
HAL Id: tel-04117848
https://theses.hal.science/tel-04117848

Submitted on 5 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development and evaluation of solutions for the
protection of DRAM and MRAM memories against

Rowhammer attacks
Loïc France

To cite this version:
Loïc France. Development and evaluation of solutions for the protection of DRAM and MRAM
memories against Rowhammer attacks. Cryptography and Security [cs.CR]. Université de Montpellier,
2022. English. �NNT : 2022UMONS086�. �tel-04117848�

https://theses.hal.science/tel-04117848
https://hal.archives-ouvertes.fr

THESIS TO OBTAIN THE DEGREE OF DOCTORTHESIS TO OBTAIN THE DEGREE OF DOCTOR

OF THE UNIVERSITY OF MONTPELLIEROF THE UNIVERSITY OF MONTPELLIER

In SyAM - Automatic and Microelectronic Systems

Doctoral school: Information, Structures and Systems sciences

Research Unit: LIRMM

Development and evaluation of solutions for the
protection of DRAM and MRAM memories against

Rowhammer attacks

Development and evaluation of solutions for the
protection of DRAM and MRAM memories against

Rowhammer attacks

Presented by Loïc France
December 16, 2022

Under the supervision of Pascal Benoit
and Florent Bruguier

Thesis Committee:

Pascal BENOIT , Associate Professor , University of Montpellier Thesis Director

Florent BRUGUIER , Associate Professor , University of Montpellier Thesis Co-supervisor

Jean-Luc DANGER , Professor , Telecom-ParisTech Examiner

Giorgio DI NATALE , Research Director , University of Grenoble Alpes Reporter

Guy GOGNIAT , Professor , University of Bretagne Sud Reporter

Maria MUSHTAQ , Associate Professor , Telecom-ParisTech Examiner

David NOVO , Research Scientist , CNRS Examiner

Lionel TORRES , Professor , University of Montpellier Examiner

iii

Abstract

Modern computer memories have shown reliability issues. The main memory is the

target of a security threat called Rowhammer, which takes advantage of cell-to-cell

disturbance between DRAM rows to cause bit-flips in adjacent victim cells of repeat-

edly activated aggressor rows. Moreover, as DRAM manufacturers keep increasing

the memory density to improve efficiency and reduce cost, the disturbance between

cells gets more important over the years, worsening the threat. The abundant re-

search on this subject led to the development of numerous countermeasures. Each

proposal comes with pros and cons in terms of modularity, performance cost, silicon

area, and energy overheads, with implementation in software, hardware or both. The

development of hardware-based mitigation techniques can be made easier with a com-

puter architecture simulator such as gem5, which facilitates the development of com-

puter architectures that integrate new hardware components with existing and future

memories or other elements. However, existing simulators are not suitable for Row-

hammer mitigation development, as they cannot simulate memory corruption from

Rowhammer attacks, which makes verifying mitigation techniques more difficult.

In this work, we first improve the open-source simulator gem5 to make it a com-

plete tool for Rowhammer mitigation development. We add a memory corruption

module that is able to simulate the bit-flips caused by Rowhammer attacks, with var-

ious parameters to adapt it to mature and future memories, and utility functions to

facilitate the integration and evaluation of mitigation techniques into the architecture.

Then, we study how changing the counting granularity of counter-based Rowhammer

mitigation proposals could reduce their storage requirements. Some of the most ef-

ficient proposals rely on row activation counters, using for example Counting Bloom

Filters or the Misra-Gries algorithm. We demonstrate that those proposals can have

their storage requirements reduced by 40% to 50% without impacting the protection

level, by changing their counting granularity from bank-level to rank-level. Addi-

tionally, we propose two new Rowhammer detection mechanisms. We show that by

including hardware event counters inside the architecture, a machine-learning algo-

rithm implemented in the hardware can classify traces from these counters to detect

Rowhammer attacks. We also propose a new detection mechanism that evaluates the

iv

activation frequency of every DRAM row to accurately detect aggressor rows and pre-

vent the corruption, with an adaptive energy consumption. As a line of research, we

explore the vulnerabilities of emerging non-volatile memories to variations of the Row-

hammer attack. Through power consumption analysis, we retro-engineer the internal

architecture of commercial Toggle-MRAM and STT-MRAM to design attacks that are

susceptible to produce bit-flips in the memory, and execute these attacks to check if

they can corrupt the memory.

Résumé de la thèse

Les mémoires des ordinateurs modernes sont sujettes à des problèmes de fiabilité.

La mémoire principale est la cible d’une attaque appelée Rowhammer, qui exploite

les perturbations électriques entre les lignes de la DRAM pour corrompre la donnée

stockée dans les cellules voisines de cellules activées fréquemment. De plus, la densité

des mémoires augmentant avec l’amélioration des technologies de fabrication pour op-

timiser l’efficacité et réduire les coûts, les effets des perturbations entre les lignes sont

de plus en plus importants, empirant la menace. La recherche abondante sur ce sujet

a conduit au développement de nombreuses contremesures. Chaque proposition a ses

propres avantages et inconvénients en termes de modularité, d’impact sur les perfor-

mances, sur la surface de silicium ou la consommation énergétique, avec des implé-

mentations purement logicielles, matérielles ou un mélange des deux. Le développe-

ment de contremesures peut être facilité par l’utilisation d’un simulateur d’architecture

tel que gem5, qui simplifie l’intégration de nouveaux composants matériels avec dif-

férentes technologies de mémoires et de processeurs. Cependant, les simulateurs exis-

tants étant incapables de simuler la corruption de la mémoire produite par une attaque

Rowhammer, ils ne sont pas appropriés pour le développement de protections contre

Rowhammer car ils ne permettent pas de vérifier l’absence de corruption.

Dans un premier temps, nous proposons une amélioration du simulateur ouvert

gem5 pour en faire un outil de développement de contremesure contre Rowhammer.

Nous y incorporons un simulateur de corruption de mémoire capable de simuler des

bit-flips causés par les attaques Rowhammer, configurable en plusieurs points pour

v

l’adapter aux mémoires existantes et futures, et fournissant les fonctions nécessaires à

l’intégration et l’évaluation de contremesures dans l’architecture. Dans un deuxième

temps, nous étudions comment le changement de granularité de comptage peut ré-

duire les besoins en mémoire de certaines contremesures contre Rowhammer. Parmi

les propositions de contremesures les plus efficaces à ce jour, certaines utilisent des

compteurs d’activations des lignes de la DRAM, en utilisant par exemple les comp-

teurs à filtre de Bloom ou l’algorithm de Misra-Gries pour réduire les besoins en mé-

moire. Nous démontrons que ces propositions peuvent avoir leurs besoins en mé-

moire réduits de 40% à 50% sans impacter le niveau de protection, en modifiant la

granularité de comptage du niveau bank au niveau rank de l’architecture de la DRAM.

Dans un troisième temps, nous proposons deux nouveaux mécanismes de détection

des attaques Rowhammer. La première proposition utilise un algorithme de machine-

learning ainsi que des compteurs d’événements introduits dans l’architecture pour dé-

tecter les attaques Rowhammer. La seconde proposition combine le comptage des ac-

tivations et l’évaluation de la fréquence d’activation de toutes les lignes de la DRAM

pour détecter les attaques. Dans un quatrième et dernier temps, nous explorons les

vulnérabilités des mémoires émergentes non-volatiles aux variations de l’attaque Row-

hammer. En analysant la consommation d’une mémoire externe de technologies Toggle-

MRAM et STT-MRAM lors de différentes opérations de lecture et d’écriture, nous re-

constituons une partie de l’architecture interne de ces mémoires, afin de concevoir des

attaques susceptibles de corrompre les données stockées, puis exécutons ces attaques

pour évaluer la vulérabilité de ces mémoires.

vi

Acknowledgements

This thesis was made possible with the support of many people, which I would like to

thank.

Foremost, I want to express my gratitude to my supervisors Pascal Benoit, Florent

Bruguier, Maria Mushtaq and David Novo, who all offered assistance in various fields.

Their support during those three years has been a major contribution to the success of

my thesis. First, my thesis director Pascal Benoit, for his mentorship, scientific support

and guidance. The regular meetings we had maintained a productive work throughout

the duration of the thesis Then, Florent Bruguier, who brought this thesis subject to me,

and was my day-to-day contact to discuss about all aspects of my contributions and

publications; Maria Mushtaq, who offered her helped at the beginning of my thesis,

participated in the development of my first contribution and continued to follow me

to the end of my thesis; and last but not least David Novo, for his listening, scientific

knowledge and help on the publications to bring the best out of them.

I am grateful for my PhD student colleagues Theo Soriano and Paul Delestrac with

whom I shared the office during this three years and regularly brainstormed on re-

search subjects, and Quentin Huppert for accompanying us through our theses; I also

thank my other colleagues Jonathan Miquel, Geoffrey Chancel and Julien Toulemont

who shared lunch and coffee breaks with us.

I extend my appreciation to the teachers of my former engineering school Poly-

tech Montpellier, especially Laurent Latorre, Eric Dubreuil and Guy Cathébras, who

offered me the possibility to give programming lessons to students, which played an

important part of the last three years.

I want to thank former Engineer student Constantin Gaboury for his contribution

in the experiments on STT-MRAM memories for his end-of-study project.

I am truly thankful to the reviewers of this manuscript Guy Gogniat and Giorgio

Di Natale for the time they took to review my thesis manuscript and their helpful

feedback, and all jury members presided by Lionel Torres for their interest in my work,

their interesting questions and suggestions.

vii

Finally, I express my gratitude to my family and friends who have supported me

up to this day, and have without a doubt contributed to this achievement.

The authors acknowledge the support of the French Agence Nationale de la Recherche

(ANR), under grant ANR-19-CE39-0008 (project ARCHI-SEC). They also acknowledge the

French Ministère des Armées – Agence de l’innovation de défense (AID) under grant ID-UM-

2019 65 0036.

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

List of Acronyms xix

1 Introduction 1

1.1 Context . 2

1.2 Contribution . 3

2 Background 5

2.1 Memory Architecture and operation . 6

2.1.1 Memory architecture, Core to main memory read operation . . . 6

2.1.2 DRAM architecture and operation 7

2.2 Rowhammer attack . 13

2.2.1 Cell-to-cell disturbance . 13

2.2.2 Basic exploit . 15

2.2.3 Exploits in literature . 17

2.3 Rowhammer countermeasures . 19

2.3.1 Basic Principles . 19

2.3.2 Software-based protection . 20

2.3.3 Hardware probabilistic protection 20

2.3.4 Hardware counter-based protection 21

2.3.5 Conclusion . 23

2.4 Conclusion . 23

x Contents

3 Rowhammer Simulation 25

3.1 Motivation . 26

3.2 Rowhammer simulation requirements . 28

3.3 gem5 and Ramulator . 31

3.4 Memory Corruption simulation . 33

3.4.1 Integration of the memory-corruption module in gem5 and Ra-

mulator . 33

3.4.2 Disturbance and corruption simulation 34

3.5 Mitigation integration in gem5 . 37

3.6 Usage, limitations and evaluation . 38

3.6.1 Limitations . 40

3.6.2 Evaluation . 41

3.7 Conclusion . 42

4 Counter-based Rowhammer mitigations improvement 43

4.1 Motivation . 44

4.2 Bank-level and rank-level counting granularity 44

4.3 Implication in State-of-the-art mitigation proposals 46

4.4 Considerations for technology and timings 49

4.4.1 DDR generation parameters . 49

4.4.2 Feasibility - timing considerations 50

4.5 Conclusion . 51

5 Mitigation proposals 53

5.1 Motivation . 54

5.2 Hardware counters and machine learning for Rowhammer detection . . 54

5.2.1 Methodology . 55

5.2.2 Experiments and results . 57

5.2.3 Conclusion . 60

5.3 F-CorD: Forgetful Counters for Rowhammer Detection 61

5.3.1 Introduction: Unsynchronised refresh issue for counter-based Row-

hammer mitigation . 61

5.3.2 Tracking frequently-activated rows 62

Contents xi

5.3.3 Detecting attacks . 64

5.3.4 Discretisation . 68

5.3.5 Periodic maintenance . 69

5.3.6 Implementation details . 71

5.3.7 Number of entries . 73

5.3.8 Example . 74

5.3.9 Conclusion . 75

6 Experiments on MRAM 77

6.1 Motivation . 78

6.2 Attack on a Toggle-MRAM chip . 82

6.2.1 Platform Requirements . 82

6.2.2 Test Platform . 83

6.2.3 Reverse-engineering of the memory module architecture 86

6.2.4 Designing the attack . 88

6.2.5 Results . 90

6.3 Attack on an STT-MRAM chip . 91

6.3.1 Test Platform . 91

6.3.2 Reverse-engineering of the memory module architecture 92

6.3.3 Designing the attack . 94

6.3.4 Results . 94

6.4 Conclusion . 95

7 Conclusion and Perspectives 97

7.1 Contributions . 98

7.1.1 Rowhammer simulation in gem5 98

7.1.2 Improvement of Rowhammer mitigations 99

7.1.3 Mitigation proposals . 99

7.1.4 Experiments on MRAM . 99

7.2 Future work . 100

7.3 Concluding remarks . 101

Bibliography 103

List of Figures

2.1 Memory architecture for run-time data in modern computers 7

2.2 Read operation flowchart (simplified) from CPU Core to main memory . 8

2.3 Address bit layouts . 8

2.4 Processor to DRAM bank architecture . 9

2.5 Bank-level states and data-access-related commands 10

2.6 ACTIVATE-PRECHARGE cycle . 11

2.7 Illustration of DDR timings . 13

2.8 Charge trapping and migration to victim memory cells 14

2.9 Memory cell capacitor voltage evolution under normal behaviour and

under disturbance . 14

2.10 Memory bank under attack . 16

3.1 gem5 and Ramulator memory architecture 32

3.2 gem5 and Ramulator memory architecture, with the Memory-Corruption

module . 34

3.3 ACT and REF callback functions . 35

3.4 disturbance simulation . 36

3.5 Bit-flip simulation with polynomial equation 37

3.6 gem5 and Ramulator memory architecture, with Memory-Corruption

module and Rowhammer mitigation . 38

4.1 Alternating CBFs of BlockHammer . 48

5.1 Machine Learning detection mechanism integration in computer archi-

tecture . 57

5.2 Counters reset not synchronised with row refresh 62

5.3 Evolution of the remaining time for one row in the table 64

5.4 Evolution of the counter for one row in the table 65

xiv List of Figures

5.5 Evolution of the value for one row in the table 66

5.6 Split attack on F-CoRD . 67

5.7 Slow attack with discrete timings . 69

6.1 Bit-cells of Emerging NVMs . 79

6.2 STT-MRAM structure and write process 80

6.3 Toggle-MRAM structure and write process 80

6.4 Cell-to-cell magnetic disturbance on MRAM 81

6.5 Rowhammer effect on STT-MRAM . 82

6.6 Simplified architecture of the Toggle-MRAM module 83

6.7 FPGA-based platform peripherals architecture 84

6.8 Attack pattern on Toggle-MRAM . 89

6.9 Microcontroller-based platform architecture 92

6.10 STT-MRAM energy levels . 93

6.11 Hypotyhesis on the order of row and column bits in the address vector

of the stt-mram module . 94

List of Tables

2.1 DRAM timing parameters . 12

3.1 Architecture Simulators comparison . 30

3.2 DRAM layout configuration example. 40

3.3 Impact of the Memory-Corruption module (M-C) on simulation perfor-

mance. 42

4.1 Values of WB and WR, number of banks per rank, and theoretical re-

duction of total number of counters, for DDR3, DDR4 and DDR5 (c.f.,

Table 2.1 page 12). 46

4.2 Values of WB and WR, number of banks per rank, and theoretical re-

duction of total number of counters, for DDR3, DDR4 and DDR5 (c.f.,

Table 2.1 page 12). 50

5.1 ML models categorisation accuracy . 60

5.2 minimum table size for the F-CoRD implementationon DDR3, DDR4

and DDR5, for a bank-level implementation counting granularity. 75

6.1 Current consumption of Toggle-MRAM memory module for read oper-

ations . 87

6.2 Toggle-MRAM deducted address layout 87

6.3 Current consumption of Toggle-MRAM memory module for write oper-

ations . 88

6.4 current measurements during read and write operations on the STT-

MRAM memory module . 93

List of Algorithms

1 F-CoRD global algorithm . 72

2 Calculate the required number of entries of F-CoRD 73

3 Attack algorithm on Toggle-MRAM . 89

List of Acronyms

ACT Activate command

ALU Arithmetic Logic Unit

BL Bit Line

CAM Content-addressable Memory

CBF Counting Bloom Filter

CNN Convolutional Neural Network

CSL Column Selection Logic

CPU Central Processing Unit

DDR Double Data Rate (memory)

DIMM Dual In-line Memory Module

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

EMC External Memory Controller

FN False Negative

FP False Positive

FPGA Field-Programmable Gate Array

HPC Hardware Performance Counter

LLC Last-Level Cache

LPDDR Low Power DDR memory

LSTM Long Short-Term Memory

MAT Memory Array Tile

ML Machine Learning

MLP Multi-Layer Perceptron

MRAM Magnetic Random Access Memory

MTJ Magnetic Tunnel Junction

xx List of Acronyms

NVM Non-Volatile Memory

OS Operating System

PRE Precharge command

PRNG Pseudo-Random Number Generator

RAM Random Access Memory

RB Row Buffer

REF Refresh command

RFM Refresh Management command

RTL Register-Transfer Level

SA Sense Amplifier

STT-MRAM Spin-Transfer Torque MRAM

WL Word Line

I

Introduction

Contents

1.1 Context . 2

1.2 Contribution . 3

2 Chapter 1. Introduction

1.1 Context

Memory is a key component of computing systems. It is used to store the input values,

intermediate variables and end results of any program. Over the years, following the

Moore’s Law, computing systems have become exponentially more powerful, allow-

ing computers to run faster, with an increasing number of more and more complex

programs running in parallel. Handling this complexity and speed requires the mem-

ory to become faster, with an ever-increasing capacity to store the large quantity of

data programs need during run-time. The most popular technology nowadays for the

main memory is the Dynamic Random Access Memory (DRAM). This technology uses

capacitors to store the data: the charge of each capacitor determines the value of the bit

it stores. Again, following the Moore’s law, DRAM manufacturers have been able to

increase the density of the memory, reducing the production cost per bit and allowing

more data to be stored in the same silicon area.

However, as the memories became denser, storage capacitors became smaller, and

their maximum capacity reduced. Additionally, physical phenomenon that originally

had no consequence on the behaviour of the devices started to cause reliability issues.

In 2014, Kim et al. [1] published the first public paper on cell-to-cell disturbance errors

caused by DRAM row activations. When a DRAM row is activated, undesired electric

communication between adjacent DRAM rows disturb the storage nodes of adjacent

rows. Capacitors of victim storage nodes, which by nature already leak charge over

time, see their charge reduced by a small amount when disturbed. This additional

leakage is not important and do not compromise the data by itself, as capacitors are

periodically refreshed to compensate their natural leakage. However, repeated activa-

tions of the neighbouring rows can cause this disturbance to progressively empty the

victim capacitors, effectively flipping the bits.

The authors showed that this phenomenon can be easily leveraged by a malicious

program to mount the Rowhammer attack. Over the next years, several contributions

showed that this attack can be improved to cause major issues in modern comput-

ers, ranging from discovering encryption keys [2] to remotely disabling systems [3] or

performing privilege escalation from web browsers [4]. In the same time, various mit-

1.2. Contribution 3

igation techniques were proposed by the community or the manufacturers to prevent

those attacks from harming the systems. Some proposals are implemented in software,

and try to detect the attack processes from their abnormal memory activity; some are

implemented in hardware, in the memory controller or in the memory modules, and

refresh the potential victim rows before they experience bit-flips; finally, some miti-

gation proposals are implemented in both hardware and software, detecting potential

aggressor rows using hardware components and asking the software to stop or slow

down the suspicious processes. In addition to the variety of implementation levels, we

see a variety of detection methods. Some proposals exploit the already-implemented

Hardware Performance Counters (HPC) to detect suspicious memory activity; some

implement row activation counters to detect rows that are activated too many times;

some use probabilistic mechanism to prevent aggressor rows to corrupt neighbour

rows; finally, some exploit specific mechanisms such as empty "barrier" DRAM rows,

or randomly swapped rows to prevent aggressor from corrupting critical data.

However, as DRAM manufacturers continue to increase the storage density, attacks

are made easier. The minimum amount of activations to produce a bit-flip has drasti-

cally reduced, and it became possible to corrupt rows that are not immediately adjacent

to the aggressor rows. Hence, most mitigation proposals become useless against recent

attack. Manufacturer’s proprietary mitigation techniques are proved to be ineffective,

and some proposals incur increasing performance and silicon area overhead to stay

effective on more and more vulnerable memories. Therefore, Rowhammer mitigation

is still to this day an important issue that requires extensive research.

1.2 Contribution

During the development of a Rowhammer mitigation technique, testing on a working

system is an important step, that helps optimising the solution and permits the valida-

tion against state-of-the-art attacks. However, most proposals require modifications of

hardware components, sometimes in the DRAM, and therefore cannot be implemented

on existing systems. For our first contribution, we present a simulation tool to develop

and validate Rowhammer attacks on a configurable computer architecture. The tool

4 Chapter 1. Introduction

simulates the memory corruption caused by Rowhammer attacks, and provides tools

to implement various mitigation techniques.

Counter-based hardware mitigation techniques are among the most efficient Row-

hammer mitigation techniques. Most of them are implemented with a bank-level

counting granularity, which means that each bank has a dedicated set of counters.

However, due to limitation at the rank level, all banks of the memory cannot be ac-

cessed at their maximum frequency. For our second contribution, we propose to change

the counting granularity of some mitigation proposals to rank level to reduce the re-

quired number of counters, ultimately reducing the dedicated memory size by 40% to

50%.

Rowhammer mitigation is still an open research. Numerous mitigation techniques

are proposed every year, using different algorithms to detect the attacks while trying

to reduce the performance and area overhead to the minimum. For our third contribu-

tion, we propose two new detection mechanisms. Machine learning has not been ex-

tensively studied as a detection mechanism. In our first proposal, we demonstrate that

machine learning can be exploited as a hardware component to detect Rowhammer at-

tacks using counters of specific micro-architecture events. For our second proposal, we

describe a new counter-based mitigation technique that uses the activation frequency

of each row to detect aggressors.

Recent memory technologies such as the various Magnetic Random Access Mem-

ory (MRAM) variants show promising characteristics as DRAM replacements. How-

ever, the vulnerability of this new technology has not been extensively studied. Previ-

ous studies have shown that these technologies may be vulnerable to cell-to-cell dis-

turbance error. In our last contribution, we try to attack two commercially-available

MRAM external memory modules using custom platforms. We show that even if the

attacks we try are not able to produce bit-flips in the memory, we can successfully retro-

engineer some information about the internal structure and behaviour of the memory

modules, that could be leveraged to perform side-channel attacks.

II

Background

Contents

2.1 Memory Architecture and operation . 6

2.1.1 Memory architecture, Core to main memory read operation . 6

2.1.2 DRAM architecture and operation 7

2.2 Rowhammer attack . 13

2.2.1 Cell-to-cell disturbance . 13

2.2.2 Basic exploit . 15

2.2.3 Exploits in literature . 17

2.3 Rowhammer countermeasures . 19

2.3.1 Basic Principles . 19

2.3.2 Software-based protection . 20

2.3.3 Hardware probabilistic protection 20

2.3.4 Hardware counter-based protection 21

2.3.5 Conclusion . 23

2.4 Conclusion . 23

6 Chapter 2. Background

2.1 Memory Architecture and operation

2.1.1 Memory architecture, Core to main memory read operation

In modern computing systems such as consumer computers, memory is a key com-

ponent. During run-time, the largest portion of the data used by running programs is

stored in a Random-Access Memory (RAM). Data transit between the main memory

and the processor through multiple cache memory levels, integrated in the proces-

sor. These cache memories are faster to access than the main memory, but have much

lower capacity. They are organised in levels, typically from L1 to L4. Higher cache lev-

els have more storage capacity, but are slower to access. The cache memories are used

to store the most frequently used data. Ideally, the more frequently used are the data,

the lower they are stored in the cache levels. While the last levels are global to the pro-

cessor, each core has its own sets of first level caches (typically L1 and L2). Moreover,

the first cache level is split into instructions cache and data cache. Finally, each core

has its own register file, which it uses to store data when performing operations on

it. Register files have a very low capacity, but are directly connected to the Arithmetic

Logic Units (ALU), and therefore provide very low access time. When the registers are

needed to store other data, this data is stored back in the address space mapped to the

RAM which is external to the processor. When a requested data is not stored in a cache

memory, it is fetched from the RAM. When a data is evicted from the cache, it is stored

back in the RAM.

If the RAM (or main memory) capacity is not sufficient, a SWAP partition can be

used in the hard drive to temporarily store run-time data that is more rarely used. The

memory architecture is illustrated in Figure 2.1.

When the core requests some data from the memory, it usually follows the process

illustrated in Figure 2.2. The request first goes to the first cache level (L1-I for instruc-

tions, or L1-D for other data). If the data is stored in this cache, it is returned. Other-

wise, the request goes to the next cache level, on which the same test is performed. If

the data is not stored at any level of the cache memories, the request is passed on to the

main memory. After fetching from a higher cache level or the main memory, the new

2.1. Memory Architecture and operation 7

Core 0

registers

L1-I L1-D

L2

Core 1

registers

L1-I L1-D

L2

...

Core N

registers

L1-I L1-D

L2

L3

...

LLC

RAM

SWAP

Figure 2.1: Memory architecture for run-time data in modern computers

data can be stored in the current cache, replacing older data following some eviction

rules. We call the event of a data found in a cache memory a cache hit, and the data

missing in a cache memory a cache miss.

2.1.2 DRAM architecture and operation

In consumer computers, the technology used for the main memory is the Dynamic

Random Access Memory (DRAM) technology.

In this memory, the data is addressed using the following architecture levels, from

higher to lower: channel, rank, bank group, bank, row and column. Each level has its

own bits in the address word, depending on the chosen layout. Two common address

layouts, ChRaBaRoCo and RoBaRaCoCh (Ch: Channel, Ra: Rank, Ba: Bank, Ro: Row,

Co: Column, Bank group is omitted), are illustrated in Figure 2.3.

The architecture of a DRAM main memory is illustrated in Figure 2.4. The proces-

8 Chapter 2. Background

READ(addr)

go to L1-D

is addr
in cache?

return data

last cache
level?

go to
next cache

fetch from
main memory

END

Figure 2.2: Read operation flowchart (simplified) from CPU Core to main memory

32 30 28 26

Row
10

Column
0

Channel
Rank

Bank Group

Bank

(a) ChRaBaRoCo Layout

Row
1732 15 13 11

Column
1 0

ChannelRank
Bank Group

Bank

(b) RoBaRaCoCh Layout

Figure 2.3: Address bit layouts for a main memory of 2 channels, 4 ranks of DDR4 8Gb x8

sor communicates with the main memory through distinct memory channels 1 , each

having its own set of command, data and address buses. Multiple memory modules 2

(usually Dual In-line Memory Modules, DIMM) can be connected to a single channel.

A module includes multiple memory chips 3 , grouped in ranks. The command and

address buses are common to all chips, but the data bus is split among all the chips of

a rank. A memory chip contains several banks 4 , grouped in bank groups.

The bank is the smallest structure visible to the memory controller. It is the target

2.1. Memory Architecture and operation 9

CPU

Caches

Chip

Module

Chip

Chip

Bank

C
hi

p
I/

O

cmd/addr Bank I/O

ro
w

de
co

de
r

Bank

Bank Bank

MAT

MAT

MAT

MAT

CSLCSL
W

L
dr

iv
er

Sense Amp.

Column Sel.
Logic

WL

BL

en.

M
em

.C
tr

l

1

2

3

4

5

6

7

8

CSL B. I/O

Figure 2.4: Processor to DRAM bank architecture

of all data-access requests. A bank is made of interface ports, drivers to select the row

to activate (the row decoder) and the column to read or write on (the column selection

logic, CSL), and a set of Memory Array Tiles (MAT) 5 .

In a MAT, the bit cells 6 are organised in a matrix, where all cells of a row share

a unique wordline (WL), and all cells of a column share a unique bitline (BL). The

MAT also contains a WL driver and a set of Sense Amplifiers, which are used to read

and write values in cells. A memory cell is the combination of one capacitor and one

transistor. The transistor, called access transistor, is driven by the WL of the row. When

activated, it connects one end of the capacitor to the BL of the column. The other end

of the capacitor is permanently connected to the ground. The charge of this storage

capacitor defines the value of the bit stored by the cell.

At one end of the BL is the Sense Amplifier (SA) 7 , which is made of two inverters

in a cross-coupled configuration. One side is connected to the BL, and when the bit

is accessed, the CSL connects the other end of the SA to the bank data I/O 8 . The

Sense amplifiers are also used to store the last accessed row, therefore the set of Sense

amplifiers is also called Row Buffer (RB).

To read or write data in the memory, the target row must be activated to load its

content in the RB, before accessing the data in the RB. The PRECHARGED state, AC-

10 Chapter 2. Background

TIVATE, READ and WRITE commands are illustrated in Figure 2.5.

• When no row is loaded in the RB, the bank is in the idle state.

• To load a DRAM row in the RB, the memory controller issues an ACTIVATE

command (ACT) to the bank.

• when a row is loaded in the RB, the memory controller can issue READ com-

mands to request data from the RB,

• or WRITE commands to change data in the RB. As the row is still activated, any

change on the RB is reflected in the DRAM row.

• When an other row is accessed, the connection between the currently-activated

row and the RB must first be closed using the PRECHARGE command (PRE),

resetting the bank to the PRECHARGE state.

CSL

A

B

IDLE ROW ACTIVATED

I/O

READING WRITING

ROW ACTIVATED

IDLE

ACT PRE

READING WRITING

READ WRITE

Figure 2.5: Bank-level states and data-access-related commands. A : cmd/addr decoder, B :
row decoder and WL driver. Changing from IDLE state to ROW ACTIVATED state and back is
done using the commands ACT and PRE. commands READ and WRITE temporarily change
the state to READING and WRITING, but automatically it changes back to ROW ACTIVATED
once the operation is completed.

Loading rows in the RB is done using the ACTIVATE-PRECHARGE cycle. On an

electrical level, the ACTIVATE-PRECHARGE cycle is illustrated in Figure 2.6.

2.1. Memory Architecture and operation 11

1

23

0

11

1

0

0

WL

BL

1
2VDD

1
2VDD + δ

1
2VDD

1
2VDD

VDD

GND

Figure 2.6: ACTIVATE-PRECHARGE cycle. the grey rectangle inside the capacitor represents
its charge.

1. By default, every bit-cell is in the precharged state 1 : the capacitor is fully

charged (resp. fully depleted), the WL is lowered, and both ends of the SA, in-

cluding the BL, are maintained at a voltage of 1
2VDD.

2. In order to load the content of the bit in the row buffer, the memory controller

issues an ACT to the bank. When the bank receives this command, the appropri-

ate WL is raised, connecting the capacitor of the memory cells in the target row

to their BL. Each capacitor and its BL share their charge, raising the voltage of

the BL to VDD + δ (resp. lowering it to VDD − δ) 2 . Then, the SA is enabled,

detects the voltage difference between its ends, and amplifies it until the BL is at

VDD (resp. GND) and the other end of the SA is at GND (resp. VDD) 3 . As the

capacitor is still connected to the BL, its charge is restored (resp. depleted) by the

voltage change in the BL.

3. When writing data in the RB, changing the value in the RB changes the voltage

of the BL and therefore the charge of the capacitor, keeping the bit-cell updated

with the proper value.

4. When the RB is needed to store an other row, the currently-activated row must

first be closed. When the bank receives a PRE, the WL of the active row is low-

ered, isolating it from the BL. The voltage of both ends of the SA returns to 1
2VDD,

and the system returns to the precharged state 1 , ready for the next ACT.

When accessing data, if the targeted row is already loaded in the RB (we call this

event a row hit), the operation is performed directly on the RB. If an other row is

12 Chapter 2. Background

activated (we call this event a row conflict), the bank must precharge the previous

row, and activate the target row before returning the data. If no row is currently active

in the bank (we call this event a row miss), the bank only needs to activate the target

row before returning the data.

Capacitors are not perfect charge holders. They leak charge over time. If a memory

cell is not accessed (i.e., loaded into the RB) frequently enough to refill the capacitor,

the charge will reduce until it goes below the threshold at which it can raise the voltage

of the BL when the row is activated. At ambient temperature, most memory cells will

lose their data after a few seconds of inactivity. This effect varies from cell to cell, and

is inversely proportional to the temperature, so it is lowered in cold environments [5].

To counter this issue and to avoid losing data while the system is running, the memory

controller periodically issues REFRESH commands (REF) to the memory. To process

this command, the memory banks activate a few rows to refill their storage capacitors.

The relevant DRAM timing parameters are illustrated in Figure 2.7 and listed in

Table 2.1 for three models of DDR3, DDR4 and DDR5. The minimum interval between

two ACTs is defined by tRC , tRRD_L or tRRD_S if the rows to activate are respectively

located in the same bank, in different banks of the same bank group, or in different

bank groups. Additionally, a maximum of four ACTs can be issued to a rank every

tF AW . REF commands are issued by the memory controller every tREF I and last tRF C .

In a cycle of tREF W , all the rows of the memory are refreshed at least once.

Table 2.1: Relevant timing parameters for a DDR3 1600 8Gb x8 [6], DDR4 2400 8Gb x8 [7], and
DDR5 4000 8Gb x8 [8].

Name Description DDR3 DDR4 DDR5

tRC Same-bank minimum ACT interval 48.75ns 45.8ns 46ns
tRRD_S Different-Bank-Group minimum ACT interval 6.25ns 3.3ns 4ns
tRRD_L Same-Bank-Group minimum ACT interval - 4.9ns 5ns
tF AW Four activate window 30ns 21.67ns 16ns
tREF W REF window (ms) 64ms 64ms 32ms
tREF I REF interval (µs) 7.8µs 7.8µs 3.9µs
tRF C REF command duration 350ns 350ns 195ns

2.2. Rowhammer attack 13

tREF W

tREF I tRF C

tRC

BG0
B0

B1

tF AW

tRRD_L tRRD_S

BG1
B2

B3

BG2
B4

B5

tRC

(a) Bank-level timings

(b) rank-level timings
Figure 2.7: Illustration of DDR timings. Horizontal axis is time. Coloured sections represent
periods when the bank is busy. An orange section represents a bank busy from a REF com-
mand. A red section represents the period after an ACT command when the bank cannot be
issued an other ACT command. for the rank-level timings (b), 3 bank groups are represented,
with 2 banks for each bank group.

2.2 Rowhammer attack

2.2.1 Cell-to-cell disturbance

As manufacturing processes become more efficient over the years, manufacturers are

able to increase the memory density of DRAM chips, resulting in lower production

cost, lower energy consumption for the same storage capacity, and higher storage ca-

pacity for the same silicon area. However, increasing the density of DRAM banks also

results in rows being closer to each other, lower noise margin for bit cells, leading to

increased parasitic electrical interactions between nearby bit cells.

Kim et al. [1] discovered that when a row is activated, the capacitors of adjacent

rows experience a small charge leakage, more important than their normal leakage.

Multiple causes were considered by the author: electromagnetic coupling had already

14 Chapter 2. Background

been proved to cause undesirable interactions between nearby wordlines [9]; bridges

could be formed between adjacent wires and/or capacitances to accelerate the charge

loss when toggling the WL [10, 11]; toggling a WL repeatedly for long periods of time

could permanently damage the row ant its neighbours by hot carrier injection [12],

altering the property of access transistors or injecting charges in nearby capacitors. At

that time, the author could not determine precisely the main cause of this issue. More

recently, Yang et al. [13] demonstrated that the cause of this issue is that when a WL

is switched up and down, charge traps located below the WL capture some negative

charges, which are emitted in the substrate, then migrate to the nearby capacitors,

causing the charge leakage.

BL
WL=VDD

WL=GND

1

2

3

−

− −−

−

−

−

−

Figure 2.8: Charge trapping and migration to victim memory cells. When a WL is toggled,
charge traps located below the WL 1 capture some negative charges − , which are emitted
into the substrate 2 and migrate to nearby capacitor 3 , reducing the stored charge.

Alone, this issue is not dangerous, as the charge leakage is not important. The next

REF or ACT on this row will refill the capacitor. However, if this operation is repeated

enough times so that the charge of a capacitor goes below the threshold at which it can

raise the BL voltage during an ACT, the bit will be misinterpreted on the next ACT, the

charge depleted, resulting in the corruption of the data. The evolution of the charge of

the capacitor under normal operation and under disturbance from repeated ACTs on

adjacent rows is illustrated Figure 2.9

cap. voltage

time

1
0

tREF W

D
is

tu
rb

an
ce

Figure 2.9: Memory cell capacitor voltage evolution under normal behaviour and under dis-
turbance. Stored value starts at 1, and changes to 0 after corruption.

We define the disturbance level of a row as the number of ACTS that have been

2.2. Rowhammer attack 15

issued to its neighbours since the last ACT or REF on it. Bit-flips only appear after the

disturbance level reaches a certain value. We call this value the Rowhammer threshold

(TRH). It is primarily defined by the technology: because of smaller capacitors and

closer wordlines, denser memories will have a lower TRH [1, 14]. The value of TRH has

been greatly reduced over the years, getting from 138k ACTs to produce a bit-flip on

older DDR3 to 9.6k for recent LPDDR4 [15].

Additionally, multiple factors can influence the effect of cell-to-cell disturbance on

bit-flips. While the capacitors can only discharge under the influence of cell-to-cell

disturbance, the bit-flip can happen in both directions (1 → 0 or 0 → 1) depending

on how the voltage is interpreted by the logic circuits. However, this direction being

determined by the logic circuits, it cannot vary in time for one bit. According to the

experiments conducted by Kim et al. in 2020 [15], the data pattern in the memory (i.e.,

the positions of 1s and 0s in the MAT, e.g. row stripes, column stripes, checkerboard)

seems to have a very important influence on the presence of bit-flips after an attack.

This study shows that the pattern that produces the most bit-flips varies largely across

DRAM generations, but does not vary as much across the tested manufacturers.

2.2.2 Basic exploit

Cell-to-cell disturbance can be triggered intentionally and exploited to perform what is

called a RowHammer (RH) attack. The goal of the aggressor is to ACT the neighbours

of a victim rows enough times between two ACTs on the victim in order to flip some

bits. Two obstacles arise to perform this attack:

• the row buffer: it contains the last activated row, accessing the row stored in it

will trigger a row hit. Row hits must be avoided, as they don’t lead to ACTs on

the row, and therefore don’t disturb the neighbours. The aggressor must use at

least two aggressor rows of the same bank to avoid row hits;

• the cache memories: they contain the most frequently-accessed data. Repeatedly

accessing the same rows will generate cache hits, and no request will reach the

main memory. The aggressor must either bypass the cache [16], or use cache

16 Chapter 2. Background

eviction mechanisms to remove the aggressor rows from the cache memories,

using for example cache flush instructions when they are available [1, 17], or

cache eviction techniques [4, 18, 19].

Memory corruption using the RowHammer attack can be performed using the sim-

ple x86 assembly loop presented in Listing 2.1 [1]. The positions of the aggressor rows

and the victim cells in the DRAM bank attacked by this program is illustrated in Fig-

ure 2.10.

loop:
mov (X), %eax ; read value from address X
mov (Y), %eax ; read value from address Y
clflush (X) ; evict address X from cache
clflush (Y) ; evict address Y from cache
mfence ; wait for previous instructions to complete
jmp loop ; restart the loop

Listing 2.1: Rowhammer loop on x86 system

X

Y

Figure 2.10: Memory bank under attack on rows X and Y. Aggressor rows are colored in red,
and victim cells in orange.

However, the cache cannot be flushed manually by user-level programs on all sys-

tems. ARMv7-A processors restricted the cache-managing instructions to privileged

programs, and ARMv8-A processors can be configured to restrict their usage by un-

privileged programs. Cache-managing instructions are also not available to web pages,

as the available instructions are limited by the web browser. In these cases, the aggres-

sor can rely on cache-eviction strategies that exploit the replacement policy of the cache

memory to replace the used address with an other data in the caches [4, 18, 20, 3, 21], on

the DMA to bypass the cache [16], or on the integrated GPU which has a very simple

cache from which it is easy to evict data [19].

Recently, it has been demonstrated that the Rowhammer attack could be escalated

beyond immediate neighbours of aggressor rows [15, 22]. The increasing density made

2.2. Rowhammer attack 17

the disturbance reach beyond the immediate neighbours on recent LPDDR4 [15]. But

more importantly, a study demonstrated that it was possible to propagate the distur-

bance from the immediate neighbour of an aggressor row to its next neighbour, two

rows from the main aggressor [22]. This attack combines many accesses to the main

aggressor rows with a few accesses to the secondary aggressors, adjacent of the firsts. It

manages to induce bit-flips in the victim rows, immediate neighbours of the secondary

aggressor rows, at a distance of two rows from the main aggressors.

2.2.3 Exploits in literature

Rowhammer attacks are used to corrupt some bits in the memory without accessing

them. However, the goal of aggressors is rarely to simply corrupt the memory. Aggres-

sors can use this attack to perform privilege escalation, even from web browser sand-

boxes [4, 21, 23]; to retrieve sensitive information, especially encryption keys [24, 25, 2];

or to remotely crash a system [3], without malicious code running on it, through net-

work requests alone. The main goal of an aggressor is often to perform privilege esca-

lation: aggressors try to produce bit-flips in Page Table Entries (PTEs), which defines

the memory sections a program has access to. A bit-flip in this table can grant the

prgram access to restricted sections [23]. Flipping the bits of a specific value in the

memory can be summarised in three steps:

1. Locate a potential bit-flip location. All bits of the memory are not equally vul-

nerable to cell-to-cell disturbance, the victim location must be prone to experience

bit-flips and have accessible neighbour rows. To search for potential bit-flip loca-

tions, the aggressor can allocate a large chunk of memory, perform RowHammer

attacks on it and check of bit-flips in the allocated memory to find a suitable lo-

cation to attack.

2. Place the target value at this location. The aggressor forces the system to allo-

cate this location for the target value. To do that, the memory is allocated to the

maximum allowed space, and the target location is freed in order to force the

Operating System (OS) to reallocate it for the target value.

18 Chapter 2. Background

3. Flip the bits of the target value. This last step simply consists in hammering the

neighbours of the victim row until the bit-flip happens.

Searching for potential bit-flip locations is often the longest task for an aggressor. A

prerequisite is the knowledge of the DRAM addressing function: to select the neigh-

bour rows of potential victims, the attack program has to know how the virtual ad-

dresses are translated to physical address by the operating system, then into rank,

bank and row numbers on the DRAM bus by the memory controller. The addressing

function is not an information that the attacker can acquire directly. Even if this is a

public information for some manufacturers [26] it still varies from processor to pro-

cessor. Attacker programs might not know, which processor it is running on. To get

the addressing function, attackers have to retro-engineer it. The reverse-engineering of

the addressing function has been studied over the years [27, 28, 29, 30], and multiple

methods were proposed to do it. Some use hardware probes on the memory bus [27]

when a physical access to it is possible, or exploit access timing differences between

row hits and row conflicts [27, 28, 29, 30]. Once the addressing function is known by

the aggressor, it still must understand the physical layout of the memory, especially the

rows adjacency. Indeed, consecutive row numbers do not always translate to adjacent

rows. DRAM manufacturers can choose to change the physical location of logical rows,

e.g. to use a backup row if a row does not work as intended after the fabrication of the

memory [31]. The only way for an aggressor to determine which rows are adjacent to

each other is to hammer some rows and search for bit-flips in other rows. Once the

program has determined what rows can be attacked from accessible rows, it can move

on to place the target victim value, and proceed to hammering it to produce a bit-flip.

In addition to the main memory of the computer, Zhang et al. [32] demonstrated

that this attack can be used on Solid-State Drive (SSD) devices. These devices use a

DRAM memory to map logical addresses to physical block. Bit-flips can be triggered

in this memory to redirect the mapping of a victim logical block to a different physical

block.

Over the years, the countermeasures against Rowhammer attacks implemented by

manufacturers in consumer products have been proved to be inefficient by attacks that

are aware of their presence [33, 34], once their mechanism is retro-engineered, even

2.3. Rowhammer countermeasures 19

when said mechanism is not documented [34].

2.3 Rowhammer countermeasures

2.3.1 Basic Principles

As the threat of Rowhammer attacks has worsen over the years, the community has

conducted extensive research on Rowhammer mitigation.

We consider an attack successful when the disturbance level of a victim row reaches

TRH , as bit-flips can only happen when this level is above or equal to TRH . Hence, miti-

gating RowHammer attacks consists in preventing the disturbance level from reaching

TRH , i.e., preventing the aggressor from performing TRH ACTs on the neighbours of a

victim row between two ACTs or REFs on it. This can be done by issuing additional

ACTs to the victim or preventing ACTs on neighbours of the victim when its distur-

bance level is getting too high.

Rowhammer mitigation mechanisms can be implemented in software, modifying

the behaviour of the system or communicating with existing components to prevent

the attack; or in hardware, with the addition of specifically-designed components to

detect the attack or to prevent the corruption. Mitigation mechanisms can also rely on

detection mechanisms, to either detect the aggressor process or the aggressor rows to

prevent the attack from completing.

The implementation of a Rowhammer Mitigation mechanism can have a negative

impact on the system, on multiple points:

• CPU performance, if the mitigation is implemented in software and requires reg-

ular observation;

• Memory performance, when issuing additional commands to the memory to pre-

vent the corruption;

• Silicon Area, if the mitigation requires additional hardware components;

20 Chapter 2. Background

• Energy consumption.

2.3.2 Software-based protection

Some mitigation techniques are implemented primarily in software. Among them,

some use hardware performance counters [18, 35, 36, 37] to detect patterns that result

from an attack. They analyse the events and either stop the attack processes, or re-

fresh the victim rows. Some use other mechanisms, such as ZebRAM [38] that isolates

sensitive data in the memory with empty DRAM rows. These rows serve as barriers

against Rowhammer attacks, preventing aggressors from hammering the neighbours

of potential victim rows.

Software-based protections are easy to implement, as they don’t require hardware

modifications. However, they come with either a processing performance cost for mit-

igations that periodically analyse events, or a memory cost for ZebRAM [38] which

uses DRAM rows as barriers.

To avoid such performance issues, most mitigation proposals are implemented in

hardware.

2.3.3 Hardware probabilistic protection

Some solutions implemented in the hardware are mostly probability-based. PARA [1]

randomly refreshes the neighbours of activated rows. Frequently-activated rows have

more chance to trigger the random refresh of their neighbours, and an attack that acti-

vates a few rows tens of thousands of times has a very high probability to trigger the

refresh on the potential victims. Discreet-PARA [39] aims at improving the previous so-

lution by adding counters, where each counter counts the ACTs in a section of the bank,

to only trigger the original PARA when an ACT is issued in a section that is frequently

activated, in order to reduce the performance impact of PARA. ProHit [40] uses a pri-

ority table in which neighbours of activated rows are randomly inserted and promoted

to a higher priority. During the periodic refreshes (every tREF I), the highest priority

2.3. Rowhammer countermeasures 21

row is refreshed to prevent the corruption on the most likely victim. MRLoc [41] stores

the neighbours of the last activated rows in a queue, and uses the frequency at which

it is inserted in the queue to determine a refresh probability, then use this probability

to randomly activate an additional refresh.

Some proposals use the probabilistic structure of a Counting Bloom Filter (CBF) [42]

to evaluate the activation count of every row in the memory to detect rows that are

activated too many times [43, 44].

These probabilistic solutions offer a low performance cost and a low silicon area

overhead. The rows activations only have a low probability of triggering additional re-

freshes, and improvements on the original PARA proposal aim at reducing the chance

of triggering a refresh on rows that are not used as aggressors. They don’t require a

lot of memory to store the queue or tables, hence the silicon area overhead of these

solutions is relatively low. However, due to their probabilistic nature, these solutions

cannot offer a guaranteed protection.

2.3.4 Hardware counter-based protection

Counter-based hardware protection against RowHammer attacks rely on counters to

monitor the number of ACTs issued to each row during a refresh window. When the

count of one row reaches a threshold, the row is considered as an aggressor row and the

mechanism acts accordingly, either refreshing the neighbours of the aggressor which

are the potential victims of the attack, or using a mean to prevent further ACT on

the aggressor row. Contrary to probabilistic solutions which offer no guarantee of

protection, counter-based mitigation techniques are designed to detect all attacks, at

the additional expense of having to store and manage more counters.

A naive solution for counter-based Rowhammer protection would be to have one

counter per row, increment them when the associated row is activated, and react when

the count reaches a specified threshold. However, a typical DDR4 bank has 216 = 65536

rows per bank, and 24 = 16 banks per rank. Hence, this naive solution would require

220 ≈ 106 counters per rank, with 12 to 16 bits per counter depending on the corruption

22 Chapter 2. Background

threshold, for a total of 12Mib to 16Mib bits of additional memory per rank, which is

not reasonable [1].

Therefore, every counter-based solution uses a different counter structure to reduce

the number of counters to a minimum, while maintaining the guarantee of protection

and minimal false positive detection.

Multiple mitigation proposals use a counter tree structure, which divides row groups

into progressively smaller groups as they get activated in order to detect the rows that

get activated the most [45, 46, 47].

BlockHammer [48] uses two CBFs to evaluate the activation count of every row,

and compensates the probabilistic nature of the CBF by never decreasing the values

(except for periodic reset every refresh cycle tREF W) and preventing further accesses to

detected aggressors instead of refreshing the neighbours.

Some proposals use variations of the Misra-Gries [49] or Counter-based summary [50]

algorithms to determine the most activated rows within a time period [51, 52, 53]. A

table associates a row to a counter and increments the counters when the row is acti-

vated. When a new row is activated, it eventually replaces the row of the entry with

the minimum counter value by the new row, without reseting the counter. At any point

in time, the actual activation count of a row is lower or equal to the counter value, and

higher or equal to the minimum counter value in the table. When a specific threshold

is reached, the mechanism either issues an additional ACT to the victim rows [51], uses

the DDR5 Refresh Management (RFM) command to refresh the victims [53], or swaps

the row with another to prevent the corruption [52].

PanOpticon [54] implements counters in the DRAM chips, associates every row to

a unique counter stored in an additional MAT inside the DRAM bank. A counter is

incremented when its associated row is activated. When it reaches a specific threshold,

the mechanism refreshes the potential victims, potentially delaying other accesses by

faking a missed access using the ALERTn signal to leave enough time for the refresh

to take place.

TWiCe [55] uses the lossy-counting algorithm to count the activations on every

2.4. Conclusion 23

row but periodically removes the table entries for rows that have not been activated

frequenlty-enough.

2.3.5 Conclusion

Numerous mitigation techniques have been proposed, each with their pros and cons.

However, many require modifications of the protocol to allow the countermeasures to

precisely refresh the neighbours of the aggressor rows without knowing the internal

layout of the memory.

While the community has proposed numerous algorithms to detect attacks with

great accuracy and low overhead, some proposals have been made to facilitate the in-

tegration of these mitigations with the DRAM. Multiple propositions were made to add

RowHammer-mitigation-specific commands to the DDR standard to allow the mem-

ory controller to request refreshes on the victim rows [56, 57], and to allow the memory

controller to get information on the DRAM [58]. In the mean time, DRAM manufac-

turers have also implemented their own mitigations in the DRAM modules. However,

while the details of these mitigations were not made public, the community proved

that they can be partially retro-engineered by a malicious program and bypassed to

produce bit-flips [59, 34]. Consequently, researchers are asking DRAM vendors to pro-

vide precise information about the integrated defences and limitations [57].

From an other perspective, while most mitigation proposals aim at correcting the

symptoms of the Rowhammer attack (i.e., preventing the disturbance level from reach-

ing the point when bit-flips happen), some discuss the possibility to correct the prob-

lem at its root by changing the manufacturing process to reduce, if not prevent, cell-to-

cell disturbance that cause the memory corruption on DRAM [60, 61, 13].

2.4 Conclusion

Since the discovery of the cell-to-cell disturbance error in 2014 [1], the Rowhammer

attack which exploits this issue has been an important subject of research in the ar-

24 Chapter 2. Background

chitecture design and security communities. Numerous mitigations were proposed in

the last decade and continue to be published to this day, but as the density of DRAM

increases, the technology becomes more and more vulnerable to the attack, render-

ing some of the proposed countermeasures less effective, drastically increasing their

silicon area or performance overhead, and sometimes even making them ineffective

against modern attacks.

The study of Rowhammer attacks and countermeasures is to this day an impor-

tant research subject, as modern systems cannot be considered protected against this

threat.

III

Rowhammer Simulation

Contents

3.1 Motivation . 26

3.2 Rowhammer simulation requirements 28

3.3 gem5 and Ramulator . 31

3.4 Memory Corruption simulation . 33

3.4.1 Integration of the memory-corruption module in gem5 and

Ramulator . 33

3.4.2 Disturbance and corruption simulation 34

3.5 Mitigation integration in gem5 . 37

3.6 Usage, limitations and evaluation . 38

3.6.1 Limitations . 40

3.6.2 Evaluation . 41

3.7 Conclusion . 42

26 Chapter 3. Rowhammer Simulation

3.1 Motivation

When designing a Rowhammer mitigation technique, it is important to properly eval-

uate it on multiple points. This allows the designers to compare it against existing

proposals, improve or correct it if necessary, and configure some parameters to opti-

mise it. A mitigation technique proposal can be evaluated on the following points:

• Its capability to protect a system against RowHammer attacks;

• Its impact on the performance of the system it is implemented in;

• Its energy consumption and silicon area overhead.

The silicon area and energy models of a mitigation proposal can be measured with

electrical or register-transfer level(RTL) simulations.

To evaluate the capability to protect the system and the performance cost, mitiga-

tion proposals must use evaluation platforms which generate metrics such as False

Positive (FP) and False Negative (FN) detection rates, and some mitigation-specific

metrics like the number of additional refreshes, the number of row swaps or the num-

ber of detected aggressors.

Even if software-based mitigation proposals do not need any modification on the

hardware to protect the system, generating these metrics still requires the development

of an evaluation platform that embeds the necessary tools to monitor them. Some in-

formation about the memory are not known by the processor, and if an attack succeeds

to corrupt one bit in the memory, there is no guarantee that the bit-flip will be ac-

knowledged when generating the metrics. Hardware-based mitigation proposals on

the other hand will always require to be implemented in the architecture to be evalu-

ated.

To properly evaluate the mitigation proposals, an evaluation platform needs to be

able to execute modern attacks that require a working system (e.g., attacks that escape

web browser sandboxes) while running the mitigation technique, provide the mitiga-

tion with all the information it needs, in an environment close to consumer systems,

3.1. Motivation 27

and configurable to tweak memory vulnerability and mitigation parameters.

Designing and fabricating new integrated circuits for each iteration during the de-

velopment of RowHammer mitigation techniques would have a huge financial and

time cost. Researchers can rely on FPGA [1] to emulate a memory controller, imple-

menting their proposals to test them against existing attacks on modern systems and

DRAM memories, while varying the temperature of the memory to increase its vulner-

ability to bit-flips. This has the advantage of being very faithful to real systems, while

offering a high modularity and low development cycle to create mitigation techniques.

However, both software implementation on real systems and hardware implementa-

tions on FPGA face the same limitations. First, the internal layout of the DRAM banks

is not known to the memory controller. Mitigation proposals which use victim row re-

freshes cannot protect the memory as they cannot know what are the neighbour rows

to refresh. Second, having to test on existing memory modules is an issue when con-

sidering future memory technologies like DDR5 or emerging non-volatile memories

which are potentially susceptible to variations of the Rowhammer attack [62, 63]. As

future technologies are by definition not available as memory replacements for modern

computers, testing on these technologies is hard, if not impossible.

The last solution for this is to use simulators, where researchers can simulate mod-

ern or future architectures, with recent memories or future technologies. However,

existing simulators do not provide any tool to simulate the corruption of the memory

from Rowhammer attacks. Most Rowhammer attack need to witness the corruption in

the memory in order to work properly. A simulator that is not capable of simulating

the memory corruption will not be able to simulate such attacks.

State-of-the-art mitigation proposals use various simulation tools to evaluate the

performance. For example,

• Graphene [51], TWiCe [55], ProHIT [40] use the x86 microarchitecture simulator

McSimA+ [64];

• BlockHammer [48] and PARA [15] use the DRAM timing simulator Ramula-

tor [65];

28 Chapter 3. Rowhammer Simulation

• and MRLoc [41] uses the modular architecture simulator gem5 [66].

However, the authors had to modify the tools to generate the necessary metrics. Fur-

thermore, these tools were used to simulate the performance cost of the integration

of mitigations in the system. The simulator would not have simulated the corruption

even if there were nothing to prevent it. Finally, the first two simulators work by re-

executing a trace of memory accesses on x86-only systems. Evaluating the performance

cost on an ARM-based system would require to move to a ARM-compatible simulator.

In this chapter, we propose to integrate the memory corruption inside a simulator,

tools to include various mitigations and generate various metrics, in order to facilitate

the development and evaluation of Rowhammer mitigation techniques.

3.2 Rowhammer simulation requirements

A simulator for Rowhammer mitigation development needs to have the following fea-

tures:

• It needs to be able to simulate modern complex systems with a running operat-

ing systems and programs. The latest Rowhammer attacks are designed to be

executed on web browser [21, 4]. The simulator must be able to run an operating

system with a running web browser to execute such attacks, with a simulated

memory large enough to fit this system.

• It must be modular enough to implement memory corruption without disturbing

the simulated memory bandwidth: the corruption should not use the intended

ways to perform memory accesses from the simulated process as to not disturb

the simulated timings of the system. Corruption should therefore not be seen by

the simulated memory as a standard memory request, even if the processor is not

aware of it, but should directly hit the stored value.

• The simulation must be accurate regarding the timings of the memory. The mem-

ory timings is critical when running an attack. Cache hits, cache misses, DRAM

3.2. Rowhammer simulation requirements 29

row hits, row conflicts and row misses must have realistic timings so that the

attacks will behave exactly as they would on a real system. Furthermore, some

attacks rely on timing differences between row hits and row conflicts to retro-

engineer the layout of the memory [27, 28]. Some countermeasures also use the

timings of memory accesses to detect attacks, e.g. through the classification of

hardware event traces by a machine learning model [44, 36, 67].

• The corruption needs to happen as the system is running. Some attacks need to

witness the corruption happening in order to work properly [23].

• It must be able to execute programs compiled for at least the two most popular

Instruction Set Architectures (ISA) for consumer computers, i.e. x86 and ARM.

We do not need to simulate electrical details of the system architecture. Electrical

simulators such as SPICE are very accurate, but are too heavy and slow for a sys-

tem simulation. Furthermore, the system will rapidly become very complex, and the

memory very large as the architecture will run an OS executing web browsers. Inte-

grating the system and the mitigations in an electrical simulation would be very time

consuming. Additionally, the electrical cause of the disturbance [13] would be very

complex to configure depending on the technology, and add a significant overhead

in the simulation. Therefore, detailed electrical simulation is not suitable to simulate

microarchitectural attacks such as Rowhammer. Electrical simulators, however, are a

good fit to evaluate the energy overhead and processing time of single operations on

hardware-based mitigations.

The appropriate abstraction level for this kind of simulation is the system-level ar-

chitecture simulation. Architecture simulators reproduce the functional behaviour of

a individual components of a computing device (i.e. the processor, the cache mem-

ories and the main memory) to generate metrics while a program is running on the

simulated system. They can be divided into two categories: functional simulators and

timing simulators. Functional simulators, sometimes called Instruction Set Simulators,

are meant to reproduce the architecture from a program point of view. They reproduce

the functionality of the device without considering the timings of internal components.

These can be used as a fast way to verify the functionality or evaluate the performance

30 Chapter 3. Rowhammer Simulation

of some algorithm or applications on some specific architecture. On the contrary, tim-

ing simulators implement the behaviour of internal components of the architecture

more precisely. They consider the communication between all the components and the

time needed for their operation. To simulate the corruption from Rowhammer attacks,

the timing of the components, in particular that of the memory, is important. Hence,

the simulator will be a timing simulator.

Timing Architecture simulators can run two types of simulations: execution-driven

simulation, and trace-driven simulation. A Trace-driven simulation works by reading

a trace of instructions captured by a previous execution on a simulator of any type or a

real device. This has the advantage of being a fast solution to compare multiple archi-

tectures for the same program execution. The simulated system can be much simpler,

sometimes only simulating the memory components. However, programs that need

to interact with the user or with the system to collect data to take decisions will not

behave normally. Alternatively, an execution-driven simulation works by making the

simulated system execute the program. This type of simulation is slower than trace-

driven simulation, but it is able to simulate the programs that could not be simulated

on trace-driven simulation for the reason mentioned above. In order to work properly,

most RowHammer attacks need to witness the corruption, for example by searching

for bit-flip locations to place the desired value in before performing the hammering

loop. Therefore, the simulator needs to be able to run execution-driven simulation.

From all the simulators presented by Akram et al. in 2019 [68], only six timing sim-

ulators can simulate both x86 and ARM ISA. Among those simulators, the only simu-

Simulator Timing simulation Execution driven Modular

gem5 [66] Yes Yes Yes
McPAT [69] Yes Yes No
Multi2Sim [70] Yes No Yes
SIMICS [71] Yes Yes No
SimpleScalar [72] Yes Yes No
TEM2P2EST [73] Yes Yes No

Table 3.1: Architecture Simulators comparison.

lator that is modular and capable of doing timing and execution-driven simulation is

gem5.

3.3. gem5 and Ramulator 31

3.3 gem5 and Ramulator

gem5 is an open-source modular computer architecture simulator, widely used in aca-

demia and industry. Users can create custom computer architectures by configuring

and connecting CPUs, cache memories, memory buses and a main memory. The source

code can be modified to create new architecture components for specific purposes, or

to improve existing ones to add functionalities. For the particular case of the main

memory simulation, gem5 integrates multiple memory simulators. Users can select

the simulator that fits their needs. Among the integrated simulators, DRAMSIM2 [74]

and and its recently added successor DRAMSIM3 [75] are the most precise simulators

regarding the timings of the DRAM. However, gem5 can be configured to use other

memory simulators if they are compatible. In the case of the memory corruption simu-

lation, we chose to use Ramulator [65] as our main memory simulator. As DRAMSim3

was not integrated in gem5 at the time we worked on the corruption simulation, Ra-

mulator was a satisfying solution for its cycle-accurate characteristics, as well as its

sources that could be easily modifiable.Anyway, the modifications made on Ramula-

tor to simulate the memory corruption can easily be implemented in an other DRAM

simulator.

Ramulator is a fast and extensible cycle-accurate DRAM simulator. It is used to

precisely simulate the timings of DRAM memories, taking periodic REF, row hits, row

misses and row conflicts into account. The simulation of the DRAM is only used to

simulate the timings of the accesses to have a realistic delay. When simulating a mem-

ory access, the data is accessed (i.e., read or written) by gem5.

When focusing on the memory, the behaviour of gem5 and Ramulator is illustrated

in Figure 3.1.

1. For the processor to communicate with the memory module, gem5 simulates the

memory bus.

2. Upon reception of a packet 1 , the memory module of gem5 extracts the address

and the type of access (read or write). It then generates a request to Ramulator 2

for it to simulate the timings.

32 Chapter 3. Rowhammer Simulation

packet

response

host
memory

request

callback

DRAM
simulator

memory
bus

Ramulatorgem5

gem5 memory
module

(Ramulator
wrapper)

periodic
REF

req.

addr
R/W
data

data

addr
R/W

addr vector

1 2

3

5

6

7
4

Figure 3.1: gem5 and Ramulator memory architecture

3. The DRAM simulator of Ramulator receives the request, and generates the ad-

dress vector by extracting the target channel, rank, bank group, bank, row and

column from the address. The address vector is stored in the request fields.

4. Using this information, it checks for row hits, row conflicts or row misses, and

considers all the timing parameters of the DRAM 3 . Ramulator autonomously

takes the periodic refreshes into account, sometimes delaying incoming requests 4 .

The simulation of REFs only serves the purpose of making the memory busy for

a short period. Ramulator does not communicate the Refresh events to gem5.

5. Once the timing of the request is respected, Ramulator uses the callback of the

request to notify gem5 that the access is finished 5 .

6. When the memory module is notified of a completed memory request, it per-

forms the actual access to the stored value (either writing or reading it) 6 .

7. When the memory access is finally complete, the memory modules sends the

response of the original packet to the memory bus with the data 7 .

The memory module of gem5 is the main component that handles memory ac-

cesses. It receives memory access packets from other components of the architecture,

orders Ramulator to simulate the timings, and once the timing has been simulated,

performs the actual access to the storage before replying to the packet.

3.4. Memory Corruption simulation 33

3.4 Memory Corruption simulation

3.4.1 Integration of the memory-corruption module in gem5 and Ra-

mulator

To simulate the memory corruption in gem5, we can either modify existing modules to

integrate the corruption, or create a new component and connect it to the architecture.

To follow the modularity of gem5 and for compatibility with other forks and future

versions of gem5, we chose to create a separate memory-corruption module that will

handle the memory corruption, and connect it to existing modules by performing only

a few changes in the existing modules. This module is responsible for measuring the

disturbance of every row in the memory from ACTs on neighbouring rows, and mod-

ifying the stored data to simulate the corruption.

The memory-corruption module will be connected directly to gem5’s memory mod-

ule. It will communicate with it to get notified when memory accesses are completed,

and will ask it the location of the stored data to perform the actual modifications on

the memory to simulate the corruption.

The memory-corruption module needs to know when rows are activated. How-

ever, whether the request led to a row hit or not is not part of the information pro-

vided in the request callback from Ramulator. Additionally, REF commands, which

periodically reset the disturbance of the rows, are not notified to gem5. Therefore,

the behaviour of Ramulator must be modified to notify gem5 when REF and ACT

commands are issued. ACT commands are always a result of a memory access; this

information can be added to the request callback. REF commands, on the contrary,

are handled internally by Ramulator. They use the same request format as memory

accesses, but the callback function of the request is not set. To notify REF commands to

gem5, a set_refresh_callback(cb) method is implemented in Ramulator that,

when used, sets the callback function for all future REF commands to the specified

function. We make sure to call this function once at the beginning of the simulation in

the wrapper of Ramulator in gem5. However, as simulating the timing of REF com-

mands does not imply to specify which rows are being refreshed, Ramulator does not

34 Chapter 3. Rowhammer Simulation

specify which rows are refreshed for each REF. Hence, even with the callback function

implemented, there is no viable way to know which rows are being refreshed each time

a REF command is issued.

The modified behaviour of gem5 and Ramulator is illustrated in Figure 3.2.

packet

response

host
memory

request

callback

DRAM
simulator

memory
bus

Ramulatorgem5

gem5 memory
module

(Ramulator
wrapper)

periodic
REF

req.

addr
R/W
data

data

addr
R/W

addr vector
ACT

Memory
Corruption

callback

Figure 3.2: gem5 and Ramulator memory architecture, with the Memory-Corruption module

3.4.2 Disturbance and corruption simulation

The algorithm used by the memory-corruption module to handle row activations and

refreshes is illustrated in Figure 3.3. In this figure, C is a table associating row positions

to a counter of how many times they were disturbed by ACTs on adjacent rows. When

the module is notified of an ACT being issued, it transforms the address into the posi-

tion of the row. All addresses that target the same channel, bank group, bank and row

but a different column have the same position, and adjacent rows have consecutive

positions. If the table C has an entry for this position, it removes it, simulating the re-

set of the disturbance on this row. The memory-corruption module then simulates the

disturbance on the neighbours of these rows, if they exist. As the REF simulation by

Ramulator does not specify which rows are refreshed, the memory corruption module

considers that all the rows are refreshed at once. REFs are issued once every tREF I . Ev-

ery tREF W , all rows must have been refreshed. Therefore, we can consider that all rows

are refreshed every tREF W

tREF I
REFs. According to Table 2.1 page 12, this ratio is equal to

8192 for all 3 considered DRAM generations.

3.4. Memory Corruption simulation 35

onACT(addr)

p =
position(addr)

C has
p?

delete p
from C

disturb
p - 1

disturb
p + 1

END

onREF

decrement
counter

counter
= 0?

clear C

counter = 8192

END

Figure 3.3: ACT and REF callback functions

The disturb function used in this algorithm is illustrated in Figure 3.4. Simulating

the disturbance on a row consists in increasing its counter in the table C. If C already

has an entry for the row, it is incremented; otherwise the entry is created and initialised

at 1. When the count is above the corruption threshold TRH , the program uses the

corrupt(p,n) function to flip some bits in the row.

The corruption of the memory happens every time the neighbour of a row is issued

an ACT from the moment the disturbance level of the victim row reaches TRH and until

it is either refreshed or activated.

All bits are not flipped at once, some bits are more vulnerable than others. The

corruption simulation must be able to simulate progressive random corruption of the

memory, illustrated in Figure 3.5.

The progressive nature of the corruption can be viewed as a function that takes the

36 Chapter 3. Rowhammer Simulation

disturb(p)

C has
p? C(p) ++

C(p) = 1 C(p)
≥ TRH?

corrupt
(p, c(p)-T)

END

Figure 3.4: disturbance simulation

disturbance level minus the corruption threshold as input, and outputs the approxi-

mate portion (from 0 to 1) of bits that should be flipped at this point of the attack. When

this value reaches 1, all bits of the row are flipped to 0. According to the approximation

theory of mathematics, any function can be approximated to a polynomial function.

Hence, to allow any function to be used for this while keeping the implementation

simple, the configured function must be a polynomial function 1 . The polynomial

given in the example in Figure 3.5 is −2 × 10−9x3 + 3 × 10−6x2. Using this polyno-

mial results in an ease-in-out function from 0 to 1000 ACTs after the threshold. As this

function outputs the portion of bits that are flipped since the beginning of the attack,

its derivative is the approximate number of bits that flip every time the disturbance

level is increased. The derivative of an ease-in-out function is a gaussian function. Us-

ing this type of polynomial, we simulate an gaussian distribution of the corruption of

all bits. Other polynomials can be used, to simulate for example ease-in or ease-out

functions of any range. The sensitivity of bit cells for disturbance can be considered

random and determined by process variations. To simulate this random sensitivity, a

Pseudo-Random Number Generator (PRNG) 2 is used to associate a random number

between 0 and 1 to every bit cell of the row 3 . This PRNG being seeded with the row

position when entering the corrupt function, the random number associated with a

bit is constant. A bit will only flip to 0 when the output of the polynomial function is

greater than its associated random value. To flip a bit, the simulator simply sets the

3.5. Mitigation integration in gem5 37

appropriate bit to 0 in the memory.

row n°

3

TRH

2

disturbance
TRH + 200 TRH + 400 TRH + 600 TRH + 800 TRH + 1000

1

0

0.5

0.352

−2 × 10−9x3 + 3 × 10−6x2

1

Figure 3.5: Bit-flip simulation with polynomial equation. Squares on the bottom represent
individual bit cells, each having its own unique threshold specified by the PRNG 2 . After
TRH + 400 ACTs, all cells with an individual threshold below 0.352 will be corrupted.

3.5 Mitigation integration in gem5

The main goal of simulating Rowhammer attacks is to design, evaluate and improve

countermeasures. For this purpose, the simulator provides all the necessary informa-

tion, events and functions to design hardware-based mitigation techniques. As illus-

trated in Figure 3.6, the memory-corruption module can be connected to a mitigation

module, written in C++ and that inherits the provided Mitigation class. The miti-

gation module is notified of ACTs and REFs, and can use provided functions to issue

additional ACTs to refresh victim rows, log events and generate statistics that will be

saved at the end of the simulation.

Rowhammer countermeasure designers can integrate mitigation proposals that re-

act when rows are activated, and refresh the neighbours of the aggressor rows to pre-

vent the corruption. Countermeasures such as PARA [1] which randomly refreshes

neighbours of activated rows, and Graphene [51] which tracks the most activated rows

using the Misra-Gries algorithm, are good examples of this type of Rowhammer coun-

termeasures. The simplified code for the integration of PARA is presented in List-

ing 3.1. In this code, functions onACT (resp. onREF) are called when an ACT (resp.

38 Chapter 3. Rowhammer Simulation

packet

response

host
memory

request

callback

DRAM
simulator

memory
bus

Ramulatorgem5

gem5 memory
module

(Ramulator
wrapper)

periodic
REF

req.

addr
R/W
data

data

addr
R/W

addr vector
ACT

Memory
Corruption

callbackMitigation

Figure 3.6: gem5 and Ramulator memory architecture, with Memory-Corruption module and
Rowhammer mitigation

a REF) command is issued. The addr argument is the address vector, containing the

addressed channel, rank, bank, bank group, row and column. The neighbor function

stores in the third argument the address vector for the neighbour row, with the offset

specified in the second argument relative to the address vector in first argument. This

function returns true if the neighbour exists, false otherwise. Finally, the function

refresh performs an additional dummy read operation on the target row.

3.6 Usage, limitations and evaluation

3.6.0.1 Usage, configuration

gem5 modules can generate statistics, which are written in a file at the end of the sim-

ulation. Both the memory-corruption module and the mitigation module can generate

statistics. The memory-corruption module generate statistics for the number of bit-

flips, and the maximum disturbance level registered by the module. This can help to

evaluate the efficiency of attacks, and the protection offered by the countermeasure.

The mitigation module generates statistics for the number of additional refreshes is-

sued, and designers can add statistics of their own.

This module is intended to be used to simulate Rowhammer attacks and mitiga-

tions. The DRAM technology keeps evolving, changing the vulnerability of the mem-

3.6. Usage, limitations and evaluation 39

class PARA : public Mitigation
{

float p; //!< refresh probability
public:

PARA(float p) : Mitigation(), p(p)
{ }
void onACT(const std::vector<int>& addr)
{

float r = ranged_random(0,1);
std::vector<int> adj;
if (r < p/2)
{

if (neighbor(addr, -1, adj))
{

refresh(adj);
}

}
else if (r < p && neighbor(addr, 1, adj))
{

refresh(adj);
}

}
void onREF()
{

// do nothing
}

}

Listing 3.1: PARA implementation in gem5 with memory-corruption module

ory to Rowhammer attacks. To make this module as versatile as possible, it needs to

to be adaptable to various cases. In addition to the mitigation integration, multiple pa-

rameters can be used to configure the memory corruption module to adapt it to various

conditions.

The internal mapping of rows in the memory chip can change between two DRAM

modules. Two adjacent rows in one chip may not be adjacent in another chip [76]. The

memory-corruption module can take a DRAM layout file as an optional parameter,

containing the physical position of each logical row in a bank. Table 3.2 illustrates an

example where rows 0, 1, 3, 6 and above are at their proper positions, whereas rows

2, 4 and 5 are respectively at positions 4, 5 and 2. This means that when using this

configuration, the row 2 is adjacent to rows 3 and 4 in all the banks of the memory.

The corruption threshold TRH depends on the technology, the manufacturing pro-

40 Chapter 3. Rowhammer Simulation

Table 3.2: DRAM layout configuration example.

logical row 0 1 2 3 4 5 6
physical row 0 1 4 3 5 2 6

cess and its variations. It ranges from around 10,000 for recent LPDDR4, to 50,000

for early DDR4 and 139,000 for some DDR3 memory modules [15]. Its value can be

configured in the memory-corruption module to fit the target DRAM modules.

The bit-flip probability polynomial used to progressively flip the bits in the mem-

ory can also be configured, to either flip all the bit at once using the constant polyno-

mial 1, to change the speed at which the memory corrupts itself past the threshold, or

to keep some random bits not flipped. The polynomial used to illustrate the progres-

sive corruption in Figure 3.5 page 37 uses the polynomial −2 × 10−9x3 + 3 × 10−6x2,

that produces an ease-in-out curve between 0 at TRH to 1 at TRH + 1000. By default,

the constant 1 is used, which means that all bits are flipped when the disturbance level

reaches TRH .

Finally, the corruption of the memory can be deactivated. In this case, the bit-flips

are not simulated, but the event of the disturbance level reaching the threshold is still

logged.

3.6.1 Limitations

The simulation of Rowhammer attacks and countermeasures by this simulator is lim-

ited in some points. First, the simulation of disturbance and corruption is not a perfect

reproduction of the effect on physical systems. At the time of writing, the physical

phenomenon behind the bit-flips caused by Rowhammer attacks is not entirely under-

stood. Even among the known parameters that affect the corruption of the memory in

real systems, some are not integrated in the memory-corruption module.

First, the corruption threshold must be fixed before the beginning of the simulation.

The temperature at which the memory is working has an effect on the corruption, but

the evolution of temperature and its effects on the corruption cannot be integrated in

the simulator.

3.6. Usage, limitations and evaluation 41

Second, the data pattern stored in the memory was proved to have some effect

on the bit-flips [15]. Row stripes of 1s and 0s, or a checker board alternating 1 and 0

for every bit seems to have a significant effect on the bit-flips. However, the cause of

this effect is not entirely understood and varies between memory generations. Conse-

quently, we did not integrate this effect in the memory-corruption module.

Third, the internal layout of the banks is not only unknown to the memory con-

troller, it can also be different for every bank. But for the sake of simplicity, it was

decided that the simulated memory will have a common layout in all banks.

Finally, it has been recently demonstrated that the victim row is not necessarily

adjacent to its aggressors [15, 22]. However, simulating the mechanisms behind this

effect would involve a complicated configuration from the user, and the simulation

would most probably not be very accurate. Therefore, this effect is not yet integrated

in the simulator.

3.6.2 Evaluation

Adding another module to a simulator inevitably adds an overhead in processing time

and resources usage.

Multiple simulations were made, using both ARM and x86 architecture, to com-

pare the performance of the simulation with the memory-corruption module enabled

and disabled. Three benchmark programs were used: a simple Rowhammer attack,

the STREAM benchmark, and a Linux OS boot and shutdown. These programs were

chosen for their memory usage and representation of a typical usage of a Rowhammer

simulator. For this evaluation, gem5 was configured to use one TimingSimpleCPU

running at 1GHz; two 32KB L1 caches (one L1-D and one L1-I); one 512KB L2 cache;

and finally a DDR4 DRAM at 2400MHz as the main memory, with a storage limit of

4GB, handled by Ramulator. The results of this evaluation are displayed in Table 3.3.

We used Valgrind [77, 78] when launching the simulation to measure the peak

memory usage. As doing so greatly lengthen the duration of the simulation, it could

not be done for the simulation of the boot and shutdown of Linux. The measurements

42 Chapter 3. Rowhammer Simulation

show that there is no noticeable difference in timings for all tested benchmarks, and

almost no difference in peak memory usage.

Table 3.3: Impact of the Memory-Corruption module (M-C) on simulation performance.

Bench-
mark

time (avg ±σ)
M-C enabled

time (avg ±σ)
M-C disabled

peak memory
usage (M-C en.)

peak memory
usage (M-C dis.)

STREAM 6m32s ± 2.3%
(8 samples)

6m30s ± 1.3%
(8 samples) x86: 885.2MiB x86: 885.2MiB

RowH.
attack

11.47s ± 3.5%
(10 samples)

11.63s ± 3.5%
(10 samples)

x86: 890.44MiB
ARM: 941.13MiB

x86: 890.44MiB
ARM: 938.14MiB

Linux
boot

31m10s ± 7.7%
(5 samples)

30m58s ± 5.3%
(5 samples) not measured not measured

3.7 Conclusion

In this chapter, we presented an improvement of the gem5 architecture simulator to

simulate the memory corruption caused by Rowhammer attacks. The new module we

created is attached to the memory controller of gem5, intercepts row activations and

periodic refreshes to simulate the disturbance between adjacent rows, and performs

the bit-flips in the memory to simulate the bit-flips. Various Rowhammer mitigation

mechanisms can be connected to the memory-corruption module to validate their effi-

ciency in protecting a system against Rowhammer attacks. However, this module has

several limitations: complex corruption mechanisms such as the influence of the data

pattern in the memory are not integrated, and only mitigation mechanisms that can be

integrated are hardware-based mitigation and that produce additional REFs to victim

rows can be implemented. Finally, This corruption simulation is configurable on mul-

tiple key parameters such as the corruption threshold and the adjacency of the rows in

the memory, and outputs statistics and logs using the dedicated functions of gem5.

This work resulted in two publications in conferences [79, 80] and communications

in national symposiums [81] and in an international conference [82].

IV

Counter-based Rowhammer mitigations

improvement

Contents

4.1 Motivation . 44

4.2 Bank-level and rank-level counting granularity 44

4.3 Implication in State-of-the-art mitigation proposals 46

4.4 Considerations for technology and timings 49

4.4.1 DDR generation parameters . 49

4.4.2 Feasibility - timing considerations 50

4.5 Conclusion . 51

44 Chapter 4. Counter-based Rowhammer mitigations improvement

4.1 Motivation

Rowhammer mitigation development is a very active domain of research. Over the

past years, numerous countermeasures have been proposed. Counter-based mitiga-

tion techniques, implemented as hardware components in the micro-architecture, are

among the most performant proposals. However, they come at the cost of requiring

an additional memory to store the counters. Most counter-based mitigation propos-

als come with a bank-level counting granularity, with one set of counters per bank.

The total silicon area overhead of implementing this kind of countermeasure is ap-

proximately the silicon area overhead of the bank-level protection multiplied by the

number of banks. In this work, we evaluate how the storage requirement could be re-

duced when changing the counting granularity of counter-based Rowhammer mitiga-

tion techniques from bank level to rank level, without affecting their protection level.

4.2 Bank-level and rank-level counting granularity

The objective of Rowhammer attacks is to send enough ACTs to neighbours of a victim

DRAM row without directly accessing it, to corrupt some bits in it. Because of limi-

tations such as the unknown layout of the memory, counter-based algorithms cannot

measure the disturbance of victim rows because they don’t know what are the adjacent

rows of activated ones. Instead, they try to detect when rows are used as aggressors by

counting their activations. A DRAM row must be considered as an aggressor row by

the mitigation mechanisms before it is issued enough ACTs to corrupt a victim neigh-

bour row. As the two neighbours of a row can be used to disturb it TRH times, an attack

is considered successful if an aggressor is issued HCfirst = TRH ÷ 2 ACTs.

In general, the required memory overhead to guarantee the detection of a Row-

hammer attack depends on (1) the bitwidth of each counter and (2) the total number of

counters. The number of bits per counter S directly depends on the detection threshold,

which is calculated from the corruption threshold TRH . In principle, we would need

to keep count of each row separately. However, having one counter per row is exces-

sively expensive (e.g., a typical DDR4 bank has 216 = 64K rows, which would require

4.2. Bank-level and rank-level counting granularity 45

approximately 1MiB of counter storage per bank for a TRH of 32768 [15]). Thus, most

existing counter-based detection mechanisms include methods to minimise the num-

ber of counters while still guaranteeing detection. The parameters of these methods

are the detection threshold, and W the maximum number of ACTs that can be issued

during tREF W .

The detection threshold determines the vulnerability of the memory to corruption,

and is fixed after fabrication. W is determined by the DRAM timings, and the counting

granularity. At bank level, row activations are limited by the interval between two

ACTs tRC , and the periodic refreshes defined by tREF I and tRF C . Hence, W at bank

level WB can be calculated using the formula

WB =


tREF W ×
(
1− tRF C

tREF I

)
tRC

 . (4.1)

Alternatively, considering the rank-level counting granularity, row activations is not

limited by the individual WB of the banks. Row ACTs in a rank are limited to four

times during tF AW . As a consequence, not all banks can be accessed at their maxi-

mum frequency. DDR3 and DDR4 technologies use an all-bank refresh mechanism,

which refreshes all banks at the same time when issuing a REF command, keeping the

rank busy for tRF C every tREF I . DDR5 standard introduced the single-bank REF com-

mand [83] which allows the banks of a rank to be refreshed individually to keep the

other banks available, as tRF C ≪ tREF I . Hence, the value of W at rank level WR can be

calculated using the formula

WR =


tREF W (1− tRF C

tREF I
)

tF AW ÷ 4

 (4.2)

for DDR3 and DDR4 memories, and the formula

WR =
⌈

tREF W

tF AW ÷ 4

⌉
(4.3)

for DDR5 memories.

Considering Nbank as the number of banks per rank, the total number of counters

in a rank for bank-level detection is Nbank times the number of counters per bank. If

46 Chapter 4. Counter-based Rowhammer mitigations improvement

the number of counters is proportional to W , the effective value of W for the sum of all

bank-level detection mechanisms in a rank is Nbank ×WB. Hence, when Nbank ×WB >

WR, a rank-level detection mechanism has a lower effective W than the sum of all

bank-level detection mechanisms. As a consequence, moving to rank-level counting

granularity could reduce the number of counters needed to protect the memory against

Rowhammer attacks.

For the memory modules whose timings are detailed in Table 2.1 page 12, the

values of WB, WR are listed in Table 4.1. In this table, the reduction of W is calculated

using the formula

Wred = 1− WR

WB ×Nbank

. (4.4)

This table shows that as the technology evolves and the standard allows more banks

per rank, the reduction of W when moving from bank-level to rank-level counting

granularity increases, from 19% for DDR3 to 62% for DDR5.

Table 4.1: Values of WB and WR, number of banks per rank, and theoretical reduction of total
number of counters, for DDR3, DDR4 and DDR5 (c.f., Table 2.1 page 12).

Memory WB WR Nbank W reduction

DDR3 1.25× 106 8.15× 106 8 19%
DDR4 1.33× 106 11.3× 106 16 47%
DDR5 6.61× 105 8.00× 106 32 62%

4.3 Implication in State-of-the-art mitigation proposals

To quantify the memory reduction resulting from the reported W reduction, we con-

sider two recently-published countermeasures, namely Graphene [51] and BlockHam-

mer [48]. Since these countermeasures were only dimensioned for DDR4 memories,

the results in this section are restricted to DDR4.

Graphene. Graphene stores row addresses and counters in a Content-Addressable

Memory (CAM) and uses the Misra-Gries algorithm [49] to only count the ACTs on

the Nentry most activated rows of the bank. Following the original publication, the

4.3. Implication in State-of-the-art mitigation proposals 47

minimum number of entries in the CAM is calculated using the formula

Nentry =
⌊

W

TRH ÷ 4

⌋
. (4.5)

An entry in this CAM includes a key-value pair, where the key is the row address

and the value is a counter, plus one overflow bit for the counter. This overflow bit is

used as a trigger to detect when the victim has been activated too many times, and its

neighbours need to be refreshed. The counter must be capable of holding a value up

to HCfirst ÷ 2 − 1. For a typical corruption threshold TRH = 32768 [15], this means a

maximum value per counter of HCfirst ÷ 2 − 1 = 8191 = 213 − 1, hence a counter of

13 bits. The address part of the entry must be able to identify every rows. Considering

the bank-level counting granularity, as proposed in the original publication, and DDR4

banks with 65536 rows, the address part of the entry would be 16 bits wide, for a total

entry size of S = 16 + 13 + 1 = 30 bits. According to Equation 4.5 with W = WB, a

prototypical DDR4 memory bank needs 162 CAM entries. Thus, the total CAM size is

16 banks × 162 entries × 30 bits = 9.49KiB per rank (5.06KiB for the keys, 4.43KiB for

the rest).

Alternately, considering the rank-level counting granularity, the entries would re-

quire more space to fit the row unique address. As a DDR4 rank can contain up to 16

banks, the row address must be 4 bits bigger than its bank-level equivalent to uniquely

identify each row. As a result, the total entry size becomes S ′ = 20 + 13 + 1 = 34 bits.

According to Equation 4.5 with W = WR, a prototypical DDR4 memory rank needs

1394 CAM entries. Thus, the total CAM size is 1394 entries × 34 bits = 5.71KiB per

rank (3.36KiB for the keys, 2.35KiB for the rest).

For one rank, the additional storage required by Graphene with rank-level counting

granularity is 40% lower than the sum of 16 additional independent storages required

by graphene with bank-level counting granularity.

BlockHammer. BlockHammer uses Counting Bloom Filters (CBF) [84] to count the

number of ACTs for every rows. A CBF works by associating each possible input

value to a unique set of k counters out of a total of m counters, using a hash function.

When a row is activated, the CBF uses the hash function to determine the associated

48 Chapter 4. Counter-based Rowhammer mitigations improvement

k counters, and increments them. When a row is activated and all its associated coun-

ters are above a pre-defined threshold NBL, the mechanism considers the row as an

aggressor. It communicates with the processor to slow down the process that activated

the aggressor row, until the row is refreshed. Every tREF W , all the counters of of the

CBF are reset to take the periodic refresh into account. To avoid missing an attack that

would not target a row synchronously refreshed with the reset of all counters, Block-

Hammer uses two CBF. They are alternately refreshed every tREF W ÷ 2, and both are

incremented on an ACT, but only one is considered at a time. The principle of this

mechanism is illustrated in Figure 4.1.

CBFA CBFB CBFA CBFB

1 2 3

CBFA

CBFB

Active CBF

Figure 4.1: Alternating CBFs on BlockHammer. The Two CBFs count all the accesses, but only
one of them is taken into account at a time. When The active CBF detects an aggressor 1 , it
blacklists the row. Every tREF W ÷ 2, the active CBF is cleared, deactivated and the other CBF
is activated 2 . If the inactive CBF detects an aggressor 3 , it is not taken into account until it
gets activated.

This mechanism uses a reduced set of counters to count the accesses to all the rows.

As counters are shared between multiple rows the detection mechanism must be de-

signed to be able to distinguish aggressor rows from other accessed rows. As a com-

prehensible and representative way to evaluate the capability of BlockHammer to dis-

criminate aggressor rows from benign rows, we introduce the noise level n. The noise

level is the mean value reached by counters after W ACTs evenly-distributed across

all rows of the considered memory. It must be significantly lower than the detection

threshold NBL to make the counters associated to aggressor rows stand out from coun-

ters incremented by benign memory accesses. The value of n is calculated using the

formula

n = W × k

m
. (4.6)

The bank-level implementation, proposed by the authors of BlockHammer, includes

m = 1024 counters per CBF, k = 3, and NBL = 8192. For the considered DDR4 with

WB = 1.33 × 106, we have a noise level of n ≈ 3896. This means that during normal

but memory-intensive operation, most counters will likely reach this value. The mech-

4.4. Considerations for technology and timings 49

anism can easily distinguish aggressor rows, for which the counters will reach NBL,

approximately twice the value of n.

When considering the rank-level implementation, the noise level must be kept at

a similar value to maintain the protection level. As WR = 11.3 × 106 ≈ 8.5 × WB,

we selected m = 8192 and k = 3. For simplicity, we chose to keep k constant, as it

is already a very small number. We selected m as the closest power of two to keep a

similar noise value. With these values, we have a noise level of n ≈ 4138.

The number of bits per counter is only defined from NBL, and therefore does not

change between bank-level and rank-level counting granularities. As a standard DDR4

has 16 banks per rank, and the rank-level CBF has 8 times the number of counters

compared to bank-level CBF, the total size occupied by the counters for the rank-level

counting granularity is half of what it is for the bank-level counting granularity.

For both Graphene and BlockHammer, the additional memory required by the

mechanism can be reduced by 40% to 50% when changing the counting granularity

from bank-level to rank-level.

4.4 Considerations for technology and timings

4.4.1 DDR generation parameters

Even though the proposed mitigation techniques were originally designed for DDR4

memory modules, they can be easily adapted to other generations of DDR memories.

When changing the counting granularity from bank level to rank level, the storage re-

duction should follow the reduction of W calculated in Table 4.1 page 46. Table 4.2 lists

the storage reduction that can be obtained when moving Graphene and BlockHammer

to rank-level counting granularity, for DDR3, DDR4 and DDR5.

50 Chapter 4. Counter-based Rowhammer mitigations improvement

Table 4.2: Values of WB and WR, number of banks per rank, and theoretical reduction of total
number of counters, for DDR3, DDR4 and DDR5 (c.f., Table 2.1 page 12).

Bank level Rank level reduction
D

D
R

3 W total (8×WB, WR) 10× 106 8.15× 106 19%
Graphene CAM 4.45KiB 4.00KiB 11.2%
BlockHammer CBFs 26KiB 26KiB 0%

D
D

R
4 W total (16×WB, WR) 21.28× 106 11.3× 106 47%

Graphene CAM 9.61KiB 5.79KiB 40%
BlockHammer CBFs 52KiB 26KiB 50%

D
D

R
5 W total (32×WB, WR) 21.15× 106 8× 106 62%

Graphene CAM 9.38KiB 4.05KiB 57%
BlockHammer CBFs 52KiB 19.5KiB 62.5%

4.4.2 Feasibility - timing considerations

An important issue that arises when changing the counting granularity from bank-

level to rank-level is the capability of the countermeasure to withstand the shorter

delay between two ACTs. for a prototypical DDR4 memory, at bank level, the memory

controller can issue one ACT every 45ns. Most counters can perform all the operations

within this period. However, at rank level, the memory controller can issue one ACT

every tF AW ÷ 4 = 5.42ns on average. BlockHammer only introduces a 1ns latency be-

fore issuing ACTs to check the safety of the operation. It can therefore withstand the

shorter delay between two ACTs at rank level. However, due to a high constraint on

the power line, CAM used by Graphene and some other mitigation proposals have a

tendency to be slower the bigger they get [85]. Consequently, current CAM designs

might not be able to withstand the shorter ACT-to-ACT period of rank-level count-

ing granularity. This issue has been pointed by a previous study for the mitigation

proposal CAT-TWO [47], for which the authors pointed that the reduced frequency

of the CAM would render their proposal unusable at rank-level counting granularity.

Nonetheless, we expect that future CAM designs will be able to perform the searchs at

a fast-enough rate to allow CAM-based detection mechanisms to move to rank-level

counting granularity. Pipelined CAM [86, 87] could be a potential solution for this.

CAM-based detection mechanisms do not suffer from the latency of the CAM as the

ACTs are not delayed while being processed by the mechanism. Only the throughput

matters. The increased latency introduced by the use of pipeline circuitry does not

4.5. Conclusion 51

bring a decrease of throughput. On the contrary, as the number of active entries drasti-

cally decreases as the search progresses through the pipeline, using this method would

greatly reduce the constraint on the power lines, and therefore increase the throughput

sufficiently to make it usable for Rowhammer detection.

4.5 Conclusion

In this chapter, we have calculated the potential reduction of the required memory that

could be obtained by changing the counting granularity of counter-based Rowhammer

mitigation techniques from bank-level to rank-level. For the DDR4 technology, the

minimum delay between two ACTs at rank level is approximately 8 times lower than

the minimum delay at bank level, while there is up to 16 banks per rank. Hence, dur-

ing one refresh window tREF W , one can send 8 times more ACTs to a rank than it can

to a bank. Additionally, as for counter-based Rowhammer mitigation techniques, the

number of counters is proportional to the number of ACTs that can be issued to the

memory during tREF W , a mitigation technique with rank-level counting granularity

requires approximately 8 times the number of counters that is required at bank level,

despite the rank having up to 16 banks. Therefore, a mitigation mechanism with rank

level counting granularity would have approximately half of the counters compared to

the sum of all 16 mitigation mechanisms with bank level counting granularity. For the

two state-of-the-art mechanisms tested, Graphene and BlockHammer, the total mem-

ory size can be decreased by 40% to 50% for typical DDR4 memory modules.

However, the shorter timings between two consecutive ACTs at rank level must be

taken into account. Some mitigation techniques such as Graphene might not be able to

withstand the increased activation rate at rank level.

Finally, with the introduction of the recent DDR5 standard that allows up to 32

banks per rank, this reduction will get more important.

This work resulted in one communications in a workshop [88].

V

Mitigation proposals

Contents

5.1 Motivation . 54

5.2 Hardware counters and machine learning for Rowhammer detection . 54

5.2.1 Methodology . 55

5.2.2 Experiments and results . 57

5.2.3 Conclusion . 60

5.3 F-CorD: Forgetful Counters for Rowhammer Detection 61

5.3.1 Introduction: Unsynchronised refresh issue for counter-based

Rowhammer mitigation . 61

5.3.2 Tracking frequently-activated rows 62

5.3.3 Detecting attacks . 64

5.3.4 Discretisation . 68

5.3.5 Periodic maintenance . 69

5.3.6 Implementation details . 71

5.3.7 Number of entries . 73

5.3.8 Example . 74

5.3.9 Conclusion . 75

54 Chapter 5. Mitigation proposals

5.1 Motivation

To this day, Rowhammer attacks are still important threats. Many mitigation tech-

niques were proposed over the past decade, based on various concepts, with different

advantages and drawbacks. However, manufacturers have only implemented propri-

etary mechanisms that were shown to still be vulnerable to (sometimes specifically-

designed) Rowhammer attacks [34]. Consequently, Rowhammer mitigation is still an

active research field. The main issue with Rowhammer mitigation is the detection

of aggressor rows or attack processes. Once an attack is detected, various mitigation

mechanisms can be used to prevent the corruption. In this chapter, we propose two

new Rowhammer detection mechanisms. The first one uses microarchitecture event

counters embeddeded in the hardware to generate traces, and based on a machine-

learning algorithm to classify traces from these counters as depicting an attack or a

normal behaviour of the system. The second one uses row activation counters and

evaluates the activation frequency of every row to detect attacks.

5.2 Hardware counters and machine learning for Row-

hammer detection

In this section, we propose a method to create a machine-learning-based detection

mechanism to be implemented in hardware, that is able to detect attacks in a few hun-

dreds of microseconds. This Rowhammer detection mechanism inserts probes in the

microarchitecture to count microarchitecture events, generate traces from these coun-

ters, and feed these traces to an artificial neural network to classify said traces as de-

picting a normal behaviour or an attack.

To our knowledge, this is the first ML-based Rowhammer detection mechanism

proposal that targets a hardware implementation. A prior publication by Chakraborty

et al. [36] proposed a software-based mitigation mechanism, that monitors the LLC

miss rate to detect suspicious processes. It then records DRAM bank and row accesses

from this process, and uses a Convolutional Neural Network (CNN) to categorise the

5.2. Hardware counters and machine learning for Rowhammer detection 55

access pattern as being from an attack process or not. While this solution does not re-

quire any hardware modification, it takes a lot of time (1.5s on average) to detect an at-

tack process after it has begun. However, Rowhammer attacks must perform a bit-flip

in less than tREF W =64ms, and a process that already has access to the aggressors close

to the desired victim can produce a bit-flip in less than 10ms [1]. Therefore, requiring

1.5s to detect attack processes from their DRAM access pattern seems insufficient.

5.2.1 Methodology

The creation of the mechanism is divided into four steps:

1. Features selection: selecting the list of hardware events to trace;

2. Simulation: generating traces by simulating and monitoring the system this mech-

anism will be implemented in;

3. Training and testing: the generated traces are divided into a training set and a

testing set, and used to train the ML model and evaluate it.

4. Hardware integration: implementing the detection algorithm into the system.

Features Selection. When a Rowhammer attack is running, it has some influence on

microarchitectural events. The list of events that are traced for the detection should al-

low the mechanism to distinguish attacks and benign behaviour of the system. While

variety in the traced events is important to properly detect attacks and reduce the false

positive rate, selecting redundant events could make the implementation more expen-

sive in terms of silicon area, energy consumption and/or detection time without sig-

nificant benefits for the precision of the detection.

The goal of the Rowhammer attack is to flip bits in the main memory by rapidly

and repeatedly activating DRAM rows. The attack will therefore generate a lot of row

conflicts in the DRAM banks, and very few row hits, which are the first events that the

mechanism will trace. To access the main memory, the attack must bypass all the cache

levels, flushing the aggressor rows in it. The first-level cache (L1) is split into L1-I for

56 Chapter 5. Mitigation proposals

instructions, and L1-D for data. The hammering loop of a Rowhammer attack is a very

short loop. Once its instructions are stored in the L1-I, it is not likely to generate a lot

of cache misses on this cache. Hence, the L1-I will experience more cache hits than

cache misses, where the L1-D will experience more cache misses. Therefore, cache hits

and cache misses of L1-I and L1-D must be traced. The activity of other cache levels

can be partially deducted from the cache misses in L1 and the activity of the main

memory. Therefore, tracing cache hits and cache misses on other levels is redundant.

The selected features are the following ones: L1-I hits, L1-I misses, L1-D hits, L1-D

misses, row hits and row misses.

Simulation. Using gem5 [66] (cf Chapter 3), we configure the architecture on which

the mechanism works. The simulator must be configured to log the selected features

when simulating the programs. While cache-related events can be logged by gem5

directly, row buffer-related events are not logged by Ramulator, which is used to sim-

ulate the main memory. The Memory-Corruption module introduced in chapter 3 can

be used to log row hits and row conflicts. Various programs to run are chosen, includ-

ing attack programs and memory performance benchmarks to stress the components

that would also be targeted by the attack. These programs are run sequentially on a

single simulated processor, or in parallel using multiple simulated processors.

Training and testing. The feature traces are extracted from the output files of gem5.

Logged events are transformed into fixed-duration samples, and grouped into win-

dows (fixed-length buffers) labelled as attack or no attack. Two consecutive windows

are partially overlapping: the second half of the nth window is repeated for the first

half of the (n + 1)th window. The overlap ratio between two consecutive windows

can be changed at will. The windows are then randomly selected for either the train-

ing dataset or the testing dataset. Multiple ML models are trained and tested with the

datasets. To select the model to use for the final implementation, the accuracy, memory

usage and inference time when running in software must be taken into account.

Hardware integration. Once the ML model is configured and able to classify event

windows as coming from an attack or not, it can be implemented as an online detec-

tion mechanism in the system architecture. The integrated mechanism is illustrated in

Figure 5.1. The implemented mechanism can be viewed as three main components:

5.2. Hardware counters and machine learning for Rowhammer detection 57

hardware counters 1 , sample buffers 2 , and finally the neural network 3 .

...Core

LLC

L1-D
L1-I

L2
L3

60 2 5

DRAM

...
30 1 2

... Attack

No attack
1 2a 2b

3

Figure 5.1: Machine Learning detection mechanism integration in computer architecture

1 Hardware counters are directly integrated in the architecture, and count the se-

lected events. Each core has a separate set of counters to count the hit and miss events

on L1-I and L1-D.

2 (a) Counters are regularly read, copied in buffers and cleared. (b) Once the

buffers are full, they are copied in the input buffer of the neural network and partially

cleared, with respect to the overlap ratio between consecutive windows.

3 The implemented neural network processes its input buffer, and classifies the

window as depicting a normal behaviour or an abnormal one.

5.2.2 Experiments and results

For simplicity, the machine learning model training and testing are performed directly

on a laptop computer with an Intel® Core™ i7-8565U CPU @ 1.80GHz, 16GB RAM

running Windows 10, version 19042. The system simulation using gem5 is running on

a server. Multiple system architectures are used to generate the datasets to increase the

variety in the datasets. The configurations include one or two CPUs running at 1 GHz,

using the included CPU classes TimingSimpleCPU which considers the timings of each

instructions, or DerivO3CPU which in addition is capable of out-of-order execution.

The system uses two 32KiB L1 caches per CPU (one L1-D and one L1-I), one global

512KiB L2 cache, and finally a DDR4 DRAM at 2400MHz handled by Ramulator [65]

as the main memory, with a storage limit of 4 GiB.

To generate datasets, we selected two different programs to run on the simulated

58 Chapter 5. Mitigation proposals

system. The first program is the memory-intensive STEAM benchmark [89], which

is made to test the performance of the memory. The second program is a combina-

tion of Rowhammer attack with random memory accesses. The Rowhammer attack

is the assembly loop of Listing 2.1 page 16, and the random memory accesses is writ-

ten in Listing 5.1. In this code, the function rand() selects a random address within

a 218-bytes array. Both loops are executed alternately multiple time, with a random

duration (where the maximum duration is 5 times the minimum duration), with ap-

proximately 50% of the total execution time each. Both the STEAM benchmark and

the attack/random-accesses program are memory-heavy programs, so the machine

learning model will have to recognise attack patterns and not only memory-heavy pro-

grams.

rand_loop:
mov rand(), %eax ; put a random address into %eax
mov (%eax), %ebx ; read value at address %eax
jmp rand_loop ; restart the loop

Listing 5.1: Random memory access x86 assembly loop

From the simulation log file, we generate 100ns samples, which we group by 100

into 10µs windows with a 50% overlapping between consecutive windows: the last 50

samples of a window is reused as the first 50 samples of the next window. The program

counter is used to categorise every window as containing an attack or not.

Three different ML models are tested: Long Short-Term Memory (LSTM) [90], Multi-

Layer perceptron (MLP) [91] and Convolutional Neural Network (CNN) [92, 93].

The machine learning models are build using Keras [94], with the python codes

presented in Listings 5.2, 5.3 and 5.4. In these listings, n_timesteps = 100 is the

number of samples per window, and n_features = 6 is the number of different

features logged by gem5 and used as inputs. All three models take the n_timesteps

× n_features samples window buffer as input, and have 2 outputs ("attack" and "no

attack"). All three models are modified models originally created by Jason Brownlee on

Machine Learning Mastery [95]. The LSTM and CNN models were originally intended

for human activity recognition [96, 97] with a 9 × 128 input dimension, and the MLP

model for time series forecast [98].

5.2. Hardware counters and machine learning for Rowhammer detection 59

1 model = Sequential()
2 model.add(LSTM(100, input_shape=(n_timesteps,n_features)))
3 model.add(Dropout(0.5))
4 model.add(Dense(100, activation='relu'))
5 model.add(Dense(n_outputs, activation='softmax'))
6 model.compile(loss='categorical_crossentropy',
7 optimizer='adam', metrics=['accuracy'])

Listing 5.2: Python code to build the LSTM model

1 model = Sequential()
2 model.add(Permute((2,1), input_shape=(n_timesteps, n_features)))
3 model.add(Dense(n_timesteps // 2))
4 model.add(Flatten())
5 model.add(Dense(128, activation="relu"))
6 model.add(Dense(n_outputs, activation="softmax"))
7 model.compile(loss='categorical_crossentropy',
8 optimizer='adam', metrics=['accuracy'])

Listing 5.3: Python code to build the MLP model

1 model = Sequential()
2 model.add(Conv1D(filters=64, kernel_size=3, activation='relu',
3 input_shape=(n_timesteps,n_features)))
4 model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
5 model.add(Dropout(0.5))
6 model.add(MaxPooling1D(pool_size=2))
7 model.add(Flatten())
8 model.add(Dense(100, activation='relu'))
9 model.add(Dense(n_outputs, activation='softmax'))

10 model.compile(loss='categorical_crossentropy',
11 optimizer='adam', metrics=['accuracy'])

Listing 5.4: Python code to build the CNN model

They are trained and tested with datasets generated with the simulation of the ar-

chitecture in multiple load conditions:

• Isolated execution: only one program is run at a time;

• Concurrent execution: two programs are run in parallel on two simulated cores.

To extend the datasets, both configurations are run on in-order CPUs and out-of-order

CPUs. The accuracy of the different models are displayed in Table 5.1. The processing

times are listed for a software execution of the ML models. While it does not represent

the processing time with a hardware implementation, the ratio between the different

models will likely be similar.

60 Chapter 5. Mitigation proposals

ML model Load Accuracy (%) FP (%) FN (%) Processing overhead
(running in software)

LSTM Isolated 99.9447 0.0527 0.0026 236µs
Low load 99.8861 0.0902 0.0237 246µs

MLP Isolated 99.9824 0.0167 0.0009 7.5µs
Low load 99.7675 0.2183 0.0142 6.9µs

CNN Isolated 99.9851 0.0140 0.0009 40µs
Low load 99.9715 0.0285 0 53µs

Table 5.1: ML models categorisation accuracy

This table shows promising results, as all three tested models are able to detect with

great accuracy when the system is under attack or not. The CNN seems to offer the best

accuracy for the tested datasets, with more than 99.97% accuracy in any case, and with

less than 0.001% FN. However, with a software execution, the processing time is higher

with the CNN model than with the MLP model.

5.2.3 Conclusion

This proof of concept demonstrates that machine learning can be used to detect Row-

hammer attacks from hardware event traces with good accuracy. Nonetheless, this

solution requires an important silicon area overhead to store the input buffer and ma-

chine learning model, and does not guarantee the detection of all attacks. To make

it competitive against state-of-the-art algorithmic Rowhammer detection mechanisms,

the machine learning models and traces must be optimised further to reduce the silicon

area overhead required and to improve the detection accuracy.

Interestingly, ML-based solutions may become more attractive than counter-based

solutions in the future. Indeed, counter-based algorithmic countermeasures use a

number of counters that is inversely proportional to the Rowhammer threshold. As

cell-to-cell disturbance worsen over the years [15], this number of counter will con-

tinue to rise proportionally. ML-based countermeasures, on the contrary, will not scale

in an inversely proportional way with the Rowhammer threshold. It must be dimen-

sioned and trained according to the memory technology it has to protect, but even if

the dimensions of the ML models will certainly grow with the reduction of the thresh-

5.3. F-CorD: Forgetful Counters for Rowhammer Detection 61

old, this evolution will certainly not be proportional.

5.3 F-CorD: Forgetful Counters for Rowhammer Detec-

tion

5.3.1 Introduction: Unsynchronised refresh issue for counter-based

Rowhammer mitigation

To this day, counter-based Rowhammer mitigation proposals offer the best protection

guarantee. These solutions use row activations counters to detect aggressor rows. Con-

trary to probabilistic solutions, counter-based proposals can offer a guaranteed pro-

tection against bit-flips, where an aggressor will always be detected before the attack

succeeds.

To account for periodic refreshes of the DRAM rows, the counters in a counter-

based mitigation technique must be periodically reset. However, the periodic refresh

of all DRAM rows does not happen at the same time in the cycle. Refreshes are spread

out in the short chunks of tRF C every tREF I . But as memory controller is not aware

of which row is refreshed every tREF I , the reset of a counter cannot be synchronised

with the refresh of the row it is watching. As a result, most existing counter-based

mitigation techniques reset all the counters at the same time, every tREF W . This has

some direct consequence for the design of countermeasures.

As most counters are not reset synchronously with the refresh of the row, aggressor

could use this information to target rows whose counters will be reset in the middle of

the attack while the row has not been refreshed, resulting in an attack not witnessed

by the countermeasure. Figure 5.2 illustrates an attack on a row that is not refreshed

synchronously with the counters reset. In this figure, the refreshes on the considered

row 2 are not synchronised with the reset of the counters 1 . Therefore, when the

counters are reset, the actual ACT count of the row is higher than the value of the

counter. If an attack uses this row as an aggressor, when the actual ACT count of the

62 Chapter 5. Mitigation proposals

row exceeds HCfirst 3 , the value of the counter is below the actual count 4 , as it was

reset during the attack. In this case, the attack will not be detected.

Existing mechanisms use multiple methods to take this fact into account. For ex-

ample, BlockHammer [48] chooses to double the whole mechanism and alternately re-

set them, and Graphene [51] divides the detection threshold by 2, consequently using

twice the initial number of counters.

tREF W tREF W

nACT s <
HCfirst

2
HCfirst

2 < nACT s < HCfirst

t

HCfirst

counted ACTs actual ACTs since last REF

1

3

4

2 2

ACT count

Figure 5.2: Counters reset not synchronised with row refresh. Every tREF W , all counters are
reset 1 . However, most rows are not refreshed synchronously with the reset of the counters 2 .
If an unsynchronised row is attacked, its counter will be reset in the middle of the attack. When
the attack will have performed enough ACTs on the aggressor rows to produce a bit-flip 3 ,
the counted ACTs will not reach the detection threshold 4 .

Modern mitigation proposals are greatly affected by this unsynchronised refreshes

issue, which forces them to double the number of counters.

We propose here a new counter-based detection mechanism that does not need a

periodic reset of all its counters, and therefore is not affected by the unsynchronised

refreshes.

5.3.2 Tracking frequently-activated rows

The counter-based detection mechanism proposed here is based on the combination

of ACT counters and ACT frequency evaluation. To simplify the demonstration, we

assume that 2 ACTs will always take the same time to be executed, even if a periodic

REF command is issued in-between, i.e., we will only consider the time during which

the memory can be issued ACTs. The time will be considered paused when the memory

is not accessible because of, e.g., periodic REF commands (that are issued every tREF I).

5.3. F-CorD: Forgetful Counters for Rowhammer Detection 63

In a bank, a total of W ACTs can be issued during tREF W . Considering a corruption

threshold TRH , as the two neighbours of a victim rows can be used to corrupt it, the

required number of ACTs per row to induce a bit-flip is

HCfirst = TRH

2 . (5.1)

We can deduce that a total of

Nagg = W

HCfirst

(5.2)

aggressors can be used at the same time. Therefore, the mean period between two

ACTs on an aggressor cannot exceed P = Nagg × tRC for a successful attack. In other

words, if the mean ACT period of a row is greater than P , it is not an aggressor as it

cannot complete the attack within a refresh window (tREF W).

In order to track only the potential aggressor, we can track only the rows that are

activated frequently enough to be aggressors. The tracked rows will be stored in a

table. The table entries are constituted of a key-value pair, where the key is the row id,

and the value is the expiration time. To track only frequently-activated rows, we can

do the following steps:

1. When a row is issued an ACT for the first time, allocate an entry in the table for

it. The expiration time is set to t + P , where t is the current time.

2. If the row is activated again before the expiration time is reached, increase the

expiration time by P . The expiration time will be set to t0 + n×P , where t0 is the

time of the first ACT, and n is the number of times it has been activated since the

step 1.

3. When the expiration time is reached, the entry can be removed from the table.

Subsequent ACTs on this row will start again on step 1.

Using this method, only the rows that are activated at least once every P on aver-

age will be kept in the table. However, monitoring all expiration dates of the table to

check for expired values would be too time-consuming. Instead of having a constant

monitoring of expiration dates, new entries will first try to replace expired entries. Ad-

64 Chapter 5. Mitigation proposals

ditionally, a periodic maintenance is put in place to periodically remove expired entries

that were not replaced by new entries. This maintenance is discussed in Section 5.3.5.

This technique can track rows which are activated frequently-enough to be part of

an attack. The evolution of one entry in the table is illustrated in Figure 5.3. In this

figure, the black line represents the remaining time before the entry is forgotten by the

table. ACTs are represented with red circles, and periods when the row is not tracked

by the mechanism are indicated by grey rectangles.

texp − t

t

Figure 5.3: Evolution of the entry for one row in the table. The vertical axis is the remaining
time before the entry is removed. Red circles indicate ACTs. Grey rectangles represent mo-
ments when the row is not stored in the table.

5.3.3 Detecting attacks

The mechanism is able to keep track of all the rows which are activated frequently-

enough to be potential aggressors.

In addition to the expiration time, a counter is added to the table entry to keep count

of the number of activations that have been issued to the row since it was added to the

table. This counter is initialised at 1 when the entry is allocated, and is incremented

when the row is issued an ACT. When the entry is forgotten then re-used, the counter

restarts at 1. The evolution of the counter’s value along with the time until expiration

is illustrated in Figure 5.4. Simple attacks could be detected using only this counter:

when the counter approaches the detection threshold (≈ HCfirst) we can consider that

the row is an aggressor and prevent the corruption by any mean, such as refreshing

its neighbours, or communicating with the processor to stop the incriminated process.

5.3. F-CorD: Forgetful Counters for Rowhammer Detection 65

Once a row has been considered an aggressor, its entry can be cleared to free it. This

works for Rowhammer attacks which issue ACTs to their aggressor rows regularly,

keeping the entry in the table, incrementing the counter for every ACT until it reaches

the detection threshold.

texp − t

t

1 2 3

4

5

6

1

Figure 5.4: Evolution of the entry for one row in the table. The vertical axis is the remain-
ing time before the entry is removed. Red circles indicate ACTs. Grey rectangles represent
moments when the row is not stored in the table. Displayed numbers are the values of the
counter, incremented for every ACT

However, two issues appear.

First, an aggressor can block an entry (i.e. keeping it used, therefore not available for

new entries) for a long time by issuing a large number of ACTs to it, without reaching

the detection threshold. The aggressor can then take advantage of the time the first

entry is blocked to block a second entry, and so on, ultimately requiring a very high

number of entries to avoid having all entries blocked by the aggressor.

To limit the consequences of this issue, we can change how we evaluate the rows

as aggressors. Instead of relying only on the counter value, we can integrate the acti-

vation frequency into the formula. Considering c the counter value, texp the expiration

time of the entry, t the current time and P the maximum delay between ACTs of ag-

gressor rows, the potential of the row as an aggressor for a Rowhammer attack vRH is

calculated using the formula

vRH = c× texp − t

P
. (5.3)

The evolution of this value is illustrated in Figure 5.5. The threshold for vRH at which

we consider the row as an aggressor is vRH = HCfirst. Therefore, its value is only

relevant when calculated at the moment an ACT is issued, at its highest. If an aggres-

66 Chapter 5. Mitigation proposals

sor row is issued ACTs at a regular interval δt ∈ [2tRC ; P [, the value of vRH can be

calculated, after an ACT, with the formula

vRH = c
t0 + cP − (t0 + (c− 1) δt)

P
= c

c (P − δt) + δt

P
, (5.4)

where t0 is the time of the first ACT issued to the row. If the attack issues ACTs to

the row as slow as possible (δt → P), vRH reaches HCfirst for c = cmax ≈ HCfirst.

In contrast, if the attack issues ACTs as quickly as possible (δt → 0), vRH reaches the

threshold HCfirst for c = cmin ≈
√

HCfirst. The exact value of cmin can be calculated

as the lowest integer value of c that satisfies the inequality vRH ≥ HCfirst, with δt =

δtmin = 2× tRC .

Using this activation frequency evaluation limits the capability of aggressors to

block table entries by rapidly activating rows without attacking them, as these rows

will be rapidly detected as aggressor and removed from the table if they reach cmin

ACTs. The number of entries required for a proper behaviour of this mechanism is

calculated in Section 5.3.7.

texp − t

t

vRH

1 2 3

4

5

6

1

Figure 5.5: Evolution of the entry for one row in the table. The vertical axis for the black line
is the remaining time before the entry is removed. The vertical axis of the orange line is the
evaluation of vRH . Red circles indicate ACTs. Grey rectangles represent moments when the
row is not stored in the table. Displayed numbers are the values of the counter, incremented
for every ACT.

The second issue that can appear is split attacks, illustrated in Figure 5.6. As de-

picted, the aggressor would typically perform slow activations until the value is close

to the limit, wait for the entry to disappear from the table, and then issue the remaining

ACTs for the attack within the remaining time of the refresh cycle tREF W to complete

the attack, without being noticed. The aggressor must ensure that there is enough time

5.3. F-CorD: Forgetful Counters for Rowhammer Detection 67

between the disappearance of the entry from the table and the end of the refresh cycle

to issue all the remaining ACTs to complete the attack.

texp − t

t

vRH

1 2 4
TRH

2 − 4 TRH

2 − 3 1

2

3tREF W

Figure 5.6: Split attack on F-CoRD. The attack issues TRH ÷ 2 ACTs within tREF W , but vRH

never reaches the threshold (orange dashed line). Therefore, the attack is never acknowledged
by the mechanism.

To counteract this issue, P can be increased and take advantage of the way vRH is

calculated. The more ACTs are performed in the first part of the attack, the less time

the aggressor has in the second part. Considering that making one more ACT in the

first part will take the time of multiple ACTs in the second part, the first part must

not issue too many ACTs to let the second part enough time to perform the remaining

ACTs. To avoid detection on the second part of the attack, it must consists in less than

cmin ACTs. To protect against split attacks, the value of P must be set so that after

completing HCfirst − cmin + 1 ACTs for the first part and waiting for the entry to be

removed, the remaining time is not sufficient to issue the remaining cmin−1 ACTs. The

new value of P must satisfy the inequality

P (HCfirst − cmin + 1) + δtmin (cmin − 2) ≥ tREF W . (5.5)

Consequently, it can be calculated using the formula

P = tREF W − δtmin × (cmin − 2)
HCfirst − cmin + 1 . (5.6)

As a reminder, the value of cmin is the lowest counter value for which being calculated

as the lowest value for which vRH ≥ HCfirst. The values of cmin and P being dependent

68 Chapter 5. Mitigation proposals

on each other, they can be determined iteratively, first calculating P with

P0 = Nagg × tRC = W × tRC

HCfirst

(5.7)

, and then iteratively calculating cmin and P until the value of cmin stabilises.

5.3.4 Discretisation

For the implementation into counters, the expiration time and therefore the period

must be turned into discrete values. To discretise the time-related variables P and

δt, we introduce tACT the time (in ticks) per ACT. For example, a tACT of 0.25 means

that the tick is configured so that the memory can be issued 4 ACTs on the same tick.

δtmin is now written δmin × tACT , where δmin is the maximum number of rows that

can be used simultaneously without slowing down a fast attack. The value of tACT

will determine the precision of the timer. When decreasing tACT , the timer precision

is lowered, resulting in a lower entry size (less bits needed to store texp) and an easier

timing management. However, it can also results in more entries. The value of tACT can

be optimised to select the best compromise between entry size and number of entries,

depending on how the table will be implemented.

For a bank-level counting granularity, δmin = 2: 2 rows are used alternately to avoid

row hits. At rank level, multiple banks can be used at the same time. When one bank

processes an ACT, rows in other banks can be issued ACTs in parallel, leading to a

bigger value for δmin. As P must satisfy the inequality 5.5, the formula to calculate the

first value and the iterative formula become

P0 = W × tACT

HCfirst

, P =
⌈
tACT ×

W − δmin × (cmin − 2)
HCfirst − cmin + 1

⌉
. (5.8)

When using a discrete value for P, a new issue appears. As the timer may not be

synchronised with the ACTs, new entries may get forgotten before they actually reach

the initial (non-discrete) P time. To avoid this issue, new entries will have their texp set

to t + P + 1 instead of t + P (where t is the current tick) to ensure that all entries stay

at least the correct amount of time in the table. As a consequence, if t0 is the tick of the

5.3. F-CorD: Forgetful Counters for Rowhammer Detection 69

first ACT of the row, then texp = t0 + c× P + 1.

cmin is calculated by taking the smallest integer that satisfies the inequality

cmin ×
cmin × (P − δmin × tACT) + δmin × tACT + 1

P
≥ HCfirst. (5.9)

An illustration of a slow attack with discrete timings is presented in Figure 5.7. In this
+

(P
+

1)

+
P

texp − t

t

1 2 3 cmax − 1 cmax

Figure 5.7: Slow attack, with discrete timings. the dashed line represents the value if the tim-
ings were not discrete. The threshold HCfirst for vRH is reached for a maximum of cmax ACTs.

attack, the attacker issues ACTs to the row as slowly as possible to trigger a bit-flip.

Starting from the second one, an ACT on the aggressor row ideally happens as late as

possible, i.e. when texp − t = 1. This means that after the ACT, we have vRH = cP +1
P

.

Consequently, slow attacks are detected when

vRH ≥ HCfirst ⇐⇒ c
P + 1

P
≥ HCfirst ⇐⇒ c = cmax =

⌈
HCfirstP

P + 1

⌉
. (5.10)

5.3.5 Periodic maintenance

When an entry expires, it is not immediately deleted from the table. Doing so would

require constant surveillance of all active entries to check when they expire. This would

at least add a significant energy overhead to compare the texp of each entry with the

current time. Therefore, the mechanism does not delete expired entries immediately

but wait for them to be replaced by newer entries. However, due to the implementation

of the timer as a fixed-size counter, it resets itself to 0 after reaching its maximum value

tmax − 1, periodically. If an expired entry is not replaced when the timer is reset, it will

be falsely considered active. It will not be replaced, potentially permanently blocking

the entry. When the row is activated again, the evaluation of vRH may consider this

70 Chapter 5. Mitigation proposals

row as an aggressor, creating false positives.

To avoid such issues, expired entries must be regularly deleted from the table. To

periodically delete expired entries, the mechanism must be able to tell if the expiration

time of an entry is plausible at the current time. That is, if texp < t, can texp have passed

the capacity of its bits, or has it expired and it needs to be deleted ? On the contrary,

if texp > t, has the row been recently been activated and still needs to be watched, or

has t been reset since the last activation of the row, meaning that the entry has expired

before t was reset ? To determine if an entry needs to be deleted, the mechanism must

be able to distinguish if an expiration time is plausible for an active entry at the current

time. The maximum delay until the expiration of an entry (texp − t)max occurs in the

case of a fast attack, when a row is activated repeatedly and as fast as possible. Its

value can be calculated using formula

(texp − t)max = (cmin − 1)× (P − δmintACT) + δmintACT + 1. (5.11)

Telling if at t, a value texp is plausible for an active entry simply translates to verifying

texp − t mod tmax < (texp − t)max. If this condition is not verified, the entry is expired

and can be removed. Allowing such verification to be performed means that the timer

must be able to hold values above (texp − t)max. To make the implementation simpler,

this verification is done for fixed values of t, every tcycle = tmax÷ ncycles. As the timer is

dimensioned to allow this verification to be made, the value of tmax can be calculated

as the lowest power of 2 that satisfies the inequality

tmax ≥ (texp − t)max ×
ncycles

ncycles − 1 . (5.12)

As there is no way for an active entry to have an expiration time ncycles cycles in the

future, all entries which have an expiration time in the previous cycle are expired en-

tries. Hence, this verification can be done simply by deleting entries that have expired

during the previous cycle. If ncycles is a power of two, only a few bits (log2 (ncycles)) of

the expiration time need to be checked to determine if texp happened in the previous

cycle. Having a higher ncycles can result in a lower entry size, at the extra cost of having

to check the entries more frequently.

5.3. F-CorD: Forgetful Counters for Rowhammer Detection 71

If this mechanism is implemented for DDR3 or DDR4 memory, or for DDR5 mem-

ory with bank-level counting granularity, the periodic refresh periods can be used to

delete expired entries. In DDR5, all the banks are not necessarily refreshed at the same

time. In this case, the mechanism does not have a pre-defined period that allows the

mechanism to perform maintenance operations, and will have to perform them while

running.

5.3.6 Implementation details

The mechanism implements the table with two content-addressable memories and one

array. The first CAM CAMR holds row IDs, the second one CAMT expiration times,

and the array CNT holds counter values. The reason to use CAMs for row IDs and

expiration times is because both need to be searched when an ACT is issued. CAMR is

used to search if the activated row already has an entry, and CAMT is used to search

for entries to replace or delete. The counter values in CNT , however, are only used to

calculate vRH . An entry in the detection mechanism shares the same index across all

memories.

From the algorithm point of view, The following functions are implemented in the

table :

• CAMR implements the functions search(row), set(index, row).

• CAMT implements the functions searchExpired(t), searchAvailable(t),

get(index), set(index, t).

• An additional function delete(index) that removes an entry from all three com-

ponents of the table.

Algorithm 1 presents how the mechanism works. In this algorithm, tmax is the

maximum value attainable by t, tcycle = tmax ÷ ncycles is the duration of maintenance

cycles, i.e., the number of ticks between every check of the memory to delete expired

entries. The function init sets the initial value of t at startup. Function onACT is

72 Chapter 5. Mitigation proposals

called whenever an ACT is issued to the considered memory, and function timer is

called every tick to increment t.

Algorithm 1: F-CoRD global algorithm
1 Function init:
2 t← 0
3 Function isRowhammer(c, texp):
4 vRH ← c× texp−t

P

5 return vRH > TRH

6 Function onACT(row):
7 index← CAMR.search(row)
8 if index ≥ 0 then
9 texp ← CAMT.get(index)

10 c← CNT[index]
11 if texp < t then
12 texp ← t + P + 1
13 c← 1
14 else
15 texp ← texp + P
16 c← c + 1
17 if c ≥ cmin and isRowhammer(c, texp) then
18 detected(row)
19 delete(index)

20 else
21 CAMT.set(index, texp)
22 CNT[index]← c

23 else
24 index← CAMT.searchAvailable(t)
25 CAMR.set(index, row)
26 CAMT.set(index, t + P + 1)
27 CNT[index]← 1

28 Function timer:
29 t← t + 1 mod tmax

30 if t mod tcycle = 0 then
31 foreach index in CAMT.searchExpired(t) do
32 delete(index)

5.3. F-CorD: Forgetful Counters for Rowhammer Detection 73

5.3.7 Number of entries

There is a maximum of 1
tACT

ACT(s) at every tick, increasing the texp by P for the con-

cerned rows. In the same time, the value of texp − t of every entry decreases by 1.

Therefore, at every tick, the sum of all texp− t is reduced by nentries and can increase by
P

tACT
. When nentries < P

tACT
, the sum of all texp−t can increase faster than it decreases. In-

versely, when nentries > P
tACT

, the sum of all texp−t can only decrease. Consequently, for

a regular memory-intensive application that uses the cache to avoid repeated ACTs on

a few rows, the number of entries will regulate itself around P
tACT

. However, an attacker

could force the mechanism to use more and more entries by temporarily blocking some

rows. Calculating the minimum number of entries can be done by simulating an attack

that will try to use as many entries as possible. The algorithm to simulate such attack

is written in Algorithm 2.

Algorithm 2: Calculate the required number of entries of F-CoRD
1 read tACT

2 read W
3 read δmin

4 read HCfirst

5 P ← W ×tACT

HCfirst

6 repeat
7 cmin ← findCmin(P , δmin)

8 P ←
⌈
tACT × W −δmin×(cmin−2)

HCfirst−cmin+1

⌉
9 until cmin is fixed

10 nentries ← δmin

11 tstop = (cmin − 1)× (P − δmin × tACT) + 1
12 while tstop > P + 1 do
13 nACT ←

⌈
tstop−δmin×tACT −1

P

⌉
14 tstop ← min (nACT × (P − δmin × tACT) + 1, tstop − nACT × δmin × tACT)
15 nentries ← nentries + δmin

16 nentries ← nentries +
⌈

tstop

tACT

⌉

The algorithm itself is divided into multiple segments. The first segment, from line

5 to line 9, is used to iteratively determine the values of P and cmin. The function

findCmin finds the value of cmin using Equation 5.9. The iteration stops when the

values stabilise. This should happen very quickly, as both values only slightly vary

with the value of the other, and they are both rounded up to integer values. The next

74 Chapter 5. Mitigation proposals

segment, on lines 10 and 11, simulates the first δmin ACTs, establishing the first value

for the time until earliest expiration tstop, and initialising the number of entries nentries.

The third segment, from line 12 to line 16, is the core of the algorithm. Rows are selected

by groups of δmin, and issued enough ACTs to have the minimum influence tstop. After

that, tstop is recalculated as the time until earliest expiration. If rows were activated

more than what is needed to not influence tstop, earliest rows would get forgotten by

the mechanism before this one and less time will be available to activate other rows,

leading to less entries being used. When tstop ≤ P + 1, the loop is not needed anymore,

as tstop ÷ tACT rows can be issued one ACT each without influencing tstop.

Once the earliest expiration time tstop is met, any more ACT will only replace entries

which get gradually forgotten. As explained earlier, if there is more than P entries in

the table, the sum of all texp − t of the entries in the table can only decrease, leading to

the forgetting of entries.

The final value of nentries in this algorithm determines the number of entries of the

table that are required to avoid the case of a row not having a room in the table when

issued an ACT.

However, as previously stated, the number of entries used will rarely go over P ÷

tACT during normal operation. To reduce the energy consumption, the mechanism

could implement the necessary circuitry to disable large portions of the table when

they are not used.

5.3.8 Example

Considering a typical DDR4 memory, using the timing parameters listed in Table 2.1

page 12, and HCfirst = 16384. For a bank-level implementation, the relevant timing

parameters are as follows: W = 1.33× 106, δmin = 2.

For simplicity, we will select tACT = 1, i.e., one tick per ACT. Executing Algorithm 2

results in P = 83, cmin = 130 and nentries = 447. Note that in this configuration, the

values of P and cmin are small enough to be determined with only one iteration. The

maximum value that can be reached by the counter is cmax = 16189.

5.3. F-CorD: Forgetful Counters for Rowhammer Detection 75

DDR
gen.

HCfirst tREF W W
optimal

tACT

number
of counters

CAMR + CAMT
size

CNT array
size

DDR3 69.2K 64ms 1.25M 1 114 3.34Kib 1.89Kib
DDR4 16K 64ms 1.33M 1⁄12 465 12.3Kib 6.36Kib
DDR5 4.8K 32ms 661K 1⁄28 701 17.8Kib 8.21Kib

Table 5.2: minimum table size for the F-CoRD implementationon DDR3, DDR4 and DDR5, for
a bank-level implementation counting granularity.

With the values of P and cmin , we can calculate (texp − t)max = 10452, and therefore

the size of the timer for different values of ncycles. For ncycles = 2, the timer must be able

to hold 2 × (texp − t)max = 20904, which requires at least 15 bits. For ncycles = 3, the

timer would only have to hold up to 1.5× (texp − t)max = 15678, which requires 14 bits.

Considering a typical DDR4 with 216 = 65536 rows, for ncycles = 2, each table entry

will consists in 16(row id)+15(expiry time)+14(ACT count) = 45bits. The table having

nentries = 447 entries, the total size of the table will be 447 × 45 = 19.6Kib (including

both the CAMs and the CNT array).

Table 5.2 lists the size of F-CoRD for DDR3, DDR4 and DDR5. The timing parame-

ters used to generate this table are as listed in Table 2.1 page 12. The value of HCfirst

for the DDR3 is the first considered value for this DDR generation [15]. As the value

of HCfirst for DDR5 has not been determined yet, we selected for this generation the

lowest registered value for the LPDDR4 [15].

For comparison, the bank-level implementation of Graphene for the considered

DDR4 would use respectively a CAM of 4.8Kib, the BlockHammer for the same con-

figuration would use a 26Kib array of counters.

5.3.9 Conclusion

This Rowhammer detection mechanism provides a solution to detect aggressors with

great accuracy. Contrary to other countermeasure proposals, this solution does not

suffer from the unsynchronised refresh of all rows in the memory. However, the im-

portant additional memory it requires makes it less interesting compared to existing

stat-of-the-art detection mechanisms. Nonetheless, as the quantity of entries it uses

76 Chapter 5. Mitigation proposals

at any time depends on the access pattern and frequency of the memory, the number

of entries used for a regular application is far below the entry usage for other counter-

based proposals. As such, deactivating the unused entries could lead to a lower energy

consumption than existing State-of-the-art detection mechanisms.

VI

Experiments on MRAM

Contents

6.1 Motivation . 78

6.2 Attack on a Toggle-MRAM chip . 82

6.2.1 Platform Requirements . 82

6.2.2 Test Platform . 83

6.2.3 Reverse-engineering of the memory module architecture . . . 86

6.2.4 Designing the attack . 88

6.2.5 Results . 90

6.3 Attack on an STT-MRAM chip . 91

6.3.1 Test Platform . 91

6.3.2 Reverse-engineering of the memory module architecture . . . 92

6.3.3 Designing the attack . 94

6.3.4 Results . 94

6.4 Conclusion . 95

78 Chapter 6. Experiments on MRAM

6.1 Motivation

To this day, the Rowhammer attack is still an important issue for modern systems that

use DRAM memories to store run-time memories. Numerous countermeasures have

been proposed, to prevent aggressors from taking advantage of cell-to-cell disturbance

to perform privilege escalation, retrieve sensitive information or crash victim systems.

However, these countermeasures only work on DRAM-based memory. In the past

few years, multiple non-volatile memory (NVM) technologies have been proposed as

replacements for the DRAM technology. These memories use the physical properties

of materials to store the data. Among current NVM propositions, 4 technologies stand

out.

Phase-Change RAM (PCRAM, Figure 6.1a) uses the difference of resistance be-

tween the crystalline and amorphous states of a material to store the value of the bit.

The state can be changed by controlling the cooling speed of the material after heating

it.

Resistive RAM (RRAM, Figure 6.1b) creates or breakes a conductive filament in

a dielectric material by applying a current on it. The presence of a filament greatly

lowers the resistance of the material, which determines the value of the bit.

In Ferroelectric RAM (FRAM, Figure 6.1c), a ferroelectric crystal replaces the di-

electric material in the storage capacitor to create a ferroelectric capacitor. The polarity

of this capacitor determines the value of the bit, and can be changed by applying a

current on it.

Magnetoresistive RAM (MRAM, Figure 6.1d) uses a Magnetic Tunnel Junction

(MTJ) to store data. An MTJ is composed of two ferromagnetic layers: a pinned layer

(PL, or reference layer) with a fixed magnetic orientation, and a free layer (FL) whose

magnetic orientation can change. These two layers are separated by a thin insulating

layer. Depending on the orientation of the free layer relative to the reference layer (ei-

ther parallel or anti-parallel), the resistance of the material changes, resulting in two

differentiable states to code one bit of data. There is multiple methods to change the

magnetic orientation for the free layer, that lead to as many different technologies.

6.1. Motivation 79

This last technology, especially the STT-MRAM variant, is considered the most

promising non-volatile replacement for the DRAM technology [99].

WL

BL
(a) PCRAM

BL

WL

SL
(b) RRAM

BL

WL

SL
(c) FRAM

WL

BL
(d) MRAM

Figure 6.1: Bit-cells of Emerging Non-Volatile-Memories (NVM). A transistor controlled by the
wordline (WL) connects the bitline (BL) to the storage element when activated. On the other
end of the storage element is either the ground or a sourceline (SL).

These technologies offer speed and endurance comparable to that of the DRAM

technology, but are non volatile. We will focus here on the MRAM technology, and

more specifically on the Spin-Transfer-Torque MRAM (STT-MRAM) [100] and Toggle-

MRAM [101] variants, which have interesting characteristics among the NVM memo-

ries, and are commercially available as stand-alone chips.

The STT-MRAM switching mechanism is illustrated in Figure 6.2. It uses the mag-

netic torque induced by the spin of electrons that are let through or blocked by the

tunnel junction to change the polarity of the FL. Electrons whose spin are not com-

patible with the PL cannot pass through it. If the electron flow passes first through

the PL, only electrons with the same orientation as the PL are let through the FL. On

the contrary, if the electron flow passes first through the FL, the rejected electrons will

stay in the FL. In the FL, the electrons that do not match the orientation of the material

generate a torque capable of inverting it.

The Toggle-MRAM switching mechanism is illustrated in Figure 6.3. The Free

Layer of the Toggle-MRAM is made of two sub-layers (FL1 and FL2) with opposite

magnetic orientation. Above and below the MTJ are two perpendicular Write Lines

(WL1 and WL2) used to generate perpendicular magnetic fields intersecting at the MTJ.

Activating one write line after the other generates a rotating magnetic field that inverts

the magnetic orientations of FL1 and FL2.

MRAM are known to be very resistant to external disturbance, as each memory cell

is s bi-stable mechanism that requires a significant energy input to switch state because

80 Chapter 6. Experiments on MRAM

−

− −

−

−

−

−

−

−

−

−

−

−
Tunnel
Barrier

FL

PL

BL

SL

WL

Figure 6.2: STT-MRAM structure (left) and write process (right). Electrons inside the FL gener-
ate a magnetic torque that changes the orientation of the FL.

Spacer

Tunnel
Barrier

Write Current

Write CurrentMag. field

Mag. field
FL1

FL2

PL

WL1

WL2

RL

(a) Toggle-MRAM structure

WL1

WL2

WL1

WL2

H⃗1 H⃗2H⃗1 + H⃗2

(b) Toggle-MRAM Write Process

Figure 6.3: Toggle-MRAM structure (a) and write process (b). Two perpendicular Write Lines
(WL1 and WL2) are used to generate a rotating magnetic field that inverts the orientation of
FL1 and FL2. The rotating magnetic field generated by WL1 and WL2 is used to rotate the
polarity of FL1 and FL2.

of a thermal barrier between the two stable states.

A recent study [62] has shown that the magnetic field generated by MTJs can dis-

turb nearby bit-cells if the distance between them is small enough. This principle is

6.1. Motivation 81

illustrated in Figure 6.4. According to this study, if the nearest neighbours 1 (A) and

next-nearest neighbours 2 (B) of a bit-cell all have their MTJ in the Parallel State, the

induced magnetic field experienced by the central MTJ (O) can lower the energy re-

quired to switch it from Anti-Parallel to Parallel. Reducing the spacing between cells

increases the induced magnetic field, and a higher magnetic field results in a reduced

energy to switch the state. Considering MTJ of 55nm diameter, a bit spacing (BS) of

200nm incurs a negligible increase of the Bit Error Rate (BER) compared to an ilosated

MTJ; a BS of 150nm incurs an increase of the BER by less than one order or magnitude;

and a BS of 100nm incurs an increase of the BER by 3 orders of magnitude.

B

B

B

B

A

A

A

AO

b. s.

55nm

1

2

100 150 200
0

20

40

60

Bit Spacing (b. s., nm)

Fi
el

d
at

bi
tO

(O
e)

Figure 6.4: Cell-to-cell magnetic disturbance on MRAM [62]. the nearest neighbours 1 A, and
next-nearest neighbours 2 B have their MTJ in the Parallel State, and the MTJ of O is in the
Anti-Parallel state to maximise the magnetic field experienced by O.

In addition, an other study [63] demonstrated that due to the high current neces-

sary to change the state of MTJs and to how STT-MRAM banks are designed, if an

adversary keeps writing to a particular address, it would generate a ground bounce

that propagates to the wordlines drivers. The access transistors of the unselected bits

that share the same bit-line and source-line with the accessed cells will partially acti-

vate and incur a disturb current. The affected cells will experience retention failures.

The principle described by the author is illustrated in Figure 6.5.

However, these studies are purely theoretical. To the best of our knowledge, no

experiment has been done on a physical memory to confirm the flaws described by

these studies.

In this chapter, we characterise the vulnerability of two commercial MRAM mem-

ory modules against variants of the Rowhammer attack, using an FPGA-based plat-

form and a microcontroller-based platform.

82 Chapter 6. Experiments on MRAM

BL0 BL1

SL

WLn

WL1

WL0

Local GND

True GND

VDD

BL0 BL1

SL

WLn

WL1

WL0

Local GND

True GND

VDD

1

2

3

Figure 6.5: Rowhammer effect on STT-MRAM [63]. When switching a bit-cell to Anti-Parallel
state, the WL and BL of the selected cell are put to VDD (left). The current used to change the
state of the MTJ then navigates to the true ground of the memory through the local ground of
the bank 1 (right). Due to the resistance of the material layers between the local GND and
the true GND, the current on the local ground generates a ground bounce, that navigates to
unselected WL 2 . This bounce slightly opens unused access transistors which lets a small
current flow from the active BL 3 through the MTJ, inducing retention loss.

6.2 Attack on a Toggle-MRAM chip

6.2.1 Platform Requirements

The first tested memory module is a Toggle-MRAM module from Everspin [102]. This

module is a 16Mib memory, with 220 words of 16 bits. It communicates using a parallel

interface, with 20 pins for the address and 16 pins for the data in addition to control

pins (e.g., Write Enable, Output enable). Its architecture is illustrated in Figure 6.6.

Therefore, the platform must be compatible with the parallel interface of the mem-

ory, and must allow the program running on it to access the memory at its maximum

allowed frequency. Additionally, MRAMs tend to be less reliable at higher temper-

ature, accelerating the retention loss. In order to characterise the impact of the high

temperature on memory-corruption attacks, the platform must be able to either control

the temperature of the memory module, or work in a high temperature environment

when put inside a temperature chamber. Measuring the current consumption while

6.2. Attack on a Toggle-MRAM chip 83

Address
Control

I/O
Control

Command
& Control

E

WE
OE

UB
LB

Memory
Array

Column
Decoder

R
ow

D
ec

od
er

Sense
Amplifiers

DQ[15:0]

ADDR[19:0]

Figure 6.6: Simplified architecture of the Toggle-MRAM memory (ADDR: address, DQ: data
I/O, E: global Enable, OE: Output Enable, WE: Write Enable, UB: Upper Byte enable, LB: Lower
Byte enable).

performing some operations on the memory is also important, as variations of the cur-

rent can be used to understand how the memory works. Finally, the platform must

communicate bidirectionally with a computer to configure the tests and display the

results using e.g. a serial port.

6.2.2 Test Platform

The first platform we worked on is based on an ARTY Z7 development platform [103].

This board includes a Zynq-7000 System-on-Chip (SoC) from Xilinx [104] which em-

beds a dual-core 650MHz ARM Cortex-A9 processor, together with a Xilinx 7-series

Field-Programmable Gate array (FPGA).

The combination of a processor and an FPGA allows the creation of dedicated pe-

ripherals, and custom logic circuits to optimise memory accesses. The system archi-

tecture with the processor and the peripherals integrated in the FPGA is illustrated in

Figure 6.7.

The processor integrates a dedicated port to communicate with the RAM, and com-

municates to its peripherals through the AXI bus 1 . When integrating more periph-

erals into the FPGA, we use an AXI crossbar to connect one master to multiple slaves.

Accessing an external memory from the processor requires the usage of an External

Memory Controller (EMC) peripheral to manage the address, data and control pins of

84 Chapter 6. Experiments on MRAM

addr
data
ctrl

ctrl
data
addr

Tx
Rx

addr
data
ctrl

ext.
mem.

console

Cortex A9

RAM
other.

periph.
DMA

2

1

UART

EMC

EMC

M
ux

3

Figure 6.7: FPGA-based platform peripherals architecture. Each AXI crossbar 1 2 is used
to connect multiple slaves to a single master. The memory address matrix 3 modifies the ad-
dress at the output of the EMC connected to the DMA to create repeated patterns from linearly
increasing addresses.

the external memory. This EMC must be configured when designing the logic circuit

with the timings of the memory to access it at its maximum speed. After experiment-

ing, we notices that the minimum delay the EMC can achieve between two consecutive

accesses to the external memory is 50ns. While it is higher than the minimum 45ns

listed in the datasheet of the memory, the difference is small enough to consider that

this as a viable configuration.

Memory accesses from the processor can be slowed down by two factors. First,

the processor is limited in the number of memory accesses it can perform with one

instruction. After completing the series of memory accesses for one instruction, the

processor must fetch and decode the next instruction from the memory. This operation

takes some time during which the processor does not access the tested memory. Ad-

ditionally, the program will use loop-related instructions (decrementing a counter and

jumping to the beginning of the loop) to repeat the memory accesses a large number of

times. These instructions will take some additional time for the processor to fetch and

decode, during which it will not access the tested memory.

For these reasons, the platform integrates a Direct Memory Access (DMA) periph-

eral in the FPGA, that will perform a large number of memory accesses without the

intervention of the processor. The processor will only intervene once at the end of each

loop to restart it if necessary, limiting the impact of instructions fetching and decoding

on the process. The DMA acts as a slave on the AXI bus connected to the processor 1 ,

and as a master to the bus that connects it to the memories it works on. Therefore, it

6.2. Attack on a Toggle-MRAM chip 85

has a dedicated AXI crossbar 2 that connects it to a dedicated EMC and to the Cortex

to communicate with the RAM.

However, the DMA is limited in the address patterns it can use when accessing the

memory. The simple DMA that is integrated in the FPGA is only capable of perform-

ing read or write accesses on consecutive addresses of the memory. To characterise the

sensitivity of emerging memories to corruption attacks, the platform must be able to

perform repeated accesses on a single address or on a few addresses. To make the de-

velopment of the platform easier, instead of modifying the DMA to allow such memory

access patterns, we implement a matrix that multiples the address vector at the output

of the EMC after the DMA and generates a new address vector for the address pins 3 .

This final vector can be calculated using the formula



a0

a1
...

an−1


pins

=



m0,0 m0,1 . . . m0,n

m1,0 m1,1 . . . m1,n

...
...

mn−1,0 mn−1,1 . . . mn−1,n


×



a0

a1
...

an−1

1


EMC

. (6.1)

The matrix is only made of 1s and 0s, and the addition step of matrix multiplication

is replaced by a bit-by-bit OR. An additional 1 is appended at the end of the input

address vector for more control of the address modification. This address matrix is

implemented as an independent peripheral editable by the processor.

Finally, connecting the memory only to the DMA would prevent the processor from

accessing it directly. A direct access can be used to perform simple tasks such as look-

ing for corruption or initialising the memory. Hence, a multiplexer peripheral is in-

serted to connect the EMC of the Processor and the EMC of the DMA (followed by

the address matrix) to the MRAM pins. This allows the processor to freely switch be-

tween accesses from the DMA and accesses from the processor, and to configure the

two EMCs with different timing parameters. The EMC of the DMA can be configured

to optimise the attack speed of the DMA at the detriment of the viability of the written

or read values. On the contrary, the EMC accessed by the processor can be configured

with slower timing parameters to ensure the viability of the values written or read in

86 Chapter 6. Experiments on MRAM

this configuration.

6.2.3 Reverse-engineering of the memory module architecture

The datasheet of the memory specifies a 20-bit address space, with 10 bit for the column

address and 10 bits for the row address. However, they do not specify if the module

uses an internal cache or row buffer, and the order of the row and column bits in the

20-bit address.

To efficiently perform attacks on a memory module, this knowledge is important to

determine the attack pattern. The attack will try to avoid cache hits and row buffer hits

to maximise bit-cell accesses and, if multiple rows must be used, avoid using adjacent

rows that would reset the disturbance on potential victims. To determine the presence

of buffers and the layout of the memory, we can measure the power consumption of the

memory module when performing various operations. First, the power consumption

may slightly vary from row to row because of process variations. This will allow us to

partially determine the order of the bits in the 20-bits address. Then, if a row buffer or a

cache exists, the power consumption when reading multiple times to the same address

should be lower than when changing row between each read.

We used the platform together with a current probe on the power pins of the mem-

ory module to measure its current consumption while performing various accesses on

the memory. First, we performed one read operation repeatedly on a single address.

The address was set to either 00000h or FFFFFh (respectively all bits at 0 and all bits

at 1), the value of the read word to either 0000h or FFFFh, and the value of the re-

maining cells of the memory to either 0000h of FFFFh. The results of this experiment

is depicted in Table 6.1.

Multiple information can be extracted from this table. First, the read data seems

to have a high impact on the power consumption. Reading 0000h consumes around

25mA, while reading FFFFh consumes from 40mA to 80mA. This table shows that

reading FFFFh from 00000h consumes almost twice the current of reading FFFFh from

FFFFFh. Finally, the data stored in the remaining of the memory seems to have a small

6.2. Attack on a Toggle-MRAM chip 87

Read val. Read addr. remaining mem. current

0000h 00000h 0000h 22.9mA
0000h 00000h FFFFh 27.0mA
0000h FFFFFh 0000h 23.2mA
0000h FFFFFh FFFFh 27.3mA
FFFFh 00000h 0000h 76.0mA
FFFFh 00000h FFFFh 79.2mA
FFFFh FFFFFh 0000h 39.9mA
FFFFh FFFFFh FFFFh 42.5mA

Table 6.1: Current consumption of Toggle-MRAM memory module for read operations

effect on the power consumption. Additionally, when the remaining of the the memory

contains only FFFFh, the current consumption is slightly higher than when it is filled

with 0000h. From this experiment, we can also deduce the absence of cache and row

buffer. Indeed, while doing the measurements, we have not noticed any difference in

power consumption between the first operation and the subsequent ones.

Further experimentation allowed us to understand the internal architecture further:

First, the difference of current consumption that comes from the address is primarily

due to the bit 4 of the address. When the read value is FFFFh, the bit 4 of the address

adds around 30mA to the power consumption of the read operation when it is set to

0. This result was consistent when using multiple modules of the same model. We can

make the hypothesis that this difference is due to the use of multiple banks, where half

of them would have a longer path to or from the I/Os of the module, requiring more

power or additional logic circuits to maintain the data.

Finally, by progressively reducing the size of the remaining memory that we set to a

particular value before the measured read operations, we deducted that only the values

stored at addresses which have the same most significant 10 bits actually influence the

power consumption. Consequently, we can deduce that the 20 address bits are laid out

as displayed in Table 6.2.

row address column address
MSB 1 LSB

Table 6.2: Toggle-MRAM deducted address layout. The most significant 10 bits are used for
the row address. The least significant 10 bits are used for the column address, except for the bit
4 1 . This bit is hypothetically used as a bank selection bit.

88 Chapter 6. Experiments on MRAM

Write data address remaining mem. current

0000h 00000h 0000h 61mA
0000h 00000h FFFFh 70mA
0000h FFFFFh 0000h 60mA
0000h FFFFFh FFFFh 69mA
FFFFh 00000h 0000h 70mA
FFFFh 00000h FFFFh 77mA
FFFFh FFFFFh 0000h 70mA
FFFFh FFFFFh FFFFh 77mA

0000h / FFFFh 00000h 0000h 115mA
0000h / FFFFh 00000h FFFFh 108mA
0000h / FFFFh FFFFFh 0000h 114mA
0000h / FFFFh FFFFFh FFFFh 108mA

Table 6.3: Current consumption of Toggle-MRAM memory module for write operations. the
last four measurements are done with alternately writing 0000h and FFFFh.

To complete our study, we measured the current consumption when writing data

into the memory. We repeated a write operation on one address, with the address set

to either 00000h or FFFFFh, and the remaining data in the row set to either 0000h or

FFFFh. The results of this experiment is displayed in Table 6.3.

From these measurements, we can see that changing the address, including the bit

4, does not have any significant effect on the current consumption. This corroborates

our hypothesis of additional sense amplifiers for some banks, as sense amplifiers are

not needed for write operations and therefore only affect the consumption of read op-

erations. This table also shows that switching the state of the bit consumes more power

than setting it to the value it already has. As switching a Toggle-MRAM bit cell from 0

to 1 uses the same process as switching it from 1 to 0, the controller must only use this

process for bits that must be changed.

6.2.4 Designing the attack

When designing an attack that aims at flipping bits in the memory, we want to max-

imise the potential disturbance between bit-cells. Algorithm 3 describes the access

pattern used to test the memory against attacks. In this algorithm, the constants Nrows

and Ncols are configured with the number of rows and the number of columns, respec-

tively. the parameter nrep determines the number of times it repeats the accesses on the

6.2. Attack on a Toggle-MRAM chip 89

same pair of addresses. The write function takes a row, a column and a 16-bit value

as parameters and writes the value at the specified address made from the row and the

column indices. As the direction of the flip is not known, the memory is initialised with

alternating 0s and 1s (5555h or AAAAh), so that both flip directions can be witnessed.

Algorithm 3: Attack algorithm on Toggle-MRAM. The write function takes
a row, a column and a 16-bit value and writes it at the specified address.
1 read nloop

2 read nrep

3 for r ← 0 to Nrows − 1 do
4 for c← 0 to Ncols − 1 do
5 write(r, c, AAAAh)

6 for r ← 0 to Nrows − 2 by 2 do
7 for c← 0 to Ncols − 1 do
8 for i← 0 to nrep do
9 write(r, c, 0000h)

10 write(r + 2, c, 0000h)
11 write(r, c, FFFFh)
12 write(r + 2, c, FFFFh)

The attack pattern is illustrated in Figure 6.8. This attack uses even rows as aggres-

sor rows and odd rows as victim rows.

×nrep

write 0000h

write FFFFh

Figure 6.8: Attack pattern on Toggle-MRAM. Memory cells are accessed by pairs, the two cells
being exactly two rows from each other. The pattern is repeated nrep times for each cell.

90 Chapter 6. Experiments on MRAM

6.2.5 Results

To increase our chances of corrupting the memory, we run all the experiments in a

temperature chamber set to 80°C. We run the attack three times for approximately 100h

each time, with nrep = 1, nrep = 1× 103 and nrep = 1× 106. However, we have not been

able to notice any bit-flip in the memory.

The lack of corruption can be due to multiple factors.

• The technology node is too big. On DRAM, the bit-flips started to appear when

the memory density increased. This memory module having a very low capacity

compared to modern DRAM modules, it is possible that the attacks failed because

its density is too low. At this technology size, the lines may not be close enough,

or the MTJ too big, for this attack to have any significant effect. However, as the

technology matures and its density increases, it may become vulnerable to this

type of attack.

• The memory uses protection mechanisms. While not explicitly written on the

documents, this module may use simple protection mechanisms such as Error-

Correcting Codes (ECC) integrated inside the chip to prevent reading corrupted

values. The presence of an error-correcting mechanism could be verified by pro-

ducing errors in the memory through other means, using e.g. laser fault injection.

• The Rowhammer attack may not be designed correctly. We tried to port the at-

tack pattern of the Rowhammer attack that originally works on DRAM onto the

Toggle-MRAM. The technology may not be vulnerable to disturbances that come

from the same mechanism that cause bit-flip in DRAMs. In this case, attacking

the Toggle-MRAM with this attack will not cause bit-flips.

According to the executed tests, the Toggle-MRAM technology does not seem to

be currently vulnerable to the Rowhammer attack. However, future memory modules

may be vulnerable to variants of this attack. Nonetheless, the experiments showed that

a simple current analysis during accesses to the memory can provide information on

the data that is written and its location in the address space.

6.3. Attack on an STT-MRAM chip 91

6.3 Attack on an STT-MRAM chip

While the Toggle-MRAM technology uses the classical MRAM writing mechanism, its

manufacturing complexity and characteristics do not make it a good replacement for

the DRAM technology. The STT-MRAM technology however, is less mature but has

lower manufacturing complexity, with better characteristics to make it a good replace-

ment for the DRAM. Therefore, our next experiments will concern this technology.

The second memory module is an STT-MRAM external memory from Avalanche

Technology [105]. This is a 2Mib memory, with 218 words of 16 bits.

6.3.1 Test Platform

Its architecture is very similar to the architecture of the Toggle-MRAM module, illus-

trated in Figure 6.6 page 83, with the difference of having less address bits. This mod-

ule has a minimum delay between two accesses set to 35ns, which is very low com-

pared to the minimum delay of 50ns that the EMC of the FPGA can achieve. To access

this memory at its maximum frequency, we need to change the test platform.

This second platform will have the same requirements as the first FPGA-based plat-

form: a parallel interface compatible with the memory module, that can reach the 35ns

minimum delay between consecutive accesses, an serial interface to communicate with

a computer, and a compatibility with high temperature.

We chose the STM32F746ZG Nucleo144 board from ST Microelectronics [106]. The

microcontroller of this board includes an EMC compatible with the parallel interface

of the tested memories. All the pins necessary to connect the external memory to the

EMC are available on the selected development board.

The architecture of the platform is illustrated in Figure 6.9. The microcontroller in-

tegrates a DMA with the same capability as the one integrated in the FPGA-based plat-

form regarding the address patterns when accessing the external memory. Contrary to

the AXI bus of the FPGA-based platform, the memory bus of this microcontroller is

used by both the processor and the DMA, allowing a single EMC to be used by both.

92 Chapter 6. Experiments on MRAM

Furthermore, the EMC can be reconfigured at run time, allowing to switch between a

fast mode for the attacks and a slow mode to read or prepare the external memory.

addr
data
ctrl

Tx
Rx

Cortex M7
EMC

UART
DMA

1

STM32F746ZG

ext.
mem.

console

Figure 6.9: Microcontroller-based platform architecture. The memory bus 1 is used by both
the processor and the DMA to communicate with the peripherals.

6.3.2 Reverse-engineering of the memory module architecture

Like for the Toggle-MRAM memory, it is important to understand the internal archi-

tecture of the memory in order to design an attack. The datasheet of the STT-MRAM

module does not specify the column and row address bits, nor if the memory uses a

row buffer. In order to design an attack program, we need to know if multiple rows

must be used, and what bits must be changed in the address to avoid hitting the same

row As we did with the FPGA platform and the Toggle-MRAM module, we measured

the current consumption of the STT-MRAM when performing read and write oper-

ations using the microcontroller platform. The results of this experiment are listed in

Table 6.4. The current consumption for read and write operations did not vary as much

as it did for the Toggle-MRAM. However, the variations can still be exploited to extract

important information. First, the measurements show that writing FFFFh takes takes

approximately 18% more current than reading 0000h. As illustrated in Figure 6.10,

a Magnetic Tunnel Junction (MTJ) has two stable states: the parallel configuration (P

state), where the Free Layer (FL) has the same magnetic orientation as the Pinned Layer

(PL); and the anti-parallel configuration (AP state), where the magnetic orientation of

the FL is opposite to the magnetic orientation of the PL. The energy level of the P state

being lower than the energy level of the AP state, switching from the P state to the

AP state requires more power than the opposite. Therefore, as the current of writing

FFFFh on 0000h is more important than the current when writing 0000h on FFFFh,

we can deduce that the AP state represents a 1, and the P state represents a 0.

6.3. Attack on an STT-MRAM chip 93

Read/Write Data current

Write 0000h 8.5mA
Write FFFFh 10mA
Read 0000h 2.2mA
Read FFFFh 2.3mA

Table 6.4: current measurements during read and write operations on the STT-MRAM memory
module

Energy level

Parallel
State

Anti-Parallel
State∆EP →AP

∆EAP →P

Figure 6.10: STT-MRAM energy levels [107]. A thermal barrier separates the two stable states
of the MTJ. Switching from the anti-parallel state to the parallel state requires less energy than
the opposite.

The current consumption when reading 0000h is not significantly different than the

current consumption when reading FFFFh. When measuring the current consumption

during read operations, we noticed that when changing least significant 4 bits of the

address, the current is much lower than when changing bits beyond the fourth bit.

The existence of a page buffer of 16 values can easily explain this, as accessing a buffer

requires much less energy than reading the values from the bitcells and using sense

amplifiers. Additionally, the current overhead when changing address bits beyond the

fourth bit is approximately constant for all bits.

The datasheet of the memory module do not specify the number of address bits

allocated to the row and the number of bits allocated to the column. However, we can

safely assume that column bits are consecutive within the address bits, as well as row

bits. The page buffer concerns the least four significant bits. It is safe to assume that a

page buffer only concerns one row. Hence, the column bits certainly concern the least

significant bits of the address, and the row bits concern the most significant bits of the

address. This hypothesis is illustrated in Figure 6.11

94 Chapter 6. Experiments on MRAM

MSB LSB...

1

row bits column bits

0417 123516 15 14 13

Figure 6.11: Hypotyhesis on the order of row and column bits in the address vector of the stt-
mram module. The low current when reading on values with different address bits only in the
least four significant bits indicates the presence of a page buffer 1 .

6.3.3 Designing the attack

According to a recent study [63], a variation of the Rowhammer attack that could be

effective on STT-MRAM memories use the high current of write operations to produce

a ground bounce that propagates to unselected rows of the same bank. Hence, to per-

form this attack on our memories with the information at our disposal, we only need

to maximise the current when doing repeated write operations. According to our ex-

periments, changing any address bit beyond the fourth one results in the maximum

current for write operations. Therefore, the attacks we conduct consist in alternately

writing 0000h and FFFFh at two addresses which had one bit different beyond the

fourth one.

To perform this attack, we use the CPU which accesses directly the EMC peripheral

that interfaces with the STT-MRAM module. Fortunately, both the CPU and the EMC

are fast enough to respect the minimum delay of 35ns between two accesses.

6.3.4 Results

We run this attack for several hours, using multiple pairs of addresses. Unfortunately,

we never noticed any bit-flip in the memory. As with the Toggle-MRAM module, this

could be due to several factors, such as a misunderstanding of the internal architecture

and behaviour, a technology node too big to be vulnerable to this attack, or too short

attacks. However, this technology could still be vulnerable to better-designed attacks,

and future modules might become vulnerable to this attack as their density increases.

Nonetheless, we showed that a simple current analysis during the operation of the

6.4. Conclusion 95

memory is a source of information for an aggressor. The current shows partially the

locality of memory accesses (i.e., whether accesses hit the page buffer or not) and the

hamming weight of the data being written.

6.4 Conclusion

In this chapter, we created two platforms to evaluate the vulnerability of existing

Toggle-MRAM and STT-MRAM external memory modules against the Rowhammer

attack. Despite our effort, we were not able to produce any bit-flip. However, our

experiments showed that while these memories have shown no vulnerability to our

attacks, a simple current analysis during the operation of these memories can be used

to uncover various details about the internal layout of the memory, and about the mem-

ory accesses that are performed on them.

VII

Conclusion and Perspectives

Contents

7.1 Contributions . 98

7.1.1 Rowhammer simulation in gem5 98

7.1.2 Improvement of Rowhammer mitigations 99

7.1.3 Mitigation proposals . 99

7.1.4 Experiments on MRAM . 99

7.2 Future work . 100

7.3 Concluding remarks . 101

98 Chapter 7. Conclusion and Perspectives

The memory has always been a major component of computing systems. The main

memory, implemented using the DRAM technology, is used to store run-time data, in-

cluding open files, temporary variables, and sensitive information such as encryption

keys. To keep up with the ever-increasing capability of modern computers, DRAM

manufacturers have increased the memory density to improve the capacity and speed

while maintaining a relatively low manufacturing cost. However, as its density in-

creased, the memory became vulnerable to Rowhammer attacks, which exploits cell-

to-cell disturbance to cause bit-flips. When properly exploited, this attack can be used

to crash systems, reveal sensitive information or take control of the system.

Numerous mitigation techniques were proposed, using various methods to detect

aggressors or to prevent corruption on vulnerable data, using mechanisms imple-

mented in software, in the memory controller or in the memory devices themselves,

using probabilistic or counter-based algorithms. Despite nearly a decade of research

to stop the attacks from harming the systems, the issue has only gotten worse over the

years, with an increasing vulnerability as the technology scaled down.

7.1 Contributions

7.1.1 Rowhammer simulation in gem5

To make the development of Rowhammer countermeasures easier and faster, we im-

proved the architecture simulator gem5 with a memory-corruption module, capable of

simulating the memory corruption from Rowhammer attacks. This tool allows coun-

termeasure designers to easily evaluate their countermeasure in a realistic computer

architecture, using existing components or future technologies with different vulnera-

bilities to the attack.

7.1. Contributions 99

7.1.2 Improvement of Rowhammer mitigations

The most efficient Rowhammer mitigation techniques use activation counters to detect

the aggressors, with a bank-level counting granularity. The most important drawback

of counter-based mitigation techniques is the addition memory required to store all the

counters As the memory bandwidth at rank level is not limited by the memory band-

width at bank level, we pointed out that moving from bank-level counting granular-

ity to rank-level counting granularity would greatly reduce the size of this additional

memory. However, the reduced delay between ACT commands at rank-level could

prevent some mitigations from working properly.

7.1.3 Mitigation proposals

We proposed two Rowhammer detection mechanisms. First, we used a machine learn-

ing algorithm to categorise hardware event traces as depicting an attack or a normal be-

haviour. While this solution shows encouraging results, it does not guarantee protec-

tion, and its hardware implementation is heavy compared to state-of-the-art counter-

based detection mechanisms. Our second proposal is F-CoRD, a counter-based detec-

tion mechanism that evaluates the activation frequency of DRAM rows to keep track

of only frequently-activated rows and their activation count to detect aggressor rows,

with an adaptive usage of the counters.

7.1.4 Experiments on MRAM

Finally, as a line of research, we evaluated the vulnerability of recent Toggle-MRAM

and STT-MRAM memory module against Rowhammer attacks. A few publications

claimed that this technology might be vulnerable to variations of the Rowhammer at-

tack, but did not verify it using physical memory modules. For this purpose, we devel-

oped two platforms to attack commercial memory modules following various access

patterns. We were unable to witness any corruption of the memory, but this does not

prove that the memory is not vulnerable. Future memory modules might become vul-

100 Chapter 7. Conclusion and Perspectives

nerable to attacks as the density of the memory increases. However, our experiments

showed that a current analysis during the operation of the memory can be used to

discover various information about the internal layout of the memory, and the nature,

location and value of an operation on the memory. An aggressor might be able to use

it to discover sensitive information.

7.2 Future work

Multiple points can be improved in future work.

Regarding the Rowhammer simulation, the modifications we made on Ramulator

can be ported on the integrated memory simulator of gem5. We initially chose Ramula-

tor as the main memory simulator. Recently, gem5 integrated the cycle-accurate DRAM

simulator DRAMSim3. Porting the modifications on the integrated memory simulator

of gem5 could prove useful to extend the usage of our memory-corruption module.

Additionally, the simulation can be made more accurate: we can add the disturbance

of not-immediate neighbours of aggressor rows, that is not integrated yet because of

its complexity; the corruption models of new memory technologies like MRAM can be

integrated to the simulator to allow the development of specific countermeasures.

For our second contribution, we proposed to reduce the memory overhead of counter-

based Rowhammer mitigations by changing their counting granularity to rank level.

This improvement faced the issue of the increased ACT frequency that the mechanism

may not be able to withstand: at rank level, the delay between two consecutive ACTs

can be one order of magnitude lower than at bank level. Specifically, mitigation tech-

niques based on Content-Addressable Memories (CAM) may not be able to process

the ACTs fast enough. To fix this issue, specialised CAM could be developed, based on

pipelined CAM which can more easily withstand the higher ACT frequency.

Concerning the two mitigation proposals, while the first ML-based proposal calls

for several improvements, recent publications have already improved this solution

with better-designed ML models and better hardware integration [44]. This solution

could be explored further by evaluating other machine-learning models, and by op-

7.3. Concluding remarks 101

timising the event counters in the architecture. The second proposal, however, is to

this day still in development. It necessitates the creation of specialised CAMs to imple-

ment the necessary operations, and we believe it can be further improved to reduce the

amount of memory it needs, to make it comparable to other state-of-the-art mitigation

proposals.

Finally, the experimentation on MRAM memories is far from complete. Failing

to witness corruption does not mean that the technology is not vulnerable to Row-

hammer attacks. Our platforms can be improved on multiple points, including the

automatic control of the temperature of the memory to put more constraints on the

memory. Moreover, the power supply voltage of the memory can be lowered and the

access timings can be shorten in order to reduce the retention time and therefore in-

crease the vulnerability of these memories to disturbance. Future publications on the

subject of Rowhammer attacks on MRAM could be used to improve the attack pattern

and try to trigger bit-flips in the memory. A collaboration with MRAM manufacturers

could further improve the platform, with a precisely-known memory architecture, and

evaluation of state-of-the-art memory technologies.

7.3 Concluding remarks

In this thesis, we presented a tool to facilitate the development and evaluation of Row-

hammer countermeasures, proposed some improvement on existing countermeasures

and built new detection mechanisms that could be used as a base for mitigation tech-

niques. We hope that our work will help DRAM manufacturers and countermeasure

designers be able to develop new mechanisms, and integrate appropriate functional-

ities in their products to protect future DRAM modules against Rowhammer attacks.

However, with the introduction of new memory technologies as non-volatile replace-

ments for the DRAM technology, other vulnerabilities will certainly be discovered on

these new technologies, which will require appropriate countermeasures, and tools to

develop to develop them.

Bibliography

[1] Yoongu Kim et al. Flipping bits in memory without accessing them: An experi-

mental study of DRAM disturbance errors. In ISCA, 2014. 2, 13, 15, 16, 20, 22, 23,

27, 37, 55

[2] Andrew Kwong et al. Rambleed: Reading bits in memory without accessing

them. In SP, 2020. 2, 17

[3] Moritz Lipp et al. Nethammer: Inducing rowhammer faults through network

requests. In EuroS&PW, 2020. 2, 16, 17

[4] Daniel Gruss et al. Rowhammer.js: A remote software-induced fault attack in

javascript. In DIMVA, 2016. 2, 16, 17, 28

[5] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William

Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W

Felten. Lest we remember: cold-boot attacks on encryption keys. Usenix Security

Symposium, 2008. 12

[6] JEDEC. JESD79-3 DDR3 SDRAM, 2013. 12

[7] JEDEC. JESD79-4 DDR4 SDRAM, 2021. 12

[8] Micron. DDR5 SDRAM product core datasheet, 2021. 12

[9] Michael Redeker, Bruce F Cockburn, and Duncan G Elliott. An investigation into

crosstalk noise in DRAM structures. In Proceedings of the 2002 IEEE International

Workshop on Memory Technology, Design and Testing (MTDT2002), pages 123–129.

IEEE, 2002. 14

104 Bibliography

[10] Zaid Al-Ars, Said Hamdioui, Ad Van De Goor, Georgi Gaydadjiev, and Joerg

Vollrath. DRAM-specific space of memory tests. In 2006 IEEE International Test

Conference, pages 1–10. IEEE, 2006. 14

[11] Rei-Fu Huang, Hao-Yu Yang, Mango C-T Chao, and Shih-Chin Lin. Alternate

hammering test for application-specific DRAMs and an industrial case study. In

DAC Design Automation Conference 2012, pages 1012–1017. IEEE, 2012. 14

[12] Pierre Chor-Fung Chia, Shi-Jie Wen, and Sang H Baeg. New DRAM HCI quali-

fication method emphasizing on repeated memory access. In 2010 IEEE Interna-

tional Integrated Reliability Workshop Final Report, pages 142–144. IEEE, 2010. 14

[13] Thomas Yang and Xi-Wei Lin. Trap-assisted dram row hammer effect. IEEE

Electron Device Letters, 40(3):391–394, 2019. 14, 23, 29

[14] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 39(8):1555–1571, 2019.

15

[15] Jeremie S Kim, Minesh Patel, A Giray Yağlıkçı, Hasan Hassan, Roknoddin Azizi,

Lois Orosa, and Onur Mutlu. Revisiting RowHammer: An experimental analysis

of modern dram devices and mitigation techniques. In 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA), pages 638–651.

IEEE, 2020. 15, 16, 17, 27, 40, 41, 45, 47, 60, 75

[16] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clé-

mentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano

Giuffrida. Drammer: Deterministic rowhammer attacks on mobile platforms. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications

security, pages 1675–1689, 2016. 15, 16

[17] Zhenkai Zhang, Zihao Zhan, Daniel Balasubramanian, Xenofon Koutsoukos,

and Gabor Karsai. Triggering Rowhammer hardware faults on ARM: A revisit.

In Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security,

pages 24–33, 2018. 16

Bibliography 105

[18] Zelalem Birhanu Aweke et al. ANVIL: Software-based protection against next-

generation rowhammer attacks. SIGPLAN Notices, 2016. 16, 20

[19] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Grand pwning

unit: Accelerating microarchitectural attacks with the GPU. In 2018 ieee sympo-

sium on security and privacy (sp), pages 195–210. IEEE, 2018. 16

[20] Moritz Lipp. Cache attacks and rowhammer on arm. PhD thesis, Graz University of

Technology, 2016. 16

[21] Finn de Ridder et al. SMASH: Synchronized many-sided rowhammer attacks

from javascript. In USENIX Security, 2021. 16, 17, 28

[22] Salman Qazi et al. “Half-Double”: Next-row-over assisted rowhammer.

https://github.com/google/hammer-kit/blob/main/20210525_

half_double.pdf, 2021. 16, 17, 41

[23] Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer bug to

gain kernel privileges. Black Hat, 2015. 17, 29

[24] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious case of rowhammer:

flipping secret exponent bits using timing analysis. In International Conference on

Cryptographic Hardware and Embedded Systems, pages 602–624. Springer, 2016. 17

[25] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and

Herbert Bos. Flip feng shui: Hammering a needle in the software stack. In 25th

USENIX Security Symposium (USENIX Security 16), pages 1–18, 2016. 17

[26] "BIOS and kernel developer’s guide (BKDG) for AMD family 10h processors,

2013. 18

[27] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. DRAMA: Exploiting DRAM addressing for Cross-CPU attacks. In

25th USENIX security symposium (USENIX security 16), pages 565–581, 2016. 18,

29

[28] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One bit

flips, one cloud flops:{Cross-VM} row hammer attacks and privilege escalation.

https://github.com/google/hammer-kit/blob/main/20210525_half_double.pdf
https://github.com/google/hammer-kit/blob/main/20210525_half_double.pdf

106 Bibliography

In 25th USENIX security symposium (USENIX Security 16), pages 19–35, 2016. 18,

29

[29] Alessandro Barenghi, Luca Breveglieri, Niccolò Izzo, and Gerardo Pelosi.

Software-only reverse engineering of physical dram mappings for rowhammer

attacks. In 2018 IEEE 3rd International Verification and Security Workshop (IVSW),

pages 19–24. IEEE, 2018. 18

[30] Mohamed Hassan, Anirudh M Kaushik, and Hiren Patel. Reverse-engineering

embedded memory controllers through latency-based analysis. In 21st IEEE

Real-Time and Embedded Technology and Applications Symposium, pages 297–306.

IEEE, 2015. 18

[31] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. A

case for exploiting subarray-level parallelism (salp) in dram. In 2012 39th Annual

International Symposium on Computer Architecture (ISCA), pages 368–379. IEEE,

2012. 18

[32] Tao Zhang, Boris Pismenny, Donald E Porter, Dan Tsafrir, and Aviad Zuck.

Rowhammering storage devices. In Proceedings of the 13th ACM Workshop on Hot

Topics in Storage and File Systems, pages 77–85, 2021. 18

[33] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Defeating

software mitigations against rowhammer: a surgical precision hammer. In Inter-

national Symposium on Research in Attacks, Intrusions, and Defenses, pages 47–66.

Springer, 2018. 18

[34] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen, Onur

Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. TRRespass: Exploit-

ing the many sides of target row refresh. In 2020 IEEE Symposium on Security and

Privacy (SP), pages 747–762. IEEE, 2020. 18, 19, 23, 54

[35] Manaar Alam et al. Performance counters to rescue: A machine learning based

safeguard against micro-architectural side-channel-attacks. IACR Cryptology

ePrint Archive, 2017. 20

Bibliography 107

[36] Anirban Chakraborty et al. Deep learning based diagnostics for rowhammer

protection of DRAM chips. In ATS, 2019. 20, 29, 54

[37] Anirban Chakraborty, Manaar Alam, and Debdeep Mukhopadhyay. A good

anvil fears no hammer: Automated rowhammer detection using unsupervised

deep learning. In International Conference on Applied Cryptography and Network

Security, pages 59–77. Springer, 2021. 20

[38] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis Andriesse,

Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi. ZebRAM: Comprehensive

and compatible software protection against rowhammer attacks. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18), pages 697–

710, 2018. 20

[39] Yicheng Wang, Yang Liu, Peiyun Wu, and Zhao Zhang. Discreet-PARA: Row-

hammer defense with low cost and high efficiency. In 2021 IEEE 39th International

Conference on Computer Design (ICCD), pages 433–441. IEEE, 2021. 20

[40] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. Making DRAM

stronger against row hammering. In DAC, 2017. 20, 27

[41] Jung Min You and Joon-Sung Yang. MRLoc: Mitigating row-hammering based

on memory locality. In DAC, 2019. 21, 28

[42] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a scal-

able wide-area web cache sharing protocol. IEEE/ACM transactions on networking,

8(3):281–293, 2000. 21

[43] Kwangrae Kim, Jeonghyun Woo, Junsu Kim, and Ki-Seok Chung. Hammerfil-

ter: Robust protection and low hardware overhead method for rowhammer. In

2021 IEEE 39th International Conference on Computer Design (ICCD), pages 212–

219. IEEE, 2021. 21

[44] Biresh Kumar Joardar, Tyler K Bletsch, and Krishnendu Chakrabarty. Learning

to mitigate rowhammer attacks. In 2022 Design, Automation & Test in Europe Con-

ference & Exhibition (DATE), pages 564–567. IEEE, 2022. 21, 29, 100

108 Bibliography

[45] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem. Counter-

based tree structure for row hammering mitigation in dram. IEEE Computer Ar-

chitecture Letters, 16(1):18–21, 2016. 22

[46] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem. Mitigating

wordline crosstalk using adaptive trees of counters. In ISCA, 2018. 22

[47] Ingab Kang, Eojin Lee, and Jung Ho Ahn. Cat-two: Counter-based adaptive

tree, time window optimized for dram row-hammer prevention. IEEE Access,

8:17366–17377, 2020. 22, 50

[48] A Giray Yağlikçi et al. Blockhammer: Preventing rowhammer at low cost by

blacklisting rapidly-accessed DRAM rows. In HPCA, 2021. 22, 27, 46, 62

[49] Jayadev Misra and David Gries. Finding repeated elements. Science of computer

programming, 2(2):143–152, 1982. 22, 46

[50] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computa-

tion of frequent and top-k elements in data streams. In International conference on

database theory, pages 398–412. Springer, 2005. 22

[51] Yeonhong Park et al. Graphene: Strong yet lightweight row hammer protection.

In MICRO, 2020. 22, 27, 37, 46, 62

[52] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant J Nair. Ran-

domized row-swap: mitigating row hammer by breaking spatial correlation be-

tween aggressor and victim rows. In Proceedings of the 27th ACM International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, pages 1056–1069, 2022. 22

[53] Michael Jaemin Kim, Jaehyun Park, Yeonhong Park, Wanju Doh, Namhoon Kim,

Tae Jun Ham, Jae W Lee, and Jung Ho Ahn. Mithril: Cooperative row hammer

protection on commodity dram leveraging managed refresh. In 2022 IEEE In-

ternational Symposium on High-Performance Computer Architecture (HPCA), pages

1156–1169. IEEE, 2022. 22

Bibliography 109

[54] Tanj Bennett, Stefan Saroiu, Alec Wolman, and Lucian Cojocar. Panopticon:

A complete in-dram rowhammer mitigation. In Workshop on DRAM Security

(DRAMSec), 2021. 22

[55] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung Ho Ahn. TWiCe:

Preventing row-hammering by exploiting time window counters. In Proceedings

of the 46th International Symposium on Computer Architecture, pages 385–396, 2019.

22, 27

[56] Kuljit Bains, John Halbert, Christopher Mozak, Theodore Schoenborn, and

Zvika Greenfield. Row hammer refresh command, August 25 2015. US Patent

9,117,544. 23

[57] Kevin Loughlin, Stefan Saroiu, Alec Wolman, and Baris Kasikci. Stop! hammer

time: rethinking our approach to rowhammer mitigations. In Proceedings of the

Workshop on Hot Topics in Operating Systems, pages 88–95, 2021. 23

[58] Kuljit S Bains and John B Halbert. Row hammer monitoring based on stored row

hammer threshold value, August 1 2017. US Patent 9,721,643. 23

[59] Hasan Hassan, Yahya Can Tugrul, Jeremie S Kim, Victor Van der Veen, Kaveh

Razavi, and Onur Mutlu. Uncovering in-dram rowhammer protection mecha-

nisms: A new methodology, custom rowhammer patterns, and implications. In

MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 1198–1213, 2021. 23

[60] Chia-Ming Yang, Chen-Kang Wei, Yu Jing Chang, Tieh-Chiang Wu, Hsiu-Pin

Chen, and Chao-Sung Lai. Suppression of row hammer effect by doping profile

modification in saddle-fin array devices for sub-30-nm dram technology. IEEE

Transactions on Device and Materials Reliability, 16(4):685–687, 2016. 23

[61] Seong-Wan Ryu, Kyungkyu Min, Jungho Shin, Heimi Kwon, Donghoon Nam,

Taekyung Oh, Tae-Su Jang, Minsoo Yoo, Yongtaik Kim, and Sungjoo Hong. Over-

coming the reliability limitation in the ultimately scaled dram using silicon mi-

gration technique by hydrogen annealing. In 2017 IEEE International Electron

Devices Meeting (IEDM), pages 21–6. IEEE, 2017. 23

110 Bibliography

[62] S Agarwal, H Dixit, D Datta, M Tran, D Houssameddine, D Shum, and

F Benistant. Rowhammer for spin torque based memory: Problem or not? In

2018 IEEE International Magnetics Conference (INTERMAG), pages 1–1. IEEE, 2018.

27, 80, 81

[63] Mohammad Nasim Imtiaz Khan and Swaroop Ghosh. Analysis of row hammer

attack on STTRAM. In 2018 IEEE 36th International Conference on Computer Design

(ICCD), pages 75–82. IEEE, 2018. 27, 81, 82, 94

[64] Jung Ho Ahn, Sheng Li, O Seongil, and Norman P Jouppi. Mcsima+: A many-

core simulator with application-level+ simulation and detailed microarchitecture

modeling. In 2013 IEEE International Symposium on Performance Analysis of Sys-

tems and Software (ISPASS), pages 74–85. IEEE, 2013. 27

[65] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and extensible

dram simulator. IEEE Computer architecture letters, 15(1):45–49, 2015. 27, 31, 57

[66] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh

Sardashti, et al. The gem5 simulator. ACM SIGARCH computer architecture news,

2011. 28, 30, 56

[67] Loïc France et al. Vulnerability assessment of the rowhammer attack using ma-

chine learning and the gem5 simulator - work in progress. In SaT-CPS, 2021.

29

[68] Ayaz Akram and Lina Sawalha. A survey of computer architecture simulation

techniques and tools. Ieee Access, 7:78120–78145, 2019. 30

[69] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,

and Norman P Jouppi. Mcpat: An integrated power, area, and timing modeling

framework for multicore and manycore architectures. In Proceedings of the 42nd

annual ieee/acm international symposium on microarchitecture, pages 469–480, 2009.

30

[70] Rafael Ubal, Julio Sahuquillo, Salvador Petit, and Pedro Lopez. Multi2Sim: A

simulation framework to evaluate multicore-multithreaded processors. In 19th

Bibliography 111

International Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD’07), pages 62–68. IEEE, 2007. 30

[71] Daniel Aarno and Jakob Engblom. Software and system development using virtual

platforms: full-system simulation with wind river simics. Morgan Kaufmann, 2014.

30

[72] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastructure for

computer system modeling. Computer, 35(2):59–67, 2002. 30

[73] Ashutosh Dhodapkar, Chee How Lim, George Cai, and W Robert Daasch.

Tem²p²est: A thermal enabled multi-model power/performance estimator. In In-

ternational Workshop on Power-Aware Computer Systems, pages 112–125. Springer,

2000. 30

[74] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A cycle ac-

curate memory system simulator. IEEE computer architecture letters, 10(1):16–19,

2011. 31

[75] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob.

DRAMsim3: a cycle-accurate, thermal-capable DRAM simulator. IEEE Computer

Architecture Letters, 19(2):106–109, 2020. 31

[76] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wol-

man, and Onur Mutlu. Are we susceptible to rowhammer? an end-to-end

methodology for cloud providers. In 2020 IEEE Symposium on Security and Pri-

vacy (SP), pages 712–728. IEEE, 2020. 39

[77] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007. 41

[78] Valgrind. https://valgrind.org/. 41

[79] Loïc France, Florent Bruguier, Maria Mushtaq, David Novo, and Pascal Benoit.

Implementing rowhammer memory corruption in the gem5 simulator. In 32nd

International Workshop on Rapid System Prototyping (RSP). IEEE, 2021. 42

https://valgrind.org/

112 Bibliography

[80] Quentin Forcioli, Jean-Luc Danger, Clémentine Maurice, Lilian Bossuet, Florent

Bruguier, Maria Mushtaq, David Novo, Loïc France, Pascal Benoit, Sylvain Guil-

ley, et al. Virtual platform to analyze the security of a system on chip at mi-

croarchitectural level. In 2021 IEEE European Symposium on Security and Privacy

Workshops (EuroS&PW), pages 96–102. IEEE, 2021. 42

[81] Loïc France, Florent Bruguier, Maria Mushtaq, David Novo, and Pascal Benoit.

Implementation of rowhammer effect in gem5. In 15ème Colloque National du

GDR SoC2, 2021. 42

[82] Loïc France, Florent Bruguier, Maria Mushtaq, David Novo, and Pascal Benoit.

Modeling Rowhammer in the gem5 simulator. CHES 2022 - Conference on Cryp-

tographic Hardware and Embedded Systems, September 2022. Poster. 42

[83] Micron. Micron DDR5 SDRAM: New features, 2021. 45

[84] Deke Guo, Yunhao Liu, Xiangyang Li, and Panlong Yang. False negative prob-

lem of counting bloom filter. IEEE transactions on knowledge and data engineering,

22(5):651–664, 2010. 47

[85] Supreet Jeloka et al. A 28 nm configurable memory (TCAM/BCAM/SRAM)

using push-rule 6t bit cell enabling logic-in-memory. JSSC, 2016. 50

[86] Kostas Pagiamtzis and Ali Sheikholeslami. A low-power content-addressable

memory (CAM) using pipelined hierarchical search scheme. IEEE Journal of Solid-

State Circuits, 39(9):1512–1519, 2004. 50

[87] Swapan Kumar Ray. Large-capacity high-throughput low-cost pipelined cam

using pipelined ctam. IEEE Transactions on Computers, 55(5):575–587, 2006. 50

[88] Loïc France, Florent Bruguier, David Novo, Maria Mushtaq, and Pascal Benoit.

Reducing the silicon area overhead of counter-based rowhammer mitigations. In

18th CryptArchi Workshop, 2022. 51

[89] John D. McCalpin. Memory bandwidth and machine balance in current high

performance computers. IEEE Computer Society Technical Committee on Computer

Architecture (TCCA) Newsletter, 1995. 58

Bibliography 113

[90] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997. 58

[91] Paul Werbos. Beyond regression: new tools for prediction and analysis in the

behavioral sciences. Ph. D. dissertation, Harvard University, 1974. 58

[92] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied

to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989. 58

[93] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998. 58

[94] François Chollet. Keras. https://keras.io/, 2015. 58

[95] Machine learning mastery, 2013. 58

[96] Jason Brownlee. LSTMs for human activity recognition time series classification,

2018. 58

[97] Jason Brownlee. 1D convolutional neural network models for human activity

recognition, 2018. 58

[98] Jason Brownlee. Deep learning for time series, 2018. 58

[99] Tetsuo Endoh, Hiroki Koike, Shoji Ikeda, Takahiro Hanyu, and Hideo Ohno. An

overview of nonvolatile emerging memories—spintronics for working memo-

ries. IEEE journal on emerging and selected topics in circuits and systems, 6(2):109–

119, 2016. 79

[100] E Chen, D Apalkov, Z Diao, A Driskill-Smith, D Druist, D Lottis, V Nikitin,

X Tang, S Watts, S Wang, et al. Advances and future prospects of spin-transfer

torque random access memory. IEEE Transactions on Magnetics, 46(6):1873–1878,

2010. 79

[101] BN Engel, J Akerman, B Butcher, RW Dave, M DeHerrera, M Durlam,

G Grynkewich, J Janesky, SV Pietambaram, ND Rizzo, et al. A 4-mb toggle

https://keras.io/

114 Bibliography

mram based on a novel bit and switching method. IEEE Transactions on Mag-

netics, 41(1):132–136, 2005. 79

[102] Everspin. MR4A16BUYS45 toggle-mram documentation. https://www.

everspin.com/supportdocs/MR4A16BUYS45. 82

[103] Xilinx. Arty z7-20: SoC zynq®-7000 development board for makers and

hobbyists. https://www.xilinx.com/products/boards-and-kits/

1-pdb0q2.html. 83

[104] Xilinx. Zynq 7000 product page. https://www.xilinx.com/products/

silicon-devices/soc/zynq-7000.html. 83

[105] Avalanche Technology. AS3004316-035nX0ITAY stt-mram datasheet.

https://www.avalanche-technology.com/wp-content/uploads/

1Mb-64Mb-Parallel-x16-MRAM.pdf. 91

[106] ST Microelectronics. NUCLEO-F746ZG development board. https://www.

st.com/en/evaluation-tools/nucleo-f746zg.html. 91

[107] Luc Tillie, E Nowak, RC Sousa, M-C Cyrille, B Delaet, T Magis, A Persico,

J Langer, B Ocker, IL Prejbeanu, et al. Data retention extraction methodology

for perpendicular stt-mram. In 2016 IEEE International Electron Devices Meeting

(IEDM), pages 27–3. IEEE, 2016. 93

https://www.everspin.com/supportdocs/MR4A16BUYS45
https://www.everspin.com/supportdocs/MR4A16BUYS45
https://www.xilinx.com/products/boards-and-kits/1-pdb0q2.html
https://www.xilinx.com/products/boards-and-kits/1-pdb0q2.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.avalanche-technology.com/wp-content/uploads/1Mb-64Mb-Parallel-x16-MRAM.pdf
https://www.avalanche-technology.com/wp-content/uploads/1Mb-64Mb-Parallel-x16-MRAM.pdf
https://www.st.com/en/evaluation-tools/nucleo-f746zg.html
https://www.st.com/en/evaluation-tools/nucleo-f746zg.html

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Context
	Contribution

	Background
	Memory Architecture and operation
	Memory architecture, Core to main memory read operation
	DRAM architecture and operation

	Rowhammer attack
	Cell-to-cell disturbance
	Basic exploit
	Exploits in literature

	Rowhammer countermeasures
	Basic Principles
	Software-based protection
	Hardware probabilistic protection
	Hardware counter-based protection
	Conclusion

	Conclusion

	Rowhammer Simulation
	Motivation
	Rowhammer simulation requirements
	gem5 and Ramulator
	Memory Corruption simulation
	Integration of the memory-corruption module in gem5 and Ramulator
	Disturbance and corruption simulation

	Mitigation integration in gem5
	Usage, limitations and evaluation
	Limitations
	Evaluation

	Conclusion

	Counter-based Rowhammer mitigations improvement
	Motivation
	Bank-level and rank-level counting granularity
	Implication in State-of-the-art mitigation proposals
	Considerations for technology and timings
	DDR generation parameters
	Feasibility - timing considerations

	Conclusion

	Mitigation proposals
	Motivation
	Hardware counters and machine learning for Rowhammer detection
	Methodology
	Experiments and results
	Conclusion

	F-CorD: Forgetful Counters for Rowhammer Detection
	Introduction: Unsynchronised refresh issue for counter-based Rowhammer mitigation
	Tracking frequently-activated rows
	Detecting attacks
	Discretisation
	Periodic maintenance
	Implementation details
	Number of entries
	Example
	Conclusion

	Experiments on MRAM
	Motivation
	Attack on a Toggle-MRAM chip
	Platform Requirements
	Test Platform
	Reverse-engineering of the memory module architecture
	Designing the attack
	Results

	Attack on an STT-MRAM chip
	Test Platform
	Reverse-engineering of the memory module architecture
	Designing the attack
	Results

	Conclusion

	Conclusion and Perspectives
	Contributions
	Rowhammer simulation in gem5
	Improvement of Rowhammer mitigations
	Mitigation proposals
	Experiments on MRAM

	Future work
	Concluding remarks

	Bibliography

