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Chapter 1

Résumé de la these

Les moustiques sont un vecteur important pour la transmission de nombreux agents
pathogenes et parasites classés, notamment les virus, les bactéries, les champignons,
les protozoaires et les nématodes. Cela est principalement dii & leurs habitudes de
consommation de sang, pour lesquelles ils se nourrissent d’hotes vertébrés. Les
moustiques infectés transportent ces organismes d"une personne a I’autre sans présen-
ter eux-mémes de symptomes. Selon [36], d"ici 2050, la moitié de la population mon-
diale pourrait étre exposée a des maladies transmises par les moustiques, comme la
dengue ou le virus Zika, le paludisme, et bien d’autres encore. En transmettant
ces maladies, les moustiques causent la mort de plus de personnes que tout autre
taxon animal. Grace a un processus d’évolution de plus de 100 millions d’années,
les moustiques ont développé des mécanismes d’adaptation capables de prospérer
dans divers environnements. A l’exception des endroits gelés en permanence, on
trouve ces moustiques dans toutes les régions terrestres du monde. Ils occupent les
régions tropicales et subtropicales ot1 le climat semble favorable et efficace pour leur

développement, ce qui en fait presque I’animal universel du monde.

FIGURE 1.1: Photo d'un moustique adulte femelle Aedes aegypti
(gauche) et Aedes albopictus (droite) pendant un repas sanguin [17].

Parmi les quelques 3 600 especes de moustiques qui peuplent la planete, celles
qui appartiennent a 1’ordre des Diptera sont connues pour jouer un role crucial en
tant que vecteurs de transmission des arbovirus [48]. Au sein de cette famille Cuclici-
dae, le genre Aedes est impliqué dans la transmission des maladies. Les deux espéces
les plus importantes de ce genre sont Aedes aegypti et Aedes albopictus. Ils sont les
principaux vecteurs de la dengue, de la fiévre jaune, de la fiévre du Nil occidental,
du chikungunya, de l'encéphalite équine de 1'Est, du virus Zika et de nombreuses

autres maladies moins importantes.
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Dans cette thése, nous visons a développer des modéles mathématiques de la
dengue prenant en compte la vaccination et le contrdle des vecteurs. Nous nous
concentrons donc sur la biologie des moustiques Ae. aegypti et Ae. albopictus en tant

que vecteurs primaires de la dengue.

Cycle de vie

Les moustiques ont un cycle de vie compliqué. Néanmoins, ils ont tous besoin d’eau
pour accomplir leur cycle de vie. IlIs changent de forme et d’habitat au cours de leur
développement. Comme tous les autres moustiques, Ae. aegypti et Ae. albopictus ont
quatre stades distincts : ceuf, larve, nymphe et adulte (Fig. 1.2).

Female mosquitoes lay
eggs in containers that
hold water.

Pupae live in water.
They develop into adult,
flying mosquitoes in
2-3 days.

Eggs hatch within a few
days to months when

Larvae live in water. .
covered with water.

They develop into pupae
in as few as 5 days.

FIGURE 1.2: Stades de vie des moustiques femelles Ae. aegypti et Ae.
albopictus [19].

Seuls les moustiques adultes femelles pondent des ceufs quelques jours apres
avoir pris un repas de sang. Les moustiques pondent généralement 100 ceufs a la
fois. Ils pondent leurs ceufs isolément [31] sur les parois intérieures des récipients
juste au-dessus de la ligne de flottaison qui sont ou seront remplis d’eau. Ce site
de ponte comprend une paroi de cavité telle qu'une souche creuse ou un récipient
tel qu'un seau ou un pneu de véhicule mis au rebut. Seule une infime quantité
d’eau est nécessaire pour pondre des ceufs. Cependant, les ceufs de moustiques
peuvent survivre au dessechement pendant 8 mois ou méme en hiver. Dans ce cas,
ils doivent supporter une dessiccation considérable avant d’éclore [59]. Une fois

qu’ils ont atteint un niveau de dessiccation approprié, ils peuvent entrer en diapause
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pendant plusieurs mois. Les ceufs d’Aedes en diapause ont tendance a éclore de
maniere irréguliere sur une période prolongée.

IIs éclosent ensuite en larves lorsque de 1’eau inonde les ceufs, par exemple a
la suite de pluies ou du remplissage d’eau par des personnes. Apres I'immersion
dans I’eau, les ceufs éclosent par lots. Etant donné que certains ceufs doivent étre
immergés plusieurs fois dans 1’eau avant d’éclore, ce processus peut durer des jours
ou des semaines [69].

Les larves vivent dans 1’eau et se nourrissent de micro-organismes hétérotrophes
tels que des bactéries, des champignons et des protozoaires. Elles se développent
en quatre stades, ou instars. Du premier au quatrieme stade, les larves muent et
perdent leur peau pour poursuivre leur croissance. Au quatrieme stade, lorsque la
larve est completement développée, elle se métamorphose en une nouvelle forme
appelée pupe. La pupe vit toujours dans 1’eau, mais elle ne se nourrit pas. Au bout
de deux jours, elles se développent completement en forme de moustique adulte et
percent la peau de la nymphe. Le moustique adulte n’est plus aquatique ; il a un
habitat terrestre et peut voler. L'ensemble du cycle de vie des moustiques dure de
huit a dix jours a température ambiante, en fonction du niveau d’alimentation.

Habitudes alimentaires des moustiques adultes

Comme tous les autres animaux, les moustiques ont besoin d’énergie et de nutri-
ments pour survivre et se reproduire. Les matiéres végétales et le sang en sont des
sources précieuses.

Seules les femelles moustiques piquent. Elles sont attirées par la lumiére in-
frarouge, la lumiere, la transpiration, 'odeur corporelle, I'acide lactique et le dioxyde
de carbone. La partie buccale de nombreux moustiques femelles est adaptée pour
percer la peau des animaux hotes et sucer leur sang en tant qu’ectoparasites. Les
moustiques femelles se posent sur la peau de I’hdte pendant le repas sanguin et y
plantent leur trompe. Leur salive contient des protéines anticoagulantes qui em-
péchent la coagulation du sang. Elles aspirent ensuite le sang de I'hote dans leur
abdomen. Les moustiques de 1'espece Ae. Aegypti ont besoin de 5uL par portion.
Chez de nombreuses especes de moustiques femelles, les nutriments obtenus a par-
tir des repas sanguins sont essentiels a la production d’ceufs, tandis que chez de
nombreuses autres especes, ’obtention de nutriments a partir d'un repas sanguin
permet au moustique de pondre davantage d’ceufs. Parmi les humains, les mous-
tiques préféraient se nourrir de ceux qui ont un sang de type O [61], les gros res-
pirateurs, une abondance de bactéries cutanées, une chaleur corporelle élevée et les
femmes enceintes [21]. L'attrait des individus pour les moustiques a également une
composante héréditaire, controlée par les genes [29].

Les espéces de moustiques hématophages sont des mangeurs sélectifs qui
préferent une espéce hote particuliere. Néanmoins, ils relachent cette sélectivité
lorsqu’ils sont confrontés a une concurrence sévere, a une pénurie de nourriture et a
une activité défensive de la part des hotes.
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FIGURE 1.3: Vue dorsale de la femelle adulte Ae. Aegypti adulte [58].

Si les humains sont rares, les moustiques se nourrissent de singes, tandis que
d’autres préferent les équidés, les rongeurs, les oiseaux, les chauves-souris et les
porcs, d’ot1 proviennent un grand nombre de nos craintes de maladies inter-especes
[41]. Certains moustiques ignorent complétement les humains et se nourrissent ex-
clusivement d’oiseaux, tandis que la plupart mangent tout ce qui est disponible. Les
amphibiens, les serpents, les reptiles, les écureuils, les lapins et d’autres petits mam-
miféres comptent parmi les autres repas les plus populaires des moustiques. Les
moustiques s’attaquent également a des animaux plus grands, comme les chevaux,
les vaches, les primates, les kangourous et les wallabies. Certaines especes de mous-
tiques peuvent méme s’attaquer aux poissons s’ils s’exposent au-dessus du niveau
de I’eau. De méme, les moustiques peuvent parfois se nourrir d’insectes dans la na-
ture. Ae. Aegypti et Culextarsalis sont attirés et se nourrissent de larves d’insectes,
et ils vivent pour produire des ceufs viables [60]. Alors que Anopheles Stephensi est
attiré par les larves d’especes de papillons de nuit comme Manduca sexta et Heliothis
subflexa et peut s’en nourrir avec succes [34].

Le nectar des plantes est une source d’énergie commune pour l’alimentation de
toutes les especes de moustiques, en particulier les moustiques males, exclusive-
ment dépendants du nectar des plantes ou de sources alternatives de sucre. La con-
ception de piéges efficaces appatés au sucre pour les moustiques serait grandement
bénéfique pour la prévention des maladies a transmission vectorielle. La préférence
pour les plantes est probablement due a une attraction innée qui peut étre renforcée
par I'expérience, les moustiques reconnaissant les récompenses en sucre disponibles
[70]. Elle varie selon les especes de moustiques, les habitats géographiques et la
disponibilité saisonniere. La recherche de nectar implique l'intégration d’au moins
trois systémes sensoriels : 1’olfaction, la vision et le gofit.

Néanmoins, tous les moustiques sont capables de faire la distinction entre les
sources de sucre riches et pauvres pour choisir les plantes ayant une teneur plus
élevée en glycogene, en lipides et en protéines [73]. Voici les plantes préférées de
différentes espéces de moustiques d’apres l’article de Barredo et DeGennaro [7].
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] Espéces de moustiques \

Source du nectar

Aedes aegypti Asclepias syriaca (asclépiade) Extrait végétal
Impatiens walleriana Plantes vivantes
Anopheles gambiae Mangifera indica

Delonix regia Plantes vivantes
Parthenium hysterophorus Plantes vivantes
Acacia macrostachya
Acacia albida

Culex pipiens

A. syriaca (asclépiade)
Fleur vivante, extrait et mélange synthétique
I. walleriana

Culex pipiens pallens

Ligustrum quihoui (troéne a feuilles de cire)
Broussonetia papyrifera (mfire en papier)
L. quihoui
Abelia chinensis
Nerium indicum

TABLE 1.1: Les plantes préférées des différentes espeéces de mous-
tiques comme source d’énergie d’apres [7].

Sites de reproduction

Les moustiques Aedes se reproduisent dans tous les réceptacles imaginables. On peut
classer les récipients humides artificiels et naturels, de préférence avec des surfaces
de couleur sombre et contenant de 'eau claire non polluée [46]. Voici une liste non
exhaustive des différents types de sites de reproduction des moustiques Aedes [32] :

¢ Conteneur naturel

— Trous d’arbres
— Axiles des feuilles

— Trous dans la roche.
¢ Conteneur artificiel

— Conteneurs jetés

— Conteneurs de stockage d’eau

+ Pneus pour automobiles * Cuves

+ Boites de conserve * Flts

* Bouteilles * Bidons d’eau
= Vases

*

X

Chasses d’eau.

*

Gouttiéres de toit

Plateaux d’eau pour animaux
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Dengue

La dengue est I'infection virale transmise par les moustiques la plus courante. On
la trouve dans les régions tropicales et subtropicales du monde entier, avec un pic
de transmission pendant la saison des pluies. En 2019, I'Organisation mondiale de
la santé [68] a signalé 5,2 millions de cas de dengue dans le monde. Rien qu’aux
Philippines, 271 480 cas avec 1 107 décés sont signalés du ler janvier au 31 aott
2019, en raison de la dengue [28].

La dengue est causée par quatre sérotypes de virus relevant de la famille des
Flaviviridae. Il s’agit de sérotypes de virus distincts mais étroitement liés, appelés
DENV-1, DENV-2, DENV-3 et DENV-4. Environ une personne sur quatre infectée
par la dengue tombera malade [15]. La maladie commence généralement 5 a 7 jours
apres la piqtire infectante des moustiques femelles Ae. aegypti et Ae. albopictus [8].

E Dimer |
M Protein

Capsid Protein Genomic RNA

FIGURE 1.4: Coupe transversale d'un virus de la dengue montrant
ses composants structurels similaires a ceux du virus Zika [40].

Dans la plupart des cas, la dengue est une maladie autolimitée mais peut néces-
siter une hospitalisation, ott des soins de soutien peuvent modifier 1’évolution de
la maladie. Les symptomes peuvent étre légers ou graves et durent généralement
de 2 a 7 jours. Le symptome le plus courant de la dengue est la fievre accompa-
gnée de nausées, de vomissements, d'une éruption cutanée, de courbatures et de
douleurs musculaires ou articulaires. L'infection par un type de virus confére une
immunité a vie contre cette souche virale et confere temporairement une protection
partielle contre les autres types. Une deuxiéme infection par un autre type de virus
entraine une maladie plus grave, appelée fievre hémorragique de la dengue (DHF).
Aux Philippines, 1 107 déces sont signalés du ler janvier au 31 aott 2019, dus a la
dengue [28].

Transmission

Les virus de la dengue se transmettent aux personnes par les piqiires de moustiques
infectés de 1'espece Aedes [18]. Il peut étre transmis par une transmission d’homme
a moustique, de moustique a homme et par d’autres transmissions comme la trans-
mission d’homme a homme et de moustique a moustique.

La transmission verticale se produit lorsque des moustiques parents infectés
transmettent 1’arbovirus a une partie de leur progéniture dans 1'ovaire ou pendant
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la ponte [30]. Plusieurs articles confirment ces résultats. Une étude de Shroyer DA.
[24] est 'un des articles qui confirme la présence de la transmission verticale na-
turelle du DENV chez Ae. aegypti et Ae. albopictus. Il indique que le virus DENV
peut étre transféré du parent a la progéniture dans sept générations consécutives
d’Ae. aegypti et Ae. albopictus, dans des conditions de laboratoire. Cette transmission
peut contribuer a la pérennité des moustiques infectés, mais elle n’est pas suffisante
pour favoriser la propagation de la dengue.

Une forme de transmission plus courante est connue sous le nom de transmission
horizontale. Le virus est transmis a '’homme par les piqiires de moustiques Ae.
aegypti infectés. Apres s’étre nourri d’'une personne infectée par la dengue, le virus se
réplique dans l'intestin moyen du moustique avant de se disséminer dans les tissus
secondaires, notamment les glandes salivaires. La période d'incubation extrinseque
(PIE) est le temps qui s’écoule entre l'ingestion du virus et la transmission effective
a un nouvel hote. Elle dure environ 8 a 12 jours lorsque la température ambiante
est comprise entre 25 et 28°C. Les variations de la PIE sont également influencées
par des facteurs tels que I'ampleur des fluctuations quotidiennes de température, le
génotype du virus et la concentration virale initiale [68].

Bien que la possibilité soit faible, il existe des preuves que la dengue peut égale-
ment se propager par transmission maternelle ou étre transmise par une transfusion
sanguine infectée. Une femme enceinte qui a une infection par le DENV peut trans-
mettre le virus a son feetus. Les bébés porteurs du DENV peuvent souffrir d"une
naissance prématurée, d'un faible poids a la naissance et d"une détresse foetale [68].

Vaccination

Il n’existe pas de traitement spécifique pour la dengue. Cependant, des efforts pour
développer un vaccin sont en cours depuis des décennies.

Le premier vaccin contre la dengue utilisé commercialement est le CYD-TDV,
commercialisé sous le nom de Dengvaxia par Sanofi Pasteur. Il a été homologué en
décembre 2015 et approuvé par les autorités réglementaires dans 20 pays. L'un de
ces pays est les Philippines. En décembre 2015, la Food and Drugs Administration
(FDA) philippine a donné son feu vert au vaccin, faisant des Philippines le premier
pays asiatique a le commercialiser [65]. En avril 2016, le ministere de la Santé (DOH)
a lancé la campagne de vaccination contre la dengue dans les régions philippines
de Central Luzon, Calabarzon et Metro Manila. Plus de 800 000 écoliers ont re¢u au
moins une dose du vaccin.

Dengvaxia est un vaccin chimérique tétravalent vivant atténué. Il est fabriqué a
l'aide de la technologie de I’ADN recombinant en remplagant les génes structurels
PrM (prémembrane) et E (enveloppe) du vaccin atténué de la souche 17D de la fievre
jaune par ceux des quatre sérotypes de la dengue. Il doit étre administré en trois
doses de 0,5 ml par voie sous-cutanée (SC) a six mois d’intervalle. Sanofi Pasteur

a recommandé que le vaccin ne soit utilisé que chez les personnes agées de 9 a 45



8 Résumé de Ila thése

NDC 49281.605-01

“ul

—  Dengue Tetravalent
Vaccine, Live
Dengvaxia® (B2

For 9 through 16 years of age

SANOFI PASTEUR \3

FIGURE 1.5: Vaccin tétravalent contre la dengue fabriqué par Sanofi
Pasteur.

ans et chez les personnes déja infectées par un type de virus [3]. En effet, les résul-
tats peuvent étre moins bons chez les personnes qui n’ont pas encore été infectées

auparavant.

Controle des vecteurs

Un vecteur de maladie est tout agent vivant portant et transmettant un agent
pathogene infectieux a un autre organisme vivant. Le controle de ces vecteurs
est une méthode essentielle pour limiter ou éradiquer la transmission de ces mal-
adies. Dans le cas de la dengue, il est essentiel de lutter contre les moustiques en
s’appuyant sur de bonnes connaissances scientifiques de ’écologie des moustiques
et des modes de transmission de la maladie.

L'Organisation mondiale de la santé a considéré les catégories suivantes pour
controler ou prévenir la propagation du virus de la dengue [33].

¢ Gestion de I’environnement

— Un facteur de risque important pour la transmission du virus de la
dengue est la proximité des sites de reproduction des moustiques
vecteurs avec les habitations humaines. Un systeme efficace de gestion
de l'environnement constitue donc une stratégie efficace de lutte con-
tre les vecteurs. Il comprend la gestion des conteneurs, 1’élimination de
I'altération des sites de reproduction et la prévention de la reproduction

dans les conteneurs de stockage de 'eau.
¢ Méthodes chimiques et biologiques

- La larvicide chimique est efficace contre les moustiques Aedes qui se re-
produisent dans des conteneurs d’eau propre. Elle utilise des insecticides
synthétiques organiques tels que le téméphos (Abate) et des régulateurs
de croissance des insectes (RCI) tels que le méthoprene (Altosid, imita-
teur d’hormone juvénile), dont I'impact sur 1’environnement est minime

s’ils sont utilisés de maniere appropriée dans les locaux humains.
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— Wolbachia est un type de bactérie que 1'on trouve couramment chez les
insectes mais qui est inoffensif pour les humains ou les animaux. Onne la
trouve pas chez les moustiques Ae. aegypti. Lorsque des moustiques Ae.
aegypti males porteurs de Wolbachia s’accouplent avec des moustiques
femelles sauvages qui n’en sont pas porteurs, les ceufs n’éclosent pas, ce
qui entraine une diminution de la population de moustiques Ae. aegypti
[14].

— Les copépodes sont un groupe de petits crustacés que 1'on trouve dans
presque tous les habitats d’eau douce et d’eau salée. L'utilisation de cy-
clopoide copepoda dans la lutte contre les moustiques s’est avérée plus ef-
ficace que les prédateurs invertébrés [44]. Seuls les copépodes dont la
longueur du corps est supérieure a 1,4 mm sont utiles dans la lutte contre
les moustiques. Ils tuent les moustiques de premier stade avec 40 larves
d’Aedes par copépode par jour. Ils réduisent généralement la production
d’Aedes de 99 a 100%.

* Protection personnelle

— Eviter de se faire piquer par un autre moustique lorsqu'une personne
est en état de virémie est un excellent moyen de prévenir la propaga-
tion du virus de la dengue. Pendant cette période, le DENV circule dans
le sang de la personne et peut donc transmettre le virus a de nouveaux
moustiques non infectés, qui peuvent a leur tour infecter d’autres per-
sonnes. Par conséquent, la protection individuelle a 'aide de serpentins
et d’aérosols, de rideaux et de moustiquaires imprégnés d’insecticide et
de répulsifs pour moustiques sont des méthodes essentielles pour la lutte
antivectorielle.

* Vaporisation spatiale

- La pulvérisation spatiale est une stratégie efficace pour tuer rapidement
les moustiques Aedes adultes dans les zones d’épidémie de dengue. Elle
utilise des brouillards thermiques et des aérosols a tres faible volume.

Une autre méthode de lutte antivectorielle qui s’est avérée efficace dans le cadre
d’essais sur le terrain a démontré que l'incidence de la dengue peut étre consid-
érablement réduite en introduisant des souches de la bactérie endosymbiotique ap-
pelée Wolbachia dans les populations de moustiques Aedes aegypti [66]. Wolbachia
est une bactérie ubiquitaire qui se trouve naturellement chez les insectes et qui est
sans danger pour les humains. Elle vit a l'intérieur des cellules des insectes et est
transmise d"une génération a 1’autre par les ceufs de 1'insecte. Des analyses de risque
indépendantes indiquent que la libération de moustiques infectés par Wolbachia
présente un risque négligeable pour les humains et I’environnement. Les mous-

tiques porteurs de Wolbachia ont réduit leur capacité a transmettre les arbovirus
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[66]. La bactérie entre en compétition avec le virus, ce qui rend plus difficile la
reproduction des virus a l'intérieur des moustiques. En effet, les moustiques sont

beaucoup moins susceptibles de transmettre les virus d"une personne a l'autre.

Modéles mathématiques de la dengue

La modélisation mathématique a été utilisée pour tester et déterminer 1’efficacité
de différentes stratégies d’intervention pour contrdler ou éliminer la dengue. Ces
différents modeles mathématiques aident les mathématiciens a tester les différentes
hypotheses de la dynamique de transmission de la dengue afin de mieux compren-
dre leur importance.

Les modeles compartimentaux SEIRS tenant compte de la susceptibilité, de
I’exposition, de I'infection et de 1’élimination pour la population humaine et de la
susceptibilité et de I'infection pour la population de moustiques ont été largement
promus. Syafruddin et Noorani [62] a étudié un systéme d’équations différentielles
qui modélise la dynamique de la population d"un vecteur SEIR de transmission de
la dengue. Il s’agit d’'un modele mathématique qui analyse la propagation d'un
sérotype du virus de la dengue entre I'hote et le vecteur. Ils ont montré qu’il pouvait
modéliser la dengue en utilisant des données réelles.

D’autre part, Nuraini et al. [51] ont dérivé et analysé le modéle en tenant compte
du compartiment de la dengue hémorragique sévere (DHF) dans le modéle de trans-
mission. Ils considérent un modeéle SIR pour la transmission de la dengue. Ils sup-
posent que deux virus, la souche 1 et la souche 2, sont a 1’origine de la maladie.
Une immunité durable contre une infection causée par un virus peut ne pas étre
valable en cas d’infection secondaire par l'autre virus. Ils trouvent une mesure de
contrdle pour réduire le nombre de patients atteints de la DHF dans la population
ou le maintenir a un niveau acceptable. Ils discutent également du rapport entre le
nombre total de compartiments de DHF sévere, le nombre total de compartiments
de premiere infection et le nombre total de compartiments d’infection secondaire,
respectivement. En outre, ils ont découvert que ce rapport est nécessaire pour les
mesures de controle pratiques afin de prédire l'intensité " réelle " des phénomenes
endémiques, puisque seules les données sur les compartiments de la DHF séveére
sont disponibles.

De plus, Derouich et al. [27] a proposé un modele avec deux virus différents
agissant a des intervalles de temps séparés. Ils étudient la dynamique de la dengue
en se concentrant sur sa progression vers la forme hémorragique pour comprendre
le phénomene épidémique et proposer des stratégies de controle de la maladie. Leur
modele a montré que la stratégie basée sur la prévention de 1’'épidémie de dengue
par la lutte antivectorielle, par la gestion de ’environnement ou par des méthodes
chimiques, reste insuffisante. par la gestion de l’environnement ou par des méth-
odes chimiques reste insuffisante car elle ne permet que de retarder 1’apparition de
I'épidémie. De plus, la réduction des susceptibilités par la vaccination a peu de
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chance d’étre applicable a court terme car elle se heurte a des obstacles puisqu'un
vaccin doit protéger simultanément contre les quatre sérotypes simultanément.

Par ailleurs, Aguiar et Stollenwerk [2] ont analysé un cadre de modélisation et
les hypotheses utilisées par Aguiar et al. [1] (modele de dengue a 2 et 4 souches)
et ont évalué I'impact du vaccin contre la dengue récemment homologué. IlIs dis-
cutent du role de plusieurs infections ultérieures par rapport a un nombre exact de
sérotypes de dengue inclus dans le cadre du modele et des aspects immunologiques
humains associés a la gravité de la maladie, en identifiant les implications pour la
dynamique du modele et leur impact sur la mise en ceuvre du vaccin. Leurs résul-
tats suggerent que le fait de réserver les vaccins aux individus séropositifs devrait
fournir un niveau élevé de protection, alors que la vaccination sans discernement
pourrait augmenter le nombre d’hospitalisations également au niveau de la popula-
tion.

La détermination du contrdle optimal pour minimiser la propagation de la dengue
a également été étudiée. Yang et Ferreira [72] ont décrit la dynamique de la dengue
dans le modele a compartiments, en tenant compte des controles chimiques et du
contrdle mécanique appliqués aux moustiques. En permettant a certains parametres
du modeéle de dépendre du temps, ils ont pu imiter les variations saisonnieres et di-
viser I’année civile en périodes favorables et défavorables pour le développement de
la population de vecteurs. Leurs simulations ont montré des flambées épidémiques
"imprévisibles" lorsque les variations abiotiques sont prises en compte. Si les mé-
canismes de controle sont introduits régulierement chaque année, ils observent le
déclin de I'indice d’efficacité avec le temps écoulé.

D’autre part, une stratégie essentielle pour contrdler 1’'épidémie de dengue con-
siste a controler la population de vecteurs. Parmi les nombreux types de recherche,
Almeida et al. [4] considerent deux techniques ; elle consiste a relacher des mous-
tiques pour réduire la taille de la population (technique de I'insecte stérile) ou a rem-
placer la population sauvage par une population porteuse d"une bactérie Wolbachia
(une bactérie responsable du blocage de la transmission des virus du moustique a
I’'homme). Leur article présente une stratégie optimale dans le protocole de lacher
de ces deux stratégies dans laquelle ils recherchent une fonction de controle qui min-
imise la distance a 1’équilibre souhaité (remplacement ou extinction de la population
sauvage) au moment du traitement final.

De plus, Puntani et al. [54] ont présenté un mécanisme de contrdle basé sur
un modele de dengue avec transmission verticale considérant les deux politiques, a
savoir la vaccination et I'administration d’insecticide. Carvalho et al. [12] a évalué
une stratégie de controle, qui vise a éliminer le moustique Aedes aegypti, ainsi que
des propositions pour la campagne de vaccination. Leurs résultats montrent que
’éradication de la dengue se fait a I’aide d"un vaccin immunisant car les mesures de
contrdle contre son vecteur sont insuffisantes pour stopper la propagation de la mal-
adie. En outre, Iboi et Gumel [38] a congu un nouveau modele mathématique pour

évaluer I'impact du nouveau vaccin Dengvaxia sur la dynamique de transmission
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de deux souches de dengue co-circulantes.

Plan de la thése

Cet thése est la premiére étude a prendre en compte la proposition de Sanofi Pasteur.
Nous présentons ici un nouveau modele mathématique de la dengvaxia. Comme le
recommande 1’'Organisation Mondiale de la Santé [71], la vaccination doit étre ad-
ministrée aux personnes qui ont déja été infectées par une souche du virus. Dans ce
document, nous divisons le compartiment des humains sensibles en humains sensi-
bles primaires ou secondaires, c’est-a-dire les individus qui n’ont pas été infectés et
les individus qui ont été infectés par une ou plusieurs souches du virus de la dengue.

Ce travail de thése vise a introduire un nouveau modele mathématique de la

dengue. 1l a la objectifs suivants:
1. étudier le dengvaxia et montrer si la recommandation de Sanofi est suffisante,
2. déterminer un controdle efficace de la dengue, et

3. générer un modeéle mathématique de la dengue tenant compte de son cycle de

vie et de sa distribution spatiale.

Le manuscrit est organisé comme suit.

Le chapitre 3 commence par la présentation d'une modéle de type Ross de la
dengue qui considere la vaccination des individus ayant déja été infectés par la
dengue. Dans ce chapitre, on teste des fonctions logistiques, exponentielles et Gom-
pertzienne pour décrire la croissance des populations humaines et de moustiques.
Nous montrons le caractére bien posé et la positivité de la solution du modéle. Nous
avons obtenu que l'équilibre sans maladie est localement asymptotiquement sta-
ble alors que 1'équilibre endémique est instable. Le chapitre 4 se concentre sur un
nouveau modéle mathématique de la dengvaxia. Ici la population humaine est con-
stante, et une fonction de croissance entomologique est considéré pour la population
de moustiques.

Trois types de croissance sont comparés:
* Pop; : population humaine et population de moustiques constantes,

* Pop, : fonction de croissance de Gompertz pour la population humaine et une

fonction de croissance exponentielle pour la population de moustiques,

* Pops : une fonction de croissance entomologique pour le moustique et une

fonction de croissance constante pour la population humaine.

Dans le modéle Pop;, nous avons montré que le modéle ne possede que 1'équilibre
sans maladie et nous avons pu prouver qu’il est localement asymptotiquement sta-
ble De méme, le modele Pop; ne possede que 1’équilibre sans maladie qui est locale-

ment stable dés que le taux de croissance «,, est plus petit que le taux de mortalité
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Um. D’autre part, le modele Pops possede a la fois un équilibre endémique et un
équilibre sans maladie. Nous avons pu définir le nombre de reproduction de base

R \/a2bmu§(l;;lu§ + byuy)
0 =
Hgpim (v + 0n)

puis montrer que 'équilibre sans maladie du modéle Pops est localement asymp-
totiquement stable si a;,, < y, et que 1’équilibre endémique est stable seulement si
Ky > Um et Rp > 1. Plus largement, nous avons prouvé le théoreme ci-dessous pour
le modele Pops.

Théoréme 1.0.1. 1. Siay < pm, alors I'équilibre sans maladie trivial est globalement
asymptotiquement stable.

2. Siay > pm et Ro > 1, alors I'équilibre sans maladie non trivial est globalement
asymptotiquement stable.

Nous déterminons ensuite la stratégie de controle optimale pour minimiser les
humains infectés de chacune de ces trois stratégies de contrdle. Nous attribuons
trois entrées de contrdle, wy, w3, et w,,, pour les populations humaines primaires,
secondaires susceptibles, et les moustiques. Ici, I'action de w(t) est le pourcent-
age de personnes susceptibles primaires, et w3(t) est le pourcentage de person-
nes susceptibles secondaires vaccinées par unité de temps. Tandis que ws(t), we(t)
est le pourcentage de moustiques éliminés par I’administration d’insecticide dans

I'environnement par unité de temps. En considérant la fonction cotit

T 1 1 1 1
T (w1, w3, wy,) = /O (uz(t) + EAlw%(t) + EAgwg(t) + EAmwg(t) + 2Amw§(t)> dt

sous la contrainte

(1) =~ g gyt
aue(t) ( bpui(t) + byus(t
"o 6 )( n 11({0) ntts )) ~ tat) — ya(®)
uz(t) = ypua(t) — W — w3(t)us(t) (1.1)
uy(t) = Syt (t)
() = — 2O o)+ (M) — ws(0us(r)
(1) = ) g (e) — ey e

pour t € [0,T], avec 0 < wy, w3 < wy et 0 < ws, wg < w)yy, nous utilisons le principe
du maximum de Pontryagin pour déterminer la commande optimale.
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Théoreme 1.0.2. Il existe les variables adjointes A;,i = 1,2, ,6 du systéme (4.13) qui
satisfont le systeme d’équation différentielle ordinaire a rebours dans le temps suivant :

_& _ )\1 (—ubhu6 . ZU1> +A2abhu6

dt H, Ho
_d;\tz =1+ A2 (=70 —0n) + Asyn + Aadp — )\SQan;:S + Aéab;;:5
_d;‘; _ Mﬂ%:e + A5 (—aHEZ% —w3>
g
_ddAt5 =As (_QIZ?W + ;55) — As (pm + ws) +/\6ab§:2
_% =M alj-_hlgl + A2 ubhu1I:I|—0uEhu3 — A3 a%;g + )\58656 — A6 (fm + we)

avec la condition de transversalité A(T) = 0. De plus, les variables de controle optimales,
pour j =1,3,5,6, sont données par

w]’f(t) = max <O, min </\1]:;j,wH, wM)> .

L’optimalité des modeles est résolue numériquement en utilisant un algorithme
de gradient programmé Python. La figure obtenue montre que la vaccination des
seuls humains susceptibles secondaires n’est pas idéale. Cela demande un effort
constant et prend beaucoup de temps pour les vacciner. Il est donc préférable de
vacciner les humains sensibles primaires. Cependant, comme il n’existe pas encore
de vaccins stirs pour les humains sensibles primaires, 'application de la lutte an-
tivectorielle pour minimiser les humains infectés est une meilleure contre-stratégie.

Le chapitre 5 présente un nouveau modele mathématique de la dengue qui tient
compte du cycle de vie des moustiques. Suivant la dynamique de la métamorphose
de la population de moustiques, ainsi que la compétition larvaire, les stades aqua-
tiques : ceuf E, larve L, et pupe P, sont ajoutés au modele. Nous montrons que notre
nouveau modele est bien posé et a des solutions positives. Le nombre de reproduc-
tion de base est défini comme

Ry /athbmS;;S;
HAT

_ \/azbhbmH(')’E,L +ue)(vLp + pL)(vps, + pp) In Ny

UATH & Bm YE,LYL,P

avec

Ny = < X YE,LYL,PYP,Sm > ‘
ua(ver +pe)(ve,e + o) (ve,s, + up)

Les copépodes sont les ennemis naturels du premier et du deuxieme stade larves
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Responses comparison for infected humans
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FIGURE 1.6: Comparaison de la réponse du compartiment humain

infecté dans les 4 stratégies de controle : vaccination (vert), controle

vectoriel (orange), vaccination et contrdle vectoriel (bleu), et sans con-
trole (rouge).

de moustiques. Les copépodes cyclopoides de grande taille, dont la taille du corps
est supérieur a 1mm, agissent comme prédateurs des larves de moustiques, ce qui
influence fortement la population de larves de moustiques. Avec cela, les copépodes
constituent une nouvelle stratégie de controle. En appliquant la vaccination et le
contrdle des vecteurs au modele, nous déterminons la stratégie de controle optimale
pour minimiser les humains infectés. Nous attribuons trois entrées de contrdle, wy
pour le pourcentage de jeunes moustiques exposés aux copépodes, w4 pour le pour-
centage de moustiques adultes exposés aux pesticides et wy pour le pourcentage

d’humains sensibles vaccinés. Nous considérons donc la fonction cofit

T 1 1 1
T (wy,wa, wy) = /O (Ih(t) + EAyw%/(t) + EAAwi(t) + ZAHw%I(t)> dt

sous la contrainte

E'(t) = am(Sm(t) + Lu(t)) — veLE(t) — ueE(t)

L'(t) = ve,LE(t) — yo,pL(t) — prL(t) — wyL(t)

P'(t) = yLpL(t) — vp,s, P(t) — upP(t)
Siu(t) = 125, P(1)e PP — paSu(t) — abuly (£) S (t) — waSu(H) 12
I,(t) = aby Ly (£)Sm(t) — palm(t) — waly(t)

Si(t) = YnRu(t) — aby L (t) Sy (t) — wrSk(t)

I (t)

()

= aby L (£)Sn(t) — only(t)
= oulp(t) — ynRn(t)

=
<=
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pour obtenir la meilleure stratégie de controle. Le principe du maximum de Pon-
tryagin est appliqué pour ce faire.

Théoreme 1.0.3. Il existe les variables adjointes A;,i = 1,2,--- ,6 du systeme (5.37) qui
satisfont le systéme d’équation différentielle ordinaire a rebours dans le temps suivant :

_a)‘alt(t) = — Mpue + (A2 — A)YEL

_9A§t<t> = — Mo+ wy) + (A — A2)yLp

_aAg,g(t) = — Aspip + (Aa(1 — BuP)e PP — A3)yps,,
—aAgt(t) =M — Ag(pa +wa) + (As — Ag)aby Iy (1)
_a)\ag,t(t) =Mt — As(pa +wa) + (A7 — Ag)abySy(t)
_ aA;f(t) = — Ao + (A7 — Ag)aby L (1)

_a)‘gt(t) =1+ (A5 — Ag)aby Sy (t) — Azoy

_a)t;t(t) =(Ae — Ag)Yn

avec la condition de transversalité A(T) = 0. De plus, les variables de controle optimales,

pour j =Y, A, sont données par

wy = max | 0,min | ——, wpm
Ay

* ( . </\4Sm + /\SIm ) )
wy =max | O,min [ ————, Wy
Ap

wy =max (0,min | —,wy | | .
Ay

Nos résultats montrent que la combinaison des copépodes et des pesticides est
une bonne stratégie pour éliminer les humains infectés et la population de mous-
tiques. Cependant, I’élimination des humains infectés est lente. La combinaison de
pesticides et de vaccination semble moins efficace que la combinaison de copépodes
et de pesticides. Il faut un temps plus court pour réduire le nombre de moustiques
avec une durée réduite de 1'application de controle.

Le dernier chapitre de cette étude rend compte de la distribution spatiale des
moustiques adultes. Nous supposons que seul les moustiques adultes se déplacent,
et donc, seuls S, et I, ont des dimensions spatiales. La propension des moustiques
adultes a quitter le point focal peut étre définie par le coefficient de diffusion, pour
(x,y) €O

D(X,y) :Dmin+“ﬂ(xly)+,8ff(x/y) (1.3)

ol D,,j, estla valeur minimale de diffusion en I’absence de perception des ressources,
Fi(x,y) et Ff(x,y) sont les noyaux de perception qui couvrent 'ensemble du paysage
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FIGURE 1.7: Evolution du nombre d’humains infectés sous controle
opitmal.

des ressources de ponte (laying) et de nourriture (food) respectivement. Dans cette
étude, nous considérons que les moustiques préféreront toujours les sites de ponte
les plus proches d’eux. Ainsi, en considérant la densité de population de moustiques
adultes pour chaque (x,y) € Q, nous avons défini un nouveau modele qui implique
la distribution spatiale des moustiques comme suit

9Su(t, x, - .
m(aty) = yps, P(t,x,y)e PrPEXY) — 408, (1 x,y)
d 9S,
_abmlh(tlxly)sm(tlx/y) + a D(X,y)y (14)
d dS
oy (20 5)
81"1(;’:’” = abu I (t, %, 9)Sm(t, x,y) — pialn(t, x,y)

(1.5)
9 ol 0 ol
+ W (D(x,y)ax > + 3y (D(x,y)ay ) :

Le systéme est complété par des conditions aux bords de type Neumann.

Théoréme 1.0.4. Soient 0 < Sh,O/ Ino,Rpop < Hp, 0 < Eo,Lo, Py < Myp, et 0 <
S0, Imo < Mayg oit Hy, My o et M 4 g sont la densité initiale de la population humaine, des
jeunes moustiques et des moustiques adultes, respectivement. Il existe alors une unique so-

lution faible globale en temps (E, L, P, Sy, Ly, S, I, Ry,) € L® (R4, L*(Q))8, du probleme
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aux valeurs initiale. De plus, la solution est non négative, S, + I, < Hyp, E+ L+ P < My
et Sy + Iy < MA,O'

Nous avons montré ce résultat en appliquant le théoreme du point fixe de Picard

dans la boule

BT = {Y S LOO(IR+, LOO(Q))S . sup HY(t,) — Y0||L°°(Q) S T"} (16)
t€[0,T]

a partir de la formulation intégrale

t
E =e (mitue)tE, 4+ ,Xm/o e*(mﬁus)(tﬁ)(sm + Iy)
L =e (mptmltpg 4 YEL /t e~ (rLptuL)(t=5) E g
“Jo
P = e_('YP,SmJ'_.uP)tPO + YL,P /t e_(’YP,SmJ’_VP)(t_S)LdS
~Jo

t
Sw = KxSpo+ / K (755, PePrP — abyI,S)ds
0 17)

t
I :K*Im,0+abm/ K % I, Sds
0
t
Sy, :Sh’0+/0 (’)’th—ﬂthmSh)dS

t
I, :e_”htlh,0+abh/ e~ =5 S, ds

Ot

R, = efryhtRhlo +0’h/ eiiyh(tfs)lhds
0

ol K est le noyau de la chaleur.

Dans la derniere section du chapitre quatre, nous déterminons la stratégie de
contrdle optimale en appliquant trois contrdles : 1’exposition au copépode wy pour
les jeunes moustiques dans les zones de ponte, le pesticide w4 pour les moustiques
adultes, et I'application de la vaccination wy pour les humains. Ici les controles
dépendent du temps et de ’espace. Nous considérons le probléeme, pour X = (x,y)

J(w) = [, fOT (I(X, 1) + 3 Aywa (X, t) + S Aau? (X, t) + S Apw} (X, t)) dtdX.

Nous utilisons la méthode de 1’état adjoint pour déterminer les variables de controle

optimales.
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Théoreme 1.0.5. I existe les variables adjointes A;,i = 1,2, - - -, 6 qui satisfont le systeme
d’équations différentielles partielles a rebours dans le temps suivant :

78)‘18(::' t) = /\1 (X, t)]/lE + ()\1 (x/ t) - /\Z(x’ t))’)/E’L
7?5)&28(;(, ) _ A (x, ) (up + wy) + (Aa(x,t) — Az(x, )y p
ZEA))

o = Ml e+ (Aa(x,8) = Mg, ) (1= PuP(x, e PrPED )y,

_8)»4;:») — DAAy = —Ay (x, D) + Ag(x, ) (ja + wa) + (Ag(x,£) — As(x, £))abuly(x, t) s
_a/\Snglt) — DAAs = = A1 (x, t)am + As(x, 1) (na + wa) + (As(x, 1) — A7(x, t))abySp(x, t) o
OB,y + (e £) — A7 (5, )by, )
SO0 g4 (g, 8) — A )0+ (Aa ) — As(x,)JabuSm(x,
- sll) _ (ay() — gl )
avec la condition de transversalité AT(x,T) = 0 et les conditions aux limites
ul = )‘Tg(g‘lf&%{%’o) et aAzgi’t) = aua(;,t) aQ: 0. En outre, la variable de controle op-

timale w* est définie comme suit

wy(t) = max <0,m1n

)

Auh + A5Sh) W))

AgSy, W
Ay H

In Im L

(%5
Wi () = max <O,mln<
(2

wy(t) = max (O,mm
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FIGURE 1.8: Comparaison entre le nombre d’humains infectés I, le
nombre de moustiques infectieux I;, et le nombre de larves L, avec
trois entrées de controle optimal (bleu) et sans controle (orange).

La figure montre une différence significative entre le graphique avec trois entrées
de controle et sans stratégie de controle. Elle montre que 1’application de la stratégie
de contrdle minimise efficacement la population de larves, les humains infectés et la
population de moustiques. Il faut peu de temps pour minimiser chaque population.

La figure montre 1’évolution spatio-temporelle des humains et des moustiques

infectieux avec et sans controle. La figure montre qu’en 1’absence de contrdle, nous
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without control
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FIGURE 1.9: Comparaison entre le nombre d’humains infectés I, le
nombre de moustiques infectieux I, et le nombre de larves L, avec
trois entrées de controle (bleu) et sans controle (orange).

devons appliquer la stratégie de controle pendant une longue période, puis la dimin-
uer. Cependant, diminuer les efforts de contrdle ne signifie pas arréter son applica-
tion. La figure montre que nous devons continuellement appliquer la stratégie de
controle a proximité des sites de ponte.

La figure montre 1’évolution spatio-temporelle de chaque variable de controle
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FIGURE 1.10: Evolution spatio-temporelle de la variable de controle
optimale wy liée a I'utilisation des copépodes (en haut) et a sa somme
dans l'espace (en bas).

optimale du modele avec trois entrées de controle. Elle montre que nous devons ad-
ministrer le copépode en continu pendant 100 jours tout en diminuant 1’application
du pesticide et la vaccination au fil du temps. Cependant, la figure montre que nous
devons appliquer le pesticide et la vaccination en continu a proximité des sites de
ponte de maniére progressive.

La section annexe contient l’article publié sur le covid intitulé "Accounting for
Symptomatic and Asymptomatic in a SEIR-type model of COVID-19".
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Perspectives de 1’étude

La modélisation mathématique de la dengue est un sujet vaste qui traite de diverses
inconnues. Il est quelque peu impossible de couvrir une grande partie du sujet
en trois ans. Voici donc une liste de perspectives de recherche possibles que nous
prévoyons d’étudier.

Une perspective de 1’étude est de considérer la structure d’age de la population
humaine. Compte tenu de la recommandation de Sanofi Pasteur sur l’application
de Dengvaxia, il est intéressant de créer un modéle avec une structure d’age dans la
population humaine pour décrire la transmission de la dengue avec différents taux
d’infection parmi les différents groupes d’age.

Une autre solution consiste a développer un modele complet de dengue-dengvaxia
intégrant le cycle de vie des moustiques, les quatre souches de virus de la dengue
de la population humaine, et l'efficacité de Dengvaxia sur les différentes souches
de virus. L'ajout de la structure d’age et de 'effet du climat sur la dengue dans ce
modele en ferait un modele robuste de la dengue.

Une perspective supplémentaire de I'étude est de considérer les habitudes de
reproduction et d’alimentation des moustiques. On peut incorporer le sexe des
moustiques dans le modele et appliquer une stratégie de contrdle pour minimiser
les moustiques infectés. Puisque les moustiques males se nourrissent du nectar des
plantes et que certaines plantes mangent les moustiques, en concevant une position
stratégique des plantes dans I'environnement, on peut déterminer la stratégie de
controle optimale pour minimiser les moustiques infectés dans la population.

En lien, on peut aussi considérer les besoins énergétiques des moustiques. Les
sites d’alimentation et de ponte affectent directement 1’approvisionnement en én-
ergie des moustiques. L'énergie des moustiques augmente lorsqu’ils se nourrissent
et diminue pendant la période de ponte. Dans cette optique, nous définissons la
quatrieme dimension U qui rend compte de 'approvisionnement en énergie du
moustique, appelée dimension énergétique. Nous pouvons supposer que seuls les
moustiques adultes se déplacent et donc que seuls S, et I, ont une dimension én-
ergétique. Cette dimension énergétique utilise un budget énergétique dynamique
simplifié par des termes d’advection dans la dimension énergétique supplémentaire
U. Cela repose sur un paysage énergétique apreés discrétisation de l'espace. Les
couvertures terrestres ont été regroupées en fonction de leurs effets présumés sur
la fourniture d’énergie. Les nouveaux moustiques adultes émergents ont un niveau
d’énergie U ott U = 1 est la limite énergétique supérieure et U = 0 est la limite

énergétique inférieure, c’est-a-dire que Sy, I, (¢, x,y, U = 0) = 0 simule la mort par
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famine des moustiques adultes sensibles et infectés. On peut donc définir la dy-
namique du moustique adulte comme suit :

95, (t, x, _
m(atxy) = s, Pt x,y)e PrPUrY) — 4,8, (1 x, y)
d aS
— aby Iy (t,x,¥) S (t, x,y) + Y (D(x,y) a;) (1.9)
d oS, oSy
+ y <D(x’y)ay> - C(x,y)ﬁ
oL, (t, x,y)

= aby I, (t, x,¥)Sm(t,x,y) — ualu(t,x,y)

d oL, d a1, a1,
+ oy <D(x,y)ax> + 3y <D(x,y)ay> — C(x,y)ﬁ.

ot (1.10)

Une autre perspective intéressante de 1’étude est de considérer la co-infection de
la dengue et du Covid-19. En raison du chevauchement des caractéristiques clin-
iques et de laboratoire de ces maladies, la pandémie de Covid-19 dans les zones ol
la dengue est endémique représente un défi majeur. On peut donc concevoir un bon
modele mathématique montrant la co-infection de ces maladies et appliquer une
stratégie de contrdle optimal pour minimiser les humains infectés.
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Chapter 2

General Introduction

2.1 Mosquitoes

Mosquitoes are an important vector for disease transmission of many of the classi-
fied pathogens and parasites, including viruses, bacteria, fungi, protozoa, and ne-
matodes. It is mainly due to their blood-feeding habits, for which they feed on
vertebrate hosts. Infected mosquitoes carry these organisms from person to per-
son without exhibiting symptoms themselves. According to [36], by 2050, half the
world’s population could be at risk of mosquito-borne diseases like dengue fever or
the Zika virus, malaria, and many more. By transmitting these diseases, mosquitoes
cause the deaths of more people than any other animal taxon. With more than 100
million years of an evolutionary process, mosquitoes developed adaptation mecha-
nisms capable of thriving in various environments. Except for permanently frozen
places, these mosquitoes are found in every land region globally. They occupy the
tropics and sub-tropics where the climate seems favorable and efficient for their de-

velopment—making them nearly the universal animal in the world.

FIGURE 2.1: Photo of an adult female Aedes aegypti (left) and Aedes
albopictus (right) mosquito during a blood meal [17].

Of almost 3,600 species of mosquitoes inhabiting the planet, the ones belonging
to the family Cuclicidae of order Diptera are known to play a crucial role as vectors
of arbovirus transmission [48]. Within this family, the genus Aedes is involved in
the transmission of diseases. The two most prominent species within this genus are
Aedes aegypti and Aedes albopictus. They are the primary vector for dengue, yellow
fever, West Nile fever, chikungunya, eastern equine encephalitis, Zika virus [32], and
many other less notable diseases.
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In this thesis, we aim to develop a mathematical model of dengue taking into
account vaccination and vector control. Thus, we focus on the biology of Ae. aegypti

and Ae. albopictus mosquitoes as the primary vector of dengue.

2.1.1 Life Cycle

Mosquitoes have a complex life cycle. Nevertheless, all of them require water to
complete their life cycle. They change their shape and habitat as they develop. Like
all other mosquitoes, Ae. aegypti and Ae. albopictus have four distinct stages: egg,
larva, pupa, and adult (Fig. 2.2).

Female mosquitoes lay
eggs in containers that
hold water.

Pupae live in water.
They develop into adult,
flying mosquitoes in
2-3 days.

o>
VA
7’

Pupa Eggs

Eggs hatch within a few
days to months when

Larvae live in water. .
covered with water.

They develop into pupae
in as few as 5 days.

FIGURE 2.2: Life stages of female Ae. aegypti and Ae. albopictus
mosquitoes. [19]

Female adult mosquitoes lay eggs a few days after acquiring a blood meal. Mosquitoes
generally lay up to 100 eggs at a time. They lay their eggs singly [31] on the inner
walls of containers just above the water line that is or will be filled with water. It
sticks like glue. This oviposition site includes a cavity wall such as a hollow stump
or a container such as a bucket or a discarded vehicle tire. Only a tiny amount of
water is needed to lay eggs. However, mosquito eggs can survive drying out for
up to 8 months or even in winter in the southern United States [20]. When that
happens, they have to resist a considerable desiccation before they hatch [59]. Once
they achieve a suitable desiccation level, they can enter diapause for several months.
Aedes eggs in diapause tend to hatch irregularly over an extended period.

It then hatches to larvae when water inundates the eggs, such as rains or filling

water by people. Following water immersion, eggs hatch in batches. Since some
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eggs require multiple soakings in water before hatching, this process may last days
or weeks [69].

Larvae live in water, and they feed on heterotrophic microorganisms such as
bacteria, fungi, and protozoans. They develop through four stages, or instars. The
larvae molt in the first to fourth-instar, shedding their skins to grow further. On the
fourth instar, when the larva is fully grown, they metamorphose into a new form
called pupae. Pupa still lives in water, but they do not feed. After two days, they
fully develop into adult mosquito forms and break through the pupa’s skin. The
adult mosquito is no longer aquatic; it has a terrestrial habitat and can fly. This entire
life cycle of mosquitoes lasts for eight to ten days at room temperature, depending
on the feeding level.

2.1.2 Feeding Habits by Adult Mosquitoes

Like all other living animals, Mosquitoes need energy and nutrients for survival and
reproduction. Plant materials and blood are valuable sources of this.

Only female mosquitoes bite. They are attracted by infrared light, light, perspi-
ration, body odor, lactic acid, and carbon dioxide. The mouth part of many female
mosquitoes is adapted for piercing animal hosts” skin and sucking their blood as
ectoparasites. The female mosquitoes land on the host skin during the blood meal
and stick their proboscis. Their saliva contains anticoagulant proteins that prevent
blood clotting. They then suck the host blood into their abdomen. Ae. Aegypti
mosquitoes need 5 pL per serving [23]. In many female mosquito species, nutri-
ents obtained from blood meals are essential for the production of eggs, whereas
in many other species, obtaining nutrients from a blood meal enables the mosquito
to lay more eggs. Among humans, mosquitoes preferred feeding those with type
O blood[61], heavy breathers, an abundance of skin bacteria, high body heat, and
pregnant women [21]. Individuals” attractiveness to mosquitoes also has a heritable,

genetically-controlled component [29].
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FIGURE 2.3: Dorsal view of the adult female Ae. Aegypti mosquito.
[58]
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Blood-sucking species of mosquitoes are selective feeders that prefer a particular
host species. Nevertheless, they relax this selectivity when they experience severe
competition and scarcity of food and defensive activity on the part of the hosts.

If humans are scarce, mosquitoes resort to feeding on monkeys, while others
prefer on equines, rodents, birds, bats, and pigs, which is where so many of our
cross-species disease fears originate from [41]. Some mosquitoes ignore humans al-
together and feed exclusively on birds, while most eat whatever is available. Some of
the other most popular dining options for mosquitoes include amphibians, snakes,
reptiles, squirrels, rabbits, and other small mammals. Mosquitoes also target larger
animals, such as horses, cows, primates, kangaroos, and wallabies [39]. Some mosquito
species may attack even fish if they expose themselves above water level, as mud-
skippers do [63]... Comparably, mosquitoes may sometimes feed on insects in na-
ture. Ae. Aegypti and Culextarsalis are attracted and feed on insect larvae, and they
live to produce viable eggs [60]. While Anopheles Stephensi is attracted to and can
feed successfully on larvae of moth species known as Manduca sexta and Heliothis
subflexa [34].

Plant nectar is a common energy source for diet across mosquito species, partic-
ularly male mosquitoes, exclusively dependent on plant nectar or alternative sugar
sources. The design of efficient sugar-baited traps for mosquitoes would greatly
benefit the prevention of vector-borne illness. Plant preference is likely driven by
an innate attraction that may be enhanced by experience, as mosquitoes recognize
available sugar rewards [70]. It varies among mosquito species, geographical habi-
tats, and seasonal availability. Nectar-seeking involves integrating at least three sen-
sory systems: olfaction, vision, and taste.

Nevertheless, altogether mosquitoes can discriminate between rich and poor
sugar sources to choose plants with higher glycogen, lipid, and protein content [73].
Below are the preferred plant of different mosquito species from the paper of Barredo
and DeGennaro [7].

2.1.3 Breeding Sites

The Aedes mosquitoes breed in all imaginable receptacles. It can be classified as arti-
ficial and natural wet containers, preferably with dark-colored surfaces and holding
clear unpolluted water [46]. Below is roughly the list of different kinds of breeding
sites of Aedes mosquitoes [32]:

¢ Natural Contaniner

— Tree Holes
— Leaf Axils
— Rock Holes.

e Artificial Container
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] Mosquito Species \ Nectar Source
Aedes aegypti Asclepias syriaca (milkweed) Plant extract
Impatiens walleriana Live plants
Anopheles gambiae Mangifera indica

Delonix regia Live plants
Parthenium hysterophorus Live plants
Acacia macrostachya

Acacia albida
Culex pipiens A. syriaca (milkweed)
Live Flower, extract, and synthetic blend

I. walleriana
Culex pipiens pallens Ligustrum quihoui (waxyleaf privet)
Broussonetia papyrifera (paper mulberry)
L. quihoui
Abelia chinensis
Nerium indicum

TABLE 2.1: Preferred plants of different mosquito species as energy
source.

- Discarded Containers — Water Storage Containers
+ Automobile Tires * Tanks
+ Tin Cans * Drums

Bottles * Water Jars

*

* Vases

Roof Gutters

Animal Water Dishes
Water Closets.

*

X

*

2.2 Dengue

Dengue is the most common mosquito-borne viral infection. It can be found in trop-
ical and subtropical regions worldwide, with peak transmission during the rainy
season. In 2019, World Health Organization [68] reported 5.2 million dengue cases
worldwide. In the Philippines alone, 271,480 cases with 1,107 deaths are reported
from January 1 to August 31, 2019, due to dengue fever [28].

Dengue is caused by four serotypes of viruses under the Flaviviridae family.
They are distinct but closely related serotypes of viruses called DENV-1, DENV-2,
DENV-3, and DENV-4. About one in four people that are infected with dengue will
get sick [15]. The illness usually begins 5-7 days after the infective bite of Ae. aegypti
and Ae. albopictus female mosquitoes [8].

In most cases, dengue is a self-limiting illness but may require hospital admis-
sion, where supportive care can modify the course of the illness. Symptoms can be
mild or severe and typically last 2-7 days. The most common symptom of dengue
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FIGURE 2.4: Cross section of a dengue virus showing its structural
components [40] similar to the Zika Virus.

is fever accompanied by nausea, vomiting, rash, aches, and pains in the muscles or
joints. Infection from one type grants life-long immunity to that virus strain and
temporarily grants partial protection against the other types. When infected with a
different type of virus for a second time, a more severe disease will occur, known
as Dengue Hemorrhagic Fever (DHF). In the Philippines, 1,107 deaths are reported
from January 1 to August 31, 2019, due to dengue fever [28].

2.2.1 Transmission

Dengue viruses are spread to people through the bites of infected Aedes species
mosquitoes [18]. It can be transmitted by human-to-mosquito, mosquito-to-human,
and other transmissions such as human-to-human and mosquito-to-mosquito trans-
mission.

Vertical transmission is when infected parent mosquitoes transmit the arbovirus
to some part of their offspring within the ovary or during oviposition [30]. Several
articles confirm these findings. A study of Shroyer DA.[24] is one of the articles that
confirms the presence of the natural vertical transmission of DENV in Ae. aegypti
and Ae. albopictus. It says that the DENV virus can be transferred from parent to
offspring in seven consecutive generations of Ae. aegypti and Ae. albopictus, under
laboratory conditions. This transmission can contribute to the continuation of in-
fected mosquitoes; however, this is not enough to support the dengue spread.

A more common form of transmission is known as horizontal transmission. The
virus is transmitted to humans through the bites of infected Ae. aegypti mosquitoes.
After feeding on a dengue-infected person, the virus replicates in the mosquito
midgut before disseminating to secondary tissues, including the salivary glands.
The Extrinsic Incubation Period (EIP) is the time it takes from ingesting the virus to
actual transmission to a new host. It takes about 8-12 days when the ambient tem-
perature is between 25-28°C. Variations in the EIP are also influenced by factors such
as the magnitude of daily temperature fluctuations, virus genotype, and initial viral
concentration [68]. Once infectious, the mosquito can transmit the virus for the rest
of its life.
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Mosquitoes can become infected by someone who is viremic with DENV. Viremia
is a condition in which there is a high level of the dengue virus in the person’s blood.
It occurs four days after an infected Ae. aegypti mosquito bites an individual. Most
people are viremic for about 4-5 days, but viremia can last as long as 12 days [68].

Though the possibility is low, there is evidence that dengue can also spread
through maternal transmission or be transmitted through infected blood transfu-
sion. A pregnant woman who has a DENV infection can pass the virus to her fetus.
Babies who carry DENV may suffer from pre-term birth, low birth weight, and fetal
distress [68].

2.2.2 Vaccination

There is no specific treatment for dengue fever. However, efforts to develop a vac-
cine have been ongoing for decades.

The first dengue vaccine used commercially is CYD-TDV, marketed as Deng-
vaxia by Sanofi Pasteur. It was licensed in December 2015 and approved by regula-
tory authorities in 20 countries. One such country is the Philippines. In December
2015, the Philippine Food and Drugs Administration (FDA) greenlighted the vac-
cine making the Philippines the first Asian country to commercialize it [65]. In April
2016, the Department of Health (DOH) launched the dengue vaccination campaign
in the Philippine regions of Central Luzon, Calabarzon, and Metro Manila. More
than 800,000 school children received at least one dose of the vaccine.

——  Dengue Tetravalent

Vaccine, Live
r’!\ Dengvaxia® R, enly

FIGURE 2.5: Dengue tetravalent vaccine manufactured by Sanofi Pas-
teur.

Dengvaxia is a live attenuated tetravalent chimeric vaccine. It is made using re-
combinant DNA technology by replacing the PrM (pre-membrane) and E (envelope)
structural genes of yellow fever attenuated 17D strain vaccine with those from the
four dengue serotypes. It should be administered in three doses of 0.5 mL subcuta-
neous (SC) six months apart. Sanofi Pasteur recommended that the vaccine only be
used in people between the age of 9 to 45 and people already infected by one type
of virus [3]. It is because outcomes may be worse in those who have not yet been
previously infected.
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2.2.3 Vector Control

A disease vector is any living agent carrying and transmitting an infectious pathogen
to another living organism. Controlling such vectors is an essential method of lim-
iting or eradicating the transmission of such diseases. For dengue fever, mosquito
control with good scientific insights into mosquito ecology and disease transmission
patterns is essential to combat dengue fever.

The World Health Organization considered the following categories to control or
prevent the spread of the dengue virus [33].

e Environmental management

- A significant risk factor for dengue virus transmission is the proximity
of mosquito vector breeding sites to human habitation. Thus an efficient
environmental management system is an effective strategy for vector con-
trol. It includes container management, eliminating breeding sites” alter-

ation, and preventing breeding in the water storage container.
¢ Chemical and biological methods

— Chemical larviciding is effective against container breeders of Aedes mosquitoes
in clean water. It uses organic synthetic insecticides such as temephos
(Abate) and insect growth regulators (IGRs) such as methoprene (Altosid,
juvenile hormone mimic), where environmental impact is minimal if ap-

propriately used on human premises.

— Wolbachia is a common type of bacteria found in insects but is harmless to
people or animals. It is not found in Aedes aegypti mosquitoes. When male
Ae. aegypti mosquitoes with Wolbachia mate with wild female mosquitoes
that do not have Wolbachia; the eggs will not hatch, resulting in a decease
population of Ae. aegypti mosquitoes [14].

— Copepods are a group of small crustaceans found in nearly every fresh-
water and saltwater habitat. The use of cyclopoida copepoda as mosquito
control has proven to be more effective than invertebrate predators [44].
Only copepod with a body length greater than 1.4 mm is of practical use
as mosquito control. They kill the first instar mosquitoes with 40 Aedes lar-
vae/copepod/day. They typically reduce Aedes production by 99-100%.

¢ Personal protection

- Avoiding getting further mosquito bites when a person is in a viremic
state is an excellent way to prevent the spread of the dengue virus. Dur-
ing this time, DENV is circulating in the person’s blood and therefore
may transmit the virus to new uninfected mosquitoes, who may, in turn,
infect other people. Therefore, personal protection using mosquito coils
and aerosols, insecticide-impregnated curtains and mosquito nets, and
mosquito repellents are essential methods for vector control.
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¢ Space spray application

— Space spray is an effective strategy for rapidly killing adult Aedes mosquitoes
in dengue epidemic areas. It uses thermal fogs and ultra-low volume

aerosol sprays.

Another vector control that is proven effective under field trials has demon-
strated that dengue incidence can be substantially reduced by introgressing strains
of the endosymbiotic bacterium called Wolbachia into Aedes aegypti mosquito popu-
lations [66]. Wolbachia is a ubiquitous bacteria that occurs naturally in insects and is
safe for humans. They live inside insect cells and are passed from one generation to
the next through an insect’s eggs. Independent risk analyses indicate that the release
of Wolbachia-infected mosquitoes poses negligible risk to humans and the environ-
ment. Wolbachia-carrying mosquitoes reduced their ability to transmit arboviruses
[55]. The bacteria compete with the virus, making it harder for viruses to reproduce
inside the mosquitoes. In effect, mosquitoes are much less likely to spread viruses

from person to person.

2.3 Mathematical Models of Dengue Fever

Mathematical modeling has been used to test and determine the effectiveness of
different intervention strategies in controlling or eliminating dengue. These various
mathematical models aid mathematicians in testing the different hypotheses in the
dengue transmission dynamic to understand their importance better.

SEIRS compartmental models accounting for susceptible, exposed, infected, and
removed for the human population and susceptible and infected for mosquito pop-
ulation were widely promoted. Syafruddin and Noorani [62] studied a system of
differential equations that models the population dynamics of an SEIR vector trans-
mission of dengue fever. It is a mathematical model that analyses the spread of one
serotype of dengue virus between host and vector. They have shown that it can
model dengue fever using actual data.

On the other hand, Nuraini et al. [51] derived and analyzed the model taking into
account the severe Dengue Hemorrhagic Fever (DHF) compartment in the trans-
mission model. They consider a SIR model for dengue disease transmission. It is
assumed that two viruses, strain one and strain 2, cause the disease. Long-lasting
immunity from infection caused by one virus may not be valid concerning a sec-
ondary infection by the other virus. They find a control measure to reduce the DHF
patients in the population or keep them at an acceptable level. They also discuss
the ratio between the total number of severe DHF compartments, the total number
of first infection compartments, and the total number of secondary infection com-
partments, respectively. Furthermore, they found out that this ratio is needed for
practical control measures to predict the “real” intensity of the endemic phenomena
since only data on severe DHF compartment is available.
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Furthermore, Derouich et al. [27] proposed a model with two different viruses
acting at separated intervals of time. They study the dynamics of dengue fever while
concentrating on its progression to the hemorrhagic form to understand the epi-
demic phenomenon and suggest strategies for controlling the disease. Their model
showed that the strategy based on preventing the dengue epidemic using vector con-
trol through environmental management or chemical methods remains insufficient
since it only permits delaying the outbreak of the epidemic. Moreover, the reduction
of susceptibles via vaccination is unlikely to be applicable in the short term because
it faces some hurdles since a vaccine must protect against the four serotypes simul-
taneously.

Also, Aguiar and Stollenwerk [2] analyzed a modeling framework and assump-
tions used by Aguiar et al. [1] (2 and 4 strain dengue model) and assessed the impact
of the newly licensed dengue vaccine. They discuss the role of several subsequent
infections versus an exact number of dengue serotypes included in the model frame-
work and the human immunological aspects associated with disease severity, iden-
tifying the implications for model dynamics and their impact on vaccine implemen-
tation. Their results suggested that reserving vaccines for seropositive individuals
should provide a high level of protection, whereas indiscriminate vaccination could
increase the number of hospitalizations also on the population level.

Determining the optimal control in minimizing the spread of dengue fever has
also been studied. Yang and Ferreira [72] described the dynamics of dengue disease
in the compartment model, taking into account chemical controls and mechanical
control applied to the mosquitoes. Allowing some model parameters to depend on
time, they were able to mimic seasonal variations and divide the calendar year into
favorable and unfavorable periods regarding the vector population’s development.
Their simulations showed "unpredictable” epidemic outbreaks when abiotic varia-
tions are taken into account. If controlling mechanisms are introduced regularly
every year, they observe the decline of the efficiency index with the elapsed time.

On the other hand, an essential strategy in controlling the dengue epidemic is
controlling the vector population. Among the many kinds of research, Almeida et
al. [4] considers two techniques; it consists in releasing mosquitoes to reduce the
size of the population (Sterile Insect Technique) or in replacing the wild population
with a population carrying a Wolbachia bacteria (a bacteria responsible for blocking
the transmission of viruses from mosquitoes to human). Their paper presents an op-
timal strategy in the release protocol of these two strategies wherein they look for a
control function that minimizes the distance to the desired equilibrium (replacement
or extinction of the wild population) at the final treatment time.

Moreover, Puntani et al. [54] presented a control mechanism based on a dengue
model with vertical transmission considering the two policies, namely vaccination
and insecticide administration. Carvalho et al. [12] evaluated a control strategy,

which aims to eliminate the Aedes aegypti mosquito, as well as proposals for the
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vaccination campaign. Their results show that eradicating dengue fever is done us-
ing an immunizing vaccine since control measures against its vector are insufficient
to stop the disease from spreading. Additionally, Iboi and Gumel [38] designed
a new mathematical model to assess the impact of the newly- released Dengvaxia

vaccine on the transmission dynamics of two co-circulating dengue strains.

2.4 Outline of Study

This thesis is the first study to consider the proposal of Sanofi Pasteur. Herein we
introduce a new mathematical model of dengvaxia. As recommended by the World
Health Organization [71], vaccination should be given to individuals who have been
already infected by one strain virus. In this paper, we split the susceptible human
compartment into primary or secondary susceptible humans, that is, individuals
who have not been infected and individuals who have been infected by one or more
strains of the dengue virus.

This thesis paper aims to introduce a new mathematical model of dengue. It has
the following objective:

1. to study dengvaxia and show if the recommendation of Sanofi is enough,
2. to determine an effective control of dengue, and

3. to generate a mathematical model of dengue accounting for its life cycle and
spatial distribution.

The manuscript is organized as follows.

The third chapter started with the presentation of the Ross-type model of dengue
that considers vaccinating individuals who have previous dengue infections. Using
the logistic and exponential functions for human and mosquito populations, respec-
tively, we have shown the well-posedness and positivity of the solution of the model.
We obtained that the diseases free equilibrium is locally asymptotically stable while
the endemic equilibrium is unstable. In this chapter, we compare the model using
three growth functions:

* Pop;: constant human and mosquitoes population,

* Popy: Gompertz growth function for the human population and an exponen-
tial growth function for mosquitoes population,

* Pops: an entomological growth function for mosquito and a constant growth

function for the human population.

In the Pop; model, we showed that the model has only the disease-free equilibrium
and we were able to prove that it is locally asymptotically stable Similarly, the Pop,
model has only the disease-free equilibrium which is locally asymptotically stable as
soon as the growth rate «,, is smaller than the mortality rate y,,. On the other hand,
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the Popsz model has both an endemic and a disease-free equilibrium. We were able
to define the basic reproduction number

R \/azbmug(l;;zug + byuy)
O pum—
Hg pm (v + 6n)

then show that the disease-free equilibrium of model Popj is locally asymptotically
stable if «;, < p;; and that the endemic equilibrium is stable only if &, > p,, and
Ro > 1. More widely, we have proved the theorem below for the Popz model.

Theorem 2.4.1. 1. Ifa, < py, the the trivial disease-free equilibrium is globally asymp-
totically stable.

2. If ayy > pw and Ro > 1, then the non-trivial disease-free equilibrium is globally
asymptotically stable.

We then determine the optimal control strategy for minimizing infected humans
of each of these three control strategies. We attribute three control inputs, wy, w3, and
Wy, for the primary, secondary human, and mosquito populations. Here, the action
of w1 (t) is the percentage of primary susceptible, and ws(f) is the percentage of a sec-
ondary susceptible individual being vaccinated per unit of time. While ws(t), we (t)
is the percentage of removed mosquitoes due to insecticide administration to the
environment per unit of time. Considering the objective function

T 1 1 1 1
J (w1, w3, wy,) = /0 <u2(t) + EAlw%(t) + §A3w§(t) + EAmwg(t) + 2Amw%(t)> dt

subject to
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(1) = Gy (1)
us(t) = — D) 1)+ (M) — ws(B)us 1)
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fort € [0,T], with 0 < wy, w3 < wy and 0 < wy,, < wy, we use the Pontryagin’s

maximum principle to determine the optimal control.
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Theorem 2.4.2. There exists the adjoint variables A;,i = 1,2,--- ,6 of the system (4.13)
that satisfy the following backward in time system of ordinary differential equation.
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with the transversality condition A(T) = 0. Furthermore, the optimal control variables, for
j=1,3,5,6, are given by

w]*(t) = max (0, min (%,wH, wM>> )

The optimality of the models is numerically solved using a gradient method writ-
ten in Python. The figure obtained showed that vaccinating only the secondary sus-
ceptible humans is not ideal. It requires constant effort and takes a long time to
vaccinate them. Instead, it is better to vaccinate the primary susceptible humans.
However, since safe vaccines for primary susceptible humans do not exists to date,
the application of vector control to minimize infected humans is a better counter-
strategy.

The fifth chapter introduced a new mathematical model of dengue that accounts
for the mosquitoes’ life cycle. Following the dynamics of the metamorphosis of the
mosquito population, the aquatic stage: egg E, larvae L, and pupae P, are added to
the model. We show that our new model is well-posed and has positive solutions.
The basic reproduction number is defined as

HAOY

_ [a?bpbuH(ve L + pE) (vr,p + pn) (Yps,, + pp) In Ny
HACH&m P YE,LYLP '

with

N — ( am’YE’L,)/L/P’)/P/Sm )
Y — .
na(ver +pe)(yop +pe)(vps, + Hp)

Copepod are natural enemies of the first and second instar of mosquito larvae. A
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Responses comparison for infected humans
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Vectorial
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FIGURE 2.6: Behaviour of infected humans I, with respect to time

without control (red), for the optimal control related to the vaccina-

tion only (green), related to the vector only (orange), and with both

control (blue). Cyan curve corresponds to optimal control of vaccina-
tion of secondary humans only.

large sized cyclopoid copepods, having body size greater than 1mm, acts as preda-
tors of mosquito larvae which strongly influence the mosquito larval population.
With this, copepod as a new control strategy is applied in Section 5.4. By apply-
ing vaccination and vector control to the model, we determine the optimal control
strategy in minimizing infected humans. We attribute three control inputs, wy for
the percentage of young mosquitoes exposed to copepods, w4 for the percentage
of adult mosquitoes exposed to pesticides and wp for the percentage of susceptible

humans being vaccinated. Thus we consider the objective function

T 1 1 1
T (wy, wa, wy) = /O (Ih(t) + EAyw%/(t) + EAAwi(t) + 2AHw%{(t)> dt

subject to

— ueE(t)
= yeLE(t) — yo,pL(t) — pLL(t) — wyL(t)
P'(t) = yrpL(t) = vps, P(t) — upP(t)

)
)
)
; = ’)/plsmp(t)e_ﬁmp(t) — “I/lASm(t) — abmlh(t)Sm(t) — wASm(t) (22)
)
)
)

in obtaining the best control strategy. The Pontryagin’s maximum principle is ap-

plied in doing so.
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Theorem 2.4.3. There exists the adjoint variables A;,i = 1,2,--- ,6 of the system (5.37)
that satisfy the following backward in time system of ordinary differential equation.

_a)‘alt(t) =—Mpg+ (A2 — A)vEL

_a/\;t(t) =— Ao(pr +wy) + (Azs — A2)yLp

B aASf D = st (Al — BuP()e PO — A3y,
_a/\gt(t) =My — As(pa +wa) + (As — Ag)aby L, ()
_a/\g’t(t) =Mam — As(pa +wa) + (A7 — Ag)abySy(t)
_Maét(” — — Awp + (A7 — Ae)abyln(t)

_37‘550 =1+ (As — A)abpSm(t) — Asar,

—aAst(t) =(A6 — Ag) 7

with the transversality condition A(T) = 0. Moreover, the optimal control variables, for

wy =max | 0,min | —,wum
Ay

Ap

j =Y, A, are given by

Our results show that the combination of copepods and pesticides is a good strat-
egy for eliminating infected humans and the mosquito population. However, the
elimination of infected humans is slow. The combination of pesticide and vaccina-
tion seems less efficient than the combination of copepods and pesticides. It takes
a shorter time to reduce the number of mosquitoes with a reduced duration of the
control application.

The last chapter of this study accounts for the spatial distribution of mosquitoes.
In this study, we assume that only the adult mosquito is moving, and thus, only
Su and I, have spatial dimension. The propensity of adult mosquitoes to leave the

determined focal point (x, y) can be defined by the diffusion coefficient
D(x,y) = Dyin +aFi(x,y) + BF¢(x,y) (2.3)

where D,,;, is the minimal diffusion value in the absence of resources perception,
Fi(x,y) and F¢(x,y) are the dispersion kernels that covered the entire landscape of
the laying and food resources respectively. In this study, we consider that mosquitoes
will always prefer the nearest laying sites to them. Thus, considering the population
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1edcopepod, Pesticide, Vaccination
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FIGURE 2.7: Optimal solutions of the infected human in the model.

density of adults mosquito for every (x,y) € ), we defined a new model that in-
volved mosquitoes spatial distribution as follows

asm t/x/ _ X
(aty) = yps, P(t,x,y)e PrPExy) 5 (1 x,y)
J 9Sm
— abuly(t, %, )Sn (£, %,y) + <D(x’y>ax) o
d 9Sm
M(g,tx,y) = aby Iy (t, x,y)Sm(t, x,y) — ualn(t,x,y, U)

+ aax (D(x,y)%) +aay <D(x,y)%€;> : 29

Neumann boundary conditions are considered.

Theorem 2.4.4. Let 0 < Sy, I 0, Ry0 < Ho, 0 < Ep, Lo, Py < My, and0 < Sy,0, [0 <
M 4 o where Hy, My g and M 4 g are the initial population density for human, young mosquito
and adult mosquito population, respectively. Then there exists a unique global in time weak
solution (E,L,P,Su, I, Sp, I, Ry) € L®(Ry,L®(Q))8, of the initial boundary value
problem. Moreover, the solution is nonnegative, S, + I, < Ho, E4+ L+ P < My and
S+ In < Map.



2.4. Outline of Study 41

This result is proved by applying Picard’s fixed point theorem in the closed ball
Br = {Y € L®(R,,L™®(Q))%: sup ||Y(t,.) — Yoll=(q) < r} , (2.6)
t€[0,T]

of the integral formulation

t
E =e (eitueltEy 4+ gy, /0 e~ rELtre)(t=s) (g 4 1)
L =e (nptriLy 4 ap /t e~ (rLprL)(t=5) E4g
“Jo
P =e (vsutre)tpy 4o p /t e~ (resutup)(t=8) T 4g
~Jo

t
S :K*Sm,o—i—/ K*(fyplsmPe*ﬁmP_umehSm)ds
o (2.7)
I, :K*Im,0+abm/ K % I,Spds
0

ot
S, = Sh,O +/0 (’)’th - athmSh)ds
t
I, = e“”ltlhlo —|—abh/ €7Uh(tis)1mshd5
0

t
Rh = eilyhtRh,O + o'h / ef’)/h(tfs)lhds
0

where K is the heat kernel.

In the last section of chapter four, we determine the optimal control strategy by
applying three controls: exposure to copepodes wy for the young mosquitoes in the
laying areas, pesticide w4 for the adult mosquitoes, and application of vaccination
wy for the humans. Here controls are time and space dependent. We consider the
problem

J(w) = [, foT (Lu(x, t) + SAyw2 (x,t) + S A0 (x,t) + S Apw? (x, t)) dtdX.

We use the adjoint state method to determine the optimal control variables.
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Theorem 2.4.5. There exists the adjoint variables A;,i = 1,2, - -, 6 that satisfy the follow-
ing backward in time system of partial differential equations

oA (x, t
ML) e+ () — Nl )7
oA (x,t
O] e )+ ) + (hal ) — A )
A3(x, 1) —BuP(xt)
- = As(x Hpp + (As(x, 1) — A2, £)(1 = BuP(x, 1))e )ps,
8/\4(x, t)
T DAAy = =AM (x, ) + Ag(x, t) (pa +wa) + (Aa(x, t) — As(x, t))aby Iy (x, t)
8/\5(x, t)
T DAAs = —Aq(x, t)am + As(x, ) (pa +wa) + (Ae(x,t) — Az(x, t))ab,Sy(x, t)
dAg(x, t
_68(1‘) = Ae(x, Hwy + (Ag(x,t) — Ay(x, t))aby Ly (x, t)
A7 (x, t
—78(;C) =1+ (Az(x,t) — Ag(x,t))op + (Aa(x,t) — As(x,t))aby,Sm(x, t)
dAg(x, t
S0 (g, t) — As(x D)

(2.8)
with the transversality condition AT (x, T) = 0and boundary conditions u* = %
and aAa(x,t) _ Bua(x,t) —0.

X X

d [0}
Furthermore, the optimal control variable w* is defined as

wy(t) = max <O,min (i\ZALl/,wM>>

wi(t) = max <0,min (W’WM>>

wi(t) = max <O,min (fiﬁ,w;&) .

Using the gradient method written in Python, we numerically solved the optimality

of the model and obtained the following figures.
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FIGURE 2.8: Comparison between the number of infected humans I,
number of infectious mosquitoes I;, and number of larvae L, with
three control inputs (blue) and without control (orange).

Figure shows the spatiotemporal evolution of infectious humans and mosquitoes
with and without control. The figure shows that without control inputs, we need to
apply the control strategy for a long time and then decrease it. However, decreas-
ing the control strategy’s efforts does not mean stopping its application. The figure

shows that we must continuously apply the control strategy near the laying sites.
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Consequently, with the three control inputs, we only need to apply the control strat-
egy for a short period and eventually stop it in more or less 20 days.
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FIGURE 2.9: Spatiotemporal evolution of the optimal control variable
wy related to the copepods use (top) and its sum in space (down).

Figure shows the spatiotemporal evolution of each optimal control variable of
the model with three control inputs. It shows that we need to administer copepod
continuously for 100 days while lowering pesticide application and vaccination over
time. However, the figure shows that we need to continuously apply the pesticide
and vaccination near the laying sites unfadingly.

The appendix section contains the published article about covid entitled "Ac-
counting for Symptomatic and Asymptomatic in a SEIR-type model of COVID-19".
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Perspectives of the Study

Mathematical modelling of dengue fever is a wide topic that deals with various un-
knowns. Covering a a good deal of scope for three years is somehow impossible.
Thus, here are the list of possible research perspectives we plan to study in the fu-
ture.

One perspective of the study is to consider the age structure of the human pop-
ulation. Considering the recommendation of Sanofi Pasteur on the application of
Dengvaxia, it is interesting to create a model with age structure in the human popu-
lation to describe dengue transmission with different infection rates among different
age groups.

Another is to develop a complete dengue-dengvaxia model incorporating the
mosquitoes’ life cycle, the human population’s four dengue strain viruses, and the
efficacy of Dengvaxia in different virus strains. Adding the age structure and climate
effect on dengue in this model would make this a robust dengue model.

An additional perspective of the study is to consider the mosquitoes’ repro-
duction and feeding habits. One can incorporate the mosquitoes” gender in the
model and apply a control strategy to minimize infected mosquitoes. Since male
mosquitoes feed on plant nectar and some plants eat mosquitoes, by devising a
strategic position of plants in the environment, one can determine the optimal con-
trol strategy for minimizing infected mosquitoes in the population.

In connection, one can also consider the energy mosquito needs. Feeding and
laying sites directly affect the energy supply of mosquitoes. Mosquito energy in-
creases when they are feeding and decreases during the laying period. With this
in mind, we define the fourth dimension U which account the energy supply of
mosquito, called the energetic dimension. We can assume that only the adult mosquito
are moving and thus only S, and I, have energetic dimension. This energetic di-
mension uses a simplified dynamic energy budget through advection terms in the
additional energy dimension U. This relies on an energetic landscape after space
discretisation. Land-covers were grouped depending on their presumed effects on
energy supply. New emerging adult mosquitoes have energy level U wherein U = 1
is the upper energetic boundary and U = 0 is the lower energetic boundary, that is,
Sm, Ln(t,x,y, U = 0) = 0 simulates the death by starvation of adult susceptible and
infected mosquitoes. Thus one can define the dynamics of adult mosquito as fol-
lows:

9Su(t,x,y)

ot = ’)’plsmP(t, x’y)efﬁmP(t,x,y) - VASm(t/ x,y)

0 0Sy
— abuIn(t, x,y)Sm(t, x,y) + e (D(x/y)ax> (2.9)

0 oS S
+ y (D(x’y)ay> - C(xry)m
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ALy (t, x,y)

5 = abuIn(t, %, y)Sm(t, x,y) — paln(t, x,y)

] I, 0 oI, a1,
+ Y (D(x,y)ax> + @ (D(x,y)ay> —C(x,y)ﬁ.

Another interesting perspective of the study is to consider the co-infection of

(2.10)

dengue and Covid-19. Because of the overlapping clinical and laboratory features of
these diseases, Covid-19 pandemic in a dengue-endemic areas causes a major chal-
lenge. Thus one can design a good mathematical model showing the co-infection of

these disease and apply optimal control strategy to minimize infected humans.
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Chapter 3

A preliminary study of Dengue
models accounting for the

Vaccination

In this chapter, we introduce some mathematical models of dengue that consider a
vaccine that should be given to people who have previous dengue infections. We

compare various growth functions.

3.1 Description of the Model with Vaccination

Based on the Ross-type model, we assumed that dengue viruses are virulent with no

other microorganism attacking the human body.

N
’ S ,
// \\ //
) N <
4
a S » I
m » >
m I m
b,
amH
Hm Hm
v

FIGURE 3.1: Compartmental representation of the model with vacci-
nation considering individuals who have previous dengue infections.

Let H be the human population subdivided into primary susceptible S;, sec-
ondary susceptible Sy, infected I, and removed R;,. Primary susceptible humans are
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individuals who have not yet been infected by dengue, while secondary susceptibles
humans are individuals who previously had dengue infection.

Let M be the population of female mosquitoes split into two groups of suscep-
tible S;;, and infectious I,, mosquitoes. Figure 3.1 describes the flow of dengue dis-
ease. In this chapter, we introduce a mathematical model of dengue that considers
the vaccine that should be given to people who are already infected by one type of
virus.

Since humans have a meager mortality rate compared to mosquitoes, we neglect
the natural death of humans but still consider their growth. The following system of

ordinary equations governed the dynamics of humans.

5i0) =~ (o) + £(3(0) G
e = (()><bhsh<>+bhsh< D) = () — 8 () (32)
Sit) = bt — ”bhl(t§>sh<t> (33)
Ry(t) = 6&uly(t). (3.4)

While the dynamics of mosquitoes are as follows

(1) = =S, (0)  pSut) + (M(1) 65)
B0 = S0~ (o) .6)

Note that the total human population is given by H = S, + I;, + Sn+ R, and
the total mosquito population is given by M = S,, + I,;. The function f(H(t)) is
the change in the total human population, while g(M(t)) is the change in the total
mosquito population. In this study, we will consider different growth model for hu-
man and mosquito population. Since human have a meager mortality rate compared

to mosquitoes, we neglect the natural death of the humans.

llbhlm(f)
H(t)

be infected with dengue virus, where by, is the probability of transmission of the

The parameters is the probability of a primary susceptible individual to

virus from an infected mosquito to primary susceptible human, and a represents a

abhlm( )
H(t)

uals who had been previously infected with dengue to become infectious again with

mosquito’s average bites. Whereas, is the probability of susceptible individ-
different serotypes. That is, by, is the probability of transmission of the virus from
an infected mosquito to a secondary susceptible human. Furthermore, the rate of
secondary susceptible people who recovered from infection from one, two, or three
serotypes is represented by 7, I;(t) and 9, denotes the recovery rate from the four
serotypes.

For the mosquito compartment, ab éh)( L is the probability of susceptible mosquito

to be infectious once it bites a ratio of the infected human population. The parameter
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b, is the transmission probability from an infected human to a susceptible mosquito

and p, is the mosquitoes” death rate.

The parameters are summed up in the table below.

] Symbol \ Description
a number of human beaten per mosquito
by, probability of becoming infected
by, probability of becoming infected again
Y recovery rate of human from one, two or three serotypes
On recovery rate of human from four serotypes
by, probability of becoming infectious
Hm death rate of mosquito

TABLE 3.1: Description of the parameters used in the model.

3.2 Study of the Model with Logistic Growth

In this section, let us consider the logistic growth functions for human population,
which is H'(t) = f(H(t)) = ay, (1 - #) H(t), where K is the carrying capacity of
human population. And an exponential growth function for mosquito population,
which is M'(t) = g(M(t)) — umM(t) = auM(t) — umM(t), where a,, and p,, are
the mosquitoes growth and death rate, respectively. In this study, we assume that
K < U

3.2.1 Well-posedness and Positivity of the Solution

To simplify the reading, the system of ordinary differential equation above is rewrit-

ten as
U'(t) = F(t,u(t)) (3.7)
with t
Uu(t) = (ul = Sy, up = I, i3 = Sp, g = Ry, tis = Sy, g = Im>

and

abyugiiy aug (bhul +Zh“3)

F(U(t),t) = 5 + f(H), T — Ynlp — Oplia,
aghu6u3 _abmu2u5

Y2 —

H Mg H

t
ab,uru

— pmtts + (M), =22 — P‘mu()) :

Lemma 3.2.1. Let (S;,(0), I;(0), 5,(0), Ry(0), S,,(0), I:(0)) be a nonnegative initial da-

tum with H(0) = S5,(0) + I,(0) + $,(0) + Ry (0) > 0 and M(0) = Sy(0) + L,(0) > 0.

Then there exist a time T > 0 and a unique solution (Sy, I, Sn Ry, Sm, I,)inC ([0, T}, ]R)6.
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Proof. Consider the initial value problem
Uu'(t) = F(t,U(t)) where U(0)= Up.

Note that F is continuous and has continuous derivative on I x U. Thus, F satisfies
the local Lipschitz condition. Therefore, by Cauchy-Lipschitz theorem, there exist
T > 0 and a unique solution to equation (3.7) in C ([0, T], R)®. O

Lemma 3.2.2. The region () defined by
Oyog = { (11, 12, 13,114, U5, 16 ) € RS :ug +up + uz +us < K, us +ug < Mo}

is invariant for the flow given by (3.7).

Proof. Let (uy, up, u3, ug, us, ug) € Q¢ be the solution of the system of equation (3.7).
Since the total human population is given by the logistic growth model

H (1) = f(H(t) = (1 - ﬁf) H

we have,

1 1

L e L
w— %t H

And, integrating both sides of the equation gives us

1
——1In
&y

H 1
(xh—lxh— + —In|H|=t+c.
K Xy

Combining the logarithmic function, we get

H

th _ tX{;(H

In =aut+c1 where ¢ = cay,.

Thus, exponentiating both sides, we have

H

ﬂéhH

— =it — Cetnt where C = et = ¢
& — &

H
H= <th — 0‘%) Ce™it,

- a
K+ ayCetnt”

Solving for H, we get
H

Taking the initial condition, when t = 0, H(0) = Hy

DChKC

Hy=—— .
0 K+thC
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HyK

Thus, C = ————
us Hoth — leh

. Therefore, the solution of the differential equation becomes
KHy

H(t) = Ke—t — Hy (e—t — 1)

Since w, > 0, H(t) < K for all time ¢ > 0.
For the total mosquito population, we consider an exponential growth model
M (t) = M — uyM = (ay — pm)M. Let 0y = @y — P < 0. Then

M = Cet,

Now, taking the initial condition, i.e. when t = 0, M(0) = M,, we get My = C.
Hence, the solution to our differential equation becomes

M(t) = Mge™".
Consequently, since 0y, <0,
M(t) < My Vt > 0.
Therefore, all feasible solution of the population of the system (3.7) satisfies
up +up + Uz +ug < K,us +ug < Mo.

In proving the positivity, we assume that the parameters are positive.
* For u; in equation (3.1), we have for all uy, u3, uy, us, ug > 0,

abyue(0
fi(ur = 0,up, uz, uy, us, ug) = —h;() + f(H)

= f(H)

Since we take a logistic growth function for human population, we have
f(H) > 0. Therefore, f; > 0.

e For u in equation (4.2), we have for all uy, u3, ua, us, ug > 0,

alg

2 (byu1 + byuz) — 14,(0) — 6,(0)
aAle

= ﬁ(bhul +Ehu3)

fa(ur, up = 0, u3, us, us, ug) =

Thus f, > 0, since the parameters a, b, and Eh are positive, and w1, us, ug, us, ug >
0. Therefore, f, > 0.
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¢ For u3 in equation (4.3), we have for all uy, uy, 14, us, ug > 0,

aEhuﬁ (t) (0)

7 7 - O/ 7 7 - -
f3(uy, u, uz Ug, Us, Up) = YpU2 H(D)

= YnU2
Since uy > 0, then f3 > 0.

* For u4 in equation (4.4), we have for all uy, up, uz, us, ug > 0,
fa(u1, uz, uz, uy = 0,us,ug) = dpus
Since uz > 0 and é > 0, therefore, f4 > 0.

¢ For us in equation (4.5), we have for all uy, up, uz, us, ug > 0,

ab,,u, (0
Folun s, 1,05 = 0,06) =~ 2720 0) 4 o)

=g(M)

Since we consider an exponential growth function for the mosquito popula-
tion, g(M) > 0. Therefore, f5 > 0.

¢ For ug in equation (4.6), we have for all uq, up, uz, ug, us > 0,

ab,,usus
Ui, Up, Uz, Uy, Us, ug = 0) = — 0
fo(u1, u2, u3, ug, us, ug = 0) T Ut s+ s s 10 #m (0)
ab,,usus

U+ Uy 4+ Uz + Ug + us

Since uq, uy, u3, uyg, us > 0and a,b,, > 0,

abpuy (H)us ()
Uy + Up + Uz + Ug + Us

Therefore, fc > 0.
OJ

From the two lemmas above, we can deduce the following global
well-posedness theorem.

Theorem 3.2.3. Let (u1(0), u2(0), u3(0), u4(0), u5(0), us(0)) be in Qg Then there exists
a unique global in time solution (uy, up, us, us, us, ue) in C(R4, Qlog)'
3.2.2 Stability of the Equilibrium

In this section, we will try to determine the possible equilibrium point of the system
of an ordinary differential equation (3.7) and assess their stability.
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Equilibrium

Let (uj,uy,uj, uj, uz,u;) be an equilibrium point of the system of equation (3.7).
Then we have

abyugiq ap, (ug 4 up + uz + uy)?

Ol (i 4 up g 4 uy) — =0 3.8
P p(u1 +up +uz + uy) X (3.8)

aug (byuy + byus)
— = "% YUy — Ol =0 3.9
U+ Uy +us tug M2 T 002 (39)

aghu3u6
Uuy— —————— =90 3.10
T s T s (3.10)
Spupy =0 (3.11)
abyupus
_ mTLs = 12
U+ 1y + Uz + Uy UmUs + &mUs + dylg 0 (3.12)
b

Om2Us g =0 (3.13)

U1+ Uy + Uz + Uy
Solving the system of equation above, we get (uj,0,u}, —uj — uj, us,0),
*M’{bh *ll{(b],*bh)

(ui(loluglK - ui( - l’l;/O/O)/ (ui(lol ’b“h ’ Eh /M;IO)/ (MT,0,0,_UT,L{;,O),
—uiby,  —uj (by—by)+Kb)
(0,0,0,0, %, ), and (15, 0, —5i%, ~illtltK0 g, 0).
h h

From Lemma 5.3.2, the solution of the system is positively invariant; thus, we
—uiby —uj(bi—by)

B bh Eh 7 l/[5, 0)/
(u3,0,0, —uj,uz,0), (ui,0, ==, - +Kb”,0,0) and consider only (0,0,0,0, u%, 1)
h 1

and (u3,0,u3, K —uf —u},0,0). The le}nma below shows that they are an equilib-

disregard the solutions (uj,0,u}, —ui — u},ut,0), (uj,0,

—uiby —uj (by—by)

rium point of the system (3.7).

Lemma 3.2.4. The system of equation (3.7) admits the equilibrium (0,0,0,0,0,0) and
(u3,0,u}, K—uf —u},0,0).

Proof. Consider the system of equation above. From equation (3.11), since the pa-
rameters are all positive, we can conclude that 1, = 0.

Now, substituting u, by 0 and multiplying each equation of the system by u; +
u3 + uy, the system of equation (3.8)-(3.13) above would become

oy, (11 + us + ug)?

—abyuegul + ah(ul + uz + u4)2 - =0 (3.14)

K
aug(byuy +byuz) =0 (3.15)
—abyuzug =0 (3.16)
—(UmUs — s — apite) (U + Uz +ug) =0 (3.17)
—Um(uy +uz+ug) =0 (3.18)

From equation (3.16), we get uz = 0 or ug = 0. Thus, we consider the following

cases.

e Casel.Ifus #0and ug =0
Then equation (3.14) would become

2 (U + uz + ug)?

=0
K

ap(ug + uz + uy
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Implying that u; 4+ 13 + us = Kor ug = K—u; — uz. Now from equation (3.17),
substituting ue by 0 and u; + u3 + ug by K, we get

—(pmus — apus)K = 0.

Concluding that us = 0, since K # 0 and p,, # a5, Thus, for any nonnegative
uj, uj and uj we get an equilibrium point (u3,0, u5, K — uj — u13,0,0).

e Case2. Ifus=0and ug # 0
Then equation (3.15) would become augbyu; = 0. Consequently, u; = 0 since
ug # 0. Now, substituting 11, u3 by 0 to equation (3.18), we get —ppuetis = 0.
Hence, uy = 0 since ug # 0. Therefore, for any nonnegative uz, u;, we get an
equilibrium point (0,0,0,0, u%, u}). Moreover M* = uf,u} = 0and u = u} =
0.

e Case3.Ifus =0and ug =0
Then equation (3.14) would become

ap (1 + M4)3

=0.
K

wp (uq + 1g)* —
Simplifying the equation we get u; + 1y = K. Thus, substituting this to equa-
tion (3.17) and ue, u3 by 0, we get —(pmus — aus)K = 0. Since py # am,
us = 0. Therefore, for any nonnegative uj, u3 and u; we get an equilibrium
point (u3,0,u}, K —ui —u},0,0).

Next Generation Matrix and Basic Reproduction Number

In this section, we will show the stability of the equilibrium using the next-generation
matrix. Since the infected individuals are in 1, and u, then we can rewrite the sys-
tem of the equation (3.7) as

bjyuq+by
F = (W) V= <(7h +(5h)”2>

aby o us
Uity Uz iy Hmtle

where F is the rate of appearance of new infections in each compartment, and V is
the rate of other transitions between all compartments.

If F is an entry wise nonnegative matrix and V' is a non-singular M-matrix, then

we have
9f1  9F W N
_ | duy  dug _ | Jup dug
F=132 ] and V=[5 M
auz E)u6 auz au6
Thus, - -
—aug(byur+byus)  a(byur+byus)
F = (u1+up+us+uy)? urtuptuz+tuy V = Yh =+ (Sh 0
= gbmu5(u1+u3+u4) 0 ’ - 0 ‘u
(u1+uz+u3+u4)2 mn
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1
—— 0
and V-1 = <7hg‘5h . ) Therefore,

i
- ~ 1
—aué(bhu1+bhu3) u(b;,u1+bhu3) O
Fy-1 = (u1+uptuztug)?  urtup+uztug n+ o
abpy s (uy +uz+g) 0 1
(uy+uz+uztiy)? 0 o
Wm
7au6(bhu1+zhu3) 11(th1+5;,1{3)
= (7}1+5h)(”1+u2+u3+u4)2 ﬂm(lﬁ +u2+u3+u4)
aby,us (ug+uz+uy) 0 :
(yn+6n) (U1 +ugtuz+ug)?
Since the characteristic polynomial is det [FV~! — AI|, we have
—ﬂué(bhll1+ghu3) _ A a(th1+Ehll3)
-1 _ | (yn+6n) (ugHuat+uz+uy)? Wm (U1 +1z+uz+uy)
det |FV " — A1| = | [0t s " .

—A
(yn+0n) (u1+uz+us +u4)2

Solving the determinant of the matrix, we get

det ‘FV‘l - M’ - ( —aebis +bian) A) (—A)
(vn + ) (ua + uz + uz + uq)

B 02y, (s + byuy ) us (g + uz + 17)

(Y =+ On) pom (ug + Uz + Uz + )3

aué(Ehug, + bhul)
(v =+ 0n) (g + uz +us +uy)

B 02Dy, (byus + byuy )us (g + 1z + uq)

(vh + ) pm (g + us + uz + uq)3

= A2+ A

Let ug = u1 + up + u3 + uy. Then solving the equation, we have

~ 2 ~ ~
A il aue(byus + byur) \  4a?byus(byus + byuy) (up —up)  aue(bpus + byuy)
2 (vn + On)un? pon (vn + Op)up® 2(yn + on)un?

==

a(byus + byur) | w2 (Bytis + byin) — 4bwusup (yy + 0) (un — u2)  aug(byus + byur)
2(7h + 5h)uH Um (Ehug) + bhul) 2(’)’h + 5h)”H2

Simplifying the equation above would give us the eigenvalue

1= a(byuz + by) [ —ue 4 [ Aomttsun (v +64) (un —12) |
2(yp +0p)ug \ un 6 i (bpuz + byuq)
Now using this eigenvalue, let us determine the stability of the equilibrium points.

Lemma 3.2.5. The equilibrium point (u3,0,u},u},0,0), where u; = K — uj — uj, called
the Disease Free Equilibrium, of the system of equation (3.7) is locally asymptotically stable.
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Proof. If uy = uj, up =0, u3 = u3, uy = K—uj —uj, thenuyg = uq +up +us +uy =
K. Therefore, from the above eigenvalues, we have

a(byuj + byuy) (-0  4bw(0)K (i + 8) (K= 0)
A= 2(yn +0p)K < K * \/(0)2 Mm(ghu’g + byuy) ) .

Thus, A = 0 < 1. Therefore, the system is locally asymptotically stable at the equi-
librium point DFE = (uj,0,u},u;,0,0). O

Lemma 3.2.6. The equilibrium point (0,0,0,0,ut,u;), called the Endemic Equilibrium, of
the system of equation (3.7) is unstable.

Proof. From the above eigenvalues,

p(FV )= lim A=+4oc>1.

uq,up,uz,us—0

Therefore, the system of equation is unstable at EE = (0,0,0,0, uZ, u}). O

Jacobian Matrix

Let u,(t) = f(u(t),t) where u = (uq,up, us, ug, s, ug). In this section, let us confirm
the stability result using the Jacobian matrix defined as

i oh 9h 9 Oh A
du; dup duz duy Jdus  dug
o o 0 9f2 Of Of2
Jdu;  Jdu dus dug dus  Jdig
gﬁ 373 gﬁ gﬁ gﬁ gﬁ

ok ok ko k% U U u u U u
J(ui, uz,uz,ug,us,ug) = | 98 98 9% 9 5f  of
Ou; Oup OJuz Oug Jus  Oug
s fs s 9fs s 9fs
du; dup duz duy dus  dug
s 9fe 9fe e Ife 9fs
du; dup duz duy Odus  diug

Computing for the partial derivative gTJZ' for each i, wherei =1,2,---,6, we have

dft _ —abpue(uz + uz + uy) o 20 (ug + up + uz + uy)

our  (ug +up + usz + uy)? h K

% B abyugiiy b 20, (uq + tp + uz + uy)
duy (g +up +uz +ug)2 " K

dafi _ abyugiiy o 20, (uq + tp + uz + uy)
duz  (ug + up + usz + uyg)? h K

of1 abyugy  2ap(u1 +up +uz + uy)

- = «
dug  (ug + up + usz + uyg)? h K
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and
dfi 0 dfi —abyuy
dus dug Uy + Uy + Uz + Uy
% - abhu(,(uz + uz + Ll4) - aghu6u3 % - —abyuegul — aEhu6u3 B 5
Juy o (M1 + Uy + uz + M4)2 duly o (Ml + Uy + usz + u4)2 Th h
df2 - aghué(ul + U + Ll4) — abyuguq df2 - —abyuguy — aEhu6u3
ouz (11 + 1z + uz + uy)? oug  (uy+uz + us + uy)?
% —0 % o abyuq +a5hu3
Jdus oug U+ up+uz~+uy
afg, . aghuéug, afg, . LZEhM6u3
ouy (g +up -+ usz + uy)? Bittz_yh+(u1+uz+u3+u4)2
afg, o —aghué(ul + Uy + M4) afg, . aghu(,ug,
ouz  (ug + up + uz + ug)? oug  (ug + ug + uz + uy)?
% -0 % . —aghug,
ous Oug UL+ U + U3+ 1y
Oh _Of_of o Ok _, of_,
dui; Oduz duy Jdus  OJug dur
ofs ab,uous dfs  —abpyus(uy + uz + uy)
our  (uy + uy + uz + 1g)? Ouy  (ug 4 up + uz + uy)?
af5 - abmu2u5 af5 - abmu2u5
%_(u1+u2+u3+u4)2 871/[4_(1/[14—1/!2—1—143—'—1/[4)2
0 5 —abmuz 0 5
a{g:u1+u2+u3+u4_”’”+“’” a{%:“’”
dfe —ab,, upus dfc  abpus(uy + uz + uy)
ouy  (uy + ty + uz + 1g)? ouy (g + ty + uz + 1g)?
af(, . —abmu5u2 af6 o —abmu5u2
%_(u1+u2+u3+u4)2 Tm_(u1+u2+u3+u4)2
e aby iy dfe
Ous Uy + U + Uz + 1y dug Hom

From the Jacobian matrix above, the lemma below verified our result for the stability

of the disease-free equilibrium point.

Lemma 3.2.7. The disease-free equilibrium point DFE = (uj,0,u}, u;,0,0) where u} =

K — uj — uj of the system of equation (3.7) is locally asymptotically stable. And the endemic

equilibrium (0,0,0,0, ut, u}) is locally asymptotically unstable.

Proof. Let DFE = (uj,0,u},u},0,0) where u; = K — uj — u} be an equilibrium point

of the system of equation (3.7). Then, the above Jacobian matrix for DFE can be
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deduce to
—ay —ay —ap  —y 0 ﬂzlhfuj
0 = &) 0 0 0 ab;,u{z(rahhu;
—abpuj
0 5 0 0 0 0
0 0 0 0 0 —
Let |J(E1) — Alg| = 0. Then
—Xy — A — &y -y —Ky 0 %
0 —Yn — 5;1 —A 0 0 0 abyu +abyuz
0 " ~A 0 0 B Sl Y
0 S 0 —A 0 0
0 0 0 0 —Mm+am—A .
0 0 0 0 0 g — A

Solving this determinant give us the characteristic polynomial of the system which
is
(=A) (=) (A =) (A =70 = 6) (A = ) (A = (pm — &m)) = 0.

Hence the eigenvalues are,

A = 0 (multiplicity 2) A= —ay A= —(yn+ 0n)
/\:_Vm /\:_<.um_am)

Since p, — ayy > 0, all eigenvalues are negatives. Therefore, the equilibrium point,
DFE = (u3,0,u},u},0,0) is locally asymptotically stable.

Similar computations shows that the endemic equilibrium is locally asymptoti-
cally unstable. O

3.2.3 Phase Portrait Analysis

A phase portrait graph of our dynamical system graphically represents the system
behavior. It is a geometric representation of the trajectories of a dynamical system in
the phase plane. In this section, we will illustrate some simulations performed using
Python.
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] Symbol \ Description \ Values ‘

a number of human beaten per mosquito 1day!

by, probability of becoming infected 0.75 day !

by probability of becoming infected again 0.375 day !

ap birth rate of human 0.0045 day !
Yh recovery rate of human from first three infection | 0.328833 day !
On recovery rate of human from four serotypes 0.1666 day !
by probability of becoming infectious 0.375 day !
Hm death rate of mosquito 0.02941 day !
Ky growth rate of mosquito 0.025 day !

TABLE 3.2: Values of the parameter used in the numerical simulation

In this study, a numerical simulations are done using 2000 days. Figure 3.2 shows
the behavior of the variables Sy, I, §h/ Ry, Sy and I, versus time using the parame-
ters in Table 3.2 that are taken from Bakach [6]. The variable S, is the red color, I, is
the green, §h is the blue, Ry, is yellow, S, is the cyan, and I, is the magenta.
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Initially, the human and mosquito population were healthy, with 10,000 humans
and 100,000 mosquitoes populations, respectively, and only ten infected mosquitoes.
Since mosquito needs to feed two to three times a day to take a full-blood meal, it
takes 11 days for the primary susceptible S, human population to reach its lowest
population at six humans and then exponentially increases to its equilibrium 10,019
population. While it only takes seven days for the infected human I;, population to
reach its highest population at 6,084 humans. After such time, a rapid decrease in
the population follows. Whereas, for all time ¢, the recovered human R;, population
continuously increases to its maximum population of 22,864 humans.

Note that for a mosquito to be infected by the virus, a mosquito must take its
blood meal during viremia, when the infected person has high levels of the dengue
virus in the blood. Thus, it takes 16 days for infected mosquito I, to reach its highest
population at 6,8116 mosquitoes before it drops exponentially.

Since humans kill some of these mosquitos and the mosquito’s system requires
eight to twelve days for the virus to spreads through its body, the population of
susceptible mosquito S, drops for 18 days to its local minimum of 24,814 mosquitos
then increases after up to 49,857 mosquitos at 82 days and decreases again afterward.

Moreover, since viremia lasts for 4 to 5 days in primary condition, most people
will recover after about a week. It only takes seven days for the secondary sus-
ceptible S;, human population to reach its local maximum at 1,730 population, then
decreases to 53 population at 44 days and exponentially increases to a maximum of
2,474 population.
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FIGURE 3.3: Phase portrait of the model with dengvaxia showing pri-

mary susceptible S, and secondary susceptible S, versus infected hu-

mans I, in blue color, and susceptible mosquitoes S;; and infected

humans Ij, versus infected mosquitoes I, in cyan color. Square and
circle indicates the first and last solution of the variables.

Figure 3.3a shows that in the beginning there are 10 infected mosquito and no in-
fected human. As the infected humans increases, infected mosquitoes also increases.
After some time, the two variables become inversely proportional. As infected hu-
mans decreases, the infected mosquito continue to increase. Towards the end of
time, both variables decreases towards zero.

On the other hand, figure 3.3b shows that at time t = 0, there are 100,000 suscep-
tible mosquito and 10 infected mosquitoes. For some time, susceptible mosquitoes
decreases while infected mosquitoes increases. When it reaches the maximum of
68117.679 infected mosquitoes, it then decreases while susceptible mosquitoes in-
creases. After some time, both variables decreases towards zero.

For infected humans, figure 3.3c shows that at time t = 0, there are no infected
humans but have 10,000 primary susceptible humans. For some time, as infected
humans increases, primary susceptible humans decreases. Upon reaching 6125.015
infected human populations, both variables decreases. Then primary susceptible
humans started to increase but infected humans continue to decrease.

Figure 3.3d shows that at time t = 0, there are no infected and secondary sus-

ceptible humans. The figure shows that the variables are directly proportional to
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each other for an interval of time. For some time, both variables increases up to
the maximum of 2474.242 secondary susceptible humans. They then decreases up
to 53 secondary susceptible humans. While infected humans continue to decrease,
secondary susceptible humans then increases through time.

(©)

FIGURE 3.4: Three dimensional phase portrait of the primary suscep-
tible human Sy, secondary susceptible Sj,, and the infected I, human
population in the model with dengvaxia.

Figure 3.4 graphically shows the system behavior of the primary susceptible hu-
man S, secondary susceptible Sy, and the infected I;, human population. The solu-
tion is positive and bounded, as shown in the previous theorem.
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3.3 Comparison against Growth Functions

In this section, we will consider different growth functions for the human population
f(H(t)) and mosquito population g(M(f)) of the system (3.1)-(4.6) of the ordinary
differential equation. We consider three growth functions:

® Pop;: constant human and mosquitoes population,
* Pop,: Gompertz growth function for the human population and an exponen-
tial growth function for mosquitoes population,
3.3.1 Constant Human and Mosquito Population

Consider the constant human and mosquito population. For human population, we
set H(t) = Hp where Hy is constant. Then, H'(t) = f(H(t)) = 0. Also, for mosquito
population we set M(t) = My where M, is constant. Then M'(t) = g(M(t)) —
tmM(t) = 0, our model would become

= -

au6(t) (bhul(t) +Ehu3(t)>
uy(t) = 37 — ynu2(t) — Spua(t)

=z 0
uz(t) = yutia(t) — W (3.19)
uy(t) = Spua(t)
(1) = — 2 UNSD) n
0

() = ) e

Theorem 3.3.1. Let (11(0), u2(0), u3(0), u4(0), u5(0), u(0)) be in Qeons defined by
Qeons = {ll c IREL tu1p+ Us 4+ us + ug = Ho, uz + Uy :Mo}.

Then, there exists a unique global in time solution (uy, ua, us, us, us, ue) in C(Ry, Qeons)-
Proof. The proof follows from the fact that constant population is bounded and well-
defined. O
Equilibrium

If we solve for all possible values of x* that lie on (), we only have (17,0, u3, u;, uz,0).
To see this, consider the lemma below.

Lemma 3.3.2. The system of equation (3.19) admits a disease free equilibrium at Epns =
(u3,0,u3,uy,uz,0).
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Proof. Let u, uj, ufy, uy, us, uy = 0. Since all parameter are positive, then
opup =0 - up =0

Thus, “bm% — Umite = 0 becomes

ab,, (0)u
m;) > _ Umie = 0
—UmlUe = 0

Hence, us = 0. Since the system of equation contains either u, or ug or both, which
has a zero value, then any nonnegative values of uj, u3, u4, us satisfies the system of
equation. Therefore, (17,0, u}, u;,ut,0) is an equilibrium point. O

Next Generation Matrix and Basic Reproduction Number

Now, let us determine the stability of this equilibrium points by solving for the next

generation matrix of the system of equation (3.19). We have

. W Vo (Yn + 0p)uz
ﬂb»}{w Hmle

0

where F is the rate of appearance of new infections in each compartment and V is

the rate of other transitions between all other compartment. Thus,

a(byuuy+byus) 5
F= bO Ho and V = mton 0 )
aomUs 0 O ym

Hy
Therefore,
_ 1
Fv—l = ( 0 a(bhuifobw”) T+ O
aby us 0 1
Hy O T
Hm
0 a(byu +byu3)
— WIH
- aby,us : 0 ‘
('7h+5h)H0
Since the characteristic polynomial is det [FV~! — AI|, we have
Y a(byui+byus)
det |FV =1 — Al| = ponFlo
abyus —A
(7n+61)Ho

lebmu5 <Ehu3 + bhu1>

=A%
Ho?tm (i + 61)
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Solving for A, we get the eigenvalues

azbmu5 (Ehu3 + bhu1>
A=+ - (3.20)
Hy Vm(')’h + 5/1)

azbmu5 (Ehu3 + bhu1>
Ho? pu (vh + 1)
Theorem 3.3.3. If Ro < 1, then the disease free equilibrium Ecoys is asymptotically stable.

Therefore, R% = , and we have the following theorem.

If Ro > 1, then the disease free equilibrium Eyps is unstable.

To explain Ry biologically, let us consider the following cases.

* Suppose Rg > 1, that is ”bﬁg‘S (”b””3$0“bh”1) > tm(yn + 0p). It means that the
abyus

severity of the probability of infection to spread on susceptible mosquito ==

and susceptible humans w

is greater than the product of mortality rate
of mosquito y,, and the recovery rate of infectious humans 7y, + J;,. In effect,
there is a spread of disease in the population, that is, resulting to dengue out-

break. Therefore, if Ry > 1, then the DFE is unstable.

e Suppose Ry < 1, that is ”bﬁf (”Eh%;;ab"”]) < pm(yn + 6p). It means that the

0

severity of the probability of infection to spread on susceptible mosquito %—’5‘5

and susceptible humans %%

is lesser than the product of mortality rate
of mosquito y,;, and recovery rate of infectious humans 7 + é,. Thus, the
disease would be lessened, resulting in controlled dengue disease. Therefore,

if Rg < 1, there is an asymptotic stability on the DFE.

Jacobian Matrix

To confirm the theorem above, we compute the Jacobian matrix of the system (3.19).
We compute the partial derivatives of f; with respect to u;, fori = 1,2,---,6. We
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have
Ofr _ —abytis oh _9dh _oh _9dh _4 9h _ —abwn
au1 H() auz au3 au4 au5 au(, HQ
% . (thu6 % _ _5 % . abhu6
8u1 a HO auz L h 8u3 a HO
o _ o _, 3fs _ abys + abyi  _,
dug  Jus dulg Hy ouq
fs _ ofs _ —abuits ofs _ 9 _
auz Th 8u3 H() 8u4 8u5
ofs _ —abutis fs _g fs _ s
6u6 H() 8u1 auz h
ofs _ O _0fs _ 9 _4 s _, ofs _ —bmits
dus duy Odus  Oug ouy dous Hy
ofs _ s _ ofs _ —abmitz fs _
8u3 au4 8u5 Ho a1/16 Hm
% _ s _ Abmits 9 _y
8u1 auz H() 8u3
s _y fe _ abmitz fe _ _
au4 au5 HO au(, Hon

Therefore, we have the following lemma.

Lemma 3.3.4. The equilibrium point Econs = (u7,0,u}, uj, ut,0) is locally asymptotically

stable.

Proof. Let Econs = (u7,0,u3, u}, ut,0) be an equilibrium point of the system of equa-

tion. Then the above Jacobian matrix for E..;s can be deduce to

_abh(o)

Hy 0
abI;%E)O) — o — 5,
0 Vh
0 o
0 —aIbiythS
0 ablgg5
0 0 0
0 —Yh — 511 0
0 Yh 0
0 S 0
0 —aIl_JI,;uS 0
0 abyuz 0

o O O ©O O O

0 0 0

abIZE)O) 0 0

—0 o0
0 0 0
0 0 “Zul0
0 0 ab},_}(()o)

0 ab,,lul*éroahhug

0 s

0 0

0 Hm

0 —Um

—abyuj
Hy
abyui+abyuj
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Let |J(E1) — Als| = 0. Then

A 0 0 0 0 %’;uj
0 —yp—d-A 0 0 0 DUz
J(Ey) —ALg) = | © T A0 0 e
0 On 0 —-A 0 0
0 ’”f{fg”g 0 Y o
0 ﬂbﬁfg 0 —um—»~

Therefore, solving the equation will determine its characteristic polynomial. We get

abyut abhu*+a5hu*
(—1)* ((wahmwmw d 2 3)) =0
0

aby,u (abyu;+abyu)

Now, let us solve A for (=, — &, — A)(—pm — A) — e — 0. We have
0
abyut (abyu® + abyut
(=(rn+0n) = A) (=pm — A) = mli5 hH; h3):0
0
aby,ut (abyu® + abyus
('Yh+5h)]/lm+(7h+5h)A+ymA+/\2_ m 5( hf{; h 3) _0
0
abyul (abyut + abyus
)\2+(’Yh+5h+ym)/\+(,yh+5h)ym_ m 5( hH; h 3) _o
0

Solving A by quadratic formula, we have

—(vn+ O+ pm) £ \/('Yh + 0+ pm)? — 4(1) ((')’h + Op ) pm — %ﬁ;”w)

A= 5

dabyuf (abyui + azhug )

Hj

2 2

\j (Vi + O+ pm)? — 4 (v + ) pim +

Tt ) V Vi 64— pon)2H3 + by i (abyu -+ abyu)

_ =
A= 2 2H,

Hence, the eigenvalues are

A1 = 0 (multiplicity 4)

—(Yh 4 O A+ ) N \/(’Yh + 8y — pm)2HE + daby,ui (abyut 4 abyu)

Ay =
2 2 2H,

Ao — —(Yn+ Ot ) \/('yh + 6p — pm)?HE + 4abu’ (abju; + aEhug)
N 2 2H, '
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For E.ons to be asymptotically stable, the Re(A;) < 0. We have

\/(’yh + 6 — um)2H3 + 4ab,u <abhu’{ + abhu§) _m 4+ o
2H 2 '

Simplifying the equation would give us

\/(’yh + 6y — pm)?HE + 4abyut (abhui‘ + a%u;) < (yn+ 0 + pim)Ho.
Now taking the square of the inequality, we get

(Y + 61 — pm)*HG + 4abyus (”bh”T + ﬂgh@) < (vn+ O + pm)*Hg.
Combining like terms and then simplifying, we have

4abyus (abyuy + ﬂgh”é) <(m+on+ ﬂM)zHg — (7n+0n — ,”m)ZH(%
4abyut (abyus + abyus) < 4 (yn + 6,)H3
a2byus (bt + byus)
pon (Y1 + On) Hj

<1

Therefore, we get the same Ry we obtain from the next generation matrix. That is,

a2y byt + By
Ro* = 5 < 1is locally asymptotically stable. O
i (Yn + ‘Sh)Ho

Numerical Illustrations

To straighten our lemmas above, let us look into the numerical simulation. In this
simulation, we let time T be 2000 days with initial condition (10000, 0, 0, 0, 100000, 10).
Figure 3.5 shows the behaviour of the variables Sy, I, §h, Ry, S; and I, versus time
using the parameters in Table 3.2.

Initially, the human S, and mosquito S,, population are healthy. However, briefly,
they decrease exponentially and become infected I,, and Ij,. Since humans kill some
of these mosquitoes, and once the virus enters the mosquito’s system in the blood
meal, the virus spreads through the mosquito’s body for eight to twelve days, S, de-
creases faster than S,,. Hence Ij, increases exponentially faster than I,,,. Since infected
humans I, suffer for about 3 - 7 days following the infectious mosquito bite, there
is an exponential increase of infected humans by then. Nevertheless, it is followed
by an overwhelming recovery of the infected that increases the recovered human Ry,
population and the susceptibility S, to other DENV strains. For 2000 days, it would
only take more or less 40 days for the recovered human population R, and the pop-
ulation of susceptible humans to other DENV strains S, to take its equilibrium while

the susceptible human S;, population takes its equilibrium at about ten days.
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FIGURE 3.6: Phase portrait of the model with dengvaxia using con-

stant growth function showing primary S; and secondary suscep-

tible S;, versus infected humans I, in blue color, and susceptible

mosquitoes S;; and infected humans I, versus infected mosquitoes

I, in cyan color. Square and circle indicates the first and last solution
of the variables.

For infected humans, figure 3.6a shows that at time t = 0, there are no infected
humans but have 10,000 primary susceptible humans. For some time, as infected
humans increases while primary susceptible humans decreases. Upon reaching
6065.190 infected human populations, both variables decreases thru time.

Figure 3.6b shows that at time t = 0, there are no infected and secondary suscep-
tible humans. The figure shows that the variables are directly proportional to each
other for all time. For some time, both variables increases up to the maximum of
1668.002 secondary susceptible humans. They then decreases up to the equilibrium.

Figure 3.6c shows that in the beginning there are 10 infected mosquito and no in-
fected human. As the infected humans increases, infected mosquitoes also increases.
After some time, the two variables become inversely proportional. As infected hu-
mans decreases, the infected mosquito continue to increase. Then both variables
decreases towards zero.

On the other hand, figure 3.6d shows that at time t = 0, there are 100,000 suscep-
tible mosquito and 10 infected mosquitoes. The figure shows that the two variables
are inversely proportional to each other. For some time, susceptible mosquitoes
decreases while infected mosquitoes increases. When it reaches the maximum of

71460.393 infected mosquitoes, both variables then decreases towards zero.
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FIGURE 3.7: Phase portrait of the Model

Figure 3.7 graphically shows the system behavior of the primary susceptible hu-
man Sy, secondary susceptible Sy, and the infected I;, human population. The solu-
tion is indeed positive and bounded, as shown in the previous theorem.
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3.3.2 Gompertz Human Population Growth and an Exponential Mosquito
Population Growth

Let us consider a human population that agrees with the Gompertz growth equation
and a mosquito population that agrees with the exponential growth equation. Then

we have H'(t) = f(H(t)) = rln <%> H(t) and M'(t) = (am — pm)M(t) such that

H
H(t) = Ke™ (%)e and g(M(t)) = a M(t). Then our model become

() = —aih;f((%f_(:) +rln <HI(<t)> H(t)

uy(t) = in(2)e — yn2(t) — Opua(t)
Ke '\ ¥

, abpuz(t)ue(t)
us(t) = yuua(t) — K};lj(?)j” (3.21)
uy(t) = dpua(t)
us(t) = —abml]f((lfo);f_(f) — s (t) + amiis(t) + apie(t)

Ke '\ ¥
) = T (1)
Ke '\ ¥

Assume that a;;, < p,,. We have the following theorems.

Well-posedness and Positivity of the Solution

Theorem 3.3.5. Let Qgomp be the region defined by

QGomp = {(MLMZ, uz, g, us, ) € RG; 0 < uy + up + uz + uy < Ho,
(3.22)
0<us+us < Mo}

such that (11(0), u2(0), u3(0), u4(0),us(0),us(0)) € Q). Then there exists a unique global
in time solution (u1, up, us, iy, Us, i) in C(]RJF,IREL).

Proof. Consider the initial value problem

Uu'(t) = F(t,U(t)) where U(0) = Uj.
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Then,

K

/
0,un, Uz, Uy, Us, Ug) = rIn | ————
f]( 7 7 7 7 7 ) M2+M3+u4

) (up +uz +uyg),Yuy, -+ ,ug € Q

aulg (bhul + Ehu3>

Kln(%)g*” ZolvulluSI"'/u6€Q

le(ullol u3, u4, 1/[5, ué) e

!
f3(l/l]_,l/lz,0 Uy, Us, M6> lyth/vulf U, Ug, -, Up € Q
!
fa(uy, uz,u3,0,us,u6) = Opuz, Vi, Uy, uz, us, g € O
!
f5(u1, uz, u3, 14,0, 1) = pti, Vi1, - -+ , g, tte € O
aby,usus
! m
f6(u1/u2/ u?)/ u4/ u5/ ) Vu1,~ . ,u5 S Q

Ke 1n<7<0)e*”/

Hy

On one hand, note that H' = rIn (£) H where H = Keln(T)eiﬂ. Since e < 1,
In (%) <L ln< ) Thus,

H,
H < ke(®) < ko < .
K
While M" = (ay, — pm )M, then M = Moe@n=tmt Since ay, < Um, we have
M(t) = =t My < M.

Thus F satisfies the local Lipschitz condition. Therefore, by Cauchy-Lipschitz Theo-
rem, there exist T > 0 and a unique solution to equation (3.21) in C(R, ]Ri). O
Equilibrium

Now, solving for all possible values of x* that lie on Qcomp we get (ui‘, 0,uz,uy,0, 0).
To see this, consider the lemma below.

Lemma 3.3.6. The system of equation (3.21) admits an equilibrium at Egopmp = (u7,0,u3,u}3,0,0)

Proof. Let uy, ub, uf, uy, ut, uy = 0. Since all parameter are positive, then

(5hu2 =0 — u, =0
Thus, “b’"% — Umie = 0 becomes
K ln( 4 )
b
aby (0)us — Umie =0

—Umie = 0.
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Hence, 1y = 0. Now for —%2)”5” — Umls + &miis + apite = 0, since up = 0 and
K
ug = 0, we have
ab,, (0)u
—%)5 — UmUs + aps + a, (0) =0
ln<—0)e*”
Ke '\ ¥

us(m — pm) = 0.

Therefore, us = 0, since a,, — p,, < 0. Since the system of equation contains
either uy, us or ug or both, which has a zero value, then any nonnegative values of
u1, u3, uy satisfies the system of equation. Therefore, Egomp = (u3,0,u3,u;,0,0) is an
equilibrium point. O

Next Generation Matrix and Basic Reproduction Number

Now if we show that the equilibrium point EGomp = (u{, 0,u3,uy,0, 0) is asymptot-
ically stable using the eigenvalues from the next generation matrix, then we get the
same result as equation (3.20). Then solving for the next generation matrix we get

the eigenvalues

a2b,,us (l;hu3 + bhu1>

A=+
K24 (i + 0n)

(3.23)

Jacobian Matrix

Now, let us show that Eg,p is asymptotically stable using the eigenvalue from the

Jacobian matrix. Now if we compute the Jacobian Matrix of the system in order to
ofs

confirm our lambda, then only the FT i=1,2,---,6,would change. We can get
I5 _, 9fs _ —abmiis s _
duq du, K Jdus
fs dfs _ —abuuy 9fs
25— /5 _ A
dlly duls K P o+ dulg P 7+ O
Therefore, we have the Jacobian matrix
—ll[b(huﬁ 0 0 0 0 —abyiy
ab1h<u6 - ‘511 aﬂgué 0 0 ab;,ul—iKal;;,h%
- 0 Vi *ﬂl}ghue 0 0 —aby,uz
0 oy 0 0 0 0
O 7ﬂ?<mu5 0 0 7ﬂl;<mllz - l/{m + am }/lm + am
0 aby,us 0 0 aby i _‘um

Thus, we have the following theorem.

Lemma 3.3.7. The equilibrium point Egem, = (u7,0,u3,u};,0,0) is locally asymptotically
stable.
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Proof. Let Egomp = (u7,0,u3,u},0,0) be an equilibrium point of the system of equa-
tion. Then the above Jacobian matrix can be deduce to

0 0 0 0 0 %hj
0 —y—3d, 00 0 %
—abypy
J(Ecomp) = 0 YTh 0 0 0
0 o 00 0 0
0 0 0 0 —Mm—+am Hmtam
0 0 00 0 -

Therefore, determining its characteristic polynomial, we have

A 0 0 0 0 %huj
0 —y—3—-A 0 0 0 huidobs

| (Egomp) — Ms| = | © i A 0 0 SR
0 On 0 —-A 0 0
0 0 0 0 am—A  Hmtay
0 0 0 0 0 i — A

implying further that
A3 (A =y = 3) (A = ) (—A — g + ) = 0.
Hence, we get

A1 = 0 multiplicity 3 Ay = —Um
/\3:_')71_(5]1 )\4:“711_,1‘711-

Since ay, — pm < 0, all the eigenvalues are negative. Therefore, the system of equa-
tion is locally asymptotically stable at the equilibrium point (u3,0,u3, u},0,0). O

Numerical Illustrations

In this section, we presented the numerical illustration using the Gompertz growth
function for human population and exponential growth function for mosquito popu-
lation. We let the final time T be 2000 days with initial condition
(10000, 0,0,0,100000, 10). Using the same parameter value as Table 3.2, r = 0.00446,
up = 0.0000391 and K = 100,000,000, a phase portrait graph of system (3.21) was
simulated using the Python program.
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Figure 3.8 clearly shows a gompertzian growth in the primary susceptible hu-
mans. It has the slowest growth at the beginning and towards the end of the time
period. It has an early, almost exponential growth rate followed by slower growth
rate which reaches a plateau towards the end. On the other hand, secondary suscep-
tible humans follows an increasing linear growth rate for a short time period until
it reaches it equilibrium. Moreover, infected humans increases exponentially for 10
days towards its maximum population of 6566.323. It then gradually decreases to-
wards it equilibrium. Whereas recovered humans increases exponentially for 200
days then slowly continuing increasing towards the equilibrium.

For the mosquito population, susceptible humans decreases exponentially for
23 days until it reach 38733 population, Then in gradually increases up to 55600
population on the 95th day and then decreases towards its equilibrium. Whereas,
infected mosquito exponentially increase for 20 days with maximum population of
2199.482 and then exponentially decreases towards its equilibrium.

6000 6000
4000 4000
=< <
2000 2000
0 L»A— 0
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5
Sh le8 Sh led
(A) I, vs Sy, (B) I, vs S,
50000 50000
40000 40000
30000 30000
£ £
20000 20000
10000 10000
0 0
0 i 2 3 4 5 6 0.0 02 0.4 0.6 0.8 1.0
In le3 Sm 1le5
(C) Ly vs I (D) Ly, vs Sy

FIGURE 3.9: Phase portrait of the model with dengvaxia using con-

stant growth function showing primary S;, and secondary suscep-

tible S;, versus infected humans I, in blue color, and susceptible

mosquitoes S;; and infected humans Ij, versus infected mosquitoes

Iy in cyan color. Square and circle indicates the first and last solution
of the variables.

For infected humans, figure 3.9a shows that at time t = 0, there are no in-
fected humans but have 10,000 primary susceptible humans. For a very short pe-
riod of time, infected humans increases rapidly while primary susceptible humans
increases slowly. Upon reaching the maximum of 6566.323 infected human, infected

humans decreases quickly while primary susceptible humans continuous to increase
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slowly. Upon reaching the equilibrium of infected humans, primary susceptible hu-
mans continues to increase following gompertzian curve.

Figure 3.9b shows that at time ¢t = 0, there are no infected and secondary sus-
ceptible humans. The figure shows that the variables are directly proportional to
each other for all time. For some time, both variables increases up to the maximum
of 53787.330 secondary susceptible humans. They then decreases for a short time
interval and then increases up to the equilibrium.

Figure 3.9c shows that in the beginning there are 10 infected mosquito and no in-
fected human. As the infected humans increases, infected mosquitoes also increases.
After some time, the two variables become inversely proportional. As infected hu-
mans decreases, the infected mosquito continue to increase. Then both variables
decreases towards zero.

On the other hand, figure 3.9d shows that at time ¢t = 0, there are 100,000 suscep-
tible mosquito and 10 infected mosquitoes. The figure shows that the two variables
are inversely proportional to each other. For some time, susceptible mosquitoes
decreases while infected mosquitoes increases. When it reaches the maximum of
52199.482 infected mosquitoes, infected mosquitoes then decreases while suscepti-
ble mosquito increase for a short time period. After then both variables decreases

towards zero.
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3.4 Choice of Control Strategies

Preventing or reducing dengue virus transmission depends entirely on controlling
the mosquito vectors or vaccination. This section applied three control strategies
to reduce dengue transmission: vaccination, vector control and the combination of

vaccination and vector control.

3.4.1 Vaccination

Dengue fever is the most rapidly spreading mosquito-borne viral disease found in
tropical and sub-tropical climates worldwide. It is caused by the single positive-
stranded RNA virus of the family Flaviviridae that is transmitted to humans through
a diurnal mosquito. [56] So far, there is no specific treatment for dengue fever. Ac-
cording to the theory of facilitating antibodies, vaccine research is made more diffi-
cult by the need for a vaccine immunizing sustainability and simultaneously against
the four serotypes of the virus [50]. Half a dozen vaccine candidates are under study.
The most competitive candidate was Denguvaxia, by Sanofi Pasteur. Dengvaxia (CYD-
TDV) was licensed in December 2015 and has now been approved by regulatory
authorities in 20 countries.

CYD-TDV vaccine is for the prevention of dengue disease caused by dengue
virus serotypes 1, 2, 3, and 4. It should be administered three doses six months apart
of 0.5 mL subcutaneous (SC) administration for individuals aged 9 - 16 years old
with laboratory-confirmed previous dengue infection and living in endemic areas.

To account for the vaccine in the model, let us consider the following mathemat-
ical model in two different populations.

Constant Human and Mosquito Population of Dengvaxia Model

Let us consider the constant human and mosquito population, thatis, f(H(t)) = 0
and g(M(t)) = pmM(t). Then our model becomes

u(t) =~
L aug(t) (b () + Buua (1))
ub(t) = Ho — itz (t) — Spua(t)
’ _ B aEhug,(t)L%(t) .
uy(t) = muualt) — —— = — vauis(t) (3.24)
uy(t) = dpua(t)
() =~ e

R e U]
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Where v1u4(t) is the vaccination given to the primary susceptible human popu-
lation, and v3u3(t) is the vaccination given to the secondary susceptible human. The
total immunity is given by T} (t) = viuy(t) + vaus(t).

Note that there exists a unique global in time solution (u1, up, u3, 4, Us, Ug) in
C(Qcons, Ry )®.

Lemma 3.4.1. The system of equation (3.24) admits an equilibrium at
EVacCons,l = <O/ 0/ 01 MZ, u;z O) .

Proof. Let u, ub, uf, uy, ut, uy = 0. Since all parameter are positive, then
5hu2 =0 — up, =0

Thus, % — Umie = 0 becomes

H _Vmuézo

—UmUe = 0

Hence, ug = 0. Therefore, substituting us = 0 and u, = 0 to both #{ = 0and u} =0,

we have
b b,
-—Zg%ggﬂl——vlu1:=0 itz — z§§u6——v3u3=:0
—abhl(_z)ul — 01U = 0 ’)’h(0> - abh;ﬁ;(o) — U3U3z = 0

Since v1,v3 > 0, u; = 0 and uz = 0. Consequently, since system (3.24) contains
either uy, uy, u3z or ug or both, which has a zero value, then any nonnegative values
of uj}, ut satisfies the system of equation. Therefore, Ev,cconsg = (0,0,0,uj, uz,0) is
an equilibrium point. O

Now, in solving for the next generation matrix, there is no changes in F and V in
Section 6.1. Therefore, the eigenvalues of system (3.24) are

a2b,,us (Ehug + bhul)

A=+ 5
Ho* i (vn + 0n)

Therefore, we have the following theorem.

Lemma 3.4.2. The equilibrium point Evaeconsg = (0,0,0,u}, uz,0) of the system of equa-
tion (3.24) is locally asymptotically stable.

Proof. From the above eigenvalues,

a2by (’Eh(O) + bh(O))
H(%.“m (Yn =+ 0n)

o(FV ™1 =+ =0<1.
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Therefore, the system of equation is locally asymptotically stable at Eyaecons,- ]

3.4.2 Vector Control

Vector control is a method to limit or eradicate the vectors which transmit disease
pathogens. The most frequent type of vector control uses a variety of strategies such
as habitat and environmental control, reducing vector contact, chemical control, and
biological control.

Let us consider the following model in two different populations to include vec-
torial control.

Vector Control with Constant Human and Mosquito Population

Let us consider the constant human and mosquito population where f(H(t)) = 0
and g(M(t)) = pumM(t). Then our model would become

) = - )
ug(t) (bnur (t) + byus(t

G ( hulé()) ia(t)) () — s

(1) = () - et 625)

uy(t) = dpua(t)

us(t) = —W + Hmits (t) — vsus(t)

(1) = 2O ) — gt

Where vsus(t) and veug(t) are the introduction of vectorial control to the envi-
ronment resulting to the removal of susceptible and infectious mosquito. The total
controlled mosquito control is given by T},(t) = vsus(t) + veue(t).

Again there exists a unique global in time solution (u1, uy, u3, ug, s, ug) in C(Qcons, R+ )°.

Lemma 3.4.3. The system of equation (3.25) admits an equilibrvium at

EVECCO?ZS,l = (u‘jfl O/ u;r uZ/ OI 0) .
Proof. Let uy, u5, uf, uy, us, uy = 0. Since all parameter are positive, then
opupr =0 - uy =20

aby,,usus

Th
us, He

— Umle — Velg = 0 becomes

—HUmUe — Vsl = 0

(—pm — v6)ug =0
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Since —py —vs # 0, ug = 0. Therefore, substituting us = 0 and up = 0 to both
ut =0, we have

abyuou
—n;iio”+ymu6—v5u5:0
b, (0
—amIEI)uS—F}lm(O)—U5u5:O
0

—05U5 = 0

Since v5 > 0, us = 0. Consequently, since the system (3.25) contains either u5,
us or ug or both, which has a zero value, then any nonnegative values of uj,u3,
u; satisfies the system of equation. Therefore, Evecconsg = (u7,0,u3,u5,0,0) is an
equilibrium point. O

Since the infected individuals are in #; and ug, then the next generation matrix is
by +b
F— ool ;Lﬁo et V= (Yn + Op)uz
gt (tm + v6) Ui

where F as the appearance of new infections in each compartment and V as the
transitions between all other compartments. Thus,

9fr  9f W WV
_ | dupy dug _ | dup dug
F=13% % and V= | 5% 5

Juy  Jug douy  dug
we have N
0 a(byuy+byuz)
F = b Hp
ab,u
Hy : 0
) 0 10
and V = <’Yh+ h ) where V7! = (W‘Mh 1 ) .
O ]/lm + U6 O Hm+0e
Consequently,
bj,u1+by, 1
Pv—l — ( bO W) ('le‘i"sh (1) )
: ﬁous 0 0 Um+0e
0 a(bhu1+Ehu3)
— HO(Vm‘H%)

abyus 0
Ho(vn+0n)
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Since the characteristic polynomial is det [FV~! — AI|, we have
A albutbus)
det |FV =1 — AI| = Ho (e +06)
abyus _A
Ho(vn+0n)

2 azbmu5(bhu1 —|—Ehu3)
Hg (v + ) (pm + vs)

Therefore, the eigenvalues of system (3.25) are

azmel5 <Ehu3 + bhu1>
A=y — (3.26)
Ho® (tm + v6) (v + On)

and we have the following theorem.

Lemma 3.4.4. The equilibrium point Evecconsy = (47,0, u},u;,0,0) of the system of equa-
tion (3.25) is locally asymptotically stable.

Proof. From the above eigenvalues,

a?b,,(0) (Ehu§ + bwi‘)
p(Fvil):i 2 :O<1
Hg (1m +v6) (7 + 6n)

Therefore, the system of equation (3.25) is locally asymptotically stable at Eyeccons,1-
O

Theorem 3.4.5. The equilibrium point Eveccons1 = (u7,0,u3,u},0,0) of the system of
equation (3.25) is globally asymptotically stable.

3.4.3 Combination of Vaccination and Vector Control

Let us combine the dengue vaccination and the vectorial control in our model using
two growth function.

Constant Human and Mosquito Population with Vaccination and Vector Control

Consider a constant growth for human and mosquito population. We have f(H(t)) =
0 and g(M(t)) = pmM(t). Then our model becomes
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(1) = —W — o (1)

aue(t) (byur (£) + byus(t)
up(t) = i ( ! 1Ho h3 ) — Ytz (t) — Spua(t)
us(t) = ypua(t) — W — v3uz(t) (3.27)
uy(t) = dpua(t)
ug(t) = — Lo Ws0) e (6) — osus()

Hy

up() = Lt us(l) 8 — veus(t)

Hy
where total human immunity is given by T}, (t) = vyu1(t) + v3u3(t) and total vecto-
rial control is given by T},(t) = vsus(t) + veue(t).
There exists a unique global in time solution (u1, uz, u3, g, us, ug) in C(Qcons, R+ )°.

Lemma 3.4.6. The system of equation (3.27) admits an equilibrium at
ECombCons,l - (0/ 0/ 0/ MZ/ 0/ 0) .

/ / / / !/ !/ : L]
Proof. Let u}, uy, us, uy, us, ug = 0. Since all parameter are positive, then
Spup =0 — up, = 0.
Thus, ‘Zl’"’% — Umie — Velle = 0 becomes

aby, (0)us

T — UmUe — Vgl = 0

(—pm —v6)ug =0

Hence, 14 = 0. Therefore, substituting u¢ = 0 to both #j = 0 and u} = 0, we have

b,
_buten g ity — Y
Hy
abh(O)u1 ﬂEhug(O)
_ _ -0 0) — A5\ =0
Ho U 71(0) Hy 33
—oviup =0 —ov3uz =0
Since v;,v3 > 0, u3 = 0 and uz = 0. Now, substituting us = 0 to

aby,uru
—"‘Hio” + Umue — vsus = 0, we get

_7ﬁlbm(0)1/l5 + Vm(O) —osus =0
Hy

—Us5U5 = 0

Us =
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Consequently, since the system (3.27) contains either uy, up, uz, us or us or both,
which has a zero value, then any nonnegative values of uj satisfies the system of

equation. Therefore, Ecompconsy = (0,0,0,u;,0,0) is an equilibrium point. O

Now, in solving for the next generation matrix, there is no changes in F and V as
in Section 3.3.1. Therefore, the eigenvalues of system are the same as equation (3.26)

azbmug, (Ehug, -+ bhul)
A=ty —
Ho™(pm +v6) (vn =+ 0n)

Therefore, we have the following theorem.

which are

Lemma 3.4.7. The equilibrium point Ecompconsy = (0,0,0,u},0,0) of the system of equa-
tion (3.27) is locally asymptotically stable.

Proof. Since uj,u3, ut = 0, the above eigenvalues would become

=0<1

J 2b,1(0) (B (0) + by (0))
A=t
H3 (ptm + v6) (v + 6p)

Therefore, the system of equation is locally asymptotically stable at Ecompconsi- O
3.4.4 Summary of the Effective Reproduction Number of Different Con-
trol Strategies

Instead of Ry, it is more interesting to consider the effective reproduction number
R.rr. We have

5 e~
Reff = j:\/a bmuS(ghul + butis) without control
umHo™ (7 + 0n)

azb Us Ehug, + bhul
Repf =+ " 5 ( ) for vaccination only
Ho™pm (7n + 0n)
a%b,,us Ehug + byuy
Resf =+ zm ( ) for vector control only
Ho™(pm +05) (vn + 0n)
a2b Us Ehug, + byuy
Repr =+ zm ( ) for both vaccination and vector control.
Ho™(pm +05) (vn + 0n)
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3.5 Optimal Control strategy

In the next section, we determine the optimal control in minimizing infected humans
by applying vaccination and vectorial control. Using the constant growth function
for human and mosquito population, a numerical simulation is presented using vac-
cination only and vector control only. For the combination of vaccination and vector
control, we use the entomological growth function for mosquito population.

3.5.1 Minimizing Infected Humans by Optimal Vaccination

Let us consider the constant growth population in model for the human population
H'(t) = f(H(t)) = 0 and a general mosquito growth population M'(t) = u,, M(t) +
g(M(t)). We will now write a control problem that aim to minimize the number of
infected human by optimal vaccination. We attribute two control inputs, w; and ws
for the human population. Here, the action of w;(f) is the percentage of primary
susceptible and ws(t) is the percentage of secondary susceptible individual being
vaccinated per unit of time. Furthermore, we assume that both control inputs are
measurable functions that takes its values in a positively bounded set W = [0, wy]>.

Thus we consider the objective function

T (wi,ws) = /OT <u2(t) + %Alw%(t) + ;Ag,w%(t)) dt

subject to
(1) = =) g 1
t) (byur () + byus(t
uz(t) = ypua(t) — W — w3 (t)us(t) (3.28)
uy(t) = Spua(t)
us(t) = — ) )+ g0
() = 2 e

for t € [0,T], with 0 < wy, w3 < wy. The variables A; are the positive weights as-
sociated with the control variables w; and w3, respectively. They corresponds to the
effort of vaccinating the primary susceptible human u; and the secondary suscepti-

ble human u3 compartment.

Lemma 3.5.1. There exists an optimal control w* = (wj (t), w}(t)) such that

J(w],w3) = min J (w1, w3)
weW
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under the constraint (uq, up, Uz, Ua, Us, Ug) is a solution to the ordinary differential equation
(3.28).

Proof. Let (w}, w}),en a minimizing sequence of controls in W = [0, wp]?, i.e.

lim J(wy, w3) = inf J(wy,ws).
This sequence is bounded by wg, and using sequential Banach-Alaoglu theorem to
extract a subsequence weak* convergent to (w},w3) in L*([0,T]; W). For n € N,
we denote (uf, u},--- ,u}) the solution corresponding to the control (w},w}%). Sim-
ilarly to Lemma 3.2.2, one can prove that (u{‘, uy, -, ug) is nonnegative and uni-
formly bounded. Then, ((u})’, (u5)’,-- -, (u})’) is also bounded, or in other words
(u,ul, -, ult)isin W¥°([0, T]). Thus, from Arzela-Ascoli theorem, we can extract
a subsequence of ((uf,u},---,uf)), that strongly converges to (uj,u3,---,uf) in
C°([0, T]). Rewritting (3.28) in integral form, we get

T T
/O (uif(t) - ug)gm(t)dt _/0 (ul(t) — uo)q)l(t)dt
Tqa
— _/0 ;j(ug(s)u?(s) —ug(s)ur(s)) + (wi (s)uf(s) — wy(s)uy(s))dt

or again

/OT(u';(t) —w)di — /OT(ug ~uo)dt

= /OT Lﬁ’;((“ﬁf) —uy (£))ug (t) + (ug (t) — ug(t))ua(t))
+ (@ (£) — wy (8))uff () + (uf (£) — ug (t))wi (t))dt

that converges to 0 as n — +oc0. Deal similarly for the remaining equations, the limit
(u3j,u3,- -+ ,uf) is then the solution of the system for the limit control (w}, w}).
Finally,

lim inf J(w},w}) = lim inf (/OT (ug(t) + %Al(w?)z(t) + ;As(wg)Z(t)> dt)

> [ (4300 + 3 aa(wi 0 + 3ass2(0))
— (i, w3)

by lower semi-continuity of 7.
O

Pontryagin’s maximum principle is used to find the best possible control for tak-
ing a dynamical system from one state to another. It states that it is necessary for any
optimal control along with the optimal state trajectory to solve the so-called Hamil-
tonian system [42] plus the maximum condition of the Hamiltonian. These necessary
conditions become sufficient under certain convexity conditions on the objective and
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constraint functions. Now let us apply the Pontryagin’s Maximum Principle in our
system. We state the lemma below.

Lemma 3.5.2. There exists the adjoint variables A;,i = 1,2, - - ,6 of the system (3.28) that
satisfy the following backward in time system of ordinary differential equation.

_@ _ )\1 <—abhu6 B ZU1> +A2abhu6

dt Hp Hp
dA, abyus abyus
——==14+X (= -6 A Agbp — A A
T + A2 (=70 = 0n) + A3y + Aady — As Ho T H,
dA abyu —abju
) 0 0 (3.29)
Ay
“ar
dAs aby, s g ab,us
dt _A5< Ho M aus ) AT,
d)\6 . abhul 61th1 + aghug aEhug ag
T M Ho + Ay He A3z Ho + As e Aetm
with the transversality condition A(T) = 0.
Proof. Using the Hamiltonian for system (3.28), we have
H =L(w1,w3) + Ay ()uy (8) + Az () uy(t)
+ Aa(t)us(t) + Aa(B)uy(t) + As(B)us(t) + Ae(t)ug(t)
1 1 abyueu
=Un + EA]_ZU% + EA:}ZU% + )Ll <— h[_]g 1 _ Z(J]_u]_>
aug (bhul —|—Eh1/l3)
+ A2 20 — YhU2 — (5hu2 (3.30)
0

abyusu
+ A3 (’Yhuz - }}{s - ws“s) + Ay (Opu2)

ab,usru ab,, uru
+ A5 | — m2 S—Vmu5+g(u5,u6) + Ag m=275 — Umle
Hy Hy
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Therefore, finding the partial derivatives of H with respect to u;’s,
i=1,2,---,6, we have
oH . —abhu6 abhu6
aiul — )\1 ( HO - w1> + Az HO
oH abyuis abyuis
— =14+ A (—y, — A Agly — A A
. + A2 (=yn = 6n) + Asyn + Aady — As Hy + A¢ Ho
oH ﬂBhU6 —aghué
bl A _
i3 2 Ho + A3 ( H, w3
oH
2 —0
8u4
oH aby,uy dg abyuy
oH abyuq abjul + aghug, ElEhM:g 08
— =-A A —A As==- — AgUnm.
Jiig 1 Ho + A Ho 3 Ho + 58u6 6Mm
Then the adjoint system is defined by 1 = _gTHl' i — —377"2, s = _gTHg' day —
—377{4, % = —3%75 and % = —3—3‘2. We have the following
dA . abyug abyue
W - /\1 ( HO + w1 /\2 HO
dAy aby,us aby,us
——=-1+A — A3yp — A A —A
7 + A2 (Yh +0n) — Asyn — Aady + As Ho o,
d)\3 . aEhu6 aEhuﬁ
o - Mgy Tt T
dAy
2
dt
% 2 ab,us B 87g Y ab,,uo
dt - Ho " 8u5 6 Ho
d)té . abhu1 abhul + aEhug, aghug ag
T A Hy A o + A3 H, 7\587 + Aepm
O

Theorem 3.5.3. The optimal control variables, for j = 1,3, are given by

] (A
w; =max | 0,min | —, wy .
J A]

Proof. By the Pontryagin maximum principle, the optimal control w* minimizes the

Hamiltonian given by (3.30). We have

OH

a—wj—O, forall j=1,3 at w;=wyj.



3.5. Optimal Control strategy 91

Thus, we get

87H = A1w1 — )\11/11, 87H = A3HJ3 — /\3M3.
E)w1 aZU3
Implying further that
wr = )\1”1 wt = )\31/{3
17 A 37 A,

Therefore, the optimal control derived from the stationary condition % is given by

0 if 4 <0 0 if 442 <0
1 3
f— Ay s AU * — Aslig sf Asus
w1 e if 5 < wg ws v if 4, < WH.
wy if%ZwH wy if%sz

O

Numerical Simulation of Optimal Vaccination using Constant Mosquito Popula-

tion

This section gives the numerical analyses of the vaccination method through deng-
vaxia in minimizing the infected human population in the dengue outbreak. We
consider a constant growth population for the mosquito population and fixed time
T to 100 days or two and a half months, which is around the average infection sea-
son duration. The parameters value used are the same as in Table 3.2 and the values
of control weights set initially at A; = 0.1 and A3 = 1. Note that the effort in op-
erating vaccination control ws is set higher than the effort in operating vaccination
control wy, since primary susceptible humans are readily available in the population
compared to the secondary susceptible individual, vaccinating them would render
effortless.

The optimality system is numerically solved using the following gradient algo-

rithm written in Python.
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Algorithm:

Initially we set uyp = [l.e4,0.,0.,0.,1.e5,1e3] with Hy = ug[0] + uo[1] +
up[2] + up[3] and My = up[4] + uo[5]. We choose a random positive value
for wy and w3 between |0, 1] with W = (wy, w3).

While |H(wj, u;, A;)| > €.

1. Solve the direct objective problem for t from 0 to T

(1) = = 1y

) — aug(t) (bun 50) +hus(t)) .
() = a(t) ~ PO gy

uy(t) = Spua(t)

() = — 2O

(1) = P2y

2. Solve the adjoint system for ¢ from T to 0

_d;tl = QZZZIG (A1 +A2) — My

_EZ\; =1—7,(A2 —A3) — (A2 — Ag) — ab:I:5 (As — Ag)
_EZ\: = aﬁgé (A2 = A3) — Asws

i

_d;: = al}inlglz(—/\5+)\6)

e b e

3. Using the value of u;’s in step 1 and A’s in step 2, we solve the Wnew =
(w1, ws3) such that, forj =1,3

L A
0 if 44 <0
j
* A . Al
w; = ¢ 2L if 2 < wpy.
i Aj 4 H
.o Al
wy if % > wy
j

4. Compute H(w]-, ui, Aj).




3.5. Optimal Control strategy 93

A finite difference scheme is used to numerically solve direct and the adjoint sys-
tem of ordinary differential equations. More precisely, an explicit correction Adams-
Bashford and implicit correction Adams-Moulton of order 2 is written in python.

Setting wy = 1 with error Err = 1 and tolerance tol = 0.01. Note that in
the human compartment, the total immunity to dengue by means of implement-
ing the Dengvaxia vaccine is denoted by Tj, which is given by Tj,(¢) = w1 (#)uq(t) +
w3 (t)us(t). Using the algorithm above, get the following figure.

10000 oo ooooooooooooooooooooooooo
8000

,, 6000 S,

(] P

: 5

> 4000 Total Population
2000 N

0

0 20 40 60 80 100
Time
10000
8000
— S
p 6000 Rh
3 h
g o
40004 | e Total Population
2000
0 \
0 20 40 60 80 100
Time

FIGURE 3.10: Behaviour of the solution of infected and secondary

susceptible humans (top) and primary susceptible, recovered and to-

tally immune humans (bottom) in optimal vaccination using constant
growth function for human and mosquito population.

Figure 3.10 shows that for 100 days, it would only take two days for the in-
fected human u; population to reach its highest point at 510 population while it
takes around two and a half days for the secondary susceptible 13 human popula-
tion to reach its highest point at 1889 individual and then decrease there population
going there equilibrium at day 80 and 73, respectively. While both recovered hu-
man u3 and immune human Tj converge at the equilibrium on day 40 at 1654 and
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8345 population, respectively. The figure also shows that vaccinating the susceptible
human population at day one decreases exponentially to its equilibrium point.

100000
80000
60000
— s
S fm
40000
20000
0
0 20 40 60 80 100

Time

FIGURE 3.11: Behaviour of the solution of susceptible and infected
mosquito in optimal vaccination using constant growth function for
human and mosquito population.

Figure 3.11 shows that at nine and a half days, susceptible mosquito reaches
its lowest point at 75557 population and the highest point of infected mosquito at
25442 population. The figure clearly shows that susceptible mosquito u5 and in-
fected mosquito u¢ behave opposite. It is because we consider a constant mosquito

population.

10000{ | 5 —
9750
9500

9250

Values

9000
8750
8500

8250
------ Healthy humans

0 20 40 60 80 100
Time

FIGURE 3.12: Behaviour of the solution of healthy humans in optimal
vaccination using constant growth function for human and mosquito
population.

Healthy human population comprises the combination of primary susceptible
human u;, secondary susceptible human u3, recovered human u4 and the immune
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human Tj,. Figure 3.12 shows that for two and a half days, a healthy human popu-
lation exponentially decreases to its lowest point at 8110 population then increases
exponentially to its equilibrium at day 83.

Optimal control w;
1.0 = A CmIee nnn
1T ]

0.8

0.6

Values

0.4

0.2

0.0 { H( A 1

20 40 60 80 100
Time

o

Optimal control w5

1.0

0.8

0.6

Values

0.4

0.2

20 40 60 80 100
Time

o

FIGURE 3.13: Behaviour of the solution of optimal control in pri-

mary susceptible (top) and secondary susceptible (bottom) humans

in optimal vaccination using constant growth function for human and
mosquito population.

Figure 3.13 shows that in order to achieve optimal control in minimizing the
infected human, we need to constantly vaccine 100% the secondary susceptible u3
human for 80 days. Then we can stop for two days and resume the vaccination on
82 and a half days with only 3% of the secondary susceptible human. We can only
stop the vaccination of secondary susceptible humans on day 85. While for primary
susceptible 1; humans, we can have many breaks between the 80 days. Break starts
on day 14, but this is only a short break. Three long breaks are noticeable, on days
47-50, 63-65, and days 69-74.
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3.5.2 Minimizing Infected Humans by Optimal Vector Control

In this section we consider minimizing infected humans by applying vector control
trough pesticide administration. Let us consider the constant growth population
model for the human H'(t) = f(H(t)) = 0 and a general mosquito growth popula-
tion M'(t) = pmM(t) + g(M(t)). We will now write a control problem that aim to
minimize the number of infected human. We attribute a control inputs w;, for the
mosquito population. Here, the action of w,,(t) is the percentage of administration
of insecticide to the environment per unit of time resulting to the removal of sus-
ceptible and infectious mosquito in the system. Furthermore, we assume that the
control input is measurable functions that take its values in a positively bounded set
W = [0, wp]. Thus we consider the objective function

T (w) = /OT <u2(t) + ;Amw;(t)> dt

subject to
(1) = e
M/Z(t) _ Elué(t) (bhullgo) + bhu3(t)> B ,)/hu2(t) B 5hu2(t)
(1) = () — e 631)
i(6) = B)
() = 2O g (0 (0)) — G-+ (1) 1)
wy(t) = ) 1) — (s

for t € [0, T], with 0 < w,, < wy. The variables A,, are the positive weights associ-

ated with the control variables.

Lemma 3.5.4. There exists an optimal control wy, such that

J (wy,) = min J(wy)

weW
under the constraint (11, Uy, us, g, Us, Ug) is a solution to the system (3.31).

Now let us apply the Pontryagin’s Maximum Principle in our system. We state

the lemma below.
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Lemma 3.5.5. There exists the adjoint variables A;,i = 1,2, - - ,6 of the system (3.31) that
satisfy the following backward in time system of ordinary differential equation.

= —Alal;}? +Az”IZZG

_% =1+ Ao (= — &) + A + Aady — ASQZ}?}:S +A6abg:5
_ % _ Azﬂi’;zlz% B /\Sa%(b)te

i

_% = As <_a£1}:u2 n ;i) — As (e + Wy +A6al}'3:2

with the transversality condition A(T) = 0.

Proof. Using the Hamiltonian for equation (3.31), we have

H=L(wn) + M (£ (1) + Ao (B (2)
A (8 (£) + A (D) () + As(E)u(t) + Ao (£)utp (1)

1 ab ab
=y + S Apw?, + M <—hu6u1> + A3 (’yhuz - hu3u6>

2 Hy Hy

aue (bhul +Ehu3) (3.32)

+ Ay a — Ypua — Optn | + Ay ((5;1112)
0
abyusru
+ As (—";{25 + g(M) — (pm + wm)ug,)
0

b

+ A (a 7,;_1;2145 — Umle — wmu6>
0

Therefore, finding the partial derivatives of H with respect to u;’s,
i=1,2,---,6, we have

gz,-f = _Ala%;;};% - Azal;?

o

gz = As (_azﬁuZ + ;;i) — s (fm + W) +A6ab§:2
i abyuy . abyuy+abyus | abyus . 0g

T%:_Al H, +A2T—A3 Ho +)\587u6—/\6(]/1m+wm)
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Then the adjoint system is defined by % = —3—1’5 fori =1,2,---,6. We have the
following

DZ;Z = =14 A2 (70 + ) — A37n — Ay + As abl_mI:S - Asabgg%

M0

{Z;S =As <ab§;42 - ;i) + As (m + Wm) —)\6al%Hﬂ:l2

d;‘: - Ala%” = Azabhulgoagh”3 + A3 a@? = A5§56 + A (fom + W)

Theorem 3.5.6. The optimal control variables, for j = 5, 6, are given by

w;, (t) = max <O,min (W,wM>> .
Am

Proof. By the Pontryagin maximum principle, the optimal control w}, should be the
one that minimizes, at each instant ¢, the Hamiltonian given by (3.32). Therefore, we

get
JoH
— = Amwm — A5M5 — /\61/[6.
oWy,
In effect, we get
« _ Asls + Agllg
O =74~
m

Therefore, the optimal control derived from the stationary condition i s oiven b
p y a 158 y

0 ifwgo
m
¥ — { AsustAsie if AstsTAcUs
Wi s if Srrete <wy
W if%ZwM
m

Numerical Simulation of Optimal Vector using Constant Mosquito Population

This section gives the numerical analyses of the vector control method through pes-
ticide administration in minimizing the infected human population in the dengue
outbreak. We consider a constant growth population for the mosquito population
and fixed time T to 100 days or two and a half months, which is around the average
infection season duration. The parameters value used are the same as in Table 3.2
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and the values of control weights set initially at A,, = 1. The optimality system is
numerically solved using the same gradient algorithm as in Section 3.5.1.

10000  prmsmsmsememrmsmmemr s s,
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8000 — Sh
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~ 4000
2000
0
0 20 40 60 80 100
Time

FIGURE 3.14: Behaviour of the solution of the variables in the human
compartments in optimal vector control using constant growth func-
tion for human and mosquito population.

Figure 3.14 shows that for 100 days, it would take at most three days for the
infected human population to reach its maximum at 2044 population. It then de-
creases exponentially towards it equilibrium. On the other hand, secondary suscep-
tible humans increases exponentially for approximately 20 days towards its equilib-
rium with 3121 maximum population.

Furthermore, primary susceptible humans decreases while recovered humans
increases over time with minimum population of 3121 and maximum population of
1715 individuals, respectively.

Figure 3.15 shows that vector control is an effective method in minimizing the
mosquito population. For ten days, susceptible mosquito decreases until it reaches
almost zero population. While infected mosquito increases only for at most two days
with 2688 maximum population.

Totally controlled mosquitoes means those mosquito who have been eliminated
in the process of applying insecticide. The figure shows that the totally controlled
mosquito increases exponentially and reach its equilibrium for a short days only.
This strengthens further the conclusion that vector control is an effective method in

minimizing the mosquito population.
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FIGURE 3.15: Behaviour of the solution of susceptible, infected and
total controlled mosquito in optimal vector control using constant
growth function for human and mosquito population.
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FIGURE 3.16: Behaviour of the solution of healthy humans in op-
timal vector control using constant growth function for human and
mosquito population.

Healthy human population comprises the combination of primary susceptible
human u;, secondary susceptible human u3, recovered human w4 and the immune
human Tj,. Figure 3.16 shows that for at most three days, a healthy human popu-
lation exponentially decreases to its lowest point at 7955 population then increases
exponentially to its equilibrium at day 22. The figure shows that vector control is
more effective in maintaining a healthy human population. With the difference of
only 155 population, vector control has less minimum population than vaccination
but vector control reaches the equilibrium faster than vaccination.

Figure 3.17 shows that in order to achieve optimal control in minimizing the
infected human, we need to constantly apply insecticide for 34.5 days. After then
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FIGURE 3.17: Behaviour of the solution of optimal control of
mosquitoes in optimal vector control using constant growth function
for human and mosquito population.

there is a bang-bang control. The figure shows that we can stop the application of

insecticide on the 63rd day.

3.5.3 Minimizing Infected Humans by both Optimal Vaccination and Vec-
tor Control

In this section, we combine the vaccination and vector control as a strategy in min-
imizing infected humans. We we write a control problem that aim to minimize the
number of infected human population. We attribute three control inputs, w; and
w3 for the human population and w,, for the mosquito population. Here, the ac-
tion of w(t) is the percentage of primary susceptible and wjs(t) is the percentage
of secondary susceptible individual being vaccinated per unit of time implying the
removal of infected human individuals from the system. While the action of w,(t)
is the percentage of administration of insecticide to the environment per unit of time
resulting to the removal of susceptible and infected mosquito in the system. Fur-
thermore, we assume that all control inputs are measurable functions that takes its
values in a positively bounded set W = [0, wy, wp]. Thus we consider the objective

function

T
j(w1,z()3, wm) = /() (u2<t) + %Alw%(t) + %A3w§(t) + ;Amwfn(t)> dt
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subject to

wy (1) = e gy
Hy

L aug(t) (b () + Byua (1))
(1) = M ~ s (t) ~ by (1)
uz(t) = ynua(t) — W — ws(t)us(t) (3.33)
uy(t) = dpu(t)
(1) = — 22O (0 (1)) = G+ 0 (1) (1)
(1) = 2 1) = w0

fort € [0, T], with 0 < wy, w3 < wy, 0 < wy, < wy. The variables Aj are the positive

weights associated with the control variables w;, j = 1,3, m, respectively,

Lemma 3.5.7. There exists an optimal control w* = (wj (t), wj(t), wy,(t)) such that

J (wi, w}, wy,) = min J (wy, ws, wy,)
weW

under the constraint (11, uy, U3, U, Us, Ug) is a solution to the system (4.13).

Now let us apply Pontryagin’s Maximum Principle in our system. We state the

lemma below.

Lemma 3.5.8. There exist the adjoint variables A;,i = 1,2, - - ,6 of the system (4.13) that
satisfy the following backward in time system of ordinary differential equations:

dAl
dt
dAy
dt
dAs
dt
dAy
dt
dAs
dt
dAg
T

—abyu abyu
/\1< hé—w1>+/\2 Ll

Hy Hy
ab,u abyu
=1+ Ao (—7h — 81) + Asvn + Aady — As—> 4 Ag—
Hy Hy
aghué —agh%
A2 Hy A3 ( Hy
—abyuy  0g ab,,un
As ( Ho + s As (Hm + W) + e Hy
abjuq abjui + aghug, aghug 0g
— — = —A
M Ho + A2 Hy A3 Ho +As T 6 (Um + W)

with the transversality condition A(T) = 0.
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Proof. Using the Hamiltonian for (4.13), we have

H =L(wy,ws, wy) + A1 () (t) + Az (t)ub(t)
+ As(H)us(t) + Aa(H)uy(t) + As(t)us(t) + Ae(t)ug(t)

1
= (u% + Ajw? + Azw + Amwzm)

2
+A —M—wu +A u —aghu3u6—wu
1 Ho 1U1 3 | Ynu2 H, 3U3
N (3.34)
aug <bhu1 + bhu3>
+ Az 7 — Yt — Opttn | + Ay (Spui2)
0
ab,usus
+ /\5 —T +g(M) — UmUs — Wy Us
0
ab,, uru
+ As ( ";{2 > — Uil —wmu6> -
0

Therefore, finding the partial derivatives of H with respect to u;’s,
i=1,2,---,6, we have

gz =14 A2 (=7n = 0n) + A3y + Aady — As al}go% + A ubIS:S

SZ _ Azaf?;,[(b)te 4 s (—Lflzw —w3>

=0

gz = As <_QIZZMZ + 6855> — As (pm + wm) + Aéab;_;:z

L SRS ;0”{5’“”3 s ”2;‘3 2555~ A (i +0m).
Then the adjoint system is defined by % = —% fori=1,2,---,6. O

Theorem 3.5.9. The optimal control variables are given by

wi(t) = max (O,min (Alul,wH>)
Aq

w3(t) = max <O,min <A3u3,wH>>
As

A A
*(t) = max <O, min <5u5 + 6u6,wM)>
Am
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Proof. By the Pontryagin maximum principle, the optimal control w* minimizes, at

each instant ¢, the Hamiltonian given by (4.14). We have

a—Hzo, forall j=1,3,m at w;=w;.
aw]‘ ]
Therefore, we get
I _ Arwy — Ay,
Bwl
I _ Azwz — Azug,
aw:;
oH AWy — Asus — Aglig,
ow,,
and
- /\11/[1 W — /\31/{3 w _ /\51/15 +/\6u6
1 Al ’ 3 A3 rWm Am .

3.5.4 Numerical Simulation of the Optimal Control Problem

In this section, we presented numerical simulations showing the difference in mini-
mizing the infected human during the dengue outbreak between the three methods:
vaccination, vector control, and the combination of the vaccination and vector con-
trol. The optimal control are (w}, w}), (wk, w;) and (w}, w}, wi, wf), respectively.

We consider a constant growth function for human population f(H(f)) = 0 and
an entomological growth function for the mosquito population ¢(M(t)) = a,,Me=FnM.
The parameters value used presented in Table 3.2 which is taken from Bakach et al.
[6] and the author estimates some from Indonesia, with the similar environmental
condition as the Philippines. Notice that we set a;, < p;;, by Theorem 4.2.1 the
global stability corresponds to E;. In this situation, E; is biologically thus we do not
take it into consideration.

The control weights A; and Ajz are the efforts in vaccinating the human pop-
ulation while A,, is the effort to eliminate the mosquito population by means of
administering insecticides. Since primary susceptible humans are readily available
in the population compared to the secondary susceptible humans, the efforts used in
vaccinating them would be less than the effort exerted in vaccinating the secondary
susceptible. Thus, Az is set higher than A;. While insecticide administration in
susceptible mosquitoes and infected mosquitoes uses the same effort and achieves
a similar result. Hence, we initially set the control weights as A; = 0.1, A3 =1
and A,, = 1. Note that the values of A, A3, A;; do not change the convergence of
optimal control.

The optimality system is numerically solved using the same gradient algorithm
describe in Section 3.5.1. In here, we set ug = [l.e4,0.,0.,0.,1.e5,1e3] with
Hy = uo[0] + uo[1] + uo[2] + uo[3] and My = ug[4] + uo[5]. We choose a random
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positive value for wy, w3 and w,, between ]0,1[ with W = (wq, w3, w,,) such that
|H (wj, u;, Aj)| > €. Note that the initial choice of w does not affect the convergence
of the solution.

Infected Human

6000

5000

4000

5'3000

2000

1000

0 20 40 60 80 100
Time

FIGURE 3.18: Response comparison of the infected human compart-

ment in the 4 control strategies: vaccination only (green), vector con-

trol only (orange), vaccination and vector control (blue), and without
control (red).

Figure 3.18 shows in minimizing the infected human that the combination of
Dengvaxia and vector control is the most effective method. It would only take 30
days to reach equilibrium, resulting in the total elimination of infected humans with
a maximum of 12.55% (1,255) infected humans over time. Nevertheless, vector con-
trol stands out if we compare only the vaccination and vector control method. It
would only take 34 days with a maximum population of 19.68% (1,968) infected
humans for vector control to eliminate infected humans. In comparison, vaccina-
tion takes 45 days, with 18.42% (1,842) infected humans. Without control, infected
humans would slowly decrease after reaching 60.07% (6,007) but would never anni-
hilate. Vaccinating secondary humans would only take 48 days to reach equilibrium
with a maximum of 54.94% (5,494) infected humans over time.
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Figure 3.19 shows no significant difference between the three methods concern-
ing the primary and secondary susceptibles to reach its equilibrium point. It takes
seven and a half days for vaccination and 14 days to combine vaccination and vec-
tor control to reach zero primary susceptible individuals. Moreover, it takes 42 days
for vaccination and 30 days for the combination to reach zero secondary susceptible
individuals. For vector control, it takes 20 days to reach an equilibrium of 53.36%
(56336) primary susceptible humans and 34 days to reach 30.15% (3015) secondary
susceptible humans.

Note that in the human compartment, the total immunity to dengue by means
of implementing the Dengvaxia vaccine is denoted by T}, which is given by Tj,(t) =
w1 (t)uq(f) + ws(t)us(t). Thus, a healthy human combines immune human T}, pri-
mary susceptible 11, secondary susceptible u3, and the recovered 14 humans. The
figure shows that the combination of vaccination and vector control is the best method
in maximizing the healthy human population. It only takes 26 days to combine vac-
cination and vector control methods to reach the equilibrium of healthy humans. Its
minimum population is 8.73% (8,734) on day 1.8.

In contrast, there is no significant difference in the vector and vaccination method
alone in the healthy human population. The vector method takes 29 days to reach its
equilibrium with 8.02% (8,021) minimum population on 2.8 days. The vaccination
required 39 days to reach an equilibrium with 8.16% (8,157) minimum population on
2.5 days. Without any control strategies applied to the healthy human population,
it requires a much higher time to reach its equilibrium with 4% (4,000) minimum
population.

For the recovered human compartment, the figure shows that the human pop-
ulation would eventually recover through time without control strategies applied
to the variables. It supports that dengue infection lasts only three to seven days fol-
lowing the infectious mosquito bite, and a spontaneous, full health recovery follows.
However, comparing the three control methods, the combination of vaccination and
vector control methods stands out. It only requires 26 days to reach its equilibrium
at 0.79% (787) recovered human population. At the same time, there is no signifi-
cant difference between vaccination alone and vector control alone. Both require 32
days to reach its equilibrium at 1.59% (1,590) and 1.65% (1,646) recovered human,
respectively.

Now, minimizing the susceptible mosquito population, no control applied to
the variables is better than vaccination. It decreases faster with 0.56% (556) min-
imum susceptible mosquito population while vaccination decreases slower with
3.69% (3,692) minimum population at the end of time. Nevertheless, the vector con-
trol method and the combination of vaccination and vector control are the better
methods for controlling the mosquito population. They annihilate the susceptible

mosquito population.



108 Chapter 3. Preliminary study of dengue model

Minimizing the infected mosquito, either vector control alone or combining vac-
cination and vector control is the best method. There is no significant difference be-
tween the two. They both require minimum time for the infected mosquito to reach
zero population and with only 2.6% (2596) and 2.52% (2521) maximum population
for the vector control only and the combination, respectively. However, vaccination
is better compared to the one without control. The infected mosquito has a 58.09%
(58,092) maximum population without applying a control strategy, while the vacci-
nation has a 22% (22,006) maximum population.

Now, let us show the controlled variable’s behavior by comparing the vaccina-

tion, vector control only, and the combination of vaccination and vector control.
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Figure 3.20 shows that concerning vaccination only, vaccinating the primary sus-
ceptible human population requires a shorter time compared to the secondary sus-
ceptible human. It takes ten days and 40 days to vaccinate primary and secondary
susceptible human populations, respectively. Nevertheless, applying both control
strategies takes only approximately 20-22 days. While minimizing the mosquito
population, the vector control method is better than combining the two strategies. It
takes approximately 15-18 days to administer insecticide to the mosquito population
while applying both control strategies takes 22-24 days.

350 —— Vaccination and Vectorial
Vaccination
—— Vectorial
300
250
= 200
e
i
150
100

50

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Iteration

FIGURE 3.21: Convergence of the Error in each control strategies

Figure 3.21 shows the convergence of the error to zero. In general, the gradient

method converges rapidly. Here only 3 steps are necessary.
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Chapter 4

A Dengue-Dengvaxia Model:
Comparison Between Vaccination
and Vector Control

This chapter focuses on a dengue-dengvaxia models with entomological growth of
mosquitoes. The results in this chapter where published in the article Optimal Con-
trol of a Dengue-Denguvaxia Model: Comparison Between Vaccination and Vector Control,
Comput. Math. Biophys. 2021; 9:198-213.

4.1 Description of the Model with Vaccination

Based on the Ross-type model, we assumed that dengue viruses are virulent with no

other microorganism attacking the human body.

FIGURE 4.1: Compartmental representation of the model with vacci-
nation considering individuals who have previous dengue infections.
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Let H be the human population subdivided into primary susceptible S, sec-
ondary susceptible Sy, infected I, and removed R;,. Primary susceptible humans are
individuals who have not yet been infected by dengue, while secondary susceptible
humans are individuals who previously had dengue infection.

Let M be the population of female mosquitoes split into two groups of suscep-
tible S, and infectious I,, mosquitoes. Figure 4.1 describes the flow of dengue dis-
ease. In this chapter, we introduce a mathematical model of dengue that considers
the vaccine that should be given to people who are already infected by one type of
virus.

Since humans have a meager mortality rate compared to mosquitoes, we neglect
the natural death of humans but still consider their growth. The following system of
ordinary equations governed the dynamics of humans.

s0) =~ o)+ 1(3100) @)
G0) = GOS0+ B0 - () ~an0) @)
Si(t) = wlh(t)_abg(n;;t)gh(t) (4.3)
R = aula(t). )

While the dynamics of mosquitoes are as follows

) =~ (1) — (1) + g(M(0) @5)
) = TS 0) — (1) ®6)

Note that the total human population is given by H = S;, + I + S, + R;, and
the total mosquito population is given by M = S,, + I,,. The function f(H(t)) is
the change in the total human population, while g(M(t)) is the change in the total
mosquito population. In this study, we will consider different growth model for hu-
man and mosquito population. Since human have a meager mortality rate compared

to mosquitoes, we neglect the natural death of the humans.

4.2 Study of the Model with Entomological Growth

Let us consider an entomological growth population model for the mosquito pop-
ulation and a constant human population. We have H'(t) = f(H(t)) = 0 and
g(M(t)) = ayMe PnM, as in Bilman et al. [9], where B,, is the characteristic of
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the competition effect per individual. Then our model would become

(1) = - et

o aug(t) (bun p(lto) +h(t) )

(1) = ) — () wr
uy(t) = dpua(t)

us(t) = —W — ppts () + aMe—PrM

() = ) e

Now, let us prove that our new model is bounded and well-defined.

Well-posedness and Positivity of the Solution

Theorem 4.2.1. The domain Q) defined by
QFuto = {U S ]R?F 0<uy+upy+uz+uy = Hy,0 < us 4+ ug < max <5(X7;/MO>}
mgtm

is positively invariant. In particular, for an initial datum U(0) in Qgpe, there exists a
unique global in time solution U in C(Ry, Qrnto).

Proof. Consider the initial value problem
Uu'(t) = F(t,U(t)) where U(0) = Uj.

The right-hand-side F satisfies the local Lipschitz condition. Therefore, the Cauchy-

Lipschitz theorem ensure the local well-posedness. Then,

f1(0, up, uz, us, us, ug) = 0,Vuy, - -+ ,us € QEnto

aug (bhul +Ehu3>
2 0/ vul/ Uz, -+ ,Up € QEﬂtO

fa(u1,0, us, ug, us, ug

fa(u1, u2,0,us, us, ug) = yuuz, Yy, Uz, ug, - - - ,us € QEnto

Opuo, Yuy, up, uz, us, ue € OEnto

fs(u1, up, uz, ug,0,u6) = apmtige P, Yuy, -+ g, ttg € Qe

abmu2u5

( ) =
( i)
fa(uq,uz,us,0,us, ug)
( ) =
( 0) = “hmttals

fo(ur,un, us, ug, us, ,Vug, - us € OFnge
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We write
_ amM aM
&y Me™PrnM = .
eﬁm 21120 (5»7;11}4)
_ a M
1+ BuM + B} 4 Bl
Lm
= B

Then M'(t) < 52 — HmM(t) and by Gronwall’s lemma

M(t) < e Pt <M _ _m >+ < <{xm,M>

Equilibrium

Now, solving for all possible values of x* that lie on Qg we get Egyso1 = (13,0, u3,u;,0,0)
ay

1
and Eguo = (13,0, u}, uj, B In (Hm

) ,0). We state the following lemma.
Lemma 4.2.2. The system of equation (4.7) admits an equilibria at Eg,e,1 = (u7,0,u3,u;,0,0)
1

and Egptop = (uT,O, u3,uy, B In (%) ,0).

Proof. Let uy, ub, uf, uy, ut, uy = 0. Since all parameter are positive, then

(5hu2 =0 — up = 0.
abyuzus .
Now for . Umle, since uy = 0, we have
0
aby, (0)u
mH(O)5 — Ut =0
—Umue = 0.

Therefore, g = 0. Thus, for —”b”}{% — Hmls + (s + ug)ePr(4sts) = 0 becomes

by (0)

— Hmls + “m(MS + (O))e_ﬁ’n(u5+(0)) =0
Hy

— Umls + apyuse Pris =0

us(—pm + ame Pr5) = 0

Hence, us = 0 or —py + ame Prs = 0. If —p + ape Pr's = 0, then e Prtts = I,

Thus, us = ﬁim In <%) . Since the system of equation contains either u; or u¢ or both,
which has a zero value, then any nonnegative values of u1, u3, 14 satisfies the system
of equation. Therefore, Eknton = (u3,0,u},u;,0,0) and
Ekntop = (ui‘,O, u3, uy, ﬁ In (“ﬂ> , 0) are an equilibrium point of the system (4.7).

Wm
[
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Next Generation Matrix and Basic Generation Matrix

Since the infected individuals are in u; and us, then we can rewrite the system of the

. W Vo (7 + On)uz
ﬂbn}{ﬂ Hmle

0

equations as

where F is the rate of appearance of new infections in each compartment and V is
the rate of other transitions between all compartments. Thus,

F _ 0 a(bhu}gghw) V B ,)/h + 5h 0
— \ abuus 7t 0
Hy 0 Hm

1
— 0
and V-1 = (7”‘5}' 1 ) . Therefore, the next generation matrix is

M
0 a(bhu]—ﬁ—ghw)
-1 _ mHO
FVv— = B
abyus 0
(7/1+5h)H0

It follows that by [67] the basic reproduction number, denoted by p(FV 1), where p

is the spectral radius, is given by

. —
p(FV1) = \/“ bm“5<i’h”1 *butta) (4.8)
pmHo™ (v + 6n)

Now using this eigenvalue, we determine the local stability of the equilibrium

points Egpnto1 and Egpo.
Proposition 4.2.3.

1. The disease free equilibrium Egnon = (u3,0,u3,u3,0,0) = (SZ,O,SE*,RZ,0,0) is

locally asymptotically stable.

a2b,, ln<%) <th; +E;l§;*>
H%%‘mﬂm (Yh+0n)

equilibrium point Egnop = (uj,0,u3, 1}, ﬁ In (%) ,0) == (SZ,O,SE*,RZ, ﬁ In <%) ,0)

2. If oy > pp and Ro < 1 where Ry = \/ , then the disease free

is locally asymptotically stable.

Proof. 1. From the above eigenvalues,

a2b,;,(0) (Ehug + bhui‘)

=0
HE p (yn + )

p(FV1) =

Therefore, the system of equation is local asymptotically stable at Eg, 1.
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2. Similarly,

R \/azbmug(bhu’{ +Ehu§) @by, In (%) (bh”§ + bh“i‘)
0= =
pmHo? (v =+ 1) HonFIG B (Y1 + On)

Therefore, if a,, > uy and Ro < 1, the system of equation is local asymptoti-
cally stable at Egy 2.
O

The basic reproduction number Ry has a biological meaning when «;,;, > py,. It
means that the average number of new infected humans is proportional to the pro-
portion ;5 of susceptible mosquitoes among the human population. The terms IL_'T],

and #. proportion of primary and secondary susceptible humans respectively. The

aby, and aby,
Han (Yn+0n)” Han (Yn+0p)
the infection period 1/ (7, + ¢;,) and mosquitoes life expectancy 1/ ji,.

terms represent the transmission rate due by biting durin
1% y g g
Jacobian Matrix

To confirm the stability, we compute the Jacobian Matrix of the system in order to
confirm our lambda, then only the g{f, i=1,2,---,6,would change. We can get

% =0 % _ —abyus

8u1 auZ Hy

ofs _ dfs _

s 0 g 0

dfs _ —abuwuy —BuM 9fs —BnuM

By — Hm m " — Pm = "1 = Bm
s S e PO M) S = e P (1 )

Therefore, we get the Jacobian Matrix

e 0 0 0 0 o
al%é B — (511 % 0 0 abhul;ﬂabhug
=] 0 o —gs 0 —oits
0 & 0 0 0 0
0 =ahits 0 0 =2yt e PrM(1— BuM)  ame PrM(1 - B M)
0 el 0 0 aheins -

Thus, we have the following theorem.

Lemma 4.2.4. The disease-free equilibrium point Epnq = (uj,0,u3,u;,0,0) is locally
asymptotically stable.
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Proof. Let Egnto1 = (u5,0,u3,u},0,0) be an equilibrium point of the system of equa-

tion (4.7). Then the above Jacobian matrix for Eg,;,1 can be deduce to

0 0 00 0 %
0
0 —y,—6& 0 0 0 %
—abyuiy
](EEnto,l) - 0 Th 00 0 Ho
0 0 0 0 _,um + Koy X
0 0 00 0 .
Let |J(Egnto1) — Als| = 0. Then
—abjuy
O —-vm—--A 0 0 0 %
- —abniy
U(EEnto,l) - )\16‘ = 0 Th A 0 0 &
0 0 0 0 _Vm + [ )\ K
0 0 0 0 0 _,um —A

Therefore, solving the determinant above would determine its characteristic poly-

nomial. We have

A3 (A == 1) (A = ) (<A = i+ ) = 0.

Hence, we get

A1 = 0 multiplicity 3

Ay ==y — 0y
AB = —HUm

Since &, — um < 0, all the eigenvalues are negative, implying further that the system

of equation is locally asymptotically stable at the Egp,1.

Lemma 4.2.5. The endemic equilibrium point (uj,0,u}, u},

totically stable if oy, > py and Ro < 1.

1
Bm

In (

O]

Km

- ) ,0) is locally asymp-
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Proof. Let Egutop = (u7,0,u3, 1, ﬁim In (;%) ,0) be an equilibrium point of the sys-

tem of equation (??). Then the above Jacobian matrix for Egy,» can be deduce to

0 0 00 0 L
0 — ey — (Sh 00 0 abhu}}—gzbhu;
0 i 0 0 0 o
J(Eento2) = | 0 on 00 0 0
—aby, In % . .
0 Hoﬁ(}) 00 _len@*) P (1_1“(?))
ab,, ln(%) 0 0 0 B
Hom Hom
Let U(EEnto,Z) — )\I6| = 0. Then
—A 0 0 0 0 s
0 —m—d—-A 0 0 0 %
0 o A0 0 L
0 S 0 —A 0 0 =0.
—ab,, In % . .
0o Gl o 0 pin(f)—a (1o ()
wn() o o 0 — i — A
HO,Bm ‘um

Therefore, solving the determinant above would determine its characteristic poly-
nomial. We have

abhuf-i-al;hu;

bt Y=o — A — g
(_/\)3 <_Vm In (Mm> - A) abmln<;ﬂ> ’ =0.
m o\ ) — U — A

Oﬁm

Solving the determinant of the remaining 2x2 matrix, we get

aby, In <%) abyu + ul;;lué B
HoBm Hy

(=70 =0 — A)(—pm — A)

Expanding the equation above give us the quadratic equation

aby, In (%”1) (abyui + abNhu§) .
H02ﬁm -

A2+ Ay + O+ ) + (,um('Yh + o) —

Using quadratic formula to solve A, we get

J (Yn+ 0n + um)* — 4 <Vm(’¥h +6p) — o ln(ml){ijzhuﬁaau;))
Yh + O + Pm L m

A=—
2 2
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Since In (%) ”}f’l—’; (W) < mPBm(vn + 6), we have

\/(% + 0yt pm)? — 4 (P‘m(”m +0n) = g+ BB (Y0 + 5h))

. Yh + 5h + Wm
A< > + 5
Simplifying this we get
Vo 0t V(0 Ot ) — 4 (o (i + 8) — pon (70 £ 90))
2 2
That is,
Ao _nt Ot Ynt Op At
2 2
Therefore,
/\<_’Yh+5h+l4m+’m+5h+ﬂm Ao _nt Ot pm  Ynt Op At
2 2 2 2
A=0 A< = (7 + O+ pm)
Thus, the eigenvalues of system are
A= (multiplicity 4)

which are negative if &, > p,, and Rg > 1. Therefore, the system of equation is
locally asymptotically stable at the equilibrium point Egy 2. O

Theorem 4.2.6.
1. If oy < pm, then Egpyo is globally asymptotically stable.
2. If oy > pp and Ro > 1, then Egyyo is globally asymptotically stable.

Proof. From the fourth equation of system (4.7), we can deduce that u4 is increasing.
Since uy4 is bounded by Hy, uy has a limit uj as t — +oco. Thus, integrating the
equation gives
ug(t) — ug(0) = &y, [y un(s)ds.
Thus
uy —1u4(0) =6 [y ua(s)ds

which is finite. Implying further that u,(s) — 0 as s — +oo.
Now, adding the fifth and six equation of system (4.7) gives us

ub +up = M' = g(M) = ayMe PrM — 3, M.
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As in Theorem 3.2.3, if &y, < pyy, then M(t) — 0 as t — +oo. Thus, by positivity of
the solution us and ug goes to 0 as t — +oo.

From u}j = —”b’flfl‘ig”l < 0, the function u; is a decreasing non-negative function
bounded by Hy. Thus, as t — 400, 1 — uj.

The solution of the third equation u’3 + abhHuig% = YUy, can be written as

us(t) = E(t)us(0) + fy E(t — s)pyna(s)ds

with E(t) = eiaf‘% I g (3)ds. Since, forall t > 0,0 < uy(t),us(t) < Hp, 0 < ug(t) < My,
then up — 0, u3 — u3 whent — +oco.

When a,; > py, letus denote M* = /3 In (”‘”’) Since M’ (t) = (ame M — )M,
if M(t) < M*, then M is increasing and bounded by above, while if M(t) > M,
then M is decreasing and bounded by below. In particular, M(t) has a limit when
t — +o00. Using now the local asymptotic stability with Ry < 1, this limit is equal to
M*. O

Numerical Illustrations

In this section, we presented the numerical illustration using the constant human
population and entomological growth function for mosquito population. We let the
final time T be 2000 days with initial condition
(10000, 0,0,0,100000,10). Using the same parameter value as Table 3.2 and B,, =
0.375, a phase portrait graph of system (4.7) was simulated using the Python pro-

gram.
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4.2. Study of the Model with Entomological Growth
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Figure 4.2 shows that for 9 days susceptible humans decreases exponentially to-
wards its equilibrium. On the other hand, infected and secondary susceptible hu-
mans increases exponentially. Upon reaching the maximum of 5790.384 infected and
1798.828 secondary susceptible humans, they then decreases to there equilibrium on
the 60th day. As a consequence, recovered humans exponentially increase for 60
days towards its equilibrium.

For the mosquito population, susceptible humans decreases rapidly for 120 days
then follows by a smooth decrease towards its equilibrium. Whereas, infected mosquito
exponentially increase for 14 days with maximum population of 51603.490 and then

exponentially decreases towards its equilibrium.

6000 6000
4000 4000
< <
2000 2000
0 0
00 02 04 06 08 10 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Sh le4d Sh le3
(A) Ih A% Sh (B) Ih \'A) Sh
50000 50000
40000 40000
30000 30000
£ £
20000 20000
10000 10000
0 0
0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0
In le3 Sm le5
(C) Ly vs I (D) Ly, vs Sy

FIGURE 4.3: Phase portrait of the model with dengvaxia using con-

stant growth function showing primary S; and secondary suscep-

tible S), versus infected humans I; in blue color, and susceptible

mosquitoes S;; and infected humans Ij, versus infected mosquitoes

Iy in cyan color. Square and circle indicates the first and last solution
of the variables.

For infected humans, figure 4.3a shows that at time t = 0, there are no infected
humans but have 10,000 primary susceptible humans. For a period of time, infected
humans increases while primary susceptible humans decreases. Upon reaching the
maximum of 5790.384 infected human, It then decreases while primary susceptible
humans continuous to decrease.

Figure 4.3b shows that infected and secondary susceptible humans are directly
proportional to each other for all time. For some time, both variables increases up
to the maximum of 1798.828 secondary susceptible humans. Then they decreases

towards the total elimination.
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Figure 4.3c shows that in the beginning there are 10 infected mosquito and no in-
fected human. As the infected humans increases, infected mosquitoes also increases.
After some time, the two variables become inversely proportional. As infected hu-
mans decreases, the infected mosquito continue to increase. Then both variables
decreases towards zero.

On the other hand, figure 4.3d shows that at time t = 0, there are 100,000 suscep-
tible mosquito and 10 infected mosquitoes. The figure shows that the two variables
are inversely proportional to each other. For some time, susceptible mosquitoes de-
creases while infected mosquitoes increases slowly. Then an exponentially increase
of infected mosquito follows. When it reaches the maximum of 51603.490 infected
mosquitoes, it then decreases while susceptible mosquito continues to decrease to-
wards zero.

4.3 Choice of Control Strategies

Preventing or reducing dengue virus transmission depends entirely on controlling
the mosquito vectors or vaccination. This section applied three control strategies
to reduce dengue transmission: vaccination, vector control and the combination of

vaccination and vector control. We applied this control strategies to model (4.7).

4.3.1 Vaccination

Dengue fever is the most rapidly spreading mosquito-borne viral disease found in
tropical and sub-tropical climates worldwide. It is caused by the single positive-
stranded RNA virus of the family Flaviviridae that is transmitted to humans through
a diurnal mosquito. [56] So far, there is no specific treatment for dengue fever. Ac-
cording to the theory of facilitating antibodies, vaccine research is made more diffi-
cult by the need for a vaccine immunizing sustainability and simultaneously against
the four serotypes of the virus [50]. Half a dozen vaccine candidates are under study.
The most competitive candidate was Denguvaxia, by Sanofi Pasteur. Dengvaxia (CYD-
TDV) was licensed in December 2015 and has now been approved by regulatory
authorities in 20 countries.

CYD-TDV vaccine is for the prevention of dengue disease caused by dengue
virus serotypes 1, 2, 3, and 4. It should be administered three doses six months apart
of 0.5 mL subcutaneous (SC) administration for individuals aged 9 - 16 years old
with laboratory-confirmed previous dengue infection and living in endemic areas.

To account for the vaccine in the model, let us consider the following mathemat-
ical model in two different populations.

Let us consider an entomological growth for the mosquito population and con-
stant human population. We have f(H(t)) = 0 and g(M(t)) = a,;Me P»M. Then
our model becomes
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uy(t) = -abhuéﬁzgul(t) — 01141 (1)
L aug(t) (b () + Byua (1))
uh(t) = 2 — ynuz(t) — Spua(t)
us(t) = yuua(t) — W —vsus(t) (4.9)

uy(t) = pua(t)

Hy
wi(t) = 2 (e
0

Where v1u4(t) is the vaccination given to the primary susceptible human pop-
ulation, and wsu3(t) is the vaccination given to the secondary susceptible human.
The total immunity is given by T'(¢) = vyuy (t) + vsus(t).

Note that there exists a unique global in time solution (u1,up, us, 4, Us, ug) in
C(QEnto, R4 )S.

Lemma 4.3.1. The system of equation (4.9) admits two  equilibria

Evacknton = (0,0,0,143,0,0) and Evacenioz = (0,0,0,uf, 7 In () ,0).

Proof. Let uy, ub, uf, uly, ut, uy = 0. Since all parameter are positive, then

Spup =0 — u, =0
abyuzus .
Now for 0 Umie = 0, since uy = 0, we have
0
ab,,(0)u
mIEI()) 2 - pmie =0
—HUmlUe = 0

Therefore, ug = 0. Consequently, substituting us = 0 and u, = 0 to both u’l =0and
u% =0, we have

ath6M1 . aEhMQ,MG .
Ho U = 0 Yhu2 Ho O3U3 = 0

aby, (01 B abyu3(0) _
He viup =0 vr(0) Ho v3uz =0

—UU] = —v3u3z =0
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Since v1,v3 > 0,7 = 0and uz = 0. For —% — ptts + o (Us 4 g e~ Prlustits) —

0 becomes
_aby(0)

— it + (15 + (0) e P50
Hy

— Umlls + ayuse P =0
us(—pm + ame Prs) =0

Hence, us = 0 or —piy + ame Pr¥s = 0. If —ppy + aye Prs = 0, then e=Prtis = En,

Km

m Hm
or ug or both, which has a zero value, then any nonnegative values of u; satisfies the

Thus, us = ﬁi In <‘M> . Consequently, since the system (4.9) contains either uy, uy, u3

system of equation. Therefore,  Evacento = (0,0,0,u;,0,0) and
EvVacEntop2 = (0,0,0,u}, ﬁ In (%) ,0) is an equilibrium point of system (4.9). O

As in Section 6.1, one gets

= j:\l a2b,us (Ehu3 + bhu1>

Ho? pm (v + 1)
and, we have the following lemma.

Lemma 4.3.2. The equilibrium points Evacenton = (0,0,0,u;,0,0) and
EvacEntop = (0,0,0,u;, ﬁim In (%) ,0) of the system of equation (4.9) are locally asymp-

totically stable.

4.3.2 Vector Control

Vector control is a method to limit or eradicate the vectors which transmit disease
pathogens. The most frequent type of vector control uses a variety of strategies such
as habitat and environmental control, reducing vector contact, chemical control, and
biological control.

Let us consider the following model in two different populations to include vec-
torial control.

Our model would become

u(p) = - el
aug(t) (byur(t) + byus(t)
(1) = — <h}) 0) i)
uz(t) = ypua(t) — W (4.10)
uy(t) = dpua(t)
us(t) = —W — U5 (t) + aMe PrM — vsus(t)
_ abyus(t)us(t)

ug(t) — Ho pmte(t) — vsiie(t)
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Where vsus(t) is the vectorial control given to the susceptible mosquito popula-
tion, and vsue(t) is the vectorial control to infectious mosquito. The total mosquito
control is given by T}, (t) = vsus(t) + vette(t).

Again there exists a unique global in time solution (uy,ua, U3, us, us, tg) in
C(QEnto, R4)S.

Lemma 4.3.3. The system of equation (4.10) admits two  equilibria

1 «
Evecenton = (15,0, 15,143,0,0) and Evecentoz = (147, 0,13, 15, 7 In (82-) ,0).

Proof. Let uy, uh, ufy, uy, ut, uy = 0. Since all parameter are positive, then

(5;,142 =0 — u, =0
aby,usrus .
Now for g Umle — UsUe = 0, since up = 0, we have
0
b, (0
ﬂﬁ&fw_yw%_vwézo

(—pm —v5)ug =0

Since — i — vs # 0, ug = 0. Consequently, substituting g = 0and 1, = 0touf =0,

we have
_E%IL;Z% — Wit + (s + g)e”PrUHS) —osus = 0
_melgl?))% — Hmits + o (us + (0))e P HO) —pg5u5 = 0
— s + ayiise” P — o515 = 0
(—ym + ay e Prits — U5> us =0
Implying that
— U+ e P — s =0 or us =0

oémeiﬂmu5 = U5+ im

—Bms = In (vS - ‘um>

Xm

u —1ln< Rl >
S_ﬁm Z)54‘,“111

Consequently, since system (4.10) contains either uy, or ug or both, which has a

zero value, then any nonnegative values of uj, u; and u} satisfies the system of equa-

. 1
tion. Therefore, Evecnto,1 = (13,0, u5,u},0,0) and Evecnto2 = (uT,O, u3, uy, B In (vﬁﬁ) ,O)

is an equilibrium point of system (4.10).

Now, in solving for the next generation matrix, since equation (3.25) and (4.10)
have the same 1, and uy, then they have the same next generation matrix where the
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eigenvalues are

ameM5 (Ehu3 + bhul)
A=+ ; 4.11)
Ho(pm +v5) (vn =+ 6n)

Therefore, we have the following theorem.

Lemma 4.3.4. The diseases free equilibrium point Evecpnton = (47,0,u},u;,0,0) of the
system of equation (4.10) is locally asymptotically stable. While the endemic equilibrium
point Evecntop = (uT,O, 13, 1}, g-In (

Ro < 1.

Xm
Us+tm

),O) is locally asymptotically stable if

Proof. For Evecgnto1, since ui = 0, Rg = 0 < 1. Thus, Ev,cento is locally asymptoti-
cally stable.

Xm
U5+ hm

Ry = J a2b,, <ﬁln (vsoj:;nl)> <Ehu§ + bh”f)

Ho? (pm + vs) (7 + 6n)

For Evecento2 since uz = ﬁ%, In ( ),the above eigenvalues will become
1

Consequently,
Ho?B (ptm + 05) (i + 1)
m by E 3 tabyu}
in (i) e (s
~ Bulpm 4 05) (v + )
if Rg < 1, the system is locally asymptotically stable at Ev,cento,2- O

Following Theorem 4.2.6, we can also prove the theorem below.
Theorem 4.3.5. 1. If oy, < py + 0s, then Evcento1 is globally asymptotically stable.

2. Ifay > Um + 05 and Ro < 1, then Evecgnto is globally asymptotically stable.

4.3.3 Combination of Vaccination and Vector Control

Let us combine the dengue vaccination and the vectorial control in our model using
two growth function.
Then our model becomes
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(1) =~

) - ats () (byns Igﬂ) thu(t) ()

() = paina(t) — W ~ osus() w12
ug(t) = dpua(t)

uh(t) = —”bmuzgo)”f’(t) — ptts (1) + @ Me PN — vsus(1)

wy(t) = L (1) — o)

where the total human immunity is given by T},(t) = vqu;(t) + v3u3(t) and total
vectorial control is given by Ty, (t) = vsus(t) + vsug(t).
There exists a unique global in time solution (u1, ua, u3, g, us, ug) in C(Qpnr, Ry )°.

Lemma 4.3.6. The system of equation (4.12) admits two equilibria
ECombEnto,l = (O/ 0/ 0/ MZ/ O/ 0) and ECombEnto,Z = (0/ 0/ 0/ MZ/ ﬁ In (}lnﬁ‘lvs ) ’ 0) .

Proof. Let uy, uh, ufy, uly, ut, uy = 0. Since all parameter are positive, then
Spup =0 — up = 0.

Thus, ”b’”% — Umile — Vs = 0 becomes

aby, (0)us

T — UmUe — Vsl =0

(—#m — vs)ug = 0.

Hence, 16 = 0. Therefore, substituting u = 0 to both 1} = 0 and u = 0, we have

b
—ab}ﬁsul—vlulzo ')’huz—%—%%:o
abh (0)111 a@hug (0)
_ _ -0 0) — A =0
o Uy 71(0) Hy vsli3
—viu; =0 —v3uz =0
Since v;,v3 > 0, u3y = 0 and uz = 0. Now, substituting us = 0 to
—Thugotls — s + ot (us + 1t )e~Pr(15H1) — v5us = 0, we get
b
_amISIO)Ms — UmUs + oy (us + O)e_ﬁm(”5+0) —ousus =0
0

—Umls + txmu5e_/3"'“5 —osus =0

us(—phm + ame P —v5) =0
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implying further that

us =20 or — U+ lxmef.Bml% —v5=0

e_ﬁmuS — Vm + U5
Xm

u —1ln< fm )
> ,Bm Um + U5

Consequently, since the system (4.12) contains either u1, 13, uz or ug or both, which

has a zero value, then any nonnegative values of u; satisfies the system of equation.
Therefore, the equilibrium point of the system of equation (4.12) are

ECombEnto,l = (0/ O/ 0/ qu OI 0) and ECombEnto,Z = (0/ O/ 0/ qu ﬁ In (an‘_tvs) ’ 0) . U

The next generation matrix remains the same as in Section 4.2. Thus the eigen-

values of system are

a2b,,us <Ehu3 + bhu1>
A=ty — .
Ho™(pm + v5) (70 + On)

Therefore, we have the following theorem.

Lemma 4.3.7. The disease free equilibrium point Ecompenton = 0,0,u;,0,0) and the

endemic equilibrium point EcompEntop = (O 0,0, u4, L ln< nf‘ﬁv5> ) of the system of

equation (4.12) are locally asymptotically stable.

Proof. Since uj,u3 = 0 in either EcompEnto,1 and EcompEnto,2,
EhU3 + byug = Eh (0) -+ bh(()) =0.

Thus the above eigenvalues will banished. Consequently, the system of equation is
locally asymptotically stable at Ecypento1 and EcompEnto,2- O

Following Theorem 4.2.6, we can also prove the theorem below.
Theorem 4.3.8. 1. If ay, < p + 0s, then EcompEnto1 1S globally asymptotically stable.

2. If oy > Py +vs and Ro < 1, then EcompEnto,2 18 globally asymptotically stable.

4.4 Optimal Control strategy

Assume that both control inputs are piecewise continuous functions that take its
values in a positively bounded set W = [0, wy]? x [0,wpm]?. Thus we consider the

objective function

T
T (w01, w3, ) :/0 wa() + 3 (Arwd(0) + Aswd(t) + Ayacd, (1)) at

subject to
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(1) = — ) g 1
aug(t) (byuy (t) + byus(t

uy(t) = o ( ' 11510) ol )> — Ytz (t) — Gpuia(t)

, abyus(t)u
uh(t) = ypua(t) — “1(26(” — w3 (t)us(t) (4.13)
uy(t) = Spua(t)
() = ~ 22O (00 (0)) — s () — (s
ug(t) = W — pmits (t) — Wi (t)u(t)

fort € [0,T], with 0 < wy, w3 < wy, 0 < wy,, < wy and w = (wy, w3, wy,). The
variables A; are the positive weights associated with the control variables w;, j =
1,3, m, respectively.

Lemma 4.4.1. There exists an optimal control w* = (wj (t), w3 (t), w;,(t)) such that
J (wi, w3, w,,) = min 7 (w1, w3, )
weW

under the constraint (11, Uz, us, ta, Us, Ug) is a solution of (4.13).

Pontryagin’s maximum principle is used to find the best possible control for tak-
ing a dynamical system from one state to another. It states that it is necessary for
any optimal control along with the optimal state trajectory to solve the so-called

Hamiltonian system [42]. We state the lemma below.

Lemma 4.4.2. There exist the adjoint variables A;,i = 1,2, - ,6 of the system (4.13) that
satisfy the following backward in time system of ordinary differential equations:

_d;tl A <—6Zzu6 _w1> +/\2al;p}:6

_‘Z‘: =1+ A2 (=vn — ) + Azyn + Aaby — 7\5ab:1(:15 + A6ab&?5

—EZ\: = Azaigé + A3 <_QHEZ% — w3>

sy

_% — s <—aI};,:u2 n 3855> s (e + ) +/\6abgouz

_d;tﬁ - A ai;;;ﬂ n Mab;;m:{-()a%% _ ASL{?}??’ + A5§56 — A6 (m + W)

with the transversality condition A(T) = 0.
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Proof. Using the Hamiltonian for (4.13), we have

H = L(wy, w3, wy) + A ()l (t) + Az (H)ub(t) + As(t)us(t)
+ Aa(B)uy(t) + As(t)us(t) + Ae(t)ug(t)

1
=3 (u% + Ajw? + Azw3 + Amwi)
+A —M—w uy | + Az | ynu2 — abyisis — w3
1 Ho 1U1 3 | Ynu2 Ho 3U3
N (4.14)
aug (th1 -+ bhu3)
+ Az T — Yptiy — Optin | + Ag (Opz)
0
ab,, uru
+ )\5 <_n;_125 +g(M) — UmUs — wmu5>
0
ab,uru
+ Ag ( ";IZ > — Ut —wmu6> .
0

Therefore, finding the partial derivatives of H with respect to u;’s,
i=1,2,---,6, we have

877-[ _ /\1 (—abhu6 _ w1> +/\2abhu6
Hp

duy Hy

gz =14 Ao (—7n — ) + Azyn + Aady — /\5ab;;:5 + Aaab;}:%

0

gz =As (—aIl_aI?uz + ;55> = As (Hm + wm) + /\GME:Z

gz: =N al}g;” + /\2ab’”‘lgoafl;’“”‘3 - Aga%[f‘ + )\5;56 — A (i + W) -
Then the adjoint system is defined by % = —3% fori=1,2,---,6. O

Theorem 4.4.3. The optimal control variables are given by

wi(t) = max <O,min <A1ul,wH>>
Aq

w3(t) = max <O,min <A3u3,wH)>
As

. . Asus + Aglig
wy,(t) = max (0, min WM
m
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Proof. By the Pontryagin maximum principle, the optimal control w* minimizes, at
each instant ¢, the Hamiltonian given by (4.14). We have

a—Hzo, forall j=1,3,m at w;=w;.
aw]‘ ]
Therefore, we get
I dywy— s, D = gy — Agus, 28 = Ay — Asus — Aeus,
Jwy ows oW,y
and
W — /\11/[1 . /\31/{3 w . /\51/15 +/\6u6
1 — Al ’ 3 = A3 yWm — Am .

4.4.1 Numerical Simulation of Optimal Control

Numerical simulations show the difference in minimizing the infected human dur-
ing the dengue outbreak between the three methods: vaccination, vector control,

and the combination of the vaccination and vector control.

| Symbol | Description \ Values \

a number of human beaten per mosquito 1day~!

by, probability of becoming infected 0.75 day !

by, probability of becoming infected again 0.375 day 1

&y, growth rate of human 0.0045 day~*
Yn recovery rate of human from first infection 0.328833 day !
on recovery rate of human from the second infection | 0.1666 day !
by, probability of becoming infectious 0.375 day~*
Hom death rate of mosquito 0.02941 day~*
Ky growth rate of mosquito 0.025 day !

TABLE 4.1: Parameter values used in the numerical simulations.

The parameters are presented in Table 4.1, which is taken from [6]. Notice that
&y < Hm, by Theorem 4.3.8 the global stability corresponds to Ecympento,1- Here
EcombEnto is biologically not meaningful in this situation. The author estimated
some from Indonesia, where environmental conditions are similar to the Philippines.
The control weights A; and Ajz are the efforts in vaccinating the human population.
In contrast, the control weights A, is the effort to eliminate the mosquito popula-
tion by means of administering insecticides. Since primary susceptible humans are
readily available in the population compared to the secondary susceptible humans,
the efforts used in vaccinating them would be less than the effort exerted in vacci-
nating the secondary susceptible. Thus, Ajz is set higher than A;. While insecticide
administration in susceptible mosquitoes and infected mosquitoes uses the same

effort and achieves a similar result. Hence, we initially set the control weights as



4.4. Optimal Control strategy 133

A1 =0.1, A3 = 1and A, = 1. Note that the values of A1, A3, A, do not change the
convergence of optimal control

A finite difference scheme is used to numerically solve direct and the adjoint sys-
tem of ordinary differential equations. More precisely, an explicit correction Adams-
Bashford and implicit correction Adams-Moulton of order 2 is written in python.
The optimality of the system is numerically solved using Algorithm 1 with e = 0.01.

Algorithm 1 Computation of optimal control of dengue-dengvaxia

Given U° = (10%,0,0,0,10° 10%) as initial datum , a final time T > 0 and a toler-
ance € > 0.
Let w{, w9, w9, randomly chosen following N(0,1).
while |[VH(w", U",A")|| > ¢ do,
solve the forward system u",
solve the backward system A",

update w"
solve the gradient VH (w", U", A")
w* = w".
Responses comparison for infected humans
6000 —— Vaccination and Vectorial

Vectorial
—— Vaccination
—— Without control
——— Secondary only

5000

4000

uz

3000
2000
1000 \
0
0 20 40 60 80 100
Time

FIGURE 4.4: Behaviour of infected humans I, with respect to time

without control (red), for the optimal control related to the vaccina-

tion only (green), related to the vector only (orange), and with both

control (blue). Cyan curve corresponds to optimal control of vaccina-
tion of secondary humans only.

Figure 4.4 shows in minimizing the infected human that the combination of
Dengvaxia and vector control is the most effective method. It would only take 30
days to reach equilibrium, resulting in the total elimination of infected humans with
a maximum of 12.55% (1,255) infected humans over time. Nevertheless, vector con-
trol stands out if we compare only the vaccination and vector control method. It
would only take 34 days with a maximum population of 19.68% (1,968) infected
humans for vector control to eliminate infected humans. In comparison, vaccina-
tion takes 45 days, with 18.42% (1,842) infected humans. Without control, infected
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humans would slowly decrease after reaching 60.07% (6,007) but would never anni-
hilate. Vaccinating secondary humans would only take 48 days to reach equilibrium

with a maximum of 54.94% (5,494) infected humans over time.
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136 Chapter 4. A Dengue-Dengvaxia Model

Figure 4.5 shows no significant difference between the three methods concern-
ing the primary and secondary susceptibles to reach its equilibrium point. It takes
seven and a half days for vaccination and 14 days to combine vaccination and vec-
tor control to reach zero primary susceptible individuals. Moreover, it takes 42 days
for vaccination and 30 days for the combination to reach zero secondary susceptible
individuals. For vector control, it takes 20 days to reach an equilibrium of 53.36%
(5336) primary susceptible humans and 34 days to reach 30.15% (3015) secondary
susceptible humans.

Note that in the human compartment, the total immunity to dengue by means
of implementing the Dengvaxia vaccine is denoted by Tj, which is given by Tj(t) =
w1 (t)uq(t) + w3 (t)us(t). Thus, a healthy human combines immune human Tj, pri-
mary susceptible 11, secondary susceptible u3, and the recovered u4 humans. The
figure shows that the combination of vaccination and vector control is the best method
in maximizing the healthy human population. It only takes 26 days to combine vac-
cination and vector control methods to reach the equilibrium of healthy humans. Its
minimum population is 8.73% (8,734) on day 1.8.

In contrast, there is no significant difference in the vector and vaccination method
alone in the healthy human population. The vector method takes 29 days to reach its
equilibrium with 8.02% (8,021) minimum population on 2.8 days. The vaccination
required 39 days to reach an equilibrium with 8.16% (8,157) minimum population on
2.5 days. Without any control strategies applied to the healthy human population,
it requires a much higher time to reach its equilibrium with 4% (4,000) minimum
population.

For the recovered human compartment, the figure shows that the human pop-
ulation would eventually recover through time without control strategies applied
to the variables. It supports that dengue infection lasts only three to seven days fol-
lowing the infectious mosquito bite, and a spontaneous, full health recovery follows.
However, comparing the three control methods, the combination of vaccination and
vector control methods stands out. It only requires 26 days to reach its equilibrium
at 0.79% (787) recovered human population. At the same time, there is no signifi-
cant difference between vaccination alone and vector control alone. Both require 32
days to reach its equilibrium at 1.59% (1,590) and 1.65% (1,646) recovered human,
respectively.

Now, minimizing the susceptible mosquito population, no control applied to
the variables is better than vaccination. It decreases faster with 0.56% (556) min-
imum susceptible mosquito population while vaccination decreases slower with
3.69% (3,692) minimum population at the end of time. Nevertheless, the vector con-
trol method and the combination of vaccination and vector control are the better
methods for controlling the mosquito population. They annihilate the susceptible

mosquito population.
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Minimizing the infected mosquito, either vector control alone or combining vac-
cination and vector control is the best method. There is no significant difference be-
tween the two. They both require minimum time for the infected mosquito to reach
zero population and with only 2.6% (2596) and 2.52% (2521) maximum population
for the vector control only and the combination, respectively. However, vaccination
is better compared to the one without control. The infected mosquito has a 58.09%
(58,092) maximum population without applying a control strategy, while the vacci-
nation has a 22% (22,006) maximum population.

Now, let us show the controlled variable’s behavior by comparing the vaccina-
tion, vector control only, and the combination of vaccination and vector control.

A. Both controls Vaccination only C Both controls Vector only
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FIGURE 4.6: Optimal control of the (A) primary susceptible and (B)

secondary susceptible human compartment using vaccination only

versus the combination of both control strategies. Optimal control

of (C) mosquitoes compartment using vector control only versus the

combination of both control strategies. Cyan curve represents opti-
mal control of vaccination of secondary humans only

Figure 4.6 shows that concerning vaccination only, vaccinating the primary sus-
ceptible human population requires a shorter time compared to the secondary sus-
ceptible human. It takes ten days and 40 days to vaccinate primary and secondary
susceptible human populations, respectively. Nevertheless, applying both control
strategies takes only approximately 20-22 days. While minimizing the mosquito
population, the vector control method is better than combining the two strategies. It
takes approximately 15-18 days to administer insecticide to the mosquito population
while applying both control strategies takes 22-24 days.
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Chapter 5

A Model of Dengue accounting for
the Life Cycle

In this chapter, we introduced a ROSS-type model of dengue accounting for
mosquitoes” life cycle. The qualitative study of this model was also discussed, as
the identifiability of the parameters involved. An optimal control strategy using
copepods and pesticides was added to the model. The numerical simulations of the
optimal control use the effectivity of Mesocyclops aspericornis, a Philippines specie of
copepod, to eliminate larvae and thermal fogging to eliminate adult mosquitoes.

5.1 Life Cycle of Mosquitoes

Mosquitoes have a complex life cycle. They change their shape and habitat as they

develop.
Mating § - ] Female needs blood
= fi ducti
-,—%g:: /-k or egg production
= (08 <
L5571 =N '\"{—\“ — N

Oviposition, eggs laid most times
Adult emerges slightly above the water level

from the pupa IMago

Adult insect

_— T Pupa :
: When covered with water,
\ / \xk Y I
. Larva

Moulting between each stage - ‘ =

Fourth larval stage First larval stage

Third larval stage / Second larval stage

© Biogents, . Schleip

FIGURE 5.1: Life cycle of Aedes mosquitoes.
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Only female adult mosquitoes lay eggs. They lay their eggs which stick like glue,
above the water line on the inner walls of containers that are or will be filled with
water. This oviposition site includes the wall of a cavity, such as a hollow stump, or a
container, such as a bucket or a discarded vehicle tire. Only a tiny amount of water is
needed to lay eggs. The egg hatch into larvae when water inundates the eggs by any
means, such as rain or filling water by people. But mosquito eggs can survive drying
out for up to 8 months or even in winter in the southern United States [20]. When
that happens, they have to withstand considerable desiccation before that hatch [59].
Once they achieve a suitable desiccation level, they can enter diapause for several
months. Aedes eggs in diapause tend to hatch irregularly over an extended period of
time.

Larvae live in water, and they feed on microorganisms and particulate organic
matter. They develop through four stages, or instars. In the first to fourth instar, the
larvae molt, shedding their skins to allow for further growth. On the fourth instar,
when the larva in fully grown, they metamorphose into a new form called pupae.
Pupa still lives in water but they do not feed. After two days, they fully developed
into adult mosquito forms and breaks through the skin of the pupa. Adult mosquito
is no longer aquatic, it has a terrestrial habitat and is able to fly. This entire life cycle
of mosquito last for eight to ten days at room temperature, depending on the level
of feeding.

Dengue viruses are spread to people through the bites of infected Aedes species
mosquitoes (Ae. aegypti or Ae. albopictus). These are the same types of mosquitoes
that spread Zika and chikungunya viruses [18].

Dengue can also spread from mother to child. A pregnant woman already in-
fected with dengue can pass the virus to her fetus during pregnancy or around the
time of birth.

Rarely, dengue can also be transmitted through infected blood, laboratory, or
healthcare setting exposures, i.e., through blood transfusion, organ transplant, or
through a needle stick injury.
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5.2 Description of the model

In this section, we presented a new model that involves the mosquitoes aquatic
stage. Based on the Ross-type model, we assumed that dengue viruses are viru-
lent and no other microorganism attacking the body and it is not transmitted from
mother to child.

ap’

S 2
4
/ \ I abhH\
>< n
Ih Hn
YP.Sm Yag
A‘,“MP - "/ um \

% [\ / Hn @
larva ’

FIGURE 5.2: Compartmental representation

Let My and M4 represents the young and adult mosquito population, respec-
tively. Thus My is subdivided into the three aquatic stage, i.e., eggs E, larvae L, and
pupae P, and M, is subdivided into susceptible S,, and infected I,, mosquitoes. In
this study, we assumed that adult mosquito cannot pass the virus to its eggs. That
is, we assume that eggs reproduce by either susceptible or infected mosquito is not
a genetic carrier of dengue virus. a, represents mosquitoes birth rate through egg
production. Thus, «,,S;, and a;, I, represents the rate of egg laying of susceptible
mosquitoes and infected mosquitoes, respectively. As mosquito evolved from one
life stage to another, we use the parameter 7; ; as the conversation between state vari-
ables. u; represents the death rate in each state variables. With total population of
My = E + L + P, the dynamics of the metamorphosis of young mosquito is govern
by the equation below.

E'(t) = aw(Sm(t)+ Lu(t)) —vELE(t) — ueE(t) (5.1)
L'(t) = veLE(t) —yrpL(t) — pLL(t) (5.2)
P'(t) = qLpL(t) —vps,P(t) — upP(t). (5.3)
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When pupa fully developed it breaks through its skin and become an adult
mosquito. Adult mosquito is longer aquatic and is able to fly. We denote yp s, Pe Fn
as the transition rate of pupae to adult mosquito. The pupal competition is translated
by e PP meaning that the death rate increases with the pupae density P [11]. In
this study, we assume that all emerging adults are susceptible. ab,, I} represents the
probability of susceptible mosquito to be infectious once it bites an infected humans.
The parameter a represents the average mosquito bites and by, is the transmission
probability from infected humans to susceptible mosquito. With total population of
My = Sy + Iy, the dynamics of the interaction of adult mosquito is govern by the

equation below.
Su(t) = ps,P()e PP — 1Sy (t) — abuly(£)Su(t) (54)
() = abuly(t)Su(t) = palu(t) 5.5)

Since humans have a meager mortality rate compared to mosquitoes, we neglect
the human death rate. Let H be the human population subdivided into susceptible
Sy, infected I, and recovered Rj, humans. The dynamics of human population is

given by
Sp(t) = vRy(t) —abyLu(t)Sy(t) (5.6)
L(t) = abyLu(t)S(t) — ouly(t) (5.7)
Ry(t) = ouly(t) — yuRu(t) (5.8)

In this chapter, susceptible humans represents both primary and secondary sus-
ceptible. Thus as humans recovered (y;,R; is the recovery rate of humans from
dengue infection) from one, two or three types of dengue virus, it goes back to being
susceptible to the other type of the virus. Since an individual being infected by all
types of dengue virus is a rare case, we neglect the total immunity. The probability
of susceptible humans to be infected with dengue is given by ab;, I,,,, where by, repre-
sents the probability of transmission of virus from infected mosquito to susceptible
humans.

5.3 Qualitative Study of the Model

Let U(t) = (E(t), L(t), P(t), Sm(t), Ln(t), Su(t), I (t), Ry, (t))T. Then the system above

can be rewritten in compact form as

u'(t) = f(t, U(t)), (5.9)
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where
(xm(Sm + Im) — ')’E,LE — yEE

YeLE —yL,pL —pLL
YLpL —vps, P — pupP

Fleuy = | PP S — abuliS (5.10)

aby I,Sm — paln

ViR — aby LSy

ElthmSh — (ThIh

Oply — Ry

5.3.1 Well-posedness and Positivity of the Solution

Lemma 5.3.1. Let (E(0),L(0), P(0), S (0), L, (0), S,(0), I,(0), R;,(0)) be a nonnegative
initial datum with H(0) = S,(0) + I,(0) + R;,(0) > 0, Mg = Syu(0) + L,;(0) > 0 and
My (0) = E(0) + L(0) + P(0) > 0. Then there exist a time T > 0 and a unique solution
(E,L, P, S, Ln, S, I, Rp,) in C ([0, T], R)®.

Proof. Consider the initial value problem U'(t) = f(t, U(t)) where U(0) = Up. The
function f(t, U(t)) is C! on [0, T] and thus, U satisfies the local Lipschitz condition.
Therefore, by Cauchy-Lipschitz Theorem, there exist T > 0 and a unique solution to
equation (5.10) in C ([0, T], R)®. O

Now we will show that if the solution exists then it is positive and bounded.
Lemma 5.3.2. The solution is nonnegative and bounded for all time.

Proof. LetU = (E,L,P, Sy, Lm, Sy, I, Ry) € ]Ri be the solution of the system of equa-
tion (5.10). In proving for positivity, we assume that the parameters are positive for
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all time t > 0. We have

fi(E=0,L,P,Su, L, Su, I, Ry,) = am(Sm + L) — ve,LE — ueE

=0 (S + 1) <0 YL, P,Syu, L, Sy, In, Ry, > 0
f2(E,L =0,P,Sm, L, Sp, I, Ry,) = yeLE — yo.pL — prL

=q9e1E>0 VE,P,Su, L, Sy I, R, >0
f3(E,L,P = 0,Su, I, S, I, R,) = yL.pL — yp,s, P — ppP

= q.pL >0 VE,L,Su, I, Sy, I, Ry, > 0
fa(E,L, P, Sy =0, Ly, Sy, I, Ry,) = yp,s, Pe PP — 1148, — ab,, 1Sy

= 9ps, Pe P"* >0 VE,L P, 1,5, IR, >0
f5(E,L, P, S, Ly = 0,8y, I, Ry,) = aby 1Sy — paln

= aby IS, >0 VE,L,P,S,, Sy In, Ry, >0
f6(E,L, P, Sm, Lu, Sy = 0,1, Ry,) = y4Ry, — abyL,Sy,

=R, >0 VYE,L,P,Sy, I, I,,R, >0
f7(E,L,P, Sy, In, Sy, I, = 0, Ry,) = aby LSy, — o3I,

= abpl;Sy, >0 VE,L,P,Su, L, Su, Ry, >0
f8(E, L, P, Su, L, Sp, In, Ry, = 0) = 03I, — viRy,

=0,1,>0 VYE,L,P,Sy, IS, 1, >0

Hence, we have shown that for all time t > 0, the solution E, L, P, S, L,,,, Sy, I, and
Rj remains nonnegative.

Since we consider a constant human population H'(t) = 0, then
H(t) = Hy = constant

and the human components, being nonnegative, are bounded by Hy.
Now, note that mosquito population is the combination of young and adult
mosquito. Let y,, = min (ug, iz, pp, pa), then

M =(E4+L+P+Sy,+ L)
= 0y (Sm~+ Im) — ugE — L — upP — pa(Sp + L) — vps, P(1 — e_ﬁ"'P)
< (&m — pm)M

Therefore, from Gronwall’s Lemma,
M(t) < el@m=1mt My,

If oy < py, then ay, — pyy < 0and M(t) = elam=pm)t Mo < Mp. On the other hand, if
Ky — U > 0and M(t) < elam=pm)t Mo which is finite for all finite time ¢ and infinite
only when t = +oco0.
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O]

From lemma 5.3.1 and lemma 5.3.2, we can deduce the global well-posedness
theorem below.

Theorem 5.3.3. Let (E(0),L(0), P(0),Sx(0), Lx(0),S,(0), I,(0), R, (0)) be in Q. Then
there exists a unique global in time solution (E,L, P, Sy, Iy, Sy, I, Ry) in C(Ry., O)8.
5.3.2 Equilibrium of the Model

Let (E*, L%, P*, S5, I, S;, I}, R;;) be an equilibrium point of the system of equation
(5.10). Then solving the system of equation below

& (Sm+ Inm) — vELE — pgE =0 (5.11)
YELE— vy pL —urL =0 (5.12)

ypL —vps, P —upP =0 (5.13)
vps, Pe Pl — xS, — ab,1,S, =0 (5.14)
aby 1,Sm — paly =0 (5.15)

YuRp — abp LSy =0 (5.16)

ab,1,S, — oI, =0 (5.17)

oply — Ry =0 (5.18)

would give us the equilibrium points &prg = (E*,L*, P*,S;,,0,5;,0,0) and &g =
(E*,L*,P*, S, 1, S, I, R;;). To show this, consider the lemma below.

Lemma 5.3.4. The system of equation (5.10) admits a positive disease free equilibrium
épre = (E*,L*, P*,S;,,0,S;,0,0) and an endemic equilibrium &gg = (E*, L*, P*, S, I, S, I, R})).

Proof. Suppose I;, # 0. Expressing each equation in the system in terms of P, I, and

I, we can have from equation (5.13),

L= wp_ (5.19)
YLP

From equation (5.12), solving for E we get
veLE = (v +pL)L

_ Lp + ur L
YE,L

E

Substituting equation (5.19) to the equation above would give us

g (et p)(ves, +ue) (5.20)
YELYL,P
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Now, adding equation (5.14) and (5.15) we get

Yps, Pe P — uaS, — paly =0
#A(Sm + Ln) = vps, Pe PrP
P *ﬁmp
Sm + Im - ’)/P,S”l ©
HA

From equation (5.11), solving for S, + I,, we have

“m(sm + Im) = (')/E,L + ﬂE)E
(veL +ue)E

Km

S+ In =

Now, equating the two equations above and substituting equation (5.20) to E, we

have
+ t
Yps, Pe PP (YEL + HE) - (rp F;;)L(;Yflf ) p
Ha W
’YP,SmPe—ﬁmP _ (IYE,L + HE)(’)’L,p + VL)('YP,S," + VP)P
Ha &mYE,LYL,P

o—bup _ Ha(YEL+ pE) (e + 1) (vps, + pp)
XmYE,LYL,PYP,S,,
ePnP — XmYE,LYL,PYP,S,

~ pualyer +pe)(vre + o) (vps, + #p)

Applying In to both sides of the equation would give us

BuP = In XmYE,L'YL,PYP,S,,
" wa(yer +ue)(yoe +pur)(vps, + wp)
Therefore,
e L ( X YE,LYLPYP,Sy ) (521)
Bu  \Ha(ver+ue)(vLe +pL)(vps, + Hp)

Solving S;, from equation (5.14), we get

_ rps,Pe PP

From equation (5.15), solving for I,,, we have

Im -
Ha
Yp,s,, PePmP
= ameh ] I;‘i‘l'abmlh
HA
Thus,
I Pe—hnP
Iy, = mlives, Pe (5.22)

pa(pa + abmly)
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Solving R, from equation (5.18), we can get

R, = 2l (5.23)
Yh

From equation (5.17), solving for S, we have

ol
S, = 5.24
"= by (5.24)

Therefore the endemic equilibrium of the system of equation (5.10) is
EEE = (E*, L*, P*, S:n' I:,;, SZ, IZ, R;;) where

g~ (e +pn)(vps, + pp) o

YELYLP
L* — wp*
YLp
[ ( X YE,LYLPYP,Su )
B pa(yer + ue)(re +ue)(ves, + pp)
gt _ Tps, e
" pa+abyl;
I — ﬂme;’)/p,SmP*efﬂmp*
" palpa+abyly)
oI
Sp = —h
tlbhl.:;z
=1
ol
R = -k,
Yh

Now if I = 0 then I;;, = R; = 0 and S;; = H. Hence the disease free equilibrium is
épre = (E*,L*, P*,S%,0,H,0,0), where

YE,LYL,P
L* = Yp,S,, + Hp P*
YL, P
[ ( X YE,LYLPYP,Sy )
B ua(ver +pe)(yLe + pr)(yps, + tp)
_ yps, Pre Pl

Ha

5.3.3 Next Generation Matrix and Basic Reproduction Number

In this section, will obtain the basic reproduction number using the next generation
matrix.
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Since the infected individuals are in I, and I, if F is the rate of appearance of
new infections in each compartment and V is the rate of other transitions between

all compartments, then we can have
F = b Iy Sm and V= Halu
abh IyS h oIy,

F= 0 b S and V = pa 0 .
athh 0 0 oy

Thus, solving for F V1, we have

where

L
vl 0 ab,, S 1A
athh 0 0 l
Th
0 ab,, S
bS,
aYpon 0
HA
Hence, solving the determinant of the characteristic polynomial det }F V-1 —AIl, we
have
Y ab,, S
-1 _ _ oy,
det [PV = Al = | s,
— —A
HA
HATH

\/ HATh

Therefore, the basic reproduction is

2 * Gk
HAOy
XmYE,LYLPYP,Sm )

J athbmH(IYE’L + ,HE)(')’L,P + ,ML)(’)’P,Sm + “l/lp) In (VA('YE/L“F#E)('YL/P‘FVL)(')’P,SM+HP)

HACH& i BmYE,LYL,P

(5.25)

We will use now Jacobian matrix to get more details about the stability.
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5.3.4 Jacobian Matrix

Computing for the partial derivative %, foreachU = E,L,P,S,, I,, S, I, Ry, and
i=1,2,...,8 wehave J(U) equal to

—7YEL — ME 0 0 K K 0 0 0
YEL —LP — ML 0 0 0 0 0 0
0 YLP —YP,S, — HP 0 0 0 0 0
0 0 7P,Sme_ﬁmp(1 - ,Bmp) —pa — abyl, 0 0 —aby, Sy, 0
0 0 0 aby, I, —HA 0 aby, S 0
0 0 0 0 —athh —abhlm 0 Yh
0 0 0 0 athh abhlm —0y 0
0 0 0 0 0 0 F——,

Now let us verify the stability of the equilibrium point using Jacobian matrix.
Note that

Ny = XmYE,LYL,PYP,Su
ua(veL +ue)(yre + pe)(vp,s, + Hp)

Ro = | ConbnH (e + pe) (e + 1) (vps, + pp) In (Ny)
' HACH&mBm YE,LYL,P

Lemma 5.3.5. Assume Ny > 1and Ry < 1. Then the disease free equilibrium Eppp =
(E*,L*, P*,S;,,0,H,0,0) of the system of equation (5.10) is locally asymptotically stable.

Proof. To simplify the writing, we denote Ry = (1 + %) (1 + %) (1 + W}f—’s’”) .
The Jacobian matrix above for Eprg can be deduce to

—7YEL ~ HE 0 0 am am 0 0 0
TEL —YLP — KL 0 0 0 0 0 0
0 TL,P —VP,Sm — HP 0 0 0 \ 0 0
HATP,Sy Ry a —abmyp g, Ry ®
(éprE) = 0 0 T (171n PA%Y) kA 0 0 Tmmln(mrﬁy> 0
J(Epre) = —abm7p,s,, Ry am
0 0 0 0 —pa 0 IPSn Y 1 (MRy) 0
0 0 0 0 —abyH 0 0 Th
0 0 0 0 abyH 0 —0p 0
0 0 0 0 0 0 o —Yn
Let |J(Eprg) — Alg| = 0. Then we can have
—YEL—HE—A 0 0 m m 0 0 0
YEL —YLp —HL —A 0 0 0 0 0 0
0 TLP —YPSy —Hp —A 0 0 0 , 0 0
HATP, Sy Ry —abmyp g, Ry
0 0 M (1ol )  cma-a 0 o —mEetn(Ee) o |
abmvp,s, Ry -
0 0 0 0 —Ha-A 0 e in (Gl ) 0
0 0 0 0 —abyH -\ 0 -
0 0 0 0 ab, H 0 o, — A 0
0 0 0 0 0 0 ) —m=A
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Solving the determinant of this matrix give us

0=(=A)(=7n —A)(=7reL— e —A)(—pa —A)(=rps, — Hp — A)(=yLp — pr — A)
{(—VA —A)(=0, — A) — (abyH) <”bm7PmeRY In ( o >)]

mPm paRy
+(=A) (=71 = A)(=7EL)(—7LP) (W <1 —In ﬁ%y)) (am)
enann - (S5 ()

Simplifying the equation above gives us
0=(=A)(=vn = A)(=vEL —pe = A)(—pa—A)(=vps, —pp — A)(=7Lp — pr —A)
[(=1a = A)(=on = A) = oupaR]
o
+(=A) (=1 —A) <P‘A“YE,L’YL,P’YP,S,"RY (1 —In—= >>

uaRy
[(—pa — A) (=0 — A) — o3 aRG]

Factoring out the common term, we have
0=(=A)(—yn—A) [(=pa — A) (=0 — A) — o4 pa RG]

(=veL — HE —A)(—pa —A)(=7ps, —Hp — A)(=yLp — L — A)

«
+ MAYELYLPYP,S, Ry (1 —In ptAnléy)

Let Sand Tbeequal to (—pia —A)(—0, — A) —oppaREand (—yer — pg —A)(—pa —

&m

AM)(=rps, — #p — A)(=yLp — UL — A) + HAYELYLPYPS, Ry (1 —In VARY)’ respec-
tively. Then we have

0=(A):-(=1m—A)-S-T
Now, note that expanding S would give us
S=A2 + ((Th + ;LlA))\ + (Uh;l/lA — O’h]/lAR%)
= A2+ (o0 + pa)A + onpa(l — RE)

and expanding T gives us

T=M+ [(vp,sm +up) + (yLp +pL) + VA} A3

+ {('YE/L +pe)(ve,s, +ue) + (veL + pe)(vop +pr) + (vps, + #e)(vLp + Hr) +palyps,, +pp) + palyrpe + HL):| A?

YELYLPYP,Sm Ry } A

+Ha [('YE,L +ue)(ves, +up) + (veL + pe)(yLp +pr) + (vps,, + Hp)(vrp +pL) + 0

it
+ MAYELYLPYP,S, Ry (2 —In—2 )
HaRy
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Observe that there is no sign change in S(A) and T(A) if Ry < 1. By Descartes’ rule
of sign [5], the polynomials S and T has 0 positive roots.
For S(—A) we have

S(=A) = (A + (0% + pa) (—A) + oppa(1 — RE)
= A% — (0 + pa) A + oppa(l — RP)

Thus, there are 2 sign change in S(—A). Implying further that the polynomial S has 2
negative roots. Whence by Descartes rule of sign, the possible combination of roots

are
No. of No. of No. of Total No. of
Positive Roots | Negative Roots | Non-real Roots | Solutions
0 2 0 2
0 0 2 2

Doing the same process for T, we can conclude that all eigenvalues of the character-
istics polynomial
0=—-A-(-A—m)-S-T

are negative. Consequently, the disease free equilibrium Eprg is locally asymptoti-
cally stable. O

5.3.5 Parameter Identifiability

The dynamic system given by equation (5.9) is identifiable if 6 can be uniquely de-
termined from the measurable system output Y (¢); otherwise, it is said to be uniden-
tifiable.

Definition 5.3.6. [45] A system structure is said to be globally identifiable if for any
two parameter vectors 01 and 6, in the parameter space ©, Y(U,01) = Y (U, 6,) holds if
and only if 6, = 6,.

Now let us determine the global identifiability of the parameters using the study

proposed by Denis-Vidal and Joly-Blanchard [26]. We  choose
Y = (E,L,P, Sy, L, S, I). From f(U,0;) = f(U,6,), we have

W1 (Sm+ Im) = (vigLy1 tHEDE = ama(Sm+1In) — (Vg2 +HER)E (5.26)
Ve AE =L =il = v 2E— eyl —Hrel (5.27)

YLyl = vpsyaP —upaP = vpi2L = vps, 2P — up2P (5.28)
7{P,5,,,},1Pe*ﬁ””1p — Ua1Sm — arby 1 pSm = ’Y{P,s,,,},zpefﬂ"”zp — 1a2Sm — a2by21,Sm (5.29)
a1by 1 1ySm —parln = a2bypIlpSm —pasln (5.30)

YRy — a1by1nSy = Ry — a2by 2 nSy, (5.31)

a1y ImSp — opa Ly = abpolmSp — opply (5.32)

Opaly —vnaRy = Opaly — 2Ry (5.33)

Now solving each equation above, we can solve the identifiability of each parame-

ters.
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For a,,: Using equation (5.26), we can imply that a,,1(Sy + In) = @m2(Sm +
Ly). Thus &y, 1 = &y 2, so the parameters a,, and B, are identifiable.

For 7y 1: Using equation (5.27), we can imply that (g 1y 1E = ¥(g 1} 2E, imply-
ing further that the parameter 7y 1 is identifiable.

For 7, p: Using equation (5.28), we can imply that y(; py 1L = {1 p) oL, imply-
ing further that the parameter 7 p is identifiable.

For 7yp s, and B: Using equation (5.29), we can imply that ¢ p/sm}llpe*f;WP =
Y plsm}lzpe_ﬁ'"/zp , implying further that the parameter 7p s, is identifiable.

’Y{E L}l _ MPEL

For pg: Using equation (5.26), we have Yenz  Hes

. Thus, ug is unidentifiable
but the sum (g, + pg) is identifiable.
Y{Lpy1l _ Hra

Y{LP}2 T oL’
However, since -y p is identifiable, the sum (. p + p1) is identifiable.

For y1: Using equation (5.27), we have . Thus, y; is unidentifiable.

Y{PSm}1 __ MpPa ; : iy
For up: Using equation (5.28), we have Yirseys = mp’ Thus, up is unidentifi-

able. However, since yp s, is identifiable, the sum (yp g, + pp) is identifiable.

For p4: Using equation (5.30), we can imply that pa1l,; = paoln. Thus the
parameter 14 is identifiable.

For 7y,: Using equation (5.31), we can imply that 7j,1R, = 7,2Rp. Thus the
parameter 1y, is identifiable.

For o3,: Using equation (5.32), we can imply that 03,1, = 03,21;. Thus the
parameter oy, is identifiable.

For ab,,: Using again equation (5.30), we can imply that a1b,, 11,5, = a201,21;,Sm.
Thus we can imply further that Z—; = Z:T]; Thus the parameters a and by, are

unidentifiable. However, the product ab,, is identifiable.

For aby: Using again equation (5.32), we can imply that a; by, 1 1,,Sy, = asby, 21,5y
Thus we can imply further that 71 = Z:—; Thus the parameters a and b, are

unidentifiable. However, the product ab,, is identifiable.

From this result we have the following theorem.

Theorem 5.3.7. The parameters &y, YE L, YLP, YP.S,,s Brs KE, KL, WP, KA, Vi, O, @by, aby)
are globally identifiable but the rest is not.

5.4 Optimal Control strategies : Copepods and Pesticides

Our aim in this section to minimize the number of infected humans by control-

ling the vector population. We attribute two control inputs, wy for the percent-

age of young mosquitoes exposed to copepods and w4 for the percentage of adult
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mosquitoes exposed to pesticides. According to mosquitoesreviews.com, Copepods
are natural enemies of the first and second instar (the smallest sizes) of mosquito
larvae. Also according to [25], large sized cyclopoid copepods (having body size
greater than 1.0 mm) act as predators of mosquito larvae which strongly influence
the mosquito larval population. Furthermore, we assume that both control inputs
are mesureable continuous functions that takes its values in a positively bounded
set W = [0, Wy smax] X [0, WA max]- Thus we consider the objective function

T (wy,wys) = /OT <Ih(t) + %Aywi(t) + ;AAwﬁ(t)> dt

subject to
E'(t) = am(Sm(t) + Lu(t)) — vELE(t) — HEE(t)
L'(t) = ye,LE(t) — y,pL(t) — pLL(t) — wyL(t)
P'(t) = yLpL(t) — vp,s,P(t) — upP(t)
Spu(t) = 7,5, P(£)e PrPY — 414 S, (£) — abuy (1) S (t) — waSwm(t) (5.34)
Ly (t) = abu Iy (£) S (t) — paln(t) — walu(t)
Si(t) = yuRy(t) — abyL(t)Su(t)
Iy (t) = aby L (t)Su(t) — onlu(t)
R (t) = only(t) — yuRp(t)

fort € [0,T], with 0 < wy,wa < wy. The variables Ay, A4 are the positive
weights associated with the control variables wy and w,, respectively. They corre-
sponds to the efforts rendered in exposing the larvae L and the adult mosquitoes
Sm, Iy compartments.

Lemma 5.4.1. There exists an optimal control w* = (w3 (t), w’ (t)) such that
J(wy,wy) = min J (wy, wa)
weW

under the constraint (E,L, P, Sy, Im, Sy, In, Ry) is a solution to the ordinary differential
equation (5.34).

Proof. This lemma can be proven using the similar arguments as Lemma 3.5.1. [
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Lemma 5.4.2. There exists the adjoint variables A;,i = 1,2,- - - ,6 of the system (5.34) that
satisfy the following backward in time system of ordinary differential equation.

dA
At
dA,
At
)
At

—% = My — Ag(pa +wa) — (Ay — As)aby Iy
(5.35)

= —(M —A2)yEL — Mipe
= —(A2 = A3)yLp — A2 (L + wy)

= —(As — Aa(1 = BwP)e PP)yps, — Aspp

dA
—7: = M — As(pa +wa) — (Ag — A7)abu Sy,
A
~ Tﬁﬁ = — (A6 — Ay)aby Iy,
_”?: — 1= (A4 — Ag)abuSm — (A7 — Ag)0h
dAs
8 (g — A
o (A — A6)n

with the transversality condition A(T) = 0.
Proof. Using the Hamiltonian for system (5.34), we have
H =L(wy,wa) + A1 (HE'(t) + Ao ()L (t) + A3(t) P’ (t)
+ A4 (8 (8) + A5 ()L (1) + Ae (£)S), (1) + A7 (1) T (t) + As ()R} (1)
=I,+ %Aywzy + %AAwi + A1 (am(Sm + In) — gL E — peE)

(5.36)
+ A

—~

Ye,LE —vL,pL — prL —wyL) + A3 (yr,pL —vp,s, P — upP)
+ Ayg

/N

YP,S,, pe PP — UASm — aby ISy — wASm) + As (”mehSm —paln — wAIm)
+ Ag

—~

YhRy — abyInSy) + A7 (aby ISy — oy Iy,) + Ag (03,14 — vuRp)

To prove this, we determine the partial derivatives of H with respect to each vari-

. - A OH dAy _  OH dAs . OH dAy __ oH
ables then set the adjoint system as <t = —5F, T2 = =51, 2 = — 55, & = — 55,1
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A I dA I dA 9 A 3 .
s _ _azf' s — _THh' iy — _% and 4 = —%. We have the following

dA

cT‘l = (A —A2)YEL + MuE

dA

7: = (A2 — A3)yLp + Ao (pr + wy)

dA _

7: = (A3 — Aa(1 = BuP)e PrPYyp s + Aspp

dAy

ar = —Aay, + /\4(}1A + wA) + (7\4 — )\S)Qbmlh

dAs

— = ~Mam + As(pa +wa) + (As — A7)abuSy

dA

T: = (/\6 — /\7)(1[7;11771

dA

d—: = =1+ (Ag — A5)aby Sy + (A7 — Ag)oy

dAg

— =(Ag— A .

o (Ag — A6)Yn

Theorem 5.4.3. The optimal control variables are given by

wy = max | 0,min | ——, Wy yax
Ay

wy =max | 0,min | ——————, WA, max .
Ax

Proof. By the Pontryagin maximum principle, the optimal control w* minimizes the
Hamiltonian given by equation (5.36). Now, setting the partial derivative of H with
respect to the control variables to zero, then solving wy and w4, we get

AL

Ay '

*
wA:
Ap

wy =

Therefore, the optimal control derived from the stationary condition % is given by

0 if %L <0 0 if ASutdshy < 0
¥ AL ¢ AL — ASmA+AsLy  se AgSm+Ashy
Wy Ay if Ay < WMpm W p An if As < Wpm

if 2L > if AaSm+Ashy >
WM if Ay = wWMpm wy if AL = WM
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5.4.1 Numerical Simulation of Optimal Control Strategies: Copepodes vs
Pesticides

In this section, we will show a numerical simulations of the optimal control strategy
in minimizing infected humans. The optimal control is (w}, w? ) where wy is the
percentage of young mosquitoes exposed to copepodes and w, is the percentage of
adult mosquitoes exposed to pesticides.

The control weights Ay is the efforts rendered in exposing young mosquito pop-
ulation to copepodes while the control weights A 4 is the effort in eliminating adult
mosquito population by means of administering insecticides. Since adults mosquitoes
is more visible compare to the young mosquitoes, eliminating them would render
an effortless job. Thus, Ay is set smaller than A 4. Hence, we initially set the control
weightsas Ay = 10 and Ay = 1. Note that the values of Ay and A4 does not change
the convergence of optimal control.

] Parameters \ Description \ Value \ Source ‘
Xy Oviposition 1 day‘l [13]
YEL Transformation from egg to larva 0.330000 day ! [13]
TLP Transformation from larvae to pupa 0.140000 day ! [13]
YP,Sn Transformation from pupa to adult | 0.346000 day ! [13]
mosquito
HE Mortality rates of egg 0.050000 day [13]
UL Mortality rates of larva 0.050000 day ! [13]
Up Mortality rates of pupa 0.016700 day ! [13]
HA Mortality rates of mosquito 0.042000 day ! [13]
Yh Rate of decline in human immunity to | 0.575000 day ! [43]
disease
oy Rate of cure for disease 0.328833 day ! [43]
aby, Probability of susceptible mosquitoes | 0.375000 day ! [43]
to be infectious
aby, Probability of susceptible humans to | 0.750000 day ! [43]
be infected
ﬁim carrying capacity of pupae (ha?) 250000 hectare™! | [30]

TABLE 5.1: Value of the Parameters used for the simulations.

Considering a constant growth function for human and mosquito population,
the optimality of the system is numerically solved using a gradient method pro-
grammed in Python. The algorithm are describe below and the parameters value
used are presented in Table 6.2. The optimality of the system is numerically solved
using Algorithm 2 with e = 0.01.
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Algorithm 2 Computation of optimal control of the model (5.34)

Given U? = (9.4¢7,5.e4,1.64,94.4¢4,5.6¢4,8768197,1895,1878) as initial datum , a
final time T > 0 and a tolerance £ > 0.
Let w9, wY randomly chosen following N (0,1).
while ||[VH(w", U",A")|| > ¢ do,
solve the forward system u",
solve the backward system A",
update w"
solve the gradient VH (w", U", A")

w* = w".

Using the algorithm above with a tolerance of 1072, we get the following results.

with optimal control without control
le6 le6
—_— —_—

8 h 8 h
6 6
4 44
2 2
0 0

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time Time

FIGURE 5.3: Optimal solutions of the infected human compartment
in the model (5.34) with Wy . = 23.96, WA yax = 1.

Figure 5.3 shows the behavior of infected humans if we apply with and without
control strategies. It shows that using control strategies would eliminate infected
humans over time, with an 8,715,766.164 maximum population. Having no con-
trol strategy increases this at 8,752,880.738 infected humans and an equilibrium of
877,196 infected humans over time.
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With Optimal Control Without Control
le7 1e10
— F
81 L
—_— P 1.5
6,
1.0
44
2 0.5 — E
L
01 M — P
: : : : : : , 0.01
0 50 100 150 200 250 300 . . .
Time 200 250 300
le6 1e9
1.0 ,Sm 44
m
0.81
3<
0.6 —_— S
0.4] 2] Im
0.21 1
0.0{ —
0 50 100 150 200 250 300 01 - : : : : : :
Time 0 50 100 150 200 250 300
Time
le6 1le6
8 81
6 6 1
— 5, — s,
4 h
44
_Rh _Rh
21 5]
01 ol
0 50 100 150 200 250 300 . : . i i : .
Time 0 50 100 150 200 250 300
Time

FIGURE 5.4: Optimal solutions of each compartments in model (5.34)
with Wy e = 23.96, WA jpar = 1.

Figure 5.4 shows the behavior of each variable in the compartment. The fig-
ure shows that applying copepods and pesticides eliminates the mosquito popu-
lation. With the control strategy, young and infected adult mosquito populations
are eliminated quickly. It only has 1,105,864.772 and 23,443,653.571 maximum in-
fected mosquito and larvae populations. This population increases to 8,752,880.738
and 18,763,929,783.442 infected mosquito and larvae populations without control
strategies. The figure clearly shows that controlling the mosquito population is an
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effective method of managing the human population.

25

20
0.5 1

15 0.4 1
0.3 1
10
0.2 1

31 0.1

0 0.01
o 50 100 150 200 250 300 o 50 100 150 200 250 300
Time Time

FIGURE 5.5: Optimal solutions of control variables in model (5.34)
with Wy g = 23.96, W4 yax = 1.

The simulation was done assuming that the Aedes Aegypti does not become re-
sistant to the insecticide and that it is financially possible to apply insecticide at all
times. Figure 5.5 shows that setting wy ,x = 23.96, W4 yax = 1 takes 26 days and 42
days of continuous application of copepod and pesticide, respectively. It then slowly
minimizes the application toward its equilibrium.

Influence of the copepods number

One Mesocyclops aspericornis, a Philippine species of copepod, is capable of eating an
average of 23.96 among 50 Aedes aegypti larvae [53]. In this section, we compare the
optimal control by varying the maximum number of copepod N exposed to larvae
as Wy max = (23.96/50)N = 0.4792N. From the figure above, we consider increasing
the effort by setting N equal to 20 and 200. With this, we get the figure below.

The simulation was done assuming Mesocyclops aspericornis have no predators in
the laying sites. Figure 5.6 shows the influence of increasing the number of cope-
pods N exposed to larvae on the control variables. It shows that the application of
the control strategies, both wj and w?,, decreases as N increases. The figures show
that in N = 2, you need to increase the effort at day one by a hundred percent and
then continuously apply copepod and pesticide for 43 days and 52 days, respec-
tively. While with 20 Mesocyclops aspericornis, it decreases to 27 days and 43 days
of continuous application of copepod and pesticide, respectively. Since we assume
there is no copepod predator in the laying site, applying 200 copepods in the laying
site requires only 26 and 41 days of copepod and pesticide to eliminate the mosquito

population.
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1.0
W 0.6 Wa
0.81
0.5
0.61 0.4
0.4 0.31
0.2
0.2
0.1
0.0 ! | : : ; ‘ ‘ 0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time
(A N=2
10— —
— Wy 0.6 — WA
8<
0.5
61 0.4
0.3
41
0.21
2<
01 k
01 L 0.01
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time
(B) N =20
100 —— —
— Wy 0.6 m— Wa
801
0.5
601 0.41
0.31
401
0.21
201 0.1/ \
0 0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time
(€) N =200

FIGURE 5.6: Optimal solutions of the control variables for different
maximum number of copepod.

Considering all Control Strategies: Copepods, Pesticides and Vaccination

Now, let us include vaccination in our control strategy. We attribute three control
inputs, wy for the percentage of young mosquitoes exposed to copepods, w4 for
the percentage of adult mosquitoes exposed to pesticides and wp for the efforts in
vaccinating susceptible humans. Furthermore, we assume that both control inputs
are mesureable continuous functions that takes its values in a positively bounded set
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W = [0, Wy max] X [0, WA max] X [0, WH max]. Thus we consider the objective function

T 1 1 1
J(wy,wa,wy) = /0 (Ih(t) + EAywﬁ(t) + EAAwix(t) + ZAHw%{(t)> dt

subject to
E'(t) = am(Sm(t) + In(t)) — vELE(t) — HEE(t)
L'(t) = yeLE(t) — y1,pL(t) — pLL(t) — wyL(t)
P'(t) = yLpL(t) = vps, P(t) — upP(t)
Su(t) = 1p,5,P(t)e PP — 1Sy (t) — abu Ly (£)Sm(t) — wASw(t) (5.37)
I,(t) = aby Ly (£) Sy (t) — paln(t) — waly(t)
S, (t) = v Ry (t) — aby L () Sy (t) — wiSy(t)
Iy(t) = abyLu(t)Sy(t) — ouly(t)
R}, (t) = o3Iu(t) — yuRa(t)

for t € [0, T], with 0 < wy,wus < wp and 0 < wy. The variables Ay, As, Ay are
the positive weights associated with the control variables wy, w4 and wy, respec-
tively. They corresponds to the efforts rendered in exposing the larvae L, the adult
mosquitoes S, I, and susceptible humans Sy, to the control strategy.

Lemma 5.4.4. There exists an optimal control w* = (w3 (t), w’ (t), wy(t)) such that
J (wy, wy, wg) = min J (wy, wa, wh)
weW

under the constraint (E,L, P, Sy, Im, Sy, In, Ry) is a solution to the ordinary differential
equation (5.37).

Proof. This lemma can be proven using the similar arguments as Lemma 3.5.1.  [J



162 Chapter 5. A Model of Dengue accounting for the Life Cycle

Lemma 5.4.5. There exists the adjoint variables A;,i = 1,2,- - - ,6 of the system (5.37) that
satisfy the following backward in time system of ordinary differential equation.

_a)‘alt(t) =—Mpe + (A2 — A)YEL

_a/\;t(t) =— Ao(pL +wy) + (As — A2)yLp

_aAst(t) = — Aspp + (A4(1 = BuP)e PP — A3)ypss,
_a/\a“t(t) =Mam — Aa(pa+wa) + (As — Ag)aby (1)
_a)g’t(t) =Mty — As(pa +wa) + (A7 — Ag)abySy(t)
_a)‘aét(t) = — Aswy + (A7 — Ag)aby I (1)

_a)gt(t) =1+ (A5 — Ag)aby Sy (t) — Ayoy,

—aAslft) =(Ae — Ag)Vn-

with the transversality condition A(T) = 0. Moreover, the optimal control variables are

wy = max | 0, min (| —,wum
Ay

% ( . (A4Sm + /\SIm > )
wy =max | 0,min | ————, wum
Ap

wy =max | 0,min (| —, wy .
An

given by
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Proof. Using the Hamiltonian for the system (5.37), we have
H =L(wy,wa, wy) + A1 (£)E'(t) + A2(¢)L' () + As(t)P'(¢)
+ A4 (1) (1) + As(B) 1y () + A6 (£)S5,(£) + A7 (8) 1, (£) + As(£) Ry, (#)
=5y (8) + Ay (1) + 3 Aawh (1) + 5 A (1)
+ 0 (0 (S (6) + (1)) = ()~ e EC1) )

+ Ay (abhlm(t)Sh(t) — (Thlh(t)> + Ag <0’h1h(t) - ’)/th(t)> .

Now, taking the partial derivative of H with respect to U, we have

oH
g ~M(=vEL = pE) + A2EL
oH
57 =A2(=yLp — UL — Wy) + A3YLp
oH _
ﬁ :A3<_7P/Snl - ‘up) + /\47P,Sm(1 - :Bmp)e PmP
oH
F =AMy + A4(—yA — abmlh(t) — wA) + /\5abmlh(t)
oH
3L =AMy, + A5(—‘MA — ZUA) — Aéabhsh(t) + A7abh5h(t)
oH
— :A6(—abhlm(t) — ZUH) + A7abhlm(t)
a5y,
oH
oL =1-— /\4abm5m(t) + A5abm5m(t) — Ayoy, + Agoy,
h
oH

BTQ;, =A6Yh — A8Yh-
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Therefore, the adjoint system of equation (5.37) is

M0 — e+ (2= A0

aAazt(t) == Aa(pL +wy) + (A3 = A)yrp

aAgt(w == Asptp + (As = A3(1 = BuP)e PP )yps,
aAgt(t) =My — Ag(pa +wa) + (As — Ag)aby, I ()
a)gtm =My — As(pa +wa) + (A7 — Ag)abySy(t)
a)\gt(f) = — Aswy + (A7 — Ag)aby L, (1)

a)gt(t) =14 (A5 = Ag)abuSn(t) + (As — A7)a
aAaslf(t) =(A6 — Ag)Vn-

Now, setting the partial derivative of H with respect to the control variables to
zero, then solving wy and w4, we get

al
Ay

Ap

AeSh

*
wY = .
Al

* *
Wy = Wy =

Therefore, the optimal control derived from the stationary condition % is given by

0 if 2L <0 0 if MaSutshn <
Y A
w;’; = % if % < WM wz = /\4511:44;)\5% if )\4517114‘2)\51171 < WM
1 @ > se AaSm+Asly >
wMm if = WM % if s > wym
0 if 265 <
H
wi = M5 i <y
e AeSn
wH if Ay = wy

Now let us incorporate vaccination into our control strategy and compare it with
its different combinations. To perform our simulation, we choose the upper bound
in our optimal control, reflecting most of the Philippines’” conditions. Herein, wy
is set to 23.96, corresponding to the average number of larvae eaten by 50 Meso-
cyclops aspericornis copepods [53]. In the Philippines, thermal fogging is the main
way to apply pesticides. It is conducted using a PULSFOG™ machine loaded with
a pyrethroid insecticide. Using the study by Mistica, M.S et al. [47], wherein they
used the water-based pyrethroid called Aqua-Resigen®, we use the efficacy they
evaluated as wa ;. = 0.65. Finally, the dengvaxia efficacy provides w0 = 0.8
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[35, 64]. Using Algorithm 2 with € = 0.01, we numerically solved the optimality of

the system. In doing so, we get the graph in Figure 5.7 and Figure 5.8.

1edCopepod, Pesticide, Vaccination 1le6 Copepod & Pesticide
/ —_—
8 h h
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|
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2_
0_
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time
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g/ In In
6,
| |
4,
2,
0,
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Time Time
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FIGURE 5.7: Optimal solutions of the infected human in the model
with different control strategies.

Figure 5.7 shows the behavior of the infected human compartments on the dif-

ferent combinations of control strategies and no control strategy applied. It shows
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that the variety of the three techniques (copepod, pesticide, and vaccination) or the
combination of the two approaches (copepod and pesticide) is the best strategy for
minimizing infected humans. The two methods have no significant difference in the
number of maximum infected humans. They both have an 8,715,766.164 maximum
infected human population.

Concerning the individual application of the control strategies, applying the
copepod is the best strategy for minimizing infected humans. It had a minimum
population at the end of the time of 552,606.823 infected humans, whereas pesticide
and vaccination had 877,121.808 and 877,190.111 infected humans population at the
end of time. On the other hand, not applying a control strategy is not the best choice.
It increases the number of infected humans significantly, with an 8,752,880.738 pop-
ulation. However, it does not eliminate the infected humans and has 877,196.995
infected humans at the end of time.

Similarly, for the behavior of infected mosquitoes, figure 5.8 shows that in mini-
mizing the infected mosquito, there is no significant difference in the combination of
the three strategies (copepod, pesticide, and vaccination) and the two strategies (the
combination of copepod and pesticide). Both methods have a 1,105,864.772 max-
imum infected mosquito population on day one and equilibrium at 1,105,864.772
infected mosquito population. On the other hand, combining pesticides and vacci-
nation is not a good strategy since it is slow in minimizing the infected mosquito
population and has 6,886,581.680 maximum infected mosquitoes.

Meanwhile, for the individual application of the control strategy, copepod alone
is the best control in minimizing infected mosquitoes. It prevents the increase of
infected mosquitoes with a 2,305,570.072 maximum infected mosquito population,
exponentially decreasing over time towards equilibrium. Conversely, vaccination
alone is not a good strategy for minimizing the number of infected mosquitoes. It has
4,272,649,867.795 maximum infected mosquito and an equilibrium at 3,697,402,540
infected mosquito.
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FIGURE 5.8: Optimal solutions of the infected mosquito in the model
with different control strategies.
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FIGURE 5.9: Optimal solution of the control variables in the model
with Copepod, Pesticide and Vaccination control.

Figure 5.9 shows the behavior of the optimal control variables in applying the
copepod, pesticide, and vaccination. It shows that the copepod and pesticide should
be continuously used for 27 and 56 days, respectively, before a rapid decrease toward

equilibrium. However, vaccination should always be done until the end of time.
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(C) Optimal solution of the control variables in the model with Pesticide and Vaccination control.

FIGURE 5.10: Optimal solution of the control variables in the model
using the different combination of the control strategies.

Figure 5.10 shows the behavior of the control variables by applying a different
combination of control strategies. It shows that combining copepod and pesticide
is the best control strategy since it requires a shorter time of application. It takes
26 days for copepod application and 42 days for pesticide administration. How-
ever, combining copepod and vaccination is better than pesticide and vaccination.
Copepod and vaccination methods take only two days for a copepod applicant. In
contrast, combining pesticide and vaccination methods is not a good strategy since
they must be constantly applied until the end.
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5.4.2 Influence of the starting date of control

In this section, we will determine the influence of the optimal control not starting at
day zero. We consider three dates, day 40 or the day during the growth; day 64 at
the peak; and day 150 at the endemic equilibrium.
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FIGURE 5.11: Optimal solution of the control variables starting con-
trol at day 40, 64 and 150.

Figure 5.11 shows the behavior of each variable influenced by the different start-
ing dates of the control inputs. It clearly shows that starting the control inputs earlier
in time is the best choice. It prohibits the number of young mosquitoes from increas-
ing and restrains infected mosquitoes from spreading. In effect, the figure shows
that starting the control at day 64 and day 150 will not eliminate the infected human
compartments.



5.5. Comparison with larval and pupal competition 171

25

20

15

— 64
— 150

10

0 50 100 150 200 250 300

Time
Wa WH
— 087 —
0.6
0.5 0.6
04{ = 0
40 |
031 — 64 04
— 150 N
0.2 0
0.2+ 40
0.1 — 64
0.0 0.04 150
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time

FIGURE 5.12: P control at day 40, 64 and 150.

Figure 5.12 shows the behavior of each optimal control variable influenced by
the different starting dates of the control inputs. It shows that the later the starting
date of the control inputs the longer the days of application.

5.5 Comparison with larval and pupal competition

In the above section, we considered the pupal competition only. Now the transition

P+L)

rate of pupae to adult mosquito is given by vp 5, Pe P#(P*L) meaning that the death

rate increases with the pupae density P and the larvae density L. Equation (5.4)

becomes
S'(t) = qpg, P(t)e PrPOFLE) )G (£) — ab,, L, (£)Sp(t). (5.38)

The system remains globally well-posed and its positive disease free equilibrium
épre = (E*,L*, P*,S;,,0,57,0,0) is written as

(yo,p +u)(yps, + Hp) P

E* =
YE,LYL,P
YL,P
P — YLP ) < X YE,LYL,PYP,Sy )
— n
Bm(vLe +7ps, +#p)  \palyer +ue)(vre +ur)(vps, + 1p)
pre Pnl”
Si = Yps,L €

HA
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Finally, the second and third equations of the adjoint problem become

A _
_7: = —(A2 = A3)yLp — Ao(pr + wy) + As(BwP)e PPt o (5.39)

dA -
_7: = —(A3 = Ag(1 = BuP)e PP qp g — Aspp

The figures below show the solution with competition induced by larvae and
pupae with B,, = 1/(3.59 x 250000), and by pupae only with B,, = 1/(250000).
Similar results are observed considering pupal competition only and larval compe-
tition. Note that, when considering competition induced by pupae only, the number
of larvae L is 2.59 times greater than the number of pupae at the equilibrium.
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FIGURE 5.13: Comparison of the solution considering competition
induced by larvae and pupae (left), and by pupae only (right).

Figure 5.13 shows the behaviour of each variables in the competition induced by

larvae and pupae and pupae alone. The figure shows that each variables behaves

the same but the mosquito population increases whereas the human population

stays the same. For young mosquitoes with competition induced by larvae and pu-
pae, there are 10,375,262,030, 17,669,725,442 and 6,795,266,115 maximum population
for eggs, larvae, pupae, respectively. But for competition induced by pupae only,
there are only 11,146,838,868, 18,763,929,783 and 7,194,524,993 maximum egg, larvae
and pupae population. For adult mosquitoes with competition induced by larvae

and pupae, there are 944000 and 3962681700 maximum population for susceptible

and infected mosquitoes, respectively. But for competition induced by pupae only,
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there are 948030 and 4272650088 maximum population for susceptible and infected
mosquitoes, respectively.
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FIGURE 5.14: Comparison of the optimal solution considering com-
petition induced by larvae and pupae (left), and by pupae only
(right).






175

Chapter 6

A Model of Dengue accounting for
the Spatial Distribution

There is no gray host for the dengue virus. It is circulating between humans and
mosquitoes. Thus, the mosquitoes” spatial distribution highly affects the disease’s
epidemiology. In this chapter, we introduce a dengue mathematical model that con-
siders adult mosquitoes” spatial distribution.

Spatial analysis is a study that entails using topological, geometric, or geographic
properties of a subject. The existence of information regarding the spatial spread of
dengue is a crucial ingredient in controlling the spread of the disease. It is impor-
tant to study because each area has different characteristics, such as land surface
elevation, soil type, population density, and many more [57]. A geographic distribu-
tion map is handy for empirically studying the relationship between geography and
disease and is helpful in the implementation of intervention plans. This chapter as-
sumes that only adult mosquitoes move while humans are immobile. Mosquitoes’
movements are governed by their habits. Thus, a summary of the random walk
model was included for mosquito feeding and laying habits to understand better
how the dynamics are constructed.

6.1 Adult Mosquitoes Habits

6.1.1 Feeding Habits

Like all other animals, mosquitoes need energy and nutrients for survival and re-
production. Plant materials and blood are useful sources of this.

Only female mosquitoes bite. They are attracted by several things like infrared
light, light, perspiration, body odor, lactic acid and carbon dioxide. Mouth-part
of many female mosquitoes are adapted for piercing the skin of animal hosts and
sucking their blood as ectoparasites. During the blood meal, the female mosquitoes
lands on the host skin and sticks their proboscis. Their saliva contains anticoag-
ulants proteins that prevents blood clotting. They then sucks the host blood into
their abdomen. A. Aegypti mosquitoes needs 5 L per serving [23]. In many female
mosquito species, nutrients obtain from blood meal is essential for the production of
eggs, whereas in many other species, obtaining nutrients from a blood meal enables
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the mosquito to lay more eggs. Among humans, mosquitoes preferred feeding those
with type O blood [61], heavy breathers, an abundance of skin bacteria, high body
heat, and pregnant women [21]. Individuals’ attractiveness to mosquitoes also has a
heritable, genetically-controlled component. [29]

Blood-sucking species of mosquitoes are selective feeders that prefer a particular
host species. But they relax this selectivity when they experience severe competition
and scarcity of food, and/or defensive activity on the part of the hosts. If humans
are scarce, mosquitoes resort to feed on monkeys, while others prefer on equines,
rodents, birds, bats and pigs, which is where so many of our cross-species disease
fears originate from.[41] Some mosquitoes ignores humans altogether and feed ex-
clusively on birds, while most will eat whatever is available. Some of the other most
popular dining options for mosquitoes include amphibians, snakes, reptiles, squir-
rels, rabbits and other small mammals. Mosquitoes also target larger animals, such
as horses, cows and primates, as well as kangaroos and wallabies [39]. Even fish
may be attacked by some mosquito species if they expose themselves above water
level, as mudskippers do [63]. Comparably, mosquitoes may sometimes feed on in-
sects in nature. A. Aegypti and Culextarsalis are attracted and feed on insect larvae
and they live to produce viable eggs [60]. While Anopheles Stephensi is attracted to
and can feed successfully on larvae of moth species known as Manduca sexta and
Heliothis subflexa [34].

Plant nectar is a common energy source for diet across mosquito species, par-
ticularly male mosquitoes, which are exclusively dependent on plant nectar or al-
ternative sugar sources for survival. The design of efficient sugar-baited traps for
mosquitoes would greatly benefit the prevention of vector-borne illness. Plant pref-
erence is likely driven by an innate attraction that may be enhanced by experience,
as mosquitoes learn to recognize available sugar rewards [70]. It varies among
mosquito species, geographical habitats, and seasonal availability. Nectar-seeking
involves the integration of at least three sensory systems: olfaction, vision and taste.
But altogether mosquitoes can discriminate between rich and poor sugar sources to
choose plants that offer higher glycogen, lipid, and protein content [73]. Below are

the preferred plant of different mosquito species from Barredo and DeGennaro [7].

6.1.2 Breeding Sites

The dengue vectors, are container breeders; they breed in a wide variety of artificial
and natural wet containers/receptacles, preferably with dark coloured surfaces and
holding clear (unpolluted) water [46].

Some mosquitoes like living near people, while others prefer forests, marshes, or
tall grasses. All mosquitoes like water because mosquito larvae and pupae live in
the water with little or no flow [16].

Different types of water attract different types of mosquitoes.
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Mosquito Species Nectar Source
Aedes aegypti Asclepias syriaca (milkweed) Plant extract
Impatiens walleriana Live plants
Anopheles gambiae Mangifera indica

Delonix regia Live plants
Parthenium hysterophorus Live plants
Acacia macrostachya
Acacia albida
Culex pipiens A. syriaca (milkweed)
Live Flower, extract, and synthetic blend
1. walleriana
Culex pipiens pallens Ligustrum quihoui (waxyleaf privet)
Broussonetia papyrifera (paper mulberry)
L. quihoui
Abelia chinensis
Nerium indicum

TABLE 6.1: Preferred plants of different mosquito species from
Barredo and DeGennaro [7].

¢ Permanent water mosquitoes: These mosquitoes tend to lay their eggs in permanent-

to-semi-permanent bodies of water.

* Floodwater mosquitoes: These mosquitoes lay their eggs in moist soil or in
containers above the water line. The eggs dry out, then hatch when rain floods

the soil or container.

6.2 Summary of Random Walk Modelling

Mathematicians have long been researching qualitative models that describe the pro-
cess of dispersal. The common of which are random walk types. The invention of
the term ‘random walk” was indebted to Karl Pearson, who wrote a letter entitled
"The problem of random walk" published in the journal Nature on 27 July 1905 [37].

A random walk is a random process that describes a walker’s path consisting of
a sequence of discrete random steps with a fixed length. It is used in an essential
model in time series forecasting known as the random walk model. This model
assumes that in each period, the variable takes a random step away from its previous
value; the steps are independently and identically distributed in size [49]. Meaning
that the first difference of the variable is a series to which the mean model should be
applied.

Below, we will introduce the fundamental theory and equations of random walks

from the paper of Codling et al. [22].



178 Chapter 6. A Model of Dengue accounting for the Space

6.2.1 Reaction-Diffusion Equation

Consider a mosquito that moves randomly in one direction with a fixed step § on
time 7. Let p(m, n) be the probability that the mosquito reaches the point m¢ after n

time steps.

(53; c§x

Ay I 7

FIGURE 6.1: Mosquito can move left or right.

Suppose that to reach md after nt, we need a step to the right and b steps to the
left. Then
m=a—b and n=a+b.

The number of possible path is

nt n! _[n
alb!  al(n—a)!  \a)’

and the total number of path with 7 steps is 2" and the probability is

p(m,m) = () 1
oo =2 (GG = Gea) =

and p(m, n) follows a binomial law. Thanks to the Stirling formula

Note that

n! oo (27‘[1’1)1/26” lnn—n’

we have

1/2
l (27-[”) e(nlnnfn)f(a]nafu)f((nfa) In(n—a)—(n—a)

We deduce

Assume that
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where D > 0 is the diffusion coefficient, we obtain

/2
T 2 ¢ 75 N A T )
Kivt) = lim =5~ =\awpi) ¢ ©6.1)

Theorem 6.2.1. The function K : (x,t) € R? x R%. — K(t, x) is the fundamental solution
of the heat equation

a—K—DAK:0
ot

K(x,0) =0,

with
/ K(x,t)dx = 1.
R4

Proof. For equation (6.1) taking it’s partial derivative with respect to t and x, respec-

tively would give us

%It( _ <47T1m)%e—4*§t [x2(4Dt)"2(4D)] + ¢~ i K—;) (4nDt)—%(4nD)]

1
_ I\ =2 2 —2 -1
= (4257 ) ™ [4Dx (4Dt)~2 — 27D (47Dt) }
LN
(- —i5 2.2 -2 -1
- < 4nDt> ¢ [471 ¥*D(47Dt)~2 — 2xD(4nDt) }
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1 \2 _2 x?
= <471Dt> e P (27D) <2Dt_1>
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Thus, the Laplacian of K is given by

3
sk =~ gz ) [ 2+ 2 (-2 4Dt

:< ! )geﬁi(zn) (2m(4mD) 1 —1)
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Therefore,

a—K — DAK =0.
ot

22 . 1/2 e 22
Note that as t — 0, e"ir = 0 while (1) / approaches infinity. But e~ 07 ap-

proaches 0 faster than the later. Thus,

Now, taking the integral of K(x, t) with respect to x, would give us

1 \"? e
/]RdK(x,t)dx: /Rd (47’[Dt> e~ iDidx

1/2 RS
- d( : ) ei<<4Dr)1/2> dx.
R

4ntDt
Letz = W. Then (4Dt)'/2dz = dx. Thus for each time ¢ > 0,
K(x,dx = — [ e#d
/]Rd (x,)x—nl/z/we z

— 1 - = —Z d

il [ e dz
i=1
=1

Corollary 6.2.2. Let ug € L*(R).

1. The function
u(x,t) = /1Rd K(x —y, Huo(y)dy = Kx up(x)
is a solution of the initial value problem

ou
g—DAu—O

u(x,0) = ug(x)
2. The function

uet) = [ K=y tuoldy+ [ [ Kery,t—s)f(y,s)yds
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is a solution of the reaction-diffusion problem

Ju
g—DAu—f

u(x,0) = up(x)

In particular, if f = f(t,u) is Lipschitz with respect to u, there exists a unique local
in time strong solution.

Proof. 1. Letxg € R% e > 0. Choose 6 > 0 such that
lu(y) —u(xo)| <e if |y — x| <5,y€]Rd (6.2)

Thus, u(x,0) = up(x).

Now note that y — xo = y — x + x — xo. By triangle property,
ly —xo0| < [y —x[+ |x — xol.

Since |y — xo| < 3, |[x — x0| < % By Theorem 6.2.1,

e, ) = )| = | [, Kx =, Dluy) = u(o)ldy
< sy KO 0 Dlly) = () ldy
oy K=y uly) —u(xo)ldy

Let I be the first term and | the second term of the right-hand side of the equa-
tion above. Then by equation 6.2 and Theorem 6.2.1,

Ige/ K(x—y,t)ydy <e(l) <e.
B(XMS)( y,t)dy < e(1)

Furthermore,

|u(y) — u(x0)| < [u(y)] + [u(xo)]
< [luol| + [[uol|
< 2|[uo]].
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Implying further that

<2 m/ K(x — vy, t)d
<2l [, K- vy

1 V2 e
<2 N [ Tt
<2ollis [, (gapr) ¢ Fay

2||uol| / _ xp)?
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2o | g
< Dt (]
= ([nDt)172 /IRdB(xo,zs)e y

Letz = (4Dt)1/2 Then (4Dt)'/2dz = dy. Thus

2 |uol| 2

J < e Tedz
/2RI B(x,6/ /1)

Z2
Note thatast — 01, flRLB(xo,b‘/\ﬁ) e %dz — 0. Hence, | = 0. Thus if [x — x| <
¢ and t > 01is small enough, |u(x,t) — u(x)| < 2e.

2. Letu(x,t) f]Rd dy—|—f0 f]Rd —,s)f(y,s)dyds. Then
%L; — DAu aat (/ K(x—y,t)uo(y)dw/ot AdK(x—y,t—S)f(y,S)dde)
=0 ([ K —wtntay+ [ [ K=yt = 9)f(us)duds
= 5 (o K6 = vy
5 ([ [ K=yt =95(w, 9y
D ;’; (K= wuatway
D2 ([ [ ktx =t =9)f(ws)avis
- <§t -0 ) [ K= )y
+ (at ax2>/ /W (x =y, t —s)f(y,s)dyds

By (1), ( axz) Jra K( up(y)dy = 0. Thus, we only have

— DAu = <8t 8x2>/ /]Rd (x —y,t—s)f(y,s)dyds.

Now we change variables, to write

— DAu = (at 8x2>/ /]Rd (v,8)f(x —y,t —s)dyds.
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For s =t > 0, we compute that

aat </Ot /Rd K(y,s)f(x—y,t—s)dyd3> = /Ot/RdK(y,S)ft(x—y,t—S)dde

+ [ K@ Of(x=p,0)dy

and

02 t
D@ (/0 /]RdK(y,s) (x =y t—s dyds> // (1,8) fryx, (X —y, t —5)dyds.

Hence, we have

— DA = [y fraK(,9) [ (5= D) flx—y,t —s)| dyds
+ Jra K(y, 1) f(x —y,0)dy
= ! JxaK(y,5) [ (—& — D) f(x = y,t =) dyds 6.3)
+ fo Jre K(y,s )K—%—D%)f(x—y,t—s)} dyds
+ Jre K(y, ) f (x — y,0)dy

Let I be the first term, | be the second term and G be the third term of the
right-hand side of the equation above. Then

1< (Wflles + DIEANL) [ [ K(y,5)dyds
12
< (Ul -+ Dl [ [ (g ) s

€

< Uflle=+ DI ) [ |72 [ o] s
€

< (||ftHL°°+D||H2f|\LW)/O [n—l/an/z] s

<eC

We also have, by integration by parts

= Jyo [(—2 = D& K(y,9)] Flx —y,t = 5)dyds
+f1Rd ( e)f(x—y,t _e)dy (6.4)
— fRd K(y, t)f(x —y,0)dy
= [ Ky, €)f(x —y,t —€)dy — [pa K(y,t)f(x —y,0)dy

Since K solves the heat equation. Combining equations (6.3, 6.4) and |, we
have

ut(x,t) — DA(x,t) = lime_yo /IRd K(y,e)f(x —y,t —e)dy
= f(x/ t)



184 Chapter 6. A Model of Dengue accounting for the Space

forx e R7and t > 0.

Remark 6.2.3. Similar results remains true in a bounded domain Q).

6.2.2 Advection-Diffusion Equation

This section will discuss a random walk with a preferred direction or bias and a
possible waiting time between movement steps.

Consider that at each time step ¢, a mosquito moves a distance J to the left or right
with probabilities [ and 7, respectively, or stays in the exact location, with probability
1 — 1 —r. If the mosquito is at location x at the time ¢ + 7, there are three possibilities

for its location at time ¢:
¢ it was at x — ¢ and then moved to the right,
e it was at x + ¢ and then moved to the left, and
¢ it was at x and did not moved at all.

Thus the probability that at time t + T the mosquito is at distance x, is given by
px,t+7) =px,t)(1—1—r)+p(x—05,t)r+ p(x+6,t)L. (6.5)
Taylor’s expansions are written

ap 829?

_ omop 3
p(x+46,t) = p(x,t)+5ax+zax2+0((5)
_ dp , 629%p 3

Then by subtracting, respectively adding these equations, gives us

op P(X+5If)—p(x,t)+o(5): p(x,t)—p(x—éft)+o(5)zlim p(x,t) — p(x —4,t)

Jx 0 o 6—0 )
p _ plx+d,t) —2p(xt) +px =41 )

o2 K +0(6%)

ap  plxt+1)—p(xt)

% - +0(1)

Let 7,6 be small. Then, the partial derivative of (6.5) with respect to time ¢ gives

dp  Jdedp | k6*9%p ) 3

g— ?a‘f’gﬁﬁ—O(T)—f—O((S)
with € = r — [;k = | + r and where O(7?) and O(4°) represents higher order terms.
Note that 6%/t is positive and finite as §, T — 0 since the difference € = r — [ between
the probabilities of moving left and right is proportional to J, and that e — 0 as

0,7 — 0. Thus the probabilities r and [ are not fixed, but vary with the spatial and
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temporal step sizes such that the limit

2
uzlim‘s—e, D:klimé—
5,70 T 6,70 2T
exists and are positive and finite. Implying further that the limits of the terms O(7?)

and O(7?) tends to zero. Hence we have the advection-diffusion equation

o _ _ 9 poP (6.6)

where the first term on the right-hand side represents advection due to the bias in
the probability of moving in the preferred direction and the second terms represents
diffusion.

For an N-dimensional lattice, the standard drift-diffusion equation is given by

op 2

- =—Uu- DA

o u-Vp+ p

where u is the average drift velocity, V is the gradient operator and A? is the Lapla-
cian. Assuming an initial Dirac delta function distribution p(x,0) = 6;(x1),...,ds(xn),

the equation above has the solution

1 —|x — ut|?
p(x, t) = Wexp <4Dt> (6.7)

6.2.3 Fokker-Plank Equation

This section will extend a simple random walk in two or more dimensions to include
the probability of spatially dependent movements.

Consider a mosquito that moves in a two-dimensional lattice. Suppose that at
each time step 7, the mosquito move a distance ¢ either upward, downward, to the
left or to the right with probabilities dependent on location given by u(x,y),d(x, ), (x,y)
and r(x,y), respectively where u +d + 1+ r < 1, or remain at the same location
with probability 1 — u(x,y) —I(x,y) —d(x,y) — r(x,y). Then the probability that the

mosquito is at a distance x at time ¢ is given by

p((x,y),t) =p((xy) )1 —ulxy) —1l(xy) —d(x,y) —r(x,y))
+p((x = 8,y), )l(x,y) + p((x +6,y), t)r(x,y)
+p((x,y —6),t)d(x,y) + p((x,y +6),H)u(x,y)

Fori = 1,2, the limit

. 61'(5 . ki52
b= lim —, a; = lim
o,te—0 T
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tends to constants withe; =+ — 1,6 = u —d,k; = r+ 1 and k, = u + d. Thus, we
have the Fokker-Planck diffusion equation

2—7 =—V-(up)+ V- (DVp) (6.8)

with

~ fan(xy) 0
D(w)—( 0 azz(w))-

6.3 Dengue Model with Spatial Distribution

In this section we presented a new model for dengue that involves the spatial spread
of adult mosquitoes. We follow the method proposed by Bourhis et al. [10] for the
fly spread.

Consider a domain O C R% The propensity of adult mosquito to leave the
determined focal point (x, y) can be defined by the diffusion coefficient

D(xry) :Dmin+’x}—l(xry)+.5}_f(x/y) (6.9)

where D,,;, is the minimal diffusion value in the absence of resources perception,
Fi(x,y) and F¢(x,y) are the dispersion kernels that covered the entire landscape of
the laying and food resources respectively. That is, the mosquitoes moves in random
direction D,,;, if they see no resources. But if they see food source, the mosquitoes
would prefer to move in that direction BF¢(x,y). The same is true for laying sites
aFi(x,y). The coefficients « and f is used to weight the differential impact of re-
sources on the diffusion intensity. And the dispersion kernels 7;(x,y) and F(x,y)
is defined as

Yo Ke(d) x 14(x,
Fytny) = FOXLD )

it ) = EaKI x 1)

with

Kf(d) = e
Kl(d) = e_c’d
as the kernels for feeding sites K¢(d) and ovipositing sites K;(d) where d is the dis-

tance to the focal point and ¢ and ¢; tune the perception ranges of feeding and laying

sites, respectively.
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Defining the population density of adults mosquito for every (x,y) € () and we

have
dSu(t, x, - .
m(E)ty) - ’)’p,SmP(t, x'y)e PuP(ty) VASm(t, x,y)
0
d 0S,
+a (P %)
aLﬂ(;’t'x’y) = ﬂbmlh(t/ xly)sm(t, x,y) — ,uAIm(t/ x’y)
ol ) ol (6.11)
T <D<x,y)ax> oy <D(x,y)ay

6.4 Well-posedness of the Model

To simplify, we assume in this section that D(x,y) = D constant. Forx € ), t > 0,
with initial datum (E(0), L(0), P(0), S;x(0), I,(0), S,(0), I;,(0), R;(0)) and Neumann
boundary condition 0E = dL = 0P = 9S,, = 9, = 9dS;, = dI;, = dR;, = 0 on ).

Consider the system of mixed ODE and PDE below

E' & (Sp + L) — vELE — HEE (6.12)

L' YeLE —yrpL —puLL (6.13)

P! YLpL —ps, P — ppP (6.14)

aas;n — DASy Tp,5,Pe P — paSy — aby 1S (6.15)
aaI;” — DAL, by Iy Sm — 1l (6.16)
Sh YnRy — aby ISy (6.17)

I aby LSy, — ou (6.18)

R, oIy — YnRy (6.19)
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Lemma 6.4.1. If the solution of the system above exists, then it is of the form
(E,L,P,Su, Ln, S, In, Ry,) such that
t
E :e*(’YE,LJF.“E)tEO_*_“m/ e_('YE,L+VE)(t—5)(Sm+Im)ds
0
L= e g 4oy | e (o) (-9 E g
“Jo
P = (7PSm+VP)tPO _l’_f}/LP/t ('YP,Sm+VP)(t75)LdS
Sm _K m0+/ ’Ypsmpe BnP —ab w1 Sm )d
(6.20)
Im :K(., )Imr0+abm/() ., - )IhSmdS
t
Sy, :Sh’0+/0 (’)’th—athmSh)dS
t
I = e+ aby, / =) S, ds
0

t
R, = Ef’yhtRhlo —|—0’h/ e_%(t_s)lhds
0
Proof. Rewriting equation (6.12) would give us

E'+ (veL + #E)E = am(Sm + In).

Multiplying both side of the equation by the integrating factor e/ (7ELF#E)! — e(vEL+1E)!
we will have

d
(YELHHENEY — p(YELTHE)E
T ( E) e & (S + L)

Hence, integrating both sides of the equation will give us

t g4 t
Y (vetue)tE) — (YEL+HE)E
/0 . (e E) /0 e & (Sp + Ly )ds

t

eELTHEIE — o /0 eVELFHEN (S, 4+ 1,)ds + Constant

Note that for t = 0, we have E(0) = Ey. Thus, determining the Constant and solving
for E, we get

E = g*(’YE,LﬂLHE)tEO +ay, /t e*(’YE,LJrHE)(t*S)(Sm + Im)dS.
0
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Applying the same procedure for the ordinary differential equation in (6.13)-(6.19),
we get

t
L= e (rtiiLy 4oop / o~ (Lp L) (1-5) E 4
“Jo
t
P = ei(rYP,Sm +.“P)tP0 + r)/L P/ ef(r)/P,Sm%»”P)(t*S) Lds
“Jo
t
S, = Sh,() —|—/0 (’)’th - athmSh)ds
t
I, = E_Uhtlhlo + aby, / e_"h(t_s)lmshds
0
t
Ry, = efﬂrhtRhIQ + (Th/ eflyh(tfs)lhds
0
Now, for the partial differential equation (6.15) and (6.16), we have

S!, — DAS,, = vps, Pe PP — (up + abyI;)S,,
I!, — DALy = aby 1Sy — pialy

By Corollary 6.2.2, the solution of the reaction-diffusion problem above is
t
S = K(.,)Smo + / K(,t —5)(7ps, Pe B — aby1ySy)ds
Ly, = £) Lo + aby / ot —8)I,Syds

where K is the kernels defined as the solution of the diffusion equation with bound-
ary conditions

aaI: DAK = f forxe O,t>0
(x, 0) = KO
where [pq K(t,x)dx = 1. O

We will denote by ® the right-hand side of equation (6.20), that is,
P = (Og, P, Pp, D5, Py, Ps,, i, Pr,) -

Lemma 6.4.2. Let U = (E,L, P, Sy, L, Sy, In, Ry,) in By the ball defined by

Br := {U € L®(Ry, L®(Q))%: sup ||U(tL,.) — Uol| 1=y < r} . (6.21)
t€[0,T]

There exists a time T > 0 such that ®(Br) C Br.
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Proof. ¢ For egg:

t
|®E(U)(t,x) — Eo(x)| < |t / e~ (e} (=) (S (1 x) + L (£, x))ds
0

+ e~ (BB E) (x) — Eo(x)

<

t
txm/ e*(’YE,LJrHE)(t*S)(Sm(t,x) + Ly (t,x))ds
0

+ (e*(“YE/WE)f - 1) Eo(x)

Applying triangle inequality we get

t
|Pe(U)(t,x) — Eo(x)| < am / e_(”VE'L“‘E)(t_S)(Sm(t,x) + Ly (t,x))ds

0

4 ‘e—(me,ﬁus)t _ 1‘ |Eo(x)]-
Then,

t
/O e~ (L HHE)(29) (S (1 x) + L (1, ) )ds| <

t
/ sup (e*<75rt+ﬂ£)(f*s)(Sm(t,x) +Im(t,x))> ds
0 tefo,1]

T
< sup [ 1o U (5,1, ) 4 Iy (1,2))] [ s
te[0,1] 0

< T sup ([Sm(t, x)| + [In(t,x)])
te[0,T)

<T < sup |Swm(t x)|+ sup |Im(t,x)|>
te[0,T] te[0,T]

<T < sup |U(t x)|+ sup U(t,x))
te[0,T) te€[0,T]
< 2T sup |U(t, x)]|.

te[0,T]

Therefore, | (U)(t, x) — Eo(x)| will become

| e (U)(t x) — Eo(x)] < amTtS%PT](ISm(f/X)\ + | In(t, X)) + [Eo(x)]

<20, T sup |U(t, x)| + [Up(x)|
t€[0,T]

Since U € Br,

sup |U(t,x)| = sup |U(t,x) — Up(x) + Up(x)]
te[0,T] te[0,T]
< sup |U(t,x) — Up(x)| + [Up(x)] (6.22)
te[0,T)
<r+|[Uol|
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Finally, we obtain

|Pe(U)(t, x) — Eo(x)| < 2(r + [|Uo|[)am T + ||Uol].

r — [[Uol|
(r+ |[Uol|)am

Choose T < 5 . Thus,

sup ||Pe(U)(t,.) — Eol[t~ <.
te[0,T]

e For larvae:

~

|®p (U)(t,x) — Lo(x)| < e~ Pt HE=S) B (¢, x)ds 4 e~ (P Lo (x) — Lo(x)

’YE,L/

0
t

< 'YE,L/O e*(“rL,PJrVL)(t*S)E(t,x)dS + ‘(e*(WL,PﬂlL)t — 1) Lo(x)‘
t

< e [ O IOE (g x)ds| 4| (e Onr )~ 1) [|Lo(x)

As before,

/ e ) (=9 B (1 x)ds| <
0

t
/ sup (e—m,pm)(t—s) E(t,x)> ds
0 telo,T]

< T sup |E(tx)|
te[0,T]

< T sup |U(t,x)]
t€[0,T]

Therefore, by equation (6.22),

[®L(U)(t x) — Lo(x)| < veLT sup [U(t, x)[ + [Uo(x)]
te[0,T]

< veLT(r+ [[Uol]) + [|Uo(x)]]-

r — [[Uo|
YEL(r =+ [[Uol])

Choose T < . Then,

sup ||®(U)(t,.) — Lo|[1~ <7
te[0,T]

¢ For puppae:

t

|Dp(U)(t,x) — Py(x)| < ’YL,P/O e~ resu IR ) E=S) L (1 x)ds + e~ (TPsmTHR Py () — Py(x)
t
< ’)’L,P/ e~ (resnFHP)=S) ] (1 x)ds| + ‘ <e—(7p,sm+}4p)t _ 1) po(x)‘
0
t
< yLp / e psntre) (=S (1, x)ds | + ‘ef(vp,s,ﬁup)t — 1‘ | Py(x)|
0
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Therefore,
|Pp(U)(t,x) — Po(x)| < yr,pT sup [U(t x)| + [Uo(x)]
te[0,T]
< LpT(r + ||[Uol]) + [[Uo(x)][.
Choose T < r — ||l . Then,

rLp(r =+ [[Uol])

sup ||®p(U)(t,.) = Pol[r= <.
t€[0,T]

¢ For susceptible human:

|, (U) (¢, x) — Spo(x)| < ‘/Ot(%Rh(f/x> — aby L (t, x)Sp(t, x) )ds

t t
< | [ Rut,x)ds| +aby | [ La(t 2)Su(t,x)ds
0 0
t t
<" / sup Ry(t,x)ds| + aby, / sup Ly(t,x)Sy(t, x)ds
0 tefo,T) 0 tefo,T)
<y, T sup |Ry(t,x)| 4+ abyT sup |Lu(t, x)||Sn(t x)|
te[0,T] te[0,T]
< 9T sup |U(t,x)| +ab,T sup |U(t, x)|?
te[0,T] te[0,T]

Therefore, by equation (6.22), forall x € Q and t € [0, T},

|@s, (L) (t, %) = Spo(x)| < 1 T(r+||Uo|[) +aby T(r+[|Uo)*

r

Choose T <
[y + aby(r + |[Uo|])] (r + [|Uo]|)

. Thus,

sup ||®s, (U)(t,.) = Spolli> <.
t€[0,T]

¢ For infected human:

t
@, (U)(t,x) — Tno(x)| < ﬂbh/O e ML, (1, %) S (t, x)ds + e~ Do (x) — Ip(x)

t
< ab, /O e L (1, 3) Sy, x)ds | + [ e~ — 1] | o (x)]
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Note that,

t
< / sup (e’”h(t*s)lm(t,x)Sh(t,x)>ds
0

t
/e’”h(t’s)lm(t,x)Sh(t,x)ds
0 te[0,T)

< T sup |Lu(t, x)||Sn(t, x)|
te[0,T]

< T sup |U(t,x)
te[0,T]

Therefore, by equation (6.22), |y, (U)(t, x) — Iy o(x)| will become

[y, (U) (£ %) = Tno(x)| < aby T sup [U(t,x)[* + |Uo(x)]
t€[0,T)

<ab,T(r + ||Uol|)* + ||Uo(x)]].

r — |[Uol|

Choose T <
= aby(r + [|Uo]])

5 Then for all x,

sup ||@g, (U)(t,.) — Inollr> <.
te[0,T]

e For recovered human:

t
|®g, (U)(t,x) — Ryp(x)| < Uh/o e =S (t, x)ds + e Ry0(x) — Rpyo(x)

t
<oy / e =L (1, x)ds | + le= ™" — 1| [Rpo(x)|

0

< o,T sup |U(t, x)| + |Uo(x)]
t€[0,T)

< o T(r + ||Uol]) + ||Uo(x)]|.

r—||Uo||

Choose T < ——— 1
~ ou(r +[[Uoll)

. Then for all x,

sup ||Pg, (U)(t,.) = Rppllr= < 7.
te[0,T]

For the terms with diffusion, we have the following

* For susceptible mosquito:
Let f(U) = yps, Pe PP — ab,1,S,,. Then f(U) is a Lipschitz function in Br.
If U; and U, in By, then

f(Uy) — f(WL) = (yps,Pie P —abyl,1S,1) — (vps, Pre P2 — ab,,1,25,2)
= 9ps, (PL — Py)e PPt 4 yp s Pr(e Prft —e PPy —ab, (1,11 — 1,2Sma)-
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Because Ij,1Sm1 — In2Sm2 = (Ing — In2)Sma + (Sm1 — Sm2) I, and e PP lo-
cally 1-Lipschitz, we have

[f(Ur) = f()I] < 29ps,|IP1L— Pall + abu (|| 1,1 — T2l |[Small + [1Sma — Sma2lll|Tnz2l|)
< 29ps,|1Ur — Ua|| + abu([[Sm|] + [[Tn2] )| U1 — Uz|]
< 2(yps, + (r+ ||Uo|])aby)||U; — Us]|.

A\

According to [52], there exists a constant Cn > 0, depending only on (), such
that the kernel satisfies

1K B)ll1=(0) < Ca.

Thus, for x € Q)

9(50)(13) = Smal()] < | [ KCr =y 0Smot)dy

+

/OT /]Rd K(x =y, t —s)f(U)(s,y)dy ds

< CarllSumol ey + cQT( sup Hf(U)(t,-)HLoom))
te[0,T]

< Cal|Uo|| +2(7vps, + (r + |[Uol|)abm)CaT.
Then
D (Sm)(t,x) = Smo(X)||=(q) < CallUol| +2(vp,s,, + (r + [|Uo|[)abm)CaT.

Choose
CallUol| +2(vp,s, + (r +||Uo||)abm)CaT < r
r — Cql|Uy|

where T <
= 2(vps, + (r+[[Uol|)abm)

% Then,

sup |[@(Sw)(t,.) = Smol[L= <1
te[0,T]

¢ For infected mosquito:
Let ¢(U) = I;,S;. Then g(U) is a Lipschitz function in Br. If U; and U, in Br,
then

g(ul) - g(UZ) = Ih,lsm,l - Ih,ZSm,Z
=In1Sm1 — In1Sm2 + In1Sma2 — IyoSmp
=I1(Sm1 — Smp2) + Sma(Ing — In2)-
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Thus,

l|g(Ur) — g(Ua)|] < sup [In1||Sm1 — Smal + sup [Sma||In1 — Iy
te[0,T) te[0,T)

< sup |U(t,x)||Us(t, x) — Uy (t, x)| + sup |U(t x)||Ui(t, x) — Up(t, x)|
te[0,T) te[0,T]

<2 sup |U(t,x)||Us(t, x) — U (¢, x)]|
te[0,T]

< 2(r + |[Uo|)|[th — Ua]]-
¢ Similar to the susceptible mosquito, we have

|P(Ln)(t,-) = Imo| < Calllmo()||=(q) + amenT< SI[JP] IIg(U)(t,-)HLm(Q))
tel0, T

< Calllo|| + abuCaT(2(r + [|Uol])).
Then
[[@(Ln)(t,.) — Imol| =) < CallUol| + abmCaT(2(r + ||Uol]))-

Choose
r — Cal|Uo||

= abuCo(2(r +||Uol|))

Then for all x,

sup |[®(Ln)(t,x) = Ino(x)||r> < 7.
te[0,T)

Finally choosing r = max(2||Up||,2Cq||Uop||), and T smaller than the minimum be-
tween

1 1 1 2 1 1 || U] 1

6(Xm/ 3')’E,Ll 3’)’L,p, 3’)’;1 + 9abh]|ll0\ | ! 9abh||uo||' 370’]1’ (’)’plsm + 2(2CQ + 1) ||U()||Elbm) ! Zabm(ZCQ + 1)
implies that ®(Bt) C Br. O

Lemma 6.4.3. There exists a time T > 0 such that the map ® is a contraction map from Br
onto itself.

Proof. Let U and U be in Br.

¢ For the equation for eggs:

(D (U) () — Pe(T) ()] = |an /;e‘”E'“”EW‘S)(sm + I,)ds

t —~ ~
tay, /O e~ (ELHIE) (=9) (5 4 1) s

<y

t — ~
/ e~ (YELHHE)(t=s) ((sm —Sm) + (I — Im)>ds
0
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Since ) e” (YL +HE)E

< 1 for any time t from 0 to infinity, we have

|[Pe(U)(1) — Pe(U)(1)] < leTtSI[épT] [1(Sm = Su) + (In = L) |l

< 20, T sup ||U—U||r.
t€[0,T)
Then, sup, | @ (U)(t) — P (U)(t)| < 20T supye o 1y ||U — Ul|~ which is con-

1
traction if 20, T < 1,ie T < —.
20,

¢ For the equation for larvae:

_ t t N
DL (U) (1) — D (T)(1)] = 'YE,L/ o~ () (=5) E gg — 7E1L/ o= (Pt (=) F gg
0 0

— r)/E L /t 67(7L,P+VL)(t75)(E — E)ds
“1Jo

< ygLT sup ||E—E||r=
t€[0,T)

< e.T sup ||U— ﬁ||Loo.
t€[0,T)

Then, sup, |®1(U)(t) — Pr(U)(t)] < yeLT SUPe0,1] ||U — U||~ which is con-

1
tractionif T < —.

YE,L

¢ For the equation for pupae:

t £ ~
|®P(u) (t) J— ®P(u) (t)| — ’)/L,P / e_(’YP,Sm+VP)(t_S) Lds _ ’YL,P/ e_(r)/P,Sm-i_”P)(t_s) Lds
0 0

= "YL P /t 67(7P,5m+yp)(tis)(L — E)ds
" 1Jo

< ypT sup [|L— L[z
te[0,T)

< qLpT sup ||U— L~I|\Loo.
te[0,T]

Then, sup, |®p(U)(t) — Pp(U)(t)| < yLpT SUPyeo,1] ||U — U]|~ which is con-

1
tractionif T < —.

YL,P
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* For the equation for susceptible humans:

@6, (L)) ~ 05,0 = | [ (R~ atuluSds — [ Ry~ abyl5,)as

t
0
t — t ~ &
_ ‘/o (R, — Ry, )ds _/o aby (InSy — LnSp)

< 1T sup |[Ry — Ryll

te[0,T]
+ ab,T sup ||Lu(Sp — Sy) + Sp(Ln — I)||
t€[0,T)
< T sup [|[U - U=
tel0,T)

+ath< sup ||Ul|z= 1 — Tl[z= + sup [|U][z~ |1 — ﬁ||m)
te[0,T] te[0,T]

< (T + 2ab, T(r + ||Upl|)) sup ||U — fl||Lw.
te[0,T]

Then, sup, |®s, (U)(t) — s, (U)(t)] < (vnT +2aby T(r + [|Uol[)) supsepo 7y [1U —
1

Th + 2aby(r + [|Uol[)”

U||1~ which is contraction if T <

* For the equation for infected humans:

' t o
|y, (U)(t) — @y, (U)(1)] = ﬂbh/ e )], Sy ds —ﬂbh/o e ) [, Sy ds

0

t ~ ~
= abh / e_”’l(t_s)(ImSh — ImSh)ds

0

< abyT sup ||Ln(Sy — Si) + S(Ln — L)
t€[0,T)

< ab,T ( sup [[Ll| 114 — Sull + sup |1S4] wm—m>
te[0,T] te[0,T]

< ab,T ( sup ||[Ul[e~ [JU = Ullr~ + sup ||U]J [JU ~ ﬁl!u»)
te[0,T] te[0,T]

< 2ab,T sup U]z~ U~ Ul|=
t€[0,T]

< 2ab, T(r+ ||Up]|) sup ||U— lj||Lm.
t€[0,T)

Then sup, |®;, (U)(t) — @5, (U)(+)| < 2ab, T(r + [|Uo||) sup,cpor [1U = Ul |1
1

which is contraction if T < .
2aby,(r + ||Uol])
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e For the equation for recovered humans:

¢ t _
|Dr, (U)(t) — g, (U)(t)| = O'h/ e’”“’s)lhds—ah/ e~ m=s) ], ds

0 0
t ~
/ e_,Yh(t_s)(Ih — Ih)ds
0
< o7 sup ||~ B
t€[0,T]

< 0, T sup ||U — U1
t€[0,T]

Then sup, |Pg, (U)(t) — @g, (U)(t)| < o T sup;epory [|U — U||~ which is con-

1
tractionif T < —.
Op

¢ For the equation for susceptible mosquitoes:

@6, (U)(0) ~ @, (@) = | [ KF(Wds— [ K p (DDA
=LAK*U@U—ﬂﬁ»%

< 2Ca(ves, + (r+ |[Uo| abu) sup [|U — U]

te[0,T]
< T sup ||U— U~
te[0,T]
where T < ! which is a contraction mappin
2Ca(vps, + (r + [[ollaby)’ P
¢ For the equation for infected mosquitoes:
4, (U)(1) — by, (0 \—VKW %—/Kw
—g(U))ds
< Co(Z(rvL 1Us|l)abn) sup ||U — U]z
te[0,T]
< T sup ||U—U||r.
te[0,T)
1 o . .
where T < , which is a contraction mapping.

Ca(2(r + |[Uol[)abm)

Therefore, sup, ¢y 1 ||®(U) — @ (U)|| < K||U — U|| with K < Tif T is strictly smaller
than the minimum of

1 1 1 1 1
200" vEL YL Y+ 2aby(r + ||Uol])” 2aby (r + ||Uo||)’
1 1 ‘ 1
an’ Calrp,s, +2(r + [|Uo||)abm)” Ca(2(r + |[Uol|)abm)
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O]

Using the lemmas above, we can conclude that our system of equation is globally
well-posed. We have the stated the theorem below.

Theorem 6.4.4. Let 0 < Sy, Iy 0, Rpo < Hoand 0 < Eg, Lo, Py < My, 0 < Spi0, Ino <
M 4 o where Hy, My o and M 4 g are the initial population density for human, young mosquito
and adult mosquito population, respectively. Then there exists a unique global in time weak
solution (E,L, P, Sy, I, S, I, Ry) € L®(R4,L*(Q))8, of the initial boundary value
problem. Moreover, the solution is nonnegative, Sy, + I, < Hpand E+ L+ P < My
S+ In < Mayp.

Proof. Combining Lemmas 6.4.1, 6.4.2 and 6.4.3, one can applied the Picard’s fixed
point theorem, which provides the local well-posedness. Positivity and bounded-
ness of E,L, P, Sy, I, S, In, Ry, follows the one from the model without space (see
Lemma 5.3.2). O

6.5 Optimal Control strategies : Copepods, Pesticides & Vac-

cination

Our aim in this section to minimize the number of infected humans by minimiz-
ing the control inputs. We attribute three control inputs, wy for the percentage of
young mosquitoes exposed to copepods, w4 for the percentage of adult mosquitoes
exposed to pesticides, wy for the percentage of vaccinated susceptible humans. Fur-
thermore, we assume that both control inputs are piece-wise continuous functions
that takes its values in a positively bounded set W = [0, Wy yax] X [0, WA max] X
[0, WH max]-

Let U = (E,L,P,Sw, Im, Sy, I, Ry) and w = (wy, wa, wy) be the control inputs.
We consider the problem

minimize J (U, w) where J (U, w) = [, fOTf(U, w, (x,t))dtdX
w
such that
1 2 1 2 1 2
fU,w,(x,t)) = L(x,t) + EAwa(x,t) + EAAwA(x,t) + EAHwH(x,t),
subject to

(U, U,w,(x,t)) =0
g(u(0>/ w) - (EOI LO/ PU/ Sm,OI Im,Or Sh,O/ Ih,O/ Rl’l,O)
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where h is defined by
TECL) (S (5,8) + I, £)) + 721 B ) + g E(x, 1) = 0 (623)
% = YELE(x,t) +71,pL(x,t) + u L(x,t) + wyL(x,t) = 0 (6.24)
dp(tX/ 2 YLpL(x,t) +vps, P(x,t) + upP(x,t) =0 (6.25)
asm;tx, D DASw — s, P(x, e PPN 4 s S, £) + aby Dy (5, £)Sim (%, ) + w04 S (x, £(6:26)
al"’; ) — DALy — aby Iy (%, 1) S (%, £) + palm (x,8) + waly(x,t) =0 (6.27)
5 D Ry (6 8) + aby I (x, )5y (x, ) + wpSp(x, £) = 0 (6.28)
dIhc(it H_ aby Ly (x, 1) Sy (x, ) + 0y Iy (x,£) = 0 (6.29)
dRh;tx ) o1y, ) + iR (3, ) = . (6:30)
withf =G = =T == ===

6.5.1 Derivation of the Optimal Control

Lemma 6.5.1. There exists the adjoint variables A;,i = 1,2, - - -, 6 that satisfy the following

backward in time system of partial differential equations

dA(x,t

_1d(t) = M(x, e+ (M(x,t) — Aa(x,8))vEL
dAor(x,t

_Zd(t) = Ao(x,t) (pr +wy) + (A2(x, £) — Az(x, t))yLp
dAs(x,t _

_3d(t) = As(x, ) up + (As(x,t) — Aa(x,£) (1 = BuP)e PP )yps,

SN ANy — (D + Aa () (it 04) £ (Aa(3,£) — As(x, £))aby Ty (x, )
T 4 = 10X, 1) 0m 4(X, 1) (A T WA 4\ X, 5(X,1))a0m i\ X,
SO A Ns = Ay, a + As( ) (g + wa) + (Ao, £) — Az, £))abySy(x, )
ot 5 = —MAMX, L)&m T A5(X, L) (HA T WA 6 X, 7\X,1))abpop X,

dAg(x,t

BRBE) _ 3 (e s + (Aa(, 1) — Ao, )b (5,1
dAy(x,t

_7d(;C) =1+ ()\7(36, t) — /\3(9(, t))O'h + (/\4(35, t) — )\5(35/ t))abmsm(xr t)
dAg(x,t

_8d<t) = (/\S(x/t) - A6('xl t))’)/h

(6.31)
with the transversality condition AT (x, T) = 0and boundary conditions u” = %
and a)ngi,t) _ Bua(;c,t) —0.

@) Q)

Proof. Consider the Lagrangian corresponding to the optimization problem:

L= // (u,w, ( xt+ATh(UUw(xt))]dth+/yg U(x,0), w)dX

The vector of Lagrangian multiplier A is a function of space and time, and y is an-
other vector of multipliers that are associated with the initial conditions. Then, we
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have

T
L = \7+/Q]/1Tg(U(x,0),w)dX+/Q/0 </\1(x, £)(6.23) + A (x, 1)(6.24)
FA3(x, £)(6.25) + Ay (x, £)(6.26) + As(x, 1)(6.27)
FA6(x, £)(6.28) + Az (x, £)(6.29) + Ag(x, t)(6.30)> dtdx.

Computing one by one by integration by parts,
For the expression with | fOT A1 (x,1)(6.23)dtd X we have

/Q /0 " (3, £)(6.23)tdX = /Q /0 "y, t)(aEé’;'t) (S (%, 1) + T (%, 1))

+veLE(x, t) + ueE(x, t)>dth

= [ [ nen (P aax+ [ [ aiten (nebn

+YELE(x,t) — am(Sm(x,t) + Im(x,t))>dth
T
_ /Q </\1(x,t)E(x,t) - /0 ! E(x,t)aAla(;c’t>dt> X

o f vt (e

+YELE (1) =t (Su(x, £) + (%, t)))dth

-/ <A1(x,T)E(x,T)—Al(x,O)E(x,O)— /O TE(x,t)aAlgf't)dex

+ /Q /OT A(x, t) <,MEE(X,t) + e LE(x,t) — (S (x, t) + Im(x,t))>dth

By tranversality condition Aq(x, T) = 0, then we can have

/Q /O " (3, )(6.23)dtdX = /Q <—A1(x,O)E(x,O)— /O TE(x,t)a/\l(.gf’t)dt)dX

+/Q/0T AM(x,t) (yEE(x,t) 4 yeE(x, 1)

:—/Ale E(x,0)dX — // aAl M) gy
+//A1xtyEExtdth+// A1(x, t)ye LE(x, t)dtdX

B /Q/o A (%, £t (S (%, £) + L (x, 1)) dbd X
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For the expression with [ fOT Aa(x, £)(6.24)dtd X we have

T T 9
/Q/O /\z(x,t)(6.24)dth:/Q/0 Az(x,t)< L(a’;’t) — yeLE(x,£) + yLpL(x, t)

+ urL(x,t) +wyL(x, t))dth

_// Ao(x < >>dth // Ao(x, )y LE(x, £)dtdX

+ / / Aa(x, DyepL(x, H)dtdX + /Q / Aa(x, )i L(x, £)dtdX
0 Jo 0

T

+// Aa(x, H)wyL(x, t)dtdX

/Asz L(x,0)dX — // aAZ ) arax

—// Az(X,t)WE,LE(x,t)dth—l—// /\z(x,t)’)/L,pL<X,t)dth
aJo aJo

T T
+ / / Aa(x, )urL(x, t)dtdX + / / Aa(x, )wy L(x, t)dtdX
0O J0 0O J0

For the expression with [, fOT As(x,t)(6.25)dtdX we have

/Q/OTAs(x,t)(6.25)dth = /Q/OT M(x,t)(apg,t)

+7ps,P(x,t) + upP(x, t)) dtdX

_// As(x ( )>dth // As(x, )y pL(x, D) dtdX
—|—// As(x,t)ypgs,, P(x,t)dth—I—// As(x, t)upP(x, t)dtdX
/Ang (x,0)dX — // aAf’xt)dth
_/Q /0 As(x, ) yepL(x, £)dtdX

T T
n / / As(x, t)yps, P(x, H)dtdX + /Q / As(x, ) upP(x, t)dtdX
0O Jo 0

(x,1)
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For the expression with [ fOT Ay(x,1)(6.26)dtd X we have

/ / Aa(x, £)(6.26)dtdX = / / Aa(x (85m(x ') DASw — yps. P(x, e PPN & a8 (x, )

+ aby Iy (x, 1) Sm(x, t) + waSw(x, t)> dtdX

_// M ( m (%, )>dth // Aa(x, £) DAS,dtdX

_ / / Aa(x, Dyps, P(x, e PrPENd1ax + / / Aa(%, £)paSw(x, £)dtdX
O Jo 0OJo
T T
+ / / Aa(%, )abu Ty (x, E) S (x, E)dtd X + / / Aa(%, )04 S (%, 1) dtdX
QOJOo
:_/ Aa(x,0)Sm(x,0)dX — / / a)“* x, t)dth
(@)
T
- / / Aa(x, t) DASdtdX
O Jo
T T
—// /\4(3{,t)’)/prsmp(x,t)eiﬁmp(x’t)dtdx+// A4(x/t)1uASm<xlt)dth
O Jo 0OJo

T T
+ / / g (%, )by (%, £) S (x, £)dtdX + / / Aa(x, D)waSw (x, )dtdX
O Jo O Jo

For the term with [ fOT Ay(x,t)DASdtdX

T T 9?2
/ / Aa(x, ) DASdtdX = / / Aa(x, )DL S, dtdX
aJo ox?
—/<//\4xt (a(,f >dX)d

By integration by parts with respect to space, we have

T T
// /\4(x,t)DASmdth:/ /\4(x,t)Dai / oAy (x,t)D asde gt
aJo 0 dx 0 ox ox

:/T(/\4(x,t)D m _8A4(x,t)D

ox Sm

+/5 (a)‘”t) )dX)dt
= /0 </\4(x,t) ’”a(;'t) Q_%(x,t)

ox
T
+ / / S, DAAsdXdt
0 Q

QO

Sm(x,t)

)pas
Q

Since our equation satisfies the Neumann boundary condition, we have

T T
/ / Aa(x, ) DASdtdX = / / S, DAAdXdt.
OJo 0 @)
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Therefore, for the expression with |, fOT Ag(x,1)(6.26)dtdX we have

T a/\4 1)
/ / Aa(x, £)(6.26)dHdX = — / Aa(x,0)Sm(x,0)dX — / / dtdx
0O Jo (@)
T
- / / S, DA dtdX — / / M(x,t)yp,smp(x,t)efﬁmp(xﬂdtdx
O Jo O Jo
T
—i—// Ag(x, t)paSm(x, t)dtdX
O Jo

T
+ / / Aa(x, )aby I (x, ) Sy (x, £)dtd X
O Jo

T
+ / / Aa(%, )waSw(x, £)dtdX
O Jo

For the expression with fQ fOT As(x,1)(6.27)dtdX we have

T B T ALy (x, 1)
/Q /0 As(x, £)(6.27)dtdX = /Q /0 A5(x,t)< 22— DAL, = abuly(x,1)Su(x, 1)

:// As(x < ml%, )>dth ///\5xt)DAImdth

. / / As(x, )aby I (x, ) S (x, E)dtd X
O Jo

T
+ / / As(x, ) paln(x, t)dtdX
JOJO

T
+// As(x, )waly,(x, t)dtdX
:—/A5x0 (x,0)dX — // a)‘S ) grax

_ / / I, DAAsdtdX
0O Jo
T
—// As(x, £)aby I (x, 1) Sy (x, t)dtdX
0O Jo
T
n / / As(x, )i aln(x, ) dtdX
0O Jo

T
+ / / As(x, Dwaly(x, t)dtdX
O Jo




6.5. Optimal Control strategies : Copepods, Pesticides & Vaccination 205

For the expression with [ fOT Ae(x,1)(6.28)dtd X we have

// Ao (x, 1)(6.28)dtdX = // Ae(x (35h( ) Ry (0) - aby (5,05, (5, )
+wySh(x, t)> dtdX
_/ / (ash(f t)>dfdx— /Q /()T/\é(xrt)’thh(X,t)dth
4 [ [ Aal abidu(x, 151 (x i

T
+// Ae(x, )wySy(x, t)dtdX

/A6x05thdX //tht )dth
—/ / Aé(x,t)'thh(x,t)dth
O Jo
T
+ / / Ao (x, )abyln(x, )Sp(x, t)dtdX
O Jo

T
+ / / (%, DwiSy(x, £)dtdX
O Jo

For the expression with [ fOT A7 (x,1)(6.29)dtdX we have

// Ar(x, £)(6.29)dtdX = // Ar(x (al’l )—abhlm(x,t)Sh(x,t)—|—ahlh(x,t)>dth

_// Ar(x (81’1 )>dtdx

- / / Ar(x, )aby L(x, £)Sy (x, £)dtdX
QJOo

T
—|—// )\7 x,t)(ThIh(x,t)dth

/A7x01hx0dx //Ihxt )dth
- / / Ar(x, )abyln(x, )Sp(x, )dtdX
O Jo

T
+ / / Ar(x, DonTy(x, )dtdX
O Jo
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For the expression with [ fOT Ag(x, £)(6.30)dtd X we have
/ / As(x, £)(6.30)dtd X = / / As(x (aRh(" ) o (,t) —I—'thh(x,t)>dth

:/Q/O Ag(x,t)<aRha(t’)>dth—/Q/()T/\g(x,t)ahlh(x,t)dth

T
+/ / /\8 x,t ’)/th X, t)dth
//\ngthOdX // Ru(x a)‘s Ns() 4y
. / / As(x, )on T, (x, )dtdX
0O Jo

T
+// Ag(x, £)yuRy(x, t)dtdX
aJo
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Therefore, combining the results gives us

L=J+ /Q T (U(x,0), w)dX + /Q /OT (Al(x,t)(6.23) + A (x, £)(6.24)
4 A3 (x,£)(6.25) + Ag(x, £)(6.26) + As (x, £)(6.27)
+ A6 (x, £)(6.28) + Az (x, £)(6.29) + As(x, t)(6.30)) dtdx
— T+ / 1T g (U(0), w)dX
/Ale (x,0)dX — // a)‘l ) grax

X X
+ /Q /0 M (%, O pgE(x, H)dtdX + /Q /O M (x, )7 LE(x, t)dtd

T
. / / A1 (%, )t (St (%, £) + I (x, £))dtd X
//\sz L(x,0)dX — // a)‘z 1) drax
_ /Q /O Aa(x, £) e LE(x, £)dtdX + /Q /O Aa(x, )71 pL(x, dtdX
T T
+/ / Aa(x, )urL(x, t) dth+/ / Az (x, )wyL(x, t)dtdX
8)\3 1)
/A3 (x,0)P(x,0)dX — // dtdX — // As(x, )7L, pL(x, H)dtdX
+/ / As(x,H)7ps, P(x, t)dth+/ / As(x, D upP(x, t)dtdX
O Jo
: - T
- / A4(%,0)Sm (x,0)dX — / / Son(t, ) 224D e / / SmDANdtdX
o) aJo ot aJo

- T - T
- /Q /0 Aa(x, ) 7ps, P(x, H)e PP drdX + /Q /0 Aa(x, 8) S (x, )dtdX

T T
+/ / Ay x,t)abmlh(x,t)Sm(x,t)dth+/ / Ag(x, £)waSm(x, t)dtdX
—/ As(x,0) I (x,0)dX — / / In(x aA5 X t)dth / / LnDAAsdtdX

—/Q/O A5(x,t)abmlh(x,t)Sm(x,t)dth+/Q/O s (%, 8)pa I (x, £)dtd X

T
n / / As(x, ) aLn(x, £)dtdX
O Jo
T 8)\6(x,t) T
- /Q g (x,0)S (x,0)dX — /Q /O Su(x, ) 2 dtdX — /Q /O Ao (%, )Ry (x, )dtdX
T T
+ /Q /0 (%, E)aby L (x, £)Sy (x, E)dtdX + /Q /0 (%, Dwr Sy (x, )dtdX
: T Ay (x, )
. /Q A7(x,0) I (x, 0)dX — /Q /0 I, 1) L drdx
. T - T
f/ / Az (x, t)aby I (x,£)Sy (x, 1) dth+/ / Az (x, )0y Iy (x, £)dtdX
f/ Ag(x,0)Ry, (x,0)dX — / / Ry(x Mg a t)dth / / Ag(x, D)o Iy (x, ) dtdX

+/Q/O Ag(x, t)yp Ry (x, t)dtdX
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Now, combining like terms, we have
L= /Q/OT (Ih(x,t)+%Ayw%(x,t)+%AAwi(x,t)+%AHw%,(x,t))dth+/Q;4Tg(ll(x,0),w)dX
—/Q)q(x,O)E(x,O)dX—/Q)\z(x,O)L(x,O)dX—'/02\3(x,0)P(x,0)dX—'/02\4(x,0)5m(x,0)dX
- / A5(x,0)1m(x,0)dX— / A (x,0)S, (x, 0)dX — / /\7(x,0)1h(x,0)dX—/Q Ag(x,0)Ry (x,0)dX
/ / (x,6)° )dth+/ / M (x, ) upE(x, £ dtdX
+ / / M (x, ) ye L E(x, H)dtdX — / / Ao (%, £)ye L E(x, )dtdX

/ / E)A2 (x, t)dtdx+/ / Ao (x, )urL(x, t)dth+/ / Aa(x, t)wy L(x, t)dtdX

+/ / Az(x,t)mL(x,t)dtdx—/ / As(x, )L pL(x, B)dtdX
/ / aA3 % 1) dth+/ / Az(x, ) upP(x, t)dtdX
+/ / /\3 x,t)')/ps P(x’t)dtdx_/ﬂ‘/() A4(x,t)'yp/SmP(x,t)e—ﬁmP(xr’—‘)dth

T
/ / S a)“* b grax — /Q /0 SwDANdtdX

T T
- /Q /O A1 (%, £t Sy (x, £)dtdX + /Q /0 Aa (%, £)pa S (x, D) dEdX + /Q /O Aa(%, D)W A S (x, )dtdX

. .T . 'T
+ / / Aa (%, )byl (x, £)S (x, 1) dtdX — / / As (%, ) @byl (x, )Sm(x, £)dtdX
/ / I (x aASXt)dth / / I, DAAsdtdX

T
—/Q/O Al(x,t)amln,(x,t)dth+(/Q./O /\5(x,t);4AIm(x,t)dth+'/Q'/O As(x, ) 4 L (%, £)dtd X

T T
+// /\6(x,t)abhlm(x,t)Sh(x,t)dth—// Az (x, t)aby L (x,1)Sy (x, t)dtdX
// Sy(x aA6Xt)dth+// Ao(x, H)wy Sy (x, t)dtdX
8A7 )
// Iy(x dtdx+// A7 (x, )0, Iy (x, )dtdX — // Ag(x, D)oy T (x, )dtdX
// Ry(x aAS )dthJr/Q/o Ag(x,t)’thh(x,t)dth—/Q/O Ao (x, £)yuRy (x, t)dtdX
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Factoring out the common terms give us

—// < Aywk(x,t) + AAwA(x )+ AHwH(x t))dth—i—/ ulg(U(x,0),w )dX—/Q/\(x,O)U(x,O)dX

o / < a/\1 +A1(x,t)FE+(A1(xrt)—Az(xff)WE,L>E(x’t)dth

s ( “2“ +A2<x,t)<m+wy>+uz<x,f>—Ae,(x,t))n,p)L(x,t)dth

// < a/\3 +A3(x,t)yp+(/\3(x,t)*A4(x,t)e_ﬂmp(x’”)vp,sm)P(x't)dtdx

N ( ‘“4 — DA — Aq (%, )t + Aa (3, ) (pa + wA)) Sm(x, 1)dtdX

T
+ / / A4(x,t)abm1h(x,t)Sm(x,t)dth— /Q /0 s (x, £)abp Ly (x, )Sm (x, £)dtdX

/ / ( a/\5 DA/\5—Al(x,t)ucn,+/\5(x,f)(ﬂA+wA))Im(xrt)dth
+ / / Ao (x, £)aby L (x, 1) Sy (x, £)dtdX — /Q /0 (e by (3, 8 x, )X
// ( E’Ab“ +A6(x,t)zuH>Sh(x,t)dth

e BM +1+(M(x,t)—A8<x,t>>ah)1h<x,t>dtdx

ok (7

Since the total derivative of L is equal to zero at the minimum, i.e.,

-|- ()Lg(x, t) — /\6(36, t))’)/h) Ry, (x, t)dth.

oL oL
aL = 5w 8w+w ou=20

we have the partial derivative of £ with respect to U,

L I (xt)

+ A (x e + (A (x, ) = Aa(x,£))vE L

o0E ot
0L dAp(xt
oL 2{5 i Ap(x, 8) (pr + wy) + (Aa(x, 1) = A3 (x, 1)) yL,p
oL oAz (x, t B
x_- 3{51} ) + A3 (x, )pp + (Az(x, 1) — Ag(x, 1) (1 — BuP(x,t))e ﬁ"’p)WP,sm
oL oAy (x,t
3%, ~ 4a(f ) DARs = M (s g, )1+ 04) + (A, 8) — As(x, E)abin (5 )
m
oL dAs(x, t
ox°__ 58(25 ) _ DAAs — Aq(x, ) 4+ As(x, 1) (ua +wa) + (Ae(x, 1) — Az (x, t))abySy(x, t)
m
) oAg(x, t
9L _ 96l ) (x, ywom + (g () — Az, £))aby I (x, 1)
Sy, ot
P} oA t
% _ 78(;@ ) 114 (A7(x,8) — Ag(x,£))on + (Aa(x,£) — As(x, ) )aby S (x, £)
h

% _ _a)Lg(x,t)
JdRy, o ot

+ (As(x, 1) = Ag(x, 1)) 1
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Therefore, the adjoint system is defined by

8/\1 (X, t)

oy =M hpe+ (M) = Aa(x 1) rEL

P0) ey ) i+ 0v) + (Rl t) — Aa(, )

a/\ga(f't) = As(x, Dpp + (A3(x,8) — Ag(x, £) (1 — BuP(x,t))e PPt ) p o
Mﬁf’t) — DAAy = —A1(x, ) o 4 Ag(x, £) (pa + wa) + (Aa(x,t) — As(x, t) )aby Iy (x, 1)
W — DAAs = =M1 (x, ) + As(x, 1) (pa + wa) + (Ae(x, t) — A7 (x, t))abSy(x, 1)

Mésf't) = Ae(x, t)wn + (As(x,t) — A7(x,t))abyL(x, t)

%éf’t) =1+ (A7(x,t) — As(x, )0y + (Ag(x, t) — As(x, ) )abyu S (x, t)

aAsa(f’t) — (As(x,t) = A6 (2, 5)) -

Theorem 6.5.2. The optimal control variable w* is defined as

AoL
wy(t) = max (0, min (—f‘ly'wy’m’”>>

Agly + A
wh(t) = max (O,min <(4h—t\;Sh)’wAmx>>

wi(t) = max <O,min (fé::,’wH'm”x>> .

Proof. The partial derivative of £ with respect to w is written

9L Aoy () + Aa(x, )L (x, £)

awy

oL

—— = Apqwa(x,t) + Ag(x, 1) Sm(x, t) + As(x, t) L (x, t)
aZUA

oL
Yoom = AHwH(x, t) + A6(x, t)Sh(x, i’).

WH

Furthermore, almost everywhere in (), we have

Aywy + AL =0 Aqwp + AgSy + Asly,, =0 Agwyg + A¢Sp, =0

wy = 22k w = (4Sm + Aslu wyy = 65
—Ag —Ap’

=4
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Finally,

wy(t) = max (O, min <A2L,wy,max>>
—Ay
* . A4Sm + /\5Im
wi(t) = max (0, min i WA
—Aa

wi(t) = max <O, min <ﬁéi’l,wH,max>> .

6.5.2 Numerical Simulation of the Model with one laying site

This section shows the numerical simulations of the model above in minimizing the
infected human by applying three control strategies: vector control by copepode and
pesticide and vaccination for human.

The control weights Ay and A4 are the efforts in insecticide administration for
mosquito population while Ay is the effort to vaccinate susceptible humans. Since
adult mosquitoes are readily available in the population, the efforts used in control-
ling them would be simpler than the effort exerted for controlling young mosquitoes
and vaccinating the susceptible humans. Thus, Ay, Ay are set smaller than Ap.
Hence, we initially set the control weights as Ay; = 10, Ay = 1 and Ay = 1. Note
that the values of Ap;, Ay, Ay do not change the convergence of optimal control.

The optimality of the system is numerically solved using Algorithm 3 with € =
0.01.

Algorithm 3 Computation of optimal control of dengue model with spatial distribu-
tion
Given Uy = (10000, 500, 100, 10000, 1000,1000, 10,0) as initial datum, a final time
T = 50, a domain [—200,200] and a tolerance ¢ > 0.
Let wy o, w40, Wy o randomly chosen following N (0,1).
while ||VL(w,U,A)|| > ¢ do,
solve the forward system U,
solve the backward system A,
update w
solve the gradient V.L(w, U, )

w* = w".

Explicit Euler finite differences are used to numerically solve the direct and the ad-

joint system of ordinary differential equations and partial differential equations.
The simulations were carried out using D,,;, = 0.1, « = 0.01 and B = 0.1 the as

values for the diffusion coefficients. Parameters are summarized in the table below.
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| Parameters | Description | Value | Source |
W Oviposition 1day! [13]
YEL Transformation from egg to larva 0.330000 day ! [13]
YLP Transformation from larvae to pupa 0.140000 day ! [13]
Yp.S,, Transformation from pupa to adult | 0.346000 day ! [13]
mosquito
UE Mortality rates of egg 0.050000 day ! [13]
UL Mortality rates of larva 0.050000 day‘l [13]
Up Mortality rates of pupa 0.016700 day—! | [13]
Ha Mortality rates of mosquito 0.042000 day_l [13]
Yh Rate of decline in human immunity to | 0.575000 dayfl [43]
disease
o Rate of cure for disease 0.328833 day‘l [43]
aby, Probability of susceptible mosquitoes | 0.375000 day [43]
to be infectious
aby, Probability of susceptible humans to | 0.750000 day~! [43]
be infected
WY max upper bound of young mosquitoes 23.96 [53]
exposed to copepods
WA max upper bound of adult mosquitoes ex- 0.65 [47]
posed to fogging
WH max upper bound of vaccinated suscepti- 0.8 [35, 64]
ble humans

TABLE 6.2: Value of the Parameters used for the simulations.

The initial configuration follows Figure 6.2. The spatial domain is [—200,200].
The laying site is located at the center with a width of 20. Adult mosquitoes are ini-
tially located between —100 and 100. Humans are everywhere except on the laying
site.

human: feeding site human: feeding site

adult mosquitoes

-10 10
-200 -100 0 100 200

FIGURE 6.2: Initial configuration made of one laying site.
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with optimal control without control
10000 c 150/
—
80001 s 1.251
6000 | 1.004
0.751
4000 |
0.50
2000 |
0.251
B
’ 0 2 0 75 100 125 150 0-001
> 3 > > 15 0 25 50 75 100 125 150
10000 S, 3500001 —_ 5 _
_— ] —
8000/ m 300000 m
250000
6000 |
200000
4000 150000
100000
2000 |
50000
0] o
0 25 50 75 100 125 150 5 5 o 75 100 135 1%
1000 1 s, 1000
In
8001 — R, 800 |
6001 6001 — S
—
4001 4001 = Rp
200 2001
04~ 01 L\
o 25 30 T5§e 100125 150 0 25 50 75 100 125 150
Time

FIGURE 6.3: Behavior of each variables in the model with spatial dis-
tribution with three control inputs (left) and without control inputs

(right).
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Figure 6.3 shows the comparison of the behavior of each variables in the model
with diffusion using 3 control inputs and without control input. It clearly shows that
having control strategy is better than no control at all.

For the young mosquito compartments (upper figures of Figure 6.3), we can see
that with the control inputs, specifically the copepod application w7, there is a rapid
decrease in each population for a short time towards equilibrium. Whereas with-
out control, each population increases faster and shows no sign of decrease. With
no predator for larvae, the figure shows that larvae increase faster than egg and pu-
pae. Similarly, for adult mosquito compartments (middle figures of Figure 6.3), since
pesticide administration affects both susceptible and infected mosquitoes, the figure
shows that with the control inputs, both populations decrease exponentially over a
short period.

The human compartment (bottom figure of Figure 6.3) shows that the application
of control strategies effectively minimizes infected humans. It increases for at least
ten days and then decreases exponentially towards zero.

Figure 6.4 shows the spatiotemporal evolution of infectious humans and mosquitoes
with and without control. The figure shows that without control inputs, we need to
apply the control strategy for a long time and then decrease it. However, decreas-
ing the control strategy’s efforts does not mean stopping its application. The figure
shows that we must continuously apply the control strategy near the laying sites.
Consequently, with the three control inputs, we only need to apply the control strat-
egy for a short period and eventually stop it in more or less 20 days.
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without control

0 20 40 60 80 100 120 140
-200

15
-100
Ih 0 1.0
0.5
0.0
0 20 40 60 80 100 120 140 50
-200

40

-100
30

20

100
10

200

e —
o

Time

with optimal control

0 20 40 60 80 100 120 140
-200

0.5

-100 0.4

Ih 0 0.3

0.2
100
0.1

200
0.0

0 20 40 60 80 100 120 140 50
-200
40
-100
30

20

100
10

3
e I

200
Time

FIGURE 6.4: Spatiotemporal evolution of the infected human I, and
infectious mosquitoes I, without control (top) and with optimal con-
trol (down).

Figure 6.5 shows the spatiotemporal evolution of each optimal control variable
of the model with three control inputs. It shows that we need to administer copepod
continuously for 45 days while lowering pesticide application and vaccination over
time. However, the figure shows that we need to continuously apply the pesticide

and vaccination near the laying sites unfadingly.
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20 40 60 80 100 120 140

-200 0

-100

100

200

-200

-100

Wa
0
100
200
140 '
-200
-100 ’
w
H 0 .
100
200 )
Time 0.0
50
_ Wy v — Wp 15 —_— Wy
40
30 10 10
20 5 5
10
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150
Time Time Time

FIGURE 6.5: Spatiotemporal evolution of the optimal control vari-
ables wy, w4, wy of the model (top) and its sum in space (down).

6.5.3 Numerical Simulation of the Model with Spatial Distribution hav-
ing Two Laying Sites

In this section, we consider a numerical simulation with 2 laying sites. We assumed
that mosquitoes would prefer the nearest laying site to its position. The initial con-
figuration follows Figure 6.6. The spatial domain is [—200,200]. The laying sites
are located between [—50, —30] and [30,50]. Adult mosquitoes are initially located
between —100 and 100. Humans are everywhere except on the laying site.

Using Algorithm 3, we get the following behavior of each variables in the system.
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human: feeding site

-200 -100

human: feeding site

FIGURE 6.6: Initial configuration made of two laying sites.

with optimal control
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FIGURE 6.7: Behavior of each variables in the model with spatial dis-
tribution with three control inputs (left) and without control inputs
(right).

Figure 6.7 shows that we get a relatively similar graph as the left Figure 6.3.
As observed, due to the increase of carrying capacity of mosquitoes laying site, the
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susceptible mosquitoes increases after the tenth day. But due to the application of
the three control strategy, an increase in susceptible mosquitoes does not affect the
infected mosquitoes.

without control

0 20 40 60 80 100 120 140 2.0
-200
-100 1.5
lh 1.0
0.5
0.0

0 50
40
I 30
m
20
10
Time 0

with optimal control

200 0 20 40 60 80 100 120 140
-100
h
100
200

-200 0 20 40 60 80 100 120 140

50

40
-100

30

20
100

10

200

0.6
0.5
0.4
0.3
0.2
0.1
0.0

Time

FIGURE 6.8: Spatiotemporal evolution of the infected human I, and
infectious mosquitoes I, without control (top) and with optimal con-
trol (down).
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FIGURE 6.9: Spatiotemporal evolution of the optimal control vari-
ables wy, w4, wy of the model (top) and its sum in space (down).

Figure 6.9, shows the progression of the optimal control wj, w’ and wj;, respec-
tively. It shows that a near zero optimal control does not mean a termination of
applying the control strategies. Instead, it shows that we need to continue apply-
ing the control strategy near the laying sites at maximum capacity for an interval of

time.
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6.6 Behavior with respect to capacity and diffusion parame-
ters

6.6.1 Influence of the Carrying Capacity of pupae

We denote the carrying capacity of pupae kp,, = ﬁim

kpup = 2500 kpup =250 000 kpup =25 000 000
50 50 50
—_— Wy —_— Wy _— Wy
40 401 40
30 30 30
20 20 20
10 101 10
0 ol 0
) 50 100 150 5 % 160 %0 ) 50 100 150
5 1s 15
—_— Wy Wa Wa
1 10 10
5 5 5
0 0 °
0 50 100 150 0 50 100 150 0 50 100 150
15 R 15 —— —_— Wy
1 10 10
5 5 >
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150
Time Time Time

FIGURE 6.10: Behavior of eggs, larvae, and pupae in different capac-
ities of pupae.

duration of upper bound in control
N N N w w w w w
~ [os] (o] o = N w £

8 10 12 14 16
log(kpup)

FIGURE 6.11: Duration of the upper bound in the optimal control wy
with respect to the carrying capacity of pupae.
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6.6.2 Influence of the Laying Sites Capacity

In this section, we consider changing the capacity of the laying sites. The equation

for eggs E is modified to take into account the laying capacity as

E'=

& (S + In) <l —

klay

E
> —YeLE — ugE

where ki, represents the capacity of the laying sites. The adjoint problem is then

modified as follows

oA (x,t
hix, 1) = M) (g — (S + L) ) + (A1 (x,8) = Aa(x,6))ves
ot klay
8A4(x, t) E
——2 72— DAM = —Aq(x, 1——
ot 4 1 ) Kiay
+ A4(x, t)(pa+wa) + (Aa(x, t) — As(x, £))aby I, (x, t)
8A5(x, t) E
——>2 — DAA —A t
of 5= M tam " Ky
+/\5(X t)(yA+wA) (/\6( ) —/\7(x,t))abh5h(x,t).
k|ay = 1000 k|ay = 5000 k|ay = 10000
50 — 50 — 50 —
40 40 40
30 30 30
20 20 20
s Time s Time — 15 Timn —
10 10 10
5 5 5
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150
15 R 15 w| — wy
10 10 10
5 5 5
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150
Time Time Time

FIGURE 6.12: Behavior of eggs, larvae, and pupae in different capac-

ities of the laying sites.
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Figure 6.12 show that controls of adult mosquitoes and the human population
do not depend on the carrying capacity kj;y. On the contrary, the control of larvae
changes with kj;;,. As shown in Figure 6.13, the greater the carrying capacity kj,, the
longer the application optimal control wy. It is explained because more eggs can be

accommodated, and thus more larvae.

40+

351

30

254

20

154

duration of upper bound in control

2000 4000 6000 8000 10000
klay

FIGURE 6.13: Duration of the upper bound in the optimal control w,
with respect to the laying capacity.

6.6.3 Sensitivity Analysis with respect to the diffusion

In this section, we study the effect of different parameter values on the number of
infected humans since measuring the spatial spread of mosquitoes is a difficult task.
So we compute the maximum number of infected humans by varying D,,;, between
0.1to1, cp e and B between 10~% to 10~3. The numerical simulations presented

in Section 6.5 use an insensitive parameter.

D min

648.04 648.06 648.08
1 1 1

Maximum value of I}

648.02
1

T T T T
0.1 0.325 0.775 1

648.00
1

FIGURE 6.14: Effect on the maximum of infected humans Ij, from the
variations of D,;;;,.
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Figure 6.14 and 6.15 shows the maximum values of the infected humans in vary-
ing values of Dy,in, ¢;, ¢f, &, and B. It shows that the varying values give no signif-
icant difference in the maximum values of an infected human. There is only a 0.08
difference in the human population. This is due to the fact that the perception is
exponentially decreasing.
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FIGURE 6.15: Maximum value of an infected human in varying pa-
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Appendix A

Accounting for Symptomatic and
Asymptomatic in a SEIR-type
model of COVID-19

During my Ph.D., I was involved in a project related to Covid-19. This appendix
contains the published paper Jayrold P. Arcede, Randy L. Caga-anan, Cheryl Q. Men-
tuda and Youcef Mammeri, Accounting for Symptomatic and Asymptomatic in a SEIR-type
model of COVID-19, Math. Model. Nat. Phenom. 15 (2020) 34.

A.1 Introduction

In late 2019, a disease outbreak emerged in a city of Wuhan, China. The culprit was a
certain strain called Coronavirus Disease 2019 or COVID-19 in brief [Wor20b]. This
virus has been identified to cause fever, cough, shortness of breath, muscle ache,
confusion, headache, sore throat, rhinorrhoea, chest pain, diarrhea, and nausea and
vomiting [HAM 120, CZD"20]. COVID-19 belongs to the Coronaviridae family. A
family of coronaviruses that cause diseases in humans and animals, ranging from
the common cold to more severe diseases. Although only seven coronaviruses are
known to cause disease in humans, three of these, COVID-19 included, can cause
a much severe infection, and sometimes fatal to humans. The other two to com-
plete the list were the severe acute respiratory syndrome (SARS) identified in 2002
in China, and the Middle East respiratory syndrome (MERS) originated decade after
in Saudi Arabia.

Like MERS and SARS, COVID-19 is a zoonotic virus and believed to be orig-
inated from bats transmitted to humans [ZYWea20]. In comparison with SARS,
MERS, the COVID-19 appears to be less deadly. However, the World Health Or-
ganization (WHO) reported that it has already infected and killed more people than
its predecessors combined. Also, COVID-19 spreads much faster than SARS and
MERS. It only took over a month before it surpassed the number of cases recorded
by the SARS outbreak in 2012. According to WHO, it only took 67 days from the
beginning of the outbreak in China last December 2019 for the virus to infect the
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first 100,000 people worldwide [Wor20a]. As of the 25th of March 2020, a cumu-
lative total of 372,757 confirmed cases, while 16,231 deaths have been recorded for
COVID-19 by World Health Organization [Wor20c].

Last 30th of January, WHO characterized COVID-19 as Public Health Emergency
of International Concern (PHEI) and urge countries to put in place strong measures
to detect disease early, isolate and treat cases, trace contacts, and promote social
distancing measures commensurate with the risk [Wor20d]. In response, the world
implemented its actions to reduce the spread of the virus. Limitations on mobility,
social distancing, and self-quarantine have been applied. Moreover, health institu-
tions advise people to practice good hygiene to keep from being infected. All these
efforts have been made to reduce the transmission rate of the virus.

For the time being, COVID-19 infection is still on the rise. Government and re-
search institutions scramble to seek antiviral treatment and vaccines to combat the
disease. Several reports list possible drugs combination to apply, yet it is still unclear
which drugs could combat the viral disease and which won't.

Several mathematical models have been proposed from various epidemiological
groups. These models help governments as an early warning device about the size
of the outbreak, how quickly it will spread, and how effective control measures may
be. However, due to the limited emerging understanding of the new virus and its
transmission mechanisms, the results are largely inconsistent across studies.

In this paper, we will mention a few models and, in the end, to propose one.
Gardner and his team [Gar20] at Center for Systems Science and Engineering, Johns
Hopkins University, implemented on a previously published model applied for COVID-
19. It is a metapopulation network model represented by a graph with each nodes
follows a discrete-time Susceptible-Exposed-Infected-Recovered (SEIR) compartmen-
tal model. The model gives an estimate of the expected number of cases in mainland
China at the end of January 2020, as well as the global distribution of infected trav-
elers. They believe that the outbreak began in November 2019 with hundreds of
infected already present in Wuhan last early December 2019. Wu et al.[WLL20] from
WHO Collaborating Centre for Infectious Disease Epidemiology and Control at the
University of Hong Kong presented a modeling study on the nowcast and forecast
of the 2019-nCoV outbreak at Wuhan. The group used an SEIR metapopulation
model to simulate epidemic and found reproductive number Ry around 2.68 (with
95% credible interval 2.47-2.86). Imai et al. [IDC"20] estimates Ry around 2.6 with
uncertainty range of 1.5-3.5. Zhao et al. [ZLR*20, ZML*20] found Ry to range from
2.24 to 5.71 based on the reporting rate of cases. If the reporting rate increase 2-fold,
Ro = 3.58, if it increase 8-fold, Rg = 2.24. If there is no change in the reporting
rate, the estimated Ry is 5.71. Similar to the above authors, Wang et al. [WWDea20]
employed an infectious disease dynamics model (SEIR model) for modeling and
predicting the number of COVID-19 cases in Wuhan. They opined that to reduce
Ry significantly, the government should continue implementing strict measures on
containment and public health issues. In the same tune as the latter, the model of
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Danchin et al. [DNT20] also suggests continuing to implement effective quarantine
measures to avoid a resurgence of infection. The model consists of five (5) compart-
ments: susceptible, infected, alternative infection, detected, and removed.

Here, we proposed an extension from the classical SEIR model by adding a com-
partment of asymptomatic infected. We address the challenge of predicting the
spread of COVID-19 by giving our estimates for the basic reproductive numbers
Ro and its effective reproductive number R.¢. Afterward, we also assess risks and
interventions via containment strategy or treatments of exposed and symptomatic
infected.

The rest of the paper is organized as follows. Section 2, outlines our methodol-
ogy. Here the model was explained, where the data was taken, and its parameter
estimates. Section 3 contained the qualitative analysis for the model. Here, we give
the closed-form equation of reproductive number Ry, then tackling the best strategy
to reduce transmission rates. Finally, section 4 outlines our brief discussion on some

measures to limit the outbreak.

A.2 Materials and methods

A.2.1 Confirmed and death data

In this study, we used the publicly available dataset of COVID-19 provided by the
Johns Hopkins University [DDG20]. This dataset includes many countries” daily
count of confirmed cases, recovered cases, and deaths. Data can be downloaded
from https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data.
These data are collected through public health authorities” announcements and are
directly reported public and unidentified patient data, so ethical approval is not re-
quired.

A.2.2 Mathematical model

symptomatic infected

under treatment removed

susceptible exposed

N S
@Psls N’ WPy Iy N

asymptomatic infected

FIGURE A.l: Compartmental representation of the
SEI,I;UR—model. Blue arrows represent the infection flow.
Green arrows denote for the treatments. Purple arrow is the death.
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We focus our study on six components of the epidemic flow (Figure A.1), i.e.
Susceptible individual (S), Exposed individual (E), Symptomatic Infected individ-
ual (I;), Asymptomatic Infected individual (I;), Under treatment individual (U),
and Removed individual (R). To build the mathematical model, we followed the
standard strategy developed in the literature concerning SIR model [DH00, BCC12].
We assumed that susceptible can be infected by exposed, symptomatic infected as
well as asymptomatic infected individuals. While exposed individuals are gener-
ally quarantined, symptomatics are hospitalized. Due to the lack of serological tests
to evaluate asymptomatic patients, no treatment is applied to them. To lighten the
model, quarantine or hospitalization are not distinguished.

The dynamics is governed by a system of six ordinary differential equations
(ODE) as follows

S'(t) = —w (BeE + Bsls + Bala) %

E() = @ (BeE+ Bl + Bale) o — (bt ue)E
L(t) = fOE— (vs+ps+vs)ls

L(t) = (1= f)0E—7ala

U'(t) = veE+vsls— (yu+p)U

R'(t) = vsls+vala + 72U

Note that the total living population follows N'(t) = —pu;I; — p,U, while death is
computed by D'(t) = psls + p,U. We assume that there is no new recruit. The
parameters are described in Table A of Figure A.2.

A.2.3 Parameters estimation

Calibration is made before intervention. Thus it is set v, = vs = 0. The model is
made up of eleven parameters 6 = (w, Be, Bs, Bas Oe, f, Vs, tss Yar Yu, Phu) that need to
be determined. Given, for n days, the observations I ops(t;) and Dgps(t;), the cost

function consists of a nonlinear least square function

n
J(6) = Y (Isobs (t:) — Is(ti,0))* + (Dops(t:) — D(t;,6))?,
i=1
with constraints § > 0, and 0 < f < 1. Here L;(t;,0) and D(¢;,0) denote output of
the mathematical model at time ; computed with the parameters 6. The optimiza-
tion problem is solved using Approximate Bayesian Computation combined with a
quasi-Newton method [CBGF10].
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A.3 Results

A.3.1 Basic and effective reproduction numbers

It is standard to check that the domain
Q={(SEII,UR) eR,;0<S+E+ L+, +U+R<N(0)}

is positively invariant. In particular, there exists a unique global in time solution
(S,E, I, I,,U,R) in C(R; Q) as soon as the initial condition lives in Q.

Since the infected individuals are in E, I, and I, the rate of new infections in each
compartment (F) and the rate of other transitions between compartments ()’) can be

rewritten as

W (BeE + Bsls + Bala) (6. +1.)E
F = 0 , V= ('Ys+ﬂs+vs)ls_f56E
0 Yals — (1 — f)(SEE
Thus,
wBeS  wBsS  wPaS
N N N
F - 0 0 0 7
0 0 0
and
(8 + ve) 0 0 = 0 0
V= —fbe Ys+us+vs 01, vl= 'ys+p{s+v5 'ys+;}5+vs 0
_(1 - f)5€ 0 Ya 1;71[ 0 %

Therefore, the next generation matrix is

wpeS fwpsS + (1—f)wpaS wpsS wpPaS

(Getve)N (Ys+ps+vs)N YaN (rsps+vs)N - 7aN
Fv!= 0 0 0
0 0 0

We deduce as in [vdDWO00] that the basic reproduction number R for the Disease
Free Equilibrium (5*,0,0,0, R*), with N* = S* + R*, is

Be fBs (1- f)ﬁa) s s
Ro:=w + + =:
0 <5E+Ve ’)/S+VS+VS Ya

— =R—.
N* N*

wpPe
O+,

rate with exposed during the average latency period 1/ (6, + v.). The term

This number has an epidemiological meaning. The term represents the contact

wfBs
YstUs+Vs
is the contact rate with symptomatic during the average infection period, and the

last one is the part of asymptomatic.
In the subsequent, we write DFE when we mean by Disease Free Equilibrium.
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Theorem A.3.1. The DFE (5%,0,0,0, R*) is the unique positive equilibrium. Moreover it
is globally asymptotically stable.

Proof. By computing the eigenvalues of the Jacobian matrix, we deduce that if Ry <
1, then DEFE is locally asymptotically stable.

Here we will prove that global asymptotic stability is independent that of Ro.
Indeed, from the last differential equation in our system of ODE, we can deduce that
R is an increasing function bounded by N(0). Thus R(t) converges to R* as t goes to
+00. Then integrating over time this equation provides

R(H) = R(0) = [ 7L(5) + 7ala(s) + 1ll(s) ds

and
—+o0

R*—R(0) = 0 Vsls(s) + Yala(s) + vul(s) ds,
which is finite. Furthermore, ysIs + vl + 7,U goes to to 0 as t — +co, and each
term of this sum does thanks to the positivity of the solution. Adding the two first

equations implies that
(S+E) =—(6+ve)E

and S + E is a nonnegative decreasing function whose derivative tends to zero. Then
E(t) —t—+too 0 and S(t) —t—too S*. O

This theorem means that the asymptotic behavior does not depend on . For
all initial data in (), the solution converges to the DFE when time goes to infinity.
Nevertheless, to observe initial exponential growth, Ry > 1 is necessary. Indeed,
S is initially close to N such that infected states are given by the linear system of

differential equations

/

wﬁe - 53 - 1/5 a]ﬁs a)ﬁa E
L | () = fée —(vs+us+vs) 0 I;
I, (1—f)o 0 —Ya I,

The characteristic polynomial is P(x) = x% + axx? + a1x + ag, with ag = (s + ps +
Vs)Ya(de + vs) (1 —R). If R > 1, there is at least one positive eigenvalue that coin-
cides with an initial exponential growth rate of solutions.

To better reflect the time dynamic of the disease, the effective reproduction num-

ber
o fBs (1-f)Ba) S()
Reff(t)_w(§e+ys+fys—|—ys+l/s+ Ya >N(t)

is represented in Figure A.2D and values of R are computed in Table A of Figure
A2.
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A.3.2 Model resolution

To calibrate the model, our simulations start the day of first confirmed infection and
finish before interventions to reduce the disease. Therefore v, and v are assumed to
be equal to 0. We assume that the whole population of the country is susceptible to
the infection. Seven states with comparable populations are chosen. The objective
function | is computed to provide a relative error of order less than 10~2. In Figure
A.2, Table A. shows estimated parameters. The rest of the Figure presents the solu-
tion and data. Note that the product wp; (i = ¢, s, a) is uniquely identifiable but not
w and B; separately. Figure A.3 represents the effective reproduction number, the
fitted symptomatic infected and death of the posterior distribution.
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FIGURE A.3: A. Boxplot of the posterior distribution computed from

France data. B. Effective reproduction number in grey of the pos-

terior distribution, median (= 3.096738) in blue straight line, mean

(= 3.474858) is dotted line. C. Fitted symptomatic infected in grey of

the posterior distribution, median in red straight line, mean is dotted

line. D. Fitted death in grey of the posterior distribution, median in
black straight line, mean is dotted line.

A.3.3 Strategy to reduce disease to a given threshold

To temporarily reduce the value of R, three strategies regarding different interven-
tions are being compared. The first one consists in reducing the number of contacts
w. Full containment is translated by w = 0, and no containment by w = 1. The
second strategy is expressed by treatment of symptomatic infected. It is translated
by modifying the value of v;. The treatment of exposed is the third one. Parameters
w, Ve, and v vary such that intervention is carried out from 0 to 100% of susceptible,
exposed, and symptomatic respectively. Given a critical infection threshold 7., the

model runs until the time ¢, such that
E(tc) + Is(tc) + Ia(tc) < 7.

To juxtapose the benefit of the intervention, we assume that interventions start 53
days after the first confirmed infection. We remind that the first infection in France
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was confirmed on January 24", 2020, and containment begins on March 17", 2020.
Comparison between three strategies can be found in Table A.1 and Figures A .4-A.5.
Without intervention to control the disease, the maximum number of symptomatic
infecteds varies from 3.49 x 10° to 2.02 x 10”. The maximum number of deaths totals
from 8.85 x 10° to 7.92 x 10°. We observe that any intervention strongly reduces
the number of dead. Concerning France, Philippines, Italy, Spain, and the United
Kingdom, when containment is fully respected and when the sum of infecteds is
reduced to 1, the maximum number of symptomatic infecteds and deaths has been
cut sharply, of order 10°. It varies now from 5.75 x 10? to 7.04 x 10* and 1.94 x 10?
to 2.52 x 10* respectively. To wait from 104 to 407 days is the price to pay. On the
contrary, for the states of Hubei and New York, 53 days to intervene seems to be
already too late. We can also see in Table A.1 that treating only the symptomatic
does not reduce the duration

Note that when the intervention ends at time ., the number of susceptible S(¢.) is
large so that the effective reproduction number R is larger than 1.

Figure A.6 compares the maximum number of dead and symptomatic but in-
fected individuals, as well as the intervention duration, to reach 7. = 1000 varying
from 0 to 100%. Containment is the most efficient when it is respected by more than
76% in France, 63% in the Philippines. Beyond that, treating the exposed is the best
choice. We also observe that the intervention duration becomes long below 89% in
France, 82% in the Philippines. This can be understood by too little susceptibility to
achieve recovery but enough for the disease to persist.

country/state France | Philippines Italy Spain  |United Kingdom| Hubei | New York
population 6.67E+07 | 1.03E+08 | 6.03E+07 | 4.63E+07 6.49E+07 5.84E+07 | 1.95E+07
maximum number of symptomatic
infected without control
maximum number of dead
without control

7.74E+06 | 1.75E+06 | 9.43E+06 | 1.05E+07 3.49E+05 2.02E+07 | 9.25E+04

1.64E+06 | 9.15E+05 | 6.15E+06 | 5.29E+06 1.02E+05 7.92E+06 | 8.85E+03

intervention duration if T, = 1 and full containment
104 93 194 262 78 407 119
starting 53 days after the first confirmed infection

maximum number of symptomatic
infected with full containment
maximum number of dead

8.78E+03 [ 5.75E+02 | 1.19E+05 | 7.40E+04 1.16E+04 2.00E+07 | 9.22E+04

1.24E+03 | 1.94E+02 | 4.24E+04 | 2.52E+04 1.96E+03 6.53E+06 | 6.82E+03
with full containment

intervention duration if T. = 1000 and full
containment starting 53 days after the first 39 33 86 110 40 292 68
confirmed infection

intervention duration if T, = 1000 and 100% of

exposed under treatment starting 53 days after the 44 39 87 118 44 342 82
first confirmed infection

intervention duration if T, = 1000 and 100% of

symptomatic under treatment starting 53 days 163 188 202 263 103 408 122

after the first confirmed infection

TABLE A.1: Comparison between the maximum number of symp-

tomatic infected and death without control and the solution reduc-

ing contact rate to 0, 100% of exposed under treatment, and 100% of

symptomatic infected under treatment to reach 7. = 1 and 7. = 1000.

Interventions are assumed to being 53 days after the first confirmed
infection.
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A.4 Discussion

Without intervention, we observe in Figures A.4-A.5 that the number of susceptible
S is decreasing; most of the individuals are recovering, which generates population
immunity. It translates that the disease free equilibrium is globally asymptotically
stable. Nevertheless, the price to pay is high, the number of deaths being excessive.
As presented in Figure A 2, the effective reproduction is decreasing and points out
that control has to be done as fast as possible.

The other important information is that, as discovered by Danchin et al. [DNT20],
an alternative transmission way may occur. Here, it is due to the proportion of
asymptomatic infected individuals that is not negligible, as shown in Table A.1.

Finally, with the little knowledge about COVID-19 nowadays, decreasing trans-
mission, i.e. Be, Bs, Ba, is the preferred option. The simplest choice consists in reduc-
ing contact between individuals. Table A.1 and Figures A.4-A.5-A.6 show that total
and partial containment do indeed drastically reduce the disease. However, the du-
ration of containment may be too long and then impracticable especially if we aim
at totally eradicating the infection (7. = 1). Instead, to stop the containment as soon
as the capacity of the hospitals has been reached could be privileged. When this cri-
terion is set to 1000 patients (7. = 1000), the duration goes from 104 to 39 days for
France. A similar reduction in duration is also obtained for other countries. Again,
we see that the earlier the intervention, the more effective it is. Due to the high num-
ber of susceptible, it is worth noting that the effective reproduction number remains
large after containment. Screening tests, especially to carry out exposed individuals,
are then necessary to be carried out, and the positive individuals are quarantined.
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Modélisation mathématique de l'invasion des ravageurs et application a la lutte contre les
maladies transmises par les ravageurs aux Philippines

Résumé. La dengue est une infection virale transmise par les moustiques dans les régions tropicales et subtropicales du monde
entier. Il s’agit d"une infection virale causée par quatre types de virus (DENV-1, DENV-2, DENV-3, DENV-4), qui se transmettent
par la piqtire de moustiques femelles infectés (Aedes aegypti) et (Aedes albopictus) pendant la journée. Le premier vaccin a étre
utilisé commercialement est le CYD-TDV, commercialisé sous le nom de dengvaxia par Sanofi Pasteur. Dengvaxia est un vaccin
vivant des sérotypes 1, 2, 3 et 4. Il doit étre administré en trois doses de 0,5 ml par voie sous-cutanée (SC) a six mois d’intervalle.
Sanofi Pasteur recommande que le vaccin ne soit utilisé que chez les personnes agées de 9 a 45 ans et chez les personnes déja
infectées par un type de virus.

Cette these présente un modele épidémique de type Ross pour décrire l'interaction entre les humains et les moustiques.
Apres avoir établi le nombre de reproduction de base Ry et la stabilité des équilibres, nous présentons trois stratégies de controle
: la vaccination, le controle des vecteurs par 1’application de pesticides, et I'introduction de copépodes comme contrdle vectoriel
pour les larves. Le principe du maximum de Pontryagin est utilisé pour caractériser le contrdle optimal, et des simulations
numériques sont appliquées pour déterminer les stratégies les mieux adaptées a la population.

Dans le dernier chapitre, nous avons défini un nouveau modele décrivant explicitement la distribution spatiale des mous-
tiques adultes. Dans ce modele d’équations aux dérivées partielles, nous avons montré qu’en appliquant le théoreme du point
fixe de Picard, I'existence et l'unicité d"une solution faible globale en temps. Nous déterminons la stratégie de controle optimale
en appliquant trois controles : I'exposition au copépode wy pour les jeunes moustiques dans les zones de pontes, le pesticide w4
pour les moustiques adultes, et 'application de la vaccination wy pour les humains.

Nos résultats montrent que la vaccination des humains sensibles secondaires uniquement n’est pas idéale. Cela demande un
effort constant et prend beaucoup de temps pour les vacciner. Par ailleurs, les copépodes et les pesticides constituent une stratégie
efficace pour éliminer la maladie et les populations de moustiques. Cependant, le retour a I'équilibre est lent. La combinaison des
pesticides et de la vaccination semble moins efficace que la combinaison des copépodes et des pesticides. Il faut moins de temps
pour réduire le nombre de moustiques infectieux avec une durée d’application de la lutte réduite.

Mots-clés. Dengvaxia, Vaccination, R, Contréle optimal, Principe du maximum de Pontryagin

Mathematical modeling of pest invasion and application to pest-borne disease control in
the Philippines

Abstract. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions worldwide. It is a viral infection
caused by four types of viruses (DENV-1, DENV-2, DENV-3, DENV-4), which transmit through the bite of infected Aedes aegypti
and Aedes albopictus female mosquitoes during the daytime. The first vaccine to be used commercially is CYD-TDV, marketed as
dengvaxia by Sanofi Pasteur. Dengvaxia is a live vaccine of serotypes 1, 2, 3, and 4. It should be administered in three doses of 0.5
mL subcutaneous (SC) six months apart. Sanofi Pasteur recommended that the vaccine only be used in people between the age of
9 to 45 and people already infected by one type of virus.

This thesis presents a Ross-type epidemic model to describe the vaccine interaction between humans and mosquitoes using
different population growth models. After establishing the basic reproduction number R and the stability of the equilibrium, we
present three control strategies: vaccination, vector control through pesticide application, and the introduction of copepods as a
vector control for larvae. Pontryagin’s maximum principle is used to characterize optimal control, and numerical simulations are
applied to determine which strategies best suit the population.

In the last chapter, we defined a new model with an explicit spatial distribution of adult mosquitoes. In this model made
of partial differential equations, we have shown that by applying Picard’s fixed point theorem, the existence and uniqueness of
global in time weak solution. We determine the optimal control strategy by applying three control: exposure to copepod wy
for the young mosquitoes in the laying sites, pesticide wy4 for the adult mosquitoes, and application of vaccination wp for the
humans.

Our results show that vaccinating secondary susceptible humans only is not ideal. It requires constant effort and takes a long
time to vaccinate them. Also, copepods and pesticides are a good strategy for eliminating the disease and mosquito populations.
However, the recovery of infected humans is slow. The combination of pesticide and vaccination seems less efficient than the
combination of copepods and pesticides. It takes a shorter time to reduce the number of mosquitoes with a reduced duration of
the control application.

Keywords. Dengvaxia, Vaccination, R, Optimal Control, Pontryagin maximum principle



	Résumé de la thèse
	General Introduction
	Mosquitoes
	Life Cycle
	Feeding Habits by Adult Mosquitoes
	Breeding Sites

	Dengue
	Transmission
	Vaccination
	Vector Control

	Mathematical Models of Dengue Fever
	Outline of Study

	Preliminary study of dengue model
	Description of the Model with Vaccination
	Study of the Model with Logistic Growth
	Well-posedness and Positivity of the Solution
	Stability of the Equilibrium
	Phase Portrait Analysis

	Comparison against Growth Functions
	Constant Human and Mosquito Population
	Gompertz Human Population Growth and an Exponential Mosquito Population Growth

	Choice of Control Strategies
	Vaccination
	Vector Control
	Combination of Vaccination and Vector Control
	Summary of the Effective Reproduction Number of Different Control Strategies

	Optimal Control strategy
	Minimizing Infected Humans by Optimal Vaccination
	Minimizing Infected Humans by Optimal Vector Control
	Minimizing Infected Humans by both Optimal Vaccination and Vector Control
	Numerical Simulation of the Optimal Control Problem


	A Dengue-Dengvaxia Model
	Description of the Model with Vaccination
	Study of the Model with Entomological Growth 
	Choice of Control Strategies
	Vaccination
	Vector Control
	Combination of Vaccination and Vector Control

	Optimal Control strategy
	Numerical Simulation of Optimal Control


	 A Model of Dengue accounting for the Life Cycle
	Life Cycle of Mosquitoes
	Description of the model
	Qualitative Study of the Model
	Well-posedness and Positivity of the Solution
	Equilibrium of the Model
	Next Generation Matrix and Basic Reproduction Number 
	Jacobian Matrix
	Parameter Identifiability

	Optimal Control strategies : Copepods and Pesticides
	Numerical Simulation of Optimal Control Strategies: Copepodes vs Pesticides
	Influence of the starting date of control

	Comparison with larval and pupal competition

	A Model of Dengue accounting for the Space
	Adult Mosquitoes Habits
	Feeding Habits
	Breeding Sites

	Summary of Random Walk Modelling
	Reaction-Diffusion Equation
	Advection-Diffusion Equation
	Fokker-Plank Equation

	Dengue Model with Spatial Distribution
	Well-posedness of the Model
	Optimal Control strategies : Copepods, Pesticides & Vaccination
	Derivation of the Optimal Control
	Numerical Simulation of the Model with one laying site
	Numerical Simulation of the Model with Spatial Distribution having Two Laying Sites

	Behavior with respect to capacity and diffusion parameters
	Influence of the Carrying Capacity of pupae
	Influence of the Laying Sites Capacity
	Sensitivity Analysis with respect to the diffusion


	Bibliography
	Symptomatic and Asymptomatic in a SEIR model of COVID-19
	Introduction
	Materials and methods
	Confirmed and death data
	Mathematical model
	Parameters estimation

	Results
	Basic and effective reproduction numbers
	Model resolution
	Strategy to reduce disease to a given threshold

	Discussion


