
HAL Id: tel-04117067
https://theses.hal.science/tel-04117067

Submitted on 5 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental studies of multifractality and topological
phase transitions in microwave resonator lattices

Mattis Reisner

To cite this version:
Mattis Reisner. Experimental studies of multifractality and topological phase transitions in microwave
resonator lattices. Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]. Université Côte
d’Azur, 2023. English. �NNT : 2023COAZ4018�. �tel-04117067�

https://theses.hal.science/tel-04117067
https://hal.archives-ouvertes.fr


Études expérimentales de la multifractalité et 
des transitions de phase topologiques dans 
des réseaux de résonateurs micro-ondes

Mattis Reisner 
Institut de Physique de Nice (INPHYNI) 

Présentée en vue de 
l’obtention du grade de docteur 
en Physique 
d’Université Côte d’Azur 

Soutenue le : 01 Mars 2023 

Devant le jury, composé de :  
Jaqueline Bloch,                                        Rapporteure 
Directrice de recherche CNRS 
C2N, Université Paris-Saclay  

Anuradha Jagannathan,                            Rapporteure 
Professeure 
LPS, Université Paris-Saclay 

Ulrich Kuhl,                                 Co-directeur de thèse 
Professeur 
INPHYNI, Université Côte d'Azur 

Fabrice Lemoult,                                       Examinateur 
Maître de conférences 
Institut Langevin, ESPCI Paris | PSL 

Fabrice Mortessagne,                     Directeur de thèse 
Professeur 
INPHYNI, Université Côte d'Azur 

Patrizia Vignolo,                                       Examinatrice 
Professeure 
INPHYNI, Université Côte d'Azur

THÈSE DE DOCTORAT





Études expérimentales de la multifractalité
et des transitions de phase topologiques

dans des réseaux de résonateurs micro-ondes

Mattis Reisner

Jury :

Rapporteures

Jaqueline Bloch
Directrice de recherche CNRS
C2N, Université Paris-Saclay

Anuradha Jagannathan
Professeure
LPS, Université Paris-Saclay

Examinateurs

Fabrice Lemoult
Maître de conférences
Institut Langevin, ESPCI Pairs | PSL

Patrizia Vignolo
Professeure
INPHYNI, Université Côte d’Azur

Directeur de thèse

Fabrice Mortessagne
Professeur
INPHYNI, Université Côte d’Azur

Co-directeur de thèse

Ulrich Kuhl
Professeur
INPHYNI, Université Côte d’Azur

i



Études expérimentales de la multifractalité
et des transitions de phase topologiques

dans des réseaux de résonateurs micro-ondes

Les systèmes micro-ondes jouent un rôle moteur dans l’étude des systèmes uni- ou bidi-
mensionnels relevant du très actif domaine de la photonique topologique. En utilisant
des résonateurs diélectriques placés entre deux plaques métalliques, nous étudions des
réseau complexes dont on maîtrise la description simplement par la connaissance de
la force de couplage entre les résonances propres individuelles. Les couplages peuvent
être contrôlés par les distance séparant les résonateurs et leurs orientations relatives.
Nous montrons que les structures ainsi construites sont bien décrites par un formal-
isme de liaison forte, même en présence de modes de résonance d’ordre supérieur, puis
nous utilisons cette plate-forme polyvalente pour étudier deux systèmes en détail.

Le premier est constitué de chaînes quasi-périodiques de résonateurs, ordonnés
selon des séquences de Fibonacci. Par définition, les structures quasi-périodiques ne
présentent ni périodicité ni symétrie globale de translation, mais possèdent un certain
ordre et une certaine autosimilarité à différentes échelles. Cela se manifeste par une
multifractalité du spectre et des fonctions d’onde. Nous montrons que cette fractalité
de la densité d’état locale mesurée est révélée lorsque les sites sont réarrangés en fonc-
tion des similitudes de leur environnement local, ce faisant nous introduisons la notion
de “conumbers”. Cela nous permet de vérifier expérimentalement des schémas de con-
struction récursifs de la densité d’état pour les deux cas de couplages forts dominants
et faibles dominants, qui peuvent être formulés en utilisant une méthode de renor-
malisation. Nous calculons les dimensions fractales des fonctions d’onde mesurées et
trouvons un bon accord avec les formulations théoriques de la multifractalité basées
sur une description perturbative dans la limite quasi-périodique.

La deuxième structure étudiée est celle formée de réseaux en zigzag, où nous
observons une transition de phase topologique en présence d’une symétrie chirale.
Par rapport au modèle SSH classique, où la transition topologique est induite par
l’alternance des distances (donc des couplages), nous utilisons la même distance entre
les résonateurs, mais nous exploitons le couplage anisotrope entre les modes résonants
d’ordre supérieur de type “orbitale p” des résonateurs pour induire la dimérisation.
En changeant l’angle de liaison de la structure zigzag, déformant ainsi continuelle-
ment une chaîne linéaire en une chaîne zigzag à angle droit, une transition de phase
topologique se produit à un angle critique, qui dépend du rapport des deux couplages
différents entre les modes p polarisés de façon parallèle ou orthogonale. Nous suiv-
ons expérimentalement cette transition en mesurant le spectre et en extrayant ses
fonctions d’onde. Comme attendu, à la transition, nous observons la nette ouverture
d’un bandgap et la formation d’états de bords à énergie nulle aux deux extrémités des
chaînes caractérisés par leur extension spatiale.

Mots clés: topologie, multifractalité, micro-ondes, quasi-periodicité
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Experimental studies of multifractality
and topological phase transitions
in microwave resonator lattices

In the vivid domain of topological photonics, microwave setups are a driving force
in the experimental study in one or two-dimensional systems. Using small dielectric
resonators, sandwiched between two metallic plates, we study complex lattice-like
structures, that are essentially described by the coupling strength between the reso-
nances of the resonators. These couplings can be controlled via their distance and
orientation. We show that these structures can be well described by a tight-binding
formalism, even in the presence of higher order resonance modes and later-on use this
versatile platform to study two systems in detail.

The first one are quasiperiodic chains of resonators, that are arranged according to
Fibonacci-sequences. Due to fact that quasiperiodic structures lack periodicity and a
global translational symmetry, while still showing some order and self-similarity on dif-
ferent scales, we expect multifractality in the spectrum and wavefunctions. We show
that the fractality of the measured local density of state (LDoS) is best understood
when the sites are rearranged according to the similarities in their local surrounding,
i.e., their conumbers. This allows us to experimentally verify recursive construction
schemes for the LDoS for the two cases of dominant strong and dominant weak cou-
plings, that can be formulated using a renormalisation group method. We calculate
the fractal dimensions of the measured wavefunctions and find good agreement with
theoretical formulations for the multifractality based on a perturbative description in
the quasiperiodic limit.

The second one are zigzag arrays, where we observe a topological phase transition
in the presence of a chiral symmetry. Compared to the classical SSH model, where the
topological transition is induced by staggered distances, we use the same distance in
between the resonators, but exploit the anisotropic coupling in between the higher or-
der p-orbital-like resonant modes of the resonators to induce the dimerisation. Upon
changing the zigzag bond angle in between the resonators, thereby continuously de-
forming a linear chain into a right angle zigzag chain, a topological phase transition
occurs at a critical angle, that depends on the ratios of the two different couplings in
between the co- and cross-polarised p-modes of the resonators. We experimentally
follow this transition by measuring the systems spectrum and extract its wave func-
tions. As expected, at the transition, we observe the clear opening of a bandgap and
the formation of zero-energy edge states on both ends of the chains, that we further
characterize by their inverse participation ratio.

Keywords: topology, quasiperiodicity, multifractality, microwaves
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Chapter 1

Introduction

The discovery of the integer quantum Hall effect [1, 2] in 1980 has trig-
gered an extensive research in the field of topology in condensed matter
physics. Von Klitzing et al. observed for the first time that the transverse Hall
resistance of a 2D electron gas at very low temperatures and extremely high
magnetic fields showed plateaus that are appearing very accurately at levels
that only depend on the fine-structure constant and some integer, associated
to topological invariants of the system. The existence of these plateaus was al-
ready theoretically predicted [3] and experimentally measured [4] before. But
it was only with their improved experimental technique, that Von Klitzing et
al. where able to precisely measure the positions of these plateaus, leading to
the discovery that these plateaus are indeed quantized with an extraordinary
great precision, which was not expected. The plateaus are associated to topo-
logically protected surface modes, that, as such, are immune to backscattering
induced by disorder and imperfections, which in turn made the positions of
these plateaus independent on impurities or the actual material of the sample.
The positions of these plateaus are since then widely used to determine with
great precision the fine-structure-constant and to precisely calibrate resistance
measuring devices.

Motivated by this new discovery, and especially the robustness provided
by topological protection, which also directly found application, topology in
condensed matter, and in particular, topological insulators, have gained huge
interest [5–7] in the following years. Topological insulators are crystals that are
insulating in the bulk, but due to topological protected surface-modes become
perfectly conducting at the edges.

Almost 30 years after the discovery of of the integer quantum Hall effect,
Haldane and Raghu [8] first noted in 2008 that the concept behind such topo-
logical protection is not limited to electron wavefunctions, but can be trans-
ferred to the propagation of electromagnetic waves inside photonic crystals as
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Chapter 1. Introduction

well [9]. Indeed, topological considerations can be applied to various types of
waves propagating in specifically arranged arrays or meta- materials [9–13].
A year later, the scatter-free propagation of edge states in a magneto-optical
photonic crystal was experimentally observed in the microwave range [14],
hereby marking a starting point for topological photonics. Later, similar be-
haviors were reported in the IR and visible optical domains [15, 16]. Since
then, a wide variety of phenomena directly inspired by topological insulators
have been experimentally investigated (see the quasi exhaustive bibliography
in the recent review [17]). In addition to the direct analogies of the wave’s
equations, properties such as loss, gain or nonlinearity, which are intrinsic to
photonic systems, can be controlled to create extraordinary systems beyond
simple analogies. In this regard, topological lasers [18–20] and topological
solitons [21–23], recently reported in the literature, are prominent examples
of the remarkable success of various teams around the world.

Typical lattice building blocks in topological photonics can range from the
nanometer (visible light) to centimeter scale (RF waves) and can be made out
of different material types. The first experiment in the context of topolog-
ical photonics [14] used small gyromagnetic ferrit cylinders, which allowed
to break time-reversal symmetry via a constant, external magnetic field. By
now, the most common material used are dielectrics, which allow to gener-
ate structures that range from laser written nano-structures, to ceramic mi-
crowave resonators of a few mm in size. Intrinsic material properties like the
non-linearity of silicon can e.g. readily be exploited to generate higher or-
der harmonics [24] or to generate correlated photon pairs [25] in topological
nanostructures. Other structures are e.g. metallic [26] and plasmonic struc-
tures [27], and highly engineered systems like polaritons, which were used in
the the first demonstration of topological lasing [18]. Note here, that we do
not want to be exhaustive with the examples of topological systems that we
give. We have chosen to cite a few works of special interest and as mentioned
earlier, a quasi exhaustive bibliography can be found in the recent review [17].

To summarize, the field of topological photonics studies wave propagation
in complex systems, with the aim of exploiting the robustness provided by
topological protection to improve the performances of photonic devices from
laser sources to waveguides and sensors.

In this field, microwave setups are a driving force in the experimental stud-
ies in one or two-dimensional systems [17]. Microwaves components, such as
sources, detectors and high refractive-index ceramic or metallic lattice build-
ing blocks are routinely accessible and the typical wavelengths are in the order
of cm. This makes implementing systems operating in the microwave range
rather easy while providing a high sub-wavelength precision. Additionally,
complex fields (amplitude and phase) can be measured with the use of vec-
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tor network analyzers. A sketch of a typical experiment setup for microwave
photonics can be seen in figure 1.1(a). In order to reduce losses through ra-
diation and effectively reduce the systems dimensions to 2D, most microwave
experiments in the framework of topological photonics, make use of a cavity
made of two parallel metallic plates. The lattice structure is placed in the cavity
and arranged along (x , y), see figure 1.1(a).

For our experimental platform, we use dielectric cylindrical resonators with
a high refractive index made of ceramics (from Exxelia Temex manufacturer)
as lattice building blocks. Throughout this manuscript we only use resonators
from the Exxelia serie E6000 (εr ≈ 45, TiZrNbZnO) with height h = 5 mm
and two different diameters D = 6 mm and D = 8 mm. In the past, resonator
from other Series (e.g. E3000,ZrSnTi, εr ≈ 37) and with different diameters
(from 5mm to 8 mm) were also used with great success. We decided to work
with the resonators of the E6000 Series since they have the highest quality fac-
tors of Q ≈ 8000 (given by the manufacture 1), which lead to sharp resonance
peaks and thus a high spectral resolution upon data treatment. To distinguish
each resonator (we use between a few tens and up to 500 resonators in our
experiments), they are all numerated and individually characterized. A selec-
tion of resonators can be seen in Fig. 1.1). The use of dielectric resonators
have a lot of advantages in comparison to other photonic structures. With our
setup we have total flexibility in the arrangement of the resonator. We posi-
tion the resonators in the (x-y) plane according to specific lattices and geome-
tries with a precision of 0.05mm using a movable arm that is controlled by an
Universal Motion Controller (Newport, Model ESP301, Newport IMS600CC).
With our setup it is relative easy to induce additional absorption at specific
sites and to change the eigenfrequency of resonators, just by replacing them
with other ones. It is also possible to couple the resonators to short-circuited
diodes, hereby inducing a non-linearity that acts on both the resonance width
and frequency. This is not only useful to create self induced non-hermiticity in
topological lattices or sublattices, but already a single resonator coupled to a
diode can be used to implement interesting systems. Tuning the non-linearity
of such a simple resonant system, one can for example observe the broadband
persistence of self-induced coherent perfect absorption [28].

We excite the system of resonators using different antennas. A detailed
presentation of the different antennas we use can be found in section 2.2. De-
pending on which component of the electromagnetic field we want to excite,
we use either loop-antennas that excite the z component of the magnetic field
Bz, kink-antennas that excite electric field components the (x , y)-plane E⊥ and

1. In experiments with additional ohmic losses in the metallic plates we typically find Q ≈
3000
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Chapter 1. Introduction

monopole antennas that excite the z component of the electric field Ez. Beside
using fixed mounting points in the bottom plate, the different antennas can
also be attached to the top-plate and can be moved in the (x-y) plane above
the resonators, to scan the system. We can measure either the reflection at
one antenna and/or the transmission between two antennas using a Rhode &
Schwarz Vector-Network-Analyzer ZVA 24.

The two metallic plates forming the cavity reduce the systems dimension,
thereby acting as a wave guide for the electromagnetic fields. This allows us to
approximately describe and excite the fields inside in terms of two very distinct
types of modes. Transverse magnetic TM modes, where the magnetic field vec-
tor B⃗ is solely in-plane with the cavity and transverse electric TE modes, where
the electric field vector E⃗ has solely in-plane components. We mainly work
with the latter type of modes, where the empty cavity has a cut-off frequency
fc = c0/(2h), where c0 is the vacuum speed of light, that depends on the height
h of the cavity. Below this frequency no propagating TE modes are supported.
When resonators are placed inside the cavity, on the other hand, due to their
high refractive index, they allow the fields to propagate inside their dielectric
medium. This leads to the appearance of sharp Mie resonances, where the
fields are essentially confined inside the resonators. For the typically height
h = 8mm to 16 mm between the metallic plates, we work below the cutoff
frequency in a frequency range of 6 GHz to 9GHz, and hence the fields out-
side of resonators decay exponentially. This leads to an evanescent coupling
in between resonates, then can be controlled by their separation. The system
can thus be described with the use of simple tight-binding (TB) Hamiltonians
as detailed in Ref. [29] and in chapter 4 of this manuscript. Details on the
electromagnetic description of modes can be found in section 2.

Along this manuscript we will work exclusively in this configuration of
the experiment, modeled by a TB description, where the setup has already
been used with great success to study various systems. Starting with the
investigation of graphene-like lattices [30, 31], experimental realization of
various systems followed, ranging from Dirac oscillator [32] to transport
in molecules [33] and nanoribbons [34] to experimental implementation
of quantum search algorithms [35]. It was also used to study quasiperi-
odic systems [36]. These experiments have been complemented by research
on non-Hermitian topological structures in 1D (Su-Schrieffer-Heeger (SSH)
chain [37]) and 2D (Lieb lattice [38]). The defect mode of the SSH chain,
was also exploited to implement photonic limiters [39, 40]. Further, topologi-
cal phase transition [41], edge state manipulation [42] and pseudo-magnetic
Landau levels [43] have been also reported in strained honeycomb lattices and
a relation between phase singularities and topological insulators was experi-
mentally observed [44].
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Using the other types of modes, the transverse magnetic TM modes, one can
perform a complete set of different interesting experiments. Below the cut-off
frequency of the empty cavity, only one type of TM modes is supported, which
is the so called TM0 mode and the vector nature of the electromagnetic waves
can be reduced to a scalar description. Compared to the tight-binding mod-
eling, that uses the transverse electric TE modes, the TM0 modes are always
propagating. Thus referring to the dielectric cylinders as scatterers, that inter-
act with the propagating fields becomes more appropriate. They nevertheless
still exhibit Mie resonances, leading to a strong frequency dependence of their
scattering function. In this regard the experimental platform was used to ob-
serve different transport regimes in correlated hyperuniform distributions [45],
or to study localization in disorder systems [46].

A huge part of the work during this theses was to further push the lim-
its of the experimental platform in the TB modeling. Moreover, several me-
chanical improvements in the experimental setup, combined with the devel-
opment of new sophisticated data-treatment methods, made quantitative in-
terpretations of the systems wavefunctions possible. Analytical calculations
and finite-difference time-domain (FDTD) simulations helped us understand,
identify and control higher-order resonance-modes of the resonators. With the
appropriate adaptions of the experimental setup, we are now able to perform
TB experiments with higher order resonance modes, allowing us to exploit
their rich anisotropic properties, to study a new family of TB Hamiltonians.

Hence, we start this manuscript by providing the theoretical background,
including a detailed electromagnetic description of a single resonator for the
experiment in chapter 2. In order to better understand our system, we then
continue with a detailed experimental characterization of the single resonator
in chapter 3. We then begin building first small test systems using a few res-
onators, that allow us to investigate in detail the limits of the TB modelling
in chapter 4, before we finally tackle more interesting physical systems. As
such, in chapter 5 we investigate the multifractal properties of 1D Fibonacci
quasiperiodic structures, and in chapter 6 we study a topological phase transi-
tion induced by the continuous deformation of linear chains into zigzag arrays
employing the higher order p-orbital-like mode of the resonators.

5



Chapter 1. Introduction

Figure 1.1 – (a) Typical configuration for microwave photonics. A photonic lat-
tice, that in general can be made of dielectric, metallic, ferritic, or gyro-magnetic
materials, is inserted in a microwave cavity made of two metallic plates. Antennas
can excite and collect the microwave signal via a vector network analyzer (VNA)
including phase and amplitude information. They can be mobile to spatially re-
solve the electromagnetic field in the cavity along the (x , y) plane. (b) Photo
of the experimental setup, including the VNA and the microwave cavity (mostly
covered by the large top plate). The VNA is connected to one antenna attached to
the movable top plate and to another antenna embedded in the bottom plate. The
top plate is larger than the bottom plate in order to fully cover the lattice struc-
ture in all positions, even when moved to scan the system. (c) Typical microwave
components used in the setup. The dielectric cylindrical resonators have the same
height (5 mm) but their diameter range from 6 to 8 mm. Different kind of anten-
nas (loop, 1 and dipole, 2) allow to excite the TE polarization. On-site losses can
be controlled via absorbing patches (3, 4) or sprayed graphite (5) placed on top
of the resonators. Nonlinear losses are added via a Schottky diode short-circuited
by a metallic loop and placed on a Teflon spacer (6).
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Chapter 2

Theoretical description of the
system

In this chapter we provide the theoretical framework of the experiment.
We mainly describe the experiment with a tight-binding formalism, but mi-
crowaves and dielectric resonators are primarily assigned to electrodynamics
and the fields inside/outside the resonators follow Maxwell-equations. Before
introducing the tight-binding formalism in chapter 4 we therefore start this
chapter by presenting a detailed electromagnetic description of a single res-
onator using an analytic approach and finite-difference time-domain (FDTD)
simulations. We then present how we couple to the system using different an-
tennas and show how the measured scattering matrix is linked to the resonant
modes of the system, before we finally discuss different methods of data treat-
ment in order to extract as much information as possible out of the measured
spectra.
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2.3.2 Harmonic inversion . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Integrating the density of states . . . . . . . . . . . . . . 30
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Chapter 2. Theoretical description of the system

2.1 Electromagnetic description of a single res-
onator

The fields inside and outside of a single resonator with relative permittiv-
ity εreso

r and relative permeability µreso
r = 1 sandwiched between two metallic

plates are described by Maxwell equations

∇⃗ · D⃗ = 0 (2.1)

∇⃗ · B⃗ = 0 (2.2)

∇⃗ × E⃗ = −
∂ B⃗
∂ t

(2.3)

∇⃗ × H⃗ =
∂ D⃗
∂ t

(2.4)

For linear material laws the displacement D⃗ and the magnetic induction B⃗
are related to the fields via

D⃗ = εE⃗

B⃗ = µH⃗ ,

where ε= ε0εr is the dielectric constant and µ= µ0µr the permeability of the
medium. Assuming periodic time dependence eiωt we derive the Helmholtz
equation for E⃗ and B⃗:

�

∆+
ω2

c2

�

E⃗ = 0 , (2.5)
�

∆+
ω2

c2

�

B⃗ = 0 , (2.6)

where c = 1/
p
µε = c0/n is the speed of light in a medium with index of re-

fraction n = pµrεr and c0 the speed of light in vacuum. For the derivation
we used the vector identity ∇⃗ × (∇⃗ × A) = ∇⃗(∇⃗ · A) −∆A. Although the rel-
ative permeability changes at the boundary of the resonator, we can suppose
locally linear, homogeneous and isotropic media for both inside and outside of
the resonator and therefore ∇⃗ · E⃗ = 0 [47]. In general one then can solve the
Helmholtz equation individually for the two regions, inside and outside of the
resonator, and then combine the found solutions so that they respect the con-
tinuity conditions at the interface resonator-air and the boundary conditions
at the metallic surfaces.
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2.1. Electromagnetic description of a single resonator

The boundary conditions at the metallic surfaces (top and bottom plate)
with the normal vector n⃗ are

n⃗× E⃗ = 0 , (2.7)

n⃗ · B⃗ = 0. (2.8)

The magnetic field is tangential while the electric field is perpendicular to the
metallic boundary surface. The continuity conditions for field components at
the interface of the dielectric resonator and air are given by

n⃗12 ×
�

E⃗2 − E⃗1

�

= 0 , (2.9)

n⃗12 ·
�

D⃗2 − D⃗1

�

= 0 , (2.10)

n⃗12 ×
�

H⃗2 − H⃗1

�

= 0 , (2.11)

n⃗12 ·
�

B⃗2 − N⃗1

�

= 0 , (2.12)

where n⃗12 is the normal vector directing from medium 1 to medium 2. For the
dielectric material we use, µreso

r = 1, which means that all field components of
E⃗ and B⃗ are continuous, except for the normal component of the electric field
at the resonator-air interface, that gets multiplied by εreso

r upon the transition
from the inside of the resonator to the air outside.

2.1.1 Analytic approach

We will now solve the the Helmholz equation of E⃗ and B⃗ in cylindrical co-
ordinates (r,ϕ, z) in order to find all resonant modes of the dielectric cylinder
(radius r0, height hreso and relative permittivity εreso

r ) with harmonic time de-
pendence exp(−iωt) [48, 49]. In systems with continuous rotational symme-
try, by an analogue of Bloch’s theorem, the angular dependence of the fields can
always be chosen in the form exp(inϕ) for some integer n = 0,1, 2,3, . . . [9].
To make the analytic description possible, we suppose that there is no gap un-
derneath or above the resonator and the resonator is in perfect electric contact
with the parallel bottom and top plates, in other words the total height of the
cavity htotal corresponds exactly to the height of the resonator hreso = htotal. This
allows us to additionally separate the z-dependency and we will find solution
of the form F(z)G(r)exp(i(nϕ −ωt) for all 6 components of the fields.

Due to the boundary conditions at the metallic surfaces, we have Bz(z =
0) = Bz(z = h) = 0 and Ex/y(z = 0) = Ex/y(z = h) = 0. Since the dielectric
constant εr(r⃗) = 1 + (εreso

r − 1)θ (r0 − r) (where θ (r) is the Heaviside step
function) does not depend on z, the z-component of the fields form a standing

9



Chapter 2. Theoretical description of the system

wave in z-direction. We therefore decide to describe the fields using the z-
components of E⃗ and B⃗ as basis

Bz = B0 sin
�mπ

h
· z
�

G(r)exp (i(nϕ −ωt)) , for m= 1,2, 3, ... (2.13)

Ez = E0 cos(
mπ
h
· z)G(r)exp(i(nϕ −ωt)), for m= 0,1, 2,3, ... (2.14)

B0 and E0 are constant factors, n the azimuthal mode number and the wavenum-
ber in z-direction kz =

mπ
htotal

is defined by the axial mode number m.
The solution for G(r) are solutions to the Bessel differential equation. Con-

sidering that the solutions should neither diverge for r = 0 nor for r →∞ we
find

G(r) =

¨

Jn(qinr) for r < r0

Jn(qinr0)/H (1)n (qoutr0) ·H (1)n (qoutr) for r > r0,
(2.15)

where Jn and H (1)n are Bessel- and Hankel-functions of the first kind, respec-

tively. qin =
Æ

k2 − k2
z =

q

k2
0ε

reso
r − k2

z and qout =
Æ

k2 − k2
z =

q

k2
0 − k2

z are
the wave numbers in the (r,ϕ)-plane for the regions inside and outside the
resonator, respectively. k0 =

ω
c0

is the vacuum wavenumber, c0 is the vacuum
speed of light, and εreso

r is the permittivity inside the resonator.
From Ez and Bz, all other field components can be derived:

(k2 − k2
z )Eϕ =

1
r
∂ 2Ez

∂ ϕ∂ z
− iω

∂ Bz

∂ r
(2.16)

(k2 − k2
z )Er =

∂ 2Ez

∂ r∂ z
+

iω
r
∂ Bz

∂ ϕ
(2.17)

(k2 − k2
z )Bϕ = i

k2

ω

∂ Ez

∂ r
+

1
r
∂ 2Bz

∂ z∂ ϕ
(2.18)

(k2 − k2
z )Br =

∂ 2Bz

∂ r∂ z
− i

k2

ωr
∂ Ez

∂ ϕ
(2.19)

Taking into account the boundary conditions of the different fields compo-
nents at the interface resonator-air at r = r0 we can derive the characteristic
equation

(α−α0)(ε
reso
r α−α0) = a2, (2.20)

where

α=
1

qinr0

J ′n(qinr0)

Jn(qinr0)
, α0 =

1
qoutr0

H (1)′n (qoutr0)

H (1)n (qoutr0)
, a =

k0kzn
q2

inq2
outr

2
0

(1− εreso
r ).

(2.21)

10



2.1. Electromagnetic description of a single resonator

The complex frequencies ωp = ω′p − iω′′p (ω′′p ≥ 0) that solve the charac-
teristic equation for a given azimuthal and axial mode number n and m re-
spectively are the resonance frequencies associated with different oscillation
modes of the resonator. The subscript p orders the different solution found to
the characteristic equation with fixed n and m. p is an integer value, starting
at 1 and is ordered according to the real part of the solution ωp.

The different modes are classed by their subscript npm and further re-
grouped into different types. TE modes, where Ez = 0 and the only non-zero
field components are (Bz, Br , Eϕ), TM modes where Bz = 0 and the only non-
zero field components are (Ez, Er , Bϕ) and hybrid modes, where both Bz and Ez

are nonzero and thus all 6 field components are nonzero. TE and TM modes
are only appearing for a = 0. That is the case for m = 0 and n = 0. The
characteristic equation then simplifies to

εrα−α0 = 0 (2.22)

for the TM0pm and TMnp0 modes, and

α−α0 = 0 (2.23)

for the TE0pm modes. There is no TEnp0 mode since for m= 0, the z-component
of the magnetic field Bz cannot fulfil the boundary conditions at the metallic
interface ( expect for the trivial solution Bz = 0).

If neither m= 0 or n= 0, there exists only hybrid modes, so no separation
in TE and TM modes is possible. By rewriting 2.20 into

a
α−α0

=
εreso

r α−α0

a
= P (2.24)

we introduce a new function P, which allows us to further class the hybrid
modes into EH and HE modes. For each mode the constants E0 and B0 are
then related by

B0 = −PE0/c0 (2.25)

For HE modes |P|< kz/k0 and the TM mode is dominant, for EH modes, |P|>
kz/k0 and the TE mode is dominant.

One can further distinguish between trapped and leaky modes. For trapped
modes (ω′′p = 0) qin is real while qout is purely imaginary. That is the case for
p

εreso
r > (λ0m/2h)≥ 1, where λ0 is the free-space wavelength corresponding

to the resonance frequency ω. The other case is 1> (λ0m/2h)> 0, where the
resonances are in a leaky state and ω′′p > 0. (λ0m/2h) = 1 is called the cutoff-
condition, fc = c0m/2h is then the cutoff frequency. Below that frequency a
mode is trapped, since the fields outside are decaying exponentially, but above
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Chapter 2. Theoretical description of the system

that frequency a mode can radiate energy away, due to the now propagating
fields outside of the resonator. Since m = 0 for the TMnp0-modes, they are
always in the leaky state.

The calculated resonance position for the first few modes up to ν= 18GHz
for both type of resonators that we use (εreso

r = 45, h = 5 mm, with diameters
D = 6mm and D = 8mm) can be seen in figure 2.1. We calculate them by nu-
merically finding the zeros of the characteristic equation 2.20. As one would
expect the resonance frequencies for the smaller diameter resonator are gener-
ally higher. Further one can notice that for increasing frequency ν the density
of resonances increases strongly.

For the typical tight-binding experiment one would choose to work with a
mode with azimuthal mode number n = 0, further referred to as s-modes 1.
Since it does not have an angle dependency the mode is completely rotational
symmetric. The coupling between the resonators is then isotropic and depends
only on the distance between the resonators and not on the angle between
them as well. One further is in search of a mode whose energy is well local-
ized within the resonator and is not leaking away through radiation (which
insures a small resonance width). We want the fields outside of the resonator
to decay exponentially. This automatically eliminates all the leaky modes of
the resonator.

In contrast to the geometry we used to calculate the analytic frequencies
and modes, in our experiment we have an additional air gap between the res-
onator and the top plate. All resonance-frequencies are sensitive to the contact
conditions at the resonator-metal interface, but to different extents. A detailed
study of the sensitivity of different modes can be found in section 2.1.2 and
experimental findings can be found in section 3.3. When the resonators are
in contact with the metallic plates, a small air gap remains due to the surface
roughness (≈ 1µm) of the two materials. Upon the re-placement of the same
resonator at the same position, the air gap is not the same and due to the
low refractive index of air, resonance-frequencies will slightly change. There
are techniques to avoid this that are used for experiments where the precise
determination of the resonance-position is crucial, e.g. experiments that char-
acterize the dielectric properties of a resonator’s material via its resonance-
positions. They consist, e.g. of using least amounts of water (which has an
high refractive index for waves in the RF range) to fill the small air gap [48] or
to apply a thin layer of gold directly onto the end faces of the resonator [50].

1. The azimuthal index n can be interpreted in a similar way as the quantum number l,
that is used to describe the quantified angular momentum of atomic orbitals. There the use of
letters s, p, d, f , . . . is common to distinguish atomic orbitals with different quantum numbers
l = 0, 1,2, 3, . . . We adopted this nomenclature, and modes with n= 0 will be further referred
to as s-modes, modes with n= 1 as p-modes, etc.
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2.1. Electromagnetic description of a single resonator

Figure 2.1 – Calculated resonance frequencies of different modes for the res-
onators with D = 6 mm (top) and D = 8 mm (bottom). In order to facilitate the
identification of different modes, different subplots are used for the azimuthal
mode number n, different colors for the axial mode number m and different line
styles for the different classes of modes. For the leaky modes we additionally give
the quality factor Q.
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Chapter 2. Theoretical description of the system

Unfortunately we cannot make use of this techniques, since we use a large
number of resonators. They are arranged on the (x-y) plane and the slightest
imperfection in the planarity of the top and bottom plates will result in an un-
even distribution of the top plate’s weight onto the different resonators, which
alters their contact condition and thus their resonance frequency. So in order
to avoid the air gap problem in our experiments we leave a big enough air
gap above the resonators (≈ 3mm to 10 mm), so the resonance frequencies
are not sensitive to contact condition, at least for the top plate. We further
make use of the additional space above the resonators to probe the system
with our antennas. We additionally try to reduce the sensitivity of the reso-
nance frequencies to the remaining contact between the bottom plate and the
resonators, by applying a small uniform pressure down on to the resonators
upon placing. More information on this procedure and the resulting improve-
ments on the variations of the resonance frequencies can be found in section
3.3.

In order to come back to the original problem of choosing the right reso-
nances for our tight biding experiments we have to investigate the effect that
an air gap of a couple of mm thickness above the resonators has on the modes.
First of all, due to the increased cavity height, the cutoff frequencies become
smaller. For a cavity height of htotal = 16 mm, which is the largest height that
we use in experiments, the cutoff frequency for m = 1 is at fc = 9.4GHz, we
thus want to use a mode with a lower resonance frequency. In order to investi-
gate how the field patterns of the modes are changing upon the introduction of
the gap, we first consider that the symmetries of the system are reasonable well
maintained so we can still separate the z-dependency. For r > r0 (i.e. outside
the resonator) we still have the set of F(z) = cos(kzz) or F(z) = sin(kzz) with
kz =

mπ
htotal

. But for r < r0, we would have an altered function Feff(z). Inside of
the resonator, i.e. z < hreso, the z-dependence will be similar to the original z-
dependency F(z) = cos(keff

z z) or F(z) = sin(keff
z z) with an keff

z ∼
mπ
hreso

but above
the resonator the fields will be exponentially decaying. In case of a perfect
geometry (htotal = hreso = h), the same orthogonal basis F(z) = sin(mπ

h · z) and
F(z) = cos(mπ

h z) inside (r < r0) and outside (r > r0) the resonator describes
the fields. Thus a mode with a certain axial mode number m∗ inside the res-
onator can only couple to a mode outside with the same axial mode number
m∗. Once an air gap above the resonator exists, the modes inside the resonator
will still be defined by their axial mode number m∗. But since the effective
z-dependency F m∗

eff (z) is not orthogonal anymore to the modes outside (r > 0),
any mode will couple to all modes outside. Considering a mode with axial
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2.1. Electromagnetic description of a single resonator

mode number m∗ inside the resonator, for the magnetic field Bz we get

F(z) =

¨

F m∗
eff (z) for r < r0
∑

m=1 Cm∗
m cos( mπ

htotal
z) for r > r0 ,

(2.26)

where the Cm∗
m are determined by the mode overlap at r = r0. For the electric

field Ez we get

F(z) =

¨

F m∗
eff (z) for r < r0
∑

m=0 Dm∗
m sin( mπ

htotal
z) for r > r0,

(2.27)

where the Dm∗
m are equally determined by the mode overlap at r = r0, but

this time the sum starts at m = 0. As for m = 0 there is no cutoff frequency
outside the resonator, the internal modes that can couple to this mode, i.e.
all hybrid (EH and HE) and TM modes, are thus radiating and become leaky
modes. Therefore TE modes are preferable for our tight-binding experiment.
If the coupling to the m= 0 mode outside is sufficiently weak the other modes
might still be used as well.

Since we additionally need a well isolated mode, so that we have a clean
baseline for our experiments, it limits our choices down to the TE011 mode,
since for the higher order TE modes the density of resonances becomes to high
and we additionally have to stay below the cutoff frequency that itself will de-
pend on the actual height htotal of the cavity. It is this mode that was exclusively
used in the various different tight-binding experiments performed with the ex-
perimental platform (see paragraph in the Introduction for an overview), thus
it is worthwhile to at least shortly discuss its spatial profile.

The calculated field pattern of the TE011 mode in the case of htotal = hreso = h
can be seen in figure 2.2. One can see that the magnetic field has its maximum
at the center of the resonator, whereas the electric field is maximal at the edge
of the resonator. The energy is well localized inside the resonator while outside
the fields are decreasing fast with increasing distance from the center.

For most tight-binding experiments this s-mode is well suited and has al-
ready proven itself in multiple experiments. One part of this thesis was to
realize an experimental setup for p-modes (n = 1, term adopted form the
nomenclature of atomic orbitals) and perform first experiments. This opens
up the path to a whole set of new experiments that use anisotropic coupling
between the resonators.

As we just have learned, in the presence of the air gap above the resonators,
there are only leaky modes with n = 1, making it quite challenging to find
suitable modes, that still maintain a high quality factor Q. Possible candidates
would be the HE111 and EH111 modes.
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Figure 2.2 – Calculated field pattern of the TE011 mode in the case of htotal =
hreso = h = 5mm, εreso

r = 45 and D = 8mm. The magnetic field components
can be seen on the (left), while the electric field components can be seen on the
(right). The (top) figures show the field pattern in the (x , y)-plane, calculated at
z = h/2 = 2.5mm, while the (bottom) figure show the field pattern in the (x , z)-
plane, calculated at y = 0. We plot the combined field intensity of the in- and out-
of-plane components using a linear color scale from white (corresponding to zero
intensity) to a dark red (corresponds to the maximum intensity for each subplot).
On top of the color plots we plot the field lines of the in-the-plane components
of the fields, to visualize the vectorial character of the electromagnetic fields. For
the electric field in the (x , z)-plane (bottom,right) there are no in-the-plane, but
only out-of the plane components. For the sake of a better visibility and clarity,
we purposely did not add the outline of the resonator into the plots, but using the
axis-ticks at ±4mm on can easily imagine its contour.
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2.1. Electromagnetic description of a single resonator

Solving the Helmholtz equation analytically in the presence of an air gap
above the resonators is something that to our knowledge has not yet been
done [51]. We thus decide to perform Finite-difference time-domain (FDTD)
simulations to further inspect how different modes are affected when an air
gap above the resonator is introduced. For this particular problem there may
be more efficient ways, like mode-matching methods or approaches based an a
perturbation theory, but they all need some prior knowledge about modes. We
decide to go with the "brute force" method simulating numerically Maxwell’s
equation.

2.1.2 FDTD simulations using MEEP

In order to perform the FDTD Simulations we use the program package
MEEP developed by researchers at the Massachusetts Institute of Technol-
ogy [52]. MEEP was developed to provide a full-featured open-source soft-
ware for researchers that needed the flexibility provided by complete access
to the source code. For us, the use of MEEP is specially interesting since in
experimental physics we only occasionally need FDTD simulation and buy-
ing a commercial solution would not be worth it. Additionally it comes with
an object-orientated python interface, that made it easier to get started and
use simulations results for further calculations/plotting tasks since by far the
biggest part of programming within our research group is written in python.
Compared to other free software packages MEEP offers a greet amount of
features, like built in calls to external libraries such as a Harminv Filter Di-
agonalization package [53, 54] and supports parallel computation. MEEP
additionally supports simulation in cylindrical coordinates which in our case
speeds up the simulation by a huge amount.

We want to simulate the single cylindrical resonator sandwiched between
two metallic plates with a varying air gap above the resonator. The system
is therefore rotational symmetric. Similar to Bloch’s theorem for translational
symmetries, when a rotational symmetric system is rotated by an angle ϕ the
fields transform as einϕ for some integer value n [9]. MEEP thus allows us
to simulate Maxwells equations in a reduced (r, z)-plane with cylindrical co-
ordinates, and solve the ϕ dependency analytically for a given n. Although
one needs to perform multiple simulation for different n, each simulation is
reduced by one dimension which still results in a much faster simulation time.

A sketch of the used computational cell can be seen in figure 2.3. The res-
onator is placed at the center of the cell. MEEP supports either periodic or
perfectly conducting metallic boundary conditions. Since we are interested in
simulating a single resonator we use the metallic boundary conditions. For
the z-direction this corresponds well to the metallic bottom and top plates that
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Figure 2.3 – Layout of the computational cell for the FDTD Simulations in the
(x , y)-plane (top) and (x , z)-plane (bottom). The resonator (gray shaded) is sur-
rounded by a layer of air (white) and a perfectly matched layer (PML, blue). The
cross indicates the position of the source.

18



2.1. Electromagnetic description of a single resonator

we use to form our 2D cavity. Since ideally our cavity is infinitely extended
in the (x , y)-plane, we use perfectly matched layers (PML) that are placed in
front of the metallic boundaries in the (x , y)-plane to suppress any reflection.
PMLs are artificial absorbing layers, often used in FDTD or Finite-Elements
methods to simulate problems with open boundary condition. The key prop-
erty of the PML that distinguishes it from ordinary absorbing materials is that
it is designed so that waves incident upon the PML from a non-PML medium
do not reflect at the interface, i.e. no impedance mismatch at the interface.
This allows the PML to strongly absorb outgoing waves from the interior of
the computational region without reflecting them back into the interior. We
make sure to have a sufficient layer of air (15 mm) around the resonator be-
fore the PML starts, so that we can still characterize the unperturbed decay of
modes outside of the resonator. Next we place a broad-band point-source in-
side of the resonator, making sure that it does not lay on any nodal lines of the
modes that are within our frequency-window. We excite both the electric and
magnetic field in z-direction and use a Gaussian shaped pulse centered around
8GHz with a width of 6 GHz. As one can see in figure 2.1, this should cover
all modes of interest since lower frequency modes are only of the leaky nature
and for higher frequencies the density of modes becomes too high to use them
for our type of experiment. The Gaussian pulse is cut off at 5 times its width,
both at its start and end.

The documentation of MEEP gives some conservative minimal values for
the thickness of the PML, being at least half the maximal wavelength. We chose
a PML layer thickness of 31mm, which should be enough since the analytic
calculation in section 2.1.1 predicts the first modes of interest at around 6 GHz.

We chose a resolution of 40 points per mm. For the maximum frequency
of ≈ 11GHz, this corresponds to ≈ 180 points per wavelength inside of the
resonator, which is more than enough. We actually have to use such a high res-
olution since we are interested in precisely following the resonance-positions
upon intruding a small gap above and later also underneath of the resonator.
The resolution thus has to match with the smallest gap that we want to in-
troduce. If we would use Cartesian Coordinates, for a total cavity height of
htotal = 8mm (which is the smallest height that we use in the experiments)
the computational cell consists of (4000 x 4000 x 320) points, which would
already need around 500GB of memory to store all 6 field components at only
one instance. The use of cylindrical coordinates reduces the computational cell
to (2000 x 320) which significantly reduces the amount of memory to store all
field components at one instance to around 64MB.

After the source signal has decayed, (t = 1.43ns), we let the fields evolve
for additionally T = 167ns (50000 timesteps in MEEP units). The Fourier
transformation the time-evolution of the fields, then gives a spectral resolu-
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tion of∆ν= 6MHz. This value is not so small, especially considering the high
quality factors of the resonances that we expect. But it is a good compromise,
since upon the variation of parameters like the total height htotal of the cavity,
the computational time for a single realization becomes an important parame-
ter to optimize. We run our simulation parallel on multiple processors at once,
making use of the calculation cluster Azzurra of the Université Côte d’Azur. The
average runtime for one simulation is thus reduced to approximately 4 hours.

A first important step before varying parameters such as the total height
htotal, is to verify that with the chosen resolution and PML thickness the simu-
lation has sufficiently converged and the numerical error is within the desired
accuracy. We do this by doubling the resolution and PML thickness and check-
ing for eventual discrepancies in the simulated fields. We find that the chosen
values are sufficient for our needs, knowing that the numerical error is the
highest for the simulation where htotal is close to hreso and the air gap measures
only a few pixels in thickness.

Another straightforward way to verify the accuracy of the simulations is to
compare the found resonance-positions to the analytic predictions. In figure
2.4 one can see the space-averaged Fourier transform of the simulated fields
(Ez and Bz) for the case hreso = htotal = 5mm for both types of resonators
D = 6mm (top) and D = 8mm (bottom), together with their analytically
calculated resonance-positions (vertical lines). We average only over the space
inside the resonator. The agreement is generally very good, although some
peak positions, especially of higher order/frequency modes of TE or dominant
TE nature (EH modes), correspond only within 2 percent with the analytically
calculated resonance frequencies. Upon further investigation it showed that
doubling the layer of air or/and PML did not influence the peak-positions at all
(considering our spectral resolution of 6MHz) but doubling the resolution to
80 point per mm reduces the difference within the resonance-positions to about
1 percent, but actually increases the computational time by an factor 8 (2x2=4
times more points and 2 times more timesteps compared to a resolution of
40 points per mm). This is only a small improvement, considering the huge
increase in computational time and we stick with the resolution of 40 points
per mm for all further simulations.

The main purpose of the FDTD simulation is to bridge the gap between
the analytic solution in the case of the perfect geometry (htotal = hreso) and the
experimental conditions with an air gap above the resonator in order to fully
understand the transition. Therefore, we next vary the total height htotal of the
cavity while maintaining the resonators height hreso = 5mm constant and the
resonator itself in contact with the bottom plate. Fourier transforming the sim-
ulated fields gave us a limited spectral resolution of ∆ν = 6 MHz. Instead us
increasing to total runtime T of the simulation in order to increase the spectral
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2.1. Electromagnetic description of a single resonator

Figure 2.4 – Log-scale plot of the space-averaged Fourier transform



|FT(ν)|2
�

in-
side the resonator of the simulated fields (Ez as dashed black line, Bz as black
solid line) for the resonators with D = 6mm (top) and D = 8mm (bottom)
and htotal = hreso. For different azimuthal mode numbers n we use different sub-
plots. In order to compare the position of the peaks with the analytically found
resonance-positions according to equation (2.20), we plot them as vertical lines
with the same colors and styles as in figure 2.1
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resolution, we now make use of the built in external package Harminv [54],
that uses a harmonic inversion filter diagonalization technique [53], to ex-
tract resonance positions and widths. This technique can achieve much greater
spectral resolutions and better estimates for the quality factors Q even for very
slowly decaying resonances with a high quality factor, since it assumes that the
spectrum is only composed of Lorentz-lines, whereas Fourier transformations
do not use any prior knowledge of the spectrum’s compositions. For more de-
tails on this method, also see section 2.2, where we use the same approach in
order to extract resonance amplitudes and frequencies form our experimen-
tal spectra. A further advantage of this method is that it takes significant less
time-steps, even for resonances with a very long lifetime to get precise results.

In figure 2.5 the extracted resonance positions as a function of the air gap
height hair = htotal − hreso are presented for the two resonator diameters.

One can see that the resonance-positions are strongly shifting for small air
gaps, while the variations drastically decrease for hair > 3mm. This corre-
sponds to total cavity height of hcavity > 8 mm, which actually is the minimal
height that we use in our experiments as the moving antenna needs a few mm
space in order to be positioned above the resonators. One may further notice,
that the induced frequency-shifts are not monotonic and some modes seem to
be more sensitive than others.

On can further notice that for n> 1, the TM110 and TM210 do not have any
Bz component for hair = 0 mm, but as soon as the smallest air gap is introduced
this symmetry is broken and both modes now have a non zero Bz, transforming
them into hybrid modes. This is not the case for n = 0, where the separation
in TE and TM modes is still valid for all hair ≥ 0. This further confirms the
TM011 mode as the perfect candidate for tight-binding experiments, since it
does not couple at all to the radiating TM(m= 0) mode. Additionally for both
types of resonators the TM011 is well isolated and has a sufficient distance to
its neighbouring modes. Generally all TE modes stay lossless until the cutoff-
condition for the m = 1 mode is reached and they start to couple to the now
radiating T E(m= 1)mode outside of the resonator. Since the cutoff frequency
for hair = 11 mm is 9.4 GHz, in figure 2.5 one can see that the TE012 becomes
lossy for hair = 11mm. Modes with n> 0 are less affected from this transition
since they already couple to the radiating T M(m= 0) mode.

Although not clearly visible (due to the global scale that includes lossless
TE modes and leaky TM modes and thus spans 5 orders of magnitude), the
resonance-widths of all other resonances is changing as well as a function of
the air gap height. This is due to the changing coupling strength between the
internal resonator modes and the external radiating T M(m = 0) mode (and
for hair = 11 mm and ν > 9.4 GHz, the radiating T M(m = 1) and T E(m =
1) modes as well). This is especially important for the selection of the right
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2.1. Electromagnetic description of a single resonator

Figure 2.5 – Extracted resonance-positions for different air gap heights hair for
the resonators with diameter D = 6 mm (top) and diameter D = 8 mm (bottom).
Resonance frequencies and width were extracted using the Harminv algorithm in
MEEP on the Ez (Bz) component and are presented as squares (diamonds). We
connect the data points with dashed lines to make it easier to follow a mode’s
evolution. Compared to the previous figures we now use one color for each dif-
ferent azimuthal mode number n. The transparency of a datapoint corresponds
to the quality factor Q of the corresponding resonance. The quality factor Q of a
resonance is defined as the ratio between the resonance frequency and its width.
In order to map the different quality factors Q to different transparency values
we use a log-scale, where the maximal value Qmax ≃ 108 and minimal value
Qmin ≃ 2 correspond to a transparency of 1 and 0.1, correspondingly). The top
part shows the full range of hair from 0 mm to 11mm, which corresponds to a total
height htotal of 5 mm to 16mm, while the bottom part shows a zoomed in region
of hair = 0 mm to 1mm.
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Chapter 2. Theoretical description of the system

Figure 2.6 – Extracted resonance-positions (top) and width (bottom) as a function
of the air gap heights hair for a resonator with diameter D = 8mm (left) and
D = 6mm (right) for modes with n= 1.

mode for the p-mode tight-binding experiments. To further investigate this, in
figure 2.6, one can see the extracted resonance width for the three p-modes
with n = 1 (orange data points in figure 2.5) for both resonator diameters as
a function of the air gap height.

Here it becomes evident, that there is only one suitable p-mode for promis-
ing tight-binding experiments. It is the EH111 mode of the resonator with a
diameter of D = 8mm. Compared to the other modes of that resonator it has a
resonance width that is smaller by two orders of magnitude. The EH111 mode
of the resonator with a diameter of D = 6mm has also a significant smaller res-
onance width than the other p-modes of that resonator, but overall its width is
about one order of magnitude greater than for the resonator with D = 8mm.
Additionally, as one can see in figure 2.5, for the resonator with D = 6mm,
the EH111 is not well isolated, i.e. too close to the TE012 mode (not shown, see
figure 2.5).

2.2 Mode excitation and S-Matrix

Before presenting the first measurements in chapter 3, we still have to in-
troduce the kind of antennas we will use to couple to the different modes, a
theoretical description of the measured quantities and the extraction of the
resonance parameters from the measured quantities.
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2.2. Mode excitation and S-Matrix

2.2.1 Different antennas

In order to couple to different resonance modes, we need different antennas
that will excite different field components. Photos of the different antenna can
be seen in figure 2.7.

Although not used for tight-binding experiments, monopole antennas are
included. They couple to TM modes since they excite the z-component of the
the electrical field Ez. By adjusting the length of the monopole antennas we
can vary their coupling strength to modes with different m.

In order to couple mainly to TE modes we use two different kind of an-
tennas: loop antennas and kink antennas. The loop antenna consists of a
coaxial cable, where the inner conductor is soldered to the outer one, form-
ing a ring. The loop antenna is placed above the resonators, with the plane
of the loop parallel to the (x , y)-plane in order to excite the z-component of
the magnetic field Bz. The vertical part of the loop antennas measures typically
11mm to 14mm, while the diameter of the loops ranges from 2mm to 5.5 mm.
Since its dimensions are of the same order of magnitude as the wavelengths
that we use, the antennas will exhibit resonances due to standing waves in-
side of the antenna. The position of those unwanted resonances can be tuned
by the size of the antenna/loop. We thus use different loop antennas with
slightly changed geometries. The loop antenna with the bigger loop has a flat
usable frequency window from 5 GHz to 8GHz, while the loop antenna with
the smaller loop size has an usable frequency range of 7GHz to 10 GHz. While
a smaller loop size and the thus reduced area of the loop, results in a over-
all reduced antenna-coupling, it increases the possible spatial resolution since
the fields are integrated within a smaller area. The kink antennas that we
use have a short vertical part and horizontal part that is placed tangential to
the resonators. The horizontal part thus couples to the angular component of
the electric field Eϕ. The stronger coupled antennas have a longer horizontal
part and might be as well curved around the resonators, so that the current
inside the antenna j⃗ covers a greater arc length in the direction of e⃗ϕ. The kink
antennas are placed at the side of the resonators, since the electrical field is
maximal at the edge of the resonator (see figure 2.2). In order to couple to
p-modes, which are hybrid modes, we theoretically could use all of the above
mentioned antennas. But since the most promising p-mode for tight-binding
measurements is of the EH-type, its TE-components are dominant therefore
loop and kink-antennas are better suited.

Typically we scan the system with the loop antenna fixed through a whole
to the center of the movable top plate and use the kink antennas as stationary
antennas fixed to the bottom plate. Since kink antennas cannot get rid of
their vertical part, they are less selective in exciting only TE modes, therefore
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Chapter 2. Theoretical description of the system

Figure 2.7 – Pictures of the different antennas that we use. From left to right:
Two different loop antennas with big loops, a loop antenna with a small loop,
a strongly coupled curved kink antenna, a weakly coupled straight kink antenna
and a short monopole antenna.

sometimes the use of a stationary loop antenna can be useful.
Coupling with two antennas (ports) to the system the transmittance T be-

tween the antennas and the reflectance R at each antenna is then measured
using a vectorial network analyser (VNA) by means of a 2 x 2 Scattering Ma-
trix (S-Matrix), where the matrix elements will be denoted by Si j.

2.2.2 The scattering matrix

In the following we call V 1
in, V 2

in the input signals at antenna 1 and 2, and
V 1

out, V 2
out the received signals at antenna 1 and 2. The relation between them

is given by
�

S11 S12

S21 S22

��

V 1
in

V 2
in

�

=
�

V 1
out

V 2
out

�

. (2.28)

|S11|2 (|S22|2) is the reflectance R at port 1 (port 2) and |S21|2 = |S12|2 is the
transmittance T between the 2-ports assuming time-reversal symmetry of our
system, i.e. S21 = S∗12.

Considering now a system with a discrete spectra of frequencies νn and cor-
responding eigenfunctions Ψn (r⃗) (of the closed system), that are proportional
to the field-components that are excited by the different antennas. Ψ∝ Bz for
both loop and kink antennas since for TE modes Eϕ ∝ Bz. From now on we
will mainly use the notation of using eigenfunctions, often also referred to as
wavefunctions Ψ(r⃗) instead of the individual field components.

Assuming point-like weakly coupled antenna, where we further neglect the
influences of the antennas on the spectral positions of the resonances, the Breit-
Wigner approximation can be applied once the eigenfrequencies νn are suffi-
ciently separated. Thus the S-matrix as a function of the frequency ν can be
written as [42, 55–57]

Si j (ν) = δi j − i
p

σiσ j

∑

n

Ψn (r⃗i)Ψ∗n
�

r⃗ j

�

ν− νn + iΓn/2
for i, j ∈ 1,2 , (2.29)
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2.3. Extracting wave functions from S-Matrix measurements

where δi j is the Kronecker delta, r⃗1 is the position of antenna 1, r⃗2 the position
of antenna 2 and Γn the spectral width of n-th resonance, mainly due to ohmic
losses. σ1 (σ2) is the antenna coupling strength for antenna 1 (2), that is
slowly varying with frequency. The choice of the antenna guarantees that in the
small frequency range (≈ 0.4GHz) of interest for the specifique experiment,
σ1 and σ2 can be considered constant.

The spectra that we measure are thus superpositions of Lorentzian-shaped
resonances with resonance amplitudes Ψn (r⃗i)Ψ∗n

�

r⃗ j

�

. When resonances are
strongly overlapping, the interpretation of Ψn (r⃗) as wavefunctions of the
closed system is not possible anymore, but the spectrum Si j (ν) is still a su-
perposition of Lorentzian-shaped resonances as long as parameters like global
absorption, and antenna couplings σi can be assumes to be constant within
the line-width of the individual Lorentz-lines.

By moving one antenna and extracting the resonance amplitudes one can
thus directly access the eigen-/wavefunctions Ψn (r⃗) of the (open) system. Of
course often this is not an easy task and in the past different methods were
found to efficiently extract that information based on different types of mea-
surements (i.e. reflection with the use of only one antenna and transmission
measurements using two antennas).

2.3 Extracting wave functions from S-Matrix mea-
surements

In this section we will present the basic ideas and theoretical background
for extracting wavefunctions out of the measured spectra. We decide to not
provide figures as illustration or explicit examples on how we apply the dif-
ferent methods in this chapter, but rather reference to the different sections
throughout this manuscript where the methods are actually applied and one
finds a details illustration covering different steps.

First of all one has to distinguish between transmission and reflection mea-
surements. For transmission spectra

S1,2 (ν, r⃗1, r⃗2) = −i
p

σiσ j

∑

n

Ψn (r⃗1)Ψ∗n (r⃗2)

ν− νn + iΓn/2
(2.30)

with r⃗1 the position of stationary antenna and r⃗2 the position of the scanning
antenna, one can extract the wavefunctions Ψn (r⃗) by re-scaling the resonance-
amplitudes in order to get rid the constant factor Ψn (r⃗1) (since antenna 1 is not
moving). SinceΨn (r⃗1) is not known this is done by enforcing the normalization
∫

|Ψn(r⃗)|2dr = 1 on all wave functions.
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For reflection spectra

Sii (ν, r⃗) = 1− iσ
∑

n

|Ψn (r⃗) |2

ν− νn + iΓn/2
(2.31)

one can access only the wavefunction intensities |Ψn (r⃗) |2 and the phase/sign-
information of wavefunctions is not accessible.

At first it thus seems that transmission experiments are superior to reflec-
tion measurements, but this actually depends on the specific measurement,
since transmission experiments also have disadvantages. The antennas that
we use are non negligible perturbations of the system. Since holes have to
be drilled in the metallic bottom and top plate and the antennas themselves
are big metallic object that are brought close to the resonators, they affect the
resonance-frequencies, -width and coupling strength between the resonators.
Under this aspect, reflection measurement using only a single antenna are less
invasive and thus often preferred.

The methods that we present in the following are generally applicable on
both types of spectra, reflection or transmission, but often work better on one
or the other.

2.3.1 Direct curve-fitting

The most straight forward and precise method consist of directly fitting
either the reflection or transmission spectrum with a sum of complex Lorentz-
lines including a linear frequency dependent complex background. For isolated
resonances this is by far the preferred method, since the fit converges well in
this case. It still works well for systems that consist of up to N ≈ 10 resonators,
when the resonances are still sufficiently isolated. For overlapping resonances
the fit only converges when the initial guess of parameters is very close to the
actual values. Additionally, for reflection spectra the theoretical baseline of 1
is often not constant in the experiments and changes with the frequency ν.
One often has to use reference measurements, i.e. reflection measurements of
the empty cavity without resonators, to adjust the spectra before fitting, which
still does not get totally rid of baseline effects 2. Therefore the performance
is slightly better for transmission spectra, where the baseline is zero. During
this thesis this method is used for the benchmarking measurements with s- and
p-modes in order to verify how well they can be described by a tight-binding
formalism. The test systems are typically small, therefore the few resonance
peaks are sufficiently isolated and fits converge reasonably well.

2. See Appendix A for more details on the reference measurements and the corrections that
can significantly improve the baseline of reflection measurements
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2.3. Extracting wave functions from S-Matrix measurements

2.3.2 Harmonic inversion

When fitting due to strongly overlapping resonances within the spectrum is
not possible anymore, we use another method based on the harmonic inversion
of time-signals [53, 58, 59].

The harmonic inversion method is based on the fact that in the time-domain
a complex Lorentz-line is given by an exponential function. Supposing that
a time-signal of 2N datapoints only consists of N exponential functions with
different complex amplitudes and exponents. One can then establish a set
of non-linear equations in order to determine all the complex parameters of
the exponential functions. We thus Fast Fourier Transform the spectrum in a
discrete time-signal and further select the first Ntrunc data-points. Ntrunc typically
ranges from 200 to 650 for a total of 2000-6000 points (we typically measure
with a step size of 100 kHz to 300kHz and the total frequency range is typically
200 MHz to 600 MHz). Due to the typical resonance-widths of a few MHz,
that is at least one order of magnitude larger than the step size in the spectral
measurements, the time signals decay rapidly and we chose Ntrunc the smallest
possible, while still containing most of the exponential decay.

We then establish the set of non-linear equations and obligatorily find
Ntrunc/2 "resonances". A huge portion of these "resonances" have vanishing
amplitudes and/or are "resonances" that form the baseline or mimic the small
variations in the spectra induced by noise. We thus have to proceed and fil-
ter out resonances according to their width, frequency, phase and intensity
to reduce the result to real resonances only. We choose the parameters such
that we typically still find more resonances than actually should be present in
the spectra. We thus use a clustering algorithms [60] that regroup resonances
that are appearing for different antenna positions around one frequency with
similar width and assign them to a state.

This method needs a significant amount of time varying parameters like
Ntrunc and parameters of the clustering algorithm, but once optimal parameters
found for a certain family of experiments, it is a fast and great performing
method to extract both the resonance complex frequencies and amplitudes.

While the effect of the cleaner baseline of transmission spectra compared
to reflection spectra was small for the direct curve fitting method, it is unfor-
tunately strongly affecting the results of the harmonic inversion method. The
variations in the baseline of reflection spectra have similar depth and width
as some of the smaller and wider resonances, we therefore cannot filter them
out. We then often use more complicated clustering procedures, coming at
the price of a reduced robustness and often have to manually verify that no
"false" resonances are assign to the clusters. We apply this method to analyse
the reflection spectra in chapter 5 and transmission spectra in chapter 6.
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2.3.3 Integrating the density of states

The next method is mainly applicable on reflection spectra, but could prob-
ably be adapted for well isolated resonances in transmission spectra as well.
It consist of integrating peaks in the local density of states ρ(r⃗,ν), that can be
directly derived from reflection spectra. Starting from the reflection spectrum
Sii(r⃗,ν), we can derive the local density of states

ρ(r⃗i,ν) =
1
πσ
[1−ℜSii(r⃗i,ν)] =

∑

n

|Ψn(r⃗i)|2 fνn,Γn(ν), (2.32)

where fνn,Γn(ν) are normalized Cauchy distributions around νn with width Γn
(
∫ +∞
−∞ fνn,Γn(ν)dν = 1). ℜSii(r⃗i,ν) is the real part of the complex reflection

spectrum, measured at position r⃗i.

In the case of vanishing resonance-widths Γn, ρ(r⃗i,ν j)
{Γ j}→0
−−−→

∑

n |Ψn(r⃗i)|2
δ(ν− νn), the density of states becomes a sum of delta Dirac function at fre-
quency νn, with amplitudes |Ψn(r⃗)|2. Here it is straightforwards that integrat-
ing ρ around νn one would directly get |Ψn(r⃗)|2. But since our resonances have
non vanishing widths Γn, the delta Dirac peaks are actual Cauchy distributions.
Integrating around a single isolated peak we still get |Ψn(r⃗)|2, since the Cauchy
distributions are normalized.

For weakly overlapping resonances one could still chose integration bound-
aries around each peak and thus extract |Ψn(r⃗)|2 with some error due to the
overlapping peaks and finite integration windows. For this case of weakly over-
lapping resonances, curve fitting or harmonic inversion would be better suited
to extract precise wavefunctions, but the direct integration of the density of
states remains an important tool. It stands out of the other techniques by
its simplicity and robustness and is not prone to numerical problems upon its
calculation, like non converging fits or wrong parameters for the harmonic
inversion method, where eventually actual resonances of the system could
get filtered-out or noise can make clustering problematic. It is therefore the
method of choice to quickly check if a measurement behaves as expected before
starting tedious data treatment procedures to extract precise wavefunctions.

But actually this method is really useful when resonances are to dense to ex-
tract them by direct fitting or harmonic inversion. Directly integrating the den-
sity of states stills remains possible and can give at least an estimate of |Ψn(r⃗)|2,
although one has to consider that the stronger the resonance are overlapping
the higher the error will be.

We make use of an adoption of this technique in chapter 5, where we em-
ploy over 100 resonators and the spectrum becomes to dense to extract indi-
vidual resonances by other means.

30



2.3. Extracting wave functions from S-Matrix measurements

Since we typically artificially impose the normalization of the wavefunc-
tions by rescaling them, the prefactor 1/(πσ) is not important and one can
directly use 1 − ℜS(r⃗,ν). Sometimes it can also be practical to use the ap-
proximation 1 − |S(r⃗,ν)|2, that neglects term of the order O (σ2), which is a
valid simplification since we often work with weakly coupled antennas. The
advantage of using the absolute value instead of the real part is that the raw ex-
perimental reflection spectra have a global frequency-dependent phase factor
≈ e−i2πνL/c0 . While the phase-factor that arises due to the propagation within
the cables from and back to the VNA can get corrected via a calibration, the
phase factor that arises due to the propagation within the antennas cannot be
corrected via a simple calibration and L is approximately two times the effec-
tive antenna length. If one would want to use 1−ℜS(r⃗,ν) one first would have
to divide the raw measured spectrum by a reference measurement (reflection
measurement of the empty cavity without resonators), to get rid of the con-
stant phase factor. In Appendix A more details on the reference measurement
can be found.
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Chapter 3

Measurements of a single
resonator

In this chapter we present the first measurements of single resonators. We
compare their spectra with the resonance-frequencies found by the FDTD sim-
ulations. We continue by presenting the measured wavefunctions of the s- and
p-mode, which we compare to analytic expressions. We end this chapter by
characterizing the most important experimental incertitudes, the variance of
the resonance frequencies upon replacing the same resonator and the precision
with which we can position the resonators.

Contents
3.1 Spectrum of a single resonator . . . . . . . . . . . . . . . . . 33
3.2 Wavefunctions of a single resonator . . . . . . . . . . . . . . 35

3.2.1 The s-mode . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 The p-mode . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Experimental incertitudes . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Fluctuations of the resonance frequencies . . . . . . . 42
3.3.2 Fluctuations of the resonator positions . . . . . . . . . 44

3.1 Spectrum of a single resonator

We measure simultaneously the resonator’s reflection spectrum using monopole
and kink antennas. We use these two different antennas, since they mainly
couple to different families of modes, which then allows use to confidently
identify the different modes in the spectrum. As one can see in the insets in
figure 3.1, the resonators are positioned in the middle between the two anten-
nas. We then proceed to measure the full 2 x 2 S-matrix in order to extract the
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Chapter 3. Measurements of a single resonator

Figure 3.1 – Measured reflection spectrum with different antennas for both types
of resonators with D = 6 mm (top) and D = 8 mm (bottom). The inset in the
(bottom) plot shows the experimental configuration, where a single resonator is
simultaneously coupled to a kink- and monopole antenna. The legend in the (top)
plot also applies for the (bottom) one. The total height of the cavity is fixed at
htotal = 10 mm. The colored vertical bars mark the resonance-positions obtained
numerically using MEEP. The colors follow the same scheme as in figure 2.5: s-
modes in blue, p-modes in orange and d-modes (with azimuthal mode number
n= 2) in green.
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3.2. Wavefunctions of a single resonator

reflectance R = |Sii|2 at each port. The result can be seen in figure 3.1 for the
two diameters.

First of all one can see that the experimentally found peaks do not corre-
spond exactly with their simulated positions. This can have various reasons.
First of all the measured dimensions of the resonators corresponds only up to a
few hundreds of a mm with the dimensions stated from the manufacturer. This
actually is totally acceptable, since the relative dimensional differences within
the series of resonators is smaller than 0.01mm. Additionally the dielectric
constant might be slightly different as well and most certainly vary slightly with
frequency. While the resonance-frequencies were simulated for the closed sys-
tem, the antennas actually open the system which also introduces small shifts
in the resonance-frequencies. One other reason is that is actually only one ex-
perimental realization. Due to the varying contact between the resonator and
the bottom plate upon replacing the same resonator at the same position, the
resonance frequencies vary slightly. The variation of the resonance frequency
depends on the sensitivity of the different modes, but can be as much as a few
hundreds of MHz. A brief characterization of these fluctuations can be found
in section 3.3.

Considering these factors we nevertheless find a good overall agreement,
which allows us to identify the different modes in the experimental spectra.
Having a detailed look at the three modes of interest (TE011 for both resonator
diameters and the EH111 for the resonators with D = 8mm), we notice that
these are some of the sharpest resonances present in the spectra and that we es-
sentially only couple to them with the kink antenna and not with the monopole
antenna. This is well expected for the TE011 modes, where we already have
shown numerically that the separation in TE and TM modes is still valid for
n = 0 even when the symmetry of the system is broken upon the introduction
of an air gap above the resonator. But since we additionally do not couple to
the EH111 with the monopole antenna, it experimentally confirms the strongly
TE-dominant nature of this mode.

With these promising results we then continue to have a detailed look at
the wavefunctions of the different modes, before characterizing experimental
uncertainties.

3.2 Wavefunctions of a single resonator

3.2.1 The s-mode

We start with the TE011 mode that we measure and characterize using the
resonators with D = 6 mm. The resonators with D = 8mm give similar results
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and will not be presented. During this thesis all s-mode measurement were
done with the resonators with D = 6 mm. Since their diameter is smaller,
the overall size of the studied systems is significant smaller. This results in
reduced errors that may arise due to eventually not perfectly aligned motion
axis and/or bottom and top plates and the not perfect planarity of the metallic
plates. Nevertheless many previous experiments have used the resonators with
D = 8mm to perform s-mode tight binding experiments with great success and
a detailed characterization of these resonators can be found, e.g. in [31].

According to (2.13), for the case where the total height of the cavity cor-
responds to the height of the resonator htotal = hreso = h, the magnetic field in
z-direction for the TE011 mode at frequency ν0 takes the form

Bz(r, z) = B0 sin
πz
h

¨

J0(qinr) for r < r0
J0(qinr0)

K0(γoutr0)
K0(γoutr) for r < r0

, (3.1)

where J0 and K0 are Bessel functions with the wave numbers qin =
È

εr

�

2πν0
c0

�2
−
�

π
h

�2

and γout =
È

�

π
h

�2
−
�

2πν0
c0

�2
.

In the experiment we actually have an air gap between the resonator and
the top plate inducing a change of the fields. As already shortly outlined in
section 2.1.1, we assume that the symmetry is still sufficiently maintained,
so that we can modify (3.1) by introducing an effective z-dependency F (z)
that respects the boundary conditions F(0) = F(h) = 0 and an effective q′in
that is defined using the function F [31]. Since the z-dependence inside the
resonator is not a perfect sinus anymore, we can expect to couple to the first few
radially evanescent modes in z-direction outside the resonator. This situation
is described by

Bz (r, z)≈ B0

¨

F (z) J0(q′inr) for r < r0
∑

m am sin mπz
h K0(γmr) for r > r0

, (3.2)

with γm =
Ç

�

mπ
h

�2
−
�2πν0

c

�

and am are constants defined by the continuity
equation at the surface of the resonator.

We scan the system by measuring reflection spectra using a loop antenna
that is moved above the resonator in the x , y plane at a fixed height z0. By
including the z-dependence in the coefficients αm = am sin(mπ

h z0)/F(z0), (3.2)
can be rewritten as

Bz(r, z0)≈ B′0Ψ0(r)∝

¨

J0(q′inr) for r < r0
∑

mαmK0(γmr) for r > r0
, (3.3)
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Figure 3.2 – (left) Reflection spectrum of single resonator, measured with the
loop antenna over the center of the resonator (blue solid line). We extract the
resonance frequency ν0 = 7.446 GHz and width γ= 2.2 MHz by fitting a Lorentz-
line (dashed line). (right) Extracted single resonator wavefunction Ψ0 measured
on a line passing above the center of the resonator (dots). Inside the resonator,
corresponding to the gray zone, we fit it with f (x) = AJ0(q′in x) and outside of the

resonator with f (x) =
∑4

i=1 aiK0(γi x), where γi =
È

� iπ
h

�2
−
�

2πν0
c

�2
is defined

using the measured resonance frequency ν0. The obtained fit parameters are
A= 0.994, q′in = 0.481 mm−1, a1 = −1.47, a2 = 22.3 , a3 = −58.2, a4 = 46.9 and
h= 11.6mm and the fit is shown as solid line.

where B′0 is a constant and Ψ0(r) is the single resonator wavefunction. The
constant B′0 is chosen so that Ψ0(0) = 1.

In order to extract the wavefunction Ψ0(r) we fit all spectra with a com-
plex Lorentz-line and extract its resonance-amplitudes. Since s-modes should
be completely rotational symmetric we limit our scan to a straight line in x
direction passing over the center of the resonator with 0.1mm-steps (a full 2D
scan of the resonator wavefunction can be found in [31]).

Figure 3.2 shows the spectrum and wavefunction Ψ0(x) of the single res-
onator. One can note that Ψ0(x) is changing its sign outside of the resonator.
Since actually a reflection measurement cannot give us access to the sign of the
wavefunction, we compared the wavefunction |Ψ0(x)| extracted form the re-
flection experiment with the loop antenna to the wavefunction extracted from
a transmission experiment using a second antenna, where we actually can ac-
cess the phase of the wavefunction and thus directly see the change of sign.
Since each antenna is a perturbation to the system, we decide to use |Ψ0(x)|
extracted from the reflection measurement and manually change its sign at
exactly the positions where the amplitudes are vanishing. We fit the extracted
single disk wavefunction Ψ0(x) with (3.3) up to the order m = 4. Includ-
ing higher orders does not improve the fit anymore. The fit parameters are
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Chapter 3. Measurements of a single resonator

indicated in the figure caption. Since the loop antenna is not point-like, it in-
tegrates the magnetic field over a small surface therefore leading to effective
parameters.

We find a good agreement between the measured resonance and the Lorentz-
line fit, as well as between the fit-function (3.3) and the extracted wavefunc-
tion. The resonance is well isolated and has a quality factor Q = ν0/γ≈ 3000,
which makes it suitable for tight-binding experiments. The fitted free parame-
ter h = 11.6mm corresponds reasonably well to the directly measured height
of hmeas ≈ 12 mm in between the bottom and top plate. The bottom and top
plates are not perfectly parallel, leading to an inaccuracy of a few tenths of a
millimeter when measuring directly their distance. One can see that the energy
is well localized inside the resonator while outside the fields are decreasing
fast with increasing distance from the center. This is an important property in
order to be able to describe the system with a tight-binding model.

3.2.2 The p-mode

Next we have a look at the p-mode wavefunction. We start again by deriv-
ing the explicit expression of (2.13), for the case where the total height of the
cavity corresponds to the height of the resonator htotal = hreso = h. The mag-
netic field in z-direction for the EH111 mode at frequency ν0 takes the form

Bz(r,ϕ, z) = B0eiϕ sin
πz
h

¨

J1(qinr) for r < r0
J1(qinr0)

K1(γoutr0)
K1(γoutr) for r < r0

, (3.4)

where J0 and K0 are Bessel functions with the wave numbers qin =
È

εr

�

2πν0
c0

�2
−
�

π
h

�2

and γout =
È

�

π
h

�2
−
�

2πν0
c0

�2
.

In a same way how (3.3) was derived for the s-mode, we again assume
an effective z-dependency for the case, with an air gap above the resonator.
We thus expect to couple again to the first few radially evanescent modes in
z-direction outside the resonator and we get

Bz (r,ϕ, z)≈ B0eiϕ

¨

f (z) J1(q′inr) for r < r0
∑

m am sin mπz
h K0(γmr) for r > r0

, (3.5)

where γm =
Ç

�

mπ
h

�2
−
�2πν0

c

�

and the constants am are defined by the continu-
ity equation at the surface of the resonator, as for the s-mode.
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Since we measure again at a fixed height z0, we can include the z-dependence
in the coefficients αm = am sin(mπ

h z0)/ f (z0) finally arriving at

Bz(r,ϕ, z0)≈ B′0Ψ0(r,ϕ)∝ eiϕ

¨

J1(q′inr) for r < r0
∑

mαmK1(γmr) for r > r0
, (3.6)

where B′0 is a constant and Ψ0(r) the complex valued single resonator wave-
function.

It was convenient in section 2.1.1, to only give one solution of the Helmholtz-
equation for each mode by implicitly restricting n to be positive. Since there
is no physical reason that n should only be positive, modes with |n| ≥ 1 are
actually degenerated, with two linear independent solutions. This comes from
the fact that when changing n→ −n, the characteristic equation (2.20) stays
unchanged, since J−n = (−1)nJn, H (2)−n = (−1)nH (2)n and one obtains a second
solution, that differs only in the azimuthal-dependence einϕ→ e−inϕ.

Since these are two linear independent solutions, any scalar combination
of the two solutions is a solution as well. We thus decide to define the two real
valued wave functions

Ψ x
0 (r,ϕ)∝ sinϕ

¨

J1(q′inr) for r < r0
∑

mαmK1(γmr) for r > r0
, (3.7)

Ψ
y
0 (r,ϕ)∝ cosϕ

¨

J1(q′inr) for r < r0
∑

mαmK1(γmr) for r > r0
, (3.8)

since cos nϕ = 1
2

�

einϕ + e−inϕ
�

and sin nϕ = 1
2i

�

einϕ − e−inϕ
�

. The superscripts
x and y are used to distinguish between the two modes that have their nodal
line either along the x axis or the y-axis, respectively. Note, that the wavefunc-
tion of a mode with its nodal line along an arbitrary direction can be written
as a superposition of the two modes Ψ x

0 (r,ϕ) and Ψ y
0 (r,ϕ)

Since the system of a single resonator is completely rotational symmet-
ric, there exists no preferred direction or axis and actually the origin of the
ϕ-coordinate is not defined. Any excitation will excite both modes Ψ x

0 (r,ϕ)
and Ψ y

0 (r,ϕ) simultaneously. Since ideally these two modes have the same
resonance-frequency ν0 we cannot distinguish between them, the two resonance-
peaks share the same position and the same width. If one would then extract
resonance-amplitudes from a reflection measurement scan, one could only
access to the combined wavefunction intensity of both modes

|Ψ0(r,ϕ)|2 =
1
2

�

|Ψ x
0 (r,ϕ)|

2 + |Ψ y
0 (r,ϕ)|

2
�

∝

¨

|J1(q′inr)|2 for r < r0

|
∑

mαmK1(γmr)|2 for r > r0
.

(3.9)
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Chapter 3. Measurements of a single resonator

In the experiments the degeneracy is lifted by imperfections as the res-
onator is slightly oval or tilted or simply by the presence of the antennas,
breaking the rotational symmetry of the system.
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Figure 3.3 – (top,left) Reflection spectrum of a single resonator’s p-mode reso-
nance, measured with the loop antenna. The antenna position for this measure-
ment in the x , y plane is marked as orange cross in the central figure. We fit it
with a superposition of two Lorentz-lines and find the two resonances frequen-
cies ν1 = 8.303 GHz and ν2 = 8.309 GHz. (top, right) The extracted combined
wavefunction intensity |Ψ0|2. (bottom) Angle averaged combined wavefunction
intensity 〈|Ψ0|2〉ϕ, calculated on a straight line passing through the center of the
resonator. Inside the resonator, corresponding to the gray zone, we fit it with
f (x) = |AJ1(q′in x)|2 and outside of the resonator with f (x) = |

∑4
i=1 aiK1(γi x)|2,

where γi =
r

� iπ
h

�2
−
�

2πν0
c

�

is defined using the average measured resonance
frequency ν0 = (ν1 + ν2)/2 = 8.306 GHz. The obtained fit parameters are
A = 1.71, q′in = 0.682 mm−1, a1 = 0.993, a2 = −38.1 , a3 = 350, a4 = −704
and h= 10.6mm.

Figure 3.3 shows the measured reflection spectrum and combined wave-
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3.2. Wavefunctions of a single resonator

function intensity |Ψ0(r,ϕ)|2 = |Ψ1(r,ϕ)|2+ |Ψ2(r,ϕ)|2 of the single resonator’s
p-mode. The subscript x and y that were used to distinguish the two de-
generated p-modes were replaced by 1 and 2 in the absence of a clear refer-
ence direction. Compared to the s-mode measurement we decide this time to
measure on a full 2D grid with 0.5 mm step size. To emphasize the fact that
there are actually two resonances associated with the p-mode of a single res-
onator, we present a spectrum for which one can directly observe the presence
of two Lorentz-lines. Although we present a spectrum for which the degen-
eracy lift is the most visible, we do not see two separate peaks, since the two
resonance frequencies are to close. We fit the spectrum with the superposi-
tion of two Lorentz-lines to extract their resonance-amplitudes and find the
two resonances at ν1 = 8.303 GHz, ν2 = 8.309 GHz with width γ1 = 2.2MHz,
γ2 = 3.2MHz. Depending on the antenna position, the resonance frequen-
cies can vary due to the perturbation induced by the antenna. While it might
be possible to directly fit this spectrum with the superposition of two Lorentz-
lines, it is not possible for many of the other antenna positions, where the two
resonances are to close and appear as a single peak. Where the two-line fit
does not converge, we actually fit the spectrum with a single Lorentzian, since
|Ψ1|2

ν−ν1+iγ1/2
+ |Ψ2|2

ν−ν2+iγ2/2
= |Ψ1|2+|Ψ2|2

ν−ν0+iγ0/2
, for ν1 = ν2 = ν0 and γ1 = γ2 = γ0. We sup-

pose that this is still a good approximation, when the two resonance frequen-
cies ν1, ν2 and width γ1,γ2 are sufficiently close. The extracted wavefunction-
intensity |Ψ0|2 = |Ψ1|2+|Ψ2|2 for all positions, whether it was obtained by fitting
a single Lorentzian or the superposition of two Lorentzian, is then presented
in the central part of figure 3.3.

As expected we find a ring shaped profile, but with varying intensity along
the angular direction. Ideally, according to (3.9) it should be uniform in angu-
lar direction. We identify the antenna as cause, since upon turning the antenna
by 90 degrees (in the x , y plane) within its fixture at the top plate and perform-
ing the same experiment, we basically find the same figure, but turned by 90
degrees. We did not investigate in detail how the antenna is causing this, but
it is not surprising since the loop antenna itself is not rotational symmetric due
to its horizontal part. Depending where this horizontal part is in respect to
the center of the resonator and the center of the loop, the antenna’s coupling
to the mode most probably changes. One could further expect the antenna to
sufficiently perturb the system so that the orientations of the two degenerate
modes align along some axis. Since the antenna is moved, this axis probably
changes for different positions and the antenna couples differently to the two
modes.

We nevertheless want to compare the extracted combined wavefunction
intensity to (3.5). Since (3.5) does not depend on ϕ, we angle-average the
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extracted combined wavefunction intensity, by averaging over the different im-
ages, obtained by rotating the original image around a central point. We use
a cubic spline interpolation, to evaluate intermediate points, when the grid
points upon rotation do not align exact. We define the central point, by sim-
ply choosing the point, where the wavefunction intensity is the smallest. The
obtained angle averaged combined wavefunction 〈|Ψ0|2〉ϕ can be seen in the
right part of figure 3.3, where we fit it with (3.5) up to the order m = 4. The
fit parameters can be found in the figure caption.

We generally find a good agreement between fit-function (3.5) and the an-
gle averaged combined wavefunction, as well as for the the measured spectrum
and the two-line fit. As for the s-mode, the fitted free parameter h = 10.6 mm
again corresponds well to the measured height of hmeas ≃ 10.5mm in between
the bottom and top plate that we use for this experiment. One can see that the
energy is again well localized inside the resonator while outside the fields are
decreasing fast, making it a suitable mode for TB experiments.

3.3 Experimental incertitudes

In this section we will characterize the experimental incertitudes of the ex-
periment. The metallic bottom and top plates are not perfectly flat and parallel,
and the two motion axis might not be perfectly square to each other. But these
factors can be easily measured and corrected with a accuracy of 0.1 mm and
have not shown itself to be problematic in previous experiments. Resonators
from the same series are not perfectly identical so they have slightly different
resonance frequencies. This can be easily accounted for by characterizing each
of the individual resonators and only choosing those whose frequencies are suf-
ficiently close. The main source of experimental fluctuations is therefore the
placing itself of the resonators onto the metallic plate.

3.3.1 Fluctuations of the resonance frequencies

As already outlined in section 2.1.1 and further confirmed with the FDTD
simulations in section 2.1.2, the resonance-frequencies are very sensitive to
the contact conditions at the resonator-metal interface. When the resonators
are in contact with the metallic plates, a small air gap remains due to the
surface roughness (≈ 1µm) of the two materials. Upon the re-placement of
the same resonator at the same position, the air gap is not exactly the same
and due to the low refractive index of air, resonance-frequencies will slightly
change. We effectively get rid of the sensitive resonator-metal interface on top
of the resonator by separating the two metallic plates by more than 8 mm. This
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Figure 3.4 – (top) Measured reflection spectra of the same resonator (D = 8 mm)
replaced several times at the same position. Each plot in a different color cor-
responds to a new placement. (bottom, left) Zoomed region for the s-mode and
(bottom, right) zoomed region for the p-mode. The two figures at the bottom
share the same scale, so that the figures can be directly compared to each other
to reveal the difference in sensitivity between the s- and p-mode.

introduces a big enough air gap and relative changes become negligibly small.
Nevertheless the sensitive resonator-metal interface underneath the resonator
remains, where it is in contact with the bottom plate.

In figure 3.4 one can see the full reflection spectrum of the same resonator
that was replaced several times at the same position. For this characterization,
the resonators were placed by simply dropping them through a precision ma-
chined hole without any additionally step to estimate the worst case scenario.
As one can see later on, it can be useful to apply a slight pressure down on
to the resonators after placing them to ensure a better contact and therefore
reduce the fluctuations in the resonance frequencies by almost one order of
magnitude.

One can see that the resonance positions of different modes fluctuate to
different extends. Different modes have a different sensitivity to the resonator-
metal interface condition. The greatest fluctuations can be observed for the
mode around 7.4 GHz, which is the order of ≈ 100MHz. Luckily we do not
use this mode for our tight-binding experiments and it is sufficiently far away
from the s- and p-modes to not affect their baselines. The fluctuations of the
s-mode are reasonable small and of the same order as the resonance-width,
which is acceptable. The fluctuations of the p-mode are of the order of a few≈
10 MHz, which is significantly more than their resonance width as one can see
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in figure 3.4 (bottom, right). Upon later characterizing the coupling between
two resonators in section 4.2.1 and 4.3.3 we find maximum coupling strengths
of ≈ 100MHz. We can thus conclude that when the resonators are placed
without any additionally steps, at least for the p-mode, the variance of the
resonance frequencies are too important compared to the coupling strength
and to its width. Consequently, running tight-binding experiments that do not
explicitly expect disorder on the resonance-frequencies is not possible.

Fortunately, we have been able to improve the placing procedure. It still
consists of dropping the resonator through a precision machined whole in the
placement contrivance, but the latter was further improved so that the res-
onators fall from a smaller height and have less lateral play. Then we apply
a light pressure with a slightly flexible plastic rod down on to the resonators
before moving the contrivance away to ensure a better contact. As one can
see in figure 3.5 the variance in the resonance frequencies have been signifi-
cantly reduced. While in figure 3.4 (bottom) the s- and p-mode spectrum of
the same resonator were presented, in figure 3.5 we measure and present the
variations for the s-mode with a resonator with D = 6mm, and the variations
for the p-mode with a resonator with D = 8mm, to be consistent with the
latter tight-binding measurements, where all s-mode measurement were per-
formed with the resonators with D = 6mm and all p-mode measurement with
the resonators with D = 8mm.

By fitting each spectrum with a Lorentz-line to extract the resonance-
positions, we find a standard variation of σs = 0.5MHz for the s-mode and
a standard variation of σp = 3.5MHz for the p-mode. For the p-mode the
standard deviation is now similar to its resonance-width, while even smaller
for the s-mode.

3.3.2 Fluctuations of the resonator positions

We place the resonator by letting them drop through a precision machined
cylindrical hole. Since the diameter of the hole has to be slightly larger than
the diameter of the resonator, in order for the resonators to fall down without
getting stuck, we expect small variations for the position of the resonators. In
order to characterize these variations we place a resonator with D = 6mm,
then scan its s-mode wavefunction on a fine 2D regular grid (with 0.1mm
stepsize) over the resonators center. We fit its wavefunction with f (x , y) =
J0

�

γ
p

(x −∆x)2 + y −∆y)2
�

to extract the actual position (∆x ,∆y) of the
resonator’s center and then place it again and repeat the procedure. We repeat
this 20 times and the results can be seen in figure 3.6, where we additionally
perform a principal component analysis (PCA) to characterize the variations
along the different directions. The variation along the x and y axis are differ-
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Figure 3.5 – Measured reflection spectra of the same resonator replaced several
times at the same position. (left) A resonator with D = 6mm was used to measure
the s-mode, while (right) a resonator with D = 8 mm was used to measure the p-
mode. This time a slight pressure was applied down onto the resonators after
placing them, to ensure a better contact with the bottom plate. Both figures use
the same scale on their frequency axis, so that the figures can be directly compared
to each other.

ent. While we trust the roundness of the machined hole, through which we
let the resonator drop, this difference is probably caused by other geometric
features of our placing device, leading to more play between the different parts
of the contrivance along the y-direction. Overall, the positional variations are
smaller than expected and we can place the resonators very precisely, which is
important for a consistent coupling strength between the different resonators.
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Figure 3.6 – Actual positions (∆x ,∆y) extracted by fitting the s-mode wavefunc-
tion for the same resonator placed several times (orange points). The average
value was subtracted. We perform a PCA to find principal axis (dashed blue lines)
that are so close to the actual x and y axis, that we will simply call them x and y as
well. The standard-variation in x-direction is σx = 0.019mm and in y-direction
σy = 0.045 mm. If we suppose a 2D normal distribution for the variations, the
ellipse (solid blue line) is then indicating the standard deviation along other di-
rections.
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Chapter 4

Multiple resonators – a
tight-binding system

The tight-binding formalism that we are going to use to describe systems
of multiple resonators has its origin in the description of electrons in crystal
lattices. Before we show how the model was adapted to fit photonic (dielectric)
structures, we give a brief introduction to the original model [61].

We then proceed for both s- and p-mode to experimentally extract the cou-
pling between two resonators as a function of their separation (and orienta-
tion), and then construct small test systems to verify the accuracy of our TB
model.
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Chapter 4. Multiple resonators – a tight-binding system

4.1 The tight-binding formalism

The wavefunction Ψ of an electron with energy E in an atomic lattice is
described by the stationary Schrödinger equation

�

−
ħh2

2m
∆+ U (r⃗)

�

Ψ = EΨ, (4.1)

where
�

− ħh
2

2m∆+ U (r⃗)
�

is the systems Hamiltonian H. The potential U (r⃗) =
∑

j V
�

r⃗ − r⃗ j

�

is the superposition of the single atoms potential V (r⃗), where
the {r⃗ j} are the positions of the different atoms in the lattice.

With the use of the H j
at =

�

− ħh
2

2m∆+ V
�

r⃗ − r⃗ j

�

�

, the Hamiltonian of a single
atom at position r⃗ j, the systems Hamiltonian H can then be rewritten into

H = H j
at +

∑

k ̸= j

V (r⃗ − r⃗k) = H j
at +∆U j (r⃗) , (4.2)

where ∆U j (r⃗) describes the differences between the single atom’s poten-
tial and the true potential in the atomic lattice. We suppose that for all j,
∆U j (0) → 0, so near the center of the atoms, the single atom potential is a
good approximation of the true potential of the lattice.

Let ψ(r⃗) be the wavefunction of an electron bound to a single atom at
position r⃗ = 0, then

H j
atψ(r⃗ − r⃗ j) = E0ψ(r⃗ − r⃗ j). (4.3)

For simplicity we here consider only one solution, e.g. the ground state with
energy E0. Generally it is not difficult to expand the model to include all higher
order atomic orbitals ψn, but the notations just become lengthier, while the
essential idea stays the same.

One then supposes that the full systems wavefunctions Ψ can be written as
linear superposition of the single atom wavefunctions {ψ(r⃗ − r⃗ j)}

Ψ =
∑

j

c jψ(r⃗ − r⃗ j) (4.4)

We assume that this basis of wavefunctions is orthogonal so that

∫

ψ∗(r⃗ − r⃗i)ψ(r⃗ − r⃗ j)dr =

¨

1 if i = j
0 otherwise.

(4.5)
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4.1. The tight-binding formalism

We next proceed to calculate the matrix elements {Hi j} of H in this new
defined basis. We will make use of the simpler Dirac notation ψ(r⃗ − r⃗ j)→ | j〉,
Ψ(r⃗)→ |Ψ〉=

∑

j c j| j〉.

H|Ψ〉=
∑

i, j

|i〉〈i|H| j〉〈 j|Ψ〉=
∑

i

|i〉
∑

j

Hi jc j (4.6)

With this notation (4.1) can be rewritten in matrix form:








H11 H12 · · · H1n

H21 H22 · · · H2n
...

...
. . .

...
Hn1 Hn2 · · · Hnn









·









c1

c2
...
cn









= E









c1

c2
...
cn









. (4.7)

The different matrix elements {Hi j} are then defined as

Hi j = 〈i|H| j〉=
∫

ψ∗(r⃗ − r⃗i)Hψ(r⃗ − r⃗ j)dr . (4.8)

The diagonal elements simplify to

H j j =

∫

ψ∗(r⃗ − r⃗ j)H
j
atψ(r⃗ − r⃗ j)dr +

∫

ψ∗(r⃗ − r⃗ j)∆U jψ(r⃗ − r⃗ j)dr (4.9)

= E0 +

∫

ψ∗(r⃗ − r⃗ j)∆U jψ(r⃗ − r⃗ j)dr . (4.10)

The term β j =
∫

ψ∗(r⃗ − r⃗ j)∆U jψ(r⃗ − r⃗ j)dr describes how the onsite energies
shift due to the potential from the neighboring atoms. The non-diagonal (i ̸= j)
elements simplify to

Hi j =

∫

ψ∗(r⃗ − r⃗i)H
j
atψ(r⃗ − r⃗ j)dr +

∫

ψ∗(r⃗ − r⃗i)∆U jψ(r⃗ − r⃗ j)dr (4.11)

=

∫

ψ∗(r⃗ − r⃗i)∆U jψ(r⃗ − r⃗ j)dr = −t i, j, (4.12)

where the coupling term t i, j describes the interaction between the two atomic
sites i and j. If the basis functions {ψ(r⃗ − r⃗ j)} are not orthogonal, which most
probably will be the case for real atoms, we have to keep the additional term
E0

∫

ψ∗(r⃗ − r⃗i)ψ(r⃗ − r⃗ j)dr = −αi, j in (4.12).
Often if a system can be well described by a tight-binding formalism the αi, j

and β j are very small and one can typically neglect them or they can be taken
into account through effective couplings t i, j and energies E0. Additionally often
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Chapter 4. Multiple resonators – a tight-binding system

the t i, j for |i− j| ≥ 2 become very small, so that one can consider only nearest
neighbours and neglect the other interaction terms. The Hamiltonian H in
matrix form becomes tridiagonal:

H =

















E0 −t1,2 0 · · · 0

−t∗1,2 E0 −t2,3
. . .

...

0 −t∗2,3 E0
. . . 0

...
. . . . . . . . . −tn,n−1

0 · · · 0 −t∗n,n−1 E0

















(4.13)

Its eigenvalues and -vectors can then be calculated and used to describe the
wavefunctions and energies of the system.

Typically the different tight-binding parameters αi, j,β j and t i, j are not ex-
plicitly calculated, since often the explicit forms of the single atom wavefunc-
tion ψ(r⃗) and/or the potential V (r⃗) are not known. Parameters might then
be obtained from chemical bond energy data or adjusted to match measured
band structure data.

Since our classical system of electromagnetic fields is essentially described
by Helmholtz-equations, we will as a next step, outline the similarities between
the Helmholtz- and Schrödinger equation and what "Hamiltonian" we will use
in order to describe our system.

The Helmholtz equation for the electric field E⃗ in a dielectric resonator
lattice can be written as

�

∆+
ω2

c2
0

εr (r⃗)

�

E⃗ = 0 ⇐⇒ (4.14)
�

−∆+
ω2

c2
0

(1− εr (r⃗))

�

E⃗ =
ω2

c2
0

E⃗ (4.15)

Here one can identify the term ω2

c2
0

with the energy E of equation 4.1 and
ω2

c2
0
(1− εr (r⃗)) as a three-dimensional, energy-dependent potential, defined by

the location-dependent dielectric constant εr (r⃗) =
∑

j ε
′
r

�

r⃗ − r⃗ j

�

with ε′r (r⃗)
the dielectric constant for a single resonator and r⃗ j the position of the j-th res-
onator in the resonator-lattice. The factor ω2/c2

0 makes the potential energy-
dependent, but since we are working within frequency ranges of approximately
0.4GHz the relative change of ω and therefore ω2/c2

0 is small. It thus can be
considered quasi constant.

While writing the Helmholtz equation under this form emphasizes the sim-
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4.2. Benchmarking measurement with the s-mode

ilarity to the Schrödinger equation, we can also write it as

−
∆

εr(r⃗)
E⃗ =

ω2

c2
0

E⃗, (4.16)

where we can identify the "Hamiltonian" −∆/εr(r⃗) [62]. We reduce (4.16) to
its scalar form [47] and calculate its matrix elements in the basis of our single
resonator wavefunctions {Ψ0

�

r⃗ − r⃗ j

�

} j that we assume to be proportional to
the magnetic field in z-direction. Actually (4.16) is a vectorial equation and it
has to be full-filled for each individual field component of B⃗ and E⃗. Since all
field components are related we expect to find the same result if one would
use any of the other field components. We assume that the αi, j and β j can
be neglected and only consider t i, j, the nearest neighbour coupling terms. In-
stead of using ω2 as measure of the systems "energy", as indicated in (4.16),
we rather simply use the frequency ν, since it is the directly measured observ-
able. For the small frequency range we are working with for each experiment,
the difference caused by not taking the square of the frequency is sufficiently
small. In the following two sections we will precisely characterize the systems
abilities to be described with our TB formalism for both the s- and the p-mode,
by performing simple benchmark experiments, mainly consisting of chains of
resonators. Anticipating here the results obtained by these experiments we
find the assumptions and simplification we made to formulate our model are
indeed valid since we find a good overall agreement between the TB model
and the measured resonance-frequencies and wave functions.

4.2 Benchmarking measurement with the s-mode

4.2.1 Two coupled resonators

We start by looking at the simple system consisting of two resonators.
Bringing the two resonators sufficiently close together, we can observe a cou-
pling that is depending on the separation d between the resonators, due to the
evanescent nature of the excited mode outside the dielectric medium, as can
be seen in Fig. 4.1. According to the tight-binding approach, the frequency
splitting ∆ν equals two times the coupling strength |t| and can be calculated
evaluating the overlap integral of the evanescent fields

t =

∫

Ψ∗0(r⃗)HΨ0(r⃗ + d⃗)dr⃗ (4.17)

with H = −∇⃗2/n2(r⃗) and Ψ0(r⃗) is the 3D wavefunction of the system. How-
ever our setup only allows us to measure 2D scalar wavefunctions Ψ0(x , y, z0),
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Chapter 4. Multiple resonators – a tight-binding system

making it impossible to evaluate (4.17) exactly. Note here, that in order to
perform tight-binding experiments with our platform, we don’t actually need
an explicit function |t(d)| since |t| can be measured directly for any distance d
and even an exponential fit for the intermediate d range works well [30, 63].
We nevertheless fit the coupling |t| as a function of the separation d with a
strongly simplified approximation of (4.17), taking into account only the first
order evanescent mode outside, and replace the integration by a point-like
evaluation at the exact center between the resonators:

t ≃ −Ψ0

�

r = − d
2 , z = z0

� d2Ψ0

�

r = d
2 , z = z0

�

dr2
(4.18)

≃ K0

�

γ1
d
2

� �

K2

�

γ1
d
2

�

+ K0

�

γ1
d
2

��

, (4.19)

where K0, K2 are Bessel functions. Since the two resonators have slightly dif-
ferent eigenfrequencies due to the fabrication process, we compensate for
this by adding a constant frequency shift ∆ν0 to the fit function |t(d)| =
A{K0(γ1d/2)[K2(γ1d/2) + K0(γ1d/2)]} + ∆ν0. We only fit the two parame-
ters A and ∆ν0. We especially re-use the decay constant γ1 = 0.313 mm−1

obtained by fitting the outside part of a single resonator, in order to explicitly
link the evanescent decay of the single resonator wavefunction to the coupling
for increasing distance d. As one can see in Fig. 4.1 we find a good agreement
between the experimental data and the fit function. Note that the constant
frequency shift ∆ν0 = 1.55 MHz we found is smaller than the single resonator
resonance width γ = 2.2 MHz, meaning that the resonance frequencies of the
two used resonators are sufficiently close.

Another important requirement in order to describe our system with a tight-
binding formalism, is that the wavefunctions of the system should be well
approximated by superpositions of the single resonators wavefunctions. Still
working with the two-resonator system, writing the tight-binding Hamiltonian
under the form of a 2x2 matrix 1

H =
�

ν0 −t
−t ν0

�

(4.20)

we find the two eigenvectors (1,1)/
p

2 and (1,−1)/
p

2 corresponding to the
eigenvalues ν0 − t and ν0 + t respectively. We expect a symmetric wave-
function Ψs ym(r) ∝ Ψ0(r) + Ψ0(r − d) and an anti-symmetric wavefunction
Ψantis ym(r)∝ Ψ0(r)−Ψ0(r − d).

1. We dropped the complex conjugate notation t∗ and won’t use it again during this
manuscript, since we suppose that all wavefunction of the system are real valued and therefore
we only have real couplings t = t∗.
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4.2. Benchmarking measurement with the s-mode
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Figure 4.1 – (left) Reflection spectra of two coupled resonators with diame-
ters of 6 mm for different separations d, ranging from 7 mm (yellow line, bottom
spectrum) to 22mm (red line, top spectrum), with a step-size of 1 mm, that are
up-shifted for increasing distance between the resonators. The spectra are mea-
sured via the loop antenna over the center of the first resonator. (right) Measured
coupling strength |t| as a function of the separation d. We extract |t| = ∆ν/2
by fitting each spectrum with the superposition of two Lorentz lines in order to
find the frequency-split ∆ν. Fitting (4.19) while fixing γ1 = 0.313mm−1 gives
∆ν0 = 1.55 MHz and A= 63.2 MHz.

Similar to the wavefunction scan of a single resonator we perform a se-
ries of reflection measurements along an axis going through the center of both
resonators. For each antenna-position we then fit the spectra with the superpo-
sition of two Lorentz lines in order to extract the two wavefunctions Ψs ym and
Ψantis ym. In Fig. 4.2 one can see the measured wavefunction intensities for two
resonators that are separated by a distance of d = 10mm. We proceed to fit
them with functions f (x) = |AΨ0,fit(x − x1)±BΨ0,fit(x − x2)|2, where Ψ0,fit(x) is
the fit function obtained by fitting the wavefunction of a single resonator (see
Fig. 3.2). Since the two resonators are not identical, we allow A ̸= B to com-
pensate for that. We find a good agreement with the measurements, especially
since the difference in fitted positions x1, x2 equals 10.0mm, the exact spacing
between the resonators. One may note that the antisymmetric state is occur-
ring at the lower frequency and the symmetric state at the higher frequency,
indicating that in our system the coupling-strength t is actually negative. This
comes from the fact that we use the magnetic field B⃗ as a measure of the sys-
tems wavefunction which actually behaves as a pseudo vector. Geometrically,
the direction of a reflected pseudo vector is opposite to its mirror image, but
with equal magnitude. In contrast, the reflection of a true (or polar) vector
is exactly the same as its mirror image. This means that if we would use the
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Chapter 4. Multiple resonators – a tight-binding system

electric field E⃗, which is a true vector, as measure of the systems wavefunc-
tion, we would actually find the symmetric state at the lower frequency and
the antisymmetric state at the higher frequency, as it is normally the case for
other photonic or electric structures. Since any state that is symmetric in E⃗, is
antisymmetric in B⃗, and vise versa, the interpretation of the sign of t should
always be made within the measure of the same field component, which in our
case is naturally fulfilled since we exclusively use the loop antenna for scan-
ning measurements and only use the kink antennas (that couples to the electric
field) as fixed excitation for transmission measurements.

10 5 0 5 10 15
antenna-position x in mm

0.0

0.2

0.4

0.6

0.8

1.0

|
i|2

lower frq wavefct
antisym. superposition
higher frq. wavefct
sym. superposition

Figure 4.2 – Extracted wavefunctions of two coupled resonators with a separation
of d = 10 mm between them (blue/orange squares). The blue squares correspond
to the state that is occurring at the lower frequency. The orange squares corre-
spond to the state that is occurring at the higher frequency. We identify the lower
frequency state (blue) as the antisymmetric state, since its wavefunction is van-
ishing at the middle distance (x = 5 mm) between the two resonators. It follows
that the higher frequency state is the symmetric state. We then proceed to fit both
wavefunction with symmetric and antisymmetric superpositions of the single res-
onator wavefunction f (x) = |AΨ0,fit(x − x1)±BΨ0,fit(x − x2)|2 (solid blue/orange
lines). The found fit parameters for the antisymmetric, symmetric superposition
are A = 0.69, B = 0.68, x1 = 0.0mm, x2 = 10.0mm and A = 0.71, B = 0.75,
x1 = 0.0mm,x2 = 10.0 mm, respectively.

Finding a good agreement in describing a coupled two-resonator system by
a tight-binding formalism in the spectral-domain, i.e. eigenfrequencies, as well
as in the spatial domain, i.e. wavefunctions, as symmetric and antisymmetric
superpositions, we proceed now to investigate the next more complex system:
a linear chain of equally spaced resonators.
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4.2. Benchmarking measurement with the s-mode

Figure 4.3 – The figures on the left (right) are corresponding to a chain with
N = 8 (N = 7) resonators. Panel (a–d) present the reflection S11 measured over
the central position of the indicated resonators (1,3, and 4). The vertical dashed
lines indicate the eigenvalues νn of H0. Panel (e–l) shows the extracted wave-
functions of the systems as a function of the antenna-position x (blue solid and
orange dashed lines), as well as effective Hamiltonian simulations as left (higher
frequency states) and right (lower frequency states) pointing triangles. The states
are numbered increasingly according to their resonance-frequency. The antisym-
metric and its corresponding symmetric state are presented in the same graph. We
add the calculated eigenvectors of the closed systems Hamiltonian H0 as black cir-
cles. The measured wavefunctions and effective Hamiltonian simulations share
the same y-axis, while the eigenvectors of H0 were adjusted by a global factor,
chosen such that they match for state 4 for the N = 7 chain which is the state the
least affected by neighboring sites, i.e. the dots and triangles in (l) are the same.
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4.2.2 Linear chains

We chose to investigate two chains of resonators in detail, an even (N = 8)
and an odd one (N = 7). Two neighboring resonators are separated by a
distance of d = 9mm. As in the previous measurements, we measure the re-
flection along an axis passing through the centers of the resonators, in order to
extract the spatially resolved wavefunctions of the N states of the system. In
Fig. 4.3(a–d) we present two reflection spectra for each chain. For the chain
with N = 8 (N = 7) resonators, we present the reflection measured exactly
above the first (first) and third (fourth) resonator. In the spectra measured
above the first resonator, we can identify N distinct and well isolated reso-
nances for both chains. In the spectra above the third (forth) resonator one can
see that several resonances are vanishing, since the associated wavefunctions
have nodes at that resonator. We compare the spectra with the eigenvalues νn

of the tight-binding Hamiltonian

H0 =
N
∑

i=1

ν0|i〉〈i|+
N−1
∑

i=1

t|i〉〈i + 1|+ h.c. (4.21)

and find a good agreement. We re-use the single resonator resonance fre-
quency ν0 = 7.446GHz (see Fig. 3.2) and t = −53.0MHz, corresponding to
the separation of 9 mm that we extracted from the two resonator measurement
(see Fig. 4.1).

We then extract the wavefunctions for each state again by fitting each reso-
nance individually with a Lorentz line and present them by pairs of symmetric
and antisymmetric states [see Fig. 4.3(e–l)]. We further search to link the
measured amplitude over a resonator to the tight-binding coefficient of that
site. One problem that we encounter is the slight overlap of adjacent single
resonator wavefunctions, meaning that the measured amplitude Ψ(r0) over
the center of a resonator at position r0 is not only proportional to a0, the
tight-binding coefficient of that site, but is actually proportional to Ψ(r0) =
a0Ψ0(0) +

∑

i aiΨ0(r0 − ri), where
∑

i is the sum over the other resonators of
the system and ai and ri their tight-binding coefficients and positions. This
effect changes for each system and especially for each wavefunction individu-
ally. In order to illustrate and estimate the deviation we add the eigenstates
|vn〉 of the tight-binding Hamiltonian (4.21) as black circles to Fig. 4.3(e–l). In
general, the biggest difference can be observed when comparing the complete
symmetric with the complete antisymmetric wavefunctions of a system [see
Fig. 4.3(e–f)], where the deviation is of the order of 10 %.

We still find a good overall agreement of the general structure of the dif-
ferent wavefunctions, but nevertheless we go one step further and compare
our measurement with effective Hamiltonian simulations, that can account
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4.2. Benchmarking measurement with the s-mode

for the overlapping between single resonator wavefunctions. The effective
Hamiltonian theory has been introduced to describe open quantum system and
suits perfectly to model our open tight-binding system (an overview is given in
Refs [64, 65]). For a system of N resonators, where the openness is modeled
via only one channel, the effective Hamiltonian takes the form [65, 66]

He f f = H0 −
iσ
2

WW T , (4.22)

where W is a normalized vector of size N , containing the information on
the exact nature of the coupling. σ is the overall coupling strength of the
channel and H0 is a N × N matrix representing the Hamiltonian of the corre-
sponding closed (tight-binding) system (4.21). Modeling an excitation over
the i-th resonator, not taking the overlap of the wavefunctions into consid-
eration, only the i-th element of W is non zero and equals one. In our case
the antenna is not only exciting the resonator at site i but also the neighbor-
ing sites, since their single resonator wavefunctions have not yet vanished
completely at that distance. In order to model such an excitation we add
a small term ε (ε ≪ 1) on the neighboring sites of the i-th element in W :
W = (..., 0, 0, 1, 0, 0, ...) → W = (..., 0,ε, 1,ε, 0, ...)/

p
1+ 2ε2. We further ne-

glect next-nearest-neighbor contributions. We set ε≈ Ψ0(0)/Ψ0(d), where d is
the distance between the resonators, which in our case turns out to be negative,
since the measured single resonator wavefunction is negative at a distance of
d = 9 mm from the center.

The resulting reflection spectrum S11 as a function of the frequency ν is
then given by [65–67]

S11(ν) = 1− iσ

�

W T 1
ν−He f f

W

�

(4.23)

We simulate the spectra over each resonator and extract the wavefunction
the same way as for the measured spectra. The results are presented as trian-
gles in Fig. 4.3. In order to match the measurements we are usingσ = 2.2MHz
and ε= −0.035. ε does not correspond exactly to Ψ0(0)/Ψ0(d) = −0.066, but
is the same order of magnitude. The difference can probably be explained by
the fact that the antenna is not point-like, thus inducing a convolution opera-
tion, that is not commuting with the square-operation (in reflection measure-
ment we only have direct access to |Ψ|2). Apart from local fluctuations (due to
small differences of the used resonators), we find a good agreement between
the measured wavefunctions and the ones simulated using the effective Hamil-
tonian. The wavefunction of state 4 for the chain with N = 7 resonators [see
Fig. 4.3(l)] actually shows a tendency of growing peak height for an increas-
ing antenna position. This is probably due to not perfectly parallel bottom and
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top plates, leading to different heights for different areas of the chain chang-
ing slightly the resonance-frequencies and couplings between the resonators.
Since state 4 is occurring at the single resonator resonance frequency, we ex-
pect it to be the most sensitive one to those local fluctuations.

The results for the s-mode seem very promising. But before actually study-
ing more complex and interesting systems, we will next present the same kind
of systems for the p-mode.

4.3 Benchmarking measurement with the p-mode

4.3.1 Lifted degeneracy

Bringing two resonators close together, not only do their s-modes couple,
but there is also a coupling in between the p-modes of the two resonators. As
one can see in figure 4.4, due the degenerate nature of the single resonator
p-mode, upon adding a second resonator at a distance of 10 mm the single
resonator resonance peak splits into four peaks.

The fact that we observe four individual peaks in the two-resonator reflec-
tion spectrum confirms the expected different coupling, that arises from differ-
ent overlap integrals depending on the alignment of the modes, that actually
lift the degeneracy.

We proceed to extract the wavefunctions of the four different states by per-
forming a full two dimensional reflection scan with the loop antenna and fitting
the four individual resonances. The obtained two dimensional wavefunctions
are plotted in Fig. 4.4(a–d). While it was not possible to individually visualize
the two degenerate modes with a single resonator measurement (see figure
3.3), here one can clearly identify the two orthogonal p-modes Ψ x

0 and Ψ y
0 of

the single resonators that form either a symmetric or antisymmetric superpo-
sition. Since the two resonator system is not rotational symmetric anymore,
but actually has a distinct axis that is defined by the alignment of the two res-
onators, the nodal lines of the modes align either with the axis along which the
resonators are aligned or with its perpendicular direction. One can identify the
two higher frequency modes as symmetric and the two lower frequency modes
as antisymmetric modes, which is consistent with the results obtained for the
s-mode.

Since the coupling strength is in first approximation proportional to the
mode overlap in between the two resonators, the modes that have their nodal
line along the axis of alignment of the two resonators, are weaker coupled
and therefore at the center of the spectrum. This property of an anisotropic
coupling that depends on the orientation of the individual modes makes the
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4.3. Benchmarking measurement with the p-mode

Figure 4.4 – (top) Reflection measurement for a single resonator (blue) and two
coupled resonators (orange) separated by a distance of 10 mm (from center to
center) measured at dx = dy = 3 mm from the center of the (first) resonator.
(a–d) two dimensional wavefunctions |Ψ|2 of the two resonator system (ordered
according to their frequency) with a resolution of 0.5 mm. The black circles are
corresponding to the perimeters of the two resonators with diameter D = 8mm).

experiments with p-modes so interesting.

4.3.2 Adaption of the TB model for p-modes

While we have introduced the TB model for a unique, non degenerate sin-
gle resonator wavefunction, it can be appropriately modified to account for
the degenerate nature of the p-modes. While for the s-mode, a system of N
resonators resulted in a N ×N TB matrix (due to the basis of the N individual
single resonator wavefunctions), it now results in a 2N × 2N matrix, since we
suppose that the wavefunctionsΨ(r⃗) =

∑

i c x
i Ψ

x
0 (r⃗− r⃗i)+c y

i Ψ
y
0 (r⃗− r⃗i) of the sys-

tem are now superpositions of the two basis functions Ψ x
0 (r⃗− r⃗i) and Ψ y

0 (r⃗− r⃗i)
of each resonator at position r⃗i. The tight binding coefficients {c x

i , c y
i } form a

vector c⃗ = (c x
1 , c y

1 , c x
2 , c y

2 , ..., c x
N , c y

N ) of length 2N , so that each element of the
"original" TB matrix Hi j is replaced by a 2× 2 matrix

Hi j →
�

H x x
i j H x y

i j

H y x
i j H y y

i j

�

. (4.24)
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Neglecting non leading order terms, the the onsite energies become

Hii = νi →
�

ν
x
i 0

0 ν
y
i

�

, (4.25)

where νx
i and νy

i are the single resonator resonance frequencies associated
with the two single resonator wavefunctions Ψ x

0 and Ψ y
0 of the resonator at site

i, respectively. Theoretically they are identical, but as already seen in figure
3.3, the degeneracy might be slightly lifted due to experimental imperfections.
The coupling term t i, j becomes

Hi ̸= j = t i, j →
�

t x x
i, j t x y

i, j

t y x
j,i t y y

i, j

�

, (4.26)

where t x x
i, j and t y y

i, j describe the coupling between modes of sites i and j with the
same orientation, while t y x

i, j and t y x
i, j describe the coupling between the modes

Ψ
x
0 and Ψ y

0 of the two sites i and j. For the two resonator system presented
in figure 4.4, the orientation of the coordinate system in which one describes
the system can be chosen in a way that the basis functions Ψ x

0 and Ψ y
0 align

with the axis going through the resonators, so that the t y x
i, j and t x y

i, j are actu-
ally zero and one can therefore separate the system into Ψ x =

∑

i c x
i Ψ

x
0 (r⃗ − r⃗i)

and Ψ y =
∑

i c y
i Ψ

y
0 (r⃗ − r⃗i) modes, sometimes also referred to as x-polarized

and y-polarized modes, that then could actually be described completely in-
dependently. For systems with more resonators this is typically not possible
anymore. Any structure, where resonators are not aligned along orthogonal
axis, e.g. hexagonal or triangular lattices, have non zero t y x

i, j and t x y
i, j no mat-

ter how the systems coordinate system is orientated and the separation into
an individual and independent description of x- and y-polarized modes is not
possible.

Although during this theses for our description we only use the leading or-
der onsite energies and nearest neighbour terms, for the sake of completeness
any matrix element Hkl

i j with k, l ∈ x , y and i, j ∈ 1,2, ...N for a system of N
resonators is defined by the integral

Hkl
i j =

∫

Ψk∗
0 (r⃗ − r⃗i)HΨ

l
0(r⃗ − r⃗ j)dr , (4.27)

where r⃗i and r⃗ j are the position of the i-th and j-th resonator, respectively.
As for the s-mode, the exact 3D experimental wavefunctions Ψ x

0 (r⃗), Ψ
y
0 (r⃗)

cannot be measured and therefore (4.27) cannot be evaluated. We therefore
proceed as for the s-mode by determining the the single resonator resonance
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4.3. Benchmarking measurement with the p-mode

frequencies νi and the coupling function t i, j = t(|r⃗i − r⃗ j|) = t(d) experimen-
tally.

While the {νx
i } and {νy

i } can be directly obtained by measuring the indi-
vidual resonators resonance frequencies, the t x x

i, j and t y y
i, j as well as the t x y

i, j and
t y x

i, j are actually described by functions t x x(di j,θi j), t y y(di j,θi j), t x y(di j,θi j)
and t y x(di j,θi j), that not only depend on the distance di j of separation in be-
tween the two resonators at site i and j (as it was the case for the s-mode),
but also an the angle θi j, that the line going through the centers of these two
resonators forms with an fixed reference-axis, that we chose to be the x-axis.

The general Hamiltonian H of two coupled resonator separated by a dis-
tance d with resonance frequencies νx

0 = ν
y
0 = ν0 then takes the form

H =







ν0 0 −t x x(d,θ ) −t x y(d,θ )
0 ν0 −t y x(d,θ ) −t y y(d,θ )

−t x x(d,θ ) −t x y(d,θ ) ν0 0
−t y x(d,θ ) −t y y(d,θ ) 0 ν0






(4.28)

If we now suppose that the two resonators are aligned along the x-axis, so
that θ = 0, the systems Hamiltonian can be simplified into

H =







ν0 0 −t x(d) 0
0 ν0 0 −t y(d)

−t x(d) 0 ν0 0
0 −t y(d) 0 ν0






, (4.29)

with t x(d) = t x x(d,θ = 0) and t y(d) = t y y(d,θ = 0). Because of the way one
has chosen the alignment of the two resonators, t x y(d,θ = 0) = t y x(d,θ =
0) = 0. The eigenvalues of H then are ν0 ± t x(d) with associated eigenstates
(Ψ x

0 (x , y, x)∓Ψ x
0 (x−d, y, z))/

p
2 and ν0±t y(d)with eigenstates (Ψ y

0 (x , y, x)∓
Ψ

y
0 (x − d, y, z))/

p
2.

With a two resonator measurements, where one varies the separation d
in between the resonators, one can therefore obtain experimental estimates
for t x(d) and t y(d). The resonance frequencies ν1 < ν2 < ν3 < ν4 of the 4
peaks can be experimentally determined for different separations d and one
can calculate |t y(d)| = (ν4 − ν1)/2 and |t x(d)| = (ν3 − ν2)/2. We expect
|t y(d)| > |t x(d)| for all d since the nodal line of Ψ x

0 corresponds to the align-
ment axis of the two resonators and therefore its overlap integral is always
smaller. The identification of the different modes as symmetric or antisymmet-
ric can further give access to the sign of t x

0 (d) and t x
0 (d). We find t x(d) < 0,

while t y(d)> 0. This seems a little surprising at first. As one can see in figure
4.4 we indeed find for both, the x and y polarized modes, that the symmetric
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Chapter 4. Multiple resonators – a tight-binding system

state is at the higher frequency, while the antisymetric state is at the lower fre-
quency, in agreement with the results obtained for the s-mode. But since the
single resonator wave functions Ψ x

0 and Ψ y
0 are not rotational symmetric and

change their sign on their nodal lines, the overall symmetric state of the y po-
larized modes is actually described by the antisymetric vector (0, 1,0,−1)/

p
2,

since Ψ y
0 changes its sign along x-axis, on which the resonators are aligned.

When the t x(d) and t x(d) are known, one can then find general expressions
for t x x(d,θ ), t y y(d,θ ), t x y(d,θ ), t y x(d,θ ) for any angle θ by rotating the
Hamiltonian defined in (4.29) by θ in the x , y plane using the rotation matrix

R=







cosθ − sinθ 0 0
sinθ cosθ 0 0

0 0 cosθ − sinθ
0 0 sinθ cosθ






. (4.30)

Upon comparing the Hamiltonian RHR−1 in the new reference system with
(4.28) we find the following expressions

t x x(d,θ ) = t x(d) cos2 θ + t y(d) sin2 θ (4.31)

t y y(d,θ ) = t y(d) cos2 θ + t x(d) sin2 θ (4.32)

t x y(d,θ ) = (t x(d)− t y(d)) sinθ cosθ (4.33)

t y x(d,θ ) = (t x(d)− t y(d)) sinθ cosθ . (4.34)

The terms t x y(d,θ ) = t y x(d,θ ) that describe the interaction between the
Ψx mode of one and the Ψy mode of the other resonator are actually zero when
θ is a multiple of π/2. This is the case when the resonators are either aligned
along the x or the y axis, and therefore the Hamiltonian can be separated into
x and y polarized modes. One further finds that t x x(d,θ ±π/2) = t y y(d,θ ),
which is expected since the physics of the systems should not change upon
interchanging the systems axis x↔ y .

Since the Hamiltonian for any angle θ is constructed with the use of unitary
rotation matrices, we will always find its four eigenvalues ν0± t x(d) and ν0±
t y(d). The corresponding eigenstates are (Ψθ0 (x , y, z) ∓ Ψθ0 (x − d cosθ , y −
d sinθ , z))/

p
2 and (Ψθ⊥0 (x , y, z)∓Ψθ⊥0 (x − d cosθ , y − d sinθ , z))/

p
2, where

one uses Ψθ0 (r⃗) = cosθΨ x
0 (r,ϕ, z) + sinθΨ y

0 (r,ϕ, z) = sin(ϕ − θ )Ψ0(r, z) and
Ψθ⊥0 (r⃗) = − sinθΨ x

0 (r,ϕ, z) + cosθΨ y
0 (r,ϕ, z) = cos(ϕ − θ )Ψ0(r, z), where the

function Ψ0(r, z) describes the r- and z-dependency of the single resonator p-
mode wavefunctions. We find that they are superpositions of Ψθ∥0 and Ψθ⊥0 ,
that are essentially the single resonator wavefunctions Ψ x

0 and Ψ y
0 rotated by

an angle θ , so that their nodal lines align with the axis that goes through
the centers of the two resonators and its perpendicular direction, respectively.
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4.3. Benchmarking measurement with the p-mode

Although this is an intrinsic property of H arising from the construction via
the rotation matrices, we preferred to write it down explicitly to emphasize
the self-consistency of the adapted TB binding model, that can essentially be
constructed in any reference coordinate system. To limit eventual confusion to
a minimum and be consistent, throughout this thesis we will nevertheless limit
ourselves to only use Ψ x

0 and Ψ y
0 as basis to construct further TB Hamiltonians.

4.3.3 Measuring the couplings t x(d) and t y(d)

As a continuation of the experiment presented in figure 4.4, we will now
measure the spectrum of the two resonator system for different distances d in
order to experimentally extract t x(d) and t y(d). Instead of measuring a com-
plete 2D-scan above the resonators, we decide to only measure at strategic
points ∆x ,∆y from the center of the two resonators to reduce the measure-
ment time. We measure at ∆x = 0 mm,∆y = 3mm in order to mainly couple
to the x-polarization, since Ψ y

0 has its nodal line along the y-axis. Analogously,
we measure at ∆x = 3mm,∆y = 0 mm in order to mainly couple to the y-
polarization. The measured spectrum can be seen in figure 4.5. One can see
that the resonance peaks associated with the x-polarization (dashed lines) are
on the inside, while the peaks associated with the y-polarization (solid lines)
are on the outside of the spectrum, clearly confirming that |t y | > |t x |. As one
can see the 4 resonance peaks do not converge into a single peak for increasing
separation d as one would expect if all single resonator resonance frequencies
would be equal, but actually converge into two distinct peaks. Due to the dif-
ferent colors used it becomes obvious that the 4 peaks converge into a lower
frequency peak that is associated with the first resonator (orange lines) and
a higher frequency peak that is associated with the second resonator (blue
lines). It therefore seems that we have chosen two resonators for this experi-
ment whose resonance frequencies do not match very well and their frequency
difference seems to be around 25MHz. For larger systems we can not avoid
this problem totally, thus we decided to use this mismatch between the res-
onator’s resonance frequencies to further test the robustness of the TB model,
by formulating a TB Hamiltonian that actually accounts for the two different
resonance frequencies ν1 and ν2

H =







ν1 0 −t x(d) 0
0 ν1 0 −t y(d)

−t x(d) 0 ν2 0
0 −t y(d) 0 ν2






, (4.35)
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Chapter 4. Multiple resonators – a tight-binding system

Figure 4.5 – (a) Reflection spectra of two coupled resonators for different separa-
tions d, ranging from 9 mm to 16mm, that are up-shifted for increasing distance
between the resonators. The spectra are measured via the loop antenna over 4
strategic points, that are then plotted in different colors and linestyles. (b) Ex-
tracted resonance frequencies (coloured dots) for the different separations d and
the fit of (4.36) (solid lines). (c) The extracted functions |t x(d)| and |t y(d)| as
a function of d. We further compare the coupling functions to coupling values
extracted from linear chain measurement. We use chains with N = 3,4, 5 total
resonators separated by distances d = 9, 10,12 mm. We plot the extracted |t x(d)|
as diamonds and |t y(d)| as circles. (d) the general coupling functions t x x(d,θ )
and t x y(d,θ ) as a function of the angle θ for different distances d = 9, 10,12 mm.
The dashes black lines mark t x x(d,θ ) = 0 and t x y(d,θ ) = 0 and their only pur-
pose is visual guidance.
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4.3. Benchmarking measurement with the p-mode

with eigenvalues

λi = (ν1 + ν2 ±
Æ

4tk(d)2 + (ν1 − ν2)2)/2, for k ∈ {x , y}. (4.36)

Assuming a simple exponential decay for both t x(d) = Axe−γx (d−9 mm) and
t y(d) = Aye−γy (d−9mm) (with Ax < 0 and Ay > 0), we proceed to fit the po-
sitions of the 4 resonance peaks (that we have beforehand extracted by fit-
ting them with the superposition of Lorentz lines) with the expressions for the
λi. We adjust all four curves at once minimizing their combined quadratic
error by varying the parameters ν1,ν2, Ax , Ay ,γx ,γy . The result can be seen
in figure 4.5. We find ν1 = 8.294 GHz, ν2 = 8.320 GHz, Ax = −19.8MHz,
Ay = 98.4MHz, γx = 0.406mm−1. γy = 0.546 mm−1. We generally observe
a good agreement, but the extracted resonance positions show more fluctua-
tions than it was the case for the s-mode (see figure 4.1). This is caused by
the sensitivity of the resonance frequencies upon the re-placement of the same
resonator, which is stronger for the p-mode than for the s-mode as already
discussed in section 3.3. The decay constants γx and γy are slightly different,
although both the Ψ x and Ψ y have the same radial decay. The different angular
dependency of the modes leads to different decays within the overlap integral,
as the resonators are not point-like, which explains the observed difference
of γx and γy . In figure 4.5 one can see the extracted functions |t x(d)| and
|t y(d)|, where we further compare them to coupling values that we extracted
from linear chain measurement (open symbols), which agree nicely with the
extracted curves from the two resonator measurement. See section 4.3.4 for
details on the extraction of coupling values from linear chain measurement.
To help visualize the angle dependency of the general coupling functions we
then proceed to plot in figure 4.5 t x x(d,θ ) and t x y(d,θ ) for different distances
d = 9, 10,12 mm. t x x(d,θ ) oscillates between t x(d) for θ = 0,π and t y(d) for
θ = π/2,2π/2, while |t x y(d,θ )| is maximal for multiple of π/4.

Using the now extracted general coupling functions t x x(d,θ ), t y y(d,θ ),
and t x y(d,θ ), we can construct a TB Hamiltonian for any distribution of res-
onators. Before studying a more complex system in chapter 6, we test our
formalism on systems consisting only of few resonators.

4.3.4 Linear chains

Before looking at non-separable systems, we study linear chains, where the
x- and y-polarized modes can be described separately. Since the underlying
TB Hamiltonians are equivalent, the wavefunctions and spectrum should be
closely related to those measured for the linear chains presented in figure 4.3
for the s-mode.
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Figure 4.6 – Averaged transmission spectrum 〈|S12(ν)|〉 (in blue) for the linear
chain of N = 4 resonators that are separated each by a distance of d = 9mm
(left) and d = 10 mm (right). Its extracted resonance-positions are plotted as blue
vertical lines. We then fit the extracted positions with (4.39) for each polarization
separately. The fitted positions are marked by dashed (for the x-polarization) and
solid (for the y-polarization) orange lines.

We will limit ourself to spectral measurements at a few strategic points
that allow to distinguish between x- and y-polarized modes and do not ex-
tract wavefunctions. For the s-modes a scan on a straight line was more than
enough to fully visualize wavefunctions and actually measurements only over
the centers of the resonators are enough to extract the TB coefficients of the
wavefunctions. For the p-modes, on the other hand, we need at least a cou-
ple more measurements on strategic points and the TB coefficient cannot be
extracted easily. In chapter 6 we will present a method to extract the TB coef-
ficients for p-mode measurements, but it required a full 2D scan of the system,
which is time consuming. While for those experiments their knowledge is ac-
tual necessary for further calculations, the aim of the following measurements
is to characterize how the TB model works in describing small test systems.
Here actually the comparison of the eigenvalues of the TB matrix with the po-
sition of the resonances within the spectra gives us enough information.

The linear chains are constructed out of N = 3,4, 5 resonators separated
by the same distance d. We study chains with d = 9,10, 12mm. Assuming
the same resonance frequencies ν0 for all resonators, only considering nearest
neighbour couplings t x and t y , their TB Hamiltonian (in Dirac notation) can
be written as H0 = H x

0 +H y
0 with

H x
0 =

N
∑

i=1

ν0|i〉x〈i|x +
N−1
∑

i=1

t x |i〉x〈i + 1|x + h.c. (4.37)
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and

H y
0 =

N
∑

i=1

ν0|i〉y〈i|y +
N−1
∑

i=1

t y |i〉y〈i + 1|y + h.c. (4.38)

and its eigenvalues are [68]

ν
x/y
i = ν0 + 2t x/y cos

�

πk
N + 1

�

, with k = 1, 2, ..., N . (4.39)

Instead of comparing the measured spectrum to the eigenvalues that we cal-
culate using the functions t x(d) and t y(d) extracted from the previous two res-
onator measurement, we actually decide to use the measured spectrum for the
different linear chains to estimate t x and t y for the distances d = 9, 10,12 mm
and then compare them to the t x(d) and t y(d) extracted from the two res-
onator measurement.

In order to extract the couplings t x and t y for each chain measurement,
we extract the position of all 2N resonance peaks in the measured spectra and
identify them all as either belonging to a x or y-polarized mode. We then min-
imize the overall quadratic error between the positions of the resonance peaks
and the eigenvalues predicted by (4.39) for each polarization individually by
varying the parameters ν0 and t x , t y .

The results are then added to figure 4.5, where we find a good agreement.
Exemplary, we show in figure 4.6 the measured spectrum for the chain with
N = 4, the distances d = 9 mm and d = 10 mm and the fitted resonance
positions. The latter correspond to the measured position within a few MHz,
which is the same order or even smaller than the fluctuations of the individual
resonance frequencies upon the resonator placement and we cannot expect the
model to be more precise.

4.3.5 Three-pointed star and hexagonal ring

Next we have a look at small test systems where one actually cannot sepa-
rated the Hamiltonian in terms of x- and y-polarizations. Considering the good
agreement of the TB model, the approximation to only consider the nearest
neighbour coupling seems to work well for linear chains. Since the resonators
are all aligned on a straight line with no direct line-of-sight between next near-
est neighbours, one could eventually argument that there is some kind of effec-
tive shielding that minimizes the effect of the next nearest neighbours for these
chains. For the two small test system that we are going to study next this is not
the case anymore and there is a direct line-of sight not only for nearest neigh-
bours but also in between the other resonators of the system. Additionally,
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Figure 4.7 – (left) True to scale sketch of three-pointed star. Resonators are
plotted as grey circles while the resonator-pairs that we consider for the theo-
retical model are marked by lines in between the resonators. All possible pairs
are connected by red lines, while the nearest neighbours are connected by black
lines. (right) Averaged transmission spectrum 〈|S12(ν)|〉 (in blue). The extracted
resonance-positions of the experiment are plotted as blue vertical lines. Under-
neath the plot, the theoretically calculated eigenvalues are indicated as solid verti-
cal lines for degenerate eigenvalues and as dashed vertical lines for singular eigen-
values. The eigenvalues for the model considering all possible coupling pairs are
plotted in red, while the eigenvalues for the model that considers only the cou-
pling between the nearest neighbours (NN) are plotted in black.

compared to the 1D chains, the 2D arrangement of the resonators naturally re-
duces the distance to the next nearest neighbours. We therefore try to extend
our TB model in the most simple way possible to eventually account for next
nearest neighbour couplings, by calculating the associated coupling terms with
the same functions as for the nearest neighbour couplings that we determined
experimentally in section 4.3.3.

Three-pointed star

The first system that we study is a three-pointed star, where one central
resonator is symmetrically surrounded by three resonators. A true to scale
sketch of the geometry can be seen on the left in figure 4.7. This structure is
essentially the basic building block for honeycomb lattices, found for example
in graphene nanoribbons and in boron nitride crystals. The system has a 120◦

rotational and mirror symmetry, i.e. belonging to the point group C3v, that
results in degenerate states.

We measure the transmission between a fixed kink antenna placed next
to the central resonator and a loop antenna that we move over the different
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resonators. For each resonator we measure at 16 equally spaced points on
the circumference of a circle with radius r = 3mm centered with respect to
the resonator’s center, so that we can be sure to not miss any state (by only
measuring on its nodal lines). The averaged transmission spectrum can be seen
in figure 4.7. We use the harmonic inversion method to extract the resonance-
positions of the 8 states. We then compare them to the eigenvalues of the TB
Hamiltonian, for the case, where we only consider the nearest neighbour (NN)
couplings (plotted as black lines in figure 4.7) and the case, where we consider
the coupling between all resonators (plotted as red lines in figure 4.7). For
each resonator pair we calculate the coupling using the experimentally found
coupling functions presented in figure 4.5.

For the Hamiltonian, where we only consider the nearest neighbour cou-
pling, we find a 4 times degenerate eigenvalue at the center of the spectrum
and two two-times degenerate eigenvalues at each end of the spectrum. By
additionally considering the couplings between all resonators, the central
eigenvalue splits up into two singular eigenvalues and a two times degenerate
eigenvalue that remains at the center. While experimentally the degeneracy
is slightly lifted for all resonances (either by the fluctuations of the resonance
frequencies of the different resonators or simply by the presence of the anten-
nas that break the rotational symmetry, we still find a good overall agreement
with the predicted eigenvalues. Whether the model is more accurate by con-
sidering all possible resonator couplings is not really possible to tell, since
experimentally the degeneracy lift of the central state is only slightly larger
than the degeneracy lift for the outer states, which is of the same order as the
single resonators resonance frequency fluctuations.

Hexagonal ring

Next we have a look at the system of 6 resonators that form a hexagonal
ring. A true to scale sketch of the geometry can be seen in figure 4.8. This
structure is closely related to the structure of benzene. The system again has
a 120◦ rotational and mirror symmetry that results in degenerate states.

Similar to the experiment for the three-pointed star, we measure the trans-
mission between a fixed kink-antenna that is placed on the outward facing
side of one of the resonators and the movable loop antenna, that move again
over several points per resonator. The averaged transmission spectrum can be
seen in figure 4.8. We again use the harmonic inversion method to extract the
resonance-positions of the 12 states and compare them to the eigenvalues of
the TB Hamiltonian for the two cases of considering all possible resonator pairs
or only the nearest neighbours, where we again use the coupling functions pre-
sented in figure 4.5.
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Figure 4.8 – (left) True to scale sketch of hexagonal ring. Resonators are plotted
as grey circles while the resonator-pairs that we consider for the theoretical model
are marked by lines in between the resonators. All possible pairs are connected
by red lines, while the nearest neighbours are connected by black lines. (right)
Averaged transmission spectrum 〈|S12(ν)|〉 (in blue). The extracted resonance-
positions of the experiment are plotted as blue vertical lines. Underneath the
plot, the theoretically calculated eigenvalues are plotted as solid vertical lines for
degenerate eigenvalues and as dashed vertical lines for singular eigenvalues. The
eigenvalues for the model considering all possible coupling pairs are plotted in
red, while the eigenvalues for the model that considers only the coupling between
the nearest neighbours (NN) are plotted in black.
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For the Hamiltonian, where we only consider the nearest neighbour cou-
pling, we find a symmetric spectrum consisting of four two-times degenerated
eigenvalues and four singular eigenvalues. By additionally considering the
couplings between all resonators, the degenerated eigenvalues remain degen-
erated, while all eigenvalues shift, some more than other, so that the spectrum
becomes asymmetric. This is actually well expected for TB systems, where
next nearest neighbour couplings are considered, since the CT symmetry of
the system is broken.

As already seen previously for the three-pointed star, experimentally the
degeneracy is again slightly lifted for all degenerate states, but this times it
actually seems that the model that considers all possible resonator couplings
is slightly more accurate. While the way how we calculate the couplings be-
tween all possible resonator pairs (by simply using the experimental coupling
functions found for a two-resonator system) is a strong simplification of the
actual overlap integrals in between the different resonators, it nevertheless
gives qualitatively correct prediction about the direction in which the different
eigenvalues get shifted. The overall agreement is good and more quantitative
discussion is again not possible, since the found differences between the pre-
dicted eigenvalues and the found resonance-positions are of the same order as
the single resonators resonance frequency fluctuations.

It thus seems indeed that the derived tight-binding model is well suited in
describing systems of multiple coupled resonators. While it was already con-
firmed for the s-mode by many experiments throughout the recent years, it has
now also been experimentally shown for the first time using the p-mode. With
this promising results we will now continue to study more complex systems in
chapter 5 and 6.
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Chapter 5

1D quasiperiodic structures

After shortly outlining the basic concept of quasiperiodic structures and
some interesting properties for waves propagating within such structures, like
multifractal wavefunctions and spectra, we introduce the 1D Fibonacci model
that we experimentally realize by chains of coupled resonators.

By measuring the systems local density of states (LDoS) we show that the
self-similarity is revealed by reorganising the sites according to their local
surrounding. We then calculate the fractal dimensions of the measured
wavefunctions and find good agreement with theoretical formulations for the
multifractality based on a perturbative description in the quasiperiodic limit.
Studying different system sizes we are also able to verify recursive
construction schemes for the LDoS for the two cases of dominant strong and
dominant weak couplings. We end this chapter by presenting qualitative
result for other quasi periodic structures, that a part of a generalization of the
Fibonacci model to other metallic means, e.g. silver and bronze mean, where
we take first steps towards formulating a generalized recursive construction
scheme.
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5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Quasiperiodic structures and multifractality

Quasiperiodic systems are non-periodic, while still maintaining some kind
of order compared to disordered structures. A quasiperiodic lattice can tile all
available space, and any subset can be found at some other position within the
lattice. While mathematician and physicist Roger Penrose started investigated
what will become the famous quasiperiodic Penrose tilings in the 1970s [69],
it was only in 1982 that Dan Shechtmann observed unusual diffractograms for
a certain aluminium-manganese alloys [70]. For this first revelation of qua-
sicrystal structures in nature, Shechtmann was awarded with the Nobel Prize
in Chemistry in 2011. According to the well-known crystallographic restriction
theorem, periodic crystals can only exhibit two-, three-, four-, and six-fold ro-
tational symmetries. While amorphous and disordered sample do not produce
any sharp peaks in their diffraction pattern, the long range order, self-similarity
and orientational symmetries of quasicrystals still produces sharp peaks in their
Bragg diffraction pattern [71], but they cannot be associated to the classic
crystal symmetries. The five-fold symmetry found by Dan Schechtmann in the
diffraction pattern of his sample therefore proved that other symmetry was
indeed possible.

For periodic crystals, justified by the use of Bloch theorem, the electronic
states are typically extended. In disordered systems on the other hand states
are typically localized when their dimension is low and/or their disorder strong
enough [72]. Quasicrystals have a kind of intermediate "critical" character,
that is very similar to the critical regime in the Anderson transition. In this
regard, a lot of theoretical and experimental works have already been done.
This transition from weak to strong disorder can be characterized by a mul-
tifractal distribution of wave amplitudes in real space and is associated with
an anomalous diffusive propagation of wave packets [73–79], where several
recent experiments have successfully revealing such a critical regime with mul-
tifractal waves[80–83]. Multifractality is used as a generalization for a fractal
system, that cannot be described by a single fractal dimension and thus a con-
tinuous spectrum of exponents is needed [84]. This is often revealed by the
scaling of a generalized fractal dimension Dq with a multifractal parameter q,
as we will show in section 5.2.4.

Due to the fact that quasiperiodic structures lack periodicity and transla-
tional symmetry, while still showing some order and self-similarity on different
scales, they may as well be classified as the transition between ordered and dis-
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ordered systems. They therefore also generically have multifractal properties
with the particularity of having tunable fractal dimensions[85–89]. Several
works have linked these fractal properties of waves to the specific geometrical
properties of quasiperiodic lattices (2D tilings and 1D chains) [90–101]. Nev-
ertheless, nearly forty years after the discovery of quasicrystals, there is cur-
rently no experiment in real or meta materials that has clearly demonstrated
these multifractal properties of waves, even in the simplest and most studied
paradigmatic example, the Fibonacci chain [102]. However, a recent exper-
iment using cavity polaritons propagating in a Fibonacci chain structure has
succeeded in revealing the fractal character of the eigenfrequency spectrum
and also in verifying the gap labeling in agreement with theoretical predic-
tions [103].

As already mentioned the 1D Fibonacci model is the simplest and most
studied model in terms of quasiperiodic structures, it therefore is not surprising
that we have also decided to experimentally study variations of this system. We
will present the first experiment that explicitly demonstrates the existence of a
simple recursive scheme to reconstruct the fractal properties of the local density
of states of the waves on the Fibonacci chain, where we further quantitatively
characterize these multifractal properties and show good agreement between
the measured fractal dimensions and theoretical predictions [92].

5.2 The 1D-Fibonacci chain

The Fibonacci 1D Chain is closely linked to the well known series of
Fibonacci-numbers Fn, that follow the recursive construction law

Fn = Fn−1 + Fn−2, (5.1)

for n ≥ 2, with initial values F0 = 0 and F1 = 1. This results in the series of
numbers
{Fn}= 0,1, 1,2, 3,5, 8,13, 21,34, 55,89, 144, ..., where the ratioωn = Fn−2/Fn−1

converges towards ω = limn→∞ωn = (
p

5− 1)/2. ω is an irrational number
and is the inverse of the well known golden ratio.

5.2.1 Fibonacci-sequence by concatenation and substitution

While this series of numbers is interesting on its own, it cannot be used
directly to describe crystals or their lattices. In order to link these numbers
to a lattice, we replace the sum in the recursive construction law 5.1 with a
concatenation operation

Sn = Sn−1Sn−2 (5.2)
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n Cn Fn ωn

1 B 1
2 A 1 0/1
3 AB 2 1/1
4 ABA 3 1/2
5 ABAAB 5 2/3
6 ABAABABA 8 3/5
7 ABAABABAABAAB 13 5/8

Table 5.1 – The first six approximants Cn obtained by the substitution rule σ

with S1 = B and S2 = A and in the limit of n →∞ we find a quasiperiodic
sequence S, constituted of the different letters A and B.

Another way to obtain such a sequence of letters A and B is by this substi-
tution rule

σ :

¨

A→ AB
B→ A.

(5.3)

Starting with the letter B and repeatedly applying the substitution rule we find
a sequence of letters Cn = σn(B) of increasing length. The first few Cn are
shown in table 5.1. Up to only a permutation, Cn corresponds with the previ-
ous defined Sn and both are finite approximants of the quasiperiodic Fibonacci
chain, which is obtained in the limit n→∞. The length of the sequence Cn

is equal to the Fibonacci numbers Fn, and the ratio between the number of B
and A is given by ωn.

Additionally to the concatenation and substitution method, there exists an-
other method to obtain the Cn, which is the cut and project (C&P) method.

5.2.2 Cut & Project method

The C&P method can be used to construct quasiperiodic lattice with di-
mension d (and their periodic approximants). The basic idea is that a d-
dimensional quasicrystal may be viewed as the projection of a higher dimen-
sional regular lattice along a d-dimensional cut. The projected points then
define the new lattice and the angles under which the higher dimensional grid
is cut by the lower dimensional object define whether the resulting lattice is
periodic or aperiodic.

We will now use this method to construct all n-th periodic approximants
cn of the Fibonacci chain, up to its quasiperiodic structure for n → ∞. We
project the lattice sites within a given interval of a 2D regular grid onto a line
that is cutting the grid with a slope ωn as can be be seen in5.1. The upper
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5.2. The 1D-Fibonacci chain

Figure 5.1 – Schema of the C&P method. Selected points of a 2D square lattice are
projected onto a line with slope ω7 = 5/8, yielding to the binary sequence of two
different length-interval between the projected points. A short distance, marked
as red double binding that is assigned to the letter B and a long distance marked
as blue single lines that is assigned to the letter A. While theoretically the resulting
cn is an infinite periodic sequence, for demonstration purposes, we projected only
the grid points associated to one basic motif C7 with length F7 = 13.
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Chapter 5. 1D quasiperiodic structures

line is positioned in such a way, that it delineates an interval encompassing all
the grid points at a maximal distance

p
2a to the cutting line, where a is the

lattice constant. The positioning of the interval with respect to the cutting line
is not unique (e.g. a symmetric configuration around the line is possible) but
will always yield permutation of the same sequence cn.

The projected points (black points in figure 5.1) divide the line in intervals
that only have two different lengths A (blue line) and B (red double-line). For
any rational approximationωn, the resulting infinite sequence of cn is periodic
with motif length Fn. Due to its rational slope, every Fn points the line will pass
exactly through a grid point and the motif is repeated. The basic motifs of cn

correspond to all different permutations of A and B in the sequences Cn or Sn

previously defined in section 5.2.1. The cn are called the periodic approximants
of the quasiperiodic Fibonacci-sequence c = limn→∞ cn, that is obtained in the
limit of n→∞ when the slopeω becomes irrational and no repetition occurs.

The off-diagonal tight-binding model

From there, different experimental strategies can be followed to formulate
a tight-binding model: either the two letters are associated to two different
couplings between resonators, called the off-diagonal model or they are used
to account for two different resonant frequencies, called the diagonal-model.
We will implement the first one here, thus introducing two coupling, tA and
tB, or, equivalently, two distances dA and dB between the resonators. This ex-
perimental choice offers two scenarios: either ρ = tA/tB > 1, that corresponds
to the dominant strong coupling scenario, or ρ = tA/tB < 1, the dominant
weak coupling scenario. The main part of the study reported here will make
use of the second scenario, but we will show at the end that inverting ρ yields
interesting results too.

Conumbering

Compared to the construction of the Fibonacci sequence by concatenation
or substitution, with the C&P method one additionally obtains further infor-
mation about the system. This information is accessible by the projection of
the grid points onto the axis that is orthogonal to the cut. As one can see
in figure 5.2, the sites projected onto the perpendicular axis occupy equally
spaced and reordered positions: The sites whose projection on the horizontal
axis are surrounded by two A intervals (further referred to as atomic sites, since
they are surrounded by two weak couplings) are clustered around the center,
whereas those embedded in ABA sequences (further referred to as molecular
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5.2. The 1D-Fibonacci chain

Figure 5.2 – (a) Cut and project method, for ω7 = 8/5, but additionally with the
projections onto the perpendicular axis. In the off-diagonal TB Fibonacci model,
the projection on the horizontal axis dictates the arrangement of the sites of the
chain according to strong (black double-line) and weak (black line) couplings.
Each site nomenclature is reordered according to its local environment on the
perpendicular (vertical) axis, the resulting conumber c(i) is indicated under each
site at position i. Along the perpendicular axis, “atomic” (in blue) and “molecular”
(in red) sites are clustered in 3 groups. (b) Photo of an experimental Fibonacci
chain made of 13 resonators. (c) Measured reflection spectra 1− |S11|2 for each
resonator in the chain shown in (b), where the colors differentiate the atomic
(blue) and molecular (red) sites.

sites, due to the strong coupling in between the sites) are grouped outside the
center – at the bottom for the sites between AB and at the top for BA.

This way of referring to the sites not by their index i, that orders them
according to their position within the chain, but by the order c(i) of the pro-
jections onto the perpendicular axis [see figure 5.2(a)] is called conumbering
and was first introduced by Mosseri et al [104, 105].
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Figure 5.3 – (top) atomic deflation The 7th approximant (presented as a per-
mutation that starts and ends with a weak coupling) is transformed into the 4th
approximant. (bottom) molecular deflation The 7th approximant is transformed
into the 5th. (figure reproduced from [92])

Renormalization scheme to show the equivalence of conumbers and fre-
quencies

To further understand the role of the conumbers c(i), we will now describes
the basic idea behind the perturbative renormalization scheme, first introduced
by Kalugin, Kitaev and Levitov [106] and independently by Niu and Nori [99].

The renormalization scheme is formulated in the strong modulation regime
ρ ≪ 1. When ρ = 0 (tA = 0), the atoms and the molecules decouple and
the spectrum consists of three degenerate levels: ν = ±tB, corresponding to
molecular bonding and anti-bonding states, and ν= 0, for the isolated atomic
state. For a chain of N = Fn sites, the degeneracy of the ν = 0 level is given
by the number of atomic sites, Fn−3. The degeneracy of the ν = ±tB levels is
given by the number of molecules Fn−2. When ρ is non-zero, but still small, the
states in these three degenerate levels couple weakly to each other, therefore
lifting the degeneracy. Before we have a detailed look on how the atomic sites
and molecular sites couple separately, we can draw a first connection between
the arrangement of states in the frequency domain and the clustering of states
by conumbering. In both cases atomic states/sites are at the center, while
molecular states are on the sides.

For the atomic sites and states, at first order, each atomic energy level, lo-
calized on an atomic site couples to the atomic levels localized on the two
neighboring atomic sites (figure 5.3). Within perturbation theory, the effec-
tive bond coupling between any two neighboring atomic sites takes only two
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5.2. The 1D-Fibonacci chain

possible values, a strong and a weak one, that are arranged according to a Fi-
bonacci sequence. The atomic frequency level is therefore split up into 3 levels
again. A central level associated with the atomic sites that couple via the weak
effective coupling and two levels at the sides, associated to the atomic sites
that couple via the strong effective coupling. In a similar fashion, any state
localized on a molecular site, is coupled to the neighboring molecules through
only two possible effective couplings, that themselves also follow a Fibonacci
sequence and the molecular levels also split up in three sub-levels.

This consecutive deflation of the chain can be repeated until the chain is
fully deflated. When the values of the effective couplings are known, the full
spectrum of the Fibonacci-chain can be obtained. Similar to how the atomic
and molecular states couple via their effective bonds and the spectrum is split
up, the conumbering orders the sites within the molecular and atomic cluster
further by their local environment. It is therefore not surprising that the more
isolated atomic site (the left most) is at the center of the atomic cluster with
c(i) = 7, while the two other sites form the "molecule" of the atomic sites,
being closer to each other and are therefore at the side of the atomic cluster
with c(i) = 6 and c(i) = 8. It becomes clear that in the conumber index c(i)
the sites are ordered in exactly the same way as the frequency bands.

Before we start building longer chains in the next section, we measure a
short chain of 13 resonators using the direct pattern created by the C&P pro-
cedure, to illustrate this equivalence of the frequency index j of states and the
conumbering c(i) of sites. A picture of the chain can be seen in figure 5.2(b).
In this case, as it is the case for the main part of this section, the dominant
weak coupling regime is implemented. Since a chain of 13 resonators only
has 12 couplings in between the nearest neighbours, the last weak coupling is
suppressed. This ensures that the chain only ends on a strong coupling and
there are no localized edge states. This procedure has also the advantage that
the experimental chain reproducing an elementary motif of a cn Fibonacci-
approximant generates Fn collective resonance peaks, as can be seen in the
spectra plotted on figure 5.2(c), where each spectrum is measured individu-
ally by the movable loop antenna placed directly over each resonator. The
spectra measured at molecular site positions are plotted in red, and in blue for
atomic sites. Indeed, one can clearly see that the three resonances within the
central band are mainly localized on atomic sites, while the two side bands are
dominated by states located at the molecular sites.

5.2.3 Revealing the self-similarity using conumbers

We want to realize the highest approximant, where we can still extract
the wavefunctions of the system. We therefore chose to implement the 10th
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approximant with a motif length of F10 = 55, since for the next higher approx-
imant the spectrum becomes to dense in some frequency ranges to resolve all
states anymore. The cn are actually periodic sequences of infinite length. In or-
der to still investigate the system with finite size chains, we limit the chains to
a single motif Cn with size Fn, but realize all possible permutations of the basic
motif Cn. Since generally linear chains of length N only have N −1 couplings,
we are confronted with the choice whether to use F10 + 1 = 56 resonators,
so that we would have F10 = 55 couplings, as defined by the single motif Cn,
or to use F10 = 55 resonators, which would result in neglecting a coupling of
the sequence. Both approaches will suffer equally from localized edge states,
we thus decide us for the latter, since in this case at least the number of reso-
nances/states will still correspond to the number of bands, that one expects for
the infinite long approximant cn. We further decide to neglect only weak cou-
pling links and constrain the experiment to permutations that impose that the
elementary chain ends on both sides by a strong coupling. This should get rid
of strongly localized edge states at the two ends of the chain 1. In practice, for
a motif of F10 = 55 resonators, in the dominant weak coupling regime (ρ < 1),
there are 8 different permutations that start and end on a strong coupling.

We measure the spectrum over each resonator for all permutations for the
coupling strengths tA = 81MHz and tB = 126MHz, corresponding to distances
dA = 8mm and dB = 7 mm. The relation between coupling strength t and sep-
aration d that we use was extracted from a two resonators measurements (see
section 4.2.1). We chose these values in order to have the least possible overlap
between resonances in the spectra, while keeping ρ = 0.64 as small as pos-
sible, for the best visible contrast. A picture of one configuration can be seen
in figure 5.4(a) and the spectrum measured above the center of the resonator
at position i = 33 of this permutation can be seen in figure 5.4(b). Here one
can clearly observe the overlapping between resonance peaks, which would
make it impossible to study higher order approximants or system with smaller
ρ, since for smaller ρ the frequency-gaps would become greater and there-

1. Limiting the permutations to those, that start and end on a strong coupling does not
completely get rid of localized states. Actually any permutation has states that are spectrally
localized in the band-gaps of the infinite long approximant cn. While neglecting those permuta-
tions that end on weak couplings gets rid of the strongly localized states that are expected to be
spectrally localized within the large band-gaps, we expect to find localized states in the smaller
band-gaps for all remaining permutations. While we cannot spectrally resolve these smaller
band gaps, clear evidence of these remaining localized states can be found in figures B.3-B.5
in Appendix B.1 (under the form of a few very bright pixels), where we present the individual
measurements for the different permutations. Nevertheless, the averaging over the different
permutations seems to effectively reduce these remaining localization/edge-state effects, as
can be seen in figure 5.5 and further in chapter 5.2.4, where we compare quantitative calcu-
lations of the fractal dimensions to analytic formulations.
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5.2. The 1D-Fibonacci chain

Figure 5.4 – (a) picture of the experimental chain for a given configuration in the
case of dominant weak coupling (ρ = tA/tB < 1). The metallic top plate that is
normally placed above the resonators to reduce the system to two dimensions was
removed to take the picture. Above the resonator at position 33 (counted from
the left) we position the loop antenna through which we measure the reflection
spectra above each resonator. (b) reflection spectrum measured at position 33
and the reconstructed spectrum using the resonances obtained via the harmonic
inversion method. The black vertical lines mark the extracted resonance positions
and the grey arrow marks the central state ( j = 28), around which we symmetrize
the LDoS(i, j) in order to span the whole frequency range.

fore the bands more densely packed with resonances. For all permutations, we
extract all resonance amplitudes ψ j(i) of each peak j of the measured spec-
trum 2 above resonator i with the harmonic inversion method and a density-
based clustering algorithm [60]. In this way we can obtain a discretized form
of the local density of states LDoS(i, j) = |ψ j(i)|2, where |ψ j(i)|2 represents
the wavefunction intensity of state j evaluated over resonator i.

While a detailed description of the procedure from raw-data to final wave-
functions can be found in Appendix B.1, in figure 5.4 one can see the partial re-
construction of the spectrum using resonance-amplitudes and -frequencies ob-
tained with the harmonic inversion algorithm, where the black vertical lines are
indicating the extracted resonance frequencies. The quality of the reconstruc-
tion is excellent. We limit the reconstructed spectrum to the lower and central
frequency bands only, since the higher frequency states have larger resonance-
widths due to different effective antenna-couplings and larger ohmic losses,
and even with the harmonic inversion method, we cannot resolve them any-
more. If only nearest-neighbour couplings are present, the system has a CT-

2. The index j is the frequency-index of a state and orders the states as a function of their
resonance-frequency
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Figure 5.5 – Experimentally extracted LDoS of a single configuration of 55 res-
onators arranged according to their position index i (a), rearranged according to
the conumber index c(i) (b) and the average over all 8 permutations (c).

symmetry [107] imposing that the spectrum is symmetric around the eigen-
frequency of a single resonator. In our experiment we have a next-nearest-
neighbour coupling of the order of 5 % of the nearest-neighbour coupling. By
consequences, the latter symmetry is almost preserved. We thus restrict our
analysis to the first 28 states (the 28th state is the central state and indicated
by a gray arrow in figure 5.4) and symmetrize the result to expand over the
higher-frequency states. Theoretically the eigenvectors c j

i of the tight-binding
Hamiltonian are normalized in both direction (

∑

i |c
j
i |

2 =
∑

j |c
j
i |

2 = 1), the ex-
perimentally extracted LDoS(i, j) should then also be normalized along both
the frequency and position axis (

∑

i LDoS(i, j) =
∑

j LDoS(i, j) = 1). Since
the antenna-coupling σ is slightly dependent on the frequency and the single
resonance wavefunctions are overlapping, the sum of the raw resonance am-
plitudes over all positions (states) vary about 10 percent for different states
(positions). We thus normalize the extracted wavefunction intensities in both
dimensions by repeatedly normalizing them along one direction and then the
other, until the difference in normalization along the two directions is of the
order of 10−6. We then consider that the extracted LDoS(i, j) is properly nor-
malized along the two dimensions, which is especially important for the calcu-
lation of the fractal dimensions.

Figure 5.5(a) shows the local density of states LDoS(i, j) extracted and nor-
malized according to the procedure described above for a single configuration
of a chain made with 55 resonators. Figure 5.5(b) shows a rearranging of the
LDoS according to their conumber: LDoS(c(i), j), and (c) the average over
the 8 permutations identified in this situation of dominant weak coupling. In
figure 5.5(a), LDoS exhibit typical standing-wave interference patterns due
to the finite-size of the chain[44], but no hierarchical structure is visible. It
is only upon the reordering the LDoS based on the conumber index that we
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gain insight into fractal structures, that are completely revealed by the average
over all permutations [see figure 5.5(c)]. Additionally the symmetry between
frequency index j and conumber index c(i) is clearly visible: The plot in fig-
ure 5.5(c) is almost invariant under the exchange of the conumber/frequency
axis.

5.2.4 The multifractal dimension of wavefunctions

In order to give a more quantitative characterization of the fractality, and
especially the multifractal aspect of the wavefunctions, we investigate the frac-
tal dimensions Dψq ( j) of the wavefunctions [92], that are defined via an expo-
nential scaling of the generalized inverse participation number with the motif
length Fn as follows

χ (n)q ( j) =
∑

i

|ψ(n)j (i)|
2q ∼

n→∞
F
−(q−1)Dψq ( j)
n . (5.4)

For systems that exhibit multifractal wavefunctions like quasicrystal or disor-
dered systems at criticality, the fractal dimensions Dψq ( j) decrease when q in-
creases. This property is related to the fact that the region with high wave
function probability are rarer [77, 78].

One can further define the frequency-averaged fractal dimension of wave-

functions Dψq by averaging over all states [92]
¬

χ (n)q ( j)
¶

j
=

1
Fn

∑

j

χ (n)q ( j) ∼n→∞
F
−(q−1)Dψq
n . (5.5)

In order to investigate the scaling behaviour as a function of the system
size one would have to perform the experiment for different system sizes Fn,
which is impractical in our case, because the maximal possible system size in
order to resolve all wavefunction is 55, which is far from the quasiperiodic
limit. Fortunately there is another approach that is commonly used to calcu-
late (fractal) dimensions in various fields of physics and mathematics, which
is a box-counting algorithm that we apply on the LDoS(c(i), j) presented in
figure 5.5(c). The method that we use and present in the following section has
already proven itself in the characterization of chaotic system and multifractal
wavefunctions at critical transitions and in quasiperiodic structures [74, 76,
88, 108].

Calculation via a box-counting algorithm

The main idea behind the box-counting method is to divide the system into
small "boxes" and analyse them individually. By changing the box size and con-
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P(q,ψ j , L)
�

j for the different box sizes L and some
example values of q. For each q the data points are fitted individually (solid lines),
in order to extract their slope.

sidering smaller and smaller boxes, one can thus deduce scaling properties for
the system. We use in the following the notations and formalism presented in
reference [108]. We start by dividing our system of size Fn into B = Fn/L boxes
of size L. Since the system is one dimensional the boxes are actually intervals
of length L. We then study the spatial distribution of each wavefunction ψ j(i)
by calculating the probability

µb(ψ j, L) =
∑

i∈box b

|ψ j(i)|2 (5.6)

to find a “ball" inside box b. Repeating this procedure for different box-sizes
L, one can then compute the mass exponent

τq = lim
L→0

ln



P(q,ψ j, L)
�

j

ln L/N
= lim

L→0

ln

∑B

b=1µb(ψ j, L)q
�

j

ln L/N
(5.7)

by performing a linear fit of the spectrally averaged quantity ln



P(q,ψ j, L)
�

j
versus ln L and extracting the slope. For our system of size Fn = 55, we consider
all box sizes L = 1, 5,11, 55 with integer ration Fn/L. In figure 5.6 we plot
and fit ln




P(q,ψ j, L)
�

j
versus the box-size ln L for some typical values of q.

We find an excellent agreement between the data points and fit. From the
mass exponents τq one can then easily obtain the spectrally averaged fractal
dimension Dq = τq/(q− 1).
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Figure 5.7 – Frequency averaged fractal dimension Dψq versus the multifractal pa-
rameter q, experimentally extracted using a box-counting method (orange points)
compared to theoretical predictions (solid black line). The grey area highlights
the 90 % confidence interval obtained from tight-binding simulations (see Ap-
pendix C.1 for details), the dashed line indicates the mean expectation value.
The inset shows Dψ2 ( j) for all states j.

Comparison to analytic and numeric results

In figure 5.7 one can see the extracted frequency-averaged fractal dimen-

sion Dψq as a function of the multifractal parameter q (orange points). The inset
shows the fractal dimensions, Dψ2 ( j) for all states j, which is proportional to the
logarithm of the inverse participation ratio. There are large fluctuations with
respect to the mean value with a very distinct dip for the central state. Thus,
the central state is the most localized and has the lowest fractal dimensions,
while the highest/lowest states are the most extended ones.

We compare the frequency-averaged fractal dimension Dψq obtained exper-
imentally with a theoretical prediction based on a renormalization group ap-
proach, formulated in the limit ρ≪ 1 and developed until the order ρ4q [92];
in the experiment ρ = 0.64. We further estimate a 90 % confidence interval
for the experiment, by performing tight-binding simulations of the system that
account for the variances in the positioning of the resonators and the fluctu-
ations of their resonance frequency. Details on the procedure can be found
in Appendix C.1. Although far from the strong modulation limit (ρ ≪ 1),

a good agreement between experimental and theoretical values of Dψq is ob-
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tained, both curves lie within the estimated confidence interval (see figure 5.7).
For large q, an offset is noticeable between theory and experiment, that could
eventually be explained by experimental fluctuations, but even the average

value of the simulated Dψq (white dashed line) shows an offset. This is mainly
due to the finite system size, since the theory was formulated in the quasiperi-
odic limit, as we demonstrate in Appendix C.2, where we numerically study
the convergence for increasing order n. Note that, although equation (5.5) is

invariant to inverting index c(i) and j, our method to calculate Dψq via a box
counting algorithm is not. Nevertheless, interchanging the conumbering in-

dex c(i) with the frequency index j upon the calculation of Dψq leads to two
hardly distinguishable curves (not shown in figure 5.7), further emphasizing
the equivalence between conumbers and frequencies.

5.2.5 The recursive construction of the LDoS

Another aspect often refereed to fractality is the self similarity of struc-
tures [90, 91, 93, 94, 96–98]. Similar to the recursive construction of the
Fibonacci numbers Fn, the complete LDoS can be constructed recursively. The
procedure is based on the renormalization of atomic and molecular sites [92]

|ψ(n)j (ci)|2 = λ · |ψ
(n−3)
j′ (ci′)|2 if j is atomic, (5.8)

|ψ(n)j (ci)|2 = λ · |ψ
(n−2)
j′ (ci′)|2 if j is molecular, (5.9)

where λ and λ are renormalization factors that depend on ρ.
We investigate this recursive construction by experimentally realizing the

first periodic approximants (i.e. Fn = 3,5, 8,13, 21). Due to the small Fn and
thus the lower number of possible permutations, we here now employ a dif-
ferent strategy to mimic the periodic approximants cn, than in section 5.2.3,
where we averaged over the different permutations of the basic motif of length
55. We use circular chains, where we repeat the basic motif Cn of length Fn

Np times. Since the circular chains are closed, the number of couplings now
corresponds to the number of resonators N = FnNp and peaks in the spectrum.
The number of iteration Np is chosen such that a ring of around 100 resonators
is build for each Fn-motif. In figure 5.8 one can see a photo of the circular chain
of resonators for a motif length of Fn = 13, that was repeated 8 times.

Extracting the LDoS(c(i), j) for the circular chains

Compared to the linear chains, where we have been able to identify each
state individually and extract its wavefunction, we employ a different approach
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5.2. The 1D-Fibonacci chain

Figure 5.8 – (top) Photo of one circular chain, where the basic motif with length
Fn = 13 is repeated Np = 8 times, resulting in a total of 104 resonators. To
emphasize the periodicity the first resonator of each repeated motif is marked with
a blue arrow. (bottom) Zoomed in photo of one motif, where one can identify the
“molecules" (dimers) and “atoms" (single resonator) that make up the chain.

to extract the LDoS(c(i), j) of the measurement. Since over 100 resonances
are to much even for the harmonic inversion method to identify the individual
states, we instead extract averaged values for equivalent states and sites re-
sulting from the repetition of the basic motif. Due to the Np repetitions, the Fn

frequency bands expected for an infinite chain cn are each populated with Np

states, and can be individually identified in each reflection spectrum S11(r⃗i,ν)
measured over each resonator i. We can recall from section 2.3.3

1−ℜS11(r⃗i,ν)∝ ρ(r⃗i,ν) =
N
∑

k

fνk ,Γk(ν) · |ψk(r⃗i)|2, (5.10)

where fνn,Γn(ν) are normalized Cauchy distributions around νn with width Γn.
Rearranging the sum over the different states, one can re-write

ρ(r⃗i,ν) =
Fn
∑

j=1

Np
∑

p=1

fν j,p ,Γ j,p
(ν) · |ψ j,p(i)|2 , (5.11)
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where ν j,p and Γ j,p are the resonance-frequency and -width of the p-th state
within the j-th frequency band and |ψ j,p(i)|2 the corresponding wavefunction
intensity measured over resonator i.

Supposing that the bands are sufficiently isolated, by integrating each fre-
quency band j individually, one can then find

LDoS(i, j)∝
∫

band j

[1−ℜS11(i,ν)] dν , (5.12)

where we can further average over all indices i that have the same conumber-
ing c(i). Essentially each n-th site in each of the Np repetitions of the basic
motif are equivalent and have the same conumber, since they have exactly the
same (local) environment. Unlike the procedure for linear chains, we do not
need to symmetrize our results since this approach allows to analyse the whole
frequency range, but we still use the same procedure to assure the normaliza-
tion of the LDoS.

Compared to the linear chains, where the lowest overlap was sought after
in between the individual resonances, we now want to create Fn energy bands
that are as dense as possible, while having the greatest gaps in between them,
so we can easily identify each band. We therefore enhanced the stronger cou-
pling to tB = 148MHz and reduced the weaker coupling to tA = 55MHz, in
order to obtain a smaller ρ = 0.37 and thus better isolated bands. Experimen-
tally this was done by increasing the longer distance dA to 9mm (we keep the
shorter distance at 7mm) and by reducing the distance between the two metal-
lic plates that sandwich the resonators from ≈ 12mm to 8 mm. This alters the
evanescent decay of the electromagnetic fields outside of the resonators.

Determining the integration borders of each band is obvious for Fn =
3 and 5, where the 3 or 5 frequency bands are isolated and well separated
by clearly visible gaps. Unfortunately even with the improved coupling val-
ues, for higher n the direct identification of all frequency-bands, and therefore
the determination of integration borders is not possible and we use a method
bases on the normalization of each state, to further define the integration bor-
der for bands that are not separated by a clear gap. Further information on
this method and a details step by step illustration of the whole data treatment
process from spectrum to final LDoS can be found in Appendix B.2.

In figure 5.9 we present the LDoS for the first approximants. Especially
highlighted for F10 = 55, F8 = 21 and F7 = 13 (Fig. 5.9(f), (e) and (d), respec-
tively], the central square (marked in red), which gathers atomic sites and their
corresponding states, of the LDoS at order n resembles at the complete LDoS of
order n− 3, and the four squares in the corners (molecular sites and frequen-
cies, one marked in green) of the LDoS at order n resemble at the complete
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5.2. The 1D-Fibonacci chain

(a) (b)

(c) (d)

(e) (f)

Figure 5.9 – Conumber-averaged LDoS for different motif length Fn: (a) F4 = 3,
(b) F5 = 5, (c) F6 = 8, (d) F7 = 13, (e) F8 = 21 and (f) Fn = 55 (already presented
in figure 5.5). For all plots the horizontal axis corresponds to the conumber index
c(i) and the vertical axis to the frequency index j, and the same colormap as in
figure 5.5 is used. The green and red squares highlight the recursive construction.
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LDoS of order n− 2. The recursive construction is also well visible for smaller
n. This recursive construction can be well explained by the renormalization
scheme outlined in section 5.2.2. The effective bond couplings between atomic
and molecular sites themselves follow a Fibonacci sequence that explains the
self similarity of the internet structure within the atomic and molecular clus-
ters.

Renormalization factors λ(ρ) and λ̃(ρ)

As a next step we now calculate the renormalization factors λ and λ̃, that
are used to define the recursive construction laws in (5.8) and (5.9). The two
renormalization factors depend on the ratio of the coupling strength ρ,

λ̃(ρ) =
2

(1+ρ2)2 +
p

(1+ρ2)4 + 4ρ4
(5.13)

and
λ(ρ) =

1

1+ρ2γ(ρ) +
p

1+ (ρ2γ(ρ))2
(5.14)

with γ(ρ) = 1/1(1+ρ2)[92].
In order to experimentally estimate the renormalization factors we make

use of the fact that the sum over all states and positions of the LDoS for a
system with motif length Fn, sums up to Fn because each of the Fn states were
properly normalized (

∑

i |ψ j(i)|2 = 1).
We can thus sum up all the pixels that contribute to the central square of

the LDoS (corresponding to atomic sites and states) and divide it by the side
length of that square (i.e. the number of atomic sites within the chain) to
find the renormalization factor λ̃ for the atomic sites/states. For the molecular
sites/states we proceed in the same way, but additionally we average over the
four corner squares (corresponding to molecular sites and states).

Since we have chosen to use different couplings for the linear chains and
the circular chains, we experimentally can investigate the renormalization fac-
tor for two different values of ρ: ρ = 0.64 for the linear chains of Fn = 55
resonators and ρ = 0.37 for the circular chains with smaller motif length.
In figure 5.10 one can see the two theoretical curves for λ(ρ) and λ̃(ρ) as a
function of ρ, that we compare to the experimentally extracted values (black
symbols).

The experimentally extracted renormalization factors λ(ρ) and λ̃(ρ) corre-
spond reasonably well with their theoretical prediction, though the extracted
λ(ρ) for the molecular sites vary for the different motif length Fn and generally
show a slight offset. This can be explained by the small system sizes Fn, since
the theoretical predictions were formulated in the quasi periodic limit.
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Figure 5.10 – The theoretical renormalization factors λ (blue line) and λ̃ (orange
line) as a function of ρ. The experimentally extracted renormalization factors for
the different motif lengths Fn are plotted at their corresponding ρ with different
black symbols.

5.2.6 Inverted weak and strong couplings

Although we have mainly focused our quantitative analyses on the common
case of ρ < 1, we also experimentally investigate the system with interchanged
couplings: tB is now the weaker coupling and tA the stronger, ρ > 1, thus
the strong coupling dominates. As for the system with ρ < 1 we investigate
the large system (Fn = 55) by averaging over the 21 different permutations
that meet the constraints, and smaller systems by means of circular chains.
Note that over the 21 possible permutations, 10 of them are actually mirrored
sequences of the others. Since they are experimentally equivalent, we measure
only the 11 different permutations that are not mirrored sequences of each
other, but average over all 21 permutations by inverting the position axis for
the mirrored ones. The averaged LDoS can be seen in figure 5.11. Instead of
single atoms and dimers, as for ρ < 1, the chains are now composed by dimers
and trimers. This results in a different renormalization scheme [99].

For vanishing weak coupling (tB = 0), the dimers and the trimers decouple
and the spectrum consists now of five degenerate levels: ν= ±tA, correspond-
ing to molecular bonding and anti-bonding states, and ν = 0, ν = ±

p
2tA cor-

responding to the central and bonding and anti- bonding states of the timers.
Similarly the sites can be clusters in 5 clusters, according to their conumbers.
From small to large conumbers: The right atoms of trimers, the right atoms
of dimers, the central atom of trimers, the left atoms of dimers and the left
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(a) (b)

Figure 5.11 – LDoS for motif length F8 = 21 (a) and F10 = 55 (b) for ρ > 1.
The x-axis corresponds to the conumber index c(i) and the y-axis to the frequency
index j and the same colormap as in figure 5.5 is used. The red and orange square
highlight the basic motifs.

atom of trimers. This again reveals the equivalence between conumbers and
frequencies, since in both cases dimer and trimer states/sites are arranged the
same way.

When tB is non-zero, but still small, the states in these five degenerate lev-
els couple again weakly to each other, therefore lifting the degeneracy. As can
be seen in figure 5.12, the effective bond couplings between two neighbor-
ing trimers take on only two possible values, arranged again according to a
Fibonacci sequence but with inverted strong and weak couplings. One thus
passes from the chain cn to the chain cn−3 with ρ → 1/ρ when appropriately
renormalizing their couplings. In the same way one passes from the chain cn

to the chain cn−4 again with ρ → 1/ρ for the dimers. All further deflation
steps then follow the renormalization laws for ρ < 1. This explains why the
general structure in figure 5.11 is quite different, but we find the same basic
motifs as in figure 5.9. The red square in figure 5.11(b) highlights the basic
motif associated with the trimers, that can be found in figure 5.9(d,f), while
the orange square highlights the basic motif associated with the dimers, which
again can be found in figure 5.9(c).

5.3 Other metallic means

The Fibonacci Chains are part of a greater family of quasicrystals, known
as the metallic mean chains. Similar to how the Fibonacci chains are related
to the golden mean, the other chains of this family are related to the other
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Figure 5.12 – (top) trimer deflation The 8th approximant with dominant strong
coupling is transformed into the 5th approximant with dominant weak coupling.
(bottom) dimer deflation The 8th approximant with dominant strong coupling is
transformed into the 4th approximant with dominant weak coupling.

metallic means. The metallic means for an integer m are given by

m+
p

m2 + 4
2

, (5.15)

where m= 1 gives the golden mean, m= 2 the silver mean, m= 3 the bronze
mean, etc.

Similar to the Fibonacci-series of numbers (for m= 1) one can construct a
generalized series of numbers F (m)n , that follow the recursive construction

F (m)n = mF (m)n−1 + F (m)n−2, (5.16)

with the initial values F (m)0 = 0, F (m)1 = 1. For m = 2 one then finds a series
of numbers, also known as Pell numbers. For higher m the series do not have
special names anymore.

Based on these series of numbers, quasiperiodic sequences of A and B can
then be generated, as for the Fibonacci-sequence. There exist generalized con-
catenation and substitution rules, but we decide to only present the adaption
of the cut and project method, since this methods can gives us at the same time
access to the conumbers, that make us of later in order to reveal the fractality
of the LDoS.

It is not surprising that the adaption is rather straight forward. A general-
ized slope ω(m)n can be defined as ratio of two consecutive numbers

ω(m)n =
F (m)n−2

F (m)n−1

, (5.17)
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n F (2)n C (2)n L(2)n ω(2)n
1 1 B
2 2 A 1 0/1
3 5 AAB 3 1/2
4 12 AABAABA 7 2/5
5 29 AABAABAAABAABAAAB 17 5/12
6 70 AABAABAAABAABAAABAABAABAAABAABAAABAABAABA 41 12/29
7 169 AABAABAAABAABAAABAABAABAAABAABAAABAABAA . . . 99 29/70

Table 5.2 – The first seven Pell numbers F (2)n , together with the approximants C (2)n
of the silver mean sequence. They have a length L(2)n and are created by a C&P
method with slope ω(2)n .

that is then used instead of ωn in the Cut and Project method presented in
section 5.2.2. The projected points divide the line again in intervals that only
have two different lengths A and B. For any rational approximation ω(m)n , the
resulting infinite sequence c(m)n is periodic with a motif C (m)n of length L(m)n =
F (m)n−2 + F (m)n−1, and the ratios of the numbers of B and A correspond to ω(m)n . In
the limit n →∞, the slopes ω(m) become the inverse of the metallic means
defined in (5.15) and due to their irrational character one finds quasiperiodic
sequences, that then can be used to construct the metallic mean chains.

We decide to implement again the off-diagonal model. We concentrate on
the silver mean chains and study here both cases of weak and strong dominant
coupling.

5.3.1 Silver mean chains

We investigate the silver mean chains by means of circular chains, where the
basic motif is eventually repeated several times to form a closed ring of ≈ 100
resonators, as we did in section 5.2.5 for the Fibonacci chains. We use the
same technique of directly integrating each frequency-band in 1−ℜS11(i,ν),
where S11(i,ν) is the reflection spectrum measured over resonator i, in order
to average over equivalent states (and additionally over equivalent sites i with
the same conumber c(i)).

The first few approximants can be found in table 5.2. Differently to the
Fibonacci chain, the length of the basic motifs does not correspond to Pell
numbers anymore, since F (m)n = mF (m)n−1 + F (m)n−2 ̸= F (m)n−1 + F (m)n−2 = L(m)n for m ≥ 2.
This will later become important upon the formulation of the renormalization
scheme.

The experimental results that will be presented in the following were ob-
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tained with the help of Louise Morleas as part of her Master’s internship, that
I supervised together with Fabrice Mortessagne and Ulrich Kuhl.

As for the Fibonacci chains we use two different couplings strengths tA and
tB, or equivalently two different distances dA and dB between the resonators. In
the aim of treating now chains for a motif length of up to L(2)7 = 99, compared to
the circular chains for the Fibonacci chains, we further increase both coupling
values, which increases the overall frequency-span of the measured spectra
and since the width of the individual resonances stays the same, the separa-
tion between the individual frequency-bands is more visible. We use a short
distance of 6.8mm, corresponding to a strong coupling of 165 MHz and a long
distance of 8mm corresponding to a weak coupling of 87 MHz. For shorter dis-
tances between the resonators, their coupling becomes exponentially stronger,
but since the precision with which one can position the resonators is about
0.05 mm (see section 3.3), the fluctuations of the coupling strengths becomes
more important as well. While for the measurements for the circular Fibonacci
chains a short distance of 7mm was enough to identify the maximum F8 = 21
integration borders upon the data-treatment, for the silver mean chains, in or-
der to identify the maximum L(2)7 = 99 integration borders, we now need the
overall increased frequency-span of the spectra that we achieve with a shorter
distances between the resonators, with the expense of stronger fluctuations
of the coupling strengths. While for n = 3 and n = 4 is was still possible to
identify the L(2)3 = 3 and L(2)4 = 7 individual frequency bands, for higher n this
is not the case anymore and we used the same method to determine the L(2)n
integration borders, as for the higher order circular Fibonacci-chains, that is
presented in Appendix B.2.

Dominant weak coupling: ρ < 1

For the case of dominant weak coupling, dA = 8 mm and dB = 6.8mm, and
thus tA < tB. For vanishing weak coupling tA, the chains consist of isolated
atomic sites and molecular sites. Frequency and conumbering axis can there-
fore be grouped into three clusters, two molecular clusters at the side and one
atomic cluster at the center. The size of the molecular clusters is given by the
number of molecules present in the basic motif, which is equal to the num-
bers of B in C (2)n , which is F (2)n−2. The size of the atomic clusters is then given
by L(2)n − 2F (2)n−2 =

�

F (2)n−1 + F (2)n−2

�

− 2F (2)n−2 =
��

2F (2)n−2 + F (2)n−3

�

+ F (2)n−2

�

− 2F (2)n−2 =
F (2)n−3 + F (2)n−2 = L(2)n−1. For non-zero tA, there are effective bond couplings be-
tween the different atomic and molecular states/sites.

As can be seen in figure 5.13, upon the deflation of the atomic cluster of a
silver mean chain c(2)n one finds again a silver mean chain c(2)n−1 with dominant
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Figure 5.13 – Dominant weak coupling: (top) atomic deflation The 6th approxi-
mant C (2)6 is transformed into the 5th approximant C (2)5 . (bottom) molecular de-

flation The 6th approximant C (2)6 is transformed into the 5th companion sequence

Ĉ (2)5 with dominant strong coupling.

weak coupling [109], while for the molecular cluster the deflation is less ob-
vious. There cannot exist a direct recursive inflation scheme, since the size of
the molecular clusters F (2)n−2 does not correspond to any of the basic motifs of
the periodic approximants C (2)n with length L(2)n . Nevertheless it can be shown,
that there is a weak effective coupling corresponding to the AAA sequence and
a strong effective coupling corresponding to the AA sequence in c(2)n . The fre-
quency with which the sequence AAA occurs in C (2)n , corresponds to the number
of B in C (2)n−1, which is F (m)n−3. The frequency of the sequence AA in C (2)n is then
F (2)n−2 − F (m)n−3 = L(m)n−2. We next introduce the set of companion sequences ĉ(2)n ,
that are generated using the C&P method with slope ω̂(2)n = F (m)n−2/L(m)n−1 and
whose basic motifs Ĉ (2)n then have the length L̂(2)n = F (2)n−1. The arrangement of
the weak and strong effective bond couplings in between the molecular sites
is then given by the companion sequence ĉ(2)n−1, where the letter A corresponds
to a strong and the letter B to a weak coupling.

To be able to describe the full recursive construction of the LDoS, one would
has to continue to study the deflation rules of the companion chains ĉ(2)n , but
we actually stop our analysis here and present the experimental results.

In figure 5.14 one can see the measured LDoS for the first few approxi-
mants. Similar to the case of weak dominant coupling for the Fibonacci chains,
we find the atomic cluster at the center, and the molecular cluster at the 4 cor-
ners of the LDoS (highlighted in figure 5.14(c) with orange and pink squares
respectively). The direct recursive construction of the atomic clusters is well
visible. Especially highlighted for L(2)4 = 7 and L(2)5 = 17, the central square
(marked in orange), which gathers atomic sites and their corresponding states,
of the LDoS at order n resembles the complete LDoS of order n− 1.
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Figure 5.14 – Conumber-averaged LDoS for different approximants c(2)n with
dominant weak couplings, that were measured by means of circular chains, where
the basic motif C (2)n was repeated several times. (a) motif C (2)3 of length L(2)3 = 3,

repeated 32 times, (b) motif C (2)4 of length L(2)4 = 7, repeated 14 times, (c) motif

C (2)5 of length L(2)5 = 17, repeated 6 times, (d) motif C (2)6 of length L(2)6 = 41,

repeated 2 times and (e) motif C (2)7 of length L(2)7 = 99, that was actually not
repeated, since the motif was already long enough to form a ring of ≈ 100 res-
onators. The plots were symmetrized along both axis. For all plots the horizontal
axis corresponds to the conumber index c(i) and the vertical axis to the frequency
index j, and the same colormap as in figure 5.5 is used. The orange and pink
squares in (c) mark the single atom and molecular clusters respectively, while the
orange square around (b) additionally highlights the recursive construction.

99



Chapter 5. 1D quasiperiodic structures

Dominant strong coupling: ρ > 1

Figure 5.15 – Dominant strong coupling: (top) tetramer deflation The 6th approx-
imant C (2)6 is transformed into the 4th companion sequence Ĉ (2)4 with dominant

strong coupling. (bottom) trimer deflation The 6th approximant C (2)6 is trans-

formed into the 4th approximant C (2)4 with dominant weak coupling.

Similar to the case for dominant weak coupling, before presenting the mea-
surements, we will start by formulating the renormalization scheme for in-
verted strong and weak coupling.

For the case of dominant strong coupling, dA = 6.8mm and dB = 8 mm,
and thus tA > tB. For vanishing weak coupling tB, the chains consist now of
isolated trimers (three atom molecules) and tetramers (four atom molecules).
The spectrum/conumbers then consist of 7 clusters. Four clusters associated
with the tetramers at ν = ±1

2

�p
5− 1

�

tB and ν = ±1
2

�p
5+ 1

�

tB, and three
clusters associated with the trimers at ν= 0,ν=

p
2tB, that lay in between the

tetramer clusters. The size of the trimer clusters corresponds to the frequency
with which the sequence AA appears in C (2)n and is L(m)n−2, while the size of the
tetramer clusters corresponds to the frequency with which the sequence AAA
appears in C (2)n and is F (m)n−3. For non-zero tB, there are again effective bond
couplings between the different trimer and tetramer states/sites. The effective
bond couplings between two neighboring trimers take on only two possible
values, arranged again according to a silver mean sequence but with inverted
strong and weak couplings. One thus passes from the chain c(2)n to the chain
c(2)n−2 with ρ → 1/ρ. The effective bond couplings between two neighboring
tetramers also only take two possible values, arranged according to the com-
panion sequence ĉ(2)n−2, where the letter A corresponds again to a strong and the
letter B to a weak coupling.

In figure 5.16 one can see the measured LDoS for the first few approxi-
mants. Similar to the case of the strong dominant coupling for the Fibonacci
chains, we find a general structure that is quite different form the weak dom-
inant case, but we find the same basic motifs as in figure 5.14. The orange
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Figure 5.16 – Conumber-averaged LDoS for different approximants c(2)n with
dominant strong couplings, that were measured by means of circular chains,
where the basic motif C (2)n was repeated several times. (a) motif C (2)3 of length

L(2)3 = 3, that was repeated 32 times, (b) motif C (2)4 of length L(2)4 = 7, that was

repeated 14 times, (c) motif C (2)5 of length L(2)5 = 17, that was repeated 6 times,

(d) motif C (2)6 of length L(2)6 = 41, that was repeated 2 times and (e) motif C (2)7 of

length L(2)7 = 99, that was actually not repeated, since the motif was already long
enough to form a ring of ≈ 100 resonators. The plots were symmetrized along
both axis. For all plots the horizontal axis corresponds to the conumber index
c(i) and the vertical axis to the frequency index j, and the same colormap as in
figure 5.5 is used.
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square in figure 5.16(d) highlights the basic motif associated with the trimers,
that can also be found in figure 5.14(b,c), while the pink square highlights
the basic motif associated with the tetramers, which again can be found in
figure 5.14(c).

5.4 Conclusion

In this chapter we have investigated different 1D-quasiperiodic structures,
with the main focus on the classical off-diagonal Fibonacci-model with domi-
nant weak coupling. For the studied quasiperiodic structures the self-similarity
of the LDoS can be revealed by reorganising the sites according to their con-
umber index, that is directly accessible via the cut and project construction
method.

We also experimentally studied the different recursive construction schemes
for the LDoS of the different quasiperiodic structures. The recursive construc-
tion schemes are based on a renormalization group theory, that was already
well known for the classical (golden mean) Fibonacci model, for both cases of
dominant strong and weak couplings. To our knowledge, a complete renormal-
ization theory for the generalization of the Fibonacci-model to other metallic
means did not exist. We thus took the first steps into at least qualitatively for-
mulating a complete renormalization scheme for the generalized model. For
all structures studied, we found a good qualitative agreement. Additionally,
we have found good quantitaive agreement between the experimentally ex-
tracted renormalization factors and the theoretical predictions for the classical
off-diagonal Fibonacci-model.

The main result of this chapter is the multifractal analysis that we per-
formed for the classical off-diagonal Fibonacci-model with dominant weak cou-
pling. By experimentally calculating the fractal dimension via a box-counting
method, we found good agreement with theoretical and numerical predictions.
These measurements actually provide the first experimental demonstration of
multifractal properties of wavefunctions. While a lot of work on quasicrystal
structures and its wavefunctions was done theoretically and numerically, only
a few experimental works exists. We have explicitly shown that one can al-
ready extract multifractal properties in real systems of finite size, which will
hopefully motivate others to perform further experiments on these highly in-
teresting states.
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Chapter 6

Topological transition in p-mode
SSH-chains

In the realm of topological photonics, the standard SSH model is one of
the simplest 1-D systems with a topological transition from a trivial to a
non-trivial phase, associated with the appearance of edge states [110].
Motivated by the recent improvements in the experimental platform that
allowed for a controlled employment of the resonators p-mode in TB
experiments we decide to study a very similar system, but instead of
staggered distances, we employ the anisotropic coupling in between the
p-modes of the resonators to generate dimerization. We arrange the
resonators on a zigzag pattern, and experimentally and analytically study the
transition, that occurs when the zigzag bond angle θ in between the
resonators is varied. After a short general introduction, we present our
experimental results which shows the opening of a bandgap at a critical angle
θc. The topological nature of the band gap leads to localized edge states at
each end of the chains, that can be characterized by their inverse
participation ratio (IPR). We end this chapter with a detailed analytic
description of the system in the limit N →∞ that confirms the topological
nature of the transition.
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6.1 Introduction

In recent years, topological photonics appeared as a rapidly growing field
of study, with the aim to explore the physics of topological phases of matter,
originally discovered in solid-state electron systems, with the use of photonic
platforms [17]. Topological phases of matter are characterized by a global
property – a topological invariant – which make them insensitive to continu-
ous deformation and disorder. Since 1980 with the discovery of the integer
quantum Hall effect [1, 2], they have triggered an extensive research area in
condensed matter physics.

The salient feature of topological materials is the bulk-edge correspon-
dence [111–114]: At the contact of two materials with different topological
invariants, there exist states that are spatially localized at the interface at en-
ergies/frequencies within the gap of the surrounding bulk materials dispersion
relations. The integer topological invariant of a system, cannot change its value
under perturbations or deformations of the system, unless the energy gap is
closed. When two materials with different topological invariants are put in
contact, the energy gap must be closed, leading to the appearance of localized
states. In a finite-size topologically nontrivial system, the edge of the sample
can be considered as an interface between a region with a nonzero topological
invariant and the topologically trivial vacuum, which results in localized edge
states.

One of the simplest 1D model with a topological band structure is a chain of
sites with alternating couplings (i.e. a dimer chain). This model was originally
introduced by Su, Schrieffer and Heeger (SSH) [110] to describe fractional-
ized charges in polyacetylene, which appear in the presence of a dimerization
defect. It is therefore not surprising that analogies of this model were exten-
sively studied with the use of various different photonic platforms, such as pho-
tonic superlattices [115], plasmonic metal nanoparticles [116–118], coupled
optical waveguides [119–122], polariton micropillars [123], a hybrid silicon
platform [124], and chains of dielectric resonators [37].

We study a very closely related system, a zigzag array of equidistantly
spaced resonators (see figure 6.1), where the dimerization of the system oc-
curs due to the polarization-dependent coupling between the two orthogonal
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6.2. Zigzag chains of coupled resonators

p-modes of the individual resonators. Such a topological system was first pro-
posed theoretically [125] and later realized experimentally for plasmonic [27]
nanoparticles.Its topologically protected edge modes have been used to real-
ize photonic spin-Hall effect [126] and zigzag structures were utilized in po-
laritonics [127–130] and in the first demonstration of topological lasing [18].
Such arrays have also proven itself useful in controlling photoluminescence
emissions [131] and for non-linear generation of light [24].

While the vast majority of research was done exclusively on right-angle
zigzag chains, we are especially interested in the topological transition and
more precisely the transition from the topological trivial linear chains to the
topological non-trivial right-angle zigzag chains by a continuous homogeneous
deformation of the chains. It is expected that at some point in the transition
from linear to zigzag chains, a critical configuration is reached, where a gap is
opening in the bulk band structure and edge modes arise within the bandgap
(see section 6.3).

Only very recently we became aware of other works studying this transi-
tion analytically [132] and experimentally [133]. Due to the large absorption
within their samples, the researchers have not been able to experimentally ob-
serve the opening of a bandgap, nor have they been able to individually resolve
the edge states spectrally, but rather used the relative contrast of the measured
intensity at a given wavelength between the first and the last resonator to fol-
low the transition. The measured relative contrast is in good agreement with
analytical predictions, but it lacks distinct features to determine this critical
point. With our experimental platform we can individually resolve all differ-
ent states spectrally and spatially (for small systems). Thus we have full access
to the wavefunctions associated with the two central frequency states, that
upon the transition will emerge into the two (degenerate) topologically pro-
tected edge modes. Apart from the direct observation of the formation of a
band-gap within the spectra, we propose the inverse participation ratio (IPR)
of the central frequency states as a better measure to follow the topological
transition.

Other topological transitions in zigzag chains that were studied experimen-
tally and analytically, are induced by staggered distances [129] between the
resonators and/or disorder [134].

6.2 Zigzag chains of coupled resonators

A sketch of the arrangement of the resonators for different angles θ can be
seen in figure 6.1(b). We use the same separation of 9mm in between each
resonator, but the angles with which the line in between two neighboring res-
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Figure 6.1 – (a) Photo of an experimental chain of N = 9 resonators. We use
a stationary kink antenna that couples to the left-most resonator and a movable
loop antenna (not shown) in order to probe the system. (b) General sketch of the
arrangement. The angle θ is used to describe the transition form linear chains
(θ = 0°) to right-angle zigzag chains (θ = 90°). We describe the system with the
use of two sublattices A and B, so that each unit cell (encircled by dashed ellipses),
contains two resonators, one of the A and and one of B sublattice. For the case of
θ = 0° (c),(d) and θ = 90° (e),(f) the system can be completely separated into its
x- (blue) and y-polarized (red) components. For θ = 0°(c),(d) this results in two
topological trivial linear chains, while for θ = 90°, the system becomes non-trivial
due to the staggered couplings t x (single black line) and t y (double black line)
with |t y |>x and we expect edge states on each side of the chain.
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onators intersect the x-axis are following a {0,θ , 0,θ , 0,θ , · · · } sequence. As
we will explicitly show in section 6.3.1, the TB Hamiltonian of such chains pos-
sesses a chiral symmetry [7]. We thus introduce the two sublattices A and B to
describe the system. Due to this symmetry we expect different results, when
using an even or odd number N of resonators. We thus study the cases of
N = 8 and N = 9 in detail. When not explicitly interested in finite-size effects,
it is always preferred to study the largest possible chains. But the increased
resonance-width and the slightly smaller coupling of the p-mode compared to
the s-mode, together with the fact that in the case of p-modes, a chain of N res-
onators produced 2N resonance peaks, made it more challenging to identify all
individual states in the spectra compared to s-mode measurements. The clear
identification of the two central frequency states was especially challenging
for intermediate values of θ . Before the gap is finally opening, the density of
states around the central frequency is actually increasing, making it harder to
identify the different resonance peaks in the spectra. N = 9 was the maximum
system size, where we still could identify 2N resonance peaks for all studied
angles θ and extract the associated wave functions of the system.

We experimentally study the system for angles θ = 0°, 15°, 30°, 45°, 60°, 75°
and 90°. The case θ = 0° (see figure 6.1(c) and (d)) corresponds to linear
chains, where the x and y-polarization can be separated and treated individu-
ally, as we have already shown in section 4.3.4. The case θ = 90° corresponds
to a right-angle zigzag chain, where the system once more can be separated
into its x- and y-polarization. Due to the different coupling strength t x , t y ,
this case can be described by the standard SSH model, where both topolog-
ical phases are present at once. In the limit of n → ∞ the sub-system in
y-polarization is in the topological trivial phase, where the parity of the wind-
ing number P = 0, while the sub-system in x-polarization is in the topological
non-trivial phase, where P = 1, since |t y |> |t x |. We thus expect localized edge
states with a localization length ζ ≈ ln |t y/t x | on both sides of the chain. For
finite systems, if the total number of resonators N is even, we expect the edge
state at each end of the chain to be in the x-polarization, but each supported
by the different sublattices A or B (see figure 6.1(e)). If N is odd, we expect
the left edge state to be in the x-polarization, while the right edge state is in
the y-polarization and both modes are now supported only by the A sublattice
(see figure 6.1(f)).

For both cases of even and odd number of resonators, the polarized edge
states for θ = 90° have been well observed with the use of various different
photonic platforms [18, 24, 27, 126–138]. We are thus especially interested
in intermediate values of θ , in order to explicitly study the transition from the
topological trivial case of decoupled linear chains (θ = 0°) to the non-trivial
case, with localized edge states for θ = 90°. The general Hamiltonian of this
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system as a function of the angle θ is described by

H = H0 +Hintra +Hinter(θ ) . (6.1)

H0 describes the on-site energies

H0 =
∑

j

ν0(a
†
x , jax , j + b†

y, j by, j) + h.c. ,

where a†
l, j (al, j) is the creation (annihilation) operator of the l-polarized mode

at site A j, and b†
l, j (bl, j) is the creation (annihilation) operator of the l-polarized

eigenmode at site B j, respectively with l ∈ {x , y}. ν0 is the single resonator
resonance frequency. Hintra describes the intra-cell coupling

Hintra =
∑

j

t x x(0)b†
x , jax , j + t y y(0)b†

y, jay, j + t x y(0)(b†
y, jax , j + b†

x , jay, j) + h.c.

=
∑

j

t x b†
x , jax , j + t y b†

y, jay, j + h.c.

and Hinter(θ ) the inter-cell coupling

Hinter(θ ) =
∑

j

t x x(θ )a†
x , j+1 bx , j + t y y(θ )a†

y, j+1 by, j + t x y(θ )(a†
y, j+1 bx , j + a†

x , j+1 by, j) + h.c. ,

where the functions t x x = t x cos2(θ )+ t y sin2(θ ), t y y = t y cos2(θ )+ t x sin2(θ )
and t x y = (t x− t y) cos(θ ) sin(θ ), describe the different co- and cross-polarized
couplings, that depend on the two parameters t x , the weak coupling between
two x-polarized modes of aligned resonators, and t y , the strong coupling be-
tween two y-polarized modes of aligned resonators. For simplicity, compared
to the notations introduced in section 4.3.2, we drop the minus sign before
the coupling terms and integrate them in the t x and t y factors. We thus have
t x > 0, while t y < 0, but still |t y |> |t x |.

As we will later demonstrate in section 6.3, the topological phase transi-
tion occurs at a critical angle θc, where t x x(θ ) changes its sign, defined by
tan(θc/2) =

p

|t x/t y |.
We scan the experimental chains by measuring the transmission and reflec-

tion spectra between two antennas: a fixed kink antenna, that couples to the
first resonator of the chain, as can be seen in figure 6.1(a), and a movable loop
antenna, that we move on a 2D regular grid with a step size of 1mm in the
(x , y)-plane over the resonators. In order to achieve a better spatial resolution
of the wavefunctions, we use a loop antenna with a smaller loop than the one
used to s-mode measurements and reduce the overall cavity height to 9mm.
The reason why we have not used the small loop antenna for the s-mode mea-
surements is due to an internal resonance of the antenna that coincides with
the resonance frequencies of the s-modes.
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6.2. Zigzag chains of coupled resonators

6.2.1 Spectrum

The local density of states LDoS(i,ν), averaged over each resonator i, can
be directly obtained from the reflection spectra {S11(r j,ν)}, measured at the
loop antenna for the different antenna positions {r j}.

LDoS(i,ν) =



1−ℜ
�

S11(r j,ν)
��

r j over resonator i
. (6.2)

In order to separate the different contributions coming from the bulk and the
edges of the chains, we define a "bulk" density of states as the sum of the LDoS
of all resonators, except the first and last resonator.

In figure 6.2 one can see the measured "bulk" density of states (blue), and
the local density of states at the first (orange) and last (green) resonator for
both cases N = 8 and N = 9 and different angles θ .

Highlighted in grey, for both cases N = 8 and N = 9, one can clearly ob-
verse the opening of a band-gap in the "bulk" density of states for θ = 60°,
accompanied by the formation of two edge states that lay within the gap and
that are localized on either side of the chain. The degeneracy of the edge two
states is lifted in the experiment, which can be explained by slightly different
resonance frequencies of the two resonators at each end. Also the kink-antenna
that is coupled to the first resonator of the chain induces an additional small
frequency shift of the resonance localized at that resonator.

By extracting all resonance-positions for the linear chains (θ = 0°) we can
estimate the two couplings strengths |t x | and |t y | for our experiment, as we
already did in section 4.3.4. We cannot directly use the functions t x(d) and
t y(d), obtained in section 4.3.3, since we are now working at a different height
in between bottom and top plate and thus the evanescent decay of the modes is
not the same. We extract the resonance-positions with the harmonic inversion
method and fit them with (4.39) and find t x = 24MHz and t y = −102 MHz.
Thus the transition should occur at θc = 2 tan−1(

p

t x/|t y |) ≈ 51.7°. This is
consistent with the experimental observation, where the gap is opening in be-
tween θ = 45° and θ = 60°.

One can further notice that the two peaks associated with the edge states
can also be found to a small extent in the "bulk" density of states. This comes
from the finite localisation length of the edge states, which still have small
amplitudes on the sites that we have assigned to the "bulk" region. The effect
is the strongest for θ = 60°, just after the opening of the gap, and is less visible
for θ = 75° and θ = 90°, showing that the edge states become more and more
localized, the further we are from the transition.
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Figure 6.2 – Measured "bulk" density of states (DoS) (in blue) for different angles
and both cases N = 8 (left) and N = 9 (right). The grey areas highlight the band-
gaps, that are opening for θ ≥ 60°. We additionally plot the local density of states
measured over the first resonator in orange and over the last resonator in green.
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Figure 6.3 – Extracted wavefunction amplitude of the two central frequency states
(left and center columns), together with its combined wavefunction intensity
(right column) for the chains of N = 8 resonators (top) and N = 9 resonators
(bottom).

111



Chapter 6. Topological transition in p-mode SSH-chains

6.2.2 Wavefunctions of the central frequency states

To further study the spatial evolution of the two central frequency states,
we are going to compare their associated wavefunctions for different angles θ .
In order to extract the wavefunctions ψ1(r) and ψ2(r) of the two central fre-
quency states, we use the harmonic inversion method to extract and cluster all
resonance-frequencies and -amplitudes in each transmission spectrum. We fur-
ther normalize each wavefunction ψ(r), so that the sum of the wavefunction-
intensity over all measured positions {r j} equals 1,

∑

j |ψ(r j)|2 = 1.
The extracted wavefunctions ψ1(r) and ψ2(r) for each angle θ can be

seen in figure 6.3. We additionally plot the combined wavefunction intensity
|ψ1(r)|2 + |ψ2(r)|2, as it allows to compare the wavefunctions of the chains
more easily. Due to the degenerate nature of the two central frequency states,
in the presence of slightest variations of resonance-frequencies and/or cou-
plings, they hybridize. This effect is sensitive to experimental imperfection
such as the tiny difference in the resonance-frequencies of each resonator and
the marginally varying coupling strength due to small variations in the posi-
tioning of the resonators. This effect is indeed so sensitive, that even stan-
dard double precision numerical simulations of the TB Hamiltonian where
all resonance frequencies and couplings are the same throughout the chain,
still show some hybridization for the degenerate central frequency states. For
small disorder, one can assume, that the combined wavefunction intensity
|ψ1(r)|2 + |ψ2(r)|2 is conserved. This can be understood as a kind of energy
conservation. The overall intensity at a given frequency (here it is the central
frequency, which plays the role of the systems "energy" in the TB framework)
at each site must be conserved, although it may be distributed differently onto
the two degenerate states. Of course for strong disorder, the combined wave-
function intensity will be altered as well, but it is much more robust than the
individual wave functions ψ1(r)) and ψ2(r).

Due to the chiral symmetry of the Hamiltonian we expect a symmetric spec-
trum {ν0±νn} around ν0, the single resonator resonance frequency, associated
with pairs of symmetric and antisymmetric states. Despite the hybridization,
traces of this symmetry can still be found in some pairsψ1(r),ψ2(r), for exam-
ple for θ = 0°, N = 8 and θ = 60°, N = 8 and N = 9. Another property arising
from this symmetry is that for a finite chain of an even number of resonators,
without experimental fluctuations and considering only nearest neighbour cou-
plings, the two central frequency states are at frequencies νc = ν0 ± ε around
ν0. ε becomes smaller for increasing θ and in the limit N →∞, ε→ 0 for all θ .
On the other hand, for an odd number of resonators, even for finite chains, both
central states are at νc = ν0 for any value of θ . This parity anomaly breaks the
sublattice symmetry for any θ and both central frequency states are supported
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by only the A sublattice. While we cannot resolve the parity anomaly spectrally
due to experimental fluctuations in the resonance-frequencies of the individ-
ual resonators, that are larger then the expected ε, we can still observe the
broken sublattice symmetry for the chains of N = 9 resonators, despite exper-
imental fluctuations and next nearest neighbour coupling. Except for θ = 60°,
where we probably are in an unfavorable case concerning the individual res-
onance frequencies of the resonators, all states have vanishing amplitudes on
the B-sublattice sites.

Overall, as expected, one can clearly see the transformation of bulk-modes
that have amplitude all over the chains to localized edge states at each side
of the chain. As expected the edge state for the chains of N = 8 resonators
are both x-polarized, with the left edge state being supported mainly by the A-
sublattice and the right edge state being supported mainly by the B sublattice.
For the chains of N = 9 resonators, both edge states are mainly supported by
the A sublattice, and the left edge state is x-polarized, while the right edge
state is y-polarized.

We do not restrict ourselves to these qualitative observations, but addi-
tionally extract the tight-binding coefficients |Ci|2 = |c

x
i |

2 + |c y
i |

2 for both cen-
tral frequency states, to compare our experimental results to numerical TB
simulations. In the TB formalism the wavefunction ψ(r) of any state can
be approximated as a superposition of the individual single resonator wave
functions ψx

0(r − ri) and ψy
0 (r − ri), ψ(r) =

∑

i c x
i ψ

x
0(r − ri) + c y

i ψ
y
0 (r − ri),

where the coefficients {c x
i , c y

i } are given by the associated eigenvector c⃗ =
(c x

1 , c y
1 , c x

2 , c y
2 , ..., c x

N , c y
N ) of the TB Hamiltonian in matrix form and the {ri} are

the positions of the individual resonators.
If we assume the overlap between adjacent single resonator wavefunction

ψ
x
0(r) and ψy

0 (r) to be negligible, we can extract the |Ci|2 by integrating the
wavefunction intensities |ψ(r)|2 over each resonator i at position ri with radius
rreso

∫

|r−ri |<rreso

|ψ(r)|2dr =

∫

|r−ri |<rreso

�

�

�

�

�

∑

i

c x
i ψ

x
0(r − ri) + c y

i ψ
y
0 (r − ri)

�

�

�

�

�

2

dr

≈
∫

|r−ri |<rreso

�

�c x
i ψ

x
0(r − ri) + c y

i ψ
y
0 (r − ri)

�

�

2
dr

= (|c x
i |

2 + |c y
i |

2)

∫

|r|<rreso

�

�

�ψ
x/y
0 (r)

�

�

�

2
dr∝ |Ci|2 .

The normalizing of the single resonator wavefunction assures
∫

�

�

�ψ
x/y
0 (r)

�

�

�

2
dr =

1, we thus expect
∫

|r|<rreso

�

�

�ψ
x/y
0 (r)

�

�

�

2
dr < 1, but this can be accounted for by
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renormalizing the obtained coefficients |Ci|2, so that
∑

i |Ci|2 = 1. The ex-
tracted coefficients for both central frequency states |C (1)i |

2, |C (2)i |
2 together

with their sum |C (1)i |
2 + |C (2)i |

2 is presented in figure 6.4.
We additionally compare the extracted combined coefficients, to tight-

binding simulations of the systems Hamiltonian, using the t x = 24MHz and
t y = −102MHz that we extracted earlier from the spectra of the linear chains.
We simulate the ideal case of only nearest neighbour interactions (black plus
symbols), but since we experimentally cannot get rid of the small next nearest
neighbour couplings in between the resonators, we also try to evaluate this con-
tribution by including all possible couplings in between the resonators in the TB
Hamiltonian (red circles), as already done in section 4.3.5 and 4.3.5. While we
have not explicitly measured t x(d) and t y(d) as a function of the separation d
in between the resonators for this specific cavity height, we recall that for the s-
mode, as demonstrated in section 4.2.1, the resonators mainly couple via their
first evanescent mode. We therefore use t x/y(d) = t x ,y K1(γ1d)/K1(γ19 mm),
where the t x ,y are the measured couplings extracted from the spectra of the

linear chains, and γ1 =
È

�

π
h

�2
−
�

2πν0
c0

�2
≈ 0.30mm−1 is the decay rate of

the first evanescent TE1 mode outside of the resonators. Of course the actual
dependency most likely also involves small contributions from higher order
modes, but the dependency we use is a justified simplification, considering
that the aim of the next nearest neighbour simulations is to reveal and roughly
estimate its effects on the wave functions.

Generally we find a good quantitative agreement between the measure-
ment and the TB simulations, especially considering that the experimental
fluctuation of the resonance-frequencies (see section 3.3 for details) are of the
order of ≈ 15% of the weaker coupling strength t x . For N = 9 the sublattice
polarization becomes even clearer than in figure 6.3 and we experimentally
find ratios of ≈ 2− 15% in between the averaged intensities on the B and A-
sublattice for the different θ . A part from the already mentioned variations of
the single resonator resonance frequencies that might explain the highest ratio
of 15% for θ = 60°, other effects that lead to a ratio that differs from zero are
the spatial overlap of the individual wave functions and non negligible next
nearest neighbour couplings.

Especially visible for θ > θc due to the logarithmic scale, the next nearest
neighbour simulations show the breaking of the sublattice polarization of the
edge states for both cases N = 8 and N = 9, and we observe amplitudes even
on the sublattice, that in the nearest neighbour regime do not support the edge
states. For both cases (N = 8 and N = 9), however, we experimentally and
numerically still observe much greater amplitudes on the sublattices that sup-
port the edge states in the nearest neighbour regime, then on the other sublat-
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Figure 6.4 – The extracted coefficients for both central frequency states |C (1)i |
2

(blue dashed line) and |C (2)i |
2 (orange dashed line) together with their sum

|C (1)i |
2 + |C (2)i |

2 (green solid line) for the chains of N = 8 resonators (left) and
N = 9 resonators (right) are shown. The first 4 rows (θ < θc) are plotted with
the same linear (y-axis) scale, while the last 3 rows (θ > θc) are plotted with the
same logarithmic scale, to help visualize the exponential decay of the edge states.
We additionally compare them to TB simulations, considering only nearest neigh-
bours couplings (black plus symbols) or considering all couplings (red circles).
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tice. It seems that the next nearest neighbour simulations tend to overestimate
the experimental next nearest neighbour couplings. This is especially visible
for θ ≥ 75° and in the center of the chains, where the simulated coefficients
are even higher then the experimentally extracted ones on the not support-
ing sublattice in the nearest neighbour regime. Nevertheless the amount of
next-nearest neighbour coupling present in the experiment does not seem to
be negligible, since some states (e.g. for N = 8,θ = 15°) seem to be in much
better agreement with the next-nearest neighbour simulations, then with the
simulation that only consider the nearest neighbours.

Underlined by the use of the logarithmic scale for θ > θc, one can observe
the exponential decay of the edge states. This exponential localization of the
edge-state inspired us to further extract the inverse participation ratio (IPR)
of the central frequency states, which can be interpreted as a measure of lo-
calisation of wavefunctions [139]. We expect it to show significant different
behaviour for the bulk modes before and for the edge states after the transition.

6.2.3 The IPR as marker of the transition

For normalized eigenstates, the IPR of a certain state is defined as the
square of its intensity summed over all sites. Consequently, for an extended
(bulk) state the IPR is close to zero, while for a state that is completely localized
at a single site the IPR= 1 : 0 < IPR ≤ 1. Due to the observed hybridization
in the experiment we define a combined IPR, calculated with the combined
central frequency states intensities

IPR=
1
2

∑

i

(|C (1)i |
2 + |C (2)i |

2)2. (6.3)

Bulk modes are expected to have IPRbulk ∝ 1/N
N→∞
−−−−→ 0, since their

intensity is distributed more or less evenly through out the whole chain of
length N . The edge states on the other hand are expected to not depend
on the systems size but only on their localization length, when their local-
ization length is (much) smaller than the length of the chain. For even N ,
both edge state are expected to be supported by different sublattices. So for
θ > θc the combined IPR can be separated into IPR= 1

2

∑

i(|C
(1)
i |

2+ |C (2)i |
2)2 =

1
2(
∑

i |C
(1)
i |

4 +
∑

i |C
(2)
i |

4) = (IPR1 + IPR2)/2 = IPRedge, since in the absence
of hybridization, IPR1 = IPR2 = IPRedge. Similar reasoning can be made for
odd N , when the localization length is (much) smaller then the length of the
chains and in the vicinity of θ = 90°, where both edge states are orthogonally
polarized to each other.
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6.2. Zigzag chains of coupled resonators

Figure 6.5 – Experimental IPR as a function of the different θ for N = 8 (blue
dots) and N = 9 (orange dots). We compare them to TB simulations considering
only nearest neighbours (blue and orange line) and all neighbours (green and red
dash-dotted lines) and an analytical theoretical expression obtained in the limit
N → ∞ (black dashed line). The vertical black dotted line marks the critical
angle θc of the transition.

In figure 6.5 one can see the experimental IPR (blue and orange dots) for
different θ , where we compare it again to TB simulations considering only
nearest neighbours (blue and orange line) and all neighbours (green and red
dash-dotted lines) and an analytical theoretical expression obtained in the limit
N →∞ (black dashed line). For more details on the theoretical expression
see section 6.3.4.

For θ < θc, before the transition, while the analytic expression for N →∞
is zero, one can see that the both the experimental, as well as the simulated
IPR fluctuate around a constant value, that depends on the system size. The
simulated IPR for N = 9 fluctuates significantly less, which directly results from
the breaking of the sublattice symmetry. Without the exact knowledge of the
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Chapter 6. Topological transition in p-mode SSH-chains

systems wavefunctions, if one assumes an equidistribution of the intensity on
all 5 sites of the A sublattice (for N = 9), one would expect that IPR = 0.4
before the transition, which is in good agreement with the simulations. The
amount of fluctuations in the experimental IPR is similar for the case of N = 8
and N = 9, which indicate that their origin is dominated by the experimental
uncertainties and fluctuations that are similar for both cases.

Around and after the transition, θ ⪆ θc, both the experimental and simu-
lated IPR quickly increase and converge towards the analytic expression for
N → ∞. While one would expect a monotonous increase until θ = 90°,
the experimental IPR is maximal for θ = 75° and actually decreases again
for θ = 90°, which indicates that within the experiment, the edge states are
maximal localized for θ = 75°, and not as expected for θ = 90°. We find that
this can essentially be explained by next nearest neighbour couplings, that be-
come more important for large θ , since the resonators become closer to each
other. While the TB simulations considering only nearest neighbour couplings
are in perfect agreement with the theoretical expression for θ ⪆ 60°, that was
actually formulated in the very same approximation, the TB simulations that
consider all possible interaction between the resonators actually shows the
same behaviour as the experimental IPR. There is actually one experimen-
tal data point for N = 9 at θ = 60, that is not in as good agreement with
the simulations as the rest. As already discussed earlier, for this experimental
chain, we measured non negligible amplitudes on the B sublattice, which is not
in agreement with the expected sublattice polarization of the edge-states and
then results in a reduced IPR. We explain this by an unfavorable distribution
of the individual resonance frequencies due to the fluctuation of the resonance
frequencies upon the placing of the resonators.

Overall one can see two clearly different behaviours of the IPR before and
after the transition, which makes the IPR a good marker, also experimentally,
to follow the topological transition. For larger systems, where the extraction
of the individual resonance-amplitudes is not possible anymore, one still can
approximate the combined TB coefficients |C (1)i |

2+ |C (2)i |
2 in order to calculate

the IPR by integrating the LDoS(i,ν)within a small interval around the central
frequency ν0. We already used such method with great success in section 5.
When the gap is open for θ > θc, the peak(s) associated with the central fre-
quency states should be well isolated and when the gap is closed for θ < θc, the
frequency-overlap with resonance peaks of other bulk states should not affect
the IPR.

118



6.3. Analytic description

6.3 Analytic description

While the system’s Hamiltonian in its real-space representation can be di-
rectly formulated knowing the relative arrangement of the resonators, for an
analytic description (in the limit of N → ∞) it is convenient to transform
the Hamiltonian into its momentum-space representation. Without sacrificing
generality we suppose ν0 = 0 for the theoretical description of the system.
Assuming Bloch periodic boundary conditions (e.g. when the chains form a
closed loop) and using

ax , j =
1
p

N

∑

k

eik j âx ,k (6.4)

ay, j =
1
p

N

∑

k

eik j ây,k (6.5)

bx , j =
1
p

N

∑

k

eik j b̂x ,k (6.6)

by, j =
1
p

N

∑

k

eik j b̂y,k, (6.7)

we can express the systems Hamiltonian (6.1) as H =
∑†

kψkH(k)ψk, where
ψk is defined as ψk = (âx ,k, ây,k, b̂x ,k, b̂y,k)T and H(k) is the momentum-space
Hamiltonian

H(k) =
�

0 h(k)
h†(k) 0

�

, (6.8)

with

h(k) =
�

t x + e−ik t x x(θ ) e−ik t x y(θ )
e−ik t x y(θ ) t y + e−ik t y y(θ )

�

. (6.9)

This way the Hamiltonian’s dimension is effectively reduced from a 2N×2N
matrix into a 2× 2-matrix, that contains all information about the system.

6.3.1 Chiral symmetry

A Hamiltonian H is said to be chiral symmetric if there exists a unitary and
Hermitian operator Γ (so that Γ 2 = 1), which anticommutes with the Hamilto-
nian [140], ΓHΓ = −H. In our case

Γ =
�

1 0
0 −1

�

(6.10)

and since H(k) can be written as a completely block-off-diagonal matrix, it is
easy to show that the system possesses a chiral symmetry, ΓH(k)Γ = −H(k).
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Chapter 6. Topological transition in p-mode SSH-chains

Actually, any system whose Hamiltonian can be written as a block-off-diagonal
matrix possesses a chiral symmetry.

One property of a system with chiral symmetry is its symmetric spectrum,
which is a direct result of the block-off-diagonal form of the Hamiltonian.

Given a generic block anti-diagonal matrix M =
�

0 M12

M21 0

�

, we have M2 =
�

M12M21 0
0 M21M12

�

. The eigenvalues of M are therefore {±pmi}, the square

roots of the eigenvalues {mi} of M̂ = M12M21.
The states associated with a pair of energies ±ϵ are related via the chiral

operator Γ . If |ψ〉 is an eigenstate of H with eigenvalue ϵ, then Γ |ψ〉 is also an
eigenstate of H with eigenvalue −ϵ.

6.3.2 Bulk dispersion relation E(k)

The eigenvalues of H(k) define the energy spectrum of the system, also
refereed to as the bulk dispersion relation E(k). We find the 4 eigenvalues

E1(k) =∆ cosθ cos
k
2
+

√

√

t2 cos2
k
2
+∆2 sin2 k

2
sin2 θ (6.11)

E2(k) =∆ cosθ cos
k
2
−

√

√

t2 cos2
k
2
+∆2 sin2 k

2
sin2 θ (6.12)

E3(k) = −∆ cosθ cos
k
2
+

√

√

t2 cos2
k
2
+∆2 sin2 k

2
sin2 θ (6.13)

E4(k) = −∆ cosθ cos
k
2
−

√

√

t2 cos2
k
2
+∆2 sin2 k

2
sin2 θ , (6.14)

where t = t x + t y and ∆ = t x − t y . We find that the spectrum is gaped for
cosθ >

�

�

t x+t y

t x−t y

�

�, which gives us the critical angle of the transition

θc = arccos

�

�

�

�

t x + t y

t x − t y

�

�

�

�

= 2 arctan
Æ

|t x/t y |. (6.15)

As one would expect it is the ratio t x/t y that determines the angle θc of the
zigzag chains at which the transition occurs. In figure 6.6 one can see the
calculated spectrum of the system for different θ and ratios t x/t y . The red line
separates the plots into two regions : θ ≤ θc, where the spectrum is gapless,
and θ > θc, where the spectrum is gaped.
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6.3. Analytic description

Figure 6.6 – Bulk Dispersion Relation E(k) for different θ and ratios |t x/t y |. t y

was fixed to -1 and t x varied from 0 to 1. Each eigenvalue E(k) of H(k) is plotted
in a different color, E1(k) in blue, E2(k) in orange, E3(k) in green and E4(k) in
grey. The added red line in between the plots separates them into two domains :
θ ≤ θc , where the spectrum is gapless, and θ > θc , where the spectrum is gaped.

121



Chapter 6. Topological transition in p-mode SSH-chains

6.3.3 The topological invariant P

We will now investigate the nature of this transition and show that it is
indeed a topological transition from a trivial to a non-trivial phase, by calcu-
lating the systems topological invariant P, which is defined as the parity of the
winding number P = W mod 2 [132]. Due to bulk-edge correspondence the
number of protected edge states per edge that appear when edges are inserted
into a topological insulating system is exactly equal to |W |. The system’s Zak
phase γ [141] is equal to Wπ. The winding number W can be found in various
equivalent ways. We will calculate it in terms of the winding of the lower-left
block h of the off-diagonal Hamiltonian H(k) [142–144],

W =

∮

dk
2πi

log [Det(h)] =

∮

dk
2π
∂k arg [Det(h)] , (6.16)

where
∮

dk =
∫ π

π
dk indicates the contour integral over the whole Brillouin

zone, and the determinant is given by

Det(h) = e−ik
�

t2 cos2 k
2
+∆2

�

sin2 k
2
− cos2 θ

��

. (6.17)

The calculated parity P of the winding number for different θ and ratios
|t x/t y | can be seen in figure 6.7. For θ > θc, hence |∆| cosθ < |t| and Det(h)
is non-zero for any k, which results in Det(h) making exactly one turn around
zero and therefore leads to a winding number of W = 1= P, which can be seen
in figure 6.7 (a). For θ < θc, since the spectrum is not gaped, the individual
energy bands Ei(k) are intersecting each other and thus Det(h) passes exactly
two times through zero, as can be seen in figure 6.7 (c) and (d). Since the
phase of the point Det(h) = 0 is undefined, in order to calculate P, one can
shift the whole contour an infinitesimal amount to the left or to the right. If one
shift the whole contour to the left, one finds W = 0 and if one shifts the whole
contour to the right and finds W = 2, which both result in the same parity
of P = 0. As can be seen in figure 6.7 (b), for θ = θc, Det(h) passes again
trough the origin, but only a single time. If we then shift the whole contour an
infinitesimal amount in order to calculate P, we find P = 0, when we shift to
the left, but P = 1, when we shift to the right, confirming that the topological
invariant is actually undefined for this critical point.

This change of the systems topological invariant from P = 0 to P = 1,
passing through the critical point at θc indeed confirms the topological nature
of this transition.
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Figure 6.7 – (center) Parity P of the winding number W as a function of θ and
the ratio |t x/t y |. The black dashed line indicate the critical angle of the transition
θc = 2arctan

p

|t x/t y | and separate the topological trivial region with P = 0,
where no edge-states occurs and the topological non-trivial region with P = 1,
where one topological edge state occurs at each end of the chain. (a)-(d) illus-
trate the winding of Det(h) in the complex plane (as k is varied from −π to π) for
a fixed t y = −1 and values of t x and θ that are marked by the corresponding letter
in the central figure. (a)-(c) show the different cases for ratios of |t x/t y |= 0.24,
which corresponds the our experimental case, were (c) is right at transition with
θ = θc . The black arrow going trough the points in the central figure indicates
the direction, from small to large θ , that we followed when presenting the exper-
imental results.

123



Chapter 6. Topological transition in p-mode SSH-chains

6.3.4 Zero-energy edge state

We next derive the analytic solution for the wavefunction of the edge states
in the limit of N →∞. With zero-energy, the wavefunctions can be derived
without solving the eigenvalue problem. When the Hamiltonian (6.1) acts on
the zero-energy state |ψ〉, it yields

H|ψ〉= 0. (6.18)

The associated wavevector can be written as

|ψ〉=
N
∑

j=1

Ax
j a

†
x , j + Ay

j a
†
y, j + Bx

j b†
x , j + B y

j b†
y, j|0〉, (6.19)

where j enumerates the unit cells, and the Ax
j (Ay

j ) and Bx
j (B y

j ) are the coef-
ficients of the x-(y-)polarized wavefunction on sublattice A and B of the j-th
unit cell respectively. N is now the number of unit cells and not the number of
resonators which is 2N . Substituting (6.19) in (6.18), every single term must
be zero, we therefore find a set of 4N linear equations:

Ax
j t x + Ax

j+1 t x x(θ ) + Ay
j+1 t x y(θ ) = 0 (6.20)

Ay
j t y + Ax

j+1 t x y(θ ) + Ay
j+1 t y y(θ ) = 0 (6.21)

Bx
j t x x(θ ) + B y

j t x y(θ ) + Bx
j+1 t x = 0 (6.22)

Bx
j t x y(θ ) + B y

j t y y(θ ) + Bx
j+1 t y = 0 (6.23)

for the bulk ( j = 1, 2, ..., N − 1), and

Ax
N t x = 0 (6.24)

Ay
N t y = 0 (6.25)

Bx
1 t x = 0 (6.26)

B y
1 t y = 0 (6.27)

at the the boundary. Due to the inversion symmetry, it is sufficient to only solve
for the amplitudes on sublattice A, {Ax

j , Ay
j }, and the {Bx

j , B y
j } can be obtained

by labeling the indices from the opposite direction.
This gives us the following recurrence formula

�

Ax
j+1

Ay
j+1

�

= M

�

Ax
j

Ay
j

�

(6.28)

with

M =





−t y y (θ )
t y + t x y (θ )

t x

t x y (θ )
t y − t x x (θ )

t x



= 2∆ sinθ

 sinθ
∆−t

cosθ
∆+t

− cosθ
∆−t

sinθ
∆+t

!

− 1. (6.29)
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6.3. Analytic description

The amplitude at the jth unit cell (Ax
j , Ay

j )
T , can then be expressed as

�

Ax
j

Ay
j

�

= M j−1
�

Ax
1

Ay
1

�

(6.30)

In order to study the dynamics of the system one has to find the eigenvalues
λ1 and λ2 of M with their associated eigenvectors Λ⃗1,Λ⃗2. The general solution
can then we written as

�

Ax
j

Ay
j

�

= αλ j
1Λ⃗1 + βλ

j
2Λ⃗2, (6.31)

where the factors α and β are defined by the boundary conditions (and con-
strained by the normalization of the wavefunction).

With sin2(θc) =
∆2−t2

∆2 , we can express the two eigenvalues λ1 and λ2 of M ,
as a function of θ and θc,

λ1(θ ) =

�

2
sin2(θ )
sin2(θc)

− 1

�

−

√

√

√

�

2
sin2(θ )
sin2(θc)

− 1

�2

− 1, (6.32)

λ2(θ ) =

�

2
sin2(θ )
sin2(θc)

− 1

�

+

√

√

√

�

2
sin2(θ )
sin2(θc)

− 1

�2

− 1. (6.33)

After the transition, θ > θc both eigenvalues are real-valued. We have
|λ1(θ > θc)| < 1, associated with an exponentially decreasing behaviour and
|λ2(θ > θc)| > 1 associated with an exponentially increasing behaviour. Only
the decreasing solution can fulfill the boundary conditions Ax

N = Ay
N = 0 and

for N →∞, we finally get
�

Ax
j

Ay
j

�

=

√

√1−λ2

λ2
λ jΛ⃗, (6.34)

whereλ= λ1 and the factorαwas determined from the wavefunctions normal-

ization |α|2 =
�

∑

j=1λ
2 j
�−1
= 1−λ2

λ2 . The localization length of the mode is then
given by ζ = −1/ ln(λ), which for θ = 90°, converges to ζ = −1/ ln(|t x/t y |),
the localization length of the standard SSH-model, that can be formulated by
separating the x- and y-polarization.

The associated eigenvector Λ⃗ = Λ⃗1, that we supposed to be properly nor-
malized, ||Λ⃗||= 1, indicates the polarization of the mode. It is more convenient
to calculate Λ⃗ in a different reference system (x ′, y ′), that can be obtained by
turning the original orthogonal coordinate system (x , y) by an angle θ/2 anti-
clockwise, so that the new x ′ axis is now in line with the first sublattice, as
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Chapter 6. Topological transition in p-mode SSH-chains

indicated by the small coordinate systems on the left of figure 6.8. In this
reference system

Λ⃗=
p

2





Ç

1+ cosθ
cosθc

Ç

1− cosθ
cosθc



 . (6.35)

We define the polarization p = arctan(−Ay/Ax) of the mode as the angle under
which the nodal line of the mode intersects the x ′ axis. We get

p(θ ) = −arctan
�
Æ

1− cosθ/ cosθc/
Æ

1+ cosθ/ cosθc

�

. (6.36)

In figure 6.8 one can see the analytically calculated edge-states for some angles
θ > θc, and plots of the modes polarization p and localisation length ζ as a
function of θ . One can also observe that the localization length ζ diverges for
θ = θc. For θ > θc, ζ exhibits a sharp initial decrease followed by a steady
evolution.

Confirmed by the drastic change of ζ right after the transition, the inverse
participation ratio (IPR), which can be used to measures the amount of lo-
calization of any state [139], has the potential to be a good marker of the
transition. The IPR of the zero-energy edge state in the limit N →∞ is given
by

IPR(θ ) =
∞
∑

j=1

(|Ax
j |

2 + |Ay
j |

2)2 =
∞
∑

j=1

|α|4λ4 j =
1−λ(θ )2

1+λ(θ )2
. (6.37)

As one can see in figure 6.5, the IPR is zero for bulk modes and drastically in-
creases at θ = θc. This large increase, combined with its simple calculation and
straightforward measurement procedure, makes it indeed an excellent marker
of the transition, which has already been confirmed in the experiment (see
chapter 6.2.3).

The polarization p of the edge-state changes throughout the transition.
At the transition θ = θc Λ⃗ = (1,0)T , which results in p = 0 and the edge-
state is therefore fully x ′-polarized. For θ = 90°, Λ⃗ =

p
2(1, 1)T and thus

p = −π/4, which translates to a fully x-polarized mode in the earlier used
reference system (x , y). This change of polarization throughout the tran-
sition can also be observed experimentally in figure~6.3). In order to ex-
tract the polarization of the experimentally measured left and right edge-state,
we individually fit the combined wavefuntion-intensity above the first and
last resonator (encircled by black lines) with f (x , y) = [Asin(tan−1( y−y0

x−x0
) −

φ0)J1(γ
p

(x − x0)2 + (y − y0)2)]2. The fit parameter φ0 gives the alignment
of the nodal line, which up to a (sign and interval) convention then corre-
sponds to the polarization p. For both edge states of the chain with N = 8
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Figure 6.8 – (left) Plots of the analytically calculated wavefunction-intensities in
the limit of N →∞ of the zero-energy edge state, localized at the left-edge of the
zigzag array. We use the same coupling-ratio |t x/t y | = 24/102, as in the experi-
ments, which gives θc ≈ 51.7°. We plot different θ , from right after to transition
with θ = 51.8° up to θ = 90° with a non-uniform spacing, to help visualize the
turning of the wavefunctions polarization. We chose the spacing in between the
different values of θ , so that between two consecutive plots the polarization of the
mode always gets turned by the same amount and we additionally highlight the
modes polarization at the first resonator with a black dashed line. (right) Plots
of the localization length ζ (top) of the zero-energy-mode and its polarization p
(bottom) as a function of θ after the transition (θ > θc). The polarization is de-
fined as the angle in between the nodal line and the x ′ axis in the new defined
x ′-y ′ coordinate system. The grey vertical lines mark the angles θ , for which we
have explicitly visualized the modes wavefunctions on the (left) part of the figure.
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Figure 6.9 – Experimentally extracted polarization of the edge-states after the
transition. We plot the wavefunction intensity for both cases of N = 8 (left) res-
onators and N = 9 (center) resonators, for angles θ = 60°, 75° and 90°. We extract
the polarization of the edge state by individually fitting the area over the first and
last resonator of each chain (encircled by the black lines). The found orientation
of the nodal lines is then highlighted by differently coloured line above the corre-
sponding resonators. (right) We compare the experimentally extracted (coloured
circles) edge-state polarizations p to the theoretical formulation obtained in the
limit of N →∞ (black solid line). In order to distinguish the different edge-states
the same colors as for highlighting the fitted nodal lines in the other subplots are
used.

resonates and the left edge state for the chain of N = 9 resonators, we get
p = φ0modπ−π, but in order to include the right edge state of the chain of
N = 9 resonators in the comparison, we use p = −φ0modπ due to the chains
symmetry. The results can be seen in figure 6.9, where we compare them to
the theoretical formulation (6.36).

This turning of the edge-states polarization throughout the transitions
seems to be less sensible to next-nearest neighbour coupling contributions
compared to the localization length. While one could observe a disagreement
between the measured IPR and the analytic formulation for θ = 90◦ in fig-
ure 6.5, the agreement between the experimental points and the theory in
figure 6.9 is generally very good. It also seems that the finite system size does
not have strong effects on the edge-states polarization.

The polarization of the edge states turns steadily for increasing bond an-
gles θ , while right after the transition, the localization length shows a drastic
change, which is followed by a steady and slow evolution for larger angles
θ . When operating in this latter range of bond angles, changing θ will mainly
change the edge states polarization, but its amplitude will only slightly change.
This could lead to an application of such structure as polarizers. When engi-
neering the couplings t x and t y in such a polarizer so that the critical angle
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θc comes closer to 90°, only a small range of effective bond angles θ would be
needed to describe the full accessible range of polarization from 0 to −π/4.
Depending on the used materials of such photonic structures, a simple stretch-
ing and compressing along the principal axis of such a device could be enough
to effectively modulate the zigzag bond angle θ . Thinking about optical appli-
cations, one could excite the edge states in such systems with unpolarized light,
but the polarization of the resulting emission on each end of the chain could
then be controlled by the its bond angle θ . In such optical applications, where
typical length scales are much smaller and therefore precise manufacturing
more challenging, the protection and robustness against disorder provided by
these topological modes is also a huge advantage.

6.4 Conclusion

In this chapter we have investigated in detail the emergence of topological
edge states in zigzag chains of coupled resonators, closely related to the well
known SSH model. While the dimerization in the classical SSH model comes
from alternating distances, we here used the anisotropic nature of the cou-
pling between higher order p-modes of the resonators to induce a topological
transition at a critical angle θc.

Zigzag arrays with a bond angle of θ = 90° have already been investigated
by various groups, using many different photonic platforms. [27, 125–138]
To recall a few works of special interest, a zigzag structure of polaritons was
used in the first experimental realization of a topological laser [18] and in
nanophotonics the robustness and spatial localization provided by the topo-
logical edge states, combined with the intrinsic non-linearity of silica was used
to generate higher order harmonics [24]. While these are excellent examples
of recent accomplishments and possible applications of topological photonics,
only one other group has actually studied the topological transition experimen-
tally [133], that can be described by deforming linear chains continuously into
zigzag chains upon varying the zigzag bond angle from 0° to 90°.

We thus were not the first to study this transition experimentally, but the
current advances in the control of the experimental platform, combined with
new data treatment methods, allow us to obtain results that are unprecedented
in terms of spatial and frequency resolutions. We were thus able to actually
observe the opening of the band gap at the critical angle θc, accompanied by
the emergence of localized edge states at each end of the chain.

Motivated by the observations of these strong hints of a topological transi-
tion, we performed an analytic study of the model and found that the system
is indeed in a topological non-trivial phase for θ > θc = 2 arctan

p

|t x/t y |.
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Chapter 6. Topological transition in p-mode SSH-chains

In order to quantitatively compare our results, we further investigated this
model analytically, and formulated an expressions for the edge-state of the
semi-infinite chains. These edge-states can essentially be described by their
localization-length ζ(θ ) and their polarization p(θ ).

Combining these analytic results with our experimental findings, we pro-
posed the inverse participation ratio (IPR) of the central-frequency states as a
good quantitative measure to follow the transition. Due to the divergence of
the localization length ζ at the transition, the IPR shows a drastic increase at
the transition, which we observed experimentally. For large bond angles we
found discrepancies between experiment and theory. Modeling the system nu-
merically, while considering all possible couplings between the resonators and
not only the nearest neighbour coupling terms, we found that these discrepan-
cies can be essentially explained by next nearest neighbour contributions that
become more important for larger bond angles θ .

At the end of this chapter we compared the experimentally extract polar-
ization p of the edge-states with the theoretical formulation, where we found
a good agreement. The state’s polarization is actually less sensible to next-
nearest neighbour contributions. Engineering such photonic structures in a
way, where the bond-angle θ could be easily changeable, may lead to further
possible applications of such structures in controlling the polarization of elec-
tromagnetic radiation emitted from such type of arrays.
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Chapter 7

General conclusion and outlook

In this thesis we have shown that with coupled microwave resonators,
which act as simple photonic system, remarkable results can be achieved in
the field of topological photonics. Compared to other highly engineered pho-
tonic systems, like cold atoms or polaritons, our platform is much simpler, and
consequently more limited, yet very versatile. Despite this apparent simplicity,
we had to invest a lot of work, in order to understand and control all the dif-
ferent aspects of the experiment. Starting with the unit cell of our platform,
the single resonator, we performed analytic and numerical calculations of the
single resonator’s resonant modes that helped us to better understand the spa-
tial profile of the modes, especially with the perturbation of the cylindrical
symmetry by the additional airgap above the resonator.

Mechanical changes of the setup reduced experimental uncertainties, like
the variance of the resonance frequencies or the precision with which we can
place the resonators. It’s especially due to these improvements that we were
finally able to interpret our results and especially the extracted wavefunction
amplitudes in quantitative ways, compared to qualitative comparisons done
before. Another crucial aspect that allowed us to further push the boundaries
of what is possible with the platform was the improvement in data-treatment
methods. Besides the losses in our system, we can extract individual wave-
function with a great spectral and spatial resolution. It is due to this improved
resolutions, that we were able to extract such fine quantities like the multi-
fractality of Fibonacci chains in chapter 5. In chapter 6, where we followed a
topological transition in zizzag chains, this improved resolution also allowed
us to follow the central frequency states IPR and polarization throughout the
transition. These latter two achievements can be seen as the major experimen-
tal results of this thesis.

Since each of these chapters 5 and 6, comes already with an individual
conclusion, to avoid repetition, we will now rather focus on further possibili-
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Chapter 7. General conclusion and outlook

ties to make use of the experimental platform, which go beyond the systems
presented in this thesis.

All systems studied during this thesis were 1D structures. A possible next
step could therefore be to study similar quasi periodic and topological struc-
tures, but using two dimensional lattices. In the context of quasiperiodic sys-
tems, first steps in this direction have already been taken. The platform has
already been used to study the famous 2D Penrose tilings, but with the infinite
amount of possible 2D quasiperiodic tilings there is still a lot more that can be
done in this regard. One family of 2D tilings, that may be of special interest
are 2D tiling that still have a one dimensional codimensional/perpendicular
space [105], as for example the Rauzy tiling [145]. Due to the physical cou-
plings that are not constrained to the edges of the tiles, the tight-binding model
implemented in our lattices is not the one usually theoretically and numerically
studied and one can expect it to exhibit richer multifractal properties. One
could also think of, as a next step, to introduce disorder into the systems. In the
context of quasiperiodic systems, the effects of on-site disorder in the Fibonacci
lattice were already studied theoretically [146]. Implementing on-site disor-
der with our platform is possible, but not simple, since we typically uses series
of identical resonators, that all have very similar resonance-frequencies. One
could think of other types of disorder, which are more easily implementable
with our experimental platform. Either a coupling disorder, induced by small
variations of distances between the resonators, or a phason disorder, resulting
from a local inversion of short and strong bond and giving birth to configura-
tions that cannot be obtained by permutations of the original sequence.

In recent years the interplay between topology and disorder has also gained
much interest. While one could introduce disorder for example to test the ro-
bustness of topological protection [19, 20, 37, 134], it was also shown that
for strong enough disorder, the system’s topological invariant can change, thus
transitioning into a new topological phase [134, 147–151]. Such disorder-
induced topological transitions have not been studied a lot experimentally, and
our experimental platform with its flexibility and reconfigurability seems suit-
able to tackle such interesting systems.

It would be also great to further use of the resonators p-mode. Only very
few other experimental tight binding platforms make use of these higher order
modes and it is especially the anisotropic nature of the coupling that could
led to some very interesting systems, especially if extended to two dimensions.
And of course it would also be possible to combine quasiperiodicity with these
higher order modes.

Another aspect of the experimental platform, that was only shortly men-
tioned in the introduction is the fact, that we can generate non-linear systems
by coupling the resonators to diodes. A few measurements in that direction
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have already been done. By coupling a diode to a defect-site in a classical SSH
chain, we have been able to realize a topological reflective power limiter [39,
152]. As a next step in that direction of combining nonlinearity and topology
could be to employ several diodes and couple them for example only to a sin-
gle sublattice of the system. A simple 1D chiral system with distinct sublattices
could be SSH chains, but simple 2D lattices should also be possible. Of course
one could also think of systems, that are not directly related to topology, but
which still benefit from the richness that non-linear interactions can provide.
Already a single resonator strongly coupled to two antennas leads to a very
interesting dynamical system with an exceptional point. When close to this
exceptional point, we were able to observe broadband nonlinear perfect co-
herent absorption [28, 153]. Next steps in this direction could be to embed
this single non-linear resonator into more complex structures, which could be
other resonators, or network structures like graphs [154], that could result
in chaotic systems. In this latter context, the interplay between non-linearity,
chaos [155] and exceptional points [156, 157] can give access to very interest-
ing physical phenomena. Only few experimental works have been done in this
regard[158, 159], but the understanding of such effects can be crucial for our
modern world and its communication systems, where we make us of all types
of waves propagating inside highly complex networks.
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Appendix A

Baseline calibration for reflection
spectra

We can calibrate the VNA using terminations at the end of the cables with
well known impedances, hereby correcting phase and amplitude modulations
coming from the waves propagating inside the cable. But this does not get rid
of the phase and amplitude modulation created by the antennas themselves
and its surrounding in the near-field.

Fortunately there is a simple solution to that. Assuming the ideal reflection
spectrum of the system is S(ν). The amplitude and phase modulation caused
by the antenna can be modeled as a factor m(ν), so that the measured signal
can be written as Smeas(ν) = m(ν)S(ν)m(ν) = m(ν)2S(ν). Since the empty
cavity should ideally have S(ν) = 1, the measured spectrum of the empty cav-
ity gives us access to Sempty

meas (ν) = m(ν)2. Therefore in order to correct our
measured data, we simply have to divide it by the reflection spectrum of the
empty cavity S(ν) = Smeas/S

empty
meas (ν). Measuring the reflection spectrum of the

empty cavity locally, for each antenna position separately, we can additionally
account for small changes within the local environment of the antenna (such
as other antenna holes or a slightly varying cavity height) and compensate
deficits of the VNA’s calibration. The VNA is calibrated for a certain curvature
of its cables. When the antenna is moved, this curvature is changed, which
additionally induces very small modulations in phase and amplitude.

In figure A.1 one can see the measured spectrum of a single resonator, the
reflection spectrum of the empty cavity, measured at the same antenna-position
and its corrected spectrum. As one can see, with the correction, we effectively
get rid of the varying phase factor, and also correct modulation in the ampli-
tude, which result in a much cleaner baseline. We can observe that, in a first
approximation, the phase-factor shows a linear frequency-dependency. We as-
sume this comes mainly comes from the propagation within the antennas and
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Figure A.1 – Raw reflection spectrum of the empty cavity (orange line) and of
a single resonator (blue line), measured at the same antenna-positions, together
with its corrected spectrum (green line).

the phase factor is then given by φ = 2πνL/c0, where L is approximately two
times the effective antenna length. By performing a linear fit of the phase,
we find L = 10.6cm, which is consistent with the expected effective antenna
length. Waves will travel only at about 2/3 of the speed of light inside coaxial
cables. Since the antenna mainly consists of a bend coaxial cable, the fitted
L = 10.6cm results in a one-way geometrical length of ≈ 3.5 cm, which equals
more or less the combined length of the loop, the vertical part of the antenna
and its SMA connector.
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Appendix B

Extraction of wavefunctions for the
Fibonacci chains

For small system where the resonance peaks in the spectrum are sufficiently
separated, the wavefunctions of the system can be obtained by direct fitting the
spectra with a sum of complex Lorentz lines. For the long chains of resonators,
studies in chapter 5, this is not possible as the overlap between individual
resonances peaks is to strong. To extract the LDoS(i, j), we thus developed
two different techniques depending weather we work with the linear chains of
55 resonators or the circular chains of around 100 resonators. For the linear
chains we use a harmonic inversion method to extract all resonances and then
use a clustering algorithm to assign the resonances to the different states. For
the circular chains we directly integrate 1 − ℜS11(i,ν) using different, non
overlapping frequency windows for each state. The latter technique is also
used to extract the LDoS for the silver mean chains.

Contents
B.1 Linear chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.1.1 Harmonic inversion and clustering . . . . . . . . . . . . 138
B.1.2 LDoS of all configurations: Dominant weak coupling . 141
B.1.3 LDoS of all configurations: Dominant strong coupling 144

B.2 Circular chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.2.1 Defining integration borders . . . . . . . . . . . . . . . . 149

B.1 Linear chains

The linear chains are constituted of 55 resonators. To average over different
permutations we measure different configurations of the chain, as detailed in
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Appendix B. Extraction of wavefunctions for the Fibonacci chains
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Figure B.1 – Fast Fourier Transform of the spectrum presented in figure 5.4, which
results in a discrete time-signal. The dotted vertical line marks Ntrunc, the number
of points that we use to formulate the non-linear set of equations.

section 5.2.3. A picture of one configuration, with dominant weak coupling
and its measured spectrum can bee seen in figure 5.4, where one can clearly
see the overlapping between resonance peaks.

B.1.1 Harmonic inversion and clustering

In order to extract all resonance-amplitudes for each configuration we use
a method based on an algorithm called Harmonic Inversion [53, 58, 59]. The
basic idea of this method is also outlines in section 2.3.2. It is based on the
fact that in the time-domain a complex Lorentz-line gives rise to an exponential
function. Supposing that the time-signal (discrete signal with 2N points) only
consists of N exponential functions with different complex amplitude and ex-
ponents, one can establish a set of non-linear equations in order to determine
all of their parameters.

The first step therefore consists of Fourier transforming the spectrum using
the FFT method in order to obtain a discrete time-signal. The Fourier transform
of the spectrum presented in 5.4 can bee seen in figure B.1.

The spectra are measured from 7.1GHz to 7.8 GHz with a step size of
100kHz resulting in 7001 data-points. Due to the typical resonance-widths of a
few MHz, which is one order of magnitude greater than the frequency step size
the time signals decays rapidly within a few hundred data-points. The rather
linear decay that can be observed (on the left) in the logarithmic scaled plot
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B.1. Linear chains

in figure B.1, confirms the exponential decay expected for Lorentzian shaped
resonances. All information about the systems resonances can be extracted
from this decay. In order to establish the set of non-linear equation to extract
all complex resonance-positions and amplitudes, we therefore select only the
first Ntrunc data-points. For this series of experiments, we chose Ntrunc = 510.
For other experiments, Ntrunc typically ranges from 200 to 650. We always
chose Ntrunc in a way that we include most of the exponential decay, without it
being unnecessarily large, since the greater Ntrunc, the more time is needed for
the computation. Additionally due to the way the set of non-linear equations
is formulated, the algorithm always finds Ntrunc/2 "resonances". A huge por-
tion of these "resonances" have vanishing amplitudes and/or are "resonances"
that form the baseline or mimic the small variations in the spectra induced by
noise. We thus have to proceed and filter out resonances according to their
width, frequency, phase and intensity to reduce the result to real resonances
only. Here, a small Ntrunc is also desired so that we have less resonances that
we have to filter out.

We choose the filters such that we typically still find more resonances than
actually should be present in the spectra, so we can be sure to not acciden-
tally filter out real resonances of the system. We thus use a clustering algo-
rithms [60] that regroup resonances that are appearing for different antenna
positions around one frequency with similar width and assign them to a state.
False "resonances" typically appear as noise in between the clusters, since their
origins are not the intrinsic resonant structure of the system, but rather fluctu-
ations and baseline effects that are different for each measured spectrum.

In figure B.2 one can see the extracted resonances from reflection spec-
tra measured over each resonator for one configuration, where the different
clusters are visualized using different colors. As already explained in 5.2.3,
we limit the extraction to the lower and central frequency band, since for the
higher frequency band, due to an increase in the resonance-widths the reso-
nances are stronger overlapping making the data treatment impossible. The
resonances were already filtered by their width and intensity, but a few false
"resonances" remains. These false "resonances" where successfully omitted in
the clustering process and the final clusters only contain real resonances.

For each cluster j, we then expect to have only one resonance for each
antenna-position. The amplitudes of the resonance found in the spectrum mea-
sured over resonator i then corresponds to |ψ j(i)|2, the wavefunction intensity
of state j at resonator i. In practice there are some rare cases where within the
same cluster there are two resonances for the the same position. In such cases
we decide to use the resonance, with the greater resonance-amplitudes.

We use this method to extract the wavefunctions for all measured configu-
rations. In section 5.2.3, we only present the LDoS for one configuration and
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Figure B.2 – Filtered resonances, extracted using the harmonic inversion method
applied to reflection measurements taken over each resonator of one configura-
tion. From top to bottom we plot the resonance-width, the resonance-intensity,
the phase of the resonance-amplitude and the index i of the resonator over which
the measurement were taken, all as a function of the resonance-frequency. With
the use of an clustering algorithm, we can group resonances that are appearing
for different antenna positions around one frequency with similar width and as-
sign them to a state. The found clusters are then highlighted by different colors.
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B.1. Linear chains

the mean LDoS, obtained by averaging over all configuration. In the following
one can thus find the LDoS (arranged according to their position index i and
rearranged according to the conumber index c(i)) for all measured configura-
tions for the both cases of weak and strong dominant coupling.

B.1.2 LDoS of all configurations: Dominant weak coupling
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Figure B.3 – Experimentally extracted LDoS for configuration 1 (top) and con-
figuration 2 (bottom) for ρ < 1, arranged according to their position index (left)
and rearranged according to their conumber index (right).
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Figure B.4 – Experimentally extracted LDoS for configuration 3 (top), config-
uration 4 (center) and configuration 5 (bottom) for ρ < 1, arranged according
to their position index (left) and rearranged according to their conumber index
(right).
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Figure B.5 – Experimentally extracted LDoS for configuration 6 (top), config-
uration 7 (center) and configuration 8 (bottom) for ρ < 1, arranged according
to their position index (left) and rearranged according to their conumber index
(right).
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B.1.3 LDoS of all configurations: Dominant strong coupling
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Figure B.6 – Experimentally extracted LDoS for configuration 1 (top), configu-
ration 2 (bottom) for ρ > 1, arranged according to their position index (left) and
rearranged according to their conumber index (right).
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Figure B.7 – Experimentally extracted LDoS for configuration 3 (top), config-
uration 4 (center) and configuration 5 (bottom) for ρ > 1, arranged according
to their position index (left) and rearranged according to their conumber index
(right).
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Figure B.8 – Experimentally extracted LDoS for configuration 6 (top), config-
uration 7 (center) and configuration 8 (bottom) for ρ > 1, arranged according
to their position index (left) and rearranged according to their conumber index
(right).
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Figure B.9 – Experimentally extracted LDoS for configuration 9 (top), configu-
ration 10 (center) and configuration 11 (bottom) for ρ > 1, arranged according
to their position index (left) and rearranged according to their conumber index
(right).
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Appendix B. Extraction of wavefunctions for the Fibonacci chains

B.2 Circular chains

The circular chains are made up of smaller motifs (i.e. Fn = 3,5, 8,13, 21),
that we repeat Np times, while imposing a weak coupling between two con-
secutive repetitions. The number of iteration Np is chosen such that a ring of
around 100 resonators is build for each Fn-motif. In this way, the Fn frequency
bands expected for an infinite chain Cn are each populated with Np states, and
can be individually identified in each reflection spectrum S11(i,ν) measured
over each resonator i.

We can recall from section 2.3.3

1−ℜS11(r⃗i,ν)∝ ρ(r⃗i,ν) =
N
∑

k

fνk ,Γk(ν) · |ψk(r⃗i)|2, (B.1)

where fνn,Γn(ν) are normalized Cauchy distributions around νn with width Γn.
Rearranging the sum over the different states, one can re-write

ρ(r⃗i,ν) =
Fn
∑

j=1

Np
∑

p=1

fν j,p ,Γ j,p
(ν) · |ψ j,p(i)|2 , (B.2)

where ν j,p and Γ j,p are the resonance-frequency and -width of the p-th state
within the j-th frequency band and |ψ j,p(i)|2 the corresponding wavefunction
intensity measured over resonator i.

Supposing that the bands are sufficiently isolated, by integrating each fre-
quency band j individually, one can then find

LDoS(i, j)∝
∫

band j

[1−ℜS11(i,ν)] dν , (B.3)

where we can further average over all indices i that have the same conumber-
ing c(i).

In figure B.10 (left column) one can see the measured density of states
DoS(ν) = 〈1−ℜS(i,ν)〉i for all Fn = 3, 5,8, 13,21. Determining the integra-
tion borders of each band j is obvious for Fn = 3 and 5, where the Fn frequency
bands are isolated and well separated by clearly visible gaps. While for Fn = 8
one could eventually still identify 8 bands, although some gaps in between are
closing, it becomes impossible for higher n to directly identify all frequency-
bands. We therefore use a method that exploits the normalization of each state,
to further define the integration border for bands that are not separated by a
clear gap.
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B.2. Circular chains

B.2.1 Defining integration borders

We calculate the integrated density of states iDoS(ν) =
∫ ν

DoS(ν′)dν′, that
we normalize so that when integrating over all states the iDoS(ν) equals Fn,
the total number of bands (

∫

DoS(ν′)dν′ = Fn). Theoretically in the limit of
Γ → 0 and perfectly normalized wave functions, we would obtain a staircase
function where we would have Fn big steps with step-height 1, that are consti-
tuted of Np smaller steps, with height 1/Np. Since the step corresponding to a
single band has a height of 1, one could think of intersecting the iDoS(ν)with a
set of horizontal lines that have a spacing of 1 in between them. The found in-
tersecting points ν∗k (iDoS(ν∗k) = k, for all k ∈ (0,1, 2, ..., Fn) could then define
the integration intervals for each band.

Due to the non-zero linewidth of our resonances, the Np smaller steps
within a band are completely blurred, while only the plateaus corresponding
to the well visible gaps, remain. Since the antenna-coupling σ is slightly de-
pendent on the frequency, and the single resonance wavefunctions are slightly
overlapping [29], the different states are not properly normalized in the ex-
periment, which translates to slighlty different step-heights in the iDoS. So
just intersecting the experimental iDoS with equally spaced lines, does not
work very well, as can be seen for the case of Fn = 3, where the two clearly
visible plateaus are not at iDoS(ν) = 1 and iDoS(ν) = 2, as expected if prop-
erly normalized, but slightly higher. We thus use a hybrid approach where we
take the frequency-positions of the clearly visible gaps as fixed references and
find the frequency-position of the vanished gaps in between by intersecting
the iDoS in between with equally spaced lines. The position of the visible gaps
are extracted by hand and marked as solid black vertical lines in the first two
columns of figure B.10. At the positions where the solid black lines intersect
the iDoS we draw solid blue horizontal lines. For Fn = 3, 5,8 we were able to
identify all gaps, so the solid blue lines divide the iDoS in Fn intervals, but as
explained earlier for Fn = 13,21 not all gaps can be identified. Whenever we
could not identify a gap, we draw additional blue dashed horizontal lines, that
equally divide the space in between the two solid blue lines by the number of
bands that we expected to be in between the clearly visible gaps. In order to
not adjust our results by our expectations we estimate the number of bands in
between two clearly visible gaps (solid blue lines), by rounding the position
where the blue lines intersect the iDoS-axis to the nearest integer value and
suppose that this is the number of bands below that gap. That way we deter-
mine the number of bands in between two solid blue lines. At the frequencies
where the dashed blue lines intersect the iDoS we draw dashed black vertical
line. The black vertical (solid and dashed) lines then define the integration
boundaries, that we use to integrate each individual spectrum measured over
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Appendix B. Extraction of wavefunctions for the Fibonacci chains

each resonator, leading to LDoS(i, j).
The results can be seen in figure B.10, where LDoS(i, j) is plotted ordered

according to the resonator position indexes i (third column) and to the conum-
ber indexes c(i) (forth column). By averaging LDoS(c(i), j) over all sites that
share the same conumber index, one obtains the smoothed patterns plotted on
figure 5.9.
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Figure B.10 – The different steps of the data treatment procedure for the circular
chains with (first row) Fn = 21, (second row) Fn = 13, (third row) Fn = 8,
(forth row) Fn = 5 and (fifth row) Fn = 3. For each chain we plot (from the left
the right) (first column) the density of states DoS(ν) and (second column) the
integrated density of states iDoS(ν) as a function of the frequency ν. The black
and blue horizontal and vertical lines define the integration boundaries to extract
LDoS(i, j), that are arranged according to the position index i (third column)
and conumber index c(i) (forth column). The vertical axis of the third and forth
column corresponds to the frequency-index j.
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Appendix C

Numerical results for the fractal
dimensions of wavefunctions

In this appendix we explain in detail how the confidence interval (grey
area in figure 5.7) for the experimentally extracted fractal dimension was cal-
culated by simulating the experimental chains with simple TB Hamitonians,
that account for fluctuations in the resonance frequencies and positions of the
resonators. We also numerically calculate the fractal dimensions for large n.
This reveals that the noticeable offset for large q between the theoretical curve
and the experiment data in figure 5.7 arises mainly from finite-size effect.

Contents
C.1 Calculation of the confidence interval . . . . . . . . . . . . . 153

C.2 Convergence of Dψq to the theoretical prediction for in-
creasing order n . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.1 Calculation of the confidence interval

In Fig. 5.7 one can see the calculated experimental fractal Dimension Dψq ,
the theoretical prediction as well as an confidence interval for our measure-
ment. Both the positioning of the resonators as well as the resonance frequency
of each resonator have a small variance (see section 3.3 for a details charac-
terization of the experimental fluctuations), which leads to slightly different
tight-binding Hamiltonians, wavefunctions and thus fractal dimensions each
time one would perform the experiment.

The fluctuation of the resonance frequencies have two origins. To place
the resonators, we let them drop through a small precision machined down-
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Appendix C. Numerical results for the fractal dimensions of wavefunctions

tube and then apply slight pressure via an plastic rod on top of the dielectric
cylinders. This ensures a good electrical contact between the bottom plate
and the resonator, but upon replacing the same resonator several times, the
measured resonance frequencies of the very same resonator still vary slighly
with a standard deviation of ≈ 0.5 MHz. Further, the resonators are not iden-
tical, resulting in different resonance frequencies as well. Out of a series of
500 resonators, whose resonance frequencies follow approximately a normal
distribution with a width of 40MHz, we chose the 55 resonators that have the
closest resonance frequencies. This results in a difference between the extreme
resonance frequencies of ≈ 3MHz. Since the span of 3MHz is small compared
to the width of the distribution of resonance frequencies for the whole series,
we suppose that they follow a quasi linear distribution. In addition, we have
small variations within the positions upon placing the resonators, that result
in slightly varying coupling strength’s. In space, these fluctuations are of the
order of 0.05mm, that induces in the worst case (smallest distance between
resonators) a variation of 4% of the coupling strength.

In order to estimate the impact of these experimental fluctuation on the ex-
tracted fractal dimensions, we simulate the experiment by formulating simple
tight binding Hamitonians for the 11 different permutations. We model the
resonators resonance frequencies ν∗ ∼ 7.454 MHz+U (−1.5 MHz,1.5 MHz)+
N (0,σν) by employing a uniform distribution U with a span of 3 MHz com-
bined with a normal distribution N with σν = 0.5MHz centered around
7.454GHz, that accounts for the variation of the resonance frequencies upon
the placing of the resonators. With {r⃗i} being the exact positions that fol-
low the Fibonacci sequence, we suppose that the actual positions of the res-
onators {r⃗∗i } follow r⃗∗i ∼ r⃗i + N (0,σpos), supposing a normal distribution
with a standard deviation of σpos = 0.5 mm in the x and y direction. We
then calculate the coupling strength between all nearest neighbours i and
k, by calculating their distances dik = |r⃗∗i − r⃗∗k | and using the relation t(d) =
63.2MHz·K0(0.481mm−1·d/2)·[K2(0.481mm−1·d/2)+K0(0.481 mm−1·d/2)]
between coupling strength t and separation d between two resonators that
was extracted from two-resonator measurements in section 4.2.1. We diago-
nalize the Hamitonians in order to find the wavefunctions, average over the
different permutations and determine the fractal Dimensions D∗q via the same
box-counting method that we use for the experiment. We perform this proce-
dure 10000 times and then for each q the 5-th percentile and 95-th percentile
of the distribution of D∗q are used as the lower and higher contour line of the
grey area in Fig. 5.7 respectively, defining a sort of 90% confidence interval.

There is a noticeable offset for large values of q between the experimen-

tal Dψq and the theory. The fact the values for one experimental realization
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C.2. Convergence of Dψq to the theoretical prediction for increasing order n
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Figure C.1 – Simulated spectrally averaged fractal dimension Dψq=40 for a high
value of q = 40 as a function of the iteration index n (blue points). The numbers
near the blue points are the system size/motif length Fn for each iteration. The
orange line presents the theoretical value of the fractal Dimension of the quasiperi-

odic system Dtheo
q=40. The grey solid lines are fits of the form D(n) = AnB − y0.

have an offset could be explained by experimental fluctuation, since both the
experimental points as well as the theoretical curve lie within the confidence
interval, but the average values of the simulated D∗q (white dashed line within
the grey area in Fig. 5.7) shows an offset compared to the theoretical curve
as well. Next-neighbour couplings within the actual experiment and the way
we average over the 11 permutations play certainly a small role, but this offset
mainly arises form the finite system size of Fn = 55 as we will show in the
following.

C.2 Convergence of Dψq to the theoretical predic-
tion for increasing order n

In Fig. C.1 one can see calculated fractal dimensions Dψq=40 for different
system sizes Fn for a high value of q = 40 and ρ = 0.64. Since here we only
want to compare the effect of the system size, we simulate the only-nearest
neighbour tight-binding system of the n-th periodic approximant of infinite
size by formulating a closed chain of Fn resonators (one single motif) and Fn

couplings where we vary over the phase of the connecting coupling between
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the first and last resonator to account for the periodicity. One can see that the
fractal dimensions converge to the theoretical value in the quasi periodic limit
n≫ 1, with an oscillating behaviour. A quick explanation of this feature can
be given, when looking into the central/most localized state. If the system size
is an uneven number the central state is localized only at the central site, while
for an even system size, the central state is localized at the two central positions
of c(i). It is thus less localized and therefore it has a greater fractal dimension.
Since numerically it is very costly to diagonalize very large matrices, we stop
ourself at a system size of F21 = 10946, which still has a noticeable offset
compared to the theoretical value. Then in order to verify that the values
converge to the theoretical one, we fit the apparent three different subsets with
an algebraic decay D(n) = AnB − y0, where we suppose the same exponent B
and offset y0 for all subsets but with different amplitudes A. We find B =
−1.298 and y0 = 0.540, which corresponds reasonably well to the theoretical
value Dtheo

q=40 = 0.542, considering that the theory was formulated in the strong
modulation regime ρ≪ 1, where we are far off with ρ = 0.64.
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