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Abstract

The affine Hecke algebra has a remarkable commutative subalgebra correspond-
ing to the coroot lattice inside the affine Weyl group. Its nature is encoded in the
Bernstein presentation and reveals some fundamental representation theoretic
properties of the Hecke algebra.

We consider categorifications of this algebra, namely the diagrammatic cat-
egory or the category of equivariant parity sheaves on the affine flag variety.
Then this subalgebra corresponds to a class of complexes (in the homotopy cat-
egory) called Wakimoto sheaves. In this thesis we study these objects in type
Ã1. Firstly we determine completely the extension groups between them over
characteristic zero fields. Secondly we describe a dg model which allows us to
compute these groups in the antispherical category for arbitrary coefficients.

To do so, we interpret these objects as Rouquier complexes. Over charac-
teristic zero fields one can compute their minimal complexes and use them to
determine the extension groups. In general, we consider a dg version of the
category of Rouquier complexes, where the extension groups are encoded in the
cohomology of the dg modules of morphisms. To study the latter, we extend the
diagrammatic presentation of the Hecke category to one for this dg category.

A key result is a general reduction of Rouquier complexes. Namely, over an
arbitrary coefficient ring, they admit representatives in the homotopy category
which are considerably simpler than the naive ones.
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...tótt e bèl, savéiv, l’è te zarchè

Tonino Guerra
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Introduction

Modular representation theory studies linear representations of groups in posi-
tive characteristic. In the case of reductive algebraic groups, a very important
object in the study of such representations is the affine Hecke algebra.

Recall that, given a reductive algebraic group G over an algebraically closed
field, with a Borel subgroup B and a maximal torus T , the affine Hecke algebra
H is a deformation of the group algebra of the affine Weyl group W attached to
this data. The latter contains the coroot lattice acting by translations tλ and
one can find, also in H, elements θλ with the property that θλ1θλ2 = θλ1+λ2 .
In other words we have a commutative subalgebra of H corresponding to the
lattice in W . Bernstein gave a presentation of the affine Hecke algebra which
highlights the properties of this lattice, and is very useful when trying to address
representation theoretic questions about H.

The affine Hecke algebra can be seen as the Grothendieck ring of some graded
monoidal additive category H which is called Hecke category. There are actu-
ally several versions of the latter, which are equivalent under certain assump-
tions. In the modular setting two versions are of particular interest: the category
of equivariant parity sheaves over the affine flag variety, and its diagrammatic
presentation. It is then natural to ask what the higher level counterpart of the
θλ’s is. To find an appropriate answer one should consider the mixed setting,
which in this case consists of the bounded homotopy category of H . Here
we find complexes Θλ which correspond to the θλ’s, called Wakimoto sheaves.
Hence, in order to somehow “lift” the Bernstein presentation to a categorical
level, one should understand the subcategory that these objects form, and, to
begin with, study the morphisms between them.

The homotopy category of H was already considered by Rouquier, and the
Wakimoto sheaves above are special cases of Rouquier complexes. The latter
form an interesting subcategory of Kb(H ) which is known to categorify (the
actions of) a quotient of the braid group associated with W . Hence, studying
morphisms between Wakimoto sheaves also acquires a topological meaning for
the categorified affine braid group.

In this thesis we study these morphism spaces in type Ã1 with arbitrary
coefficients. We use the diagrammatic description of the Hecke category by Elias
and Williamson and we extend it to a dg version of the category of Rouquier
complexes. A crucial step is a reduction of Rouquier complexes that can be
performed in general via Gaussian elimination.

We will describe our results in more detail at the end of the introduction,
but let us first take a step back and describe how the various objects that we
mentioned emerged and what role they play in representation theory.

1



2 INTRODUCTION

0.1 Hecke algebras and Hecke categories

Hecke algebras arise naturally in Lie theory, not only in the representation
theory of reductive algebraic groups over algebraically closed fields, but also of
finite groups of Lie type and p-adic groups. It soon became clear, also, that a
deeper understanding would come from the study of the “categorifications” of
the Hecke algebra.

0.1.1. Hecke algebras. Recall that one can define, for an arbitrary Coxeter
system (W,S), the corresponding Hecke algebra H(W,S). For the precise defi-
nition see § 1.2.1 below: it can be seen as a quotient of the group algebra over
Z[v, v−1] of the braid group corresponding to W by a certain deformed invo-
lution relation. One has then a standard basis {δw}w∈W labeled by elements
in the group W . We will refer to this description as the Iwahori-Matsumoto
presentation. Let now G, B and T be as above. Then these define: a (finite)
Weyl group Wf := NG(T )/T , where NG(T ) is the normalizer of the torus, with
a distinguished set of simple reflections Sf ⊂Wf making (Wf , Sf) a Coxeter sys-
tem; and an affine Weyl group W := Wf nZΦ∨, where ZΦ∨ is the coroot lattice
(contained in the cocharacter lattice X∨), which is again a Coxeter system with
respect to the set S of simple affine reflections.

In the rest of this introduction, we will write Hf for the finite Hecke algebra
H(Wf ,Sf ), and H for the affine Hecke algebra H(W,S).

0.1.2. Functional specializations. Let now q be a power of a prime p and
suppose G is split over Fq. Let also K be a field admitting a square root of q (for
instance C or Q`, with ` - q). Then, via the map v 7→ q−1/2, the finite Hecke
algebra Hf specializes to the algebra of bi-B(Fq)-invariant functions on G(Fq):

Hf ⊗Z[v,v−1] K ∼= K
[
B(Fq)\G(Fq)/B(Fq)

]
. (1)

The affine Hecke algebra H specializes to that of compactly supported bi-
I-equivariant funtions on G

(
Fq((t))

)
, where I is the Iwahori subgroup corre-

sponding to B (namely, the inverse image of B(Fq) via the evaluation map
G
(
Fq[[t]]

)
→ G(Fq) sending t to 0):

H⊗Z[v,v−1] K ∼= Kc

[
I\G

(
Fq((t))

)
/I
]
.

Taking q = p, one also has1

H⊗Z[v,v−1] K ∼= Kc

[
I\G(Qp)/I

]
,

for an analogous definition of I ⊂ G(Zp).
From this description one can see that part of the representation theory of the

groups G(Fq) or G
(
Fq((t))

)
and G(Qp) is controlled by that of the corresponding

Hecke algebras.

1This isomorphism was first established by Iwahori and Matsumoto [39], whereas (1) was
found by Iwahori [40].
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0.1.3. Bernstein presentation. Determining the center of H is fundamental
for its representation theory.

As we mentioned, one can find a large commutative subalgebra which cor-
responds to the lattice ZΦ∨ in W . This is somewhat hidden in terms of the
Iwahori-Matsumoto presentation: the elements δtλ , for tλ a translation in W , do
not commute in general. Instead, following Bernstein, we should write λ ∈ ZΦ∨

as a difference λ = µ − ν with µ and ν dominant, and consider the elements
θλ = δtµδ

−1
tν ∈ H. One can show that these are well defined and have the

property that θλ1θλ2 = θλ1+λ2 . One can then show that the commutative sub-
algebra that they span contains the center of H as the Z[v, v−1]-span of those
linear combinations of the θλ which are invariant under the action of Wf (see
[24, Ch. 7]).

Then, in the Bernstein presentation of H, instead of the generators δs0 ,
corresponding to affine simple reflections, one takes the elements θα∨ (for simple
coroots α∨), and imposes commutativity relations between them and relations
intertwining the θα∨ ’s with the other δs’s.

This presentation is also more natural, for example, for establishing the well
known isomorphism between the (extended2) affine Hecke algebra and the G∨×
Gm-equivariant K-theory of the Steinberg variety associated with the Langlands
dual group G∨ of G. This result, first proven by Kazhdan and Lusztig [45], plays
a fundamental role in the classification of the representations of H.

0.1.4. Kazhdan-Lusztig conjectures. One of the most celebrated results
showing the applications of the Hecke algebra in Lie theory was conjectured by
Kazhdan and Lusztig [46].

They showed that any Hecke algebra H(W,S) admits a canonical basis {bw},
which is self-dual with respect to a natural involution, and satisfying a certain
uni-triangularity property with respect to the standard basis. Then they con-
jectured that the canonical basis of Hf encodes the multiplicities of the simple
modules inside the Verma modules in the Bernstein-Gel’fand-Gel’fand category
O associated with a complex semisimple Lie algebra g with Weyl group Wf . This
was soon proved, independently, by Beilinson and Bernstein [13] and Brylinski
and Kashiwara [22], using the freshly developed theory of perverse sheaves from
[11], D-modules and the Riemann-Hilbert correspondence.

Partly motivated by this result, Lusztig [56] conjectured that the canonical
basis of H should govern in a similar way the characters of the simple represen-
tations of G over an algebraically closed field of characteristic p > 0.

0.1.5. Categorifications from the dictionary. Already from the well known
relation between the canonical basis and the intersection cohomology of Schu-
bert varieties [47], one can guess that the Hecke algebra is the shadow of some
higher level geometric object.

If we consider the functional specializaion of the Hecke algebra, then, accord-
ing to the Grothendieck philosophy of the function-sheaf dictionary, a natural
candidate should be some category P of equivariant `-adic perverse sheaves over
the (affine) flag variety G/B (or G((t))/I), defined over the algebraic closure Fq
(recall that this space admits a nice stratification by affine spaces, labeled by

2This means that one should replace ZΦ∨ with X∨
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the corresponding finite or affine Weyl group). Then the specialized Hecke alge-
bra can be seen as a decategorification of this category (more precisely one gets
back functions as alternate sums of traces of the Frobenius endomorphism over
stalks at Fq-points). Here the standard basis elements δw are “categorified” by
standard perverse sheaves ∆w, and their inverses by costandard perverse sheaves
∇w, whereas the product becomes the convolution operation.

Then, mimicking the construction of Bernstein, Mirković introduced, for
λ = µ − ν as before, the objects Θλ := ∆µ ∗ ∇ν , called Wakimoto sheaves, as
as a categorification of the θλ’s (see for example [9]).

The canonical basis elements bw are categorified by the intersection coho-
mology sheaves ICw. Furthermore, as the field of coefficients has characteristic
zero, the Decomposition Theorem from [11] guarantees good properties of these
objects under the push-forward functor: this implies that the subcategory of
direct sums of shifted IC’s (usually called “semisimple” complexes) is closed
under convolution. If we now take the split Grothendideck ring of this additive
category we obtain the non-specialized Hecke algebra, where the multiplication
by v is categorified by the shift. This is a first version of the Hecke category.

0.1.6. Mixed version. As was pointed out by Beilinson, Ginzburg and So-
ergel [12], it is actually more convenient, for applications in representation the-
ory, to consider the category Pmix of mixed perverse sheaves. This category is
equipped with a Tate twist and can be thought as a graded version of P with
nice properties: for instance, it exhibits Koszul duality.

The standard, costandard and Wakimoto sheaves from above lift to Pmix,
and it is then natural to investigate their properties inside this category. In par-
ticular, understanding the subcategory of Wakimoto sheaves, which categorify
the lattice part of the Hecke algebra, is a first step for a higher level version of
the Bernstein presentation. A basic information in this direction is given, for
instance, by morphism spaces and extension groups between them.

To understand similar homological properties of this category, it is useful
to consider an appropriate derived setting. Achar and Riche [2] introduced a
t-category Dmix, whose heart identifies with Pmix, in term of the homotopy cate-
gory of complexes of pure sheaves. Furthermore they proved that the realization
functor Db(Pmix)→ Dmix is an equivalence in this case.

0.2 Modular setting

One can also construct the Hecke category, in an analogous way, with varieties
defined over the complex numbers. This allows us to treat any characteristic,
or even to take integral coefficients. Hence this is the preferred version in the
modular setting. Nevertheless several issues occur. On the one hand, because
of the failure of the Decomposition Theorem in positive characteristic the above
category of semisimple complexes is not well-behaved anymore and, on the other
hand, because of the absence of the Frobenius endomorphism, it is not clear how
to replace notions like mixed and pure.

0.2.1. Parity sheaves. After observing that the techniques of de Cataldo
and Migliorini [26] can be used to measure the failure of the Decomposition
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Theorem in positive characteristic, Juteau, Mautner and Williamson [43] in-
troduced the category of parity sheaves, which restores the compatibility with
push-forward and convolution as before, and hence provides a suitable replace-
ment for semisimple complexes. For characteristic zero coefficients these two
categories coincide. Hence the category of equivariant parity sheaves over the
(affine) flag variety is called the geometric Hecke category.

0.2.2. Modular mixed perverse sheaves. The question of finding appro-
priate replacements for the mixed categories in the modular setting is one of
the topics of a trilogy of papers by Achar and Riche [5, 6, 7]. They define
the modular version of the mixed derived category as the homotopy category
of complexes of parity sheaves (instead of pure sheaves). They also define a
t-structure in this category whose heart is the modular version for mixed per-
verse sheaves, with an analogue of the Tate twist, which again can be seen as a
graded version of the category of perverse sheaves.

In this category we have standard and costandard objects and we can con-
sider as before the Wakimoto sheaves. Furthermore in this setting the realization
functor is an equivalence, and for flag varieties this is true also in the equivari-
ant setting. Hence, extension groups between (modular) mixed perverse sheaves
can be computed as shifted morphism spaces in the (modular) mixed derived
category, which means: between the corresponding complexes of parity sheaves.

0.2.3. Diagrammatic category. The geometric Hecke category admits a pre-
sentation by generators and relations, introduced by Elias and Williamson [34].
This was initially a presentation for the category of Soergel bimodules, intro-
duced in [65] as an algebraic model of the Hecke category, obtained via equiv-
ariant cohomology from the semisimple geometric version in characteristic 0.
See § 2.1.1 below for a brief account on this construction.

One first observes that the Hecke category is obtained by Karoubian com-
pletion from (the additive hull of) a certain Bott-Samelson category, that can
be thought of as its monoidal skeleton. Hence one can give a presentation to
this smaller category and then recover the whole Hecke category formally. The
generating objects, denoted Bs, correspond to simple reflections, and are rep-
resented as colored points (one color for each s ∈ S). The morphisms between
tensor products of the Bs’s are described by certain diagrams inside the strip
R× [0, 1]. Namely, these are planar graphs obtained from some generating ver-
tices, that connect the sequences of colored points corresponding to the source
and the targets, identified by some relations. For more detail see § 2.1 below.

This diagrammatic Hecke category, denoted by H , only depends on the Weyl
group and its action on the character lattice, so it is actually available for any
Coxeter system, equipped with a realization h (i.e. a finite rank representation
over the coefficient ring satisfying certain properties).

Furthermore we have explicit bases for the morphism spaces, given in terms
of light leaves maps. These were first introduced by Libedinsky [53], and then
described diagrammatically in [34].

0.2.4. Character formulas and Hecke actions. As a side remark, to fur-
ther illustrate the importance of this category in modular representation theory,
let us mention the following. If k is a complete local ring (with residue field of
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characteristic p), then (either version of) the Hecke category is Krull-Schmidt
and the basis of indecomposables in the split Grothendieck group, which is the
Hecke algebra, is called the p-canonical basis. This coincides with the canonical
basis only for very large values of p and, in the affine case, it turned out to
be a much better replacement in character formulas along the lines of Lusztig’s
conjecture.

Furthermore, one can establish an action of the affine Hecke category on
the principal block of the category of representations of G. This was conjec-
tured by Riche and Williamson [60], and proved by Ciappara [25] via Smith-
Treumann theory, and independently by Bezrukavnikov and Riche [15], using
Harish-Chandra bimodules and the revisited version of Soergel bimodules de-
scribed by Abe [1].

0.3 Rouquier complexes

Let us now go back to our problem and rephrase it in terms of the homotopy
category Kb(H ) of the (diagrammatic) Hecke category. For a simple reflection
s the standard and costandard sheaves correspond to certain complexes denoted
by Fs and F−1

s , and the Wakimoto sheaves will then correspond to certain tensor
products between these. For a general Coxeter group W , the objects obtained
as products between the F±1

s in all possible ways are called Rouquier complexes,
and they form a very interesting subcategory of Kb(H ).

Our first result is a general reduction which can be performed on these
objects, so let us introduce them more precisely.

0.3.1. The 2-braid group. Rouquier complexes were introduced in [63] in or-
der to define a categorification of the braid group BW associated with a Coxeter
system (W,S).

Actions of braid groups on categories appeared in representation theory al-
ready in the works of Carlin [23] or Rickard [61], and a precise definition was
made by Deligne [27]. They describe higher symmetries of the categories acted
upon and usually give rich information about them. A classical example is the
braid action on Db(O), the bounded derived category of the aforementioned
category O, or, as a geometric counterpart, on Db(G/B).

Rouquier pointed out the interest of studying the category of self-equivalences
induced by these actions and understand tranformations between them. He in-
troduced the 2-braid group BW , that upgrades the braid group to a category
which serves as a model to understand this kind of transformations. This is the
subcategory of Kb(H ) mentioned above: one can associate any braid ω to a
Rouquier complex Fω and obtain a functor

BW −→ BW

ω 7−→ Fω

where BW is considered as a category with only the identity maps. Rouquier
conjectured this to be faithful. This was shown in type A by Khovanov and
Seidel [52], in simply laced finite type by Brav and Thomas [21], and in all finite
types by Jensen [41].
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0.3.2. Link invariants. This category also plays an important role in alge-
braic topology. Khovanov and Rozansky [51] began the construction of link
invariants from Rouquier complexes, that was made precise by Khovanov [50]
as a triply graded link homology. The idea is that the homology of the com-
plex obtained computing Hochschild (co)homology of the Rouquier complex Fω
associated to a braid ω, is an invariant, up to an overall shift, of the link ω
obtained by closing ω (Rouquier complexes come with a cohomological and a
polynomial degree, and Hochschild homology provides a third grading).

0.4 Results

Let us now describe the results of this thesis in more detail.

0.4.1. Soergel calculus with patches. First we consider the dg category

of complexes Cb
dg(H ) with objects in the Hecke category. We extend the dia-

grammatic description of H to one for the subcategory of Cb
dg(H ) generated

by Rouquier complexes. We consider the complexes of the form:

F±1
s1 F

±1
s2 . . . F±1

sn . (2)

The associated graded objects splits into Bott-Samelson objects (one for each
subexpression of s1s2 . . . sn), each of which lies in a certain cohomological degree.
Roughly speaking, morphisms between two such complexes are again linear
combinations of diagrams, but in each diagram one has to specify the starting
and ending summand. To do this one covers some of the boundary points by
patches, thus picking a certain subexpression of the starting (and ending) word.
Then we describe the rules to compute the image via the differential of a certain
morphism.

With this language we recover some classical results about Rouquier com-
plexes. Namely, in Theorem 2.9 we establish the categorification of the relations
in the braid group: {

FsF
−1
s ' F−1

s Fs ' 1 for s ∈ S,

FsFtFs · · · ' FtFsFt . . . fot s, t ∈ S.

Then, in § 3.1.7, we prove the so-called Rouquier formula. Given an element
w ∈ W , its positive lift is obtained by replacing each simple reflection in any
reduced word for w by the corresponding positive generator of the braid group.
One can show that this is a well defined element of the braid group. Similarly
one defines the negative lift. Let then ω is the positive lift of an element w of
W , and ν is the negative lift of another element v, then

HomKb(H )(Fω, Fν) =

{
R if w = v,

0 otherwise.

0.4.2. A general reduction for Rouquier complexes. Our main result
about Rouquier complexes is however a general homotopy reduction on the
complexes (2). We consider a positive Rouquier complex, of the form:

F •w = Fs1Fs2 . . . Fsn
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for si ∈ S. As we said, as a graded object, this is the direct sum of Bott-
Samelson objects indexed by the 2n subexpressions of w = s1s2 . . . sn. We find
a summand Fw which, as a grade object, is a direct sum indexed over subwords
(each of which can correspond to several subexpressions). Then we show the
following.

Theorem. The inclusion of the complex Fw in F •w is a homotopy equivalence.

When the category H is Krull-Schmidt (see Theorem 2.4), any complex
admits a minimal subcomplex : a homotopy equivalent summand with no con-
tractible direct summand. Furthermore, one can show that this is unique up to
isomorphism. The minimal subcomplex is very hard to find in general, but one
can see our result as a first step of such a reduction, available with no restriction
on the coefficients. Let us see an example of our simplification.

Example 0.1. Let w = ssttss. The original complex F •w is drawn in Figure 1.

It is a cube of dimension 6, whose vertices are labeled by the 26 = 64 subex-
pressions of ssttss. The arrows (the edges of the cube) describe the differential
map: each subexpression has a map towards those subexpressions that can be
obtained by canceling a symbol from it. The complex Fw instead is showed in

Figure 1: A picture of the complex F •ssttss.
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∅
s

t

ss

st

ts

tt

sss

sst

sts

stt

tss

tts

ssss

ssts

sstt

stss

stts

ttss

sstts

sstss

sttss

ssttss

Figure 2: The complex Fssttss.

Figure 2. The vertices this time are labeled by the 23 subwords and the arrows
(representing the new differential) connect a certain word with all its subwords
(the symbol ∅ denotes the empty word).

This reduction is obtained via a strong use of Gaussian elimination for com-
plexes. This is a tool from homological algebra which allows to reduce a given
complex when some component of the differential is an isomorphism. In § 3.2.1,
we develop a “large scale” version of this technique.

We then adapt the diagrammatic description of the morphisms for the com-
plexes Fw. Roughly speaking, this allows us to get rid of patches. Nevertheless,
the first version of the category keeps a certain interest: for instance it is a dg
monoidal subcategory of Cb

dg(H ).

0.4.3. Wakimoto sheaves in type Ã1. Then we pass to the main problem
of this thesis: describe morphisms between Wakimoto sheaves. We address this
problem in type Ã1. Here the Wakimoto sheaves are indexed by the integers.

First we assume that k is a characteristic zero field. In this case one can ac-
tually compute the minimal subcomplexes of the Wakimoto sheaves. In § 4.2.4,
we use this to compute the extension groups. The result is described in Table
1, where the cell (n, j) shows the space Hom(Θ−n,1[j]) (for positive values of
the index, one gets zero by the Rouquier formula).

n
j

0 1 2 3 4 5 6 7 8 9 . . .

0 R
1 k(2)
2 k(0) k(4)
3 k(−2) k(2) k(6)
4 k(−4) k(0) k(4) k(8)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1: The morphism space Hom(Θ−n,1[j]).
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For a more general coefficient ring it is much harder to find the minimal
subcomplex, and, if the category is not Krull-Schmidt, this is not even well
defined. Nevertheless we can use our general reduction to describe morphism
spaces in the dg category of complexes. We consider the dg module of morphisms

Hom•(Θ−n,1). (3)

The problem of finding the extension groups is equivalent to computing the
cohomology of this complex. The dg module (3) is free as a left dg R-module
with a basis given by a certain version of the light leaves maps. The differential
is now described by matrices with entries in R. A crucial observation is that
many of these entries are just ±1 so we can use Gaussian elimination to simplify
the complex of morphisms. In this way, in § 4.3.4, we find a much simpler model
for (3), homotopy equivalent to it. It is still hard to compute its cohomology but
the complexity is remarkably decreased. Furthermore this allows us to compute
the cohomology in the antispherical category, considered in [60] or [55].

0.4.4. Extension in the antispherical category. We are then able to de-

scribe the extension groups between the images IΘn of the Wakimoto sheaves
in the antispherical category, with arbitrary coefficients.

The result is expressed in terms of two-color cyclotomic polynomials φn,
a certain data depending on the realization of the Coxeter system. For the
standard Cartan matrix, φn is the exponential of the Von Mangoldt function:

φn =

{
p if n = pr for a prime p,

1 otherwise.

Let P̂ (k) denote the set of partitions of a positive integer k such that each part
divides the next. For λ = (λ1, . . . , λi) ∈ P̂ (k), consider the cube of the following
form (the picture is for i = 3).

k k

⊕ ⊕

k k k k

⊕ ⊕

k k

−φλ2
−φλ3

φλ3φλ1

φλ2

φλ3

φλ1 −φλ3

φλ1

φλ2

−φλ3

φλ1

One can show that the complex Hom•(IΘ−n,1) reduces to many small cubes as
above, each with a certain shift. So we can compute the cohomology of each of
them and then patch the contributions together.

For λ ∈ P̂ (k), let Iλ be the ideal of k generated by the corresponding cyclo-
tomic polynomials:

Iλ = (φλ1
, φλ2

, . . . , φλk−1
, φλk).

Then it is easy to see that the cohomology of a cube as above is k/Iλ in the top
degree and zero elsewhere.
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One finally obtains the following pattern. For a given partition λ with k
parts and with d distinct numbers appearing, the weight |λ| is defined as 2k−d.
Then we define the graded k modules Hk as follows:

H1 = k, Hk :=
⊕

λ∈P̂ (k)

k/Iλ[1− |λ|], for k > 2.

Then we have (see Theorem 4.33 below):

Theorem. The cohomology of Hom•(IΘ−n,1) is

2n⊕
i=2

Hbi/2c[i− 2− 2n],

where b·c denotes the floor function.

We display the cohomology for the first values of n in Table 2 at page 13.
The entry i stands for k/(φi), and (i, j) for k/(φi, φj). Stacked entries represent
direct sums. So, for example the entry

6
2,4
2

means k/(φ6)⊕k/(φ2, φ4)⊕k/(φ2). Notice that, in characteristic zero, the only
part that would survive is the upper “stair” of k’s.

0.5 Perspectives

0.5.1. DG model for the affine Hecke category. In order to really obtain
a Bernstein presentation of the affine Hecke category, one could try to use the
information about the morphism spaces to find a dg model for it. For example,
by constructing a dg monoidal category B, by generators and relations, that ad-
mits a quasi-equivalence from the dg category 〈F±1

s 〉 generated by the Rouquier
complexes. This means a dg functor 〈F±1

s 〉 → B such that the induced maps
between morphism complexes give isomorphisms in cohomology. This would be
a dg model for the triangulated category generated by standard and costandard
objects in Kb(H ). In fact one could take the triangulated envelope (in the sense
of [17]: see also [49] or [18]) and the above functor would induce a triangulated
monoidal equivalence. An example is the category of patches mentioned above,
but it is somehow “tautological” because the corresponding dg functor is an
isomorphism. One could hope to find a more insightful model which captures
more closely the structure of the morphism spaces at the triangulated level.

0.5.2. The coherent realization. The affine Hecke category also admits an-
other geometric realization. In fact, as it was shown by Bezrukavnikov in [14],
realizing a project started with Arkhipov in [8], one can categorify the classical
isomorphism between the affine Hecke algebra and the equivariant K-theory of
the Steinberg variety associated with the Langlands dual group. One should
actually consider the derived category of G∨-equivariant coherent sheaves on
the dg scheme Ñ∨ ×L

g∨ Ñ∨, where g∨ is the Lie algebra of the Langlands dual

group G∨ and Ñ∨ is the Springer resolution of the associated nilpotent cone.
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This category is then equivalent to the I-equivariant derived category of sheaves
on the affine flag variety. Hence it would also be extremely interesting to un-
derstand the meaning of our calculations on the constructible side in terms of
this coherent realization. The equivalence is shown via Koszul duality from an-
other equivalence between the I0-equivariant derived category of sheaves on the
extended affine flag variety G((t))/I0, where I0 is the pro-p radical of I, and the
derived category of G∨-equivariant coherent sheaves on g̃∨ ×g∨ g̃

∨, where g̃∨ is
the Grothendieck-Spinger resolution. Hence a first possibility to proceed would
be to follow these steps in the SL2 case. In this simple case one could actually
also try to describe the above dg scheme more directly.

0.5.3. Generalizations and the case of type A. Of course another natural
direction to proceed is to try to generalize the study of Wakimoto sheaves to
other types, starting from Ã2. In parallel, one could try to go further in the
reduction of Rouquier complexes, for example extending our results to all words
and not only positive or negative.

Finally, we also mention that Gorsky, Neguţ and Rasmussen proposed in
[36] the construction of a monoidal functor from the derived category of coher-
ent sheaves on the flag Hilbert scheme to the homotopy category of the Hecke
category, which categorifies the maximal commutative subalgebra of the Hecke
algbebra in type A. It would also be very interesting to find some relations
between our computations on Rouquier complexes and this geometric interpre-
tation.
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n
j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 . . .

0 k . . .
1 k k . . .
2 2 k k . . .
3 3 2 2 k k . . .
4 4 3 3

2 2 2 k k . . .
5 5 4 4 3

2
3
2 2 2 k k . . .

6 6 5
2,4

5
3 4 4

2
3
2

3
2 2 2 k k . . .

7 7 6 6
2,4

5
2,4
3

5
3 4 4

2
3
2

3
2 2 2 k k . . .

8 8 7
2,6

7
4

6
2,4

6
2,4

5
2,4
3

5
3
2

4 4
2

3
2

3
2 2 2 k k . . .

9 9 8
3,6

8
2,6

7
2,6
4

7
4

2,4
3

6
2,4

6
2,4

5
2,4
3
2

5
3
2

4 4
2

3
2

3
2 2 2 k k . . .

10 10 9
2,8

9
3,6
5

8
3,6
2,6
2,4

8
2,6

7
2,6
4
3

2,4

7
4

2,4
3

6
2,4

6
2,4
2

5
2,4
3
2

5
3
2

4 4
2

3
2

3
2 2 2 k k . . .

11 11 10 10
2,8

9
2,8
5

9
3,6
5

2,6
2,4

8
3,6
2,6
2,4

8
2,6
2,4

7
2,6
4
3

2,4

7
4

2,4
3

6
2,4
2

6
2,4
2

5
2,4
3
2

5
3
2

4 4
2

3
2

3
2 2 2 k k . . .

12 12
11

2,10
3,9
4,8

11
6

10
2,8
3,6

10
2,8
4

9
2,8
5

2,6
2,4

9
3,6
5

2,6
2,4
3

8
3,6
2,6
2,4
2,4

8
2,6
2,4

7
2,6
4
3

2,4

7
4

2,4
3
2

6
2,4
2

6
2,4
2

5
2,4
3
2

5
3
2

4 4
2

3
2

3
2 2 2 k k . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2: The cohomology of Hom•(IΘ−n,1).
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Chapter 1

Coxeter systems and Hecke
algebras

In order to introduce our main problem, we need to recall some basic notions
and establish notation. In this first chapter, we give the definitions of Coxeter
groups, braid groups and Hecke algebras, with particular attention to those
corresponding to finite and affine Weyl groups attached to reductive algebraic
groups. We will omit the proofs and refer the reader to [16, 20, 38].

1.1 Coxeter systems and braid groups

1.1.1. Coxeter systems. The following fundamental notion gives a general
framework to study finite and affine Weyl groups.

Definition 1.1. A Coxeter system is a pair (W,S) with W a group (where 1
denotes the neutral element) and S ⊂W a subset such that:

(i) each s ∈ S is an involution, so s2 = 1;

(ii) if, for s, t ∈ S, the order of st in W is mst ∈ N ∪ {∞} (so in particular
mss = 1 for each s ∈ S), then the natural morphism

〈s ∈ S | (st)mst = 1, if mst <∞〉 →W

is an isomorphism.

Then W is called Coxeter group, the elements of S are called simple reflec-
tions, and their conjugates are called reflections. The relations (st)mst = 1 can
also be written

stst . . .︸ ︷︷ ︸
mst

= tsts . . .︸ ︷︷ ︸
mst

and are called braid relations.
In this thesis we will only consider the case of finitely generated Coxeter

systems, when |S| < ∞. A particular case is when |W | < ∞. It is well known
that finite irreducible Coxeter groups can be classified into the families

A,B = C,D,E, F,G,H or I.

For more details, see [38, Ch. 2] or [20, Ch. VI, § 4].

15
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Example 1.2. (i) The most basic example of Coxeter system is the symmetric
group on n symbols with the subset of consecutive transpositions:

W = Sn = {permutations of the numbers 1, . . . n}
S = {si = (i, i+ 1) | i = 1, . . . , n− 1}

where (i, i+ 1) denotes the transposition exchanging i and i+ 1. Then it
is easy to see that

s2
i = 1

sisi+1si = si+1sisi+1 for i = 1, . . . , n− 1

sisj = sjsi for |i− j| > 1

and that these relations give a presentation of Sn. The reflections in this
case are the transpositions.

A Coxeter system of this form is said of type An−1 and it can be seen as
the symmetry group of the (n − 1)-simplex [v1, . . . vn]: the generator si
corresponds to the reflection exchanging vi and vi+1 and leaving all the
other vertices fixed.

For example, the group S4 is the group of symmetries of the tetrahedron.

Each reflection plane contains an edge and the mid point of the opposite
edge. They cut the surface of the tetrahedron along the gray lines in the
picture. The group is generated, for example, by the reflections across
the three planes corresponding to the colored segment in the picture. The
triangle they form is a fundamental domain for the action of the group on
the surface of the tetrahedron.

(ii) The subgroup of symmetries of a regular polygon of m sides in the Eu-
clidean plane is a Coxeter system with respect to the reflections s and t
across two consecutive axes, as in the picture.

s

t

s

t
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In this case the presentation is

〈s, t | s2 = t2 = (st)m = 1〉.

This is the dihedral group, of type I2(m).

(iii) One can take m = ∞ in the last example and get the infinite dihedral
group which can be seen as the subgroup of transformations of the real
line generated by the reflections across 0 and a positive number ρ.

−ρ−4ρ −3ρ −2ρ 2ρ 3ρ 4ρ0

s

ρ

t

This is the Coxeter group of type Ã1: as we will see later, it is the affine
Weyl group associated to that of type A1. Reflections in this case are
just odd-length elements. The other elements are translations by even
multiples of ρ. The group is then the semidirect product of the translation
lattice and the group generated by the reflection across the origin s:

W = 〈s〉n Z.

Let WS be the free monoid generated by S. Its elements are called Coxeter
words and will be denoted by underlined letters. We say that a word is one color
if it contains only (repetitions of) one letter. If w is a Coxeter word, we say
that it expresses the element w ∈W if w is its image via the natural morphism
WS → W (this morphism is surjective because each s is an involution). Let
`(w) denote the length of w, i.e. the number of its letters. The word w is said
to be reduced if there is no shorter word expressing w. This defines a length
function ` : W → N, where `(w) is the length of any reduced word for w.

For w, x ∈WS , we say that x is a subword of w, and we write x � w, if x is
obtained from w by erasing some letters. In other words, if w = s1s2 · · · sn with
si ∈ S, then x is of the form si1si2 · · · sir , with 1 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ n. A
subexpression is instead the datum of a subword together with the information
of the precise positions of the letters in the original word. This can be encoded
in a 01-sequence e ∈ {0, 1}n where the ones correspond to the letters that we
pick and the zeros to those we do not pick.

Example 1.3. Let w = s4s2s5s1s1s3. Then x = s4s2s1 is a subword, obtained
by erasing s5, s3 and one of the two s1’s. It corresponds to both subexpressions
110010, which picks the first occurrence of s1, and 110100, which picks the
second one.

The Bruhat graph is the directed graph whose vertices are the elements
w ∈W and there is a directed edge from w to all elements of the form wt with
t a reflection such that `(wt) > `(w). Then we define the Bruhat order as the
transitive closure of the relation defined by the Bruhat graph.

1.1.2. Basic properties of Coxeter systems. Here are some important
properties of Coxeter systems that we will use in the sequel.
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Exchange Property. Let s ∈ S and w = s1 . . . sk be a reduced Coxeter word for
w ∈W . If `(sw) ≤ `(w) then there exists a j with 1 ≤ j ≤ k such that

ss1 . . . sj−1 = s1 . . . sj−1sj .

Then one can deduce that for each s ∈ S and w ∈ W we have either
`(ws) < `(w) or `(ws) > `(w). In the first case we say that s is in the
right descent of w (and one can define the left descent analogously). The
Exchange Property also implies that if s is in the right descent of w then w
admits a reduced word ending with s (and similarly for the left descent).
See [16, Theorem 1.4.3], [20, IV, § 1.4, Lemma 3], [38, § 1.7].

Word property (or Matsumoto Theorem). Two reduced words w1 and w2 for
the same element w ∈ W can be transformed one into the other only via
applications of the braid relation.

Consider, for a given w ∈ W , the graph whose vertices are the reduced
words for w and the edges are given by single applications of the braid
relations. Then the Word Property implies that this graph is connected.
A path in this graph, which is nothing but a sequence of applications of
braid relations, is called braid move. See [16, Theorem 3.3.1].

Longest element. If W is finite, there exist a unique element w0 of maximal
length (which is also maximal in the Bruhat order). See [16, Theorem
2.3.1], [20, IV, § 1, Ex. 22], [38, § 1.8].

1.1.3. Root data and Weyl groups. Let now G be a reductive algebraic
group over an algebraically closed field. The unfamiliar reader can find details
for the following material in [19, Ch. IV], [37, Ch. VIII-X] or [66, Ch. 6-8].

Fix a Borel subgroup B and a maximal torus T . Then recall that, if
NG(T ) is the normalizer of the torus, then the quotient Wf := NG(T )/T is
a finite group called the Weyl group. Recall also that T defines a root datum
(X,ZΦ, X∨,ZΦ∨), where X = Hom(T,Gm) and X∨ = Hom(Gm, T ) are respec-
tively the character and cocharacter lattices containing the sets Φ of roots and
Φ∨ of coroots. The spans ZΦ and ZΦ∨ are called root lattice and coroot lattice
respectively. By definition, the Weyl group acts naturally on these lattices, and,
furthermore, each root α is associated with a reflection sα ∈Wf which acts via

sα(λ) = λ− 〈λ, α∨〉α ∀λ ∈ X
sα(λ∨) = λ∨ − 〈α, λ∨〉α∨ ∀λ∨ ∈ X∨

where 〈· , ·〉 denote the natural pairing X × X∨ → Z. The Borel subgroup B
determines Z-bases of simple roots and coroots ∆ and ∆∨ of ZΦ and ZΦ∨ re-
spectively, such that, if Φ+ = N∆ ∩ Φ and Φ− = −Φ+, then Φ decomposes as
Φ+ t Φ− (and similarly for coroots). Here N∆ (and N∆∨) denotes the set of
linear combinations of simple (co)roots with non-negative integer coefficients.
If we consider the vector spaces V = R ⊗ ZΦ and V ∨ = R ⊗ ZΦ∨, then Φ and
Φ∨ define a root system, in the sense of [20, VI, § 1.1]. The matrix (〈α, α∨〉)α∈∆

is called Cartan matrix and it determines Wf and its action on the (co)root
lattice completely. If we set Sf = {sα | α ∈ ∆}, the pair (Wf , Sf) is a Coxeter
system. The groups of this form are all crystallographic: the orders mst all
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belong to {1, 2, 3, 4, 6}. Vice versa, all finite crystallographic Coxeter groups
are Weyl groups, and the irreducible root systems are classified by the fami-
lies A,B,C,D,E, F,G. The corresponding Weyl groups are then the Coxeter
systems of the first seven families from above.

Example 1.4. (i) For G = SL2, identifying both X and X∨ with Z (the pair-
ing is just multiplication), we have Φ = {±2}, and Φ∨ = {±1}.

−3 −2 −1 0 1 2 3

α

−3 −2 −1 0 1 2 3

α∨

The Weyl group is W = {1, s} where s is the reflection across 0.

(ii) If G = SL3, then X and X∨ are free Z-modules of rank 2 that we can
picture as follows:

αβ
α∨β∨

The gray points are the (co)characters and the arrows are the (co)roots.
The lines are the hyperplanes for the reflections in Wf : the red and blue
ones are a choice of simple reflections corresponding to ∆ = {α, β}.

(iii) If G = Sp4, again X and X∨ are free Z-modules of rank 2 of the form:

α

β

α∨

β∨

Recall that λ ∈ X is called dominant if 〈λ, α∨〉 ≥ 0, for all α∨ in ∆∨.
Dominant cocharacters are defined similarly. The closure of

{x ∈ V | 〈x, α∨〉 > 0}

is called dominant chamber (yellow in the pictures) and it is a fundamental
domain for the action of Wf on V (and similarly for V ∨).
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1.1.4. The Affine Weyl group. One defines the affine Weyl group as

W := Wf n ZΦ∨.

The elements corresponding to λ ∈ ZΦ∨ are denoted by tλ: one can consider an
induced action of W on ZΦ∨ where the tλ’s act by translation.

The group W is generated by affine reflections of the form

sα,k = tkα∨sα (α ∈ Φ, k ∈ Z).

One can show that W again forms a Coxeter system with the set S = Sf ∪ S0

where we added some additional affine simple reflections. If W is irreducible,
then S0 contains only one affine simple reflection which is sα̃,1, where α̃ is the

highest root. Then one uses the letters Ã, B̃, C̃, . . . to identify the families of
irreducible affine Weyl groups associated to the corresponding root systems.
Notice, for instance, that, even if the Weyl groups of type B and C are isomor-
phic as Coxeter systems, the affine Weyl groups of type B̃ and C̃ are not. For
more details see [20, VI, § 2].

Example 1.5. We have already seen in Example 1.2 (iii) the affine Weyl group of
type Ã1: if the only positive coroot α∨ is identified with 1 then, in the notation
of that example, we have ρ = 1

2 .

Here are the pictures of the affine Weyl groups of type Ã2 and B̃2.

0

α∨β∨

0 α∨

β∨

The affine reflection lines are drawn in grey. The dashed arrows are the simple
coroots: the highest root is α̃ = α + β for A2 and α̃ = α + 2β for B2, then α̃∨

is α∨ + β∨ in both cases. The reflection s0 is then is tα∨+β∨sα+β for Ã2 and

tα∨+β∨sα+2β for B̃2. In the pictures the simple reflections in Sf are red and
blue and the simple affine reflection s0 is green.

The closure in V of any connected component of the complement of the
reflecting hyperplanes is called alcove. The only one containing 0 and contained
in the dominant chamber is called fundamental alcove A0, yellow in the pictures
above. Then we have the two following properties.

(i) The action of W on V gives a bijection

W ←→ {alcoves}
w 7−→ w(A0)

(ii) One can compute the length of an element w ∈W as the number of hyper-
planes separating the fundamental alcove A0 from w(A0) (a hyperplane is
said to separate two alcoves, if they lie in different sides with respect to
it).
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1.1.5. Braid groups. Let (W,S) be a Coxeter system. We associate to it the
corresponding Artin-Tits group (or generalized braid group) BW . One takes the
free group generated by the set S and quotients it by only braid relations:

BW = 〈σs, s ∈ S | σsσt . . .︸ ︷︷ ︸
mst

= σtσs . . .︸ ︷︷ ︸
mst

〉

Hence we have a natural surjection BW � W sending both σs and σ−1
s to s.

Let Σ+ = {σs}s∈S , Σ− = {σ−1
s }s∈S and Σ = Σ+ t Σ−.

Example 1.6. For W of type An we recover the classical braid group on n + 1
strands. For example, for n = 2, the group BW is

〈σs, σt | σsσtσs = σtσsσt〉.

The isomorphism with the classical braid group on 3 strands is given by:

σs ↔ σt ↔

σ−1
s ↔ σ−1

t ↔

Recall that the composition ω1ω2 in the braid group is obtained by stacking ω1

on top of ω2. Then, for example, we have:

σsσ
−1
t σsσ

−1
t σsσ

−1
t ↔

The surjection BW → W is in this case the map sending a braid to the corre-
sponding permutation (for the above braid this is just the identity).

Let WΣ be the free monoid generated by Σ. Its elements are called braid
words. Then WS is naturally a submonoid of WΣ. We call the elements of Σ+

(and Σ−) positive letters (respectively negative letters). A braid word is called
positive (or negative) if all its letters are. The notion of subword is defined in
WΣ in the same way as in WS .

We call Coxeter projection the map WΣ →WS , sending both σs and σ−1
s to

s. This has two distinguished sections: any Coxeter word w = s1s2 . . . sk has a
positive word lift σs1σs2 . . . σsk and a negative word lift σ−1

s1 σ
−1
s2 . . . σ−1

sk
. By the

Word Property above, these also descend to sections W → BW sending w to
the braid expressed by the positive (or negative) word lift of any reduced word
for w. This is called positive (negative) lift.

Given a non-empty ω ∈WΣ, we can write it as

ω1ω2 . . . ωk (1.1)

where ωi are non-empty words such that:
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(i) each ωi is either positive or negative;

(ii) ωi is positive if and only if ωi+1 is negative.

We call (1.1) the alternating decomposition of ω.

Finally we call degree the morphism of monoids

δ : WΣ → (Z,+)

with δ(σs) = 1 and δ(σ−1
s ) = −1. Hence, if ω = σ1 · · ·σn, then

δ(ω) =

n∑
i=1

δ(σi) = |{i | σi ∈ Σ+}| − |{i | σi ∈ Σ−}|

Notice that the restriction of δ to WS is just the function counting the number
of letters of a Coxeter word.

1.2 Hecke algebras

1.2.1. The Hecke algebra. Let (W,S) be a Coxeter system and consider the
ring Z[v, v−1] of integral Laurent polynomial in one variable.

Definition 1.7. The Hecke algebra H(W,S) is the Z[v, v−1]-algebra generated
by {δs}s∈S with relations

(δs + v)(δs − v−1) = 0 for all s ∈ S
δsδt . . .︸ ︷︷ ︸
mst

= δtδs . . .︸ ︷︷ ︸
mst

if mst <∞

Notice that H(W,S) can be seen as the quotient of the group algebra of the
braid groupBW over Z[v, v−1], by the above v-deformed version of the involution
relation in W .

By the first relation, the elements δs are invertible: namely

δ−1
s = δs + v + v−1.

One endows H(W,S) with the Z-linear ring involution (·), called duality, deter-

mined by v = v−1 and δs = δ−1
s .

1.2.2. Basic properties of the Hecke algebra. Here we recall some well-
known properties of H(W,S). See [16, Ch. 5-6], [20, IV, § 2 Ex. 23], or [38, Ch.
7]:

(i) The Hecke algebra is a free Z[v, v−1]-module with a standard basis {δw}w∈W ,
where δw := δs1δs2 · · · δsk for any reduced expression w = s1s2 · · · sk for
w. Then all the basis elements are invertible.

(ii) The dual of the basis element δw is δ−1
w−1 .
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(iii) The Hecke algebra also admits a canonical basis {bw}w∈W , introduced by
Kazhdan and Lusztig [46], which is self-dual, bw = bw, and uni-triangular
with respect to the standard basis in the Bruhat order:

bw =
∑
x≤w

hx,wδx,

with hw,w = 1. The elements hx,w, belong to Z[v] and are called Kazhdan-
Lusztig polynomials.

Remark 1.8. These polynomials actually belong to N[v]. This was shown
by Kazhdan and Lusztig [47] for the Weyl group case and by Elias and
Williamson [35] in general, as a consequence of Soergel’s conjecture (see
Remark 2.5 (ii) below).

Then we can define (see [34, § 2.4]) a standard trace ε : H(W,S) → Z[v, v−1] by

ε(
∑
w∈W

awδw) := a1.

Notice that it satisfies ε(hh′) = ε(h′h) for all h, h′ in H(W,S).
Let then ω be the ring anti-involution

ω : Hop
(W,S) → H(W,S)

such that ω(bs) = bs, for all s ∈ S and ω(v) = v−1. This allows to define a
standard pairing

(· , ·) : H(W,S) ×H(W,S) → Z[v, v−1],

by (h, h′) := ε(h′ω(h)). This is semi-linear over Z[v, v−1]: we have (v−1h, h′) =
(h, vh′) = v(h, h′). One can easily check that the element bs is self-biadjoint
with respect to this pairing, which means:

(bsh, h
′) = (h, bsh

′), (hbs, h
′) = (h, h′bs).

1.2.3. The affine Hecke algebra. When we take (W,S) to be the Coxeter
system corresponding to the affine Weyl group, we obtain the associated affine
Hecke algebra H. This is the case that will concern us more, so we now explore
some of its special features.

Let us start by some observations about W and the affine braid group BW .

(i) Let µ, ν ∈ ZΦ∨ be dominant. Then `(tµ+ν) = `(tµ)+`(tν). One can easily
see this using the characterization of the length of w ∈ W as the number
of affine hyperplanes separating the fundamental alcove A0 from w(A0).

(ii) Consider positive lifts τµ and τν in BW of tµ and tν respectively. Then
τµτν = τντµ. In fact, by (i), they are both equal to the positive lift τµ+ν

of tµ+ν .

(iii) Then we also have τ−1
ν τµ = τµτ

−1
ν .

(iv) Consider λ ∈ ZΦ∨ and write λ = µ− ν with µ and ν dominant. Then we
can define τλ := τµτ

−1
ν . By the preceding points this does not depend on

the choice of µ and ν.
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(v) These τλ’s have the property that τλ1
τλ2

= τλ1+λ2
.

In other words, the lattice ZΦ∨ embeds not only inside W but also inside BW .
If we now pass to the Hecke algebra, we get, for λ ∈ ZΦ∨, the elements

θλ := δtµδ
−1
tν

which give a commutative subalgebra of H. This is the lattice subalgebra men-
tioned in the introduction. In the next chapter we will describe a category
whose Grothendieck group is isomoprhic to H and we will introduce the objects
corresponding to these θλ’s.

To conclude this chapter, we mention now an alternative presentation of the
affine Hecke algebra, in terms of this subalgebra and the finite Hecke algebra,
reflecting the definition of W as the semidirect product of Wf and ZΦ∨.

1.2.4. The Bernstein presentation. Consider the the Z[v, v−1]-algebra HB

given by the following presentation. We take generators corresponding to the
finite Hecke algebra and the translation lattice, namely δsα and θ±1

α∨ for α ∈ ∆.
Then we impose the usual relations between the δs’s, and the additional relations

θα∨θ
−1
α∨ = θ−1

α∨θα∨ = 1 α ∈ ∆,

θα∨θβ∨ = θβ∨θα∨ , α, β ∈ ∆,

δsαθsα(β∨) − θβ∨δsα = (v − v−1)
θβ∨−θsα(β∨)

1−θα∨
α, β ∈ ∆.

The fraction in the second relation is well defined, because, if n = 〈α, β∨〉, then

θβ∨ − θsα(β∨) = θβ∨(1− θsα(β∨)−β∨) = θβ∨(1− θnα∨)

= θβ∨(1− θα∨)(1 + θα∨ + · · ·+ θ(n−1)α∨).

Then, for λ ∈ ZΦ∨ we can define θλ in the natural way: if λ =
∑
α∈∆ nαα

∨,
then θλ :=

∏
α∈∆ θnαα∨ . This is well defined by the commutativity relation, and

we obviously have θλ1
θλ2

= θλ1+λ2
. The second relation then generalizes as

δsαθsα(λ) − θλδsα = (v − v−1)
θλ − θsα(λ)

1− θα∨
.

Then one can prove that this is a presentation for the same algebra (see [39]).

Theorem. The obvious map from HB to H is an isomorphism of algebras.

Remark. The first published version of this presentation appeared in a paper
by Lusztig [57], based on previous, unpublished, work by Bernstein, partly in
collaboration with Zelevinsky.



Chapter 2

The Hecke category and
Wakimoto sheaves

In this chapter we give a precise definition of Wakimoto sheaves. First we intro-
duce the (diagrammatic) Hecke category for a general realization of a Coxeter
system, then we introduce Rouquier complexes and the modular version of the
mixed derived category. Finally we give a precise formulation of the main prob-
lem of this thesis: studying the extension groups between Wakimoto sheaves.

2.1 The diagrammatic Hecke category

In this section we recall the construction, by Elias and Williamson [34], of the
diagrammatic Hecke category associated with (a realization of) an arbitrary
Coxeter system. First we give some motivation concerning the origin and the
role of this category.

2.1.1. Motivation. Our goal is to give a categorification of the Hecke algebra
associated to a Coxeter system, as defined in § 1.2.1. Consider first the case of
the Weyl group of a reductive algebraic group. As mentioned in the introduction,
in this case, a natural candidate is is the category of equivariant parity sheaves
over the corresponding flag variety.

Let us restrict for a moment to the case of characteristic zero coefficients,
when this category is equivalent to that of equivariant semisimple complexes.
Soergel [65] gave a purely algebraic description of this category, via the equiv-
ariant cohomology functor. Let h be the Lie algebra of the torus T , so that
R = S(h∗) is the T -equivariant cohomology of a point: then the equivariant
cohomology of any sheaf can be shown to be a module over R ⊗ R, so, as R is
commutative, an R-bimodule. Soergel showed that this functor is fully faithful
and characterized the essential image as a certain full subcategory of the cate-
gory of graded R-bimodules, that only depends on the action of W on h. This
category of Soergel bimodules can be obtained via Karoubi completion from
the subcategory of Bott-Samelson bimodules (each of which corresponds to the
direct image of the constant sheaf along the Bott-Samelson resolution of a Schu-
bert variety). Then the indecomposable objects of the category correspond to

25
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(shifts of) equivariant IC sheaves.
The diagrammatic category, that we are going to describe, gives, under some

assumptions, a presentation by generators and relations of this category. How-
ever, these assumptions typically fail in the modular setting, and the diagram-
matic category turns out to be better behaved in this case. Furthermore, Riche
and Williamson [60] proved that whenever the geometric Hecke category of par-
ity sheaves is defined (i.e. when the Coxeter system is crystallographic), the two
category are equivalent (with an appropriate choice of realization). Hence, with
some abuse, one can also simply speak about the Hecke category.

In this work we will use the diagrammatic language, so we will now describe
this version of the category in more detail.

First we need some preliminary notions.

2.1.2. Two-colored quantum numbers. Consider the ring Z[x, y] and de-
fine [1]x := [1]y := 1 and [2]x := x and [2]y := y. Then, recursively

[n+ 1]x := [2]x[n]y − [n− 1]x,

[n+ 1]y := [2]y[n]x − [n− 1]y.

These are the two-colored quantum numbers. It is easy to see that if n is odd
then [n]x = [n]y, so we will sometimes omit the index in this case.

Remark 2.1. If we consider the morphism Z[x, y] → Z[v, v−1] sending both x
and y to v + v−1, the images of the two-colored quantum numbers are (the
symmetrized version of) the usual quantum numbers:

[n]x, [n]y 7→
vn − v−n

v − v−1
= v−n+1 + v−n+3 + · · ·+ vn−3 + vn−1.

The two-colored version, as we will see, shares many properties with the usual
one.

2.1.3. Realizations of Coxeter systems. Let (W,S) be a Coxeter system
and k a commutative ring. We consider a realization of W in the sense of
[34, § 3.1]. This consists in a free, finite rank, k-module h, with distinguished
elements {α∨s }s∈S ⊂ h and {αs}s∈S ⊂ h∗ = Hom(h, k), that we call respectively
simple coroots and simple roots, satisfying the following conditions.

(i) If 〈· , ·〉 : h∗ × h → k is the natural pairing, then 〈αs, α∨s 〉 = 2, for each
s ∈ S.

(ii) The k-module h is a representation of W via

s(v) = v − 〈αs, v〉α∨s , ∀v ∈ h, ∀s ∈ S. (2.1)

Then W acts on h∗ by the contragredient representation, described by
similar formulas:

s(λ) = λ− 〈λ, α∨s 〉αs, ∀λ ∈ h∗, ∀s ∈ S. (2.2)

There is also a third condition that needs some more notation to be phrased
properly.



2.1. THE DIAGRAMMATIC HECKE CATEGORY 27

The action over simple roots and coroots is encoded in the coefficients1

ast := 〈αs, α∨t 〉, that we store in the Cartan matrix (ast)s,t∈S .
Let R = S(h∗), with h∗ in degree 2. The action of W on h∗ defined by

(2.2) extends naturally to R. We define, for each s ∈ S, the Demazure operator
∂s : R→ R, via:

f 7→ f − s(f)

αs
.

Then, in particular, we have2 ∂s(αt) = 〈αt, α∨s 〉.
Consider the morphism:

φst : Z[x, y]→ k,

sending x to −∂s(αt) and y to −∂t(αs). Then define:

[n]s := φst([n]x), [n]t := φst([n]y).

Sometimes we will still refer to these elements in k, which depend on the real-
ization, as two-colored quantum numbers. Now we can state the third condition
defining a realization.

(iii) for s, t ∈ S, if mst <∞, we assume that

[mst]s = [mst]t = 0

From condition (ii), by imposing that (st)mst acts as the identity on simple
roots, one obtains certain equations in terms of quantum numbers which make
the above assumption quite natural. The two conditions are actually indepen-
dent but we require the latter to ensure the rotation invariance of Jones-Wenzl
morphisms which will be mentioned later. For more details, see [34, § 3.1].

Example 2.2. Here are some interesting examples of realizations (cf. [34, Ex.
3.3] and [60]).

(i) For any Coxeter group (W,S) one can consider the geometric representa-
tion h :=

⊕
s∈S Rα∨s with αs ∈ h∗ defined via 〈αs, α∨t 〉 = −2 cos(π/mst),

with mss := 1 as usual, and π/∞ := 0. Then the simple roots are linearly
independent if and only if W is finite. For example, if W is the Weyl
group of type Ã1,

W = 〈s, t | s2 = t2 = 1〉,

then the only two off-diagonal entries in the Cartan matrix are −2 and
αt = −αs. Notice that in this case the realization is defined over any ring
k.

(ii) If Wf is a Weyl group as in § 1.1.3, then one has a natural realization
coming from the root datum. One takes h∗ = k ⊗ X (so h = k ⊗ X∨),
and {αs} and {α∨s } to be the sets of simple roots and coroots respectively.
One can also take h to be k⊗ZΦ∨ (then a natural assumption to make is
that k⊗ ZΦ× k⊗ ZΦ∨ → k is a perfect pairing so as to identify h∗ with
the base-changed root lattice).

1For the notation, we follow Bourbaki [20]: notice that the pairing considered here is the
transposed of that of [34], and [44].

2Notice that ∂s(αt) is the same as in [34], so this notation avoids transposition issues.
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(iii) For the affine case W = Wf n ZΦ∨, if s ∈ S \ Sf is an affine simple
reflection, consider the image of s under the projection W → Wf . This
will be a reflection associated to some positive coroot α̃∨. Then we put
α∨s := −α̃∨ and αs := −α̃. In this case neither {αs}, nor {α∨s } are linearly
independent. This is the realization considered in [60], up to a different
choice of notation (exchanging roots and coroots). Notice that the action
of W here factors through that of Wf .

(iv) One can start with a generalized Cartan matrix (ast)s,t∈S (i.e. a matrix
satisfying ass = 2, ast ∈ Z≤0 and ast = 0 ⇔ ats = 0) and build a
realization as described in [44]. One considers the Kac-Moody Lie algebra
g, defined by (ast), and takes h to be any Z-lattice of the Cartan subalgebra
of g, containing the coroot lattice and such that the dual lattice h∗ contains
the root lattice. In this way one obtains the Kac-Moody realization of the
Weyl group W associated with g. Here both the simple roots and the
simple coroots are linearly independent.

(v) More generally, one can consider any Kac-Moody root datum associated to
a generalized Cartan matrix as above. This is a free Z-module of finite rank
Λ with distinguished elements {αs} ⊂ Λ and {α∨s } ⊂ Hom(Λ,Z), such that
α∨s (αt) = ats. Then one can take h∗ = k ⊗ Λ and h = k ⊗ Hom(Λ,Z).
From the same data one can construct a Kac-Moody ind-group scheme G
over Z, with canonical Borel subgroup and a maximal torus, such that the
character group of the latter identifies with Λ. Then h is a realization of
the Weyl group associated to G . Hence this example is a generalization
of (ii).

2.1.4. Further assumptions on realizations. In this thesis we will only
consider realizations that satisfy two additional conditions.

A realization is said balanced when, in addition to condition (ii), one also
has:

[mst − 1]s = [mst − 1]t = 1.

This assumption, which makes the description of the diagrammatic category
easier3, is actually very natural and satisfied, for instance, by all the realizations
in Example 2.2.

We will also assume Demazure surjectivity (see [34, Ass. 3.9]), namely we
suppose that, for each s ∈ S, the maps:

〈αs, ·〉 : h→ k and 〈· , α∨s 〉 : h∗ → k

are surjective. In this case we can (and do) choose some δs ∈ h∗ such that
〈δs, α∨s 〉 = 1. Notice that if 2 is invertible in k then this assumption always
holds (take for instance δs = αs/2). In the special case of the affine Weyl
group of type Ã1, the invertibility of 2 is actually necessary to have Demazure
surjectivity for the geometric and the natural realizations (Ex. 2.2 (i) and (iii),
respectively).

3Namely, it makes the aforementioned Jones-Wenzl morphisms invariant not only by
2π/mst rotations but also by π/mst rotations. We will make this slightly more precise below.
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2.1.5. Definition of the category. Given a realization h over k of a Coxeter
system (W,S), one constructs the corresponding diagrammatic Hecke category
H = H (h,k). This is a k-linear monoidal category enriched in graded R-
bimodules. First one defines the Bott-Samelson category HBS by generators
and relations, then one gets H as the Karoubi envelope of the closure of HBS

by direct sums and shifts.

(i) The objects of HBS are generated by tensor product from objects Bs for
s ∈ S. So a general object corresponds to a Coxeter word: if w = s1 . . . sn,
let Bw denote the object Bs1 ⊗ · · · ⊗Bsn . Let also 1 denote the monoidal
unit, corresponding to the empty word.

(ii) Morphisms in HomHBS
(Bw1

, Bw2
) are k-linear combinations of Soergel

graphs, which are defined as follows.

� We associate a color to each simple reflection.

� A Soergel graph is then a colored, decorated planar graph contained
in the planar strip R× [0, 1], with boundary in R× {0, 1}.

� The bottom (and top) boundary is the arrangement of boundary
points colored according to the letters of the source word w1 (and
target word w2, respectively).

� The edges of the graph are colored in such a way that those connected
with the boundary have colors consistent with the boundary points.

� The other vertices of the graph are either:

(a) univalent (called dots), which are declared of degree 1, or;

(b) trivalent with three edges of the same color, of degree −1, or;

(c) 2mst-valent with edges of alternating colors corresponding to s
and t, if mst < ∞, of degree 0. By poetic licence, we also call
them (s, t)-ars.

(a) Dot (b) Trivalent (c) (s, t)-ar

� Decorations are boxes labeled by homogeneous elements inR that can
appear in any region (i.e. connected component of the complement
of the graph): we will usually omit the boxes and just write the
polynomials.

Then, composition of morphism is given by gluing diagrams vertically,
whereas tensor product is given by gluing them horizontally. The identity
morphism of the object Bw is the diagram with parallel vertical strands
colored according to the word w.

Notice that (s, t)-ars can be used to associate morphisms to applications of
the braid relation. More precisely, consider a Coxeter word x and let x′ be
obtained via one application of a braid relation. Then we have a morpihsm
β : Bx → Bx′ obtained by tensoring the 2m-valent vertex, corresponding
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to the braid relation used, with the appropriate identity morphisms on
both sides, as in the following picture:

β =
. . . . . .

. . . s t s . . .

. . . t s t . . .

More generally, let x′ be obtained from x via the braid move Φ. Recall
that this is a sequence of applications of braid relations. Then we can
consider the composition of the corresponding morphisms β as above. We
call this composition β(Φ).

(iii) These diagrams are identified via some relations:

Polynomial relations. The first such relation says that whenever two poly-
nomials are in the same region, they multiply. This gives morphism
spaces the structure of R-bimodules, by acting on the leftmost or the
rightmost region.

The other polynomial relations are:

Barbell relation: = αs (2.3)

Sliding relation: f = s(f) + ∂s(f) (2.4)

One color relations. These are the following:

Frobenius associativity : = (2.5)

Frobenius unit : = (2.6)

Needle relation: = 0 (2.7)

Remark 2.3. Relations (2.5) and (2.6) could be phrased by saying
that Bs is a Frobenius algebra object in the category HBS, which
explains the terminology. This was pointed out in [31], see [33, Ch.
8] for a thorough discussion. In particular the object Bs is self-
biadjoint. This means that we have natural isomoprhisms

HomH (Bs−,−) ∼= HomH (−, Bs−)

HomH (−Bs,−) ∼= HomH (−,−Bs).
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These are given by the following units and counits (for both adjunc-
tions):

1→ BsBs BsBs → 1

and the zig-zag relations hold trivially by isotopy. Of course one
should think that it is thanks to this property (on the level of So-
ergel bimodules, for example) that we can identify morphisms up to
isotopy.

Two color relations. These allow to move dots, or trivalent vertices, across
(s, t)-ars. We give the two versions, according to the parity of mst:

...

...

=

...

...

... or
...

...

=

...

...

... (2.8)

and

...

...

=

...

...

JW or
...

...

=

...

...

JW (2.9)

where the circles labeled JW are the Jones-Wenzel morphisms. These
are certain k-linear combinations of diagrams (with circular boundary
and 2mst − 2 boundary points around it) that can be described in
terms of the 2-colored Temperley-Lieb category4. One can show that
the technical condition (iii) from § 2.1.3 ensures here that they are
2π/mst-rotation invariant, and that the further assumption that h is
balanced guarantees that the morphisms obtained by exchanging s
and t and rotating by π/mst are again the same. This is the π/mst-
rotation invariance that we mentioned above and makes the above
relations unambiguous.

4More precisely, one can obtain them by deformation retract from a colored version of
certain idempotents in the Temperley-Lieb algebra, which correspond to the highest weight
irreducible summands inside tensor powers of the standard representation of Uq(sl2).
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Here are the examples for the first few values of mst:

mst = 2 JW =

mst = 3 JW = +

mst = 4 JW = + + +

+ [2]t + [2]s

Notice that these are all the Jones-Wenzl morphisms that we need to
handle with Coxeter groups of types A, B, D, E, F . In these cases,
Relation (2.9) becomes:

mst = 2 =

mst = 3 = +

mst = 4 = + + +

+ [2]t + [2]s

Later, according to need, we will recall some other properties of these
morphisms. For further detail, we refer the reader to [34, § 5.2], [30]
or [33, Ch. 8].

Three color relations. For each finite parabolic subgroup WI of rank 3,
there is a relation ensuring compatibility between the three corre-
sponding 2m-valent vertices. More precisely, one considers the graph
of reduced words for the longest element of WI , where arrows cor-
respond to applications of the braid relation. Then a path in this
graph is a braid move connecting reduced words for the longest el-
ement. The corresponding three color relation imposes that, for a
certain pair of paths Φ1 and Φ2 with the same starting and ending
points, the two corresponding morphisms β(Φ1) and β(Φ2) are equal
or equal modulo certain lower terms5.

5These are morphisms that factor through a shorter word. In all types but H3, one can
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Actually, all loops in the graphs of reduced words for any element of
W are generated, in a suitable sense, by the rank-3 ones (see [62]), so
it is natural to expect that no relations with more than three colors
are needed.

Notice that all the relations are homogeneous, so the morphism spaces are
graded R-bimodules.

This completes the definition of HBS.

Example. Let s, t, u ∈ S with mst = msu = 2 and mtu = 3. Then the following
diagram represents a morphism from Bstutust to Butsu

αs

α2
sαt

α3
t

sts(αu)

The interested reader can play around with the relations, for example trying to
“move” all the polynomials towards the leftmost region (which will produce a
combination of diagrams by Relation (2.4)). In the sequel we will sometimes
omit the bottom and top lines.

Now we can finally give the main definition of this section.

Definition. The diagrammatic Hecke category H is the Karoubi envelope of
the closure of HBS by shifts and direct sums.

2.1.6. Categorfication of the Hecke algebra. Let (·) denote the shift in
the polynomial grading and let [·]⊕ denote the operation of taking the split
Grothendieck group of an additive category. Notice that [H ]⊕ is naturally a
Z[v, v−1]-algebra: the ring structure is induced by the tensor product and the
action of v corresponds to the shift (more precisely v[B] := [B(1)]). Hence we
can state the following categorification result (see [34, § 6.6]).

Theorem 2.4. If k is a complete local ring, then

(i) there is a unique isomorphism of Z[v, v−1]-algebras, called character,

ch : [H ]
∼→ H(W,S) (2.10)

sending the class of Bs to bs;

actually make a choice of paths that gives an exact equality in terms of morphisms between
Soergel bimodules, so that one can impose the corresponding relation without lower terms.
For type H3, however, no such choice exists and, moreover, for no choice of paths, the exact
lower terms that should be taken are currently known. This makes the relation not explicit,
and then the definition of the category slightly incomplete, in this case. See [34, § 5].
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(ii) the category H is Krull-Schmidt [34, Lemma 6.25], and the indecompos-
able objects are parametrized by elements of W . More precisely if w is a
reduced word for w, then there is a unique summand Bw in Bw that is
not a summand of any Bx with x ≤ w. Furthermore all indecomposable
objects of H , up to shift, appear in this way;

(iii) if B and B′ are objects in H then Hom(B,B′) is free as a left (or right)
graded R-module and its graded rank is

grk Hom(B,B′) = (ch(B), ch(B′)) (2.11)

where (· , ·) is the standard pairing from § 1.2.2.

Remark 2.5. (i) Via the isomorphism of the theorem, the indecomposable
correspond to a basis of H(W,S) over Z[v, v−1]. Consider realizations as
in Example 2.2 (ii) and (iii). Then one can show (see for example [42])
that this basis only depends on the type of the root datum and on the
characteristic p of the residue field of k. This is the p-canonical basis of
H(W,S) that we mentioned in the introduction. This appeared in new6

character formulas for tilting and simple modules: see the work of Achar,
Makisumi, Riche and Williamson [4] and the already mentioned [60].

(ii) Soergel conjectured that, if k is a characteristic zero field, then

ch(Bw) = bw.

In other words that the 0-canonical basis coincides with the Kazhdan-
Lusztig basis. For realizations over R, this was proved by Elias and
Williamson [35]. As we mentioned, this shows the positivity of the co-
efficients of Kazhdan-Lusztig polynomials: in fact the character can be
defined in terms of graded ranks of certain morphism spaces in (quotients
of) the Hecke category.

(iii) Suppose that char(k) 6= 2 and that the realization h is reflection faithful.
This means that it is a faithful representation of W such that there is a
bijection between the reflections of W and the codimension one subspaces
of h fixed by some w ∈ W . Then H is equivalent to the category of
Soergel bimodules, see [34, Theorem 6.30]. Reflection faithfulness is the
assumption mentioned in § 2.1.1 and it is, for instance, rarely satisfied by
realizations of affine Weyl groups in positive characteristic.

Example 2.6. The basic example of a diagrammatic computation in H is the
following (see [34, § 5]). If s ∈ S, then

Bs ⊗Bs ∼= Bs(−1)⊕Bs(1)

In fact consider the maps:

ι1 =
δs

, π1 = , ι2 = , π2 = −

s(δs)

.

6The Lusztig conjecture was proved to hold for p very large, but Williamson [68] showed
that the values of p for which the statement does not hold grow exponentially.
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Then one can check that:

p1i1 = idBs(−1), p1i2 = 0,

p2i2 = idBs(1), p2i1 = 0,

and i1p1 + i2p2 = idBsBs .
This decomposition lifts the following equality, easy to check, in the Hecke

algebra:
bsbs = (v + v−1)bs.

2.1.7. Relation with the geometric version. We conclude by saying a
word about the geometric Hecke category. We will not introduce it precisely
but simply describe its relation with the diagrammatic one.

Consider the setting (and the notation) of § 1.1.3, with G defined over the
complex numbers. The flag variety G/B has a well known stratification by
Bruhat cells

G/B =
⊔

w∈Wf

BwB/B

where each stratum BwB/B is an affine space A`(w).
One can then construct the category H g of B-equivariant parity sheaves,

in the sense of [43], over G/B with coefficients in k. This is endowed with a
convolution operation which makes it a monoidal category.

One can define a subcategory H g
BS of Bott-Samelson objects, generated, by

convolution, by the shifted constant sheaves Es := kPs/B [1] over the closures

BsB/B, for s ∈ S, which are the subvarieties Ps/B ∼= P1 corresponding to
minimal parabolic subgroups Ps.

The split Grothendieck ring of this category (the multiplication by v cor-
responds in this version to the cohomological shift) is isomorphic to Hf , with
[Es] = bs, for s ∈ S.

If char(k) = 0, then, thanks to the Decomposition Theorem, this category
is equivalent to that of semisimple complexes (they actually are the same sub-
category of Db

B(G/B, k)).
Riche and Williamson [60] showed that, for general k (with 2 invertible in

some cases), the category H g
BS is equivalent to HBS with the realization of Wf

from Example 2.2 (ii). If furthermore k is a complete local ring then the entire
categories H and H g are also equivalent.

In a similar way, let I be the Iwahori subgroup of G((t)) corresponding to B.
One can consider the affine flag variety G((t))/I. This is an ind-variety which
has an analogous (infinite) stratification, called Cartan decomposition,

G((t))/I =
⊔
w∈W

IwI/I,

where again each stratum IwI/I is an affine space A`(w).
For simplicity, let us assume that G is simply connected. The diagrammatic

category corresponding to the realization of W from Example 2.2 (iii) is equiva-
lent to the category of I-equivariant parity sheaves on the connected component
of G((t))/I containing the base point I/I (see [60, Theorem 10.16]).

In this case then, with the same assumption on k as before, either version
categorifies H and is called affine Hecke category.
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More generally, one can consider the setting of Example 2.2 (v) and construct
the corresponding Kac-Moody flag variety over the complex numbers7. Then
again the corresponding category of parity sheaves agrees with the diagrammatic
one (see [60, Theorem 10.5]).

We conclude this section by describing a fundamental tool for the sequel:
some special maps forming bases of morphism spaces in the Hecke category.

2.1.8. Light leaves and double leaves. Let w be a Coxeter word and x a
subword which is reduced. One can construct, in the space HomH (Bw, Bx),
some special morphisms called the light leaves maps, that were introduced by
Libedinsky in [53], and described diagrammatically in [34]. Then, one can
use these maps to construct an explicit basis of the general morphism space
HomH (Bw1

, Bw2
) as a left R-module. Let us recall this construction more

precisely.
For a Coxeter word w = s1 · · · sk, and a subexpression (or 01-sequence)

e = (e1, . . . , ek) ∈ {0, 1}k, we say that e expresses the element x ∈ W if
x = se11 · · · s

ek
k (where s0

i := 1): in this case we write x = we.
Let x be a reduced subword of w, corresponding to the element x in W . The

light leaves maps in Hom(Bw, Bx) are labeled by 01-sequences expressing x in
the following way.

A 01-sequence determines the elements xi := w
e≤i
≤i ∈ W , where w≤i is the

word consisting of the first i letters of w and e≤i is the 01-sequence consisting
of the first i symbols of e. This describes a path along the Bruhat graph, called
Bruhat stroll, which allows us to decorate e. The idea is that, at each step i, we
consider the position where the next simple reflection would bring us, regardless
of the fact that this reflection will actually be taken or not, and we decorate the
corresponding symbol in e in the following way.

� if xisi+1 > xi then we decorate ei+1 with a U (for “up”: taking the
reflection si+1 would bring us up in the Bruhat graph);

� if xisi+1 < xi then we decorate it with a D (for “down”).

We can then construct a morphism Lw,e : Bw → Bx from this data. This will
actually depend on some choices.

Definition. First, choose, for each i, a reduced expression xi for xi. We define
Lw,e by induction. Let λ0 to be id1. Then, suppose we have constructed a
morphism λi : Bw≤i → Bxi , and consider the decorated value of ei+1.

(i) If ei+1 = U0, then xi = xi+1 and we choose a braid move Φ from xi to
xi+1.

(ii) If ei+1 = U1, then xi+1 = xisi+1 and we choose a braid move Φ from the
reduced word xisi+1 to xi+1.

(iii) If ei+1 = D0, then si+1 belongs to the right descent of xi and we choose
a braid move Ψ from xi to a word of the form zsi+1 (that exists by the

7One can also take varieties defined over any algebraically closed field K and work with
étale sheaves. In this case one takes k to be the algebraic closure, or a finite extension, of Q`,
or its ring of integer, or its residue field (of characteristic `), with ` prime to the characteristic
of K.
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Exchange property from § 1.1.2). Furthermore, we choose another braid
move Φ from the latter to xi+1.

(iv) Finally, if ei+1 = D1, then we choose, as in the previous case, a braid
move Ψ from xi to zsi+1. This time z is a reduced expression for xi+1

and we choose another braid move Φ from z to xi+1.

Then λi+1 is defined by one of the following diagrams, according to the decorated
value of ei+1:

. . .

λi

. . .
β(Φ)

. . .

ei+1 = U0

. . .

λi

. . .
β(Φ)

. . .

ei+1 = U1

. . .
λi
. . .β(Ψ)

. . .
β(Φ)

. . .

ei+1 = D0

. . .
λi
. . .β(Ψ)

. . .
β(Φ)

. . .

ei+1 = D1

Then one can check that the ending word of λi+1 is the reduced word xi+1 and
the induction can continue.

Finally we define Lw,e to be λk ∈ HomH (Bw, Bx).

Example 2.7. Let w = stsuts, with mst = 3, and x = st. Consider the subex-
pression e = 111001 expressing x. One can check that the corresponding deco-
ration of e is:

U1U1U1U0D0D1.

Hence this is the construction of Lw,e.

λ0 = λ1 = λ2 = λ3 =

λ4 = λ5 =

λ6 = =

Now consider two braid words w1 and w2. We want to construct an R-basis
for Hom(Bw1

, Bw2
). Consider the flip operation (·) on diagrams, consisting of

flipping diagrams upside down. Now, for each pair of 01-sequences e1 of w1 and
e2 of w2 such that we1

1 = we2
2 we pick a choice of morphism Lw1,e1

and a choice
of morphism Lw2,e2

as defined above. This means that we make a choice for all
the needed reduced words and braid moves and consider the corresponding light
leaves maps. Let then Lw1,w2

⊂ Hom(Bw1
, Bw2

) be the set of the compositions

Lw2,e2
◦ Lw1,e1

. Then we have the following (see [34, Theorem 6.12]).

Theorem 2.8. The set Lw1,w2
is a basis of HomH (Bw1

, Bw2
).

Morphisms as those in Lw1,w2
are called double leaves maps.
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2.2 Rouquier complexes and Wakimoto sheaves

In this section we introduce the Rouquier complexes in the homotopy category
of the Hecke category and define the Wakimoto sheaves. This category can be
seen as a modular version of the mixed derived category, following [6].

2.2.1. Rouquier complexes. Consider the homotopy category Kb(H ). The

monoidal structure of H extends to Kb(H ) via the usual definition of tensor
product of complexes. Recall that this is as follows. Let A•, B• ∈ Kb(H ), then:

(A• ⊗B•)i =
⊕
p+q=i

Ap ⊗Bq,

and the differential map, restricted to Ap ⊗Bq is:

d⊗ id +(−1)p id⊗d. (2.12)

Notice that the unit of H , seen as a complex concentrated in degree 0, is the
unit of Kb(H ), and it will still denoted by 1.

Consider the standard and costandard complexes

Fs = · · · 0 0 Bs 1(1) 0 · · ·

−2 −1 0 1 2

F−1
s = · · · 0 1(−1) Bs 0 0 · · ·

where the numbers in the middle denote the cohomological degree in Kb(H ). If
σ = σ±1

s ∈ Σ, then let Fσ denote F±1
s . Then, for any braid word ω = σ1σ2 . . . σn,

with σi ∈ Σ, we put
F •ω := Fσ1

⊗ Fσ2
⊗ · · · ⊗ Fσn .

In the sequel we will often omit tensor products. The objects of this form are
called Rouquier complexes. They were introduced in [63] in terms of Soergel
bimodules to categorify braid group actions on categories and study natural
transformations between the induced endofunctors.

2.2.2. Basic properties of Rouquier complexes. These properties were
first proved by Rouquier [63] in the language of Soergel bimodules.

Proposition 2.9. One has the following.

(i) Let s ∈ S, then FsF
−1
s
∼= F−1

s Fs ∼= 1.

(ii) Let s, t ∈ S with mst <∞, then

FsFtFsFt · · ·︸ ︷︷ ︸
mst times

∼= FtFsFtFs · · ·︸ ︷︷ ︸
mst times

Hence, for each pair of braid words ω1, ω2 expressing the same element ω ∈ BW ,
there is an isomorphism F •ω1

∼= F •ω2
. Furthermore:
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(iii) (Rouquier Canonicity) for each ω1 and ω2 as above, we have

Hom(F •ω1
, F •ω2

) ∼= R,

and one can chose γ
ω2
ω1

such that the system {γω2
ω1
}ω1,ω2

is transitive.

Let us skip the proof for the moment. The next chapter is devoted to
Rouquier complexes and we will discuss these properties in more detail there.
Let us just observe that, thanks to these properties, the Rouquier complex Fω
associated to ω ∈ BW is well defined up to a canonical isomorphism.

2.2.3. Wakimoto sheaves. Let now W be an affine Weyl group of the form
Wf n ZΦ∨ as in § 1.1.4. We refer to the notation therein.

Consider λ ∈ ZΦ∨ and write, as in § 1.2.3, λ = µ − ν with µ and ν domi-
nant. Then, with τµ and τν positive lifts of tµ and tµ, we define the (modular)
Wakimoto sheaf associated to λ as

Θλ := FτµFτ−1
ν

By the observations in § 1.2.3 and Proposition 2.9, this definition does not de-
pend on the choice of µ and ν. Furthermore, in the same way we have

Θλ1
Θλ2
∼= Θλ1+λ2

(2.13)

These are the objects categorifying the lattice part of the Hecke algebra, and
our goal is to study the subcategory they form. More precisely we want to
understand the morphism spaces:

HomKb(H )(Θλ1 ,Θλ2 [i]), i ∈ Z. (2.14)

Then notice that (2.13) implies that Θ−λ is dual to Θλ, hence one can reduce
to the case λ2 = 0, which means Θλ2 = 1.

Let us conclude this chapter by considering the geometric setting and men-
tioning how one can interpret these objects there.

2.2.4. The mixed derived category. Let H g be the geometric affine Hecke

category as introduced in § 2.1.7. Its homotopy category Kb(H g) was con-
sidered by Achar and Riche [6, § 3.5] as a modular version of the equivariant
mixed derived category on the affine flag variety. For each stratum IwI/I, with
w ∈W , one can define standard and costandard sheaves ∆mix

w , ∇mix
w , which are

the (modular) mixed versions of the classical standard and costandard sheaves
in the equivariant derived category Db

I (G((t))/I, k).

If λ = µ − ν, with µ and ν dominant as above, one can then define the
(modular) Wakimoto sheaves

Θλ := ∆mix
tµ ∗ ∇

mix
t−ν ,

which are analogues of the classical Wakimoto sheaves considered by Mirković.
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When s is a simple reflection, the standard and costandard sheaves look as
follows:

∆mix
s = · · · 0 0 Es Ee{1} 0 · · ·

−2 −1 0 1 2

∇mix
s = · · · 0 Ee{−1} Es 0 0 · · ·

where {·} denotes the (cohomological) shift in the category of parity sheaves,
which corresponds to the polynomial shift (·) in the diagrammatic category and
should not be confused with the cohomological shift [·] of the homotopy category
Kb(H ). The morphisms in the above complexes are given respectively by the
unit id→ i∗i∗ and the counit i!i! → id, where i : {I/I} ↪→ Ps/I ↪→ G((t))/I. Via
the equivalences described in § 2.1.7, these correspond precisely to the objects
Fs and F−1

s introduced above.
If w = s1s2 . . . sk is a reduced expression for w ∈W , one has

∆mix
w = ∆mix

s1 ∗∆mix
s2 ∗ · · · ∗∆mix

sk

and a similar equality holds for the costandard. Hence, if ω is a positive lift of
w, then ∆mix

w corresponds to Fω and ∇mix
w−1 to Fω−1 , so this justifies the above

definition of Wakimoto sheaves in the setting of Rouquier complexes.
Suppose k is either a finite extension of Q` or its ring of integers, or the

residue field of the latter. Then, one can define a t-structure in Kb(H g) whose
heart Pmix contains the standard and costandard sheaves above, and also the
Wakimoto sheaves. This is the modular version of the category of mixed perverse
sheaves. This category is stable under the composition of shifts {−1}[1] which
is called Tate twist and corresponds to the original one in terms of the Tate
sheaf.

In this case, the realization functor Dmix(Pmix) → Kb(H g) is an equiva-
lence. Hence the extension groups between objects in the heart can be computed
as shifted morphism spaces in the ambient triangulated category. In particular,
the extension groups between (modular) Wakimoto sheaves correspond to the
spaces (4.1) above.



Chapter 3

Working with Rouquier
complexes

As we want to compute morphisms between certain Rouquier complexes, it will
be useful to introduce some tools to work with them.

In the first section of this chapter, we adapt the diagrammatic description of
the Hecke category to a differential graded version of the category of Rouquier
complexes. This will allow us to express morphisms easily. We use this descrip-
tion to recover in a purely combinatorial way the braid categorification results
as well as the Rouquier formula.

The main result of this section is however that the objects F •ω introduced in
§2.2.1 admit simpler, homotopy equivalent, versions Fω obtained via Gaussian
elimination. In the second section we will describe these objects and simplify
the description of morphisms accordingly.

3.1 Soergel calculus with patches

We will consider the objects F •ω in the dg category of complexes Cdg(H ) and
describe morphism spaces between them using Soergel diagrams. Then the mor-
phisms in the homotopy category are obtained as the cohomology at zero of the
morphism complexes in Cdg(H ). In this setting we will recover the fundamental
properties of Rouquier complexes, namely those stated in Proposition 2.9. This
approach will give an algorithm to determine explicitely the homotopy equiva-
lence categorifying the braid relation. Furthermore we will give a diagrammatic
proof of the Rouquier formula.

3.1.1. Notation for graded objects and complexes. Given a k-linear ad-
ditive category C , a graded object is a family {Aq}q∈Z, where Aq is an object of
C for all q ∈ Z. If A is an object of C , then A[−q] denotes the graded object
whose only nonzero entry is A in degree q. The direct sum of graded objects is
defined in a natural way, so that we can also write

{Aq}q∈Z =
⊕
q∈Z

Aq[−q].

41
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A (degree 0) morphism of graded objects A• = {Aq} and B• = {Bq} is a family
of morphisms

{fq : Aq → Bq}q∈Z.

This defines a category G0(C ) of graded objects. The shift functor [1] sends the
graded object {Aq}q∈Z to {Aq+1}q∈Z. Then one can define the graded category
G(C ) with the same objects and morphism spaces

HomG(C )(A
•, B•) :=

⊕
p∈Z

HomG0(C )(A
•, B•[p]).

The p-th graded piece is denoted by Homp(A•, B•) and its elements are said
homogeneous of degree p. A complex in C(C ) is then determined by a graded
object A• endowed with an endomorphism d : A• → A• of degree 1, such that
d2 = 0. Viceversa, let (·)gr

: C(C )→ G(C ) denote the forgetful functor sending
(A•, d) to A•.

The dg category of complexes Cdg(C ) has the same objects as C(C ) but the
morphism space between the complexes A• and B•, is the dg k-module whose
underlying graded module is HomG(C )(A

•, B•), and the differential map is

Homp(A•, B•) −→ Homp+1(A•, B•) (3.1)

(fq)q∈Z 7−→ (dq+pB ◦ fq − (−1)pfq+1 ◦ dqA).

A homogeneous map f is said closed if it lies in the kernel of (3.1) and exact if
it lies in the image. It is easy to see that closed degree zero maps are precisely
morphisms in C(C ), and exact degree zero maps are null-homotopic morphisms
of complexes. Hence, the cohomology at zero of the dg module Hom•(A•, B•)
is the space of morphisms in the category K(H ).

Finally, let Gb(C ), Cb(C ), Cb
dg(C ) and Kb(C ) denote the bounded subcate-

gories, in the obvious sense.

3.1.2. A dg monoidal category of Rouquier complexes. Consider the
Hecke category H defined in § 2.1.5 and take Cdg(H ). By the definition of H ,
this is a dg monoidal category and the space Hom•(A•, B•) has the structure
of dg R-bimodule, with an additional grading, inherited from the polynomial
grading of H . The shift in the polynomial grading is still denoted by (1) and
the shift in the cohomological degree by [1], as in the homotopy category.

Hence one can consider the dg monoidal subcategory generated by the stan-
dard and costandard complexes

Bdg
W = 〈Fσ | σ ∈ Σ〉⊕,⊗,[·] ⊂ Cdg(H ).

Its objects will be direct sums of shifts of the F •ω ’s. In this section we will extend

the Elias-Williamson presentation to Bdg
W .

3.1.3. Diagrammatics. For a given subexpression i of a braid word ω, let
ωi denote the subword corresponding to it. Then let Bi be the Bott-Samelson
object corresponding to the Coxeter projection of ωi. For example, given

ω = σsσtσtσ
−1
u ,
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and i = 0101, we have ωi = σtσ
−1
u and then Bi = Btu = BtBu.

By definition of tensor product of complexes, we have

(F •ω)
gr

=
⊕

i∈{0,1}`(ω)

Bi〈qi〉,

where qi = δ(ω)− δ(ωi) and 〈1〉 denotes the Tate twist (1)[−1] (cf § 2.2.4). One
can then compute the components of the differential map, according to (2.12).
The only nonzero components Bi → Bi′ are those for which i′ is obtained from
i by changing one symbol in such a way that qi′ = qi + 1. In this case the
component is either

(−1)k . . . . . . or (−1)k . . . . . . . (3.2)

where k is the number of 0’s in i preceding the changed symbol.

Example 3.1. Let s, t ∈ S and ω = σsσsσ
−1
t . Then the complex F •ω = FsFsF

−1
t

is the following:

BsBs(−1)

BsBsBt

Bs

Bs

BsBt(1)

BsBt(1)

1(1)

Bt(2)

+

+

+

+

+−

+

−

−

+

−

+

-1 0 1 2

Let now ω, ω′ ∈WΣ and consider Hom•(Fω, Fω′). This decomposes as⊕
i,i′

HomH (Bi, B
′
i′)〈q′i′ − qi〉 (3.3)

for an analogous definition of B′i′ and q′i′ . Each of the summands of (3.3) is
a morphism space in the diagrammatic Hecke category H , so its elements are
linear combinations of Soergel diagrams as described in § 2. Hence an element
of Hom•(Fω, Fω′) is also a k-linear combination of diagrams each of which lives
in one of the summands above. To keep track of this information we write it as
a linear combination of dg diagrams. A dg diagram is defined as follows.

(i) On the boundaries we always arrange all the letters for the source and tar-
get braid words and we use different styles for the boundary line according
to the sign of the letters:

� the black line is for positive letters on the bottom boundary or neg-
ative letters on the top boundary;



44 CHAPTER 3. WORKING WITH ROUQUIER COMPLEXES

� the white line is for all the other ones.

The reason for which we invert the colors on the top boundary will be
clear very soon. For the empty word we only draw a normal line.

(ii) The starting and ending words correspond to the 1’s in the subexpressions
i and i′, hence we cover with a patch × every letter corresponding to a 0.

(iii) A dg diagram is then a usual Soergel diagram whose boundary points are
those which are not covered by patches.

Example 3.2. If ω = σ3
sσ
−1
t σ−1

u σt, and ω′ = σsσ
−2
t σ2

u, then the following dia-
gram represents a morphism in the summand HomH (B01111, B

′
10101).

σs σs σs σ−1
t σ−1

u σt

σs σ−1
t σ−1

t σu σu

αu

×

× ×

(3.4)

Remark 3.3. (i) We recover the cohomological degree p of a morphism from
the patches: each patch counts +1 on the black line and −1 on the white
line.

(ii) The polynomial degree of a diagram is d− p, if d is its degree as a Soergel
diagram (as described in § 2.1.5) and p is its cohomological degree. This
is due to the Tate twists in (3.3).

(iii) We can compute the differential map on the diagram according to (3.1)
and (3.2), as follows. Consider the following operations:

Dot-sprouting :
×
 

×
 

Strand-uprooting:  
×

 
×

Notice that we only allow the dot-sprouting operation on the black bound-
ary, and the strand-uprooting on the white boundary. The image of a
diagram via the differential map is the linear combination of all diagrams
obtained by one of the above operations, with coefficients ±1 according
to (3.2). More precisely, when acting on the top boundary, if k is the
number of patches on the left of the sprouted dot/uprooted strand, the
sign is (−1)k. The same rule applies to the bottom boundary but we also
need to multiply by an additional (−1)p+1 where p is the cohomological
degree of the initial morphism. For example, the image via the differential
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map of the above diagram is the combination below.

d

 αu

×

× ×

 = αu

×

× ××

+ αu

×

×

+ αu

×

× ××

+

+ αu

× ×

− αu

×

×

×

×

− αu

×

×

×

×

In fact, we have three possibilities on top (uprooting the first or the last
strand, or sprouting a dot over the blue patch) and three for the bottom
(sprouting a dot on the red patch, or uprooting the middle blue strand
or the green strand). Here the initial morphism has degree 1, hence the
additional sign term for the bottom boundary is just +1.

(iv) One can compose diagrams by gluing them vertically as before, but be-
cause the summands have to match, the composition is zero unless one
has the same arrangement of patches on the gluing boundary line (notice
also that, by our convention, we will glue two diagrams along boundary
lines with complementary styles).

(v) Recall that the monoidal structure of Cdg(H ) respects the Koszul rule,
hence the tensor product of two dg diagrams D1 and D2 is obtained by
gluing them horizontally and multiplying by the sign (−1)pq where p is
the cohomological degree of D2 and q is the number of bottom patches of
D1.

(vi) The identity morphism of any F •ω is∑
i

idBi
,

hence it is represented by the sum of all diagrams with the same arrange-
ments of patches on top and on bottom and consisting in parallel vertical
lines. For example, if ω = σ2

sσ
−1
t , then

idF•ω = +

×

×

+

×

×

+

×

×

+

× ×

× ×

+

× ×

× ×

+

× ×

× ×

+

× × ×

× × ×

and one can check for example that this is a closed degree zero morphism
which is the neutral element of composition.

(vii) By Theorem 2.8, each summand of (3.3) is a free R-module with a ba-
sis given by (a choice of) double leaves maps. Hence, if we collect all
these bases together we have a basis for the whole morphism space. Re-
call that the elements of the basis of each Hom(Bi, B

′
i′) are labeled by

subexpressions e and e′ of the starting and ending words, which are in
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turn determined by i and i′. It will be convenient to extend these subex-
pressions e and e′ to the whole words ω and ω′, by simply adding zeros
where already i or i′ have zeros. For example, the morphism (3.4), if
we forget the αu, is actually a double leaves map in Hom(Bsstut, Bstu),
corresponding to the subexpressions 01100 of sstut and 110 of stu. The
extended subexpressions that we want to consider are then 001100 and
10100, where the additional zeros are boldface. Then notice that we can
also decorate the new zeros and the decorations of the other symbols do
not depend on whether we look at them in the original subexpression or in
the extended one. Hence a basis for the whole space is labeled by quadru-
ples (i, i′, e, e′), with i and e subexpressions of ω such that ik ≥ ek, and i′

and e′ subexpressions of ω′ with the same property. The first two entries
determine the source and target summands and the last two determine
the double leaves map.

Before we pass to the properties of Rouquier complexes we introduce a notation
that will turn out to be useful. Let ω and ω′ be braid words and construct a
(dg) double leaves basis of Hom•(Fω, Fω′) as in Remark 3.3 (vii). For L and L′

double leaves maps of this set, we write

L
d
� L′

if L′ appears with a nonzero coefficient in the linear combination for d(L).

3.1.4. Inverse relation. We now prove Proposition 2.9 in a completely com-
binatorial way.

The first property, namely FsF
−1
s
∼= 1, can be easily proven via Gaussian

elimination (see § 3.2.1 below). Here we give an explicit description of the inverse
isomorphisms.

Proof of Proposition 2.9 (i). For any s ∈ S, the following morphisms give mu-
tually inverse homotopy equivalences:

FsF
−1
s 1

η−

ε+
, F−1

s Fs 1

η+

ε−
. (3.5)

Here

ε+ =

× ×

+ η+ =
× ×

+

ε− =

× ×

− η− =
× ×

−

We treat the first one, the second being similar. One can easily obtain

η−ε+ = id1

from the rules of composition of dg diagrams. On the other hand we have:

idFsF−1
s
−ε+η− = +

×

×

+
×

×

−
× ×

+

× ×

+ .
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We want to show that this is exact, hence null-homotopic. Notice that, by (2.4),
(2.5) and (2.6), we have

=
δs −

s(δs)
= + s(δs) + − δs

= − s(δs) + δs = − s(δs) + δs

Hence the difference idFsF−1
s
−ε+η− above becomes

+ +
×

×

+
×

×

+
×

×

−
× ×

+

× ×

and one can check that this is

d

(
×

+
×

)

3.1.5. Braid relation. We now pass to the braid relation. We will reduce
the dg morphism space Hom•(FsFt . . . , FtFs . . . ) by describing a large null-
homotopic dg submodule, and we will see that the quotient is just a copy of R in
degree 0. This will give a canonical homotopy equivalence FsFt · · · → FtFs . . . .

Definition 3.4. Let s, t ∈ S such that st has order m <∞ in W and let

ωs,t = σsσtσs . . .︸ ︷︷ ︸
m times

ωt,s = σtσsσt . . .︸ ︷︷ ︸
m times

Then we define Ns,t ⊂ Hom•(F •ωs,t , F
•
ωt,s

) to be the span of all homogeneous

morphisms factoring through words with less than m symbols. This in particular
contains all morphisms with staring or ending subexpressions different from
11. . . 1.

Proposition 3.5. We have:

(i) the space Ns,t is a dg submodule of Hom•(Fωs,t , Fωt,s);

(ii) the quotient is R[0], i.e. we have a short exact sequence

0 −→ Ns,t −→ Hom•(Fωs,t , Fωt,s) −→ R[0] −→ 0; (3.6)

(iii) the dg-module Ns,t is null-homotopic, hence the quotient map above is a
homotopy equivalence.

Proof. (i) This is easy by the definition of the differential map: if a morphism
factors through a shorter word then any morphism obtained after the
sprouting of a dot or the uprooting of a strand will still factor through
that shorter word.
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(ii) One can write a basis of double leaves maps for the whole morphism space
such that the only one which does not factor through shorter words is the
(s, t)-ar.

(iii) By (ii) all the double leaves maps different from the (s, t)-ar are a basis of
Ns,t. Observe that any subexpression different from 11. . . 1 of a reduced
word (such as sts . . .) has to contain at least one U0. In fact it is sufficient
to take the first 0 from the left: this has to be decorated with a U by
reducedness. Then we can conclude by Lemma 3.6 below.

Lemma 3.6. Consider a morphism space Hom•(F •ω , F
•
ω′) and let N be a dg

submodule spanned by double leaves that all contain some black U0. Then N is
null-homotopic.

Proof. Consider the double leaves basis of N and denote each double leaves
map by a quadruple (i, i′, e, e′) as before. Then define the following equivalence
relation. We say that

(i, i′, e, e′) ∼ (j, j′, f , f ′)

if the following hold

(i) the (decorated) subexpressions defining the double leaves agree: (e, e′) =
(f , f ′);

(ii) the subexpression defining the arrangement of the patches can only differ
over black U0’s: the pair (i, i′) differs from (j, j′) only at black boundary
points where the corresponding value of e = f (or e′ = f ′) is U0.

Roughly speaking, two double leaves maps are equivalent when they only differ
by the presence of patches (or boundary dots) in correspondence of black U0’s.

Now consider the following partial order on the set of equivalence classes
determined by ∼. First we say that C � C ′ if there are L ∈ C and L′ ∈ C ′ such

that L
d
� L′. Then consider the transitive closure of this relation. By looking at

the arrangements of patches one sees that this defines a (strict) partial order on
the set of equivalence classes. Consider a total refinement of this partial order:

C1 ≤ C2 ≤ · · · ≤ Ck.

Then define Ni as the span of the double leaves maps in C1, . . . , Ci. By definition
this gives a filtration by dg submodules

N1 ⊂ N2 ⊂ · · · ⊂ Nk.

The subquotients Ni+1/Ni are spanned by the double leaves maps from a single
class and the differential acts only on the black U0’s. Then this dg module is

isomorphic to (R
id→ R)⊗ni for some ni. Hence it is null-homotopic. But then

the whole N is null-homotopic.

Example 3.7. Here is an example of a subquotient as above:
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× ×

×

×

×

×

×

× ×

×

×

×

In this case it is isomorphic to (R
id→ R)⊗3.

Now, taking cohomology at zero in the short exact sequence (3.6) gives a
unique morphism in Kb(H ) up to a polynomial. Furthermore the latter is the
coefficient of the 2m-valent vertex in any representative in Cdg(H ). Take γs,t
to be the morphism where this coefficient is 1. The following proves Proposition
2.9 (ii).

Proposition 3.8. The morphisms γs,t and γt,s are inverse homotopy equiva-
lences.

Proof. Notice that combining relations (2.8) and (2.9), we obtain the following
equality (the picture is for ms,t even):

...

...

... =

...

...

JW

One can show that this is the identity (i.e. the morphism given by parallel ver-
tical strands), modulo morphisms that factor through shorter Coxeter words:
see [34, Claim 7.1]. Now we can repeat the argument of Proposition 3.5 for
Hom•(Fωs,t , Fωs,t) and obtain that, up to a polynomial, the only nonzero mor-

phism in Kb(H ) is the identity. Then the compsition above has to be homotopy
equivalent to the identity.

Let us now consider two braid words ω1 and ω2, such that ω2 is obtained
from ω1 by applying one of the relations of BW . By appropriately tensoring with
identity to the left and to the right the morphisms (3.5) or those in Proposition
3.8, we get a homotopy equivalence γ

ω2
ω1

corresponding to the relation used.
If more generally ω2 is obtained from ω1 via a sequence of relations then

one gets a homotopy equivalence γ
ω2
ω1

given by the corresponding composition
of morphisms as above, which, a priori, depends on the choice of relations used.

Remark 3.9. The morphisms γ
ω2
ω1

above are, up to sign, the canonical isomor-
phisms defined by Rouquier [63, § 9.3]. In fact consider a braid word ω. We
have a homotopy equivalence Hom•(Fω, Fω) ' R[0] compatible with the ring
structure (because null-homotopic morphisms form a two-sided ideal). Hence
any loop of relations transforming ω into itself gives a homotopy equivalence
that corresponds to an invertible element of R. Now taking k = Z we deduce
that this element is ±1.
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Remark 3.10. Another argument for canonicity is given in [29] for characteristic
zero fields.

3.1.6. Explicit homotopy equivalences. The above gives a recipe for an
explicit diagrammatic description of γs,t. In type A such a description can be
found in a paper by Elias and Krasner [32].

Let Ls,t be a basis of double leaves for the space Ns,t and take L0
s,t to be the

subset of maps of cohomological degree 0 (this means: with the same number of
patches on bottom and on top). One can also restrict further to those maps of
polynomial degree 0. Let β be the morphism consisting in the (s, t)-ar. Then,
by § 3.1.5, we know that

γs,t = β +
∑
L∈L0

s,t

aLL

and that it is the unique morphism of complexes up to homotopy satisfying
these properties. Then it is sufficient to find any choice of coefficients aL such
that

d
(
β +

∑
L∈L0

s,t

aLL
)

= 0.

So this reduces to a linear algebra problem. Here are the cases m = 2, 3.

Example 3.11. For ms,t = 2 we obtain

γs,t = +
×

×

+
×

×

+
×

××

×

For ms,t = 3, we get

γs,t = +
×

×

+
×

×

+
×

×

+
×

×

+

+ a

×

×

+ (1− a)

×

×

+
×

×

−
××

× ×

−
× ×

× ×

+

− a
× ×

× ×

− (1− a)

××

× ×

+
× ×

×

×

× ×

where a can be any value in k. Notice that

d

(
a

×

× ×

)
= a

×

×

− a
×

×

− a
× ×

× ×

+ a

××

× ×

so the morphism above is actually unique up to homotopy.

3.1.7. Rouquier formula. As a byproduct of Lemma 3.6, we can now prove
the so-called Rouquier formula (conjectured in [64], and proved in [54], and in
[58])

Corollary 3.12. Let w, v ∈ W and let w and v be reduced words expressing
them. Let ω be the positive word lift of w and ν be the negative word lift for v.
Then

Hom•(Fω, Fν) '

{
R[0] if w = v,

0 otherwise.
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Proof. Suppose that w 6= v and suppose that `(w) > `(v) (the other case being
analogous). Any subexpression of w for a shorter word has to contain at least
one 0 and then at least one U0 by reducedness. Then Lemma 3.6 implies the
claim.

Suppose instead that w = v. Then the only dg light leaves not factoring
through shorter words is that with subexpressions U1 . . . U1 for both w and
v (which gives a morphism corresponding to a certain braid move from w to
v). Now notice that the span N of all the other dg double leaves maps is a dg
submodule and then we again conclude by Lemma 3.6.

3.2 A general reduction for Rouquier complexes

The complex F •ω has the form of a cube of dimension equal the number of letters
in ω: the vertices correspond to the Bott-Samelson objects obtained from all
possible subexpressions of ω (see Example 3.1).

When the category H is Krull-Schmidt, one can get rid of a maximal null-
homotopic summand of each F •ω and obtain the minimal subcomplex Fω. This
is a summand which does not admit null-homotopic factor. One can then show
that this is unique up to isomorphism (and not just homotopy equivalence): see
[35, § 6.1].

For general coefficients, this notion is not well defined, but for ω positive (or
negative) we can find a much simpler summand inside F •ω which is homotopy
equivalent to it, by getting rid of a large null-homotopic summand. Roughly
speaking, the new complex has objects labeled by subwords, instead of subex-
pressions.

Let us start with a simple example to illustrate our result.

Example 3.13. Let ω = σsσsσs. Then F •ω is

Bss(1) Bs(2)

⊕ ⊕

Bsss Bss(1) Bs(2) 1(3)

⊕ ⊕

Bss(1) Bs(2)

According to Example 2.6, the Bott-Samelson objects appearing above decom-
pose as

Bss(1) = Bs ⊕Bs(2), Bsss = Bs(−2)⊕B⊕2
s ⊕Bs(2).
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Hence the complex can be written

Bs ⊕Bs(2) Bs(2)

⊕ ⊕

Bs(−2)⊕B⊕2
s ⊕Bs(2) Bs ⊕Bs(2) Bs(2) 1(3)

⊕ ⊕

Bs ⊕Bs(2) Bs(2)

(3.7)

and can be filtered by the subquotients:

G3, G2, G1, G0,

corresponding to the colors in the above picture (for a precise definition of
subquotient in this setting, see below). One can now check that the components
of the differential map in each Gi are just identities. For instance, the blue and
the green pieces are

Bs

Bs ⊕

⊕ Bs

Bs ⊕

Bs

Bs(2) Bs(2)

⊕ ⊕

Bs(2) Bs(2) Bs(2)

⊕ ⊕

Bs(2) Bs(2)

Notice that we can describe these complexes by simplicial sets whose faces cor-
respond to some Bs(i), and where face relationship corresponds to the arrows.
More precisely, consider the following simplicial sets.

Namely, in the blue picture, the edges correspond to the two Bs’s in lower
cohomological degree and the three vertices to the others, and similarly in the
green picture.

One can then use Gaussian elimination (see below) to reduce these com-
plexes: roughly speaking, one can eliminate arrows which are isomorphisms and
obtain a summand of the original complex which is homotopy equivalent to
it. This corresponds, in the simplicial sets, to “collapsing” a simplex with one
of its faces. For example, for the green part, we can perform three of these
eliminations (the triangular face with one of the edges, and two edges with
two vertices) and obtain a complex concentrated in the maximal cohomolog-
ical degree Bs(2)[−2]. One can then show that all these eliminations can be
performed together: each simplicial set can be collapsed to a point. and the
original complex can be reduced to

Bs(−2) Bs Bs(2) 1(3)



3.2. A GENERAL REDUCTION FOR ROUQUIER COMPLEXES 53

Furthermore the procedure gives formulas for the projection corresponding to
this summand and allows to compute the new differential map. In this case this
is given by the following three morphisms:

δs − s(δs) δs − δs

Finally, notice that each of the colored part that we defined above corresponds
to a subword of sss, and reduces to a single object in the final complex.

We would now like to generalize this procedure to any positive Rouquier
complex. Firts we need to introduce the homological algebra techniques that
we mentioned.

3.2.1. Large scale Gaussian elimination for complexes. Our main tool is
Gaussian elimination for complexes. Let C be an additive category. A summand
of a complex in the category Cb(C ) will be called Gaussian if the projection and
the inclusion morphisms are mutually inverse homotopy equivalences.

The following was first pointed out by Bar-Natan [10].

Lemma 3.14. Consider the following complex in Cb(C )

A B ⊕ E C ⊕ E′ D
( εζ )

(
α β
γ φ

)
( η θ )

and suppose that φ : E → E′ is an isomorphism in C . Then the following

A B C Dε α−βφ−1γ η

is a Gaussian summand.

Proof. Consider the projection morphism π given by:

A B ⊕ E C ⊕ E′ D

A B C D

( εζ )
(
α β
γ φ

)

( idB 0 )

( η θ )

( idC −βφ−1 )

ε α−βφ−1γ η

(3.8)

and the inclusion morphism ι described by:

A B ⊕ E C ⊕ E′ D

A B C D

( εζ )
(
α β
γ φ

)
( η θ )

ε α−βφ−1γ

(
idB
−φ−1γ

)
η

(
idC
0

)

It is easy to check that πι = id. The idempotent ιπ is homotopy equivalent to
the identity because

A B ⊕ E C ⊕ E′ D

A B ⊕ E C ⊕ E′ D

0

(
0 0
0 φ−1

)
0



54 CHAPTER 3. WORKING WITH ROUQUIER COMPLEXES

is a homotopy from the complementary idempotent to the zero morphism.

We want now to describe a way to perform many Gaussian eliminations on
complexes containing many isomorphisms that fit together in a nice way. In
particular we consider the case when they can be described by a polytopal set,
as in Example 3.13.

Recall that a polytopal set1 of dimension n is a finite collection Π of convex
polytopes in Rd of dimensions up to n such that:

(i) a face of a polytope σ ∈ Π belongs to Π;

(ii) if σ, σ′ ∈ Π then the intersection σ ∩ σ′ is either empty or a common face
of σ and σ′ (so in particular it belongs to Π).

Let Πi denote the subset of i-dimensional polytopes of Π. Here 0-dimensional
polytopes are just points. This generalizes the notion of simplicial complex.

We can now make our notion precise.

Definition 3.15. Let Π be a polytopal set of dimension n, and let A be a
complex in Cb(C ). We say that A is left-described by Π if:

(i) as a graded object, the complex A decomposes as⊕
σ∈Π

Aσ[dimσ]

with Aσ in C . So lower dimensional polytopes correspond to objects in
higher cohomological degrees.

(ii) the component φτ,σ : Aσ → Aτ of the differential map is non-zero if and
only if τ is a face of σ.

(iii) all non-zero components of the differential map are isomorphisms.

One can think of the objects Aσ as “living over” the polytopes of Π. The
dual notion of right-description can be obtained by reversing all the arrows.
The face relationship is also reversed: in a right-description higher dimensional
polytopes correspond to objects in higher cohomological degrees.

Consider the 1-skeleton Π0 ∪ Π1 of a polytopal set Π which left-describes a
complex A. If e is an oriented edge from the vertex p to the vertex q, then we
have isomorphisms φp,e and φq,e. We define the isomorphism associated to the
oriented edge e to be

Φ(e) = −φq,e(φp,e)−1.

We put a minus sign for a technical reason that will become clear later. Notice
that if −e is the same edge with opposite orientation, then Φ(−e) = Φ(e)−1.
Given an oriented path P through the oriented edges e1, . . . er along the 1-
skeleton of Π, the isomorphism associated to P is the composition

Φ(P ) := Φ(er) · · ·Φ(e1).

1The standard terminology (see for example [69, § 8.1]) is polytopal complex but in our
context the word “complex” would be overdetermined.
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Clearly, if P ′ is another path starting from the endpoint of P , and P ′′ is the
concatenation of P and P ′, then

Φ(P ′′) = Φ(P ′)Φ(P ).

A face of a polytope of Π is called free if it is not the face of any other polytope
of Π. An collapse is the operation of removing from Π a polytope σ of maximal
dimension together with a free face τ and all the faces of σ containing τ . A
collapse is called elementary if the face τ has codimension 1 (so we are only
removing σ and τ . One can show that any collapse can be obtained by a sequence
of elementary collapses. Then Π is called collapsible if there is a sequence of
(elementary) collapses that reduces it to a single point.

We can now give the key lemma for large scale Gaussian elimination.

Lemma 3.16. Let A be a complex left-described by a polytopal set Π. If Π is
collapsible to the point p, then Ap[0] is a Gaussian summand of A. Furthermore,
if one chooses a path Pq from each point q to p, then the projection morphism
π is given componentwise by{

πq = Φ(Pq) if q ∈ Π0,

πσ = 0 if σ /∈ Π0.

Proof. Notice that the elementary collapse of a face σ with a free face τ in Π
corresponds to the elimination of the isomorphism φτ,σ in A. The condition on
τ to be free corresponds to the condition φσ′,τ = 0 for any σ′ 6= σ. In other
words, the complex is of the form

. . .
(⊕

σ′∈Πi\{σ}Aσ′
)
⊕Aσ

(⊕
τ ′∈Πi−1\{τ}Aτ ′

)
⊕Aτ . . .

( ∗ ∗
0 φτ,σ

)

Hence, by Lemma 3.14, we can eliminate Aσ and Aτ and the projection, ac-
cording to (3.8), behaves as follows:

� it is the identity on all Aσ′ for σ′ 6= σ, τ ;

� it is zero on Aσ;

� it sends Aτ on each Aτ ′ via −φτ ′,σφ−1
τ,σ.

The Gaussian summand is now the complex left-described by Π \ {σ, τ}. Then
we can proceed by induction.

If we compose all the projections thus obtained, we see that all Aσ with
σ /∈ Π0 are eventually sent to zero, whereas the Aq for q ∈ Π0 are sent to Ap by
a composition of −φq′,eφ−1

q,e which gives precisely a path from q to p.

We only have to prove that the morphism Φ(Pq) does not depend on the
choice of the path. In other words, we need to show that, for any vertex q of
Π, if we choose two paths connecting it to p, the isomorphism associated is the
same. It is sufficient to prove that the isomorphism associated to a loop is the
identity. Consider a loop P . By contractibility (collapsible polytopal sets are
clearly contractible) this loop is the boundary of the union of a finite number
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of polygons. By splitting the isomorphism as shown below,

 

we can restrict to the case where P is the boundary of a single polygon σ. Let
e1, . . . , er be the consecutive oriented edges forming P , and let q0, . . . , qr−1, qr =
q0 be its vertices, so that ei goes from qi−1 to qi. Then

Φ(P ) = Φ(er) . . .Φ(e1) = (−1)rφqr,erφ
−1
qr−1,er . . . φq1,e1φ

−1
q0,e1 . (3.9)

The square of the differential map vanishes, so, computing the component Aσ →
Aqi of d2, we have

φqi,ei+1
φei+1,σ + φqi,eiφei,σ = 0.

This implies

φ−1
qi,ei+1

φqi,ei = −φei+1,σφ
−1
ei,σ (3.10)

and, applying (3.10) to (3.9), we get the identity.

Of course one can reverse all the arrows in the lemma, and consider inclusion
morphism instead of projection, and obtain an analogous statement for right-
described complexes.

3.2.2. Exact structure for complexes. We want to give a precise meaning

to filtrations in the category Cb(C ).

Definition 3.17. We say that a sequence

A→ B → C

is exact in Cb(C ) if it is split exact in the additive category Gb(C ). In this case
we say that A is a subcomplex of B and C is a quotient

This defines an exact structure on Cb(C ) in the sense of [59]. Notice that
when we pass to the homotopy category, exact sequences become distinguished
triangles. See [67, § 2-4].

We say that complexes Ai (i = 0, . . . , n) filter A by subcomplexes when Ai
is a subcomplex of Ai+1, A0 = 0 and An = A. Then the quotients of Ai+1 by
Ai are called subquotients of the filtration.

We will use the following fact.

Lemma 3.18. If A and B are complexes filtered by Ai and Bi respectively, and
f : A→ B a morphism compatible with the filtrations. Then f is the projection
to (inclusion of) a Gaussian summand if and only if it is so on all subquotients.
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Proof. It suffices to prove that, given a commutative diagram

X Y Z

X ′ Y ′ Z ′

where the rows are exact, if two of the vertical arrows are projections to a
Gaussian summand, then the third is too. Complete the diagram to a square

X ′′ Y ′′ Z ′′

X Y Z

X ′ Y ′ Z ′

where all rows and columns are exact (this is possible by the exact category
versions of the 3 × 3 lemma and the snake lemma). Now the first and last
columns are split by hypothesis and X ′′ and Z ′′ are null-homotopic, because X ′

and Z ′ are Gaussian. Then also Y ′′ is null-homotopic (it suffices to see the top
row as a distinguished triangle in the homotopy category). But then the middle
column has to be split too (contractible complexes are injective/projective for
the Frobenius structure on Cb(C ): see for example [48]). The case of inclusions
is symmetric.

3.2.3. Reduced complexes. Let us now describe the reduced version for
positive Rouquier complexes more generally. If w is a Coxeter word, we write
F •w for the corresponding positive Rouquier complex (we should replace w with
its positive word lift). We now describe a new complex Fw that we will obtain
after Gaussian elimination.

If s ∈ S and x is the word consisting of n repetitions of the letter s, we set

Cx := Bs(−n+ 1).

If x is any Coxeter word, first write it as

x1x2 . . . xk

where each xi is one-color and of a different color than xi+1. Then set

Cx := Cx1
Cx2
· · ·Cxk ⊂⊕ Bx.

We also set C∅ := 1.

Example 3.19. Let x = sssttusuu, then

x1 = sss, x2 = tt, x3 = u, x4 = s, x5 = uu.

Hence Cx = Bs(−2)⊗Bt(−1)⊗Bu ⊗Bs ⊗Bu(−1) = Bstusu(−4).
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Let now w be a Coxeter word: the graded object corresponding to Fw is

(Fw)
gr

=
⊕
x�w

Cx〈qw,x〉, (3.11)

where qw,x = `(w)− `(x) and 〈1〉 denotes the Tate twist (1)[−1] (cf § 2.2.4). We
have to describe the differential map d. We will specify the components

dx′,x : Cx〈qw,x〉 → Cx′〈qw′,x′〉,

for x, x′ � w and `(x) = `(x′) + 1. This map is nonzero only if x′ � x, which
means that x′ is obtained from x by eliminating one letter. The simplest such
situation is when x and x′ are one-color of color s, of lengths k + 1 and k
respectively. Then we set

dx′,x = ds,k :=


if k = 0,

δs − δs = αs − if k > 0 is odd,

δs − s(δs) = if k > 0 is even.

(3.12)

In general, one can write x and x′ in the form

x = z1 sss . . . s︸ ︷︷ ︸
k+1

z2, x′ = z1 ss . . . s︸ ︷︷ ︸
k

z2,

where z1 and z2 are (possibly empty) Coxeter words such that z1 does not end
with s and z2 does not start with s. Hence we set

dx′,x := (−1)`(z1) idCz1 ⊗ds,k ⊗ idCz2 .

If k = 0 and z1 ends with same letter as z2 starts, then we also compose on top
with the corresponding trivalent:

. . . . . . (3.13)

Example 3.20. Let w = tsst, then Fw is

Ctt(2)

Ctst(1) ⊕

⊕ Cts(2) Ct(3)

Ctsst Ctss(1) ⊕ ⊕ C∅

⊕ Cst(2) Cs(3)

Csst(1) ⊕

Css(2)

d2

d1
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We describe the arrows d1 and d2, as an example, and we leave the others to
the reader. We have Ctsst = BtBsBt(−1) and Ctst(1) = BtBsBt(1). We are
canceling the letter s and passing from two occurrences to one. Furthermore
the length of the word preceding the group of s’s is one, hence the morphism
d1 is:

− δs + δs

Next, we have Ctt(2) = Bt(1) and the morphism d2 is eliminating the only s
from Ctst. Notice that the two adjacent letters are both t’s, hence d2 is

−

Proposition 3.21. The differential map d defined above satisfies d2 = 0.

One can prove this directly but it will follow from Claim 1 below (which is
proven independently of this statement).

Here is the statement of the main result of this section.

Theorem 3.22. Let w be a Coxeter word. Then the complex F •w admits Fw as
a Gaussian summand. In particular F •w ' Fw.

The rest of this section is devoted to the proof of this result. We will ex-
plicitely construct a projection from F •w to Fw and then show that it is a ho-
motopy equivalence.

3.2.4. Multiword decomposition. The first step is a convenient decompo-
sition of the original complex, generalizing that of Example 3.13. We will need
the following notion.

We call multiword an expression of the form

µ = sn1
1 . . . snkk

with si ∈ S and ki ∈ Z>0. Notice that si need not be different from si+1. If
all the si are equal we say that µ is one-color. Equivalently, a multiword is
an element of the free monoid generated by S × Z>0. Let M denote the set of
multiwords. To each multiword we can associate a Coxeter word in two natural
ways: one can either expand the exponents, or forget them. This gives two
maps

M WS ,
e

f

where

e(µ) = s1 . . . s1︸ ︷︷ ︸
n1

. . . sk . . . sk︸ ︷︷ ︸
nk

,

f(µ) = s1 . . . sk.

We say that a multiword is simple if all multiplicities are 1’s, or equivalently
e(µ) = f(µ).
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Recall now the decomposition of Example 2.6. Iterating, we get

B⊗3
s = Bs(−2)⊕B⊕2

s ⊕Bs(2),

B⊗4
s = Bs(−3)⊕Bs(−1)⊕3 ⊕Bs(1)⊕3 ⊕Bs(3),

. . . ,

and in general

B⊗(n+1)
s =

n⊕
k=0

Bs(n− 2k)⊕(nk). (3.14)

The inclusion morphisms of the
(
n
k

)
summands of the form Bs(n − 2k) are all

possible combinations of inclusions ι1 and ι2 from Example 2.6. Hence they are
of the form

n1 n2 . . . nk

δs δs δs
. . . . . . . . . . . .

where n1 + n2 + · · · + nk = n + 1, and there is no decoration in between each
group of ni strands. We label these summands by one-color multiwords: the
summand corresponding to the inclusion above will be denoted by Cµ with
µ = sn1sn2 . . . snk . The corresponding projection is obtained by appropriately
combining projections π1 and π2 from Example 2.6: one reflects the diagram
vertically, and replaces empty decorations with −s(δs) and δs with empty dec-
orations.

Example 3.23. There are
(

3
2

)
= 3 copies of Bs(−1) inside B⊗4

s . Their inclusion
mophisms are:

δs
δs

δs

δs

δs
δs

and the corresponding projection morphisms are respectively:

−
s(δ

s )
−
s(δ

s )
−
s(δ

s )

With the multiwords notation the three summands are, respectively,

Csss2 Css2s Cs2ss.

Let us now pass to the general case. For an arbitrary multiword µ, first we
decompose it into one-color multiwords µ1 . . . µk with µi and µi+1 of different
colors, then we set

Cµ := Cµ1
. . . Cµk .
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Notice that when the multiword µ is simple and e(µ) = f(µ) = x then Cµ = Cx,
so our notation is consistent.

Let x be an arbitrary Coxeter word. We can apply the one color case to
each sequence of repeated letters and decompose the Bott-Samelson object Bx
accordingly. Hence we get

Proposition 3.24. Let x be a Coxeter word, then:

Bx =
⊕
e(µ)=x

Cµ.

Let us apply this to the graded object (F •w)
gr

. For a subexpression i of w,
let wi be the subword of w corresponding to it. For a given subword x, let Mx

denote the following set:

Mx := {(i, µ) ∈ {0, 1}`(w) ×M | f(µ) = x, e(µ) = wi}.

Then, using Proposition 3.24, we have:

(F •w)
gr

=
⊕

i∈{0,1}`(w)

Bi〈qi〉 =
⊕
i

⊕
e(µ)=wi

Cµ〈qi〉 =
⊕
x�w

⊕
(i,µ)∈Mx

Cµ〈qi〉︸ ︷︷ ︸
:=Gx

.

We will use the notation Ci,µ := Cµ〈qi〉.
In Example 3.13, the subwords of w = sss are

sss, ss, s, ∅.

So the corresponding sets are the following:

Msss = {(111, sss)},
Mss = {(110, ss), (101, ss), (011, ss), (111, s2s), (111, ss2)},
Ms = {(100, s), (010, s), (001, s), (110, s2), (101, s2), (011, s2), (111, s3)},
M∅ = {(000, ∅)}.

Then Gsss, Gss, Gs and G∅ are respectively the violet, blue, green and black
parts in (3.7).

These Gx allow us to define a filtration of the complex as in the example.

Lemma 3.25. Choose an total ordering x0, x1, . . . , xN of the subwords of w,
refining �. Then the objects

G≤n :=

n⊕
i=0

Fxi

define a filtration of F •w by subcomplexes.

Proof. It is sufficient to prove that the component Gx → Gz of the differential
map can be nonzero only if z = x or z � x. Consider the composition:

Ci,µ Bi Bi′ Ci′,µ′ .
d (3.15)

This is nonzero only if i′ is obtained from i by turning a 1 to a 0, by definition
of the differential. Then e(µ′) � e(µ) and `(e(µ)) = `(e(µ′)) + 1. Then one can
easily see that either f(µ′) = f(µ) or f(µ′) � f(µ).
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As in Example 3.13, each of the subquotients Gx will shrink to a single object
Cx, via large scale Gaussian elimination, and we will assemble these reductions
together to a reduction of the entire complex.

3.2.5. Colored polytopal complexes. To reduce the subquotients we will
use large scale Gaussian elimination. More precisely, the subquotient Gx is
left-described by a collapsible polytopal set Π(w, x) that we now describe.

Let ∆i denote the i-simplex. The polytopes of Π(w, x) are labeled by the set
Mx. The polytope labeled (i, µ) is a multisimplex ∆n1−1 × · · · ×∆nk−1, where
µ = sn1

1 . . . snkk . The faces of this multisimplex are those corresponding to pairs
(i′, µ′), where i′ ≤ i (componentwise) and µ′ is of the form sm1

1 . . . smkk with
1 ≤ mi ≤ ni. For instance, the vertices are labeled by all the subexpressions for
x (and the only simple multiwords for them).

Example 3.26. Here are two examples of these polytopal sets.

110000

100100

001100100001

001001

000011

00000111

00100011

00110001

00111000

01000011

01010001

01011000

10000011

10010001

10011000

The first is Π(ststst, st), the second is Π(ssstustu, stu). The vertices are labeled
by colored subexpressions: we color the symbols of the 01-sequences according
to the corresponding simple reflections.

Proposition 3.27. The polytopal set Π(w, x) left-describes the subquotient Gx.

Proof. Of course, we associate Ci,µ to the polytope labeled (i, µ). We need to
check that the nonzero morphisms correspond to the face relationship and that
they are isomorphisms.

Recall the proof of Lemma 3.25 and the composition (3.15). When f(µ′) =
f(µ), the only possibility is that

µ = . . . s
ni−1

i−1 s
ni
i s

ni+1

i+1 . . . , µ′ = . . . s
ni−1

i−1 s
ni−1
i s

ni+1

i+1 . . . .

and one can check that the composition is just the identity, up to sign.

Proposition 3.28. The polytopal set Π(w, x) is collapsible.

Proof. Consider the lexicographic order on 01-sequences and take the smallest.
This corresponds to a point and it is easy to see that there is only one maximal
polytope containing it. Then we can collapse them. Then we can proceed by
induction.

To finally prove Theorem 3.22, we have to glue all the reductions of the
subquotients together
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3.2.6. Proof of the theorem. We now define the homotopy equivalence from
F •w to Fw. Given an element of {0, 1}n, we call a flip the replacement of a
subsequence “01” with “10” or viceversa. For each subexpression i let |i| be
the minimal number of flips that are necessary to turn i into the sequence
11 . . . 100 . . . 0. Consider the maps{

Ci,µ
(−1)|i|−→ Cx if e(µ) = f(µ) = x

Ci,µ → 0 otherwise

One can glue them together to form a morphism π : (F •w)
gr → (Fw)

gr
.

Claim 1. The morphism π is compatible with the differential maps.

Remark. As π is surjective, this also implies Proposition 3.21.

Proof of Claim 1. We will check this over each Ci,µ. Let first µ be simple and
e(µ) = f(µ) = x. Let x′ be a word obtained by x by removing a letter. Then
the component Ci,µ → Cx′ of the composition dπ is

(−1)|i|dx′,x

as defined in § 3.2.3. The same component of the composition πd is the sum of
the compositions

Ci,µ Bi Bi′ Ci′,µ′ Cx′ ,
d (3.16)

for all possible i′ obtained from i by turning a 1 to a 0. Let x = z1sss . . . sz2

and x′ = z1ss . . . sz2, then the only nonzero such composition are those where
the new 0 corresponds to one of the s’s, and we get

∑
i′

(−1)|i
′|

. . . . . .
δs δs δs δs δs

. . . . . .

and one can check that this gives the same.
If µ is not simple, we have to check that the composition πd is zero. Consider

again the component Ci,µ → Cx′ , with x′ as above. The only non trivial case
for the compositions (3.16) is

µ = s1 . . . si−1s
2
i si+1 . . . sk, µ = s1 . . . si−1sisi+1 . . . sk,

and there are only two possibilities for i′. These give

± . . . . . . ∓ . . . . . . = 0

Now, consider a total ordering x1, . . . xN on the subwords of w. This gives a
filtration on F •w as in Lemma 3.25 and also naturally on Fw: the filtered pieces
are just the Cxi .
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Claim 2. The map π is compatible with the filtrations. Furthermore, on sub-
quotients, it coincides, up to a sign with the projection coming from Proposition
3.28.

Proof. The compatibility with the filtrations is obvious by the definition of π.
Notice that the edges of Π(w, x) connect vertices that can be obtained from
one another by a colored flip: this is a replacement of a subsequence “10. . . 00”
with “00. . . 01” where the symbols in the middle are all zeros (that can have
any color). For example the following is a colored flip:

00000111 10000011.

Then one can check that the isomorphism associated to an edge is (−1)n where
n is the number of zeros involved in the flip. In the example above n = 5. Then
one sees that up to a global sign, the isomoprhisms associated with the paths
to a given point agree with π.

This concludes the proof of Theorem 3.22.

3.2.7. Negative case. Of course everything works symmetrically for the neg-
ative case. Let w be a Coxeter word and ω its negative word lift. Then one can
describe a complex F−w homotopy equivalent to F •ω as follows.

First we define, for x a word consisting of n repetition of the letter s,

C−x := Bs(n− 1).

Then, as before, with x = x1x2 . . . xk as before, set

Cx := C−x1
C−x2
· · ·C−xk ⊂⊕ Bx.

The graded object corresponding to F−w is

(F−w )
gr

=
⊕
x�w

C−x 〈−qw,x〉.

The differential is given, again, via its components d−x′,x. These are nonzero only

if x′ � x which implies that x′ is obtained from x by inserting a single occurrence
of a letter s. Again, we first consider x and x′ consisting of respectively k and
k + 1 occurrences of the same letter s. In this case

d−x′,x = d−s,k :=


if k = 0

δs − δs = αs − if k > 0 is odd

δs − s(δs) = if k > 0 is even

In general, one can write x and x′ in the form

x = z1 ss . . . s︸ ︷︷ ︸
k

z2, x′ = z1 ss . . . s︸ ︷︷ ︸
k+1

z2,
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where z1 and z2 are as in the previous case. Then we set

dx′,x := (−1)|z1| idC−z1
⊗d−s,k ⊗ idCz2 .

Again we need to treat the case when k = 0 and z1 ends with same letter as z2

starts. In this case we compose on bottom with a trivalent:

. . . . . .

This concludes the definition of F−w and we have the analogue of Theorem 3.22:

Theorem. Let w be a Coxeter word and ω its negative word lift. Then the
complex F •ω admits F−w as a Gaussian summand. In particular F •ω ' F−w .

For a arbitrary braid word ω we can first write its alternating decomposition

ω = ω1ω2 . . . ωk

and consider the corresponding Fwi and F−wj . Then define Fω to be their tensor

product. Then we have F •ω ' Fω.

3.2.8. Reduced diagrammatics. We want now to give a diagrammatic de-
scription of morphisms between the Fω’s. Roughly speaking, the reduction from
subexpression to subwords allows us to forget about patches.

It will be convenient to see the morphisms between the Cx’s (or the C−x ’s)
on the level of the corresponding Bx’s. More precisely, consider the following.

(i) Let Λx ⊂
⊕

z Hom(Bx, Bz) be the left ideal generated by decorated bot-
tom trivalent vertices of the form

. . .
s(δs)

. . .

(ii) Let Vx ⊂
⊕

z Hom(Bz, Bx) be the right ideal generated by top trivalent
vertices of the form

. . . . . .

(iii) Let Λ−x be the left ideal generated by bottom trivalent vertices of the form

. . . . . .

(iv) Let V −x be the right ideal generated by top decorated trivalent vertices of
the form

. . .
δs

. . .
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Then we have

Proposition 3.29. Let x and x′ be Coxeter words, then

Hom(Cx, Cx′) = Vx′\Hom(Bx, Bx′)/Λx,

Hom(Cx, C
−
x′) = V −x′ \Hom(Bx, Bx′)/Λx,

Hom(C−x , Cx′) = Vx′\Hom(Bx, Bx′)/Λ
−
x ,

Hom(C−x , C
−
x′) = V −x′ \Hom(Bx, Bx′)/Λ

−
x .

Proof. In any additive category, if A is a summand of B with inclusion ι, we
have, for any other object C a surjective morphism

Hom(B,C)→ Hom(A,C)

φ 7→ φ ◦ ι,

whose kernel is given by morphisms annihilating ι. The inclusion morphism of
Cx in Bx was described in § 3.2.4 (it is the case with all possible decorations),
hence it is clear that it is annihilated by all morphisms in Λx. By considering
the complementary summands (given by all other multiwords and inclusions)
one sees that this is actually the whole annihilator. One argues similarly, with
projections instead of inclusions, for the quotient by Vx on the other side. This
proves the first equality, the others are proven similarly.

Consider now two Coxeter words w and w′. We have

Hom•(Fw, Fw′) =
⊕
x�w
x′�w′

Hom(Cx, Cx′)〈qw′,x′ − qw,x〉.

By Proposition 3.29, this is⊕
x�w
x′�w′

Vx′\Hom(Bx, Bx′)/Λx〈qw′,x′ − qw,x〉.

Similarly we can describe the other morphism spaces Hom•(F±w , F
±
w′). This

justifies the following description of morphisms between Fω and Fω′ , for braid
words ω and ω′. They are linear combinations of diagrams obtained as follows.

� Consider the usual planar strip R× [0, 1] and divide the boundary in white
and black pieces according to the alternating decomposition of ω and ω′.

� For each piece of the boundary choose a subword of the corresponding
positive or negative piece of ω or ω′. Then draw the starting and ending
points corresponding to these subwords.

� Draw an ordinary Soergel diagram with the chosen boundary points.

Notice that here a general morphism could be a combination of diagrams with
different starting or ending words. Furthermore, as this time we do not represent
the canceled letters it is important to keep track of the entire words ω and ω′.
A diagram alone does not identify a morphism.
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Example 3.30. Let ω = σ3
sσ
−1
t σ−1

u σt and ω′ = σsσ
−2
t σ2

u. Then the diagram

αu

should be interpreted as the element of

Hom(CssC
−
tuCt, CsC

−
t Cu) = Hom(Bs(−1)BtuBt, BsBtBu) = Hom(Bstut, Bstu),

corresponding to the diagram:

αu
δs

We have to point out some features of this description of the morphisms.

Remark 3.31. (i) The diagrams also undergo the following relations:

s(δs)
= 0, = 0,

δs
= 0, = 0.

These represent the double quotient by the annihilators Λ and V from
above.

(ii) The cohomological degree of a diagram is p = q′− q, with q = δ(ω)− δ(ξ)
and q′ = δ(ω′) − δ(ξ′), where ξ and ξ′ are the subwords of ω and ω′

respectively that one can read on the boundaries of the diagram. Hence
the degree can still be recovered from the diagram, provided we specify
the words ω and ω′.

(iii) The polynomial degree of a diagram is still d − p, if d is the degree as a
Soergel diagram (as described in § 2.1.5) and p is its cohomological degree.

(iv) We want to describe the differential map. First observe that, by the same
computations used in the proof of Claim 1, we have

ds,k =

k∑
i=0

(−1)i δs δs δs δs δs
. . . . . .

which is equal to

π ◦
( k∑
i=0

(−1)i . . . . . .
)
◦ ι,
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where ι and π are respectively the inclusion and the projection corre-
sponding to the summand Css...s inside Bss...s (as described in § 3.2.4). A
similar formula holds for d−s,k. This means that, on the level of the Bx’s,
the differential map acts as an alternating sum of dots. This justifies the
following description. Consider the operations:

� adding a positive boundary dot on the bottom boundary or a a neg-
ative boundary dot on the top boundary (dot-sprouting);

� removing a negative starting point or a positive ending point and
adding a dot at the end of the corresponding strand (strand-uprooting);

Dot-sprouting : . . . . . .  . . . . . .

. . . . . .

 
. . . . . .

Strand-uprooting . . . . . .  . . . . . .

. . . . . .

 
. . . . . .

Each operation changes one of the subwords in a (white or black) piece
of the boundary. We say that it is admissible when this gives again a
subword of the word corresponding to that piece.

Then, the image via the differential map of a single diagram is the sum,
with appropriate signs, of all the diagrams obtained by one of the above
operations, when they are admissible.

The sign is given by the following rule. When operating on the top bound-
ary, let r be the number of starting points to the left of the sprouting dot
or the uprooted strand, then the sign is (−1)r. The same rule applies
to the bottom boundary but we also need to multiply by an additional
(−1)p+1 where p is the cohomological degree of the initial morphism.

For example, here is the image via the differential map of the above dia-
gram:

d

 αu

 = αu − αu + αu +

+ αu + αu − αu +

+ αu − αu + αu

Here the initial morphism has degree 1, hence the additional sign term for
the bottom boundary is just +1.
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(v) Composition of morphisms is always given by gluing diagrams vertically,
but we have to take into account the inclusions and projections of the
summands. If not all subwords match then the composition is zero, oth-
erwise the middle line is then replaced by the corresponding idempotents.
For example:

αu ◦ =

αu
δs

(vi) Tensor product of morphisms is given by gluing diagrams horizontally,
with the usual sign from Koszul rule.

(vii) Finally, we can adapt the double leaves bases to this new description. For
each choice of subwords one considers the usual double leaves basis but
excluding some elements. More precisely, one should avoid the following
configurations:

� the pairs of consecutive symbols of the same color with decorations
U1D1, U1D0, D0D1 or D0D0 on a white piece;

� the pairs of consecutive symbols of the same color with decorations
D1U1, D1U0, U0U1 or U0U0 on a black piece.

A set of double leaves maps which does not contain these configurations
is a basis for the morphism space. In fact one can show that the double
leaves with the above configurations form a basis for the annihilators.
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Chapter 4

Extensions in type Ã1

Let us now go back to our main problem. We will study the type Ã1 case. First
we will determine completely the extension groups between Wakimoto sheaves
in characteristic 0, then we will use the results from last chapter to produce a
much simpler dg model for the morphism space Hom(Θλ,1) in general. Finally
we will apply this to the antispherical category and determine completely the
extension groups between the corresponding objects with arbitrary coefficients.

4.1 Type Ã1 setting

We start with some observations and introduce some special notation for type
Ã1.

4.1.1. Reduced words. Let W be the affine Weyl group of type Ã1. There
are two simple reflections S = {s, t}, where Sf = {s} is the finite reflection and
{t} = S \ Sf is the affine reflection (see Example 1.2 (iii)). Notice that, for
n > 0, there are exactly two elements in W with length n, and each of them
has a unique reduced word. Let

sn := stst . . .︸ ︷︷ ︸
n letters

tn := tsts . . .︸ ︷︷ ︸
n letters

and let sn and tn denote the corresponding elements in W . Recall that in W
the reflections are precisely the elements of odd length. and that W = 〈s〉n Z
with translation lattice generated by ts.

4.1.2. Realizations. In type Ã1 the Cartan matrix is a 2 × 2 matrix of the
form (

2 〈αs, α∨t 〉
〈αt, α∨s 〉 2

)
=

(
2 ∂t(αs)

∂s(αt) 2

)
=

(
2 −[2]t
−[2]s 2

)
and it is determined by the two values [2]s = −∂s(αt) and [2]t = −∂t(αs) (see
§2.1.3). The standard Cartan matrix for Ã1 is that with [2]s = [2]t = 2.

71
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Remark 4.1. Notice that, in order to satisfy Demazure surjectivity, we may have
to assume that 2 is invertible in k. Recall Example 2.2: we definitely need this
assumption for the geometric realization (i) and the natural realization (iii)
whereas we could avoid it for the Kac-Moody realizations (iv) and (v).

For the standard Cartan matrix, here is a picture of the action of the Kac-
Moody realization over the root lattice (one has a similar picture for the coroot
lattice).

t s

αs

αt
δ

αtst

−αtst

In the picture on the left, the actions of s and t are indicated by the gray arrows,
and the red (and blue) points are the orbit of αs (and αt) via W . The points
in the vertical black line are fixed by W .

In the picture on the right, one can see the action of (not only simple)
reflections: the conjugates of s are drawn in red and the conjugates of t in blue.
Each reflection x is associated with a unique pair of roots ±αx ∈ h∗ and of
coroots ±α∨x ∈ h, such that

x(v) = v − 〈αx, v〉α∨x , ∀v ∈ h.

If x = wsw−1 one sees that α∨x = ±w(α∨s ) and αx = ±w(αs). We put αx :=
w(αs) where w is of minimal length (and similarly with t instead of s). In the
picture, we have indicated for example αtst = t(αs). In the context of [44], these
correspond to the positive roots and coroots of the corresponding Kac-Moody
algebra, but we extend the definition to all realizations of Ã1.

Remark 4.2. One has the following formulas (easily proved by induction) for
the roots associated to arbitrary reflections:

αs2r+1
= [r + 1]sαs + [r]tαt,

αt2r+1
= [r]sαs + [r + 1]tαt.

One has analogous formulas for the coroots.

4.1.3. Hecke category and Wakimoto sheaves in type Ã1. Let H be
the diagrammatic Hecke category for a given realization of the Coxeter system
of type Ã1. From now on, we will use red for the simple reflection s and blue
for t. Notice that we do not have any (s, t)-ar in the diagrams because there is
no braid relation in the group.
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Then we can consider the homotopy category Kb(H ) and Rouquier com-
plexes F •ω for all braid words ω in the braid group. In this case the lift of the
translation lattice in the braid group is given by

{(σtσs)n | n ∈ Z}.

Hence the Wakimoto sheaves in type Ã1 are:{
Θ•n = (FtFs)

n if n > 0

Θ•n = (F−1
s F−1

t )−n if n ≤ 0.

By the general properties from §2.2.3, to compute morphisms between these ob-
jects, we can restrict to Hom(Θ•n,1[i]). Furthermore, by the Rouquier formula,
we already know that this is zero if n > 0.

The object of study of this chapter is then the dg-module

Hom•(Θ•−n,1) (4.1)

for n ∈ N.

4.2 The characteristic zero case

Under the assumption that k is of characteristic zero, the category H has
nice decomposition properties: for instance, in type Ã1, one can compute the
minimal subcomplexes of the Wakimoto sheaves quite easily.

More precisely, in this section we assume

char(k) = 0, [n]s, [n]t ∈ k×, ∀n ∈ Z>0. (4.2)

Notice that for the standard Cartan matrix, the two-colored quantum numbers
are just the integers:

[n]s = [n]t = n.

So, in this case, the second assumption in (4.2) is automatic from the first.

4.2.1. More on two-colored quantum numbers. We will use the following
properties, which can be easily proved by induction: if n is odd and m ≥ n,
then

[n][m]x =

n∑
k=1

[m− n+ 2k − 1]x, [n][m]y =

n∑
k=1

[m− n+ 2k − 1]y.

If instead n is even then

[n]y[m]x =

n∑
k=1

[m− n+ 2k − 1]y, [n]x[m]y =

n∑
k=1

[m− n+ 2k − 1]x.

In words, for an appropriate choice of colors, the product of the two-colored
quantum numbers corresponding to n and m can be written as a sum of an
increasing sequence of n two-colored quantum numbers, centered at m. Note
that the recursive definition is the particular case n = 2.



74 CHAPTER 4. EXTENSIONS IN TYPE Ã1

We also define (two-colored quantum) factorials,

[n]!x = [n]x[n− 1]x · · · [1]x,

and binomial coefficients,

[ nk ]x =
[n]!x

[k]!x[n− k]!x
,

and similarly for y. One can show that these are still elements of Z[x, y].

4.2.2. Minimal subcomplexes of the Wakimoto sheaves. As we men-
tioned above, under assumptions (4.2), one can actually compute the minimal
subcomplex Θn (see §3.2) of the Wakimoto sheaves in type Ã1. Recall that this
is a homotopy equivalent summand with no contractible summands: for com-
plexes in H , when k is a field, or, more generally, a complete local ring, this
property identifies a unique complex up to isomorphism. The minimal subcom-
plexes Ftn (and Fsn) of Ftn

(and Fsn
respectively) were computed in [3] for the

(infinite) dihedral group, so we will refer to this result. The case of Ft−1
n

(and
Fs−1

n
) is symmetric, but for convenience of application of this result, we prefer

to use the positive complexes. So we compute the cohomology of

Hom•(1,Θn) (4.3)

with n ≥ 0, which, by the remarks in the previous sections, is the same as (4.1).
The assumptions (4.2) allow to define, for all m, the Jones-Wenzl morphism

from §2.1.5:

JW

with 2m − 2 strands around the circle. We emphasize that, in §2.1.5, the gen-
eral assumptions on the realization allowed to define some of these morphisms
(namely one for each braid relation), whereas now we can define them all at
once. These morphisms can be described inductively: later, in the proof of a
technical lemma, we will give one of the known recursive formulas for them. For
other such formulas, see [30] or [33].

From each Jones-Wenzl morphism, one can build an idempotent as follows

JWsn
= JWsn = JW

. . .

. . .

JWtn
= JWtn = JW

. . .

. . .

Here and below we will use violet to represent a non-specified color among red
and blue: in this case the actual color depends on the parity of n.
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These idempotents give the maximal indecomposable summands mentioned
in Remark (i) in §2.1.6. More precisely, let w ∈ W and let w be the (unique)
reduced word corresponding to it. Then the idempotent JWw defined above
identifies the summand Bw of Bw.

Let us define the complex Ftn to be

Btn−1(1) Btn−2(2) . . . . . . . . . Bt(n− 1)

Btn ⊕ ⊕ . . . . . . ⊕ R(n)

Bsn−1(1) Bsn−2(2) . . . . . . . . . Bs(n− 1)

(4.4)

where each arrow φw,u = Bw(n − `(w)) → Bu(n − `(u)) is given, in terms of
the corresponding Bott-Samelson objects (via the Jones-Wenzl idempotents), as
follows:

φtk,tk−1
= (−1)k+1

JWtk

JWtk−1

φtk,sk−1
=

JWtk

JWsk−1

(4.5)

φsk,sk−1
= (−1)k+1

JWsk

JWsk−1

φsk,tk−1
=

JWsk

JWtk−1

The fact that this is indeed a complex follows from the properties of the Jones-
Wenzl idempotents (see for example [3] or [34]), which imply in particular that a
smaller Jones-Wenzl idempotent is swallowed by a bigger one1. One can define
Fsn similarly (the formulas for the φ’s being the same).

Then we have (see [3, §9]):

Theorem. For w ∈W and w its unique reduced word, the minimal subcomplex
of Fw is Fw.

Hence, in particular, the minimal subcomplex of a dominant Wakimoto sheaf
are Θn = Ft2n .

4.2.3. Consequences of Soergel’s conjecture. Our next ingredient is the
nice decomposition behavior of the Hecke category in this case, which is encoded
in Soergel’s conjecture (see Remark 2.5 (ii)).

Remark 4.3. (i) For the Ã1 case, any realization satisfying assumption (4.2)
will have this property.

1Notice that this implies that we could simplify the diagrams for the φ’s in (4.5). We
displayed them in this way to highlight the considered summands inside the Bott-Samelson
object.
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(ii) Now, observe that in type Ã1, Kazhdan-Lusztig polynomials are all trivial,
which means that the Kazhdan-Lusztig basis is of the form

bw =
∑
x≤w

v`(w)−`(x)δx.

(iii) Finally, by formula (2.11), this implies that

Hom(1, Bw) = R(−`(w)). (4.6)

Furthermore, a basis for Hom(1, Bw) is given, on the Bott-Samelson level,
by the morphism

JWw

which has degree `(w). In particular the basis of Hom(1,1) is the identity.

4.2.4. Extension groups. We can now compute the extension groups under
our assumptions. The complex Hom•(1, Ftn) is, by (4.4), the following:

Hom(1, Btn−1 )(1) . . . . . . . . . Hom(1, Bt)(n− 1)

Hom(1, Btn ) ⊕ . . . . . . ⊕ Hom(1,1)(n)

Hom(1, Bsn−1 )(1) . . . . . . . . . Hom(1, Bs)(n− 1)

Hence, by (4.6), this becomes

R(−n+ 2) . . . . . . . . . R(n− 2)

R(−n) ⊕ . . . . . . ⊕ R(n)

R(−n+ 2) . . . . . . . . . R(n− 2)

(4.7)

Here, each arrow is the multiplication by a certain polynomial that we now want
to determine.

We have the following recursive formula, which we shall prove later, for the
elements of R obtained by putting dots everywhere above and under a Jones-
Wenzl morphism.

Lemma 4.4. Let u < w be elements of W with `(w) = `(u) + 1. Then

JWw = qw,u JWu (4.8)

where the coefficient qw,u ∈ R is as follows:
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(i) if `(u) = 2r is even, then

qw,u =


[r]s
[2r]s

αsn if w = sn,

[r]t
[2r]t

αtn if w = tn;

(ii) if `(u) = 2r + 1 is odd, then

qw,u =


[r+1]t
[2r+1]t

αsn if u = tn,

[r+1]s
[2r+1]s

αtn if u = sn.

In other words, up to a scalar, the coefficient is the root corresponding to the
only reflection which is a subword of w but not of u.

Let us assume this lemma and go back to the complex (4.7). The arrow
Hom(1, Bw)→ Hom(1, Bu) is given by a polynomial pw,u such that

JWw

φw,u

= pw,u JWu

Now it suffices to add dots on all top strands, use the expressions of φw,u in
(4.5), and then compare the result with the formula of the lemma to get

(−1)k+1ptk,tk−1
= qtk,tk−1

ptk,sk−1
= qtk,sk−1

(−1)k+1psk,sk−1
= qsk,sk−1

psk,tk−1
= qsk,tk−1

We can now compute the cohomology of the complex (4.7): suppose first that
n is even (which is the case of Wakimoto sheaves). Now, take 1 < k < n− 1. If
k is even and n− k = 2r, the complex at degree k looks as follows:

R(−n+ 2k − 2)⊕2 R(−n+ 2k)⊕2 R(−n+ 2k + 2)⊕2,
f g

where

f =

 [r]t
[2r]t

αtn−k+1

[r]s
[2r]s

αsn−k+1

[r]t
[2r]t

αtn−k+1

[r]s
[2r]s

αsn−k+1

 ,

g =

− [r]t
[2r−1]t

αsn−k−1

[r]t
[2r−1]t

αsn−k−1

[r]s
[2r−1]s

αtn−k−1
− [r]s

[2r−1]s
αtn−k−1

 .

The cohomology at degree k is then

R(
[r]s
[2r]s

αsn−k+1
, [r]t

[2r]t
αtn−k+1

) (−n+ 2k) =
R

(αsn−k+1
, αtn−k+1

)
(−n+ 2k)

=
R

(αs, αt)
(−n+ 2k).
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If αs and αt generate h∗ then this is k(−n+ 2k).
If instead k is odd and n− k = 2r+ 1, the complex at degree k has the form

R(−n+ 2k − 2)⊕2 R(−n+ 2k)⊕2 R(−n+ 2k + 2)⊕2f g

where

f =

− [r+1]t
[2r+1]t

αsn−k
[r+1]t
[2r+1]t

αsn−k

[r+1]s
[2r+1]s

αtn−k − [r+1]s
[2r+1]s

αtn−k


g =

 [r]t
[2r]t

αtn−k
[r]s
[2r]s

αsn−k

[r]t
[2r]t

αtn−k
[r]s
[2r]s

αsn−k


and hence the cohomology at degree k is 0. It is easy to adapt the above
computation to the cases k = 0, 1 and k = n−1, n. The results are summarized
in the following table (where empty cells are zeroes).

n
j

0 1 2 3 4 5 6 7 8 9 . . .

0 R
2 k(2)
4 k(0) k(4)
6 k(−2) k(2) k(6)
8 k(−4) k(0) k(4) k(8)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(for simplicity, the table corresponds to the case R/(αs, αt) = k).
When n is odd we can proceed similarly and obtain an analogous parity

vanishing of the cohomology (in this case in even degrees), but we get something
different for k = 1. In fact, if n = 2r + 1 is odd, the beginning of the complex
has the form

R(−n) R(−n+ 2)⊕2 R(−n+ 4)⊕2

 [r]t
[2r]t

αtn

[r]t
[2r]t

αtn

 − [r]t
[2r−1]t

αsn−2

[r]t
[2r−1]t

αsn−2

[r]s
[2r−1]s

αtn−2
− [r]s

[2r−1]s
αtn−2



which gives zero cohomology in degree 0 and R/(αtn)(−n+2) in degree 1. Hence
the table one gets is the following.

n
j

0 1 2 3 4 5 6 7 8 9 . . .

1 R
(αt)

(1)

3 R
(αt3 ) (−1) k(3)

5 R
(αt5 ) (−3) k(1) k(5)

7 R
(αt7 ) (−5) k(−1) k(3) k(7)

9 R
(αt9 ) (−7) k(−3) k(1) k(5) k(9)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One has, of course, similar tables for Hom•(1, Fsn). We now turn to the proof
of the recursive formula.
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Proof of Lemma 4.4. We will suppose w = sn+1 and u = sn. The other cases
can then be obtained by swapping s and t and/or applying horizontal reflection.

For convenience, let ωn denote the polynomial obtained by putting dots
everywhere above and under JWsn

:

ωn := JWsn

So we want to show that
ωn+1 = qsn+1,snωn

We shall use the symbol

z(k) :=

{
s if k is odd

t otherwise

The lemma is a direct consequence of a recursive formula for Jones-Wenzl mor-
phisms, which can be found in [3, §8.2] (for clarity we put a numbering over the
strands):

JWsn+1

1 2 n n
+

1

= JWsn

1 2 n n
+

1

+
[1]t

[n]z(n+1)

JWsn

1 2 n
+

1

+

+

n−2∑
a=2

[a]z(a+1)

[n]z(n+1)

JWsn

1 2 a a
+

1

a
+

2

n
+

1

+
[n− 1]z(n)

[n]z(n+1)

JWsn

1 2 n
−

1

n n
+

1

(4.9)

If we put dots everywhere in (4.9), we obtain

JWsn+1 = JWsn

n
+

1

+
[1]t

[n]z(n+1)

JWsn

2

+

+

n−2∑
a=2

[a]z(a+1)

[n]z(n+1)

JWsn

a
+

1

+
[n− 1]z(n)

[n]z(n+1)

JWsn

n
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After applying relations (2.3) and (2.6), we see that all the terms on the right
are multiples of ωn and we get

ωn+1 =

(
αz(n+1) +

[1]t
[n]z(n+1)

αt +

n−2∑
a=2

[a]z(a+1)

[n]z(n+1)
αz(a+1) +

[n− 1]z(n)

[n]z(n+1)
αz(n)

)
ωn

=

(
[1]tαt + [2]sαs + · · ·+ [n− 1]z(n)αz(n) + [n]z(n+1)αz(n+1)

[n]z(n+1)

)
ωn

Now suppose that n = 2r is even: if we split the sum according to the color
and we use the properties of the two-colored quantum numbers, the coefficient
becomes(

[2]s + [4]s + · · ·+ [2r]s
[2r]s

)
αs +

(
[1]t + [3]t + · · ·+ [2r − 1]t

[2r]s

)
αt

=

(
[r]s[r + 1]s

[2r]s

)
αs +

(
[r]s[r]t
[2r]s

)
αt

=
[r]s
[2r]s

(
[r + 1]sαs + [r]tαt

)
=

[r]s
[2r]s

αsn+1

If instead n = 2r + 1 is odd then it is(
[2]s + [4]s + · · ·+ [2r]s

[2r + 1]t

)
αs +

(
[1]t + [3]t + · · ·+ [2r + 1]t

[2r + 1]t

)
αt

=

(
[r]s[r + 1]s
[2r + 1]t

)
αs +

(
[r + 1]s[r + 1]t

[2r + 1]t

)
αt

=
[r + 1]s
[2r + 1]s

(
[r]sαs + [r + 1]tαt

)
=

[r + 1]s
[2r + 1]s

αtn

This concludes the proof.

Let us observe that

[1]s
[1]s

[2]s
[1]s

[3]s
[2]s

[4]s
[2]s

. . .
[2r]s
[r]s

= [ 2r
r ]s

and that
[1]s
[1]s

[2]s
[1]s

[3]s
[2]s

[4]s
[2]s

. . .
[2r + 1]s
[r + 1]s

=
[

2r+1
r+1

]
s

and similarly for t. Hence, by induction from the lemma, one obtains the fol-
lowing formulas for the everywhere-dotted Jones-Wenzl morphisms.

Corollary 4.5. Let T be the set of reflections in W . Then, for n ≥ 0, one has:

[
n−1

dn−1
2 e

]
s

JWsn =
∏
v∈T
x≤sn

αx

[
n−1

dn−1
2 e

]
t

JWtn =
∏
x∈T
x≤tn

αx

where d·e : R→ Z is the ceiling function.



4.3. THE TWO COLOR GARDEN 81

Remark. Dhillon and Makam [28] compute extensions between Verma modules
for the dihedral groups in a graded version of category O. They consider the
category of Soergel modules which is obtained from the Hecke category by killing
on the right the maximal ideal generated by positive degree monomials. Then
one can see the dihedral groups as quotients of the infinite dihedral group Ã1.
This defines a functor under which the Wakimoto sheaves are sent to the Verma
modules and if one repeats our computations in that category one can actually
deduce the same result.

4.3 The two color garden

We now drop assumption (4.2) and we consider an arbitrary realization h.
In the last chapter we described a reduced summand Fω inside F •ω , for any

braid word ω, which is homotopy equivalent to it. Let Θn denote this summand
inside Θ•n, for n ∈ Z.

It is very hard to reduce further the complex Θn in this generality. In
characteristic zero we could take advantage of the simplicity of decomposing
Bott-Samelson objects (essentially encoded in the fact that Kazhdan-Lusztig
polynomials are all 1 in this case).

Nevertheless, from last chapter we have a description of the dg-module of
morphisms

Cn := Hom•(Θ−n,1)

in the category Cdg(H ). We will reduce this dg-module with some homological
algebra, strongly using the basis of light leaves maps.

4.3.1. DG diagrams for Wakimoto sheaves. Recall from § 3.2.8 that the
space Cn can be written, as a graded module, as

Cn =
⊕
x�s2n

HomH (Bx,1)/Λx〈qx〉

where the sum is over all subwords of s2n (which is the Coxeter projection
of (σtσs)

−n), and qx = 2n − `(x). The symbol Λ denotes the bottom-ideal
generated by boundary trivalent vertices, of the following form.

. . . . . .

Recall that the differential map of Cn acts by successively uprooting strands, as
in the following picture

. . . . . .  . . . . . .

The image of a diagram via the differential map is then a linear combination,
with some signs, of all the diagrams obtained by uprooting a single strand
connected to the bottom boundary. The sign is determined by the subword u
and the position of the strand being uprooted, as follows. Let r be the number of
missing colors on the right of the uprooted strand, with respect to the sequence
. . . ststst, then the sign is given by (−1)r+1.
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Example 4.6. When applying the differential map to

we obtain

− − + +

+ − + .

Here, for instance, the sign of the second term, obtained by uprooting the blue
dot, is −1: in fact there are two colors missing on its right (a red on the right
of the blue dot, and a blue between the two red dots under the arch), so r = 2
in this case.

It is convenient to consider the (unbounded) dg-module

Γ =
⊕
x

HomH (Bx,1)/Λx〈−`(x)〉

where x runs through all Coxeter words, and the differential map is the same
as before. Then notice that the dg tensor product of morphisms, as defined in
§3.1.3 (with signs according to the Koszul rule), makes Γ a dg-algebra. We see
the space Cn as a dg submodule of Γ[−2n].

Remark 4.7. Notice that if k ≤ n all Coxeter words of length k appear as
subwords of s2n. This means that, if τ̃≥i is the naive truncation in Kb(H ) (or
even in Cdg(H )) we have

τ̃≥n(Cn) = τ̃≥n(Γ[−2n])

In other words, for high cohomological degree the “tails” of Cn and Γ are the
same (up to a shift). So the properties of Γ will correspond to asymptotic
properties of Cn.

A crucial property of Cn and Γ for our purpose is that they are free as
left R-modules. Bases are obtained from the light leaves bases of the spaces
Hom(Bx,1), as explained in Remark 3.31 (vii). Let us now give a precise
description of these basis for Cn.

4.3.2. Shrubberies. First let us look more closely to the light leaves maps in

type Ã1.
We are interested in morphism spaces of the form Hom(Bw,1). In the sequel

the length of an element γ of such a space, denoted by `(γ), will just mean the
length of w as a Coxeter word.

We introduce an operation on morphisms of this form. For a given positive
integer k, consider the morphism

ψsk := . . .

Bs Bs Bs Bs
. . .︸ ︷︷ ︸
k+1

∈ HomH (Bss...ss,1)
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For i = 1, . . . , k, let wi be a Coxeter word and γi ∈ HomH (Bwi ,1). Then we
define

(γ1| . . . |γk) := ψsk ◦ (idBs ⊗γ1 ⊗ idBs ⊗ · · · ⊗ idBs ⊗γk ⊗ idBs)

This is a morphism from Bw′ to 1 where

w′ = sw1s . . . swks.

In other words, this is the morphism obtained by covering the original ones with
an s-arch and separating them by vertical strands.

Example 4.8. Let

γ1 = ∈ Hom(Btst,1)

γ2 = ∈ Hom(Bststss,1)

γ3 = ∈ Hom(Bts,1)

Then

(γ1|γ2|γ3) = ∈ Hom(Bststsststssstss,1)

In a similar way one defines ψtk and ( · | · · · | · ).
Now, recall the construction of light leaves maps from §2.1.8. Notice that, as

we only have one reduced expression for all elements of W and there is no braid
relation, the light leaves basis does not depend on any choice. Furthermore we
can easily write its elements.

Example 4.9. The following diagram is a light leaves map in Ã1 towards the
unit.

U1 U1 U1 U1U0 U0 U0 U0D1 D1 D1 D1D0 D0 D0 D0

(4.10)

On bottom we have indicated the decorated 01-sequence (expressing the identity
element) corresponding to it.

Remark 4.10. Let w = s1 · · · sk and x = 1. If the Bruhat stroll defined by a
subexpression e of w passes through the identity at the step i, namely w

e≤i
≤i = 1,

then the corresponding light leaves map Lw,e can be split as the tensor product
Lw≤i,e≤i ⊗ Lw>i,e>i . For example the above map can be written as the tensor
product of four pieces.

Here is some some terminology to describe these morphisms.

(i) The empty basis element, whose starting word is the empty word, is called
trivial ;
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(ii) A non-trivial basis element that cannot be written as the tensor product
of smaller non-trivial basis elements is called shrub (this corresponds to
the fact that the Bruhat stroll determined by the 01-sequence e does not
return to the identity element until the end). The trivial basis element
will also be referred to as a trivial shrub in the sequel;

(iii) A (non-trivial) shrub is said to be red (or blue) if its first starting point
is red (or blue, respectively). This means that its outer strand, the one
adjacent to the topmost region of the strip, is red (or blue). We declare
that the trivial shrub is both red and blue;

(iv) Any basis element is then written uniquely as the tensor product of shrubs,
and we will refer to it as a shrubbery. Clearly we have a separation between
different shrubs whenever the Bruhat stroll gets to the identity element.
For example, the shrubbery (4.10) has four shrubs, two of them are red
and the other two blue;

(v) A shrubbery is red (or blue) if all its shrubs are red (or blue respectively).

We can now give a recursive description of shrubberies:

� We denote by • and • the red and blue dots respectively;

� A blue shrub can be uniquely written in the form (L1| . . . |Lk) for a se-
quence of (possibly trivial) red shrubberies L1, . . . , Lk (we see the blue dot
as the case k = 0). Formally, if (u1, e1), . . . , (uk, ek) are the starting words
and subexpressions defining L1, . . . , Lk, this corresponds to take (u, e) as
follows

u = t u1 t u2 . . . t uk t

e = 1 e1 0 e2 . . . 0 ek 1

(the decorations of the new symbols will be necessarily U for the first
and D for all the others). Vice versa, one gets a red shrub starting by a
sequence of blue shrubberies.

� Finally, a shrubbery is denoted by the concatenation of its shrubs. Hence,
for example, the shrubbery (4.10) would be

((•|(|)))(||•)••

Remark 4.11. Notice that one can easily pass from the above notation to the
pair (w, e) and vice versa. The word w corresponds to the sequence of colors
and for e we use the dictionary:

(↔ U1 • ↔ U0 ) ↔ D1 | ↔ D0

Remark 4.12. Let L be a shrubbery with starting word w, and consider the
morphism (L). If L is red then this is a blue shrub. Otherwise, if L contains at
least one blue shrub, then it can be written as

K1(L1| . . . |Lk)K2
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where K1 and K2 are (any) shrubberies and L1, . . . , Lk are red shrubberies
(recall that k = 0 correspond to a blue dot). Notice then that we can protract
a blue dot from the blue shrub and factor (L) as

K1 L1
. . .

Lk K2

Then notice that

= = δt − t(δt)

=
t(δt)

+
∂t(δt)

−
δt
−

∂t
(
t(δt)

)

= −αt + +

(in fact t(δt) = δt − 〈δt, α∨t 〉αt = δt − αt).
Hence

(L) = −αt(K1|L1| . . . |Lk|K2) + •K1(L1| . . . |Lk|K2) + (K1|L1| . . . |Lk)K2 •

and, iterating the process if necessary, one gets the linear combination of shrub-
beries expressing (L).

One can then see that for any γ1, . . . , γk, the morphism (γ1| . . . |γk) can be
written as a linear combination of shrubberies which are either products of
smaller shrubs, or shrubs in which the sequence of the sizes of the arches is a
refinement of the starting one. This means shrubs of the form

(L
(1)
1 | . . . |L(1)

r1 |L
(2)
1 | . . . |L(2)

r2 | . . . | . . . |L
(k)
1 | . . . |L(k)

rk
)

where `(L
(j)
1 ) + · · ·+ `(L

(j)
rj ) = `(γj).

Finally, to find bases for Cn we have to quotient by the morphisms in Λx.
More precisely, as we have seen in Remark 3.31 (vii), the spaces HomH (Bx,1)/Λx
are still free with bases given by light leaves maps that do not belong to Λx.
Then the collection of all such light leaves maps when x runs through the sub-
words of s2n give a basis for Cn. Similarly, one gets a basis for Γ by considering
all Coxeter words.

The shrubberies that are not in the annihilator are precisely those that do
not have empty arches, namely subsequences of one of the forms

(|, (), ||, |).

In fact, these correspond precisely to the forbidden sequences.

Example 4.13. Here is a shrubbery with this property,

U1 U1 U1 U1U0 U0 U0 U0 U0 U0D0 D0D1 D1 D1 D1

(4.11)
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which corresponds to the expression

((•|(•)))(•|•)••

Let L denote the set of all such shrubberies, so that L is a basis for Γ. Let
also Ls and Lt denote the subsets of red and blue shrubberies respectively.

Remark 4.14. As every shrubbery is the tensor product of shrubs, we see that
Γ is generated by shrubs, as a dg-R-algebra.

4.3.3. Gardening principles. We will now investigate the properties of the
differential map with respect to this basis.

We introduce a little more terminology. Again, if L is a shrubbery its length
`(L) is that of its starting word. We say that a shrub is complete when its
starting word is of the form t2h+1 or s2h+1 (i.e. the colors of its starting points
are alternating). A shrubbery is said complete when all of its shrubs are (notice
that the whole starting word need not be alternating). We call stem a vertical
strand connecting the boundary with a trivalent vertex (so stems correspond
precisely to D0’s in e. A shrubbery is well-tended if it is complete and without
stems. Hence notice that well-tended shrubs have to be of the form

(( . . . ((•)) . . . )) =
. . . . . .

In particular, dots are well-tended shrubs. Also the empty diagram is declared
to be well-tended. Notice that a well-tended shrub is determined by the number
of its strands and by its outer color: we will denote ρk and βk respectively the
red and blue well-tended shrubs with k strands (which has length 2k − 1).

We want to define a partial order ≤ on shrubberies of a given length `. We
proceed by induction on `.

Definition 4.15. (i) If ` = 0, 1 (i.e. when the only shrubberies are, respec-
tively, the empty one, or the red dot and the blue dot) we declare that
L ≤ L′ if and only if L = L′;

(ii) If ` > 1, suppose that we have defined a partial order on all sets of shrub-
beries of length smaller than `. Take first two shrubs L and L′ of length
`. We declare that L ≤ L′ if they are of the same color, say blue, and,
when written as

L = (L1| . . . |Lk)

L′ = (L′1| . . . |L′k′)

we have either:

� `(L1) < `(L′1) (we also call these the sizes of the first arches), or;

� `(L1) = `(L′1) and L1 < L′1 in the order of shrubberies of length
`(L1), or;

� L1 = L′1, and (L2| . . . |Lk) ≤ (L2| . . . |L′k′) in the order of shrubs of
length `− `(L1) (notice that if k = 1, we already have L = L′).
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(iii) Finally take two shrubberies L and L′, which are not just shrubs, and
decompose them into shrubs

L = K1 ⊗ · · · ⊗Km

L′ = K ′1 ⊗ · · · ⊗K ′m′ .

Then we declare that L ≤ L′ if, either:

� `(K1) < `(K ′1) or;

� `(K1) = `(K ′1) and K1 < K ′1 in the order on shrubs of length `(K1),
or;

� K1 = K ′1, and K2 ⊗ · · · ⊗ Km ≤ K ′2 ⊗ · · · ⊗ K ′m′ in the order of
shrubberies of length `− `(K1).

Remark 4.16. By definition, the order is lexicographic with respect to the
monoidal structure, which means that, given the shrubberies L, L′, M , M ′

and N , we have

L < L′ ⇒ N ⊗ L⊗M < N ⊗ L′ ⊗M ′

We now want to prove that the differential map has an upper-triangularity
property with respect to this order.

Remark 4.17. Uprooting a stem from a shrubbery always gives another shrub-
bery. Given L a shrubbery with at least one stem, let u(L) be the shrubbery
obtained by uprooting the leftmost outer stem. More precisely, if L is a single,
say, red shrub (L1|L2| . . . |Lk) with k > 1, then u(L) := (L1L2| . . . |Lk) (and
same for blue); if k = 1 then set u(L) = (u(L1)) recursively. If L is a product of
shrubs K1 ⊗ · · · ⊗Km and Ki has a stem whereas K1, . . . ,Ki−1 have not, then
u(L) := K1 ⊗ · · · ⊗ u(Ki)⊗ · · · ⊗Km.

Lemma 4.18. Let L be a shrubbery with at least one stem. Then

d(L) ∈ ±u(L) +
⊕

L′<u(L)

RL′

Proof. By Remark 4.16, it is sufficient to deal with the case where L is a single,
say, red shrub. We can write L in the form

L = (L1| . . . |Lk)

where the Lj ’s are blue shrubberies.
We proceed by induction. The smallest such L is the following of length 5

(•|•) =

and one can easily work out that

d
(
(•|•)

)
= •(•)− [2]t•(•) + (••)− [2]s(•)•+ (•)• (4.12)

and (••) = u(L) is bigger than all the other shrubberies appearing.
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For a general shrub L, the image d(L) is the following linear combination of
diagrams obtained by uprooting strands

d(L) = σ0L1(L2| . . . |Lk) +
∑
j

σj(L1| . . . |LjLj+1| . . . |Lk)+

− (L1| . . . |Lk−1)Lk +
∑
j

σ′j(L1| . . . |d(Lj)| . . . |Lk)

for some signs σj and σ′j . The first and third terms, obtained by uprooting the
first and last stems, are product of smaller shrubs, so they are clearly lower than
u(L).

Now, if k > 1, then u(L) is the term with j = 1 in the first sum and its first
arch has size `(L1) + `(L2), hence it is bigger than that of all the other terms
of that sum.

For the second sum one can use the remark 4.12 to see that, each term can
be developed as a linear combination of shrubberies that are either products of
smaller shrubberies or that have first arch with size ≤ `(L1).

If k = 1 then the shrubbery L1 has to have at least one stem. The above
sum reduces to

d(L) = σ0L1• − •L1 + σ′(d(L1))

and the first two terms are again clearly smaller than u(L). Then we can apply
the induction hypothesis on L1 and we conclude.

4.3.4. Weeding the garden. In this section we will describe a simpler dg-

module C̃n homotopy equivalent to Cn, which is much more handy and will
allow us to compute cohomology in the antispherical category. In fact the direct
computation on Cn would still be prohibitive, so we use Gaussian elimination
to reduce it.

Let Γ̃ be the free associative dg-R-algebra generated by elements ρ̃k and β̃k
for k ∈ Z>0. Both ρ̃0 and β̃0 will denote the unit and ρ̃k and β̃k are in degree
−2k + 1. The differential map is defined as follows

d(ρ̃k) =

{
αsρ̃0 if k = 1

−
∑k−1
i=1 [ ki ]sρ̃k−iρ̃i +

∑k−1
i=1

[
k−1
i−1

]
t
(ρ̃iβ̃k−i + β̃k−1ρ̃i) if k > 1

d(β̃k) =

{
−αtβ̃0 if k = 1∑k−1
i=1 [ ki ]tβ̃k−iβ̃i −

∑k−1
i=1

[
k−1
i−1

]
s
(β̃iρ̃k−i + ρ̃k−1β̃i) if k > 1

and then extended R-linearly and according to right Leibniz rule, which means,
for monomials x and y:

d(xy) = xd(y) + (−1)|y|d(x)y,

where |y| is the number of generators appearing in y.
We define the word associated to a monomial in Γ̃ as

ρ̃k 7→ s2k−1 β̃k 7→ t2k−1

and then extended multiplicatively to a map of monoids 〈ρ̃k, β̃k〉k∈N → WS .
Then the span of the monomials whose associated word is a subword of s2n is a
dg submodule of Γ̃, that will be denoted by C̃n.

We can now state the main result of this section
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Theorem 4.19. The dg-module Cn is homotopy equivalent to C̃n[−2n]

Remark 4.20. Consider a complete shrubbery L, which is not well-tended. There
will be a nonempty set of stems. The shrubberies obtained by uprooting some
of these stems are still not well-tended, and we can divide them into two classes.
The class EL will contain those in which the leftmost outer stem has not been
uprooted, and FL the others. Then the function u gives a bijection from EL to
FL.

The following is an example where L has 3 stems.

Example 4.21. Take

L =

then the two classes and the bijection are described by the following picture

L100

L000

L101

L001

L110

L010

L111

L011

FL

EL

u

L = L111 =

L110 =

L101 =

L100 =

L011 =

L010 =

L001 =

L000 =

Here the sequences of 0’s and 1’s that label the shrubberies indicate which stems
have been uprooted.

Let us then prove the theorem.

Proof. If one makes the subdivision of Remark 4.20 for all complete non well-
tended shrubberies L, one gets two classes of shrubberies, E and F , which span
graded submodules

E =
⊕
L∈E

R · L and F =
⊕
L∈F

R · L.

Let now A =
⊕

pA
p be the span of the well-tended shrubberies. The dg-module
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Cn will then look as follows

. . . Ap−1 Ap Ap+1 . . .

⊕ ⊕ ⊕

. . . Ep−1 Ep Ep+1 . . .

⊕ ⊕ ⊕

. . . F p−1 F p F p+1 . . .

ap−1 ap

gp−1
gp

φp−1

fp−1

φp

fp

We claim that all the morphisms φp : Ep → F p+1 (green in the picture) are
isomorphisms. In fact, by the remark 4.20, the morphism φp is expressed by a
square matrix with respect to the bases of Ep and F p+1, and by lemma 4.18,
this matrix is upper triangular with ±1 on the diagonal. Hence, by Gaussian
elimination, the dg-module Cn is homotopy equivalent to

· · · Ap−1 Ap Ap+1 · · ·d̃p−1 d̃p (4.13)

where d̃p = ap − gp(φp)−1fp.
Recall now that A is spanned by well-tended shrubberies which are tensor

products of well-tended shrubs of the form ρk and βk, such that the starting
word is a subword of σ2n. Hence the map sending

ρ̃k 7→ ρk

β̃k 7→ βk

and extended multiplicatively, defines an isomorphism of graded modules be-
tween C̃n[−2n] and (4.13). We have to show that also the differential maps
agree.

Observe that, as d is compatible with the monoidal structure, and tensoring
with elements in A stabilizes A, E and F , then also the new differential d is
compatible with the monoidal structure. Hence it is sufficient to deal with the
case of a single (well-tended) shrub. The case k = 1 is immediate. For k > 1,
we have to prove that

d̃(ρk) = −
k−1∑
i=1

[ ki ]sρk−iρi +

k−1∑
i=1

[
k−1
i−1

]
t
(ρiβk−i + βk−iρi),

and the analogous equality (with signs reversed) for d̃(βk).
When k = 2 we have directly

ρ2 = (•) d7→ •• − [2]s••+ •• = β1ρ1 − [2]sρ1ρ1 + ρ1β1.

When k = 3, we have

ρ3 = ((•)) d7→ (•)•+ •(•)− [2]t(••) + (•)•+ •(•) =

= β2ρ1 + ρ1ρ2 − [2]t(••) + ρ2ρ1 + ρ1β2.
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This can be written, using the notation from the above diagram,

a(ρ3) = β2ρ1 + ρ1ρ2 + ρ2ρ1 + ρ1β2, f(ρ3) = −[2]t(••).

On the other hand, equation (4.12) implies

g
(
(•|•)

)
= β1ρ2 − [2]sρ1ρ2 − [2]sρ2ρ1 + ρ2β1, φ

(
(•|•)

)
= (••).

Hence

d̃(ρ3) = β2ρ1 + ρ1ρ2 + ρ2ρ1 + ρ1β2 + [2]t
(
β1ρ2 − [2]sρ1ρ2 − [2]sρ2ρ1 + ρ2β1

)
= (ρ1β2 + β2ρ1) + [2]t(ρ2β1 + β1ρ2)− ([2]t[2]s − 1)ρ1ρ2+

− ([2]t[2]s − 1)ρ2ρ1

= (ρ1β2 + β2ρ1) + [2]t(ρ2β1 + β1ρ2)− [3]sρ1ρ2 − [3]sρ2ρ1

= (ρ1β2 + β2ρ1) + [2]t(ρ2β1 + β1ρ2)− [ 3
1 ]sρ1ρ2 − [ 3

2 ]sρ2ρ1

Now we want to proceed by induction. One can see, along the lines of Remark
4.12, that the image via the differential map of any shrub is a sum of shrubberies
with at most two shrubs. In particular d(ρk) is such a sum, and looking at the
starting word one can see that the only terms contained in F have one shrub.
This implies that also d̃(ρk) is a sum of (well-tended) shrubberies with at most
two shrubs. But from the form of well-tended shrubberies we deduce that that
all these terms have exactly two shrubs which are not both blue. Hence we can
write

d̃(ρk) =

k−1∑
i=1

λssk,iρiρk−i +

k−1∑
i=1

λstk,iρiβk−i +

k−1∑
i=1

λtsk,iβiρk−i,

In the same way, we argue that d̃(βk) is a sum of shrubberies with at most two
shrubs that are not both red, hence:

d̃(βk) =

k−1∑
i=1

µssk,iβiβk−i +

k−1∑
i=1

µstk,iρiβk−i +

k−1∑
i=1

µtsk,iβiρk−i.

We want to show that

λssk,i = −[ ki ]s, λstk,i =
[
k−1
i−1

]
t
, λtsk,i =

[
k−1
k−i−1

]
t
,

µttk,i = [ ki ]t, µstk,i = −
[
k−1
k−i−1

]
s
, µtsk,i = −

[
k−1
i−1

]
s
.

The differential preserves the horizontal symmetry of the well-tended shrub-
beries, hence λstk,i = λtsk,k−i and µstk,i = µtsk,k−i. So it is sufficient to determine
only one version for the mixed coefficients. Notice also that we can easily get,
for all k

λstk,1 = 1 (4.14)

because this is the coefficient of ρ1βk in the expansion of a(ρk) and this shrub-
bery cannot appear in the expansion of any image via g of a shrub in E.

Now we use that d̃2 = 0 to deduce all the other coefficients. The coefficient
of ρ1βjβk−j−1 in d̃2(ρk) is

0 = λstk,1µ
tt
k−1,j − λstk,j+1λ

st
j+1,1 =

[
k−1
j

]
t
− λstk,j+1,
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where for the second equality we used induction and (4.14). We deduce that

λstk,j+1 =
[
k−1
j

]
t
.

Similarly we get µtsk,j+1 = −
[
k−1
j

]
s
.

Secondly, the coefficient of ρ1ρ1βk−2 is

0 = λssk,1λ
st
k−1,1 − λstk,2λss2,1 + λstk,1µ

st
k−1,k−2 = λssk,1 + [k − 1]t[2]s − [k − 2]s,

where we used again (4.14) and the values of the coefficients known by induction.
We deduce λssk,1 = −[k − 1]t[2]s + [k − 2]s = −[k]s.

Finally, the coefficient of ρ1ρi−1ρk−i is

0 = λssk,1λ
ss
k−1,i−1 − λssk,iλssi,1

and we get

λssk,i = −
[k]s
[
k−1
i−1

]
s

[i]s
= −[ ki ]s.

In a similar way we get µttk,i = [ ki ]t. This concludes the proof.

Passing to the limit, one obtains

Corollary 4.22. The dg-algebra Γ is homotopy equivalent to Γ̃.

4.4 The antispherical category

The above reduction allows to determine morphism spaces between Wakimoto
sheaves in the anti-spherical category. Let us first recall the definition of the
latter.

4.4.1. Generalities. In [60], Riche and Williamson describe a diagrammatic
categorification of the anti-spherical module of the affine Hecke algebra with re-
spect to the finite Weyl group. Their construction actually extends (see remark
[60, Rmk 4.10]) to any Coxeter system with respect to a parabolic subgroup WI

determined by a subset I ⊂ S. Libedinsky and Williamson also define, in [55],
a similar category using the geometric representation of the group W .

Let IW be the set of minimal length representatives of the left cosets of WI

in W . Let us call I-words those words starting with an element of I (called
I-sequences in [55]).

Definition 4.23. The Bott-Samelson anti-spherical category IHBS is the quo-
tient of the Bott-Samelson diagrammatic Hecke category by those morphisms
which are of the form γ ·φ with γ ∈ h∗ and those which factor through I-words.

This is naturally a graded k-linear2 category.
To clarify which category we are considering, the objects in IHBS will be

denoted by IBw. Then one takes IH to be the Karoubi envelope of IHBS. Over
a complete local ring, one can also define IH to be the quotient of H by the

2Here we follow [60]. One could also quotient only by the roots αs, with s ∈ I as done in
[55].
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ideal generated by the indecomposale objects Bx(k) for all x /∈ IW . Then one
can see that the two definitions agree (see [55, Proposition 3.2]3).

One has a natural full, essentially surjective functor

I(−) : H(BS) → IH(BS) (4.15)

sending the object Bw to IBw. The category IH (and already IHBS) is endowed
with a natural right action of the Hecke category given by IBw ·Bs = IBws.

Notice that in the Ã1 case the only interesting choices for I are {s} or {t}.

4.4.2. Double leaves bases. Both [60, Lemma 4.7, Remark 4.10] and [55,
Theorem 3.7] prove that a certain subset of the light leaves maps (or rather, the
double leaves maps obtained from them) are spanning sets for the morphism
spaces in the categorified anti-spherical module.

Namely, given a Coxeter word w = s1 · · · sk, we say that a 01-sequence e
avoids K ⊂ W , when, for all i = 0, 1, . . . , k − 1, we have w

e≤i
≤i si+1 /∈ K. This

means that in the corresponding Bruhat stroll we never even consider to pass
through K. Then the considered light leaves maps are the Lw,e such that e
avoids W \ IW .

Remark 4.24. Consider the spaces Hom(Bw,1) in Ã1. One can rather easily see
that 01-sequences avoidingW \IW correspond precisely to blue (red) shrubberies
if I = {s} (respectively I = {t}). So they span, over k, the dg-modules ICn and
IΓ.

Furthermore, both [60] and [55] show that these sets form bases for the
realizations considered in those works. It is actually not difficult to show directly
that they form a basis of Hom(Bw,1), for all realizations of Ã1.

Lemma 4.25. Blue (respectively red) shrubberies form an k-basis for Hom(Bw,1),
when I = Sf = {s} (or I = {t} respectively).

Proof. Take I = {s}. It is sufficient to prove that the morphisms factoring
through I-words are precisely those which can be written in the form

αs
∑
K∈Lt

fKK +
∑
K/∈Lt

fKK.

In fact then it is easy to see that blue shrubberies span (just consider surjectivity
of the map Ia) and if a k-linear combination∑

K∈Lt

f ′KK

is zero in IΓ, then, in Γ, it can be written in the above form. But this implies
f ′K = αsfK , so it is zero in k.

Let us then prove the claim. Take a morphism φ in Hom(Bw,1) factoring
through Bx with x a word starting with s. Then, using relation (2.6), we can

3The proof there is made over R but the only property of the Kazhdan-Lusztig basis which
is used is also shared by the p-canonical basis.
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factor it as

φ =

. . .
*

. . .
*

=

. . .
*

. . .
*

= φ1 ◦
(

⊗ idBw

)

Where φ1 ∈ Hom(Bsw,1). Write φ1 as a linear combination of shrubberies

φ1 =
∑
K

fKK

and notice that by the form of the starting word, all K’s must start with a red
shrub. Consider the compositions

K ◦
(

⊗ idBw

)
.

If the first shrub of K is a red dot then we get a factor αs. Otherwise the above
composition will give a shrubbery wich still has at least one red shrub, which
concludes the proof of the claim.

4.4.3. Categories of complexes. The functor (4.15) induces a functor on the
level of homotopy categories, as well as on the level of dg categories of complexes,
that will still be denoted by I(−). The above right action induces a right (dg)
action of Kb(H ), and Cdg(H ), on Kb(IH ), and Cdg(IH ), respectively. For a
braid word ω and a letter σ ∈ Σ, we have IFω · Fσ = IFωσ. Hence − · Fσ and
− · Fσ−1 define mutually inverse self-equivalences of Kb(IH ).

4.4.4. Antispherical Wakimoto sheaves. We want to describe morphism

spaces between the images IΘk of the Wakimoto sheaves (the homotopy equiv-
alence Θ•k ' Θk carries over to the anti-spherical category), and we see them as
the cohomology groups of the dg morphism spaces

Hom•(IΘk1 ,
IΘk2). (4.16)

Using the right action, one can reduce (4.16) to the case k2 = 0 as before.
Furthermore, by (the anti-spherical version of) the Rouquier formula (see

§3.1.7) this gives zero when k1 is positive. So we are again reduced to study

ICn := Hom•(Θ−n,1)

for n > 0. We will denote Id the differential map of ICn. As a graded module
we can still write it as

ICn =
⊕
x�s2n

HomIH (IBx,1)/Λx.

Notice that the terms for x an I-word are zero. As before, we can consider

IΓ =
⊕
x

HomIH (IBx,1)/Λx.
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The functor (4.15) induces a surjective morphism of dg-modules Ia : Γ → IΓ,
which endows IΓ with a structure of dg-algebra: the product is Ia(γ1)Ia(γ2) :=
Ia(γ1γ2) and it is well defined because if δ1 and δ2 are morphisms in Γ factoring
through I-words, then

Ia
(
(γ1 + δ1)(γ2 + δ2)

)
= Ia(γ1γ2 + γ1δ2 + δ1γ2 + δ1δ2) = Ia(γ1γ2).

In fact the three morphisms γ1δ2, δ1γ2 and δ1δ2 all factor through I-words, their
target being the unit.

By Lemma 4.25, a basis of ICn (or IΓ) is given by the collection of blue (or
red) shrubberies without empty arches, whose starting word is a subword of s2n

(respectively, any Coxeter word).
The reduction of last section is compatible with the passage to the antispher-

ical category. In particular, consider the quotient IΓ̃ of Γ̃ obtained by imposing
ρk = 0 for all k > 0. One can define IC̃n in a similar way.

Proposition 4.26. The complex IΓ is homotopy equivalent to IΓ̃ and ICn is
homotopy equivalent to IC̃n, in such a way that the following diagrams commute:

Γ Γ̃

IΓ IΓ̃

∼

∼

Cn C̃n[−2n]

ICn
IC̃n[−2n]

∼

∼

Notice that, by the form of the differential, the complex IC̃n splits into
smaller complexes:

IC̃n =
⊕
m≤n

Bm, (4.17)

where Bm is the span of the monomials β̃k1 β̃k2 . . . β̃kr with k1+k2+· · ·+kr = m.

Example 4.27. The complex IC̃4 decomposes into four pieces. The first is:

k · β̃1β̃3 k · β̃1β̃1β̃2

⊕ ⊕

k · β̃4 k · β̃2β̃2 k · β̃1β̃2β̃1 k · β̃1β̃1β̃1β̃1

⊕ ⊕

k · β̃3β̃1 k · β̃2β̃1β̃1

−c31
−c32

c21c41

c42

c43

c21

−c21

c31

c32

−c21

c21

where cij is a shortcut for
[
i
j

]
t
. The other three pieces are:

k · β̃1β̃2

k · β̃3 ⊕ k · β̃1β̃1β̃1

k · β̃2β̃1

c21c31

c32 −c21

, k · β̃2 k · β̃1β̃1
c21 , k · β̃1, k · β̃0

We want to compute the cohomology of this dg module. First we need some
more properties of two-color quantum binomial coefficients.
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4.4.5. Even more on two-color quantum numbers. The two-color quan-
tum numbers, as the standard ones, can be factorized in Z[x, y] into two color
cyclotomic polynomials.

Proposition 4.28. Consider the decomposition of the polynomials [n]x and [n]y
into irreducible factors. Then we have:

(i) each [n]x has a factor φn,x ∈ Z[x, y] not appearing in the decomposition of
φk,x for k < n, and similarly for y;

(ii) one has

[n]x =
∏
d|n

φd,x

and similarly for y;

(iii) for n > 2, we have φn,x = φn,y.

Proof. If n is odd, then [n]x = [n]y is a polynomial in xy. If n is even, then
[n]x/x is a polynomial in xy, and similarly for y. For n ≥ 3 let pn ∈ Z[t] be the
minimal polynomial of 4 cos2(π/n). Then let φn := pn(xy). Now notice that

the n-th symmetric quantum numbers in Z[v, v−1] vanishes at e
πi
n . Using the

specialization from Remark 2.1, we deduce that [n]x and [n]y are divisible by
φn. One then proves that under this specialization, the φd give (the symmetric
version of) the usual cyclotomic polynomials. The other properties are proved
as those of the standard cyclotomic polynomials.

Definition 4.29. Let n ≥ 2. The polynomials φn,x and φn,y from the proposi-
tion are called two-color cyclotomic polynomials. For n > 2 we will simply write
φn.

The following two results will be useful in the computation of the cohomol-
ogy.

Lemma 4.30. Let d, n ≥ 2 with d | n. Then φd | [ nk ]y if and only if d - k.

Proof. One can argue just as in the standard case.

In fact, as in the standard case, two-color cyclotomic polynomials show the
nice factorization pattern in the two-color quantum Pascal triangle (i.e. the
triangle of two-color quantum binomial coefficients), shown in Figure 4.1.

Lemma 4.31. If k < n are natural numbers with k - n, then the ideal generated
by φk,x and φn,x is the whole ring Z[x, y]:

(φk,x, φn,x) = (1)

Proof. Again one can deduce the result from the analogous property of usual
cyclotomic polynomials, via the specialization map.

Remark 4.32. With the standard Cartan matrix the cyclotomic polynomials
give:

φn,x(2, 2) = φn,y(2, 2) = eΛ(n),

where Λ denotes the Von Mangoldt function

Λ(n) =

{
log(p) if n = pr with p prime,

0 otherwise.
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1
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...

φ2

φ3 φ3

φ2φ4 φ3φ4 φ2φ4

φ5 φ4φ5 φ4φ5 φ5

φ2φ3φ6 φ3φ5φ6 φ2φ4φ5φ6 φ3φ5φ6 φ3φ2φ6

φ7 φ3φ6φ7 φ5φ6φ7 φ5φ6φ7 φ3φ6φ7 φ7

Figure 4.1: The two-color quantum Pascal triangle

4.4.6. Extension groups. We now use our reduction to compute the coho-

mology of the complex IC̃n. We will work over k = Z[x, y] so that one can
specialize to any realization. For convenience, let [n] := [n]y and [ nk ] = [ nk ]y.
Let also φ2 := φ2,y.

We first describe the result. We call a partition λ = (λ1 ≥ λ2 ≥ · · · ≥
λk−1 ≥ λk) of n distinguished if the parts divide each other:

λk | λk−1 | · · · | λ2 | λ1.

Let P̂ (n) denote the set of distinguished partitions. For such a partition, let
Iλ be the ideal of k generated by the corresponding cyclotomic polynomials (of
color y):

Iλ = (φλ1 , φλ2 , . . . , φλk−1
, φλk).

For a given partition λ with k parts and with d distinct numbers appearing, the
weight |λ| is defined as 2k−d. In other words, it is the sum between the number
of parts and the number of repetitions. For example the partition (5, 4, 4, 2, 1)
of 16 has weight 6.

Now, define the graded k-modules Hk as follows. We set H1 = k[0], and for
k ≥ 2,

Hk :=
⊕

λ∈P̂ (k)

k/Iλ[1− |λ|].

Then we have

Theorem 4.33. The cohomology of IC̃n is

H•(IC̃n) =

2n⊕
i=2

Hbi/2c[i− 2],

where b·c denotes the floor function.
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Example 4.34. Let n = 6. We first compute the Hk for k up to 6. Of course,
for k prime Hk is simply k/(φk). Hence it remains to compute H4 and H6. We
have

P̂ (4) = {(4), (2, 2)},
P̂ (6) = {(6), (4, 2), (3, 3), (2, 2, 2)}.

Then

H4 = k/(φ4)⊕ k/(φ2)[−2],

H6 = k/(φ6)⊕ k/(φ4, φ2)[−1]⊕ k/(φ3)[−2]⊕ k/(φ2)[−4].

So we can patch them together according to Theorem 4.33 and get Table 4.1
where the entry i represents k/(φi) and i, j represents k/(φi, φj). In the different
rows one can see the contributions of the different Hi. In each column one

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
H1 k

H1[1] k
H2[2] 2
H2[3] 2
H3[4] 3
H3[5] 3
H4[6] 4 2
H4[7] 4 2
H5[8] 5
H5[9] 5
H6[10] 6 2, 4 3 2

Table 4.1: The cohomology of IC̃8.

can read off the cohomology at the corresponding degree. For example, the
cohomology at degree −9 is

k/(φ5)⊕ k/(φ2, φ4)⊕ k/(φ3).

Before we pass to the proof of the theorem, let us show how this pattern
emerges with an example.

Example 4.35. Let again n = 6. By (4.17), we can restrict to the Bm’s, so let
us consider the complex B6, illustrated in Figure 4.2. Each node is labeled by
the composition of 6 representing a basis element. For instance, 213 represents
β̃2β̃1β̃3.

We want to find a convenient change of basis in order to split the complex
into smaller pieces. The basis of B6 is given in terms of the variables β̃k and
the differential is defined multiplicatively from its values over the β̃k. Hence
the idea is to define new variables such that the formula for the differential gets
simpler. In fact one can find variables γ1, and γ±k , for k = 2, . . . , 6 such that

d(γ1) = 0, d(γ+
k ) = [k]γ−k , d(γ−k ) = 0. (4.18)
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6

15

24

33

42

51

114

123

132

141

213

222

231

312

321

411

1113
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1131

1212

1221

1311

2112

2121

2211

3111

11112

11121

11211

12111

21111

111111

Figure 4.2: The complex B6.

This can be done as follows. Let γ1 := β̃1 and γ+
k := β̃k for all k = 2, 3, 4, 5, 6.

Then let

γ−2 = β̃1β̃1,

γ−3 = β̃1β̃2 + β̃2β̃1,

γ−4 = β̃1β̃3 +
[ 4
2 ]

[6]
β̃2β̃2 + β̃3β̃1,

γ−5 = β̃1β̃4 +
[ 5
2 ]

[5]
β̃2β̃3 +

[ 5
3 ]

[5]
β̃3β̃2 + β̃4β̃1,

γ−6 = β̃1β̃5 +
[ 6
2 ]

[6]
β̃2β̃4 +

[ 6
3 ]

[6]
β̃3β̃3 +

[ 6
4 ]

[6]
β̃4β̃2 + β̃1β̃5.

By the values of the differential on the β̃k’s, one sees that we actually get (4.18).
Now we want to find a basis of B6 in terms of the new variables. Consider the
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set:

γ±6 , (2 elements)

γ±4 γ
±
2 , (4 elements)

γ±3 γ
±
3 , (4 elements)

γ±2 γ
±
4 , (4 elements)

γ±2 γ
±
2 γ
±
2 , (8 elements)

γ1γ
±
5 , (2 elements)

γ1γ
±
3 γ
±
2 , (4 elements)

γ1γ
±
2 γ
±
3 . (4 elements)

By the formulas for the new variables one sees that, choosing an appropriate
order, the new basis is uni-triangular with respect to the old one.

With respect to this basis, the complex becomes the one illustrated in Figure
4.3. However the change of basis that we defined is defined over Q(x, y) but
not over Z[x, y]. This can be restored by rescaling the new basis elements with
appropriate factors. More precisely, one could define a change of basis over
Z[x, y] which has the same overall effect on the complex as our change of basis,
after rescaling. In this case, we will make the following replacements.

γ−6  γ−6 · φ2φ3, γ−4 γ
+
2  γ−4 γ

+
2 · φ2, γ−4 γ

−
2  γ−4 γ

−
2 · φ2,

γ+
3 γ

+
3  

γ+
3 γ

+
3

φ3
, γ+

2 γ
+
2 γ

+
2  

γ+
2 γ

+
2 γ

+
2

φ2
, γ−2 γ

−
4  γ−2 γ

−
4 · φ2,

γ+
2 γ

+
4  

γ+
2 γ

+
4

φ2
, γ+

2 γ
+
2 γ
−
2  

γ+
2 γ

+
2 γ
−
2

φ2
,

γ−2 γ
+
2 γ

+
2  

γ−2 γ
+
2 γ

+
2

φ2
.

This has the effect of changing the morphisms in the complex (the new ones
are written in red in Figure 4.3). One can now see that, by Lemma 4.31, the
only pieces giving non trivial cohomology are the circled ones. Those circled in
violet give H6[10] and the one in orange give H5[9]. These are precisely the last
two rows of Table 4.1.

By applying the same argument to the other pieces Bi for i = 0, . . . , 5, one
finds that each Bi with i ≥ 3 contributes with Hi[2i−2]⊕Hi−1[2i−3], whereas
B2 gives H2[2], B1 gives H1[1] and B0 gives H1.

Let us now prove the theorem in general.

Proof of Theorem 4.33. By (4.17), we can restrict to Bn. Let us consider the
following variables

γ1 := β̃1, γ+
k := β̃k, γ−k :=

k−1∑
i=1

[ ki ]y
[k]y

β̃iβ̃k−i.

Then the differential map satisfies (4.18). Now consider the set

{γ±k1 . . . γ
±
kr
| k1 + · · ·+ kr = n} ∪ {γ±k1 . . . γ

±
kr
γ1 | k1 + · · ·+ kr = n− 1}.
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[4]
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Figure 4.3: The complex B6 after change(s) of basis.
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As in the example, with an appropriate ordering, this set is uni-triangular with
respect to the original basis, then it defines a new basis.

By (4.18), fixed a composition (k1, . . . , kr) of n with each ki ≥ 2, the span
B′(k1,...,kr) of all the basis elements

γ±k1 . . . γ
±
kr

(4.19)

is a summand of Bn. In the same way, if (k1, . . . , kr) is a composition of n− 1
the span B′′(k1,...,kr) of all the basis elements

γ±k1 . . . γ
±
kr
γ1

is another summand of Bn. The complex Bn is the direct sum of all the sum-
mand obtained in this way.

We now have to rescale our basis. Consider a monomial of the form (4.19).
The d-weight is the maximal number of disjoint submonomials of the form
γ+
d γ
±
kd. For example γ+

2 γ
+
2 γ

+
2 γ
−
4 has 2-weight equal 2 (it contains γ+

2 γ
+
2 and

γ+
2 γ
−
4 and they do not intersect), as well as γ+

2 γ
+
2 γ

+
2 γ

+
2 γ
−
4 . Instead γ−2 γ

+
4 γ

+
2

has 2-weight zero. Given a basis element of the form (4.19). For each d, let wd
be its d-weight and let rd be the number of occurrences of γ−d . Then we rescale
it by the factor ∏

d[d]rd∏
d φ

wd+rd
d

.

At this point, consider B′(k1,...,kr) with the new basis. The following facts are a
bit technical but not difficult to prove and are left to the reader:

� if (k1, . . . , kr) is not decreasing, then B′(k1,...,kr) is contractible.

� if it is decreasing, but not strictly, say ki = ki+1, then B′(k1,...,kr) is homo-

topy equivalent to B′(k1, . . . , k̂i, . . . , kr).

� finally, if it is strictly decreasing, then B′(k1,...,kr) is isomorphic to

(k
φk1→ k)⊗ · · · ⊗ (k

φkr→ k)

which gives cohomology k/(φk1 , . . . , φkr ).

The same holds for the summands B′′.
It remains to prove that it is possible to obtain the same complex with a

change of basis defined over Z[x, y].
For simplicity we treat the lowest cohomological degree. The argument for

the higher ones is essentially the same. Here the complex Bn looks as follows:

β̃n 〈β̃1β̃n−1, β̃2β̃n−2, . . . , β̃n−1β̃1〉 . . .α

where

α =


[ n1 ]
[ n2 ]

...
[ n
n−1 ]

 .
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Let d1 < d2 < · · · < dk be the non trivial divisors of n (i.e. different from 1
and n). By Lemma 4.30, the binomial coefficient [ ndi ] is not divisible by φdi .
Consider

a1 = [n], b1 = [ nd1 ], z1 =
[n]

φd1
,

a2 =
[n]

φd1
, b2 = [ nd2 ], z2 =

[n]

φd1φd2
,

. . . , . . . , . . . ,

ak =
[n]

φd1φd2 . . . φdk−1

, bk = [ ndk ], zk =
[n]

φd1φd2 . . . φdk
= φn.

By Lemma 4.31 we can find, for i = 1, . . . , k, elements xi, yi ∈ k such that

aixi + biyi = zi, ∀i = 1, . . . , k.

Now consider the matrices, with coefficients in k,

xi yi
1

. . .

1

− bi
zi

ai
zi

1
. . .

1


.

Each of them decomposes, in Q(x, y), as
1 yizi

ai
. . .

1
. . .


︸ ︷︷ ︸

Ai


zi
ai

. . .
ai
zi

. . .


︸ ︷︷ ︸

Bi


1

. . .

− bi
ai

1

. . .


︸ ︷︷ ︸

Ci

.

Now, composing all these matrices we obtain

M = AkBkCk . . . A2B2C2A1B1C1.

One can check that

Mα =


φn
∗
...
∗


with zeros in the di-th rows. Now, by Lemma 4.30, we can eliminate all the
remaining terms via a matrix C with coefficients in k. Now, the matrices Ai
can be “shifted” to the left, up to some changes that do not involve the first
column. More precisely, the product Ck+1M becomes

A′Ck+1BkCk . . . B1C1,
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where A′ is an invertible matrix of the form

A′ =

1 ∗ . . . ∗
...

. . .
...

∗ . . . ∗

 .

On the other hand, if we shift the Ci’s to the right we get

Bk . . . B1C
′
k+1 . . . C

′
1.

Now, the product Bk . . . B1 gives precisely our rescaling, whereas the product
C ′k+1 . . . C

′
1 gives the first change of basis. In particular,

Ck+1BkCk . . . B1Ckα =


φn
0
...
0

 .

Hence the additional matrix A′ has no effect on the above vector.
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