equivalent norm satisfy the same concentration.
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Proof. Let us first assume that ∥A∥ ≤ 1 and consider a deterministic matrix B ∈ Mn such that ∥B∥F ≤ 1. We
then introduce the semi-norm ∥·∥A,B defined on Mp,n and satisfying for all M ∈ Mp,n, ∥M∥A,B ≡ ∥AMB∥F .
Note that for any M,P ∈ Mp,n:

Tr(BMTAP ) ≤

{
∥M∥A,B∥P∥F
∥M∥F ∥P∥A,B .

Thanks to Lemma B.26, E[∥X∥A,B ],E[∥Y ∥A,B ] ≤ O(∥A∥F ). Besides, since (X,Y ) ∝ Eq in ((Rp)2, ∥ · ∥ℓ∞),
and ∥A∥, ∥B∥ ≤ 1, we also know that (X,Y ) ∝ Eq in ((Rp)2, ∥ · ∥A,B,ℓ∞) where ∥(M,P )∥A,B,ℓ∞ =
max(∥M∥A,B , ∥P∥A,B). Therefore, the hypotheses of Theorem B.34 are satisfied for the norms ∥ · ∥A,B
and ∥ · ∥F respectively replacing the norm ∥ · ∥′ and ∥ · ∥ we then deduce :

Y TAX ∈ Eq (∥A∥F ) + E q
2
,

(where we choose a tuple µ = (µ1, µ2) ∈ R2
+ satisfying µ1, µ2 ≤ O(∥A∥F ))

If ∥A∥ > 1, one can still show that 1
∥A∥Y

TAX ∈ Eq (∥A∥F /∥A∥) + Eq/2 and retrieve the result thanks to
Proposition B.6.

Remark B.42. For the reader information, we mention that in [Ada15], the concentration is even expressed
on the random variable supA∈AX

TAX where A is a bounded set of matrices (and X ∈ Rp).

Let us end this section with a useful consequence of Proposition B.41.

Corollary B.43. Given a deterministic matrix A ∈ Mp satisfying ∥A∥F ≤ 1 and two random matrices
X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Mp,n satisfying (X,Y ) ∝ E2 and supi∈[n] ∥E[xi]∥, ∥E[yi]∥ ≤ O(1) such
that we have the concentration: ∥∥Y TAX∥∥

d
∈ E2

(√
log(np)

)
+ E1.

If21, in addition, ∥A∥∗ ≤ O(1) or supi∈[n] ∥E[yixTi ]∥F ≤ O(1)22, then E
[∥∥XTAY

∥∥
d

]
≤ O(

√
n).

Remark B.44. Recall from Proposition B.20 that if (xi, yi) ∈ E2 and ∥E[(xi, yi)]∥F ≤ O(1) (as under
the hypotheses of Corollary B.43), ∥E[yixTi ]∥ ≤ O(1) and therefore, ∥E[yixTi ]∥F ≤ √

p∥E[yixTi ]∥ ≤ O(
√
p).

In particular, when xi is independent with yi (and ∥E[xi]∥, ∥E[yi]∥ ≤ O(1)), we can bound ∥E[yixTi ]∥F ≤
∥E[yi]∥∥E[xi]∥ ≤ O(1).

Proof of Corollary B.43. Let us decompose A = UTΛV with Λ = Diag(λ) ∈ Dn and U, V ∈ Op, noting
X̌ ≡ V X and Y̌ ≡ UY we have the identity:

∥Y TAX∥d ≤ sup
D∈Dn

∥D∥F ≤1

Tr(DY̌ TΛX̌) ≤ sup
∥d∥≤1

dT (X̌ ⊙ Y̌ )λ ≤ ∥X̌ ⊙ Y̌ ∥∥λ∥ ≤ ∥X̌∥F ∥Y̌ ∥∞,

and the same way, ∥Y TAX∥d ≤ ∥X̌∥∞∥Y̌ ∥F . Now we can bound thanks to Proposition B.22:

E[∥X̌∥∞] ≤
∥∥E[X̌]

∥∥
∞ +O(

√
log(pn)) ≤ sup{∥E[xi]∥, ∥E[yi]∥, i ∈ [n]}+O(

√
log(pn)) ≤ O(

√
log(pn)),

and the same holds for E[∥Y̌ ∥∞]. Therefore, applying Theorem B.34 to the mapping ϕ : (X̌, Y̌ ) ∈ M2
p,n 7→

∥Y̌ TΛX̌∥d with the norms ∥ · ∥∞ and ∥ · ∥F respectively replacing the norms ∥ · ∥′ and ∥ · ∥, we obtain the
looked for concentration.

21Actually, to bound the expectation we just need the concentration of each of the couples (xi, yi) but not of the matrix couple
(X,Y ). Recall (see Section B.6) that the concentration of each the x1, . . . , xn does not imply the concentration of the whole
matrix X, even if the columns are independent. To tackle this issue, some authors [PP09] require a logconcave distribution for
all the columns because the product of logconcave distribution is also logconcave. However our assumptions are more general
because they allow to take for xi any O(1)-Lipschitz transformation of a Gaussian vector which represents a far larger class of
random vectors.

22To be precise, one just needs supi∈[n] |E[xTi Ayi]| ≤ O(1).
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To bound the expectation, we start with the identity
∥∥XTAY

∥∥
d
=
√∑n

i=1(x
T
i Ayi)

2, and we note that
the hypotheses of Proposition B.41 are satisfied and therefore xTi Ayi ∈ E1. Now, if ∥A∥∗ ≤ 1, we can bound:∣∣E[xTi Ayi]∣∣ = ∥∥E[yixTi ]∥∥ ∥A∥∗ ≤ O(1),

thanks to Proposition B.20 ((xi, yi) ∝ E2 and ∥E[xi]E[yi]T ∥ ≤ O(1)). The same bound is true when∥∥E[yixTi ]∥∥F ≤ O(1) because
∣∣E[xTi Ayi]∣∣ ≤ ∥∥E[yixTi ]∥∥F ∥A∥F . As a consequence, xTi Ayi ∈ O(1)±E1 (with the

same concentration constants for all i ∈ [n]), and we can bound:

E
[∥∥XTAY

∥∥
d

]
≤

√√√√ n∑
i=1

E
[
(xTi Ayi)

2
]
≤ O(

√
n).

Let us now give an example of application of Theorem B.34 when m ≥ 3.
Considering three random matrices X,Y ∈ Mp,n and D ∈ Dn such that (X,Y,D) ∝ E2 and

∥E[D]∥, ∥E[X]∥F , ∥E[Y ]∥F ≤ O(1) we wish to study the concentration of XDY T . Theorem B.34 just al-
lows us to obtain the concentration XDY T ∝ E2(n+ p) + E1(

√
n) + E2/3 since we cannot get a better bound

than ∥XDY T ∥F ≤ ∥X∥∥D∥F ∥Y ∥. However, considering some particular observations on XDY T , it ap-
pears that the observable diameter can be smaller than n. Next Propositions reveal indeed that for any
deterministic u ∈ Rp and A ∈ Mp:

1. XDY Tu is Lipschitz concentrated with an observable diameter of order O(∥u∥
√
(n+ p) log(n))

2. Tr(AXDY T ) is concentrated with a standard deviation of order O(∥A∥F
√

(n+ p) log(np)) if
supi∈[n] ∥E[xiyTi ]∥F ≤ O(1) and O(∥A∥∗

√
(n+ p) log(np)) otherwise.

Proposition B.45. Given three random matrices X,Y = (y1, . . . , yn) ∈ Mp,n and D ∈ Dn diagonal such
that (X,Y,D) ∝ E2, ∥E[X]∥ ≤ O(

√
p+ n) and ∥E[D]∥, supi∈[n] ∥E[yi]∥ ≤ O(

√
log n), for any deterministic

vector u ∈ Rp such that ∥u∥ ≤ 1:

XDY Tu ∝ E2
(√

(p+ n) log n
)
+ E1

(√
p+ n

)
+ E2/3 in (Rp, ∥ · ∥).

Proof. The Lipschitz concentration of XDY Tu is obtained thanks to the inequalities:

∥∥XDY T v∥∥ ≤

{
∥X∥∥D∥∥Y Tu∥
∥X∥∥D∥F ∥Y Tu∥∞.

Thanks to the bounds already presented in Example B.24 (the spectral norm ∥ · ∥ on Dn is like the infinity
norm ∥ · ∥∞ on Rn), we then have:

• ηX ≡ E[∥X∥] ≤ ∥E[X]∥+O(
√
p+ n) ≤ O(

√
p+ n),

• ηD ≡ E[∥D∥] ≤ ∥E[D]∥+O(
√
log(n)) ≤ O(

√
log(n)),

• ηY Tu ≡ E[∥Y Tu∥∞] ≤ supi∈[n] ∥E[yTi u]∥+O(
√
log(n)) ≤ O(

√
log(n)).

To obtain the result, we then employ Corollary B.35 for the tuple:

η =
(
O(

√
n), O(

√
log(np), O(

√
log(np)

)
satisfying:

• η(3−1) = O(max(
√
(p+ n) log(n), log(n))) ≤ O(

√
(p+ n) log(n))

• η(3−2) = O(max(
√
p+ n,

√
log(n)) ≤ O(

√
p+ n).
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To express the concentration of Tr(AXDY T ), it is convenient to introduce the following offshot of Theo-
rem B.34 based on somehow elaborate but actually simpler assumptions.

Theorem B.46. In the setting of Theorem B.34, let us assume that there exist a mapping for all i ∈ [m]
Ψi : E+i → R, where E+i = E1 × · · · × Em × Ei, such that ∀i ∈ [n], ∀z = (z1, . . . , zm) ∈ E = E1 × · · · × Em
and z′i ∈ Ei, we have the bound:

∥ϕ(z1, . . . , zm)− ϕ(z1, . . . , zi−1, z
′
i, zi+1, . . . , zm)∥ ≤ Ψi(z+i) ∥zi − z′i∥i ,

where z+i = (z1, . . . , zm, z
′
i) ∈ E+i and for any independent copy Z ′ = (Z ′

1, . . . , Z
′
m) of Z, we have the

concentration23:

Ψi(Z+i) ∈ O(µ(m−1))± max
l∈[m−1]

Eq/l
(
σlµ(m−l−1)

)
where Z+i = (Z1, . . . , Zi, Z

′
i+1, . . . , Z

′
m, Z

′
i) ∈ E+i, for a parameter vector µ ∈ Rm+ such that 1 ≤ µ(1)

(≤ µi,∀i ∈ [m]). Then:

ϕ (Z) ∝ max
l∈[m]

Eq/l
(
σlµ(m−l)

)
.

In the remainder, this result is sometimes applied in cases where:

Ψl(Z) ∈ O(µ(m−1))± max
l∈[m−1]

Eq/l
(
σlµ(m−l)

µ(m)

)
,

as for instance in Proposition B.48 below. Although this corresponds to a stronger setting, the most important
element, which provides the observable diameter of ϕ(Z), is the order of the expectation of Ψl(Z) which still
equals O(µ(m−1)).

Proof. We multiply, if necessary, µ(m) by a constant in order to have for all i ∈ [m]: E[Ψi(Z+i)] ≤ µ(m−1).
With the same notation as before for t ∈ [0, t1]:

A0 ≡
{
∀i ∈ [m] : Ψi(Z+i) ≤ 2µ(m−1)

}
,

then, since µ(m−1) ≥ t, there exist two constants C, c > 0 such that we can bound:

P (Ac0) ≤ m sup
i∈[m]

P
(
|Ψi(Z+i)− E[Ψi(Z+i)]| ≥ µ(m−1)

)
≤ m sup

i∈[m]
l∈[m−1]

C exp

(
−
(

µ(m−1)

cσlµ(m−l−1)

)q/l)
≤ m sup

i∈[m]
l∈[m−1]

Ce−(t/cσlµ(m−l−1))q/l .

Besides, since ϕ is mµ(m−1)-Lipschitz on A0, we can bound:

P (|ϕ(Z)− ϕ(Z ′)| ≥ t | A0) ≤ Ce−(t/mcµ(m−1)σ)q .

When t ∈ [ti, ti+1] = [µ(m−i)µi(i), µ
(m−i)µi(i+1)] for i ∈ [m − 1] or t ∈ [tm,∞) = [µm(m),∞) for i = m, we

rather work with the event:

Ai ≡

{
∀i ∈ [m] : Ψi(Z+i) ≤ 2t

(
µ(m−i)

t

) 1
i

}
.

23As explained in Definition 14, this expression means that Ψl(Z,Z
(i)) ∈ maxl∈[m−1] Eq/l

(
σlµ(m−l−1)

)
and E[Ψl(Z,Z′)] ≤

O(µ(m−1)).
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On the first hand, since t
(
µ(m−i)

t

) 1
i ≥ t

i−1
i

i (µ(m−i))
1
i ≥ µ(m−i)µi−1

(i) ≥ µ(m−1), we can bound:

P (Aci ) ≤ m sup
j∈[m]

P

(
|Ψj(Z+j)− E[Ψj(Z+j)]| ≥ 2t

(
µ(m−i)

t

) 1
i

− µ(m−1)

)

≤ m sup
l∈[m−1]

C exp

−

(
t

cσµ(m−l−1)

(
µ(m−i)

t

) 1
i

)q .

Now, given l ∈ [m− 1] (and when possibly i = m and t ∈ [µm(m),∞)):

• if m− 1 ≥ l ≥ i, t
µ(m−l−1)

(
µ(m−i)

t

) 1
i ≥ t

µ(m−l−1)µ(i+1)
≥ t

µ(m−l) ,

• if l ≤ i− 1, t
µ(m−l−1)

(
µ(m−i)

t

) 1
i ≥

(
t

µ(m−l−1)

) i−1
i ≥ t

µ(m−l) ,

since t
µ(m−l−1) ≥ t

µ(m−i) ≥ µi(i) ≥ 1, by hypothesis. That allows us to bound:

P (Aci ) ≤ m sup
l∈[m−1]

Ce−(t/cσlµ(m−l))q/l . (B.10)

Besides, since ϕ is mt
(
µ(m−i)

t

) 1
i

-Lipschitz on Ai, we can bound:

P (|ϕ(Z)− ϕ(Z ′)| | Ai) ≤ Ce−(t/cimiµ(m−i)σi)
q
i . (B.11)

We then obtain our result combining (B.10) and (B.11) (recall that cm,mm ≤ O(1)).

Remark B.47. Theorem B.34 could be seen as an iterative consequence to Theorem B.46 as if we assume
Theorem B.46 and Theorem B.34 up to m = m0 − 1 and want to show its validity for m = m0. We can show
with the iteration hypothesis for m = m0 − 1 that for all i ∈ [m]:

∥Z1∥′1 · · · ∥Zi−1∥′i−1∥Zi+1∥′i+1 · · · ∥Zm∥′m ∈ O(µ
(m−1)
−i ) + sup

l∈[m−1]

El
(
µ
(m−1−i)
−i σi

)
,

where µ−i ≡ µ1 · · ·µi−1µi−1 · · ·µm. Now, since for all k ∈ [m− 1], µ(l)
−i ≤ O(µ(l)), we retrieve the hypotheses

of Theorem B.46 and we can prove Theorem B.34 for m = m0.

The concentration of Tr(AXDY T ) signifies a linear concentration of XDY T , demonstrating as in Propo-
sition B.41 the relevance of the notation of linear concentration. Note besides that this result can be seen as
a weak offshot of Hanson-Wright concentration inequality if one takes D =

√
nE1,1, where [E1,1]i,j = 0 for

all (i, j) ̸= (1, 1) and [E1,1]1,1 = 1.

Proposition B.48. Given three random matrices X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Mp,n and D ∈ Dn
such that (X,Y,D) ∝ E2, ∥E[D]∥F ≤ O(

√
n), ∥E[X]∥F , ∥E[Y ]∥F ≤ O(1), we have the linear concentration24:

XDY T ∈ E1
(√
n
)
+ E2/3 in (Mp, ∥ · ∥).

Before proving this corollary let us give a preliminary lemma of independent interest.

Lemma B.49. Given two random matrices X ∈ Mp,n and D ∈ Dn such that (X,D) ∝ E2, ∥E[X]∥ ≤ O(1)
and ∥E[D]∥F ≤ O(

√
n) and a deterministic matrix A ∈ Mp,n such that ∥A∥F ≤ 1, we have the concentration:

∥AXD∥F ∈ O(
√
n)± E2(

√
log(np)) + E1.

24The estimation of E[XDY T ] is done in Proposition B.50
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Proof. With the same decomposition A = UTΛV and notation X̌ ≡ V X as in the proof of Corollary B.43,
we have the identity:

∥AXD∥F = ∥ΛX̌D∥F =

√√√√ n∑
i=1

p∑
j=1

λ2jX̌
2
i,jD

2
i ≤ ∥X̌∥∞∥D∥F ,

and besides, ∥AXD∥F ≤ ∥X̌∥∥D∥. Therefore, with some µ1 ≤ O(E[∥X̌∥∞]) ≤ O(
√

log(np)) and µ2 ≤
O(E[∥D∥]) ≤ O(

√
log(n)) we can employ Theorem B.34 to the mapping ϕ : (X̌,D) ∈ Mp,n × Dn →

∥UTΛX̌D∥F , to set:

∥AXD∥F ∝ E2(
√
log(np)) + E1.

To bound the expectation, let us note that for all i ∈ [n], j ∈ [p], X̌i,j ∈ O(1)±E2 and Di ∈ O(O(|E[Di]|))±E2,
therefore, X̌i,jDi ∈ O(|E[Di]|)± E2(|E[Di]|+ 1) + E1, and we can estimate:

E[X̌2
i,jD

2
i ] = E

[(
X̌i,jDi − E[X̌i,jDi]

)2]
+ E[X̌i,jDi]

2

≤ O((1 + E[Di])
2) + E[X̌2

i,j ]E[(Di − E[Di])
2]2 + E[X̌2

i,j ]E[Di]
2

≤ O(1 + E[Di]
2) +O(1) +O(E[Di]

2),

with constants independent of i, j. Finally, we can bound:

E[∥AXD∥F ] ≤

√√√√ n∑
i=1

p∑
j=1

λ2jE[X̌2
i,jD

2
i ] ≤ O


√√√√√( n∑

i=1

1 + E[Di]2

) p∑
j=1

λ2j


 ≤ O(

√
n)

since ∥E[D]∥F ≤ O(
√
n) and ∥λ∥ = ∥A∥F ≤ 1.

Proof of Proposition B.48. Considering a deterministic matrix A ∈ Mp,n, we will assume that ∥A∥F ≤ 1 if
supi∈[n] ∥E[yixTi ]∥F ≤ O(1) (to show a concentration in (Mp,n, ∥ · ∥F )) and that ∥A∥∗ ≤ 1 otherwise (to show
a concentration in (Mp,n, ∥ · ∥)). In both cases, Corollary B.43 and Lemma B.49 allows us to set:

∥Y TAX∥d, ∥AXD∥F , ∥DY TA∥F ∈ O(
√
n)± E2(

√
n) + E1.

Besides, we can bound:

Tr(AXDY T ) ≤


∥AXD∥F ∥Y ∥F
∥DY TA∥F ∥X∥F
∥Y TAX∥d∥D∥d,

which allows us to conclude thanks to Theorem B.46 applied with the parameter vector µ = (1, 1,
√
n):

Tr(AXDY T ) ∝ E2(
√
n) + E1(

√
n) + E 2

3
∝ E1(

√
n) + E 2

3
.

In the setting of Proposition B.45, once one knows that XDY is concentrated it is natural to look for a
simple deterministic equivalent. The next proposition help us for such a design. Note that the hypotheses
are far lighter, in particular, we just need the linear concentration of D.

Proposition B.50. Given three random matrices D ∈ Dn, X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Mp,n and
a deterministic matrix D̃ ∈ Dn, such that D ∈ D̃ ± E2 in (Dn, ∥ · ∥) and for all25 i ∈ [n], (xi, yi) ∝ E2 and

25If we adopt the stronger assumptions (X,Y ) ∝ E2 in (Mp,n, ∥ ·∥) and ∥E[X]∥F , ∥E[X]∥F ≤ O(1), we can show more directly
thanks to Propositions B.41 and B.22:∣∣∣E[Tr(AXDY T )]− E[Tr(AXE[D]Y T )]

∣∣∣
=

∣∣∣E [
Tr

((
Y TAX − E[Y TAX]

)
(D − E[D])

)]∣∣∣
≤

√
E
[
∥Y TAX − E[Y TAX]∥2d

]
E
[
∥D − E[D]∥2d

]
≤ O(n)
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supi∈[n] ∥E[xi]∥, ∥E[yi]∥ ≤ O(1), we have the estimate :∥∥E[XDY T ]− E[XE[D]Y T ]
∥∥
F
≤ O (n) .

We can precise the estimation with supplementary assumptions:

• if ∥D̃ − E[D]∥F ≤ O(1) then
∥∥∥E[X(D − D̃)Y T ]

∥∥∥
F
≤ O

(√
nmax(p, n)

)
• if supi∈[n] ∥E[xiyTi ]∥F ≤ O(1) then

∥∥∥E[XDY T ]− E[XD̃Y T ]
∥∥∥
F
≤ O (n).

Proof. Considering a deterministic matrix A ∈ Mp, such that ∥A∥F ≤ 1:∣∣E[Tr(AXDY T )]− E[Tr(AXE[D]Y T )]
∣∣

≤
n∑
i=1

∣∣E [Dix
T
i Ayi − E[Di]x

T
i Ayi

]∣∣
=

n∑
i=1

∣∣E [(xTi Ayi − E[xTi Ayi]
)
(Di − E[Di])

]∣∣
≤

n∑
i=1

√
E
[∣∣xTi Ayi − E[xTi Ayi]

∣∣2]E [|Di − E[Di]|2
]

≤ O (n)

thanks to Hölder’s inequality applied to the bounds given by Proposition A.30 (we know that Di ∈ E[Di]±E2
and from Proposition B.41 that xTi Ayi ∈ E[xTi Ayi]± E2 + E1; note that the concentration constants are the
same for all i ∈ [n]).

Now, |E[xTi Ayi]| ≤ ∥A∥F ∥E[yixTi ]∥F ≤ O(
√
p) thanks to Remark B.44 and if ∥E[D] − D̃∥F ≤ O(1), we

can bound: ∣∣∣E [Tr(AX(E[D]− D̃
)
Y T
)]∣∣∣≤ n∑

i=1

∣∣∣E [xTi Ayi] (E[Di]− D̃i

)∣∣∣
≤ sup
i∈[n]

∣∣E [xTi Ayi]∣∣√n∥∥∥E[D]− D̃
∥∥∥
F
≤O (

√
np) .

If, ∥E[D] − D̃∥F is possibly of order far bigger than O(1), but supi∈[n] ∥E[yixTi ]∥F ≤ O(1), then
supi∈[n] |E[xTi Ayi]| ≤ O(1), and we can still bound:∥∥∥E [Tr(AX (E[D]− D̃

)
Y T
)]∥∥∥

F
≤ n sup

i∈[n]

∣∣E [xTi Ayi]∣∣ ∥∥∥E[D]− D̃
∥∥∥ ≤ O(n).

A non multi-linear application of Theorem B.34 is provided with the study of the resolvent (Ip −
1
nXDX

T )−1 with D diagonal, at the end of Part II.

B.9 Concentration of high order products
We give here some offshots of Theorem B.34 when m is a quasiasymptotic variable (thus a sequence of positive
real values). The result of Theorem B.34 stays almost unmodified if m tends to infinity, one mainly needs a
supplementary hypothesis.

Theorem B.51. Under the hypotheses of Theorem B.34 but without the hypothesis that m is constant, if
one further assumes that (log(m))

1
q ≤ O(

µ(1)

σ ), then there exists a constant κ > 0 such that we have the
concentration:

ϕ (Z) ∝ max
l∈[m]

Eq/l
(
κmσlµ(m−l)

)
.
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Proof. One must be careful that this time m can tend to infinity. Given i ∈ {0} ∪ [m], we will employ again
the variables ti = µ(m−i)µi(i) for i ∈ [m], t0 = 0 and tm+1 = ∞, but we note this time for all i ∈ {0} ∪ [m]:

Ai ≡

{
∥Z1∥′1, ∥Z ′

1∥′1 ≤ (δ + 1)

(
t

µ(m−i)

) 1
i

; . . . ; ∥Zi∥′i, ∥Z ′
i∥′i ≤ (δ + 1)

(
t

µ(m−i)

) 1
i

;

(
t

µ(i−1)

) 1
m−i+1

∥Zi+1∥′i+1, ∥Z ′
i+1∥′i+1 ≤ (δ + 1)µi+1; . . . ; ∥Zm∥′m, ∥Z ′

m∥′m ≤ (δ + 1)µm

}

for some δ ≥ 0. As we saw in the proof of Theorem B.34, for all 1 ≤ k ≤ i < j ≤ m:

∀t ≤ ti+1 :

(
t/(cσ)i

µ(m−i)

) q
i

≤ µj
cσ

and ∀t ≥ ti :

(
t/(cσ)i

µ(m−i)

) 1
i

≥ µk
cσ
.

Therefore, given t ∈ [ti, ti+1], one obtains ∀j ∈ {i+ 1, . . . ,m}:

P
(
∥Zj∥′j ≥ (δ + 1)µj

)
≤ P

(∣∣∥Zj∥′j − E[∥Zj∥′j ]
∣∣ ≥ δµj

)
≤ C exp

(
−δq

(µj
cσ

)q)
≤ C exp

(
−δq

(
t/(cσ)i

µ(m−i)

) q
i

)
,

and the same way ∀t ∈ [ti, ti+1] and k ∈ [i]:

P

(
∥Zk∥′k ≥ (δ + 1)

(
t

µ(m−i)

) q
i

)
≤ C exp

(
−δq

(
t/(cσ)i

µ(m−i)

) q
i

)
.

By hypothesis, there exists a constant K > 0 such that ∀i ∈ [m] and t ∈ [ti, ti+1]:

K

(
t/(cσ)i

µ(m−i)

) q
i

≥ K
(µi
cσ

)q
≥ log(m).

Therefore choosing δ = (K + 1)
1
q :

P (Ac
i ) ≤ C exp

(
logm− (K + 1)

(
t/(cσ)i

µ(m−i)

) q
i

)
≤ C exp

(
−
(
t/(cσ)i

µ(m−i)

) q
i

)
,

and ∀t ∈ (0, t1]:

P (Ac
0) ≤ C exp

(
logm− (K + 1)

(µ1

cσ

)q)
≤ C exp

((µ1

cσ

)q)
≤ C exp

(
−
(

t/cσ

µ(m−1)

)q)
.

Besides, for any i ∈ {0} ∪ [m] and t ∈ [ti, ti+1], we can obtain in the asymptotic m case, the concentration
inequality:

P (|f(ϕ(Z))− f(ϕ(Z ′))| ≥ t, Z ∈ Ai) ≤ C exp

(
− t

(m(1 + δ)mcσ)iµ(m−i)

) q
i

.

Regrouping all the concentration inequalities for the different values of t and noting κ ≡ (c+1)(δ+1)e1/e ≤
O(1), we retrieve our result (note that e1/e ≥ m1/m for all m > 0).

When only one concentrated random vector is involved, one can obtain a better concentration inequality
characterized by only two exponential regime (as explained in Remark B.37).
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Theorem B.52. With the hypotheses of Theorem B.34 in a setting where m is quasi-asymptotic, if Z1 =

· · · = Zm, we do not have to assume anymore that (log(m))
1
q ≤ O(E[∥Zi∥′i]/σ) and if µ1 = · · · = µm ≡ µ0,

then, for any constant ε > 0 (i.e. such that ε ≥ O(1)) we have the concentration:

ϕ (Z) ∝ Eq
(
mσ((1 + ε)µ0)

m−1
)
+ Eq/m ((κσ)m) ,

for some constant26 κ > 0.

Note that when 1 − µ0 ≥ O(1), one can choose ε sufficiently small such that m((1 + ε)µ0)
m−1 ≤ O(1)

(when m→ ∞), then ϕ(Z) ∝ Eq (σ) + Eq/l ((κσ)m).

Proof. Let us note K ≡ max((1+ε)µ, (t/m)1/m) and AK ≡ {∥Z∥′ ≥ K}, then, on the one hand K−µ ≥ ε
1+ε

and:

P(Ac
K) ≤ P (|∥Z∥′ − E[∥Z∥′]| ≥ K − µ) ≤ Ce

−
( ε

1+ε
K

cσ

)q

≤ Ce
−
(

t

m( 1+ε
ε

cσ)m

) q
m

,

and on the second hand ϕ is mKm−1-Lipschitz on AK thus:

P (|f(ϕ(Z))− f(ϕ(Z ′))| ≥ t | AK) ≤ Ce−(t/mcσKm−1)q

≤ Ce−(t/mcσ((1+ε)µ)m−1)q + Ce−(t/m(cσ)m)q/m .

Therefore, we obtain the concentration:

ϕ (Z) ∝ Eq
(
mσ((1 + ε)µ)m−1

)
+ Eq/m

((
ce1/e

1 + ε

ε
σ

)m)
, (B.12)

which provides us the wanted inequality since ce1/e 1+εε ≤ O(1).

26The presence of this constants basically imposes that if σ ≥ O(1), then the observable diameter of the Eq/m ((κσ)m) decay
can not tend to zero. A better inequality might be obtained, if one computes precisely the concentration constants, starting
from a sharp concentration inequality on Z.
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Chapter C

Concentration of solution to convex
problems and contractive equations

This chapter aims at setting the concentration of the solution to convex problems like:

Minimize Ψ(Y ), Y ∈ Rp,

where Ψ : Rp → R is a random convex mapping. Although our results could be extended to cases where Ψ
is only differentiable, we will assume in all this chapter that Ψ is C2 and strictly convex. This lower bound
on the Hessian of Ψ is important since it will appear in the denominator of the observable diameter of Y .

In practical uses, the randomness of Ψ generally depends on a random vector X ∈ F and the problem
writes:

Minimize ψ(X)(Y ), Y ∈ Rp (C.1)

for ψ : F → F(Rp,Rp) deterministic and X ∈ F satisfying some concentration inequality. As said above,
in practical examples dψ(X)2 y is assumed to have a lower bound independent of X. One might desire to
also have a bound limiting the variability due to X. It is generally not true, however we study in the first
section this first example since the concentration of Y is then a simple consequence to the theorem of implicit
functions and the observable diameter obtained is the same as the one that will be retrieved in more complex
settings.

Note of course that Y minimizing (C.1) is also the solution to the equation:

ϕ(X)(Y ) = 0

where we noted for all A, y ∈ F × Rp ϕ(A)(y) ≡ dψ(A) y. We will consider this associated problem in next
section.

C.1 Bounded variability on X

In this section, we place ourselves in the case F = Rp and to employ next theorem to random convex problems,
one has to choose:

ϕ(X,Y ) ≡ dψ(X) Y ∈ Rp

to retrieve the setting of the introduction of this section. Note that the partial derivatives ∂ϕ
∂X and ∂ϕ

∂Y
respectively belong to Mp,n and Mp.

Theorem C.1. Let us consider a (sequence of) random vectors X ∈ Rn satisfying X ∝ Eq and a deterministic
C1 mapping ϕ : X ∈ Rn × Y ∈ Rp → Rp such that ∀A, y ∈ X(Ω)× Rp:

• ∥ ∂ϕ∂X (A,y)
∥ ≤ σ,

47
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• ∂ϕ
∂Y (A,y)

is a positive symmetric matrix satisfying ∂ϕ
∂Y (A,y)

≥ κIp,

for some (sequence of) positive parameters σ, κ > 0. Then, the unique solution to the equation:

ϕ(X,Y ) = 0, Y ∈ Rp

satisfies the concentration inequality Y ∝ Eq(σκ ).

Proof. The implicit function Theorem sets that there exists a C1 mapping θ : Rn → Rp such that Y = θ(X)
and:

dθ X =

(
∂ϕ

∂Y (X,θ(Y ))

)−1
∂ϕ

∂X (X,θ(Y ))
.

One can then directly deduce the concentration of Y from the O(σκ )-Lipschitz character of θ.

In more complex settings like the problems of robust regression that will be studied in Chapter J, the
quantity ∥ ∂ϕ∂X (A,y)

∥ does not admit a bound valid for all the drawings of X. One then has to take into

account the dispersion of the different drawings of Y to be able to bound efficiently ∥ ∂ϕ∂X (A,y)
∥. The solution

presented here relies on a reformulation of convex problems as contractive fixed point equations more adapted
to control the variability towards X.

C.2 From convex problem to a contractive fixed point equation
Starting from the equation

dΨ Y = 0

one can introduce the mapping:

Φ : Y 7−→ Y − dΨ Y

∥d2Ψ ·∥∞
,

we see that if for all Y ∈ Rp, d2Ψ Y ≥ κIp then Φ is contractive since:

∥dΦ Y ∥ =

∥∥∥∥Ip − d2Ψ Y

∥d2Ψ ·∥∞

∥∥∥∥ ≤ 1− κ

∥d2Ψ ·∥∞

We will therefore from now on consider solutions Y ∈ Rp to fixed point equations:

Y = Φ(Y ),

where Φ is contractive.
We start with settings where Φ is affine and all the Φk(y) are linearly concentrated for deterministic y

(Section C.3), then we study equation with general Φ with linearly and Lipschitz concentration hypotheses
on Φk(y) for k ≤ O(

√
log n) (Section C.4), finally we precise this result for mappings Φ that are Lipschitz

concentrated for the infinite norm on balls (Section C.5).

C.3 Concentration of solutions to quadratic problems (Φ affine)
Given two normed (or semi-normed) vector spaces (E, ∥ · ∥E), (F, ∥ · ∥F ), we denote A(E,F ) the set of
continuous affine mappings from E to F and we endow it with the norm:

∀ϕ ∈ A(E,F ) : ∥ϕ∥A(E,F ) = ∥L(ϕ)∥L(E,F ) + ∥ϕ(0)∥F

where L(ϕ) = ϕ− ϕ(0) and ∥∥L(ϕ)∥L(E,F ) = supx∈E,∥x∥E≤1 ∥L(ϕ)(x)∥F .
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Example C.2. Let us consider as an introducing example the quadratic problem:

Minimize: Ψ(y) =

∥∥∥∥ 1√
n
Xy − z

∥∥∥∥2 + ∥y∥2, y ∈ Rp

for a deterministic vector z ∈ Rp and where we merely assume that the columns of X = (x1, . . . , xn) are
independent Gaussian vectors satisfying for all i ∈ [n], xi ∼ N (0, 1). We then note A ≡ {∥X∥ ≤ 2

√
n}, we

know that P(A) ≥ 1− Ce−cn, therefore Remark B.5 allows us to deduce that X | A ∝ E2. If we note:

Φ : y 7→ y − 1

4

(
1

n
XXT y +

1√
n
Xz + y

)
we know that:

∥L(Φ)∥ =

∥∥∥∥Ip − 1

4

(
1

n
XXT + Ip

)∥∥∥∥ ≤ 3

4

and for all k ∈ N:

L(Φ)k(Φ(0)) =
(
3

4

)k (
Ip −

1

n
XXT

)k
∈ Eq

((
3

4

)k)
in (E, ∥ · ∥),

The Theorem C.3 then allows us to show that Y = argminy∈RpΨ(y) satisfies the linear concentration:

Y | A ∈ E2
(

1√
n

)
.

Let us now set the theorem.

Theorem C.3 (Concentration of the resolvent). Given a (sequence of) reflexive vector space (E, ∥ · ∥), let
Φ ∈ A(E) be a (sequence of) random mapping such that there exist two (sequences of) parameters σ > 0 and
ε ∈ (0, 1), such that ∥L(Φ)∥ ≤ 1− ε, and such that for all (sequences of) integer k:

L(Φ)k(Φ(0)) ∈ Eq
(
σ(1− ε)k

)
in (E, ∥ · ∥) .

Then the random equation

Y = Φ(Y )

admits a unique solution satisfying the linear concentration:

Y = (IdE − L(Φ))−1Φ(0) ∈ Eq
(σ
ε

)
.

Proof. The vector Y is well defined and expresses:

Y = (IdE − L(Φ))−1Φ(0) =

∞∑
k=0

L(Φ)kΦ(0)

Now Corollary B.32 allows us to conclude from the concentrations L(Φ)kΦ(0) ∈ Eq(σ(1− ε)k) that:

∞∑
k=0

L(Φ)kΦ(0) ∈ Eq

( ∞∑
k=0

σ(1− ε)k

)
= Eq

(σ
ε

)
.

With Theorem C.3 at hand we can already prove the Linear concentration in the following theorem. The
Lipschitz concentration will be provided later with Proposition C.5. minimizing problem of the form

Minimize yTWy + λZy, y ∈ Rp,
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C.4 When Φk(y) is linearly or Lipschitz concentrated for k ≤
log(η(E,∥·∥)) and y deterministic and bounded

When we can not get a decreasing observable diameter for the iterates of ϕ, or when ϕ is not affine, one needs
a different approach that allows to treat, at the same time affine and non-affine mappings ϕ and extend very
simply linear concentration inferences to Lipschitz concentration inferences. Given a normed vector space
(E, ∥·∥), we note F(E), the set of mappings from E to E. If f is bounded, we denote ∥f∥∞ = supx,y∈E ∥f(x)∥.
For a Lipschitz mapping f ∈ F (E), we introduce the seminorm ∥ · ∥L which provides the Lipschitz parameter
and will play the role of ∥L(Φ)∥ in Proposition C.4:

∥f∥L = sup
x,y∈E
x̸=y

∥f(x)− f(y)∥
∥x− y∥

.

Proposition C.4. Given a (sequence of) reflexive1 vector space (E, ∥ · ∥), we note η its norm degree (of
course η ≥ O(1)), we then consider Φ ∈ F(E,E), a (sequence of) random Lipschitz mapping such that there
exists a (sequence of) parameters ε ∈ (0, 1) such that ∥Φ∥L ≤ 1 − ε. Given an integer k0 ∈ N such that
k0 ≥ ⌈− log(η)

q log(1−ε)⌉, noting Ỹ the unique2 (deterministic) solution to Ỹ = E[Φk0(Ỹ )], if we further assume
that3:

Φk0(Ỹ ) ∈ Ỹ ± Eq

(
k0∑
i=0

(1− ε)iσ

)
in (E, ∥ · ∥), (C.2)

for a given (sequence) of integer σ > 0, then, the random equation

y = ϕ(y), y ∈ E

admits a unique solution Y ∈ E satisfying the linear concentration:

Y ∈ Ỹ ± Eq
(σ
ε

)
.

Proof. The mapping y 7→ Φ(y) is contractive, that proves the existence and uniqueness of Y (E is complete
since it is reflexive – see Remark B.8).

Then let us try and bound ∥Y − Ỹ ∥:∥∥∥Y − Ỹ
∥∥∥ =

∥∥∥Φk0(Y )− E
[
Φk0(Ỹ )

]∥∥∥ ≤
∥∥∥Φk0(Y )− Φk0(Ỹ )

∥∥∥+ ∥∥∥Φk0(Ỹ )− E
[
Φk0(Ỹ )

]∥∥∥
≤ ∥Φ∥k0L

∥∥∥Y − Ỹ
∥∥∥+ ∥∥∥Φk0(Ỹ )− E

[
Φk0(Ỹ )

]∥∥∥ .
The inequality ∥Φk0∥ ≤ (1− ε)k0 , gives us the bound:∥∥∥Y − Ỹ

∥∥∥ ≤ 1

1− (1− ε)
k0

∥∥∥Φk0(Ỹ )− E
[
Φk0(Ỹ )

]∥∥∥ .
But we know from Proposition B.22 that:∥∥∥Φk0(Ỹ )− Φ̃k(Ỹ )

∥∥∥ ∈ O

(
1

ε
η1/qσ

(
1− (1− ε)k0

))
± Eq

(
1

ε
η1/qσ

(
1− (1− ε)k0

))
(since

∑k0
i=0 (1− ε)

i
= 1−(1−ε)k0

ε ). which allows us to conclude thanks to Lemma B.19:∥∥∥Y − Ỹ
∥∥∥ ∈ O

(
η1/qσ

ε

)
± Eq

(
η1/qσ

ε

)
.

1We suppose E reflexive to be able to define an expectation operator on the set of random vectors of E – see B.2
2The assumption on ∥Φ∥L ensures the existence and uniqueness of Ỹ .
3The term

∑k0
i=0(1 − ε)i = 1

ε
− 1

ε
(1 − ε)k0 will appear naturally in application as pictured in Lemma C.8 below. In the

application we will see below this concentration is true for any k ∈ N.
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Returning to our initial goal (the linear concentration of Y ), we now bound, for f ∈ L(E) (we still have
∥L(Φ)∥ ≤ 1− ε):∣∣∣f(Y )− f(Ỹ )

∣∣∣ ≤ ∣∣∣f (Φk0(Y )
)
− f

(
Φk0(Ỹ )

)∣∣∣+ ∣∣∣f (Φk0(Ỹ )
)
− f

(
E
[
Φk0(Ỹ )

])∣∣∣
≤ (1− ε)k0

∥∥∥Y − Ỹ
∥∥∥+ ∣∣∣f (Φk0(Ỹ )

)
− E

[
f
(
Φk0(Ỹ )

)]∣∣∣ .
Further, noting that, with our choice of k0, (1− ε)k0 = O(1/η1/q), we conclude again from the concentration
of Φk0(Ỹ ) and Lemma B.19 that:

f(Y ) ∈ f(Ỹ )± Eq
(σ
ε

)
,

thereby giving the sought-for concentration result.

Let us extend the result of Proposition C.4 to the case of Lipschitz concentration.

Proposition C.5. In the setting of Proposition C.4, if we additionally assume that we have the Lipschitz
concentration:

Φk0(Ỹ ) ∝ Eq

(
k0∑
i=0

(1− ε)iσ

)
in (E, ∥ · ∥).

then we have the Lipschitz concentration:

Y ∝ Eq
(σ
ε

)
,

Proof. We already know from Proposition C.4 that Y ∈ Eq(σ/ε). To show the Lipschitz concentration of Y ,
let us consider a Lipschitz map f : E → R and introduce the mappings:

U : E 7−→ E × R
y 7−→ (y, f(y))

V : E × R 7−→ E

(y, t) 7−→ y

(note that V ◦ U = IdE). If we endow E × R with the norm ∥ · ∥ℓ∞ satisfying ∀(y, t) ∈ E × R, ∥(y, t)∥ℓ∞ =
max(∥y∥, |t|) then the mappings U and V are both 1-Lipschitz, consequently ∥U ◦ Φ ◦ V ∥L ≤ 1 − ε and we
can consider Z̃ ∈ E × R solution to:

Z̃ = E
[
U ◦ Φk0 ◦ V (Z̃)

]
,

by uniqueness of the solution to y = E[Φk0(y)], we know that Z̃ = (Ỹ , t̃) with t̃ ≡ E[f(Φk0(Ỹ ))]. Then:

(U ◦ Φ ◦ V )k0(Z̃) = (Φk0(Ỹ ), f(Φk0(Ỹ ))) ∝ Eq

(
k0∑
i=0

(1− ε)iσ

)
in (E × R, ∥ · ∥ℓ∞)

by hypothesis. Therefore, one can deduce from Proposition C.4 the linear concentration of Z solution to the
fixed point equation:

z = U ◦ Φ ◦ V (z) z ∈ E × R; (C.3)

from which one can deduce in particular, the concentration of the second component f(Y ).

C.5 When Φ ∝ E2(σ) for the infinity norm
If one can assume the stronger hypothesis that Φ is concentrated as a random mapping and for the infinity
norm, then we can infer the concentration of all the iterates of Φ. We provide here the result for a general
setting where the mapping Φ is only bounded around a given point y0, for that, for any r > 0, we introduce
the semi-norm ∥ · ∥B(y0,r) defined for any f ∈ F(E) and y ∈ E as:

∥f∥B(y0,r) = sup
∥y−y0∥≤r

∥f(y)∥
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Theorem C.6. Given a normed vector space (E, ∥ · ∥) and a (sequence of) random mapping Φ : E → E we
assume that we are given a (sequence of) deterministic vector y0 ∈ E and three (sequences of) parameters
σ, τ, ε > 0 such that:

• Φ is (1− ε)-Lipschitz

• ∥y0 − Φ(y0)∥ ≤ τ

• Φ ∝ Eq (σ) in
(
F(E), ∥ · ∥B(y0,τ/ε)

)
,

then the random equation Y = Φ(Y ) admits a unique solution Y ∈ E satisfying the Lipschitz concentration:

Y ∝ Eq
(σ
ε

)
.

One can see in the proof of the theorem below that the required concentration is actually the concentration
of Φ B(y0,

τ
ε )

to be able to employ Proposition C.5.
The following two lemmas allows us to apply Proposition C.5 to prove Theorem C.6 below.

Lemma C.7. Any (1 − ε)-Lipschitz mapping ϕ : E → E is stable on any ball B(y0, 1ε∥y0 − ϕ(y0)∥), where
y0 ∈ E.

Proof. Let us note τ ≡ ∥y0 − ϕ(y0)∥ and for any y ∈ B(y0, τε ), let us bound:

∥Φ(y)− y0∥ ≤ ∥Φ(y)− Φ(y0)∥+ ∥Φ(y0)− y0∥

≤ (1− ε)∥y − y0∥+ ∥Φ(y0)− y0∥ ≤ (1− ε)
τ

ε
+ τ =

τ

ε

Lemma C.8. Given a random mapping Φ : E → E, four (sequences of) parameters4 σ, ε, τ, α > 0 and a
(sequence of) deterministic vector y0 ∈ E, if we assume that:

• ∥y0 − Φ(y0)∥ ≤ τ ,

• Φ is (1− ε)-Lipschitz,

• Φ ∝ Eq(σ) in (F(E,E), ∥ · ∥B(y0,
τ
ε )
),

then for any integer k > 0, we have the concentration:

Φk ∝ Eq

(
k∑
i=0

(1− ε)iσ

)
in (F(E), ∥ · ∥B(y0,

τ
ε )
),

Proof. Thus, for any f ∈ Φ(Ω) and for all k ∈ N, Φk : B(y0, τε ) → B(y0, τε ), and we can bound for any
supplementary mapping g ∈ Φ(Ω):

∥fk − gk∥B(y0,
τ
ε )

≤
k∑
i=1

(1− ε)i−1 sup
y∈B(y0,

τ
ε )

∥f(gk−i(y))− g(gk−i(y))∥

≤
k∑
i=0

(1− ε)i∥f − g∥B(y0,τ/ε).

Thus the mapping f 7→ fk is
∑k
i=0(1− ε)i-Lipschitz from (F(E), ∥ · ∥B(y0,τ/ε)) to (F(E), ∥ · ∥B(y0,τ)) and one

can deduce the result of the Lemma from the concentration of Φ.

4Unlike in Theorem C.6, ϵ can here tend to zero.
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Proof of Theorem C.6. Noting k0 = ⌈− log(η)
q log(1−2ε)⌉, let introduce Ỹ the solution of the fixed point equation

Ỹ = E[Φk0 ](Ỹ ). We know that:∥∥∥Ỹ − y0

∥∥∥ ≤
∥∥∥E [Φk0(Ỹ )− Φk0(y0)

]∥∥∥+ ∥∥E [Φk0(y0)]− y0
∥∥

≤ (1− ε)k0∥Ỹ − y0∥+
k0−1∑
i=0

(1− ε)i∥Φ(y0)− y0∥

≤
∑k0
i=0(1− ε)iτ

1− (1− ε)k0
=

τ

ε
,

Therefore Ỹ ∈ B(y0, τε ) and we can besides deduce from the hypotheses of the theorem and Lemma C.8
that:

Φk0(Ỹ ) ∝ Eq

(
k∑
i=0

(1− ε)iσ

)
.

We then see that the hypotheses of Proposition C.5 are satisfied and we can deduce the result of the theorem.

C.6 Concentration of minimizing solution Y to convex problems
ψ(X)(Y ) with ψ deterministic and X concentrated

This study could be extended to a wide range and settings, but we now concentrate on a classical setting
of Theorems C.4-C.6 where the randomness of ψ depends on a random vector X ∈ F (for a normed vector
space (F, ∥ · ∥)) and Y is the minimizing solution of:

Minimize: ψ(X)(Y )

for a given deterministic mapping ψ : F → F(Rp,R).
The issue is then, not only to show the concentration of Y but also the concentration of (X,Y ) ∈ F ×Rp

to be able to control the operations made on X and Y as needed in next section.

Corollary C.9. Given a reflexive vector space (F, ∥ · ∥F ), a random vector X ∈ F satisfying X ∝ Eq and
a deterministic mapping ψ : F → F(Rp,R), we assume that for all X, that there exists a (sequence) of
parameters κ > 0 such that d2(ψ(X)) ≥ κIp (with the order relation on symmetric matrices). If we assume
that there exists a (sequence of) vectors y0 ∈ Rp, such that:

δ ≡ max
(
σ∥X∥, ∥dψ(X) y0∥

)
(C.4)

and the mapping A 7→ d(ψ(A)) is O(σ)-Lipschitz from (F, ∥ · ∥F ) to5 (F(Rp,Rp), ∥ · ∥F,B(y0,δ/κ)
), then, Y =

argminy∈Rpψ(X)(y) satisfies: (σ
κ
X, Y

)
∝ E2

(σ
κ

)
.

Proof. We endow the vector space E ≡ F×Rp with the norm ∥·∥ℓ∞ defined for any (A, y) ∈ E as ∥(A, y)∥ℓ∞ =
max(∥A∥F , ∥y∥). For any K > 0, we place ourselves on the event AK ≡ {∥d2ψ(X)∥B(y0,

δ
κ ) ≤ K}. Then for

any B ∈ F , we introduce the mapping:

ϕ(B) : (F × Rp, ∥ · ∥ℓ
∞
) −→ (F × Rp, ∥ · ∥ℓ

∞
)

(A, y) 7−→
(
A+

1

K
(σB − κA), y − 1

K
d(ψ(B)) y

)
.

5where for any f ∈ F(F,R), ∥f∥F,BRp (y0,r) = sup{∥f(y)∥F , ∥y − y0∥Rp ≤ r}
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Noting z0 ≡ (0, y0) ∈ F × Rp, we can bound:

∥z0 − ϕ(X)(z0)∥ = max

(
σ

K
∥X∥ , 1

K

∥∥∥d(ψ(X)) y0

∥∥∥) =
δ

K
,

and of course, under AK , ϕ(X) is (1− κ
K )-Lipschitz on B(z0, δκ ).

In addition, note that B 7→ ϕ(B) is O(σ/K)-Lipschitz from (X(AK), ∥ · ∥F ) to (F(E,E), ∥ · ∥ℓ∞B(z0,δ/κ)
),

therefore, it satisfies:

ϕ(X) | AK ∝ Eq(σ/K) in (F(Rp), ∥ · ∥B(z0,δ/κ)).

The random vector (σκX,Y ) being the unique solution to the fixed point equation z = ϕ(X)(z), one can
therefore employ Theorem C.6 to ϕ to set:(σ

κ
X, Y

)
| AK ∝ E2

(σ
κ

)
.

The concentration constants being independent of K, one can let K tend to infinity to get the expected
result.

Let us now try to replace from the hypotheses of Corollary C.10 assumption (C.4) by a weaker assumption.

Corollary C.10. under the hypotheses of Corollary C.9, if one further assumes that σ ≡ 1√
p , ηF,∥·∥ ≤ O(

√
p)

and replaces (C.4) with:

δ0 ≡ max

(
1
√
p
E[∥X∥],E

[∥∥∥dψ(X) y0

∥∥∥]) ≤ O(1),

and that for all δ > δ0, the mapping A 7→ d(ψ(A)) is O(δ/
√
p)-Lipschitz from (F, ∥ · ∥F ) to (F(Rp,Rp), ∥ ·

∥F,B(y0,δ/κ)
), then one obtain the concentration:(

1
√
pκ
X, Y

)
∝ E2

(
1

√
pκ

)
+ E1

(
1

pκ

)
.

Proof. We are going to use the bound resulting from Proposition B.22:

∀δ > 2δ0 : P
(

1
√
p
∥X∥ ≥ δ

)
≤ Ce−cpδ

2

and P
(∥∥∥dψ(X) y0

∥∥∥ ≥ δ
)
≤ Ce−cpδ

2

,

for some constants C, c > 0. Furthermore, placing ourselves on the event:

Aδ ≡
{
max

(
1
√
p
∥X∥,

∥∥∥dψ(X) y0

∥∥∥) ≤ δ

}
,

for δ > 0 big enough, we know from Lemma B.4, Remark B.5 and Corollary C.9 that
(

1
κ
√
pX,Y

)
|Aδ ∝

E2(δ/
√
pκ). Therefore there exist two constants C ′, c′ > 0 such that for any 1-Lipschitz mapping f : F×Rp →

R:

P
(∣∣∣∣f (( 1

κ
√
p
X, Y

))
− E

[
f

((
1

κ
√
p
X, Y

))]∣∣∣∣ ≥ t | Aδ

)
≤ C ′e−c

′pκ2t2/δ2

Then we can deduce the concentration distinguishing the cases t ≤ δ20
κ and t ≥ δ20

κ and choosing in this last
case δ =

√
t/κ ≥ δ0 (see Lemma A.28 for more precision).



Chapter D

Convex Concentration

D.1 Definition and fundamental examples

With a combinatorial approach, Talagrand showed in the nineties that it is possible to find a weaker notion
of concentration to apprehend the concentration of partly discrete distributions. In these cases, to be con-
centrated the “observation” not only needs to be Lipschitz but also to be quasiconvex, in the sense of the
following definition.

Definition 17 (Quasiconvexity). A function f : E → R is said to be quasiconvex if for any real t ∈ R, the
set {z ∈ E : f(z) ≤ t} = {f ≤ t} is convex.

Remark D.1. Quasiconvexity1 concerns of course convex functions, but also any monotonous function
supported on R. More generally, given a convex function f and a non decreasing function g, the composition
g ◦ f is quasiconvex.

Definition 18. Given a sequence of normed vector spaces (En, ∥ · ∥n)n≥0, a sequence of random vectors
(Zn)n≥0 ∈

∏
n≥0En, a sequence of positive reals (σn)n≥0 ∈ RN

+, we say that Z = (Zn)n≥1 is convexly
concentrated with an observable diameter of order O(σn) iff there exist two positive constants C, c > 0 such
that ∀n ∈ N and for any 1-Lipschitz and quasi-convex function f : En → R (for the norms ∥ · ∥n)2,

∀t > 0 : P (|f(Zn)− E[f(Zn)]| ≥ t) ≤ Ce−c(t/σn)
2

,

We write in that case Zn ∝c E2(σn) (or more simply Z ∝c E2(σ)).

We clearly have the implication:

Z ∝ Eq(σ) =⇒ Z ∝c Eq(σ) =⇒ Z ∈ E[Z]± Eq(σ)

and when E = R everything is equivalent to Definition 2.
The fundamental example of convex concentration that fully justifies the introduction of this notion was

given by Talagrand and can write:

Theorem D.2 ([Tal95]). A (sequence of) random vector Z ∈ [0, 1]n with independent entries satisfies Z ∝c
E2.

A recent very interesting result of Huang and Tikhomirov [HT21] extends this kind of inequalities for
random vectors with independent and subgaussian entries3:

1The class of quasiconvex functions is rather interesting in the sense that it is wider than the class of merely convex functions
but still verifies the property of the uniqueness of the minimum.

2In this inequality, one could have replaced the term “E[f(Zn)]” by “f(Z′
n)” (with Z′

n, an independent copy of Zn) or by
“mf ” (with mf a median of f(Zn)). All those three definitions are equivalent.

3The result of [HT21] is given with ∥·∥ψ2
norms, but we prefer to use here a well known interpretation in terms of concentration

inequalities (see for instance [Ver18, Proposition 2.5.2.])

55
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Theorem D.3 ([HT21], Theorem 1.3.). Given a random vector X = (X1, . . . , Xn) ∈ Rn with independent
components satisfying for all i ∈ [n] and C > 0, Xi ∝ 2e−(t/σ)2 , then there exists two constants C, c
independent with n and such that for all 1-Lipschitz and convex mapping f : Rn → R:

∀t > 0,P (|f(X)−mf | ≥ t) ≤ C exp

(
− c(t/σ)2

log
(
2 + cK2n

t 2

)) .
One should also mention the contributions of [GRST17, GRS+18] that give very interesting characteri-

zation of a vector Z = (X1, . . . , Xn) with independent i.i.d. entries satisfying Z ∝c E2. To be more precise,
the sufficient and necessary conditions for Z to satisfy respectively Z ∝ E2 and Z ∝c E2 are both expressed
in [GRST17] with two transport inequalities on the law of the Z1, . . . , Zn (of course the transport inequality
linked to the convex concentration is weaker); [GRS+18] then provides some more interpretable characeriza-
tion of those transport inequalities.

Convex concentration is not so easy to extand to other distribution because the convexity (or the quasicon-
vexity) of a function is only defined for real-valued functions; indeed, most of the transformations between two
vector spaces ruin the subtle structure of convexity. We can still slightly relax the hypothesis of independence
in the theorem of Talagrand thanks to affine transformations:

Lemma D.4. Given two vector spaces E,F and a quasiconvex (resp., convex) function f : E → R, for any
affine function g : F → E, the composition f ◦ g is also quasiconvex (resp., convex).

We finish this first approach to convex concentration with a adaptation of Lemma B.4 and Remark B.5
to the convex concentration case:

Lemma D.5 (Concentration of locally convex mappings). Given a sequence of positive numbers σp > 0,
a sequence of random vector Zp ∈ E satisfying Z ∝ E2(σ), for any sequence of mappings fp : Zp → R
quasi-convex and 1-Lipschitz on Zp(Ω), we have the concentration fp(Zp) ∝ Eq(σp).

Besides, for any (sequence of) convex subsets A ⊂ E, if there exists a constant K > 0 such that P(Z ∈
A) ≥ K then:

(Z|Z ∈ A) ∝c E2(σ).

Proof. The proof is the same as the one provided in Lemma B.4 except that this time, one needs the
additional argument that since S = {f ≤ mf} (for mf , a median of f) is convex, the mappings z 7→ d(z, S)
and z 7→ −d(z, S) are both quasi-convex thanks to the triangular inequality.

D.2 Degeneracy of convex concentration through product
Given two convexly concentrated random vectors X,Y ∈ E satisfying X,Y ∝c E2(σ), the convex concentra-
tion of the couple (X,Y ) ∝c E2(σ) is ensured if:

1. X and Y are independent

2. (X,Y ) = u(Z) with u affine and Z ∝c E2(σ).

We can then in particular state the concentration of X+Y as it is a linear transformation of (X,Y ). For the
product it is not as simple as for the Lipschitz concentration, in particular it seems like one cannot maintain
the convex concentration through product, we can however deduce linear concentration, this is what we call
degeneracy of convex concentrtaion through product. Let us start with the Hanson Wright Theorem that
was already stated by Adamczak for random vectors X,Y ∈ Rp, we however found interesting to provide here
a short proof based on our results for which the generalization to random matrices is straightforward. The
demonstration is quite similar to Proposition B.41 based on the bound on E[∥AXB∥F ] given by Lemma B.26,
but since we are dealing with convex concentration one needs in addition to decompose the observation into
convex functionnals.

Proposition D.6 ([Ada15]). Given two random matrices X,Y ∈ Mp,n such that (X,Y ) ∝c E2 and
∥E[X]∥F , ∥E[Y ]∥F ≤ O(1), for any A ∈ Mp:

Y TAX ∈ E2(∥A∥F ) + E1(∥A∥).



D.2. DEGENERACY OF CONVEX CONCENTRATION THROUGH PRODUCT 57

Proof. Considering a deterministic matrix B ∈ Mp,n such that ∥B∥F ≤ 1, the proof consists mainly in decom-
posing the mapping X,Y 7→ Tr(BY TAX) into a sum of convex mappings. We start with the decomposition
A = UTAΛVA and B = UTBΓVB to write:

Tr(BY TAX) = Tr(UTBΓVBY
TUTAΛVAX).

Let us then introduce X̌ = VAXU
T
B and Y̌ = UAY V

T
B , we know that X̌, Y̌ ∝ E2. We further decompose

Λ = Λ+ − Λ− and Γ = Γ+ − Γ− with Λ+,Λ−,Γ+,Γ− ≥ 0, to be able to decompose Tr(BY TAX) in positive
quadratic forms. The following decomposition allows us to assume, without restriction that Λ,Γ ≥ 0:

Tr(BY TAX) = Tr(Γ+Y̌
TΛ+X̌)− Tr(Γ+Y̌

TΛ−X̌)− Tr(Γ−Y̌
TΛ−X̌) + Tr(Γ−Y̌

TΛ−X̌).

Then assuming that Λ,Γ ≥ 0, we can decompose:

Tr(ΓY̌ TΛX̌) =
1

4

(
Tr(Γ(Y̌ + X̌)TΛ+(Y̌ + X̌))− Tr(Γ(Y̌ − X̌)TΛ+(Y̌ − X̌))

)
,

We are then left to show the concentration of the quadratic form Tr(ΓXTΛX) (convex on X) for two diagonal
matrices Λ ∈ Dp(R+) and Γ ∈ Dn(R+) and a random matrix X ∈ Mp,n satsifying X ∝c E2. Let us bound:

Tr(ΓXTΛX) ≤ ∥X∥F ∥ΛXΓ∥F .

We know from Lemma B.26 that E[∥ΛXΓ∥F ] ≤ O(∥Λ∥F ) and from the concentration of the norm and
Lemma A.18 that if ∥Λ∥ ≥ 1, for all t ≥ 2E[∥ΛXΓ∥F ]:

P (∥ΛXΓ∥F ≥ t) ≤ Ce−c(t/∥Λ∥F )2 ,

for some constants C, c > 0. One can then show thanks to Lemma A.28 the concentration:

Tr(ΓXTΛX) ∝ E2(∥Λ∥F ) + E1.

We deduce the final result easily as in the proof of Proposition B.41 normalizing in the general case
Tr(ΓXTΛX) with ∥Λ∥.

let us first consider the particular case of the entry-wise product in E = Rp.

Theorem D.7. Given a (sequences of) integer m ∈ NN and a (sequence of) positive number σ > 0 such that
m ≤ O(p), a (sequence of) m random vectors X1, . . . , Xm ∈ Rp, if we suppose that

X ≡ (X1, . . . , Xm) ∝c E2(σ) in ((Rp)m, ∥ · ∥ℓ∞) ,

(with the notation ∥ · ∥ℓ∞ defined in (B.5)) and that there exists a (sequence of) positive numbers κ > 0 such
that ∀i ∈ [m] : ∥Xi∥∞ ≤ κ, then:

X1 ⊙ · · · ⊙Xm ∈ E2
(
(2eκ)m−1σ

)
in (Rp, ∥ · ∥).

And if X1 = · · · = Xm = X, the constant 2e is no more needed and we get the concentration X⊙m ∈
E2
(
κm−1σ

)
.

Remark D.8. If we replace the strong assumption ∀i ∈ [m] : ∥Xi∥∞ ≤ κ, with the bound
sup1≤i≤m ∥E[Xi]∥∞ ≤ O((log p)1/q) we can still deduce a similar result to Example B.38, stating the ex-
istence of a constant κ ≤ O(1) such that:

X1 ⊙ · · · ⊙Xm ∈ E2
(
(κσ)

m
(log(p))(m−1)/q

)
+ Eq/m ((κσ)

m
) in (Rp, ∥ · ∥).

We will use several time the following elementary result:

Lemma D.9. Given a convex mapping f : R → R, and a vector a ∈ Rp+, the mapping F : Rp ∋ (z1, . . . , zp) 7→∑p
i=1 aif(zi) ∈ R is convex (so in particular quasi-convex).
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To efficiently manage the concentration rate when multiplying a large number of random vectors, we will
also need:

Lemma D.10. Given m commutative or non commutative variables a1, . . . , am of a given algebra, we have
the identity:

∑
σ∈Sm

aσ(1) · · · aσ(m) = (−1)m
∑
I⊂[m]

(−1)|I|

(∑
i∈I

ai

)m
,

where |I| is the cardinality of I.

Proof. The idea is to inverse the identity:

(a1 + · · ·+ am)m =
∑
J⊂I

∑
{i1,...,im}=J

ai1 · · · aim ,

thanks to the Rota formula (see [Rol06]) that sets for any mappings f, g defined on the set subsets of N and
having values in a commutative group (for the sum):

∀I ⊂ N, f(I) =
∑
J⊂I

g(J) ⇐⇒ ∀I ⊂ N, g(I) =
∑
J⊂I

µP(N)(J, I)f(J),

where µP(N)(J, I) = (−1)|I\J| is an analog of the Moëbus function for the order relation induced by the
inclusions in P(N). In our case, for any J ⊂ [m], if we set:

f(J) =

(∑
i∈J

ai

)m
and g(J) =

∑
{i1,...,im}=J

ai1 · · · aim ,

we see that for any I ⊂ [m], f(I) =
∑
J⊂I g(J), therefore taking the Rota formula in the case I = [m],

we obtain the result of the Lemma (in that case, µP(N)(J, I) = (−1)m−|J| and
∑

{i1,...,im}=I ai1 · · · aim =∑
σ∈Sm

aσ(1) · · · aσ(m)).

Proof of Theorem D.7. Let us first assume that all the Xi are equal to a vector Z ∈ Rp. Considering
a = (a1, . . . , ap) ∈ Rp, we want to show the concentration of aTZ⊙m =

∑p
i=1 aiz

m
i where z1, . . . , zp are the

entries of Z.
The mapping pm : x 7→ xm is not quasi-convex when m is odd, therefore, in that case we decompose it

into the difference of two convex mappings pm(z) = p+m(z)− p−m(z) where:

p+m : z 7→ max(zm, 0) and p−m : z 7→ −min(zm, 0), (D.1)

(say that, if m is even, then we set p+m = pm and p−m : z 7→ 0). For the same reasons, we decompose
ϕ+a : z 7→ aT p+m(z) and ϕ−a : z 7→ aT p−m(z) into:

ϕ+a = ϕ+|a| − ϕ+|a|−a and ϕ−a = ϕ−|a| − ϕ−|a|−a

(for |a| = (|ai|)1≤i≤p), so that:

aTZ⊙m = ϕ+|a|(Z)− ϕ+|a|−a(Z)− ϕ−|a|(Z) + ϕ−|a|−a(Z)

becomes a combination of quasi-convex functionals of Z. We now need to measure their Lipschitz parameter.
Let us bound for any z ∈ Rp: ∣∣∣ϕ+|a|(z)∣∣∣ = n∑

i=1

|ai||zi|m ≤ ∥a∥∥z∥∥z∥m−1
∞ ,

and the same holds for ϕ+|a|−a, ϕ
−
|a| and ϕ−|a|−a. Note then that ϕ+|a|, ϕ

+
|a|−a, ϕ

−
|a| and ϕ−|a|−a are all ∥a∥κm−1-

Lipschitz to conclude on the concentration of X⊙m.
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Now, if we assume that the X1, . . . , Xm are different, we employ Lemma D.10 in this commutative case
to write (|Sm| = m!):

(X1 ⊙ · · · ⊙Xm) =
(−1)m

m!

∑
I⊂[m]

(−1)|I|

(∑
i∈I

Xi

)⊙m

. (D.2)

Therefore, the sum (Rp)I ∋ z1, . . . , zi|I| 7→
∑
i∈I zi ∈ Rp being m-Lipschitz for the norm ∥ · ∥∞, we know that

∀I ⊂ [m],
∑
i∈I Xi ∝c E2(mσ), and ∥

∑
i∈I Xi∥∞ ≤ κm, therefore, (

∑
i∈I Xi)

⊙m ∈ E2(mmκm−1σ). We can
then exploit Proposition B.27 to obtain(∑

i∈I
Xi

)⊙m

I⊂[m]

∈ E2(mmκm−1σ) in
(
(Rp)2

m

, ∥ · ∥ℓ∞
)
,

(note that #{I ⊂ [m]} = 2m) Thus summing the 2m concentration inequalities, we can conclude from
Equation (D.2), and the Stirling formula mm

m! = em√
2πm

+O(1) that:

(X1 ⊙ · · · ⊙Xm) ∈ E2
(
(2eκ)m−1σ

)
.

To set the concentration of the product of matrices, it is interesting to introduce the notion of transversal
concentration that will help us to simplify the approach to convexity by reducing the set of concentration
with equivalence relations.

D.3 Transversal Convex concentration

Let us introduce the group Op,n = Op ×On where Om, m ∈ N, is the orthogonal group of matrices of Mm ;
it acts on Mp,n following the formula:

for (U, V ) ∈ Op,n, M ∈ Mp,n : (U, V ) ·M = UMV T .

The function f : R ∈ Mp,n 7→ Trϕ(R) is Op,n-invariant, in the sense that ∀(U, V ) ∈ Op,n, ∀R ∈ Mp,n,
f((U, V ) ·R) = f(R). A result originally owed to Chandler Davis in [Dav57], and that can be found in a more
general setting in [GH05], gives us the hint that such an invariance can help us showing that f is quasiconvex.

To present this theorem, we note D+
p,n the set of nonnegative diagonal matrices of Mp,n:

D+
p,n =

{
(Mi,j) 1≤i≤p

1≤j≤n
∈ Mp,n | i ̸= j ⇔Mi,j = 0 and ∀i ∈ {1, . . . , d} :Mi,i ≥ 0

}
,

where d = min(p, n).

Theorem D.11. If a Op,n-invariant function f : Mp,n → R is quasiconvex on D+
p,n, then it is quasiconvex

on the whole set Mp,n.

The original Davis’ theorem is only concerned with symmetric matrices and we could not find any proof
of this theorem for the case of rectangle matrices although it is not so different (it was also aiming at proving
the convexity of f and not its quasiconvexity – but it is actually simpler to treat). We provide here a rigorous
proof of Theorem D.11 with the help of some results borrowed from [Bha97]. Let us first present basic notions
to set the theorem. Given a vectorial space E and a group G acting on E, for any subset A ⊂ E, we note
G · A = {g · a, g ∈ G, a ∈ A}. We say that a set T is transversal if G · T = E and we say that a function f
is G-invariant if ∀x ∈ E,∀g ∈ G, f(g · x) = f(x). In the same vein, we say that a set A ⊂ E is G-invariant
if G · A = A and that it is G-invariant in T if A ⊂ T and G · A ∩ T = A. Given U ⊂ T , we note LGT (U) the
smallest convex subset of T containing U and G-invariant in T . We give here an adaptation of one of the
result of Grabovsky and Hijab to the case of quasiconvex functions.
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Theorem D.12 (cf. [GH05], Theorem 4). Let us consider a vector space E, a group G acting on E, and a
convex and transversal subset T ⊂ E. We suppose that for any U ⊂ T , the set G ·LGT (U) is convex ; we call
this property the convexity conservation of G from T. Then any G-invariant function f is quasiconvex iff its
restriction to T is quasiconvex.

Intuitively, this theorem states that the quasiconvexity (or the mere convexity as in [GH05]) of any
function G-invariant is “transversal” to the action of G when G preserves the convexity from T . A curious
reader might be interested in simplifying the convexity conservation property as we presented it from a
transversal subset T ⊂ E to a mere conservation of the convexity of any convex subset U ⊂ E (i.e., for any
convex set U ⊂ E, f(U) is convex). This would be indeed an hypothesis more than sufficient for the result
of the theorem. However, in practice, and in particular for the applications we want to consider, it cannot
be verified.

Proof. Let us note note f T the restriction of f on T . Given any t ∈ R, we know that the set {f T ≤ t} =
{x ∈ T, f(x) ≤ t} is convex. Then the set {f ≤ t} = G · {f T ≤ t} = G ·LGT ({f T ≤ t}) is also convex thanks
to the convexity conservation of G from T.

To simplify the application of Theorem D.12, Grabowsky and Hijab provide us with a useful property:

Proposition D.13 (Convexity conservation, [GH05], Theorem 3). With the notations of Theorem D.12, if
for any x, y ∈ T , the set G · LGT ({x, y}) is convex, then G conserves the convexity from T .

Proof. Let us consider U ⊂ T , and two points x, y ∈ G · LGT (U). There exists x∗, y∗ ∈ T such that x, y ∈
G · {x∗, y∗}. We know by hypothesis that the set G ·LGT ({x∗, y∗}) is convex, and moreover, it contains x and
y. Therefore, any element of the segment [x, y] is also in LGT ({x∗, y∗}) ⊂ LGT (U).

In the case of a matrix concentration, Theorem D.12 can be applied to the transversal set of nonnegative
diagonal matrices D+

p,n for the action of the group Op,n. The transversal character of D+
p,n is a consequence

of the singular value decomposition. Indeed, for any matrix M ∈ Mp,n, there exists (U, V ) ∈ Op,n such that

M = UΣV T with Σ = Diagp,n(σi(M))1≤i≤d,

where d = min(p, n), σi(M) is the ith singular value of M and the notation Diagp,n(ai) represents an element
of D+

p,n having the values ai on the diagonal.
To prove Theorem D.11, let us characterize the sets L(X) = L

On,p

D+
p,n

({X}) when X ∈ D+
p,n. We know that

D+
p,n is invariant under the action of the subgroup of permutations Pp,n. Given a subset U of a vector space,

we note Conv(U) the convex hull of U .

Proposition D.14. Given X ∈ Dp,n, L(X) = Conv(Pp,n · {X}).

Proof. We know from the uniqueness of the singular value decomposition that for any U ⊂ D+
p,n, (Op,n ·

U) ∩ D+
p,n = Pp,n · U . Consequently, since the convexity is stable under the action of Pp,n (they are linear

transformations), L(X) = Conv(Pp,n · {X}).

Here the tools of majorization as presented for instance in [Bha97] are perfectly adapted to the description
of Conv(Sp,n · {x}) that we identify with Conv(Pp,n · {X}) = L(X). Given a vector x = (x1, . . . xd) ∈ Rd,
let us note x↓ = (x↓1, · · ·x

↓
d), a decreasing ordered version of x (x↓1 ≥ · · ·x↓d and ∃σ ∈ Sd | x↓ = σ · x).

Definition 19. Given two vectors x, y ∈ Rd, d ∈ N, we say that y is majorized by x and we note y ≺ x iff :

∀k ∈ {1, . . . d} :

k∑
i=1

y↓i ≤
k∑
i=1

x↓i and
d∑
i=1

xi =

d∑
i=1

yi.

Majorization offers a complete characterization of Conv(Sd · {x}), x ∈ Rd:

Theorem D.15 ([Bha97], Theorem II.1.10). Given a vectors x ∈ Rd :{
y ∈ Rd, y ≺ x

}
= Conv (Sd · {x}) .
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Majorization appears to be the pertect tool to control the singular decomposition of a sum of matrices
as we will see in Theorem D.17. This is the core argument to justify the convexity consevation of Op,n from
D+
p,n that we need to prove Theorem D.11. Let us first give an intermediate result that we originally owe to

Schur and whose proof can be found in [MOA11] or [Bha97].

Proposition D.16 (Schur’s Theorem, B.1. in [MOA11]). Given a symmetric matrix S ∈ Mp, we have the
majorization Diag(S) ≺ σ(S).

This proposition entails a kind of triangular inequality for the set of singular values.

Theorem D.17 ([Bha97], Exercise II.1.15). Given two matrices A,B ∈ Mp,n, σ(A+B) ≺ σ(A) + σ(B).

Of course, it is important that the vectors σ(A) and σ(B) are both ordered when we sum them.

Proof. Given a symmetric matrix S ∈ Mq, there exists (US , VS) ∈ Op,n such that UAAV TA = Diagp,n σ(S),
thus:

k∑
Diag(USSV

T
S ) =

k∑
σ(S),

where given x ∈ Rd and k ∈ {1, . . . d},
∑k

x =
∑k
i=1 x

↓
i . Besides, since σ(USV T ) = σ(S), we know from

Proposition D.16 that:

k∑
σ(S) = sup

(U,V )∈Op,n

k∑
Diag(USV T ). (D.3)

Now, if we suppose that we are given a general matrix AMp,n and (UA, VA) ∈ Op,n such that UAAV TA =
Diagp,n σ(A). If we introduce the matrices:

Ã =

(
(0) A
AT (0)

)
∈ Mp+n, and P =

(
U (0)
(0) V

)
∈ Mp+n,

we have the identity:

PÃPT =

(
(0) D
D (0)

)
∈ Mp+n, with D = Diagp,n(σ(A)).

Depending on the relation between p and n, we introduce the invertible matrices:

if d = n : Q =

 Id (0) Id
(0) Id (0)
−Id (0) Id

 and if d = p : Q =

 Id Id (0)
−Id Id (0)
(0) (0) Id

 ,

then if d = n, QPÃ(PQ)T = Diag(σ(A), 0 · · · 0,−σ(A)) and if d = p, QPÃ(PQ)T =
Diag(σ(A),−σ(A), 0 · · · 0). Thus in both cases, we obtain a diagonalisation of Ã that allows us to gener-
alize the identity (D.3)) for any matrix A ∈ Mp,n and with 0 ≤ k ≤ d. The supremum of a sum being lower
than the sum of a supremum, for any pair of matrices A,B ∈ Mp,n:

σ(A+B) ≺ σ(A) + σ(B).

Now that the picture is clearer, we can prove Theorem D.11:

Proof of Theorem D.11. To employ Theorem D.12, let us show the convexity conservation property of Op,n

from D+
p,n. Inspired by Proposition D.13, we consider two non-negative diagonal matrices X,Y ∈ D+

p,n, and

we note L(X,Y ) = L
D+

p,n

Op,n
({X,Y }). We want to show that Op,n · L(X,Y ) is convex.
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Noting x = DiagX and y = Diag Y , let us first show that L(X,Y ) = K(x, y), with:

K(x, y) = {Z ∈ D+
p,n,DiagZ ≺ λx+ (1− λ)y, 1 ≤ λ ≤ 1}.

We know from Theorem D.15 that for any U ∈ D+
p,n, L(U) = {DiagZ ≺ DiagU} and therefore, since for

any t ∈ [0, 1], tX + (1− t)Y ∈ L(X,Y ), we obtain the first inclusion K(x, y) ⊂ L(X,Y ).
To prove the converse inclusion, let us show that K(x, y) is convex (we already know that Op,n ·K(x, y)∩

D+
p,n = Pp,n ·K(x, y) = K(x, y) by definition of the relation ≺).

We consider A,B ∈ K(x, y), t ∈ [0, 1] and we set C = tA + (1 − t)B. Therefore, We know that there
exists tz, tw ∈ [0, 1] such that DiagA ≺ λx+ (1− λ)y and DiagB ≺ µx+ (1− µ)y, therefore :

DiagC ≺ (tλ+ (1− t)µ) x + (t(1− λ) + (1− t)(1− µ)) y ∈ [x, y].

In conclusion, since X,Y ∈ K(x, y) and K(x, y) is Pp,n-invariant and convex we recover the second
inclusion K(x, y) ⊂ L(X,Y ).

Thus we are left to show that Op,n · K(x, y) is convex. We consider this time A,B ∈ Op,n · K(x, y),
t ∈ [0, 1], and we introduce C = tA+ (1− t)B. We know from Theorem D.17 that:

σ(C) ≺ tσ(A) + (1− t)σ(B),

and as we saw before, that implies that Diag σ(C) ∈ K(x, y). We can then conclude with the relations

C ∈ Op,n · {Diag σ(C)} ⊂ Op,n ·K(x, y) = Op,n · L(X,Y ).

We can apply Proposition D.13 to get the hypothesis of Theorem D.12 that entails Theorem D.11 in our
setting.

Let us define the subgroup of row permutations Pp = {U ∈ Op | Ui,j ∈ {0, 1}, 1 ≤ i, j ≤ p} and the
subgroup of full permutations:

Pp,n = {(U, V ) ∈ Pp × Pn |UIp,nV T = Ip,n} ⊂ Op,n,

where Ip,n ∈ Dp,n is a matrix full of ones on the diagonal. Given a matrix A ∈ Mp,n, we note Diag(A) =
(A1,1, . . . , Ad,d), the vector composed of its diagonal terms (recall that q = min(p, n)). It is tempting to
identify the set D+

p,n with Rd+, and the actions of Pp,n on a diagonal matrix A to the actions of the group of
permutation Sd on the vector Diag(A), where we define the action of Sd on Rd as:

∀τ ∈ Sd,∀x ∈ Rd : τ · x =
(
xτ(1), · · ·xτ(d)

)
.

With these considerations in mind, we see that a direct interesting consequence of Theorem D.11 is that there
exists a link between the convex concentration of a matrix X and the convex concentration of the vector of its
singular values. Recall that the sequence of singular values verifies σ1(A) ≥ · · ·σd(A) ≥ 0 and for 1 ≤ i ≤ d,
the ith singular value of M can be defined as:

σi(A) = max
F⊂Rn

dimF≥i

min
x∈F

∥x∥=1

∥Mx∥ = min
F⊂Rn

dimF≥n−i+1

max
x∈F

∥x∥=1

∥Mx∥ , (D.4)

where the subsets F of Rd on which is computed the optimization are subspaces of Rn. We introduce the
convenient function σ mapping a matrix to the ordered sequence of its singular values:

σ : Mp,n → Rd+
M 7→ (σ1(M), . . . , σd(M)).

To formalize this transfer of concentration between a matrix X and σ(X) let us introduce a new notion of
concentration in a vector space E: the convex concentration transversally to the action of a group G acting
on E.
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Definition 20. Given a normal vector space E, a group G acting on E, a concentration function α and a
random vector Z ∈ E, we say that Z is convexly α-concentrated transversally to the action of G and we note
Z ∝TG α iff for any 1-Lipschitz, quasiconvex and G-invariant function f : E → R, f(Z) is α concentrated.

Remark D.18. In the setting of Definition 20, we have the induction chain:

Z ∝ α =⇒ Z ∝c α =⇒ Z ∝TG α.

Definition 20 is perfectly adapted to the next theorem which is very similar to [Led05, Corollary 8.21]
concerning the eigenvalues of a random symmetric matrix).

Theorem D.19. Given a normal vector space E, a concentration function α and a random matrix X ∈ Mp,n,
we have the equivalence:

X ∝TOp,n
α ⇐⇒ σ(X) ∝TSd

α,

where d = min(p, n).

Let us first show the Lipschitz character of σ, it is a well known result that can be found for instance in
[GL96]:

Lemma D.20 (Theorem 8.1.15 in [GL96]). The function σ is 1-Lipschitz.

Proof. Given M,H ∈ Mp,n, and i ∈ {1, . . . d} (where as before, d = min(p, n), we know from formula (D.4))
that:

λi(A+H) = min
F⊂Rn

dimF≥n−i+1

max
x∈F

∥x∥=1

∥(A+H)x∥

≤ min
F⊂Rn

dimF≥n−i+1

(
max
x∈F

∥x∥=1

∥Ax∥+ max
x∈F

∥x∥=1

∥Hx∥

)
≤ min

F⊂Rn
dimF≥n−i+1

max
x∈F

∥x∥=1

∥Ax∥+ max
x∈Rn
∥x∥=1

∥Hx∥ ≤ λi(A) + λ1(H),

and the same way, we can show that λi(A+H) ≥ λi(A)− λn(H). Therefore, we get:

|λi(A+H)− λi(A)| ≤ max(λ1(H), λn(H)) ≤ ∥H∥ .

Proof of Theorem D.19. It is a simple corollary of Theorem D.11. If X ∝TOp,n
α, and given a 1-Lipschitz,

convex and Sn-invariant function f : Rd → R, one can introduce the function F̃ defined as:

F̃ : Mp,n −→ R
M 7−→ f(σ(M)).

The function F is 1-Lipschitz thanks to Lemma D.20 and Op,n-invariant because of the uniqueness of the
singular decomposition. Besides we can identify the set D+

p,n with Rd and introduce a function f̃ : D+
p,n → R

verifying f̃(diagp,n(x)) = f(x) for x ∈ Rd. In that case, since f is Sd-invariant and convex, f̃ is also convex
and since f̃ = F D+

p,n
, Theorem D.11 allows us to set that F is also convex. Therefore, the random variable

f(σ(X)) = F (X) is α-concentrated by hypothesis on X.
Reciprocally, let us suppose that we are given a random matrix X ∈ Mp,n such that σ(X) ∝TSd

α, and
let us consider a 1-Lipschitz, convex and Op,n-invariant function F : Mp,n → R. The restriction F D+

p,n

is also 1 Lipschitz, convex and Pp,n-invariant. Thus, with the same identification as before between D+
p,n

and Rd, we can assert by hypothesis that F (X) = F̃ D+
p,n

(σ(X)) is α-concentrated (we defined F̃ D+
p,n

(x) =

F D+
p,n

(diagp,n(x)), it is a Sd-invariant function).
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Theorem D.19 can be rather powerful to set the concentration of symmetric functionals of random singular
values and playing with this symmetry we can show interesting properties of concentration on products.

The result of concentration of a product of matrices convexly concentrated was already proven in [MS11]
but since their formulation is slightly different, we give a new proof below with the formulation required for
the study of the resolvent.

Theorem D.21 ([MS11], Theorem 1). Let us consider three sequences m ∈ NN and σ, κ ∈ RN
+, and a

sequence of m random matrices X1 ∈ Mn0,n1
, . . . , Xm ∈ Mnm−1,nm

, satisfying4:

(X1, . . . , Xm) ∝c E2(σ) in
(
Mn0,n1

× · · · ×Mnm−1,nm
, ∥ · ∥F

)
,

In the particular case where X1 = · · · = Xn ≡ X, it is sufficient5 to assume that X ∝c E2(σ) in (Mn, ∥ · ∥F ).
If there exist a sequence of positive values κ > 0 such that ∀i ∈ [m], ∥Xi∥ ≤ κ, then the product is concentrated
for the nuclear norm:

X1 · · ·Xm ∈ E2
(
κm−1σ

√
n0 + · · ·+ nm

)
in (Mn0,nm

, ∥ · ∥∗) ,

where, for any M ∈ Mn0,nm , ∥M∥∗ = Tr(
√
MMT ) (it is the dual norm of the spectral norm).

Remark D.22. The hypothesis ∥X∥ ≤ κ might look quite strong, however in classical settings where X ∝ E2
and ∥E[X]∥ ≤ O(

√
n) it has been shown that there exist three constants C, c,K > 0 such that P(∥X∥ ≥

K
√
n) ≤ Ce−cn. Placing ourselves on the event A = {∥X∥ ≤ K

√
n}, we can then show from Lemma D.5

below that: (
(X/

√
n)m | A

)
∈ E2

(
Km−1/

√
n
)

and P(Ac) ≤ Ce−cn,

(here σ = 1/
√
n and κ = K). The same inferences hold for the concentration of (XXT /(n+ p))m.

Proof of Theorem D.21. Let us start to study the case where X1 = · · · = Xm ≡ X ∈ Mn and X ∝ E2 in
(Mn, ∥ · ∥F ). We know from Theorem D.19 that:

σ(X) ∝TSp
E2,

and therefore, as a
√
n-Lipschitz linear observation of σ(X)⊙m ∈ E2

(
κm−1σ

)
(see Theorem D.7), Tr(Xm)

follows the concentration:

Tr(Xm) =

p∑
i=1

σi(X)m ∈ E2
(√
nκm−1σ

)
.

Now, we consider the general setting where we are given m matrices X1, . . . , Xm, a deterministic matrix
A ∈ Mnn,n0

satisfying ∥A∥ ≤ 1, and we want to show the concentration of tr(AX1, · · · , Xm). First note that
we stay in the hypotheses of the theorem if we replaceX1 with AX1, we are thus left to show the concentration
of Tr(X1 · · ·Xm). We can not employ again Lemma D.10 without a strong hypothesis of commutativity on
the matrices X1, . . . , Xn. Indeed, one could not have gone further than a concentration on the whole term∑
σ∈Sp

Tr(Xσ(1) · · ·Xσ(m)). However, we can still introduce the random matrix

Y =


0 Xm−1

. . . . . .
. . . X1

Xm 0

 then Y m =


0 Xm

1

. . . . . .
. . . X2

3

X1
2 0

 ,

where for i, j ∈ {2, . . . ,m − 1}, Xj
i ≡ XiXi+1 · · ·XmX1 · · ·Xj . Since Y ∈ Mn0+···+nm satisfies Y ∝ E2(σ)

and ∥Y ∥ ≤ κ, the first part of the proof provides the concentration Y m ∈ E2
(
κm−1σ

√
n0 + · · ·+ nm

)
in

(Mn, ∥ · ∥∗) which directly implies the concentration of Xm
1 = X1 · · ·Xm.

4The norm ∥ · ∥F is defined on Mn0,n1 × · · · ×Mnm−1,nm by the identity:

∥(M1, . . . ,Mp)∥F =
√

∥M1∥2F + · · ·+ ∥Mm∥2F

5Be careful that X ∝c E2(σ) does not imply that (X, . . . ,X) ∝c E2(σ), it is only true when (Mn)m is endowed with the
norm ∥ · ∥F,ℓ∞ , satisfying for any M = (M1, . . . ,Mm) ∈ (Mn)m, ∥M∥F,ℓ∞ = sup1≤i≤m ∥Mi∥F
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Considering a non centered sample covariance matrix 1
nXX

T , where X = (x1, . . . , xn) ∈ Mp,n is the
data matrix, we denote Sp( 1nXX

T ) the spectrum of 1
nXX

T . The spectral distribution of 1
nXX

T , denoted
µ ≡ 1

p

∑
λ∈Sp( 1

nXX
T ) δλ, is classically studied through its Stieltjes transform expressed as:

g : C \ Sp
(
1

n
XXT

)
−→ C

z 7−→
∫
R

dµ(λ)

λ− z
.

The relevance of the Stieltjes transform has been extensively justified in some seminal works [MP67, Sil86]
by the Cauchy integral that provides for any analytical mapping f defined on a neighborhood of a subset
B ⊂ Sp( 1nXX

T ) the identity: ∫
B

f(λ)dµ(λ) =
1

2iπ

∮
γ

f(z)g(z)dz,

where γ : [0, 1] → C \ Sp( 1nXX
T ) is a closed path on which f is defined and whose interior Iγ satisfies

Iγ ∩ Sp( 1nXX
T ) = B ∩ Sp( 1nXX

T ). But we can go further and approximate linear functionals of the
eigenvectors thanks to the resolvent. If we denote EB the random eigenspace associated to the eigenvalues of
1
nXX

T belonging to B, and ΠB the orthogonal projector on EB , then for any deterministic matrix A ∈ Mp:

Tr(ΠBA) =
1

2iπ

∫
γ

Tr(AR(z))dz with R(z) ≡
(
1

n
XXT − zIp

)−1

. (D.5)

The matrix R(z) is commonly called the resolvent of 1
nXX

T . It satisfies in particular that, for all z ∈
C \ Sp( 1nXX

T ), g(z) = 1
p Tr(R(z)). It thus naturally becomes the central element of the study of the

spectral distribution. One of the first tasks in random matrix theory is to devise a so called “deterministic
equivalent” for R(z) ([HLN07a]), that we will denote here R̃(z). Specifically, we look for a deterministic
matrix computable from the first statistics of our problem and close to E[R(z)]. In particular, a main result
of random matrix theory sets that this deterministic equivalent only expresses with means and covariances
of the xi’s. Two questions then arise:

1. How close to E[R(z)] is R(z)?

2. What does this notion of closeness really mean ?

The first questions relate to concentrations properties on R(z) that arise from concentration properties on
X. The study of random matrices originally studied with i.i.d. entries ([MP67], [Yin86]), mere Gaussian
hypotheses ([BKV96]), or with weaker hypotheses concerning the first moments of the entries (supposed to
be independent or at least independent up to an affine transformation). Some more recent works showed the
concentration of the spectral distribution of Wishart or Wigner matrices with bounding assumption on the
entries of the random matrix under study –or at least a linear transformation of it– allows to employ Talagrand
results in [GZ00, GL09] that also treat some log-concave hypotheses allowing to relax some independence
assumptions as it is done in [AC15]. One can also find very light hypotheses on the quadratic functionals
of the columns ([BZ08]), improved in [Yas16] or on the norms of the columns and the rows ([Ada11]). In
the present work, we do not consider the case of what is called convexly concentrated random vectors in
[VW14, MS11, Ada11] as it is done in [GZ00] because it requires a different approach (see Section F.2).

The Lipschitz concentration hypothesis we assume on X in a sense “propagates” to the resolvent that
then satisfies, for all deterministic matrices A such that ∥A∥F ≡

√
Tr(AAT ) ≤ 1 and for all z not too close

to the spectrum of 1
nXX

T :

P (|Tr (A (R(z)− E[R(z)]))| ≥ t) ≤ Ce−cnt
2

+ Ce−cn, (D.6)

for some numerical constants C, c independent of n, p. We see from (D.6) the important benefit gained with
our concentration hypothesis on X: it provides simple quasi-asymptotic results on the convergence of the
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resolvent with speed rates, while most of the results on random matrices are classically expressed in the
limiting regime n, p→ ∞.

The condition ∥A∥F ≤ 1 answers our second question: a specificity of our approach is to control the
convergence of the resolvent with the Frobenius norm at a speed of order O(1/

√
n). The concentration

inequality (D.6) means that all linear forms of R(z), which are 1-Lipschitz6 for the Frobenius norm, have
a standard deviation of order O(1/

√
n); this is crucial to be able to estimate quantities expressed in (D.5).

Generally, the Stieltjes transform g(z) = − 1
p Tr(R(z)) is classically the only studied linear forms of the

resolvent (it is 1/
√
p-Lipschitz so its standard deviation is of order O(1/

√
pn) which is a classical result

although not exactly under a concentration of measure assumption) or projections on deterministic vectors
uTR(z)u, for which only the concentration in spectral norm with a speed of order O(1/

√
n) is needed.

Those remarks gain a real importance when we are able to estimate the expectation of R(z) with a
deterministic equivalent (that we can compute). We look for a closeness relation in Frobenius norm:∥∥∥E[R(z)]− R̃(z)

∥∥∥
F
≤ O

(
1√
n

)
.

We may then replace in (D.6) the term “E[R(z)]” by R̃(z) which we are able to compute from the expectations
and covariances of the columns x1, . . . , xn.

Note that we do not assume that the columns are identically distributed: in particular, the means and
covariances can be all different (although they have to satisfy some boundedness properties expressed in
Assumptions 4 and 5 at the beginning of Chapter F). This remark may be related to the studies made of
matrices X with a variance profile: but this is here even more general because the laws of the columns are not
solely defined from their means and covariances (although the spectral distribution of 1

nXX
T just depends

on these quantities).
The extension of Marcenko Pastur result to non-identically distributed columns was well known; one can

cite for instance [HLN07b, WCDS12, Yin20] treating a very similar problem but with different assumptions
of concentration (just some moments of the entries need to be bounded) the result is then given in the form of
a limit (not a concentration inequality), [KA16] showing that no eigenvalues lie outside of the support with
Gaussian hypotheses and [DKL22] imposing some weak isotropic conditions on the different covariances.
We will follow the proof scheme of [HLN07b] where the authors introduce two consecutive deterministic
equivalents, the first one depending on the expectations of Λz = z − 1

nx
T
i Q

z
−ixi, and the second one being

expressed through fixed point equation that approximate those quantities. We can indeed estimate the
expectations of the quantities Λz1, . . . ,Λ

z
n with a diagonal matrix7 Λ̃z = Diag(Λ̃zi )i∈[n] ∈ Dn(C) obtained

after successive iteration of the following equation (quite different from the one presented in [HLN07b]):

∀i ∈ [n] : Λ̃zi = z − 1

n
Tr
(
ΣiQ̃

Λ̃z
)

with Q̃Λ̃z

≡

(
Ip −

1

n

n∑
i=1

Σi

Λ̃zi

)−1

, (D.7)

in which Σi = E[xixTi ].
The difficulties are (i) to prove the existence and uniqueness of Λ̃z and (ii) to ensure some stability

properties8 on this equation eventually allowing us to assert that ∥E[R(z)] − R̃(z)∥F ≤ O(1/
√
n), where

R̃(z) ≡ 1
z Q̃

Λ̃z

. The existence and uniqueness of similar equations has already proven thanks to complex
analysis justification (normal family theorem in [HLN07b] and Vitali’s theorem in [WCDS12, Yin20]), those
approaches allows to extend convergence properties for some z to the whole convex half plane H, however
we are not only looking for an asymptotic result but for a quasi asymptotic result, meaning that we want
precise convergence bounds for n and p big but not infinite.

The two aforementioned difficulties disappear with the introduction of a convenient semi-metric9 ds on
which the fixed point equation satisfied by Λ̃z is contractive, leading (after still some work since a semi-metric

6or λ-Lipschitz with λ ≤ O(1)
7The interest to resort to a diagonal matrix of Mn rather than to a vector of Rn will be clearer later – mainly to employ

Proposition B.50 in a natural formalism.
8Conceptually, it means that if we have a diagonal matrix L ∈ Mn satisfying ∀i ∈ [n] : Li ≡ z − 1

n
Tr

(
ΣiQ̃

L
)

then L is

“close” to Λ̃z .
9A semi metric is defined as a metric that does not satisfy the triangular inequality.



69

is not as easy to treat as if ds were a true metric) to existence, uniqueness and stability properties. This
semi-metric, quite similar to the one already introduced in [LC22b] to study robust estimators, is defined for
any D,D′ ∈ Dn(H) as:

ds(D,D
′) =

∥∥∥∥∥ D −D′√
ℑ(D)ℑ(D′)

∥∥∥∥∥ .
This semi-metric appears as a central object in random matrix theory, one can indeed point out the fact that
any Stieltjes transform is 1-Lipschitz under this semi-metric (see Proposition E.18). It relates to Poincaré
metric, the hyperbolic metric writes indeed dH(z, z′) = cosh(ds(z, z

′)2−1). Apart from the book [EH70] that
provided a groundwork for the introduction of such a metric, this approach already gained some visibility
in [HFS07, KLW13] or in a context closer to ours for the study of Wishart matrices and in a squared form
in [AKE16]. We prefer an expression proportional to ∥D − D′∥ because it is more adapted to comparison
with classical distance on Dn(H), as it is done in Proposition E.23 that subsequently provides bounds to the
convergence speed. Let us outline that once the appropriate semi-metric is identified, contractivity properties
are not sufficient to prove the existence and uniqueness to (D.7): one also needs to introduce the correct
space over which the mapping is contractive (DIz ≡ {D ∈ Dn(H), Dz ∈ Dn(H)}).
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Chapter E

Stable semi metric

E.1 Definition and first properties
The stable semi-metric which we define here is a convenient object which allows us to set Banach-like fixed
point theorems. It has a crucial importance to prove the existence and uniqueness of Ĉ but also to obtain
some random matrix identities on Ĉ, such as the estimation of its limiting spectral distribution.

Definition 21. We call the stable semi-metric on D+
n = {D ∈ Dn,∀i ∈ [n], Di > 0} the function:

∀∆,∆′ ∈ D+
n : ds(∆,∆

′) ≡
∥∥∥∥∆−∆′
√
∆∆′

∥∥∥∥ . (E.1)

In particular, this semi-metric can be defined on R+, identifying R+ with D+
1 .

The function ds is not a metric because it does not satisfy the triangular inequality, one can see for
instance that:

ds(4, 1) =
3

2
>

1√
2
+

1√
2
= ds(4, 2) + ds(2, 1) (E.2)

More precisely, for any x, z ∈ R+ such that x < z, if one differentes twice the mapping g : y → (xy−x)2
xy + (z−y)2

xy ,
one obtains:

g′(y) =
1

y
− y

x2
+

1

z
− z

x3
and g′′(y) =

3y

x3
+

3z

x3
> 0,

which proves that g is strictly convex on [x, z] and therefore it admits a minimum y0 on ]x, z[ (since g(x) =
g(z)). In particular, one can bound:

ds(x, z) >
√
ds(x, y0)2 + ds(y0, z)2

One can however sometimes palliate this weakness when needed thanks to the following inequality proved in
Section E.5.

Proposition E.1 (Pseudo triangular inequality). Given x, z, y ∈ R+:

|x− y| ≤ |y − z| =⇒ ds(x, y) ≤ ds(x, z).

In addition, for any p ∈ N∗ and y1, . . . , yp−1 ∈ R+, we have the inequalities1:

ds(x, y1) + · · ·+ ds(yp−1, z) ≥ ds

(
x

1
p , z

1
p

)
≥ ds (x, z)

1/p

and the left inequality turns into an equality in the case yi = x
p−i
p z

i
p for i ∈ {1, . . . , p− 1}.

1The mapping x 7→ xp is not Lipschitz for the semi-metric ds (unlike x 7→ x
1
p ).
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Proof. For a given integer p ≥ 1, let us differentiate the mapping:

fp : Rp−1
+ −→ R

(y1, . . . , yp−1) 7−→
y1 − x
√
y1x

+ · · · z − yp−1√
zyp−1

one can compute for any y1, . . . , yp−1 ∈ R+ and i ∈ [p− 1]:

∂fp(y1, . . . , yp−1)

∂yi
=

1

2

1
√
yiyi−1

(
1 +

yi−1

yi

)
− 1

2

1
√
yi+1yi

(
1 +

yi+1

yi

)
(E.3)

(where y0 and yp designate respectively x and z) In particular, when p = 1, for any y ≥ x > 0:

∂

∂y

(
y − x
√
yx

)
=

1

2

1
√
xy

(
1 +

x

y

)
≥ 0

which proves the first result of the proposition. Now if we assume that y ≤ x ≤ z:

ds(x, y) + ds(y, z) ≥ ds(x, z),

and the same inequality holds if one assumes that x ≤ z ≤ y. Returning to the setting of the proposition,
we can therefore place ourselves in the open space:

Upx,z = {(y1, . . . , yp) ∈ Rp−1
+ , x < y1 < · · · < yp−1 < z}.

If one fixes x, z ∈ R+, then fp(x, y1, . . . , yp−1, z) = ds(x, y1)+ · · ·+ds(yp−1, z) is minimum for y1, . . . , yp−1

satisfying:

1
√
yiyi−1

(
1− yi−1

yi

)
=

1
√
yi+1yi

(
1− yi

yi+1

)
which is equivalent to yi =

√
yi−1yi+1. Noting x̃ = log(x), ỹ1 = log(y1), . . . , ỹn = log(yn), z̃ = log(z), we see

that this identity writes ỹi = 1
2 (ỹi−1ỹi+1), which implies ỹi = x̃+ i

p (z̃ − x̃), or in other words:

yi = x
p−i
p z

i
p .

In that case:

ds(yi, yi+1) =

∣∣∣∣∣ x
p−i
2p z

i
2p

x
p−i−1

2p z
i+1
2p

− x
p−i−1

2p z
i+1
2p

x
p−i
2p z

i
2p

∣∣∣∣∣ =
∣∣∣∣∣x

1
2p

z
1
2p

− z
1
2p

x
1
2p

∣∣∣∣∣ = ds

(
x

1
p , z

1
p

)
,

and the same holds for ds(x, y1) and ds(yp−1, z).
The last inequality is just a consequence of the concavity of t→ t1/p:

ds

(
x

1
p , z

1
p

)
=
z

1
p − x

1
p

(xz)
1
2p

=

1
p

∫ z−x
0

(t+ x)
1−p
p dt

(xz)
1
2p

≤
1
p

∫ z−x
0

t
1−p
p dt

(xz)
1
2p

=

(
z − x

(xz)
1
2

) 1
p

= ds(x, z)
1
p .

The semi-metric ds is called stable due to its many interesting stability properties.

Property E.2. Given ∆,∆′ ∈ D+
n and Λ ∈ D+

n :

ds (Λ∆,Λ∆
′) = ds (∆,∆

′) and ds
(
∆−1,∆′−1

)
= ds (∆,∆

′) .

Property E.3. Given four diagonal matrices ∆,∆′, D,D′ ∈ D+
n :

ds(∆ +D,∆′ +D′) ≤ max(ds(∆,∆
′), ds(D,D

′)).
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To prove this property one needs two elementary results.

Lemma E.4. Given four positive numbers a, b, α, β ∈ R+:

√
ab+

√
αβ ≤

√
(a+ α)(b+ β) and

a+ α

b+ β
≤ max

(
a

b
,
α

β

)
Proof. For the first result, we deduce from the inequality 4abαβ ≤ (aα+ bβ)2:(√

ab+
√
αβ
)2

= ab+ αβ + 2
√
abαβ ≤ ab+ αβ + aβ + bα = (a+ α)(b+ β)

For the second result, we simply bound:

a+ α

b+ β
≤ a

b

b

b+ β
+
α

β

β

b+ β
≤ max

(
a

b
,
α

β

)(
b

b+ β
+

β

b+ β

)
= max

(
a

b
,
α

β

)

Proof of Property E.3. For any ∆,∆′, D,D′ ∈ D+
n , there exists i0 ∈ [n] such that:

ds(∆ +D,∆′ +D′) =

∣∣∆i0 −∆′
i0
+Di0 −D′

i0

∣∣√
(∆i0 +Di0)(∆

′
i0
+D′

i0
)

≤
∣∣∆i0 −∆′

i0

∣∣+ ∣∣Di0 −D′
i0

∣∣√
∆i0∆

′
i0
+
√
Di0D

′
i0
)

≤ max

∣∣∆i0 −∆′
i0

∣∣√
∆i0∆

′
i0

,

∣∣Di0 −D′
i0

∣∣√
Di0D

′
i0


thanks to Lemma E.4.

E.2 Stable class
Definition 22 (Stable class). The set of 1-Lipschitz functions for the stable semi-metric is called the stable
class. We denote it:

S
(
D+
n

)
≡
{
f : D+

n → D+
n | ∀∆,∆′ ∈ D+

n , ∆ ̸= ∆′ : ds(f(∆), f(∆′)) ≤ ds(∆,∆
′)
}
.

The elements of S (D+
n ) are called the stable mappings.

Let us then provide the properties which justify why we call S (D+
n ) a stable class: this class indeed

satisfies far more stability properties than the usual Lipschitz mappings (for a given norm). Those stability
properties are direct consequences to Properties E.2 and E.3.

Property E.5. Given Λ,Γ ∈ D+
n and f, g ∈ S(D+

n ):

(∆ 7→ Λf(Γ∆)) ∈ S(D+
n ),

1

f
∈ S(D+

n ), f ◦ g ∈ S(D+
n ), f + g ∈ S(D+

n ).

E.3 The sub-monotonic class
The stable class has a very simple interpretation when n = 1. Given a function f : R+ → R+ we introduce
two characteristic functions f/, f× : R+ → R+:

f/ : x 7→ f(x)

x
and f× : x 7→ xf(x).

Property E.6. A function f : R+ → R+ is a stable mapping if and only if f/ is non-increasing and f× is
non-decreasing.
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Proof. Let us consider x, y ∈ R+, such that, say, x ≤ y. We suppose in a first time that f/ is non-increasing
and that f× is non-decreasing. We know that f(x)

x ≥ f(y)
y , and subsequently:

f(y)− f(x) ≤ f(y)

y
(y − x) and f(y)− f(x) ≤ f(x)

x
(y − x) (E.4)

The same way, since f(x)x ≤ f(y)y we also have the inequalities:

f(x)− f(y) ≤ f(y)

x
(y − x) and f(x)− f(y) ≤ f(x)

y
(y − x) (E.5)

Now if f(y) ≥ f(x), we can take the root of the product of the two inequalities of (E.4) and if f(y) ≤ f(x),
we take the root of the product of the two inequalities of (E.5), to obtain, in both cases:

|f(x)− f(y)| ≤

√
f(y)f(x)

xy
|x− y|

That means that f ∈ S(R+).
Conversely, if we now suppose that f ∈ S(R+), we then use the bound:

|f(y)− f(x)| ≤

√
f(y)f(x)

xy
(y − x).

First, if f(x) ≤ f(y), then f(x)x ≤ f(y)y and we can bound:

f(y)− f(x) ≤ max

(
f(x)

x
,
f(y)

y

)
(y − x) ≤ max

((y
x
− 1
)
f(x),

(
1− x

y

)
f(y)

)
which directly implies f(y)

y ≤ f(x)
x . Second, if f(x) ≥ f(y), f(x)

x ≥ f(y)
y and we can then bound in the same

way:

f(x)xy − f(y)xy ≤ max (xf(x)(y − x), (y − x) yf(y))

which implies xf(x) ≤ yf(y). In both cases (f(x) ≤ f(y) and f(y) ≤ f(x)), and we see that f/(x) ≥ f/(y)
and f×(x) ≤ f×(y), proving the result.

This property allows us to understand directly that the stability of a function is a local behavior. We
then conclude staightforwardly that the supremum or the infimum of stable mappings is also stable.

Corollary E.7. Given a family of stable mappings (fθ)θ∈Θ ∈ S(R+)Θ, for a given set Θ, the mappings
supθ∈Θ fθ and infθ∈Θ fθ are both stable.

Given f : D+
n → D+

n , we can introduce by analogy to the case of mappings on R+, the mappings
f/, f× : D+

n → D+
n defined with:

f/ : ∆ 7→ Tr

(
f(∆)

∆

)
and f× : ∆ 7→ Tr (∆f(∆))

Inspiring from Property E.6, one can then define:

Definition 23 (Sub-monotonuous class). A mapping f : D+
n → D+

n is said to be sub-monotonuous if and
only if f× is non decreasing and f/ is non-increasing, we note this class of mappings Sm(D+

n ).

Remark E.8. We know from Property E.6 that S(R+) = Sm(R+) but for n > 1, none of the classes Sm(D+
n )

and S(D+
n ) contains strictly the other one. On the first hand, introducing:

f : D+
2 −→ D+

2

∆ 7−→ Diag

(
1

∆2
,
1

∆1

)
,
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we see that f ∈ S(D+
n ) but f /∈ Sm(D+

n ) (for ∆ = Diag(1, 2) and ∆′ = Diag(2, 2), ∆ ≤ ∆′ but Tr(f(∆)∆) =
5
2 > 2 = Tr(f(∆′)∆′)). On the other hand, the mapping:

g : D+
2 −→ D+

2

∆ 7−→ Diag

(
∆1∆2

1 + ∆2
, 1

)
is in Sm(D+

n ) because:
∂g.
∂∆1

=
2∆1∆2

1 + ∆2
≥ 0

∂g.
∂∆2

=
∆2

1

(1 + ∆2)2
+ 1 ≥ 0

and


∂g/

∂∆1
= 0 ≤ 0

∂g/

∂∆2
=

1

(1 + ∆2)2
− 1

∆2
2

≤ 0.

However, we can see that g is not stable if we introduce the diagonal matrices ∆ = Diag(1, 2) and ∆′ =
Diag(2, 3) since we have then:

ds(g(∆), g(∆′)) = ds

(
2

3
,
3

2

)
=

5

6
>

1√
2
= max

(
|3− 2|√

6
,
|2− 1|√

2

)
= ds(∆,∆

′)

E.4 Fixed Point theorem for stable and sub-monotonic mappings
The Banach fixed point theorem states that a contracting function on a complete space admits a unique fixed
point. The extension of this result to contracting mappings on D+

n , for the semi-metric ds, is not obvious:
first because ds does not verify the triangular inequality and second because the completeness needs to be
proven. The completeness of the semi-metric space (D+

n , ds) is left in Section E.5 since we will not need it.
Let us start with a first bound.

Lemma E.9. Given a mapping f : D+
n → D+

n , contracting for the semi metric ds, any sequence of diagonal
matrices (∆n)n∈N satisfying ∆(p+1) = f(∆(p)) is bounded from below and above and satisfies for all p ∈ N
and i ∈ [n]:

exp

(
−
λds

(
∆(1),∆(0)

)
2(1− λ)

)
∆

(1)
i ≤ ∆

(p)
i ≤ exp

(
λds

(
∆(1),∆(0)

)
2(1− λ)

)
∆

(1)
i

Proof. Noting λ > 0, the Lipschitz parameter of f for the semi-metric ds, let us first show that, for all i ∈ [n]:

∀p ∈ N,

√
∆(p+1)i

∆
(p)
i

≤ 1 + λpds

(
∆(1),∆(0)

)
. (E.6)

When ∆
(p+1)
i ≤ ∆

(p)
i , it is obvious and when ∆(p+1) ≥ ∆(p) the contractivity of f allows us to set

ds(∆
(p+1),∆(p)) ≤ λpds

(
∆(1),∆(0)

)
, which implies:√√√√∆

(p+1)
i

∆
(p)
i

≤

√√√√ ∆
(p)
i

∆
(p+1)
i

+ λpds

(
∆(1),∆(0)

)
≤ 1 + λpds

(
∆(1),∆(0)

)
.

Multiplying (E.6) for all p ∈ {1, . . . , P}, we obtain:√√√√∆
(P )
i

∆
(1)
i

≤ 1 ≤
P∏
p=1

(
1 + λpds

(
∆(1),∆(0)

))
= exp

(
P∑
p=1

log
(
1 + λpds

(
∆(1),∆(0)

)))

≤ exp

(
P∑
p=1

λpds

(
∆(1),∆(0)

))
≤ exp

(
λds

(
∆(1),∆(0)

)
1− λ

)
.

With a similar approach, we can eventually show the result of the lemma.
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Let us now present two fixed point results that will justify the definition of the robust scatter matrix C
but also of the deterministic diagonal matrix U introduced in Section I.1.

Theorem E.10. Any mapping f : D+
n → D+

n , contracting for the stable semi-metric ds, admits a unique
fixed point ∆∗ ∈ Dn(R+ ∪ {0}) satisfying ∆∗ = f(∆∗).

Proof. We cannot repeat exactly the proof of the Banach fixed point theorem since ds does not satisfy the
triangular inequality. Noting λ ∈ (0, 1) the parameter such that ∀∆,∆′ ∈ D+

n , ds(f(∆), f(∆′)) ≤ λds(∆,∆
′),

we show that the sequence (∆(k))k≥0 satisfying:

∆(0) = In and ∀k ≥ 1 : ∆(k) = f(∆(k−1))

is a Cauchy sequence in (D+

n , ∥ · ∥), where D+

n ≡ Dn(R+ ∪ {0}).
We know from Lemma E.9 that there exists δ > 0 such that ∀p ∈ N, ∥∆(p)∥ ≤ δ. One can then bound

for any p ∈ N: ∥∥∥∆(p+1) −∆(p)
∥∥∥ ≤ δds(∆

(p+1),∆(p)) ≤ λpδds(∆
(1),∆(0)).

Therefore, thanks to the triangular inequality (in (D+
n , ∥ · ∥)), for any n ∈ N:∥∥∥∆(p+n) −∆(p)

∥∥∥ ≤
∥∥∥∆(p+n) −∆(p+n−1)

∥∥∥+ · · ·+
∥∥∥∆(p+1) −∆(p)

∥∥∥
≤ δds(∆

(1),∆(0))

1− λ
λp −→

p→∞
0.

That allows us to conclude that (∆(p))p∈N is a Cauchy sequence, and therefore that it converges to a diagonal
matrix ∆∗ ≡ limp→∞ ∆(p) ∈ D+

n which is complete (closed in a complete set). But since ∆(p) is bounded
from below and above thanks to Lemma E.9, we know that ∆∗ ∈ D+

n . By contractivity of f , it is clearly
unique.

It is possible to relax a bit the contracting hypotheses on f if one supposes that f is monotonic. We express
rigorously this result in next theorem, but it will not be employed in our applications in Chapter I about
the robust estimation of scatter matrix since we preferred to assume u bounded to obtain the contracting
properties of the fixed point satisfied by ∆̂.

Theorem E.11. Let us consider a weakly monotonic mapping f : D+
n → D+

n bounded from below and above.
If we suppose that f is stable and verifies:

∀∆,∆′ ∈ D+
n : ds(f(∆), f(∆′)) < ds(∆,∆

′) (E.7)

then there exists a unique fixed point D ∈ D+
n satisfying ∆∗ = f(∆∗).

E.5 Supplementary inferences on the stable semi-metric and topo-
logical properties

Remark E.12. Not all the stable mappings admit a continuous continuation on D+

n . To construct a counter
example, for any n ∈ N, let us note

• en : x 7→ 3
2 − 2n−1x (it satisfies en(1/2n) = 1 and en(3/2n+1) = 3

4),

• dn : x 7→ 2n−1x (it satisfies dn(1/2n−1) = 1 and en(3/2n+1) = 3
4),

• vn : R+ → R+ satisfying for all x ∈ R+, vn(x) = max(en, dn) (in particular, vn(2n) = vn(2
n−1) = 1),

• f : R+ → R+ satisfying for all x ∈ R+, f(x) = infn∈N vn(x).
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We know from Property E.6 that for all n ∈ N, dn is stable and that en is stable on [0, 3/2n+1] (where
x 7→ xen(x) is non decreasing) which eventually allows us to set that f is stable, thanks to Corollary E.7.

However f does not admit continuous continuation on 0 since:

lim
n→∞

f

(
1

2n

)
= 1 ̸= 3

4
= lim
n→∞

f

(
3

2n

)
.

Lemma E.13. Any Cauchy sequence of (D+
n , ds) is bounded from below and above (in D+

n ).

Proof. Considering a Cauchy sequence of diagonal matrices ∆(k) ∈ D+
n , we know that there exists K ∈ N

such that:

∀p, q ≥ K, ∀i ∈ {1, . . . , n} : |∆(p)
i −∆

(q)
i | ≤

√
∆

(p)
i ∆

(q)
i .

For k ∈ N, let us introduce the indexes ikM , i
k
m ∈ N, satisfying:

∆
(k)

ikM
= max

(
∆

(k)
i , 1 ≤ i ≤ n

)
and ∆

(k)

ikM
= min

(
∆

(k)
i , 1 ≤ i ≤ n

)
.

If we suppose that there exists a subsequence (∆
(ϕ(k))

ikM
)k≥0 such that ∆

(ϕ(k))

ikM
−→
k→∞

∞, then

√
∆

(ϕ(k))

i
ϕ(k)
M

≤
√

∆
(N)

i
ϕ(k)
M

+
∆

(N)

i
ϕ(k)
M√

∆
(ϕ(k))

i
ϕ(k)
M

−→
k→∞

√
∆

(N)

i
ϕ(k)
M

<∞

which is absurd. Therefore (∆
(k)

ikM
)k≥0 and thus also (∆(k))k≥0 are bounded from above. For the lower bound,

we consider the same way a subsequence (∆
(ψ(k))

ikm
)k≥0 such that ∆

(ψ(k))

ikm
−→
k→∞

0. We have:

∆
(ϕ(k))

i
ϕ(k)
M

≥ ∆
(N)

i
ϕ(k)
M

−
√
∆

(N)

i
ϕ(k)
M

∆
(ϕ(k))

i
ϕ(k)
M

−→
k→∞

√
∆

(N)

i
ϕ(k)
M

> 0

which is once again absurd.

Property E.14. The semi-metric space (D+
n , ds) is complete.

Proof. Given a Cauchy sequence of diagonal matrices ∆(k) ∈ D+
n , we know from the preceding lemma that

there exists δM , δm ∈ R+ such that ∀k ≥ 0 : δmIn ≤ ∆(k) ≤ δMIn. Thanks to the Cauchy hypothesis:

∀ε > 0,∃K ≥ 0 | ∀p, q ≥ K : ∀i ∈ {1, . . . , n} :
∣∣∣∆(p)

i −∆
(q)
i

∣∣∣ ≤ εδM

and, as a consequence, (∆(k))k≥0 is a Cauchy sequence in the complete space (D0,+
n , ∥ · ∥): it converges to a

matrix ∆(∞) ∈ D0,+
n . Moreover, ∆(∞) ≥ δkIn (as any ∆(k)) for all k ∈ N, so that ∆(∞) ∈ D+

n and we are left
to showing that ∆(k) −→

k→∞
∆(∞) for the semi-metric ds. It suffices to write:

ds(D
(k), D(∞)) =

∥∥∥∥D(k) −D(∞)

√
D(k)D(∞)

∥∥∥∥ ≤ δm

∥∥∥D(k) −D(∞)
∥∥∥ −→
k→∞

0.

Proof of Theorem E.11. We first suppose that f is non-decreasing. As before, let us consider δM , δm ∈ R+

such that ∀∆ ∈ D+
n δmIn ≤ f(∆) ≤ δMIn. The sequence (∆(k))k≥0 satisfying ∆(0) = ∆mIn, and for all

k ≥ 1, ∆(k) = f(∆(k−1)) is a non-decreasing sequence bounded superiorly with δM , thus it converges to
∆∗ ∈ D+

n and ∆∗ = f(∆∗). This fixed point is clearly unique thanks to (E.7).
Now if f is non-increasing then ∆ 7→ f2(∆) is non-decreasing and bounded inferiorly and superiorly thus

it admits a unique fixed point ∆∗ ∈ D+
n satisfying ∆∗ = f2(∆∗). We can deduce that f(∆∗) = f2(f(∆∗))

which implies by uniqueness of the fixed point that f(∆∗) = ∆∗ and the uniqueness of such a ∆∗ is again a
consequence of (E.7).
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E.6 Complex stable semi-metric and some consequences in random
matrix theory

Let us for any D,D′ ∈ Dn(H) as:

ds(D,D
′) = sup

1≤i≤n

|Di −D′
i|√

ℑ(Di)ℑ(D′
i)

(it lacks the triangular inequality to be a true metric). This semi-metric is introduced to set Banach-like
fixed point theorems.

Definition 24. Given λ > 0, we denote Cλs (Dn(H)) (or more simply Cλs when there is no ambiguity), the class
of functions f : Dn(H) → Dn(H), λ-Lipschitz for the semi-metric ds; i.e. satisfying for all D,D′ ∈ Dn(H):

ds(f(D), f(D′)) ≤ λds(D,D
′).

when λ < 1, we say that f is contracting for the semi-metric ds.

Proposition E.15. Given three parameters α, λ, θ > 0 and two mappings f ∈ Cλs and g ∈ Cθs ,
−1

f
∈ Cλs , αf ∈ Cλs , f ◦ g ∈ Cλθs , and f + g ∈ Cmax(λ,θ)

s .

The stability towards the sum is a mere adaptation of Property E.3

Lemma E.16. Given four diagonal matrices ∆,∆′, D,D′ ∈ Dn(H):

ds(∆ +D,∆′ +D′) ≤ max(ds(∆,∆
′), ds(D,D

′)).

Proof of Lemma E.16. For any ∆,∆′, D,D′ ∈ Dn(H), there exists i0 ∈ [n] such that:

ds(∆ +D,∆′ +D′) =

∣∣∆i0 −∆′
i0
+Di0 −D′

i0

∣∣√
ℑ(∆i0 +Di0)ℑ(∆′

i0
+D′

i0
)

≤
∣∣∆i0 −∆′

i0

∣∣+ ∣∣Di0 −D′
i0

∣∣√
ℑ(∆i0)ℑ(∆′

i0
) +

√
ℑ(Di0)ℑ(D′

i0
))

≤ max

 ∣∣∆i0 −∆′
i0

∣∣√
ℑ(∆i0)ℑ(∆′

i0
)
,

∣∣Di0 −D′
i0

∣∣√
ℑ(Di0)ℑ(D′

i0
)


thanks to Lemma E.4.

We can now present our fixed point theorem that has been demonstrated once again in [LC22b]:

Theorem E.17 ([LC22b] Theorem 3.13). Given a subset Df of Dn(H) and a mapping f : Df → Df with
an imaginary part bounded from above and below (in Df ), if it is furthermore contracting for the stable
semi-metric ds on Df , then there exists a unique fixed point ∆∗ ∈ Df satisfying ∆∗ = f(∆∗).

We will now employ the semi-metric ds indifferently on diagonal matrices Dn(H) or vectors of Hn or more
simply with variables of H as in next proposition.

Proposition E.18. All the Stieltjes transforms are 1-Lipschitz for the semi-metric ds on H.

Proof. We consider a Stieltjes transform g : z →
∫ dµ(t)

t−z for a given measure µ on R. Given z, z′ ∈ H, we can
bound thanks to Cauchy-Schwarz inequality:

|g(z)− g(z′)| ≤
∣∣∣∣∫ z′ − z

(t− z)(t− z′)
dµ(t)

∣∣∣∣ ≤
∣∣∣∣∣ z′ − z√

ℑ(z)ℑ(z′)

∣∣∣∣∣
∣∣∣∣∣
∫ √

ℑ(z)ℑ(z′)
(t− z)(t− z′)

dµ(t)

∣∣∣∣∣
≤

∣∣∣∣∣ z′ − z√
ℑ(z)ℑ(z′)

∣∣∣∣∣
√∫

ℑ(z)
|t− z|2

dµ(t)

∫
ℑ(z′)

|t− z′|2
dµ(t)

=
√
ℑ(g(z))ℑ(g(z′))ds(z, z′)
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We did not find any particular use of this proposition (the idea could be to solve g(z) = z) but the
stability it introduces looks interesting.

We deduce directly from Lemma E.16 that if f, g : Dn(H) → Dn(H) are λ-Lipschitz for ds then f + g
is also λ-Lipschitz. This property gives a very fast proof to show the existence and uniqueness of solutions
to the equations studied in [AKE16] (however their proof is not much longer). We start with a preliminary
proposition:

Proposition E.19. Given a matrix S ∈ Mn,p(R+) , z 7→ Sz goes from Hp to Hn and it is 1-Lipschitz for
the semi-metric ds.

Proof. For any z ∈ Hp, ℑ(Sz) = Sℑ(z) ∈ Rp+ since all the entries of S are positive. If we denote s1, . . . , sn,
the columns of S, we can decompose Sz =

∑n
i=1 siπi(z), where πi(z) = zi. Each mapping siπi is 1-Lipschitz

for ds, since we have for any z, z′ ∈ Hp:

ds(siπi(z), siπi(z
′)) = sup

j∈[p]

∣∣∣∣∣ [si]jzi − [si]jz
′
i√

ℑ([si]jzi)ℑ([si]jz′i)

∣∣∣∣∣ = zi − z′i√
ℑ(zi)ℑ(z′i)

,

therefore, as a sum of 1-Lipschitz operators, we know that z → Sz is also 1-Lipschitz for ds.

Proposition E.20. Given any a ∈ Rn and any matrix2 S ∈ Mn(R+), and z ∈ H, the equation:

− 1

m
= z1+ a+ Sm

admits a unique solution m ∈ Cn+.

Proof. Let us introduce I : x→ z1+ a− S 1

x . To employ Theorem E.17, let us first show that the imaginary
part of I(x) is bounded from below and above for all x ∈ Hn. Given x ∈ Hn we see straightforwardly that
ℑ(I(x)) ≥ ℑ(z), we can furthermore bound:

ℑ(I(x)) ≤ ℑ(z)1+ S
ℑ(x)
|x|2

≤ ℑ(z)1+ S
1

ℑ(x)
≤
(
ℑ(z)Ip +

1

ℑ(z)
S

)
1 ≡ κI1.

Besides, we already know from Proposition E.15 that I is 1-Lipschitz for ds but we need a Lipschitz parameter
lower than 1. Given x, y ∈ Hn we can bound thanks to Proposition E.15 and E.19:

|I(x)− I(y)| ≤
∣∣∣∣S ( 1

x
− 1

y

)∣∣∣∣ ≤
√
ℑ
(
S

(
1

x

))
ℑ
(
S

(
1

y

))
ds(x, y)

that implies that the Lipschitz parameter of I is lower than:√(
1− ℑ(z)

ℑ(I(x))

)(
1− ℑ(z)

ℑ(I(y))

)
≤ 1− ℑ(z)

κI
< 1

We conclude then with Theorem E.17 that there exists a unique x ∈ Hn such that x = I(x), from which we
deduce the existence and uniqueness of m = 1

x .

E.7 Stability of the stable semi-metric towards perturbations
A classical problem is to be able to bound the difference between two solution of two contractive equations
for the stable semi-metric. This is possible when one of the equation is a small perturbation of the other one.
For the absolute value on R for instance, if one is given two 1− ε Lipschitz mapping f, g : R → R, and two
fixed point x, y ∈ R satisfying:

x = f(x) and y = g(y),

2Note that unlike in [AKE16], we do not suppose that S is symmetric.
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then one can bound thanks to the triangular inequality:

|x− y| ≤ |f(x)− f(y)|+ |f(y)− g(y)| ≤ (1− ε)|x− y|+ |f(y)− g(y)|, (E.8)

which implies |x−y| ≤ |f(y)−g(y)|
ε . When working with the semi-metric ds, the triangular inequality is not valid

(see (E.2)), one therefore needs more elaborated inferences displayed below. Note than the contractiveness
of g is actually completely useless.

Proposition E.21. Given a diagonal matrices Γ ∈ Dn(H), a mapping f :→ Dn(H) λ-Lipschitz3 for the
semi-metric ds with λ < 1 and admitting the fixed point Γ̃ = f(Γ̃), we have the bound:

d(Γ, Γ̃) ≤

∥∥∥∥∥∥ f(Γ)− Γ√
ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥ / (1− λ− λd(ℑ(Γ),ℑ(f(Γ)))

The same result is valid replacing H with R+ and removing the symbols ℑ.

This proposition is a consequence of the following elementary result that we set for the semi-metric defined
on Dn(H) since it needs more justification than to set the result on Dn(R+) (which merely expresses removing
the symbols ℑ in the inequality).

Lemma E.22. Given three diagonal matrices Γ1,Γ2,Γ3 ∈ Dn(H):∥∥∥∥∥ Γ3√
ℑ(Γ1)

∥∥∥∥∥ ≤

∥∥∥∥∥ Γ3√
ℑ(Γ2)

∥∥∥∥∥ (1 + ds(ℑ(Γ1),ℑ(Γ2))
)
.

Proof. Let us simply bound:∥∥∥∥∥ Γ3√
ℑ(Γ1)

∥∥∥∥∥ ≤

∥∥∥∥∥ Γ3√
ℑ(Γ2)

∥∥∥∥∥+
∥∥∥∥∥∥
Γ3
(√

ℑ(Γ2)−
√
ℑ(Γ1)

)
√
ℑ(Γ2)ℑ(Γ1)

∥∥∥∥∥∥
≤

∥∥∥∥∥ Γ3√
ℑ(Γ2)

∥∥∥∥∥+
∥∥∥∥∥ Γ3√

ℑ(Γ2)

∥∥∥∥∥
∥∥∥∥∥∥ ℑ(Γ2)−ℑ(Γ1)√

ℑ(Γ1)
(√

ℑ(Γ2) +
√
ℑ(Γ1)

)
∥∥∥∥∥∥ ,

we can then conclude with the bound
√
ℑ(Γ1)

(√
ℑ(Γ2) +

√
ℑ(Γ1)

)
≥
√
ℑ(Γ1)ℑ(Γ2).

Proof of Proposition E.23. Let us simply bound thanks to Lemma E.22:

ds(Γ̃,Γ) ≤

∥∥∥∥∥∥ Γ̃− f(Γ)√
ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥+
∥∥∥∥∥∥ f(Γ)− Γ√

ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥
≤ ds

(
Γ̃, f(Γ)

)
(1 + ds(ℑ(Γ),ℑ(f(Γ))) +

∥∥∥∥∥∥ f(Γ)− Γ√
ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥
≤ λds

(
Γ̃,Γ

)
(1 + ds(ℑ(Γ),ℑ(f(Γ))) +

∥∥∥∥∥∥ f(Γ)− Γ√
ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥ ≤

∥∥∥∥ f(Γ)−Γ√
ℑ(Γ̃)ℑ(Γ)

∥∥∥∥
1− λ− λds(ℑ(Γ),ℑ(f(Γ))

since ds(ℑ(Γ),ℑ(f(Γ))) ≤ o(1) ≤ 1−λ
2λ for s sufficiently big.

3Actually, f does not need to be λ-Lipschitz on the whole set Dn(H), but we need to be able to bound:

d(f(Γ̃), f(Γ)) ≤ λd(Γ̃,Γ)



E.7. STABILITY OF THE STABLE SEMI-METRIC TOWARDS PERTURBATIONS 81

Proposition E.21 will be employed to set asymptotic results when n→ ∞ and to show continuity properties
with a parameter t→ 0 in Chapters F and I.

Proposition E.23. Let us consider a family of mappings of Dns
(H), (fs)m∈N, each fs being λ-Lipschitz for

the semi-metric ds with λ < 1 and admitting the fixed point Γ̃s = fs(Γ̃s) and a family of diagonal matrices
Γs. If one assumes that4 ds(ℑ(Γs),ℑ(fs(Γs))) ≤ os→∞(1), then:

ds(Γ
s, Γ̃s) ≤ Os→∞

∥∥∥∥∥∥ fs(Γs)− Γs√
ℑ(Γ̃s)ℑ(Γs)

∥∥∥∥∥∥


The same result is valid replacing H with R+ and removing the symbols ℑ.

Proof. It suffices to bound for s sufficiently big:∥∥∥∥ f(Γ)−Γ√
ℑ(Γ̃)ℑ(Γ)

∥∥∥∥
1− λ− λds(ℑ(Γ),ℑ(f(Γ))

≤ O

∥∥∥∥∥∥ f(Γ)− Γ√
ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥


since ds(ℑ(Γ),ℑ(f(Γ))) ≤ o(1) ≤ 1−λ
2λ when s tends to infinity.

4Usually the notations O(1) and o(1) are used for quasi-asymptotic studies when n tends to infinity but in this proposition,
the relevent parameter is s, thus ds(fs(Γs),Γs) ≤ os→∞(1) means that for all K > 0, there exists S ∈ N such that for all s ≥ S,
ds(fs(Γs),Γs) ≤ K.
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Chapter F

Statistical study of the resolvent

Denoting λ1 ≥ · · · ≥ λp ≥ 0 the p eigenvalues of 1
nXX

T the spectral distribution is defined followingly:

µ =
1

p

p∑
i=1

δλi
.

F.1 Concentration and estimation of the resolvent

We work here under the formalisme of Levy families where the random matrix under study, X ∈ Mp,n is seen
as a sequence depending on n and p is also a sequence depending on n but that should satisfy the following
relation:

Assumption 1. p ≤ O(n).

We need of course a concentration hypothesis on X:

Assumption 2. X ∝ E2.

A third natural and fundamental hypothesis is to assume that the n columns of X = (x1, . . . , xn) are
independent. Again, we do not assume that x1, . . . , xn are identically distributed: we can possibly have n
different distributions for the columns of X.

Assumption 3. X has independent columns x1, . . . , xn ∈ Rp.

Let us note for simplicity, for any i ∈ [n]:

µi ≡ E[xi] Σi ≡ E[xixTi ] and Ci ≡ Σi − µiµ
T
i .

It is easy to deduce from Assumption 2 (see Proposition B.20) that there exists a constant K > 0 such that
for all n ∈ N, ∥Ci∥ ≤ O(1). But to have the best convergence bounds, we also need to impose:1

Assumption 4. supi∈[n] ∥µi∥ ≤ O(1).

We conclude with a last assumption which seems important to precisely approximate the support of the
spectral distribution.2 Although we are unsure of its importance, our line of arguments could not avoid it; it
is nonetheless quite a weak constraint in view of the practical use of our result.

Assumption 5. infi∈[n] Σi ≥ O(1)Ip.
1In [LLC18], we only supposed that ∥µi∥ ≤ O(

√
n), however, then we only had an approximation of the resolvent with the

spectral norm, here we will provide a similar convergence result with the Frobenius norm.
2the values of the Stieltjes distribution g(z) can be approximated for z ∈ C sufficiently far from the real axis or for z ∈ R

sufficiently far from the support without this assumption.
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1.1 Resorting to a “concentration zone” for Qz

Before studying the matricial case, let us first place ourselves in R. We consider X ∈ R, a Gaussian random
variable with zero mean and variance equal to σ2 (X ∼ N (0, σ2)). In particular, although we work with
unidimensional variables, there can still be a possible dependence on n, and we can write X ∝ E2. The
random variable Q ≡ 1/(1 − X) is only defined if X ̸= 1 and its law fQ can be computed on R \ {1} and
satisfies:

fQ(q) =
e−(1− 1

q )
2/σ2

√
2πσq2

.

Thus Q is clearly not exponentially concentrated (when q → ∞, fQ(q) ∼ e−1/σ2

q2 therefore the expectation of
Q is not even defined). However, if σ is small enough (at least σ ≤ o(1)), it can be interesting to consider the
event AQ ≡ {X ≤ 1

2} satisfying P(Ac
Q) ≤ Ce−1/2σ2

. The mapping f : z 7→ 1
1−z being 4-Lipschitz on (−∞, 12 ],

one sees that (Q | AQ) ∈ E2. Following this setting, in the matricial cases, we also need to place ourselves
in a concentration zone AQ where the fixed point Q is defined; sufficiently small to retrieve an exponential
concentration with Q | AQ but large enough to be highly probable.

The same resort to a concentration zone will take place for the resolvent matrix, for that purpose, we
introduce in this section an event of high probability, AQ, under which the eigen values of 1

znXX
T are far

from 1, for all z ∈ Sε. Let us start with a bound on ∥X∥, Assumption 4 leads us to:

∥E[X]∥ ≤
√
n sup

1≤i≤n
∥E[xi]∥ ≤ O(

√
n)

then, we deduce from Example B.24 applied to Assumption 2 that E[∥X∥] ≤ ∥E[X]∥ + O(
√
n) ≤ O(

√
n).

Now, introducing a constant ε > 0 such that O(1) ≤ ε ≤ O(1) and ν > 0 defined with:

√
ν ≡ E

[
1√
n
∥X∥

]
≤ O(1),

we denote:

Aν ≡
{
1

n

∥∥XXT
∥∥ ≤ ν + ε

}
. (F.1)

Since ∥X∥/
√
n ∈ ν ± E2(1/

√
n), we know that there exist two constants C, c > 0 such that P (Ac

ν) ≤ Ce−cn.
The mapping M → 1

nMMT is O(1/
√
n) Lipschitz on X(Aν) ⊂ Mp,n and therefore, thanks to Lemma B.4

and Remark B.5:

1

n
XXT | Aν ∝ E2

(
1√
n

)
Let us note σ : Mp → Rp, the mapping that associates to any matrix the sequence of its eigen values in
decreasing order. It is well known (see [GL96, Theorem 8.1.15]) that σ is 1-Lipschitz (from (Mp, ∥ · ∥F ) to
(Rp, ∥ · ∥) and therefore if we denote λ1, . . . , λp the eigen values of 1

nXX
T such that λ1 ≥ · · · ≥ λn, we have

the concentration:

(λ1, . . . , λp) | Aν ∈ (EAν [λ1], . . . ,EAν [λp])± E2
(

1√
n

)
.

Given a set T ⊂ C, we note for any ε > 0, T ε = {z ∈ C,∃t ∈ T, |z − t| ≤ ε}. Now, let us denote

S ≡ {EAν
[λ1], . . . ,EAν

[λp]},

(with the expectation taken on Aν). We show in the next lemma that the event

AQ ≡ Aν ∩ {∀i ∈ [min(p, n)] : λi ∈ Sε/2}

has an overwhelming probability.
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Lemma F.1. There exist C, c > 0 such that ∀n ∈ N P(Ac
Q) ≤ Ce−cn.

Proof of Lemma F.1. Starting from the identity S
ε
2 ∪i∈[p]

[
EAν

[λi]− ε
2 ,EAν

[λi] +
ε
2

]
, we see that S

ε
2 is a

union of, say, d intervals of R. There exists 2d indexes i1 ≤ · · · ≤ id and j1 ≤ · · · ≤ jd in [min(p, n)] such
that:

S
ε
2 =

⋃
k∈[d]

[
EAν

[λik ]−
ε

2
,EAν

[λjk ] +
ε

2

]
.

Since EAν [λi1 ] ≥ 0 and EAν [λjd ] ≤
√
ν ±O(e−cn) ≤ O(1), we can bound:

εd ≤ EAν
[λjd ] + ε ≤ O(1),

That implies in particular that d ≤ O(1) because ε ≥ O(1). We can then bound thanks to the concentration
of the 2d random variables λi1 , . . . , λid and λj1 , . . . , λjd :

P(Ac
Q) = P

(
∃k ∈ [d], |λik − EAν [λik ]| >

ε

2
or |λjk − EAν [λjk ]| >

ε

2

)
≤

d∑
k=1

(
P
(
|λik − EAν

[λik ]| >
ε

2

)
+ P

(
|λjk − EAν

[λjk ]| >
ε

2

))
≤ 2dCe−cnε

2/4,

where C and c are the two constants appearing in the concentration inequality of (λ1, . . . , λp) = σ( 1nXX
T ).

Now, let us remark that the spectrum of 1
nXX

T is closely related to the spectrum of 1
nX

TX via the
equivalence:

λ ∈ Sp

(
1

n
XXT

)
\ {0} ⇐⇒ λ ∈ Sp

(
1

n
XTX

)
\ {0}.

As a consequence, one of the two matrices has |n− p| supplementary zeros in its spectrum. Since those zeros
do not carry any specific information about the distribution of 1

nXX
T , we try to remove them from the

study to re-establish the symmetry. The min(p, n) first entries of σ( 1nXX
T ) and σ( 1nX

TX) are the same
(and some of them can cancel), we thus naturally introduce the set:

S−0 ≡
{
EAQ

[λi], i ∈ [min(p, n)]
}
,

Be careful that if 0 ∈ Sp
(
1
nXX

T
)
∩ Sp

(
1
nX

TX
)

then 0 ∈ S−0.
To avoid the issue on zero, instead of studying, as it is usually done, the resolvent ( 1nXX

T − zIp)
−1, we

rather look at:

Qz ≡
(
Ip −

1

zn
XXT

)−1

,

that has the advantage of satisfying ∥Qz∥ ≤ O(1), for all z ∈ S−0, which will allow us to show the concen-
tration of Qz even for z close to zero when n < p (and 0 /∈ S−0).

One of the objective of the study was to establish converging bounds when z is at a constant distance
from S−0. We were not able to set it for all our results (we failed with Proposition F.20 where we could only
set the result for z at a constant distance from S) however, we hope to be able to set the general result after
further research, we thus keep, when accessible, general formulations with S−0.

1.2 Concentration of the resolvent Qz = (In − 1
nz
XXT )−1.

Given a matrix A ∈ Mp,n(C), we denote |A| =
√
AĀT (AĀT is a nonnegative Hermitian matrix). With a

simple diagonalization procedure, one can show for any Hermitian matrix A the simple characterization of
the spectrum of |A|:

Sp(|A|) = {|λ|, λ ∈ Sp(A)}, (F.2)
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note also that for any real vector u ∈ Rp:

|uTAu| ≤ uT |A|u. (F.3)

It is possible to go further than the mere bound |Qz| ≤ O(1) when z is close to 0 and p ≤ n, we are then
able to show that |Qz| ≤ O(|z|/(|z| + 1)). When p ≥ n no such bound is true and it is then convenient to
rather look at the coresolvent Q̌z ≡ (Ip − 1

nzX
TX)−1 that satisfies in that regime |Q̌z| ≤ O(|z|/(|z| + 1)).

To formalize this approach, we introduce two quantities that will appear in our convergence speeds:

κz ≡


|z|

1 + |z|
if p ≤ n

1 if n ≤ p

κ̌z ≡


1 if p ≤ n

|z|
1 + |z|

if n ≤ p

note that both of them are bounded by 1 but they can tend to zero with |z| depending on the sign of p− n,
besides:

κzκ̌z =
|z|

1 + |z|
. (F.4)

Note than in our formalism, the parameter z, as most quantities of our manuscript, is varying with n (we do
not assume that O(1) ≤ |z| ≤ O(1) like ε. It is not a "constant").

Lemma F.2. Under AQ, Qz and Q̌z can be defined on 0 and for any3 z ∈ C \ Sε−0:

O (κz) Ip ≤ |Qz| ≤ O (κz) Ip and O (κ̌z) Ip ≤ |Q̌z| ≤ O (κ̌z) Ip

(for the classical order relation on hermitian matrices).

Proof. We can diagonalize the nonnegative symmeric matrix: 1
nXX

T = PDPT , with D = Diag(λ1, · · · , λp)
and P ∈ Op, an orthogonal matrix. There exists q ∈ [p] such that λq+1 = · · · = λp = 0, and for all i ≤ q,
λi ̸= 0 (possibly q = p or q < min(p, n)). Then, if we denote P0 ∈ Mp,p−q the matrix composed of the p− q
last columns of P , P+ the matrix composed of the rest of the q columns, and D+ = Diag(λ1, . . . , λq), we can
decompose:

Qz = P

(
zIp

zIp −D

)
PT = P0P

T
0 + P+

(
zIq

zIq −D+

)
PT+ .

Since P0P
T
+ = 0 and P+P

T
0 = 0, we have: |Qz|2 = P0P

T
0 + P+

(
|z|2Iq

|zIq−D+|2

)
PT+ . We can bound:

O

(
|z|

1 + |z|

)
≤ |z|

|z|+ ν + ε
≤ P+

(
|z|Iq

|zIq −D+|

)
PT+ ≤ |z|

d(z, S−0)− ε
2

≤ O

(
|z|

1 + |z|

)
Therefore, in all cases (p ≤ n or p ≥ n) O(1) ≤ |Qz| ≤ O(1). However, when p ≤ n, we can precise those
bounds:

• if EAQ
[λmin(p,n)] >

ε
2 , then P0 is empty, P+ = P and we see that O

(
|z|

1+|z|

)
≤ |Qz| ≤ O

(
|z|

1+|z|

)
.

• if EAQ
[λmin(p,n)] ≤ ε

2 , the bound d(z, S−0) ≥ ε implies that |z| ≥ ε
2 and O(κz) = O( |z|

1+|z| ) ≤ O(1) ≤
O(κz), therefore:

O (κz) ≤ O (min (1, κz)) Ip ≤ |Qz| ≤ O (1 + κz) Ip ≤ O (κz) .

The inequalities on Q̌z are proven the same way.

3In theory, both the parameter z and the set Sε−0 depends on our asymptotic parameter n, so one should rigorously write
zn ∈ Sε−0(n)
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Proposition F.3. Given z ∈ C\Sε−0, we have the concentrations Qz | AQ ∝ E2(κz/
√
n) in (Mp, ∥ · ∥F ) and

Q̌z | AQ ∝ E2(κ̌z/
√
n) in (Mn, ∥ · ∥F ).

Proof. Noting Φ : Mp,n → Mp(C) and Φ̌ : Mp,n → Mn(C) defined as:

Φ(M) =

(
Ip −

MMT

zn

)−1

and Φ̌(M) =

(
In − MTM

zn

)−1

,

it is sufficient to show that Φ (resp. Φ̌) is O(κz/
√
n)-Lipschitz (resp. O(κ̌z/

√
n)-Lipschitz) on MAQ

n,p ≡
X(AQ)

4. For any M ∈ MAQ
n,p and any H ∈ Mp,n, we can bound ∥M∥ ≤ (ν + ε)

√
n ≤ O(

√
n) and:

∥dΦ M ·H∥F =

∥∥∥∥Φ (M)
1

nz
(MHT +HMT )Φ (M)

∥∥∥∥
F

We can now distingish two different cases:

• if p ≤ n then:

∥dΦ M ·H∥F ≤ O

(
∥H∥F |z|

(1 + |z|)2
√
n

)
≤ O

(
∥H∥F |z|/

√
n

1 + |z|

)
.

• if p ≥ n, we know that ∥Φ(M)∥ ≤ O(κz) ≤ O(1) and ∥Φ̌(M)∥ ≤ O(κ̌z) ≤ O( |z|
1+|z| ). We employ then

the classical identity:

Φ(M)M =MT Φ̌(M) (F.5)

to be able to bound:

∥dΦ M ·H∥F ≤ 2(ν + ε)∥H∥F
|z|

√
n

∥∥Φ̌(M)
∥∥ ∥Φ (M)∥

≤ O

(
∥H∥F

(1 + |z|)
√
n

)
≤ O

(
∥H∥F√

n

)

Thus, in all cases, under X(AQ), Qz is a O(κz/
√
n)-Lipschitz transformation of X ∝ E2(1) and as such, it

satisfies the concentration inequality of the proposition thanks to Lemma B.4 and Remark B.5. The same
holds for Q̌z.

Remark F.4. The preceding proof partly relies on the assertion ∥X∥ ≤
√
n available under the event AQ.

However one does not need it to be able to prove that Q is a Lipschitz transformation of X since one can
bound the element QX/

√
n as a whole thanks to the formulas:

1

zn
QzXXT = Qz − In and

1

zn
Q̌zXTX = Q̌z − In. (F.6)

On the one hand:∥∥∥∥ 1√
n
QzX

∥∥∥∥ ≤

√
|z|
∥∥∥∥ 1

zn
QzXXTQz

∥∥∥∥ ≤
√
|z| ∥(Qz)2 −Qz∥ ≤ O(

√
|z|(κz + κ2z)) ≤ O(

√
|z|κz)

On the other hand, (F.5) gives us:∥∥∥∥ 1√
n
QzX

∥∥∥∥ = ∥ 1√
n
XQ̌z∥ ≤

√
|z|
∥∥∥∥ 1

zn
QzXTXQz

∥∥∥∥ ≤ O(
√
|z|κ̌z)

4MAQ
n,p ⊂ {M ∈ Mn,p,

1
n
∥MMT ∥ ≤ ν + ε}
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1.3 A first deterministic equivalent
One is often merely working with linear functionals of Qz, and since Proposition F.3 implies that Qz | AQ ∈
EAQ

Qz ± E2, one naturally wants to estimate the expectation EAQ
[Qz].

In [LC18] is provided a deterministic equivalent Q̃z ∈ Mp(C) satisfying ∥E[Qz]− Q̃z∥ ≤ O(1/
√
n) for any

z ∈ R−, we are going to show below a stronger result,

• with a Frobenius norm replacing the spectral norm,

• for any complex z ∈ C \ Sε−0,

• for random vectors x1, . . . , xn having possibly different distributions (it was assumed in [LC18] that
there was a finite number of classes)

An efficient approach, developed in particular in [Sil86, SB95] is to look for a deterministic equivalent of
Qz depending on a deterministic diagonal matrix ∆ ∈ Rn and having the form:

Q̃∆ =
(
Ip − Σ∆

)−1
where Σ∆ ≡ 1

n

n∑
i=1

Σi
∆i

=
1

n
E[X∆−1XT ]. (F.7)

One can then express the difference with the expectation of Qz under AQ, EAQ
[Qz] followingly:

EAQ
[Qz]− Q̃∆ = EAQ

[
Qz
(

1

zn
XXT − Σ∆

)
Q̃∆

]
=

1

n

n∑
i=1

EAQ

[
Qz
(
xix

T
i

z
− Σi

∆i

)
Q̃∆

]
.

To pursue the estimation of the expectation, one needs to control the dependence between Qz and xi. For
that purpose, one uses classically the Schur identities:

Qz = Qz−i +
1

zn

Qz−ixix
T
i Q

z
−i

1− 1
znx

T
i Q

z
−ixi

and Qzxi =
Qz−ixi

1− 1
znx

T
i Q

z
−ixi

, (F.8)

forQz−i = (In− 1
znX−iX

T
−i)

−1 (recall thatX−i = (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ Mp,n). The Schur identities
can be seen as simple consequences to the so called “resolvent identity” that can be generalized to any, possibly
non commuting, square matrices A,B ∈ Mp with the identity:

A−1 −B−1 = A−1(B −A)B−1 or A−1 +B−1 = A−1(A+B)B−1 (F.9)

(it suffices to note that A(A−1 +A−1(B −A)B−1)B = Ip).
Introducing the notation:

Λz ≡ Diag1≤i≤n(z −
1

n
xTi Q

z
−ixi), satisfying: ∀i ∈ [n] : Qzxi =

z

Λz
Qz−ixi,

one can express thanks to the independence between Qz−i and xi:

EAQ
[Qz]− Q̃∆ =

1

n

n∑
i=1

EAQ

[
Qz−i

(
xix

T
i

Λzi
− Σi

∆i

)
Q̃∆

]
+

1

n

n∑
i=1

1

∆i
EAQ

[
(Qz−i −Qz)ΣiQ̃

∆
]

= ε1 + δ1 + δ2 + ε2 (F.10)

with :



ε1 =
1

n
EAQ

[
n∑
i=1

Qz−ixi

(
∆i − Λzi
Λzi∆i

)
xTi Q̃

∆

]
=

1

n
EAQ

[
QzX

(
∆− Λz

z∆

)
XT Q̃∆

]

δ1 =
1

n

n∑
i=1

EAQ

[
Qz−i

(
xix

T
i − EAQ

[xix
T
i ]

∆i

)
Q̃∆

]

δ2 =
1

n

n∑
i=1

EAQ

[
Qz−i

(
EAQ

[xix
T
i ]− Σi

∆i

)
Q̃∆

]

ε2 = − 1

zn2

n∑
i=1

1

∆i
EAQ

[
Qzxix

T
i Q

z
−iΣiQ̃

∆
]
,
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where we recall that Qz − Qz−i =
1
nzQ

zxix
T
i Q

z
−i. From this decomposition, one is enticed into choosing, in

a first step ∆ ≈ EAQ
[Λz] ∈ Dn(C) so that ε1 would be small. We will indeed take for ∆, the deterministic

diagonal matrix:

Λ̂z ≡ Diag

(
z − 1

n
Tr(ΣiEAQ

[Qz])

)
1≤i≤n

∈ Dn(C).

Lemma F.5. Given z ∈ C \ Sε−0, (Λz | AQ) ∝ E2(κz/
√
n) in (Dn(C), ∥ · ∥).

Proof. Inspiring from the proof of Proposition F.3, one can show easily that for all z ∈ C \Sε−0, the mapping
X → Λz = Diagi∈[n](z− 1

nx
T
i Q

z
−ixi) is a O(κz/

√
n)-Lipschitz transformation from (Mp,n, ∥ ·∥F ) to (Dn, ∥ ·∥)

under AQ (since then ∥xi∥ ≤ O(
√
n)).

Putting the Schur identities (F.8), the relation (F.5) and the formula (F.11)

1

zn
Q̌zXXT = Q̌z − In, (F.11)

together one obtains:

z

Λz
= Diagi∈[n]

(
1

1− 1
znx

T
i Q

z
−ixi

)
= In +

1

zn
Diag(XTQzX) = Diag(Q̌z) (F.12)

To be able to use Proposition B.50 with Λ̂z, one further needs:

Lemma F.6. ∥EAQ
[Λz]− Λ̂z∥ ≤ O(κz/n).

This lemma that seems quite simple actually requires three preliminary results whose main aim is to show
that Qz−i is close to Qz. Let us first try and bound Λz thanks to (F.12).

Lemma F.7. Given z ∈ C \ Sε−0:

O (|z|) In ≤ O

(
|z|
κ̌z

)
In ≤ |Λz| ≤ O

(
|z|
κ̌z

)
In ≤ O (1 + |z|) In

Proof. The inequalities provided in (F.2), (F.3) and Lemma F.2 imply:

O(κ̌z) ≤ inf
i∈[n]

Sp(Q̌z) ≤ |Diag(Q̌z)| = |Diagi∈[n](e
T
i Q̌

zei)| ≤ sup
i∈[n]

Sp(Q̌z) ≤ O(κ̌z)

where e1, . . . , en are the n vectors of the canonical basis of Rn (ei ∈ Rn is full of 0 except in the ith entry
where there is a 1). One can then deduce the result of the lemma thanks to (F.12).

Then to be able to neglect the dependence relation between xi and X under AQ we introduce the following
lemma.

Lemma F.8 (Independence under AQ). Given two mappings f : Rp → Mp and g : Mp,n → Mp such that
under AQ, ∥f(xi)∥F ≤ O(κf ) and ∥g(X−i)∥ ≤ O(κg), we can approximate:∥∥EAQ

[f(xi)g(X−i)]− EAQ
[f(xi)]EAQ

[g(X−i)]
∥∥
F
≤ O

(
κfκge

−cn) ,
for some constant c ≥ O(1).

Proof. Let us continue f xi(AQ) and g X−i(AQ) respectively on Rp and on Mp,n defining for any x ∈ Rp and
M ∈ Mp,n:

f̃(x) =

{
f(x) if x ∈ xi(AQ)

0 otherwise
and g̃(M) =

{
g(M) if M ∈ X−i(AQ)

0 otherwise
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Let us estimate:

EAQ
[f(xi)g(X−i)] =

E
[
1X∈X(AQ)f(xi)g(X−i)

]
P(AQ)

= E
[
1X∈X(AQ)f̃(xi)g̃(X−i)

]
+

1− P(AQ)

P(AQ)
E
[
f̃(xi)g̃(X−i)1X∈X(AQ)

]
.

the far right hand term cancels since AQ has a probability bigger than 1−Ce−cn for some constants C, c > 0:

1− P(AQ)

P(AQ)
E
[
f̃(xi)g̃(X−i)1X∈X(AQ)

]
≤ Ce−cn

1− Ce−cn
E
[∣∣∣f̃(xi)g̃(X−i)

∣∣∣] ≤ O
(
κfκge

−cn) .
For all ω ∈ Ω, we besides know that:

1X∈X(AQ)(w) = 1X(ω)∈X(AQ)(ω) ≤ 1xi∈xi(AQ)(ω)1X−i∈X−i(AQ)(ω),

and the inequality 1AQ
(ω) ̸= 1xi∈xi(AQ)(ω)1X−i∈X−i(AQ)(ω) only happens for ω ∈ Ac

Q. We can then bound:∣∣∣E [(1X∈AQ
− 1xi∈xi(AQ)1X−i∈X−i(AQ

)
)
f̃(xi)g̃(X−i)

]∣∣∣ ≤ κfκgE
[
1AQ

]
≤ O

(
κfκge

−cn) ,
which allows us to set5 thanks to the independence between X−i and xi:

EAQ
[f(xi)g(X−i)] = E

[
1xi∈xi(AQ)f̃(xi)1X−i∈X−i(AQ)g̃(X−i)

]
+O∥·∥F

(κfκge
−cn)

= E
[
f̃(xi)

]
E [g̃(X−i)] +O∥·∥F

(κfκge
−cn)

= EAQ
[f(xi)]EAQ

[g(X−i)] +O∥·∥F
(κfκge

−cn)

As it was done in Proposition F.3, one can show that uTQz−ixi and uTQz−ixi are both κz-Lipschitz
transformations of X ∝ E2 and deduce:

Lemma F.9. Given a deterministic vector u ∈ Rp, we have the concentration:

uTQz−ixi | AQ ∈ O(κz)± E2(κz)

Proof. As it was done in Proposition F.3, one can show that uTQz−ixi is a κz-Lipschitz transformations of
X ∝ E2 and deduce the concentration. Besides, one can bound thanks to Lemma F.8 and our assumptions:∣∣EAQ

[uTQz−ixi]
∣∣ ≤ ∣∣uTEAQ

[Q−i]mi

∣∣+O
(κz
n

)
≤ O(κz)

Lemma F.10. Given z ∈ C \ Sε−0, for all i ∈ [n], ∥EAQ
[Qz − Qz−i]∥ ≤ O(κz

n ), the same way, one has

∥EAQ
[|Qz|2 − |Qz−i|2]∥ ≤ O(

κ2
z

n ).

Proof. As we saw with Lemma F.8, we can consider that under AQ, X−i and xi are almost independent.
We now omit the exponent “z” on Q and Q−i for simplicity. Given two deterministic vectors u, v ∈ Rp, we
can deduce from Lemma F.9 and the estimation of the product of concentrated random variables given in
Lemma A.21: ∣∣uTEAQ

[Q−Q−i]v
∣∣ ≤ ∣∣∣∣EAQ

[
uTQ−ixix

T
i Q−iv

nΛi

]∣∣∣∣
≤ κ̌z
n|z|

EAQ

[
|uTQ−ixi||xTi Q−iv|

]
≤ O

(
κ̌zκz
n|z|

)
≤ O

(κz
n

)
.

5for xp, yp ∈ Mp and (ap)p∈N ∈ RN
+ the notation xp = yp +O∥·∥F (ap) signifies that ∥xp − yp∥F ≤ O(ap)
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thanks to the formula κzκ̌z =
|z|

1+|z| .
For the difference of the squares, let us bound with the same justifications:∣∣uTEAQ

[|Q|2 − |Q−i|2]v
∣∣ = ∣∣uTEAQ

[Q̄Q− Q̄−iQ−i]v
∣∣

=

∣∣∣∣EAQ

[
uTQ−ixix

T
i Q̄Q−iv

nΛi

]∣∣∣∣+ ∣∣∣∣EAQ

[
uT Q̄−iQ−ixix

T
i Q̄−iv

nΛi

]∣∣∣∣
≤ O

(
κ̌zκ

3
z

|z|n

)
≤ O

(
κ2z
n

)
,

Proof of Lemma F.6. The proof of the concentration of Λz was already presented before the lemma. We are
just left to bound:∥∥∥Λ̂z − EAQ

[Λz]
∥∥∥

≤ 1

n
sup
i∈[n]

(∣∣Tr (ΣiEAQ
[Q−Q−i]

)∣∣+ ∣∣Tr ((Σi − EAQ
[xix

T
i ])EAQ

[Q−i]
)∣∣

+
∣∣Tr (EAQ

[
xix

T
i

]
EAQ

[Q−i]− EAQ
[xix

T
i Q−i]

)∣∣) ≤ O
(κz
n

)
(F.13)

with the same arguments as in the proof of Lemma F.10.

One can directly deduce from the concentration of Λz and Lemma F.7 a bound on its expectation Λ̂z.

Lemma F.11. Given z ∈ C \ Sε−0:

O (|z|) In ≤ O

(
|z|
κ̌z

)
In ≤

∣∣∣Λ̂z∣∣∣ ≤ O

(
|z|
κ̌z

)
In ≤ O (1 + |z|) In

Proof. One already know from Lemma F.7 that O
(

|z|
κ̌z

)
≤ |Λz| ≤ O

(
|z|
κ̌z

)
then it suffices to bound thanks

to (F.13):
∥∥∥Λ̂z − EAQ

[Λz]
∥∥∥ ≤ O

(
κz

n

)
≤ O

(
|z|
nκ̌z

)
.

We can now prove the main result of this subsections that allows us to set that Q̃Λ̂z

is a deterministic
equivalent of Qz (thanks to Lemma B.18).

Proposition F.12. Given z ∈ C \ Sε−0:∥∥∥Q̃Λ̂z
∥∥∥ ≤ O(κz) and

∥∥∥EAQ
[Qz]− Q̃Λ̂z

∥∥∥
F
≤ O

(
κz√
n

)
.

To prove this proposition, we will bound the different elements of the decomposition (F.10). To bound
ε1, we will need the following lemma. The concentration is quit sharp since we have:

min(κz, κ̌z) = κzκ̌z =
|z|

1 + |z|

Lemma F.13. Given z ∈ C \ Sε−0, under AQ,

QzX = XT Q̌z | AQ ∝ E2
(

|z|
1 + |z|

)

and ∀i ∈ [n], ∥EAQ
[Qzxi]∥ ≤ O

(
|z|

1+|z|

)
.
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Proof. We follow the steps of the proof of Proposition F.3. Depending on the sign of p − n, it is more
convenient to work with the expression QzX (when p ≤ n) or with XT Q̌z (when p ≥ n). We just treat here
the case p ≤ n and therefore look at the variations of the mapping Ψ : Mp,n → Mp,n(C) defined as:

Ψ(M) =
1

z

(
Ip −

MMT

zn

)−1

M.

to show the concentration of QzX = Ψ(X). For all H,M ∈ MAQ
n,p ≡ X(AQ) (and with the notation

Φ(M) =
(
Ip − MMT

zn

)−1

given in the proof of Proposition F.3):

∥dΨ M ·H∥ ≤
∥∥∥∥Ψ(M)

1

nz
(MHT +HMT )Ψ (M)M

∥∥∥∥+ ∥Ψ(M)H∥

≤ O

(
|z|∥H∥

(1 + |z|)2

)
+O

(
|z|∥H∥
1 + |z|

)
≤ O (κzκ̌z∥H∥) .

Thus, under AQ, Ψ is O(κzκ̌z)-Lipschitz (for the Frobenius norm) and therefore QzX ∝ E2(κzκ̌z).
To control the norm of EAQ

[Qzxi], let us employ Schur identities (F.8) and bound for any deterministic
u ∈ Rp such that ∥u∥ ≤ 1:

∣∣EAQ
[uTQzxi]

∣∣ = |z|
∣∣∣∣EAQ

[
uTQz−ixi

Λzi

]∣∣∣∣ ≤ |z|EAQ
[|uTQz−ixi|]

κ̌z
|z|

≤ O(κzκ̌z),

thanks to Lemmas F.9 and F.7.

Proof of Proposition F.12. Let us note for simplicity κQ̃ ≡ ∥Q̃Λ̂z∥. Looking at decomposition (F.10) we can
start with the bound:

∥ε1∥F =

∥∥∥∥ 1

zn
EAQ

[
QzX

(
Λ̂z − Λz

)
(Λ̂z)−1XT

]
Q̃Λz

∥∥∥∥
F

≤ O

(
κQ̃κ

2
zκ̌

2
z

|z|2
√
n

)
≤ O

(
κQ̃√
n

)
obtained with the bound 1

Λ̂z
≤ O( κ̌z

|z| ) ≤ O(1) given by Lemma F.11 and applying Proposition B.50 with the
hypotheses:

• X | AQ ∝ E2 and ∥EAQ
[xi]∥ ≤ O(1) Assumption 2,

• QzX | AQ ∝ E2(κzκ̌z) and ∥EAQ
[Qzxi]∥ ≤ O(κzκ̌z) given by Lemma F.13,

• Λz | AQ ∈ EAQ
[Λz]± E2

(
κz√
n

)
in (Dn, ∥ · ∥) given by Lemma F.5,

• ∥EAQ
[Λz]− Λ̂z∥F ≤ O(κz/

√
n) thanks to Lemma F.6

Second, for any matrix A ∈ Mp(C) satisfying ∥A∥F ≤ 1, let us bound thanks to Cauchy-Schwarz inequality:

|Tr(Aε2)| ≤

√
1

|z|2n2
EAQ

[
Tr
(
AQzX|Λ̂zn|−2XT Q̄zĀT

)]

·

√√√√ 1

n2

n∑
i=1

EAQ

[
Tr
(
Q̃Λ̂zΣiQz−ixix

T
i Q

z
−iΣi

¯̃QΛ̂z
)]

≤ O

κ4zκ̌4z
|z|2

√
∥A∥2F
n

supi∈[n] Tr (Σ
3
i )κ

2
Q̃

n

 ≤ O

(
κQ̃√
n

)

thanks to the bounds provided by our assumptions, and Lemmas F.2, F.11 and F.13.
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Third, we bound easily with Lemma F.8 the quantity:

∥Tr(Aδ1)∥ ≡ 1

n

n∑
i=1

1

|Λ̂zi |

∥∥∥Tr(Q̃Λ̂z

AEAQ

[
Qz−ixix

T
i

])
−Tr

(
Q̃Λ̂z

AEAQ

[
Qz−i

]
EAQ

[
xix

T
i

])∥∥∥ ≤ O

(
κQ̃√
n

)
.

And we can bound ∥Tr(Aδ2)∥ ≤ O
(
κQ̃

n

)
since ∥Σi − EAQ

[xix
T
i ]∥ ≤ O( 1n ) (as explained in the proof of

Lemma F.10).
Taking the supremum on A ∈ Mp,n(C) and putting the bounds on ∥ε1∥F , ∥ε2∥F , ∥δ1∥F and ∥δ2∥F

together, we obtain: ∥∥∥EAQ
[Qz]− Q̃Λ̂z

∥∥∥
F
≤ O

(
κQ̃√
n

)

So, in particular κQ̃ ≡
∥∥∥Q̃Λ̂z

∥∥∥ ≤
∥∥EAQ

[Qz]
∥∥+O

(
κQ̃√
n

)
, which implies that κQ̃ ≤ O(κz) as ∥EAQ

[Qz] ∥ since
1√
n
= o(1). We obtain then directly the second bound of the proposition.

1.4 Definition of the second deterministic equivalent thanks to the semi-metric
ds

Proposition F.12 slightly simplified the problem because while we initially had to estimate the expectation of
the whole matrix Qz, now, we just need to approach the diagonal matrix Λ̂z ≡ Diag(z− 1

n Tr
(
ΣiQ

z
−i
)
])i∈[n].

One might be tempted to introduce from the pseudo identity (where Q̃ was defined in (F.7)):

Λ̂zi = z − 1

n
Tr(ΣiEAQ

[Qz]) ≈ z − 1

n
Tr(ΣiQ̃

Λ̂z

) (F.14)

a fixed point equation whose solution would be a natural estimate for Λ̂z. This equation is given in Theo-
rem F.18: we chose Λ̃z satisfying

Λ̃zi = z − 1

n
Tr
(
ΣiQ̃

Λ̃z
)
.

We are now going to prove that Λ̃z is well defined for any z ∈ H (where we recall that H ≡ {z ∈ C,ℑ(z) > 0})
to prove Theorem F.18. Introducing the mapping:

∀L ∈ Dn(H) : Iz(L) ≡ zIn −Diag

(
1

n
Tr
(
ΣiQ̃

L)
))

1≤i≤n
,

we want to show that Iz admits a unique fixed point. For that purpose, we are going to employ the
Theorem E.17 on the mapping Iz (z ∈ H), that is, as we will see in Proposition F.15 below, contractive for
semi-metric ds presented in last chapter and defined for any D,D′ ∈ Dn(H) as:

ds(D,D
′) = sup

1≤i≤n

|Di −D′
i|√

ℑ(Di)ℑ(D′
i)
.

We first need to restrict our study on a subset of Dn(H):

DIz ≡ {D ∈ Dn(H), D/z ∈ Dn(H)}

Lemma F.14. For any z ∈ H, Iz(DIz ) ⊂ DIz .
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Proof. Considering z ∈ H, and L ∈ DIz and i ∈ [n], the decomposition Q̃L =(
Ip − 1

n

∑n
i=1

ℜ(Lj)Σi

|Lj |2 − i
n

∑n
i=1

ℑ(Lj)Σi

|Lj |2

)−1

allows us to set thanks to the resolvent identity (F.9):

ℑ (Iz (L)i) = ℑ(z) + 1

2in
Tr
(
Σi

(
Q̃L + ¯̃QL

))
= ℑ(z) + 1

n
Tr

(
ΣiQ̃

L
n∑
i=1

ℑ(Lj)Σi
|Lj |2

¯̃QL

)
> 0

(since ¯̃QLΣiQ̃
L is a non negative Hermitian matrix). The same way, one can show:

ℑ (Iz (L)i /z) =
1

n|z|2
Tr

(
ΣiQ̃

L

(
ℑ(z) +

n∑
i=1

ℑ(Lj/z)Σi
|Lj/z|2

)
¯̃QL

)
> 0

Let us now express the Lipschitz parameter of Iz for the semi metric ds.

Proposition F.15. For any z ∈ H, the mapping Iz is 1-Lipschitz for the semi-metric ds on DIz and satisfies
for any L,L′ ∈ DIz :

ds(Iz(L), Iz(L′)) ≤
√

(1− ϕ(z, L))(1− ϕ(z, L′))ds(L,L
′),

where for any w ∈ H and L ∈ DIz :

ϕ(w,L) =
ℑ(w)

sup1≤i≤nℑ(Iw(L))i
∈ (0, 1).

Proof. Let us bound for any L,L′ ∈ DIz :

|Iz(L)i − Iz(L′)i| =
1

n
Tr

ΣiQ̃
L

 1

n

n∑
j=1

Lj − L′
j

LjL′
j

Σj

 ¯̃QL
′


=

1

n
Tr

ΣiQ̃
L

 1

n

n∑
j=1

Lj − L′
j√

ℑ(Lj)ℑ(L′
j)

√
ℑ(Lj)ℑ(L′

j)

LjL′
j

Σj

 ¯̃QL
′


≤ ds(L,L

′)

√√√√ 1

n
Tr

(
ΣiQ̃L

(
1

n

n∑
i=1

ℑ(Lj)Σi
|Lj |2

)
¯̃QL

)

·

√√√√ 1

n
Tr

(
Σi

¯̃QL′

(
1

n

n∑
i=1

ℑ(L′
j)Σi

|L′
j |2

)
Q̃L′

)
≤ ds(L,L

′)
√
(ℑ(Iz(L)i)−ℑ(z)) (ℑ(Iz(L′)i)−ℑ(z)), (F.15)

thanks to Cauchy-Schwarz inequality and the identity

0 ≤ 1

n
Tr

(
ΣiQ̃

L

(
n∑
i=1

ℑ(L′
j)Σi

|L′
j |2

)
¯̃Qz(L)

)
= ℑ(Iz(L)i)−ℑ(z)

issued from the proof of Lemma F.14. Dividing both sides of (F.15) by
√
ℑ(Iz(L)i)ℑ(Iz(L′)i), we retrieve

the wanted Lipschitz parameter.

The contractivity of Iz is not fully stated in the previous proposition because, the Lipschitz parameter
depends on the values of L,L′ and we want a bound uniform on DIz . This will be done thanks to the two
lemmas.
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Lemma F.16 (Commutation between inversion and modulus of matrices). Given an invertible matrix M ∈
Mp, |M−1| = |M |−1 and for any K > 0:

ℑM−1 ≥ KIp or ℜM−1 ≥ KIp =⇒ |M | ≤ 1

K
Ip.

Proof. We have the identity:

|M−1|2 =M−1M̄−1 = (M̄M)−1 = (|M |2)−1.

then we take the square root on both sides to obtain the first identity (recall that the modulus of a matrix
is a non negative hermitian matrix). Now let us assume that ℑ(M−1) ≥ K, we know that:

|M−1|2 = ℑ(M−1)ℑ(M−1)T + ℜ(M−1)ℜ(M−1)T

− iℜ(M−1)ℑ(M−1)T + iℑ(M−1)ℜ(M−1)T ,

is a nonnegative hermitian matrix satisfying for all x ∈ Cp (the cross terms cancel):

x̄T |M−1|2x = x̄Tℑ(M−1)ℑ(M−1)Tx+ x̄Tℜ(M−1)ℜ(M−1)Tx

≥ x̄Tℑ(M−1)ℑ(M−1)Tx ≥ K2∥x∥2.

Thus the lower eigen value of |M−1| = |M |−1 is bigger than K and therefore |M | ≤ 1
K Ip.

Lemma F.17. Given L ∈ DIz , we can bound:

ℑ(z)In ≤ |Iz(L)| ≤ O

(
|z|+ |z|

ℑ(z)

)
In

and:

O

(
ℑ(z)

1 + ℑ(z)

)
Ip ≤

∣∣∣QIz(L)∣∣∣ ≤ |z|Ip
ℑ(z)

.

Proof. The lower bound of Iz(L) is immediate (see the proof of Lemma F.14). If L ∈ DIz , then we know
that L/z ∈ Dn(H), and therefore, noting that:

ℑ
(
(Q̃L/z)−1

)
= ℑ

(
zIp −

1

n

n∑
i=1

Σi
Li/z

)
= ℑ(z)Ip +

1

n

n∑
i=1

ℑ(Li/z)Σi
|Li/z|2

≥ ℑ(z)Ip,

we can deduce from Lemma F.16 that |Q̃L/z| ≤ 1
ℑ(z) and thus ∥Q̃L∥ ≤ |z|

ℑ(z) which gives us directly the upper

bound on Iz(L) since Tr(Σi) ≤ O
(
|z|+ |z|

ℑ(z)

)
.

Finally, we can bound:∥∥∥∥∥In − 1

n

n∑
i=1

Σi
Iz(L)i

∥∥∥∥∥ ≤ 1 +
1

n

n∑
i=1

∥Σi∥
|ℑ(Iz(L)i)|

≤ 1 +O

(
1

ℑ(z)

)
,

which provides the lower bound on |Q̃Iz(L)| since O
(

ℑ(z)
1+ℑ(z)

)
≤ 1

1+O( 1
ℑ(z)

)
.

Theorem F.18. Given n nonnegative symmetric matrices Σ1, . . . ,Σn ∈ Mp, for all z ∈ H, the equation:

∀i ∈ [n], Li = z − 1

n
Tr

Σi

(
Ip −

1

n

n∑
i=1

Σi
Li

)−1
 (F.16)

admits a unique solution L ∈ Dn(H) that we denote Λ̃z.
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Proof. On the domain Iz(DIz ), the mapping Iz is bounded and contracting for the semi-metric ds thanks
to Proposition F.15 and Lemma F.17. The hypotheses of Theorem E.17 are thus satisfied, and we know that
there exists a unique diagonal matrix Λ̃z ∈ Iz(DIz ) such that Iz(Λ̃z) = Λ̃z. There can not exist a second
diagonal matrix Λ′ ∈ Dn(H) such that Λ′ = Iz(Λ′) because then Proposition F.15 (true on the whole domain
Dn(H)) would imply that ds(Λ′, Λ̃z) < ds(Λ

′, Λ̃z).

We end this section with an interesting result on Λ̃z that will however not have any use for our main
results.

Lemma F.19. supi∈[n] |Λ̃zi | ≤ O(1 + |z|).

Proof. If we assume that ∀i ∈ [n], |Λ̃zi | ≥ 2ν, then we deduce that 1
n

∑n
i=1

1
|Λ̃z

i |
≤ 1

2ν and | 1n
∑n
i=1

Σi

Λ̃z
i

| ≤ 1
2 ,

and therefore, |Q̃Λ̃z | ≤ 2. As a consequence, ∀i ∈ [n]:∣∣∣Λ̃zi ∣∣∣ ≤ |z|+ 1

n
Tr
(
Σi|Q̃Λ̃z

|
)
≤ |z|+ 2pν

n

We can conclude that:

sup
i∈[n]

|Λ̃zi | ≤ max

(
ν

2
, |z|+ 2pν

n

)
≤ O(1 + |z|).

1.5 Convergence of Λ̂z towards Λ̃z

To show the convergence of Λ̂z towards Λ̃z = Iz(Λ̃z), we need Proposition E.23 bounding the distance to
a fixed point of a contracting mapping for the semi-metric ds. This sets what we call the stability of the
equation. First allowing us to bound ∥Λ̂z − Λ̃z∥, it will then be employed to show the continuity of z 7→ Λ̃z.
In the former application, the convergence parameter is n, while in the latter application it is a parameter
t ∈ C in the neighbourhood of 0.

To be employ Proposition E.23 on the matrices Γ̃n = Λ̃z and Γn = Λ̂z and on the mapping fn = Iz, we
first need to set the following proposition. Unfortunately, we need to assume here that d(z, Sε) ≥ O(1) (and
not d(z, Sε−0) ≥ O(1)).

Proposition F.20. Given z ∈ C \ Sε:

ds

(
ℑ(Iz(Λ̂z)),ℑ(Λ̂z)

)
≤ O

(
1

n

)
Remark F.21. The bound O( 1n ) comes from the fact that for any z ∈ C\Sε, if n < p then 0 ∈ S and |z| ≥ ε

and if n ≥ p then κz =
|z|

1+|z| . Therefore, in all cases κz

|z| ≤ O(1).

To prove Proposition F.20 but also to show later that the mapping Iz is contracting, we will need:

Lemma F.22. Given z ∈ C \ Sε−0:

ℑ(z) ≤ inf
i∈[n]

ℑ
(
Λ̂zi

)
≤ sup
i∈[n]

ℑ
(
Λ̂zi

)
≤ O (ℑ(z))

Proof. The lower bound is obvious since for all i ∈ [n]:

ℑ(Λ̂zi ) = ℑ(z) + ℑ(z)
|z|2n2

EAQ
[Tr
(
Qz−iX−iX

T
−iQ̄

z
−iΣi

)
] ≥ ℑ(z).

The upper bound is obtained thanks to the bound, valid under AQ, Qz−iX−i/|z|
√
n ≤ O(1) provided by

Lemma F.13.
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Proof of Proposition F.20. We can bound thanks to Lemma F.22:

ds

(
ℑ(Iz(Λ̂z)),ℑ(Λ̂z)

)
= sup

1≤i≤n

∣∣∣∣∣∣
1
n Tr

(
Σiℑ

(
Q̃Λ̂z − EAQ

[Qz]
))

√
ℑ(Λ̂zi )ℑ(Iz(Λ̂z)i)

∣∣∣∣∣∣ ≤ O

(
1√
n

∥∥∥∥∥ℑ(Q̃Λ̂z

)

ℑ(z)
−

ℑ
(
EAQ

[Qz]
)

ℑ(z)

∥∥∥∥∥
F

)
,

since ∥Σi∥F ≤ O(
√
n). The identity 1

z̄nXX
T Q̄z = Q̄z − In allows us to write:

ℑ(EAQ
[Qz])

ℑ(z)
=

1

ℑ(z)
EAQ

[
Qz
(
ℑ(z)
n|z|2

XXT

)
Q̄z
]
=

1

z
EAQ

[|Qz|2 −Qz](=
1

z̄
EAQ

[|Qz|2 − Q̄z]). (F.17)

We already know how to estimate EAQ
[Qz] thanks to Proposition F.12, we are thus left to estimate EAQ

[|Qz|2].
We do not give the full justifications that are closely similar to those presented in the proof of Proposition F.12
– mainly application of Schur identities (F.8), Proposition B.50 and Lemmas F.5, F.10. To complete this
estimation, we consider a deterministic matrix A ∈ Mp, and we estimate:

Tr
(
AEAQ

[
Q̄z
(
Qz − Q̃Λ̂z

)
)])

=
1

n

n∑
i=1

Tr

(
AEAQ

[
Q̄zQz

(
xix

T
i

z
− Σi

Λ̂zi

)
Q̃Λ̂z

])

=
1

n

n∑
i=1

Tr

(
AEAQ

[
Q̄zQz−ixix

T
i Q̃

Λ̂z

Λzi

])
− 1

n

n∑
i=1

Tr

(
AEAQ

[
Q̄zQzΣiQ̃

Λ̂z

Λ̂zi

])

=
1

n

n∑
i=1

Tr

(
AEAQ

[
Q̄z−iQ

z
−ixix

T
i Q̃

Λ̂z

Λ̂zi

])
− 1

n2

n∑
i=1

Tr

(
AEAQ

[
Q̄zxix

T
i |Qz−i|2xixTi Q̃Λ̂z

zΛ̂zi

])

− 1

n

n∑
i=1

Tr

(
AEAQ

[
Q̄z−iQ

z
−iΣiQ̃

Λ̂z

Λ̂zi

])
+O

(
κz√
n

)

= −EAQ

[
1

n
Tr

(
AQ̄zX

∆z

zΛ̂zi
XT Q̃Λ̂z

)]
+O

(
κz√
n

)

with the introduction of the notation:

∆z ≡ Diagi∈[n]

(
1

n
xTi |Qz−i|2xi

)
.

The random diagonal matrix ∆z being a O(κ2z/
√
n) Lipschitz transformation of X for the spectral norm ∥ · ∥

on Dn, we know that ∆z | AQ ∈ ∆̂z ±E2(κz/
√
n), where we noted ∆̂z ≡ EAQ

[∆z]. One can then pursue the
estimation, thanks again to Proposition B.50:

Tr
(
AEAQ

[
Q̄z
(
Qz − Q̃Λ̂z

)
)])

=
1

n

n∑
i=1

∆̂z
i

Λ̂zi
Tr

(
AEAQ

[
Q̄z−ixix

T
i Q̃

Λ̂z

Λ̄zi

])
+O

(
κz√
n

)

=
1

n

n∑
i=1

∆̂z
i∣∣∣Λ̂zi ∣∣∣2 Tr

(
AEAQ

[
Q̄z−iΣiQ̃

Λ̂z
])

+O

(
κz√
n

)

Now, taking the expectation under AQ on the identity valid for any i ∈ [n]:

ℑ(Λzi ) = ℑ(z)− 1

n
ℑ(xTi Qz−ixi) = ℑ(z)

(
1 +

1

nz

(
xTi |Qz−i|2xi − xTi Q

z
−ixi

))
=

ℑ(z)
z

(∆z
i + Λzi ) , (F.18)
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we deduce that ∆̂z = z
ℑ(z)ℑ(Λ̂

z) − Λ̂z + O(κz/n). Therefore, with the identity EAQ
[Q̄zQ̃Λ̂z

] = |Q̃Λ̂z |2 +

O∥·∥F
(κz/

√
n), we can estimate (see the proof of Lemma F.14 for the identification of ℑ(Tr(Q̃λ̂z

))):

Tr
(
AEAQ

[
|Qz|2

])
=

1

n

n∑
i=1

 z

ℑ(z)
ℑ(Λ̂zi )∣∣∣Λ̂zi ∣∣∣2 − 1

¯̂
Λzi

Tr
(
AEAQ

[
Q̄z−iΣiQ̃

Λ̂z
])

+Tr
(
A|Q̃Λ̂z

|2
)
+O

(
κz√
n

)
=

z

ℑ(z)
ℑ
(
Tr
(
AQ̃Λ̂z

))
+

1

n
Tr
(
AQ̃Λ̂z

)
+O

(
κz√
n

)
and therefore, we can deduce from Proposition F.12 and (F.17):

ℑ (Tr (AQz))

ℑ(z)
=

1

z
Tr
(
AEAQ

[
|Qz|2 −Qz

])
=

ℑ
(
Tr
(
AQ̃Λ̂z

))
ℑ(z)

+O

(
κz

|z|
√
n

)
.

we can bound thanks to identity F.17 and inequality κz

|z| ≤ O(1) given by Remark F.21:∥∥∥∥∥ℑ(EAQ
[Qz])−ℑ(Q̃Λ̂z

)

ℑ(z)

∥∥∥∥∥
F

≤ O

(
κz

|z|
√
n

)
≤ O

(
1√
n

)
,

and we retrieve the result of the proposition.

We now have all the elements to show the convergence of Λ̂z to Λ̃z. Here again, we need to assume as in
Proposition F.20 that z ∈ C \ Sε.

Proposition F.23. For any z ∈ H such that d(z, S) ≥ ε:

∥Λ̂z − Λ̃z∥ ≤ O
(κz
n

)
and O

(
|z|
κ̌z

)
≤ |Λ̃z| ≤ O

(
|z|
κ̌z

)
Proof. We already know from Proposition F.20 that ds

(
ℑ(Iz(Λ̂z)),ℑ(Λ̂z)

)
≤ o(1). Besides, the Lipschitz

parameter λ of Iz on the set {Λ̃z, Λ̂z, n ∈ N} is such that 1−λ ≥ O(1). Recall indeed from Proposition F.15
that:

λ ≤

√√√√(1− ℑ(z)
supi∈[n] ℑ(Λ̃zi )

)(
1− ℑ(z)

supi∈[n] ℑ(Λ̂zi )

)
≤
√

1−O(1) ≤ 1−O(1),

thanks to Lemma F.22. Therefore, we can employ Proposition E.23 to set that:∥∥∥∥∥∥ Λ̂z − Λ̃z√
ℑ(Λ̂z)ℑ(Λ̃z)

∥∥∥∥∥∥ = ds(Λ̂
z, Λ̃z) ≤ O

∥∥∥∥∥∥ Λ̂z − Iz(Λ̂z)√
ℑ(Λ̂z)ℑ(Λ̃z)

∥∥∥∥∥∥
 ,

which implies thanks to Lemma F.22 that:

∥∥∥Λ̂z − Λ̃z
∥∥∥ ≤ O


√√√√ supi∈[n] ℑ(Λ̃zi )

infi∈[n] ℑ(Λ̃zi )

∥∥∥Λ̂z − Iz(Λ̂z)
∥∥∥
 .

We reach here the only point of the whole proof where we will employ Assumption 5. It is to set that:

inf
i∈[n]

ℑ(Λ̃zi ) = ℑ(z) + inf
i∈[n]

n∑
j=1

ℑ(Λ̃zj )
n|Λ̃zj |2

Tr
(
ΣiQ̃

Λ̃z

Σj
¯̃QΛ̃z
)

≥ ℑ(z) +
n∑
j=1

ℑ(Λ̃j)
nz|Λ̃j |2

z

O
(
Tr
(
Q̃Λ̃z

Σj
¯̃QΛ̃z
))

≥ O

(
sup
i∈[n]

ℑ(Λ̃zi )

)
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As a conclusion:∥∥∥Λ̂z − Λ̃z
∥∥∥ ≤ O

(∥∥∥Λ̂z − Iz(Λ̂z)
∥∥∥) ≤ O

(
1√
n

∥∥∥Q̂− Q̃Λ̂z
∥∥∥) ≤ O

(κz
n

)
.

we can further deduce that Λz and Λ̃z have the same upper and lower bound of order O(|z|/κ̌z) since
κz ≤ O(|z|/κ̌z).

1.6 Concentration and final estimation of the resolvent
The estimation of Qz is a simple consequence of the convergence of Λ̂z towards Λ̃z.

Corollary F.24. For any z ∈ C \ Sε, ∥Q̃Λ̃z∥ ≤ O(κz) and:∥∥∥EAQ
[Qz]− Q̃Λ̃z

∥∥∥
F
≤ O

(
κz√
n

)
Proof. We already know from Proposition F.12 that

∥∥∥EAQ
[Qz]− Q̃Λ̂z

∥∥∥
F

≤ O(κz/
√
n), thus we are left to

bound: ∥∥∥Q̃Λ̂z

− Q̃Λ̃z
∥∥∥
F
≤

∥∥∥∥∥Q̃Λ̂z

(
1

n

n∑
i=1

Λ̂zi − Λ̃zi

Λ̂zi Λ̃
z
i

Σi

)
Q̃Λ̃z

∥∥∥∥∥
F

≤ sup
i∈[n]

∣∣∣∣∣ Λ̂zi − Λ̃zi

Λ̂zi Λ̃
z
i

∣∣∣∣∣ ∥Σi∥F ∥∥∥Q̃Λ̂z
∥∥∥∥∥∥Q̃Λ̃z

∥∥∥
≤ O

(
κ3zκ̌

2
z
√
p

|z|2n

)
≤ O

(
κz√
n

)
(thanks to Lemma F.7, F.2, F.19 and Proposition F.23) We can then deduce that:∥∥∥Q̃Λ̃z

∥∥∥
F
≤ ∥Q̃Λ̂z

− Q̃Λ̃z

∥F + ∥Q̃Λ̂z

∥F ≤ O(κz).

The concentration of Qz natturally implies the concentration of R : z 7→ 1
zQ

z around R̃ : z 7→ 1
z Q̃

Λ̃z

that
for integration purpose, we set with the semi-norm ∥ · ∥F,Sε , defined for every f ∈ F(C,Mp) as:

∥f∥F,Sε = sup
z∈C\Sε

∥f(z)∥F .

Theorem F.25. R | AQ ∈ R̃± E2(1/
√
n) in (MC\Sε

p,n , ∥f∥F,Sε).

Proof of Theorem F.25 . We saw in the proof of Proposition F.3 that the mapping R ∈ (F(C \ Sε,Mp), ∥ ·
∥F,Sε) defined, under AQ, for any z ∈ C \ Sε as R(z) = − 1

zQ
z has a Lipschitz parameter bounded by:

sup
z∈C\Sε

O

(
κz

|z|
√
n

)
= O

(
1√
n

)
Thanks to the bound κz

|z| ≤ O(1) justified in Remark F.21. As a O(1/
√
n)-Lipschitz transformation of X ∝ E2,

(R | AQ) ∝ E2(1/
√
n), we can then conclude thanks to Corollary F.24 with the bound:∥∥∥EAQ

[R]− R̃
∥∥∥
F,Sε

≤ sup
z∈C\Sε

1

|z|

∥∥∥EAQ
[Qz]− Q̃Λ̃z

∥∥∥
≤ sup
z∈C\Sε

O

(
κz√
n|z|

)
≤ O

(
1√
n

)
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The projections on deterministic vectors provide us with good estimates on isolated eigenvectors, but
a concentration in spectral norm would have been sufficient for this kind of result. A key consequence of
Theorem F.25 lies in the accurate estimates of projections on high dimensional subspaces F ⊂ Rp it provides;
this is shown6 in Figure F.1 that depicts some of these projections with increasing numbers of classes7. Given
k ∈ N, we consider B ≡ {θ1, . . . , θk} ⊂ R, a (random) subset of k eigenvalues of 1

nXX
T , EB the eigenspace

associated to those eigenvalues and ΠB and ΠF , respectively the orthogonal projection on EB and F . If one
can construct8 a deterministic path γ such that {E[θi], i ∈ [k]}ε ⊂ γ ⊂ C \ Sε−0 then we can bound (since
∥ΠF ∥F =

√
dim(F ) ≤ O(

√
p)):

P
(∣∣∣∣1p Tr(ΠFΠA)−

1

2ipπ

∮
γ

Tr(ΠF R̃(z))dz

∣∣∣∣ ≥ t

)
≤ Ce−cnpt

2

+ Ce−cn,

Although it is not particularly needed for practical use, we are now going to show that the mapping
g̃ : z → 1

p Tr(R̃(z)) is a Stieltjes transform that converges towards g̃ on C \ Sε.

1.7 Approach with the Stieltjes formalism

We present here some arguably well known results (see [KA16] for instance) about the Stieltjes transform of
the eigen value distribution that allows to get some interesting inferences about its support. We start with
an interesting identity that gives a direct link between the Stieltjes transforms g and g̃ with the diagonal
matrix Λz and Λ̃z. From the equality Qz − 1

nzXX
TQz = Ip, and the Schur identities (F.8) we can deduce

that:

g(z) = − 1

pz
Tr(Qz) = −1

z
− 1

npz2

n∑
i=1

xTi Q
zxi

= −1

z
− 1

npz

n∑
i=1

xTi Q−ixi
Λzi

=
1

z

(
n

p
− 1

)
− 1

p

n∑
i=1

1

Λzi
= gΛ

z

(z),

with the notation gD
z

, defined for any mapping D : H ∋ z 7→ Dz ∈ Dn(H) as9:

gD
z

: z 7−→ 1

z

(
n

p
− 1

)
− 1

p

n∑
i=1

1

Dz
.

Interestingly enough, if we denote g̃ ≡ gΛ̃, then one can rapidly check that we have the equality g̃ =

− 1
pz Tr(Q̃

Λ̃z

). To show that g̃ is a Stieltjes transform, we will employ the following well known theorem that
can be found for instance in [Bol97]:

Theorem F.26. Given an analytic mapping f : H → H, if limy→+∞ −iyf(iy) = 1 then f is the Stieltjes
transform of a probability measure µ that satisfies the two reciprocal formulas:

• f(z) =
∫ µ(dλ)

λ−z ,

• for any continuous point10 a < b: µ([a, b]) = limy→0+
1
π

∫ b
a
ℑ(f(x+ iy))dx.

If, in particular, ∀z ∈ H, zf(z) ∈ H, then µ(R−) = 0 and f admits an analytic continuation on C\(R+∪{0}).
6It must be noted that the setting of Figure F.1 does not exactly fall under our hypotheses (since here ∥E[xi]∥ ≥ O(

√
p)), as

the amplitude of the signals must be sufficiently large for the resulting eigenvalues to isolate from the bulk of the distribution
when the number of classes is high (√p ≈ 14 is not so large). However, even in this extreme setting the prediction are good.

7The number of classes is the number of different distributions that can follow the column vectors of X
8The possibility to construct such a path and the condition on B for its existence, related to the notion of clusters, is a very

interesting question that we do not address in this study.
9The Steiltjes transform of the spectral distribution of 1

n
XTX is ǧ = ǧΛ

z
, where for all D : H ∋ z 7→ Dz ∈ Dn(H),

ǧD
z
: z 7−→ − 1

p

∑n
i=1

1
Dz

10We can add the property ∀x ∈ R, µ({x}) = limy→0+ yℑ(f(x + iy)), here for µ to be continuous in a, b, we need µ({a}) =
µ({b}) = 0
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Figure F.1: Prediction of the alignement of the signals in the data towards the eigen space of the biggest
eigen values of 1

nXX
T for p = 200, n = knk where nk = 20 and k is the number of classes taking the values

k = 10, 15, 20, 30, 35, 42, 50, 62, 75. The signals u1, . . . , uk are drawn randomly and independently following a
law N (0, Ip), and we let U = (u1, . . . , uk) ∈ Mp,k. Then, for all j ∈ [k] and l ∈ [20], xj+lnk

∼ N (uj , Ip). (top
and bottom left) representation of the spectral distribution of 1

nXX
T and its prediction with Λ̃z.(bottom

right) representation (with marks) of the quantities Tr(ΠEA
UUT ) and 1TΠEA

1 and their prediction (smooth
line) with the integration of, respectively, ℑ( 1

zπ Tr(Q̃Λ̃z

)) and ℑ( 1
zπ1

T Q̃Λ̃z

1) on the path drawn in red on
the other graphs. The line y = k represents instances of Tr(ΠA) = k that can be approximated integrating
1
zπ Tr(Q̃Λ̃z

). The projection Tr(ΠEA
UUT ) is a little lower than k because the eigen vectors associated to the

highest eigen values of 1
nXX

T are not perfectly aligned with the signal due to the randomness of X.
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The first hypothesis to verify in order to employ Theorem F.26 is the analycity of g̃, that originates from
the analycity of z → Λ̃z. We can show with limiting arguments that Λ̃z is analytical as a limit of a sequence
of analytical mappings. However, although it is slightly more laborious, we prefer here to prove the analicity
from the original definition. First let us show the continuity with Proposition E.23.

Proposition F.27. The mapping z 7→ Λ̃z is continuous on H.

Proof. Given z ∈ H, we consider a sequence (ts)s∈N ∈ {w ∈ C | w + z ∈ H} such that lims→∞ ts = 0. Let
us verify the assumption of Proposition E.23 where for all s ∈ N, fs = Iz+ts , Γ̃s = Λ̃z+ts and Γs = Λ̃z (it
does not depend on s). We already know from Proposition F.15 that fs are all contracting for the stable
semi-metric with a Lipschitz parameter λ < 1 that can be chosen independent from s for s big enough. Let
us express for any s ∈ N and any i ∈ [n]:

fs(Γs)i − Γsi = Iz+ts(Λ̃z)i − Λ̃zi = ts (F.19)

Noting that for s sufficiently big, ℑ(Iz+ts(Λ̃z)) = ℑ(ts) + ℑ(Λ̃z) ≥ ℑ(Λ̃z)
4 ≥ ℑ(z)

4 , we see that
ds(ℑ(fs(Γs)i),ℑ(Γsi )) ≤ 4|ℑ(ts)|

ℑ(z) −→
s→∞

0. Therefore, the assumptions of Proposition E.23 are satisfied and
we can conclude that there exists K > 0 such that for all s ∈ N:∥∥∥∥∥∥ Λ̃z+ts − Λ̃z√

ℑ(Λ̃z+ts)ℑ(Λ̃z)

∥∥∥∥∥∥ ≤ K|ts|

infi∈[n]

√
ℑ(Λ̃z+ts)ℑ(Λ̃z)

≤ 2K|ts|
ℑ(z)

.

Besides, we can also bound:

√
ℑ(Λ̃z+ts) ≤

2
√
ℑ(Λ̃z)
ℑ(z)

(ℑ(Λ̃z) +Kts) ≤ O(1),

That directly implies that ∥Λ̃z+ts − Λ̃z∥ ≤ O(ts) −→
s→∞

0, and consequently, z 7→ Λ̃z is continuous on H.

Let us now show that z 7→ Λ̃z is differentiable. Employing again the notation f t = Iz+t, we can decompose
(noting for D ∈ Dn, R(D) ≡ (zIp − 1

n

∑n
i=1):(

Λ̃z+t − Λ̃z
)
=
(
f t(Λ̃z+t)− f t(Λ̃z) + f t(Λ̃z)− f0(Λ̃z)

)
= Diagi∈[n]

 1

n
Tr

ΣiQ̃
Λ̃z+t 1

n

n∑
j=1

Λ̃z+tj − Λ̃zj

Λ̃z+tj Λ̃zj
ΣjQ̃

Λ̃z

+ tIn

Now, if we introduce the vector a(t) =
(
Λ̃zi − Λ̃z+ti

)
1≤i≤n

∈ Rn, and for any D,D′ ∈ Dn(H), the matrix:

Ψ(D,D′) =

(
1

n

Tr (ΣiR(D)ΣjR(D
′))

DjD′
j

)
1≤i,j≤n

∈ Mn

We have the equation:

a(t) = Ψ(Λ̃z, Λ̃z+t)a(t) + t1. (F.20)

To be able to solve this equation we need:

Lemma F.28. Given any z, z′ ∈ H, In −Ψ(Λ̃z, Λ̃z
′
) is invertible.

Proof. We are going to show the injectivity of In − Ψ(Λ̃z, Λ̃z
′
). Let us introduce a vector x ∈ Rn such that

x = Ψ(Λ̃z, Λ̃z
′
)x. We can bound thanks to Cauchy-Schwatz inequality, with similar calculus as in the proof
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of Proposition F.15:

|xi| =

∣∣∣∣∣∣ 1n Tr

ΣiR(Λ̃
z)

n∑
j=1

xjΣj√
ℑ(Λ̃z)ℑ(Λ̃z′)

√
ℑ(Λ̃z)ℑ(Λ̃z′)

Λ̃zj Λ̃
z′
j

R(Λ̃z
′
)

∣∣∣∣∣∣
≤ sup
j∈[n]

∣∣∣∣∣∣ xj√
ℑ(Λ̃z)ℑ(Λ̃z′)

∣∣∣∣∣∣
√
ℑ(Λ̃zi )−ℑ(z)

√
ℑ(Λ̃z′i )−ℑ(z′)

therefore, if we denote ∥x∥Λ̃ ≡ supi∈[n]

∣∣∣∣ xj√
ℑ(Λ̃z′ )ℑ(Λ̃z′ )

∣∣∣∣, we have then the bound:

∥x∥Λ̃z′ ,Λ̃z′ ≤ ∥x∥Λ̃z′ ,Λ̃z′

√
(1− ϕ(z, Λ̃z′))(1− ϕ(z, Λ̃z′))

which directly implies that x = 0 since we know that ϕ(z, Λ̃z
(′)
) = ℑ(w)

sup1≤i≤n ℑ(Iw(Λ̃z(′) ))i
∈ (0, 1).

From the continuity of (z, z′) 7→ Ψ(Λ̃z, Λ̃z
′
), and the limit limx→∞ ∥Ψ(Λ̃x, Λ̃x)∥ = 0 (see the proof of

Proposition F.33), we can deduce as a side result from Lemma F.28:

Lemma F.29. Given any z, z′ ∈ H, ∥Ψ(Λ̃z, Λ̃z
′
)∥ < 1

The continuity of z 7→ Λ̃z given by Proposition F.27 and the continuity of the inverse operation on
matrices (around In −Ψ(Λ̃z, Λ̃z) which is invertible), allows us to let t tend to zero in the equation

1

t
a(t) = (In −Ψ(Λ̃z, Λ̃z+t))−1

1,

to obtain:

Proposition F.30. The mapping z 7→ Λ̃z is analytic on H, and satisfies:

∂Λ̃z

∂z
= Diag

(
(In −Ψ(Λ̃z, Λ̃z))−1

1

)
We can then conclude first that for all i ∈ [n], the mappings z → 1

Λz
i

are Stieltjes transforms.

Proposition F.31. For all i ∈ [n], there exists a distribution µ̃i with support on R+ whose Stieltjes transform
is z 7→ − 1

Λ̃z
i

Proof. We just check the hypotheses of Theorem F.26. We already know that z 7→ − 1
Λ̃z

i

is analytical thanks

to Proposition F.30 and the lower bound Λ̃zi ≥ ℑ(z) > 0. Besides, ∀z ∈ H:

ℑ

(
− 1

Λ̃zi

)
=

ℑ(Λ̃zi )
|Λ̃zi |

> 0 and ℑ

(
− z

Λ̃zi

)
=

ℑ(Λ̃zi /z)
|Λ̃zi /z|

> 0,

since Λ̃z ∈ DIz . Finally recalling from Lemma F.17 that for all y ∈ R+, ∥Q̃Λ̃iy∥ ≤ |iy|
ℑ(iy) = 1, we directly see

that for all j ∈ [n]:

Λ̃iyj
iy

= 1 +
1

iyn
Tr(ΣjQ̃

Λ̃iy

) −→
y→+∞

1.

we can then conclude with Theorem F.26.

We can then deduce easily that g̃ is also a Stieltjes transform with an interesting characterization of its
measure with the µ̃i (defined in Proposition F.31).
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Proposition F.32. The mapping g̃ is the Stieltjes transform of the measure:

µ̃ =

(
n

p
− 1

)
δ0 +

1

p

n∑
i=1

µ̃i,

where δ0 is the Dirac measure on 0 (if p > n, then the measures µ̃1, . . . , µ̃n contains Dirac weights on zero
that cancel the term −p−n

p δ0).

Recall that µ̃, satisfies g̃(z) =
∫ +∞
0

1
λ−zdµ̃(λ), and let us denote S̃, its support. This formula implies that

g̃ is analytic on C \ S̃ and that for all z ∈ C \ S̃, g̃(z̄) = g̃(z). To precise the picture let us provide a result of
compactness of S̃.

Proposition F.33. The measure µ̃ has a compact support S̃ ⊂ R+ and sup S̃ ≤ O(1).

Proof. We are going to show that for x sufficiently big, limy→0+ ℑ(g(x + iy)) = 0, which will allow us to
conclude thanks to the relation between µ̃ and g̃ given in Theorem F.26. Considering z = x + iy ∈ H, for
x, y ∈ R and such that

x ≥ x0 ≡ max

(
8

n
sup
i∈[n]

Tr(Σi), 4ν

)
let us show first that ∀i ∈ [n], ℜ(Λ̃zi ) ≥ x0

2 . This is a consequence of the fact that Iz is stable on A ≡ Dn({t ≥
x
2}+ iR∗

+) ∩ DIz . Indeed, given L ∈ A

ℜ
(
(Q̃L)−1

)
= Ip −

1

n

n∑
i=1

ℜ(Λi)Σi
|Li|2

≥ Ip −
1

n

n∑
i=1

Σi
ℜ(Li)

≥ 1

2

and as we already know, since DIz , ℑ
(
(Q̃L)−1

)
≥ 0, therefore, ∥Q̃L∥ ≤ 2. We can then bound:

ℜ(Iz(L)i) = x− 1

n
Tr

ΣiQ̃
L

1− 1

n

n∑
j=1

ℜ(Lj)Σj
|Lj |2

 ¯̃QL


≥ x− 4

n
Tr (Σi) ≥

x

2
.

Thus as a limit of elements of A, Λ̃z ∈ A, and ∀i ∈ [n], ℜ(Λ̃zi ) ≥ x
2 .

Besides, let us bound:

ℑ(Λ̃zi ) = y +
1

n
Tr

ΣiR(Λ̃
z)

1

n

n∑
j=1

ℑ(Λ̃zj )Σj
|Λ̃zj |2

R̄(Λ̃z)


≤ y +

4

n
Tr (Σi)

∥∥∥∥∥∥ 1n
n∑
j=1

Σj

∥∥∥∥∥∥ sup
j∈[n]

ℑ(Λ̃zj )
ℜ(Λ̃zj )2

.

We can further bound
∥∥∥ 1
n

∑n
j=1 Σj

∥∥∥ ≤ ν, since 1
n∥XX

T ∥ = (∥X∥/
√
n)2 ∈ ν ± E1(1/

√
n) and therefore∥∥∥ 1

n

∑n
j=1 Σj

∥∥∥ ≤ E[ 1n∥XX
T ∥] ≤ ν + O(1/

√
n) ≤ 2ν. Besides ℜ(Λ̃zj )2 ≥ xx0

4 , we can eventually bound

supj∈[n] ℑ(Λ̃zj ) ≤ y + 2ν
x supj∈[n] ℑ(Λ̃zj ), which implies, for x sufficiently big:

sup
j∈[n]

ℑ(Λ̃zj ) ≤
y

1− 2ν
x

−→
y→0+

0.

We can then conclude letting y tend to 0 in the formulation g̃ = g
˜̃Λ:

ℑ(g̃(x+ iy)) =
y

x2 + y2

(
n

p
− 1

)
+

1

p

n∑
i=1

ℑ(Λ̃zi )
ℜ(Λ̃zi )2 + ℑ(Λ̃zi )2

−→
y→0+

0
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Figure F.2: Spectral distribution of 1
nXX

T and its deterministic estimate obtained from Λ̃ for n = 160 and
p = 80. Introducing P an orthogonal matrix chosen randomly and Σ ∈ Dp such that for j ∈ {1, . . . , 20},
Σj = 1 and for j ∈ {21, . . . , 80}, Σj = 8, we chose (left) ∀i ∈ [n], xi ∼ N (0,Σ) and (right) ∀i ∈ [n],
xi ∼ N (0,Σi), where Σ1 = Σ and Σi+1 = PTΣiP for all i ∈ [n]. The histograms would have been similar for
any other concentrated vectors x1, . . . , xn having the same covariances and comparable observation diameter
(see Definition 9)

We end this section with the proof of the convergence of the Stieltjes transform of the spectral distribution
g towards g̃.

We introduce the semi-norm ∥ · ∥Sε , defined for any f ∈ F(C) as:

∥f∥Sε = sup
z∈C\Sε

|f(z)|.

Theorem F.34. g | AQ ∈ g̃ ± E2(1/
√
pn) in (CC\Sε

, ∥ · ∥Sε).

Proof. We know from remark F.21 that O(κz

z ) ≤ O(1) and therefore we can show as in the proof of Proposi-
tion F.3 that the mapping g defined for any z ∈ C \ (Sε ∪{0}) with the identity g(z) = − 1

pz Tr(Q
z) is, under

AQ a O(1/
√
pn)-Lipschitz transformation of X, thus (g | AQ) ∝ E2(1/

√
pn) in (F(C), ∥ · ∥Sε). We can then

conclude thanks to the bound:

sup
z∈C\Sε

∣∣EAQ
[g(z)]− g̃(z)

∣∣ ≤ sup
z∈C\Sε

1

zp

∣∣∣Tr(EAQ
[Qz]− Q̃Λ̃z

)∣∣∣
≤ sup
z∈C\Sε

O

(
κz

|z|√np

)
≤ O

(
1

√
np

)
.

In particular, thanks to the Cauchy identity, for any analytical mapping f : C → C, since the integration
on bounded paths of C \ Sε is Lipschitz for the norm ∥ · ∥Sε , we can approximate:

P
(∣∣∣∣∫ f(λ)dµ(λ)− 1

2iπ

∮
γ

f(z)g(z)dz

∣∣∣∣ ≥ t

)
≤ Ce−cnpt

2

+ Ce−cn,

for any closed path Sε ⊂ γ ⊂ C \ Sε with length lγ satisfying lγ ≤ O(1). There exists a correspondence
between a distribution and its Stieltjes transform: denoting µ the spectral distribution of 1

nXX
T , we have
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indeed for any real a < b:

µ([a, b]) = lim
y→0

1

π

∫ b

a

ℑ(g(x+ iy))dx.

As seen on Figure F.2, this measure is naturally close to µ̃ defined for any real a < b as µ̃([a, b]) =

limy→0
1
π

∫ b
a
ℑ(g̃(x+iy))dx, it can indeed be shown that the Kolmogorov distance between those two measures

tends to zero as stated in [Cho22].

F.2 Statistical study of the resolvent with convex concentration hy-
potheses

We want in this section to extend the result of Section F.1 to the case of convexly concentrated matrices.
Recall that convexly concentrated random vectors class is not stable through Lipschitz maps, we just set
it was stable through affine transformations. As a consequence, in this setting, the concentration of the
resolvent Qz = (In−X/z)−1 is no more a mere consequence of a bound on its differential on X ∈ Mp. Still,
as first shown by [GZ00], it is possible to obtain concentration properties on the sum of Lipschitz functionals
of the eigen values. Here we pursue the study, looking at linear concentration properties of Q for which
concentration inequalities are only satisfied by 1-Lipschitz and linear functionals f . The well known identity

1

p

∑
λ∈Sp(X)

f(λ) = − 1

2iπ

∮
γ

f(z)

z
Tr(Qz)dz, (F.21)

is true for any analytical mapping f defined on the interior of a path γ ∈ C containing the spectrum of X
(or any limit of such mappings), therefore, our results on the concentration of Qz concern in particular the
quantities studied in [GZ00].

The linear concentration of the resolvent is proven thanks to Theorem C.3, expressing it as a sum Qz =
1
z

∑∞
i=1(X/z)

i. The linear concentration of the powers of X was justified in Theorem D.21. We call this
weakening of the concentration property “the degeneracy of the convex concentration through multiplication”.
The linear concentration of the resolvent is though sufficient for most practical applications that rely on an
estimation of the Stieltjes transform m(z) = 1

zp Tr(Q
z) or on projections on Qz.

We still work under Assumptions 1-5, we just adapt Assumption 2 to the convex concentration setting
and assume instead:

Assumption 2c (Convex concentration). X ∝c E2.

We also keep the same notations S = {EAν [λ1], . . . ,EAν [λp]} and

AQ ≡
{
∀i ∈ [p], σi

(
1

n
XXT

)
∈ Sε/2

}
,

for some ε ≥ O(1). the concentration of σ(X)/
√
n ∈ E[σ(X)]±E2(1/

√
n), allows us to set11 as in Lemma F.1

that there exist two constants C, c > 0 such that P
(
Ac
Q

)
≤ Ce−cnε

2

.
We can beside deduce from Lemma D.5 that (X | AQ) ∝c E2.
Placing ourselves under the event AQ, let us first show that the resolvent Qz ≡ (Ip − 1

nzXX
T )−1 is

concentrated if z has a big enough modulus. Be careful that the following concentration is expressed for
the nuclear norm (for any deterministic matrix A ∈ Mp such that ∥A∥ ≤ O(1), Tr(AQz) ∈ E2). The next
proposition is just provided as a first direct application of Theorem C.3, a stronger result is provided in
Proposition F.36.

Proposition F.35. Given z ∈ C such that |z| ≥ ν + ε:

(Qz | AQ) ∈ E2 in (Mp, ∥ · ∥∗).
11In Lemma F.1, the proof is conducted for Lipschitz concentration hypotheses on X. However, since only the linear concen-

tration of σ(X) is needed, the justification is the same in a context of convex concentration thanks to Theorem D.19.
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Proof. We know from Lemma D.5 that (X | AQ) ∝c E2 and from Theorem D.21 that (here κ = ν+ ε
2 ≤ O(1),

σ = 1/
√
n and p = O(n)):

Under AQ:
(
1

n
XXT

)m
∈ E2

((
ν +

ε

2

)m√
m
)

in (Mp, ∥ · ∥∗) .

Let us then note that
(
ν + ε

2

)m√
m = O

((
ν + 3ε

4

)m) and for z ∈ C satisfying our hypotheses: (ν+ 3ε
4 )/|z| ≤

1− ε
4(ν+ε) . We can then deduce from Corollary B.32 that under AQ:

Qz =
1

z

(
Ip −

1

zn
XXT

)−1

=
1

z

∞∑
i=1

(
1

zn
XXT

)i
∈ E2

(
4

ε
(ν + ε)

)
.

Let us now try to study the concentration of Qz when z gets close to the spectrum.

Proposition F.36. For all z ∈ C \ Sε:

(Qz | AQ) ∈ E2(κz) in (Mp, ∥ · ∥∗),

Proof. Proposition F.35 already set the result for |z| ≥ ν + ε ≡ ρ, therefore, let us now suppose that |z| ≤ ρ.

With the notation M ≡
(
ℑ(z)2 +

(
ℜ(z)− 1

nXX
T
)2)−1

= | 1zQ
z|2, let us decompose:

1

z
Qz =

(
ℜ(z)− 1

n
XXT

)
M −ℑ(z)iM. (F.22)

We can then deduce the linear concentration of M with the same justifications as previously thanks to the
Taylor decomposition:

M =
|z|2

ρ2

∞∑
m=0

(
1− ℑ(z)2

ρ2
−
(
ℜ(z)− 1

nXX
T
)2

ρ2

)m
.

Indeed, ∥ℜ(z)Ip − 1
nXX

T ∥ ≤ d(ℜ(z), S) and d(z, S)2 = ℑ(z)2 + d(ℜ(z), S)2 ≤ ρ thus:∥∥∥∥∥1− ℑ(z)2

ρ2
− 1

ρ2

(
ℜ(z)Ip −

1

n
XXT

)2
∥∥∥∥∥ ≤ 1− d(z, S)2

ρ2
≤ 1− ε2

ρ2
< 1.

We therefore deduce from (F.22) that:

(Qz | AQ) ∈ E2
(
|z|
ε2

(
|ℑ(z)|+ |ℜ(z)|+ ν +

ε

2

))
= E2(κz).

One can then follow the lines of study made for the Lipschitz concentration case to show that Qz is
also concentrated around Q̃Λ̃z

under convex concentration hypotheses. Although Proposition F.36 gives us
a concentration of Qz in nuclear norm, we will estimate E[Qz] with the Frobenius norm as in the Lipschitz
concentration case.

Proposition F.37. For any z ∈ C \ Sε in convex concentration setting:∥∥∥E[Qz]− Q̃Λ̄z
∥∥∥
F
≤ O

(
κz√
n

)
.

The Proof of the Theorem is done the same way as in the Lipschitz case, it just relies on the Lemmas F.40
and F.38 below.
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Lemma F.38. Under AQ, for any z ∈ C \ Sε and any i ∈ [n]:

∥E[Qz −Qz−i]∥ ≤ O

(
1

n

)
.

The proof is the same as the one of Lemma F.10 and relies on the bound on Λzi given by Lemma F.7 and
the concentration of uTQ−ixi provided in next lemma.

Lemma F.39. For any z ∈ C \ Sε, any i ∈ [n] and any u ∈ Rp such that ∥u∥ ≤ 1:

(uTQz−ixi | AQ) ∈ O(1)± E2.

Proof. We do not care about the independence issues brought by AQ. Let us simply bound for any t > 0
and under AQ:

P
(∣∣uTQz−ixi − E

[
uTQz−ixi

]∣∣ ≥ t
)

≤ P
(∣∣uTQz−i(xi − µi)

∣∣ ≥ t

2

)
+ P

(∣∣uT (Qz−i − E
[
Qz−i

])
µi
∣∣ ≥ t

2

)
≤ E

[
Ce−cnt

2/∥Q−i∥2
]
+ Ce−cnt

2

≤ 2Ce−c
′nt2 ,

for some constants C, c, c′ > 0. Besides, we can bound:∣∣E [uTQz−ixi]∣∣ = ∣∣uTE[Qz−i]mi

∣∣ ≤ O(1),

thanks to Lemma F.2.

The last Lemma is then important to employ similar results as Proposition B.50 as in the proof of
Proposition F.12.

Lemma F.40. For any z ∈ C \ Sε:

∀i ∈ [n],Λzi | AQ ∈ Λ̃zi ± E2(κz/
√
n) + E1(κz/n).

Besides, for any deterministic matrix A ∈ Mp:

(xTi AQ
zxi | AQ) ∈ Tr(ΣiAE[Qz])± E2 (κz∥A∥F ) + E1 (κz∥A∥) .

Proof. We will first show the concentration of 1
nx

T
i AQ

z
−ixi for any deterministic matrix A ∈ Mp that will in

particular imply the concentration of Λzi . Recall that under AQ, ∥X∥ ≤ O(1) and ∥Qz∥ ≤ κz. Given i ∈ [n],
we want to bound: ∣∣xTi AQz−ixi − Tr (ΣiAE [Q−i])

∣∣
≤
∣∣xTi AQz−ixi − Tr(ΣiAQ

z
−i)
∣∣+ ∣∣Tr (ΣiA(Qz−i − E[Qz−i])

)∣∣ .
Now we know that, for X−i fixed, we can bound thanks to Proposition D.6:

P
(∣∣xTi AQz−ixi − Tr(ΣTi AQ

z
−i)
∣∣ ≥ t

)
≤ E

[
Ce−c(t/∥Q

z
−i∥∥A∥F )2 + Ce−ct/∥Q

z
−i∥∥A∥

]
≤ Ce−c

′(t/∥A∥Fκz)
2

+ Ce−c
′t/∥A∥κz ,

for some constants C, c, c′ > 0, thanks to Lemma F.2.
Besides, we know from Proposition F.36 and Lemma B.18 that Qz−i ∈ E[Qz]± E2(1/

√
n) in (Mp, ∥ · ∥∗),

which allows us to bound:

P
(∣∣Tr(ΣiAQz−i)− Tr(ΣiAE[Qz])

∣∣ ≥ t
)
≤ Ce−ct

2/∥A∥2
F

for some constants C, c > 0, since ∥Σi∥ ≤ O(1). Putting the two concentration inequalities together, we
obtain the concentration of 1

nx
T
i AQ

z
−ixi.

Now the identity 1
nx

T
i AQ

zxi = 1
n

xT
i AQ

z
−ixi

Λz
i

, and the bounds Λzi ≥ O(|z|/κ̌z) and 1
nx

T
i AQ

z
−ixi ≤ κzρ

allows us to deduce the concentration of 1
nx

T
i AQ

zxi thanks to Lemma A.6 setting the concentration of the
product of concentrated variables.
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F.3 The deterministic equivalents of the powers of the resolvent
Our aim here is to find deterministic equivalent for all the powers (Qz)m, for m ∈ N and for z ∈ C satisfying
d(z, Sε) ≥ O(1) for a given constant ε > 0 (ε ≥ O(1)). For simplicity, we will omit the exponent z of the
resolvent. We continue to work under Assumptions 1-5 we thus won’t recall them in the coming lemmas
and propositions. The main goal of this section is to display the formulas given in Proposition F.47, because
they might be seen in other contexts thereby allowing to interesting analogies. The coming proofs are quite
laborious and do not present all the required justification mainly to avoid complex inferences of little interest.

In the concentration inequalities, it is interesting to keep track of the dependence on m to use it later
for a quasi-asymptotic formulations, we will thus assume sometimes that m ∈ NN is a sequence of integer
(as n and p). Since it is costless to devise directly a deterministic equivalent for QA1QA2, · · ·Am−1Q where
A1, . . . Am−1 are all matrices of unit spectral norm we will consider this general case. Considering from now
on m− 1 matrices A1, . . . , Am−1, where ∀i ∈ [m], ∥Ai∥ ≤ 1 and we note for any matrix M ∈ Mp, k ∈ [m]:

MAk
l =


if k < l : Ip

if k = l : M

if k > l : MAlMAl+1 . . . Ak−1M .

We further note for formulation simplicity Am = Ip.

Proposition F.41. Given a sequence of integer m ∈ NN:

QA
m
1 | AQ ∈ E[QA

m

]± E2
(
mκmz√
n

)
in (Mp, ∥·∥F )

Proof. The result is proven the same way as Proposition F.3, employing the bound onQz given by Lemma F.2.

We now look for a computable deterministic equivalent of QA
m
1 . Let us first provide a useful formula to

start to disentangle the dependence between QA
m
1 and xi; it is a consequence of the Schur formulas (F.8)

Lemma F.42. For any m ∈ N∗:

QA
m
1 = Q

Am
1

−i +
1

Λzin

m∑
l=1

Q
Al

1
−ixix

T
i Q−iAlQ

Am
l+1

where Lmk = {(l1, . . . , lk) ∈ Nk | 1 ≤ l1 < . . . < lk ≤ m} and Lm0 = {()} contains only the 0-tuple (and recall
that Am = Ip).

Proof. The result is just a consequence of the following telescoping sum decomposition (where we setA0, Am =
Ip):

QA
m

−QA
m

−i =

m∑
l=1

QA
l−1

−i Al−1Q
Am

l −QA
l

−iAlQ
Am

l+1

=

m∑
l=1

QA
l−1

−i Al−1(Q−Q−i)AlQ
Am

l+1 =
1

Λzin

m∑
l=1

QA
l

−ixix
T
i Q−iAlQ

Am
l+1 .

Lemma F.43. Given a deterministic vector u ∈ Rp, for any k, l ∈ N such that 1 ≤ k < l < m:

uTQ
Al

k
−i xi | AQ ∈ O

(
κl−k+1
z

)
± E2

(
(cκz)

l−k+1
)
,

for some constant c > 1.
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Corollary F.44.
∥∥EAQ

[QA
m

−i −QA
m
1 ]
∥∥ = O

(
(cκz)

m

n

)
for a constant c > 1.

Proof. We do not use directly the second identity of Lemma F.42 because it would let a term mm appear in
the bound. Instead of the first result of Lemma F.42, one could have stated the identity:

QA
m
1 = Q

Am
1

−i +
1

Λzin

m∑
l=1

QA
l−1
1 Al−1Q−ixix

T
i Q

Am
l

−i ,

(recall the notation A0 = Ip). Putting those two identities together one obtains:

QA
m
1 = Q

Am
1

−i +
1

Λzin

m∑
l=1

Q
Al

1
−ixix

T
i Q

Am
l

−i

+
1

(Λzin)
2

m∑
l=1

m∑
k=l+2

Q
Al

1
−ixix

T
i Q−iAlQ

Ak−1
l+1 Ak−1Q−ixix

T
i Q

Am
k

−i

+
1

(Λzin)
2

m∑
l=1

Q
Al

1
−ixix

T
i Q−iAlQ−ixix

T
i Q

Am
l+1

−i (F.23)

Thus, knowing from Lemmas F.43 and F.2 that given any deterministic vector u ∈ Rp such that ∥u∥ ≤ 1,
any l ∈ [m] and any k ∈ {l + 2, . . . ,m} we have:

• uTQ
Al

1
−ixi | AQ ∈ O(κlz)± E2((cκz)l)

• 1
|Λz

in|

∣∣∣xTi Q−iAlQ
Ak−1

l+1 Ak−1Q−ixi

∣∣∣ ≤ κk−l+1
z κ̌2

z

|z|n ≤ O
(
κk−l
z

n

)
,

one can deduce from the estimation of the product of concentrated random variables given in Lemma A.21
that for all u, v ∈ Rp such that ∥u∥, ∥v∥ ≤ 1:

uTEAQ

[
QA

m

−i −QA
m
1

]
v ≤ O

(
(cκz)

m

n

)
+O

(
(cκz)

k−l−1

n2

)
≤ O

(
(cκz)

m

n

)
.

Before starting the estimation of EAQ
[QA

m
1 ], we still need a result analogous to Lemma F.13.

Lemma F.45. Given k, l ∈ N such that 1 ≤ k < l < m:

QA
l
kX | AQ ∝ E2

(
(cκz)

l−k+1
)
,

for some constant c > 1.

Proof. The concentration is really proven the same way as in the proof of Proposition F.3 (and the fact that
there exists a constant c > 0 such that for all i ∈ [m], i ≤ ci).

To bound ∥EAQ
[QA

l
kxi]∥, we use the identity (F.23) and bound for any deterministic vector u ∈ Rp such

that ∥u∥ ≤ 1:∣∣∣EAQ

[
uTQA

l
kxi

]∣∣∣ = ∣∣∣EAQ

[
uTQA

l
kxi

]∣∣∣+ 1

Λ̂zin

l∑
j=k

∣∣∣∣EAQ

[
uTQ

Aj
k

−i xix
T
i Q

Al
j

−iv

]∣∣∣∣
+

∣∣∣∣∣∣ 1

(Λ̂zin)
2

l∑
j=k

EAQ

[
uTQ

Aj
k

−i xi

]
EAQ

[
xTi Q−iAjQ−ixi

]
EAQ

[
xTi Q

Al
j+1

−i v

]∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

(Λ̂zin)
2

l∑
j=k

l∑
o=j+2

EAQ

[
uTQ

Aj
k

−i xi

]
EAQ

[
xTi Q−iAjQ

Ao−1
j+1Ao−1Q−ixi

]
EAQ

[
xTi Q

Al
o

−iv
]∣∣∣∣∣∣

+O

(
(cκ)l−k+1 +

(l − k)(cκ)l−k+1κ̌z
n|z|

(
1 +

κzκ̌z(l − k)

|z|n

))
≤ O

(
(cκz)

l−k+1
)
,

for some constant c > 0.
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Proposition F.46. With the notation:

TA
m
l ≡ Diagi∈[m]

(
1

nΛzi
xTi Q

Am
l

−i xi

)
,

one can estimate for any (sequence of) integer m and any set of deterministic matrices A1, . . . , Am−1 ∈
Mm−1

p : ∥∥∥QAm
1 −QA

m−1
1 Am−1Q̃

− 1

n

n∑
i=1

m−1∑
k=1

1

Λzi

∑
l∈Lm−1

k

EAQ

[
Tr

(
AQ

A
l1
1

−i ΣiQ̃

)]
T̃
A

l2
l1

i · · · T̃
Am

lk
i

∥∥∥∥∥∥
F

≤ O

(
(cκz)

m

√
n

)
,

where for any k, l ∈ [m], k < l, T̃Al
k is a deterministic matrix satisfying ∥T̃

Am
lk

i −T̃
Am

lk
i ∥F ≤ O((cκz)

l−k+1/
√
n).

Proof. Given a deterministic matrix A ∈ Mp such that ∥A∥F ≤ 1, let us try and estimate
EAQ

[
Tr
(
AQA

m
1 Am(Q− Q̃)

)]
, we allow ourselves not to display all the steps of the calculus since simi-

lar inferences were already displayed in the proofs of Propositions F.12 and F.20. For simplicity, we note Q̃
instead of Q̃Λ̃z

.

EAQ

[
Tr
(
AQA

m−1
1 Am−1(Q− Q̃)

)]
=

1

n

n∑
i=1

EAQ

[
1

z
Tr
(
AQA

m

xix
T
i Q̃
)]

− EAQ

Tr
(
AQA

m

ΣiQ̃
)

Λ̃zi


=

1

n

n∑
i=1

ai + bi + ci

where for all i ∈ [n]:

ai = EAQ

[
Λ̃zi − Λzi
Λzi Λ̃

z
i

Tr
(
AQA

m−1

Am−1Q−ixix
T
i Q̃
)]

bi =
1

Λ̃zi
EAQ

[
Tr
(
A
(
QA

m−1
1 −Q

Am−1
1

−i

)
Am−1Q−ixix

T
i Q̃
)]

ci =
1

Λ̃zi
EAQ

[
Tr
(
A
(
QA

m

−i −QA
m
)
ΣiQ̃

)]
Let us first apply Proposition B.50 with the hypotheses:

• Q̃X | AQ ∝ E2(κz) and ∥E[Q̃xi]∥ ≤ O(1) thanks to Assumption 4, 2,

• QA
m
1 X | AQ ∝ E2((cκz)m)) and ∥EAQ

[QA
m
1 xi]∥ ≤ O((cκz)

m)) given by Lemma F.45,

• Λz | AQ ∈ EAQ
[Λz]± E2

(
κz
√
n

)
in (Dn, ∥ · ∥) given by Lemma F.5,

• ∥EAQ
[Λz]− Λ̂z∥F ≤ O(κz/

√
n) thanks to Lemma F.6,

to set: ∣∣∣∣∣ 1n
n∑
i=1

ai

∣∣∣∣∣ = EAQ

[
Tr

(
AQA

m

X
Λ̃z − Λz

Λ̃z
XT Q̃

)]
≤ O

(
κ̌z(cκz)

m+2

|z|
√
n

)
≤
(
(cκz)

m+1

√
n

)
The bound on ci is just a consequence of Corollary F.44:

|ci| ≤ κz

∥∥∥EAQ

[
QA

l

−i −QA
l
]∥∥∥ = O

(
κmz
n

)
,
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Because it relies on similar justifications, we will directly replace Λzi with Λ̃zi in the coming estimations.
The quantities ai, i ∈ [n], are not negligible as the two others, we need to evaluate it. We can again

inspire from Lemma F.42 and write:

1

n

n∑
i=1

bi =
1

zΛ̃zin
2

n∑
i=1

m−1∑
l=1

EAQ

[
Tr
(
AQA

l
1xix

T
i Q

Am
l

−i xix
T
i Q̃
)]

=
1

zn2

m−1∑
l=1

EAQ

[
Tr
(
AQA

l
1XTXT Q̃

)]
,

(since κ̌zκz/|z| ≤ 1). Noting that TA
m
l ∝ E2

(
(cκz)

m−l

√
n

)
in (Dn, ∥ · ∥), one can use one more time

Proposition B.50 to obtain for any deterministic diagonal matrix T̃A
m
l such that ∥EAQ

[TA
m
l ] − T̃A

m
l ∥F ≤

O
(

(cκz)
m−l+1

√
n

)
:

1

n

n∑
i=1

bi =
1

nz

m−1∑
l=1

EAQ

[
Tr
(
AQA

l
1XT̃A

m
l XT Q̃

)]
+O

(
(cκz)

m

√
n

)

=
1

n

n∑
i=1

1

Λ̃zi

m−1∑
l=1

EAQ

[
Tr
(
AQA

l−1
1 AlQ−ixiT̃

Am
l

i xTi Q̃
)]

+O

(
(cκz)

m

√
n

)

=
1

n

n∑
i=1

1

Λ̃zi

m−1∑
l=1

EAQ

[
xTi Q̃AQ

Al
1

−ixiT̃
Am

l

]
+

1

nzΛ̃zi

n∑
i=1

m−1∑
l=1

l−1∑
k=1

EAQ

[
Tr
(
AQA

k
1xixiQ

Al
k

−i xiT̃
Am

l
i xTi Q̃

)]
+O

(
(cκz)

m

√
n

)
,

With the same resort to Proposition B.50, on can show iteratively that:

1

n

n∑
i=1

bi =
1

n

n∑
i=1

m−1∑
k=1

1

Λ̃zi

∑
l∈Lm−1

k

EAQ

[
xTi Q̃AQ

A
l1
1

−i xiT̃
A

l2
l1

i · · · T̃
Am

lk
i

]
+O

(
(cκz)

m

√
n

)

=
1

n

n∑
i=1

m−1∑
k=1

1

Λ̃zi

∑
l∈Lm−1

k

EAQ

[
Tr

(
AQ

A
l1
1

−i ΣiQ̃

)]
T̃
A

l2
l1

i · · · T̃
Am

lk
i +O

(
(cκz)

m

√
n

)
,

for some constant c′ > 0 (each time one uses the proposition, the bounds of the estimation are the same and
we use it

∑m−1
k=1

(
k

m−1

)
k ≤ (m− 1)2m−1).

Given two integers k, l > 0, h ≤ l and a tuple α = (α−h, . . . , . . . , α0, α1, . . . , αl−1) ∈ [n]l+h, let us note:

Ψhα ≡ EAQ

[
1

n
Tr
(
Σ̃α−h

Q̃ · · · Σ̃α−1
Q̃Σ̃α0

Q · · · Σ̃αl−1
Q
)]
,

where for any i ∈ [n], we noted Σ̃i ≡ Σi/Λ̃
z
i . We further introduce the tensor of shape n× · · · × n (l times)

Φhl ≡
(
Φhα
)
α∈[n]l

. Given h > 0 and replacing in the last estimation A with 1
n Σ̃α1−h

Q̃ · · · Σ̃α−1Q̃Σ̃α0 satisfying:∥∥∥∥ 1n Σ̃α1−h
Q̃ · · · Σ̃α−1Q̃Σ̃α0

∥∥∥∥
F

≤ O

(
1√
n

)
,

we know that for any α = (α−h, . . . , α0, α1, . . . , αm−1) ∈ [n]m+h:

Ψhα −Ψh+1
α =

1

n

n∑
i=1

m−1∑
k=1

∑
l∈Lm−1

k

Ψh+1

α
l1
−h,i

Ψ0

α
l2
l1
,i
· · ·Ψ0

αm
lk
,i +O

(
(cκz)

m

n

)
,
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where for any k, l ∈ {h,m− 1}, k < l, αlk = αk, . . . , αl−1.
Inspiring from this equation, we are going to introduce with next proposition a set of tensors that will

allow us to approximate E[QAm
1 ].

Proposition F.47. There exists a unique sequence of tensors Ψ satisfying:

∀m > 2, h ∈ N, α = (α−h, . . . , αm−1) ∈ [n]m+h :

Ψ̃hα − Ψ̃h+1
α =

1

n

n∑
i=1

m−1∑
k=1

∑
l∈Lm−1

k

Ψ̃h+1

α
l1
−h,i

Ψ̃0

α
l2
l1
,i
· · · Ψ̃0

αm
lk
,i,

∀l ∈ [n], α ∈ [n]l : Ψ̃l−1
α = Ψ̃lα =

1

n
Tr
(
Σ̃α1Q̃ · · · Σ̃αl

Q̃
)
.

Proof. We already know that for any i ∈ [n]:

Ψ̃0
(i) = Ψ̃1

(i) =
1

n
Tr(Σ̃iQ̃)

Let us now assume that there exists m > 1 such that for any k ∈ [m − 1], and any h ∈ {0, . . . , k}, and any
α ∈ [n]k, Ψ̃hα is well defined and we know how to compute it. Besides, for any α ∈ [m]n, we also know how to
compute Ψ̃m−1

α = Ψ̃mα . We then further assume that there exist h ∈ [m] such that we know how to compute
any Ψ̃kα for k < h. If h ≥ 1, then we see from the iteration formula that Ψ̃hα expresses as a sum of computable
elements, the only issue raises when h = 0, then Ψ̃0

α are appearing on both side of the equality. To invoke
the invertibility of Ψ̃2

2, let us first consider:

Ψ̃0
α = Ψ̃1

α +
1

n

n∑
i=1

m−1∑
l=1

Ψ̃1
αl

0,i
Ψ̃0
αm

l ,i
+

1

n

n∑
i=1

m−1∑
k=2

∑
l∈Lm−1

k

Ψ̃1

α
l1
−h,i

· · · Ψ̃0
αm−h

lk
,i

The right hand term that raise concern is
∑n
i=1 Ψ̃

1
α1

0,i
Ψ̃0
αm

1 ,i
. Since Ψ̃0

αm
1 ,i

= Ψ̃0
i,αm

1
and Ψ̃1

2 = Ψ̃2
2, we can

rewrite it (Ψ̃2
2Ψ̃

0
m)α (where the right product of a matrix and a tensor is a classical matricial product on the

first variable of the tensor). We can bound for any α ∈ [n]2:∣∣∣Ψ̃2
α

∣∣∣ ≤ ∥Σα1
∥∥Σα2

∥
|z|2

,

therefore, for |z| sufficiently big, (In − Ψ̃2
2) is invertible and one has the identity:

Ψ̃0
m = (In − Ψ̃2

2)
−1 ·

(
Ψ̃1
α +

1

n

n∑
i=1

m−1∑
l=2

Ψ̃1
αl

0,i
Ψ̃0
αm

l ,i
(F.24)

+
1

n

n∑
i=1

m−1∑
k=2

∑
l∈Lm−1

k

Ψ̃1

α
l1
0 ,i

Ψ̃0

α
l2
l1
,i
· · · Ψ̃0

αm
lk
,i


(α0,...,αm−1)∈[n]m

. (F.25)

Complex analysis inferences should then allow us to set the uniqueness for all the values of z.

Once Ψ̃hm is defined for all m ∈ N, h ∈ [m], one can define iteratively for any sequence of deterministic
matrices A−h, . . . , Am−1 followingly:

∀m > 2, h ∈ N,∀A−h, . . . , Am−1 ∈ Mm+h
p :

Ψ̃hA−h,...,Am−1
− Ψ̃h+1

A−h,...,Am−1

=
1

n

n∑
i=1

m−1∑
k=1

∑
l∈Lm−1

k

Ψ̃h+1
A−h,...,Al1−1,Σi

Ψ̃0
Al1

,...,Al2−1,Σi
· · · Ψ̃0

Alk
,...,Am−1,Σi

,

∀l ∈ [n], A1, . . . , Al ∈ Ml
p : Ψ̃l−1

A−h,...,Am−1
= Ψ̃lA−h,...,Am−1

=
1

n
Tr
(
A1Q̃ · · ·Al−1Q̃Al

¯̃Q
)
.
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One should need a proper proof to justify it, but we will just explain that the existence and uniqueness
is proven iteratively considering sequences of matrices (A1, . . . , Ai, Σ̃αi+1

, . . . , Σ̃αm
) with (αi+1, . . . , αm) ∈

[n]m−i and i going from 1 to m.
We can finally properly estimate QAm

1 . We express this result in the case m constant, but one could
probably get a similar result for an asymptotic m. The proof is just a laborious use of the explicit formulation
(F.24).

Proposition F.48. Given a constant integer m ∈ N and m matrices A1, . . . , Am satisfying ∥Ai∥F ≤ 1, we
can estimate:

Tr(AmQ
Am

1 ) | AQ ∈ Ψ̃0
A1,...,Am

± E2
(
κz√
n

)
.



Chapter G

Concentration of the resolvent with
random diagonal term

We study here the concentration of a resolvent Q = (Ip − 1
nXDX

T )−1 with Assumptions 1-5 for X and
D (in particular D is random). Among other use, this object appears when studying robust regression
[EKBB+13, MLC19a]. In several settings, robust regression can be expressed by the following fixed point
equation:

β =
1

n

n∑
i=1

f(xTi β)xi, β ∈ Rp, (G.1)

where β is the weight vector performing the regression (to classify data, for instance). It was then shown in
[SLTC21] that the estimation of the expectation and covariance of β (and therefore, of the performances of the
algorithm) rely on an estimation of Q, with D = Diag(f ′(xTi β)). To obtain a sharp concentration on Q (as it
is done in Theorem G.1 below), one has to understand the dependence between Q and xi, for all i ∈ [n]. This
is performed with the notation, given for any M = (m1, . . . ,mn) ∈ Mp,n or any ∆ = Diagi∈[n](∆i) ∈ Dn:

• M−i = (m1, . . . ,mi−1, 0,mi+1, . . . ,mn) ∈ Mp,n,

• ∆−i = Diag(∆1, . . . ,∆i−1, 0,∆i+1, . . . ,∆n) ∈ Dn.

Theorem G.1. Given a positive random diagonal matrix D ∈ D+
n and a random matrix X = (x1, . . . , xn),

in the regime1 p ≤ O(n) and under the assumptions:

• (X,D) ∝ E2,

• all the columns x1, . . . , xn are independent,

• O(1) ≤ supi∈[n] ∥E[xi]∥ ≤ O(1),

• for all i ∈ [n], there exists a random positive diagonal matrix D(i) ∈ D+
n , independent of xi, such that

supi∈[n] ∥D−i −D
(i)
−i∥F ≤ O(1),

• there exist2 three constants κ, κD, ε > 0 (ε ≥ O(1) and κ, κD ≤ O(1)), such that ∥X∥ ≤
√
nκ,

∥D(i)∥, ∥D∥ ≤ κD and κ2κD ≤ 1− ε,

1It is not necessary to assume that p ≤ O(n) but it simplifies the concentration result (if p ≫ n, the concentration is not as
good, but it can still be expressed).

2The assumptions ∥X∥/
√
n bounded and κ2κD ≤ 1 − ε might look a bit strong (since it is not true for matrices with i.i.d.

Gaussian entries), it is indeed enough to assume that E[∥X∥] ≤ O(
√
n) and introduce a parameter z > 0 to study the behavior

of (zIp − 1
n
XDXT )−1 when z is far from the spectrum of 1

n
XDXT – as it is done in Section F.1. We however preferred here

to make a relatively strong hypothesis not to have supplementary notations and proof precautions, that might have blurred the
message.
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the resolvent Q ≡ (Ip − 1
nXDX

T )−1 follows the concentration

Q ∈ E[Q]± E3/2

(√
log n

n

)
in (Mp, ∥ · ∥F ).

Inspiring from the formulation of the deterministic equivalent introduced in Chapter F, we introduce the
following notation that will help us to express the deterministic equivalent of Q. Given δ,D ∈ Mn, we note:

Q̃δ(D) ≡

(
Ip −

1

n

n∑
i=1

E
[

Di

1 + δDi

]
Σi

)−1

,

(where we recall that ∀i ∈ [n], Σi ≡ E[xixTi ]).
Theorem G.2. For any diagonal matrix D′ ∈ Dn, the fixed point equation:

δ = Diagi∈[n]

(
ΣiQ̃

δ(D′)
)

admits a unique solution δ(D′) ∈ Dn and, under the hypotheses of Theorem G.1, one can estimate:

∥E[Q]− Q̃δ(D)(D)∥F ≤ O(
√

log n).

Remark G.3. Note here that although there are no term 1/
√
n in the bound, this result still provides some

good convergence bound for the estimation of linear forms like the Stieltjes transform or more generally any
1
n Tr(AQ) when ∥A∥ ≤ 1 (because then 1

n∥A∥F ≤ O(1/
√
n)).

Remark G.4. Unlike in the result of Chapter F (for instance Theorem F.25), there is no resort to the high
probability event AQ here. It is because, as we will see later in Lemma G.6, in the current setting all the
drawings of the resolvent Q are bounded thanks to the hypothesis κ2κD ≤ 1− ε. In the sens, the parameter z
of Chapter F is here always far from the spectrum of 1

nXX
T .

Remark G.5. Let us give two examples of the matrices D(i) that one could encounter in practice:

• For all i ∈ [n], Di = f(xi) for f : Rp → R, bounded, then, Di just depends on xi so one can merely
take D(i) = D−i for all i ∈ [n].

• For the robust regression described by Equation G.1, as in [SLTC21], we can assume for simplicity3

∥f∥∞, ∥f ′∥∞, ∥f ′′∥∞ ≤ O(1). If we choose D = Diag(f ′(xTi β)), then it is convenient to assume
1
n∥f

′∥∞∥X∥2 ≤ 1 − ε (which implies in particular 1
n∥X∥2∥D∥ ≤ 1 − ε) so that β is well defined,

being solution of a contractive fixed point equation. One can further introduce β(i) ∈ Rp, the unique
solution to

β(i) =
1

n

∑
1≤j≤n

j ̸=i

f(xTj β
(i))xj .

By construction, β(i) is independent of xi and so is:

D(i) ≡ Diag
(
f ′(xT1 β

(i)), . . . , f ′(xTi−1β
(i)), 0, f ′(xTi+1β

(i)), . . . , f ′(xTnβ
(i))
)
.

Besides ∥D−i −D
(i)
−i∥F ≤ ∥f ′′∥∞∥XT

−i(β − β(i))∥F . Now, the identities:

XT
−iβ =

1

n
XT

−iXf(X
Tβ) and XT

−iβ
(i) =

1

n
XT

−iX−if(X
T
−iβ

(i))

(where f is applied entry-wise) imply:

∥XT
−i(β − β(i))∥F ≤ 1

n
∥f ′∥∞∥X−i∥2∥XT

−i(β − β(i))∥F +
1

n
f(xTi β)X

T
−ixi.

We can then deduce (since 1
n∥f

′∥∞∥X−i∥2 ≤ 1− ε by hypothesis):

∥D−i −D
(i)
−i∥F ≤ ∥f ′′∥∞∥XT

−i(β − β(i))∥F ≤ ∥f ′′∥∞
nε

f(xTi β)X
T
−ixi ≤ O(1).

3The bound ∥f∥∞ ≤ O(1) is not necessary to set the concentration of Q, but it avoids a lot of complications.
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G.1 Concentration of Q
Lemma G.6. Under the assumptions of Theorem G.1, ∥Q∥ ≤ 1

ε ≤ O(1).

Then we can show a Lipschitz concentration of Q but with looser observable diameter that the one given
by Theorem G.1 (as for XDXT , we get better concentration speed in the linear concentration framework).

Lemma G.7. Under the hypotheses of Theorem G.1:(
Q,

1√
n
QX

)
∝ E2 in (Mp,n, ∥ · ∥F ).

Proof. Let us just show the concentration of the resolvent, the tuple is treated the same way. If we note
ϕ(X,D) = Q and we introduce X ′ ∈ Mp,n and D′ ∈ Dn, satisfying ∥X ′∥ ≤ κ

√
n and ∥D′∥ ≤ κD as X,D,

we can bound:

∥ϕ(X,D)− ϕ(X ′, D)∥F

=
1

n

∥∥ϕ(X,D)(X −X ′)DXTϕ(X ′, D)
∥∥
F
+

1

n

∥∥ϕ(X,D)X ′D(X −X ′)Tϕ(X ′, D)
∥∥
F

≤ 2κκD
ε2
√
n
∥X −X ′∥F ,

thanks to the hypotheses and Lemma G.6 given above. The same way, we can bound:

∥ϕ(X,D)− ϕ(X,D′)∥F ≤ κ2

ε2
∥D −D′∥F

Therefore, as a O(1)-Lipschitz transformation of (X,D), Q ∝ E2.

G.2 Control on the dependency on xi

The dependence between Q and xi prevent us from bounding straightforwardly ∥Qxi∥ with Lemma G.6 and
the hypotheses on xi. We can still disentangle this dependence thanks to the notations:

Q−i =

(
Ip −

1

n
XT

−iDX
T
−i

)−1

and Q
(i)
−i =

(
Ip −

1

n
XT

−iD
(i)XT

−i

)−1

.

We can indeed bound:

∥E[Q(i)
−ixi]∥ ≤ ∥E[Q(i)

−i]E[xi]∥ ≤ O(1), (G.2)

and we even have interesting concentration properties that will be important later:

Lemma G.8. Under the assumptions of Theorem G.1:

Q
(i)
−ixi,

1√
n
XT

−iQ
(i)
−ixi ∈ O(1)± E2.

Proof. Considering u ∈ Rp, deterministic such that ∥u∥ ≤ 1, we can bound thanks to the independence
between Q(i)

−i and xi:∣∣∣uTQ(i)
−ixi − E[uTQ(i)

−ixi]
∣∣∣ ≤ ∣∣∣uTQ(i)

−i (xi − E[xi])
∣∣∣+ ∣∣∣uT (Q(i)

−i − E[Q(i)
−i]
)
E[xi]

∣∣∣ .
Therefore, the concentrations xi ∝ E2 and Q(i)

−i ∝ E2 given in Lemma G.7 imply that there exist two constants
C, c > 0 such that ∀t > 0 such that if we note A−i, the sigma algebra generated by X−i (it is independent
with xi):

P
(∣∣∣uTQ(i)

−ixi − E[uTQ(i)
−ixi]

∣∣∣ ≥ t
)

≤ E
[
P
(∣∣∣uTQ(i)

−i (xi − E[xi])
∣∣∣ ≥ t

2
| A−i

)]
+ P

(∣∣∣uT (Q(i)
−i − E

[
Q

(i)
−i

])
E[xi]

∣∣∣ ≥ t

2

)
≤ E

[
Ce(t/c∥Q

(i)
−i∥)

2
]
+ Ce(t/c∥E[xi]∥)2 ≤ C ′e−t

2/c′ ,
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for some constants C ′, c′ > 0, thanks to the bounds ∥E[xi]∥ ≤ O(1) given in the assumptions and ∥Q(i)
−i∥ ≤

O(1) given by Lemma G.6.
The linear concentration of XT

−iQ
(i)
−ixi/

√
n is proven the same way since one can show as in Lemma G.7

that (X,D) 7→ XT
−iQ

(i)
−i/

√
n is O(1)-Lipschitz on {∥X∥ ≤ κ

√
n, ∥D∥ ≤ κD}, and therefore, XT

−iQ
(i)
−i/

√
n ∝ E2.

Let us adapt the Schur identity to the presence of the diagonal matrix Di:

Q = Q−i −
1

n

DiQ−ixix
T
i Q−i

1 +Di∆i
and Qxi =

Q−ixi
1 +Di∆i

,

where we noted ∆i ≡ 1
nx

T
i Q−ixi. The link between Q−ixi and Q(i)

−ixi is made thanks to:

Lemma G.9. Under the hypotheses of Theorem G.1, for all i ∈ [n]:

∥Q−ixi −Q
(i)
−ixi∥ ∈ O(

√
log n)± E2(

√
log n).

Let us first prove a Lemma of independent interest:

Lemma G.10. Under the hypotheses of Theorem G.1, for all i ∈ [n]∥∥∥∥ 1√
n
XT

−iQ
(i)
−ixi

∥∥∥∥
∞

∈ O(
√

log n)± E2(
√
log n).

Proof. The control on the variation is given by Lemma G.8 (∥·∥∞ ≤ ∥·∥F ) and the bound on the expectation
is a consequence of Proposition B.22 and the bound:

1√
n

∥∥∥E [XT
−iQ

(i)
−ixi

]∥∥∥
∞

≤ 1√
n

∥∥∥E [XT
−iQ

(i)
−i

]
E [xi]

∥∥∥ ≤ O(1). (G.3)

Proof of Lemma G.9. Let us bound directly:∥∥∥(Q−i −Q
(i)
−i

)
xi

∥∥∥ ≤
∥∥∥∥ 1nQ−iX−i(D

(i)
−i −D−i)X

T
−iQ

(i)
−ixi

∥∥∥∥
≤ 1

n
∥Q−iX−i∥∥D(i)

−i −D−i∥F ∥XT
−iQ

(i)
−ixi∥∞ ≤ O

(
1√
n
∥XT

−iQ
(i)
−ixi∥∞

)
.

We can then conclude thanks to Lemma G.10.

G.3 Proof of the concentration
Let us first provide a preliminary result that will allow us to set that xTi QAQxi behaves more or less like a
O(

√
log n)-Lipschitz observation of (X,D, Y ).

Lemma G.11. Under the hypotheses of Theorem G.1, ∀i ∈ [n], and for any deterministic matrices U, V ∈
Mp such that ∥U∥, ∥V ∥ ≤ 1:

∥V QX∥∞ ∈ O
(√

log n
)
± E2

(√
log n

)
.

Be careful that the bound would not have been so tight for ∥QXU∥∞ given U, V ∈ Mn. We just need a
small lemma to be able to bound 1 +∆iDi from below, it is basically a rewriting of Lemma F.7 bounding Λ
in Chapter F.

Lemma G.12. Under the hypotheses of Theorem G.1, ∀i ∈ [n]:

|∆i| ≤
κ2

ε
and ε ≤ 1 +Di∆i ≤ 1 +

κκD
ϵ
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Proof. Let us simply bound for any i ∈ [n]: ∥∆i∥ = 1
n |x

T
i Qxi| ≤ κ2

ε thanks to Lemma G.6. We can then
directly deduce the upper bound of |1 +Di∆i|.

For the lower bound, let us introduce again the matrix Q̌ = (In−D1/2XTXD1/2)−1, we can bound as in
Lemma G.6 ∥Q̌∥ ≤ 1

ε , and we can show again that:

1 +Di∆i = 1 +
Di

n
xTi Qxi =

1

Q̌i
,

which allows us to bound |1 +Di∆i| ≥ 1
∥Q̌∥ ≥ ε.

Proof. Following the same identities and arguments presented in the proof of Lemma G.9, we can bound
thanks to Lemma G.12

∥V QX∥∞ = sup
i∈[n]

∥∥∥∥∥V Q
(i)
−ixi +

1
nV (Q−i −Q

(i)
−i)xi

1 +Di∆i

∥∥∥∥∥
∞

≤ O

(
sup
i∈[n]

(
∥V Q(i)

−ixi∥∞,
1√
n
∥XT

−iQ
(i)
−ixi∥∞

))
.

Introducing, as in Section B.4, (e1, . . . , ep) and (f1, . . . , fn), respectively, the canonical basis of Rp and Rn
we know from Lemma G.8 that for all k ∈ [p] and i, j ∈ [n]:

eTk V Q
(i)
−ixi ∈ O(1)± E2 and

1√
n
fTj X

T
−iQ

(i)
−ixi ∈ O(1)± E2,

since |E[eTk V Q
(i)
−ixi]| ≤ ∥E[Q(i)

−i]∥∥E[xi]∥ ≤ O(1) and similarly, |E[fTj XT
−iQ

(i)
−ixi]/

√
n| ≤ O(1). Following the

arguments displayed in Section B.4, there exist four constants K,C, c, c′ (all ≤ O(1)) such that we can bound:

P(∥V QX∥∞ ≥ t) ≤ P

 sup
i,j∈[n]
k∈[p]

eTk V Q
(i)
−ixi +

1√
n
fTj X

T
−iQ

(i)
−ixi ≥

t

K


≤ max

(
1, n2pCe−t

2/c
)

≤ max(e, C)e−K
2t2/c′ log(n2p).

We can then deduce the concentration of ∥V QX∥∞ since log(n2p) ≤ O(log(n)).

Let us now prove three results of progressive difficulty. Since Q ∝ E2 and xi ∝ E2, one can follow the lines
of Lemma F.40 to set:

Lemma G.13. Under the hypotheses of Theorem G.1:

∆i ≡
1

n
xTi Q−ixi ∈ ∆̄i ± E2

(√
1

n

)
+ E1

(√
1

n

)
,

where we noted ∆̄i ≡ E[ 1nx
T
i Q−ixi] (recall that ∀i ∈ [n] : |∆̄i| ≤ κ2

ε .

We let the reader refer to the proof of Lemma F.40 or more simply to next result to get justifications for
this lemma.

Lemma G.14. Under the hypotheses of Theorem G.1, given a deterministic matrix A ∈ Mp,n:

xTi Q
(i)
−iAQ

(i)
−ixi ∈ O(

√
n∥A∥F )± E2(∥A∥F ) + E1(∥A∥).

Proof. Let us bound:∣∣∣xTi Q(i)
−iAQ

(i)
−ixi − E

[
xTi Q

(i)
−iAQ

(i)
−ixi

]∣∣∣
≤
∣∣∣xTi Q(i)

−iAQ
(i)
−ixi − Tr

(
ΣiQ

(i)
−iAQ

(i)
−i

)∣∣∣+ ∣∣∣Tr(ΣiQ(i)
−iAQ

(i)
−i

)
− Tr

(
ΣiE

[
Q

(i)
−iAQ

(i)
−i

])∣∣∣
One can then deduce the result from Lemma B.19 (setting that if Z ∈ O(σ ± Eq(σ) and 0 ≤ Y ≤ Z, then
Y ∈ O(σ)± Eq(σ)) applied to the concentrations:
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• xTi Q
(i)
−iAQ

(i)
−ixi | A−i ∈ Tr

(
ΣiQ

(i)
−iAQ

(i)
−i

)
± E2(∥A∥F /ε2) + E1(∥A∥/ε2) thanks to Hanson-Wright in-

equality (Proposition B.41),

• |Tr
(
ΣiQ

(i)
−iAQ

(i)
−i

)
| is a ( 1ε∥Σi∥∥A∥F )-Lipschitz transformation of Q(i)

−i, and therefore, one can deduce

from Lemma G.7 that Tr
(
ΣiQ

(i)
−iAQ

(i)
−i

)
∈ Tr

(
ΣiE

[
Q

(i)
−iAQ

(i)
−i

])
± E2(∥A∥F ).

Besides, one can bound:∣∣∣E [xTi Q(i)
−iAQ

(i)
−ixi

]∣∣∣ = ∣∣∣Tr(ΣiE [Q(i)
−iAQ

(i)
−i

])∣∣∣ ≤ O(
√
p∥A∥F ).

Lemma G.15. Under the hypotheses of Theorem G.1, given a deterministic matrix A ∈ Mp,n such that
∥A∥F ≤ 1:

1

n
∥XTQAQX∥d ∈ O

(
1√
n

)
± E1

(√
log n

n

)
.

This Lemma in particular gives us the concentration of any diagonal term of the random matrix
1
nX

TQAQX, i.e. of any 1
nx

T
i QAQxi, i ∈ [n].

Proof. To prove the concentration, let us introduce again the decomposition A = UTΛV , with U, V ∈ Op and
Λ ∈ Dp. We are going to bound the variation of 1

n∥X
TQAQX∥d towards the variations of 1√

n
V QX ∝ E2 (see

Lemma G.7). Let us define the mapping ϕ : M2
p,n → R satisfying for all M,P ∈ Mp,n, ϕ(M,P ) = ∥MTΛP∥d

(with that definition, 1
n∥X

TQAQX∥d = ϕ( 1√
n
V QX, 1√

n
UQX)). Given 4 variables M,P,M ′, P ′ satisfying

∥M∥, ∥P∥, ∥M ′∥, ∥P ′∥ ≤ κ
ε we can bound as in the proof of Corollary B.43:

|ϕ(M,P )− ϕ(M ′, P )| ≤ ∥(M −M ′)TΛP∥d ≤ ∥M −M ′∥F ∥P∥∞∥Λ∥F ≤ ∥M −M ′∥F ∥P∥∞,

and the same way, |ϕ(M,P )− ϕ(M,P ′)| ≤ ∥P − P ′∥F ∥M∥∞. We further invoke Lemma G.11 that provides
the concentration: (

1√
n
∥V QX∥∞,

1√
n
∥UQX∥∞

)
∈ O

(√
log n

n

)
± E2

(√
log n

n

)
. (G.4)

We can then deduce from Theorem B.46 the concentration
√

n
lognϕ(

1√
n
V QX, 1√

n
UQX) ∝ E2+E1 ∝ E1, from

which we deduce the concentration of ∥XTQAQX∥d.
For the estimation, let us first express:

xTi QAQxi = xTi Q−iAQ−ixi(1 +Di∆i)

Thanks to Lemmas G.16, G.14 and the assumptions on the concentration of Di, one can bound:∥∥∥xTi Q(i)
−iAQ

(i)
−ixi(1 +Di∆i)

∥∥∥ ≤ O(
√
n).

To be able to replace Q(i)
−i with Q−i in the previous inequality, one can bound:∣∣∣xTi QAQxi − (1 + (1 +Di∆i))

(
xTi Q

(i)
−iAQ

(i)
−ixi

)∣∣∣
≤
(
1 +

κDκ
2

ε

)(∣∣∣xTi (Q−i −Q
(i)
−i

)
A
(
Q−i −Q

(i)
−i

)
xi

∣∣∣+ ∣∣∣xTi (Q−i −Q
(i)
−i

)
AQ

(i)
−ixi

∣∣∣
+
∣∣∣xTi Q(i)

−iA
(
Q−i −Q

(i)
−i

)
xi

∣∣∣)
We can then invoke the concentrations:
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• ∥xTi Q
(i)
−iA∥, ∥AQ

(i)
−ixi∥ ∈ O(1)± E2 thanks to Lemmas G.8 and B.26.

• ∥(Q−i −Q
(i)
−i)xi∥, ∥xi(Q−i −Q

(i)
−i)∥ ∈ O(

√
log n)± E2(

√
log n) thanks to Lemma G.9

•
∣∣∣xTi Q(i)

−iAQ
(i)
−ixi

∣∣∣ ∈ O(
√
n)± E1 thanks to Lemma G.14.

to be able to finally bound E[ 1n∥X
TQAQX∥d] ≤ O(

√
n) thanks to (G.4) (with U = V = Ip).

Proof of Theorem G.1. Let us consider A ∈ Mp,n such that ∥A∥F ≤ 1 and let us note ϕ(X,D) = Tr(AQ). We
abusively work with X,D and independent copies X ′, D′ satisfying ∥X∥, ∥X ′∥ ≤

√
nκ and ∥D∥, ∥D′∥ ≤ κD

as if they were deterministic variables, and we note Q′
X ≡ ϕ(X ′, D), Q′

D ≡ ϕ(X,D′). Let us bound the
variations

|ϕ(X,D)− ϕ(X ′, D)| = 1

n
|Tr (AQ(X −X ′)DXQ′

X)| ≤ κκD
ε2
√
n
∥X −X ′∥F .

We can also bound as in the proof of Proposition B.48:

|ϕ(X,D)− ϕ(X,D′)| ≤ 1

n
∥XQ′

DAQX∥d ∥D −D′∥F .

The concentration 1/
√
n log n ∥XQ′

DAQX∥d ∈ O(1/
√
log n) ± E1 is provided by Lemma G.15 (actually

Lemma G.15 gives the concentration of ∥XQAQX∥d, but the proof remains the same if one replaces one of
the Q with Q′

D, for a diagonal matrix D′, independent with D). To simplify the use of Theorem B.46, let us
note ϕ̃ ≡

√
n

lognϕ. Then we have:

•
∣∣∣ϕ̃(X,D)− ϕ̃(X ′, D)

∣∣∣ ≤ Ψ1(X,X
′, D) ∥X −X ′∥F with Ψ1(X,D,D

′) ∝ E2 + E1,

•
∣∣∣ϕ̃(X,D)− ϕ̃(X,D′)

∣∣∣ ≤ Ψ2(X,D,D
′) ∥D −D′∥F with Ψ2(X,D,D

′) ∝ E2 + E1,

and we can add an other inequality with an imaginary variable to be able to apply Theorem B.46 with m = 3,
σ = µ1 = µ2 = µ3 = 1 which gives us ϕ̃(X,D) ∝ E2 + E1 + E3/2 from which we can deduce the concentration
of Tr(AQ) =

√
log n/nϕ̃(X,D).

G.4 Proof of the estimation
Lemma G.16. Under the hypotheses of Theorem G.1, given a deterministic matrix A ∈ Mp,n such that
∥A∥F ≤ 1:

xTi QAQxi(1 +Di∆̄i) ∈ O(
√
n)± E2/3

(√
log n

)
.

Proof. Let us first show the concentration of:

ϕ(X,D) ≡ xTi QAQxi(1 +Di∆i) = xTi QAQ−ixi = xTi Q−iAQxi.

Given X,X ′ ∈ X(Ω), we note Q′ ≡ (Ip − 1
nX

′DX ′T )−1 and ∆′ ≡ 1
nx

T
i Q

′xi. One can bound:

|ϕ(X,D)− ϕ(X ′, D)|
≤
∣∣xTi (Q−Q′)AQ−ixi

∣∣+ ∣∣xTi Q′AQxiDi(∆i −∆′
i)
∣∣+ ∣∣xTi Q′

iA(Q−Q′)xi
∣∣

1. One can then bound (
∣∣xTi Q′

−iA(Q−Q′)xi
∣∣ is treated the same way):∣∣xTi (Q−Q′)AQ−ixi

∣∣
=

1

n

∣∣xTi Q(X −X ′)DXTQ′AQ−ixi
∣∣+ 1

n

∣∣xTi QX ′D(X −X ′)TQ′AQ−ixi
∣∣

≤ 2κ2κD
ε2

∥AQ−ixi∥∥X −X ′∥,
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2. besides:

|∆i −∆′
i| ≤

1

n2
∣∣xTi (Q−Q−i)xi

∣∣+ 2

n

∣∣xTi Q′
−i(xi − x′i)

∣∣
≤
(
2κ3κD
ε2
√
n

+
2κ

ε
√
n

)
∥X −X ′∥,

Therefore:

|ϕ(X,D)− ϕ(X ′, D)| ≤ O

(
1√
n

∣∣xTi Q′AQxi
∣∣+ ∥AQ−ixi∥

)
∥X −X ′∥.

We are then left to bound the variation towards D which is slightly more tricky. Let us consider D′ ∈ Dn
and note Q′′ ≡ (Ip − 1

nXD
′XT )−1 and ∆′ ≡ 1

nx
T
i Q

′′xi. This time one should decompose followingly:

|ϕ(X,D)− ϕ(X,D′)|
≤
∣∣xTi (Qi −Q′

i
′)AQxi

∣∣+ ∣∣xTi Q′
i
′AQxiDi(∆i −∆′

i
′)
∣∣+ ∣∣xTi Q′′A(Qi −Q′

i
′)xi
∣∣

1. First let us take advantage of the independence between xi and X−i to bound as in the proof of
Lemma G.9: ∣∣xTi (Qi −Q′

i
′)AQxi

∣∣ = 1

n

∣∣xTi QiX−i(D −D′)X−iQ
′
i
′AQxi

∣∣
≤ κ2

ε2

∥∥∥∥ 1√
n
xTi QiX−i

∥∥∥∥
∞

∥AQ−ixi∥∥D −D′∥F

2. Second, let us bound:

|∆i −∆′
i
′| ≤ 1

n2
∣∣xTi Q−iX−i(D −D′′)X−iQ−ixi

∣∣ ≤ κ4

ε2
√
n
∥D −D′′∥

That allows us to set that:

|ϕ(X,D)− ϕ(X,D′)| ≤ O

(
1√
n

∣∣xTi Q′AQxi
∣∣+ ∥∥∥∥ 1√

n
xTi QiX−i

∥∥∥∥
∞

∥AQ−ixi∥
)
∥D −D′∥F

We have then all the elements to apply Theorem B.46 with the concentrations:

• 1√
logn

∥AQ−ixi∥ ∈ O(1) ± E2(1) thanks to Lemmas G.8, G.9 and the fact that E[∥AQ(i)
−ixi∥] ≤√

E[xTi Q
(i)
−iAAQ

(i)
−ixi] ≤ 1

ε∥E[xix
T
i ]∥1/2∥A∥F ≤ O(1).

• 1√
n logn

∣∣xTi Q′AQxi
∣∣ ∈ O(1/

√
log n)± E2 thanks to Lemma G.15

•
∥∥∥ 1√

n logn
xTi QiX−i

∥∥∥
∞

∈ O(1)± E2 thanks to Lemma G.10.

and the parameters σ = 1 and µ = (1, 1, 1) to obtain:

xTi QAQxi(1 +Di∆i) ∈ E2
(√

log n
)
+ E1

(√
log n

)
+ E2/3(

√
log n).

To show the concentration of xTi QAQxi(1 +Di∆̄i), note that:∣∣xTi QAQxi(1 +Di∆̄i)− xTi QAQxi(1 +Di∆i)
∣∣ ≤ κD

∣∣xTi QAQxi∣∣ ∣∣∆i − ∆̄i

∣∣ ,
Lemma A.7 allows us to set the concentration of the product between xTi QAQxi ∈ O(

√
n) ± E1 and∣∣∆i − ∆̄i

∣∣ ∈ 0± E2(1/
√
n) + E1(1/n) satisfying

∣∣∆i − ∆̄i

∣∣ ≤ κ2

ε :∣∣xTi QAQxi∣∣ ∣∣∆i − ∆̄i

∣∣ ∈ O(1)± E2(1) + E1(1/
√
n)

Lemma B.19 then allows us to conclude on the concentration of xTi QAQxi(1 +Di∆i).
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The existence of the deterministic parameters δ ∈ Dn such that:

δ =
1

n
Diagi∈[n] Tr(ΣiQ̃

δ(D))recall that Q̃δ(D) ≡

(
Ip −

1

n

n∑
i=1

E
[

Di

1 +Diδi

]
Σi

)−1


is a consequence of Theorem F.18. Note that Corollary F.24 giving a deterministic equivalent for Q =
(Ip − 1

nXX
T )−1 imposes the columns of X to be independent but they can possibly be non identically

distributed. It concerns in particular the case of matrices (Ip − 1
nXD̃X

T )−1 for deterministic diagonal
matrices D̃ as stated below. It is at the basis of the estimation of E[Q] = E[(Ip − 1

nXDX
T )−1].

Proof of Theorem G.2. Let us introduce the resolvent Q̄ ≡ (Ip − 1
nXD̄X

T )−1 where we defined

D̄ ≡
E
[

D
Ip+∆̄D

]
Ip −∆E

[
D

Ip+∆̄D

] .
As will be understood later, this elaborated definition is taken for D̄ to satisfy the following relation:

D̄

Ip + D̄∆̄
= E

[
D

Ip + ∆̄D

]
,

it implies in particular that Q̃δ(D) = Q̃δ(D̄) for any δ ∈ Dn. Let us then consider a deterministic matrix
A ∈ Mp, such that ∥A∥F ≤ 1 and bound:∣∣E[Tr(AQ)]− E[Tr(AQ̄)]

∣∣
=

1

n

n∑
i=1

∣∣E [xTi QAQ̄xi∆̄−1
i

(
∆̄iDi + 1− (∆̄iD̄i + 1)

)]∣∣
=

1

n

n∑
i=1

∣∣∣∣E [xTi QAQ̄xi∆̄−1
i

(
∆̄iDi + 1

) (
∆̄iD̄i + 1

)( 1

∆̄iD̄i + 1
− 1

∆̄iDi + 1

)]∣∣∣∣
=

1

n

n∑
i=1

∣∣∣∣E [xTi QAQ̄xi (∆̄iDi + 1
) (

∆̄iD̄i + 1
)( Di

∆̄iDi + 1
− E

[
Di

∆̄iDi + 1

])]∣∣∣∣
=

1

n

n∑
i=1

∣∣∣∣∣E
[(
xTi QAQ̄xi

(
∆̄iDi + 1

)
− E

[
xTi QAQ̄xi

(
∆̄iDi + 1

)]) Di

(
∆̄iD̄i + 1

)
∆̄iDi + 1

]∣∣∣∣∣
= κD

(
κDκ

2

ε
+ 1

)
sup
i∈[n]

E
[∣∣xTi QAQ̄xi (∆̄iDi + 1

)
− E

[
xTi QAQ̄xi

(
∆̄iDi + 1

)]∣∣]
≤ O

(√
log n

)
Thanks to Lemma G.16. Then Corollary F.24 allows us to state that the deterministic diagonal matrix
δ(D̄) ∈ Dn solution to:

δ =
1

n
Tr
(
ΣiQ̃

δ(D̄)
) (

=
1

n
Tr
(
ΣiQ̃

δ(D)
))

,

satisfies the estimation:∥∥∥E[Q]− Q̃δ(D)(D)
∥∥∥
F
≤
∥∥E[Q]− E[Q̄]

∥∥
F
+
∥∥∥E[Q̄]− Q̃δ(D)(D)

∥∥∥
F
≤ O

(√
log n+

1√
n

)
≤ O

(√
log n

)
.
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The same way that Theorem G.1 can be linked to Proposition B.48 giving the linear concentration of
XDXT , the next proposition can be linked to Proposition B.45 giving the Lipschitz concentration of XDXTu
for any deterministic u ∈ Rp.

Proposition G.17. In the setting of Theorem G.1, for any deterministic vector u ∈ Rp such that ∥u∥ ≤ O(1):

Qu ∝ E1

(√
log n

n

)
.

Proof. With the same variables X,X ∈ Mp,n, D,D′ ∈ Dn and with the same notations Q,Q′
X , Q

′
D as in the

proof of Theorem G.1, we bound:

∥Qu−Q′
Xu∥ =

1

n

∥∥Q(X −X ′)DXTQ′
Xu
∥∥+ 1

n

∥∥QX ′D(X −X ′)TQ′
Xu
∥∥

≤ κκD
ε2
√
n
∥X −X ′∥ ,

Second:

∥Qu−Q′
Du∥ =

1

n

∥∥Q′
DX(D −D′)XTQu

∥∥ ≤ κ

ε
√
n
∥D −D′∥F ∥XTQu∥∞,

and we know from Lemma G.11 that ∥XTQu∥∞ ∈ O(
√
log n)+E2(

√
log n), which allows us to conclude with

Theorem B.46 that: √
n

log n
Qu ∝ E2 + E1,

but the E2 decay can here be removed since the E1 is looser.



Part III

Applications to machine learning
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We present here some selected applications of our PhD research. Despite the fact that they are all relying
on the random matrix inferences we presented in the previous part, they are also quite diverse and will provide
different insights into machine learning algorithms. The first one gives some elementary key of understanding
of the choice of activation functions in neural networks. The second one gives some theoretical clue to
apprehend heavy tailed distribution through the study of scatter matrix estimation. The third application
gives theoretical ground to the leave-one-out technique that allows to predict the performances of wide range
of algorithms. For that we provide a very general but not fully achieved study of empirical risk minimization
that one could call more precisely ℓ2-regularized convex robust regression.

All those applications rely on quite similar hypotheses concerning a “raw” data matrix X = (x1, . . . , xn),
close to the hypotheses adopted for the study of the resolvent that we recall below. Depending on the
application, we will give some modification of these assumptions to adapt to the object and settings under
study, we will then keep the number and add a “bis” or “ter” to highlight the fact that it is not the initial
assumption assumed in previous part.

In all the application, we will assume that the dimension of the data p is of the same order or lower than
the number of data n. A classical normalization with n will ensure the convergence.

Assumption 1. p ≤ O(n).

The concentration hypothesis on X will not always be satisfied. In particular, for ELM the data is
considered to be deterministic and we rather look at the randomness of the weights of the neural network.
For the robust estimation of the scatter matrix, X will present some non concentrated component. Depending
on the applications, we will therefore have some modifications of this assumption.

Assumption 2. X ∝ E2

When X is random we will always assume the independence of the data since it is at the basis of our
study of the resolvent. We however do not not assume that the data are identically distributed.

Assumption 3. X has independent columns x1, . . . , xn ∈ Rp.

Recalling the notation:

∀i ∈ [n] : µi ≡ E[xi] Σi ≡ E[xixTi ] and Ci ≡ Σi − µiµ
T
i ,

we know from Proposition B.20 that sup1≤i≤n ∥Ci∥ ≤ O(1). We then present the last hypothesis that allows
the convergence of the resolvent in the Frobenius norm. Actually in [LLC18], we could develop our study
with the presence of a signal of norm of order O(

√
n) in the data, but in that case we also had to assume

that the number of different distributions was bounded by a constant independent with n. We preferred here
not to consider this case to simplify the message.

Assumption 4. supi∈[n] ∥µi∥ ≤ O(1).

Assumption 5. ∃K > 0 such that ∀n ∈ N, ∀i ∈ [n] : Σi ≥ KIp.
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Chapter H

Influence of activation function in ELM

Artificial neural networks, developed in the late fifties [Ros58] in an attempt to develop machines capable of
brain-like behaviors, know today an unprecedented research interest, notably in its applications to computer
vision and machine learning at large [KSH12, Sch15] where superhuman performances on specific tasks are
now commonly achieved. Recent progress in neural network performances however find their source in
the processing power of modern computers as well as in the availability of large datasets rather than in the
development of new mathematics. In fact, for lack of appropriate tools to understand the theoretical behavior
of the non-linear activations and deterministic data dependence underlying these networks, the discrepancy
between mathematical and practical (heuristic) studies of neural networks has kept widening. A first salient
problem in harnessing neural networks lies in their being completely designed upon a deterministic training
dataset X = [x1, . . . , xn] ∈ Mp,n, so that their resulting performances intricately depend first and foremost
on X. Recent works have nonetheless established that, when smartly designed, mere randomly connected
neural networks can achieve performances close to those reached by entirely data-driven network designs
[RR07, SKC+11]. As a matter of fact, to handle gigantic databases, the computationally expensive learning
phase (the so-called backpropagation of the error method) typical of deep neural network structures becomes
impractical, while it was recently shown that smartly designed single-layer random networks (as studied
presently) can already reach superhuman capabilities [CGBZ15] and beat expert knowledge in specific fields
[JH04]. These various findings have opened the road to the study of neural networks by means of statistical
and probabilistic tools [CHM+15, GSB15]. The second problem relates to the non-linear activation functions
present at each neuron, which have long been known (as opposed to linear activations) to help design universal
approximators for any input-output target map [HSW89].

In this work, we propose an original random matrix-based approach to understand the end-to-end regres-
sion performance of single-layer random artificial neural networks, sometimes referred to as extreme learning
machines [HZS06, HZDZ12], when the number n and size p of the input dataset are large and scale propor-
tionally with the number m of neurons in the network. Our approach has several interesting features both
for theoretical and practical considerations. It is the first one of the few known attempts to move the random
matrix realm away from matrices with independent or linearly dependent column entries. Notable exceptions
are the line of works surrounding kernel random matrices [El 10, CB16] as well as large dimensional robust
statistics models [CPS15, ZCS14]. Here, to alleviate the non-linear difficulty, we exploit concentration of mea-
sure arguments [Led05], thereby pushing further the original ideas of [El 09] established for simpler random
matrix models. While we believe that more powerful, albeit more computational intensive, tools (such as an
appropriate adaptation of the Gaussian tools advocated in [PŜ11]) cannot be avoided to handle advanced
considerations in neural networks, we demonstrate here that the concentration of measure phenomenon allows
one to fully characterize the main quantities at the heart of the single-layer regression problem at hand.

In terms of practical applications, our findings shed light on the already incompletely understood extreme
learning machines which have proved extremely efficient in handling machine learning problems involving
large to huge datasets [HZDZ12, CGBZ15] at a computationally affordable cost. But our objective is also to
pave the path to the understanding of more involved neural network structures, featuring notably multiple
layers and some steps of learning by means of backpropagation of the error.

Our main contribution is therefore twofold. By assuming a random m-neuron single-layer network
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with Lipschitz continuous activation function σ(·), fulfilling a ridge-regression task from an input dataset
x1, . . . , xn ∈ Rp to an output sequence y1, . . . , yn ∈ Rd reconstituted as s1, . . . , sn, we first provide a deter-
ministic equivalent for the so-called training mean-square error 1

n

∑n
i=1 ∥yi − si∥2 in the limit where n,m, p

grow at the same rate. In passing, as a result of independent mathematical interest, we obtain a deterministic
equivalent for the empirical spectral measure of the Gram matrix

G =
1

n
σ
(
WTX

)T
σ
(
WTX

)
where W ∝ E2 has independent entries (for intance Wi,j ∝ N (0, 1)), X = [x1, . . . , xn] is such that
lim supn ∥XXT ∥ <∞, and σ(·) is applied entry-wise.)

Our second result, for which we only provide heuristic arguments, unveils a deterministic approximation
for the testing mean-square error 1

n̂

∑n̂
i=1 ∥ŷi − ŝi∥2, which is the error achieved when new data x̂1, . . . , x̂n̂

with corresponding outputs ŷ1, . . . , ŷn̂, are evaluated by the aforementioned regressor (designed solely from
X and y1, . . . , yn) as ŝ1, . . . , ŝn̂. Simulations on real image datasets are provided that corroborate our results.

In practical terms, these findings provide new insights into the roles played by the activation function
σ(·), the random distribution of the entries of W , and the ridge-regression parameter in the neural network
performance. We notably exhibit and prove some peculiar behaviors, such as the impossibility for the
network to carry out elementary Gaussian mixture classification tasks, when either the activation function
or the random weights distribution are ill chosen.

Besides, for the practitioner, the theoretical formulas retrieved in this work allow for a fast offline tuning
of the aforementioned hyperparameters of the neural network, notably when n is not too large compared
to p. The graphical results provided in the course of the section were particularly obtained within a 100 to
500-fold gain in computation time between theory and simulations.

The remainder of the chapter is structured as follows: in Section H.1, we introduce the mathematical
model of the system under investigation. Our main results are then described and discussed in Section H.2.
Section H.3 discusses our main findings.

H.1 System Model

We consider a single layer random neural network defined as follows. Each input data x ∈ Rp is multiplied
by the transpose matrix of W = (w1, . . . , wn) ∈ Mp,m; a non-linear function σ : R → R is then applied
entry-wise to the vector WTx. The output s ∈ Rd of the neural network is the inner product βTσ(WTx) for
some matrix β ∈ Mn,d to be designed, i.e.,

s = βTσ(WTx). (H.1)

The m neurons of the network are the virtual units operating the mapping wTi x 7→ σ(wTi x), for 1 ≤ i ≤ m.
The neural network operates in two phases: a training phase where the regression matrix β is learned

based on a known input-output dataset pair (X,Y ) and a testing phase where, for β now fixed, the network
operates on a new input dataset X̂ with corresponding unknown output Ŷ .

During the training phase, based on a set of known input X = [x1, . . . , xn] ∈ Mp,n and output Y =
[y1, . . . , yn] ∈ Md,n datasets, the matrix β is chosen so as to minimize the mean square error 1

n

∑n
i=1 ∥si −

yi∥2 + γ∥β∥2F , where si = βTσ(WTxi) and γ > 0 is some regularization factor. This leads β to be explicitly
given by the ridge-regressor

β =
1

n
Z

(
1

n
ZTZ + γIm

)−1

Y T

where we defined Z ≡ σ(WTX). We will also denote Q ≡ ( 1nZ
TZ + γIm)−1, the resolvent of 1

nZ
TZ.
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The main theoretical interest of this section is to provide preliminary results on the behavior of the
random matrix Q which intervenes as a key quantity in the evaluation of the neural network performances.
Notably, it easily appears that the mean-square error Etrain on the training dataset X, given by

Etrain =
1

n

∥∥Y T − ZTβ
∥∥2
F
=
γ2

n
TrY TY Q2 (H.2)

is strongly related to Q. Under the growth rate assumptions on n, p,m taken below, it shall appear that
the random variable Etrain concentrates around its mean, letting then appear E[Q2] as a key quantity in the
asymptotic evaluation of Etrain.

The testing phase of the neural network is more interesting in practice as it unveils the actual performance
of neural networks. For a test dataset X̂ ∈ Mp,n̂ of length n̂, with unknown output Ŷ ∈ Md,n̂, the test
mean-square error is defined by

Etest =
1

n̂

∥∥∥Ŷ T − ẐTβ
∥∥∥2
F

where Ẑ = σ(WT X̂) and β is the same as used in (H.2) (and thus only depends on (X,Y ) and γ). One of
the key questions in the analysis of such an elementary neural network lies in the determination of γ which
minimizes Etest (and is thus said to have good generalization performance). Notably, small γ values are
known to reduce Etrain but to induce the popular overfitting issue which generally increases Etest, while large
γ values engender both large values for Etrain and Etest.

From a mathematical standpoint though, the study of Etest brings forward some technical difficulties
that do not allow for as a simple treatment through the present concentration of measure methodology as
the study of Etrain. Nonetheless, the analysis of Etrain allows at least for heuristic approaches to become
available, which we shall exploit to propose an asymptotic deterministic approximation for Etest.

To study the large data and network behavior of Q and Etrain, we shall make the following growth rate
assumptions:

Assumption 1 bis (Growth Rate). p ≤ O(n), m ≤ O(n). In addition:

Besides, as explained, we assume that X is deterministic therefore the concentration hypotheses make
the following assumption on W .

Assumption 2 bis. The matrix W has independent identically distributed columns w1, . . . , wm.

Assumption 3 bis (Concentrated W ). W ∝ E2.

For a = φ(b) ∈ Rℓ, ℓ ≥ 1, with b ∼ N (0, Iℓ), we shall subsequently denote a ∼ Nφ(0, Iℓ). Assumption 3
bis concerns in particular any matrix W satisfying ∀(i, j) ∈ [p]× [m]: Wij ∼ N (0, 1) or Wij ∼ U(−1, 1) (the
uniform distribution on [−1, 1]).

Assumption 4 bis. supi∈[m] ∥E[wi]∥ ≤ O(1), ∥X∥ < O(1) and ∥Y ∥∞ < O(1).

Finally, we add the following regularity condition on the function σ.

Assumption 6 (Function σ). The function σ is Lipschitz continuous with parameter λσ independent of n.

Under Assumptions 1 bis-6, one can deduce that ∥E[σ(wTi X)]∥ ≤ O(1) which allow us to apply the results
on the resolvent as one will see below. This assumption holds for many of the activation functions traditionally
considered in neural networks, such as sigmoid functions, the rectified linear unit σ(t) = max(t, 0), or the
absolute value operator.
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H.2 Main Results

2.1 Main technical results and training performance
A key quantity in the performance evaluation of the neural network under study is the matrix

Σ = E
[
σ(wTX)Tσ(wTX)

]
(H.3)

of size m×m where w is any columns of W (they are identically distributed).
The deterministic equivalent of the resolvent Q = ( 1nZ

TZ + γIm)−1 is given thanks to Corollary F.24:∥∥∥E[Q]− Q̃
∥∥∥
F
≤ O

(
1√
n

)
(H.4)

where we defined as usual:

Q̃ ≡
(
m

n

Σ

1 + δ
+ γIm

)−1

and δ satisfies δ = 1
n TrΣQ̃.

For convenience, in the following, we shall denote

Σ̃ =
m

n

Σ

1 + δ
. (H.5)

Estimation H.4 also provides the central step in the evaluation of Etrain, for which not only E[Q] but also
E[Q2] needs be estimated. This last ingredient is provided by Proposition F.48 that we expressed for the
case m = 2 below.

Proposition H.1 (Asymptotic equivalent for E[QAQ]). Let Assumptions 1 bis–6 hold and A ∈ Mm,m be a
symmetric non-negative definite matrix which is either Σ or a matrix with uniformly bounded operator norm
(with respect to n). Then, for all ε > 0, there exists c > 0 such that∥∥∥∥∥∥E[QAQ]−

Q̃AQ̃+

1
n Tr

(
Σ̃Q̃AQ̃

)
1− 1

n Tr Σ̃2Q̃2
Q̃Σ̃Q̃

∥∥∥∥∥∥
F

≤ O

(
1√
n

)
.

As an immediate consequence of Proposition H.1, we have the following result on the training mean-square
error of single-layer random neural networks.

Proposition H.2 (Asymptotic training mean-square error). Let Assumptions 1 bis–6 hold and Q̃, Σ̃ be
defined as in Estimation H.4 and (H.5). Then, for all ε > 0,

Etrain ∈ Ētrain ± E2
(

1√
n

)
,

where:

Etrain =
1

n

∥∥Y T − ZTβ
∥∥2
F
=
γ2

n
TrY TY Q2

Ētrain =
γ2

n
TrY TY Q̃

[
1
n Tr Σ̃Q̃2

1− 1
n Tr(Σ̃Q̃)2

Σ̃ + Im

]
Q̃.

Since Q̃ and Σ share the same orthogonal eigenvector basis, it appears that Etrain depends on the alignment
between the right singular vectors of Y and the eigenvectors of Σ, with weighting coefficients(

γ

λi + γ

)2
(
1 + λi

1
n

∑n
j=1 λj(λj + γ)−2

1− 1
n

∑n
j=1 λ

2
j (λj + γ)−2

)
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where we denoted λi = λi(Σ̃), 1 ≤ i ≤ n, the eigenvalues of Σ̃ (which depend on γ through λi(Σ̃) =
m

n(1+δ)λi(Σ)). If lim infnm/n > 1, it is easily seen that δ → 0 as γ → 0, in which case, Etrain → 0 almost
surely. However, in the more interesting case in practice where lim supnm/n < 1, δ → ∞ as γ → 0 and
Etrain consequently does not have a simple limit (see Section 3.3 for more discussion on this aspect).

Proposition H.2 is also reminiscent of applied random matrix works on empirical covariance matrix models,
such as [BS07, KKHN09], then further emphasizing the strong connection between the non-linear matrix
σ(WTX) and its linear counterpart WΣ

1
2 .

2.2 Testing performance
As previously mentioned, harnessing the asymptotic testing performance Etest seems, to the best of the
authors’ knowledge, out of current reach with the sole concentration of measure arguments used for the
proof of the previous main results. Nonetheless, if not fully effective, these arguments allow for an intuitive
derivation of a deterministic equivalent for Etest, which is strongly supported by simulation results.

To introduce this result, let X̂ = [x̂1, . . . , x̂n̂] ∈ Mp,n̂ be a set of input data with corresponding output
Ŷ = [ŷ1, . . . , ŷn̂] ∈ Md,n̂. We also define Ẑ = σ(WT X̂) ∈ Mp,n̂. We assume that X̂ and Ŷ satisfy the same
growth rate conditions as X and Y in Assumption 1 bis. To introduce our claim, we need to extend the
definition of Σ in (H.3) and Σ̃ in (H.5) to the following notations: for all pair of matrices (A,B) of appropriate
dimensions,

ΣAB = E
[
σ(wTA)Tσ(wTB)

]
Σ̃AB =

m

n

ΣAB
1 + δ

where w ∼ Nφ(0, Ip). In particular, Σ = ΣXX and Σ̃ = Σ̃XX .
With these notations in place, we are in position to state our estimation of the test error.

Proposition H.3 (Deterministic equivalent for Etest). Let Assumptions 1 bis–6 hold and X̂, Ŷ satisfy the
same conditions as X,Y in Assumption 1 bis. Then, for all ε > 0,

Etest ∈ Ētest ± E2
(

1√
n

)
,

where:

Etest =
1

n̂

∥∥∥Ŷ T − ẐTβ
∥∥∥2
F

Ētest =
1

n̂

∥∥∥Ŷ T − Σ̃T
XX̂

Q̃Y T
∥∥∥2
F

+
1
n TrY TY Q̃Σ̃Q̃

1− 1
n Tr(Σ̃Q̃)2

[
1

n̂
Tr Σ̃X̂X̂ − 1

n̂
Tr(Im + γQ̃)(Σ̃XX̂Σ̃X̂XQ̃)

]
.

While not immediate at first sight, one can confirm (using notably the relation Σ̃Q̃+ γQ̃ = Im) that, for
(X̂, Ŷ ) = (X,Y ), Ētrain = Ētest, as expected.

In order to evaluate practically the results of Proposition H.2 and Proposition H.3, it is a first step to be
capable of estimating the values of ΣAB for various σ(·) activation functions of practical interest. Such results,
which call for completely different mathematical tools (mostly based on integration tricks), are provided in
the subsequent section.

2.3 Evaluation of ΣAB

The evaluation of ΣAB = E[σ(wTA)Tσ(wTB)] for arbitrary matrices A,B naturally boils down to the
evaluation of its individual entries and thus to the calculus, for arbitrary vectors a, b ∈ Rp of

E[σ(wTa)σ(wT b)] = (2π)−
p
2

∫
σ(φ(w̃)Ta)σ(φ(w̃)T b)e−

1
2∥φ(w̃)∥2

dw̃. (H.6)
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σ(t) Σab

t aT b

max(t, 0) 1
2π∥a∥∥b∥

(
∠(a, b) acos(−∠(a, b)) +

√
1− ∠(a, b)2

)
|t| 2

π∥a∥∥b∥
(
∠(a, b) asin(∠(a, b)) +

√
1− ∠(a, b)2

)
erf(t) 2

π asin

(
2aT b√

(1+2∥a∥2)(1+2∥b∥2)

)
1{t>0}

1
2 − 1

2π acos(∠(a, b))

sign(t) 2
π asin(∠(a, b))

cos(t) exp(− 1
2 (∥a∥

2 + ∥b∥2)) cosh(aT b)
sin(t) exp(− 1

2 (∥a∥
2 + ∥b∥2)) sinh(aT b).

Table H.1: Values of Σab for w ∼ N (0, Ip), ∠(a, b) ≡ aT b
∥a∥∥b∥ .

The evaluation of (H.6) can be obtained through various integration tricks for a wide family of mappings
φ(·) and activation functions σ(·). The most popular activation functions in neural networks are sigmoid
functions, such as σ(t) = erf(t) ≡ 2√

π

∫ t
0
e−u

2

du, as well as the so-called rectified linear unit (ReLU) defined
by σ(t) = max(t, 0) which has been recently popularized as a result of its robust behavior in deep neural
networks. In physical artificial neural networks implemented using light projections, σ(t) = |t| is the preferred
choice. Note that all aforementioned functions are Lipschitz continuous and therefore in accordance with
Assumption 6.

Despite their not abiding by the prescription of Assumptions 3 bis and 6, we believe that the following
results could be extended to more general settings, as discussed in Section H.3. In particular, one of the
key ingredients in the proof of all our results is that the vector σ(wTX) follows a concentration of measure
phenomenon, induced by the Gaussianity of w̃ (if w = φ(w̃)), the Lipschitz character of σ and the norm
boundedness of X. It is likely, although not necessarily simple to prove, that σ(wTX) may still concentrate
under relaxed assumptions. This is likely the case for more generic vectors w than Nφ(0, Ip) as well as for a
larger class of activation functions, such as polynomial or piece-wise Lipschitz continuous functions.

In anticipation of these likely generalizations, we provide in Table H.1 the values of Σab for w ∼ N (0, Ip)
(i.e., for φ(t) = t) and for a set of functions σ(·) not necessarily satisfying Assumption 6. Denoting Σ ≡
Σ(σ(t)), it is interesting to remark that, since arccos(x) = − arcsin(x) + π

2 , Σ(max(t, 0)) = Σ( 12 t) + Σ( 12 |t|).
Also, [Σ(cos(t)) + Σ(sin(t))]a,b = exp(− 1

2∥a − b∥2), a result reminiscent of [RR07].1 Finally, note that
Σ(erf(κt)) → Σ(sign(t)) as κ→ ∞, inducing that the extension by continuity of erf(κt) to sign(t) propagates
to their associated kernels.

In addition to these results for w ∼ N (0, Ip), we also evaluated Σab = E[σ(wTa)σ(wT b)] for σ(t) =
ζ2t

2 + ζ1t + ζ0 and w ∈ Rp a vector of independent and identically distributed entries of zero mean and
moments of order k equal to mk (so m1 = 0); w is not restricted here to satisfy w ∼ Nφ(0, Ip). In this case,
we find

Σab = ζ22
[
m2

2

(
2(aT b)2 + ∥a∥2∥b∥2

)
+ (m4 − 3m2

2)(a
2)T (b2)

]
+ ζ21m2a

T b

+ ζ2ζ1m3

[
(a2)T b+ aT (b2)

]
+ ζ2ζ0m2

[
∥a∥2 + ∥b∥2

]
+ ζ20 (H.7)

where we defined (a2) ≡ [a21, . . . , a
2
p]
T .

It is already interesting to remark that, while classical random matrix models exhibit a well-known
universality property — in the sense that their limiting spectral distribution is independent of the moments
(higher than two) of the entries of the involved random matrix, here W —, for σ(·) a polynomial of order
two, Σ and thus µn strongly depend on E[W k

ij ] for k = 3, 4. We shall see in Section H.3 that this remark

1It is in particular not difficult to prove, based on our framework, that, as m/n → ∞, a random neural network composed
of m/2 neurons with activation function σ(t) = cos(t) and m/2 neurons with activation function σ(t) = sin(t) implements a
Gaussian difference kernel.
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has troubling consequences. We will notably infer (and confirm via simulations) that the studied neural
network may provably fail to fulfill a specific task if the Wij are Bernoulli with zero mean and unit variance
but succeed with possibly high performance if the Wij are standard Gaussian (which is explained by the
disappearance or not of the term (aT b)2 and (a2)T (b2) in (H.7) if m4 = m2

2).

H.3 Practical Outcomes

We discuss in this section the outcomes of our main results in terms of neural network application.

3.1 Simulation Results

We first provide in this section a simulation corroborating the findings of Proposition H.2 and suggesting
the validity of Proposition H.3. To this end, we consider the task of classifying the popular MNIST image
database [LCB98], composed of grayscale handwritten digits of size 28×28, with a neural network composed
of m = 512 units and standard Gaussian W . We represent here each image as a p = 784-size vector; 1 024
images of sevens and 1 024 images of nines were extracted from the database and were evenly split in 512
training and test images, respectively. The database images were jointly centered and scaled so to fall close
to the setting of Assumption 1 bis on X and X̂ (an admissible preprocessing intervention). The columns
of the output values Y and Ŷ were taken as unidimensional (d = 1) with Y1j , Ŷ1j ∈ {−1, 1} depending on
the image class. Figure H.1 displays the simulated (averaged over 100 realizations of W ) versus theoretical
values of Etrain and Etest for three choices of Lipschitz continuous functions σ(·), as a function of γ.

Note that a perfect match between theory and practice is observed, for both Etrain and Etest, which is a
strong indicator of both the validity of Proposition H.3 and the adequacy of Assumption 1 bis to the MNIST
dataset.

We subsequently provide in Figure H.2 the comparison between theoretical formulas and practical sim-
ulations for a set of functions σ(·) which do not ascribe by Assumption 6, i.e., either discontinuous or
non-Lipschitz maps. The closeness between both sets of curves is again remarkably good, although to a
lesser extent than for the Lipschitz continuous functions of Figure H.1. Also, the achieved performances are
generally worse than those observed in Figure H.1.

It should be noted that the performance estimates provided by Proposition H.2 and Proposition H.3 can
be efficiently implemented at low computational cost in practice. Indeed, by diagonalizing Σ (which is a
marginal cost independent of γ), Ētrain can be computed for all γ through mere vector operations; similarly
Ētest is obtained by the marginal cost of a basis change of ΣX̂X and the matrix product ΣXX̂ΣX̂X , all
remaining operations being accessible through vector operations. As a consequence, the simulation times
needed to generate the aforementioned theoretical curves using the linked Python script were found to be 100
to 500 times faster than to generate the simulated network performances. Beyond their theoretical interest,
the provided formulas thereby allow for an efficient offline tuning of the network hyperparameters, notably
the choice of an appropriate value for the ridge-regression parameter γ.

3.2 The hidden kernel

Estimation H.4 and the subsequent theoretical findings importantly reveal that the neural network perfor-
mances are directly related to the Gram matrix Σ, which acts as a deterministic kernel on the dataset X. This
remark is in fact a well-known result found e.g., in [HZDZ12] where a link between the present single-layer
networks and the so-called least-square support vector machine method is exhibited, or in [Wil98] where it
is shown that, as m→ ∞ alone, the neural network behaves as a mere kernel operator. These remarks were
in fact put at an advantage in [RR07], where computationally efficient kernel methods were proposed based
on random single-layer neural networks.

As discussed previously, the formulas for Ētrain and Ētest notably suggest that good performances are
achieved if the dominant eigenvectors of Σ show a good alignment to Y (and similarly for ΣXX̂ and Ŷ ). This
naturally drives us to finding a priori simple regression tasks where ill-choices of Σ may annihilate the neural

https://github.com/Zhenyu-LIAO/RMT4ELM
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Ētest

Etrain

Etest

Figure H.1: Neural network performance for Lipschitz continuous σ(·), Wij ∼ N (0, 1), as a function of γ,
for 2-class MNIST data (sevens, nines), m = 512, n = n̂ = 1024, p = 784.

network performance. Following recent works on the asymptotic performance analysis of kernel methods for
Gaussian mixture models [CB16, LC17, MC17] and [CK16], we describe here such a task.

Let x1, . . . , xn/2 ∼ N (0, 1pC1) and xn/2+1, . . . , xT ∼ N (0, 1pC2) where C1 and C2 are such that
TrC1 = TrC2, ∥C1∥, ∥C2∥ are bounded, and Tr(C1 − C2)

2 = O(p). Accordingly, y1, . . . , yn/2+1 = −1
and yn/2+1, . . . , yT = 1. It is proved in the aforementioned articles that, under these conditions, it is theoret-
ically possible, in the large p, T limit, to classify the data using a kernel least-square support vector machine
(that is, with a training dataset) or with a kernel spectral clustering method (that is, in a completely un-
supervised manner) with a non-trivial limiting error probability (i.e., neither zero nor one). This scenario
has the interesting feature that xTi xj → 0 almost surely for all i ̸= j while ∥xi∥2 − 1

p Tr(
1
2C1 +

1
2C2) → 0,

almost surely, irrespective of the class of xi, thereby allowing for a Taylor expansion of the non-linear kernels
as early proposed in [El 10].

Transposed to our present setting, the aforementioned Taylor expansion allows for a consistent approxi-
mation Σ̃ of Σ by an information-plus-noise (spiked) random matrix model (see e.g., [LV10, BGN12]). In the
present Gaussian mixture context, it is shown in [CB16] that data classification is (asymptotically at least)
only possible if Σ̃ij explicitly contains the quadratic term (xTi xj)

2 (or combinations of (x2i )Txj , (x2j )Txi, and
(x2i )

T (x2j )). In particular, recalling Table H.1 and letting a, b ∼ N (0, Ci) with i = 1, 2, it is easily seen that
only max(t, 0), |t|, and cos(t) can realize the task. Indeed, we have the following Taylor expansions around
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Ētest

Etrain

Etest

Figure H.2: Neural network performance for σ(·) either discontinuous or non Lipschitz, Wij ∼ N (0, 1), as a
function of γ, for 2-class MNIST data (sevens, nines), m = 512, n = n̂ = 1024, p = 784.

x = 0:

asin(x) = x+O(x3)

sinh(x) = x+O(x3)

acos(x) =
π

2
− x+O(x3)

cosh(x) = 1 +
x2

2
+O(x3)

x acos(−x) +
√

1− x2 = 1 +
πx

2
+
x2

2
+O(x3)

x asin(x) +
√

1− x2 = 1 +
x2

2
+O(x3)

where only the last three functions exhibit a quadratic term.
More surprisingly maybe, recalling now Equation (H.7) which considers non-necessarily Gaussian Wij

with moments mk of order k, a more refined analysis shows that the aforementioned Gaussian mixture
classification task will fail if m3 = 0 and m4 = m2

2, so for instance for Wij ∈ {−1, 1} Bernoulli with parameter
1
2 . The performance comparison of this scenario is shown in the top part of Figure H.3 for σ(t) = − 1

2 t
2 + 1

and C1 = Diag(Ip/2, 4Ip/2), C2 = Diag(4Ip/2, Ip/2), for Wij ∼ N (0, 1) and Wij ∼ Bern (that is, Bernoulli
{(−1, 12 ), (1,

1
2 )}). The choice of σ(t) = ζ2t

2 + ζ1t + ζ0 with ζ1 = 0 is motivated by [CB16, CK16], where
it is shown, in a somewhat different setting, that this choice is optimal for class recovery. Note that, while
the test performances are overall rather weak in this setting, for Wij ∼ N (0, 1), Etest drops below one (the
amplitude of the Ŷij), thereby indicating that non-trivial classification is performed. This is not so for the
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Bernoulli Wij ∼ Bern case where Etest is systematically greater than |Ŷij |. This is theoretically explained
by the fact that, from Equation (H.7), Σij contains structural information about the data classes through
the term 2m2

2(x
T
i xj)

2 + (m4 − 3m2
2)(x

2
i )
T (x2j ) which induces an information-plus-noise model for Σ as long

as 2m2
2 + (m4 − 3m2

2) ̸= 0, i.e., m4 ̸= m2
2 (see [CB16] for details). This is visually seen in the bottom part of

Figure H.3 where the Gaussian scenario presents an isolated eigenvalue for Σ with corresponding structured
eigenvector, which is not the case of the Bernoulli scenario. To complete this discussion, it appears relevant
in the present setting to choose Wij in such a way that m4−m2

2 is far from zero, thus suggesting the interest
of heavy-tailed distributions. To confirm this prediction, Figure H.3 additionally displays the performance
achieved and the spectrum of Σ observed for Wij ∼ Stud, that is, following a Student-t distribution with
degree of freedom ν = 7 normalized to unit variance (in this case m2 = 1 and m4 = 5). Figure H.3 confirms
the large superiority of this choice over the Gaussian case (note nonetheless the slight inaccuracy of our
theoretical formulas in this case, which is likely due to too small values of n,m, p to accommodate Wij with
higher order moments, an observation which is confirmed in simulations when letting ν be even smaller).

3.3 Limiting cases
We have suggested that Σ contains, in its dominant eigenmodes, all the usable information describing X.
In the Gaussian mixture example above, it was notably shown that Σ may completely fail to contain this
information, resulting in the impossibility to perform a classification task, even if one were to take infinitely
many neurons in the network. For Σ containing useful information about X, it is intuitive to expect that
both infγ Ētrain and infγ Ētest become smaller as m/n and n/p become large. It is in fact easy to see that, if
Σ is invertible (which is likely to occur in most cases if lim infn n/p > 1), then

lim
n→∞

Ētrain = 0

lim
n→∞

Ētest =
1

n̂

∥∥∥Ŷ T − ΣX̂XΣ−1Y T
∥∥∥2
F

and we fall back on the performance of a classical kernel regression. It is interesting in particular to note
that, as the number of neurons m becomes large, the effect of γ flattens out. Therefore, a smart choice of γ is
only relevant for small (and thus computationally more efficient) neuron layers. This observation is depicted
in Figure H.4 where it is made clear that a growth of m reduces Etrain to zero while Etest saturates to a
non-zero limit which becomes increasingly irrespective of γ. Note additionally the interesting phenomenon
occurring for m ≤ n where too small values of γ induce important performance losses, thereby suggesting a
strong importance of proper choices of γ in this regime.

Of course, practical interest lies precisely in situations where n is not too large. We may thus subse-
quently assume that lim supnm/n < 1. In this case, as suggested by Figures H.1–H.2, the mean-square error
performances achieved as γ → 0 may predict the superiority of specific choices of σ(·) for optimally chosen γ.
It is important for this study to differentiate between cases where r ≡ rank(Σ) is smaller or greater than m.
Indeed, observe that, with the spectral decomposition Σ = UrΛrU

T
r for Λr ∈ Dr diagonal and Ur ∈ Mm,r,

δ =
1

n
TrΣ

(
m

n

Σ

1 + δ
+ γIm

)−1

=
1

n
TrΛr

(
m

n

Λr
1 + δ

+ γIr

)−1

which satisfies, as γ → 0, {
δ → r

m−r , r < m

γδ → ∆ = 1
n TrΣ

(
m
n

Σ
∆ + Im

)−1
, r ≥ m.

A phase transition therefore exists whereby δ assumes a finite positive value in the small γ limit if r/m < 1,
or scales like 1/γ otherwise.

As a consequence, if r < m, as γ → 0, Σ̃ → m
n (1 − r

n )Σ and Q̃ ∼ T
n−rUrΛ

−1
r UTr + 1

γVrV
T
r , where

Vr ∈ Mm,(m−r) is any matrix such that [Ur Vr] is orthogonal, so that Σ̃Q̃ → UrU
T
r and Σ̃Q̃2 → UrΛ

−1
r UTr ;

and thus, Ētrain → 1
n TrY VrV

T
r Y

T = 1
n∥Y Vr∥

2
F , which states that the residual training error corresponds to

the energy of Y not captured by the space spanned by Σ. Since Etrain is an increasing function of γ, so is
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Figure H.3: (Top) Neural network performance for σ(t) = − 1
2 t

2+1, with different Wij , for a 2-class Gaussian
mixture model (see details in text), n = 512, T = n̂ = 1024, p = 256. (Bottom) Spectra and second
eigenvector of Σ for different Wij (first eigenvalues are of order n and not shown; associated eigenvectors are
provably non informative).

Ētrain (at least for all large n) and thus 1
n∥Y Vr∥

2
F corresponds to the lowest achievable asymptotic training

error.
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Figure H.4: Neural network performance for growing m (256, 512, 1 024, 2 048, 4 096) as a function of γ,
σ(t) = max(t, 0); 2-class MNIST data (sevens, nines), n = n̂ = 1024, p = 784. Limiting (m = ∞) Ētest shown
in thick black line.

If instead r > m (which is the most likely outcome in practice), as γ → 0, Q̃ ∼ 1
γ (

m
n

Σ
∆ + Im)−1 and thus

Ētrain
γ→0−→ 1

n
TrY Q∆

[
1
n Tr Σ̃∆Q

2
∆

1− 1
n Tr(Σ̃∆Q∆)2

Σ̃∆ + Im

]
Q∆Y

T

where Σ̃∆ = m
n

Σ
∆ and Q∆ = (mn

Σ
∆ + Im)−1.

These results suggest that neural networks should be designed both in a way that reduces the rank of Σ
while maintaining a strong alignment between the dominant eigenvectors of Σ and the output matrix Y .

Interestingly, if X is assumed as above to be extracted from a Gaussian mixture and that Y ∈ M1,T is a
classification vector with Y1j ∈ {−1, 1}, then the tools proposed in [CB16] (related to spike random matrix
analysis) allow for an explicit evaluation of the aforementioned limits as n,m, p grow large. This analysis is
however cumbersome and outside of the scope of the present work.

3.4 Derivation of Σab

Gaussian w

In this section, we evaluate the terms Σab provided in Table H.1. The proof for the term corresponding to
σ(t) = erf(t) can be already be found in [Wil98, Section 3.1] and is not recalled here. For the other functions
σ(·), we follow a similar approach as in [Wil98], as detailed next.
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The evaluation of Σab for w ∼ N (0, Ip) requires to estimate

I ≡ (2π)−
p
2

∫
Rp

σ(wTa)σ(wT b)e−
1
2∥w∥2

dw.

Assume that a and b and not linearly dependent. It is convenient to observe that this integral can be reduced
to a two-dimensional integration by considering the basis e1, . . . , ep defined (for instance) by

e1 =
a

∥a∥
, e2 =

b
∥b∥ − aT b

∥a∥∥b∥
a

∥a∥√
1− (aT b)2

∥a∥2∥b∥2

and e3, . . . , ep any completion of the basis. By letting w = w̃1e1 + . . . + w̃pep and a = ã1e1 (ã1 = ∥a∥),
b = b̃1e1 + b̃2e2 (where b̃1 = aT b

∥a∥ and b̃2 = ∥b∥
√
1− (aT b)2

∥a∥2∥b∥2 ), this reduces I to

I =
1

2π

∫
R

∫
R
σ(w̃1ã1)σ(w̃1b̃1 + w̃2b̃2)e

− 1
2 (w̃

2
1+w̃

2
2)dw̃1dw̃2.

Letting w̃ = [w̃1, w̃2]
T , ã = [ã1, 0]

T and b̃ = [b̃1, b̃2]
T , this is conveniently written as the two-dimensional

integral

I =
1

2π

∫
R2

σ(w̃T ã)σ(w̃T b̃)e−
1
2∥w̃∥2

dw̃.

The case where a and b would be linearly dependent can then be obtained by continuity arguments.

The function σ(t) = max(t, 0). For this function, we have

I =
1

2π

∫
min(w̃T ã,w̃T b̃)≥0

w̃T ã · w̃T b̃ · e− 1
2∥w̃∥2

dw̃.

Since ã = ã1e1, a simple geometric representation lets us observe that{
w̃ | min(w̃T ã, w̃T b̃) ≥ 0

}
=
{
r cos(θ)e1 + r sin(θ)e2 | r ≥ 0, θ ∈ [θ0 −

π

2
,
π

2
]
}

where we defined θ0 ≡ arccos
(
b̃1
∥b̃∥

)
= − arcsin

(
b̃1
∥b̃∥

)
+ π

2 . We may thus operate a polar coordinate change
of variable (with inverse Jacobian determinant equal to r) to obtain

I =
1

2π

∫ π
2

θ0−π
2

∫
R+

(r cos(θ)ã1)
(
r cos(θ)b̃1 + r sin(θ)b̃2

)
re−

1
2 r

2

dθdr

= ã1
1

2π

∫ π
2

θ0−π
2

cos(θ)
(
cos(θ)b̃1 + sin(θ)b̃2

)
dθ

∫
R+

r3e−
1
2 r

2

dr.

With two integration by parts, we have that
∫
R+ r

3e−
1
2 r

2

dr = 2. Classical trigonometric formulas also provide∫ π
2

θ0−π
2

cos(θ)2dθ =
1

2
(π − θ0) +

1

2
sin(2θ0)

=
1

2

(
π − arccos

(
b̃1

∥b̃∥

)
+

b̃1

∥b̃∥
b̃2

∥b̃∥

)
∫ π

2

θ0−π
2

cos(θ) sin(θ)dθ =
1

2
sin2(θ0) =

1

2

(
b̃2

∥b̃∥

)2
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where we used in particular sin(2 arccos(x)) = 2x
√
1− x2. Altogether, this is after simplification and re-

placement of ã1, b̃1 and b̃2,

I =
1

2π
∥a∥∥b∥

(√
1− ∠(a, b)2 + ∠(a, b) arccos(−∠(a, b))

)
.

It is worth noticing that this may be more compactly written as

I =
1

2π
∥a∥∥b∥

∫ ∠(a,b)

−1

arccos(−x)dx.

which is minimum for ∠(a, b) → −1 (since arccos(−x) ≥ 0 on [−1, 1]) and takes there the limiting value zero.
Hence I > 0 for a and b not linearly dependent.

For a and b linearly dependent, we simply have I = 0 for ∠(a, b) = −1 and I = 1
2∥a∥∥b∥ for ∠(a, b) = 1.

The function σ(t) = |t| Since |t| = max(t, 0) + max(−t, 0), we have

|wTa| · |wT b| = max(wTa, 0)max(wT b, 0) + max(wT (−a), 0)max(wT (−b), 0)
+ max(wT (−a), 0)max(wT b, 0) + max(wTa, 0)max(wT (−b), 0).

Hence, reusing the results above, we have here

I =
∥a∥∥b∥
2π

(
4
√
1− ∠(a, b)2 + 2∠(a, b) acos(−∠(a, b))− 2∠(a, b) acos(∠(a, b))

)
.

Using the identity acos(−x)− acos(x) = 2 asin(x) provides the expected result.

The function σ(t) = 1t≥0. With the same notations as in the case σ(t) = max(t, 0), we have to evaluate

I =
1

2π

∫
min(w̃T ã,w̃T b̃)≥0

e−
1
2∥w̃∥2

dw̃.

After a polar coordinate change of variable, this is

I =
1

2π

∫ π
2

θ0−π
2

dθ

∫
R+

re−
1
2 r

2

dr =
1

2
− θ0

2π

from which the result unfolds.

The function σ(t) = sign(t). Here it suffices to note that sign(t) = 1t≥0 − 1−t≥0 so that

σ(wTa)σ(wT b) = 1wT a≥01wT b≥0 + 1wT (−a)≥01wT (−b)≥0

− 1wT (−a)≥01wT b≥0 − 1wT a≥01wT (−b)≥0

and to apply the result of the previous section, with either (a, b), (−a, b), (a,−b) or (−a,−b). Since
arccos(−x) = − arccos(x) + π, we conclude that

I = (2π)−
p
2

∫
Rp

sign(wTa)sign(wT b)e−
1
2∥w∥2

dw = 1− 2θ0
π
.

The functions σ(t) = cos(t) and σ(t) = sin(t). Let us first consider σ(t) = cos(t). We have here to
evaluate

I =
1

2π

∫
R2

cos
(
w̃T ã

)
cos
(
w̃T b̃

)
e−

1
2∥w̃∥2

dw̃

=
1

8π

∫
R2

(
eıw̃

T ã + e−ıw̃
T ã
)(

eıw̃
T b̃ + e−ıw̃

T b̃
)
e−

1
2∥w̃∥2

dw̃
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which boils down to evaluating, for d ∈ {ã+ b̃, ã− b̃,−ã+ b̃,−ã− b̃}, the integral

e−
1
2∥d∥

2

∫
R2

e−
1
2∥w̃−ıd∥2

dw̃ = (2π)e−
1
2∥d∥

2

.

Altogether, we find

I =
1

2

(
e−

1
2∥a+b∥

2

+ e−
1
2∥a−b∥

2
)
= e−

1
2 (∥a∥+∥b∥2)cosh(aT b).

For σ(t) = sin(t), it suffices to appropriately adapt the signs in the expression of I (using the relation
sin(t) = 1

2ı (e
t + e−t)) to obtain in the end

I =
1

2

(
e−

1
2∥a+b∥

2

+ e−
1
2∥a−b∥

2
)
= e−

1
2 (∥a∥+∥b∥2)sinh(aT b)

as desired.

3.5 Polynomial σ(·) and generic w
In this section, we prove Equation H.7 for σ(t) = ζ2t

2+ζ1t+ζ0 and w ∈ Rp a random vector with independent
and identically distributed entries of zero mean and moment of order k equal to mk. The result is based on
standard combinatorics. We are to evaluate

Σab = E
[(
ζ2(w

Ta)2 + ζ1w
Ta+ ζ0

) (
ζ2(w

T b)2 + ζ1w
T b+ ζ0

)]
.

After development, it appears that one needs only assess, for say vectors c, d ∈ Rp that take values in {a, b},
the moments

E[(wT c)2(wT d)2] =
∑

i1i2j1j2

ci1ci2dj1dj2E[wi1wi2wj1wj2 ]

=
∑
i1

m4c
2
i1d

2
i1 +

∑
i1 ̸=j1

m2
2c

2
i1d

2
j1 + 2

∑
i1 ̸=i2

m2
2ci1di1ci2di2

=
∑
i1

m4c
2
i1d

2
i1 +

∑
i1j1

−
∑
i1=j1

m2
2c

2
i1d

2
j1

+ 2

∑
i1i2

−
∑
i1 ̸=i2

m2
2ci1di1ci2di2

= m4(c
2)T (d2) +m2

2(∥c∥2∥d∥2 − (c2)T (d2))

+ 2m2
2

(
(cT d)2 − (c2)T (d2)

)
= (m4 − 3m2

2)(c
2)T (d2) +m2

2

(
∥c∥2∥d∥2 + 2(cT d)2

)
E
[
(wT c)2(wT d)

]
=
∑
i1i2j

ci1ci2djE[wi1wi2wj ] =
∑
i1

m3c
2
i1di1 = m3(c

2)d

E
[
(wT c)2

]
=
∑
i1i2

ci1ci2E[wi1wi2 ] = m2∥c∥2

where we recall the definition (a2) = [a21, . . . , a
2
p]
T . Gathering all the terms for appropriate selections of c, d

leads to (H.7).
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Chapter I

Robust Estimation

Robust estimators of covariance (or scatter) are necessary ersatz for the classical sample covariance matrix
when the dataset X = (x1, . . . , xn) present some diverging statistical properties, such as unbounded second
moments of the xi’s. We study here the M-estimator of scatter Σ̂ initially introduced in [Hub64] defined as
the solution (if it exists) to the following fixed point equation:

Σ̂ =
1

n

n∑
i=1

u

(
1

n
xTi (Σ̂ + γIp)

−1xi

)
xix

T
i , (I.1)

where γ > 0 is a regularization parameter and u : R+ → R+ a mapping that tends to zero at +∞, and
whose object is to control outlying data. The literature in this domain has so far divided the study of Σ̂ into
(i) a first exploration of conditions for its existence and uniqueness as a deterministic solution to (I.1) (e.g.,
[Hub64, Mar76, Tyl87]) and (ii) an independent analysis of its statistical properties when seen as a random
object (in the large n regime [CP08] or in the large n, p regime [CM14, ZCS14]).

In this chapter, we claim that the study of the conditions of existence (i) and statistical behavior (ii) of Σ̂
can be conveniently carried out jointly. Specifically, by means of a flexible framework based on concentration
of measure theory and semi-metric ds stability argument, we simultaneously explore the existence and large
dimensional (n, p large) spectral properties of Σ̂. Our findings may be summarized as the following three
main contributions to robust statistics and more generally to large dimensional statistics.

First, the proposed concentration of measure framework has the advantage of relaxing the assumptions
of independence in the entries of xi made in previous works [CM14, ZCS14], thereby allowing for possibly
complex and quite realistic data models. In detail, our data model decomposes xi as xi =

√
τizi + m

where the z1, . . . , zn are independent random vectors satisfying a concentration of measure hypothesis (in
particular, the zi’s could arise from a very generic generative model, .e.g, zi = h(z̃i) for z̃i ∼ N (0, Iq)
and h : Rq → Rp a 1-Lipschitz mapping), m is a deterministic vector (a signal or information common to
all data) and τi are arbitrary (possibly large) deterministic values.1 This setting naturally arises in many
engineering applications, such as in antenna array processing (radar, brain signal processing, etc.) where the
τi’s model noise impulsiveness and m is an informative signal to be detected by the experimenter [OPP+11],
or in statistical finance where the xi’s model asset returns with high volatility and m is the market leading
direction [YCM14].

Second, as compared to previous works in the field [Mar76, KT91, OT14, OPP20, CM14], our frameworks
allows for the relaxation of some of the classically posed constraints on the mapping u made. Specifically, u is
here only required to be 1-Lipschitz with respect to the “stable semi-metric”, which is equivalent to assuming
that t 7→ tu(t) is non-decreasing and that t 7→ u(t)/t is non-increasing. The semi-metric naturally arises when
studying the resolvent (Σ̂ + γIp)

−1 of Σ̂, which is at the core of our large p, n analysis of Σ̂, using modern
tools from random matrix theory. To establish concentration properties in the large dimensional regime on
Σ̂, under our framework, the function u is nonetheless further requested to be such that t→ tu(t) is strictly
smaller than 1 (Σ̂ is however still defined without this condition). Yet, and most importantly, u needs not
be a non-increasing function, as demanded by most works in the field.

1We may alternatively assume the τi random independent of Z = (z1, . . . , zn).
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y = u(t)

y = η(t)

Figure I.1: Three stable mappings u and their associated η mappings. (Left) u : t 7→ max(
√
t, 1t ), (Center)

mapping introduced in Remark E.12 having no limit in 0, (Right) u : t 7→ 1√
t
, and η : t 7→

√√
x2

4 + 1− x
2 ;

this last choice does not satisfy our hypotheses because u is not bounded and limt→∞ tu(t) = ∞ ≥ 1 (then
t 7→ η(t)

t is not bounded from below).

Third, the “Lipschitz and stable semi-metric” properties of the model are consistently articulated so as
to propagate the concentration properties from Z to the robust scatter matrix Σ̂. The core technical result
allowing for this articulation is Proposition I.10. This combined framework provides the rate of convergence of
the Stieltjes transform of the spectral distribution of Σ̂ to its large n, p limit along with conditions guaranteeing
the possibility to recover the signal m from the asymptotic statistical properties of Σ̂.

I.1 Main Results

We place ourselves under the random matrix regime where p, the size of data x1, . . . , xn ∈ Rp is of the same
order as n, the number of data – for practical use, imagine that 10−2 ≤ p

n ≤ 102. The convergence results
will be expressed as functions of the quasi asymptotic quantities p and n that are thought of as tending to
infinity (in practice our results are extremely accurate already for p, n ≥ 100). We will then work with the
notations an,p ≤ O(bn,p) or an,p ≥ O(bn,p) to signify that there exists a constant K independent of p and
n such that an,p ≤ Kbn,p or an,p ≥ Kbn,p, respectively, and to simplify the notation, most of the time, the
indices n, p will be omitted. In particular we have O(n) ≤ p ≤ O(n). Our hypotheses concern four central
objects:

• Z = (z1, . . . , zn) ∈ Mp,n satisfies the concentration of measure phenomenon; all the random vectors
z1, . . . , zn are independent and sup1≤i≤n ∥E[zi]∥ ≤ O(1);

• τ = Diag(τ1, . . . , τn) ∈ D+
n satisfy ∀i ∈ [n], τi > 0 and 1

n

∑n
i=1 τi ≤ O(1);

• m ∈ Rp and ∥m∥ ≤ O(1);

• u : R+ → R+ is bounded, t 7→ tu(t) is non-decreasing, t 7→ u(t)
t is non-increasing and ∀t > 0: tu(t) < 1.

Those conditions are sufficient to retrieve part of the statistical properties of Z and of the signal m from
the data matrix

X = Z
√
τ +m1T

through the robust scatter matrix Σ̂ defined in Equation (I.1). The standard sample covariance matrix
1
nXX

T instead inefficiently estimates some of these statistics due to the presence of possibly large (outlying)
τi’s (although 1

n

∑n
i=1 τi ≤ O(1), it is allowed for some τi’s to be of order τi ≥ O(n)). The robust scatter

matrix controls this outlying behavior by mitigating the impact of the high energy data xi with the tapering
action of the mapping u induced by the hypothesis tu(t) < 1 (see Figure I.2).
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Introducing the diagonal matrix ∆̂ solution to the fixed point equation:

∆̂ =
1

n
xTi

(
1

n
XTu(∆̂)X + γIp

)−1

xi,

(with u(·) operating entry-wise on the diagonal elements of ∆̂) the robust scatter matrix is simply Σ̂ =
1
nXu(∆̂)XT , and the tapering action is revealed by low values of u(∆̃)ii when τi is large. As shown on the
central display of Figure I.2, compared to 1

nXX
T , Σ̂ = 1

nXu(∆̂)XT has a cleaner spectral behavior which
lets appear the signal induced by m as an isolated eigenvalue-eigenvector pair. This eigenvector can then be
exploited to estimate m (this is a classical random matrix inference problem that will not be studied here).

This chapter precisely shows that the spectral distribution of Σ̂ is asymptotical equivalent to the spectral
distribution of 1

nZ
TUZ where U is a deterministic diagonal matrix satisfying ∥U∥ ≤ O(1). Interestingly,

the definition of U merely depends on the second order moments of z1, . . . zn which we denote, ∀i ∈ [n],
Σi ≡ E[zizTi ], on the vector τ ∈ Rn of the τi’s, on the function u, but not on the signal m. The definition of
U relies on the introduction of a function η : R+ → R+ derived from u and defined as the solution to

∀t ∈ R+ : η(t) =
t

1 + tu(η(t))

and on the diagonal matrix Λz : D+
n → D+

n . For any z ∈ R+ and ∆ ∈ D+
n , Λz(∆) is defined as the unique

solution to the n equations:

∀i ∈ [n], Λz(∆)i =
1

n
Tr

Σi

 1

n

n∑
j=1

Σj∆j

1 + ∆jΛz(∆)j
+ zIp

−1
 .

Introducing the resolvent R : z 7→≡ (zIp + Σ̂)−1, we have the concentration:

Theorem I.1. For any z ≥ O(1), and any deterministic matrix A ∈ Mp such that ∥A∥∗ ≤ O(1) there exist
two constants C, c > 0 (C, c ∼ O(1)) such that, for any 0 < ε ≤ 1,

P

∣∣∣∣∣∣Tr(AR(z))− 1

p
Tr

A( 1

n

n∑
i=1

UiΣi
1 + Λz(U)iUi

+ zIp

)−1
∣∣∣∣∣∣ ≥ ε

 ≤ Ce−cnε
2

where U = diag(U1, . . . , Un) ∈ D+
n satisfies U ≤ O(1) and is the unique solution to the equation:

U = τ · u ◦ η (τΛγ(U)) (I.2)

(the mappings u and η are applied entry-wise on the diagonal terms on D+
n ).

The proof of the existence and uniqueness of U is based on contractiveness arguments for the semi-metric
ds introduced in Part II (see Theorem E.10), therefore, in practice, a precise estimate of U is merely obtained
from successive iteration of (I.2).

Employing this theorem with A = 1
pIp (then ∥A∥∗ = 1), classical random matrix theory inferences allow us

to estimate the spectral distribution of the robust scatter matrix from the estimation of its Stieltjes transform
m(z) = 1

p Tr(R(−z)). This is confirmed in Figure I.2 which depicts the eigenvalue distribution of the sample
covariance of the data matrix X: (i) deprived of the influence of τ (i.e., for τ = In), (ii) corrected with the
robust scatter matrix (i.e., it is here the sample covariance matrix of the equivalent data Xu(∆̂)1/2), and
(iii) without any modification on X. For the two first spectral distributions, we displayed their estimation
with the Stieltjes transform as per Theorem I.1.

We additionally can provide guarantees on the alignment of the eigen vector vmax associated to the
highest eigen value with the signal m, as expressed on Figure I.2. Indeed if we take A = mmT (then
∥A∥∗ = ∥m∥2 ≤ O(1)), for any path γ containing the highest eigen value of Σ̂ but no other value from the
bulk we have the identity:

1

2iπ

∮
γ

mTR(−z)mdz = (vTmaxm)2.

Estimating mTR(z)m therefore leads to estimating the projection (vTmaxm)2.
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Figure I.2: Spectral distributions of the matrices 1
n (Z+m1T )(Z+m1T )T , Σ̂ and 1

nXX
T against their large

dimensional prediction; p = 500, n = 400 (null eigenvalues remo ved), u : t 7→ min(t, 1
1+5t ), the variables

τ1, . . . , τn are drawn independently from a Student distribution with 1 degree of freedom, m = 1/
√
p ∈ Rp;

Z = sin(W ) for W ∼ N (0, AAT ) where A ∈ Mp is a fixed matrix whose entries are drawn from the Gaussian
distribution with zero mean and unit variance (Z ∝ E2 by construction). The population covariance and
mean of Z are computed with a set of p2 independent realizations of Z. The values of the projections of
the signal m against the eigenvector vmax associated to the largest eigenvalue reveals that, with the robust
scatter approach, the diverging action of τ in the model can be turned into an advantage to infer the signal
m from the data. The choice of the mapping u is not optimized, our goal here is just to show that non
monotonic functions are suited to robust statistics as long as they satisfy our assumptions.

I.2 Preliminaries for the study of the resolvent
Let Sp be the set of symmetric matrices of size p and S+

p the set of symmetric nonnegative matrices. Given
S, T ∈ Sp, we denote S ≤ T iif T − S ∈ S+

p . We will extensively work with the set
(
S+
p

)n which will be
denoted for simplicity Snp . Given S ∈ Snp , we finally let S1, . . . , Sn ∈ S+

p be its n components.
Given two sequences of scalars an,p, bn,p, the notation an,p ∼ O(bn,p) means that an,p ≤ O(bn,p) and

an,p ≥ O(bn,p). We extend those characterizations to diagonal matrices: given ∆ ∈ D+
n , ∆ ≤ O(1) indicates

that ∥∆∥ ≤ O(1) while ∆ ≥ O(1) means that ∥ 1
∆∥ ≤ O(1) and ∆ ∼ O(1) means that O(1) ≤ ∆ ≤ O(1).

The different assumptions leading to the main results are presented progressively so that the reader easily
understands their importance and direct implications. A full recollection of all these assumptions is provided
at the beginning of our manuscript.

2.1 The resolvent behind robust statistics and its contracting properties
Given γ > 0 and S ∈ Snp , we introduce the resolvent function at the core of our study :

Rγ : Snp ×D+
n −→ Mp

(S,∆) 7−→

(
1

n

n∑
i=1

∆iSi + γIp

)−1

.

Given a dataset X = (x1, . . . , xn) ∈ Mp,n, if we note X ·XT = (xix
T
i )1≤i≤n ∈ Snp , the robust estimation of

the scatter matrix then reads (if well defined):

Σ̂ =
1

n
Xu(∆̂)XT with ∆̂ = Diag

(
1

n
xTi Rγ(X ·XT , u(∆̂))xi)

)
1≤i≤n

. (I.3)

In the following, we will denote for simplicity RXγ ≡ Rγ(X·XT , u(∆̂)). To understand the behavior (structural,
spectral, statistical) of Σ̂, one needs first to understand the behavior of the resolvent Rγ(S,∆) for general
S ∈ Snp and ∆ ∈ D+

n . We document in this subsection its contracting properties.
As the scalar γ will rarely change in the remainder, it will be sometimes omitted for readability.
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Lemma I.2. Given γ > 0, S ∈ Snp , M ∈ Mp,n and ∆ ∈ D+
n :

∥Rγ(S,∆)∥ ≤ 1

γ
;

∥∥∥∥ 1√
n
Rγ(M ·MT ,∆)M∆

1
2

∥∥∥∥ ≤ 1
√
γ
;

∥∥∥∥∥ 1n Rγ(S,∆)

k∑
l=1

∆lSl

∥∥∥∥∥ ≤ 1.

Proof. We can bound in the space of symmetric matrices:

1

n

n∑
i=1

∆iSi + γIp ≥ γIn,

thus Rγ(S,∆) ≤ 1
γ In. Besides, we can write:

Rγ(S,∆)
1

n

n∑
i=1

∆iSi = Ip − γ Rγ(S,∆) ≤ Ip.

Noting Si = mim
T
i and S = (S1, . . . Sn) =M ·MT , we can then deduce that:

1√
n
Rγ(M ·MT ,∆)M∆

1
2 =

(
Rγ(S,∆)

1

n

n∑
i=1

∆iSiRγ(S,∆)

)1/2

,

which provides the second bound.

Given M ∈ Mp,n, and S ∈ Snp , further define the mapping Iγ : Snp ×D+
n → D+

n ,

I(S,∆) = Diag

(
1

n
Tr (SiRγ(S,∆))

)
1≤i≤n

.

With the notation IXγ (∆) ≡ I(X · XT ,∆), the fixed point ∆̂ defined in (I.3) is simply ∆̂ = IXγ (u(∆̂)).
To prove the existence and uniqueness of ∆̂ we exploit the Banach fixed-point theorem to find contracting
properties on the mapping ∆ 7→ IXγ (u(∆)) for which ∆̂ is a fixed point. As we see in the following lemma,
the contractive character does not appear relatively to the spectral norm on D+

n but relatively to the stable
semi-metric presented in Part II, Chapter E.

Lemma I.3. Given S ∈ Snp and ∆,∆′ ∈ D+
n , we have (the index γ being omitted)

ds(I(S,∆), I(S,∆′)) < max
(
ϕSγ (∆), ϕSγ (∆

′)
)
ds(∆,∆

′),

where ϕSγ (∆) ≡ ∥1− γ Rγ(S,∆)∥
Proof. Given a ∈ {1, . . . , k}, we can bound thanks to Cauchy Shwarz inequality:

|I(S,∆)a − I(S,∆′)a| =
∣∣∣∣ 1n Tr (Sa (Rγ(S,∆

′)− Rγ(S,∆)))

∣∣∣∣
=

∣∣∣∣∣ 1n
k∑
b=1

Tr (SaRγ(S,∆
′)Sb (∆

′
b −∆b)Rγ(S,∆))

∣∣∣∣∣
≤ 1

n

√√√√ k∑
b=1

Tr

(
SaRγ(S,∆)

Sb |∆′
b −∆b|√
∆b∆′

b

∆bRγ(S,∆)

)

·

√√√√ k∑
b=1

Tr

(
SaRγ(S,∆′)

Sb |∆′
b −∆b|√
∆b∆′

b

∆′
bRγ(S,∆

′)

)

≤
∥∥∥∥∆′ −∆√

∆∆′

∥∥∥∥
√

1

n
Tr (SaRγ(S,∆) (1− γ Rγ(S,∆)))

·
√

1

n
Tr (SaRγ(S,∆′) (1− γ Rγ(S,∆′)))

≤
√
ϕSγ (∆)ϕSγ (∆

′)

∥∥∥∥∆′ −∆√
∆∆′

∥∥∥∥√I(S,∆)aI(S,∆′)a



150 CHAPTER I. ROBUST ESTIMATION

If one sees the term
∥∥∥∆−∆′
√
∆∆′

∥∥∥ as a distance between ∆ and ∆′, then Lemma I.3 sets the 1-Lipschitz
character of I(S, ·) : ∆ 7→ I(S,∆), which is a fundamental property in what follows. We present in the next
subsection a precise description of such functions that will be called stable mappings.

2.2 Fixed Point theorem applied to resolvent equations
To employ Theorem E.10 to the fixed point equation satisfied by ∆̂, a first step is to look at ∆ 7→ Iγ(S,∆) =
Diag(Tr(SiR(S,∆)))1≤i≤n that we know to be stable from Lemma I.3. The control on the Lipschitz parameter
required by Theorem E.10 is issued from the following preliminary Lemma.

Lemma I.4. Given S ∈ Snp and a function f : D+
n → D+

n bounded by f0 ∈ D+
n ,

∀∆ ∈ D+
n :

Ip
f0 ∥S∥+ γ

≤ R(S, f(∆)) ≤ Ip
γ

where ∥S∥ ≡ 1

n

∥∥∥∥∥
n∑
i=1

Sa

∥∥∥∥∥ .
Combined with Lemma I.3, this result allows us to build a family of contracting stable mappings with the

composition Ĩ(S, ·) ◦ f when f ∈ S(D+
n ) is bounded from above (recall that any f in the stable class S(D+

n )
defined in Definition 22 satisfies ∀∆,∆′ ∈ D+

n , ds(f(∆), f(∆′)) ≤ ds(∆,∆
′)). We thus obtain the following

corollary to Theorem E.10.

Corollary I.5. Given f ∈ S(D+
n ), and a family of non-negative and non-zero symmetric matrices S =

(S1, . . . , Sk) ∈ Snp , noting λf the Lipschitz parameters of f for the semi-metric ds, if we assume that f is
bounded from above or that λf < 1, then the fixed point equation

∆ = IS(f(∆))

admits a unique solution in D+
n .

Remark I.6. To give a counterexample when f is nor contractive for the semi-metric, nor bounded from
above, let us consider the mapping f : t 7→ 1

t and the sequence of matrix S = (Ip, . . . , Ip), then we have the
equivalence:

∆ = IS(f(∆)) ⇐⇒ ∀i ∈ [n], γ∆i + 1 =
p

n

which cannot be satisfied for any ∆ ∈ D+
n when p < n (when p ≥ n, the existence and uniqueness of the

solution can be shown using the contractivity of IS ◦ f for the spectral norm – but this is another problem).

Proof. We can first deduce from Lemma I.3 that:

ds
(
IS(f(∆)), IS(f(∆′))

)
< λf max

(
ϕS(f(∆)), ϕS(f(∆′))

)
ds (∆,∆

′)

When λf = 1 but ∀∆ ∈ D+
n , f(∆) ≤ f0 < ∞, we can still deduce the contractivity of IS ◦ f thanks to

Lemma I.4 that allows us to bound:

max
(
ϕS(f(∆)), ϕS(f(∆′))

)
≤ sup

∆∈D+
n

∥∥1− γ RS(f(∆))
∥∥ ≤ 1

1 + γ
f0∥S∥

< 1,

and conclude thanks to Theorem E.10.

We will thus suppose from here on that u is a bounded2 stable function, to be able to use Corollary I.5
and set the existence and uniqueness of ∆̂ and Σ̂ as defined in (I.3).

Assumption 7. u ∈ S(R+) and there exists u∞ > 0 such that ∀t ∈ R+, u(t) ≤ u∞.
2We will see later that we need also to assume that u× : t 7→ tu(t) is bounded which implies that u behaves on the infinity

as a mapping t 7→ α
t

which is not contractive for the semi-metric ds. Still, to be able to apply Corollary I.5, we need to assume
that u is bounded.
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Proposition I.7. For X ∈ Mp,n, there exists a unique diagonal matrix ∆̂ ∈ D+
n such that

∆̂ = IX
(
u(∆̂)

)
.

Now that ∆̂, and therefore Σ̂ are perfectly defined, let us introduce additional assumptions to be able to
infer concentration properties on ∆̂.

2.3 Assumptions on Z and deterministic equivalent of the resolvent
Having proved the existence and uniqueness of Σ̂, we now introduce statistical conditions on X to study Σ̂
in the large dimensional n, p → ∞ limit. We work under Assumptions 1 that imposes p ≤ O(n), then since
X was some heavy tail behavior, one needs to make the concentration hypothesis on the n p-dimensional
random vector Z = (z1, . . . , zn) ∈ Mp,n. One therefore assume:

Assumption 1 ter. Z ∝ E2.

Assumption 2 ter. The random vectors z1, . . . , zn are all independent.

We denote their means µi ≡ E[zi] ∈ Rp, their second order statistic matrix (or non-centered covariance
matrix) Σi ≡ E[zizTi ] and their covariance matrices Ci = Σi − µiµ

T
i ∈ Mp. With this new notation, we still

assume Assumptions 4 and 5 that impose upper bound on µ1, . . . , µn and lower bound on Σ1, . . . ,Σn.

Given ∆ ∈ D+
n we will extensively use the notation RZγ (∆) = R(Z · ZT ,∆) = ( 1nZ∆Z

T + γIp)
−1. The

study here is more simple than in Part II because we are just interested in the specific case where z < 0 and
for that reason, we further look at R ≡ RZz (∆) for z > 0 and even z ≥ O(1) (for concentration issues).

We recall from Chapter F and more precisely Remark F.4 that if |z| ≥ O(1), then R is a O(∥∆∥1/2

√
n

)-
Lipschitz transformation of Z and, therefore, we can deduce that3:

R ∝ E2
(

1√
n

)
(I.4)

We express the deterministic equivalent thanks to the diagonal matrix ΛΣ(∆) ∈ D+
n defined, as the unique

solution to:

ΛΣ(∆) = IΣ
(

∆

In +∆ΛΣ(∆)

)
;

its existence and uniqueness is proven thanks to Corollary I.5 (here f : ∆ → ∆
In+∆ΛΣ(∆) is bounded by

∥∆∥). This equation allows us to compute ΛΣ(∆) iteratively via the standard fixed-point algorithm. The
deterministic equivalent R̃

Σ

z (∆) of RZz (∆) is then defined as follows:

R̃
Σ

z (∆) ≡ Rz

(
Σ,

∆

In +∆ΛΣ

)
=

(
1

n

n∑
i=1

∆iΣi
1 + ∆iΛΣ

i

+ zIp

)−1

.

Then one can show thanks to Theorem F.25 that for any ∆ ∈ D+
n and A ∈ Mp be deterministic matrices

such that ∥∆∥ ≤ O(1) and ∥A∥F ≤ O(1):

Tr(ARZz (∆)) ∈ Tr
(
AR̃

Σ

z (∆)
)
± E2

(
1√
n

)
(I.5)

This theorem will later allow us to estimate the Stieltjes transform of the spectral distribution of Σ̂. Note
that here again, since 1

nZ∆Z
T + γIp ≥ γIp, the resolvent is always invertible and therefore one does not

need to remove the low probability event AQ introduced in Chapter F (here the parameter z of Chapter F is
always at a distance bigger than a constant to the spectrum). For this purpose, we need the next corollary
to predict the asymptotic behavior of ∆̂ defined in (I.3). Recall that IX : ∆ 7→ I(X · XT ,∆). Then the
following holds (it is a combination of Lemmas F.6, F.8 and F.23).

3Here, no need to restrain the study to AQ since z is far from the spectrum.



152 CHAPTER I. ROBUST ESTIMATION

Corollary I.8. For all ∆ ∈ D+
n with ∥∆∥ ≤ O(1),

IZ(∆) ∈ ΛΣ(∆)

In +∆ΛΣ(∆)
± E2

(
1√
n

)
in (Dn, ∥ · ∥F )

Remark I.9. It is possible to extend the results of (I.5) and Corollary I.8 to the broader case where each
mean µi (i ∈ [n]) can be decomposed as the sum of a particular component µ̊i of low energy (i.e. with a low
norm) and a bigger component proportional to a general signal s of high energy as follows:

µi = µ̊i + tis, (I.6)

where t1, . . . , tn > 0 are n scalars satisfying 1
n

∑n
i=1 ti ≥ 1 and supi≤1≤n ti ≤ O(1). The concentration results

are then almost the same with a speed O(
√
log n/n) replacing O(1/

√
n) and the concentration in (I.5) is then

only true for A ∈ Mp satisfying ∥A∥∗ ≤ O(1) (where ∥A∥∗ = Tr((AAT )1/2)).

I.3 Estimation of the robust scatter matrix

3.1 Setting and strategy of the proof
Having set up the necessary tools and preliminary results, we now concentrate on our target objective. Let
xi =

√
τizi +m, 1 ≤ i ≤ n, where τi is a deterministic positive variable, m ∈ Rp is a deterministic vector,

and z1, . . . , zn are the random vectors presented in the previous section. For X = (x1, . . . , xn) ∈ Mp,n,
we write X = Zτ

1
2 + m1T where τ ≡ Diag(τi)1≤i≤n ∈ D+

n and 1 ≡ (1, . . . , 1) ∈ Rn. The basic idea to
estimate ∆̂, as a solution to the fixed-point equation ∆̂ = IX(u(∆̂)), consists in retrieving a deterministic
equivalent also solution to a (now deterministic) fixed-point equation. For this, we use the following central
result concerning the stability of the semi-metric ds to perturbations (it is quite similar to Proposition E.23
that was concerning solutions lying in D(H)).

Proposition I.10. Let f, f ′ : D+
n → D+

n be two mappings admitting a fixed point:

∆ = f(∆) and ∆′ = f ′(∆′).

Further assume that ∆′ ∼ O(1) (i.e. that ∆′ ≥ O(1) and ∆′ ≤ O(1)), that λ ∈ (0, 1), the Lipschitz parameter
of f for the semi-metric ds satisfies λ ≥ O(1) and that:

∥f(∆′)− f ′(∆′)∥ ≤ o(1).

Then, there exists a constant K ≤ O(1) such that

∥∆−∆′∥ ≤ K∥f(∆′)− f ′(∆′)∥.

Proof. We want to apply Proposition E.23 with fs = f , Γ̃s = ∆ and Γs = ∆′ = f ′(∆′), we thus need to
bound:

ds(∆
′, f(∆′)) =

∣∣∣∣∣ |∆′ − f(∆′)|√
∆′f(∆′)

∣∣∣∣∣
But we know that |∆′| ≥ O(1) and we can bond:

|f(∆′)| ≥ |f ′(∆′)| − |f(∆′)− f ′(∆′)| ≥ |∆′| − o(1) ≥ O(1),

therefore ds(∆′, f(∆′)) ≤ o(1) and we can apply Proposition E.23 to obtain:∥∥∥∥∆−∆′
√
∆∆′

∥∥∥∥ ≤ K ′
∥∥∥∥f(∆′)−∆′

√
∆′∆

∥∥∥∥ .
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Thus, since O(1) ≤ ∥∆′∥ ≤ O(1), we have the bound:∥∥∥∥∆−∆′
√
∆

∥∥∥∥ ≤ K ′′
∥∥∥∥f(∆′)−∆′

√
∆

∥∥∥∥ (I.7)

for some constant K ′′ > 0. We are left to bound from below and above ∥∆∥ to recover the result of the
theorem from (I.7). Considering the index i0 such that ∆i0 = min(∆i)1≤i≤n, we have:

∣∣∆i0 −∆′
i0

∣∣ ≤ K ′′√∆i0

∥∥∥∥∥f(∆′)−∆′√
∆i0

∥∥∥∥∥ ≤ o(1),

so that ∆i0 ≥ ∆′
i0
− o(1) ≥ O(1). On the other hand, one can bound again from (I.7):

∥
√
∆∥ ≤

∥∥∥∥ ∆′
√
∆

∥∥∥∥+K ′′
∥∥∥∥f(∆′)−∆′

√
∆

∥∥∥∥ ≤ O(1).

As a consequence, ∆ ∼ O(1), and we can conclude from (I.7).

Proposition I.10 can be employed when ∆ is random and ∆′ is a deterministic equivalent (yet to be
defined). If we let f = IX ◦ u(·) (and thus ∆ = ∆̂), it is not possible to state that ∆ ∼ O(1) since
IX ◦ u(·) = Diag( 1nx

T
i RX ◦u(·)xi)1≤i≤n scales with τ which might be unbounded. For this reason, in place

of ∆̂, we will consider D̂ ≡ ∆̂
τ where:

τ ≡ Diag(max(τ, 1)) ≥ In.

We similarly denote τ̄ ≡ Diag(min(τ, 1)) ≤ In, note that τ = τ̄ τ .

3.2 Definition of D̃, the deterministic equivalent of D̂

The matrix D̂ ≡ ∆̂
τ satisfies the fixed point equation

D̂ = IZ̄(uτ (D̂)), where z̄i ≡
xi√
τ i

=
√
τ̄izi +

m
√
τ i

and uτ : ∆ 7→ τu(τ∆).

We will note from now on m̄i = E[z̄i] and Σ̄i = E[z̄iz̄Ti ]. In order to apply Corollary I.8 with the hypothesis
described in Remark I.9, we will need a bound on the energy of the signal and on the τi’s.

Assumption 8. ∥m∥ = O(1).

We still cannot apply Corollary I.8 since ∥uτ (D̂)∥ is possibly unbounded. Still, let us assume for the mo-
ment that ∥uτ (D̂)∥ is indeed bounded: then, following our strategy, we are led to introducing a deterministic
diagonal matrix D̃ ideally approaching D̂ and satisfying

D̃ =
ΛΣ̄(uτ (D̃))

In + uτ (D̃)ΛΣ̄(uτ (D̃))
, (I.8)

(where we recall ΛΣ̄(uτ (D̃)) = Ǐ(Σ̄, uτ (D̃)

In+uτ (D̃)ΛΣ̄(uτ (D̃))
)). Before proving the validity of the estimate D̃ of

D̂, let us justify the validity of its definition (i.e., the existence and uniqueness of D̃). To this end, we first
introduce a stable auxiliary mapping η : R+ → R+.

Proposition I.11. Let x ∈ R+. Then the equation

η =
1

1
x + u(η)

, η ∈ R+.

admits a unique solution that we denote η(x). The mapping η : R → R is stable.
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Proof. Let us show that the mapping f : η 7→ x/(1 + xu(η)) is contracting for the stable semi-metric:

ds(f(η), f(η
′)) = ds

(
1

f(η)
,

1

f(η′)

)
=

|u(η)− u(η′)|√(
1
x + u(η)

) (
1
x + u(η′)

)
≤

√
u(η)u(η′)(

1
x + u(η)

) (
1
x + u(η′)

)ds(u(η), u(η′))
≤ 1

1 + 1
u∞x

ds(η, η
′) ≤ u∞× ds(η, η

′)

The Theorem E.10 then allow us to conclude on the existence and uniqueness of η(x). To prove the stability
of η, we are going to use the characterization with the monotonicity of the functions η/ : x 7→ η(x)

x and
η× 7→ xη(x) presented in Property E.6. Let us consider x, y ∈ R+ such that x ≤ y; if η(x) ≤ η(y), then
η×(x) ≤ η×(y). Besides, since in addition u/ is non-decreasing,

η/(x) =
1

1 + xu(η(x))
≥ 1

1 + yη(y)u(η(x))
η(x)

≥ 1

1 + yu(η(y))
= η/(y).

Similarly, if η(x) ≥ η(y), then η/(x) ≥ η/(y) and

η×(x) =
1

1
x2 + u(η(x))

x

≤ 1
1
y2 + η(x)

x
u(η(y))
η(y)

≤ 1
1
y2 + u(η(y))

y

= η·(y).

We see that in both cases η/(x) ≥ η/(y) and η×(x) ≤ η×(y). Therefore, thanks to Property E.6, η ∈
S(R+).

The first equation of (I.8) can be rewritten D̃ = ητ (Λ
Σ̄(uτ (D̃))), with ητ : x 7→ η(τx)

τ . To define D̃
properly, we thus need to show that ΛΣ̄ is stable (with the aim of employing Theorem E.10 again).

Proposition I.12. For any S ∈ Snp , the mapping ΛS : D+
n → D+

n is stable and satisfies ∀∆,∆′ ∈ D+
n :

ds
(
ΛS(∆),ΛS(∆′)

)
≤ max(ϕSγ (∆), ϕSγ (∆

′))ds(∆,∆
′)

(with the notation provided in Lemma I.3.)

Proof. Given S ∈ Snp and ∆,∆′ ∈ D+
n , there exists i0 ∈ [n] such that, if we note λ ≡ max(ϕSγ (∆)b, ϕSγ (∆

′)),
we can bound thanks to Lemma I.3:

ds(Λ
S(∆),ΛS(∆′)) = ds

(
Ǐ

(
S,

∆

In +∆ΛS(∆)

)
, Ǐ

(
S,

∆′

In +∆′ΛS(∆′)

))
≤ λds

(
∆

In +∆ΛS(∆)
,

∆′

In +∆′ΛS(∆′)

)
= λds

(
In
∆

+ΛS(∆),
In
∆′ + ΛS(∆′)

)

= λ

∣∣∣ 1
∆i0

+ ΛS(∆)i0 − 1
∆′

i0

+ ΛS(∆′)i0

∣∣∣√(
1

∆i0
+ ΛS(∆)i0

)(
1

∆′
i0

+ ΛS(∆′)i0

)

≤ λmax


∣∣∣ 1
∆i0

− 1
∆′

i0

∣∣∣√
1

∆i0

1
∆′

i0

,

∣∣ΛS(∆)i0 − ΛS(∆′)i0
∣∣√

ΛS(∆)i0Λ
S(∆′)i0


≤ λmax

(
ds(∆,∆

′), ds(Λ
S(∆),ΛS(∆′))

)
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Thanks to Lemma I.3, the stability rules given in Property E.5, and the extra tools given by Lemma E.4
(already used to prove Property E.5). As a conclusion,

ds(Λ
S(∆),ΛS(∆′)) ≤ λmax

(
ds(∆,∆

′), ds(Λ
S(∆),ΛS(∆′))

)
,

which directly implies that ds(ΛS(∆),ΛS(∆′)) ≤ λds(∆,∆
′).

We are thus now allowed to define D̃.

Proposition I.13. There exists a unique diagonal matrix D̃ ∈ D+
n satisfying (I.8).

Proof. We already know from Proposition I.12 that D 7→ ΛΣ̄(uτ (D)) is contractive for the semi metric ds (we
can indeed show as in the proof of Corollary I.5 that sup∆∈D+

n
ΦΣ̄
γ (u

τ (∆)) < 1 thanks to Lemma I.4 and since
uτ ≤ ∥τ∥u∞ – be careful here that, possibly ∥τ∥ ≥ O(n), but that is not the question here). The same is true
for ητ (ΛΣ̄(uτ (D̃))) since η is stable; the existence and uniqueness of D̃ thus unfold from Theorem E.10.

3.3 Concentration of D̂ around D̃

In order to establish the concentration of D̂, we need an assumption on η to be able to bound D̃ =
ητ (Λ

Σ̄(uτ (D̃))). This assumption is expressed through a condition on u, justified by the following lemma
that we already made visible on Figure I.1.

Lemma I.14. The mapping η/ is bounded from below iff, ∀t ∈ R+, u×(t) = tu(t) < 1.

Proof. If there exists α > 0 (and α < 1) such that ∀x ∈ R+, η(x)x ≥ α, then

η(x)

x
+ (1− α) ≥ 1 and therefore:

1
1
x + u(η(x))

= η(x) ≥ 1
1
x + 1−α

η(x)

,

which implies that u(η(x))η(x) ≤ 1− α. But since η is not bounded (otherwise limt→∞
η(t)
t = 0 < α), there

exists a sequence (xn)n≥0 ∈ RS+ such that η(xn) → ∞. Thus (u× being non-decreasing), ∀t > 0, u×(t) ≤
limn→∞ u(η(xn))η(xn) ≤ 1− α. Conversely, if ∀t > 0, u×(t) < 1, ∀x ∈ R+:

η(x)

x
≥ 1

1 + u∞×
x

η(x)

thus
η(x)

x
≥ 1− u∞× > 0.

Assumption 9. u∞× < 1, where u∞× = limt→∞ tu(t).

We complete this extra assumption with two rather “loose” assumptions on τ .

Assumption 10. 1
n

∑n
i=1 τi ≤ O(1).

These assumptions imply the following important control.

Lemma I.15. D̃ ∼ O(1).

Proof. We already know from our assumptions that O(1) ≤ 1
n Tr(Σi) +

1
n
mTm
τ = 1

n Tr Σ̄i ≤ O(1) and we can
then bound:

ΛΣ̄(uτ (D̃))i ≥
O(1)

γ + 1
n∥
∑

Σiτiu(τiD̃)∥
≥ O(1)

γ + supi∈[n] ∥Σi∥ 1
n

∑n
i=1 τiu

∞ ≥ O(1).

Therefore, we can conclude thanks to Assumption 9 and Lemma I.14:

D̃ =
1

τi
η
(
τiΛ

Σ̄(uτ (D̃))i

)
≥ η∞/ ΛΣ̄(uτ (D̃))i ≥ O(1).
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This control allows us to establish the concentration of D̂:

Proposition I.16. There exist two constants C, c > 0 (C, c ∼ O(1)) such that:

∀ε ∈ (0, 1] : P
(∥∥∥D̂ − D̃

∥∥∥ ≥ ε
)
≤ Ce−cnε

2/ logn.

Proof. Let us check the hypotheses of Proposition I.10. Let us first bound the Lipschitz parameter (for the
stable semi-metric) λ of IZ̄ ◦ uτ around D̃ defined as:

∀∆ ∈ D+
n :

∥∥∥∥∥∥I
Z̄(uτ (∆))− IZ̄(uτ (D̃))√
IZ̄(uτ (∆))IZ̄(uτ (D̃))

∥∥∥∥∥∥ < λ

∥∥∥∥∥∆− D̃√
∆D̃

∥∥∥∥∥ .
An inequality similar as in Lemma I.3 gives us:

λ ≤
√

∥1− γ RZ̄(uτ (D̃)∥ ≤ 1− γ

γ + 1
n∥uτ (D̃)∥∥Z̄Z̄T ∥

(thanks to Lemma I.4).
First, the concentration Z̄ ∝ E2 implies the concentration of its norm ∥Z∥ ∈ E[∥Z∥] ± E2 satisfying

K ≡ E[∥Z∥]/
√
n ≤ O(1). There exist then two supplementary constants C, c > 0 such that for all n ∈ N,

∀t > 0:

P
(
∥Z̄∥√
n

≥ t+K

)
≤ Ce−nt

2

,

and with, say, t = K, we see that with probability larger than 1 − Ce−cK
2n (for some constants C, c > 0),

∥Z̄∥ ≤ 2K
√
n. There exists then a constant K ′ > 0, such that under this highly probable event 1− λ ≥ K ′.

Second, we know that Z̄ = Zτ̄1/2 ∼ E2 and uτ (D̃) ≤ u∞
×
D̃

≤ O(1) from Proposition I.15, therefore,
Z̄uτ (D̃) ∝ E2 and we can then employ Corollary I.8 to state that IZ̄(uτ (D̃)) ∈ D̃ ± E2(1/

√
n). Thus there

exist two constants C, c > 0 such that

∀t > 0 : πt ≡ P
(∥∥∥IZ̄(uτ (D̃))− D̃

∥∥∥ ≥ t
)
≤
∑
i∈N

P
(∣∣∣IZ̄(uτ (D̃))i − D̃i

∣∣∣ ≥ t
)
≤ nCe−cnt

2

.

Now since πt ≤ 1, we can choose two constants c′, C ′ > 0 depending on c, C but independent with n such
that πt ≤ C ′e−c

′nt2/ logn.
In this last inequality, we can take t small enough (t = K′2

4∥1/D̃∥ ) such that on an event of probability larger

than 1− C ′e−c
′′n/ logn (c′′ > 0), we have:

1− λ−

√√√√∥∥∥∥∥IZ̄(uτ (D̃))− D̃

D̃

∥∥∥∥∥ ≥ K ′

2
.

Let us introduce the event:

A ≡
{
∥Z̄∥ ≤ 2K

√
n and

∥∥∥IZ̄(uτ (D̃))− D̃
∥∥∥ ≥ K ′2

4∥1/D̃∥

}
.

It satisfies P(Ac) ≤ C ′′e−c
′′n, for some constants C ′′, c′′ > 0.

Applying Proposition I.10, we know that there exists a constant K ≤ O(1) such that ∀n ∈ N:

∀t > 0 : P
(∥∥∥D̂ − D̃

∥∥∥ ≥ t
)
≤ P

(∥∥∥D̂ − D̃
∥∥∥ ≥ t,A

)
+ C ′e−c

′n

≤ πt/K + C ′′e−c
′′n ≤ C ′e−c

′nt2/ logn + C ′′e−c
′′n.

We thus retrieve the result of the proposition bounding the value of t and choosing C and c appropriately.
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It is even possible to give a deterministic equivalent of D̂ independent of the signal m.

Proposition I.17. The fixed-point equation D = ητ ◦Λτ̄Σ ◦uτ (D) admits a unique solution, denoted D̃−m ∈
D+
n , and which satisfies ∥D̃ − D̃−m∥ ≤ O

(
1√
n

)
.

Proof. Let us first recall the notations µi = E[zi], Σi = E[zizTi ] = Ci + µiµ
T
i and:

Σ̄i = τ̄iCi +

(√
τ̄iµi +

m
√
τ i

)(√
τ̄iµi +

m
√
τ i

)T
= τ̄iCi + m̄im̄

T
i .

The existence and uniqueness of D̃−m are justified for the same reasons as for D̃ (just take m = 0). We want
to employ again Proposition I.10, with the deterministic mappings:

f = ητ ◦ Λτ̄Σ ◦ uτ and f ′ = ητ ◦ ΛΣ̄ ◦ uτ ,

and with ∆ = D̃−m and ∆′ = D̃. We note that D̃ ∼ O(1) and the Lipschitz parameter λ of f for the
semi-metric satisfies a similar inequality as in the proof of Proposition I.16:

1− λ ≥ γ

γ + u∞× ∥ 1
D̃
∥ sup ∥Σi∥

≥ O(1).

We then need to bound the spectral norm ∥ητ ◦ Λτ̄Σ ◦ uτ (D̃)− ητ ◦ ΛΣ̄ ◦ uτ (D̃)∥. Note that η is 1-Lipschitz
for the absolute value because, for any x, y ∈ R+, the stability of η implies:

|η(x)− η(y)|
|x− y|

≤

√
η(x)η(y)

xy
=

√
1

(1 + xu(η(x)) (1 + yu(η(y)))
≤ 1.

Thus ητ is also 1-Lipschitz. We are then left to bounding the distance (in spectral norm) between Λτ̄Σ◦uτ (D̃)
and ΛΣ̄ ◦uτ (D̃), and we are naturally led to employing a second time Proposition I.10 since those two values
are both fixed points of stable mappings:

ΛΣ̄(uτ (D̃)) = ĨΣ̄
uτ (D̃)

(ΛΣ̄(uτ (D̃))) and Λτ̄Σ(uτ (D̃)) = ĨΣ
uτ (D̃)

(Λτ̄Σ(uτ (D̃)))

where, for any S ∈ Snp and ∆ ∈ D+
n , ĨS∆ : Λ 7→ I

(
S, ∆

In+∆Λ

)
. Once again, the first hypothesis is satisfied,

ΛΣ(uτ (D̃)) ∼ O(1) and λ′, the Lipschitz parameter of ĨΣ̄∆ satisfies 1 − λ′ ≥ O(1). Noting for simplicity
∆ ≡ uτ (D̃), Λ ≡ Λτ̄Σ(∆) and R̃

S
= R̃

S
(S, ∆

In+∆Λ ) (for S = Σ̄ or S = C), we are left to bounding, for any
i ∈ [n], ∣∣∣Ĩ τ̄Σ∆ (Λ)i − ĨΣ̄∆(Λ)i

∣∣∣ ≤ 1

nτ i
mT R̃

τ̄C
m+

2

n

√
τ̄i
τ i
mT
i R̃

τ̄Σ
m

+

∣∣∣∣∣∣ 1n Tr

ΣiR̃
τ̄Σ

 1

n

n∑
j=1

√
τ̄j
τ j

(mT
j m+mmT

j ) +
1

τ j
mmT

 R̃
Σ̄

∣∣∣∣∣∣
≤ O

(
1

n
+

1

n
mT R̃

Σ̄
ΣiR̃

τ̄Σ
m+

1

n
sup
j∈[n]

mT R̃
Σ̄
ΣiR̃

τ̄Σ
mj

)
≤ O

(
1

n

)

since 1
τj
,
√

τ̄j
τj

≤ 1 ∀j ∈ [n]. Applying twice Proposition I.10, we retrieve the result of the proposition.

Propositions I.16 and I.17 allow us to set the following result, proved similarly as Lemma B.18:

Corollary I.18. There exist two constants C, c > 0 (C, c ∼ O(1)) such that:

∀ε ∈ (0, 1] : P
(∥∥∥D̂ − D̃−m

∥∥∥ ≥ ε
)
≤ Ce−cnε

2/ logn.
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We now have all the elements to prove Theorem I.1.

Proof of Theorem I.1. Let us set U ≡ τ̄uτ (D̃−m). We already know that ∥U∥ ≤ supi∈[n]
τ̄iu

∞
×

[D̃−m]i
≤ O(1),

which allows us to set, on the one hand, that for any deterministic matrix A ∈ Mp satisfying ∥A∥∗ ≤ O(1):

Tr(ARZz (U)) ∈ Tr
(
AR̃

Σ

z (U)
)
± E2

(
1√
n

)
,

thanks to (I.5) (it is true for all A ∈ Mp such that ∥A∥F ≤ O(1), so in particular for the matrices A satisfying
∥A∥∗ ≤ O(1)).

On the second hand, placing ourselves in the overwhelming event where ∥Z∥ ≤ K
√
n as in the proof of

Proposition I.16, we can bound thanks to Propositions I.16 and I.17:∣∣Tr(ARZz (U))− Tr(ARz)
∣∣ ≤ 1

n

∥∥∥RZz (U)Z
(
τ̄uτ (∆̂)− τ̄uτ (∆̃−m)

)
ZT Rz

∥∥∥
≤ O

(
sup
i∈[n]

τ̄iu
∞
× ∥D̂ − ∆̃−m∥
D̂i[∆̃−m]i

)

we can then conclude thanks to Corollary I.18.



Chapter J

Robust convex regression

In modern statistical learning approaches, many optimization problems can be formulated in terms of convex
minimization problem or fixed point equations (soft-max classification, M-estimators, low density classifiers,
soft snm, logistic regression, optimal transport, adaboost, stochastic gradient descent...). As such, a theo-
retical characterization of the behavior of such objects becomes crucial in order to assess the performances
of the underlying algorithms. This chapter has two main objectives: first it provides qualitative inferences
concerning the statistical concentration of the parameter vector learned during the resolution of the problem
and second, some quantitative inferences on a restricted range of regularized empirical risk minimization
problems (see [ML19]) of objective function 1

n

∑n
i=1 hi(x

T
i Y ) + 1

2λ∥Y ∥2. Thanks to a convexity hypothesis
on the mappings h1, . . . , hn, one can express these minimizing problem as a fixed point equation through
differentiation

Y =
1

n

n∑
i=1

fi(x
T
i Y )xi, (J.1)

where we noted fi = h′i.
In the following, we stick to ℓ2-norm regularization although other kind of regularizations can be found

in the literature [CM22]. We however believe in possible generalization of our approach as it was done
very recently for the Lasso problem in [TSS+22]. The class of so called “ridge regularized robust regres-
sion estimators” ([BBEKY13, Kar13]) contains in particular softmax classifiers that were already studied
in [MLC19b, SLTC21]. There are been continuous work made around this range of problems with differ-
ent kind of techniques, approximate message passing in [SC19, DM16], convex Gaussian minmax Theorem
in [TOS20, DKT22], Meanfield Theory in [MKUZ20] or Replica Method in [MKL+20, SZ22]. As a naive
comparison to all these works we wish to emphasize the simplicity of the fixed point equation providing the
first statistics of Y given here in Claim J.2. But the more important contribution is probably a rigorous
justification of the leave-one-out technique introduced in [Kar13, BBEKY13], this contribution relies on The-
orems G.1 and G.2 setting the concentration and the estimation of the resolvent (Ip − 1

nXDX
T )−1 when D

is random and depends on X.

J.1 Main results

1.1 Theoretical results

The concentration of Y is proven thanks to Corollary C.9 one is then led to try and estimate its first statistics.
For that purpose, one first needs to disentangle the contribution of each xi in1 Y = 1

n

∑n
i=1 fi(x

T
i Y )xi. This

is done thanks to the well known “leave-one-out” method that aims at expressing a formula to link Y with a

1To give a arguably valid justification, we mention that if one can write xiY as a functional ξi(xiY−i) for Y−i independent
of i, then one can resort to Stein identities to estimate f(ξi(xiY−i)xi.
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random vector Y−i deprived of the contribution of xi and defined followingly:

Y−i =
1

n

n∑
j=0
j ̸=i

fj(x
T
j Y−i)xj (J.2)

Our first result provides the link between Y and Y−i, it is a combination of Propositions J.12 and J.9.

Proposition J.1. Under classical Assumptions 1-4, we consider a two differentiable convex mappings fi :
R → R, i ∈ [n], such that ∥fi∥∞, ∥f ′i∥∞, ∥f

(2)
i ∥∞ ≤ ∞, then for any δ ∈ Dn, let us note Q̃δ ≡ (Ip −

1
n

∑n
i=1 E

[
f ′
i(x

T
i Y )

1−δif ′
i(x

T
i Y )

]
Σi)

−1 where Σi ≡ E[xixTi ]. The equation δ = 1
n Diagi∈[n](Tr(ΣiQ̃

δ)) has a unique
solution that we note ∆, and we have the concentration:

∀t > 0 : P
(∣∣xTi Y − xTi Y−i −∆ifi(x

T
i Y )

∣∣ ≥ t
)
≤ Ce−cnt

2/ logn + Ce−cn,

for some constants C, c > 0 independent of n.

This proposition leads us to introduce the mapping ξi defined for any z ∈ R with the fixed point equation
(see Proposition J.12)

ξi(z) = fi(z +∆iξi(z)), ξi(z) ∈ R, (J.3)

then one can show (Proposition J.12 again) that fi(xTi Y ) ∈ ξi(x
T
i Y−i) ± E1

(
1√
n

)
. Finally, noting that

ξ′i(t) =
f ′
i(ζi(t))

1−∆if ′
i(ζi(t))

(where ζi(t) satisfies ζi(t) = t + ∆ifi(ζi(t))), one is lead to deduce the following result
that could not be demonstrated (although it was validated with practical examples as one can see in next
subsection).

Claim J.2. Considering sequence of Gaussian vectors Xn = (x1, . . . , xn) ∈ Mpn,n and convex twice dif-
ferentiable mappings hi : R → R satisfying the hypotheses of of Proposition J.1 if we note mi ≡ E[xi],
Σi = E[xixTi ], for all n ∈ N, the unique vector mY satisfying:

• mY = 1
n

∑n
i=1 E[ξi(N (mi, vi))]Q̃mi

• ΣY = mYm
T
Y + Q̃S̃Q̃

• Q̃ = (Ip − C̃)−1

• C̃ = 1
n

∑n
i=1 E[ξ′i(N (mi, vi))]Ci

• S̃ = 1
n2

∑n
i=1 E[ξ2i (N (mi, vi))]Σi

• ξi : R → R is defined for any z ∈ R as the unique solution to ξi(z) = fi

(
z + 1

n Tr(CiQ̃)ξi(z)
)

• mi = mT
i mY

• vi =
1
n Tr(ΣY Σi)−m2

i

Besides, if we note Σ̃ =
∑n
i=1 ξi(m

T
i mY )

2Σi, the solution Y to the fixed point equation (J.1) satisfies the
estimation:

∥E[Y ]−mY ∥ ≤ O

(
1√
n

)
and

∥∥E[Y Y T ]− ΣY
∥∥
∗ ≤ O

(
1√
n

)
The estimation of the solutions to Claim J.2 are computed reducing the step of convergence at each

iteration. The convergence is the ensured for the same reasons that transform (J.1) into the contractive
equation (since Ip ≤ d2(Ψ(X)) ≤ (1 + 1

n supi∈[n] ∥fi′∥∞)Ip)):

Y = Y −
Y − 1

n

∑n
i=1 f(x

T
i Y )xi

1 + 1
n supi∈[n] ∥fi′∥∞∥XXT ∥

We were not able to prove this claim that however appears right on all the different practical examples we
studied. We give from Subsection 2.5 and in the next subsections some reachable inferences in the Gaussian
case, however this approach has two main issues:
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• Although we prove that some estimators satisfy those equations with vanishing error (when n → ∞),
we could not obtain the existence and uniqueness of the solution of the displayed fixed point equation,

• The fixed point equation in question relies on the computation of integrals E[ξi(z)] for z ∼ N (mz, vz)
and has therefore a very slow rate of convergence.

Those two reasons make us think that the Gaussian approach is not the good one and that one has to
find under the general assumption of concentrated vectors a supplementary equation (giving a link between
E[ξi[xTi Y−i] and E[Y ] for instance) that will allow us to prove Claim J.2. We give in next subsection some
illustration of the validity of Claim J.2.

1.2 Application to the logistic regression

To illustrate our theoretical results in a simple way we present the example of a supervised classification
method called the “the logistic regression” already studied by [MLC19a]. Considering a deterministic vector
m ∈ Rp and a positive symmetric matrix C ∈ Mp, we suppose we are given n Gaussian random vectors
z1, . . . , zn, each one following the law N (yim,C) where y1, . . . , yn ∈ {−1, 1} are the “labels” of zi that
determine the classes of our data. We assume for simplicity that the classes are balanced. Our classification
problem aims at deducing from the training set z1, . . . , zn and the labels y1, . . . yn a statistical characterization
of our two classes that will allow us to classify a new coming data x, independent with the training set and
following one or the other law. To introduce the problem, let us express the probability conditioned on a
new data x, and knowing that zi is Gaussian, that yi = y, for a given y ∈ {0, 1}:

P(yi = y | zi) =
P(yi = y)P(zi | yi = y)

P(yi = y)P(zi | yi = y) + P(yi = −y)P(zi | yi = −)

=
e−(zi−ym)TC−1(zi−ym)/2

e−(zi−ym)TC−1(zi−ym)/2 + e−(zi+ym)TC−1(zi+ym)/2

=
1

1 + e−yz
T
i C

−1m
= σ(yzTi β

∗),

noting σ : t 7→ 1/(1 + e−t) and β∗ ≡ C−1m. The goal of the logistic regression is to try and estimate β to
be able to classify the data depending on the highest value of P(yi = 1 | zi) and P(yi = −1 | zi). For that
purpose, we solve a regularized maximum likelihood problem:

min
β∈Rp

1

p

n∑
i=1

ρ(βTxi) +
λ

2
∥β∥2

where ρ(t) = log(1 + e−t), xi = yizi and λ > 0 is the regularizing parameter. Differentiating this minimizing
problem, we obtain:

β =
1

λn

n∑
i=1

f(xTi β)xi,

where f : t 7→ 1
1+et . If one chooses λ sufficiently big, the assumptions of Corollary C.9 are all satisfied, our

results thus allow us to set the concentration β ∝ E2(1/
√
n) and estimate its first statistics.

The system of equations provided in Conjecture J.2 can be solved by successive iteration, we can then
deduce the performances of the algorithm from the statistics of Y . We depicted on Figure J.1 some of
these predictions for a minimization problem slightly different where β ∈ Mp,2, yi = (1, 0) if xi in class C1,
y = (0, 1) if xi in class C2 and f(xTi β) = Softmax(xTi β) ∈ R2 for all i ∈ [n]. We displayed on on Figure J.2
the distribution of the random vectors xTβ ∈ R2, for different test data x ∈ Rp independent with β ∈ Mp,2

and belonging to C1 or C2 (x and β are both randomly drown). The index of the biggest entry of xTβ
provides the regressed class for this classifier. One can see that when n gets big, the distance between the
two entries of xTβ increases, one has indeed more data available to provide an accurate vector β.
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The next step of the study is now to have a wider understanding of the formulas provided in Claim J.2
in order to provide fast classifier’s parameter optimization without a full coverage of the parameter space.

Figure J.1: Misclassification rate for two class of Gaussian random vectors with p = 500, C1 = C2 = Ip,
m1 = (2, 0, 0, ...), m2 = (0, 2, 0, ...), with proportion (#C1/n,#C2/n) = (14 ,

3
4 ) for different values for n. Mean

taken on 200 drawings for the estimation of the empiric misclassification error.

Figure J.2: Distribution of xTβ with x, test data following the distribution of C1 or C2, independent with β.
Same setting as Figure J.1.

J.2 Fixed point equation depending on independent data x1, . . . , xn

We will keep Assumptions 1-5 concerning the definition of our regime and the concentration, independence
and bounding hypotheses on X; we further add the following assumptions on f , for reasons that will be clear
later:
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Assumption 11. The mappings fi : R → R, i ∈ [n], are twice differentiable and
supi∈[n] ∥fi∥∞, supi∈[n] ∥f ′i∥∞, supi∈[n] ∥h

(3)
i ∥∞ ≤ O(1).

2.1 Leave-one-out approach
To estimate the expectation and covariance of Y , one needs to disentangle the influence of each data xi on Y
with the study of the random vector Y−i defined with the fixed point equation (J.2) and that is independent
with xi by construction. To link Y with Y−i we creates a “bridge” defined by a parameter t ∈ [0, 1], through
a mapping Ψt−i : Mp,n → L(E), defined for any A ∈ Mp,n and any y ∈ E with:

Ψt−i(A)(y) ≡
1

n

∑
j=1
j ̸=i

fi(a
T
j y)aj + tfi(a

T
i y)ai.

Then, noting for any t ∈ [0, 1] yA−i(t), the unique solution (when it exists) to yA−i(t) = Ψt−i(A)(y
A
−i(t)), we see

that:

Y−i = yX−i(0) and Y = yX−i(1)

The next lemma sets the differentiability of the mapping yA−i : [0, 1] → E.

Lemma J.3. Under the differentiablility assumption on h (Assumption 11) the mapping yA−i is differentiable
and we have:

yA−i
′(t) =

χ′
A(t)

n

(
Ip +

1

n
A−iDA(t))A

T
−i

)−1

ai,

where χA : t 7→ tfi(a
T
i y

A
−i(t)) and DA : t 7→ Diag(−f ′i(xTi yA−i(t)).

Proof. Starting from the fixed point equation satisfied by Y in (J.1), we apply the inverse function theorem
to the C1 bijective mapping:

Θ : R× Rp −→ R× Rp

(t, y) 7−→

t, y − 1

n

∑
j=0
j ̸=i

fi(a
T
j y)aj −

t

n
fi(a

T
i y)ai

 .

It is indeed possible since R×Rp is a Banach space, dΘ is clearly bounded (Ψ(A) is Lipschitz), and ∀(t, y)×
(s, h) ∈ (R× Rp)2:

dΘ|(t,y) · (s, h) =
(
s, h− s

n
fi(a

T
i y)ai −

t

n
f ′i(a

T
i y)a

T
i hai −A−iDiag(f ′i(a

T
i y))i∈[n]A−ih

)
=
(
s, h− s

n
fi(a

T
i y)ai −A−i(t)Diag(f ′i(a

T
i y))i∈[n]A(t)h

)
,

if we note A−i(t) = (a1, . . . , ai−1, tai, ai+1, · · · , an) ∈ Mp,n. Besides, ∀t ∈ R, f ′i(t) ≤ 0, thus QA−i(t) ≡
(Ip +A−i(t)DA(t)A)

−1 is well defined and dΘ|(t,y) is invertible with:

dΘ−1
|(t,y) =

(
1 0

QA−i(t)fi(a
T
i y)ai QA−i(t)

)
.

Therefore, Θ−1 is also C1 and, we can differentiate yA−i(t) = Θ−1(t, 0) to obtain the identity:

yA−i
′(t) =−A−iDA(t)A

T
−iy

A
−i

′(t)

+
1

n
fi(a

T
i y

A
−i(t))ai +

t

n
f ′i
(
aTi y

A
−i(t)

)
aTi y

A
−i

′(t)ai, (J.4)

from which we retrieve directly the result of the Lemma.
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2.2 Concentration of t 7→ yX−i
′(t)

Introducing, for any t ∈ [0, 1], and any i ∈ [n], the diagonal matrix D−i(t) ∈ Dn defined with

D−i(t)i = −tf ′i
(
xTi y

X
−i(t)

)
and ∀j ∈ [n], j ̸= i : D−i(t)j = −f ′i

(
xTj y

X
−i(t)

)
the random matrix d2Ψt−i(A) y writes more simply 1

nXD−i(t)X and we have the identity:

yX−i
′(t) =

1

n
fi(x

T
i y

X
−i(t))Q−i(t)xi, (J.5)

where, Q−i(t) ≡ Q(D−i(t)) ≡ (Ip +
1
nXD−i(t)X

T )−1. Note in particular that:

∀t ∈ [0, 1] : ∥Q−i(t)∥ ≤ 1 (J.6)

When t = 0, the random matrix Q−i(0), that we note Q−i is then independent with xi like D−i ≡ D−i(0),
since then [D−i]i = 0.

We are going to express the concentration of mappings defined on [0, 1] and having value on vectorial
spaces (Rp, Mp,n or Dn). Those concentrations are expressed with the infinite norm toward the parameter
t ∈ [0, 1], for simplicity, we will superscript the vectorial norms with ∞ to designate those norms. For
instance: ∥∥yX−i(·)∥∥∞ = sup

t∈[0,1]

∥∥yX−i(t)∥∥ .
We will also need to express norms on product of vectorial spaces. Given two normed vectorial spaces
(E, ∥ · ∥E) and (F, ∥ · ∥F ), we note ∥ · ∥E + ∥ · ∥F the norm defined on E × F as:

∀(x, y) ∈ E × F : (∥ · ∥E + ∥ · ∥F )(x, y) = ∥x∥E + ∥y∥F .

We will now introduce a family of event indexed by the norm of ∥X∥. Given u > K, we note:

Au ≡
{
∥X∥ ≤ u

√
n
}

It is possible to bound ∥X∥ thanks to the bound

∥E[X]∥ ≤
√
n sup

1≤i≤n
∥E[xi]∥ ≤ O(

√
n)

Proposition B.22 allows us to set E[∥X∥] ≤ ∥E[X]∥+O(
√
n) ≤ O(

√
n) and therefore ∥X∥ ∈ O(

√
n)± E2. In

other words

∀u ≥ ν,P (Acu) ≤ Ce−cnu
2

, where ν ≡ 2E[∥X∥]√
n

≤ O(1),

and C, c > 0 are two constants.

Proposition J.4. For all u ≥ ν, and i ∈ [n]:(
1

u2
√
n
X, yX−i(·)

)
| Au ∝ E2

(
u2√
n

)
in

(
Mp,n × (Rp)[0,1], ∥ · ∥∞F + ∥ · ∥∞

)
,

Proof. Given a (sequence of) parameter u ≥ K, we first know from Lemma B.4 and Remark B.5 that
(X | Au) ∝ E2 We are going to employ Corollary C.9 with the mapping Ψ·

−i : Mp,n → F((Rp)[0,1]) that is
defined for any A, y, t ∈ Mp,n × Rp × [0, 1] as:

Ψt−i(A)(y) = Ψ(A)(y)− 1− t

n
h(aTi y), (J.7)
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where we recall that Ψ(A)(y) = 1
n

∑n
i=1 h(a

T
i y). With this choice (recalling that f = − 1

2h
′), for all A ∈ Mp,n,

y ∈ Rp:

d(Ψt−i(A)) y =
1

n
A−ifi(A

T
−iy) +

t

n
fi(a

T
i y)ai.

To apply Corollary C.9, we merely choose y0 : t 7→ 0, then for any A ∈ X(Au):∥∥∥d(Ψ·
−i(A)) y0(·)

∥∥∥∞ =
1

n
|fi(0)|

∥∥∥∥A−i1+
t

n
ai

∥∥∥∥ ≤ ∥f∥∞u

We can easily bound for any A ∈ X(Au), y ∈ (Rp)[0,1]:

Ip ≤ d2(Ψ·
−i(A)) y = − 2

n
A−iDiag(f ′i(a

T
j y))j∈[n]A−i −

2t

n
f ′i(a

T
i y)aia

T
i + Ip ≤ ∥f ′∥∞u2

(recall that ∀t ∈ R, f ′i(t) ≤ 0).
Besides for any y ∈ B(y0, u∥f∥∞) and any A,B ∈ X(Au) ⊂ Mp,n:

∥d(Ψ(A)) y − d(Ψ(B)) y∥
∞ ≤ 1

n

∥∥(A−B)fi(A
T y)
∥∥∞ +

1

n

∥∥B (fi(AT y)− fi(B
T y)
)∥∥∞

≤ 1

n
(|fi(0)|+ ∥A∥∥y∥∞∥f ′∥∞)∥A−B∥+ 1

n
∥B∥∥A−B∥∥y∥∞∥f ′∥∞

≤ O

(
u2√
n

)
∥A−B∥;

and the same way, for any a, b ∈ xi(Au) ⊂ Rp we show that:

1

n
∥fi(aT y)a− fi(b

T y)b∥∞ ≤ O

(
u2√
n

)
∥a− b∥,

Therefore, noting E ≡ (Rp)[0,1], we deduce from (J.7) that for all u > K, A 7→ d(Ψ·
−i(A)) · is O

(
u2
√
n

)
-

Lipschitz from (X(Au), ∥ · ∥F ) to (F(E,E), ∥ · ∥∞B(y0,u)
). We can then deduce from Corollary C.9 the result

of the proposition.

Corollary J.5. Y (·) ∝ E2(n−1/2) + E 2
3
(n−3/2).

Proof. Noting that Y is a 1-Lipschitz transformation of ( 1
u2

√
n
X, yX−i(·)), let us bound thanks to Proposi-

tion J.4 for any u ≥ ν and any independent copy of Y , Y ′:

P (|fi(Y )− fi(Y
′)| ≥ t | Au) ≤ Ce−cnt

2/u4

and P (Ac
u) ≤ Ce−cnu

2

.

One can then apply Lemma A.28 with σ = 1/
√
n, m = 2 and2 η = η(Mp,n,∥·∥) = O(1/n) to obtain the result

of the corollary.

Let us now prove the concentration of yX−i′ that we will integrate in next subsection.

Proposition J.6. Under Aν , ∀i ∈ [n], yX−i′(·) ∈ E2
(

1√
n

)
in ((Rp)[0,1], ∥ · ∥∞).

One could propose as in Corollary J.5 a sharper control on the tail of yX−i(·) but the expression becomes
complicated, so we prefer not to present it.

Proof. One could once again employ Corollary C.9, but it is straightforward here to employ the explicit
formula given by (J.5):

yX−i
′(t) =

1

n
fi(x

T
i y

X
−i(t))Q−i(t)xi,

that allows us to state that yX−i′(·) is concentrated as a O(1/
√
n)-Lipschitz transformation under Aν of the

concentrated vector (X,
√
nY−i(·), D−i(·)) (recall indeed that ∥Q−i(t)∥, ∥fi∥∞, ∥X∥/

√
n, ∥D−i∥∞ ≤ O(1)).

2See Example B.21 to get more precision



166 CHAPTER J. ROBUST CONVEX REGRESSION

2.3 Integration of ∂yX−i(t)

∂t

Now that the concentration of the objects yX−i(t) and yX−i(t)′ are well understood, we are able to integrate the
formula provided by Lemma J.3 to express the link between Y and Y−i. We just give some preliminary results
to control the matrix Q−i(·). In a first time, let us study Q−i ≡ Q−i(0) = Q−i(D−i) which is independent
with xi.

Proposition J.7. Under Aν , ∀i ∈ [n]:

∥Q−i(·)xi −Q−ixi∥ ∈ O
(√

log(n)
)
± E2 in (R[0,1], ∥ · ∥∞)

This proposition is a consequence of the following lemma.

Lemma J.8. Under Aν , supt∈[0,1] ∥D−i −D−i(t)∥F ≤ O(1)

Proof. From identity:

XT yX−i(t) =
1

n
XTX−if(X

T yX−i(t)) +
t

n
XTxifi(x

T
i y

X
−i(t)),

(where given a vector z ∈ Rn, f(z) = (fi(zi))i∈[n] ∈ Rn). We can deduce that:

∥∥XT yX−i(t)−XTY−i
∥∥ ≤ sup

i∈[n]

∥f ′i∥∞∥ 1
n
XTX−i∥

∥∥XT yX−i(t)−XTY−i
∥∥+ t

n
XTxifi(x

T
i y

X
−i(t)),

therefore
∥∥XT yX−i(t)−XTY−i

∥∥ ≤ 1
nεX

Txifi(x
T
i y

X
−i(t)). Recalling the identityD−i(t) ≡ Diag(f ′i(X

T yX−i(t))),
we can bound under Aν (recall that ∥X∥, ∥xi∥ ≤ O(

√
n) and ∥f∥∞ ≤ O(1)):

∥D−i −D−i(t)∥F ≤ sup
i∈[n]

∥f ′i ′∥∞
ε

t

n

∥∥XTxifi(x
T
i y

X
−i(t))

∥∥ ≤ O (1) (J.8)

Proof of Proposition J.7. Under Aν and for any t ∈ [0, 1], let us bound:

∥(Q−i(t)−Q−i)xi∥ ≤ 1

n

∥∥Q−i(t)X−i(D−i −D(t))XT
−iQ−ixi

∥∥
≤ O

(
1√
n

)
∥XT

−iQ−ixi∥∞,

thanks to Lemma J.8 and since ∥X∥ ≤ O(
√
n) and ∥Q−i(t)∥ ≤ 1.

Now, it is possible to show (see [LC22a, Lemma D.3]) that XT
−iQ−ixi ∈ E2(

√
n). Besides, one can

bound thanks to the independence between xi and Q−i (Aν being overwhelming, it preserves in a sense the
independence relations):

∥∥E [XT
−iQ−ixi | Aν

]∥∥
∞ ≤

∥∥E [XT
−iQ−iE[xi]

]∥∥
∞ +O

(
1

n

)
≤ E [∥X−i∥] ∥E[xi]∥ ≤ O(

√
n),

derived from Assumption 4 and (J.6). Thus, Proposition B.22 allows us to bound:

E
[∥∥XT

−iQ−ixi
∥∥
∞ | Aν

]
≤ O(

√
log(n)),

from which we deduce the result of the proposition.

We have now all the elements to prove:
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Proposition J.9. 7 6.8 Under Aν , ∀i ∈ [n]:∥∥∥∥Y − Y−i −
1

n
fi(x

T
i Y )Q−ixi

∥∥∥∥ ∈ O

(√
log n

n

)
± E2

(
1

n

)
Proof. Setting χ(t) ≡ tfi(x

T
i y

X
−i(t)) ∈ R, let us integrate between 0 and t the identity yX−i

′(t) =
χ′(t) 1nQ−i(t)xi:

yX−i(t)− Y−i =
1

n
fi(x

T
i Y )Q−ixi +

1

n

∫ t

0

χ′(u)(Q−i(u)−Q−i(0))xidu. (J.9)

Now, χ′(u) = fi(x
T
i y

X
−i(u))+ tf

′
i(x

T
i y

X
−i(u))x

T
i y

X
−i

′(u), and we know from Proposition J.4 and Proposition J.6
that under Aν :

• fi(x
T
i y

X
−i(·)) ∈ O(1)± E2 and ∥fi(xTi yX−i(·))∥∞ ≤ O(1)

• f ′i(x
T
i y

X
−i(·)) ∈ O(1)± E2 and ∥f ′i(xTi yX−i(·))∥∞ ≤ O(1)

• xTi y
X
−i

′(·) ∈ O(1)± E2 and ∥xTi yX−i′(·)∥∞ ≤ O(1)

therefore χ′(·) ∈ O(1)± E2 in
(
R[0,1], ∥ · ∥∞

)
, ∥χ′∥∞ ≤ O(1) and one can bound:

∥χ′(·)(Q−i(u)−Q−i(0))xi∥

≤ |χ′(·)| ∥(Q−i(·)−Q−i(0))xi∥ ∈ O(
√

log n)± E2,

in (R[0,1], ∥ · ∥∞). Since the integration between 0 and t is 1-Lipschitz for the infinite norm on [0, t], we have
the concentration: ∥∥∥∥ 1n

∫ t

0

χ′(u)(Q−i(u)−Q−i(0))xidu

∥∥∥∥ ∈ O(
√
log n)± E2.

Note first that Y and Y−i have comparable first statistics.

Corollary J.10. 
∥EAν

[Y ]− EAν
[Y−i]∥ ≤ O

(√
log n

n

)
∥∥EAν

[
Y Y T

]
− EAν

[
Y−iY

T
−i
]∥∥

∗ ≤ O

(√
log n

n

)
,

(J.10)

where we recall that ∥ · ∥∗ is the nuclear norm satisfying for any A ∈ Mp,n, ∥A∥∗ = Tr(
√
AAT ).

Proof. It is just a consequence of Proposition J.9 and the bounds:∥∥∥∥EAν

[
1

n
fi(x

T
i Y )Q−ixi

]∥∥∥∥ ≤ 1

n
EAν

[
|fi(xTi Y )|∥xi∥∥Q−i∥

]
≤ O

(
1√
n

)
∥∥∥∥EAν

[
1

n2
fi(x

T
i Y )2Q−ixix

T
i Q−i

]∥∥∥∥
∗
≤ 1

n2
EAν

[
|fi(xTi Y )2|∥xi∥2∥Q−i∥2

]
≤ O

(
1

n

)
∥∥∥∥EAν

[
1

n
fi(x

T
i Y )2Q−ixiY

T
−i

]∥∥∥∥
∗
≤ O

(
1√
n

)
,
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One can then wonder why we set a result as complex as Proposition J.9 if it was simply to obtain these
simple relations between the first statistics of Y and Y−i. It is because the behaviors of Y and Y−i diverge
when one looks at projections on xi.

The observable diameter of order O(
√
log n/n) in Proposition J.9 allows us to keep good concentration

bounds when Y is multiplied on the left by xTj , j ∈ [n] (indeed, under Aν , ∥xj∥ ≤ O(
√
n)). This time, the

term 1
nfi(x

T
i Y )xTj Q−ixi can be of order O(1) in particular when j = i. For all j ∈ [n], 1

nfi(x
T
i Y )xjQ−ixi ∈

E2(1/
√
n) (as a 1/

√
n transformation of (X,

√
nyX−i(·))) thus if j ̸= i:

EAν

[
1

n
fi(x

T
i Y )xjQ−ixi

]
≤ O

(
1√
n

)
but when j = i this quantity can be of order O(1), therefore we obtain the concentrations:

Corollary J.11. 
xTj Y − xTj Y−i ∈ O

(√
log n

n

)
± E1

(
1√
n

)
when j ̸= i

xTi Y − xTi Y−i −
1

n
xTi Q−ixifi(x

T
i Y ) ∈ O

(√
log n

n

)
± E1

(
1√
n

)
.

(J.11)

2.4 Implicit relation between xTi Y and xTi Y−i

The linear concentration (J.11) interests us particularly because it allows us to replace in the identity

Y =
1

n

n∑
i=1

fi(x
T
i Y )xi,

the quantity fi(xTi Y )xi with a quantity fi(ζi(xTi Y−i))xi (for a given mapping ζi : R → R) that is more easy to
manage thanks to the independence between xi and Y−i. The random variable is estimated thanks to a fixed
point equation already introduced, in the case of Wishart matrices, in [SB95, PP09, LC22c]. Introducing the
notation

Q̃Λ(D̃)(D̃) =

(
Ip +

1

n

n∑
i=1

E

[
D̃iΣi

1 + Λi(D̃)D̃i

])−1

,

where, for all Γ ∈ Dn, we note Λ(Γ) the unique solution to:

∀i ∈ [n] : Λi(Γ) =
1

n
Tr
(
ΣiQ̃

Λ(Γ)(Γ)
)

(see Theorem F.18 for existence and uniqueness).
We can then employ Theorems G.1 and G.2 to get:

Q ∈ QΛ(D)(D)± E1 (log(n)) + E 1
2
(1/

√
n) in (Mp, ∥ · ∥F ),

For simplicity, we will note from now on:

∆ ≡ Λ(D),

(where the expectation in the definition of Q̃Λ(D)(D) is taken on Aν). One can then deduce in particular
from this theorem that for any i ∈ [n]:

1

n
xTi Q−ixi | Aν ∈ ∆i ± E1 (log(n)) + E 1

2
(1/

√
n) (J.12)

It sounds then natural to introduce the equation

z = xTi Y−i +∆ifi(z), z ∈ R (J.13)

whose solution is close to xTi Y as stated by next proposition.
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Proposition J.12. Given i ∈ [n], and x ∈ R, the equation:

z = x+∆ifi(z), z ∈ R, (J.14)

admits a unique solution that we note ζi(x), one then has the approximation:

xTi Y ∈ ζi(x
T
i Y−i)± E1

(
1√
n

)
To prove this proposition, we are going to employ the following lemma which is just an adaptation of the

result of Lemma C.7 concerning contractive mappings to the case of convex mappings.

Lemma J.13. Given a twice differentiable convex mapping f : Rp → R such that for all y ∈ Rp, d2f y ≥ κ
and a vector y0 ∈ Rp such that ∥df y0∥ ≤ τ , we know that the fixed point y∗ = miny∈Rp fi(y) also satisfies:

∥y ∗ −y0∥ ≤ τ

κ

Proof. One just has to introduce K ≡ supy∈B(y0,
τ
κ ) ∥d2f y∥, then the mapping ϕ : y 7→ y− 1

K df y is (1− K
κ )-

Lipschitz on B(y0, τκ ) and one can conclude with Lemma C.7.

Proof of Proposition J.12. As the solution of the minimizing convex problem (∆i > 0):

Minimize: ϕ(z) = ∥z∥2 +∆ih(z)− xTi Y−iz,

ζ(xTi Y−iz) is well defined and unique. Now, we can bound under Aν :∥∥∥dϕ xT
i Y

∥∥∥ =
∥∥xTi Y +∆ifi(x

T
i Y )− xTi Y−i

∥∥ ∈ O

(√
log n

n

)
± E2

(
1√
n

)
thanks to Corollary J.11. We can therefore employ Lemma J.13 to deduce the result of the proposition.

We end this subsection with a little result that will allow us to differentiate ζi and:

ξi : t 7→ fi(ζi(t))

Lemma J.14. Given i ∈ [n], the mapping ζi is differentiable and we have the identity:

ξ′i(t) =
f ′i(ζi(t))

1−∆if ′i(ζi(t))
.

Proof. Considering z, t ∈ R, let us express:

ζi(z + t)− ζi(z) = t+∆i (fi(ζi(z + t))− fi(ζi(z)))

thus |ζi(z + t)− ζi(z)| ≤ t
1−∆i∥f ′∥∞

(note that it implies that ζi is continuous). Let us bound:

|fi(ζi(z + t))− fi(ζi(z))− f ′i(ζi(z))(ζi(z + t)− ζi(z))|

≤ ∥f ′′∥∞ |ζi(z + t)− ζi(z)|2 ≤ t2∥f ′′∥∞
(1−∆i∥f ′∥∞)

2

Dividing the upper identity by t we can bound:∣∣∣∣1t (ζi(z + t)− ζi(z))− 1− ∆i

t
f ′i(ζi(z))(ζi(z + t)− ζi(z))

∣∣∣∣ ≤ t∥f ′′∥∞∆i

(1−∆i∥f ′∥∞)
2 .

We can then let t tend to 0 to conclude that ζi is differentiable and we obtain the identity:

ζ ′i(t) = 1 +∆if
′
i(ζi(t))ζ

′
i(t).

and one easily deduce from this formulation of ζ ′i the expression of ξ′i
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The formulation of ξ′i leads us to introducing the notation

Q̃ ≡ (Ip −
1

n

n∑
i=1

E[ξ′i(xTi Y−i)]Σi)−1

that satisfies the estimation:

Corollary J.15.
∥∥∥Q̃− Q̃∆(E[D])

∥∥∥
F
≤ O

(
logn√
n

)
The proof can be done with the same diagonal matrix ∆ but we think it would be more interesting to

wait for the final definition of ∆ to show the stronger result.

2.5 Expression of the mean and covariance of Y .
Introducing the notation ∀i ∈ [n], ξi = f ◦ ζi, next Proposition gives us first estimations of the deterministic
objects:

mY ≡ E[Y ] and ΣY ≡ E[Y Y T ],

Proposition J.16. Noting Y̌ = 1
n

∑n
i=1 ξi(x

T
i Y−i)xi, we can approximate:∥∥Y − Y̌
∥∥ ∈ O

(
log n√
n

)
+ E1

(
log n√
n

)
and we can estimate

∥∥mY − E
[
Y̌
]∥∥ ,∥∥ΣY − E

[
Y̌ Y̌ T

]∥∥
∗ ≤ O

(
logn√
n

)
.

Proof. Let us bound:

∥∥Y − Y̌
∥∥ ≤

∥∥∥∥∥ 1n
n∑
i=1

(
fi(x

T
i Y )− fi(ζi(x

T
i Y−i))

)
xi

∥∥∥∥∥ ≤ O

(
sup

1≤i≤n

∣∣xTi Y − ζi(x
T
i Y−i)

∣∣)

Besides, we know from Propositions J.12 that (|xTi Y − ζi(x
T
i Y−i)|)1≤i≤n ∈ E1

(
logn√
n

)
in (Rn, ∥ · ∥∞), thus

Proposition B.22 implies that:

sup
1≤i≤n

∣∣xTi Y − ζi(x
T
i Y−i)

∣∣ ∈ O

(
log n√
n

)
+ E1

(
log n√
n

)
,

from which we deduce the first result of the proposition. The estimation of the expectation and the non-
centered covariance of Y is a direct consequence, indeed, for the covariance, note that for any deterministic
matrix A ∈ Mp such that ∥A∥ ≤ 1:∣∣Tr (A (ΣY − E

[
Y̌ Y̌ T

]))∣∣ ≤ ∣∣E [Y TAY − Y̌ TAY̌
]∣∣ = ∣∣E [(Y − Y̌ )TA(Y + Y̌ )

]∣∣
≤ O

(
∥A∥E[∥Y − Y̌ ∥]

)
≤ O

(
log n√
n

)

2.6 Computation of the estimation of the mean and covariance of Y when X is
Gaussian

The estimation given by Proposition J.16 becomes particularly interesting when X is Gaussian because in
that case, the random variable zi ≡ xTi Y−i is also Gaussian (when all the random vectors xj are fixed, for
j ̸= i) and admits the statistics:

Ei[zi] = mT
i Y−i and Ei[z2i ] = Y T−iΣiY−i

(where we recall that mi ≡ E[xi] and Σi ≡ E[xixTi ]). The estimation of quantities of the form Ej
[
ξ(zj)u

Txj
]

will then be done in two steps that will be justified by Lemmas J.18 and J.19 below:
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1. “separate” with Stein-like identities, the “functional part” ξ(zj) from the “vectorial part” uTxj in
Ej
[
ξ(zj)u

Txj
]
,

2. show that the randomness brought by Y−i in zi can be neglected so that it can be approximated by a
Gaussian random variable z̃i ∼ N (µi, νi) with:

µi ≡ mT
i mY and νi ≡ Tr(ΣY Σi)− µ2

i , i ∈ [n]. (J.15)

Proposition J.17. Introducing the quantities:

m̃
(1)
Y =

1

n

n∑
i=1

E[ξi(z̃i)]Q̃mi and C̃
(1)
Y =

1

n

n∑
i=1

E[ξi(z̃i)2]Q̃ΣiQ̃

we have the estimations ∥mY − m̃
(1)
Y ∥, ∥CY − C̃

(1)
Y ∥∗ ≤ O

(
logn√
n

)
.

The estimation merely rely on two lemmas. The first one is a derivation of the Stein identity:

Lemma J.18. Given a Gaussian vector x ∼ N (µ,C) for µ ∈ Rp and C ∈ Mp positive symmetric, two
deterministic vectors w, u ∈ Rp, and a deterministic matrix A ∈ Mp,n, we have the identities:

E[fi(wTx)uTx] = E[fi(wTx)]uTµ+ E[f ′i(wTx)]uTCw
E[fi(wTx)xTAx] = E[fi(wTx)] Tr

(
A(µµT + C)

)
+ E[f ′i(wTx)]wTC

(
A+AT

)
µ

+ E[f ′′(wTx)]wTCACw

The second lemma allows us to integrate over Y , it will be proven after the proof of the proposition.

Lemma J.19. Given two (sequences of) random variables µ ∈ R and ν ∈ R such that 0 < ν̃ ≤ O(1) and
two (sequences of) deterministic variable µ̃, ν̃ ∈ R satisfying:

µ ∈ µ̃± E2
(

1√
n

)
and ν ∈ ν̃ ± E2

(
1√
n

)
,

if we consider a differentiable mapping f : R → R satisfying ∥f ′∥∞ ≤ O(1), then for any Gaussian random
variable z ∼ N (µ, ν), independent with ν and µ:

Ez[fi(z)] ∈ E[fi(z̃)]± E2
(

1√
n

)
where Ez is the expectation taken only on the variation of z and z̃ ∼ N (µ̃, ν̃).

Proof of Lemma J.19. Let us introduce a Gaussian random variable y ∼ N (0, 1), independent with µ and ν.
We can express:

Ez[fi(z)] ∈ E[fi(z̃)] = Ey[fi(µ+
√
νy)] ≡ ϕ(µ, ν)

The mapping y 7→ fi(µ+
√
νy)e−y

2/2 is bounded, we can thus differentiate ϕ and we can bound:

∂ϕ

∂ν
= Ey[

√
νf ′i(µ+

√
νy)] ≤ O(1)

∂ϕ

∂µ
= Ey[f ′i(µ+

√
νy)] ≤ O(1)

Therefore as O(1)-Lipschitz transformations of µ, ν under Aµ,ν , we obtain the concentration ϕ(µ, ν) ∈
ϕ(µ̃, ν̃) ± E2(1/

√
n) (one can invert the expectation and the function in concentration inequalities of ran-

dom variables), which is exactly the result of the proposition.
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Proof of Proposition J.17. Thanks to Lemma J.18, we can express for any u ∈ Rp symmetric, such that
∥u∥ ≤ O(1) and noting E−i =

∏
1≤j≤n

j ̸=i
Ej :

uTmY =
1

n

n∑
i=1

E−i
[
Ei
[
ξi(zi)u

Txi
]]

+O

(
log n√
n

)

=
1

n

n∑
i=1

E[ξi(zi)]uTmi + E−i
[
Ei[ξ′i(zi)]uTCiY−i

]
+O

(
log n√
n

)

=
1

n

n∑
i=1

E[ξi(zi)]uTmi + E[ξ′i(zi)]uTCimY +O

(
log n√
n

)

thanks to Lemma J.19 and Corollary J.10. We can then deduce, replacing u by uT Q̃:

uTmY =
1

n

n∑
i=1

E[ξi(zi)]uT Q̃mi +O

(
log n√
n

)
.

To estimate the covariance, we can once again deduce from Propoition J.9 that for any A ∈ Mp such
that ∥A∥ ≤ 1:

Tr(AΣY ) = E[Y TAY ] =
1

n

n∑
i=1

E−i
[
Ei
[
ξi(zi)Y

TAxi
]]

+O

(
log n√
n

)

=
1

n

n∑
i=1

E−i
[
Ei
[
ξi(zi)Y

T
−iAxi

]]
+

1

n
E−i

[
Ei
[
ξi(zi)

2xTi QAxi
]]

+O

(
log n√
n

)

=
1

n

n∑
i=1

E [ξi(zi)] Tr(mYAmi) + E [ξ′i(zi)] Tr(ΣYACi)

+
1

n

n∑
i=1

E
[
ξi(zi)

2 Tr(ΣiQA)
]
+O

(
log n√
n

)
note that we could remove several terms from the formula of Lemma J.19, since ∥Y−i∥ ≤ 1. Replacing A by
AQ̃, and employing Theorems G.1 and G.2 we then obtain:

Tr(AΣY ) = mT
YAmY +

1

n

n∑
i=1

E
[
ξi(zi)

2 Tr(ΣiQ̃AQ̃)
]
+O

(
log n√
n

)
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