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Abstract

Today, diseases and illnesses are becoming the most dangerous enemy to humans. The number
of patients is increasing day after day accompanied with the emergence of new types of viruses

and diseases. Recently, wireless body sensor network (WBSN) has been considered as an efficient
technology for real-time health-monitoring applications. It provides a low cost solution for hospitals,
performs a relief for staff and allows nurses and doctors to remotely track patients. However, the huge
amount of data collected by sensors produce two major challenges for WBSN: the quickly depletion
of the available sensor energy and the complex decision making by the doctor. Subsequently, these
challenges are highly depended on the enormous amount of redundant collected and transmitted
data in such network. Therefore, data reduction and prediction techniques have an important effect
in preserving the sensor energy and prolonging the network lifetime. In addition, most hospitals
suffer from the deficiency of qualified staff needed to continuously monitor patients and act when
an urgent situation is detected. Thus, designing a nurse-patients scheduling is becoming essential
to organise and balance the workload of the medical staff. In this thesis, we consider a WBSN
architecture consists of a set of sensors, where each sensor monitors a specific vital sign during a
period of time and then sends the collected data to a coordinator which, in turns, forwards them to the
sink. Then, we propose data reduction, classification, management and nurse scheduling techniques
that aim to overcome the mentioned challenges. Fundamentally, the proposed techniques work on
sensor and sink levels. At sensor level, we propose an emergency detection and adaptive sensing
frequency techniques that aims respectively to reduce the collected and transmitted redundant data
according to the patient situation. At sink level, we propose data analysis and management techni-
ques: First, a framework based on distributed systems for ingestion, processing, storage, prediction
and visualisation, using several hadoop tools. Where, a prediction technique is implemented based
on Prophet method that predicts the future patient’s situation in order to provide the necessary
treatment. Second, a patient classification model that aims to classify the patients according to their
vital signs compared to the patient archive, using the Dynamic Time Warping algorithm. Finally, an
efficient nurse-patients scheduling technique which consist of two steps. In first step, we proposed
three distribution mechanisms that aims to allocate for each nurse the group of patients who should
follow. Where, two clustering-based mechanisms and one is based on a hybrid of genetic algorithm
and particle swarm optimization. In second step, a scheduling algorithms based on the patient’s
priority is implemented, that aims to determine the optimal order of patients for examination. We
applied our simulation on real health sensor data, while the obtained results show its accuracy in
terms of extending the network life, processing storage speed, regenerating of missing data, and
confirm that the proposed scheduling approach provides the best possible organised time for the
nurses routing to patients appointments.
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II Abstract
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Intorduction

1 General Introduction

In home, at work, in schools, our bodies are the target for hundreds of diseases and viruses. From
one hand, our daily food along with the connection human-human or human-animal are the most
causes of diseases. On the other hand, pollution of climate and wars are the indirect causes of the
propagation of severe viruses. This leads to significantly increase the number of patients as well as
the healthcare costs to governments and societies. Therefore, in order to deal with the increasing
number of patients, integrating new technologies in healthcare monitoring and assessment to reduce
the medical worker’s cost and ensure a near patient-doctor interaction has become an essential for
hospitals nowadays.

Among other technologies, researchers have focused on wireless body sensor network (WBSN) [5]
as an efficient and low cost monitoring system for various healthcare applications, either in-hospital
or in-home. Indeed, WBSN consists of a group of sensors that are located in and on the patient’s
body where each of which collects data for one vital sign (heart rate, systolic blood pressure, body
temperature, oxygen ratio, respiration rate, etc.). Then, the collected data are sent periodically to a
coordinator that is located on or beside the patient body, and this coordinator sends them to the sink.
Finally, the doctors are responsible to check and analysis the data in order to make the ultimate
decision.

Indeed, the huge amount of collected data in WBSN along with the growing number of patients
provides several challenges for both hospitals and doctors. First, the sensors are equipped with
autonomous power batteries but with limited capacities. Optimizing their energy consumption is
a fundamental operation, in order to increase the network lifetime and ensure long-term patient
monitoring. However, several works have proposed solutions for managing energy consumption
based on the aggregation of the data sent or reducing the frequency of sending by transmitting
only the relevant data following a change of state. Second, studying the evolution of the patient’s
behavior and predicting his future situation, based on his current situation, is one of the important
objectives of health care. Therefore, the patient must be taken care of in order to receive adequate
treatment before entering a critical situation. Finally, a scheduling technique that allows each nurse
to determine her group of patients and specify the best conditions for their care is one of the basic
operations to establish a balanced workload of medical staff due to epidemic periods.

XXI



XXII Chapter 0. Intorduction

2 Main Contributions of this Thesis

The main contributions in this thesis concentrate on designing an efficient energy data collection and
transmission techniques at sensor nodes, on designing a nurse-patient scheduling algorithm and data
analysis models at the sink node, and on building a patient classification model and hadoop-based
framework at sensor and sink nodes.

2.1 At Sensor Level

In sensing-based application, the basic unit in the WBSN is the sensor node that continuously
monitors the physiological statuses of patients, by collecting, exchanging and then sending analyzed
patient’s data remotely to processing center in order to make suitable decisions. Indeed, the collection
model suffers from the big amount of redundant data collected by sensors. This big data produces
two main challenges in WBSN: First, it quickly depletes the small energy battery in sensor which
is not always replaceable or rechargeable. Second, it makes the decision-making process is very
complex for experts because of the high level of redundancy existing among the data. In this thesis,
we propose several techniques based on the process of data transmission and of sensing frequency
adaptation, in order to reduce the redundant of collected and transmitted data, and therefore saving
the sensor power.

Data transmission techniques

Indeed, the energy consumption is highly dependent on the data transmission operation. Therefore,
in this thesis we propose several techniques that aims to reduce the amount of transmitted data in
order to minimize the energy consumption. First, we propose an emergency detection algorithm
that aims to directly alert the medical staff to any abnormal situation of the patient and to reduce the
amount of periodic data transmission from each sensor to the coordinator, and therefore extending
the network lifetime and taking the treatment needed. Second, we design the first phase of the patient
classification model, that aims to calculate and send the level of criticality of the specific monitored
vital sign, instead of sending all the collected readings to the coordinator. Third, we propose a
multi-hop routing protocol that reduces the redundant collected data depending on the patient’s
condition, and improves the data transmission by finding the optimal path to send data between
sensors according to several parameters: remaining energy; bandwidth available; transmission
efficiency; hops to sink.

Data collection techniques

Obviously, the redundancy level among the collected data is dependent on two reasons: the stabili-
zation of the patient’s condition and the short time between the collected measurements. In this
thesis, we propose an adaptive sensing frequency algorithm that reduces the amount of the collected
data according to the criticality level of the patient.

2.2 At sink Level

In the sensing-based application, the sink node is responsible for stored and analysed the data
collected from the sensor network and it can impart knowledge to the medical staff. In this thesis,
we propose several techniques that drive the medical staff to make the suitable decision. First, we
design a framework based on hadoop tools. The sink receive the data collected from the sensors
then forward them to the hadoop cluster, in order to preprocess and store them for later analysis.
Second, we propose a patient records archive technique that regenerates the readings for each patient
during his staying in the hospital, in order to store and archive them for a latter data analysis. Third,
we propose a patient situation prediction technique that predicts the variation of the situation of a
patient during the next periods in order to take a quick response and avoid patient to enter in a critical
situation. Fourth, we design the second phase of the patient classification model that determines the
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criticality level of the patient according to the received levels of all vital signs from the patient’s
body. Finally, we propose a patient-nurse scheduling technique in order to balance the workload of
the medical personnel. This technique starts by distributing the patients to several groups, where
each group is assigned to a specific nurse. This distribution assures the similarity between groups in
the number of patient and in the levels of criticality, in other hand it ensures the dissimilarity in
patient levels in the same group. We proposed three mechanism, two based on grouping operation,
while, the third mechanism is based on the combining between the genetic algorithm and particle
swarm optimization. After the distribution of patients, we build a scheduling algorithms in order
to find the best traffic that a nurse should follow in order to serve all her assigned patients. The
algorithm is based on calculated the priority of each patient according to the criticality and age
parameters.

3 Thesis Structure

The thesis is structured as follows:

3.1 Chapter 1: An Overview About Wireless Body Sensor Networks

This chapter presents a general review about wireless body sensor networks (WBSNs). Then, it
introduces the architecture of WBSN. Also, it shows the various types biomedical sensors. After that,
it demonstrates the integration of Internet of Things in the healthcare field. In addition, it describes
the challenges that face the implementation of WBSNs along with the growing number of patients
while focusing on energy consumption, emergency detection and patients-nurse scheduling. Finally,
it presents a state-of-the-art in order to overcome the highlighted challenges while the proposed
techniques is classified according to specific criteria (is divided into several categories): patient
classification, nurse scheduling, energy efficient data transmission, real-time patient monitoring,
and analyzing large data volume for decision-making.

3.2 Chapter 2: An Adaptive Intra-WBSN Communication approach

This chapter presents a comparative study for the recent advances in Internet of healthcare monitoring
and it introduces a novel approach based on merging an energy efficient routing protocol with the
data transmission process. This approach reduces the data acquisition redundancy, and finds the
optimum path for data transmission, according to the patient situation. At the sensor level, the
approach proposes a multi-hop routing protocol that select the next hop based on several parameters:
residual energy, transmission efficiency, bandwidth available and number of hops to reach the sink.
In order to reduce the energy consumption and to ensure an efficient transmission. In addition, the
approach integrates a data transmission technique that sends the measurement to the next hop only
if the patient’s situation has changed, in order to reduce the redundant data, and therefore extending
the network lifetime.

3.3 Chapter 3: P2D: An Efficient Patient-to-Doctor Framework for Real-Time Health Monitoring and
Decision Making

This Chapter introduces an efficient framework called P2D for health monitoring and decision
making. P2D works on two levels: sensors and sink, which covers the entire life-cycle of data
including data collection, data ingestion, data preprocessing, data storing, and data visualization.
The proposed framework relies on Hadoop ecosystem tools. At the sensor level, P2D proposes
an emergency detection algorithm that allows to directly detect any abnormal situation of the
patient, and proposes an adapting sensing frequency algorithm based on the patient criticality level,
that allows to save the sensor energy. Whilst, at the sink level, P2D proposes a patient records
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archive technique that allows to store an archive for each patient using the method of least squares
approximation, then it introduces two fault detection algorithms (moving average and exponential
smoothing) in order to preprocess data before storage, and proposes a prediction technique based
on the prophet method that predict the patient situation during the next periods of time and make a
suitable decision by the doctors.

3.4 Chapter 4: A Sensing-Based Patient Classification Framework for Efficient Patient-Nurse Schedu-
ling

This chapter introduces a novel and efficient framework for nurse-patient intelligent task organiza-
tion that treats the scheduling problem. Typically, our framework consists of two phases: patient
classification, and nurse scheduling. The first phase introduces an efficient classification model that
groups patients according to the severity level of their vital signs. The second phase starts with
proposing three ditribution mechnaisms based on the classification results in order to balance the
workload of the stressed medical personnel. Then a schedulig algorithm is proposed in order to find
the best scheduling assignment of nurses over patients. This algorithm is based on some priority
metrics.

3.5 Chapter 5: Conclusions and Perspectives

This chapter introduces the conclusion of our work, and suggests some extended improvements to
our techniques as a future work.



1 An Overview About Wireless Body
Sensor Networks

1.1 Introduction

The essential role of primary health care is to ensure continuous and comprehensive care to the
patients. Thus, the healthcare system absorbs a significant and growing share of resources. However,
Wireless body sensor network (WBSN)[5] is a well-known solution that is used to help nurses in
monitoring patients in home or in hospital. WBSN is a network of sensors implanted in and/or
on the patient’s body, and constantly monitors their health status in real time. Where, each sensor
collects periodically data, then send them to the medical center in order to make suitable decision,
and therefore in order to prevent any unwanted situation with the necessary intervention medical.

Indeed, WBSN suffers from big data collected by the medical sensors. Therefore, collecting and
transmitting data are the major reasons behind the exhaustion of limited energy. Moreover, the
researches focus on dealing, storing and analyzing the huge amount of the collected data. In addition,
hospitals rely mainly on nurses who have several duties such as: serving the patients, contacting
with doctors, giving medicine, detecting an emergency and monitoring vital signs [6]. WBSN is
one of the main applications that helps the medical staff in electronic health surveillance with early
detection of critical physiological symptoms. Moreover, rapid growth in number of patients, poses
pressure on hospitals and increases the nurse duties. Hence, the patient-nurse scheduling algorithm
has taken a big attention from researchers for reducing the workload of nurses.

1.2 Various Types of Biomedical Sensors

In WBSN, we distinguish between three main categories of sensors that produce different data
types: numerical, images, or video. The numerical biosensors allow converting various forms of
stimuli into electrical signals then to numerical records. These sensors take data about vital signs
like pressure, temperature, oxygen saturation, respiration rate, etc. The image biosensors take images
for various patient organs like X-ray and dental imaging, radiography, mammography, cardiology,
etc. The last biosensor category, i.e. video biosensor, records data for various surgery operations of
patients like cardiology, invasive surgery, ocular surgery and observation, and artificial retinas. On
the other hand, biomedical sensors are implemented on or implanted inside the body [7]. Figure 1.1
shows the most used types of biosensors in WBSN which can be classified as follows:

1
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1.2.1 Epidermal Biosensors

These types of sensors are usually attached on the body of the patient and aim to monitor the glucose,
lactate, sodium, potassium and temperature (Figure 1.1(a)), the interleukin-6 and cortisol (Figure
1.1(b)). Mostly, these sensors are self-power supply electronic skin that use piezoelectric-enzymatic
reaction coupling.

1.2.2 Saliva-based Biosensors

These biosensors usually mounted onto tooth with integrated wireless electronics. The saliva
biomarkers offer meaningful diagnostic information, such as: sodium intake during hypertension
management (Figure 1.1(c)), detect foods and fluids during ingestion sugars, alcohol, salinity, pH
and temperature (Figure 1.1(d)).

1.2.3 Tear-based Biosensors

These sensors rely on contact lenses and use transparent and soft materials while incorporating
wireless electronics. They detect glucose concentrations via resistance-based enzymatic mechanism
and allows quick response time for continuous measurements (Figure 1.1(e,f,g)).

Figure 1.1 Various types of biomedical sensors.

1.3 WBSN in Internet of Things (IoT)

Recently, Internet of Things (IoT) systems were introduced in the field of healthcare, playing a
major role in patient monitoring and in ensuring a good communication between the healthcare
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providers [8]. IoT describes the network of physical objects that are embedded with sensors, software,
and other technologies for the purpose of connecting and exchanging data with other devices and
systems over the internet. In fact, the wireless body sensor network (WBSN) technologies are one
of the essential technologies of IoT growths of the healthcare paradigm. In WBSN every patient is
monitored through a group of small-powered and lightweight sensor nodes [9]. IoT based healthcare
or IoHT [10] allows monitoring physiological statuses of patient, by collecting and exchanging
their data. These systems help reducing the average workload of medical staff in hospitals. Indeed,
the remote monitoring from home reduces the patient hospital visits especially for elderly people.
Moreover, adding an analysis part in the IoT healthcare systems contributes significantly in decision
making by the doctors. Furthermore, IoHT systems contribute in medical work improvement by
reducing the expenses in human, medical and financial resources.

1.4 WBSN 3-Tier Architecture

WBSN system is the key component of the patient monitoring system. The topology of WBSN is
composed of three tiers as shown in Figure 1.2. Typically, the first tier consists of several sensors
that are distributed inside and on the patient’s body in order to monitor and measure the different
vital sings. These measurements are sent to a coordinator that is located in the center of the patient’s
body. The coordinator sends the data to the sink in the second tier. This sink could be a smart phone,
personal computer or other smart electronic device. These devices can play the role of a gateway.
Finally, some specific information is transmitted from the gateway to the tier-3 via the Internet. This
third tier offers several medical services like medical information storage, retrieval and analysis. On
tier-3 medical information could be directed to physician or emergency team for necessary treatment.
Indeed, Sensor nodes are powered by micro-batteries and each node is responsible of collecting
one or more type of physiological data including heart rate (HR), respiratory rate (RESP), oxygen
saturation (SPO2), pulse (PULSE) and blood pressure (ABP). In almost WBSN applications, a
continuous monitoring of patient situation is required. Therefore, we are interested on the periodic
data collection model. In our system, each sensor collects one data measurement on each second,
and at the end of the period the sensor sends the collected data to the coordinator which, in turns
forwards the data to the sink for a later data analysis and decision.

1.5 Intra-WBSN Communication Types

In this section, we introduce the three types of sensor-coordinator and sensor-sensor communication;
broadcast, single hop and multi-hop. In broadcast communication, every sensor communicates with
all others. This cluttered communication is considered high energy consuming. In single-hop type
(Figure 1.3(a)), the sensor sends the data directly to the coordinator through one hop. Therefore, the
signal strength should be significantly increased leading to the increasing of energy consumption. In
multi-hop communication (Figure 1.3(b)), the data follow an adaptive routing between the sensors,
minimizing by this way the required signal and reducing therefore the energy consumption.

1.6 WBSN Challenges

Typically, WBSN is one of the main technology that used in the monitoring healthcare applications.
The life cycle in the WBSN begins with the acquisition of data for a patient and ends with its analysis
by the medical profession. However, this process faces several types of challenges. Some essential
challenges are related to the limited energy sensor, while other challenges are related to the data
management ( such as big data collecting, transmitting, storage and processing), and, finally, other
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Internet

Medical Server 

Emergency 

Physician

: Sensor node
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Figure 1.2 WBSN architecture.

Figure 1.3 Intra-WBSN Communication Types.

ones are related to patient-nurse scheduling. This challenges are for both hospitals and doctors
which can be summarized as follows:
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1.6.1 Reducing Energy Consumption

As sensors have autonomous power batteries, minimizing energy consumption is a fundamental
operation in WBSN in order to ensure a long time patient monitoring and reduce energy cost.
Furthermore, data transmission is a heavily cost operation in terms of energy consumption. Hence,
adapting sensing frequency techniques have been proposed as an efficient approach for reducing
data collection and transmission from sensors.

1.6.2 Rapid Emergency Detection

Usually, the situation of the patient can change from low to high criticality level. Thus, in case
of emergency detection, an alert must be directly sent to the medical staff and doctor in order to
evaluate the patient situation and take the needed treatment. Therefore, rapid emergency detection
is a crucial task for medical team which can negatively affect the life of a patient.

1.6.3 Predicting Progress of Patient Situation

Obviously, patient monitoring and having information about his current situation is not always a
sufficient task for medical staff. For instance, a patient is entering hospital in critical case but the
rapid variation of his situation can lead to an unpredictable death. Hence, studying the progress
of patient behavior and predicting his future situation, according to the current one, is one of the
important goals in healthcare. By doing that, patient can be given the adequate treatment before
entering a critical situation.

1.6.4 Big Data Processing

The acquisition of various data for a large number of patients leads to the problem of mega-data
(Big Data) at the final sink level [11]. On the one hand, this huge amount of data complicates the
mission of data analysis by the medical team, especially in the case of emergencies. On the other
hand, the richness of this data will be a source of opportunity for Big-Data analysts to refine them
and to propose models in line with the different states of patients, to validate hypotheses and of
course to take decisions. Similarly, reducing the amount of redundant information transmitted by
the nodes reduces the energy consumption in the system. Among the techniques proposed to reduce
the transmission of redundant information are: data aggregation, compression and prediction. One
of the main contribution of this thesis consists in developing data reduction/compression/prediction
techniques and methods for adapting the detection frequency according to the application domain
to save energy and reduce data size.

1.6.5 Nurse Scheduling

Indeed, one of the fundamental challenge in the hospital is to balance the workload of medical
personnel especially in the epidemic time. A scheduling protocol aims to assign for each nurse her
group of patients, then to determine the optimum path in order to serve his group. Normally, this
scheduling algorithm depends on several parameters such as the level of severity of the patient and
his age, the capacities of the nurses, the occupancy rate of the resuscitation rooms and medical
equipment, etc.

1.7 Patient Monitoring and Risk Assessment: A Background

In the last decade, the healthcare sector takes a great attention from both industries and research
community. From one hand, the industries try to integrate new technologies in the medical process
while the governments aim to ensure a secure public health for the people. On the other hand,
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researchers aim to propose efficient patient monitoring and assessment techniques as well as try to
overcome the challenges provided in WBSN. The authors of [5] give an overview on the sensing
devices fabricated by the industries and dedicated to healthcare applications. In [12, 13], the authors
present and compare the remote health monitoring systems existing in the literature for elderly
healthcare and well-being. Also, they survey on various textile-based sensors that can potentially
used in wearable systems as long as the communications technologies dedicated to elderly ubiquitous
healthcare [14]. Whilst, the authors of [15, 16] summarize the data analysis algorithms proposed by
the research community for the sensor-based healthcare applications.

1.7.1 Energy Efficient Data Transmission Techniques

Some works in WBSN are dedicated to save the energies of the sensors and reduce the data trans-
mission in the network.
The authors of [17] propose an energy efficient mechanism for WBSN based on a sleep scheduling
strategy and dominating set method. After constructing the dominating graph, the sink selects, based
on two approximation algorithms and a polymatroid function, a subset of nodes to collect the data
(e.g. active nodes) while switching the other nodes to sleep mode in order to reduce the number of
active sensors and therefore the energy consumption. Through a comprehensive simulation analysis,
the authors demonstrated that this mechanism extends the network lifetime, but it don’t take into
account the integrity of information, where a number of sensors are in sleep mode which don’t
collect data during a period of time, and this sleep scheduling creates an information shortage for
medical staff.

In [18], a priority-based energy harvesting scheme for charging embedded sensor nodes in WBSN
has been proposed. The proposed scheme uses the CSMA/CA protocol in order to switch power
from the primary unit to the secondary unit thus, saving the sensor voltage level and reducing the
transmission losses. The limitaion of this paper is that consumes more time in transmission data
operation, while reducing the period of transmission is important in the critical situation.

The authors of [19] propose a transmission protocol for WBSN where the nodes are divided
into two categories: critical nodes and forwarder nodes. The forwarder nodes are responsible to
collect data from sensors, aggregating them and sending to the sink. The forwarder nodes are
selected according to two criteria: having maximum energies and minimum distance to the sink.
The critical nodes use the single hop transmission and aim to send critical records directly to the
sink. Simulation is carried out which shows better results than other solutions. However, the link
information or signal strength is another significant parameter to select the forwarder node and only
distance and energy level is not feasible because the high energy level sensor node not give surety
of better signal strength in the network.

The authors of [20] propose an efficient system in terms of energy saving in wireless body sensor
networks, called LEACH-dual fuzzy logic (ELEACH-DFL), which aims to extend the network
lifetime. The system is distributed on two stages. First, the authors select the cluster head (CH)
using a fuzzy logic algorithm, according to some parameters like remaining energy and distance
neighbor. Second, a cluster configuration technique is proposed in order to generated the clusters of
each CH. The efficiency of ELEACH-DFL has been comprehensively evaluated through several
studies and simulations, which have shown that ELEACH-DFL significantly extends the lifespan of
the entire network. However, the selection and generation of clusters consumes more processing
time, therefore the transmission time increases.

The authors of [21] propose a tele-monitoring technique for the elderly people using WBSN
that sends emergency physiological data through event-based data transmission to reduce the data
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redundancy and to improve the end-to-end delay. The data is transmitted on different time slots
using Time Division Multiple Access (TDMA). The solution was evaluated through experiments
and showed promising results in terms of reducing delay and energy consumption. However, the
lack of security aspects seems to be its main shortcoming, where the privacy of patient has taken a
great attention from researchers in the healthcare domain.

In [22], a multi-hop priority-based congestion-avoidance routing protocol in WBSN is propo-
sed. The goal was to establish a routing protocol between the sensor nodes. In this work, the data
is categorized into two: normal and critical. In case of normal data, the next-hop selection is de-
termined based on three parameters; The remaining power, congestion on the forwarder node, and
the signal-to-noise ratio of the path between the source and forwarder node. The proposed scheme
uses data aggregation and filtering techniques in order to reduce network traffic, therefore saving
energy. This protocol prioritizes the critical vital data for emergency detection in order to reduce
the delay. This mechanism has shown promising results in terms of energy consumption, traffic
load, delay, lifetime. However, the lack of security aspects seems to be the main shortcoming of them.

In [23], the authors propose an improved stable increased-throughput multi-hop link efficient
routing protocol for Wireless Body Area Networks. This protocol uses a cost function in order to
select the next node as a forwarder node. This forwarder node collects the data from the other nodes
and transmits them to the sink reducing by this way the sensor energy consumption. This selection
of the forwarder node depends on the remaining energy and the distance to the sink. Selecting the
forwarder hop with maximum residual energy balances the energy consumption among the sensor
nodes and the least distance reduces the path loss and hence improves the packet delivery ratio of
the network. The simulation results presented in the paper seem to be promising in terms of network
lifetime and network throughput using an integer linear program. However, this approach don’t take
into account other parameters like bandwidth available of nodes.

The authors of [24] propose an energy-balanced routing protocol (EBRP) in order to prolong
the network lifetime. The authors used K-means++ algorithm in order to divide the sensor network
into clusters. A cluster head is selected, using the fuzzy logical system, in order to collect the data
from the whole cluster and send them to the sink. Additionally, the authors get the fuzzy rules using
genetic algorithm (GA). The article conducted a series of experiments comparing the results with
existing solutions. The efficiency of this work has been verified in terms of the extension of network
lifetime. However, the main limitation of this work is that when GA selects the best rule list, it
consumes more processing time.

In order to balance the energy consumption in the wireless body area network, the authors of
[25] propose a multi-hop routing protocol. In this system, the sensor sends their values to the node
that has largest residual energy. However, this protocol suffers from the high packet loss rate and the
large delay.

In [26], a protocol for data routing called energy efficient peering routing (ERP) is proposed
for handling the indoor WBANs applications. This protocol aims to estimate the communication
cost of neighbor sensor nodes, then it uses its routing table to save this information. Choosing the
downstream sensor node depends on residual energy and geographical position of nodes. ERP
reduces the hello packet transmission using a control mechanism. The ERP architecture consists
of three essential objectives: First, maintaining the hello packets generation. Second, building
routing tables in order to update the neighbor sensor nodes position and location. Finally, building
the owns updated routing table. However, this building operation takes additional time for data
routing mechanism. Despite that the time is considered one of the important factor for real-time



8 Chapter 1. An Overview About Wireless Body Sensor Networks

data transmission.

The authors of [27] proposed a Multi objective QoS Routing (MQoSR) protocol for WBANs.
This protocol aims to select the next node from neighbor nodes based on two parameters: the
location that is determined using the GPS services and link information that is identified through
residual energy of sensor nodes and reliability of sink node. MQoSR used fault tolerance approach
in order to make multiple node-disjoint and it’s based on demand routing protocols. Furthermore,
this work focus on data transmission, end-to-end delay and network lifetime. The policies of routing
depend on source and sink nodes available QoS requirements. However, in WBANs there are several
types of QoS requirements needed and the process of achieving all the requirements requires more
computational processing which increases the network overhead.

Table 1.2 shows a comparison analysis of the mentioned techniques in terms of the used methods, the
performance evaluation metrics, and the limitations. Note that the different limitations mentioned
are collected from different state of the art references.

1.7.2 Analyzing Large Amounts of Data for Decision Making Techniques

Other works in WBSN are dedicated to analyze the large amount of data collected in WBSN and
making suitable decisions .

In [28], the authors propose a deep learning mechanism based on the fractional cat-based swarm
algorithm for patient situation’s assessment and decision making. First, the nodes are organized
into clusters where a cluster-head (CH) is selected for each cluster based on the harmony search
algorithm and a particular swarm optimization. After that, the authors used the deep belief network
(DBN) in order to classify the data for better treatment. Where DBN is a multi-level neural network.
Furthermore, the CH receives the records from the nodes and classifies them based on the deep belief
network (DBN) in order to detect the emergency situations. The results described that the proposed
mechanism better performs for living state of the art approaches in case of energy usage, accuracy,
and throughput. Moreover, this classification process needs more computational processing time.
Where the interesting factor for real-time health application is the time.

The authors of [29] propose a modern platform for healthcare information systems consisting
of three layers is proposed. The first layer is composed of various data health sources like sensors,
clinical report, medication, etc. The second layer aims to process and store data and it uses various
Hadoop tools including Sqoop, HDFS, HBase, MapReduce and Hive. The last layer is responsible
of applying business intelligence (BI) solutions over the stored data and it uses SpagoBI tools as
an open source BI suite. The simulations results gives an efficient performance in terms of data
storage. However, data warehousing process based on hadoop and hive suffer from two challenges.
First, Hadoop is unable to handle the online analytical processing (OLAP) operations. Second, the
language HiveQL of the Apache Hive query is unable to handle several standard SQL queries.

In [30], the proposed routing architecture is based on the WBAN data-management technique
such as data segregation and classification, that plays an important role in handling the continuous
transmission of the large amount of data generated in the healthcare field. The authors propose a
classification technique based on a defined threshold where sensor’s readings are classified into three
types: urgent (above threshold), semiurgent (close to threshold) and nonurgent (less than threshold).
Furthermore, the authors introduce a routing protocol for a medical sensor that enables transmitting
packets during gateway failure. This work ameliorates data reliability and power consumption. In
case of failure on the gateway equipment, the segregation algorithm transmits only the urgent packets
directly to the gateway and drops the non-urgent packets but the semi-urgent packets are in the
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pending state. The obtained results of the proposed technique shows better performance compared
the other state of the art approaches in terms of energy usage, data reliability, PDR and packets
transmission rate with avoiding network congestion. However, data classification technique at sensor
node level increases overhead at sensor nodes. This work is not supported to handle several sensor
nodes. In addition, there are three different processes such as classification, scheduling, and vertical
handover decision were included in the monitoring of the telehealth system.

The authors of [31] propose a multi-sensor fusion and decision making mechanism for patient
monitoring through WBSN. The objective of the proposed system is to detect gait abnormality in
subjects with neurological disorders based on the gait features (especially spatio-temporal correla-
tion, gait asymmetry and regularity) and machine learning approach. Disorders in the movement
of patient are monitored and analyzed continuously in order to ameliorate the diagnosis rate. The
authors identified the disorders by analyzing the health data using machine learning and layered
data fusion to verify the correlation with clinical validations. However, the research bind the sensor
to the ankle, and therefore, users have to wear sneakers, which sometimes is difficult for users to
accept attaching the sensor to a fixed position.

In [32], the authors present a new paradigm called CloudDTH combining between digital twins and
healthcare that is particularly dedicated to monitor elderly in their homes. Where, through precise
analyzes the digital twin provides fast analysis and real-time decisions. The objective of CloudDTH
is to improve medical services such that remote monitoring, diagnosing and predicting aspects of the
health individual in terms of accuracy and speed, by integrating medical physics and virtual space.
Moreover, this work suffer from several shortcomings. First, the effectiveness of digital twins in the
data analytics process requires a connected and well thought through IT infrastructure. Second, the
digital twins requires a stable, noise-free data flow that allows for high performance digital twins.
Third, the large amount of used data affects the privacy and security aspect of digital twins.

In this research article [33] the authors exploit the advances of federated learning (FL) in the
field of healthcare informatics. FL is a learning paradigm seeking to address the problem of data
governance and privacy by training algorithms collaboratively without exchanging the data itself.
Towards this goal, federated learning could be a promising direction, which trains algorithms across
decentralised edge devices (eg, individual mobile phones) or servers hosting different local samples
(eg, data owned by different samples). Data samples are not shared or centralised and only the
trained models are communicated, which might improve data security and privacy of patient data
for drug–disease outcome validation in drug repurposingetain fine-grained control over the data
that they have gathered. The performance of the proposed model is evaluated in simulations and the
results obtained demonstrate significant improvement over other solutions.

In [34], the authors used the big data analytics in order to address the decision-making process. the
performance comparison of the techniques is evaluated using metrics such as Accuracy, Recall and
Specificity.

In [35], the authors investigate the performance of integration of big data analytics with the machine
learning techniques like decision trees, support vector machine (SVM) and K nearest neighbor in
enhancing the quality of healthcare services such as heart disease examination. The simulation
presented in this work shows the performance comparison of the techniques in terms of accuracy,
recall and specificity. The authors calculate the values of this metrics by the confusion matrix.
Where, the obtained results shows that SVM performs better compared to decision tree and KNN
techniques and gives better output for the dataset used.
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The authors of [36] build a model based on the edge-cloud architecture for the secured big data
analytics in order to ensure a timely decision-making process in the healthcare system. This model
makes a private and secure healthcare monitoring system through the collaborating between the
edges of mobile devices and the cloud level in order to increase the reliability of the biosensors
connected. In addition, the authors used the greedy heuristics in calculating cost function to decrease
the data retriveal rate based on mobile edges and therefore to enhance the handling of big data
analytics. The authors reduce the network overhead by implementing the privacy algorithms on the
sink and the mobile edges. The performance of the model is evaluated using many experimental
tests. Moreover, on the security side, the model suffer from some potential network vulnerabilities.
One other limitation depends on the optimization of the scalability factor for the mobile users that
connected to several clouds.

Table 1.1 shows a comparison analysis of the mentioned techniques in terms of the used methods, the
performance evaluation metrics, and the limitations. Note that the different limitations mentioned
are collected from different state of the art references.

1.7.3 Real-Time Patient Monitoring and Assessment Techniques

Recently, the authors of [37, 3, 38, 39, 40, 41, 42, 43, 44, 45] open a new trend in sensing-based
healthcare by proposing several frameworks for real-time patient monitoring and assessment.

In [37], a framework for a stress detection and evaluation is proposed. The framework works
by detecting first stress signals according to skin conductance parameter, then the stress level is eva-
luated through fuzzy inference system based on patient vital signs, particularly heart rate, respiration
rate and average blood pressure. The framework was evaluated through experiments and showed
promising results in terms of predicting stress level. However, the framework lack of security and
privacy.

In an early work [3], the authors propose a data management framework for data collection and
decision making in sensing-based healthcare. The framework relies on three algorithms: first, an
emergency detection algorithm aims to send critical records directly to the coordinator; second, an
adaptive sampling rate algorithm based on ANOVA and Fisher test in order to allow each sensor
to adapt its sampling to the variation of patient situation; third, a data fusion and decision making
model is proposed to the coordinator based on decision matrix and fuzzy set theory. Although
its great advantages for patient monitoring and assessment, the proposed framework suffers from
several disadvantages: 1) in case of low critical patient none of the data would be archived in the
hospital thus, revising patient archive to check patient progress from doctors is not possible; 2)
predicting the progress of the patient situation in the next periods of time is not possible by the
doctors.

In [39], an example of an integrated mobile platform is proposed. The system has originally been
created for patients with diabetes and was modified to meet the specific needs for clinical trials
in PBH patients. The platform consists of three components: First, a mobile app for patients that
integrates manual data input (drugs, symptoms, meals,..), data from the sensors , and from the
activity tracker. Second, a web interface for researchers and healthcare professionals that follows the
health patient situation in real time using browser dashboard. Third, a cloud database that ensures
secure environment for data collection and real-time monitoring. However, the mobile platform
does not support all the mobile operating system like Android.

The work of [40] describes the use of machine learning in improving fall detection devices. The
authors propose an effective fall detection system that uses edge computing to send data from cheap
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wearable devices, apache flink to analyse the helath data flow by implementing a data analytic
pipeline, and long short-term memory technique to detect and classify the fall status. Through
simulation, the efficiency of this approach is evaluated in terms of detecting falls in real-time. Ho-
wever, the work does not support all the types of sensors as well the parallel data-processing pipelines.

In [41], the authors propose an efficient sensor-based data analytics for real-time patient moni-
toring and assessment in order to achieve three goals: First, the framework allows the emergency
detection by sending the abnormal health condition to the medical staff, in order to ensure a con-
tinuous monitoring of the patient’s situation. Second, the authors create an algorithm in order to
adapt the sensing frequency based on the criticality of the patient’s situation, and therefore reduce
the rate of transmitted data. Finally, a prediction technique is proposed based on the long short-term
memory (LSTM) technique, which is an advanced recurrent neural network, it helps the medical
staff in the right medical intervention process at the right time, in order to avoid any deterioration
of the patient’s situation. The authors applied this approach on real sensor data while the obtained
results show its relevance in terms of reducing data transmission, predicting the patient’s situation
and saving network lifetime. Moreover, the adapting sensor frequency algorithm don’t take into
account the correlation between neighbor nodes, which lead to increase the rate of repeated collision.

The authors of [38] proposed a generalized multi-sensor fusion technique, called health risk assess-
ment and decision-making (Health-RAD) algorithm, in order to control the situation of patients
using WBSN. Health-RAD aims to detect the vital signs scores using a fuzzy inference system and
early warning score systems (EWS).Then, based on the scores it determines the patient severity
level that represented by a risk variable between 0 and 1. When the risk variable is higher, the health
situation is more critical. Through several simulations, the obtained results proves the efficiency on
reducing the energy consumption in processing data and extending the network lifetime. Moreover,
the technique needs a careful effectiveness in real-case scenarios.

The authors of [42] created an ubiquitous computing environment for controlling the patient’s
health conditions in real time. The proposed algorithm consists of three components, which accumu-
late physiological data and offers indicators that support public policies to support physical activities.
This technique did not implement WBSN module for deploying within Ubiquitous Computing
Environment for Monitoring and Evaluating Physical Activity (UCEMEPA) environment to evaluate
the physical activity sessions.

In [43], the authors designed a preventive health care system that allows monitoring of a patient’s
health care records. The architecture used in this system consists of heterogeneous nodes in order
to ensure continuous monitoring and specific controls. In addition, the authors used a model chec-
king approach that is based on model transformation for validating the WBSN behavior for health
monitoring. The solution has been evaluated by experiments and has shown promising results in
terms of handling the WBSN system, but it did not consider the scalability using huge WBSN system.

The authors of [44] designed a framework, named Mobile Agent Platform for SunSPOTs (MAPS)
framework, for monitoring human activities by creating wireless sensor networks using Java-
programmable Sunspot sensor platform. The agent-oriented programming gives detailed description
of health care that helps the medical staff to monitor in continuous manner. The architecture of
the WBSN is consists of a coordinator and two sensors. The coordinator is based on Java Adverse
Drug Event (JADE) based enhancement tool, which handles configuring sensors, receiving data
and recognizing the human activities. However, the method efficiently managed low-level sensor
node functions and could provide high-level services to agents, but it was not capable of processing
in deployed computers.



14 Chapter 1. An Overview About Wireless Body Sensor Networks

In [45], a data mining algorithm, called Online Distribution Resource Aware (ODRA) algorithm, is
developed that aims to predict in real time the health risk of the patients based on previous health
records. The ODRA was verified in real-time patient monitoring system for monitoring patient’s
physiological data. This algorithm ensures accurate status of patients and notifies patients of their
health status to get immediate attention when needed. Moreover, the method was not able to detect
the risk level alerts in the diagnostic system.

Table 1.3 shows a comparison analysis of the mentioned techniques in terms of the used methods, the
performance evaluation metrics, and the limitations. Note that the different limitations mentioned
are collected from different state of the art references.

1.7.4 Patient Classification and Risk Assessment Techniques

Other works in sensing-based healthcare aim to build some techniques for patient classification and
risk assessment [46, 47, 48, 49, 50].

In [46], the authors propose an efficient and robust big data analytical platform for real-time sensing-
based healthcare applications. The proposed framework relies on Hadoop ecosystem, using data
analytical techniques for data analysis and disease diagnosis, and composed of four layers: a layer to
control the patient, a layer for data storage and making decision, a layer for patient classification,
and a layer for data visualisation. The efficiency of this platform has been comprehensively evalua-
ted through several studies and simulations based on the Hadoop ecosystem, which have shown
that the platform significantly improves healthcare applications, in terms of efficiently performing
patient classification and disease diagnosis. However, the authors did not consider real scenarios for
evaluating the performance.

In [47] the authors built a Fractional Cat-based Salp Swarm Algorithm (FCSSA) based on WBSN,
the biomedical nodes collect the data then transmit them to the aggregator, which is selected using
the hybrid Harmony Search Algorithm and Particle Swarm Optimization (hybrid HSA-PSO). Then,
the deep belief network is trained to classify the vital conditions for the health risk assessment. The
algorithm was evaluated through several simulations , and showed promising results in terms of
accuracy, energy, and throughput compared to other existing models. However, this operation of
classification requires more computational processing time.

In [48], a new smart-fabric based body area sensor network for work risk assessment is proposed.
The network contains a smartphone and an artificial intelligent algorithm that aim to determine
the criticality level of psychological and physiological work, and a set of sensors integrated into a
textile substrate. The solution was evaluated through experiments and showed promising results in
terms of physiological signals and physical activity detection. Moreover, this framework needs an
accurate validation in a huge dataset collected from workers in real setting scenarios.

The authors of [49] proposed a machine learning-based system for classifying diabetic patients.
The framework uses the logistic regression in order to determine the features that characterize the
diabetes disease relising on p value and odds ratio. In addition, the authors applied four prediction
diabetic patients models such as naïve Bayes, decision tree, Adaboost, and random forest. The
authors used US-based National Health and Nutrition Survey data of diabetic and nondiabetic
individuals. The obtained results show the accuracy of combination between logistic regression
and random forest for diabetes patients classification. Moreover, the framework requires a careful
validation in classification with other kinds of medical data.
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The authors in [50] developed a classifier for breast cancer on histopathologic images. The authors
used a pre-trained VGG-16 model and a fine-tuned AlexNet in order to extract features, which were
then classified using a support vector machine (SVM). Preliminary and encouraging results are
shown in terms of accuracy. However, the model must be evaluated in a large data set to verify its
accuracy.
Table 1.4 shows a comparison analysis of the mentioned techniques in terms of the used methods, the
performance evaluation metrics, and the limitations. Note that the different limitations mentioned
are collected from different state of the art references.

1.7.5 Nurse Scheduling Techniques

Patient scheduling plays an important role in organizing time and allocating resources such as nurses
and machines to perform operations and provide services efficiently [51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61].

The authors in [51] proposed a model based on a stochastic Petri nets that aims to specify the
workload in order to fix the daily number of available appointments. In addition, it aims to minimize
the waiting time of patients by scheduling the patients, using a genetic algorithm. Numerical results
show that patients’ waiting time decreased by using the proposed model. Moreover, the model don’t
take into account the preferences of nurses for choosing their days off.

In [52], the authors propose an algorithm for non-emergency outpatient appointment scheduling,
which aims to reduce the costs through the effective use of expensive human resources and me-
dical devices, and enhance the wait time management of hospitals. This framework determines
the duration of every single appointment, and takes into account the priorities of patients. To op-
timize this model, a genetic algorithm is designed where the procedure based on crossover and
mutation operators. The efficiency of the proposed model and GA was evaluated through several
numerical experiments, which showed promising computational results in terms solution quality
and computational times in most cases compared with MLIP. Moreover, the framework don’t take
into account the stochastic events such as patients’ no-show and machine breakdown, which are
inevitable aspects of an appointment scheduling system.

In [53], the authors propose an efficient model for patients’scheduling in emergency department,
by using the Markov decision process, then designing the algorithm of the deep reinforcement
learning based on deep Q-networks. Their objective is to minimize the crowdedness in hospital
and the weighted waiting time of the patients. Several experiments were carried out to investigate
the performance of the proposed model. Computational results confirmed that the presented deep
RL can outperform the dispatching rules in terms of minimizing the weighted waiting time of the
patients and the penalty of emergent patients in the suggested scenarios. However, this study was
not addressed in a multi-agent RL with other factors such as operating rooms.

The authors of [54] aim to ameliorate the efficiency of the emergency department by proposing
an algorithm for patient scheduling. They built a mixed integer linear programming, abbreviated
MILP, that aims to reduce the patients’waiting time and distributed the patients into four classes
based on ILOG CPLEX Optimization Studio. The program has been applied to a real case study.
The proposed approach is shown to outperform the current configuration in terms of decreasing
the patients’ waiting time. Moreover, the numerical results show that the model is unable to find a
solution when the number of patients is more than 17.

Genetic algorithms have been applied in [56] to ameliorate nurses’scheduling problem-solving time
in an effort to reduce the cost of allocating nurses to inferior skill levels. Through a comprehensive



1.7 Patient Monitoring and Risk Assessment: A Background 17

Re
fe

re
nc

e
Ye

ar
Te

ch
ni

qu
es

Pe
rfo

rm
an

ce
Ev

al
ua

tio
n

Li
m

ita
tio

n

[4
6]

20
20

H
ad

oo
p

ec
os

ys
te

m
D

at
a

an
al

yt
ic

al
te

ch
ni

qu
es

Pa
tie

nt
cl

as
sifi

ca
tio

n
D

ise
as

e
di

ag
no

sis
D

id
no

tc
on

sid
er

re
al

sc
en

ar
io

sf
or

ev
al

ua
tin

g
th

e
pe

rfo
rm

an
ce

[4
7]

20
20

H
ar

m
on

y
Se

ar
ch

A
lg

or
ith

m
Pa

rti
cl

e
Sw

ar
m

O
pt

im
iz

at
io

n
D

ee
p

be
lie

fn
et

w
or

k

A
cc

ur
ac

y
En

er
gy

Th
ro

ug
hp

ut
Co

m
pu

ta
tio

na
lp

ro
ce

ss
in

g
tim

e

[4
8]

20
20

A
rti

fic
ia

li
nt

el
lig

en
ta

lg
or

ith
m

D
et

ec
tin

g
th

e
ph

ys
io

lo
gi

ca
ls

ig
na

ls
an

d
ph

ys
ic

al
ac

tiv
ity

D
et

er
m

in
in

g
th

e
cr

iti
ca

lit
y

le
ve

lo
fp

sy
ch

ol
og

ic
al

an
d

ph
ys

io
lo

gi
ca

lw
or

k
N

ee
d

an
ac

cu
ra

te
va

lid
at

io
n

in
a

hu
ge

da
ta

se
tc

ol
le

ct
ed

in
re

al
se

tti
ng

sc
en

ar
io

s

[4
9]

20
20

Lo
gi

sti
c

re
gr

es
sio

n
N

aï
ve

Ba
ye

s
D

ec
isi

on
tre

e
A

da
bo

os
t

Ra
nd

om
fo

re
st

Cl
as

sif
yi

ng
th

e
di

ab
et

es
pa

tie
nt

s
N

ee
d

a
ca

re
fu

lv
al

id
at

io
n

in
cl

as
sifi

ca
tio

n
w

ith
ot

he
rk

in
ds

of
m

ed
ic

al
da

ta

[5
0]

20
18

Pr
e-

tra
in

ed
VG

G
-1

6
m

od
el

Fi
ne

-tu
ne

d
A

le
xN

et
Su

pp
or

tv
ec

to
rm

ac
hi

ne
Cl

as
sif

yi
ng

th
e

br
ea

st
ca

nc
er

pa
tie

nt
s

M
us

tb
e

ev
al

ua
te

d
in

a
la

rg
e

da
ta

se
tt

o
ve

rif
y

its
ac

cu
ra

cy
.

Ta
bl

e
1.

4
Pa

tie
nt

cl
as

sifi
ca

tio
n

an
d

ris
k

as
se

ss
m

en
ti

n
se

ns
or

ne
tw

or
k:

a
sta

te
of

th
e

ar
tt

ec
hn

iq
ue

s.



18 Chapter 1. An Overview About Wireless Body Sensor Networks

simulation analysis, the authors demonstrated that the suggested method created a nurse scheduling
faster in time and better in quality compared to the traditional genetic algorithm. Moreover, the
method needs a careful validation with real hospital data with more constraints and diversity of
requirements.

The authors of [57] proposed a mathematical programming model and a meta-heuristic algo-
rithm based on simulated annealing, works on maximizing nurses’preferences for work shifts and
weekends. It considers the work laws and regulations and the hospital policy as well. This algorithm
presents superior outcomes when compared to the head nurse’s programs. However, the authors
don’t take into account the different skill levels for nurses, in addition the priorities for senior nurses.

On the other hand, lots of techniques have been proposed in the literature to optimize the nur-
se workloads. The authors of [58] have provided a decision-making system for optimizing the
nurse’s patient assignment in order to reduce job overload. A linear program solved on CPLEX was
used to model the problem. Then they use a stochastic programming model to handle the problem
and illustrates how it can save up to 273 hours of nurse overload each year in each medical/surgical
unit. Moreover, this model does not take into account the preferences of nurses for choosing their
days off.

An optimization model is proposed in [55] that relies on the goal programming method to ge-
nerate the ideal schedule by means of the Lingo 11.0 software. This model has met all the scheduling
conditions which were previously unmet with the manual scheduling method; such as the minimum
number of male nurses or senior nurses required per shift and the balancing of the working days of
all nurses. The efficiency of this model has been comprehensively evaluated through several studies
and simulations, which have shown that it significantly provides better solution for regular nurses
and better assignment patterns for all nurses. However, it has not been achieved for senior nurses,
due to meeting the requirements of senior nurses in each shift. In addition, this model does not take
into account the preferences of nurses for choosing their days off.

The authors of [59] designed a two-stage heuristic algorithm for generating a nurse schedule
with a balanced weekend workload. The algorithm takes into account the individual nurse’s pre-
ferences, patient volume variability, required patient-to-nurse, and other work and rest rules. The
paper conducted a series of experiments using measurement data from US hospital, and the obtained
results verify the importance of the investigation of uncertain impacts. In addition, the results
verified that good shift design can lead to revenue savings and fairness. Moreover, the authors don’t
take into account the different skill levels for nurses.

[60] interviews were performed and evaluated applying the Patient Safety System Engineering Initia-
tive model’s qualitative content analysis method. The findings demonstrate what nurses consider to
be a source of fatigue, as well as factors that are helpful and harmful in coping with fatigue in their
work environment.

The nurses are working under extreme duress owing to the COVID-19 pandemic, and they are doing
it benevolently all around the planet. Nurses who are responsible for caring for COVID-19 patients
24 hours a day may become more exhausted as a result of this emergency circumstance. As a result,
nurse scheduling should be adjusted to account for the new scenario.

In [61], a new mathematical model for Nurse Scheduling Problem (NSP) considering the fati-
gue factor is proposed. The authors developed a hybrid Genetic Algorithm (GA) in order to generate
a nurse schedule for all three shifts of a day. The authors conducted a series of experiments, in a
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real case study comparing the results with manual schedule, in order to show the applicability of
the proposed approach. Numerical results verify that this approach outperforms the current manual
scheduling in both fatigue factor and time of finding a time schedule. However, it imposes a few
more expense on the department.

The nurse’s schedules must adhere to a number of constraints. The scheduling must respect each
nurse’s working time, taking into account the maximum working hours, the minimum break duration,
and the maximum number of consecutive work days. The limits can be established for each nurse,
such as workload, days off, and so on; it must also take into account the nurses’preferences for teams
and vacations [62, 63, 64].

The authors of [62] concentrate on constructing a socially problematic nursing schedule. This
latter should consider mainly the following: three shifts, suitable placement of experienced per-
sonnel, fairness of job assignment, and legal work standards. As perplex as the nurse scheduling
is, the nurses in charge strive relentlessly to set the schedule manually and ensure fairness and
legitimacy. In contrast, the automated nurse schedule necessitates considerably less time and effort
while respecting the legal work standards and allocating fair distribution of shifts. These automated
systems rely on I/O Q-Learning algorithm using Python and a Web Application. Moreover, it
imposes some additional costs on the hospital.

In order to assure the effectiveness of the hospital operation, an efficient and practical method
of drafting nurse schedules is required. The constraint programming technique was utilized to solve
the problem of nurse scheduling in [63]. In terms of the results achieved after numerous tests on
various numbers of nurses, this technique demonstrates its capacity to discover an optimal Nurse
Schedule Problem (NSP) solution with a higher computational footprint. The performance of the
proposed depends on the number input and the present computational resources, taking into account
the both hard and soft constraints such as hospital requirements, nurses preferences,.. However, it
imposes a more cost to the hospital.

The goal of the study in [64] is to create a system that may be used to organize a nurse’s schedule.
The obtained working schedule is examined in light of the limits that were imposed. Simulated
Annealing was utilized in conjunction with the Probabilistic Cooling Scheme’s cooling approach
to check the constraint falsification’s value. Transitional rules make use of a cost matrix to create
a new, more efficient state. Results approve that while the PCS cooling methods combined with
the transition rules of the cost matrix imposes a little more cost to the department, it outperforms
the the cooling method exponential and logarithmic in generating objective function value of new
solutions better and faster in processing time. In addition, this system generates a work schedule in
a better quality than the schedules generated manually by the head of the room.

Table 1.5 shows a comparison analysis of the mentioned techniques in terms of the used methods, the
performance evaluation metrics, and the limitations. Note that the different limitations mentioned
are collected from different state of the art references.

1.7.6 IoT in Healthcare Applications

The Internet of Healthcare Monitoring Things describes the connected infrastructure of hardware,
software, medical devices, and services in order to collect and analyze data supporting by this way
the decision-making by healthcare professionals. Subsequently, the researchers have payed a great
attention in order to improve the integration of the IoT in the healthcare sector [65], [66], [67],
[68]. Indeed, many IoHT system have been prove the positive effect at the level of low-cost remote
diagnosis [69].
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The authors of [70] give an overview of the Internet of Healthcare Things (IoHT) providing an
accurate service in tracking the patient’s condition in order to prevent any critical situation. In [71],
the authors explain the important role of IoT system during COVID-19 pandemic, by validating the
efficient transmission of patient’s data without any human interaction.

1.8 Conclusion

In this chapter, we presented a general overview about wireless body sensor networks technology
that includes network architecture as well as the different types of biomedical sensors. Then, we
demonstrated the importance of the integration of internet of thing in the monitoring healthcare
applications. In addition, we have described the challenges imposed in the wireless body sensor
networks. Finally, we presented a background of several techniques that works on the mentioned
challenges, where we discussed their advantages and their weakness. In the next chapter, we will
present a comparative study for the recent advances in Internet of healthcare monitoring, using
Friedman’s statistical test. In addition, an optimized intra WBSN communication (OIC) is proposed
in order to ensure the efficient transmission of critical data and to extend the network lifetime.





2 An Adaptive Intra-WBSN
Communication Approach

2.1 Introduction

Healthcare requires the cooperation of many administrative units and medical specialties. The
Internet of Things (IoT) is involved into healthcare field and plays an extremely important role
by providing healthcare services. In the Internet of Healthcare Things (IoHT) several challenges
appeared in terms of limited battery life, long processing time, large amounts of collected data,
paquets overhead on sink,...etc. A lot of research studies have been done in order to improve the
healthcare IoT based applications. However, these proposed systems have been focused on some
specific purpose without ensuring an effective solution for all problems.

In this chapter, we have attempted to achieve two main objectives: First, a comparative study
between the recent advances data collection and communication method in IoHT. This study is
based on several parameters namely as follows:

• Energy consumption: Reducing the energy consumption is one of the important challenges in
WBSN systems, which aims to extend the network lifetime and therefore to extend the patient
monitoring operation.

• Redundant data: Reducing the redundant data, transmitted from the sensors to sink, is essential
to improve the decision making operation.

• Overhead on sink: This parameter depends on the number of paquets received by the sink
from the sensors. It is necessary to reduce the overhead to facilitate the decision making.

• Execution time: This parameter describes the time required to transmit the data in one period
for each studied approach.

And this study aims to determine the shortness of each method. All these methods fail to overcome
the all overmentioned challenges. Second, we propose an optimized intra WBSN communication
(OIC) that is based on merging of a multi-hop routing protocol with the data transmission process
of WBSN. The objective of our approach is to ensure the efficient transmission of critical data and
to reduce the energy consumption of embedded medical devices, by determining the optimal route
toward coordinator, according to the patient situation.

The rest of this chapter is organized as follows. Section 2.2 presents the comparative study of
four recent state of the art method in IoHT. Section 2.3 details our proposed transmission approach.
The simulation results are evaluated in Section 2.4. Finally, Section 2.5 summarizes this chapter.

23
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2.2 Comparative study of recent advances in data transmission in IoT

This section presents a comparison study of four state-of-the-art IoHT systems. The comparison is
based on following parameters: the average lifetime of embedded sensors, the average transmission
time, the average overhead rate on the sink, and the average data redundancy reduction. The following
articles are selected based on specific criteria: they are recent works, published in well-known
journals, and they deal with similar challenges with our work.

2.2.1 An Energy-Efficient Routing Protocol (EERP) for Reliable Data Transmission in WBSN [1]

The authors aim to ensure a reliable and efficient routing transmission of data and also to balance
the energy consumption by prolonging the lifetime of the WBSN. The architecture of WBSN, which
is used in this framework, is composed of 3 layers. First layer is composed of several biosensors that
aims to collect different vital signs from the body of the patient. Second layer is composed of several
electronic devices that aims to collect the data from the sensors. Third layer is composed of several
remote servers that aims to analyse the data received from the second layer for decision making
process. The authors of this approach propose a routing protocol with multi-hops. The steps of the
protocol is described in algorithm 1. For each embedded sensor, first, the status of each captured
measurement is determined as abnormal or normal. Then, the benefit function M is calculated for
each neighbor sensor ni according to equation 2.1.

Mi = α×Yi1 +β ×Yi2 +θ ×Yi3 + γ× (1−Yi4) (2.1)

Where Yi1 depends on the initial energy and the remaining energy of a sensor, Yi2 is the transmission
efficiency that depends on the number of received packets, Yi3 depends on the available bandwidth,
Yi4 depends on the number of hops to reach the sink. α , β , θ and γ are the weights for Y1, Yi2, Yi3
and Yi4 respectively. Finally, the sensor ni selects the next node that has the maximum value of
benefit function Mi, in order to send the measurement to this selected node.

The weights in the benefit function are distributed into two bins and fixed according to the patient’s
health status:

• If the status is normal: α takes the big value, reducing by this way the energy consumption.

• If the status is abnormal: β , θ and γ take the big value, ensuring an efficient and fast trans-
mission.
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Algorithm 1 EERP Algorithm.
Require: sensor node ni, neighbor table: NT.
Ensure: best next hop node.

1: if ni has packet to send then
2: if level is normal then
3: Select the weights for normal level
4: for each neighbor node n j in NT do
5: Calculate the benefit function M j
6: end for
7: Select the node has maximum M
8: else if level is abnormal then
9: Select the weights for abnormal level

10: for each neighbor node n j in NT do
11: Calculate the benefit function M j
12: end for
13: Select the node has maximum M
14: end if
15: Send the measurement to the selected node
16: end if

The paper conducted a series of experiments using MATLAB platform, comparing the results
with existing solutions in the literature. And the obtained results showed that the proposed algorithm
significantly improves the performance of routing, in terms of network throughput, network lifetime,
energy efficiency and reliable transmission of emergency data. Moreover, the values of weights
in the benefit function α , β , θ , γ are fixed. In addition, this multi-hops routing can’t handle the
overhead on the sink and the big rate of redundant collected data from the biosensors.

2.2.2 RK-Energy Efficient (RKEE) Routing Protocol for WBSN [2]

The authors propose a routing protocol in order to extend the lifetime of the WBSN, which their
steps are described in the algorithm 2 . Similarly to the EERP approach [1] this protocol determines
first if the measurement is normal or abnormal. If abnormal, the sensor transmits the measurement
directly to the sink using single hop. If normal, this sensor transmits the measurement to a forwarder
node. The forwarder node is responsible of collecting the normal data from the sensors and transmit
them to the sink. This forwarder node ni is selected among all the sensors, on each round, according
to the CFi value (equation 2.2). CFi depends on the distance di between the sensor and the sink, and
depends on the remaining energy REi of this sensor. The sensor having the minimum CFi is selected
to become the forwarder node, means that the sensor node which has a minimum distance from the
sink and maximum residual energy, it has the highest chance of becoming the forwarder node. In
order to balance the remaining energy of all the sensors in the WBSN, and therefore to extend the
network lifetime.

CFi =
di

REi
(2.2)
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Algorithm 2 RKEE Algorithm.
Require: Set of sensor nodes N=n1,n2,... .

1: for each round do
2: for each sensor ni in WBSN do
3: Calculate the CFi
4: end for
5: Select the ni that has minimum CFi to be the forwarder node
6: for each sensor ni has packet to send do
7: if level is normal then
8: Send the data to the forwarder node
9: else if level is abnormal then

10: Send the data to the sink
11: end if
12: end for
13: end for

The solution has been evaluated through experiments and has shown promising results in terms
of energy consumption. Moreover, the proposed algorithm don’t take into account the huge amount
of the redundant data collected from the patient.

2.2.3 Self-Adaptive Data Collection and Fusion (SADCF) for Health Monitoring in WBSN [3]

The authors aim to optimize the data transmission and to estimate the detection frequency in real
time in order to reduce the energy consumption. First, the authors proposed a Modified Local
Emergency Detection. This method tries to reduce the data sent by each sensor to the sink and
thus save energy. The sensor sends periodically the measurement to the coordinator only in case of
criticality change level of the patient, as described in algorithm 3 (lines 2-15). Second, a distributed
Adaptive Sampling (AS) algorithm is proposed (lines 16-21). This algorithm allows to change the
sampling frequency on each round, in order to control the sensing and therefore to minimise the
energy consumption. Consequently, the authors apply ANOVA model with fisher test in order to
determine the variation level in sensing. Then, the sampling rate is balanced based on the sensed
data variation and the patient criticality.
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Algorithm 3 SADCF Algorithm.
Require: Threshold: Ft .

1: for each round do
2: for each period do
3: if it’s the first slot then
4: Get first measurement r0
5: Send first measurement r0
6: s= score of r0
7: else
8: Get measurement ri at slot i
9: si= score of ri

10: if si != s then
11: Send measurement ri
12: s = si
13: end if
14: end if
15: end for
16: Compute fisher test F
17: if F < Ft then
18: Compute the behavior function BV and adapt the sampling rate
19: else
20: Sampling rate is balanced to the maximum
21: end if
22: end for

2.2.4 Sleep Scheduling in Energy Harvesting (SSEH) WBSN [4]

The authors present a three-tiered sleep scheduling approach, providing a new path to further reduce
energy consumption in EH-WBNAs, i.e. a combination of sensor sleep scheduling and energy
recovery. In order to maximize the lifetime of the low-latency network.

• First level: Sensor Node Scheduling, aims to activate the minimum number of sensors, in
order to minimize the network’s communication. The authors develop the global and local
methods.

– Global method: It works each round, first it adds to the initial active sensor group the
sensor with the largest number of neighbors. Then, for each sensor, it determines if the
sensor don’t have any neighbor in the active sensor group, in order to increase by one a
variable called the unscheduled number. After that, the sensor who has the maximum
gradient of reducing the overall unscheduled number is elected to be added to the active
sensor group. Repeat until all the remaining sensors have at least one neighbor in the
active sensor group, except for the active sensors.

– Local method: For each round, each sensor calculates the number of its unscheduled
neighbors. After that, the sensors who have a larger number than their one-hop neighbors
are elected and added to the active sensor group. Each sensor selected to be active will
send an "active" message to its neighbors. In other hand, sensors that receive an "active"
message from one of their neighbors can switch to sleep. Then, in the current round, the
active sensors and their neighbors are pruned, while the rest of the unscheduled sensors
will be scheduled for the next round. Repeat until all the sensors are scheduled, means
there are no unscheduled sensors, the status of each sensor is either active or asleep at
last.
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• Second level: Active Sensor Group Discovery, aims to find the maximum number of active
sensor groups. First, this method converts the original network to a virtual network. The
sensor is represented by several virtual sensors. The number of virtual sensors is defined
according to the remaining energy of the sensor. Then, it uses the global or local methods in
order to build a minimum active sensor group. After that, from the virtual network, it removes
all the elected virtual sensors in the active sensor group. Finally, it converts all obtained
virtual networks to original networks.

• Third level: Active Sensor Group Scheduling, aims to arrange these active groups in a specific
order, in order to run a specific active group every round. In fact, the authors have proposed
three scheduling mechanisms: Retentive Scheduling, Round Robin scheduling, and Heuristic
scheduling .

– "Retentive Scheduling": where one active group is enabled to work frame by frame
until its minimum energy is lower than a threshold. Therefore, these mechanism rotate
among all active sensor groups until the minimum energy of all active sensor groups is
smaller than the threshold.

– "Round Robin scheduling": each active sensor group runs in turn in a circular order
until all active sensor groups loose their battery.

– "Heuristic scheduling": calculates the minimum energy of each active sensor group and
the active group with the highest minimum energy is selected to be enabled in a frame.
These mechanism continues until no active sensor group remains to work.

Simulations are offered as a potential perspective to show the effectiveness of the approach.
Based on the obtained results, "Heuristic scheduling" is the mechanism that ensure the longest
life of the system.

2.3 Optimised Intra-WBSN Communication Approach

In this section we show the overall communication/routing process ( Figure 2.1). Multi-hop routing
protocol is used in our system in order to save the consumed energy on sensor-coordinator and
sensor-sensor communication level. First, the routing protocol that is proposed in the EERP approach
is optimized by controlling the data transmission based on the patient status. Second, an adaptive
model is adopted at the next hop selection level, where the model weights are fine-tuned based on
the patient status. Our proposed routing protocol is divided into four stages:

2.3.1 Network Initialization

First, the system is initialized by exchanging hello message between all sensors. This message inclu-
des the following information: remaining energy, number of hop toward the sink and transmission
bandwidth.

2.3.2 Emergency Detection

At this stage, each sensor collects data periodically. The sensor calculates the score of the captured
measurement using Early Warning Score (EWS) as shown in Figure 2.2, we show one of the most
used EWS guides that is developed in UK and distributed around all the world, called National EWS
(NEWS). EWS is a guide that is built based on the vital signs, and it is used by the medical staff
within hospital in order to track the criticality level of a patient. For each vital sign, the collected
measurement is compared to a normal range in order to calculate a score between 0 and 3; 0 means
normal measurement where other values indicate abnormal situation where increasing score of se-
verity when the score increases [72]. After score calculation and in order to reduce the transmission
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Figure 2.1 Flow chart of the proposed protocol.

of redundant data, the sensor sends the measurement to the next hop only if the patient’s situation
has changed e.g. if two successive scores are different. Consequently, the energy consumption is
reduced and the decision making operation is become more simple.

PHYSIOLOGICA

L PARAMETERS 3 2 1 0 1 2 3

Repiration Rate ≤ 8 9 - 11 12 - 20 21 - 24 ≥ 25

Oxygen

Saturations
≤ 91 92 - 93 94 - 95 ≥ 96

Any Supplemental

Oxygen
Yes No

Temperature ≤ 35.0 35.1 - 36.0 36.1 - 38.0 38.1 - 39.0 ≥ 39.1

Systolic BP ≤ 90 91 - 100 101 - 110 111 - 219 ≥ 220

Heart Rate ≤ 40 41 - 50 51 - 90 91- 110 111 - 130 ≥ 131

Level Of 

Conscioucness
A V, P, or U

Figure 2.2 Early Warning Score (EWS) System.
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2.3.3 Next Hop Node Selection Based on Benefit function (M)

This stage aims to find the optimal path, by determining the next node for each sensor. The next node
is the one that will receive the captured measurement instead of sending it directly to the coordinator.
Therefore, the optimal path is the rout that saves most energy, speeds up the transmission and
maintains the quality of the communication. The energy consumption is highly dependent on the
data transmission which depends on the distance to the destination. The greater the distance is, the
greater the power consumption increases. Therefore, the sensor that is near to reach the coordinator,
it sends the measurement directly using single-hop communication. In order to find the optimal
path, we calculate the benefit function Mi j of each node neighbor n j of the current sensor node ni.
This function includes the following parameters (equation:2.3):

Mi j = α×X j +β ×Yj +θ ×Wj + γ× (1−Z j)) (2.3)

X j depends on the initial energy E j and the remaining energy Er j of the node neighbor n j and a
minimum threshold Emin (equation 2.4).

X j =
Er j−Emin

E j−Emin
(2.4)

Yj is calculated by equation 2.6. Yj depends on the efficiency of transmission of node n j. t j (equation
2.5) depends on the number of packets that are successfully forwarded by the node neighbor n j:
P f j from the received packet: Pr j. tmin and tmax are the minimum number and maximum number
respectively of packets that are successfully transmitted.

t j =
P f j

Pr j
(2.5)

Yj =
t j− tmin

tmax− tmin
(2.6)

Wj is the normalized parameter with the available bandwidth Bav j of the node neighbor n j. This
parameter is calculated according to the equation 2.7, while Bmin and Bmax are the minimum
and maximum bandwidth in the WBSN. The higher the bandwidth of the sensor, the more the
transmission will be efficient.

Wj =
Bav j−Bmin
Bmax−Bmin

(2.7)

Z j is the normalized parameter of the number of hops to reach the coordinator H j of the node n j
(equation 2.8). Hmax denotes the maximum number of hops from the candidate next hop n j to the
coordinator.

Z j =
H j

Hmax
(2.8)

α , β , θ and γ are the weights for X j, Yj, Wj and (1-Z j) respectively. Moreover, in order to calculate
the benefit function, the optimum values of these four weights must be determined according to
the patient’s status. The patient’s status is divided into two cases: normal and abnormal. If the case
is abnormal, the focus will be on ensuring the efficient transmission of data. So the weight θ that
depends on the available bandwidth will be maximized. Otherwise, if the case is normal, the focus is
more on reducing the energy consumption. Therefore, the weight α that depends on the remaining
energy will be maximized. This update of α increases the chance of selecting the sensors having
the highest remaining energy.
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Algorithm 4 Adapting Weights Algorithm.
Require: Initial condition: α + β +θ+γ = 1, a= 50%, b=25%, c=25%, E.
Ensure: Determine the value of each weight.

1: for each measurement m do
2: Determine the score s of m: s = EWS (m)
3: if level is normal then
4: α= 1

1+eS

5: E= 1- α

6: θ = a×E
7: β = b×E
8: γ = c×E
9: else if level is abnormal then

10: θ= 1
2×(1+e−s)

11: E= 1- θ

12: α = a×E
13: β = b×E
14: γ = c×E
15: end if
16: end for

The steps of optimization weights is described in algorithm 4. For the initial conditions: the sum
of the weights is equal to 1. First, the score s is calculated for the captured measurement using the
EWS table (line 1-2). The status of the patient can be normal or abnormal. This status is determined
by the doctor, for example a cancer patient has a normal status, but a patient who underwent surgery
has a abnormal status. If the status is normal, α is calculated by the equation in line 4, when s is
decreased α is increased and the opposite is true. E is the subtraction result of α from 1 (line 5), the
largest part (a) of E is for θ (for bandwidth) line 6, and the other parts (b and c) are for other weights
(θ and γ). If the status is abnormal, θ is calculated by the equation in line 11, when s increases θ

increases and vice versa. And E is distributed in this way (line 13-15), the largest part a is for α (for
the remaining energy) and the other parts (b and c) are for other weights (θ and γ). Finally, the next
node is the neighbor that has the maximum M.

2.3.4 Data Transmission:

The sensor ni sends the measurement to the selected next node. Then ni sends a control message to
these neighbors that contains the new remaining energy.

2.4 Simulation Results

In order to evaluate the performance of our approach, several parameters are calculated for the four
approaches: the network lifetime, the data transmission time, the overhead on sink and the data
redundancy reduction. These approaches are implemented using Java. We used real health data
collected from Multiple Intelligent Monitoring in Intensive Care (MIMIC) database of PhysioNet
[73]. MIMIC contains data for about 72 patients where recorded on vital signs including Heart Rate
(HR), Ambulatory Blood Pressure (ABP), Respiration Rate (RESP), pulse (PULSE) and Oxygen
Saturation (SPO2). Every second, the biosensor collects new reading for each vital sign then it sends
toward the coordinator for archive purpose. Then, this coordinator forwards this reading to the sink.
In this simulation, we used health data are collected from 30 patients. Each WBSN consists of 10
sensors. All sensors are provided with an initial energy level of 0.0005 Joules (J), the maximum
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wireless transmission distance is 2 m, the size of transmitted frames of each value is fixed to 64
bits, and two sensors are considered neighbors if the distance between them is less than 0.4 m.
The network lifetime is divided into rounds and each round is divided into 10 periods. On each
period the sensor collects 500 measurements. The simulation tests are repeated 10 times and all
resulted values for the parameters are therefore averaged and presented for 30 patients with different
criticality (normal and abnormal) as well. This criticality is determined by the medical team.

2.4.1 Comparison of the Studied Approaches

The table 2.1 presents the calculated values of the several parameters for the four approaches, with
both patient’s status (normal and abnormal). In addition, it presents the algorithm complexity of
each approach that strongly depends on the data transmission time.

Patient’s EERP RKEE SADCF SSEH
parameters status
Lifetime normal 752.3917 338.53 37791.067 2899
(seconds) abnormal 704.732 449.13 28588.27 2899

Transmission normal 24.4925 19.6921 21.9591 19.606
time(ms) abnormal 20.4437 21.4721 22.835 19.3757

Overhead on normal 3003.0917 1710.67 1092.67 37
sink(packets) abnormal 2821.8 3059.2 1499.13 37

Data redundancy normal 0 0 97.81466 63
reduction(%) abnormal 0 0 97.00174 63
Complexity - O(n) O(n) O(n) O(n)

Table 2.1 Resulted values for the different parameters of four approaches.

We used the non-parametric Friedman test in order to test the difference between the four
parameters on the four simulated approaches. The procedure involves ranking each row, then
considering the values of ranks by columns. The data table has eight rows and four columns. The
rows represent the parameters (lifetime, transmission time, overhead on sink and data redundancy
reduction), on both status(normal and abnormal). On the other hand, the columns represent the four
approaches to be compared. Two statistical assumptions in Friedman’s test:

• The null hypothesis (H0): there is no difference between the simulated approaches and they
behave similarly.

• The alternative hypothesis (H1): at least one approach is different from the others.

Table 2.1 is considered as a matrix with b rows (the parameters), k columns (the approaches).
The ranks are calculated within each row Rbk. The sum of ranks is calculated for each columns
(approaches). Friedman test is applied as follow:

• step 1: A is calculated:
A = ∑∑R(Xi j)

2 = 251.5 (2.9)

Where Ri j is the rank of approach j for the parameter i.
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• step 2: B is calculated, following this equation:

B =
1
b
×∑RX2

j = 221.75 (2.10)

Where b is the number of parameters.

• step 3: T is calculated:

T =
(b−1)× [B−bK(k+1)2/4]

A−B
= 5.1176 (2.11)

• step 4: The value of FS is determined according to the Fisher’s law distribution table, and the
smallest value of α = 0.01 is toked to have a stricter analysis.

FS1−α ,k−1,(b−1)(k−1)=3.4 (2.12)

We obtain T > FS, so Friedman’s hypothesis H0 is rejected. Therefore, there is one approach
that performs better than the others. In order to determine the best approach, the bilateral test is
used. This test verifies the difference between two approaches by using a reference critical value C
equation 2.13.

C = t(1−α/2)[
2b(A−B)

(b−1)(k−1)
]1/2 = 9.593 (2.13)

Where t is a constant value in the distribution table. t corresponds to α , b or k. The bilateral test is
applied on all approaches. In this study, the SADCF approach demonstrate the superiority. However,
the SADCF approach presents some important limitations such as: the large required transmission
time and the high overhead on the sink.

2.4.2 Comparison with our Optimised Intra-WBSN Communication Approach

In this section, the performance of our optimised intra-WBSN communication approach is compared
with the four studied approaches. The table 2.2 shows a comparison analysis of the four state-of-the-
art techniques in terms of the addressed challenges, used methods, and the performance evaluation
metrics. Unfortunately, proposed systems have been focused on some specific purpose without
ensuring an effective solution for all problems, such as limited battery life, long processing time,
large amounts of collected data, paquets overhead on sink.

The Figure 2.3 shows the lifetime of network with each approach. The obtained results show
that the network lifetime is extended more than 50% using our approach compared to the SADCF
approach and more than 90% compared to the others approaches, for the two patient’s situation
normal and abnormal. This results is obtained due to the merging of data transmission technique
that reduces the number of data sent with the multi-hop routing protocol that reduces the transmis-
sion distance. Subsequently, this reductions reduce the energy consumption. Where, the energy
consumption of a sensor node for transmitting n data set to the another node, which is at distance
’D’ is calculated in our thesis as follows:

ET X = Eelec×n× τ×64+βamp×n× τ×64×D2 (2.14)

where τ is the period size, 64 indicates the bit representation of each value, Eelec is the energy
consumption of a sensor node in its electronic circuitry (usually Eelec = 50nJ/bit), and βamp
represents the energy consumption in RF amplifiers for propagation loss (usually βamp = 100pJ/bit).
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Figure 2.3 Analysis of network lifetime.

Figure 2.4 shows the reduction process of residual energy for the first died node. We can clearly
observe that our approach (OIC) efficiently increases the battery life of sensors. This enhancement
is obtained due to two reasons: First, each sensor doesn’t send a measurement except a patient’s
situation variation occurs. Second, the sensors that are far away from the coordinator node use the
multi-hop communication in order to send the measurements and saving more energy.

Figure 2.4 Analysis of energy consumption.

In Figure 2.5, the different required transmission time in one period (ms) for each approach are
shown. The obtained graphs show that the SSEH approach and our approach (OIC) have less required
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time than others for both patient’s situation (normal and abnormal).

Figure 2.5 Analysis of transmission time in one period.

In Figure 2.6 the comparison of overhead on sink for all studied approaches has been presented. This
parameter describes how many packets have been received on the sink in each round. The results
show that our approach reduces the overhead on sink up to 83%, 69% and 59% compared to EERP,
RKEE, and SADCF approaches respectively in the normal situation, and up to 79%, 82% and 63%
respectively in the abnormal situation. This enhancement is obtained due to the low number of
sensors that send the data directly to sink. The SSEH approach reduces the overhead on sink more
than our proposed. This result is interpreted by the sleep scheduling mechanism that is applied in
this approach. Where, this mechanism aims to reduce the number of active sensors each round and
therefore reduce the number of packets sent by the active sensors toward the sink.
Reducing the redundant transmitted data is an important challenge in WBSN, this increases the
accuracy of the decision making process. Figure 2.7 shows the percentage of reducing data after
applying the compared approaches. The obtained results show that both SADCF and our approach
(OIC) reduce the transmission of useless data up to 64% compared to SSEH approach. While EERP
and RKEE approaches don’t take into account this challenge, the sensors in these networks send all
the collected data to the coordinator.

2.5 Conclusion

In healthcare field, the IoT is typically employed in order to increase patient safety and to optimize
the medical staff operations. The IoHT systems monitor the person’s vital signs in a non-intrusive and
effective way. In this chapter, four approaches for patient monitoring in context of IoHT are studied,
and an adaptive intra-WBSN communication approach (OIC) is proposed. Our approach aimed to
optimize the routing protocol for the data transmission process. By comparing the simulation results
on real biosensor data, the efficiency of our approach has been verified in terms of the extension
of system lifetime, the adaptation of transmission time, the reduction of overhead on sink, and the
elimination of redundancy in data transmission. In the next chapter, we will present an efficient
framework called P2D for real-time health-monitoring applications. This solution aims to face
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Figure 2.6 Analysis of overhead on sink.

Figure 2.7 Analysis of data redundancy reduction.

several challenges in WBSN such as: emergency detection, energy consumption, reducing redundant
data, and decision making.





3 P2D: An Efficient Patient-to-Doctor
Framework for Real-Time Health
Monitoring and Decision Making

3.1 Introduction

Nowadays, the fastest growth in the big data applications is occurring within wireless body sensor
networks (WBSN). In addition to its big size, researchers face two other main challenges: first, the
velocity in which data are collected in large speed, sometimes it reaches the level of Terabytes, thus
storing such data using traditional servers prone to hardware failures and data loss. Second, the
collected data has no structure and takes several formats like numerical, images, videos, etc. This
makes the relational database systems is not suitable to big data applications. Therefore, in order to
overcome these challenges, Hadoop ecosystem has been proposed as an efficient platform to handle
big data applications.

WBSN used in healthcare applications allows to monitor the vital signs (like heart rate, oxy-
gen saturation, blood pressure, etc.) of a patient (e.g. numerical data), to take images of patient
organs (like brain, lungs, etc.), to make operations for the patient (like surgery, appendectomy, etc.).
Therefore, the periodic and multivariate data collection along with the densely deployment of the
sensors makes WBSN as one of the biggest data contributors in this era.

In this chapter, we aim to allow a near communication between patient situations and doctors
by proposing an efficient framework for health monitoring and decision making. Our proposed
framework is called Patient-to-Doctors (P2D) and works on both sensor and sink levels. This efficient
framework start from the collection phase to the visualization phase. The proposed framework relies
on Hadoop ecosystem and consists of five layers: collection, which is dedicated to the sensor level
and the other layers (ingestion, processing, storage, and visualization) are dedicated to the sink
level. The first layer, e.g. collection data, collects the data from the sensors of WBSN and sends via
the internet to the second layer, e.g. ingestion data, receives data from the WBSN and forwards to
the third layer, e.g. processing layer, which in its turn searches missing data before storing them in
the fourth layer. The last layer allows the end users to visualize, analyse and understand the stored
data. Moreover, our framework uses various Hadoop tools in each layer in order to ensure fast data
processing and reliable storage. Subsequently, our contributions in this chapter can be described as
follows:

• At the sensor level: P2D proposes two algorithms: emergency detection and adapting sensing

39
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frequency. The first one aims to alert the medical team in case of any critical records are
detected in order to take a rapid decision. Thus, the sensor only transmits its collected data
to the coordinator if the patient’s situation has changed, then this coordinator forwards the
received data to the sink. The second algorithm seeks to reduce the amount of periodic data
sent from the sensor by eliminating data redundancy in order to save its energy.

• At the sink level: P2D guarantees an archive of each patient based on the least squares
approximation method and two fault detection algorithms (moving average and exponential
smoothing), and it allows the medical team to predict the progress of the patient situation
during the next periods, based on the prophet method. Thus, the medical team can take
preventive actions in order to reduce the risk level on the patient.

The rest of this chapter is organized as follows. In section 3.2, we present our WBSN platform.
Sections 3.3 and 3.4 detail the algorithms proposed at the level of sensors and sink respectively. In
section 4.4, we discuss the obtained results. Finally, the section 4.5 deduces our work.

3.2 WBSN Framework

In this section, we present the architecture of our framework proposed for the WBSN. First, the
sensors constitute the data sources for our framework that will collect various types of data (especially
numerical, images and videos) and send them toward the sink node. In its turn, the sink will forward
the data to the Hadoop cluster through the Internet. The selection of the Hadoop cluster at the
end user has motivated by the high scalability and fast storage needed for the WBSN. Moreover,
the architecture of framework consists of 5 layers (collection, ingestion, processing, storage and
visualization) where each layer has its set of tools and, sometimes, some algorithms. Figure 3.1
presents the architecture of our framework with all layers which can be, briefly, introduced as
follows:

• Data collection layer: Two algorithms are applied over the data collected by the sensors, e.g.
emergency detection and adapting sensing frequency. Where, they are presented in details in
the section 3.3 (Patient Monitoring Model).

• Data ingestion layer: This layer consists of ingestion tools (Flume and Spark streaming)
and aim to receive data from the sensors (or data sources) and forward to the next layer (e.g.
processing layer).

• Data processing layer: Once data are sent by the Spark streaming, the processing layer uses
the machine learning library in the Spark in order to detect the fault tolerant in the data before
sending to the storage layer. First, we apply the patient records archive algorithm based on
LSA method in order to regenerate the data, then we use two algorithms (moving average and
exponential smoothing) in order to recover the missing data in WBSN, that has been ignored
after the adapting rate of sensing process.

• Data storage layer: After the preprocessing of the data, the storage layer uses the Hadoop
HDFS (Hadoop Distributed File System) in order to store the data into the Hadoop cluster
nodes in a distributed manner.

• Data visualization and prediction layer: This layer allows the end user and the experts to
retrieve the data stored in the Hadoop HDFS, predict the patient situation using prophet
method, and make a real time analysis in order to understand the situation of the monitored
zone and make suitable decisions. In this layer, we used two main tools: Grafana, e.g. a
graphical user interface, and Matplolib proposed in Python.



3.3 Patient Monitoring Model 41

Figure 3.1 Overview of the proposed WBSN architecture.

On the other hand, we are interested on the periodic data collection model in WBSN. In such model,
each sensor collects the data for a period of time then it sends the collected data toward the medical
team at the end of the period. Assume that, for each patient, we assign a set of NS sensors, e.g. N =
[n1,n2, . . . ,nNS], in order to monitor his vital signs, e.g. V S = [HR,SBP,RESP,SPO2,BT, . . . ],
where each sensor n ∈N monitors the vital sign vs ∈ V S . For analysis purposes, we assume
that the lifetime of each sensor is divided into a set of rounds, U = [U1,U2, . . . ], where each round
u ∈U consists of a set of P periods. Then, in each period p ∈ u, each sensor n collects a set of T
readings and it forms a vector pRvs

u = [r1,r2, . . . ,rT ] that will be sent to the medical team (Figure
3.2).

𝒑𝟏 𝒑𝟐 … 𝒑𝓟 𝒑𝟏 𝒑𝟐 … 𝒑𝓟 𝒑𝟏 𝒑…

𝑼𝟐𝑼𝟏 𝑼…

Sensor lifetime

𝟏𝑹𝟏
𝒗𝒔 = [𝒓𝟏, 𝒓𝟐, … , 𝒓𝓣] 𝟏𝑹𝟏

𝒗𝒔 = [𝒓𝟏, 𝒓𝟐, … , 𝒓𝓣] 𝟏𝑹𝟏
𝒗𝒔 = [𝒓𝟏, 𝒓𝟐, … , 𝒓𝓣]…

Figure 3.2 Round-based sensor lifetime with periodic collection model.

3.3 Patient Monitoring Model

In this section, we introduce our proposed model at the sensor node level that applied in the collection
layer. It aims to ensure an efficient monitoring of patient staying at hospital or in his home (to
avoid unnecessary hospitalization and reduce the general healthcare costs). The patient monitoring
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model proposed in our platform consists of two major algorithms: emergency detection and adapting
sensing frequency. Sometimes, the sensed data can be very critical and requires fast actions to be
taken in order to save the person’s life thus, the first algorithm, e.g. emergency detection, allows to
alert the medical team in case of any abnormal records are detected. Whilst, the adapting sensing
frequency algorithm aims to adapt the number of collected data by the sensor in order to save its
energy and ensure a long patient monitoring period. In the following, we detail each of the proposed
algorithm.

3.3.1 Patient Emergency Detection

In WBSN, there is a need to continuously monitor the variation of the patient’s situation. However,
the huge amount of data collected and sent by the sensor will quickly deplete its available energy.
Thus, in order to ensure a long time patient monitoring, the amount of data transmission from each
sensor should be reduced without loss of the information indicating the patient’s situation variation,
especially in emergency cases. In [3], the authors proposed a modified local emergency detection,
abbreviated MLED, algorithm for WBSN by only sending the non-sequential similar records to the
sink. Although MLED can highly reduce the data transmission and save the sensor energy however
it badly works when the patient situation is stable, e.g. low or high critical situation. Subsequently,
in a stable situation, MLED will never send any records from the sensor to the sink which results
two challenges: first, the variation of the patient situation will not be noticed by the medical team;
second, archiving the patient records will not be completed. In this section, we aim to propose an
efficient patient emergency detection algorithm that overcomes the mentioned challenges as well as
it saves the energy of the sensor. In order to verify abnormal patient situations, we used the same
guide EWS [72] presented in chapter 3.
According to the EWS guide, we propose an efficient patient emergency detection (PED) algorithm
that has three folds: first, it reduces the amount of data periodically sent by the sensor; second,
it ensures an update information about the criticality of the patient situation; third, it performs
an efficient patient archive. The intuition of PED is to search the similarity between successive
collected records, based on their scores, then it only sends one record with a score to the sink every
time a variation in the patient situation is detected. Furthermore, at the end of each period, PED
searches a correlation model among the records collected during this period that will be sent to
the sink in order to regenerate and store the collected data for a later analysis and studying. More
formally, PED algorithm works according to the following steps and the illustrative example shown
in Figure 3.3:

• During each period p, the sensor n collects a set of records about the vital sign vs and forms
the set pRvs

u . For instance, assume n collects data about the heart rate (HR) and forms a set
of 12 readings during p, e.g. pRHR

u = [90,90,91,99,110,120,123,131,132,125,120,122] as
shown in the Figure 3.3.

• The sensor n calculates the score of each reading in pRvs
u according to EWS and then it forms

the score set pSvs
u . Subsequently, pSHR

u = [0,0,1,1,1,2,2,3,3,2,2,2].

• The sensor n sends the first reading collected in p and all readings whose not similar, e.g.
have different score values, with the previous sent ones. In Figure 3.3, we show that the first
two readings are similar with the same score 0, then n sends only the first reading (e.g. 90);
the next readings (91, 99 and 100) have the same score 1 then, s only sends the first one (e.g.
91) and so on. Therefore, a subset of pRHR

u , assume S
pRHR

u , will send to the sink instead of the
whole set. By doing that, the number of readings sent by the sensor will be reduced while, at
the same time, the medical team will be up to date about the variation of the patient situation.

• Finally, at the end of each period, PED studies the correlation between the readings collected
in p and generates a prediction model to send to the sink in order to allow to regenerate the
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𝒑𝑹𝒖
𝑯𝑹 = [90, 90, 91, 99, 110, 120, 123, 131, 132, 125, 120, 122]

𝒑𝑺𝒖
𝑯𝑹 = [  0,   0,   1, 1, 1, 2, 2, 3, 3, 2, 2, 2   ]

𝒑
𝑺𝑹𝒖

𝑯𝑹 = [90, 91, 120, 131, 125]

Medical Information 

Database (Coordinator)

At the end

of 𝒑
𝒑𝑹𝒖

𝑯𝑹 = [90, 90, 91, 99, 110, 120, 123, 131, 132, 125, 120, 122]

𝒑𝑹𝒖
𝑯𝑹 = [90, 90, 91, 99, 110, 120, 123, 131, 132, 125, 120, 122]

𝒅 = 𝟐𝟓%

𝒑𝑹𝒖
𝑯𝑹 = [      90.3,           109.66,              128.66,               122.33     ]

𝒑𝑪𝒖
𝑯𝑹 = [ 77.92, 11.77, -0.7219 ]

Apply LSA,         degree 𝒌 = 𝟐

Figure 3.3 Illustrative example of PED.

non-sending readings during p and ensures a patient archive at the hospital. In our work,
we are interested in the Least Square Approximation (LSA) method (explained in the next
paragraph) which is one of the most standard approaches used in the literature to make statis-
tical analysis. Therefore, LSA allows the sensor n to find the coefficient set of the equation
of degree k, e.g. pCHR

u , that is best fitting the readings collected during p. Thus, n will send
pCHR

u to the coordinator at the end of p which, in turns forward them to the sink in order to
maintain the patient situation during his staying in the hospital.

Recall of LSA Method

The method of least squares approximation (LSA) [74] is one of the most standard approaches used
in statistical analysis. It aims to determine the curve that best describes the relationship between
expected and observed data sets by minimizing the sums of the squares of deviation between obser-
ved and expected values. Thus, it limits the distance between a function and the data points that a
function is trying to explain. LSA has lots of applications in various domains like healthcare [75],
business [76] and finance [77].
Mathematically, LSA can be formally defined as follows:

• Definition 1: (LSA function). Given a set of q data points {(x1,y1)(x2,y2) . . .(xq,yq)}. The
polynomial or parabola of degree k, represented by y = a0 + a1x+ a2x2 + · · ·+ akxk, that
can best fit all points (xi,yi), where i ∈ [1,q], can be calculated according to the following
equations:

na0 + a1 ∑xi + . . . + ak ∑x
k
i = ∑yi

a0 ∑xi + a1 ∑x
2
i + . . . + ak ∑x

k+1
i = ∑xiyi

. . . + . . . + . . . + . . . = . . .

a0 ∑x
k
i + a1 ∑x

k+1
i + . . . + ak ∑x

2k
i = ∑x

k
i yi .

where such (k+ 1) equations contain (k+ 1) unknowns, i.e. a0,a1, . . . ,ak, that should be
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calculated in order to find the coefficients of the best fit polynomial to the data points.

Indeed, the processing time needed to calculate the LSA polynomial of degree k will be huge,
especially when the period size T is high. Hence, in order to reduce its time complexity, we propose
to reduce the number of taken records when calculating the LSA polynomial by selecting a subset
of records from pRvs

u instead of taking all records in the set. Our algorithm works on three steps (see
also Figure 3.3):

• We divide the whole set pRvs
u into a number of D divisions where each division Di contains

d % of the records in pRvs
u , e.g. d % of T . For instance, if d = 25% then pRHR

u will be divided
into 4 equal divisions as shown in Figure 3.3.

• For each division Di, we calculate the mean value of the records in the division. Thus, a
reduced set of records from pRvs

u will be obtained.

• We calculate the mean value for each division then we apply LSA method in order to find the
equation of degree k. Finally, we send the set of equation coefficients, e.g. pCHR

u , to the sink
at the end of the period. For instance, in Figure 3.3, we find the equation of degree k = 2, e.g.
a0 +a1x+a2x2 = 0, and we send the coefficient set pCHR

u = [77.92,11.77,−0.7219] to the
sink.

Algorithm 5 describes the process of PED algorithm which is applied at the sensor level at the end
of each period. Indeed, PED sends the first collected record to the sink after calculating its score to
be the current score (lines 1-3). Then, it calculates the score for each next record in the period and
compares with that of the current score; if the scores are the same then the new record will not send
to the sink otherwise, the record is sent and its score becomes the new current score (lines 4-10). At
the end of the period, PED divides the records collected in p into equal divisions then it calculates
the mean for each division and, finally, it finds the set of coefficients that will be sent to the sink,
based on LSA method (lines 11-14).

3.3.2 Adapting Sensing Frequency

In WBSN, there is a need to continuously collect the vital signs of the patient in order to better
understand his situation as well as to make a suitable decision. This leads to a high level of redun-
dancy between the collected records due to two reasons: first, the stability of the patient situation,
especially in low and high critical cases; second, the short slot time between the collected readings.
Therefore, the redundancy level produced in WBSN leads to quickly consume the available energy
in the sensor and complicate the mission of the medical team in analyzing a huge amount with
un-useful information. Hence, adapting the sensor frequency to the dynamic of the patient situation
has becoming an essential in WBSN in order to reduce the amount of data collection and send only
the useful information to the sink. In this section, we propose an efficient algorithm that studies the
variation of the patient situation during a set of successive periods, e.g. a round, then it determines
the best sensing frequency of the sensor according to the patient criticalty level.

As mentioned before, assume a round u consists of P periods, e.g. u = [P1,P2, . . . ,PP ]. Then,
for each period p ∈ u, the sensor collects the set of readings pRv

u thus, during u, a set of readings
set is collected as follows: Rvs

u = [1Rvs
u , 2Rvs

u , . . . ,PRvs
u ]. Moreover, we assign the set of scores pSv

u
for each set of readings pRv

u. Hence, we define the weight of a score si where i∈ [0,1,2,3] as follows:
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Algorithm 5 PED Algorithm.
Require: A sensor n, A vital sign vs, A period p, Period size: T , Readings collected during p:

pRvs
u = [r1,r2, . . . ,rT ], Division size: d.

Ensure: Set of values sent to the sink.
1: calculate score s1 of r1
2: send s1 to the sink
3: current_score = s1
4: for each record ri ∈ pRvs

u where i > 1 do
5: calculate score si of ri according to EWS
6: if si ! = current_score then
7: send ri
8: current_score = si
9: end if

10: end for
11: divide pRvs

u into 100/d equal divisions
12: calculate the mean for each division
13: find pCvs

u based on definition 1
14: send pCvs

u to the sink

• Definition 2: (the weight of a score si, wgt(si)). Given a set of readings’set collected during a
round u. Then, we define the weight of si, where i ∈ [0,1,2,3], as the number of occurrence of
the score i during the round u as calculated in the following equation:

wgt(si) =
∑

P
k=1 ∑

T
j=1 1 j=i

P×T
(3.1)

Based on the score weight function, we define the criticality level, C , of a patient during the round
u according to the equation:

C =
∑

3
i=0 si×wgt(si)

∑
3
i=0 si

(3.2)

Therefore, the criticality level of the patient can be described as shown in the Table 3.1:

Table 3.1 Description of the patient criticality level.

Criticality level, C Description

0≤ C ≤ 0.3 low criticality level
0.3 < C ≤ 0.6 medium criticality level
0.6 < C ≤ 1 high criticality level

In addition to the criticality level, we take into account another parameter in order to adapt the
sensing frequency of each sensor which is the risk level of the patient. This parameter is highly
determined by the medical team when the patient enters to the hospital. In our platform, we define
two levels for the risk level, R, depending on the situation of the patient:

• Low risk: in which a patient enters to hospital in a stable situation and the collected data
about his vital signs are almost normal. In this case, the patient requires minimum patient
observations from the medical staff.



46 Chapter 3. P2D: An Efficient Patient-to-Doctor Framework for Real-Time Health Monitoring and Decision Making

• High risk: in which a patient enters the hospital in an unstable situation and most of the
collected records are different from the normal score range. The patient, in this case, requires
a continuous monitoring from the medical team in order to evaluate his situation progress.

Therefore, we adapt the sensing frequency of a sensor according to both mentioned parameters:
the criticality level (C ) and the risk level (R) of the patient. The sensing frequency decision table
(abbreviated SFDT as shown in Table 3.2) shows the new sensing frequency of the next round that
the sensor should adapt its sampling in order to reduce the amount of data collected, without losing
the integrity of the information, thus save its energy. Indeed, SFDT shows two main facts: 1) the
new sensing frequency is calculated based on the original period size T ; for instance, if T is set
to 100 records and (C , R) is (low, high) then the sensor should adapt its sensing frequency to 40
records in the next round, e.g. (40%/100)×T . 2) the sensing frequency of the sensor in increased
with the increasing of C and/or R.

Table 3.2 Sensing frequency decision table (SFDT).

C R→ normal abnormal

low 20% of T 40% of T
medium 40% of T 60% of T
high 60% of T T

3.3.3 Patient Monitoring Algorithm

In this section, we aim to integrate the patient emergency detection (PED) and the adapting sensing
frequency proposed at the sensor level. The new algorithm is called patient monitoring algorithm
and is abbreviated as PMA. Algorithm 6 shows the process of PMA that takes the parameters of
PED in addition to the risk level and the SFDT table. First, PMA applies the PED algorithm over
the set of readings collected during each period of the round u (lines 1-3). Then, it calculates the
weight of each score appeared in the round, based on the equation 3.1, followed by the criticality
level of the patient (lines 4-7). Finally, PMA calculates the new sensing frequency of the sensor
according to the SFDT table based on the criticality and the risk levels of the patient.

Algorithm 6 PMA Algorithm.
Require: A sensor n, A vital sign vs, A round u, Set of reading sets collected in u: Rvs

u =
[1Rvs

u , 2Rvs
u , . . . ,PRvs

u ], Period size: T , Division size: d, Risk level: R, Sensing frequency deci-
sion table: SFDT.

Ensure: void.
1: for each reading set iR

vs
u ∈ Rvs

u do
2: apply PED(vs, T , iR

vs
u , d)

3: end for
4: for i = 0 to 3 do
5: calculate wgt(si)
6: end for
7: calculate C based on equation 3.2
8: new sensing frequency = SFDT (C , R)
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3.4 Medical Team Decision-Making Model

In this section, we introduce the second level of our P2D platform which is dedicated to the medical
team at the hospital. Indeed, one of the most challenges that faces the medical team is the analyzing
of the huge amount of data generated in WBSN and making a right and fast decision. Moreover, the
prediction of the patient progress situation is also a crucial task for the medical team in order to
provide a pretreatment and avoid any undesired situation, especially the death. On the other hand,
maintaining an archive of each patient is a must in almost hospitals for several purposes, especially
disease diagnosis and improving the healthcare quality. In order to overcome these challenges, P2D
provides two main services for the hospital and medical team: patient archiving and prediction of
patient situation progress. In the next sections, we detail each of the proposed algorithm, that are
applied from the ingestion layer to visualization and prediction layer based on hadoop framework
(see Appendix A), in order to handle the storing and the processing of the big data and to ensure the
fault tolerance.

3.4.1 Data Ingestion Layer

This layer is the first step for the data coming from the sensors in WBSN in which data is prioritized
and categorized in order to flow smoothly in the other layers. We used two Hadoop tools in this
layers: Flume and Spark streaming.

Flume

It is a distributed and reliable software that aims to efficiently collect, aggregate and transfer a huge
amount of data to the Hadoop cluster [78]. In addition, Flume uses batch mode to move streaming
data flows and proposes several recovery mechanisms to ensure the fault tolerance. In our framework,
Flume receives period data collected by the sensors and deliver to the data collector tool (e.g. Spark
streaming). Among other data ingestion tools, Flume has been chosen due to its huge ability in
handling data with various types, e.g. the case of WBSN.

Spark Streaming

It uses the fast scheduling capability of Spark Core’s in order to perform streaming analytics based
on Scala programming [79]. It receives ingested data from Flume and process them in batches
before sending to the rest of the data pipeline. In our framework, Spark streaming is selected among
other existing tools due to three major characteristics required in WBSN: first, it supports both
batch and streaming processing which are necessary to apply various data analytical algorithms
(explained in next layer); second, it ensures a lower latency level than other tools like MapReduce,
which is strongly required in WBSN, especially in critical application; 3) It guarantees scalability
to any number of cluster nodes required for the WBSN application. Therefore, in our framework,
we implemented Spark on the master node in order to receive data streaming from Flume, doing
processing (in the next layer) and send data to the Hadoop HDFS for storing purpose.

3.4.2 Data Processing Layer

In this section, we introduce the third layer used in our framework which is responsible for prepro-
cessing data before storing them in the next layer. Indeed, data sent by the sensors is usually prone to
loss due to many reasons: 1) the long distance between the sensor and the sink; 2) the bad conditions
in the monitored environment; 3) the congestion resulted from the densely network; 4) the failure in
the sensor itself. In such cases, we need to recover the missing data before any processing in order
to ensure the accuracy of the taken decision. We are interested, in this chapter, in the numerical
missing data generated from WBSN. Hence, in this layer, we introduce the Patient Records Archive
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algorithm, which is implemented based on the machine learning module in Apache Spark, in order
to generate the data based on the coefficients of LSA method. In addition, after data generation
process, we applied two algorithms Moving Average (MA) and Exponential Smoothing (ES) in
order to recover the missing data, which is reduced after applying the adapting sensing frequency
algorithm.

Patient Records Archive Algorithm

Patient data archiving is a key operation in hospitals. However, most of the data reduction techniques
proposed in the literature for WBSN aim to minimize the amount of data sent by the sensor, in
order to save its energy, without taking into account that patient records must be regenerated for
archiving purpose [30, 80, 37, 3, 81, 38]. In addition, data collected by the sensors are vulnerable to
loss before reaching the sink due to several reasons: 1) a long distance; 2) the congestion due to the
overloaded network in case of dense biosensors deployment; 3) the obstacles; 4) the failure in the
biosensor itself. In such cases, the medical team will not be able to make the right decision about
the patient situation or store missing records for a later analysis. Thus, in order to overcome missing
records, a preprocessing of data should be made before any decision or storage process. Algorithm
7 shows the patient records archive (PRA) process proposed in our P2D platform in order to archive
the patient history during his stay in the hospital. PRA takes advantages from the sensor records
and the coefficient set of LSA equation received at each period. For each slot time in the period, if
the sink receives the record from the sensor, which means that situation of the patient is varied, then
it directly stores in the patient archive; otherwise, e.g. in case of the record is not sent by the sensor
due to the similarity with the previous one, the sink generates the record of the current slot time
based on the set of coefficients of LSA method then it adds to the patient archive data.

Algorithm 7 PRA Algorithm.
Require: Period size: T , Readings collected during p: pRvs

u = [r1,r2, . . . ,rT ], LSA coeffcient set:
pCvs

u .
Ensure: void.

1: StoredSet← /0
2: for i = 1 to T do
3: if ri is sent by the sensor then
4: StoredSet = StoredSet ∪{ri}
5: else
6: generate ri based on pCvs

u
7: StoredSet = StoredSet ∪{ri}
8: end if
9: end for

10: store StoredSet at the sink

Moving Average (MA) Algorithm

It is a well-known statistical method used to estimate the missing values in time series. Thus, if a
value is missed during a slot time y then the average of the previous ws slots’ time is calculated
and assigned to the missed value. Hence, MA is based on the concept of shifting window of size
ws. Particularly, if any value is missed from the window, the first existent future value is assigned
to it. The most applications of moving average method are to study the trend direction whether in
business, weather, network, etc [82, 83].
Let assume that the sink receives a vector of T readings from a sensor ni during T time slots, e.g.
Ri = {(yi,ri) such that i ∈ [1,T ]}. Also assume that MA defines a window of ws readings thus if
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Figure 3.4 Illustrative example of MA algorithm.

any reading r j at slot time j is not received by the sink then it will be calculated according to the
following equation:

r j =
∑

ws
i= j−ws ri

ws
(3.3)

Figure 3.4 shows an illustrative example of the moving average algorithm for a set of 8 readings
collected by a sensor in which 3 of them are missing, e.g. at slots y4, y5 and y7 respectively. We
can also show that the window is of size 3. Then, in order to find the missed reading at slot y4, we
calculate the average of the readings within the window, e.g. 10+11+11/3, and we assign the
result value to the slot y4, e.g. 10.66. After that, we calculate the missed reading at slot y5 by first
shifting the window to the slots y2 to y4 then we calculate the average of reading window. Lastly, the
same process is applied for the reading at slot y7 by calculating the average of the readings window
at slots y4 to y6.
Exponential Smoothing (ES) Algorithm

Similar to MA method, the exponential smoothing (ES) is an analysis technique of time series
data that is based on the window concept. Whereas in MA the previous observations are equally
weighted, ES assigns exponentially decreasing weight for the observations over slots time. Given
the set of readings Ri = {(yi,ri) such that i ∈ [1,T ]} collected by a sensor, the missing reading r j
at slot y j can be calculated according to ES formula as follows:{

Est1 = r1

Est j = ζ × r j−1 +(1−ζ )×Est j−1
(3.4)

where:

• Est1 is the estimated reading at slot time y1 that is initially equal to r1.

• Est j is the estimated value at slot time y j.

• ζ is the smoothing factor where 0 < α < 1.

Figure 3.5 shows the same set of readings collected by the sensor in Figure 3.4 but we apply the ES
algorithm with a fixed value of ζ equal to 0.5. According to equation 3.4, the first predicted reading
at slot time y1 is the same to the collected reading, e.g. 10. Then, for the predicted reading Est2 at
slot y2, it calculated as 0.5×10+(1−0.5)×10 = 10. To calculate the missed reading at the slot
time y4, r4 will equal to Est4 that is calculated as 0.5×11+(1−0.5)×10.5 = 10.75. The same
process is performed for the other missing readings.
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Figure 3.5 Illustrative example of ES algorithm.

3.4.3 Data Storage Layer

This layer aims to store the data sent from the WBSN after applying fault recovering algorithms
(MA or ES). It is based on the Hadoop HDFS [? ] that splits the received data into small blocks
then it distributes across the cluster nodes. Generally, HDFS is characterized by two aspects: first, it
ensures the fault tolerance of the stored data thanks to the replication process of data into nodes (at
least three). Second, the process of data is performed in a parallel computing which decreases the
latency of data when taking a decision. In this work, we implemented our framework on a cluster
forming of three nodes where the Hadoop HDFS is installed in each one.

3.4.4 Data Visualization and Prediction Layer

In the last layer of our framework, we are interested in providing an efficient data access and retrieval
method to allow the end user to visualize and analyze the stored data. In addition, we implemented
a prediction technique based on prophet method in order to predict the patient situation. We propose
to use two visualization tools, e.g. Grafana and Matplotlib, where the first one allows a graphical
user interface to access the data where the second one is based on the Python programming. The
ultimate goal of using each of one is to perform a graphical representation of the retrieved data
using statistical graphics and plots. In next sections, we highlight each tool used in our framework.

Grafana

It is a multi-platform open source analytics software that help users visualize and understand trends
within vast amounts of data [84]. Grafana is used on top of different data stores, i.e. Hadoop in
our framework, and allows the end users to create and modify dashboards for their applications. In
addition, Grafana supports a large number of charts and graphs in order to analysis the stored data.
Also, Grafana comes with a built-in alerting engine that allows the end users to set conditional rules
to the dashboard and sends a notification, using email or slack, when an alert is triggered. With
Grafana, our framework offers the following services to the WBSN end users: 1) understanding
the data collected by the sensors and stored in the Hadoop clusters using various Grafana plots; 2)
create various alerts to notify the end users of any abnormal situation; 3) visualize the metrics of
the Hadoop cluster such as system CPU, memory, disk, etc. and scales the cluster when necessary;

Matplotlib

It is the most used plotting library in Python programming with its extension NumPy [85]. In our
framework, we created a Python script that allows to read periodic WBSN data sent to Hadoop
storage, visualize them, using Matplotlib, on a real-time graph to the end users, and predict the
patient situation using prophet method. An important extension which can be added later to our
framework is to send plotting graphs to the end users using mobile application.
Prediction of the Patient Situation Progress

In healthcare applications, the ability of medical team to ensure a continuous monitoring and
predicating the situation progress is crucial for patient safety. Hence, healthcare forecasting has been
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taken a great attention from researchers in WBSN [86, 87]. The main objective of the healthcare
forecasting is to provide not only estimates of the current situation of the patient but also forecast to
its future situation. This will help the medical team knows when and where there is a risk on the
patient and, through this understanding, it can perform preventative actions to reduce the effect of
illness and avoid the death. In this section, we propose a prediction algorithm in order to allow the
medical staff to forecast the progress of the patient situation and take the appropriate clinical respon-
se. Indeed, one can find a lot of prediction techniques that have been proposed in the literature like
linear and logistic regression, decision tree, random forecast, neural network, etc. These techniques
are introduced in various domains such as stock production, scientific studies, sport monitoring,
financial sector, psychology, etc. In this chapter, we are focusing on the Prophet method which is
recently proposed and not yet adapted to WBSN. Let first recall the Prophet prediction method, then
we adapt it to the WBSN case.

• Recall of Prophet: Prophet [88] is an open source tool released by Facebook in 2008 that is
implemented in R and Python. Basically, Prophet is a procedure used for forecasting time
series data based on an additive model where non-linear trends are fit with yearly, weekly,
and daily seasonality, plus holiday effects. In addition, Prophet takes advantage from the
correlation between the data in order to handle the missing data and outliers. Recently, Prophet
has been used in various domains such as streamflow of river [89], data warehouse [90],
business [91, 92] and allows data scientists and analysts to provide efficient forecasting
models for a variety of problems in a business scenario. Mathematically, Prophet uses additive
regression model with three main components (trend, seasonality and holidays) which are
combined in the following equation:

y(t) = g(t)+ s(t)+h(t) (3.5)

where:

– Trend, g(t): is the overall increase or decrease of the series during this time. Prophet
automatically detects changes in trend by selecting change points from the data.

– Seasonality, s(t): is the data component that undergoes regular and predictable changes
over a fixed period of time. It is modeled using Fourier series (for yearly seasonal) and
dummy variables (for weekly seasonal).

– Holidays, h(t): is an optional component that models the effect of holidays or major
events which is determined by the users.

• Integrating Prophet into WBSN: Although that Prophet has been adapted to large number
of domains however, for the best of our knowledge, it is the first that it is integrated in the
body sensor networks. Our objective is to study the variation between the collected records
about a patient during periods of time then try to forecast the progress of its future situation.
As mentioned in section IV, we assume that the lifetime of a sensor is divided into a set of
rounds where each round u contains a number of P periods. We divide the periods in each
round into two parts:

– Training data periods: in which periodic datasets collected by the sensor are received by
the sink. Assume that at a given period of the round, the sink receives σ datasets from
the sensor which will act as training and historical data for the Prophet. Fortunately,
more the size of the training data is more the accuracy of the forecasting given by the
Prophet becomes.
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– Predicted data periods: in which the sink has to predict, based on Prophet, the datasets
that will be sent for the sensor in the remaining P−σ periods. For every new dataset
received by the sink, the training data size will increment by one and the prediction
process will be more accurate.

Figure 3.6 shows an illustrative example of how to apply Prophet forecasting in our platform
with a round set to 5 periods. When the sink receives the dataset at the first period, e.g. σ = 1,
it applies the Prophet in order to estimate the datasets of the remaining 4 (e.g. 5−σ ) periods.
Then, when the second dataset is received (e.g. σ = 2), it applies the Prophet to forecast the
remaining 3 periods and so on. Indeed, in our platform, we omitted the holidays component
from the equation 3.5 and we considered the trend as the variation within each training data
while seasonality represents the variation between the training periods.

… 𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟓 …

Training

… 𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟓 …

… 𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟓 …

… 𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟓 …

Predicted (Prophet)

Training Predicted (Prophet)

Training Predicted (Prophet)

Training

Predicted
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Figure 3.6 Illustrative example of applying Prophet.

3.4.5 Clinical Response Decision-Making Algorithm

Clinical decision making is the process by which the medical team know the progress situations
of patients and then it determines who needs what and when. In order to make more efficient our
platform, we propose a clinical response decision making algorithm that allows the medical team
to determine the number of observations needed to check the patient situation during a period of
time. The proposed algorithm takes advantage from the results of the Prophet forecasting and the
criticality level of the patient and works based on the following steps:

• Assume a period p during a round u, we estimate the predicted datasets for the remaining
P−σ periods based on the Prophet forecasting.

• We calculate the estimated criticality level Ci, based on equation 3.2 and for all remaining
periods, for each vital sign V S i of the patient.

• We calculate the aggregated score, e.g. ScoreU, for all criticality levels of the vital signs as
follows:

ScoreU =
|V S |

∑
i=1

Ci (3.6)

• The medical team makes the clinical response according to a predefined clinical response
decision-making (CRDM) table (see Table 3.3). Typically, CRDM contains a set of m decisions
where each decision is taken according to a range of ScoreU, e.g. [bi, b j], with the observation
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time needed for the patient. Indeed, the CRDM table is strongly defined by the experts and
the doctors.

Table 3.3 Clinical response decision-making table (CRDM).

Decision # ScoreU Patient observation

D1 [ 0, b1 ] one time every 6 hours
D2 ] b1, b2 ] one time every 2 hours
. . . . . . . . .
Dm ≥ bl one time every 10 minutes

3.5 Simulation Results

In order to evaluate the performance of our platform, we used the same real health data collected
from Multiple Intelligent Monitoring in Intensive Care (MIMIC) database of PhysioNet [73]. In our
simulation, we used a file that includes a log of about 100000 readings for each patient. We assume
that each biosensor reads the data from its corresponding file for a period of time and sends them to
the sink placed at 50 meters after applying our mechanism. We implemented the algorithms used in
our platform based on Java simulator and we compared the obtained results to those obtained in the
technique proposed in [3], e.g. modified local emergency detection (MLED). The parameters used
in our simulations are shown in the Table 3.4:

Table 3.4 Simulation environment..

Paramter Description Description

T period size 900, 1600 and 3600
P round size 15 periods
k degree of LSA polynomial 3, 5 and 7
d division size 5% and 10%
vs vital sign heart rate

3.5.1 Patient Situation Study

In our simulations, we selected heart rate data of three patients having different situations’ level (low,
medium and high) in order to evaluate the performance of our framework. The calculated scores of
readings collected for each patient are shown in Figure 3.7. The heart rate readings collected of the
first patient (Figure 3.7(a)) are totally in the normal range (score = 0). The readings of the second
one are almost abnormal with score criticality equals to 2 (Figure 3.7(b)). Whilst, the third patient
shows a severe criticality of its situation where the scores vary between 2 and 3 (Figure 3.7(c)).
Therefore, in the next of the simulations, we evaluate each metric according to the variation of the
patient situations.

3.5.2 Performance Study of PRA Algorithm

In this section, we study the accuracy of the PRA algorithm proposed in our framework in terms of
regenerating the raw data collected by the sensors. Indeed, the accuracy of PRA is highly dependent
on two parameters (LSA degree and division size) which are studied in the following sections:
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Figure 3.7 Patient situation according to the percentage of reading scores.

The Effect of LSA Degree (k)

At the end of each period, PED allows the sensor to send the non-sequential similar readings along
with the set of LSA coefficients to the sink that tries to regenerate the raw data of the sensor in that
period based on the coefficient set. Obviously, more the degree k of the LSA polynomial is more
the regenerated data is accurate. Figure 3.8 shows the difference between the raw data and the data
regenerated using PRA algorithm when varying the LSA degree k to 3, 5 and 7 respectively. From
one hand, the obtained results show a high data accuracy of the regenerated data using the LSA
method (Figure 3.8(a), or 3.8(b) or 3.8(c)). On the other hand, the increasing of the value of k leads
to decrease the differences between the raw data and the regenerated ones (Figure 3.8(a) to 3.8(c)).
Therefore, PRA ensures a high quality of data for both medical team and patient archiving process.

The Effect of Division Size (d)

In order to reduce its overhead process, PED selects a subset of readings based on the division
size d to calculate the LSA polynomial instead of using the whole readings collected during the
period. Obviously, more the division size is, more the number of selected readings reduces. Figure
3.9 shows the data regenerated at the sink using PRA, compared to the raw data, when varying
the value of d to 5% and 10% respectively. The obtained results allow two observations: 1) the
accuracy of the regenerated data using PRA is highly ensured in both cases; 2) the accuracy of PRA
increases with the decreasing of the division size. This is because, the number of selected readings
using PED increases with the decreasing of the division size which increases the accuracy of the
LSA polynomial and therefore increases the performance of PRA.
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(a) LSA with k = 3

(b) LSA with k = 5

(c) LSA with k = 7

Figure 3.8 The quality of regenerated data after applying PRA in function of k, patient situation is
low.
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(a) LSA with d = 5%

(b) LSA with d = 10%

Figure 3.9 The quality of regenerated data after applying PRA in function of d, patient situation is
low.

3.5.3 Performance Study of PMA Algorithm

In our framework, the PMA algorithm allows each sensor to adapt, at the end of each period, its
sensing frequency according to the sensing frequency decision table (SFDT). Figure 3.10 shows
how each sensor is able to adapt its sensing frequency after each period for the three taken patients
with different criticality situations. We fixed the period size to 3600 readings and we compared the
results of PMA to those obtained with MLED and naïve method, e.g. where all readings collected
by the sensor are sent to the sink. The obtained results show that both algorithms allow sensor
to dynamically adapt its sampling frequency according to the variation of the patient situation.
However, PMA outperforms MLED in terms of reducing sensing frequency in cases of low and
medium patient situations (Figure 3.10(a) and 3.10(b)) while the sensing frequency is more adapted
using MLED in case of high patient situation. This reveals one of the drawbacks of the MLED
algorithm in which a sensor should collect more data in an emergency case in order to continuously
update the medical team about the patient situation. We can also observe that the sensing frequency
of the sensor, using our algorithm, increases with the increasing criticality of the patient situation
(low, medium and high respectively). For instance, PMA adapts the sensor frequency of the sensor
to its minimum in the case of low patient situation (Figure 3.10(a)) while it is less adapted in the
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Figure 3.10 The variation of the sensing frequency of the sensor after applying the PMA in function
of the patient’s situation level, T = 3600.

high patient situation case (Figure 3.10(c)). This confirms the behavior of our algorithm in terms of
providing an accurate patient situation transmission to the medical team.

On the other hand, Figure 3.11 shows the percentage of the sensed data using PMA, MLED and
naïve algorithms in function of the variation of the period size. The obtained results are strongly
related to those shown in Figure 3.10. Consequently, both algorithms (PMA and MLED) reduce
the data collected by the sensor compared to the naïve approach where the amount of sensed data
is reduced up to 76% and 54% using PMA and MLED respectively. Moreover, we observe that
PMA reduces the sensed data from 27% to 66% compared to MLED in low and medium patient
situations while MLED reduces up to 52% of the sensed data in the high patient situation compared
to PMA. We also notice that, using PMA, the sensing frequency of the sensor is not greatly affected
by the variation of the period size while, using MLED, it is decreased with the decreasing of the
period size. This is because, the sensing frequency using PMA is dynamically adapted according
to the patient situation level thus it gives better results among patients and not on the same one.
Whilst, MLED uses the Fisher test to adapt the sensor frequency which gives better results when
the variation between the sensed data is small, e.g. small period size.

3.5.4 Data Transmission Study

In Figure 3.12, we show the amount of data transmission after applying PED, MLED and the
naïve approach in function of the period size. Indeed, PED allows the sensor to send the sequential
readings with different scores, accompanied with the LSA coefficient set, to the sink in order to
reduce the amount of data transmission. Whilst, MLED limits the sensor data transmission to the
first reading of the period in addition to the critical readings, e.g. having score > 0. The obtained
results show two observations: for the low patient situation, both algorithms send a few amount of
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Figure 3.11 The percentage of sensing data after applying the PMA algorithm in function of the
patient’s situation.

data, up to 2%, to the sink compared to the naïve approach. This is due to the non-critical readings
collected about the patient. For medium and high patient situations, PED reduces up to 95% the
data transmitted from the sensor compared to the MLED. This is because the data transmission
using PED is limited to the non-sequential similar score while MLED sends all critical readings to
the sink.

3.5.5 Performance Study of MA

In Figure 3.13, we show the performance of the moving average method in terms of recovering
the missing readings for a portion of about 1300 HR (Figure 3.13(a)) and RESP (Figure 3.13(b))
readings, compared to the original raw sensor data. We varied the window size (ws) in MA to 3
and 6 respectively. The obtained results show the following observations: 1) MA ensures a high
accuracy for both abnormal and normal conditions. 2) more the size of window is low the accuracy
of MA is; this is because, a missed reading will be similar to its near previous readings more than
the far ones.
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Figure 3.12 Percentage of data transmission from sensor to the sink, k = 5.

(a) HR readings from high patient (b) HR readings from low patient

(c) RESP readings from high patient (d) RESP readings from low patient

Figure 3.13 Raw data vs regenerated data with MA.
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(a) HR readings from high patient (b) HR readings from low patient

(c) RESP readings from high patient (d) RESP readings from low patient

Figure 3.14 Raw data vs regenerated data with ES.

3.5.6 Performance Study of ES

Figure 3.14 studies the performance of the exponential smoothing method for the same portion
of data shown in Figure 3.13 compared to the raw generated sensor data. The obtained results are
highly dependent on the value of the ζ used in ES which it is varied to 0.8 and 0.2 respectively.
Indeed, several observations are eminent: 1) ES gives better results with HR readings compared
to those obtained with RESP. This is because the HR condition varies slowly which results a high
similarity between the collected data thus, ES will effectively estimate the missing values. 2) The
accuracy of regenerated data increases with the increasing of the value of ζ . 3) ES gives less data
accuracy compared to the MA.

3.5.7 Performance Study of Processing Speed

In this section, we evaluate the performance of our framework in terms of processing (using MA and
ES) and storing (using HDFS) the whole WBSN data described in the Simulation Results section.
We calculated the processing speed, or the execution time by simulation, after regenerating the
missing readings and store the whole WBSN data. The obtained results are shown in Figure 3.15.
We first observe that the MA outperforms ES in terms of regenerating the missing values in a rapid
execution process. We can also notice that execution time of MA decreases with the decreasing of
the window size value while the processing speed in ES is almost fixed independently from the α

threshold.

3.5.8 The performance Study of Prophet Method

In this section, we show the efficiency of the Prophet method integrated to the WBSN in terms
of predicting the patient progress situation. In our simulations, we assumed a round of 15 periods
where each period is set to 900 readings. Thus, at a given period i ∈ [1,15], the sink has to predict
the readings for the remaining 15− i periods according to the Prophet method. Figure 3.16 shows a
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Figure 3.15 Processing speed using MA ans ES.

comparison between the raw data and the predicted data generated using the Prophet after the period
numbers 1, 3, 8 and 12 in the round; the blue curve in each figure shows the readings received by
the sink, e.g. training data, in which it has to train them in order to forecast the criticality level for
the patient during the next periods, e.g. orange curve. From one hand, the obtained results show
that Prophet ensures a good level of data accuracy regarding the forecasting of the patient readings.
Hence, the medical staff will have an accurate information about the patient situation progress
for the next periods thus, they can prevent him to enter in a critical situation and the nurses can
determine the appropriate observations needed for that patient. On the other hand, we observe that
predicting data generated using Prophet becomes more accurate when the increasing number of the
period (Figure 3.16(a) to 3.16(d)). This is because the size of the training data will increase which
allows Prophet to better understand the variation of the patient situation thus increase the accuracy
of his progress situation.
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Figure 3.16 The predicted data using Prophet compared to the raw data, T = 900, P = 15, patient
situation is medium.
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3.6 Conclusion

Public health will stay one of the main concern of governments and industries due to the population
growth and the increasing number of aging and elderly. Thus, WBSN will take more attention
in patient monitoring as an efficient and low cost solution for hospitals. In this chapter, we have
proposed a robust Patient-to-Doctor (P2D) framework for real-time health monitoring and decision
making which works on two levels (sensor and sink). This framework covers entire life-cycle of data
science including data collection; data ingestion; data preprocessing; data storing; and visualization,
and it relies on hadoop ecosystem. P2D aims to reduce the energy consumption in the sensor and
send any abnormal situation to the coordinator. On the other hand, P2D allows to make an archive
for each patient and help the medical team to make a decision regarding the progress of the patient
situation. Through simulations on real health data, we demonstrated the efficiency of our platform
compared to other existing systems. The next chapter emphasizes the nurse scheduling issue, and
it presents an efficient framework for nurse-patient organization. We will also present detailed
simulations of this framework to show its effectiveness in balancing the workload of the medical
personnel.





4 A Sensing-Based Patient Classification
Framework for Efficient Patient-Nurse
Scheduling

4.1 Introduction

Nurses are directly responsible for monitoring and evaluating patients and performing immediate
interventions, to reduce risks or prevent medical complications [5]. A treating nurse even helps
educate patients and family members about post-hospital care before the hospital discharge. Further-
more, the nurse expenses represents more than half of the hospital’s expenditure. Moreover, the
nurses suffer from two major challenges using WBSN; analyzing the large data provided by the
sensors, and organizing their monitoring programs and shifts.
In this chapter, we present a novel and efficient framework for nurse-patient intelligent task orga-
nization that treats the scheduling problem on two phases. Subsequently, the contributions of this
framework can be summarized as follows:

• Patient classification: One of the basic tasks assigned to the nurses is to classify the patients
according to their critical states. The critical state of a patient is based on the sensed vital
signs during a specific period. In this framework, we introduce a novel machine learning
based method that aims to classify the criticality degree of each patient between low, medium
or high, based on the criticality of all its vital signs.

• Patients assigning to nurses: A grouping method that aims to distribute a group of patients
into several clusters is proposed within this framework. Each cluster is assigned to one nurse.
We introduce a strategy that provides a fair distribution of patients on active nurses, in a
way to normalize the exerted nurse efforts. This fair distribution takes into consideration the
number and the criticality level of patients.

• Patients scheduling: A routing protocol is build within this framework in order to organize
dynamically the nurse-patient schedule. This protocol allows to specify the best traffic that a
nurse should follow in order to serve all her assigned patients. This routing algorithm depends
on several parameters such as the patient’s severity level and their age. Moreover, this protocol
controls which patient should be examined and estimates the examination duration.

The rest of this chapter is organized as follows: Sections 4.2 and 4.3 details the two phases proposed
in our framework respectively. The simulation results with the corresponding discussion are shown
in section 4.4. Finally, we deduce a conclusion in section 4.5.

65



66 Chapter 4. A Sensing-Based Patient Classification Framework for Efficient Patient-Nurse Scheduling

4.2 Patient Classification Phase

In this section, we present the patient classification method that classifies the patients according to
the severity of their vital signs. Subsequently, an intelligent classification model is built passing by
the training and testing phases (Figure 4.1). This model allows the nurses to identify periodically the
level of criticality of each patient either low, medium, or high. These classes let the nurse to follow
up their situation and to prevent any health deterioration through appropriate medical intervention.
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Figure 4.1 Patient classification system.

4.2.1 Training Phase

This phase consists of two steps: shapelet generation and shapelet selection. A shapelet SH with
length l is a subsection election from one of the data series from archive D with length L. A SH
represents the D and replaces it, where L >> l.

Shapelet Generation

We generate several shapelets from patients history where each shapelet SHi(D, vs, level, l) is
specific for one vital sign vs. In addition a shapelet inherits its level from the level of data series D
from which it is selected. The SHi represents the ith shapelet. In order to select the optimal shapelet
that represents the data series D, the Dynamic Time Warping (DTW) algorithm is applied [93].
DTW allows to calculate the distance between two sequential data of different length. In Figure
4.2, we give an example of heart rate series D with high level and L=8. Where the goal is to select
a shapelet SH of size 4 from D using a shift window of size 1 to obtain all shapelets. Then, we
calculate the distance between each shapelet SHi and the data series D based on equations 4.1 and
4.2. The relationship between D and SH is represented by a time warping path W , where wk is
the element indicates the alignment and matching relationship between each two readings in the
two series, and max(L,l) ≤ k ≤ L+ l + 1, where di j = d(ri,r j) is the distance between each two
readings r in each two series D and SH. Since we can use any distance measurements, we apply in
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our framework the euclidean distance. Finally, the optimum shapelet having the minimum distance
with the original D is elected. Therefore, for each vital sign, we obtain many shaplelets that satisfy
all levels space (low, medium and high).

DTW (D,SHi) = min∑di j,W = (w1,w2,..,wk) (4.1)

d(ri,r j) = |ri− r j|+min{d(ri−1,r j−1),d(ri,r j−1),d(ri−1,r j−1)} (4.2)

Figure 4.2 Illustrative example of shapelet generation.

Shapelet Selection

In order to eliminate the redundant shapelets, therefore to reduce the time consumption of the test
process, a shapelet selection mechanism is applied, after the step of generation. This mechanism
remove some of shapelets from similar shapelets. After the generation step, for each vital sign three
groups of shapelets obtained: group for low shapelets; group for medium shapelets; and group for
high shapelets. The sink works in each group following this steps:

• Calculate the percentage of similarity between all the shapelets using DTW (see above).

• Aggregate each two shapelets having maximum correlation (minimum DTW).

• Remove randomly one of them.

• Repeat until having sufficient number of shapelets.

4.2.2 Testing Phase

After shapelet generation, each set of shapelets for specific life’s parameter is saved in the correspon-
ding sensor that collects this type of data. The testing phase aims to determine the level of criticality
of a patient at each period according to the levels of all vital signs. It operates on two levels: sensors
and sink.
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At Sensor Level

At the end of each period, the sensor starts to find the similar shapelet, among all saved shapelets,
with the data collected during the period of time, according to the following steps:

• Divide the set of data collected to l equal division ( where l indicates the shapelet length).

• Find the mean of each division.

• Compare the similarity between the serie of means with each shapelet by calculating the
DTW.

• Select the shapelet having minimum DTW with the serie of means.

• Send the level of the similar shapelet selected to the sink.

At Sink Level

The sink received from one patient the levels of all vital signs, heart rate level; saturation of oxygen
level; etc. Each vital sign vsi is assigned to a score si, according to its level, as shows in Table 4.1. If
the level of vsi is low its score is 0; if it is medium, the score is 1; otherwise, the score is 2. Then,
the sink assigns the criticality level of this patient, based on these scores of all vital signs. Equation
4.3 calculates the rate of criticality C where Table 4.2 describes the relation between the criticality
rate and the final level of severity of a patient.

C =
∑

NS
i=0 si

2×NS
/ where NS is the number o f sensors. (4.3)

Shapelet level of vsi low medium high
score of vsi, si 0 1 2

Table 4.1 Level and corresponding score of vs.

Criticality rate (C ) Criticality level
0 ≤ C ≤ 0.3 low

0.3 < C ≤ 0.6 medium
0.6 < C ≤ 1 high

Table 4.2 Description of patient severity level.

4.3 Nurse Scheduling Phase

For accurate regulation in the hospital, patient scheduling is one of the most important challenges
discussed by many researchers. The patients scheduling is the research problem in processes to find
the optimal way to assign nurses to shifts, usually with a set of difficult constraints. This part of
our framework is dedicated to the sink, that connected with all patient biosensors. Our technique is
complemented by these two steps:
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4.3.1 Patients Assigning to Nurses Algorithm

In order to better organize the work of nurses, this section starts by the distribution of patients,
after the classification patient phase, at each period taking into consideration two parameters: the
level and the number of patients. This step aims to divide the patients on the nurses existing in
the same floor and to help the medical staff to acquire all patients in an organized manner. Two
clustering-based mechanisms, called patients distribution based criticality balanced (PDCB) and
patients sorting-based grouping (PSG), are proposed and in other hand we proposed a hybrid
optimization algorithm, called Genetic Algorithm combined with Particle Swarm Optimization
(GA-PSO), that combines genetic algorithm (GA) and particle swarm optimization (PSO). This
proposed techniques aimed to assure the similarity between clusters in the number of patient and
in the levels of criticality, and ensuring dissimilarity in patient levels in the same cluster. In the
following sections, we describe the three techniques:

Patients Distribution-based Criticality Balanced (PDCB) Mechanism

Algorithm 8 explains the process of PDCB mechanism. It aims to allocate, for each nurse, the
group of patients who should follow up during a period p. At the end of p, the sink owns the list of
criticality rates Q of all the patients, where each Ci in Q indicates the criticality rate of the patient i.
The algorithm takes the following parameters: the number of patients (NP), the number of nurses
(NN), and Q. First, the mechanism formes the clusters based on the number of nurses , where Gi is
the ith cluster for ith nurse (lines 1-5). Then, we select the first NN patients with higher criticality
from Q and put each of them in a cluster. After that, the criticality of each cluster is calculated
using the equation in line 9. Furthermore, we balance the clusters that are not equal according to
the criticality of the 1st cluster (line 14) by electing a patient from Q defined in the equation in line
15. Finally, we repeat until the Q becomes empty.

Algorithm 8 PCDB Algorithm.
Require: Period size: T ; Patients number: NP; Nurses number: NN; A balancing threshold: ε ; A

list of patient criticality during one period: Q = [C1,C2, . . . ,CNP].
Ensure: Set of patients clusters to each nurse.

1: for i = 1 to NN do
2: Define cluster Gi
3: Gi← /0
4: CGi = 0
5: end for
6: repeat
7: for j = 1 to NN do
8: select the Patient j with the highest critical score C
9: G j← G j ∪{ j}CG j + = C j

10:11: remove C j from Q
12: end for
13: for j = 2 to NN do
14: if CG1 >= CG j then
15: select Ck from Q / CG j + Ck >= C1 + ε

16: G j← G j ∪{Patientk}
17: CG j + = C j
18: remove Ck from Q
19: end if
20: end for
21: until no patient in Q
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Patients Sorting-based Grouping (PSG) Mechanism

Algorithm 10 shows the process of PSG mechanism that takes the same parameters of Algorithm 8.
It starts by sorting the criticality list of all patients (Q) by decreasing order (line 1) and by forming
NN clusters (lines 2-6). Then, it iteratively selects the first and the last patients in the list Q, and put
each couple in a cluster Gi. Then, it calculates the criticality of the cluster by adding the criticality
rates of patients in the cluster (lines 7-14). This step is repeated until Q becomes empty, or if there
remains a number of patients smaller or equal to the number of clusters. After that, the algorithm
distributes the patients in a way that balances the criticality of all clusters; this is done by selecting
the cluster has the minimum total criticality CGi and put in them the patient has the maximum
criticality rate (lines 17-22).

Genetic Algorithm combined with Particle Swarm Optimization (GA-PSO)

Meta-heuristics are problem-independent strategies that allow us to explore the solution space more
completely and, ideally, arrive at a good solution that is sometimes the same as the global optimum.
GA-PSO nodes are encoded as genes during the GA phase. A chromosome encodes the path from
the source to destination. The initial population is the set of all potential pathways from source
to destination. The fitness function must be stated in terms of the scheduling parameters that are
necessary. The fitness function will be used to evaluate fitness values for each chromosome. Begin
the PSO phase, which consists of selecting parents from the population. During the GA phase, the
population is initialized, and the fitness function is evaluated, later on in PSO phase start generating
particle positions and velocities, velocity update, and finally position update are performed. This
leads to the discovery of the best solutions from the solution space, which is used as parents in
GA’s crossover and mutation operations. When the termination requirement is reached, the new
population is presented as a solution set with optimal paths that satisfy the relevant schedule metrics.

• GA-PSO Algorithm: Algorithm 1 shows the process of GA-PSO that allows to select the
best feature combination in this mechanism. The algorithm takes, as input, the criticality
rate of each patient along with the configuration parameters required for GA and returns,
as output, the best solution B for nurse scheduling for the purpose of serving the patient in
timely manner after collecting of the vital signal. Firstly, the algorithm randomly generates an
initial list of ω combined nurses-patients re-partition (line 1). Then, each combined solution
set is evaluated according to the Fitness function (line 3) where the set having the max fitness
value is selected to be the best current solution (lines 10-13) in order to produce the new
chromosomes (set of children) by the crossover with the each other chromosome in ω (line
5). Then each chromosome (child) is performed using the mutation operations (line 6).

After that, a loop is started in which the GA coefficient is enhanced (line 9) and the combined
solutions are updated (line 15). Then, a new list of combined schedule sets is randomly
recalculated and the current best solution (local best position pbest, global best position
gbest) is updated in case a new better is detected (line 10-14). The loop is continued until
reaching the maximum number of iterations or the convergence criteria is met.

• Initial Population: First, many potential solutions are randomly generated to form an initial
population ω . The population consists of S individuals that means S chromosomes or Solutions.
The initial population represents set of all potential paths.

• Fitness Function: The fitness function is always problem dependent and measures the quality
of the depicted solution. Individual performance should be reflected in the fitness function.
The fitness value is used to evaluate each solution of the population and to indicate how close
it came to the optimum. We define the fitness function as f .

The settings and notations of the proposed model are described as follows:
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Algorithm 9 GA-PSO Algorithm.
Require: Period p, Period size: τ , Patient number NP, Nurse number NN, List of patients criticality

during p: Q = [C1,C2, . . . ,CP].
Ensure: Best solution: BS

1: Generate the initial random population ω

2: repeat
3: Calculate the fitness value f for each individual based on equation (4.4)
4: Select the parent individuals for reproduction
5: Produce set of children by crossover operation
6: Perform mutation operations
7: Evaluate the fitness value for each child
8: Select the best individual for the current generation:
9: for each individual i do

10: if f(i) > f(pbest) then
11: pbest← i
12: end if
13: if f(i) > f(gbest) then
14: gbest← i
15: end if
16: Update positions and velocity for each individual according to equations (4.8) and (4.9)
17: end for
18: until convergence criteria is satisfied
19: return BS

f = mı́nC ∑
k∈SN

∑
i∈SP

∑
j∈SP,i ̸= j

xi jkdi j +Xi (4.4)

where:

– xi jk: binary variable representing whether Nurse visits Patient node j after visiting
Patient node i

– di j: Euclidean distance between patient node i and patient node j

– SP: set of patients’ nodes

– SN: set of nurses

– C: nurse shift

– Q: load capacity of nurse

– t f : service time at node i, i ∈ SP

– X : position of the solution

Based on the above notations, we define the following constraints:

∑
i∈SP,i ̸= j

xi jn = 1,∀ j ∈ SP,∀n ∈ SN (4.5)

∑
i∈SP

Ci ≤ Q,∀i ∈ SP (4.6)
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∑
i∈SP

∑
j∈SP, j ̸=i

xi jn≤ SP,∀n ∈ SN (4.7)

• Selection of Parents: The best individuals are chosen from among those solutions based
on the PSO model. In PSO, each solution is referred to as a "particle" and is represented
by a "bird" in the search space. All particles have their fitness values evaluated by a fitness
function, as well as velocities that direct the particles’flight. These values are optimized to
be as accurate as possible. The particles can easily navigate through the space by following
the path of the ideal particles and performing the search for optima using the generations.
Figure 4.3 illustrates that for each particle i, at each time t, consists of a position xt

i a candidate
solution a velocity vt

i and the best location it has ever visited pbestt
i with respect to a fitness

function. The particles of the swarm share information about the search space via the global
best position gbestt

i , which is the best position among all particles. Equations (4.8) and (4.9)
control the movement of a particle:

Vi =Vi + c1× r1× (pbesti−Xi)+ c2× r2(gbest−Xi) (4.8)

Xi = Xi +Vi (4.9)

Figure 4.3 Illustrative example of PSO exploration space search.

Where i is the number of the particle, t is the iteration index. c1 and c2 are constants called
learning factors that control the effect of the personal memory of a particle and the shared
information of the swarm, respectively. r1

i (t) and r1
i (t) are generate randomly in [0,1]. The

process is repeated in discrete time steps until a stopping criterion is met. By modifying its
parameters, it is able to control the swarm’s trade-off between exploration, having to visit
to new locations and learn more about the search space, and exploitation, deciding to stay
closes the best position found so far.

• Crossover Operation: A child created after a crossover operation is performed between the
two paths chosen. Cross over is the process of combining multiple parent solutions to create
a child solution. A pair of chromosomes is chosen as the parents in the PSO selection model
to produce a single offspring. The crossover procedure consists of four steps:
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– Step 1: select a segment group randomly from the chromosomes (Figure 4.4).

0 7 4 2 10 0 3 5 11 12 13 0 1 6 8 9 14 15 0Chrom. 1

0 8 1 2 10 0 6 5 11 12 14 0 4 3 7 9 13 15 0Chrom. 2

Group A

Group B

Figure 4.4 Segment selection from the chromosomes.

– Step 2: move the chosen groups in each parent to the chromosome’s front genes (Figure
4.5).

0 7 4 2 10 0 3 5 11 12 13 0 1 6 8 9 14 15 0Chrom. 1

0 6 5 11 12 14 0 8 1 2 10 0 4 3 7 9 13 15 0Chrom. 2

Group A

Group B

Figure 4.5 Group shifting.

– Step 3: in offspring 1, keep Group A of chromosome 1, but add the genes of chromosome
2 that chromosome 1 does not include after Group A as their sequence (Figure 4.6).

0 7 4 2 10 0 6 5 11 12 14 3 13 1 8 9 15 0Offsp. 1

0 6 5 11 12 14 0 7 4 2 10 3 13 1 8 9 15 0Offsp. 2

Group A

Group B

Figure 4.6 Combining genes.

– Step4: add number zero in any gene after Group A. Offspring 2 is obtained in the same
manner (Figure 4.7).

0 7 4 2 10 0 6 5 11 12 0 14 3 13 1 8 9 15 0Offsp. 1

0 6 5 11 12 14 0 7 4 2 10 3 0 13 1 8 9 15 0Offsp. 2

Figure 4.7 Adding zeros.
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• Mutation: Following the crossover operation, the new offspring is subjected to a mutation
operation. The operator chooses two different locations to relocate to, and each operation is
capable of achieving five new solutions. The mutation is used to broaden the scale of searching,
and the set of mutation probability can control the search trend (Figure 4.8). As a result, a new
population is formed. The fitness value is applied to the newly generated offspring once more.
The newly generated efficient unicast multiple paths can then be accepted if they provide the
best solution. Otherwise, it is chosen for reproduction once more. As a result, the resulting
paths will provide optimized multiple unicast paths from the source to the destination.

0 7 4 2 10 0 6 5 11 9 0 14 3 13 1 8 12 15 0Offsp. 1

0 6 5 11 12 1 0 7 4 2 10 3 0 13 14 8 9 15 0Offsp. 2

Figure 4.8 Offspring after mutation operation.

4.3.2 Patient-Nurse Scheduling (PNS) Algorithm

Appointment scheduling is especially important in medical centers, where a long list of patients
with limited equipment, rooms and human resources should be examined within a certain period
of time. After the distribution of patients, each nurse became responsible for a specific group of
patients. Here it begins the stage of finding the best way in which the pathogen has to follow up
in order to move from patient to a another for examination, and to give him medicine if there is a
need. During each period, nurse should control the patients of high and medium level while the
low patient is not necessary to follow it at this period. The principal steps of PNS algorithm 11 are
summarized as follows:

• We first calculate the duration of every single appointment based on patients’ particular
therapy requirements. The calculation consists on dividing the period time on the patients
according to equations (4.10a) and (4.10b) where: ht is the time required for controlling high
patient and mt for the medium patient; nhp is the number of high patients and nmp is the
number of medium patients (line 2). Subsequently, equation (4.10a) represents the duration
of the period with a decrease δ of time. This threshold is used for the subjectivity of the nurse
that can increase/decrease it according to the patient need and necessity. In addition, this
threshold allows the nurse to be able to take into account any emergency and sudden event
for low patients, or for the sake of convenience. Whilst equation (4.10b) means that the time
for high patients should be the double of the time of medium patient.

nht×ht +nmp×mt = τ−δ

ht = 2×mt

(4.10a)
(4.10b)

• In order to determine the order of patients for regular follow-up, a priority for each patient is
calculated based on two constraints: the criticality rate (C ) and the age (A) of the patient. On
one hand, the higher the patient’s level of risk, the higher the priority for his examination. On
the other hand, if a patient is in the youth stage he can bear more than others. Therefore, we
propose two equations (4.11a) and (4.11b) that allows to calculate the priority of a patient. In
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Algorithm 10 PSG Algorithm.
Require: Patients number: NP; Nurses number: NN; A list of patient criticality during period p:

Qp = [C1,C2, . . . ,CNP].
Ensure: Set of clusters of patients of each nurse.

1: Sort Q in descending order
2: for i = 1 to NN do
3: Define cluster Gi
4: Gi← /0
5: CGi = 0
6: end for
7: while NP > 2NN do
8: for j = 1 to NN do
9: G j← G j ∪{Patient j,PatientNP}

10: CG j + = C j + CNP
11: remove C j and CNP from Q
12: NP - = 2
13: end for
14: end while
15: for i = 1 to NP do
16: select the cluster having minimum criticality Gk
17: Gk← Gk∪{Patient i}
18: CGk + = Ci
19: remove Ci from Q
20: NP - = 1
21: end for

this equations, λ represents the weight of the patient criticality and ψ represents the weight
of the patient age where the sum of the two weights must be 1; we consider that λ should be
greater than ψ because criticality is more important than age in the patient selection to follow
it, and their summation is equal to 1. Equation (4.11b) is dedicated to the patient children
that are considered critical as the elderly patient; φ is a parameter that allows to increase the
priority of patient children, which φ is much greater than the patient age (lines 3-11).

PRI = λ ×C +ψ×A, if A > 18 years
PRI = λ ×C +ψ× (φ −A), if A ≤ 18 years / where φ >> A

(4.11a)
(4.11b)

• We finally sort the patients by decreasing order of their priorities (line 12). Thus we obtain
the queue that contains the patients arranged with their assigned time calculated on the first
step. Consequently, the nurse will assign the patient queue for better and fast service, and for
good reputation and humanity in the hospital.

Illustrative example of PNS: Given a set of six patients (Patient 1 to Patient 6) assigned to a nurse,
with their criticality rates (C1 to C6 respectively), their levels and their ages during one period with
T = 60 minutes. we assume λ = 0.8, ψ = 0.2, φ = 90, and δ = 10 min (Figure 4.9). Consequently,
the sink calculates the time necessary to follow up high patients ht = 6.25 min and medium patients
mt = 12.5 min, where there is three high patients and two medium patients, with the possibility
to extend or reduce the duration of the examination, that by keeping δ = 10 min. Then, the sink
computes the priority for each patient; for instance, the priority of Patient 1 is calculated as PRI1 =
0.8 ×C1 + 0.2 ×A1 = 0.8 ×90+0.2×36 = 79.2, because A1 = 36 > 18. For Patient 4, its A4 = 13
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Algorithm 11 PNS Algorithm.
Require: Period size: T ; A Nurse i; A list of patient criticality assigned for Nurse i during p:

Lp = [C1,C2, . . . ,CNS]; A list of patient age: Ap = [A1,A2, . . . ,ANS]; Number of high patients:
nhp; Number of medium patients nmp; Subjectivity threshold δ ; Coefficients: λ and ψ .

Ensure: Patients queue assigned to Nurse i: Q.
1: Q← /0
2: Calculate ht & mt based on equations (4.10a) and (4.10b).
3: for j = 1 to NS do
4: if A j < 18 then
5: Calculate PRI j based on equation (4.11a).

6: Q← Q∪{Patient j}
7: else
8: Calculate PRI j based on equation (4.11b).

9: Q← Q∪{Patient j}
10: end if
11: end for
12: Sort Q in descending order

< 18, so its priority is calculated as PRI4 = 0.8×70+0.2× (90−13) = 71.4, and so one. Finally,
we order the patients according to their priorities while setting the time for each one.

Patient 1

Level : H

Criticality = 0.9

Age = 36

Patient 2

Level : L

Criticality = 0.1

Age = 20

Patient 3

Level : M

Criticality = 0.6

Age = 24

Patient 4

Level : M

Criticality = 0.5

Age = 90

Patient 5

Level : H

Criticality = 0.7

Age = 13

Patient 6

Level : H

Criticality = 0.7

Age = 10

3ℎ𝑡 + 2𝑚𝑡 = 60 − 10

ℎ𝑡 = 2𝑚𝑡

ℎ𝑡 = 12.5 𝑚𝑖𝑛
𝑚𝑡 = 6.25 𝑚𝑖𝑛

3ℎ𝑡 + 2𝑚𝑡 = 50

ℎ𝑡 = 2𝑚𝑡

patient level Criticality(%) age priority

Patient 1 H 90 36 79.2

Patient 2 L 10 20 ----

Patient 3 M 60 24 52.8

Patient 4 M 50 90 58

Patient 5 H 70 13 71.4

Patient 6 H 70 10 72

Patient 1 Patient 6 Patient 4 Patient 3

12.5 min 6.25 6.2512.5

Patient 5

12.5

step 1: step 2:step 1

step 3:

Figure 4.9 Illustrative example of PNS algorithm.

4.4 Research Results

In this section, we show the relevance of our framework that is implemented based in Java. We
used real data health published in Multiple Intelligent Monitoring in Intensive Care (MIMIC)
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database of PhysioNet [22]. In our simulation, we are interested on three vital signs: heart rate (HR),
respiration rate (RESP), and oxygen saturation (SPO2). We run our framework on 10 periods where
the simulation environment is set according to the following table :

Parameter Description Value

T period size 1000
NS number of sensors 3
δ subjectivity threshold 10

NN number of nurses 3,8,15
NP number of patients 15,18,30,50
vs vital sign HR, RESP, SPO2
s score of vital sign 0, 1 or 2
λ weight of the patient criticality 0.8
ψ weight of the patient age 0.2

ST1 and ST2 Serving time 0,8.15,17.5 and1,6,10
ω Population size 50

CV Cross validation constant 0.9
MC Mutation constant 1/20
r1,r2 Random number 0,1
c1,c2 Learning factors 2,2

Table 4.3 Simulation environment.

4.4.1 Performance Study of Shapelet Generation Method

Figure 4.10 shows the results of shapelet generation step for the oxygen saturation (SPO2) vital sign
according to the first step of the training phase in the classification model system. These shapelets
are selected from archive of some patients with diversity of their levels of criticality in order to
cover all Situations kinds of new patients. Our purpose is to increase the effectiveness of the model
based on machine learning approach. The obtained results divided of 19 shapelets with low-level
patients (Figure 4.10(a)), 7 shapelets with medium- level patients (Figure 4.10(b)), and 15 shapelets
with high-level patients (Figure 4.10(c)).

4.4.2 Performance Study of Finding Similar Shapelet

In order to study the accuracy of the patient classification system, the shapelets elected is shown to
determine the level of each vital sign. The green curve in each figure shows the readings detected by
the sensor during a period. And the other curve shows the similar shapelet obtained by this model,
if their color is red that means the level of shapelet is high, if it is orange the level is medium, and
if it blue so the level is low. Figure 4.11 indicate the results for Patient 1, their heart rate level is
high because the similar shapelet obtained has a high level shown in Figure 4.11(a) , and the Figure
4.11(d) shows the score frequencies for each vital sign, and it verifies the high level criticality of
heart rate, because the heart rate readings collected of this patient (Figure 7(a)) are totally in the
high range (score = 2 and 3). The selected shapelet for respiration rate RESP has high level (Figure
4.11(b)), in other hand the result confirmed in Figure 4.11(d), where the most scores of respiration
data are of a high level. And also all the oxygen saturation SPO2 readings in the normal readings
(Figure4.11(d), corresponding to their obtaining shapelet similar is for low level (Figure 4.11(c)).
The same for the Patient 9 their three selected shapelets illustrated in the Figures 4.12, where their
levels are low, medium, and high for vital signs respectively HR, RESP, and SPO2. And also the
results of Patient 3 are shown in Figure 4.13, where their criticality level moving towards the low.
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Figure 4.10 The shapelets generated for SPO2.
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Figure 4.11 Similar shapelet elected for every vital sign of the high Patient 1.

4.4.3 Performance of Patient Classification Model

This section presents the results of the classification for two patients Patient 1 and Patient 9 (Figure
4.14 and Figure 4.15 respectively), obtained during the first round ( 10 periods). This technique
depends on the level of the three vital signs (HR, RESP, SPO2). The results are represented in
figures 4.14 with this rule: that if the level = 1 that means it is low, if equal to 2 it is medium , and if
3 their level is high. For the first period, Figure 4.14(a) shows the levels of the vital signs, where
HR is high, RESP is high, and SPO2 is low, gives a high level of total criticality in Figure 4.14(b).
But in the second period HR remains high and likewise SPO2 remains low but RESP was high and
becomes medium, consequently the criticality decreases from high level to medium level, and so on.

4.4.4 Patients Assigning to Nurses Study

This framework allows each nurse to control a specific group of patients, during a period, by the
patients distribution method following their criticality levels. Therefore, this framework prevents
a nurse to getting a group of patients where all of them are in critical condition, and their health
requires time to serve them.
Performance of PDCB and PSG

Figure 4.16 shows the slight difference between the two clustering-based mechanisms proposed
in this paper. The nurses number is fixed to three, and the patients number is 18. So the goal is to
distribute the 18 patients on the three nurses. The shown results are for after the first period. Figure
4.16(a) for mechanism 1, there are seven high level patients (represented in red color). The high
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Figure 4.12 Similar shapelet elected for every vital sign of the medium Patient 9.

patients are distributed three for Nurse 1 , two for Nurse 2,and two for Nurse 3. And there are nine
medium level patients (in orange color), they are distributed two for Nurse 1, three for Nurse 2,
and four for Nurse 3. Also, there are two low level patients (in blue color), they are joined with the
group of the nurse Nurse 2. Note that nurse Nurse 1 that has more high level patients(three) has two
medium patient, but the other has three and four medium patients. Here Figure 4.16(b) shows the
results of the second mechanism (2), also the seven high patients and the nine medium patients are
distributed in the same way as the first mechanism. But the two low patients are distributed between
the 1st nurse (Nurse 1) and the 2nd (Nurse 2). These figures verify the performance of these two
methods in equal distribution and diversity of criticality levels for patients in each cluster.
In order to evaluate the accuracy of this two grouping mechanisms, the number of patient obtained
for each nurse and the distribution of levels (Figure 4.17) are studied:

• Number of patients in each cluster: The equality in the number of patient and their levels for
each nurse, is one of the principal goal that determine the efficiently of the distribution. This
is confirmed in the pictures Figure 4.17(a) and Figure 4.17(b) ( mechanism 1 and mechanism
2 respectively), where in the 1st mechanism the distribution of patients is in the following
form: five for the 1st nurse (Nurse 1), seven for the 2nd (Nurse 2), and six for the third nurse
(Nurse 3). In the second mechanism the distribution is equal to nurses, e.g six in each cluster.

• Accumulation criticality: For a fair distribution between the nurses, the volume of criticality in
each cluster should be almost equal. These pictures Figure 4.18 show that the two mechanisms
gave excellent results, by distributing the high critical patients to the nurses, not by grouping
them into one group, but by dispersing them over the groups. As well as for the medium
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Figure 4.13 Similar shapelet elected for every vital sign of the low Patient 3.
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Figure 4.14 The criticalities levels of Patient 1 during 10 periods.

patients, and joining the low critical patient in the appropriate cluster in terms of number and
total of the criticality rate.

Performance of GA-PSO

We tested GA-PSO with two groups of criticality: ST1 and ST2. In ST1, the nurse assigns 17.5 and
8.5 minutes to serve patients with high and medium criticality respectively, while patient with low
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Figure 4.15 The criticalities levels of Patient 9 during 10 periods.
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Figure 4.16 Distribution of patients after the first period.
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Figure 4.17 The variation of the patient number in each cluster.

criticality level does not assigned any serving time. In ST2, the nurse assigns 10, 6 and 1 minutes to
serve patients with high, medium and low levels respectively. Furthermore, our mechanism GA-PSO
presents a schedule for each nurse to follow-up the patients and the necessary time to be served that
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Figure 4.18 Accumulation criticality in each cluster.

the nurse should follow it to treat. Both tables 4.4 and 4.5 verify the performance of our mechanism
GA-PSO in diversity of criticality levels for patients for each nurse. In order to evaluate the fairness
of our mechanism, the number of patient obtained for each nurse and the distribution of levels are
studied:

• Number of patients for each Nurse: A fair equality in the number of patients and their
criticality levels for each nurse, is one of the principal goal that determine the efficiency of the
distribution. It is confirmed in the tables 4 and 5, where by comparing the served patients with
the number of nurses available there is a fair distribution. For instance, in the first approach
ST1, the distribution of Fifteen patients between three nurses is in the following form: five for
the Nurse1, four for the Nurse2, and six for the Nurse3. As for the second approach ST2, the
distribution is four for the Nurse1, five for the Nurse2, and six for the Nurse3.

• Accumulation criticality: For a fair distribution between the nurses, the volume of criticality
for each nurse should be almost equal. The tables 4.4 and 4.5 show that our mechanism with
different parameters give excellent results, by distributing the high critical patients to the
nurses, not by grouping them into one group, but by dispersing them over the groups. As well
as for the moderate patients and distributing the low critical patient for the appropriate nurse
in terms of number and total of the criticality.

• Performance Evaluation of GA-PSO in function of Criticality
The volume of criticality should be nearly equal for a fair distribution among the nurses by
distributing the high-risk patients to the nurses in groups rather than in a single group, as well
as to distribute the medium and low patients in the proper group.

Our GA-PSO mechanism with two simulations produced reasonable results by ensuring
fairness in distribution among the nurses where taking into consideration the criticality
of each patient. For instance, where NN = 3 and NP = 15 we observe that in the ST1 the
distribution of patients is in the following form: five for the 1st nurse, four for the 2nd nurse,
and six for the third nurse. As for ST2 the distribution is better than ST1, four are allocated for
the 1st nurse, five for the 2nd nurse, and table 4.5 efsix for the third nurse. Consequently, we
observe that the criticality values affect the optimization, as we balance the 3 factors with
appropriate numbers with a lower gap such as 1, 6, 10 leads to a better performance than 0,
8.5, 17.5.

• Performance Evaluation of GA-PSO in function of Dataset: This section explored the
effect of dataset size on the performance of our mechanism. GA-PSO has shown to perform
better on dataset of larger size with respect to the length of the number of nurses and the
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number of patients. Reasonable accuracy is also observed in GA-PSO mechanism, particularly
for larger dataset, as it was shown in the experimental results of tables 4.4 and 4.5.

We observe that on a low number of nurses and patients, the optimization process is less
accurate, which means that distribution is not as fair as possible. However, when increasing
these parameters the optimization goes up as it increases due to a better combination of
patients’chromosomes. Performance wise, increasing the parameters will lead to a slight
delay addition but this could be tweaked by decreasing the number of iterations. On the other
hand, any random combination of patients selected as gbest shows the equal distribution of
these patients over any specified number of nurses considering the fact that every patient
has a certain priority, these nurses must serve patients in order, and as distributed inside the
chromosome per nurse. If we try to confirm this condition, we can sum up all the number of
patients per nurse and verify with the criticality values by adding them once these patients
are categorized as high, medium or low. For instance, in the tables shown above, we can
determine the percentage of service for each nurse with the number of patients distributed
equally over the dataset and for each scenario the designated set of criticality measures. As
we also note, the number of patients is ranged between two certain numbers close to each
other taking into consideration the priority and number of patients per nurse. For example, in
both tables 4.4 and 4.5 where NN = 15 and NP = 50, it is ranged from 2 to 5 depending on
how critical the patients are and the schedule of each nurse. As we see here, the gap between
nurses is around 10% in distribution terms for 3 nurses, which is even lower for 8 and also
lower for 15 nurses. We observe that this gap decreases when the number of nurses and
patients increase, and thus the performance of the algorithm. If we consider the other set of
criticalities below, it is observed that this distribution is better which leads to a low percentage
of difference, so depending on the gap of the criticality measures, the performance increases
when this gap decreases, and the 0 for “Low” is not the best practice as it adds nothing to
the nurse’s schedule. Not only the distribution is fair over number of patients but also for the
category of criticality, nurses go on different missions with low, medium and high categories
which also depend on the number of patients per nurse. For example in the set of criticalities
below, 6 low patients are considered equal to one medium patients and a high patient is a
combination of both. Finally, the service time is properly managed in a low range of gaps
between each nurse, so a nurse might have a total time of 26, the other at 34 and so on, and
this gap is almost equal when changing parameters such as number of patients and nurses.

4.4.5 Performance of Patients Scheduling

This section verify the efficiency of the final step of this framework, that called patients scheduling.
This step aims to organise and range the patients for each nurse , in order to follow and serve them
during each period. These figures 4.19 shows the priorities of the patients of the three groups of
nursing (Nurse 1, Nurse 2, Nurse 3), according to the criticality and the age of each patient. By
making the weight of criticality λ = 0.8 greater than the weight of age ψ = 0.2. The pink rectangular
bar in each figure presents the patient criticality detected, the blue rectangular bar presents the age
of the patient, and the light yellow rectangular bar for their priority calculated. It is noted that if the
criticality of the vital signs of two patients are equal, the priority becomes for the patient who has
one critical age. Figure 4.19(a) shows the different priorities for patients assigned to the Nurse 1.
The Patient 12 is ranked first in terms of priority in the examination, where it has the max criticality
rate and their age is 11 years. The two patients Patient 18 and Patient 2 have the same criticality, but
the priority is for the Patient 18 where their age equal to 87 years grater critical than the age of P2
equal to seven years. In Figure 4.19(b), the criticalities rate of patients Patient 4 and Patient 8 are
equal, priority was given to the patient Patient 4, as his age is 16 years more critical to the age of
Patient 8 ( = 30 years). And in Figure 4.19(c) shows the priorities assigned to the third Nurse (3),
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where the patients were arranged as follows: Patient 16, Patient 1, Patient 5, Patient 9, Patient 10,
Patient P17.
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(c) Nurse 3

Figure 4.19 The priority level of patients obtained in function of age and criticality rate.

Figure 4.20 presents for each nurse the schedule after the first period, to follow-up the patients
during the second period. And this figure shows for each patient the appropriate time, that the
nurse should follow it to treat and service them during one period( = 60 min). While respec-
ting the nurse’s responsibility, where the nurse can increase the permissible time in the event
it is necessary, by giving him a period of time as an addition (δ = 10 min ), as shown in fi-
gures 4.20 as a break. With the two mechanisms (PCDB and PSG), the first Nurse 1 has the
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time to follow the high patient equal to 12.5 minutes, and for medium patient the time equal
to 6.25 min. The Nurse 2 has more time to treat the high patient (14.2 min), and that because
there is two high critical patients less than for Nurse 1 where has three high critical patients.

Patient 12

12.5 min 6.256.2512.5
Patient 18 Patient 2 Patient 11 Patient 7

12.5

One period = 60.0 min

break

10.0

Patient 16

12.5 min 12.5
Patient 1

6.256.25

Patient 5 Patient 9

6.256.25
Patient 10 Patient 17 break

10.0

Patient 6 Patient 4Patient 14 Patient 8 Patient 13 break

10.014.2 min 14.2 7.1 7.1 7.1

(a) with PCDB mechanism

Patient 12

12.5 min 6.256.2512.5
Patient 16 Patient 1 Patient 9 Patient 13

12.5

One period = 60.0 min

break

10.0

Patient 18

12.5 min 12.5
Patient 2

6.256.25

Patient 4 Patient 5

6.256.25
Patient 11 Patient 17 break

10.0

Patient 6 Patient 8Patient 14 Patient 7 Patient 10 break

10.014.2 min 14.2 7.1 7.1 7.1

(b) with PSG mechanism

Figure 4.20 The scheduling results obtained.

4.5 Conclusion

In public health, the patient classification based on wireless body sensor network and the appointment
scheduling techniques can significantly reduce the workload of the medical staff. In this chapter,
we have proposed an efficient framework for intelligent nurse-patient scheduling that consists of
two phases: patient classification, and nurse scheduling. Our framework aims to classify patients
according to their criticalities, and introduce an efficient nurse scheduling. Through simulations on
real health data, we demonstrated the effectiveness of our framework in providing a balanced nurse
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workloads where each nurse serves, during each period of one hour, an average of 5 patients with
corresponding cumulative criticality of 62%.





5 Conclusion and Perspectives

5.1 Conclusion

The healthcare applications relies on the WBSN which is the main technology that plays an impor-
tant role in monitoring healthcare status. In addition, the researchers have gained insights about
the important role of nurses in hospitals. Indeed, WBSN is becoming a staple for helping nurses
in several tasks such as: emergency detection; controlling vital signs; data analysis and making
decision. Thus, in this work we focused on proposing several techniques that improves this tasks
and takes into account the conserving the limited sensor energy.

At sensor level, we proposed several techniques that aims to reduce the energy consumption,
in order to extend the network lifetime. These techniques are based on reducing the amount of
collected and transmitted data from the sensors. First, an emergency detection algorithm is proposed,
that aims to send data only if the patient’s condition has varied in order to reduce the redundant
transmitted data. Second, we presented an adaptive sensing frequency that aims to eliminate the
redundant collected data, based on the patient’s situation. Third, we built the first phase of the patient
classification model that compares the vital sign series of the patient with the vital signs series
provided from the archive using the DTW method, in order to select and send the criticality level
of the vital sign to the sink. Finally, we proposed a multi-hop protocol that minimize the required
signal strength of sensor in transmission process and therefore reducing the energy consumption.
Third,

At sink level, we proposed several technique that allows the medical staff to make the appro-
priate decision. First, we built an efficient framework based on hadoop tools for big data collection,
processing and storage in wireless body sensor network. The proposed framework aims to ingest
data in real time (using Flume and Spark), then preprocess them and store the big data for analyzing
process (using HDFS), and finally allows the end user to analyse the data (using Grafana and
Matplolib). Second, we proposed a patient records archive technique in order to regenerate the
health data of each patient for analysis purposes. Third, we proposed a prediction technique that
allows to predict any abnormal situation, using the prophet method, in order to obtain the right
medical intervention on time. Fourth, we built a patient classification model that classify the patient
according to its criticality which is calculated according to the received criticality levels from the
all sensors. Finally, We proposed a patient-nurse scheduling which started by grouping mechanisms
that aim to assign patients to nurses in a fair way, we proposed two mechansims that assigns the
patients according to the two parameters: patient’s criticality level and the number of patients, and
we proposed third mechanism which is an hybrid of the genetic algorithm and the particle swarm
optimization. Then, proposing a scheduling algorithm that aim to find the path that the nurse should
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follow in order to examine her group of patients. Which this algorithm is based on the patient’s
priority that calculated according to its criticality level and age.

5.2 Perspectives

In this section, we present two directions of perspectives in order to ameliorate the frameworks of
patients controlling and assessment presented in this thesis: Short to Mid Term Perspectives that
related to our proposed mechanisms and Log Term Perspectives.

5.2.1 Short to Mid Term Perspectives

As future work, we propose some perspectives in order to enhance the mechanisms presented in
this thesis, which can be summarized as follows:

• Our approach in chapter 2 can be extended by adapting the sensor sensing frequency according
to the patient’s criticality. Indeed, the sampling rate of the sensors could be adapted and
therefore reducing the energy consumption.

• We have two main directions to extend our framework in chapter 3. First, we plan to use
aggregation techniques at the processing stage in order to eliminate the redundancy among the
collected data thus reduce the amount of data storage. We want to search the similarity between
the collected vital signs using several aggregation functions such as jaccard similarity; cosin
similarity or several distance functions like euclidean; cosine. Second, we seek to enhance
the performance of our framework by testing another Hadoop tools such as Hive; kafka.

• We have three main directions to enhance our framework in chapter 3. First, we plan to test
our platform in real-case scenarios in order to validate its performance. Second, we seek to
adapt our platform to take into account various types of patient data like images for organs,
video for operations, etc. The purpose of adding more information (images and videos) to the
digital data is to support the decision making. Finally, we plan to develop a mobile application
in order to help clinicians closely and remotely monitor critical patients.

• Our platform in chapter 4 can be enhanced in several ways. First, we seek to integrate a
mobile application for the medical staff in order to determine for each nurse their scheduling
appointments. Second, we plan to improve the performance of our framework by testing
another parameters in the patients scheduling algorithm in addition to the criticality rate and
the age of the patients, such as the capability of each nurse.

• We have three future directions to enhance NPS mechanism presented in chapter 4. First, we
seek to take into account more criteria when assigning nurses to patients, such as nurse skills
and decision subjectivity. Second, we plan to enhance the service time of each patient in a
dynamic way rather than static one. Third, we seek to increase the performance of NPS either
by enhancing the process of GA-PSO or by testing another heuristic algorithms.

5.2.2 Long Term Perspectives

Despite the big attention payed by the researchers in order to improve the healthcare applications, the
field is still open to research. Subsequently, several issues need to be more explored, that are related
on the data management; energy conservation, decision making; and patients-nurse scheduling. In
this section, we give some issues in order to attract the attention of researchers.

The first issue is based on the data collection techniques in WBSN. The integration of the Fe-
derated Learning (FL) technique in the process of the collect and transmit data prolong the network
lifetime and reduce the complexity of decision making.
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The second issue is related to the patients-nurse scheduling technique. Indeed, in the hospital
a nurse is distinguished from a nurse in activity, intelligence and experience. Therefore, in addition
to identifying the group of patients, assigning the right nurse to this group improve the provided
health services.

Finally, the time synchronization is one of the issue that is not yet largely explored. Any loss
or delayed cause a change in the time synchronization at the sink and therefore lead a maltreatment.
Subsequently, more effort should be made for enhancing the time synchronization in WBSN in
order to prevent any undesired patient’s situation.





Appendix A
Hadoop Implementation

The main objective of using Hadoop is to perform parallel data storage and processing thus it reduces
the effect of data loss during node failure and decreases the processing latency. Therefore, we used
hadoop tools in Chapter 3 in order to handle the big data generated from the patients.

A.1 Hadoop Starting

To show the effectiveness of our framework in store and process the big data with the diversity
of information in real time and the speed of generation, we implemented the system on hadoop
using ubunto, Figure A.1 presents the starting of a single hadoop node and Figure A.2 confirms that
hadoop is well installed.

Figure A.1 Hadoop starting.
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Figure A.2 jps.

A.2 Results based on Data Collected and Storage

The tool responsible for collecting data in our system is flume, Figure A.3 illustrated the properties
of flume. Flume stay active to be ready to receive data in real time shown in Figure A.4(a) and
deliver them for storage or processing purpose. In Figures A.4(b) and A.4(c) show that the data is
well delivered, and Figure A.4(d) confirms for users that the data is stored in HDFS.

Figure A.3 Properties of flume.
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(a) Flume starting (b) Data divided to events

(c) Data with prediction data stored (d) Data with prediction data stored

Figure A.4 Results based on Data Collected and Storage.
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