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Synthèse en français

La conception et l’utilisation d’ontologies sont devenues courantes pour des applications du monde réel de

divers types telles que la recherche dans le Web sémantique, la gestion des connaissances, la représentation de

l’information et l’interopérabilité des systèmes. Cependant, les ontologies volumineuses et complexes peuvent

poser des problèmes aux utilisateurs qui cherchent à se concentrer sur des sous-ontologies pertinentes pour

leurs domaines d’intérêt.

Pour résoudre ce problème, des outils ont été développés pour extraire des connaissances à partir de

grandes ontologies et permettre aux utilisateurs de se concentrer sur les sous-ontologies pertinentes. Cette

thèse étudie trois approches différentes pour extraire de telles connaissances : les justiőcations, les modules

déductifs et les modules généraux.

Les justiőcations sont des sous-ontologies minimales de l’ontologie originale qui participent à la déduction

d’une conclusion spéciőque. Les modules déductifs sont des sous-ontologies de l’ontologie originale qui

conservent toutes les conclusions liées à un vocabulaire donné qui représente l’intérêt de l’utilisateur. Les

modules généraux sont de nouvelles ontologies qui ne sont pas nécessairement des sous-ontologies mais qui

ont le même ensemble de conclusions liées à un vocabulaire donné que l’ontologie originale.

Pour calculer les justiőcations, nous utilisons une méthode basée sur la résolution. Cette méthode

consiste en deux étapes : (i) encoder la dérivation des justiőcations sous forme de clauses de Horn, et (ii)

calculer les justiőcations par résolution sur les clauses de Horn obtenues. Nous utilisons une représentation

graphique des ontologies et introduisons un système de règles d’inférence basé sur cette représentation pour

coder la dérivation des justiőcations. Le principal avantage de notre approche est que notre système de

règles d’inférence est plus compact que les systèmes existants, ce qui se traduit par un ensemble plus petit

de clauses de Horn qui accélère le calcul de la résolution dans la plupart des cas.

Le calcul des modules déductifs suit la même démarche que les justiőcations. Cependant, contrairement

aux justiőcations qui ne préservent que la conclusion donnée, les modules déductifs doivent conserver toutes

les conclusions possibles sur le vocabulaire donné, déduit de l’ontologie originale. Pour surmonter ce déő,

nous introduisons une nouvelle notion appelée forêt, qui est une autre représentation graphique qui capture,

de manière őnie, toutes les conclusions logiques liées à un vocabulaire donné. Sur la base de la notion de

forêt, nous pouvons coder la dérivation des modules déductifs et les calculer pour le vocabulaire donné. De

plus, nous proposons deux notions différentes de modules déductifs appelés modules pseudo-minimaux et

modules complets pour assurer un compromis entre qualité du résultat et efficacité de calcul. Les modules

pseudo-minimaux sont de bonne qualité mais nécessitent plus de temps, tandis que les modules complets

peuvent être calculés efficacement mais ont une qualité relativement inférieure.

En autorisant de nouveaux axiomes qui ne font pas partie des axiomes originaux, les modules généraux

peuvent être plus concis que les modules déductifs. Pour calculer les modules généraux, nous avons développé

une nouvelle méthode basée sur des règles de résolution inspirées de l’approche existante pour le calcul des

interpolants uniformes. Comme le montrent les résultats de l’évaluation, notre méthode est généralement

plus efficace et produit des ontologies de meilleure qualité. De plus, sur la base de ce calcul, nous avons

développé une nouvelle méthode de calcul des modules déductifs et des interpolations uniformes. Ces

méthodes offrent une variété de choix aux utilisateurs pour extraire les connaissances qui les intéressent.

Nos résultats expérimentaux démontrent que toutes nos méthodes peuvent extraire efficacement des

connaissances pertinentes à partir de grandes ontologies. Les approches proposées offrent des avantages

tels que la compacité et l’efficacité de calcul tout en maintenant la qualité des ontologies extraites.
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1 - Introduction

1.1 . Context

This thesis is conducted in the context of the R&D project AIDA (Artiőcial

Intelligence for Digital Automation) led by IBM and őnanced by Bpifrance. The

AIDA project aims to develop a platform that better integrates advanced artiőcial

intelligence (AI) technologies into real-world applications for the companies par-

ticipating in the project. Concretely, the goal is threefold: őnd new automation

potentials to increase productivity; improve efficiency of automated systems; and

make better recommendations and decisions.

The AI challenges targeted by the AIDA project are diverse:

• Limited data validity: in business decision-making, the environment (objec-

tives, rules) is constantly changing, which requires AI solutions capable of

adapting to rapid changes.

• Trust: to guarantee decision qualities, AI must be able to provide explainable,

controllable, and auditable results.

• Context complexity: since processes and decisions are highly interdependent,

AI needs to address complex contexts.

The AIDA project is divided into six work packages. This thesis belongs to the

work package B that concerns extracting data from texts and domain ontologies

in order to produce a structured representation of the information contained in

various data sources. It is broken down into three sub-tasks:

• B.1 Extraction of structured data, from unstructured data, to be usable with

pre-existing semantic sources (e.g. ontologies);

• B.2 Acquisition of knowledge (ontologies, rules, constraints, goals) from nat-

ural language sources and existing structured resources (ontologies, knowl-

edge bases);

• B.3 Deőnition of a corpus for learning and validating algorithms.

Within the AIDA project, as a part of Task B.2, our interest is to acquire ex-

pressive Description Logics (DLs) based ontologies. Using formal knowledge has

shown potential beneőts in domain-speciőc research to help knowledge discovery.

For example, the formal ontology FMA about human anatomy (with over 70,000

concepts) has been used to infer potential internal and hidden injuries from in-

juries visible in images [66]. In another case, the authors use reasoning over yeast

metabolism to generate novel hypotheses [38], where the necessary background
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knowledge and reasoning framework form a crucial part of a łrobot scientistž that

autonomously executes and evaluates scientiőc experiments. As these examples

demonstrate, formalized domain knowledge can assist cutting-edge applications.

By deőnition, constructing ontologies consists of several steps: formulating

concept names, property names, individuals, and axioms. In this thesis, we assume

that concept and property names are provided as input by experts or extracted from

texts for the concerned domain via automatic tools. Then the main task remains

to generate a set of axioms that can capture the knowledge for the considered

domain. Axioms can be simple concept hierarchy or can be more complex in the

form of primitive and full deőnitions. The most complex axiom in the context of

DLs is general concept inclusions (GCIs). The more complex the form of an axiom,

the more difficult it is to construct both manually and automatically.

There have been many kinds of research on ontogy learning [56, 50] based

on various methods, including association rule mining [11, 73, 21] and formal

concept analysis [67, 8, 11, 7]. Additionally, there have been many studies on

learning ontologies from textual resources, both in open domains [72, 17] and

speciőc domains [64]. However, we note that it is also a common phenomenon

that formal ontologies exist for particular domains. If this is the case, information

in such ontologies is often interesting to be explored and can serve as a reasonable

basis for constructing a domain ontology for a given application. Consider one of

the application scenarios of AIDA, the őnancial domain. We can indeed make this

assumption because we have publicly accessible ontologies, such as FIBO (http:

//www.fibo.org) and FinRegOnt (https://finregont.com). Therefore, this

thesis focuses on providing efficient methods that allow extracting only relevant

information from existing, in general, very large ontologies to improve efficiency in

its downstream applications.

1.2 . Contributions of the Thesis

Effective knowledge representation and handling is one of the most important

challenges of artiőcial intelligence. To this end, a wide variety of knowledge repre-

sentation languages have been proposed, offering formal semantics and reasoning

techniques for drawing implicit conclusions from elements that are explicitly repre-

sented. Description logic-based ontologies [9], one of the most successful knowl-

edge representation languages, have been widely studied and is used in many areas,

including medicine, biology, and őnance. It provides structured representations of

domain knowledge that are suitable for AI reasoning. Usually, ontologies contain

a set of statements (axioms) about concept and role names (unary and binary

predicates). Using a formalization based on Description Logics (DLs) allows DL

reasoners to infer implicit information from an ontology. Modern ontologies are

often large and complex, which can make ontology engineering challenging. For

example, as of 3 January 2023, the medical ontology SNOMED CT [19], used in
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logical information within the given signature Σ. In contrast, general modules

generalize classical modules by allowing axioms that do not occur in the original

ontology, which could lead to additional conciseness. Both deductive modules and

general modules provide users with a concise view of the original ontology wrt to

the given signature.

1.2.1 . Ontology justification

In Description Logics, a justification of a given conclusion is a minimal sub-

ontology that derives the conclusion. Computing justiőcations has been widely

explored for different tasks, for instance, for debugging ontologies [2, 31, 34] and

computing ontology modules [16]. Extracting just one justiőcation can be easy for

tractable ontologies, such as EL+ [62]. For instance, we can őnd one justiőca-

tion by deleting unnecessary axioms one by one. However, there may exist more

than one justiőcation for a given conclusion. Computing all such justiőcations is

computationally complex and reveals itself to be a challenging problem [63].

There are mainly two different approaches [62] to compute all justiőcations

for a given conclusion, the black-box approach and the glass-box approach. The

black-box approach [34] relies only on a reasoner and, as such, can be used for on-

tologies in any existing Description Logics. For example, a simple (naive) black-box

approach would check all the subsets of the ontology using an existing reasoner and

then őlter the subset-minimal ones (i.e., justiőcations). Meanwhile, the glass-box

approaches have achieved better performances over certain speciőc ontology lan-

guages (such as EL+-ontology) by going deep into the reasoning process. Among

them, the class of SAT-based methods [37, 2, 3, 4, 57] performs the best. The

main idea developed by SAT-based methods is to trace, in the őrst step, a com-

plete set of inferences (complete set for short) that contribute to the derivation of

a given conclusion, and then, in a second step, to use SAT tools or resolution to

extract all justiőcations from these inferences.

In this thesis (Chapter 3), we propose a new glass-box approach for computing

all justiőcations based on a new set of inference rules built from the graph rep-

resentation of EL-ontologies. In brief, we propose a hypergraph representation of

EL-ontologies and reformulated inferences that derive all possible given conclu-

sions. By using our inferences, we can decrease the size of the complete sets of

inferences which leads to smaller inputs for the SAT-based algorithm extracting

justiőcations from the complete set.

1.2.2 . Ontology classical modules

Classical modules are subsets of an ontology that preserve entailments within

a given signature Σ (a set of concept and role names). There is a variety of

notions of module and properties they can satisfy that have been investigated in

the literature [27, 43]. Semantic modules preserve all models of the ontology

modulo the given signature Σ. This makes them undecidable already for light-

weight DLs such as EL [44], which is why existing methods are often only able to
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compute approximations of minimal semantic modules [23, 65]. A popular example

are locality-based modules, which can be computed in a very short time [27].

However, locality-based modules can be large, even if the provided signature is

small [15]. In contrast to semantic modules, deductive modules are decidable, and

focus only on entailments in Σ that can be expressed in the DL under consideration.

Deductive modules are a weaker form of semantic modules. However, computing

subset-minimal deductive modules such as minimal modules [16] remains highly

complex and time-consuming in practice.

In this work (Chapter 4), we propose to compute two types of deductive mod-

ules called pseudo-minimal modules and complete modules for EL-ontologies that

balance the computation cost and the result quality. Our method is inspired by

the SAT-based approach [3, 57] developed to compute justifications. The main

idea is to encode the derivations of a given entailment as a set of Horn-clauses,

then to enumerate all the justiőcations of this entailment by SAT tools or resolu-

tion [37]. However, the computation of deductive modules is much more complex:

First, the input is a vocabulary instead of an entailment and generating all the

entailments over a given vocabulary can be complicated; Second, there may exist

(even inőnitely) many entailments over a given vocabulary. Therefore, instead of

using justiőcations of the entailments directly, one has to őnd other proper ways

to tackle the computation of deductive modules.

Our contribution is twofold: (i) We associate a forest with each given ontol-

ogy and vocabulary to efficiently capture the entailments over the vocabulary. The

deőnition of forest is inspired by the regular tree grammar developed in [59]. We

can regard the forest and the regular tree grammar as a set of derivation trees

and derivation rules that generate entailments over a given vocabulary, respec-

tively. Moreover, we are able to deal with the case of inőnitely many entailments

by considering a őnite subset of trees from our forest. (ii) We introduce two novel

notions of deductive modules called pseudo-minimal modules and complete mod-

ules, and we develop an efficient SAT-based algorithm to compute them based on

the notion of forest. Our pseudo-minimal modules are quite interesting approxima-

tions of minimal modules: (1) They are indeed minimal modules when there are

őnitely many entailments over a given vocabulary; (2) Moreover, our algorithm is

99.79 times faster on average than the state-of-the-art algorithm Zoom [16] which

computes all the minimal modules but only for EL-terminologies. Compared to

pseudo-minimal modules, our complete modules are less concise but easier to com-

pute. They are far more concise than the ⊤⊥∗-module, as demonstrated by our

experiments, but their calculation time remains comparable.

1.2.3 . Ontology general modules

General modules were őrst investigated for the lightweight DLs EL in [58]. In

brief, a general module for an ontology is an ideally substantially smaller ontology

that preserves all entailments for a given signature. General modules generalize

classical modules by allowing axioms not explicitly present in the input ontology,
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which could bring additional conciseness. For instance, consider the ontology

O ={A1 ⊑ ∃s.A1} ∪ {Ai ⊑ Ai+1 | 0 ≤ i ≤ 8}

and signature Σ = {s,A0, A9}, then the following ontologyM is a general module

for O and Σ:

M = { A0 ⊑ A1,

A1 ⊑ ∃s.A1

A1 ⊑ A9 }.

Here,M contains a new axiom A1 ⊑ A9 that does not belong to O. In contrast,

for this example, the only deductive module for O and Σ is O itself, which contains

more concept names and more axioms than the general moduleM.

Classical modules are speciőc general modules that utilize only the axioms

occuring in the original ontology. Now, if we require the general module to only

utilize names from the speciőed signature, the modules obtained are known as

uniform interpolants. The axioms of uniform interpolants may not occur in the

input ontology. Uniform interpolants are useful for many tasks, such as for logical

difference [52], abduction [18], information hiding [26], and proof generation [1].

While using only axioms in the speciőed signature could in principle allow uniform

interpolants to be smaller than modules, the strict requirement on the signature

means that uniform interpolants may not always exist (e.g., for O and Σ above),

and, in case of ALC, can be of a size that is triple exponential in the size of the

input [55]. Despite this high complexity, practical implementations for computing

uniform interpolants exist [78, 47]. However, their computation times are much

higher than for module extraction and can produce very complex axioms.

In this work (Chapter 5), we present a method for computing general mod-

ules for ALC-ontologies. We also provide a formal analysis of some properties

of general modules we compute. Moreover, our method is able to compute both

uniform interpolants and deductive modules for ALC-ontologies in a signiőcantly

shorter time than the state-of-the-art. Our evaluation shows that all our methods,

including the one for uniform interpolation, can compete with the run times of

locality-based module extraction, while at the same time resulting in subtantially

smaller ontologies.

1.3 . Structure of the Thesis

The structure of the thesis is as follows:

Chapter 2 In this chapter, we introduce some basic notions, deőnitions, and

methods of Description Logics. We start by recalling some basic deőnitions re-

garding the Description Logics EL, EL+, ALC. Then we introduce ontology

classiőcation, justiőcation and general modules.
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Chapter 3 In this chapter, based on a graph representation of EL+-ontologies,

we propose a new set of inference rules (called H-rules) and take advantage of them

for providing a new method for computing all justiőcations for a given conclusion.

We implemented a prototype in Python (version 3.7) called minH and validate our

approach by running real-world ontology experiments. These experiments show

that our graph-based approach outperforms PULi [37], the state-of-the-art algo-

rithm, in most cases.

Chapter 4 In this chapter, we propose to compute two different kinds of de-

ductive modules called pseudo-minimal modules and complete modules for EL-

ontology, and to this end, we develop an efficient SAT-based algorithm. We imple-

mented a prototype in Python (version 3.7) called ForMod. Our experiments show

that our pseudo-minimal modules are indeed minimal modules in almost all cases

(98.9%), and computing pseudo-minimal modules is more efficient (99.79 times

faster on average) than the state-of-the-art method Zoom for computing minimal

modules. Also, our complete modules are more compact than ⊤⊥∗-modules, but

their computation time remains comparable. Finally, note that our proposal applies

to EL-ontologies while Zoom only works for EL-terminologies.

Chapter 5 In this chapter, we present a method for extracting general modules

for ontologies formulated in the Description Logic ALC. Our method is based on

uniform interpolation and supported by some new theoretical results. Moreover,

our method can be used for, and in fact, improves the computation of uniform

interpolants and classical modules. We implemented a prototype in Python (version

3.7) called GeMo. Our evaluation indicates that our general modules are often

smaller than classical modules and uniform interpolants computed by the state-of-

the-art, and compared with uniform interpolants, can be computed in a signiőcantly

shorter time.

Chapter 6 In this chapter, we conclude the thesis by summarising the results

and discussing possible future works.
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2 - Preliminaries

2.1 . Description Logics

In this section, we introduce some basic notions of Description Logic that are

used throughout this thesis. More details can be found in [9]. Description Logics

is a formal knowledge representation language that facilitates the exploration of

properties and relationships within a subject area through the use of fundamental

concepts such as concepts, roles, and individuals. In this thesis, we are working

with three Description Logics: EL, EL+, and ALC.

Let NC = {A,B, . . .} be an inőnite set of concept names, and let NR =

{r, s, t, . . .} be an inőnite set of role names. We assume that NC and NR are

disjoint. The syntax and semantics of L -concepts are given below. Note that

EL-concepts and EL+-concepts are of the same form. The difference between EL

and EL+ ontologies is on the axiom part, which will be introduced later.

Definition 1 (Syntax of concepts) The set of EL and EL+ concepts C are built

according to the following grammar rule:

C ::=⊤ | A | C ⊓ C | ∃r.C

where A ∈ NC , r ∈ NR. The set of ALC-concepts C are built by:

C ::=⊤ | A | C ⊓ C | ∃r.C | ⊥ | ¬C | C ⊔ C | ∀r.C,

where A ∈ NC , r ∈ NR.

We distinguish the concept names in NC from other concepts generated by

the above grammar rule by calling ∃r.C, ∀r.E, C ⊓D, . . . that contain symbols

∃, ∀,⊔,⊓, or ¬: complex concept.

Example 2 For example, let us consider the following concept names related to

the school:

concept names : Teacher

Student

Person

Course

role names :attend

attend

Then we can build complex concepts as follows:
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1. Student ⊓ Teacher: it describes individuals that are both student and

teacher;

2. Student ⊔ Teacher: it describes individuals that are either student or

teacher;

3. ∃attend.Course: it describes individuals that attend some course;

4. ∀attend.Course: it describes individuals that do not attend anything other

than a course;

5. ¬Person: it describes individuals that are not Person;

Definition 3 (Semantics of concepts and role names) For L ∈ {EL, EL+, ALC},
an interpretation I = (∆I , ·I) of L-concepts and role names consists of

1. a non-empty set ∆I , and

2. a mapping ·I that assigns each L-concept C to a subset CI ⊆ ∆I and each

role name r ∈ NR to a subset rI ⊆ ∆I×∆I such that:

(⊤)I = ∆I ,

(⊥)I = ∅,

(¬C)I = ∆I \ CI

(C ⊓ E)I = CI∩EI ,

(C ⊔ E)I = CI ∪ EI ,

(∃r.C)I = {a ∈ ∆I | there is a b ∈ CI such that (a, b) ∈ rI}

(∀r.C)I = {a ∈ ∆I | for all b ∈ ∆I , if (a, b) ∈ rI , then b ∈ CI}

We call CI the extension of C in I.

Example 4 (Example 2 cont’d) For example, we may have an interpretation I =

(∆I , ·I) as follows. The universal set ∆I is

∆I = {Tom, Alice, Peter, math7, art3, club1}.

The extension AI ⊆ ∆I of each concept name A is:

StudentI = {Tom, Alice}

TeacherI = {Alice, Peter}

PersonI = {Tom, Alice, Peter}

PersonI = {math7, art3}

And the extension rI ⊆ ∆I ×∆I of each role name r is:

teachI = {(Peter, math7)}

attendI = {(Tom, math7), (Alice, art3), (Tom, club1)}

By definition, the extensions of the complex concepts under I are:
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1. (Student ⊓ Teacher)I = {Alice}.

There is only one element Alice that is both student and teacher according

to I;

2. (Student ⊔ Teacher)I = {Tom, Alice, Peter}. There are three elements

Tom, Alice and Peter that are either student or teacher according to I;

3. (∃attend.Course)I = {Tom, Alice}. There are two elements Tom and

Alice that attend some course according to I;

4. (∀attend.Course)I = {Alice}. There is only one element Alice that do

not attend anything other than the course according to I;

5. ¬Person = {math7, art3, club1}. There are three elements math7, art3,

club1 that are not person according to I.

Definition 5 (Axioms and ontologies) Let C,C ′ be EL-concepts, let E,E′ be

EL+-concepts, and let F, F ′ be ALC-concepts. Let r1 . . . , rn, r, t ∈ NR be role

names. Then the EL-axiom α, the EL+-axiom β, and the ALC-axiom γ are

defined by the following grammar rules:

α ::=C ⊑ C ′ | C ≡ C ′

β ::=E ⊑ E′ | E ≡ E′ | r ⊑ t | r1 ◦ . . . ◦ rn ⊑ t

γ ::=F ⊑ F ′ | F ≡ F ′

We call axioms of the form

1. r ⊑ t: a role inclusion;

2. r1 ◦ . . . ◦ rn ⊑ t: a complex role inclusion.

An L-ontology is defined as a finite set of L-axioms.

Example 6 (Example 4 cont’d) For example, an axiom could be:

α1 : Teacher ≡ Person ⊓ ∃teach.Course.

This axiom means that a teacher is a person who teaches some courses.

α2 : Teacher ⊑ ¬Student

is another axiom meaning that a teacher is not a student. Moreover, we could

have a role inclusion of the form:

α3 : teach ⊑ attend

which means that if x teaches y, then x also attends y, where x, y are arbitrary

individuals. We have
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1. O1 = {α1} is an EL-ontology;

2. O2 = {α1, α3} and O3 = {α3} are EL+-ontologies;

3. O4 = {α1, α2} is an ALC-ontology.

Note that O5 = {α1, α2, α3} is neither an EL-ontology, nor an EL+-ontology nor

an ALC-ontology since O5 contains α2 (an axiom with negation) and α3 (an role

inclusion axiom) simultaneously.

Definition 7 For L = EL, EL+ or ALC, an interpretation I is a model of a

L-ontology O if it is compatible with all axioms in O. That is, for all axioms

C ⊑ C ′ (resp. C ≡ C ′, r1 ◦ . . . ◦ rn ⊑ s ∈ O), we have CI ⊆ (C ′)I (resp.

CI = (C ′)I , (r1 ◦ . . . ◦ rn)
I ⊆ sI). Note that (r1 ◦ . . . ◦ rn)

I is defined by

(r1 ◦ . . . ◦ rn)
I = {(a1, an+1) ∈ ∆I | there exists a2, . . . , an ∈ ∆I

such that (ai, ai+1) ∈ rI for 1 ≤ i ≤ n}

For an L-axiom α, we say O |= α iff any model of O is compatible with α.

Example 8 (Example 6 cont’d) For the ALC-ontology O4, the interpretation I =

(∆I , ·I) given in Example 4 is not a model. The reason is that

Teacher ⊑ ¬Student ∈ O4,

but TeacherI ̸⊆ (¬Student)I since

TeacherI = {Alice, Peter},

(¬Student)I = {Peter, math7, art3, club1}.

However, if we delete Alice from the set TeacherI and fix the extensions of

other concept names, then I is compatible with O4. Then, the new interpretation

is a model of O4.

We have O4 |= Teacher ⊑ Person since

Teacher ≡ Person ⊓ ∃teach.Course ∈ O4.

Therefore, for any model I1 for O4, we have :

TeacherI1 = PersonI1 ∩ (∃teach.Course)I1

⊆ PersonI1

Definition 9 (length of axioms and ontologies) For L = EL, EL+ or ALC,
The length of L-concepts and L-axioms is defined inductively by:

1. l(A) = 1, A ∈ NC ;

2. l(C ▷◁ D) = l(C) + l(D), where ▷◁∈ {⊓, ⊔, ⊑, ≡};
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3. l(Qr.C) = l(C) + 1, where Q ∈ {∀, ∃};

4. l(¬C) = l(C);

5. l(r1 ◦ . . . ◦ rn ⊑ t) = n+ 1, r1, . . . , rn, t ∈ NR;

Then the length of an L-ontology, denoted ∥O∥, is defined by ∥O∥=
∑

α∈O l(α).

Intuitively, the length of a concept or axioms counts the number of concept

and role names. It should be noted that there are also other deőntions of length

of axioms and ontologies that count logical connector, such as ⊓, ⊔, ⊑, ≡.

Example 10 (Example 8 cont’d) Recall α1 : Teacher ≡ Person⊓∃teach.Course.
We have

l(α1) = l(Teacher) + l(Person ⊓ ∃teach.Course) = 1 + 3 = 4.

Therefore, ∥O1∥ = l(α1) = 4. Similarly, we have l(α2) = l(α3) = 2 and thus

∥O2∥ = l(α1) + l(α3) = 6.

Definition 11 (Signature) For L = EL, EL+ or ALC, let O be a L-ontology,

and let C be a L-concept.

• We denote by sig(O) (resp. sig(C) ) the set of concept names and role

names occurring in O (resp. C);

• We use sigC(∗) (resp. sigR(∗) ) to refer to the concept (resp. role) names

in sig(∗);

• A signature Σ is a set of concept and role names. Thus, Σ ⊆ NC ∪ NR.

2.2 . Ontology Normalization

Here, we introduced the normalized form of ALC-ontologies, EL-ontologies,

and EL+-ontologies. This form can be used in different reasoning tasks such as

the classification of ontologies.

Definition 12 (normalizedALC-ontology [70]) An ALC-ontology O is normal-

ized if all its axioms have one of the following forms:

A1 ⊓A2 ⊓ . . . ⊓An ⊑ B1 ⊔B2 ⊔ . . . ⊔Bm

∃r.B ⊑ A

A ⊑ ∃r.B

A ⊑ ∀r.B

where A,A1, A2, . . . , An, B,B1, . . . , Bm ∈ NC ∪ {⊤,⊥}, r ∈ NR, n,m≥1.

Similarly, normalized EL and EL+-ontologies are deőned as follows.
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Definition 13 (normalized EL-ontology) An EL-ontology O is normalized if all

its axioms have one of the form:

A1 ⊓A2 ⊓ . . . ⊓An ⊑ B

∃r.B ⊑ A

A ⊑ ∃r.B

where A,A1, A2, . . . , An, B ∈ NC , r ∈ NR, n≥1.

Definition 14 (normalized EL+-ontology) An EL+-ontology O is normalized if

all its axioms have one of the form:

A1 ⊓A2 ⊓ . . . ⊓An ⊑ B

∃r.B ⊑ A

A ⊑ ∃r.B

r ⊑ t

r ◦ s ⊑ t

where A,A1, A2, . . . , An, B ∈ NC , r, s, t ∈ NR, n≥1.

By the normalization rules in Figure 2.1, we can translate every L-ontology to

its normalized form in polynomial time.

Theorem 15 ([9, 46]) For L = EL, EL+ or ALC and every L-ontology O, ap-

plying the rules in Figure 2.1 yields O1 that satisfies the following properties:

1. O1 is normalized L-ontology;

2. sig(O) ⊆ sig(O1);

3. For every axiom α with sig(α) ⊆ sig(O), O |= α iff O1 |= α.

Example 16 (Example 6 cont’d) To normalize the axiom

α1 : Teacher ≡ Person ⊓ ∃teach.Course,

we first split it into two axioms using the first rule in Figure 2.1:

α′1 :Teacher ⊑ Person ⊓ ∃teach.Course

α′′1 :Person ⊓ ∃teach.Course ⊑ Teacher

Then α′1, α
′′
1 are normalized by introducing the new concept names A,A1:

α′1 → Teacher ⊑ Person ⊓A, A ⊑ ∃teach.Course

α′′1 → ∃teach.Course ⊑ A1, Person ⊓A1 ⊑ Teacher
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C ≡ D → C ⊑ D,D ⊑ C,

C ⊑ D ⊓D′ → C ⊑ D,C ⊑ D′

C ⊔ C ′ ⊑ D → C ⊑ D,C ′ ⊑ D (*)

C ⊓ ∀r.C ′ ⊑ D → C ⊑ D ⊔ ∃r.(¬C ′) (*)

C ⊓ Ĉ ⊑ D → Ĉ ⊑ A, A ⊓ C ⊑ D

C ⊑ D ⊔ D̂ → C ⊑ A ⊔D, A ⊑ D̂ (*)

∃r.Ĉ ⊑ B → Ĉ ⊑ A, ∃r.A ⊑ D

B ⊑ ∃r.Ĉ → B ⊑ ∃r.A, A ⊑ Ĉ

B ⊑ ∀r.Ĉ → B ⊑ ∀r.A, A ⊑ Ĉ (*)

C ⊓ ¬A ⊑ D → C ⊑ D ⊔ A (C could be ⊤)

C ⊑ D ⊔ ¬A→ C ⊓ A ⊑ D (D could be ⊥)

r1 ◦ . . . ◦ rn ⊑ t→ r1 ◦ . . . ◦ rn−1 ⊑ s, s ◦ rn ⊑ t

where

• C,C ′, D,D′ are arbitrary L-concepts;

• Ĉ, D̂ are complex L-concepts;

• B is an concept name;

• A is a new introduced concept name.

• s is a new introduced role name.

All rules are applied independently of the order of the concepts

within conjunctions or disjunctions. The rules with label (*) are

only useful for ALC-ontologies.

Figure 2.1: Normalization rules
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Finally, α1 is translated to the following five normalized axioms:

{Teacher ⊑ Person,

Teacher ⊑ ⊓A,

A ⊑ ∃teach.Course,

∃teach.Course ⊑ A1,

Person ⊓A1 ⊑ Teacher}

These five axioms rewrite α1 by introducing new concept names.

Definition 17 (EL-terminology) Given a normalized EL-ontology O. Let LA =

{C | C ⊑ A ∈ O}, RA = {D | A ⊑ D ∈ O}.

• We say a concept name A is primitive iff (i) LA = ∅ or (ii) LA = RA and

|LA| = 1;

• We say O is a terminology iff all the concept names in O are primitive.

Moreover, for a terminology O, let R ⊆ sig(O)× sig(O) be the relation defined by

(A,B) ∈ R iff A ⊑ C ∈ O and B ∈ sig(C). We say a terminology O is acyclic iff

R has no cycle, which is a sequence of elements (A1, A2), (A2, A3), . . . , (An, A1) ⊆
R.

The notion of terminology deőned here is the same as the one introduced in

[45]. We state the deőnition in a different way because we use a different form of

normalized ontologies.

Example 18 The ontology O shown below is a normalized EL-ontology.

O={ α1 : A ⊑ D,

α2 : D ⊑ ∃r.E,

α3 : E ⊑ F,

α4 : ∃t.F ⊑ B,

α5 : r ⊑ t,

α6 : G ⊑ C,

α7 : C ⊑ A

α8 : C ⊓B ⊑ G }.

However, O is not an EL-terminology because A is not primitive since LA =

{C}, RA = {D}.

2.3 . Ontology Classification

Given a L-ontology O, a standard reasoning task over O is classification, which

aims at őnding all subsumptions. That is, conclusions of the form O |= A ⊑ B,

where A, B are concept names occurring in O. Next, we introduce two methods

for classiőcation over EL+-ontologies and ALC-ontologies using inferences.
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Definition 19 (Inference and Derivation) An inference ρ is a pair ⟨ρpre, ρcon⟩
whose premise set ρpre consists of L-axioms and conclusion ρcon is a single L-

axiom. We say a sequence of inferences ρ1, . . . , ρn is a derivation of an axiom α

from O iff

1. ρncon = α;

2. for any β ∈ ρipre, 1 ≤ i ≤ n, we have β ∈ O or β = ρ
j
con for some j < i.

Denoted by O ⊢ α if there is a derivation from O to the axiom α.

As usual, inference rules are used to generate inferences. Next, we will show

two different sets of inference rules for classiőcation over EL+-ontologies andALC-

ontologies.

Classification over EL+-ontologies

First, Table 2.1 [2, 6] is a set of inference rules over normalized EL+-ontologies.

R1 :
A ⊑ A1, . . ., A ⊑ An, A1 ⊓ A2⊓ . . .⊓An ⊑ B

A ⊑ B

R2 :
A ⊑ A1, A1 ⊑ ∃r.B

A ⊑ ∃r.B

R3 :
A ⊑ ∃r.B1, B1 ⊑ B2, ∃r.B2 ⊑ B

A ⊑ B

R4 :
A0 ⊑ ∃r1.A1, . . ., An−1 ⊑ ∃rn.An, r1◦ . . . ◦rn ⊑ r

A0 ⊑ ∃r.An

Table 2.1: Inference rules over EL+.

Example 20 (Example 18 cont’d) According to the inference rules of Table 2.1,

we can generate three inferences

ρ = ⟨{A ⊑ D,D ⊑ ∃r.E}, A ⊑ ∃r.E⟩

ρ′ = ⟨{A ⊑ ∃r.E, r ⊑ t}, A ⊑ ∃t.E⟩

ρ′′ = ⟨{A ⊑ ∃t.E,E ⊑ F, ∃t.F ⊑ B}, A ⊑ B⟩

by inference rules R2, R4 and R3 respectively. Then we have

O ⊢ A ⊑ B

since A ⊑ B is derivable from O by the sequence ρ, ρ′, ρ′′.
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The set of inference rules in Table 2.1 is sound and complete, as shown in the

following result.

Theorem 21 ([6]) Denoted by O ⊢ A ⊑ B iff there is a derivation from O to the

axiom α using inferences generated by rules in Table 2.1. For any normalized EL+

ontology O, we have

O ⊢ A ⊑ B iff O |= A ⊑ B

for any concept names A,B ∈ NC .

Therefore, the classiőcation task over an EL+ ontology O can be solved by

checking whether O ⊢ A ⊑ B for all A,B ∈ sig(O) using Table 2.1. Since EL

ontologies is a subclass of EL+ ontologies, the classiőcation for EL ontologies can

also be solved by Table 2.1.

Classification over ALC-ontologies

[70] provides a set of inference rules for classifying normalized ALC-ontologies.

Let H,K denote (possibly empty) conjunctions of concept names or their nega-

tions, and M,N (possibly empty) disjunctions of concept names or their negations.

That is,

H,K := A1 ⊓ . . . ⊓An ⊓ ¬B1 ⊓ . . . ⊓ ¬Bm

M,N := A1 ⊔ . . . ⊔An ⊔ ¬B1 ⊔ . . . ⊔ ¬Bm

where Ai, Bj ∈ NC ∪ {⊤,⊥} for 0 ≤ n, 0 ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Then, for the rules deőned in Table 2.2, the following result holds:

Theorem 22 ([70]) Denoted by O ⊢ A ⊑ B iff there is a derivation from O to

the axiom α using inferences generated by rules in Table 2.2. For any normalized

ALC-ontology O, we have

O ⊢ H ⊑ ⊥ iff O |= H ⊑ ⊥

for any conjunction H.

O |= A ⊑ B is equivalent to O |= A ⊓ ¬B ⊑ ⊥. Therefore, the classiőcation

for an ALC-ontology O can be solved by checking whether O ⊢ H ⊑ ⊥ for all H

of the form A ⊓ ¬B, where A,B ∈ sig(O).

2.4 . Justification

Definition 23 (Support and Justification) Given an ontology O such that O |=
A ⊑ B.

1. a support of A ⊑ B over O is a sub-ontology O′ ⊆ O such that O′ |=
A ⊑ B.
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R
+
A H ⊑ A

: A ∈ H R
−
A

H ⊑ N ⊔ A

H ⊑ N
: ¬A ∈ H

R
n
⊓

{H ⊑ Ni ⊔ Ai}
n
i=1

H ⊑ ⊔ni=1Ni ⊔M
: ⊓n

i=1Ai ⊑M ∈ O

R
+
∃

H ⊑ N ⊔ A

H ⊑ N ⊔ ∃r.B
: A ⊑ ∃r.B ∈ O

R
−
∃

H ⊑M ⊔ ∃r.K,K ⊑ N ⊔ A

H ⊑M ⊔ B ⊔ ∃r.(K ⊓ ¬A)
: ∃r.A ⊑ B ∈ O

R
⊥
∃

H ⊑M ⊔ ∃r.K,K ⊑⊥

H ⊑M

R∀
H ⊑M ⊔ ∃r.K,H ⊑ N ⊔ A

H ⊑M ⊔N ⊔ ∃r.(K ⊓ B)
: A ⊑ ∀r.B ∈ O

Table 2.2: Inference rules for ALC. Each rule is applicable iff the side

condition holds.

2. a justification of A ⊑ B is a minimal (under set-inclusion) support of

A ⊑ B over O.

Example 24 (Example 20 cont’d) O′ = {α1, α2, α3, α4, α5} is a support for A ⊑
B, and thus, any super-set of O′ is a support of A ⊑ B. O′ is also one of the

justifications for A ⊑ B as for any O′′⊂O′, we have O′′ ̸|=A ⊑ B.

Definition 25 (Complete Set) We say a set of inferences S is a complete set

for A ⊑ B if for any justification J of A ⊑ B, we can derive A ⊑ B from J using

only the inferences in S.

Intuitively, a complete set traces all minimal proofs of a subsumption O |= A ⊑ B.

Example 26 (Example 20 cont’d) The three inferences ρ, ρ′, ρ′′ provide a com-

plete set for A ⊑ B. Because the only justification of A ⊑ B is O′ and ρ, ρ′, ρ′′

provide a derivation from O′ to A ⊑ B.

2.5 . General Module

Given two ontologies O1,O2 and a signature Σ ⊆ NC ∪ NR of concept and

role names, the logical difference [39] between O1 and O2 with respect to Σ is

deőned as the set of axioms inferred by O1 but not inferred by O2:

cDiffΣ(O1,O2) = {α | sig(α) ⊆ Σ, Oi |= α, Oj ̸|=α, {i, j} = {1, 2} }.

Next, we say O1 ≡Σ O2 iff cDiffΣ(O1,O2) = ∅.
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Definition 27 (General module [58]) Given an ontology O and a signature Σ,

an ontologyM is a general module for O and Σ iff (i) O ≡ΣM and (ii) O |=M.

Two extreme cases of general modules are uniform interpolants and deductive

modules.

Definition 28 (Uniform interpolant&deductivemodule) LetO be an ontology,

Σ a signature, andM a general module for O and Σ. Then,M is

1. a uniform interpolant for O and Σ if sig(M) ⊆ Σ, and

2. a deductive module for O and Σ ifM⊆ O.

In particular, we call a deductive module that is minimal under set-inclusion as

follows.

Definition 29 (Minimal module) A minimal module for an ontology O and a

signature Σ is a sub-ontologyM of O such thatM is a minimal (under inclusion)

deductive module for O and Σ.

Example 30 Let us consider the following ontology

O = { α1 : A ⊑ ∃r.B1,

α2 : B1 ⊑ A1 ⊓A2,

α3 : A ⊑ ∃r.A1

α4 : ∃r.B2 ⊑ A2,

α5 : A3 ⊓A4 ⊑ B2 }.

and the signature Σ = {A, A1, A2, A3, A4, r}. Then, a uniform interpolant for

O and Σ could be

UOΣ = { β1 : A ⊑ ∃r.(A1 ⊓A2),

β3 : ∃r.(A3 ⊓A4) ⊑ A2 }.

Also, O \ {α3} is a deductive module for O and Σ, it is also a minimal module

because no proper subset of O \ {α3} is a deductive module. The above uniform

interpolant and deductive module are both general modules.
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3 - Computing Ontology Justifications

As stated in the introduction, justiőcations play an essential role in the study

of Description Logics. They have been widely explored for different tasks like

debugging ontologies [2, 3, 4, 37, 57, 34] and computing ontology modules [16,

13, 14]. In this chapter, based on a graph representation of EL+-ontologies,

we propose a method for computing all justiőcations for a given conclusion by

introducing a set of inference rules (called H-rules). The advantage of our setting

is that most of the time, it reduces the number of inferences (wrt H-rules) required

to derive a given conclusion. This accelerates the computation of justiőcations

relying on these inferences.

This chapter is organized as follows. First, we discuss related works in Section

3.1 and the motivation of our work in Section 3.2. Then, in Section 3.3, we

introduce our inference rules H-rule based on the hypergraph representation of

EL+-ontologies. In Section 3.4, we present the main algorithm minH for computing

all justiőcations based on our inference rules. Finally, we evaluate our method with

real-world ontologies in Section 3.5. The proofs of all results can be found in

Section 3.6.

3.1 . Related Work

In this section, we discuss some existing works whose purpose is to compute

justiőcations for a given conclusion. In this chapter, we always assume that O is

an EL+-ontology.

3.1.1 . Computing one justification

Let us start with the methods that compute one justiőcation for a given con-

clusion α. An easy way to compute one justiőcation is to remove redundant axioms

one by one. Here, an axiom β ∈ O is redundant if the given conclusion α can

still be derived from O without β (i.e., O \ {β} |= α). The details are shown in

Algorithm 1.

In Algorithm 1, whether J \ {β} |= β in Line 3 can be determined by efficient

reasoners such as ELK[36] and HermiT[25]. The complexity of Algorithm 1 depends

on the complexity of this entailment checking (i.e., whether J \ {β} |= β). For

EL+-ontologies, Algorithm 1 takes polynomial time as it is known that entailment

checking over EL+-ontologies takes polynomial time with respect to the size of

input ontology [6].

Note that Algorithm 1 is non-deterministic in the sense that we may obtain

different justiőcations of α depending on the enumeration order of axioms at Line

2 of Algorithm 1. For example:
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Algorithm 1 : Computing one justification

input : a conclusion α, an ontology O
output : a justification J of α

1 J ← O;
2 for each axiom β ∈ O do

3 if J \ {β} |= α then

4 J ← J \ {β}
5 end

6 end

7 return J

Example 31 Considering the ontology

O = { β1 : A ⊑ B,

β2 : A ⊑ C,

β3 : C ⊑ B },

and the conclusion

α = A ⊑ B.

Then the following two different computations are possible:

1. If we enumerate axioms in O in the order:

β1, β2, β3

at Line 2 of Algorithm 1, then the resulting justification of α output by

Algorithm 1 is {β2, β3};

2. If we enumerate axioms in O in the order:

β2, β3, β1

at Line 2 of Algorithm 1, then the resulting justification of α output by

Algorithm 1 is {β1}.

Therefore, different computation could leads to different resulting justifications.

3.1.2 . Computing all justifications

Compared to computing one justiőcation, computing all justiőcations is much

more complex and reveals itself to be a challenging problem [63]. In the worst

case, there might be exponentially many different justiőcations with respect to the

size of given ontology for a given conclusion α. Here is an example.
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Example 32 [62] Consider O to be the EL+-ontology consisting of the axioms

defined below:

A0 ⊑ A1, A0 ⊑ A2,

A2k−1 ⊑ A2k+1, A2k−1 ⊑ A2k+2, ( for 1 ≤ k ≤ n− 1)

A2k ⊑ A2k+1, A2k ⊑ A2k+2, ( for 1 ≤ k ≤ n− 1)

A2n−1 ⊑ A2n+1, A2n ⊑ A2n+1.

. . .

. . .

A0

A1

A2

A3

A4

A2n−3 A2n−1

A2nA2n−2

A2n+1

Figure 3.1: Graph representation of O

O can be represented by a graph as shown in Figure 3.1. Then O contains 4n

axioms, and there are 2n different justifications of the conclusion A0 ⊑ A2n+1.

There are mainly two approaches for computing all justiőcations for a given

conclusion, the black-box approach and the glass-box approach.

Black-box approach The simple idea shared by black-box methods [34, 33,

10] is to compute all the justiőcations by going through all possible sub-ontologies

of O that derive the given conclusion α. From each generated sub-ontology, they

extract a (new) justiőcation using Algorithm 1. Since Algorithm 1 only relies on

some existing reasoner, black-box approaches can be adapted easily to any existing

Description Logics as long as a reasoner is available.

For example, a naive black-box method could go through all subsets O and

őlter out those sub-ontologies that could not derive α. However, this requires doing

exponentially many checks since there are exponentially many different subsets of

O. Therefore, such a process could be highly time-consuming. Some search

strategies could be applied to help one accelerate this process. The main idea of

these strategies is to őlter out some redundant subsets according to the known

results. For example, if a justiőcation J has already been computed for the given

conclusion α, then no subsetO′ ⊂ J can be a justiőcation of α. Thus these subsets
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O′ should be ignored in future computations. Similarly, if it is known already that

M ̸|= α (i.e., M does not derive α) for a subset M ⊂ O, then obviously, any

subset of M should be ignored since they can not derive α. These optimizations

can signiőcantly reduce the number of subsets that need to be checked through

the computation process of all justiőcations using the naive method. There are

also other strategies for searching for new justiőcations, such as the one proposed

in [34] based on Reiter’s Hitting Set Tree. Details are referred to [30].

Glass-box Approach The glass-box approaches achieve better performance

than black-box approaches by taking advantage of the reasoning process. The

main drawback of glass-box approaches is that they are limited to less expressive

ontology languages such as EL+-ontologies. For expressive ontologies such as

ALC, the entire reasoning process could grow exponentially and make it hard to

tracking the reasoning process.

Among different glass-box approaches, SAT-based methods [2, 3, 4, 37, 57]

achieve the best performance. These SAT-based methods are based on an al-

gorithm that generates a new justiőcation different from known ones using SAT

tools. To be capable of using SAT tools, they compute a complete set (recall

Deőnition 25 on page 21) for the given conclusion, then encode this complete set

as Horn-clauses. Below, we propose a simple example that illustrates how those

methods proceeds.

Example 33 Let O be the EL+-ontology showed below:

O = { α1 : A ⊑ D,

α2 : D ⊑ ∃r.E,

α3 : E ⊑ F,

α4 : ∃t.F ⊑ B,

α5 : r ⊑ t,

α6 : G ⊑ C,

α7 : C ⊑ A

α8 : C ⊓B ⊑ G }.

Then, O |= G ⊑ D as for all models I of O, we have

• GI ⊆ CI by the axiom α6;

• CI ⊆ AI by the axiom α7;

• AI ⊆ DI by the axiom α1.

Let us show now how the SAT-based methods compute all justifications for

the conclusion G ⊑ D.
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Note that one could derive G ⊑ D by different proof systems, which leads

to different kinds of complete sets of G ⊑ D. Here, we use the proof system

defined by Table 2.1. Therefore, the complete set of G ⊑ D consists of inferences

generated by inference rules in Table 2.1.

The computation of justifications of G ⊑ D consists of 5 steps as follows.

Step 1 Compute the complete set of G ⊑ D with respect to Table 2.1. This

complete set consists of the following two inferences:

ρ1 = ⟨{α6, α7}, G ⊑ A⟩,

ρ2 = ⟨{G ⊑ A,α1}, G ⊑ D⟩,

Step 2 Encode inferences ρ1, ρ2 by a set of Horn-clauses as follows. Map each

axiom occurring in ρ1, ρ2 to a (propositional) variables through the map f

defined below:

f(α6) = p1,

f(α7) = p2,

f(α1) = p3,

f(G ⊑ A) = p4,

f(G ⊑ D) = p5.

The variables p1,p2,p3 corresponding to axioms α6, α7, α1 ∈ O are called

answer variables. To distinguish answer variables from other literals, an-

swers literals p1,p2,p3 are written in bold. The literals based on answer

variables are called answer literals (e.g., p1, ¬p1).

Now, the inferences ρ1, ρ2 can be encoded by the following set of Horn-

clauses:

C = {¬p1∨¬p2∨p4, ¬p4∨¬p3∨p5}.

Step 3 Find all justifications of G ⊑ D using SAT tools as follows. Let

C0 = {p1,p2,p3}, C1 = C ∪ {¬p5}.

Here, p5 is the variable corresponding to the conclusion G ⊑ D. Then,

all justifications of G ⊑ D are equivalent to minimal unsatisőable subsets

S ⊆ C0. That is, S is a minimal subset in C0 that satisfies (i) S ∪ C1 is

unsatisfiable; and (ii) for any proper subset S′ ⊂ S, S′ ∪ C1 is satisfiable.

Specifically, it holds that S ⊆ C0 is a minimal unsatisfiable subset of C0, C1
iff

MS := {g−1(p) | p ∈ S}

is a justification of G ⊑ D. Therefore, all justifications of G ⊑ D can be

computed by enumerating all minimal unsatisfiable subsets in S ⊆ C0 using

SAT tools.

In this simple example, the unique minimal unsatisfiable subset is S0 = C0,
and thusMS0

= {α1, α6, α7} is the unique justification of G ⊑ D.
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One could derive the given conclusion using different proof systems (e.g., [35],

[25]), which leads to different complete sets for the same conclusion. To accelerate

the process of searching new justiőcations (i.e., Steps 3 and 4 in the above ex-

ample), many different SAT-based methods have been explored (e.g., Beacon [2],

EL2MCS [3], SATPin [57]) using different SAT tools.

Compared to the Black-box approach, the SAT-based approach has mainly two

advantages:

1. They record the reasoning process as Horn-clauses.

2. Their computation could beneőt from the highly optimized SAT tools.

However, it should be noting that most SAT tools employ a hitting-set proce-

dure [51] to enumerate minimal unsatisőable subsets, which involves computing

a byproduct known as the minimal correction subset [51]. This introduces some

redundancy in the process. To get rid of such redundancy, the state-of-the-art

method PULi proposed a method that generates justiőcations using resolution.

This method allows for a more efficient enumeration of all justiőcations. We illus-

trate how PULi [37] proceeds by the following example.

Example 34 (Example 33 cont’d) Next, we compute all justifications of the con-

clusion G ⊑ D as in PULi. First, we compute a complete set and encode it by the

Horn-clause set C given in Example 33. Then, PULi enumerates all justifications of

G ⊑ D by resolution over C as follows. Recall that p5 is the propositional variable

corresponding to the given conclusion G ⊑ D.

Step 1 We do resolution exhaustively over

C ∪ {¬p5}

by applying the following resolution rule exhaustively for all variable p that

occurring in C ∪ {¬p5}:
¬p ∨ c1, p ∨ c2

c1 ∨ c2
,

Denote the resulting Horn-clauses set as C∗. In this example, we have

C∗ = C ∪ { ¬p5,

p1∨¬p2∨¬p3 ∨ p5,

¬p3∨¬p4,

¬p1∨¬p2∨¬p3 }.

Step 2 According to [37], every justification of G ⊑ D corresponds to a clause

c ∈ C∗ such that:

(a) c contains only answer literals;
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(b) c is minimal. I.e., there is no other clause c′ ∈ C∗ such that c ̸= c′

and all the literals in c′ are also in c.

In this simple example, there is only one Horn-clause ¬p1∨¬p2∨¬p3 in C∗

that satisfies those two requirements. Therefore, the set of all justifications

of G ⊑ D is

{{α1, α6, α7}},

where α6, α7, α1 are axioms encoded by the answer variables p1, p2, p3

respectively.

3.2 . Motivation of Our Method

In the real world, ontologies are always huge. For instance, the Snomed CT

ontology contains more than 300,000 axioms. As a result, the complete set of a

given conclusion could be extremely large, making it challenging to extract all the

justiőcations over them even with efficient SAT tools or resolution. Therefore, one

may consider to accelerate the computation of justiőcations by reducing the size

of the complete set. One way to do that is to identify, for a given conclusion, a

particular part of the ontology relevant to the given conclusion. For example, one

can extract a small sub-ontology (e.g., a locality-based module[27]) that preserves

all the justiőcations for a given conclusion. Also, one could őlter out redundant

inferences that do not contribute to the derivation of the given conclusion (e.g.

using a goal-directed tracing algorithm [35]). Another way is to develop a new proof

system that produces more concise complete sets for the given conclusion. For

example, the state-of-the-art algorithm, PULi [37] uses the proof system proposed

in [36]. Their experiments on real-world ontologies show that their proof system

generates more concise complete sets than others.

However, for the simple ontology

O = {A1 ⊑ A2, A2 ⊑ A3, . . . , An−1 ⊑ An}

and the conclusion A0 ⊑ An, the complete set of A0 ⊑ An computed by proof

systems deőned in Table 2.1 contains at least n − 1 inferences. This complete

set can not be reduced further, even with the previously mentioned optimizations.

From this observation, we decided to explore a new method to handle such situation

better.

Our motivation comes from the following observations. Let us look carefully

at the ontology O above. If we regard each Ai as a graph node NAi
, then we can

associate to O a directed graph GO, which consists of edges of the form

NAi
→NAi+1

.

It turns out that each justiőcation for the conclusion A0 ⊑ An is equivalent to a

path from NA0
to NAn

in GO, and here we have only one such path. Thus, we can
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compute all justiőcations of A0 ⊑ An by an efficient algorithm that outputs paths.

We can easily extend this idea to general EL+-ontologies because most of the EL+-

axioms can be interpreted as direct edges. However, there is one case deserves to

introuduce hyperedges. That is, for axioms of the form B1 ⊓ . . . ⊓ Bn ⊑ A (see

Deőnition 37). This example inspired us to explore a new proof system based

on a hypergraph representation of EL+-ontologies. Roughly, our proof system

consists of inferences rules that are built from elementary paths (i.e., directed

paths consist of directed edges) of the hypergraph. Based on these inference rules,

we reformulate justiőcations to particular paths called H-paths. Then, computing

all the justiőcations for a given conclusion is made using such H-paths.

Our new proof system create a more concise complete set for a given conclusion.

For example, the complete set of the previous ontology O and the conclusion

A0 ⊑ An is now reduced to two inferences (no matter the value of n):

1. The őrst inference states that all the justiőcations of A0 ⊑ An are elemen-

tary paths from node NA0
to node NAn

in the corresponding hypergraph of

O;

2. The second inference represents the unique elementary path from NA0
to

NAn
.

By using this new proof system, we develop for EL+ a new SAT-based glass-

box method for computing all justiőcations of a given conclusion. The source of

the improvement provided by our method is twofold. On the one hand, it comes

from the fact that the elementary paths are pre-computed while extracting the

inferences and that the existing algorithms like depth-őrst search can efficiently

compute such paths. On the other hand, yet as a consequence, decreasing the size

of the complete sets of inferences leads to smaller inputs for SAT tools. Therefore,

we can accelerate the extraction of justiőcations from the complete set.

3.3 . Hypergraph-based Inference Rules

3.3.1 . Hypergraph

A (directed) hypergraph [5] H = {V, E} consists of a őnite node set V =

{v1, v2, . . ., vn} and an őnite edge set E = {e1, e2 . . . , em}, ei = (T (ei), f(ei)),

where T (ei) ⊆ V is a subset and f(ei) ∈ V is a node.

Definition 35 Given a hypergraph H = {V, E}, assume S ⊆ V and v ∈ V . A

hyper-path from S to v is a sequence h = [e1, e2, . . . , en] of hyperedges satisfying:

1. f(en) = {v};

2. for i = 1, . . ., n, T (ei) ⊆ S ∪ {f(e1; . . . , f(ei−1))};

3. for i = 1, . . ., n, f(ei) ∈
⋃

i<j≤n T (ej).

30





N∃s.A Nt
Nr

N∃r.A

NANA

NA NB

N∃r.B

NsNsNr

N∃r.B

1. 2.

3. 4.

5. 6.

NA

NB1

NBm

⋅⋅⋅
NB2

Figure 3.3: Illustration of hyperedges

Example 38 Consider the EL+-ontology O defined by

O={ α1 : A ⊑ D,

α2 : D ⊑ ∃r.E,

α3 : E ⊑ F,

α4 : ∃t.F ⊑ B,

α5 : r ⊑ t,

α6 : G ⊑ C,

α7 : C ⊑ A

α8 : C ⊓B ⊑ G }.

Then, the hypergraph GO associated to O is shown in Figure 3.4, where

e0 = ({NC}, {NA}),

e1 = ({NA}, {ND}),

e2 = ({ND}, {N∃r.E}),

and so on. We also have

g−1(e0) = C ⊑ A,

g−1(e1) = A ⊑ D,

g−1(e2) = D ⊑ ∃r.E,
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Figure 3.4: The hypergraph associated with the ontology O.

As for standard graphs, a path (next called regular path) from nodes N1 to

N2 in a hypergraph is a sequence of edges:

e0 = (S0
1 , S

0
2), e1 = (S1

1 , S
1
2), . . . , en = (Sn

1 , S
n
2 ) (3.1)

where S0
1 = {N1}, S

n
2 = {N2} and Si−1

2 = Si
1, 1 ≤ i ≤ n. Next, the existence

of a regular path from NX to NY in a hypergraph GO is denoted

NX⇝NY .

For regular paths, we have the following result:

Proposition 39 Given O and its associated hyper-graph HO, if there exists a

regular path from NX to NY then O |= X ⊑ Y .

Proof. The proof is provided on page 50.

Now, we introduce hypergraph-based inferences which are based on the exis-

tence of regular paths as follows.

Definition 40 Given a hypergraph GO, Table 3.2 gives a set of inference rules

called H-rules. Inferences based on H-rules are called H-inferences. Next, we

denote by

GO ⊢h NX
h
⇝NY (or simply NX

h
⇝NY )

the fact that NX
h
⇝NY can be derived from GO using the H-inferences.

Example 41 (Example 38 cont’d) As shown in Figure 3.4, we have

NA ⇝ N∃r.E ,

NE ⇝ NF ,

N∃r.F ⇝ NB
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H0 :
NX⇝NY

NX
h
⇝NY

H1 :
NX

h
⇝NB1

, . . . , NX
h
⇝NBm

, NA⇝NY , ({NB1
, . . ., NBm

}, {NA})

NX
h
⇝NY

H2 :
NX

h
⇝N∃r.B1

, NB1

h
⇝NB2

, N∃r.B2
⇝NY

NX
h
⇝NY

H3 :
NX

h
⇝N∃r.A1

, NA1

h
⇝N∃s.A2

, N∃t.A2
⇝NY , ({Nr, Ns}, {Ns, Nt})

NX
h
⇝NY

Table 3.2: H-rules over GO = (VO, EO).

from the existence of regular paths. Then we can derive NA
h
⇝NB from GO by the

H-rules H0, H0 and H2 which generate the H-inferences ρ1, ρ2, ρ3, where

ρ1 = ⟨{NA⇝N∃r.E}, NA
h
⇝N∃r.E⟩ (H0)

ρ2 = ⟨{NE ⇝ NF }, NE
h
⇝NF ⟩ (H0)

ρ3 = ⟨{NA
h
⇝N∃r.E , NE

h
⇝NF , N∃r.F⇝NB}, NA

h
⇝ NB⟩ (H2)

Note that the őrst rule H0, the initialization rule, makes regular paths the

elementary components of H-rules. Moreover, Proposition 42 formally states that

our H-inference system does not need the transitive inference rule:

NX
h
⇝NZ , NZ

h
⇝NY

NX
h
⇝NY

.

Proposition 42 If GO ⊢h NX
h
⇝NZ and GO ⊢h NZ

h
⇝NY then GO ⊢h NX

h
⇝NY .

Proof. The proof is provided on page 50.

3.3.3 . Completeness and soundness of H-inferences

The following result is the main result of this section. It states the equivalence

of NX
h
⇝NY derivation (by Table 3.2) and ontology entailment for X ⊑ Y , and

thus states that our H-rules are sound and complete for EL+-ontology.

Theorem 43 If O is an EL+-ontology, then

O |= X ⊑ Y iff GO ⊢h NX
h
⇝NY ,

where X,Y are concepts of either form A or ∃r.B.

Proof. The proof is provided on page 52.
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3.3.4 . Extracting justifications from GO

Now, we formally deőne H-path as a hypergraph representation of classical

derivations based on H-rules. The reader should pay attention to the fact that

H-paths are not classical hyperpaths [22]. Next, for the sake of homogeneity, we

consider a regular path from NX to NY as the set of its edges and denote it as

PX,Y , P ′X,Y , . . . .

Definition 44 (H-paths) In the hypergraph GO, an H-path HX,Y from NX to

NY is a set of edges recursively generated by the following composition rules:

0. A regular path PX,Y is an H-path from NX to NY ;

1. If the following three conditions holds,

• e = ({NB1
, . . . , NBm

}, {NA}) ∈ VO;

• HX,Bi
are H-paths for i = 1..m;

• PA,Y is a regular path,

then

HX,B1
∪ . . . ∪HX,Bm

∪ PA,Y ∪ {e}

is an H-path from NX to NY ;

2. If the following two conditions holds,

• HX,∃r.B1
, HB1,B2

are H-paths;

• P∃r.B2,Y is a regular path,

then

HX,∃r.B1
∪HB1,B2

∪ P∃r.B2,Y

is an H-path from NX to NY ;

3. If the following three conditions holds,

• e = ({Nr, Ns}, {Ns, Nt}) ∈ VO;

• HX,∃r.A1
, HA1,∃s.A2

are H-paths;

• P∃t.A2,B is a regular path,

then

HX,∃r.A1
∪HA1,∃s.A2

∪ P∃t.A2,B ∪ {e}

is an H-path from NX to NY .
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which is the unique H-path from NA to NB. Thus, by Theorem 45, we have

{α1, α2, α3, α4, α5}

is the only justification for A ⊑ B.

3.4 . Implementation: Computing justifications

3.4.1 . Main algorithm

In this section, given an ontology O and its associated hypergraph GO, we

present minH (Algorithm 2) that computes all justiőcations for X0 ⊑ Y0 using the

minimal H-paths from NX0
to NY0

in GO. The algorithm minH proceeds in two

steps described below.

Algorithm 2 : minH

input : X ⊑ Y

output : J: JO(X ⊑ Y ).
1 J← ∅;

2 U ← CompleteH(NX
h
⇝NY );

3 min_hpaths← resolution(clauses(U));
4 for h ∈ min_hpaths do

5 if g−1(h’) ̸⊂ g−1(h) for any h’ ∈ min_hpaths then

6 J.add(g−1(h))
7 end

8 end

Step 1. First, at Line 2 of Algorithm 3, minH computes a complete set of

inferences U for NX0

h
⇝NY0

using CompleteH (i.e., Algorithm 3). Here, U is

complete set in the sense that for any H-path HX,Y , we can derive NX
h
⇝NY

using inferences in U from the edge set HX,Y .

The set U of inferences output by CompleteH consists of the following two

parts:

1. Line 3-12 of Algorithm 3: In this part, we őrst compute all H-inferences

whose conclusion is NX0

h
⇝NY0

using trace_one_turn (i.e., Algorithm 4),

where H-inferences generated by H-rules H1, H2, H3 are captured at line

2-7, line 8-13, line 14-17 of Algorithm 4, respectively.

We apply this process recursively until there are no new terms that emerge.

That is, for all new terms of the form NX1

h
⇝NY1

in the result of previous

computation, we apply of trace_one_turn with NX1

h
⇝NY1

as input and
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collect all the obtained H-inferences in U .

2. Line 13-17 of Algorithm 3: In this part, we add to U all new inferences

of the form

⟨{e1, e2, . . . , en}, NX2
⇝NY2

⟩,

where {e1, e2, . . . , en} is a regular path from NX2
to NY2

over GO such that

NX2
⇝NY2

appeared in U . Those new inferences capture all the possible

regular paths indicated by NX2
⇝NY2

. Here, the algorithm getPath in line

14 is the depth-őrst search algorithm that computes all regular paths from

NX to NY in GO with input (NX , NY ).

Algorithm 3 : CompleteH

input : NX
h
⇝NY

output : U : a complete set of inferences for NX
h
⇝NY .

1 U , history, Q← ∅ ; // Q is a queue

2 Q.add(NX
h
⇝NY );

3 while Q ̸= ∅ do

4 NX1

h
⇝NY1

← Q.takeNext();

5 history.add(NX1

h
⇝NY1

);

6 U ← U
⋃

trace_one_turn(NX1

h
⇝NY1

);

7 for NX2

h
⇝NY2

appearing in trace_one_turn(NX1

h
⇝NY1

) do

8 if NX2

h
⇝NY2

̸∈ history and NX2

h
⇝NY2

̸∈ Q then

9 Q.add(NX2

h
⇝NY2

)
10 end

11 end

12 end

13 for NX2
⇝NY2

appearing in U do

14 for p = {e1, e2, . . . , en} ∈getPath(NX2
, NY2

) do

15 U .add(⟨{e1, e2, . . . , en}, NX2
⇝NY2

⟩);
16 end

17 end

Step 2. Then Algorithm minH computes all justiőcations for X0 ⊑ Y0 as follows:

1. Line 3 of Algorithm 2: minH computes all minimal H-paths from NX0

to NY0
using resolution, which is developed by PULi (available at https:
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Algorithm 4 : trace_one_turn

input : NX
h
⇝NY

output : all H-inferences whose conclusion is NX
h
⇝NY .

1 result← ∅;
2 P1(X, Y )← {({NB1

, . . ., NBm
}, {NA}) ∈ E

O | O |= X ⊑ A ⊑ Y };
3 for ({NB1

, . . ., NBm
}, {NA}) ∈ P1(X, Y ) do

4 if path(NA, NY ) ̸= ∅ or Y = A then

5 result.add(⟨
{

NX
h
⇝NB1

, . . . , NX
h
⇝NBm

, NA⇝NY ,
(

{NB1
, . . ., NBm

}, {NA}
)

}

, NX
h
⇝NY ⟩) ;

6 end

7 end

8 P2(X, Y )← {(r, B1, B2) | O |= X ⊑ ∃r.B1, B1 ⊑ B2, ∃r.B2 ⊑ Y };
9 for (r, B1, B2) ∈ P2(X, Y ) do
10 if path(N∃r.B2

, NY ) ̸= ∅ or Y = ∃r.B2 then

11 result.add(⟨{NX
h
⇝N∃r.B1

, NB1

h
⇝NB2

, N∃r.B2
⇝NY }, NX

h
⇝NY ⟩);

12 end

13 end

14 P3(X, Y )← {(r, s, t, A1, A2) | r◦s ⊑ t ∈ O,
O |= X ⊑ ∃r.A1, A1 ⊑ ∃s.A2, ∃t.A2 ⊑ Y }; for (r, s, t, A1, A2) ∈
P3(X, Y ) do

15 if path(N∃t.A2
, NY ) ̸= ∅ or Y = ∃t.A2 then

16 result.add(⟨
{

NX
h
⇝N∃r.A1

, NA1

h
⇝N∃s.A2

, N∃t.A2
⇝NY ,

(

{Nr, Nt}, {Ns, Nt}
)

}

, NX
h
⇝NY ⟩);

17 end

18 end
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//github.com/liveontologies/pinpointing-experiments), over the

clauses generated from U as illustrated in Example 34. Here, a literal p is

associated with each edge e, each NX
h
⇝NY , and each NX⇝NY appeared

in U . The answer variables are those associated with edges.

2. Line 4-8 of Algorithm 2: minH computes justiőcations by mapping back

all the minimal H-paths and select the subset-minimal sets as stated in

Theorem 45.

By examining Deőnition 44 and CompleteH (i.e., Algorithm 3), we can establish

a direct mapping between the composition rules in Deőnition 44 and the steps of

CompleteH. Speciőcally, rules 1, 2, and 3 of Deőnition 44 correspond respectively

to lines 2-7, 8-13, and 14-17 of trace_one_turn (i.e., Algorithm 4), which is

exacurated in lines 6 of CompleteH. Rule 0, on the other hand, corresponds to

lines 15 of CompleteH. Therefore, we capture all minimal H-paths from NX to

NY by applying CompleteH and the resolution function in lines 2 and 3 of minH

(i.e., Algorithm 2), respectively.

As a direct consequence of Theorem 45, we obtain the following result:

Corollary 47 The minH algorithm computes all justifications for any subsumption

O |= X ⊑ Y over O.

Example 48 (Example 38 cont’d) Assume X0 = G and Y0 = D are the inputs

of minH. Then at line 2 of minH, we have U = {ρ1, ρ2}, where

1. ρ1 = ⟨{NG⇝ND}, NG
h
⇝ ND⟩ is the H-inference obtained by CompleteH

(line 3-12);

2. ρ2 = ⟨{e0, e1, e8}, NG ⇝ ND⟩ is produced from the regular paths obtained

by CompleteH (line 13-17).

Let us associate to each term of inferences in U the propositional variables

p0 : e0, p1 : e1, p2 : e8, p3 : NG⇝ND,

where p0,p1,p2 are answer variables. p4 : NG
h
⇝ND. The clause encoding the

inferences in U are

clauses(U) = {¬p3∨p4, ¬p0∨¬p1∨¬p2∨p3}.

By resolution over clauses(U), we obtain

min_hpaths = {{e0, e1, e8}}

at line 3 of minH. Then the output of minH is

J = {{α1, α6, α7}},

which is the set of all justifications (here, a unique justification) for G ⊑ D.
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3.5 . Experiments

To evaluate and validate our approach, we compare minH (a prototype available

at https://gitlab.lisn.upsaclay.fr/yang/minH) with PULi [37], the state-

of-the-art algorithm for computing justiőcations at this moment. Both methods

compute all justiőcations based on resolution but with different inference rules

generated in different ways. PULi uses a complete set (next denoted by elk)

generated by the ELK reasoner [36], whose inference rules are variant of those in

Table 2.1 and applicable for non-normalized EL+ ontologies. Our method uses

the complete set U generated by Step 1 of minH, described in Section 3.4.1. To

analyze the performance of our setting, we use the following two measures:

1. We compare the size of elk with that of U ;

2. We compare the time cost of PULi with that of minH.

All the experiments were conducted on a machine with an INTEL Xeon 2.6 GHz

and 128 GiB of RAM.

The experiments were processed with four different ontologies (available at

https://osf.io/9sj8n/, https://www.snomed.org/):

1. go-plus;

2. galen7;

3. SnomedCT (version Jan. 2015), denoted as snt2015;

4. SnomedCT (version Jan. 2021), denoted as snt2021.

All the non-EL+ axioms were deleted from those ontologies. Here, go-plus, galen7

are the same ontologies used in [37]. The number of axioms, concepts, relations,

and queries for each ontology are shown in Table 3.3.

Next a query refers to a direct subsumption A ⊑ B. We say A ⊑ B is a direct

subsumption iff O |= A ⊑ B and there is no concept name A′ ̸= A,B such that

O |= A ⊑ A′, A′ ⊑ B. Direct subsumptions are computed by a reasoner supporting

ontology classiőcation. In our experiments, for each of the four ontologies, the set

of all justiőcations JO(A ⊑ B) is computed for each query A ⊑ B. A query

A ⊑ B is called trivial iff all minimal H-paths from NA to NB are regular paths,

otherwise, the query is called non-trivial.

Comparing complete sets: U vs. elk

We summarize our results in Table 3.4 and Figure 3.7. Table 3.4 shows that on

all four ontologies, U is much smaller than elk on average. Especially on galen7,

the difference between elk and U is even up to 50 times. The gap is even more

signiőcant for the median value since a large part of the queries is trivial. However,
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go-plus galen7 snt2015 snt2021

#axioms 105557 44475 311466 362638

#concepts 57173 28482 311480 361226

#roles 157 964 58 132

#queries 90443 91332 461854 566797

Table 3.3: Summary of sizes of the input ontologies.

go-plus galen7 snt2015 snt2021

elk

average 166.9 3602.0 114.7 67.3

median 43 3648 10 31

max 7919 81501 2357 2226

U
average 34.2 74.6 29.4 19.4

median 4 5 1 3

max 7772 24103 2002 6452

#non-trivial query 50272 62470 195082 304321

Table 3.4: Summary of sizes of elk, U .

the gap is much smaller for the maximal size. On snt2021, the largest U is three

times larger in size than that of elk.

In Figure 3.7, for a given query, if the complete set elk contains fewer inference

rules than U , the corresponding blue point is below the red line. The percentage

of such cases are:

• 0.34% for go-plus;

• 0.066% for galen7;

• 0.79% for snt2015;

• 1.01% for snt2021.

It means that for most of the queries, the corresponding U is smaller than elk.

As shown in Table 3.4 and in Figure 3.7, sometimes minH generates bigger

complete sets U than PULi. It may happen when, for example, there might be

exponentially many different regular paths resulting from the computation process

of minH. Also, U can be bigger than elk when the regular paths involved are simple.

For example, if most regular paths contain only one edge, then the complete set

U includes many clauses of the form

¬pe ∨ pNA⇝NB
,
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threshold top down bottom up

total times(s)
(PULi/minH)

go-plus 8482.7/7350.3 16352.3/8935.6 73629.1/17950.9

galen7 10796.2/3681.4 43372.9/10607.9 36300.9/3156.3

snt2015 1956.8/973.5 13650.7/1107.6 15058.3/11392.2

snt2021 2116.1/2222.6 11573.9/2361.6 19402.1/17154.9

timed-out queries

(PULi/minH/both)

go-plus 116/103 /93 202/117/114 935/223/223

galen7 48/43/43 370/123/120 228/38/38

snt2015 0/3/0 49/3/3 96/88/83

snt2021 2/8/1 39/9/9 144/133/128

Table 3.5: Total time cost and number of timed-out queries.
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in [37]. We summarize in Table 3.5 the total time cost (top) and the timed-out

queries (bottom). Figure 3.8 gives the comparisons over queries that are successful

both for minH and PULi.

As shown in Table 3.5, when using the threshold strategy, minH is more time

consuming in total (+5%) on snt2021, and minH has more timed-out queries than

PULi on snt2015 and snt2021. This is in part due to the fact that U is larger

than elk for relatively many queries on snt2015 and snt2021 as shown in Figure

3.7. For the remaining 11 cases, minH performs better than PULi in terms of total

time cost and the number of timed-out queries. Especially on galen7, the gap

between the two methods is even up to ten times for the total time cost. We can

see from Table 3.5 that the threshold strategy performs the best for PULi on all

four ontologies. This strategy is also the best strategy for minH except for galen7,

for which the bottom up strategy is the best for minH.

For each strategy detailed in Figure 3.8, the black curve (the ordered time

costs of minH on successful queries) is always below the red curve (the ordered

time costs of PULi on successful queries) for all the ontologies. This suggests that

minH spends less time over successful queries. Also, most of the green points are

below the red lines, which suggests that minH performs better than PULi most of

the time for a given query. In some cases, we can see that PULi is more efficient

than minH. One of the reasons might be as follows. Note that when computing

justiőcations by resolution, we have to compare two different clauses and delete

the redundant one (i.e., the non-minimal one). If too many long regular paths

occur, minH might be time-consuming because of these comparisons.

Figure 3.9 shows the relation between the size of the complete set and time

cost for computing justiőcations. In every sub-őgure of Figure 3.9, each blue point

represents a test signature with

1. the log value of the size of the complete set U generated by minH (resp.

elk generated by PULi) as the x-coordinate;

2. the log value of the time-cost of minH (resp. PULi), using threshold strat-

egy, as the y-coordinate.

The red line represents the linear regression result for those blue points. When the

complete set is not so big, we can see that the log value of the time cost grows

linear with respect to the log value of the size of the generated complete set for

both minH and PULi. Therefore, the time cost growth polynomially with respect

to the size of complete set since we have:

log t = k · log s+ b⇒ t = eb · sk.

However, in the extreme case when the complete set is big enough, the log

value of the time cost could grow exponentially with respect to the log value size of

the generated complete set. Therefore, when the complete set is big enough, the
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time cost growth exponentially with respect to of the size of complete set since:

log t = elog s ⇒ t = es.
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3.6 . Proofs

Proposition 49 Given O and its associated hyper-graph HO, if there exists a

regular path from NX to NY then O |= X ⊑ Y .

Proof. Assume we have a regular path like Equation 3.1 (page 33) from NX to NY ,

then we can find a sequence {Xi}
n
i=0 such that

X0 = X,Xn = Y and NXi
∈ Si−1

2 ∩Si
1, 1 ≤ i ≤ n.

Then NXi−1
∈ Si

1, NXi+1
∈ Si

2 for all 1 ≤ i ≤ n. By the construction of hyper-edges,

we know that for any model I of O,XI
i−1 ⊆ XI

i . Therefore,

XI
0 ⊆ XI

n

for all models I of O, so O |= X0 ⊑ Xn, i.e., O |= X ⊑ Y.

Proposition 50 If GO ⊢h NX
h
⇝NZ and GO ⊢h NZ

h
⇝NY then GO ⊢h NX

h
⇝NY .

In the following, when GO ⊢h NZ
h
⇝NY , we denote by dH(Z, Y ) the length of

the smallest derivation(s) of NZ
h
⇝NY using the H-rules of Table 3.2 (page 34).

We have dH(Z, Y ) ≥ 1.

Proof. The proof of Proposition 42 is done by induction on dH(Z, Y ).

1. Assume dH(Z, Y ) = 1. Then NZ
h
⇝NY is inferred through H0, and therefore

NZ⇝NY .

Assume NX
h
⇝NZ is derived by a sequence of inferences ρ1, ρ2, . . . , ρn. Then

ρn is of the form

⟨{. . . , NX′⇝NZ}, NX⇝NZ⟩.

We have NX′⇝NY because NZ⇝NY . Therefore, we can obtain a new infer-

ence ρnew by replacing Z by Y in NX′⇝NZ , NX⇝NZ . Then ρnew has the fol-

lowing form

⟨{. . . , NX′⇝NY }, NX⇝NY ⟩.

Therefore, we have GO ⊢h NX
h
⇝NY becauseNX

h
⇝NY is derived by the infer-

ence sequence

ρ1, ρ2, . . . , ρn−1, ρnew.

Proposition 42 is proved when dH(Z, Y ) = 1.

2. Assume that Proposition 42 holds for dH(Z, Y ) < k. Let us prove it holds

for dH(Z, Y ) = k. Assume again that

ρ1, ρ2, . . . , ρn

is one shortest inference sequence that derive NZ
h
⇝NY .

If ρn is of typeH0, then NZ⇝NY and it has been proved.

If not, there are 3 different cases:
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(a) ρn is of typeH1. Then

ρn = ⟨{NZ
h
⇝NA1

, . . . , NZ
h
⇝NAm

, NA0
⇝NY ,

({NA1
, NA2

, . . . , NAm
}, {NA0

})}, NZ⇝NY ⟩

NZ
h
⇝NAi

can be derived using inferences ρ1, ρ2, . . . , ρn−1, and thus we

have dH(Z,Ai) < k. By assumption, we have GO ⊢h NX
h
⇝NAi

because

GO ⊢hNX
h
⇝NZ ,

GO ⊢hNZ
h
⇝NAi

and dH(Z,Ai) < k.

Then we can derive NX
h
⇝NY by first deriving NX

h
⇝NAi

, then applying

the following inference

ρnew = ⟨{NX
h
⇝NA1

, . . . , NX
h
⇝NAm

, NA0
⇝NY ,

({NA1
, NA2

, . . . , NAm
}, {NA0

})}, NX⇝NY ⟩

Therefore, we have GO ⊢h NX
h
⇝NY .

(b) ρn is of typeH2. Then

ρn = ⟨{NZ
h
⇝N∃r.B1

, NB1

h
⇝NB2

, N∃r.B2
⇝NY }, NZ⇝NY ⟩

NZ
h
⇝N∃r.B1

can be derived using inferences ρ1, ρ2, . . . , ρn−1, and thus

we have dH(Z, ∃r.B1) < k.

By assumption, we know GO ⊢h NX
h
⇝N∃r.B1

because

GO ⊢hNX
h
⇝NZ ,

GO ⊢hNZ
h
⇝N∃r.B1

and dH(Z, ∃r.B1) < k.

Then NX
h
⇝NY can be derived by

• first deriving NX
h
⇝N∃r.B1

, NB1

h
⇝NB2

;

• then applying the following inference

ρnew = ⟨{NX
h
⇝N∃r.B1

, NB1

h
⇝NB2

, N∃r.B2
⇝NY }, NX⇝NY ⟩

Therefore, we have GO ⊢h NX
h
⇝NY .

(c) ρn is of typeH3. Then

ρn = ⟨{NZ
h
⇝N∃r.A1

, NA1

h
⇝N∃s.A2

, N∃t.A2
⇝NY ,

({Nr, Ns}, {Ns, Nt})}, NZ⇝NY ⟩

NZ
h
⇝N∃r.A1

can be derived using inferences ρ1, ρ2, . . . , ρn−1, and thus

dH(Z, ∃r.A1) < k. By assumption, we have

GO ⊢h NX
h
⇝N∃r.A1

because GO ⊢h NX
h
⇝NZ , GO ⊢h NZ

h
⇝N∃r.A1

and dH(Z, ∃r.A1) < k .

Then we can derive NX
h
⇝NY by:
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• first deriving NX
h
⇝N∃r.A1

, NA1

h
⇝N∃s.A2

;

• then applying the following inference

ρn = ⟨{NX
h
⇝NA1

, . . . , NX
h
⇝NAm

, NA0
⇝NY ,

({NA1
, NA2

, . . . , NAm
}, {NA0

})}, NX⇝NY ⟩

Therefore, we have GO ⊢h NX
h
⇝NY .

The proposition is proved by induction.

Theorem 51 If O is an EL+-ontology, then

O |= X ⊑ Y iff GO ⊢h NX
h
⇝NY ,

where X,Y are concepts of either form A or ∃r.B.

Proof. “⇐" is obvious by induction over Table 3.2 and the fact that NX⇝NY implies

O |= X ⊑ Y , so we only need to prove the direction “⇒".

Next,O ⊢ X ⊑ Y meansX ⊑ Y can be derived fromO using Table 2.1 (page 19).

Recall that we have O |= X ⊑ Y iff O ⊢ X ⊑ Y whenX and Y are concept names.

Assume that O |= X ⊑ Y . We consider two cases:

Case 1. We assumeO ⊢ X ⊑ Y Let d(X,Y ) be the length of one shortest deriva-
tion ofX ⊑ Y from O using Table 2.1. We prove “⇒" by induction on d(X,Y ).

1. Assume d(X,Y ) = 0. In this case O must contain axioms of the form

X ⊑ Y.

We have NX⇝NY thus GO ⊢h NX
h
⇝NY .

2. Assuming “⇒" holds when d(X,Y ) < k, we prove “⇒" also holds when

d(X,Y ) = k.

Suppose ρlast is the last inference in one shortest derivation of X ⊑ Y using

Table 2.1. Four cases arise:

(a) ρlast is generated byR1 (n > 1). Then

ρlast = ⟨{X ⊑ A1, . . ., X ⊑ An, A1 ⊓ . . . ⊓An ⊑ Y },

X ⊑ Y ⟩.

We have d(X,Ai) < k, i = 1, 2, . . . , n because their corresponding sub-

sumptions can be derived without ρlast.

By the assumption, we have

GO ⊢h NX
h
⇝NAi

, i = 1, 2, . . . , n.

Then we can derive NX
h
⇝ NY by first deriving

NX
h
⇝NAi

, i = 1, 2, . . . , n,
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then applying the H-inference:

ρn = ⟨{NX
h
⇝NA1

, . . . , NX
h
⇝NAm

, NY⇝NY ,

({NA1
, NA1

, . . . , NAm
}, {NY })},

NX⇝NY ⟩

Then GO ⊢h NX
h
⇝NY .

(b) ρlast is generated byR1(n = 1) orR2. Then, in each case, we have ρ
last

has the form

⟨{X ⊑ Z,Z ⊑ Y }, X ⊑ Y ⟩.

Then, we have d(X,Z), d(Z, Y ) < k. By the assumption, we have

GO ⊢h NX
h
⇝NZ ,

GO ⊢h NZ
h
⇝NY .

Then GO ⊢h NX
h
⇝NY by Proposition 42.

(c) ρlast is generated byR3. Then

ρlast = ⟨{X ⊑ ∃r.B1, B1 ⊑ B2, ∃r.B2 ⊑ Y }, X ⊑ Y ⟩.

We have

d(X, ∃r.B1), d(B1, B2), d(∃r.B2, Y ) < k

because their corresponding subsumptions can be derivedwithout ρlast.

By the assumption, we have

GO ⊢h NX
h
⇝N∃r.B1

,

GO ⊢h NB1

h
⇝NB2

,

GO ⊢h N∃r.B2

h
⇝NY .

Then we can derive GO ⊢h NX
h
⇝ N∃r.B2

by:

i. first deriving NX
h
⇝N∃r.B1

, NB1

h
⇝NB2

;

ii. then applying H-inference:

ρnew = ⟨{NX
h
⇝N∃r.B1

, NB1

h
⇝NB2

,N∃r.B2
⇝N∃r.B2

},

NX
h
⇝N∃r.B2

⟩.

Then GO ⊢h NX
h
⇝NY by Proposition 42 because

GO ⊢h NX
h
⇝N∃r.B2

,

GO ⊢h N∃r.B2

h
⇝NB .

(d) ρlast is generated byR4. Then we have ρlast has the form

⟨{X ⊑ ∃r1.A1, . . . , An−1 ⊑ Y, r1◦ . . . ◦rn ⊑ r}, X ⊑ Y ⟩,
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whereX = A0, Y = ∃rn.An. Then, wehave d(A0 ⊑ ∃r1.A1), . . . , d(An−1 ⊑
∃rn.An) < k. By the assumption, we have

GO ⊢h NAi

h
⇝N∃ri.Ai+1

, ∀1 ≤ i < n.

Note that we have n ∈ {1, 2} sinceO is normalized. We can derive GO ⊢h

NX
h
⇝ NY as follows. First, we deriveNAi

h
⇝N∃ri.Ai+1

, ∀1 ≤ i < n. Then,

two cases arise:

i. if n = 1, we have GO ⊢h NX
h
⇝ NY by Proposition 42 and the fact

that GO ⊢h N∃r1.A1
⇝N∃r.A1

since r1 ⊑ r.

ii. if n = 2, we derive GO ⊢h NX
h
⇝ NY by applying the H-inference:

ρnew = ⟨{NX
h
⇝N∃r1.A1

, NA1

h
⇝N∃r2.A2

, N∃r2.A2
⇝NY ,

({Nr1 , Nr2}, {Nr2 , Nr1})}, NX⇝NY ⟩,

where Y = ∃r2.A2.

Case 2. If O ⊢ X ⊑ Y does not hold, then X or Y is not concept name. In this

case, we introduce new axioms

A ⊑ X,

X ⊑ A,

B ⊑ Y,

Y ⊑ B

with new concept names A,B and denote the extended ontology by O′. Then, O′ |=
A ⊑ B and thus O′ ⊢ A ⊑ B since Table 2.1 is sound and complete. Therefore,

we have GO′ ⊢h NA
h
⇝NB by the same arguments as above. Now, notice that GO′ is

obtained from GO by adding 4 edges:

({NA}, {NX}),

({NX}, {NA}),

({NB}, {NY }),

({NY }, {NB}).

Thus, we have GO′ ⊢h NA
h
⇝NB iff GO ⊢h NX

h
⇝NY .

Theorem 52 Let X,Y be of either form A or ∃r.B. Let

S = {g−1(HX,Y ) | HX,Y is a minimal H-path from NX to NY }.

Then we have

JO(X ⊑ Y ) = {s ∈ S | s′ ̸⊂ s, ∀s′ ∈ S}.

That is, all justifications for X ⊑ Y are the minimal subsets in S.
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Proof. For any justification O′ of X ⊑ Y , there exists a minimal H-path HX,Y such

that O′ = g−1(HX,Y ). The reason is that, since O′ |= X ⊑ Y , there exists an H-

pathHX,Y fromNX toNY on GO′ by Theorem 43. Without loss of generality, we can

assumeHX,Y isminimal on GO′ , then it is alsominimal on GO since GO′ is a sub-graph

of GO. We have

O′ = g−1(HX,Y )

because otherwise there exists O′′⊊O′ such that O′′ = g−1(HX,Y ), and thus O′′ |=
X ⊑ Y by Theorem 43 again. Therefore, O′ is not a justification. Contradiction.

Now, we know S contains all justifications forX ⊑ Y . Moreover, we have

g−1(HX,Y ) |= X ⊑ Y

for any H-pathHX,Y . Therefore, we have

JO(X ⊑ Y ) = {s ∈ S | s′ ̸⊂ s, ∀s′ ∈ S}

by the definition of justifications.
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4 - Computing Deductive Modules

As stated in the introduction, deductive modules provide users with a concise

view of an ontology and has been used for various areas, like ontology debugging [2],

re-use [32], and forgetting [49]. However, existing deductive module proposals are

either inefficient from a computing point of view, or unsatisfactory from a quality

point of view since the modules extracted are not concise enough. For example,

minimal modules [16] guarantee the most concise results, but their computation

suffer from high complexity and are time-consuming in practice. In contrast, ⊤⊥∗-

modules [27] are easy to compute, but usually, they contain many redundant items.

To overcome the computation cost and the lack of quality, we propose to

calculate two different kinds of deductive modules, called pseudo-minimal mod-

ules and complete modules, for EL-ontologies. Complete modules are deductive

modules that containing all minimal modules (recall Deőntion 75 on page 73). In

contrast, the deőnition of pseudo-minimal module relies on associating a forest

(i.e., collection of trees) for a given ontology and a given vocabulary (i.e., signa-

ture). Pseudo-minimal modules are indeed minimal modules when there are őnitely

many entailments over a given vocabulary. Complete modules are less concise than

pseudo-minimal modules, but easier to compute.

To compute these deductive modules, we propose a SAT-based method, called

ForMod, based on Horn-clause encoding. For our experiments on real-world ontolo-

gies, the pseudo-minimal modules are indeed minimal in almost all cases (98.9%),

and computing pseudo-minimal modules are more efficient (99.79 times faster on

average) than Zoom, which is the state-of-the-art method for computing all mini-

mal modules. This implies that our pseudo-minimal modules are of good quality

and can be computed more efficiently. Note that our proposal applies to EL-

ontologies while Zoom only works for acyclic EL-terminologies, which are speciőc

EL-ontologies (recall Deőnition 17 on page 18). Moreover, our complete modules

are more compact than ⊤⊥∗-modules, although their computation time remains

comparable.

This chapter is organized as follows. First, in Section 4.1, we discuss some

works related to computing deductive modules. Then, in Section 4.2, we introduce

our notion of forest, which is the core of deőnition of pseudo-minimal modules in

Section 4.3. In Section 4.4, we present our method ForMod, which computes all

pseudo-minimal modules and one complete module based on Horn-clause encoding

for the construction of the forest. Then, in Section 4.5, we validate our method

with real-world ontologies. Finally, the proofs of all theoretical results are provided

in the last section of this chapter.

4.1 . Related work
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We can distinguish two classes of deductive modules. The őrst class is the mini-

mal modules [16, 48]. Minimal modules are of good quality as they do not contain

any redundant terms. However, they suffer from high complexity (2-EXPTIME

[28]) and are indeed time-consuming in practice [16, 48]. The second class is

syntactical locality-based modules such as ⊤⊥∗-modules [69], CEL[71], MEX [41]

and AMEX [24]. Their main idea is to compute a deductive module based on

local syntactic structures efficiently (e.g., PTIME for ⊤⊥∗-module [69]). However,

they usually contain many redundant axioms and thus are of bad quality. In this

chapter, we are focusing on computing small deductive modules. Therefore, next,

we only present details of related works focusing on computing minimal modules.

Recall that a deductive module for an ontology O and a signature Σ is a

sub-ontology M ⊆ O such that cDiffΣ(O,M) = ∅. In the literature, there are

mainly two different methods developed in order to compute minimal modules for

a given signature Σ.

Minimalmodules for EL-ontologies The őrst method is the recursive al-

gorithm Zoom[16], which computes all minimal modules for acyclic EL-terminologies.

The main idea is based on the primitive witnesses theorem stated as below.

Theorem 53 (primitive witnesses theorem [40]) Given two EL-terminologies

O1,O2 and a signature Σ, if there exists an axiom C ⊑ D ∈ cDiffΣ(O1,O2),

then there exists an concept name A ∈ sig(C ⊑ D) such that one of the following

properties hold:

1. C ⊑ A ∈ cDiffΣ(O1,O2);

2. A ⊑ D ∈ cDiffΣ(O1,O2).

As a result of the primitive witnesses theorem, to compute deductive modules,

one needs only to focus on preserving the derivability of axioms of the form C ⊑ A

and A ⊑ D. In other words, ifM⊆ O is a minimal sub-ontology such that

1. M |= C ⊑ A if O |= C ⊑ A,

2. M |= A ⊑ D if O |= A ⊑ D,

for any concept name A ∈ Σ, EL-concepts C,D such that sig(C) ∪ sig(D) ⊆ Σ,

then cDiffΣ(O,M) is an empty set by the primitive witnesses theorem. Therefore,

such a sub-ontologyM is a minimal module for O and Σ.

To capture all axioms C ⊑ A, A ⊑ D that are inferred by O, Zoom introduces

two different kinds of modules, called subsumee justification and subsumer justi-

fication. Each subsumee (or subsumer) justiőcation is associated with a concept

A ∈ NC and a signature Σ ⊆ NC ∪ NR as follows:

• a ⟨A,Σ⟩-subsumee justiőcation for O is a minimal sub-ontology M ⊆ O

such that for any axiom α := C ⊑ A, sig(C) ⊆ Σ, we have M |= α if

O |= α.
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• a ⟨A,Σ⟩-subsumer justiőcation for O is a minimal sub-ontology M ⊆ O

such that for any axiom α := A ⊑ D, sig(D) ⊆ Σ, we have M |= α if

O |= α.

To compute all subsumee and subsumer justiőcations, Zoom adapts a logical differ-

ence algorithm proposed in [53] that computes logical difference cDiffΣ(O1,O2)

(recall Section 2.5 on page 21) between two EL-terminologies O1,O2. Then,

Zoom computes all minimal modules by combining all ⟨A,Σ⟩-subsumee and ⟨A,Σ⟩-

subsumer justiőcations for all A ∈ Σ. In details, let J←O (A,Σ), J→O (A,Σ) be the

collection of all ⟨A,Σ⟩-subsumee, ⟨A,Σ⟩-subsumer justiőcations for O and Σ re-

spectively. Then all minimal modules for the ontology O and the signature Σ are

minimal sub-ontologies in the following collection:

⊗

A∈Σ

(

J←O (A,Σ)
⊗

J→O (A,Σ)

)

,

where
⊗

is the product of two collections of sets deőned by:

S
⊗

S ′ = {S ∪ S′ | S ∈ S, S′ ∈ S ′}.

Example 54 Let us consider the ontology O below:

O = { α1 : Y ⊓ Z ⊑ A,

α2 : A ⊑ Y,

α3 : Y ⊑ B,

α4 : Z1 ⊓ Z2 ⊑ Z,

α5 : A1 ⊑ Y,

α6 : A2 ⊑ Z,

α7 : A2 ⊑ Z1,

α8 : A2 ⊑ Z2 },

and the signature Σ = {A1, A2, B}. Note that O |= A1 ⊓A2 ⊑ A is a conclusion

of the form O |= C ⊑ A with C = A1 ⊓A2 and sig(C) ⊆ Σ.

In this example, a sub-ontology M is a ⟨A,Σ⟩-subsumee justification iff it

is a minimal sub-ontology such that M |= A1 ⊓ A2 ⊑ A. There are two such

⟨A,Σ⟩-subsumee justifications:

M1 = {α1, α4, α5, α7, α8},

M2 = {α1, α5, α6}.

Similarly, it holds that O |= A ⊑ B, which is the unique conclusion that must

be preserved by a ⟨A,Σ⟩-subsumer justification. There is only one ⟨A,Σ⟩-subsumer

justification: M3 = {α2, α3}.
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This leads to consider the following collection for extracting minimal modules

⊗

X∈Σ

(

J←O (X,Σ)
⊗

J→O (X,Σ)

)

= J←O (A,Σ)
⊗

J→O (A,Σ)

= {M1 ∪M3, M2 ∪M3}.

In the above collection, M1 ∪ M3, M2 ∪ M3 are minimal sub-ontologies.

Therefore, the two minimal modules for O and Σ areM1 ∪M3, M2 ∪M3.

One of the main constraints of Zoom is that it does not work for EL-ontologies

because the logical difference algorithm does not apply to EL-ontologies. In con-

trast, the witnesses theorem has been extended to EL-ontologies [20].

Minimal modules of ALC-ontologies The second method proposed in

[48] computes minimal deductive modules with respect toALCH-ontologies. ALCH-

ontologies are more expressive than EL-ontologies because they allow

1. disjunction (i.e., A ⊔B);

2. negation (i.e., ¬A);

3. value restriction (e.g., ∀r.C).

4. role hierarchy (e.g., r ⊑ s)

The main idea developed in [48] is represented by Algorithm 5. This algorithm

is based on the same idea as the algorithm 1 presented in Section 3.1.1 which

computes a single justiőcation for a given conclusion. For a given ontology O

and a signature Σ, Algorithm 5 outputs one minimal module for O and Σ by

eliminating redundant axioms one by one. Redundancy is determined by reasoners

using a uniform interpolant for each sub-ontology (i.e., U(M\{β},Σ) |= U(O,Σ)

in Line 5).

However, it is known that computing uniform interpolant could be extremely

time-consuming [28, 59]. Therefore, computing uniform interpolant for each sub-

ontology M \ {β} (Algorithm 5, Line 4) is not reasonable. To overcome this

difficulty, the authors of [48] introduced annotation form. Brieŕy, for each given

ALCH-ontology O and signature Σ, the annotation form Oa for O is constructed

by integrating a fresh concept name Aα for each axiom α ∈ O:

Oa := {AC⊑D ⊓ C ⊑ D | C ⊑ D ∈ O}.

Let Σa := Σ ∪ {Aα | α ∈ O} be an extended signature of Σ, and let U(Oa,Σa)

be a uniform interpolant for the annotation form Oa and Σa. The authors of [48]

show that a uniform interpolant for a sub-ontology M ⊆ O and a signature Σ

could be directly generated by applying a substitution procedure over U(Oa,Σa).

The substitution takes two steps:
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Algorithm 5 : Computing one minimal module

input : a signature Σ, an ontology O
output : a minimal moduleM for O and Σ

1 U(O,Σ)← a uniform interpolant for O and Σ;
2 M←O;
3 for each axiom β ∈ O do

4 U(M\ {β},Σ)← a uniform interpolant forM\ {β} and Σ;
5 if U(M\ {β},Σ) |= U(O,Σ) then
6 M←M\ {β}
7 end

8 end

9 returnM

1. Replacing each label Aα in U(Oa,Σa), α ̸∈ M, to ⊥;

2. Replacing each label Aα in U(Oa,Σa), α ∈M, to ⊤.

As a result, one only needs to compute one uniform interpolant U(Oa,Σa). This is

done by adapting Lethe [47], which is a tool that computes uniform interpolants

over ALCH or more expressive ontologies.

Example 55 Consider the signature Σ = {A, r} and the ontology

O = { α1 : ∃r.⊤ ⊑ A ⊔B,

α2 : ∃r.A ⊑ B,

α3 : ∃r.B ⊑ A }.

Then the annotated ontology of O is

Oa = { Aα1
⊓ ∃r.⊤ ⊑ A ⊔B,

Aα2
⊓ ∃r.A ⊑ B,

Aα3
⊓ ∃r.B ⊑ A },

and the extended signature is Σa = {A, r, Aα1
, Aα2

, Aα3
}. One possible uniform

interpolant for Oa and Σa is

U(Oa,Σa) = { Aα3
⊓ ∃r.(Aα2

⊓ ∃r.A) ⊑ A,

Aα3
⊓ ∃r.(Aα1

⊓ ∃r.⊤ ⊓ ¬A) ⊑ A }.

Then, by replacing all labels Aαi
, i = 1, 2, 3 to ⊤, one obtain a uniform interpolant

for O and Σ:

U(O,Σ) = { ∃r.(⊤ ⊓ ∃r.A) ⊑ A,

∃r.(⊤ ⊓ ∃r.⊤ ⊓ ¬A) ⊑ A },

Finally, since U(M,Σ) ̸|= U(O,Σ) for any sub-ontology M ⊂ O, the unique

minimal module for O and Σ ( obtained by Algorithm 5 ) is O itself.
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It is important to recall here that a uniform interpolant for a given ontology

may not exist. Therefore, the method above does not always work. The authors of

[48] have also proposed another deductive module obtained by collecting all axioms

with labels appearing in U(Oa,Σa). This deductive module is no longer minimal

but much less expensive to compute than minimal ones.

Note that even for the same ontology and signature, their corresponding min-

imal modules could be different if different languages are used as the underlying

semantics. Therefore, we can not compare different methods of computing de-

ductive modules under different languages directly (e.g., Zoom for EL and [48] for

ALC). Here is a simple example:

Example 56 Consider the ontology

O = { α1 : ∃r.A ⊑ A1,

α2 : ∃r.A2 ⊑ A1,

α3 : ∃r.B ⊑ A1,

α4 : A ⊑ B,

α5 : A2 ⊑ B },

and the signature Σ = {r, A,A1, A2}. Then O is an EL-ontology and there are

two different minimal modules for O and Σ under EL-semantics:

M1 = { α1, α2 }

M2 = { α3, α4, α5 }

Now, if we regard O as an ALC-ontology, then there is only one minimal

moduleM2 for O and Σ under the ALC-semantics. The reason is that we have

M1 ̸|= ∃r.(A ⊔A2) ⊑ A1

M2 |= ∃r.(A ⊔A2) ⊑ A1.

Note that ∃r.(A ⊔A2) ⊑ A1 is an ALC-axiom but it is not an EL-axiom.

4.2 . Introducing Forest FOΣ

Now, we introduce our method for computing deductive modules. First, we

analyze possible ways to compute deductive models and then introduce our notion

of forest FOΣ .

4.2.1 . Motivation

Assuming UOΣ is a uniform interpolant for an ontology O and a signature Σ,

we can compute deductive modules using the justiőcations of each axiom β ∈ UOΣ
(see Figure 4.1). More precisely, consider the following collection of sub-ontologies

deőned as the union of justiőcations:

S = {
⋃

α∈UO

Σ

Jα | Jα is a justiőcation of α}.
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Each elementM in S is a sub-ontology of O and contains exactly one justiőcation

for each element in UOΣ . Thus it is a deductive module for O and Σ. We can

conclude that the minimal modules for O and Σ are identical to the subset-minimal

sub-ontologies in S. For example:

Example 57 Consider the ontology

O = { α1 : A ⊑ ∃r.B1,

α2 : B1 ⊑ A1 ⊓A2,

α3 : A ⊑ ∃r.A1

α4 : ∃r.B2 ⊑ A2,

α5 : A3 ⊓A4 ⊑ B2 }.

and the signature Σ = {A, A1, A2, A3, A4, r}. Then,

UOΣ = {β1 : A ⊑ ∃r.(A1 ⊓A2),

β2 : A ⊑ ∃r.A1,

β3 : ∃r.(A3 ⊓A4) ⊑ A2}

is a uniform Interpolant for O and Σ. We know that there are

1. one justification for β1:

Jβ1
= {α1, α2};

2. two justifications for β2:

J1
β2

= {α1, α2},

J2
β2

= {α3};

3. one justification for β3:

Jβ3
= {α4, α5}.

Therefore, the collection S is {O, O\{α3}}. S contains two different deductive

modules for O and Σ. Moreover, O\{α3} is the unique minimal module for O and

Σ.

In Figure 4.1, computing deductive modules through uniform interpolant and jus-

tiőcations is shown by the black bold arrows. As already discussed, two main

difficulties arise when implementing such a simple idea:

1. Computing uniform interpolants is hard;

2. A uniform interpolant does not always exist.
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Notice that FOΣ could be an inőnite set of trees. For example:

Example 63 Let O1={A ⊑ ∃r.B, B ⊑ ∃r.B, B ⊑ ∃r.A} and Σ1={A, r}. Then

FO1

Σ1
contains infinitely many f-trees t+1 , t

+
2 , . . . from A to Σ1 over O1 as shown

in Figure 4.4.

𝚝
+
𝟸

A

B

∃r .

A
∃r .

⋯
B

∃r .

𝚝
+
𝟷

A
∃r .

A

B
∃r .

Figure 4.4: Some trees of FO1

Σ1

The f-trees in Figure 4.4 are generated by the loop starting at the node labeled

by A. More precisely, we say that a tree t ∈ FOΣ contains a loop if there is a path

p from root root(t) to a leaf of t with two different nodes having the same label.

For the same reason, there could be inőnitely many b-trees in a forest FOΣ . We

have that FOΣ is inőnite iff some t ∈ FOΣ contains a loop.

4.2.3 . Generating uniform interpolant from forest FOΣ

Although our computation of deductive modules does not require computing

UI, we investigate here how to generate a uniform interpolant from a forest. These

discussions (deőnitions and results) are necessary for presenting our method.

First, we associate each f-tree or b-tree t with an EL-concept Ct deőned as

follows:

Definition 64 For a f-tree or b-tree t, the corresponding EL-concept Ct is defined

inductively by:

1. if the child set of the root root(t) is empty, then Ct = At;

2. if the child set of the root root(t) is {n1, . . . , nm}, and there exists 0 ≤
k ≤ m such that the edge from root(t) to ni is a ∃ri-edge for i ≤ k. Then:

Ct = ∃r1.Ct1
⊓ . . . ⊓ ∃rk.Ctk

⊓ Ctk+1
⊓ . . . ⊓ Ctm

,

where ti is the maximal sub-tree of t rooted at ni.

For instance, for t+1 of Example 59, we have

C
t
+
1
= ∃r.(A2 ⊓A1) ⊓ ∃r.A1;
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For t−1 in Example 61, we have

C
t
−

1
=∃r.(A3 ⊓A4).

Now, the uniform interpolant candidate generated from FOΣ is deőned as follows.

Definition 65 Given a forest F of b-trees and f-trees, let us associate with F a

set of axioms, denoted UΣ(F ), and defined as the union of the three axiom sets

below:

U1
Σ(F )={Ct− ⊑ At− | t− ∈ F, At− ∈ Σ}

U2
Σ(F )={At+ ⊑ Ct+ | t+ ∈ F, At+ ∈ Σ}

U3
Σ(F )={Ct− ⊑ Ct+ | t−, t+ ∈ F, At−=At+ ̸∈ Σ}.

Next, when there is no ambiguity, we omit Σ in UΣ(F ) and U i
Σ(F ), i ∈ {1, 2, 3}.

We say UΣ(F ) is a uniform interpolant candidate because of the following result:

Theorem 66 For any axiom α with sig(α) ⊆ Σ, we have

O |= α iff U(FOΣ ) |= α.

Therefore, U(FOΣ ) is a uniform interpolant for O and Σ if FOΣ is finite.

Proof. The proof is provided on page 85.

Example 67 (Example 59 cont’d) Note that FOΣ is finite because no b-tree or

f-tree over the ontology O contains a loop. We have

U1(FOΣ ) = {β′1 : ∃r.(A3 ⊓A4) ⊑ A2},

U2(FOΣ ) = {β′2 : A ⊑ ∃r.(A2 ⊓A1) ⊓ ∃r.A1,

β′3 : A ⊑ ∃r.(A2 ⊓A1),

β′4 : A ⊑ ∃r.A2 ⊓ ∃r.A1,

β′5 : A ⊑ ∃r.A1

β′6 : A ⊑ ∃r.A2},

U3(FOΣ ) =∅

Here,

1. β′1 is generated from t−1 ∈ FOΣ ;

2. β′2 are generated from t+1 ∈ FOΣ ;

3. β′3 are generated from t+2 ∈ FOΣ ;

4. β′4, β′5, β′6 are generated from sub-trees of t+1 other than t+2 .
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Then we have

U(FOΣ ) = U1(FOΣ ) ∪ U2(FOΣ ) ∪ U3(FOΣ )

is a uniform interpolant for O and Σ since FOΣ is finite.

It may happen that FOΣ is inőnite and nevertheless a uniform interpolant for O

and Σ exists. In that case, we can still obtain a uniform interpolant from FOΣ by

extracting a őnite subset of U(FOΣ ) as in [59]. We do not provide further details

here as computing uniform interpolant is not our main goal.

Theorem 66 provides a way to compute uniform interpolant based on the forests

FOΣ although we do not implement it. There are mainly two different approaches

for computing uniform interpolant: (i) the forgetting-based approach like Lethe

and Fame [78], which compute a uniform interpolant by forgetting all the concepts

and roles outside a signature Σ; (ii) generation approach like NUI [45]. NUI works

only for EL-terminology and when FOΣ is őnite (has no Σ-loop in their case). It

is shown in [14] that NUI is much more efficient than Lethe and Fame on EL-

terminologies. Moreover, generating uniform interpolants from FOΣ described by

Theorem 66 is a generalization of NUI from EL-terminologies to EL-ontologies as

shown below.

Definition 68 For an acyclic EL-terminology O and signature Σ, the uniform

interpolant NUI(O,Σ) for O and Σ computed by NUI has the following form:

NUI(O,Σ) = {C ⊑ A | A ∈ Σ, C ∈ PΣ(A)} ∪ {A ⊑ D | A ∈ Σ, D ∈ QΣ(A)}

where (1) PΣ(A) is inductively defined as follows. Let PostΣ(A) = {B ∈ Σ |
O |= A ⊑ B}, then

• if A ⊑ B1 ⊓ . . . ⊓Bn ∈ O, then PΣ(A) =
(

⋃

1≤i≤n PΣ(Bi)
)

∪ PostΣ(A);

• if A ⊑ ∃r.B ∈ O and r ∈ Σ, then if B ∈ Σ, PΣ(A) = PostΣ(A)∪{∃r.B};
if B ̸∈ Σ, PΣ(A) = PostΣ(A) ∪ {∃r.

(

⊓C∈PΣ(B)C
)

};

• if O contains no axiom of the form A ⊑ B1 ⊓ . . . ⊓ Bn or A ⊑ ∃r.B, then

PΣ(A) = PostΣ(A).

(2) QΣ(A) is inductively defined by as follows. Let PreΣ(A) = {B ∈ Σ | O |=
B ⊑ A}, then

• if B1 ⊓ . . . ⊓Bn ⊑ A ∈ O, then

QΣ(A) = {C1 ⊓ . . . ⊓ Cn | then Ci = Biif Bi ∈ Σ , otherwise Ci ∈ QΣ(B)};

• if ∃r.B ⊑ A ∈ O and r ∈ Σ, then if B ∈ Σ, QΣ(A) = {∃r.B}; if B ̸∈ Σ,

QΣ(A) = {∃r.C | C ∈ QΣ(B)};

69



• if O contains no axiom of the form B1 ⊓ . . . ⊓ Bn ⊑ A or ∃r.B ⊑ A,

QΣ(A) = PreΣ(A).

Proposition 69 Assume that O is an acyclic EL-terminology and Σ is a signature.

Let F ⊆ FOΣ be the subset consisting of all b-trees and maximal f-trees. Then,

NUI(O,Σ) is equivalent to U1(F ) ∪ U2(F ) (see Definition 65).

Proof. The proof is provided on page 94.

4.3 . Pseudo-minimal Modules

This section introduces a new notion of deductive modules, called pseudo-

minimal modules, based on the forest FOΣ . The deőnition of pseudo-minimal

modules relies on tree-support and a őnite representative subset of FOΣ deőned

below.

4.3.1 . Tree-support

Intuitively, tree-supports can be seen as analogs to justiőcations although they

are related to tree derivation whereas justiőcations are related to axiom inference.

Definition 70 A tree-support of a tree t ∈ FOΣ is a sub-ontology of O defined as

the union of the following axiom sets:

1. {α}, for each edge e ∈ t labeled by α ∈ O;

2. a justification JA⊑B of A ⊑ B in O, for each edge e ∈ t labeled by

O |= A ⊑ B.

Supp(t) denotes the collection of all tree-supports of t.

For example, in Example 61, the only tree-support of t−1 is {α4, α5} since all edges

in t−1 are labeled by α4 ∈ O or α5 ∈ O. Different tree-supports can be obtained

depending on the different choices of justiőcation JA⊑B.

Compared to justiőcations of α∈U(FOΣ ), tree-supports are easier to compute

since

1. The őrst component {α} is obtained directly;

2. Computing justiőcations of A ⊑ B, where A,B are concept names, is easier

than computing the justiőcations for an arbitrary axiom α ∈ U(FOΣ );

3. The computation of tree-supports can be encoded as Horn-clauses and

solved by efficient SAT tools as shown in the next section.

70



4.3.2 . Finding a finite representative subset of FOΣ

As shown in Example 63, the forest FOΣ might be an inőnite set of tree in some

case. In this case, we extract a őnite representative subset of FOΣ as follows. First,

we partition FOΣ into three disjoint sets F1, F2 and F3 as follows:

F1={t ∈ FOΣ | t contains a loop}

F2={t
+ ∈ FOΣ \F1 | ∃ t

− ∈ F1 such that At− ̸∈ Σ, At−=At+}

∪ {t− ∈ FOΣ \F1 | ∃ t
+ ∈ F1 such that At+ ̸∈ Σ, At+=At−}

F3=FOΣ \(F1 ∪ F2).

Then F2, F3 are őnite sets since they do not contain trees with loop, F1 is inőnite

iff FOΣ is inőnite.

Second, we select a őnite subset F ∗1 of F1 as follows. Let us say that two

f-trees (or b-trees) are equivalent iff they share the same set of edge labels. Then

F ∗1 ⊆ F1 is obtained by selecting one representative tree for each equivalent class

in F1. Then, because the number of labels of the form α ∈ O or O |= A ⊑ B is

őnite given an ontology O, the number of equivalent classes is őnite and thus F ∗1
is őnite.

Finally, we obtain a őnite representative subset

F ∗1 ∪ F2 ∪ F3 ⊆ FOΣ .

Note that if FOΣ is őnite, then there is no tree in FOΣ containing loop and thus

F1 = F ∗1 = ∅, then F2 = ∅ by deőnition. Therefore, F3 = FOΣ , and thus FOΣ is its

own őnite representative.

4.3.3 . Pseudo-minimal modules

Now, we formally introduce pseudo-minimal modules as follows:

Definition 71 A pseudo-minimal module for O and Σ is a minimal element in

the collection SOΣ defined by:

SOΣ = {
⋃

t∈F ∗

1 ∪F2∪F ′

St

∣

∣

∣
St ∈ Supp(t), F ′ ⊆ F3, U(F2 ∪ F ′) |= U(F2 ∪ F3)}.

We can regard pseudo-minimal modules as an approximation of minimal mod-

ules because of the following result:

Theorem 72 A pseudo-minimal module for O and Σ is a deductive module for O
and Σ. Moreover, if FOΣ is finite, then M is a pseudo-minimal module for O and

Σ iffM is a minimal module for O and Σ.

Proof. The proof is provided on page 92.
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Now, we show that why in the deőnition of SOΣ (Deőnition 71 above) we

consider F ′ ⊆ F3. If we do not consider F ′ ⊆ F3 satisfying U(F2 ∪ F ′) |=

U(F2 ∪ F3) (i.e., let F ′ = F3), all the elements in SOΣ are still deductive modules

for O and Σ. However, in this case, we can not guarantee that pseudo-minimal

modules are minimal modules when FOΣ is őnite. For example:

Example 73 (Example 67 cont’d) Note that, in this example, FOΣ is finite, then

FOΣ = F3. If we require F ′ = F3, then

SOΣ = {
⋃

t∈FO

Σ

St

∣

∣

∣
St ∈ Supp(t)}.

Since t+1 ∈ FOΣ has a unique tree-support

St
+
1
= {{α1, α2, α3}},

all the sets in SOΣ are super sets of St
+
1

and thus contain α3. However, as shown

in Example 57, α3 does not belong to any minimal module for O and Σ. On the

other hand, if we allow F ′ ⊆ F3, we can get rid of t+1 because

U(F ′) |= U(FOΣ ) for F ′ = FOΣ \ {t
+
1 }.

Therefore we can get rid of α3.

When FOΣ is inőnite, we show by our evaluation (see Table 4.4) that pseudo-

minimal modules are still very concise. This provides an experimental validation of

the minimal module approximation deőned by pseudo-minimal module.

Now, on the other hand, one may expect that pseudo-minimal modules cover

all minimal modules. That is, for any minimal moduleM for O and Σ, there exists

a pseudo-minimal module Mp for O and Σ such that M ⊆ Mp. However, this

claim does not hold as the following counter-example shows.

Example 74 Consider the ontology

O = {A ⊑ A1

A ⊑ B1, B1 ⊑ A1

∃r.A3 ⊑ B1, B1 ⊑ ∃r.A2

A ⊑ B2, B2 ⊑ ∃r.B2, B2 ⊑ A2

A3 ⊑ B3, ∃r.B3 ⊑ B3, B3 ⊑ A1}

and signature Σ = {r, A,A1, A2, A3}. Then, there are two minimal modules for

O and Σ:

• M1 = O \ {A ⊑ A1};

• M2 = O \ {A ⊑ B1, B1 ⊑ A1}.
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Computing b-trees by hypergraph For computing b-trees, we associate

with O a hypergraphHO=(NOh , EOh ), which consists of the node setNOh := {NA |

A ∈ NC} and the edge set

EOh :={{NA1
, . . . , NAn

}→NA | A1 ⊓A2 ⊓ . . . ⊓An ⊑ A ∈ O}

∪ {NA
r
→NB | ∃r.A ⊑ B ∈ O}

∪ {NA→NB | O |= A ⊑ B},

where NA
r
→NB is an edge with the index r ∈ NR. All the edges of the form

NA → NB are computed by classiőcation over O using ELK [36]. Next, for every

direct hyperedge e = {NA1
, . . . , NAn

}→NA, we say that

1. {A1, . . . , An} is the tail of e, denoted by Tail(e) = {A1, . . . , An};

2. A is the head of e, denoted by Head(e) = A.

For the case e = NA
r
→NB or NA→NB, the tail and head of e are deőned in the

same way.

By the deőnitions of b-tree and hyperpath, each b-tree from A to Σ can

be regarded as a hyperpath from S = {NB | B ∈ Σ} to NA. The details

are presented in the recursive Algorithm 6, which computes b-trees from A to

Σ by decomposing them as a single edges B1, · · · , Bn to Σ and b-trees from

B1, · · · , Bn to Σ (Line 3-8 of Algorithm 6). The b-tree from B1, · · · , Bn to

Σ is computed by recursively apply Algorithm 6 (Line 5 of Algorithm 6). Our

implementation is based on the hypergraph package halp (avaliable at https:

//murali-group.github.io/halp/).

Algorithm 6 : All_b_Trees

input : an ontology O, a signature Σ, a concept name A

output : TA
b : all b-trees from A to Σ over O

1 TA
b ← ∅;

2 for e ∈ EOh such that Head(e) = A do

3 for NB ∈ Tail(e) do
4 if B ̸∈ Σ then

5 TB
b ← All_b_Trees(O,Σ, B);

6 end

7 end

8 TA
b ← TA

b ∪

(

(

⊗

NB∈T (e),B /∈Σ

TB
b

)

⊗

{{e}}

)

;

9 end

10 return TA
b

74



Computing f-trees by (directed) graph For computing f-trees, we asso-

ciate with O a graph GO=(N , E), which consists of a node set N := {NA | A ∈

NC} and an edge set

E :={NA→NB | O |= A ⊑ B}

∪ {NA
r
→NB | A ⊑ ∃r.B ∈ O}.

By deőnition, an f-tree from A to Σ can be regarded as a union of directed

paths from NA to NB with B ∈ Σ. The details are presented by the recursive

Algorithm 7. At line 3 of Algorithm 7, all directed paths from NA to NB for some

B ∈ Σ are computed by the depth-őrst search algorithm. Then at line 4, all f-trees

from A to Σ are obtained as union of directed paths obtained in line 3.

Algorithm 7 : All_f_Trees

input : an ontology O, a signature Σ, a concept name A

output : TA
f : all f-trees from A to Σ over O

1 TA
f ← ∅;

2 for B ∈ Σ do

3 PAB ← all directed paths from NA to NB;

4 TA
f ← TA

f

⊗

PAB;

5 end

6 return TA
f

Note that all b-trees (resp. f-trees) in the same equivalent class have the

same corresponding sub-graph of HO (resp. GO). Therefore, to extract a őnite

representative subset F ∗1 ∪F2 ∪F3, it is enough to ignore trees with the repetition

edges during the enumeration of trees. It is done by regarding each tree as a set

of edges.

4.4.2 . Encoding pseudo-minimal module computation by Horn-

clauses

Recall that, all pseudo-minimal modules are minimal elements in the collection

SOΣ . In the following, we encode the extraction of these minimal elements by a set

of Horn-clauses CΣ.

We start by associating a literal l to each component (axiom, tree and edge)

of the forest FOΣ as follows

lα ↔ α ∈ O

lβ ↔ β ∈ U(F ∗1 ∪ F2 ∪ F3)

lt ↔ t ∈ FOΣ

le ↔ e ∈ t
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We also introduce a new literal lΣ to capture pseudo-minimal modules for O and

Σ.

Now, the encoding is decomposed into two parts: (i) The őrst part (items 1,

2, and 3) encodes the computation of the subsets F ′ ⊆ F3 such that

U(F2 ∪ F ′) |= U(F2 ∪ F3);

(ii) The second part (items 4 and 5) encodes the computation of the tree-supports

St ∈ Supp(t).

In details, CΣ consists of:

1. (∧β∈U(F2∪F3) lβ)∧ (∧t∈F ∗
1 ∪F2

lt)→lΣ;

2. For each axiom β ∈ U(F2 ∪ F3), a Horn-clause is built depending on the

provenance of β in U(F2 ∪ F3) (recall Deőnition 65):

(a) if β = Ct− ⊑ At− ∈ U
1(F2 ∪ F3) for some t− ∈ F2 ∪ F3:

lt−→lβ;

(b) if β = At+ ⊑ Ct+ ∈ U
2(F2 ∪ F3) for some t+ ∈ F2 ∪ F3:

lt+→lβ;

(c) if β = Ct− ⊑ Ct+ ∈ U
3(F2 ∪ F3) for some t−, t+ ∈ F2 ∪ F3:

lt+∧lt−→lβ.

3. For each β ∈ U(F2 ∪ F3) and each justiőcation {β1, . . . , βn} of β with

respect to the ontology U(F2 ∪ F3):

lβ1
∧ . . .∧ lβn

→lβ;

4. For each t ∈ F ∗1 ∪ F2 ∪ F3:

(∧e∈tle) → lt;

5. For each edge e ∈ t, where t ∈ F ∗1 ∪ F2 ∪ F3:

(a) if lab(e) is O |= A ⊑ B, where JA⊑B ⊆ O is a justiőcation of A ⊑ B:

(∧α∈JA⊑B
lα) → le; (4.1)

(b) if lab(e) is α ∈ O:

lα→le. (4.2)
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Then we obtain a set of clauses denoted by CfΣ. Assuming

MΣ ⊆ C
f
Σ

is the subset of minimal clauses composed of answer variables only. We say that a

clause c1 is minimal if there does not exist another clause c2 such that all the literals

in c2 are also in c1. By the construction of MΣ and deőnition of pseudo-minimal

module, we have:

Proposition 77 M={α1, . . . , αk} is a pseudo-minimal module for O and Σ iff

we have

(∧ki=1lαi
)→ ⊥∈ MΣ.

For Example 76, we obtain

MΣ = {lα1
∧lα2
∧lα4
∧lα5
→ ⊥}

by resolution over CΣ ∪ {¬lΣ}. Therefore, the only pseudo-minimal module for O

and Σ is

{α1, α2, α4, α5},

which is also the unique minimal module for O and Σ since the corresponding

forest FOΣ is őnite.

By deőnition of SOΣ , we have

Corollary 78 Mc={α ∈ O | lα is an answer variable in CΣ} is a complete mod-

ule for O and Σ.

For Example 76, the complete module for O and Σ isMc = O.

4.4.4 . Optimization

As discussed in Example 76, we can reduce the size of FOΣ by ignoring some

redundant trees. For example, we can ignore those trees that do not contribute to

the generation of axioms in U(FOΣ ). Furthermore, we can ignore some sub-f-trees

based on the following result:

Corollary 79 Theorems 66 and 72 still hold if we ignore the f-trees t+ ∈ FOΣ that

satisfy one of the following conditions:

1. t+ has an edge, starting from the root root(t+), which is not a ∃r-edge;

2. t+ is a proper sub-tree of a f-tree t+1 ∈ FOΣ such that root(t) = root(t+1 )

and ̸|= Ct+ ≡ Ct+
1
.

Proof. The proof is provided on page 92.

In Example 76, t+1 has 6 different sub-trees, but only t+2 satisőes

|= C
t
+
1
≡ C

t
+
2
.

Therefore, we can ignore the other őve sub-trees and thus now

FOΣ ={t+1 , t
+
2 , t

−
1 }.
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4.5 . Evaluation

We implemented a prototype ForMod of our algorithm in Python and evalu-

ated it over three real-world ontologies: Snomed CT (version Jan 2016), Snomed

CT (version Jan 2021)(available at https://www.snomed.org), and NCI (version

16.03d) (available at http://evs.nci.nih.gov/ftp1/NCI_Thesaurus). We de-

note them as sn16, sn21, nci, respectively. Here, sn16 and nci are two EL-

terminologies containing 317891 and 165341 axioms respectively. And sn21 is an

EL-ontology with 362638 axioms. All the experiments run on a machine with an

Intel Xeon Core 4 Duo CPU 2.50 GHz with 64 GiB of RAM.

For each ontology O, we run the experiments over 2 sets ΣOn of 1000 randomly

generated signatures, where each signature has n concepts (n ∈ {50, 100}) and

10 roles.

Pesudo-minimalmodules Recall that Zoom [16] is the state-of-the-art algo-

rithm that computes all the minimal modules but only for acyclic EL-terminologies.

First, we compare all pseudo-minimal modules computed by ForMod with all min-

imal modules computed by Zoom.

For each signature, we set the total run-time limit of 600s. The success rates

(i.e., the percentage of completed experiments within the time limit) of ForMod

and Zoom are summarized in Table 4.2. We can see that the success rate of ForMod

is from 13.3% to 46.7% higher than Zoom. Note that Zoom does not work for sn21,

which is not an EL-terminology.

Table 4.2: Success rate (%)

Σsn16
50 Σsn16

100 Σnci
50 Σnci

100 Σsn21
50 Σsn21

100

Zoom 57.1 32.5 79.0 57.3 - -

ForMod 83.8 79.2 92.3 74.2 98.9 88.1

Table 4.3 summarizes the time-cost comparison over signatures that are solved

successfully by both ForMod and Zoom. We highlight that, for these signatures,

the corresponding forests are indeed őnite. Therefore, the pseudo-minimal modules

are indeed minimal modules by Theorem 72. According to Table 4.3, ForMod is

99.79 times faster than Zoom on average. Note that, as discussed in [16], Zoom

spends most of its running time (94.6% on average) on computing justiőcations

using Beacon [2], which is less efficient than the resolution we use. However, even

if we ignore the time cost of Beacon, i.e. only consider 5.4% computation time

of Zoom, ForMod is still 5.67, 7.48, 3.72, 5.33 times faster than Zoom on average

for Σsn16
50 , Σsn16

100 , Σnci
50 , Σnci

100, respectively.

Second, in our experiments, there are 66 signatures in Σnci
50 ∪ Σnci

100 for which

FOΣ is inőnite, and 43 of them are solved within the time limit by ForMod, but all
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Table 4.3: Time cost (max / min / mean / median)

Time(s) ForMod Zoom

Σsn16
50 17.20 / 1.09 / 1.77 / 1.73 558.76 / 34.85 / 186.04 / 143.53

Σsn16
100 9.75 / 1.29 / 2.18 / 2.10 563.24 / 71.38 / 302.24 / 294.19

Σnci
50 8.89 / 0.74 / 1.32 / 1.28 560.89 / 7.81 / 91.08 / 60.42

Σnci
100 12.47 / 0.89 / 1.47 / 1.42 576.35 / 15.49 / 145.32 / 105.92

of them are time-out for Zoom. So we compare pseudo-minimal modules of these

signatures with ⊤⊥∗-modules implemented by OWL API [27] instead. The result

is summarized in Table 4.4. We observe that the pseudo-minimal modules are still

very concise in size and signiőcantly smaller than the ⊤⊥∗-modules.

Table 4.4: Signatures with infinite FOΣ (max / min / mean )

Module size pseudo-minimal modules ⊤⊥∗-modules

Σnci
50 80 / 12 / 31.06 7499 / 6340 / 7126.24

Σnci
100 111 / 9 / 52.81 8091 / 1936 / 7317.31

Complete modules Here, we compare our complete modules generated by

ForMod with ⊤⊥∗-modules. Note that, for all signatures tested, the corresponding

complete modules and ⊤⊥∗-modules are all computed within 32s, i.e., the success

rate is 100%.

The size comparison of those modules is shown in Table 4.5. We can see that

the size of complete modules is signiőcantly smaller than that of ⊤⊥∗-modules

(103.5 times smaller on average) for all ontologies.

Table 4.5: Mean size of different deductive modules
Module Size Σsn16

50 Σsnt16
100 Σnci

50 Σnci
100 Σsn21

50 Σsnt21
100

⊤⊥∗-module 6628.21 13159.89 5560.64 7327.67 4384.08 15845.43

Complete 74.53 140.68 52.02 73.91 88.48 81.28

pseudo-minimal 8.80 20.97 24.36 37.53 7.60 16.11

Table 4.6 summarizes the time cost comparison between complete modules

and ⊤⊥∗-modules. It shows that the computation of complete modules is faster

than that of ⊤⊥∗-modules except for the worst cases (i.e., the maximal time cost).

4.6 . Proofs

80



Table 4.6: Time cost (max / min / mean / median)

Time(s) Complete module (ForMod) ⊤⊥∗-module (OWL API)

Σsn16
50 27.10 / 1.09 / 2.92 /1.95 9.36 / 5.60 / 6.55 / 6.45

Σsn16
100 31.60 / 1.29 / 4.76 / 2.60 9.68 / 5.76 / 6.74 / 6.65

Σnci
50 3.45 / 0.74 / 1.32 / 1.30 2.88 / 1.16 / 1.90 / 1.97

Σnci
100 23.49 / 0.89 / 1.46 / 1.42 2.90 / 1.28 / 1.98 / 1.97

Σsn21
50 28.06 / 1.34 / 2.62 / 2.27 12.90 / 3.55 / 8.57 / 8.88

Σsn21
100 17.71 / 2.10 / 3.48 / 3.17 14.19 / 3.99 / 9.28 / 9.71

Proofs of Theorem 66

Theorem 80 For any axiom α with sig(α) ⊆ Σ, we have

O |= α iff U(FOΣ ) |= α.

Therefore, U(FOΣ ) is a uniform interpolant for O and Σ if FOΣ is finite.

R1 :
A ⊑ A1, . . ., A ⊑ An

A ⊑ B
: A1 ⊓ . . . ⊓ An ⊑ B ∈ O

R2 :
A ⊑ A1

A ⊑ ∃r.B
: A1 ⊑ ∃r.B ∈ O

R3 :
A ⊑ ∃r.B1, B1 ⊑ B2

A ⊑ B
: ∃r.B2 ⊑ B ∈ O

Table 4.7: Inference rules over EL-ontology.

Our proof is based on the complete and sound inference rules presented in Table

4.7, which are obtained by adapting Table 2.1 (Section 2.3) to EL-ontologies. The

proof of Theorem 66 is done in two steps: First, we introduce two notions: (i)

normalized ontologies for concepts, which makes it possible to apply the rules in

Table 4.7 for complex concepts C,D ̸∈ NC ; and (ii) b*-trees and f*-trees, which

are weaker forms of b-trees and f-trees. Second, we prove three lemmas: (i)

Lemma 89, which is a stronger version of Theorem 66 but only works for b*-trees

and f*-trees; (ii) Lemma 90 shows that Lemma 89 still holds if b*-trees are replaced

by b-trees; (iii) Lemma 91 similarly shows that Lemma 89 still holds if f*-trees are

replaced by f-trees. Finally, Theorem 66 is direct conclusion of these three lemmas.

Normalized ontologies for concepts

In order to apply the rules in Table 4.7 for complex concepts C ̸∈ NC , we construct

two normalized ontologies, O+(C) and O−(C), for each EL-concept C as follows.
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Next, we use C ∈ NC to denote a concept name associated with the given

complex concept C. For a concept name A ∈ NC , we assume A = A. Our pri-

mary objective is to establish the equivalence between the subsumption relationship

expressed by

O |= C ⊑ D

and the derivation generated through the application of inferences listed in Table

4.7 expressed by

O ∪O+(C) ∪ O−(D) ⊢ C ⊑ D

.

Definition 81 For an EL-concept C, O+(C) is a normalized ontology inductively

defined as follows:

1. If C is a concept name, then O+(C) = ∅;

2. If C = C1 ⊓ . . . ⊓ Cn, then O+(C) is defined by:

O+(C) =

(

n
⋃

i=1

O+(Ci)

)

∪ { C ⊑ C1, . . . , C ⊑ Cn }

3. If C = ∃r.C1, then O+(C) is defined by:

O+(C) = O+(C1) ∪ { C ⊑ ∃r.C1 }.

Example 82 Consider the concept C = ∃r.(A1 ⊓ A2) ⊓ B1 ⊓ B2. Assume C1 =

∃r.(A1 ⊓A2) and C2 = A1 ⊓A2, then we have

C = C1 ⊓B1 ⊓B2

C1 = ∃r.C2

C2 = A1 ⊓A2

Therefore, we have

O+(C) = O+(C1) ∪ {C ⊑ C1, C ⊑ B1, C ⊑ B2}

O+(C1) = O
+(C2) ∪ {C1 ⊑ ∃r.C2}

O+(C2) = {C2 ⊑ A1, C2 ⊑ A2}

Similarly, we deőne O−(C) as follows.

Definition 83 For an EL-concept C, O−(C) is a normalized ontology inductively

defined as follows:

1. If C is a concept name, then O−(C) = ∅;
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2. If C = C1 ⊓ . . . ⊓ Cn, then O−(C) is defined by:

O−(C) =

(

n
⋃

i=1

O−(Ci)

)

∪ { C1 ⊓ . . . ⊓ Cn ⊑ C };

3. If C = ∃r.C1, then O−(C) is defined by:

O−(C) =O−(C1) ∪ { ∃r.C1 ⊑ C }.

Example 84 Consider the concept D = (∃r.∃s.B3)⊓B4. Assume D1 = ∃r.∃s.B3

and D2 = ∃s.B3, then we have

D = D1 ⊓B4

D1 = ∃r.D2

D2 = ∃s.B3

and thus

O−(D) = O−(D1) ∪ { D1 ⊓B4 ⊑ D},

O−(D1) = O
−(D2) ∪ { ∃r.D2 ⊑ D1},

O−(D2) = { ∃s.B3 ⊑ D2 }.

We have the following result:

Theorem 85 Given an EL-ontology O. Let C,D be two EL-concepts, and let

OCD = O ∪O+(C) ∪ O−(D).

Then we have

O |= C ⊑ D iff OCD |= C ⊑ D.

Proof. Each model I of O can be extended to a model I of OCD by setting

1. AI = AI , rI = rI for every A, r ∈ sig(O);

2. C
I

i = CI
i , D

I

j = DI
j for each Ci, Dj ∈ sig(OCD), where Ci is a sub-concept of

C ,Dj is a sub-concept ofD;

Therefore, if OCD |= C ⊑ D, then we have CI = C
I
⊆ D

I
= DI . Since this

argument works for any model I of O, we have

OCD |= C ⊑ D ⇒ O |= C ⊑ D.

On the other hand, for any model I of OCD , we have C
I
⊆ CI , DI ⊆ D

I
by the

definitions of O+(C) and O−(D). Therefore, we have

O |= C ⊑ D ⇒ OCD |= C ⊑ D (since O ⊂ OCD),

⇒ CI ⊆ DI , for any model I of OCD ,

⇒ C
I
⊆ D

I
, for any model I of OCD ,

⇒ OCD |= C ⊑ D.

This concludes our proof.

83



Remark 86 Note that a concept name A ∈ sig(OCD) has one of the following

forms:

1. A ∈ sig(O) is a concept name in O;

2. A = Ci is a new concept name introduced in O+(C);

3. A = Dj is a new concept name introduced in O−(D).

b*-trees and f*-trees

Here, we introduce two kinds of trees: b*-tree or f*-tree, where

1. b*-tree is deőned by (i) replacing the second requirement of Deőnition 58

by: lab(n) ∈ Σ for leaf n of t+; (ii) removing the requirement łBi is

non-primitive or Bi ∈ Σ" in Deőnition 58 case 3(b);

2. f*-tree is deőned by (i) replacing the second requirement of Deőnition 60

by: lab(n) ∈ Σ for leaf n of t−; (ii) removing the requirement łB1 is

non-primitive" in Deőnition 60 case 3(b).

The formal deőnitions of b*-tree and f*-tree are given below:

Definition 87 A labeled tree t+ is a f*-tree from A to Σ over O iff:

1. the label of the root of t+ is A (i.e., At+ = A);

2. lab(n) ∈ Σ for leaf n of t+;

3. if the child set of a node n0 ∈ t+ is

{n1, . . . , nm}

and

Bi = lab(ni), 0 ≤ i ≤ m,

then for each 0 ≤ i ≤ m, one of the following conditions holds:

(a) B0 ⊑ ∃r.Bi ∈ O and r ∈ Σ,

(b) O |= B0 ⊑ Bi.

The edge e from n0 to ni is labeled by the condition that generates e.

Definition 88 A labeled tree t− is a b*-tree from A to Σ over O iff:

1. the label of the root of t− is A (i.e., At− = A);

2. lab(n) ∈ Σ for leaf n of t−;
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3. if the child set of a node n0 ∈ t− is

{n1, . . . , nm}

and

Bi = lab(ni), 0 ≤ i ≤ m,

then one of the following conditions holds:

(a) m = 1, ∃r.B1 ⊑ B0 ∈ O, r ∈ Σ;

(b) m = 1, O |= B1 ⊑ B0;

(c) m > 1, B1 ⊓ . . . ⊓Bm ⊑ B0 ∈ O.

Again, here, the edge e from n0 to ni is labeled by the condition generating

e.

As in Deőnition 64, we associate each b*-tree or f*-tree t with a EL-concept

Ct.

Proof of Theorem 66

Now, we prove Theorem 66 using Lemma 89, 90 and 91.

Lemma 89 Let O be an normalized EL-ontology, and let C,D be two EL-

concepts such that O |= C ⊑ D. Then, there exists a set TC⊑D of b*-trees

and f*-trees such that

U(TC⊑D) |= C ⊑ D,

where

• TC⊑D consists of two kinds of trees:

1. b*-trees from A to sig(C),

2. f*-trees from A to sig(D),

for some concept names A ∈ sig(O);

• U(TC⊑D) is defined by

U(TC⊑D)={Ct− ⊑ At− |At− ∈ sig(C ⊑ D), t− ∈ TC⊑D}

∪ {At+ ⊑ Dt+ | At+ ∈ sig(C ⊑ D), t+ ∈ TC⊑D}

∪ {Ct− ⊑ Dt+ | At− = At+ ̸∈ sig(C ⊑ D),

t−, t+ ∈ TC⊑D}.

Recall that At is the label of the root node of t.

Moreover:
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1. If C ∈ NC is a concept name, we can require that TC⊑D contains only one

f*-tree.

2. If D ∈ NC is concept name, we can require that TC⊑D contains only one

b*-tree.

Proof. We prove the lemma by induction over k(C ⊑ D), which is the minimal num-

ber of inferences (generated by Table 4.7) needed to derive C ⊑ D from OCD.

1. If k(C ⊑ D) = 0, then C,D are concept names. The lemma holds directly;

2. Now, assume that the lemma is true when k(C
′
⊑ D

′
) < K. Next, we prove

that the lemma is still true when k(C ⊑ D) = K.

Assume that k(C ⊑ D) = K. Let

ρ1, . . . , ρK

be a minimal sequence of inferences generated by the rules in Table 4.7 that

derives C ⊑ D from OCD. We are going to show that there exists a set TC⊑D

of b*-trees or f*-trees such that U(TC⊑D) |= C ⊑ D.

There are two different situations:

(a) If the last inference ρK is of the form

(R1) ρK :
C ⊑ A1, . . ., C ⊑ An

C ⊑ D
: A1 ⊓A2⊓ . . .⊓An ⊑ D ∈ OCD

Then, k(C ⊑ Ai) < k(C ⊑ D) = K. By applying the induction assump-

tion over C ⊑ Ai, we have:

i. if Ai is a concept name in sig(O), then there exists TC⊑Ai
= {t−i }

such that

U(TC⊑Ai
) |= C ⊑ Ai;

ii. if Ai = Dm for some conceptDm, which is sub-concept ofD (thus,

sig(Dm) ⊆ sig(D)), then there exists TC⊑Dm
such that

U(TC⊑Dm
) |= C ⊑ Dm.

Now, two cases arise concerningD.

• D ∈ NC is a concept name, then A1, . . . , An are concept names in

sig(O). Let t− be the b*-tree from sig(C) toD obtained by concate-

nating all b*-tree t
−
i ∈ TC⊑Ai

, 1 ≤ i ≤ n with the edge generated

by

A1 ⊓A2⊓ . . .⊓An ⊑ D ∈ O.

Then we have U(TC⊑D) |= C ⊑ D, and thus, TC⊑D = {t−} is what
we want. Note that TC⊑D also satisfies Item 2 of the lemma.

• D ̸∈ NC . Note that for Ai in Case i and Dm in Case ii, we have

Ai ∈ sig(D) and sig(Dm) ⊆ sig(D). Let TC⊑D be the union of all

trees in TC⊑Ai
and TC⊑Dm

above. Then, TC⊑D is what we want.
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Moreover, if C ∈ NC is a concept name, by Item 1 of the Lemma, we

can assume that TC⊑Dm
in Case ii contains only one f*-tree from C to

sig(Dm). Let t+ be the f*-tree with the root labelled byC , and consisting

of the following edges:

• edges with label O |= C ⊑ Ai, i = 1, 2, . . . , n;

• edges of f*-trees in TC⊑Dm
.

Then TC⊑D = {t+} satisfies the requirement of Item 1 in the Lemma,

and it is what we want.

(b) The casewhere the last inference is generated by ruleR3 never happens

sinceD cannot have form ∃r.A by Remark 86.

(c) If the last inference ρK is of the form

(R3) ρK :
C ⊑ ∃r.B,B ⊑ D1

C ⊑ D
: ∃r.D1 ⊑ D ∈ OCD

Then, since ∃r.D1 ⊑ D ∈ OCD , we have D = ∃r.D1 by definition of

O−(D). Moreover, C ⊑ ∃r.B must be derived from aR2-inference with

premise set {C ⊑ B1} and side condition B1 ⊑ ∃r.B ∈ OCD , where B1

is a concept name (B1 may be equal to C). Two cases arise:

i. ifB1 = Cn, for some subconceptCn ofC. Then sinceCn ⊑ ∃r.Cm ∈
OCD , B = Cm for some subconcept Cm of Cn. We have

k(Cm ⊑ D1) < k(C ⊑ D) = K.

By applying the induction assumption over Cm ⊑ D1, there exists

TCm⊑D1
such that U(TCm⊑D1

) |= Cm ⊑ D1.

Since OCD ⊢ C ⊑ Cn and Cn ⊑ ∃r.Cm ∈ OCD , C is of the form

∃r.Cm ⊓ C ′ by definition of O+(C). Recall that D = ∃r.D1. There-

fore, we have {Cm ⊑ D1} |= C ⊑ D, and thus, U(TCm⊑D1
) |= C ⊑

D. Finally, TC⊑D = TCm⊑D1
is the desired set of trees.

ii. Otherwise, since OCD does not contain axioms of the form Di ⊑
∃rj .Dj , we have that B1, B are concept names in sig(O).
Note that (recall B1 = B1, B = B by definition of ∗)

k(C ⊑ B1) < K, k(B ⊑ D1) < K.

By induction assumption, for C ⊑ B1, B ⊑ D1, there exists two

sets TC⊑B1
, TB⊑D1

such that

• TC⊑B1
= {t−} consists of one b*-tree t− from sig(C) to B1

and U(TC⊑B1
) |= C ⊑ B1;

• TB⊑D1
= {t+} consists of one f*-tree t+ from B to sig(D1),

which is a subset of sig(D), and U(TB⊑D1
) |= B ⊑ D1;

Let T1 = {t+1 }, where t
+
1 is the f*-tree from B1 to sig(D1) obtained

by adding an edge

B1
r
→ B

above the root of t+ ∈ TB⊑D1
. Then, U(T1) |= B1 ⊑ ∃r.D1. Since

D = ∃r.D1, for TC⊑D = TC⊑B1
∪ T1, we have U(TC⊑D) |= C ⊑ D,

and thus the set TC⊑D is what we want.
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Moreover, if C ∈ NC is a concept name, let t− be the f*-tree consisting

of

i. the edge generated by O |= C ⊑ B1;

ii. the edge generated by B1 ⊑ ∃r.B ∈ O;

iii. edges of the unique f*-tree in TB⊑D1

Then TC⊑D = {t−} satisfies all the requirements of the lemma, espe-

cially Item 1.

Note that in this case,D can not be a concept name in NC .

By Lemma 89, we have proved Theorem 66 for the case where all the trees

are b* or f*-trees. Now, we connect b* or f*-trees with b-trees and f-trees by the

following two results:

Lemma 90 For a b*-tree t− from A to Σ, there always exists a set Tb of b-trees

from A′ to Σ, where A′ = A or A′ ∈ Σ, such that:

{Ct−

i
⊑ At−

i
| t−i ∈ Tb} |= Ct− ⊑ A.

Proof. The proof is conducted in two distinct cases.

Case 1 First assume that for eachnode n0 in the b*-tree t
− fromA toΣ, if lab(n0) ∈

Σ then n0 is a leaf. In this case, we prove the lemma by translating t− into a b-tree

t
−
0 from A to Σ such that |= Ct− ⊑ C

t
−

0
. Then, Tb = {t

−
0 } satisfies the requirement of

the lemma.

Assume that t− is not a b-tree. Otherwise nothing need to be proven. Then,

there exists a node n1 ∈ t−, whose label is B1, such that:

• B1 is primitive and B1 ̸∈ Σ;

• There is one edge e ∈ t− ending with n1 and having the label O |= B1 ⊑ B.

Let n be the parent node of n1, then n is labelled by B.

Two cases arise:

1. If n1 has only one child n2 and the edge from n1 to n2 is labelled byO |= B2 ⊑ B1

(see Figure 4.6). Let t−1 be the new tree obtained from t− by

• deleting n1;

• setting the child of n as n2,

We have |= Ct− ⊑ C
t
−

1
;

2. If n1 has a child n2 and the edge from n1 to n2 is labelled by C1 ⊑ B1 ∈ O (see

Figure 4.7).

Since B1 is primitive, we know

C1 ⊑ B1, B1 ⊑ C1 ∈ O

are the only two axioms of the form ∗ ⊑ B1 or B1 ⊑ ∗ in O.
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Case 2 There exists node n0 in t+ such that n0 is not a leaf and lab(n0) ∈ Σ. Let
S0 be the collection of all such nodes, then n0 ∈ S0. We split t+ into several f*-trees

t
+
1 , . . . , t

+
n by cutting t+ at all nodes in S0. Then, we can apply arguments on Case 1

for t+1 , . . . , t
+
n and find f-trees t+1,0, . . . , t

+
n,0 such that

{A
t
+
i,0
⊑ C

t
+
i,0
} |= A

t
+
i
⊑ C

t
+
i
, 1 ≤ i ≤ n.

Therefore, Tf = {t+1,0, . . . , t
+
n,0} satisfies the lemma. This concludes our proof.

Finally, Theorem 66 is a direct corollary of Lemma 89, 90 and 91.

Proof of Theorem 72

Theorem 92 A pseudo-minimal module for O and Σ is a deductive module for O
and Σ. Moreover, if FOΣ is finite, then M is a pseudo-minimal module for O and

Σ iffM is a minimal module for O and Σ.

Proof. Recall the definition of F ∗
1 , F2, F3 in Section 4.3.2 and

SOΣ = {
⋃

t∈F∗

1
∪F2∪F ′

St

∣

∣

∣
St ∈ Supp(t), F ′ ⊆ F3, U(F2 ∪ F ′) |= U(F2 ∪ F3)}.

According to the definition of SOΣ and UΣ(O), every ontology O1 ∈ S
O
Σ satisfies

UΣ(O1) |= UΣ(O). Therefore, by Theorem 66, all ontologies in SOΣ are deductive

modules for O and Σ. Hence, we can infer that pseudo-minimal modules are also

deductive modules.

If FO
Σ is finite, then we have F ∗

1 ∪ F2 = ∅ and FO
Σ = F3. Next, we show that ifM

is a minimal module for O and Σ, thenM∈ SOΣ .
SinceM⊆ O is a minimal module, we have FM

Σ ⊆ FO
Σ and U(FM

Σ ) |= U(FO
Σ ) by

Theorem 66. Therefore, if F ′′ ⊆ FM
Σ and U(F ′′) |= U(FM

Σ ), then U(F ′′) |= U(FO
Σ ).

By definition of SMΣ and SOΣ , we have S
M
Σ ⊆ SOΣ . SinceM⊆ O is a minimal module,

we have SMΣ = {M} and thusM∈ SOΣ .
In conclusion, we have all minimal ontologies in SOΣ are identical to all minimal

modules for O and Σ. This concludes the theorem.

Proof of Corollary 79

Corollary 93 Theorems 66 and 72 still hold if we ignore the f-trees t+ ∈ FOΣ that

satisfy one of the following conditions:

1. t+ has an edge, starting from the root root(t+), which is not a ∃r-edge;

2. t+ is a proper sub-tree of a f-tree t+1 ∈ FOΣ such that root(t) = root(t+1 )

and ̸|= Ct+ ≡ Ct+
1
.

Proof. It is enough to prove that Theorem 66 still holds when we remove all the f-

trees satisfying conditions 1 or 2. Then, Theorem 72 is implied by the original proof

based on Theorem 66.

Let’s call a f-tree satisfying conditions 1 or 2 a redundant f-tree. We claim that

Claim 94 If S is a set of redundant f-trees, if t+ is a new redundant f-tree, and

if α ∈ U(FOΣ \ S), then we have U
(

FOΣ \ (S ∪ {t
+})
)

|= α.
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The proof of the claim is provided below. By this claim, we can remove all re-

dundant f-trees from FO
Σ iteratively, where each step preserves the conclusion of

Theorem 66. This concludes the proof of the corollary.

proof of Claim 94. Two cases arise depending on the type of t+.

Case 1 Assume that t+ ∈ FO
Σ is a redundant f-tree with an edge, which is not a

∃r-edge, starting from the root root(t+). There are two cases:

• At+ ∈ Σ. Next, we show that the axiom

α := At+ ⊑ Dt+ ∈ U(F
O
Σ \ S)

induced by t+ is inferred by U(FO
Σ \ S ∪ {t

+}).

The idea is illustrated by Figure 4.11. Assume t+ has the form shown in Figure

4.11. Then, we have

At+ ⊑ Dt+ = A ⊑ ∃r.(A1 ⊓A2) ⊓ ∃r.A3.

We could split the f-tree t+ of the figure into two different f-trees t+1 , t
+
2 and

a b-tree t
−
1 , where all edges in t

+
i (i = 1, 2) starting from the root root(t+i )

are ∃r-edges. Then, the axiom A ⊑ ∃r.(A1 ⊓A2) ⊓ ∃r.A3 is inferred by

{α1 : A ⊑ ∃r.(A1 ⊓A2),

α2 : A ⊑ ∃r.A3},

where α1 ∈ U({t
+
1 , t

−
1 }) and α2 ∈ U({t

+
2 }). Therefore, we have U

(

FO
Σ \ (S ∪

{t+})
)

|= α.

The general case is proved in the same way. In details, we can always split t+

into t
+
1 , . . . , t

+
m and b-trees t−1 , . . . , t

−
n , where n ≤ m, such that

– All edges in t
+
1 , . . . , t

+
m starting from the root are ∃r-edges;

– t
−
1 , . . . , t

−
n consist of a single edge labelled by O |= At+ ⊑ B for some

B ∈ NC (e.g., t−1 in Figure 4.11);

– For 1 ≤ i ≤ n, roots of t+i , t
−
i have the same label (e.g., t+1 , t

−
1 in Figure

4.11);

– U({t+i , t
−
i | 1 ≤ i ≤ n}) ∪ U({t+j | n < j ≤ m}) |= At+ ⊑ Dt+ (e.g.,

U({t+1 , t
−
1 }) ∪ U({t

+
2 }) |= A ⊑ ∃r.(A1 ⊓A2) ⊓ ∃r.A3 at above).

• At+ ̸∈ Σ. In this case, all axioms induced from t+ are of the form

α := Ct− ⊑ Dt+ ∈ U(F
O
Σ \ S)

where t−is a b-tree over O with At− = At+ . By the same argument as in the

previous case, we have α is inferred from U
(

FO
Σ \ (S ∪{t

+})
)

. The only differ-

ence is that now t− is involved when looking for axioms in U
(

FO
Σ \ (S∪{t

+})
)

that derive α. For instance, for the example of Figure 4.11, we have

– α1 has the form Ct− ⊑ ∃r.(A1 ⊓A2) and is induced by the pair (t
+
1 , t

− ∪
t
−
1 ). That is, α1 ∈ U({t

+
1 , t

− ∪ t−1 }) ;

– α2 has the form Ct− ⊑ ∃r.A3 and is induced by the pair (t
+
2 , t

−). That is,
α2 ∈ U({t

+
2 , t

−}).
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5 - Computing General Modules

In this chapter, we present a method of computing general modules for ALC,

which was őrst investigated for the lightweight DLs EL [58]. A general module

for an ontology is an ideally substantially smaller ontology that preserves all en-

tailments for a user-speciőed set of terms. As such, it has applications such as

ontology reuse and ontology analysis. Different from classical modules, general

modules may use axioms not explicitly present in the input ontology, which allows

for additional conciseness. General modules generalize both uniform interpolants

and deductive modules, where the former requires all names in the result to be in

the given signature, and the latter requires all axioms in the őnal result to be in

the original ontology. This makes them useful in their own right: as our evaluation

shows, our general modules are often smaller than both locality-based modules and

uniform interpolants.

The main steps of our approach are shown in Figure 5.1. Our method is

based on a normalized version of the input ontology (Section 5.2). Note that in

this chapter and more precisely in Section 5.2, we are focussing on a notion of

normalization for ALC-ontologies that has been developed in [46] for computing

uniform interpolant and is different from the one introduced in deőnition 2.7 of the

preliminary section. Then, the general module building process relies on an efficient

role names elimination (Section 5.3) and concept names eliminations (Section 5.4),

which include the elimination of special concept names, called definer names, that

are introduced during normalization. The use of deőner names is inspired by the

method for uniform interpolation in [47]. However, since general modules allow

names outside the given signature in contrast to uniform interpolants, we are able to

develop a more efficient deőner elimination step. A detailed comparative discussion

of our method and the method for computing uniform interpolant is postponed to

Section 5.1.

Moreover, our method is able to compute both deductive modules and uniform

interpolants (Section 5.5). Our evaluation (Section 5.6) shows that all our meth-

ods, including the one for uniform interpolation, can compete with the run times of

locality-based module extraction, while at the same time resulting in substantially

smaller ontologies.

This chapter is organized as follows. First, we discuss some related works

in Section 5.1. Then, Section 5.2 shows how to normalize ALC ontologies. In

Section 5.3, we develop a role forgetting method by introducing role isolated on-

tologies. Our method for computing general modules, based on the role forgetting

result, is presented in Section 5.4. Furthermore, we extend our method to com-

puting both deductive modules and uniform interpolants in Section 5.5. Finally,

we present the result of the evaluation of our methods on real-world ontologies in

Section 5.6. Proof of all the results of this chapter could be found in Section 5.7.
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Figure 5.1: Overview of our unified method for computing general

modules, deductive modules, and uniform interpolants

5.1 . Related Work

A detailed discussion on computing deductive modules forALC and EL ontolo-

gies has been provided in Section 4.1. Next, we discuss related works on computing

uniform interpolants for ALC ontologies.

Let us start with a brief introduction of Lethe [47], a method that com-

putes uniform interpolants. For a given ALC-ontology O and signature Σ, Lethe

computes a uniform interpolant for O and Σ by mainly three steps:

1. Transformation into ALC normal form

During this step, O is translated into the normal form cl(O), whose axioms

are of the form:

⊤ ⊑ L1 ⊔ . . . ⊔ Ln Li ::= A | ¬A | Qr.D,

where A ∈ NC , Q ∈ {∀, ∃} and D ∈ NC \ sig(O) is a newly introduced

concept names called definers. Details of how to construct cl(O) are post-

poned to Section 5.2. For simplicity, we omit ł⊤ ⊑ž in the left-hand-side of

all axioms occurring in cl(O) or the following computations;

2. Resolution over cl(O)

Next, Lethe recursively applies the resolution rules in Figure 5.9 over cl(O).

Here, the rule A-Res applies only for A ̸∈ Σ. The rule r-Res, which deter-

mines whether cl(O) |= D1 ⊓ . . .⊓Dn ⊑ ⊥ relying on an external reasoner,

applies only for r ̸∈ Σ. The rule r-Prop introduces a new deőner D12,

which refers to a new concept name representing D1 ⊓D2. If D12 was not

introduced before, the two new axioms ¬D12 ⊔ D1, ¬D12 ⊔ D2 are also

added to the resolution result.

3. Definer Elimination

Finally, all deőners D are eliminated by the following two steps:

(a) First, for each deőner D, the set S, which consists of all axioms con-

taining ¬D, is replaced by a single axiom D ⊑ C1 ⊓ C2 ⊓ . . . ⊓ Cn.

S = {¬D ⊔ C1,¬D ⊔ C2, . . . ,¬D ⊔ Cn};
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A-Res :
C1 ⊔ A, C2 ⊔ ¬A

C1 ⊔ C2

r-Prop :
C1 ⊔ ∀r.D1, C2 ⊔Qr.D2

C1 ⊔ C2 ⊔Qr.D12

r-Res :
C1 ⊔ ∃r.D1, C2 ⊔ ∀r.D2, . . . , Cn ⊔ ∀r.Dn

C1 ⊔ . . . ⊔ Cn

,

where cl(O) |= D1 ⊓ . . . ⊓Dn ⊑ ⊥, n ≥ 1.

Figure 5.2: Lethe resolution rules

(b) Then, the following substitution process is repeated exhaustively: For

each axiom of the form D ⊑ C, this axiom is removed and all occur-

rences of D are replaced by C in the remaining axioms.

Step (a) may generate axioms of the form D ⊑ C with D ∈ sig(C). In

this case, one can not remove D ⊑ C directly as it may lead to the loss of

some logical information over Σ. This problem can be solved by using the

greatest fixpoint proposed in [12]. More details are given in [46].

Example 96 Assume that O = {A ⊑ ∀r.B,B ⊑ A1} and Σ = {A,A1, r}. Then

a uniform interpolant for O and Σ is obtained by LETHE as follows:

1. O is translated into the ALC normal form

cl(O) = { ¬A ⊔ ∀r.D, ¬D ⊔B, ¬B ⊔A1 },

where D is a definer;

2. By applying the resolution rules in Figure 5.9 over cl(O), one obtains:

{ ¬A ⊔ ∀r.D, ¬D ⊔A1};

3. The elimination of definers takes two steps:

(a) for the unique definer D, we have S = {¬D ⊔ A1}. Replacing S by

D ⊑ A1, one obtains

{ ¬A ⊔ ∀r.D, D ⊑ A1};

(b) There is only one axiom D ⊑ A1 satisfying the requirement. By

removing this axiom and replacing all occurrences of D by A1, one

obtains

U = { ¬A ⊔ ∀r.A1 } = { A ⊑ ∀r.A1 }.
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Finally, the resulting ontology U is a uniform interpolant for O and Σ.

For computing uniform interpolant more efficiently for ALC-ontologies, [76]

proposed to split the computation of uniform interpolant into two steps (i) Forget-

ting role names outside the given signature; (ii) Forgetting concept names outside

the given signature. These two steps have also been called role forgetting and

concept forgetting [74]. For each step, [76] proposed a different set of rules. Ex-

periments on real-world ontologies show that such an approach is more efficient

than Lethe [76]. However, as for Lethe, [76] relies on an external reasoner (for

the role forgetting step) and may introduce new deőners during the computation

progress (during the concept forgetting step). There are also other methods, such

as Fame [78], Fame(Q) [79] and the invariant of Lethe proposed in [48], that

consider the universal role ∇ and compute uniform interpolants under ALC∇ or

more general semantics (e.g., ALCOQH(∇)). The universal role ∇ is a notion

analog to ⊤, but for role names (i.e., ∇ is łcontainingž all role names). Indeed,

Fame and Fame(Q) have a similar mechanism as [76] and compute uniform

interpolants by forgetting concept and role names separately. As stated in [48], in-

troducing universal roles could accelerate the computation of uniform interpolants

by simplifying the rules for forgetting role names. However, there are two disad-

vantages to use the universal role: First, one would produce axioms outside of

ALC (i.e., axioms containing ∇). Second, the resulting uniform interpolant un-

der ALC∇-semantic are usually more complicated than uniform interpolant under

ALC-semantic. A simple example is shown below.

Example 97 Consider the ontology O = {A ⊑ ∃r.B} and the signature Σ =

{A,B}, then the uniform interplant for O and Σ under ALC∇-semantic is {A ⊑
∃∇.B}. In constrast, the uniform interplant for O and Σ under ALC-semantic is

an empty set.

Our method can be regarded as a combination of [76] and Lethe. As shown in

Figure 5.1, our method computes general modules for a given signature Σ by four

steps:(i) normalising the given ALC ontology; (ii) forgetting role names outside Σ;

(iii) forgetting concept names outside Σ; (iv) eliminating deőner names. However,

our method changes the mechanism of the method proposed in [76] and Lethe

in the following four aspects:

1. Differently from Lethe (r-Prop rule) or [76], in our method, normalization

is the only step that introduces deőners;

2. We introduce a new efficient role name elimination process based on role

isolation, which does not rely on an external reasoner nor on the universal

role;

3. Our concept name elimination process only depends on a single resolution

rule (i.e., A-Rule in Figure 5.4), which does not introduce new deőners. In
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C1 ⊑ C2 → ⊤ ⊑ ¬C1 ⊔ C2

C1 ≡ C2 → ⊤ ⊑ ¬C1 ⊔ C2,⊤ ⊑ ¬C2 ⊔ C1

⊤ ⊑ C1 ⊔ ¬¬C2 → ⊤ ⊑ C1 ⊔ C2

⊤ ⊑ C1 ⊔ (C2 ⊓ C3) → ⊤ ⊑ C1 ⊔ C2, ⊤ ⊑ C1 ⊔ C3

⊤ ⊑ C1 ⊔ ¬(C2 ⊓ C3) → ⊤ ⊑ C1 ⊔ ¬C2 ⊔ ¬C3

⊤ ⊑ C1 ⊔ ¬(C2 ⊔ C3) → ⊤ ⊑ C1 ⊔ (¬C2 ⊓ ¬C3)

⊤ ⊑ C1 ⊔ ¬(∃r.C3) → ⊤ ⊑ C1 ⊔ ∀r.¬C3

⊤ ⊑ C1 ⊔ ¬(∀r.C3) → ⊤ ⊑ C1 ⊔ ∃r.¬C3

⊤ ⊑ C1 ⊔ ∃r.C2 → ⊤ ⊑ C1 ⊔ ∃r.D, ¬D ⊑ C2 (*)

⊤ ⊑ C1 ⊔ ∀r.C2 → ⊤ ⊑ C1 ⊔ ∀r.D, ¬D ⊑ C2 (*)

Definer D is introduced only by (*) rules.

Figure 5.3: Rules for transforming anyALC ontology into normal form

contrast, in [76], the concept forgetting rules are much more complicated

and may introduce new deőners;

4. Our deőner elimination step may reintroduce names outside the given sig-

nature, which is not the case for Lethe.

5.2 . Ontology Normalization

Our method performs forgetting on a normalized view of the ontology, which is

obtained via the introduction of fresh names as in [46]. Next, we say an ontology

O is in normal form if every axiom is of the following form:

⊤ ⊑ L1 ⊔ . . . ⊔ Ln Li ::= A | ¬A | Qr.A,

where A ∈ NC , and Q ∈ {∀, ∃}. We call the disjuncts Li literals. For simplicity,

we omit the ł⊤ ⊑ž on the left-hand side of normalized axioms, which are regarded

as sets, in order to avoid dealing with duplicated literals and order. As an example,

the axiom A2 ⊑ A3 ⊔ ∀s.B3 is equivalent to ¬A2 ⊔A3 ⊔ ∀s.B3 in normal form.

As introduced in [46], an ALC-ontology O can be translated into a normal

form cl(O) using the rules in Figure 5.3. In particular, concepts C occurring
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under role restrictions Qr.C are replaced by fresh names D taken from a set

ND ⊆ NC \ sigC(O) of definers. We use D, D′, D1, D2, . . . to denote deőners.

Example 98 An axiom A1 ⊑ ∃r.∃s.B1 ⊔ ∃r.B2 is translated into a normal form

by the following steps:

1. First, we translate the axiom into the following equivalent form:

(⊤ ⊑)¬A1 ⊔ ∃r.∃s.B1 ⊔ ∃r.B2;

2. Next, we replace ALC-concepts under a role restriction by definers.

adding D1 : ¬A1 ⊔ ∃r.D1 ⊔ ∃r.B2, ¬D1 ⊔ ∃s.B1

adding D2 : ¬A1 ⊔ ∃r.D1 ⊔ ∃r.B2, ¬D1 ⊔ ∃s.D2,

¬D2 ⊔B1

adding D3 : ¬A1 ⊔ ∃r.D1 ⊔ ∃r.D3, ¬D1 ⊔ ∃s.D2,

¬D2 ⊔B1, ¬D3 ⊔B2

Here, the definers D1, D2, D3 stand for the concepts CD1
= ∃s.B1, CD2

=

B1, CD3
= B2, respectively.

For each introduced deőner D, we remember the concept CD that it replaced.

We assume that distinct occurrences of the same concept are replaced by distinct

deőners. Thus, in the resulting normalization of O denoted cl(O), every literal

Qr.D satisőes D∈ND, and for every D ∈ ND, cl(O) contains at most one literal

of the form Qr.D. Note that each deőner D only occurs in literals of the form

¬D or Qr.D, that is, positive literals of the form D are not allowed.

By [46], we also have that cl(O) ≡sig(O) O.

Example 99 Let O be the ontology defined in the first row of Table 5.1. By

normalizing O, we obtain the set cl(O) shown in the second row of Table 5.1. The

definers D1, D2 and D3 in cl(O) replace the concepts CD1
= ∃s.B1, CD2

= B1

and CD3
= B2, respectively.

For a őxed normalization, we introduce a partial order ⪯d over all introduced

deőners, which is deőned as the smallest reŕexive-transitive relation over ND s.t.

• D′ ⪯d D if ¬D ⊔ C ∈ cl(O) and D′ ∈ sig(C).

Intuitively, D′ ⪯d D whenever CD′ is contained in CD. In Example 99, we have

D2 ⪯d D1, since ¬D1 ⊔∃s.D2 ∈ cl(O). Note that our normalization ensures that

⪯d is always acyclic.

In the following, we always assume that ontology O and signature Σ do not

contain deőners, unless stated otherwise.
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O: A1 ⊑ ∃r.∃s.B1 ⊔ ∃r.B2 B1 ⊓B3 ⊑⊥ A2 ⊑ A3 ⊔ ∀s.B3 B4 ⊑ A4 B2 ⊑ B4

cl(O): ¬A1 ⊔ ∃r.D1 ⊔ ∃r.D3 ¬D1 ⊔ ∃s.D2 ¬D2 ⊔B1 ¬D3 ⊔B2 ¬A2 ⊔ A3 ⊔ ∀s.D4

¬D4 ⊔B3 ¬B1 ⊔ ¬B3 ¬B2 ⊔B4 ¬B4 ⊔ A4

RIΣ(O): ¬A1 ⊔ ∃r.D1 ⊔ ∃r.D3 ¬D1 ⊔ ∃s.D2 ¬D3 ⊔B2 A2 ⊔ A3 ⊔ ∀s.D4 ¬B1 ⊔ ¬B3

¬B2 ⊔B4 ¬B4 ⊔ A4 ¬D2 ⊔ ¬D4

rolEΣ(RIΣ(O)): ¬A1 ⊔ ∃r.D1 ⊔ ∃r.D3 ¬D3 ⊔B2 ¬B1 ⊔ ¬B3 ¬B2 ⊔B4 ¬B4 ⊔ A4

¬D2 ⊔ ¬D4 ¬D1 ⊔ ¬A2 ⊔ A3

conEΣ(rolEΣ(RIΣ(O))) : ¬A1 ⊔ ∃r.D1 ⊔ ∃r.D3 ¬D1 ⊔ ¬A2 ⊔ A3 ¬D3 ⊔ A4

gm(O,Σ): A1 ⊑ ∃r.∃s.B1 ⊔ ∃r.B2 A2 ⊓ ∃s.B1 ⊑ A3 B2 ⊑ A4

gm∗(O,Σ): A1 ⊑ ∃r.(¬A2 ⊔ A3) ⊔ ∃r.A4

Table 5.1: Ontologies generated throughout the running example.

1
0
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5.3 . Role Forgetting

An ontologyM is called a role forgetting [74] for O and Σ iffM is a uniform

interpolant for O and Σ′ = Σ ∪ sigC(O). Existing methods to compute role

forgetting either rely on an external reasoner [76, 47] or use the universal role ∇

[77, 48]. The former approach can be expensive, while the latter produces axioms

outside ofALC. The normalization allows us to implement a more efficient solution

within ALC, which relies on an integrated reasoning procedure and an additional

transformation step that produces so-called role isolated ontologies.

5.3.1 . Role isolated ontologies

The main idea is to separate concept names A ∈ NC that occur with roles

outside of the signature, using the following notations.

Rol(A,O) = {r ∈ sig(O) | Qr.A appears in O, Q ∈ {∀, ∃}}

OutΣ(O) = {A ∈ sig(O) | Rol(A,O) ̸⊆ Σ}

Definition 100 (Role-isolated ontology) An ontology O is role isolated for Σ if

(i) O is in normal form, and (ii) every axiom α ∈ O is of one of the following

forms:

(c1) L1 ⊔ . . . ⊔ Ln, Li := ¬A, where A ∈ OutΣ(O), for all 1 ≤ i ≤ n;

(c2) L1 ⊔ . . . ⊔ Lm, Li := Qr.A | B | ¬B, where r, A ∈ sig(O) and B ̸∈
OutΣ(O), for all 1 ≤ i ≤ n.

Thus, an axiom in a role isolated ontology falls into two disjoint categories:

either (c1) it contains literals built only over concepts in OutΣ(O) or (c2) it

contains role restrictions or literals built over concepts outside OutΣ(O). This

means that a concept in OutΣ(O) can only appear together with other concepts

in OutΣ(O). In other words, these concepts are "isolated" from other concepts of

the form A or Qr.A′, where A is not in OutΣ(O), and r and A′ are arbitrary role

and concept names.

Example 101 (Example 99 cont’d) For Σ = {r, A1, A1, A2, A3, A4}, we have

OutΣ(cl(O)) = {D2, D4}. cl(O) is not role isolated for Σ because of ¬D2 ⊔B1.

Given an ontology, we compute its role isolated form using the following deő-

nition.

Definition 102 The role isolated form RIΣ(O) of O is defined as RIΣ(O) :=

clΣ(O) ∪ DΣ(O), where

• clΣ(O) ⊆ cl(O) contains all α ∈ cl(O) s.t. if ¬D is a literal of α, then

Rol(D′, cl(O)) ⊆ Σ for all D′ ∈ ND s.t. D ⪯d D′.

• DΣ(O) is the set of axioms ¬D1 ⊔ . . . ⊔ ¬Dn s.t.
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1. clΣ(O) contains axioms of the form

C1 ⊔ Q1r.D1, C2 ⊔ ∀r.D2, . . . , Cn ⊔ ∀r.Dn,

where r ∈ NR \ Σ, Q1 ∈ {∀, ∃}, and

2. {D1. . . . , Dn} is a minimal set of definers s.t.

cl(O) |= D1 ⊓ . . . ⊓Dn ⊑⊥ .

Intuitively, if a deőner D appears in clΣ(O), then it should not depend on deőners

in OutΣ(O).

Example 103 (Example 101 cont’d) We have:

• clΣ(O) = cl(O) \ {¬D2 ⊔B1,¬D4 ⊔B3} because

Rol(D2, cl(O)) = Rol(D4, cl(O)) = {s} ̸⊆ Σ

and,

• DΣ(O) = {¬D2 ⊔ ¬D4}.

Theorem 104 RIΣ(O) is role isolated for Σ and we have O ≡Σ∪sig
C
(O) RIΣ(O).

Proof. The proof is provided on Page 120.

To compute DΣ(O), we saturate cl(O) using the inference rules shown in

Fig. 5.4, which is sufficient due to the following lemma.

Lemma 105 Let S be the set of axioms ¬D1 ⊔ . . . ⊔ ¬Dn, obtained by applying

the rules in Fig. 5.4 exhaustively on cl(O). Then, for all D1, . . ., Dn ∈ ND, we

have cl(O) |= D1 ⊓ . . . ⊓ Dn ⊑⊥ iff ¬Di1 ⊔ . . . ⊔ ¬Dik ∈ S for some subset

{i1, . . . , ik} ⊆ {1, . . . , n}.

Proof. The proof is provided on Page 114.

Example 106 (Example 103 cont’d) The axiom ¬D2⊔¬D4 in DΣ(O) is obtained

by applying two A-Rule inferences:

¬D2 ⊔B1, ¬B1 ⊔ ¬B3

¬D2 ⊔ ¬B3, ¬D4 ⊔ B3

¬D2 ⊔ ¬D4
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A-Rule :
C1 ⊔ A1 ¬A1 ⊔ C2

C1 ⊔ C2

r-Rule :
C1 ⊔ ∃r.D1,

⋃n
j=2{Cj ⊔ ∀r.Dj}, KD

C1 ⊔ . . . ⊔ Cn

,

whereKD = ¬D1⊔. . .⊔¬Dn or¬D2⊔. . .⊔¬Dn,D1, . . . , Dn ∈ ND.

Figure 5.4: Inference rules for computing DΣ(O)

r-Rule :
C1 ⊔ ∃r.A1,

⋃n
j=2{Cj ⊔ ∀r.Aj}, KA

C1 ⊔ . . . ⊔ Cn

,

whereKA = ¬A1⊔ . . .⊔¬An or ¬A2⊔ . . .⊔¬An,A1, . . . , An ∈ NC .

Figure 5.5: r-Rule for role isolated ontologies

5.3.2 . Role forgetting for role isolated ontologies

If O is role isolated for Σ, a role forgetting for O and Σ can be obtained using

the r-Rule in Figure 5.4.

Note that unlike RIΣ(O), which is built from cl(O), a real-world ontology

O1 does not contain deőners, regardless of whether it is role isolated or not.

Deőners are only introduced during the normalization process of O1 following the

rules outlined in Figure 5.3. Thus, only cl(O1) contains deőners. Therefore, to

apply the r-Rule on every role isolated ontology O, we allow the concept names

D1, . . . , Dn in the r-Rule to include concept names outside ND. In other words,

the r-Rule for a role isolated ontology O is of the form shown in Figure 5.5.

Definition 107 rolEΣ(O) is obtained by:

1. applying the r-Rule exhaustively for each r ∈ sigR(O) \ Σ, and then

2. removing all axioms containing some r ∈ sigR(O) \ Σ.

The second step ensures that all role names in the resulting ontology rolEΣ(O)

are in Σ and therefore, we have sig(rolEΣ(O)) ⊆ Σ ∪ sigC(O).

Example 108 (Example 106 cont’d) For the ontology RIΣ(O), Table 5.1 (fourth

row) shows rolEΣ(RIΣ(O)) which is obtained through the following two steps:
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1. The new axiom ¬D1 ⊔ ¬A2 ⊔A3 is generated by the r-Rule inference:

¬D1 ⊔ ∃s.D2, ¬A2 ⊔A3 ⊔ ∀s.D4, ¬D2 ⊔ ¬D4

¬D1 ⊔ ¬A2 ⊔A3

2. The two axioms ¬D1⊔∃s.D2, ¬A2⊔A3⊔∀s.D4 are removed because they

contain s ∈ sig(RIΣ(O)) \ Σ.

Theorem 109 If O is role isolated for Σ, then rolEΣ(O) is a role-forgetting for

O and Σ.

Proof. The proof is provided on Page 122.

5.4 . Computing General Modules via rolEΣ

Our goal now is to compute a general module starting from forgetting also the

concept names (obtaining a hopefully more concise representation), and eliminating

all deőners (ensuring the result is entailed by O).

5.4.1 . Concept forgetting

We say that an ontologyM is a concept forgetting [74] for O and Σ iffM is

a uniform interpolant for O and the signature Σ′ = Σ ∪ sigR(O) ∪ ND.

A concept forgetting can be computed through the A-Rule in Figure 5.4.

Definition 110 conEΣ(O) is the ontology obtained as follows:

1. apply the A-Rule exhaustively for each A ∈ sigC(O) \ Σ, and then

2. delete every axiom α that contains A or ¬A, where A ∈ NC \ Σ and no

axiom contains Qr.A for Q ∈ {∀, ∃} and r ∈ NR.

Example 111 (Example 108 cont’d) Table 5.1 (the 5th row) shows the axioms

in conEΣ(rolEΣ(RIΣ(O))) obtained as follows.

1. ¬D3 ⊔ B4, ¬B2 ⊔ A4, and ¬D3 ⊔ A4 are first generated by applying the

A-Rule on B2 and B4.

2. Axioms containing Bi or ¬Bi, i ∈ {1, . . . , 4}, are removed since Bi ̸∈ Σ.

¬D2 ⊔¬D4 is also removed because there are no literals of the form Qr.D2

or Qr.D4.

The following is a consequence of [77, Theorem 1].

Theorem 112 If O is in normal form, then conEΣ(O) is a concept forgetting for

O and Σ.

Theorems 104, 109 and 112, imply the following corollary.

Corollary 113 conEΣ(rolEΣ(RIΣ(O))) ≡Σ O.
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5.4.2 . Constructing general modules

Now, in order to obtain our general modules, we need to eliminate the deőners

from conEΣ(rolEΣ(RIΣ(O))). This is done by simple substitution. That is,

each deőner D is replaced by their corresponding concept CD assigned during the

normalisation process. Moreover, we apply the following two operations to improve

the results:

1. We delete subsumed axioms in conEΣ(rolEΣ(RIΣ(O))) before eliminating

deőners. Here, we say an axiom ⊤ ⊑ C ⊔D ∈ conEΣ(rolEΣ(RIΣ(O))) is

subsumed if there exists another axioms in⊤ ⊑ C ∈ conEΣ(rolEΣ(RIΣ(O))).

That is, ⊤ ⊑ C ⊔ D is redundant and can be removed from

conEΣ(rolEΣ(RIΣ(O))) without loss of any logical information;

2. We rewrite axioms of the form ⊤ ⊑ ¬C ⊔D in the standard form C ⊑ D

to make it more readable.

Theorem114 Let gmΣ(O) be the ontology obtained from conEΣ(rolEΣ(RIΣ(O)))
by

• deleting subsumed axioms,

• replacing each definer D by CD, and

• exhaustively applying the two transformations below

C1 ⊑ ¬C2 ⊔ C3 ⇒ C1 ⊓ C2 ⊑ C3

C1 ⊑ Qr.¬C2 ⊓ C3 ⇒ C1 ⊓ Qr.C2 ⊑ C3,

where ∃ = ∀ and ∀ = ∃.

Then, gmΣ(O) is a general module for O and Σ.

Proof. The proof is provided on Page 122.

Example 115 (Example 111 cont’d) Table 5.1 (the 6th row) shows the general

module gmΣ(O), which has been obtained using CD1
=∃s.B1 and CD3

=B2.

Eliminating deőners in this way may reintroduce previously forgotten names,

which is why our general modules are in general not uniform interpolants. This

has the advantage of avoiding the triple exponential blow-up (wrt ontology length)

caused by uniform interpolation [55]. In contrast, the length of our result is at

most single exponential in the size of the input.

Proposition 116 For any ontology O and signature Σ, we have ∥gmΣ(O)∥ ≤
2O(∥cl(O)∥). On the other hand, there exists a family of ontologies On and signa-

tures Σn s.t. ∥On∥ is polynomial in n ≥ 1 and ∥gmΣn
(On)∥ = n · 2O(∥cl(On)∥).
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conD-Elim:

C1 ⊔ Qr.D1,
⋃n

j=2{Cj ⊔ ∀r.Dj},¬D1 ⊔ . . . ⊔ ¬Dn

C1 ⊔ . . . ⊔ Cn ⊔ Qr.⊥

D-Prop :
C1 ⊔ Qr.D,

⋃n
j=2{¬D ⊔ Cj}

C1 ⊔ Qr.(C2 ⊓ . . . ⊓ Cn)

where
⋃n

j=2{¬D ⊔ Cj} (n ≥ 1) are all the axioms of the form

¬D ⊔ C. This rule is applicable only if no Cj contains definers.

Figure 5.6: Rules to eliminate definers

Proof. The proof is provided on Page 124.

For some module extraction methods, such as for locality-based modules [27],

iterating the computation can lead to smaller modules. The following result shows

that this is never the case for our method.

Proposition 117 Let (Mi)i≥1 be the sequence of ontologies defined by (i)M1 =

gmΣ(O) and (ii)Mi+1 = gmΣ(Mi) for i ≥ 1. Then, we have

Mi ⊆Mi+1 for i ≥ 1.

Moreover, there exists i0 ≥ 0 s.t. Mk =Mi0 for all k ≥ i0.

Proof. The proof is provided on Page 128.

This property is due to the substitution step of Theorem 114. This step may

reintroduce in gmΣ(O) concept and role names outside of Σ. As a result, the

repeated application of rolEΣ and conEΣ on gmΣ(O) can produce additional but

unnecessary axioms. However, for ontologies in normal form, our method is stable

in the sense that repeated applications produce the same ontology.

Proposition 118 Let O be an ontology in normal form andM = gmΣ(O). Then,

gmΣ(M)=M.

Proof. The proof is provided on Page 126.

5.4.3 . Optimizing the result

The general module gmΣ(O) may contain complex axioms since the deőners

D can stand for complex concepts CD. To make the result more concise, we

eliminate some deőners before substituting them. In particular, we use the following

operations on conEΣ(rolEΣ(RIΣ(O))), inspired by [68].
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Op1. Eliminating conjunctions of definers aims to eliminate disjunctions of

negative deőners (¬D1⊔ . . .⊔¬Dn). This is done in two steps: (i) Applying

the conD-Elim rule of Figure 5.6 on conEΣ(rolEΣ(RIΣ(O))), and then (ii)

deleting all axioms of the form ¬D1 ⊔ . . . ⊔ ¬Dn.

Op2. Eliminating single definers aims to get rid of deőners D that do not occur

in axioms of the form ¬D⊔¬D1⊔C. This is done in two steps: (i) applying

the D-Prop rule of Figure 5.6 exhaustively and then (ii) deleting all axioms

containing deőners for which D-Prop has been applied.

Theorem 119 Let gm∗Σ(O) be the ontology obtained by:

• successive application of Op1 and Op2 over conEΣ(rolEΣ(RIΣ(O))), and

then

• application of the steps described in Theorem 114.

Then, gm∗Σ(O) is a general module for O and Σ.

Proof. The proof is provided on Page 130.

Example 120 (Example 115 cont’d) Table 5.1 (the 7th row) shows the general

module gm∗Σ(O), which has been obtained by applying Op2 (i.e., apply D-Prop

rule for D1 and D3 ) on conEΣ(rolEΣ(RIΣ(O))).

To illustrate operation Op1, we provide another example below.

Example 121 Assume Σ = {r, A,A1} and

O = {A ⊑ ∀r.∃s.B1, A1 ⊑ ∀r.∀s.B2, B1 ⊓B2 ⊑ ⊥}.

Then, conEΣ(rolEΣ(RIΣ(O))) is:

{¬A ⊔ ∀r.D1, ¬A1 ⊔ ∀r.D2, ¬D1 ⊔ ¬D2},

where CD1
= ∃s.B1, CD2

= ∀s.B2. And thus, by replacing Di by CDi
, we obtain

gmΣ(O)=

{A ⊑ ∀r.∃s.B1, A1 ⊑ ∀r.∀s.B2, ∃s.B1 ⊓ ∀s.B2 ⊑ ⊥},

which is actually more intricate than O. We can avoid this by applying the two

optimizations described above.

The elimination of definer conjunctions (Op1) produces

{¬A ⊔ ∀r.D1,¬A1 ⊔ ∀r.D2,¬A ⊔ ¬A1 ⊔ ∀r.⊥}. (5.1)

(i) The first step of Op1 applies the conD-Elim inference:

¬A ⊔ ∀r.D1,¬A1 ⊔ ∀r.D2,¬D1 ⊔ ¬D2

¬A ⊔ ¬A1 ⊔ ∀r.⊥
.
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(ii) The second step of Op1 removes the axiom ¬D1 ⊔ ¬D2.

Then, the elimination of definers (Op2) produces

{¬A ⊔ ∀r.⊤,¬A1 ⊔ ∀r.⊤,¬A ⊔ ¬A1 ⊔ ∀r.⊥} (5.2)

by replacing D1, D2 by ⊤ as there is no axioms with negative Di, i = 1, 2 in

Equation (5.1). Note that the first two axioms in Equation (5.2) are tautologies

and thus can be ignored.

Finally, we have gm∗Σ(O) = {A ⊓A1 ⊑ ∀r.⊥}.

5.5 . Deductive Modules and Uniform Interpolants

Deductive modules Depending on the situation, users might prefer to get a

view (module) containing the axioms of the original ontology O rather than new

axioms (e.g., axioms in gmΣ(O) or gm∗Σ(O)). For such situations, we can compute

a deductive module for O and Σ by tracing back the inferences performed during

the computation of the general module gm∗Σ(O).

Let ResΣ(O) be the set of all axioms generated by the computation process of

gm∗Σ(O). Clearly, gm∗Σ(O) ⊆ ResΣ(O). Then, the deductive module dmΣ(O) is

deőned using a relation links certain elements of ResΣ(O). A relation R over the

set ResΣ(O) is deőned as a set of ordered pairs of elements in ResΣ(O). That is,

a set of the form

R = {(α, β) | α, β ∈ ResΣ(O)}.

Next, we write αRβ iff (α, β) ∈ R.

The relation R on ResΣ(O), used to deőne the deductive module dmΣ(O), is

built iteratively during the computation of gm∗Σ(O) as follows

• Start with the empty relation R = ∅;

• Each time a new axiom β is generated from a premise set {α1, . . . , αn}

(e.g., if β is obtained by applying r-Rule on {α1, . . . , αn}), we add to R the

elements α1Rβ, . . . , αnRβ.

Let R∗ be the smallest transitive closure of R. That is, R∗ satisőes the following

two conditions:

• For any axioms α, β, if αRβ, then αR∗β;

• For any axioms α, β, γ, if αR∗β and βR∗γ, then αR∗β.

Then, we are able to deőne a deductive module as follows.

Theorem 122 Let us define dmΣ(O) by

dmΣ(O) = {α ∈ O | αR
∗β for some β ∈ gm∗Σ(O)}.

Then, dmΣ(O) is a deductive module for O and Σ.
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Proof. The proof is provided on Page 132.

Example 123 (Example 115 cont’d) In the computation progress of gm∗Σ(O), we

obtain the relation R that include the following relations:

1. We have α1Rα2, where

α1 = A1 ⊑ ∃r.∃s.B1 ⊔ ∃r.B2 ∈ O,

α2 = ¬A1 ⊔ ∃r.D1 ⊔ ∃r.D3 ∈ cl(O),

as α2 is obtained by normlizing α1;

2. We have β1Rβ4, β2Rβ4, β3Rβ4, where

β1 = ¬D1 ⊔ ∃s.D2 ∈ RIΣ(O),

β2 = ¬A2 ⊔A3 ⊔ ∀s.D4 ∈ RIΣ(O),

β3 = ¬D2 ⊔ ¬D4 ∈ RIΣ(O),

β4 = ¬D1 ⊔ ¬A2 ⊔A3 ∈ rolEΣ(RIΣ(O)),

as β4 is generated by applying the r-Rule on {β1, β2, β3}.

For simplicity, here, we do not provided all elements of R and R∗. Indeed, in this

running example, we have dmΣ(O) = O since all the axioms of O are necessary

for generating gm∗Σ(O).

Uniform interpolants While general modules can be a good alternative to

uniform interpolants for ontology reuse, uniform interpolation has applications that

require the ontology to be fully over the selected signature, as stated in the in-

troduction. If instead of substituting deőners D by CD, we eliminate them using

existing uniform interpolation tools [47, 78], we can compute a uniform interpolant

for the input.

When computing gm∗Σ(O) for an ontology O and a signature Σ, if all deőners

have been eliminated by Op1 and Op2 from Section 5.4.3 (as in Example 121),

then gm∗Σ(O) is indeed a uniform interpolant for O and Σ. If this is not the case,

we compute a uniform interpolant by forgetting the remaining deőners using an

existing uniform interpolation tool such as Lethe or Fame [47, 78]. In detail, the

uniform interpolant is obtained by the following three steps:

1. Computing conEΣ(rolEΣ(RIΣ(O)));

2. Applying successively Op1 and Op2 over conEΣ(rolEΣ(RIΣ(O))). Let us

now denote by O1 the obtained ontology;

3. If O1 contains deőners, applying Lethe or Fame on O1 in order to output

a uniform interpolant for O1 and Σ. Otherwise, output gm∗Σ(O), it is a

uniform interpolant.

As we will see in Section 5.6, this allows us to compute uniform interpolants much

faster than using the tool alone.
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5.6 . Evaluation

We implemented a prototype in Python (version 3.7) called GeMo. To validate

our methods, we compare them with each other and with the state-of-the-art tools

implementing module extraction and uniform interpolation methods for ALC. As

evaluation metrics, we are interested in run time, length of computed ontologies,

and length of largest axioms in the result. All the experiments were run on a

machine with an Intel Xeon Silver 4112 2.6GHz, 64 GiB of RAM, Ubuntu 18.04,

and OpenJDK 11.

Corpus The ontologies used in our experiment are generated from the OWL

Reasoner Evaluation (ORE) 2015 classiőcation track [61] by the following two

steps. First, we removed axioms outside of ALC from each ontology in ORE 2015.

Then, we kept the ontologies O for which cl(O) contained between 100 and

100,000 names. This resulted in 222 ontologies.

Signatures For each ontology, we generated 50 signatures consisting of 100

concept and role names. As in [48], we selected each concept/role name with a

probability proportional to its occurrence frequency in the ontology. We őx the size

of the sigantures at 100 because we are primarily interested in situations where the

signature is relatively small, such as the symptoms for individual patients.

In the following, a request is a pair consisting of an ontology and a signature.

Methods For each request (O,Σ), GeMo produces three different (general)

modules gmΣ(O), gm∗Σ(O) and dmΣ(O), respectively denoted by gm, gm∗, and

dm. Moreover, gmLethe denotes the uniform interpolation method described in

Section 5.5, where we use GeMo for computing gm∗ and then Lethe for deőner

forgetting. In the implementation, for each request, we őrst extracted a locality

based ⊤⊥∗-module [27] to accelerate the computation. Since removing subsumed

axioms as mentioned in Theorems 114 and 119 can be challenging, we set a time

limit of 10s for this task. Thus, subsumed axioms may be only partially removed.

We compared our methods with four different alternatives:

• ⊤⊥∗-modules [27] as implemented in the OWL API [29];

• minM [48] that computes minimal deductive modules underALCH∇-semantics;

• Lethe (version 0.6, avaliable at https://lat.inf.tu-dresden.de/~koopmann/

LETHE/)[47] that computes uniform interpolants;

• Fame (version 1.0, avaliable at http://www.cs.man.ac.uk/~schmidt/

sf-fame/) [78] that computes uniform interpolants.

111



Success rate We say a method succeeds on a request if it outputs the ex-

pected results within 600s. Table 5.2 summarizes the success rate for the methods

considered. Except for the ⊤⊥∗-modules, our method GeMo had the highest

success rate.

⊤⊥∗-module minM Lethe Fame GeMo gmLethe

100 % 84.34 % 85.27 % 91.25 % 97.34% 96.17 %

Table 5.2: Success rate evaluation. The first (resp. second) best-

performing method is highlighted in red (resp. blue).

Module length and run time Because the axiom shape in general modules

is arbitrary for ALC, one can easily transform any ontology into an equivalent one

with just one axiom. Thus, we chose to use length as deőned in Deőnition 9,

rather than size, for our evaluation. Table 5.3 shows the length and run time for

the requests on which all methods were successful (78.45% of all requests).

We observe that dm and gmLethe have the best overall performance: their

results had a substantially smaller average length and were computed signiőcantly

faster than others. Note that the average size of results for dm was even smaller

than that for minM. The reason is that minM preserves entailments over ALCH∇,

while we preserve only entailments over ALC. Therefore, the minM results may

contain additional axioms compared to the ALC deductive modules.

Comparing gm and gm∗ regarding length, we conclude that the optimization

in Section 5.4.3 is effective. On the other hand, minM produced results of small

length but at the cost of long computation times. Fame and ⊤⊥∗-module were

quite time-efficient but less satisfactory in size, especially for Fame, whose results

are often considerably larger than for the other methods. Lethe took more time

than Fame, but produced more concise uniform interpolants on average.

For 87.87% of the requests reported in Table 5.3, gm∗ already computed a

uniform interpolant, so that gmLethe did not need to perform any additional com-

putations.

Figure 5.7 provides a detailed comparison of minM, gm∗, and gmLethe. It

shows that gm∗ was often faster but produced larger results. In contrast, gmLethe

produced more concise results at the cost of longer computation time. While minM

avoided large modules, it was generally much slower than our methods.

Table 5.4 summarizes the results concerning all requests for which GeMo

(resp. gmLethe) was successful. We see that the results of dm had a small average

size. However, as for gm∗ and gmLethe, the median size of results was much

smaller, which suggests that gm∗ and gmLethe perform better over relatively simple

cases.
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Methods Resulting ontology length Time cost (s)

minM 2355 / 392.59 / 264 595.88 / 51.82 / 8.86

⊤⊥∗-module 4,008 / 510.77 / 364 5.94 / 1.03 / 0.90

Fame 9,446,325 / 6,661.01 / 271 526.28 / 3.20 / 1.17

Lethe 131,886 / 609.30 / 196 598.20 / 49.21 / 13.57

GeMo

gm 179,999 / 2,335.05 / 195

17.50 / 2.44 / 1.63gm∗ 21,891 / 466.15 / 166

dm 2,789 / 366.36 / 249

gmLethe 21,891 / 364.10 /162 513.15 / 3.08 / 1.68

Table 5.3: Comparison of different methods (max. / avg. / med.).

Methods Resulting ontology length Time cost (s)

GeMo

gm 17,335,040 / 35,008.2 / 310

585.97 / 4.89 / 1.75gm∗ 2,318,878 / 2,978.77 / 214

dm 18,218 / 638.74 / 309

gmLethe 353,107 / 1,006.34 /192 579.70 / 7.56 / 2.02

Table 5.4: GeMo and gmLethe: Summary of results for all their own

successful experiments (max. / avg. / med.).

Uniform Interpolants For 80.23% of GeMo successful requests, gm∗Σ(O)

are uniform interpolants. In the cases where gm∗ did not already produce a uniform

interpolant, the success rate for gmLethe was 93.96%.

In the cases where Lethe failed, the success rate for gmLethe was 36.23%.

On the other hand, there are 87 requests (0.78% of all tested requests), on which

Lethe succeeded but gmLethe failed.

The comparison of Lethe with gmLethe in Figure 5.8 shows that gmLethe

was signiőcantly faster than Lethe in most of the cases.

Axiom Size A potential shortcoming of general modules compared to classical

modules is that they could contain axioms that are more complex than those of the

input, and thus be harder to handle by human end-users. For the requests reported

in Table 5.3, the largest axiom in the output of minM had length 352, while for gm∗,

it had length 5,815. In contrast, for the uniform interpolants computed by Lethe

and Fame, the situation was much worse: here, the largest axiom had a length of

26,840 and 130,700, respectively, which is clearly beyond what can be understood

by a human end-user. Besides these extreme cases, we can also observe differences

wrt. the median values: for gm∗ the longest axiom had a median length of 3, which

is even lower than the corresponding value for minM (5), and, as expected, lower

than for Lethe (4) and Fame (6). This indicates that, in most cases, general
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R
+
A H ⊑ A

: A ∈ H R
−
A

H ⊑ N ⊔ A

H ⊑ N
: ¬A ∈ H

R
n
⊓

{H ⊑ Ni ⊔ Ai}
n
i=1

H ⊑ ⊔ni=1Ni ⊔N
: (

n
⊔

i=1

¬Ai) ⊔N ∈ clP (O)

R
+
∃

H ⊑ N ⊔ P

H ⊑ N ⊔ ∃r.D
: ¬P ⊔ ∃r.D ∈ clP (O)

R
⊥
∃

H ⊑ N ⊔ ∃r.K,K ⊑ ⊥

H ⊑ N

R∀
H ⊑ N ⊔ ∃r.K,H ⊑ N1 ⊔ P

H ⊑ N ⊔N1 ⊔ ∃r.(K ⊓D)
: ¬P ⊔ ∀r.D ∈ clP (O)

Table 5.5: Adaptation of Table 2.2 to the syntax in clP (O).

Proof. Let kP (D1⊓. . .⊓Dn ⊑ N) be theminimal number of applications of rules from

Table 5.5 required to derive D1 ⊓ . . . ⊓ Dn ⊑ N . We prove the lemma by induction

on kP (D1 ⊓ . . . ⊓Dn ⊑ N).

1. If kP (D1 ⊓ . . . ⊓ Dn ⊑ N) = 1, then we have N = Di for some 1 ≤ i ≤ n. In

this case, the lemma holds directly.

2. Assume that the lemma holds for all D′
1, . . ., D

′
n′ , N ′ s.t. kP (D

′
1 ⊓ . . . ⊓Dn′ ⊑

N ′) < k0 for some k0 ≥ 1.

We show that the lemma also holds forD1, . . .,Dn, N s.t. kP (D1 ⊓ . . . ⊓Dn ⊑
N) = k0. For simplicity, letHD := D1 ⊓ . . . ⊓Dn, and let

ρ1, . . . , ρk0

be a sequence of inferences generated by inference rules in Table 5.5 that

derivesHD ⊑ N . Then there are two different cases, depending on which was

the last inference performed.

(a) The last inference ρk0
is of the form

{HD ⊑ Ni ⊔Ai}
n
i=1

HD ⊑
⊔n

i=1 Ni ⊔N0
,

(

n
⊔

i=1

¬Ai

)

⊔N0 ∈ clP (O).

In particular,N =
⊔n

i=1 Ni⊔N0. We show thatwe then also have clP (O) ⊢
D1 ⊓ . . . ⊓Dn ⊑ N .

If HD ⊑ Ni0 ⊔ Ai0 is a tautology for some 1 ≤ i0 ≤ n, then one of

HD ⊑ Ni0 , HD ⊑ Ai0 must be a tautology. There are two cases:

(i) IfHD ⊑ Ni0 is a tautology, thenHD ⊑ N is also a tautology sinceNi0

is a sub-concept of N . Therefore, the lemma holds for this case;

(ii) If HD ⊑ Ai0 is a tautology, then Ai0 ∈ {D1, · · · , Dn} must be a de-

finer. By the construction of clP (O), we have n = 1 (in the formula of
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inference ρk0
) and thus ¬Ai0 ⊔ N0 ∈ clP (O). Then clP |= ¬Ai0 ⊔ N0.

Therefore, the lemma holds also for this case.

We obtain that the lemma holds for the case whereHD ⊑ Ni0 ⊔Ai0 is a

tautology for some 1 ≤ i0 ≤ n.

Now assume thatHD ⊑ Ni ⊔Ai is not a tautology for any 1 ≤ i ≤ n.

Since k(HD ⊑ Ni ⊔ Ai) < k0, by applying our inductive hypothesis on

HD ⊑ Ni ⊔Ai, i ∈ [1, n], we have

clP (O) ⊢ Ki
D ⊔Nsub

i

or clP (O) ⊢ Ki
D ⊔Nsub

i ⊔Ai

for someKi
D =

⊔

j∈Ii
¬Dj , Ii ⊆ {1, . . . , n} andNsub

i being a disjunction

over some concept names occurring in Ni. We distinguish those two

cases.

(i) If clP (O) ⊢ Ki
D ⊔Nsub

i for some 1 ≤ i ≤ n, then clP (O) ⊢ Ki
D ⊔Nsub

i

is as desired.

(ii) Otherwise, clP (O) ⊢ Ki
D ⊔ Nsub

i ⊔ Ai for all 1 ≤ i ≤ n. By applying

the A-Rule for all Ai, 1 ≤ i ≤ n on

Ki
D ⊔Nsub

i ⊔Ai, (1 ≤ i ≤ n)

and (

n
⊔

i=1

¬Ai) ⊔N0 ∈ clP (O),

we obtain the desired conclusion

clP (O) ⊢ KD ⊔Nsub,

where

KD =
⊔

1≤i≤n

Ki
D, and

Nsub =
⊔

1≤i≤n

Nsub
i ⊔N0.

Therefore, the lemma holds for this case.

(b) The last inference ρk0
is generated by RuleR⊥

∃ and is of the form

HD ⊑ N ⊔ ∃r.K, K ⊑ ⊥

HD ⊑ N
.

Note thatHD ⊑ N ⊔ ∃r.K must be obtained by applying

• first anR+
∃ inference of the form

HD ⊑ N0 ⊔ P0

HD ⊑ N0 ⊔ ∃r.D′
0

, ¬P0 ⊔ ∃r.D
′
0 ∈ clP (O);

• followed bymR∀ inferences of the form

HD ⊑ (
j−1
⊔

i=0

Ni) ⊔ ∃r.Kj−1, HD ⊑ Nj ⊔ Pj

HD ⊑ (
j
⊔

i=0

Ni) ⊔ ∃r.(Kj−1 ⊓D′
j)

,
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where ¬Pj ⊔∀r.D
′
j ∈ clP (O) andKj = D′

0⊓ . . .⊓D
′
j for 1 ≤ j ≤ m.

Moreover, we have

N = (

m
⊔

i=0

Ni), K = Km.

By applying the inductive hypothesis onK ⊑ ⊥, we obtain

clP (O) ⊢
⊔

i∈I∗

¬D′
i, for some I∗ ⊆ {0, . . .m},

and by applying the inductive hypothesis on HD ⊑ Nj ⊔ Pj , j ∈ [0,m],
we obtain

clP (O) ⊢ H
j
D ⊔Nsub

j ,

or clP (O) ⊢ H
j
D ⊔Nsub

j ⊔ Pj ,

for some H
j
D =

⊔

j∈Ii
¬Dj with Ii ⊆ {1, . . . , n} and Nsub

j a disjunction

of concepts from Nj ,

We again distinguish both cases.

(i) If clP (O) ⊢ H
j
D ⊔N

sub
j for some 0 ≤ j ≤ m, then clP (O) ⊢ H

j
D ⊔N

sub
j

directly holds.

(ii) Otherwise, clP (O) ⊢ H
j
D ⊔ Nsub

j ⊔ Pj for all 0 ≤ j ≤ m. By applying

the A-Rules for all Pj , 1 ≤ j ≤ m on

H0
D ⊔Nsub

0 ⊔ P0, ¬P0 ⊔ ∃r.D
′
0

H
j
D ⊔Nsub

j ⊔ Pj , ¬Pj ⊔ ∀r.D
′
j ,

(1 ≤ j ≤ m);

and applying the r-Rule on

⊔

i∈I∗

¬D′
i,

H0
D ⊔Nsub

0 ⊔ ∃r.D′
0,

H
j
D ⊔Nsub

j ⊔ ∀r.D′
j ,

(j ∈ I∗ ∩ {1, . . . ,m}),

we obtain

clP (O) ⊢ HD ⊔Nsub,

where

HD =
⊔

j∈I∗∪{0}

H
j
D, and

Nsub =
⊔

j∈I∗∪{0}

Nsub
j .

We obtain that the lemma also holds in this case.

Using Theorem 124 and Lemma 125, we can now prove Lemma 105.
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Lemma 126 Let S be the set of axioms ¬D1 ⊔ . . . ⊔ ¬Dn, obtained by applying

the rules in Fig. 5.4 exhaustively on cl(O). Then, for all D1, . . ., Dn ∈ ND, we

have cl(O) |= D1 ⊓ . . . ⊓ Dn ⊑⊥ iff ¬Di1 ⊔ . . . ⊔ ¬Dik ∈ S for some subset

{i1, . . . , ik} ⊆ {1, . . . , n}.

Proof. For any definers D1, . . . , Dn ∈ ND, since clP (O) ≡sig(cl(O)) cl(O), we have

cl(O) |= D1 ⊓ . . . ⊓Dn ⊑ ⊥ iff clP (O) |= D1 ⊓ . . . ⊓Dn ⊑ ⊥.

Note thatwe can exchange application order of a A-Rule on concept nameP ∈ NP

andother ruleswithout influence the final result. For instance: the following two rules

that produces C1 ⊔ . . . ⊔ Cn ⊔ Qr.D.

(r-Rule):
C1 ⊔ P ⊔ ∃r.D1,

⋃n

j=2{Cj ⊔ ∀r.Dj}, KD

C1 ⊔ . . . ⊔ Cn ⊔ P
,

(A-Rule on P ):
C1 ⊔ . . . ⊔ Cn ⊔ P, ¬P ⊔ Qr.D

C1 ⊔ . . . ⊔ Cn ⊔ Qr.D

We also obtain C1 ⊔ . . . ⊔ Cn ⊔ Qr.D by following two rules, where a A-Rule on

P ∈ NP is applied first.

(A-Rule on P ):
C1 ⊔ P ⊔ ∃r.D1, ¬P ⊔ Qr.D

C1 ⊔ Qr.D ⊔ ∃r.D1
,

(r-Rule):
C1 ⊔ Qr.D ⊔ ∃r.D1,

⋃n

j=2{Cj ⊔ ∀r.Dj}, KD

C1 ⊔ . . . ⊔ Cn ⊔ Qr.D

Therefore, when applying A-Rule and r-Rule on clP (O), we could assume that A-

Rules on concept names P ∈ NP are applied first. Since applying A-Rules on concept

names P ∈ NP on clP (O) produces exactly the axioms in cl(O) \ clP (O), we have

cl(O) ⊢ ¬D1 ⊔ . . . ⊔ ¬Dn iff clP (O) ⊢ ¬D1 ⊔ . . . ⊔ ¬Dn for any definersDi ∈ ND.

It is thus enough to show that for any definersDi ∈ ND, clP (O) ⊢P D1⊓. . .⊓Dn ⊑
⊥ iff clP (O) ⊢ ¬Di1 ⊔ . . . ⊔ ¬Dik for some subset {i1, . . . , ik} ⊆ {1, . . . , n}.

Wefirst prove the “⇐” direction. If cl(O) ⊢ ¬Di1⊔. . .⊔¬Dik , thenwehave cl(O) |=
D1 ⊓ . . .⊓Dn ⊑ ⊥. Consequently, by Theorem 124, clP (O) |= D1 ⊓ . . .⊓Dn ⊑ ⊥, and
thus clP (O) ⊢P D1 ⊓ . . . ⊓Dn ⊑ ⊥.

The “⇒” direction is a direct result of Lemma 125.

Moreover, we have the following lemma that will be used in the proof of

Theorem 104 in the next section.

Lemma 127 Let t ∈ NR \ Σ be a role name and D1, . . ., Dn ∈ ND be definers

s.t. RIΣ(O) contains a literal of the form Qt.D1, and for 2 ≤ i ≤ n, ∀t.Di occurs

in RIΣ(O). Then, cl(O) |= D1 ⊓ . . . ⊓Dn ⊑⊥ iff RIΣ(O) |= D1 ⊓ . . . ⊓Dn ⊑⊥.

Proof. If RIΣ(O) |= D1 ⊓ . . . ⊓ Dn ⊑ ⊥, then also cl(O) |= D1 ⊓ . . . ⊓ Dn ⊑ ⊥ be-

cause RIΣ(O) consists only of axioms from cl(O) or axioms that have been derived

from cl(O). The other direction follows directly from the definition of DΣ(O) in Defi-
nition 102.
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r-Res :
C1 ⊔ ∃r.D1, C2 ⊔ ∀r.D2, . . . , Cn ⊔ ∀r.Dn

C1 ⊔ . . . ⊔ Cn

,

whereM |= D1 ⊓ . . . ⊓Dn ⊑ ⊥, n ≥ 1.

Figure 5.9: Rule for eliminating role name r.

Theorem 104

In order to prove Theorem 104, we make use of a result for role forgetting

from [76], which describes the method for uniform interpolation used in Fame.

In [76], the rule shown in Figure 5.9 is used for forgetting roles, which assumes the

ontology to be in normal form, and uses a őxed ontologyM as a side condition.

Fix a signature Σ ⊆ sig(O). We denote by ResΣ(cl(O),M) the ontology

obtained by applying the following two operations on cl(O):

1. apply r-Res exhaustively for all role names r ∈ sig(O) \ Σ, and

2. remove all axioms that contain a role name r ∈ sig(O) \ Σ.

By [76, Lemma 3], we have the following result.

Lemma 128 For any ontology O and signature Σ ⊆ sig(O), we have

ResΣ(cl(O), cl(O)) ≡Σ∪sig
C
(O) cl(O),

Let ResΣ(cl(O),M)
∣

∣

Σ
be the sub ontology of ResΣ(cl(O),M) that contains

only those axioms α ∈ ResΣ(cl(O),M) that satisfy:

• if L := ¬D is a literal of α, then for any deőner D′ ∈ sig(cl(O)) such that

D ⪯d D′, we have Rol
(

D′, cl(O)
)

⊆ Σ.

To prove Theorem 104, we also need the following lemma.

Lemma 129 For any ontology O and signature Σ ⊆ sig(O), we have

ResΣ(cl(O), cl(O)) ≡Σ∪sig
C
(O) ResΣ(cl(O), cl(O))

∣

∣

Σ
.

Proof. Recall that we assume that each definer occurs at most once positively in

cl(O). In particular, for each definer D ∈ sig(cl(O)), there is at most one occurrence

of a literal of the form Qr.D in cl(O).
For any definer D ∈ sig(cl(O)), if there exists D′ ∈ sig(cl(O)) such that D ⪯d D′

and Rol
(

D′, cl(O)
)

= {r0} ̸⊆ Σ, then we can find a sequence of axioms in cl(O) such
as the following.

α0 : C0 ⊔ Q0r0.D0,

α1 : ¬D0 ⊔ C1 ⊔ Q1r1.D1,

. . . ,

αn : ¬Dn ⊔ Cn+1 ⊔ Qnrn.Dn+1.

αn+1 : ¬Dn+1 ⊔ Cn+2.
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where D0 = D′, Dn+1 = D. Then, for every 1 ≤ i ≤ n, Qiri.Di is the unique literal

containingDi positively, and Qiri.Di appears only in αi.

Since r0 ̸∈ Σ, there is no axiom in ResΣ(cl(O), cl(O)) that contains a literal of the
formQ0r0.D0. Therefore,D0 does not appear positively in ResΣ(cl(O), cl(O)). It is well
known that, if a conceptD0 occurs only negatively in an ontology, we can preserve all

entailments of axiomsnot usingD0 if we replaceD0 by⊥, whichwith our normal form

means, we can delete all axiomswith the literal¬D0 without losing any consequences

in Σ (see also [77, Theorem 1]). Specifically, if we set ΣRes = sig(ResΣ(cl(O), cl(O))),
and let Res0Σ(O) be the ontology obtained from ResΣ(cl(O), cl(O)) by removing all

axioms that contain the literal ¬D0, then we have

ResΣ(cl(O), cl(O)) ≡ΣRes\{D0} Res
0
Σ(cl(O)).

Note that if a literal L1 = Qr.D always occurs in cl(O) together with another

literal L2 which is of the form A or ¬A (i.e., every axiom α ∈ cl(O) either contains
both L1 and L2 or none of them), then L1 also always appears together with L2 in

ResΣ(cl(O), cl(O)). Because the rule r-Res preserves all literals of the form A or ¬A,
and since Q1r1.D1 always appears with ¬D0 in cl(O),D1 cannot appear positively in

Res0Σ(cl(O)), because we removed all occurrences of D1 along with the occurrences

of ¬D0. Then, if Res
1
Σ(O) is the ontology obtained by removing all axioms containing

the literal ¬D1 from Res
0
Σ(O), we have

Res0Σ(cl(O)) ≡ΣRes\{D1} Res
1
Σ(cl(O)).

Consequently, we have

ResΣ(cl(O), cl(O)) ≡ΣRes\{D0,D1} Res
1
Σ(cl(O)).

Repeat this process for allD2, . . . , Dn+1, and we have for 0 ≤ i ≤ n that

ResiΣ(cl(O)) ≡ΣRes\{Di+1} Res
i+1
Σ (cl(O)) and

ResΣ(cl(O), cl(O)) ≡ΣRes\{D0,...,Di+1} Res
i+1
Σ (cl(O)),

where Resi+1
Σ (O) is the ontology obtained from ResiΣ(O) by removing all axioms con-

taining the literal ¬Di+1. We conclude that removing all axioms that contain the lit-

eral ¬Dn+1 = ¬D preserves all logical consequences over ResΣ(cl(O), cl(O)) in the

signature that excludes {D0, . . . , Dn+1}.
Finally, we have

ResΣ(cl(O), cl(O)) ≡Σ∪sig
C
(O) ResΣ(cl(O), cl(O))

∣

∣

Σ

by repeating the process above for all D such that there exists D′ ∈ sig(cl(O)) such
thatD ⪯d D′ and Rol

(

D′, cl(O)
)

= {r0} ̸⊆ Σ.

We now have everything to prove Theorem 104.

Theorem 130 RIΣ(O) is role isolated for Σ and we have O ≡Σ∪sig
C
(O) RIΣ(O).

Proof. RIΣ(O) is role isolated by definition. We show that O ≡Σ∪sig
C
(O) RIΣ(O).

By Theorem 128 and Lemma 129, it is sufficient to show that

ResΣ(cl(O), cl(O))
∣

∣

Σ
= ResΣ(RIΣ(O), RIΣ(O))

∣

∣

Σ
. (5.3)

This follows from the following observations.

121



1. If an axiom α contains the literal ¬D, any axiom obtained from α using r-Res

also contains ¬D. Therefore, we have after Definition 102 defining clΣ(O):

ResΣ(cl(O), cl(O))
∣

∣

Σ
= ResΣ(clΣ(O), cl(O)).

2. Assume that C1 ⊔ ∃r.D1, C2 ⊔ ∀r.D2, . . ., Cn ⊔ ∀r.Dn ∈ ResΣ(clΣ(O), cl(O))
and r ̸∈ Σ. Then, by Lemma 127, we have cl(O) |= D1 ⊓ . . . ⊓ Dn ⊑ ⊥ iff

RIΣ(O) |= D1 ⊓ . . . ⊓Dn ⊑ ⊥. Therefore, for a given premise set P = {C1 ⊔
∃r.D1, C2 ⊔∀r.D2, . . . , Cn ⊔∀r.Dn} ⊆ ResΣ(clΣ(O), cl(O)), an r-Res inference
ρ is applicable on P withM = cl(O) iff ρ is applicable on P withM = RIΣ(O).
Consequently, we have

ResΣ(clΣ(O), cl(O)) = ResΣ(clΣ(O), RIΣ(O)).

3. SinceRIΣ(O) = clΣ(O)∪DΣ(cl(O)) and every axiom inDΣ(cl(O)) has a literal
¬D with Rol(D, cl(O)) ̸⊆ Σ, we have

ResΣ(clΣ(O), RIΣ(O))

= ResΣ(RIΣ(O), RIΣ(O))
∣

∣

Σ
.

Theorem 109

Theorem 131 If O is role isolated for Σ, then rolEΣ(O) is a role-forgetting for

O and Σ.

Proof. AssumeO is role isolated forΣ. Recall that by Lemma 128, for any ontologyO
and signature Σ ⊆ sig(O), we have ResΣ(cl(O), cl(O)) ≡Σ∪sig

C
(O) cl(O). We note that,

since O is in normal form, cl(O) is obtained by replacing every literal Qr.A by some

Qr.D, where we also have the axioms ¬D ⊔ A. We observe furthermore that, since

O is role isolated, the r-Rule is applicable in O iff the r-Res rule is applicable on the

corresponding normalized axioms, excluding the last premise. As a consequence, we

obtain that ResΣ(cl(O), cl(O)) = cl(rolEΣ(O)). We obtain cl(rolEΣ(O)) ≡Σ∪NC
cl(O).

Since we also have cl(O) ≡Σ∪NC
O, we obtain that rolEΣ(O) is a role forgetting of O

for Σ.

Theorem 114

Let Σ be a signature. For X being a role name or a concept, we deőne

copyΣ(X) by structural induction.

1. copyΣ(A) = A, if A ∈ (NC ∩ Σ) ∪ ND;

2. copyΣ(r) = r, if r ∈ NR ∩ Σ;

3. copyΣ(B) = B if B ∈ sigC(O) \ Σ, where B is fresh;

4. copyΣ(r) = r if r ∈ sigR(O) \ Σ, where r is fresh;

5. copyΣ(C1 ⊔ C2) = copyΣ(C1) ⊔ copyΣ(C2);

6. copyΣ(C1 ⊓ C2) = copyΣ(C1) ⊓ copyΣ(C2);

7. copyΣ(Qr.C) = QcopyΣ(r).copyΣ(C),
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8. copyΣ(¬C) = ¬copyΣ(C).

We further deőne clex(O) = RIΣ(O) ∪ cl(OD), where

OD = {D ≡ copyΣ(CD) | D ∈ sig(conEΣ(rolEΣ(RIΣ(O)))) ∩ ND}. (5.4)

To prove Theorem 114, we need the following two lemmas.

Lemma 132 We have O ≡Σ∪sig
C
(O) clex(O).

Proof. SinceRIΣ(O) ⊆ cl
ex(O), andO ≡Σ∪sig

C
(O) RIΣ(O) (by Theorem 104), we have

for every axiom α s.t. sig(α) ⊆ Σ ∪ sig
C
(O) and O |= α, also clex(O) |= α. We thus

only need to show the other direction.

Let α be s.t. sig(α) ⊆ Σ ∪ sig
C
(O), and assume clex(O) |= α but O ̸|= α. Then,

also cl(O) ̸|= α, and there is a witnessing model I of cl(O) s.t. I ̸|= α. Based on I , we
construct a model Iex of clex(O) and also show that Iex ̸|= α, and thus clex(O) ̸|= α.

A contradiction!

Iex is defined as follows.

1. AIex

= AI , rI
ex

= rI for all A, r ∈ sig(O) ∩ sig(clex(O));

2. rI
ex

= rI
ex

, B
Iex

= BIex

for all introduced role names r and introduced

concept names B.

3. DIex

= (CD)I
ex

for every definerD ∈ sig(clex(O)) ∩ ND.

Since I is a model of O, by the item 3 above and the definition of CD , we know I
ex

is compatible with all axioms in RIΣ(O) and OD. Therefore, I
ex is compatible with

all axioms in cl(OD) and thus a model of clex(OD). Moreover, because AIex

= AI

and rI
ex

= rI for all A, r ∈ Σ ∪ sig(O), we have Iex |= clex(O) and Iex ̸|= α. A

contradiction.

Lemma 133 clex(O) ≡Σ gmΣ(O).

Proof. Assume Σex = Σ ∪ sig(cl(OD)). Then sig
R
(cl(OD)) = sig

R
(OD) ⊆ Σex. Since

RIΣ(O) is role isolated for Σ, we have cl
ex(O) = RIΣ(O) ∪ cl(OD) is role isolated for

Σex. Moreover, we observe the following:

1. rolEΣex(clex(O)) = rolEΣ(RIΣ(O)) ∪ cl(OD).

This is because sigR(cl(OD)) ⊆ Σex and cl(OD) does not contain axioms of the

form ¬D1 ⊔ . . . ⊔ ¬Dn, then the r-Rule is only applicable on RIΣ(O).

2. conEΣex(rolEΣex(clex(O))) = conEΣ(rolEΣ(RIΣ(O))) ∪ cl(OD).

This is because sigC(cl(OD)) ⊆ Σex, then the A-rule is only applicable on

rolEΣ(RIΣ(O)).

By Theorem 109 and 112, we have

clex(O) ≡Σex rolEΣex(clex(O)),

rolEΣex(clex(O)) ≡Σex conEΣex(rolEΣex(clex(O))).

It follows from these observations that

clex(O) ≡Σex conEΣex(rolEΣex(clex(O)))

= conEΣ(rolEΣ(RIΣ(O))) ∪ cl(OD)

≡Σ conEΣ(rolEΣ(RIΣ(O))) ∪ OD.
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Moreover, we have

conEΣ(rolEΣ(RIΣ(O))) ∪ OD ≡Σ gmΣ(O)

because gmΣ(O) can be obtained by applying over conEΣ(rolEΣ(RIΣ(O)))∪OD the

following three operations:

1. Replace all occurrences of the definersD in conEΣ(rolEΣ(RIΣ(O))) by
copyΣ(CD) and remove tautologies.

2. Replace every newly introduced concept and role nameB and r with B and r,

respectively. Note that B,B, r, r ̸∈ Σ by the definition of copyΣ.

3. Apply exhaustively the translations C1 ⊑ ¬C2 ⊔ C3⇒ C1 ⊓ C2 ⊑ C3 and C1 ⊑
Qr.¬C2 ⊓ C3⇒ C1 ⊓ Qr.C2 ⊑ C3, where ∃ = ∀ and ∀ = ∃.

These operations produce a newontology that isΣ-inseparable to the input ontology.
In conclusion, since Σ ⊆ Σex, we have clex(O) ≡Σ conEΣ(rolEΣ(RIΣ(O))) ∪ OD ≡Σ

gmΣ(O). This completes the proof.

Theorem134 Let gmΣ(O) be the ontology obtained from conEΣ(rolEΣ(RIΣ(O)))
by

• deleting subsumed axioms,

• replacing each definer D by CD, and

• exhaustively applying the two transformations below

C1 ⊑ ¬C2 ⊔ C3 ⇒ C1 ⊓ C2 ⊑ C3

C1 ⊑ Qr.¬C2 ⊓ C3 ⇒ C1 ⊓ Qr.C2 ⊑ C3,

where ∃ = ∀ and ∀ = ∃.

Then, gmΣ(O) is a general module for O and Σ.

Proof. By Lemma 132 and 133, we have

O ≡Σ cl
ex(O) ≡Σ gmΣ(O),

which proves the theorem.

Proposition 116

In the following, we use |O| to denote the number of axioms in O. We then

have |O| ≤ ∥O∥.

Proposition 135 For any ontology O and signature Σ, we have ∥gmΣ(O)∥ ≤
2O(∥cl(O)∥). On the other hand, there exists a family of ontologies On and signa-

tures Σn s.t. ∥On∥ is polynomial in n ≥ 1 and ∥gmΣn
(On)∥ = n · 2O(∥cl(On)∥).
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Proof. Wefirst show the upper bound. Our construction ensures that for every axiom

α = rolEΣ(RIΣ(O)), we can find a sequence of axioms β1, . . . , βn ∈ clΣ(O) such
that α is obtained from

⊔

1≤i≤n βi by removing all literals that contain a role r ̸∈
Σ. Because there are at most exponentially many subsets of clΣ(O), this limits the

number of possible inferred axioms to exponentially many. We obtain

|rolEΣ(RIΣ(O))| ≤ 2|clΣ(O)|

≤ 2∥cl(O)∥

∥rolEΣ(RIΣ(O))∥ ≤ |rolEΣ(RIΣ(O))| · ∥cl(O)∥

≤ 2∥cl(O)∥ · ∥cl(O)∥.

Similarly, for every axiom γ = conEΣ(rolEΣ(RIΣ(O))), we can find a sequence

of axioms α1, . . . , αn ∈ rolEΣ(RIΣ(O)) such that γ is obtained from
⊔

1≤i≤n αi by

removing all literals of the form A or ¬A with A ̸∈ Σ. As shown above, each αk is

obtained from
⊔

1≤i≤nk
βk
i , for some βk

1 , . . . , β
k
nk
∈ clΣ(O), by removing all literals

that contain a role name r ̸∈ Σ. We obtain that γ is obtained from
⊔

1≤k≤n,1≤i≤nk

βk
i

by removing all literals L such that (i) L contains a role name r ̸∈ Σ, or (ii) L is of the

form A or ¬A with A ̸∈ Σ. We obtain

|conEΣ(rolEΣ(RIΣ(O)))| ≤ 2|clΣ(O)|

≤ 2∥cl(O)∥

∥conEΣ(rolEΣ(RIΣ(O)))∥ ≤ |conEΣ(rolEΣ(RIΣ(O)))| · ∥cl(O)∥

≤ 2∥cl(O)∥ · ∥cl(O)∥.

For every definer D ∈ sig(cl(O)), we have |CD| < ∥cl(O)∥. Taking that the lengths
of axioms in conEΣ(rolEΣ(RIΣ(O))) are bound by ∥cl(O)∥, we obtain that for every
axiom α ∈ gmΣ(O), we have |α| ≤ ∥cl(O)∥

2. Consequently, we have

∥gmΣ(O)∥ ≤ |conEΣ(rolEΣ(RIΣ(O)))| · ∥cl(O)∥
2

≤ 2∥cl(O)∥ · ∥cl(O)∥2

< 23·∥cl(O)∥.

Note that for the last step, we use that n2 < 22n for all integers n ≥ 0. This establishes
the upper bound.

We continue to show the lower bound. For any integer n ≥ 0, we define the

ontology On to contain the following axioms:

1. Z1 ⊓ Z2 ⊓ . . . ⊓ Zn ⊑ ⊥ (1 axiom of length n+ 1)

2. Xi ⊔ Yi ⊑ Zi for all 1 ≤ i ≤ n (n axioms of length 3),

3. ⊤ ⊑ A1 ⊔ ∃s.X1, ⊤ ⊑ A1 ⊔ ∃s.Y1 (2 axioms of length 4), and

4. ⊤ ⊑ Aj ⊔ ∀s.Xj , ⊤ ⊑ Aj ⊔ ∀s.Xj for 2 ≤ j ≤ n (2n− 2 axioms of length 4).

As signature, we define Σn = {Aj}
n
j=1 ∪ {Aj}

n
j=1.

NormalizingOn introduces the definersD
X
i andDY

i with CDX
i
= Xi and CDY

i
=

Yi. In particular, this gives 2n additional axioms of length 2 each, so that we obtain

|cl(On)| = 5n+ 1 and

∥cl(On)∥ = n+ 1 + 3n+ 2 · 4 + (2n− 2) · 4 + 2n · 2

= 16n+ 1

We continue to compute the sizes of the other axiom sets computed.
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• DΣn
(cl(On)) consists of axioms of the form:

¬D∗
1 ⊔ . . . ⊔ ¬D∗

n, where for 1 ≤ i ≤ n, D∗
i ∈ {D

X
i , DY

i }.

We have |DΣn
(cl(On))| = 2n and ∥DΣn

(cl(On))∥ = n · 2n.

• rolEΣn
(RIΣn(On)) consists of the axioms in DΣn

(cl(On)) and axioms of the

form:

¬A∗
1 ⊔ . . . ⊔ ¬A∗

n, where for 1 ≤ i ≤ n, A∗
i ∈ {Ai, Ai}.

We obtain that |rolEΣn
(RIΣn

(On))| = 2n+1 and ∥rolEΣn
(RIΣn

(On))∥ = n ·
2n+1.

• Finally, since no definer occurs positively anymore, the axioms inDΣn
(cl(On))

are removed, so that we obtain |conEΣn
(rolEΣn

(RIΣn
(On)))| = 2n and

∥conEΣn
(rolEΣn

(RIΣn
(On)))∥ = n · 2n+1.

As a final result, we obtain |gmΣn(On)| = 2n and ∥gmΣn(On)∥ = n · 2n+1.

To summarize, we defined a sequence of ontologies On with signatures Σn s.t.

∥cl(On)∥ = 16n+1 and ∥gmΣn(On)∥ = n · 2n+1. This establishes the second claim of

the proposition.

Proof of Propositions 118 and 117

To simplify the proofs of Propositions 118 and 117, we deőne the operator defE

which applies the deőner substitution explicitly.

Definition 136 Let O be an ontology that contains definers D, for which CD

is defined. Then, the deőner substitution on O is the ontology defE(O) that is

obtained from O by replacing each definer D by the corresponding concept CD.

Since Proposition 118 relies on a simpler situation than Proposition 117, namely

where the input is normalized, it is more convenient to start with it, before the

more complex situation of Proposition 117.

Proposition 137 Let O be an ontology in normal form andM = gmΣ(O). Then,

gmΣ(M)=M.

Proof. Wefirstmake a general observation on the effect definers havewhen comput-

ing gmΣ(O) for normalized ontologies O. First, since O is normalized, only concept

names occur under role restrictions, which means that for every definer D intro-

duced, we haveCD ∈ NC, and the only negative occurrence ofD is in an axiom of the

form¬D⊔CD. In caseCD ̸∈ Σ, this means that previously eliminated concept names

get reintroduced by the definer substitution when computing gmΣ(O), but they can
only occur in two ways: 1) as negative literals in axioms of the form ¬CD ⊔ C , or 2)

in literals of the form Qr.CD. This also means that gmΣ(O) remains normalized. This

means in particular thatM contains no role name r ̸∈ Σ, and all concept names

A ∈ sig
C
(M) \ Σ occur either negatively or under role restrictions.

Let RIΣ(M) be the role isolated form for Σ andM. We observe that sig
R
(M) ⊆

Σ, since no role name outside of Σ is introduced toM = gmΣ(O) when substituting
definersD with their corresponding concepts CD. We obtain that RIΣ(M) = cl(M).

By definition of gmΣ, we thus have

gmΣ(M) = defE(conEΣ(rolEΣ(cl(M)))).

We show that gmΣ(M) =M using the following two results.
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1. rolEΣ(cl(M)) = cl(M).

Since sig
R
(M) ⊆ Σ, there is no role name to be eliminated by the operator

rolE. This means that rolEΣ(cl(M)) = cl(M).

2. defE(conEΣ(cl(M))) =M.

First, we show thatM ⊆ defE(conEΣ(cl(M))). Let c ∈ M. Then, c is of the

form

¬B1 ⊔ . . . ⊔ ¬Bk ⊔ Q1r1.A1 ⊔ . . . ⊔ Qrn.An ⊔ C1 (5.5)

where (i) Bi ∈ sigC(O) \Σ for 1 ≤ i ≤ k, (ii) Ai ∈ sigC(O) \Σ for 1 ≤ i ≤ n, and

(iii) sig(C1) ⊆ Σ.

We show that c ∈ defE(conEΣ(cl(M))). By the definition ofM = gmΣ(O), we
have the following results.

• c ∈ M must be obtained from an axiom c1 ∈ conEΣ

(

rolEΣ
(

RIΣ(O))
)

by replacing every definerD by the concept CD. Then c1 is of the form

c1 = ¬D1 ⊔ . . .¬Dk ⊔ Q1r1.D
′
1 ⊔ . . .Qnrn.D

′
n ⊔ C1,

where CDi
= Bi for 1 ≤ i ≤ k, and CD′

j
= Aj for 1 ≤ j ≤ n.

By our construction, since otherwise c1 is deleted through conEΣ, D1,

. . ., Dk must also occur positively in conEΣ

(

rolEΣ
(

RIΣ(O))
)

. Conse-

quently, there are k axioms

c2, . . . , ck+1 ∈ conEΣ

(

rolEΣ
(

RIΣ(O))
)

that are of the forms

c2 = C2 ⊔ Q′
1r

′
1.D1,

...

ck+1 = Ck+1 ⊔ Q′
kr

′
k.Dk.

• c1 must be obtained by applying A-rules on k + 1 axioms c′1, . . . , c
′
k+1 ∈

rolEΣ
(

RIΣ(O)) that are of the forms

c′1 = ¬B1 ⊔ . . . ⊔ ¬Bk ⊔ Q1r1.D
′
1 ⊔ . . .Qnrn.D

′
n ⊔ C1, (5.6)

c′2 = ¬D1 ⊔B1 (5.7)

... (5.8)

c′k+1 = ¬Dk ⊔Bk. (5.9)

Modulo renaming of definers,1 we have

(a) c′1 ∈ cl(M) by normalizing c;

1Note that it is in principle possible that cl(M) contains more definers than cl(O),
since occurrences of role restrictions can bemultiplied. However, this does not affect

the following argument, since all definers get replaced by the same concept names

again.
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(b) c′2, . . . , c
′
k+1 ∈ cl(M) by normalizing the axioms in

defE({c2, . . . , ck+1}) ⊆M.

Therefore, we can assume {c′1, c
′
2, . . . , c

′
k+1} ⊆ cl(M). We obtain c ∈ gmΣ(M)

by repeating the process of generating c ∈ gmΣ(O) from

c′1, c
′
2, . . . , c

′
k+1.

As a result, we obtain thatM⊆ defE(conEΣ(cl(M))).

Furthermore, we have defE(conEΣ(cl(M))) ⊆M, since all the axioms in cl(M)
are of the forms (5.6) – (5.9), and we cannot obtain axioms other than c in (5.5)

after applying the operators conE and defE. Consequently, we have M =
defE(conEΣ(cl(M))).

From 1 and 2, it follows thatM = gmΣ(M).

Proposition 138 Let (Mi)i≥1 be the sequence of ontologies defined by (i)M1 =

gmΣ(O) and (ii)Mi+1 = gmΣ(Mi) for i ≥ 1. Then, we have

Mi ⊆Mi+1 for i ≥ 1.

Moreover, there exists i0 ≥ 0 s.t. Mk =Mi0 for all k ≥ i0.

Proof. AssumeM0 = O. We first show that every axiom c ∈ Mi = gmΣ(Mi−1) is
also inMi+1 for all i ≥ 1.

Any axiom c ∈ gmΣ(Mi−1) is obtained from some axiom

cd ∈ conEΣ

(

rolEΣ
(

RIΣ(Mi−1)
)

)

by replacing every definerD by the corresponding conceptCD. Then, sig(cd) ⊆ Σ∪ND

by the definitions of rolEΣ and conEΣ. There are two different cases.

1. cd does not contain negative definers. Then, cd and c are of the forms

cd = C1 ⊔ Q1r1.D1 ⊔ . . . ⊔ Qnrn.Dn (5.10)

c = C1 ⊔Q1r1.CD1
⊔ . . . ⊔ Qnrn.CDn

. (5.11)

where, sig(C1) ⊆ Σ, ri ∈ Σ and Qi ∈ {∃, ∀} for 1 ≤ i ≤ n.

Then, c ∈ gmΣ(Mi) because of the following observations, which holdmodulo

renaming of definers.

• cd ∈ rolEΣ(RIΣ(Mi)) because cd ∈ RIΣ(Mi) and sig(cd) ⊆ Σ ∪ ND,

• cd ∈ conEΣ(rolEΣ(RIΣ(Mi))) because cd ∈ rolEΣ(RIΣ(Mi)), sig(cd) ⊆
Σ ∪ ND and cd does not contain negative definers, and

• defE({cd}) = {c} by definition.

2. cd contains negative definers. Then, cd and c are respectively of the forms

cd = ¬D1 ⊔ . . .¬Dn ⊔ C ′
d (5.12)

c = ¬CD1
⊔ . . .¬CDn

⊔ C ′, (5.13)
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whereC ′
d, C

′ do not contain negative definers, andC ′
d andC ′ are of the forms

as in (5.10) and (5.11).

In this case, normalizing c inMi produces axioms in cl(Mi) that are different
from cd. However, we can still show that c ∈ Mi+1 = gmΣ(Mi). We only

consider the case where n = 1, that is, there is only one negative definer in
cd. The case for n > 1 is shown by repeating the argument step-wise for each

definer. We distinguish 4 possible cases based on the syntactical shape ofCD1
.

(a) CD1
is of the form A or ¬A. This case is proved similarly as for Propo-

sition 118, where we considered the case of normalized ontologies for

which CD1
is always of the form A ∈ NC.

(b) CD1
= Qr.C1. We consider only the case where Q = ∃. The other di-

rection is shown in a similar way by just switching the quantifiers. With

Q = ∃, we have

cd = ¬D1 ⊔ C ′
d, c = ¬(∃r.C1) ⊔ C ′.

Normalizing c, we obtain

c′1 = ∀r.D′
2 ⊔ C ′

d ∈ cl(Mi),

where CD′

2
= ¬C1. If r ∈ Σ, then we have c ∈ gmΣ(Mi) as in Case 1.

Assume r ̸∈ Σ. We then make the following observations.

• There exists an axiom

c1 = ¬D1 ⊔ ∃r.D
′
3 ∈ RIΣ(Mi−1)

with CD′

3
= C1. Here, c1 is introduced when normalizing the literal

CD1
= ∃r.C1.

• There exists an axiom

c2 = C ⊔ Qr.D1 ∈ conEΣ

(

rolEΣ
(

RIΣ(Mi−1)
)

)

for some C , Q, r because D1 must also occur positively in

conEΣ

(

rolEΣ
(

RIΣ(Mi−1)
)

)

. (Otherwise, cd would be deleted by

conE.)

We have c1 ∈ cl(Mi) (modulo renaming of definers) by normalizing the

axiom in defE({c2}) ⊆Mi. Furthermore, we have

cl(Mi) |= D′
2 ⊓D′

3 ⊑ ⊥.

This allows us to make the following further observations.

• cd ∈ rolEΣ(RIΣ(Mi)) due to cd ∈ conEΣ

(

rolEΣ
(

RIΣ(Mi−1)
)

)

and the following inference with the r-Rule.

∀r.D′
2 ⊔ C ′

d, ¬D1 ⊔ ∃r.D
′
3, ¬D

′
2 ⊔ ¬D

′
3

¬D1 ⊔ C ′
d

.

• cd ∈ conEΣ(rolEΣ(RIΣ(Mi))) since cd ∈ rolEΣ(RIΣ(Mi)) and
sig(cd) ⊆ Σ ∪ ND;

• {c} = defE({cd}) as follows directly from (5.12) and (5.13).
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We obtain that c ∈ gmΣ(Mi,Σ) =Mi+1.

(c) CD1
= L1 ⊓ . . .⊓Ln ⊓Q1r1.C1 ⊓ . . .⊓Qmrm.Cm, where for all 1 ≤ i ≤ n,

Li = Ai or Li = ¬Ai for some Ai ∈ NC and all 1 ≤ i ≤ n. Then,

normalizing c produces following axiom in cl(Mi):

¬L1 ⊔ . . . ⊔ ¬Ln ⊔ Q∗
1r1.D

′
1 ⊔ . . . ⊔ Q∗

mrm.D′
m ⊔ C ′,

where CD′

i
= ¬Ci, {Qi,Q

∗
i } = {∀, ∃}, 1 ≤ i ≤ m. As in Case (b), we have

• ¬D1 ⊔ L1, . . ., ¬D1 ⊔ Ln,¬D1 ⊔ Q1r1.D
′
1, . . ., ¬D1 ⊔ Qmrm.D′

m ∈
RIΣ(Mi);

• C⊔Qr.D1 ∈ conEΣ

(

rolEΣ
(

RIΣ(Mi−1)
)

)

for someC ,Q, r because

otherwise cd is removed in Step 3 using conE.

We obtain that c ∈ gmΣ(Mi) using the argument from Case (a) for every

Li and from Case (b) for everyDi.

(d) For the general case, we have CD1
= C1 ⊔ . . . ⊔ Cn, where each Ci is as

CD in Case (c). In this case, we rewrite c as n different axioms.

c1 = ¬C1 ⊔ C ′, . . . , cn = ¬Cn ⊔ C ′.

For each 1 ≤ i ≤ n, we then have ci ∈ gmΣ(Mi) as in Case (c).

We obtain in each case that c ∈ Mi+1. As a consequence, we have Mi ⊆
Mi+1, for each i ≥ 1.

It remains to show that there exists some i0 ≥ 0 such thatMi0 =Mi0+1, since

all axioms inMi are axioms consisting of literals of the from

A, ¬A, ¬CD, Qr.CD,

whereCD is a sub-concept of a concept inO. There exist only finitely many such liter-

als and thus only finitelymany such axioms. Consequently, the chainM0 ⊆M1 ⊆ . . .

must reach a fixpoint after finitely many steps.

Theorem 119

Recall the operator Op1, Op2 introduced in Section 5.4.3. For simplicity,

• letM1 be the ontology obtained by applying the operator Op1, and

• letM2 be the ontology obtained by applying the operator Op2 onM2

We prove the correctness of the two operations one after the other. For the

őrst operation, we use a result from [68], which inspired our optimization, and

which uses the inference rules shown in Figure 5.10.

Lemma 139 conEΣ(rolEΣ(RIΣ(O))) ≡ΣM1.

Proof. LetOred, Mred be the ontologies obtained by applying the rules in Figure 5.10

on conEΣ(rolEΣ(RIΣ(O))) andM1 respectively. By [68, Theorem 5], we have

conEΣ(rolEΣ(RIΣ(O))) ≡Σ Ored,

M1 ≡ΣMred.
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Role Propagation (RP):

m
⋃

j=1

{Pj ⊔ Cj}, E0 ⊔ Qr.D0,
k
⋃

i=1

{Ei ⊔ ∀r.Di}

(
⊔n

i=0 Ei) ⊔ Qr.(
dm

j=0 Cj)
,

where P0 =
⊔n

i=0 ¬Di, for j > 0, Pj is a sub-concept of P0, Q ∈
{∀, ∃}, and C0 and Cj do not contain a definer.

Reduction (Red):

O ∪ {¬D1 ⊔ . . . ⊔ ¬Dn ⊔ C}

O
,

where C is a general concept expression that does not contain

a negative definer and D1, . . . , Dn are definer symbols. The RP

rule applies before this rule if ¬D1 ⊔ . . . ⊔ ¬Dn takes the form of

P0 in the RP rule.

Figure 5.10: Rules RP and Red.

Because the rule conD-Elim used for computingM1 is a special case of the RP

rule, we have Ored =Mred. As a consequence, we obtain

conEΣ(rolEΣ(RIΣ(O))) ≡ΣM1.

Lemma 140 M1 ≡ΣM2.

Proof. It is shown in [77, Theorem1], as an easy consequence of Ackermann’s lemma,

that if the set of all negative occurrencess of a definerD inO is of the form {¬D⊔Cj |
1 ≤ j ≤ n}, thenwe can replace all positive occurrences ofD inO by

dn

j=1 Cj without

losing logical consequences that do not involveD. This is exactly what Op2 does.

Theorem 141 Let gm∗Σ(O) be the ontology obtained by:

• successive application of Op1 and Op2 over conEΣ(rolEΣ(RIΣ(O))), and

then

• application of the steps described in Theorem 114.

Then, gm∗Σ(O) is a general module for O and Σ.

Proof. This can be shown almost in the same way as in the proof for Theorem 114.

The only difference is that we change the definition of OD in Equation (5.4) to

OD = {D ≡ copyΣ(CD) | D ∈ sig(M2) ∩ ND}.

The reason is that we do not need to consider definers eliminated by the rules con-

Elim and D-prop anymore.
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Theorem 122

Theorem 142 Let us define dmΣ(O) by

dmΣ(O) = {α ∈ O | αR
∗β for some β ∈ gm∗Σ(O)}.

Then, dmΣ(O) is a deductive module for O and Σ.

Proof. SetM = dmΣ(O). Wenote that gmΣ(M) = gmΣ(O), sinceM contains exactly

the set of axioms that are used to compute gmΣ(O). By Theorem 114, we haveM≡Σ

gmΣ(M) and O ≡Σ gmΣ(O). Putting these observations together, we obtainM ≡Σ

O. Since alsoM⊆ O,M is a deductive module of O for Σ.
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6 - Conclusions and Future Work

In this thesis, we develop three methods for extracting knowledge from Descrip-

tion Logics EL+, EL, and ALC, respectively. An overview of our contributions is

summarized in Figure 6.1. Our methods have been developed to solve two dif-

ferent scenarios. (1) In the őrst scenario, the users are interested in őnding an

explanation of a conclusion based on a given ontology. To this end, we developed

a method minH for computing justiőcations for EL+-ontologies; (2) In the second

scenario, the users want to analyze what the ontology states about a given set

of concept and role names. To this end, we proposed to compute ontology mod-

ules. For EL-ontologies, we introduced ForMod that allows one to compute two

kinds of deductive modules: pseudo-minimal modules and complete modules. This

method is also a contribution to computing minimal modules, as (recall Theorem

72) pseudo-minimal modules are indeed minimal modules when the corresponding

forest is őnite. For ALC-ontologies, we developed GeMo that allows one to com-

pute general modules, a notion that subsumes uniform interpolant and deductive

modules. The method GeMo has been extended for the computation of uniform

interpolant and deductive modules.

Knowledge Extraction from DL Ontologies

Justifications
(minH for EL+ in Chapter 3)

General Modules
(Formod for EL in Chapter 4 and

GeMo for ALC in Chapter 5)

Deductive Modules
(Chapter 4 and 5)

(Pseudo-)minimal Modules
(for EL in Chapter 4)

Complete Modules
(for EL in Chapter 4)

GeMo deductive modules
(for ALC in Chapter 5)

Uniform Interpolants
(gmLethe for ALC in Chapter 5)

Figure 6.1: Overview of the thesis work

Justifications In Chapter 3, we introduce and investigate a new set of sound

and complete inference rules based on a hypergraph representation of EL+-ontologies.

We design the algorithm minH that leverages these inference rules to compute all

justiőcations for a given conclusion. The key to the performance of our method is
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that regular paths are used as elementary components of H-paths and this leads

to reducing the size of complete sets because (1) the rules are more compact than

the standard ones, (2) redundant inferences are captured and eliminated by regular

paths (see Section 3.4.2). The efficiency of the algorithm minH has been validated

by our experiments showing that it outperforms PULi in most cases.

There are still many possible extensions and applications of the hypergraph

approach. For instance, to get even more compact inference rules, we could extend

the notion of regular path to a more general one that will encapsulate the inference

ruleH2 (recall Table 3.2 on page 34) in the same way as regular paths encapsulated

in H-rules. Moreover, we could try to apply our approach for other tasks like

classiőcation and for computing logical differences [54].

Deductive modules In chapter 4, we presented two deductive modules for

EL-ontologies: pseudo-minimal modules and complete modules, and we developed

a SAT-based algorithm ForMod to compute those modules. This method is based

on a novel notion of the forest, which enables to capture all the entailments over

a given signature. The experiments on real-world ontologies validate the efficiency

of our proposal as well as the quality of our deductive modules compared to Zoom

[16].

As the next step, we plan to investigate how to generalize our ideas to more

expressive ontologies such as EL+ and ALC. Also, we are interested in investigat-

ing such ideas on module notions that are not necessarily deductive modules (e.g.,

semantic modules [42]).

General modules In chapter 5, we present the őrst tool GeMo for comput-

ing general modules for ALC ontologies, which can also be used for computing

deductive modules and uniform interpolants. Our method is based on a new role

isolation process that enables efficient role forgetting and an easy deőner elimi-

nation. Our method’s efficiency and the quality are validated by experiments on

real-world ontologies, outperforming Lethe and other methods.

In the future, we are interested in optimizing the concept elimination step to

obtain more concise general modules. Also, we plan to generalize our ideas to

more expressive ontologies.
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