
HAL Id: tel-04117830
https://theses.hal.science/tel-04117830v2

Submitted on 17 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Potential and challenges of reinforcement learning for
flow control
Romain Paris

To cite this version:
Romain Paris. Potential and challenges of reinforcement learning for flow control. Fluid mechanics
[physics.class-ph]. Institut Polytechnique de Paris, 2022. English. �NNT : 2022IPPAX119�. �tel-
04117830v2�

https://theses.hal.science/tel-04117830v2
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

X
11

9

Potential and challenges of
reinforcement learning for flow

control
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à l’École polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de
Paris (EDIPP)

Spécialité de doctorat: Mécanique des fluides et des solides, acoustique

Thèse présentée et soutenue à Meudon, le 2 décembre 2022, par

ROMAIN PARIS

Composition du Jury :

Nicolas Thome
Professeur, Sorbonne Université Président

Laurent Cordier
Directeur de recherche CNRS, Institut Pprime Rapporteur

Lionel Mathelin
Chargé de recherches CNRS, LISN Examinateur

Georgios Rigas
Associate Professor, Imperial College London Examinateur

Julien Dandois
Directeur de recherche 2, ONERA (DAAA/MASH) Directeur de thèse

Samir Beneddine
Ingénieur de recherche, ONERA (DAAA/MASH) Encadrant

Franck Hervy
Ingénieur, Direction Générale de l’Armement (AID) Invité

Contents

Remerciements 5

Acronyms 7

1 Introduction 9

2 State of the art 11
2.1 Control in fluid mechanics . 11
2.2 Reinforcement Learning . 21
2.3 Neural networks . 33
2.4 Genetic programming . 38

3 Methods and tools 41
3.1 Pre-existing tools and frameworks . 42
3.2 RLFramework . 43
3.3 Other tools developed on purpose . 52
3.4 Main test cases . 52

4 RL-based flow control 67
4.1 Controlling the KS equation . 67
4.2 Controlling a low Reynolds cylinder wake . 73
4.3 Controlling a stalled airfoil flow . 88
4.4 Controlling an open-cavity flow . 93
4.5 Synthesis . 109

5 Sensor sparsity 111
5.1 Problem statement . 112
5.2 The proposed approach . 113
5.3 Results on the cylinder flow . 115
5.4 Synthesis . 119

6 Actuator sparsity 121
6.1 Problem statement . 121
6.2 A generic algorithm . 125
6.3 Proposed ranking metrics . 127
6.4 Comparison of the metrics . 130
6.5 Model-based model predictive control . 136

3

6.6 Synthesis . 139

7 Open challenges 143
7.1 Exploration noise . 144
7.2 Value bootstrapping, terminal reward and solver crash 149
7.3 Input normalization: a double-edged sword . 149
7.4 Partial observation, aleatory uncertainty and the Markov hypothesis 151
7.5 Scaling-up in case complexity and cost . 152

8 Conclusion 155

Bibliography 159

9 Appendices 175
9.1 Miscellaneous details about the RLFramework . 175
9.2 The Laplace Transform for linear closed-loop control 180
9.3 Global stability analysis and Newton convergence method 181

French summary / Résumé en français 182

4

Remerciements

Ce doctorat a été en partie financé par une bourse de l’Agence Innovation Défense (DGA).

Parmi ceux qui ont le courage d’utiliser ce cale-porte / dessous-de-plat / objet décoratif de
façon détournée, c’est-à-dire en lisant son contenu, je tiens à remercier Laurent Cordier et Nicolas
Thome, les deux rapporteurs de mon jury, qui m’ont donné de multiples pistes d’amélioration du
présent objet. Merci également à Lionel Mathelin, Georgios Rigas et Franck Hervy pour les riches
discussions que nous avons eues durant la soutenance. Celles-ci m’ont offert de nombreux chemins
à explorer et des perspectives de recherche toutes plus excitantes les unes que les autres.

“Ah! La recherche, du temps perdu!” Ce cher Marcel Proust m’avait pourtant prévenu... Cette
mise en garde ne m’a (malheureusement) pas empêché d’accepter la proposition de thèse de Julien
et Samir, qui m’ont présenté cette thèse comme un défi: “partir de rien et voir ce qu’on peut faire”.
Me voici donc trois ans plus tard, et, n’ayant pas réussi à entrâıner l’agent qui devait écrire le
présent manuscrit à temps, j’ai du “annoter un peu plus de données”1. Ceci me permet donc de
vous remercier tous les deux, pour tout ce que j’ai appris avec vous, pour votre énergie et votre
passion scientifique communicative. Merci à toi Julien pour ton engagement constant à me guider
dans cette thèse, à relire toutes mes productions écrites pas toujours au top avec ce perfectionnisme
légendaire2 que tout le monde te connâıt mais toujours dans la bienveillance. Merci à toi Samir,
pour toutes les discussions formelles et informelles que nous avons autour de cette thèse qui m’ont
permis de maintenir un solide facteur 10 entre le nombre d’idées au début d’une réunion et le
nombre de pistes à explorer à la sortie. J’ai peut-être perdu quelques neurones (des vrais hein...)
lors de ces réunions mais j’ai appris à réfléchir en prenant du recul, en faisant des liens avec d’autres
disciplines et en essayant d’adopter d’autres points de vue. Cela fera certainement de moi quelqu’un
qui cherche mieux (à défaut de trouver) et je vous en remercie infiniment.

Quelques mots ensuite pour remercier ceux que j’ai plus vus que ma famille et mes proches et
qui, avec le temps sont devenus des amis. Merci à toi Mathieu, avec qui je partage depuis mon
arrivée à l’ONERA un bureau (et des canards). Merci de m’avoir aussi bien accueilli à l’ONERA,
mis le pied à l’étrier en stage (sur des codes CFD dont le mystère du fonctionnement n’a d’égal que
la vacuité de la documentation). Merci d’avoir partagé tous ces repas, ces apéros, ces discussions,
sur tout, sur rien et surtout sur rien.

Merci aussi à tous mes compagnons de ����galère thèse, Pierre N. et Xavier C. avec qui les JDD
m’ont donné matière à rire (plus qu’à pleurer). Je compte sur vous pour être les prochains sur la
liste des soutenances! Merci à tous les anciens thésards, Johann, Luis, Jean Lou, Quentin, Diogo,
Lucas, Tristan et Markus avec qui j’ai partagé de nombreuses pauses-café et fous rires et dont nous
avons hérité d’une cafetière. Merci et désolé aux futurs docteurs et membres de la horde: Julian,
Arthur P., Arthur V., Mathieu S., Michele, Carmen, Clément, Löıc et Alexandre. Merci pour votre
(inconscient) optimisme, vos discussions méridiennes à table ou au café ou pendant les footings. Et
désolé. Désolé pour la cafetière qui a fini par rendre l’âme après les milliers de cafés servis à des
générations de thésards.

Merci à tous les membres de l’équipe MASH (Missiles, Aéronefs de combat, Stabilité, Hyperso-
nique) pour qui mon appartenance à l’unité est certainement un sujet de recherche ouvert, merci
pour votre accueil. Merci aussi à Tanya pour m’avoir bien aidé pour les diverses démarches ad-
ministratives et pour l’organisation de la soutenance. Merci à la DSI qui a fermé les yeux sur ma

1Euphémisme couramment employé en AI pour dire qu’on a tout fait à la main pour présenter une performance
acceptable.

2Il se dit que Google Scholar source ses citations dans la bibliographie des papiers de Julien

5

non-allocation de 11 millions d’heures CPU. Merci à toi Jean-Pierre pour ta bonne humeur, tes
barbecues estivaux et tes anecdotes Onériennes toutes plus incroyables les unes que les autres.

Merci aux fidèles canards, dont l’énumération nominative serait inutile et fastidieuse, pour leur
constante bienveillance dans la résolution de bugs informatiques en tous genres. Pêle-mêle: merci
au café, à StackOverflow3, au chocolat4 ainsi qu’à arXiv et Scih*b. Au rang des remerciements
protocolaires toujours, un grand merci à l’École doctorale IP-Paris qui a su, malgré les circonstances
exceptionnelles de ces années covid, garder son exemplaire constance dans la médiocrité de son
suivi et de son soutien. Ce niveau demande un désengagement de tous les instants et ne saurait
qu’annoncer d’autres records à l’avenir.

Enfin, je ne peux conclure sans penser à ma famille et mes proches sans qui j’aurais certainement
abandonné cette thèse, en particulier à mes parents pour leur soutien indéfectible, l’éducation et la
curiosité scientifique que j’ai reçue. Merci aussi à ma sœur Florence pour son soutien durant ces
trois années. Je te souhaite d’aller loin dans tes projets et de t’y épanouir, tu peux compter sur moi
comme j’ai pu compter sur toi pendant cette thèse. Merci à ma grand-mère, à mes cousins, amis de
l’X (Martin, Louise, Axel et tant d’autres), amis de classe prépa5 et de lycée qui, malgré le temps
et la distance, ont toujours gardé ce lien et ont su comprendre mes absences à tant d’invitations ces
trois dernières années.

3Pour avoir répondu des centaines de fois avec une invariante patience aux mêmes questions idiotes.
4noir 70%
5on ne s’appelle pas “la secte” pour rien!

6

Acronyms

AI Artificial Intelligence 156
API Application Programming Interface 42, 43, 45, 50, 54, 155, 181
CFD Computational Fluid Dynamics 43, 46, 47, 50, 65, 87, 152, 155
DMD Dynamic Mode Decomposition 16, 20, 48
FCNN Fully Connected Neural Network 33, 36, 37
GAE Generalized Advantage Estimation 28, 30
GP Genetic Programming 20, 39–41, 47, 179
HPC High Performance Computing 49, 155
KS Kuramoto-Sivashinsky 10, 47, 52, 67, 72, 130, 145, 146, 148, 150
LGP Linear Genetic Programming 11, 14, 39, 52, 67, 109, 155, 179, 181
LTI Linear Time Invariant plant 15, 180
MDP Markov Decision Process 21, 27, 151
MIMO Multi-Input-Multi-Output 10, 17, 18
ML Machine Learning 9, 20, 37, 42, 43, 67
MPC Model Predictive Control 20
MPI Message Passing Interface 49, 99, 178
NN Neural Network 11, 20, 29, 31–34, 36–38, 46, 68, 127, 140, 149, 177
PDE Partial Differential Equation 29, 156
PETS-MPC Probabilistic Ensemble Trajectory Sampling for Model Predictive Control 30,

72, 136
PID Proportional-Integral-Derivative (controller) 18, 22
POD Proper Orthogonal Decomposition 9, 16, 17, 38, 48, 113
PPO-CMA Proximal Policy Optimization with Covariance Matrix Adaptation 26, 29, 68,

72, 88, 144, 150
RL Reinforcement Learning 9–11, 20, 21, 28, 29, 39–41, 43, 47, 52, 54, 57, 64, 67,

68, 72, 83, 88, 109, 113, 122, 123, 140, 143, 144, 149, 151, 152, 155, 179, 181
SGD Stochastic Gradient Descent 35
SGL Stochastic Gating Layer 113, 114, 126
TD Temporal Difference 28

7

Chapter 1

Introduction

Most of the ground work concerning the currently emerging applications of Machine Learning (ML)
dates back from the 1950s. Yet at that time, the proposed methods and algorithms required
computational resources that were by far not available. One had to wait for the turn of a new
century to see the rise of super-computers capable of handling such calculations in a moderate
amount of time and for a reasonable financial cost. Since then, proofs of concept demonstrating
the undeniable potential of machine learning emerged in a wide range of domains. Still, real-world
(and useful) applications remain confined to a reduced number of use-cases such as natural language
processing or computer vision. Scaling-up toward the levels of complexity of reality in the majority
of these domains appears a major challenge.

Ultimately all these machine learning approaches generally come down to regression problems.
Thus, the line separating these methods from classical mathematical optimization is at most blurry
or may even be better represented as a spectrum of techniques, the major differing traits being the
degree of linearity of the problem, and most importantly, the need for generalization (i.e. robustness)
on unseen data. It is then better suited to consider machine learning as a (non-linear) extension
of decades-old optimization methods such as linear regression, principal component analysis1 or
interpolation methods, rather than a standalone and miraculous set of techniques as the current
keen interest for the matter often suggests.

Originally designed to automate industrial monitoring, control went from self-regulated steam
engines to increasingly complex applications, even giving birth to modern computers. In fluid
mechanics, control aims at altering the flow characteristics in order to improve its behavior regarding
a pre-defined objective such as drag reduction, flow stationarization or mixing enhancement. Even
nowadays, industrial applications of flow control remain mostly limited to passive control. This
stems from the potentially high complexity of a flow both in terms of degrees of freedom than
concerning its dynamics, which generally renders other forms of control hard to compute, energy
inefficient, or not robust enough. Many recent control techniques are formulated as an optimization
problem over a linearized model of the system and rely on some powerful linear algebra approaches.
This linear modeling may unfortunately become the Achilles’ heel of these methods when applied
on non-linear flow dynamics.

While proposing a different paradigm, Reinforcement Learning (RL) is a type of machine learning
that fits adequately to control problems. Where traditional linear control methods need to embrace
and/or model the system’s dynamics, RL works by trial-and-error to derive increasingly optimal
control laws (called policies). In doing so, RL algorithms break free from any consideration of

1also referred to as Proper Orthogonal Decomposition (POD)

9

linearity of the dynamics. Coupled with deep learning, capable of embodying non-linear Multi-
Input-Multi-Output (MIMO) relations, this approach comes back to the temporal domain, long
deserted by traditional methods generally working in the frequency space. In a way, RL trades the
power of linear algebra for an increased flexibility.

Better flow control would yield significant edges for overall performances (reduced drag, increased
operational speeds), safety (reduced structural loads, increased maneuverability), stealth (reduced
acoustic or infrared footprint) and environmental footprint of multiple industrial domains (cleaner
and more efficient combustion or reduced consumption). Even if these gains are marginal, they
would yield a significant impact thanks to the size of the economic sectors they concern.

This body of work aims at assessing the proficiency of RL concerning flow control, identifying
emerging challenges specific to fluid mechanics and proposing innovative methods tackling these
issues. This thesis, alongside others, initiates the study of machine learning methods as enablers of
better decomposition, analysis, control or generative methods for fluid mechanics. The current work
thus aims at bridging the gap between innovative training algorithms that demonstrate impressive
performances on sand-box test-beds and more complex flow control test cases for which existing
solutions do not behave satisfactorily, data is costly and/or scarce and systems’ dynamics are of
high-dimension and non-linear. These new methods are to be compared with existing ones, both
in terms of efficiency and computational costs. Taking a step back, this study participates in the
global effort to scale ML applications up to gradually reach the complexity of the real world.

The present manuscript is organized in the following way:

• A first chapter reviews the state of the art on the topics of flow control, reinforcement learning,
deep learning (i.e. the use of neural networks) and genetic programming (a possible alternative
to reinforcement learning).

• The following chapter introduces the pre-existing methods and tools used for this work as well
as the body of code developed to support the multiple studies led on various test cases and
tackling different issues of flow control. These test cases (numerical setup, control setup as
well as uncontrolled dynamics) are also presented in this part.

• The main results are presented in the three following chapters:

– RL-based flow control results on different test cases are presented in chapter 4. Auxiliary
studies are led to assess multiple aspects of these control laws and compare them with
simpler control approaches.

– Strategies aiming at reducing the number of flow observations while preserving perform-
ance are introduced in chapter 5. These are tested on the cylinder test-case.

– Chapter 6 introduces a general method proposed in order to reduce the number of ac-
tuators. Four different flavors implementing this method are detailed and compared
on the Kuramoto-Sivashinsky (KS) test-case as well as on the NACA test-case. Early
transposition attempts of this method to model-based RL are also discussed.

• Before presenting the conclusions and perspectives of this work, a few selected challenges are
discussed in chapter 7. They are found to be pivotal and interesting issues in most of the
studies led in this work.

• At last, appendices developing ancillary concepts or discussions can be found at the end of
the present manuscript.

10

Chapter 2

State of the art

This chapter details the current state of the art on the main domains associated in this thesis:
flow control and (deep) reinforcement learning. A non-exhaustive description of control for fluid
mechanics is first carried out. Then, Reinforcement Learning (RL) is introduced, followed by a
focus on Neural Networks (NNs) that are used in deep RL. At last a short glance is given at Linear
Genetic Programming (LGP).

2.1 Control in fluid mechanics

2.1.1 General context and motivations

Flows around an airborne vehicle, a ship or into the piping of an industrial plant often display
undesired characteristics, that common practices in design optimization cannot generally get rid of.
Using control, one can resort to leveraging the flow to, by small forcings, alter its configuration and
hopefully drive it toward more desirable flow states.

Automatic control is a child of the industrial revolution, gaining in importance when the first
needs for self-regulated machines arose. The steam engine then the electrification and the telephone
gave a strong boost to the development of the theoretical bases of this domain. It has since been
used in an ever-increasing number of fields requiring machinery, including fluid mechanics and all
its related applications. Considering the overall tendency of flows to display non-linear dynamics
and/or to grow instabilities than can end up in chaos, controlling a flow is generally a tricky
challenge. Thus, industrial applications directly using flow control are, still as of today, rare.

Beyond the interest of theoretically understanding the dynamics of flows, practical control goals
cover drag reduction, lift increase, turbulent transition control (delay or trigger), mixing enhance-
ment, noise or pollutants emissions reduction or flow separation control. All these goals can either
be considered as safety and airworthiness issues or performance improvement enablers, hence a
significant interest for the research in flow control.

2.1.2 Passive control

Passive control is not, per se, considered as an automatic control category, but one commonly refers
to this term when talking about small fixed devices altering flow dynamics. These small design
alterations hence use the very idea of control: leveraging the flow power to amplify the effect of a

11

small forcing. Passive control methods make up the majority of flow control cases at the industrial
scale, thanks to their simplicity and robustness.

Surface modifications generally aim at modifying the behavior of the boundary layer. They
consist either in the use of patches of porous media [42, 34] in order to damp boundary-layer
fluctuations by momentum transfer to the absorbing media, or in surface roughness treatments or
coatings [70, 13] that force boundary layer transition to turbulence.

Larger pointwise devices are also used to force the flow in strategic locations. Vortex generators
[217, 218, 111] are small fins attached to or close to lifting surfaces in order to generate a vortex
and/or deflect the flow close to walls, with the effect of delaying flow separation. Vortex-induced
vibration is another well studied issue that can affect industrial chimneys or suspension bridge cables.
Numerous solutions consist in reducing the coherence length of the load fluctuation [256, 176, 188] by
addition of roughness elements to the main structure. Strykowski & Sreenivasan [234], Strykowski &
Hannemann [233] and later Marquet et al. [152] studied the effect of the addition of a small secondary
slender structure carefully located in the unsteady wake and demonstrated positive effects on the
stabilization of the flow. The same technique was successfully used by Illy et al. [103] to control
transonic flow oscillations over a cavity. All these solutions yield an effect that is dependent on the
flow state and its interaction with the device, but the latter is steadily applied or fixed on structures
and does not require any energy input, hence the qualification of “passive” control.

2.1.3 A quick tour of actuators

Before diving into the different active control methods, let us quickly describe the a wide variety
of actuators that can be implemented on experimental setups or simulated. Depending on the
flow regime (mainly the Reynolds and Mach numbers), the required power, bandwidth or robust-
ness, technologies will be preferred over other. In their 2011 review on Actuators for Active Flow
Control, Cattafesta III & Sheplak [45] propose to classify technologies into four categories: flu-
idic suction/blowing actuators, moving surfaces or objects, plasma-based actuators and body-force
actuators such as magnetohydrodynamic actuation.

Among fluidic actuators, one can distinguish zero-net-mass-flux (ZNMF) actuators [79] from
valves and oscillators, the latter requiring an external flow bleed contrary to the first. ZNMF
actuators, also called “synthetic jets”, thus cannot provide actions with a continuous component
since it would violate their time-averaged null mass-flux. Fluidic actuators are generally limited by
their power and frequency response, their use being generally limited to low-speed flows.

Moving surfaces are a well developed technique (thanks to its prevailing use for aircraft) but may
suffer from flow loading and may be limited in frequency response (which is linked to the dimensions
and inertia of the moving parts). At the other end of the spectrum in terms of frequency and
displacement, the progresses in piezoelectric actuation has enabled miniaturization and thus gains
in resonant frequency but at the expense of a decreased power. Moving surfaces are in addition hard
to simulate, since, using traditional simulation methods, mesh adaptation or even re-meshing would
be necessary at every step of the control. Specific methods such as the immersed boundary method
(IBM) or chimera meshing [156] can be used to overcome this issue, but faithful simulations should
still take the load induced by the fluid on the control surfaces into consideration, thus turning a
fully-fluidic problem into a much more complex fluid-structure interaction.

Plasma-based actuators are mainly dielectric-barrier-discharge (DBD) plasma actuators, where
the phenomenon of electrical breakdown is used to locally accelerate the flow by momentum transfer
between ionized air molecules and the rest of the flow. This method can be, to a certain extent,

12

considered as a body-force method. This technology has been investigated by Wang et al. [244] who
concluded that DBD plasma actuators could “replace movable control surfaces of aircraft” such
as Gurney flaps. Yet and contrary to moving parts, plasma actuators generally benefit from fast
response but may require high voltage sources and are limited by their gain (energetic output on
the flow compared to the primary energy used to power the device). Sparkjets, whose potential
for supersonic flows has been assessed by Cybyk et al. [59] or localized arc plasma actuators [203]
leverage plasma discharges to generate a synthetic jet without moving parts and thus may be
relevant for high-speed applications.

Finally, other body-force actuation methods can only be applied on very specific flows where
a significant portion of the it is responsive to electro-magnetic fields (such as ionic propulsion for
satellites). Thus, excepted for rare proofs of concepts, this method generally discarded for control
in conditions of continuous flow (very low Knudsen numbers).

As mentioned, the issue of properly simulating the effects of actuators is crucial for the successful
transposition of control laws from numerical simulation to experiments. Yet, in the context of the
current study, limited attention is paid to the level of realism of actuator modeling since, contrary to
traditional control methods, the level of maturity of deep-learning-based control is rather low. Thus,
the main concern is first to provide numerical proofs of concept, demonstrating the mathematical
feasibility of such control laws. Experimental demonstration and real-world prototypes are expected
to be studied later.

2.1.4 Open-loop control

Open-loop control consists in implementing a pre-computed, time-varying control law or action
sequence on the system. Upon forcing, no feedback from the system, quantifying the effect of the
action, is taken into account. This assumes that the control objective, toward which the system
is driven, is either time-independent or at least does not depend on the initial phase of a periodic
system starting state.

The potential of open-loop control has mainly been studied on flow separation. The effects of
control on airfoil flow separation using a wide variety of forcings were extensively studied with the
goal of delaying stall. Seifert et al. [215], Wygnanski [259], Seifert & Pack [216] demonstrated that
suction-side oscillatory blowing on the hinge of a flapped airfoil could have benefits on performance
(such as increased lift, reduced drag and stall delay). The effects on unsteady blowing/suction
control on vortex lift (also called super-lift by the authors) was also investigated by Wu et al. [258],
with the aim of disrupting the traditional elongated airfoil profile in favor of more complex, multi-
core lifting devices. The stall-delaying effect of zero-net-mass-flux suction-side blowing was assessed
by Amitay & Glezer [2] on moderate Reynolds (3.1× 105) stalled airfoil flows who demonstrated a
complete flow reattachment when forcing frequencies were an order of magnitude larger than the
natural shedding frequency. The delay of dynamic stall (where the airfoil’s angle of attack varies
periodically) may enable an increased potential for both rotorcraft and highly maneuverable jets.
It was studied both in a open-loop and closed-loop framework by Post & Corke [180] using plasma
actuators. Investigations on the duty-cycle showed lift improvements ranging from 4 to nearly
13%. More recently Patterson & Friedmann [178] used open-loop blowing control on both sides of
rotorcraft blades to reduce vibratory loads on the rotor hub, computing optimized action sequences
using a reduced-order model.

Aside from aerodynamics performance improvement, another goal of reducing flow separation
concerns structural fatigue. Vortex shedding occurring from some flow separation regimes yields

13

unsteady loads on the structures. These can lead to premature fatigue and become a severe airwor-
thiness issue. Thus, even on bluff-bodies, that are not designed to generate lift, wake control is also
a matter of concern because wake unsteadiness may lead to unexpected trajectories of the body.
Focusing on the generic Ahmed body at Reynolds numbers ranging from 2, 000 to 23, 000, Krajnović
& Fernandes [129] as well as Parkin et al. [177] studied the effects of the actuation frequency for
trailing-edge blowing as a mean to increase the near-wake pressure, thereby reducing drag.

The canonical case of the bi-dimensional cylinder flow was also extensively used for open-loop
control whether it is via rotary control [119, 90, 184, 183, 133] and the effects of the actuation
frequency and amplitude on the flow, using the Lorentz force to control a low-conducting flow [49],
via vibrations [247], uniform blowing/suction [231] or using mixed approaches such as auxiliary
rotating rods around the cylinder [221].

Open-loop flow control was also been tested for mixing enhancement or conversely the stabil-
ization of Kelvin-Helmholtz-unstable mixing layers. Unsteady cavity flows also count among the
academic cases investigated both from the viewpoints of stability and control. Drawing a parallel
with a forced Van der Pol oscillator and leveraging the flow global stability, Sipp [225] studied the
effects of both frequency and amplitude of a source-term, gaussian-shaped forcing near the leading
edge of the cavity. Arnoult et al. [6] led an experimental study of the effects of unsteady blowing
from this same location on the flow using magneto-mechanical micro-valves and demonstrated an
interesting reduction of the noise generated by the interaction between the unsteady shear layer
and the downstream edge of the cavity. Mixing layer enhancement, notably using DBD-plasma
actuators has been investigated by Singh & Little [222]. On a similar case Li et al. [139] used
Linear Genetic Programming (LGP) to optimize the open-loop control parameters of the forcing.
Extending the scope to planar and round jets, Corke & Kusek [55] assessed the potential acous-
tic disturbances to drive a jet using its resonances. This idea was later leveraged by Smith et al.
[230] using zero-net-mass-flow actuators and Suzuki et al. [236] with flap actuators to force jet
bifurcations.

Most of the studies rely on a parameter search of the amplitude and frequency of a periodic
forcing action. This means that, on the long run, the control action may be strong enough to impose
its phase and frequency to the whole system, irrespective of its uncontrolled dynamics (such as its
phase). Not being able to adapt to the current state of the system may end up in unnecessarily
strong and potentially non-robust control actions, being energy inefficient and contravening the
genuine idea of automatic control consisting in leveraging the flow power to yield large effects
thanks to small forcings.

2.1.5 Linear model reduction

Before the generalization of modern computers, control was limited to low-dimensional input/output
systems and most of its methods relied on linear algebra. Linear closed-loop control is thus at the
heart of automatic control and most of its base concepts come from this paradigm. The majority
of control design methods rely on a two-step process, that first models the system linearly then
designs an optimized feedback control law.

2.1.5.1 Modeling the system as a linear plant

This main idea is to consider that the system dynamics can be “reasonably” well approached by
a linear model and then take advantage of linear algebra to derive linearly optimal control laws.

14

https://www.cfd-online.com/Wiki/Ahmed_body

Mathematically it reads:

dq

dt
= N

(
q
)
+ f,

where N is the dynamics operator of the system, q ∈ Rn its full state and f the effects of the
control forcing on dynamics. In the case where the control goal is to stabilize the system around a
steady state q̄, one can hypothesize that the current state q is “close-enough” to the control target
such that q′ = q − q̄ is infinitesimal. Thus, the linearization of the dynamics reads:

dq′

dt
= Aq′ + f, (2.1)

where A = ∂N
∂q

∣∣∣
q̄
is the Jacobian operator of the dynamics around steady state q̄.

Once linearized, one can use the state-space model representation to fully describe the control
problem, getting a Linear Time Invariant plant (LTI) representation:

dq′

dt
= Aq′ +Bu,

y = Cq′ +Du,

where u is the control input and B is a linear model of the input command on the flow: f = Bu. y
denotes the output vector or the measurement on the system, while C andD model the measurement
function, D the “feedthrough matrix” generally being null.

In cases where the control objective is not steady (e.g. driving the flow toward a non-linearly
saturated limit cycle), one can resort to Floquet’s theory to model the problem.

2.1.5.2 Observability and controllability

Observability and controllability are two major concepts of the control theory [118]. Controllability
is the ability to place the eigen values of a linearly fed-back (u = −Ky in the s-domain) system
anywhere in the complex space. Observability measures how the internal state q of the system can
be deduced from observations y.

Applied on linear(ized) system dynamics, observability and controllability are related to the
rank the observability O and controllability C matrices:

O =

C
CA
CA2

...
CAv−1

C =

[
B AB A2B . . . An−1B

]
.

The system is then observable if rank (O) = n (full column rank). On large systems and using
a reduced set of sensors the unobservable space ker (O) is unavoidably large. But one can derive
the weaker notion of detectability, that only concerns unstable state sub-spaces. Hence the system
will be said “detectable” if all the unobservable sub-spaces are stable and thus do not represent a

15

“threat” to control. Conversely, the system is said controllable if rank (C) = n (full row rank). The
Cayley-Hamilton theorem1 then establishes the equivalence between controllability and reachability
(i.e. the possibility to reach any state of the system using control), the latter being the relevant
indicator on the feasibility of feedback control.

Stabilizability is the dual notion of detectability, the system is “stabilizable” if all the uncon-
trollable state sub-spaces have stable dynamics. In the case of reduced-order models, preserving
both the “detectability” and the “stabilizability” are crucial to a successful closed-loop control of
the dynamics.

Introduced by Moore [162], Gramians (Wobs and Wcon resepectively) bring a more precise view-
point of both observability and controllability:

Wobs(t) =

∫ t

0

eA
T τCTCeAτdτ

Wcon(t) =

∫ t

0

eAτBBT eA
T τdτ,

using the previously introduced state-space matrix notations. One can demonstrate that if Wobs

is non-singular (ker(Wobs(t)) = ∅) for any time t, then the system is observable, and reciprocally.
The same can be showed for Wcon and the controllability. The main advantage of Gramians over
observability and controllability matrices comes from their ability to provide a mode-by-mode ana-
lysis of the controllability and observability. Using an eigen-value decomposition of the Gramians,
the largest eigen-values correspond to the most controllable (and reciprocally observable) modes of
the system. Moore [162] also showed that one could compute data-driven approximations of these
Gramians using the observability and controlability matrices O and C. This solved the issue of
computing the Gramians using their introduced definition which requires the knowledge of A, B
and C and a possibly large computational overhead.

2.1.5.3 Data-driven model reduction methods and system identification

In the case of flow control, this linear model is a reduced-order model since flows have a number
of degrees of freedom ranging from 105 and beyond. The reduction step is then not only about
linearization but also aims at accurately capturing the dynamics of the flow with a reduced number
of degrees of freedom.

Depending whether observations are dense flow fields or sparse pointwise measurements, the
reduction can take place on the internal state dimensionality only or also on the number of outputs.
Full flow fields may not be tractable for feedback design, thus their main features must be ”com-
pressed” into a smaller vector. To this end, multiple studies such as Gerhard et al. [76], Bergmann
et al. [21], Samimy et al. [204], Bergmann & Cordier [20] leverage the energy-optimal Proper Or-
thogonal Decomposition (POD) method to reduce the observed vector and project the dynamics
from the full state to a reduced one via a Galerkin projection of the Navier-Stokes equations. Other
linear decomposition methods such as the Dynamic Mode Decomposition (DMD) can be used. The
latter has the advantage of directly providing the linearized dynamics of the system, but does not
guarantee the orthogonality between modes. If the full state observations of the system are tract-
able, the state-space representation (approximation of the Koopman [127] operator) can even be
directly derived using DMD with control (DMDc) as proposed by Proctor et al. [182].

1i.e. square matrices satisfy their own characteristic equation

16

If observations are a reduced number of scalar measurements, the need for reducing the number of
outputs of the system vanishes but the internal Navier-Stokes-driven state dynamics still need to be
linearly reduced. As described by Brunton & Kutz [35], linear model reduction methods have shown
tremendous improvements in the last decades. Moore [162] first proposed balanced truncation, which
consists in finding a coordinate transform where both controllability and observability Gramians are
equal and diagonal and then keeping only the first modes (that are thereby the most controllable
and observable). This approach, that captures the most relevant dynamics is yet limited by the
need to compute eigen-value decompositions on the linearized dynamics and the Gramians. These
computations can become intractable for large systems. Willcox & Peraire [250] later showed that
one could compute reduced rank approximation of the Gramians, using Balanced POD (BPOD),
to alleviate this issue. BPOD was further improved by Rowley [197] who found a way to by-pass
the heavy computation of the Gramians, using a singular value decomposition of the Hankel matrix
of the system. Dergham et al. [63] used this decomposition to describe the dynamics of both a
rounded backward-facing step and an open-cavity flow. BPOD was also used by Tol et al. [239] on
a turbulent channel flow.

The Eigensystem Realization Algorithm (ERA) was introduced by Juang & Pappa [112] and
proposes a balanced representation of the system’s dynamics from an impulse response of the system,
again using a truncated singular value decomposition of the Hankel matrix of this impulse response.
ERA was for instance used by Rizi et al. [191] to identify the dynamics of an open-cavity flow. Yet
for some systems, it may be practically impossible to simulate or apply a perfect-enough impulse
forcing on the system. Observer-Kalman filter identification [113] (OKID) was then proposed to
estimate this impulse response from noisy input-output measurements, thus solving this issue.

Auto-regressive models is a class of system identification methods that proposes to model a given
measurement as a (here linear) function of previous measurements, control inputs and noise, using
the Z-transform. These methods are then implemented in conjunction with standard dimensionality
reduction methods for large MIMO systems. Gao et al. [75] for instance compared Auto Regressive
model with eXternal inputs (ARX) on lift and pitch coefficients measurements of a transonic buffet
airfoil flow with BPOD and full-state CFD simulations. On a similar case, Huang & Kim [101]
performed ARX on full-state measurements then used balanced truncation. Hervé et al. [95] used
ARMAX, a modified version of the method handling noise modeling and compared its performances
with a standard Galerkin projection of the full-state dynamics on a BPOD decomposition.

2.1.5.4 Resolvent-based approaches

Linear model reduction or system identification aims at describing the linearized dynamics of a
system around a fixed (equilibrium) point. Resolvent-based approaches are model-based methods
that exploit a linear-response assumption of the system to approximate its dynamics, by directly
computing the spectral response of the system to forcing. Using equation 2.1 and performing a
Fourier transform in time reads:

jωq̂′ = Aq̂′ + f̂

or q̂′ =
(
jωI − A

)−1

︸ ︷︷ ︸
R

f̂ , (2.2)

where ω is the frequency, I is the identity matrix and R is called the resolvent operator. The
forcing f here comprises the effects of the control input Bu but also the possible non-linear part
of the internal dynamics of the system as detailed by Beneddine et al. [18]. As shown by equation

17

2.2, the resolvent operator depends on ω and may singularize for some frequencies if the system
is globally unstable. Thus, this tool is primarily used for modeling convective instabilities. In
addition, the resolvent may provide relevant information about sensor and actuator placement by
a study of the optimal forcing maximizing the gain of the system. This approach was used by Jin
et al. [109, 107], Luhar et al. [146] or Yeh & Taira [262].

2.1.6 Linear closed-loop control design methods

Once the system’s dynamics are approached and possibly reduced, an optimized feedback control
law can be computed. In this framework, the majority of the syntheses is led in the Laplace-
transformed complex frequency domain. More details about the Laplace and the formalism used
here can be found in section 9.2. Figure 2.1 depicts the standard feedback loop where G(s) denotes
the Multi-Input-Multi-Output (MIMO) transfer matrix of the system in the Laplace s-domain and
K(s) is the control transfer matrix to synthesize.

Plant
G(s)

Controller
K(s)

∑ û(s) ŷ(s)

−

+r̂

Figure 2.1: Linear feed-back loop schematics.

From this schematics one can derive two important transfers:

S(s) =
1

1 +G(s)K(s)
Sensitivity

H(s) =
G(s)K(s)

1 +G(s)K(s)
Complementary sensitivity (or Closed-loop transfer function).

The sensitivity quantifies the response of the system to an external disturbance r̂ (e.g. noise),
whereas the complementary sensitivity represents the behavior of the unperturbed measurements ŷ
under the control feedback K. One of the simplest synthesis methods is loop-shaping. It consists
in “manually” tuning the open-loop transfers using a predefined type of feedback K (for instance a
PID) in order to place the poles of these transfers. Loop-shaping was for instance used by Brackston
et al. [30] to tune a law controlling the wake of an Ahmed body.

The first widely used design method, the Linear-Quadratic Regulator (LQR), relies on the
optimization of the control with respect to a quadratic cost function and a Kalman filter estimation
of the dynamics. The quadratic cost function balances both penalizations between the energy of the
internal state of the system and the actuation energy expenditure, using three transfer matrices. The
optimal feedback is then provided by the resolution of a Riccati differential equation. This method
is limited first, by the difficulty to properly tune the three mass matrices of the cost function and
second, by the lack of guaranteed robustness, as demonstrated by the notoriously concise article
written by Doyle [67]. In cases where the system dynamics (approached by a Kalman filter) on which
the control law is computed are an approximation, the impossibility to guarantee stability on the full-
state real-world system may be prohibitive. Loop-Transfer-Recovery proposed to circumvent this
issue by “artificially increasing actuator noise to render the estimation process faster” as explained

18

by Sipp & Schmid [228], but this approach is not suitable for systems such as noise amplifiers. Chen
& Rowley [47] used this synthesis method to investigate actuator and sensor placement issues on
the Ginzburg-Landau equation. Barbagallo et al. [10, 9], Illingworth et al. [102] implemented LQR
on an numerically-simulated open-cavity flow to successfully stabilize the system, confirming the
experimental conclusions of Samimy et al. [204] on a similar flow regime. This design method was
applied by Lee et al. [136] and Yao et al. [261] to control a turbulent channel flow. Bergmann et al.
[21] and Bergmann et al. [22] employ the same paradigm to control the wake of a cylinder flow. Gao
et al. [75] compared LQR synthesis with a simpler pole placement method on a transonic buffet
flow around an airfoil and concluded that both sub-optimal control laws were rather similar.

Modern control methods aim at tackling both the issues of optimality and robustness. The main
idea underlying the following methods is to formulate an optimization problem on one or multiple
transfers (or product/sums of transfers), to solve it in the s-domain and to leverage Parseval’s
theorem2 to ensure the optimality on the input temporal domain. When using the natural norm of
Hardy space H2 (refered to as H2-synthesis [85]), the optimization is about minimizing the standard
deviation deviation of sensor measurements, that can directly be related to the minimization of the
energy of the system in the current linear framework. The standard LQR synthesis is indeed itself a
kind of H2-synthesis. Rizi et al. [191] performed an H2-synthesis of a delay-aware control law on an
ERA-obtained reduced-order model of a cavity flow. Manohar et al. [150] and Jin et al. [108] also
employed H2-synthesis on a BPOD model of the Ginzburg-Landau equation and on a resolvent-
based decomposition of a cylinder flow respectively. Tol et al. [239] synthesized an H2-optimal
controller to control a turbulent channel flow.

H∞-synthesis [265] uses the norm of Hardy space H∞ and is qualified as “robust” synthesis
since the optimization is performed with respect to a worst-case scenario. This way robustness is
preferred over optimality, closed-loop stability margins being directly related to theH∞-norm. Thus,
in cases where the plant model G(s) suffers from uncertainties, this method provides a conservative
method to guarantee the stability of the control on the real-world plant. One can combine these
two syntheses using mixed H2/H∞ formulations. Bewley & Liu [24] and Bagheri et al. [8] compared
the performances and robustness of both H2 and H∞ syntheses on an unsteady channel flow. This
test-case was also used by Jones et al. [110]. Henning et al. [94] demonstrated the robustness of H∞
control on the wake an Ahmed body.

These modern approaches optimize the parameters transfer matrix K (the control feedback
to design), each term kij of the matrix K being a tunable transfer function from measurement
dimension j to command dimension i. The order of these transfer functions is the order of plant
G(s). This can become a matter of concern for large order plants, where the dimension of the
optimization explodes. More recently, so-called “structured syntheses” [4] thus proposed to tackle
this issue by imposing a pre-defined structure (order, number of poles and zeros) to the transfers of
K. This way, the order of the control feedback is controlled and the optimization remains tractable.
Leclercq et al. [135], Nibourel et al. [168] and Jussiau et al. [114] experimented mixed H2/H∞
structured synthesis respectively on a cavity flow, a supersonic flat plate flow and a cylinder flow
respectively.

2.1.7 Non-linear control and model-reduction methods

The main limitation of the previously introduced methods is their reliance on an assumption of
(near) linearity of the system to control. Thus, when the system does not behave “linearly enough”,

2Refer to appendix 9.2 for more details.

19

these approaches are bound to fail. That is where non-linear control comes in, to handle these
systems. In addition, even if the system is close to linear, non-linear control approaches aim at being
more energy-efficient than linear ones. The flip-side of the abandon of the linearity assumption
of the whole closed-loop system is the loss of most of the linear algebra techniques previously
used to synthesize control laws and the robustness guarantees coming with these methods. In
particular, non-convexity may cause continuous optimization approaches to be stuck in sub-optimal
local minima.

Non-linear versions of auto-regressive models, NARX and NARMAX enable to incorporate a
controlled “amount” of non-linearity in the dynamics. These have been for instance used by Dandois
et al. [60] and Kim et al. [122], both to control flow separation on a backward-facing ramp.

The idea of embedding the measurements or full-state snapshots into a larger, richer space
to more precisely approximate dynamics has been used by Williams et al. [254] who proposed
Extended DMD by computing extra observable functions of the state alongside snapshots before
performing the singular value decomposition. From this idea also originates the Sparse Identifica-
tion of Non-linear Dynamical systems (SINDY) proposed by Brunton et al. [36], where a dictionary
of observables of measurements is used as input of a L1-penalized optimization fitting the temporal
derivative of these measurements by linear combination, aiming at identifying the system’s dynam-
ics. Both methods were later extended to accommodate exogenous forcing [253, 37]. SINDY was
for instance used with MPC by Kaiser et al. [116] on multiple test-cases. The main identified issues
of these “lift-up” approaches first relate to the choice of the appropriate dictionary of observable
functions which requires a priori knowledge on the system dynamics and second to the “curse of
dimensionality”. Increased input/output sizes may lead to a large number of candidate functions
in the dictionaries, thus requiring to tune an exploding number of parameters, that in turn needs
more data.

Model Predictive Control (MPC) is a control method where the control law is implicitly defined
as the solution to an optimization problem. The derived solution is a sequence of control actions
that maximize a performance metric on a closed-loop model of the system. The first action of
the sequence is to be implemented in the real-world system while the following ones are generally
discarded. Nair et al. [165] compared this approach on three test-cases with optimal phase control
while Korda & Mezić [128] used MPC on a Koopman linear predictor model. Bieker et al. [26]
developed NN-based MPC models to perform online control of a fluidic pinball flow. This method
is not per se non-linear but its paradigm is general enough to be used with a non-linear model. The
method is close to reinforcement learning in the sense that one seeks to optimize a control sequence
taking long-term effects of control forcing into account.

All the previously introduced methods can be considered as Machine Learning (ML), since they
aim at identifying patterns and building models from data. The distinction between traditional
control methods and the main focus of the current study is more to be sought toward both the
structure of the control law and the training method. The previously introduced methods generally
rely on a strongly structured control laws, whose parameters (transfer function poles and zeros,
matrix parameters, or linear combination weights) are to be optimized and on training methods
that make strong assumptions on the dynamics. The present study aims at evaluating the potential:

1. of less-structured or unstructured approaches whose formulation rely on Neural Networks
(NNs) and deep learning in general,

2. of innovative training methods on unstructured (with Reinforcement Learning (RL)) and
structured (with Genetic Programming (GP) and RL) control laws,

20

3. and to identify (and if possible tackle) the issues specific to flow control that arise with these
new methods.

2.2 Reinforcement Learning

The reinforcement learning (RL) paradigm models the control problem as a time-discrete interac-
tion loop between an agent (implementing the control law) and an environment (the flow to be
controlled). As shown by figure 2.2, the agent takes control actions depending on partial observa-
tions of the environment, in a closed-loop fashion. Through iterations of this interaction loop, the
agent seeks to optimize its decision behavior in order to maximize a reward, which is provided at
each control step by the environment alongside observations.

Environment

Agent

Observation
st

Reward
rt

Action
at

Figure 2.2: The reinforcement learning loop

2.2.1 An optimization problem

2.2.1.1 A Markov Decision Process

This optimization problem can be formalized as a Markov Decision Process (MDP) {S,A, T, r}
where:

• S is the state space, the set of all observable states of the environment;

• A is the action space, the set of all authorized actions on the environment3;

• T : S ×A×S → [0; 1] is the transition function, defining the dynamics of the environment
under control action, quantifying the transition probability T (s′|s, a) from state s to state s′

under action a;

• r : S × A × S × R → [0; 1] is the reward function, defining the probability of obtaining a
reward r for the transition (s, a)→ s′.

The transition function T being only conditioned by the current state s and action a, the presently
defined MDP satisfies the Markov property4. In the following “s ∼ T” is a shorthand notation
for “s′ ∼ T (·|s, a)” and the “prime” symbol indicates succession (i.e. ∀ t s′t = st+1).

3This set can be conditioned by the state, but this has no impact in the current reasoning.
4i.e. it is memoryless: T (st+1|(st, at), . . . , (s0, a0)) = T (st+1|st, at)

21

2.2.1.2 Defining the control objective

In the context of RL, actions are taken by an agent following a control law. This control law
is called policy and is generally stochastic: π : S × A → [0; 1]. The policy thus also satisfies
the Markov property which theoretically forces it be analogous to a “stochastic non-linear simple
gain” function, excluding for instance PID controllers from the possible policies5. In the following
“a ∼ π” is a shorthand notation for “a ∼ π(·|s)”. Starting at t = 0 from state s0, following an
infinite controlled trajectory τ = ((s0, a0), (s1, a1), . . .), where ∀ t at ∼ π(·|st), one can collect all
the rewards (r0, r1, . . .) associated with each transition and define the return as:

R(τ) =
∞∑

t=0

γtrt, (2.3)

where γ ∈ [0, 1[is a discount factor, favoring immediate rewards over more distant ones. γ values
close to 0 tend to attribute more value to greedy action sequences and conversely, when γ → 1
the similar weight is attributed to immediate and distant rewards, favoring “long-term oriented”
action sequences. The reward function is by hypothesis, stochastic, and its inputs (state and action)
are also the result of a stochastic sampling (on T and π). Thus, the value function, namely the
expected return of a trajectory τ starting from a given state s and conditioned by policy π is noted
as:

V π(s) = Eτ∼T,π [R(τ)] = Eτ∼T,π

[∞∑

t=0

γtrt|s0 = s

]
, (2.4)

where “τ ∼ T, π” is a shorthand notation for “s ∼ T, a ∼ π ∀ (s, a) ∈ τ”.

For any given distribution µ : S → [0; 1] of starting states s (s ∼ µ(·)), the goal of a RL algorithm
is to find the optimized policy π∗ that maximizes the expected value function over the distribution
µ:

π∗(µ) = argmax
π

Es∼µ [V
π(s)] = argmax

π
E s∼µ
τ∼T,π

[∞∑

t=0

γtrt|s0 = s

]
, (2.5)

The corresponding optimal value function being V ∗ so that:

V ∗(µ) = max
π

Es∼µ [V
π(s)] . (2.6)

This function V ∗ exists and equation 2.6 has a unique solution.

2.2.2 The Bellman equation

Bellman [16] demonstrated that:

∃!V ∗ so that ∀µ : S → [0; 1], V ∗ = max
π

Es∼µ [V
π(s)] , (2.7)

which is a much more general and powerful assertion since, it proves the existence of a single V ∗

irrespective of the underlying starting state distribution. This is showed by the transformation of

5It is nonetheless possible to provide policies with finite difference estimates of integral and derivative terms
without breaking the Markov property by artificially embedding previous states into the current observation vector.

22

equation 2.4 into a self-consistency criterion on the value function V π. Equation 2.3 can be rewritten
considering τi, the ith-step shifted trajectory ((si, ai), (si+1, ai+1), . . .):

∀ i R(τi) = r(si, ai, si+1) + γR(τi+1),

as long as |Rτ | <∞. Thus equation 2.4 becomes:

V π(s) = E a∼π
s′∼T

τ1∼T,π

[r(s, a, s′) + γR(τ1)]

= E a∼π
s′∼T

[r(s, a, s′) + γEτ1∼T,π [R(τ1)]]

V π(s) = E a∼π
s′∼T

[r(s, a, s′) + γV π(s′)] , (2.8)

Equation 2.8 is the Bellman equation for the value function.

Theorem 2.2.1 (Bellman principle of optimality). ∃ s ∈ S, V π∗
(s) = maxπ V

π(s)⇒ ∀ (s, a, s′) ∈
S × A× S, V π∗

(s′) = maxπ V
π(s′)

Proof. By contradiction, if ∃ (s, a, s′) ∈ S × A × S, V π∗
(s′) < maxπ V

π(s′), then the policy π′ =
δs,s′ argmaxπ V

π(s′)+(1−δs,s′)π∗ has a value function V π′
so that V π′

(s) > V π∗
(s) which contradicts

the optimality of π∗.

In other words, a given policy is optimal if it maximizes V π(s′) whatever previous state s and
action a are. This way, the decision problem boils down to the optimization of a single state-value
with the insurance that all the other likely visited states see their value optimized.

The optimal policy π∗ can thus be determined from the globally optimal value function V ∗ as
previously introduced as the argument of the maxima of V ∗. This way, π∗ is deterministic6. In the
following, r is supposed to be a deterministic function of the current state and action only, meaning
that one writes rt = r(st, at). All the formulas and properties introduced earlier still hold.

2.2.3 Model-free RL

Kaelbling et al. [115] divide the taxonomy of RL algorithms into two mutually exclusive families:
model-based and model-free methods. The first aims at learning the dynamics of the environment
and to derive an optimal controller from this approached model. Learning algorithms that do
not make use any explicit model of the environment’s dynamics are said to be model-free. These
methods circumvent the difficulties of learning a model, often with the benefit of an increased
sample efficiency. One can subdivide the family of model-free RL methods into two approaches of
the problem.

2.2.3.1 Value-iteration

Also called Q-learning, it makes use of the action-value function Qπ(s, a). This auxiliary function
is defined as the expected return of a trajectory starting from state s, sampling control actions
following π , excepted for the first action a0 = a7:

Qπ(s, a) = Es′∼T [r(s, a, s′) + γV π(s′)] = Eτ1∼T,π [R(τ)|s0 = s, a0 = a] .

6It can be considered stochastic in the rare cases of states where two different optimal actions lead to the same
expected return.

7i.e. a0 is deterministically chosen and ∀ t > 1 at ∼ π(·|st)

23

Thus, by definition of the value function:

V π(s) = Ea∼π [Q
π(s, a)] . (2.9)

The action-value function can be expressed as:

Qπ(s, a) = Eτ∼T,π [r(s0, a0, s1) + γR(τ1)|s0 = s, a0 = a]

= E s1∼T
a1∼π
τ2∼T,π

[r(s, a, s1) + γR(τ1)|s0 = s, a0 = a]

= Es′∼T [r(s, a, s′) + γEa′∼π [Eτ2∼T,π [R(τ1)|s1 = s′, a1 = a′]] |s0 = s, a0 = a]

thus Qπ(s, a) = Es′∼T [r(s, a, s′) + γV π(s′)]

using 2.9 and since Qπ(s′, a′) = Eτ2∼T,π [R(τ1)|s1 = s′, a1 = a′] .

The objective of Value-iteration is to learn the optimal action-value function Q∗(s, a), using the
same self-consistency property ensured by the Bellman equation. The controller π is optimized
indirectly by learning its underlying performance metric V . The original value-iteration method is
described by algorithm 1.

Algorithm 1 General Value Iteration Algorithm

k ← 0
∀ s, a ∈ S × A Initialize Q0(s, a) arbitrarily
∀ s ∈ S V0(s)← maxaQ0(s, a)
while Vk is not converged do

for all s ∈ S do
for all a ∈ A do

Qk(s, a)← Es′∼T [r(s, a, s′) + γVk(s
′)]

end for
Vk+1(s)← maxaQk(s, a)

end for
k ← k + 1

end while
for all s ∈ S do

π∗(s)← argmaxaQk(s, a)
end for

This family of training algorithms is mostly off-policy. This means that the training data
used at a given step of the training process is collected irrespective of the current optimal policy.
In the original Value-iteration algorithm, the update of the action-value function Qk(s, a) appears
inefficient since it is computed for any sate s ∈ S and action a ∈ A, which becomes intractable
from large discrete or continuous action spaces. This is particularly true if a given state s cannot be
“replayed” easily, as it is the case for flow environments. Thereby, all Value-iteration algorithms only
update Qk(s, a) on visited state-action pairs and adopt extra/interpolation strategies to estimate
non-visited one. Sutton & Barto [235] and other authors consequently demonstrated that these
methods usually suffer from a lack of stability, function approximation error and off-policy training
data being major causes of failure. Most of the derived algorithms propose to both mitigate these

24

issues via different techniques, using delayed or differently trained estimators such as Double Q-
learning [240] for instance and resorting to smooth approximators to estimate the intractable optimal
action a = argmaxaQk(s, a) in the cases where the action space A is continuous (such as with Deep
Q-Network with Normalized Advantage Function estimator (DQN-NAF) proposed by Gu et al. [83]).
They also manage to take advantage of the off-policy aspects of the method by re-using previously
collected data to greatly increase sample efficiency, notably via experience replay [157, 3].

Gueniat et al. [84] projected the states of a Lorenz system onto a discrete set of reduced states,
similarly to k-means clustering but using a hashing function. They then leveraged tabular Q-
learning on the reduced dynamics, encoded as a probabilistic transition matrix between states,
to learn a control that forces the state to stay on a predefined “wing” of the attractor. A Deep
Q-Network (DQN) was used by Waldock et al. [243] to successfully control the trajectory of a
variable-sweep wing UAV. Shimomura et al. [219] also implemented DQN to experimentally control
the flow separation over an airfoil using plasma actuators located near the leading edge.

2.2.3.2 Policy-iteration

On the other hand, Policy-iteration methods explicitly represent the policy π and optimize it using
gradient ascent on approximators of the value function V π. Contrary to Value-iteration, the training
is almost always performed on-policy, meaning that, at any training step the training data is
obtained using actions from the current policy. These methods are thus considered less sample-
efficient, since previous data samples (which are off-policy after update) are discarded and never
re-used. Policy-iteration algorithms are more stable than value-iteration methods since there are
principled, i.e. they directly optimize the policy π which is the goal of the training process. The
original Policy-iteration method is described by algorithm 2.

Algorithm 2 General Policy Iteration Algorithm

k ← 0
∀ s ∈ S Initialize π0 arbitrarily
∀ s ∈ S Initialize V π(s)← 0
while πk is not converged do

while V π is not converged do ▷ Evaluation step
for all s ∈ S do

V π(s)← Ea∼πi
s′∼T

[r(s, a, s′) + γV π(s′)]

end for
end while
for all s ∈ S do ▷ Improvement step

π(s)← argmaxa Es′∼T [r(s, a, s′) + γV π(s′)]
end for

end while

The optimization loop of the algorithm decomposes into the evaluation step, in which the policy
π is run on the environment to update the value function V π and the improvement step where the
policy π is modified to take actions maximizing the freshly updated value function. Similarly to
Value-iteration, as soon as the state space is continuous, of high dimension and/or hard to replay,
all algorithms approximate the exploration of the state space, only relying in the data collected

25

https://en.wikipedia.org/wiki/Lorenz_system

along a control trajectory. To enrich this collected data and as a way to solve the exploration-
exploitation dilemma, most of the state-of-the-art methods resort to exploration noise added to
the control action during roll-outs to try to progressively explore more interesting regions of the
state-space. During the improvement step, these methods cannot explicitly compute the argument
of the maximum and thus proceed by smooth gradient ascent. These updates are carefully tuned,
using different formulations of the policy gradient, to account both for the possible error of V π and
to the fact that exploration noise is injected during the collection of training data.

TRPO [210] is one of first efficient proposed methods, and was quickly followed by the widely-
used PPO [212]. All these algorithms resort to two separate structures to embody the value function
and the policy, in an actor-critic paradigm. The actor (the policy π) is tasked to derive the best
policy and the critic (the value estimator V π) evaluates the performances of π. In the current study,
PPO-CMA [89], a variant of PPO is prominently used. It is more thoroughly described in section
2.2.5.

PPO has been used in numerous studies controlling a confined cylinder flow at various regimes
and different actuation layouts [186, 237, 190, 140, 151]. Wang et al. [246] implemented this training
method on a confined NACA 0012 airfoil flow to improve its lift and Beintema et al. [14] managed
to reduce the heat transfer on a bi-dimensional Rayleigh-Bénard convection cell, also using PPO.
An actor-critic-structured method relying on a structured policy was proposed by Vona & Lauga
[242] to stabilize a viscous flow using rotating cylinders.

2.2.3.3 Practical implementation: expected grad-log-prob and baselines

As for value-iteration methods, policy-iteration methods aim at maximizing the expected return
J(πθ) = Eτ∼T,π [R(τ)] but with respect to an explicitly defined policy whose parameters θ are tuned
using∇θJ(πθ). In the following, J is the generic notation used for the optimization objective instead
of V .

Two practical issues arise here: getting an expression of the policy gradient that can be ap-
proached using a stochastic estimator computed on collected trajectories and ensuring that this
estimator is unbiased and accurate enough to guarantee policy improvement. The first problem is
addressed by the derivation of the “Expected grad-log-prob” expression of ∇θJ(πθ) with respect to
π, based on its original definition.

If P (τ |θ) denotes the probability of trajectory τ under policy parameters θ then one can show
that:

∇θJ(πθ) = ∇θEτ∼T,π [R(τ)] = ∇θ

∫

τ

P (τ |θ)R(τ) =

∫

τ

∇θP (τ |θ)R(τ)

=

∫

τ

P (τ |θ)∇θ logP (τ |θ)R(τ) = Eτ∼T,π [∇θ logP (τ |θ)R(τ)] ,

where the logarithm derivative expression:

∇θ logP (τ |θ) = 1

P (τ |θ)∇θP (τ |θ)

and the inversion between gradient and integral enable to express the gradient of an expectation as
the expectation of a gradient. The probability of trajectory τ is:

P (τ |θ) = P (s0)Π
N−1
t=0 P (st+1|st, at)πθ(at|st)

26

where N is the length of τ . Then the gradient of the log-probability of trajectory τ is simply:

∇θ logP (τ |θ) =
N+1∑

t=0

∇θ log πθ(at|st)

since only πθ depends on θ. Then, injecting this expression in the policy gradient one can deduce
the “Expected grad-log-prob” expression:

∇θJ(πθ) = Eτ∼T,π

[
N+1∑

t=0

∇θ log πθ(at|st)R(τ)

]
. (2.10)

This way, one can easily build an estimator using the collected trajectories.
The second issue concerns the need for unbiased and low-variance sample estimates of the policy

gradient. It appears that direct estimators are unbiased but contain uncorrelated terms that need-
lessly increase the variance. To converge such an estimator one then needs to gather a larger amount
of samples. Thus, sample-efficient training methods should rely on different low-variance, surrogate
estimators. Looking at equation 2.10, the first simple modification reducing variance, concerns the
replacement of the return R(τ) by its reward-to-go version. For a given time t, one can split R(τ)
into the partial sum of rewards obtained before t (in its past) and the sum of rewards obtained
after t (in its future). It is common intuition that the sampling probability π(at|st) of action at
at time t should only be optimized considering the future rewards (i.e. the consequences of the
control action). The first partial sum is then a yet unbiased but uncorrelated source of noise for
the estimators built on this definition:

∇θJ(πθ) = Eτ∼T,π

[
N+1∑

t=0

∇θ log πθ(at|st)
(

�����������t−1∑

t′=0

γt′r(st′ , at′ , st′+1) +
N−1∑

t′=t

γt′r(st′ , at′ , st′+1)

)]
.

The fact that Eτ∼T,π [∇θ log πθ(at|st)f(st)] = 0 for any function f that only depends on the state8,
enables to subtract to the reward-to-go, functions called baselines that help reduce the variance of
the estimator as analyzed by Greensmith et al. [81]. Choosing the estimated value function V π as
baseline or using the previously introduced action-value function Qπ to replace the reward-to-go
are both valid choices. Combining both leads to the very common baseline choice of the advantage
function Aπ:

Aπ(st, at) = Qπ(st, at)− V π(st),

which quantifies the “advantage” of taking action at instead of the best action according to policy
π, all things kept equal. This enables to disentangle the effect of at yielding consequences through
the immediate reward and the current state transition only (according to the Markov property),
from the following actions’ effects, with the effect of reducing estimator variance.

The value of the discount factor γ plays an important role in the variance of these estimators.
Large γ values (close to 1) enable to learn more long-term policies that perform better but at the cost
of larger estimator variances, whereas small values favor nearsighted and greedy policies and small
variances. Thus, for undiscounted MDPs (γ = 1), the constraint of low estimator variance often
constrains to choose lower values of γ, thus introducing a bias between the optimization objective

8This can be proven using ∇θf(st) = ∇θ

∫
at
log πθ(at|st)f(st) = 0.

27

and its estimator. To mitigate this bias, Schulman et al. [211] propose Generalized Advantage
Estimation (GAE), an hybrid unbiased advantage estimator (considering γ = 1) making use of
the self-consistency of the Temporal Difference (TD) residual, to propose an efficient trade-off
between the perceived bias on γ and the variance of the estimator. Even though conceived for
undiscounted problems, GAE is the advantage estimation method in most of the state-of-the-art
training algorithms.

2.2.3.4 Value bootstrapping

As explained earlier, policy-iteration algorithms use the sample sequence collected during roll-outs
to directly estimate the return of each state and the corresponding advantage. Yet, roll-outs must
have a maximum length even when not imposed by the environment. This stopping constraint, may
introduce a bias on the return and all other estimators computed with it, since the last terms of
the discounted sum of rewards are not collected. As this “artificial” cut-off of the trajectory should
obviously be transparent for the optimization process, this final reward is usually replaced by the
best estimate of the expected sum of rewards, i.e. the value function V evaluated on the last state
s of the trajectory. Thus, contrary to other non-terminal states, one “bootstraps” this state value
in a TD fashion similarly to value-iteration algorithms.

2.2.3.5 Hybridization

Value- and policy-iteration methods not being incompatible, numerous hybrid algorithms have
been proposed, taking advantage of the best of each paradigm. One can cite DDPG [143], TD3
[73] or SAC [88]. As seen before, model-free algorithms are approaching methods solving practical
implementation issues and thus making trade-offs between mathematical tractability and compu-
tational cost on the one hand, and accuracy and failure modes on the other hand. Contrary to the
model-free/model-based split, the distinction between Value- and Policy-iteration is not mutually
exclusive so it should be thought of as a continuous spectrum of methods proposing a range of
trade-offs between the advantages and drawbacks of both paradigms.

Bucci et al. [38] as well as Zeng & Graham [266] used DDPG to drive the One-dimensional
Kuramoto-Sivashinsky equation (refer to sections 3.4.1 and 4.1) toward each of its non-trivial fixed
points. Koizumi et al. [126] also implemented this algorithm on a cylinder flow.

2.2.4 Model-based RL

2.2.4.1 A trade-off between cost and accuracy

Despite the multiplicity of proposed methods mitigating the issue of sample efficiency for model-
free RL (such as off-policy methods and/or experience replay), this family of training algorithm
suffers, especially in the case of costly environments, from its low exploitation of the collected data.
From that view-point, model-based approaches are appealing thanks to their promise of learning
the internal dynamics of the environment and thus, as said by Moerland et al. [158], “the model is
a form of reversible access to the MDP dynamics”. This way, states and transitions can be replayed
at a much lower cost than on the environment in order to train the agent. This “reversible access” is
all the more important in the case of fluid mechanics where replaying any arbitrary partial state is
impossible or very hard due to the large number of degrees of freedom of the system. Experimentally
it is impossible (unless by luck of reaching this state on a trajectory) and numerically it would mean
storing an impractical amount of full-state snapshots of the flow.

28

Yet, (reduced-)model accuracy often appears as a limitation to the agent’s performances. As the
querying horizon (length of the model roll-outs) increases, approximation errors accumulate, raising
the issue of accurate multi-step prediction. Thus, a crucial trade-off between model-simulated
error-prone cheap data and real-world expensive and accurate data must be found. This trade-off
obviously depends on the complexity (linearity, dimensionality and observability) of the dynamics
of the environment. Improvement guarantees, in the form of a lower-bound have been considered
by Luo et al. [147]. Janner et al. [105] also discussed this issue and leverage the accuracy of the
model to tune the roll-out horizon on their model.

2.2.4.2 Modeling the reduced-order dynamics

In the extreme case where the dynamics is known without error such as for board games [209],
the whole training process may be run on the model, since its accuracy its guaranteed. In most
of the cases however, the prior knowledge about the system is either nonexistent or partial. In
the first case, linear methods [137, 130] such as the ones introduced in section 2.1.5.3, Gaussian
processes [62], or Gaussian Mixture Models can be used to model the dynamics and its associated
uncertainty. Though, thanks to their interpolation capabilities even in large dimensions, NNs (refer
to section 2.3.2 for more details) are often chosen for their high sample efficiency. Gal et al. [74] for
instance re-used the PILCO algorithm introduced by Deisenroth & Rasmussen [62] but resorted to
Bayesian NNs instead of Gaussian processes. Kaiser et al. [117] used an auto-encoder structure on
video-game snapshots to predict the evolution of the system and reduce data collection needs on the
real environment while still improving the learning speed. Chua et al. [53] introduced Probabilistic
Ensembles with Trajectory Sampling (PETS), a learning method that leverages the disagreement
between multiple NN-based models to assert the average model accuracy. Using Model Predictive
Control (MPC) they derive an implicitly-defined policy based on the learned dynamics.

When prior knowledge on the dynamics or at least its structure can be assumed, restricting the
model with these constraints may help improve its accuracy, especially for multi-step predictions
where stability and/or prevention of distribution collapse is crucial. The linearity assumption can
lead to models such as the already-mentioned DMD with control (DMDc) or Koopman decompos-
itions. Assuming that the dynamics project well on a linear combination of observable functions
leads to approaches like SINDY with control [116], that can be considered as model-based RL.

Chen et al. [48] proposed neural ODEs, using a time-continuous approach, instead of the tradi-
tional discrete time (xt+1 = xt + f(xt, t, θ)) approach. Yin et al. [264] introduced APHYNITY in
order to “leverage prior dynamical ODE/PDE knowledge in situations where this physical model is
incomplete, i.e. unable to represent the whole complexity of observed data”. They proposed a bi-
headed reduced-order model, where a tunable PDE is complemented with a data-driven NN similar
to a neural ODE. Greydanus et al. [82] introduced Hamiltonian Neural Networks (HNN) aiming at
guaranteeing energy conservation. Chen et al. [50] proposed a recurrent NN stepped forward in time
so that it conserves Hamiltonian quantities. Other quantities such as mass conservation or Total
Variation Diminishing properties (TVD) may also be tackled by the family of Physics-Informed
Neural Networks [40] (PINN).

2.2.5 A quick focus on PPO-CMA: Balancing exploration and chaos

Proximal Policy Optimization with Covariance Matrix Adaptation (PPO-CMA) was proposed by
Hämäläinen et al. [89] as a variant of PPO, aiming at avoiding the “premature shrink [in] the
exploration variance”. As opposed to PPO, where the exploration variance σ (a ∼ πθ(s) = N (µθ, σ))

29

is a user-defined parameter (constant or scheduled), PPO-CMA relies on CMA-ES-like methods to
output a data-adapted σ vector from the policy π as shown by figure 2.3. Both outputs µ and σ of
the policy are trained with surrogate losses using GAE (like PPO) but that differ from the clipped
formulation proposed by Schulman et al. [212]. The loss on σ (trained before µ) is:

Lσ = − 1

#H

#H∑

t=1

ReLU (Aπ(st, at)) log πθ(at|st),

where H is a sub-batch of collected data from the last epochs #H its cardinal and ReLU is the
rectified linear unit activation function (i.e. max(·, 0)). Here negative advantage samples are totally
discarded concerning the loss on σ. The formulation of the loss on µ proposes mirroring mechanisms
that uses these negative advantage actions to “push” the actor in the opposite direction:

āt = 2µθ(st)− at mirrored action

κt =
∑

j

e
−(

(at,j−µθ,j(st))
2

2ασθ,j(st)
2

avoidance kernel

Lµ = − 1

#B

#B∑

t=1

[ReLU (Aπ(st, at)) log πθ(at|st)− ReLU (−Aπ(st, at))κt log πθ(āt|st)] ,

where α is a predefined damping parameter that drives the “avoidance kernel”, tasked with favoring
small amplitude negative advantages (likely to be less destabilizing) over larger negative ones. B is
the collected data batch of the current epoch only and #B its cardinal.

This way σ is automatically tuned, avoiding the tedious search on the appropriate value or
schedule required by PPO. In flow control cases, nearly chaotic dynamics require a precise tuning
of the exploration noise. In order to prevent complete divergence of the observed states due to the
sampling noise but with the aim to maintain the ability to explore new regions of the state-action
space, PPO-CMA mechanisms appear particularly suited. In the implementation of the current
study, the output on σ is fitted with a manually tunable variable that enables to set the initial
order of magnitude of σ based on the input observations on the first training epoch.

Environment

Actor πN (µ, σ)

Critic V

Observation
st

Reward
rt

µ
σ

Action
at

Optimisation

Figure 2.3: PPO-CMA agent structure

2.2.6 A quick focus on PETS-MPC: A flexible, implicitly defined policy

As introduced earlier, Probabilistic Ensemble Trajectory Sampling for Model Predictive Control
(PETS-MPC) has been proposed by Chua et al. [53]. It leverages two interesting principles: the

30

first concerns ensemble averaging and the second is about Model Predictive Control (MPC), namely
considering the control policy as the result of a local optimization of the control actions over a few
steps in the future. This way, the policy is implicitly defined and thus requires extra processing
compared to a simple forward pass in a NN but in turn allows for adding extra constraints that can be
dynamically implemented in the optimization process (such as action clipping). As shown by figure
2.4, multiple models, each embodied by a dense NN, get the current observation st and control action
at as input, are tasked with estimating the best Gaussian distribution st+1 ∼ N (µ(st, at), σ(st, at)
and are trained on data samples gathered from roll-outs on the full state environment. The idea
behind having multiple models that are supposed to display rigorously the same behavior is linked
to epistemic and aleatory uncertainties.

2.2.6.1 Epistemic and aleatory uncertainties

Aleatory uncertainty concerns the perceived yet intrinsic randomness of the dynamics of an envir-
onment. On fully-observed systems, aleatory uncertainty directly relates to the stochasticity of the
dynamics. Thus, a fully-observed deterministic environment has no aleatory uncertainty. But if it
is partially observed (which generally is the case for fluid mechanics), despite behaving determinist-
ically, it may show aleatory uncertainty in the sense that starting from the same partial state (but
potentially different full-state) and stepping the environment forward may lead to different partial
states, and this has nothing to do with chaoticity. Partially observed environments present aleatory
uncertainty simply because of non-observed or “hidden” informative variables. A large aleatory
uncertainty might jeopardize training, since it would lead the agent to consider two widely different
full-states as identical. Thus locating observations properly is part of what makes the expertise in
aerodynamics, in order to capture the phenomena relevant to the control policy and possibly drop
less meaningful ones. Aleatory uncertainty is thus strongly related to the notions of observability
and detectability introduced in section 2.1.5.2.

Conversely epistemic uncertainty relates to the current knowledge gathered by an agent about
the dynamics of the environment, or in other words, to the confidence in the predictions an agent
can make about the environment given its experience. Two agents (accessing the same observations)
may have a different epistemic uncertainty if one is better at learning than the other but will be
confronted to the same aleatory uncertainty. The epistemic uncertainty can be reduced by training
the agent on more sample data or by improving the training method. A perfectly trained model
would have a null epistemic uncertainty, but as these two uncertainties add-up, its prediction will
remain somehow uncertain if the system shows aleatory uncertainty.

Important note: These current definitions may differ from these used in other
domains of ML or statistics, especially concerning partial observation which is usually
considered as a source of epistemic uncertainty. But here, as the observation layout is
a fixed parameter of the problem and since the environment is considered as black-box,
it is more logical to consider it as aleatory uncertainty.

2.2.6.2 Training and action inference

Here, having multiple models helps separating these two types of uncertainty. For a given prediction
of a partial-state trajectory, the disagreement between the models gives an estimate of the epistemic
uncertainty and the own uncertainty (σ) of each model prediction aims at inferring aleatory un-
certainty. Running an ensemble average over all the model predictions ensures more precise and

31

Environment

CEM Optim.

Models

Reward
rt

Observation
st

Action
at

st + act.st+1Optimization

Figure 2.4: PETS-MPC agent structure

more stable predicted trajectories. To ensure that all models do not collapse on the same behavior
because of overfitting, they are trained with different data samples.

Concerning action inference, the policy being implicit, each action query triggers an optimization.
To do so, the implementation proposed by Chua et al. [53] relies on the Cross-Entropy-Method
proposed by Botev et al. [29]. For a given prediction horizon h, a flock of action sequences are
either generated randomly or recovered from the previous optimization. Each action sequence is
evaluated on the models multiple times, using “particles” initialized with the current observation
st and stepped forward in time by the models on h steps. Once all the predicted trajectories are
synthesized, their cost can be computed. The average cost of a given action sequence is used to
rank the sequences and re-sample better action sequences. At the end of the optimization the first
n actions of the best action sequence are kept to be implemented on the real environment (generally
n = 1 and this optimization thus occurs at every control step).

The original method assumes that the reward is a (known) function of the observations only.
Yet, on more complex environments this is generally not the case. Thus the current implementa-
tion augments the observation vector st with the current reward rt, which then becomes yet another
quantity to estimate, potentially reducing the performances of the method. The current implement-
ation also uses a residual connection, hence in practice the NN of each model outputs ∆s = st+1−st,
which is similar to a discrete derivative of the signal.

2.2.7 Policy distillation

Policy distillation was first introduced by Rusu et al. [200] as a way to transfer policies from a
trained agent to another untrained agent. This may be used as a reduction method, by distilling
from a large network to a smaller one (empirically harder to train) or to combine multiple single-
task policies into one single multi-task expert policy. Contrary to most forms of transfer learning
that consider direct networks’ parameters (weights and biases) transfer, policy distillation works by
imitation of a “teacher” agent, containing the expert pre-trained policy, by a “student” one, hosting
the un-trained policy. This approach was successfully used by Teh et al. [238] and later by Lai
et al. [132] who proposed an extension called Dual Policy Distillation. This method implements a

32

bidirectional knowledge transfer. In that case both policies are alternatively teacher and student,
they “extract beneficial knowledge from each other to help their learning” as explained by the
authors. This approach resonates with the previously introduced idea of ensemble expertise where
a group of trained neural structures performs generally better than each of its members taken
individually.

2.3 Neural networks

Non-linear control and reinforcement learning express the need for a versatile and easily optimizable
object capable of embodying the control laws (policies) and other stochastic estimators. Neural
Networks (NNs) are a biologically inspired and trending solution to this issue. The idea behind
these computing systems dates back to the 1940s and efforts of neuroscientists to understand the
brain structure and operation. Artificial neural networks implement this same idea of thresholded
message propagation as a way to perform computations. While the perceptron developped by
Rosenblatt [194] can be considered as the first implemented artificial neural network, and that most
of the theoretical ground work has been made in the 1970s, 1980s and 1990s [104, 248, 208, 77, 98],
one had to wait until the years 2000s to see a widen use of neural network in numerous scientific
domains, mostly thanks to a sustained and uninterrupted growth of computational capacities from
the 1960s onward, as theorized by the famous Moore’s law. The usage of NNs has since then been
exploding in a wide variety of scientific domains such as image analysis [142], data-mining [167],
natural language processing [171], robotics and autonomous vehicle control [131], cybersecurity [23],
chemistry and drug discovery [46], finance [172] or physics [41].

2.3.1 A layered structure

In the following, the most general Fully Connected Neural Network (FCNN) architecture is de-
scribed. Most of the other architectures re-use (partially or completely) the ideas behind this
genuine structure. Thus by default, the “NN” abbreviation will refer to a FCNN in the following.
A FCNN consists in a series of fully connected layers that cascade into one another. Each layer
L transforms a given input vector x ∈ Rn into an output vector y ∈ Rm and consists in a matrix
product followed by a generally non-linear activation:

y = L(x) = f (Wx+ b) ,

where W ∈ L(Rn,Rm) is a weight matrix, b ∈ Rm is a bias vector and f is a (scalar) activation
function. Starting from an input vector x, the output yNN of a (Deep) FCNN is thus simply
computed in a forward pass on the network as:

y0 = x and yl+1 = Ll(yl) ∀ l ∈ {0, . . . , n− 1}
yn = Ln−1 ◦ Ln−2 . . . L1 ◦ L0(x), (2.11)

by composition of the n layers of the NN. The activation function aims at imposing a non-linearity
or a filtering threshold. Rectified linear unit (ReLU) and logistic (sigmoid) functions are the two
most used activations. Together composed with the matrix product and the bias, the layer function
L can be considered as a “ridge” function for each of its output components, extracting m scalar
features of the input x. The commonly used representation of neural networks layers as a group
of individuals ”neurons” comes from this consideration of a layer as feature extractor, each neuron

33

being in charge of collecting the signal output from upstream layers (or the input) and computing
a given feature signal. On a FCNN with more than one layer (also called multilayer perceptron),
the last layer is defined as the “output layer” and it dimension m is constrained by the dimension
of the output space, while all the other layers are called “hidden layers”, their dimensions not being
constrained (except to first one that matches to one of the input space).

2.3.2 A universal approximator

The universal approximation theorem mathematically ensures that a multilayer perceptron (a FCNN
with at least one hidden layer) can approximate any continuous function g : Rn 7→ Rm to an arbitrary
precision as long as the activation function is not polynomial and the number of extracted features
is large enough. In other words a large-enough linear combination of feature extractors (as defined
above) can uniformly converge toward any continuous function.

Yet, this property and the convergence bounds it provides are useless and unpractical since the
number of parameters and maximum computational cost it guarantees become quickly beyond reach
when the input space dimensionality increases and/or the regularity of the ground-truth function
g (in a Sobolev sense) drops. In practice, accurate function approximation by relatively ”small”9

neural networks is observed. The fact that NNs seem to break this ”curse of dimensionality” has
been explained by Barron’s theorem [12], proving that, for slightly different regularity hypotheses,
the upper bound of the approximation error could be drastically diminished and would not depend
on the inputs dimension. Yet, this does not entirely explain the efficiency of NNs at approximating
functions. The roots of the proficiency of NNs come from the fact that the functions f quantify
characteristics of an underlying physical phenomenon which is itself driven by smooth and “struc-
tured” laws. Second, the approximation of g is only required for a very reduced portion S ⊂ Rn of
the input space (where the training inputs samples lie). Thus the problem at hand is not to get a
general-purpose approximation of a function g on the whole input space, as computed by traditional
(non)-linear decomposition methods, but rather to model the relation y = g(x) by a decomposition
on data-adapted bases (trained ridge functions) on reduced supports of the input space.

2.3.3 Training a neural network

2.3.3.1 Gradient back-propagation and related issues

The accuracy of a NN approximating y = g(x) is generally measured by a scalar metric of the
approximation error on the input data S called the “loss” or the “cost function” (here denoted
C : Rn 7→ R). Training a NN thus corresponds to modifying its parameters θ (matrices of weights
Wi and biases bi) in order to minimize the loss function over the training data-set:

θ∗ = argmin
θ
||C||S . (2.12)

where θ∗ is the optimized value (overall best) of θ and ||C||S a measure of C over the input data.
Back-propagation [248] by automatic differentiation is a cornerstone enabler of the approximation
power of neural networks, since it enables this optimization of the parameters at a reasonable
computational cost. It consists in computing the gradient of the loss function C with respect to

9whose size is orders of magnitudes smaller than the theoretical bound

34

each parameter θ = {W 0, b0, . . . ,W n−1, bn−1} of the NNs, using the composing formula of equation
2.11. Let us define δlj as:

δli ≡
∂C

∂yli
,

which can be considered as the sensitivity of C to the jth neuron activated output signal of layer l:
yli = Ll−1(yl−1)i. If l < n, the right-hand side can be re-written as:

∂C

∂ylj
=
∑

i

∂C

∂yl+1
i

∂yl+1
i

∂ylj

as yl+1
i = f

(∑

j

W l
ijy

l
j + bli

)
, then

∂yl+1
i

∂ylj
= f ′

(∑

j

W l
ijy

l
j + bli

)

︸ ︷︷ ︸
zli

W l
ij

and thus δlj =
∑

i

δl+1
i f ′ (zli

)
W l

ij

or δl =
[(
W l
)T

δi+1
]
⊙ f ′(zl) ∀ l ∈ {0, . . . , n− 1},

where ⊙ is the Hadamard product. The value of these δl can thus be computed recurrently, starting
from δn, from the last layer to the first. One can finally deduce the gradient of C with respect to
biases bli and weights W l

ij as:

∂C

∂bli
= δlif

′(zli) (2.13)

∂C

∂W l
ij

= δlif
′(zli)y

l−1
j (2.14)

Thus, to minimize ||C||S over the training data, one must update the parameters θ of the neural
network in a direction opposite to ∇θ||C||S so that:

θ ← θ − α∇θ||C||S ,
where α is an update parameter called the “learning rate”. α can either be a predefined constant or
be computed algorithmically in order to increase convergence speed and/or accuracy. Adam [124],
the best known optimizer for instance, bases the computation of α on the L2-norm of ∇θ||C||S in
order to make larger updates in regions where the gradient is low. This parameter update guarantees
a decrease of ||C||S . Yet, as the neural network embodies a non-linear function, this procedure may
end-up in a local minimum. Secondly, the computation of ||C||S may be expensive and an estimate
of this measure over a reduced portion of the input data, called a “mini-batch” B ⊂ S may be a
relevant approximation. This cheaper estimator provides less accurate update directions for θ but
this error may avoid local minima or enable to leave them. This is the idea behind the Stochastic
Gradient Descent (SGD). Most of the time, the measure ||C||B is a simple mean value computation:

||C||B =
1

#B
∑

x∈B
C(x),

35

#B being the cardinal of mini-batch B.
Gradients of the loss C with respect to network’s parameters θ involve a product of multiple

first-order derivatives of the activation function f ′, especially for many-layered networks. Two
spurious, different behaviors may arise. If |f ′| has values larger than one, the product of these may
shoot-up and provide huge gradient values especially on the upstream-most layers. Combined with
the gradient estimation errors due to “mini-batching”, this could end up in a catastrophic parameter
update. To avoid the so-called “exploding gradient problem”, it is recommended to use activation
functions which gradient is always in [−1, 1]. On the other hand and as highlighted by Hochreiter
et al. [98], the product of derivative may be vanishingly small, preventing parameter update and
thus possibly freezing training. Rectifiers (such as ReLU) suffer less from this flaw since they only
saturate in one direction. This “vanishing gradient problem” can also be tackled by a change in the
network architecture as described below.

2.3.3.2 Miscellaneous commonly implemented practices

Even the training of a simple FCNN requires a significant number of hyper-parameters to be com-
pletely described and set up. This section provides details about both these implementation details
and the rules of thumb used to set these hyper-parameters.

Initialization of the neural networks’ weights is to be carefully thought in order to both prevent
an explosion of the first output values and to enable successful updates. Uniform initialization is
not suited since it does not ”break the symmetry” between the neurons and thus leads to uniform
gradients, hugely limiting the interest of wide neural layers. An uneven initialization is then required
in order to unleash the approximation power of the NN. This is generally done using a random
initialization. Yet depending on the type of activation functions, vanishing-gradient issues may
arise. To alleviate this, specific initialization procedures, that adapt to the activation function
have been proposed, such as the “Xavier” initialization [80] for sigmoid activations or the “He”
initialization [91] for rectifiers.

In supervised learning, over-fitting is a spurious phenomenon where the neural network not only
learns the main patterns of the input-output relation but also the noise and/or the biases due to
sampling, thus solving the bias-variance trade-off by a low bias and high variance solution to over-
fit all the samples. This generally occurs when the training has been led for too many epochs and
causes poor generalization performances on the test data. Sanity checks such as comparing both
validation (average loss on the training data) and test (average loss on unseen data) losses help
identify this issue. Drop-out is another regularizing trick, that slightly lengthens training costs for
a given network but tends to prevent over-fitting. The basic idea is to ignore the signal provided
by a fraction of randomly selected neurons. The learning of inter-dependency between neurons
is thus reduced and an increased robustness is empirically observed. Other methods such as the
weight decay where a L1 or L2 penalization on the weights is added to the training loss, or batch
normalization where the input data is applied (refer to 7.3 for more details) are also commonly used
to reduce over-fitting. All these methods rely on hyper-parameters (dropout rate, batch sizes, or
penalization coefficients) that are generally tuned empirically.

NN’s number of hidden layer and hidden widths is also a topic for which choices are often
made based on past experience and empirical tests. Some rule-of-thumb sizing methods have been
proposed but these rely more on these observations rather that mathematical evidence. For known
analytic functions y = f(x), where the minimum architecture can be computed, it is observed that
efficient training is only achieved for neural networks much larger than this lower bound. This may
come from the previously introduced issues of symmetry breaking between neurons of the same layer

36

and poor conditioning causing vanishing gradients. Overall, smaller networks tend to learn slower
than larger ones, as shown by figure 2.5. Thus, as long as optimizing costs are not limiting training,
largely over-sized neural networks are chosen, despite the expected complexity of the function to fit.
Similarly, the optimizer’s learning rate (or more accurately the parameter driving the computation
learning rate for adaptive gradient descent optimizers such as Adam) is set based on the optimal
values found on similar cases.

Figure 2.5: Effect of the architecture of neural networks on both the performance and the loss on
the value function of a control cylinder flow.

Pruning consists in permanently deleting neurons after training, in order to reduce its size in
memory and cost for a forward pass, while still preserving performance. Pruning can be performed
in a structured fashion (e.g. filter pruning for convolutional NN) with the idea of entirely removing
channels or layers, or in an unstructured fashion, where based on a pruning criterion (norm, sign,
...), weights and biases are set to zero. In the latter case, gains are only observed if underlying
ML framework supports sparse matrix computation and storage. Thus, except in the context of
MLOps, pruning is rarely implemented for prototype systems.

2.3.4 Other architectures

All the issues discussed until here concern the “basic” FCNN architecture, but these extend also
to other types of NN, such as the ones (non-exhaustive list) discussed in this part. Convolutional
Neural Networks (CNN or ConvNets) are mostly used in image processing. Their layers do not
implement matrix multiplication followed by an activation but translation-equivariant convolutions
of predefined stride and kernel width, possibly followed by an activation. Parameters are the kernel
matrices that convolve and combine the different channels output by the upstream layer. This
architecture makes it possible to process large input sizes while keeping a moderate number of
parameters (compared to an equivalent FCNN) thanks to weight-sharing (one single kernel is need
for a convolution over the whole input).

Recurrent Neural Network (RNN) is a class of neural networks, particularly suited for processing
data sequences, that can reuse previous outputs as input, while also having hidden states. This
architecture allows to take the causal links between prior and current samples into account and
can be seen as “machines” that learn how to step a given dynamics forward in time. These neural
networks are known to be harder to train that other architectures since they have a large equivalent
layer depth that amplifies the issues of vanishing/exploding gradients. The two best known RNN
architectures are the Gated Recurrent Unit [51] (GRU) and the Long-Short Term Memory Unit

37

[99, 77] (LSTM), the latter being an evolution of the traditional RNNs, dealing with these gradient
issues.

Another solution to the vanishing/exploding gradient problem stemming from having to propag-
ate signal across a large number of layers is the Residual Neural Network [232] (ResNet). Is contains
“skip” connections that shortcut some layers. This imposes a constraint on the sizes of these skip-
connected layers but also enables a much easier gradient back-propagation trough these jump-over
connections, that act as “highways”.

The following architectures are more to be considered as an assembling of neural networks basic
bricks rather than genuine flavors of NNs. These meta-architectures are generally composed of
differently trained NNs that interact with each other. Autoencoders (AE) and their variational
evolution (VAE) are used to both learn a dimensionally reduced representation of the input data
and for their generative capabilities. The idea is first to encode an input into a small output vector
(called the latent vector) and then to decode it back with the goal of matching the input. The
training can thus be considered unsupervised. This can be used as a way to “denoise” data or
detect anomalies, and to generate synthetic data using the decoder. This architecture shares strong
links with traditional linear model reduction methods. A one-hidden-layer, linearly-activated auto-
encoder will converge to the same sub-space as a Proper Orthogonal Decomposition (POD) of the
same dimension (excepted that latent components are generally not orthognal). This approach was
used by Kashima [120] as an efficient and denoising model reduction method.

Generative Adversarial Networks (GAN) are also an architecture used to learn how to generate
outputs in a unsupervised manner. The idea is to indirectly train a generator network against
a discriminator network. The latter is tasked with telling how much an input is “real” (genuine
training data) or “synthetic” (output of the generator) and the generator is tasked to fool the
discriminator. The training of such an architecture may fail if there is a large unbalance in the
performances of both the generator and discriminator or may suffer from “mode collapse” when the
generator ends up outputting the same data, taking advantage of poor discriminator convergence.

Capsule Neural Networks (CapsNets) have been proposed by [201] to both solve the issues of
translational/rotational invariance of objects, spatial relationships between different entities and
modeling hierarchical links. Relying in capsule units tasked with pose estimation and a forward
mechanism of “routing by agreement”, this architecture enables to better classify images.

At last and to tackle the issue of long-term dependencies in data sequences, especially in natural
language processing (NLP), Transformer networks have been proposed. They use the principle
of self-attention and context embedding to perform tasks on sequential data, such as machine
translation [33], image synthesis or deepfake detection. These architectures are generally large and
expensive to train, especially for long input sequences. Alternatives such as the Reformer [125] have
been proposed to alleviate this issue.

2.4 Genetic programming

Genetic algorithms [100, 121] (GA) is a family of methods inspired by biological evolution. These
methods aim at avoiding local optima by leveraging population-based meta-heuristics. They are
used to evolve a population of solutions toward better performance. Each individual of the popu-
lation is generally represented by a binary code (analogous to its DNA). This encoding enables an
evolution process directly inspired from gene mutations and cross-overs, where a Darwinian select-
ive pressure favors advantageous operations with respect to least performing ones. Mutations take
the form of random bit-flip-like operations on the code of individual whereas cross-overs see two

38

individuals exchanging parts of their genetic patrimony. The Darwinian evolution pressure is rep-
resented by a fitness function, on which every individual of the population is evaluated. Depending
on this fitness values, individuals are ranked and they are more or less likely to either be kept as-is
in the current population (elitism), be replaced with randomly generated ones (initialization) or
undergo mutations or cross-overs.

2.4.1 Encoding a policy as a binary code

Genetic Programming (GP) is a family of genetic algorithms that aim at encoding a program, a func-
tion or an algorithm into a code that is compatible with the evolution process of genetic algorithms,
in order to leverage its paradigm. Three families of program encoding can be distinguished. The
first and most traditional way of encoding operations is with tree structures, where each tree node
encodes an operation using its leaves as inputs. Linear Genetic Programming (LGP) represents
the program or function as a sequence of operations. Cartesian genetic programming uses a graph
representation of the program.

Most of the applications of GP to flow control rely on LGP. To encode the analytical function
that embodies the policy, most of the studies resort to Reverse Polish Notation (RPN). The idea
is to store constants, inputs and intermediate results into numbered “memory slots”. Algebraic
operations are also encoded using a standard mapping or hashing function. Each atomic operation
is represented by the identifiers of the memory slots corresponding to its inputs, then by the code
of the applied operation and finally by the identifier of the memory slot where the output of the
operation is stored. The full policy is thus represented by the sequence of the codes of its atomic
operations, that is generally embodied by a matrix (each row being the code of an operation).

Similarly to biology all the genome of an individual is not useful to the expression of the control
law. For instance, memory slots that are not considered as outputs may contain intermediate results
that are not reused. These are called “introns”. This phenomenon yields two consequences. First,
two individuals may embody the same policy but with a different genome. Second, introns can
be seen as latent properties/functions of the individual, that can be later activated by a mutation
or a cross-over. Multiple strategies are then implemented in the literature to either avoid introns,
eliminate individuals only differing by their introns, or conversely promote the expression of introns.

Duriez et al. [68] assessed the potential of genetically discovered closed-loop control laws on
three different experimental test-cases. These genetic methods were also used by Debien et al. [61]
to learn efficient control laws reducing near-wall fluctuations on a sharp edge ramp flow with fluidic
vortex generators mounted upstream of the edge. On an Ahmed body flow, actuated by blowing
on the trailing edges, Li et al. [141] managed to reduce frequency cross-talk in the wake using LGP.
This technique has been used for open-loop control as well, using a sinusoidal multi-frequency input
signal to control a mixing layer [138, 139]. Gradient-enriched LGP [56] was proposed as a way to
extract local gradient approximations, in order to better converge toward loss optima. This ap-
proach was notably implemented on the fluidic pinball test-case to reduce wake fluctuations, on a
numerical setup by Maceda et al. [148] and experimentally by Raibaudo & Martinuzzi [187].

2.4.2 The curse of dimensionality

While RL is not immune to the increased difficulty of finding global optima of a search space when
its dimension increases, this issue is all the more important with GP, since its approach is global, in

39

https://en.wikipedia.org/wiki/Reverse_Polish_notation

the sense that performance can only be guaranteed if the search space is “reasonably well” explored.
RL exploits the local “slope” of the optimization loss to improve. Thus as long as the policy lies in
the attractive basin of an optima and the optimization method is well-tuned, one is sure to reach
this optima. Conversely, local gradients are not exploited by GP, thus the average distance between
a given individual and the optima is strongly linked to the sampling method (guided by fitness-
oriented selection methods) and to the dimensionality of the space the individual evolves in. This
distance thus scales exponentially with the dimension. This is one expression of the well-known
“curse of dimensionality” that prevents most of the proposed AI approaches from scaling-up to
real-world applications.

Thus in the context of flow control, GP methods are bound either to embody models having a
low number of inputs, outputs and parameters or to be assisted by other mechanisms in order to
be successful.

2.4.3 The exploration-exploitation dilemma

GP proposes a way to solve the exploration-exploitation dilemma different than what RL does.
Where RL relies on local, gradient-based optimization, GP proposes a global approach leveraging
population meta-heuristics. Considering the exploration-exploitation dilemma, while GP being by
nature more turned to exploration, and RL more toward exploitation, both of these paradigms can
be tuned to balance both objectives.

Elitism and more generally Darwinian selection pressure can be increased in GP to favor the
individuals in the vicinity of (possible) optima. Here the trade-off can be expressed as a balance
between population diversity and fitness of the best individual. If the balance leans toward ex-
ploration, the risk is to never find any performing individual. On the contrary, one may expect
premature convergence (that may not even be on a local optimum).

Exploration noise (and other analogous methods of exploration) can be dynamically tuned to
encourage exploration or exploitation in RL. Large exploration noises may as well prevent to find a
performing policy, all the more that here the effects of this randomness accumulate with time and
may render the system chaotic. Conversely, low exploration noise may hinder the optimization and
“freeze” the agent.

40

Chapter 3

Methods and tools

This chapter introduces both the tools that have been used or developed for the study and the main
test-cases on which RL (and to a lesser extent GP) algorithms have been benchmarked. Technical
details developed in parts 3.1, 3.2 and 3.3 are not prerequisites for the following chapters.

Contents
2.1 Control in fluid mechanics . 11

2.1.1 General context and motivations . 11

2.1.2 Passive control . 11

2.1.3 A quick tour of actuators . 12

2.1.4 Open-loop control . 13

2.1.5 Linear model reduction . 14

2.1.6 Linear closed-loop control design methods 18

2.1.7 Non-linear control and model-reduction methods 19

2.2 Reinforcement Learning . 21

2.2.1 An optimization problem . 21

2.2.2 The Bellman equation . 22

2.2.3 Model-free RL . 23

2.2.4 Model-based RL . 28

2.2.5 A quick focus on PPO-CMA: Balancing exploration and chaos 29

2.2.6 A quick focus on PETS-MPC: A flexible, implicitly defined policy 30

2.2.7 Policy distillation . 32

2.3 Neural networks . 33

2.3.1 A layered structure . 33

2.3.2 A universal approximator . 34

2.3.3 Training a neural network . 34

2.3.4 Other architectures . 37

2.4 Genetic programming . 38

2.4.1 Encoding a policy as a binary code . 39

41

2.4.2 The curse of dimensionality . 39

2.4.3 The exploration-exploitation dilemma . 40

3.1 Pre-existing tools and frameworks

This section introduces the pre-existing tools chosen as building blocks of the present study and
justifies these choices.

3.1.1 Python and main processing packages

The choice of programming language was driven by the need for efficient CFD solver co-processing,
the existence of artificial intelligence Application Programming Interfaces (API) and the ease of
prototyping (i.e. scripting). Thus, Python was a go-to choice for this kind of needs. On-top of an
extensive standard library, the python community proposes a wide variety of open-source, external
packages. This multi-paradigm language is dynamically-type, garbage-collected and interpreted
which renders prototyping easy as well as enabling the development of a more complex code-base.
Most of AI packages were initially written in Python. Thus, extensive documentation, mature APIs
and a large community of users makes development straightforward.

Neural structures and ML operations are handled by the Tensorflow[1] library. This choice was
made based on the better maturity of Tensorflow at the beginning the Ph.D. thesis compared to
other libraries and by the fact that the first open-source RL-agent were released by OpenAI and were
originally written using Tensorflow1. Similarly to other comparable solutions, Tensorflow provides
automatic differentiation, that enables to seamlessly back-propagate training gradients and a wide
variety of mathematical operators. Models are built as an operation graph and persistence functions
offer to serialize and save their architecture and parameters.

The well-known numpy library has been chosen for non-ML data management. This package
provides support for multi-dimensional array manipulation and mathematical computation. Other
standard packages such as matplotlib, for graphics, or the in-house Cassiopee [19] package providing
pre-, co- and post-processing functions for CGNS-standard fluid simulation cases have been used.

3.1.2 Parallelism interfaces

Parallelism, required for ensuring performance, is mainly handled by two different interfaces, inter-
vening at two levels of granularity: inter- and intra-process communication. The Message Passing
Interface (MPI), is the de facto message-passing standard for inter-process communication and syn-
chronization. The MPI4py package provides handy Python bindings to call standard communication
routines. Intel cluster nodes (used here) take advantage of the optimized Intel® MPI library, that
implements these specifications2. Intra-process (shared-memory) communication is handled by the
OpenMP API. When using both parallelism paradigms, one generally refers to hybrid computing.
OpenMP thread creation and management is generally handled by C or C++ low-level code modules
(such as LAPACK) and is thus transparent to the end-user most of the time.

1The use of any other Machine Learning API such as PyTorch would provide the same results, computing per-
formances possibly varying depending on the algorithms’ implementation.

2more specifically the open-source MPICH specifications

42

https://www.python.org/
https://www.tensorflow.org/
https://openai.com/
https://numpy.org/
https://matplotlib.org/
https://elsa.onera.fr/Cassiopee/
https://mpi4py.readthedocs.io/en/stable/
https://www.openmp.org/

3.1.3 CFD solvers

The choice(s) concerning the CFD solver was primarily driven by the possibility of developing effi-
cient co-processing routines, since controlling a flow simulation requires back and forth communic-
ation between the simulation and the agent. The possibility to directly alter the “under-the-hood”
source code was also taken into account for this choice. FastS experimental solver [60] was thus
preferred over other in-house solvers such as elsA or Cedre. FastS is a scalar finite-volume solver,
written in Fortran and C++ for the low- and mid-level functions and wrapped in Python. It benefits
from a strong integration with the Cassiopee API and co-processing is incomparably facilitated by
the direct access granted to the computation tree in-between two numerical iterations, compared
to other solvers requiring much heavier coupling scripts (elsA) or inter-process pipes (FreeFem++)
to exchange information. This way, warm-up phases and some memory management functions
(directly implemented in Python) have been altered in order to support the change in boundary
conditions that may otherwise cause memory leaks. The use of FreeFem++ has also been envisioned,
but strong obstacles such as (not exhaustive) the lack of sub-communicator splitting, deficient doc-
umentation and maintenance, doubts concerning scalability, package incompatibility and mainly
its development on a specifically-built C++-derived language preventing from any integration of
third-party packages, deterred from building RL-based flow control around it. FeniCs has also been
investigated and first tests as well as draft of code interface architecture have been developed. Yet,
all the studies and results presented in the current manuscript rely solely on FastS.

3.2 RLFramework

In order to properly interface CFD solvers and ML packages and reduce the quantity of code needed
to fully develop a case and test it, multiple tools have been developed. They aim at increasing
productivity by maximizing code reuse and reducing user-induced bugs. The Python framework
introduced in this section is the backbone of all the studies that have been led. Emerging from
the initial observation that these test cases share the same need for reliable, efficient and scalable
co-processing between CFD simulation and RL training algorithms, this package has gradually
been developed to incorporate an ever-increasing set of functionalities that enable an augmented
productivity as shown by figure 3.1.

3.2.1 Paradigms

First, environments share a large number of characteristics together and learning agents do as well.
Second, as this code is developed for research purposes, one should be able to incorporate new envir-
onments or learning algorithms seamlessly, and to switch from one environment to another without
having to perform heavy adaptations of the implementation of the learning algorithm. This brings
us to the notion of modularity. The idea of modularity develops the concept of interchange-
able modules. Interchangeability implies two families of constraints: functional completeness or
independence and interface commonality.

Functional completeness simply requires that each interchangeable module is self-sufficient,
meaning that its state and internal dynamics are handled by functions or methods inside this
module in a “black-box” fashion from the other modules. A module should also implement a lim-
ited and coherent set of functionalities that embody one logical structure to, for instance, enable
easy unitary testing of each component. This means, for instance, that functionalities from RL

43

https://w3.onera.fr/FAST/
http://www3.freefem.org/
https://fenicsproject.org/

Figure 3.1: Evolution of the size of the code framework and event timeline.

agents won’t be implemented in the same module as environment’s internal dynamics methods.
This need for structured and cloistered sets of functionalities makes class-based Object-Oriented
Programming (OOP) relevant for the current framework. This programming paradigm considers
classes, that define data models or organizations and provide the available procedures (or methods)
that describe the internal dynamics of the defined type. Objects are instances of these classes,
meaning that their type is the one of the class they are created from and that they can run the
methods defined by their class. Classes can be seen as an assembly of definitions and laws, whereas
objects implementing these classes are the corresponding real-world entities.

Considering a training case as one object with its own mechanics and logic, that contains mul-
tiple nested objects, that themselves implement parts of this logic and work with their own set of
rules, enables an easier conceptualization of the code as a hierarchy of objects/agents interacting
with each other. Independence and the need for interaction bring up the constraints related to
interface commonality. These correspond to the fact that objects of the same family, for instance
environments, must provide a fixed set of attributes and methods that are queryable by external
objects. In order words, to enable seamless interchangeable modules, their interactions must be
codified and all implementations of these modules (i.e. different class definitions) must comply with
these interface contracts.

As Python does not originally enable interface declaration, these are defined via abstract class
inheritance. Inheritance is also leveraged to boost code reuse. While different objects must be able
to work independently from each other and only resort to interface-defined methods and attributes
to exchange with other objects, their classes still share different degrees of similarity. For instance
different environments, all complying with the “environment interface”, but differing by the nature
and dynamics of the environment they implement, may still share the same mechanics related to
data buffering. In order to take advantage of these similarities, class inheritance is leveraged to
implement a given function once and only once, and then to broadcast this functionality to all
inheriting classes. As shared functionalities vary widely from one class to another, this framework
rather implements mixins, that can be seen as multiple inheritance. Mixins are small classes

44

that gather a reduced set of very specialized functionalities. Classes required to implement these
functions inherit from these corresponding mixins.

These paradigms thus enable a clear comprehension of the code, a class-by-class debug and
validation and an enhanced maintainability. Hence, having implemented a specific function only
once the framework makes updates of the code easier.

3.2.2 A three-leveled structure

The architecture of the framework, is thus built as a nested assembly of modules, each with its
own functional perimeter. As illustrated by figure 3.2, one can organize them along three different
hierarchical levels. First, low-level structures and utilities implement functions such as basic data
management and computation, some I/O3 procedures and common neural network functions.

High-level API
Learners, design of experiment, data analysis

Mid-level modules
Environments, RL agents, loggers, ...

Low-level utils
Data buffers, NN utils, mixins, I/O,...

Figure 3.2: RLFramework’s three level object hierarchy design

Mid-level modules embody environments, learning agents or model reduction objects. Each of
these types of module is defined by its own interface. High-level API sits on-top of this structure
and provides a simplified set of functions to the user. These learners, to which external data science
modules are added, are the conductors of the mid-level objects. They manage training, testing and
data-persistence thanks to predefined scheduling or triggers computed at runtime.

3.2.2.1 Low-level API: data management structures and other utils

Among low-level utilities, data buffers are crucial to the reliability and performance of the frame-
work. They are used by all mid-level modules as well as high-level API. One first finds, scalar
(InfoField) and vectorized buffers (LinearBuffer and RingBuffer) that store homogeneous data.
These can be write-protected or incrementable and provide miscellaneous updating and accessing
functions with the idea of both an efficient storage in memory and a safe and easy access to data.
These objects are extended implementations of lists or numpy arrays, that provide handy functions,
for instance precomputing miscellaneous statistics or enabling both FIFO4 and LIFO5 simultan-
eously. This latter feature may be needed for action buffers that should provide an ordered action
sequence (queue) at the end of a run and enable interpolations from the previous action to the
current one (stack).

3Input/Output communications, namely reading and writing from memory and asynchronous communication
with Message Passing Interface (MPI).

4First-In-First-Out, i.e. a queue
5Last-In-First-Out, i.e. a stack

45

These buffers generally need to be assembled together in order to store inhomogeneous data and
to be synchronized. This is done by the Container class and all its inherited classes later described.
This abstraction, similar to a standard Python dict, also enables to easily filter out data, for
instance to query one-out-of-n samples, or to get different on-the-fly-computed representations of
the data, such as lists, arrays or dictionaries. More specifically, GAEContainers extend this class,
by providing automated computation of the return (Rt) and the advantage (Aπ(st, at)) at the end
of each episode and facilitated storage of data sequences coming from different environments, that
should not be mixed-up. At last, ReplayBuffers provide mechanisms of importance sampling in the
buffer, that are used by some off-policy learning methods. These are implemented using a segment
tree, capable of computing statistics in O(n log n) time and that can be queried in O(log n) time.

Other structures such as Spaces that embody the different search spaces (state space or action
space) are used by both environments and agents, to check for data compliance and for random
sampling. Basic functions enabling to create NN structures, such as multi-layer perceptrons, or
Tensorflow nodes computing standard estimators, are also part of these low-level utilities, alongside
configuration management routines that solve potential conflicts and ensure standardized as well
as backward-compatible naming conventions. One can also name random generator functions or
command-line logging verbosity and stack-trace recovery. All these functions can be seen as small
building blocks, whose behavior has been once and for all debugged and that are used by higher-level
modules.

3.2.2.2 The environment interface

Environments are incarnated by mid-level objects whose class complies with the environment inter-
face. As explained before, this interface is specified by an Abstract Base Class (named Env) that
defines the minimal set of methods environments should implement (reset, step, render, seed
and close). As functional class inheritance is also used, some of these have a default behavior,
that avoids a systematic redefinition in the inheriting class that can be redundant if this behavior is
standard. Standard data accessors such as observations, actions, reward and config, alongside
properties giving access to spaces fullfil the interface. The general structure of an object of type
Environment is described by figure 3.3 (left).

Environment Config

Core functions
step, render, reset

Info buffers and state
obs., actions, reward

Solver specific objects
trees, handles on arrays, ...

Agent Config

Core functions
getAct., updatePolicy, ...

Data buffers and info
collected data

Policy π and other NN
losses, critic network, ...

Logger Config

Info logging
logLearning, logEpoch

Structure persistence
save & restore agents

On-the-fly monitoring
gnuPlot script generation

Figure 3.3: Mid-level module interfaces

Specificities of the CFD solvers are handled by mixins and dedicated utilities. Concerning FastS,
the most used solver, the FastsEnvMixin and fasts utils module gather the methods specific to

46

https://en.wikipedia.org/wiki/Importance_sampling
https://en.wikipedia.org/wiki/Segment_tree
https://en.wikipedia.org/wiki/Segment_tree
https://docs.python.org/3/library/abc.html

handling computation trees, implementing forcing actions and running the solver. This mixin for
instance redefines the step method and provides standardized instantiation functions that prepare
actuation and measurement functions on the simulation. More details can be found in Appendix
9.1.1. Similar structures have been developed for the other solvers used such as FreeFem++ or
FeniCs.

Available environments can be divided into two categories. Simple and cheap test cases, used
in standard RL studies such as the inverted Pendulum, the CartPole (a rigid inverted pendulum
mounted on a cart), Atari games simulator (one of the standard groups of environments for bench-
marking RL algorithms), are used to debug newly implemented agents and perform preliminary
hyper-parameter searches. To these test cases can be added the KuramotoSivashinsky (imple-
menting 1D Kuramoto-Sivashinsky (KS) equation) and the Landau oscillator. Canonical CFD cases,
such as the Cylinder, the Cavity, the NACA airfoil flow, the Jet (a planar supersonic jet on which
screech develops), the MixingLayer (an incompressible mixing layer displaying a Kelvin-Helmholtz
instability), and the SuperFlatPlate (implementing a supersonic (Mach 4) flat plate flow on which
2nd Mack mode instabilities develop), are test beds to demonstrate the potential of RL and GP
control algorithms.

3.2.2.3 The agent interface

Two different agent interfaces are defined for RL and for GP agents. The GP agents rely on the
evaluation of a population of candidate policies. This operation can be parallelized differently than
for RL agents, since each individual can be evaluated independently. On the other hand, optim-
ization procedures may require large computational overheads depending on the genetic algorithm
flavor. Thus, the mechanics of a GP agent has been built around a task-oriented paradigm, where
different kinds of operations (population evolution or individual evaluation) are scattered on the
available computing resources. More details can be found in Appendix 9.1.3.

The RL agent interface is likewise defined by an abstract base class (named RLPolicy) that spe-
cifies the exposed methods (getActionsTrain, getActionsEval, updateExpData, updatePolicy,
...) that manage the storage of the collected data, the sampling of control actions and agent op-
timization, as shown by figure 3.3 (center). Required attributes, mainly concerning information
about the state of the agent, are also defined. A batch-splitting method is also implemented, aim-
ing at avoiding large consumption of RAM during gradient-propagation operations that require the
computation of arrays of size O(n2), n being the batch size. This way, large batches are split into
multiple sub-batches that are all sequentially used for training but require less memory overall.

RL agents are categorized into standard, pre-existing and mature ones, such as DDPG, (D)DQN,
PPO, PPO-CMA and its newly developed sensor-sparse versions, SAC, TRPO, TR-PPO-RB (a flavor of
PPO), and “draft” algorithms that are under development, whose stability and reliability is not
guaranteed, such as action-sparse versions of PPO-CMA, miscellaneous altered versions of the same
PPO-CMA, with for instance Hindsight Experience Replay [3], spatial attention or LSTM mechanisms,
model-based agents such as PETS-MPC or modified versions of APHYNITY. Implemented GP agents
are a standard LGPC learner and its gradient-enriched GMLC [56] version.

3.2.2.4 Other interfaces

Other interfaces have been developed, such as the one for model reduction (named NN module). This
interface is mainly dedicated to providing a fixed set of rules concerning the inputs and outputs of
Tensorflow objects in order to enable the cascading of multiple modules seamlessly. These modules

47

implement commonly used model reduction methods using Tensorflow, that can directly be integ-
rated in computation graphs. One can list methods such as matrix decomposition methods (POD,
DMD, and Singular Value Decomposition (SVD) methods in general), SINDY [36], clustering (k-
Nearest Neighbors), primary and digital capsules used in Capsule Nets [96, 201] or parameterizable
LSTM and Transformers.

The logger interface has been defined as a way to unify both RL- and GP-specialized logging func-
tions. This interface provides epoch- and evaluation-logging methods and a generic saveCheckpoint
method enabling model persistence, as it can be seen in figure 3.3 (right). This interface is derived
by both RLLogger and GPLogger classes that implement these functions according to each specific
training method.

3.2.2.5 High level API and wrappers

As introduced, high level API aims at providing the user with a simplified set of functions for creat-
ing, loading, training, testing and saving a test case. Concerning RL test cases the SingleAgentLearner
class handles these tasks. This class enables to create a test case from an initial configuration or
from a restored case (whose configuration can be altered on some points). This test case can then be
trained simply by calling the train method or evaluated (using evaluate) or base-lined (using, you
guessed it, baseline). Stress-tests quantifying the robustness of CFD solvers to different actuation
layouts can also be led, to preemptively guarantee that solver crashes are avoided during training.

RL learner

Environment Agent Logger

Train Evaluate Baseline

Restore Save

Figure 3.4: Schematics of a RL wrapper, its main methods and its functional mid-level objects.

GP test cases are handled by the SingleLGPCLearner that implements the same functions. As
detailed earlier, the train function can be considered as an heterogeneous task scheduler, running
policy evaluation tasks and population evolution tasks alternatively, contrary to what is implemen-
ted for RL cases. Again, more details can be found in Appendix 9.1.3.

Alongside high-level learners, a module has been developed to seamlessly generate batches of test
cases, exploring the hyper-parameter space. The DesignOfExperiment module enables to specify,
create a test batch and launch its training in less than a hundred code lines. This class manipulates
test case configurations, that can be represented as nested dictionaries or hierarchical trees of hyper-
parameters defining all the characteristics of the learner as well as of all the mid-level objects (i.e.
number and type of actuators, learning rates, logged information, etc.). Starting from a base test
case configuration, automatically complemented by default values, one can explore the effect of one
or multiple hyper-parameters by declaring them as dimensions of the problem and by providing
the values to explore. This pipeline avoids lengthy, error-prone and useless over-specification of

48

unchanged parameters. Once specified in a script, a folder containing one sub-folder per test case
with the corresponding configuration (stored as a JSON file) and all necessary scripts for launching
the training on HPC clusters are generated. Restoring already trained cases instead of starting from
scratch is also handled automatically.

Training can be monitored using a DataAnalysis object. This class provides methods to manage
the folder-based structured created by a DesignOfExperiment (or DOE) object as well as simplified
routines for filtering, grouping test cases according to their configuration. These functionalities to
compute ensemble statistics easily. Test cases from multiple test batches can be loaded simultan-
eously. As loading the full learning data from a potentially large number of test cases can be useless
or unpractical, a prefetching system has been implemented to avoid excessive or redundant I/O
operations and monitor the amount of data loaded in RAM. Learning curves (possibly involving
on-the-fly computations on loaded data) as well as evaluation runs or logged epochs of training can
be plotted with a minimal effort of code from the end-user. This class also enables a simplified
management of the different checkpoints backups that can be produced along training.

Thus, a standard study pipeline consists in developing a new environment or agent, testing it
on a local machine on cheap and well-known environments to get rid of the majority of the bugs
and finding a first range for all the hyper-parameters, then running a larger hyper-parameter search
(produced by a DOE object) on the target environment requiring more resources, possibly on a cluster
and monitoring the training using a DataAnalysis object.

Policy distillation, introduced in section 2.2.7, has been extended to an all-to-all knowledge
exchange paradigm (instead of a one-to-one) and implemented in a specific wrapper. For more
details refer to appendix 9.1.4.

3.2.3 Hybrid computing

HPC clusters are organized in nodes that can be seen as individual computers containing a few dozen
CPUs (from 28 to 48 on ONERA’s clusters) connected with one another. To take advantage of the
computing resources available on these clusters, a parallelized training mode has been implemented.
This mode enables to run cases in a hybrid MPI/OpenMP paradigm.

3.2.3.1 MPI/OpenMP parallelization

By design, training in parallel mode wraps the test case into a MPI communicator, tasked with
transferring data between each stakeholder of the process. This communicator provides an abstrac-
tion for communications irrespective of the hardware architecture the process runs on and represents
the first level of parallelism. This communicator contains a predefined number of MPI ranks (or
processes) that accomplish the tasks they are assigned to. They are synchronized and communicate
with other ranks through this MPI communicator.

As shown on figure 3.5, parallelization is handled by a high-level MultiAgentLearner6. This
wrapper handles the MPI communicator thanks to a specific MPI mixin (the MPILearnerMixin).
The main rank (generally rank 0) hosts the agent, a logger tasked with I/O and a envMPIcommunicator
(also inheriting the MPI mixin) that “fakes” the presence of an environment on the main rank and
that renders sequential or parallel computing indistinguishable from the point of view of the agent.
Other ranks host one environment and a logger tasked with collecting information from the en-
vironment and sending it to the main logger. Similarly, from the point of view of each of the

6or a MultiLGPCLearner for GP test cases

49

MultiAgentLearner
MPI

envMPIcommunicator

MPI

Agent Logger
MPI

Rank 0
Obs., Rew.

Act.

Info.

I/O

Environment Logger
MPI

Rank 1
Info.

...
...

...

Environment Logger
MPI

Rank n
Info.

Figure 3.5: Schematics of the MultiAgentLearner wrapper. Objects tagged with “MPI” inherit the
MPIlearnerMixin that provides synchronization routines, MPI communication wrappers as well as
properties indicating the roles of the ranks.

environments, the envMPIcommunicator acts as an agent. To this object are delegated agent and
environment querying tasks during training, normally devolved to the SingleAgentLearner. More
details can be found in appendix 9.1.2.

Thus here, n parallel environments running independently from each other require n + 1 MPI
ranks and, as shown by figure 3.6, for a fixed number of control steps or roll-outs, one can choose
to parallelize training differently to adapt to the available resources.

getActions updatePolicyRank 0 . . .

. . .StepRank 1 Step Step Reset Step Step Step Reset Step Step Step Reset

Epochs

getActions updatePolicy getActions updatePolicyRank 0 . . .

. . .

. . .

. . .

StepRank 1 Step Step Reset Step Step Step Reset

StepRank 2 Step Step Reset Step Step Step Reset

StepRank 3 Step Step Reset Step Step Step Reset

Epochs

Figure 3.6: Two different resource allocation schedules for a training process using 3 roll-outs per
epoch. (top) A 2-rank splitting, requiring reduced computational resources but having a longer
training epoch duration. (bottom) A 4-rank splitting, accelerating training at the expense of a
larger CPU allocation.

Each MPI process is decomposed into multiple computation threads. This second layer of
parallelism is generally transparent in the code and for the end-user. Each environment and agent
runs then on a single MPI rank that is multi-threaded using the OpenMP interface previously
introduced7. This multi-threading is leveraged by the CFD solver as well as the Tensorflow API

7As environment computation needs remain low, these can run on a single node and this architecture is valid.

50

and the numpy library to accelerate computation. As inter-thread communication requires memory-
sharing, threads of a same rank must physically run on the same node, but on different CPUs
(considering that a one thread-per-cpu pinning is generally enforced). This constrains a rank to be
pinned a single node.

If the node is not saturated, other ranks can be affected to it, provided that enough CPUs remain
available. Two ranks on the same node will communicate via the MPI standard abstraction but
may use faster memory-sharing protocols8, whereas if located on different nodes, they will resort to
other slower protocols and connection buses between nodes. Again, thanks to the MPI standard,
this is transparent for the user, except concerning performance.

3.2.3.2 Jobs and hardware architecture

The current section contains voluntarily simplified discussions about parallelism and
hardware/software pinning. More details can be found in the documentation of the
Intel® MPI library utilized here.
Computation tasks such as running training of batches are submitted to the cluster via a scheduler
(here SLURM) in the form of jobs. This is the largest computation unit. The scheduler allocates
a given number of CPUs or nodes for a predefined maximal duration. One job can contain the
training of multiple test cases, and uses a finite set of CPUs located on predefined nodes of the
cluster. The objective of using these resources in the most efficient way possible, relates to an
optimization of the matching between the available hardware (computation capacity and network
connectivity) and the different software tasks to run, knowing that the MPI ranks’ resources cannot
be scattered across multiple nodes.

The job inherits a global communicator, spanning all the MPI ranks, across all the test cases.
The communicator previously introduced at the scale of a single parallelized test case is in reality
spawned as a sub-communicator from this global communicator, as shown by figure 3.7. This
brings us to the third level of parallelism, which is more of a convenient way to launch completely
independent training processes, rather than a necessity caused by synchronization needs.

SLURM Job / Global MPI communicator

Case / Sub-communicator

Main rank
OMP Threading

Env. rank
OMP Threading

Env. rank Env. rank . . .

. . .

. . .

...
...

...

Figure 3.7: Parallel architecture of a multi-case job.

For the sake of simplicity, one generally considers that each CPU processes one single compu-
tation thread. This simplifies the thread/rank pinning computations performed by the launching

For large environments requiring more nodes, a MPI splitting of environments will need to be developed, involving
a sub-communicator.

8depending on the communication fabric

51

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/running-applications.html
https://slurm.schedmd.com/documentation.html

script generated by the DOE. This script runs computations that take the threading, number of en-
vironments, maximum number of nodes per job and test cases to run as input and outputs command
files read by the scheduler to queue one or several jobs immediately or withheld by a job chaining
condition (i.e. waiting for the termination of a previously scheduled job to start).

3.3 Other tools developed on purpose

3.3.1 Specific solver boundary conditions

Two specific boundary conditions, mimicking the behavior of jet actuators have been developed
and implemented into FastS. These simulate, the injection (blowing) of a prescribed mass flow rate
in a specific direction and with a specific total enthalpy and the suction of a prescribed mass flow
rate across a tagged domain boundary. This way, blowing/suction actuators can be simulated by
alternatively changing the nature of the corresponding boundary condition in the simulation. These
conditions have been implemented in Fortran for the low-level computations, using the theory of
characteristics and a Newton descent for some conditions. Linking with C++ mid-level functions
has also been done in order to expose these new features to the end-user.

3.3.2 Meshing utilities

To complement Cassiopee meshing functions, a small module, implementing basic parametric mesh-
ing utilities has been developed. Meshing Utils makes possible to mesh 2D or simple 3D computa-
tional domains in a parametric way, without resorting to proprietary meshing software. This module
can for instance be easily integrated into an optimization loop, running fully in Python. This mod-
ule enabling fast mesh prototyping and convergence was used to mesh all the geometries studied
presently. As well as for the RLFramework presented earlier, a comprehensive documentation has
been developed.

3.4 Main test cases

The current section introduces the environments on which RL and LGP algorithms as well as the
proposed method are tested.

3.4.1 Non-fluidic test cases

3.4.1.1 1D Kuramoto-Sivashinsky equation

Parts of this section are drawn from Paris et al. [175].
The Kuramoto-Sivashinsky (KS) equation is a well-studied fourth-order partial differential equa-

tion exhibiting a chaotic behavior and describing the unstable evolution of flame fronts [229]. On a
periodic domain of length L = 22, the KS equation reads:

∂u

∂t
+ u

∂u

∂x
+

∂2u

∂x2
+

∂4u

∂x4
+ a = 0,

∀ t : u(0, t) = u(L, t),

52

where a is the forcing action. For L = 22 (the length value used here), the KS equation exhibits
three fixed points (named E1, E2 and E3) in addition to the trivial fixed point E0 (uE0(x) =
0 ∀x ∈ [0, L]) and low-dimensional instabilities similarly to some low-Reynolds number Navier-
Stokes flows, as illustrated by figure 3.8. This test case is interesting for the development and study
of flow-control oriented methods because it is computationally inexpensive, allowing to perform
large hyper-parameter searches. It also enables to study sensor and actuator locations (with respect
to the control target) thanks to its homogeneity along the x-axis.

Figure 3.8: (left) Spatio-temporal representation of the dynamics of the KS equation on 500 non-
dimensional time units, corresponding to 2000 control steps. (right) Shape of the three fixed points
of the KS equation.

The numerical simulation is carried out using a 64-mode Fourier spatial decomposition and a
third-order semi-implicit Runge-Kutta scheme (implicit formulation for the linear terms, explicit
for the non-linear term) marched in time with a time-step of 0.05. This numerical setup is based
on the work of Bucci et al. [38] and a code from pyKS. Standard control forcings are designed to
mimic spatially localized Gaussian forcing actions:

a(x, t) =
n−1∑

i=0

ai(t)
1√
2πσ

exp

(
−(x− xact

i)2

2σ2

)
,

where n is the number of control actions, xact
i i ∈ {0, ..., n−1} the locations of the centers of Gaussian

kernels and ai the amplitude of each forcing implemented around xi. The standard forcing action
has 8 forcing components implemented at locations (xact

i ∈ {0, 1, ..., 7}L/8), ai ∈ [−0.5, 0.5] and
σ = 0.4. Partial state observations are provided by measurements of u interspersed between control
action locations so that xobs

i ∈ {1, 3, 5, 7, 9, 11, 13, 15}L/16, as illustrated by figure 3.9.

A control step is made of an update of the forcing action at, then 5 time-steps and the meas-
urement of the observations and reward. A standard run of the KS equation lasts for 1000 control
steps. The reset state is seeded using a Gaussian noise of amplitude 0.01 and ran for a random
number (from 40 to 100) of control steps without control action, so that control starts on a fully
developed instability.

For the present study, the aim of the control is to stabilize u around a pre-defined fixed point,

53

https://github.com/jswhit/pyks/blob/master/KS.py

Figure 3.9: Location of observations (measuring u at these locations) and Gaussian supports of the
control actions overlaid on fixed point E1.

and therefore the reward rt,E is defined as:

MSEt,E = ||u(·, t)− uE||2 =
√

1

L

∫ L

0

(u(x, t)− uE)
2 dx,

rt,E =
MSEref −MSEt − 0.1||at||2

|MSEref |
where uE describes the corresponding fixed point (refer to figure 3.8 (right)), MSEref,E is the time-
averaged reference mean squared error of the uncontrolled state and at is the control action at time
t. This way rt ranges over]−∞, 1] and the average baseline (no control) reward is null.

3.4.1.2 Other test-cases

Zero-dimensional test environments have been used to debug and make preliminary validation cases.
Among these one can cite the Cart-pole. This environment, taken from the Gym API and modified,
simulates a rigid, inverted pendulum mounted on a sliding cart. The pendulum can swing in a
single plane and the agent applies lateral forces on the cart in order to hold the pendulum vertical.
If x and θ are respectively the position of the cart (with an arbitrary origin) and the angle of the
pole with the vertical axis, the dynamics reads:

A =
cos θ

mpole +mcart

(
f +mpoleL

∂θ

∂t

2

sin θ

)

∂2θ

∂t2
=

g sin θ − A

L
(

4
3
− mpole

mpole+mcart
cos2 θ

)

∂2x

∂t2
= A− mpole

mpole +mcart

L
∂2θ

∂t2
cos θ,

where mpole and mcart are the masses of both the pole and the cart, L is the length of the pole, and g
is the gravitational acceleration. Observations are the full-state (position and velocity of the cart as
well as angle and angular velocity of the pole). The reward can be varied but is generally either an
indicator of the pole remaining within a pre-defined angular range (discrete reward) or a distance to
a target angle (usually 0, continuous reward). This environment mainly aims at checking that the
implementation of RL algorithms and proposed variants display the same training performances as
they are supposed to.

54

https://gym.openai.com/

The real damped Landau equations have been developed as another validation environment,
for their oscillatory dynamics, similar to multiple flows that present either mixing layers or Von
Kármán vortex streets. These equations involve two variables x and y such as:

∂x

∂t
= σ ∗ x− y,

∂y

∂t
= σ ∗ y + x+ f,

with σ = 1− x2 − y2,

where f is a forcing action. This equation has the unit circle as limit cycle. Control aims at
stabilizing both variables around 0 which is an unstable equilibrium point. The reward is defined
as a function of the Euclidean distance of the point (x, y) to the origin (0, 0). Similarly to the
Cart-pole, these environments are stepped forward in time using simple discretization schemes and
are very cheap to run.

3.4.2 Low-Reynolds Cylinder flow

Parts of this section are drawn from Paris et al. [174].
This studied configuration is a two-dimensional flow past a cylinder. The geometry is made non-
dimensional by setting the cylinder diameter D to 1. The center of the cylinder is located at the
origin (0, 0) of the flow domain. Figure 3.10 displays the computed flow domain, which spans over
10D, and shows the orientation of axes x and y.

D = 1

10D

x

y

Far field
boundary
condition

Cylinder

x

y

6◦

6◦

Wall

Action
(Mass flow

injection/suction)

Figure 3.10: Flow domain geometry. (left): Full domain, not at true scale. The far field boundary
condition is a characteristic-based inflow/outflow boundary condition modeling free-stream flow.
(right): Standard boundary conditions on the cylinder, refer to section 4.2 for more details.

3.4.2.1 Numerical setup

The flow is described by the compressible Navier-Stokes equations. The free-stream flow is uniform
at a Mach number M∞ of 0.10, oriented along x. In the following, all quantities are made non-
dimensional by the characteristic length D, the inflow density ρ∞, the velocity U∞ and the static
temperature T∞. Note that the Mach number is very low, such that the density fluctuations in the

55

Parameter Symbol Value Comment/Reference
Flow simulation setup

Mesh nodes (aziumtally) - 360 -
Mesh nodes (radially) - 70 -
Temporal scheme - BDF2 Curtiss & Hirschfelder [58]

Numerical time step
(non-dimensional)

dt 5× 10−3 -

Action ramp length - 20 it. -
Maximum action amplitude

(non-dimensional)
- 2 -

Table 3.1: Additional numerical parameters

whole domain are negligible, and the flow is therefore quasi-incompressible. The Reynolds number
Re, defined as U∞D/ν (ν being the kinematic viscosity), may be varied, but the reference config-
uration considers Re = 120. The flow field is computed via direct numerical solving using FastS for
both steady and unsteady computations with a simplified second-order-accurate AUSM+(P) scheme
described by Mary [153] for the spatial discretization and a second-order implicit Euler scheme for
time stepping. For unsteady computations, a global numerical time step dt = 5 × 10−3 is chosen.
Steady solutions are converged using a local time-stepping strategy. Additional numerical details
are available in table 3.1. The C-shaped structured mesh is made of 25200 nodes and is refined in
the vicinity of the cylinder. The boundary conditions are specified in figure 3.10.

Figure 3.11: Instantaneous vorticity flow field with action at = −0.15 at Re = 120. White dots
represent the sensor locations (in a standard layout). The colored triangle in the cylinder depicts
the action, its height and color representing its amplitude and sign. The dashed diamond shape
marks off maximum actions (both positive and negative). Refer to section 4.2 for more details on
sensors and actuators.

Both drag and lift coefficients (Cd and Cl) are computed on the cylinder via the resulting force
of the flow F :

F =

∫

cylinder

σ.ndS, (3.1)

56

https://w3.onera.fr/FAST/FastS.html

Cd =
F .ex

1
2
ρ∞U2

∞D
, (3.2)

Cl =
F .ey

1
2
ρ∞U2

∞D
, (3.3)

where n is the unitary cylinder surface normal vector, σ is the stress tensor, ex = (1, 0) and
ey = (0, 1). These coefficients are used in most of the performance metrics later defined in RL
control cases.

3.4.2.2 Uncontrolled flow

The uncontrolled flow configuration (also referred to as the “baseline flow”), displays a well-
documented vortex shedding behavior [255] that appears for Reynolds numbers above 46 and which
is due to a Hopf bifurcation where the steady solution of the Navier-Stokes equations (the base flow)
becomes unstable. Thus, the flow becomes unsteady and follows a stable limit cycle associated with
vortex shedding, as shown by figure 3.11.

As presented in figure 3.12, values of the drag coefficient Cd and Strouhal number (defined
as St = fD/U∞, with f being the vortex shedding frequency) have been computed for a wide
range of Reynolds numbers to ensure consistency with other studies [169, 31, 255, 93, 90, 21]. For
Re = 120, the drag coefficient is 1.379 with fluctuations of amplitude 0.018, and St = 0.18, which
is in agreement with the literature [11, 227]. Note that, since the simulation solves the 2D Navier-
Stokes equations, the flow remains laminar across the studied Reynolds number range and does not
undergo any additional stability bifurcation.

Figure 3.12: (left): Evolution of the time-averaged drag coefficient of the baseline flow (blue) and
the base flow (orange) with the Reynolds number. The blue shaded area indicates the variation
range of the drag coefficient Cd. (right): Evolution of the Strouhal number of the vortex shedding
with the Reynolds number.

57

3.4.2.3 Potential for drag reduction

Following the work of Protas & Wesfreid [184], the total drag Cd,0 of the baseline flow can be
decomposed into two contributions. The drag of the base flow Cd,BF , which is constant, and the
drag correction due to the flow unsteadiness Cd,U . If ⟨·⟩T denotes the time average over a vortex
shedding period T , then:

⟨Cd,0⟩T = Cd,BF + ⟨Cd,U⟩T .

Using the base flow performance as a reference, let us define the drag gain µCd
as a fraction of the

drag reduction achieved by the base flow:

µCd
=
⟨Cd,0⟩T − Cd

⟨Cd,U⟩T
.

This quantity measures the relative drag reduction due to the control. Thus, a drag gain µCd
of

100% is equivalent to a complete suppression of the vortex shedding. Protas & Wesfreid [184] also
asked whether a negative mean drag correction ⟨Cd − Cd,BF ⟩T could be reached with a periodic
forcing, implying a drag gain larger than 100%. Examples from the literature, such as the work
of He et al. [90] and Tang et al. [237], who achieved µCd

= 108% and µCd
= 105% at Re = 200,

respectively, show that this is possible. However in the case of He et al. [90], this performance comes
at the cost of a significantly modified mean flow and a large actuation. As shown later in section
4.2, the present study also achieves drag gains slightly higher than 100%, while both preserving the
base flow structure and being energy efficient.

3.4.3 Stalled NACA flow

Parts of this section are drawn from Paris et al. [175]

3.4.3.1 Setup

This test-case was chosen as a second, slightly higher-regime vortex-shedding flow. A bi-dimensional
flow is computed around a stalled NACA 0012 at a chord-wise Reynolds number Rec = 1000. As
illustrated by figure 3.13, the origin of the domain (0, 0) is located at the airfoil leading edge, the
computational domain is ”C-shaped” and extends up to a distance of 20 chord lengths (C = 1).
The simulation is built in the reference frame of the airfoil, meaning that the angle of attack (α) is
imposed by the upstream flow conditions, modeled here as a far-field boundary condition.

Similarly to the cylinder flow, the free-stream flow is uniform at M∞ = 0.1. All quantities are
made non-dimensional by the characteristic length C, the inflow density ρ∞, the velocity U∞ and
the static temperature T∞. As for the cylinder, the flow solution is computed via direct numerical
solving using FastS solver with the same AUSM+(P) spatial discretization scheme, and a BDF-2
time integration. The non-dimensional time-step is set to dt = 1.3× 10−3 and the structured mesh
is made of 120, 000 nodes distributed such that the vicinity of the airfoil and its wake are properly
resolved. The boundary conditions are specified in figure 3.13.

The standard control step ∆t lasts for 58 numerical time steps of the simulation, corresponding
to ∆t = 7.9×10−2 time units. This duration is chosen in agreement with the criteria later discussed
in section 4.2.4. Control action is performed on the airfoil suction side through a series of nact

independent jet inlets. Negative control actions correspond to suction and positive to blowing, the
latter being performed (unless explicitly otherwise mentioned) at an angle of −80° with respect to

58

C = 1

20C

x

y

Far field
boundary
condition

α

xc/C
0.02 0.25

Wall
(no slip, adiabatic)

Control actions
(Mass flow injection/suction)

Airfoil

0 1 2 3 4 5 6 7 8 9

Figure 3.13: (left) Flow domain geometry, not at true scale. α denotes the angle of attack and
C is the (unitary) chord length. (right) Boundary conditions on the airfoil, with nact = 10. Blue
numbered boxes symbolize actuators, number 0 being the upstream-most actuator, number 9 being
the downstream-most one.

the local wall normal (refer to fig. 3.13). The control action (ranging [−1, 1]nact) is first re-scaled
before each control step to the actuators’ action limits (here ±2) and converted to a mass-flow
setpoint for the current control step. This command is used to compute the mass-flow boundary
condition imposed for each time-step using a 52-iteration interpolation ramp (covering 90% of the
control step) in order to avoid abrupt changes that may not be handled by the numerical solver,
in a similar fashion as Rabault et al. [185] did. Thus, for the ith iteration of control step t, the
mass-flow per unit area qij implemented for actuator j reads:

qij = ρ∞U∞
(
aij,t−1(1− ri) + aij,tri

)
, with ri = min(i/52, 1).

The stagnation enthalpy is held constant (at the upstream flow value) for injection actions. Figure
3.14 illustrates a standard setup for this case.

Again, similarly to what is being done on the cylinder test-case, both drag and lift coefficients
(Cd and Cl) are computed on the airfoil via the resulting force of the flow F :

F =

(
Fx

Fy

)
=

∮

airfoil

σ.ndS, (3.4)

Cd =
1

1
2
ρ∞U2

∞C

(
cosα sinα

)(Fx

Fy

)
, (3.5)

Cl =
1

1
2
ρ∞U2

∞C

(
− sinα cosα

)(Fx

Fy

)
, (3.6)

where n is the unitary airfoil surface normal vector, σ is the stress tensor, ex = (1, 0), ey = (0, 1)
and α is the angle of attack of the airfoil. Note that lift and drag coefficients are computed by
integration around the airfoil on a closed circulation, in the presence of actuators.

59

Figure 3.14: Instantaneous Y velocity flow field, with an arbitrary control action (here with
nact = 20), in the free-stream reference frame. White dots represent the sensor locations.
The colored triangles nearby the airfoil depict the action, their heights and colors representing each
action amplitude. The dashed diamond shapes mark off maximum actions (both positive and neg-
ative). The strong variations in velocity in the vicinity of the actuators are due to the presence of
interspersed wall boundary conditions in-between actuators.

3.4.3.2 Non-controlled flow

Pre-converged flows are computed for a large number of angles of attack α but the mainly studied
flows have α ranging in [12; 20] degrees. At ReC = 1000, the flow is unsteady and displays a laminar
vortex shedding [257]. This instability causes both lift and drag coefficients to vary periodically,
yielding undesired alternated loads on the airfoil. The evolution of both the amplitude and the
periodicity of these loads is shown in figure 3.15. The left-hand side graph shows evolution of the
lift and drag coefficients with respect to the angle of attack α. The Strouhal number decreases up
to α = 22° and remains nearly steady for larger α values, in agreement with Roshko’s correlation
formula for a low-Reynolds cylinder [195]. The latter is computed considering the cross-sectional
”area” of the airfoil facing the air flow as diameter of an equivalent cylinder. The formula is used
in its range of validity since the diameter-based Reynolds number Re∅ ranges from 233 (α = 12°)
to 451 (α = 26°).

Figure 3.15 (right) depicts both lift and drag coefficient spectra for angles of attack of 20° and
25°. For α = 20°, both lift and drag coefficients have a very peaked harmonic spectrum with
a fundamental Strouhal number St(α = 20) ≈ 0.52. For α = 25°, interspersed peaks appear in-
between pre-existing harmonics. The main Strouhal number slightly decreases to St(α = 25) ≈ 0.46
and a halved Strouhal number St′ can be measured at around 0.23. The emergence of the latter
for α ≥ 22°, whose evolution is reported on the left-hand side graph (green dashed line) causes to
break the symmetry between two successive shedded vortex pairs.

Figure 3.16 illustrates this symmetry breaking over two vortex periods. During the first period,

60

Figure 3.15: (left) Evolution of the lift and drag coefficients and of the Strouhal number with the
angle of attack α. The shaded areas depict the standard deviation of Cl and Cd. The secondary
Strouhal number emerging for α ≥ 22° is drawn in a dashed line. The red dotted line shows the
predicted Strouhal number for an equivalent cylinder using Roshko’s formula. (right) Cl and Cd

power spectral density (PSD) spectra plotted for α = 20° (top) and α = 25° (bottom). Green
vertical lines denote the main Strouhal numbers. Other Strouhal numbers (for the other values of
α) are reported as gray lines for comparison.

the negative-vorticity, suction-side vortex (colored in blue) induces the shedding of a weak pressure-
side vortex downward and feeds a second positive-vorticity vortex on the suction side, near the
trailing edge. At the end of the first period, the latter induces an upward shedding of this clockwise-
rotating vortex. During the second period, the trailing-edge vortex is stronger and higher compared
to its counterpart one period before. It sheds horizontally and stretches the leading-edge vortex
induced. Compared to the case α = 20°, where trailing-edge and leading-edge vortices have compar-
able sizes and strengths, at α = 25°, the leading-edge then trailing-edge vortices are alternatively
dominant over time.

For any angle of attack α, one can define the characteristic period T = 1/St(α) of the unstable
phenomenon. This time unit is later used in the study to size the control step. The main goal of
the controller is to minimize lift fluctuations using as little control power as possible. Thus, the
standard reward (rt) definition reads:

rt = −S (Cl)2T − S (Cd)2T − 0.05
1

nact

nact−1∑

i=0

|⟨ai⟩2T |,

where S (Cl)2T and S (Cd)2T are the standard deviation of the lift and drag coefficients computed
over two characteristic periods and |⟨ai⟩2T | the absolute value of the averaged ith action component
also over 2 periods. Weighting coefficients may obviously be varied for specific experiments.

Lastly one can consider the location of flow separation and reattachment points (with respect
to α) as key reference points of the flow topology. These are reported on figure 3.17, alongside the
standard, previously described actuator layout. The separation point ranges between 17.3% and
18.2% (of the chord length) for α = 12°, between 8.6% and 9.7% for α = 15° and between 3.6% and
4.4% for α = 20°. This expected reduction of the chord length of the separation comes along with

61

Figure 3.16: Snapshots of the flow vorticity around the airfoil over two characteristic periods T .
Blue-framed thumbnails correspond to α = 20°, orange-framed ones correspond to α = 25°.

Figure 3.17: Separation (filled areas) and re-attachment (hatched areas) points ranges with respect
to the angle of attack. For α = 15°, the re-attachment takes place at the trailing edge.

a strong variation of the re-attachment point due to a growing vortex-shedding unsteadiness with
α as shown by the figure. For α = 15°, no re-attachment is measured, but one can consider it is
located at the trailing edge.

3.4.4 Open cavity flow

This section is drawn from an article to be submitted to JFM.
Among the most studied flow control cases, unstable flows past open cavities, occurring in a large
range of aeronautical applications and vehicles, are of a particular importance. These fluctuations
may develop on any fuselage openings (landing gear boxes or weapons bays), over a wide range
of flow regimes and may be critical for airworthiness and safety thanks to alternate loads causing
structural fatigue issues, acoustic noise or near wall flow disturbances for instance impacting payload

62

separation from the main carrier or reduce stealth as emphasized by Cattafesta et al. [44]. There is
thus a vested interest for efficient and robust control methods for such flows.

3.4.4.1 Phenomenology and existing literature

These unstable cavity flows generally feature a self-sustained Kelvin-Helmholtz-like shear-layer os-
cillation and a possibly unsteady recirculation region that may act as a delayed feedback to the
phenomenon as well as upstream-propagating pressure fluctuations originating from the interaction
of the shear layer with the trailing edge.

Passive control on transonic and supersonic open-cavity flows was investigated by Heller & Bliss
[92] who assessed the experimental efficiency of passive trailing-edge devices after having described
and modeled the dynamics of the oscillations. Later on, Saddington et al. [202], Illy et al. [103] as
well as Yamouni et al. [260] and Mettot et al. [154] tackled the issue also using passive control. Both
identified the importance of the area around the leading edge of the cavity as a go-to location for the
tested devices. The latter investigated the effects of a spanwise rod located in this region, disrupting
the development of the shear layer instabilities. Conversely at low-speed regimes and in laminar
conditions, Liu & Gómez [144] identified the crucial role of the trailing edge region in sustaining
the instabilities and that a modification of the geometry of this edge successfully suppresses these
oscillations at low Reynolds regimes and on shallow cavities (length to depth ratio larger than 1).

Sarohia & Massier [205] first investigated the impact of continuous injection of fluid at the base
of axisymmetric cavities as a mean to reduce radiated noise and shear layer fluctuations. Williams
et al. [252] and Arnoult et al. [6] experimentally investigated the effects of a sinusoidal open-loop
forcing using jet actuators blowing from the leading edge on low subsonic flows. They recorded a
noticeable reduction of the energetic content of their pressure fluctuation spectra. Guo et al. [86]
investigated hypersonic regime cavity flows in rarefied gas conditions and identified an important
reduction of the maximum wall heat fluxes thanks to the alteration of the flow topology through
passive control.

Closed-loop control generally displays greater efficiency thanks to its error-correction mechan-
ism but may be more complex to compute, especially on such cases as pointed out by Rowley &
Williams [198] in conclusion of their thorough review on the control of open-flow cavity flows. The
computation of the control law generally relies on a linear model of the system dynamics, that
can be obtained using different decomposition or projection methods [228]. These linear models
were investigated by Rowley et al. [199] as well as Sipp & Lebedev [226] who led a thorough global
stability analysis of a low regime (around the onset of flow unsteadiness) cavity flow and compared
its bifurcation characteristics with the well-studied cylinder flow. Illingworth et al. [102] later pro-
posed to model each identified physical phenomenon linearly. Cabell et al. [39] proposed high-order
models to describe the dynamics and use these to derive feedback controllers actuating a synthetic
jet. Adaptive control was experimentally studied by Williams & Morrow [251] to suppress acoustic
noise on subsonic flows. Cattafesta et al. [43] and later Cattafesta et al. [44] used leading-edge
piezoelectric flaps as a way to control sub- and transonic flow in a closed-loop fashion. Poussot-
Vassal & Sipp [181] introduced a three-step linear model reduction method capable of handling a
variation of the Reynolds number of the flow and successfully applied it on a cavity flow.

Barbagallo et al. [10], Sipp et al. [227] leveraged a Galerkin projection of the Navier-Stokes equa-
tions onto a (balanced) POD basis to build a reduced order model of the dynamics of the cavity flow
and then performed a H∞-robust synthesis of their feedback control. They later questioned these
choices of model reduction basis and control synthesis criterion in favor of norms and decomposi-
tions better suited to the dynamics’ spectral content [9]. Dergham et al. [63] leveraged a slightly

63

different model reduction basis using harmonically forced flow snapshots. Standard H2 synthesis
methods were compared to a method combining an ARMAX-based modeling of the flow with a
disturbance rejection synthesis by Schmid & Sipp [207]. They showed, that in the case of a cavity,
the first one was unable to control the flow satisfactorily while the latter brought an interesting
perturbation reduction. Leclercq et al. [135] proposed an iterative method to control the flow fluc-
tuations. At each design step of their method, they modeled the controlled flow dynamics using a
mean-flow-based resolvent analysis and leveraged structured synthesis method to derive controllers
that reduces the global level.

Maceda et al. [149] recently proposed a model-free, gradient-augmented genetic approach for
discovering experimental control laws capable of damping the energy of fluctuations of a cavity
flow by a factor of around 100. They employed a plasma actuator located slightly upstream of
the cavity, driven by an amplitude-modulated signal, the amplitude signal being provided by these
tested policies. These policies are encoded as a sequence of operations on the measurement signals
and are evolved using gradient-boosted genetic selection, mutation and cross-over operations to favor
the individuals with the best fitness. Concerning RL and to the best of the authors’ knowledge, no
study controlling low regime cavity flows have been found in the literature.

3.4.4.2 Setup

This section introduces the control test case and the numerical setup that simulates the flow and
the control layout. The studied configuration is a 2-D flow past an open cavity. The cavity is of
depth D = 1 with a unitary aspect ratio (length is also 1), as shown in figure 3.18. The free-stream
Reynolds number ReD = U∞D/ν is 7500, similarly to Leclercq et al. [135], U∞ being the inflow
velocity and ν the kinematic viscosity.

Figure 3.18: Geometry of the cavity. Hatching near solid lines indicate a no-slip wall condition,
whereas simple solid lines designate inviscid wall conditions. To inflow is located to the left and the
outflow to the right.

A 2-D Cartesian coordinate system whose origin is located at the leading edge of the cavity
is used. The inflow is thus aligned with the “x-direction”. The geometry of the cavity and the

64

Parameter Value Comment
Mesh size 87400 cells 2-zone, structured mesh

Spatial scheme ASUM+(P) refer to Edwards & Liou [69]
Time step BDF2 implicit second order Euler scheme

Free-stream Reynolds number 7500
Free-stream Mach number M∞ 0.1

Cavity aspect ratio 1 L = D = 1
Control steps per period ≈ 20 at Re = 7500

Table 3.2: Main hyper-parameters

boundary conditions are identical to the setup used by Leclercq et al. [135]: the uniform inflow of
height 0.5 and velocity (U∞, 0) is located at x = −1.2 and the boundary layer starts developing
from x = −0.4 onward thanks to the change in boundary condition later introduced. The trailing
edge of the cavity is then located at (1, 0) and the trailing wall stops at x = 1.75.

The upstream Mach number M∞ is 0.1, thus the flow is weakly compressible. All quantities
are made non-dimensional by the characteristic length D, the inflow density ρ∞, velocity U∞ and
static temperature T∞. The flow is described by the 2-D Navier-Stokes equations and simulated
via direct numerical simulation (no turbulence modeling) using FastS finite-volume solver, in a
similar fashion as for the previously introduced CFD test-cases. The spatial discretization is based
on the modified version of the second-order-accurate AUSM+(P) scheme natively implemented in
the solver, and the time integration of the equations is performed with a second-order implicit
Euler scheme (BDF2) with a maximum of 10 sub-iterations. The global numerical time step is
dt = 2.74× 10−5 non-dimensional time units. Additional numerical details are available in table 3.2

The structured “T-shaped” mesh is made of around 87400 cells (of which around 10800 cover the
cavity) and is refined in the vicinity of both the developing boundary layers and the shear layer over
the cavity in both x and y directions to properly capture the dynamics. Inviscid (adiabatic) wall
boundary conditions imposing a null normal velocity, are implemented on the top wall and both
the extreme upstream and extreme downstream wall portions (i.e. for y = 0 and x ∈ [−1.2,−0.4]∪
[1, 1.75]). Both inflow and outflow are simulated using a far field boundary condition. On all the
other wall portions a viscous (adiabatic) wall condition, imposing a null velocity is imposed.

3.4.4.3 Uncontrolled flow dynamics

Figure 3.19 illustrated the well-documented dynamics of the uncontrolled flow. One can notice a
Kelvin-Helmholtz instability developing in the shear layer than spans the cavity. The literature
generally describes two feedback mechanisms maintaining the unsteadiness. First, a fast acoustic
feedback due to the emission of acoustic perturbations by interaction of the vortices of the shear layer
with the downstream edge of the cavity. A recirculation structure, bringing fluid and perturbations
back upstream makes-up a slower, second feedback mechanism to the system. Thus there emerges
two different time-scales. Spectra of figure 3.19 display a fast-decaying harmonic content, whose
fundamental frequency is linked to the characteristic period of the horizontal velocity fluctuations
measured in the shear layer. One may define the reference Strouhal number St0 as:

St0 =
f0L

U∞
,

65

Figure 3.19: (top) Horizontal velocity snapshot of the uncontrolled flow. (bottom) Power spectral
densities of the pressure, horizontal and vertical velocities at various locations in the flow. Strouhal
numbers are normalized by the reference Strouhal number St0.

where L and U∞ are the previously introduced length of the cavity and free-stream flow velocity
respectively and f0 is the frequency of this fundamental harmonic. At Re = 7500, St0 = 1.82.
Multiple analytic relations providing the dominant Strouhal number(s) from geometric parameters
and flow conditions were successively formulated [196, 27, 92, 28] in order to predict the sensitivity
of the fluctuation regime to both the geometry and the flow regime.

66

Chapter 4

RL-based flow control

This first chapter of results presents and discusses the outcomes of the studies led on different test-
cases using only marginally modified versions of RL and LGP algorithms. The majority of these
modifications concerns hyper-parameter adjustments. These nearly “off-the-shelf” tests help assess
the potential of these ML strategy for flow control and highlight fluid-mechanics-specific challenges.

Contents
3.1 Pre-existing tools and frameworks . 42

3.1.1 Python and main processing packages . 42

3.1.2 Parallelism interfaces . 42

3.1.3 CFD solvers . 43

3.2 RLFramework . 43

3.2.1 Paradigms . 43

3.2.2 A three-leveled structure . 45

3.2.3 Hybrid computing . 49

3.3 Other tools developed on purpose . 52

3.3.1 Specific solver boundary conditions . 52

3.3.2 Meshing utilities . 52

3.4 Main test cases . 52

3.4.1 Non-fluidic test cases . 52

3.4.2 Low-Reynolds Cylinder flow . 55

3.4.3 Stalled NACA flow . 58

3.4.4 Open cavity flow . 62

4.1 Controlling the KS equation

As described previously, the KS equation is a cheap test-case, suitable for quickly prototyping and
bench-marking algorithms. In the current section an extensive study of the control on the KS
equation towards each of its fixed points is performed. The training of cases toward each of these
points is investigated before a study of multi-objective control laws, that are, similarly to the study

67

of Bucci et al. [38], able to handle these four different goals alternatively. The issue of catastrophic
forgetting raised by this case of multi-objective RL is also discussed.

4.1.1 Driving the state to its fixed points

Using PPO-CMA and for every fixed point E0, E1, E2 and E3, training cases where run with
different actuator layouts, as shown by figure 4.1. The actor and the critic are embodied by densely
connected neural networks having two layers of 512 neurons each. The chosen activation function
is a ReLU, except for the output layer which linearly activated. Unless otherwise stated, this NN
architecture is used for all the neural networks in the following (for actor, critics, reduced-order
models as well as other estimators), the effects of the size and shape of NNs being kept out of the
scope of this study. Here policies are trained on 8 roll-outs of 250 steps each and for 2000 epochs
(4 million state transitions in total) for each test-case. Averages are computed on batches of 5
test-cases. The different layouts have 2, 4 or 8 actuators and may be shifted by fractions of L along
the x-axis in order to study the effect of their location on the control performance. One can first
notice that, as expected, all fixed points are efficiently reached using full (8-actuator) layouts. Here,
as the chosen figure of merit is the average reward on a training run, best performances do not reach
1 exactly since the control transient lowers the average reward and the exploration noise (driven by
σ, that stabilizes around 5× 10−2) that produces slightly sub-optimal trajectories.

Figure 4.1: Learning curves for different target fixed points and different actuator layouts. Ensemble
averages are computed on batches of 5 test-cases. Shaded areas represent standard deviation com-
puted across batches.

Second, it can be seen that 4-actuator layouts perform nearly identically on targets E1, E2 and
E3, contrary to target E0. Similarly performances of 2-actuator layouts are notable for target E2,
to the exception of one layout, but decreasingly efficient for other targets E1, E3 and E0. No clear
explanation of these observations has yet been proposed, but the observed reproducibility of the
results, confirms the impact of actuators position with respect to the topology of the control target.

68

Concerning fixed point E0, as the target solution is invariant along the x-axis, no actuator layout
stands out from the others for the same number of actions. For targets E1 and E3, performance dis-
crepancies in-between 2-actuator layouts can be noticed. From figure 4.1, one can qualitatively rank
fixed points from the easiest to the hardest to reach as: E2, E1, E3 and E0. These observations,
alongside ancillary performance indicators are reported in table 4.1.

E0 E1 E2 E3

2
ac
t. best layout

avg. perf. 28.4% 71.0% 81.0% 53.1%
time to 80% − 57 28 65

4
ac
t. best layout

avg. perf. 71.9% 88.7% 89.4% 89.9%
time to 95% − 45 41 39

8
ac
t. best layout

avg. perf. 95.1% 94.5% 93.9% 93.7%
time to 95% 18 17 17 28

Table 4.1: Control performances and best actuator layout with respect to the control goal fixed
point and the number of actuators.

As expected, the more actuators, the shorter the control transient (here measured as the averaged
number of control steps to reach a given performance) and the better the average reward. Figure 4.2
compares the control performances of randomly picked control laws for each fixed point target with 8-
actuator layouts. Both the temporal evolution of the reward and the spatio-temporal representation
of the state depicts these short transients, confirming the proficiency of the control.

4.1.2 Multiple goals and catastrophic forgetting

Trainings where the control target is randomly changed with various probabilities have been per-
formed on 8-actuator layouts with the aims of learning a multi-objective policy. Contrary to the
previous fixed-objective test-cases, the current target must be provided to the agent for it to adapt
the control to the goal. To do so, the observation vector, so far containing only measurements of
u at locations interspersed in-between actuators, has been augmented with a “one-hot” encoding
of the current target. Then, at every control step (except for test runs), this control goal can be
re-sampled with a given probability, that gives the average goal-update frequency. Update probab-
ilities ranging from 10−6 (update every 4000 runs on average) to 10−2 (2.5 times per run on average)
have been investigated.

As illustrated by figure 4.3 average control performances for each of the four fixed points are
strongly impacted by the update frequency. Conforming to intuition, cases with the lowest update
probability perform very well when the current training target coincides with the test goal, but
much more poorly otherwise. This is evidence for catastrophic forgetting. The agents being trained
on a single control goal for an extensive number of consecutive epochs tend to “over-fit” their
behavior on the most recent training data. As this training data is biased toward one single control

69

Figure 4.2: Comparison of control laws with different goals and with a non-controlled (baseline)
run and with 8-actuator layouts. (top, left) Evolution of the reward depending on the control goal.
(top, right) Uncontrolled evolution of the KS equation. (others) Controlled evolutions toward each
of the fixed points.

objective, no periodic training signal constrains the agent to keep the same level of performance
on other goals. Upon training goal re-sampling (no shown here) the reward collapses to very low
levels, before recovering in a similar fashion as agents trained from scratch.

The other extreme sampling probability (every 0.4 run on average) displays much more homo-
geneous performances that do not depend on the current training goal. As shown in the previous
part, 100 control steps are more than enough to converge toward the control goal with 8 actuators.
Yet average rewards are lower than the more moderate frequencies of goal re-sampling, especially
for target fixed point E3. One explanation for it can simply be that despite short transients, there
is a data imbalance between the transient and the converged state, where most of the gains can be
performed by shortening the transient, possibly at the expense of slightly less optimal converged
states. These lower performances could also be explained by the trickier learning of the value
function. Here, as the change in control goal is random, the value function is learned on traject-
ories, containing yet consecutive states, but potentially multiple control goals. Thus here V π is
tasked to approximate Es∼T,a∼π [rt,E + γEE′ [rt+1,E′] + γ2EE′′ [rt+2,E′′] + . . .], where E is the current

70

Figure 4.3: Test reward (average on the last 20 steps of an evaluation run), with respect to the
test target (ordinate) and the current train target (abscissa) for different frequencies of train target
sampling. The target is kept constant for the whole test run. Ensemble averages is performed on
500 test runs for each sampling frequency.

target, and E ′, E ′′, etc. are the future ones. Future work could consider the impact of learning
goal-conditioned value functions.

Figure 4.4: Control performance of multi-objective policy trained with an average update period
of 40 runs. (top) Evolution of the state throughout time. (bottom) Corresponding evolution of
the different rewards with respect to time. Shaded areas in the background depict the current test
target.

71

Finally the remaining cases with an average update period of 40 roll-outs seem close to the
optimal trade-off between the two previously discussed extremes (even though slightly better per-
formances can be noticed when both training and testing goals coincide). In this case, the update
period is low enough to prevent catastrophic forgetting but high enough to enable the exploration of
the best control strategies for each goal. A randomly picked policy having this update frequency has
been tested and the four targets successively. Results a reported on figure 4.4 confirm the proficient
behavior of the control law.

4.1.3 Control using model-based RL

Model-based RL has been tested on the KS environment using the same 8-actuator-8-observation
setup. These results are compared to model-free RL (PPO-CMA) presented before. The PETS-
MPC [53] method, as described in part 2.2.6, has been run on 8 roll-outs of 250 control steps per
epoch. The first 50 epochs are run using randomly generated control actions, in order to properly
pre-train the models. 5 models were trained and control optimization involved batches of 100 actions
sequences each evaluated with 15 “particles”. The training was stop after 300 epochs.

4.1.3.1 Model-based/model-free comparison

First, and as shown by figure 4.5 (top), the performances display a skyrocket increase from epoch
50 onward (start of the action sampling using the CEM1 optimizer [29]). The training performance
then quickly converges toward its optimal value. Comparing with the training using the PPO-CMA
which converges toward the same performances but much more slowly and gradually, the training
of PETS-MPC algorithm seems to be done after around 105 environment transitions whereas the
PPO-CMA requires more than 30 times this amount in data on the full-state environment.

Concerning control stochasticity, PETS-MPC appears to be much more deterministic than PPO-
CMA whose σ average value decreases much more slowly. This fact partly accounts for PPO-CMA
learning much more slowly than PETS-MPC. Regarding the epoch duration (in CPU time), PPO-
CMA costs about 20 times less than the PETS-MPC algorithm which is due to the action inference
process of the later requiring extensive model querying. Thus, in terms of CPU time and on a cheap
environment both methods perform somehow equivalently.

4.1.3.2 Performances of model-based control

Figure 4.6 illustrates to control performances of the PETS-MPC method. One can first notice that
the control goal (fixed point E1 here) is rapidly reached in around 20 control steps. All the models
predict the rise in reward but they are all pessimistic on the longer term evolution whether they
predict from step 0 or step 20 onward. Comparing the true observations with the forecast ones at
step 0, the models correctly identify the tendency to reach fixed point E1 but do not consider it as
a stable state, since they later foresee strong modifications of the partial state. A step 20, once the
fixed point is almost reached, the forecast is much more stable, the destabilization being foreseen
in a much further future comparing the prediction at step 0 (around 50+ steps later at step 20
compared to 25 steps in the future at step 0).

This model accuracy is confirmed by figure 4.7. Whether it is for observations or the reward
(concatenated as a single prediction vector), model accuracy is very strong on the first few future

1Cross-Entropy Method

72

Figure 4.5: Comparisons of the learning curves of the model-based PETS-MPC algorithm with
the model-free PPO-CMA method. (top) Average reward during training runs on the full-state
environment with respect to the number of observed environment transitions from the start of the
training. (bottom) Evolution of the log-standard-deviation (log σ) of control actions.

steps then exponentially degrades. Considering the average variance of observations and the reward
respectively as reference, one can consider that the predictions of these models are informative up
to around 40 time steps in the future. One can also notice that the pessimistic tendency of the
models is confirmed here (refer to the left-hand side graph).

This accuracy is to be considered with care, since it is evaluated on data having the same
probabilistic distribution as the training one. This means that model dynamics are learned only
“around” the control trajectories and that they may not extrapolate properly on data distributed
differently. Attempts to increase this prediction ability, notably by training models over multiple
prediction steps, using “Neural-ODE-like” training formulations and using auto-encoders to embed
the partial-state into a more “dynamics-friendly” state-space have not been successful so far.

4.2 Controlling a low Reynolds cylinder wake

This section introduces the training and performances of RL-trained control on a low Reynolds
cylinder flow. The setup of this test case has been detailed in section 3.4.2. Parts of this section
are drawn from Paris et al. [174].

73

Figure 4.6: Evolution of different metrics during a test run. (top left) Evolution of the non-controlled
state. (center left) Evolution of the controlled state. (bottom left) Evolution of the observed reward
(blue line) and of the predicted reward at step 0 (red lines) and at step 20 (green lines). Thin lines
represent the forecast of each model and thick ones illustrate the ensemble average. (top right)
Evolution of the observations. (center and bottom right) Predicted evolution of the partial state at
step 0 and step 20 respectively, by an arbitrarily selected model.

Figure 4.7: Prediction accuracy of the models. (left) Predicted return (undiscounted sum of pre-
dicted returns) with respect to the true return. Color indicated the forecast horizon. (center and
right) Mean square error on the observation and reward prediction respectively. Average variance
of observations and reward is plotted in dashed lines for comparison.

74

4.2.1 Setup and training

As shown in figures 3.10 and 4.8, actuation is (and unless stated otherwise) performed by injection
or suction on the cylinder’s poles through two 4◦ or 6◦-wide jet inlets. The control step ∆t is defined
as the number of numerical iterations during which the control command is held constant. Here,
a control step lasts for 50 numerical time steps, thus ∆t = 0.25 non-dimensional time units. This
choice and its impacts on training and overall performance are discussed later in section 4.2.4. For
each control step, a command at (positive or negative) is translated into a blowing/suction using a
20-iteration interpolation in a similar fashion as described for the control of the NACA-0012 flow
in section 3.4.3.1. To ensure an instantaneous zero-net-mass-flux for every action, the two poles act
reciprocally: +qi is imposed on the top inlet surface and −qi on the bottom inlet. Note that in
several studies, the actuators are such that they are able to inject streamwise momentum, which
may directly reduce the cylinder drag. In the present study, the actuators are designed such that
they can only inject cross-stream momentum, thus making any “direct” drag reduction impossible.

Figure 4.8: Instantaneous vorticity flow field with action at = −0.15 at Re = 120. White dots
represent the sensor locations. The colored triangle in the cylinder depicts the action, its height
and color representing its amplitude. The dashed diamond shape marks off maximum actions (both
positive and negative).

Multiple sensors record the pressure of the flow at predefined locations and at the end of every
control step. The standard grid-like sensor layout is made of 12 sensors at locations (x, y) ∈
{1, 2, 3, 4}×{−0.5, 0, 0.5}. The output measurement is a pressure fluctuation, defined as the differ-
ence between the local non-dimensional static pressure and the reference inflow static pressure p∞.
Figure 4.8 illustrates a standard setup for this case.

4.2.2 Control performance

Unless otherwise stated, all results are obtained using the reference case at Re = 120, with the
12-sensor layout described in figure 4.8 and PPO-CMA as learning algorithm. A standard training
of 200 epochs of 480 control steps each requires around 180s per epoch on 4 CPU cores. Hence, a
training of 200 epochs costs around 40 CPU hours, most of the CPU time being used to run the
environment. Figure 4.9 illustrates this learning process. A large variation of mean Cd values can
be observed in the first epochs of training, then Cd values concentrate more around their moving
average. This is caused by PPO-CMA decreasing the exploratory variance σ when performance

75

stabilises. For the following results, training is performed sequentially (unlike Rabault & Kuhnle
[186] who explored the potential of parallelized learning or other cases discussed in the study).

−1.45

−1.40

−1.35

−1.30

−1.25

−1.20

−1.15

−1.10

−1.05

Re
wa
rd

0 40 80 120 160 200 240 280 320
Epoch

1.12

1.20

1.28

1.36

1.44

1.52
Cx

Cx
Cx (averaged)
Average reward
Base flow
Baseline flow

Figure 4.9: Standard learning process. Each Cd value is averaged over the whole epoch, including
the transient from developed vortex shedding to controlled flow. This explains the discrepancy with
pure performance values on Cd later introduced. The yellow curve is a 20-epoch moving average
of Cd values. The average reward (green dots, reward rt averaged over the current epoch) shows a
quasi-monotonic growth that saturates from epoch 200 onward.

4.2.2.1 Control performance and efficiency

At a Reynolds number of 120, the time-averaged baseline flow drag coefficient is ⟨Cd,0⟩ = 1.379.
Performance in terms of drag reduction is computed as a percentage of the average baseline flow
drag coefficient ⟨Cd,0⟩ and also using the drag gain µCd

introduced in section 3.4.2.2. Figure 4.10
shows the instantaneous drag coefficient Cd, the corresponding action at and instantaneous lift
coefficient Cl throughout control steps. A first phase, from time t = 25 (control starting) to t = 50
approximately, shows a rapid transient from the fully developed vortex shedding instability to the
controlled flow. This transient corresponds to approximately 4.5 vortex shedding periods. During
that phase, actions have a large amplitude and do not seem to follow any simple pattern. In a
second phase, from time 50 to the end, the drag coefficient is stabilized to a value below Cd,BF .
This represents a drag reduction of about 18.4% and a drag gain µCd

around 100.6%. Actions have
a significantly reduced amplitude compared to the first phase, and they appear to have a slightly
non-zero average. Starting from t = 150, a periodic action pattern seems to appear in the form of
modulated bursts. These last two points are further discussed in the next section.

For other Reynolds number values, drag reduction has also been measured. Results are presented
in table 4.2 and confronted to other studies carried out on the same case.

• At Re = 100, a drag gain slightly larger than 100% is also reached. The observed mean flow
is similar to the base flow.

76

1.10

1.15

1.20

1.25

1.30

1.35

1.40
Cx

Controlled flow
Baseline flow

Con rol s ar s
Base flow

0 50 100 150 200
Time

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5 Cl
Ac ions
Con rol s ar s

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Dr
ag

 re
du

c
io

n
(%

)18.0

18.2

18.4

80 100 120 140 160 180 200 220 240
1.122

1.124

1.126

1.128

1.130

80 100 120 140 160 180 200 220 240
−0.1

0.0

0.1

Figure 4.10: Performance of the active flow control strategy. (top): Evolution of the instantaneous
drag coefficient Cd. (bottom): Evolution of both action and lift coefficient Cl.

• At Re = 150, the net drag reduction is more than 21%, close to the value reached by Protas
& Wesfreid [184]. In their case, they used large amplitude rotary open-loop control, causing
the controlled flow to remain unsteady. In the case of blowing/suction, a similar open-loop
strategy has been tested at Re = 120, with far less success in terms of drag reduction. This
proves the limitations of open-loop strategies for the current blowing/suction setup.

• At Re = 200, the results from He et al. [90] slightly outperform those of the present study
in terms of drag reduction. But their drag gain is also obtained at the cost of an important
mean flow modification, as previously mentioned in section 3.4.2.2.

Some existing studies on the control of the cylinder flow have not been included in table 4.2 due to
the significant discrepancies of their test case compared to ours, which prevents any straightforward
comparison. For instance, Min & Choi [155], using a 360◦ blowing/suction actuation, end up
artificially reducing the equivalent diameter of their cylinder. While their results and methodology
are interesting, comparison of performances is however not relevant here. Atam et al. [7] used a
360◦ suction actuation steered by four different controllers and manage to match a target drag
efficiently. The work of Arakeri & Shukla [5], who impose the tangential velocity on the cylinder
surface and force a quasi upstream-downstream symmetric flow, is not included in the comparison
for similar reasons. Among the related – yet not directly comparable – interesting work, we can
also cite Sohankar et al. [231] who achieve a significant drag reduction (67%) for a porous square
cylinder flow at Re = 100, the paper from Muddada & Patnaik [163] which shows rather important

77

gains (a drag reduction of 53%) using two small rotating rods in the vicinity of the cylinder, or the
results from Chen & Aubry [49] using magneto-hydrodynamic forcing to stabilize a cylinder flow at
Re = 200. For a more exhaustive list on the topic, one may refer to the review from Rashidi et al.
[188].

Re
Drag
red.
(%)

Drag
gain µCd

(%)
PSR

Learning
type

Action
type

Reference

100

8.0 54.6 - Gradient descent Blowing Leclerc et al. [134]
8.0 92.7 - DRL Blowing Rabault et al. [185]*
5.7 67.2 - DRL Blowing Tang et al. [237]*

14 95.5 - ANN/ARX Translation
Siegel et al. [220]
Seidel et al. [214]

14.9 101.7 158 DRL Blowing Present study

150

4 17.5 - Tuned open-loop MHD Singha & Sinhamahapatra [224]
15 65.7 51 Adjoint NS Rotation Protas & Styczek [183]

21.3 93.4 0.3 Tuned open-loop Rotation Protas & Wesfreid [184]
21.2 92.9 188 DRL Blowing Present study

200

31 107.9 - Adjoint NS Rotation He et al. [90]
28.6 99.6 0.07 POD-based Rotation Bergmann & Cordier [20]
24.5 85.3 0.26 POD-based Rotation Bergmann et al. [21]
21.6 106.9 - DRL Blowing Tang et al. [237]*
28.6 99.6 110 DRL Blowing Present study

Table 4.2: Drag reduction and performance comparison. *These cases are slightly different since
walls parallel to the flow are added. Action types: “Blowing”: Blowing/suction on cylinder poles,
“Translation”: Vertical translation of the cylinder, “Rotation”: Rotation of the cylinder, “MHD”:
magneto-hydrodynamic forcing

Another important indicator of the control performance is the energy required for drag reduc-
tion. The instantaneous actuation power is computed as Pact =

∑2
i=1 |qi∆piS/ρ| ≈ |at|Sρ∞U∞U2

jet,
considering that compressibility effects are negligible, S being the area of one actuator, Ujet the
injection velocity (kept constant), ∆p the excess pressure yielded by the actuator. No actuator effi-
ciency is considered here. Taking the time-averaged baseline flow drag power (P0 =

1
2
ρU3

∞D ⟨Cd,0⟩)
as reference, the actuation power Pact peaks at 3.2% of P0 in the early stages of the first control
phase, but only represents less than 0.1% of P0 on average in the second phase (see figure 4.11).
Thus the total power expenditure – necessary to both counteract drag and implement action –, is
temporarily higher than for the baseline flow. But it is quickly counterbalanced by the significant
decrease of both drag and actuation powers during the second control phase. In the example shown
in figure 4.11, the energy trade-off starts being beneficial 4.25 time steps after the control starts,
which is long before the flow stabilization.

The Power Saving Ratio (PSR) introduced by Protas & Wesfreid [184] is defined as the ratio
of the gain in drag power to the time-averaged control power ⟨Pact⟩. In the quasi-steady controlled
regime, PSR ≈ 143 for Re = 120, showing that the control obtained here is highly energy-efficient.
For other Reynolds numbers, PSR are reported in table 4.2, and the values found are significantly
higher than 1 even for the highest Re considered. It is noteworthy that high PSR values are very

78

0 20 40 60 80 100 120 140
Time

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72
In
st
an

ta
ne

ou
s p

ow
er

Drag power
Total (actuation + drag) power
Ba eline average (P0)
Control tart

−5

0

5

10

15

20

Po
we

r g
ai
n
(%

)

Figure 4.11: Evolution of power expenditure throughout control. The drag power is the power
necessary to withstand drag forces, the actuation power represents the power Pact spent on action
implementation. The power gain measures the instantaneous total power expenditure saved as a
fraction of the averaged uncontrolled drag power.

sensitive to ⟨Pact⟩ as it gets smaller. Thus, only the order of magnitude of the PSR is meaningful
in these cases.

It can be noticed that for Re = 150, Protas & Styczek [183] achieved extremely energy-efficient
control, but with a lesser net drag reduction than the present study. On the other hand, the open-
loop controls performed by Protas & Wesfreid [184], Bergmann et al. [21] and Bergmann & Cordier
[20] reach significant drag reduction but with low PSR values. This highlights the difficulties to
get a control law efficient both in terms of net drag reduction and power consumption, which is
achieved by the present DRL approach.

Note that quantitative comparisons of PSR values from different studies is often not meaningful.
For instance, in the case of cylinder rotation, the actuation power does not consider the inertia of
the rotating cylinder (the mass of the cylinder is considered null). In the case of suction/blowing,
the actuator efficiency is supposed to be perfect. This highlights that power-based comparisons
between different actuation types may have a very limited relevance, and should only be considered
quantitatively to distinguish highly efficient control (PSR ≫ 1) from inefficient (PSR = O(1))
strategies.

It is interesting to note that, despite its high energy-efficiency, the control policy is obtained
without any explicit penalization of the instantaneous control power. The actuation power ex-
penditure is not directly included into the measured performance during learning. However, the
reward rt is penalized by the time-averaged lift coefficient, which ensures parsimonious actions since
a strong action generates strong lift. Even though Cl is averaged over one vortex shedding period,
the periodicity of the flow varies (or even vanishes) during training which makes a perfect com-
pensation of the effects on Cl of positive and negative actions very unlikely. As described early
on, slightly non-zero-average actions are systematically observed during the second control phase.
Thus, a lack of convergence cannot account for this fact. Instead, an increase in the penalization
on lift through α causes a reduction of this constant component.

However, an increase in α has downsides. By trying several values within the range [0; 5], it has

79

been observed that, for Re = 120, the chosen value α = 0.2 is close to the optimal trade-off between
pure performance and energy consumption. For both an increase or a decrease of α, the PSR
decreases and the drag reduction shows a very slight decline. The slight negative effect on the PSR
when α decreases below 0.2 can be explained by the reduction of the penalization on large actions,
thereby increasing the control power expenditure. On the other hand, an overly large value of α
reduces the observed exploratory variance due to the strong disadvantage put on large amplitude
actions that are necessary in the early stages of the control to achieve a near-stabilization of the
flow. The search of the optimal α value has only been performed for Re = 120, and the value of
0.2 has been retained for other Reynolds values. Therefore, the PSR values presented in table 4.2
may not be optimal and might be improved by a careful choice of α. But from the results obtained
for Re = 120, it appears that α is not a sensitive parameter: it leads to negligible changes in drag
reduction performance, and for a wide range of α values, the PSR remains significantly higher than
1.

4.2.2.2 Analysis of the controlled flow

A common difficulty with deep learning approaches is the physical understanding of the results.
Unfortunately, no simple action pattern has been noticed throughout the evaluations of the control
strategy, whether it is for the first or second control phase. Unsuccessful attempts to reproduce this
action behavior with simpler linear controllers (simple gain and delayed response based on POD
analyses) might indicate that complexity is required to reach the observed control efficiency. The
projection of the controlled transient onto the 3 most energetic POD modes of the natural transient
only captures at best 57% of the energy of the flow (while they are enough to almost fully describe
the natural transient). This shows that the controlled system is significantly more complex than
the uncontrolled one, which may explain the encountered difficulties. While it is hard to precisely
explain how the control policy acts on the flow to reduce drag, the present section nonetheless
attempts to describe the control based on an a posteriori analysis of the flow.

As studied by Nair et al. [165], who used cylinder rotation or momentum injection parallel to
the flow to impose an energy optimal phase-shift control, the drag reduction seen in the transient
phase, is caused by the delay in vortex shedding. This generates “elongated vortex structures”, that
also stabilize the instantaneous recirculation bubble. Similar observations have been made in our
case. As shown by figure 4.12, the first phase of the control strategy is a fast transient from fully
developed vortex shedding to a stabilized cylinder wake, where the actions trigger the shedding of
vortices slightly earlier than the natural shedding. This results into longitudinally stretched and
weaker vortical structures.

Once the flow has been stabilized and is nearly steady, its drag coefficient is very close to Cd,BF .
Figure 4.13 compares the convergence of Cd with the length of the instantaneous recirculation
bubble. This length is multiplied by more than 2.5 during the control phase and peaks at 99.5% of
the base flow recirculation bubble length. The correlation of both the increase of the length of the
recirculation bubble and the drag reduction is a well-known fact [184, 185]. The recirculation bubble
lengths found in this study are in good agreement with the reference literature [267, 184]. From
time step 100 onward, both base flow and controlled flow have a very similar recirculation bubble,
as illustrated by figure 4.14. The “tail” of the controlled bubble slowly flaps vertically with a very
moderate displacement amplitude (∆y < 0.3) at St ≈ 0.12. This confirms that the control policy
tends to lead the flow toward the base flow, the latter being an unstable optimum with respect to
drag. The controlled flow reaches a small amplitude cycle around this equilibrium point, driven by
a slowly modulated, small amplitude, quasi-periodic control action.

80

Figure 4.12: Comparison of uncontrolled (top) and controlled (bottom) flows in the transient phase
of the control strategy.

0 50 100 150 200
Time

1.10

1.15

1.20

1.25

1.30

1.35

1.40

C x

Controlled Cx
Control starts
Base flow Cx
Recirculation bubble length
Base flow bubble length

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0
Bu

bb
le
 le

ng
th

Figure 4.13: Evolution of Cd and of the length of the instantaneous recirculation bubble throughout
time.

81

Figure 4.14: Comparison of the base flow and the controlled flow recirculation bubbles once the
flow is stabilized.

As shown in figure 4.15 (left), the spectral analysis of the action during the second phase reveals
two main oscillating components St1 ≈ 0.11 and St2 ≈ 0.14 and three secondary peaks at Strouhal
numbers δSt = St2 − St1, St3 = St1 + St2 and St4 = 2St2, the latter having amplitudes at least
two orders of magnitude lower than the main components. Since δSt and St3 are the marks of
nonlinear coupling between the two main components, one can assume a nearly interaction-free
superimposition of the two main waves at St1 and St2. Their corresponding Fourier modes (not
shown here) peak near the location of the “tail” of the recirculation bubble.

Note that in the stabilized phase, the state is close to the base flow and the actions are small,
such that the flow evolves in a linear regime. The dominant Strouhal numbers of this phase are
significantly lower than the natural vortex shedding frequency St = 0.18. This may be easily
understood by performing a resolvent analysis, which describes the frequency-response of the flow
in the vicinity of a steady state. If q denotes the flow state, f an external forcing, and N the
Navier-Stokes operator, then recalling equation 2.2 introduced in section 2.1.5.4:

q̂′ =
(
iω I− A

)−1

︸ ︷︷ ︸
R

f̂ , (4.1)

with R being the resolvent operator. The highest singular value of R, which is a function of ω,
gives the highest linear gain σ that may be achieved through an external forcing (see for instance
Beneddine [17]). Formally, it reads:

σ2(ω) = max
f̂

||q̂′||q
||f̂ ||f

, (4.2)

with || · ||q and || · ||f representing norms on the response and forcing spaces respectively (classically
associated with the kinetic energy for the response, and the L2-norm for the forcing). As illustrated
by figure 4.15 (right), the highest optimal gain is obtained for St = 0.12 (consistently with Barkley
[11], Jin et al. [107]) and the flow is responsive to only a narrow range of Strouhal numbers (below
0.15). It is therefore not surprising that the values associated with the control fall within this range.
But interestingly, the control avoids the highest gain frequency and the particular selection of the

82

two specific frequencies St1 = 0.11 and St2 = 0.14 remains an open question. To our knowledge,
this is not reminiscent of any existing work related to the linear control of the vortex shedding
near the base flow. It is worth noting that both control time step and action interpolation have a
negligible effect on the spectra since the control frequency is approximately 30 times larger than
St2. Thus, there is no effect of aliasing and no significant distortion due the interpolation method.

10−20 10−17 10−14 10−11
Gain

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

St

δSt= St2− St1

St1

St2

St3= St1+ St2

St4=2St2

Cl

Action

104 105 106 107
Gain

Figure 4.15: (left): Spectra of the lift coefficient Cl and of the action during the second control
phase. (right): Evolution of the optimal gain of the base flow resolvent operator with the external
forcing Strouhal number at Re = 120.

4.2.3 Robustness

As introduced previously, robustness is a key issue in RL since, contrary to linear control methods,
no explicit robustness margins can be computed. Thanks to its trial-and-error paradigm, RL-trained
agents inherit somehow the ability to recover from slightly sub-optimal control actions or biased
measurements. Here, an empirical assessment of the policy robustness is performed on two aspects:
a variation of the Reynolds number and additional measurement noise.

4.2.3.1 Variation in Reynolds

An assessment of the control policy robustness across a range of Reynolds numbers has been per-
formed, using batches of 10 test cases having different random weight initialization. This issue is
tackled in the study of Atam et al. [7], where gain-scheduled controllers are evaluated on a cyl-
inder flow with time-varying Reynolds number. Unlike Tang et al. [237] who trained their policy
on several Reynolds numbers values (100, 200, 300 and 400) and evaluated it on a mix of “seen”
and “unseen” Reynolds numbers, our policy has been trained on a single Reynolds value Re = 120,
evaluations have been performed on a range spanning from Re = 100 to 216 and compared with
cases specifically trained on those Reynolds numbers. As illustrated by figure 3.12, this range of
Reynolds numbers corresponds to a variation in vortex shedding Strouhal number of around 18%.
Moreover, the non-dimensional amplitude of the pressure fluctuation displays a factor 2 between
the two extreme Re values considered. This shows that the flow dynamics, although not radically

83

different, is still noticeably altered in this range of Reynolds number, such that the robustness is
tested in actual off-design conditions.

Figure 4.16 shows that the control is remarkably robust. Note that, as previously introduced,
the flow state is made non-dimensional by the reference density ρ∞, upstream velocity U∞ and
static temperature T∞. Reference velocities, pressures and case geometry (cylinder diameter and
sensor location) being held constant is decisive for the robustness of the control policy. This ensures
indeed a nearly constant convection time between sensors and comparable variation amplitudes
both for sensors (on pressure) and for actuators (on mass flow) across the different Reynolds num-
bers considered. The only varying factor between different Reynolds flows is the change in vortex
shape, their relative strength and organization. The policy, acting only as a function of the current
observation st, is insensitive to the variation in the von Kármán vortex street convection velocity.
It is hence only affected by the change in instantaneous form of the flow structures, and the present
results prove that the control law handles these changes very well.

Non-dimensonalisation also circumvents the issue of neural network input normalization. Once
neural networks’ weights and biases are tuned to adapt to the range of input values, they remain
appropriately tuned as this range does not overly change across Reynolds numbers. Tang et al. [237]
used the same non-dimensionalisation scheme. Thus, even though their deep learning algorithm is
different, the robustness they observed may be explained by the fact that the policy is robust over
a wide range of Reynolds numbers even with a single Reynolds number training. Adding several
other Reynolds numbers in the training marginally improves an already strong robustness.

Figure 4.16 also shows better robustness for lower Reynolds numbers than for higher ones (com-
pared to the Re of training). One of the reasons may be that the chosen sensor layout, fixed across
all cases, covers more of the base flow recirculation bubble for lower Reynolds numbers. It has been
shown indeed that its length increases with the Reynolds number. The 12-sensor layout spans over
75% of the recirculation region at Re = 100, but only 55% at Re = 216.

4.2.3.2 Measurement noise

Assessing the tolerance of the control strategy to measurement errors is a key point in the trans-
position of that method to real-world experiments, where measurement noise is unavoidable. Noise
robustness is therefore important in the perspective of transfer learning from a numerically trained
case (without noise) to an experimental setup. To this end, the robustness of a zero-noise-training
policy has been assessed and compared with policies trained on noisy data using batches of 20
randomly initialized test cases as previously done for the assessment of the Reynolds robustness.
Added noise is parameterised, using a relative amplitude σ. Noisy observations s̃t are computed as:

s̃t = st + s̄tσN (·|0, 1), (4.3)

where s̄t is the average pressure over all sensors at time t, which is found to be relatively steady
and N (·|0, 1) is a standard random normal probability distribution. Figure 4.17 compares the
performances of policies trained at different noise levels σ and evaluated on a range of noise levels
from 0 to 1. One can notice that the level of training noise does not seem to impact performances
in a significant manner up to σ = 0.5, which corresponds to very noisy measurements that certainly
exceeds the actual noise one may expect in most experiments (see figure 4.18). Unexpectedly, figure
4.17 tends to show that a zero-training-noise policy seems overall slightly more robust to noise
than others at different training noise levels. Therefore, in the present case, it is unnecessary to
account for measurement noise during the training, which is promising for the possible transfer of
CFD-trained models to experiments.

84

Figure 4.16: Robustness to a Reynolds number variation. The best case (among 10 test cases)
trained at Re = 120 is tested at different Reynolds numbers (red curve). Its performance is compared
to the best control policy (among 10 test cases) specifically trained at the test Reynolds number
(green curve). Shaded areas represent the standard deviation of the controlled drag coefficient Cd.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Noise amplitude

1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

Cx

σ=0
σ=0.05
σ=0.1
Solid line : average
Dashed line : minimum
Base flow

8

10

12

14

16

18

Dr
ag
 re

du
ct
io
n
(%

)

Figure 4.17: Robustness to Gaussian noise on observations. Each curve represents the mean (solid
line) or the best (dashed line) performance in drag coefficient of a 20 test-case batch trained with
noise levels from σ = 0 to σ = 0.1 and evaluated on noise levels ranging from σ = 0 to σ = 1.

Figure 4.18 illustrates this robustness throughout time for a policy trained with σ = 0. Despite
large noise disturbances, the control policy achieves good performances. Even with extreme noise

85

levels such as σ = 1, the drag reduction reaches about 12% on average. This may be explained
by the feedback characteristic of the problem that enables for efficient error correction from one
control step to the next. Both observation and action signal-to-noise ratios (SNR) are assessed on

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Cx

σ=0 (ref)
σ=0.05
σ=0.1

σ=0.5
σ=1.0
Control starts

Base fl w
Unc ntr lled fl w
Baseline

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Ob
se
rv
ed

 p
re
ss
ur
e

0 50 100 150 200
Time

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

Ac
ti

n

−5

0

5

10

15

20

Dr
ag

 re
du

ct
i
n
(%

)

Figure 4.18: Robustness to Gaussian noise on observations for a policy trained without noise (σ = 0).
(top): Evolution of Cd throughout time, for different noise levels. (middle): Noisy pressure signal
s0 located in (1,0.5). (bottom): Corresponding action taken by the actor.

the second control phase (having steady statistics) as:

SNR =
noise-free variation amplitude

noise standard deviation
. (4.4)

Action noise is defined as the difference between the action computed using noisy observations
and the action based on noise-free measurements. Results are reported in Table 4.3. Note that
apparent discrepancy between SNR and σ values are due to the definition of each quantity: SNRs
are computed considering the amplitude of variation of the signal, thus excluding the signal’s time-
averaged value, while the noise level driven by σ is measured as a fraction of the signal value,
including its constant component. It can be seen that the action SNR has the same order of

86

magnitude as the observation SNR, their ratio ranges between 0.7 and 2. In particular, the SNR of
observations and actions become closer as the level of noise increases. This highlights the robustness
of the policy, which does not diverge from optimal actions due to spurious fluctuations within the
observations. The errors do not accumulate over time and the closed-loop system seems able to
rectify the previous erroneous action to contain the deviation from the optimal controlled flow-state.
The policy is therefore sufficiently insensitive to input errors in that range of noise levels to ensure
a strong robustness. In addition, it is possible that the decorrelation of these errors between each
measurements helps mitigating the effects of the noise.

σ Observation SNR Action SNR Average drag reduction (%)

0 ∞ ∞ 18.4
0.05 0.33 0.17 18.1
0.1 0.18 0.09 17.8
0.5 0.04 0.04 14.2
1 0.02 0.03 13.1

Table 4.3: Noise robustness comparison. SNR: Signal-to-Noise Ratio

4.2.4 Impact of the episode and control step lengths

In the current section, the impact of the control step duration as well as the length training roll-outs
are investigated on a slightly differently controlled cylinder flow. The observation setup is made of
9 sensors (in 3 columns) instead 12 sensors and the actuation is performed with 4◦-wide jet inlets
(instead of 6◦).

As discussed by Rabault & Kuhnle [186], the choice of control step duration is driven by both
flow and controller time horizons. The natural vortex shedding period imposes a higher bound
on the control step for both measurements and actions to identify the dynamics without aliasing.
50 numerical steps (the duration ∆t used in the previous study) correspond to approximately 22
control actions per vortex shedding period. The controller imposes a lower bound constraint since
the impact of a given action at should not be sensed in a “too-distant” future, that is within a
reasonable number (< 100) of control steps later. This effect is illustrated by figure 4.19, where the
learning curves with different control step durations are compared. To keep all things otherwise
equal, the episode length is adapted to the control step duration in order to span the same physical
duration (or number of vortex sheddings). To keep the number of samples per epoch constant as
well, the number of episodes run per epoch is also adapted.

As shown by figure 4.19 (left), below 5 steps per characteristic period training fails. This is
simply due to aliasing, the agent cannot capture the system’s dynamics properly and thus cannot
“learn” proper control actions. With 5 and 20 steps per period, the learning performances appear
maximized before degrading again with 50 steps per period. In the latter case, the system’s response
to forcing in a future further than 2 characteristic periods is more than 100 steps “away” for the
agent. Thus these future rewards are weighed with an actuation coefficient γn < 0.36 with n > 100.
For the current environment dynamics, the agent has been rendered “myopic”, the relevant time
horizon cannot be captured properly. At last, 5 steps per period seems to slightly over-perform 20
steps per period. Yet 20 steps per period is generally favored over 5 for the simple reason that this
enables to produce four times more sampling data for the agent at a constant environment running
cost. This is very valuable for costly environment such as CFD ones.

87

Figure 4.19: Comparison of training performances (average reward obtained on training runs) for
(left) varying control step duration (measured as number of control step per characteristic period)
and (right) roll-out length. In the latter case, the control step is set to its standard value (≈ 22
control steps per characteristic period).

Figure 4.19 (right) illustrates the impact of the episode length. As previously, the study is
led so that the total number of training samples is constant, thus the number of roll-outs per
epoch is adapted. First and as expected here, one can notice that the longer the run is the better
performances are. In the extreme case of only 25 control steps per episode, the performance remains
close to the uncontrolled baseline. The agent is both constrained by the impossibility to collect
samples quantifying the effects of control actions further than (at best) one vortex shedding period
in the future. In that case, the average performance is computed only on the first steps where
obviously the flow is not controlled and stabilized. For longer episodes the asymptotic performance
stabilizes to larger values. That end-up converging to the reward of the controlled flow by effect of
averaging over the whole episode.

Second, one can notice in the first epochs of training that the transient decrease in performance
is of larger amplitude for longer episodes. This may be explained by the fact that initially random
actions disturb the flow and the accumulation of these drives the flow further into disadvantageous
states. On more chaotic flows, this phenomenon might be responsible for a strong limitation on the
episode length and/or the exploration noise.

4.3 Controlling a stalled airfoil flow

These next paragraphs discuss the RL-based control of the low-Reynolds number stalled airfoil flow
described in section 3.4.3.1. Parts of this section are drawn from Paris et al. [175].

4.3.1 Training and control performances

PPO-CMA has been run on test-cases with the previously introduced environment setup (refer to
section 3.4.3.1) for angles of attack (α) of 12°, 15° and 20°. The choice of these three cases is
motivated by the significantly different dynamical behavior they exhibit. Each epoch is composed
of 16 runs of 250 control steps each (run on 5 parallel environments), which represents around
3.6 CPUh per epoch. For the sake of conciseness, comparison of the results between these cases is
only presented and discussed when noticeable differences arise.

88

Figure 4.20: Ensemble-averaged learning curves of the pre-training phase for α = 12° (left), α = 15°
(center) and α = 20° (right). Dotted lines describe the ensemble minimum and maximum and
shaded areas illustrate the standard deviation across the batch.

For each angle of attack, ten independently initialized test cases have been trained. Figure 4.20
illustrates the evolution of both the average training reward and the standard deviation of the lift
(Cl) and drag (Cd) coefficients at the end of each training run. During training and for all of the
cases, the average reward grows rapidly until epochs 300 ∼ 400 then stabilizes to its maximum value.
This comes with a steep reduction of the variations of both Cl and Cd. The average exploration
component σ of the policy steadily decreases during training (not shown). This behavior is expected
from the agent, that starts with a broad exploration of the possible actions and then narrows it
down toward a more deterministic control strategy.

Figure 4.21 shows the ensemble averages of evaluations performed at the end of this pre-training
phase for α = 15° and vorticity snapshots of the flow on a randomly selected test-run. As soon as
the control starts, the control action swiftly drives the lift and drag coefficients toward favorable and
stable values. As shown by both the extremal envelopes and the flow snapshots, this correlates with
a stationarization of the flow through the cutoff of vortex shedding and with flow re-attachment.
Control actions are moderate suction actions as expected2. In the following, actuators are numbered
according to figure 3.13.

For α = 20°, all action components display strong variations during the transient phase which
lasts for about 8 non-dimensional time units. They all remain unsteady afterwards, synced on the
vortex shedding that has not been entirely canceled. Action components 0 and, to a lesser extent
1, 2 and 3, display a strong suction control forcing after the transient. These forcings ensure the
flow re-attachment. For cases with α = 15°, actuators 3, 4 and 6 enforce fast varying actions. The
re-attachment is again ensured by actuators 0 and 3, and to a lesser extent, actuator 1. It is worth
noting that after the transient (lasting for around 6 non-dimensional time units), all the action
components excepted actuator 6 become relatively stable. At last, for α = 12°, only actuator 3 has
a strong action variation during the transient of duration of around 5 non-dimensional time units.
During the stabilized phase, action components 2, 3 and 7 display a strong and relatively steady
suction forcing. Again here actuators 6 and 9 remain somehow unsteady compared to the others.

Long term dynamics of the controlled environment have been evaluated using batches of 10 to
20 evaluation runs of 2500 steps. Power spectral densities of both lift and drag signals (starting

2The left-hand side graph show the L1 norm of the action, which always positive even for suction actions

89

Figure 4.21: Ensemble averages of evaluation runs performed at the end of the training (epoch
700) for α = 15°. Here 10 independent test-cases are evaluated on 10 test-runs (100 trajectories in
total). Dotted lines describe the ensemble minimum and maximum and shaded areas illustrate the
standard deviation across the batch. Vorticity snapshots illustrate the flow state at key moments
of a randomly chosen run.

measurements after the control transient) have been estimated for each angle of attack and are
reported in figure 4.22 in comparison of the previously introduced corresponding non-controlled
signals.

Figure 4.22: Comparison of power spectral density estimations of the lift and drag coefficients for
α = 12° (left), α = 15° (center) and α = 20°. The Strouhal number is computed as St = f/fcharact.
where f is current frequency and fcharact. the reference frequency.

One can notice that for all studied angles of attack, control yields a shift of all the harmonics
toward higher frequencies. This shift is around 0.15 × n, (n being the harmonic number) for
α = 12°, 0.25 × n for α = 15° and 0.4 × n for α = 20°. This shift may be linked to the reduced
height of the flow separation due to the (partial) reattachment yielded by control. By analogy
with an unstable cylinder wake, one could assume a direct proportionality between the fundamental
frequency of shedding and an equivalent height. Both Cl and Cd signal are amortized by a factor

90

12 (for α = 20°) to 30 (for α = 12°) for lift coefficient and by a factor 13 (for α = 20°) to 200+ (for
α = 12° and α = 15°), confirming the nearly complete stationarization of the loads for these two
angles of attack.

At last, the occurrence of pairs of sub-harmonics peaks for α = 15° may be noticed. They have
not been related to a specific flow phenomenon or control behavior all the more that their amplitude
is orders of magnitude lower than the highest peak of the spectra.

4.3.2 Closed-loop vs open-loop vs steady control

Even though the obtained policies are efficient considering the control objective, one can question
the apparent complexity of these compared to the one of the training process. Where, for cases
such as the cylinder flow, a precise syncing of the control action on the vortex shedding appears as
a significant advantage for the performances of the optimized closed-loop control law compared to
variable or constant open-loop controls, this may not be the case for the stalled airfoil flow.

Figure 4.23 compares the performances of RL-trained closed-loop policies with their open-loop
equivalents. These are open-loop implementations of previously obtained control action sequences
on differently reset flows or constant forcings corresponding to the final time-averaged control action.

One can first notice that, irrespective of the angle of attack α, all policies perform very similarly
compared to the open-loop forcings. At α = 12° especially, a faster transient and stabilization using
a constant control action can be noticed. For α = 15° and α = 20°, closed-loop runs display a
slightly higher performance but the edge on the open-loop forcings remains moderate.

Nb. act. α Cl Cd S(Cl) S(Cd) S(Cl) + S(Cd)

10
12 0.0% 0.0% 0.0% 0.0% 0.0%
15 +2.4% +1.7% +98% +9.9% +75%
20 +1.0% +0.9% +41% +65% +47%

Table 4.4: Comparison of the final performances (i.e. in the ”stabilized phase”) in closed-loop and
open-loop conditions. Performance variations are measured as relative variation with respect to the
closed-loop performance. Green colored figures indicate that open-loop control performs better on
the metric than closed-loop whereas red colored ones states the opposite. Ensemble averages are
computed on batches of 10 test runs for each to the 10 test cases (100 runs in total).

Table 4.4 reports the comparison between the closed-loop and the (variable) open-loop policy.
Here percentages represent the relative variation observed on a given indicator of performance
while switching from closed-loop to open-loop. These figures first confirm that variations in both
lift and drag coefficients are marginal. Yet, concerning their temporal variation, computed as a
standard deviation, the impact of the feedback observations directly influences the stabilization
capabilities of the control, which is the primary objective of the training (the reward is defined
on these fluctuations), the improvement of time averaged values of these coefficients being a “side-
effect” of the flow reattachment.

One can then question the legitimacy of resorting to such complex and costly training processes
if it is to “only” end-up with policies comparable to constant open-loop forcings in terms of per-
formances on this case. One could justifiably argue than testing the performances of open-loop
and/or “simpler” closed-loop methods could provide solutions as efficient as ours for a fraction of
the computational cost.

91

Figure 4.23: Comparison of the performances of the obtained closed-loop control policy (red line)
with its open-loop equivalent (orange line, implementation of a sequence of actions drawn from
another run irrespective of the current observation feedback) and with the constant open-loop
control (green line) obtained by considering only the final time-averaged control action. Policies
obtained at different angles of attack, α = 12° (left), α = 15° (center) and α = 20° (right) are
compared regarding the lift coefficient Cl (top), the drag coefficient Cd (middle) and the reward
rt (bottom). Solid lines indicate ensemble averages across batches of 10 test-runs on 10 different
policies (100 test-runs in total), shaded areas represent the ensemble standard deviation across this
batch and dotted lines display a randomly picked example.

First and despite its apparent simplicity, a constant open-loop forcing still needs to optimize
the value of 10 scalars (the value of each action component). This still requires a search of the
action space (using gradient descent methods or gradient-free, evolutionary strategies). Second, it
is empirically observed that RL-trained policies generally inherit a rather significant robustness to
a variation in the flow conditions (refer to part 4.2.3), which may be interesting when applying
these control methods to experimental setups where thermodynamics conditions are not perfectly
controlled and measured. One can also point out, that these training strategies help discovering
new control methods, that could not be uncovered using more traditional control synthesis ones.
At last, despite bringing similar results, closed-loop policies still display a small performance edge
over their open-loop counterparts.

92

4.4 Controlling an open-cavity flow

Controlling the open-cavity flow introduced in section 3.4.4 has been doubtlessly one of the toughest
challenges of this thesis. This mainly comes down to the need for searching the hyper-parameter
space in order to achieve efficient training. Some environments proved to be “tolerant” to a large
range of hyper-parameter setups, enabling proficient control without having to browse the hyper-
parameter space too much and test an extensive number of configurations. Concerning the present
case, in contrast, this search has revealed to be a long and tenacity-testing endeavor.

4.4.1 LGP control

The first RL-based training tests dramatically failing to get even close to the non-controlled flow
performance first led to consider LGP control strategies as a way to discover control strategies that
RL was not capable of providing. As introduced, genetic programming has been experimentally
implemented by Maceda et al. [149], who controlled the flow using plasma actuators and amplitude
modulation. The current study uses a similar hyper-parameter setup but LGP policies that directly
output the control action.

The tested setup presents only one actuator, implementing a Gaussian-shaped source term for-
cing centered in (−0.1, 0.02) (directly above the upstream edge of the cavity) on the horizontal
momentum equation, observations made of the last 3 horizontal velocity values sampled in (0.9, 0)
(in vicinity of the downstream edge of the cavity) and uses a reward considering only the standard
deviation of the measurement signal across the last 100 control steps.

Parameter Value
Population size 100

Allowed operations +, −, ×, /, cos, sin and tanh
Number of variable registers 14

Maximum number of operations 100
Elitism 1

Cross-over probability 0.5
Mutation probability 0.4
Generation probability 0.1
Tournament fraction 7%

Tournament probability 1
Number of evaluation runs per individual 1

Control steps per test run 500

Table 4.5: Hyper-parameters of the LGP evolutionary process performed on the cavity test-case

Table 4.5 reports the hyper-parameters of the evolutionary search. Each individual is encoded by
a sequence of at most 100 operations. Each operation is encoded, using the reverse Polish notation,
as a matrix row, the top-down execution of operations/matrix rows implementing the control law.
This may seam important but a large fraction of these operations lead to introns. 14 read-write
slots are used to store input values or intermediate results. Individuals providing constant actions
are rejected, i.e. not accepted as valid ones in the evolution process and thus re-sampled. New
individuals are compared to already existing ones and rejected if their L2 similarity on a set of 100
randomly selected inputs is above a given threshold with any of the other already seen individuals.

93

The first phase of a population evolution consists in performing elitism and the tournament phase.
Here the tournament consists in extracting 100 individuals (with possible repeats) by iteratively
sampling 7% of the old population and select to the best one with probability ptour = 1. In the
case where the tournament probability ptour is lower, the second best is selected with probability
(1−ptour)ptour, the third best with probability (1−ptour)

2ptour and so on and so forth. The obtained
population then goes through cross-over, mutation or random generation. Cross-over cases where
both individuals are identical (because of potential repeats) are re-sampled.

Figure 4.24 (left) illustrates the evolution of the performance of the population throughout the
training stopped at epoch 20. One can first notice that the best performance (the lower the better in
that case) is very quickly reached and only marginally improved afterwards. Second the population
spreads over a wide range of performances, most of the individuals performing significantly worse
than the non-controlled flow (which has an average performance of 0). Both right-hand side graphs
of figure 4.24 describe the performance of the best individual, which has the following analytical
expression:

at = tanh (−0.23197× tanh ◦ cos ◦ tanh ◦ tanh ◦ cos(2.10256 + st)) ,

where st is the most recent observed x velocity at (0.9, 0) and at is the control action. It can
be noticed that despite providing a somehow satisfactory short-term control (at least concerning
the observed signal), long-term dynamics display a destabilization of the flow. This may be due
to a slow unstable mode (potentially linked to the recirculation in the cavity) developing on time
scales much longer than the evaluation run. As shown by the bottom right-hand side graph, the
control policy allows for doubling the frequency of the control action with respect to the one of the
observations if these oscillate in the range [12, 23]. This may be an important characteristics to the
relative performance of the control.

An important factor limiting the efficiency of the LGP on such cases is the difficulty to converge
low-variance, unbiased estimates of the fitness of individuals, in other words the need for an import-
ant number of (very) long test-runs to assess the value of the individuals. And as the vast majority
of the individuals performs very poorly, it can be considered as a large waste of computational time.
Considering the computational cost of these 20 epochs, i.e. running 2000 runs of 500 steps, and
a critical lack of reproducibility or at least weak guarantees of performance, it has been decided
to further study more complex RL-based trained strategies. Future developments could consider
running a few epochs of LGP and reuse (by transfer learning) the best individuals as “seeds” for
RL agents, ensuring a “flying start” and thus a reduced convergence duration.

4.4.2 Distillation between RL agents

As training a RL-agent using observations located near the downstream edge of the cavity proved
to be notoriously challenging (likely because of the convective delay between control actions and
consequences on observations), this test case has been chosen to test policy distillation. As previ-
ously introduced, policy distillation consists in transferring knowledge (by imitation) from an expert
agent, here trained in an easier context, to a student agent, tasked with reproducing the expert
behavior but here with a different set of observations. The principle is illustrated by figure 4.25
while both observation setups are reported in figure 4.26.

Figure 4.27 illustrates the impact of policy distillation on the performances of agents having
a “student” observation setup. One can notice a sharp increase of the performances during the
training phase where distillation occurs. Yet, it plateaus afterwards and the student performance

94

Figure 4.24: (left) Evolution of the performances of the population. (top right) Evolution of the x
velocity observation on a test run of the best individual. (bottom right) Control law encoded by
the best individual.

Environment

Teacher
agent

Student
agent

at asVt Vs

Obst Obss

Distillation

N(µt,σt) N(µs,σs)

Figure 4.25: Schematics
of policy distillation in an
Expectation-Maximization
(EM) context.

Figure 4.26: Comparison of both observation setups. (top) Ex-
pert agent setup with upstream observations. (bottom) Student
agent setup with downstream observations.

remains significantly lower than the one of the expert (dashed red line in the figure). This gap
can be expected from the fact that perfect imitation cannot be guaranteed simply because both
observation setups are not equivalent from an informational viewpoint. Longer distillation phases
have been testing but lead to a drop in the performance of the student. Still, this lack of performance

95

improvement calls from more investigations on this knowledge transfer strategy.

Figure 4.27: Comparison of learning curves of agents having the “student” observation setup, with
and without distillation. The grayed out area represents the epochs where distillation from the
expert has been performed in addition to standard training.

Figure 4.28: Comparison of both teacher (blue line) and student (red line) policies with the non-
controlled signals (light gray line) at two different locations (x = 0.6 and x = 0.9 over the cavity)
on long-term horizons.

Both performances are compared in long-term horizons on figure 4.28. As a training episode
lasts for 500 control steps in the current study, the behavior observed from control step 1000
onward is likely a generalization of the behavior learned on earlier observations corresponding to
a less stabilized flow. First one can notice that, contrary to the LGP control attempt, both cases
(expert or teacher) do not see the emergence of a slowly growing destabilization (at least within

96

this time horizon). This may be thanks to the empirical robustness of RL-based control policies.
Second, the imperfect knowledge transfer from the teacher to the student agent is confirmed by
inferior performances materialized by a worse stabilization of the flow from the student (red line)
than from the teacher (blue line).

Figure 4.29: Comparison of the control performances of the policy trained with upstream sensors.
(top graphs) Uncontrolled baseline (blue-framed) and controlled (red-framed) flow snapshots of the
x-velocity at control step 4000. (bottom graphs) x-velocity signals at (0.6, 0) and (0.9, 0).

In that case, policy distillation provides encouraging results, calling for more studies on that
strategy. Yet, when showing controlled flow snapshots, it has been realized that, contrary to what
the horizontal velocity observation implies (i.e. a reduction of the flow unsteadiness), the overall
fluctuation level was not reduced. Instead, taking advantage of the permissive formulation of the
reward (only considering one measurement location), the agent had learned a strategy consisting
in alternatively shedding vortices above and below the y = 0 line (refer to figure 4.29), on which
the observation is located, so that the velocity signal was effectively reduced in contrast to nearby
zones of the flow where vortices had been deflected.

The following part discusses the strategy developed and the attempts made to really control the

97

flow and drive it toward a thorough steadiness.

4.4.3 Reaching complete stabilization

The following RL-based study adopts the control setup described thereafter. This section is
drawn from an article to be submitted to JFM.

4.4.3.1 Control and training setups

Figure 4.30: Schematics of the control layout. (left) Close-up on the upstream cavity edge. Blow-
ing/suction control actions are symbolized by the colored triangles whose color and height depict the
current control action. Dotted diamond represent the extreme forcing actions, ranging in [−1; 1].
(right) Full view of the cavity. Pressure sensors are represented by green dots whereas other meas-
urements, used to compute multiple performance metrics are shown in orange.

Similarly to standard linear closed-loop design, the flow is considered as a plant stepped forward
in time in a discrete fashion. The control step ∆t is defined as the number of numerical iterations
ran in-between two measurements and/or control action updates. In the current setup, ∆t = 30 δt =
8.22 × 10−4 non-dimensional time units. Thus, it takes approximately 20 control steps to run one
characteristic period. Such a value enables to both avoid aliasing measured signals and allows for
having a few periods within a medium-term future (< 100 control steps), as discussed by Rabault &
Kuhnle [186]. The current state of the flow is partially observed through 3 pressure measurements
from virtual probes located in (0.1, 0), (0.2, 0) and (0.3, 0), as shown by figure 4.30 (right), slightly
downstream the first edge of the cavity. The reference inflow static pressure p∞ is subtracted to
these signals to make up the observed partial state st. The control action at is implemented using
two blowing/suction actuators. As illustrated by figure 4.30 (left), a first actuator is simulated
on the horizontal wall upstream of the edge and spans x ∈ [−0.05, 0]. This actuator can either
blow a jet at a downstream angle of 45° (positive action) or suck fluid (negative action) and is
referred to as ”top action” in the following. The second actuator, referred to as ”wall action”, is
implemented on the neighboring vertical wall, spans y ∈ [−0.05, 0] and blows horizontally or can
similarly suck mass-flow. The idea behind this action layout is to provide the controller with the
ability to significantly alter the flow in a zone where fluctuations start developing. A control action
then ranges [−1; 1]2 and is converted as a command in mass-flow rate at the previously described

98

boundary conditions. Similarly to the other introduced test-cases, and to avoid discontinuous and
nonphysical changes in the boundary conditions simulating the action, linear interpolation ramps
covering 90% of the control step, smooth out the control action for one control step to the next.
Thus, at the ith numerical iteration of control step t, the mass flow per unit area qi imposed at the
blowing/suction boundary conditions, is measured as a fraction of the free-stream mass flow rate
and reads:

qi = ρ∞U∞ (at−1(1− ri) + atri) with ri =

{
i/27 if i < 27
1 otherwise,

The total enthalpy h imposed for the blowing control actions is the free-stream one, h∞.
Other measurements are performed, alongside the partial observations previously introduced, at

the end of every control step. Two groups of virtual probes measure the pressure and both compon-
ents of the velocity, respectively at locations {(0.3, yprobe) | yprobe ∈ [−0.05,−0.025, 0, 0.025,−0.05]}
for the first upstream group of the probes and {(0.8, yprobe) | yprobe ∈ [−0.05,−0.025, 0, 0.025,−0.05]}
for the second, more downstream one. These probes buffer the last 40 measurements (correspond-
ing to ≈ 2 characteristic periods). From these one can define two performance metrics m3 and m8

quantifying the stabilization of the flow:

m3(t) =
1

5

∑

yprobe

S
(
p(0.3,yprobe), t

)
+ 0.1× S

(
vx(0.3,yprobe), t

)
+ 0.1× S

(
vy(0.3,yprobe), t

)

m8(t) =
1

5

∑

yprobe

S
(
p(0.8,yprobe), t

)
+ 0.1× S

(
vx(0.8,yprobe), t

)
+ 0.1× S

(
vy(0.8,yprobe), t

)
,

where S(·, t) is the standard deviation of the signal recorded in the corresponding buffer at control
step t, i.e. the fluctuations of the signal over the last ≈ 2 periods. As the shear layer develops with
the convection of the fluctuations, the downstream-most metric m8 is likely to be more faithful to
a global stabilization of the flow. Yet, for reasons discussed in section 4.4.3.5 and unless otherwise
stated, the reward rt is defined as:

rt = −m3(t)− 0.1× p(0.3,0) − 0.1× ||at||1,
where m3(t) is the value of metric m3 at control step t, p(0.3,0) is the average pressure measured over
buffer p(0.3,0) and ||at||1 is the average control action bias over the last 40 control steps. Thus, max-
imizing the reward is equivalent to minimizing the fluctuations measured by m3, while both keeping
a pressure close to the one of the reference one and a forcing action with minimized continuous
components.

In the current study, each epoch contains 3 roll-outs of 250 control steps each. To take advantage
of the high-performance computing cluster used to train the cases, these roll-outs are performed
in a parallel fashion, leveraging the MPI standard for the parallelization. Three environments are
thus simulated on “client” ranks and the agent is handled by a “‘main rank”. Environment ranks
then query the agent rank for control actions, step forward in time, send the observations and the
reward back and iterate these operations until the end of the roll-out before resetting their state with
probability P (env. reset | epoch). Unless otherwise stated, the following scheduling is implemented:

P (env. reset | epoch) = 1× (1− f(epoch)) +
1

20
× f(epoch),

where f(epoch) = max

(
0,min

(
1,

epoch− 300

500− 300

))
,

99

is a ramp function between training epochs 300 and 500. One can then compute the expected
number of control steps ran in-between two environment resets, that grows from 250 steps before
epoch 300 to 5000 steps for epoch 500 and onward, as illustrated by figure 4.31 (left). Refer to
section 7.1.2.2 for a more complete discussion of this scheduling. A reset of the flow state consists
in over-writing it with a fully developed, non-controlled flow. The flow is then stepped forward for
a random number of numerical iterations and all data buffers are re-initialized.

Figure 4.31: (left) Environment reset scheduling used in this study. Expected number of control
steps ran in a row on an environment in-between two resets with respect to the training epoch.
(right) Scheduling on the reward definition between the two metrics m3 and m8, discussed in section
4.4.3.5. This scheduling is not implemented in the reference training setup.

4.4.3.2 Control performances

A batch of 20 test-cases having the previously introduced setup has been trained on 1500 epochs.
Control effectiveness is assessed via both performance metrics m3 and m8 previously introduced.
Unless otherwise stated, these are normalized by the average performance of the non-controlled flow
(m3,baseline and m8,baseline respectively):

m3 ←
m3,baseline −m3

m3,baseline

m8 ←
m8,baseline −m8

m8,baseline

.

Thus, in the following m3 and m8 range [−∞, 1], where 1 corresponds to a perfect steadiness and
0 to the same level of unsteadiness as the non-controlled baseline.

Learning curves of these two indicators are displayed on figure 4.32. One can notice a drastic
improvement of both normalized performance metrics m3 and m8 in the first 300 epochs, then a
slower increase, once the agents perform better than the non-controlled baseline. As expected, both
metrics are correlated.

One may point out the discrepancy in performance between the evaluation runs (of length 4000
control steps) and the training runs (of length 250). Two main factors account for this fact. First,
during the training run, the control is sampled on N (µ(st), σ(st)) whereas evaluation runs only
consider the best action µ(st). The training control action is thus overall more noisy than for the
evaluation. On a setup where the goal is to damp fluctuations, noisy control actions obviously
contribute to lower the performance. Second, training roll-outs may be performed on environments
that may have been reset more or less recently in the past, thanks to the scheduling on the probability
P (env. reset | epoch), contrary to evaluation runs all starting from a fully developed flow.

100

Figure 4.32: Learning curves of the final value of the performance metric (respectively m3 and
m8) on training roll-outs of length 250 steps (orange lines) and on evaluation roll-outs of length
4000 steps (red lines). These performances are normalized by the average performance of the non-
controlled baseline. Solid lines represent the ensemble average across the batch, while shaded areas
illustrate the ensemble standard deviation and dashed lines represent the maximum value.

From epoch 600 onward, the maximum achievable performance is reached on evaluations for at
least one test-case. Yet, the ensemble averages show lower performances indicating that all agents
do not converge as well as the best individual. Figure 4.33 accounts for this by clustering the agents’
performances into three different groups. The first and best-performing one is made of 5 test-cases,
whose final normalized metric value m8 is larger than 0.8. They all display an overall suction for
the top action and strong blowing for the wall action. The second group (in orange on the figure)
is made of 7 individuals and display performances that stabilize around 0.5 for all the indicators.
Most of these converge toward blowing control actions for both components. For the majority of
these cases, the performance tends to stabilize in the long run. At last, a group of 8 individuals
show performances than are on average as good as the non-controlled baseline. They generally use
a moderate blowing for the top action (not shown on the figure, hidden behind the previous group)
and a small blowing for the wall action.

This shows that, contrary to other flow environments, results obtained on this cavity flow suffer
from a lack of reproducibility. Multiple factors can account for this, as discussed in the conclusions.

4.4.3.3 Physical analysis

For the following sections, the best agent obtained on the 20-test-case batch is considered. Figure
4.34 illustrates the evolution of multiple performance indicators as well as flow snapshots at different
moments of the evaluation run. The control actions appear to a have rapid stabilizing effect on the
velocity measured in the shear layer near the upstream edge. It increases quickly within the first
50 control steps and then stabilizes. Conversely, the velocity measured at the bottom of the cavity
(refer to the center graph) displays a much slower stabilization. This fact is confirmed by the center
flow snapshot at step 250 that shows remaining convective structures in the recirculating flow of
the cavity whereas the shear layer seems already totally stabilized.

This lag weighs on the value of performance metric m8, likely thanks to the pressure probes that
are exposed to the radiated acoustics from these recirculating fluctuations. Thus, even if most of
the performance is gained in the first 200 control steps, it takes around 1000 steps to thoroughly
stabilize the flow. The control action, appears to fluctuate noticeably at the beginning of the run but
then slowly stabilizes toward non-null averages. The role of these fluctuations is further discussed

101

Figure 4.33: Heat map of the performances of the agents of the test-batch on evaluation runs.
They are clustered into three groups depending on the final value of the normalized performance
metric m8: red if it is larger than 0.8, green if it is lower than 0.25 and orange in-between. (top
left) Normalized performance metric m8. (bottom left, top center and bottom center) Pressure,
horizontal velocity and vertical velocity components of m8 respectively. (top right and bottom
right) Control action, top and wall action respectively.

in section 4.4.3.6.
To analyze in more details the control action, a global stability is performed. Figure 4.35

compares the absolute stability of the obtained steady controlled flow with the base-flow (steady
solution of the Navier-Stokes solution) of the non-controlled flow. Global absolute stability is
assessed as follows. Let q and N respectively denote the flow state (full-state) and the Navier-
Stokes operator. One can then write:

∂q

∂t
= N (q).

If q is later decomposed as the sum of a steady state q
BF

, solution of the Navier-Stokes equations (i.e.

N
(
q
BF

)
= 0) and a small perturbation vector q′, one can develop a first order Taylor expansion

as:

∂q′

∂t
= J.q′ + o(||q′||) where J =

∂N
∂q

∣∣∣∣
q
BF

.

One can study the spectrum of matrix J , referred to as the Jacobian matrix. In practice this
matrix is computed using the second-order finite-difference method using small perturbations of
the baseflow, refer to [17] for more details and appendix 9.3. The absolute stability of steady state
q
BF

is then determined by the existence of at least one eigenvalue having a positive real part in
the spectrum of this matrix. Figure 4.35 (top center) represents some of these eigenvalues in the
complex plane. As J is real-valued, its spectrum is symmetrical with respect to the horizontal axis,
then for the sake of simplicity, only its “upper” part is represented. Concerning the non-controlled
baseflow, one can notice the presence of four unstable eigenvalues, which is consistent with the
results of the study of Sipp & Schmid [228] on the same geometry and Reynolds number but on an

102

Figure 4.34: Evolution of multiple indicators during an evaluation run of the best individual of
the test-batch. (top graphs) Horizontal velocity flow snapshots. The color scale is the same as
the one used in previous flow figures 3.19 and 4.30. (bottom) Evolution of both control actions
with time. (other graphs) Evolution of the metric of the controlled flow (red line) compared to the
non-controlled baseline (blue line).

incompressible flow. The modulus of the eigenmodes corresponding to these unstable eigenvalues is
represented on the graphs below. Eigenvalues of both flows can be paired, as shown on the figure,
refer to appendix 4.4.3.7 for more details. Despite having differing Strouhal numbers (here non-
normalized) and amplification rates σ, these modes present a very similar spatial structure, mostly
peaking near the downstream edge of the cavity. The spectrum of the controlled flow is super-
imposed on the same graph, one can likewise identify three eigenvalues that stand out. This time,
only one is unstable and one is marginally stable. The structure of the corresponding modes also
peak in the same area as previously but one can still notice slight modifications of their structure
due to the modification of the baseflow by the control action. The controlled flow has thus one
unstable mode and may then slowly develop an unsteady behavior if the forcing is kept constant

103

Figure 4.35: Comparison of the results from the global absolute stability of both the controlled
steady flow (red-framed plot and marker) with the non-controlled baseflow (blue-framed plots and
markers). (top left and right) Horizontal velocity snapshots of the non-controlled baseflow (blue-
framed, left) and the steady controlled flow (red-framed, right). (top center) Eigen-spectra of the
baseflow and the steady controlled flow. (bottom graphs) Modulus of the eigenmodes corresponding
to the numbering of the stability spectrum for both the non-controlled baseflow and controlled flow.

(equal to its final mean value). This is later discussed in section 4.4.3.6.

4.4.3.4 Fluctuation reduction

The long-term behavior of the controlled flow is illustrated by figure 4.36. Pressure and velocity
measurement signals can be compared with the non-controlled baseline. On the three sensing
locations and judging on the energy content that is decayed by 6 or more orders of magnitude
compared to the baseline, the stabilization is nearly perfect. The effect of the control action seems
to “bend” the mixing layer downward, thanks to both the suction of boundary layer developing on
the upstream wall via the top action and to the boost in horizontal momentum provided by the
sustained blowing of the wall action.

The only remaining noticeable harmonics appear mainly on both sensors located in the shear
layer and refer to lower frequency signals whose amplitude is way lower than what is measured on
the non-controlled flow. These peaks are likely due to the remaining unsteadiness of the long-term
control action of the policy.

4.4.3.5 Effect of the reward scheduling

As introduced earlier, the reference reward formulation rt relies mostly on m3, to which small
amplitude penalties on the average pressure signal and action norm are added. This design choice
can be questioned as it appears as an indirect method to achieve the control goal. The current
part discusses the effects of these choices on training through a reduced ablation study. Figure
4.37 compares the learning curves of the current setup (denoted as “ref.”) with two other possible
choices on different indicators of the convergence. The first implies a smooth transition of the

104

Figure 4.36: Time spectral analysis of the controlled flow. (top) Horizontal velocity snapshot of the
controlled flow. (bottom graphs) Power spectral density estimation of the pressure, and velocity
components of the controlled flow at three different locations (red lines), compared to the previously
introduced non-controlled flow (blue lines).

reward formulation from considering m3 to using m8. This scheduling is performed from epoch 700
to epoch 900. The second simply considers the formulation of the reward with m8 instead of m3

from the beginning of the training.

First, it can be noticed that the slow scheduling setup (orange lines) performs overall worse than
the reference configuration without transition from upstream to downstream fluctuation measure-
ment. This correlates with a increase in the loss of the value function estimator, the latter quanti-
fying the accuracy of this estimator to properly assess the expected sum of rewards in the future,
i.e. the fitness of partial state st. It also corresponds to an increase of the average log σ explor-
ation value, which end-ups matching the value observed with a direct measurement of m8 in the
reward (green lines). The latter setup shows an overall slower and poorer convergence than with
the reference configuration. This reveals that measuring the reward more downstream, thus with
an increased delay between forcing actions and observable consequences on the flow fitness, makes
the estimation of its value harder. All the more that partial observations are much more upstream
than the reward metrics. Thus, even though m3 is an imperfect metric of the overall unsteadiness of
the flow state (it leaves possible downstream-growing perturbations unmeasured), it still provides
a relevant indicator of the present and future perturbations in the flow. This seems to be enough
for some agents to converge toward the control objective.

105

Figure 4.37: Learning curves of the last measurements of m3 (top left and center) and m8 (bottom
left and center) metrics respectively on 4000-step evaluation runs and on training roll-outs. (top
right) Evolution of the value function loss. (bottom) Evolution of the average log σ provided by the
actor. Different scheduling setups on the reward formulation are compared. Solid lines represent
ensemble averages (over 20-test-case batches) and shaded area illustrate the corresponding standard
deviation.

4.4.3.6 Comparison with open-loop, and constant control laws

The study of successful control policies has shown that after a short transient, control actions
are nearly steady suction (top action) and steady blowing (wall action). One can question the
actual closed-loop nature of the control law and the usefulness of such computationally-intensive
optimization methods if they provide trivial steady open-loop forcings.

A comparison between the closed-loop policy and other derived open-loop policies has been led
to bring elements to the discussion. Figure 4.38 synthesizes the obtained results. First, the control
actions obtained in closed-loop using the trained policy have been recorded on multiple evaluation
runs. These control action sequences have then been implemented in an open-loop fashion starting
from flow states with varying random reset states. This makes up a first “open-loop” comparison
point. Second, an even simpler open-loop forcing has been tested, consisting in implementing the
time-averaged action of the closed-loop policy observed after the transient. As exemplified by figure
4.38, these different forcings provide equivalent performances during the transient (up to control
step 500), but fail to damp the remaining fluctuations and even allow for a slow amplification of
these, leading a drop in performance. The flows obtained at the end of randomly picked runs show
that, contrary to the closed-loop-controlled flow, the upstream structure of the flow is different from
the non-controlled flow but unsteady perturbations could still slowly develop further downstream.

At last an hybrid control law has been evaluated, consisting of the closed-loop policy until control
step 2000 then a smooth transition to the constant open-loop forcing previously introduced. This
control obviously reaches the same performances as the closed-loop in the first steps. But it slowly
diverges from it from step 2000 onward. Thus, even when a steady controlled flow is reached, a
steady control forcing fails to prevent destabilization. This is consistent with the stability analysis
of this controlled flow previously discussed.

This study then brings an answer to question of the “closed-loop” characteristic of the obtained
policy. Both transient control actions and apparently-steady control actions implemented afterwards
perform better than open-loop forcing. They yield slightly more efficient transients and more
importantly ensure long-term flow steadiness. Thus, the RL closed-loop policy brings the flow

106

Figure 4.38: Comparison of the obtained control policy with multiple “open-loop” versions of it
(described in the ad hoc paragraph). For the sake of readability, only one randomly-picked run
is represented on the figure. (top left) Normalized performance metric m8 and horizontal velocity
signals at location (0.8, 0). (top right) Forcing actions. (bottom graphs) Horizontal velocity flow
snapshots obtained at the end of the test run with the different control laws.

toward a slightly unstable state, and then ensures with very slight action fluctuations that no
unsteadiness appear.

4.4.3.7 Constantly-forced flow stability analysis

The long-term control action tends to stabilize the flow using nearly steady forcing actions. From
the analysis of figure 4.35, unstable modes seem shifted toward stability by the control action,
through a modification of the baseflow. To further study this fact, the baseflow of cases where a
steady open-loop forcing, proportional to the final, time-averaged control action aref obtained using
the closed-loop policy (i.e. at = f × aref), is studied. For multiplicative factors f on this control
action ranging from 0 to 2, the baseflows have been compared and their stability has been assessed.
Results are reported in figure 4.39. First, one can confirm that pairs of eigenvalues really belong to
the same stability branch in the complex plane.

Baseflows also appear to continuously deflect their shear layer downward with the increase in
control action strength f . As shown by the hatched region on the color-bar, for actions ranging

107

Figure 4.39: (left) Horizontal velocity iso-lines at vx = −0.1 (dashed lines), 2 (dotted lines) and 8
(solid lines) plotted for different control action factors f . The correspondence between color and
value is reported on the right-hand side color-bar. (right) Unstable branches of the global stability
spectra for different values of open-loop forcing actions. For factors in [110%; 150%], all eigenmodes
are stable (negative real part of the corresponding eigenvalue).

from 110 to 150% of the nominal control actions, the baseflow has no unstable eigenmodes. It is
thus likely that constant open-loop forcing with these control values successfully prevent the flow
from destabilizing, if they manage to first damp the initial developed fluctuations. For values of f
larger than 150% the baseflow becomes unstable again.

4.4.3.8 Control robustness

Figure 4.40: Robustness to a change in the free-stream velocity. (left) Comparison of the relative
measured pressure at (0.8, 0) between non-controlled and controlled flows. (right) Final value of the
normalized performance metric m8 at the end of 8000-steps evaluation runs. Solid lines represent
time averages whereas shaded areas illustrate the average standard deviation observed over windows
of 40 control steps.

The effect of a change in flow regime has been tested by the modification of the free-stream
velocity U∞. All things otherwise equal, this affects the Reynolds (Re = U∞D

ν
) and Mach numbers

108

(M∞ = U∞√
γrT∞

). When varying U∞, the numerical time-step is adapted but the control step physical
duration is fixed. Action and observation setups are also kept unchanged. The best RL-trained
closed-loop policy (converged at Re = 7500) has been evaluated on cavity flows where the free-
stream velocity U∞ ranges from 70 to 120% of its nominal value. This corresponds to a range of
Reynolds numbers from 5250 to 9250 and upstream Mach numbers from 0.07 to 0.12. The results of
this study are presented in figure 4.40. One can notice that for velocities lower than the reference,
the control policy successfully reaches the maximum stabilization performance and keeps the flow
steady, where for velocities larger than U∞, the performance degrades. Here evaluation runs last
for 8000 control steps, thus the final measured performance is not statistically steady for Reynolds
number larger than 7500 displaying very long destabilization transients after an initial successful
stabilization of the flow (not shown).

Figure 4.41 illustrates the robustness of the control policy with respect to additional measure-
ment noise which is implemented as follows. If st and s̃t denote the noise-free and noisy partial
observation vector respectively, one can define the noise amplitude σ so that:

s̃t = σu+ st,

where u ∼ N (0, stdno control) ,

and where stdno control is the standard deviation of the non-controlled observation signal, i.e. the
baseline fluctuation level, and the random vector u being sampled at the end of every control step.
This issue of robustness to observation noise has already been discussed for the control of the low-
Reynolds cylinder flow discussed in section 4.2.3. It has been demonstrated that policies trained
on noise-free measurements tended to perform better than the ones trained on noisy environments,
when evaluated on noisy environments. This suggests that the exploration noise is sufficient to
ensure policy robustness even against much stronger measurement noise levels.

As shown by figure 4.41, control performance is rather resilient to observation noise. Up to
σ = 0.1 (i.e. 10% of the non-controlled observation fluctuation levels), the performance converges
toward its maximum value. For larger σ values, performances decrease but still remain better than
non-controlled baselines, despite strong fluctuations of the agent’s input, thanks to a “damping
effect” of the actor, concerning the control action.

4.5 Synthesis

All the presented results would not have been achieved without preemptive hyper-parameter searches.
Generally speaking, flow control environments are more sensitive to the hyper-parameter configur-
ation than simpler and cheaper environments. As sample cost also represents a major difference
compared to these “sand-box” environments, these fine-tuning search phases were computationally
costly. Still, RL has shown its ability to provide effective, robust and energy efficient control policies
on high-dimensional environments displaying non-linear dynamics.

From these findings, multiple issues concerning the application of RL and LGP algorithms
arise. Sample efficiency is key to algorithm performance. It should be optimized with care since
computational cost quickly becomes the main barrier to the application of these methods to more
complex and costly flows.

In the same perspective, both sensor and actuator parsimony are matters of concern for two
mains reasons. First it has been observed that convergence accelerates as the number of agent

109

Figure 4.41: Robustness to Gaussian noise on partial observations. (top left) Evolution of the
normalized performance metric m8 for different noise levels. The average final performance of open-
loop runs discussed in section 4.4.3.6 is added for comparison (black dashed line). (center left)
Upstream pressure observation located in (0.1, 0). (top right) Downstream pressure measurement
in (0.8, 0). (center right) Horizontal velocity measurement in (0.8, 0). (bottom left and right) Top
and wall control actions respectively.

inputs and outputs decreases. Having less sensors and actuators is thus a leverage to reduce the
computational costs whose importance has been emphasized early on. The second reason con-
cerns the transposition to experimental or industrial contexts where real-world constraints such as
hardware availability or sensing and actuation limitations are important factors considering the
feasibility of a given application. There is indeed a vested interest in having sparse sensors and
actuators layouts, but this should not come at the cost of performance. Thus methods enabling the
first while preserving the latter as much as possible would represent a significant step forward for
the maturity of these control methods.

The following chapters successively tackle the sensor and actuator sparsity issues. Chapter 7,
addresses transverse issues encountered on these test-cases that also impact sample-efficiency.

110

Chapter 5

Sensor sparsity

This section tackles the issue of sensor layout parsimony. After an introduction of the existing
literature on this topic and a justification of the theoretical and practical interest of sensor
sparsity, a RL-based method, proposed in Paris et al. [174], and it results are detailed. Parts of
this chapter are thus directly drawn from this article.

Contents
4.1 Controlling the KS equation . 67

4.1.1 Driving the state to its fixed points . 68

4.1.2 Multiple goals and catastrophic forgetting 69

4.1.3 Control using model-based RL . 72

4.2 Controlling a low Reynolds cylinder wake 73

4.2.1 Setup and training . 75

4.2.2 Control performance . 75

4.2.3 Robustness . 83

4.2.4 Impact of the episode and control step lengths 87

4.3 Controlling a stalled airfoil flow . 88

4.3.1 Training and control performances . 88

4.3.2 Closed-loop vs open-loop vs steady control 91

4.4 Controlling an open-cavity flow . 93

4.4.1 LGP control . 93

4.4.2 Distillation between RL agents . 94

4.4.3 Reaching complete stabilization . 98

4.5 Synthesis . 109

111

5.1 Problem statement

5.1.1 Relevance of the issue

Reducing sensor requirements while keeping optimal control performances is crucial to potentially
transpose flow control techniques to experimental and industrial cases. Contrary to numerical simu-
lation, where the full flow state is available, experimental setups and further real-world applications
of flow control see much more constrained measurement options. Pointwise probes are constrained
by their physical footprint and must be integrated in a way that minimizes disturbances on the
flow. This makes wall-mounted measurements more desirable over intrusive “wall-detached” ones.
Second, even if they are wall-mounted, cable-routing and local wall geometry may still prevent lay-
ing sensors at a desired location. Volume or surface measurement using methods such as Schlieren
imagery, Particle Image Velocimetry (PIV) may as well be constrained by their footprint. These
methods may also require extensive post-processing, which may compromise real-time applications
for control1. Overall, flushed sensors (such as pressure or temperature probes) or wall-mounted
ones (such as Pitot probes) may be among the only realistic measurements one can hope for in the
context of an industrial application of closed-loop flow control.

Aside from location and measurement techniques, the number of sensors may also be an obstacle
to scaled-up applications. From the practical point of view, more sensors mean more hardware (the
sensors themselves but also the whole acquisition and post-processing pipeline). Reducing the num-
ber of these, may enable smoother transitions from numerical setups to experiments and prototypes
as well as reduced costs. Second, from a more theoretical perspective, fewer measurements make-up
a reduced number of inputs to control laws and agents. This generally makes training faster and
reduces failure modes due to unexplored regions of the state space since the latter see its dimension
reduced. One can expect slightly less efficient but more robust control laws when reducing the
sensor footprint.

For instance, Rabault et al. [185] and Tang et al. [237] respectively use 151 and 236 probes to
control the flow past a 2D-cylinder. Their work is therefore a first step for DRL control that needs
to be continued and further improved, especially concerning this issue of sensor layout. There is
interest into having methods that enable optimized sensor layouts while preserving performance as
much as possible.

5.1.2 Existing literature

This issue of optimal measurement location has been investigated by many authors outside of the
context of DRL and mainly in a linear framework, for instance by Mons et al. [160, 159], Mons &
Marquet [161], Foures et al. [72], Verma et al. [241] for data assimilation. Bright et al. [32] took
advantage of compressed sensing to perform flow reconstruction using a limited number of sensors.
The optimal estimation of a reduced order state, usually POD modes, has been used by Cohen
et al. [54], Seidel et al. [214] and echoes the assumption that accurate flow estimation is an essential
feature of efficient control. However, as stressed by Oehler & Illingworth [170], control does not
systematically require faithful flow reconstruction (in the sense of POD), the partial knowledge of
relevant “hidden” variables may be sufficient. This idea is conveyed (in a linear framework) by the
notion of observability Gramian, introduced in section 2.1.5.2. Empirical observability Gramians

1Infrared thermography may be an interesting means, since it requires only moderate post-processing, but the
geometry should allow for appropriate camera angles

112

were used by Singh & Hahn [223], DeVries & Paley [64] for flow estimation and Manohar et al. [150]
leveraged balanced POD to design an optimal H2 control of a linearised Ginzburg-Landau model.

In their multi-step heuristic approach to closed-loop flow control design, Seidel et al. [213] pro-
pose to rely on the correlation between observed relevant phenomena and sensor signal to choose
observations and on clues provided by POD mode decomposition of the flow instabilities to choose
actuators location. Cohen et al. [54] and Willcox [249] also leverage POD analyses to derive op-
timized sensor placement. Multiple studies rely on adjoint sensitivity analysis [52] and on the
“wavemaker”, the overlap between the direct and adjoint sensitivity modes, introduced by Gian-
netti & Luchini [78] to derive appropriate sensor (and actuator) placement. Li & Zhang [140] used
a computation of the wavemaker on a confined cylinder flow to lay their sensors used as feedback
for a reinforcement-learning-trained policy. Sashittal & Bodony [206] applied a related method on
a data-driven, linearized model of their systems to position their sensors. They applied this method
to control both the linearised complex Ginzburg-Landau equation and the flow over an inclined flat
plate.

5.2 The proposed approach

Based on the paradigm of RL, deemed as an appropriate framework for searching optimized sensor
layout, the approach proposed here, leverages sparsification. Using a pre-trained agent on a “fully
developed” measurement layout, the algorithm seeks to cut-off a prescribed number of inputs while
keeping optimal control performance. In the following the additional neural structure tasked with
sparsification is introduced, then its training method is detailed before a discussion of the results of
the proposed method.

5.2.1 Sparse surrogate actor

The proposed method (called Sparse-PPO-CMA, or S-PPO-CMA) leverages policy distillation and
splits into two separate phases: training a conventional PPO-CMA actor-critic structure (described
in part 2.2.5), then deriving a sparse surrogate actor that imitates the actions of the original actor
with fewer input signals. The pre-trained agent’s structures are denoted by π∗ for the actor and V ∗

for the critic. As described by figure 5.1, the sparse actor πs is composed of a dense neural network
having the same structure (architecture and activation functions) as π∗, to which a Stochastic
Gating Layer is added.

During the sparse training phase, the action at is either sampled using the optimal policy π∗ or
πs, using a Bernoulli random variable. Both training of π∗ and V ∗ are stopped, but their outputs
are used to train πs and the SGL that make up the sparse version of π∗.

5.2.2 The stochastic gated layer

The SGL mechanism used here is inspired by the stochastic gate model proposed by Louizos et al.
[145]. Let n be the number of sensors (or the dimension of the observation space). The SGL,
presented in figure 5.2 is a special simply connected layer that provides inputs to πs and that contains
substitute values s̄ = (s̄1, s̄2, ..., s̄n) for each observation component. Every time an observation
vector s = (s1, s2, ..., sn) is received, the SGL samples a random vector p ∈ [0; 1]n that determines
its output s̃ such as:

s̃ = p⊙ s+ (1− p)⊙ s̄, (5.1)

113

Environment

π∗N (µ∗, σ∗)

πs

S
G
LN (µs, σs)

V ∗

B(1, p)

Observation
st

Reward
rt

µ∗
σ∗

µs

σs

Action
at

Supervised learning

Optimisation

Figure 5.1: Sparse Proximal Policy Optimization with Covariance Matrix Adaptation (S-PPO-
CMA). Actions are either sampled using the reference actor π∗ or the sparse actor πs via a Bernoulli
choice B(1, p). πs is updated via learning on σs using values from V ∗ and by supervised learning
on µs using µ∗ values. The parameters of the Stochastic Gating Layer are also updated during this
phase.

where ⊙ represents the element-wise product. Thus, pi = 1 outputs the observation si whereas
pi = 0 gives its substitute value s̄i, and any value in-between provides a linear combination of si
and s̄i. Similarly to Louizos et al. [145], p is sampled over a “gating” distribution f :

u ∼ Un(0, 1), (5.2)

p = f(u, α) = clip

(
(ζ − γ)Sigmoid

[
1

β
(log u− log(1− u) + α)

]
+ γ, 0, 1

)
, (5.3)

with Un(0, 1) denoting a uniform distribution on [0, 1]n, β, γ, ζ being fixed numerical parameters, α
being a trainable vector steering the expectation on p and clip(a, b, c) = min (max (a, b) , c). f can
be seen as a “soft” Bernoulli choice distribution enabling values of p in [0; 1]n. The L0 complexity
of the SGL, giving the expected number of observation components si for which pi > 0, can be
written as:

Lc (α) =
n∑

i=1

P (pi > 0) =
n∑

i=1

Sigmoid

[
αi − β log

−γ
ζ

]
. (5.4)

During testing, p∗, the most likely value of p is chosen deterministically as:

p∗ = clip ((ζ − γ)Sigmoid [α] + γ, 0, 1) . (5.5)

Both p and p∗ can take values between 0 and 1 (included), thus modeling a fully “open” or fully
“closed” gate while still allowing for a gradient-based optimization using the loss Lc.

5.2.3 Loss formulation and sparse actor training

The weights θs of the sparse actor πs are initialized using the weights θ∗ of π∗ and updated every
epoch both by the training of σs and µs. σs is trained in the same way σ∗ has been trained (refer

114

Observations s

s1 s̄1 s2 s̄2 s3 s̄3 s4 s̄4

p1 p2 p3 p4 pi ∼ f(·, αi)

s̃1 s̃2 s̃3 s̃4 s̃i = pisi + (1− pi)s̄i

...
...

...
...

...

SGL

Actor πs

Figure 5.2: Stochastic Gated input Layer (SGL). Received observation si is either passed on to the
actor πs if pi = 1, combined with its substitute value s̄i if pi ∈]0; 1[, or replaced by s̄i if pi = 0. pi
is sampled using a “gating” function f parameterised by αi, which is updated during the second
phase of the S-PPO-CMA method.

to section 2.2.5). Concerning µs however, a supervised learning using the optimal action µ∗ is
performed with the loss:

Lπs (θs, α) = ||µs (s, θs, α)− µ∗ (s, θ∗) ||1. (5.6)

For the SGL, α and s̄ are trained in the same process as θs, allowing πs to “adapt” to the
variations of input s̃ caused by the updates of the SGL. s̄ is slowly updated using the observation
values s at every epoch and updates of α are based on the following loss Lsparse:

Lsparse = Lπs (θs, α) + λ
[
H1 (Lc (α)) + Γα

]
, (5.7)

where λ is the regularization parameter, H1 is a unitary Huber loss and Γ can be seen as a Tikhonov
matrix that accounts for strong correlations between observations. Its purpose is to penalize αi

whose observation si is correlated with any other sj ̸=i and thus is redundant (refer to Paris et al. [174]
for more details). The choice of λ drives the equilibrium between sparsity and control performance.

5.3 Results on the cylinder flow

5.3.1 A first ablation study

In this part, a systematic study on sensor configurations within a 3-by-5 grid-like layout ((x, y) ∈
{1, 2, 3, 4, 5} × {−0.5, 0, 0.5}) is performed. Figure 5.3 illustrates the learning curves of 10-case
batches having from 3 to 15 sensors. The addition of the second and third columns of sensors
(located in x = 2 and x = 3) yields a significant gain in performance, and one can notice that 12
and 15-sensor layouts have a very similar average performance. Thus it is possible to conclude that
the three additional sensors (located in x = 5) are not useful to the control strategy.

Figure 5.4 shows the effect of the location of pressure observations, for an array of 6 sensors
that are displaced in the streamwise direction. This time, the importance of the first sensor column
(located in x = 1) is demonstrated by the noticeable gain in drag reduction between the first two
layouts (blue and yellow curves). The importance of the third sensor column (x = 3) is once again

115

Figure 5.3: 10-case batch-averaged learning curves for different sensor layouts. Shaded areas rep-
resent the standard deviation of the corresponding plotted quantities. Each Cx value is averaged
over the whole epoch, including the transient from developed vortex shedding to controlled flow.
This explains the discrepancy with pure performance values on Cx earlier introduced.

stressed by the decrease in performance between the green and red curves. Within this predefined
combinatorial set, this partial study highlights the relevance of sensors closest to the cylinder.
These first preliminary tendencies are confronted in the next section with the results from the
newly-proposed S-PPO-CMA algorithm that is designed to provide an optimized sensor location
for the control.

5.3.2 Optimized choice of sensors

The S-PPO-CMA algorithm, is used here to derive optimized sensor placement for any allocated
number of sensors ranging from 1 to 9, within the imposed 15-sensor grid-like pattern. The number
of sensors at convergence is indirectly controlled through the value of the L0 regularization constant
λ, that balances the gradients of both Lπs (performance loss) and Lc (complexity loss). Figure 5.5
shows the achievable drag reduction with respect to the number of sensors i and the corresponding
sensor layout li. Note that due to the symmetry of the configuration, there always exist pairs
of symmetric layouts that achieve identical performances. The S-PPO-CMA algorithm randomly
outputs one of the two optimized layouts for each value of λ, but only one layout is displayed in the
figures for simplicity.

With a single sensor, the drag reduction is around 11% and it peaks to approximately 18%
for 5 sensors or more. The sensor pattern’s tendency to fill without relocating existing sensors,
meaning that li ⊂ lj>i, is a sign of convexity of this problem in the sense that any combination of
the optimized layout set is also part of this set. It is interesting to notice that, starting from the 5-
sensor optimized layout, the addition of more sensors does not improve drag reduction, which makes
this 5-sensor layout the optimized trade-off between performance and sensor setup complexity. This

116

Figure 5.4: 10-case batch-averaged learning curves for different sensor layouts. Shaded areas rep-
resent the standard deviation of the corresponding plotted quantities. Each Cx value is averaged
over the whole epoch, including the transient from developed vortex shedding to controlled flow.
This explains the discrepancy with pure performance values on Cx earlier introduced.

layout is not reminiscent of anything used in the large number of existing studies on the control
of the 2D cylinder wake. Thus, this highlights the usefulness of the S-PPO-CMA algorithm since
optimized sensor placement is, even in such a simple case, not particularly intuitive.

The centerline locations (y = 0) do not appear relevant for the control since the corresponding
sensors are never selected by the algorithm. A possible explanation may be that these sensors
cannot provide information relative of the instantaneous asymmetry of flow, and are thus unfit to
choose the action’s sign. The first two layouts l1 and l2 validate the importance of the first sensor
column, and the selection of sensors shows a weaker importance of locations beyond x = 4. This is
in line with the conclusions of section 5.3.

As discussed previously, many studies optimize sensor placement based on the linear framework
of POD, with the underlying idea that the better the estimation of mode coefficients is, the better
the reconstruction and control performance are. They naturally often choose locations where the
POD modes are strong. Figure 5.6 illustrates the superimposition of the sensor locations with the
first three POD modes derived from the natural transient from base flow to fully developed vortex
shedding. These three modes account for more than 95% of the transient’s energy. Despite that
these modes are only valid for control trajectories that stay close to this natural transient, the choice
of l2 seems reasonable as it allows estimations of both shift mode and second vortex shedding mode
simultaneously, since sensors are close to the extrema of this modes (refer to left and right panels of
figure 5.6). The second column of sensors appears less able to provide relevant information on the
shift mode. Figure 5.6 also confirms that the centerline sensors are unfit to estimate von Kármán
modes, which account for the instantaneous asymmetry of the vortex shedding.

Comparing the second and third layouts l2 and l3, it appears that, given the first two probe
locations, an additional sensor is preferred in the third column rather than in the second. This

117

Figure 5.5: Evolution of both drag reduction and optimized sensor layout with the number of
sensors. Layout thumbnails l1 to l9 are rotated 90◦ clockwise.

Figure 5.6: Comparison of the sensor locations with the first three POD modes of a natural transient
from base flow to fully developed vortex shedding.

might be because this layout provides a better “coverage” of the instantaneous recirculation bubble.
Additionally, despite the lack of mean flow symmetry during the transient phase of control, sensors
tend to concentrate on a single streamwise row. From a POD-based control viewpoint, this may not
be optimal for modes reconstruction. This shows a strength of the present approach: an estimation
of the full flow field (or the dominant POD modes) is likely not to be needed for the control.
Therefore, searching for points that allow such a full reconstruction may be sub-optimal. In that
context, favoring a precise vortex tracking, whose center travels in the vicinity of the external sensor

118

rows over a more complete estimation of the wake may lead to better performance.

0 50 100 150 200
Time

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Cx

15 sensors (ref)
1 sensor
3 sensors
4 sensors

5 sensors
7 sensors
8 sensors
Control starts

Base flow
Uncontrolled flow
Baseline

18.0

18.5

100 150 200
1.12

1.13

−5

0

5

10

15

20

Dr
ag
 re

d
ct
io
n
(%

)

Figure 5.7: Performance comparison for different optimized sensor layouts.

Figure 5.7 compares the performances of some of the previously found sensor layouts throughout
time. It confirms that as from 5 sensors, optimal performance (∼ 18%) is reached. All configurations
show a comparable transient phase that stops earlier both in time and drag reduction for the
sparsest sensor configurations. Despite an already significant drag reduction, layout l1 seems unable
to notably stabilize the vortex shedding instability. A much better steadiness is achieved with 3, 4
and more sensors.

5.4 Synthesis

The issue of optimization of the number of sensors while preserving performances has been invest-
igated in this chapter. The lack of sensor sparsity strategies in the context of DRL where extensive
sensor layouts tend to be the norm, has led to proposing S-PPO-CMA that selects the most relevant
sensors and discards redundant and irrelevant ones, using a pre-trained control agent. Tested on a
2D-cylinder flow and compared against a coarse systematic study, our proposed algorithm managed
to reduce the sensor layout to only 5 individuals while keeping state-of-the-art performance. The
obtained sensor layout has been compared with both the outcomes of our systematic study and
conclusions of other linear (mostly POD-based) studies. Multiple explanations have been proposed
to back the observed consistency of these results. This optimization is yet based on a coarse grid
of sensors. A denser layout, covering a larger portion of the flow has been studied (not shown) and
gives similar results. The reproducibility of this method, should later be asserted by performing

119

trainings on larger batches of test-cases and confronting the results against random layout samplings
or systematic studies.

120

Chapter 6

Actuator sparsity

With the same motivation as for the previous chapter, i.e. reducing hardware needs and increasing
robustness while still preserving efficient control laws, the current section discusses the issue of
actuator sparsity. A first literature review introduces the current state-of-art and the specificity
of actuator sparsity compared to sensor sparsity. Then a generic sequential action sparsification
method is introduced. Later, three candidate implementations of this generic method, using different
metrics are discussed, before turning to model-based control, that proposes a paradigm shift that
may be well-suited in that case.

Contents
5.1 Problem statement . 112

5.1.1 Relevance of the issue . 112

5.1.2 Existing literature . 112

5.2 The proposed approach . 113

5.2.1 Sparse surrogate actor . 113

5.2.2 The stochastic gated layer . 113

5.2.3 Loss formulation and sparse actor training 114

5.3 Results on the cylinder flow . 115

5.3.1 A first ablation study . 115

5.3.2 Optimized choice of sensors . 116

5.4 Synthesis . 119

6.1 Problem statement

Reduced actuator footprints should, for the same reasons as for sensor sparsity, be preferred over
more extensive ones. Here the question of control action feasibility is voluntarily let aside (it is
obvious that volume forcing control actions are unrealistic in most cases), more details concerning
actuators can be found in part 2.1.3. From the experimental perspective, hardware requirements
and power consumption scaling with the number of control actions pledge for parsimony in control
actions. Theoretically, a reduced number of outputs translates to a easier fundamental understand-
ing of the control dynamics and to a reduced number of potential failing modes. Again, reducing the

121

state-action search-space may lead to sub-optimal control laws compared to the ones that can be
reached on a more controllable setup. The critical issue here is thus to locate or select the reduced
number of actuators wisely.

6.1.1 Existing literature

The vast majority of the body of work concerning actuator layout optimization relies on control-
lability and balanced model reduction methods. These model reduction methods were used by
Bhattacharjee et al. [25] who take advantage of the eigensystem realisation algorithm (ERA) to
compare the controllability (in a H2 framework) of multiple jet actuators laid on the suction of an
airfoil to select the best one depending on the performance criterion (lift or angle of attack upon flow
separation). Linear-quadratic-Gaussian control on balanced truncated reduced models is employed
to derive optimal sensor and actuator placement using gradient descent methods [150, 261].

Oehler & Illingworth [170] and Jin et al. [108] used both optimal estimation and full-state
information control to derive optimal sensor and actuator placement for the complex linearized
Ginzburg-Landau system and a low Reynolds number cylinder wake respectively. Yeh & Taira
[262] also employed resolvent-based analyses to discover the optimal forcing variable and location
for an actuator aiming at preventing airfoil flow separation. Natarajan et al. [166] resorted to the
wavemaker [78] to locate both sensors and actuators optimally in a diffuser flow.

Apart from studies in a linear framework, there has not been much work on this topic. Among
non-linear actuator methods, one may cite the study of Rogers [192] who derived a set of actuator
layouts on a stealth bomber to satisfy maneuverability goals using a genetic algorithm.

6.1.2 A sequential elimination paradigm

Finding the optimized actuator layout, at a given energy budget or a fixed number of actuators
appears as a supplementary level of optimization, built on-top of standard RL algorithms. To this
extend this task belongs to the family of meta-RL, whose methods aim at optimizing performance
by modifying either the state-space, the action-space and/or the reward formulation.

Here the exploration is constrained by a kind of discretization of the actuator search space. Let
us assume that the space of all possible locations of actuators is a quantified “layout space”, like an
array of n spots in the environment that can be either vacant or occupied by an actuator (whose
action is later optimized in coordination with all the others). Thus here, for a given budget of m
actuators, finding the optimal layout is an optimization problem of combinatorial complexity.

As any actuator can obviously take “neutral” control actions if these are deemed optimal and
thus mimic any “child” layout that contains at most the same actuators, based on performance,
one can formulate a total order relation between layouts that guarantees performance increase when
adding actuators. Said more mathematically, if li is a set of actuators with a optimal performance
P li then:

∀ j, li ⊆ lj =⇒ P li ≤ P lj . (6.1)

This equation states that a layout containing all the possible actuators has an optimal performance
that makes a relevant upper-bound of all the other layout performances. This fact helps justifying
the current choice of paradigm for the exploration of this “layout space” among the choices of
methods listed in table 6.1.

The first obvious exploration option is a brute-force strategy that systematically tests for all the
layouts for finding the best one (with absolute certainty). This approach may be possible for cheap

122

Method Type Cost Accuracy
Brute force Global +++ exact

Random sampling Global ++ +
Sequential elimination Local + +++

Elimination/activation walk Local ++ ++

Table 6.1: Qualitative synthesis of exploration strategies for actuator layout optimization.

environments such as the ones used as test bench for most of the RL studies, and with a reduced
layout space, but becomes very quickly out of reach as either the number of possible actuators
or the sampling costs grow. Random sampling is a less costly option. It can be accompanied by
informed sampling methods such as genetic algorithms or gradient-estimation-based sampling. The
latter only works in cases where linearity can be assumed between actuator activation and optimal
layout performance. Generally speaking, these global, random exploration methods suffer from the
“curse of dimensionality”, their exploration efficiency collapsing with the dimension of the search
space, all the more that these do not exploit the specific structure of the search space in the present
case.

Local searches, that consist in starting from a given layout and gradually modifying it by in-
formed choices to improve performance, appear more relevant for the problem at hand. Two aspects
need to be specified for each of these methods: the starting point and the information in which
updates are decided.

Among all possible starting layouts, the one with all the actuators being active stands out
thanks to its overall best performance. Let us justify why this choice is relevant. If the initial
layout is chosen otherwise, two cases arise. This layout may have the same number of elements
(or size or cardinality) as the target. Thus exploration inevitably requires at least one activation
and one elimination. These may be paired together but overall, it seems difficult to take advantage
of property 6.1 from a practical point of view. If the initial layout has more (respectively less)
elements than the target, the exploration can be constrained by the use of eliminations (respectively
activations) only, thereby providing a clear stopping condition and a predictable convergence of the
method. In the case where eliminations are performed, one can take advantage of property 6.1 to
choose among the actuators. But the obtained layout is bound to be a “child” of the initial one,
meaning that the initial layout strongly constrains the solution.

Using the fully developed layout, having the maximal cardinality reduces this constraint on the
optimized layout to the minimum. This choice yet does not prevent from falling into local optima.
In addition, and contrary to starting from a smaller layout, the convergence of intermediate policies
for each layout may benefit the optimality of the starting point. And as the goal is to maximize
performance, it seems reasonable to hypothesize that the best policy running on the best layout
with size n − 1 is close (in terms of performance and strategy) to the best policy running on the
current layout of size n, and thus the latter is a good starting point for converging the first.

Thus starting from the overall best layout and “walking on the ridge” by elimination in the
direction having the smallest slope appears as a relevant option to reach an acceptable optimum
while deterministically controlling the computational overhead.

123

6.1.3 A harder problem than for sensors

The proposed actuator sparsity methods proposed in the current study, make use of a sequential
elimination paradigm. Sensor sparsity methods rely on the idea that, sensor inputs that can be
substituted by their average signal without losing to much in performance, are the ones to get
rid of. Thus the sensor elimination mechanism proposed earlier runs on-policy, directly using the
collected data. As long as full-sensor-layout policy and its sparsified version perform similar actions,
they explore the same regions of the state space S. Trajectories from any of these policies are then
relevant to optimize sparsity, hence the on-policy paradigm.

Figure 6.1: Illustrative representation of the effect of running a standard policy π, exploring the
region Sπ of the state space, compared to the region Si

π explored using clipped policy πi. Collected
reward distributions are affected by clipping, and thus, so are value functions, advantages and all
other stochastic estimators used by RL.

The matter is more complicated concerning action sparsity. First, one cannot build a gradient-
oriented optimization of a clipping layer using a loss defined on the policy’s outputs since these
are bound to be clipped. Second, and as one could do concerning sensor sparsity, where simulating
the effect of clipping can be done just by “pretending” not to observe (i.e. cutting off) any given
set of input signals1, one cannot “pretend” not to take control actions since these yield effects on
the state transition and thus affect the distribution of the collected data. As illustrated by figure
6.1, clipping action components may lead state-space trajectories (corresponding to episodes) into
different regions of the state-space S.

Thus on-policy data is to be considered with care since it may lead to biased estimations concern-
ing the elimination of actuators. Hence, the need of extra off-policy data collection that inevitably
translates into computational overhead. One is then confronted to a trade-off between cheap and
possibly biased on-policy estimation of the impact of clipping, and different degrees of simulation
of the clipping directly on the environment, that are most likely more accurate but represent extra
computations. In other words, one can either extrapolate cheaply on the available data or explore
the state space regions corresponding to clipping.

In this section we aim at proposing different solutions that each balance both extrapolation and
exploration differently while still trying to provide optimized solutions with the lowest computational
overhead possible.

1Observation is supposed non-intrusive, thus observing the flow or not has not impact on its dynamics

124

6.2 A generic algorithm

6.2.1 Process

As discussed in the previous part, the generic method proposed in this study relies on starting
from a fully developed actuator layout and on the one-by-one elimination of actuators until the
prescribed number of action components is reached. This procedure not only provides the expected
layout but also all the intermediate layouts having more actuators.

Full
layout

Eliminate
action

Evaluate
metric

Train
Sparse
layout

nact =ntar.

nact>ntar.

Figure 6.2: Generic actuator elimination procedure

As shown by figure 6.2, the method loops over three distinct phases:

1. A first standard training phase where the current policy is trained on the current layout to
maximize its performance.

2. A second phase where on/off-policy data samples are collected in order to evaluate a metric
used to choose the action component to eliminate.

3. A third phase where the chosen action component is eliminated. This last phase can simply
be a cut-off of the corresponding output or consist in a more gradual elimination in order to
avoid catastrophic optimization events that may annihilate the performance of the policy.

6.2.2 Phase scheduling

Similarly to the first training phase where the convergence of the estimators is not easily predictable,
the convergence of the metric in the evaluation phase may vary and depends on the choice of that
metric as well as on the number of active action components. For this reason, these two phases
of the loop do not have predefined durations in-terms of training epochs. Unless stated otherwise,
a phase ends after a predefined minimal number of epoch and the compliance with a stability
criterion. This ensures that indicators are converged while still avoiding useless computation of
extra training epochs. In practice, this stability criterion is defined as the comparison between the
absolute difference of two different Polyak averages (·α and ·β) of the same metric with a threshold
value (γ) that generally depends on the average value of the metric:

∣∣∣metric
α −metric

β
∣∣∣

?

≤ γ(metric). (6.2)

Commonly used values of α and β are 0.5 and 0.98.

125

6.2.3 Properly clipping the actor

Similarly to sensor sparsity, the actuator sparsity implementation later detailed uses a SGL placed
downstream of the actor, as illustrated by figure 6.3 to dynamically clip the action. As, in the
general case there is no need for computing gradients of the SGL tuning parameter α, a simpler
version is adopted, that only consists of a vector of Bernoulli choice distributions. Thus, when the
minimum number of epochs in the phase has been run and the stability criterion is verified, the
algorithm proceeds to the following phase.

...
...

...
...

...

ad,1 ā1 ad,2 ā2 ad,3 ā3 ad,4 ā4

p1 p2 p3 p4 pi ∼ f(·, αi)

a1 a2 a3 a4

Actor π

SGL

Figure 6.3: Illustration of the SGL structure generally used in the proposed implementations of the
method.

Clipping is thus performed on the sampled action:

aclip = adense ⊙ p
(
+(1− p)⊙ µ

sub

)
,

with ⊙ being the scalar dot product, µ
sub

being substitution values (generally omitted since µ
sub

= 0
in most of the cases) and p being the gate value, sample so that:

pi = f(αi, ui) =

{
1, if ui ≥ αi

0, otherwise

where u ∈ [0, 1]nact is a random vector and α is a trainable vector that sets the probability for the
gate to be open, as shown in figure 6.3.

To properly reflect clipping during the policy optimization phase, provided or computed values of
µ and σ must be altered. As for clipped components there is no real sampling, likelihood functions
computed in the actor loss should be corrected. First µ is clipped the same way the action is:
µclip = µ

dense
⊙ p. Here p should not be resampled, the values of the gates during the roll-outs must

be recorded and “replayed”. In cases where the clipping is deterministic, this gate value storage is
of course not needed. Second, the standard deviation vector σ is also biased on clipped components.
The Gaussian log-likelihood of action a given µ and σ reads:

logL(a|µ, σ) =
∑

i

[
−
(
ai − µi

2σi

)2

+ 2 log(σi) + log(2π)

]
.

Thus, for clipped components (ai = µi = 0), one adds 2 log(σi) + log(2π) to the log-likelihood if no
correction is performed. As σ is an optimized output of the actor in the case of the PPO-CMA,

126

this over- or under-estimation may lead to a collapse of the performance, since policy update are in
that case based on biased likelihood values. To circumvent this issue, log-σ values are corrected in
the following way:

log σclip = p⊙ log σ + (1− p)⊙
(
−1

2
log(2π)

)
.

This way, when pi = 1, the initial value of σi is preserved, but the pi = 0 is replaced by a value neutral
to the log-likelihood, that enables a faithful evaluation of likelihood one the activated components
only.

6.3 Proposed ranking metrics

The second phase of the elimination loop consists in evaluating a metric used for choosing which
actuator to eliminate. The current design is based on the evaluation of a scalar value mi, i ∈ [1, nact]
for each of the active actuators. The choice for the removal is done by ranking actuators according
to (a Polyak averaged version of) this metric and removing the least performing action component
argminimi. In the following, multiple metric options are detailed, discussed and compared.

6.3.1 Action norm

The first candidate is the simplest of them all. It relies on the assumption that injected energy by
the forcing is somehow proportionally linked to its impact on the flow. Thus, quantifying by a norm
the forcing action appears relevant as ranking indicator. Thus ranking metric mi reads:

mi = Es∼T,a∼π [||ai||2] ∀ i ∈ [1, nact].

Here the choice of an L2-norm is rather arbitrary and can be discussed. This metric is simply
computed on the roll-out data, no evaluation phase is then required. This metric does not require
to train extra NN structures either.

6.3.2 Clipped agent training

The second proposed metric relies on a “what-if” analysis, where all the effects of clipping are
estimated. This implementation is based on an actor-critic RL structure and leverages value function
estimations as actuator ranking method.

In addition to the current agent, trained in a standard fashion, nact extra clipped agents are
spawn upon the beginning of the second phase of the elimination loop as illustrated by figure 6.4.
Each if these nact agents is clipped on a different action component, initialized with the parameters
(biases and weights of both the main policy π and value function V) and trained separately on the
environment during this second phase.

Upon convergence of each of these agents, a Polyak average of their value functions V i is com-
pared. The metric mi reads:

mi = Es∼T,a∼πi

[
V i(s)

]
∀ i ∈ [1, nact],

where πi and V i are respectively the policy and value function of the ith agent that assesses the
effects of clipping the ith action component. Here mi is the average expected return over the states
visited if the ith were to be clipped and the policy πi converged.

127

Environment

Main
agent

Clipped
agents

Reward
rtObservation

st

Action
at

Environment

Main
agent

Clipped
agents

Reward
rtObservation

st

Clipped
action

at

Figure 6.4: Schematics of the clipped agent training method. (left) Training of the main agent.
(right) Training of all the clipped agents. There may be multiple parallel environments. Clipped
agents are trained either sequentially on one environment or in parallel if possible.

The elimination phase is immediate since one only needs to transfer the parameters (clipping
included) of the clipped agent corresponding to the eliminated component to the main agent. The
following training phase is also in theory much reduced since the previous evaluation phase optimizes
the clipped agents.

Here the evaluation of mi requires the convergence of nact agents (policy and value function),
which may represent an important overhead as well as an increased memory consumption to store
the parameters of the clipped agents.

6.3.3 Value function estimation

This next candidate metrics also relies on a “what-if” analysis performed on the value function, but
this time without converging a clipped actor. Thus, as illustrated by figure 6.5, there is no need for
nact extra agents but only their value function estimators (or critic) V i. These are trained on runs
performed using the main actor π clipped on the corresponding action component. In that case the
metric is fairly similar, except that actions are sampled on a different actor:

mi = Es∼T,a∼clip(π,i)

[
V i(s)

]
∀ i ∈ [1, nact],

where clip(π, i) = (1− δi,j)πj.

Contrary to agent clipping, the metric evaluation is performed using buffered data. Since the
actor π is not updated during this phase, data collected on dedicated clipped runs on the envir-
onment remains on-policy and thus suitable to train the value function estimators all along an
evaluation phase. Again contrary to the previous metric, both elimination training phases cannot
be skipped since the policy π must be re-converged during and after each elimination.

For these last two metrics, the choices are simply justified by the fact that the value function is
the best possible approximation of the expected return, that quantifies the compounded performance
of the policy in time.

128

Environment

Actor πN (µ, σ)SGL×

Clipping
(1− δij)

Critic V

Critic V i

−

Polyak avg.

Reward
rtObservation

st

σ
µd

Action
at

OptimisationOptimisation

Figure 6.5: AS-PPO-CMA agent structure with value function estimation. The second training
phase see the alternation of policy π and main critic V training with specific training for each critic
V i. The third phase focuses on tuning the SGL gate opening probability on the eliminated action
component.

6.3.4 Mutual information estimation

This next metric is, similarly the previous ones, also deeply rooted into reinforcement learning
hypotheses, and more precisely to the Markov Decision Process underlying the control problem.
This metric proposes to rank actuators’ actions ai according to the mutual information I(∆s, ai−µi)
they share with the state dynamics ∆st = st+1− st. Here µi is the i

th component of the best action
µ(st) (one of the outputs of the actor neural network) and ai is the ith component of the sampled
action: ai = µi + σiε where ε ∼ N (0, 1) and thus here ai − µi = σiε. This choice is discussed later
on.

Mutual information measures the dependence between two random variables, by giving the
amount of information the observation of one variable gives about the other. I is 0 if both variables
are independent. Given X and Y two random variables, one can write their mutual information as:

I(X, Y) = H(X)−H(X|Y) = H(Y)−H(Y |X)

with H being the entropy of the random variable. This way, using I(∆s, σiε) as an indicator of
the actuator “importance” relies on the hypothesis that the flow partial dynamics st+1 ∼ T (·|st, at)
complies well enough to the Markov property so that st+1 contains all the relevant information
about the forcing effect of at,i. The heuristic is that, if a given action component is “useless”, it
won’t notably influence the state dynamics, contrary to an “important” action component that will
“drive” the dynamics.

In the latter case, the knowledge of such an action will reduce the uncertainty (H) about the
state transition far more than in the first case.

Both entropy measures cannot be directly computed using the collected data. However, ex-
pressed as a Kullback-Leibler divergence I(X, Y) = DKL(P (X, Y)||P (X) ⊗ P (Y)), the Donsker-
Varadhan variational formulation [65] enables to compute a neural-network estimator of I:

I(∆s, σiε) = sup
ϕ∈Mb(Ω)

(
EP (∆s,σiε) [ϕ]− log

(
EP (∆s)⊗P (σiε)

[
eϕ
]))

,

129

Environment

Actor πN (µ, σ)SGL

Polyak avg.

Critic V

I(∆s, σiε)

Reward
rtObservation

st

σ
µd

Action
at

OptimisationOptimisation

Figure 6.6: AS-PPO-CMA agent structure with mutual information estimation. In that case,
both first and second training phases may be performed simultaneously since mutual information
estimation can be performed “on-the-fly” without any extra data collection roll-out.

where Ω is the sample space of (∆s, σiε),Mb(Ω) the set of all bounded measurable functions of Ω.
Thus the function ϕ can be embodied by a neural-network and be trained to maximize the argument
of the supremum as shown. This method has been successfully used by Belghazi et al. [15], Hjelm
et al. [97] and numerous other studies in the domain of image classification. As illustrated by
figure 6.6, each mutual information I(∆s, σiε) is estimated by a neural network (one per action
component) and a Polyak average is run on these quantities to ensure stability throughout training.

The choice of σiε instead of ai is motivated by the need to avoid spurious correlations. Action
components ai, indeed become increasingly correlated with each other (and deterministic) as the
policy converges. Thus, one may misinterpret a strong mutual information I(∆s, ai) as a sign of
importance of component i, whereas it may simply be strongly correlated with component j (for
instance in an extreme case: µi(st) = µj(st) ∀ st) that in turn is of (real) importance for the
transition dynamics. One may write the control action ai as µi+σiε where µi is the major source of
potential spurious correlation. Considering that σi is empirically rather constant with respect to st
at a given epoch, σiε has been chosen instead of the “full” control action ai as input for the mutual
information.

As the evaluations and optimizations of the mutual information estimators are performed with
on-policy data, the evaluation is expected to require a reduced number of training epochs compared
to previously introduced methods.

6.4 Comparison of the metrics

For each of the proposed metrics introduced earlier, batches of test cases have been run on the KS
environment. Similar configuration options have been used, notably concerning minimal convergence
times and stability threshold, to allow for the fairest comparison possible. For all the metrics, batches
of 50 to 200 test-cases have been run. On this test environment having 8 actuators, a systematic
study has been performed, where all 255 actuation configurations have been evaluated. Each of

130

these layouts has been assessed using 5 test cases trained over 4000 epochs. Such an exhaustive
study is only possible here because of the low computational cost of running the environment.

It has been found that the optimal layout evolution is complex and incompatible with a one-by-
one elimination strategy: for a given number of actuators nact, the best layout is not necessarily a
subset (a “child”) of the optimal layout for nact + 1 actuators. Additionally, for a given nact, the
notion of “best layout” is subject to caution since several sub-optimal layouts display performances
almost equal to the optimal. Overall, layouts with actuators evenly spread out in the domain
demonstrate the best performances, without significantly differing from each others.

These aspects make the comparison of the exhaustive ablation study with the results using the
elimination metrics rather complex. Thus it has been chosen to compare ensemble averages over
the test batches rather than discussing slightly sub-optimal choices.

6.4.1 Control performances

Figure 6.7: (left) Average training performance with respect to the number of active action compon-
ents for each of the metrics. The results of the proposed metrics are to be compared with the ones
of the systematic study (blue line). The blue shaded area represents the performance envelope of all
possible layouts. (right) Expected performances of the proposed methods after an extra fine-tuning
phase of the agents compared to the systematic study (blue line).

Figure 6.7 illustrates the average performances obtained by the different proposed metrics, look-
ing directly at the policies obtained after eliminations (left-hand side graph) or after an extra
fine-tuning of the policy on the sparse actuator layout (right-hand side graph). Considering this
first graph, it can be noticed that except for the clipped agent (red line, this remains to be explained)
all methods perform as well as the systematic study on large numbers of actuators. This may simply
come down to the fact that all possible 6 or 7 actuator layouts perform rather equivalently. One can
also notice that performances of the mutual information metric quickly drop compared to the others
which remain comparable or sometimes better than the average of the systematic study. At last,
the clipped agent, value function and action norm metrics provide performances with 1 actuator
that are better than the theoretic maximum computed via the systematic study. One can assume
that 1-actuator agents obtained by the elimination method take advantage of a broader exploration
of the state-action space thanks to training phases with more than one actuator compared to the
agents converged in the systematic study.

131

Considering the second graph where scores of the metrics are computed considering the per-
formances of the obtained layout in the systematic study, both the clipped agent and value function
metrics seem to clearly provide better performing layouts than the others.

6.4.2 Selectivity and computational costs

In addition to the obtained performances with sparse layouts, selectivity is another key performance
indicator. Here selectivity is assessed as the observed selection frequency of a given action component
(in the sense that the elimination process preserves it). Figure 6.8 compares these frequencies for
the proposed metrics and for 1 to 4 active actuators.

Figure 6.8: Frequency histograms of the obtained layouts (bar plots) for the clipped agent (red bars),
the value function (orange bars), the mutual information (green bars) and action-norm (purple
bars) metrics. These can be compared to the best layout from the systematic study (blue numbered
boxes). Fixed point E1 has been plotted in the background as a reference.

Starting from the bottom graphs, both the action norm and the mutual information metrics
appear rather indiscriminate. The action norm still presents a small trend for eliminating actuators
3 and 4 before the others, whereas the only noticeable selective trend for the mutual information
concerns the elimination of actuator 0. Concerning the agent clipping and value function metrics,
they display very similar behaviors with early eliminations of actuators 1, 3, 4 and, to a lesser extent
6 and a preservation of actuator 0 as the last active component. These trends show the selectivity
of these metrics and match also quite well with the best layouts according to the systematic study
(refer to the blue boxes at the bottom of figure 6.8), even though they comply with the constraints
of sequential eliminations in terms of possible layouts.

These trends are further confirmed by figure 6.9 (left) showing the observed layout entropy with
respect to the number of actuators. The entropy H of the layouts is computed as follows:

H =
∑

l∈ layouts

fl log (fl) ,

132

where fl is the observed frequency of a given actuator layout over the batch. For all the metrics
the entropy first grows significantly during the first two eliminations. But from the third choice
onward, the discrepancy in selectivity between the clipped agent and the value function metric on
the one hand and the action norm and the mutual information metric on the other hand is further
confirmed by a decrease in entropy for the first metrics whereas the others see their entropy follow
the trend of a random selection of actuators (blue line).

Figure 6.9 (right) compares the ensemble averaged costs of eliminations across the metrics. This
cost is evaluated as the number of epochs between the start of the metric evaluation and the end of
the policy adaptation phase. The last actuator elimination (from 2 to 1 action components) appears
as the most expensive one. This is explained by the slower convergence of control performances
after this elimination which causes the policy adaptation to last longer before complying with the
stability criterion. This correlates well with the slow convergence of 1-actuator layouts of the
systematic study (not shown). Surprisingly, the clipped agent and the value function metrics,
which require the convergence of one or two types of off-policy estimators, do not require extensive
numbers of epochs in-between eliminations, whereas the mutual information metric estimators seem
to converge with more difficulty despite being on-policy.

Figure 6.9: (left) Measured layout entropy with respect to the number of actuators. Values for the
different metrics are to be compared with the maximum value achievable by randomly sampling
layouts (blue line), corresponding to the systematic study. (right) Comparison of ensemble-averaged
durations of eliminations across the proposed metrics. Solid lines represent averages whereas shaded
areas account for standard deviation on the batches.

6.4.3 Application to the NACA case

Parts of this section are drawn from Paris et al. [175]. The proposed elimination algorithm
has been applied to the previously introduced NACA airfoil flow, using the value function metric
and for multiple values of the angle of attack α (12°, 15° and 20°). Figure 6.10 synthesizes the
results of the sparsification on the cases with α = 15°. Since performances follow similar trends for
α = 12° and α = 20°, the sparsification process is discussed for α = 15° only. One can distinguish
two different trends in the performances. First, from 10 to 4 actuators, only the average values
of both drag (Cd) and lift (Cl) coefficients (refer to lower left and right graphs of figure 6.10) are
significantly impacted by the elimination of actuators, respectively seeing an increase and a drop of
their value as the number of actuators is reduced. Standard deviations of these coefficients (on which
the reward is based), quantifying the steadiness of the mechanical loads, remain rather constant. As
the number of actuators further decreases, from 4 to 1, both average coefficient values pursue and

133

amplify their previously described evolution. Standard deviations significantly increase, denoting
an expected decrease in overall performance. For the vast majority of the data points, the control
yields significantly better performances compared to the non-controlled flow (denoted as “baseline”
on figure 6.10).

Figure 6.10: Averaged training performance indicators with respect to the number of active action
component for α = 15°. Data points are denoted by gray “plus” signs. Ensemble averages are
computed on these data points (batch-size 5). The blue dashed line represents the uncontrolled
(baseline) performance, solid lines denote the evolution of the ensemble average and shaded areas
illustrate the standard deviation across the batch. All indicators are computed on the last 40 control
steps of a training run. (Upper left) Evolution of the standard deviation of the drag coefficient S(Cd).
(Upper right) Evolution of the standard deviation of the lift coefficient S(Cl). (Lower right) Time-
averaged drag coefficient Cd. (Lower left) Time-averaged lift coefficient Cl.

Figure 6.11 further describes the elimination choices with respect to both the angle of attack
α and the number of active action components. In all cases, the algorithm chooses actuators
consistently to the first analysis proposed in the end of section 4.3.1. With 5 and 3 components,
eliminations for all studied angles of attacks display similar patterns, removing actuators 4 and 5,
preserving other actuators with a slight advantage for upstream ones (0 to 3). For α = 15° and
α = 20° and for a reduced number of action components (1, 2 and 3), the algorithm favors locations
near the separation range, as one may intuitively expect. However, for α = 12° the remaining
actuators’ location differs from the separation range. This turns out to be more beneficial for this
specific angle of attack.

The study of this test case has first shown that, except for α = 20°, a nearly complete stabilization
of the flow using reduced-amplitude control actions, could be obtained with the proposed layout and
using the described reinforcement learning method. The proposed action sparsification algorithm
has shown expected results while still allowing to significantly preserve control performances during
the elimination phases. For reduced numbers of action components, the feedback provided by the
sensors enables the policy to properly synchronize control actions with the remaining unsteadiness

134

Figure 6.11: Frequency histograms of the obtained layouts (bar plots), for α = 12° (top row),
α = 15° (middle row) and α = 20° (bottom row). The blue shaded areas correspond the range of
evolution of the separation point. These frequencies are observed on the test batch of size 10, used
in this study.

and thus, to reduce effective load variations on the airfoil.

6.4.3.1 Remark on the obtained closed-loop control laws

The airfoil case has been selected because of the rather simple control policies it yields (in most
of the cases, a suction in the vicinity of the separation region), which makes it a good candidate
to assess the behavior of our actuator elimination algorithm. As the control actions appear nearly
steady during the late phase of control (whether it is with the full 10-actuator layout or the sparse
ones), one may question the intrinsic closed-loop nature of the control law similarly to the discussion
in section 4.3.2. Even though this question is not in the original scope of the present study, it is
nonetheless an interesting side point that is briefly addressed in the following.

Closed-loop tests runs have first been performed for 5 and 2 actuators for all considered angles
of attack, to be used as baseline values. Again here, control action sequences have then been re-
implemented in an open-loop fashion on randomly reset cases. Table 6.2 presents the variation
of various performance indicators at the end of the test runs. Results with 10 actuators, already
presented in table 4.4 have been added for the sake of comparison.

Relative variations of the time-averaged lift coefficient are systematically positive, whereas the
drag coefficient evolves negatively. These variations yet remain small compared to the absolute
coefficient values. Standard deviations quantifying the steadiness of the loads on the airfoil (which
constitute the actual control objective defined in the reward) are systematically increased when
implementing control action in an open-loop fashion. The difference between open-loop and closed-
loop can be seen for 5 and 2 actuators, where the closed-loop does not totally stabilize the flow.
Where here it can be considered that for 10 actuators, the policy is close to an open-loop forcing,
open-loop policies display a lesser efficiency for a reduced number of actuators, where the remaining
load unsteadiness can be damped by an in-phase control action.

To conclude, the relative improvement obtained by using a closed-loop strategy over an open-
loop one is significant here. But regarding absolute gains, they are more marginal. Therefore, it
may be feasible to get satisfactory control performances on this case through a parametric open-loop
control study (with constant or variable suction), where the number, action amplitude and sign, and
actuator position would be varied. Yet, even for this simple flow configuration, such an exhaustive
study would face the “curse of dimensionality” inherited from the combinatorial search of optimal
layout (with, for instance, 252 different layouts having 5 active action components). Consequently,
if carried out blindly with respect to the flow physics, this search would end up being significantly

135

Nb. act. α Cl Cd S(Cl) S(Cd) S(Cl) + S(Cd)

10
12 0.0% 0.0% 0.0% 0.0% 0.0%
15 +2.1% +1.5% +91% +6.8% +70%
20 +0.9% +0.8% +37% +57% +42%

5
12 +4.3% +2.6% +154% +132% +151%
15 +2.9% +2.1% +120% +98% +115%
20 +1.8% +1.7% +47% +43% +46%

2
12 +5.1% +2.9% +126% +107% +123%
15 +4.6% +3.4% +89% +86% +88%
20 +1.8% +1.7% +12% +24% +14%

Table 6.2: Comparison of the final (in the “stabilized phase”) performances in closed-loop and
open-loop conditions. Performance variations are measured as relative variation with respect to the
closed-loop performance. Green colored figures indicate that open-loop control performs better on
the metric than closed-loop whereas red colored ones state the opposite. Ensemble averages are
computed on batches of 10 test runs.

more expensive than the present algorithm, even for this relatively easy-to-control flow.

6.5 Model-based model predictive control

In this context where the extra exploration required by the estimation of metrics represents large
computational overheads, model-based approaches could take advantage of their model by running
this exploration on their reduced-order model, without requiring extra costly runs on the full-state
environment. An action-sparsity-seeking version of the PETS-MPC algorithm has been develop to
this end. It relies on the training of the forced transition model (st, at)→ st+1 that is later used to
assessed the value of clipped policies. As the policy is implicitly defined as the sequence of actions
minimizing the estimated cost over a given time horizon, only minor changes are needed to estimate
the value of clipped policies. A simple binary mask has been implemented downstream the action
sampling object in the action optimizer. By alternatively setting its values to zero, one can simulate
the behavior of a clipped policy on the reduced dynamics.

Yet here, the question of extrapolation, discussed about the full-state environment, re-emerges
concerning the predictions capabilities of the model. This transition model is indeed trained only
on on-policy data, meaning that there are no guarantees regarding its performance on out-of-
distribution samples. And as clipped policies may lead to different regions of the state-space this
issue may be critical for the estimation of the value of these policies.

Figure 6.12 shows the prediction accuracy of the models depending on the number of active
components. Unsurprisingly models perform better on 8-actuator policies. This region of the state
space has been “seen” during training and thus models only perform interpolation, whereas for
clipped policies, the need for extrapolating the learned dynamics leads to decreased performances.
Reusing the threshold introduced in section 4.1.3.2, the informative prediction horizon decreases
from 30 to 40 control steps for 8-actuator policies down to approximately 10 control steps for policies
having only 5-actuators. In the framework of the sequential elimination and assuming similar trends
at other stages of elimination, it can be estimated that the accuracy of the model is divided by 2
when querying it for clipped policies (the prediction horizon with 7-actuator policies being around
20 control steps). In the current study, the value of clipped policies is then evaluated starting from

136

Figure 6.12: Prediction accuracy of 15 models trained on 8-actuator policies for a varying number
of active components. Mean square error on the observation (left) and reward (right) prediction.
Average variance of observations and reward (on the full-state environment) are plotted in dashed
lines for comparison.

100 different observation vectors and on horizons of 10 control steps, thus remaining within the
assumed accuracy horizon of the models.

Figure 6.13 gathers the performances of this method on different key performance indicators
previously discussed. It can be observed that performances obtained without fine-tuning are no-
ticeably below the ones obtained with previous model-free methods (refer to figure 6.7). But after
fine-tuning, average performances are similar to what has been obtained with the clipped agent or
the value function metric. This has yet to be explained, all the more that the observed mean squared
error of the models does not drop after an elimination. This would be expected since eliminations
alter policies and the distribution of observed states which in turn puts models out of their training
domain.

Layout entropy is also similar to the results obtained with the two best performing model-
free metrics. Concerning the average cost of an elimination conversely, much better performances
are achieved. These still must be contrasted with the fact that model-based training epochs are
much more computationally intensive (due to the control action sampling) than their model-free
counterparts, especially on environments where action sampling and policy optimization make up
the majority of the computation.

Figure 6.14 confirms the selectivity sketched by the layout entropy, with selection frequencies
displaying a strong reproducibility and layout choices strongly correlated to the best layouts ac-
cording to the systematic study. Overall these encouraging results call for more investigations on
the matter, especially concerning ways to ensuring model accuracy when extrapolating the value of
clipped policies. Hybridization with explicit, neural-network-based policies could also help reduce
the cost of training epochs, by avoiding an optimization process at every control step, while still
preserving the capacity to compute off-policy estimators.

137

Figure 6.13: (top left) Average training performance with respect to the number of active action
components (red line) compared to the systematic study (blue line). Shaded areas represent the
standard deviation across the batches. (top right) Expected performances of the obtained layout
and models (orange line) after an extra fine-tuning phase of the agents compared to the systematic
study (blue line). (bottom left) Measured layout entropy with respect to the number of actuat-
ors (brown line). Values are to be compared with the maximum value achievable by randomly
sampling layouts (blue line), corresponding to the systematic study and to the results obtained
with both clipped agent (red line) and value function (orange) metrics. (bottom right) Comparison
of ensemble-averaged durations of eliminations across the proposed metrics. Solid lines represent
averages whereas shaded areas account for standard deviation on the batches.

Figure 6.14: Frequency histograms of the obtained layouts (bar plots) for the action sparse model-
based method. These can be compared to the best layout from the systematic study (blue numbered
boxes). Fixed point E1 has been plotted in the background as a reference.

138

6.6 Synthesis

6.6.1 Discussion of the current results

The metrics and methods introduced in the current part, showed a varying efficiency regarding the
issue at hand: reducing the number of required actuators, starting from a large actuation layout
while preserving the control performance as much as possible. It is first important to state that these
are preliminary results call for further work on the topic and the practical implementation of the
stochastic estimators underlying these metrics. The current results are not definitive conclusions
to the efficiency of a given metric. Overall current results suggest that both the clipped agent
and value function metrics perform satisfactorily but represent a large computational overhead.
It is worth noting that, on this test-case at least, the clipped agent requires on average less extra
training epochs than the value function, which is counter-intuitive since the first has two interacting
estimators to converge for each elimination whereas the second only converges the value function of
a frozen sub-optimal clipped policy. Regarding the action norm, performances and selectivity are,
as expected, relatively low, since this metric relies on a most likely spurious correlation.

Concerning the mutual information metric, there still remains an unresolved question concerning
the balance between the ease of convergence of the mutual information estimators and the risk of
inducing spurious correlations. The current choices of a single neural network estimator, having
only the “random” component σiεi of the i

th action component as input leads to low reproducibility
and performance. Other options are considered such as having multiple estimators that are trained
on different data batches and averaged in order to stabilize the estimate of the mutual information.
Another option considers multiple actors that all converge their own mutual information estimators,
taking the whole action component as input (i.e. I(∆s, ai) instead of I(∆s, σiεi)). Then, by
ensemble averaging over all the actors’ estimations, one could discriminate mutual information
values due to a real causation, that would all present a similar value across all actors, from those due
to spurious correlations, that would show varying values (i.e. a large ensemble standard deviation)
across the actors. These ideas require a non-null coding effort to be properly implemented and
tested, but they are worth trying, since the issue of on-policy estimation of a quantity that appears
as off-policy could noticeably reduce computing times.

The model-based approach shows encouraging results on the current test-case both in terms
of selectivity and performance. There are still unresolved questions about the adaptation of the
model after an actuator elimination. Complementary studies should be led to better understand
the impact of the change in state-action input distribution on the training of the neural-network
and on the optimization process of the control action.

The issue of the metric’s relevance is also central. For both the clipped agent, the value function
or the action norm analyses, this question is trivially answered. Positively for the first two and neg-
atively for the latter. This yet looks less obvious for the mutual information metrics as well as for the
proposed model-based method. In both cases, it is a matter of extrapolation. Assuming the Markov
property2 and that the mutual information measured on the on-policy state-action distribution is
representative of the one experienced by the clipped policy, the mutual information approach ap-
pears valid as long as low-variance estimators, providing faithful values for a moderate overhead can
be computed. Similarly, the proposed model-based approach relies on the extrapolation capabilities
of its reduced model. It is a well-known fact that neural-networks are very powerful interpolators
but generally collapse when extrapolating. Thus considering methods to either estimate the degree

2refer to sections 2.2.1.1 and 7.4.

139

of uncertainty of the model (such as disagreement between models) and/or to improve extrapolation
accuracy are part of the future work on this topic.

6.6.2 Perspectives

RL assumes (by default) a non-linear behavior of the system and the control policy. Yet concerning
the system, its dynamics still contains some structure (continuity, some degree of differentiabil-
ity, upper and lower bounds, energy conservation, etc.), inherited from the underlying physics it
represents. Capturing (parts of) this structure and embedding it into the models and estimators
would dramatically improve the training efficiency of the methods. The links with (sparse) symbolic
regression [123, 57, 173] or spectral submanifolds [179] still reveal that this problem is notoriously
tricky in high-dimension (and with scarce data) without a prior knowledge of the system (such as
for the APHYNITY algorithm [264]).

Multiple actuator-elimination methods have been introduced in this chapter, resorting to either
model-free or model-based RL algorithms, but all following the sequential elimination process in-
troduced in section 6.2. This paradigm imposes two main constraints:

First, the initial layout defines the “envelope” of the search space. One could think of a more
flexible paradigm that may move and/or add actuators instead of only removing these. While
allowing for reaching layouts otherwise unreachable with the current paradigm, this would still pose
some practical issues concerning all NN structures and data management pipelines that would have
to deal with potentially unbounded and varying numbers of inputs and outputs. This may also break
the halting guarantee of the process and may lead to unpredictable elimination stages far from the
user target and unpredictable computational costs, as discussed in section 6.1.2. Considering these
facts, the constraint of sequential elimination, that strongly reduces the possible outcomes is what
makes the process less intractable.

Second, eliminating one actuator at a time also constrains the outcomes. If the algorithm
were to eliminate more actuators simultaneously, two strategies could be considered, yet both seem
inaccurate or unfeasible. One could assume a sort of linearity in the estimations, meaning that
estimations from a single component clipping would be representative of multiple simultaneous
clippings. As shown by figure 6.15, this hypothesis is invalid. For instance when comparing the
rankings for the first two eliminations, components 4 then 1 would be the first to eliminate. Yet
after the first elimination, actuators 3 and 6 come behind actuator 1 in the ranking. This change in
the order of actuators can be explained both by the change in state distribution on which clipped
value functions are evaluated and by the policy adaptation that converges again to compensate
for the loss of an action component. Physical neighboring effect is also not to be excluded. Two
actuators located near one another may fulfill the same function. Thus the elimination of one may
boost the importance of the other that it may replace. In other words, the ranking at elimination
step 1 is likely not the average observed (and assumed optimized) elimination order. The second
strategy would consist in performing estimations for each of the

(
nact

nact−nsimult

)
possible combinations,

nsimult being the number of simultaneously eliminated components and nact the current number of
active components. This generally becomes intractable passed nsimult = 1, except if the evaluation
cost is orders of magnitude cheaper than one training epoch. This may be the case for model-based
RL whose goal is exactly to provide these computationally cheap estimations.

As of this study, the proposed methods remain out-of-reach for larger and more expensive flow
control environments. Efforts regarding the sample efficiency and the quality of the metrics is
part of future works. Hybrid model-based/model-free approaches may be relevant to this issue by

140

Figure 6.15: Evolution of the ranking of actuators during the elimination process using the agent
clipping metric. (left) Ensemble averaged clipped value estimations at the end of each metric
evaluation phase. The higher the clipped value, the lower the importance of the corresponding
actuator. (right) Ensemble average ranking of actuators deduced from the clipped values. The
worst-ranked actuator is eliminated during the following phase.

bringing the best of both worlds: cheap, low-fidelity approximations from model-based methods
combined with the accuracy of the convergence of principled methods from model-free algorithms.
Efficient means of arbitration between cheap and error-prone extrapolation on the one hand and
costly but accurate exploration on the other, could also help reduce the computational cost of
actuator selection while preserving performance.

141

Chapter 7

Open challenges

This chapter discusses multiple issues that arose repeatedly across the test-cases. These issues are
generally not encountered on more traditional and simpler test-cases such as the ones commonly
used to qualify and compare state-of-the-art RL algorithms. Similarly to sensor and actuator layout
optimizations, these may not be specific to flow control in the sense that most of the scaling-up
applications of RL are likely to display similar characteristics. The discussion aims at taking a step
back on these general problems and proposes general-purpose mechanisms and ideas to help solve
these obstacles and provide more sample-efficient methods.

Contents
6.1 Problem statement . 121

6.1.1 Existing literature . 122

6.1.2 A sequential elimination paradigm . 122

6.1.3 A harder problem than for sensors . 124

6.2 A generic algorithm . 125

6.2.1 Process . 125

6.2.2 Phase scheduling . 125

6.2.3 Properly clipping the actor . 126

6.3 Proposed ranking metrics . 127

6.3.1 Action norm . 127

6.3.2 Clipped agent training . 127

6.3.3 Value function estimation . 128

6.3.4 Mutual information estimation . 129

6.4 Comparison of the metrics . 130

6.4.1 Control performances . 131

6.4.2 Selectivity and computational costs . 132

6.4.3 Application to the NACA case . 133

6.5 Model-based model predictive control 136

6.6 Synthesis . 139

6.6.1 Discussion of the current results . 139

143

6.6.2 Perspectives . 140

7.1 Exploration noise

Most of the efficiency of RL is about the optimization of the exploration-exploitation trade-off.
With on-policy algorithms, exploration is performed via different methods, only in the vicinity of
the trajectories normally explored by the current policy. Most of these methods consider additional
control action noise. These exploration strategies are directly constrained by the need for faithful
stochastic estimators.

7.1.1 Computing low-variance, accurate estimators

As described early on, the improvement of policies relies on optimizations by gradient descent based
on losses themselves computed using stochastic functions. As these functions cannot be directly
computed because of a general lack of knowledge about the environment dynamics, they need to be
estimated. In turn, for the optimization to properly deliver, these probabilistic estimators should
be unbiased and display the lowest variance possible.

Some estimators such as the one for the value function V are the most precise when exploration
is the lowest (i.e. σ = 0 if using the PPO-CMA algorithm). Conversely, others such as the advantage
function A rely on this exploration to provide the optimization direction for policy updates. The
latter provides finite-difference-style estimations1 of potential performance improvements and in
that case, the parameter driving exploration can be directly related to the average step size used to
perform these finite-difference estimates.

Generally one needs a non-null but yet as low as possible exploration in order to compute the
most accurate stochastic estimators. Yet from a practical point of view, low exploration empirically
means slow improvement and thus long and costly convergences. On the other hand, a too large
exploration is synonym for noisy estimators that cannot provide trustworthy gradients, which may
again either slow down convergence or even freeze it.

The variance of the estimators can be explained by two main factors. For action-dependent
estimators such as the advantage function, noisy control actions will obviously cause high-variance.
Second, and this is valid for all types of estimators, a noisy action may alter significantly the
distribution of visited partial states s. This distribution of states may be of high variance, and
more importantly it may be completely different from the one expected when using the policy
without exploration noise. This would mean that the “exploration policy” and its noiseless version
explore different regions of the state-action space and thus estimators drawn from one agent provide
totally irrelevant gradients for the other. For instance on turbulent-transition-prone environments,
additional exploration noise may trigger this transition, whereas it would not occur with the noiseless
policy, leading the flow into completely different flow regimes having their own dynamics.

At last, the batch size, i.e. the amount of data on which these estimators are computed, is also
an important matter. This batch size is generally driven by the roll-out length in number of control
steps and by the number of roll-outs performed by epoch. Similarly, small batch sizes may lead to
high-variance estimators, irrespective of the “quality” of the data samples, whereas large batch sizes
may represent a significant computational overhead, that in turn translates to slower convergence.

1The advantage estimates the performance the policy would have if a given action a were to be taken instead of
µ(s) with partial observation s.

144

Consequently there is a trade-off to be found for an efficient exploration as well as a speedy
convergence. This trade-off depends on both the environment and the training algorithm, less
chaotic environments being more resilient to large exploration noises and simpler estimators being
easier to converge.

7.1.2 Levers

Concerning on-policy training algorithms, multiple strategies have been tested in order to optimize
further the trade-off previously introduced. Using the PPO-CMA as base algorithm, some are
introduced in this section.

PPO-CMA itself is a first strategy used to solve this issue, in the sense that in comparison with
the PPO which is one of the go-to methods for on-policy RL, the PPO-CMA proposes a dynamic
scheduling of the exploration noise variable σ by making it a trained output of the policy as well as
the best action µ. Conversely PPO considers a fixed value for σ, preemptively chosen by the user.
Empirically when using the PPO-CMA, one observes than σ decreases gradually then stabilizes
around values much lower than the ones of similar successful training attempts using the PPO.
Convergence is also generally faster with the PPO-CMA.

7.1.2.1 Initial σ value

PPO-CMA drives σ along the training but an important parameter conditioning the length of the
convergence is the initial value of the exploration noise. As said, σ is seen to be generally decreasing
along the convergence. Thus to a certain extent, forcing a lower initial value may cut this duration in
the case where a significant part of the policy improvement consists in making it more deterministic
(i.e. the exploration noise is initially too large and slows down convergence because it explores
regions irrelevant to the control). Conversely a low initial value may simply prevent the agent from
a proficient exploration and in turn could freeze training.

The impact of this initial value has been assessed using an additive bias on the log σ (thus
multiplicative concerning σ) output of the actor neural network. Initialization of the average σ
value is simply done by running a first epoch, and then tuning the bias in order to match the target
value, under the assumption (generally verified) that this tuning reaches its target on the following
epochs and that there is no feedback effect requiring a multi-step tuning.

Figure 7.1 illustrates the impact of such an initialization on training performances for differ-
ent environments and initial values. First, on the KS environment, one can notice that the only
significant impact on performance is obtained for a very low initial σ value. Here, as the control
action ranges [−1, 1], an initialization of log σ at −3, induces an uncertainty of around 5× 10−2 or
around 2.5% of the action range. In that case, training is much slower than with a larger initial
value or no initialization at all. This can be explained by the fact that, with 8 action components,
the sampling distribution peaks very sharply as log σ decreases. Around 8 action components the
expected log-likelihood decays nearly linearly with both an increase in the dimension and a decrease
in log σ. Thus distributions are closer to a Dirac distribution that smooth heavy-tailed Gaussian
ones. This in turn flattens the gradients and freezes training.

The same study on the cavity, using 5 actuators this time shows different conclusions. Here the
smaller the initial σ, the better the training. This time the effects yielded by noise control actions
on the environment seem prevalent over the issue of the collapse of distributions at play on the KS
test-case.

145

Figure 7.1: Comparison of the impact of the initial log σ value on performances on different envir-
onments. Top graphs illustrate the evolution of the average training reward, where bottom graphs
show the evolution of the log σ optimized by the PPO-CMA agent. From left to right, studies
respectively run on the KS, the standard cylinder environment and the cavity test case.

At last on the cylinder test-case, with only 1 action component, the initialization does not yield
any significant effect on the efficiency of the training. The environment seems resilient to action
noise (considering for instance a Lyapunov exponent, not developed here) and the reduced action
space dimension (only 1) makes the slope of the linear decay of the log-likelihood much smaller. In
some sense, having one action component instead of 5 or 8, inhibits the effects of the initial log σ
value and thus the need to tune it precisely.

7.1.2.2 Random environment reset scheduling

At the beginning of training, the agent samples almost fully random actions. As discussed previously
in section 4.4.3.1, some environments may display both delayed, long-term dynamics stating the
question of credit assignment, but also a significant noise sensitivity that may amplify noisy control
actions and build up chaotic states. On such cases, running long training episodes is mandatory
in order to have a chance to “visit” relevant states, but they may provide noisy and uninformative
data samples at the beginning of training coming from the end of the training trajectory. A simple
idea to circumvent this issue is to run shorter episodes after which environments’ states are reset
with a decreasing probability along training via a scheduling. Not resetting environments’ states
corresponds to starting the following roll-out on a “pre-controlled” state and enables to visit states
“further” from non-controlled initial states within the allocated control step budget (i.e. the roll-out
length).

This way, at the beginning of training, only partial states for which potential chaotic fluctuations
that have had a reduced number of steps to develop are used to train the agent. Then, once
the latter has improved and reduced its exploration noise levels, the scheduling may enable to
artificially simulate much longer training runs by stitching the data samples coming from two or
more consecutive roll-outs without environment reset in-between. The case of the cavity, displaying
these precise characteristics, has been used as a first test for this idea. Using the control setup

146

https://en.wikipedia.org/wiki/Lyapunov_exponent

introduced earlier (training episodes of 250 steps), the effect of the scheduling of probability of
resetting the environment state at the end of training roll-outs has been assessed.

Figure 7.2 compares the effect of the scheduling introduced in section 4.4.3.1 (P (env. reset)
decreases from 1 to 1/20 between epochs 700 and 900) with other possible choices: a fixed reset
probability set to 1/20 from the beginning of the training (green lines) and a systematic reset of the
flow state (orange lines). Here the reference setup displays better value function losses and a lower
average log σ than the two other options. Its training performances are slightly better concerning the
metric m3 (introduced previously and quantifying the upstream fluctuations) but match the ones of
the batch having a systematic 1/20 environment reset probability (at the exception of a slightly faster
initial improvement until epoch 500). Surprisingly, while being systematically better than the agents
trained with a systematic reset (orange batch) on training performances, evaluation performances
show that, on the metric of interest m8 (quantifying downstream fluctuations), systematic reset
environments tend to provide slightly better performances on 4000-step test-runs.

Figure 7.2: Learning curves of the last measurements ofm3 (top left and center) andm8 (bottom left
and center) metrics respectively on 4000-step evaluation runs and on training roll-outs. (top right)
Evolution of the value function loss. (bottom) Evolution of the average log σ provided by the actor.
Different scheduling setups on the environment state reset probability are compared. Solid lines
represent ensemble averages (over 20-test-case batches), shaded area illustrate the corresponding
standard deviation and dashed lines account for the maximum preformances.

This exemplifies the difficulty to interpret learning curves drawn for training data in order to
assess the behavior of the agents in evaluation conditions. This may be especially true for noise-
sensitive environments and where the control goal is to stabilize the system state. Other attempts,
using longer training episodes (i.e. 750 control steps per roll-out instead of 250) and thus feeding
the agent with three times more data per epoch, display slower and more expensive convergences
(not shown).

A side effect of short training roll-outs, linked to value bootstrapping may even lead to policy
collapse. As discussed previously, when a roll-out is artificially cut (because the prescribed number
of control steps is reached), the value function estimate of the last partial state is added to the
sequence of rewards in order to compute returns that are not (or minimally) impacted by this cut-
off. Yet, this value function estimate may not be properly converged. And as the return values
computed with it are in turn used to train the critic neural network, this creates a potentially
spurious over-estimation feedback loop since the value function V (st) is trained to match the return

147

Rt as:

V (st)← Rt =
τmax∑

τ=0

γτrt + γτmaxV (st+τmax).

The over-estimation error may propagate because of the interpolation of neural networks. For short
episodes, γτmax may on average not be small enough to damp this potential failure mode.

Figure 7.3: Spurious effects linked to value bootstrapping for short training roll-outs. (left) Average
training reward. (center) Average log σ. (right) Average value function estimates. Solid lines
represent ensemble averages across the 10-test-case batches. Shaded areas illustrate the ensemble
standard deviation.

As shown by figure 7.3, where environment reset scheduling has been tested with very short
episodes, this spurious effect is detrimental to training and at least delays convergence. On short
episodes (with or without further scheduling) the value function displays large standard deviations
and the reward fails to improve as quickly as for longer roll-outs, where the effect of the error on
the bootstrapped value are more “diluted”.

7.1.2.3 Under-sampling exploration actions

Another idea would enable to still explore the state-action space efficiently without having training
trajectories that end-up in chaos. Such trajectories are indeed likely to provide data samples with a
low informative content with regards to the control objective. This idea resorts to only sampling an
explorative control action every n > 1 control steps and using the best action (used for evaluation)
otherwise. This enables to more easily converge value function estimators, since training data
batches containing both types of control transitions (sampled and best control actions) display a
much lower variance. On the other hand, this reduces by a factor 1/n the number of exploitable
data samples for training the actor, which may represent a significant computational overhead.

Multiple preliminary tests have been launched to test the advantage of this method. So far,
this enabled slightly better convergences on test-cases for which convergence is already fast without
action under-sampling (such as the KS or the cylinder test-case). For larger and more complex
cases such as the cavity, this method did not show significant improvements on the quality of
the convergence. This may partly come from the difficulty of extrapolating evaluation-context
performances from training indicators. Overall, this simple idea enabling to reduce the “signal-to-
noise” ratio of the training data in an unbiased fashion regarding the stochastic estimators, calls
for further investigations.

148

7.2 Value bootstrapping, terminal reward and solver crash

Most of the environments on which RL algorithms are developed present goals that, once reached,
stop the run. For instance, video-game-like environments such as “LunarLander” from the OpenAi
Gym framework stops the run once the module has landed. Conversely, robotic environments stop
the run when certain joints touch the ground (indicating that the robot has fallen). Most of these
cases see the terminal reward (sent upon roll-out termination) being specifically formulated. In
some cases, it can even be the only one non-null.

Concerning flow control, there is generally no stopping condition when the control is successful,
but an obvious failing condition that imposes a stop is a numerical solver crash. This case may
happen when control imposes local conditions that, for instance, destabilize the spatial or temporal
schemes or cause negative pressures or temperatures. Such conditions are detrimental to learning
and should not be considered by the agent as “normal states”, positive to the training. If these cases
happen, the associated terminal reward should strongly penalize solver crashes in order to drive the
policy away from such states. Yet, if this penalization is too strong, this may, by the generalization
(interpolation) effect of NNs, distort the loss landscape so much that it may prevent from converging
toward efficient policies. As explained in section 2.2.3.4, setting an a priori penalizing terminal
reward requires to know an estimate of the average return, since, in the case of a terminal reward,
no value bootstrapping is performed. Thus if the terminal reward is larger than bootstrapped
values, the computed advantages for the states leading to the crash will indicate that a crash should
be favored over another strategy avoiding the solver to fail. These reasons make terminal reward
configuration rather tricky.

Thus, it has been chosen in the current study, to avoid solver crashes at all costs. To this end,
environments are stress-tested with a series of different noisy, large-amplitude actions sequences
in order to assess the maximum forcing amplitude they can withstand. In addition to action
interpolation from one step to the other, this ensures these environments not to crash, but may not
ensure that what happens in the vicinity of the actuators is faithful to physics 100% of the time.

Further developments should embrace a more subtle approach to the issue and consider tolerating
solver crash in order to allow for more state-action exploration while still considering this event as
detrimental to the training.

7.3 Input normalization: a double-edged sword

Input normalization in the sense of batch normalization (BN) is a commonly used practice consisting
in re-scaling and de-biasing inputs so that they have a null mean and a unitary variance. This pre-
processing generally takes the form of a additional layer upstream neural networks or layers. While
showing evident benefits on the training speed and stability of the convergence, there is currently
no wide consensus concerning the theoretical understanding of this efficiency.

While for supervised learning, BN simply consists in normalizing inputs across the training mini-
batches (thus without requiring any additional model parameter), this cannot be the case for RL,
since neural structures are queried one sample at a time (equivalently to a unitary batch size). A
solution to this issue consists in storing the mean µinput and standard deviation values σinput used
to normalize each data sample. These values still must be computed on a data batch representative
of the whole input data. To do so a Polyak averaging of both mean and standard deviation of the

149

https://www.gymlibrary.ml/
https://www.gymlibrary.ml/

input is proposed:

µinput ← αµinput + (1− α)xinputs,

σinput ← ασinput + (1− α)S (xinput) ,

xnorm =
x− µinput

σinput

,

where α ∈ [0, 1] is a Polyak update coefficient, xinput is the batch-averaged input value, S(xinput) is
the standard deviation across the batch, x an input and xnorm its corresponding normalized value.
The current section explores the effects of such a mechanism on training performances.

It has been empirically observed that some cases that did not take advantage of BN had their
control action saturated (clipped to either 1 or −1) and thus could not provide relevant gradients
to drive training. Thus, using generally a Xavier [80] initialization, having large amplitude inputs
may more likely lead to zeroed-out gradients and saturated control actions. Figure 7.4 illustrates
the performances of cases trained with different BN configurations.

Figure 7.4: Effect of input normalization on the performances of control on the KS equation with
the standard layout described in section 3.4.1.1.

On this specific case, input observations generally range [−3, 3] (these can be of much greater
amplitude on other tests cases), thus and as shown by the non-normalized test-cases performance,
input normalization is not absolutely required. However, by comparing these non-normalized cases
with ones having an α value of 1 (meaning that both µinput and σinput are initialized on the first
batch but never updated), one can notice a slightly better performance of the second especially at
the beginning of training.

For α values strictly smaller than 1, on the other hand, performances are affected by the updates
of the BN layer parameters. As shown by the right-hand side graph, σinput decreases quickly but fails
to stabilize. Having such low values and because it divides the inputs, any change in σinput affects
the statistics of the normalized inputs. This in turn affects the control actions, which by response
of the environment return observations with different statistics. This feedback thus prevents a
stabilization of σinput and is then detrimental to performance. A shown by the central graph, the
average exploration parameter σ of the PPO-CMA used here for training fails to decrease as it does
in the previous cases. This is a sign for a lack of convergence of the policy. This lack of convergence
also appears in the erratic evolution of the training reward.

On other test cases (not shown here) such as the cylinder, α values smaller than 1 do not
appear as critical as for the KS. This may come from the fact that the average fluctuations of the

150

observations stabilize toward a larger value, for which Polyak averaging updates are not sufficient
to trigger the unstable feedback described earlier. In conclusion, input normalization may bring a
moderate advantage for training but α values smaller than 1 should generally be avoided, at the
cost of having slightly non-normal input distributions.

7.4 Partial observation, aleatory uncertainty and the Markov

hypothesis

Generally speaking, flow environments cannot be fully observed, because of their large number of
degrees of freedom as well as potential measurement constraints discussed in section 2.1.3. Despite
behaving deterministically and as explained in part 2.2.6.1, this partial observability causes some
sort of incompressible aleatory uncertainty on the dynamics of the controlled flows.

On the other hand, the formulation of RL relies on a Markov Decision Process (MDP) that as-
sumes the compliance with the Markov property as main characteristics. The question is then, given
the forced partial observability, how compliant RL-based flow control is to the Markov property.

To bring elements to this issue, one can quantify how much extra information is brought about
the next state transition by the addition of past observations and actions instead of simply the
current observed partial state s. If the Markov property is valid, then this additional information
is null. Otherwise, the Markov property is invalidated. Here the mutual information, previously
introduced is used.

For a given number n of additional “steps back in time” one can define the mutual information
between the next state st+1 and previous states and actions (st, at, . . . , st−n+1, at−n+1) as:

I(n) = I (st+1, (st, at, . . . , st−n+1, at−n+1))

Figure 7.5 displays the evolution of I(n) with the number of additional steps back in time and
for different observation layouts during the training of the cylinder test case having one action
component and from 1 to 6 observation measurements. This information is evaluated using a
neural network trained to maximize the Donsker-Varadhan lower bound for the mutual information
introduced in section 6.3.4:

I(X, Y) = sup
ϕ∈Mb(Ω)

(
EP (X,Y) [ϕ]− log

(
EP (X)⊗Y

[
eϕ
]))

,

where ϕ(X, Y) is the scalar output of the neural network and X is the following state st+1. Finally
and as the quality of the convergence depends on the number of neural networks inputs, for a given
number observations, inputs (i.e. past observations and actions concatenated together) have been
padded so that all tested configurations have the same number of inputs. For instance, with 1
observation and 5 steps in the past, Y is (st, at, st−1, at−1, . . . , st−4, at−4, st, at, st−1, at−1, st−2, at−2).
This padding does not bring any extra information (thus preserves the formulation) but allows for
all neural network estimator inputs Y to have the same size (e.g. here max(steps in the past) ×
(nobs + nact) = 8× (1 + 1) = 16).

With these definitions, the deviation to the Markov property is simply I(∞) − I(1). One can
observe that, in general all mutual information measures increase with the number of steps in the
past, indicating that, even with a large number of observations, the Markov property is not valid.
While with 1 observation the maximum mutual information is barely reached, with 8 steps in the
past, one can consider that it is reached with 6 steps for 2 observations, with 4 steps for 3 and 4

151

Figure 7.5: Evolution of the mutual information between st+1 and past observations and actions
(estimated using the Donsker-Varadhan variational formula), with respect to the number of steps
in the past from which information is provided for different number of observations.

observations and finally with 3 steps for 5 and 6 observations. Thus, the more observations the faster
the mutual information plateaus, indicating that more measurements in space may compensate for
less measurements in time in the case of the cylinder which displays convective structures.

One can conclude that for all these tested cases the Markov property is not satisfied and yet
these observation layouts enable relevant control performances on the cylinder test-case. This in
turns begs the following question: Is it a serious problem not to fully comply with the Markov
property underlying all the theory of RL? And if not, which degree of non-compliance can RL
trainings tolerate? And what would be the appropriate measure of this deviation that would allow
to preemptively know that a given observation layout is not suited for RL-based control? These
open questions are worthy of further investigation since most of the real-world cases where RL-
based control is considered are very likely in that same situation of partial observability causing a
non-compliance to the Markov property.

7.5 Scaling-up in case complexity and cost

All test-cases studied here are relatively cheap to run compared to high-regime, high-fidelity simu-
lations such as transitional flow DNS2. CFD simulation cost usually scales super-linearly with their
characteristic flow non-dimensional parameters (such as y+ wall distances or Kolomogorov-scale
Reynolds numbers), requiring smaller mesh cells and smaller numerical time steps. In addition
to this poor scaling, as the flow displays increasingly complex dynamics, larger observations and
action layouts are required to try to control the flow. As detailed earlier, an increased number
agent inputs and outputs increases its convergence time. Thus training requires more epochs ran
on environments that are more expensive.

Table 7.1 reports the estimated or measured computational cost per sample and per training
for different test-cases. The most expensive environments require around 103 to 104 CPUh, which
already suppose convergences lasting for several days on parallelized setups. The difference of
orders of magnitude with the test-cases generally used to test and validate RL algorithms already
illustrates the prevalence of the sample efficiency of training algorithms over many others criteria
for the feasibility of RL-based control. As with the current computing capacities, RL control is not

2Direct Numerical Simulations

152

Environment CPU T./sample (s) Samples/Training CPU time (h)
Cart-Pole 3.1× 10−4 104 ∼ 105 ∼ 0
Atari Pong 8.2× 10−4 108 ∼ 3

Go (AlphaZero) 10−4 106 ∼ 0
2D Cylinder 1.3 105 ∼ 40
2D Cavity 8.7 5× 105 ∼ 1250

2D Supersonic Jet 5.9 106 ∼ 1600
3D Hypers. Boundary Layer QDNS 28 000 106 ∼ 880 yrs.

Table 7.1: Computational cost estimations or measurements for training control laws on different
test-cases. This measurements suppose a parallelized CFD, measured on a quad-core CPU Intel
Xeon E5 @ 3GHz, except the last test case. – in blue: estimation. These figures do not account for
the agent optimization.

conceivable on high-fidelity cases, auxiliary methods should be considered in order to circumvent
these hard limitations concerning simulation costs.

Algorithms aiming at maximizing the sample efficiency to the point where only a handful of
them are needed are referred to as “few-shot” learning algorithms. At the risk of over-fitting
their behavior and lacking generalizability, these extract as much information from the samples as
possible. Currently these methods are mostly developed in supervised or semi-supervised contexts
such as computer vision (image classification or segmentation) or natural language processing (intent
inference or translation) [245].

Another strategy, called “active learning”, consists for the agent in selecting restarting states
in order to improve in the state-space regions where it lacks performance. While being trivial to
implement on simple environments, the ability to restart from a given flow state would require to
have previously stored the complete snapshot corresponding to this restart. This would thus restrict
restart states to already visited ones. This approach also begs the question of catastrophic forgetting
discussed in section 4.1.2 and thus should be carefully crafted to avoid a complete collapse of the
policy.

Policy distillation strategies detailed in section 2.2.7, belong to the larger family of transfer
learning methods that consist in using the knowledge acquired by an agent in a different context.
As low-regime flows share common traits with faster and/or more complex flows, this approach
appears as an attractive way to save time and costs by pre-training an agent on a cheap and/or
low-fidelity environment, transferring it to the target environment and only having to fine-tune its
behavior with costly and time-consuming simulations. A wide spectrum of solutions ranging from
simple model weight transfer to shared embedding spaces splitting both environment/agent- and
task-specific kinds of knowledge [87] can be considered.

At last, this calls for innovative solutions coming from strong artificial intelligence, i.e. human
experts, to help overcome these issues that are far from being solved by brute force approaches.
As discussed early on, training cases already having the appropriate hyper-parameter setup may
be costly, but it is often marginal compared to the computational resources required by the hyper-
parameter search itself that often reveals uncertain. In hindsight from all successfully control cases,
this calls for building expertise on the best practices to adopt for these searches and to share these
tricks with all the stakeholders working in this area.

153

Chapter 8

Conclusion

The potential and challenges of Reinforcement Learning (RL) for flow control have been studied on
different numerical test-cases, with the goals of:

• implementing RL control methods on flow control environment and comparing these with
more traditional approaches on criteria such as the effectiveness, the energy efficiency or the
robustness,

• identifying the specific challenges the application of RL to fluid mechanics stated,

• proposing solutions to these issues and testing their efficiency.

These investigations have been enabled by the development of a specific code platform interfacing
a RL Application Programming Interface (API) with Computational Fluid Dynamics (CFD) solvers
in a High Performance Computing (HPC) context. This modular framework, developed in Python,
covers the whole training and analysis pipeline from the test-case specification to its training and
post-processing and renders extensive hyper-parameter space searches easier for the end-user. It
encompasses a wide range of RL and Linear Genetic Programming (LGP) agents as well as (among
others) the flow control environments introduced in section 3.4.

The first results presented concerned the application of marginally adapted state-of-the-art RL
and LGP training algorithms to the introduced environments. This study demonstrated the capacity
of RL to deliver non-trivial control policies that are simultaneously effective, robust and energy
efficient. Yet these achievements required sometimes long hyper-parameter fine-tuning and represent
large computational costs. Alongside dimensionality, non-linearity and long-term dependencies,
sample cost is a major identified obstacle to data-driven control design methods.

The two following chapters tackled this issue under the angle of sensor and actuator sparsity
respectively. Methods that propose to reduce sensor or actuator layouts while preserving the per-
formance as much as possible and for a reasonable computational overhead are indeed critical to the
scale-up toward real-world applications. The discussed sensor sparsity algorithm simply distillates
the knowledge from an expert agent using the whole observation layout to a student agent whose
observations are penalized. The issue is much more complex concerning actuator sparsity. A gen-
eric action component elimination algorithm is devised and multiple ranking metrics were proposed.
These were evaluated according to their performance, extra computational cost and reproducibility.
Model-based was also shown to have an interesting potential on this issue by virtue of its reduced
model predictive ability.

155

Other issues linked to sample efficiency were then discussed in chapter 7. These, not necessarily
specific to flow control but rather to all scaling-up applications of RL, need to be overcome in order
to enable cheaper and more reproducible results. Chaoticity and dimensionality are two major
factors contributing to the emergence of these problems. Among others exploration tricks, adapted
to the flow dynamics, were proposed and tested.

Numerous objectives have been fulfilled during this thesis, such as the identification of key
aspects conditioning the success of RL training for flow control. Among the tackled issues, some
proposed methods have provided relevant and efficient solutions while others only lay the ground
work for future developments in a very young but promising field of study.

The sample cost issues has highlighted the interest of model-based approaches, an area of which
the current study has barely scratched the surface. If designed and trained wisely, (non-linear)
reduced order models are capable of extracting valuable parts of the underlying structure of the
dynamics, similarly to their decades-old, linear counterparts but potentially having extended ranges
of validity. Incorporating a priori knowledge via physics-informed methods or pre-constrained Par-
tial Differential Equation (PDE) structures appears as an interesting way of learning the dynamics
efficiently and thus increase sample efficiency. Model-based algorithms can indeed be thought of as
multi-fidelity methods where reduced models approximating the full-state dynamics may provide
relevant insights for a fraction of the cost of running the full-state, costly but accurate environment.
This degree of freedom concerning the cost/quality balance of data samples appears as a valuable
additional arrow in the quiver to decrease sample cost.

Expertise in fluid mechanics can also be leveraged as a means to reduce computational costs by
identifying characteristic phenomena and using flow invariants to train agents on relatively cheap
environments reproducing the main characteristics of more costly ones. The idea behind all transfer
learning methods is indeed to pair two (or more) environments according to their similarities and the
targeted control objective. As discussed previously in sections 4.4.2 and 7.5, they may be decisive
for scale-up applications where for cost or safety reasons, only the fine-tuning of the agent is done
on the full-state target environment and full trainings cannot be performed. Thus, developing
fluid-mechanics-specific transfer learning methods, leveraging non-dimensional invariants and being
capable of identifying analogous measurement locations and variables as well as actuator yielding
similar effects on two different environments or implementing curriculum [71, 193] or hierarchical
reinforcement [263, 164] learning is an important milestone on the path to deploying RL-based flow
control to real-world applications.

Alongside sample efficiency and the need to deal with costly and sometimes ill-behaved dynamics,
control robustness is a cornerstone of the future success of these methods. Thanks to the trial-and-
error paradigm of RL, policies empirically benefit from a strong robustness. Yet, as climbing the
Technology Readiness Levels (TRL) ladder often means passing certification processes, the issue
of provable robustness will become a matter of concern. Complying with fail-safe or even safe-life
design practices inevitably translates to either fitting analytic expressions on the control black-
box that are neural-network-embodied policies at the risk of losing in efficiency, or to develop
explainable Artificial Intelligence (AI) practices coupled with safe RL strategies. In the latter case
different safety constraints may arise for both training and exploitation phases. If the training
phase is performed using a simulation or in a safe environment, it does not require any specific
safeguards. Otherwise one should enforce safety rules concerning the exploration of the state, to
avoid dangerous ones. Such approaches are developed in the Safety-Gym API [189]. For both
training and exploitation phases, Donti et al. [66] proposed to build provably robust neural-network
policies (in the sense of a Lyapunov exponent), leveraging H2-robust design methods (introduced

156

https://openai.com/blog/safety-gym/

in section 2.1.6). Jeddi et al. [106] proposed to use Lyapunov functions to formulate training
constraints ensuring robustness and also tackle the issue of out-of-distribution observations. These
concerns show that, irrespective of the domain of application, the scale-up of RL is inevitably tied
with robustness requirements.

In addition to promising better performances, energy efficiency or robustness, RL should fore-
most be seen as a formidable tool for the exploration of control solutions never thought off. Its
outcomes may then question and enrich our fundamental understanding of flow dynamics. For this
last single reason it is a field of study worth further investigating.

157

Bibliography

[1] Abadi, Mart́ın, Barham, Paul, Chen, Jianmin, Chen, Zhifeng, Davis, Andy,
Dean, Jeffrey, Devin, Matthieu, Ghemawat, Sanjay, Irving, Geoffrey & Is-
ard, Michael 2016 Tensorflow: A system for large-scale machine learning. 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16) pp. 265–283.

[2] Amitay, Michael & Glezer, Ari 2002 Role of actuation frequency in controlled flow
reattachment over a stalled airfoil. AIAA Journal 40 (2), 209–216.

[3] Andrychowicz, Marcin, Wolski, Filip, Ray, Alex, Schneider, Jonas, Fong,
Rachel, Welinder, Peter, McGrew, Bob, Tobin, Josh, Abbeel, OpenAI. Pieter
& Zaremba, Wojciech 2017 Hindsight experience replay. Advances in Neural Information
Processing Systems pp. 5048–5058.

[4] Apkarian, Pierre & Noll, Dominikus 2006 Nonsmooth H∞ synthesis. IEEE Transac-
tions on Automatic Control 51 (1), 71–86.

[5] Arakeri, Jaywant H. & Shukla, Ratnesh K. 2013 A unified view of energetic efficiency
in active drag reduction, thrust generation and self-propulsion through a loss coefficient with
some applications. Journal of Fluids and Structures 41, 22–32.

[6] Arnoult, T., Ghouila-Houri, C., Leclercq, C., Mazzamurro, A., Viard, R.,
Garnier, E., Sipp, D., Merlen, Alain, Talbi, A. & Pernod, P. 2021 Cavity flow
controlled with an array of magneto-mechanical micro-valves. In 2021 IEEE Sensors , pp. 1–4.
IEEE.

[7] Atam, Ercan, Mathelin, Lionel & Cordier, Laurent 2016 Identification-based
closed-loop control strategies for a cylinder wake flow. IEEE Transactions on Control Sys-
tems Technology 25 (4), 1488–1495.

[8] Bagheri, Shervin, Henningson, Dan S., Hoepffner, J. & Schmid, Peter J. 2009
Input-output analysis and control design applied to a linear model of spatially developing
flows. Applied Mechanics Reviews 62 (2).

[9] Barbagallo, Alexandre, Sipp, Denis & Schmid, Peter 2011 Input-output measures
for model reduction and closed-loop control: application to global modes. Journal of Fluid
Mechanics 685, 23–53.

[10] Barbagallo, Alexandre, Sipp, Denis & Schmid, Peter. J. 2009 Closed-loop control
of an open cavity flow using reduced-order models. Journal of Fluid Mechanics 641, 1–50.

[11] Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. EPL (Europhysics Letters)
75 (5), 750.

[12] Barron, Andrew R. 1993 Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information theory 39 (3), 930–945.

[13] Bearman, P. W. & Harvey, J. K. 1993 Control of circular cylinder flow by the use of
dimples. AIAA Journal 31 (10), 1753–1756.

159

[14] Beintema, Gerben, Corbetta, Alessandro, Biferale, Luca & Toschi, Federico
2020 Controlling Rayleigh-Bénard convection via Reinforcement Learning. Journal of Turbu-
lence 21 (9-10), 585–605.

[15] Belghazi, Mohamed Ishmael, Baratin, Aristide, Rajeshwar, Sai, Ozair,
Sherjil, Bengio, Yoshua, Courville, Aaron & Hjelm, Devon 2018 Mutual in-
formation neural estimation. In International conference on machine Learning , pp. 531–540.
PMLR.

[16] Bellman, Richard 1957 Dynamic Programming , 6th edn. Princeton University Press.

[17] Beneddine, Samir 2017 Characterization of unsteady flow behavior by linear stability ana-
lysis. PhD thesis, Université Paris-Saclay (ComUE).

[18] Beneddine, Samir, Sipp, Denis, Arnault, Anthony, Dandois, Julien &
Lesshafft, Lutz 2016 Conditions for validity of mean flow stability analysis. Journal of
Fluid Mechanics 798, 485–504.

[19] Benoit, Christophe, Péron, Stéphanie & Landier, Sâm 2015 Cassiopee: a CFD
pre-and post-processing tool. Aerospace Science and Technology 45, 272–283.

[20] Bergmann, Michel & Cordier, Laurent 2008 Optimal control of the cylinder wake
in the laminar regime by trust-region methods and pod reduced-order models. Journal of
Computational Physics 227 (16), 7813–7840.

[21] Bergmann, Michel, Cordier, Laurent & Brancher, J.-P. 2005 Control of the cyl-
inder wake in the laminar regime by trust-region methods and pod reduced order models.
Proceedings of the 44th IEEE Conference on Decision and Control pp. 524–529.

[22] Bergmann, Michel, Cordier, Laurent & Brancher, Jean-Pierre 2006 On the
generation of a reverse Von Kármán street for the controlled cylinder wake in the laminar
regime. Physics of Fluids 18 (2), 028101.

[23] Berman, Daniel S., Buczak, Anna L., Chavis, Jeffrey S. & Corbett, Cherita L.
2019 A survey of deep learning methods for cyber security. Information 10 (4), 122.

[24] Bewley, Thomas R. & Liu, Sharon 1998 Optimal and robust control and estimation of
linear paths to transition. Journal of Fluid Mechanics 365, 305–349.

[25] Bhattacharjee, Debraj, Hemati, Maziar, Klose, Bjoern & Jacobs, Gustaaf
2018 Optimal actuator selection for airfoil separation control. AIAA Paper pp. 18–3692.

[26] Bieker, Katharina, Peitz, Sebastian, Brunton, Steven L., Kutz, J. Nathan &
Dellnitz, Michael 2020 Deep model predictive flow control with limited sensor data and
online learning. Theoretical and computational fluid dynamics 34 (4), 577–591.

[27] Bilanin, Alan J. & Covert, Eugene E. 1973 Estimation of possible excitation frequen-
cies for shallow rectangular cavities. AIAA Journal 11 (3), 347–351.

[28] Block, Patricia J. W. 1976 Noise response of cavities of varying dimensions at subsonic
speeds. Tech. Rep. D-8351. NASA.

[29] Botev, Zdravko I., Kroese, Dirk P., Rubinstein, Reuven Y. & L’Ecuyer, Pierre
2013 The cross-entropy method for optimization. In Handbook of statistics , , vol. 31, chap. 3,
pp. 35–59. Elsevier.

[30] Brackston, Rowan D., De La Cruz, J. M. Garćıa, Wynn, A., Rigas, G. & Mor-
rison, J. F. 2016 Stochastic modelling and feedback control of bistability in a turbulent bluff
body wake. Journal of Fluid Mechanics 802, 726–749.

[31] Braza, M., Chassaing, P. H. H. M. & Minh, H. Ha 1986 Numerical study and physical
analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of
Fluid Mechanics 165, 79–130.

160

[32] Bright, Ido, Lin, Guang & Kutz, J. Nathan 2013 Compressive sensing based ma-
chine learning strategy for characterizing the flow around a cylinder with limited pressure
measurements. Physics of Fluids 25 (12), 127102.

[33] Brown, Tom, Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan,
Jared D., Dhariwal, Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry,
Girish & Askell, Amanda 2020 Language models are few-shot learners. Advances in neural
information processing systems 33, 1877–1901.

[34] Bruneau, Charles-Henri & Mortazavi, Iraj 2008 Numerical modelling and passive
flow control using porous media. Computers & Fluids 37 (5), 488–498.

[35] Brunton, Steven L. & Kutz, J. Nathan 2022 Data-driven science and engineering:
Machine learning, dynamical systems, and control . Cambridge University Press.

[36] Brunton, Steven L., Proctor, Joshua L. & Kutz, J. Nathan 2016 Discovering
governing equations from data by sparse identification of nonlinear dynamical systems. Pro-
ceedings of the National Academy of Sciences 113 (15), 3932–3937.

[37] Brunton, Steven L., Proctor, Joshua L. & Kutz, J. Nathan 2016 Sparse identific-
ation of nonlinear dynamics with control (SINDYc). IFAC-PapersOnLine 49 (18), 710–715.

[38] Bucci, Michele Alessandro, Semeraro, Onofrio, Allauzen, Alexandre, Wis-
niewski, Guillaume, Cordier, Laurent & Mathelin, Lionel 2019 Control of chaotic
systems by deep reinforcement learning. Proceedings of the Royal Society A 475 (2231),
20190351.

[39] Cabell, Randolph, Kegerise, Michael, Cox, David & Gibbs, Gary 2006 Experi-
mental feedback control of flow induced cavity tones. AIAA Journal 44 (8), 1807–1816.

[40] Cai, Shengze, Mao, Zhiping, Wang, Zhicheng, Yin, Minglang & Karniadakis,
George Em 2022 Physics-informed neural networks (PINNs) for fluid mechanics: A review.
Acta Mechanica Sinica pp. 1–12.

[41] Carleo, Giuseppe, Cirac, Ignacio, Cranmer, Kyle, Daudet, Laurent, Schuld,
Maria, Tishby, Naftali, Vogt-Maranto, Leslie & Zdeborová, Lenka 2019 Ma-
chine learning and the physical sciences. Reviews of Modern Physics 91 (4), 045002.

[42] Carpenter, Peter W. & Porter, Lee J. 2001 Effects of passive porous walls on
boundary-layer instability. AIAA Journal 39 (4), 597–604.

[43] Cattafesta, III, L., Garg, S., Choudhari, M., Li, F., Cattafesta, III, L., Garg,
S., Choudhari, M. & Li, F. 1997 Active control of flow-induced cavity resonance, p. 1804.

[44] Cattafesta, III, L., Shukla, D., Garg, S. & Ross, J. 1999 Development of an adaptive
weapons-bay suppression system, p. 1901.

[45] Cattafesta III, Louis N. & Sheplak, Mark 2011 Actuators for active flow control.
Annual Review of Fluid Mechanics 43, 247–272.

[46] Chen, Hongming, Engkvist, Ola, Wang, Yinhai, Olivecrona, Marcus &
Blaschke, Thomas 2018 The rise of deep learning in drug discovery. Drug discovery today
23 (6), 1241–1250.

[47] Chen, Kevin K. & Rowley, Clarence W. 2011 H 2 optimal actuator and sensor place-
ment in the linearised complex ginzburg-landau system. Journal of Fluid Mechanics 681,
241–260.

[48] Chen, Ricky T. Q., Rubanova, Yulia, Bettencourt, Jesse & Duvenaud, David K.
2018 Neural ordinary differential equations. Advances in neural information processing systems
31.

161

[49] Chen, Zhihua & Aubry, Nadine 2005 Active control of cylinder wake. Communications
in nonlinear science and numerical simulation 10 (2), 205–216.

[50] Chen, Zhengdao, Zhang, Jianyu, Arjovsky, Martin & Bottou, Léon 2019 Sym-
plectic recurrent neural networks. arXiv preprint arXiv:1909.13334 .

[51] Cho, Kyunghyun, Van Merriënboer, Bart, Gulcehre, Caglar, Bahdanau,
Dzmitry, Bougares, Fethi, Schwenk, Holger & Bengio, Yoshua 2014 Learning
phrase representations using rnn encoder-decoder for statistical machine translation. In 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734.
Association for Computational Linguistics.

[52] Chomaz, Jean-Marc 2005 Global instabilities in spatially developing flows: non-normality
and nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392.

[53] Chua, Kurtland, Calandra, Roberto, McAllister, Rowan & Levine, Sergey
2018 Deep reinforcement learning in a handful of trials using probabilistic dynamics models.
Advances in neural information processing systems 31.

[54] Cohen, Kelly, Siegel, Stefan & McLaughlin, Thomas 2006 A heuristic approach
to effective sensor placement for modeling of a cylinder wake. Computers & Fluids 35 (1),
103–120.

[55] Corke, T. C. & Kusek, S. M. 1993 Resonance in axisymmetric jets with controlled helical-
mode input. Journal of Fluid Mechanics 249, 307–336.

[56] Cornejo Maceda, Guy Y. 2021 Gradient-enriched machine learning control exemplified
for shear flows in simulations and experiments. PhD thesis.

[57] Cranmer, Miles, Sanchez-Gonzalez, Alvaro, Battaglia, Peter, Xu, Rui, Cran-
mer, Kyle, Spergel, David & Ho, Shirley 2020 Discovering symbolic models from
deep learning with inductive biases. Advances in Neural Information Processing Systems 33,
17429–17442.

[58] Curtiss, Charles Francis & Hirschfelder, Joseph O. 1952 Integration of stiff equa-
tions. Proceedings of the National Academy of Sciences of the United States of America 38 (3),
235.

[59] Cybyk, Bohdan, Grossman, Kenneth & Wilkerson, Jordan 2004 Performance char-
acteristics of the sparkjet flow control actuator. AIAA Paper p. 2131.

[60] Dandois, J., Garnier, E. & Pamart, P.-Y. 2013 NARXmodelling of unsteady separation
control. Experiments in fluids 54 (2), 1445.

[61] Debien, Antoine, Von Krbek, Kai A. F. F., Mazellier, Nicolas, Duriez,
Thomas, Cordier, Laurent, Noack, Bernd R., Abel, Markus W. & Kourta,
Azeddine 2016 Closed-loop separation control over a sharp edge ramp using genetic pro-
gramming. Experiments in fluids 57 (3), 40.

[62] Deisenroth, Marc & Rasmussen, Carl E. 2011 Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on machine
learning (ICML-11), pp. 465–472.

[63] Dergham, G., Sipp, D., Robinet, J.-C. & Barbagallo, A. 2011 Model reduction for
fluids using frequential snapshots. Physics of Fluids 23 (6), 064101.

[64] DeVries, Levi & Paley, Derek A. 2013 Observability-based optimization for flow sensing
and control of an underwater vehicle in a uniform flowfield. 2013 American Control Conference
pp. 1386–1391.

162

[65] Donsker, Monroe D. & Varadhan, S. R. Srinivasa 1975 On a variational formula for
the principal eigenvalue for operators with maximum principle. Proceedings of the National
Academy of Sciences 72 (3), 780–783.

[66] Donti, Priya L., Roderick, Melrose, Fazlyab, Mahyar & Kolter, J. Zico
2020 Enforcing robust control guarantees within neural network policies. arXiv preprint
arXiv:2011.08105 .

[67] Doyle, John C. 1978 Guaranteed margins for LQG regulators. IEEE Transactions on auto-
matic Control 23 (4), 756–757.

[68] Duriez, Thomas, Parezanovic, Vladimir, Laurentie, Jean-Charles, Four-
ment, Carine, Delville, Joël, Bonnet, Jean-Paul, Cordier, Laurent, Noack,
Bernd R., Segond, Marc & Abel, Markus W. 2014 Closed-loop control of experimental
shear flows using machine learning. AIAA Paper p. 2219.

[69] Edwards, Jack R. & Liou, Meng-Sing 1998 Low-diffusion flux-splitting methods for
flows at all speeds. AIAA Journal 36 (9), 1610–1617.

[70] Evans, Humberto Bocanegra, Hamed, Ali M., Gorumlu, Serdar, Doosttalab,
Ali, Aksak, Burak, Chamorro, Leonardo P. & Castillo, Luciano 2018 Engineered
bio-inspired coating for passive flow control. Proceedings of the National Academy of Sciences
115 (6), 1210–1214.

[71] Fang, Meng, Zhou, Tianyi, Du, Yali, Han, Lei & Zhang, Zhengyou 2019
Curriculum-guided hindsight experience replay pp. 12623–12634.

[72] Foures, Dimitry P. G., Dovetta, Nicolas, Sipp, Denis & Schmid, Peter J. 2014 A
data-assimilation method for Reynolds-averaged Navier-Stokes-driven mean flow reconstruc-
tion. Journal of Fluid Mechanics 759, 404–431.

[73] Fujimoto, Scott, Hoof, Herke & Meger, David 2018 Addressing function approx-
imation error in actor-critic methods. In International conference on machine learning , pp.
1587–1596. PMLR.

[74] Gal, Yarin, McAllister, Rowan & Rasmussen, Carl Edward 2016 Improving
PILCO with bayesian neural network dynamics models. In Data-Efficient Machine Learn-
ing workshop, ICML, , vol. 4, p. 25.

[75] Gao, Chuanqiang, Zhang, Weiwei, Kou, Jiaqing, Liu, Yilang & Ye, Zhengyin
2017 Active control of transonic buffet flow. Journal of Fluid Mechanics 824, 312.

[76] Gerhard, Johannes, Pastoor, Mark, King, Rudibert, Noack, Bernd, Dillmann,
Andreas, Morzynski, Marek & Tadmor, Gilead 2003 Model-based control of vortex
shedding using low-dimensional galerkin models. AIAA Paper p. 4262.

[77] Gers, Felix A., Schmidhuber, Jürgen & Cummins, Fred 2000 Learning to forget:
Continual prediction with lstm. Neural computation 12 (10), 2451–2471.

[78] Giannetti, Flavio & Luchini, Paolo 2007 Structural sensitivity of the first instability
of the cylinder wake. Journal of Fluid Mechanics 581, 167–197.

[79] Glezer, Ari & Amitay, Michael 2002 Synthetic jets. Annual review of fluid mechanics
34 (1), 503–529.

[80] Glorot, Xavier & Bengio, Yoshua 2010 Understanding the difficulty of training deep
feedforward neural networks. pp. 249–256. JMLR Workshop and Conference Proceedings.

[81] Greensmith, Evan, Bartlett, Peter L. & Baxter, Jonathan 2004 Variance reduc-
tion techniques for gradient estimates in reinforcement learning. Journal of Machine Learning
Research 5 (9).

163

[82] Greydanus, Samuel, Dzamba, Misko & Yosinski, Jason 2019 Hamiltonian neural
networks. Advances in neural information processing systems 32.

[83] Gu, Shixiang, Lillicrap, Timothy, Sutskever, Ilya & Levine, Sergey 2016 Con-
tinuous deep Q-learning with model-based acceleration. pp. 2829–2838.

[84] Gueniat, Florimond, Mathelin, Lionel & Hussaini, M. Yousuff 2016 A statistical
learning strategy for closed-loop control of fluid flows. Theoretical and Computational Fluid
Dynamics 30 (6), 497–510.

[85] Gugercin, Serkan, Antoulas, Athanasios C. & Beattie, Christopher 2008 H2

model reduction for large-scale linear dynamical systems. SIAM journal on matrix analysis
and applications 30 (2), 609–638.

[86] Guo, Guangming, Jiang, Sitan, Chen, Hao & Zhu, Lin 2022 Influence of flow control
on aerodynamic properties of an open cavity in rarefied hypersonic flows. Acta Astronautica
191, 404–416.

[87] Gupta, Abhishek, Devin, Coline, Liu, YuXuan, Abbeel, Pieter & Levine,
Sergey 2017 Learning invariant feature spaces to transfer skills with reinforcement learn-
ing. In International Conference on Learning Representations .

[88] Haarnoja, Tuomas, Zhou, Aurick, Abbeel, Pieter & Levine, Sergey 2018 Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
In International conference on machine learning , pp. 1861–1870. PMLR.

[89] Hämäläinen, Perttu, Babadi, Amin, Ma, Xiaoxiao & Lehtinen, Jaakko 2020
PPO-CMA: Proximal policy optimization with covariance matrix adaptation. In 2020 IEEE
30th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6.
IEEE.

[90] He, J.-W., Glowinski, R., Metcalfe, R., Nordlander, A. & Periaux, J. 2000
Active control and drag optimization for flow past a circular cylinder: I. oscillatory cylinder
rotation. Journal of Computational Physics 163 (1), 83–117.

[91] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing & Sun, Jian 2015 Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of
the IEEE international conference on computer vision, pp. 1026–1034.

[92] Heller, H. & Bliss, D. 1975 The physical mechanism of flow-induced pressure fluctuations
in cavities and concepts for their suppression, p. 491.

[93] Henderson, Ronald D. 1997 Nonlinear dynamics and pattern formation in turbulent wake
transition. Journal of Fluid Mechanics 352, 65–112.

[94] Henning, Lars, Pastoor, Mark, King, Rudibert, Noack, Bernd R. & Tadmor,
Gilead 2007 Feedback control applied to the bluff body wake. , vol. 95, pp. 369–390. Springer.

[95] Hervé, Aurelien, Sipp, Denis, Schmid, Peter J. & Samuelides, Manuel 2012 A
physics-based approach to flow control using system identification. Journal of Fluid Mechanics
702, 26–58.

[96] Hinton, Geoffrey E., Sabour, Sara & Frosst, Nicholas 2018 Matrix capsules with
EM routing. In International conference on learning representations .

[97] Hjelm, R. Devon, Fedorov, Alex, Lavoie-Marchildon, Samuel, Grewal, Karan,
Bachman, Phil, Trischler, Adam & Bengio, Yoshua 2019 Learning deep represent-
ations by mutual information estimation and maximization. In International Conference on
Learning Representations .

164

[98] Hochreiter, Sepp, Bengio, Yoshua, Frasconi, Paolo & Schmidhuber, Jürgen
2001 Gradient flow in recurrent nets: the difficulty of learning long-term dependencies . A
field guide to dynamical recurrent neural networks. IEEE Press In.

[99] Hochreiter, Sepp & Schmidhuber, Jürgen 1997 Long short-term memory. Neural com-
putation 9 (8), 1735–1780.

[100] Holland, John H. 1992 Adaptation in natural and artificial systems: an introductory ana-
lysis with applications to biology, control, and artificial intelligence. MIT press.

[101] Huang, Shao-Ching & Kim, John 2008 Control and system identification of a separated
flow. Physics of Fluids 20 (10), 101509.

[102] Illingworth, Simon J., Morgans, Aimee S. & Rowley, Clarence W. 2012 Feedback
control of cavity flow oscillations using simple linear models. Journal of Fluid Mechanics 709,
223–248.

[103] Illy, Hervé, Geffroy, Philippe & Jacquin, Laurent 2008 Observations on the passive
control of flow oscillations over a cavity in a transonic regime by means of a spanwise cylinder.
AIAA Paper p. 3774.

[104] Ivakhnenko, Alexey Grigorevich 1971 Polynomial theory of complex systems. IEEE
transactions on Systems, Man, and Cybernetics (4), 364–378.

[105] Janner, Michael, Fu, Justin, Zhang, Marvin & Levine, Sergey 2019 When to trust
your model: Model-based policy optimization. Advances in Neural Information Processing
Systems 32.

[106] Jeddi, Ashkan B., Dehghani, Nariman L. & Shafieezadeh, Abdollah
2021 Lyapunov-based uncertainty-aware safe reinforcement learning. arXiv preprint
arXiv:2107.13944 .

[107] Jin, Bo, Illingworth, Simon J. & Sandberg, Richard D. 2020 Feedback control of
vortex shedding using a resolvent-based modelling approach. Journal of Fluid Mechanics 897.

[108] Jin, Bo, Illingworth, Simon J. & Sandberg, Richard D. 2022 Optimal sensor and
actuator placement for feedback control of vortex shedding. Journal of Fluid Mechanics 932,
A2.

[109] Jin, B., Sandberg, R. D. & Illingworth, S. J. 2018 Resolvent-based feedback control
of vortex shedding at low reynolds numbers. In 21st Australian Fluid Mechanics Conference
(Adelaide, Australia), pp. 1–4.

[110] Jones, Bryn Ll, Heins, Peter H., Kerrigan, Eric C., Morrison, Jonathan F. &
Sharma, Ati S. 2015 Modelling for robust feedback control of fluid flows. Journal of Fluid
Mechanics 769, 687–722.

[111] Joubert, Gilles, Le Pape, Arnaud, Heine, Benjamin & Huberson, Serge 2013
Vortical interactions behind deployable vortex generator for airfoil static stall control. AIAA
Journal 51 (1), 240–252.

[112] Juang, Jer-Nan & Pappa, Richard S. 1985 An eigensystem realization algorithm for
modal parameter identification and model reduction. Journal of guidance, control, and dy-
namics 8 (5), 620–627.

[113] Juang, Jer-Nan, Phan, Minh, Horta, Lucas G. & Longman, Richard W. 1993
Identification of observer/Kalman filter markov parameters - theory and experiments. Journal
of Guidance, Control, and Dynamics 16 (2), 320–329.

[114] Jussiau, W., Leclercq, C., Demourant, F. & Apkarian, P. 2022 Learning linear
feedback controllers for suppressing the vortex-shedding flow past a cylinder. IEEE Control
Systems Letters 6, 3212–3217.

165

[115] Kaelbling, Leslie Pack, Littman, Michael L. & Moore, Andrew W. 1996 Rein-
forcement learning: A survey. Journal of artificial intelligence research 4, 237–285.

[116] Kaiser, Eurika, Kutz, J. Nathan & Brunton, Steven L. 2018 Sparse identification
of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the
Royal Society A 474 (2219), 20180335.

[117] Kaiser, Lukasz, Babaeizadeh, Mohammad, Milos, Piotr, Osinski, Blazej, Camp-
bell, Roy H., Czechowski, Konrad, Erhan, Dumitru, Finn, Chelsea, Koza-
kowski, Piotr & Levine, Sergey 2019 Model based reinforcement learning for atari. In
International Conference on Learning Representations .

[118] Kalman, Rudolf E. 1960 On the general theory of control systems. In Proceedings First
International Conference on Automatic Control, Moscow, USSR, pp. 481–492.

[119] Kang, Sangmo, Choi, Haecheon & Lee, Sangsan 1999 Laminar flow past a rotating
circular cylinder. Physics of Fluids 11 (11), 3312–3321.

[120] Kashima, Kenji 2016 Nonlinear model reduction by deep autoencoder of noise response
data. 2016 IEEE 55th Conference on Decision and Control (CDC) pp. 5750–5755.

[121] Katoch, Sourabh, Chauhan, Sumit Singh & Kumar, Vijay 2021 A review on genetic
algorithm: past, present, and future. Multimedia Tools and Applications 80 (5), 8091–8126.

[122] Kim, Kihwan, Kerr, Murray, Beskok, Ali & Jayasuriya, Suhada 2006 Frequency-
domain based feedback control of flow separation using synthetic jets. 2006 American Control
Conference pp. 5318–5323.

[123] Kim, Samuel, Lu, Peter Y, Mukherjee, Srijon, Gilbert, Michael, Jing, Li,
Čeperić, Vladimir & Soljačić, Marin 2020 Integration of neural network-based sym-
bolic regression in deep learning for scientific discovery. IEEE transactions on neural networks
and learning systems 32 (9), 4166–4177.

[124] Kingma, Diederik P. & Ba, Jimmy 2015 Adam: A method for stochastic optimization.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings .

[125] Kitaev, Nikita, Kaiser, Lukasz & Levskaya, Anselm 2019 Reformer: The efficient
transformer. In International Conference on Learning Representations .

[126] Koizumi, Hiroshi, Tsutsumi, Seiji & Shima, Eiji 2018 Feedback control of karman
vortex shedding from a cylinder using deep reinforcement learning. AIAA Paper p. 3691.

[127] Koopman, Bernard O. 1931 Hamiltonian systems and transformation in hilbert space.
Proceedings of the National Academy of Sciences of the United States of America 17 (5), 315.

[128] Korda, Milan & Mezić, Igor 2018 Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica 93, 149–160.

[129] Krajnović, Sinǐsa & Fernandes, João 2011 Numerical simulation of the flow around
a simplified vehicle model with active flow control. International Journal of Heat and Fluid
Flow 32 (1), 192–200.

[130] Kumar, Vikash, Todorov, Emanuel & Levine, Sergey 2016 Optimal control with
learned local models: Application to dexterous manipulation. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pp. 378–383. IEEE.

[131] Kuutti, Sampo, Bowden, Richard, Jin, Yaochu, Barber, Phil & Fallah, Saber
2020 A survey of deep learning applications to autonomous vehicle control. IEEE Transactions
on Intelligent Transportation Systems 22 (2), 712–733.

166

[132] Lai, Kwei-Herng, Zha, Daochen, Li, Yuening & Hu, Xia 2020 Dual policy distillation.
In Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20), pp.
3146–3152.

[133] Lai, Pengyu, Wang, Rui, Zhang, Wei & Xu, Hui 2021 Parameter optimization of
open-loop control of a circular cylinder by simplified reinforcement learning. Physics of Fluids
33 (10), 107110.

[134] Leclerc, Eric, Sagaut, Pierre & Mohammadi, Bijan 2006 On the use of incomplete
sensitivities for feedback control of laminar vortex shedding. Computers & fluids 35 (10),
1432–1443.

[135] Leclercq, Colin, Demourant, Fabrice, Poussot-Vassal, Charles & Sipp, Denis
2019 Linear iterative method for closed-loop control of quasiperiodic flows. Journal of Fluid
Mechanics 868, 26–65.

[136] Lee, Keun H., Cortelezzi, Luca, Kim, John & Speyer, Jason 2001 Application
of reduced-order controller to turbulent flows for drag reduction. Physics of Fluids 13 (5),
1321–1330.

[137] Levine, Sergey & Koltun, Vladlen 2013 Guided policy search. In International confer-
ence on machine learning , pp. 1–9. PMLR.

[138] Li, Hao, Maceda, Guy Y. Cornejo, Li, Yiqing, Tan, Jianguo, Morzyński, Marek
& Noack, Bernd R. 2020 Towards human-interpretable, automated learning of feedback
control for the mixing layer. arXiv preprint arXiv:2008.12924 .

[139] Li, Hao, Tan, Jianguo, Gao, Zhengwang & Noack, Bernd R. 2020 Machine learning
open-loop control of a mixing layer. Physics of Fluids 32 (11), 111701.

[140] Li, Jichao & Zhang, Mengqi 2022 Reinforcement-learning-based control of confined cyl-
inder wakes with stability analyses. Journal of Fluid Mechanics 932, A44.

[141] Li, Ruiying, Noack, Bernd R., Cordier, Laurent, Borée, Jacques, Kaiser, Eur-
ika & Harambat, Fabien 2017 Linear genetic programming control for strongly nonlinear
dynamics with frequency crosstalk. arXiv preprint arXiv:1705.00367 .

[142] Li, Ying, Zhang, Haokui, Xue, Xizhe, Jiang, Yenan & Shen, Qiang 2018 Deep
learning for remote sensing image classification: A survey. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 8 (6), e1264.

[143] Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexander, Heess, Nicolas,
Erez, Tom, Tassa, Yuval, Silver, David & Wierstra, Daan 2016 Continuous control
with deep reinforcement learning. In International Conference on Learning Representations .

[144] Liu, Qiong & Gómez, F. 2019 Role of trailing-edge geometry in open cavity flow control.
AIAA Journal 57 (2), 876–878.

[145] Louizos, Christos, Welling, Max & Kingma, Diederik P. 2018 Learning sparse
neural networks through l0 regularization. Sixth International Conference on Learning Rep-
resentations, Vancouver Canada, Monday April 30-Thursday May 03, 2018 .

[146] Luhar, Mitul, Sharma, Ati S. & McKeon, Beverley J. 2014 Opposition control
within the resolvent analysis framework. Journal of Fluid Mechanics 749, 597–626.

[147] Luo, Yuping, Xu, Huazhe, Li, Yuanzhi, Tian, Yuandong, Darrell, Trevor &
Ma, Tengyu 2018 Algorithmic framework for model-based deep reinforcement learning with
theoretical guarantees. arXiv preprint arXiv:1807.03858 .

[148] Maceda, Guy Y. Cornejo, Li, Yiqing, Lusseyran, François, Morzyński, Marek
& Noack, Bernd R. 2021 Stabilization of the fluidic pinball with gradient-enriched machine
learning control. Journal of Fluid Mechanics 917.

167

[149] Maceda, Guy Y. Cornejo, Varon, Eliott, Lusseyran, François & Noack,
Bernd R. 2022 Stabilization of a multi-frequency open cavity flow with gradient-enriched
machine learning control. arXiv preprint arXiv:2202.01686 .

[150] Manohar, Krithika, Kutz, J Nathan & Brunton, Steven L 2021 Optimal sensor
and actuator selection using balanced model reduction. IEEE Transactions on Automatic
Control 67 (4), 2108–2115.

[151] Mao, Yiqian, Zhong, Shan & Yin, Hujun 2022 Active flow control using deep reinforce-
ment learning with time delays in markov decision process and autoregressive policy. Physics
of Fluids 34 (5), 053602.

[152] Marquet, Olivier, Sipp, Denis & Jacquin, Laurent 2008 Sensitivity analysis and
passive control of cylinder flow. Journal of Fluid Mechanics 615, 221–252.

[153] Mary, Ivan 1999 Méthode de Newton approchée pour le calcul d’écoulements instationnaires
comportant des zones à très faibles nombres de Mach. PhD thesis, Paris 11.

[154] Mettot, Clément, Renac, Florent & Sipp, Denis 2014 Computation of eigenvalue
sensitivity to base flow modifications in a discrete framework: Application to open-loop con-
trol. Journal of Computational Physics 269, 234–258.

[155] Min, Chulhong & Choi, Haecheon 1999 Suboptimal feedback control of vortex shedding
at low reynolds numbers. Journal of Fluid Mechanics 401, 123–156.

[156] Mittal, Rajat & Iaccarino, Gianluca 2005 Immersed boundary methods. Annu. Rev.
Fluid Mech. 37, 239–261.

[157] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A., Ve-
ness, Joel, Bellemare, Marc G., Graves, Alex, Riedmiller, Martin, Fidjeland,
Andreas K. & Ostrovski, Georg 2015 Human-level control through deep reinforcement
learning. Nature 518 (7540), 529.

[158] Moerland, Thomas M., Broekens, Joost & Jonker, Catholijn M. 2020 Model-
based reinforcement learning: A survey. arXiv preprint arXiv:2006.16712 .

[159] Mons, Vincent, Chassaing, J.-C., Gomez, Thomas & Sagaut, Pierre 2016 Recon-
struction of unsteady viscous flows using data assimilation schemes. Journal of Computational
Physics 316, 255–280.

[160] Mons, Vincent, Chassaing, Jean-Camille & Sagaut, Pierre 2017 Optimal sensor
placement for variational data assimilation of unsteady flows past a rotationally oscillating
cylinder. Journal of Fluid Mechanics 823, 230–277.

[161] Mons, Vincent & Marquet, Olivier 2021 Linear and nonlinear sensor placement
strategies for mean-flow reconstruction via data assimilation. Journal of Fluid Mechanics
923.

[162] Moore, Bruce 1981 Principal component analysis in linear systems: Controllability, ob-
servability, and model reduction. IEEE transactions on automatic control 26 (1), 17–32.

[163] Muddada, Sridhar & Patnaik, B. S. V. 2010 An active flow control strategy for the
suppression of vortex structures behind a circular cylinder. European Journal of Mechanics-
B/Fluids 29 (2), 93–104.

[164] Nachum, Ofir, Gu, Shixiang, Lee, Honglak & Levine, Sergey 2018 Data-efficient
hierarchical reinforcement learning. Advances in neural information processing systems 31.

[165] Nair, Aditya G., Taira, Kunihiko, Brunton, Bingni W. & Brunton, Steven L.
2021 Phase-based control of periodic fluid flows. Journal of Fluid Mechanics 927.

168

[166] Natarajan, Mahesh, Freund, Jonathan B. & Bodony, Daniel J. 2016 Actuator
selection and placement for localized feedback flow control. Journal of Fluid Mechanics 809,
775–792.

[167] Nguyen, Giang, Dlugolinsky, Stefan, Bobák, Martin, Tran, Viet,
López Garćıa, Álvaro, Heredia, Ignacio, Maĺık, Peter & Hluchý, Ladislav
2019 Machine learning and deep learning frameworks and libraries for large-scale data min-
ing: a survey. Artificial Intelligence Review 52 (1), 77–124.

[168] Nibourel, Pierre, Leclercq, Colin, Demourant, Fabrice, Garnier, Eric & Sipp,
Denis 2021 Robust control of convective instabilities in a 2d supersonic boundary layer us-
ing a feedback setup. In AERO 2020+1 - 55th 3AF International Conference on Applied
Conference.

[169] Nishioka, Michio & Sato, Hiroshi 1978 Mechanism of determination of the shedding
frequency of vortices behind a cylinder at low reynolds numbers. Journal of Fluid Mechanics
89 (1), 49–60.

[170] Oehler, Stephan F. & Illingworth, Simon J. 2018 Sensor and actuator placement
trade-offs for a linear model of spatially developing flows. Journal of Fluid Mechanics 854,
34–55.

[171] Otter, Daniel W., Medina, Julian R. & Kalita, Jugal K. 2020 A survey of the
usages of deep learning for natural language processing. IEEE transactions on neural networks
and learning systems 32 (2), 604–624.

[172] Ozbayoglu, Ahmet Murat, Gudelek, Mehmet Ugur & Sezer, Omer Berat 2020
Deep learning for financial applications: A survey. Applied Soft Computing 93, 106384.

[173] Panju, Maysum & Ghodsi, Ali 2020 A neuro-symbolic method for solving differential and
functional equations. arXiv preprint arXiv:2011.02415 .

[174] Paris, Romain, Beneddine, Samir & Dandois, Julien 2021 Robust flow control and
optimal sensor placement using deep reinforcement learning. Journal of Fluid Mechanics 913,
A25.

[175] Paris, Romain, Beneddine, Samir & Dandois, Julien 2022 Reinforcement-learning-
based actuator selection method for active flow control. ArXiv preprint arXiv:2209.14895 .

[176] Park, Hyungmin, Lee, Dongkon, Jeon, Woo-Pyung, Hahn, Seonghyeon, Kim,
Jeonglae, Kim, Jungwoo, Choi, J. I. N. & Choi, Haecheon 2006 Drag reduction in
flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device.
Journal of Fluid Mechanics 563, 389–414.

[177] Parkin, Derwin J., Thompson, Mark Christopher & Sheridan, John 2014 Numer-
ical analysis of bluff body wakes under periodic open-loop control. Journal of Fluid Mechanics
739, 94–123.

[178] Patterson, Ryan P. & Friedmann, Peretz P. 2022 Vibration reduction on helicopter
rotors using open-loop flow control. AIAA Journal 60 (1), 113–128.

[179] Ponsioen, Sten, Jain, Shobhit & Haller, George 2020 Model reduction to spectral
submanifolds and forced-response calculation in high-dimensional mechanical systems. Journal
of Sound and Vibration p. 115640.

[180] Post, Martiqua L. & Corke, Thomas C. 2006 Separation control using plasma actuat-
ors: dynamic stall vortex control on oscillating airfoil. AIAA Journal 44 (12), 3125–3135.

[181] Poussot-Vassal, C. & Sipp, D. 2015 Parametric reduced order dynamical model con-
struction of a fluid flow control problem. IFAC-PapersOnLine 48 (26), 133–138.

169

[182] Proctor, Joshua L., Brunton, Steven L. & Kutz, J. Nathan 2016 Dynamic mode
decomposition with control. SIAM Journal on Applied Dynamical Systems 15 (1), 142–161.

[183] Protas, B. & Styczek, A. 2002 Optimal rotary control of the cylinder wake in the laminar
regime. Physics of Fluids 14 (7), 2073–2087.

[184] Protas, B. & Wesfreid, J. E. 2002 Drag force in the open-loop control of the cylinder
wake in the laminar regime. Physics of Fluids 14 (2), 810–826.

[185] Rabault, Jean, Kuchta, Miroslav, Jensen, Atle, Réglade, Ulysse & Cerardi,
Nicolas 2019 Artificial neural networks trained through deep reinforcement learning discover
control strategies for active flow control. Journal of Fluid Mechanics 865, 281–302.

[186] Rabault, Jean & Kuhnle, Alexander 2019 Accelerating deep reinforcement learning
strategies of flow control through a multi-environment approach. Physics of Fluids 31 (9),
094105.

[187] Raibaudo, C. & Martinuzzi, R. J. 2021 Unsteady actuation and feedback control of the
experimental fluidic pinball using genetic programming. Experiments in Fluids 62 (10), 1–18.

[188] Rashidi, Saman, Hayatdavoodi, Masoud & Esfahani, Javad Abolfazli 2016 Vortex
shedding suppression and wake control: A review. Ocean Engineering 126, 57–80.

[189] Ray, Alex, Achiam, Joshua & Amodei, Dario 2019 Benchmarking safe exploration in
deep reinforcement learning. arXiv preprint arXiv:1910.01708 .

[190] Ren, Feng, Rabault, Jean & Tang, Hui 2021 Applying deep reinforcement learning to
active flow control in weakly turbulent conditions. Physics of Fluids 33 (3), 037121.

[191] Rizi, Mohamed-Yazid, Pastur, Luc, Abbas-Turki, Mohamed, Fraigneau, Yann
& Abou-Kandil, Hisham 2015 Closed-loop analysis and control of cavity shear layer oscil-
lations. Intl J. Flow Control 6, 171–187.

[192] Rogers, James 2000 A parallel approach to optimum actuator selection with a genetic
algorithm. AIAA Paper pp. 2000–4484.

[193] Romac, Clément, Portelas, Rémy, Hofmann, Katja & Oudeyer, Pierre-Yves
2021 Teachmyagent: a benchmark for automatic curriculum learning in deep rl. In Interna-
tional Conference on Machine Learning , pp. 9052–9063. PMLR.

[194] Rosenblatt, Frank 1958 The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review 65 (6), 386.

[195] Roshko, Anatol 1953 On the development of turbulent wakes from vortex streets, report
1191. Tech. Rep. 2913. California Institue of Technology.

[196] Rossiter, J. E. 1964 Wind tunnel experiments on the flow over rectangular cavities at
subsonic and transonic speeds. RAE Technical Report No. 64037 .

[197] Rowley, Clarence W. 2005 Model reduction for fluids, using balanced proper orthogonal
decomposition. International Journal of Bifurcation and Chaos 15 (03), 997–1013.

[198] Rowley, Clarence W. & Williams, David R. 2006 Dynamics and control of high-
reynolds-number flow over open cavities. Annu. Rev. Fluid Mech. 38, 251–276.

[199] Rowley, Clarence W., Williams, David R., Colonius, Tim, Murray, Richard M.
& Macmynowski, Douglas G. 2006 Linear models for control of cavity flow oscillations.
Journal of Fluid Mechanics 547, 317–330.

[200] Rusu, Andrei A., Colmenarejo, Sergio Gomez, Gulcehre, Caglar, Des-
jardins, Guillaume, Kirkpatrick, James, Pascanu, Razvan, Mnih, Volodymyr,
Kavukcuoglu, Koray & Hadsell, Raia 2015 Policy distillation. arXiv preprint
arXiv:1511.06295 .

170

[201] Sabour, Sara, Frosst, Nicholas & Hinton, Geoffrey E. 2017 Dynamic routing
between capsules. Advances in neural information processing systems pp. 3856–3866.

[202] Saddington, Alistair J., Thangamani, Varun & Knowles, Kevin 2016 Comparison
of passive flow control methods for a cavity in transonic flow. Journal of Aircraft 53 (5),
1439–1447.

[203] Samimy, M., Adamovich, I., Webb, B., Kastner, J., Hileman, J., Keshav, S. &
Palm, P. 2004 Development and characterization of plasma actuators for high-speed jet
control. Experiments in Fluids 37 (4), 577–588.

[204] Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J. &
Myatt, J. H. 2007 Reduced-order model-based feedback control of subsonic cavity flows–an
experimental approach. pp. 211–229. Springer.

[205] Sarohia, V. & Massier, P. F. 1977 Control of cavity noise. Journal of Aircraft 14 (9),
833–837.

[206] Sashittal, Palash & Bodony, Daniel J. 2021 Data-driven sensor placement for fluid
flows. Theoretical and Computational Fluid Dynamics 35 (5), 709–729.

[207] Schmid, Peter J. & Sipp, Denis 2016 Linear control of oscillator and amplifier flows.
Physical Review Fluids 1 (4), 040501.

[208] Schmidhuber, Jürgen 1992 Learning complex, extended sequences using the principle of
history compression. Neural Computation 4 (2), 234–242.

[209] Schrittwieser, Julian, Antonoglou, Ioannis, Hubert, Thomas, Simonyan,
Karen, Sifre, Laurent, Schmitt, Simon, Guez, Arthur, Lockhart, Edward,
Hassabis, Demis & Graepel, Thore 2020 Mastering atari, go, chess and shogi by plan-
ning with a learned model. Nature 588 (7839), 604–609.

[210] Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan, Michael & Moritz,
Philipp 2015 Trust region policy optimization. International conference on machine learning
pp. 1889–1897.

[211] Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan, Michael & Abbeel,
Pieter 2015 High-dimensional continuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438 .

[212] Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec & Klimov,
Oleg 2017 Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

[213] Seidel, Jürgen, Fagley, Casey & McLaughlin, Thomas 2018 Feedback flow control:
A heuristic approach. AIAA Journal 56 (10), 3825–3834.

[214] Seidel, Jürgen, Siegel, Stefan, Fagley, C., Cohen, K. & McLaughlin, T. 2009
Feedback control of a circular cylinder wake. Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering 223 (4), 379–392.

[215] Seifert, A., Bachar, T., Koss, D., Shepshelovich, M. & Wygnanski, I. 1993
Oscillatory blowing: a tool to delay boundary-layer separation. AIAA Journal 31 (11), 2052–
2060.

[216] Seifert, A. & Pack, L. G. 1999 Oscillatory control of separation at high reynolds numbers.
AIAA Journal 37 (9), 1062–1071.

[217] Selby, G. V., Lin, J. C. & Howard, F. G. 1992 Control of low-speed turbulent separated
flow using jet vortex generators. Experiments in Fluids 12 (6), 394–400.

[218] Seshagiri, Amith, Cooper, Evan & Traub, Lance W. 2009 Effects of vortex generators
on an airfoil at low reynolds numbers. Journal of Aircraft 46 (1), 116–122.

171

[219] Shimomura, Satoshi, Sekimoto, Satoshi, Oyama, Akira, Fujii, Kozo & Nishida,
Hiroyuki 2020 Closed-loop flow separation control using the deep Q network over airfoil.
AIAA Journal 58 (10), 4260–4270.

[220] Siegel, Stefan, Cohen, Kelly & McLaughlin, Tom 2003 Feedback control of a circular
cylinder wake in experiment and simulation. 33rd AIAA Fluid Dynamics Conference and
Exhibit p. 3569.

[221] Silva-Ortega, M. & Assi, Gustavo Roque da Silva 2017 Suppression of the vortex-
induced vibration of a circular cylinder surrounded by eight rotating wake-control cylinders.
Journal of Fluids and Structures 74, 401–412.

[222] Singh, Ashish & Little, Jesse 2020 Parametric study of ns-dbd plasma actuators in a
turbulent mixing layer. Experiments in fluids 61 (2), 1–16.

[223] Singh, Abhay K. & Hahn, Juergen 2005 Determining optimal sensor locations for state
and parameter estimation for stable nonlinear systems. Industrial & engineering chemistry
research 44 (15), 5645–5659.

[224] Singha, Sintu & Sinhamahapatra, K. P. 2011 Control of vortex shedding from a circular
cylinder using imposed transverse magnetic field. International Journal of Numerical Methods
for Heat & Fluid Flow 21 (1), 32–45.

[225] Sipp, Denis 2012 Open-loop control of cavity oscillations with harmonic forcings. Journal of
Fluid Mechanics 708, 439–468.

[226] Sipp, Denis & Lebedev, Anton 2007 Global stability of base and mean flows: a general
approach and its applications to cylinder and open cavity flows. Journal of Fluid Mechanics
593, 333–358.

[227] Sipp, Denis, Marquet, Olivier, Meliga, Philippe & Barbagallo, Alexandre
2010 Dynamics and control of global instabilities in open-flows: a linearized approach. Applied
Mechanics Reviews 63 (3).

[228] Sipp, Denis & Schmid, Peter J. 2016 Linear closed-loop control of fluid instabilities and
noise-induced perturbations: A review of approaches and tools. Applied Mechanics Reviews
68 (2).

[229] Sivashinsky, Gregory I. 1980 On flame propagation under conditions of stoichiometry.
SIAM Journal on Applied Mathematics 39 (1), 67–82.

[230] Smith, Barton, Glezer, Ari, Smith, Barton & Glezer, Ari 1997 Vectoring and
small-scale motions effected in free shear flows using synthetic jet actuators. In 35th aerospace
sciences meeting and exhibit , p. 213.

[231] Sohankar, A., Khodadadi, M. & Rangraz, E. 2015 Control of fluid flow and heat
transfer around a square cylinder by uniform suction and blowing at low Reynolds numbers.
Computers & Fluids 109, 155–167.

[232] Srivastava, Rupesh Kumar, Greff, Klaus & Schmidhuber, Jürgen 2015 Highway
networks. arXiv preprint arXiv:1505.00387 .

[233] Strykowski, P. J. & Hannemann, K. 1991 Temporal simulation of the wake behind a
circular cylinder in the neighborhood of the critical reynolds number. Acta mechanica 90 (1),
1–20.

[234] Strykowski, Pj J. & Sreenivasan, Kr R. 1990 On the formation and suppression of
vortex ‘shedding’at low reynolds numbers. Journal of Fluid Mechanics 218, 71–107.

[235] Sutton, Richard S & Barto, Andrew G 1998 Introduction to reinforcement learning .
The MIT press.

172

[236] Suzuki, H., Kasagi, N. & Suzuki, Y. 2004 Active control of an axisymmetric jet with
distributed electromagnetic flap actuators. Experiments in fluids 36 (3), 498–509.

[237] Tang, Hongwei, Rabault, Jean, Kuhnle, Alexander, Wang, Yan & Wang,
Tongguang 2020 Robust active flow control over a range of reynolds numbers using an ar-
tificial neural network trained through deep reinforcement learning. Physics of Fluids 32 (5),
053605.

[238] Teh, Yee, Bapst, Victor, Czarnecki, Wojciech M., Quan, John, Kirkpatrick,
James, Hadsell, Raia, Heess, Nicolas & Pascanu, Razvan 2017 Distral: Robust
multitask reinforcement learning. Advances in neural information processing systems 30.

[239] Tol, H. J., Kotsonis, M., De Visser, C. C. & Bamieh, B. 2017 Localised estimation
and control of linear instabilities in two-dimensional wall-bounded shear flows. Journal of
Fluid Mechanics 824, 818–865.

[240] Van Hasselt, Hado, Guez, Arthur & Silver, David 2016 Deep reinforcement learning
with double q-learning. In Proceedings of the AAAI conference on artificial intelligence.

[241] Verma, Siddhartha, Papadimitriou, Costas, Lüthen, Nora, Arampatzis, Geor-
gios & Koumoutsakos, Petros 2020 Optimal sensor placement for artificial swimmers.
Journal of Fluid Mechanics 884.

[242] Vona, Marco & Lauga, Eric 2021 Stabilizing viscous extensional flows using reinforce-
ment learning. Physical Review E 104 (5), 055108.

[243] Waldock, Antony, Greatwood, Colin, Salama, Francis & Richardson, Thomas
2018 Learning to perform a perched landing on the ground using deep reinforcement learning.
Journal of Intelligent & Robotic Systems 92 (3-4), 685–704.

[244] Wang, Jin-Jun, Choi, Kwing-So, Feng, Li-Hao, Jukes, Timothy N. & Whalley,
Richard D. 2013 Recent developments in dbd plasma flow control. Progress in Aerospace
Sciences 62, 52–78.

[245] Wang, Yaqing, Yao, Quanming, Kwok, James T. & Ni, Lionel M. 2020 Generalizing
from a few examples: A survey on few-shot learning. ACM computing surveys (csur) 53 (3),
1–34.

[246] Wang, Yi-Zhe, Mei, Yu-Fei, Aubry, Nadine, Chen, Zhihua, Wu, Peng & Wu,
Wei-Tao 2022 Deep reinforcement learning based synthetic jet control on disturbed flow
over airfoil. Physics of Fluids 34 (3), 033606.

[247] Wehrmann, O. H. 1965 Reduction of velocity fluctuations in a karman vortex street by a
vibrating cylinder. The Physics of Fluids 8 (4), 760–761.

[248] Werbos, Paul 1974 Beyond regression:” new tools for prediction and analysis in the beha-
vioral sciences. Ph. D. dissertation, Harvard University .

[249] Willcox, Karen 2006 Unsteady flow sensing and estimation via the gappy proper ortho-
gonal decomposition. Computers & Fluids 35 (2), 208–226.

[250] Willcox, Karen & Peraire, Jaime 2002 Balanced model reduction via the proper or-
thogonal decomposition. AIAA Journal 40 (11), 2323–2330.

[251] Williams, David & Morrow, Julie 2001 Adaptive control of multiple acoustic modes in
cavities. In 15th AIAA Computational Fluid Dynamics Conference, p. 2769.

[252] Williams, David R., Cornelius, Daniel & Rowley, Clarence W. 2007 Supersonic
cavity response to open-loop forcing. pp. 230–243. Springer.

[253] Williams, Matthew O., Hemati, Maziar S., Dawson, Scott T. M., Kevrekidis,
Ioannis G. & Rowley, Clarence W. 2016 Extending data-driven koopman analysis to
actuated systems. IFAC-PapersOnLine 49 (18), 704–709.

173

[254] Williams, Matthew O., Kevrekidis, Ioannis G. & Rowley, Clarence W. 2015 A
data-driven approximation of the koopman operator: Extending dynamic mode decomposi-
tion. Journal of Nonlinear Science 25 (6), 1307–1346.

[255] Williamson, Charles H. K. 1996 Vortex dynamics in the cylinder wake. Annual review
of fluid mechanics 28 (1), 477–539.

[256] Wong, H. Y. & Kokkalis, A. 1982 A comparative study of three aerodynamic devices for
suppressing vortex-induced oscillation. Journal of Wind Engineering and Industrial Aerody-
namics 10 (1), 21–29.

[257] Wu, Jie-Zhi, Lu, Xi-Yun, Denny, Andrew G., Fan, Meng & Wu, Jain-Ming 1998
Post-stall flow control on an airfoil by local unsteady forcing. Journal of Fluid Mechanics 371,
21–58.

[258] Wu, J. Z., Vakili, A. D. & Wu, J. M. 1991 Review of the physics of enhancing vortex
lift by unsteady excitation. Progress in Aerospace Sciences 28 (2), 73–131.

[259] Wygnanski, Israel 1997 Boundary layer and flow control by periodic addition of mo-
mentum. In 4th Shear Flow Control Conference, pp. 97–2117.

[260] Yamouni, S., Mettot, C., Sipp, D. & Jacquin, L. 2013 Passive control of cavity flows.
Aerospace Lab (6), p–1.

[261] Yao, Huaijin, Sun, Yiyang & Hemati, Maziar S. 2022 Feedback control of transitional
shear flows: Sensor selection for performance recovery. Theoretical and Computational Fluid
Dynamics 36 (4), 597–626.

[262] Yeh, Chi-An & Taira, Kunihiko 2019 Resolvent-analysis-based design of airfoil separation
control. Journal of Fluid Mechanics 867, 572–610.

[263] Yin, Haiyan & Pan, Sinno Jialin 2017 Knowledge transfer for deep reinforcement learning
with hierarchical experience replay. In Thirty-First AAAI conference on artificial intelligence.

[264] Yin, Yuan, Le Guen, Vincent, Dona, Jérémie, de Bézenac, Emmanuel, Ayed,
Ibrahim, Thome, Nicolas & Gallinari, Patrick 2021 Augmenting physical models
with deep networks for complex dynamics forecasting. Journal of Statistical Mechanics: The-
ory and Experiment 2021 (12), 124012.

[265] Zames, George 1981 Feedback and optimal sensitivity: Model reference transformations,
multiplicative seminorms, and approximate inverses. IEEE Transactions on automatic control
26 (2), 301–320.

[266] Zeng, Kevin & Graham, Michael D. 2021 Symmetry reduction for deep reinforce-
ment learning active control of chaotic spatiotemporal dynamics. Physical Review E 104 (1),
014210.

[267] Zielinska, B. J. A., Goujon-Durand, S., Dusek, J. & Wesfreid, J. E. 1997 Strongly
nonlinear effect in unstable wakes. Physical Review Letters 79 (20), 3893.

174

Chapter 9

Appendices

9.1 Miscellaneous details about the RLFramework

9.1.1 Common FastS envrionment Mixin

As detailed in section 3.2.2.2, all the environments using the FastS solver should display a similar
behavior on many aspects. Thus it is logical to gather these common traits into a common toolbox,
a Mixin centralizing the code at a single location to reduce the development burden of a new envir-
onments and increase maintainability. Alongside fasts utils (containing CFD specific functions),
the FastsEnvMixin gathers methods that enable the easy definition of the observation and action
setups, the reward and other complementary information sources as well as common solver warm-up
operations.

9.1.1.1 Forcing action definition

In the current version, only 2D flows are supported and forcing actions can either take the form of
a wall-mounted blowing/suction actuator or of a body force implemented directly as a source term
in the Navier-Stokes equations.

For the latter and as the forcing action is updated at every numerical step, source terms arrays
are computed by superimposition of multiple masks, one per forcing action, that multiplied by the
corresponding action component and summed provide a resultant source term for all conservative
variables (density ρ, x and y momentum ρu and ρv and the energy density ρe). For topological
reasons the computational domain can be split into multiple zones and as masks can span several
zones, this computation theoretically occurs for all the zones of the flow. Yet as body forces are
defined using a target point (x, y) in the flow on which a bi-dimensional Gaussian distribution is
centered, the latter decaying quickly with the distance to this point, the area where the action mask
is significant remains limited. The mask is then thresholded below a fixed value.

Injection/suction forcings are more complex since they require to directly modify the case sim-
ulated by adding a boundary condition mimicking blowing and suction. To specify such a forcing,
the user defines a set of new boundary conditions that are created by splitting existing ones in
the simulation tree. These nodes are initialized as “walls”, corresponding to a neutral action (no
forcing). Depending on the sign of the action, their type may change since blowing or suction are
simulated by different solver boundary conditions. These changes need to be passed on the solver.
This is done by re-running part of the warm-up process every time the type of boundary condition

175

changes. Otherwise, when only the amplitude of the forcing action changes, array values are simply
updated.

Both injection/suction and body force control actions are defined using a standardized Python
dictionary (dict) containing all the required information. To alleviate the configuration encoding
burden, some default values can be omitted and required ones are pre-processed by methods of the
Mixin to either convert a user-defined “light” configuration to a standardized one (mainly consisting
in vectorizing scalar parameters) or the raise error messages when the provided configuration is too
invalid to be standardized without performing possibly unwanted adaptations of the configuration.

Again in order to make case specification easier, the definition of new boundary conditions for
injection/suction forcing can be performed by directly pointing at the target geometrical range and
specifying the required splitting (number and intersperse pattern). The Mixin then handles the
splitting and the renaming of the new boundary conditions.

For instance:

dict(inj BC name=’INJ ’,target BC name=’AIRFOIL’,start xy=(0,0),stop xy=(1,0),

intersperse wall bc=1,n split=10)

specifies the creation of 10 boundary condition nodes named INJ 0 to INJ 9 on the boundary condition
named “AIRFOIL”, in the area delimited by the nodes closest to start xy and stop xy. In-between
each of these new boundary conditions, a wall boundary condition of the same length is interspersed.

For both types of control actions, the update is simply performed by calling a function that
is created upon the instantiation of the environment. This function keeps track of all the handles
(pointers to arrays and data buffers or default values) necessary to updating the forcing in the
simulation.

9.1.1.2 The action update pipeline

When the control action aagent is received by the environment at the beginning of a control step it is
first pre-processed. Actions coming from the agent generally range [−1, 1] whereas the environment
action range may be different, one agent action component may be implemented at multiple locations
on the flow (e.g. using pairs of actuators that act in opposition) or this action may specify an
amplitude and a frequency of sinusoidal forcing instead of simple amplitude command. Finally the
user may schedule the action of the layout by redistributing the agent actions differently on the
flow.

This pre-processing is done by using a first redistribution matrix M
redist

(by default the identity
matrix) then rescaling (using the matrix M

rescale
and the offset vector voffset) and broadcasting the

agent actions from [−1, 1] to the action ranges defined by the configuration. Extra action bias and
penalties can be added at this stage, but this is generally omitted. The environment action aenv
ready to be implemented on the flow is thus defined as:

aenv = M
rescale

.M
redist

.aagent + voffset

and it contains re-scaled amplitudes as well as frequencies for sinusoidal forcings. Along the numer-
ical iterations of the control step, an interpolation between from the previous action to the current
one is generally performed over a fixed portion of the control step in order to prevent solver crashes
due to brutal changes of conditions. For each numerical iteration of the state, the implemented
action is thus interpolated. In addition, for sinusoidal forcing, the interpolation of the amplitude
and frequency comes along the retrieval and update of the current phase φ of the signal to guarantee
a continuous forcing signal.

176

9.1.1.3 Flexible measurement and reward definitions

The definition and functional structure of observations and other information measurements follow
the same logic as for the control actions. Measurements on the flow can be of different types,
measuring different physical quantities (velocity, pressure, vorticity) as well as having different
footprints in space and time (point-wise localized measurement, measurement integrated over an
area, linear or surface measurement for convolutional agents or measurement with memory for time-
recurrent NN structures), and different signal filtering methods (computing statistics, finite-impulse-
response filtering or continuous-wavelet transform). The Mixin also offers to sample measurements
at rate different from the control step, meaning that over- or under-sampling can be performed in
order to enable more precise filtering.

Each measurement is implemented via a purposefully built function tasked with computing
these physical quantities and with appending the data sample into dedicated buffers, that enable
easy querying and post-processing. Measurements that aim at being used as observations for the
agent are defined by the observation setup while other informative ones may be needed for simple
information or more importantly for reward computation.

The reward function is thus defined as a linear combination of terms computed on the informa-
tion, observations or action buffers. Similarly as for the action setup, observations, reward and other
information measurement are defined using lightweight dictionary configuration that are parsed by
the Mixin in order to generate all the callables required to run the environment properly.

For instance:

info setup=[

dict(name=’press’,type=’pointwise’,args=[(0.8,y,0) for y in np.linspace(−.1,.1,5)],
var=’Pressure’,memory=20),

dict(name=’vx’,type=’pointwise’,args=[(0.8,y,0) for y in np.linspace(−.1,.1,5)],
var=’VelocityX’,memory=20)

],

rew setup=[

dict(type=’std’,var=’press ∗’,factor=−1),
dict(type=’absAvg’,var=’press ∗’,factor=−.5),
dict(type=’std’,var=’vx ∗’,factor=−.1),
dict(type=’absAvg’,var=’action ∗’,factor=−1.)

],

defines two groups of measurements, one of the pressure and the other of the X velocity, at location
specified by args and stored in buffers having 20 slots of memory. These buffers are named press 0,
...,press 4 and vx 0, ... vx 4. The reward function is then defined as:

−1× 1

5

4∑

i=0

std(press i)− 0.5×
4∑

i=0

avg(|press i|)− 0.1× 1

4

4∑

i=0

std(vx i)− 0.1× 1

n

n−1∑

i=0

avg(|action i|)

where action i refers to the ith action buffer. This way terms penalizing the pressure fluctuation and
x velocity signals are combined with others that encourage pressure and forcing action with a null
time-averaged value.

177

9.1.2 EnvMPICommunicator implementation details

As introduced in section 3.2, the envMPIcommunicator object acts as a switch between the agent
rank and the environment ranks. To preserve the modularity as much as possible, agents (expect
concerning their data buffers) are implemented in a fashion agnostic to the parallelism. As in
sequential mode, both environment and agent are on the same process, the agent gets a handle
on the environment enabling it to directly query the observations and the reward. Conversely the
learner requests the control action from the agent and runs the environment forward using this
action. In a parallel mode, the environment not being run on the same rank as the agent, the latter
cannot directly access observations and reward directly. The role of the envMPIcommunicator is
then to fake the presence of an environment on the agent rank and similarly provide the queryable
methods exposed by the agent on environment ranks. Here, the importance of the interface contract
appears clearly as the envMPIcommunicator should comply with the environment interface on the
agent rank and with the agent interface on environment ranks.

Agent rank

getActionLoop

receive obs.

getActionsTrain()

send act.

receive rew.

updateExpAct()

receive obs.

getActionsEval()

send act.

Env. properties

observations

reward

Environment rank

getActionsTrain

send obs.

receive act.

step()

updateExpData

send rew.

getActionsEval

send obs.

receive act.

tag 0

tag 3

tag 1

tag 2

tag 4

Figure 9.1: Schematics of MPI messaging managed by the EnvMPIcommunicator (green boxes).

Under the hood and upon one epoch of training, an “action loop” is launched on the agent rank
and as illustrated by figure 9.1. Since one can deterministically compute the number of data samples
exchanged in-between the agent and the environment, the agent rank is set on hold, waiting for a
precise number of packets from the other ranks. As each MPI message contains the identity of its
emitter and as every rank gets to compute the mapping between ranks, environments and agents,
each message can be traced back to which entity sent it. Added with a tag (an integer sent alongside
the message to avoid mixing simultaneous messages), used to encode the nature of the request, can
also be recovered, the receiving rank gets all the information for processing the received message
correctly, i.e. sending a control action back (tag 0 or 2 depending on train or evaluation contexts)
with the tag 3 or storing the reward (tag 1) in the buffer corresponding to emitter environment.

At the other ends of the line, on environment ranks, the envMPIcommunicator exposes both the
getActionsTrain and getActionsEval methods and the updateExpData (that normally queries
the reward from the environment and pushes the triplet action, observation and reward to the right
buffer), but as “empty shells” that send or receive MPI messages to the agent rank.

178

Other functions allowing for instance for the agent to directly modify the configuration environ-
ments are also implemented but not used on a general basis since they break the interface contract
in some sense.

9.1.3 Parallelized LGP learners and agent structures

As the paradigm of LGP is different from the RL, notably in the fact that the notion of training
epoch is much less well-defined in the first case, the training pipeline varies. This also enables
to optimize the computational load on each rank. While still keeping the notion of an agent
rank that is considered as the main one, other ranks can either run “environment” tasks as well as
secondary agent optimization tasks (called background tasks). The latter can represent a significant
computational overhead that has merit in being shared across all available computational resources.
Thus, to enable this flexibility, a LPG learner is built around the notion of task.

The main agent rank gets a LGPOptimizer tasked with managing the population of policies
generally. Each environment rank implements an environment and a LGPEvaluator, the latter
being able to either run evaluation of individuals or perform background tasks. It can be seen as
a worker, receiving a queue of tasks coming with the relevant data. The dispatch of all the tasks
to be run at a given time is performed by a LGPcommunicator. These classes implement standard
LGP algorithms both also a variant proposed by Cornejo Maceda [56] that infers an estimation the
local gradient of the performance metric to guide the evolution of the population.

9.1.4 Multi-policy distillation

Agent rank

MultiPolicyDistillator

MultiPolicyWrapper

Agent

Agent

...

PolicyDistillator

PolicyDistillator

Environment rank

Environment

Figure 9.2: Schematics of the multi-policy distillation implemented in the RLFramework

Multi-policy distillation has been implemented alongside standard transfer learning methods in
order to enable easy exchange of knowledge between RL agents and/or GP-trained individuals. As
distillation considers roll-out data as a training base, (parallelized) interactions with environments,
complying the environment interface must be ensured. To do so, a MultiPolicyDistillator has
been developed with the role of a learner (high level API). In addition to the standard training of
agents, it implements distillation processes between agents.

The all-to-all distillation mapping decomposed into directional, pairwise distillation relations
between one teacher agent and one student agent. Each of these distillations are handled by a
PolicyDistillator object. Depending on the type of teacher agent (either a neural-network
policy or a LGP individual), the appropriate version of distillator is spawned and in turn depending

179

on the training algorithm, different losses, and variable handles are recovered to enable a proper
optimization. These arduous and error-prone recovery operation are performed transparently to the
user.

All the agents are gathered into a MultiPolicyWrapper object whose main task is to host
multiple agents, (compliant to the agent interface) while being itself compliant to the agent interface
and enable coherent training of each individual agent. It thus sequentially exposes one agent after
the other for it to be trained in a scheduled manner. This wrapper thus serves essentially as switch,
looking like an agent from outside objects but hosting multiple ones.

9.2 The Laplace Transform for linear closed-loop control

For a given temporal signal f , its Laplace transform F reads:

F (s) = L [f(t)] (s) =
∫ ∞

0

f(t)e−stdt,

where s is a complex frequency, generally decomposed as s = σ+ ıω, where σ and ω respectively its
real and imaginary parts. Linear closed-loop control generally considers LTI plants whose response
y(t) to an input signal x(t) can be computed as:

y(t) = x(t) ∗ h(t) =
∫ t

0

x(t− τ)h(τ)dτ,

where ∗ represents temporal convolution and h(t) is the impulse response of the plant. The Laplace
Transform trivializes the temporal convolution as simple product in the s-domain:

Y (s) = H(s)X(s),

where X, Y and H are respectively the Laplace transforms of x, y and h, the latter being referred
to as the “transfer function” of the plant. This property for instance enables to estimate H by
a simple ratio of the Laplace transforms of the output over the input signals. Transfer functions
can be represented in different ways, one of which being (under mild assumptions) the state space
model introduced earlier in the development.

For H2-optimal syntheses, pole placement is performed in the s-domain. Parseval’s theorem
ensures that if a closed-loop transfer function is H2 optimal it is also optimal in the temporal
domain. The Parseval identity reads:

1

2π

∫ ∞

−∞
|F (σ + ıω)|2 dω =

∫ ∞

0

e−2σt |f(t)|2 dt.

The general interpretation is Parseval identity is that the Laplace preserves the energy of the
signal, i.e. computing by summing the power per sample across time or frequency leads to the
same result. This Parseval identity holds and for functions f that comply with the assumption:
e−ctf(t) ∈ L2(0,∞) for some c ∈ R. It is then valid for σ > c, (the integration in the s-domain
along a “vertical line” converges in the right half-plane defined by σ > c). The functions f that
comply with this property define the Hardy space H2.

180

https://en.wikipedia.org/wiki/Hardy_space

9.3 Global stability analysis and Newton convergence method

Global stability tools developed by Samir Beneddine [17] in Python 2.7 have been brought to Python
3.x standard, re-using some building blocks developed for the RlFramework. While being directly
used for RL or LGP, these tools were used for the development of some environments as a way to
compute base-flows, resolvent operators or global stability analyses.

The core function of this module is the computation of a Jacobian matrix of a flow by the finite-
difference method. The base idea is to perturb each degree of freedom of a steady flow q

0
with a

perturbation q′ and to extract the residuals (as a response of the Navier-Stokes operator N (q
0
+ q))

due to this perturbation:

∂q
0

∂t
= N (q

0
) = 0

∂q′

∂t
= N (q

0
+ q′) ≈ ∂N

∂q

∣∣∣∣
q
0︸ ︷︷ ︸

J

.q′,

where J is the Jacobian operator of the flow q
0
(obtained here by a first order Taylor series).

Leveraging the fact that the support of the numerical stencil is limited in space, the response of the
discretized Navier-Stokes operator is also limited in space. This makes it possible for two sufficiently
distant perturbation to not overlap their corresponding responses of the flow. Thus using this fact,
Samir Beneddine derived a strategy to cleverly “tile” perturbations with respect to the stencil
in order to retrieve entire groups of rows of the Jacobian matrix at once and thus enabling the
computation of Jacobian matrices by the finite-difference method on much larger flows. Originally
developed for one single type of bi-dimensional stencil, for which the optimal tiling can be easily
derived, this new version implements an algorithm that derives the optimal tiling for every provided
stencil or retrieves this optimal solution if the stencil has already been submitted. This aims at
enabling the computation of global stability with compact and/or higher order numerical schemes.

The adaptation of the module also consisted into modifying the way the different flow zone
connections were handled. These zone connections define the global topology of the simulation and
thus constrain the perturbation tiling previously introduced. Instead of trying to solve potential
conflicts, this new version directly “disconnects” the zones by replacing each neighbor of a given
zone by shallow versions ensuring the validity of the computation of the response of the flow while
getting rid of the potential conflicts of patterns.

Other derived functionalities such as computation of the spectrum of the Jacobian, computation
of the resolvent operator and its optimal forcings and responses or the Newton method, leveraging
the Jacobian to completely stabilize a flow were also re-implemented in this new version. These
functions use the PETSc and SLEPc APIs that enable massively parallel linear algebra computa-
tions.

181

https://petsc.org/release/
https://slepc.upv.es/

French summary / Résumé en français

Cette thèse vise à évaluer le potentiel ainsi que les difficultés posées par l’utilisation de l’apprentissage
profond par renforcement (DRL) pour le contrôle des écoulements. Le premier est un domaine de
l’intelligence artificielle qui vise à optimiser le comportement d’un agent en interaction avec son
environnement dans le but d’atteindre un objectif (préalablement fixé) le plus efficacement pos-
sible. Le DRL profite des récents développements notamment en Machine Learning, qui ont vu des
percées significatives dans des domaines variés tels que la traduction automatique ou encore la vision
par ordinateur. Le second repose principalement sur les fondamentaux de l’automatique linéaire,
mais à la différence de cette dernière, il s’adresse à des systèmes (les écoulements) ayant un grand
nombre de degrés de liberté (104 à 106). Les méthodes traditionellement utilisées s’attachent donc
à modéliser ces systèmes linéairement (afin de profiter de la puissance du formalisme algébrique de
l’automatique) tout en réduisant le nombre de degrés de liberté du modèle réduit pour rendre le
problème tractable informatiquement. Cette thèse se propose de s’affranchir de cette hypothèse de
linéarité en utilisant le DRL comme outil de synthèse de lois de contrôle et d’évaluer le potentiel
ainsi que les défis posés par l’association de ces deux domaines.

Ces études reposent sur le développement d’une base de code ayant pour but la mise en oeuvre
de larges études hyper-paramétriques en tirant parti de la puissance des super-calculateurs mis à
disposition par l’ONERA. Ces modules, développés en Python visent majoritairement à permettre
l’interface entre deux outils déjà optimisés. L’API Tensorflow (1.14) d’une part, implémente la
gestion des réseaux de neurones ainsi que leur optimisation par auto-différenciation. D’autre part
les simulations numériques des écoulements sont supportées par le code CFD FastS (développé
à l’ONERA). La principale valeur ajoutée de ce développement réside dans l’ordonnancement et
la gestion parallélisée des flux de données entre ces deux briques logicielles. Construit de façon
modulaire, ce block de code prévoit une intégration facilitée de nouveaux environnements, agents et
codes de calcul CFD. L’évaluation du potentiel ainsi que des obstacles s’opposant à la généralisation
de l’usage du DRL pour le contrôle des écoulements s’est faite au travers de l’étude de différents
cas tests académiques, de phénoménologie et de complexité variable. Ceux-ci reproduisent, pour un
coût modéré des mécanismes dynamiques que l’ont souhaite contrôler afin d’en modifier les effets.

Les principaux cas et écoulements étudiées sont d’abord l’équation mono-dimensionnelle de
Kuramoto-Sivashinsky dont la dynamique quasi-chaotique est analogue à la propagation des frontsde
flamme dans les mélanges de gaz carburant-comburant. Ce cas très peu coûteux en calcul per-
met notamment une première comparaison entre les algorithmes qualifiés de model-free (où l’agent
d’apprentissage ne modélise par la dynamique entrée-sortie de l’environnement) et ceux dits model-
based (où un modèle réduit dynamique est appris). Les problématiques d’oubli catastrophique sont
également explorées par la formulation de multiples objectifs de contrôle pour un même agent.
L’étude du contrôle d’une allée tourbillonnaire de Van Karman dans le sillage d’un cylindre à bas
nombre de Reynolds permet ensuite de comparer la performance des algorithmes mis en oeuvre vis-
à-vis des méthodes existantes, ce cas étant largement étudié dans la littérature, du fait de sa relative
simplicité. Celui-ci met également en évidence la robustesse empirique des lois de contrôle obtenues
par renforcement, héritée de la logique d’essai-erreur mise en oeuvre lors de l’apprentissage. La
montée en Reynolds se fait par le passage à un écoulement bi-dimensionnel décroché autour d’un
profil NACA-0012 à un nombre de Reynolds de 1000. Cet écoulement similaire vise à évaluer les ca-
pacités de contrôle du DRL concernant un phénomène de décrochage où les instationnarités peuvent
être sources de fatigue structurelle pour les véhicules volants. Ces cas permettent aussi la mise en
évidence de la capacité exploratoire du DRL comparé aux méthodes existantes. Ces dernières re-

182

posant majoritairement sur des modélisations linéaires des systèmes à contrôler, proposent des lois
de contrôle elles aussi linéaires, alors que l’apprentissage par renforcement s’affranchit de cette hy-
pothèse de linéarité et permet d’explorer un espace de solutions non-linéaires et potentiellement
plus pertinentes.

Ces deux derniers cas mettent en évidence des instabilitées globales et prouvent la capacité
de l’approche par renforcement à les contrôler. Le cas d’écoulement au-dessus d’une cavité (bi-
dimensionnelle) permet d’étendre ce test à des cas présentant également des instabilités convect-
ives. Ici l’écoulement présente une couche de mélange où se développent des instabilités de Kelvin-
Helmholtz. Celle-ci peut-être vue comme un amplificateur de bruit, dont la nature diffère des
cas précédemment discutés. Ce cas est incontestablement le plus complexe à contrôler puisque
cette dernière caractéristique le rend très sensible au bruit auquel l’algorithme d’apprentissage a
recours. Il présente en outre deux mécanismes qui entretiennent l’instabilité, à des fréquences très
différentes. Cet écoulement a ainsi permis de mettre en évidence bon nombre des difficultés à sur-
monter pour le contrôle des écoulements par renforcement. Cette approche a été comparée à des
approches génétiques reposant sur des meta-heuristiques calculées sur une population de lois de
contrôle plutôt que sur une seule et unique loi. Le potentiel du transfer-learning, comme outil per-
mettant de s’affranchir partiellement des difficultés identifiées, a également été mise en évidence au
travers de tentatives préliminaires de transfert entre agents ayant des entrées (signaux de mesure)
différentes.

D’une part, ces études ont permis de mettre en évidence des caractéristiques intrinsèques aux
écoulements telles que la réceptivité au bruit de forçage ou les délais, dus à la convection, entre une
action de forçage et ses conséquences observables. Elles ont aussi rendu possible l’identification
de propriétés extrinséques telles que le coût de calcul ou la modélisation des actionneurs, ces
dernières étant directement liées à la méthode de modélisation des écoulements. Ces caractéristiques,
comparées à celles des environnements traditionnellement utilisés pour qualifier les algorithmes
d’apprentissage par renforcement, sont spécifiques à la mécanique des fluides et constituent autant
de défis à relever pour transposer avec succès le paradigme de l’apprentissage par renforcement à des
applications industrielles ou scientifiques complexes.Cette thèse a permis également de développer
une reflexion relative à l’optimisation du nombre et de l’emplacement des entrées (capteurs) et
sorties (actionneurs) utilisées pour les lois de contrôle apprises par renforcement. Cette reflexion
décrit tout d’abord la nature de la problématique dans le contexte du DRL ainsi que les hypothèses
formulées pour rendre la problème tractable. Elle se poursuit par le développement de divers al-
gorithmes en sur-couche du processus d’apprentissage par renforcement visant à réduire le nombre
de capteurs et d’actionneurs tout en préservant la performance de contrôle le plus possible. Les
résultats des tests des méthodes proposées sur différents cas d’étude sont enfin utilisés pour suggérer
des pistes d’amélioration ainsi que pour compléter la compréhension de cette problématique com-
plexe mais néanmoins importante en vue de transposer les méthodes de DRL vers des contextes
expérimentaux ou industriels.

183

Titre: Potentiel et défis de l’apprentissage par renforcement pour le contrôle des écoulements

Mots clés: Contrôle des Écoulements, Apprentissage par Renforcement, Mécanique des Fluides
Numérique

Résumé: Cette thèse évalue le potentiel de nou-
velles méthodes d’apprentissage par renforcement
appliquées au contrôle des écoulements. Con-
cernant la mécanique des fluides, les méthodes
traditionnelles de contrôle reposent généralement
sur des hypothèses fortes de linéarité qui limitent
souvent la performance des lois de contrôle ob-
tenues. L’apprentissage par renforcement associé à
des méthodes d’apprentissage profond propose de
s’affranchir de ces contraintes dans le but d’optimiser
des lois de contrôle efficaces, économes en énergie
et robustes.
De nombreux défis, spécifiques au contrôle des
écoulements, restent à relever pour permettre le
développement de telles méthodes dans des con-
textes expérimentaux et industriels. Contrairement
aux environnements sur lesquels les algorithmes
d’apprentissage par renforcement sont évalués, la
mécanique des fluides met en jeu des systèmes ay-
ant une grande dimensionnalité, un comportement

généralement non-linéaire et une observabilité parti-
elle, que ce soit dans un contexte numérique ou
expérimental.
Cette étude vise donc à identifier ces problèmes
et les conséquences qu’ils entraı̂nent sur les lois
de contrôle et leur apprentissage ainsi qu’à pro-
poser de nouveaux algorithmes construits en sur-
couche de méthodes existantes dans le but de
contourner ces obstacles. La plupart de ces
contraintes se ramènent à une problématique de
coût d’acquisition de la donnée d’entraı̂nement et
d’efficacité de l’apprentissage, qui sont des facteurs
décisifs quant à la faisabilité et l’efficacité de ces
méthodes de contrôle. Les efforts concernant la
réduction du nombre de capteurs et d’actionneurs
ainsi que l’amélioration de l’efficacité de l’exploration
de l’espace d’états conduisent à proposer des modi-
fications des algorithmes d’apprentissage existants
ou des méthodes entièrement nouvelles visant à
accélérer l’apprentissage.

Title: Potential and challenges of reinforcement learning for flow control

Keywords: Flow Control, Reinforcement Learning, Computational Fluid Dynamics

Abstract: This thesis evaluates the potential of novel
reinforcement learning methods applied to flow con-
trol. While, for fluid mechanics, state-of-the-art control
generally relies on strong linear assumptions that of-
ten limit the reach of control laws, reinforcement learn-
ing associated with deep learning methods propose to
break free from these constraints in order to derive ef-
fective, energy efficient and robust control policies.
Still, numerous challenges, coming from the spe-
cificity of flow control, are yet to be overcome in or-
der to enable the development of such methods in
experimental and industrial contexts. Contrary to the
traditional test-bench environments on which state-of-
the-art reinforcement learning methods are evaluated,
flow control involves a large dimensionality, a gen-
erally non-linear behavior and a partial observability,

whether it is in a numerical or experimental context.
This study thus aims at identifying these issues
and the consequences they yield on training con-
trol policies for flow control and to propose novel al-
gorithms built on-top of training methods that help cir-
cumvent these problems. Most of these come down
to sample cost, i.e. the computational cost of acquir-
ing training data, which is a major decision factor con-
cerning the feasibility and the success of these con-
trol methods. Efforts concerning the reduction of both
sensor and actuation layouts as well as the improve-
ment of the state exploration efficiency give rise to
proposed modifications of existing training algorithms
or entirely novel methods aiming at accelerating train-
ing.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Remerciements
	Acronyms
	Introduction
	State of the art
	Control in fluid mechanics
	Reinforcement Learning
	Neural networks
	Genetic programming

	Methods and tools
	Pre-existing tools and frameworks
	RLFramework
	Other tools developed on purpose
	Main test cases

	RL-based flow control
	Controlling the KS equation
	Controlling a low Reynolds cylinder wake
	Controlling a stalled airfoil flow
	Controlling an open-cavity flow
	Synthesis

	Sensor sparsity
	Problem statement
	The proposed approach
	Results on the cylinder flow
	Synthesis

	Actuator sparsity
	Problem statement
	A generic algorithm
	Proposed ranking metrics
	Comparison of the metrics
	Model-based model predictive control
	Synthesis

	Open challenges
	Exploration noise
	Value bootstrapping, terminal reward and solver crash
	Input normalization: a double-edged sword
	Partial observation, aleatory uncertainty and the Markov hypothesis
	Scaling-up in case complexity and cost

	Conclusion
	Bibliography
	Appendices
	Miscellaneous details about the RLFramework
	The Laplace Transform for linear closed-loop control
	Global stability analysis and Newton convergence method

	French summary / Résumé en français

