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1 | Introduction

1.1 The hippocampal formation

The hippocampal formation comprises two main structures: the hippocampus and
the entorhinal cortex (EC). The hippocampus is organized into subdivisions, namely,
the dentate gyrus (DG), the cornu ammonis 3 (CA3), the cornu ammonis 2 (CA2),
and the cornu ammonis 1 (CA1). Additionally, each subdivision is divided into
layers: stratum oriens (s.o.), stratum pyramidale (s.p.), stratum radiatum (s.r.),
and stratum lacunosum-moleculare (s.l.m.). Similarly, the EC presents a laminar
organization (layers I, II, III, IV, V, and VI).

The hippocampus and EC are interconnected through the trisynaptic loop. The
EC projects to the dentate gyrus via the perforant pathway, granule cells in the
dentate gyrus project to CA3 through mossy fibers, and the CA3 pyramidal cells
project to CA1 via the Schaffer collateral (SC) pathway. Entorhinal inputs can also
reach the hippocampal CA1 field directly through the temporoammonic pathway.
Pyramidal cells in CA1 project to the deep layers of the EC, closing the hippocampal-
entorhinal loop (see Figure 1.1). This general layout holds across the full range of
mammalian species (Li et al., 1994; Amaral and Lavenex, 2007; Amaral and Witter,
1989).

The hippocampal formation receives a vast amount of highly processed sensory
information from neocortical areas that converge into the hippocampal formation
mainly through the EC. The exchange of information between the hippocampal for-
mation and other cortical areas is fundamental for memory consolidation processes.
Based on such extrinsic connectivity, the hippocampal formation exerts control over
widespread regions, and it occupies a privileged position to coordinate the activity
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Chapter 1: Introduction

B.

A.

Figure 1.1: Simplified diagram of the hippocampal formation (A) Wiring diagram of the
hippocampus and entorhinal cortex. (B) Laminar structure of the CA1 region.

of the different brain regions.

1.1.1 Hippocampus: structure and organization

As previously mentioned, the hippocampus is divided into different fields with dis-
tinct morphological, anatomical, and cellular profiles. The CA3 region comprises a
homogeneous population of pyramidal cells that form extensive recurrent connections
with each other, allowing it to function as an auto-associative network (Marr, 1971;
McNaughton and Morris, 1987; Treves and Rolls, 1991). CA1 pyramidal cells form
remarkably less recurrent connections and are uniformly distributed with the cell
body at the pyramidale layer. The CA1 area also comprises populations of highly
diverse GABAergic interneurons that form a complex neural network and control
the activity of CA1 pyramidal cells by feedback or feedforward inhibition (Knowles
and Schwartzkroin, 1981).

The EC is considered the main extrinsic source of excitatory inputs of the CA1 re-
gion. The two regions form a closed loop, with entorhinal layer III neurons projecting
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1.1. The hippocampal formation

to the CA1 and pyramidal CA1 neurons targetting entorhinal layer V/VI pyrami-
dal cells. Additionally, CA1 neurons receive substantial cholinergic and GABAergic
inputs from the medial septum (MS) 1.

CA1 circuits are fundamental for processes of memory formation (Bartsch et al.,
2010), and impairment of CA1 neurons contribute to memory deficits in patients
with damages to the hippocampus (Kadar et al., 1998).

CA1 GABAergic interneurons Despite representing only 10 − 15% of the
total hippocampal neural population (Pelkey et al., 2017), the interneurons form
a complex local network recurrently connected and target the excitatory pyramidal
cells at different dendritic compartments. Thus, they play a crucial role in regulating
the activity of pyramidal cells and the excitability of the hippocampal network.

Hippocampal GABAergic interneurons can generally be classified based on mor-
phology, neurochemical markers, or physiological features. Morphologically, hip-
pocampal interneurons are classified by relating their somatodendritic location to
the layer specificity of synaptic input and the axonal projections to the postsynap-
tic target domain. For example, oriens-lacunosum moleculare (OLM) cells refer to
interneurons whose soma is on the s.o. layer and whose axons extend to s.l.m.;
bistratified interneurons have dendrites and axons that ramify within the s.o. and
s.r. layers emerging from the cell body on s.p. (Booker and Vida, 2018). Regard-
ing neurochemical markers, interneurons can be parvalbumin (PV+), somatostatin
(SOM+), cholecystokinin (CCK+), or vasointestinal peptide (VIP+) expressing in-
terneurons. Lastly, hippocampal interneurons can have fast-spiking dynamics or
present slower dynamics with low-frequency subthreshold oscillations. Please note
that this is not an extensive list of all the interneuron types that form the hip-
pocampal network. For example, in the CA1 area of the hippocampus, 21 classes
of GABAergic interneurons have been identified to date (Freund and Buzsáki, 1996;
Klausberger and Somogyi, 2008; Bezaire and Soltesz, 2013), and this is likely to be
an underestimation.

It is unclear whether the current classification methods are adequate, as one
GABAergic interneuron often spans different categories. For example, both OLM

1Connections between septal and CA3 neurons also exist (Amaral and Kurz, 1985), but they go
beyond the scope of this project
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Chapter 1: Introduction

interneurons with intrinsic low-frequency spiking dynamics and fast-spiking bistrat-
ified cells express somatostatin immunoreactivity (Booker and Vida, 2018; Müller
and Remy, 2014). It is then challenging to dissect the functional properties of the
different interneurons that form the hippocampal microcircuits.

Cholinergic signaling in the hippocampus Cholinergic receptors can be found
in hippocampal pyramidal and GABAergic interneurons and can be located pre- or
postsynaptically. To complicate matters further, there are various cholinergic recep-
tor subtypes with distinct physiological profiles and dynamics that can modulate the
hippocampal circuitry in specific ways.

There are two main classes of cholinergic receptors: muscarinic (mAChR) and
nicotinic (nAChR) receptors.

Muscarinic receptors are metabotropic receptors responsive to ACh and mus-
carine. They act through second messengers and are indirectly linked with ion
channels. There are five subtypes (M1-M5) expressed across the CNS. In the hip-
pocampus, M1 and M3 receptors are mainly expressed in principal neurons, while
M2 and M4 are present on interneurons (Volpicelli and Levey, 2004). They have
been shown to regulate ionic conductances and mobilize calcium (Lanzafame et al.,
2003).

Nicotinic receptors are ionotropic channels responsive to ACh and nicotine, con-
sisting of five subunits arranged symmetrically around a pore. Each subunit of
hippocampal nAChR can be of type α2-α7 and β2-β4. The combination of subunits
that composes the nAChR determines the dynamical and physiological properties
of the receptor channel. Notably, while all nAChR subtypes are permeable to Na+

and K+, they differ in their permeability to calcium, with the homomeric α7 nAChR
having the highest calcium permeability (Castro and Albuquerque, 1995).

The α7 nAChR is one of the most abundant cholinergic receptors in the hip-
pocampus. They have been subject of great interest as their dysfunction is be-
lieved to be at the origin of cognitive deficits and neurodegenerative diseases such as
Alzheimer’s disease (Guan et al., 2001; Wang et al., 2000). In addition, their high
calcium permeability makes them potentially involved in synaptic plasticity (Ji et al.,
2001; Gu and Yakel, 2011) and neurotransmitter release mechanisms (Wanaverbecq
et al., 2007; Sharma and Vijayaraghavan, 2003, 2001). Another important feature
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1.1. The hippocampal formation

of α7 nAChRs is their rapid desensitization. Desensitization is a mechanism where
prolonged exposure to the receptor’s agnostic drives it into a refractory state where
there is no ion flux. It impacts their response to repetitive inputs, but their functional
role in generating and maintaining hippocampal rhythms is still unclear. Notably,
even though currents mediated by α7 nAChRs decline strikingly during activation
at theta frequency (Buhler and Dunwiddie, 2001), knockout of these receptors in
vivo disrupts hippocampal theta oscillations (Gu and Yakel, 2017).

1.1.2 Entorhinal Cortex local circuit

The entorhinal cortex is commonly perceived as the nodal point of cortico-hippocampal
circuits. Neurons in the superficial layers (II/III) receive most of their input from
cortical areas and constitute a major excitatory input to the hippocampus; neurons
in the deep layers receive extensive input from the hippocampus and project to the
EC superficial layers (Amaral and Lavenex, 2007).

The EC comprises a mixture of excitatory pyramidal cells, PV+ interneurons,
and stellate cells distributed among the different layers. The superficial layers are
mainly made up of densely packed excitatory stellate and pyramidal cells. The
stellate cells are the most abundant cell type on these layers, and they provide
the primary entorhinal excitatory input to the hippocampal region. One of their
most striking features is their ability to generate rhythmic subthreshold oscillations
(Alonso and Klink, 1993). Connections between stellate cells have rarely been found,
and they are believed to communicate with each other through PV+ fast-spiking
interneurons that can be found in the same layers (Witter et al., 2017). The deep
layers comprise a heterogeneous population of excitatory pyramidal cells with axon
collaterals terminating both on the deep and superficial layers of the EC. On the
superficial layer, they target mainly pyramidal cells on layer III, generating prolonged
excitatory responses. (Hamam et al., 2000; Witter et al., 2017; Canto et al., 2008).

There is a rapidly growing interest in understanding the functional properties
of the EC. This is primarily motivated by studies demonstrating that some aspects
of memory impairment can be attributed to damage of the EC (Davis et al., 2001;
Buckmaster et al., 2004a), and that stellate and pyramidal cells in this brain region
act as grid cells, i.e., they represent equally spaced locations in an environment via
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Chapter 1: Introduction

their firing rates (Tang et al., 2014; Moser et al., 2008).

1.2 Synaptic plasticity
Synaptic plasticity is defined as the ability of neurons to change the strength of the
synapses in a neural network (Konorski, 1948; Hebb, 1949). It is considered to be the
cellular process underlying learning and storage of information in the hippocampus
(Riedel et al., 1999). It implies alterations in the pre-and/or postsynaptic neurons,
and it can be expressed as changes in the probability of neurotransmitter release from
the presynaptic neuron or in the number and sensitivity of postsynaptic receptors.

Since long-term potentiation (Bliss and Lømo, 1973) and depression (Dudek and
Bear, 1991) were first induced in the hippocampus, this remained the region of choice
to study the mechanisms of synaptic plasticity, with the CA1 area being the most
extensively studied model of activity-dependent plasticity in the mammalian brain.
To this day, the SC-CA1 synapse continues to be widely used as a model synapse
for the study of LTP and synaptic plasticity in general.

In hippocampal excitatory synapses, long-term synaptic potentiation typically
involves a calcium flux mediated by NMDARs (Dudek and Bear, 1991; Lüscher and
Malenka, 2012; Cummings et al., 1996; Bear and Malenka, 1994). NMDAR is a
ligand of glutamate, highly permeable to calcium. At the resting potential, extra-
cellular Mg2+ binds to specific sites of the NMDARs blocking the passage of ions.
Postsynaptic depolarization relieves this block allowing calcium (and Na+) to enter
the cell. Depolarization of the postsynaptic membrane is typically induced through
activation of AMPAR co-localized on the dendritic spine (Lüscher and Malenka,
2012; Collingridge et al., 1983; Muller et al., 1992; Tsien et al., 1996). An eleva-
tion of the intracellular calcium concentration mediated by postsynaptic NMDAR
can activate protein kinases such as Ca2+/calmodulin-dependent protein kinase II
(CaMKII), which ultimately leads to changes in the density of AMPAR on the post-
synaptic terminal (Asztely et al., 1992; Kullmann, 1994; Mainen et al., 1998; Perkel
et al., 1993; Barria et al., 1997). The calcium response determines the polarity of
synaptic modification. Typically, a moderate increase in intracellular concentra-
tions induces LTD while a substantial elevation of intracellular calcium induces LTP
(Cummings et al., 1996; Lisman, 1989; Artola and Singer, 1993; Bear and Malenka,
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1.2. Synaptic plasticity

1994).
The depolarization of the postsynaptic membrane is a critical step in the induc-

tion of NMDAR-dependent plasticity. Thus, it is not surprising that GABAergic
circuits can modulate hippocampal plasticity at excitatory synapses through feed-
forward or feedback inhibition. Similarly, activating cholinergic receptors on gluta-
matergic or GABAergic neurons, located pre or postsynaptically, can regulate the
induction of potentiation (or depression) in the hippocampal region.

GABAergic modulation It is firmly established that inhibitory inputs modulate
local hippocampal synaptic plasticity (Wigström and Gustafsson, 1983; Meredith
et al., 2003; Ormond and Woodin, 2009; Yang et al., 2016). Moreover, selective acti-
vation of certain interneuron classes can mediate the induction of plasticity in distinct
ways. For example, activation of OLMα2 interneurons facilitates potentiation of SC
inputs into proximal dendrites while inhibiting EC inputs into distal dendrites of the
CA1 pyramidal neuron (R.Leão et al., 2012), and high-frequency bursts acting on
GABAergic interneurons containing GABAB autoreceptors permits the induction of
LTP on the SC-CA1 synapse (Davies et al., 1991).

The different pathways and mechanisms through which GABAergic interneurons
modulate plasticity remain elusive despite all the experimental efforts.

Cholinergic modulation Due to the abundance of cholinergic receptors and the
complexity of the neural networks in which they are embedded, it is difficult to access
the mechanisms through which cholinergic inputs regulate hippocampal activity and
synaptic plasticity. The effects of ACh vary depending on which type of choliner-
gic receptor and neuron is being activated. For example, presynaptic mAChRs can
decrease neurotransmitter release reducing synaptic strength (Valentino and Din-
gledine, 1981; Raiteri et al., 1984), while postsynaptic mAChRs enhance responses
of NMDA receptors (Markram and Segal, 1992) and inhibit calcium-activated K+

currents inducing the opposite effect (Cole and Nicoll, 1983). Presynaptic activa-
tion of α7 nAChR enhances synaptic transmission (Radcliffe and Dani, 1998), and
postsynaptic α7 nAChRs facilitate LTP at hippocampal excitatory synapses by pro-
ducing calcium signals that contribute to the induction of LTP (Vernino et al., 1992,
1994; Rathouz et al., 1996; Shoop et al., 2001; Berg and Conroy, 2002). In addition,
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Chapter 1: Introduction

studies also show that the timing of cholinergic inputs is important in modulating
SC-evoked responses (Ji et al., 2001; Gu and Yakel, 2011).

1.2.1 Mechanistic models of calcium-dependent synaptic plas-
ticity

There is a large variety of heuristic models of synaptic plasticity focusing on the
timing of inputs (Dan and Poo, 2004; Gerstner et al., 1996; Appleby and Elliott,
2005; Badoual et al., 2006; Bi and Wang, 2002; Burkitt et al., 2007), the correlations
in the pre and postsynaptic activity (Hebb, 1949; Kempter et al., 1999; Lisman, 1989)
and reflecting the modulatory role of neuromodulators (Ang et al., 2021; Pedrosa and
Clopath, 2017; Maki-Marttunen et al., 2020). In this thesis, we focus on mechanistic
models, which we review briefly in this section.

Many computational models have been developed to understand the mechanisms
of synaptic plasticity. In particular, there are abundant models that focus on the role
of calcium signaling, either by detailing the calcium processes of CaMKII phospho-
rylation and consequent changes in AMPAR density or by directly modeling changes
in synaptic efficiency as a function of intracellular calcium concentration. (Lisman,
1989; Holmes and Levy, 1990; Lisman and Zhabotinsky, 2001; Shouval et al., 2002;
Abarbanel et al., 2003; Graupner and Brunel, 2012, 2005a; Inglebert et al., 2020).

According to the model developed by Shouval et al. (2002), changes in the synap-
tic strength of a synapse j, Wj, can be formulated as

dWj

dt
= η([Ca]j)(Ω([Ca]j)− λWj) (1.1)

where η is a calcium-dependent learning rate, Ω is a function that describes
changes in synaptic efficacy induced by calcium, and λ represents a decay constant
that stabilizes synaptic growth. A calcium-dependent learning rate η avoids un-
wanted oscillations in the synaptic weights, while a function Ω accounts for the fact
that different levels of intracellular calcium trigger various forms of plasticity (see
Figure 1.2).
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1.2. Synaptic plasticity

B.A. θd θp θd θp

Figure 1.2: Calcium-dependent plasticity functions from Shouval et al. (2002). (A)
Synaptic efficacy funtion Ω. When the calcium concentration is bellow a depression threshold Θd,
Ω remains at its base line value; when calcium is above Θd and bellow a potentiation threshold
Θp (Θd < Calcium < Θp) the synaptic weight is reduced; when calcium is above Θp, the synaptic
weight increases. (B) Synaptic plasticity learning rate function η as a function of calcium. Figures
reproduced from Shouval et al. (2002)

The model assumes that the primary source of calcium are the postsynaptic
NMDAR. The calcium dynamics is then described as follows:

d[Ca]j
dt

= INMDA −
[Ca]j
τCa

(1.2)

where τCa is the calcium’s time constant and INMDA is the current through the
NMDAR. The NMDA current is generally described as

INMDA = GNMDAB(V )(V − Er) (1.3)

where GNMDA is the channel’s conductance, Er the reversal potential, and B(V )(=
1/(1+exp(−0.062V ) [Mg2+]

3.57 )) is a voltage-dependent term that accounts for the pres-
ence of a Mg2+ block when the cell is hyperpolarized. Please note that although
in the original model of Shouval and colleagues, it is considered that calcium ions
transport all the current through the NMDAR, that it is not accurate, and the NM-
DAR are also permeable to other ions such as Na+. This imprecision can easily be
corrected by including a parameter α that accounts the percentage of total current
that is carried out by calcium ions (d[Ca]j

dt
= αINMDA − [Ca]j

τCa
).

Following the work of Shouval et al. (2002), Graupner and Brunel (2012) devised
a simplified calcium-based model that provides a link between stimulation protocols
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Chapter 1: Introduction

and evoked synaptic changes, and can reproduce different STDP curves as seen
experimentally.

In this thesis, we use the calcium-based model developed by Shouval et al. (2002)
to describe changes in the synaptic strength of the SC-CA1 synapse. The model is
simple enough to be implemented computationally and to reproduce the experimen-
tal results on which we base our modeling work, such as the absence of bistability.

1.3 Hippocampal theta rhythm
The hippocampal theta rhythm consists of an oscillatory pattern with a 4-12 Hz
frequency observed in the hippocampal formation and associated structures during
active exploration, REM sleep, states of alert immobility, and under anesthesia. Ex-
periments suggest a close relation between hippocampal theta rhythms and learning
and memory. Several studies show that the extent to which theta is present in an
electroencephalogram is indicative of how quickly animals learn a task of how well
they remember (Landfield et al., 1972; Winson, 1978; Berry and Thompson, 1978).
While several studies suggest that theta is required for the formation of memories
represented by neuronal ensembles (Wang et al., 2015; Skaggs et al., 1996; Dragoi
and Buzsaki, 2006; Foster and Wilson, 2007; Feng et al., 2015; Gupta et al., 2012),
its role in the formation of memory representations at the single cells level remains
unclear. A study shows that place fields are formed by hippocampal place cells of
rats when the animal is in a new environment, despite the blockade of theta rhythm
and theta entrainment (Brandon et al., 2014). Such observation suggests that theta
rhythmicity is not required to form spatial memory representations at the single cell
level. On the other hand, there is compelling evidence that theta and synaptic plas-
ticity, a cellular mechanism of information storage, are strongly correlated (Larson
et al., 1986; Orr et al., 2001; Hyman et al., 2003; Griffin et al., 2004).

According to their frequency, physiology, and behavioral correlations, the hip-
pocampal theta rhythm can be classified into type 1 or type 2 (Kramis et al., 1975).
Type 1 theta (8-12 Hz) occurs during active motor behaviors and REM sleep. It is
considered to be atropine resistant, despite studies suggesting that it may have an
atropine-sensitive and an atropine-resistant component (Kramis et al., 1975; Van-
derwolf and Baker, 1986). Type 2 (4-7 Hz) occurs during states of still alertness

10



1.3. Hippocampal theta rhythm

and urethane anesthesia. It is abolished by the administration of atropine, and it is
therefore considered to be atropine-sensitive (Lee et al., 1994; Vanderwolf and Baker,
1986).

1.3.1 Mechanisms of theta rhtyhm

Neural oscillations can arise on two levels of organization. On the cellular level, it
can appear as oscillations in the membrane potential or persistent rhythm action
potentials. On the network level, the synchronized activity of large numbers of
neurons can give rise to macroscopic oscillations with a well-defined frequency. It
is essential to understand the mechanisms through which oscillations are generated
and maintained on the different scales as they are most likely complementary.

Some neurons in the hippocampal formation are endowed with intrinsic properties
that give rise to slow subthreshold oscillations and resonate at theta frequency. This
is the case of OLM interneurons in the hippocampus (Zemankovics et al., 2010), and
stellate cells in the EC (Alonso and Klink, 1993). Even though these cells have been
implicated in the generation of theta in local hippocampal circuits, their role is still
a topic of discussion (Dickson et al., 2000; Kispersky et al., 2012; Fernandez et al.,
2013; Wang, 2002; Moser et al., 2008; Rowland et al., 2018; Rotstein et al., 2005a).

On the network level, two brain regions known to be essential to the generation
of hippocampal theta rhythm are the medial septum and the entorhinal cortex.

The medial septum The medial septum is composed of cholinergic, GABAergic,
and glutamatergic cells, and it mainly targets the hippocampal formation. It is re-
garded as a crucial brain structure for the generation and maintenance of hippocam-
pal theta activity, a notion that has been corroborated by experimental observations
that lesions or inactivation of the medial septum disrupts (or even abolishes) hip-
pocampal theta oscillations (Petsche et al., 1962; Gogolák et al., 1968; Green and
Arduini, 1954; Mizumori et al., 1990).

Cholinergic neurons modulate the excitability of hippocampal neurons in a way
that promotes theta rhythm, likely through the activation of mAChR on CA1 pyra-
midal neurons and activation of α7 nAChR on GABAergic interneurons that can
inhibit or disinhibition hippocampal pyramidal cells (Gu et al., 2017, 2020). The
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role of the septal GABAergic neurons is still a topic of discussion. Despite present-
ing rhythmic activity, there is no direct evidence that they are directly pacing the
hippocampal rhythm (Stewart and Fox, 1990; Yoder and Pang, 2005; Gogolák et al.,
1968; King et al., 1998).

The entorhinal cortex Even though theta oscillations can be observed in an in
vitro preparation of the isolated hippocampus (Goutagny et al., 2009), lesions of
the EC lead to disruptions of the hippocampal theta rhythm and spatial learning
(Chenani et al., 2019; Davis et al., 2001; Buzsáki et al., 1983). Moreover, administra-
tion of AMPAR antagonist to the EC in a septo-entorhinal-hippocampal co-culture
preparation blocked theta expression in the entire hippocampal formation (Gu and
Yakel, 2017). However, it is important to note that the EC may contribute differ-
ently to the generation and expression of the two subtypes of theta rhythm (type
1 and type 2) since lesions to the EC abolish type 1 theta while type 2 oscillations
remain. Still, lesions to the EC disrupt the behavioral correlates of both types of
theta, suggesting that the EC is an integral part of both systems (Montoya and
Sainsbury, 1985).

Recent experimental work indicates that the role of EC may go beyond simply
responding to external rhythmic inputs and coordinating the activity of the hip-
pocampal regions. Instead, it may be where the theta rhythm is being generated
(Gu and Yakel, 2017). Hippocampal excitatory inputs and NMDAR in the EC seem
to be two essential components for the generation of theta in EC, but its mechanisms
remain elusive (Gu and Yakel, 2017; Gu et al., 2017; Nuñez and Buño, 2021).

1.3.2 Modeling hippocampal theta oscillations

Theoretical and mathematical models are convenient tools for understanding brain
circuitry’s functional properties and studying the emergence of neural phenomenons
on different scales. They rely on experimental data to construct biological approx-
imations and shape their output. Due to the difficulty of recording simultaneously
from the septum, hippocampus, and entorhinal cortex, most of the experimental data
collected to date focus on the septal-hippocampal network, hippocampal-entorhinal
network, or the isolated hippocampus. This is reflected in the models of theta
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rhythm.
Models that study the interaction between septum and hippocampus often con-

sider the septum to be the pacemaker in the production of hippocampal theta
rhythm, with rhythmic cholinergic and GABAergic septal neurons imposing the
theta rhythm on the hippocampal neurons and coordinating their activity, in par-
ticular on hippocampal GABAergic interneurons (Stewart and Fox, 1990; Denham
and Borisyuk, 2000). However, recordings from the medial septum indicate that the
theta-locked cells of the region do not fire with a common phase, which is inconsistent
with the pacemaker hypothesis (King et al., 1998).

Concerning the role of EC in the generation of theta rhythm, models suggest
that rhythmic hippocampal inputs can initiate theta activity in the EC by driving a
population of inhibitory interneurons that in turn coordinates the activity of stellate
cells (Neru and Assisi, 2021). Recent experimental evidence suggests that EC is not
simply responding to external rhythmic inputs, namely from the hippocampus, but
it is where the theta oscillations are being generated (Gu and Yakel, 2017; Mitchell
and Ranck Jr., 1980), in particular during the exploration of novel environments
(López-Madrona and Canals, 2021). However, computational models addressing the
origins of theta in the intrinsic circuit of the EC are still lacking.

Whereas theta rhythms are traditionally thought to be imposed extrinsically,
the hippocampus contains intrinsic mechanisms that may actively contribute to the
rhythm through the resonance of external inputs or as a local phenomenon. More-
over, the hippocampus contains neurons with slow synapses and intrinsic spiking
dynamics in the theta range, such as the OLM interneurons, which may contribute
to the generation of theta (White et al., 2000; Rotstein et al., 2005b; Kopell et al.,
2010). Despite this, there is evidence that the CA1 region can autonomously generate
theta oscillations by using mainly a network of pyramidal cells and PV+ interneu-
rons. More specifically, models suggest that spike frequency adaptation and post
inhibitory rebound provide the necessary conditions for rhythmic activity to arise in
a minimally connected network of CA1 pyramidal cells with fast-spiking PV+ in-
terneurons, where the pyramidal controls the frequency to PV+ neuron connections.
(Goutagny et al., 2009; Bezaire et al., 2016; Ferguson et al., 2017). In this scenario,
OLM cells regulate the robustness of hippocampal theta rhythms, without affecting
their frequency and power (Chatzikalymniou and Skinner, 2018).
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1.4 Outline of the work
This thesis investigates the cholinergic and circuit mechanisms underlying the gener-
ation of theta rhythm in a septal-entorhinal-hippocampal circuit. We use a quantita-
tive data-based modeling approach based on a unique experimental setup (a septal-
entorhinal-hippocampal in vitro co-culture preparation) developed by Zhenglin Gu
and Jerrel Yakel at the National Institute for Environmental Health Sciences (NIEHS),
USA.

The dissertation is divided into two parts:

I. In the first part of this dissertation, we derive a biophysical model of cholinergic
induced hippocampal plasticity.

Experimental studies show that the induction of theta in a septal-entorhinal-
hippocampal in vitro preparation depends on the co-activation of the septal cholin-
ergic and SC pathways. Moreover, repeated co-activation of the two pathways po-
tentiates the EPSCs of CA1 pyramidal cells and facilitates the expression of the
theta rhythm, which can then be readily generated through SC stimulation alone
(Gu and Yakel, 2017). We show that cholinergic activation of α7 nAChR on OLMα2
interneurons can disinhibit CA1 pyramidal cells by inhibiting a class of fast-spiking
interneurons targetting CA1 pyramidal cells. Repeated disinhibition paired with SC
stimulation can upregulate the conductance of AMPA receptors and potentiate the
SC-CA1 excitatory synapse.

II. The second part focuses on the entorhinal and hippocampal network properties
that permit theta oscillations to arise and propagate in the circuit. We start by de-
riving an exact mean-field model reduction that we use to describe the macroscopic
activity of the entorhinal and hippocampal networks. Next, we examine how in-
creased hippocampal excitatory inputs - a consequence of the increased hippocampal
excitability described in part I - can drive the entorhinal network into an oscillatory
regime with theta frequency. Finally, we study the response of the hippocampal
network to external rhythmic theta inputs before and after hippocampal plasticity
is induced.
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Part I

Hippocampal synaptic plasticity





2 | Recurrent cholinergic inputs in-
duce local hippocampal plas-
ticity through feedforward dis-
inhibition

2.1 Introduction

The hippocampal networks are characterized by a variety of locally connected GABAer-
gic interneurons exerting robust control on network excitability. Previous work has
detailed the importance of inhibitory inputs in modulating local hippocampal synap-
tic plasticity (Saudargiene and Graham, 2015; Chevaleyre and Piskorowski, 2014;
Wigström and Gustafsson, 1983; Meredith et al., 2003; Ruiz et al., 2010). Further-
more, several experimental studies show that disinhibition facilitates the induction
of LTP at excitatory synapses (Ormond and Woodin, 2009; Yang et al., 2016). How-
ever, how the disinhibition controlling hippocampal excitatory synapses is modulated
(e.g., by neuromodulators) is not clearly understood, and the precise circuitry and
dynamics underlying this type of plasticity remain an open question.

GABAergic interneurons receive significant cholinergic innervation from the me-
dial septum. They are endowed with various subtypes of nicotinic acetylcholine
receptors (nAChRs) that regulate excitability, plasticity, and cognitive functions
(Griguoli and Cherubini, 2012; Levin, 2002; Yakel, 2012). Moreover, alterations of
cholinergic action on hippocampal GABAergic interneurons have been implicated
in cognitive dysfunction in Alzheimer’s disease (AD) (Schmid et al., 2016). These
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studies, among others, furnish clear evidence that cholinergic inputs exert a powerful
role in regulating hippocampal activity. Still, due to the abundance of cholinergic
receptors (both muscarinic and nicotinic) and the complexity of the networks in
which they are embedded, it is difficult to access the exact mechanisms through
which cholinergic action on the hippocampus modulates its microcircuits. Previous
studies showed that activation of OLMα2 interneurons increases SC to CA1 trans-
mission and suggest that this happens through disinhibition by reducing the activity
of stratum radiatum (s.r.) interneurons that in turn provide feedforward inhibition
onto pyramidal neurons (R.Leão et al., 2012). Consistent with these studies, Gu
and colleagues found that activation of OLMα2 interneurons increased SC to CA1
EPSCs and reduced IPSCs (Gu et al., 2020). However, the mechanisms through
which the activation of the inhibitory interneurons OLMα2 regulates the activity of
inhibitory interneurons targeting the CA1 pyramidal cell, and how this facilitates
the potentiation of SC-evoked EPSPs of the CA1 pyramidal cells remain elusive.

In this chapter, we use a minimal biophysical circuit model, driven quantita-
tively by in vitro data, to show how modulation of OLM cells influences the activ-
ity of fast-spiking interneurons whose GABAergic inputs are co-localized with the
SC glutamatergic synapses onto a CA1 pyramidal cell dendrite, and how this pro-
motes the induction of plasticity at the SC-CA1 synapse. We seek to determine
how cholinergic activation of the OLM cells through postsynaptic α7 nAChRs can
down-regulate the GABAergic signaling onto the pyramidal cells, and how recurrent
decreased inhibitory inputs can directly induce the plasticity of the excitatory SC-
CA1 synapse. We constructed a minimal circuit consisting of a single compartment
spiking model of an OLM interneuron with α7 nAChRs, a fast-spiking interneuron
with AMPA, and GABAA receptors, and a pyramidal cell dendritic compartment
with AMPA, NMDA, and GABAA receptors. They are connected as schematically
shown in Figure 2.1.

Overwhelming evidence suggests that most types of LTP involve calcium influx
through NMDARs and subsequent changes in the properties of postsynaptic AM-
PARs, namely changes in their number and phosphorylation state (Barria et al.,
1997; Collingridge et al., 1983; Lüscher and Malenka, 2012). To reflect these mecha-
nisms, we employ the calcium-based synaptic plasticity model (proposed by Shouval
et al. (2002)) to model synaptic plasticity of the SC-CA1 excitatory synapse.
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2.1. Introduction

We use a combination of experiments with computational modeling to put to-
gether a coherent picture of the multiple mechanisms through which concurrent disin-
hibition directly induces local SC-CA1 plasticity. More specifically, we show how re-
peated concurrent disinhibition induces LTP by mediating AMPAR trafficking. Our
modeling results also put together all the pieces of the puzzle to lay out how nAChR
cholinergic action on OLM interneurons, working through calcium-dependent regu-
lation of GABA neurotransmission, can downregulate the GABAergic signaling onto
CA1 pyramidal cells and induce potentiation of the SC-CA1 synapse.
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Figure 2.1: Disynaptic disinhibition circuit for nAChR-modulated long-term plasticity
in the CA1. (A) Simplified wiring diagram of an interneuron network that mediates feedforward
inhibition in the CA1 region of the hippocampus. Activating the Schaffer Collateral (SC) pathway
leads to the activation of CA1 pyramidal cell dendrites and stratum radiatum (s.r.) interneurons,
which provide feedforward inhibition onto the pyramidal cell. Cholinergic activation of OLMα2
interneurons in stratum oriens (s.o.) leads to the inhibition of the s.r. interneurons, counteracting
SC feedforward inhibition (R.Leão et al., 2012). (B) Minimal network to investigate plasticity
induced by the pairing of cholinergic and SC activation. Glutamate activates postsynaptic AMPA
and NMDARs at the pyramidal cell dendritic compartment ED and postsynaptic AMPARs at I-
cells, providing feedforward inhibition onto ED by activating postsynaptic GABAARs. Cholinergic
inputs act on postsynaptic α7 nAChRs of O-cells, which results in GABA release of the O-cells
that it is going to bind to postsynaptic GABAARs of the I-cell

19



Chapter 2: Recurrent cholinergic inputs induce local hippocampal plasticity
through feedforward disinhibition

2.2 Methods

2.2.1 Animals and materials

All procedures related to the use of mice followed protocols approved by the Institu-
tional Animal Care and Use Committees of the NIEHS. ChAT-cre mice (B6;129S6-
Chattm2(cre)Lowl/J), Sst-cre mice (Ssttm2.1(cre)Zjh), and floxed α7 nAChR knock-
out mice (B6(Cg)-Chrna7tm1.1Ehs/YakelJ) were originally purchased from Jackson
Laboratory and then bred at NIEHS. OLM�2-cre mice (Tg(Chrna2cre)OE29Gsat/Mmucd)
were originally obtained from Mutant Mouse Resource and Research Centers (MM-
RRC) and then bred at NIEHS. Mice (of either sex) were used for slice culture from
day 6 to 8. Culture media were from Sigma and Invitrogen. AAV serotype 9 helper
plasmid was obtained from James Wilson at the University of Pennsylvania. The
AAV vector containing floxed ChR2 (Addgene #20297) and floxed eNpHR (Addgene
#26966) were obtained from Karl Deisseroth (Witten et al., 2010; Gradinaru et al.,
2010). AAV viruses were packaged with serotype 9 helper at the Viral Vector Core
facility at NIEHS.

2.2.2 Brain slice culture and AAV virus infection

To study the effects of cholinergic co-activation on the plasticity of SC to CA1
synapses in Figure 2.2, coronal septal slices (350 µm) from ChAT-cre mice and
horizontal hippocampal slices from floxed α7 nAChR mice or OLMα2-cre/floxed
α7 nAChR mice (350 µm) were cut with Leica VT1000S vibratome. Medial septal
tissue containing cholinergic neurons was then dissected out and placed next to the
hippocampus on a 6-well polyester Transwell insert (Corning) and cultured there for
about 2 weeks before being used for experiments, similar as described in Gu and
Yakel (2017). AAV viruses containing double floxed ChR2 construct (5 nl) were
microinjected to the septal tissue with a micro injector (Drummond Scientific) on
the second day of culture. To study the effects of disinhibition on the plasticity of
SC to CA1 synapses in Figure 2.4, horizontal hippocampal slices from Sst-cre mice
were cultured and AAV viruses containing double floxed eNpHR construct were
microinjected to the hippocampus the next day.
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2.2.3 Whole-cell patch-clamp recordings

SC to CA1 excitatory postsynaptic currents (EPSCs) were recorded from hippocam-
pal CA1 pyramidal neurons under whole-cell patch-clamp, similar as described in Gu
and Yakel (2017, 2011). Briefly, 2-3 weeks after culturing, the slices were removed
from transwell inserts and put into a submerged chamber, continuously perfused with
95%O2/5%CO2 balanced ACSF (in mM, 122 NaCl, 2.5 KCl, 2 MgCl2, 2 CaCl2, 1.2
NaH2PO4, 25 NaHCO3, 25 glucose) at room temperature. EPSCs were recorded at
-60 mV under voltage clamp through a glass pipette filled with an internal solution
(in mM, 130 potassium gluconate, 2 MgCl2, 3 MgATP, 0.3 Na2GTP , 10 KCl, 10
HEPES, and 1 EGTA, with pH 7.2-7.3 and osmolarity 280-290 mOsm). Whole-cell
patch-clamp recordings were performed with Multiclamp 700B amplifier (Axon In-
struments). Data were digitized with Digidata 1550, collected with Clampex. The
amplitudes of EPSCs were analyzed with Clampfit and graphs were drawn with Ex-
cel. The amplitudes were normalized to the mean of the 10-min baseline recording
before cholinergic pairing or disinhibition pairing. Values were presented as mean ±
SEM.

EPSCs were evoked every 60 seconds by stimulating the SC pathway with an
electrode placed in the stratum radiatum through a stimulator (Grass S88X). The
stimulation intensity was 1-10 µA for 0.1 ms. To study the effects of cholinergic
co-activation on SC to CA1 synaptic plasticity in Figure 2.2, cholinergic terminals
in the hippocampus were optogenetically activated (10 pulses at 10 Hz, 1 sec before
SC stimulation) through ChR2 that was selectively expressed in ChAT-cre positive
(cholinergic) neurons. ChR2 was activated with 488-nm laser light (5 mW, 20 ms)
through a 40× objective over CA1 stratum oriens near the septum with an Andor
spinning disk confocal microscope (Andor technology). To examine the effects of
disinhibition on SC to CA1 synaptic plasticity in Figure 2.4, Sst positive neurons
were inhibited optogenetically through eNpHR which was activated through a 40x
objective over CA1 stratum oriens with 530-nm laser light (20 mW) for 1 sec flanking
SC stimulation.

The amplitudes of EPSCs were analyzed with Clampfit and graphs were drawn
with Excel. The amplitudes were normalized to the mean of the 5-min baseline
recording before cholinergic pairing or disinhibition pairing. Values were presented
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as mean ± SEM. Amplitude changes were compared with baseline before pairing
by Student t-test. Recordings were done in 5 slices from 3 individual mice in each
group. The sample size was estimated by Student t-test with an expected effect of
40% change, expected standard deviation of 15%, and 80% confidence interval width.

2.2.4 Model

The minimal network used in this study consists of an OLM cell (O), a fast-spiking
interneuron (I), and a pyramidal cell. All the cells in the network are modeled as
point neurons. Since we are interested in the local changes at the SC-CA1 synapse,
the pyramidal cell is represented by a dendritic compartment (ED). The cells of the
network are connected through feedforward connections.

Adding connections between the CA1 pyramidal cell and the OLM interneuron
did not significantly alter our results (simulations not shown). Therefore, we did not
include synapses between the CA1 pyramidal and the OLM cells in our model. Our
modeling choice is further supported by experimental studies showing that the IPSC
elicited by an OLM interneuron has a small amplitude at the soma of CA1 pyramidal
cells since these synapses are on the distal parts of the dendritic tree (Maccaferru
et al., 2000), and that an action potential in CA1 pyramidal cells is insufficient to
make the OLM cell membrane potential cross the action potential threshold (Ali
et al., 1998).

Neuron dynamics models

The O and I cells are modeled following the Hodgkin-Huxley formalism (Hodgkin
and Huxley, 1952) (transient INa, delayed rectifier potassium IK , and leak Ileak),
with synaptic currents Isyn. Its membrane potential Vm is described as follows:

Cm
dVm

dt
= −Ileak − IK − INa − Isyn (2.1)

where Cm is the membrane capacitance. The Ileak, IK and INa currents are given
by:
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Ileak = gleak(Vm − Eleak) (2.2)
IK = gKn4(Vm − EK) (2.3)
INa = gNam3h(Vm − ENa) (2.4)

where gi and Ei are, respectively, the maximal conductance and reversal potential
of channel i (i=leak, K, Na), and m, h and n are gating variables that obey the
following differential equation:

dx

dt
= αx(1− x)− βx (2.5)

where αx and βx are voltage-dependent rate constants.

Following (Rotstein et al., 2005b) we included an applied current Iapp = −260
pA, a persistent Na-current Ip, and a hyperpolarization-activated inward current Ih

(with a slow and fast component) on the O-cells:

Ip = gpp(Vm − ENa) (2.6)
Ih = gh(0.65hf + 0.35hs)(Vm − Eh) (2.7)

While the gate variable p obeys equation (2.5), hf and hs are described by the
following equation:

dx

dt
= x∞(Vm)− x

τx(Vm)
(2.8)

where x∞ is the voltage-dependent steady state and τx the time constant. Defi-
nitions for the αx, βx, x∞ and τx for each of the dynamic variables are as follows.
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For the O-cells:

αn = − 0.01(Vm + 27)
exp(−0.1(Vm + 27))− 1

βn = 0.125exp(−Vm + 37
80

)

αm = − 0.1(Vm + 23)
exp(−0.1(Vm + 23))− 1

βm = 4exp(−Vm + 48
18

)

αh = 0.07exp(−Vm + 37
20

)

βh = 1
exp(−0.1(Vm + 7)) + 1

αp = 1
0.15(1 + exp(−fracVm + 386.5))

βp =
exp(−Vm+38

6.5 )
0.15(1 + exp(−Vm+38

6.5 ))

hf
∞ = 1

1 + exp(Vm+79.2
9.78 )

τ f
h = 0.51

exp(Vm−1.7
10 ) + exp(−Vm+340

52 )
+ 1

hs
∞ = 1

[1 + exp(Vm+2.83
15.9 )]58

τ s
h = 5.6

exp(Vm−1.7
14 ) + exp(−Vm+260

43 )
+ 1
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For the I-cells:

αn = 0.032(Vm + 52)
1− exp(−Vm+27

5 )

βn = 0.5exp(−Vm + 57
40

)

αm = 0.32(Vm + 54)
1− exp(−Vm+54

4 )

βm = 0.28(Vm + 27)
exp(Vm+27

5 )− 1

αh = 0.128exp(−Vm + 50
18

)

βh = 4
exp(1 + exp(−Vm+27

5 ))

The parameter values used in the simulations are presented in Table 2.1.

Since we are interested in studying local synaptic changes of the SC-CA1 synapse,
we use the following equation to describe the activity of the pyramidal cell dendritic
compartment:

C
dVED

dt
= −Ileak − Isyn (2.9)

The parameters C, gleak, and Eleak were set to 100 pF, 1 nS and -68 mV, respec-
tively.

For the simulations of Figure 2.2D, noise was added to the dendritic compartment
ED to allow direct comparison with the experimental results portrait in Figure 2.2C.
In addition to ED, white noise was added to the O and I-cells in Figure S5 to
study plasticity induction when these cells show spontaneous spiking. Since we
used the Euler method to solve the differential equations describing VO, VI , and
VED

, (Vx[i + 1] = Vx[i] + dtdVx

dt
) noise was incorporated by adding a stochastic term√

dtζ (Vx[i + 1] = Vx[i] + dtdVx

dt
+
√

dtζ), where ζ a random Gaussian variable with
mean µ = 0 and standard deviation σ(=1.1, 0.1 and 0.3 for the O, I and ED cells
respectively).
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Parameter Value

O-cells

Cm 100 pF

gleak 50 nS

Eleak -70 mV

gK 1100 nS

EK -90 mV

gNa 5200 nS

ENa 55 mV

gp 50 nS

gh 145 nS

Eh -20 mV

I-cells

Cm 100 pF

gleak 10 nS

Eleak -67 mV

gK 8000 nS

EK -100 mV

gNa 10000 nS

ENa 50 mV

Table 2.1: Parameters of pyramidal cell, OLM interneuron, and fast-spiking interneuron dynamics.
All the parameter values and expressions here described were taken from Rotstein et al. (2005b),
considering a surface area of 1× 10−4cm2, except for the reversal potential of the leakage current
of the OLM which was set to have the resting potential of the OLM cells at -60 mV, as reported in
R.Leão et al. (2012)
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Synaptic models

The O-cell model includes a current mediated by α7 nAChR channels, that in the
real OLM neurons are presynaptic to the O- to I-cell synapse. The description of the
current here used is an adaptation of the model proposed in Graupner et al. (2013),
and it is given by

Iα7 = gα7rα7(Vm − Eα7) (2.10)

where g7 is the maximal conductance of the α7 nAChR channel, and Eα7 the
reversal potential. The opening gate variable rα7 is described by equation (2.8),
with τrα7 constant and r(α7)∞ given by

r(α7)∞ = [ACh]n

ECn
50 + [ACh]n

(2.11)

where EC50 is the half-maximum concentration and n the Hill’s coefficient of
activation.

The I-cell has an excitatory AMPA and inhibitory GABAA synaptic currents,
described by the following set of equations:

IGABAA
= gGrG(Vm − EG) (2.12)

IAMP A = gAMP ArA(Vm − EA) (2.13)

The gating variables rx is, as described in Destexhe et al. (1998), given by

drx

dt
= αx[T ](1− rx)− βxrx (2.14)

where αx and βx are the opening and closing rate of the receptor channel, and
[T ] the neurotransmitter’s concentration available for binding.

The GABA released by the I-cell is described by using the Destexhe et al. sim-
plified neurotransmitter release model (Destexhe et al., 1998), where a stationary
relationship between presynaptic voltage and neurotransmitter release is deduced
by fitting the model to experimental results. The intervening reactions in the re-
lease process are considered fast - a presynaptic action potential elicits a rapid influx
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of calcium, leading to the activation of transmitter-containing vesicles and neuro-
transmitter release. The following equation gives the neurotransmitter release as a
function of the presynaptic voltage:

[GABA]I = Tmax

1 + exp(−Vm−Vp

Kp
)

(2.15)

where Tmax= 1 mM is the maximal neurotransmitter concentration, Kp = 5 mV
gives the function’s steepness, and Vp= 2 mV sets the value at which the function is
half-activated. These parameters were directly taken from Destexhe et al. (1998).

Concerning the GABA released by the O-cell, we assume that the α7 nAChR
current is not strong enough to elicit an action potential directly, but, as the chan-
nels are presynaptic to the O-I GABAergic synapses, it can generate an increase in
the intracellular calcium concentration sufficient to activate the vesicular release of
GABA (Griguoli and Cherubini, 2012). To avoid the detailed computation of the
mechanisms whereby calcium leads to exocytosis, we assume a sigmoid relationship
between calcium and transmitter concentration given by:

[GABA]O = Tmax

1 + exp(−Cai−Cap

K(Ca)p
)

(2.16)

where Tmax= 1 mM is the maximal neurotransmitter concentration, K(Ca)p =
1x10−6 mM gives the function’s steepness, and Cap = 4× 10−5 mM sets the value
at which the function is half-activated. These parameters were chosen so that a
pulse of calcium elicits GABA release with approximately the same characteristics
(amplitude and duration) as the Destexhe et al. (1998) detailed model of transmitter
release (see Figure S2).

The passive dendritic compartment of the pyramidal cell ED is modeled using
synaptic GABAA, AMPA, and NMDA currents. The GABAA and AMPA currents
are given by equations (2.12) and (2.13), respectively. The NMDA current is de-
scribed according to the following equation:

INMDA = gNrNB(Vm)(Vm − EN) (2.17)

where rN is the gating variable described by equation (2.14). Due to the presence
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of a Mg2+ block, the NMDA channels a voltage-dependent term, B(Vm), defined as:

B(Vm) = 1
1 + exp(−0.062Vm) [Mg2+]

3.57

(2.18)

The parameters αA, βA, EA, αN , βN , EN , [Mg2+], αG, βG and EG were estimated
by Destexhe et al. (1998) by fitting the models of postsynaptic AMPA, NMDA and
GABAA currents to experimental data. Regarding the synaptic currents of ED, the
AMPA and NMDA receptors maximal conductances were chosen such that at V=-70
mV, a glutamate pulse of 1 mM and 10 msec duration evoked AMPA and NMDA
currents with an amplitude of 240 pA and 40 pA, respectively (Andrásfalvy et al.,
2003). The maximal conductance of GABAA receptors was chosen such that at V=0
mV, a pulse of GABA with 1 msec duration and concentration of 1 mM evokes a
current with an amplitude of 500 pA (Schulz et al., 2018). For the I-cell, the AMPA
receptor maximal conductance value is such that one pulse of glutamate coming from
the SC evokes a volley of action potentials. Concerning the α7 nAChR postsynaptic
current, the parameters EC50, τrα7 and n were taken from Graupner et al. (2013).
The parameter Eα7 was deduced from Castro and Albuquerque (1995), and gα7 was
chosen such that activation of the α7 nAChR by a pulse of ACh evokes a current of
35 pA, as seen in R.Leão et al. (2012).

Calcium-induced calcium release (CICR) mechanism

Calcium entry through α7 nAChR cells initiates calcium release from internal stores
(Tsuneki et al., 2000; Dajas-Bailador et al., 2002; Griguoli and Cherubini, 2012). The
calcium concentration in the cytosol of OLM cells Cai is described by the following
equation:

dCai

dt
= −ξ′α′Iα7 + w3

∞(CaIS − Cai)−
Ca

τCa

(2.19)

where ξ = 2.1 × 10−6mM/(msec pA) is a parameter that converts current into
concentration, α = 0.05 reflects the 5% calcium permeability of the α7 nAChRs
(Vernino et al., 1994), and τCa is the calcium decay constant. The parameter ξ

was chosen so that the intracellular calcium concentration is of the same order of
magnitude as observed experimentally in Sabatini et al. (2002). The parameter τCa
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was taken directly from the same study. CaIS represents the calcium concentration
of the internal stores given by:

dCaIS

dt
= −w3

∞(CaIS − Cai)−
CaIS − 0.4× 10−3

τ
(2.20)

where τ (= 10 msec) is the calcium decay constant, and w∞ is the open probability
of calcium-permeable channels on the internal store, given by

w∞ = Cai

Cai + kd

(2.21)

where kd(= 2 × 10−4mM) is the half-activation of the function. The model
assumes three calcium-binding sites (Young and Keizer, 1992) and a calcium con-
centration at the internal stores of 0.4 µM at rest (this value can be different as long
as it is bigger than the intracellular calcium concentration Cai at rest). Please note
that the CICR mechanism described is a simplification of the model proposed by
Rinzel (1985), where we limit the model to account for the calcium activation sites
of the calcium-permeable IP3 receptors on the endoplasmic reticulum.

Model of synaptic plasticity

To study plasticity induction at the SC − ED synapse, we use a calcium-based
synaptic plasticity model based on Shouval et al. (2002). We assume that changes
in the AMPA receptor conductance reflect changes in the strength of the excitatory
SC-CA1 synapse. Our synaptic plasticity model is formulated as follows:

dgAMP A

dt
= η(Ca)(Ω(Ca)− σ(gAMP A − g0)) (2.22)

where σ is a decay constant and g0 (= 4 nS) is the value of the maximal con-
ductance of the AMPAR at t=0. The variable η is a calcium-dependent learning
rate described by equation (2.23), and Ω determines the sign magnitude of synaptic
plasticity as a function of the intracellular Ca levels (equation (2.24)).
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Parameter Value Reference

αA 1.1 ms−1mM−1 Destexhe et al. (1998)

βA 0.19 ms−1 Destexhe et al. (1998)

gAMP A 7†, 4‡ nS Andrásfalvy et al. (2003)

EA 0 mV Destexhe et al. (1998)

[Mg2+] 1 mM Destexhe et al. (1998)

αN 0.072 ms−1mM−1 Destexhe et al. (1998)

βN 6.6 ×10−3 ms−1 Destexhe et al. (1998)

gN 25 nS Andrásfalvy et al. (2003)

EN 0 mV Destexhe et al. (1998)

αG 5 ms−1mM−1 Destexhe et al. (1998)

βG 0.18 ms−1 Destexhe et al. (1998)

gG 14†, 7‡ nS Schulz et al. (2018)

EG -80 mV Destexhe et al. (1998)

Eα7 0 mV Castro and Albuquerque (1995)

gα7 3 nS R.Leão et al. (2012)

EC50 80 ×10−3 mM Graupner et al. (2013)

τrα7 5 ms Graupner et al. (2013)

n 1.73 Graupner et al. (2013)

Table 2.2: Parameter values of synaptic currents IAMP A, INMDA, IGABAA
and Iα7. The values

indicated with † refer to the conductance of postsynaptic channels on the fast-spiking interneurons,
while the ones noted with ‡ refer to the conductances of the dendritic compartment ED.
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η(Ca) = ( P1

P2 + CaP3

+ P4)−1 (2.23)

Ω(Ca) = γ↑
exp(900(Ca− θ↑))

1 + exp(900(Ca− θ↑))
− γ↓

exp(900(Ca− θ↓))
1 + exp(900(Ca− θ↓))

(2.24)

The parameters θ↑ and θ↓ define the potentiation and depression onset, i.e., the
calcium levels that trigger the removal and insertion of AMPAR in the membrane,
respectively, and γ↑ and γ↓ represent the maximal insertion and removal rate of
the AMPARs from the membrane. Please note that on the original model, the
parameters θ↑ and θ↓ are represented by θp and θd, and define the potentiation and
depression threshold, respectively, but, as it will be evident in the Results section, we
find that this terminology can be misleading (i.e., we show that crossing these levels
is necessary but not sufficient for potentiation). We assume that the primary source
of Ca2+ in ED is the calcium flux entering the cell through the NMDA receptor
channels. The intracellular Ca2+ concentration evolves according to the following
equation

dCa

dt
= −ξαINMDA −

Ca

τCa

(2.25)

where ξ is a parameter that converts current into concentration, α=0.1 refers
to the fact that only about 10% of the NMDA current is composed of calcium ions
(Burnashev et al., 1995), and τCa is the calcium decay constant. The parameter ξ

was chosen so that the intracellular calcium concentration is of the same order of
magnitude as observed experimentally in Sabatini et al. (2002) 1. The parameter

1The reversal potential of the compound of all the ionic currents flowing through the NMDARs
is employed in the voltage equation (2.1) and the calcium dynamics equation (2.25), even though
only the calcium component of the NMDAR total current contributes to the intracellular calcium
concentration. We recognize that this is an ad hoc simplification which does not qualitatively affect
the model results since VED

ranges between -30 and -67 mV mV in the simulations.. The model can
be modified to account for the calcium component of the NMDA current in the calcium dynamics
equation by using the calcium reversal potential of 140 mV to describe the fractional calcium
through the NMDARs in equation (2.25), similarly to how it was laid out in Graupner and Brunel
(2005b). We note that this would not quantitatively change our results provided the parameter ξ
is altered accordingly, i.e., to ensure the resultant calcium magnitude remains in the same order of
magnitude as observed experimentally. On the other hand, this simplification becomes important
when considering a spiking model for the pyramidal cell where the transmembrane voltage exceeds
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τCa was taken directly from the same study. P1, P2, P3 and P4 were chosen to have
a calcium-dependent learning rate that increases monotonically with calcium levels
(Shouval et al., 2002). The parameters θ↑ and θ↓ were determined such that before
the co-pairing period the calcium concentration does not cross either while crossing
the potentiation onset θ↑ when pairing starts (with θ↑> θ↓). The parameters σ, γ↑

and γ↓ were chosen to reproduce the experimental results concerning potentiation of
CA1 pyr cell EPSC during co-activation of SC and disinhibition/cholinergic inputs
(with γ↑ > γ↓).

Parameter Value Reference

σ 0.0040 -

P1 1.5 ×10−6 Shouval et al. (2002)

P2 P1 × 10−4 Shouval et al. (2002)

P3 13 Shouval et al. (2002)

P4 1 Shouval et al. (2002)

θ↑ 0.35§, 0.34¶ -

θ↓ 0.28§, 0.31¶ -

γ↑ 0.0783§, 0.0699¶ -

γ↓ 0.0375 -

α 0.1 Burnashev et al. (1995)

ξ 0.006§, 0.045¶ µM/(ms pA) Sabatini et al. (2002)

τCa 12 ms Sabatini et al. (2002)

Table 2.3: Parameter values for calcium dynamics and synaptic plasticity. The values indicated
with § were used to reproduce Figures 2.2, S4, S5, and S7. The values indicated with ¶ were used
to reproduce the remaining figures.

0 mV and thereby inverting the polarity of the total but not the calcium current.
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Parameters of the model: We used experimentally determined values or val-
ues from previous modeling studies for most of the parameters. Others that could
not be determined experimentally were determined by experimental constraints im-
posed on the model, namely, the maximal conductances gx, and the synaptic plastic-
ity model parameters indicated with a dash on Table 2.3. All the parameter values
are defined in Tables 2.1, 2.2, 2.3. With our choice of parameters, all parameters are
within the physiological range.
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2.3 Results

2.3.1 Co-activation of cholinergic and glutamatergic inputs
modifies the SC-CA1 synaptic transmission

Previously, it has been observed that co-activation of hippocampal cholinergic inputs
and local SC pathway increases the amplitude of SC to CA1 pyramidal EPSCs (Gu
et al., 2020). Moreover, repeated pairing of cholinergic and hippocampal inputs (8
times) increased EPSC amplitudes in pyramidal neurons during the pairing and long
after, indicating long-term synaptic plasticity at SC to CA1 excitatory synapses. The
induction of potentiation was abolished by a knockout of OLMα2 interneuronal α7
nAChRs, but not by knockout of these receptors on hippocampal pyramidal cells or
other interneurons (see Figures 2.2 (A) and 2.2 (C)).

SC stimulation elicits EPSCs in s.r. interneurons and in the CA1 pyramidal cell
proximal dendrites (R.Leão et al., 2012). Given the high calcium permeability of
the α7 nAChRs, we assume their activation modulates transmitter release through
calcium-mediated signal transduction cascades.

We constructed a minimal feedforward circuit with an OLM cell (O), a fast-
spiking interneuron (I), and the pyramidal cell s.r. dendritic compartment (ED)
connected as schematically shown in Figure 2.2(B) to examine mechanistically how
pairing cholinergic activation of the O-cell with glutamatergic activation of the I-cell
and ED can potentiate the EPSCs of ED. We look at how the EPSC of ED, modeled
as the sum of the postsynaptic AMPA and NMDA currents (IAMP A and INMDA),
changes when the glutamatergic inputs acting on the I-cell and ED are paired with
the cholinergic inputs that act on the presynaptic α7 nAChR of the O-cell during a
co-pairing period of 8 minutes, identical to the experimental protocol. The I-cell and
ED receive one glutamate pulse per minute before, during and after the co-pairing
period. During the co-pairing period, the O-cell gets a pulse of ACh per minute, 100
msec before each glutamate pulse. Not much is known about ACh’s concentration
profile in vivo, but it is believed that it can be cleared from the synaptic cleft within
milliseconds. After testing different ACh profiles, we decided to model ACh as a
square pulse with a duration of 5 msec and concentration of 1 mM, similar to the
glutamate, even though similar results were obtained for a variety of profiles of ACh
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(see appendix B for more details).
From Figure 2.2(D), we see that during the co-pairing period (from t=10 min to

t=18 min), the EPSC is increased. This increase in our model is maintained for an
extended period after the co-pairing period is over (black line), matching the exper-
imental results. We also see that GABA release from the I-cells, GABAI , decreases
significantly (Figure 2.2(D) inset). Before the co-pairing period, glutamatergic in-
puts activate the I-cell. This results in ED inhibition, which shows a SC-evoked
depolarization immediately followed by hyperpolarization of its membrane poten-
tial. During the co-pairing period, activation of α7 nAChRs 100 msec before SC
stimulation results in a calcium flux into the OLM cell that will initiate calcium-
induced calcium release (CICR) from internal stores, exerting positive feedback.
The increase in intracellular calcium concentration induces the release of GABA, as
described by equation (2.16). GABAergic inputs from the OLM cell disable the SC-
evoked activation of the I-cell. As a result, ED does not receive GABAergic inputs
(see Figure S4).

If we reduce the maximal conductance of the α7 nAChR, gα7, from 3 nS to 0.3
nS as an approximation of the effect of α7 knockout, co-pairing no longer potentiates
the EPSC of ED (Figure 2.2 (D), orange line). These observations are in accordance
with experimental results that showed that this form of EPSC boost was abolished
by knockout of the α7 nAChR in OLMα2 interneurons (Figure 2.2(C)).

We then examined how the key parameters of the co-paring protocol influence
the plasticity of the SC-CA1 EPSCs. According to our model, the duration of the co-
pairing period, the relative time between the cholinergic and glutamatergic inputs, as
well as their frequency during the co-pairing period, can modulate the efficiency and
direction of plasticity. Our simulations show that the longer the co-pairing period,
the longer the transient duration, where the potentiation transient duration was
defined as the time it takes the EPSCs to return to the baseline value once the co-
pairing period is over (Figure 2.3(A)). We observe a positive relationship between the
frequency of the glutamatergic and cholinergic inputs during a fixed period of paring
protocol and the potentiation transient duration (Figure 2.3(B)). Interestingly, our
simulations suggested that while changing the co-pairing period and the frequency
of stimulation modulates the efficiency of the induction of potentiation, it does not
change the direction of plasticity. Only when varying the relative time between the
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Figure 2.2: Cholinergic activation of OLM interneurons potentiates SC-evoked EP-
SCs. (A) Scheme of in vitro induction of cholinergic pairing induced hippocampal synaptic plas-
ticity. EPSCs were recorded from CA1 pyramidal neurons. Cholinergic neurons were activated
via channelrhodopsin-2 that was specifically expressed in ChAT-positive neurons. The Schaf-
fer collateral (SC) pathway was activated by a stimulating electrode. Adapted from Gu et al.
(2020). (B) Scheme of the minimal network used to study the role of cholinergic inputs in the
potentiation of SC-evoked EPSCs. Glutamatergic inputs activate the pyramidal cell dendritic
compartment (ED) and the fast-spiking interneuron (I) that projects to it. ACh activates the
OLM interneuron (O) during the co-pairing period. (C) Normalized SC-evoked EPSC responses
from CA1 pyramidal neurons showing that the enhancement of EPSCs was impaired in hippocam-
pal slices from mice with selective α7 nAChR knockout in OLMα2 interneurons. Adapted from
Gu et al. (2020). (D) Numerical simulation of normalized EPSC amplitude when glutamater-
gic inputs acting on the I-cell and ED are paired with cholinergic inputs acting on the O-cell
(from t=10 min to t=18 min). The EPSCs are calculated as the sum of postsynaptic AMPA and
NMDA currents, IAMP A and INMDA, resulting from 10 simulations with white noise on the ED

membrane potential. Normalization of the results was calculated according with the expression
(100+(EPSC−EPSCmin).(150−100))/(EPSCmax−EPSCmin). The same results are obtained
if a noisy background current inducing spontaneous spiking is added to the O and I-cells (see
Figure S5). Inset: Concentration of GABA released from fast-spiking interneurons (I), calculated
according to equation (2.15)
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ACh and glutamate pulses could we induce a change in the plasticity direction. For
single pulse pairing, potentiation will be induced if the glutamatergic inputs arrive
at I and ED within 10.3 < ∆t < 120.5 msec following the ACh pulse. If -10.6 <
∆t < 10.3 msec or 120.5 < ∆t < 205 msec, depression is induced (Figure 2.3(C)).
The time-dependent plasticity curve does not change shape if we pair doublets of
glutamate and ACh with a θ frequency (4 Hz) instead of single pulses. Still, it
changes the potentiation and depression windows. The potentiation window is of
10.3 < ∆t < 299.3 msec, while the depression window is -10.7 < ∆t < 10.3 msec and
299.3 < ∆t < 375 msec (see Figure 2.3(D) and Figure S7). These results agree with
experimental findings by Gu and Yakel (2011) showing that activation of cholinergic
inputs 100 msec and 10 msec prior to SC stimulation induced SC to CA1 long-term
potentiation and short-term depression, respectively.

2.3.2 Disinhibition of the CA1 pyramidal cell dendritic com-
partment enables potentiation of the SC-CA1 synaptic
transmission.

Our model shows a decrease in GABA release from I-cells during the co-pairing
period (Figure 2.2 (D), inset). To study the role of disinhibition of ED in the po-
tentiation of the SC-CA1 excitatory synapse, we use a model where ED receives a
pulse of glutamate followed by a pulse of GABA, except during a disinhibition period
when it only receives pulses of glutamate.

According to our model, the rise and decay time of GABA concentration release
that results from the spiking of the I-cells is almost instantaneous (see Figure S6).
Therefore, in this section, GABAergic inputs into ED are modeled as a square pulse.
For simplicity, both glutamate and GABA release pulses are modeled as square pulses
with a duration of 1 msec and 1 mM of amplitude. It is important to note that
pulses with amplitudes and durations different from those considered here would
reproduce the same results, as long as the duration and amplitude of glutamate
and GABA are similar (simulations not shown). Thus, ED receives one pulse of
glutamate per minute, followed by a pulse of GABA 2 msec after, except during a
disinhibition period when it only receives pulses of glutamate. We note that this
simulated stimulation and pairing choice directly follows the experimental protocol
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Figure 2.3: Co-pairing temporal parameters determine the duration and polarity of
synaptic plasticity: relative timing between cholinergic and glutamatergic stimulation,
the extent of the co-pairing period, and the frequency of stimulation. (A) Synaptic
strength transient duration is proportional to the extent of the pairing period. Here, the transient
duration is defined as the time it takes the EPSC to go back to baseline after co-pairing is over.
The I-cell and ED receive a pulse of glutamate per minute. During the co-pairing period, the O-cell
receives a pulse of ACh per minute, 10 msec before the glutamate pulses. (B) Synaptic strength
transient duration is proportional to the ACh and glutamate pulses frequency during the co-pairing
period. Before and after the co-pairing period, the I-cell and ED receive a glutamate pulse per
minute. During the co-pairing period (4 minutes), the frequency changes to 1

120 , 1
60 or 1

30 Hz, and
the O-cell receives a pulse of ACh 10 msec before the glutamate pulses with the same frequency.
(caption continues on next page)
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(C) Relative paring timing provides a window of opportunity for plasticity. If glutamatergic inputs
are administrated within 10.3 msec < ∆t < 120.5 msec, the ED excitatory synapse is potentiated.
If glutamatergic inputs are administrated within -10.7 msec < ∆t < 10.3 msec or 120.5 msec <
∆t < 205 msec, depression is induced. The change in the AMPAR conductance ∆gAMP A is mea-
sured 60 msec after one pairing. (D) Pairing multiple pulses of glutamate and ACh can change
the window of opportunity for plasticity. Two pulses of glutamate and ACh with a frequency of 4
Hz are paired. If glutamatergic inputs arrive within -10.7 msec < ∆t < 10.3 msec or 299.3 msec
< ∆t < 375 msec of the cholinergic inputs, depression is induced. If glutamatergic inputs are
administrated within 10.3 msec < ∆t < 299.3 msec, the ED excitatory synapse is potentiated. The
change in the AMPAR conductance ∆gAMP A is measured 60 msec after one pairing. The pairing
times of cholinergic and SC inputs found by Gu and Yakel to induce short-term depression and
long-term potentiation at the SC-CA1 synapse (indicated with the red cross) are within our range
of depression and potentiation (Gu and Yakel, 2011).

(see Methods).
We observed that before the disinhibition period, there were no changes in the

EPSC amplitude of ED. During the disinhibition period, the EPSC amplitude in-
creases, and the longer the disinhibition period lasts, the longer these changes last.
More specifically, for a disinhibition period of 5 minutes, the EPSC returns to base-
line once the disinhibition period is over. For a longer disinhibition period of 8
minutes, the EPSC remains potentiated long after the disinhibition period is over
(Figure 2.4(D)). After 5 minutes of ED disinhibition, the EPSC amplitude was in-
creased from 169.40 pA to 285.34 pA. After 8 minutes of disinhibition, the EPSC
amplitude increased to 361.33 pA. These results hold for different values of γ↑ and
γ↓ (see Figure S8). This is in accordance with experimental results, where inhibition
of Sst interneurons projecting to CA1 pyramidal cells was paired with SC stimu-
lation for a short and long period (Figure 2.4(C)). Inhibition of Sst interneurons
via eNpHR resulted in increased SC-CA1 EPSC amplitude not only during the Sst
inhibition but also after the end of Sst inhibition. The EPSC enhancement after
the Sst inhibition lasted about 10min after 5 minutes of Sst inhibition and more
than 30 min after 8 minutes of Sst inhibition. After 5 times of Sst inhibition, the
EPSC amplitude was significantly increased at 5min after the end of Sst inhibition
(31.8% increase compared with baseline, p = 0.0003) but returned to baseline at 30
min after Sst inhibition (2.8% increase compared with baseline, p = 0.79). After
8 times of Sst inhibition, the EPSC amplitude was significantly increased at both
5min after the end of Sst inhibition (37.3% increase compared with baseline, p <
0.0001) and 30 min after Sst inhibition (32.5% increase compared with baseline, p
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< 0.0001). Experiments showed that inhibition of OLMα2 interneurons via eNpHR
did not change the amplitude of SC-CA1 EPSC, indicating that the Sst interneurons
inducing potentiation do not include OLM (Figure 2.4 (C), grey line).

AMPARs are known to play an important role in regulating and expressing synap-
tic plasticity in the hippocampus (Barria et al., 1997). From Figure 2.5 we see that
there is an increase of gAMP A during the disinhibition period. The longer the dis-
inhibition period, the more significant the increase. For a disinhibition period of 5
minutes, there is an increase of gAMP A from 4 to 6.9 nS during disinhibition. Af-
terward, gAMP A gradually goes back to its baseline value (Figure 2.5(A)). For a
disinhibition period of 8 minutes, gAMP A increases from 4 to 8.83 nS. When the
disinhibition period is over, gAMP A remains potentiated (Figure 2.5(B)). It is im-
portant to note that without regular synaptic stimulation, gAMP A decays back to
its resting value after the disinhibition period, i.e., gAMP A has only one stable fixed
point and it is not bistable. In this study, we focused on a calcium-based synaptic
plasticity model to describe changes in the excitatory SC-CA1 synapse. To gain a
more detailed understanding of how the evolution of the calcium levels relates to
the changes in the synaptic weights, we can examine the calcium dynamics before,
during and after the disinhibition period. Figures 2.5(C) and (D) show that the cal-
cium concentration increases significantly during the disinhibition period, crossing
the potentiation onset θ↑ with a significant margin. Immediately after the end of
the disinhibition period, the calcium levels decrease, yet they remain above θ↑. We
can see a clear difference in calcium dynamics for the short and the long disinhibi-
tion periods. In the case of a short disinhibition period, each pairing of GABA and
glutamate after the disinhibition period will elicit a calcium pulse with a smaller am-
plitude than the previous one. Eventually, at t=25 min, the calcium concentration
from the pairing is not enough to cross the potentiation onset θ↑. By the time t=30
min, calcium does not cross either the potentiation (θ↑) or the depression onset (θ↓),
having a similar amplitude as before the disinhibition period. In the case of a long
disinhibition period, each pairing performed after the disinhibition period evokes a
calcium pulse with a constant amplitude. In other words, long-disinhibition periods
ensure that the consequent pairings yield calcium responses that do not drop below
the onset thresholds. To better visualize the synaptic and calcium dynamics imme-
diately after the disinhibition period in both cases, we plot the system’s trajectory in
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Sst inhibited 5-times
Sst inhibited 8-times OLMa2 inhibited 5-times

Figure 2.4: Disinhibition of CA1 pyramidal cell facilitates induction of hippocampal
synaptic plasticity. (A) Scheme of in vitro induction of hippocampal synaptic plasticity through
concurrent Sst inhibition. EPSCs were recorded from CA1 pyramidal neurons. Sst neurons were
inhibited via eNpHR that was specifically expressed in Sst-positive neurons. The Schaffer collat-
eral (SC) pathway was activated by a stimulating electrode. (B) Schematic representation of a
CA1 pyramidal neuron dendritic compartment ED with postsynaptic GABAA, AMPA and NMDA
receptors used to study the disinhibitory mechanisms for induction of plasticity at the SC-CA1 ex-
citatory synapse. The pyramidal cell’s dendritic compartment receives one pulse of both glutamate
and GABA per minute, except during the disinhibition period, where it only receives pulses of
glutamate. Glutamate binds to the excitatory AMPA and NMDA receptors, while GABA binds to
the inhibitory GABAA receptor. (C) Experimental measurements showing the effects of inhibition
of Sst and OLMα2 interneurons in s.o. on SC-evoked EPSCs. Inhibition of Sst interneurons from
t=5min to t=10min enhanced the SC-evoked EPSC amplitude of the CA1 pyramidal cell, followed
by a return to the baseline after the inhibition period (blue line). Inhibition of Sst interneurons
from t=5min to t=13min increased SC-evoked EPSCs amplitude, which remained potentiated af-
ter the inhibition period (orange line). (D) Numerical simulation of normalized EPSCs of ED

for a disinhibition period of 5 minutes (from t=5 min to t=10 min) and 8 minutes (from t=5
min to t=13 min). Normalization of the results was calculated according with the expression
(100 + (EPSC − EPSCmin).(150− 100))/(EPSCmax − EPSCmin).
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the Ca-gAMP A plane. We do so for gAMP A(tinit)=6.9 nS and for gAMP A(tinit)=8.83
nS (Figure 2.5(E)), which are the values of gAMP A at the end of the disinhibition
period for the short- and long- disinhibition durations. For gAMP A(tinit)=6.9 nS,
the calcium concentration crosses the potentiation onset θ↑ (Camax = 0.353 µM),
but there is a decrease of gAMP A from 6.9 to 6.8 nS. For gAMP A(tinit)= 8.83 nS, the
calcium concentration crosses θ↑ to a larger extent (Camax = 0.389 µM) and there is
an increase of gAMP A from 8.83 to 8.92 nS. These results suggest that it is necessary
but not sufficient for calcium concentration to cross the potentiation onset to induce
potentiation. To verify this, we looked at changes in maximal conductance of the
postsynaptic AMPAR, ∆gAMP A, as a function of the amplitude of the intracellular
calcium, Camax. From Figure 2.5(F), we see that as Camax increases we only start
to have potentiation (∆gAMP A > 0) when Camax crosses not the potentiation onset
θ↑, but a higher level, that we term as the potentiation threshold θpot, 0.36 µM.

We do note that the fixed potential threshold θpot is not an ideal indicator of
potentiation, as it may need to be re-calculated depending on a specific case of
calcium dynamics time scales and/or the induction protocol. As seen in Figure
2.5, the dynamics of calcium is important in the induction of plasticity. Therefore,
changing these by, for example, changing the calcium decay rate, can alter the θpot by
changing the time calcium spends in the depression/potentiation onset region. This
kind of analysis can also fail to identify mechanisms of induction of potentiation.
As shown in Figure 2.6(B), if we consider a second calcium source that becomes
activated at t = 80 msec, none of the 2 pulses of calcium generated crosses θpot;
however, the synapse is potentiated. These examples suggest that it is not the peak
calcium concentration that is a key indicator of potentiation but a measure based on
the total amount of calcium that exceeds the onset levels. We suggest that a better
quantity that can be used more generally as an indicator of plasticity is the ratio
between the integral of calcium when its concentration is above the potentiation
onset θ↑, which we will call the area of AMPAR insertion (orange area in Figure
2.6), and the integral of calcium when its concentration is above the depression
onset θ↓ and bellow the potentiation onset θ↑, which we will call the area of AMPAR
removal (grey area in Figure 2.6), weighted by the calcium-dependent learning rate
η, which we named (A↑

A↓
)w (see appendix A for more details). If this ratio is below 3.0,

depression is induced in our model; if the ratio is above 3.0, potentiation is induced
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Figure 2.5: Calcium dynamic is key for the induction of synaptic plasticity. (A) Time
course of maximal AMPAR conductance, gAMP A, when the dendritic compartment is disinhibited
for a short period (from t=5 min to t=10 min). The maximal AMPAR conductance increases
from its initial value gAMP A= 4 nS to gAMP A=6.9 nS during the disinhibition period. (B) Time
course of gAMP A when the dendritic compartment is disinhibited for a long period (from t=5 min
to t=13 min). It increases from gAMP A= 4 nS to gAMP A=8.83 nS during the disinhibition period.
Changes in the AMPAR conductance gAMP A are described by equation (2.22). (C) Time course
of intracellular calcium concentration when dendritic compartment ED is disinhibited for a short
period (from t=5 min to t=10 min), where θ↓ is the depression onset, and θ↑ the potentiation
onset. (D) Time course of intracellular calcium concentration when the dendritic compartment is
disinhibited for a long period (from t=5 min to t=13 min). The calcium dynamics is described
by equation (2.25) (see Methods). (E) Trajectories of the system in the gAMP A-Ca plane when a
pulse of glutamate is paired with a pulse of GABA for gAMP A=6.9 nS and gAMP A=8.83 nS, where
θpot is the potentiation threshold as defined in Shouval et al. (2002). (caption continues on next
page)44
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(F) Changes in the maximal AMPAR conductance, ∆gAMP A, as a function of the amplitude of
intracellular calcium pulse, Camax. Each point of the graph was obtained by submitting ED to a
glutamate pulse for different initial values of gAMP A. This induced different depolarization levels
and, consequently, different activation levels of NMDARs and calcium pulses of different ampli-
tudes.

(see Figure 2.6).

2.3.3 GABA amplitude and Glu-GABA pairing timing con-
trol membrane potential

Disinhibition of the pyramidal cell, i.e., reduction of GABAergic inputs, can facili-
tate the depolarization of the cell, which can control plasticity, as we have shown
in the previous section. Therefore, we hypothesize that the amplitude of the GABA
pulse, GABAmax, and the relative time between the glutamate and GABA pulses,
∆t(GABA−Glu), can modulate plasticity. To explore this hypothesis, we pair gluta-
matergic inputs with GABAergic inputs into ED. We vary the relative time between
the inputs, ∆t(GABA−Glu), and the amplitude of the GABAergic inputs, GABAmax,
to measure changes induced in gAMP A. Simulations were repeated for different val-
ues of gAMP A to understand why pulses of glutamate and GABA with the same
characteristics (same amplitude and same duration) have different outcomes when
administered after the short or long disinhibition periods. Simulations were done
with three initial values of gAMP A: gAMP A= 4 nS, gAMP A= 6.9 nS and gAMP A=
8.83 nS. We identified well-defined regions of potentiation and depression in the
∆t(GABA−Glu)-GABAmax parameter space (see Figure 2.7). We also saw that the
regions change with the value of gAMP A. More specifically, the depression region
moves towards the right of the plot as gAMP A increases. In other words, as gAMP A

increases, the GABAergic inputs need to arrive with a longer delay relative to the
glutamatergic inputs to induce depression. It is important to note that the level of
potentiation or depression induced also changes as we increase gAMP A. Generally,
the magnitude of potentiation decreases, and the magnitude of depression increases.
This is because the system saturates as gAMP A increases, i.e., gAMP A cannot increase
indefinitely. This is a restriction imposed by the model. These results suggest that
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the same induction protocol may induce either potentiation or depression, more or
less efficiently, depending on the current phosphorylation state of the AMPA recep-
tors, i.e. gAMP A, and on the decrease of GABA during disinhibition. In other words,
the net effect of a pairing protocol is state-dependent.

Figure 2.6: The weighted ratio ( A↑
A↓

)w can accurately be used as a predictor of induc-
tion of depression or potentiation. (A) Different values of gAMP A evoke different levels of
depolarization and, consequently, different intracellular calcium concentrations. For a weighted
ratio between the calcium area of AMPAR insertion and removal below 3.00, depression is induced.
For a value above 3.00, potentiation is induced. (B) By adding a second source of calcium that
becomes activated at t=80 msec, it is possible to have situations where the calcium never crosses
the potentiation threshold θpot but potentiation is induced. The normalized ratio ( A↑

A↓
)w accurately

identifies these cases as potentiation. In these numerical simulations, ED receives a pulse of gluta-
mate followed by a pulse of GABA 2 msec after, each with an amplitude of 1mM and duration of
1 msec.
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Figure 2.7: Amplitude of GABA pulse, GABAmax, and relative time between GABA
and glutamate pulses, ∆t(GABA−Glu), control direction and efficiency of induction of
synaptic plasticity. (A) Depression and potentiation regions for gAMP A= 4 nS. This is the AM-
PAR’s maximal conductance value used in our simulations before the disinhibition period starts.
(B) Depression and potentiation regions for gAMP A= 6.9 nS, which represents the state of phos-
phorylation of the AMPAR at the end of the short disinhibition period. (C) Depression and
potentiation regions for gAMP A= 8.83 nS, which is the state of phosphorylation of the AMPAR
at the end of the long disinhibition period. For each plot (A), (B), and (C) we pair one pulse of
glutamate (with a concentration of 1 mM and 1 msec of duration) with one pulse of GABA with a
duration of 1 msec and varying concentrations and initial time, and measure the resultant change
in gAMP A for each case.
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Model Predictions and implications:

Results of model simulations and analysis make several testable predictions. First,
while experiments so far have not identified precisely the exact type of s.o. in-
terneuron that provides feedforward inhibition to the CA1 pyramidal cell, our model
predicts that it should be an interneuron with fast dynamics, i.e. with dynam-
ics comparable to the pyramidal cells. More specifically, we expect hippocampal
PV+ interneurons EPSCs in the stratum radiatum would decrease during cholin-
ergic pairing due to the inhibition provided by the OLM neurons. Consequently,
GABAA-mediated IPSCs on the proximal dendrites of CA1 pyramidal cells would
also decrease.

In this work (both in modeling and experimentally), modulation of the OLM
cells is due to cholinergic activation of α7 nAChRs. Our model more specifically
suggests that the GABA release by the OLM cells is regulated by activating α7 nACh
receptors without necessarily altering the OLM firing. However, GABA release can
also be controlled by the depolarization of the OLM cells and/or by modulation of
their spiking activity by somatic nAChRs.

Our model predicts a relationship between the relative timing of the septal and
hippocampal stimulus paring and the synaptic plasticity direction at the SC-PYR
synapse. According to our simulations, increasing the frequency of septal and hip-
pocampal paired stimulation can induce plasticity more efficiently, i.e., fewer pairings
would be required to induce LTP. At the same time, we predict that changing the
relative time between septal and hippocampal activation can induce LTD instead of
LTP.

Finally, our modeling results suggest that for the plasticity to be induced, the
excitatory NMDA and AMPA receptors and the inhibitory GABAA receptors should
be located sufficiently proximal to each other in the pyramidal dendritic compart-
ment.
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2.4 Discussion

This work set out to explain how nicotinic cholinergic modulation of hippocampal
OLM interneurons paired with hippocampal stimulation can potentiate CA1 pyra-
midal cell EPSC responses. Our modeling results suggest that co-pairing choliner-
gic activation of α7 nAChRs on OLM interneurons results in the disinhibition of
CA1 pyramidal cells. We also show by mathematical analysis how synaptic plas-
ticity is controlled by the disinhibition of the postsynaptic pyramidal membrane
through a disynaptic GABAergic circuit. To our knowledge, this is the first report
to reveal how repeated disinhibition can directly induce LTP (both experimentally
and computationally). It is also the first computational study that explicitly shows
how cholinergic action on OLM interneurons can directly induce SC-CA1 plasticity
through disinhibition.

OLM cells are a major class of GABAergic interneurons located in the stratum
oriens hippocampal layer that inhibit pyramidal cells dendritic compartment located
in the stratum lacunusom-moleculare layer, reducing the strength of EC inputs.
OLM cells also target bistratified interneurons, expressing parvalbumin (PV) and
somatostatin (Sst), that receive feedforward excitatory inputs from the Schaffer col-
laterals (Müller and Remy, 2014). Recent findings show that activation of OLM cells
can facilitate LTP in the SC-CA1 pathway, likely by inhibiting s.r. interneurons that
synapse on the same dendritic compartment as the SC, counteracting SC feedfor-
ward inhibition (R.Leão et al., 2012). We found that repeated pairing of cholinergic
inputs with hippocampal stimulation can induce plasticity if the inputs are tightly
timed. The time window for potentiation depends significantly on the dynamics of
the O-cells, I-cells, and calcium dynamics. This agrees with experimental findings
showing that activating cholinergic inputs to the hippocampus can directly induce
different forms of synaptic plasticity depending on the hippocampus’s input context,
with a timing precision in the millisecond range (Gu and Yakel, 2011). Our model
also shows that the longer the co-pairing period and the higher the frequency of
stimulation during the co-pairing period, the longer lasting is the potentiation of the
synapse.

According to our model, the key mechanism behind paired cholinergic induction
of synaptic plasticity is the disinhibition of the pyramidal cell dendritic compart-
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ment. Cholinergic activation of the O-cell synapses inhibits the fast-spiking I-cell
that projects to the dendritic compartment ED. The disinhibition of ED paired with
glutamatergic stimulation allows for the depolarization of the pyramidal dendritic
compartment. This increases NMDAR activation and intracellular calcium concen-
tration sufficient to upregulate postsynaptic AMPAR permeability and potentiate
the excitatory synapse.

Our model puts together the elements to give the following sequence of events:
SC stimulation results in the activation of CA1 fast-spiking interneurons, I, and
the subsequent release of GABA. At the same time, it evokes an EPSP mediated by
AMPAR on the CA1 pyramidal cell dendritic compartment ED. Since I and ED have
comparable dynamics, the EPSP is closely followed by a GABAA-mediated IPSP.
Because of slow kinetics and voltage-dependence, at that time, the NMDAR receptors
are not in the open state and there is no influx of calcium. When the SC inputs are
tightly timed with cholinergic inputs acting on OLM interneurons, GABA release
from I-cells is suppressed. The pyramidal cell membrane at (or sufficiently near to)
the glutamatergic synapse can depolarize enough to relieve the Mg2+ block from
the NMDA receptors, allowing calcium to permeate through the receptor channel
(Figure 2.8). Therefore, every time the pyramidal cell receives a glutamate pulse
during the disinhibition period, the intracellular calcium concentration crosses the
potentiation outset θ↑, and gAMP A increases.

Down-regulation of the GABAergic signaling during disinhibition leads to in-
creased NMDAR activation. We see that when we reduced GABA concentration,
glutamatergic activation of ED results in postsynaptic NMDA currents with 7.90
pA of amplitude – with depolarization of -58.25 mV -, as opposed to the 6.75 pA
that results from the pairing of glutamate and GABA inputs – with depolarization
of -63.56 mV (see Figure S9). Because of the receptor’s high calcium permeability,
there is an elevation in intracellular calcium concentration large enough to initiate
molecular mechanisms that result in the insertion/phosphorylation of the AMPAR.
In our model, this translates into an increase in the AMPAR maximal conductance
gAMP A. Moderate calcium concentrations, on the other hand, result in the removal
of AMPARs. Because changes in calcium concentration are not instantaneous, the
potentiation/depression of the synapse results from a balance between the inser-
tion/removal of AMPARs during the period in which Ca concentration is above the
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Figure 2.8: Scheme of the cholinergic and disinhibitory mechanisms that drive SC-
CA1 potentiation. (A) Glutamatergic activation of I-cells lead to spiking activity and consequent
GABA release. Subsequently, glutamate inputs acting on ED evoke an EPSP mediated by AMPAR
immediately followed by an IPSP mediated GABA acting on GABAA receptors. (B) Cholinergic
activation of �7 nAChR on OLM interneuron initiates a CICR process mediated by calcium internal
stores (IS). This results in GABA release that inhibits the I-cell. The dendritic compartment does
not receive GABAergic inhibition. The dendritic compartment can depolarize enough - and remain
depolarized for long enough - to relieve Mg2+ block from NMDA receptors, allowing calcium to
permeate through the receptor channel.
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potentiation/depression threshold. During disinhibition, this balance is positive and
there is a total increase in gAMP A. The more times we pair disinhibition with SC
stimulation, i.e., the longer the disinhibition period, the higher the value of gAMP A

by the end of the disinhibition period. After the disinhibition period, if the increase
of gAMP A was large enough, the calcium resultant from glutamatergic and GABAer-
gic stimulation is such that there is a balance between potentiation and depression
close to zero. That is, gAMP A stabilizes by oscillating around the value of gAMP A

at the end of the disinhibition period (8.83 nS). Therefore, the synapse remains
potentiated long after the disinhibition period is over. If there is no stimulation
after the disinhibition period, gAMP A slowly decays to its initial value (i.e., its value
before the disinhibition period). Supposing that the increase of the AMPAR per-
meability is high enough, the potentiation of the excitatory synapse is maintained
when the disinhibition period is over through repeated stimulation of the SC that
keeps a balance between the down and upregulation of the AMPARs. This is in
accordance with experimental results that show that repeated pairing of inhibition
of Sst interneurons (that were not OLM) that target the CA1 pyramidal cell with
SC stimulation can induce plasticity. Our model is robust to changes of parameters
that maintain the same ratio of insertion/removal of AMPARs. Thus, for example,
for different values of the γ↑, there is (at least) a pair of γ↓ for which our results
remain the same (Figure S9). It is worth noting that the type of synaptic plasticity
induced depends on the value of maximal conductance of the postsynaptic AMPAR,
gAMP A, as shown in Figure ??. Therefore, our model indicates that future changes
in synaptic strength depend on previous plasticity events and how these changed
gAMP A. This explains why, after the disinhibition period, pairs of glutamate and
GABA pulses with the same characteristics will induce different results when the
disinhibition period is short or long.

Earlier studies pointed out that reduced inhibition (disinhibition) can facilitate
LTP induction under various conditions (Ormond and Woodin, 2009; Yang et al.,
2016; Wigström and Gustafsson, 1983). Our results show that repeated temporally
precise disinhibition can directly induce SC to CA1 LTP, providing a novel mecha-
nism for inhibitory interneurons to modify glutamatergic synaptic plasticity directly.
This expands the original spike-timing dependent plasticity that concerns the con-
current activation of two excitatory pathways to include the interneuron network.
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Furthermore, our modeling work implies that GABAergic neurotransmission should
control the local pyramidal voltage in the vicinity of the glutamatergic synapses.
Thereby, the inhibitory synapses critically modulate excitatory transmission and
the induction of plasticity at excitatory synapses. This points towards the impor-
tance of dendritic GABA and glutamate co-location in shaping local plasticity rules.
Our work also suggests a cholinergic mechanism for controlling GABA release at
the pyramidal dendrites and the subsequent potentiation of excitatory synapses, un-
raveling the intricate interplay of the hierarchal inhibitory circuitry and cholinergic
neuromodulation as a mechanism for hippocampal plasticity.

Previous work by Gu and Yakel (2017) showed that co-paired activation of the
cholinergic input pathway from the septum to the hippocampus with stimulation of
the Schaffer collateral pathway could readily induce theta oscillations in a co-culture
septal-hippocampal-entorhinal preparation. Moreover, after performing co-paired
activation several times, not only was the SC-PYR synapse potentiated, but it be-
came easier to evoke the theta rhythm in the preparation (one pulse stimulus of the
SC is sufficient to generate theta oscillations in the circuit with the same character-
istics as before). Therefore, induction of hippocampal plasticity, particularly poten-
tiation of the CA1 EPSPs, appears to facilitate the generation of the theta rhythm.
Moreover, recent studies directly linked OLMα2 interneurons to theta oscillations
(Mikulovic et al., 2018), and suggest that OLM cells can regulate the robustness
of the hippocampal theta rhythm (Chatzikalymniou and Skinner, 2018). Thus, we
may speculate that the action of ACh on the α7 nAChRs at the OLMα2 neurons
potentiates the SC-CA1 synapses to close the critical link in the synaptic chain of
events, enabling recurrent reverberation of excitation in the hippocampal-entorhinal
theta generating circuit. Understanding the mechanisms underlying the induction
of hippocampal plasticity by this co-pairing mechanism will allow future studies of
how changes on the synaptic level can propagate to the network level and change
theta generation’s mechanisms.

Our results are also relevant to understanding the neural circuit origins of patho-
logical conditions and uncovering potential targets for therapeutic intervention in
disorders linked to memory deficits. For example, the hippocampus is one of the ear-
liest brain structures to develop neurodegenerative changes in Alzheimer’s disease
(AD) (Arriagada et al., 1992). Furthermore, numerous studies suggest that cogni-
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tive deficits in AD, such as memory impairment, are caused in part by cholinergic
dysfunction action on hippocampal GABAergic interneurons (Schmid et al., 2016;
Haam and Yakel, 2017). Here, we have shown that a decrease in the conductance of
cholinergic α7 nAChRs on OLM interneurons caused the impairment of induction of
hippocampal synaptic plasticity.
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A Calculating the weighted potentiation/depression
area ratio (A↑/A↓)w

While the calcium concentration is above the depression onset θ↓ (but bellow the po-
tentiation onset θ↑), the maximal conductance of the AMPARs gAMP A is decreasing.
On the other hand, when the calcium concentration is above θ↑, gAMP A is increas-
ing. The induction of plasticity at the excitatory synapse depends on the net result
of these changes of gAMP A. The more time calcium spends above θ↑/θ↓, the more
likely it is that potentiation/depression is induced at the synapse. Furthermore, the
more time calcium spends above θ↑/θ↓, the bigger the area underneath the calcium
curve in this region of insertion/removal of AMPARs. Therefore, the ratio between
the area of insertion and the area of removal (A↑/A↓) can be used as a measure of
induction of plasticity. There is an optimal ratio for which the decrease of gAMP A

resultant from time spent in the removal region and the increase of gAMP A resultant
from time spent in the insertion region will cancel each other and no plasticity is
induced. If the ratio A↑/A↓ is below this value, depression is induced; if the ratio is
above this value, potentiation is induced. The ratio is A↑/A↓ is given by the following
expression:

∫ t2
t1

Cadt∫ t1
t0

Cadt +
∫ t3

t2
Cadt

(26)

t0 t1 t2 t3

↓

↓

Because the decrease and increase of gAMP A is not the same in the whole removal
and insertion region, we need to calculate the calcium integral weighted by the
calcium-dependent learning rate η. The normalized ratio (A↑/A↓)w is then given by∫ t2

t1
Ca.ηdt∫ t1

t0
Ca.ηdt+

∫ t3
t2

Ca.ηdt
. To calculate (A↑/A↓)w , we use the trapezoidal rule to perform

numerical integration of the potentiation and depression area.
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B A qualitative study of the synaptic profile of
ACh

Not much is known about the ACh profile in the synaptic cleft upon release from
cholinergic neurons; more specifically, not much is known about the time it decays
for ACh to be broken down into choline and therefore, available to bind to cholinergic
receptors. We have considered two different types of profiles for the ACh concen-
tration in the synaptic cleft, and explored their validity for different parameters
(amplitude, duration and decay time constant). We take into account the observa-
tions made by Gu and Yakel (2011) that pairing cholinergic inputs 10 msec prior to
SC stimulation induces depression of the SC-CA1 synapse, while if the cholinergic
inputs are activated 100 msec prior to SC stimulation, potentiation is induced. We
pair one pulse of ACh with a square pulse of glutamate with a relative time of 10
and 100 msec, and measured the resultant changes in AMPAR conductance.

A square pulse of ACh followed by a pulse of glutamate 10 and 100 msec after will
induce, respectively, depression and potentiation if the duration of the ACh pulse is
equal or greater than the glutamate (even if the amplitude of ACh is smaller than
the one of glutamate).

If Ach is described by an alpha function with an instantaneous rise time, the
smaller the amplitude of the ACh pulse, the longer the decay time needs to be for
the results to be in agreement with Gu and Yakel (2011) (for a same pulse duration
of glutamate). If the duration of the glutamate pulse increases (decreases), we must
also increase (decrease) the decay time of ACh (simulations not shown).

Please note that the decay and duration times, as well as the amplitude, of both
the ACh and glutamate pulses serve merely as a guide as what types of neuro-
transmitters profiles we should consider. They are qualitative, and not quantitative,
predictions of the synaptic profile of ACh.
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Figure S1: (A) One square pulse of ACh with a duration of 1 msec and concentration of 0.5
mM followed 10 msec after by a a square pulse of glutamate with a duration of 5 msec and an
amplitude of 1 mM produces no changes in the maximal conductance of AMPAR, gAMP A (left
panel). Similarly, If the pulse of glutamate arrives 100 msec after, no changes are induced (right
panel). (B) One square pulse of ACh with duration of 5 msec and concentration of 0.5 mM followed
10 msec after by a pulse of glutamate with a duration of 5 msec and 1 mM of concentration decrease
gAMP A (left panel). If the pulse of glutamate arrives 100 msec after, potentiation is induced (right
panel). (C) One square pulse of ACh with a duration of 1 msec and concentration of 1 mM
followed 10 msec after by a a square pulse of glutamate with a duration of 5 msec and an amplitude
of 1 mM produces no changes in gAMP A (left panel). Similarly, If the pulse of glutamate arrives
100 msec after, no changes are induced (right panel). (D) One square pulse of ACh followed 10
msec after by a pulse of glutamate with the same characteristics (duration of 5 msec and 1 mM
of concentration) decrease gAMP A (left panel). If the pulse of glutamate arrives 100 msec after,
potentiation is induced (right panel).
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Figure S2: (A) One pulse of ACh with an amplitude of 0.39 mM, an instantaneous rise time and
a decay time constant of 1 msec followed 10 msec after by a a square pulse of glutamate with 1
mM of amplitude and a duration of 5 msec induces no changes in gAMP A (left panel). Similarly,
if the pulse of glutamate arrives 100 msec after, no changes are induced (right panel). (B) One
pulse of ACh with an amplitude of 0.39 mM, an instantaneous rise time and a decay time constant
of 4 msec followed 10 msec later by a square pulse of glutamate depresses gAMP A (left panel). If
the pulse of glutamate arrives 100 msec after, potentiation is induced (right panel). (C) One pulse
of ACh with an amplitude of 1 mM, an instantaneous rise time and a decay time constant of 1
msec followed 10 msec later by a square pulse of glutamate with the same amplitude and duration
of 5 msec provokes a decrease in gAMP A (left panel). If the pulse of glutamate arrives 100 msec
after, no changes are induced (right panel). (D) One pulse of ACh with an amplitude of 1 mM,
an instantaneous rise time and a decay time constant of 4 msec followed 10 msec later by a square
pulse of glutamate depresses gAMP A (left panel). If the pulse of glutamate arrives 100 msec after,
potentiation is induced (right panel).
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C Supplementary Figures

Figure S3: GABA concentration elicited by a calcium pulse of 0.10 µM of amplitude and 1 msec
of duration computed using the detailed model of transmitter release described in Destexhe et al.
(1998) and using equation (2.16).
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Figure S4: Before co-pairing, the network only receives one pulse of glutamate. The α7 nAChR
at OLM are not activated, there are no changes in the intracellular calcium concentration (Cai)
and, consequently, no GABA is released (GABAO). Glutamatergic activation of the I-cell result in
two spikes, and the I-cell inhibits ED that cannot depolarize enough. During co-pairing, α7 nAChR
activation increases the intracellular concentration Cai. GABAO is released from the OLM cell and
inhibits the I-cell. ED does not receive inhibition, only excitation from glutamatergic stimulation
and depolarizes.
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A

B

Figure S5: (A) Time evolution of of the membrane potential of the O-cell, I-cell and ED with
white noise when cholinergic inputs are paired with SC inputs, and resultant EPSC. (B) Mean trace
of normalized EPSC after 10 simulations. Adding a noisy background current to the O and I-cell
induces spontaneous spiking. Co-pairing cholinergic and glutamatergic inputs from t=10 min to
t=18 min induces potentiation of the pyramidal cell EPSC. In this simulations the parameter ξ’ was
adjusted from 2.1 × 10−6 mM/(msec pA) to 3× 10−6 mM/(msec pA), keeping the intracellular
calcium concentration in the O-cell within the physiological range. The O-cell releases GABA
when the intracellular calcium concentration is high enough (see equation (2.16)), and when the
cell spikes (see equation (2.15)). All the remaining parameters are identical to the ones used to
produce Figure 2.2. Noise was incorporated by adding a stochastic term

√
dtζ, where ζ a random

Gaussian variable with mean µ = 0 and standard deviation σ(=1.1, 0.1 and 0.3 for the O, I and
ED cells respectively), to the Euler equations describing the evolution of the membrane potential
Vx. Normalization of the results was calculated according with the expression (100 + (EPSC -
EPSCmin).(150-100))/(EPSCmax - EPSCmin).
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Figure S6: Membrane potential of the I-cell when it receives two pulses of glutamate
(with amplitude 1mM and duration of 3 msec) with a frequency of 0.2 msec−1, and
respective GABA release. GABA concentration can be described by a square function.
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I II III IV V

Figure S7: Tightly timed pairing of cholinergic to glutamatergic inputs can cancel the I-cell
feedforward inhibition. For ∆t = -30 msec (Region I), a pulse of glutamate activates the I-cell.
When the OLM cell receives a pulse of ACh 30 msec after and releases GABA, the I-cell already
emitted two spikes and inhibit ED – no plasticity is induced. . For ∆t =0 msec (Region II),
the I-cell and OLM receive a pulse of glutamate and ACh, respectively, simultaneously. Due to
its fast dynamics, the I-cell manages to emit one spike before being inhibited by GABAO. The
I-cell inhibits ED only moderately – depression is induced. For ∆t = 100 msec (Region III), OLM
receives an ACh pulse at t=0 msec and releases GABAO into the I-cell. When the I-cell receives
glutamate 100 msec after, it is hyperpolarized and cannot spike – potentiation is induced. For
∆t = 200 msec (Region IV), the hyperpolarization of the I-cell is starting to wear off and the cell
manages to emit one spike, sending moderate inhibition to ED – depression is induced. For ∆t
= 300 msec (Region V), the I-cell can emit two spikes when it receives glutamate 300 msec after
cholinergic activation – no plasticity is induced.
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←

↓

Figure S8: Sets of parameters for which we obtain the same results as the ones shown
in Figure 2.4

Figure S9: One pulse of GABA with 1 mM of amplitude and 1 msec of duration evokes an
inhibitory GABAA current at ED (IGABAA

). Glutamatergic activation of ED only evokes a depo-
larization of -63.56 mV and, consequently, an NMDA current INMDA of 6.75 pA. When ED does
not receive GABA inputs, glutamate inputs evoke a depolarization of -58.25 mV, and the resultant
NMDA current has an amplitude of 7.90 pA.
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3 | Exact reduction for networks
of neurons with complex dy-
namic phenotypes

3.1 Introduction

For decades, neuroscientists have been using mean-field theory to reduce the descrip-
tion of neural circuits composed of many interacting neurons to a low-dimensional
system that describes the macroscopic dynamical states of the network. This ap-
proach generates a reduced picture of the neural population that can be used to
study how brain functions arise from the collective behavior of spiking neurons.

Montbrió et al. (2015) pioneered an exact mean-field approach to link the micro-
scopic dynamics of the individual neurons to the macroscopic state of large neural
networks in terms of the firing rate and mean voltage. However, this approach was
limited to networks of one-dimensional quadratic integrate-and-fire (QIF) neurons
that cannot account for complex spiking and bursting dynamics.

Two-dimensional quadratic integrate-and-fire models (e.g., the Izhikevich neuron
model (Izhikevich, 2003)) reproduce a wide variety of spiking and bursting behaviors.
An exact mean-field reduction of such neuron models will enable us to derive the
macroscopic dynamics of populations of neurons with any kind of spiking properties.
In other words, it would allow us to use techniques of dynamical systems theory to
study the underlying mechanisms that lead to the emergence of specific population
behaviors, such as neural oscillations. Despite recent advances (di Volo et al., 2019;
Nicola and Campbell, 2013), exact analytical mean-field reduction methods for two-
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dimensional QIF are still lacking.
In this chapter, we derive a macroscopic exact-reduction (ER) description for

large networks of conductance-based interacting Izhikevich neurons. We start by
presenting the two-dimensional QIF neuron model we will use to describe the neurons
in our population. We then show how a separation of time scales of the variables
describing the state of the neurons allows us to explicitly solve the continuity equation
of the system, which represents the evolution of the state of the neural population.
By doing so, we obtain a system of two coupled variables, the firing rate and the
mean voltage, which together describe the evolution of the macroscopic system.
We support our findings with extensive numerical evidence involving simulation of
finite-size networks of neurons with different spiking properties compared with the
respective reduced system. This approach opens the possibility of generating realistic
mean-field models from electrophysiological recordings of individual neurons and can
be used to relate the biophysical properties of neurons with emerging behavior at
the network scale.
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3.2 Methods

3.2.1 Population model of coupled QIF neurons

We derive a mean-field model for populations of coupled Izhikevich neurons. Each
neuron i from a population W is described by a fast variable representing the mem-
brane potential, V (mV ), and a slow variable representing the recovery current,
u (pA):

Cm
dV W

i

dt
= a(V W

i − Vr)(V W
i − Vt)− uW

i + Ii (3.1a)

duW
i

dt
= α(β(V W

i − Vr)− uW
i ) (3.1b)

where the onset of an action potential is taken into account by a discontinuous
reset mechanism:

If V W
i > Vpeak ⇒ V W

i ← Vreset, uW
i ← uW

i + ujump

The parameteres are as follows: Cm stands for the membrane capacitance, Vr

is the resting potential, Vt the threshold potential, a is a scaling factor, α the time
constant of the recovery variable u, β modulates the sensitivity of the recovery
current to subthreshold oscillations, and Ii is the total current acting on neuron i.
We consider Ii = ηi +Iext +Isyn,i. The parameter ηi represents a background current.
To account for the network heterogeneity, the parameter ηi is randomly drawn from
a Lorentzian distribution with half-width ∆ centered at η, g(η) = 1

π
∆

(η−η)2+∆2 . Iext

is an external current acting on population W (identical to all neurons). Isyn,i is the
total synaptic current acting on neuron i given by:

Isyn,i =
∑
Z

sW Z(EZ
r − V W

i ) (3.2)

where EZ
r is the reversal potential of the synapse, and sW Z the synaptic conduc-

tance. If we assume that all neurons of population W are connected to all neurons
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of population Z, the synaptic conductance sW Z can be described according to the
following equation:

dsW Z

dt
= −sW Z

τs

+ pW Z

NZ

NZ∑
k=1

∑
f

δ(t− tk
f ) (3.3)

where δ is the Dirac mass measure and tk
f is the firing time of neuron k. The

parameter τs represents the synaptic time constant, NZ is the number of neurons of
population Z, and pW Z is the coupling strength of population Z on population W .

3.3 Results

3.3.1 Adiabatic approximation of the two-dimensional QIF
neuron model

We exploit the time scales difference between the dynamics of the membrane poten-
tial V and the recovery variable u to reduce the dimensionality of the neural network.
If the time scale of the recovery variable is much slower than the other variables, we
can invoke an adiabatic approximation by considering that all neurons of population
W receive a common recovery variable uW . This results in the modified Izhikevich
QIF model:

Cm
dV W

i

dt
= a(V W

i − Vr)(V W
i − Vt)− uW + Ii (3.4)

duW

dt
= α(β(⟨V ⟩W − Vr)− uW ) + ujump

NW∑
k=1

∑
f

δ(t− tk
f ) (3.5)

where ⟨V ⟩W is the mean membrane potential of the population W , described as
follows:

⟨V ⟩W =
∑NW

k=1 V W
k

NW

(3.6)

Note that we have incorporated the resetting mechanism of the variable uW in
the last term of equation (3.5). The onset of an action potential is now described
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by:

V W
i > Vpeak ⇒ V W

i ← Vreset

From now on we will consider equation (3.4) written in terms of the parameters
b = a(−Vr − Vt) and c = aVrVt:

Cm
dV W

i

dt
= a(V W

i )2 + bV W
i + c− uW + ηi +

∑
Z

sW Z(EZ
r − V W

i ) + Iext (3.7)

The main consequence of the adiabatic approximation is the reduction in the
number of state variables describing a neuron in the population from (V W

i , uW
i ) to

(V W
i ). This is a crucial step in our method since it enables us to solve the continuity

equation of the system analytically, as we demonstrate in the next section.

3.3.2 Mean-field reduction

In the mean-field limit, a population of neurons is well represented by its probability
density function, ρ. This function represents the proportion of neurons that are in a
particular state at time t. In our case, the state of a neuron is fully described by its
membrane potential. We denote ρ(V W |η, t) as the probability of finding a neuron
from population W with voltage V at time t, knowing that its intrinsic parameter is
η. Defining the flux J(V |η, t)(= dV

dt
ρ(V |η, t)) as the net fraction of trajectories per

time unit that crosses the value V , we can write the continuity equation

∂

∂t
ρ(V |η, t) = − ∂

∂V
J(V |η, t) (3.8)

which expresses the conservation of the number of neurons. Note that in integrate-
and-fire models, the number of trajectories is not conserved at V = Vreset and
V = Vpeak. By taking Vreset and Vpeak to infinity, we ensure that the boundary
conditions are the same and that the number of trajectories is conserved 1.

According to the Lorentzian ansatz (LA) (Montbrió et al., 2015), solutions of the

1By considering Vpeak = - Vreset = ∞, the resetting rule still captures the spike reset as well as
the refractoriness of the neurons.
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continuity equation (3.8) for a population of QIF neurons converge to a Lorentzian-
shaped function with half-width x(η, t) and center at y(η, t) of the form:

ρ(V W |η, t) = 1
π

x(η, t)
[V − y(η, t)]2 + x(η, t)2 (3.9)

We discuss the validity of the LA here applied in appendix A. Here, x(η, t) and
y(η, t) are statistical variables that represent the low dimensional behavior of the
probability density function ρ. Adopting the LA, we obtain the low dimensional
system:

Cm
∂x(η, t)

∂t
= (b−

∑
Z

sW Z)x + 2axy (3.10)

Cm
∂y(η, t)

∂t
= −ax2 + ay2 + (b−

∑
Z

sW Z)y + c− uW + Iext +
∑
Z

sW ZEZ
r + η

(3.11)

that can be written in the complex form as:

Cm
∂w(η, t)

∂t
= i(−aw2 + c− u + Iext +

∑
Z

sW ZEZ
r + η) + (b−

∑
Z

sW Z)y)w (3.12)

with w(η, t) = ix(η, t) + y(η, t)

3.3.3 The macroscopic variables: firing rate and mean volt-
age

The firing rate is obtained by summing the flux for all η at V = Vpeak. Taking
Vpeak →∞ the firing rate of a population W is defined as follows

rW (t) = limV →∞

∫
J(V W |η, t)g(η)dη (3.13)

The mean voltage of the population is obtained by integrating the probability
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density function ρ for all V and η values:

vW (t) =
∫ ∫

ρ(V W |η, t)g(η)dV W dη (3.14)

Adopting the solution for the continuity equation (3.9) and inserting it into equa-
tions 3.13 and 3.14 we have that the phenomenological variables x and y relate with
the firing rate, r, and mean voltage, v, as follows:

rW (t) = a

Cmπ

∫
x(η, t)(g(η))dη (3.15)

vW (t) =
∫ ∫ x(η, t)

π

V W (t)
(V W (t)− y(η, t))2 + x(η, t)2 g(η)dV W dη (3.16)

To avoid indeterminancy of the improper integral, we resort to the Cauchy prin-
cipal value to evaluate the integral 3.16 (p.v.

∫ +∞
−∞ h(x)dx = limR→∞

∫ R
−R h(x)dx). In

the case of a Lorentzian distribution, the principal value is given by p.v.
∫ +∞

−∞
σ
π

x
(x−x0)2+σ2 dx =

x0. We then have that the mean voltage is given by:

vW (t) =
∫

g(η)p.v.
∫ x

π

V W

(V W − y)2 + x2 dV W dη (3.17)

=
∫

g(η)ydη (3.18)

As previously mentioned, in the mean-field limit, the probability distribution
function g(η) is given by

g(η) = 1
π

∆
(η − η)2 + ∆2 = 1

π

∆
(η − (η + i∆))(η − (η − i∆))

The distribution g(η) has poles at η − i∆ and η + i∆, and can be written as

g(η) = 1
2πi

( 1
η − (η + i∆)

− 1
η − (η − i∆)

)

The integrals in equations 3.15 and 3.18 are evaluated by closing the integral
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contour in the complex η plane and using the residue theorem. We then have that
the firing rate and mean potential relate to the Lorentzian coefficients x and y

according to the following expression:

rW (t) = a

Cmπ
x(η ± i∆, t) (3.19)

vW (t) = y(η ± i∆, t) (3.20)

Given equations 3.19 and 3.20 and noting that

Cm
dx(η ± i∆, t)

dt
= (b−

∑
Z

sW Z)x + 2axy − (±∆) (3.21)

Cm
dy(η ± i∆, t)

dt
= −ax2 + ay2 + c− u + (b−

∑
Z

sW Z)y + Iext + η (3.22)

we have that the continuity equation reduces to the low-dimensional macroscopic
dynamical system:

Cm
dr

dt
= (b−

∑
Z

sW Z)rX + 2arv − (±∆) a

Cmπ

Cm
dv

dt
= −C2

mπ2

a
r2 + av2 + c− u + bvX + Iext + η

Since the firing rate always has to be non-negative, we needed to evaluate the
closed integral contour containing the pole of g(η) in the lower half of η plane, i.e.,
η − i∆. Until now, we considered the integral contour in both the upper and lower
half of the η. This is because the Lorentzian variables x and y have no physical
meaning. Therefore we could not make any conclusions regarding which contour to
consider when using the residue theorem to solve (3.15) and (3.18) until now.

We have that an exact mean-field reduction of a population of interacting conductance-
based Izhikevich two-dimensional QIF neurons is given by :
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Cm
drW

dt
= (b−

∑
Z

sW Z)rW + 2arW vW + ∆ a

Cmπ
(3.23a)

Cm
dvW

dt
= −C2

mπ2

a
r2

W + av2
W + c− uW + (b−

∑
Z

sW Z)vW +

Iext +
∑
Z

EZ
r + η (3.23b)

duW

dt
= α(β(vW − Vr)− uW ) + ujumprW (3.23c)

(3.23d)

with

dsW Z

dt
= −sW Z

τs

+ pW ZrZ (3.24)

3.3.4 Numerical simulations

The Izhikevich two-variable QIF model can, with the adequate choice of parameters,
reproduce many of the key features of firing patterns observed in neurons, such as
tonic spiking, subthreshold oscillations, and bursting (Izhikevich, 2003). We apply
the exact reduced system 3.23 described in the previous section to populations of
neurons with different firing dynamics and compare the resultant population activity
with direct simulations of QIF neurons to explore the versatility of the model.

Figure 3.1 illustrates a comparison of the dynamics of the full network of Izhike-
vich QIF neurons with its corresponding reduced system. Regarding the full system,
each population is made up of N = 3000 neurons. The neurons are described by the
two-dimensional QIF model 3.1, with the respective parameters specified in Table
3.1. The firing rate is calculated according to:r(t) = 1

N

∑N
k=1

∑
f δ(t− tk

f ). For the re-
duced system, the firing rate is calculated according to equation 3.23a. The reduced
description closely follows the firing activity of the full network for all populations.
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Figure 3.1: Comparison between the full network and exact reduced system for net-
works of neurons with distinct dynamics. (A) Membrane potential of spiking neurons with
different spiking features. Results were obtained using the Izhikevich two-dimensional QIF neuron
model Izhikevich (2003) with the adequate choice of parameters (see Table 3.1). (B) Firing rate
of populations of uncoupled neurons with different dynamics obtained from simulations of the full
and reduced system, and respective external current. (caption continues on next page)
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(C) Firing rate of a population of recurrently connected excitatory tonic spiking cells (E) and
inhibitory neurons with subthreshold oscilations (I). (D) External current acting on all neuronal
populations. Parameters: ∆ = 1, η = 15, N = 3000, pEE = 1, pEI = pIE = 1, pII = 2, τs = 1.

Rebound Tonic Class

Burst Spike Bursting Spiking 1 2 Sub. Osc.

a (mS/cm2mV ) 0.04 0.04 0.04 0.04 0.04 0.04 0.0454

b (mS/cm2) 5.3 4.99 4.88 4.93 4.96 4.98 5.02

c (mS/(cm2mV )) 174 154 148.2 152 154 155 137.76

Cm (µF/cm2) 1 1 1 1 1 1 2

Vr (mV) -65 -56 -65 -60 -65 -65 -60

α (msec−1) 0.01 0.03 0.02 0.02 0.02 0.2 0.05

β (mS/cm2) 0.9 0.25 0.32 0.2 0.1 0.26 1.1

ujump (µA/cm2) 0 4 0 2 4 0 0

Vpeak (mV) 30 30 30 30 30 30 30

Vreset (mV) -60 -60 -55 -60 -60 -55 -55

Table 3.1: Parameter values of two-dimensional QIF neuron model for neurons displaying different
firing properties. Parameters adapted from Izhikevich (2003).

3.3.5 Limitations of reduction formalism

One crucial assumption of the mean-field reduction formalism here presented is the
slow dynamics of the recovery variable u. However, every time a neuron reaches
Vpeak, the membrane potential V is reset to Vreset and the recovery variable u is
instantaneously increased by ujump, adding a discontinuity to the system. Given that
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the adiabatic approximation made in section 3.3.1 relies on the assumption that the
variable u is the slowest variable in the system and that therefore we can consider
that all the neurons in the population receive a variable u with approximately the
same value, adding an instantaneous jump invalidates the approximation made. The
highest the jump, the more evident this is. In the examples considered in Figure
3.1, ujump is small enough to describe the activity of all populations accurately.
This means the reduced system here derived can be used to study the activity of
populations with any of the spiking dynamics portrayed in Figure 3.1. Still, it may
not be adequate to describe the activity of specific populations of neurons found in
the brain that require a big ujump value to describe their dynamics accurately. This
is the case for rat spiny projection neurons of the neostriatum and basal ganglia.

ujump = 150

Spiny projection neuron

a. b.

ujump = 100 ujump = 50 ujump = 0

Figure 3.2: Comparison between full and reduced system for a population of spiny pro-
jection neurons. Spiny projection neurons of the neostriatum and basal ganglia can be described
by the two-dimensional QIF neuron model with a = 1 nS/mV , b = 105 nS, c = 2000 nSmV ,
Cm = 50 pF , Vr = −80 mV , α = 0.01 msec−1, β = −20 nS, Vpeak = 40 mV , Vreset = −55 mV
and ujump = 150 pA (Izhikevich, 2007d). Decreasing the value of ujump improves representation
of the population activity.

In Figure 3.2 we compare the full and reduced system for a population of uncou-
pled spiny projection neurons (ujump = 150 pA). We then systematically decrease
the value of ujump we see how that changes the accuracy between dynamics of the
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full and reduced system. All the neurons receive an external current as described in
Figure 3.1 (D). We see that there is not a perfect agreement between the full and
reduced system for a population of spiny projection neurons (left panel). Decreasing
the value of ujump notably improves the agreement between the full and reduced
system significantly, confirming that the high ujump is at the origin of the mismatch
observed. For ujump = 150, one way to improve the representation of the population
activity would be to decrease ∆. By decreasing the variance ∆ of the intrinsic vari-
able η, we decrease the heterogeneity of the network. As a result, we can consider
again that all the neurons in a population W are receiving the same variable u at
any given time (simulations not shown).

The particular case of bursting neurons

A critical point of the derivation of our reduced mean-field model is the assumption
that the firing rate of a population is defined as the flux at infinity. In other words,
we consider Vpeak → ∞. Similarly, we assume that Vreset → −∞. While moving
Vpeak towards infinity does not change the intrinsic spiking properties of the neurons
that constitute the population, moving Vreset in the direction of −∞ changes the
microscopic behavior of bursting neurons.

Figure 3.3 (B) depicts the phase portrait of an intrinsically bursting neuron.
Starting at point A, we are on the V-nullcline, where by definition dV

dt
= 0, and

the dynamics is going to be governed by the u-component. Since we are on the left
of the u-nullcline, the trajectory follows a downward flux. As u slowly decreases,
we reach point B below the V-nullcline, and the fast dynamics in the V direction
pushes the system towards Vpeak, at which point the system is reset to Vreset. This
last process repeats while u slowly increases until it reaches point C, where a voltage
reset takes the system to a point above the V-nullcline. In this region, the flux is
directed towards the left, which brings the system back to point A.

By decreasing the value of Vreset, we lose the bursting dynamics, and the neuron
model now shows tonic spiking instead (see Figure 3.3 (C)). One way to preserve
the bursting dynamics of the microscopic system would be to move the V and u-
nullclines by the same amount as the Vreset (Figure 3.3 (D)). We do so by decreasing
the values of Vr and Vt (remember that b = −a(Vr + Vt) and c = aVrVt). From
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Figure 3.3: Comparison of reduced and full system for a class of bursting neurons. (A)
Voltage trace of a bursting neuron using the Izhikevich QIF neurons model. Parameters: a = 0.04,
b = 5, c = 150, Cm = 1, Vr = −65, α = 0.02, β = 0.32, ujump = 0. (B) Nullclines, dV

dt = 0
(green line) and du

dt = 0 (yellow line), for a system of a bursting neuron and respective trajectory
(black line) on the phase plane. (C) Nullclines and trajectory of the system when Vreset decreases
from -55 to -70 mV on the phase plane. The trajectory of the system no longer shows a bursting
behavior. (D) Nullclines and trajectory of the system on the phase plane when b = 6, c = 232,
Vr = −80 and Vreset = −70. As a result of the changes in b, c and Vr the nullclines moved to the
left of the phase plane and we recover the trajectory of bursting neurons. (E) Comparison between
full and reduced system for a population of bursing neurons (with b = 6, c = 232, Vr = −80 and
Vreset = −70). The reduced system captures some but not all of the structure of the full bursting
system.
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Figure 3.3 (E), we see that by adopting this change the full and reduced system
activity have approximately the same shape, but that they do not perfectly agree. It
is important to note, however, that this method presents important faults: it implies
that at Vreset → −∞, the resting and threshold potential, Vr and Vt, should also
move to −∞. This is not only a problem from the biological point of view, but it
can also invalidate some mathematical results adopted during the derivation of the
mean-field reduction; namely, when solving explicitly the integrals that define the
firing rate and mean voltage of the population (equations (3.15) and (3.16)).
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3.4 Discussion
In this chapter, we presented a reduction formalism that allows us to predict the
collective dynamics of large networks of conductance-based interacting spiking neu-
rons with different spiking properties. Starting with a population of two-dimensional
QIF neurons, we considered an adiabatic approximation of a slow recovery variable,
which enabled us to reduce the dimension of variables that describes the state of a
neuron in the network. By doing so, we simplified the continuity equation describ-
ing the evolution of the state of our population, and we could directly apply the
Lorentzian ansatz to solve the continuity equation and reduce our full network to a
low-dimensional macroscopic system.

This mean-field formalism provides a paradigm to bridge the scale between pop-
ulation dynamics and the microscopic complexity of the physiology of the individual
cells, opening the perspective of generating biologically realistic mean-field models
from electrophysiological recordings for a variety of neural populations.

A similar idea appears in di Volo et al. (2019) and Nicola and Campbell (2013).
Di Volo and colleagues propose a mean-field model of spiking neurons with recovery
variable by calculating the transfer function in a semi-analytical way. This approach,
however, is limited to cases where the neuron dynamics has a stationary firing rate,
and it cannot be used to study populations of neurons whose transfer function cannot
be well-defined di Volo et al. (2019). Similar to our approach, Nicola and Campbell
use moment closure and a steady-state approximation of the recovery variable to
write an expression for the population firing rate, defined as the integral of the
population density function. However, they can’t apply the Lorentzian ansatz to
solve the integral because they don’t consider the heterogeneity of the population.
Therefore, for some types of networks won’t be possible to be evaluated explicitly
the firing rate integral (Nicola and Campbell, 2013).

Sufficient requirements for our approach to be valid are that the recovery variable
u is the slowest in the system and that ujump is relatively small. This means that
even though it is possible to describe any class of spiking dynamics, the reduced
model might be unable to describe the activity of specific neural populations, such
as spiny projection neurons of the neostriatum and basal ganglia.

It is important to note that even though the original QIF neuron model for tonic
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bursting neurons fills all the requirements, the mean-field system seems to be inade-
quate to describe the population’s behavior. Since, in the Izhikevich two-dimensional
QIF model, the bursting mechanism depends on the position the system acquires in
the phase-plane (V ,u) upon reset, when moving Vreset to infty will alter the behavior
of the microscopic system. Therefore, despite having a good agreement between the
full and reduced system, the population at study is no longer a population of tonic
bursting neurons but of tonic spiking neurons. A solution found was to move the u
and V-nullclines with Vreset, so that an action potential will reset the system to the
same position in the phase-plane relative to the nullclines and preserve the bursting
mechanisms of the original model. We do so by decrease the resting and threshold
potential, Vr and Vt by the same amount as Vreset. The full and reduced system
of the resultant tonic bursting neurons does not perfectly agree, but it accurately
reproduces the oscillatory behavior of the population. In other words, when the sys-
tem receives a big enough external input Iext, both the full and reduced system show
damped oscillations but with different frequencies. Therefore, the mean-field descrip-
tion may still be useful to study certain features of a population of bursting neurons
and qualitative behavior. However, it is important to note that the approach taken
for the case of the bursting neurons presents some fundamentals problems. Namely,
it implies that both the reset, resting and threshold potential are set to −∞. An
alternative solution is to consider the two-dimensional theta neuron model with a
slow recovery variable, which with the appropriate choice of parameters can produce
bursting (Ermentrout and Kopell, 1986), and apply the steps as for the derivation
of a two-dimensional QIF. In the theta neuron model, the system evolves along a
circle and V ∈ [−∞, +∞] maps to θ ∈ [0, 2π]. A deeper analysis of this approach is
necessary to prove its validity.

In the following chapter, we show how the exact mean-field model here derived
can be applied to study the generation and expression of macroscopic oscillations in
an entorhinal and hippocampal network.
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A Validity of the Lorentzian ansatz

Previous work by Montbrió et al. (2015) shows how the dynamics of a class of
QIF neurons generally converges to the Ott-Antonsen ansatz (OA) manifold. This is
known has the Lorentzian ansatz (LA). In this section, we clarify why the Lorentzian
ansatz holds for the ensembles of QIF neurons here considered.

We start by introducing the following transformation:

V W
i = tan

θW
i

2
(25)

Then, Equation 3.1a transforms into:

Cm
dθW

i

dt
= a(1−cosθW

i )+(c−uW +ηi +
∑
Z

sW ZEZ
r +Iext)+(b−

∑
Z

sW Z)sinθW
i (26)

Note that V = ±∞ corresponds to θ = ±π.

According to the Ott-Antonsen ansatz (Ott and Antonsen, 2008), in the thermo-
dynamic limit, the dynamics of a class of systems

dθ

dt
= Ω(η, t) + Im(H(η, t)e−iθ) (27)

converges to the OA manifold

ρ̃(θ|η, t) = 1
2π

Re[1 + α(η, t)eiθ

1− α(η, t)eiθ
] (28)

where the function α(η, t) is related to w(η, t) = x(η, t) + iy(η, t) as

α(η, t) = 1− w(η, t)
1 + w(η, t)

(29)

Noticing that in the new variable θW our system belongs to the class 27 with
Ω(η, t) = a + c + ∑

Z sW ZEZ
r + Iext + η − uW and H(η, t) = (−b + ∑

Z sW Z) + i(a−
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c−∑
Z sW ZEZ

r − Iext − η + uW ), we infer that it converges to:

ρ̃(θ|η, t) = 1
π

Re[
1 + xtan2( θ

2) + ytan( θ
2) + i(ytan2( θ

2) + (1− x)tan( θ
2))

tan2( θ
2) + x− ytan( θ

2) + i(y − (1− x)tan( θ
2))

] (30)

Therefore, in the original variable V X , our system converges to:

ρ(V W |η, t) = 1
π

Re[1 + x(V W )2 + yV W + i(y(V W )2 + (1− x)V W )
(V W )2 + x− yV W + i(y − (1− x)V W )

] (31)

After some algebraic manipulations, we recover the LA (3.9)

ρ(V W |η, t) = 1
π

x(η, t)
(V W − y(η, t))2 + x(η, t)2 (32)

The LA ansatz solves the continuity equation exactly, making the system amenable
to theoretical analysis. In section 3.3.4, we show that these solutions agree with the
numerical simulations of the original QIF neurons, further validating the application
of the LA.
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4 | The Entorhinal Cortex as a theta
rhythm generator

4.1 Introduction

Local field potentials in the entorhinal cortex (EC) show theta oscillations under
different conditions. A regular prominent theta rhythm is observed in the EC during
voluntary movements and REM sleep (Alonso and García-Austt, 1987), as well as
under anesthesia (Mitchell and Ranck Jr., 1980). Early work suggested that the
medial septum may be enforcing the theta rhythm into which the EC network is
entrained (Gogolák et al., 1968; Stewart and Fox, 1990). This view is challenged
by experimental work showing that lesions in the medial septum reduce but do
not terminate theta rhythms in the hippocampal formation (Colgin, 2013; Winson,
1978) and that rhythmic activity seems to be originating in the medial entorhinal
cortex (Mitchell and Ranck Jr., 1980; Gu and Yakel, 2017). The EC is believed
to provide the major excitatory rhythmic drive to hippocampal theta oscillations
(Buzsáki, 2002; Kamondi et al., 1998; Brankack et al., 1993). Therefore, a thorough
knowledge of the intrinsic circuit properties of the EC is essential to understanding
the origins of hippocampal theta and how the entorhinal structure modulates the
rhythm’s power and frequency.

The EC is organized into layers that can be characterized by different input-
output connectivity and constituent neuron types. The deep layers (V/VI) are made
of a heterogeneous population of excitatory pyramidal cells selectively targetted by
outputs from the hippocampal CA1 region and project locally to the deep and su-
perficial (II/III) layers of the EC. The superficial layers comprise fast-spiking PV+
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interneurons, excitatory pyramidal cells, and stellate cells, with the stellate cells
making up the largest group of principal cells (Witter et al., 2017). So far, there
is no anatomical evidence that they form synaptic connections between themselves.
In vitro studies revealed that stellate cells form strong reciprocal connections with
PV+ interneurons and sparse connections with pyramidal cells of the superficial lay-
ers (Couey et al., 2013; Pastoll et al., 2012). Despite conflicting reports concerning
stellate cells’ projections to deep layers, it is well-established that they constitute
the primary excitatory input of the hippocampus (Surmeli et al., 2015; Ohara et al.,
2018; Tamamaki and Nojyo, 1993; Klink and Alonso, 1998; Buckmaster et al., 2004b;
Canto et al., 2008).

Principal stellate cells have long been considered a key contributor to the entorhi-
nal theta rhythm. They are endowed with slow hyperpolarizing currents that give
them the ability to generate persistent rhythmic subthreshold oscillatory activity
with a theta frequency when depolarized (Alonso and Klink, 1993; Rowland et al.,
2018).

This chapter proposes a circuit model of the EC to study its intrinsic properties
that allow external excitatory inputs to drive the system into an oscillatory regime.
Firstly, we use Izhikevich’s QIF neuron model with an adaptation variable to de-
scribe the entorhinal pyramidal cells, stellate cells, and fast-spiking interneurons and
apply the exact reduction formalism presented in chapter 3 to obtain a macroscopic
description of the entorhinal network. Then, to study how synchronized theta os-
cillations can arise in such a network, we infer the space of connectivity parameters
that generate coherent theta rhythm. Our results suggest that the EC may uti-
lize distinct subnetworks to generate low-frequency theta oscillations (type 2) and
high-frequency theta oscillations (type 1).
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4.2 Methods

4.2.1 Network of QIF neurons

In this study, we use a minimal spiking neural network model to represent the en-
torhinal cortex region. We consider a population of regular spiking pyramidal cells
(E) - as found in the deep layers of the EC -, and a population of stellate cells (S)
and fast-spiking interneurons (I) - as observed in the superficial layers. Note that
although you can also find pyramidal cells in the superficial layers of the EC, we do
not consider this population in our model since, contrarily to stellate cells, it is not
clear if they play a role in the generation of the theta rhythm. In addition, they
only form sparse connections with stellate cells (Witter et al., 2017; Couey et al.,
2013; Pastoll et al., 2012). For similar reasons, we do not take into account the
activity of other types of interneurons found in the superficial layers of the EC, such
as CCK-expressing interneurons, since they are less abundant than PV+ cells and
do not form connections with stellate cells (Witter et al., 2017).

Each cell i of each population W is described by the modified version of the
Izhikevich QIF neuron model:

Cm
dV W

i

dt
= aV W

i + b(V W
i )2 + c− uW + ηi + Iext + Isyn,i (4.1)

duW

dt
= α(β(⟨V ⟩W − Vr)− uW ) + ujump

NW∑
k=1

∑
f

δ(t− tk
f ) (4.2)

where Vi is the membrane potential of neuron i, and u the slow recovery variable
of population W . The parameters Cm, a, b, c, Vr α, β and ujump determine the
dynamics of the neuron (see Chapter 3, section 3.2 for a more detailed explanation).
The function δ is the Dirac mass measure and tk

f is the firing time of neuron k. The
parameter ηi represents a background current randomly drawn from a Lorentzian
distribution that accounts for the network’s heterogeneity, Iext is an external current
acting on all the neurons of the population, and Isyn,i is the total synaptic current
acting on neuron i.

The parameters Cm, a, b, c, Vr α, β and ujump are chosen such as to reproduce
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the electrophysiological profile of the three neuron types: stellate cells with intrin-
sic subtreshold oscillations (S), class 1 pyramidal cells (E), and fast-spiking PV+
interneurons (I). All the parameters used are described in Table 4.1.

S E

I

A B

C

Figure 4.1: Dynamics of neurons in the enthorinal cortex. (A) Membrane potential of
stellate cells using the Izhikevich’s QIF with recovery variable model. Parameters taken from Izhike-
vich (2007e). (B) Membrane potential of regular spiking pyramidal cells using the Izhikevich’s QIF
with recovery variable model. Parameters taken from Izhikevich (2007c) (C) Membrane potential
of fast-spiking interneurons using the Izhikevich QIF with recovery variable model. Parameters
taken from Izhikevich (2007a). All parameters are described in Table 4.1

.

To our knowledge, there are no anatomical studies that determine precisely what
is the relative size of each population of neurons in the EC. Therefore, we consider
the three populations (S, I and E) to have the same size, similar to what is done in
Neru and Assisi (2021). We assume that each population is made of 3000 neurons.
We find that this is enough to get a reasonable estimate of the population’s firing
rates.
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S-cells I-cells E-cells

a (nS/mV ) 0.75 1 0.7

b (nS) 78.75 98 73.5

c (nS/mV ) 2025 2320 1820

Cm (pF ) 200 40 100

Vr (mV) -60 -58 -65

α (msec−1) 0.01 0.11 0.02

β (nS) 15 1.2 -2

ujump (pA) 0 0 100

Vpeak (mV) 30 30 30

Vreset (mV) -50 -65 -60

Table 4.1: Parameter values of two-dimensional QIF neuron model for entorhinal stellate cells (S),
fast-spiking interneurons (I), and pyramidal cells (E). Parameters adapted from Izhikevich (2007e),
Izhikevich (2007a) and Izhikevich (2007c), respectively.

4.2.2 Synaptic model

In vitro studies show that pyramidal cells in the deep layers of the EC receive external
excitatory inputs from the hippocampal CA1 region and project to interneurons
and stellate cells in the superficial layers (Witter et al., 2017; Alonso and Klink,
1993; Hamam et al., 2000). Some studies also suggest the existence of reciprocal
connections from stellate cells to pyramidal cells in the deep layers (Surmeli et al.,
2015). Fast-spiking interneurons, in turn, form strong bi-directional connections
with stellate cells (Witter et al., 2017; Alonso and Klink, 1993; Hamam et al., 2000).
That being said, we consider the S-E-I network connected as schematically shown in
Figure 5.1, where all populations are recurrently connected through gap junctions
except for S-cells that do not form monosynaptic connections between themselves
(Witter et al., 2017; Winterer et al., 2017) 1.

1Adding S-S connections in our model did not significantly alter the posterior of the remaining
connectivity parameters (Figure S2)
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The synaptic currents were modeled as follows:

Isyn,i =
∑
Y

sW Z(EZ
r − V W

i ) (4.3)

where EZ
r is the reversal potential of the synapse, and sW Z the synaptic conduc-

tance. The reversal potential depends on the nature of the synapse. If the synapse
originates on an inhibitory cell population Z, EZ

r = −80 mV; if it originates on an
excitatory population EZ

r = 0 mV. The synaptic conductance sW Z is given by:

dsW Z

dt
= −sW Z

τs

+ pW Z

NZ

NZ∑
k=1

∑
f

δ(t− tk
f ) (4.4)

where the parameter τs represents the synaptic time constant, NZ is the number
of neurons of population Z, and pW Z is the coupling strength of population Z onto
population W .

4.2.3 Mean-field description of the EC

We take advantage of the exact mean-field reduction system derived in chapter 3
to obtain a macroscopic description of the EC neural network. For simplicity, we
consider instantaneous synapses (sW Z = pW ZrZ) 2. We then have that the following
reduced system describes our network

For the S-cells:

Cm
drS

dt
= (b− pSIrI − pSErE)rS + 2arSvS + ∆a

πCm

(4.5a)

Cm
dvS

dt
= −(πrSCm)2

a
+ av2

S + (b− pSIrI − pSErE)vS + c (4.5b)

− 80pSIrI − uS + Iext + η

duS

dt
= α(β(vS − Vr)− uS) + ujumprS (4.5c)

For the I-cells:

2We later investigate how adding synapses with a slow dynamics affects our results (section
4.3.3).
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Cm
drI

dt
= (b− pIIrI − pISrS − pIErE)rI + 2arIvI + ∆a

πCm

(4.6a)

Cm
dvI

dt
= −(πrICm)2

a
+ av2

I + (b− pIIrI − pISrS − pIErE)vI + c (4.6b)

− 80pIIrI − uI + Iext + η

duI

dt
= α(β(vI − Vr)− uI) + ujumprI (4.6c)

For the E-cells:

Cm
drE

dt
= (b− pEErE − pESrS − pEIrI)rE + 2arEvE + ∆a

πCm

(4.7a)

Cm
dvE

dt
= −(πrECm)2

a
+ av2

E + (b− pEErE − pESrS − pEIrI)vE + c (4.7b)

− 80pEIrI − uE + Iext + η

duE

dt
= α(β(vE − Vr)− uE) + ujumprE (4.7c)

Figure 5.1 illustrates a comparison of the dynamics of the full network with the
low-dimensional reduced system. It shows the time evolution of the external stimulus
acting on all three populations (Figure 5.1 (a)), the spiking activity obtained from
simulations of the full network, and the firing rates of the three populations given by
the reduced description ((4.5a), (5.6a) and (5.7a) for the S, I and E-cells, respectively)
and calculated from the full network simulations (rW = 1

NW

∑NW
k=1

∑
f δ(t− tk

f )).
The reduced description captures the shape of the firing activity of the full net-

work. This confirms that we can safely employ the reduced mean-field model to
interpret the phenomena observed on the spiking network and to obtain theoretical
predictions for its dynamics.

4.2.4 Bayesian inference algorithm for model parameter iden-
tification

In Bayesian inference, one can infer the parameters of interest θ from observed data
x0 given a model of their statistical relationship. In other words, given an estimation
of the parameter distribution, which we call prior, and a likelihood (or sampling
function) p(x0|θ) we can compute the a posterior distribution p(θ|x0) = p(x0|θ)p(θ)
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Figure 4.2: Comparison between the full network dynamics and the reduced system.
Left panel: Schematic illustration of the neural network. The parameter pij denotes the connectivity
strength of the population j onto the population i. The external current a acting on the different
populations is denoted by Iext. Right panel: (A) Time evolution of the stimulus Iext. (B) Spiking
activity obtained from simulations of the full network. The first 300 neurons are stellate cells (S); the
following 300 are inhibitory (I); the last 300 are excitatory (E). (C) Firing rate of the SC obtained
from simulations of the full and reduced system. (D) Firing rate of the I-cells obtained from
simulations of the full and reduced system. (E) Firing rate of the E-cells obtained from simulations
of the full and reduced system. Parameters: N = 3000; ∆ = 15; η = 25; pSI = pIS = 50;
pSE = pES = 90; pIE = pEI = 40; pII = 55; pEE = 40.

which is high for parameters θ consistent with the data x0, and it approaches zero as
discrepancies increase. However, the likelihood function of most mechanistic models
is untractable. In that case, one can use likelihood-free inference methods, such
as Sequential Neural Posterior Estimation (SNPE), that compute posterior beliefs
over parameters using simulations from the model rather than likelihood evaluations
(Leuckmann et al., 2017).

We use a simulation-based inference algorithm that implements SNPE (Gonçalves
et al., 2020) to infer the connectivity parameters of the S-E-I network that enable
the generation of theta rhythm.

SNPE is a machine learning tool that identifies all the parameters of a mecha-
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nistic model that reproduce the target data (or selected data features). Given the
data (or selected data features) x0, a mechanistic model with parameters θ, and a
prior distributions of the parameters p(θ), it returns a posterior distribution p(θ|x0).
Contrarily to other likelihood-free methods, SNPE uses all simulations to train an
artificial network to identify all admissible parameters instead of filtering out simu-
lations, i.e., it finds not only the best but all parameters consistent with the data.

The SNPE algorithm runs N simulations for a range of parameter values and
trains an artificial neural network to map any simulation result onto a range of pos-
sible parameters. Parameter samples θn are drawn from the prior p(θ). A simulated
response of the mechanistic model is obtained for each parameter sample, and a
summary statistic xn is computed. This results in N pairs of parameters and sum-
mary statistics (θn, xn). At the end, the network is trained to find a mapping from
summary statistics to parameter distributions by minimizing a loss function:

L = −log(qϕ(θn|xn)) (4.8)

where qϕ(θn|xn) is the weighted posterior distribution (the network weights ϕ are
adjusted based on the simulations results and inference settings). In other words,
the network is trained to find a mapping from summary statistics to parameter
distributions. Suppose a single round of inference is not sufficient for results to
converge. In that case, SNPE can be run in multiple rounds, in which samples
are drawn from the distribution qϕ(θn|xn) obtained at the end of the previous round
instead of from the prior distribution p(θ). After the last round, qϕ(θn|xn) is returned
as the inferred posterior distribution on parameters θ (Gonçalves et al., 2020).

We use a SNPE framework to identify the connectivity parameters of the network
(pIS, pSI , pEI , pIE, pSE, pES, pEE,pII) for which each population of the S-E-I network
is synchronized at theta frequency. We simulated the network’s firing rates when an
excitatory external current Iext acts on the E-cells. This follows anatomical studies
of the EC showing that excitatory hippocampal inputs target pyramidal cells in the
deep layers of the EC (Witter et al., 2017). We define the frequency and amplitude
of the firing rates of the three populations as the model output used for inference.
More specifically, we consider firing rates with a frequency between 4 and 12 Hz
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and constant amplitude throughout 3000 msec as the desired simulated feature. We
find that a simulation period of 3000 msec is long enough to accurately calculate
the frequency of oscillations of the firing rates and detect a potential decrease in
amplitude while not being too computationally expensive.

We based our algorithm on the Python code available at https://www.mackelab.
org/sbi/. Inference is calculated after one round of 500 simulations. We chose uni-
form distributions for all priors. These simulation specifications proved to be enough
for the system to converge to a solution.

4.3 Results

4.3.1 Estimating the EC network connectivity

Despite the progress made in the last years in mapping the entorhinal connectivity,
it is still not clear what synaptic connections in the EC are enabling this structure
to generate sustained theta oscillations. We use a Bayesian inference machine learn-
ing tool, SNPE, to derive the posterior distribution of the connectivity parameters
(pSI , pIS, pES, pSE, pIE, pEI , pII , pEE) for which the EC network model produces
sustained rhythmic activity with theta frequency. We look at the network’s response
when an excitatory external current Iext acts on the E-population. More precisely,
we use a frequency of the firing rates rS, rE and rI between 4 and 12 Hz as the
target feature that the model needs to reproduce. This follows anatomical studies
showing that hippocampal CA1 pyramidal cells target pyramidal cells on the deep
layers of the EC (Witter et al., 2017), and experimental results showing that the
EC is not an independent generator and it needs excitatory hippocampal inputs to
generate theta oscillations (Gu and Yakel, 2017). For simplicity, we consider sym-
metric connections between the populations, i.e. pW Z = pZW . For a first approach,
we consider that this simplification can still give us an estimated idea of how the
activity of each populations constraints the generation of oscillations. Moreover, by
considering symmetric connections we reduce the number of parameters to explore
which increases the efficiency and speed of the inference algorithm. Regarding the
prior distribution of the connectivity parameters, we consider the uniforms distribu-
tions pSI , pIS ∈ U(0,100), pSE, pES ∈ U(0,190), pIE, pEI ∈ U(0,100), pII ∈ U(0,100),
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pEE ∈ U(0,100). Despite the lack of data to support our choice of priors, we find
that the system converged to a solution in the chosen prior interval.

Initially, we infer both the connectivity parameters pW Z and the external current
Iext to get an estimation of the magnitude that Iext needs to have for the network to
oscillate. From the resulting posteriors, we estimate that with an external current
Iext=100 pA, there is a connectivity configuration for which the system will generate
theta (see Figure S1). We then adopt this value for the current and re-optimize
the posteriors of the connectivity parameters. By doing so, we get a more accurate
estimation of the parameters pW Z , since the system needs to learn how to represent
theta oscillations by sampling from a smaller number of parameters.

The posteriors distributions of the connectivity parameters are shown in Fig-
ure 4.3 (A). We select connectivity parameter values given by the mean of the
posteriors, indicated by the violet lines/points in Figure 4.3 (A) (pIS,pSI=43.9714,
pSE, pES=160.2503, pIE, pEI=34.4222, pII=55.4267, pEE=84.4322). By doing so, we
obtain a set of parameters sampled from the high probability region. As we can
see in Figure 4.3 (B) and (C), these parameters lead to simulations with the se-
lected features. In other words, the populations firing rates obtained show sustained
oscillations with a frequency in the theta range (6.3 Hz).

We next study the behavior of the network when its parameters are in the high
probability posterior region. For that, we adopt the mean values of the parameters
posterior distribution defined before and examine the system’s dynamics when the
external current changes. Namely, we plot the bifurcation diagram of the populations
firing rates, rE, rS and rI , with the external current Iext as a bifurcation parameter
(Figure 4.3 (D)). The three populations’ firing rates exhibit two Hopf bifurcation
points, at Iext = 55.42 pA and Iext = 129.7. This indicates the system is in an
oscillatory regime for 55.42 < Iext < 129.7. Notably, for Iext > 69 pA the frequency
of the oscillations are in the theta range (Figure 4.3 (E))

We notice that the connectivity of the S-E subnetwork ,pSE, pES and pEE, is more
constrained (with a standard deviation of 15 and 12, respectively) and has a higher
mean value (160.2503 and 84.4322, respectively) than the other parameters pSI , pIS,
pIE, pEI and pII (with mean values 43.9714, 34.4222 and 55.4267 and standard de-
viations 22, 18 and 24, respectively). In other words, the high posterior probability
region is highly constrained by high values of S-E and E-E connections.
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Figure 4.3: Estimating network connectivity for theta generation in a mean-field model
of the EC network using statistical inference. Top left panel: Schematic illustration of neural
network with stellate cells (S), fast-spiking interneurons (I), and pyramidal cells (E). (A) Posterior
distribution over 5 connectivity parameters, with Iext=100 pA. Mean of parameters posterior dis-
tribution represent high probability parameters (in purple): pIS ,pSI=43.9714; pSE , pES=160.2503;
pIE , pEI=34.4222; pII=55.4267; pEE=84.4322. (B) Network activity generated by posterior sam-
ples from a high probability region (in purple, in (A)). Top panel: Spiking activity obtained from
simulations of the full network. We look at the activity of 300 random neurons of each popula-
tion. The first 300 neurons are stellate cells (S); the following 300 are inhibitory (I); the last 300
are pyramidal cells (E). Bottom panel: Firing rates of S, I and E-cells population obtained from
simulations of the reduced mean-field system. (caption continues on next page)
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(C) Power spectrum of the activity of the S, I and E population’s firing rate calculated over 10
seconds. The power spectrum of all populations shows a maximum at 6.3 Hz. (D) Bifurcation
diagrams of the firing rates of the 3 neural populations. System is in an oscillatory regime for HB1
< Iext < HB2, with HB1=55.42 pA and HB2=129.7 pA. HB: Hopf bifurcation. (E) Frequency of
oscillations of the network in the stable limit cycle regime (HB1 < Iext < HB2). For Iext > 69Hz,
the system oscillates with a frequency between 4 and 8.5 Hz, which is in the theta range (grey
area).

These observations may indicate that the network is utilizing more the S-E sub-
network to generate theta rhythm than the full S-E-I network. To explore this
hypothesis, we start by examining changes in the firing rates of the S and E-cells
populations when we change the strength of connection of these two populations
with the I-cells, pIE, pEI and pSI , pIS.

BA

Figure 4.4: System dynamics for changing S-I and E-I connectivities. (A) Bifurcation diagram of
S and E firing rates with the connectivity between the E and I population, pIE , pEI , as a bifurcation
parameter. The system is in an oscillatory regime for pIE , pEI = 83.26. Bottom panel: Frequency of
the network’s stable limit cycle (83.26 <pIE , pEI) as a function of the I-E connectivity. Stable limit
cycle is always in the theta range frequency of oscillations (grey area). (B) Bifurcation diagram of
S and E firing rates with the connectivity between the S and I population, pSI , pIS , as a bifurcation
parameter. The system is in an oscillatory regime for pSI , pIS = 133.6. Bottom panel: Frequency
of the network’s stable limit cycle (133.6 <pSI , pIS) as a function of the I-S connectivity. Stable
limit cycle is always in the theta range frequency of oscillations (grey area). Remaining parameters
from high probability region (from Figure 4.3 (A), in purple). HB: Hopf bifurcation.

When plotting a bifurcation diagram using pIE, pEI and pSI , pIS as the bifurca-
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Chapter 4: The Entorhinal Cortex as a theta rhythm generator

tion parameters, we see that oscillations with a theta frequency persist when these
parameters are zero and cease to exist when we increase them beyond an Hopf bi-
furcation parameter at pIE, pEI = 83.26 and pIE, pEI = 133.6 (see Figure 4.4). It
is important to note, however, that the E-I connection, although not necessary to
generate oscillations, can modulate its frequency. Increasing pIE, pEI decreases the
frequency of oscillations (Figure 4.4 (C)). The S-I connection, on the other hand,
does not modulate significantly the frequency of the network (Figure 4.4 (D)). These
results indicate that removing the S-I or E-I connections from the circuit does not
impair its ability to generate theta rhythm.

4.3.2 S-E circuit as a theta rhythm generator

To further explore the role of the I-cell and the S-E subnetwork in the generation
of theta oscillations, we test the ability of the S-E circuit to act as a theta rhythm
generator.

Removing the I population while keeping the same values for the pSE, pES and
pEE connectivity parameters (pSE, pES = 160.2503 and pEE = 84.4322) did not pre-
vent the generation of theta in the S-E circuit (Figure 4.5). Furthermore, it did not
significantly change the bifurcation diagrams of the S and E populations firing rates.
For 44.77 < Iext < 110.3 pA, the system is in an oscillatory regime with approxi-
mately the same amplitude as the one generated by the S-E-I network (Figure 4.5
(C)). Similarly, the stable limit cycles generated in the S-E network are primarily in
the theta range (Figure 4.5 (D)). This is in agreement with previous studies show-
ing that model stellate cells synchronize with fast excitatory synapses (Acker et al.,
2003).

Next, we focused on the potential functional role of the S-E network connectivity
parameters in network dynamics. From Figure 4.6 we see that the recurrent connec-
tions in the E population are not necessary to obtain sustained oscillations in our
population model. When pEE = 0, the system is still in an oscillatory regime for
172 < pSE, pES < 247 However, increasing the value of pEE value inside the region of
oscillatory regime (grey area in Figure 4.6, left panel), the power of the firing rate of
both S and E increases (see Figure 4.6, right panel). Hence, a recurrently connected
E population, although not necessary, increases the power of the oscillations. Re-
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Figure 4.5: Dynamical analysis of the reduced S-E network. Top panel: Schematic il-
lustration of the S-E sub-network. (A) Network activity generated by posterior samples from a
high probability region of Figure 4.3 (A) (in purple): pSE , pES = 160.2503 and pEE = 84.4322),
with pSI , pIS = pEI , pIE = pII = 0 and Iext = 100 pA. Top panel: Spiking activity obtained from
simulations of the full network. We look at the activity of 300 random neurons of the S and E
population. The first 300 neurons are stellate cells (S); the last 300 are pyramidal cells (E). Bottom
panel: Firing rates of S and E-cells population obtained from simulations of the reduced mean-field
system. (B) Power spectrum of the activity of the S and E populations firing rate calculated over
10 seconds. The power spectrum of both populations shows a maximum at 7 Hz. (C) Bifurcation
diagrams of the firing rates of the S and E populations. System is in oscillatory regime for HB1 <
Iext < HB2, with HB1=44.77 pA and HB2=110.3 pA (HB: Hopf bifurcation). (D) Frequency of
oscillations of the network in the stable limit cycle regime (HB1 < Iext < HB2). For Iext > 58Hz
the system oscillates with a frequency in the theta range (grey area).
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garding the frequency of the oscillations, even though it seems that overall increasing
pEE or pSE, pES increases the frequencies of oscillations, this effect is small.
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Figure 4.6: Exploring reduced EC network dependence on connectivity parameters.
Stability region of the S-E subnetwork for Iext=100 pA, constrained by the S-E and E-E connections
(grey area). Power and frequency of oscillations produced change as we move inside the stability
region. Coordinates: (1) pEE = 0 and pSE , pES = 200; (2) pEE = 44 and pSE , pES = 173;
(3) pEE = 84 and pSE , pES = 160; (4) pEE = 84 and pSE , pES = 125; (5) pEE = 100 and
pSE , pES = 124.

4.3.3 Entorhinal mechanisms of type 1 and type 2 theta gen-
eration

The theta rhythm can be classified into type 1 or type 2, according to its frequency
and behavioral correlates. Type 1 theta has a frequency of 8-12 Hz and it is typically
observed during exploratory behavior and REM sleep; type 2 has a lower frequency
of 4-7 Hz and it appears during states of alert immobility and under anesthesia.
Experimental studies suggest that the EC may be modulating the two types of theta
differently; namely, while lesions to the EC can abolish type 1 theta, they disrupt
behavioral and sensory correlates of both type 1 and type 2 (Montoya and Sainsbury,
1985; Buzsáki, 2002). We hypothesize that the EC is utilizing different subnetworks
to generate type 1 and type 2 theta oscillations. We suggest that while the S-E
network can efficiently generate type 1 oscillations, under certain conditions, we
may need to utilize the full S-E-I network to generate type 2 theta oscillations, in
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particular when Iext is very high. The main observations leading to this hypothesis
were the fact that the frequency of oscillations increases rapidly with Iext in the
S-E circuit (Figure 4.5 (D)) while increasing slowly in the S-E-I network (Figure
4.3 (E)). Additionally, increasing the strength of the E-I connection decreases the
network frequency of oscillations, as already mentioned (see Figure 4.4 (A)).

To further explore this hypothesis, we repeat the method used in section 4.3.1
to infer the posterior distribution of the S-E-I network connectivity that generates
sustained oscillations with a frequency of 8-12 Hz or 4-7 Hz (type 1 and type 2
rhythm, respectively) when it receives an external input Iext = 100 pA. We consider
the prior distributions pSI , pIS ∈ U(0,100), pSE, pES ∈ U(0,190), pIE, pEI ∈ U(0,100),
pII ∈ U(0,190), pEE ∈ U(0,100). For these prior intervals, our model converges to a
solution (Figure 4.7).

To generate low-frequency theta rhythm, the system is making use of the E-I
connection more than to generate high-frequency theta, i.e. the mean value of the
posterior distribution of pEI , pIE and pII is higher than for the high-frequency case.
The opposite is true for the recurrent connections pEE. The posteriors of pSE, pES

and pSI , pIS are identical in for both type 1 and type 2 theta generation. This seems
to indicate that I-cells became more relevant in the generation of low-frequency
theta rhythm. Please note that the posterior parameter distributions represent the
probability of parameters taken from the distribution reproducing the target feature,
reproducing high-frequency and low-frequency theta. That being said, it does not
mean that the S-E subnetwork cannot reproduce low-frequency theta oscillations. In
fact, the S-E subnetwork considered in section 4.3.2 is reproducing theta oscillations
in the low-frequency range (4-7 Hz).
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Figure 4.7: Estimating the connectivity of the EC network using statisticial inference
for the generation of type 1 (8-12 Hz) and type 2 (4-7 Hz) theta oscillations with
Iext=100 pA. (A) Posterior distribution over the S-E-I network connectivity parameters for the
generation of type 1 theta rhythm. High probability parameters (in purple): pSI , pIS = 46.0033,
pSE , pES = 161.6447, pIE , pEI = 30.5906, pII = 97.5407, pEE = 139.4172. (B) Posterior distribu-
tion over the S-E-I network connectivity parameters for the generation of type 2 theta rhythm. High
probability parameters (in purple): pSI , pIS = 46.8981, pSE , pES = 156.8319, pIE , pEI = 40.3033,
pII = 55.3938, pEE = 69.4229.
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For a S-E network receiving a current Iext=150 pA, the SNPE algorithm could
not find a connectivity configuration capable of generating type 2 oscillations, while
for a S-E-I network, the system converged to a plausible solution (see Figure 4.8)
if we incorporate a slow connection between the S and I-cell populations (dgISslow

dt
=

−gISslow

100 + pISslow
rS).

S-E-I network with Iext=150 (with slow S-to-I synapses)

S-E network with Iext=150 pA
A

slow

pSE, pES

pEE

pSI, pIS

pSE, pES

pIE, pEI

pII

pEE

pIS slow

B

Figure 4.8: Inference of connectivity parameters that enable the generation of type 2
theta for different EC subnetwork configurations. (A) Left panel: Posterior distributions
of connectivity parameters of S-E subnetwork. Even though the high probability region is not
well defined, we consider the following parameter samples (in purple): pSE , pES = 106.7219 and
pEE = 51.1498. Right panel: Spiking activity from simulations of the full network (first 300
neurons are pyramidal cells, and last 300 neurons are stellate cells), and firing rates of the S and
E populations from simulations of the reduced mean-field model, with parameters from the high
probability region. (caption continues on next page)
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(B) Left panel: Posterior distributions of connectivity parameters of S-E-I subnetwork with slow
S-to-I synapses (τs = 100 msec). We consider parameter samples from the high probability re-
gion (in purple): pSI , pIS = 36.3320; pSE , pES = 152.7230; pIE , pEI = 53.3772; pII = 105.9564;
pEE = 76.2192; pISslow

= 9.2546. Right panel: Spiking activity from simulations of the full net-
work, and firing rates of the S,I and E populations from simulations of the reduced mean-field
model, with parameters from the high probability region.

Bear in mind that so far, we had only considered instantaneous synapses. Adding
a slow synapse only improved convergence to a solution in the S-E-I network. More
specifically, adding slow synapses between S and E cells on the S-E network did not
lead to the generation of the low-frequency theta.

In summary, if the external current Iext is small enough (for example, 100 pA),
both the S-E and S-E-I network are capable of generating low-frequency oscillations
with similar power (Figure 4.9 (A) and (B)). However, as we increase Iext to 150 pA,
only the S-E-I can generate low-frequency theta oscillations.
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S-E-I subnetwork with slow S-to-I synapses

 (Iext = 150 pA) 

5.7
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Figure 4.9: Power spectrum of type 2 theta oscillations produced with different subnet-
work and configurations. (A) Power spectrum produced by the S-E subnetwork with Iext=100
pA, instantaneous synapses, and connectivity parameters pSE , pES and pEE sampled from high
probability region of Figure 4.3 (A). Figure reproduced from 4.3 (C). (B) Power spectrum produced
by the S-E-I subnetwork with Iext=100 pA, instantaneous synapses, and connectivity paremeters
sampled from high probability region of Figure 4.7 (B). (caption continues on next page)
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(C) Power spectrum produced by the S-E-I subnetwork with Iext=150 pA, instantaneous synapses
and a slow S-to-I synapse (τs = 100 msec), and connectivity paremeters sampled from high proba-
bility region of Figure 4.8 (B).

These results indicate that there are different entorhinal network configurations
for which an external current (originating, for example, in the hippocampal CA1
region) gives rise to type 2 theta oscillations. For low values of external current,
both an S-E and S-E-I network with instantaneous synapses can generate type 2
oscillations with identical power; for high values of external current, only an S-E-
I network with a slow S-to-I synapse can reproduce type 2 theta. Also, a strong
external input in a S-E-I network produces type 2 theta with the highest power (see
Figure 4.9).

Next, we explore the different subnetworks capable of generating type 1 theta
oscillations and under which conditions. We found that both an S-E and S-E-I
subnetwork under different conditions (with or without slow synapses, and with low
or high external currents) generates type 1 theta, with different frequencies and
power. The connectivity parameters of a S-E network with Iext=100 pA or 150 pA,
as well as a network of S-E-I with Iext=150 pA with or without slow S-to-I synapses,
and with Iext=100 pA all converge to a solution (see Figures 4.7 and 4.10). From
Figure 4.11, we see that out of all the network configurations considered, a S-E-I
network with Iext=150 pA produces type 1 oscillations with the highest power. In
comparison, the S-E subnetwork with Iext=150 pA produces oscillations with the
highest frequency. On the other hand, the S-E-I network with Iext=100 pA produces
type 1 oscillations with the lowest power and frequency.
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Figure 4.10: Inference of connectivity parameters that enable the generation of type 1
theta, for different configurations of the EC network. (A) Inference of the connectivity pa-
rameters of a S-E-I network with instantaneous synapses, subjected to an external current Iext = 150
pA. We consider parameters sampled from the high probability region (in purple): pIS ,pSI=27.0279;
pSE , pES=141.1522; pIE , pEI=44.3601; pII=109.0740; pEE=128.0583 (B) Inference of the connec-
tivity parameters of a S-E-I network with instantaneous synapses and a slow S-to-I synapse (τs =
100 msec), subjected to an external current Iext = 150 pA. We consider parameters sampled from
the high probability region (in purple): pIS ,pSI=27.8001; pSE , pES=157.5060; pIE , pEI=21.0786;
pII=45.0699; pEE=82.0658; pISslow

= 5.3456. (C) Inference of the connectivity parameters of a
S-E network with instantaneous synapses, subjected to an external current Iext = 100 pA. We
consider parameters sampled from the high probability region (in purple): pSE , pES=149.6219;
pEE=135.3354. (D) Inference of the connectivity parameters of a S-E network with instantaneous
synapses, subjected to an external current Iext = 150 pA. pSE , pES=144.0672; pEE=119.2519.
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Figure 4.11: Power spectrum of type 1 theta oscillations produced with different
subnetwork. For each subnetwork, we used the parameters sampled from the respective high
probability posteriors. Power was calculated over 10 seconds. (A) Power spectrum produced by
the S-E-I subnetwork with instantaneous synapses and Iext = 150 pA. Connectivity parameters
used sampled from Figure 4.10 (A). (B) Power spectrum produced by the S-E-I subnetwork with
instantaneous synapses and a slow S-to-I synapse (τs = 100 msec) and Iext = 150 pA. Connectivity
parameters used sampled from Figure 4.10 (B). (C) Power spectrum produced by the S-E-I sub-
network with instantaneous synapses and Iext = 100 pA. Connectivity parameters used sampled
from Figure 4.7 (A). (D) Power spectrum produced by the S-E subnetwork with instantaneous
synapses and Iext = 100 pA. Connectivity parameters used sampled from Figure 4.10 (C). (E)
Power spectrum produced by the S-E subnetwork with instantaneous synapses and Iext = 150 pA.
Connectivity parameters used sampled from Figure 4.10 (D).
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4.4 Discussion

Despite being well established that the EC is a necessary structure for the generation
of theta oscillations, its role in the induction and maintenance of theta is poorly un-
derstood. Previous work suggests that the EC is simply responding to external theta
inputs from the medial septum since inactivation of the medial septum disrupts the
receptive field of grid cells in the EC (Koenig et al., 2011). Recent studies challenge
this view by suggesting that the EC circuit may be intrinsically generating theta
rhythm as a response to excitatory hippocampal inputs (Gu and Yakel, 2017). How-
ever, it is still unclear what intrinsic neuronal properties and network mechanisms
enable the entorhinal circuit to generate theta rhythm.

In this chapter, we used a computational model framework to investigate the
intrinsic properties of the entorhinal circuitry that give rise to theta oscillations. We
used a mean-field description of the entorhinal network, composed of pyramidal cells,
stellate cells, and fast-spiking interneurons, to study the connectivity requirements
for coherent theta oscillations to arise. Our results suggest that the EC may be
utilizing distinct subnetworks under different conditions to generate type 1 and type
2 theta rhythm. If the entorhinal network receives a small excitatory current (for
example, Iext= 100 pA), both the S-E and S-E-I subnetwork can generate type 2 theta
oscillations with identical power and frequency. However, if the EC receives a strong
external excitatory input (for example, Iext = 150 pA), the S-E subnetwork is not
capable of generating type 2 oscillations; the system requires synaptic connections
with I-cells. Interestingly, it requires the existence of a slow excitatory synapse
between the S and I cells (with τs=100 msec).

Concerning the generation of type 1 oscillations (8-12 Hz), the EC circuit can
generate oscillations more robustly; meaning, both an S-E and S-E-I network (with
or without slow synapses) produce type 1 theta rhythm with similar powers (powers
vary between 100 and 150 mV 2/Hz ) for different values of Iext. These observations
suggest that blocking the PV+ activity should impact type 1 and type 2 theta
oscillations differently.

In all the subnetworks and theta subtypes considered, an excitatory drive act-
ing on the E-cell population is necessary for the system to enter into an oscillatory
regime. This agrees with experimental results showing that the EC is not an in-
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dependent rhythm generator and needs hippocampal excitatory inputs to generate
theta. Interestingly, our modeling work suggests that fast synapses between S and
E cells are crucial to achieving synchrony, given that the high probability poste-
rior of pSE, pES has a high value and was highly constrained for the generation of
both type 1 and type 2 theta oscillations, where synchrony is defined as sustained
oscillations of the populations firing rates. Synaptic connections between the I-cells
and the other populations (S and E) are likely to also be playing a role in synchro-
nizing the activity of the full network, given that abolishing the I-cell population
from our network can change the power of the oscillations. In some cases, it can
even eradicate theta oscillations. For example, an EC network without I-cells cannot
generate type 2 oscillations when the excitatory input acting on the network is high.
Also, suppressing the I population considerably decreases the power of type 1 theta.
However, due to the different effects eliminating the I-cell population can have on
the generation of the different types of theta, it isn’t easy to access what role the
I-cells are playing in the synchronization of the network. Moreover, both the pSI , pIS

and pEI , pIE parameters have strained posterior distributions. Therefore, it is not
possible to conclude from our results how I-connections modulate synchrony in the
network.

Several studies indicate that NMDAR activation is crucial for the generation of
hippocampal theta oscillations (Buzsáki, 2002; Leung and Desborough, 1988; Le-
ung and Shen, 2004; Korotkova et al., 2010). Some even suggest that the EC uses
NMDAR-dependent mechanisms to generate theta rhythm (Gu et al., 2017). Ac-
cording to our modeling work, adding a slow excitatory synapse between the S and
I cell population is, in some cases, crucial for the generation of theta oscillations, in
particular for the generation of type 2 theta. Our results are consistent with exper-
iments showing that theta oscillations are impaired in mice with selective NMDAR
knockout in PV interneurons during anesthesia (Korotkova et al., 2010). Adding
a slow synapse between the other populations (S and E) did not change our re-
sults. However, a more accurate description of the NMDAR dynamics is necessary
to judge the role of NMDAR on the S-E and E-E synapses. Namely, include a
voltage-dependent term in the description of the NMDA-mediated synapse (in our
study, we generally consider a synapse with a decay time of 100 msec). Furthermore,
NMDARs are known to present a high calcium permeability (Burnashev et al., 1995).
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4.4. Discussion

Therefore, NMDAR can potentially regulate the neurons’ excitability and enhance
neurotransmitter release by triggering calcium-induced cascades. Taking that into
account, it might be valuable to consider these effects of the NMDAR activation to
address their role in the modulation of the EC circuit and the generation of theta.
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A Supplementary Figures
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Figure S1: Estimating network connectivity and external current magnitude in mean-
field model of EC network using statistical inference. Left panel: Schematic illustra-
tion of neural network. Right panel: Posterior distribution over 6 parameters. Mean of parame-
ters posterior distribution: pIS ,pSI=39.1196; pSE , pES=162.6039; pIE , pEI=26.2234; pII=48.2827;
pEE=81.7969; Iext=105.2518.
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Figure S2: Estimating network connectivity in mean-field model of EC network using
statistical inference (with recurrent S-S connections). Left panel: Schematic illustration of
neural network. Right panel: Posterior distribution over 6 parameters, with Iext=100. Mean
of parameters posterior distribution: pIS ,pSI=46.3876; pSE , pES=149.9954; pIE , pEI=39.5836;
pII=49.6283; pEE=68.8112; pSS=48.1571. Adding recurrent S-S connections (pSS) did not sig-
nificantly change the posterior distribution of the remaining connectivity parameters (see Figure
4.3 (A) for comparison)
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5 | The hippocampus as a theta
rhythm resonator

5.1 Introduction

Hippocampal theta oscillations are a prominent 4-12 Hz rhythm observed in the
hippocampus and associated structures. It has been linked to spatial and episodic
memories, and its malfunction is strongly correlated with cognitive dysfunction such
as memory deficits (Colgin, 2013, 2016; Hinman et al., 2018).

Studies indicate that the hippocampus contains the necessary circuitry to gen-
erate and maintain theta oscillations without any extrinsic inputs. Goutagny and
colleagues measured a spontaneous theta rhythm in the CA1 region of an intact in
vitro hippocampus preparation (Goutagny et al., 2009). Moreover, several model-
ing studies confirm that a CA1 microcircuit can produce oscillations with a theta
frequency (Ferguson et al., 2017; Chatzikalymniou and Skinner, 2018; Kopell et al.,
2010; Giovannini et al., 2017; Chatzikalymniou et al., 2020). While some assume
that OLM cells play a crucial role in the generation of theta rhythm (Kopell et al.,
2010; White et al., 2000), others suggest that a microcircuit of CA1 fast-spiking and
pyramidal cells is capable of robustly generating oscillations with a theta rhythm
(Giovannini et al., 2017; Ferguson et al., 2017; Chatzikalymniou et al., 2020).

Besides the hippocampus, two other brain regions are known to be essential for
the generation and maintenance of hippocampal theta rhythm in vivo: the medial
septum (MS) and the entorhinal cortex (EC). Still, the origins of in vivo theta
remain elusive, partly due to the difficulty in recording the activity from all the
three essential regions (hippocampus, MS, and EC) simultaneously. To address this
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question, Gu and Yakel established an in vitro tri-culture preparation of the septal-
entorhinal-hippocampal circuit (Gu and Yakel, 2017). Their study indicates that
theta originates in the EC and then propagates to the hippocampus, namely to the
CA1 region, through the temporoammonic pathway. The generation of theta in
the septo-entorhinal-hippocampal circuit was firstly dependent on the co-activation
of septal cholinergic inputs acting on OLM cells and SC inputs. However, after
performing co-paired activation several times, hippocampal PYR-OLM and SC-PYR
synapses were potentiated, and theta could be induced by SC stimulation alone. In
light of these results, in this chapter, we use a network model to examine CA1
hippocampal responses to theta oscillatory inputs from the EC when cholinergic
co-paired activation is being performed and when only the SC is stimulated.

We use the mean-field framework presented in chapter 3 to build a network model
of OLM cells, fast-spiking neurons, and pyramidal cells. We then access the role
of each neural population and the connections they form in the modulation of the
network’s behavior. More specifically, we examine the connectivity configurations for
which the network resonates to external rhythmic inputs with theta frequency under
different conditions - when the network receives SC glutamatergic inputs paired
or not with cholinergic inputs. We start by introducing the CA1 network model,
composed of OLM cells (O), fast-spiking interneurons (I), and pyramidal cells (E).
We then use a statistical inference algorithm (Gonçalves et al., 2020) to derive the
distribution of the network’s connectivity parameters that permit the O-I-E system
(submitted to glutamatergic inputs paired with or without cholinergic inputs) to
resonate to theta inputs. Finally, we study how potentiation of the hippocampal
PYR-OLM and SC-PYR synapses that results from cholinergic pairing changes the
hippocampal mechanisms of theta induction and expression.
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5.2 Methods

5.2.1 CA1 network of QIF neurons

We use a minimal spiking neural network model to represent the hippocampal CA1
region. We consider a population of OLM cells (O), fast-spiking interneurons (I),
and pyramidal cells (E).

Each cell i of each population W is described by a modified version of the Izhike-
vich QIF neuron model:

Cm
dV W

i

dt
= aV W

i + b(V W
i )2 + c− uW + ηi + Iext + Isyn,i (5.1)

duW

dt
= α(β(⟨V ⟩W − Vr)− uW ) + ujump

NW∑
k=1

∑
f

δ(t− tk
f ) (5.2)

where Vi is the membrane potential of neuron i, and u the slow recovery variable
acting on population W . The parameters Cm, a, b, c, Vr α, β and ujump determine the
dynamics of the neuron (see Chapter 3, section 3.2 for a more detailed explanation).
The function δ is the Dirac mass measure and tk

f is the firing time of neuron k. The
parameter ηi represents a background current randomly drawn from a Lorentzian
distribution that accounts for the network’s heterogeneity, Iext is an external current
acting on all the neurons of the population, and Isyn,i is the total synaptic current
acting on neuron i.

The parameters Cm, a, b, c, Vr α, β and ujump that describe each neuron type
(OLM, fast-spiking and pyramidal cells) were adapted from previous models used to
describe neurons with similar dynamics. Namely, the E-cells are described by the
Izhikevich’s model of non-bursting CA1 pyramidal neuron (Izhikevich, 2007b), and
the I-cells by the Izhikevich’s fast-spiking interneurons model (Izhikevich, 2007a).
Given that the hippocampal OLM and EC stellate cells have a similar electrophysio-
logical profile and synchronization properties (Kopell et al., 2010), we use the S-cell
model described in the previous chapter to describe the dynamics of the O-cells (see
chapter 4, section 4.2). You can find a summary of all the parameters in Table 5.1.
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O-cells I-cells E-cells

a (nS/mV ) 0.75 1 0.5

b (nS) 78.75 98 52.5

c (nS/mV ) 2025 2320 1350

Cm (pF ) 200 40 50

Vr (mV) -60 -58 -60

α (msec−1) 0.01 0.11 0.02

β (nS) 15 1.2 0.5

ujump (pA) 0 0 50

Vpeak (mV) 30 30 30

Vreset (mV) -50 -65 -60

Table 5.1: Parameter values of the two-dimensional QIF neuron model for CA1 hippocampal
OLM cells (O), fast-spiking interneurons (I), and pyramidal cells (E). Parameters adapted from
Izhikevich (2007e), Izhikevich (2007a), and Izhikevich (2007b), respectively.

5.2.2 Synaptic model

We consider bidirectional synaptic connections among all populations of our network
(O, I, and E), as schematically shown in Figure 5.1. We also consider self-connections
among the neurons of each population, except for the O-cells, given that previous
studies show that recurrent connections among OLM cells do not contribute to the
production of theta (Kopell et al., 2010). The synaptic currents were modeled as
follow:

Isyn,i =
∑
Y

sW Z(EZ
r − V W

i ) (5.3)

where EZ
r is the reversal potential of the synapse, and sW Z is the synaptic con-

ductance. If the synaptic connections originate on a population of inhibitory cells,
the reversal potential is -80 mV; if they originate in a population of excitatory cells,
the reversal potential is 0 mV. Similar to what has been done in previous work,
we do not consider slow NMDA and GABAB synapses (Kopell et al., 2010; Aussel,
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2018). Moreover, experimental studies showing that NMDARs in the hippocampus
are not necessary for the generation of theta rhythm in an EC-hippocampal circuit
support the decision of not considering slow synapses (Gu et al., 2017). Instead, we
consider instantaneous synapses, i.e. whenever a pre-synaptic neuron in Z spikes,
the conductance sW Z is instantaneously increased:

sW Z = pW Z

NZ

NZ∑
k=1

∑
f

δ(t− tk
f ) (5.4)

where NZ is the number of neurons of population Z, and pW Z is the coupling
strength of population Z on population W .

5.2.3 Network input

When studying the hippocampal responses submitted to paired cholinergic and SC
inputs, we do not explicitly model cholinergic activation of the O-cells in a timely
manner and instead consider an external current Iext = 50 pA acting on the O-
cells. Similarly, SC inputs are modeled as an external current Iext=50 pA acting on
the I and E-cells. Even though cholinergic activation of O-cells typically results in
excitatory currents of smaller amplitude than SC stimulation of I and E-cells, taking
a smaller current Iext acting on the O-cells did not significantly change our results
(simulations not shown). As we have seen in chapter 2, cholinergic activation of OLM
cells results in the inhibition of the I-cells. Therefore, during the simulation of the
pairing protocol, we fixate the synaptic connection from the O to the I population
to a high value (pOI = 70).

When studying the hippocampal responses during SC stimulation alone, the O-
cells are not activated by any external current, while E and I populations receive an
external input Iext = 50 pA.

5.2.4 Mean-field description of the CA1 network

Similar to what was done in the previous sections, we use the exact mean-field
reduction model derived in Chapter 3 to obtain the macroscopic description of the
CA1 neural network. The low dimensional system reads as follows:
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For the O-cells:

Cm
drO

dt
= (b− pOIrI − pOErE)rO + 2arOvO + ∆a

πCm

(5.5a)

Cm
dvO

dt
= −(πrOCm)2

a
+ av2

O + (b− pOIrI − pOErE)vO + c (5.5b)

− pOIrI80− uO + Iext + η (5.5c)
duO

dt
= α(β(vO − Vr)− uO) + ujumprO (5.5d)

For the I-cells:

Cm
drI

dt
= (b− pIIrI − pIOrO − pIErE)rI + 2arIvI + ∆a

πCm

(5.6a)

Cm
dvI

dt
= −(πrICm)2

a
+ av2

I + (b− pIIrI − pIOrO − pIErE)vI + c (5.6b)

− pIIrI80− uI + Iext + η (5.6c)
duI

dt
= α(β(vI − Vr)− uI) + ujumprI (5.6d)

For the E-cells:

Cm
drE

dt
= (b− pEErE − pEOrO − pEIrI)rE + 2arEvE + ∆a

πCm

(5.7a)

Cm
dvE

dt
= −(πrECm)2

aE

+ aEv2
E + (b− pEErE − pEOrO − pEIrI)vE + c (5.7b)

− pEIrI80− uE + Iext + η (5.7c)
duE

dt
= α(β(vE − Vr)− uE) + ujumprE (5.7d)

Figure 5.1 illustrates a comparison of the dynamics of the full network with the
low-dimensional reduced system. It shows the time evolution of the external stimulus
acting on all three populations (Figure 5.1 (a)), the spiking activity obtained from
simulations of the full network, and the firing rates of the three populations given
by the reduced description ((5.5a), (5.6a) and (5.7a) for the O, I and E-cells, respec-
tively) and calculated from the full network simulations (rW = 1

NW

∑NW
k=1

∑
f δ(t−tk

f )).
We assume that each population is made of 3000 neurons. Although populations of
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OLM cells, fast-spiking interneurons, and pyramidal cells in CA1 do not have the
same size (Jinno and Kosaka, 2010; Ferguson et al., 2017; Chatzikalymniou et al.,
2020), the mean-field model presumes neural populations with N → ∞. The re-
duced description accurately captures the shape of the spiking activity of the full
QIF neural network, meaning we can safely employ the reduced mean-field model to
study the dynamics of the O, I, and E-cell populations.

5.2.5 Bayesian inference of connectivity parameters

We use a simulation-based inference algorithm that implements SNPE (Sequential
Neural Posterior Estimation) to infer the connectivity parameters of the O-I-E net-
work (pOI , pIO, pOE, pEO, pIE, pEI , pII , pEE) that enables it to resonate to entorhinal
oscillatory theta inputs. You can find a detailed description of the inference algo-
rithm used in Chapter 4, section 4.2.

Excitatory entorhinal inputs arrive in the CA1 region through the temporoam-
monic pathway, targetting the distal dendrites of pyramidal cells (Amaral and Lavenex,
2007). Therefore, we presume that the CA1 network will resonate if the E popu-
lation has a natural frequency in the theta range. Bearing that in mind, we infer
the connectivity parameters of the O-I-E network for which the imaginary part of
the eigenvalues of the E is between 0.02512 rad/msec and 0.07539 rad/msec, which
corresponds to a natural frequency between 4 and 12 Hz.

One question that has been disputed in the past few years is the contribution of
OLM cells for the induction and expression of hippocampal theta rhythm (Kopell
et al., 2010; White et al., 2000; Chatzikalymniou and Skinner, 2018; Giovannini
et al., 2017). To address this question, we start by analyzing the posterior of pEI ,
pIE,pII and pEE parameters while the other parameters were fixed. For the pairing
stimulation protocol, we considered pOE = pEO = pOI = 0, and pIO = 70. For the
no-pairing protocol, we consider pOE = pEO = pOI = pIO = 0. We then sampled a
set of parameters from the low probability distribution, i.e. for which the network
cannot resonate to theta inputs, and inferred the previously fixed O-connectivity
parameters. By doing so, we investigate how OLM cells modulate the CA1 network;
more specifically, how they change the robustness and power of the produced rhythm.

Inference is calculated after one round of 500 simulations. We chose uniform
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Figure 5.1: Comparison between the full network dynamics and the reduced system.
Left panel: Schematic illustration of the neural network. The parameter pij denotes the connectivity
strength of the population j onto the population i. The external current a acting on the different
populations is denoted by Iext. Right panel: (A) Time evolution of the stimulus Iext. (B) Spiking
activity obtained from simulations of the full network, where we randomly selected 300 neurons
from each population. The first 300 neurons are OLM cells (O); the following 300 are fast-spiking
inhibitory cells (I); the last 300 are pyramidal cells (E). (C) Firing rate of the O-cells obtained from
simulations of the full and reduced system. (D) Firing rate of the I-cells obtained from simulations
of the full and reduced system. (E) Firing rate of the E-cells obtained from simulations of the full
and reduced system. Parameters: N = 3000; ∆ = 15; η̄ = 25; pOI = pIO = 50; pOE = pEO = 90;
pIE = pEI = 60; pII = 30; pEE = 60.
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distributions for all connectivity priors. These simulation specifications proved to be
enough for the learning algorithm to converge to a solution.

5.3 Results

5.3.1 Estimating CA1 network connectivity

To estimate the CA1 neural populations that modulate the hippocampal response
to extrinsic rhythmic inputs, we use a statistical inference tool, SNPE, to infer the
posteriors of the synaptic connections of the O-I-E network that turn the network
into a theta resonator. To perform inference of the posteriors, we only evaluate the
behavior (natural frequency and power) of the E-cell populations, given that they
are the target of the rhythmic entorhinal inputs as well as the source of current into
the EC, i.e. they form the population that links the EC and CA1 region and closes
the entorhinal-hippocampal loop.

We are interested in assessing the role of the OLM cells in the modulation of the
natural frequency of the E-cells and power of theta oscillations during the choliner-
gic pairing protocol (cholinergic activation of the O-cells paired with glutamatergic
activation of the I and E-cells) and during the no-pairing protocol (glutamatergic
activation of I and E-cells). We start by focusing on the pairing protocol.

To simulate the state of the O-I-E network during the pairing protocol, all three
populations receive an external current Iext = 50 pA, and the O-to-I connection
is fixed to pIO=70. This follows the results obtained in chapter 2 showing that
cholinergic pairing activates OLM cells, which results in strong inhibition from the
O to the I-cells. First, we focus on the contributions of the E-I subnetwork, i.e. we set
all connections with the O-populations (except pIO) to zero, and infer the posterior
distributions of pII , pEI , pIE and pEE for which the E-cells have a natural frequency
in the theta range (Figure 5.2 (A)). From the resultant posteriors, we extract the
mean value, which puts us in the high probability region: pIE = 20.2821, pEI =
64.578830, pII = 45.3345, pEE = 28.8861. We confirm our results by calculating
the power of the network’s oscillatory activity when the E-cells are submitted to
a periodic input with different frequencies (Figure 5.2 (A), right panel). We see
that there is a peak in power for periodic inputs with a frequency in the theta
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range (Figure 5.2 (A)). When we chose parameters in the low probability region
(pIE = 20.2821, pEI = 30, pII = 45.3345, pEE = 28.8861), the peak of the power
spectrum falls outside the theta range (grey area). These observations indicate that
the network will selectively respond to oscillatory inputs with a theta frequency for
connectivity parameters in the high probability region. From the inferred posteriors,
we can estimate the relative contribution of the different synaptic connections to
this selective response. The network’s response to oscillatory theta inputs is mainly
constrained by pEE, pEI and pIE. While the posterior of pEE and pIE are skewed
towards low values, the posterior of pEI is skewed towards high values. This indicates
that the bidirectional interactions between I and E-cells modulate the network’s
response to external rhythmic inputs differently.

We then fixed the parameters pIE, pEI , pII and pEE to its low probability re-
gions values, and inferred the remained connectivity parameters pOI , pOE, pEO. The
learning algorithm converged to a solution. This means that adding E-O, O-E and
I-O connections modulates the network in such a way that enables resonance to
theta inputs (Figure 5.2 (B)). To confirm these findings, we drawn the mean values
of the posterior ( pOI = 51.8445, pOE = 47.0968, pEO = 49.0425) and used these
parameters to study the power spectrum of the network as a function of the fre-
quency of a periodic input. We see that now the system resonates to theta inputs
with parameters pIE, pEI , pII and pEE from the low probability region (Figure 5.2
(B), right panel). This result indicates that the O-cells increase the robustness of
the hippocampal response to theta inputs. In other words, the O-cells increase the
range of connectivity values for which the system resonates to theta inputs.

We repeated the process for the no-pairing protocol. The I and E-cells receive an
external current Iext = 50 pA, while the O-cells don’t receive any external inputs.
Initially, we study the contributions of the E-I subnetwork by setting all connections
with the O-populations to zero. We infer the posterior distributions of pII , pEI ,
pIE and pEE for which the E-cells have a natural frequency in the theta range, and
extract the mean value of the posterior distributions of the connectivity parameters
(pIE = 30.5809, pEI = 71.5955, pII = 49.8003, pEE = 34.7191) (Figure 5.3 (A)).
To confirm our results, we calculate the power spectrum of the E population when
in the high and low probability region. We confirm that for parameters from the
posterior high probability region (Figure 5.3 (A), purple line), the system resonates
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Figure 5.2: Inference of the connectivity parameters that enable resonance to periodic
input with theta frequency when the hippocampal network is subjected to the pairing
protocol. During pairing, all three populations (O, I and E) receive an external current Iext. We
fix the O-I connection pIO to a high value (70). This follows the results obtained in Chapter 2
(A) Posterior distribution over 4 connectivity parameters (pIE , pEI , pII and pEE). We sampled
parameters from the high (purple line) and low (pink line) probability region: pIE = 20.2821,
pEI = 64.578830 (purple line) or 30 (pink line), pII = 45.3345, pEE = 28.8861. Using a periodic
input Iper = 8sin(wt) + 8, where w defines the frequency of the input, we estimated the power
spectrum of the E-cells activity obtained using parameters from the high and low probability
region. (B) Posterior distribution over 3 connectivity parameters (pOI , pOE and pEO). The
remaining connectivity parameters were fixed to the values sampled from their low probability
region (pIE = 20.2821, pEI = 30, pII = 45.3345, pEE = 28.8861). We sampled from their posterior
the parameters from the high probability region pOI = 51.8445, pOE = 47.0968 and pEO = 49.0425
(pink line), and calculated the respective power spectrum.

to theta inputs. For parameters from the low probability region (Figure 5.3 (A), pink
line), the system resonates to inputs with a frequency outside the theta range. We
then fixed the parameters pIE, pEI , pII and pEE in their low probability region, and
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infer the connectivity parameters involving the O-cells (pOI , pIO, pOE, and pEO).
Similarly, as for the pairing case, adding connections with the O-cells makes the
system resonate at theta frequencies (Figure 5.3 (B)).

5.3.2 The hippocampus as a theta rhythm generator

It is well established that the CA1 region contains the circuitry necessary for the gen-
eration of theta oscillations (Goutagny et al., 2009; Ferguson et al., 2017; Chatzika-
lymniou et al., 2020; Giovannini et al., 2017). Yet, recent in vitro studies indicate
that, in a septal-entorhinal-hippocampal networkin vitro, theta rhythm induced by
co-pairing septal cholinergic and SC inputs originates in the EC structure (Gu and
Yakel, 2017), and not in the hippocampal region. Furthermore, it was also shown
that repeated co-pairing of cholinergic and SC inputs potentiates SC-PYR and PYR-
OLM synapses (Gu et al., 2020).

In this section, we inquire if changes in the SC-PYR and PYR-OLM synapses
can change the mechanisms of theta generation in the septal-entorhinal-hippocampal
circuit. In particular, we test the possibility of changes in the mentioned synapses en-
abling the CA1 region to generate theta oscillations when the co-pairing stimulation
protocol is performed. For that, we consider that the potentiation of the SC-PYR
and PYR-OLM synapses translates into an increase of the magnitude of the external
current acting on the E-cell and of the connectivity parameter pOE, respectively. For
the remaining connectivity parameters, we adopt the values inferred in the previous
section, i.e. the parameters for which the CA1 network resonates to theta inputs
(pIE = 20.2821, pEI = 30, pII = 45.3345, pEE = 28.8861, pOI = 51.8445, pIO = 70,
pOE = 47.0968, pEO = 49.0425).

We plot a two-parameter bifurcation diagram of the E-I-O system when all the
populations of the network receive an external current Iext=50 pA (see section 5.2
for justification). We see that if the magnitude of the external current acting on E
and the strength of the E-O synapse pOE increase, the hippocampal network enters
an oscillatory regime without the need for external periodic inputs (Figure 5.4 (B)).

Suppose the system is in the non-oscillatory region. In that case, it will only
produce theta oscillations if, besides an external current acting on the O, I and E-
cells, the E-cells receive a periodic input Iper = 8sin(wt) + 8 with a frequency w in
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Figure 5.3: Inference of the connectivity parameters that enable resonance to periodic
input with theta frequency when the hippocampal network is subjected to the no-
pairing protocol. During the no-pairing protocol, the E and I populations receive an external
current Iext, while the O-cell do not receive any extrinsic stimulus. (A) Posterior distribution
over 4 connectivity parameters (pIE , pEI , pII and pEE). We sampled parameters from the high
(purple line) and low (pink line) probability region: pIE = 30.5809, pEI = 71.5955 (purple line)
or 35 (pink line); pII = 49.8003; pEE = 34.7191. Using a periodic input Iper = 8sin(wt) + 8, we
estimated the power spectrum of the E-cells activity obtained using parameters from the high and
low probability region. (B) Posterior distribution over 4 connectivity parameters (pOI , pIO, pOE

and pEO). The remaining connectivity parameters were fixed to the values sampled from their low
probability region (pIE = 30.5809, pEI = 35; pII = 49.8003; pEE = 34.7191). We sampled from
their posterior the parameters from the high probability region, pOI = 40.7411, pIO = 50.9074
pOE = 72.2952, pEO = 79.4703 (pink line), and calculated the resultant power spectrum.

the theta range. The oscillations generated have the same frequency as the periodic
input (11 Hz) and a power of 8.7 mV 2/Hz. On the other hand, if the system is in
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the oscillatory regime, it will produce oscillations of similar power independently of
receiving periodic input or not (see Figure 5.4 (B)). However, if the system is in the
oscillatory regime, pairing Iext with a periodic theta input Iper produced oscillations
outside the theta range (Figure 5.4 (B), right panel 1). These results indicate that
the mechanisms for the generation of theta in a septo-entorhinal-hippocampal circuit
might differ before and after inducing potentiation of the SC-PYR and PYR-OLM
synapses.

Gu and Yakel also observed that after repeatedly inducing theta in a septo-
entorhinal-hippocampal circuit using the co-pairing protocol and inducing potentia-
tion of the mentioned hippocampal synapses, they could generate theta by activating
the SC pathway alone (Gu and Yakel, 2017). To further examine how potentiation
of the hippocampal synapses is altering the mechanisms of theta generation, we re-
peated the previous analysis considering that the system is being subjected to the
no-pairing protocol. That is, we plot a two-bifurcation diagram of the E-I-O system
when the E and I populations receive an external input Iext = 50 pA and the O
population does not receive any external input. Once again, if the magnitude of the
external current acting on E and the strength of the E-O synapse pOE increase, the
network generates oscillations without any external periodic drive (Figure 5.5).

If the system in the non-oscillatory region, it will only produce theta oscillations
if the E-cells receive a periodic input Iper = 8sin(wt) + 8 with a frequency w in the
theta range (see Figure 5.5 (B)). The oscillations generated have the same frequency
as the periodic input (11 Hz) and a power of 8.2 mV 2/Hz. If the system is in the
oscillatory regime, it can autonomously generate oscillations with a frequency of 11.1
Hz, i.e. in the theta range; if besides the external current acting on the E and I-cells,
the E-cells receive a periodic input with a frequency of 12 Hz, it produces oscillations
with the same frequency. Regarding the power of the oscillations generated, this is
bigger when the system does not receive oscillatory inputs Iper (14.4 mV 2/HZ) than
when it does (11.2 mV 2/Hz). These results confirm that induction of plasticity in
the hippocampal region can change the mechanisms of theta generation in a septo-
entorhinal-hippocampal circuit.
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Figure 5.4: Evaluating the effect that an increase of Iext acting on the E-cell and of
pOE has on the mechanisms of hippocampal theta rhythm generation when the hip-
pocampal network is subjected to the co-activation protocol. (A) Schematic illustration
of the O-I-E network when subjected to the co-activation protocol paired (1) or not (2) with a
periodic input with theta frequency acting on the E-cells. (B) Two-parameter bifurcation diagram
of the E-I-O system, with the external current acting on the E-cells, Iext, and the strength of the
connection between the O and E population, pOE as bifurcation parameters. We simulate the ac-
tivity of the E-cells when the system is in the non-oscillatory or oscillatory region, with or without
paired periodic inputs.
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Figure 5.5: Evaluating the effect that an increase of Iext acting on the E-cell and of
pOE has on the mechanisms of hippocampal theta rhythm generation when the O-
cells do not receive any extrinsic input. (A) Schematic illustration of the O-I-E network
when subjected to the co-activation protocol paired (1) or not (2) with a periodic input with theta
frequency acting on the E-cells. (B) Two-parameter bifurcation diagram of the E-I-O system, with
the external current acting on the E-cells, IE

ext, and the strength of the connection between the O
and E population, pOE as bifurcation parameters. We simulate the activity of the E-cells when the
system is in the non-oscillatory or oscillatory region, with or without paired periodic inputs.

132



5.4. Discussion

5.4 Discussion

In this chapter, we used a network model of the hippocampal CA1 region to study
how its connectivity modulates the hippocampal responses to external periodic in-
puts. This is particularly important in light of recent experimental work suggesting
that in a septal-hippocampal-entorhinal circuit, rhythmic activity is not being gen-
erated in the hippocampus and that instead, it originates in the intrinsic entorhinal
circuit and is fed back to the hippocampus, probably through the temporoammonic
pathway (Gu and Yakel, 2017). Moreover, the same study indicates that induction
of theta in the tri-culture preparation requires co-paired activation of cholinergic and
SC inputs and that SC stimulation alone is not sufficient to induce theta.

Assuming that the theta rhythm is not originating in the hippocampus and that
the CA1 region receives rhythmic theta inputs from the EC, we analyze the con-
nectivity parameters of a CA1 network composed of OLM cells (O), fast-spiking in-
terneurons (I), and pyramidal cells (E) for which the network resonates to rhythmic
theta inputs. Given that the EC rhythmic inputs target the CA1 E-cells and that, in
turn, the E-cells project back to the EC network closing the entorhinal-hippocampal
circuit, we assume that the E-cells must resonate to the rhythmic entorhinal inputs
for theta to be maintained in the full circuit. Generally speaking, a given system will
resonate under the influence of an external force if its natural frequency is equal to
the frequency of the external input. Therefore, we were interested in finding the dif-
ferent connectivity configurations of the network for which the E-cells have a natural
frequency in the theta range.

We consider two distinct situations: when the hippocampal circuit is subjected
to paired activation of cholinergic and SC inputs and when subjected to SC inputs
alone. Given the contrasting ideas regarding the role of OLM cells in the generation
and maintenance of the hippocampal theta rhythm (Kopell et al., 2010; White et al.,
2000; Chatzikalymniou and Skinner, 2018), for each of the mentioned situations, we
ascertain the role of the O-cells by considering the E-I subnetwork and seeing how
adding connections with the O-populations changes the behavior of the network.

Our results show that while the E-I subnetwork can resonate with rhythmic inputs
with theta frequency, adding connections with the O-cells increases the robustness
of the network. This is true when we subjugate the network to paired activation
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of the O-cells and the E and I cells or activation of the E and I cells alone. Such
observations indicate that cholinergic activation of the O-cells is unnecessary for the
CA1 region to resonate with extrinsic theta inputs. Instead, we hypothesize that
they might only play a role in the modulation of the hippocampal excitability (see
chapter 2) that gates the generation of theta rhythm in the EC.

Experimental and theoretical studies have shown that the CA1 region has the
necessary circuitry to generate theta oscillations intrinsically (Goutagny et al., 2009;
Ferguson et al., 2017; Chatzikalymniou et al., 2020; Giovannini et al., 2017). Yet,
Gu and colleagues observations indicate that in a septo-entorhinal-hippocampal cir-
cuit, theta is originating in the EC and not the hippocampal region, and that the
hippocampus is responding to theta inputs coming through the temporoammonic
pathway (Gu and Yakel, 2017). We confirm that if the connectivity of the CA1
O-I-E network is such that the network resonates to entorhinal theta inputs, paired
cholinergic and SC inputs (or SC inputs alone) do not initiate theta oscillations
in the CA1 region. Furthermore, we investigate how changes in the magnitude of
the external current acting on the E-cells and the E-O connection, pOE, modify the
mechanisms of theta generation. This follows experimental results showing that re-
peated paired activation of cholinergic and SC inputs potentiates the SC-PYR and
PYR-OLM hippocampal synapses (Gu and Yakel, 2017; Gu et al., 2020). According
to our model, potentiation of the hippocampal synapses enables the generation of
oscillations in the hippocampal region. In other words, if the external current acting
on the E-cells and/or the connectivity pOE increase, paired co-activation of O cells
and E and I cells (or activation of the E and I cells alone) generates theta rhythm
in the E-I-O network, without the need of extrinsic periodic inputs.

Note that these are preliminary results, and supplementary simulations are re-
quired for a complete analysis. For example, when inferring the connectivity pa-
rameters that enable the E-cell with theta resonant properties, we did not consider
the effects of potentiation of the hippocampal SC-PYR and OLM-PYR synapses.
Additional simulations are required to verify how changes in the strength of these
synapses alter the resonant properties of the network. Moreover, we did not consider
the different coupling strengths that the different external inputs, Iext and Iper, can
have on the network.

Overall, our results indicate that the mechanisms for the generation of theta in
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a septo-entorhinal-hippocampal circuit differ before and after potentiation of the
SC-PYR and PYR-OLM synapses is induced. Before the hippocampal synapses are
potentiated, paired cholinergic and SC inputs (or SC inputs alone) cannot initiate
theta in the local hippocampal circuit, and CA1 merely responds to rhythmic inputs
from the EC. However, if the strength of the E-O synapse and/or the external current
acting on the E-cells increase, co-pairing or SC activation alone can drive the system
into an oscillatory regime with theta frequency.

135





6 | Conclusion and future perspec-
tives

This thesis was set out to investigate the mechanisms of theta induction and expres-
sion in a septal-hippocampal-entorhinal circuitry. We use computational models to
study the intrinsic properties of each region and how they can contribute to the
generation and maintenance of theta rhythm in the hippocampal formation.

Despite being known that three brain regions - septum, hippocampus, and en-
torhinal cortex - are necessary for the generation of theta rhythm in the hippocampal
formation, it is not clear what role each of them plays in the interplay that gives
rise to synchronous activity with a theta frequency. Thanks to the groundbreaking
experimental work of Gu and Yakel (2017), where they established an in vitro septal-
entorhinal-hippocampal brain co-culture preparation, it was possible to study how
theta is generated and how the activity flows among the three regions during theta
generation and propagation. It was found that while activation of septal cholinergic
inputs or activation of SC inputs alone could not induce theta, tightly paired co-
activation of the two pathways could readily induce theta in the circuit. Repeated
pairing of cholinergic and SC inputs potentiated the EPSCs of CA1 OLM and pyra-
midal cells in the deep layers of the EC. Moreover, SC stimulation alone could then
give rise to theta oscillations in the hippocampal-entorhinal circuit. Experiments
also revealed that the generation of theta oscillations depends on the activation of
α7 nAChRs and mAChRs in the hippocampus (on OLMα2 and CA1 pyramidal neu-
rons, respectively), and NMDARs on the EC. In contrast, re-expression only depends
on the activation of the NMDARs. Experiments also show that theta rhythmic inputs
first appear in the deep layers of the EC, then spread to the superficial layers, and
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finally to the hippocampal slm layer and to hippocampal pyramidal neurons, which
project back to the deep layers of the EC and close the hippocampal-entorhinal cir-
cuit (Gu and Yakel, 2017, 2011; Gu et al., 2017, 2020). Several questions arise from
these results. First, how the pairing of acetylcholine and glutamatergic hippocampal
inputs gates local plasticity and facilitate theta rhythm generation. Second, what
are the intrinsic properties of the entorhinal circuit that permit theta oscillations to
arise. And finally, how do entorhinal rhythmic inputs drive the hippocampus into
an oscillatory regime. To answer these questions, we used a combination of local
biophysical and network models.

We started by using a biophysical model to study how cholinergic inputs paired
with SC stimulation modulate synaptic strength in the hippocampus. We con-
structed a minimal circuit with a single compartment spiking OLM cells with α7
nAChRs, a fast-spiking interneuron with AMPA and GABAA receptors, and the
pyramidal cell proximal dendritic compartment with AMPA, NMDA, and GABAA

receptors. Our results show that recurrent cholinergic activation of α7 nAChR ex-
pressed in OLMα2 interneurons can potentiate SC-evoked CA1 pyramidal EPSCs
by inhibiting fast-spiking interneurons that provide feedforward inhibition onto CA1
pyramidal cells. These results suggest that septal cholinergic inputs regulate hip-
pocampal plasticity, promoting the generation of theta oscillations instead of pacing
theta frequency. This is in accordance with optogenetic studies showing that changes
in the firing frequency of septal cholinergic inputs do not significantly change the fre-
quency of hippocampal theta (Dannenberg et al., 2015; Vandecasteele et al., 2014),
and that after blockade of septal inputs to the hippocampus, the in vivo hippocam-
pus was still able to generate theta with simultaneous excitation and disinhibition
of the hippocampus (Colom et al., 1991).

In our modeling work, we did not consider the action of mAChR on the CA1 pyra-
midal cell in our model. The dynamics of these receptors is challenging to modulate
due to the multitude of different outcomes and protein kinase cascades that their
activation entails. We believe that cholinergic activation of mAChR mainly affects
the pyramidal cell’s excitability, enhancing the induction of plasticity. Still, more
experimental and computational results are necessary to confirm this hypothesis.
Future work also includes expanding our pyramidal cell model to include more den-
dritic compartment, namely a distal dendritic compartment, and the spiking soma to
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study how direct inhibitory inputs from the OLM interneurons into slm affects the
induction of plasticity at the proximal dendritic compartment and the firing activity
of the pyramidal cell and consequent neurotransmitter release into EC. It would also
be interesting to include a PYR-OLM connection and model plasticity induction at
this synapse, which is also potentiated following repeated cholinergic and SC inputs
pairing. In particular, we would like to study how plasticity at this site is induced
and how it affects the induction of plasticity in the SC-PYR synapse.

Based on the results obtained, we hypothesize that the pairing of septal choliner-
gic and SC inputs promotes the generation of hippocampal theta rhythm by increas-
ing the hippocampal excitability, which presumably results in an increased excitation
onto the deep layers of the EC.

We next built a network model of the entorhinal circuit to study how an increase
in the hippocampal excitatory drive can trigger synchronous activity with a theta
frequency in this brain region. Our results suggest that connections between stellate
cells and pyramidal cells can synchronize the activity of the network. Additionally,
connections between pyramidal cells and fast-spiking interneurons modulate the fre-
quency of oscillations. The stellate cells are endowed with currents that give rise to
subthreshold oscillations with theta frequency. Therefore, they may also indirectly
control the frequency of theta rhythm in the EC by selectively resonating to inputs
with a theta frequency. Our model also argues that slow S-to-I excitatory synapses
can promote the generation of theta oscillation in the EC. Although this observation
agrees with previous experimental results indicating that NMDARs in the EC play a
crucial role in the generation of theta in the hippocampal formation (Gu and Yakel,
2017; Gu et al., 2017), a more detailed and accurate description of these receptors is
necessary to take any further conclusions from our model.

Finally, we built a network model of the CA1 region that included inhibitory
OLM and fast-spiking interneurons and excitatory pyramidal cells. We inferred the
connectivity for which the system has a natural frequency in the theta range. This
allowed us to study how the connectivity of the hippocampal neurons modulates the
network’s response to entorhinal rhythmic inputs. According to our results, a min-
imal network of pyramidal cells and fast-spiking interneurons can amplify external
rhythmic inputs with theta frequency. Connections from fast-spiking interneurons
to pyramidal cells seem to be particularly important in modulating this response.
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The OLM cells increase the robustness of the network, i.e., with configurations of
the E-I network that would not resonate at theta, we can make the system resonate
by including connections with the O-cells. We also found that if the hippocampal
connectivity is such that it will resonate to inputs with theta frequency, it cannot
intrinsically generate theta oscillations as a response to the pairing of cholinergic and
SC inputs (or to SC inputs alone) unless the E-O synapse is strong enough. This
seems to indicate that the mechanisms of induction and expression of hippocampal
theta rhythm are different. For the induction of hippocampal theta, the rhythmic
activities are generated in the EC circuit as a response to increased excitatory hip-
pocampal inputs, which then feedback to the hippocampus driving the hippocampal
circuit into a resonant regime. When it comes to the expression, the hippocampal
formation may be using a similar mechanism, or the hippocampus might be gener-
ating theta rhythm intrinsically as a response to SC inputs. This oscillatory activity
can then propagate to the EC, or the hippocampus and EC can function as two
coupled oscillators. To explore these ideas, one would need to couple the entorhinal
and hippocampus network described in chapters 4 and 5, respectively, and study
how rhythmic activity flows in the entire circuit. Another possible approach is to
study the macroscopic Phase-Response Curve (mPRC) of the different populations
involved.

PRCs illustrate transient changes in an oscillatory system’s period induced by
small perturbations as a function of the phase at which the perturbation is induced.
In other words, it quantifies by how much a spike of a regular spiking neuron is
advanced/delayed as a function of the timing of a small perturbation delivered to
that neuron. From PRCs, we can extract useful information regarding the excitabil-
ity type and synchronization properties of different neuron types. For example, a
biphasic PRC indicates that an excitatory input can delay or advance the firing of
the next spike, depending on the phase at which it’s delivered to the neuron. Neurons
that present this type of PRC curves are known to synchronize with fast excitatory
synapses (Acker et al., 2003; Hansel et al., 1995; Stiefel and Ermentrout, 2016).

Similarly, we can derive the mPRC of a population of identical neurons to de-
termine how the phase of the global oscillation of a macroscopic system respond
to incoming perturbations acting on a population of neurons (Dumont et al., 2017)
Preliminary results show that populations of entorhinal stellate (S) and pyramidal
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(E) cells both have biphasic mPRCs (Figure 6.1), which suggests that they can
synchronize with external rhythmic excitatory inputs. This indicates that two in-
tercoupled populations of oscillating S and E-cells can synchronize with each other,
as we have seen in chapter 4. Moreover, it suggests that external excitatory inputs
acting on the E-cells, presumably from the hippocampal region, can synchronize a
population of pyramidal entorhinal cells. Still, it does not give us any information
about the phase shifts that arise when we couple the hippocampus and EC. The
mPRC has been used to study the phase shifts that occur in a system of identical
intercoupled networks (Dumont and Gutkin, 2019). However, to our knowledge, no
methods have yet been developed that allow us to quantify the phase shifts that
arise in intercoupled populations of non-identical neurons. Understanding how reg-
ularly firing neural hippocampal and entorhinal populations synchronize with each
other is a crucial step towards studying the maintenance of theta rhythm in a closed
hippocampal-entorhinal loop.
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Figure 6.1: Macroscopic phase-response curve (mPRC) of the stellate cells (S) and
pyramidal cells (E) population using direct simulations and the adjoint method. Both
population have a mPRC with a biphasic phase, indicating that periodic excitatory inputs into the
S and E-cells facilitates the entrainment of the circuit (Acker et al., 2003)

The present study sheds light on the underlying mechanisms of hippocampal
theta rhythm generation. To our knowledge, this is the first computational study
that addresses the role of all three brain regions (medial septum, hippocampus, and
entorhinal cortex) involved in the induction and expression of hippocampal theta
rhythm. We combined minimal, detailed models to establish a cellular basis for how
cholinergic action can modulate the hippocampal network and promote the induction
of theta, with network models that put into evidence the intrinsic properties of the
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hippocampus and entorhinal cortex that foster theta generation and maintenance,
thus establishing a link between single neuron computation and computation at the
network level.
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RÉSUMÉ

Les oscillations thêta sont un rythme proéminent de 4 à 12 Hz observé dans l'hippocampe et ses structures associées
chez tous les mammifères. Outre l'hippocampe, deux autres structures du cerveau sont reconnues comme essentielles
à la génération in vivo du rythme thêta de l’hippocampe - le septum médian (MS) et le cortex entorhinal (EC). Cependant,
après plusieurs décennies de recherche, les mécanismes produisant ces oscillations restent mal connus.
Dans cette thèse, on étudiera le rôle que les trois régions du cerveau citées précédemment (MS, EC et l'hippocampe)
jouent dans la génération et l'entretien des oscillations thêta. Dans la première partie de cette thèse, on étudiera comment
les entrées septales cholinergiques, en agissant sur les neurones hippocampaux GABAergique, contrôlent l'excitabilité et
la plasticité de l'hippocampe. Dans la seconde partie, on analysera les mécanismes du circuit qui permettent la génération
du rythme thêta dans le EC et la propagation de l'activité oscillatoire jusqu'à l'hippocampe. A cette fin, on commencera
par étudier comment la connectivité du réseau du cortex enthorhinal, fait de cellules stellaires, de cellules pyramidales
et d'interneurones à dynamique rapide, module la réponse du circuit vers les entrées excitatrices de l'hippocampe. En-
suite, on examinera comment les entrées oscillatoires enthorhinales vers un réseau de cellules OLM, d'interneurones à
dynamique rapide et de cellules pyramidales, peuvent conduire le système dans un état de résonnance thêta. En résumé,
on proposera un mécanisme multi-circuit pour la génération des oscillations thêta dans un réseau septal-hippocampal-
entorhinal, dans lequel trois régions du cerveau jouent une rôle actif dans la production et l'expression du rythme thêta.
Les entrées cholinergiques contrôlent l'excitabilité hippocampale, ce qui permet la generation des oscillations thêta dans
le circuit du EC et leur propagation dans l'hippocampe, et ferme ainsi la boucle enthorhinale-hippocampale.

ABSTRACT

Hippocampal theta oscillations are a prominent 4-12 Hz rhythm observed in the hippocampal local field potential and its
associated structures of all mammals. Besides the hippocampus, two other brain structures are known to be essential
for in vivo hippocampal theta generation - the medial septum (MS) and entorhinal cortex (EC). However, after decades of
research, the mechanisms through which these oscillations arise remain elusive.
In this thesis, we address the role that each of the three mentioned brain regions (MS, EC and hippocampus) play in
the generation and maintenance of theta oscillations. In the first part of the dissertation, we study how septal cholinergic
inputs acting on hippocampal GABAergic interneurons through α7 nicotinic receptors regulate the excitability and plas-
ticity of the hippocampus. In the second part, we investigate the circuit mechanisms that enable the generation of theta
oscillations in the EC and the propagation of the rhythmic activity to the hippocampus. To this aim, we start by studying
how the connectivity of the entorhinal cortex network made of stellate cells, pyramidal cells and fast-spiking interneurons
modulates the circuit's response to hippocampal excitatory inputs. Next, we address how entorhinal oscillatory inputs
onto an hippocampal network of OLM cells, fast-spiking interneurons and pyramidal cells can drive the system into a theta
resonant state.
In summary, we propose a multi-circuit mechanism for the generation of theta oscillations in a septal-hippocampal-
entorhinal network, where the three brain regions play an active role in the induction and expression of the theta rhythm.
Cholinergic inputs regulate hippocampal excitability, which acts as a gate that permits theta oscillations to arise in the EC
circuit and spread to the hippocampus, thus closing the entorhinal-hippocampal loop.

KEYWORDS

theta-rhythm; hippocampus; cholinergic receptors
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