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Protection de la Blockchain IoT Face aux Cyber Attaques

Résumé : La première blockchain, le bitcoin, a été proposée en 2008 comme un mécanisme permettant
de mettre en œuvre une monnaie numérique sans parties de confiance. Avant le protocole Bitcoin, les
monnaies numériques étaient mises en œuvre en utilisant des intermédiaires de confiance comme les banques.
Malheureusement, en raison de choix de conception, le protocole Bitcoin présente plusieurs problèmes de
performance inhérents : un faible débit et une latence élevée sont parmi les plus importants. Les chercheurs
ont conçu des protocoles de blockchain pour surmonter les problèmes inhérents au protocole Bitcoin, mais
aujourd’hui, le plus grand obstacle à l’adoption mondiale de la technologie blockchain est la mauvaise
performance.

Dans cette thèse, nous visons à améliorer les performances des blockchains existantes en éliminant les
goulots d’étranglement courants dans la conception des systèmes. À cette fin, nous étudions les goulots
d’étranglement courants dans la conception des systèmes de blockchains existants et proposons des mécanismes
pour les atténuer.

Notre contribution est double : tout d’abord, nous avons conçu ALDER, une construction générique pour
améliorer les performances des blockchains basées sur les leaders. ALDER étend l’algorithme de consensus
des blockchains existantes basées sur les leaders pour enrichir avec plusieurs leaders coopérant pour traiter les
demandes des utilisateurs. La conception d’ALDER augmente le débit et la latence des blockchains existantes
en éliminant les goulots d’étranglement au niveau du consensus et du réseau. Nous fournissons une évaluation
détaillée d’ALDER à travers des expériences à grande échelle. Deuxièmement, nous avons fait une analyse
approfondie du protocole IDA-Gossip : un protocole de diffusion de ragots basé sur des morceaux. IDA-Gossip
est une primitive essentielle pour les blockchains afin d’éliminer le goulot d’étranglement provenant du
mécanisme de diffusion des rumeurs de type store-and-forward, mais ses propriétés n’ont pas été étudiées en
profondeur. Notre travail quantifie la performance d’IDA-Gossip avec différents paramètres de protocole sous
fautes en utilisant des expériences et des simulations. Notre enquête vise à aider les chercheurs à comprendre
les propriétés d’IDA-Gossip en révélant son comportement dans différentes conditions.

Keywords: Systèmes Distribués, Blockchain, Consensus, Réplication, Diffusion de Rumeurs



Securing Blockchains Against IoT Cyberattacks

Abstract: The first blockchain, Bitcoin, was proposed in 2008 as a mechanism to implement a digital
currency without trusted parties. Before the Bitcoin protocol, digital currencies were implemented using
trusted intermediaries like banks. Unfortunately, due to design choices, the Bitcoin protocol has several
inherent performance problems: low throughput and high latency are among the most important. Researchers
have been designing blockchain protocols to overcome the inherent problems of the Bitcoin protocol, but
today the biggest obstacle to the global adoption of blockchain technology is poor performance.

In this thesis, we aim to improve the performance of existing blockchains by removing common bottlenecks
in system designs. To this end, we investigate common bottlenecks in the system design of existing blockchains
and propose mechanisms to mitigate them.

Our contribution is twofold: first, we designed ALDER, a generic construction to improve the performance
of leader-based blockchains. ALDER extends the consensus algorithm of existing leader-based blockchains
to enrich with multiple leaders cooperating to process user requests. The design of ALDER increases the
throughput and latency of existing blockchains by eliminating bottlenecks at the consensus and network
levels. We provide a detailed evaluation of ALDER through large-scale experiments. Second, we made an
in-depth analysis of the IDA-Gossip protocol: a chunk-based gossip dissemination protocol. IDA-Gossip
is an essential primitive for blockchains to remove the bottleneck stem from the store-and-forward gossip
dissemination mechanism, but its properties have not been studied extensively. Our work quantifies the
performance of IDA-Gossip with different protocol parameters under faults using experiments and simulations.
Our investigation aims to help researchers understand the properties of IDA-Gossip by revealing its behavior
under different conditions.

Keywords: Distributed Systems, Blockchain, Consensus, Replication, Gossip Dissemination
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1 Introduction

1.1 Motivation

With the evolution of Internet technology, we have witnessed the deployment
of large-scale distributed systems (Mockapetris and Dunlap, 1988; Cohen, 2003;
Dingledine, Mathewson, and Syverson, 2004) on the Internet to provide various
services to users around the world. In 2008, blockchains have been added to
these systems. Blockchains are large-scale distributed ledgers that order user
requests without the help of a trusted authority. Blockchain technology is based
on cryptography, consensus, and replicated state machine technologies.

The first blockchain, Bitcoin (Nakamoto, 2008), is proposed as an alternative
to today’s centralized baking system. Bitcoin implements a decentralized dig-
ital currency, also called Bitcoin, and a payment system in which there is no
centralized authority to reconcile financial transactions. Bitcoin achieves these
goals by solving the problem of consensus in an open setting where nodes can
freely join or leave the system without any restriction.

The Bitcoin system consists of a set of nodes connected over the Internet. Nodes
cooperate to agree on the payment history. Bitcoin is a peer-to-peer system
where contributing nodes are not only service providers but also users of the
system. Bitcoin eliminates the need for trusted parties by relying on crypto-
graphic primitives and replication.

The core innovation of the Bitcoin protocol was a novel leader-based eventually
consistent consensus algorithm. It is called as Proof-of-Work (PoW). In the
Bitcoin system, nodes solve cryptographic puzzles to be elected as leaders, and
elected leaders propose a block of transactions to be added to the distributed
ledger. There is no efficient way to solve cryptographic puzzles; therefore, nodes
use the brute-force approach to solve cryptographic puzzles. A leader shares the
block with other nodes using gossip dissemination with the store-and-forward
mechanism where nodes validate blocks using a predicate before appending
them to the local ledger and sharing them with other nodes; therefore, nodes
do not disseminate invalid blocks.
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The following figures may help to understand the extent of Bitcoin’s adoption.
There are currently more than 15,000 Bitcoin nodes processing transactions
on the Bitcoin network (Bitnodes 2023). There are approximately 20 million
Bitcoin tokens in circulation. One Bitcoin is valued by the market at approx-
imately 20,000 USD. On a daily basis, the Bitcoin system processes approxi-
mately 300,000 transactions (Bitcoin Transactions Per Day 2023), transferring
a value of approximately 30 billion USD (Cryptocurrency Prices, Charts And
Market Capitalizations 2023). Many developed countries legally recognize Bit-
coin as a digital asset, and institutional investors are investing in Bitcoin (Coun-
tries Where Bitcoin Is Legal and Illegal 2023). Note that all figures are collected
at the time of writing and may change over time.

After the success of Bitcoin, blockchain technology has found new applications
in data management (Ekblaw and Azaria, 2016; Zhu et al., 2019; Truong et al.,
2020; Zhaofeng et al., 2020), data verification (Han et al., 2018; Wei et al.,
2020; Li et al., 2020), financial services, and IoT (Dorri, Kanhere, and Jurdak,
2017; Huh, Cho, and Kim, 2017; Reyna et al., 2018; Minoli and Occhiogrosso,
2018; Novo, 2018). Majority of these applications become feasible with the help
of smart contracts (Luu et al., 2016b). Smart contracts are programs that are
deployed on blockchains by users. The content of a smart contract is visible to
any user; therefore, users can validate the properties of smart contracts. The
logic of smart contracts is enforced by the system: when the conditions are
fulfilled, the program runs and produces expected outputs. The use of smart
contracts leads to the development of distributed applications (dApps), where
all the backend logic resides on a blockchain.

Initially, smart contracts evolved from the Bitcoin’s token transfer mechanism
that make use of a simple programming language with limited capacity of ex-
pression. After Bitcoin, smart contracts evolved to support complex business
logic with the use of Turing complete programming languages such as Solid-
ity (Wohrer and Zdun, 2018). Solidity is a special purpose programming lan-
guage designed for writing smart contracts. Later on, general purpose program-
ming languages such as JavaScript, GO and Rust are also used to write smart
contracts.

Another important application area of blockchain technology is non-fungible
tokens, which has attracted a lot of attention from the public. Using non-
fungible tokens, users can register any type of digital asset on a blockchain, and
they can transfer the ownership of the registered assets.
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Although Bitcoin is an elegant implementation of a digital currency that solves
the fundamental obstacles in front of a trust-free decentralized system, it has
many inherent problems. Three of the most significant problems with Bitcoin’s
design are high confirmation latency, low throughput, and high energy con-
sumption. These inefficiencies are the biggest obstacles in front of the adoption
of blockchain technology as a global payment system. To put into context,
Bitcoin’s transaction confirmation latency is around 600 seconds while classi-
cal centralized payment systems have latencies of around a second. Also, Visa
processes 24000 transactions per second while the original Bitcoin protocol can
process around 7 transactions per second (Bach, Mihaljevic, and Zagar, 2018).
Finally, the global energy consumption of the Bitcoin network is comparable
with the energy consumption of some countries (Küfeoglu and Özkuran, 2019)
such as Denmark and Finland.

On the one hand, in the last decade, researchers have proposed many tech-
niques to circumvent the shortcomings of the Bitcoin protocol without changing
its consensus algorithm. On the other hand, many new blockchains have been
proposed that differ significantly from the Bitcoin approach, such as Proof of
Stake systems, sharded systems, and Proof of X-based systems, where the core
component, the consensus algorithm, is replaced by novel techniques. Most
of these propositions enrich the system model of Bitcoin to improve its effec-
tiveness while aiming to maintain its desirable features such as scalability and
decentralization. Therefore, many blockchain propositions come with its own
system model, and each proposition finds a use case in the envisioned system
model.

For practical reasons, most blockchain proposals, like Bitcoin, use a single leader
and gossip dissemination with the store-and-forward mechanism. In the pres-
ence of a leader, consensus requires significantly less communication between
nodes. For large distributed systems, gossip dissemination is the only viable
option to share updates with other nodes because it does not require the knowl-
edge of all nodes in the system. The store-and-forward mechanism is necessary
to ensure that only correct messages are disseminated in the system.

In blockchain systems, the use of a single leader imposes a strict limit on
achievable throughput and latency figures, as a single leader will have limited
resources—bandwidth and CPU—to prepare a block and submit. The major-
ity of blockchains rely on blocks of transactions to synchronize the state of the
system, and the sizes of blocks are on the order of several megabytes: gossip
dissemination using the store-and-forward mechanism results in high latency
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in case of large messages as each message needs to be received before being
forwarded.

After 15 years, blockchains continue to attract the attention of the research
community and the public, and new applications are being found. However,
performance issues remain the biggest obstacle to the global adoption of block-
chain technology, as there is no single blockchain that meets the needs of all
applications.

1.2 Research challenges

Blockchains are complex systems that consist of many planes/layers as described
by Croman et al. (Croman et al., 2016). These planes are the network, con-
sensus, storage, view, and side planes. Any inefficiency on one of these planes
can limit the performance of a blockchain system. Improving the performance
of a blockchain requires domain expertise in all the planes because changes
introduced on a plane can affect the performance of other planes. Therefore,
blockchain research can be considered an interdisciplinary study that requires
expertise in many domains.

This work aims to improve the performance of existing blockchains, rather than
proposing a new blockchain or an incremental improvement for a blockchain.
This is a challenging task in itself, as it requires an extensive analysis phase to
understand the properties of many blockchains and uncover common bottlenecks
in the system designs. Although different Blockchain proposals has resemblance,
they are very different in terms of assumptions and system models, making this
analysis phase a challenging and time-consuming task.

After the analysis phase, it is necessary to quantify the impact of the detected
bottleneck on the performance of a blockchain, which requires the deployment of
several thousand blockchain nodes on many machines. The majority of block-
chain proposals do not open source any code to be used for future research.
Some of them have production-ready open source code, but production-ready
implementations are not the ones used to generate experimental data during
the research phase because they tend to consume excessive system resources
and prioritize correctness over testability. Accessing the correct implementa-
tion and conducting initial experiments to uncover the performance problems
was another challenge that needed to be addressed.
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For the purpose of performance study, most of the time, it is necessary to imple-
ment the entire blockchain protocol from scratch because of the lack of proper
source code. The implementation phase is a challenging and time-consuming
task in itself, as some blockchains have complex consensus algorithms and com-
plex communication schemes. Also, for the sake of brevity, blueprints provided
in publications tend to include important details for discussion rather than all
the necessary details for implementation. This makes the implementation phase
even more challenging.

1.3 Research goals

Unlike other approaches proposing new blockchain protocols, in this work, we
investigate the viability of generic approaches to improve existing blockchains
without changing their system model and assumptions.

On the consensus level, we are aiming to remove the inefficiencies of leader-based
blockchains by introducing novel techniques to multiplex consensus instances
in a generic way. On the network level, we investigate efficient dissemination
solutions for blockchains to disseminate blocks.

We list four sub-goals to achieve our main objectives. These sub-goals are as
follows:

Research Goal 1: Quantifying the effect of bottlenecks caused by a single
leader, and caused by gossip dissemination with the store-and-forward mecha-
nism. This goal is necessary to understand the scale of performance problems
that stem from listed bottlenecks.

Research Goal 2: Investigating possible solutions to the problems caused by
a single leader and gossip dissemination with the store-forward mechanism.

Research Goal 3: Designing a generalized mechanism to remove listed bot-
tlenecks not on one blockchain but on family blockchains without changing the
system models, and assumptions. This is the core goal of our work, as we want
to provide a design that is reusable to solve observed bottlenecks on different
systems.

Research Goal 4: Quantify the impact of our solutions on representative
examples of blockchains through large-scale experiments.
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1.4 Roadmap of the thesis

In Chapter 2, we provide the background to blockchain technology by intro-
ducing necessary concepts such as consensus and state machine replication. In
this chapter, we also focus on the Bitcoin protocol to highlight the limitations
of existing blockchains built on top of it. Then, we present important block-
chain propositions by classifying them according to the properties of consensus
algorithms.

In Chapter 3, we present related work that makes use of multiple leaders in
classical consensus algorithms and in blockchain consensus algorithms. Also,
we present efficient gossip dissemination mechanisms.

In Chapter 4, we present our proposal, Alder, a generic construction for ex-
tending existing leader-based blockchains: Alder enriches existing leader-based
blockchains with multiple leaders to remove bottlenecks caused by single-leader
approach. In this chapter, we extensively study the properties of Alder and
present our experimental evaluation deployed on Grid5000 with up to 100 high-
end machines and 10,000 processes. We have applied Alder to three state-
of-the-art leader-based blockchains and quantitatively studied the benefits of
Alder.

In Chapter 5, we present our work investigating the properties and performance
of the IDA−Gossip protocol. IDA−Gossip is an efficient gossip dissemination
protocol that relies on chunk-based dissemination to reduce the dissemination
latency. It is proposed with the Rapidchain protocol—a sharded blockchain
system. IDA−Gossip can be adopted by other blockchains, but its properties
have not been studied in depth. Our work provides an in-depth analysis of
IDA−Gossip using experiments and simulations involving 4096 processes de-
ployed on Grid5000. Our work is essential for understanding its behavior under
faults and with different protocol parameters.

Finally, in Chapter 6, we conclude this thesis with a brief overview and sug-
gestions for future research. In Appendices A, we list our publications and
awards.
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2 Background

“A distributed system is one in which the failure of
a computer you didn’t even know existed can
render your own computer unusable”

Leslie Lamport

In this chapter, we mention important concepts for distributed systems and
blockchains: system models and assumptions, cryptographic primitives, com-
munication schemes, consensus algorithms, and replicated state machines. We
then describe the Bitcoin protocol and provide an overview of existing block-
chains by classifying them according to different criteria to highlight differences
and similarities in system designs.

2.1 Background on distributed systems

According to Tanenbaum and Steen, 2006: “A distributed system is a collection
of independent computers that appears to its users as a single coherent system”.
In general, a distributed system can be characterized by the fact that the global
state is distributed and that a common time base does not exist (Mattern,
1988).

We can classify distributed systems into two broad categories close and open
distributed systems. In close systems, participants are known and identified
using a mechanism such as public keys. New nodes cannot freely join close
systems, and they need to be authorized by an authority. Open systems are
those in which nodes can join or leave the system without any restriction, and
the identities of nodes are not known in advance. Some blockchain systems such
as Bitcoin are examples of open distributed systems in which a set of nodes work
together to achieve a common goal.
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2.1.1 System models and assumptions

System designers design distributed systems by considering a system model and
a set of assumptions. Without knowing the system model and assumptions of
a distributed system, we cannot infer its properties: they convey information
about when and under what conditions the system will function and provide
service.

The most important entities in a system model are processes and communica-
tion links because, in a distributed system, processes communicate by sending
messages to each other over communication links.

Process model: It defines the properties of processes that construct the sys-
tem. Behavior and timing of processes are among the most important traits.
A Process can be considered an automaton that updates its internal state ac-
cording to received messages and internal events. All activities of a process are
considered as its local computation.

The behavior of a process might be correct or faulty. Correct processes always
follow the protocol. On the other hand, faulty processes can be faulty in many
ways. There exist different models defining the behavior of faulty processes, and
among the most important of them are crash, and Byzantine faulty processes.

Crash faulty processes fail by stopping, and they do not send or receive any
messages. Byzantine faulty processes might violate the protocol in any possible
way: they might send arbitrary messages to other nodes or an attacker might
coordinate them. Protocols that can function in the presence of crash faulty
processes are called crash fault-tolerant, and Protocols that can function in
the presence of Byzantine faulty processes are called Byzantine Fault Tolerant
(BFT). The design of crash fault-tolerant protocols is relatively easy compared
to BFT protocols because of the restricted faulty behavior.

Process timing models convey information regarding the speed of local computa-
tions. Synchronous and asynchronous processes are among the widely accepted
process timing models. While synchronous processes finish local computations
in a bounded time interval, local computation of asynchronous processes might
take an arbitrarily long time.

Communication model: It defines the properties of communication chan-
nels that connect processes with each other. Channels can be characterized
according to timing, delivery, and ordering guaranties.



Chapter 2. Background 9

According to timing, the most common channel models are synchronous, asyn-
chronous, and partially synchronous channels. Messages sent over a synchronous
channel are guaranteed to be received by the receivers in a known time interval.
Messages send over asynchronous channels can be delayed by channels for an
arbitrarily long time interval. Partially synchronous channels are synchronous
channels that can behave asynchronously from time to time. In these chan-
nels, it is assumed that each asynchronous period is followed by a synchronous
period.

According to delivery guarantees, the most common channel models are lossy
and reliable channels. Lossy channels can drop messages sent by nodes. Re-
liable channels do not drop messages. Reliable channels can be implemented
on top of lossy channels by making synchrony assumptions and employing ac-
knowledgment messages and retry mechanisms.

While some channels may reorder messages arbitrarily, others can provide some
ordering properties: One of the most common channels with ordering guarantees
are First in First Out (FIFO) channels where messages sent by the sender are
received in the send order.

Finally, channels can be authenticated where the integrity and authenticity of
messages are protected against tamper. Authenticated channels are built on
top of non-authenticated channels using cryptographic primitives.

Adversarial model: this model is used to define the capabilities of an ad-
versary that attacks the considered system. In general, adversary attacks the
system by coordinating Byzantine nodes. In the literature, there exist different
variants of adversarial models.

The availability of unbreakable cryptographic primitives, random oracles, one-
way functions, and public key infrastructures are among the most common
assumptions made by system designers. We mention all of these primitives in
subsequent sections.

2.1.2 Cryptographic primitives for distributed systems

The use of cryptographic primitives in distributed systems is ubiquitous: in
particular, they are used to constructing authenticated channels by encrypting
messages. Cryptographic primitives are also used to implement random oracles.
Last but not least, they are used in blockchains to prove the ownership of digital
tokens, as we will see in the following subsections. In this subsection, we will
briefly mention the properties of basic cryptographic primitives.
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Input Output

the blue sky Hash Function
(SHA-256)

b14d3b67c6d58de656fa2abe2b39154b5602
cd26391ef4ebdecd39ea47bed53a

The blue sky Hash Function
(SHA-256)

ec44698f9acfe22270da6507810a123337ac
601b847a0c0a5b1dd2c11928b19c

Figure 2.1: Example outputs of SHA-256 hash function: a
small change in the input causes big change in the output of the

hash function.

Hash functions: A hash function H is a function that accepts a bit string
of arbitrary length l and maps it to a fixed length string t. A hash function is
called collision free if it is computationally hard to find two strings x and y such
that H(x) = H(y). A hash function has pre-image resistance if it is difficult
to find a message m with a given hash value of h. Finally, a hash function has
second pre-image resistance, if it is difficult to find a message m2 given message
m1 where H(m1) = H(m2). Cryptographic hash functions are collision-free,
pre-image, and second pre-image resistant hash functions: they are safe to use
in cryptographic applications.

A cryptographic hash function maps an input value to an arbitrary value in the
hash space. A small change in the input causes a random change in the output
of a cryptographic hash function. We see an example of this in Figure 2.1:
two hash values are calculated using SHA-256 (NIST, 2015) hash function,
and a small change in the input causes a big change—which seems completely
random—in the output.

Cryptographic hash functions are essential to ensure the data integrity of digital
documents by using a fixed amount of storage space: by using a cryptographic
hash function, one can calculate a fixed-length digest of a document, and one
can use it as proof of the integrity of a document. Also, as we will see, they
are important building blocks for digital signature schemes and symmetric key
cryptography systems (Paar and Pelzl, 2009).

Cryptographic hash functions are practical alternatives to random oracles (Fis-
chlin et al., 2010) where an oracle provides a random number according to
provided input. For the same input, the oracle produces the same output.
Cryptographic hash functions produce random output values according to the
input. In a system, all parties can produce the same output value, if they call
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the hash function with the same input value. This specific application has many
use cases in blockchains to produce publicly known pseudo-random values.

Today, the most commonly used hash functions in distributed systems and
blockchains are the SHA-2 (NIST, 2015) family of hash functions. There are
non-cryptographic hash functions that can be used for other purposes such as
to create message authentication codes (Aumasson and Bernstein, 2012).

Commitment scheme: Using a commitment scheme one can commit to a
value by choosing a value from infinitely many values and keeping it secret and
sharing the proof of commitment with others. Later on, one can reveal the
committed value, and others can validate the correctness of the commitment by
using the provided proof without any doubt. An example commitment scheme
can be constructed using a cryptographic hash function H: a user chooses a
value v and calculates the proof of commitment by calculating H(v). Later on,
the user can share the H(v) with interested parties by keeping the v secret.
When he revealed the v, others can validate the correctness of the commitment
by just comparing the original commitment proof with H(v).

Merkle Tree: A Merkle tree (Merkle, 1979) is a hash tree where leaf nodes
are the hashes of data blocks calculated by using a hash function H, and inner
nodes are calculated from the bottom up by concatenating the values of children
nodes and hashing them using the hash function. Assume that an inner node v

has two child nodes C1 and C2, and the value of v is equal to H(C1||C2) where
|| denotes concatenation operation. In Figure 2.2, we see an example Merkle
tree that is calculated using 4 data blocks. A change in one of the data blocks
changes the root of the Merkle tree. This feature of Merkle trees is used to
protect data blocks against tampering attempts. Merkle trees were originally
proposed to be used as a digital signature scheme. Also, they are extensively
used as commitment schemes where one can commit on many values using
a Merkle tree, and can calculate the proof of commitments using very little
storage. Merkle trees are used in blockchains frequently as we will see in the
next sections.

Symmetric key cryptography systems: These systems are used to encrypt
strings of bits to create authenticated channels for communication or to store
data securely. Symmetric key cryptography systems consist of two functions:
encryption and decryption. The encryption function receives a bit string and a
key, it produces a ciphertext. The decrypt function receives the ciphertext and a
key, and it reproduces the original message. These systems are called symmetric
because the encryption and decryption functions must be called with the same
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tree root

Inner nodes

Leaf nodes

Data blocks

Figure 2.2: The construction of a Merkle tree: a change in any
of the data blocks causes a change in the Merkle tree root.

key to reproduce the original message. Using a symmetric key cryptographic
system, two parties can communicate securely over insecure channels, provided
that they have previously agreed on a key. The security of the channel con-
structed depends on the specific protocol, the key length, and the randomness
of the key. The main drawback of symmetric key cryptography systems is the
requirement of an agreed key: two parties can meet in a location to agree on a
secret key. This scheme does not scale well to communicate with many parties.

Public key cryptography: Public key cryptography is a method of encrypt-
ing and decrypting messages without a shared key. Public key cryptography
systems consider two kinds of keys: public and private keys. Public keys are
shared with other parties in the system, and secret keys are kept secret. Par-
ties who want to use public key cryptography need to know each other public
keys. A public key cryptography system consists of 3 functions: key exchange,
encrypt, and decrypt functions. The key exchange function gets the secret key
of the caller, and the public key of the other party that needs to be commu-
nicated, and it produces a shared key. Encrypt and decrypt functions work as
described in symmetric key cryptography systems using the key produced by
the key exchange function. This approach removes the need to have a shared
key to construct an authenticated channel, but it is necessary to know the public
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key of the other party to communicate.

Use of public key cryptography might require a Public Key Infrastructure
(PKI) (Maurer, 1996) where public keys of all parties are registered in a trusted
manner, and users can access them using PKI. This way, users can ensure the
authenticity of public keys.

Digital signature scheme: An important application of public key cryptog-
raphy is digital signatures. Digital signatures are used to sign digital documents
for authentication purposes. A digital signature scheme has two functions: sign
and verify. sign function needs to be called with a private key, and a bit
string to sign. It returns a signature which is another fixed-length bit string.
It is common practice to sign the hashes of the bit strings for efficiency and
security reasons. The verify function needs to be called with the public key
of the signer, the bit string of the signed digital document, and a signature. It
validates the signature and returns a boolean result.

Message Authentication Codes (MAC): Using MAC, the integrity and
authenticity of messages can be validated without using digital signatures.
HMAC (Krawczyk, Bellare, and Canetti, 1997) is one of the most common
implementations of a MAC, and it is implemented using a secret key, and a
hashing algorithm: for each message a MAC is calculated by hashing the mes-
sage and the key together, and messages sent with its MAC so that receiver can
validate the integrity and authenticity of a message. MAC computation can
be significantly less CPU intensive compared to symmetric key cryptography
systems and digital signature schemes.

2.1.3 Communication in distributed systems

Nodes in a distributed system communicate by message passing where a sender
sends a message to a receiver: this is considered point-to-point communication
because the communication happens between two parties. Apart from point-
to-point communication, there are common interaction patterns that are used
by many distributed systems such as broadcast, unicast, and multicast.

Among all, one of the most common communication patterns in distributed
systems is broadcast where a sender wants to send a message to all nodes in the
system. There are different variants of broadcast: best-effort broadcast, reliable
broadcast, and uniform reliable broadcast. Each variant provides different de-
livery guarantees. Reliable broadcast is one of the most commonly used variants



Chapter 2. Background 14

N0

N1

N2

broadcast rebroadcast

N3

broadcast(m) deliver(m)

receive(m)

receive(m)

receive(m)

deliver(m)

deliver(m)

deliver(m)

Figure 2.3: Communication scheme of reliable broadcast.

of broadcast in distributed systems: it guarantees that if a correct node delivers
a message, all correct nodes eventually deliver the same message.

Figure 2.3 depicts the communication scheme of reliable broadcast: node N0

starts the broadcast with message m by sending the message to all the nodes in
the system, and later on, it delivers the message. Upon receiving the message
m for the first time, a node rebroadcasts the message, and, later on, delivers the
message. Sending a message to all nodes in the system requires the knowledge
of all nodes which might not be possible for all kinds of distributed systems.
Also, this requirement limits the use of reliable broadcast to close systems.

Another important broadcast variant is atomic broadcast, which provides the
same delivery guarantee as reliable broadcast, and it also provides a total order
guarantee where nodes deliver messages in the same order. Atomic broadcast
is equivalent to consensus (Milosevic, Hutle, and Schiper, 2011): solving one of
them provides a solution to the other. As we will see in the next subsections,
atomic broadcast and consensus are important building blocks of distributed
systems.

Although reliable broadcast is an important primitive for distributed systems,
it is not practical for large systems: as we see in Figure 2.3, each node needs to
connect all other nodes in the system to broadcast the message, and the com-
munication complexity is O(N2). For large open systems reliable broadcast is
not an option because nodes can not know the members of the system. To cir-
cumvent all these problems, epidemic dissemination protocols are employed in
large open systems as practical alternatives to reliable broadcast protocols. Un-
like reliable broadcast, epidemic dissemination protocols provide probabilistic
delivery guarantees.
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S

Figure 2.4: Communication scheme of gossip dissemination.

Epidemic dissemination protocols are proposed in the context of database repli-
cation (Demers et al., 1987), and later on, they are adopted as probabilistic
alternatives of reliable broadcast protocols for large systems. Epidemic dis-
semination protocols are also known as gossip dissemination protocols. Using
epidemic dissemination, messages are disseminated much like the dissemination
of an epidemic disease: upon receiving a message for the first time, a node
selects fanout other nodes in the system and infects them by sending the mes-
sage. fanout is the most important parameter of an epidemic dissemination
protocol, and it determines the redundancy of epidemic dissemination. Higher
fanout values increase the coverage—the percentage of nodes delivering the
message—but also increase the resource consumption of nodes.

Figure 2.4 depicts the first few steps of dissemination of a message using gossip
dissemination. The source node S starts the dissemination by sending the mes-
sage to fanout other nodes, and in this example, fanout is 3. Upon delivering
a message, each node forwards the message fanout other nodes. Note that a
node delivers a message only once, therefore a node forwards a message only
once. Unlike reliable broadcast, a node needs to send the message to only a few
other nodes, and it does not require knowing all the members of the system.

There exist several variants of gossip dissemination: push, pull, and hybrid
gossip (Felber et al., 2011). In push gossip, upon receiving a message, a node
forwards the message to a few other nodes. In the pull gossip, a node request
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messages from a few other nodes sending requests. The hybrid method com-
bines push and pulls mechanisms to increase the dissemination efficiency: in
the first few steps push mechanism is used, and later on, the pull mechanism is
used to increase the speed of dissemination, and decrease the bandwidth usage.
Also, in some variants, nodes can communicate to select messages to exchange
which increases the communication cost but decreases the bandwidth usage of
dissemination.

Although gossip dissemination protocols are practical for large-scale systems,
they have several inefficiencies. One of them is incurred high latency: when they
are used to disseminating large messages using the store-and-forward mechanism
where a message is received fully before being forwarded, gossip dissemination
incurs a high latency. We mention efficient gossip dissemination protocols in
Section 3.2.

2.1.4 Consensus

One of the central problems of distributed systems is consensus. The consensus
problem is the problem of reaching an agreement among remote processes: ac-
cording to the agreed result, all honest parties take the same action. As stated
by Turek and Shasha, 1992: “Consensus is part of any distributed system that
embodies coordinated activity—from the synchronization of clocks, to election
of leaders, to the coordination of rocket firings”. One of the most important
applications of consensus is replicated state machines where replication is used
to mask faulty nodes in the system. Instances of a replicated state machine
use consensus to agree on the order of client requests, and each replica updates
the state machine in the order of client requests. This way all replicas of the
replicated state machine stay in a consistent state.

Consensus algorithms provide some properties, and these properties are gener-
ally categorized as safety, liveness, and availability properties. Specific proper-
ties may change according to the consensus algorithms and considered system
models. Safety property guarantees that the algorithm never violates the safety
conditions: unless the assumptions of the considered systems model are not vio-
lated, a correct consensus algorithm should not violate safety assumptions. Live-
ness property guarantees that something desirable eventually happens. Without
liveness properties, a consensus algorithm does nothing can be considered cor-
rect because it does not violate the safety properties. The availability properties
provide information about under which circumstances the system will be fully
functional.
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Figure 2.5: Communication scheme of the Paxos protocol.

One of the earliest and most well-known examples of a crash fault resilient con-
sensus algorithm is Paxos (Lamport, 2001). Paxos solves the consensus problem
in a partially synchronous setting: if the system behaves asynchronously, it does
not violate any safety properties, and to provide liveness, it makes a synchrony
assumption.

Paxos algorithm defines three different roles for nodes: proposer, acceptor, and
learner. The proposer receives client requests and proposes values for acceptors.
An acceptor accepts the requests coming from the proposer. Finally, learners
learn the decided values. A Paxos system consists of 2F + 1 nodes, and the
protocol tolerates F crash faulty nodes. It means that a Paxos system with
three nodes can tolerate up to 1 crash faulty node.

Paxos implements a 2 phase commit mechanism, and it makes use of a dis-
tinguished proposer, leader, to provide liveness. Figure 2.5 depicts the com-
munication scheme in two phases of the Paxos protocol: in the first phase, a
distinguished proposer gets client requests and selects a proposal number n,
and sends a prepare request to the majority of acceptors. Upon receiving a
prepare request with n, each acceptor sends a reply message to the proposer.
In the second phase, if the proposer receives responses from the majority of ac-
ceptors, the proposer sends an accept request to each acceptor. Upon receiving
an accept message, each acceptor accepts the request for the proposal number
n. Without a distinguished leader, nodes can propose different values using the
same proposal number forever which prevents nodes from agreeing on a value.

The Paxos algorithm is extended by Fast Paxos Lamport, 2006 to decrease
the latency of learners. Later on, the Raft algorithm proposed by Ongaro and
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Figure 2.6: Communication scheme of the PBFT protocol.

Ousterhout, 2014 refines the Paxos algorithm: specifically, Raft redesigns the
Paxos algorithm by targeting understandability, and ease of implementation.

There exist non-leader-based crash-resilient consensus algorithms that do not
utilize a leader. One of them is Ben-Or (Ben-Or, 1983). It solves the binary
consensus problem in which nodes agree on a binary value. Ben-Or employs
randomization for achieving liveness.

One of the important Byzantine fault resilient consensus algorithms is Practi-
cal Byzantine Fault Tolerance (Castro, Liskov, et al., 1999) (PBFT). It is the
earliest proven BFT consensus algorithm. PBFT implements a 3-Phase commit
algorithm to mask the effect of Byzantine faulty nodes in the system. PBFT
systems require 3F +1 nodes where up to F can be Byzantine faulty. As Paxos,
PBFT also uses a distinguished proposer, leader, to provide liveness.

A PBFT round consists of 3 phases: preprepare, prepare, and committ. The
communication flow of the PBFT is seen in Figure 2.6. PBFT employs digital
signatures, and MAC to protect the authenticity and integrity of messages: In
the normal case, it employs MAC where every message send with its tag because
they can be calculated faster than digital signatures. In view changes, PBFT
uses digital signatures to protect the messages against tamper.

Other notable BFT consensus propositions are Zyzzya (Kotla et al., 2007),
Prime (Amir et al., 2011), BFT-SMART (Bessani, Sousa, and Alchieri, 2014),
700BFT (Aublin et al., 2015), Hotstuff (Yin et al., 2019), SBFT (Golan Gueta
et al., 2019).
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Paxos and PBFT do not make timing assumption to provide safety guarantees:
both protocols counts the cast votes to decide on a value. Both protocols make
timing assumptions to handle faulty leaders: If a faulty leader does not respond
for a long time, both protocol runs a view change protocol to replace a faulty
leader. View change increases the complexity of both protocols significantly.
Both protocols consider a closed system where the participants are known in
advance. Finally, Paxos requires 2 rounds of all to all communication, and
PBFT requires 3 rounds of all to all communication, and this makes them
unpractical for large systems.

2.1.5 Replicated state machines

Replication is the essential technique to increase a state machine’s availabil-
ity, performance, and fault tolerance. By replicating a state machine, one can
improve its availability and fault tolerance because requests can be processed
by one of the correct replicas in case of a link or device failure. Furthermore,
replication might provide a substantial performance increase— especially in the
case of read-heavy state machines, because read requests can be processed by
different replicas, and increases throughput and decrease latency. In this con-
text, state machines are considered deterministic because after applying client
requests in order, all replicas will be in the same state, and any of the repli-
cas can serve concurrent requests. For example, in Figure 2.7, we see a state
machine and its replicated version.

Although replicated state machines have many advantages, they have one cru-
cial disadvantage: communication cost. Instances of a replicated state machine
need to communicate to order client requests. Although implementing a repli-
cated state machine is more complex than implementing a state machine, this
complexity can be abstracted by using middleware as a black box. In Fig-
ure 2.7, we see how the replicas of the state machine use the ordering service.
Although an ordering service does not need to use consensus, it is common
to implement ordering service using consensus: ordering services implemented
using consensus provide stronger fault resilience guarantees.

The alternative way to implement highly available fault-resilient systems is the
primary-backup approach (Budhiraja et al., 1993). In the primary-backup ap-
proach, a system consists of n nodes, and one of the nodes is assigned as the
primary backup. All write requests are made to the primary, and primary for-
ward requests to other nodes—followers. In case of a faulty primary, nodes
assign one of the nodes as primary in a round-robin manner. The primary
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Figure 2.7: Comparison of a non-replicated service with a repli-
cated service.

backup approach differs from the state machine replication approach regarding
provided safety guarantees and considered system models.

2.1.6 Challenges of open distributed systems

Several problems need to be tackled by any practical open distributed systems.
These are the Sybil problem, free riders’ problem, and denial of service attacks.

The Sybil problem: In open systems, an attacker can create many fake iden-
tities to affect the decision or over-represent its presence in the system. This is
known as the Sybil problem (Douceur, 2002). Many close systems do not con-
sider the Sybil problem because a trusted party already authorizes identities.
There is no known efficient way of handling Sybil’s problem without trusted
entities. Because of the Sybil problem, classical consensus algorithms can not
function in open systems.

Free riders: Some nodes may try to benefit from an open system without
contributing. This is known as the "free rider" problem (Feldman and Chuang,
2005). This problem mainly affects Peer to Peer file-sharing and Peer to Peer
live-streaming networks because these types of systems function with the help
of their contributor, and consuming without contributing decreases the perfor-
mance of those systems. Closed systems do not consider this problem because
the clients are pre-identified and can be evicted from the system in case of mis-
behavior. Several techniques exist to handle this problem using accountability
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and incentive mechanisms (Li et al., 2006; Guerraoui et al., 2010; Mokhtar,
Decouchant, and Quéma, 2014).

Denial of Service (DoS) attacks: Denial of Service attacks is particular
types of attacks that try to temporarily or indefinitely disrupt a service tem-
porarily or indefinitely (Park and Lee, 2001). A common way to conduct DoS
attacks is by making many legitimate requests that can not be differentiated
from requests coming from honest users. This attack can be handled in a closed
system by excluding misbehaving nodes. However, it is particularly hard to han-
dle in an open setting because an attacker can create new identities to continue
to attack.

Any practical open distributed system needs to handle the Sybil problem, free
rider problem, and DoS attacks.

2.2 Background on blockchains

In this section, we will provide the necessary background on blockchains. We
start the discussion by studying the Bitcoin protocol because it is the first
blockchain protocol, and many other blockchains follow the standards set by
Bitcoin.

2.2.1 Bitcoin

The Bitcoin protocol succeeds in implementing a digital currency without the
aid of trusted parties by solving two critical problems that have not been solved
before. These problems are so-called double spending and coin distribution
problems. The double spending problem stems from the nature of digital cur-
rencies or digital tokens: Digital tokens are bit stings, and the owner of a digital
token can reuse the same token in more than one financial transaction by triv-
ially copying the content. Physical tokens such as banknotes and coins are not
concerned with this problem because, during a financial transaction, they are
exchanged with goods or services; therefore, they can not be double-spent. The
token distribution problem is the problem of distributing tokens initially to the
interested parties.

Before the Bitcoin protocol, digital currencies were implemented with the help
of trusted mediators such as banks and government institutions. All account
balances were kept by trusted mediators, and all transactions were cleared and
processed by them to handle disputes. The use of trusted mediators solves the
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double spending problem because transacting parties trust the records kept by
trustees. As of today, before the Bitcoin protocol, tokens (digital or physical
currencies) were distributed by banks providing loans to interested parties.

2.2.1.1 System model

The Bitcoin system is an open system consisting of a set of nodes, and each
node is connected to a few other nodes over the Internet. The resulting over-
lay network is known as the Bitcoin Network. Nodes of the Bitcoin network
follow the Bitcoin protocol. The Bitcoin protocol makes use of cryptographic
primitives and replication to remove trustees. The name of the digital currency
implemented by the Bitcoin protocol is also Bitcoin.

The Bitcoin system keeps track of ownership of digital tokens; for that purpose,
the Bitcoin protocol implements a distributed ledger: each node sustains a
replica of the ledger, and user transactions are stored in the distributed ledger.
The Bitcoin system does not keep any personal information of its users: users
are identified pseudo-anonymously by public-private key pairs. The users of the
Bitcoin system do not trust anyone except the protocol: users are expected to
have a fully functional bitcoin node that follows the protocol.

2.2.1.2 Value transfer

In the Bitcoin system, users can create many accounts by creating public-private
key pairs. Users of Bitcoin issue transactions locally to transfer digital tokens
to others. A transaction contains the ID of the digital token (the hash of the
token), the receiver’s public key, and a signature as proof of ownership.

Figure 2.8 depicts the transfer of a Bitcoin (digital token) using cryptographic
hash functions and signatures: the owner transfers the ownership of the token
to another user by signing the hash of the transaction and public key of the next
owner. Any node in the system can validate token ownership by validating the
chain of transactions. Furthermore, the digital tokens of a user are tied with a
private key: if a user loses its private key, it can not access tied digital tokens
anymore.

2.2.1.3 Blockchain and Proof-of-Work

The Bitcoin protocol implements a distributed ledger to solve the double spend-
ing problem. The distributed ledger of Bitcoin consists of blocks of transactions,
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Figure 2.8: Transfer of a digital token in Bitcoin using digital
signatures (Nakamoto, 2008).

and each block contains the previous block’s hash. This construction creates a
chain of blocks, and that is where the blockchain name is derived.

The first block of the blockchain is called the genesis block. The Bitcoin protocol
defines the content of the genesis block. All nodes start the blockchain with the
genesis block: as described in Section 2.1.5, the replicas of a replicated system
should start from the same start. Each bock has an integer index which is
known as a block height. As seen in Figure 2.11, the genesis has a height of 0,
and the first block mines on top of it have a block height of 1, and so on.

The users of Bitcoin issue transactions locally, but to validate a transaction,
they are required to register transactions into the distributed ledger. Validated
transactions are stored in the blockchain, and each node of the Bitcoin system
sustains a replica of the blockchain. For that purpose, nodes disseminate user
transactions in the Bitcoin network using gossip dissemination. Upon receiving
a transaction, for the first time, a node validates the transaction using the local
copy of the blockchain, and if it is valid, stores it locally and forwards it to
other nodes. Nodes do not share invalid transactions with other nodes that do
spend or transfer unowned or spent digital tokens.

Bitcoin’s gossip dissemination mechanism does not provide any ordering guaran-
tees; therefore, nodes of the Bitcoin network receive disseminated transactions
in different orders. Before appending transactions to the local ledger, nodes
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Figure 2.9: The block structure of Bitcoin, and its transaction
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need to agree on the order of transactions. For that purpose, the Bitcoin proto-
col implements a consensus algorithm. The name of the consensus algorithm is
Proof-of-Work (PoW). It consists of two essential components: cryptographic
puzzles and the longest chain rule.

Nodes of the Bitcoin network assemble received transactions into blocks of a
limited size. A Block consists of two parts: block header and block body, as
seen in Figure 2.9. The block body contains the transactions waiting to be
appended to the distributed ledger. The block header consists of the hash of
the previous block, a nonce field, and the Merkle root of the transactions. The
Merkle root of transactions efficiently authenticates all transactions inside a
block.

A valid block should contain valid transactions in the body, and the hash of its
header should have a smaller value than a target hash value. Nodes try to find
a valid block by hashing the block and updating the nonce field. This is the
cryptographic puzzle mechanism of the Bitcoin protocol. There is no efficient
algorithm to solve the cryptographic puzzles of Bitcoin, and nodes try to find
a solution using a brute force approach. Upon finding a valid block, the node
shares it with other nodes using gossip dissemination. Upon receiving a block,
each node validates the content of the block, and if it is valid, it appends it to
the local ledger.

The target hash value is known as the mining difficulty of the Bitcoin system:
the smaller target values make finding a block harder, while greater target
values make it easier. The system dynamically calculates the difficulty so that,
on average, a block is found every 600 seconds. The original Bitcoin protocol
limits the size of blocks to 1 MB. Therefore, on average, every 600 seconds, 1
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Figure 2.10: The Bitcoin mining reward and the total Bitcoin

amount by years.

MB of data is appended to the distributed ledger. The cryptographic puzzle
difficulty and block size are set to decrease the number of competing blocks for
each time interval.

Solving cryptographic puzzles is CPU-intensive; hence, it requires energy con-
sumption. The Bitcoin protocol incentives nodes by providing a block creation
reward: a successful puzzle solver is rewarded with a fixed amount of Bitcoin.
The first transaction of each block is called coin base transaction—a transac-
tion without any input. The node sends the mining reward to a specific address
or public key by issuing a coin base transaction. The reward amount is dy-
namically updated; in the beginning, it was 50 Bitcoins. The reward is halved
every 210,000 blocks appended to the distributed ledger, and as of writing, it
is 6.25 Bitcoin. The halving mechanism limits the total amount of Bitcoins to
21 million. Figure 2.10 shows the calculated change of Bitcoin mining rewards
and the total amount of mined Bitcoins by years.

In the Bitcoin network, nodes solving cryptographic puzzles are named miners,
and finding a valid block is called mining because of the analogy made to mining
in a gold mine.

The block creation reward of the Bitcoin protocol effectively solves the coin-
distribution problem: digital tokens are distributed over the nodes who con-
tribute to the system, miners.

The blockchain of Bitcoin might fork if two or more valid blocks are mined for
the next block height. In the case of a fork, a node accepts the first received
block, and it tries to mine on top of it. A fork is resolved after a block is mined
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on top of one of the alternative chains, and nodes choose the longest chain in
terms of invested computation power to mine on top. Hence, it is known as the
longest-chain rule.

Figure 2.11 depicts an example chain of blocks with forks: the longest chain,
the main chain, is depicted using the blue color, and pink blocks are considered
stale blocks because they are not on the main chain, and transactions inside
these blocks are not considered registered to the blockchain.

The cryptographic puzzles of Bitcoin protect the system against tampering
attempts. Without cryptographic puzzles, a malicious party can try to recom-
pute an alternative history of transactions by reordering transactions inside the
blocks to double-spend. When the block’s content is updated, the hash of the
block changes, and it breaks the chain blocks. It is very easy to validate a broken
chain in a blockchain. Therefore, a malicious party needs to solve all crypto-
graphic puzzles starting from the block it wants to change; to succeed, it needs
to make its chain longer than the honest chain. The Bitcoin protocol makes
tamper attempts very costly—practically impossible—by using cryptographic
puzzles.

2.2.1.4 Transaction model

Bitcoin protocol adopts the Unspent Transaction Output (UTXO) model. In
this model, as seen in Figure 2.12, a transaction consumes the outputs of one or
more previous transactions and produces new outputs. An exception to this rule
is the coin base transaction: it is the first transaction of each block and produces
outputs without consuming any. An output of a transaction can be consumed
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Figure 2.12: The structure of a Bitcoin transaction.

only once; trying to consume an already consumed output is considered double
spending and is not allowed by the system.

In the Bitcoin system, transactions can pay a transaction fee to incentivize the
miners. A transaction pays a fee by not outputting the total sum of its inputs.
For example, assume that a transaction consumes 5 Bitcoins and transfers 4
Bitcoins to a receiver’s account. If no output is specified for the remaining 1
Bitcoin, it is considered a transaction fee. In addition, the miner can transfer
transaction fees in the coin base transaction to specific addresses. Therefore, a
coin-base transaction’s total outputs are the sum of the block creation reward
and the paid transaction fees in a block.

The transaction model of Bitcoin allows nodes to validate new transactions
efficiently. Nodes sustain the set of unspent transaction outputs, and inputs
of new transactions are searched in this set. After appending a new block to
the blockchain, nodes update the set by removing spent outputs and adding
produced outputs.
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2.2.1.5 Observations about the Bitcoin protocol

Unlike classical consensus algorithms mentioned in Section 2.1.4, the Bitcoin
protocol solves the problem of consensus in an open setting where nodes can
join or leave the system without any limitation. Solving consensus in an open
setting requires resilience to Sybil and DoS attacks.

The Bitcoin protocol handles the Sybil problem using cryptographic puzzles:
a node has a voting power proportional to its computation power; therefore,
an attacker can not benefit from creating fake identities without investing in
computation resources. Cryptographic puzzles of Bitcoin make Sybil attacks
practically impossible because a successful Sybil attack requires investment in
a substantial amount of computation resources. Also, cryptographic puzzles
secure the blockchain against tampering attempts.

The Bitcoin protocol handles system-wide DoS attacks by authenticating all
messages disseminated. In the Bitcoin protocol, two kinds of messages are
disseminated in the system: transaction and block messages. Nodes validate
these messages, and only valid protocol messages are disseminated. Therefore,
although an attacker can target an individual node using a DoS attack, it can
not target the whole system.

The Bitcoin system is protected against the free-riders: digital tokens are given
to the nodes contributing to the system, and it is impossible to use the system
without owning digital tokens.

Finally, Bitcoin’s consensus algorithm can scale thousands of nodes because it
does not use all to all communication to agree on blocks. The Bitcoin protocol
pays the cost of scalability by providing a probabilistic consensus guarantee
where the system provides eventual consistency. Because of forks, users need
to wait for some time to make sure that transactions issued by them will stay
on the ledger. The probability of excluding from the blockchain for a block
exponentially decreases by mined blocks on top of that.

2.2.1.6 Problems of Bitcoin approach

The Bitcoin protocol is highly scalable: as of writing, there are more than
15,000 nodes in the network, and they agree on the order of user transactions.
However, despite high scalability, It has several problems that stem from design
decisions. These problems are high energy consumption, high latency, and low
throughput.
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Figure 2.13: CDF of Bitcoin mining time calculated using the
data of 1500 consecutive Bitcoin blocks.

High energy consumption: The difficulty of cryptographic puzzles increases
with the increased computation power invested into the Bitcoin system. Because
of this, the energy consumption of the Bitcoin system increases with the number
of miners in the system. As a result, the Bitcoin system consumes a high amount
of energy comparable to the energy consumption of some countries (Küfeoglu
and Özkuran, 2019).

High latency: The Bitcoin system processes transactions with a high latency:
if there are no competing transactions, a transaction needs to wait an average of
600 seconds to be appended to the ledger. In Figure 2.13, we see the Cumulative
Distribution Function (CDF) of Bitcoin’s block mining times: The CDF is
calculated by using data of 1500 consecutive blocks of Bitcoin. As seen on the
CDF, 18% of the time, it takes longer than 1000 seconds to mine a block, and
6% of the time, it takes longer than 1500 seconds to mine a block. These values
are considerably higher than the expected value of 600 seconds.

In the presence of competing transactions waiting to be appended to the block-
chain, the measured latency might be higher. As of writing, a bitcoin trans-
action that pays a transaction fee needs to wait, on average, 40 minutes to be
appended to the blockchain (Bitcoin Transactions Per Day 2023).

Forks further alleviate the effect of transaction latency: when a fork is resolved,
some transactions are removed from the ledger, and because of this risk, users
of Bitcoin need to wait longer to make sure that a transaction will stay in the
ledger. This is known as the confirmation latency, and the confirmation latency
of Bitcoin is around an hour because the users of Bitcoin need to wait for at
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least five more blocks after seeing their transactions in the ledger to have a
small risk of transaction removal.

Low throughput: Bitcoin has a low transaction processing throughput be-
cause of the limited block size and block creation frequency. On average, the
Bitcoin system processes 1 MB’s of transactions every 600 seconds. Assuming
a transaction size of 512 bytes, a block of 1 MB can contain up to 4096 transac-
tions. This yields a transaction throughput of 7 transactions per second. This
value is considerably lower than the peak throughput of Visa, which is 24,000
transactions per seconds (Bach, Mihaljevic, and Zagar, 2018).

Bitcoin has many other issues that are orthogonal to this work. Among the
most important are fairness issues, centralization tendencies, the use of custom
hardware (Application Specific Integrated Circuit), and problems related to the
post-block reward era. The first three problems stem from the difficulty of cryp-
tographic puzzles: Today, the difficulty of cryptographic puzzles is so high that
an individual miner cannot mine a single bitcoin using standard equipment,
which leads to two phenomena: the use of specialized equipment and the for-
mation of mining pools. First, miners invest in specialized equipment to solve
cryptographic puzzles. This raises the fairness issue, as it is difficult to con-
tribute to the bitcoin system without investing in special equipment. Also, this
equipment causes a waste of resources because they are too specific to be used
for other purposes. In addition, individual miners combine their computing
power to form mining pools. The nodes in a mining pool solve cryptographic
puzzles together and share the block rewards. These mining pools are con-
trolled by a trusted party, contrary to the Bitcoin protocol’s nature. Finally, as
we have described, bitcoin’s mining reward is halved to 210,000 blocks, and, in
the future, the number of miners is expected to decrease due to the low mining
reward; this is a potential risk for Bitcoin because, without miners, the Bitcoin
system can not process user transactions.

We have concluded the study of the Bitcoin protocol. After that, we are ready
to study important blockchain propositions.

2.2.2 Family of blockchains

Researchers proposed numerous solutions and alternative designs to overcome
the problems of Bitcoin. In this subsection, we will provide a broad overview
of blockchain proposals. For that purpose, we have classified blockchains into
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subfamilies. Our classification does not follow the traditional way of classify-
ing blockchains into two broad categories as in other works: permissioned and
permissionless. The reason is that we would like to provide a more detailed
picture of the Blockchain research track. In our categorization, blockchains use
a similar technique to handle similar problems considered in the same category.
Our categories are not disjoint; therefore, a blockchain can be categorized more
than once under different categories.

2.2.2.1 Proof of Work based blockchains

Although PoW has inherent energy consumption and performance issues, it
provides a trust-free mechanism to handle the Sybil nodes in the system. Also,
PoW-based blockchains are simpler in design than other blockchains, as the
protocol does not need communication during the consensus phase. PoW-based
blockchains use Bitcoin’s Proof-of-Work (PoW) mechanism to decide on blocks
to append to the ledger. Our classification distinguishes between the use of
cryptographic puzzles and the use of the PoW consensus algorithm. Many
blockchain propositions use cryptographic puzzles to elect leaders and commit-
tee members. However, most of them do not utilize PoW to decide on blocks.
In this category, we only consider blockchains that rely on PoW to decide on
blocks. One of the essential characteristics of these blockchains is eventual con-
sistency: the consensus decision is not final, and with the increasing size of the
blockchain, nodes agree on a prefix of the blockchain with a high probability.
The most important member of this class of blockchains is Bitcoin, and we have
already studied its properties in previous sections.

The Greedy Heaviest Observed Sub Tree (GHOST) (Sompolinsky and Zohar,
2013) is one of the earliest propositions that improves the PoW consensus al-
gorithm to increase the transaction processing capacity of the Bitcoin system.
Proposers of the GHOST protocol make an important observation: blocks not
on the main chain can contribute to the consensus decision by voting on one
of the forks. In light of this observation, the GHOST protocol proposes a new
policy for selecting the main chain in the block tree to replace the longest chain
rule of Bitcoin’s protocol: the GHOST protocol chooses one of the forks with
the heaviest subtree in terms of invested computation rooted at the fork by
considering stale blocks. Therefore, stale blocks not on the main chain help
decide on one of the forks. A modified version of the GHOST protocol was
adopted by Ethereum (Wood, 2014), which is the second-largest blockchain
after Bitcoin in terms of adoption. Although Ethereum recently moved to a
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proof-of-stake consensus algorithm, the original Ethereum consensus algorithm
targeted a cryptographic puzzle difficulty of about 12 seconds using the GHOST
protocol. The short block confirmation time is the reason behind Ethereum’s
success. Also, the transaction processing cost of Ethereum is considerably lower
compared to Bitcoin because of the level of the cryptographic puzzle difficulty.
Monoxide (Wang and Wang, 2019), a sharded blockchain, also uses the GHOST
protocol.

Bitcoin-NG (Eyal et al., 2015) targets improving the throughput and latency
characteristics of the Bitcoin protocol without replacing PoW and decreasing
the difficulty of cryptographic puzzles. In Bitcoin, a leader is elected by finding
a solution to a cryptographic puzzle, and the leader has the right to submit
a single block of transactions. Bitcoin-NG makes an important observation:
leader election and transaction serialization can be separated in the Bitcoin
protocol. Based on this observation, Bitcoin-NG separates leader election from
transaction serialization by introducing two types of blocks: key blocks and
microblocks. Key blocks are the blocks that contain solutions to cryptographic
puzzles. A node becomes the leader after submitting a valid key block. Later,
the leader can submit multiple microblocks that contain transactions until the
election of a new leader. Microblocks do not contain solutions to cryptographic
puzzles; therefore, submitting microblocks does not require energy consumption.
The biggest downside of the Bitcoin-NG protocol is that forks frequently happen
during the leader change, and Bitcoin-NG provides incentive mechanisms to
handle these types of forks.

OHIE (Yu et al., 2020a) is a recent blockchain proposition that uses a modified
version of PoW. OHIE envisions the use of many parallel chains. The number
of parallel chains is k, and it is around 1000. OHIE sets the difficulty of cryp-
tographic puzzles inversely proportional to the k value. Miners in OHIE mine
for all chains using a Merkle commitment scheme: a block header references all
previous blocks on k chains. At the end of the mining procedure, the miner is
assigned one of the parallel chains, and it submits a block for that chain. OHIE
envisions the use of very small blocks (around 20 KB) that disseminate in the
network very fast. OHIE retains the longest chain rule of Bitcoin, but it has
other rules to synchronize the growth of different chains, as different chains can
grow at different paces.

FruitChain (Pass and Shi, 2017) is another novel approach that targets improv-
ing the Bitcoin protocol. FruitChain implements a fair blockchain consensus
protocol in which honest parties are represented proportionally to the owned
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computation power. To allow fair mining, FruitChain uses cryptographic puz-
zles with smaller difficulty values.

2.2.2.2 Proof of Stake based blockchains

The majority of Proof of Stake (PoS) blockchains can be considered committee-
based on which the ownership of tokens is used to construct committees. How-
ever, only a few blockchains can be considered pure PoS, where proof of token
ownership is used to select a leader to propose a block.

Leaders in PoS systems are assigned slots to propose blocks according to the
amount of stake in the system. Because all parties know the stake distribution
in advance, the most crucial challenge for this family of blockchains is producing
an unbiased randomness source to use in the leader election. Failing to produce
a true randomness source might endanger the safety of the blockchain system.
However, randomness is not an issue for PoW-based blockchains because solving
a cryptographic puzzle is itself a random process, and eventually, someone solves
one puzzle and submits a block.

The most important example of this family is Ouroboros. Ouroboros is a family
of blockchains that implements a provably secure PoS-based blockchain. Using
PoS, Ouroboros eliminates the use of energy. In Ouroboros, nodes with the
biggest stake in the system are assigned a slot to propose a block: Ouroboros
implements a verifiable random number generator using the public ledger, and
stakeholders are assigned slots using this generator.

2.2.2.3 Committee based blockchains

A big majority of blockchains use cryptographic puzzles, and ownership of to-
kens to construct committees of nodes with different responsibilities. It is hard
to classify these blockchains as pure PoW or PoS because they do not rely on a
single node, or leader, to propose a block. Some of these blockchains use classical
consensus algorithms like Paxos and PBFT in committees to decide on blocks.
Also, some of them implement new consensus algorithms similar to classical
consensus algorithms. In both cases, these blockchains leverage the availabil-
ity of distributed ledgers to circumvent the close membership requirement of
classical consensus algorithms: specifically, using PoS and cryptographic puz-
zles they reconfigure the committees frequently to have consensus in an open
setting in a way that committee membership always tracks the current stake or
computation power distribution.
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Byzcoin (Kogias et al., 2016) is a novel consensus protocol that relies on cryp-
tographic puzzles to elect leaders. Unlike Bitcoin, the proposed block by the
leader, the miner, is decided by a committee of nodes. The committee is con-
structed from the last n block miners, and n is a protocol parameter that is
set at bootstrap time. In Byzcoin, the committee uses a PBFT instance to
decide on the block proposed by the leader: the leader proposes blocks, and the
last n− 1 puzzle solver decides on the block using PBFT. Also, Byzcoin makes
use of a tree-based communication scheme and a cosigning scheme to decide on
blocks in a fast and efficient manner. As in Bitcoin-NG, the leader leads the
instances of PBFT until a new leader is elected by solving a crypto puzzle. This
way, Byzcoin effectively separates leader election from transaction serialization.
When a new miner solves a new cryptographic puzzle, the oldest member of the
previous committee is evicted, and the new miner leads the consensus instance
until a new block is mined.

Algorand (Gilad et al., 2017) is one of the most known examples of committee-
based blockchains, and it is one of the most scalable committee-based block-
chains. Algorand constructs committees of nodes using cryptographic sortitions
that make use of Verifiable Random Functions (VRF). Cryptographic sortitions
of Algorand weight the nodes according to the owned stake in the system to
protect the committees against Sybil attacks. Cryptographic sortitions produce
proof of election that can be validated by any node in the system by relying on
public information recorded in the ledger. Any protocol message of Algorand
contains the proof of election produced by cryptographic sortitions. Using cryp-
tographic sortitions, Algorand elects leaders and committee members. Leaders
proposed blocks, and committee members votes for blocks to decide on blocks.
Unlike other committee-based blockchains, committee members of Algorand are
not known in advance, and this provides a strong Denial of Service (DoS) at-
tack resilience to Algorand because an attacker can not target the committee
members.

Rapidchain (Zamani et al., 2018) is a sharded blockchain and committee-based
blockchain. Rapidchain creates a disjoint set of committees in which each com-
mittee is in charge of a shard of the blockchain. Rapidchain relies on cryp-
tographic puzzles to protect the system against Sybil attacks. The time in
Rapidchain consists of daylong epochs, and in each epoch nodes that want to
join the system or want to stay in the system solve a cryptographic puzzle to
attend the next epoch. In Rapidchain, cryptographic puzzles are not on the
critical path of the consensus, and this removes many inefficiencies caused by
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cryptographic puzzles like low throughput and high latency. We will provide
further details about Rapidchain’s committee mechanism in the sharded block-
chains’ subsection.

Snow White (Bentov, Pass, and Shi, 2016) is a committee-based blockchain that
uses PoS to construct committees. Snow White divides time into epochs, and
at the beginning of each epoch, a new committee is decided by the previous
committee members. For that purpose, nodes rely on the blockchain’s state by
removing a suffix of it to obtain a stable prefix that is the same for all nodes
with a high probability. Snow White assumes the availability of an unbiased
leader election primitive to elect leaders in an epoch. Leaders are elected from
the committee members therefore their identities are known in advance by all
nodes in the system.

2.2.2.4 Proof of X based blockchains

PoW solves the Sybil problem by excessive energy consumption, devastating for
the economy and ecology. PoS systems replace the cryptographic puzzles with
ownership of a stake in the system, and this makes the rich richer because nodes
with a high stake in the system can contribute more and benefit more from the
system. The natural question is whether there are other mechanisms alterna-
tive to PoW and PoS. Proof of X-based blockchains propositions remove the
PoW and PoS from the equation to provide energy-efficient and fair consensus
algorithms.

Proof of Elapsed Time (PoET) is an alternative blockchain consensus algorithm
that relies on Trusted Execution Environments (TEE). They are implemented
in CPUs to provide confidentiality and integrity for the code running in TEE.
PoET uses Intel’s TEE called Intel Software Guard Extensions (Intel SGX).
PoET replaces the cryptographic puzzles of PoW consensus with random sleep
times, and the correctness of the behavior of a node is guaranteed using Intel
SGX. For example, a PoET node creates a random lottery ticket that selects a
future time to submit a block. When the time comes, the PoET node submits
a block for the current block index if no block is received. Using this mecha-
nism, PoET provides a consensus algorithm similar to PoW with an eventual
consistency guarantee. Furthermore, in PoET, a node can only issue a single
lottery ticket using a single CPU with TEE: this handles the Sybil problem be-
cause nodes need to own many CPUs with TEE to issue many lottery tickets.
Although the original PoET protocol lacked a formal definition, later studies
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filled this gap by providing a formal description and investigating the properties
of PoET.

Proof of Retrievability for large files (Juels and Kaliski, 2007)(PoR) is an earlier
proposition than Bitcoin. PoR is a cryptographic proof of knowledge designed
for large files. PoR is designed to use in the context of semi-trusted digital
data storage services: users of the storage service store data, and using PoR;
they can make sure that the file is not deleted and not modified by the storage
service. Specifically, a user (verifier) can verify that the storage service (prover)
possesses a file or data object. PoR targets efficiency, and for that purpose,
PoR requires that the prover touches a small percent of the large file to produce
proof. For that purpose, PoR encrypts the large file and randomly embeds
random valued encrypted check blocks inside the file. This way, the verifier can
check the availability of random valued check blocks in specific positions. In case
of file update or deletion, the prover can not provide the correct check blocks.
As we will see later, the PoR approach was adopted by some blockchains.

Proof of Space (Dziembowski et al., 2015) is an alternative approach to replace
the cryptographic puzzles of PoW with a different kind of puzzle that provides
similar properties without energy usage: to make a proposition, a proposer
needs to invest a considerable amount of effort as in PoW. Proof of Space targets
the elimination of excessive energy use and special equipment use. Because disk
space is a considerably cheap and abundant resource, Proof of Space implements
puzzles that use disk space. Users of the Proof of Space can play two roles:
prover and verifier. Prover P stores a fixed-size file F , and verifier V stores a
small amount of information about the F . In this model, verifiers are service
providers, and provers are clients or consumers of the service. When a prover
wants to use the service, the verifier sends a challenge to prove that a prover
stores the file. If the prover can answer the challenge with short proof, it can
benefit from the service; otherwise, it can not.

Spacemint (Park et al., 2018) is a blockchain based on the Proof of Space consen-
sus algorithm. Spacemint refines the Proof of Space idea to use in blockchains.
In Spacemint, miners dedicate a hard disk space and initialize the hard disk
space using a special function. Later, miners produce proofs of the election
using the dedicated disk space. On average, it takes 30 seconds to produce an
election proof. Using Proof of Space, Spacemint limits the number of miners to
decrease forks. Spacemint does not use disk space for useful purposes; dedicated
space contains data produced by a deterministic algorithm.
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Permacoin (Miller et al., 2014) is a Proof of Retrievability (PoR) based block-
chain consensus algorithm. In PoR, nodes provide proof that a node invests
memory or disk to store a specific file. Permacoin aims to repurpose the mining
resources of Bitcoin to achieve a more broadly useful goal: distributed storage
service for archival data. Permacoin implements a highly distributed peer-
to-peer file storage to store large, publicly valuable data archives. Permacoin
assumes that file F is too big to be stored by a single node, and chunks of the file
must be stored on multiple nodes. Permacoin also defines a lottery mechanism
based on PoS where nodes produce a proof of election using PoR to propose a
block.

2.2.2.5 Sharded blockchains

Sharded blockchains follow a different path to increase performance: they dis-
tribute nodes into smaller committees called shards, where each committee sus-
tains a local blockchain. In a sharded blockchain, nodes need to have a con-
sensus inside a shard, and blocks and transactions are only disseminated inside
a shard; therefore, the sharding approach decreases the communication cost of
consensus significantly.

Sharded blockchains can benefit from the classical BFT consensus algorithm
with the help of small committee sizes and close shard membership. The per-
formance of a sharded blockchain increases linearly with the number of shards
because shards of a blockchain can process transactions in parallel. The down-
side of this approach is the increased complexity of the protocol because most
sharded blockchains require a cross-shard transaction processing protocol that
requires cross-shard communication. Also, these blockchains need subproto-
cols to map transactions onto specific shards to be processed and to ensure the
health of shards in terms of correct and faulty node ratio. Furthermore, most
sharded blockchains use cryptographic puzzles to construct shards: nodes need
to solve cryptographic puzzles to join a shard. Finally, most of them use spe-
cial committees assigned to conduct specific tasks, such as verifying solutions
of cryptographic puzzles or assigning new nodes to shards.

Elastico (Luu et al., 2016a) is a sharded blockchain that creates committees of
nodes and automatically changes the number of committees according to the
number of nodes. Elastico uses a classical BFT consensus algorithm (PBFT) in
a committee to order user transactions. Nodes of Elastico solve cryptographic
puzzles to join or stay in the system. In Elastico, a special committee combines
the consensus results of all other committees and shares them with all nodes
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in the system. Finally, Elastico considers a directory committee that keeps
track of nodes and their IP addresses so that nodes in the same committee can
communicate directly by getting information from the directory committee.

One of the most notable sharded blockchains is Rapidchain (Zamani, Movahedi,
and Raykova, 2018). Rapidchain constructs committees of nodes, and each
committee sustains a blockchain. Rapidchain uses a synchronous consensus
algorithm in a committee to decide on blocks. The number of committees of
Rapidchain is static, and it does not change according to the number of nodes
in the system. Rapidchain maps transactions into committees according to
the transaction ID calculated by hashing, making the majority of transactions
cross-shard that requires cross-shard communication. Rapidchain divides time
into successive epochs, and in each epoch, nodes solve cryptographic puzzles
to join the system or to stay in the system. A specific committee validates
cryptographic puzzles to authorize nodes to join or stay in the system, and the
same committee rotates and swaps the shard members to protect the shards’
health. In Rapidchain, Nodes use Kademlia (Maymounkov and Mazieres, 2002)
protocol to communicate with other shards.

Monoxide (Wang and Wang, 2019) is another sharded blockchain, and it names
shards as zones. Each zone of monoxide process user transactions concurrently.
In a zone, nodes use the PoW consensus algorithm. Each zone sustains a block-
chain, and transactions and blocks are replicated inside a zone, but block head-
ers are replicated system-wide. Like Rapidchain, Monoxide also benefits from
the Kademlia protocol for cross-zone communication. To handle cross-shard
transactions, Monoxide considers relay transaction, which transfers the value
from the remote zone to the local zone. It is easy to process relay transactions
locally in Monoxide because block headers are replicated globally.

2.2.2.6 Permissioned and permissionless blockchains

Blockchain propositions can be categorized into two broad categories permis-
sioned or permissionless.

In permissioned blockchains, a trusted authority allows nodes to access the sys-
tem; therefore, the identities of nodes are known in advance. As a result, per-
missioned blockchains can benefit from classical consensus algorithms to provide
a stronger safety guarantee and fast confirmation time. Also, they do not need
to handle Sybil and DoS attacks because they can easily exclude misbehaving
nodes from the system.
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The most important example of a permissioned blockchain is Hyperledger Fab-
ric (Dhillon, Metcalf, and Hooper, 2017). Hyperledger Fabric assigns roles to
nodes in the system: validators and orderers. Validators validate and execute
the client requests, and orderers order them using a consensus algorithm. This
scheme is known as execute-order-validate, where transactions are first exe-
cuted, and outputs are ordered. In Hyperledger Fabric, orderers do not execute
transactions and are unaware of the meaning of transactions. The consensus
algorithm of Hyperledger is pluggable, which means that it is not hard coded,
and the consensus algorithm can be chosen according to the requirements.

Permissionless blockchains do not have any trusted authority, and any node can
join the system without restriction. Permissionless blockchains must handle the
Sybil problem and possible DoS attacks using techniques listed in the previous
section, such as PoW, PoS, or PoX. As we have already mentioned, some per-
missionless blockchains use classical consensus algorithms, but most of them use
eventually-consistent consensus algorithms to scale the consensus. This family
of blockchains generally prioritizes scalability over performance. Some of these
blockchains might restrict when nodes can join the system: for example, in
Rapidchain (Zamani et al., 2018), nodes can join the system at the beginning
and epoch, and an epoch is a day-long time interval.

2.2.2.7 Leader-based and leaderless blockchains

We can classify blockchains into two broad categories: leader-based and lead-
erless. Leader-based blockchains are the ones that elect a distinct leader to
propose blocks. All the mentioned blockchains up to now are leader-based.

On the contrary, leaderless blockchains do not elect leaders. One of the most
notable of them is Avalanche (Rocket et al., 2019). Unlike blockchains, the
Avalanche system constructs a Directed Acyclic Graph (DAG) of transactions.
Therefore, in Avalanche, there is no concept of the block, and each transaction
selects one or more parent transactions by containing a hash of them. Avalanche
replaces the consensus with a random sampling of the network, and a node
samples a set of nodes from the system to learn their status about a transaction.
A node updates its behavior according to the behavior of other sampled nodes.

Another important leaderless consensus algorithm is Redbelly (Crain, Natoli,
and Gramoli, 2021). It is a permissioned blockchain system, and it builds
on top of Democratic BFT (DBFT) (Crain et al., 2018), which is a special
consensus algorithm designed for blockchains, and it does not need a leader to
terminate. In Redbelly, permissioned nodes order transactions using DBFT:
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multiple nodes propose a small block, and a subset of them are agreed in the
form of a superblock. A superblock is appended to the ledger.

2.3 Conclusions

In this chapter, we presented the fundamental concepts for understanding block-
chains: we started the discussion with basic information about distributed sys-
tems and cryptographic primitives. Later, we focused on the consensus problem
and state machine replication. We studied the properties of the Bitcoin protocol
which is the first blockchain protocol, and understanding its properties is essen-
tial to understanding other blockchain proposals. We have listed the limitations
of the Bitcoin approach. We classify the important blockchain proposals that
aim to implement more efficient and effective blockchains, and mentioned their
important characteristics.
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3 Related work

3.1 Multiple leader approach to improve the per-

formance

Most blockchain consensus algorithms use a leader: an elected leader proposes a
block for a given block index, and other nodes try to decide on the block. This
approach significantly reduces the communication cost of consensus because
nodes are trying to decide on a single value.

The single-leader approach has several drawbacks. First, it causes an unbal-
anced communication and computation scheme because the leader must assign
all requests a sequence number. Clients close to the leader might benefit from
low latency, while others experience higher latency values. A malicious leader
can slow down the consensus by submitting requests at the latest possible time
to decrease the throughput. Also, a malicious leader can censor some clients by
omitting their requests. Finally, resources available to the leader, such as CPU
and network bandwidth, limits achievable throughput values.

In this section, we will investigate the state-of-the-art propositions that target
the inefficiencies stemming from the single leader in classical and blockchain
consensus algorithms.

3.1.1 Classical consensus algorithms with multiple leaders

Mencius (Mao, Junqueira, and Marzullo, 2008) is one of the earliest exam-
ples of multiple leader consensus algorithms. First, Mencius observes that an
unbalanced communication scheme caused by the single leader in the Paxos al-
gorithm might affect clients differently in a Wide Area Network (WAN). Later
on, Mencius targets improving the WAN performance of the Paxos algorithm
by extending Paxos with multiple leaders to provide throughput increase and
to provide balanced communication cost, which is distributed evenly between
all replicas. Mencius partitions the sequence numbers among replicas, and each
replica becomes a leader for its sequence numbers by proposing client requests
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using these sequence numbers. Assignments of sequence numbers to replicas are
known in advance. Each replica can propose values for its sequence numbers:
the downside of this approach is that replicas can not commit a request before
committing all requests with lower sequence numbers. That might increase the
latency of the system. To handle this case, Mencius introduces piggybacked
SKIP messages that allow a replica with a low client load to skip its sequence
numbers without incurring a high message latency.

BFT-Mencius (Milosevic, Biely, and Schiper, 2013) is another approach inspired
by Mencius. BFT-Mencius builds on top of the PBFT protocol and benefits
from multiple leaders. BFT-Mencius provides bound time latency guarantees
for correct clients in the presence of Byzantine faulty replicas: a request sub-
mitted by a correct client is processed by the system in a bounded time interval.
This property of the BFT-Mencius guarantees that a leader can not censor a
client’s requests forever. In the presence of Byzantine faulty replicas, the use of
simple SKIP messages, as in Mencius, does not work because a faulty replica
might send a SKIP message for a sequence number, and it can propose a value
using the sequence number. To handle this case, BFT-Mencius developed a
new abstraction called Abortable Timely Announced Broadcast (ATAB), and
it implements ATAB using a PBFT-like protocol. BFT-Mencius partitions the
sequence numbers among replicas, as in Mencius. It implements a consensus al-
gorithm using ATAB primitive where nodes can SKIP their turns as in Mencius
without violating the safety properties in the presence of Byzantine nodes.

Mir-BFT (Stathakopoulou, David, and Vukolic, 2019) is a recent proposition
that builds on top of PBFT, and it targets improving the WAN performance of
the PBFT protocol where the latency of messages is high, and also it handles
request duplication attacks where a malicious client submits duplicate requests
to decrease the performance of the system. As in previous propositions, Mir-
BFT partitions the sequence numbers among replicas. Further, it partitions
the hash space of the client requests into k disjoint bucket, and each replica
is assigned an equal number of buckets. Replicas can propose client requests
from their transactions bucket using assigned sequence numbers. To handle the
censoring problem, Mir-BFT frequently rotates the bucket assignment of the
replicas; therefore, a malicious replica can not delay the requests for a correct
replica forever.

ISS (Stathakopoulou, Pavlovic, and Vukolić, 2022) protocol builds on top of the
idea of Mir-BFT: it uses transaction buckets and bucket rotation techniques.
However, unlike Mir-BFT, ISS provides a truly generic construct that can be
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used to improve any leader-based BFT consensus algorithm with multiple lead-
ers. ISS designs Sequenced Broadcast(SB), which is a Byzantine total order
broadcast protocol. They prove that ISS can be implemented using a BFT con-
sensus algorithm, and any target consensus algorithm can be used to implement
SB. Later on, instances of SBs are multiplexed to implement a multiple-leader
consensus algorithm.

OMADA (Eischer and Distler, 2019) enriches BFT consensus algorithms with
multiple leaders: it is also a generic construct as ISS. Unlike previous ap-
proaches, it adopts a technique similar to sharding to enrich BFT consensus
algorithms with multiple leaders. OMADA creates multiple consensus groups;
each group runs an instance of the target consensus algorithm. Also, OMADA
targets decreasing the cost of communication by keeping the size of consensus
groups as small as possible. As in other propositions, OMADA partitions the
sequence numbers among consensus groups, and each consensus group proposes
values using assigned sequence numbers. Finally, a node of OMADA can take a
role in more than one consensus group, which is a technique to efficiently utilize
the machine’s capacity: nodes with more resources can participate in multiple
groups, while nodes with low resources can contribute only to a single group.
In OMADA, clients select a consensus group and send requests to that group
to be serialized. OMADA masks the Byzantine faults inside groups and uses
a crash fault resilient consensus algorithm to mask unreachable groups during
the transaction execution phase.

RCC (Gupta, Hellings, and Sadoghi, 2021) is another proposition that uses
multiple leaders to utilize the system’s available resources better and to remove
the bottleneck caused by a leader. Like ISS and OMADA, RCC is also a general
construct. In RCC, not all replicas need to behave as primary, and the number
of primaries is a protocol parameter. The sequence numbers are distributed
among primaries, and each primary concurrently proposes client requests using
available sequence numbers. RCC is tested with PBFT protocol using a different
number of primaries.

3.1.2 Blockchains with multiple leaders

The multiple-leader approach is less common in blockchain consensus algorithms
than classical consensus algorithms: most blockchain propositions target large
open systems, and it is relatively hard to distribute the sequence number among
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contributing nodes in open systems. However, techniques described in the pre-
vious subsection can be used by blockchains that employ classical consensus
algorithms in a closed setting.

One notable example of multiple leader blockchain consensus algorithms is
OHIE (Yu et al., 2020b), which we briefly described in Section 2.2.2.1. OHIE
builds on top of the Bitcoin protocol, and like Bitcoin, it uses cryptographic
puzzles. Unlike Bitcoin, OHIE constructs parallel chains that each have a gen-
esis block. The OHIE considers k parallel chains (where k is in the order of
1,000) and decreases the difficulty of cryptographic puzzles to elect k leaders
for a unit time interval; therefore, there are k blocks submitted on average for
every unit of time. Decreasing the difficulty of cryptographic puzzles causes an
increase in forks: OHIE handles this by assigning each leader one of the parallel
chains using the hash of the mined block. Because the hash of the block is
not available before mining, a miner uses a Merkle tree to point all previous
blocks on all chains: a Merkle tree is constructed using the hashes of blocks on
k chain, and the root of the Merkle tree added into the block header as the hash
of the previous block. Finally, OHIE considers blocks around 20 KBs: smaller
blocks propagate faster in the network, and it causes lower block dissemina-
tion latencies. OHIE does not handle the problem of disjoint block submission.
Therefore, different blocks can contain the same transaction, which could de-
crease the resource utilization in the system because the same transaction can
be appended to the blockchain in different blocks.

3.2 Efficient dissemination techniques to improve

performance

Numerous propositions try to remove inefficiencies of blockchains in the network
plane; many are too specific and designed for a single blockchain. Also, there are
propositions that implement efficient gossip dissemination protocols, potentially
valuable for large-scale distributed systems, and blockchains can benefit from
them. Because of this reason, in this section, we will focus on efficient gossip
dissemination protocols.

3.2.1 General purpose efficient dissemination techniques

The most notable efficient gossip dissemination techniques are chunk-based gos-
sip dissemination, where a message is chunked into multiple pieces, and individ-
ual chunks are disseminated. This technique eliminates the problems that stem
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from store-and-forward gossip dissemination used in blockchains. Also, chunk-
based gossip dissemination introduces the possibility of using erasure coding,
where chunks are erasure-coded to protect against loss. This subsection will
look at important examples of chunk-based gossip dissemination protocols.

One of the earliest examples of multi-chunk gossip dissemination is SplitStream
(Castro et al., 2003). It aims for efficient dissemination of messages and fair
distribution of the dissemination cost among contributing nodes. SplitStrem
considers a structured peer-to-peer network where the communication pattern
of processes is scheduled in advance to obtain optimum latency and communi-
cation cost. SplitStream chunks a large message into multiple pieces and con-
structs disjoint dissemination trees in a deterministic manner for each chunk.
In a dissemination tree, only inner nodes disseminate the message. A node
has different roles in different trees; therefore, each node contributes to dis-
seminating messages in one of the trees. SplitStrem’s evaluation considers a
structured peer-to-peer network and does not consider Byzantine faulty nodes.
Also, Splitstream does not consider parity use of parity chunks.

Sanghavi, Hajek, and Massoulie, 2007 investigate the cost of gossip dissemi-
nation in an unstructured setting where nodes randomly contact other nodes
to send or receive messages. They propose a gossip dissemination protocol,
INTERLEAVE, that relies on multi-chunk gossip dissemination. They com-
pare classic gossip with multi-chunk gossip dissemination from a theoretical
point of view. They also provide an analysis of the optimum gain that can
be achieved from splitting a multi-chunk message compared to sending a single
large message. Their analysis shows the benefit of multi-chunk gossip dissemina-
tion theoretically. Although they mention the possible benefits of using erasure
coding in push-and-pull gossip dissemination, they do not investigate it. Later
on, Lo Cigno, Russo, and Carra, 2008 investigate the performance of INTER-
LEAVE protocol by using simulations. They aim to quantify the properties of
the INTERLEAVE protocol.

A critical use case for multi-chunk gossip dissemination is live-streaming. Multi-
chunk gossip dissemination is indispensable for live-streaming because of the size
of the messages. Bar gossip (Li et al., 2006), LiFtinG (Guerraoui et al., 2010),
and AcTinG (Mokhtar, Decouchant, and Quéma, 2014) are protocols designed
to handle rational nodes in streaming systems. Rational nodes do not want
to contribute to disseminating messages to decrease resource consumption, and
they are risk averse, meaning that if there is a risk of exclusion from the system,
they will stick to the protocol. Although they consider authenticated messages,
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none of these protocols use erasure coding or an efficient chunk authentication
mechanism. Also, their fault model only considers rational behaviors that are
a subset of Byzantine behaviors.

In the context of live-streaming, another important proposition is Gossip++
(Frey et al., 2010). Gossip++ uses push-and-pull gossip mechanisms together
to implement a hybrid gossip protocol. It uses erasure coding to improve dis-
semination performance. In Gossip++, the source node chunks a large message
into 100 chunks and adds five parity chunks. Gossip++ considers a few parity
chunks, and the source node forwards each chunk multiple times. Gossip++
uses different fanout values for source nodes and other nodes. These fanout

values are respectively 5 and 8. The evaluation of Gossip++ considers only 200
nodes, a considerably small system by today’s standards. Finally, the evaluation
considers only rational nodes.

3.2.2 Efficient dissemination techniques for blockchains

There exist different inefficiencies regarding the network plane of blockchains.
The first is high latency caused by gossip dissemination with the store-and-
forward mechanism. Many blockchains disseminate blocks using the store-and-
forward mechanism where a node receives the entire block and validate it using
a particular predicate: if the block is valid, it forwards it fanout other nodes.
This construction is necessary to protect the system again DoS attacks, but it
increases the latency of block propagation, increasing the probability of forks
on the blockchain. The second inefficiency stems from the dissemination of
transactions; in most blockchains, transactions are disseminated twice in the
network by gossip dissemination: once the issuer announces it and the second
time when it is appended into a block. Again, this decreases the system’s
performance and increases the latency because of inefficient use of available
bandwidth resources.

The earliest attempt to improve the performance of Bitcoin’s block dissemina-
tion performance is Bitcoin Relay Network (Corallo, 2015): it is a set of trusted
nodes deployed on the Bitcoin network, and they are connected. In the relay
network, nodes disseminate blocks with minimum validation to decrease dissem-
ination latency caused by the full block validation. Other nodes connected to
the nodes of the relay network should validate blocks fully before disseminating.
Later on, The Fast Internet Bitcoin Relay Engine (Corallo, 2016b)(FIBRE) is
proposed by the same author, which targets improving the performance of the
Bitcoin relay network further by replacing transport level protocol TCP with
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UDP, and by using erasure coding so that missing network level packages will
be recovered using erasure coding on the application level.

The problem that stems from the dissemination of transactions is attacked by
several propositions that eliminate the dissemination of transactions twice. The
most notable of them is compactblocks (Corallo, 2016a) that are proposed in the
context of Bitcoin to decrease the block dissemination time and bandwidth us-
age of nodes. In the compact blocks, the block body does not contain the trans-
actions themselves but the ID of transactions that are calculated using a hash
function; This decreases the size of blocks. Furthermore, compact block propo-
sition does not use cryptographically secure hash functions like SHA256 (NIST,
2015) that produces 32 bytes long message digest but uses SipHash (Aumasson
and Bernstein, 2012) that produces 8 bytes long message digest. Finally, the
compact block proposition envisions the drop of 2 most significant bytes from
SipHash output to make transaction IDs 6 bytes long. Upon receiving a block,
each node check transaction IDs inside the block, and if there are any missing
transaction, a node requests them from other nodes by sending a request that
contains the transaction ID.

Xtreme Thinblocks (Tschipper, 2016) is another proposition that targets the
same goal with compact blocks. Like compact blocks, Xtreme Thinblocks re-
places transactions inside the block body with transaction IDs, using eight
bytes-long transaction IDs. Also, Xtreme Thinblocks make use of Bloom fil-
ters (Bloom, 1970) to decrease the message latency to request missing transac-
tions inside a received block: node A requests an Xtreme Thinblock from an-
other node B by sending a bloom filter that is constructed by using all known
transaction but not appended to the blockchains. Upon receiving the bloom
filter, node B sends the Xtreme Thinblocks with all missing transactions that
are not known by node A. This method decreases the latency caused by missing
transactions inside a block. Graphene (Ozisik et al., 2019) protocol further im-
proves the mechanism by combining bloom filters and Invertible Bloom Lookup
Table (Goodrich and Mitzenmacher, 2011)(IBLT): it implements a set reconcil-
iation protocol using both data structure previously mentioned, and it makes
use of short transaction IDs of 8 bytes as in previous propositions. Graphene
decreases the size of blocks further compared to Xtreme Thinblocks because
combined of used Bloom filters and IBLT.
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3.3 Conclusions

In this chapter, we focused on related work targeting to improve the perfor-
mance of existing distributed systems and blockchains by addressing bottle-
necks in consensus and network layers. On the consensus layer, we focused on
the multiple-leader approach, which addresses problems arising from the single-
leader approach. On the network layer, we focused on proposals that improve
the performance of message propagation.
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4 Alder

4.1 Introduction

Leader-based blockchain consensus protocols are deployed at the heart of major
blockchains (e.g., Bitcoin, Ethereum, the Hyperledger suite, Algorand). In these
blockchains, leaders are frequently elected to propose blocks and carry out other
protocol-specific tasks. ALDER is a general construction to enrich leader-based
blockchain consensus protocols with multiple leaders to increase performance
by removing bottlenecks in consensus and network layers. In this Chapter, we
present ALDER and its evaluation.

ALDER multiplexes blockchain consensus protocols to append not one (large)
but several (smaller) blocks to the blockchain. Specifically, ALDER lets mul-
tiple leaders propose candidate blocks while allowing the blockchain system to
compose and agree on a macroblock, an ordered set of blocks, to extend the
chain. ALDER elects leaders by leveraging candidate leaders not exploited in
the original consensus protocol. Then, elected leaders independently propose
concurrent blocks containing disjoint sets of transactions, the union of which
constitutes a macroblock. Since ALDER builds on existing blockchain pro-
tocols, the resulting protocols inherit the safety and liveness properties of the
parent protocol.

To assess the effectiveness of ALDER, we apply its principles to three ma-
jor blockchains: RapidChain (Zamani, Movahedi, and Raykova, 2018), an effi-
cient sharded blockchain, Algorand(Gilad et al., 2017), a scalable proof-of-stake
blockchain, and Bitcoin, the iconic proof-of-work blockchain. Our experimen-
tal evaluation of ALDER consists of large-scale deployments involving up to
10,000 nodes deployed on up to 100 physical machines.

In the following Sections, we provide a detailed description of ALDER and its
evaluation.
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4.2 ALDER’s foundations

ALDER assumes the availability of a permissionless leader-based blockchain
protocol to build on. The available blockchain protocol can adopt the syn-
chronous or eventually synchronous network model, and ALDER can be applied
in both network models.

The blockchain protocol incorporates the election of leaders, the creation of
blocks, the dissemination of blocks throughout the system, and a consensus
algorithm that allows all nodes to agree on the block that effectively extends
the latter chain. The blockchain protocol satisfies safety and liveness properties
that have been translated into common prefix, chain quality and chain growth
defined in previous work (Badertscher et al., 2018; Pass, Seeman, and Shelat,
2017; Pass and Shi, 2017). Abstracting from the specifics of consensus protocols
employed in leader-based permissionless blockchains, we provide their informal
definitions of these properties as follows:

• Chain-quality : the number of blocks contributed by the adversary is not
too large, i.e. any (large enough) subset of an honest node’s chain contains
blocks from honest nodes.

• Chain-growth: the chain of any honest node grows at a steady rate, pro-
portional to the number of time steps.

• Common prefix : the chains of all honest nodes must be identical, except
for a few tail blocks that are not yet stabilized, i.e., if two honest nodes
discard a sufficient number of blocks from their respective chains, they
obtain the same prefix.

4.2.1 Bottlenecks in improving blockchain performances

The performance of a blockchain is generally quantified using two metrics:
throughput, which is the amount of data that a blockchain protocol can ap-
pend to the chain per unit of time, and latency, which is the duration before a
generated block is added to the ledger. Effective ways to improve the perfor-
mance of blockchain systems are to increase the frequency at which blocks are
generated and increase the block size. While these solutions seem straightfor-
ward to implement, they raise several challenges in practice.

Increasing the block size can be counterproductive because nodes must receive
the entire block before disseminating it to avoid spreading an invalid block.
Thus, larger blocks would be added to the blockchain at a slower rate, which
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in the optimistic scenario, would maintain a given level of throughput with
increased latency.

Increasing the frequency of block generation also has drawbacks, for exam-
ple, with proof-of-work or proof-of-stake based blockchain consensus protocols,
whose probabilistic termination properties allow the existence of forks (e.g., Bit-
coin or Ethereum). As the frequency of block generation increases, so does the
number of forks appearing in the system, resulting in a larger share of generated
blocks not appended to the ledger. Consequently, this lack of efficiency (in this
example, mining power efficiency) make the envisioned performance improve-
ment strategy far from optimal, with a significant proportion of blocks gener-
ated quickly and not used to improve blockchain throughput. At this point,
the fundamental limits of disseminating a block in the network and adding it to
the chain are reached, preventing any further performance gains for blockchain
protocols with these strategies.

4.2.2 ALDER: multiplexed blockchain consensus

ALDER aims to improve the performance of existing leader-based blockchain
protocols by circumventing the bottlenecks encountered when increasing the
block size or the block generation frequency. ALDER consists in multiplexing
the execution of a blockchain consensus protocol instance. We call multiplexing
a consensus instance the process by which the nodes in the system agree to ap-
pend a macroblock, i.e. a set of blocks totally ordered, to the blockchain instead
of a single block per round. The blocks composing the resulting macroblock
contain disjoint sets of transactions.

The construction of ALDER allows circumventing the bottlenecks described
above by fine-tuning the operations of the multiplexed blockchain protocol:
either by changing the size of the blocks within the macroblock (thereby in-
creasing the size of the resulting macroblock) and keeping the same macroblock
generation frequency or by increasing the macroblock generation frequency and
keeping the same block size. With these new capabilities, nodes in the system
can propose and append multiple small blocks per consensus round instead of
a single large block. As a result, the dissemination of these blocks from differ-
ent nodes in the system optimizes the consumption of network resources and
increases the throughput of the blockchain system.

Finally, the multiplexed version of a blockchain model preserves its safety and
liveness properties, namely chain-quality, chain-growth, and common prefix.
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This is achieved by keeping the properties of the underlying consensus protocol
unaltered.

4.3 Design of ALDER

In this section, we present the principles of ALDER that allow to multiplex
a leader-based Blockchain Consensus Protocol (BCP) and increase its perfor-
mance. We refer to BCP++ for the resulting blockchain consensus protocol
in the remainder. Figure 4.1 illustrates this transformation on a BCP in its
canonical form that executes in time-based epochs or rounds: leader election,
block proposal, block dissemination, and consensus. In the blockchain models
that we consider, the leader election mechanism identifies a node (sometimes
several, either by design principle or by side effect) that must propose a can-
didate block to the rest of the nodes in the system. Once the block(s) is(are)
disseminated, the nodes execute a consensus algorithm to reach an agreement
on a block to consider it a valid extension of the BCP blockchain.

As illustrated in Figure 4.1, ALDER extends BCP to BCP++ which executes
its four main components as follows: In each round, BCP++ elects several lead-
ers based on the election mechanism of the original BCP . BCP++ partitions
the transaction hash space into Cl disjoint regions called buckets, where Cl is
the concurrency level of BCP++, which denotes the number of blocks compos-
ing the macroblocks. BCP++ assigns a separate transaction bucket to each
leader in a publicly verifiable way. Then, leaders propose blocks with disjoint
sets of transactions using the assigned transaction bucket. Finally, BCP++
runs a multiplexed version of the BCP consensus to produce a decision on an
ordered composition of the proposed blocks, i.e., a macroblock. The nodes in the
system wait for this decision before assembling the agreed-upon list of blocks
and appending the locally constructed macroblock to the chain before moving
on to the following protocol round.

To multiplex BCP , ALDER leverages three primitives: (1) transaction space
partitioning, (2) multiple leader election and bucket assignment, and (3) mul-
tiplexed consensus and macroblocks. We now detail these primitives and how
they relate to each other.
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Figure 4.1: Multiplexing a blockchain BCP using ALDER

4.3.1 Transaction hash space partitioning

ALDER exploits the leader election mechanism of BCP to involve more lead-
ers in the blockchain consensus protocol and increase its performance. Specifi-
cally, all elected leaders propose candidate blocks to build the next macroblock.
However, appending multiple blocks of transactions in a given round poses the
problem of duplicated transactions and duplication attacks. Indeed, in a simple
approach, leaders create blocks with the transactions they possess. As a result,
some blocks could include transactions that could appear in some of the blocks
proposed by other leaders. This redundancy would reduce the throughput gain
envisioned in our approach and increase the complexity of the transaction ex-
ecution phase. Duplication of transactions also opens the doors to duplication
attacks by an adversary controlling Byzantine nodes. When some of these nodes
are elected, the adversary can wait to learn about the blocks proposed by the
honest leaders and have Byzantine leaders propose blocks containing the same
transactions, thus reducing the performance gain of BCP++. To cope with this
problem, ALDER creates a transactions hash space, partitions it into regions
called buckets, and forces each leader to propose blocks containing transactions
from a unique bucket.
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ALDER partitions the transaction space into Cl non-intersecting buckets of
equal size, where Cl is the concurrency level of BCP++, set at its bootstrap.
Figure 4.2 illustrates the mapping of a received transaction, tx, to a bucket,
with four buckets available (Cl = 4). When receiving a transaction tx, a node
first checks its validity before computing its image from a secure cryptographic
hash function. Then, to determine the corresponding bucket number that will
store the transaction, the modulo Cl operation is used against the hash image
of the transaction. Nodes regularly remove transactions from their buckets as
transactions appear in macroblocks.

4.3.2 Multiple leader election and bucket assignment

To avoid transaction duplications and duplication attacks, each leader is as-
signed a bucket of transactions in an unforgeable and publicly verifiable way
during the leader election phase. In this way, the proposed blocks represent
disjoint sets of transactions.

In the blockchain model we consider, the election of the leader of BCP already
includes the pre-identification of several leader candidates for a given round. To
elect multiple leaders in BCP++ and have them propose blocks with disjoint
transaction sets, ALDER relies on the leader election mechanism of BCP , and
assigns a transaction bucket to each elected leader. ALDER must extend the
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election of leaders of BCP and ensure that enough leaders are identified to pre-
vent macroblocks from being partially filled, hence preventing the multiplexed
blockchain protocol from reaching the envisioned performance gains.

In order to avoid transaction duplications and duplication attacks, ALDER

publicly verifiably assigns a transaction bucket to each elected leader. To this
end, ALDER leverages the protocol-dependent tamper-resilient election proof
employed in BCP to prove the leader’s legitimacy in conducting the task of
creating and proposing a block. For example, the election proof of Bitcoin is
the solution to the cryptographic puzzle set by the system. Regarding Algorand,
the election proof results from a cryptographic sortition procedure evaluating a
verifiable random function on publicly known variables. The bucket assignation
results directly from the computation of the election proof modulo the number
of buckets Cl. Figure 4.2 illustrates the bucket assignment to a leader, with
Cl = 4. Each block proposed by a leader must exclusively contain transactions
whose hashes fall within the bucket assigned to the leader. In this way, any
node can validate the correct fabrication of a received block by checking its
contents against the bucket number assigned to the block proposer. Using the
described construction, leaders of ALDER submit disjoint blocks that can be
aggregated to construct one macroblock.

Bucket assignment is straightforward when considering blockchain protocol where
the election proof is known before the block creation. However, considering
blockchain protocols such as PoW-based ones, the election proof is known after
the node has committed to a block and found a solution to a cryptographic
puzzle. In section 4.4, we provide examples of bucket assignment techniques
with various blockchains.

4.3.3 Multiplexed consensus and macroblocks

Multiplexing consensus requires a decision on not one but a set of proposed
blocks. Although multiplexing is highly implementation-dependent, we formal-
ize the consensus results required to preserve the safety and liveness properties
of the blockchain model we consider.

The decision takes the form of a vector of block hash values totally ordered by
the bucket numbers from which each block originates (from 0 to Cl − 1). The
vector can contain at most one value for each bucket number. Each node in
the system listens for the blocks proposed by the leaders and locally builds a
macroblock based on the consensus decision produced. A macroblock is a logical
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composition of up to Cl blocks of size bs bytes. The resulting macroblock is of
size Cl × bs bytes. Each block in the macroblock must contain the hash of the
previously appended macroblock computed as the hash image of the vector of
block hash values totally ordered by the bucket numbers. Figure 4.3 depicts an
example of a chain of macroblocks.

A node proceeds through a series of validity and semantic checks regarding the
block content and its creation process when receiving a block. Namely, the
nodes verify the leader’s election legitimacy carried out by the election proof
delivered with the block; the validity of a bucket assignment to the leader; the
validity of the transactions themselves; the transactions’ membership to the
claimed bucket; and the presence of the hash value referencing the previously
appended macroblock. If any verification returns a negative result, the node
discards the block. If the block passes all checks, it is stored in a global data
structure until the end of the round, and is passed on to other nodes in the
system. This semantic check is not limited to ALDER and can be extended
with regard to other protocol-specific constraints on the block.

When a node receives all blocks for a given macroblock in a given round, it
applies a global verification to assess double-spending attempts. Indeed, a ma-
licious party might try to double-spend by appending transactions referencing
the same unspent transaction outputs into different blocks within the same mac-
roblock. Probabilistically, this can also occur without any malicious intent. In
such a case, ALDER deterministically solves double-spending attempts by con-
sidering valid the first transaction listed in the total order of transactions inside
the macroblock, and discarding the others. More specifically, invalid trans-
actions are left unexecuted. ALDER does not require that each macroblock
contain exactly Cl blocks, as shown in the figure. Indeed, the blockchain pro-
tocol model considered for BCP includes existing protocols that can produce
empty blocks, such as Algorand (Gilad et al., 2017). In addition, consensus on
some of the proposed blocks may not be reached.

In consensus protocols with probabilistic termination (such as PoW-based ones),
there could be valid blocks generated by legitimate leaders competing for the
same bucket number. In this case, ALDER requires an additional protocol-
dependent deterministic consensus rule assigning a priority to competing blocks.
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Figure 4.3: Example of a chain of macroblocks with a con-
currency level Cl of 3. Dashed lines represent macroblocks, and
solid squares indicate the composing blocks referencing the pre-

vious macroblock hash.

4.3.4 ALDER Security Analysis

In this section, we give a sketch of the security of ALDER. As shown in Fig-
ure 4.1, ALDER decomposes BCP++ into four main components, namely mul-
tiple leader election, disjoint block proposal, block dissemination and multiplex
consensus. In the following, we analyze each of these components in light of the
vulnerabilities they may introduce.

Multiple Leader Election: ALDER extends the election mechanism of the
original protocol to elect multiple leaders. In practice, ALDER does not replace
the leader election algorithm with another algorithm. Instead, it leverages the
existing leader election protocol, which often already elects multiple leader can-
didates (e.g. in Algorand and Bitcoin). If the protocol does not natively enable
multiple leader candidates, ALDER extends the leader election algorithm (e.g.
in RapidChain). In both cases, this step does not introduce vulnerabilities into
the resulting blockchain beyond those of the underlying leader election protocol
(in the same way as Bitcoin, Bitcoin++ will have forks and these will be fixed
in a similar way).
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Disjoint Block Proposal: Having multiple leaders proposing blocks may in-
troduce vulnerabilities. To solve this problem, ALDER relies on a mechanism
that allows candidate leaders to propose disjoint blocks. While correct lead-
ers will faithfully follow the protocol, malicious leaders may very well propose
blocks without respecting their assigned bucket. In this case, the proposed block
will be rejected by the correct nodes, which will eventually check whether the
leaders have built their block using the legitimate bucket.

Block Dissemination: ALDER uses the same dissemination protocol with
the base consensus protocol to propagate blocks and other protocol-specific
messages; Therefore, no new vulnerability is introduced by this component.

Multiplex Consensus: This part of ALDER is the most complex and could
introduce vulnerabilities. Indeed, because the structure of ALDER blocks is
more complex, additional verification steps must be performed by the correct
nodes in order to validate a macroblock and execute its transactions. Specifi-
cally, a correct node that reconstructs a macroblock must perform the following
verification. First, it verifies that all blocks composing the macroblock contain
the hash of the same previous macroblock. Then, it verifies that all blocks were
generated by legitimate leaders. For example, in the case of Bitcoin, the cor-
rect node checks the cryptographic puzzle solution. In the case of Algorand, it
checks the proof of election resulting from the evaluation of verifiable random
functions with the node’s stake in the system. In the case of Rapidchain, it
checks the proof of election resulting from a deterministic election procedure
using a random epoch value and a round number value as input. In addition,
a correct node verifies that the assignment of the bucket to the leader is valid.
Finally, a correct node checks that all transactions within blocks are valid (with
respect to UTXO -unspent transaction output- semantics and the buckets they
originate from). In addition, each node checks for double-spending transac-
tions in the blocks composing the macroblock. Where applicable, the total
order established over the set of transactions resulting from the ordered set of
blocks within the macroblock allows nodes to ignore transactions spending the
same UTXO more than once. The above verification allows correct nodes to
discard blocks submitted by malicious leaders and discard invalid transactions
submitted by malicious clients.
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4.4 Case studies

In this section, we show the application of ALDER’s principles on three dif-
ferent permissionless blockchain consensus protocols, each representative of a
different blockchain family. Bitcoin is the original PoW-based blockchain pro-
tocol described by Nakamoto (Nakamoto, 2008). Algorand is among the most
scalable stake- and committee-based blockchain protocols achieving minimal
transaction confirmation latency. Finally, Rapidchain illustrates one of the most
throughput-efficient approaches for sharded blockchain protocols.

4.4.1 Applying ALDER to Bitcoin

Bitcoin is a Proof of Work (PoW) based blockchain that relies on cryptographic
puzzles to elect leaders. We first explain how the Bitcoin protocol works and
highlight its bottlenecks. Then, we describe Bitcoin++.

4.4.1.1 Overview of Bitcoin

The global course of a round in Bitcoin includes the following steps: (1) each
node builds a block of transactions and the associated block header containing,
among others, the hash of the previously appended block, a merkle root of the
transaction set, and a nonce value of its choice; (2) Then, each node repeat-
edly hashes the block header by changing the considered nonce value until the
resulting hash image (the election proof) falls below a threshold known as the
difficulty level (a process referred to as mining). This difficulty is adjusted by
the system so that a single solution to the cryptographic puzzle is found every
10 minutes on average; (3) When a node finds a solution to the puzzle, it dis-
seminates its block to its neighbors via a gossip protocol; (4) Upon receiving a
block, each node verifies the validity of the solution before appending the block
to its blockchain; (5) If two different nodes each find a solution for the same
cryptographic puzzle, two valid candidate blocks are competing to extend the
same blockchain. In this case, nodes keep trying to solve the next puzzle by
considering the first block they received, potentially extending the chain along
two different paths, usually called forks. Bitcoin consensus relies on the longest
chain rule to resolve forks by considering the largest amount of computation
dedicated to a given fork, which results in the longest chain in terms of the
number of blocks appended since the fork occurred. In Bitcoin, nodes submit
blocks of 1 MB.
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Figure 4.4: Bitcoin bottleneck

4.4.1.2 Bottlenecks of Bitcoin

The two main bottlenecks of Bitcoin limiting performance in terms of through-
put or transaction latency are the small size of the blocks and the low frequency
at which blocks are added to the chain (Eyal et al., 2016). Increasing the block
size would result in a longer block dissemination time, consequently increasing
the probability for forks to appear. Indeed, longer dissemination times increase
the probability that a node will solve a puzzle before being informed that an-
other node has already done so. However, when forks are solved, some blocks are
left outside the main chain, reducing the mining power utilization ratio that we
define as the ratio between the amount of data appended to the blockchain and
the amount of data generated by the nodes. Therefore, the actual throughput
is much less than the theoretical one where no fork exists. Figure 4.4 illustrates
this. Reducing the cryptographic puzzle difficulty (hence increasing the block
generation frequency) leads to more than half of the generated blocks being
discarded.

4.4.1.3 Bitcoin++

Bitcoin++ allows multiple nodes to independently propose blocks containing
disjoint sets of transactions and grow the chain by appending a subset of the
proposed blocks in each round. The course of a Bitcoin++ round is described
in Figure 4.5.

Macroblocks: Macroblocks in Bitcoin++ are composed of exactly Cl blocks.
Indeed, as the consensus termination of Bitcoin is probabilistic, nodes cannot
be sure that a given block is final and will never be removed from the blockchain.
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Figure 4.5: Round structures of Bitcoin (black texts and ar-
rows) and Bitcoin++ (in green).

For this reason, nodes in Bitcoin++ only consider that they can proceed mining
for the next round only when they can build a macroblock fully with Cl blocks.

Multiple leader election and bucket assignment: Similar to its parent, Bitcoin++
relies on cryptographic puzzles to elect multiple leaders. To do so within the
same time interval (10 minutes on average), ALDER requires decreasing the
cryptographic puzzle’s difficulty. More precisely, to obtain Cl leaders at the
same time interval as Bitcoin, the difficulty is divided by Cl.

Bitcoin belongs to this family of blockchain protocols where nodes have to com-
mit to the content of a block before the election process succeeds. As ALDER

requires the bucket assignment to be unforgeable and verifiable by leveraging
the election proof from the election, the bucket assignment in Bitcoin++ must
not let nodes create blocks and find valid puzzle solutions, to then assign them
buckets for which blocks have not been generated. Consequently, each mining
node needs to commit to the set of Cl disjoint blocks, respectively including
transactions from the Cl disjoint buckets, one of which will be assigned once the
cryptographic puzzle is solved. To that end, Bitcoin++ modifies the crypto-
graphic puzzle definition of Bitcoin. Instead of mining a block header containing
the merkle root of the transaction set of a block, each node mines a header that
includes the Merkle root of the Merkle tree, taking as leaves the Merkle roots of
the blocks to which the node is committed. When the node finds a solution to
this puzzle, the resulting hash value (the election proof) is employed to identify
the bucket number assigned to the elected leader and the block that should
be gossiped to the system. Then, the node gossips altogether the appropriate
block along with the election proof and the Merkle path necessary to validate
the block content.
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Because Cl leaders are expected every 10 minutes on average, and because the
bucket assignment process may assign one bucket to more than one leader, the
time required to obtain Cl blocks, one for each bucket, could be greater than
10 minutes. This could inhibit the performance gain envisioned by ALDER.
Bitcoin++ addresses this issue by introducing a mechanism that enables col-
lecting blocks that may compete for the same bucket number. When building
a block, each node incorporates an array sibling in the header that defines the
puzzle. This field is a Cl-long array containing the hashes of blocks proposed
by other nodes in the same round. When the node receives a valid block b for
a given bucket while mining, the node updates the puzzle by inserting b’s hash
image into the Clth position of the sibling array. Suppose the node solves the
puzzle and finds an election proof pointing to a bucket already in use in the sib-
ling array. In that case, Bitcoin++ deterministically assigns the next available
bucket in the sibling array.

Multiplexed consensus: Each node waits to collect Cl valid blocks originating
from Cl different buckets. Then, the node constructs a macroblock, conducts
the series of checks described in section 4.3.3, and appends it to its chain before
proceeding to the next round.

Although forks are defined in Bitcoin as the results of two candidate blocks
competing to extend the same common prefix, forks in Bitcoin++ can occur
when two different valid blocks compete for the same bucket number in the
same macroblock. In this case, two valid candidate macroblocks can extend
the chain. To narrow down the fork space probability, Bitcoin++ employs an
additional consensus rule with lower priority than the original longest-chain
rule: when receiving several blocks for the same bucket, nodes prioritize blocks
based on their hash values (highest wins) to help nodes decide on which one
to consider. We distinguish three cases by differentiating when is learned the
existence of other candidate blocks competing for the same bucket. Either
the node learns that another valid block exists for a bucket already filled in the
macroblock for which the node is currently mining. In this case, the node selects
the block with the highest hash value, updates its sibling array accordingly,
and continues mining. Or the node learns about another valid block in the
lastly created macroblock. In this case, the node locally builds the second
macroblock, selects the macroblock which contains the block with the highest
hash value, and continues mining. In the last case, we consider the node that
learns about another valid block for a macroblock located farther than the lastly
created macroblock. In this situation, the node selects and mines on top of the
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chain of macroblocks containing the highest amount of computational power,
i.e. applying the longest chain rule of Bitcoin.

4.4.2 Applying ALDER to Algorand

Algorand (Gilad et al., 2017) is among the most scalable PoS-based permission-
less blockchain. In the following, we explain its protocol, highlight its bottle-
necks, and describe Algorand++.

4.4.2.1 Overview of Algorand

Figure 4.6 depicts the main course of an Algorand round. First (❶), each
node executes a cryptographic sortition that produces an election proof and a
verifiable priority value used in order to determine whether the node belongs
to some of the committees responsible for conducting the following steps: the
block proposal, the reduction, and the multiple steps of the binary agreement
of Algorand’s Byzantine agreement BA⋆. This cryptographic sortition elects
nodes at random based on their weights (i.e. their currency stake in the sys-
tem) in a publicly verifiable, and non-interactive way using a verifiable random
function (Micali, Rabin, and Vadhan, 1999) (VRF). The sortition is designed to
elect an expected number of τproposer block proposers and to assign each selected
node a priority, along with its proof. This sortition protects nodes against an
adversary aiming at learning the identity of committee nodes and forging tar-
geted attacks. In addition, committees are different for each step of the protocol
to prevent targeted attacks on committee members once they send a message.

Once elected as a member of the proposal committee (❷), a node builds a
block before sending it along with the priority and election proof value to its
neighbors (❸), disseminating these messages via an efficient gossip protocol. To
reduce unnecessary communications(❹), and because only one of the proposed
blocks will be appended to the chain, each node disseminates blocks based
on the priority of the block proposer, ignoring blocks with lower associated
priorities. The Byzantine agreement procedure BA⋆ from Algorand reduces (❺)
the problem of agreeing on one among many block hashes to agreeing on one
selected block hash or a default empty block hash. Nodes operate this reduction
in precisely two steps, and then reach consensus on one of these two values via a
binary agreement called BinaryBA⋆ (❻). Nodes wait a certain amount of time
to receive priority messages and blocks (respectively 10 seconds and 1 minute,
empirically set by the authors (Gilad et al., 2017)). If a node does not receive
a block within this delay, it proceeds to the protocol step considering an empty
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Figure 4.6: Round structures of Algorand (black texts and
arrows) and Algorand++ (in green).

block. Finally (❼), every node counts votes cast during the BA⋆ phase to learn
about the outcome of the agreement procedure, reaching final consensus.

4.4.2.2 Bottlenecks of Algorand

Algorand has a low transaction confirmation latency of the order of a minute.
Despite the impressive performance of Algorand (125-fold throughput improve-
ment compared with Bitcoin), it still suffers from performance limitations. In
particular, its performance drops dramatically with large block sizes. Indeed,
the time of gossiping blocks in the network largely dominates the duration re-
quired for the Algorand to reach consensus with BA⋆ (∼15 seconds on average).
This long gossip is a significant limitation to increasing throughput, as shown
in our preliminary experiment depicted in Figure 4.7. Increasing the block size
only increases the confirmation latency and keeps the throughput at its highest
level in the best case.
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Figure 4.7: Algorand bottleneck

4.4.2.3 Algorand++

Algorand++ allows multiple independently proposed blocks containing disjoint
sets of transactions to be appended to the ledger in a given round in the form
of a macroblock. Figure 4.6 depicts the course of round.

Multiple leader election and bucket assignment: Electing multiple leaders is al-
ready part of Algorand. Assigning buckets in an unforgeable and publicly veri-
fiable way is performed by directly applying the Cl modulo operation over the
election proof generated by the cryptographic sortition. To avoid bucket be-
ing unassigned, Algorand++ must ensure a sufficiently high number of nodes
elected as block proposers. A too low τproposer value could lead to buckets being
frequently unassigned, which would not only hinder the envisioned throughput
gains but also lead to transactions with specific hashes being ignored for some
period. To devise an appropriate value for τproposer, we rely on the uniform
distribution of the probability ( 1

Cl
) of bucket assignment to a leader, directly

derived from the hash function employed in the sortition. In other words,
each node has an equal chance of being assigned one bucket over another;
a bucket is assigned to at least one proposer with the following probability
1 − (1 − 1

Cl
)τproposer ; and all buckets are assigned to at least one proposer with

probability p =
∑Cl

i=0(−1)Cl−i
(
Cl
i

)(
i
Cl

)τproposer . We set τproposer so that p = 0.95.

Disjoint block proposal and dissemination: The block proposal step of Algo-
rand++ is very similar to that of Algorand, except that nodes can be assigned
the same transaction bucket as other nodes. Because only one proposed block
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per bucket number will be appended to the chain, Algorand++ extends the
original gossip-based dissemination protocol to reduce unnecessary communica-
tions. Similarly to Algorand, each block proposer employs an additional priority
value derived by hashing the VRF hash output concatenated with publicly ver-
ifiable information of the node’s stake in the system and the assigned bucket
number. This priority value is then used during block dissemination to discard
blocks originating from the same bucket but with lower priority.

Multiplexed consensus and macroblocks: The multiplexed BA⋆ agreement proto-
col takes as input a set of hashes from blocks originating from different buckets.
It produces a vector of block hashes composing the macroblock to be appended
at the end of the round. In the multiplexed reduction step, committee members
reduce the problem of agreeing on a set of proposed blocks to agreeing either
on a vector of Cl disjoint block hashes ordered by their bucket number (some
of which could be default empty block hashes as in Algorand), or on a vector
consisting only of empty block hashes. Then, the multiplexed binary Byzantine
agreement over the two possible vectors is executed. Once reached, nodes gather
the blocks Algorand++ has agreed on, proceed through the checks described
in section 4.3.3, and build the macroblock corresponding to the consensus deci-
sion before appending it and continuing to grow the chain. The final consensus
decision could be a vector containing the hashes of some empty blocks. Hence
Algorand++ grows a chain of macroblocks of possibly different sizes.

4.4.3 Applying ALDER to Rapidchain

Rapidchain is among the most efficient sharded permissionless blockchain proto-
col. Rapidchain splits the system into k non-intersecting committees of m nodes.
Each committee is in charge of maintaining and growing a specific shard of the
blockchain. Also, Rapidchain uses an efficient gossip dissemination mechanism,
IDA − Gossip, to improve the dissemination performance, and we investigate
the properties of this mechanism in Chapter 5. In the following section, we
explain its protocol, highlight its bottlenecks and describe Rapidchain++.

4.4.3.1 Overview of Rapidchain

Figure 4.8 depicts the course of a round. Rapidchain proceeds by successive
epochs consisting of several rounds of consensus and a reconfiguration phase.

First, a leader is deterministically and verifiably elected in each committee by
leveraging a publicly known epoch randomness value and the current round
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Figure 4.8: Round structures of Rapidchain (black texts and

arrows) and Rapidchain++ (in green).

number. Then, the leader builds a block and gossips it to the committee using
an efficient gossip dissemination protocol, inspired by IDA(Alon et al., 2003),
designed to fasten the propagation of large blocks. Finally, the committee
reaches consensus on the proposed block via an intra-committee synchronous
algorithm.

At the end of each epoch, a reconfiguration phase led by a specific reference
committee CR that allows nodes to join or remain in existing committees. CR

agrees on, and appends to each shard, a reference block that includes the list
of all active nodes and their assigned committees for that epoch. To join or
remain in existing committees, nodes need to solve a cryptographic puzzle that
CR defines. To do this, CR runs a distributed random generation protocol to
produce an unbiased random value called epoch randomness incorporated into
the puzzle. Then, nodes wishing to participate in committees must solve the
puzzle within 10 minutes and send the solution to CR. CR validates the received
solutions, assigns each member to a sharding committee, and informs the other
committees by publishing a configuration block.

Transactions sent by external users are deterministically assigned to specific
shards based on their hash images. Nodes receiving transactions forward them
to their destination committee using a routing protocol inspired by Kadem-
lia (Maymounkov and Mazieres, 2002). Committee members batch several
transactions into a block and run an intra-committee consensus to append it to
their shard. Since transactions are stored into disjoint shards held by different
committees, committee members need to communicate with the corresponding
input committees to ensure that the input transactions exist in their shards.
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In order to append a block to a shard, Rapidchain uses an intra-committee
consensus protocol based on the synchronous protocol of Ren et al. (Ren et al.,
2017), resilient to f = 1/2 of the committee size being faulty. The protocol
executes the following four steps in which all communications are signed by the
sender’s private key to provide authentication and integrity: (1) The leader sub-
mits a propose message containing the block header, (2) all nodes receiving this
message send an echo message containing the same block header to the entire
committee, (3) If a honest node sees another version of the block header in one
of the echo messages it received, then it knows that the leader has equivocated
and therefore gossips a pending message containing an empty block hash, (4)
Finally, if an honest node receives mf + 1 echo messages of the same and only
block header (m is the committee size and f is the fraction of honest nodes),
it decides on this block header by submitting an accept message including the
mf + 1 received echo messages.

4.4.3.2 Bottlenecks of Rapidchain

Rapidchain uses an optimal intra-committee synchronous consensus algorithm
to achieve very high throughput via a novel gossiping protocol for large blocks,
and a provably-secure reconfiguration mechanism to ensure robustness. Us-
ing an efficient cross-shard transaction verification technique, Rapidchain pre-
vents transactions from being gossiped across the network. We chose to apply
ALDER on Rapidchain to assess the impact on performance when multiplexing
blockchain protocols that do not suffer from clearly identified bottlenecks.

4.4.3.3 Rapidchain++

We apply ALDER’s principles to the consensus protocol executed by each com-
mittee. For the duration of an epoch, the Rapidchain++ closely resembles a
permissioned consensus protocol. Figure 4.8 depicts the course of a Rapid-
chain++ round: First, Rapidchain++ uses the deterministic leader election
mechanism of Rapidchain to create an ordered set of Cl leaders from the com-
mittee membership. To do so, nodes locally create a leader set by sorting
the committee members with a deterministic sortition algorithm relying on the
epoch randomness and the current round number. Then, each leader builds and
gossips blocks containing disjoint sets of transactions and including the hash of
the previous macroblock. Finally, the intra-committee synchronous consensus
protocol is executed to decide on a vector of block headers. Because each com-
mittee is already responsible for a region of the entire transaction hash space,
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each Rapidchain++’s committee splits the designated region into Cl buckets of
equal size.

Bucket assignment and disjoint block proposal: Elected leaders are determin-
istically assigned buckets based on their order in the leader set. An elected
leader uses the assigned transaction bucket to build a block and disseminates
it with the IDA gossip protocol. Thanks to the publicly verifiable properties of
the leader election and bucket assignment mechanisms, any node can verify the
correctness of the proposed blocks. Then each elected leader in a given com-
mittee starts its instance of the Rapidchain consensus protocol by submitting
a propose message containing a single block header.

Multiplexed intra-committee consensus: Rapidchain++ extends the synchronous
consensus algorithm of Rapidchain to decide on a vector of block headers.
Specifically, echo and accept votes contain a vector of block headers. Each
committee member awaits up to Cl propose votes until the end of the syn-
chronous round timeout, and then submits echo votes composed of the received
block headers to the rest of the committee. If a node receives more than one
version of a block header from a specific leader and bucket, it submits a pending
message including an empty block header. When receiving mf+1 echo votes for
the same vector of block headers, a committee member sends an accept message
for this vector and proceeds to the next round.

4.5 Evaluation

This section evaluates the extent of ALDER’s ability to improve the perfor-
mances of the three blockchains we considered. We first present our implemen-
tation and evaluation environment (Section 4.5.1) before presenting the perfor-
mance of Bitcoin++, Algorand++, and Rapidchain++ in Sections 4.5.2, 4.5.3,
and 4.5.4 respectively.

4.5.1 Implementation and evaluation environment

We implemented all baseline protocols and their multiplexed versions using
Golang. The experiments presented in this section were carried out using the
Grid’5000 (Bolze et al., 2006) testbed. We used powerful physical machines with
18 cores, 96 GB of memory, and a 25 Gbps network connectivity link. In all
experiments, we emulate wide-area network conditions as in major blockchain
propositions (Gilad et al., 2017; Zamani, Movahedi, and Raykova, 2018): we
cap the bandwidth for each process to 20 Mbps and add a one-way latency
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of 50 milliseconds to each communication link between processes using traffic
control. We set the number of peers with which each node communicates when
disseminating blocks to 8 for Bitcoin and Algorand, and 16 for Rapidchain as
recommended by the authors. In addition, we relied on a custom registry service
to bootstrap the system: at startup, a node registers itself to the registry service
and receives a list of available nodes. Each node has access to a pre-initialized
transaction pool to populate block payloads.

4.5.2 Bitcoin++ performance evaluation

Bitcoin++ reduces the difficulty of cryptographic puzzles inversely proportional
to Cl value to elect Cl leaders on average every 10 minutes. We conducted
experiments with 20 machines and 1000 nodes to evaluate the performance of
Bitcoin++ and compare them to the ones of Bitcoin with similar cryptographic
puzzle difficulty, i.e. with similar block generation frequencies. To this end,
we measure mining power utilization of both Bitcoin and Bitcoin++ defined
as the ratio between the amount of data appended to the blockchain and the
amount of data generated by the system in the form of blocks. We also measure
both protocols’ throughput and block/macroblock latencey (time interval). In
our experiments, we vary the concurrency level of Bitcoin++ from 1 to 96,
i.e. generating a block from once every 600 seconds to once every 600

96
= 6.25

seconds.

We considered blocks of size 1 MB, 500 KB, and 250 KB, therefore the corre-
spoding macroblock sizes for Bitcoin++ experiments are Cl∗1 MB, Cl∗500 KB,
and Cl∗250 KB respectively. Bitcoin++ aims to improve the original protocol’s
throughput by increasing the number of blocks in a macroblock, hence increas-
ing the size of the macroblock appended to the chain. Each experiment consists
of a given puzzle difficulty, a given block size, and a given protocol (Bitcoin or
Bitcoin++). Each experiment runs until 150 same macroblocks are appended
to the chain of each node.

4.5.2.1 Bitcoin++ results

Figure 4.10 shows median throughput and mean block interval time figures for
both protocols. The configuration with 1 MB block size and Cl = 1 represents
the original Bitcoin protocol providing a throughput of 1.6KB/s with a mean
latency of 600 seconds. In all experiments, Bitcoin++ provides greater through-
put than Bitcoin with reduced difficulty. For the 1 MB block size experiments
with Cl = 64, Bitcoin++ provides 91 KB/s, a x2.25 throughput improvement
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Figure 4.9: Mining power utilization. Higher Cl means high
block generation frequency and lower difficulty.

compared to Bitcoin with the associated reduced difficulty (i.e. the same block
generation frequency), and a x57 improvement to the original Bitcoin protocol.
Regarding the experiments with the 500 KB and 250 KB block sizes, we ob-
serve similar trends. To better understand the origins of such throughput gains,
we correlate these results with the mining power utilization ratio that remains
steady between 0.9 and 0.95 when the concurrency level increases with Bit-
coin++, while dropping to 0.44 with Bitcoin. This shows that Bitcoin++ can
effectively collect the generated blocks at high block generation frequency while
Bitcoin can hardly do so. Indeed, in Bitcoin with 1 MB blocks and Cl = 64,
more than 56% of the generated blocks are not included in the blockchain shared
by all nodes at the end of the experiment. This measure also helps understand
the extent of fork occurrences in each protocol. The corollary of these results is
visible on the mean macroblock block interval that remains at 600-650 seconds
for all Bitcoin++ configurations while dropping to approximately 10 seconds
for Bitcoin with Cl = 64. Indeed, Bitcoin can append blocks quickly, but forks
occur very frequently with higher block frequency. Bitcoin++ does not suffer
from this problem because macroblocks are added at a slow rate (once per 10
minutes on average), which leaves enough time for any forks to be resolved.

4.5.3 Algorand++ performance evaluation

We conducted two sets of experiments to evaluate the performance improve-
ments of Algorand++ compared to Algorand. In the first set of experiments, we
compare the performance of both protocols using 1,000 nodes on 10 machines.
In the second set of experiments described in Section 4.5.3.2, we deployed up
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Figure 4.11: Round latency and throughput of Algorand++
with various concurrency levels (Cl)

to 10,000 nodes on 100 machines to compare the scalability characteristics of
both protocols.

4.5.3.1 Algorand++ latency and throughput

To evaluate the performance of Algorand and Algorand++, we varied the mac-
roblock size from 1 MB to 24 MB, and the concurrency level of Algorand++
from 1 to 32. Elected leaders build blocks of size the expected macroblock
size divided by Cl. For Algorand we varied the size of blocks appended to the
chain to match the size of macroblocks appended to Algorand++ chain. Each
experiment lasts 150 rounds.

We measure the round latency of the two protocols, indicating the time it takes
for a block to be appended to the chain. Latency is the duration between
the time a block is proposed and the time all nodes observe this block in the
blockchain. The results are depicted in Figure 4.11. They show that the round
latency of Algorand increases rapidly as the size of the appended blocks becomes
larger, reaching a latency of 134 seconds for blocks of 24 MB. Furthermore, we
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observe that the round latencies of Algorand++ largely outperform the ones of
Algorand for macroblock sizes larger or equal to 2 MB. For instance, for the
block size 4 MB, Algorand++ reduces the round latency of Algorand by a factor
of 0.66 with Cl=2, and 0.53 with Cl=8. The gap between Algorand++ and
Algorand becomes more considerable with larger block sizes. Indeed, for 24 MB
blocks, we observe round latency reductions between the two protocols by 0.56
for Cl = 2 and 0.22 with Cl = 32 in favor of Algorand++.

In addition to round latency, we evaluate the effective throughput of Algo-
rand++ compared to Algorand. Since some macroblocks may contain fewer
blocks than expected, we cannot derive throughput directly from the round la-
tency and the macroblock size. We define effective throughput as the amount
of data appended to the blockchain per second. As shown in this Figure 4.11,
Algorand++ outperforms Algorand in all configurations by reaching up to 743
KB/s with Cl=20 and 24 MB blocks. This specific configuration exposes a x4.17
throughput improvement over Algorand, a x6.35 throughput improvement over
Algorand with the 4 MB block size configuration that offers the same round
latency, and a x13 throughput improvement over the original Algorand config-
uration with 1 MB blocks. Our results also highlight the limits of multiplexing
Algorand instances. Indeed, we reach the maximum throughput with Cl = 20,
and increasing the concurrency level does not improve performance further.

4.5.3.2 Algorand++ evaluation at scale

To evaluate how Algorand++ and Algorand scale, we vary the number of ma-
chines in the testbed from 10 to 100 with 100 nodes per machine, allowing us
to emulate up to 10,000 nodes. We use 1 MB blocks for Algorand and 20 MB
blocks and Cl = 20 for Algorand++. We then measure the throughput degra-
dation and round latency increase as a function of the number of nodes in
the system compared to the baseline with 1,000 nodes. Regarding throughput,
results depicted in Figure 4.12 show that similarly to Algorand, Algorand++
suffers a throughput degradation when the number of nodes increases in the
system. Nevertheless, the mechanisms brought by ALDER to Algorand do not
degrade its scalability. It improves it when the number of nodes increases as il-
lustrated by the configuration with 10,000 nodes where a 6% lower degradation
difference is observed for Algorand++ compared to Algorand. Results related
to the latency increase with respect to the number of nodes in the system are
depicted in Figure 4.12. We observe that the gap in terms of round duration in-
crease becomes greater between the two protocols in favor of Algorand++. This
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illustrates the fact that Algorand++ exhibits better scalability than Algorand.

4.5.4 Rapidchain++ performance evaluation

We conducted a set of experiments to evaluate the performance of Rapid-
chain++ compared to Rapidchain in terms of round latency and throughput.
Because the throughput of Rapidchain is the sum of the throughputs of each
shard, we have considered a single shard deployment scenario and investigated
the improvement possible by ALDER on one shard. In the original paper,
Rapidchain considers a committee size of up to 250 nodes. We applied this con-
figuration and deployed 250 nodes on 10 machines. In our experiments, we vary
the macroblock size from 2 to 16 MB, and for each macroblock size, we vary the
concurrency level Cl from 1 to 16. Similar to Algorand, elected leaders build
blocks of size the expected macroblock size divided by Cl. Each experiment
lasted 50 rounds, and we measured the median throughput and latency values
as observed by individual nodes.

4.5.4.1 Rapidchain++ results

Figure 4.13 shows the measured round latency for Rapidchain++ with various
concurrency levels. We observe that for all macroblock sizes, the round latency
provided by Rapidchain++ is 10% lower than the provided round latency of
Rapidchain. All Rapidchain++ instances provide similar latency values. The
highest obtained throughput with Rapidchain is 262 KB/s with the 16-MB
block size. Instead, Rapidchain++’s highest throughput is 292 KB/s obtained
with macroblock size of 16 MB and with a concurrency level Cl = 4. For all
block sizes, Rapidchain++ provides a throughput increase of approximately
10% compared with Rapidchain.

In our experiments, we can observe that Rapidchain++ provides latency and
throughput figures similar to the ones of Rapidchain, exhibiting that ALDER

does not degrade the performance of blockchains without bottlenecks. This
result stems from the fact that Rapidchain uses IDA−Gossip: a chunk-based
dissemination protocol that alleviates the latency incurred by the store-validate-
forward mechanism. In the next chapter, we will investigate the properties of
IDA−Gossip in detail.
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4.6 Conclusion

We presented ALDER, a general construction to improve the performance of
leade-based leader-based blockchain consensus protocols by multiplexing con-
sensus instances: ALDER removes bottlenecks on the consensus and network
layers by using multiple leaders.

To assess the improvements brought by ALDER, we applied it to three major
blockchains: Algorand, Rapidchain, and Bitcoin. We presented how ALDER’s
principles applied to these blockchains and evaluated the performance of the
resulting blockchains. Our evaluation, involving up to 10,000 nodes deployed
on 100 physical machines, shows that ALDER provides progressive performance
gains when a bottleneck exists and conservative performance when no bottleneck
is identified.
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5 In-depth analysis of the
IDA-Gossip

5.1 Introduction

With advances in hardware and software technologies, the size of distributed
systems is increasing. Today, there are many distributed systems that con-
tain several thousand nodes distributed around the world and connected via
the Internet (Gao et al., 2019; Simion and Pura, 2019; Park et al., 2019). An
important characteristic of these systems is a high churn rate which is a high
change in the set of participating nodes due to joins, graceful leaves, and fail-
ures (Godfrey, Shenker, and Stoica, 2006). Due to the large size and high churn
rate, communication primitives such as reliable broadcast are not considered
practical for today’s large-scale distributed systems. In this context, gossip
dissemination protocols fill an important gap by providing an efficient group
communication primitive with probabilistic guarantees.

Gossip dissemination protocols are originally proposed in the context of database
replication (Demers et al., 1987), and later on, they are adopted as probabilis-
tic alternatives of reliable broadcast primitives. In a distributed system that
depends on gossip dissemination, messages are spread in a manner very similar
to epidemic diffusion: upon receiving a new message, a node becomes infected,
and it infects fanout nodes by sending the message. Fanout is an important
parameter of gossip dissemination protocol that controls the redundancy of dis-
semination. A message infects a node only once. Gossip dissemination protocols
are considered practical alternatives to broadcast primitives for large-scale dis-
tributed systems because each node communicates with a few other nodes to
disseminate a message.

Although gossip dissemination mechanisms are practical, they are not the most
efficient ones because each message needs to be forwarded fanout times to pro-
vide a probabilistic dissemination guarantee. The higher fanout values cause a
high resource consumption but provide high delivery guarantees. Also, gossip
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dissemination of large messages incurs a high latency with store-and-forward
mechanism where each message needs to be received completely and stored be-
fore being forwarded. For many open systems in which nodes can join or leave
the system without any restriction, store-and-forward is the only viable option
to protect the system against Denial of Service (DoS) (Lau et al., 2000) at-
tacks: a correct node needs to validate each message before forwarding it to its
neighbors, therefore; it should wait to deliver the full message before forwarding.

There are many gossip dissemination protocols, that aim to improve the effi-
ciency of dissemination. IDA-Gossip (Zamani, Movahedi, and Raykova, 2018)
is one of them. It is a gossip dissemination protocol proposed in the context
of blockchains to disseminate large messages like blocks of transactions fast.
Specifically, it is designed to disseminate large messages efficiently by removing
the incurred high latency caused by the store-and-forward mechanism. IDA-
Gossip combines Information Dispersal Algorithms(IDA) (Alon et al., 2003)
and gossip dissemination protocols to circumvent the limitations of classic gos-
sip protocols. IDA-Gossip makes use of message chunking, erasure coding, and
Merkle hash trees. Using chunk-based message dissemination where a big mes-
sage is chunked into smaller chunks, IDA-Gossip alleviates the high latency
caused by the store-and-forward mechanism. By using an erasure coding mech-
anism, IDA-Gossip protects chunks against loss. Finally, by using Merkle hash
trees, it provides an efficient chunk authentication scheme. IDA-Gossip is a
promising building block for many distributed systems that needs to dissemi-
nate large messages—likes blocks of transactions (Nakamoto, 2008). Although
the description of IDA-Gossip is straightforward, its properties are not inves-
tigated in depth under different conditions. We believe that understanding its
properties might help the adoption of it.

This Chapter is dedicated to our investigation of IDA − Gossip protocol. In
the following sections: (1) we provide a formal description of the IDA-gossip
protocol, (2) we conduct a thorough evaluation of IDA-gossip through experi-
ments and simulations, (3) we identify the limitations of IDA-gossip and explain
when this protocol is a good candidate to replace classic gossip alternatives in
distributed systems.

5.2 The IDA-Gossip Protocol

In this section, first, we provide our system model, and later we provide the
details of IDA-Gossip protocol. Finally, we communicate our analysis on the
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adoption of IDA-Gossip protocol.

5.2.1 System model and assumptions

We consider a static system composed of N nodes, with a fraction f < 1/2 of
Byzantine nodes, and a fraction 1− f of honest nodes. Each node is connected
to a set of d peers selected uniformly at random. A node only communicates
with its peers. Nodes communicate over reliable synchronous channels in which
messages are neither lost nor duplicated. Any message sent by one node is
received by another within a known time interval. Correct nodes follow the
protocol while Byzantine nodes may deviate from it in any possible way. A
source node s is selected among the correct nodes whose objective is to dissem-
inate a message M to all nodes in the system.

We assume the presence of an adversary controlling all Byzantine nodes to
prevent correct nodes from delivering messages. Byzantine nodes can either
drop the messages they receive or alter the content of the message they receive
and forward. We assume the availability of cryptographic hash functions and
Public-key cryptography mechanisms. Any message sent by nodes is authenti-
cated using signatures. Finally, the adversary cannot break the cryptographic
primitives. The source nodes are selected among the correct nodes, and the iden-
tity of source nodes are known in advance by other nodes: therefore, Byzantine
nodes can flood the system with irrelevant messages.

5.2.2 The details of IDA-Gossip protocol

In the IDA-Gossip protocol, each node selects d neighbors to communicate.
κ denotes the number of chunks of a message M . ϕ is a security parameter
of the protocol that takes values between 0 and 1, and it controls the ratio
of data chunks and parity chunks. ϕ is calculated theoretically to protect the
source node against up to 10 faulty sampled neighbors out of d neighbors.
The source node chunks a large message M into (1 − ϕ)κ equal sized chunks,
C1, C2, C3, ..., C(1−ϕ)κ. Later on, the source node calculates ϕκ additional parity
chunks using an erasure-coding scheme—Reed-Solomon erasure coding (Reed
and Solomon, 1960). In total, the source node produces κ chunks.

The use of chunks in IDA-Gossip introduces the problem of chunk authenti-
cation: without an efficient authentication mechanism, it would be costly to
authenticate chunks. IDA-Gossip makes use of Merkle hash trees to authenti-
cate chunks of a message M . The source calculates a Merkle tree which is a
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binary tree. The leaves of the Merkle tree consist of the hashes of chunks in
order— H(C1), H(C2), H(C3), ..., H(Cκ), and inner nodes are calculated from
bottom to up by concatenating and hashing the values of children’s. The source
node calculates a Merkle proof for each chunk, it disseminate each chunk with its
Merkle proof. Any node can authenticate a received chunk using the attached
Merkle proof.

The authors of RapidChain have shown that we can derive a threshold ζ for ϕ,
such that the probability of having a proportion of corrupted nodes greater than
ζ in the neighbor set of the source node is at most 0.1. Using a hypergeometric
distribution, under the assumption f < 1/2 and d = 16, setting ζ = ϕ = 0.63

guarantees that a message is not delivered to all honest nodes with probability
0.1. Therefore, although at the end of the first phase none of the source node’s
neighbors can reconstruct the original message, the system is in a state where
at least (1− ϕ)κ chunks are possessed by honest nodes with high probability.

For analysis purposes, one can divide IDA-Gossip protocol into two distinct
phases, as shown in Fig. 5.1: in the first phase, the source node chunks a message
into smaller chunks, calculates parity chunks, and sends a subset of chunks to
its peers. In the second phase, the peers of the source disseminate messages
using classic gossip dissemination on behalf of the source node. Redundancy is
the key element to protect the system against faulty nodes and message loss.
Unlike classic gossip dissemination protocols, In the first phase of IDA-Gossip,
the redundancy comes from parity chunks calculated using erasure coding. In
the second phase of IDA-Gossip redundancy comes from forwarding message
fanout times.

The original evaluation of IDA-Gossip conducted in RapidChain (Zamani, Mova-
hedi, and Raykova, 2018) considers following parameter values: messages of size
2MB, d = 16, ϕ = 0.63, and κ = 128.

5.2.3 On the adoption of IDA-Gossip

Because IDA-Gossip disseminates chunks of the message instead of the mes-
sage itself, a node cannot verify the content of a received chunk according to
the upper-layer protocol. This is a crucial property that should be taken into
consideration for the adoption of IDA-Gossip, e.g., in open systems where the
identity and number of nodes are not publicly known, and where the source
node is not always expected to behave correctly (for example, permissionless
blockchains systems, etc.). Indeed, an adversary in control of the source node
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could flood the whole system by disseminating irrelevant messages. Further,
a node could behave in a faulty manner and disseminate an invalid message.
In such scenarios, faulty behaviors would remain hidden until a correct node
obtains enough chunks to reconstruct the original message. Although this is-
sue is not specifically related to IDA-Gossip but to chunk-based gossip more
generally, it highlights the need to develop solutions that allow verification of
the content of each chunk as it is disseminated, in relation to the upper-layer
protocol employing IDA-Gossip. Also, it is possible to mitigate this kind of
behavior by employing accountability mechanisms as in (Mokhtar, Decouchant,
and Quéma, 2014; Guerraoui et al., 2010; Li et al., 2006).

Conversely, IDA-Gossip represents a very good candidate for permissioned sys-
tems or semi-permissionless systems where a subset of nodes is identified to
conduct a specific task such as in sharded blockchains where the sharding com-
mittees are elected (e.g., RapidChain(Zamani, Movahedi, and Raykova, 2018),
Omniledger (Kokoris-Kogias et al., 2018), Elastico (Luu et al., 2016a)), or in
permissioned blockchains such as Hyperledger Fabric (Androulaki et al., 2018).

5.3 Evaluation with Experiments

In this section, the performance and limitations of IDA-Gossip are evaluated
in a controlled testbed. We aim to address the following questions: (1) How
does IDA-Gossip perform compared to classic gossip dissemination? (2) How
does IDA-Gossip perform under different conditions such as varying message
size, number of chunks, etc.? (3) Because IDA-Gossip employs erasure coding
that comes with redundancy in the transmitted data, what is its impact on the
utilization of network bandwidth and the performance of the dissemination com-
pared to classical gossip techniques? (4) How are IDA-Gossip’s performances
affected under faults?

5.3.1 Methodology

5.3.1.1 Evaluation environment and implementation

The experiments presented in this section are conducted on the Grid’5000 (Balouek
et al., 2013) platform. We consider 32 physical machines with 18 cores, 96 GB of
memory, and connected with high-speed links-25 Gbps. In each experiment, we
deploy 4096 IDA-Gossip nodes (128 nodes per machine) to emulate a large-scale
distributed system. The use of 4096 nodes reflects approximately the order of
magnitude of today’s open system size: Tor network being composed of ∼8,000
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relays, and Bitcoin of ∼15,000 nodes. We emulate wide-area network condi-
tions by capping the bandwidth of each node to 20 Mbps and adding a one-way
latency of 15 milliseconds to each communication link between processes using
cgroups and traffic control subsystem of Linux.

We implemented a prototype of IDA-Gossip in Golang, consisting of 3000 lines
of code. Our implementation chunks a large message into (1 − ϕκ) chunks,
and adds ϕκ parity chunks using a Reed-Solomon erasure coding library1. We
implemented a coordination service, and it is used by each node as a rendezvous
point at bootstrap.

5.3.1.2 Experimental protocol

An experiment starts with a fresh deployment of an IDA-Gossip system with
4096 nodes hosted on 32 machines. Upon start, a node registers its IP address
and port number to the coordination service and waits for the registration of
other nodes. Later on, the node retrieves the node list from the coordination
service. The node list contains the IP addresses and port numbers of all nodes
in the system. Each node samples 16 peers uniformly at random using the node
list, and it establishes connections to sampled nodes. Each node accepts up
to 125 incoming connections. To start dissemination, we select a source node
uniformly at random. The source node disseminates a message using IDA-
Gossip. Other nodes forward each delivered chunk 8 times, therefore we have
used the fanout value of 8. An experiment terminates when all nodes have
forwarded the chunks that they have delivered. To guarantee this condition, we
use a conservative timeout value that we empirically determined in preliminary
experiments. At the end of each experiment, we tear down the network and
collect measured statistics from nodes. Each experiment is run 30 times to
consolidate the measured metrics.

An experimental setup consists of a set of fixed parameters: the number of
chunks, the message size, the proportion of Byzantine nodes, and the sequen-
tial or concurrent dissemination of chunks from a node to its neighbors—
dissemination concurrency. Table 5.1 lists the data chunks and parity chunks
used in our experiments. These values are calculated according to the target
number of chunks, κ, and by setting ϕ to 0.63 to tolerate up to 10 faulty neigh-
bors out of the 16 neighbors of the source node.

1https://github.com/klauspost/reedsolomon
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#Chunk = κ #Data Chunks #Parity Chunks d κ/d
256 96 160 16 16
128 48 80 16 8
64 24 40 16 4
32 12 20 16 2
16 6 10 16 1

Table 5.1: Parameter values of IDA-Gossip used in our exper-
iments

In our experiments, we vary the size of messages between 1 and 36 MB, the
chunk count between 16 and 256, and the proportion of Byzantine nodes be-
tween 0 and 40%. Finally, we vary the concurrent dissemination of chunks—
dissemination concurrency—from 1 (sequential) to 128 (high degree of concur-
rence).

5.3.1.3 Measured Metrics

We measure the following four metrics: 1) first chunk latency, 2) latency, 3)
amount of uploaded data, and 4) coverage.

The first chunk latency is the time needed for any node in the system to deliver
a chunk from the disseminated message. This information is a precursor of how
early a node starts contributing to the dissemination process. In classical gossip
protocols that employ the store-and-forward mechanism, the majority of nodes
do not contribute to the dissemination until the last rounds of dissemination.
An efficient dissemination mechanism should employ all available resources at
the earliest possible time. Hence this metric is a sound performance indicator
for gossip protocols disseminating large messages.

Latency is the time needed to deliver enough chunks to reconstruct the original
message disseminated by the source node. Uploaded data is the amount of
data uploaded by a node. It is directly proportional to the fanout value, and
the message size. Uploaded data is a metric that measures the redundancy
of gossip dissemination, helping us to quantify the bandwidth usage overhead
caused by the use of erasure coding techniques in IDA-Gossip. Finally, coverage
is the percentage of nodes that successfully deliver the initial message.

5.3.2 IDA-Gossip vs classic gossip dissemination

We compare IDA-Gossip with classic gossip dissemination where a message
is disseminated in its entirety (without chunking) using the store-and-forward
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mechanism. More specifically, we aim to understand the performance difference
between these two protocols when considering message sizes between 1 and 36
MB. We conducted a set of experiments by varying the message size. In this
set of experiments, we have considered a fault-free environment.

For IDA-Gossip, we consider the use of κ = 128 chunks as originally set by
the designers of RapidChain. Our classic gossip instances use a fanout value of
8—as IDA-Gossip instances. Also, classic gossip instances use a single-threaded
message dissemination mechanism in which a node sends chunks one peer at a
time. In our preliminary experiments, we have observed that in case of limited
bandwidth and large message sizes this is the best strategy that produces min-
imal message dissemination latency for classic gossip instances. Fig. 5.2 plots
quartiles (first, second, and third quartiles) of the first chunk latency, latency,
and uploaded data. Coverage is not represented as both protocols always reach
100% of the nodes.

The first chunk latency of classic gossip dissemination is equal to its latency
because the whole message consists of a single chunk. When we compare both
protocols in terms of first chunk latency, IDA-Gossip provides excellent results
for all message sizes: with 36 MB messages, the first chunk is delivered and starts
being disseminated to other nodes in the system within 11.5 seconds. Therefore,
IDA-Gossip employs system resources at a much earlier time compared to classic
gossip.

With all message sizes, IDA-Gossip provides lower latency compared to classic
gossip for all message sizes. With messages size 1, 2, 16, and 36 MB: IDA-
Gossip provides latency values of 2.7, 6.0, 43.8, and 98.9 seconds while classic
gossip instance provides 7.1, 13.3, 93.7, and 216.7 seconds respectively. This
highlights that IDA-Gossip outperforms the classic gossip technique that we
have considered.

In terms of network usage, IDA-Gossip and classic gossip provide similar per-
formance: As depicted in Fig. 5.2, although the uploaded data per node values
are very close to each other for specific message size, they are not the same,
and the difference is less than 0.5% for all configurations. The small differ-
ence in uploaded data statistics stems from two facts: (1) IDA-Gossip makes
use of Merkle hash trees to authenticate messages, and they have an overhead
of O(log(κ)) storage. (2), individual chunks come with a small overhead of
metadata storage which is O(1) because each chunk needs to be disseminated
with some metadata. In this comparison in the case of IDA-Gossip, we did
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Figure 5.2: Classic gossip dissemination compared to IDA-
Gossip with 128 chunks.
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not observe a significant overhead caused by parity chunks because an IDA-
Gossip node forwards messages until reconstructing the original message for
that purpose an IDA-Gossip node needs to deliver (1−ϕκ) chunks as we stated
previously.

5.3.3 IDA-Gossip with different chunk counts and mes-

sage sizes

We investigate the effect of chunk count and message size on the performance
of IDA-Gossip. In this experiment, we considered IDA-Gossip instances with
16, and 256 chunk counts. Also, we considered message sizes between 1 and 36
MB. Fig. 5.3 depicts the collected statistics from experiments. First of all, the
first chunk latency, latency, and uploaded data measurements for all instances
of IDA-Gossip is increasing with the increase in message size. This is an ex-
pected result because nodes have limited bandwidth to disseminate messages,
and increased message size causes an increase in latencies.

When we consider a specific message size, the first chunk latency of an IDA-
Gossip instance with a high number of chunk counts is always lower—better—
compared to another IDA-Gossip instance with a smaller chunk count. This is
another expected result because an increased chunk count results in a smaller
chunk size. Smaller chunks are disseminated faster in the network.

We made an interesting observation, IDA-Gossip with 32 chunks always pro-
vided the lowest latency measurements for all message sizes. The reason for this
is that in this set of experiments we have used a dissemination concurrency value
of 8 because each node forwards a message 8 times in parallel. This results in
the best performance for IDA-Gossip with 32 chunks. For higher chunk counts,
one needs to increase dissemination concurrency value otherwise the effect of
latency added to channels—to emulate WAN conditions—will be overempha-
sized on the measured latency metric. We study the effect of dissemination
concurrency value on the performance of IDA-Gossip in subsection 5.3.5

As seen in Fig. 5.3, the amount of uploaded data per node is increasing when
the message size increases, as expected. However, for a given message size,
all instances of IDA-Gossip nodes upload a similar amount of data. We note a
minor difference lower than 1% between instances of IDA-Gossip with 16 chunks
and 256 chunks due to the size of the Merkle proofs. This implies that a higher
chunk count incurs a slightly higher bandwidth cost.
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5.3.4 IDA-Gossip with Faults

We now evaluate the performance of IDA-Gossip under faults by varying the
proportion of byzantine nodes in the system, where byzantine nodes drop all the
messages they receive. In our experiment, we exclude the byzantine behavior
of altering the chunk content or the Merkle proofs as this does not impact the
performance of IDA-Gossip. We set the message size to 2 MB, and vary the
percentage of faulty nodes from 0% to 40%. We also explore the impact of
varying the number of chunks (from κ = 16 to 256) in this faulty environment.

Fig. 5.4 shows the the evaluation results. In terms of first chunk latency, IDA-
Gossip instances with high chunk counts (64, 128, and 256) provide stable
results when increasing the percentage of byzantine nodes, whereas the other
instances (with 16 and 32 chunks) provide slightly degraded first chunk latency.

The latency of all IDA-Gossip instances is increasing along with the ratio of
faulty nodes. This increase is more pronounced in IDA-Gossip with κ = 16 and
32 chunks. In a fault-free system, IDA-Gossip with 32 chunks is providing the
lowest latency but, under faults, its performance is affected more than other
instances.

From these experiments, we conclude that IDA-Gossip with high chunk counts,
i.e., above 64 chunks, are more resilient to Byzantine behaviors, and provide
smooth latency degradation when facing faults.

In terms of coverage, all instances of IDA-Gossip provide stable performance:
with an increased fraction of faulty nodes we did not observe a significant de-
crease in coverage, and it is above 99% for all instances.

5.3.5 IDA-Gossip with different dissemination concurrency

values

In case of big messages and limited bandwidth, a node should send messages
to its neighbors one by one; otherwise, the sending might take longer time
because concurrent send events will compete for the same bandwidth resource,
and this will increase the latency of dissemination. IDA-Gossip chunks a large
message into smaller pieces, and this makes the chunk-sending strategy vital for
the performance of the system. In this subsection, we investigate the effect of
dissemination concurrency on the performance of IDA-Gossip because choosing
the wrong strategy might result in sub-optimal performance.
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We have conducted a set of experiments where we keep the message size constant—
2MB—, and we vary the dissemination concurrency value between 1 and 128
so that a node serves a limited number of connections simultaneously. Without
any restriction, dissemination concurrency is equal to the fanout value because a
node opens a single connection to each sampled peer, and each peer connection
is owned by a distinct thread that serves the connection. The value of dissemi-
nation concurrency 1 means that a node serves peers one by one, sequentially,
and the value of 2 means that a node can serve up to two peers concurrently,
and so on. To increase the dissemination concurrency above the fanout value,
our implementation opens more than one connection to each peer; for example,
with a fanout value of 8 to reach dissemination concurrency of 128, a node needs
to open 16 (128/8) connections to each sampled peer.

In this set of experiments, as seen in Fig. 5.5, we have observed that smaller
values of dissemination concurrency, like 1 and 2, provide the best first-chunk la-
tency. When we increase the dissemination concurrency, the first chunk latency
increases up to a point and later stays constant for all IDA-Gossip instances:
This is because there is a limited number of chunks to disseminate. On the other
hand, smaller values of dissemination concurrency values produce undesirable
latency measurements for some IDA-Gossip instances: for example, IDA-Gossip
with 256 and 128 chunks provides respectively 35 and 25 seconds latency with
1 simultaneously served connection. When we send a high number of chunks
sequentially, the latency of the channel piles up, and it affects the final latency
of dissemination.

Each IDA-Gossip instance provides the best latency with a different dissemi-
nation concurrency value: For example, IDA-Gossip with 16 chunks provides a
latency of 5.153 seconds with dissemination concurrency of 4, and IDA-Gossip
with 32 chunks provides a latency of 5.119 seconds with dissemination concur-
rency of 8. IDA-Gossip instance with 128 chunks provides the best latency with
dissemination concurrency of 16.

In these experiments, we have considered only the message size of 2MB. The
choice of chunk count,κ, and message size will change the characteristics be-
cause the size of a chunk depends on these parameters; therefore, to obtain
optimal performance, one needs to examine the effect of dissemination concur-
rency according to considered chunk count, message size and considered network
bandwidth capacity.
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5.4 Evaluation with simulations

In this section, we compare the fault resilience of IDA-Gossip to the one of
standard chunk-based gossip dissemination. We wish to quantify the resilience
improvement brought by the use of erasure-coding in IDA-Gossip. To that end,
we implement a simulation engine in Golang that simulates the two following
gossiping strategies for disseminating a message M of size |M |: IDA-Gossip
as described in this paper, and a chunk-based gossip dissemination where a
message is chunked into n pieces.

5.4.1 Methodology

5.4.1.1 Simulations

Our simulation engine is discrete-time based where time is divided into con-
secutive rounds. In a round, a node can receive multiple chunks from different
nodes. In the same round, a node forwards chunks that are received in the
previous round. We use a fanout value of 8, therefore; for each message, a node
samples 8 other nodes uniformly random and sends the message to these nodes.

The system consists of 4096 nodes, as in our experimental evaluation. A simu-
lation run starts by having a source node selected uniformly at random sending
chunks to its neighbors, and ends when there is no node with chunks to for-
ward. We configure the simulations with a fixed proportion f of faulty nodes,
that we vary from 0 to 99 with steps of 1. For each configuration, we run 1000
simulations. At the end of the 1000 runs, the simulator aggregates the results
and computes the measured metrics.

5.4.1.2 Simulated strategies

In the IDA-Gossip strategy, the source node chunks the message M into n =

(1 − ϕ)κ = 48 data chunks and adds ϕκ = 80 parity chunks. Any set of
(1− ϕ)κ different chunks is enough to reconstruct the original message. Then,
the source node samples d = 16 nodes from the system and sends them each
κ/d = 8 chunks.

In the classic chunk-based gossip strategy, a source node splits M into n = 48

chunks and sends each chunk to 8 other nodes. To reconstruct the original
message, a node requires all n chunks. In both strategies, each node stores
and forwards each received chunk until being able to reconstruct the original
message. Then, nodes may only receive other chunks but will ignore them.
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5.4.1.3 Measured metrics

To evaluate the resilience of both protocols, we measured the following metrics:
1) coverage, 2) dissemination failure ratio, 3) received chunk count, and 4)
delivered chunk count. Coverage is the percentage of nodes that delivers the
full message at the end of a simulation run. The dissemination failure ratio is
the percentage of simulation runs in which none of the nodes, except the source,
managed to reconstruct the original message. The received chunk count is the
number of chunks received by a node in a simulation run. Note that a node can
receive multiple copies of the same chunk because our gossip engine implements
a push-based gossip where no communication happens between nodes to identify
chunks that should be sent/receive according to already received chunks. The
delivered chunk count is the number of distinct chunks delivered by a node to
reconstruct the original message. This must be equal to the chunk count of the
original message which is 48 for both simulated strategies.

5.4.2 IDA-Gossip vs classic multi-chunk gossip dissemi-

nation

For all measured metrics, we display their mean values in Fig. 5.6. IDA-Gossip
and chunk-based gossip protocols behave similarly when considering the num-
bers of received and delivered chunks. Indeed, we employ the same push-based
gossip technique in both strategies and use the same data chunk count n = 48.
When the system consists of correct nodes only, the mean number of received
chunks per node is 384. With n = 48 data chunks, and each node forward-
ing each delivered chunk to its 8 neighbors, it implies that each node sends
48 × 8 = 384 chunks in a simulation run. Therefore, each node is expected to
receive 384 chunks on average. Also, each node is expected to deliver 48 chunks
to finish dissemination.

Regarding coverage, IDA-Gossip provides 100% coverage with up to f = 40%

of Byzantine nodes in the system. On the other hand, the classic chunk-based
gossip suffers from low coverage even with a low fraction of faulty nodes because
the probability of not delivering a single chunk of a message with an increased
number of data chunks is increasing. This is not the case for IDA-Gossip be-
cause different nodes forward different subsets of chunks, and any subset with
cardinality 48 is enough to reconstruct the original message.

We observe that IDA-Gossip starts suffering from dissemination failures slightly
earlier than classic chunk-based gossip. This is because the dissemination fails
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if a source node samples more than 10 faulty nodes out of 16; in this case,
an insufficient number of chunks is disseminated, and none of the nodes can
reconstruct the original message except the source itself. The classic gossip
approach suffers from this problem later than IDA-Gossip because each chunk
is forwarded 8 times by the source node, diminishing the likeliness of losing a
chunk because of faulty nodes.

5.5 Conclusion

Our experimental evaluation revealed that IDA-Gossip provides significant la-
tency improvement compared to classic store-and-forward gossip dissemination:
for all considered message sizes, even with a message size of 1 MB, IDA-Gossip
provides the lowest latency. Also, IDA-Gossip better utilizes system resources
compared to classic gossip dissemination because nodes start contributing ear-
lier to the dissemination. Parity chunks and chunk authentication mechanisms
of IDA-Gossip do not incur a significant bandwidth usage overhead compared
to classic gossip dissemination.

We have observed, all instances of IDA-Gossip with different chunk counts
provide similar bandwidth usage when the message size is kept constant. In a
fault-free setting, IDA-Gossip with 32 chunks provides the lowest latency. On
the contrary, IDA-Gossip instances with a high number of chunk counts provide
better system utilization because of lower first chunk latency. When we injected
faults into the system, we observed that IDA-Gossip instances with a high
chunks count provide more resilience and graceful performance degradation.
Also, we have observed that the choice of chunk-sending strategy is vital to
obtain optimum performance from IDA-Gossip instances.

Our simulations revealed that, in the presence of faulty nodes in the sys-
tem, IDA-Gossip provides excellent coverage—above 99%—compared to classic
multi-chunk gossip dissemination. IDA-Gossip starts to suffer from dissemina-
tion failures earlier than classic gossip dissemination where none of the nodes
delivers the message except the source. Finally, our simulations showed that
IDA-Gossip and classic multi-chunk gossip dissemination provide similar band-
width usage characteristics in terms of received and send chunk counts. There-
fore, the use of parity chunks does not incur an overhead on bandwidth usage.
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6 Conclusions and future work

6.1 Conclusions

In this thesis, we propose solutions that aim to improve the performance of
leader-based blockchains by removing bottlenecks in the consensus and the net-
work layers. We made two contributions: we developed ALDER—a generic
construction to enrich leader-based blockchains with multiple leaders, and we
provided an in-depth analysis of IDA−Gossip—a chunk-based efficient gossip
dissemination protocol. In more detail, we have the following contributions:

• The ALDER construction consists of three primitives to multiplex the
consensus protocols of leader-based blockchains: transaction hash space
partitioning, multiple leader election and bucket assignment, and multi-
plexed consensus and macroblocks. ALDER partitions the hash space of
transactions into Cl disjoint buckets. ALDER updates the leader election
mechanism of the base consensus protocol to elect multiple leaders and
each elected leader is assigned a transaction bucket in a publicly verifiable
manner. Leaders propose blocks, and nodes decide on a subset of them
using the multiplex version of the base consensus protocol. Decided blocks
are appended to the distributed ledger in the form of a macroblock that
can contain up to Cl blocks. ALDER targets bottlenecks that stem from
a single leader by spreading the cost of leadership among many leaders:
multiple leaders process user requests concurrently. Also, the design of
ALDER provides mechanisms to circumvent inefficiencies that originate
from the network plane: multiple leaders of ALDER can submit smaller
blocks that disseminate faster than one big block. We evaluated ALDER

by applying it on top of three state-of-the-art blockchains: Algorand,
Rapidchain, and Bitcoin. First, we revealed the extent of consensus and
network layer bottlenecks on these blockchains using experiments. Later,
we applied Alder on top of these blockchains by implementing enriched
protocols. Next, we quantified the benefits of ALDER using large-scale
experiments. Our experiments are designed to measure normal case and
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scalability performance. In normal case experiments, we measured the
throughput and latency characteristics of enriched versions of the proto-
cols. In scalability experiments, we measured the throughput degradation
and latency increase of implementations by increasing the number of nodes
in the system. Our evaluations show that in the presence of consensus and
network layer bottlenecks, ALDER can provide up to 300% throughput
and latency gain. Furthermore, when there are no bottlenecks, ALDER

preserves the performance of the base consensus protocol. Finally, our
scalability experiment conducted on 100 machines deploying up to 10,000
processes revealed that ALDER preserves the scalability properties of
the base consensus protocol by providing the same throughput degrada-
tion and latency increase characteristics as the base consensus protocol.

• IDA − Gossip is proposed in the context of blockchains: designed to
improve the dissemination latency of the Rapidchain protocol. It dissem-
inates messages using chunk-based gossip dissemination. It uses parity
chunks to protect them against loss: the source node pieces a large message
into chunks and calculates parity chunks using an erasure coding scheme.
IDA − Gossip uses Merkle trees to authenticate each chunk efficiently.
The source node distributes chunks among its peers: the source node’s
peers disseminate chunks on its behalf. Although it has potential use in
many blockchains, its properties have not been studied in depth, which is
the main obstacle to its adoption. Our work fills a gap in the literature by
investing its properties under different conditions using experiments and
simulations: we compared the performance of IDA − Gossip with clas-
sical gossip dissemination mechanisms, and we investigate the effect of
protocol parameters on the performance of IDA−Gossip in the presence
of faulty nodes. Our experimental evaluation revealed that IDA-Gossip
provides significant latency improvement compared to classic store-and-
forward gossip dissemination where a message is disseminated in its en-
tirety: With messages size 1, 2, 16, and 36 MB: IDA-Gossip provides la-
tency values of 2.7, 6.0, 43.8, and 98.9 seconds while classic gossip instance
provides 7.1, 13.3, 93.7, and 216.7 seconds respectively. Also, IDA-Gossip
better utilizes system resources than classic gossip dissemination because
nodes start contributing earlier to the dissemination: all IDA-Gossip in-
stances start contributing dissemination within 11.5 seconds, while classic
gossip dissemination requires around 230 seconds. Furthermore, parity
chunks and the chunk authentication mechanism of IDA-Gossip do not
incur a significant bandwidth usage overhead compared to classic gossip
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dissemination, as nodes do not require disseminating extra chunks after
delivering the original message. Also, we have observed that IDA-Gossip
instances with a high chunk count provide more resilience and graceful
performance degradation in the presence of faulty nodes. Also, choosing
a chunk-sending strategy according to considered message size and chunk
count is vital to obtain optimum performance from IDA-Gossip instances.
Our simulations revealed that IDA-Gossip provides 100% coverage with
up to f = 40% of Byzantine nodes in the system. On the other hand,
the classic chunk-based gossip suffers from low coverage even with a low
fraction of faulty nodes because the probability of not delivering a single
chunk of a message with an increased number of data chunks is increasing.
Furthermore, IDA-Gossip suffers from dissemination failures earlier than
classic multi-chunk gossip dissemination, where none of the nodes deliv-
ers the message except the source. Finally, our simulations showed that
IDA-Gossip and classic multi-chunk gossip dissemination provide similar
bandwidth usage characteristics regarding received and sent chunk counts.
Therefore, parity chunks do not incur an overhead on bandwidth usage
compared to classic multi-chunk gossip dissemination.

6.2 Future work

ALDER defines a set of reusable primitives that need to be implemented on top
of a blockchain. It could be interesting to transform the ALDER construction
into a reusable blockchain framework for developing blockchains. Our evaluation
of ALDER considered three different blockchains. Applying ALDER on top of
other blockchains can help reveal its performance benefits. Also, our evaluations
considered non-faulty nodes, and it remains a future work to understand the
behavior of ALDER with faulty nodes. Finally, we have provided arguments for
the correctness of ALDER construction, and it could be interesting to develop
a formal proof of ALDER using a proof assistant system.

Our evaluation of IDA−Gossip was conducted in a blockchain-agnostic way. It
could be interesting to test IDA−Gossip with different blockchains to quantify
its practical use and illuminate possible problems. Orthogonal to our work, the
IDA − Gossip protocol can be further improved using hybrid gossip dissemi-
nation techniques to increase dissemination efficiency.

In this thesis, we have mainly focused on the performance problems of leader-
based blockchains because they are the most commonly deployed family of
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blockchains. Although non-leader-based blockchains are not widely adopted,
they are promising alternatives to leader-based blockchains because they do
not suffer from consensus level and network level bottlenecks as leader-based
blockchains. Investigation of the practical use of non-leader-based blockchains
remains as a future work.
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