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𝛿  Small crack 

𝑑𝑎

𝑑𝑁
  Fatigue Crack Growth Rate 

𝐶  Material parameters 

𝑚  Material parameters 

R Load ratio 



 

∆𝐾𝑡ℎ  Threshold of the stress intensity factor 

𝐾𝐼𝑐   Facture toughness 

∆𝐾𝑒𝑞  Equivalent stress intensity factor 

𝑁𝑓  Number of loading cycles to failure 

𝑟  Distance from the crack tip to a given point 

∆𝐾𝑒𝑓𝑓  Effective stress intensity factor range 

∆𝑎  Crack growth increment 

𝐷0  Random variable 

𝒑𝟎  Vector of the initial distribution of the different level of damage 

𝒑𝒕  Vector of the distribution of each level of damage 

𝐹𝑊(𝑡; 𝑏)  Cumulative distribution function 

𝐴(𝑡, 𝛾)  Probabilistic process 

𝑓(𝑎)  Probability density function 

𝜎𝑚  Minimum stress amplitude 

 𝜎𝑀  Maximum stress amplitude 

Ф  Arbitrary invertible function 

𝑌(𝑎)  Geometric correction function 

𝛹(𝑎)  Increasing function of the evolution of the crack length 

𝑋  Random vector of variables 

𝑥  Vector of real values associated to the randomness 

𝑦  Mechanical model response 

𝑌  Probabilistic model 

𝛺  Space of random events 

𝑇  Iso-probabilistic transformation 

𝑈  Standard Gaussian random variable 

ℎ ≡ 𝑓   ⃘ 𝑇  Function representing the physical model in standard random space 

 𝑝𝑦(𝑦)  Probability density 

𝑚𝑌
𝑙   Statistical moment 

 𝑝𝑥(𝑥)  Joint probability density of the random variable 𝑋 

𝜑𝑢(𝑢)  Joint probability density of an N-dimensional standard Gaussian random variable 

𝜇𝑌  Mean 

𝜎𝑌  Standard deviation 

𝑃𝑓  Probability of failure 

1𝛺𝐹  Indicator function in 𝛺𝐹 

𝑃̂𝑓  Estimation of the probability of failure 

𝑛𝑝   Quadrature order 

𝐼[. ]  Integration designing a linear function 

𝑢𝑛  Random variable in the ℝ space 



 

𝜑𝑼𝒏  Probability density of 𝑢𝑛 

𝑤𝑘𝑛  Gauss-Hermite weights 

𝑢𝑘𝑛   Gauss-Hermite integration points 

𝐻𝑛(𝑥)  Hermite polynomials 

𝒖𝑖  Integration points 

𝑤𝑖  Integration weights  

𝑑𝑇   Highest order of the function: smallest integer 

𝜎𝑢
2  Partial variance 

𝜎2  Total variance 

ℱ  Random set 

𝐻(𝑥, 𝜃)  Random field 

𝜌(𝑥, 𝑥′)  Correlation function 

𝐶𝐻𝐻(𝑥, 𝑥
′)  Autocovariance function 

𝐻̂(𝑥, 𝜃)  Approximation field 

𝛹𝜶  Multivariate Hermite polynomials 

𝑎𝜶  Deterministic unknown coefficients 

𝜶  Multi-index 

𝑀̂  Polynomial approximation 

𝔼[. ]  Mathematical expectation 

𝜑𝑁  Probability density 

𝑞  Quadrature order 

𝑝  Degree of polynomial chaos expansion 

𝒯𝑛
𝑝
  Set of index associated with a polynomial chaos expansion of degree  𝑝 

𝑌  Mechanical response 

𝑙𝑥  Correlation lengths in the 𝑥 direction 

𝑙𝑦  Correlation lengths in the 𝑦 direction 

𝐸(𝒙, 𝜃)  Random field 

𝜆𝑖  Values of the correlation matrix 

𝜙𝑖  Eigenvectors of the correlation matrix 

𝜇𝐸
0   Mean of the normal random field 

𝜎𝐸
0  Standard deviation of the normal random field 

𝐺(𝑿)  Limit state function representing a failure scenario 

 𝐾𝑒𝑞  Equivalent stress intensity factor 

𝑓𝑘(𝑥𝑘)  One-dimensional function of the individual contribution of the parameter  𝑥𝑘 

𝑦𝑠̃  Approximation of the mechanical response 

𝑟𝑦  Size of the cyclic plastic zone 

𝜙𝑅  Retardation parameter 

𝑎𝑂𝐿  Crack length at which the overload is applied 



 

𝑎𝑖  Current crack length 

𝑟𝑝,𝑂𝐿  Size of the plastic zone produced by the overload at 𝑎𝑂𝐿 

𝑟𝑝,𝑖  Size the plastic zone produced at the current crack length 𝑎𝑖 

𝑚𝑤ℎ𝑒𝑒𝑙𝑒𝑟  Shaping exponent 

𝜎𝑦𝑙𝑑  Yielding strength of the material 

𝐾𝑟𝑒𝑑  Residual stress intensity factor 

𝐾𝑚𝑎𝑥,𝑒𝑓𝑓,𝑖  Maximum effective stress intensity factor 

𝐾𝑚𝑎𝑥,𝑖  Maximum apparent stress intensity factor (under constant amplitude) 

𝐾𝑚𝑖𝑛,𝑒𝑓𝑓,𝑖    Minimum effective stress intensity factor 

𝐾𝑚𝑖𝑛,𝑖  Minimum apparent stress intensity factor 

∆𝐾𝑒𝑓𝑓,𝑖  Effective stress intensity factor range 

𝐾𝑚𝑎𝑥,𝑂𝐿  Stress intensity factor of the overload cycle 

∆𝑎  Crack growth length since the overload cycle 

𝛽  Plastic zone size factor 

 𝑅𝑒𝑓𝑓  Effective stress ratio 

𝜙𝑎  Acceleration factor 

𝐾𝑜𝑝  SIF of crack closure level 

∆𝐾𝑡ℎ  Threshold stress intensity factor range 

∆𝐾0  Threshold value of the SIF range for 𝑅 = 0 

𝑁𝑓
𝑅𝐴𝐿  Fatigue lifetime associated to the true random amplitude loading 

𝑁𝑓
𝐸𝐶𝐴𝐿  Fatigue lifetime associated to the equivalent constant amplitude loading 

∆𝜎𝑒𝑞  Equivalent stress amplitude 

∆𝜎𝑖  Random loading amplitude 

𝜃  Crack tip opening angle (CTOA) 

𝛿  Crack Tip Opening Displacement (CTOD) 

𝑑𝛿  Variation of the CTOD 
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Introduction 

Fatigue of materials, considered as the cumulative damage under cyclic loads, even below their elastic 

limits, is identified as a major engineering problem and the most common source of failure of mechanical 

structures and components. 80-90% of total identified structural failures have been attributed to fatigue, 

which has been the cause of several catastrophic accidents such as bridge collapses and aircraft failures.  

A first level of complexity that engineers will have to deal with lies in the difficulty of understanding fatigue 

phenomena that occur without any visible warning signs. Prediction is thus almost impossible and, 

consequently, the material and human damages are important. 

Many researchers have been interested in understanding the physics of the fatigue phenomenon to be able 

to predict the service life of materials and structures subjected to cyclic loads. Their studies are mainly 

devoted to the modeling and monitoring of the evolution of stresses in the vicinity of micro or macroscopic 

cracks. The fatigue damage process is decomposed into two phases. The embrittlement of the material, in 

particular in the vicinity of stress concentration zones, leads, in a first phase, to the appearance of cracks 

which propagate, in a second phase, under the effect of the load until the sudden failure of the material. 

The embrittlement of the material, particularly in the vicinity of stress concentration zones, leads, first, to 

the initiation of cracks which propagate under the effect of the loading until the sudden failure of the 

material. Fatigue life, measured in number of loading cycles, is generally taken as the sum of the time 

taken for a crack to initiate and the time taken for it to propagate to a critical length, or to failure. The 

duration of each of these two phases depends mainly on the type of material and its initial defects. For 

most structures subjected to fatigue, the contribution of the crack initiation phase on the service life is 

generally low relative to that of the propagation phase (about 10% of the total service life). The fatigue 

life is therefore mainly represented by the duration of the propagation phase, which is estimated by 

integrating models representing the evolution of the crack size and the number of load cycles such as the 

well-known Paris-Erdogan law. 

In engineering, the design of structures subject to fatigue is performed with respect to a safe fatigue 

lifetime that depends on the consequence of the failure. The definition of this target fatigue lifetime is not 

a trivial task. The concepts of fracture mechanics allow to study the behavior of structures with respect to 

fatigue of materials. Within this framework and under simplifying assumptions, such as a linear elastic 

mechanics of fracture, the service life can be adequately calculated using stress intensity factors and 

comparing them to the material toughness. These parameters, which define the driving forces that govern 

the crack during its propagation, depend on the geometry of the structure and the applied loading. In the 

case of simple structures, analytical expressions are available but for more complex structures, with 

complex geometries and/or for a mixed mode of crack propagation, following a curvilinear path, these 

expressions do not exist and numerical simulations, with heavy computational efforts, are necessary. 
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A second level of complexity, to be dealt with mainly by researchers this time, lies in the very random 

nature of the fatigue phenomenon. Deterministic approaches, based exclusively on the principles of fracture 

mechanics, provide conservative predictions and numerous studies have shown the high dispersion of the 

crack propagation rate recorded during experimental tests. Accurate predictions are thus only possible 

through the coupling between fracture mechanics and probability theory. 

Different approaches can be considered to integrate the stochastic character of the crack growth process 

in the fatigue life estimation. Approaches based either on Markov theory or on the weighting of the equation 

managing the crack growth rate by a random process are very often purely statistical. In addition to the 

need for costly experimental work to determine the different parameters and a consequent analytical 

development, these models are only applicable for simple academic cases dealing with cases where the 

crack propagation takes place in an opening mode. However, in real engineering problems, in practice, 

failure occurs in mixed mode and the use of these models is largely questionable. The problem is therefore 

to propose an approach that allows to guarantee the best compromise between the representation of the 

real behavior of the fatigue crack and the consideration of the different sources of uncertainty. From the 

point of view of the reliability specialist, uncertainty propagation through a mechanical model is the best 

alternative. Different sources of uncertainties exist, mainly associated with material properties, structure 

geometry and loading conditions. Uncertainties in these input parameters must be incorporated into the 

modeling of the crack propagation process in order to characterize their effects on the mechanical response 

and to provide a robust prediction of the service life. 

To this end, the effect of uncertainties on the mechanical response is quantified using a mechano-

probabilistic coupling strategy. This quantification can have three distinct objectives and purposes: (1) 

Evaluate the variability of the mechanical response by computing statistical moments and constructing the 

probability density; (2) Measure the contribution of the variability of each uncertain parameter on the 

variability of the mechanical response by a sensitivity analysis based on a variance decomposition; (3) 

Evaluate the probability of failure with respect to one or more failure scenarios by a reliability analysis.  

Mathematically speaking, for the three purposes above, the treatment of the problem relies, possibly, on 

several multidimensional integral calculations. In fatigue cracking problems, where mechanical models are 

often available in an implicit and computationally expensive form, the evaluation of integrals is not trivial. 

With the exception of Monte-Carlo simulations (MCS), whose application is restricted to simple problems 

for which an explicit formulation of the mechanical model is available, few probabilistic methods are able 

to address all three purposes and, moreover, most of these methods are inefficient as the stochastic 

dimension increases. Thus, the proposal of an uncertainty propagation approach, covering the three 

purposes above, and using efficient multidimensional integral schemes and robust approximation of 

complex mechanical problems is at least relevant. 

On this last aspect, which ultimately concerns the precise approximation of the response of an implicit 

model, promising methods of probabilistic calculation, based on response surfaces, substitution models or 
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meta-models, have been developed. Their common principle is simple; it consists in building an explicit 

representation of the original implicit mechanical model, by simulating the latter in a set of points called 

design of experiments. Once this explicit representation is obtained, the three purposes of the probabilistic 

calculation can be easily approximated by performing an MCS on it. 

Considering the previous statement and arguments, computational approaches for addressing uncertainty 

propagation analysis through engineering problems are developed to satisfy the following objectives: 

• To achieve methodological advances in the field of uncertainty propagation through mechanical 

models representing complex physical phenomena and with high probabilistic dimensionality. The 

combination of efficient cubature formulae and metamodeling techniques will be investigated.  

• The computational approaches must be sufficiently generic, on the one hand, to solve a large class 

of engineering problems, particularly those dealing with fatigue crack growth, and on the other hand, to 

be able to handle all three kinds of uncertainty propagation analysis, namely statistical moments and 

distributions, sensitivity, and reliability analysis. 

• The computational approaches must be efficient, even for problems with a high probabilistic 

dimension. Less than a few hundred evaluations of the primary mechanical model would be appreciated.  

• To avoid additional computational cost when switching from one kind of uncertainty propagation 

analysis to another.     

• The quantities of interest, i.e., statistical moments, probability distributions, sensitivity indices and 

probability of failure, can be straightforwardly derived. 

To reach our objectives, step by step, we propose a manuscript structured in three chapters whose 

respective contents are detailed in what follows.  

Chapter I is a bibliographic summary presenting the general notions of the fatigue phenomenon. In this 

chapter, a state of the art of the fatigue phenomenon, deterministic and probabilistic approaches to deal 

with uncertainties will be presented. We will first present the basics of fracture mechanics which are the 

basis of all the laws used for the phenomenon of fatigue, and then we will focus on understanding the 

fatigue crack growth phenomenon. In addition, fatigue crack growth models will be studied, and the 

predictions will be compared to experimental data from the literature. Stochastic models for fatigue crack 

propagation will also be presented, as deterministic approaches cannot be used especially due to the 

random nature of the fatigue phenomenon. 

Chapter II will first introduce the general principles of uncertainty propagation analysis through physical 

models, to make the reader aware of the related mathematical framework. The focus will be on the 

mathematical formulations of the quantities of interest related to the three possible types of uncertainty 
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propagation analysis, namely statistical moments and distributions, sensitivity, and reliability analysis. 

After a presentation of classical methods of computing multidimensional integrals involved in uncertainty 

propagation analysis, and a critical review of their advantages and limitations, six efficient cubature 

formulae taken from the literature will be introduced. The ability of these to conduct uncertainty 

propagation analysis will be evaluated on the basis of various academic and engineering problems ranging 

from a simple mathematical explicit model to a computationally demanding implicit model with high 

probabilistic dimensionality. The analysis of the advantages and disadvantages of each of these cubature 

formulae will allow us to orient our choice towards a class of method based on the concept of polynomial 

chaos. 

Chapter III will introduce the well-established metamodeling technique named Polynomial Chaos Expansion 

(PCE) that emerged in the earlier 90’s to conducted uncertainty propagation analysis through mechanical 

models. It consists in representing the random responses due to uncertainty on the input parameters of a 

mechanical model, as a series expansion on a multivariate polynomial basis, called metamodel. The 

mathematical formalism related to the construction of PCE-based metamodels will be recalled. Special 

emphasis will be put on the computation of the unknown PCE coefficients, using projection and regression 

techniques. The number of the PCE coefficients increases with the probabilistic dimensionality of the 

mechanical model and the degree of the PCE used to ensure the accuracy of the metamodels, resulting in 

a computational effort that is impossible to achieve using conventional approaches such as Monte-Carlo 

Simulation and full tensor-product integration schemes for the estimation of the PCE coefficients. To 

circumvent this problem, two strategies of constructing PCE-based metamodels will be introduced. The 

first one, which is a part of the projection techniques, aims to reduce the number of evaluations of the 

mechanical model involved in the computation of the multidimensional integrals defining the PCE 

coefficient. The second one, which is a part of the regression techniques, aims to use smart truncation 

schemes favoring the PCE components with the largest contributions on the variability of the model 

responses of interest, thus reducing the number of PCE coefficients and the computational cost required 

to their estimates. Then, the derivation of the quantities of interest, corresponding to moments and 

distribution, sensitivity reliability analysis, based on post-processing the PCE coefficients will be presented. 

Lastly Chapter III will address a panel of fatigue crack growth problems with different levels of complexity 

to show the potential of the proposed approaches to efficiently conduct the three kinds of uncertainty 

propagation analysis. An example application with correlated uncertain parameters will be studied. A 

second example will deal with fracture in ductile material, where the crack driving forces of interest are 

obtained from a computational cost demanding incremental finite element analysis. The third application 

example will deal with a large number of uncertain parameters resulting from the representation of random 

field of spatially varying material properties. 
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Chapter I: State of art on probabilistic modelling of fatigue 

crack propagation  

1. Introduction 

Fatigue of material, defined as the alteration of the mechanical properties under the effect of a cyclic load, has 

been identified as a major technical problem, leading to the failure of structures and mechanical components. 

The embrittlement of the material, particularly in the vicinity of the stress concentration zones, leads to the 

initiation of cracks which propagate under the effect of the loading until the sudden rupture of the material or the 

failure. The fatigue life, measured in terms of number of cycles loading, is the sum of the time necessary for the 

appearance of a macroscopic crack in the material, and of the time taken to propagate the crack until it reaches 

a critical size for which the component can no longer perform its service function. In most cases, the fatigue life 

is represented only by the duration of the propagation phase, which is estimated by integrating empirical models 

representing the evolution of the size of the crack to the number of cycles. These models are mainly deterministic 

and therefore unable to describe the stochastic character of the crack growth, which is induced by the 

uncertainties such as the mechanical properties of the materials, the loading, and the geometry of the structure. 

Indeed, different sources of dispersion must be taken into consideration in each situation to describe the real 

situation of the structures. If these uncertainties are not taken into account, this leads to an under dimensioning 

of the structure thus a higher risk of failure and therefore a much higher repair cost. To overcome this problem, 

stochastic models have been developed; these models have been the target of several criticisms because they 

are purely statistical and thus unable to describe complex phenomena such as mixed-mode propagation or crack 

growth retardation under the effect of overloads. Thus, the main objective of this thesis is to develop a 

probabilistic approach capable both of modeling the physical phenomena associated with the fatigue crack 

propagation process while considering its stochastic character. More precisely, the main objective is to solve 

problems with high stochastic dimensions (consider a high number of uncertainties) in application dealing with 

fatigue crack growth. Thus, an efficient uncertainty propagation approach will be presented, taking into account 

the unstable crack growth rate and enhancing the fatigue crack growth mechanical model using finite element 

model, to better represent the statistical dependence between uncertain parameters. 

In order to highlight the various scientific obstacles related to the subject of the thesis, we start the bibliographical 

review by the presentation of the fatigue phenomenon, followed by a description of the approaches of fatigue life 

prediction, and develop the one based on the fracture mechanics. We will then present the basics of fracture 

mechanics which are the basis of all the laws used for the phenomenon of fatigue, then focus on understanding 

the fatigue crack growth phenomenon. Moreover, this chapter will present the interaction between the notion of 

dispersion and fatigue failure. Finally, a particular attention will be given to the crack propagation since it 

constitutes a major part of the structure life. Thus probabilistic model of fatigue crack propagation were presented 

because deterministic approaches cannot be used especially with the random nature of the fatigue phenomenon 

and if we take in consideration the effect of retardation induced by the application of an overload due to the 

randomness of loading. 



Chapter I: State of art on probabilistic modelling of fatigue crack propagation 

 S.Chahine | Efficient uncertainty propagation approaches to solve a large class of fatigue crack-growth problems  8 

2. Fatigue phenomenon 

2.1. Basic concepts and physical aspects 

Since the 19th century, the fatigue of materials (Sobczyk and al, 1992) was identified as a major technical problem 

leading to the failure of structures and mechanical components. Indeed, in most engineering structures, fatigue 

failure is widely observed (Ahmadzadeh and al, 2019), (Mareau and al, 2019), (Kamal and al, 2018). For instance, 

a classification study (Schütz, 1996) of the failure modes in military aircrafts has shown that failures induced by 

fatigue of materials are the most observed. Between 80% and 90% of total failures were attributed to the fatigue 

of materials. A material is subjected to fatigue loading when the loading applied to it varies with time and can 

modify its local properties until it reaches the failure of the structure. In general, one or more tiny cracks start in 

the material, and these grow until complete failure occurs. These cracks can be originally existent in the structure 

from manufacturing, or they can start early in the service life. Thus, the phenomenon of fatigue can be described 

as the progressive damage of a structure subjected to cyclic stresses.  

Prevention of fatigue fracture is a vital aspect for structures subjected to cyclic loading, hence the analysis of 

fatigue crack growth is used to schedule inspection and repair. The multiplication of serious incidents with a 

significant number of victims especially in the field of rail transport led scientists in the mid-19th century to focus 

on the phenomenon of fatigue cracking. One of the most popular examples of a disaster due to fatigue failure 

and known as the origin of the studies of the fatigue phenomenon, is the Meudon rail accident in 1842 (figure 

I.1). The cause of the accident was the rupture of one of the axes of the damaged locomotive. 

 

Figure I. 1. Illustration of the Meudon disaster from 1842 (Wikipedia) 

Another accident was the failure of the fuselage of a passenger jet in 1988 (figure I.2). The problem started with 

fatigue cracks at rivet holes in the aluminum structure. These cracks progressively propagated during the use of 

the airplane, creating a large crack that caused the failure of the structure. These examples show the necessity 

to predict its service life to guarantee the reliability of a structure, considering that it may contain defects, such 

as fatigue cracks.  
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Figure I. 2. Fuselage failure in a passenger jet that occurred in 1988 (NASA TECHNOLOGY) 

From a physical point of view, we can define the fatigue as the alteration of the mechanical properties of the 

material subjected to repeated loading. Consequently, weakness points or micro cracks appear in the material 

from which a macro crack propagates if cycle load continues until a brutal collapse of the structure. Figure I.3 

shows fracture surfaces of fatigue failure and the final fracture observed of an automotive steel component 

(Schijve, 2009). 

 

Figure I. 3. Fatigue fractography of automotive steel component (Schijve, 2009) 

Experiences have shown that fatigue failures can be usually divided in three stages. First, a stage where micro-

cracks start from the surface of components, which is called crack initiation stage. Then, follows a stage where 

these later (i.e. micro cracks) grow progressively while the cycling loading continues; this stage is called stable 

crack growth stage. Finally, when the remaining transversal section of the component is too small to support the 

applied load, a sudden breakdown is observed, which is called unstable crack growth stage. The fatigue lifetime 

is usually defined as the number of loading cycles leading to the failure. In every stage of the fatigue lifetime, 

complex physical phenomena can be observed. Furthermore, the respective fractions of these stages, towards 

the lifetime of the structure, can be significantly different. They mainly depend on the nature of the material and 

if this later contains initial defects or not (Schijve, 2009).  

More precisely, the following factors will affect the fatigue lifetime: quality of material processing (size and 

distribution of inclusions, voids …), procedure of material processing (annealed, quenched, tempered…), 
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procedure of specimen manufactures (specimen shape, machining method), quality of specimen manufactures 

(scratch, surface condition), material properties (yield strength, ultimate strength, strain at failure, 𝜎 − 𝜀 curve), 

geometry (length, width, thickness, transition radius,…), stress state (uniaxial, multiaxial, stress ratio), and effect 

of environment (temperature, corrosion, …).  

Some laboratory tests conducted on smooth notched specimens have shown that when a macro-crack appears in 

the material, the remaining number of loading cycles to failure is very small, which means that the initiation stage 

is about 90% of the total fatigue lifetime. Otherwise, when the tested specimens contain sharp notch, the 

propagation stage is by far the most dominant and can reach 95% of the total fatigue lifetime. This later situation 

is usually observed in practice since engineering structures inevitably contain defects. 

From an engineering point of view, the fatigue lifetime is reduced to only two stages: the crack initiation stage 

and the crack growth stage, since the unstable crack growth stage only takes few loading cycles, which can be 

neglected in the prediction of the fatigue lifetime. Figure I.4 depicts schematically the stages of the fatigue failure. 

 

Figure I. 4. Stages of the Fatigue failure (After (Dowling, 2007)) 

It is worth mentioning that distinguishing the initiation and the propagation stages is of a great importance in the 

prediction of the fatigue lifetime, since each stage has its own influencing parameters. That is, some parameters 

which have significant effect on the initiation stage could have weak effects on the propagation stage, and vice 

versa. For instance, the material surface finishing or the material roughness affects only the initiation stage, while 

a corrosive environment affects proportionally the initiation and the propagation stages. 

2.2. Fatigue design approaches 

In engineering practices, the design of structures subjected to fatigue is performed with respect to a safe target 

fatigue lifetime which depends on the consequence of the failure. Many research works have been conducted 

from different perspectives in terms of fatigue life prediction such as (Zhang and al, 2019), (Ai and al, 2019) and 

(Liu and al, 2020) who developed fatigue life prediction methods for engineering components based on the 

principle of surface fatigue abrasion theory. The definition of this target fatigue lifetime is not a trivial task and, 
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in this context, three design concepts can be used. The first one is called Safe-Life concept, where the design is 

performed under limited fatigue lifetime assumption. In other words, it is supposed that the fatigue lifetime is 

defined as the duration of the initiation stage, which means that the structure can reach safely the retirement 

without observing fatigue failure. This concept is mainly used in automotive industry and the safe fatigue lifetime 

is defined as the weighting of a target fatigue lifetime (i.e. usually the mean fatigue lifetime) by a safety 

coefficient. The second one, called Fail-Safe concept, is very used in the aeronautic industry. It assumes that 

defects can be tolerated without affecting the structural integrity i.e. the failure does not occur before a critical 

crack is detected and repaired, which consequently supposes that periodic inspections are scheduled over the 

lifetime of the structure. The third one, called Damage Tolerance concept, has the same backbone as of the Fail -

Safe, but it is based on fracture mechanics. The safe fatigue lifetime is defined as the number of loading cycles 

able to grow the crack until a critical length. This concept is mainly applied for high toughness materials where 

the crack growth is supposed to be slow. The difference between these concepts is the consequence of the 

different criteria required in the fatigue design. Indeed, according to each type of structure and according to its 

field of application, criteria are dictated by the loading applied, the types of materials. Therefore, the choice of 

one concept or another must take these parameters into consideration. In this thesis the Damage Tolerance 

concept was applied, indeed, for critical structures, in order to guarantee a high level of reliability, this concept 

seems best suited. However, for purely economic reasons the structures in reality are designed for a Safe-Life 

concept. In practical engineering, fatigue fracture of the structure may cause enormous economic losses and 

disastrous accidents, for that the Damage Tolerance concept and life prediction approach are important for a safe 

life design and reliability assessment (Li and al, 2018), (Zheng and al, 2020), (Song and al, 2020). 

The fatigue design methods are based on the calculation of the service life. However, each design method from 

the previous paragraph, takes into consideration one of the two periods (initiation period or propagation period) 

which constitute the fatigue damage process. Thus, there are a variety of approaches to predict the fatigue life. 

These approaches are based on a relationship between a load-related parameter such as stress/strain amplitude 

or stress intensity factors (SIF) magnitude ∆𝐾 (described later in section 3.1), and fatigue life 𝑁 in terms of number 

of cycles. In general, three major approaches can be distinguished for the prediction of the fatigue life of the 

structure: the approach based on the Wöhler curve (i.e. 𝑆 − 𝑁 curve), the approach based on local deformation 

and the approach based on the theory of fracture mechanics. 

2.2.1. Approach based on the Wöhler curve 

This approach is widely used in the design of structures likely to be subjected to fatigue damage during their 

lifetime. The particularity of this approach relies on its simple formulation which gives a relation between the 

number of cycles 𝑁 and the variation of the nominal stress ∆𝜎 or the stress amplitude defined as the difference 

between the maximum stress value and the minimum stress value divided by two (𝜎𝑎 = (𝜎𝑚𝑖𝑛 − 𝜎𝑚𝑎𝑥)/ 2).  
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Figure I. 5. Wöhler curve for a low alloy steel SAE 4130 (Schijve, 2009) 

This relationship is known as the Wöhler curve or 𝑆 − 𝑁 curve, mathematically written (Eurocode 3, 1996): 

∆𝜎 = 𝑚𝑎𝑥 [(
𝑁

𝐶𝑆𝑁
)
−

1
𝑚𝑆𝑁

;  ∆𝜎𝐷] (𝐼. 1𝑎) 

Or in logarithmic form 

log ∆𝜎 = 𝑚𝑎𝑥 [−
1

𝑚𝑆𝑁
log 𝑁 +

𝐶𝑆𝑁
𝑚𝑆𝑁

; log ∆𝜎𝐷] (𝐼. 1𝑏) 

where 𝐶𝑆𝑁 is a constant of the Wöhler curve, 1/𝑚𝑆𝑁 is the slope of the Wöhler curve and ∆𝜎𝐷 is the endurance limit 

of the material which is defined as the horizontal asymptote of the Wöhler curve. 

This curve distinguishes two parts: 

o The first for low number of fatigue cycles, or oligo-cyclic fatigue, characterized by severe loads and which 

corresponds to materials with non-negligible plasticity. 

o The second for high number of fatigue cycles, or polycyclic fatigue, where material behavior is 

characterized by zero macroscopic plasticity. 

                                               

Figure I. 6. Representation of the Wöhler diagram and the domain of interest (Schijve, 2009) 

If the number of repetitions (cycles) of the load is large, say, millions, then the situation is termed high-cycle 

fatigue. It is associated with relatively small deformations that are primarily elastic. On the contrary, low-cycle 
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fatigue is caused by a relatively small number of cycles, say, tens, hundreds, or thousands. Low-cycle fatigue is 

generally accompanied by significant amounts of plastic deformation. The transition between the two areas 

depends on the material under stress. It generally occurs around 105 cycles as shown in figure I.5 (Schijve, 2009). 

Let us recall in our thesis that we will be interested in the intermediate zone, as shown in the figure I.6. Since we 

are not interested in the total lifetime but only in the propagation phase, we have to remove the number of cycles 

required for the initiation phase, thus we will have a moderate number of cycles. 

The fatigue life expressed in term of number of cycles 𝑁 to failure can be determined directly from the Wöhler 

curve and calculated from equations (I.1a) or (I.1b) if we have a constant amplitude loading  ∆𝜎. In the case of 

variable amplitude loading, the equations (I.1a) or (I.1b) cannot be used, thus the evaluation of the fatigue life 

requires the application of a whole procedure which consists first in representing the sequence of the applied 

loading in the form of an histogram by means of a cycle counting method such as the Rainflow method, then to 

calculate the damage induced by this loading history using a damage accumulation law such as Miner's law and 

in a last step to determine the number of histograms needed to reach the failure. Indeed, over the past decades, 

the fatigue damage accumulation rule and life prediction approach were investigated to prevent disastrous 

accidents of fatigue failure (Wang and al, 2021), (Gao and al, 2020), (Li and al, 2019). Thus, the fatigue life is 

deduced by converting the number of histograms into the number of loading cycles. However, the Wöhler curve 

approach is criticized for its conservatism in fatigue life prediction and because it does not consider the interaction 

effect noticed in the case of loads with variable amplitudes. 

2.2.2. Approach based on local deformation 

Local deformation is used to predict the fatigue life of structural components with notches. It is based on the 

concept of the 𝜀 − 𝑁 curve which relates the local deformation ε to the number of loading cycles 𝑁 required to 

initiate a crack. This approach studies the plastic deformation that may arise in confined areas where fatigue 

cracks initiate. Thus, this method takes into consideration fatigue situations where local yielding is involved, which 

is often the case for ductile metals for short lives. The major difference with the 𝑆 − 𝑁 curve, concerns the 

consideration of plasticity. This approach can only be used to predict the duration of the initiation period, similarly 

to the case of the 𝑆 − 𝑁 curve where the propagation time of the fatigue tests is negligible.  

 

Figure I. 7. Elastic, plastic, and total strain versus life curves (Landgraf, 1970) 

A wide variety of relationships between the parameters 𝜀 and 𝑁 are available in the literature (Basquin, 1910), 

(Coffin, 1954), (Manson, 1954).  
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The total strain amplitude can be divided into elastic and plastic parts (figure I.7): 

∆𝜀 =  ∆𝜀𝑒𝑙 + ∆𝜀𝑝𝑙 (𝐼. 2) 

where the elastic strain amplitude is related to the stress amplitude based on Hooke law: 

∆𝜀𝑒𝑙 = 𝐸∆𝜎 (𝐼. 3) 

where E is the Young elastic modulus. 

And the plastic strain amplitude is a measure of the half-width of the stress–strain hysteresis loop given by 

(Coffin, 1954), (Manson, 1954) as: 

∆𝜀𝑝𝑙

2
= 𝜀𝑓

′(2𝑁)𝑐 (𝐼. 4) 

where 𝜀𝑓
′ is the fatigue ductility coefficient and c is a constant of order -0.5.  

Thus, based on Hooke law (i.e., ∆𝜀𝑒𝑙 = 𝐸∆𝜎), where the variation of the nominal stress ∆𝜎 is derived from the 

Wöhler curve (i.e. 
∆𝜎

2
= 𝜎𝑓

′(2𝑁)𝑏), the variation of the total strain ∆𝜀 is now given by:  

∆𝜀

2
=
𝜎𝑓
′

𝐸
(2𝑁)𝑏 + 𝜀𝑓

′(2𝑁)𝑐 (𝐼. 5) 

where  𝜎𝑓
′ is the fatigue strength coefficient, b is a constant defining the slope on a log 𝜀 –log 𝑁 plot and 𝐸 is the 

Young modulus. Thus, fatigue with a low number of cycles and fatigue with a high number of cycles can be 

describes using the equation (I.5). 

The application of the approach based on the local 𝜀 − 𝑁 curve is not feasible for the propagation stage. Indeed, 

when the crack propagates, the strain field at the crack tip changes constantly, which makes the calculation of 

the ∆𝜀 extremely complicated. In the case of a loading at constant amplitude, the fatigue life can be obtained 

directly from the 𝜀 − 𝑁 curve or by using one of the relations of the literature. However, in the case of variable 

amplitude loading, a three-step procedure steps, similar to that adopted in the approach based on the Wöhler 

curve, should be used. The specificity of the 𝜀 − 𝑁 approach is that it is based on a simple formulation and provides 

an estimate of the initiation period, while taking into account a number of parameters considered to influence the 

fatigue life such as the mean stress. A similarity between the 𝑆 − 𝑁 and 𝜀 − 𝑁 approaches is that none of them 

take in consideration the analysis of the crack growth, as in the fracture mechanics approach discussed in section 

1.2.3.  

2.2.3. Approach based on damage tolerance 

This approach is based on the fracture mechanics. This concept is based on the idea of tolerating the presence of 

cracks without having a catastrophic consequences on the integrity of the structure. The approach is assumed 

that all material contains crack type defects which may be preexisting in the material or formed during service 

life. Here, the fatigue life is defined as the loading time capable of propagating these cracks, up to a critical 

length. Generally, this critical value is determined from the toughness of the material and the service life is 

calculated based on the linear elastic mechanics of fracture. This approach is applicable for the propagation period 
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and is founded on a relationship between the crack length and the number of loading cycles by using the stress 

intensity factor SIF ∆𝐾 (influenced by the loading and the geometry conditions).  

The fatigue life is obtained directly by integrating: 

𝑁 = ∫ 𝑓 [∆𝐾(∆𝜎, 𝑎)]𝑑𝑎 
𝑎𝑐

𝑎0

 (𝐼. 6) 

where 𝑎 is the crack length, 𝑎0 and 𝑎𝑐 are respectively the initial crack length and the critical crack length, 𝑁 is 

the number of loading cycles, ∆𝐾 is the variation of the stress intensity factor and ∆𝜎 is the variation of the applied 

loading. 

This approach is very helpful to estimate the residual life following an inspection of structures because the fatigue 

life is linked to a measurable parameter (i.e. the length of the crack). The parameter ∆𝐾 depends on the loading, 

on the crack length and on its orientation. In practical problems, its explicit formulation is not always available, 

and the use of a finite element model is suggested. However, the evaluation of the integral defined by equation 

(I.6) is difficult and can only be done numerically. Despite this difficulty, the use of SIF provides great flexibility 

to the fracture mechanics approach. Its application in the case of loadings with variable amplitude does not 

require great efforts in the formulation. In addition, it considers the interaction effect as well as the non-linear 

aspect of the fatigue cracks propagation. 

The use of either of these approaches described previously for fatigue life prediction depends on the design 

strategy adopted, which depends on the type of the domain of application. The approach based on fracture 

mechanics concepts is very useful in practical cases where the propagation period constitutes a major part of the 

fatigue life. For this reason, in this work we are interested in the study of the propagation period and thus in the 

fracture mechanics approach to fatigue life prediction.  

3. Deterministic fatigue crack growth 

As already mentioned, fracture is the propagation of a macro crack as a consequence of damage. It is 

characterized by the irreversible separation of a continuous medium into two parts on either side of an interface. 

This separation is called crack and changes the fields of the displacement, deformation and stress (figure I.8).  

 

Figure I. 8. Separation of a medium on either side of an interface and the local reference frame attached to the fracture tip 

Fracture mechanic is introduced because classical mechanical approaches are not able to study the mechanical 

behavior of cracked bodies due to their inability to consider the very high and plastic strains at the vicinity of the 

crack tip.               
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To describe the fracture of the material new stress measurements are introduced, which are called fracture driving 

forces. When plastic strains are confined in the vicinity of the crack tip, these fracture driving forces are called 

Stress Intensity Factors (SIF) as proposed by (Irwin, 1957). These factors aim to quantify the intensity of the 

stress singularity. For static loading, they are used to determine the intensity of the singularity in terms of both 

stress and displacement. 

 

Figure I. 9. Fracture modes 

As depicted in figure I.9, three fracture modes can be distinguished in the case of 3D problems: the opening 

mode (mode I) for loadings applied following y, the in-plane shear mode (mode II) following x and the out-of-

plane shear mode (mode III) following z. Consequently, three SIF 𝐾𝐼, 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 are to be computed. Each one 

of them corresponds to one fracture mode. Despite that modes II and III are generally less dangerous than mode 

I which is responsible for crack growth, we will study the real case on our work. In real-life problems the 

displacements of the crack edges are often a combination of these three fracture modes- mixed mode- and the 

cracks follow a curved paths during their propagation. Many methods are proposed in the literature to compute 

the SIF of fracture bodies. The most used are the energetic method and the kinematic method.  

3.1. Computation of stress intensity factor 

To measure the SIF, it is possible to use global approach based on the energy dissipated or local approach based 

on the kinematic method.  

3.1.1. Energetic method   

It is the divergence of the stress field at the crack tip that motivated (Griffith, 1921) to introduce an energetic 

approach to the fracture mechanics. His approach is based on the computation of the strain energy release rate 𝐺. 

It is defined as the amount of energy able to create new crack surfaces. The crack grows by a new increment 𝑑𝑎 

as shown in figure I.10. 

From the thermodynamic equilibrium equation of the structure and its crack  𝑎, the conservation of the total 

energy 𝑑𝑊𝑡𝑜𝑡 is written as following: 

𝑑𝑊𝑡𝑜𝑡 = 𝑑𝑊𝑒𝑙𝑎 + 𝑑𝑊𝑐𝑖𝑛 + 𝑑𝑊𝑒𝑥𝑡 + 𝑑𝑊𝑑𝑖𝑠 (𝐼. 7) 

where 𝑑𝑊𝑒𝑙𝑎 is the variation of the elastic deformation energy, 𝑑𝑊𝑐𝑖𝑛 is the variation of the kinetic energy, the 

𝑑𝑊𝑒𝑥𝑡  is the variation of the potential energy of the external forces and 𝑑𝑊𝑑𝑖𝑠 is the energy dissipated during the 

separation of the two lips of the crack, with 𝑑𝑊𝑑𝑖𝑠 = 2𝛾𝑑𝑎 where 𝛾 is the surface energy of decohesion. 
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Figure I. 10. Crack growth increment (left), Integration path around the crack tip (right) 

The variation of the energy which accompanies the growth of the crack of an increment 𝑑𝑎 is written as follows: 

𝑑𝐸𝑝 = 𝑑𝑊𝑒𝑙𝑎 + 𝑑𝑊𝑒𝑥𝑡 (𝐼. 8) 

The behavior of cracks is thus characterized by the transfer of the potential energy 𝐸𝑝 of the structure into 

decohesion energy in the vicinity of the tip. 

𝐺 = −
𝑑𝐸𝑝

𝑑𝑎
 (𝐼. 9) 

If 𝑑𝑊𝑐𝑖𝑛 > 0 then 𝐺 > 2𝛾 which results in an unstable crack propagation. Indeed, the surface decohesion energy 

𝑑𝑊𝑑𝑖𝑠 = 2𝛾𝑑𝑎 is used to break the molecular bonds in the material and the excess then  (𝐺 − 2𝛾)𝑑𝑎  is transformed 

into kinetic energy which induces an unstable propagation of the crack. 

The strain energy release rate can also be directly linked to the stress intensity factors  𝐾𝐼, 𝐾𝐼𝐼  and𝐾𝐼𝐼𝐼, as follow: 

𝐺 =
𝐾𝐼
2 + 𝐾𝐼𝐼

2

𝐸′
+
𝐾𝐼𝐼𝐼
2

2𝜇
 (𝐼. 10) 

where 𝐸′ = 𝐸 for plane stress and 𝐸′ = 𝐸 (1 − 𝜈2)⁄  for plane strain, 𝐸 and 𝜇 are the Young’s and shear modulus of 

the material and 𝜈 is the Poisson’s ratio.   

The integrals of contour are tools which make it possible to characterize the singularity of the stress field in the 

vicinity of the point of the crack. These tools are obtained by a development based on the conservation of energy. 

They have the particularity of being equivalent to the strain energy release rate 𝐺 and they are independent of 

the integration contour. Indeed, the strain energy release rate can be computed using independent integrals 

introduced by (Rice, 1968). 

The 𝐽 − integral (see equation I.11) is defined as the result of a path contour integral around the crack tip. The 

𝐽 − integral has been adapted to evaluate the strain energy release rate for nonlinear materials. The behavior of 

the material is considered to be non-linear elastic. In fact, Rice's idea is to consider the material not as elasto-

plastic but as nonlinear elastic. He considered that the cause of the energy dissipation is not only the separation 

of the crack lips as in the elastic case but also in the phenomenon of plasticity. As we can see in figure I. 11, both 

types of behavior are identical if we do not apply a discharge. 
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Figure I. 11. Tensile curve of a nonlinear elastic material (blue curve) and an elasto-plastic material (red curve) 

Let us consider a two-dimensional cracked body Ω and Γ (shown in figure I.10) a path which surrounds the crack 

tip oriented by the normal 𝑛⃗ of component 𝑛𝑗. Based on this approach, the strain energy release rate can be 

expressed: 

𝐺 = 𝐽 =  ∫ [𝑤𝑒 . 𝛿𝑖𝑗 − 𝜎𝑖𝑗 .
𝜕𝑢𝑖
𝜕𝑥
]

𝛤

. 𝑛𝑗  𝑑𝛤 = [𝑤𝑒 . 𝑛𝑖 − 𝑛𝑗 . 𝜎𝑖𝑗 .
𝜕𝑢𝑖
𝜕𝑥
] 𝑑𝛤 (𝐼. 11) 

where 𝑤𝑒 = ∫ 𝜎𝑖𝑗 . 𝑑𝜀𝑖𝑗𝜀
 is the strain energy density, 𝛿𝑖𝑗 the crack opening displacement define as the total separation 

distance between the upper and lower crack surfaces at the tip due to the singularity,  and, 𝜎𝑖𝑗  and 𝑢𝑖 are the 

stress and the displacement fields respectively. 

Hence, the 𝐽 − integral expression remains valid and independent of the path 𝛤 if there is no discharge. When the 

crack propagates the non-discharge hypothesis is not verified behind the tip. However, this hypothesis remains 

reasonable, but the path independence is not guaranteed. 

The strain energy release rate alone constitutes a criterion of crack propagation but does not allow the 

determination of the direction of the crack propagation. To determine the direction of propagation, more 

information is needed, and the crack loading can provide this information through the SIF, for example. 

3.1.2. Kinematic method 

This approach (Zhang, 1992) aims to compute the SIF based on the relative displacement of the crack surfaces 

as depicted in figure I.12. Here, the SIF are proportional to the displacements 𝑢𝑥 and 𝑢𝑦 of the crack surfaces.  

For a two-dimensional problem the SIF 𝐾𝐼 and 𝐾𝐼𝐼, corresponding to the opening and the in-plane shear fracture 

modes respectively, can be written: 

𝐾𝐼 =
2𝜇

𝜅 + 1
. √
2𝜋

𝑟
 . [𝑢𝑦]   (𝐼. 12) 

    𝐾𝐼𝐼 =
2𝜇

𝜅 + 1
. √
2𝜋

𝑟
 . [𝑢𝑥]    (𝐼. 13) 

where 𝜅 = 3 − 4𝜈 for plane strain and 𝜅 = (3 − 𝜈) (1 + 𝜈)⁄  for plane stress; and 𝜇 = 𝐸 2(1 + 𝜈)⁄  for an isotropic 

material. 
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Figure I. 12. Displacements of the crack edges 

This approach is very simple to be implemented in numerical solver, but its accuracy is closely related to the 

number of points used to interpolate the displacement field; the more interpolation points we use, the greater 

the precision we have. Hence, in the case of the finite elements method, this approach is not suitable since the 

obtained model can be time consuming. 

3.1.3. Comparative study 

In order to compare the two methods of computation of SIF discussed above, and to choose which one of these 

two calculation methods is the best and therefore the most adequate to use in the following developments, we 

propose to confront them on an example. 

Let us consider a Compact Tension (CT) specimen which is usually used in fatigue crack growth testing. It is 

subjected to tension loading Δ𝑃 = 2.5 𝑘𝑖𝑝𝑠 in the top and the bottom pins. The required geometry parameters are 

given in figure I.13. For this simple geometry and loading conditions, an analytical solution (Tada and al, 1973) 

is available for the SIF 𝐾𝐼 associated to the opening fracture mode: 

𝐾𝐼 =
𝛥𝑃

𝐵√𝑤

2 + (
𝑎
𝑤
)

(1 − (
𝑎
𝑤
))3 2⁄

[0.886 + 4.64 (
𝑎

𝑤
) − 13.32 (

𝑎

𝑤
)
2

+ 14.72 (
𝑎

𝑤
)
3

− 5.6 (
𝑎

𝑤
)
4

] (𝐼. 14) 

 

Figure I. 13. CT specimen, geometry and dimensions (left), finite elements mesh (right) 

A finite elements model is developed in the software cast3m (CASTEM, 1997) to evaluate the accuracy of the 

energetic and the kinematic methods for the computation of the SIF. The analysis was performed under plane 

stress hypothesis and quadratic elements are used to mesh the CT specimen. In order to have good accuracy on 

the estimates of the fracture parameters, a refined structured mesh is adopted in the vicinity of the crack tip, as 
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shown in figure I.13. Figure I.14 shows the deformed mesh and the Von-Mises equivalent stress induced by the 

applied load to the CT specimen. As it can be seen, linear elastic fracture behavior hypothesis is verified since the 

yielding (i.e., plastic strain) zone is confined at the crack tip. In addition, based on the deformed shape of the 

crack edges, it is clear that the crack propagates in opening fracture mode. 

                                           

Figure I. 14. CT specimen, deformed mesh (left), Von-Mises equivalent stress (right) 

Table I.1 compares the numerical estimates of the SIF 𝐾𝐼 given by the energetic and the kinematic methods, with 

the analytical reference solution given by equations (I.14). As stated before, the accuracy of the energetic method 

is less sensitive to the integration path, defined as the number of layers of finite elements around the crack tip 

used in the evaluation of the integral (I.9). The accuracy of the kinematic method is dependent on mesh 

refinement level around the crack tip. Indeed, smaller is the mesh size, better is the accuracy on the estimates 

of the stress intensity factor 𝐾𝐼. As it can be seen, both methods give accurate results since the relative error does 

not exceed 0.9 % for the worst case. But the energetic method is more accurate than the kinematic method 

because the error is smaller. Thus, we will choose the energetic method in the following studies.  
 

Table I. 1. Accuracy analysis of the numerical results obtained by the energetic and kinematic methods 

Analytical 𝐾𝐼 
Energetic method Kinematic method 

Integration 
path 

𝐾𝐼 |𝐸𝑟𝑟𝑜𝑟| (%) Mesh size 𝐾𝐼 
|𝐸𝑟𝑟𝑜𝑟| (%) 

17.755 

 

17.659 0.541 

 

17.914 0.895 

 

17.682 0.415 

 

17.875 0.677 

 

17.685 0.396 

 

17.850 0.535 

 

17.686 0.391 

 

17.832 0.434 

3.2. Crack bifurcation criteria 

In the case of crack propagation in pure mode (modes I, II or III) separately, the failure occurs when the value 

of the SIF reaches a critical value representing an intrinsic characteristic of the material and the direction of 

propagation is perpendicular to the direction of the applied load. This scenario is rarely encountered in practice, 
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where the cracks, influenced by the geometric conditions and by the loading, tend to propagate in mixed mode. 

In other words, the cracks follow curved paths during their propagation. Consequently, it is necessary to 

determine the condition of initiation of the failure and the direction taken by the crack within each increment 

during its propagation. To simulate the crack propagation based on fracture mechanics, it is necessary to select 

a bifurcation criteria to define the direction of the crack when propagating under mixed mode loading, depending 

on the loading conditions and the type of fractures. 

In order to define the bifurcation angle of the crack during propagation, there exist mainly three criteria: the 

maximum circumferential stress, the maximum energy release rate and the maximum strain energy density.  

3.2.1. Maximum circumferential stress 

The crack path can be simulated based on the criterion proposed initially by (Erdogan and al, 1963). They 

proposed a simple and intuitive criterion based on the maximum circumferential stress known also as the 

tangential stress 𝜎𝜃 (Chang and al, 2006). This stress serves to resist to the applied internal pressure overflow 

and can be most conveniently treated by considering the equilibrium of the structure. This stress is the force 

exerted perpendicularly to the axis and radius of the structure in both directions. This criterion postulates that 

the crack tends to propagate in the direction that maximizes the mode I; thus, a crack propagates in the direction 

where the tangential stress ahead of the crack tip is maximum, as shown in figure I.15. 

 

Figure I. 15. Principle of the maximum tangential stress and description of the region near the crack tip. 

It is established on the idea that crack propagation occurs in the plane of maximum normal stress. Thus, in the 

polar system (𝑟, 𝜃), the propagation is in the direction 𝜃0 for which 𝜎𝜃 is maximum at fixed radius. 

The components of the stress field can be expressed in the polar system (𝑟, 𝜃)  by: 

𝜎𝑟𝑟 =
2

√2𝜋𝑟
[𝐾𝐼(3 − 𝑐𝑜𝑠𝜃)𝑐𝑜𝑠

𝜃

2
+ 𝐾𝐼𝐼(3𝑐𝑜𝑠𝜃 − 1)𝑠𝑖𝑛

𝜃

2
] (𝐼. 15𝑎) 

𝜎𝜃𝜃 =
2

√2𝜋𝑟
[𝐾𝐼(1 + 𝑐𝑜𝑠𝜃)𝑐𝑜𝑠

𝜃

2
− 3𝐾𝐼𝐼𝑠𝑖𝑛𝜃 𝑐𝑜𝑠

𝜃

2
] (𝐼. 15𝑏) 

𝜏𝑟𝜃 =
2

√2𝜋𝑟
[𝐾𝐼𝑠𝑖𝑛𝜃 𝑐𝑜𝑠

𝜃

2
+ 𝐾𝐼𝐼(3𝑐𝑜𝑠𝜃 − 1) 𝑐𝑜𝑠

𝜃

2
] (𝐼. 15𝑐) 

Thus, in mode I and II, to obtain 𝜃0  the location of the maximum stress, we should resolve:  

𝜕𝜎𝜃
𝜕𝜃

= 0 𝑎𝑛𝑑 
𝜕²𝜎𝜃

𝜕𝜃²
< 0 (𝐼. 16) 
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Based on the maximization of 𝜎𝜃 with respect to the crack orientation angle 𝜃, the bifurcation angle 𝜃0 is solution 

of the following equation: 

𝑡𝑎𝑛 (
𝜃0
2
) =

1

4
(
𝐾𝐼
𝐾𝐼𝐼
) ±

1

4
√(
𝐾𝐼
𝐾𝐼𝐼
)
2

+ 8 (𝐼. 17) 

If the maximum circumferential stress is a principal stress, the shear stress 𝜎𝑟𝜃  will be zero. Therefore, 𝜃0 can 

also be considered as the solution of the equation  𝜎𝑟𝜃(𝜃0) = 0. 

Some authors have shown a good consistence with this criterion (Gdoutos, 1984), (Chambers and al, 1991), 

however, some others have found this criterion to be insufficient (Smith and al, 1985), (Royer, 1986), (Hourlier 

and al, 1978). However, this later, known since 1978, is the most efficient and used in the literature (Bathias and 

al, 1997). 

3.2.2. Maximum energy release rate 

The maximum energy release rate criterion proposed by (Erdogan and al, 1963) is based on the theory introduced 

by Griffith, which they assume is valid in the case of crack growth. This criterion studied the possibility of 

propagation in the direction that maximizes the strain energy release rate  𝐺. 

𝜕𝐺

𝜕𝜃
= 0 𝑎𝑛𝑑 

𝜕²𝐺

𝜕𝜃²
< 0  (𝐼. 18) 

The calculation of 𝐺 for a small crack 𝛿 advance oriented at 𝜃 angle, as we can see in figure I.16, is given by the 

following relation with the respect of the existing crack (Hussain and al, 1974): 

𝐺(𝜃) =
4

𝐸∗
(

1

3 + 𝑐𝑜𝑠²𝜃
)
2

(
1 −

𝜃
𝜋

1 +
𝜃
𝜋

)

𝜃
𝜋

× [(1 + 𝑐𝑜𝑠²𝜃)𝐾𝐼
2 + 8𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝐾𝐼𝐾𝐼𝐼 + (9 − 𝑐𝑜𝑠

2𝜃)𝐾𝐼𝐼
2] (𝐼. 19) 

where 𝐸∗ = {
𝐸

1−𝜈2
                           for plane strain 

𝐸                                for plane stress
     

Finally, we have to integrate and solve  
𝜕𝐺

𝜕𝜃
= 0 to obtain the 𝜃0 angle. 

 
Figure I. 16. Calculation of G for an advance of δ and an angle θ 

3.2.3. Maximum strain energy density 

A criterion based on the solution using the maximum local density (Westergaard, 1939) of the total energy 𝑆 at 

the crack tip is proposed by (Sih, 1974), (Sih, 1991): 

𝑆 = 𝑎11𝑘𝐼
2 + 2𝑎12𝑘𝐼𝑘𝐼𝐼 + 𝑎22𝑘𝐼𝐼

2   (𝐼. 20) 

where 𝑘𝑖 =
𝐾𝑖

√𝜋
  with𝑖 ∈ {𝐼, 𝐼𝐼, 𝐼𝐼𝐼} 
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The crack propagates in the direction that minimizes the total energy density (Sih, 1974), (Sih, 1991), or in the 

direction where the dilatation energy density is maximum. Crack propagation begins when S= 𝑆𝑐 : 

𝜕𝑆

𝜕𝜃
= 0   𝑎𝑛𝑑  𝑆 = 𝑎11𝑘𝐼

2 + 2𝑎12𝑘𝐼𝑘𝐼𝐼 + 𝑎22𝑘𝐼𝐼
2 = 𝑆𝑐   (𝐼. 21) 

As shown in figure 1.17, for a crack making 𝛽 angle with the axis of the load and then propagating with 𝜃 angle, 

the solution is proposed by (Tanaka, 1974): 

2(1 − 2𝜈) 𝑠𝑖𝑛(𝜃0 − 2𝛽) − 2 𝑠𝑖𝑛(2(𝜃0 − 𝛽)) − 2𝑠𝑖𝑛2𝜃0 = 0  (𝐼. 22) 

(Bathias and al, 1997) give a comparison of the three criteria of bifurcation and conclude that the best consistence 

with the experimental one was obtained with the maximum circumferential stress criterion. 

 

Figure I. 17. Calculation of the solution for a crack making  𝛽 angle with the axis of the load and propagating with 𝜃 angle 

3.3. Fatigue life computation models 

In many cases, a structure could be in safe situation even if cracks are present. For this reason, the fatigue crack 

growth tests are important. From the experimental data given by these tests, an empirical relationship can be 

built between the Fatigue Crack Growth Rate (FCGR) 
𝑑𝑎

𝑑𝑁
 and the range of the SIF ∆𝐾 which mainly depends on 

the crack geometry and the loading conditions. From a physical point of view, the FCGR represents the crack 

growth speed during the loading cycles. A basic model was first proposed by Paris and Erdogan (Paris and al, 

1963). They assume a linear relationship between the FCGR, 
𝑑𝑎

𝑑𝑁
 and the range of the SIF ∆𝐾 as follows: 

𝑑𝑎

𝑑𝑁
= 𝐶 (∆𝐾)𝑚 (𝐼. 23) 

where 𝑎 is the crack length, 𝑁 is the number of loading cycles, 𝐶 and 𝑚 are two parameters depending on the 

material and ∆𝐾 is the variation of the stress intensity factor. 

Since this model considers only the region II of figure I.18, and do not take into consideration high toughness, 

modifications of this law were proposed taking into account additional parameters such as the load ratio  𝑅, the 

closure phenomenon (Elber, 1971) or the maximum stress during a cycle. The reader may refer to (Beden and 

al, 2009) for an exhaustive list of the proposed models. 
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Figure I. 18. Characteristic crack growth rate curve for a ductile material 

Later, after Paris and Erdogan’s works, researchers have found that the FCGR does not exhibit the same behavior 

for all ranges of ∆𝐾. That is to say, the FCGR is not linear for all ranges of ∆𝐾. The general curve of the FCGR in 

the case of opening fracture mode and for metal-based components is shown figure I.18.  

For ∆𝐾 slightly greater that a threshold ∆𝐾𝑡ℎ , the crack will grow quickly and for medium SIF range ∆𝐾 the fatigue 

crack growth behavior can be described by a power law such as the Paris-Erdogan’s law given in equation (I.23). 

In 1970, the Paris-Erdogan’s model was slightly modified (Walker, 1970) in order to take into account the strong 

effect the stress ratio 𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
. The modified model is: 

𝑑𝑎

𝑑𝑁
= 𝐶1  

(∆𝐾)𝑚1

(1 − 𝑅)𝑚1(1−𝛾)
 (𝐼. 24) 

In region III, the FCGR is faster than indicated by the Paris-Erdogan’s law. Indeed, the fatigue crack growth 

exhibits a rapidly increasing rate towards infinity. Note that, in this region, the facture toughness 𝐾𝐼𝑐  of the 

material has a significant effect on the FCGR in addition to the stress range. To take it into account, the Paris-

Erdogan’s model has been enhanced by (Forman and al, 1967) and the modified model can be written as follow: 

𝑑𝑎

𝑑𝑁
= 𝐶2  

(∆𝐾)𝑚2

(1 − 𝑅)𝐾𝐼𝑐 − ∆𝐾
 (𝐼. 25) 

Constants 𝐶1, 𝑚1, 𝛾,  𝐶2  and 𝑚2 presented in the above are empirically derived through experimental data.  

Note that the previously presented fatigue crack growth models do not take into account many others parameters 

such as load frequency, environment factors such as the relative humidity and the temperature, and as load 

sequencing. Fortunately, mixed mode fatigue crack growth can be well addressed, by just substituting ∆𝐾 in 

equations (I.23), (I.24) or (I.25) by a mixed mode equivalent SIF ∆𝐾𝑒𝑞, which assumes that the crack would 
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propagate in opening fracture mode in the bifurcation direction defined by the bifurcation angle 𝜃 obtained by 

solving equation (I.19). 

In the case of two-dimensional fatigue crack growth problems, ∆𝐾𝑒𝑞 can be written as: 

∆𝐾𝑒𝑞 = 𝑐𝑜𝑠 (
𝜃

2
) [∆𝐾𝐼(1 + 𝑐𝑜𝑠(𝜃))  − 3 ∆𝐾𝐼𝐼  𝑠𝑖𝑛 (𝜃)] (𝐼. 26) 

where ∆𝐾𝐼 and ∆𝐾𝐼𝐼 are the SIF ranges of the opening and the in-plane shear fracture modes respectively, and 𝜃 

is the bifurcation angle calculated from equation (I.19). 

To predict the fatigue life of structures subjected to fatigue crack growth, the number of loading cycles to failure 

𝑁𝑓 can be obtained by integrating the FCGR law. Using the general form of the FCGR presented by equation (I.27), 

this leads to the following expression: 

𝑁𝑓 = ∫
1

𝑓(∆𝐾, 𝑅, 𝐾𝐼𝑐 , … )

𝑎𝑐

𝑎0

 𝑑𝑎  (𝐼. 27) 

where 𝑓(∆𝐾, 𝑅, 𝐾𝐼𝑐 , … ) is the inverse of the second members of equations (I.23), (I.24) or (I.25), 𝑎0 is the initial 

crack length, 𝑎𝑐 is the critical crack length which can be derived from the fracture toughness of the material or 

can be related to a design constrains, as shown in section 2.4.3. 

Indeed, studies have shown the use of linear fracture mechanics in predicting the critical crack length (Wessel 

and al, 1972): the linear fracture mechanics defines a stress intensity factor 𝐾 at the tip of a crack as a function 

of the applied stress 𝜎 and the dimension of the crack: 

𝐾 = 𝛼𝜎√𝜋𝑎   (𝐼. 28) 

𝛼 is a coefficient depending on the geometry of the structure and the crack length. The failure criterion is then a 

stress criterion and failure occur when the SIF reaches a critical value  𝐾𝐼𝑐. 

The computation of the integral (I.27) is not trivial especially when the integrand is not available under an 

analytical form, which is often the case for real-life crack growth problems where the fracture behavior is 

represented by time consuming implicit models as finite elements approach-based ones. Hence, numerical 

schemes are usually suitable such cubature rules. (Dowling, 2007) has suggest using the well-known Simpson’s 

integration rule below.  

Let us consider three neighboring crack length 𝑎𝑗, 𝑎𝑗+1 and 𝑎𝑗+2. As shown in figure I.19, the hatched area under 

the curve 𝑦 =
1

𝑓(∆𝐾,𝑅,𝐾𝐼𝑐,… )
=

𝑑𝑁

𝑑𝑎
 (i.e. the inverse of the FCGR) and between the two points of abscissa 𝑎𝑗 and 𝑎𝑗+2, 

can be evaluated assuming that a second order curve (i.e. a parabola) passes through the three points  (𝑎𝑗 , 𝑦𝑗), 

(𝑎𝑗+1, 𝑦𝑗+1) and (𝑎𝑗+2, 𝑦𝑗+2). If these points are assumed to be equally spaced by an increment  ∆𝑎, the hatched area 

can be estimated as follow: 
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∫ 𝑦
𝑎𝑗+2

𝑎𝑗

𝑑𝑎 =
∆𝑎

3
[𝑦𝑗 + 4 𝑦𝑗+1 + 𝑦𝑗+2]  (𝐼. 29) 

The fatigue crack growth lifetime 𝑁𝑓 is then the sum of the contributions of all areas obtained by applying equation 

(I.29) for each of 𝑗 = 0,2,4, … , (𝑀 − 2), where 𝑀 is even. In practice, 𝑀 is taken as large as possible to keep ∆𝑎 

reasonably small in order to obtain an accurate estimate of  𝑁𝑓. 

Note that Simpson’s rule can be also used when the integration points are not equally spaced (i.e., ∆𝑎 is not 

constant during the whole integration process), by a little modification of equation (I.29). Consequently, the 

fatigue lifetime is obtained by:    

𝑁𝑓 = ∑
𝑎𝑗(𝑟

2 − 1)

6𝑟
[𝑦𝑗𝑟(2 − 𝑟) + 𝑦𝑗+1(1 + 𝑟)

2 + 𝑦𝑗+2(2𝑟 − 1)]

𝑀−2

𝑗=0

  (𝐼. 30) 

where 𝑟 the distance from the crack tip to the given point P. 

 

Figure I. 19. Integration principle using Simpson’s rule (Dowling, 2007) 

3.4. Physical description of the retardation phenomenon 

3.4.1. A retardation phenomenon due to overload 

The application of one or more overloads during constant amplitude loading is characterized by a retardation or 

even a stop of the crack propagation after returning to the initial loading conditions (Schijve and al, 2004), 

(Manjunatha and al, 2004), (Daneshpour and al, 2012), (Dirik and al, 2018), (Hemnesi and al, 2022). The 

retardation effect depends on several factors such as geometry, temperature, environments, and materia l 

properties. Although this phenomenon was discovered many years ago by (Schijve, 1962), its effects are not fully 

understood and described especially in term of its modelling.  

It is known that the overloads induce large plastic deformation ahead of the crack tip and decreases the rates of 

crack propagation. This retardation is usually measured in terms of cycles and thus increases the lifetime from 

𝑁1  to 𝑁2 as we can see in figure I.20. The retardation effect depends on the overload rate, on the value of the 

basic loading before the application of the overload, on the number of cycles before the overload and on the ratio 

of the basic loading. Indeed, it is noticed that with different load ratio the maximum crack rate recorded differs, 



Chapter I: State of art on probabilistic modelling of fatigue crack propagation 

 S.Chahine | Efficient uncertainty propagation approaches to solve a large class of fatigue crack-growth problems  27 

and this difference will have an impact on the size of the plastic zone created with the application of the overload 

and consequently on the number of retardation cycles (Zhang, 2019), (Alabd Alhafez, 2018). However, the 

retardation effect was found to decrease with the increasing number of overload cycles. 

 

Figure I. 20. Effect of single overload on fatigue crack growth lifetime 

The retardation phenomenon of a crack after the application of an overload is linked to the existence of residual 

stresses and to the concept of crack closure. Residual stresses are referred to stresses remaining in a structure 

in the absence of a mechanical loading. The experiment of (Schijve, 1979) has shown that the residual stresses 

are a cause of the retardation of the fatigue crack propagation. The plasticization at the bottom of the crack 

during the loading of the structure, by the singularity of the elastic stress field, gives these residual stresses in 

the plastic zone. In general, these stresses are compressive stresses near the crack tip (the important residual 

stresses in our case) and are tensile stresses away from the crack tip, thus forming an internal equilibrium for 

the structure. 

 

Figure I. 21. Effect of overload on the plastic zone 

The determination of the residual stresses in the vicinity of the crack still presents difficulties due to the small 

size of the damaged plastic zone at the bottom of the crack leading to uncertainties on the evaluation of residual 

stresses.  

https://link.springer.com/article/10.1007/s11249-017-0967-9#auth-Iyad-Alabd_Alhafez
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Several researchers have sought to determine the residual stresses of fatigue crack tip after the application of an 

overload, such as (Lin and al, 2017), (Rice, 1967), (Matsuoka and al, 1976), (Taira and al, 1979), (Fuhring and 

al, 1979), (Bush and al, 1988). They concluded that as the distance from the point of application of the overload 

increases, the residual stresses tend to decrease gradually. Note that, most of these studies were based on the 

model of (Dugdale, 1960) which considers that the material is rigid, perfectly plastic and that the plastic zone is 

confined to the crack tip (see figure I.21). 

The retardation effect can also be viewed as a consequence of the closure concept. This concept results from the 

existence of the compressive residual stresses at the crack tip. It was first shown by (Elber, 1971) on an aluminum 

alloy, by explaining that the fatigue crack can close even before that the tensile stresses are equal to zero. 

However, the damage occurs only when the crack tip is completely opened, thus this phenomenon can be involved 

in order to explain the effects of the retardation (Lieurade, 1988) and the influence of certain important 

parameters of the fatigue crack growth such as the maximum stress intensity, the load ratio, the thickness of the 

specimen, the overloads.... The crack closure is far more important near the edge of the specimen, thus reducing 

the crack growth rate (Taleba and al, 2016). 

Also, it has been observed by many researchers that a short acceleration of the crack growth rate occurs just 

after the application of the overload. Thus, overloads can produce a very short acceleration of the crack growth 

(Vasudevan and al, 1995) before the significant retardation occurs (see figure I.22). However, this acceleration 

is observable only for a high level of overload rate and at a short distance from the application of the overload 

(short crack length compared to the one of the retardation effect) and thus can be neglected because it is too 

small to be taken into account. For instance, (Wheatley and al, 1999) have shown that the crack length where 

the acceleration is observable is 300 µm and that the crack length retardation is of the order of 10 mm. 

 

Figure I. 22. Acceleration and retardation after the application of an overload 

 

The speed of the crack growth, after applying the overload goes through four stage: first, an increase in the crack 

rate, second, the rate increases very rapidly and reaches a peak, then a rapid drop in the rate is observed to 

reach a minimal value, and finally the rate begins to increase gradually in the plasticized zone created by the 

application of the overload, until it returns to almost its initial value (before the application of the overload).  
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In our studies, we will choose not to consider the acceleration phenomenon just occurring after the overload 

shown in figure I.20 because it is too negligible to be taken into account in comparison with the retardation 

induced by the overload. 

3.4.2. Two fatigue plastic zones due to overload 

The retardation keeps on until the crack has propagated out of the monotonic plastic zone of overload. Therefore, 

the number of retardation cycles depends on the size of this monotonic plastic overload zone (see figure I.23).  

Moreover, the effect of the retardation depends on the thickness of the specimen since the size of the plastic zone 

differs for the in-plane stresses (used for thin specimens where we assume that out-of-plane stresses are equal 

to zero) and the in-plane strains (used for long specimens where we assume that the out-of-plane strains are 

equal to zero). The effects of the retardation are more important under plane-stress conditions (Lang and al, 

1999) because the stress intensity factor is affected by the distance from the center of the crack. Indeed, at the 

center of the specimen, where the plane-strain conditions are applied, constraint is high and at the surface of the 

specimen where the plane-stress assumptions are used, the lack of the out-of-plane stress results with a loss of 

the crack tip constraint thus the stress intensity factor is lower. 

In general, the fatigue crack growth can be controlled by the plastic zone. During the loading, two plastic zones 

are created: the cyclic plastic zone and the monotonic plastic zone related to the loading of the structure. These 

plastic zones are assimilated to circles characterized by their radius 𝑟𝑦 as shown in figure I.23. 

Actually, when a structure is subjected to cycling loading, a monotonic plastic zone is formed at the crack tip. 

Then a compressive stress is developed in the plastic zone when applying an overload leading to the creation of 

the cyclic plastic zone in the areas where the maximum compressive stress exceeds the yield strength (Saxena 

and al, 1996).  

The size of the plastic zone at the crack tip is one of the important parameters describing the retardation effects 

since it is directly related to the crack length affected by the overload. The size of this plastic zone at the crack 

tip is a significant characteristic of the crack behavior and can be observed directly during experiments. It depends 

on the mechanical properties of the material, the stress conditions: applied stress and yield stress of the material, 

as well as the distribution of stress and strain of the plastic zone. In fact, materials with high yield stress normally 

have a small cyclic plastic zone size (Dowling, 2013), (Ralph and al, 2001). In real materials, the theoretically 

very high elastic stresses in the vicinity of a crack tip exceed the yield strength of the materials; thus, plastic 

yielding will occur. 
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Figure I. 23. Illustration of the plastic zone at the crack tip 

Irwin presented a simple method to determine the plastic zone at the crack tip assuming the materials to be 

elastic. He found that the creation of the cyclic plastic zone affects the geometry when it is longer than its physical 

size, and then, he estimated the size of the cyclic plastic zone which are approximately one quarter of the size of 

the monotonic plastic zone, by (Irwin, 1960): 

𝑟𝑦 =  
1

8𝜋
(
∆𝐾

𝜎𝑦
)
2

    For plane stress (𝐼. 31𝑎) 

𝑟𝑦 =  
1

24𝜋
(
∆𝐾

𝜎𝑦
)
2

    For plane strain  (𝐼. 31𝑏) 

3.5. Case study 

In this section a study of the effect of 𝑅 as well as a comparison of the crack propagation laws through a crack 

growth mechanical model is conducted to study the effect of the variability of the material properties on the 

fatigue crack growth lifetime. The mechanical model represents a Centre Cracked Plate (CCP) specimen made of 

7075-T6 aluminum alloy, subjected to tensile loads applied by five pins located at the top and the bottom. A 

detailed drawing of the geometry of the CCP specimen is given in figure I.24. 

 

Figure I. 24. CCP specimen, geometry and dimensions (left), finite elements mesh (right) 

Fortunately, since the CCP specimen is extensively used, numerous fatigue crack growth data are found in the 

literature. (Hudson, 1969) has performed fatigue crack growth characterization tests on 7075-T6 aluminum alloy 

CCP specimens, using multiple axial-load fatigue-testing machine which applied monotonic oscillatory loads with 
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a mean stress 𝜎𝑚 and alternating stress 𝜎𝑎. The cycle count was recorded as the crack propagates through the 

specimen following an increment crack length ranged from ∆𝑎 = 0.1 to 0.2 𝑖𝑛𝑐ℎ. It should be noted that tests are 

performed for several stress ratio 𝑅 levels and 1 to 5 tests are performed for each stress ratio level based on 

different combinations of the mean stress 𝜎𝑚 and the alternating stress 𝜎𝑎. In the following only experimental 

data with a 𝑅 ≥ 0 were analyzed since Hudson found that for 𝑅 < 0, the same crack growth rate is observed as for 

the specimens loaded with 𝑅 = 0. 

3.5.1. Finite elements model  

A finite elements model of the CCP specimen is developed using the software cast3m (CASTEM, 1997), in order 

to use an implicit mechanical model. Due to the geometry symmetry, only one half of the CCP specimen is 

modeled as shown in the finite elements mesh in figure I.24. This reduces the Degree Of Freedom (DOF) of the 

finite elements model and consequently reduces the computation time, which becomes suitable when performing 

uncertainty propagation analysis. 

For simplicity, the pins have been removed from the finite elements model and the true loading is replaced by an 

evenly distributed pressure across the top and the bottom edges of the specimen. In addition, plane stress 

hypothesis is assumed since the specimen thickness is small compared to the two other dimensions of the 

specimen. Referring to the conclusions made before, only the energetic method of paragraph 2.1.1, 

considering 𝐺 = 𝐽 =
𝐾𝐼
2

𝐸′
 , is used herein to compute the SIF range ∆𝐾𝐼. 

As shown in figure I.25, based on the deformed mesh of the CCP specimen, the crack will propagate in opening 

fracture mode. In addition, linear elastic fracture behavior hypothesis is verified since the Von-Mises equivalent 

stress exceeds the yielding strength of the material 𝜎𝑦𝑙𝑑 = 75.9 𝑘𝑠𝑖, only in the vicinity of the crack tip. 

 

Figure I. 25. CCP specimen crack tip, deformed mesh (left), Von-Mises equivalent stress (center), yielding elements at the 
crack tip (right) 

3.5.2. Fatigue crack growth models fitting 

In this section, Hudson’s experimental data (Hudson, 1969) are used to obtain the empirical parameters of the 

fatigue crack growth models. In the following, Paris-Erdogan’s, Forman’s and Walker’s fatigue crack growth laws 

are investigated and compared to find the most accurate one. 

a) Paris-Erdogan’s law 
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Crack length and loading cycles incrementally recorded during experimental tests are used to compute the 

FCGR 𝑑𝑎 𝑑𝑁⁄ . The SIF range ∆𝐾 is computed using the finite elements model developed in the previous section. 

Then, the material parameters 𝐶 and 𝑚 of equation (I.23) are obtained through linear regression analysis. 

Constants for models fit to each stress ratio 𝑅 are listed in table I.2 and a plot is provided in figure I.26 showing 

the data points and fitted models. 

 

Figure I. 26. Paris-Erdogan’s law fit to CCP specimen experimental data 

As it can be seen, the Paris-Erdogan’s law fits very well the experimental data for each stress ratio 𝑅 since the 

goodness of fit parameter 𝑅𝐿𝑅𝐺𝐹
2  is close to 1 (see the right column in table I.2). 

Table I. 2. Paris-Erdogan’s law parameters 

𝑅 𝑚 𝐶 𝑅𝐿𝑅𝐺𝐹
2  

0 3.70 1.14 10-9 0.973 
0.2 4.22 2.80 10-10 0.979 
0.33 3.59 3.45 10-9 0.977 
0.5 3.72 4.02 10-9 0.969 
0.67 3.98 4.22 10-9 0.981 
0.7 4.01 4.53 10-9 0.973 
0.8 4.52 3.00 10-9 0.938 

b) Walker’s law 

The Walker’s law can fit all experimental data for different values of stress ratio 𝑅 by a single curve when plotting 

the FCGR 𝑑𝑎 𝑑𝑁⁄  versus an effective SIF range ∆𝐾𝑒𝑓𝑓 = ∆𝐾 (1 − 𝑅)(1−𝛾)⁄  in equation (I.24). The parameters of the 

Walker’s law are obtained through multiple linear regression analysis applied to 𝑑𝑎 𝑑𝑁⁄  and ∆𝐾 is computed 

previously for the Paris-Erdogan’s law, after transforming them to log-log space. The estimates of parameters of 

the Walker’s law, and the fitted model are given in figure I.27 and table I.3, respectively.  

Table I. 3. Walker’s law parameters 

𝑚1 𝛾 𝐶1 𝑅𝐿𝑅𝐺𝐹
2  

3.82 0.56 8.19 10-9 0.975 

As can be seen, Walker’s law fits very well the experimental data since the goodness of fit parameter 𝑅𝐿𝑅𝐺𝐹
2  is 

close to 1. It allows to consider the effect of the stress range based on linear curve compared to the Paris-

Erdogan’s law. 
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Figure I. 27. Walker’s law fitted to CCP specimen experimental data 

c) Forman’s law 

Like Walker’s law, the Forman’s law, represented by equation (I.25), allows also to model effect of the mean 

stress, thus only one model was needed to describe the entire experimental data. The parameters of the Forman’s 

law are obtained through multiple linear regression analysis applied to 𝑑𝑎 𝑑𝑁⁄  and ∆𝐾 after transforming them to 

log-log space. The estimates of parameters 𝑚2 and 𝐶2 of equation (I.25) are given in table I.4. The fitted model 

is shown in figure I.28. 

 

Figure I. 28. Forman’s law fitted to CCP specimen experimental data 

Forman’s law fits very well the experimental data since the goodness of fit parameter 𝑅𝐿𝑅𝐺𝐹
2  is close to 1. It is to 

be noted that these results are obtained for fracture toughness  𝐾𝐼𝑐 = 72 𝑘𝑠𝑖√𝑖𝑛𝑐ℎ  which is related to the threshold 

of the material. As can be seen in figure I.28, Forman’s law is more suitable to fit the experimental data, than 

the Walker’s law, especially for high SIF range values since it takes into account the unstable crack growth region 

(i.e., region III in the characteristic crack growth rate curve presented in figure I.18). 

 Walker law 

 Forman law 
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Table I. 4. Forman’s law parameters 

𝑚2 𝐶2 𝑅𝐿𝑅𝐺𝐹
2  

3.11 3.32 10-7 0.980 

3.5.3. Deterministic analysis of fatigue crack growth 

In this section fatigue crack growth lifetime analysis is performed based on Walker’s and Forman’s laws. The 

Paris-Erdogan’s law is not used since it does not consider the effect of the stress level. The number of loading 

cycles to failure 𝑁𝑓 is obtained through an incremental integration scheme based on the modified Simpson’s 

formula presented in equation (I.32). Note that the integration is performed from the crack length range from 𝑎0 

to 𝑎𝑐, which are the initial and the critical crack lengths, respectively. This later depends on the fracture toughness 

of the material 𝐾𝐼𝑐 = 72 𝑘𝑠𝑖√𝑖𝑛𝑐ℎ, and is computed by solving the following nonlinear equation. 

𝑎𝑐 =
1

𝜋

(

 
 
 
 
 

𝐾𝐼𝑐

1 + 0.5 (
𝑎𝑐
𝑤
) + 0.326 (

𝑎𝑐
𝑤
)
2
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 𝜎𝑚𝑎𝑥

)

 
 
 
 
 

2

  (𝐼. 32) 

where 𝜎𝑚𝑎𝑥 is the maximum stress of the loading cycle and 𝑤 is the CCP specimen half-width.  

Table I. 5. Comparison of experimental and numerical results for 𝑁𝑓  and 𝑎𝑐  

𝑅 
𝑎𝑐  (𝑖𝑛𝑐ℎ) 𝑁𝑓  (𝑐𝑦𝑐𝑙𝑒𝑠) 

Experimental Numerical Experimental Walker Forman 

0.00 0.80 1.6828 (110%) 3050 2268 (26%) 2398(21%) 
0.20 1.40 2.2425 (60%) 8420 7519 (11%) 7733(8%) 
0.50 1.40 2.9906 (114%) 42500 49473 (16%) 47809(12%) 

0.67 1.80 3.3380 (85%) 154000 178817 (16%) 165688(8%) 

Table I.5 compares experimental and numerical results of the fatigue crack growth lifetimes 𝑁𝑓 and the critical 

crack lengths 𝑎𝑐 for different loading conditions. As it can be seen, the numerical estimates of the critical crack 

length are twice larger than the experimental results. This discrepancy is mainly due, on the one hand, to a 

possible overestimated value of the crack toughness of the material  𝐾𝐼𝑐, and on the other hand, to the coarse 

crack growth increment ∆𝑎 used in the experiment process which is not able to capture accurately the crack length 

when the fracture occurs. Indeed, according to the ASTM standard the crack increment should be around  0.05 𝑖𝑛𝑐ℎ, 

while the one used for the Hudson’s data is ranged form 0.1 𝑖𝑛𝑐ℎ to 0.2 𝑖𝑛𝑐ℎ. 
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Figure I. 29. Comparison of predicted results from Walker’s and Forman’s FCG law with experimental data under various 
loading conditions 

Figure I.29 shows plots of crack length versus the fatigue loading cycles, for different loading conditions. The 

obtained curves are compared to the experimental data. Note that to build these curves, equation (I.29) is solved 

following an incremental scheme where the crack length grows from 𝑎𝑖 to 𝑎𝑐, based on various crack increments 

∆𝑎 to ensure a smooth shape. 

As it can be seen a discrepancy is observed between the predictions given by Walker's and Forman’s laws, and 

the experimental data. This discrepancy is more significant for the stress ratio 𝑅 = 0 since it is around 26% and 

21%, for Walker’s and Forman’s laws, respectively. More accurate predictions are obtained for the three other 

loading conditions since the relative error does not exceed 16% for the worst case. This discrepancy should not 

be fully attributed to the accuracy of the mathematical formulations of the FCG laws, but also to the limited 

amount of experimental data that we have, since only two tests are performed for each loading condi tions and 

only average results were provided in Hudson’s paper. Indeed, as shown first by (Virkler and al, 1979), and later 

by (Ghonem and al, 1987) and also by (Wu and al, 2004) from fatigue crack growth tests performed respectively 

on 68, 60 and 30 specimens, that large variability in growth rates is observed for the same material, geometry 

and loading condition. This issue will be deeply discussed in the following section. 

4. Probabilistic fatigue crack growth 

4.1. Interaction between uncertainties and fatigue failure 

Despite of the huge amount of research works devoted to fatigue of materials, which certainly have contributed 

to a better understanding of the physics related to this failure mode, many phenomena are still misunderstood 

and must be studied in deep, in particular the close relationship between uncertainties and fatigue of materials 
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which affect the safety and reliability of the structures (Niu and al, 2021), (Li and al, 2020), (Liao and al (1), 

2020).  

Understanding the physics of the fatigue failure phenomenon and developing a predictive models with a certain 

level of realism remain challenging tasks despite all the amount of efforts and works that have been done so far. 

Unfortunately, this difficulty in developing realistic predictive models is amplified if we want to take into account 

the uncertainties, which are inherent characteristics of fatigue properties, observed experimentally (Liu and al, 

2022), (Ciavarella and al, 2018), (Romano and al, 2018). Statistical information concerning fatigue properties is 

most often collected from the results of tests carried out in the laboratory and not from experiments carried out 

under service conditions. Thus, different sources of dispersions must be taken into account in each situation, 

since observations made in the laboratory may not be valid in practice. For example, the dispersions observed in 

the laboratory are obtained from fatigue tests for which the loading is at constant amplitude whereas, in practice, 

the loadings which occur are rather at variable amplitude and even random. 

Moreover, as we have already explained before, the fatigue life is made up of an initiation period and a propagation 

period. In each of these two periods, different damage mechanisms can occur. Consequently, the sources of 

dispersion are different, which makes their control complex. In cases where initiation takes time to appear, the 

dispersion observed over the fatigue life is necessarily related to uncertainties in the parameters contributing to 

crack initiation such as the surface condition. On the other hand, if the propagation period constitutes the major 

part of the fatigue life, the observed dispersion is a consequence of the uncertainties in the parameters dominating 

the increase of the crack length. This second situation is frequently encountered in fatigue tests carried out on 

notched specimens and it also seems to be the case for real structures for which the presence of defects is almost 

inevitable. Moreover, during their propagation, the cracks are faced with different types of metallurgical structures 

and imperfections due to the inhomogeneity of the materials, so that the rate as well as the direction of 

propagation of the crack are variable. 

For many years now, some researcher’s works pointed out this issue. Several studies explaining the probabilistic 

nature of the fatigue crack growth have discussed the necessity to consider multi sources uncertainties in fatigue 

reliability analyses such as (Fei and al, 2020) who developed a surrogate model method and an optimization 

model to improve the reliability based design optimization of structures, (Lu and al (1), 2020) who proposed an 

improved kriging surrogate model, (He and al, 2020) who proposed a probabilistic model for deducing fatigue life 

distribution. (Lin and al, 2016) took into consideration the uncertainties related to the flow behaviors and 

established a probabilistic model that describes these uncertainties. (Liao and al (2), 2020) proposed a 

probabilistic framework for fatigue life assessment with the consideration of the crack size and introduced an 

effective stress level to characterize the inhomogeneity of the stress distribution. (Yuan and al (1), 2019) 

suggested an optimized model to improve the reliability and enhancing the stability of the structure .  

Experimental data obtained by (Virkler and al, 1979) is a well-known source of information about fatigue of 

engineering materials. These data, available in the literature, are probably the most famous and frequently used 

data sets to model crack propagation. Indeed, (Virkler and al, 1979) analyzed the statistical distribution of crack 

propagation in 2024-T3 aluminum alloy. Tests were conducted on 68 identical specimens containing a central 
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crack, supplied by the same company, and subjected to constant amplitude loading. Although the initial crack 

has the same length 𝑎0 = 9 𝑚𝑚 for all specimens, a variability for the fatigue lifetime was observed and, despite 

of this later, is recorded at the same critical crack length  𝑎𝑐 = 49,8 𝑚𝑚. As depicted in figure I.30, there is a large 

amount of variability in crack growth rate not only between samples but also within each sample. This variability 

was attributed to the heterogeneity of the material at the microscopic level. 

 

Figure I. 30. Crack length evolution curves obtained from Virkler experimental data (Virkler and al, 1979) 

But the variability of the fatigue is not induced only by the heterogeneity of the material and can also be the 

result of uncertainties on the geometry parameters and the loading conditions. Thus, the uncertainties depend 

on the structure in terms of materials, geometry and loading, but also on the crack by its size, shape and position.  

It is clear that to obtain a safe design, these sources of uncertainties should be taken into account (Oden and al, 

2003).  

In engineering problems, we are most often required to develop computationally time consuming numerical 

models to simulate the behavior of real structures. In addition, the sources of uncertainty are multiple, and since 

we do not have prior information on each of them, we are forced to take them all into account which generates 

a high number of uncertain parameters. 

The deterministic models, presented in the above sections and used in fatigue life prediction, are unable to take 

into consideration these uncertainties in fatigue crack propagation phenomenon.  The probabilistic approaches 

could address this issue, but unfortunately they suffer until now from some limitations to solve real-life 

engineering problems. Indeed, some of them are purely statistic (Bogdanoff and al, 1985) and subject of criticisms 

since they are not able to describe the physical phenomena related to the fatigue crack growth. Other approaches, 

which are mainly based on the “probabilization” of the fatigue crack growth rate (Wu and al, 2004), are time 

consuming, because their efficiency is affected when the probabilistic dimension (i.e. the number of random 

variables representing the uncertain parameters) of the problem is high, and/or the use of the mechanical model 

representing the fatigue crack growth is also time consuming.  
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The present work aims to find a response to these problems, that is to develop a robust, efficient, and accurate 

probabilistic approach allowing us to perform uncertainty propagation through a mechanical models dealing with 

fatigue crack growth problems. In addition, this  approach must be able to take into account various sources of 

uncertainty, related the geometry, the material and the loading and evaluate their effect on the lifetime and the 

reliability of the structures subject to fatigue crack growth. At the same time, different types of uncertainty 

propagation analysis will be addressed, namely: statistical moments analysis, sensitivity analysis.  

4.2. Probabilistic models of fatigue crack propagation 

As already mentioned, it is well known that the crack propagation process contains various uncertainties 

originating from material properties, environmental conditions and mechanical loads (Niu and al, 2020), (Yuan 

and al(2), 2019), (Lu and al (2), 2020), or from initial defects of fabrication (Zhu and al(1), 2018), (Zhu and 

al(2), 2018), (He and al, 2015). As a result, even in repeated tests, fatigue crack growth (FCG) process shows 

considerable uncertainty (Zhu and al, 2020).  Thus, probabilistic FCG modeling is vital for fatigue reliability and 

durability analyses of engineering components. To take into consideration scatter observed on data, many authors 

were interested in probabilistic models to describe the evolution of crack propagation in fatigue. The probabilistic 

models offer thus an appropriate framework for modelling and predicting crack propagation. (Song and al, 2019) 

proposed a probabilistic framework of low-cycle fatigue life assessment based on the wavelet neural network 

regression method. And to evaluate the probability distribution of fatigue life, (Long and al, 2019) developed an 

uncertainty propagation approach based on the principle of fatigue crack growth criterion. Indeed, this context 

enables the introduction of certain variabilities to the typical deterministic laws to describe FCG under constant 

or variable amplitude fatigue loading, see for instance (Righiniotis and al, 2003), (Sankararaman and al, 2011), 

(Xiang and al, 2011), (Wu and al, 2003).  

From the view of methodology, these probabilistic models may be separated into two types: one is a physical 

model which is derived from randomization of Paris-Erdogan’s crack propagation law, and the other is the non-

physical model. 

4.2.1. Physical model based on Paris-Erdogan’s law 

One approach to probabilistic modeling of fatigue crack growth is to randomize the coefficients of a deterministic 

model to represent the material inhomogeneity. The model proposed by (Tsurui and al, 1986), (Ishikawa and al, 

1984) presents a physical probabilistic modelling of fatigue crack damage in metallic materials faced in structures. 

In this model, it is assumed that the stress at the crack tip is described only by the SIF, and is independent of 

other factors such as the mean stress or the stress ratio. In addition, it is assumed that there is no retardation 

effect caused by overload and, even if it exists, it is negligibly small. Under these conditions, the crack growth 

law can be described as the Paris law in equation (I.23). The equation of damage is based on the physics of 

fracture mechanics and is validated by Karhunen-Loève. In the work of Fokker-Planck, a generalized equation is 

derived from the Paris-Erdogan’s law. This equation defined the temporal variation of the crack length distribution 

and provided the distribution of the crack propagation life with the use of its solution. The equation is a second 

order differential equation and does not have a unique solution since the equation contains random variables. 
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Therefore this model seems to be very reasonable for the analysis of the crack propagation, however, in their 

work, there is not an application on the crack propagation. 

Another example of the physical model is the one proposed by (Ray and al, 1997) to enhance the computational 

efficiency of the estimation of the lifetime prediction. This model proposed an algorithm for real time estimation 

of the crack damage based on the underlying principle of extended Kalman filtering. In this approach, the first 

two moments of the probabilistic damage are computed by constructing the probabilistic differential equations in 

the Wiener form as opposed to the Itô form. Then, the lognormal distributed crack length (LDCL) model was 

proposed as an improvement of the (Ray and al, 1997) model. The crack growth rate in this model is guaranteed 

to be non-negative, it is based on Karhunen-Loève expansion of the crack length process. This approach provides 

an additional parameter for tuning the probability distribution function. The nonlinear characteristics of the 

eigenfunctions in the Karhunen-Loève expansion provide better accuracy than the linear representation. This 

approach allows the model to capture certain nonlinear features of the crack growth statistic. Consequently, 

model predictions are more accurate. 

4.2.2. Non-physical model  

a) Model based on Markov theory 

Markov processes are proposed to address probabilistic modelling of fatigue crack growth. The basic idea of this 

model is to define the evolution of the crack size during its propagation by a discrete Markov process over time. 

This model is built on several initial assumptions. It is assumed that the damage increment at the end of each 

damage cycle depends only on the amount of damage present at the beginning of this damage cycle regard less 

of the accumulated damage before the cycle. Thus, the model proposed by (Kozin and al, 1985), known as the 

B-model, is nothing else than a stationary Markov process discrete in time and having a finite number of states. 

This B-model can be described in the following terms. 

Let us consider a random variable 𝐷0 , representing the damage present in the structure at time t = 0; and let us 

define the initial statistical distribution of the different levels of damage by the vector  𝒑𝟎, as follows: 

 𝒑𝟎 = {𝜋1 , 𝜋2 , … , 𝜋𝑏} , where 𝜋𝑗 = 𝑃{𝐷0 = 𝑗 ≥ 0, ∀ 𝑗 = 1, … , 𝑏} verify the condition ∑ 𝜋𝑗 = 1
𝑏
𝑗=1 . 

where b is the number of damage levels. 

Let us now consider a random variable D0, representing the damage present in the structure at time t. The 

distribution of each level of damage is described by the following vector: 

𝒑𝒕 = {𝑝𝑡(1), 𝑝𝑡(2), … , 𝑝𝑡(𝑏)} , where  𝑝𝑡(𝑗) = 𝑃{𝐷𝑡 = 𝑗 ≥ 0, 𝑗 = 1, … , 𝑏} (𝐼. 33) 

Referring to the Markov theory, the vector 𝒑𝒕 can be easily computed using: 𝒑𝒕 =  𝒑𝟎[𝑷]
𝒕 = 𝒑𝒕−𝟏[𝑷] where 𝒑𝒕−𝟏 

correspond to the damage distribution at the end of the previous damage cycle and [𝑷] is the transition probability 

matrix that describes the degree of severity of each damage cycle.  

The cumulative distribution function of failure is defined by: 
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𝐹𝑊(𝑡; 𝑏) = 𝑝𝑡(𝑏) (𝐼. 34) 

By considering j the level of damage at t=0 and 𝐹𝑊(𝑡; 𝑗, 𝑏) the cumulative distribution function required to reach 

damage level b, we write:  

𝐹𝑊(𝑡; 𝑏) = ∑𝜋𝑗𝐹𝑊(𝑡; 𝑗, 𝑏)

𝑏−1

𝑗=1

 (𝐼. 35) 

In the context of the problem of fatigue crack propagation, the damage is interpreted as the crack length and the 

damage cycle consists of several loading cycles. 

Thus, based on Markov theory we can obtain the cumulative distribution function of the number of cycles needed 

to reach a given crack length. In addition, reliability and failure rate can be easily determined. The B-model has 

been used in different applications dealing with the problem of fatigue crack propagation (Bea and al, 1999), 

(Lassen and al, 2002).  

Among the Markov processes suitable to perform crack modelling, one may also consider the class of piecewise-

deterministic Markov processes (PDMP’s) frequently employed in safety and reliability and can handle both 

discrete events and continuous evolution of physical phenomena. (Chiquet and al, 2009) were the first authors 

to use PDMP’s to model fatigue crack growth as a degradation mechanism that continuously evolves in time with 

the growth rate changing at random times. PDMPs are able to model crack propagation in order to handle two 

problems: the first one is to capture the transition time between two regimes of propagation and the second one 

is to predict the behavior of a crack until the exit of the linear Paris regime using the first experimental points of 

its propagation as conditional events. PDMPs are described by two variables: an usual Euclidean state representing 

the physical system and a discrete variable reflecting region of propagation.  PDMP’s are suitable for modelling 

and predicting degradation processes induced by the presence of cracks in structural components.  

Although the Markov chain model has been used in a wide variety of applications, it has been the target of 

criticisms. Indeed, the formulation of the model is based on purely statistical foundations and lacks physical 

consistency to describe the actual mechanism of fatigue crack propagation. 

b) Yang and Manning model 

The simple probabilistic model developed by Yang and Manning (Yang and al, 1996) aims obtaining two important 

probability distributions: the crack growth rate probability and probabilistic service life distribution under a 

specified crack length. This model was developed in order to overcome the difficulties presented in the model of 

Markov theory described above. In this model (Yang and al, 1990), a deterministic fatigue crack growth equation 

is developed based on the stress intensity factors describing the failure mechanism and the orientation of the 

crack trajectory. The deterministic equation that was used to have a more realistic representation of the fatigue 

phenomenon, was randomized by assuming that the crack growth rate follows the lognormal distribution. The 

least square method is used to estimate the unknown parameters, and the second order approximation was used 

to derive the two probabilities.  
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To take into consideration the variability of the fatigue crack propagation process, Yang and Manning weighted 

the crack propagation law by a random parameter. Therefore, the crack propagation law is expressed as 

follows: 
𝑑𝑎 (𝑡)

𝑑𝑡
= 𝑋(𝑡)𝑓(∆𝐾, 𝑎, … ), where f is a deterministic function defined as positive, given by the Paris law or 

other laws of crack propagation, consequently, the crack propagation law is transformed into a probabilistic 

differential equation. 

After investigations of experimental data dealing with crack propagation in aircraft under random loading, Yang 

and Manning (Yang and al, 1996) suggested to write the equation in a simpler form: 

𝑑𝑎 (𝑡)

𝑑𝑡
= 𝑋(𝑡)𝑄[𝑎(𝑡)]𝑏 (𝐼. 36) 

where 𝑄 and 𝑏 are two constants determined from the experimental data and t is an independent variable that 

can be interpreted as the number of loading cycles. 

This model has been used especially in the aeronautics industry to conduct damage tolerance and durability 

analyses (Yang and al, 1996). The random factor 𝑋(𝑡) is modelled by a lognormal process 𝑍(𝑡) = ln 𝑋(𝑡) which 

should have zero mean and a standard deviation  𝜎𝑍 =  √ln(1 + 𝜎𝑋
2).  

To quantify the statistical characteristics of fatigue crack growth dataset, (Wu and al, 2003) performed 

probabilistic crack growth modeling and verified the applicability of the Yang–Manning model. (Li and al, 2020) 

proposed a probabilistic fatigue crack growth model considering random initial crack and modified the Yang and 

Manning model considering a crack coalescence under multiple cracks conditions. 

Although the probabilistic model of Yang and Manning offers a better compromise between physical realism and 

simplicity, we can see that, in the case where the propagation process is more complex such as when the loading 

is random, the model is unable to provide good predictions. Indeed, if the crack propagation process is complex, 

the deterministic law of crack growth will have a complex mathematical formulation, therefore, the complex 

mathematical law weighted by a random factor in the Yang and Manning model will be very difficult to solve in 

term of calculations. For this reason, a polynomial representation of the crack growth is proposed. 

c) Polynomial model 

To obtain a compromise between the realism of the physical meaning of the propagation process and the simplicity 

of the calculation, the polynomial model (Ni, 2002) has been proposed. The basic idea of the polynomial model 

is to replace the deterministic propagation law, which is complex if the crack growth process is complex, with a 

polynomial approximation. 

By considering the polynomial approximation of second order, the polynomial probabilistic model is written: 

𝑑𝑎 (𝑡)

𝑑𝑡
= 𝑋(𝑡) [𝑝 + 𝑞 𝑎(𝑡) + 𝑟 𝑎 (𝑡)2] (𝐼. 37) 
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where 𝑝, 𝑞 and 𝑟 are the coefficients of the polynomial determined from the experimental data and depend on 

the characteristics of the material as well as on the applied load. 𝑋(𝑡) is a lognormal random process like the one 

used in the probabilistic model of Yang and Manning. 

Following the same procedure as that of the Yang and Manning model, the quantities to be apprehended can be 

expressed in an analytical form.  

d) Sobczyk model 

This model (Sobczyk and al, 1989), (Sobczyk and al, 1991), (Sobczyk and al, 1995) is based on the representation 

of the propagation of fatigue cracks by a discontinuous probabilistic process in which the trajectories followed by 

the crack during its propagation are discretized into a random number of increments each having a random 

amplitude. (Frondelius and al, 2022) use the numerical solution schemes of this model and proposed an approach 

for high-cycle fatigue. Sobczyk's model assumes that among all the cracks that can coexist, there is one that 

dominates, and the growth of this crack leads to the failure of the structure. Furthermore, it is assumed that the 

configuration of this dominant crack is defined through a single parameter which length 𝐴(𝑡) depends on the time. 

In the case of mixed mode propagation, a relationship must be provided between the length of the crack 𝐴(𝑡) and 

the bifurcation angle 𝜃(𝑡) that defines the orientation of the crack. 

Let 𝐴(𝑡, 𝛾) be the length of the dominant crack at time 𝑡, where 𝛾 is an elementary event belonging to the space 

of all possible events Γ in which the probability is defined. 𝛾 ∈  𝛤, 𝐴(𝑡, 𝛾) represents a possible realization of the 

random crack propagation process. 

The probabilistic process 𝐴(𝑡, 𝛾)can be represented by a random sum of increments having random amplitudes: 

𝐴(𝑡, 𝛾) = 𝐴0 + ∑ 𝑌𝑖(𝛾),    𝑌𝑖(𝛾) = ∆𝐴𝑖   

𝑁(𝑡)

𝑖=1

 (𝐼. 38) 

where 𝐴0 is the initial crack size that can be considered as a deterministic or statistic parameter,  ∑ 𝑌𝑖(𝛾) 
𝑁(𝑡)
𝑖=1 is a 

serie of random variables characterizing the magnitude of the increments of crack length during its propagation 

and 𝑁(𝑡) is a probabilistic counting process defining the number of increments in the interval of time [0,t].  

In order to simplify the implementation of the probabilistic model proposed by Sobczyk, the random variables 

∑ 𝑌𝑖(𝛾) 
𝑁(𝑡)
𝑖=1  are assumed to be independent, identically distributed and positively defined. 

The main objective of the probabilistic model of fatigue crack propagation is to construct the crack length 

distribution and the life distribution. The major advantage of Sobczyk's probabilistic model is that it provides an 

analytical formulation of the statistical characteristics of the quantities to be understood. However, the 

determination of parameters of this model such as the magnitude of the increment of the crack length and the 

critical size of the crack requires special experimental data. 
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e) Castillo Model 

Castillo model (Castillo and al, 2008) is based on the same relationships as in the Wöhler curves (i.e. 𝑆 − 𝑁 

curves). Indeed, this model is constructed by establishing a relationship between the distributions of the initial 

crack length and the number of loading cycles at failure determined from the 𝑆 − 𝑁 curves. The main advantage 

of this model is that it uses as less random expectations as possible.  

Let 𝑎0 be the random size of the dominant crack present in the structure and 𝑓0(𝑎0) the probability density function 

corresponding to it. This model considers a fatigue test conducted on a structure that is solicited by a cyclic 

loading with a constant amplitude varying in the interval defined by the minimum 𝜎𝑚 and maximum value 𝜎𝑀. It 

determines the cumulative distribution function of the random lifetime 𝑁 as a Weibull or Gumbel family of models 

able to reproduce not only the whole Wöhler field, but any combination of minimum and maximum stresses.  

For more precision in the model formulation, the initial crack size 𝑎0  and the number of loading cycles 𝑁 are 

replaced respectively by normalized parameters 
𝑎0

𝑎𝑐
 and 

𝑁

𝑁0
, where 𝑎𝑐 is the critical length of the crack for which the 

failure occurs and 𝑁0 the number of loading cycles taken as reference. 

The purpose of this model is to derive the formula ℎ (
𝑎

𝑎𝑐
,
𝑁

𝑁0
) giving the new crack size ratio 

𝑎

𝑎𝑐
, and the number of 

cycles ratio 
𝑁

𝑁0
 and to determine the probability density function of 

𝑎0

𝑎𝑐
 for a given

𝑁

𝑁0
. 

The first step is to determine a function ℎ(
𝑎0

𝑎𝑐
,
𝑁

𝑁0
) that allows to express the crack size for a given life as a function 

of the initial crack length (for 𝑁 = 0 𝑐𝑦𝑐𝑙𝑒𝑠 the crack size is 𝑎0): 

𝑎

𝑎𝑐
= ℎ (

𝑎0
𝑎𝑐
,
𝑁

𝑁0
) (𝐼. 39) 

The second step is to write the distribution of the length of the current crack in terms of the distribution of the 

initial crack length by applying the function ℎ(
𝑎0

𝑎𝑐
,
𝑁

𝑁0
). 

To construct the function ℎ(
𝑎0

𝑎𝑐
,
𝑁

𝑁0
), the theory of functional equations (Castillo and al, 2005) is used based on the 

following property: the expression of this function must be invariant during the life of the structure. More 

precisely, if a structure containing an initial crack of size 
𝑎0

𝑎𝑐
 is loaded during a loading time  

𝑁

𝑁0
=

𝑁1+𝑁2

𝑁0
 cycles, the 

length of the resulting final crack 
𝑎𝑁

𝑎𝑐
 can be directly obtained: 

𝑎𝑁
𝑎𝑐
= ℎ (

𝑎0
𝑎𝑐
,
𝑁1 + 𝑁2
𝑁0

) (𝐼. 40) 

Furthermore, the crack length can also be determined in another way by decomposing the loading time N. It is 

assumed that the structure containing an initial crack is solicited during a loading time 
𝑁1

𝑁0
 after which the crack 

will have a length 
𝑎𝑁1

𝑎𝑐
= ℎ(

𝑎0

𝑎𝑐
,
𝑁1

𝑁0
). Following this step, it is considered that the resulting structure in which there is 
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an initial crack of length 
𝑎𝑁1

𝑎𝑐
 is solicited for an additional loading time 

𝑁2

𝑁0
 after which the crack reaches the final 

length 
𝑎𝑁

𝑎𝑐
. Thus, the value of the final crack length  

𝑎𝑁

𝑎𝑐
 can be determined using: 

𝑎𝑁
𝑎𝑐
= ℎ (ℎ (

𝑎0
𝑎𝑐
,
𝑁1
𝑁0
) ,
𝑁2
𝑁0
) (𝐼. 41) 

Thus ℎ (
𝑎0

𝑎𝑐
,
𝑁1+𝑁2

𝑁0
) = ℎ(ℎ (

𝑎0

𝑎𝑐
,
𝑁1

𝑁0
) ,

𝑁2

𝑁0
)  is the translation equation having as unknown the function ℎ and its solution 

is: 

𝑎𝑁
𝑎𝑐
= ℎ (

𝑎0
𝑎𝑐
,
𝑁

𝑁0
) = ф (ф−1 (

𝑎0
𝑎𝑐
) +

𝑁

𝑁0
) (𝐼. 42) 

where ф is an arbitrary invertible function from which the initial crack length 
𝑎0

𝑎𝑐
 and the lifetime 

𝑁

𝑁0
 can be expressed 

respectively as follows:  
𝑎0

𝑎𝑐
= ф (ф−1 (

𝑎𝑁

𝑎𝑐
) −

𝑁

𝑁0
) and 

𝑁

𝑁0
= ф−1 (

𝑎𝑁

𝑎𝑐
) − ф−1 (

𝑎0

𝑎𝑐
)      

The probability density function 𝑓𝑎
𝑎𝑐⁄  of the length of the crack after a service life 

𝑁

𝑁0
 can be written in function of 

the probability density function 𝑓𝑎0
𝑎𝑐⁄  of the initial length of the crack (see figure I.30): 

𝑓𝑎
𝑎𝑐⁄ (

𝑎

𝑎𝑐
) =  𝑓𝑎0

𝑎𝑐⁄ (ф (ф−1 (
𝑎𝑁
𝑎𝑐
) −

𝑁

𝑁0
))
ф′ (ф−1 (

𝑎𝑁
𝑎𝑐
) −

𝑁
𝑁0
)

ф′ (
𝑎
𝑎𝑐
)

  (𝐼. 43) 

 

Figure I. 31. Evolution of the pdf 𝑓𝑎
𝑎𝑐⁄ (

𝑎

𝑎𝑐
) with the number of cycles and critical crack size 

The major advantage of the model proposed by Castillo lies in the fact that it requires the knowledge of only one 

function, namely the distribution 𝑓𝑎0
𝑎𝑐⁄ of the initial size of the crack or the function ф to define the relation between 

the curves of Wöhler and the curves of propagation of crack under the same history of loading. This has important 

practical consequences since these curves can be obtained by running conventional fatigue tests and 

complementing them with simple crack growth data. Thus, the model allows extrapolation to any load conditions. 

This result justifies the simplicity of the model as well as its flexibility. 
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f) Madsen model 

The dispersion of the fatigue life in the Castillo model is assumed to be induced only by the variability of the initial 

length of the crack, thus far away from the reality. Indeed, the damage function is defined as a stochastic integral. 

Thus the construction of the distribution of crack length is more complicated. The basic idea of the model proposed 

by (Madsen and al, 1986) is to transform the equation of the crack growth rate into a probabilistic differential 

equation. By the use of the Paris’s law defined earlier in equation (I.23), and under a constant loading amplitude, 

the crack growth rate by Madsen can be written by: 

𝑑𝑎

𝑑𝑁
= 𝐶 𝑌(𝑎)𝑚∆𝜎𝑚(√𝜋𝑎)𝑚   (𝐼. 44) 

where 𝐶 and 𝑚 are parameters depending on the material, ∆𝜎 is the amplitude of the loading and  𝑌(𝑎) is a 

geometric correction function. 

By integration of equation (I.44), and after separating of the variables, the solution of this differential equation 

is given by:  

Ψ(a) = 𝐶 ∆𝜎𝑚𝑁  (𝐼. 45) 

where Ψ(a) is an increasing function which represents the evolution of the crack length; it is defined by: 

Ψ(a) = ∫
𝑑𝑥

𝑌(𝑥)𝑚(√𝜋𝑥)𝑚

𝑎

𝑎0

  (𝐼. 46) 

Contrarily to our knowledge concerning that the parameters 𝐶 and 𝑚 represent the material as a random variable, 

in this probabilistic model, we assume that the parameter 𝐶  is constant and identical for all the specimens while 

the parameter 𝑚 is considered as a random quantity. The distribution of crack length after a given service life 

appears to be complicated. Thus, the construction of a sample of realizations of the crack propagation curve is 

easier, this by simulations of the random process and by calculating the integral.  

This model is applied in several probabilistic problems dealing with fatigue crack propagation, particularly in the 

context of reliability analyzes. (Casciati and al, 2007) used this model to analyze experimental data obtained by 

crack propagation tests in compact tension specimens. They observed that the dispersion of experimental data is 

low. 

4.2.3. Conclusion about the probabilistic model of fatigue crack propagation 

The dispersion can have different sources such as the uncertainties that affect the parameters defining the 

geometry of the structure, the properties of the material and the applied loading. In this section, we have given 

a presentation of models dealing with the propagation of fatigue cracks in a probabilistic context. These models 

can be divided into two categories. 

The basic idea of the first category consists in weighting the deterministic laws governing the crack growth, such 

as the Paris’ law, by a random process which makes it possible to take into account the dispersion related to the 

properties of the material. The difficulty with this type of models is that they require relatively significant 
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experimental works to determine the various parameters involved. Besides, if the propagation process is complex, 

which implies a difficult deterministic mathematical model, the formulation of the probabilistic model will be also 

difficult to handle. 

The second class of models consists in representing the probabilistic character of the crack propagation by a 

process of Markov chains. Even if the formulation of these models has been extended for the case of mixed mode 

propagation, they are very criticized because their basis is purely statistical and does not represent the real 

physics which accompanies the process of propagation of cracks. Even if these models have been adopted in 

several applications, especially in failure mode I where the crack follows the same direction during its propagation, 

they are far of representing a realistic case since the crack follows curvilinear and irregular paths. Also, these 

models do not take in consideration the effect of the retardation induced by the application of overloads. In fact, 

many engineering structures are frequently subjected to constant amplitude loading with occasional high peak 

loads, which are called overloads. For instance, due to the constant air current and occasional turbulence during 

the flight, aircrafts are always under the influence of this phenomenon. Curiously, as confirmed by many 

experimental studies (Schijve, 1962), (Schijve and al, 2004), (Manjunatha and al, 2004), (Daneshpour and al, 

2012), (Dirik and al, 2018), (Hemnesi and al, 2022), these overloads have benefit effect on the fracture behavior, 

since they retardation the fatigue crack growth and consequently can enhance the fatigue lifetime of the structure. 

This retardation effect is mainly attributed to a secondary plastic strain created around the crack tip. For this 

reason, it is necessary to study in deep the effect of these overloads on the crack growth behavior. In this context, 

the probabilistic models presented in this section do not consider the effect of the retardation. 

5. Conclusion 

Fatigue is the most important form of component failure due to cyclic loading. For safe and efficient design and 

evaluation of engineering materials that experience dynamic cyclic loading in service, it is essential to find an 

efficient prediction method in term of time computation reduction and which has a good precision on the computed 

results. For that, we have first presented the basics of fracture mechanics which are the basis of all the laws used 

for the phenomenon of fatigue, and then have focused on understanding the fatigue crack growth phenomenon. 

Methods used to compute the fracture driving forces, as the stress intensity factor in linear elastic fracture 

mechanics have been presented. Through a comparative study dealing with fatigue crack growth in CT specimen, 

we have found that the energetic method based on independent path integral is more accurate than the kinematic 

method. Fatigue crack growth models have also been studied, and predictions are compared to experimental data 

taken from the literature. We have shown that Walker’s and Forman’s laws are more suitable than the Paris-

Erdogan’s one to fit experimental data. Finally, stochastic model for fatigue crack propagation have been 

presented because deterministic approaches cannot be used especially with the random nature of the fatigue 

phenomenon. 

The fatigue phenomenon can have different sources of uncertainty that can affect the parameters defining the 

structural geometry, material properties and applied loading. Particular attention has been paid to the 

presentation of models dealing with fatigue crack propagation in a probabilistic context. As mentioned earlier in 

this chapter, these models can be classified into two categories. In the first, the basic idea consists in weighting 
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the deterministic the fatigue crack growth laws, such as the law of Paris, by a random process which makes it 

possible to consider the uncertainty of the material properties. The difficulty with this type of model is that it 

requires relatively substantial experimental work to determine the statistical characteristics of parameters 

involved in the probabilistic modelling. Moreover, if the propagation process is complex, which implies a 

deterministic mathematical model that is difficult to control, the formulation of the probabilistic model will 

therefore be a non-trivial task. The second class of models consists in representing the stochastic character of 

crack propagation by a Markov chains based process. Even though the formulation of these models has been 

extended for the case of mixed-mode propagation, they are highly criticized because their basis is purely statistical 

and does not represent the true physics to the crack propagation. 

Although most of these models have been adopted in several applications, most deal with failure in mode I for 

which the crack follows the same direction during its propagation, where in practice the cracks follow curvilinear 

and irregular paths. As an alternative to these probabilistic fatigue crack propagation models, we can mention 

other more general approaches called probabilistic finite element methods. These approaches developed during 

the last two decades aim to take into account the uncertainties in mechanical calculation and more precisely in 

finite element modeling. Unfortunately, these approaches are inefficient when the probabilistic dimension is high 

and the mechanical model itself is computational time demanding such is the case for problems dealing with 

fatigue crack growth. Thus why developing enhanced alternatives of these approaches will be the issue of this 

thesis. 
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Chapter II: Identification of efficient cubature schemes for 

the computation of multidimensional integrals 

1. Introduction 

In the previous chapter, we have highlighted that fatigue crack growth is a random process, mainly due to 

the uncertainties observed on the mechanical properties of the materials, on the applied loading as well as 

the parameters defining the geometry of the structure. As we have seen, a wide variety of models have 

been proposed in the literature to consider these various sources of uncertainties and to assess their effect 

on the fatigue crack growth life, but unfortunately, they encounter some difficulties especially when dealing 

with engineering problems. To overcome these limitations, uncertainties propagation methods, seems to 

be the best alternative. These methods have been developed over the past forty years and have been 

successfully applied to various problems in the fields of mechanical and civil engineering. They can be 

classified into two categories. The first one is intrusive methods which are represented by any scheme that 

adapts the governing equations of the deterministic model to propagate the effect of uncertainties on the 

mechanical responses. They can only be applied to a limited number of problems, where the governing 

equations are mathematically very simple and the variability of the uncertain parameters is low, which is 

unfortunately not the case of fatigue crack growth problems. The second category is the non-intrusive 

methods, where the probabilistic and the mechanical computations are dissociated. Indeed, the variability 

of the mechanical responses induced by the uncertainty of the input parameters is assessed through a 

series of runs of the deterministic mechanical model on some points of the random space. The main 

advantage of the non-intrusive methods is the fact that the mechanical model is considered as a black box. 

It allows us to benefit from the advanced modeling capacity of some numerical tools such as commercial 

finite elements codes to deal with a large number of complex mechanical problems, such as fatigue crack 

growth problems. However, non-intrusive methods still suffer from some limitations, mainly their 

inefficiency when the number of uncertain parameters is very large. This problem is often referred to as 

the curse of dimensionality. Despite this limitation, the intrusive methods remain a serious candidate to 

tackle complex mechanical problems such as the fatigue crack growth one. 

In this context, this thesis aims to develop an accurate and efficient uncertainty propagation method to 

deal with a large class of fatigue crack growth problems. Hence, a first attempt to reach this objective will 

be conducted in this chapter by exploring efficient monomial cubature schemes. This chapter contains four 

main sections. Section 2 reviews the principle of the uncertainty propagation problem through a mechanical 

model. The mathematical formulation of the three finalities of the uncertainty propagation problem, such 

as statistical moment analysis, reliability analysis and sensitivity analysis will be also reminded. Section 3 

will be devoted to the presentation of standard methods for the computation of integrals quantities derived 

from uncertainty propagation analysis. Section 4 reviews the mathematical formulation of some efficient 
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monomial cubature schemes. Finally, section 5 addresses various numerical examples to show the potential 

of monomial cubature schemes in the computation of multidimensional integrals involved in uncertainty 

propagation analysis. 

2. Uncertainty propagation framework 

2.1. General principle 

Let us consider a mechanical model (e.g., a fatigue cracked component) having 𝑁 uncertain parameters 

gathered in the vector 𝒙 = { 𝑥1 , … , 𝑥𝑁}
𝑇 ∈ 𝔇𝔁. Mathematically speaking, this model can be represented by 

the following deterministic mapping 𝑓: 

𝑦 = 𝑓(𝒙) (𝐼𝐼. 1) 

where 𝑦 ∈ 𝔇𝓎 is the quantity of interest or the response of the mechanical model (e.g., a crack length, a 

stress intensity factor, a fatigue life, etc.) obtained either by explicit (i.e., analytical closed formula) or 

implicit (i.e., finite elements model) representation of the function 𝑓. In the sequel, and without a loss of 

generality, only models having a single mechanical response are presented, which means that 𝑦 is a scalar 

quantity. Indeed, all the derivations hold component-wise in case of vector-valued models 𝒚 = { 𝑦1 , … , 𝑦𝑀}
𝑇 ∈

𝔇𝔂.  

Due to the uncertainty embodied in the input parameters 𝒙, the response 𝑦 of the mechanical model 

becomes also uncertain by uncertainty propagation through the mapping 𝑓. Hence, we will denote by 𝑌 =

𝑓(𝑿) the probabilistic model associated to the mechanical model defined by equation (II.1), 𝑿 =

{ 𝑋1 , … , 𝑋𝑁}
𝑇 ∈ 𝔇𝓧 an 𝑁-dimensional random variable, with a prescribed probability density function 𝑝𝑿(𝒙), 

modeling the uncertainty on the input parameters 𝒙 and 𝑌 ∈ 𝔇𝒴  a scalar random variable representing the 

uncertainty on the mechanical response 𝑦 and following a probability density function 𝑝𝑌(𝑦).         

 

Figure II.  1. Principle of uncertainty propagation through a mechanical model 

The principle of uncertainty propagation is schematically illustrated in figure II.1. As can be seen, it 

comprises three main steps. The first is to model the uncertainties associated with the input parameters 

using probabilistic models such as random variables and random fields. The choice of the suitable 

probabilistic model and its related parameters can be done by performing statistics if data are available or 

based on expert judgement. The second step is to define the mechanical model which ranges from a simple 

analytical formula to a complex time-consuming numerical model. The mechanical model maps the set of 

input parameters to the outputs of interest. In the third step, uncertainty propagation is performed through 
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the mechanical model using suitable coupling schemes. Then, various probabilistic analysis can be 

performed on the obtained results to quantify the variability of the uncertain responses. 

In engineering problems, the components of the 𝑁-dimensional random variable 𝑿 may have different 

probability distributions and may also be correlated with each other. Consequently, carrying out 

probabilistic computations in the physical random space couldn’t be a trivial task. For this purpose, we 

prefer to recast the uncertainty propagation problem in the standard random space, where the 𝑁-

dimensional random variable 𝑿 is transformed into a 𝑁-dimensional normal variable 𝑼 = { 𝑈1 , … , 𝑈𝑁}
𝑇 ∈ ℝ𝑁 

with independent components 𝑈i , 𝑖 ∈ {1, … , 𝑁} following a standard normal distribution 𝜑𝑈i(𝑢i), 𝑖 ∈ {1, … , 𝑁} 

with zero mean and unit standard deviation. This can be easily achieved using an isoprobabilistic transform 

𝑿 = 𝑇(𝑼), such as the Nataf (Nataf, 1962) or the Rosenblatt transformation (Rosenblatt, 1952). Therefore, 

the deterministic mapping 𝑓 representing the mechanical model, reads in the standard random space:  

𝑦 = 𝑓   ⃘ 𝑇(𝒖) ≡ ℎ(𝒖) (𝐼𝐼. 2) 

Figure II.2 illustrates the isoprobabilistic transfomation for the 2-dimensional case, where 𝑝𝑿(𝒙) and 𝜑𝑼(𝒖) 

are the probability density functions of the 2-dimensional random variables 𝑿 = { 𝑋1 , 𝑋2}
𝑇 and 𝑼 = { 𝑈1 , 𝑈2}

𝑇, 

respectively. 

 

Figure II.  2. Illustration of the isoprobabilistic transformation for the 2-dimensional case   

Once the uncertainty propagation through the mechanical model is carried out, three kinds of analyses can 

be performed, as illustrated by figure II.3.  

 

Figure II.  3. Classification of uncertainty propagation analysis 
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The first one, called response variability analysis, aims to compute the few first statistical moments 𝑚𝑌
𝑙  and 

to construct the probability density function 𝑝𝑌(𝑦) of the mechanical response 𝑦. Here, focus is mainly on 

the neighborhood of the mean value of the random variable 𝑌. The second one, called sensitivity analysis, 

aims at quantifying the contribution of each uncertain input parameter on the variability of the mechanical 

response. Here, sensitivity indices derived from partial variances 𝑉𝑖1 ,…𝑖𝑠 are computed. Finally, the third one 

called, reliability analysis, aims at computing the probability 𝑃𝑓 that the mechanical system under 

consideration fails with respect to one or more failure criteria. Here, the tails of the mechanical response 

distribution 𝑝𝑌(𝑦) are of particular interest. 

2.2. Statistical moments analysis 

The uncertainty of the input parameters 𝒙 = { 𝑥1 , … , 𝑥𝑁}
𝑇 of the mechanical model 𝑓 is represented by an 𝑁-

dimensional random variable 𝑿 = { 𝑋1 , … , 𝑋𝑁}
𝑇 with prescribed 𝑝𝑿(𝒙). Due to the uncertainty propagation, the 

mechanical response 𝑦 becomes an uncertain quantity. As this later is considered as scalar, for the sake of 

simplicity as stated previously, the variability of the mechanical response 𝑦 can be described by a random 

variable 𝑌. To characterize the probabilistic content of 𝑌, it is necessary to compute its statistical moments 

and construct its probability density function 𝑝𝑌(𝑦). The 𝑙𝑡ℎ statistical moment of the random variable 𝑌, 

i.e. 𝑚𝑌
𝑙 , is defined as:    

𝑚𝑌
𝑙 = 𝔼[𝑌𝑙] = ∫ 𝑦𝑙  𝑝𝑌(𝑦) 𝑑𝑦

𝔇𝑌

= ∫ [𝑓(𝒙)]𝑙   𝑝𝑿(𝒙) 𝑑𝒙
𝔇𝓧

= ∫ [𝑓   ⃘ 𝑇(𝒖)]𝑙   𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

= ∫ [ℎ(𝒖)]𝑙  𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

 (𝐼𝐼. 3) 

where 𝔼[. ] denotes the mathematical expectation. 

It is clear from equation (II.3) that the estimation of an 𝑙𝑡ℎ order statistical moment 𝑚𝑌
𝑙  requires solving a 

tough mathematical problem, which is the computation of 𝑁-dimensional integrals. Indeed, for engineering 

problems, it is difficult to obtain a closed-form solution of these integrals because the mechanical model is 

often given by a time-consuming implicit representation, which requires the use of numerical integration 

schemes, which unfortunately suffer from inefficiency when dealing with high-dimensional problems (i.e., 

the number 𝑁 of uncertain parameters is very high. 

 

Figure II.  4. Significance of the first four statistical moments 

To get a complete picture of the probabilistic content of 𝑌 you can construct its probability density 

function 𝑝𝑌(𝑦), in addition to the estimates of the statistical moments. This can be done, by a moments-
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based technique (Pearson and Tukey, 1965) which requires accurate estimates of the four central statistical 

moments namely, the mean 𝜇𝑌, the standard deviation 𝜎𝑌, the skewness 𝛿𝑌, and the kurtosis 𝜅𝑌. As depicted 

in figure II. 4, these statistical moments allow to measure respectively, the location, the spread, the 

symmetry and the peakedness of the probability density function. They can be derived easily from (II.3) 

and defined in standard random space as follow: 

𝜇𝑌 = ∫  ℎ(𝒖) 𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

 (𝐼𝐼. 4) 

𝜎𝑌
2 = ∫  [ℎ(𝒖) − 𝜇𝑌]

2 𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

 (𝐼𝐼. 5) 

𝛿𝑌 =
1

𝜎𝑌
3 ∫  [ℎ(𝒖) − 𝜇𝑌]

3 𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

 (𝐼𝐼. 6) 

𝜅𝑌 =
1

𝜎𝑌
4 ∫  [ℎ(𝒖) − 𝜇𝑌]

4 𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

 (𝐼𝐼. 7) 

Various moments-based techniques are available in the literature, among them a versatile one called 

shifted generalized lognormal distribution is developed (Low, 2013). It has the following explicit analytical 

expression which is very flexible to fit a large class of probability density functions and covers a large part 

of the skewness-kurtosis diagram. 

𝑝𝑌(𝑦) ≈
𝛼

𝑦 − 𝛾
exp [−

1

𝑟𝛽𝑟
|ln (

𝑦 − 𝛾

∆
)|
𝑟

] , 𝛾 < 𝑦 < ∞ (𝐼𝐼. 8) 

where 𝛼 = 1 𝑟1 𝑟⁄  𝛽 Γ(1 + 1 𝑟⁄ )⁄  with Γ(. ) is the gamma function, 𝛽 and 𝑟 are shape parameters, 𝛾 and ∆ are 

for location and scale parameters, respectively.          

The probability density function 𝑝𝑌(𝑦) can be constructed in another way, using a kernel smoothing 

technique (Wand and Jones, 1995), by the following approximation, which requires a sample set of the 

mechanical response {𝑦𝑖}𝑖=1
𝑁 : 

𝑝𝑌(𝑦) ≈
1

𝑁 ∆𝐾  
∑𝐾(

𝑦 − 𝑦𝑖
∆𝐾

)

𝑁

𝑖=1

 (𝐼𝐼. 9) 

where 𝐾(. ) is positive function named kernel and ∆𝐾 is the bandwidth parameter.   

2.3. Sensitivity analysis 

Sensitivity analysis of a mechanical model provides a ranking of the uncertain input parameters with 

respect to their significance on the variability of the response. This information is of a great importance for 

the analyst, since it allows him to focus on the most significant parameters, since insignificant ones may 

be considered as deterministic quantities and fixed to their respective nominal values. This ranking of the 

uncertain input parameters can be obtained either by local or global sensitivity measurements. For that 

reason, sensitivity analysis methods are divided into two categories: Local Sensitivity methods (LS) and 

Global Sensitivity methods (GS).  
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The first one, that is LS methods concentrate on the measurement of the local impact of input parameters 

on the response of the model. In other words, it allows to study how a little change of an input parameter 

in the vicinity of a specific value (e.g., mean value, most probable failure point…) can influence the response 

of the model. The sensitivity measurements given by the most LS methods are based on the computation 

of the gradient of the mechanical response with respect to each of its uncertain input parameters around 

a given value. Many numerical techniques are available to perform such a computation efficiently, including 

finite-difference and adjoint differentiation schemes. 

GS methods provide more complete information compared to LS methods, as they have the advantage of 

considering the overall impact of the input parameters and their mutual interactions on the mechanical 

response, not only in the vicinity of a specific point but on the whole uncertain domain, defined as the 

variation space of the input parameters due to their uncertainties. GS methods can be classified into two 

groups, the regression-based methods and the Variance-based methods, which also called in the literature 

ANOVA-based methods, where the term ANOVA means ANalysis Of VAriance. These later, i.e. ANOVA-

based methods are very promising, and have therefore received growing attention over the last two 

decades compared to regression-based methods which do not provide accurate sensitivity measurements 

in the case of highly non-linear mechanical model (Saltelli and Sobol 1995). Among ANOVA-based 

sensitivity measurements, we can find Fourier Amplitude Sensitivity Test (FAST) indices (Cukier and al, 

1978) and Sobol indices (Sobol, 1993). In the following, the focus will be solely on the presentation of the 

variance decomposition problem and the derivation of the global sensitivity measurements of Sobol. 

Interested readers can find in (Saltelli and al, 2000) an extended state-of-the-art of the available sensitivity 

analysis methods. 

Let us suppose that the mapping 𝑓 representing the mechanical model is square-integrable with respect to 

the probability measure associated to the probability density function 𝑝𝑿(𝒙) of the 𝑁-dimensional random 

variable 𝑿 = { 𝑋1 , … , 𝑋𝑁}
𝑇 where the components 𝑋i , 𝑖 ∈ {1, … , 𝑁} are independent. Under these assumptions, 

𝑝𝑿(𝒙) can be obtained as the product of the marginal probability functions 𝑝𝑋i(𝑥i), 𝑖 ∈ {1, … , 𝑁} of each input 

parameter, and the mapping 𝑓 can be represented by a finite hierarchical expansion known as Sobol 

decomposition (Sobol, 1993):  

𝑌 = 𝑓(𝑿) = 𝑓0 +∑𝑓𝑖(𝑋𝑖)

𝑁

𝑖=1

+ ∑ ∑ 𝑓𝑖1 ,𝑖2(𝑋𝑖1 , 𝑋𝑖2)

𝑁

𝑖2=𝑖1+1

𝑁−1

𝑖1=1

+ ⋯+ 𝑓1,2,…,𝑁(𝑋1 , 𝑋2 , … , 𝑋𝑁) (𝐼𝐼. 10) 

where 𝑓0 is a constant, 𝑓𝑖(𝑋𝑖) is a univariate component function representing the main effect of the 

uncertain input parameter 𝑥i acting alone, 𝑓𝑖1 ,𝑖2(𝑋𝑖1 , 𝑋𝑖2) is a bivariate component function describing the 

effect of interaction between the uncertain input parameters 𝑥𝑖1 and 𝑥𝑖2, and so on. The last component in 

equation (II.10) represents the effect of the interaction of all uncertain input parameters on the variability 

of the mechanical response 𝑦. 
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The uniqueness of the representation given by equation (II.10) is ensured by choosing summands that 

satisfy the following conditions (Sobol, 1993): 

𝑓0 = ∫ 𝑓(𝒙) 𝑝𝑿(𝒙) 𝑑𝒙
𝔇𝓧

 (𝐼𝐼. 11) 

∫ 𝑓𝑖1 ,…,𝑖𝑠(𝑥𝑖1 , … , 𝑥𝑖𝑠) 𝑝𝑋𝑖(𝑥𝑖) 𝑑𝑥𝑖
𝔇𝒳𝒊

= 0, ∀ 𝑖 ∈ {𝑖1, … , 𝑖𝑠} (𝐼𝐼. 12) 

where 𝔇𝓧 is the support of the 𝑁-dimensional random variable 𝑿 = { 𝑋1 , … , 𝑋𝑁}
𝑇, 𝔇𝒳𝒊 and 𝑝𝑋𝑖(𝑥𝑖) are the 

support and the marginal probability density function of the random variable 𝑋𝑖.      

It follows from (II.11) and (II.12) that 𝑓0 is the mean value of the function 𝑓, all summands are orthogonal, 

and the expectation of any summand vanish. Consequently, a recursive construction of the components 

functions of (II.10) can be obtained: 

𝑓0 = 𝔼[𝑓(𝑿)] (𝐼𝐼. 13) 

𝑓𝑖(𝑋𝑖) = 𝔼[𝑓(𝑿)|𝑋𝑖] − 𝑓0  (𝐼𝐼. 14) 

𝑓𝑖1 ,𝑖2(𝑋𝑖1 , 𝑋𝑖2) = 𝔼[𝑓(𝑿)|𝑋𝑖1 , 𝑋𝑖2] − 𝑓𝑖1(𝑋𝑖1) − 𝑓𝑖2(𝑋𝑖2) − 𝑓0 (𝐼𝐼. 15) 

and so on, where 𝔼[. |. ] denotes the mathematical conditional expectation. 

Now by squaring the Sobol decomposition (II.10) and integrating over 𝔇𝓧, the total variance of random 

variable 𝑌 representing the variability of the mechanical response 𝑦, can be obtained as follows: 

𝑉𝑌 = 𝕍[𝑌] = 𝕍[𝑓(𝑿)] = ∑𝑉𝑖

𝑁

𝑖=1

+ ∑ ∑ 𝑉𝑖1 ,𝑖2

𝑁

𝑖2=𝑖1+1

𝑁−1

𝑖1=1

+ ⋯+ 𝑉1,2,…,𝑁 (𝐼𝐼. 16) 

where 𝕍[. ] denotes the mathematical variance, and the components 𝑉𝑖1 ,…,𝑖𝑠 appearing in the above 

expansion, are referred to as 𝑠𝑡ℎ order partial variances and defined by: 

𝑉𝑖1 ,…,𝑖𝑠 = 𝕍[𝑓𝑖1 ,…,𝑖𝑠(𝑥𝑖1 , … , 𝑥𝑖𝑠)],     𝑠 ∈ {1, … , 𝑁}  (𝐼𝐼. 17) 

The ratio between the 𝑠𝑡ℎ order partial variances 𝑉𝑖1 ,…,𝑖𝑠 and the total variance 𝑉𝑌, given by (II.16), provides 

a normalized sensitivity measurement 𝑆𝑖1 ,…,𝑖𝑠, called Sobol’s sensitivity index (Sobol, 1993), describing the 

sensitivity of the mechanical response 𝑌 to the interaction between the uncertainties related to the input 

parameters (𝑥𝑖1 , … , 𝑥𝑖𝑠). It is defined by: 

𝑆𝑖1 ,…,𝑖𝑠 =
𝑉𝑖1 ,…,𝑖𝑠
𝑉𝑌

 (𝐼𝐼. 18) 

Moreover, the Sobol total sensitivity indices 𝑆𝑖
𝑇, 𝑖 ∈ {1, … , 𝑁} can be easily derived in the same way. They 

are introduced to evaluate the total effect of uncertain input parameters:  

𝑆𝑖
𝑇 =

𝑉𝑖
𝑇

𝑉𝑌
 (𝐼𝐼. 19) 
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where 𝑉𝑖
𝑇 is the total variance accounting the main effect of the uncertain input parameter 𝑥𝑖 (i.e., when 

the uncertainty related to 𝑥𝑖 acting solely on the mechanical response) and higher order effect resulting 

from the interaction with the uncertainties of the other input parameters. 

The total variance can be defined by: 

𝑉𝑖
𝑇 = 𝔼~𝑋𝑖[𝕍𝑋𝑖[𝑌]] = 𝔼~𝑋𝑖[𝕍𝑋𝑖[𝑓(𝑿)]] (𝐼𝐼. 20) 

where the inner term 𝕍𝑋𝑖[. ] is the variance of 𝑌 only due to the uncertainty of the input parameter 𝑥𝑖 and 

the outer term 𝔼~𝑋𝑖[. ] is the expectation value due to the uncertainties related to all input parameters ~𝑥𝑖 

except 𝑥𝑖. 

After performing some algebraic operations, the total variance can be rewritten as follow: 

𝑉𝑖
𝑇 = 𝔼~𝑋𝑖 [𝔼𝑋𝑖[𝑓(𝑿)

2] − (𝔼𝑋𝑖[𝑓(𝑿)])
2
] = 𝔼[𝑓(𝑿)2] − 𝔼~𝑋𝑖[(𝔼𝑋𝑖[𝑓(𝑿)])

2
] = 𝔼[𝑓(𝑿)2] − 𝔼~𝑋𝑖[(𝔼𝑋𝑖[𝑓(𝑿)])

2
] (𝐼𝐼. 21) 

The first term in (II.21) is the second order statistical moment 𝑚𝑌
2 which can be derived from (II.3) by 

setting 𝑙 equal to 2. However, the computation of the second term is more complex since it involves the 

evaluation of two integrals: 

𝔼~𝑋𝑖[(𝔼𝑋𝑖[𝑓(𝑿)])
2
] = ∫ (∫ 𝑓(𝒙)

𝑋𝑖

 𝑝𝑋𝑖(𝑥𝑖) 𝑑𝑥𝑖)

2

 
~𝑋𝑖

𝑝~𝑿𝒊(~𝒙𝒊)𝑑~𝒙𝒊 (𝐼𝐼. 22) 

The inner integral is one-dimensional and can be easily computed by numerical integration schemes or 

analytically if the integrand is available under closed form explicit solution. However, the outer integral is 

multidimensional, and its evaluation is not trivial by conventional integration schemes, especially when the 

integrand is only available under a time-consuming implicit form and the integration dimension is very 

high. As shown in subsection 2.2, sensitivity analysis presents the same difficulties as of statistical 

moments analysis, since, mathematically speaking, the problem in both cases is to compute 

multidimensional integrals. 

For the consistency throughout the manuscript of this thesis, equation (II.22) is rewritten in the standard 

random space. It now reads: 

𝔼~𝑋𝑖 [(𝔼𝑋𝑖[𝑓(𝑿)])
2
] = 𝔼~𝑈𝑖[(𝔼𝑈𝑖[𝑓(𝑼)])

2
] = ∫ (∫ ℎ(𝒖)

𝑈𝑖

 𝜑𝑈𝑖(𝑢𝑖) 𝑑𝑢𝑖)

2

 
~𝑈𝑖

𝜑~𝑼𝒊(~𝒖𝒊)𝑑~𝒖𝒊 (𝐼𝐼. 23) 

2.4. Reliability analysis  

Reliability analysis aims to assess the safety level of an engineering system or structure against a 

prescribed failure criterion. Commonly, the failure criterion concept can be defined as the gap between two 

fundamental quantities named the Demand and the Capacity, respectively. In mechanical engineering, as 

well as in civil engineering, the Demand can be defined as the system response, such as a stress intensity 

factor or a crack length, induced by the loading conditions. The Capacity, on the other hand, represents a 
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threshold level, such as an ultimate stress intensity factor (i.e., fracture toughness) or crack length, beyond 

which the system collapses. Mathematically speaking, the failure criterion is characterized by the limit state 

function, or the performance function, denoted 𝐺. It is defined as a mapping of the uncertain parameters 

𝒙 = { 𝑥1 , … , 𝑥𝑁}
𝑇. The random space can be split up into two regions: the failure domain Ω𝐹 =

{𝒙 ∈ 𝔇𝑿| 𝐺(𝒙) < 0} and the safety domain Ω𝑆 = {𝒙 ∈ 𝔇𝑿| 𝐺(𝒙) > 0}. The set of points Γ = {𝒙 ∈ 𝔇𝑿| 𝐺(𝒙) = 0} 

represents the limit state surface which is the frontier between the failure and the safety domains. Figure 

II. 5 schematically illustrates these concepts in the case of a two-dimensional random space. 

 

Figure II.  5. Reliability concepts in the physical random space (left) and the standard random space (right)  

According to the above concepts, the probability of failure, denoted 𝑃𝑓, and defined as the complementary 

event of the reliability 𝑅, that is 𝑃𝑓 = 1 − 𝑅, reads: 

𝑃𝑓 = Prob[𝐺(𝒙) ≤ 0] = ∫ 𝑝𝑿(𝒙) 𝑑𝒙
𝐺(𝒙)≤0

= ∫ 𝕀Ω𝐹(𝒙) 𝑝𝑿(𝒙)𝑑𝒙
ℝ𝑁

 (𝐼𝐼. 24) 

where 𝑝𝑿 is the joint probability density of the random vector 𝑿, and 𝕀Ω𝐹 is the indicator function on Ω𝐹 , 

which is equal to 1 if 𝐺(𝒙) ≤ 0 and 0 otherwise. 

As can be seen, the estimation of the probability of failure 𝑃𝑓 is nothing other than the computation of a 

multidimensional integral, which reminds us of the same computational problem encountered in 

subsections 2.2 and 2.3 presenting statistical moments and sensitivity analysis. As the limit state function 

𝐺 is often not available in explicit form, especially when dealing with engineering problems, the integral in 

above equation cannot be analytically computed. Instead, numerical methods are often employed. The 

efficiency of the numerical scheme mainly depends on the complexity of the limit state function and the 

problem dimensionality 𝑁. To avoid multidimensional integrals computation in the estimation of the 

probability of failure, an approximation technique called First Order Reliability Method (FORM) has been 

developed in the early seventies (Hasofer and Lind, 1974). To apply FORM, the first step is to rewrite the 

reliability problem in the standard random space, using probabilistic transformation as shown in subsection 

2.1. Consequently, the probability of failure defined earlier by equation (II.24), is now given by the 

following expression: 
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𝑃𝑓 = ∫ 𝑝𝑿(𝒙) 𝑑𝒙
𝐺(𝒙)≤0

= ∫ 𝜑𝑼(𝒖)𝑑𝒖
𝐻(𝒖)≤0

= ∫ 𝕀Ω𝐹(𝒖) 𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

 (𝐼𝐼. 25) 

where 𝐻(𝑼) ≡ 𝐺 ∘ 𝑇(𝑼) = 𝐺(𝑿) is the limit state function in the standard random space, 𝜑𝑼 is the standard 

multinormal probability density function and 𝕀Ω𝐹 is the indicator function on Ω𝐹 , which is equal to 1 if 𝐻(𝒖) ≤

0 and 0 otherwise. 

 

Figure II.  6. Approximation of the probability of failure using FORM (left) and SORM (right). 

Then, the FORM approximation substitutes the limit state function 𝐻 by a hyperplane tangent to the true 

failure domain at the Most Probable Failure Point (MPFP) denoted 𝑃∗, also called the design point, which is 

defined as the nearest point of the limit state surface to the origin of the standard random space as depicted 

in figure II.6. The MPFP is obtained by solving the following constrained optimization problem: 

{
‖𝒖∗‖ = min

𝒖∈ℝ𝑵
‖𝒖‖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐻(𝒖) = 0
 (𝐼𝐼. 26) 

Once the coordinates 𝒖∗ = {𝑢1 , 𝑢2 , … , 𝑢𝑛}
𝑇 of 𝑃∗ are found, the Hasofer-Lind reliability index 𝛽𝐻𝐿 = ‖𝒖

∗‖ is 

computed, and the first order approximation of the probability of failure reads: 

𝑃𝑓 ≈ 𝑃𝑓,𝐹𝑂𝑅𝑀 = Φ(−𝛽𝐻𝐿) (𝐼𝐼. 27) 

where Φ is the cumulative distribution function of a standard normal variable.  

The FORM approximation of the probability of failure is often satisfactory, especially for high values of the 

reliability index, provided that the MPFP is well identified. It is clear from figure II.5 that FORM 

approximation is exact only when the true limit state function is linear. Unfortunately, this situation is 

rarely encountered in real life problems where the corresponding limit state function can be highly 

nonlinear. For this reason, the Second Order Reliability Method (SORM) has been developed. As depicted 

in figure II.5, it uses a quadratic surface to better fit the true failure domain. Based on Breitung’s 

approximation (Breitung, 1984) the SORM estimation of the probability of failure writes: 

𝑃𝑓 ≈ 𝑃𝑓,𝑆𝑂𝑅𝑀 = Φ(−𝛽𝐻𝐿).∏
1

√1 − 𝛽𝐻𝐿 . 𝜅𝑖

𝑁−1

𝑖=1

= 𝑃𝑓,𝐹𝑂𝑅𝑀 .∏
1

√1 − 𝛽𝐻𝐿 . 𝜅𝑖

𝑁−1

𝑖=1

 (𝐼𝐼. 28) 

where 𝜅𝑖, 𝑖 ∈ {1, … , (𝑁 − 1)} are the main curvatures of the limit state function at the MPFP. 
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As can be seen from (II.28), SORM simply improves the estimation of the failure probability given by FORM 

through a ponderation by a correction factor ∏
1

√1−𝛽𝐻𝐿 .𝜅𝑖

𝑁−1
𝑖=1  including information about the curvature of the 

limit state function. Note that, these curvatures are taken as positive quantities for a convex limit state 

function. Breitung (Breitung, 1984) has shown that the approximation given by SORM is accurate for high 

values of the reliability index, since it tends toward the exact value of the failure probability when the 

reliability index is infinite. However, SORM becomes inefficient when the dimensionality 𝑁 of the reliability 

problem is high. This is due to the computation of the (𝑁 − 1) curvatures, which requires the evaluation of 

the second order derivatives of the limit state function with respect to the uncertain input parameters. This 

could lead to an unaffordable computation cost, especially for time-consuming implicit limit state functions, 

where the second order derivatives are computed using a finite difference scheme. 

3. Classical methods for multidimensional integration 

3.1. Mathematical problem statement 

Performing uncertainty propagation analysis involves computation of multidimensional integrals, as shown 

in the previous section if we refer to equations (II.3), (II.23) and (II.25), respectively, for the evaluation 

of the statistical moments, the partial variances, and the probability of failure. This question is rather 

difficult to solve, especially when the integrand is only available in an implicit form and the integrals have 

a high dimensionality. In the following, we will focus on classical methods commonly used to compute 

multidimensional integrals. But let us first recalls the mathematical problem to be addressed. The 

aforementioned integrals can be represented by the following Gaussian-weighted integral, since they are 

defined in the standard random space:  

𝐼[𝒻] = ∫ 𝒻(𝒖) 𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

=
1

(√2𝜋)
𝑁 ∫ 𝒻(𝒖) exp [

𝒖𝑇𝒖

2
] 𝑑𝒖

ℝ𝑁
 (𝐼𝐼. 29) 

where 𝐼[𝒻] denotes the integration for short, 𝒻(𝒖) denotes an arbitrary integrand. For instance, if the second 

order statistical moment 𝜎𝑌
2 is concerned, 𝒻(𝒖) = [ℎ(𝒖) − 𝜇𝑌]

2 (see equation (II.5)), else if sensitivity analysis 

is addressed 𝒻(𝒖) = ℎ(𝒖)  (see equation (II.23)), or 𝒻(𝒖) = 𝕀Ω𝐹(𝒖) (see equation (II.25)) if reliability analysis 

is to be performed. 

3.2. Monte-Carlo Simulation 

One of the simplest ways to compute the above integral 𝐼[𝒻] is to use Monte-Carlo Simulations (MCS) 

(Metropolis and Ulam, 1949). The basic idea behind this technique relies on drawing a random sample 

{𝒖1 , … , 𝒖𝑀} according to the standard multinormal distribution 𝜑𝑼(𝒖) of the random vector 𝑼 = { 𝑈1 , … , 𝑈𝑁}
𝑇, 

representing the uncertain input parameters 𝒙 = { 𝑥1 , … , 𝑥𝑁}
𝑇 in the standard random space. Then, the 

mechanical model is evaluated for each sample to obtain a set of values {𝒻(𝒖1), … , 𝒻(𝒖𝑀)} of the integrand 

𝒻(𝒖). Finally, the integral 𝐼[𝒻] could be approximated by the following weighted summation: 
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𝐼[𝒻] = ∫ 𝒻(𝒖) 𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

≈
1

𝑀
∑𝒻(𝒖𝑘)

𝑀

𝑘=1

 (𝐼𝐼. 30) 

It is clear from equation (II.30) that the approximation given by the MCS for the integral 𝐼[𝒻] appears as 

an estimate 𝜇𝒻̃(𝒖) of the mean of the integrand 𝒻(𝒖), with a standard error 𝜖𝑀𝐶𝑆: 

𝜖𝑀𝐶𝑆 ≡ √𝕍[𝒻(𝒖)] =
𝜎𝒻̃(𝒖)

√𝑀
 (𝐼𝐼. 31) 

where 𝜎𝒻̃(𝒖) is the standard deviation of the sample {𝒻(𝒖1), … , 𝒻(𝒖𝑀)}. 

The main advantage of MCS is that it is very straightforward to implement. In addition, it has a high 

robustness since it can deal with integrand with a high level of complexity such that in the cases where 

this later represents a mechanical model exhibiting nonlinear behavior. Also, its efficiency is weakly affected 

by the dimensionality of the integral and can be applied to mechanical models having high number of 

uncertain input parameters. As can be seen in equation (II.31), the error 𝜖𝑀𝐶𝑆 decreases in 1 √𝑀⁄ , which 

explains the main drawback of MCS, namely its low convergence rate. Convergence is even slower when 

small probabilities of failure have to be computed for the purpose of reliability analysis. For instance, to 

estimate probabilities of failure of magnitude 10−6, with an error 𝜖𝑀𝐶𝑆 of 5%, more than 4.108 evaluations 

of the integrand should be performed. Furthermore, it should be noticed that if the statistical moments 

analysis is addressed, the convergence of the MCS is also affected when high order statistical moments, 

such as the skewness and the kurtosis have to be evaluated. The poor convergence rate of MCS is mainly 

due to the use of pseudo-random numbers generator where the obtained sample points {𝒖1 , … , 𝒖𝑀} are not 

uniformly distributed in the random space. To overcome this problem other sampling schemes can be used, 

such as Latin hypercube sampling (Mckay and al, 1979) and quasi-random numbers (Niederreiter, 1992). 

It has been shown in the literature (Owen, 1992), that Latin hypercube sampling gives more accurate 

results compared to pseudo-random numbers since the associated error is lower than √𝑀 𝑀 − 1⁄ 𝜖𝑀𝐶𝑆. 

Various integration schemes based on quasi-random numbers are available. Indeed, such samples can be 

built from different quasi-random sequences such as those developed by Faure (Faure, 1982), Halton 

(Halton, 1960), Hammersley (Hammersley and Handscomb, 1964) and Sobol (Sobol, 1998). Quasi-random 

numbers are more efficient in performing high-dimensional integration (Schlier, 2004), especially when 

derived from the Sobol sequence, since the convergence rate is in ln𝑁(𝑀) which is much faster than the 

convergence rate 1 √𝑀⁄  obtained by pseudo-random numbers. It is also known (Wang and al, 2004) that 

quasi-random numbers built from Hammersley sequence give a good balance between efficiency and 

accuracy. It is also worth mentioning that quasi-random numbers ensure a good performance when the 

integrand is very sharp or even discontinuous (Schϋrer, 2003). Figure II.7 compares the distributions of 

500 sample points obtained by pseudo-random numbers generator, Latin hypercube sampling, and Halton 

quasi-random sequence (Halton, 1960). 
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Figure II.  7. Distribution in the two-dimensional random space [0,1]2 of sample points given by pseudo-random 

numbers generator (left), Latin hypercube sampling (center) and Halton quasi-random sequences (right).     

3.3. Tensor-product cubature methods 

Cubature methods (Stroud, 1971; Cools and Rabinowitz, 1993; Cools, 2002; Lu and Darmofal, 2004) are 

an alternative tool to MCS for the computation of multidimensional integrals. In this section we focus on 

full tensor-product method (Brezin and Zhidkov, 1965) and sparse grid method (Smolyak, 1963; Gerstner 

and Griebel, 1998), which are efficient to deal, respectively, with low and moderate dimensionality 

integration problems. 

3.3.1. Full tensor-product cubature method 

Full tensor-product cubature schemes are probably among the most used techniques to perform numerical 

integration. They have been extensively used in the field of uncertainty propagation for engineering 

problems, such as in (Baldeweck, 1999) to compute the first four statistical moments of mechanical 

responses, and in (Ghanem, 1999) for stochastic finite elements computations. For the sake of simplicity, 

let us first present the one-dimensional case, i.e. when the mechanical model has only one uncertain input 

parameter. Thus, the dimensionality 𝑁 is now equal to 1, and the random vector 𝑼 representing the 

uncertain input parameters in the standard random space, becomes a scalar quantity denoted 𝑈, which is 

nothing other than a standard normal variable with probability density function  𝜑𝑈(𝑢). Under these 

conditions, the integral (II.29) reads: 

𝐼[𝒻] = ∫ 𝒻(𝑢) 𝜑𝑈(𝑢)𝑑𝑢
ℝ

=
1

√2𝜋
∫ 𝒻(𝑢) exp [

𝑢2

2
] 𝑑𝑢

ℝ

 (𝐼𝐼. 32) 

According to the cubature method, and after considering that the integrand 𝒻(𝑢) is square integrable, the 

integral (II.32) can be approximated, as in the case of MCS, by a weighted summation of the integrand as 

follows: 

𝐼[𝒻] = ∫ 𝒻(𝑢) 𝜑𝑈(𝑢)𝑑𝑢
ℝ

≈ ∑𝑤𝑘  𝒻(𝑢𝑘)

𝑀

𝑘=1

 (𝐼𝐼. 33) 

where {𝑢1 , … , 𝑢𝑀} and {𝑤1 , … , 𝑤𝑀} are integration points and weights and 𝑀 is the level of the quadrature 

scheme.  
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The integration points and weights depend on the integration domain and on the weight function 𝜑𝑈(𝑢), 

but not on the integrand 𝒻(𝑢). As we work in the standard random space, and consequently the weight 

function in the integral (II.33) is exp [
𝑢2

2
], the cubature scheme is called Gauss-Hermite integration scheme, 

and the integration points are the roots of the 𝑀𝑡ℎ order Hermite polynomial. In the literature, for the one-

dimensional Gauss-Hermite integration scheme, the term quadrature is used instead of cubature.  

Now, let us come back to the multidimensional case. Since the uncertainty propagation problem is written 

in the standard random space, the random vector 𝑼 = { 𝑈1 , … , 𝑈𝑁}
𝑇 is represented by 𝑁 independent 

standard normal variables and the corresponding joint probability density function 𝜑𝑼(𝒖) can be obtained 

simply as the product of the probability density functions 𝜑𝑈i(𝑢i), 𝑖 ∈ {1, … , 𝑁} of the set of random variables 

𝑈i , 𝑖 ∈ {1, … , 𝑁}. Accordingly, one-dimensional cubature formulae 𝐼𝑖
𝑀𝑖 , 𝑖 ∈ {1, … , 𝑁} of level 𝑀𝑖 , 𝑖 ∈ {1, … , 𝑁}, as 

the one used in equation (II.33), can be derived from each probability density function 𝜑𝑈i(𝑢i), and the 

multidimensional integral (II.29) can be approximated using the so-called full tensor-product cubature 

scheme given below: 

𝐼[𝒻] = ∫ 𝒻(𝒖) 𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

≈ 𝐼1
𝑀1 ⊗⋯⊗ 𝐼𝑁

𝑀𝑁[𝒻] ≈ ∑ …

𝑀1

𝑘1=1

∑ 𝑤𝑘1 …𝑤𝑘𝑁

𝑀𝑁

𝑘𝑁=1

𝒻(𝑢𝑘1 … 𝑢𝑘𝑁) (𝐼𝐼. 34) 

The accuracy of the approximation given by equation (II.34) could be measured by the degree of the 

polynomial below which the cubature will gives the exact value. In the case of isotropic cubature scheme, 

which means that the same numbers of integration points 𝑀1 = ⋯𝑀𝑁 = 𝑀 are used in each direction of the 

integration domain, equation (II.34) allows to exactly integrate a multidimensional polynomial with degree 

not greater than 2𝑀 − 1. Consequently, the required number of evaluations of the integrand is 𝑀𝑁, which 

clearly grows exponentially with the dimensionality 𝑁 of the integral and leads to intractable computations 

when the mechanical model is time-consuming itself. This is the main drawback of full tensor-product 

cubature schemes. 

3.3.2. Sparse grid method 

An alternative to avoids the curse of dimensionality of full tensor-product cubature schemes, is the use of 

sparse grid integration also called Smolyak’s cubature scheme (Smolyak, 1963; Gerstner and Griebel, 

2003, Nobile and al, 2006; Ganapathysubramanian and Zabaras, 2007). The key idea is to use linear 

combinations of tensor-products of one-dimensional cubature formulae 𝐼𝑖
𝑀𝑖 , 𝑖 ∈ {1, … , 𝑁} of level 𝑀𝑖 , 𝑖 ∈

{1, … , 𝑁}, each one is able to integrate exactly any one-dimensional polynomial of degree up to 2𝑀𝑖 − 1, 𝑖 ∈

{1, … , 𝑁}.  To enhance its efficiency, only tensor-products combinations with relatively small number of 

integration points are used and higher degree combinations are excluded. The linear combination is 

performed in such a way that suitable interpolation property for the one-dimensional case is preserved for 

higher order dimensionality (Novak and Ritter, 1999). Accordingly, the Smolyak formula of level 𝑀 is given 

by: 



Chapter II: Identification of efficient quadrature scheme for the computation of multidimensional integrals 
 

S.Chahine | Efficient uncertainty propagation approaches to solve a large class of fatigue crack-growth problems  63 

𝐼[𝒻] = ∫ 𝒻(𝒖) 𝜑𝑼(𝒖)𝑑𝒖
ℝ𝑁

≈ ∑ (−1)𝑀+𝑁−1−|𝒊|
𝑀+𝑁−1

|𝒊|=𝑀

 𝐶𝑁−1
|𝒊|−𝑀  𝑄|𝒊|

𝑁  (𝐼𝐼. 35) 

where 𝒊 = {𝑖1 , … , 𝑖𝑁} ∈ ℕ
𝑁  is a multi-index with |𝒊| = ∑ 𝑖𝑘

𝑁
𝑘=1 , 𝐶 denotes the combination operator and 𝑄|𝒊|

𝑁  is a 

suitable multidimensional cubature, which is built through integration points {𝑢1
𝑘𝑖 , 𝑢2

𝑘𝑖 , … , 𝑢𝑀𝑖
𝑘𝑖 } , 𝑖 ∈ {1, … , 𝑁} 

and weights {𝑤1
𝑘𝑖 , 𝑤2

𝑘𝑖 , … , 𝑤𝑀𝑖
𝑘𝑖 } , 𝑖 ∈ {1, … , 𝑁} associated to one-dimensional cubature formulae 𝐼𝑖

𝑀𝑖 , 𝑖 ∈ {1, … , 𝑁} 

of level 𝑀𝑖 , 𝑖 ∈ {1, … , 𝑁}. It reads: 

𝑄|𝒊|
𝑁 = ∑ ∑ …

𝑀1

𝑘1=1

∑ 𝑤𝑀1
𝑘1 …𝑤𝑀𝑁

𝑘𝑁

𝑀𝑁

𝑘𝑁=1

𝒻(𝑢𝑀1
𝑘1 … 𝑢𝑀𝑁

𝑘𝑁 )

|𝒊|

 (𝐼𝐼. 36) 

 

Figure II.  8. Two-dimension full (left) and sparse (right) grids built from Gauss-Hermite integration points     

Figure II. 8 compares, for the two-dimensional case, Smolyak’s grid of level 𝑙 = 3 and full tensor-product 

grid of level 𝑀 = 𝑙 + 𝑁 − 1 = 3 + 2 − 1 = 4. It is clearly shown that for the same given level of accuracy, 

Smolyak’s cubature formula is more efficient since the corresponding grid uses less integration points than 

the grid obtained by full tensor-product. Indeed, in (Novak and Ritter, 1999) it is proven that the number 

of evaluations of the integrand in Smolyak’s cubature formula (2.35) of degree 𝑀 is 2𝑀−1 𝑁𝑀−1 (𝑀 − 1)!⁄ , 

which increases polynomially with the dimensionality 𝑁 of the integral to be computed. According to (Fichtl 

and Prinja, 2011), the use of Smolyak’s cubature formula of degree 𝑑 + 1 or 𝑑 + 2 requires less integrand 

evaluations than full tensor-product cubature formula of degree 𝑑, especially for higher values of 𝑁. The 

efficiency of Smolyak cubature formula can be further enhanced by using nested sparse grids which allows 

to prevent extra computations. 

Let us consider two sparse grids 𝐺𝑙(𝒖) and 𝐺𝑙+1(𝒖) of level 𝑙 and 𝑙 + 1, respectively. These are nested if the 

points of the grid 𝐺𝑙(𝒖) align with those of grids of a higher degree 𝐺𝑙+1(𝒖). Unfortunately, Gauss-Hermite 

integration points have poor nesting, since only the center point belongs to all possible grids. Other types 

of integration points with bounded support, such as Gauss-Legendre, Gauss-Patterson and Clenshaw-Curtis 

(Liu and al, 2011) have a better nesting and can be used to avoid this problem. This only needs to perform 

the integration in an appropriate standard random space defined by standard uniform random variables 

rather than standard normal random variables. 
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Despite, the various improvements of Smolyak’s cubature formula it remains inefficient for higher 

dimensionality integration problems. In addition, it has another critical drawback, since large negative 

weights can be produced during combinations of tensor-products, which means ill-conditioning in the 

computation of integral involving non-polynomial integrand. Indeed, the results obtained by (Bernardo, 

2015) from a benchmark study conducted on a large family of integrand functions with dimensionality up 

to 24 have shown that Smolyak’s cubature formula is not reliable as it reproduces large errors, mainly due 

to large negative weights.   

4. Efficient cubature methods 

In section 3 we focused on the classical methods used to perform multidimensional integration. The main 

objective was to introduce the mathematical issue behind multidimensional integration and to present the 

general principle of cubature integration in a soft manner. In this new section, we focus on the most 

efficient cubature formulae available in the literature of integration methods (Stroud, 1971; Cools, 2003). 

These formulae are said to be efficient here because they use few integration points (i.e., only a few tens 

of points are needed for moderate dimensionality and a few hundreds of points are required for high 

dimensionality); therefore, a limited number of integrand evaluations is needed to achieve a good accuracy. 

They are similar to MCS, in that only one weighted summation is needed to approximate a multidimensional 

integral, unlike on the tensor product-based formulae where a weighted summation is performed in each 

direction of the integration domain, since the integration points are smartly selected to reduce 

computational efforts. The main difference between these efficient cubature formulae is the way in which 

the integration points are selected. Indeed, to further improve the efficiency of the cubature scheme, the 

idea is to use symmetric integration points, such those developed first by (Genz, 1986) to perform 

integration on hypercube and extended later by (Genz and Keister, 1996) for infinite integration domains. 

The obtained formulae are called complete-symmetric cubature formulae. Based on the invariant theory 

and orthogonal arrays, (Victoir, 2004) has developed quasi-symmetric cubature formulae, also called 

thinned cubature formulae (Bernardo, 2015), which use only parts of the integration points in the same 

symmetric set, in contrast to the full-symmetric cubature formulae which use all integration points in a 

symmetric set. These efficient cubature formulae have been extensively studied, but only applied to solve 

purely mathematical problems. Indeed, until the works conducted by (Lu and al, 2004; Victoir, 2004), they 

were unknown in the engineering fields, in particular thinned cubature formulae. In the last decade, they 

received a growing attention and some applications to solve engineering problems were noticed (Wei and 

al, 2008; Xu and al, 2012; Xu and Lu, 2017; Xiao and Lu, 2018; Xu and Dang, 2019; Ding and Xu, 2021). 

As part of this thesis work, a first attempt will be conducted in this chapter to extend the application of 

these efficient cubature to more complex mechanical problems involving a high number of uncertain 

parameters. But firstly, let us identify to the main efficient cubature schemes available in the literature and 

their mathematical formulation. These formulae, all of them of fifth degree, are useful to compute Gaussian 

weighted integral particularly the first four statistical moments (Xu and Lu, 2017), as they allow a good 
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accuracy while the number of evaluations of the integrand grows quadratically with the dimension of the 

integral. 

4.1. Formula I 

This formula of degree 5 given by (Stroud, 1971), is only valid for a moderate range of dimensions 2 ≤

𝑁 ≤ 7 and requires 𝑁2 + 𝑁 + 2 integration points as depicted in figure II.9 for the two-dimensional case. 

According to this formula, the integral (II.29) can be approximated by the following weighted sum: 

𝐼[𝒻] ≈ 𝐴[𝑓(√2𝜂, √2𝜂, … , √2𝜂) + 𝑓(−√2𝜂, −√2𝜂, … , −√2𝜂)]  

+𝐵[ ∑ 𝑓(√2𝜆, √2𝜉, … , √2𝜉) + 𝑓(−√2𝜆, −√2𝜉, … , −√2𝜉)

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

]  

+𝐶[ ∑ 𝑓(√2𝜇, √2𝜇, √2𝛾, … , √2𝛾) + 𝑓(−√2𝜇, −√2𝜇, −√2𝛾, … , −√2𝛾)

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

] (𝐼𝐼. 37) 

where the terms appearing in the summations are built from all possible distinct permutations of the input 

variables (see figure II.9 left).  

The constants 𝐴, 𝐵, 𝐶, 𝜇, 𝛾, 𝜂 and 𝜉 are given by (Stroud, 1967; Stroud, 1971). They can have multiple 

real solutions and some of the derived integration points could take on complex values. For instance, the 

constants 𝜇, 𝛾 and 𝜂 can be obtained by solving the following equations, and as can be seen complex 

solutions happen for 𝑁 > 7: 

𝜇 = −3 ± √16 − 2𝑁  

𝛾2 =
3 ± √7 − 𝑁

2(16 − 𝑁 ± 4√16 − 2𝑁)
  

𝜂2 =
𝑁(𝑁 − 7) ± (𝑁2 − 3𝑁 − 16)√7 − 𝑁

2(2𝑁3 − 7𝑁2 − 16𝑁 + 128)
 (𝐼𝐼. 38) 

 

Figure II.  9. Integration points given by formula I (left) and comparison of the number of integration points with the 
theoretical min bound of formulae of degree 5 (right) 
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Formula I is the most efficient among the known integration formulae of degree 5 for 𝑁 ≥ 4, since it requires 

just one more point than the number of integration points given theoretically, which is 𝑁2 + 𝑁 + 1, as can 

be seen from the plot (red line) of figure II.9.  

4.2. Formula II 

We give here another fifth-degree formula derived by (Mysovskikh, 1980) which requires 𝑁2 + 3𝑁 + 2 

integration points as shown in figure II.10 for the two-dimensional case.  Based on this formula, the 

approximation given for the integral (II.29) reads: 

𝐼[𝒻] ≈
2

𝑁 + 2
𝑓(𝟎) +

𝑁2(7 − 𝑁)

2(𝑁 + 1)2(𝑁 + 2)2
∑[𝑓(√𝑁 + 2 × 𝒂𝑗) + 𝑓(−√𝑁 + 2 × 𝒂𝑗)]

𝑁+1

𝑗=1

  

+
2(𝑁 − 1)2

(𝑁 + 1)2(𝑁 + 2)2
∑ [𝑓(√𝑁 + 2 × 𝒃𝑗) + 𝑓(−√𝑁 + 2 × 𝒃𝑗)]

𝑁(𝑁+1) 2⁄

𝑗=1

 (𝐼𝐼. 39) 

where 𝟎, 𝒂𝑗  and 𝒃𝑗  are the integration points representing respectively the center point of the integration 

domain, the vertices of a regular simplex and the midpoints of the vertices of a regular simplex projected 

onto the surface of the sphere 𝑆𝑁 ≡ {𝒙 ∈ ℝ
𝑁 : 𝑥1

2 + 𝑥2
2 + ⋯ 𝑥𝑁

2 = 1}.  

The points set 𝒂𝑗  and 𝒃𝑗  allowing to compute Gaussian weighted integral, are given by the following 

expressions:    

𝒂𝑗 = (𝑎1
𝑗
, 𝑎2

𝑗
, … , 𝑎𝑁

𝑗
), 𝑗 = 1,2, … , 𝑁 + 1 (𝐼𝐼. 40) 

𝑎𝑖
𝑗
=

{
 
 
 

 
 
 
−√

𝑁 + 1

𝑁(𝑁 − 𝑖 + 2)(𝑁 − 𝑖 + 1)
 ,   𝑓𝑜𝑟 𝑖 < 𝑗

√
(𝑁 + 1)(𝑁 − 𝑗 + 1)

𝑁(𝑁 − 𝑗 + 2)
   , 𝑓𝑜𝑟 𝑖 = 𝑗

0 , 𝑓𝑜𝑟 𝑖 > 𝑗

 (𝐼𝐼. 41) 

𝒃𝑗 = √
𝑁

2(𝑁 − 1)
(𝒂𝑘 + 𝒂𝑙),     𝑘 < 𝑙,     𝑙 = 1,2, … , 𝑁 + 1 (𝐼𝐼. 42) 

Formula II is somewhat less efficient than formula I, but it is valid for a wide range of dimensions 𝑁 > 3. 

Note that when 𝑁 < 7, the integration weights are all positive, but for 𝑁 > 7, negative integration weights 

appear, which is mathematically reasonable, but may lead to unacceptable large errors or even physically 

meaningless results. Therefore, higher dimensional integration should be handled with more care. 

As depicted in figure II.10, the number of required integration points grows quadratically with the 

dimension of the integral to be computed. Note that for higher dimensions, formula II remains efficient 

since the number of evaluations of the integrand is close the one given by the theoretical lower bound. 
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Figure II.  10. Integration points given by formula II (left) and comparison of the number of integration points with 
the theoretical min bound of formulae of degree 5 (right) 

4.3. Formula III 

This formula firstly given in (Stroud and Secrest, 1963) and later found in (Stroud, 1971) is very similar 

to formula II. Indeed, formula III is derived from a formula for an integration formula on the surface of 

the unit N-sphere. Moreover, for radially symmetric functions 𝑓(|𝒙|), formulae II and III leads to exactly 

the same results. The main difference between them lies in choice of the integration weights and points: 

the integration points used in formula III are built on all distinct reflections and permutations of the input 

variables. Referring to formula III, the integral (II.29) can be approximated by the following series of 

summations: 

𝐼[𝒻] ≈
2

𝑁 + 2
𝑓(𝟎) +

4 − 𝑁

2(𝑁 + 2)2
∑ 𝑓(√𝑁 + 2, 0, … ,0)

𝑓𝑢𝑙𝑙 𝑠𝑦𝑚

  

+
1

(𝑁 + 2)2
∑ 𝑓(√

𝑁

2
+ 1, √

𝑁

2
+ 1, … ,0)

𝑓𝑢𝑙𝑙 𝑠𝑦𝑚

 (𝐼𝐼. 43) 

 

Figure II.  111. Integration points given by formula III (left) and comparison of the number of integration points with 
the theoretical min bound of formulae of degree 5 (right) 

This formula is also of algebraic degree 5 and requires 2𝑁2 + 1 integration points. Although, the number of 

integration points grows quadratically with the dimension of integration, formula III is less efficient than 
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the two previous formulae, especially for higher dimensions as depicted in figure II. 11. In addition, the 

space-filling of the integration points of formula III is different from the one of formula II, while the two 

formulae have some similarities. 

4.4. Formula IV 

This formula developed for the first time by (McNamee and Stenger, 1967), based on the theory of 

invariants. Using the same procedure (Phillips, 1980) has constructed the following fifth degree cubature 

formula to compute the weighed Gaussian integral in equation (II.29): 

𝐼[𝒻] ≈
𝑁2 − 7𝑁 + 18

18
𝑓(𝟎) +

4 − 𝑁

18
∑ 𝑓(√3, 0, … ,0)

𝑓𝑢𝑙𝑙 𝑠𝑦𝑚

  

+
1

36
∑ 𝑓(√3, √3, … ,0)

𝑓𝑢𝑙𝑙 𝑠𝑦𝑚

 (𝐼𝐼. 44) 

Formula IV has the same efficiency as formula III since 2𝑁2 + 1 integration points are also required to 

approximate a multidimensional integral. The main difference between them is that, for formula IV, the 

position of the integration points is independent of the dimension 𝑁, as shown in equation (II.44). Indeed, 

from a geometrical point of view, the integration points of formula IV lie on the surface of a sphere of 

constant radius, whereas for formula III, the integration points fill the surface of a sphere whose radius 

increases with the dimension 𝑁. This fact could lead to a significant gap in the accuracy of the estimate 

given by formulae III and IV, and it will be interesting to investigate it in the following. It is important to 

note that for the two-dimensional case, formula IV is identical to the one constructed by full tensor-product 

scheme. As can be seen in figure II.12, the integration points of formula IV have the same locations as in 

Gauss-Hermite grid of level 3. 

 

Figure II.  122. Integration points given by formula IV (left) and comparison of the number of integration points with 
the theoretical min bound of formulae of degree 5 (right) 

4.5. Formula V 

This formula has been developed by (Victoir, 2004) and later by (Kuperberg, 2006) based on the theory 

of invariant and orthogonal arrays. Referring to the construction proposed by (Kuperberg, 2006), the 
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integration points are built by starting with an equal weight cubature formula of degree 𝑑, having a 

convolutional structure such as in a tensor-product formula, and then a large portion of this integration 

points are removed using an orthogonal array that preserves the degree 𝑑 of accuracy. This procedure of 

integration points removal is called thinning, and, for this reason, formula V is also known as thinned 

cubature formula. It produces all positive integration weights and interior integration points, which is 

appropriate from a physical point of view and provides good robustness when dealing with higher 

dimension. 

For Gaussian integration domain, two classes of fifth degree formula V are available. The first is of the 

following form and valid when the dimension 𝑁 is of the form 𝑁 = 3𝑘 − 2: 

𝐼[𝒻] ≈
2

𝑁 + 2
𝑓(𝟎) +

𝑁

𝑁 + 2
∑ 𝑓(ℎ√3, … , ℎ√3, 0, … ,0)

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

 (𝐼𝐼. 45) 

where ℎ is the permutation of ±1 and 𝑘 is the number of ℎ√3 in the integration point (ℎ√3, … , ℎ√3, 0, … ,0). 

The second class of formula V is valid for 𝑁 ≥ 3 and can approximate the integral (II.29) by the following 

expression: 

𝐼[𝒻] ≈
8𝑁

(𝑁 + 2)2
∑ 𝑓(ℎ√

𝑁 + 2

2
, 0, … ,0)

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

  

+
(𝑁 − 2)2

(𝑁 + 2)2
∑ 𝑓(ℎ√

𝑁 + 2

𝑁 − 2
, … , ℎ√

𝑁 + 2

𝑁 − 2
)

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

 (𝐼𝐼. 46) 

 

where ℎ is also the permutation of ±1. 

 

Figure II.  133. Integration points given by formula V (left) and comparison of the number of integration points with 
the theoretical min bound of formulae of degree 5 (right) 

Integration points, given by formula V of the second class, in the case of three-dimensional Gaussian 

integration domain are plotted in figure II.13. The efficiency of formula V is remarkable for higher 

dimension, especially when the degree of accuracy of the cubature formula is relatively low. Indeed, the 
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number of integration points required is less than 40 for formula V of degree 3 and 1000 for formula V of 

degree 5. This formula is efficient to compute accurately integrals with dimension up to 24. Despite this, 

the use of formula V in engineering is limited to a few applications. The main drawback of the formula V is 

that the construction of orthogonal arrays, especially for higher dimensions, is not a trivial task. In this 

work, the proposed formula V allows us to investigate the computation of multidimensional integrals with 

dimension up to 16. 

4.6. Formula VI 

The mathematical formulation of this formula is very similar to that of formula II. Based on a high-order 

unscented transformation (Zhang and al, 2014), it was first developed for the purpose of non-linear 

estimation of Kalman filter. After that, it was used by (Xiao and Lu, 2018) to perform reliability analysis on 

some academic engineering problems. The results obtained show that formula VI can accurately estimate 

the high-order statistical moments of limit-state functions. 

The integration points of this formula can be divided into three types. The first type is represented by one 

integration point 𝒖𝟎 located on the origin (0, … ,0) of the standard random space with weight 𝑤0: 

{

𝒖𝟎 = (0, … ,0)

𝑤0 =
−2𝑁2 + (4 − 2𝑁)∆2 + 4(∆ + 1)𝑁

(𝑁 + ∆)2(4 − 𝑁)

 (𝐼𝐼. 47) 

The second type is represented by 2𝑁, equidistant points from the origin, located on the axis of the 

integration domain, and with the same weight 𝑤1: 

{
 
 
 
 

 
 
 
 

𝒖𝑗1 = √
(4 − 𝑁)(𝑁 + ∆)

∆ + 2 − 𝑁
𝒆⃗⃗𝑗1

𝒖𝑗1+𝑁 = −√
(4 − 𝑁)(𝑁 + ∆)

∆ + 2 − 𝑁
𝒆⃗⃗𝑗1  , 𝑗1 = 1,2, … , 𝑁 

𝑤1 =
(∆ + 2 − 𝑁)2

2(𝑁 + ∆)2(4 − 𝑁)

 (𝐼𝐼. 48) 

where 𝒆𝑗1 = [0, … ,0,1,0, … ,0]
𝑇.   

The third type contains 2𝑁(𝑁 − 1) integration points lying on the diagonal of a plan defined by two 

coordinate axes and having the same weight 𝑤2: 

{
 
 
 
 

 
 
 
 𝒖𝑗2 = +√𝑁 + ∆ 𝒆⃗⃗𝑗2

+

𝒖
𝑗2+

𝑁(𝑁−1)
2

= −√𝑁 + ∆ 𝒆⃗⃗𝑗2
+

𝒖𝑗2+𝑁(𝑁−1) = +√𝑁 + ∆ 𝒆⃗⃗𝑗2
−

𝒖
𝑗2+

3𝑁(𝑁−1)
2

= −√𝑁 + ∆ 𝒆⃗⃗𝑗2
−  ,   𝑗2 = 1,2, … ,

𝑁(𝑁 − 1)

2

𝑤2 =
1

(𝑁 + ∆)2

 (𝐼𝐼. 49) 
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where  𝒆⃗⃗𝑗2
+ = {√

1

2
(𝒆⃗⃗𝑘 + 𝒆⃗⃗𝑙); 𝑘 < 𝑙, 𝑘, 𝑙 = 1,2, … , 𝑛} and  𝒆⃗⃗𝑗2

− = {√
1

2
(𝒆⃗⃗𝑘 − 𝒆⃗⃗𝑙); 𝑘 < 𝑙, 𝑘, 𝑙 = 1,2, … , 𝑛}.   

Formula VI has the same efficiency as formulae III and IV since it requires 2𝑁2 + 1 integration points. But, 

as can be seen in the above equations, it has a small particularity, i.e. a free parameter ∆ intervenes for 

the computation of the integration weights and points, which gives flexibility to formula VI and some values 

can contribute to enhance its accuracy. Indeed, as shown in (Zhang and al, 2014) for the two-dimensional 

case, formula VI can theoretically capture the first six statistical moments of the input random variables 

when ∆ = 0.835 or ∆ = 19.165. Note that, when ∆ = 4, formula VI is nothing else then a third-degree Gauss-

Hermite integration scheme.      

 

Figure II.  14. Integration points given by formula VI (left) and comparison of the number of integration points with 
the theoretical min bound of formulae of degree 5 (right) 

In figure II.14, we can clearly see the impact that the parameter ∆ can have on the location of the 

integration points in the integration domain. When ∆ > 4, the distance to the origin of some integration 

points of formula VI is much larger than those of the corresponding integration points of the Gauss-Hermite 

scheme. As depicted in figure II.14, for ∆ = 19 some of the integration points are located around ±3 

standard deviation of the mean of the input random variables. This can be very useful in the reliability 

analysis, as it can help to capture the probabilistic content of the tails of the distributions of the input 

random variables. Note that there is no optimal value of the parameter ∆, except for the two-dimensional 

and three-dimensional cases, where ∆ is set to as 0.835 and 1.417, respectively, to capture the first four 

statistical moments of the input random variables. For the other cases (Zhang and al, 2014) have 

demonstrated that when ∆ is set to 2, formula VI provides a good stabilization of the numerical 

computation. 

5. Numerical examples 

In this section, two sets of numerical problems encountered when propagating uncertainty through models 

are addressed to conduct a comparative study between the cubature formulae presented in the previous 

section. The main objective is to illustrate their ability to provide probabilistic characteristics of model 

response, including tail distribution, reliability, and sensitivity indices. The first set of problems, related to 
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explicit models, concerns elementary analytical models that represent either a purely mathematical 

function or a problem related to mechanical analysis. The second set, related to implicit models, includes 

computationally intensive mechanical models whose responses are available through numerical 

calculations. Where the exact solution does not exist, estimates of the quantities of interest given either 

by direct Monte-Carlo Simulations (MCS) or by a full tensor-product Gauss-Hermite Integration (GHI) 

scheme have been used to assess the accuracy and efficiency of cubature formulae I, II, III, IV, V and VI. 

5.1. Explicit models 

5.1.1. Purely mathematical integration problem 

Let us consider a simple integrand function that is widely used in the literature to conduct benchmark 

studies (Xu and Rahman, 2004) on integration methods. 

𝒻(𝒙) = √1 + 𝒙𝑇𝒙 2⁄  (𝐼𝐼. 50) 

where 𝑥𝑖 , 𝑖 = 1, … , 𝑁 are uncertain parameters represented by identically normal distributed random 

variables 𝑋𝑖 , 𝑖 = 1, … , 𝑁 with mean 0 and standard deviation 𝜎.  

This function has a bell shape around the origin which becomes more pronounced as the dimension 𝑁 

increases, making it more difficult to integrate for higher dimensions. Thus, we first want to study the 

effect of dimension 𝑁 on the accuracy of the results given by the six cubature formulae presented 

previously. The expected value, that is the first order statistical moment of the function (II.50), is computed 

for increasing dimension 𝑁, and by assigning the standard deviation 𝜎 of the input random variable the 

value √2 2⁄ . The obtained estimates given by 105 MCS and Gauss-Hermite (GH3) cubature scheme of level 

3, taken here as the reference solutions, are reported in Table II.1. As can be seen, both methods give 

accurate results and as expected, the convergence of MCS is slow but less impacted by the dimension of 

integration. Conversely, the efficiency of Gauss-Hermite cubature scheme is closely related to the 

dimension of integration. Indeed, the number of required evaluations of the integrand grows exponentially 

with the dimension of integration. For instance, to compute an integral of dimension 10 with a good level 

of accuracy, 59049 evaluations of the integrand are required.     

Table II. 1. Expectation value of the integrand (II.50) given by 105 MCS and GH3 for various values of the dimension 
of integration 

 𝑁 

 3 4 5 6 7 8 9 10 

MCS 1.3044 1.3934 1.4778 1.5585 1.6349 1.7088 1.7793 1.8477 

GH3 
1.3023 1.3913 1.4757 1.5561 1.6328 1.7064 1.7772 1.8454 

(27,0.16%) (81,0.14%) (243,0.14%) (729,0.15%) (2187,0.12%) (6561,0.13%) (19683,0.11%) (59049,0.12%) 

The relative error, taken as an indicator of accuracy and defined as the difference between the estimates 

obtained by the six cubature formulae presented in the previous section and those given by MCS, are 

plotted in figure II.15. As can be seen, all formulae give accurate estimates of the expected value of the 

function (II.50) for the integration dimension up to 10, since the relative error does not exceed 6% in the 

worst case, which is recorded for formula IV and 𝑁 = 10. Except for formula IV, where the relative error 
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grows exponentially, the accuracy of the other formulae seems to be less affected by the integration 

dimension 𝑁, especially for formula V which gives the lower relative error. 

 

Figure II.  15. Evaluation of the accuracy and the efficiency of cubature formulae I to VI  

In order to push our comparative analysis a little further, an efficiency index, noted 𝐸𝑓, is introduced. It is 

defined as a function of the number of evaluations of the integrand 𝑀 and the relative error 𝜖 computed 

previously, and reads as follows: 

𝐸𝑓 =
1

𝑀𝜖
=

1

𝑀 × 𝜖
 (𝐼𝐼. 51) 

As can be seen from equation (II.51), the smaller the quantity 𝑀 × 𝜖, the better the efficiency of the 

considered integration scheme. In addition, it can be noted that the number of evaluations of the integrand 

𝑀 is commonly used to evaluate the accuracy of a cubature scheme. Here, a weighted or effective one, 

denoted 𝑀𝜖, is used. The idea behind this is to include in the efficiency measurement the effect of a possible 

loss of accuracy when the dimension of integration increases. Moreover, this efficiency index can be very 

useful in identifying the cubature scheme that offers the best balance between accuracy and efficiency.  

The efficiency index 𝐸𝑓 is plotted in figure II.15. As can be seen, except for formulae I and V which exhibit 

some particular behavior, the efficiency of all the other cubature formulae cubature scheme decreases with 

the dimension of integration. As expected, this loss of efficiency is more significant in the case of Gauss-

Hermite integration scheme.  

Formula V gives the better balance between accuracy and efficiency when dealing with higher dimensions 

integration problems. The higher efficiency of formula V is observed for 𝑁 = 9, followed by a significant 

decrease for 𝑁 = 10. Indeed, although the level of accuracy remains relatively the same for 𝑁 = 9 and 𝑁 =

10, the number of evaluations of the integrand increases suddenly from 146 for 𝑁 = 9 to 276 for 𝑁 = 10. 

This significant growth of the number of integrand evaluations is explained in section 4.5 and can be clearly 

seen in figure II.13. Compared to the Gauss-Hermite integration scheme, the formula V is 1666 and 690 
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times more efficient for 𝑁 = 9 and 𝑁 = 10, respectively. Unfortunately, the formula V is only able to deal 

with integration problems with moderate dimension. As explained in section 4.5, this is mainly due to the 

fact that the construction of orthogonal arrays, used to drive the integration points, is not a trivial task.  

 

The formula I also gives a good balance between accuracy and efficiency, even for lower dimensions where 

the others cubature formulae fail to give better results than the Gauss-Hermite integration scheme. 

Unfortunately, the formula I is only able to compute integrals with dimension up to 7. 

As a conclusion for this first example, dealing with purely mathematical integration problem, we have 

shown that cubature formulae I-VI are by far more efficient than traditional integration methods such as 

MCS and full tensor-product GHI. In addition, their efficiency is less affected by the dimension of 

integration. Hence, these cubature formulae could be serious candidates for computing high-dimensional 

integrals such as those encountered in uncertainty propagation problems. 

5.1.2. Analytical mechanical models with mixed random variables 

In the first example the uncertain parameters were represented by identical normal distributed random 

variables having the same statistical characteristics. This situation is rarely encountered in real-life 

problems since the uncertain parameters often follow different kinds of distributions. In addition, the use 

of the normal distribution in uncertainty modeling could be viewed as a special case due to its mathematical 

properties which could simplify the probabilistic computations, and consequently may give a truncated 

picture of the ability of the uncertainty propagation method. In this section, an analysis will be conducted, 

through uncertainty propagation problems involving uncertain parameters whose variability is modeled 

with a mixture of normal and non-normal random variables, to evaluate the accuracy and the efficiency of 

the cubature formulae I-VI when dealing with such problems. 

Three analytical models taken from the literature are considered. The first one 𝐺1(𝒙), obtained from 

(Melchers and Ahammad, 2004), represents a purely mathematical function. The second 𝐺2(𝒙) and the 

third 𝐺3(𝒙) ones are obtained from (Hong and Lind, 1996) and (Panmetsa and Grandhi, 2003), respectively, 

and both represent performance functions related to structural reliability problems. The mathematical 

formulations of these models are given in the following equations: 

𝐺1(𝒙) = 𝑥1  𝑥2  𝑥3  𝑥4 −
𝑥5  𝑥6

2

8
 (𝐼𝐼. 52) 

𝐺2(𝒙) = 7.645 × 10
−4𝑥1𝑥2 (1 − 7.217 × 10

−3
 𝑥2
𝑥3
) − 𝑥4 − 𝑥5 (𝐼𝐼. 53) 

𝐺3(𝒙) = √
3𝑥1  𝑥2  (𝑥5 − 𝑥6) 

(
𝜋𝑥3
30
)
2

 ( 𝑥5
3 −  𝑥6

3)
− 0.37473 (𝐼𝐼. 54) 
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The probability distributions and the statistical characteristics (i.e., mean, and standard deviation) of the 

random variables 𝑿 used to represent the variability of the uncertain parameters 𝒙 related to the above 

models are given in table II. 2. 

Table II. 2. Probability distributions and statistical characteristics of the random variables related to the performance 

functions 𝐺1(𝒙), 𝐺2(𝒙) and 𝐺3(𝒙) 

Performance function Random variable Distribution 𝜇 𝜎 

𝐺1(𝒙) 

𝑋1 Weibull 4 0.1 
𝑋2 Lognormal 25000 2000 
𝑋3 Gumbel 0.875 0.1 
𝑋4 Uniform 20 1 
𝑋5 Exponential 100 100 
𝑋6 Normal 150 10 

𝐺2(𝒙) 

𝑋1 Normal 1.01 0.0606 
𝑋2 Lognormal 400 40 
𝑋3 Normal 20 3.6 
𝑋4 Normal 95.87 10-3 9.587 10-3 
𝑋5 Gumbel 67.11 10-3 6.711 10-3 

𝐺3(𝒙) 

𝑋1 Weibull 0.9377 0.0459 

𝑋2 Normal 220000 5000 

𝑋3 Normal 21000 1000 

𝑋4 Uniform 0.29/385.82 0.0058/385.82 

𝑋5 Normal 24 0.5 

𝑋6 Normal 8 0.3 

For each of the performance functions 𝐺𝑖(𝒙), 𝑖 = 1,2,3, the objective is to compute its first four statistical 

moments using the cubature formulae I-VI. To evaluate their accuracy, the estimates obtained are 

compared to those obtained by 105 MCS, taken here as a reference solution, since no closed-form solution 

is available for the three problems. The MCS results for the mean 𝜇, the standard deviation 𝜎, the skewness 

𝛾 and the kurtosis 𝜅 of the three performance functions are listed in table II.3. 

Table II. 3. Results of the first four statistical moments of the performance functions 𝐺1(𝒙), 𝐺2(𝒙) and 𝐺3(𝒙) 

 𝜇 𝜎 𝛾 𝜅 

𝐺1(𝒙) 1466105.83 389291.79 -0.58371 5.02757 
𝐺2(𝒙) 0.09925 0.03425 0.02989 3.17895 
𝐺3(𝒙) 0.07863 0.02675 0.17250 3.14157 

In figure II.16, the ratios of the estimates of the first four statistical moments obtained by cubature 

formulae I-VI to the reference solution given by MCS are plotted. These ratios are considered here as an 

indicator of accuracy. Indeed, the closer the value of this ratio is to 1, the more is accurate the prediction 

given by cubature formulae I-VI. As can be seen, for all three performance functions, all cubature formulae 

give accurate results for the mean and the standard deviation, since the corresponding ratios 𝜇̂ 𝜇𝑀𝐶𝑆⁄  and 

𝜎̂ 𝜎𝑀𝐶𝑆⁄  respectively are very close to 1. In addition, we can clearly observe that the use of mixture of 

different types of random variables has a weak effect on the accuracy of the first two statistical moments 

of the performance functions. 

For higher order statistical moments such as the kurtosis and the skewness, a divergence is observed 

between the estimates given by the cubature formulae I-VI and the reference solution obtained by MCS. 

This discrepancy is related to the order of the statistical moment to be computed and to the use of a 

mixture of normal and non-normal random variables to model the uncertain parameters. The mixture of 
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random variables used in the performance function 𝐺1(𝒙) appears to have the most significant impact on 

the accuracy of the statistical moment estimates. Indeed, as can be seen in table II.2, the variability of 

the performance function 𝐺1(𝒙) is induced by the most heterogeneous combination of random variables 

compared to the other performance functions 𝐺2(𝒙) and 𝐺3(𝒙). It is important to notice that the probabilistic 

computations are performed in the standard random space rather than the physical random space, which 

means that the real distributions are rewritten as a function of standard normal distributions. This may 

mitigate the effect that using a mixture of different kinds of random variables might have on the accuracy.  

Note that for formula VI, different values of the free parameter ∆ are used to ensure the best possible 

estimates of the statistical moments of the performance functions. These values vary in the range [1.5, 

2.5]. 

 

Figure II.  16. Ratios of estimates obtained by cubature formulae I-VI to the reference first four statistical moments 

given by MCS for the performance functions 𝐺1(𝒙), 𝐺2(𝒙) and 𝐺3(𝒙)  

Figure II.17 compare the Probability Density Functions (PDF) 𝑓𝐺𝑖 , 𝑖 = 1,2,3 built from 105 MCS to those 

obtained from a moments-based technique using the previous estimates of the first four statistical 

moments of the performance functions 𝐺𝑖(𝒙), 𝑖 = 1,2,3. As can be seen, the plotted results confirm our 

previous observation on the effect of using a mixture of different types of distributions to represent the 

variability of the uncertain parameters, since the PDFs are in good agreement in the cases of the 

performance functions 𝐺2(𝒙) and 𝐺3(𝒙). There is also then a discrepancy between the PDFs for the 

performance function 𝐺1(𝒙) where a highly heterogonous combination of distributions is used to model the 

variability related to the uncertain parameters, which is due to the relative inaccuracy of the estimates of 

the higher order statistical moments, mainly for skewness and kurtosis. Note that the accuracy of the PDFs 

can be enhanced by using shifted generalized lognormal distribution technique (Low, 2013) or kernel 
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smoothing technique (Wand and Jones, 1995), instead of the use of moments-based technique which 

requires a higher accurate estimate of the skewness and the kurtosis.  

 

Figure II.  17. Comparison of the PDFs of the of the performance functions 𝐺1(𝒙), 𝐺2(𝒙) and 𝐺3(𝒙)  

Next step, we assess the ability of the proposed approach to perform a reliability analysis, where the 

objective is to compute the probability of failure, or the reliability index related to a performance function. 

Usually, these quantities of interest are derived from probabilistic information provided by the tails of the 

distribution of the random variable representing the variability of the performance function. Hence, the 

PDF should be enough accurate in the vicinity of the tails to ensure reliable probabilistic information. 

Figure II.18 shows the Cumulative Distribution Functions (CDFs) 𝐹𝐺𝑖 , 𝑖 = 1,2,3 of the performance 

functions 𝐺𝑖(𝒙), 𝑖 = 1,2,3. These CDFs are nothing else than the evolutions of the failure probability noted 𝑃𝑓. 

They are plotted in a logarithmic scale on the vertical axis to emphasize the behavior around the tails. As 

can be seen, for the performance functions 𝐺2(𝒙) and 𝐺3(𝒙) the CDFs built from moments-based technique 

agree well with the reference CDFs obtained from 105 MCS, but with a small deviation around the 

distribution tail. In addition, the CDFs constructed from statistical moments obtained from cubature 

formulae I-VI are in good agreement since the gap between them is not significant. They can provide, in 

the cases of the performance functions 𝐺2(𝒙) and 𝐺3(𝒙), accurate estimates of the failure probabilities of an 

order of magnitude of 10-3. However, for the performance function 𝐺1(𝒙), a large deviation is observed 

between the CDFs built from moments-based technique and the one obtained from 105 MCS, almost in the 

entire range of the distribution. This is mainly due to the inaccurate estimates of higher order statistical 

moments. The discrepancy between the CDFs derived from statistical moments given by cubature formulae 

I-VI is also significant. We can clearly observe that formula II gives the best results, whereas formula III 

gives the worst ones. 

In addition to the CDFs curves, figure II.18 shows the ratios of the estimates of the reliability index given 

by the proposed method, denoted by 𝛽 and the reliability index given by MCS, denoted by 𝛽𝑀𝐶𝑆. These 

reliability indices are computed from the failure probability estimated from the corresponding CDFs 

constructed previously, using the following equations: 
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𝛽 = Φ−1(𝑃̂𝑓),          𝛽𝑀𝐶𝑆 = Φ
−1(𝑃𝑓,𝑀𝐶𝑆) (𝐼𝐼. 55) 

where Φ denotes the standard normal cumulative distribution function. 

 

Figure II.  18. Comparison of the CDFs and the reliability indices of the performance functions 𝐺1(𝒙), 𝐺2(𝒙) and 𝐺3(𝒙)  

As can be seen from figure II.18, the proposed method gives accurate estimate of the reliability index in 

the cases of the performance functions 𝐺2(𝒙) and 𝐺3(𝒙), since the ratio 𝛽 𝛽𝑀𝐶𝑆⁄  is close to 1. Indeed, the 

values of the latter vary in the range [1.035, 1.102]. However, for the performance function 𝐺1(𝒙), the 

results are less accurate particularly those given by cubature formula I, which largely deviate from the 

reference solution given by MCS, since the ratio 𝛽 𝛽𝑀𝐶𝑆⁄  is around 3.73. For the other cubature formulae, 

the value of the ratio 𝛽 𝛽𝑀𝐶𝑆⁄  varies between 1.062 and 1.173, given by cubature formulae II and VI, 

respectively. 

This example clearly shows the ability of the proposed method to perform accurately either statistical 

moments or reliability analysis, on explicit physical models related to real-life engineering problems 

involving different kind of mixture of normal and non-normal random variables. This accuracy is reached 

at a very low computational effort compared to classical uncertainty propagation strategies such those 

based on Gauss-Hermite quadrature, MCS and FORM. It may also be retained that problems involving a 

higher heterogeneous mixture of random variables should be treated with care and particular attention 

should be paid to the choice of the cubature formula used for the computation of the integral quantities. 
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5.2. Implicit models 

5.2.1. Deflection of truss structure 

The following example deals with of a planar truss structure as shown in figure II.19. This problem was 

first introduced by (Lee and Kwak, 2006) to conduct reliability analysis based on response surface method. 

After that it has been widely used by other authors (Blatman, 2009; Konakli and Sudret, 2016; Xu and 

Kong, 2018) to conduct different kinds of probabilistic analysis. 

The truss structure comprises 11 horizontal bars and 12 oblique bars made of the same constitutive 

material and subjected to six vertical loads located in its upper part. Under this loading, the mechanical 

response of interest is represented by the mid-span deflection, noted by 𝜈. Since the analytical solution is 

not available, this mechanical response is obtained by a numerical model implemented under a finite 

element software (cast3m, 2021). In figure II.19, the finite element mesh and the deformed shape of the 

truss structure are depicted.  

 

Figure II.  19. Truss structure: geometry and applied loads (left), finite element mesh and deformed shape (right) 

Ten uncertain parameters are considered for this problem. They are the vertical loads denoted by 𝑃𝑖 , 𝑖 =

1,2, … ,6, the Young’s modulus and cross-section areas of the horizontal bars denoted by 𝐸1 and 𝐴1, 

respectively, and the Young’s modulus and cross-section areas of the oblique bars denoted by 𝐸2 and 𝐴2, 

respectively. They are represented by independent random variables, gathered in the vector 𝑿 =

{ 𝐸1 , 𝐸2 , 𝑆1 , 𝑆2 , 𝑃1 , 𝑃2 , 𝑃3 , 𝑃4 , 𝑃5 , 𝑃6}
𝑇, whose distribution type,  mean 𝜇 and standard deviation 𝜎 are listed in table 

II.4. 

Table II. 4. Truss structure: probability distributions and statistical characteristics of the random variables 

Parameter Distribution 𝜇 𝜎 

𝐸1, 𝐸2 Lognormal 210000 MPa 21000 MPa 
𝑆1 Lognormal 0.002 m2 0.0002 m2 
𝑆2 Lognormal 0.001 m2 0.0001 m2 

𝑃1 , … , 𝑃6 Gumbel 50 kN 7.5 kN 

First, we conduct statistical moments analysis to assess the effect of the uncertain parameters on the 

variability of the mechanical response of interest. The involved multidimensional integrals for the first four 

statistical moments of the mid-span deflection 𝜈(𝑿) are computed using cubature formulae II-VI. The 
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obtained results are given in table II. 5. Note that cubature formula I is not used here since it is only valid 

for integration dimension up to 7. 

Table II. 5. Truss structure: statistical moments of the mid-span deflection 

Statistical moments 
Cubature formula 

MCS 
II III IV V VI 

𝜇 0.07940 0.07942 0.07940 0.07940 0.07942 0.07938 
𝜎 0.01108 0.01109 0.01107 0.01107 0.01109 0.01107 
𝛾 0.46478 0.48255 0.41967 0.45553 0.48538 0.49200 
𝜅 3.24564 3.48523 2.67713 3.19121 3.45394 3.44554 

Number of FEM runs 133 201 201 276 201 105 

The reference values of the statistical moments are obtained by 105 crude MCS directly performed on the 

Finite Element Model (FEM) of the truss structure. Figure II.20 displays the convergence of MCS for the 

estimates of the first four statistical moments of the mechanical response. As can be seen, convergence is 

well achieved since the estimates of the quantities of interest no longer vary after 105 runs of the FEM. The 

PDF of the mid-span deflection is also plotted and compared to some standard distributions. As we can 

observe, the PDF of the mid-span deflection is accurately approximated by the lognormal distribution. This 

is a remarkable result since an analytical formulation of the PDF is now available and the probability of 

occurrence of each possible event (i.e., the possible value of the mid-span deflection) can be easily derived. 

Moreover, the CDF of the mechanical response is built by integrating the PDF previously obtained by MCS. 

This CDF can be directly used to perform a serviceability reliability analysis of the truss structure, defined 

as exceeding a maximum allowable deterministic deflection. 

 

Figure II.  20. Truss structure: convergence of MCS 

As can be seen in table II.5, all cubature formulae give accurate estimates of the first two statistical 

moments of the mechanical response, since in the worst case the relative error is about 0.05% and 0.18% 

for the mean and the standard deviation, respectively. Formula II provides the best balance between 

accuracy and efficiency since it only requires 133 runs of the FEM, instead of 201 evaluations for cubature 
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formulae III, IV and VI, and 273 evaluations for cubature formula V. As expected, the accuracy of the 

computation of the higher order statistical moments of the mechanical response decreases with the 

moment order. Indeed, for skewness and kurtosis only cubature formulae III and VI provide the closest 

estimates to the reference solution. 

Figure II.21 compares the PDFs and the CDFs built using a moments-based technique and those given by 

MCS. As can be seen, the PDFs given by the proposed method, especially those based on cubature formulae 

III and VI, fit very well the PDF built from 105 MCS in the entire region, including the tails. The CDFs curves 

plotted in the logarithmic scale following the vertical axis, clearly demonstrate the good accuracy level of 

the proposed method when the statistical moments are derived from cubature formula VI, since the 

deviation from the reference solution is insignificant in the vicinity of the tails. This accuracy is achieved 

with higher efficiency, since it only requires 201 calls of the FEM.   

 

Figure II.  21. Truss structure: comparison of the PDFs and CDFs of the mechanical response 

In a next step, the reliability analysis is performed to assess the accuracy of the proposed approach in 

estimating the probability of failure of the truss structure with respect to a threshold deflection denoted by 

𝜈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and taken as a deterministic quantity. The associated performance function reads: 

𝐺(𝒙) = 𝜈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝜈(𝒙) (𝐼𝐼. 56) 

To evaluate the effect of the order of magnitude 10-k of the failure probability on the accuracy of the 

estimates, a parametric study is carried out, where the threshold deflection varies in the range [0.1 m, 

0.14 m]. Note that, only cubature formula VI is used, since it gives the most accurate results as stated in 

the statistical moments analysis conducted previously. The results obtained regarding failure probabilities 

and associated reliability indices, are listed in table II.6 and compared to the reference solutions given by 

Importance Sampling (IS). For comparison purposes, the reliability analysis is also performed by FORM, 

where the results obtained are reported in table II.6. The relative error, denoted by 𝜖𝛽, is defined as the 

difference between the reliability index estimates given by either the proposed method or FORM, and those 

provided by IS. 

As can be seen from the results reported in table II.6, the proposed method, based on cubature formula 

VI, gives accurate results since the relative error on the reliability index estimation does not exceed 2.51% 
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in the worst case, when recorded for a threshold deflection of 0.1 m. Moreover, as we can observe, this 

accuracy is less affected by the magnitude of the failure probability compared to the FORM method where 

the relative error increases with the magnitude of the failure probability. 

Table II. 6. Truss structure: comparison of the reliability analysis results given by the proposed method, IS and 
FORM 

𝜈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  
IS FORM Formula VI 

𝑃̂𝑓 𝛽 𝑃̂𝑓 𝛽 𝜖𝛽(%) 𝑃̂𝑓 𝛽 𝜖𝛽(%) 

0.10 m 4.09 10-2 1.75 2.80 10-2 1.91 9.14 4.40 10-2 1.7060 2.51 
0.11 m 9.90 10-3 2.38 5.04 10-3 2.57 7.98 9.22 10-3 2.3565 0.98 
0.12 m 1.35 10-3 3.17 7.62 10-4 3.17 6.73 1.66 10-3 2.9368 1.12 
0.13 m 2.16 10-4 3.71 2.64 10-4 3.71 6.00 2.64 10-4 3.4662 0.96 
0.14 m 3.44 10-5 4.21 3.98 10-5 4.21 5.78 3.98 10-5 3.9453 0.87 

In the following, we conduct a sensitivity analysis of the truss structure with respect to the mid-span 

deflection. The main purpose is to evaluate the contribution of each uncertain parameter on the variability 

of the mechanical response. Hence, the quantities of interest are first-order and total Sobol sensitivity 

indices, denoted by 𝑆1 and 𝑆𝑇, respectively. The reference solution, listed in table II.7, is obtained by crude 

MCS based on 106 samples for each Sobol index. These preliminary results show that the effect of 

interactions between uncertain parameters is small compared to the effect of each uncertain parameter 

considered separately, since the values of the total and first-order Sobol indices are too close. Note that 

for uncertain parameters with a non-significant effect, the total Sobol indices are smaller than the 

corresponding first-order Sobol indices. This result is contradictory since the total indices should be larger 

than the first-order ones; it is a consequence of the small bias of the MCS estimator as explained in (Owen, 

2013).    

Table II. 7. Truss structure: first-order and total Sobol sensitivity indices obtained by MCS 

 𝐸1 𝐸2 𝑆1 𝑆2 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 

𝑆1
𝑀𝐶𝑆  0.3662 0.0137 0.3664 0.0138 0.0060 0.0383 0.0777 0.0770 0.0380 0.0059 

𝑆𝑇
𝑀𝐶𝑆  0.3696 0.0126 0.3712 0.0126 0.0047 0.0374 0.0776 0.0773 0.0374 0.0048 

As shown in section 2.3, the computation of the total Sobol indices involves the evaluation of a 

multidimensional integral composed of two parts (see equation II.22): the inner part is a one-dimensional 

integral which is computed by Gauss-Hermite quadrature scheme of level 3 (GH3), and the outer part 

corresponding to an (N-1)-dimensional integral is computed by one of the cubature formula II-VI. The 

first-order Sobol indices also involve the evaluation of a multidimensional integral composed of two parts. 

But conversely, the inner part corresponds to an (N-1)-dimensional integral that is computed by one of the 

cubature formula II-VI and the outer part is a one-dimensional integral computed by the Gauss-Hermite 

quadrature scheme of level 3. Figure II.22 compares the estimates of the first-order Sobol indices given 

by the proposed method with those of the reference solution; they are plotted in decreasing order of 

importance.  

As can be seen, the proposed method, independently from the used cubature formula, allows to range in 

the right order of importance the uncertain parameters, as the reference method. This information is quite 

important since it allows us to distinguish parameters with significant effect on the mechanical response 

from those having a weak effect. For uncertain parameters with dominant contributions, which are the 
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cross-section areas 𝑆1 and the Young’s modulus 𝐸1 of the horizontal bars, the first-order indices obtained 

by the proposed method are in good agreement with the reference ones. Indeed, the relative error varies 

in the ranges [0.1%, 1.8%] and [0.13%, 1.74%], respectively for the first-order indices corresponding to 

the uncertain parameters 𝑆1 and 𝐸1. We can also observe that the proposed method based on cubature 

formula V, provides the most accurate results over all the first-order indices, compared to the other 

cubature formulae, since the maximum relative error is around 5%, which is recorded on the estimate of 

the first-order index related to the uncertain parameter with the weakest main effect 𝑃1. 

 

Figure II.  22. Truss structure: comparison of the estimates of the first-order Sobol indices  

 

Figure II.  23. Truss structure: comparison of the estimates of the total Sobol indices 

In figure II.23, we assess the accuracy of the proposed method for the computation of the total Sobol 

indices. As can be seen, observations quite similar to those made for the previous first-order indices, can 

be made. Indeed, for the uncertain parameters having a significant effect on the variability of the 

mechanical response, which are also the cross-section areas 𝑆1 and the Young’s modulus 𝐸1 of the horizontal 

bars, the proposed method independently of the cubature formula used for the evaluation the integral 

quantities, gives accurate estimates of the total indices since the relative error varies in the ranges [0.1%, 

1.8%] and [0.16%, 2.11%], respectively for the total indices corresponding to the uncertain parameters 
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𝑆1 and 𝐸1. Among the proposed cubature formulae, the most accurate estimates are given by formula VI, 

since the corresponding relative error is in the range [0.1%, 6.25%]. 

Note that the computation of the first-order or the total Sobol indices requires the same number of FEM 

calls when the same cubature formula is used to evaluate the integrals involved in each case. In table II.8 

the computation costs of the proposed method based on cubature formulae II-VI and compared to those 

required by Full Tensor-product Gauss-Hermite method of level 3 (FTGH3) and MCS are listed. As can be 

observed, the proposed method is by far the most efficient for computing the Sobol sensitivity indices. The 

cubature formulae IV and V, which provide the most accurate results, require 5092 and 4657 runs of the 

FEM, respectively.    

Table II. 8. Truss structure: comparison of the computational costs of the proposed method, FTGH3 and MCS 

Method 
Cubature formula 

FTGH3 MCS 
II III IV V VI 

Number of FEM runs 3464 5092 5092 4657 5092 10x59049 10x106 

Through this example, we have demonstrated the ability of the proposed method, based on different 

efficient cubature formulae, to perform an uncertainty propagation analysis on an explicit mechanical model 

involving moderate probabilistic dimensionality (i.e., number of random variables representing the 

uncertain parameters). It has been shown that the three possible types of uncertainty propagation analysis, 

which are statistical moments and distributions analysis, reliability analysis and sensitivity analysis, can be 

addressed with low computational cost. It may be retained that all cubature formulae give accurate 

estimates of the mean and the standard deviation of the quantities of interest. However, for higher order 

statistical moments, cubature formulae III and VI seems to be the most accurate. This high level of 

accuracy on the estimates of the first four statistical moments makes it possible the use of moment-based 

techniques to build particularly accurate PDFs in the vicinity of the distribution tails, which are useful for 

reliability analysis. In the case of sensitivity analysis, cubature formulae VI and V give the closest estimates 

to the reference solutions, for the total and the first-order Sobol indices, respectively.        

5.2.2. Heat conduction in a square plate 

Let us consider a two-dimensional stationary heat-conduction in a square plate defined on the spatial 

domain Ω = (−0.5𝑚, 0.5𝑚) × (−0.5𝑚, 0.5𝑚), as shown in figure II.24. This example was first introduced by 

(Nouy, 2010) and used later in the literature (Konakli and Sudret, 2016) of uncertainty propagation analysis 

as a benchmark problem. The temperature field denoted by 𝑇(𝒛), 𝒛 = (𝑥, 𝑦) ∈ Ω is described by the following 

partial differential equation: 

−∇(𝑘(𝒛) ∙ ∇𝑇(𝒛)) =  𝑄 ∙ 𝕀Ω1 (𝐼𝐼. 57) 

where 𝑄 = 2000 𝑊 𝑚3⁄  is a heat source applied in the square area Ω1 = (0.2𝑚, 0.3𝑚) × (0.2𝑚, 0.3𝑚), 𝕀Ω1 is the 

indicator function equal to 1 if 𝒛 ∈ Ω1, and 𝑘(𝒛) is the thermal conductivity of the constitutive material of 

the plate which is considered as a spatially varying quantity. The boundary conditions applied to the square 

plate are: 𝑇 = 0 on the top edge and ∇𝑇 ∙ 𝒏 on the left, bottom, and right edges, where 𝒏 is the vector 
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normal to the boundary. The model response represents the average temperature 𝑇̃Ω2 in the square area 

Ω2 = (−0.2𝑚, −0.3𝑚) × (−0.2𝑚, −0.3𝑚), which is defined by the following integral: 

𝑇̃Ω2 =
1

|Ω2|
∫ 𝑇(𝒛)𝑑𝒛
𝒛∈Ω2

 (𝐼𝐼. 58) 

where 𝑇(𝒛) is the temperature field in the whole square area Ω, computed from a FEM implemented in the 

software (cast3m, 2021). The finite element mesh (see Figure II.24) is made of 1926 3-noded triangular 

elements and 3690 nodes. 

 

Figure II.  24. Heat conduction in square plate: geometry and boundary conditions (left),and finite element mesh 
(right) 

The thermal conductivity 𝑘(𝒛, 𝜔) of the constitutive material of the plate is considered as a spatially varying 

uncertain parameter, modelled by a two-dimensional lognormal field, with mean value 𝜇𝑘 = 1 𝑊 °𝐶 𝑚⁄  and 

standard deviation 𝜎𝑘 = 0.3 𝑊 °𝐶 𝑚⁄ . It is defined as the exponential of a normal random field 𝑣(𝒛, 𝜔) with 

mean 𝜇𝑣 = ln(𝜇𝑘) −
1

2
ln(1 + 𝜎𝑘

2 𝜇𝑘
2⁄ ) and standard deviation 𝜎𝑣 = √ln(1 + 𝜎𝑘

2 𝜇𝑘
2⁄ ): 

𝑘(𝒛, 𝜔) = exp[𝑣(𝒛, 𝜔)] = exp [𝜇𝑣 + 𝜎𝑣 . 𝑢(𝒛, 𝜔)] (𝐼𝐼. 59) 

where 𝜔 is a parameter which allows to emphasize the random nature of 𝑘(𝒛, 𝜔), 𝑢(𝒛, 𝜔) is a standard normal 

random field with zero mean and unit standard deviation. It is governed by the following square exponential 

autocorrelation function: 

𝜌(𝒛1 , 𝒛2) = exp [−
‖𝒛1 − 𝒛2‖

2

𝑙𝑐
2

] (𝐼𝐼. 60) 

where 𝑙𝑐 denotes the correlation length, which is set equal to 0.2 𝑚.   

The standard normal field 𝑢(𝒛, 𝜔) is discretized using the Expansion Optimal Linear Estimation (EOLE) 

method (Li and Der Kiureghian, 1993), and its 𝑀𝑡ℎ order approximation denoted by 𝑢̂(𝒛, 𝜔), reads: 

𝑢̂(𝒛, 𝜔) = ∑
𝝓𝑖
𝑇𝑪𝔃,𝔃𝒊

√𝜆𝑖

𝑀

𝑖=1

 𝑢𝑖(𝜔) (𝐼𝐼. 61) 

In this approximation, 𝑢𝑖(𝜔), 𝑖 ∈ {1, … , 𝑀} are independent standard normal variables, 𝑪𝔃,𝔃𝒊  is a vector with 

components 𝑪𝔃,𝔃𝒊
𝑗

= 𝜌(𝔃, 𝔃𝑗), 𝑗 ∈ {1, … , 𝑚}, where 𝔃𝑗 , 𝑗 ∈ {1, … , 𝑚} are the nodes of an appropriate defined mesh 
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(i.e. this mesh is only used to discretize the random field and is different from the one used in the finite 

element computations), 𝜆𝑖 and 𝝓𝑖
𝑇 are respectively eigenvalues and eigenvectors of the correlation matrix 

𝑪𝔃,𝔃 with components 𝑪𝔃,𝔃
𝑘,𝑙 = 𝜌(𝔃𝑘 , 𝔃𝑙), 𝑘, 𝑙 ∈ {1, … , 𝑚}.  

According to the EOLE method, and in the case of a square exponential autocorrelation function, the 

element size of the mesh used to discretize the random field must be in the range [𝑙𝑐 2⁄ , 𝑙𝑐 3⁄ ] (Sudret and 

Der Kiureghian, 2000). Based on this rule, we use a square uniform mesh containing 169 elements of size 

0.08 m. Furthermore, to obtain an accurate EOLE approximation of the random field 𝑢(𝒛, 𝜔), the truncation 

order 𝑀 in equation (II.61) is set to 53, which is obtained according to the following criterion: 

∑𝜆𝑖

𝑀

𝑖=1

≥ 0.99 ∑ 𝜆𝑖

𝑚

𝑖=1

 (𝐼𝐼. 62) 

Equation (II.62) means that only the 𝑀 first largest eigenvalues, which contribute 99% of the sum of all 

the 𝑚 available eigenvalues resulting from the decomposition of the correlation matrix, are retained. This 

leads to a relative variance error 𝜖(𝒛) =  Var[𝑢(𝒛, 𝜔) − 𝑢̂(𝒛, 𝜔)] Var[𝑢(𝒛, 𝜔)]⁄  less than 0.092%. Note that, the 

eigenvalues are first sorted in ascending order, before selecting the most important of them. Figure II.25 

shows the 20 first shape functions 𝝓𝑖
𝑇𝑪𝔃,𝔃𝒊 , 𝑖 ∈ {1, … ,53} used in the EOLE method to build the realizations of 

the random field 𝑢(𝒛, 𝜔).     

 

Figure II.  25. Heat conduction in square plate: 20 first shape functions 𝝓
𝑖
𝑇𝑪𝔃,𝔃𝒊 , 𝑖 ∈ {1,… ,53} according to the EOLE 

method    
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Now, for a given realization of the random variables 𝑢𝑖(𝜔), 𝑖 ∈ {1, … ,53}, and using equations (II.59) and 

(II.61), a realization 𝑘̂(𝒛, 𝜔) of the random field representing the thermal conductivity of the square plate 

is easily obtained. A sample of 10 realizations of 𝑘̂(𝒛, 𝜔) is depicted in figure II.26. 

 

Figure II.  26. Heat conduction in square plate: example of 10 realizations of the thermal conductivity field 𝑘̂(𝒛, 𝜔)  

Because of the spatially varying uncertainty of the thermal conductivity, the temperature within the square 

plate is also an uncertain spatially varying parameter that can be conveniently modeled by a random field. 

The temperature field 𝑇(𝒛, 𝜔) is computed from the FEM implemented on the cast3m software. Figure II.27 

shows the realizations of 𝑇(𝒛, 𝜔) associated with the previous realizations of the thermal conductivity field 

shown in figure II.26. 

 

Figure II.  27. Heat conduction in square plate: example of 10 realizations of the temperature field 𝑇(𝒛, 𝜔) 

Since the model response of interest, defined as the average temperature 𝑇̃Ω2 recorded in the square area 

Ω2, is a scalar parameter as we can see in equation (II.58), the associated uncertainty can be simply 

modeled by a random variable, whose statistical characteristics are to be determined. Thus, we are first 

interested in the computation of the first four statistical moments of the model response 𝑇̃Ω2. The 

multidimensional integrals involved in these computations are evaluated by the cubature formulae II, III, 

IV and VI. Note that the cubature formulae I and V are not used here because they are only capable of 

computing integrals of maximum dimension up to 7 and 16, respectively. The results given by the proposed 

method based on the aforementioned cubature formulae are listed in table II.9, along with those obtained 

by 105 crude MCS applied directly to the square plate FEM. Figure II.28 shows the convergence of the 

estimates given by MCS, taken here as a reference solution. We can observe that the convergence of the 
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first four statistical moments is well achieved with 105 samples of model response, and as expected, the 

convergence of higher order statistical moments is slower than the convergence of the mean and the 

standard deviation. In addition, the PDF of the model response is constructed and compared to some 

standard distributions. The comparison show that the PDF fits a lognormal distribution. The CDF is also 

simply deduced from the integration of the corresponding PDF, allowing, if desired, a reliability analysis to 

be performed without spending additional computational effort (i.e., no additional runs of the FEM are 

required).       

 

Figure II.  28. Heat conduction in square plate: convergence of MCS 

The results depicted in table II.9 show that all the cubature formulae employed in this example give 

accurate estimates of the first two statistical moments of the model response 𝑇̃Ω2 since the maximum error 

is around 0.032% and 0.2% for the mean and the standard deviation, respectively. The cubature formula 

II appears to be the most economical integration scheme since it requires only 2971 runs of the FEM to 

achieve the best recorded accuracy compared to the other cubature formulae. For skewness and kurtosis, 

cubature formulae II and VI give the closest estimates to the reference solution.  

Table II. 9. Heat conduction in square plate: statistical moments of the average temperature 𝑇̃𝛺2  

Statistical moments 
Cubature formula 

MCS 
II III IV VI 

𝜇 4.5678 4.5678 4.5681 4.5678 4.5666 
𝜎 0.7880 0.7877 0.7876 0.7878 0.7891 
𝛾 0.5388 0.5543 0.46112 0.5530 0.4787 
𝜅 3.7140 4.5166 3.6658 3.9075 3.3649 

Number of FEM runs 2971 5619 5619 5619 105 

Figure II.29 compares the PDFs and CDFs obtained from moments-based technique to those derived from 

MCS. As can be seen, the PDFs and CDFs derived from statistical moments computed by cubature formulae 

II, III and VI are in good agreement with those of the reference solution and allow to estimate accurately 
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tail probabilities of order magnitude 10-2, which can be useful to conduct reliability analysis. Indeed, let us 

consider the following performance function: 

𝐺(𝒙) = 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑇̃Ω2(𝒙) (𝐼𝐼. 63) 

where 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a deterministic parameter that indicates a threshold temperature that should not be 

exceeded in order to ensure the integrity of the square plate with respect to the loading conditions.  

A parametric study is conducted in the following, where the threshold temperature varies from 6 °C to 7.5 

°C. The failure probabilities 𝑃̂𝑓  and the corresponding generalized reliability indices 𝛽 are computed and 

listed in table II.10. Note that the failure probabilities are directly obtained from the CDFs corresponding 

to cubature formulae II, IV and VI, which give the exact results as demonstrated previously. 

 

Figure II.  29. Heat conduction in square plate: comparison of the PDFs and CDFs of the model response 𝑇̃𝛺2  

For threshold temperatures 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ {6, 6.5} ℃, which lead to failure probabilities of magnitude 10-2, the 

proposed method, regardless of the cubature formula used to compute the multidimensional integrals, 

gives accurate estimates of the reliability indices since the relative error varies in the range [0.2%, 1.84%] 

which can be explained by the higher accuracy achieved for tail probabilities of magnitude 10 -2. The 

estimates of the reliability indices corresponding to failure probabilities of magnitude 10-3 are also in 

agreement with the reference solution since the maximum relative error is less than 5%, except for a 

threshold temperature 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 7.5 ℃ where the relative error is about 6.32% for cubature formula VI. 

For higher threshold temperatures however, a relatively significant discrepancy is observed between the 

estimates of the reliability indices given by the proposed method and those of MCS, since the relative error 

is in the range [6.06%, 9.01%]. Despite this, these results can be considered reasonable preliminary 

estimates of low failure probabilities since they require an affordable computational effort. Indeed, due to 

the high dimensionality of this problem, FORM and SORM approaches are inefficient even though they are 

usually able to provide inexpensive estimates of the quantities of interest required in reliability analysis.  
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Table II. 10. Heat conduction in square plate: comparison of the reliability analysis results given by the proposed 

method and MCS 

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  
MCS 

Cubature formula 

II IV VI 

𝑃̂𝑓 𝛽 𝑃̂𝑓 𝛽 𝑃̂𝑓 𝛽 𝑃̂𝑓 𝛽 

6.0 °C 4.578 10-2 1.6872 4.628 10-2 1.6820 4.493 10-2 1.6962 4.612 10-2 1.6837 
6.5 °C 1.542 10-2 2.1591 1.653 10-2 2.1314 1.569 10-2 2.1523 1.704 10-2 2.1192 
7.0 °C 4.800 10-3 2.5899 5.551 10-3 2.5395 5.162 10-3 2.5648 6.054 10-3 2.5090 
7.5 °C 1.130 10-3 3.0538 1.792 10-3 2.9126 1.640 10-3 2.9401 2.114 10-3 2.8607 
8.0 °C 2.400 10-4 3.4917 5.732 10-4 3.2519 5.191 10-4 3.2800 7.440 10-4 3.1770 

The above analysis clearly demonstrates the ability of the proposed method to effectively handle the 

propagation of uncertainty through a complex and time-consuming model with high probabilistic 

dimensionality. With accurate estimates of the first four statistical moments, the PDF of the model response 

is also accurately built across the entire range of the distribution, including the tails, simply using a 

moments-based technique. This then allows us to perform reliability analysis for various Demand 

thresholds (i.e., see section 2.4) of a prescribed performance function describing the serviceability of the 

square plate subjected to heat conduction.    

6. Conclusion 

In this chapter, we have briefly recalled the general principles of the uncertainty propagation problem 

through models representing physical phenomena. Depending on the expected results, three types of 

analysis can be performed: statistical moments and distribution analysis, sensitivity analysis or reliability 

analysis. For these three types of analysis, the mathematical formulations of the quantities of interest have 

been presented. It has been shown that the main issue is always the same, namely, to handle 

multidimensional integrals. Unfortunately, classical integration methods may lead to intractable 

computations, especially when these integrals have high dimensionality and the integrand is only available 

under an implicit model that requires computational time, which is often the case when dealing with 

engineering problems.  

A first attempt has been made in this chapter to overcome this difficulty, which aims at using efficient 

cubature schemes, where a limited number of integrand evaluations are required to obtain accurate 

estimates, instead of the classical greedy integration methods such as Monte-Carlo simulation and full 

tensor-product rules. Six cubature formulae are identified in the literature, whose efficiency and accuracy 

are assessed across several academic and engineering problems ranging from a simple mathematical 

explicit model to an implicit model that is computationally demanding and involves a large number of 

uncertain parameters. The analysis performed in the first example reveals that, except for cubature formula 

IV, for which the relative error grows exponentially but remains by far more efficient than Monte-Carlo 

simulation and Gauss-Hermite quadrature, the accuracy of the other formulae seems to be less affected 

by the integration dimension 𝑁, especially for formula V which gives the best balance between accuracy 

and efficiency. With the second example, which deals with uncertainty propagation through explicit 

mechanical models involving mixture of different types of random variables, it has been proven that the 
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proposed method is able to carry out accurately, either statistical moments or reliability analysis, without 

requiring a huge computational effort. But it has been noticed that problems involving higher 

heterogeneous mixture of random variables should be handled with care. The third example, which involves 

a time-consuming implicit mechanical model with a moderate probabilistic dimensionality (i.e., 10 scalar 

uncertain parameters), has revealed that the proposed method is able to tackle the three kinds of 

uncertainty propagation analysis with a high efficiency. Indeed, all cubature formulae give accurate 

estimates of the two first statistical moments of the quantities of interest. However, cubature formulae III 

and VI are the only best candidates for the computation of higher order statistical moments. This high level 

of accuracy on the estimates of the first four statistical moments makes possible the use of moment-based 

techniques to build PDFs especially accurate in the vicinity of the distribution tails, which makes possible 

to conduct reliability analysis without additional computational effort. In the case of sensitivity analysis, it 

has been shown that the proposed method, regardless of the cubature formula used to handle the integrals 

quantities, allows to range the uncertain parameters in the right order of importance as the reference 

method. It appears that cubature formulae VI and V gives the closest estimates to the reference solutions, 

respectively for the total and the first-order Sobol indices. The fourth example has a high probabilistic 

dimensionality, since a 53rd order EOLE representation is needed to model accurately the space-depending 

randomness of the thermal conductivity of the square plate. It has been shown that only cubature formulae 

II, III, IV and VI can be used to face such a high probabilistic dimensionality and all of them give accurate 

estimates of the mean and the standard deviation. It appears that cubature formula II gives the best 

balance between accuracy and efficiency, and formula IV provides the closest estimates of the first four 

statistical moments to those given by MCS. Afterwards, the reliability indices corresponding to failure 

probabilities of magnitude up to 10-3 and for a given performance function were obtained without additional 

runs of the FEM and were able to guarantee a relative error below 5%. 

The analysis performed in this chapter clearly demonstrates the strong potential of the proposed method 

to conduct various types of uncertainty propagation analysis with a high level of accuracy. We highlight 

the remarkable computational cost savings provided by the efficient cubature formulae used to handle the 

integral quantities required in probabilistic analysis, compared to most of classical integration schemes 

such as MCS and its variants, the full tensor-product quadrature and the sparse grid method. Despite these 

enhancements, we stress at the same time the need for further studies to establish the efficiency and the 

accuracy of the proposed approach to handle uncertainty propagation problems with a much higher level 

of complexity. Indeed, the number of evaluations of the physical model varies from a few hundred to a few 

thousand to handle uncertainty propagation problems with moderate and high probabilistic dimensionality 

respectively. This computational cost would be unaffordable for time-consuming deterministic physical 

models such as those encountered in fatigue fracture mechanics for instance. Naturally, the question we 

have to ask ourselves is: is there a way to further improve the efficiency of the proposed method? 

We try to answer this question in the next chapter of the thesis.
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Chapter III: Unified approaches for uncertainty 

propagation analysis 

1. Introduction 

In the previous chapter, an original approach based on efficient cubature formulae has been developed to 

carry out uncertainty propagation through-time consuming physical models with moderate to high 

probabilistic dimensionality. We have clearly demonstrated that this approach is by far more efficient than 

the existing methods based for instance on MCS or tensor-product cubature schemes for dealing with 

multidimensional integrals relative to the computation of the quantities of interest such as statistical 

moments, sensitivity indices and probability of failure. Unfortunately, we have also pointed out that in 

some situations this efficiency could be affected. Indeed, the set of physical model evaluations required to 

compute these multidimensional integrals depends not only on the integration points related to the 

cubature formula used, but also on the type of the uncertainty propagation analysis to be addressed. The 

comparison of equations (II.3), (II.23) and (II.25) (see Section 2 of Chapter II), which represent the 

multidimensional integrals to be evaluated when dealing with the computation respectively of, 𝑙𝑡ℎ order 

statistical moment, partial variance, and probability of failure, clearly shows that the integrand is not the 

same for these three cases. Obviously, for a given problem these integrands are built on the same physical 

model, but for each computation case the associated integrand is a function of a different set of random 

variables representing the uncertain parameters. Therefore, a different set of runs of the physical model is 

needed. Hence, evaluating the physical model, which is itself time-consuming, each time when moving 

from one type of uncertainty propagation analysis to another, will probably lead to an unaffordable 

computation cost. For problems of crack growth in mechanical components or in civil engineering structures 

under fatigue loading, the related physical models are, in some situations, computational time-demanding. 

For instance, when dealing with variable amplitude fatigue loading, the quantity of interest, which is the 

fatigue lifetime, is often computed using an implicit physical model and following a cycle-by-cycle 

integration scheme, since the amount of loading-induced damage is different in each cycle. This inevitably 

leads to a huge computational effort for one run of the physical model, especially when High Cycle Fatigue 

(HCF) region is of interest. It is clear here that if we find a way to substitute the implicit physical model 

with an explicit formulation, the computational effort required in the uncertainty propagation analysis could 

be significantly reduced. The key idea is to build an accurate mathematical approximation of the model 

response based on a limited set of evaluations of the primary implicit model. Such an approximation is 

referred to as a response surface, surrogate model or metamodel. Many techniques for building 

metamodels are available in the literature, among them we can find, the Support Vector Regression (SVR) 

(Vapnik and al, 1997; Smola and Schölkopf, 2006), Kriging based on random processes (Krige, 1951; 

Matherson, 1962; Santner and al, 2003; Rasmussen and Williams, 2006; Dubourg, 2011), High-

Dimensional Model Representation (HDMR) (Rabitz and Aliş, 1999; Li and al, 2002; Xu and Rahman, 2004; 
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Rahman, 2008; Riahi, 2013; Tang and al, 2016; Ding and Xu, 2021) and Polynomial Chaos Expansion 

(PCE) (Ghanem and Spanos, 1991; Soize and Ghanem, 2004, Berveiller, 2005; Blatman, 2009). The latter 

technique, denoted by PCE, consists in expanding the response of an implicit physical model over 

appropriate finite polynomial chaos bases whose components are orthonormal to each other with respect 

to the joint probability density representing the variability of the uncertain input parameters. Since its 

appearance in the early 1990’s thanks to the work of (Ghanem and Spanos, 1991), PCE has been 

extensively applied to mechanical and civil engineering problems with uncertain parameters and, at the 

same time, has been gradually enhanced, mainly to cope dimensionality curse problem encountered when 

the number of uncertain parameters is high. In the literature two ways of enhancement are distinguished. 

The first way aims to use efficient techniques (Blatman and Sudret, 2011; Choi and al, 2012; Riahi, 2013; 

Ahlfeld, 2016; Camacho and al, 2017; Zhang and Qiu, 2020; Cao and al 2022), ranging from integration 

schemes to regression algorithms, to compute the unknown coefficients of the PCE. The second way aims 

to use suitable truncation schemes (Blatman and Sudret, 2009; Blatman and Sudret, 2010; Hu and Youn, 

2011; Peng and al, 2013; Hawchar and al, 2017; Abraham and al, 2017) to discard the unknown 

coefficients with a weak contribution to the PCE, thus significantly reducing the computational cost.  

The present chapter aims to develop a unified method of uncertainty propagation, (i.e., able to handle all 

three types of probabilistic computation analyses efficiently) by combining PCE and the cubature formulae 

studied in Chapter II. Two alternatives will be investigated: the first one, called full-PCE, uses a full 

polynomial expansion to build a metamodel of the model response where the unknown coefficients are 

computed by projection based on cubature formulae I-VI; the second alternative, called sparse-PCE, uses 

a suitable truncation algorithm based on second moments prior information, able of adaptively discarding 

the insignificant coefficients of the PCE in the metamodel construction process, and the remaining 

significant coefficients are computed by regression. 

This chapter is organized into two main sections. In section 2, we first recall the mathematical framework 

of PCE and the key ingredients for setting up PCE metamodels to represent the responses of implicit 

physical models. The two alternatives, named full-PCE and sparse-PCE, developed to enhance the efficiency 

of PCE metamodels, are given a special attention. In section 3, four application examples dealing with 

fatigue fracture problems with different levels of complexity are addressed to validate the proposed 

approaches and to demonstrate their ability to deal with various types of uncertainty propagation analysis 

with an affordable computational cost. 

2. Polynomial Chaos Expansion (PCE): 

2.1. Construction of PCE-based metamodels 

Let us consider a computational model 𝑓 describing the behavior of an engineering system, whose input 

parameters 𝒙 = { 𝑥1 , … , 𝑥𝑁}
𝑇 ∈ 𝔇𝔁 are uncertain quantities represented by an 𝑁-dimensional random variable 

𝑿 = { 𝑋1 , … , 𝑋𝑁}
𝑇 ∈ 𝔇𝓧 with a prescribed probability density function 𝑝𝑿(𝒙), and 𝑦 = 𝑓(𝒙) the model response 
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of interest taken for the sake of simplicity as a scalar. Let also assume that the random variable 𝑌 with a 

probability density function 𝑝𝑌(𝑦), representing the variability of the model response 𝑦 induced by the 

randomness of the input parameters, has a finite variance, and that the components of the 𝑁-dimensional 

random variable 𝑿 = { 𝑋1 , … , 𝑋𝑁}
𝑇 are statistically independent. The PCE-based metamodel of 𝑌 = 𝑓(𝑿) thus 

reads (Xiu and Karniadakis, 2002): 

𝑌 = 𝑓(𝑿) ≈ 𝑓𝑃𝐶𝐸(𝑿) = ∑ 𝑎𝑘  𝜳𝜶𝑘
(𝑿)

𝑃−1

𝑘=0

 (𝐼𝐼𝐼. 1) 

where 𝑃 denotes the number of terms in the PCE, 𝜶𝑘 = (𝛼𝑘
1 , … , 𝛼𝑘

𝑁), 𝑘 = 0, … , 𝑃 − 1 a set of multi-indices also 

called N-tuples of integers (i.e., 𝜶𝑘 ∈ ℕ
𝑁), 𝜳𝜶𝑘

, 𝑘 = 0, … , 𝑃 − 1 a set of multivariate orthonormal polynomials 

with respect to 𝑝𝑿(𝒙), whose total degree |𝜶𝑘| = 𝛼𝑘
1 + ⋯+ 𝛼𝑘

𝑁 and 𝑎𝑘 , 𝑘 = 0, … , 𝑃 − 1 a set of real valued 

deterministic coefficients to be determined.  

The above expansion is referred to as full-PCE metamodel. It is shown (Ghanem and Soize, 2004) that the 

latter converges to the true model response, in the sense of the ℒ2 − 𝑛𝑜𝑟𝑚, when the number of terms 𝑃 →

+∞, that is: 

lim
𝑃→+∞

‖𝑌 − ∑ 𝑎𝑘  𝜳𝜶𝑘
(𝑿)

𝑃−1

𝑘=0

‖

ℒ2

2

= lim
𝑃→+∞

𝔼 [(𝑌 − ∑ 𝑎𝑘 𝜳𝜶𝑘
(𝑿)

𝑃−1

𝑘=0

)2] = 0 (𝐼𝐼𝐼. 2) 

where 𝔼[. ] denotes the mathematical expectation. 

The size of the PCE-based metamodel given by equation (III.1), that is the number of terms 𝑃 retained in 

the summation, can be determined by following one of the truncation schemes available in the PCE 

literature (Blatman, 2009). The most used truncation scheme consists in retaining the terms corresponding 

to multivariate polynomials 𝜳𝜶𝑘
, 𝑘 = 0, … , 𝑃 − 1 where whose total degrees |𝜶𝑘 | = 𝛼𝑘

1 + ⋯+ 𝛼𝑘
𝑁 , 𝑘 = 0, … , 𝑃 − 1 

do not exceed a prescribed degree 𝑝, chosen to ensure a better accuracy of the metamodel. Based on this 

rule, the number of terms 𝑃 in the truncated PCE is given by: 

𝑃 =  
(𝑝 + 𝑁)!

𝑝! 𝑁!
 (𝐼𝐼𝐼. 3) 

Equation (III.3) clearly shows that the number of terms in the PCE grows exponentially with 𝑁, which could 

induce an unaffordable computational cost in the determination of the unknown coefficients when dealing 

with uncertainty propagation problems with a high probabilistic dimensionality and especially when the 

corresponding physical model is itself computationally time-demanding. 

Once the truncation degree 𝑝 has been chosen, the procedure used for setting up the PCE-based metamodel 

requires first, an algorithm (Sudret and Der Kiureghian, 2000) allowing to generate the set of multi-indices 

𝜶𝑘 , 𝑘 = 0, … , 𝑃 − 1 corresponding to 𝑃 multivariate polynomials 𝜳𝜶𝑘
, 𝑘 = 0, … , 𝑃 − 1 of respective degrees not 

greater than 𝑝, and, second, sets of univariate orthonormal polynomials 𝛹
𝛼𝑘
𝑖 , 𝑖 = 1, … , 𝑁 are chosen with 

respect to each marginal distribution 𝑝𝑋i(𝑥i), 𝑖 = 1, … , 𝑁 of the random variables 𝑋i , 𝑖 = 1, … , 𝑁, to construct 
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the polynomial chaos basis {𝜳𝜶𝑘
 }
𝑘=0

𝑘=𝑃−1
. When the components of the 𝑁-dimensional random variable 𝑿 =

{ 𝑋1 , … , 𝑋𝑁}
𝑇 are independent, the joint probability density function 𝑝𝑿(𝒙) can be simply obtained as the 

product of the marginal distributions 𝑝𝑋i(𝑥i), 𝑖 = 1, … , 𝑁 of the random variables 𝑋i , 𝑖 = 1, … , 𝑁, that is 𝑝𝑿(𝒙) =

∑ 𝑝𝑋i(𝑥i)
𝑁
𝑖=1 . Consequently, each multivariate polynomial 𝜳𝜶𝑘

(𝑿), 𝑘 = 0, … , 𝑃 − 1 of the polynomial chaos basis 

can be derived as follows by a tensorization of appropriate univariate polynomials 𝛹
𝛼𝑘
𝑖 (𝑋i), 𝑖 = 1, … , 𝑁, with 

respective degrees 𝛼𝑘
𝑖 , 𝑖 = 1, … , 𝑁:         

𝜳𝜶𝑘
(𝑿) =∏𝛹

𝛼𝑘
𝑖

𝑁

𝑖=1

(𝑋𝑖) (𝐼𝐼𝐼. 4) 

In the above equation, the set of univariate polynomials 𝛹
𝛼𝑘
𝑖 , 𝑖 = 1, … , 𝑁 are orthonormal with respect to the 

marginal distributions 𝑝𝑋i(𝑥i), 𝑖 = 1, … , 𝑁. This orthonormality condition reads: 

〈𝛹
𝛼𝑘
𝑖 (𝑋), 𝛹𝛼𝑙

𝑖(𝑋)〉ℒ2 = 𝔼 [𝛹𝛼𝑘
𝑖 (𝑋). 𝛹𝛼𝑙

𝑖(𝑋)] = 𝛿𝑘,𝑙            ∀𝛼𝑘
𝑖 , 𝛼𝑙

𝑖 ∈ ℕ (𝐼𝐼𝐼. 5) 

where 𝛿𝑘,𝑙 denotes the Kronecker symbol equal to 1 when 𝑘 = 𝑙 and 0 otherwise.  

In the original version of the PCE proposed by (Weiner, 1983), the polynomial chaos basis is made of 

Hermite polynomials to represent the random processes from a set of normal variables. The resulting 

metamodel, called Weiner-Hermite PCE, can be used to represent model responses that depend only on 

normal distributions. Fortunately, an extended release, referred to as generalized PCE, has been developed 

by (Xiu and Karniadakis, 2002) to deal with non-normal random variables based on the Askey family of 

hypergeometric polynomials. In table III.1 are listed the polynomial families associated to the most popular 

continuous and discrete distributions. 

Table III. 1. Correspondence between distributions of random variables and orthogonal polynomials 

Type Distribution Support Polynomial 

Continuous 

Normal ℝ Hermite 
Uniform [−1,1] Legendre 
Gamma ℝ+ Laguerre 

Chebyshev [−1,1] Chebyshev 
Beta [−1,1] Jacobi 

Discrete 
Poisson {0,1,2, … } Charlier 

Binomial {0,1,2, … , 𝑀} Krawtchouk 

In engineering problems, the components of the 𝑁-dimensional random variable 𝑿 = { 𝑋1 , … , 𝑋𝑁}
𝑇 may have 

different distributions not belonging to the families given in table III.1, which can also be correlated with 

each other. This general case can be easily addressed by using isoprobabilistic transformations 𝑿 = 𝑇(𝑼) 

(see section 2.1 of Chapter II for more details). Then, the PCE-based metamodel represented by equation 

(III.1) can be naturally rewritten in the standard random space as follows: 

𝑌 = 𝑓(𝑿) = 𝑓   ⃘ 𝑇(𝑼) = ℎ(𝑼) ≈ ℎ𝑃𝐶𝐸(𝑼) = ∑ 𝑎𝑘  𝑯𝜶𝑘(𝑼)

𝑃−1

𝑘=0

 (𝐼𝐼𝐼. 6) 

where 𝑼 = { 𝑈1 , … , 𝑈𝑁}
𝑇 is an 𝑁-dimensional normal variable with independent components 𝑈i , 𝑖 ∈ {1, … , 𝑁} 

following a standard normal distribution 𝜑𝑈i(𝑢i), 𝑖 ∈ {1, … , 𝑁} with zero mean and unit standard deviation, 
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and 𝑯𝜶𝑘(𝑼), 𝑘 = 0, … , 𝑃 − 1 are multivariate Hermite polynomials which can be built by a tensorization of a 

set of univariate Hermite polynomials 𝐻
𝛼𝑘
𝑖 (𝑈i), 𝑖 = 1, … , 𝑁, with respective degrees 𝛼𝑘

𝑖 , 𝑖 = 1, … , 𝑁. For the sake 

of illustration, the seven first univariate (𝑁=1) Hermite polynomials are plotted in figure III.1. 

 

Figure III. 1. Univariate Hermite polynomials 𝐻𝛼(𝑢), 𝛼 = 0, … ,6  

In the following, the mathematical formulation of the quantities of interest will be set up in the standard 

random space. Thus, the polynomial chaos basis used to construct the PCE-based metamodels will comprise 

multivariate Hermite polynomials obtained by tensor products of univariate orthonormal Hermite 

polynomials. 

2.2. Computation of the PCE coefficients 

Once the truncated polynomial chaos basis has been built up, the unknown coefficients 𝑎𝑘 , 𝑘 = 0, … , 𝑃 − 1 

have to be determined to completely construct the PCE-based metamodel of interest. In the literature, two 

families of approaches can be distinguished to solve this issue. Intrusive approaches, introduced since the 

appearance of the PCE at the early of 1990’s (Ghanem and Spanos, 1991), aim at computing the PCE 

coefficients by minimizing the following residual under the constraint that it is orthogonal to the selected 

polynomial chaos basis: 

〈∑ 𝑎𝑘  𝑯𝜶𝑘(𝑼), 𝑯𝜶𝑙

𝑃−1

𝑘=0

〉 = 0, ∀ 𝑙 = 0, … , 𝑃 − 1 (𝐼𝐼𝐼. 7) 

The solution of the above minimization problem is obtained by a Galerkin projection scheme, which requires 

adaptations of the governing equations related to the considered mechanical model, which explains why 

these approaches are called intrusive. Unfortunately, when these governing equations involve 

nonlinearities, performing these adaptations could be a challenging task. If in addition, the probabilistic 

dimension is high, the Galerkin projection scheme often leads to a large system of coupled equations which 

require a considerable computational cost. To face this problem of inefficiency of intrusive approaches, 

some alternatives methods have been developed in the few last decades, called non-intrusive approaches. 

In these approaches, the mechanical model is considered as a black box and the coefficients of the PCE 

are simply computed by a finite set of evaluations of the mechanical model on an appropriate finite set of 
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realizations of the uncertain parameters in the random space, without any need for adaptation of the 

governing equations related to the mechanical model. Non-intrusive approaches are themselves composed 

of two categories, namely projection and regression methods which will be detailed in the next subsections. 

2.2.1. Projection methods 

a) Principle 

Since the PCE-metamodel is built in an 𝑁-dimensional standard random space, thus the polynomial chaos 

basis consists of 𝑁-variate Hermite polynomials. The orthonormality condition between the components of 

the polynomial chaos basis reads: 

〈𝑯𝜶𝑘(𝑼),𝑯𝜶𝑙〉ℒ2 = 𝔼[𝑯𝜶𝑘(𝑼). 𝑯𝜶𝑙(𝑼)] = 𝛿𝜶𝑘,𝜶𝑙            ∀𝜶𝑘, 𝜶𝑙 ∈ ℕ
𝑁 (𝐼𝐼𝐼. 8) 

where 𝛿𝜶𝑘 ,𝜶𝑙 denotes the Kronecker symbol equal to 1 when 𝜶𝑘 = 𝜶𝑙 and 0 otherwise. 

The projection methods take advantage of the orthonormality of the truncated polynomial chaos basis 

𝑯𝜶𝑘(𝑼), 𝑘 = 0, … , 𝑃 − 1, to compute the unknown coefficients 𝑎𝑘 , 𝑘 = 0, … , 𝑃 − 1. Indeed, referring to the 

orthonormality condition above, the projection of the PCE-based metamodel ℎ𝑃𝐶𝐸(𝑼) given by equation 

(III.6) onto the polynomial chaos basis 𝑯𝜶𝑘(𝑼), 𝑘 = 0, … , 𝑃 − 1, allows us to compute the unknown 

coefficients 𝑎𝑘 , 𝑘 = 0, … , 𝑃 − 1 using the following expression: 

〈𝑯𝜶𝑙(𝑼), ℎ
𝑃𝐶𝐸(𝑼)〉ℒ2 = 𝔼 [𝑯𝜶𝑙(𝑼). ∑ 𝑎𝑘  𝑯𝜶𝑘(𝑼)

𝑃−1

𝑘=0

] = ∑ 𝑎𝑘  𝔼[𝑯𝜶𝑙(𝑼). 𝑯𝜶𝑘(𝑼)]
⏞            

= 𝛿𝜶𝑘,𝜶𝑙  (𝑠𝑖𝑛𝑐𝑒 𝐼𝐼𝐼.8)𝑃−1

𝑘=0

= 𝑎𝑙 (𝐼𝐼𝐼. 9) 

It is clear from equation (III.9) that the coefficient 𝜶𝑙 associated to the 𝑁-variate Hermite polynomial 

𝑯𝜶𝑙(𝑼), is equal to the expected value of the weighted polynomial expansion 𝑯𝜶𝑙(𝑼). ℎ
𝑃𝐶𝐸(𝑼) of the 

approximation ℎ𝑃𝐶𝐸(𝑼) of the random model response 𝑌. Mathematically speaking, the expected value of a 

continuous random 𝑁-variate function is defined as an 𝑁-dimensional integral, so equation (III.9) can be 

reformulated as follows: 

𝑎𝑙 = 𝔼[𝑯𝜶𝑙(𝑼). ℎ
𝑃𝐶𝐸(𝑼)] = ∫ 𝑯𝜶𝑙(𝒖). ℎ

𝑃𝐶𝐸(𝒖) 𝜑𝑼(𝒖) 𝑑𝒖 
ℝ𝑁

  (𝐼𝐼𝐼. 10) 

Thanks to the above equation, where 𝜑𝑼(𝒖) denotes the PDF of the 𝑁-dimensional normal variable 𝑼, the 

computation of the PCE coefficients is nothing else than the evaluation of a set of 𝑁-dimensional integrals, 

which can be ensured by means of numerical integration schemes, such as those studied in Chapter II, 

whose key ingredient consists in approximating an integral by a weighted sum. For more details on the 

mathematical framework related to these integration schemes, the reader can refer to Chapter II of the 

thesis manuscript. 

b) Monte-Carlo Simulation and variants 

The simplest way to compute the 𝑁-dimensional integral defined by equation (III.10) is the use of 

simulation methods such as MCS and its variants. The basic idea is to generate a set of 𝑁-dimensional 
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integration points 𝒖𝑗 = (𝑢1
𝑗
, … , 𝑢𝑁

𝑗
), 𝑗 = 1, … , 𝑀, following a random sampling scheme, namely pseudo-random 

number generator with respect to the distributions of the uncertain parameters. Since the mathematical 

formulations of the quantities of interest (i.e., here the quantity of interest is the 𝑁-dimensional integral 

representing the coefficients of the PCE) are derived in the standard random space, the integration points 

are sampled with respect to an 𝑁-dimensional normal distribution 𝜑𝑼(𝒖). Furthermore, since all points 

belonging the random space have the same probability to be sampled, 𝑤𝑗 = 1 𝑀⁄ , 𝑗 = 1, … , 𝑀, thus the 

coefficient 𝑎𝑙 related to the 𝑁-variate Hermite polynomial 𝑯𝜶𝑙(𝑼) can be estimated by the following weighted 

sum: 

𝑎𝑙 = ∫ 𝑯𝜶𝑙(𝒖). ℎ
𝑃𝐶𝐸(𝒖) 𝜑𝑼(𝒖) 𝑑𝒖 

ℝ𝑁
≈∑𝑤𝑗  𝑯𝜶𝑙(𝒖

𝑗). 𝑓 ∘ 𝑇(𝒖𝑗)

𝑀

𝑗=1

=
1

𝑀
∑𝑯𝜶𝑙(𝒖

𝑗). 𝑓 ∘ 𝑇(𝒖𝑗)

𝑀

𝑗=1

  (𝐼𝐼𝐼. 11) 

where 𝑤𝑗 , 𝑗 = 1, … , 𝑀 are the respective weights of the integration points 𝒖𝑗 , 𝑗 = 1, … , 𝑀, 𝑇 is the 

isoprobabilistic transformation allowing to transform the integration points, firstly sampled in the standard 

random space, into a set of points 𝒙𝑗 = 𝑇(𝒖𝑗), 𝑗 = 1, … , 𝑀 belonging to the original physical random space, 

and 𝑓 is the mathematical mapping representing the mechanical model. MCS are robust and converge for 

any ℒ2-function.  

The associated error 𝜖𝑀𝐶𝑆 used to assess the accuracy of the estimates provided by MCS, reads: 

𝜖𝑀𝐶𝑆 = √
𝕍[𝑯𝜶𝑙(𝒖). 𝑓 ∘ 𝑇(𝒖)]

𝑀
 (𝐼𝐼𝐼. 12) 

where 𝕍[. ] denotes the variance operator. Although the convergence of MCS is less affected by the 

dimensionality and the mathematical rank (i.e., in statistical moments analysis for instance, the mean and 

the central variance are respectively represented by 1st and 2nd order ranked integrals) of the integral to 

be estimated, it is clear from equation (III.12) that the error 𝜖𝑀𝐶𝑆 decreases with 1 √𝑀⁄ , which reveals the 

major drawback of MCS, that is its slow convergence that makes impossible its application when the 

evaluation of the integrand is computational time-demanding. 

To enhance the convergence of MCS advanced sampling schemes such as Latin hypercube sampling (Mckay 

and al, 1979) and quasi-random numbers (Niederreiter, 1992) can be used, which provide integration 

points with a better filling of the random space than pseudo-random number generators. Unfortunately, 

this enhancement is not yet sufficient to allow the use of MCS to handle over greedy mechanical models, 

such as those dealing with fatigue fracture problems. 

c) Full tensor-product cubature 

An alternative to MCS for the computation of the PCE coefficients is the use of full tensor-product integration 

schemes. Accordingly, the coefficient 𝑎𝑙 can be estimated by the following 𝑀𝑡ℎ order isotropic Gauss-

Hermite full tensor-product integration formula, since we work in the standard random space: 
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𝑎𝑙 = ∫ 𝑯𝜶𝑙(𝒖). ℎ
𝑃𝐶𝐸(𝒖) 𝜑𝑼(𝒖) 𝑑𝒖 

ℝ𝑁
≈∑…∑ 𝑤1

𝑗1 …𝑤𝑁
𝑗𝑁  𝑯𝜶𝑙(𝑢1

𝑗1 …𝑢𝑁
𝑗𝑁). 𝑓 ∘ 𝑇(𝑢1

𝑗1 …𝑢𝑁
𝑗𝑁)

𝑀

𝑗𝑁=1

𝑀

𝑗1=1

  (𝐼𝐼𝐼. 13) 

where 𝑢𝑖
𝑗𝑖 , 𝑗𝑖 = 1, … , 𝑀 are the selected integration points in the 𝑖𝑡ℎ direction of the standard random space, 

defined as the roots of an univariate Hermite polynomial 𝐻𝑀(𝑢) of degree 𝑀, and 𝑤𝑖
𝑗𝑖 , 𝑗𝑖 = 1, … , 𝑀 are the 

corresponding weights. 

When a PCE-based metamodel ℎ𝑃𝐶𝐸 of degree 𝑝 is used to approximate the random model response of 

interest, the integrand 𝑯𝜶𝑙(𝒖). ℎ
𝑃𝐶𝐸(𝒖) in equation (III.10) is consequently a polynomial of degree 𝑝 + |𝜶𝑙 | ≤

2𝑝 (with |𝜶𝑙 | = 𝛼𝑙
1 + ⋯+ 𝛼𝑙

𝑁). It follows that an 𝑁-dimensional isotropic Gauss-Hermite formula of degree 

𝑀 = 𝑝 + 1 will be able to provide the exact value of the coefficient 𝑎𝑙, which requires (𝑝 + 1)𝑁 evaluations of 

the integrand. Thus, we can immediately see the main limit of full tensor-product integration schemes to 

handle high dimensional integrals especially when the integrand itself is obtained by a heavy numerical 

procedure. 

d) Sparse grids cubature 

To reduce the computational effort required by full tensor-product integration schemes, Smolyak method 

(Smolyak, 1963) based on sparse integration grids is an interesting alternative. The basic idea is also to 

perform a tensor product to build the integration formula but having the particularity that this tensor 

product is defined as a linear combination of one-dimensional cubature formulae having high degrees in 

some directions and much lower degrees in the remaining dimensions. 

Let us consider one-dimensional cubature formulae of degree 𝑙 ≥ 1, each one based on 𝑀𝑙  integration points 

and weights able to compute the exact value of the integral of a one-dimensional polynomial of degree 

equal or less than 2𝑀𝑙 − 1. Now by performing linear combination of products of the latter one-dimensional 

cubature formulae, the estimate of the coefficient 𝑎𝑙 according to the Smolyak integration scheme of degree 

𝑙 ≤ 𝑁, reads: 

𝑎𝑙 ≈ ∑ (−1)𝑙+𝑁−1−|𝒌| 𝐶𝑁−1
|𝒌|−𝑙 ∑ … ∑ 𝑤1

𝑗1 …𝑤𝑁
𝑗𝑁  𝑯𝜶𝑙(𝑢1

𝑗1 …𝑢𝑁
𝑗𝑁). 𝑓 ∘ 𝑇(𝑢1

𝑗1 …𝑢𝑁
𝑗𝑁)

𝑘𝑁

𝑗𝑁=1

𝑘1

𝑗1=1

𝑙+𝑁−1

|𝒌|=𝑙

 (𝐼𝐼𝐼. 14) 

where |𝒌| = 𝑘1 + ⋯+ 𝑘𝑁 is the sum of the components of the multi-index 𝒌 = (𝑘1, … , 𝑘𝑁) ∈ ℕ
𝑁, 𝑘𝑗 , 𝑗 = 1, … , 𝑁, 

is the degree of the one-dimensional cubature formula used in the 𝑗𝑡ℎ direction of the standard random 

space and 𝐶 denotes the combination operator. 

With a Smolyak cubature formula of degree 𝑙 + 𝑝, we can estimate the exact value of the integral of a 

polynomial of degree 2𝑝 + 1 (Novak and Ritter, 1999). Thus, the same formula allows us to obtain the exact 

value of the coefficient 𝑎𝑙 since the degree of the polynomial integrand 𝑯𝜶𝑙(𝒖). ℎ
𝑃𝐶𝐸(𝒖) in equation (III.10) 

does not exceeds 2𝑝. The corresponding computational cost tends asymptotically to (2𝑝 𝑝!⁄ )𝑁𝑝 integrand 

evaluations for integrals of high dimensionality, clearly demonstrating the efficiency of the Smolyak 
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integration scheme over full tensor-product integration schemes. Indeed, the computational cost increases 

polynomially with the dimension of the integral, which is far less than the exponential increase (𝑝 + 1)𝑁 of 

full tensor-product integration schemes. Despite the efficiency of sparse grid-based integration schemes 

for high dimensions, the number of integrand evaluations remains too large to be applied to 

computationally demanding mechanical models, especially when a high level of accuracy is required for 

the construction of the PCE-based metamodels, i.e., for a high truncation degree 𝑝.  

e) Efficient cubature formulae 

Instead of using integration schemes constructed from either a full tensorization or a linear combination of 

unidimensional cubature formulae, a serious alternative to deal with the curse of dimensionality problem 

is the use of the efficient cubature formulae studied in Chapter II. One can remind that these fifth-degree 

cubature formulae can compute efficiency the expected value of a random quantity. This has been well 

established through the first application example dealing with the integration of an explicit purely 𝑁-

dimensional mathematical function studied in section 5.1.1 of Chapter II. Since the PCE coefficients are 

defined as expected values of polynomial functions, as can be seen in equation (III.10), their computation 

can be efficiently conducted by one of the cubature formulae I-VI. Accordingly, the estimation of the 

coefficient 𝑎𝑙 reads: 

𝑎𝑙 = ∫ 𝑯𝜶𝑙(𝒖). ℎ
𝑃𝐶𝐸(𝒖) 𝜑𝑼(𝒖) 𝑑𝒖 

ℝ𝑁
≈∑𝑤𝐾

𝑗
 𝑯𝜶𝑙(𝒖𝐾

𝑗
). 𝑓 ∘ 𝑇(𝒖𝐾

𝑗
)

𝑀𝐾

𝑗=1

 (𝐼𝐼𝐼. 15) 

where the capital index 𝐾 = 𝐼, 𝐼𝐼, … , 𝑉𝐼, denotes the type of the cubature formula to be used and 𝑀𝐾 is the 

number of integration points related to cubature formula 𝐾. 

It is clear from the above expression that the estimate provided by cubature formulae I-VI is similar to 

that given by MCS since only one summand is required, but a much smaller number of integration points 

are needed to ensure a good level of accuracy. Indeed, instead of using pseudo-random number generators 

as in the case of MCS, the integration points are selected in a smart way to guarantee a better filling of 

the random space. Since the cubature formulae are all fifth-degree integration schemes as recalled 

previously, they can estimate efficiently the expected value of a PCE-based metamodel with moderate 

polynomial degree, more than sufficient to provide an accurate approximation of the random model 

response of interest. 

Figure III.2 compares the number of integrand evaluations required by full tensor-product integration 

schemes for various truncation degree 𝑝 and that required by cubature formulae I-IV as a function of the 

dimension 𝑁 of the integral to be computed. As can be seen, using the cubature formulae I-VI to compute 

the PCE coefficients provides significant computational cost savings. In addition, the number of integrand 

evaluations and, consequently, the corresponding number of mechanical model evaluations, does not 

depend on the truncation degree 𝑝 of the PCE as for the full tensor-product and Smolyak integration 

schemes. This first attempt based on PCE-based metamodels and efficient cubature formulae I-V, 
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developed to tackle, on one hand, the problem of the curse of dimensionality and on the other hand the 

problem of the additional computation cost observed in Chapter II when switching from one type of 

uncertainty propagation analysis to another and when using in a crude (i.e., directly on the primary 

mechanical model) manner the cubature formulae I-V to compute the quantities of interest, will be called 

in the following, full-PCE approach. This is also a first response to the question which closed the previous 

chapter of the thesis. Note that, the denotation full is used since all the PCE coefficients are retained to 

build the metamodel of the model response of interest. The flowchart displayed in figure III.3 summarizes 

the steps of the full-PCE approach. 

 

Figure III. 2. Computational cost of full tensor-product integration schemes and cubature and formulae I-IV with 
respect to the dimension 𝑁 

 

 

Figure III. 3. Computational flowchart of the full-PCE approach 



Chapter III: Unified approach for uncertainty propagation analysis 

 

S.Chahine | Efficient uncertainty propagation approaches to solve a large class of fatigue crack-growth problems  103 

2.2.2. Regression methods  

a) Principle 

Regression methods have been used first by (Isukapalli, 1999) and later by (Berveiller, 2005), to compute 

the unknown coefficients of the PCE. Unlike projection methods, where the PCE coefficients are computed 

one by one by evaluating multidimensional integrals, regression methods estimate all the coefficients at 

the same time by solving a minimization problem in the least-squares sense, which could considerably 

reduce the computation effort. Indeed, the number of evaluations of the primary mechanical model varies 

in the range [2𝑃, 3𝑃], which is much lower, for instance, than that associated with the Smolyak integration 

scheme, asymptotically equal to 2𝑝𝑃, where 𝑃 denotes the number of coefficients to be computed for a 

given truncation degree 𝑝. 

Let 𝒂 = {𝑎𝛼0 , 𝑎𝛼1 , … , 𝑎𝛼𝑃−1}
𝑇 and 𝓗(𝑼) = {𝑯𝛼0(𝑼), 𝑯𝛼1(𝑼), … , 𝑯𝛼𝑃−1(𝑼)}

𝑇
 two vectors denoting respectively the 

unknown coefficients of the PCE and the polynomial chaos basis made of multivariate Hermite polynomials. 

The regression technique consists in finding the vector of coefficients 𝒂 that minimizes the mean square 

error 𝔼[(𝒂𝑇  𝓗(𝑼) − 𝑓 ∘ 𝑇(𝑼))𝟐], that is:    

𝒂̂ = argmin
𝒂∈ℝ𝑷

{𝐴(𝒂) ≡  𝔼[(𝒂𝑇  𝓗(𝑼) − 𝑓 ∘ 𝑇(𝑼))𝟐]} (𝐼𝐼𝐼. 16) 

The optimality condition 
𝑑𝐴

𝑑𝑎
(𝒂̂) = 0 related to the above optimization problem allows us to write the following 

equality: 

𝔼[𝓗(𝑼)𝓗(𝑼)𝑇]𝒂̂  = 𝔼[𝓗(𝑼)𝑓 ∘ 𝑇(𝑼)] (𝐼𝐼𝐼. 17) 

The quantity 𝓗(𝑼)𝓗(𝑼)𝑇 represents the covariance matrix of the 𝑃-dimensional random vector 𝓗(𝑼), with 

𝑃 statistically independent components since the PCE-based metamodel is built in the standard random 

space whose directions are represented by independent standard normal variables. 

Consequently, the mathematical expectation of the 𝔼[𝓗(𝒖)𝓗(𝒖)𝑇] of the covariance matrix 𝓗(𝑼)𝓗(𝑼)𝑇 is 

reduced to the 𝑃 × 𝑃 unit matrix 𝕀𝑃×𝑃, and equation (III.17) can be rewritten as follows: 

𝒂̂  = 𝔼[𝓗(𝑼)𝑓 ∘ 𝑇(𝑼)] (𝐼𝐼𝐼. 18) 

In practice, the minimization problem defined by equation (III.16) is discretized on the basis of a set of 

sample points 𝓤 = {𝒖𝑗 = (𝑢1
𝑗
, … , 𝑢𝑁

𝑗
), 𝑗 = 1, … , 𝑀}, also called experimental design, to replace the expectation 

operator 𝔼[. ] by its empirical estimate. Thus, the minimization problem reads: 

𝒂̂ = argmin
𝒂∈ℝ𝑷

{
1

𝑀
∑(ℎ𝑃𝐶𝐸(𝒖𝑗) − 𝑓 ∘ 𝑇(𝒖𝑗))𝟐
𝑀

𝑗=1

} = argmin
𝒂∈ℝ𝑷

{
1

𝑀
∑(∑ 𝑎𝑘  𝑯𝜶𝑘(𝒖

𝑗)

𝑃−1

𝑘=0

− 𝑓 ∘ 𝑇(𝒖𝑗))

𝟐𝑀

𝑗=1

} (𝐼𝐼𝐼. 19) 

where ℎ𝑃𝐶𝐸(𝒖𝑗) and 𝑓 ∘ 𝑇(𝒖𝑗) are respectively the responses of the PCE-based metamodel and the primary 

mechanical model at the point 𝒖𝑗. 
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Now, by performing some algebra, the least-square estimates of the PCE coefficients 𝒂̂ are obtained as 

follows: 

𝒂̂ = (𝓗𝑇𝓗)−1𝓗𝑇𝓨 (𝐼𝐼𝐼. 20) 

where 𝓨 = {𝑦𝑗 = 𝑓 ∘ 𝑇(𝒖𝑗), 𝑗 = 1, … , 𝑀} is a sample set of points representing the respective responses of the 

mechanical model at the points 𝓤 = {𝒖𝑗 = (𝑢1
𝑗
, … , 𝑢𝑁

𝑗
), 𝑗 = 1, … , 𝑀} of the experimental design and 𝓗 is an 

𝑀 × 𝑃 matrix called information matrix where its (𝑗, 𝑘)𝑡ℎ entry ℋ𝑗𝑘 , 𝑗 = 1, … , 𝑀, 𝑘 = 1, … , 𝑃 is defined as the 

response of the 𝑘𝑡ℎ 𝑁-variate Hermite polynomial 𝑯𝜶𝑘 of total degree 𝜶𝑘 at the sampling point 𝒖𝑗. 

The choice of a suitable experimental design 𝓤 = {𝒖𝑗 = (𝑢1
𝑗
, … , 𝑢𝑁

𝑗
), 𝑗 = 1, … , 𝑀} is of great importance, 

especially its size 𝑀, to obtain a well-conditioned regression problem and consequently accurate estimates 

of the PCE coefficients. Indeed, if 𝑀 is just slightly greater than the number 𝑃 of unknown coefficients to 

be computed, this may lead to an ill-conditioned information matrix 𝓗 and consequently to an intractable 

regression problem. On the other hand, that is, if 𝑀 is very high, this may induce an unaffordable 

computational cost in case the mechanical model itself is computational time-demanding, since the 

corresponding number of evaluations of the mechanical model will be high. In the literature, the value of 

𝑀 is commonly chosen in the range [2𝑃, 3𝑃] to ensure a better balance between the computational cost 

and the accuracy of the estimates. The simplest way to build the experimental design is to use sample 

points obtained from pseudo-random number generators such as in the case of MCS. In such a case, 

(Owen, 1998) has shown that the variance 𝕍[𝒂̂] of the estimates of the PCE coefficients tends asymptotically 

to 
1

𝑀
𝔼[𝑯(𝑼)2(ℎ𝑃𝐶𝐸(𝑼) − 𝑓 ∘ 𝑇(𝑼))𝟐] when 𝑀 is very high. The efficiency of solving the regression problem can 

be enhanced by using experimental designs built from advanced sampling techniques such as Latin 

hypercube or quasi-random numbers, which ensure a better filling of the domain of variation of the 

uncertain parameters. For a given level of accuracy, it has been shown (Riahi and al., 2012) that MCS 

based on Halton quasi-random numbers converges faster than those based on Latin hypercube samples or 

pseudo-random numbers.  

Another way to the reduce the computational effort required to estimate the PCE coefficients using 

regression methods is to build experimental designs from a set of unevenly weighted point samples as 

suggested by (Isukapalli, 1999) instead of a sample set of equally weighted point samples like those 

obtained by classical sampling techniques. Based on this idea, experimental designs built from suitable 

combinations of Gauss-Hermite integration points have been introduced by (Berveiller, 2005). The key 

ingredients to build such an experimental design consist of first generating a sample set of 𝑁-tuples 

representing all possible combinations of 𝑝 + 1 one-dimensional Gauss-Hermite integration points, and then 

the experimental design is built from the first 2𝑃 + 1 combinations after sorting them in ascending order 

based on the distance of each point from the origin. Note that sparse grids related to Smolyak integration 

scheme and integration points of cubature formulae I-VI can also be used to build experimental designs. 

The latter alternative will be investigated in the following to improve the efficiency of regression methods 

for the estimation of the PCE coefficients. The key idea is to find a smart truncation scheme able to reduce 
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the number of unknown PCE coefficients to be computed by discarding those that have insignificant 

contribution on the quantities of interest, and, of course, without any loss on the accuracy of the obtained 

PCE-based metamodels. Thus, the computational effort can be significantly reduced since only a small 

experimental design is required to solve the regression problem. 

b) Truncation scheme based on low-order interactions 

With reference to the previous developments, the PCE-based metamodel is built using a complete 

polynomial chaos basis, that is the terms corresponding to all multivariate polynomials whose respective 

total degrees do not exceed a given degree 𝑝 are retained. For problems with high dimensionality 𝑁, a 

major part of the PCE coefficients represents interactions between uncertain parameters, even for 

moderate truncation degree 𝑝. Fortunately, for engineering problems experience has shown that high order 

interactions have often insignificant effect, which means that the corresponding PCE coefficients are close 

to 0. Thus, the size of the polynomial chaos basis can be reduced by retaining only the terms representing 

main and low-order interactions effects. 

Let 𝓗𝑝 = {𝑯𝜶𝑘 , 𝜶𝑘 ∈ ℕ
𝑁  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝛼𝑘

𝑖𝑁
𝑖=1 ≤ 𝑝} a complete polynomial chaos basis for a given truncation degree 

𝑝, and 𝓗𝑝,𝑞 = {𝑯𝜶𝑘 , 𝜶𝑘 ∈ ℕ
𝑁  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝛼𝑘

𝑖𝑁
𝑖=1 ≤ 𝑝 𝑎𝑛𝑑 ∑ 𝕝

{𝛼𝑘
𝑖 ≠0}

𝑁
𝑖=1 ≤ 𝑞} an incomplete, called also sparse, 

polynomial chaos basis for a given truncation degree 𝑝 and interaction order 𝑞 < 𝑝, i.e., only 𝑞-variate 

polynomials whose respective total degrees do not exceed a given degree 𝑝 are retained. If the allowed 

maximum interaction order 𝑞 is not high, the cardinality of the sparse polynomial chaos basis 𝓗𝑝,𝑞 will be 

much lower than that of the complete polynomial chaos basis 𝓗𝑝. 

The efficiency of the truncation scheme based on sparse polynomial basis can be assessed by the economy 

ℰ𝑝,𝑞 defined by the following ratio: 

ℰ𝑝,𝑞 =
card(𝓗𝑝) − card(𝓗𝑝,𝑞)

card(𝓗𝑝)
× 100 (𝐼𝐼𝐼. 21) 

where card(𝓗𝑝) and card(𝓗𝑝,𝑞) are the cardinalities of the complete 𝓗𝑝 and sparse 𝓗𝑝,𝑞 polynomial chaos 

bases respectively. 

As can be seen in figure III.4, for a PCE-based metamodel of degree 𝑝 = 5, which is sufficient to represent 

the response of interest of the primary mechanical model, a truncation scheme based on sparse polynomial 

chaos basis for a maximum interaction order 𝑞 = 3, is far more efficient than that based on a complete 

polynomial chaos basis, especially for high dimensionality. For instance, when  𝑁 = 10 the economy ℰ5,3 is 

around 43%, which allows to reduce the size of the experimental design used in the computation of the 

PCE coefficients and consequently the computational effort required to carry out the uncertainty 

propagation analysis of interest. The maximum interaction order 𝑞 can be chosen either by following a 

step-by-step scheme where the value of 𝑞 is increased gradually to achieve a target level of accuracy on 

the estimates of the PCE coefficients, or by performing a preliminary screening analysis (Morris, 1991) 
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which allows, based on local sensitivity indices, to split the uncertain parameters into three categories, 

those with weak main effect, those with linear and additive effects and those with nonlinear or interaction 

effect. Note that screening analysis are not computational time-demanding, thus the loss of efficiency on 

the whole computational process is very limited. 

 

Figure III. 4. The cardinality 𝑐𝑎𝑟𝑑(𝓗𝑝,𝑞) (left) and the economy ℰ𝑝,𝑞(%) (right) of a sparse polynomial chaos basis 

𝓗𝑝,𝑞 of degree 𝑝 = 5, for various allowed maximum interaction order 𝑞 with respect to the dimensionality 𝑁   

c) Truncation scheme based on second moment information 

Commonly, the convergence criteria are established based on the variance of the quantities of interest. 

Thus, if a prior information about the estimate of the second order statistical moments is already available, 

the latter could be a useful tool to identify the most significant terms on the quantities of interest, when a 

step-by-step algorithm is used to build the polynomial chaos basis. Indeed, at each iteration 𝑘 of this 

algorithm, the polynomial chaos basis - denoted here by 𝓗𝑝,𝑞,𝜎2 (i.e., 𝜎2 in 𝓗𝑝,𝑞,𝜎2 refers to the target 

variance of the quantity of interest) - is enriched by a new candidate polynomial 𝑯𝜶𝑘. If the related PCE 

term induces a significant change on the estimate of the variance  𝜎𝑃𝐶𝐸,𝑘
2 , thus getting closer to the target 

variance 𝜎2, the candidate 𝑯𝜶𝑘 is retained. Otherwise, i.e. the relative error |𝜎
𝑃𝐶𝐸, 𝑘
2 − 𝜎

𝑃𝐶𝐸, 𝑘−1
2 𝜎

𝑃𝐶𝐸, 𝑘−1
2⁄ | is 

smaller than 𝜀1, the candidate 𝑯𝜶𝑘 is discarded from the polynomial chaos basis and another candidate is 

tested in the next iteration until a given level of accuracy 𝜀2 is achieved for the whole iterative procedure. 

Note that the values of 𝜀1 used in the criterion of enrichment of the polynomial chaos basis and 𝜀2 used in 

the stopping condition of the step-by-step algorithm, are set respectively to 10−6 and 10−3, which allow us, 

on the one hand, to avoid ill-conditioned information matrix, thus an intractable regression problem, and, 

on the other hand, to ensure a good accuracy on the estimates of the quantities of interest. Of course, 

other values can be chosen depending on the complexity of the problem of interest and the accuracy to be 

achieved. 

The main steps of this truncation scheme based on second moment information are summarized on the 

flowchart depicted in figure III.5. As can be seen, the proposed truncation scheme based on second 

moment prior information can be combined with the truncation scheme based on low-order interactions 
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presented in the previous section, in order to enhance the sparsity of the polynomial chaos basis 𝓗𝑝,𝑞,𝜎2 

and thus achieve greater efficiency in computing the PCE coefficients. This approach to build efficient PCE-

based metamodels is denoted in the following by sparse-PCE, which is our second response to the question 

which closed Chapter II of the thesis. 

 

Figure III. 5. Computational flowchart of the sparse-PCE approach 

It is important to recall here that the idea behind the implementation of the two approaches called full-PCE 

and sparse-PCE is to avoid the additional computational efforts observed when cubature formulae I-VI are 
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directly used on the mechanical model, and when one wishes to change the type of uncertainty propagation 

analysis. For instance, a statistical moments analysis can be carried out, first, by the crude cubature 

formulae I-VI, which provides a target estimate of the variance of the model response, and then the sparse-

PCE approach is used to construct a metamodel that can be used to perform either a sensitivity or a 

reliability analysis. The accuracy of the sparse-PCE approach can be improved when the stopping criteria 

of the stepwise algorithm is established based on higher-order statistical moments such as skewness and 

kurtosis, instead of variance, provided that the mechanical model evaluations already available are 

sufficient to obtain a well-conditioned regression problem. 

2.3. Post-processing of the PCE-based metamodels       

Once the PCE-based metamodel for the model response of interest is built either by full-PCE or sparse-PCE 

approach, any kind of uncertainty propagation analysis can be carried out with efficiency. Two alternatives 

are available either by performing MCS on the PCE-based metamodel or by post-processing its coefficients. 

The latter alternative is addressed in the following. 

2.3.1. Computation of the statistical moments 

The statistical moments of the random variable 𝑌 representing the uncertainty of the model response 𝑦 of 

interest can be easily derived from the coefficients 𝑎𝑘 , 𝑘 = 0, … , 𝑃 − 1. Thanks to the orthonormality of the 

polynomial chaos basis, the estimates of the first four statistical moments for a given degree 𝑝, read: 

𝜇𝑌̂,𝑝 = 𝑎̂0 (𝐼𝐼𝐼. 22) 

𝜎𝑌̂,𝑝
2 = ∑ 𝑎̂𝑘

2

𝑃−1

𝑘=1

 (𝐼𝐼𝐼. 23) 

𝛿𝑌,𝑝 =
1

𝜎𝑌̂,𝑝
3 ∑ ∑ ∑ 𝔼[𝑯𝜶𝑘1

(𝑼) 𝑯𝜶2(𝑼) 𝑯𝜶𝑘3
(𝑼)]

𝑃−1

𝑘3=1

 𝑎̂𝑘1
2

𝑃−1

𝑘2=1

𝑃−1

𝑘1=1

𝑎𝑘̂2
2 𝑎̂𝑘3

2  (𝐼𝐼𝐼. 24) 

𝜅𝑌̂,𝑝 =
1

𝜎𝑌̂,𝑝
4 ∑ ∑ ∑ ∑ 𝔼 [𝑯𝜶𝑘1

(𝑼) 𝑯𝜶2(𝑼) 𝑯𝜶𝑘3
(𝑼) 𝑯𝜶𝑘4

(𝑼)] 𝑎̂𝑘1
2 𝑎𝑘̂2

2 𝑎̂𝑘3
2

𝑃−1

𝑘4=1

𝑃−1

𝑘3=1

𝑎𝑘̂4
2  

𝑃−1

𝑘2=1

𝑃−1

𝑘1=1

 (𝐼𝐼𝐼. 25) 

Since the PCE-based metamodel is written in the standard random space and the polynomial chaos basis 

is built up using multivariate Hermite polynomials, the expectations in equations (III.24) and (III.25) can 

be computed analytically. Once these estimates of the mean 𝜇𝑌̂,𝑝, the variance 𝜎𝑌̂,𝑝
2 , the skewness 𝛿𝑌,𝑝 and 

the kurtosis 𝜅𝑌̂,𝑝 are obtained a moment-based technique can be used to construct the PDF 𝑓𝑌,𝑝(𝑦).      

2.3.2. Computation of Sobol sensitivity indices 

In addition to the statistical moments, Sobol sensitivity indices can be derived from appropriate 

combinations of the PCE coefficients. We only focus on first order 𝑆𝑖 ,𝑝
1  and total 𝑆𝑖,𝑝

𝑇  Sobol sensitivity indices, 

measuring respectively the main and the total effects of an uncertain parameter 𝑋𝑖 , 𝑖 = 1, … , 𝑁 on the 

randomness of the model response of interest. 
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The estimates of these quantities based on the coefficients of the PCE-based metamodel are obtained by 

the following expressions: 

𝑆𝑖,𝑝
1 =

1

𝜎𝑌̂,𝑝
2 ∑ 𝑎𝑘̂

2

𝑃−1

𝑘=1,𝜶𝑘∈𝒜𝑖
1  

 (𝐼𝐼𝐼. 26) 

𝑆𝑖,𝑝
𝑇 =

1

𝜎𝑌̂,𝑝
2 ∑ 𝑎𝑘̂

2

𝑃−1

𝑘=1,𝜶𝑘∈𝒜𝑖
𝑇  

 (𝐼𝐼𝐼. 27) 

where 𝒜𝑖
1 = {𝜶𝑘 ∈ ℕ

𝑁  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛼𝑘
𝑖 ≠ 0, 𝛼𝑘

𝑗≠𝑖
= 0} is the set of multi-indices with zeros components except the 

𝑖𝑡ℎ one, and 𝒜𝑖
𝑇 = {𝜶𝑘 ∈ ℕ

𝑁  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝛼𝑘
𝑖 ≠ 0} is the set of multi-indices with non zeros 𝑖𝑡ℎ component. 

Note that the higher order Sobol sensitivity indices 𝑆𝑖1 ,…,𝑖𝑠 , 𝑠 = 2, … , 𝑁, which measure the effect of the 

interaction between the uncertain parameters (𝑥𝑖1 , … , 𝑥𝑖𝑠), can also be obtained in the same way as the first 

and total indices. For more details on this issue, the reader can refer to (Sudret, 2008). 

2.3.3. Computation of the failure probability 

As already stated in section 2.4 of Chapter II, reliability analysis aims to compute the probability of failure 

of an engineering system with respect to a prescribed serviceability criterion. From a mathematical point 

of view, the serviceability criterion is defined by the so-called limit state or performance function, often 

denoted by 𝐺(𝒙) or 𝐻(𝒖) = 𝐺 ∘ 𝑇(𝒖), respectively into the physical and the standard random spaces. 

Typically, in engineering problems, the serviceability criterion can be defined by the fact that the model 

response of interest 𝑦(𝒙), which is a random quantity with a probabilistic model 𝑌, since it depends on 

some uncertain parameters 𝒙 having a probabilistic model 𝑿, remains below an admissible threshold 

𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 which can be a deterministic or random quantity. 

Consequently, the performance function reads: 

𝐺(𝒙) = 𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑦(𝒙) = 𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑦 ∘ 𝑇(𝒖) = 𝐻(𝒖) (𝐼𝐼𝐼. 28) 

In the case where the response of interest 𝑦 ∘ 𝑇(𝒖) is provided by an implicit computational model, it can 

be replaced by its PCE-based metamodel ℎ𝑃𝐶𝐸(𝒖) to obtain an analytical formulation of the performance 

function, given by:      

𝐻(𝒖) = 𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑦 ∘ 𝑇(𝒖) ≈ 𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − ℎ
𝑃𝐶𝐸(𝒖) (𝐼𝐼𝐼. 29) 

The probability of failure 𝑃𝑓, related to the performance function 𝐻(𝒖), can be easily computed by either by 

performing MCS on equation (III.29) or by evaluating the following unidimensional integral, since the PDF 

𝑓𝑌,𝑝(𝑦) of the random variable 𝑌, representing the variability of the model response 𝑦, is already known (see 

section 2.3.3).     

𝑃𝑓 = Prob[𝐻(𝒖) ≤ 0] ≈ 𝑃̂𝑓,𝑝 = Prob[𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − ℎ
𝑃𝐶𝐸(𝒖) ≤ 0] = ∫ 𝑓̂𝑌,𝑝(𝑦) 𝐹𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑦)

+∞

−∞

 𝑑𝑦 (𝐼𝐼𝐼. 30) 
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where 𝐹𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑦) denotes the CDF of the random variable representing the uncertainty on the admissible 

threshold 𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The above integral can be evaluated analytically if a suitable formulation is available 

for the integrand 𝑓𝑌,𝑝(𝑦) 𝐹𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑦) or numerically otherwise, without any additional runs of the primary 

implicit mechanical model. 

3. Application to fatigue fracture problems 

In this section, four fatigue crack growth problems are addressed to investigate the approaches proposed 

above. Various kinds of uncertainty propagation analysis, namely statistical moments and distributions 

analysis, reliability analysis and sensitivity analysis, are carried out. 

The first problem deals with crack growth in a CCP specimen subjected to a constant amplitude fatigue 

loading, problem for which, fortunately, testing data are available in the literature. They are used to identify 

the probabilistic models of the uncertain parameters. In addition to assessing the efficiency of the proposed 

approaches, this first example is used to also study the effect of the distributions of the uncertain 

parameters and of their statistical characteristics on the results of the probabilistic computations. 

The second example considers a nonlinear cracked pipe where the fracture driving force, defined as the 

Rice’s integral, is computed through a greedy computational time FEM. The structural integrity of the 

cracked pipe, defined as the risk that the fracture driving force will exceed the fracture toughness of the 

constitutive materials, is evaluated based on the statistical moments results given by the proposed PCE-

based methods and a Demand-Capacity reliability approach (see section 2.4 of Chapter II). 

The third example deals with a mixed mode crack growth problem. The studied structure represents a 

rectangular plate containing an inclined crack at the edge. The effect of the spatially varying uncertainty 

of the Young’s modulus of the constitutive materials, on the variability of the mechanical responses defined 

as the opening fracture mode SIF 𝐾𝐼, on the in-plane shear fracture mode SIF 𝐾𝐼𝐼 and on the bifurcation 

angle 𝜃, is studied.      

3.1. Crack growth in CCP specimen 

3.1.1. Problem statement 

The first example deals with the crack growth in a CCP specimen which was previously studied in section 

2.4 of Chapter I of the thesis, but only from a deterministic point of view. Now, we want to push our 

analysis much further and we are interested in assessing the effect of the uncertainty of some material 

properties on fatigue lifetime. First, a statistical analysis is carried out on the fatigue crack growth data 

provided by the experimental tests performed on CCP specimens (Hudson, 1969), on the one hand to point 

out the probabilistic character of the fatigue crack growth process, and, on the other hand to identify the 

probabilistic models capable of accurately representing the variability of the uncertain parameters. Figure 

III.6 depicts the histogram of the logarithm log10 of the Fatigue Crack Growth Rate (FCGR) denoted by 
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𝑑𝑎 𝑑𝑁⁄ . As can be observed, a normal distribution with a mean -9.5149 and a standard deviation 2.0275, 

fits the histogram derived from Hudson’s experimental data very well. This leads to a coefficient of variation 

of about 21.3% on the value of the FCGR, which clearly demonstrates the uncertain character of this 

parameter. The suitability of the normal distribution to represent the FCGR uncertainty is also confirmed 

by the Q-Q plot in figure III.6, where the green line represents the reference line plotted from two samples 

drawn from the same distribution. Indeed, as can be seen, most of the log10(𝑑𝑎 𝑑𝑁⁄ ) points lie on the 

reference line especially those in the vicinity of the mean value. However, the points at both the left and 

right ends of the Q-Q plot, which represent the lower and upper tails of the normal distribution, 

respectively, deviate from the reference line. The deviation at the left end is due to the non-linearity of the 

FCGR approaching the threshold ∆𝐾𝑡ℎ, while the deviation at the right end is attributed to the non-linearity 

of the FCGR when approaching the fracture toughness 𝐾𝐼𝑐  of the constitutive material of the CCP specimen. 

The value of the indicator R2 assessing the goodness of fit of the FCGR to the reference line of the Q-Q plot 

is close to 1, again confirming the ability of the normal distribution to accurately fit the FCGR derived from 

Hudson’s experimental data.   

 

Figure III. 6. Histogram of 𝑙𝑜𝑔10(𝑑𝑎 𝑑𝑁⁄ ) from Hudson’s data (left), Q-Q plot of 𝑙𝑜𝑔10(𝑑𝑎 𝑑𝑁⁄ ) from Hudson’s data with 

standard normal PDF (right)     

In the following, it is assumed that the FCGR is well represented by the Walker model (see equation I.24 

in Chapter I), whose parameters 𝐶1, 𝑚1 and 𝛾 follow a normal distribution in the log-log space where they 

are fitted. The statistical characteristics of these parameters are obtained by performing a least-squares 

multiple linear regression on the experimental data and using the following log-log transformed release of 

Walker model: 

𝑦 = 𝐵 + 𝐴1𝑥1 + 𝐴2𝑥2 (𝐼𝐼𝐼. 31) 

where 𝑦 = log10(𝑑𝑎 𝑑𝑁⁄ ), 𝐵 = log(𝐶1), 𝐴1 = 𝑚1, 𝐴2 = −𝑚1(1 − 𝛾), 𝑥1 = log10(∆𝐾), and 𝑥2 = log10(1 − 𝑅).  

The statistical moments (i.e., the mean value 𝜇 and the variance 𝜎2), and the correlation matrix [𝝆] of the 

parameters 𝐴1, 𝐴2 and 𝐵 are listed in table III.2. 

 



Chapter III: Unified approach for uncertainty propagation analysis 

 

S.Chahine | Efficient uncertainty propagation approaches to solve a large class of fatigue crack-growth problems  112 

Table III. 2. Crack growth in CCP specimen: statistical characteristics of the transformed Walker model   

 𝜇 𝜎2 [𝝆] 

𝐴1 3.8681 2.2911 10-3 
[𝝆] = [

1 −0.7305 −0.9756
−0.7305 1 0.8315
−0.9756 0.8315 1

] 𝐴2 -1.7052 3.5716 10-3 
𝐵 -21.0737 26.4442 10-3 

A strong statistical dependence between the parameters is observed since the off-diagonal components 

|𝜌𝑖𝑗 |, {𝑖 ≠ 𝑗} of the correlation matrix [𝝆] are relatively close to 1. This find is in line with the observations 

made earlier by several researchers based on statistical analysis performed on Virkler’s fatigue crack 

growth data (Virkler and al, 1979), as pointed out in Chapter I of the thesis. Note that, positive values of 

the coefficient of correlation 𝜌𝑖𝑗, {𝑖 ≠ 𝑗} indicate variances (i.e., the variances corresponding to the uncertain 

parameters 𝑥𝑖 and 𝑥𝑗) change in a similar direction, while negative values imply variances change in inverse 

directions. As can be seen, strong negative correlation is observed between 𝐴1 and 𝐴2 and between 𝐴1 and 

𝐵, which can induce some computational instability when dealing with uncertainty propagation analysis. 

Fortunately, this problem is anticipated since, as said in Chapter II of the thesis, the quantities of interest 

(i.e., statistical moments, probability of failure or sensitivity indices) required by the uncertainty 

propagation analysis are written in the normal standard random space, which allows us to mitigate the 

effect of strong negative correlations. 

3.1.2. Statistical moments and distributions analysis 

Next, we assess the effect of the uncertain parameters on the variability of the model response, taken here 

as the fatigue crack growth life. The latter, denoted by 𝑁𝑓, is computed through the integration of Walker 

model based on Simpson’s rule (see section 2.3 of Chapter I), and assuming that the crack propagates 

from an initial length 𝑎0 to a critical length 𝑎𝑐: 

𝑁𝑓 = ∫
(1 − 𝑅)𝑚1(1−𝛾)

𝐶1  ∆𝐾𝐼(𝑎)
𝑚1

𝑎𝑐

𝑎0

 𝑑𝑎 (𝐼𝐼𝐼. 32) 

where 𝑅 is the stress ratio, ∆𝐾𝐼 is the SIF range computed by a FEM, 𝐶1, 𝑚1 and 𝛾 are uncertain parameters 

representing the constitutive material of the CCP specimen, whose statistical characteristics can be easily 

derived from the results given in table III.2. 

Of interest are the first four statistical moments of the model response. The estimates are computed by 

crude MCS involving 105 runs of the FEM representing the CCP specimen. Note that, due to the high number 

of runs of the FEM required by MCS to reach the convergence of the estimates, only the loading condition 

corresponding to a stress ratio 𝑅 = 0.2, mean stress 𝜎𝑚 = 15 𝑘𝑠𝑖 and alternating stress 𝜎𝑎 = 10 𝑘𝑠𝑖, is 

analyzed. 

As can be seen in figure III.7 the convergence of the first four statistical moments is reached after 105 

MCS. The obtained estimates of the mean and standard deviation are, respectively, 𝜇̂ = 8447 cycles and 𝜎̂ =

265 cycles, indicating a relatively small effect of the uncertain parameters on the variability of the fatigue 

crack growth life 𝑁𝑓 since the corresponding coefficient of variation is about 3.14%. It is important to 
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remind that these results represent only one loading condition and the uncertain parameters may have a 

significant effect on the model response for other loading conditions.  

 

Figure III. 7. Crack growth in CCP specimen: convergence of crude MCS  

The PDF and the corresponding CDF of the fatigue crack growth life are also built. In addition, the PDF is 

compared to some standard distributions with known mathematical formulation. As can be observed, the 

normal distribution is in full agreement with the PDF built from MCS. This result is also confirmed by the 

Q-Q plot in figure III.8, comparing samples drawn from the fatigue crack growth life distribution obtained 

by MCS and those drawn from standard normal distribution, where a major part of the points is in the 

vicinity of the reference line. 

 

Figure III. 8. Crack growth in CCP specimen: Q-Q plot of the model response 𝑁𝑓 with standard Normal PDF (left), 

probabilistic crack growth curves (right)   

Based on MCS samples, crack growth curves, representing the evolution of the effective crack length 𝑎 𝑏⁄  

(i.e., the real crack length divided by the half-width of the CCP specimen) versus the number of loading 

cycles 𝑁 are also plotted in figure III.8. To obtain smooth curves the fatigue crack growth life is computed 

at several crack lengths by integrating Walker model from the initial crack length 𝑎0 to a given incremental 
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crack length 𝑎𝑖. For each crack increment the mean 𝜇̂ and the standard deviation 𝜎̂ of the fatigue crack 

growth life are computed, which allow us to obtain the mean crack growth curve in addition to the lower 

and upper bounds defined as the crack growth curves at 𝜇̂ − 3𝜎̂ and 𝜇̂ + 3𝜎̂, respectively. These curves 

further demonstrate the variability of both the loading cycles and the crack length. The crack growth curve 

corresponding to Hudson’s experimental data for the same loading condition, falls within three standard 

deviations of the mean and is very close to the mean curve. 

To investigate the effect of the correlation between the uncertain parameters on the variability of the 

fatigue crack growth lifetime, another MCS is performed by considering the Walker model parameters 𝐶1, 

𝑚1 and 𝛾 as statistically independent, i.e., the off-diagonal coefficients of correlation 𝜌𝑖𝑗, {𝑖 ≠ 𝑗} are set to 

0. 

The estimates of the mean and the standard deviation of the model response are, respectively, 𝜇̂ =

8633 cycles and 𝜎̂ = 1854 cycles, which implies a coefficient of variation around 21.5%, much larger than that 

obtained previously for the case of correlated uncertain parameters and which indicates a significant 

variability of the fatigue crack growth lifetime, which is not the case in reality. This result calls into question 

the hypothesis, often made when performing probabilistic analysis on fatigue crack growth problems, that 

the uncertain parameters, especially those related to the crack growth model, are considered as statistically 

independent parameters. Thus, we clearly emphasize the importance of properly selecting the probabilistic 

model (i.e., the type of distribution), used to represent the uncertain parameters, as well as its statistical 

characteristics (i.e., statistical moments and correlation coefficients) when carrying out uncertainty 

propagation analysis. 

Figure III.9 illustrates the PDF of the fatigue crack growth life 𝑁𝑓 in the case of uncorrelated uncertain 

parameters. It appears that this PDF can no longer be described by a normal distribution and agrees rather 

with a lognormal distribution. This behavior is clearly confirmed by the Q-Q plot depicted next to the plot 

of the PDF. 

 

Figure III. 9. Crack growth in CCP specimen: Q-Q plot (left), PDF (right) of the model response 𝑁𝑓 for the case of 

uncorrelated uncertain parameters     
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In the following, we use PCE-based metamodels as alternatives to MCS to perform uncertainty propagation 

through the crack growth model of the CCP specimen. The first approach named full-PCE aims to build a 

metamodel of the model response where cubature formulae I-VI, previously studied in Chapter II, are used 

to handle the multidimensional integrals involved in the computation of the unknown coefficients of the 

PCE. 

Then, the first four statistical moments of the fatigue crack growth life can be obtained, either directly from 

the coefficients of the PCE or by performing MCS on the metamodel. In table III.3 are listed the estimates 

of the first four statistical moments of the fatigue crack growth life, derived from the coefficients of a PCE 

of degree 𝑝 = 2. The ratio between these estimates and those given by 105 crude MCS, is taken here as an 

accuracy indicator and plotted in figure III.10.  

Table III. 3. Crack growth in CCP specimen: statistical moments of the fatigue crack growth life 

Statistical moments 
 Full-PCE (2nd order PCE and cubature formula i, i={I,II,…,VI}) 

MCS 
I II III IV V VI 

𝜇 8446.392 8446.392 8446.392 8446.392 8446.392 8446.392 8446.602 
𝜎 265.490 265.490 265.490 265.490 265.490 265.490 264.649 
𝛾 0.09872 0.09871 0.09870 0.09871 0.09884 0.09875 0.11725 
𝜅 3.01314 3.01314 3.01314 3.01314 3.01318 3.01315 3.02850 

Number of FEM runs 14 21 19 19 14 19 105 

As can be seen from the results depicted in table III.3, independently from the cubature formulae used in 

the computation of the unknown PCE coefficients, the proposed method works well for the prediction of 

the statistical moments of the model response since the corresponding estimates are in good agreement 

with the reference solution, especially for the mean and the standard deviation where the accuracy 

indicators 𝜇̂ 𝜇𝑀𝐶𝑆⁄  and 𝜎̂ 𝜎𝑀𝐶𝑆⁄  are close to 1. This high accuracy is achieved with a low computational cost, 

since in the worst case only 21 evaluations of the FEM are required. 

For higher order statistical moments, more particularly for the skewness, the ratio 𝛾̂ 𝛾𝑀𝐶𝑆⁄  is around 0.85 

which could be interpreted as a lack of accuracy of the proposed method. Fortunately, this is not really the 

case, since this poor value of the indicator of accuracy 𝛾̂ 𝛾𝑀𝐶𝑆⁄  is not fully due to a significant discrepancy 

between the estimate given by the proposed method and the reference solution but is also due to the 

magnitude of the skewness which tends to increase the relative error. However, for the kurtosis where its 

accuracy is much more difficult to achieve than for the skewness, since having a higher statistical order, 

the ratio 𝜅̂ 𝜅𝑀𝐶𝑆⁄  is too close to 1. 

Note that the accuracy of the proposed method can be enhanced by increasing the truncation order of the 

PCE. In figure III.10 we compare the accuracy of the statistical moments estimates derived from the PCE 

coefficients and those obtained from 105 MCS applied on the corresponding PCE-metamodel. As can be 

observed, the latter approach can be viewed as an alternative to enhance the accuracy of the proposed 

method. Indeed, for the skewness the ratio 𝜅̂ 𝜅𝑀𝐶𝑆⁄  is now around 0.97 which is achieved when cubature 

formula VI is used to compute the unknown PCE coefficients.    
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Figure III. 10. Crack growth in CCP specimen: convergence analysis of the statistical moments   

We are also interested in the convergence of the metamodel corresponding to the PCE. To avoid 

redundancy, and since all cubature formulae give fairly the same results, only the metamodel built from 

PCE coefficients obtained from cubature formula VI is plotted in figure III.11. The fatigue crack growth 

lifetime 𝑁𝑓 obtained from the metamodel given by the PCE is plotted with respect to each uncertain 

parameter 𝑥𝑖 , 𝑖 ∈ {1,2,3}, in the range [𝜇𝑖 ± 3𝜎𝑖]. 

 

Figure III. 11. Crack growth in CCP specimen: convergence of the metamodel relative to a PCE of degree 𝑝 = 2   
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As can be seen, the metamodel relative to a PCE of degree 𝑝 = 2 is sufficient to reproduce accurately the 

real behavior of the FEM representing the CCP specimen. Indeed, the metamodel fits very well the response 

of the FEM evaluated at a new set of points different from the integration points used previously in the 

computation of the unknown coefficients of the PCE. We can observe that the fatigue crack growth lifetime 

exhibits a nonlinear behavior with respect to the uncertain parameters 𝐵 = log(𝐶1) and 𝐴1 = 𝑚1, and varies 

linearly with 𝐴2 = −𝑚1(1 − 𝛾). In figure III.11 we also compare the PDFs of the fatigue crack growth life, 

constructed either by using moments technique based on the estimates of the first four statistical moment 

derived from the PCE coefficients, or by performing MCS on the metamodel relative to the PCE. As can be 

seen, the PDFs are in good agreement with that built from 105 crude MCS. 

3.1.3. Sensitivity analysis 

In the following, we conduct a sensitivity analysis to evaluate the contribution of each uncertain parameters 

on the variability of the model response. Hence, the first-order and total Sobol sensitivity indices, 

respectively, denoted by 𝑆1 and 𝑆𝑇, are the quantities of interest, whose estimates are directly derived from 

the PCE coefficients of degree 𝑝 = 2 used previously in the statistical moments analysis. Thus, no additional 

evaluations of the FEM are needed. 

Table III. 4. Crack growth in CCP specimen: first-order and total Sobol indices obtained by PCE of degree 𝑝 = 2 

 𝐴1 𝐴2 𝐵 

𝑆1 0.15126 0.37210 0.47633 
𝑆𝑇 0.15138 0.37233 0.47658 

The results are listed in table III.4. It appears that the parameter 𝐴1 = 𝑚1 has a moderate effect on the 

variability of the model response, whereas the parameters 𝐵 = log(𝐶1) and 𝐴2 = −𝑚1(1 − 𝛾) have a significant 

effect. This means that the variability of the fatigue crack growth lifetime of the CCP specimen is driven by 

the uncertainty in the parameters 𝐶1 and 𝛾 of the Walker model, with the parameter 𝐶1 having the dominant 

contribution. Furthermore, the total indices are nearly equal to the first-order indices, indicating that the 

interaction effects between the uncertain parameters are negligible. 

It is important to note that although the uncertain parameters are statistically dependent, the Sobol indices 

are still computable, but their interpretation becomes a difficult task. Indeed, referring to the total variance 

decomposition given by equation (2.16) presented in section 2.3 of Chapter II, it is difficult to know if the 

contribution of a given uncertain parameters on the variability of the model response is due to its 

importance in the model structure or to its correlation with other influent parameters. To overcome this 

problem, the Sobol sensitivity indices must be derived from partial variances related to an ANCOVA 

(ANalysis of COVAriance) decomposition (Li and Rabitz, 2010; Chastaing and al., 2012), instead of partial 

variances associated to an ANOVA decomposition (see section 2.3 of Chapter II). 

The genuine idea behind the ANCOVA decomposition is to decompose the partial variances into a variance 

part, which measures the contribution of an uncertain parameter due to its importance in the model 

structure, and a covariance part, which measures the contribution of an uncertain parameters due to a 

possible correlation with other parameters. Hence, these two contributions are no longer merged as in the 
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ANOVA decomposition. We recall here that the main purpose of the present sensitivity analysis is not to 

separate the sources of contribution but to identify important and unimportant parameters on the variability 

of the model response. Global sensitivity analysis based on ANCOVA decomposition has gained increasing 

popularity in the last few years and will be obviously a priority area of research for us. 

For the sake of validation, first-order and total Sobol indices are computed by post-processing PCE 

coefficients of degrees 𝑝 = {1, 3}. The results obtained, when using cubature formula VI to compute the 

unknown coefficients of the PCE, are plotted in figure III.12, together with those derived previously from 

a PCE of degree 𝑝 = 2. As can be seen, the convergence of the first-order and total Sobol indices is well 

achieved by a full PCE of degree 𝑝 = 2. Moreover, the Sobol indices provided by a PCE of degree 𝑝 = 1 are 

slightly different from those achieved at the convergence point, which indicates once again that the effects 

of interaction between uncertain parameters are weak and the major part of the variability of the fatigue 

crack growth lifetime is due to the main effects.      

 

Figure III. 12. Crack growth in CCP specimen: convergence of the first-order and total Sobol indices   

3.1.4. Discussion 

It can be noted from this example that the proposed full-PCE approach is able to perform moments and 

sensitivity analysis at a very low computational cost. Indeed, depending on the cubature formula used to 

handle the multidimensional integrals defining the unknown coefficients of the PCE, the required number 

of evaluations of the FEM is in the range [14, 21] for a PCE of degree 𝑝 = 2 where the convergence of the 

quantities of interest is achieved. In addition, although a full PCE is used to represent the model response, 

which means that all coefficients related to a PCE of a given degree 𝑝 are retained, the computational cost 

slightly increases with the probabilistic dimension, and it is independent from the chosen degree of the 

PCE. 

Furthermore, when passing from a moments analysis to a sensitivity analysis or the opposite, no additional 

computational cost is required, since the evaluations of the FEM are only needed to build the PCE, then 

any kind of probabilistic analysis could be performed, either by post-processing the PCE coefficients or by 

performing MCS on the metamodel of the mechanical response. This clearly allows us to overcome the 

inefficiency of crude cubature formulae pointed out in Chapter II, where the required set of evaluations of 
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the mechanical model depends not only on the integration points related to the chosen cubature formula 

but also on the type of the probabilistic analysis to be addressed. Indeed, the comparison of equations 

(II.3) and (II.23) (see sections 2.2 and 2.3 of Chapter II) shows that the integrands to be evaluated for 

the computation of statistical moments and partial variances are not the same. It appears that performing 

MCS on the metamodel could enhance the estimates of statistical moments, especially the higher order 

one such as the skewness and the kurtosis, when a lack of accuracy is observed on the estimates provided 

by the post-processing of the PCE coefficients. 

Finally, thanks to the present example, we have shown how it is important to identify the right probabilistic 

models and their statistical characteristics when performing uncertainty propagation analysis, especially 

through mechanical models dealing with crack growth under fatigue loading where some uncertain 

parameters exhibit a statistical dependency. Indeed, when the correlation between the constants of the 

Walker law, which is proven by statistical analysis on experimental data, is not considered, the uncertainty 

propagation analysis provides erroneous results on the variability of the fatigue crack growth lifetime of 

the CCP specimen. Consequently, wrong decisions could be taken by the decision-makers, in the design 

stage for instance or in the maintenance scheduling when dealing with existent structures. 

3.2. Nonlinear cracked pipe 

3.2.1. Problem statement 

The present problem deals with an axysymmetrically cracked pipe as depicted in figure III.13. Such a 

component is extensively used in nuclear plants where it is often subjected to large variations of thermal 

and mechanical loads which can lead to crack initiation and growth toward a critical length inducing its 

failure. This problem has been introduced first by (Pendola and al., 2000) to assess the reliability of the 

cracked pipe with respect to accidental loads, using an original approach in that time, based on combination 

of finite elements computations and quadratic response surface. Later, this same problem has been used 

by (Riahi and al., 2012) as a benchmark example to compare the efficiency of pseudo-random numbers, 

Latin hypercube samples and quasi-random numbers when MCS is used to compute the unknown 

coefficients of a PCE-based metamodel. The cracked pipe with internal radius 𝑅𝑖 = 393.5 𝑚𝑚 and thickness 

𝑡 = 62.5 𝑚𝑚, contains a symmetrically centered circumferential internal crack with length 𝑎 = 15 𝑚𝑚 , and 

is subjected to an internal pressure 𝑃 = 15.5 𝑀𝑃𝑎 and an axial tension 𝜎𝑡 = 140 𝑀𝑃𝑎. Due to the boundary 

conditions at the ends of the cracked pipe, the internal pressure 𝑃 induces a longitudinal tension pressure, 

in addition to the axial tension 𝜎𝑡. Thus, the stress 𝜎0 due the end effects, reads: 

𝜎0 = 𝑃
𝑅𝑖
2

(𝑅𝑖 + 𝑡)
2 − 𝑅𝑖

2 (𝐼𝐼𝐼. 33) 

We are interested in ductile fracture which concerns materials where crack growth involves plasticity. Thus, 

we must take into account the effect of this plasticity on the crack driving forces. The elastoplastic behavior 

of the constitutive material of the cracked pipe is described by the well-known Ramberg-Osgood (Anderson, 

1995) stress-strain relationship given by:   
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𝜖 =
𝜎

𝐸
+ 𝛼

𝜎𝑦

𝐸
 (
𝜎

𝜎𝑦
)𝑛 (𝐼𝐼𝐼. 34) 

where 𝜎 is the stress, 𝜖 the strain, 𝐸 the Young’s modulus, 𝜎𝑦 the yield strength, 𝛼 a dimensionless material 

parameter and 𝑛 the strain hardening exponent.  

The stress-strain curve representing the Ramberg-Osgood behavior law, which will be used later in the 

computation of the fracture parameters of interest, is shown in figure III.13. 

 

Figure III. 13. Geometry and applied loads of the cracked pipe (left, after Pendola and al., 2000), stress-strain curve 
associated to the Ramberg-Osgood behavior law (right) 

There are several ways to characterize the mechanical fields in the region where the crack appears and 

grows. When the constitutive material exhibits an elastic behavior the Stress Intensity Factors (SIF) are 

often used to describe the stress singularity observed at the vicinity of the crack tip. However, for 

elastoplastic materials, the SIF are not sufficient to adequately describe ductile fracture. For this reason, 

the 𝐽-integral, also called Rice’s integral (Rice, 1968), whose formulation is based on energy considerations, 

is used as the driving force when crack growth goes with plasticity (see section 2.1.1 in Chapter 1). The 

initiation of crack growth is observed when the value of the Rice’s integral exceeds the fracture toughness 

𝐽𝐼𝑐 of the constitutive material. For mechanical and civil engineering problems, where the components or 

structures considered often have a complex geometry, the computation of the Rice’s integral is only 

possible through a numerical procedure. Therefore, a FEM is developed under the finite element software 

(cast3m, 2021) to predict the ductile fracture of the cracked pipe. Due to the symmetry of the problem, 

we model only half of the pipe. The corresponding finite element mesh is made of 709 6-noded triangular 

elements and 1553 nodes, as shown in figure III.14. As can be seen, the mesh is extremely refined around 

the crack tip to ensure good accuracy on the estimate of the Rice’s integral. Since the constitutive material 

of the cracked pipe exhibits nonlinear behavior, the estimate of the Rice’s integral, denoted by 𝐽𝑅𝑖𝑐𝑒, is 

obtained by an incremental Finite Element Analysis (FEA), as shown in figure III.14. It is important to note 

that the size of the mesh elements, especially those around the crack tip, as well as the number of 

increments in the FEA are chosen very carefully based on a parametric study on the accuracy of the 

estimate of the Rice’s integral 𝐽𝑅𝑖𝑐𝑒. For the sake of illustration, a single run of the FEM requires about 10 

seconds with an Intel® Core™ i7-10850H CPU processor. 
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Figure III. 14. Nonlinear cracked pipe: applied loads and boundary conditions (upper left, after Pendola and al., 
2000), finite element mesh (lower left), evolution of 𝐽𝑅𝑖𝑐𝑒 with respect to the FEA increments (right) 

The uncertain inputs include the four parameters of the Ramberg-Osgood behavior law, namely the Young’s 

modulus 𝐸, the yield strength 𝜎𝑦, the coefficient 𝛼 and the strain hardening exponent 𝑛, whose distributions 

and asociated statistical characteristics are listed in table III.5. 

Table III. 5. Nonlinear cracked pipe: probability distributions and statistical characteristics of the random variables 

Parameter Distribution 𝜇 𝜎 

𝐸 (𝑀𝑃𝑎) Lognormal 175500 10000 
𝜎𝑦  (𝑀𝑃𝑎) Lognormal 259.5 10 

𝑛 Normal 3.5 0.1 
𝛼 Normal 1.15 0.15 

3.2.2. Statistical moments and distributions analysis 

First, statistical moments analysis is performed to assess the effect of the uncertain parameters on the 

variability of the model response defined as the Rice’s integral 𝐽𝑅𝑖𝑐𝑒. Since all cubature formulae I-VI provide 

correct results, only cubature formula VI is used here, on the one hand to avoid redundancy in the 

presentation of the obtained results, on the other hand this cubature formula has a free parameter ∆ (see 

section 4.6 of Chapter II) which seems to be very useful for constructing suitable experimental designs 

when the sparse-PCE approach is used to carry out uncertainty propagation analysis. For comparison 

purposes, the first four statistical moments of the model response of interest 𝐽𝑅𝑖𝑐𝑒 are computed using the 

two proposed approaches, namely the full-PCE and the sparse-PCE, where the polynomial degree 𝑝 is set 

to 2. For the full-PCE approach, the unknown coefficients are computed either by the full tensor-product 

Gauss-Hermite scheme (see equation III.13) or by the cubature formula VI (see equation III.15). For the 

sparse-PCE approach, the target variance of the model response of interest is computed by the crude 

cubature formulae VI, and then the unknown coefficients are computed by regression based on 

experimental design built from the integration points of the cubature formula IV and the corresponding 

FEM responses. 

The results obtained are listed in Table III.6 and compared to the estimates provided by crude MCS, taken 

as reference solutions. As can be seen, the estimates of the first four statistical moments obtained by the 

proposed methods are overall in good agreement with the reference ones, since the maximum relative 
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error is equal to 0.01%, 0.19%, 3.67% and 1.84%, respectively for the mean, standard deviation, 

skewness and kurtosis. This good accuracy is achieved with low computational cost since only 33 runs of 

the FEM are required for both the proposed full-PCE and sparse-PCE approaches when the cubature formula 

VI is used. Due to the proposed truncation scheme based on the second moment information, the 

polynomial chaos basis 𝓗𝑝,𝑞,𝜎2 used in the sparse-PCE approach contains only 10 components, instead of 

15 as for a full polynomial chaos basis 𝓗𝑝, which means that 5 components have insignificant effect on the 

model response and can be discarded from the PCE-based metamodel. As a result, the economy ℰ𝑝,𝑞,𝜎
2
=

100 × (card(𝓗𝑝) − card(𝓗𝑝,𝑞,𝜎2) card(𝓗𝑝))⁄  (i.e., defined in the same way as in equation III.21) of the sparse 

polynomial chaos basis 𝓗𝑝,𝑞,𝜎2 is around 33%, showing a significant decrease in the computational effort 

required to estimate the PCE coefficients by regression.    

Table III. 6. Nonlinear cracked pipe: statistical moments of the Rice’s integral 𝐽
𝑅𝑖𝑐𝑒

  

Statistical moments 
Full-PCE 

Sparse-PCE 
Crude 

formula VI 
MCS 

GH* Formula VI 
𝜇 16.7348 16.7347 16.7347 16.7347 16.7322 
𝜎 0.98589 0.98639 0.98620 0.98643 0.98779 
𝛾 0.18773 0.19806 0.19606 0.19781 0.19104 
𝜅 3.04983 3.05487 3.05322 3.00158 3.05801 

Number of FEM runs 81 33 33 33 105 

* GH: Gauss-Hermite 

Figure III.15 compares the PDFs and CDFs obtained by a moment-based technique using the estimates of 

the first four statistical moments given by the different proposed approaches. As can be seen, the PDFs 

and CDFs corresponding to the full-PCE and sparse-PCE approaches are in good agreement with the 

reference ones given by 105 crude MCS, throughout the range of variation of the model response 𝐽𝑅𝑖𝑐𝑒. As 

can be observed from the CDFs plot, where a logarithmic scale is used on the vertical axis to highlight the 

behavior at the tails of the distribution, high accuracy is obtained in these regions of great interest when 

performing reliability analysis. Clearly, the full-PCE and sparse-PCE approaches yield superior estimates of 

the PDF and the CDF of the model response, compared to the approach based on crude cubature formula 

VI. Indeed, a slight discrepancy between the corresponding CDF and the reference one is observed at the 

left tail of the distribution. 

 

Figure III. 15. Nonlinear cracked pipe: comparison of the PDFs and CDFs of the model response 𝐽𝑅𝑖𝑐𝑒  
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As an illustration, figure III.16 shows the convergence of the statistical moments obtained by crude MCS, 

directly applied on the FEM. As can be seen, convergence is well achieved with a sample size of 105, but 

with a huge computational cost since, as stated previously, the FEM is itself time consuming due to the 

incremental FEA required to solve the nonlinear fracture problem. The PDF of the Rice’s integral 𝐽𝑅𝑖𝑐𝑒 is also 

constructed and compared to conventional distributions, showing that the lognormal distribution gives the 

best fit. In addition, the CDF is obtained by direct integration of the PDF and can be used to perform a 

reliability analysis if necessary.    

 

Figure III. 16. Nonlinear cracked pipe: convergence of crude MCS 

3.2.3. Sensitivity analysis 

Next, we conduct a sensitivity analysis to assess the contribution of each uncertain parameters on the 

variability of the crack driving force 𝐽𝑅𝑖𝑐𝑒. The first-order and total Sobol indices are computed by the 

proposed approaches by post-processing the coefficients of the corresponding PCE-based metamodels and 

using equations III.26 and III.27, respectively. The obtained results are reported in figure III.17. As can 

be seen, the estimates given by the full-PCE and sparse-PCE approaches are almost identical. Since MCS 

is not practical in this problem to compute the Sobol sensitivity indices due to the relatively expensive cost 

of a single run of the incremental FEA required to compute the Rice’s integral, the full-PCE approach where 

the coefficients are obtained by a full tensor-product Gauss-Hermite integration scheme is used as the 

reference method. Referring to the first-order or the total Sobol indices, it appears that the variability of 

the model response 𝐽𝑅𝑖𝑐𝑒 is mainly due to the uncertainty of the Young’s modulus 𝐸, while the coefficient 𝛼 

and the strain hardening exponent 𝑛 of the Ramberg-Osgood behavior law, have insignificant effects and 

can be considered as deterministic quantities, thus set to their respective mean values. The effect of 

interaction between uncertain parameters is also negligible since the total indices have roughly the same 

values as the first-order indices. 
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Figure III. 17. Nonlinear cracked pipe: convergence of the first-order and total Sobol indices 

3.2.4. Reliability analysis 

In the following, a reliability analysis is performed to study the effect of the axial tension magnitude 𝜎𝑡 on 

the integrity of the cracked pipe. Pipe failure is observed when the Rice’s integral 𝐽𝑅𝑖𝑐𝑒 exceeds the fracture 

toughness 𝐽𝐼𝑐 of the constitutive material. Therefore, the performance function is as follows: 

𝐺(𝒙) = 𝐽𝐼𝑐 − 𝐽𝑅𝑖𝑐𝑒(𝒙) (𝐼𝐼𝐼. 35) 

The fracture toughness 𝐽𝐼𝑐 is taken here as uncertain parameter, in addition to the uncertain parameters 

gathered in the vector 𝒙 = {𝐸, 𝜎𝑦 , 𝑛, 𝛼}, considered in the statistical moments and sensitivity analyses 

conducted previously. It is assumed to follow a lognormal distribution with a mean 52 𝑀𝑃𝑎 𝑚𝑚 and a 

standard deviation 9.5 𝑀𝑃𝑎 𝑚𝑚. The axial tension 𝜎𝑡 is taken as a deterministic parameter ranging from 

140 𝑀𝑃𝑎 up to 200 𝑀𝑃𝑎. It represents the effect of an accidental increase in load, whose nominal value is 

about 140 𝑀𝑃𝑎, that could occur during the pipe lifetime. The main issue of the reliability analysis is to 

obtain the probability of failure as a function of the magnitude of the axial tension, in order to be able to 

make the right decision as to whether or not to perform repair operations on the pipe. Indeed, by knowing 

the cumulated damage, i.e. the crack length, and the corresponding failure probability, we can decide if 

the repair of the pipe must be done urgently, or if we can still wait. Conversely, if a threshold level of 

reliability must be guaranteed, for instance by referring to design codes recommendations, the curve 

representing the evolution of the probability of failure with respect to the magnitude of the axial tension, 

gives us the allowable load that the pipe should support. To build this curve, the probability of failure is 

computed for some values of the axial tension varying in the range [140 𝑀𝑃𝑎, 200 𝑀𝑃𝑎], based on the 

computational method presented in section 2.3.3 of this chapter. For more computational cost savings, the 

results obtained at each step of the incremental FEA, required to compute the Rice’s integral, are stored 

in a database where a step size of 5 𝑀𝑃𝑎 is taken to cover the entire range of variation of the axial tension 

𝜎𝑡. For a given value of the axial tension 𝜎𝑡, a PCE-based metamodel ℎ𝜎𝑡
𝑃𝐶𝐸(𝒖) is built in the standard random 

space, either by the full-PCE or the sparse-PCE approach. Thus, the performance function 𝐺(𝒙) defined by 

equation III.35 can be approximated as follows: 
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𝐻(𝒖) = 𝐽𝐼𝑐 − 𝐽𝑅𝑖𝑐𝑒 ∘ 𝑇(𝒖) ≈ 𝐽𝐼𝑐 − ℎ𝜎𝑡
𝑃𝐶𝐸(𝒖) (𝐼𝐼𝐼. 36) 

Knowing the PDF of the fracture toughness 𝐽𝐼𝑐, and the PDF of the Rice’s integral 𝐽𝑅𝑖𝑐𝑒 which can be easily 

built either by performing MCS on the metamodel ℎ𝜎𝑡
𝑃𝐶𝐸(𝒖), or by a moment-based technique using the 

statistical moments estimates obtained by post-processing the coefficients of the metamodel ℎ𝜎𝑡
𝑃𝐶𝐸(𝒖), an 

approximation of the failure probability 𝑃𝑓, for a given value of 𝜎𝑡 and PCE degree 𝑝, can be provided by 

assessing the following unidimensional integral: 

𝑃𝑓 = Prob[𝐻(𝒖) ≤ 0] ≈ 𝑃̂𝑓,𝑝,𝜎𝑡 = Prob[𝐽𝐼𝑐 − ℎ𝜎𝑡
𝑃𝐶𝐸(𝒖) ≤ 0] = ∫ 𝑓̂𝐽𝑅𝑖𝑐𝑒,𝑝,𝜎𝑡(𝐽) 𝐹𝐽𝐼𝑐(𝐽)

+∞

0

 𝑑𝐽 (𝐼𝐼𝐼. 37) 

where 𝑓𝐽𝑅𝑖𝑐𝑒 ,𝑝,𝜎𝑡(𝐽) is the approximation of the PDF of Rice’s integral 𝐽𝑅𝑖𝑐𝑒 and 𝐹𝐽𝐼𝑐(𝐽) is the CDF of the fracture 

toughness 𝐽𝐼𝑐, which are already available under analytical forms. 

 

Figure III. 18. Nonlinear cracked pipe: Resistance-Loading reliability problem (left), PDF of the performance function 
and definition of the reliability index of Rjanitzyne-Cornell  

If we look at equations III.35, III.36 and III.37, we clearly find the well-known elementary reliability 

problem, referred to in the literature as either by the Capacity-Demand (C-D) or the Resistance-Loading 

(R-L) problem, the basic principle of which is illustrated in figure III.18 (see also section 2.4 of Chapter II 

for more details on this issue).By analogy, the fracture toughness 𝐽𝐼𝑐 represents the Resistance part, 

whereas the Rice’s integral 𝐽𝑅𝑖𝑐𝑒 represents the Loading part. Since the fracture toughness 𝐽𝐼𝑐 follows a 

lognormal distribution, and the Rice’s integral also tends to follow a lognormal distribution as shown in the 

statistical moments analysis conducted previously, the evaluation of the integral III.37 can be avoided, 

and the failure probability can be approximated as follows: 

𝑃̂𝑓,𝑝,𝜎𝑡 = ∫ 𝑓̂𝐽𝑅𝑖𝑐𝑒,𝑝,𝜎𝑡(𝐽) 𝐹𝐽𝐼𝑐(𝐽)
+∞

0

 𝑑𝐽 = Φ(−𝛽𝑅𝐶) (𝐼𝐼𝐼. 38) 

In the above equation, Φ denotes the CDF of a standard normal variable and 𝛽𝑅𝐶  denotes the reliability 

index of Rjanitzyne-Cornell, defined as the weighted distance 𝛽𝑅𝐶 . 𝜎𝐺  between the failure domain and the 

mean of the performance function. In the case of lognormal distributions, the reliability index of Rjanitzyne-

Cornell reads: 
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𝛽𝑅𝐶 =
𝜇𝐺
𝜎𝐺
=

𝜇ln(𝐽𝐼𝑐) − 𝜇ln(𝐽𝑅𝑖𝑐𝑒)

√𝜎ln(𝐽𝐼𝑐)
2 − 𝜎ln(𝐽𝑅𝑖𝑐𝑒)

2

 
(𝐼𝐼𝐼. 39) 

where 𝜇𝐺  and 𝜎𝐺  are, respectively, the mean and the standard deviation of the performance function 𝐺, 

𝜇ln(𝐽𝐼𝑐) and 𝜎ln(𝐽𝐼𝑐) are, respectively, the mean and the standard deviation of the normal distribution ln(𝐽𝐼𝑐), 

𝜇𝐿𝑁(𝐽𝑅𝑖𝑐𝑒) and 𝜎ln(𝐽𝑅𝑖𝑐𝑒) are, respectively, the mean and the standard deviation of the normal distribution 

ln(𝐽𝑅𝑖𝑐𝑒), and ln denotes the Neperian logarithm function.  

It is important to note that the estimation of the failure probability by evaluating the integral III.37 is not 

a difficult task since the integrand is now available in an analytical form. But, having in mind the idea to 

provide simple computational tools to engineers to assess the reliability of their designs, the use of 

equations III.38 and III.39 for this purpose seems to be the best solution, since it does not require 

extensive knowledge of mathematics and probability theory. The estimates of the reliability indices and 

the corresponding failure probabilities obtained by the proposed approaches are listed in Table III.7. The 

same results are also shown in figure III.19. As can be seen, the proposed approaches are in good 

agreement overall with the reference solutions provided by FORM, since the relative error on the estimate 

of the reliability index varies in the range [0.01%, 1.97%]. The magnitude of the failure probability, which 

is related to the magnitude of the axial tension 𝜎𝑡, has a weak effect on the accuracy of the estimates given 

by either the full-PCE or the Sparse-PCE approaches. For the highest magnitude of the axial tension 𝜎𝑡, 

which is 200 𝑀𝑃𝑎, we obtain the largest relative error on the estimate of the reliability index, but it remains 

at an acceptable level. This increase of the relative error is probably due to the high nonlinearity observed 

in the mechanical behavior of the constitutive material, especially around the crack tip, when 𝜎𝑡 = 200 𝑀𝑃𝑎. 

Indeed, such a magnitude of the axial tension induces high stresses in the cracked pipe close to the yield 

stress of the constitutive material. For such a situation, the relative error can be reduced by using more 

steps on the incremental FEA required to compute the Rice’s integral. 

Table III. 7. Nonlinear cracked pipe: comparison of the reliability analysis results given by the proposed methods and 
FORM 

𝜎𝑡 
(𝑀𝑃𝑎) 

FORM 
Full-PCE 

Sparse-PCE 
GH Formula VI 

𝑃̂𝑓 𝛽 𝑃̂𝑓 𝛽 𝜖𝛽(%) 𝑃̂𝑓 𝛽 𝜖𝛽(%) 𝑃̂𝑓 𝛽 𝜖𝛽(%) 

140 2.139 10-9 5.873 2.129 10-9 5.874 0.014 2.132 10-9 5.874 0.010 2.130 10-9 5.874 0.011 
160 2.942 10-6 4.531 2.959 10-6 4.529 0.028 2.985 10-6 4.527 0.068 2.982 10-6 4.527 0.064 
180 2.139 10-3 3.039 1.261 10-3 3.021 0.608 1.261 10-3 3.021 0.610 1.261 10-3 3.021 0.608 
200 1.186 10-1 1.198 1.200 10-1 1.175 1.970 1.201 10-1 1.175 1.992 1.198 10-1 1.175 1.862 

As an illustration, figure III.19 shows the PDFs of the Rice’s integral 𝐽𝑅𝑖𝑐𝑒 and fracture toughness 𝐽𝐼𝑐 for 𝜎𝑡 =

180 𝑀𝑃𝑎. As can be observed, the lognormal distribution fits both PDFs very well. Thus, the previously 

method presented, which consists in solving an elementary R-L reliability problem, can be unambiguously 

applied to provide a suitable estimate of the failure probability. 
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Figure III. 19. Nonlinear cracked pipe: Resistance-Loading reliability problem for 𝜎𝑡 = 180 𝑀𝑃𝑎 (left), comparison of 

the reliability analysis results given by the proposed methods and FORM (right) 

Before closing discussion on this application example, an interesting, even obvious question that we should 

ask ourselves is: is there is any changes in the importance order of contributions of the uncertain 

parameters on the variability of the Rice’s integral due to the increase of the axial tension 𝜎𝑡? To find a 

clear response, let us plot the total Sobol sensitivity indices with respect to the magnitude of the axial 

tension when varying in the range [140 𝑀𝑃𝑎, 200 𝑀𝑃𝑎] as depicted in figure III.20. As expected, the picture 

does not the same for all values of the axial tension, which has a physical meaning. Indeed, when the axial 

increases the constitutive material exhibits a high plastic behavior, especially in the vicinity of the crack, 

and thus whey the yield strength 𝜎𝑦 becomes the most contributor uncertain parameter on the variability 

of Rice’s integral for the highest value of the axial tension, that is 𝜎𝑡 = 200 𝑀𝑃𝑎. However, no significant 

change in the contributions of the coefficient 𝛼 and the strain hardening exponent 𝑛 of the Ramberg-Osgood 

behavior law, which remain the uncertain parameters with the weakest effects.    

 

Figure III. 20. Nonlinear cracked pipe: evolution of the total Sobol indices with respect to the magnitude of the axial 
tension 𝜎𝑡   

3.2.5. Discussion 

Through this example, we have demonstrated that the proposed approaches, named full-PCE and sparse-

PCE, are able to carry out statistical moments, sensitivity, and reliability analysis at very low computational 

cost, since only 33 runs of the FEM are required to obtain a good accuracy on the corresponding quantities 



Chapter III: Unified approach for uncertainty propagation analysis 

 

S.Chahine | Efficient uncertainty propagation approaches to solve a large class of fatigue crack-growth problems  128 

of interest. Furthermore, the same set of evaluations of the FEM is used to address all three kinds of 

analysis, with no additional computational cost when changing from one kind of analysis to another, as 

observed in Chapter II when the crude cubature formulae I-VI are used to compute the multidimensional 

integrals representing the quantities of interest corresponding to the uncertainty propagation analysis to 

be conducted. In this case, the computational cost gain factor is equal to 3 (i.e., 33 evaluations of the FEM 

instead of 99 required by the crude cubature formula VI). In particular, the truncation scheme based on 

second moment information used to build up the polynomial chaos basis 𝓗𝑝,𝑞,𝜎2 in the sparse-PCE approach, 

reduces the computational efforts when the unknown PCE coefficients are the solution of a least-square 

regression problem. Indeed, the sparsity compared to a full polynomial chaos basis 𝓗𝑝 is about 33%, which 

means that about one-third of the components of the PCE-based metamodel have an insignificant effect 

on the model response, defined as the Rice’s integral of the cracked pipe. Finally, the reliability analysis 

has shown that the proposed approaches are in overall good agreement with each other and with the 

estimates of the reliability indices and corresponding failure probabilities obtained by FORM, which was 

taken as the reference method. Since a closed-form representation is obtained for the PDF of the Rice’s 

integral 𝐽𝑅𝑖𝑐𝑒, which fits a lognormal distribution, the failure probability is computed by solving a simple R-

L reliability problem, which allows us to avoid handling integrals quantities and provides a suitable tool for 

engineering practices. Through parametric reliability analysis carried out in function of the axial tension 𝜎𝑡, 

we have shown that the accuracy of the proposed approaches is weakly affected by the magnitude of the 

failure probability to be computed. 

3.3. Spatially varying uncertainty in inclined edge-cracked plate  

3.3.1. Problem statement 

Consider the rectangular plate of height 2𝐿 = 2 𝑢𝑛𝑖𝑡𝑠 and width 𝑊 = 1 𝑢𝑛𝑖𝑡 visualized in figure III.21. It is 

subjected to tensile load 𝜎 = 1 𝑢𝑛𝑖𝑡 on its bottom and top edges and has an open inclined crack with 

dimensions 𝑎 = 𝑧 = 0.5 𝑢𝑛𝑖𝑡. This problem has been first introduced by (Long and al, 2016) to perform a 

local sensitivity analysis on the fracture driving forces, using the stochastic scaled boundary finite element 

method. Later, this problem was addressed in (Chahine and al, 2021) to assess the reliability of the inclined 

cracked plate considering the two-dimensional spatial variability of the mechanical properties of the 

constitutive material. 

Due to the orientation of the initial crack with respect to the applied load, this later naturally tends to 

propagate in a mixed fracture mode, instead of a simple opening fracture mode. Thus, a FEM is developed 

in the software (cast3m, 2021) to compute the fracture driving forces, namely the opening fracture mode 

SIF 𝐾𝐼, the in-plane shear fracture mode SIF 𝐾𝐼𝐼 and the bifurcation angle 𝜃. The finite element mesh, 

consisting of 976 6-node triangular elements and 2155 nodes, is extremely refined around the crack tip, 

as shown in figure III.21, to ensure good accuracy of the fracture driving forces estimates. However, a 

coarse mesh is used in vicinity of the outer plate edges, to reduce the number of Degrees Of Freedom 
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(DOF) in the overall finite element mesh, and therefore optimize the computational cost required by a 

single FEM run.    

 

Figure III. 21. Inclined edge-cracked plate: geometry and applied loads (left), finite element mesh (left) 

The Young’s modulus 𝐸(𝒛, 𝜔) of the constitutive material of the cracked plate is considered as an uncertain 

parameter whose variability varies along both the horizontal and the vertical directions denoted by 𝑥 and 

𝑦, respectively, and gathered in the vector 𝒛 = (𝑥, 𝑦). It is modeled by a two-dimensional lognormal random 

field, with mean value 𝜇𝐸 = 20.7 10
6  𝑢𝑛𝑖𝑡𝑠 and standard deviation 𝜎𝐸 = 2.07 10

6 𝑢𝑛𝑖𝑡𝑠, which can be defined 

simply as the exponential of a normal random field 𝑣(𝒛, 𝜔) = Ln(𝐸(𝒛, 𝜔)) with mean 𝜇𝑣 =

ln(𝜇𝐸) −
1

2
ln(1 + 𝜎𝐸

2 𝜇𝐸
2⁄ ) and standard deviation 𝜎𝑣 = √ln(1 + 𝜎𝐸

2 𝜇𝐸
2⁄ ): 

𝐸(𝒛, 𝜔) = exp[𝑣(𝒛, 𝜔)] = exp [𝜇𝑣 + 𝜎𝑣 . 𝑢(𝒛, 𝜔)] (𝐼𝐼𝐼. 40) 

where 𝜔 is a parameter to underline the randomness of 𝐸(𝒛, 𝜔) and 𝑢(𝒛, 𝜔) is a standard normal random 

field of zero mean and unit standard deviation, governed by the following exponential autocorrelation 

function: 

𝜌(𝒛1, 𝒛2) = exp [−(
|𝑥1 − 𝑥2|

𝑙𝑐𝑥
+
|𝑦1 − 𝑦2|

𝑙𝑐𝑦
)] (𝐼𝐼𝐼. 41) 

In the above equation, 𝒛1 = (𝑥1 , 𝑦1) and 𝒛2 = (𝑥2 , 𝑦2) are two points in the spatial domain representing the 

cracked plate, 𝑙𝑐𝑥 = 0.5 𝑢𝑛𝑖𝑡 and 𝑙𝑐𝑦 = 1.5 𝑢𝑛𝑖𝑡𝑠 are the correlation lengths in the horizontal and the vertical 

directions, respectively, and |. | denotes the absolute value. 

The standard normal random field 𝑢(𝒛, 𝜔) is discretized using the Karhunen-Loève (KL) method (Ghanem 

and Spanos, 1991), instead of the EOLE method used in section 5.2.2 of Chapter II. Indeed, as first shown 

by (Li and Der Kiureghian, 1993), and later confirmed by (Sudret and Der Kiureghian, 2000) through a 

benchmark study, for a given truncation order 𝑀, the KL method is more accurate than the EOLE method 

in the case of an exponential autocorrelation function, since it provides the lowest variance error, especially 

within the variation domain Ω of the random field to be represented. However, special attention must be 

taken at the boundaries of Ω where the EOLE may exhibit more accurate results than the KL method. These 

facts are clearly illustrated in figure III.22, which shows a comparison of the variance error provided by 

the EOLE and KL methods of degree 𝑀 = 10, used for the representation of a standard normal random field 
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governed by an exponential autocorrelation function with correlation length 𝑙𝑐 = 5 in the one-dimensional 

domain Ω = [0, 10].   

 

Figure III. 22. Inclined edge-cracked plate: comparison of the variance error provided by the EOLE and KL methods 

Referring to the KL method, the 𝑀𝑡ℎ order approximation of the lognormal random field 𝐸(𝒛, 𝜔) reads: 

𝐸̂(𝒛, 𝜔) = exp [𝜇𝑣 + 𝜎𝑣 .∑√𝜆𝑖

𝑀

𝑖=1

𝜑𝑖(𝒛) 𝑢𝑖(𝜔)] (𝐼𝐼𝐼. 42) 

where 𝑢𝑖(𝜔), 𝑖 ∈ {1, … , 𝑀} are independent standard normal variables, 𝜆𝑖 and 𝜑𝑖(𝒛) are respectively 

eigenvalues and eigenfunctions obtained by solving the following Fredholm integral equation corresponding 

to the autocorrelation function 𝜌(𝒛, 𝒛′): 

∫ 𝜌(𝒛, 𝒛′) 𝜑𝑖(𝒛
′)

Ω

= 𝜆𝑖  𝜑𝑖(𝒛)  (𝐼𝐼𝐼. 43) 

Fortunately, for our problem where the two-dimensional spatial domain Ω = [−0.5, 0,5] × [−1, 1] has a 

rectangular geometry and the random field 𝐸(𝒛, 𝜔) follows an exponential autocorrelation function, the 

Fredholm integral equation can be solved analytically and a closed from solutions of the eigenvalues 𝜆𝑖 and 

the eigenfunctions 𝜑𝑖(𝒛) can be obtained. Interested readers can find, detailed information about the 

mathematical derivation of these quantities in (Ghanem and Spanos, 1991), and some advice about the 

practical implementation for one-dimensional and two-dimensional random fields in (Sudret and Der 

Kiureghian, 2000). 

In the following, a 24th order truncated KL expansion is used to model the spatial variability of the Young’s 

modulus of the constitutive material of the cracked plate following a lognormal random field. This means 

that only the first 24 largest eigenvalues 𝜆𝑖, already sorted in ascending order, and the corresponding 

eigenfunctions 𝜑𝑖(𝒛) are retained in equation III.42. These KL terms account for 90% of the variability of 

the Young’s modulus random field. Thus, the uncertainty propagation problem is recast as a function of 24 

independent standard normal variables 𝑢𝑖(𝜔), 𝑖 ∈ {1, … ,24}. Hence, for a given realization of these random 

variables, a realization 𝐸̂(𝒛, 𝜔) of the random field representing the Young’s modulus of the cracked plate 

is obtained from equation III.42. Figures III.23 shows a sample of 10 realizations of 𝐸̂(𝒛, 𝜔). 
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Figure III. 23. Inclined edge-cracked plate: example of 10 realizations of the Young’s modulus field 𝐸(𝒛, 𝜔) with mean 

𝜇𝐸 = 20.7 10
6 𝑢𝑛𝑖𝑡𝑠 and standard deviation 𝜎𝐸 = 2.07 10

6 𝑢𝑛𝑖𝑡𝑠  

Due to the spatial variability of the Young’s modulus, the components of the displacement field induced by 

the load applied to the cracked plate are also spatially varying uncertain parameters that can be 

conveniently represented by random fields. Of interest are the horizontal and the vertical displacements 

given by the FEM at the 2155 nodes of the finite element mesh depicted in figure III.21. The corresponding 

random fields are denoted by 𝑑𝑥(𝒛, 𝜔) and 𝑑𝑦(𝒛, 𝜔), respectively. Figure III.24 shows 10 realizations of the 

random field of the equivalent displacement 𝑑(𝒛, 𝜔) = √𝑑𝑥
2(𝒛, 𝜔) + 𝑑𝑦

2(𝒛, 𝜔), associated respectively with the 

realizations of the Young’s modulus random field presented in figure III.23. 

 

Figure III. 24. Inclined edge-cracked plate: example of 10 realizations of the equivalent displacement field 𝑑(𝒛, 𝜔)  

As can be seen, the equivalent displacement 𝑑(𝒛, 𝜔) is indeed a spatially varying quantity, which means 

that at each node of coordinate 𝒛𝑘 = (𝑥𝑘 , 𝑦𝑘), 𝑘 = 1, … ,2155 in the cracked plate, the variability of the 

corresponding equivalent displacement 𝑑(𝒛𝑘 , 𝜔) can be simply represented by a random variable where the 

related statistical characteristics are to be determined by statistical analysis on an available sample of 

realizations. Figure III.25 shows the spatial variation of the mean 𝜇𝑑(𝒛, 𝜔) and standard deviation 𝜎𝑑(𝒛, 𝜔) 

of the equivalent displacement with respect to the coordinates 𝒛𝑘 = (𝑥𝑘 , 𝑦𝑘), 𝑘 = 1, … ,2155 of the nodes of 

the finite element mesh, computed based on 105 crude MCS. As can be observed, these statistical 

parameters 𝜇𝑑(𝒛, 𝜔) and 𝜎𝑑(𝒛, 𝜔) are also random fields. The PDFs of the equivalent displacement recorded 
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at the nodes of coordinates 𝒛1 = (0, 0.49) and 𝒛2 = (−0.29, −0.05) are also plotted. The comparison with 

standard distributions shows that the lognormal distribution is the best candidate to fit both PDFs.  

 

Figure III. 25. Inclined edge-cracked plate: equivalent displacement mean (upper left), standard deviation (upper 

right), PDF at node of coordinate 𝒛1 = (0, 0.49) (lower left) and PDF at node of coordinate 𝒛2 = (−0.29, −0.05) (lower 

right)  

3.3.2. Statistical moments and distributions analysis 

The  fracture driving forces of interest are the opening fracture mode SIF 𝐾𝐼, the in-plane shear fracture 

mode SIF 𝐾𝐼𝐼, the bifurcation angle 𝜃 and the effective SIF 𝐾𝑒𝑓𝑓, gathered in the model responses vector 

𝑦 = {𝐾𝐼 , 𝐾𝐼𝐼 , 𝜃, 𝐾𝑒𝑓𝑓}
𝑇. 

As a first step, a statistical moments and distribution analysis is performed to assess the effect of the 

spatial randomness of the Young’s modulus on the variability of these fracture driving forces. The statistical 

moments of each model response are computed by the full-PCE and sparse-PCE approaches based on 

cubature formula II, which ensure a better efficiency than the other cubature formulae studied in Chapter 

II, especially for the present problem with relatively high probabilistic dimensionality. The results obtained 

for the first two first statistical moments, i.e., the mean and the standard deviation, with a PCE of degree 

𝑝 = 2, are listed in Table III.8 and compared to the estimates given by crude cubature formula II and 105 

crude MCS. As can be seen, the results given by the all the proposed approaches are in complete 

agreement. The discrepancy with respect to the reference estimates given by 105 MCS is insignificant for 

all the mechanical responses of interest. It appears that the uncertainty on the Young’s modulus, i.e., 10% 

deviation from its mean value, has a moderate effect on the variability of the crack driving forces, since 

the coefficients of variation corresponding to the opening fracture mode SIF 𝐾𝐼, the in-plane shear fracture 

mode SIF 𝐾𝐼𝐼, the bifurcation angle 𝜃 and the effective SIF 𝐾𝑒𝑓𝑓, are equal to 2.75%, 3.97%, 1.55% and 
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2.93%, respectively. It is important to notice that the PCE-based metamodels corresponding to the four 

mechanical responses of interest, are built from the same set of 651 evaluations of the FEM. Thus, handling 

non-scalar random responses does not affect the efficiency of the full-PCE and sparse-PCE approaches in 

any way. The truncation of the polynomial chaos basis based on second moment information significantly 

reduces the computational effort devoted to solving the least-square regression problem used in the 

sparce-PCE approach to estimate the PCE coefficients. Indeed, only 25 of the 325 components of the full 

polynomial chaos basis 𝓗𝑝 have significant contributions on the model responses. The corresponding 

economy index ℰ𝑝,𝑞,𝜎
2
= 100 × (card(𝓗𝑝) − card(𝓗𝑝,𝑞,𝜎2) card(𝓗𝑝))⁄  is about 92%, which shows high sparsity 

in the truncated polynomial chaos basis 𝓗𝑝,𝑞,𝜎2. 

Table III. 8. Inclined edge-cracked plate: statistical moments of the crack driving forces 𝐾𝐼, 𝐾𝐼𝐼, 𝜃 and 𝐾𝑒𝑓𝑓   

 Statistical moments Full-PCE Sparse-PCE 
Crude 

formula II 
MCS 

𝐾𝐼 
𝜇 2.8253 2.8253 2.8253 2.8255 

𝜎 0.0779 0.0781 0.0781 0.0778 

𝐾𝐼𝐼 
𝜇 1.2061 1.2061 1.2061 1.2061 

𝜎 0.0460 0.0460 0.0460 0.0479 

𝜃 
𝜇 36.776 36.776 36.776 36.774 

𝜎 0.5570 0.5570 0.5570 0.5713 

𝐾𝑒𝑓𝑓 
𝜇 6.8846 6.8846 6.8846 6.8849 
𝜎 0.1992 0.1992 0.1992 0.2022 

 Number of FEM runs 651 651 651 105 

Let us now turn our attention to the respective distributions of the mechanical responses. The PDFs of the 

four crack driving forces are built by a moment-based technique using only the statistical moments 

estimates given by the full-PCE approach in order to avoid redundancy, since as stated previously, a small 

discrepancy is observed between the results given by the full-PCE and the sparse-PCE approaches. 

 

Figure III. 26. Inclined edge-cracked plate: comparison of the PDFs of the crack driving forces 𝐾𝐼, 𝐾𝐼𝐼, 𝜃 and 𝐾𝑒𝑓𝑓   
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As can be observed in figure III.26 the obtained PDFs are in good agreement with those of the reference 

constructed from 105 crude MCS. Furthermore, it appears that the lognormal distribution is the best 

candidate for fitting the PDFs of the four crack driving forces of interest. This finding is of great interest 

since closed-form solutions are now available for the PDFs, which are more appropriate for designers. In 

addition, as demonstrated in previous application example, having an analytical representation of the PDFs 

avoids the evaluation of multidimensional integrals, since the estimation of the failure probability can be 

performed by solving a simple R-L reliability problem.  

3.3.3. Sensitivity analysis 

Next, a sensitivity analysis is conducted to assess the contribution of the uncertain parameters 𝑢𝑖(𝜔), 𝑖 ∈

{1, … ,24}, resulting from the representation of the random field 𝐸(𝒛, 𝜔) by a 24th order KL expansion, on the 

variability of the effective SIF 𝐾𝑒𝑓𝑓. It is important to remind that this effective crack driving force, which 

is derived from the opening fracture mode SIF 𝐾𝐼, the in-plane shear fracture mode SIF 𝐾𝐼𝐼 and the 

bifurcation angle 𝜃, can be considered from a physical point of view as an opening fracture mode SIF in 

the direction along the bifurcation angle 𝜃. This parameter is of a great importance when dealing with 

mixed-mode fracture problems since it is used in the computation of the fatigue crack growth life instead 

of 𝐾𝐼 and 𝐾𝐼𝐼. Moreover, when a reliability analysis is to be performed with respect to a serviceability 

criterion function of the fracture toughness of the constitutive material, the effective SIF 𝐾𝑒𝑓𝑓 should also 

be used. 

 

Figure III. 27. Inclined edge-cracked plate: comparison of the estimates of the first-order Sobol indices 

Due to the high probabilistic dimension of the problem, the evaluation of Sobol indices by MCS or crude 

cubature formula II is impractical. Therefore, the following sensitivity analysis relies only on the full-PCE 

and sparse-PCE approaches. Figure III.27 compares the estimates of the first-order Sobol indices obtained 

by post-processing the PCE coefficients of the metamodels given by the full-PCE and sparse-PCE 

approaches. As can be seen, the first-order sensitivity indices given by both the full-PCE and sparse-PCE 

approaches are practically identical. This fact can be considered as an indicator of convergence for the 

obtained estimates and they can therefore represent the reference solution. A very fast decay of the main 
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effect of the uncertain parameters is observed. Moreover, the uncertain parameter 𝑢2(𝜔), corresponding 

to 2nd eigenmode of the KL expansion, is by far the most significant effect among all the uncertain 

parameters, whereas 𝑢20(𝜔) and 𝑢12(𝜔) have almost no effect on the variability of the effective SIF 𝐾𝑒𝑓𝑓. In 

figure III.28 are depicted the total Sobol indices. As previously stated for the first-order indices, the 

estimates provided by the full-PCE and sparse-PCE approach are quite similar. We observe that the order 

of importance of the uncertain parameters is the same as for the first-order indices. The sum of the total 

indices ∑ 𝑆𝑇𝑖
24
𝑖=1  is approximately equal to 1, which means that the interactions between the uncertain 

parameters have weak effects on the model response of interest. Indeed, if we compare the total indices 

with the respective first-order ones, it appears that the differences are negligible, again demonstrating the 

insignificance of the contributions of the interaction effects. As pointed out in Figure III.28, a very fast 

decay of the importance of the uncertain parameters is observed, with the 10 first uncertain parameters 

𝑢𝑖(𝜔), 𝑖 ∈ {2, 4 ,7 ,8 ,5 ,13 ,16 , 11, 10, 17} explaining roughly 90% of the total variance of the effective SIF 𝐾𝑒𝑓𝑓. 

This demonstrates a moderate effective probabilistic dimensionality of the mechanical response of interest 

despite the large nominal probabilistic dimension, 24, corresponding to the number of eigenmodes required 

by the KL expansion to accurately represent the spatially varying uncertainty in the Young’s modulus of 

the constitutive material of the cracked plate. Although we do not have a true reference solution for the 

Sobol sensitivity indices, the obtained estimates are in good agreement with the results of the local 

sensitivity analysis conducted by (Long and al, 2016), since it has been shown that the uncertain 

parameters 𝑢2(𝜔) and 𝑢4(𝜔), corresponding to the 2nd and 4th eigenmodes of the KL expansion, respectively, 

are the most important on the variability of the SIFs of 𝐾𝐼 and 𝐾𝐼𝐼. Indeed, the local sensitivity indices 

obtained by the central difference method with respect to the uncertain parameters 𝑢2(𝜔) and 𝑢4(𝜔), are 

respectively 𝜕𝐾𝐼 𝜕𝑢2⁄ = −0.0292 and 𝜕𝐾𝐼 𝜕𝑢4⁄ = 0.0270 for the opening fracture mode SIF 𝐾𝐼, and 𝜕𝐾𝐼𝐼 𝜕𝑢2⁄ =

−0.0254 and 𝜕𝐾𝐼𝐼 𝜕𝑢4⁄ = 0.0105 for the in-plane shear fracture mode SIF 𝐾𝐼𝐼.          

 

Figure III. 28. Inclined edge-cracked plate: comparison of the estimates of the total Sobol indices  

It is important to notice that the sensitivity analysis conducted here did not require any additional runs of 

the FEM, since the Sobol sensitivity indices are derived from the coefficients of the metamodels already 

built in the statistical moments and distribution analysis conducted earlier. 
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3.3.4. Discussion  

We clearly demonstrate the efficiency of the full-PCE and sparse-PCE approaches for conducting different 

types of uncertainty propagation analysis through a computationally demanding implicit mechanical model. 

Indeed, assuming that the crude cubature formula II is used to conduct the same sensitivity analysis, we 

would have to perform at least 651 evaluations of the FEM to obtain the estimates the Sobol sensitivity 

indices, in addition to the 651 evaluations already required by the statistical moments analysis. Thus, both 

proposed approaches reduce the computational effort by at least a factor of two, and possibly a factor of 

three if a reliability analysis is carried out later. It is worth noting that the computational cost required by 

the sparse-PCE approach is due to the derivation of second moment information needed to build the sparse 

chaos polynomial basis, rather than the estimation of the PCE coefficients. If prior second moment 

information are already available, the computational cost gain should be more noticeable. As demonstrated 

previously, the effective probabilistic dimension, defined as the number of eigenmodes required in the KL 

expansion to explain a given percentile of the total variance of the model response of interest, is lower 

than the nominal probabilistic dimension. For instance, the first 10 and 15 eigenmodes explain 90% and 

95% of the total variance of the effective SIF 𝐾𝑒𝑓𝑓, respectively. Consequently, many components of the 

full polynomial chaos basis should vanish, since they have zeros sensitivity indices, implying fewer PCE 

coefficients to be computed and a better sparsity of the polynomial chaos basis. 

4. Conclusion 

Response surface methods rely on the construction of suitable approximations, called metamodels, of the 

uncertain responses of an implicit mechanical model. In this chapter, we have focused on the well-known 

PCE method which provides metamodels obtained by expanding the model responses of interest on a 

multivariate orthonormal polynomial basis. The mathematical formalism related to the construction of the 

PCE method is recalled. The standard random space has been preferred for the construction of PCE-based 

metamodels to provide a generalized representation capable of handling statistically independent, as well 

as dependent, uncertain parameters. The computation of the unknown coefficients of the PCE-based 

metamodels, can be performed either by projection or regression techniques. For high-dimensional 

uncertainty propagation problems, it has been shown that the projection technique can lead to high 

computational cost, when classical integration schemes, such as the Gauss-Hermite full tensor-product 

scheme, are used to evaluate the multidimensional integrals involved in the computation of the PCE 

coefficients. The regression technique is also inefficient in such a situation, especially when a full polynomial 

chaos basis is used to build up the metamodels. Two alternative approaches have been developed to 

circumvent this inefficiency. 

The first approach, called full-PCE, is derived from projection techniques, where the efficient cubature 

formulae I-VI studied in Chapter II are used instead of the classical integration schemes to compute the 

PCE coefficients. It has been shown that these fifth-degree cubature formulae require a limited number of 

evaluations of the integrand of the multidimensional integrals representing the PCE coefficients. Unlike the 
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Gauss-Hermite full tensor-product integration scheme, their efficiency is less affected by the degree of the 

polynomial chaos basis chosen to construct the PCE-based metamodels. The second approach, called 

sparce-PCE, is derived from regression techniques, where an efficient truncation scheme uses prior 

available second statistical moment information to identify the most important components of the 

polynomial chaos basis on the model responses of interest. In this way, the PCE coefficients corresponding 

to the components with weak effects are discarded, and the computational efforts devoted to solving the 

regression problem is significantly reduced. In this context, an economy index has been introduced in the 

form of a ratio between the respective cardinalities of the sparse and the full chaos polynomial basis, which 

allows us to objectively assess the computational cost saving obtained by the proposed truncation scheme 

based on the second moment information. Regardless of the use of the full PCE approach or the sparse 

PCE approach, two methods have been proposed to carry out the uncertainty propagation analysis, either 

by post-processing the PCE coefficients or by performing MCS on the obtained PCE-based metamodels. 

The accuracy and efficiency of the so-called full-PCE and sparse-PCE approaches have been carefully 

investigated in this chapter through three mechanical problems dealing with fatigue fracture. These three 

application examples have validated the ability of the proposed approaches to perform different types of 

uncertainty propagation analysis through time-consuming implicit mechanical models with high 

probabilistic dimensionality. Through the first example dealing with crack growth in CCP specimen that 

involves correlated uncertain parameters, it has been shown that the full-PCE approach is able to efficiently 

conduct statistical moments and sensitivity analysis, since the number of FEM runs required to achieve the 

target accuracy on the estimates of the quantities of interest, varies between 14 to 21, depending on the 

cubature formula used in the computation of the PCE coefficients. It appears that the accuracy of the 

statistical moments estimates obtained by MCS on the PCE-based metamodel of the fatigue crack growth 

life is slightly better than that given by the post-processing of the PCE coefficients, especially for skewness 

and kurtosis. It has been pointed out that we should be very careful when choosing the probabilistic model 

used to model the variability of the uncertain parameters. Indeed, as it has been shown, the omission of 

the statistical dependence between the parameters of the fatigue crack growth Walker law, induces 

erroneous results in the uncertainty propagation analysis, since in such a case the coefficient of variation 

of the fatigue crack growth life is equal 21.5%, while it should be about 3.14%. 

The second example involves a greedy computational time mechanical model, since an incremental FEA is 

required to assess the Rice’s integral used as the fracture driving force when dealing with ductile fracture 

problems. In this application, it has been shown that both the full-PCE and sparse-PCE approaches can 

perform statistical moments and distributions, sensitivity, and reliability analysis with a high efficiency. 

Unlike the crude cubature formulae studied in Chapter II, where additional evaluations of the primary 

implicit mechanical model are required each time, one switches from one type of uncertainty propagation 

analysis to another, the two proposed approaches allow all three types of uncertainty propagation analysis 

to be addressed at the same time based on the same set of evaluations of the FEM needed to compute the 

Rice’s integral. It is found from the statistical moments analysis that the proposed approaches give more 
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accurate estimates of the statistical moments than crude cubature formula VI, since the maximum relative 

error with respect to the reference solutions given by 105 crude MCS, does not exceed 3.7%. This high 

accuracy allows the PDF of the mechanical response to be constructed directly using a simple moment-

based technique. It has been shown that the full-PCE and the sparse-PCE approaches based on the cubature 

formula VI require the same computational cost, i.e., 33 FEM runs, and more efficient than the classical 

PCE approach based on the Gauss-Hermite full product-tensor integration scheme, which requires 81 FEM 

evaluations. Compared to the crude cubature formula VI, a noticeable lower bound computational gain 

factor of 3 is obtained. Moreover, the use of prior second moment information reduced the computational 

effort spent on solving the least-square problem when the sparse-PCE approach is used. Indeed, it appears 

that only 10 of the 15 components of a full polynomial chaos basis have a significant effect on the model 

response, resulting in an economy of 33% on the computation of the PCE coefficients by regression. 

Through the sensitivity analysis, it has been shown that interactions between the uncertain parameters 

have an insignificant effect on the variability of the Rice’s integral, since the total Sobol indices have the 

same values as the respective first-order indices. In addition, physically meaningful sensitivity indices have 

been obtained. For low values of the axial tension applied to the cracked pipe, the Young’s modulus appears 

to be the most important uncertain parameter for the variability of the Rice’s integral. However, for high 

values of the axial tension, where the fracture of the constitutive material goes with important plastic 

strains in vicinity of the crack tip, the yield strength becomes the most significant uncertain parameter. It 

can be retained that the coefficient 𝛼 and the strain hardening exponent 𝑛 of the Ramberg-Osgood behavior 

law have a weak contribution on the variability of the Rice’s integral. Therefore, they can be considered as 

deterministic parameters and set of their respective mean values, thus reducing the probabilistic dimension 

of the problem. Since accurate PDFs are available for the Rice’s integral and the lognormal distribution is 

in good agreement with them, we have been able to estimate the failure probability by solving a simple R-

L reliability problem. Through a parametric study as a function of the axial tension applied to the cracked 

pipe, it has been shown that the proposed approaches give an accurate estimate of the reliability index 

since the relative error with respect to the estimates given by FORM is less than 2%. 

Example 3 has a high probabilistic dimensionality since a 24th order KL representation is used to model the 

spatial randomness of the Young’s modulus of a plate containing an inclined crack. It has been shown that 

the full-PCE and sparse-PCE approaches are capable of efficiently conducting different kinds of uncertainty 

propagation analysis through a mechanical model with high probabilistic dimension. It appears that 

considering vector-valued model responses does not affect the efficiency of the proposed approaches. From 

the statistical and distributional analysis, it can be retained that the spatial variability of Young's modulus 

has a moderate effect on the variability of the crack driving forces of interest since the corresponding 

coefficients of variation vary in the range [1.55%, 3.97%]. In addition, it has been observed that the 

lognormal distribution fits the PDFs of all the four crack driving forces very well. Through the sensitivity 

analysis, it has been shown that the uncertain parameters related to the eigenmodes of the KL expansion 

act separately on the variability of the effective SIF 𝐾𝑒𝑓𝑓, since the contributions of the interaction effects 

is small compared to those of the main effects. It appears that the effective probabilistic dimension is low 
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compared to the nominal one, which allows us to discard the PCE coefficients that have an insignificant 

effect on the model responses, and thus improves the efficiency of the proposed approaches. 

The various analysis carried out in this chapter have allowed us to demonstrate the good accuracy and 

efficiency of the two proposed approaches, called full-PCE and sparse-PCE. By using the well-established 

polynomial chaos expansion method, analytical representations, often called metamodels in the literature 

of uncertainty propagation analysis, have been built for a scalar as well as for a vector-valued model 

responses, initially provided by a time consuming implicit mechanical model. Thus, it is no longer necessary 

to run additional cycles of the primary implicit mechanical model when one wishes to switch from one type 

of uncertainty propagation analysis to another, as was the case when using crude cubature formulae, I-VI. 

Clearly, we find in this chapter a consistent response to the question asked earlier at the end of Chapter 

II.
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Conclusion 

The work we have done in this thesis was intended to develop unified approaches able to perform 

efficiently the three possible kinds of uncertainty propagation analysis, i.e., statistical moments and 

distributions, sensitivity, and reliability analysis, through a greedy computational time mechanical 

models. A particular interest was given to fatigue fracture problems. The challenge was to merge 

different well-established mathematical methods to propose robust probabilistic computational 

strategies whose efficiency is less affected by the probabilistic dimension and the complexity (i.e., the 

order of the statistical moment, the order of the sensitivity index and the magnitude of the failure 

probability) of the quantities of interest corresponding to the uncertainty propagation analysis to be 

performed. This purpose seems to be achieved through the development carried out in Chapters II and 

III, where good results are obtained for a large panel of application examples. 

After a reminder of the general framework of mechanical fatigue and particularly of the fatigue crack 

growth phenomenon, several existing probabilistic models allowing the evaluation of the effect of 

uncertainties on fracture driving forces were reviewed. Two main categories of probabilistic models 

were distinguished. The models belonging to the first category are based on Markov chains theory to 

take into account the sources of uncertainty in the fatigue crack growth process. These purely 

statistical models, as considered in the literature, have been criticized for their inconsistency with the 

physics of the fatigue crack growth phenomenon, although they can handle mixed-mode fracture 

problems. The second category contains models that are more consistent with the physics, obtained 

by randomizing traditional deterministic crack growth laws, such as the well-known Paris-Erdogan law, 

by introducing random variables or processes. Most of these probabilistic models suffer from 

inefficiency when the fracture driving forces of interest (i.e., stress intensity factors, fatigue lifetime…) 

are derived from time-consuming mechanical models. This inefficiency is even more visible when the 

probabilistic dimensionality is high. Moreover, only scalar-type variabilities are treated by these 

models. The spatial randomness of the material properties, which requires the use of advanced 

probabilistic models called random fields, which most lead to a significant increase of the probabilistic 

dimensionality, is omitted in the probabilistic studies of fatigue fracture. This is why three original 

approaches to uncertainty propagation were developed in this work. 

The first approach developed in Chapter II uses six distinct cubature formulae, taken from an broad 

literature review, to compute multidimensional integrals representing the quantities of interest 

related to type of uncertainty propagation analysis to be performed. As with the well-known MCS, 

these cubature formulae approximate a multidimensional integral by one summand of integrand 

evaluations over a set of smartly sampled integration points in the standard random space. Thus, the 
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computational cost savings are significant compared to full tensor-product integration schemes where 

one summand in each direction of the random space is required to compute a multidimensional 

integral. After taking a general look at the principle of propagation through models representing 

physical phenomena at the beginning of Chapter II, the mathematical formulations of the quantities 

of interest, i.e., the first four statistical moments, the sensitivity indices and the failure probability, 

were established. It was shown that a common issue is the handling of multidimensional integrals. 

Through a benchmark study conducted on various application examples ranging from a simple 

mathematical equation to an implicit model requiring computation time and involving spatially varying 

uncertain parameters, we have demonstrated that with the exception of cubature formula IV where 

the computational cost grows exponentially with the probabilistic dimension, all remaining cubature 

formulae are able to perform efficiently any kind of uncertainty propagation analysis. For high 

probabilistic dimensions, it appears that cubature formula II provides the best balance between 

efficiency and accuracy. It has been shown that problems involving a higher heterogonous mixture of 

random variables should be handled with great care, since a loss of accuracy was observed on the 

results given by some cubature formulae. Despite the various advantages offered by cubature 

formulae I-VI over classical integration schemes, the associated computational cost can explode for 

high probabilistic dimensions, especially when one wishes to switch from one kind of uncertainty 

propagation analysis to another. Indeed, additional evaluations of the primary mechanical model are 

required, since the multidimensional integrals representing the quantities of interest corresponding to 

statistical moments, sensitivity or reliability analysis involve different integrands. 

Remedies to overcome the problem of inefficiency of the crude cubature formulae I-VI, i.e., when 

applied directly to the primary mechanical model, were proposed in Chapter III. Two approaches, 

called full-PCE and sparse-PCE, were devised based on the well-known chaos polynomial expansion. 

The key ingredient was to build approximations, called metamodels, by projecting the responses of 

interest of the model onto a suitable multivariate orthonormal polynomial basis. Once these 

metamodels are obtained any type of uncertainty propagation analysis can be addressed, either by 

performing MCS or by post-processing the PCE coefficients. The standard random space was preferred 

to build the PCE-based metamodels, on the one hand to take advantage of the suitable mathematical 

properties of the Hermite polynomial basis that simplify the derivation of some quantities of interest 

such as the statistical moments, on the other hand to obtain a generalized representation of the 

metamodels able to consider uncorrelated as well as correlated uncertain parameters. In the full-PCE 

approach, a full polynomial chaos basis was used to construct the metamodels where the PCE 

coefficients were computed by projection based on the efficient cubature formulae I-VI. It appears 

that the computational effort devoted to PCE coefficients estimation is less affected by the 
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probabilistic dimensionality and the polynomial degree chosen to build the metamodels, in contrast to 

the Gauss-Hermite full tensor-product integration scheme where the number of the mechanical model 

evaluations grows exponentially in such a situation. In the sparse-PCE approach, an incomplete 

polynomial chaos basis is used to build the metamodels, where the PCE coefficients were obtained by 

solving a least-square regression problem. The sparse polynomial chaos basis was obtained by an 

original truncation scheme based on prior available second moment information, where the important 

components are automatically identifier if significant change is observed on the variance of the model 

responses of interest. The Full-PCE and sparse-PCE approaches were applied to three typical fatigue 

fracture problems. The first one deals with crack growth in a CCP specimen where the considered 

uncertain parameters are statistically dependent. The second example deals with the ductile fracture 

of a cracked pipe where the mechanical response of interest represents the Rice’s integral available 

through an incremental FEA requiring a high computational cost demanding . The third problem, with 

a high probabilistic dimension, is additionally interested in the effect of the spatial variability of the 

Young’s modulus on the mixed-mode fracture driving forces. Both approaches were found to be 

efficient in deriving, based on the same set of evaluations of the primary implicit mechanical model, 

statistical moments and distributions, sensitivity indices and failure probabilities of failure. Indeed, 

accurate estimates of all these quantities are obtained using only 651 FEM runs for the problem with 

the highest probabilistic dimensionality, which is equal to 24. It was pointed out that the accuracy of 

higher order statistical moments, such as the skewness and the kurtosis, was better when the 

estimates were obtained by performing MCS on the metamodels rather than by post-processing the 

PCE coefficients. Due to the high accuracy of the obtained mechanical responses PDFs, it was shown 

that the failure probability can be computed by solving a simple R-L reliability problem, instead of 

computing a multidimensional integral. Furthermore, the accuracy of the estimates, which are in good 

agreement with those provided by the first order reliability method, is less affected by the magnitude 

of the target failure probability. Although, both proposed approaches require the same number of 

mechanical model evaluations, the sparse-PCE reduces the computational effort devoted to the post-

processing of the PCE coefficients. It appeared that the higher is the sparsity of the polynomial chaos 

basis, which was measured by introducing a sparsity index called economy, the lower the 

computational cost. Furthermore, it was shown that a major part of the computational cost of the 

sparse-PCE approach is due to the computation of the variance of the model response of interest 

required by the truncation scheme used to identify the important components of the polynomial chaos 

basis. Thus, if prior information on the variance is available, the sparse-PCE approach should be 

noticeably more efficient than the full-PCE approach. In the first application example, the importance 

of choosing the right probabilistic model to represent the true variability of the uncertain parameters 

was emphasized. Omitting the correlation between the parameters of the fatigue crack growth law, 
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which is a bad practice yet often observed in probabilistic studies, leads to erroneous results since the 

variability of the fatigue crack growth lifetime is abnormally high compared to the real situation where 

these parameters are naturally correlated. In the second application example, sensitivity analysis 

provided physically meaningful results. It was shown that the relative contributions of the uncertain 

parameters depend on the magnitude of the plastic strains surrounding the crack tip. When the axial 

tension applied to the cracked pipe is at its nominal magnitude, the plastic strains are confined in the 

crack tip, resulting in brittle fracture, and it was shown that the Young’s modulus had the largest 

contribution on the variability of the Rice’s integral. For accidentally high magnitudes of the axial 

tension, it was observed that the yield strength was the most significant uncertain parameter since the 

constitutive material exhibits a high plastic behavior. Statistical moments and distributions analysis 

performed in the third application example showed a moderate effect of the spatial randomness of 

the Young’s modulus on the variability of the mixed-mode fracture driving forces. It was noticed that 

the effective probabilistic dimension is small compared to the nominal one. Referring to the total Sobol 

indices, only 10 out of 24 random variables, corresponding to the 10 most important eigenmodes of 

the KL expansion, explain 90% of the total variance of the effective SIF. Finally, it was shown that the 

full-PCE and sparse-PCE remain efficient even when vector-valued model responses were considered. 

The three approaches that have been developed, namely crude cubature formulae, full-PCE and 

sparse-PCE, fulfill the objectives that motivated this thesis. In addition to the interesting results 

obtained either concerning the computational enhancement of the uncertainty propagation 

approaches or the understanding of the close relationship between uncertainties and fatigue fracture, 

the undertaken work allowed us to identify various tracks to further improvements at different levels. 

The first level concerns the enhancement of deterministic mechanical models by integrating complex 

physical phenomena observed during the fatigue crack growth to provide more realistic crack driving 

forces. One such phenomenon is the crack retardation due to overloads, which can occur either 

accidently during constant amplitude loading or naturally during variable amplitude loading. It is well-

known that a single overload induces a decrease of the crack growth rate, leading to an increase of the 

fatigue lifetime. Such a free increase of the fatigue lifetime is of great interest to managers of 

mechanical components and civil engineering structures as it can be a way to optimize the 

maintenance operations and, consequently, reduce the overall cost spent during the service life. Many 

well-established models are available in the literature to consider the retardation due to overloads 

based on plasticity theory. The key ingredient consists in weighting the classical crack growth laws by 

a correction function whose parameters are derived from experimental data. These retardation 

models can be straightforwardly integrated into explicit or implicit mechanical models. The efficiency 
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of the overloads, which can be measured by the induced increase in fatigue lifetime, depends on many 

parameters such as their amplitudes, the time interval between them as well as their periodicity. Thus, 

it seems very interesting to investigate if there is an optimal combination of these parameters to 

maximize the increase of fatigue lifetime. 

The second level concerns the improvement of the efficiency of the proposed uncertainty propagation 

approaches to deal with problems with higher probabilistic dimensionality. A first track for such an 

improvement is to use more efficient cubature formulae. In Chapter II of the thesis, it has been shown 

that cubature formula V is a very promising candidate. The issue is to find a straightforward way to 

build orthogonal arrays for high dimensions. In this context, it will be relevant to investigate the well-

established mathematical tools called Galois fields which are extensively used in information coding 

and computers cryptography. As shown in the third application example, the effective probabilistic 

dimension is much smaller than the nominal dimension for problems with random fields. Thus, finding 

a way to compute the effective probabilistic dimension before performing the uncertainty propagation 

analysis should mitigate the effect of the probabilistic dimension on the computational cost. For this 

purpose, screening approaches, such as the Morris method, which is very efficient since the 

corresponding sensitivity indices can be computed either for separated or gathered uncertain 

parameters, may be used. Finally, the investigation of suitable metamodeling techniques, including 

High Dimensional Model Representation (HDMR) will be of great interest.    
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Ce travail présente une approche hybride permettant d’effectuer des calculs de propagation d’incertitudes. Elle est 
basée sur des Surfaces de Réponses Stochastiques (SRS) pour la construction de représentations analytiques des 
réponses de modèles mécaniques implicites. Les coefficients des SRS, définis par des intégrales 
multidimensionnelles sont calculés par des schémas de quadrature efficaces permettant de réduire le nombre 
d’évaluations du modèle mécanique implicite, particulièrement dans le cas où le nombre de paramètres incertains 
est élevé. La précision et l’efficacité de l’approche ont été démontrées via le traitement d’une large variété de 
problèmes de fissuration par fatigue. 

Les niveaux de complexité auxquels les ingénieurs devront faire face résident dans la difficulté de comprendre le 
phénomène de fatigue et le caractère très aléatoire de ce phénomène. Ainsi le problème est de proposer une 
approche qui permette de garantir le meilleur compromis entre la représentation du comportement réel de la 
fissure par fatigue et la prise en compte des différentes sources d'incertitude. Les principaux objectifs de ce travail 
sont de calculer des intégrales multidimensionnelles avec une approche qui équilibre entre l'efficacité et la précision 
et de développer une approche unifiée capable d'effectuer efficacement les trois types d'incertitude : (1) Évaluer 
les moments statistiques et construire la densité de probabilité ; (2) une analyse de sensibilité basée sur une 

décomposition de la variance ; (3) Évaluer la probabilité de défaillance par une analyse de fiabilité. 
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This work presents a hybrid approach to perform uncertainty propagation. It is based on Stochastic Response 
Surfaces (SRS) for the construction of analytical representations of implicit mechanical model responses. The 

coefficients of the SRS, defined by multidimensional integrals, are calculated by effective quadrature schemes 
allowing to reduce the number of evaluations of the implicit mechanical model, particularly in the case where the 
number of uncertain parameters is high. The accuracy and effectiveness of this approach have been demonstrated 

through the treatment of a wide variety of fatigue cracking problems. 
The levels of complexity that engineers will have to deal with lies in the difficulty of understanding fatigue 
phenomena and the very random nature of the fatigue phenomenon. Thus the problem is to propose an approach 
that allows to guarantee the best compromise between the representation of the real behavior of the fatigue crack 
and the consideration of the different sources of uncertainty. The main to objectives of this work is computing 
multidimensional integrals with an approach that balance between the efficiency and the accuracy and to develop 

a unified approaches able to perform efficiently the three kinds of uncertainty: (1) Evaluate the statistical moments 
and constructing the probability density; (2) a sensitivity analysis based on a variance decomposition; (3) Evaluate 
the probability of failure by a reliability analysis. 
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