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Résumé étendu de la these

Ce manuscrit porte sur les systémes linéaires avec retards et étudie de fagon plus
détaillée deux applications aux systémes de direction automobiles, a savoir la
« direction assistée électrique » (EPS) et le « steer-by-wire » (SBW). L'analyse de sta-
bilité, la conception de lois de commande et I'évaluation des performances sont
abordées pour des systemes interconnectés avec retards, en utilisant a la fois
des approches dans le domaine fréquentiel et dans le domaine temporel. Dans
le domaine fréquentiel, notre étude se concentre sur les systémes de direction
automobile mentionnés ci-dessus. En revanche, dans le domaine temporel, nous
abordons l'analyse de la stabilité des systéemes linéaires a retard dans un cadre
plus général et appliquons les conditions de stabilité obtenues aux systemes de
direction. Ce résumé étendu donne un apercu de ces approches et propose une
introduction aux systemes de direction. Nous motivons d'abord les problemes
étudiés en décrivant les deux systemes de direction considérés et en présentant
les approches que nous avons développées pour contrer les problemes de sta-
bilité induits par les retards. Nous soulignons également la contribution de notre
travail en comparant nos résultats avec ceux de la littérature.

Contexte et motivation

Dans les véhicules de conception standard, un couple d'auto-alignement est pro-
duit au niveau des roues de facon a les ramener naturellement en position cen-
trale. Ce couple résulte des forces de réaction générées par le contact entre les
pneus et la route. Au niveau du volant, le couple d'auto-alignement fournit au
conducteur un retour sur les forces exercées sur les pneus, ce qui est essentiel
pour éviter l'instabilité de la dynamique latérale du véhicule [39]. Malgré I'effet
stabilisateur bénéfique du couple d’'auto-alignement, celui-ci doit étre contré par
le conducteur pour guider le véhicule. L'effort du conducteur dépend de la vi-
tesse, étant plus élevé pour les manoeuvres a faible vitesse, comme par exemple
les manoeuvres de stationnement. Pour ces raisons, l'assistance de direction a
été introduite pour réduire I'effort du conducteur lorsqu’il manoeuvre son véhi-
cule [68].

Généralement, dans les systemes de direction conventionnels, une colonne
de direction relie le volant au pignon de la crémaillere et le systeme est équipé
d’'une pompe hydraulique ou d'un moteur électrique permettant de fournir un
couple d'assistance [14]. Sur la plupart des véhicules, la direction assistée élec-
trique a une efficacité supérieure a celle des systemes hydrauliques en termes de



consommation d'énergie [47, 68]. Grace aux technologies « by-wire », le lien méca-
nique entre l'interface de conduite et les roues du véhicule peut étre remplacé par
un systeme composé d'actionneurs, de capteurs, d'une unité de contréle et d'un
réseau de communication. Dans le cas du systeme « steer-by-wire », les capteurs
sont des codeurs incrémentaux et les actionneurs sont des moteurs électriques.
Ces éléments sont placés sur la crémaillére (pour déplacer les roues) et sur le
volant (pour fournir un retour d'effort). L'unité de contréle électronique (ECU) cal-
cule les signaux de commande envoyés aux moteurs électriques et le réseau de
communication relie tous les composants du systeme entre eux. Les deux princi-
paux avantages de la suppression de la colonne de direction sont la réduction des
risques en cas d'accident et une flexibilité accrue pour la conception de l'intérieur
du véhicule. Ce systeme simplifie également la tache d'intégration des demandes
du conducteur et du pilote automatique (voir [5, 95] et [92]). Cependant, I'acquisi-
tion et le traitement des événements des codeurs incrémentaux et la communi-
cation entre 'ECU et les actionneurs introduisent des retards dans les boucles de
rétroaction du systéme interconnecté.

Dans un systeme de direction classique, le couple associé au retour d'effort est
fourni par la rigidité de la colonne de direction. Dans un systéeme de direction as-
sistée électrique, le couple d’'assistance est calculé a partir d'une mesure de couple
effectuée au niveau de la colonne de direction. Dans un systéme « steer-by-wire »,
en l'absence de liaison mécanique, le retour d'effort et le couple d'assistance sont
calculés en introduisant une rigidité virtuelle dans le systéeme [&], et en utilisant
des mesures d'angle au niveau du volant et du pignon de la crémaillére [47]. A la
fois pour les directions assistées électriques et pour le systeme « steer-by-wire »,
plus le niveau d'assistance est élevé, plus la marge de retard des boucles de ré-
troaction est faible. De plus, dans le cas du « steer-by-wire », de multiples retards
apparaissent dans les boucles de rétroaction, ce qui rend I'analyse de la stabilité
difficile [102].

La premiere partie de ce manuscrit vise a analyser |'effet des retards apparais-
sant dans les boucles de rétroaction sur la stabilité des systemes de direction. Des
lois de commande permettant d'augmenter la marge de retard du systeme (par
rapport aux stratégies actuelles) sont proposées. Nous suivons l'approche utili-
sée pour les systemes de direction électrique [52], ou les contrbleurs considé-
rés sont des lois de commande proportionnelles-dérivées [51], incluant une loi
d’assistance (éventuellement non linéaire) et un filtre linéaire. L'objectif principal
du filtre est de compenser la réduction de la marge de retard associée a l'injec-
tion d’énergie. Ensuite, nous proposons des filtres linéaires pour lesquels I'analyse
dans le domaine fréquentiel nous permet de présenter les limitations imposées
par les retards sur le systéme et les parametres du filtre. L'objectif principal de la
loi d'assistance est d'améliorer le confort du conducteur [55].

Puisque ces lois d’assistance sont, en général, non linéaires, nous avons éga-
lement développé des techniques dans le domaine temporel avec l'objectif a long
terme d'étudier le systéme global. A cette fin, nous considérons une fonction-
nelle quadratique de Lyapunov-Krasovskii, qui fournit des conditions nécessaires
et suffisantes pour la stabilité d'un systeme linéaire a retard [40, 45]. La principale
difficulté de cette approche est de construire une fonctionnelle de Lyapunov-Kra-
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sovskii et, en particulier, de fournir des conditions qui garantissent la positivité
de cette fonctionnelle et la négativité de sa dérivée temporelle le long de la so-
lution du systeme a retard [44]. Par conséquent, méme dans le cas de systemes
linéaires a retard, des outils mathématiques sophistiqués sont nécessaires pour
formuler des conditions constructives d’analyse de stabilité. A cette fin, les mé-
thodes numériques basées sur la programmation semi-définie sont couramment
utilisées, ou les principales approches pour l'analyse de stabilité des systémes a
retard sont la méthode basée sur des inégalités intégrales exploitant les projec-
tions dans les polyndmes de Legendre [100] et la méthode basée sur la program-
mation en sommes de carrés de polynémes [90].

La deuxieme partie de ce manuscrit développe des méthodes dans le domaine
temporel pour les systémes avec retards. Nous proposons des méthodes de véri-
fication des inégalités associées a des fonctionnelles de Lyapunov-Krasovskii pour
'analyse de stabilité avec des paramétrisations générales autres que les poly-
ndmes. Ensuite, nous mettons en relation deux approches numériques basées
sur la programmation semi-définie utilisées dans la littérature [100, 90]. Enfin,
nous appliquons ces méthodes du domaine temporel aux systémes de direction.

Apercu et contributions

Dans cette section, nous soulignons les principales contributions du manuscrit et
discutons brievement leur comparaison avec les approches disponibles dans la lit-
térature. Une comparaison plus détaillée est fournie dans les Chapitres 1 et 4. Les
contributions du manuscrit sont décrites dans les trois sous-sections suivantes.
Les deux premiéres sous-sections concernent la premiére partie du manuscrit, ou
une approche dans le domaine fréquentiel est adoptée, et la derniére sous-sec-
tion concerne la deuxieme partie du manuscrit, ou une approche dans le domaine
temporel est adoptée.

Atténuer I'impact des retards sur les performances de I'EPS

Les retards dans les boucles de rétroaction des contrdleurs d'assistance sont né-
gligés dans la plupart des études précédentes sur les systemes de direction as-
sistée [118, , 68, 52]. Pourtant, ces retards ont un impact significatif sur I'atté-
nuation des vibrations et sur la stabilité. lls peuvent conduire a une dégradation
sévere des performances en raison de l'utilisation d'un gain élevé d'assistance
dans les contrdleurs nominaux concus en négligeant le retard. Comparativement
a d'autres spécifications de conception, nous montrons que l'augmentation de
la marge de retard est particulierement importante dans les systemes de direc-
tion puisque, pour ces systemes, les retards dans la boucle de rétroaction appa-
raissent comme le principal terme déstabilisant [70]. Nous considérons la boucle
de rétroaction principale du systeme de direction assisté électrique, qui se com-
pose d'un systéme stable du second ordre, d'un filtre C, et d'un seul retard 7. Le
systeme du second ordre représente la dynamique du sous-systéme du pignon,
qui est le composant de la direction assistée électrique le plus sensible aux re-
tards. Plus précisément, nous étudions la stabilité du systéme en boucle fermée
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donné par la fonction de transfert

Kk,
1 Jps? + ops + ks
“) = 7, Kk, ’

1 C(s)es

+
Jps? 4 ops + ks

ou C est la fonction de transfert du filtre, J,, o,, et ks sont les parametres du
systeme, et K est le gain d'assistance. La marge de retard A7 est définie par

AT =sup{7 > 0: G(s) is stable V7 < 7}.

Il est important de signaler que, pour une dynamique sans retard, un schéma
d'assistance proportionnel résulte en une boucle fermée stable pour tout gain de
commande positif. En revanche, un retard dans la boucle de rétroaction introdui-
sant le terme e~ 7* dans G(s) ci-dessus peut déstabiliser le systéme, en particulier
pour de grandes valeurs du gain d'assistance, sauf si un terme de filtrage, C(s)
dans l'expression ci-dessus, est inclus pour augmenter la marge de retard.

Dans ce contexte, nous abordons le probleme de 'augmentation de la marge
de retard pour les boucles de contréle du systéeme de direction assistée électrique
en choisissant le filtre C'. Nous proposons une approche de conception simple ba-
sée sur l'introduction de différents filtres a structure fixe. Il estimportant de noter
gue nous nous concentrons sur les structures de filtre avec un ordre limité pour
permettre un calcul analytique de la marge de retard ou une limite inférieure de
celle-ci en fonction des parametres du filtre. De plus, dans les applications, les
filtres d'ordre faible sont souvent préférés en raison de leur simplicité de mise en
oeuvre [14]. En conséquence, 'amélioration de la marge de retard est certifiée par
les expressions analytiques obtenues qui dépendent a la fois du systeme et des
parametres du filtre. Aussi, nous proposons des lignes directrices pour la sélection
du filtre et nous montrons une amélioration par rapport aux méthodes de I'état
de l'art. Par conséquent, nous considérons que la simplicité des structures des
filtres et des lois de commande développés sont solides et peuvent étre utilisées
dans la pratique. Enfin, 'approche proposée peut étre étendue a des structures
de rétroaction similaires, comme celles qui apparaissent dans d’autres systéemes
pratiques, tels que les systemes « steer-by-wire » et les contrdleurs de téléopéra-
tion bilatérale.

Un prédicteur de Smith modifié pour les systemes SBW

D’apres les résultats résumés ci-dessus, les retards dans les boucles de rétroac-
tion du systeme de direction apparaissent comme un terme déstabilisant [18]. De
plus, ces retards détériorent les performances de la boucle fermée [112]. Pour
surmonter ces difficultés, une solution possible est d'utiliser un prédicteur de
Smith [4]. Pour supprimer le retard de la boucle de rétroaction, ce type de com-
pensation utilise un modéle P de la dynamique du systéme et suppose connue la
valeur du retard 7 dans la boucle de rétroaction du contrdleur nominal C', comme
illustré sur la Figure 1a. Le principal avantage de cette méthode est que le retard
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(a)

(b)

Figure 1 : (a) Systeme de commande du prédicteur de Smith. (b) Systéme de com-
mande proposé dans [110].

est compensé a partir de I'équation caractéristique du systeme en boucle fermée.
Par conséquent, le probléme de la limitation des valeurs admissibles des retards
peut étre contourné, ce qui simplifie la conception d’'une loi de commande.

Cependant, le prédicteur de Smith ne peut pas étre appliqué a un systeme avec
une action intégrale (un pdle a l'origine du plan complexe) puisque dans ce cas, un
signal de perturbation produit une erreur stationnaire non-nulle. Par conséquent,
un prédicteur de Smith modifié a été proposé dans [110] pour faire face au signal
de perturbation et a I'action intégrale du systeme controlé. Le schéma modifié est
illustré dans Figure 1b, avec P; sélectionné comme

_ P(s)
1478’

Pi(s)

ou 1/(1+7s) estl'approximation du premier ordre de la fonction de transfert e=7.

Inspiré par [110], nous proposons un prédicteur de Smith modifié pour I'ap-
plication aux systémes « steer-by-wire ». Pour ces systémes, les signaux de pertur-
bation sont les couples générés par le conducteur et par les efforts du pneuma-
tique sur le pignon de la crémaillére. La difficulté réside donc dans le fait que ces
perturbations dépendent largement de la position angulaire du systeme de direc-
tion. Plus précisément, ces perturbations introduisent des boucles de rétroaction
dans le systéme interconnecté. Dans ce contexte, nous adaptons le prédicteur de
Smith modifié proposé dans [110] aux systemes « steer-by-wire » et, pour réduire le
temps de réponse du systeme de direction, nous multiplions le contrdleur conven-
tionnel C'(s) par 1 4+ 7s, compensant ainsi le retard dans la fonction de transfert
en boucle ouverte du systéme « steer-by-wire », ce qui peut également étre utile
pour analyser la stabilité du systeme.

De plus, nous associons 'architecture de commande proposée a une approche
5



simple d'analyse de stabilité donnant une approximation explicite de la marge de
retard. Nous approximons la fonction de transfert en boucle ouverte du systeme
de direction autour de la fréquence de croisement au gain unité du sous-systeme
du volant en utilisant son approximation de Padé du premier ordre. Le lieu de Ny-
quist de cette approximation est un cercle tangent au lieu de Nyquist du systeme
alafréquence de croisement utilisée comme approximation. Elle fournit donc une
expression analytique simple et facile a interpréter. Grace a cette approximation,
nous obtenons une expression explicite pour estimer la fréquence de croisement
au gain unité, qui peut alors étre utilisée pour estimer la marge de retard du sys-
teme. Cette approche peut également étre utile pour sélectionner les parametres
de la loi de commande.

De plus, nous proposons une méthode pour introduire une loi d'assistance
non linéaire dans l'architecture de commande du systeme « steer-by-wire ». Cette
méthode sépare le signal de commande en trois parties. La premiere partie est
linéaire et fournit un modele virtuel de la raideur de la valve de direction ou du
capteur de couple. La seconde partie est le couple d'assistance, sur lequel nous ap-
pliquons une loi d'assistance non linéaire visant a améliorer le confort du conduc-
teur. La troisiéme partie est un amortissement virtuel, utilisé pour augmenter les
marges de stabilité du systeme. Par conséquent, le couple d’entrée résultant est

(kp B kw)

Ty(t) = k(0w (t — 7w) — Op(t — 7)) + ko

K(kw (0w (t — 7)) — Op(t — 7))

+ pp(Ou (t — 7o) — 9p(t — 7)),

ou k, est la rigidité de la colonne de direction virtuelle, k, et p, sont des para-
metres de commande, « est la loi d'assistance non linéaire, et 6,, et 6, sont les posi-
tions angulaires mesurées, ou 7, et 7, sontles retards. Contrairement a 'approche
classique du « steer-by-wire », ou le retour d'effort est basé sur un modele [115], le
principal intérét de I'architecture proposée est de fournir au conducteur un retour
d’'information sur les forces de la route agissant sur les roues, comme cela peut
se faire dans le domaine de la télémanipulation bilatérale [51].

Projections et fonctionnelles de Lyapunov-KrasovskKii

Les fonctionnelles de Lyapunov-Krasovskii peuvent certifier la stabilité des sys-
téemes aretard. Le calcul de ces fonctionnelles est une tache difficile et la program-
mation semi-définie permet de résoudre les inégalités associées aux conditions
de stabilité. Ces approches basées sur I'optimisation peuvent étre d'une com-
plexité croissante liée au nombre de parametres définissant la fonctionnelle de
Lyapunov-Krasovskii [104, 46, 83]. Pour présenter nos résultats sur la construction
des fonctionnelles de Lyapunov-Krasovskii, nous considérons le cas d'un systeme
linéaire a retard

i(t) = Ax(t) + Agx(t — h), Vi >0,

z(t) = po(t), Vt € [—h, 0],
ou A € R™™, A; € R™", h est un scalaire positif, et ¢ € PC([—h,0],R™) est la
fonction initiale. La stratégie principale est d’étudier la fonctionnelle quadratique
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de Lyapunov-Krasovskii, qui a la forme générale

P

o [T ] 2 Qo) [p0)
Vi) = [ |20 oy 2O 0]
/ / )p(n)dndd,
pour p € PC([—h,0],R"), ou les matrices P € S", R : [0,1] — S", @ : [-h,0] —
R™ ", et T : [—~h,0] x [-h,0] — R™™. La fonction matr|C|eIIe T vérifie égale-

ment T(6,n) = T (n, ), pour tout (6,7) € [0,1] x [0, 1].
La dérivée temporelle de la fonctionnelle de Lyapunov-Krasovskii ci-dessus le
long du trajet du systéme linéaire a retard est donnée par

d
SV (@(@),2(t+)) =
0 x(t) Q1 PA;—Q(=h) 3(0) (1)
/ 2= [ATP—QT(=h)  —R(—h)  Oa(0) | |a(t—h)| do
“hlx(t+0) Q5(0) QJ,(0) —R0)| |[z(t+0)
/ / (t+0) {8%99’ ) + 8Téi’ ) z(t + n)dndo,
ou
Qi =PA+ATP+Q(0)+QT(0) + R(0),
M3(0) = ATQ(0) — Q'(9) + T(0,9),
et

Q3(8) = AJQ(6) — T(—h,0).

Pour les systemes linéaires a retard, les parameétres P, , R, et T de la fonc-
tionnelle quadratique de Lyapunov-Krasovskii peuvent étre obtenus en identi-
fiant sa dérivée temporelle avec une fonctionnelle quadratique prescrite [91]. |l
est démontré que la fonctionnelle de Lyapunov-Krasovskii résultante est obtenue
a partir de la « delay Lyapunov matrice », exprimée a l'aide de fonctions exponen-
tielles [45, 11]. Cependant, pour conclure sur la stabilité en se basant sur ces ré-
sultats, la positivité de la fonctionnelle de Lyapunov-Krasovskii doit étre vérifiée,
ce qui peut étre une tache difficile [40, , 45].

Des approches numériques pour I'analyse de stabilité ont été adoptées comme
une alternative permettant de contourner cette difficulté [100, 90, 24, 87, 34], ou
la fonctionnelle de Lyapunov-Krasovskii est définie en fonction d'un nombre fixe
de parametres. Les expressions de la fonctionnelle de Lyapunov-Krasovskii et de
sa dérivée temporelle le long du trajet du systeme a retard sont réécrites dans des
formes appropriées permettant de justifier les limites sur V et V numériquement
en utilisant la programmation semi-définie.

Deux raisons principales empéchent la positivité de V obtenue a l'aide de la
« delay Lyapunov matrix » d'étre exprimée sous la forme de contraintes compa-
tibles avec la programmation semi-définie. Premierement, les termes intégraux
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simples dans l'expression analytique de V' et de V sont écrits en termes de fonc-
tions exponentielles. Deuxiemement, la solution analytique pour le parametre T’
dans le terme intégral double de V' n'est pas séparable. En d’autres termes, le
terme intégral double ne peut pas étre écrit comme le produit de deux termes in-
tégraux. Ce terme intégral double est souvent ignoré ou approché par un terme
séparable [84, 90], et les inégalités intégrales sont utilisées pour fournir des li-
mites sur la fonctionnelle de Lyapunov-Krasovskii et sa dérivée temporelle. Par
conséquent, l'utilisation de telles inégalités intégrales introduit un conservatisme
dans les limites fournies et donc dans les conditions de stabilité résultantes.

Dans ce contexte, dans ce manuscrit, nous soulignons d'abord les difficultés a
évaluer la positivité de la fonctionnelle analytique de Lyapunov-Krasovskii obte-
nue a partir de la « delay Lyapunov matrix ». Nous développons une approche per-
mettant de formuler les fonctionnelles de Lyapunov-Krasovskii avec des fonctions
linéairement indépendantes arbitraires, pouvant inclure des fonctions exponen-
tielles et trigonométriques. Notre approche projette d’'abord I'état d'un systeme
a retard sur 'ensemble de fonctions choisi et utilise ces fonctions pour paramé-
trer (Q et T dans la structure ci-dessus pour V. Nous montrons également que
cette méthode de projection fournit une formulation générale des inégalités inté-
grales couramment utilisées, en particulier l'inégalité de Jensen et 'inégalité inté-
grale de Bessel-Legendre.

Enfin, nous formulons les conditions de stabilité pour les systemes linéaires
a retard dérivés de la fonctionnelle de Lyapunov-Krasovskii en utilisant les deux
principales approches de programmation semi-définie existantes : la programma-
tion par somme de carrés [90] et les méthodes basées sur l'utilisation des inégali-
tésintégrales [100]. Nous présentons explicitement les différences entre ces deux
approches. Plus précisément, projeter le systeme dans un ensemble de fonctions
polynomiales permet de manipuler une fonctionnelle de Lyapunov-Krasovskii pa-
ramétrée avec le méme ensemble de polynémes en utilisant des méthodes de
somme de carrés. Ensuite, en utilisant les inégalités intégrales, les conditions de
stabilité peuvent étre formulées comme des contraintes d'un probleme d'optimi-
sation basé sur des inégalités matricielles constantes, ce qui est numériquement
plus efficace en termes de temps de calcul. De plus, cette approche basée sur les
inégalités intégrales est généralisée a des fonctions autres que les polynémes.
Une hypothese limitative dans les deux approches est sur la séparabilité du terme
intégral double dans I'expression de la fonctionnelle de Lyapunov-Krasovskii. De
plus, pour I'approche basée sur les inégalités intégrales, nous montrons qu'il n'y
a pas d'amélioration avec une paramétrisation du terme R autre qu’une fonction
affine, ce qui n'est pas le cas en utilisant 'approche par somme de carrés.

En conclusion, la méthode de projection proposée nous permet d'établir des
liens entre I'approche par somme de carrés et 'approche basée sur les inégalités
intégrales.



Introduction

This manuscript studies linear time-delay systems, focusing on applications in two
automotive steering systems, namely, Electric Power Steering (EPS) and Steer-
by-Wire (SBW). The stability analysis, control law design, and performance as-
sessment are addressed for interconnected systems with delays, using both fre-
guency-domain and time-domain approaches. In the frequency domain, we treat
the above automotive steering systems directly. In contrast, in the time domain,
we address the stability analysis of general time-delay systems and apply the
developed stability conditions to steering systems. This introduction gives an
overview of these approaches and provides a background on steering systems.
We first motivate the studied problems by introducing steering systems and pre-
senting the approaches we adopted to counter the stability issues induced by de-
lays. We also emphasize the contribution of our work by comparing the results
with the literature. Finally, we present the structure of the manuscript.

Background and motivation

In standard vehicle designs, a self-aligning torque is produced at the wheels, aim-
ing to return them to the center position. This torque results from the reaction
forces generated by the contact between the tires and the road. At the steer-
ing wheel level, the self-aligning torque provides the driver feedback on the tire
forces, which is essential to prevent the instability of the lateral dynamics [39].
Despite the beneficial role of the self-aligning torque and its stabilizing effect, it
should be countered by the driver to steer the vehicle. The driver effort depends
on the vehicle speed, being higher during parking maneuvers. For these reasons,
steering assistance has been introduced to reduce driver effort in steering ma-
neuvers [68].

Typically, in conventional steering systems, a steering column connects the
steering wheel to the rack pinion (Figure 2a). Moreover, the system is equipped
with a hydraulic pump or an electric motor that provides an assist torque [14].
Most often, the electric power steering has higher efficiency than the hydraulic
power steering system in terms of energy consumption [47, 68]. With the help
of “by-wire” technologies, the mechanical link between the driving interface and
the wheels of the vehicle can be replaced by a system composed of actuators,
sensors, a control unit, and a communication network. In the case of the steer-
by-wire system (Figure 2b), the sensors are incremental encoders and the actu-
ators are electric motors. These elements are placed on the rack (to move the
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(a) (b)

Figure 2: (a) Rack-type electric power steering. (b) Steer-by-wire. Source: [41].

wheels) and on the steering wheel (to provide torque feedback). The Electronic
Control Unit (ECU) computes the control signals that are sent to the electric mo-
tors and the communication network connects all the system components. The
two main advantages of steering column removal are the reduced risk in the case
of a car accident and the increased design flexibility for the interior of the vehicle.
It also simplifies the task of integrating driver and autopilot demands (see [5, 95]
and [92]). However, the acquisition and processing of encoder events and the
communication between the ECU and the actuators introduce delays in the feed-
back loops of the interconnected system.

In a conventional steering system, the feedback torque is provided by the stiff-
ness of the steering column. In an electric power steering system, the column
stiffness yields the feedback torque and the assist torque is computed based on
torque measurements at the steering column level. In a steer-by-wire system,
since there is no mechanical link, both the feedback torque and the assist torque
are computed based on a virtual stiffness [8] using both the steering wheel and the
rack pinion angle measurements [47]. Broadly speaking, the larger the assistance
level in both electric power steering and steer-by-wire, the smaller the delay mar-
gin on the feedback loops. Moreover, for steer-by-wire, multiple delays appear in
the feedback loops, which makes the stability assessment a difficult task [102].

The first part of this manuscript aims to analyze the effect of feedback loop
delays on the stability of steering systems. Control law designs to increase the
delay margin (compared to current strategies) are proposed. We follow the ap-
proach used for electric power steering systems [52], where the considered con-
trollers are proportional-derivative control laws [51], including a (possibly nonlin-
ear) torque map and a linear filter. The main objective of the filter is to compen-
sate for the delay margin reduction associated with energy injection. We proceed
with linear filters where frequency-domain analysis allows us to present the lim-
itations imposed by the delays on the system and filter parameters. The main
objective of the torque map is to improve driver comfort [55].

Since these torque maps are, in general, nonlinear, we also developed time-
domain techniques with the long-term goal of studying the global system. To
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this end, we consider a quadratic Lyapunov-Krasovskii functional, which provides
necessary and sufficient conditions for the stability of a linear time-delay sys-
tem [40, 45]. The main difficulty of this approach is to construct a Lyapunov-
Krasovskii functional and, in particular, to provide conditions that guarantee the
positivity of this functional and the negativity of its time derivative along the solu-
tion of the time-delay system [44]. Therefore, even in the case of linear time-delay
systems, sophisticated mathematical tools are required to formulate constructive
stability analysis conditions. To that aim, numerical methods based on semidefi-
nite programming are commonly used, where the main approaches for stability
analysis of time-delay systems are the method based on integral inequalities ex-
ploiting projections into Legendre polynomials [100] and the method based on
polynomials sum-of-square programming [90].

The second part of this manuscript develops time-domain methods for sys-
tems with delays. We propose methods for verifying Lyapunov-Krasovskii func-
tional inequalities for stability analysis with general parameterizations than poly-
nomials. Then, we relate two numerical approaches based on semidefinite pro-
gramming used in the literature [100, 90]. Finally, we apply these time-domain
methods for steering systems.

Overview and contributions

In this section, we highlight the main contributions provided in this manuscript
and briefly discuss how they compare with the existing approaches in the litera-
ture. A more detailed comparison is provided in Chapters 1 and 4. The contribu-
tions of the manuscript are outlined in the three following subsections. The first
two subsections concern the first part of the manuscript, where a frequency-do-
main approach is adopted, and the last subsection concerns the second part of
the manuscript, where a time-domain approach is used.

Mitigate the impact of delays on EPS performance

The delays in the feedback loops of steering-assistance controllers are neglected
in most previous studies on power steering systems [118, , 68,52, 54]. Never-
theless, these delays significantly impact vibration attenuation and stability. They
can lead to severe performance degradation because of the use of a large assis-
tance gain in the nominal controllers designed neglecting the delay. Compared
to other design specifications, we show that increasing the delay margin is partic-
ularly important in steering systems since, for these systems, feedback loop de-
lays appear as the main destabilizing term [70]. We consider the main feedback
loop of the electric power steering system, which consists of a stable second-or-
der system, a filter C, and a single delay 7. The second-order system represents
the pinion subsystem dynamics, which is the electric power steering component
that is the most sensitive to delays. More precisely, we study the stability of the
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closed-loop system given by the transfer function

Kk
1 Jps? + ops + ks
G(S) — Kk‘s Kks )

1

C —TS
+ Jps? + ops + ks (s)e

where C'is the transfer function of the filter, J,, 0, and k, are the system param-
eters, and K is the assist gain. The delay margin A7 is defined by

AT =sup{7 > 0: G(s) is stable Vr < 7}.

Note that, for a delay-free dynamics, a proportional assistance scheme results
in a stable closed-loop for any positive control gain. In contrast, a delay in the
feedback loop introducing the term e~"* in G(s) above can destabilize the system,
especially for large values of the assist gain, unless a filtering term, C(s) in the
above expression, is included to increase the delay margin.

In this context, we address the problem of delay margin augmentation for con-
trol loops of the electric power steering system by designing the filter C. We pro-
pose a simple design approach based on the introduction of different fixed-struc-
ture filters. Importantly, we focus on filter structures with a limited order to allow
for an analytical computation of the delay margin or a lower bound of it as a func-
tion of the filter parameters. Moreover, in applications, low-order filters are often
preferred because of their simplicity of implementation [14]. As a consequence,
the delay margin improvement is certified by the obtained analytical expressions
that depend both on the system and the filter parameters. In addition, we provide
guidelines for the filter selection and we show an improvement over state-of-the-
art methods. Therefore, we believe that the simplicity of the filter structures and
the proposed control design are sound and can be used in practice. Finally, the
proposed approach can be extended to similar feedback structures such as those
appearing in other practical systems as steer-by-wire systems as well as in bilat-
eral teleoperation controllers.

A modified Smith predictor for SBW systems

Based on the results summarized above, delays in the feedback loops of the steer-
ing system are the main destabilizing terms [18]. In addition, these delays worsen
the closed-loop performance [112]. To overcome these difficulties, a possible so-
lution is to use a Smith predictor [4]. To remove the delay from the feedback loop,
this type of delay compensation uses a model of the plant dynamics P and the
value of the delay 7 in an inner feedback loop around the nominal controller C,
as illustrated in Figure 3a. The main advantage of this method is that the de-
lay is compensated from the characteristic equation of the closed-loop system.
Therefore, the problem of limiting the admissible values of the delays can be cir-
cumvented, thus simplifying the design of a control law.

However, the Smith predictor cannot be applied to a system with an integral
action (a pole at the origin of the complex plane) since in this case a disturbance
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Figure 3: (a) Smith predictor control system. (b) Control system proposed in [1710].

signal produces a non-zero steady-state error. As a result, a modified Smith pre-
dictor was proposed in [110] to cope with the disturbance signal and the integral
action of the controlled system. The modified scheme is illustrated in Figure 3b,
with P, selected as

_ _P(s)

1475

where 1/(1 + 7s) is the first-order approximation of the transfer function e="* of
a single delay 7.

Inspired by [110], we propose a modified Smith predictor for application to
steer-by-wire systems. For these systems, the disturbance signals are the driver
torque and road torque inputs. Thus, the difficulty lies in the fact that these dis-
turbance inputs depend largely on the angular position of the steering system.
More precisely, these disturbance inputs introduce feedback loops in the inter-
connected system. In this context, we adapt the modified Smith predictor pro-
posed in [110] for steer-by-wire systems and, to reduce the steering system re-
sponse time, we multiply the conventional controller C(s) by 1+ 7s, thereby com-
pensating the delay in the open-loop transfer function of the steer-by-wire system,
which can also be useful for analyzing the stability of the system.

In addition, we associate our proposed control architecture with a simple sta-
bility analysis approach yielding an explicit approximation of the delay margin. We
approximate the open-loop transfer function of the steering system around the
unity-gain crossover frequency of the steering wheel subsystem using its first-or-
der Padé approximation. The Nyquist locus of this approximation is a circle in the
complex plane, which is tangent to the Nyquist locus of the system at the approxi-
mated crossover frequency. Hence, it provides a simple analytical expression that
is easy to interpret. Thanks to this approximation, we obtain an explicit expres-

Pl(S)
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sion to estimate the unity-gain crossover frequency, which can eventually be used
to estimate the delay margin of the system. This approach can also be useful for
selecting the control parameters.

Moreover, we propose a method to introduce a nonlinear torque map in the
control architecture of the steer-by-wire system. This method separates the con-
trol signal into three parts. The first part is linear and provides a virtual steering
column model. The second part is the net assist torque, on which we apply a non-
linear torque map aiming to improve driver comfort. The third part is a virtual
damping, used to increase the stability of the system. Therefore, the resulting
input torque is

(kp — kw)

Ty(t) = kuw(0u(t — 7)) — Op(t — 7)) + o

K(kw (0w (t — 7)) — Op(t — 7))
+ pp<éw<t — Tw) — 9p(t — 7)),

where k,, is the stiffness of the virtual steering column, k, and p, are control pa-
rameters, ~ is the nonlinear torque map, and 6,, 6, are the measured angular
positions, where 7,, and 7, are the delays. In contrast to the classical approach
for steer-by-wire, where the force feedback is based on a model [115], the main
interest of the proposed architecture is to provide the driver with feedback on the
road forces acting on the wheels, as it is done for bilateral telemanipulation [57].

Projection methods and Lyapunov-Krasovskii functionals

Lyapunov-Krasovskii functionals can certify the stability of time-delay systems.
Computing such functionals is a challenging task and semidefinite programming
allows to solve the inequalities associated with the stability conditions. These op-
timization-based approaches can be of increasing complexity related to the num-
ber of parameters defining the Lyapunov-Krasovskii functional [104, 46, 83]—see
also Appendix C. To present our results on the construction of Lyapunov-Krasov-
skii functionals, let us consider the case of a linear time-delay system

o(t) = Azx(t) + Agz(t — h), Vit >0,
z(t) = @olt),  Vte[=h,0],

where A € R"", A; € R™", his a positive scalar, and ¢, € PC([—h,0],R") is the
initial function. The main strategy is to study the quadratic Lyapunov-Krasovskii
functional, which has the general form
p(O)}
do
{p(Q)

Vo = [0
/ / n)p(n)dndo,

for p € PC(|—h,0],R"), where the matrices P € S", R : [0,1] — S, Q : [-h, 0]
R™ ™ and T : [—h, 0] x[—h, 0] — R™*". The matrix function T also verifies T(& n)
T (n,0), for all (9 n) € 10,1] x [0, 1].

P
P o)
o'y ro)

4
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The time derivative of the above Lyapunov-Krasovskii functional along the so-
lution of the linear time-delay system is given by

d
oV @),z +)) =
o [ zt) 17 0Oy PAs—Q(—h) Qus(6) 2(t)
/ wt—h)| |ATP—QT(=h)  —R(—h)  Qu(0) | |xt—n)| a0
“h | 2(t+ ) 07,(6) 01, (0) —R(0)| |zt +0)
/ / T(t+0) {8Té%n>+aTéi’") z(t + n)dndo,
where
Qu=PA+ATP+Q(0)+Q"(0)+ R(0),
Qus(6) = ATQ(0) — Q'(6) + T(0,0),

and

(as(6) = AJQ(O) — T(~h,6).

For linear time-delay systems, the parameters P, @), R, and T"in the quadratic
Lyapunov-Krasovskii functional can be obtained by identifying its time derivative
with a prescribed quadratic functional [91]. It is shown that the resulting Lya-
punov-Krasovskii functional is obtained from the delay Lyapunov matrix, which is

expressed using exponential functions [45, 11]. However, to conclude on stability
based on these results, the positivity of the Lyapunov-Krasovskii functional must
be verified, which can be a difficult task [40, , 45].

Numerical approaches for stability analysis were adopted instead [100, 90, 24,

, 341, where the Lyapunov-Krasovskii functional is defined in terms of a fixed

number of parameters. The expressions of the Lyapunov-Krasovskii functional

and its time derivative along the solution of the time-delay system are rewritten

in suitable forms allowing to justify bounds on V and V numerically using semi-
definite programming.

Two main reasons prevent the positivity of  obtained using the delay Lyapu-
nov matrix from being expressed as semidefinite program constraints. Firstly, the
single integral terms in the analytical expression of V and V are written in terms
of exponential functions. Secondly, the analytical solution for the parameter T
in the double integral term of V' is not separable. Namely, the double integral
term cannot be written as the product of two integral terms. This double integral
term is often ignored or approximated by a separable one [84, 90], and integral in-
equalities are used to provide bounds on the Lyapunov-Krasovskii functional and
its time derivative. Therefore, using such integral inequalities introduces conser-
vatism in the provided bounds and hence into the resulting stability conditions.

In this context, in this manuscript we first highlight the difficulties in assessing
the positivity of the analytical Lyapunov-Krasovskii functional obtained from the
delay Lyapunov matrix. We develop an approach allowing us to formulate Lyapu-
nov-Krasovskii functionals with any set of linearly independent functions, which
may include exponential and trigonometric functions. Our approach projects the
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state of a time-delay system into the selected set of functions and uses these func-
tions to parameterize (Q and T'in the above structure for V. We also show that this
projection method provides a general formulation of the commonly used integral
inequalities, in particular the Jensen inequality and the Bessel-Legendre integral
inequality.

Finally, we formulate the stability conditions for linear time-delay systems de-
rived from the Lyapunov-Krasovskii functional using the two main existing semi-
definite programming approaches: the sum-of-squares programming [90] and
the methods based on the use of integral inequalities [100]. We explicitly present
the differences between these two approaches. More precisely, projecting the
system into a set of polynomial functions allows a Lyapunov-Krasovskii functional
parameterized with the same polynomials set to be manipulated using sum-of-
squares methods. Then, using integral inequalities, stability conditions can be
formulated as constraints of an optimization problem based on constant matrix
inequalities, which is numerically more efficient in terms of computation time.
Moreover, this approach based on integral inequalities is generalized to functions
other than polynomials. A limiting assumption in both approaches is on the sep-
arability of the double integral term in the expression of the Lyapunov-Krasovskii
functional. In addition, for the approach based on integral inequalities, we show
that the parameter R in the Lyapunov-Krasovskii functional can be affine, which
is not the case using the sum-of-squares approach.

In conclusion, the proposed projection method allows us to connect the sum-
of-squares approach and the approach based on integral inequalities.
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Organization of the manuscript

Our study considers a generic model for steering systems encompassing the elec-
tric power steering and the steer-by-wire systems. We focus on linear systems
with constant delays, where the frequency-domain approach can be employed.
We begin with the example of electric power steering systems consisting of a feed-
back loop with a single delay. To mitigate the impact of delay, fixed-structure fil-
ters that increase the delay margin are proposed. Next, we study the example of
steer-by-wire systems with multiple delays. A modified Smith predictor is adapted
for steering systems to remove the delays from feedback loops and simplify the
analysis process for steering systems. Finally, we complete the study by develop-
ing stability analysis methods for time-delay systems using Lyapunov-Krasovskii
functionals, and we apply the obtained results to steering systems.

The manuscript is organized into two parts.

Part |

Chapter 1 presents steering systems with delays and describes the control signals
that generate the assist torque. In addition, a generic model for steering systems,
encompassing several configurations, is provided to point out the links between
the electric power steering and the steer-by-wire systems. In addition, scenarios
to evaluate the performance of steering systems are defined with several objec-
tive metrics, for control law comparison. Finally, a literature review on steering
systems is proposed.

Chapter 2 focuses on the main destabilizing feedback loop in the system, where
a single delay is considered. It addresses the analysis of the delay margin of elec-
tric power steering systems using several filter structures, where the delay margin
is approximated as an explicit function of the filter parameters. We give guidelines
on parameter tuning of the proposed filter structures to ensure system stabil-
ity. Finally, the performance of the closed-loop is assessed based on scenarios
described in Section 1.2 of Chapter 1. The material presented in this chapter is
associated with [J.1].

Chapter 3 proposes a modified Smith predictor to compensate for the com-
putational processing and measurement delays. Moreover, the delay margin is
estimated using the Padé approximation of the open-loop transfer function. The
proposed modified Smith predictor is compared to the conventional proportional-
derivative controller in terms of the delay margin and the performance measures
described in Chapter 1, Section 1.2. The material presented in this chapter is
based on [C.1].

Part Il

Chapter 4 recalls an existing analytical method to construct quadratic Lyapunov-
Krasovskii functionals by prescribing its time derivatives. We point out the diffi-
culties in verifying the positivity of this functional obtained from the solution of
the delay Lyapunov matrix.
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Chapter 5 introduces a projection method to provide general parameteriza-
tions of the Lyapunov-Krasovskii functionals. The inequalities stemming from the
Lyapunov stability conditions for a time-delay system are formulated as linear ma-
trix inequalities constraints. We highlight the contrasts and advantages of the two
main trends in semidefinite programming approaches that have emerged in the
last decade for the analysis of time-delay systems, namely the sum-of-square pro-
gramming and the method based on the use of integral inequalities. The material
presented in this chapter is based on [J.2]. The results presented in this chapter
are applied, in Section 5.4, to steering systems. More precisely, the Lyapunov-Kra-
sovskii functional and the projection method are adopted to analyze stability and
compute the decay rate of steering systems.
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Part |

Steering systems






Chapter 1

Preliminaries on steering systems

Thanks to technological advances, in the last twenty years Electric Power Steer-
ing (EPS) has almost completely replaced Hydraulic Power Steering (HPS) in pas-
senger cars [47, 68]. Among the advantages of EPS, we can list: variable assistance
gains, engine independence, and fuel economy [58]. In the future, by-wire tech-
nologies will offer more flexible architectures for automotive systems. Among
the features of Steer-by-Wire (SBW) systems, we may cite the steering column
removal [106] and the possibility of teleoperation [51]. They also allow more flex-
ibility to accommodate performance requirements, in terms of driving character-
istics, than the conventional automotive steering architectures [115]. However,
the design of control laws for EPS/SBW still requires further robustness, in par-
ticular, to cope with computational and measurement delays [57, 48]. It is there-
fore crucial to study the stability margins of the resulting interconnected systems,
where the communication between the steering wheel and the pinion subsys-
tems is subject to transmission delays. Moreover, both subsystems are subject to
internal delays, induced by the acquisition and processing of encoder events.

In the case of steer-by-wire systems, the study of this problem is similar to
the questions addressed in Robotics in the context of bilateral teleoperation [57].
A human operator controls the position of a remote robot by acting on a local
robot, which provides feedback on the environmental forces acting on the remote
robot [79]. In this scenario, the force feedback problem is more complex [51] than
the position tracking problem since adding a force sensor is not always desirable
due to cost, reliability, or design constraints [68]. Moreover, even with a force
sensor, information transmission delays (between sensors, processors, and actu-
ators) can destabilize the feedback loop encompassing position and effort control,
more significantly when the forces transmitted between the two robots are am-
plified.

In this context, control laws were proposed to increase robustness and im-
prove performance. For the high feedback-loop gains required to reduce steering
effort, a significant challenge is to preserve stability in the presence of delays. In-
deed, these delays negatively impact the system performance and degrade the
force feedback between the teleoperated systems. As performance indicators
in steering systems, we can consider the driver steering feel and road feel [68].
Steering feel is related to how the steering torque is transmitted to the driver and
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how the vehicle responds to steering wheel maneuvers—see, e.g., [119] and [58].
Moreover, to achieve a satisfactory road feel, the driver must receive appropri-
ate feedback from the forces generated by the contact between the tire and the
road—see, e.g., [103] and [68].

In this chapter, we introduce steering systems and present a generic model
used in this manuscript to describe the steering dynamics. In Section 1.2, we in-
troduce performance criteria for steering systems and define metrics that allow
us to assess performance based on the system and control parameters. These
performance assessment tests will be used later in the following chapters, partic-
ularly in the simulation sections to evaluate the proposed control laws. Finally, we
present a literature review on the topics addressed in the first part of this manu-
script, that is, the impact of delays on steering systems and the control schemes
to deal with the delays.

1.1 A model for steering systems

The steering system builds a link between the driver torque T}, applied on the
steering wheel, and the road torque 7,, acting on the pinion and generated by
the tire contact forces. The steering wheel angle will be denoted by 60,, and the
pinion angle by 6,. For HPS and EPS, the steering wheel and the pinion are con-
nected mechanically by the steering column. In addition, a hydraulic pump or an
electrical motor is integrated to generate an assist torque that reduces driver ef-
fort during steering maneuvers. Furthermore, the mechanical link between the
steering column and the pinion can be suppressed in steer-by-wire systems, with
the help of two electric motors: the first on the pinion, which steers the wheels of
the vehicle, and the second on the steering wheel that provides feedback to the
driver on the forces acting on the wheels.

The existence of a mechanical connection between the steering wheel and the
pinion subsystems in HPS/EPS systems allows the use of a torque sensor. The
stiffness of the torque sensor k, is exploited to provide a measure of the steering
column deformation, proportional to the difference between the wheel angular
position #,, and the pinion angular position 6,

T(t) = ky(Bu(t) — 0,(1)). (1.1)

For EPS and SBW, Figure 1.1, electric motors are used to provide steering wheel
assistance torque T, ,, and pinion assistance torque Ty ,, that may act on one or both
subsystems—further details on the desired levels of the torques 7, ,, and T, ,, are
given below. Therefore, by selecting the value of the stiffness parameter k, of
the mechanical connection (for EPS) or of the virtual connection (for SBW), and by
designing the control laws that generate the torques 7, ,, and 7, , of the electrical
connection, we obtain the control signals T,, and T, given by

Tw(t) = _TS(t) + Ta,w(t)v

Ty(t) = Tu(t) + Top(t). (1.2)
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According to Newton’s second law of motion, the generic model of the steering
system is given by

Tl () + 0000 (t) = Ty (t) + Ty(t),

. ) 1.3
T(0) + 0yy() = T(t) + (1) -
where J,, J, are the moments of inertia and ¢, o, are the damping coefficients.
The driver torque T, and the road torque 7, are inputs of the system. 7,, and 7,
are the control signals interconnecting the two subsystems. The main objectives
of the control signals T, and T, are to ensure the angular position tracking be-
tween 6, and 6, and to provide the driver with suitable feedback on the forces
acting on the wheels. Moreover, the ratio between T;, and 7T}, indicates the assis-
tance provided to the driver.

Therole of the motor torques 7, ,, and T, , is better understood in steady state,
where the steering angles 6,, and 6, are constant. In this case, from (1.3), we ob-
tain T, = —T,, and T, = —T,. Therefore, the control T, determines the torque
level T, that the driver must apply, and 7, compensates for the road torque T,
and steers the wheels of the vehicle. Indeed, the steering system receives the
driver torque T,; and delivers the torque 7, which can be larger thanks to the
energy injected by the electric motors. We thus define the assist torque

To(t) = Tp(t) = Ta(?),

namely, as the difference between the control signal 7, and the driver torque Tj.
Nevertheless, since measuring the driver torque applied to the steering wheel
is difficult [13], we replace T, by —T,,, which provides an estimate of the driver
torque. Therefore, the assist torque is given by

To(t) = T,(t) + T (%)
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From (1.2), the above expression can be rewritten as
To(t) = Top(t) + Thuw(t).

Without power steering, T, ,, = T, = 0 and the assist torque is null. For electric
power steering systems, the assist torque is equal to the torque T, generated by
the electric motor (either 7, ,, = 0 and 7, , = T,,,, in a rack-type EPS, or T}, , = T,
and T, , = 0, in a column-type system). For steer-by-wire systems, the torque 7, ,,
and T, , must have opposite signs to provide feedback forces.

The control signals T, and T}, (equivalently, T, ., and T, ,) are designed to allow
the assist torque to follow a reference signal 77/, given by

T (1) = R0 (t) — 6,()TL(0). (1.4

where, in a general form, the assist torque map is a function x : R — R. Whenever
the assisttorque map « is constant, thatis x(6,—6,) = K, wesay K > (0is the assist
gain. The parameter K is determined by a steady-state analysis of system (1.3)-
(1.4). In steady state, K is proportional to the ratio between the road torque and
the driver torque. For a given road condition, if the value of K is small, the force
applied by the driver should be higher to compensate for the road reaction forces.
Therefore, the value of K is chosen to limit the forces the driver must apply, which
guarantees a certain level of comfort from the assisted system.

However, the desired levels of the torques 7, , and T, are computed by an
electronic control unit using measurements of the angular positions of the steer-
ing wheel and the pinion. Hence, internal delays 7,, and 7, are introduced due to
the time required for sensor processing. In the case of the electric power steer-
ing system, if the control laws are linear, the control signals T, and T, can be
expressed in the Laplace domain as

To(s) = ks(0p(s) = Ou(s)) + Culs)(e7™0p(s) — €™ 0u(s)),
Ty(s) = ks(0u(s) = Op(s)) + Cp(s)(e7™"0u(s) — e77°0p(s)),

where C,,, C, are the transfer functions of the controllers and ,,, 7, are the inter-
nal delays.

In the case of the steer-by-wire system, the steering column is removed, i.e.,
there is no mechanical connection between the steering wheel subsystem and
the pinion subsystem. Then, we must take k; = 0 in the equations of the generic
model of the steering system. In addition, for this system, the control signals for
the steering wheel T;, and the pinion subsystems 7, can be processed by algo-
rithms distributed on each motor control unit. Furthermore, in some cases, the
two subsystems can be teleoperated. For this reason, we introduce transmission
delays 7, and 7, which correspond respectively to the time required by a signal
transmitted from the steering wheel subsystem to arrive at the pinion subsystem
and vice versa. Hence, if the control laws are linear, the control signal T,, and T,
can be expressed in the Laplace domain as

Tu(s) = Cul(s)(e™ 0, (s) — €70 (s)),
Ty(s) = Cy(s) (e %0, (s) — €70, (s)),

(1.5)
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Figure 1.2: Block diagram of the EPS/SBW system.

where Cy, C, are the transfer functions of the controllers, 7,, 7, are the internal
delays, and 7y, 7, are the transmission delays.

Therefore, for linear control laws, a generic representation of the control sig-
nals T,, and T}, is

Tw(s) =
Tp(s)

(0p(5) = Ou(5)) + Cu(s)(e™ 70, (5) — 770, (s)),
(0u(s) = Op(s)) + Cp(s) (™m0, (5) — €70, (s)).
As an example of control design, let us consider the ideal proportional-deriva-

tive control laws. Then the transfer functions of the controllers C,, and C, are
expressed as

b (1.6)
k. '

Cuw(s) = ky + puws
and
Cp(s) = ky + pps,
where the control parameters k,,, k,, p.,, and p, are strictly positive.

Now we illustrate the generic model of steering systems in a block diagram, as
shown in Figure 1.2 for the interconnected linear system (1.3)-(1.6) in the Laplace
domain, where the transfer functions P, for i € {w, p}, given as

1

Fils) = Jis2 + o8
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Remark 1.1. The transfer functions P, and P, are defined as the transfer functions
from the net torques acting on the steering wheel subsystem T°* = T,, + 7; and
the pinion subsystem T = T}, + T,, respectively, to the steering wheel angle 6,
and the pinion angle 6,, that is, for i € {w, p},

T;*(S) N JZ‘SQ + O‘Z’S'

Finally, from (1.3)-(1.6), the closed loop system is given by

Bi(s) =

Pu(s)ep(s) Py(s)pa(s)
[Qw(S)] _ | uwl9)ep(s) — pr(s)pals)  uls)pp(s) — i(s)pals) [Td(8>] (1.7)
Op(s) Pu(s)ei(s) By(s)pu(s) T.(s)|’
Puw(8)pp(s) — p1(s)p2(s)  uwl(s)pp(s) — p1(s)pa(s)
where
P1(s) = Po(8)ks + By(5)Cp(s)e”MFm)7,
p2(s) = Pu(s )/f + Py(s)Cu(s)e™ 4™,
Yuw(s) =1+ Py(s)ks + Pu(s)Cy(s)e™ ™,

©p(s) = 1+ Py(s)ks + Pp(s)Cp(s)e ™"

System (1.7) encompasses all the transfer functions appearing in the stability anal-
ysis of electric power steering and steer-by-wire systems studied, respectively, in
Chapters 2 and 3 of this manuscript.

1.2 Control objectives and performance criteria

The goals of a controller in a steering system are to generate assist torque, atten-
uate vibrations, satisfy requirements on the steering feel, and provide informative
road feedback. Several performance criteria [103, 68, 58] can be defined to vali-
date the functionality of such controllers. In this section, we define the following
criteria, which will be adopted in the simulation sections of Chapters 2 and 3 to
assess performance and validate the controllers:

1. Driver torque amplification,
2. Steering response,

3. Steering feel,

4. Road feel.

Below, we provide a detailed description of each of these items, for the generic
model of steering systems (1.3)-(1.6), and we identify different factors affecting
driver comfort. To evaluate our results, to each criterion we associate one or more
metrics that allow us to measure the controller performance, either in terms of its
parameters or the pattern of its response to specific input signals. The application
of these criteria in the case of electric power steering systems is developed in
Chapter 2 and, in the case of steer-by-wire systems, in Chapter 3.
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Figure 1.3: Boost curve characteristics.

Driver torque amplification

The primary objective of the controller in a steering system is to reduce the driver
steering effort by providing an assist torque. This torque is computed using a
torque map (see, e.g., [55]) based on the driving conditions, namely the vehicle
speed and the steering wheel angle. Usually, a boost curve is adopted as the torque
map [1]. That is, the assist torque is a function of the driver torque and of the ve-
hicle speed, as for example in (1.4). Figure 1.3 shows an example of boost curve
characteristics for a steering system [68]. The assist torque required by the driver
varies with the vehicle speed. As the vehicle speed increases, the assist torque de-
creases, increasing the centering torque on the steering wheel. In a small steering
range, the torque map can be considered linear, that is (6, —#6,) = K is constant.
To ensure the generation of the desired assist torque, the controller must guar-
antee the stability of the closed-loop system and provide a large assist gain K.
Typically, car manufacturers will impose a lower bound on K, as K > K,, for
some K > 0. As an example, in the steering system of Chapter 2, we use K, = 35.

Steering response

The steering response refers to the vehicle yaw rate and the vehicle lateral ac-
celeration response to the steering input. The steering system can improve the
steering response performance. While the steering wheel is turned and then re-
leased during cornering, it returns to the center position by the so-called self-align-
ing torque applied by the road on the tires. At low vehicle speeds, the friction be-
tween the tire and the road prevents the steering wheel from returning to the
center position. At high vehicle speeds, the self-aligning torque increases and
makes the steering wheel return to the center with excessive overshooting and
oscillations [68]. This phenomenon can generate an unexpected yaw motion of
the vehicle.
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In a hydraulic power steering system, these oscillations are naturally damped
by the inertia and high friction of the steering system [62]. In contrast, for steer-
ing systems equipped with electric motors, previous studies counter these oscilla-
tions by adding specific features to the steering system. A return control and an ac-
tive damping control are combined to the controller of the steering system [47, 53].
The return control brings the steering wheel back to the center position quickly
and accurately [113]. The active damping control prevents the oscillations usually
present at high vehicle speeds [7]. Even if these features improve the returnability
of the wheel to its center position, they often reduce the driver perception of the
actual contact force between the road and the tires.

In order to provide the driver with a more direct feeling of road forces, we
consider in this manuscript proportional-derivative control schemes for the con-
trollers C,, and C, described above. In this case, the steering response is improved
since the proportional gain generates a high assist torque for a large steering
wheel angle (corresponding to a return control), and the derivative gain provides
active damping that increases with the angular velocity of a steering wheel.

Steering feel

The steering feel is defined as the torque that the driver feels during steering ma-
neuvers. It is quantified by the shape of the parameterized curve obtained for the
driver torque T} as a function of a sinusoidal steering wheel angle 6,,, typically of
frequency 2 Hz. Objective metrics to compare and assess the steering feel can be
obtained from this curve. Figure 1.4 shows a typical steering feel curve obtained
using for 6, a sinusoidal input. It should be stressed that a model of the road re-
action torque generated by the forces applied by the road on the tire is required
to carry out simulations that generate these curves.

Some characteristic points of this curve are selected as objective metrics for
evaluating steering feel. They are reported to be closely related to the driver sub-
jective perception of steering feel [80]. For example, the torque differences Tj
and T; are the torque hysteresis at zero and 70% maximum steering wheel angle,
respectively. These metrics respectively represent the hysteresis during on-center
and cornering maneuvers. This hysteresis is associated with an additional force
that the driver must provide during maneuvers. When this hysteresis is large, it
degrades the performance of the steering system. The torque 75 is the maximum
torque over the whole steering range, its preferred value is around 4 Nm. A high
value of T, will result in a heavy steering feel for the driver. The angle differences 6,
and ¢, are the angle hysteresis at 0 and 1.3 Nm. These metrics quantify the back-
lash of the steering system since a high-angle hysteresis affects the driver feeling
of the center position of the steering wheel [58].

The steering feel criterion is essential to assess the performance of a steering
system. It overlaps partially other criteria presented in this section, namely the
driver torque amplification and the steering response. For example, the metrics kg
and k; can be considered to ensure driver torque amplification and to evaluate the
stiffness of the steering system. These metrics represent the torque gradient to
steering angle during on-center and cornering maneuvers. The steering stiffness
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Figure 1.4: Steering torque versus steering wheel angle curve. The torque dif-
ferences T, and T; are the torque hysteresis at zero and 70% maximum steer-
ing wheel angle, respectively. The torque 75 is the maximum torque over the
whole steering range. The angle differences 6, and 6, are the angle hysteresis
at 0 and 1.3 Nm. The metrics kg and k; represent the torque gradient to steering
angle during on-center and cornering maneuvers.

is related to the feeling of rigidity to the reaction torque. The higher it is, the
heavier the feeling of reaction torque rigidity that will be produced. Note that, for
a slow steering maneuver, this curve can be deduced from the torque map of the
steering system.

For proportional-derivative control schemes, even though the derivative gain
parameter increases the stability robustness and the delay margin (see Chapter 2),
it also increases the hysteresis of the steering system (the torque differences Ty
and T31), which degrades the steering feel.

Road feel

The vehicle dynamics generates a contact force between the tires and the road.
In the opposite direction, the driver must “feel the road” by receiving appropriate
feedback on this contact force. In this way, the driver has a good road feel, which
helps him to identify the stability limits of the vehicle.

The road feel is assessed by the torque that would be required from the driver
to keep the steering wheel at 6,, = 0, namely the torque T satisfying T;; = —T1,.
In this situation, according to the expression of 77} in Remark 1.1, the net input to
the steering wheel dynamics 77 is equal to zero. This torque from the driver then
eliminates the effect of road reaction torque on the steering wheel.

Suppose that 6,, = 0, then from (1.3) and (1.6), we obtain

Ti(s) = (ks + Cu(s)e”™=17%)8,(s)
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and
0,(s) = —(Pp(8)ks + Pp(5)Cp(5)e™™°)0,(s) + P,(s)T,.(s).

Therefore,
Ti(s) __ By(s)(ks + Culs)e 7))

T:(s) wp(s) ’
with the same ¢, as in (1.7).

Anillustrative frequency response of the above transfer function is represented
in Figure 1.5, for the same parameter values as in [52]. Steering systems must
have sufficient bandwidth to respond seamlessly to the driver fastest inputs while
at the same time preserving the feel of the road through the mechanical steering
mechanism [118]. Moreover, the resonance peak must be limited to prevent vi-
brations in the steering wheel that can worsen the driver feeling of the road forces.

1.3 Literature review on steering systems

Several research works have been conducted to improve the robustness and per-
formance of steering systems. Two main phases can be outlined in the control
law design process. The first phase defines the boost curve based on the ratio be-
tween the driver and road torques at equilibrium. In [16], an optimization proce-
dureis applied to reproduce the shape of the boost curves. In [55], a torque map
based on a third-order polynomial was proposed to improve the steering stiffness
and return-to-center performance of the steering system. In [10], a torque assis-
tance function and an active damping are developed based on nonlinear functions
of the measured torque and electric motor velocity. In [60], the boost curve is de-
signed based on the vehicle inherent road feel. The second phase introduces fil-
ters on the assistance designed in the first phase, to improve the performance of
the steering system and increase its robustness against disturbances and delays.

30



In [47], a proportional-integral-derivative controller is developed for controlling
the steering system motor torque. Experimental studies show that the proposed
control law can improve return-to-center performance of the steering wheel by
control of the assist motor. In [52], the robustness of a linearized system is stud-
ied by bounding the gain and phase margins, and an optimization-based com-
putation of poles and zeros of a lead-lag compensator is proposed. In [11&], the
bandwidth is considered in an optimization-based control law design to balance
useful signals transmitted to the driver and disturbances. In [119], an objective
function allows to adjust the information transmitted from the road to the driver.
In [68] the steering system is controlled using a sliding mode controller, where
the motor angle is controlled to track a reference angle. In [114], an admittance
control strategy is adopted. Some advantages of adopting a proportional-deriva-
tive control law to achieve the desired steering system performance are discussed
in the Steering response paragraph above. However, the delays introduced in the
feedback loop of the assistance controller are not considered in most of the pre-
vious studies. On the other hand, in [3], delays are introduced in the control law
design to obtain a given closed-loop convergence rate despite disturbances and
unmodeled dynamics.

Moreover, for steer-by-wire systems, the magnitude of delays is even larger
than for electric power steering [35]. The study for these systems is similar to
that of telemanipulation systems with haptic force feedback [19, 79]. In [15], a
Smith predictor control scheme is considered to compensate for the delays in the
system, where force sensors were used to provide feedback force between the
two teleoperated systems. However, in such a scheme, a bias error in the force
sensor or a disturbance signal produces a non-zero steady-state error because of
the integral actions of the plants. In [107], modifications on the control scheme of
the Smith predictor were proposed to cope with the integral action of the plant.
Recently, more studies on this context were developed [2, 69, ]. The control
scheme proposed by [2] provides a fast time response. In [112], a modified Smith
predictor was proposed for the application of an adaptive cruise control.

In the approaches we present in the next chapters, we provide answers to the
problem of increasing the delay margin of the steering systems feedback loops
pointing out the fact that the proposed frequency-domain techniques lead to filter
design guidelines that are based on analytical bounds, which are difficult to obtain
with the numerical methods often associated with the time representation.

Finally, it should be noted that almost all the studies on steering systems men-
tioned above have adopted frequency-domain approaches for the analysis and
control law design for steering systems. Nevertheless, time-domain studies have
also been conducted for applications on steering systems [94, , 59, , 1.
The stability of a steering system is certified by the existence of a Lyapunov func-
tion and stabilization conditions are formulated as a convex optimization prob-
lem in terms of linear matrix inequalities. Note also that the delay in steering
systems is also not considered in the studies presented in these references. We
may cite [57], in which a fuzzy state feedback controller is proposed for nonlinear
time-delay systems. These studies motivated us to develop time-domain stability
conditions for time-delay systems and apply them to steering systems with delays.
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Chapter 2

Increasing the delay margin of
electric power steering systems

This chapter studies the delay margin of the main feedback loop associated with
the Electric Power Steering (EPS) system. For this system, the delays are inter-
nal since they are generated by the processing of local measurements and by the
time required to compute the control input in real time. In contrast to the commu-
nication and network transmission delays, the internal delays are generally small.
Moreover, even when they are time-varying, these delays remain bounded [57].
As a consequence, the apparent delays can still be made constant by buffering
data up to a certain (known) worst-case maximum delay, using a timestamp—see,
eg., [51].

Compared to other design specifications, the delay margin is particularly im-
portant for EPS since, for these systems, feedback loop delays appear as the main
destabilizing term. Indeed, for the delay-free dynamics, a proportional assistance
scheme results in a stable closed-loop for any control gain. In contrast, a delay in
the feedback loop can destabilize the system unless a filtering term is included to
increase the delay margin of the EPS system. For this reason, the feedback loop
analyzed in this chapter consists of a stable second-order system in feedback with
different filter structures and is subject to delays. The considered second-order
system represents the pinion subsystem dynamics, which is the EPS subset that
is most sensitive to delays. There exists already a large literature on filter design
for EPS systems, where optimal filter parameters are proposed for a fixed filter
structure. However, this is usually done without accounting for the delays in the
feedback loop—see, e.g., [119] and [52]. In addition, most existing results in this
area aim to design filters by minimizing an objective function. To achieve the per-
formance requirements of the steering system, they impose constraints on the
filter gain, such as the phase margin and the location of poles and zeros, in gen-
eral leading to high-order filters. Such high-order filters are prone to undesirable
effects on the system. Moreover, the controller synthesis accounting for these
constraints imposes the resolution of a complex nonlinear optimization problem.
In contrast, our results aim to maximize the delay margin using low-order filters,
which lead to analytical bounds for the delay margin and preserve the steering
system performance.
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In this chapter, for several of the previously considered filter structures, we
carry out the stability analysis, which provides delay margin approximations in an
explicit form as a function of the filter parameters. Importantly, we have focused
on filter structures for which an analytical bound for the delay margin, or the de-
lay margin itself, is explicitly obtained. For the Proportional-Derivative (PD) filter, a
lower bound of the derivative gain parameter is obtained, providing explicit lower
bounds of the achievable delay margin and an asymptotic value of the optimal
filter parameter. The main benefit of the presented results is that these explicit
forms provide guidance for the design of filters that take into account delay mar-
gin requirements. In the case of the proportional-derivative filter, the obtained
bounds are related to the results in [66], where the derivative gain maximizing
the delay margin has been analyzed for unstable systems.

The chapteris organized as follows: Section 2.1 presents the EPS system model
and introduces the considered filter structures. In Section 2.2, explicit equations
of the delay margin are presented with the different filter structures and present
the main result at Theorem 2.4 and Theorem 2.5. The simulation section com-
pares the performance of the filters for selected filter parameters; a comparison
with a state-of-the-art controller is also included. The mathematical proofs of the
proposed results are given in Appendix A.

2.1 EPS model and problem statement

We consider the following model for the EPS dynamics
JuOu(t) 4+ 000 (t) = ks (0p(t) — 0, (1)) + Tu(t),
T (1) + 08, (1) = k(B (t) — 0,(1)) + Tult) + T (8),

where §,, and 6, are, respectively, the steering wheel angle and the pinion angular
position. The road reaction torque 7, and the driver steering torque T, are inputs
of the system. The stiffness &, of the torque sensor provides

Ts = ks(ew - ep)a

(2.1)

the torque that appearsin (2.1). Figure 2.1 shows the mechanical model of an EPS
system. The remaining model parameters and their numerical values are re-
ported in Table 2.2, in Section 2.3.

In a general form, we use the assist torque map « : R — R, and functions f :
R" x R —+ R", g : R" x R — R to design the assist torque 7T, as follows

Trel(t

(1) = K(0u(6) = 0,(0)) (1),
i(t) = f2(t), T2 (1)), 02
T, (t) = 9(a(t). T ().

)=

T,(t—1),

Tu(t

where z is the state variable of a filter and 77/ is a signal defining a reference for
the assist torque [53]. The actual assist torque 7, corresponds to the output of
the filter T, delayed by 7 seconds.
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Figure 2.2: Block diagram of the EPS system.

Whenever the assist torque map « is constant, that is (0, — 0,) = K, we
say K > 0is the assist gain. If, moreover, f and g are linear mappings, system (2.2)
is a linear system and it can be expressed in the Laplace domain as

Tu(s) = Kkse ™ C(s)(0w(s) — 0,(s)), (2.3)

with C the Laplace transform of a linear filter.

The resulting linear system (2.1)-(2.3) is represented in Figure 2.2 with its inter-
mediate signals as in (2.2). In this chapter, we study the feedback loop introduced
by the delayed control law in the pinion subsystem. Namely, we focus on the sub-
system depicted in Figure 2.3. More precisely, we study the stability of the transfer

35



/{JSQw Uq 1 ep
AU~
~ Jps? + ops + ks
T, —Ts C(s Kk, —
g, G R O
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function between u; and 6, given by

Kk
1 2
Gls) = Jps? + ops + kg
Kk Kk,
T\ 1+ = C(s)e s
Jps? + ops + ks
- ks op . L s _
Defining wy = /— and ( = , and introducing s = — and 7 = 7wy, we

Jp 2.\/ksJ, Wo

have that the above transfer function is expressed as

G(5) = — ( S > , (2.4

" Kk, \1+ P(5)C(5)e 7
with K
PO = aaGrr (2.5)

For a given control law C(s), the delay margin [70] of the pinion subsystem (2.4) is
defined by
AT =sup{7 > 0: G(3) is stable V7 < 7}.

Remark 2.1. Since the actual 5 is a scaling of s, the delay margin is given by A7 =
AT /wy in the above expressions. To keep the notation simple, we will use s instead
of 5 in the rest of the chapter. Thus, when using G(s) and P(s), we refer to (2.4)
and (2.5), respectively.

The goal of this chapter is to compute delay margin estimates of the feedback
loop for five different structures of the linear filter C. These structures are partially
inspired by approaches from the literature, for instance those in [118] and [52],
where fixed-structure compensators have been proposed to stabilize the system
and minimize torque vibrations. The suggested structures combine traditional
lead-lag compensators. In particular, we will study the structures of C' presented
in Table 2.1: C} is the filter without any compensation, C, is an ideal PD filter
where w, is the inverse of the derivative coefficient, while C5 adds extra dynam-
ics to the PD filter to make it proper and to reduce the high-frequency gain [52].
The filter Cy is defined to compensate for the dynamics of the second-order sys-
tem and impose a second-order behavior with two real poles [118] to provide an
improved delay margin. Finally, to prevent the performance degradation of Cj,
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Table 2.1: Filter structures.

Ci(s) | Ca(s) | Cs(s) Cy(s) Cs(s)
(s2 +2¢ss + 1) (wi + 1)

S Wy s +2(s+1

the filter C's combines C; and (. For an EPS system without delay, when the sys-
tem disturbances are not considered, the stability of the feedback loop can be
achieved without using a filter, taking C';(s) = 1. However, when time delays are
included in the feedback loop, we propose to introduce a cascade of N lead-lag fil-
ters, where N is determined by the desired robustness level of the system. In this
chapter, we focus on filters with a limited order to allow an analytical computation
of the delay margin or a lower bound of it as a function of the filter parameters.
Moreover, in applications, low-order filters are often preferred because of their
simplicity of implementation [14]. Note that the filter parameters are usually cho-
sen based on the parameters of the EPS system, namely the assist gain K and the
damping coefficient (. Below, we will omit the dependence of the filter parame-
ters on the EPS system parameters, hence, when there is no ambiguity, we will
write w; instead of w; (K, (), fori € {a, b, p, q}.

2.2 Robustness with respect to delays

In this section, we study the effect of the filter parameters on the delay margin
of the EPS system for the different filter structures considered in Table 2.1. A
separate study of each filter is detailed below.

2.2.1 Delay margin without filter

We start analyzing the robustness of the system without any compensation filter,
that is for C(s) = 1. The following result is well known. Its proof can be found
in [78, Proposition 4.20 and Proposition 4.22].

Proposition 2.1. Let GG be given by (2.4), with P given by (2.5), where K > 0 and
¢ > 0.

(i) The delay margin of G with C' = C\ is infinite if and only if

|- VI-K?

K<1 and (> 5 ,

(2.6)

37



(i) If (2.6) does not hold, then the delay margin AT is given by

/ ~
2Cw
tan—! AC =
w?—1 o
- : if . > 1,
T We
AT = 57 If@C:17
1 2Cw.
tan —
1—w? N
- , Ifwe <1,
C

where

5 (2.7)

R \/2—4§2+¢(2—4g2)2—4+4z{2

We = .

The following corollary gives an explicit upper bound for the delay margin in

the case of Item (ii) of Proposition 2.1. This upper bound explicitly shows the de-

pendence of the delay margin in terms of the assist gain K, which is the main
parameter that limits the delay margin.

Corollary 2.2. If (2.6) does not hold, the delay margin is a strictly decreasing function
of K and is upper-bounded by

r 4

¢ : ifwe>1,
—4¢% + /(2 — 4¢?)? — 4 + 4K?
m o~
AT <y fee=1 (2.8)
2
V2 , ifw. < 1.
(/2 4¢2 + /2~ 4GP — 4 1 IK?

The proof of the above corollary relies on Lemma A.1 in Appendix A.

Remark 2.2. From the expressions (2.7) and (2.8), for a fixed ¢, there exist K(()
and «((¢) such that, for all K > K,, we have A7 < «/K. From this upper bound
we can thus observe that a large value of the assist gain K results in a small delay
margin. Moreover, from (2.6), for K < 1 there always exist a value of { such that
the delay margin is infinite. Since ¢ depends only on the system parameters o,
ks, and J,, and since K is a design parameter, using (2.6) we can always obtain an
infinite delay margin with

1
2 -
NP L 'eViere) If0<cs\[2,
1, otherwise.
One should stress that, even if theoretically the delay margin can be increased by

decreasing the value of K, in practice this cannot be done since the parameter K
describes the amount of assistance provided to the driver.
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2.2.2 Improving the delay margin with a lead filter

In this section, we consider the second-order stable system in (2.5) in feedback
with the filter s
Cy(s) = — + 1. (2.9)

The proposition below characterizes the delay margin for system (2.4) with C' = (5
in terms of the parameter w,.

Proposition 2.3. Let G be given by (2.4), with P given by (2.5), where K > 0 and
¢ > 0.

(i) The delay margin of G with C' = Cy is infinite if and only if

V1 — K2 2 _
K<1 and — <2 KK;r4< 2 (2.10)
w

a

Moreover, there exists a value of w, such that (2.10) holds if and only if (2.6)

holds;
(i) If (2.10) does not hold, then the delay margin A7(w,) as a function of w, is given
by
( ~
tan ™! Gelwa) + tan~! ?C%(W“)
Wy W2 (w,) — 1
~ < ) Ifw0<wa) > 17
m 1 Bela)
AT(w,) = B + tan ! — ifoc(we) =1, (2.11)
tan~! @e(a) tan~! —IQ(wfgc(ua))
W, — Wi \W,
= ~ e 2 ,f@e(wy) < 1,
\ We(Wa) (1)
where

K2 K? 2
F+2_4C2+\/(F+2_4<2) — 4+ 4K?

Ge(wa) = ¢ “2 : (2.12)

The proof of the above proposition is given in Appendix A. Note that when (2.6)
is satisfied the delay margin of G with C is infinite, it is therefore useless to add
a lead filter C in this case to increase the delay margin. Moreover, when (2.6)
is satisfied, condition (2.10) can also be satisfied provided a large value of the
parameter w, is used, and thus an infinite delay margin can be achieved. For this
reason, the next theorem is restricted to the case where (2.6) is not satisfied. In
this case, we also have that (2.12) is strictly positive.

Determining from (2.11) an explicit expression for the value of the parame-
ter w, that maximizes the delay margin can be difficult. Nevertheless, we can
obtain upper bounds for the values of w, that maximize the delay margin as in
the following theorem.
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Figure 2.4: The four different cases where (2.6) does not hold true.

Theorem 2.4. If (2.6) does not hold true, the maximum delay margin of G with K > 0,
¢ >0, and C' = C,, is attained at w, = w satisfying

wa (G, K) < @(¢, K),

where the upper bound @} (¢, K) is expressed as

() (/LA +8K? + 46 + 64ch), ifK >1and K >2(,

() (*/ L4+ 8K2¢) + 43¢k + 64chcl), if K <land K > 2¢,

() /4 +4K2 +2(c3 + c2) + 32(ch + cl), fK>1land K < 2(,

(IV) /4 +4K2co + 2(c + 2)cg + 32(ch + c})cd if K < 1and2(\/1 - (2 < K < 2(,

2 — 42 4C K202 4CK? K?rn
where ¢y = , 0l = — , Cg = — , c3 = ——, and
V2 =4 — 4+ K2 (w2 — 1)2 (@2 —1)2 @e
KQ
4= A—;T, with w. as in (2.7).
wC

First note that the four cases of Theorem 2.4, depicted in Figure 2.4, corre-
spond to the set of values for K and ¢ that do not satisfy (2.6). The proof of the
above theorem is detailed in Appendix A. It is divided into three steps. The first
step concerns the four cases and shows that there exists a maximum value for the
delay margin as a function of the parameter w,. The second step details how the
bounds are obtained for cases | and Il, while the final step shows how to obtain

the bounds for cases Ill and IV.
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Figure 2.5: Delay margin as a function of w, as in (2.11)-(2.12), for K = 35 and for
different values of (: The crosses in red correspond to the optimal delay margin
for each value of w}, while the blue circles provide the upper bound &} and the
corresponding delay margin using (2.11)-(2.12) and the bounds of w?, given by
Theorem 2.4.

For a fixed value of K and for several values of (, the upper bounds &} (given by
Theorem 2.4) are compared in Figure 2.5 to the filter parameters w} that maximize
the delay margin (obtained by computing the optimal value of the delay margin
with a line search). The curves for the delay margin as a function of w, were plotted
from relations (2.11)-(2.12). One can observe from this figure that the sharpness
of the obtained bound depends on the value of (.

Using Proposition 2.3, we can compute the delay margin for each fixed value
of w,. The value of w, that provides the maximal delay margin is denoted w} (K, ().
The uniqueness of this optimum, for large values of K, is proven in Theorem 2.5
below. Moreover, even if an analytical expression of w’ is not available, the fol-
lowing result shows that the value of w? does not depend on ¢, and it gives an
asymptotic estimation of its value, for large values of K.

Theorem 2.5. For any fixed value of ( > 0, we have

L Wl

Ya\TH5)
K—+o0 a\/f

Y

where o > 0 is the unique solution of the implicit equation

2y 1 @)
la) . —1B(@) Fla)+ ary(a) _ (2.13)
ay(a) o " B () 7
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2 4
with B(a) = \| 2 a and y(«a) = L + 4.
«

The proof of the above theorem is detailed in Appendix A.

Remark 2.3. The nonlinear equation (2.13) can be solved numerically, and it gives
an approximate value a ~ 0.7820.

Using Item (ii) of Proposition 2.3 and the lower bounds for tan=! from [74,
Equation (1)], the delay margin A7(w,) of (2.4) satisfies

tan™? ©e(wa)
AT (wy) > Wa _
T(w,g) () > h(wa), Vwe,
where
B(wa) =

Wy + 2¢/w?2 + Cug(wa)‘

With the above lower bound for A7 given by h(w,) and the asymptotic behavior
given by Theorem 2.5 we can state:

Corollary 2.6. The optimal value of the delay margin of (2.4) with C' = C, is lower

bounded as
3

VK + 2\/a2K + (I)%(Oé\/?)’

where « is the solution to (2.13) and @, is defined as in (2.12).

AT (W, (K, €)) >

2.2.3 Analysis of a lead-lag filter

A lead compensator increases the system crossover frequency and makes the
plant very sensitive to high-frequency noise. To mitigate the high-frequency noise
amplification while making the filter proper, we can replace Cy(s) by a lead-lag
filter as

The frequency w, should be selected to prevent delay margin deterioration. The
goal of this section is to obtain the achievable delay margin with a lead-lag struc-
ture. Namely, to study the effect of parameters w, and w, on the delay margin of
system (2.4) controlled by Cj.

Proposition 2.7. Let G be given by (2.4), with P given by (2.5), where K > 0 and
¢ > 0.
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(i) The delay margin of G with C' = Cj is infinite if and only if

K <1,
2 42 K <1
wlb = 2l(2 A¢%, or { 4_3 ’ 072 < (2.14)
—4apT — q < )
i
b a
where - 2 g2 A
2—4 2—4
3 3 w? 3
and
2 — 4% 2(2—4¢?)3 2 2 —4¢?)? 2 — 4P K?
A S e et S A B Chk 'S M CIak SILSA B
3 27 3 9 3w?
2-4¢ K2\ , 2wl
+'( 9 _+3wg>“%'%7i7’
(i) If (2.14) does not hold, and w;, > w,, then, the delay margin AT (w,,w) is given
by
( — 2
tan~! (W = wa)ue :)_Q)L;c + tan™! _Qchl
L wc wc ) I:fwc > 17
We
_ T 4 Wp — Wq .
={ = 4tan ! 2% =1
AT (wg, wp) 5 + tan o i 1 ifw.=1,
— 2
tan~! (Wb — Wa)we :)_a C;c — tan™! Tz ch2 +
L wc wc ) I:fwc < 17
\ We

where w. is a function of w, and w,, given by the maximum real positive root of
the polynomial equation

6 2 — 4¢? K? 1
(12 (B e D ke
Wy “p Wa “p

Proof. Similar to the proof of Proposition 2.3. g

Proposition 2.8. Given the system in (2.5) without delay, the system is unstable with
filter Cs if and only if

Proof. The claimis animmediate consequence of the Routh stability criterion in
dimension 3, as detailed in [116, Theorem 2.4]. 0

In Figure 2.6, for the pair of parameters K = 35 and ¢ = 0.17, we depict the
delay margin contours as a function of the parameters w, and w, of the filter Cs.
To simplify the illustration of these curves we use w, = pws, with positive values

43



logy(p)

logo(ws)

Figure 2.6: Delay margin contours, in ms, for K = 35 and { = 0.17.

of p. The dashed black curve gives the value of p that maximizes the delay margin,
as a function of wy, defined by

p*(wp) = argmax {AT(pwp, wp) },
o

which is obtained with a line search; at every point wy, we obtain the value of p
that maximizes the delay margin.

As indicated by Theorem 2.5, for large values of K, the asymptotic behavior of
the optimal values of parameter w,, using C, is w (K, ¢) ~ a/K. In Figure 2.6, the
solid red line corresponds to w, = a/K, thus to the points verifying p = av'K /w.
For large values of wy, filter Cs is equivalent to filter C5. Hence, following Theo-
rem 2.5, with a large value of K (which is the case in the example since K = 35),
we should retrieve the maximal values of the delay margins achievable with C;
taking w! (K, ¢) = av/K, for large values of w,. We observe this asymptotic behav-
ior when the optimal delay margin curve approaches the predicted curve for Cs,
for large values of wy,.

2.2.4 Filter-based dynamic compensation

Finally, we consider the filter

(2.15)




already studied in [118]. Imposing ¢y = ¢ in this filter introduces a compensation
of the stable dynamics of P(s) and transforms it into

L(s) = P(s)Ca(s)
B K s2+2(s+1

)
5 +2C3+1(i+1)(i+1)
Wp Wq

52 1 1 '
+2(—+—)s+1
Wplyg 2wy 2wy
From this expression, the analysis of filter Cy can be derived from Proposition 2.1,
since it is the same transfer function for the feedback loop of the system, with

1 fw, 1 Jw,
=|=/—+=,/—] and = .
(ayf2eayZ) e w-vem

Moreover, to further increase the delay margin, the filter (2.15) could also be
combined with a lead compensator (2.9), thus resulting in the filter

o (52 + 2(ss + 1) (wi + 1)

In this case, the analysis is equivalent to that of Section 2.2.2 since

L(s) = P(s)Cs(s)

52 1 '
+2(—+—]s+1
WpWg 2wy 2wy

Unlike the lead and lead-lag filters, where the maximum achievable delay mar-
gin with fixed values of K and ( is limited when (2.6) does not hold, the filters C,
and (5 can arbitrarily increase the delay margin of a stable system by compensat-
ing system poles and introducing well-damped ones. However, even if the filter
zeros exactly compensate the system poles, a well-damped system dynamics can

decrease the performance of the system in terms of the performance criteria de-
scribed in Section 1.2 of Chapter 1.

2.2.,5 Stability of the coupled system and disturbance rejection

In contrast with the previous sections, where the coupling between the two sub-
systems was not taken into account, here we analyze the stability of the electric
power steering system considering the coupling between the steering wheel and
the pinion subsystems. Moreover, the sensitivity of the proposed controller with
respect to input disturbances is also considered.
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ks(0w — 6))

Figure 2.7: LFT representation of the EPS system.

Usually, in an electric power steering system, the driver torque is estimated
using the torque sensor. In fact, the driver torque can be writtenas Ty, = T, + 64 =
ks(0w — 0,) + da, Wwhere §4 is the error between the driver torque input 7; and the
measured signal Ts. Introducing this last expression in (2.1), the electric power
steering system can be represented in the Linear Fractional Transformation (LFT)
form as shown in Figure 2.7, where v is defined as

o) — 7 = DE(Buls) = y(5)

TS
and the system X is defined by
ks(ew(s) - HP(S>> - GU(S)U(S) + Gd(8)5d<s) + GT(S)TT(S>7 (2’I 6)
where Kr.O(s)
TsKk;C(s
Guols) = = Jps? + ops + ks + KksC(s)’
(Jps? + 0,8)ks
Gd(s) = 5
(Jps? + 0,5 + ks + Kk C(5))(Jys? + 045)
and
Gi(s) = &
N 1s2 +ops + ks + Kk, C(s)
Note that
e —1
<1
TS

From the above feedback loop, we can analyze the stability with respect to the
delay by applying the small gain theorem [65], therefore yielding the stability of
the feedback loop if

|G, (s)] < 1.

Moreover, to guarantee disturbance rejection with respect to road torque noise,
the filter must ensure a small magnitude for the transfer function G, in the high-
frequency range. At steady state, the magnitude of the transfer function G, is
equal to 1/(1 + K), for all structures of filters C'. This transfer function must also
have a sufficient bandwidth to provide the driver a feedback torque of the forces
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Table 2.2: EPS parameters-see [52].

Symbol Description Value
ks torque sensor stiffness 143.24 Nm/rad
Jw steering wheel moment of inertia | 0.044 Kg.m?
Ow steering wheel viscous damping | 0.25Nm.s/rad
Ip pinion moment of inertia 0.11 Kg.m?
Op pinion viscous damping 1.35 Nm.s/rad
K assist gain 35

acting on the wheels [67]. In addition, to guarantee disturbance rejection with
respect to driver torque estimation error, the filter must ensure a small magni-
tude for the product G4(s)dq(s) over the whole frequency range. At steady state,
from (2.1), we have T,(0) = k4(6,(0) — 6,(0)), hence 64(0) = 0 and therefore
|G4(0)64(0)| = 0. In the high-frequency range, the magnitude of the transfer func-
tion GG; must be small. In Section 2.3.6, these criteria on the transfer functions
G4 and G, are checked over the whole frequency-domain range to assess distur-
bance rejection for the considered set of system and control parameters.

Remark 2.4. In standard vehicle designs, a self-alignment torque is produced at
the wheels, aiming to return them to the center position. This torque results from
the reaction forces generated by the contact between the tires and the road. Even
if this torque stabilizes the steering system and increases its robustness, in the
stability analysis of the coupled system, we considered the worst-case scenario,
in which 7, = 0. Therefore the above analysis is pessimistic since it neglects an
additional stabilizing torque.

2.3 Simulations

To illustrate the theoretical results of Section 2.2, we simulate the EPS system us-
ing the parameter values detailed in Table 2.2. These values are taken from [52],
in which a standard column-type EPS system is considered (corresponding to a
Hyundai Motors i30 vehicle). In Sections 2.3.1 and 2.3.2, we illustrate numerically
the results of Theorem 2.4 and Theorem 2.5, obtained for the lead filter C,. These
simulations give an insight of the delay margin achievable using Cs. Then, in Sec-
tion 2.3.3, we compare the delay margins obtained using the filter structures de-
scribed in Table 2.3. Afterwards, in Section 2.3.4, we compare these filters consid-
ering the steering and road feel performances of the EPS system. In Section 2.3.5,
we test the robustness of our filter face to a time-varying delay. Finally, in Sec-
tion 2.3.7, we provide a comparison with a recent controller in the literature [52],
where the controller design is based on the solution to an optimization problem
without taking into account the delay margin of the system. To present realis-
tic values for parameters w,, wy, w,, and w,, we use their actual (non-normalized)
values (see Remark 2.1).
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Figure 2.8: (a) Upper bound and asymptotic value of w as a function of K. (b) Com-
parison between the different delay margin bounds (for filter Cs) with the choice
of w, resulting from Theorems 2.4 and 2.5.

2.3.1 Maximum achievable delay margin with a lead filter

In Figure 2.8a, we consider the plant (2.5) with the filter Cs, in which we allow the
assist gain K to vary in the interval [1, 100], fixing ¢ = 0.17, see Table 2.2. For each
value of K, we compare the value of w (K, ¢) with its upper bound and its asymp-
tote a/K using the results of Theorem 2.4 and Theorem 2.5, respectively. For
a large value of the assist gain K, Figure 2.8a illustrates the asymptotic behavior
outlined in Theorem 2.5. Figure 2.8b shows the delay margin obtained using the
three values presented in Figure 2.8a, namely, the optimal value w? (K, (), its up-
per bound, and its asymptotic value. Note that the delay margin curve computed
with w, = w! is an upper bound for the other two curves and converges asymp-
totically to the red curve, for large values of K. Since our filters were designed
for a normalized frequency, the delay margins for the actual system are recov-
ered by dividing the result by w, (which is dimensionless). Figure 2.8b shows that,
for K > 1, the maximum achievable delay margin with filter C is limited.

2.3.2 Analytical approximation of the delay margin for a lead
filter

In the remainder of this section, we fix K = 35 and { = 0.17, as in [52]. Following
Proposition 2.3, we compute the maximal achievable delay margin for K = 35,
which is equal to A7(w?(35,0.17)) = 3.58 ms. In Theorem 2.4, we showed that
for a given value of the assist gain K and a given value of the damping coeffi-
cient ¢ of the EPS system, the value of the lead filter parameter that maximizes
the delay margin of the EPS system is upper-bounded by @w?. Then, to estimate the
delay margin achievable with a lead filter, we approximate the parameter of the
lead filter by the explicit value of its upper bound w, = &, given in Theorem 2.4.
For w, = @ = 40.39 Hz, the delay margin is 3.27ms compared to the maximum
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Figure 2.9: Delay margin as a function of w,, for K = 35and ¢ = 0.17: The red cross
correspond to the optimal delay margin for the optimal value w!, while the blue
circle provides the upper bound @} and the corresponding delay margin, given by
Theorem 2.4.

achievable value of the delay margin 3.58 ms obtained at w, = w} = 27.48Hz.
The value w? giving the maximum delay margin is obtained by solving the implicit
equation corresponding to (A.9) in Appendix A, with its left hand side set to zero.
Figure 2.9 shows the achievable delay margin of the EPS system with a lead filter
in function of the filter parameter. The figure illustrates that Theorem 2.4 gives a
close approximation of the achievable delay margin.

2.3.3 Comparison between the delay margins of the different
filter structures

Recall that 'y (s) = 1. For the lead filter C, we set the parameter of this filter at the
value w, = w that achieves the maximum delay margin. For the lead-lag filter C5,
we chose w, = w} in the same way as for the lead filter and we add a lag that cor-
responds to a more realistic implementation of this filter, fixing the parameter w,
to the highest possible value allowed by the sensor noise level. Following [52], we
set wy, to 159.15 Hz.

EPS systems must have sufficient bandwidth to respond seamlessly to the
fastest driver inputs while maintaining road feel through the mechanical steer-
ing mechanism [68]. In [52], a nonlinear optimization problem is solved to maxi-
mize the phase margin and the gain margin of the controlled system. In[1719], the
bandwidth is considered in the optimal synthesis procedure of the controller to
balance between useful information transmitted from the road to the driver and
the unwanted disturbance and noise. In our approach, we select C to satisfy the
following items:

(i) Compensate the dynamics of the EPS system, that is (; = (;
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(ii) Preserve the bandwidth for the initial EPS system, that is wyw, = w3;
(iii) Set the delay margin to 5.00 ms.

Finally, the parameters of the filter C; are selected to satisfy to satisfy the following
items:

(i) Compensate the dynamics of the EPS system, that is (; = ¢;
(ii) Preserve the same bandwidth for the initial EPS system, that is w,w, = w;
(iii) Set the delay margin to 5.00 ms with w, = w?.

Table 2.3 summarizes the values of the filter parameters and the corresponding
delay margin for the system parameters of Table 2.2, and three values for param-
eter 0, 0, = 1.35 Nm.s/rad, 0, = 12.18 Nm.s/rad, and 0, = 16.79 Nm.s/rad.

A higher delay margin can be achieved with the filters C, and C; following
the discussion in Section 2.2.4. However, this degrades the performance of the
system, evaluated in terms of steering and road feel. The differences on the per-
formance between two filters giving the same delay margin are discussed below.

2.3.4 Comparison between different filter structures in term
of the steering feel and road feel

We now set the value of the delay in the feedback loop to 7 = 4 ms. We will study
three different cases corresponding to the three different values of parameter o,
detailed in Table 2.3.

To illustrate the behavior of the obtained filters, we consider two criteria. The
first criterion (the “road feel”), is assessed by the driver torque 7, that would be
required to keep the steering wheel at §,, = 0 deg. Namely, the torque T}; satisfy-
ing T; = —ks0,. In this situation, the input to the steering wheel dynamics (in the
bottom of Figure 2.2) is equal to zero. This torque from the driver then eliminates
the effect of the road reaction torque on the steering wheel. From the system
equations, we obtain the following transfer function

T5(s) . ks
T.(s)  Jps2+ 0,8+ ke + Kk, C(s)e ™

For the second criterion (the “steering feel”), the EPS system is simulated under a
steering input signal given by a sinusoid of amplitude 30 deg and of frequency 0.2 Hz,
applied during a single period. Differently from the “road feel” assessment test, a
nonlinear torque map, the function x in (2.2), has been included to provide a more
realistic representation of the steering feel [58, Figure 6]. The considered torque
map is represented in Figure 2.10. For the obtained trajectory, we plot the driver
steering torque 7, as a function of the steering wheel angle 6,,. The steering feel
is quantified from the “hysteresis” curves of driver steering torque versus steering
wheel angle given by sinusoidal input. The amplitude of the steering wheel angle
for the zero steering wheel torque is used to quantify the hysteresis. The higher
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Figure 2.10: Torque map of the EPS.

the hysteresis is, the worse the steering feel is for the driver. An illustration of the
hysteresis curve is provided in Figure 2.11d.

First case (o, = 1.35 Nm.s/rad). In this case, for filters C, Cy, and Cj, the feed-
back loop is unstable, since the Nyquist plots of C}, Cs, and C encircle the critical
point (Figure 2.11a). Indeed, the delay margins in Table 2.3 are smaller than 4 ms
for Cy, Cy, and C3, when o, = 1.35 Nm.s/rad. In Figure 2.11b, for Cy and Cs, the
closed-loop transfer function of the road reaction torque to the driver torque 77;
exhibits two resonant frequencies. These resonances may produce vibrations
that are transmitted to the steering wheel and degrade the road feel. Figure 2.11c
shows the time response of the torque required by the driver to lock the steering
wheel in the center position for an input road torque signal given by a sequence
of constant values. The figure shows that the response with filter C5 presents a
slightly faster response and smaller overshoot. For the same delay margin, the
filter Cy has a poorer performance than Cj;. As shown in Figure 2.11d, the filter Cy
presents a larger hysteresis, associated to an increased damping of the steering
system. This sightly reduces the steering feel. Moreover, the filters Cy and Cj
allow for arbitrarily high delay margins, a property that cannot be obtained us-
ing C5 (see Proposition 2.3). However, the filters C; and C5 are not realistic. For
this reason, we must consider the second and third cases described below, where
we increase the value of the pinion damping to make filter C'; stable in the pres-
ence of the prescribed delay.

Second case (0, = 12.18 Nm.s/rad). In this case, except for C}, all filters consid-
ered in Table 2.1 ensure a stable feedback loop-see Table 2.3. With filter (5, the
feedback loop can achieve a delay margin of 5.00 ms. But, since this is an ideal fil-
ter, the value of the pinion damping must be further increased to achieve a delay
margin of 5.00 ms with filter C5, which can be implemented physically.

Third case (o, = 16.79 Nm.s/rad). As in the previous case, except for C, all fil-
ters considered in Table 2.1 ensure a stable feedback loop with the delay 7 = 4 ms,
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Figure 2.11: First case (0, = 1.35Nm.s/rad). Top: (a) Nyquist plot of L(s) =
P(s)C(s)e~". (b) Frequency responses of the road reaction torque to the driver
torque. Bottom: Driver comfort assessment tests. (c) Driver torque for a square
road torque input. (d) Hysteresis curve to assess the steering feel.

as it can be observed in Figure 2.12a. In Figure 2.12b, we show that filter C'5 can
improve the bandwidth of the closed-loop transfer function of the road reaction
torque to the driver torque 7); and reduce the resonant frequency. Figure 2.12c
shows that the response with the filter C5 presents a slightly smaller time con-
stant but also reduced overshoot. The filter Cy has a poorer performance than Cs
for the same delay margin. As shown in Figure 2.12d, filter C, presents a larger
hysteresis, associated with an increased damping of the steering system. This
hysteresis generates an additional force that the driver must provide during ma-
neuvers.

2.3.5 Time-varying delay case

In this section, we consider filter C'5 with o, = 16.79 Nm.s/rad, which is the one
that provided the best performance in Section 2.3.4. For this filter, we simulate
a time-varying delayed signal to test its robustness to a time-varying delay. The
tests were carried out considering time-varying delays within the delay range for
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Figure 2.12: Third case (0, = 16.79Nm.s/rad). Top: (a) Nyquist plot of L(s) =
P(s)C(s)e~". (b) Frequency responses of the road reaction torque to the driver
torque. Bottom: Driver comfort assessment tests. (c) Driver torque for a square
road torque input. (d) Hysteresis curve to assess the steering feel.

which the stability is guaranteed for fixed delays. We considered a time-varying
delay (in ms) of the form

7(t) = 70 + esin(wt),

where 1y = 4ms. Simulations are illustrated in Figures 2.13a and 2.13b, where the
considered values of parameters w and ¢ are provided in the legend of each plot.
It is shown that the variations of the delay around a constant average value, as in
the above expression, do not have a significant effect on the performance of the
filter.

2.3.6 Controller sensitivity with respect to rejection of distur-
bances

In this section, we also consider filter Cs with ¢, = 16.79 Nm.s/rad. For this filter,
we plot in Figure 2.14 the Bode diagrams of the transfer functions G, and (1 +
K)G,. We considered a constant delay 7 = 4 ms. It is shown that the magnitudes
of the transfer functions G; and G, are small in the high-frequency range. More-

54



2
———-w=0ande=0
———-Tyforw=0ande=0 = v
15+ 4B T, for w =500 and € = 0.5 | 3+ w - Egg allii—;g;f:
. f\\ B T, for w =500 and € = 1 w;/;mﬁan E/{ZOF
oA, B T, for w = 2000 and € = 0.5 /% - a/ng =05
1 1// 7S = ———--Tyforw=2000and e=1 7 2k W= /()J.J/an e=1 |
| 1\4- vl I L - e
05 7]’ \ Z 1 /// ///
— - / /
Z ot 1 S [/
o I 3 0 / /
1 I g // /
I I 3 /
g 05 | (\ X : // /
) LA A £
- / ,
1 | ‘.\/, v \/ - A 7 //
IRV 2 // _
1.5¢ Y - _—
. . _
i o
ot v 3L
\
25 . . . . . . . 4 I I I . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Time (s) Steering wheel angle 0, (rad)
(a) (b)

Figure 2.13: Driver comfort assessment tests for o, = 16.79 Nm.s/rad, with a time-
varying delay. (a) Driver torque for a square road torque input. (b) Hysteresis
curve to assess the steering feel.

over, the transfer function G, has a sufficiently large bandwidth that provides the
driver feedback on the force acting on the wheels.

2.3.7 Comparison with existing results

In this section, a comparison with a recent state-of-the-art controller is carried
out. For the parameters values given in Table 2.2 with 0, = 1.35Nm.s/rad, the
selected optimal controller proposed in [52] is a cascade of three lead-lag filters,

given by
S S S
Cs(s) = <ﬁs+1> <32_;+1> <é§07+1>.
(oo ) G +2) (735 +1)

The design of the above control does not take into account delays in the loop. We
measured the delay margin of the above controller to be 1.8 ms, which is signifi-
cantly smaller in comparison to the delay margin of 2.69 ms of C's. Moreover, for
a delay of 1.5 ms, we apply the road feel and steering feel tests and, for both tests
a worse performance is obtained for Cy as illustrated in Figure 2.15.

2.4 Conclusions

Motivated by its applications to the analysis of EPS systems stability, we studied
a feedback loop consisting of a second-order system in feedback with a control
filter and delays. Since the analytic expression of exact delay margins is difficult
to obtain, explicit formulas to lower bound them were proposed. For different
filter configurations, we showed that improved delay margins can be obtained by
reducing the assist gain or by increasing the damping of the system. However, in
addition to the robustness with respect to delays, the simulation results indicate
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that an increased damping can have a negative impact on the subjective steering
feel and road feel performances. Future work will propose a trade-off between
performance measures (in terms of steering feel and road feel) and delay margins.
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Chapter 3

Increasing the delay margin of
steer-by-wire systems

In this chapter, we propose a robust Steer-by-Wire (SBW) control architecture to
provide high assistance gains in the presence of internal and transmission delays.
The proposed controller is inspired by [1710] and [2], where a modified Smith pre-
dictor [4] is proposed to compensate for the internal delays in the presence of
disturbance signals. These internal delays are usually smaller than transmission
delays and are assumed to be known and constant. Hence, their compensation
allows to remove them from both local feedback loops, and the stability margin
of the interconnected system is reduced to a robustness analysis with respect
to the communication delays only. Our methodology is based on frequency-do-
main techniques for stability analysis of time-delay systems, which provide the
allowable bound on the communication delay for the system. To that aim, a Padé
approximation is used to compute an analytical expression of the delay margin
of the SBW feedback loop. Finally, the delay robustness analysis presented also
applies to remote vehicle operation, where the delays can be even larger than in
the local vehicle network.

The chapter is organized as follows: The proposed modified Smith predictor
is presented in Section 3.1. The controlled system is compared to the conven-
tional Proportional-Derivative (PD) telemanipulation controller. In Section 3.2, a
method for estimating the delay margin is proposed. Simulations that compare
the proposed controller to a conventional PD controller are also included.

3.1 A modified Smith predictor

Consider the dynamics of the SBW system

Tl (1) + 000 (1) = T (t) + Tu(t),

iy . (3.1)
JpOp(t) + 0,0, (1) = Tp(t) + T0(2),

where 6,, 0, are the angular positions, .J,,, J,, the moments of inertia, 0., 0,, the
damping coefficients, and T,, T,., the torques generated by the driver and the road.
For the PD controller, the control inputs T, and 7,, interconnect the system with
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Figure 3.2: Steering wheel/Pinion subsystems block diagram with PD controller.

the control law

Tow(t) = ku(0p(t — 72 — 7)) — Ou(t — 7))
Tp(t) = kp(Ou(t — 11 — 7)) — Op(t — 7))

+ Pw(9p<t — T2 — Tp) - éw(t — Tw)), (3.2)
+ pp(Ou(t — 71— Tw) — O,(t — 7)),

where k., k,, p,,, and p, are positive control law parameters, 7, 7, are the internal
delays, and 7y, 7» are the transmission delays (see, e.g., [51]). This interconnected
system (3.1)-(3.2) is represented in Figure 3.1, with the steering wheel and the pin-
ion subsystems as shown in Figure 3.2, (¢, 5,7) € {(w,p,Ty), (p, w,T,)}, where the
transfer functions P, and C;, for i € {w, p}, are expressed in the Laplace domain

as
1

Fils) = Jis? + o;s

and
Ci(s) = ki + pis.

Inspired by [110] and [2], to eliminate the internal delays from the feedback
loop of the closed-loop subsystems, we replace the PD control law (3.2) by the
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Figure 3.4: Steering wheel/Pinion subsystems block diagram with modified Smith
predictor.

modified Smith predictor control architecture depicted in Figure 3.3, where the
internal delays 7, and 7, and the system parameters are assumed known. To im-
prove the control architecture proposed in [110], we add to the PD controllers C,,
and C, two lead filters given, respectively, by 1 + 7,,s and 1 + 7,s.

Using the proposed control architecture, the transfer function from 6,(s)e™"*
to 0;(s)e” ™ is given by

O;(s)e ™ (14 7;5)Ci(s)Pi(s)e™™*

Hj(S)B_Tjs - 1+ Oz(s)-Pz(S) 7 (3.3)
and the transfer function from 7'(s) to 6;(s) is given by
0;(s) _ Pi(s)(1+ Ci(s)Pi(s)(1 — (1 + Tis)e_ﬂ's)). (3.4)

T(s) 1+ Ci(s) Pi(s)
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Therefore, (3.3) and (3.4) imply that the block diagrams of Figure 3.3 and Figure 3.4
are equivalent. Moreover, without delays (i.e., = 7 = 7, = 7, = 0), the pro-
posed control structure is equivalent to the conventional PD control law in (3.2).
The main advantage of the proposed control structure is that the internal delays
are removed from the feedback loop of the closed-loop subsystems. Therefore,
the SBW system (3.1) with the control architecture of Figure 3.3 is represented
by the interconnected system in Figure 3.5. In the sequel, we will consider the
open-loop transfer function L defined as

(14 748)Cuw(8)Pu(s) (14 7,8)Cu(s)Py(s)

L(s) == OGP 1+ GEREG)

(3.5)

3.2 Stability analysis
To check the stability of the interconnected system, we use the Nyquist crite-

rion [107], which provides a convenient way to examine stability for linear time-
delay systems.
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Proposition 3.1. Given the system in (3.1)-(3.2) without delays (i.e, 7y = 7o = 7, =
7, = 0), the closed-loop system is stable for any positive values of the control parame-
ters ky, kp, puw, and py,.

Proof. The claimis animmediate consequence of the Routh stability criterion in
dimension 3, as detailed in [116, Theorem 2.4]. O

The delay margin [70] of a feedback loop with a single delay is the bound At
such that the closed-loop system is stable for any delay in the interval [0, A7).
From Proposition 3.1, the system (3.1)-(3.2) is stable for any values of the con-
trol parameters ky, k,, pw, and p, if m = m = 7, = 7, = 0. We will study be-
low the stability of the system, to obtain the largest value of the round trip de-
lay 7 such that the feedback loop in Figure 3.5 is stable for all delay values in the
set {(71, T2, Tw, Tp) | 1 + T2 + Tw + T < Tr}.

From the open-loop transfer function in (3.5), the unity-gain crossover fre-
quencies w, are the real positive solutions of the equation |L(jw.)| = 1. Finding
the explicit expression for the solutions w, of this equation is difficult since the
characteristic equation is a polynomial of degree 4. Nevertheless, we can deter-
mine conditions under which the unity-gain crossover frequency w. of L exists
and is unique as detailed in the following proposition.

Proposition 3.2. /f the control parameters k., pw, kp, pw verify

a >0,
d <0,
b2c? + 18abed < 27a%d? + 4ac® + 4b3d,

where

a = J2TE =ikl
b=J3(pp + 0p)° + J2(pw + 0w)* — 2k Ju ] — 2kyJ, T,
— TuPu Tk + p3) = T, 0 (To ke, + P2),
¢ = dkykyJyy + ko2 + k2 T2 — 2k Juw(pp + 0p)°
— 2k Jp(pu + Uw)Q + (pw + Uw)z(/)p + 0p>2
212 2 212 2 21.2 2 21.2 2
- kappw —Tp kwpp - (kaw + pw)(Tp kp + pp)v
d =k, (pp+ 0p)° + k2 (pw + 0w)? = 2kwJuk — 2k, J ks,
—kLpl — k2pl — Tako ks — T kLK

w w™VwVp pYw'p>

then, the unity-gain crossover frequency w. of L exists and is unique.

Proof. The unity-gain crossover frequency w. is the real positive solution of the
equation |L(jw.)| = 1, which is equivalent to

awd + bw} + cw? +d = 0.
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The discriminant of the above third-order polynomial is given by
A = 18abed — 4b%d + b°c* — dac® — 27a°d>.

Therefore, since A < 0, the third-order polynomial has a unique real root and,
since a > 0 and d < 0, the unity-gain crossover frequency w, is positive. a

Below, we assume that the conditions on the control parameters given in Pro-
position 3.2 hold. This is a realistic assumption since it is usually verified in con-
ventional SBW systems. These conditions give an upper bound on the admissible
round trip delay 7 as shown in the following theorem. However, it is also possible
to find conditions on the control parameters to ensure stability independently of
the delays.

Theorem 3.3. Assume that the unity-gain crossover frequency w. of L exists and is
unique. For the interconnected system given by Figure 3.1 and Figure 3.3, there exists
a constant Tr such that the closed-loop system is stable for all the delay values in the
set {(71, 72, Tw, Tp) | 1 + T2+ Tw + Tp < Tr}.

Proof. Since the unity-gain crossover frequency w. of L exists and is unique,
then, from [107], T correspond to the lower bound of 7z > 0 that satisfies, for 0 <
WeTr < 2T,

L(jw.)e ®™ = —1.

In this case, the delay margin is given by

= A8(LGw)) + 7 (3.6)

We

and the unity-gain crossover frequency w,,, of the steering wheel subsystem, given
by

_(pw =+ Uw)2 + p12u + 2kaw)

2 _
w,,, = max (0, 7
w

provides a first estimate of the solution w.. Below, we propose an approach to
obtain a tighter estimate of w..

First, we approximate the transfer function L using a Padé approximation
at w.,, defined by a first-order transfer function L with complex coefficients. That
is, based on the Taylor series, we approximate separately the numerator

Ni(s) = =(1 4 7ws) (L + 75) (pws + kuw)(pps + k)
and the denominator

Dy(s) = (Jus® + (0w + puw)s + l{:w)(Jps2 + (op + pp)s + k)
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of L in the neighborhood of w,,, to obtain
dNy,

- N (jwew) + j(w — ch)d_(jwcw)
L(jw) = S
J Dy,
DL(jwcw) + ](UJ - wcw)%(jwcw)
_ajw+b
Ccjw+d
where q, b, ¢, and d are complex coefficients
S\
a = K(]ch)a
. . dNp, .
b= NL(]wcw) — JWew d L(]ch)y
S
Dy, , .
€= d_s(chw>’
. . dDyg .
d= DL(jwcw) — JWew dSL (]wcw)-

This approximation generates a circle tangent at w.,, to the Nyquist locus (Fig-
ure 3.6). The unity-gain crossover frequency @, of L can be calculated analytically
since the characteristic equation is a polynomial of degree 2. It is given by

. —(bz‘CLT — brai — diCT + drci) - \/Z

- 2. .2 _ 2 2 )
az +a; —c

‘o T G
with

A = (bia, — bya; — dic, + dpc;)? — (a2 +af — 2 — ) (b2 + b7 — d> — d2),
where a,, a;, by, b;, ¢, ¢;, dr, and d; are, respectively, the real and imaginary parts
of a, b, ¢, and d. Therefore, since L is an approximation of L, . approximates w,
more precisely, which can be used to compute the delay margin 7z in (3.6).
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The approximate values of the delay margins obtained using L(j®.) and &.
in (3.6) are illustrated in Figure 3.7. On the one hand, for small values of k,/k,,
the unity-gain crossover frequencies of the steering wheel and pinion subsys-
tems (w., and w,,, respectively), are close to each other, which generates an abrupt
change in the phase of the transfer function L. This change in phase introduces a
significant error in the estimation of the delay margin. On the other hand, when
the value of k,/k,, is large, which is always the case in an assisted steering system,
the frequency w,,, is far apart from w,,. This prevents the abrupt change in the
phase of the transfer function L and, in this case, the unity-gain crossover fre-
quency w, is close to w,, which provides a more accurate approximation of the
delay-margin.

The assist gains k,, and k, are fixed by the system requirements. The deriva-
tive gains p,, and p, have a significant effect on the stability of the SBW system.
However, determining an explicit expression for the values of the parameters p,,
and p, that maximize the delay margin is difficult [66, Theorem 3.1]. Figure 3.8
shows that the derivative gains p,, and p, have a non-monotonic effect on the
delay margin.

3.3 Simulations

In this section, we compare the performance of the proposed modified Smith
predictor and the conventional PD controller, for the control parameter values
reported in Table 3.1. We assume, moreover, that the road torque is given by

To(t) = —k,0,(t) — pb, (1), (3.7)
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Figure 3.8: Delay margin 7 = 7, + 7, + 71 + 72 contours, in ms, for 7, = 7, = 5ms.
The conditions of Proposition 3.2 do not hold inside the domain bounded by the
red curve.

Table 3.1: SBW and controller parameters.

Parameter Value
T 0.044 Kg.m®
J, 0.11 Kg.m?
Ky 143.24 Nm /rad
kyp 36k, Nm/rad
Puw 0.25 Nm.s/rad
Pp 7.75Nm.s/rad
Ow 0.25 Nm.s/rad
Tp 1.34 Nm.s/rad

where k. = 300 Nm/rad and p, = 25 Nm.s/rad. To obtain a more realistic steering
feel [58], we introduce a nonlinear torque map « in the control law T,
p(t) = kuw(Ou(t — 11 — T0) — Op(t — 7))

BB 0t = 1= ) = (0 = 7))

+ Pp(ew(t —T1— Tw) - ep(t - Tp))7

+

where x is illustrated in Figure 3.9 and &, > k,.

We simulate the SBW system in three different cases, in which we change the
values of the delays as depicted in Table 3.2. In each case, we consider two sce-
narios. In the first scenario, a square-like steering torque input is applied, and
both the tracking performance and the control signals are examined. In the sec-
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Figure 3.9: Normalized nonlinear torque map.

Table 3.2: Simulation cases.

Delay | Case 1 | Case 2 | Case 3
Tw (ms) | 2.5 5 5

7, (ms) 2.5 5 5

71 (ms) 5 5 10
72 (ms) 5 5 10
Tr (ms) | 46.04 48.47 48.47

ond scenario, a sinusoidal steering torque input of amplitude 5 Nm and frequency
of 0.1Hz is applied and the steering wheel angle is plotted with respect to the
driver steering torque. The performance of the system is measured by the hys-
teresis of this curve. That is, by the distance between the two intersection points

with the ordinary axis at 6,, = 0.

For Case 1, since the values of the delays are small, the two controllers have
approximately the same performance, as shown in Figures 3.10 and 3.11. For
Case 2, as shown in Figures 3.12 and 3.13, the modified Smith predictor compen-
sates for the internal delays and performs almost as in Case 1. However, the PD
controller exhibits slight vibrations. These vibrations are a result of the fact that
the internal delays are still present in the feedback loop of the steering wheel
and pinion subsystems. For Case 3, where we consider larger communication de-
lays 1 + 7 + 7, + 7, = 30ms, as shown in Figures 3.14 and 3.15, the modified
Smith predictor results in an oscillating behavior since it gets closer to the delay
margin 7r = 48.47 ms.
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3.4 Conclusions

This chapter studied SBW control loops using PD control laws. To circumvent the
lack of robustness with respect to internal and transmission delays of the PD laws
with high gains, we introduce a modified Smith predictor. Thanks to the predictor,
the closed-loop stability depends only on the round trip delays and not on each
of the delays separately. Moreover, we provide an approximation to the delay
margin based on a Padé approximation of the open-loop transfer function. Finally,
to illustrate the superior performance of the closed-loop including the predictor,
we consider a steering feel assessment based on the time response from driver
inputs. For large values of the delays, we observe reduced oscillations during
transients.
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Figure 3.10: Case 1: Control signals for a square-like steering torque input.

6 T T

------------- PD controller
Modified Smith predi

Steering wheel torque (Nm)

-30 -20 -10 0 10 20 30
Steering wheel angle (deg)

Figure 3.11: Case 1: SBW steering feel for a sinusoidal driver torque input.
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Figure 3.14: Case 3: Control signals for a square-like steering torque input.
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computation approaches






Chapter 4

Preliminaries on time-domain
stability analysis

The use of Lyapunov's method for the stability analysis of difference-differential
equations traces back to the work of Krasovskii [49]. For the particular case of
linear time-delay systems, quadratic Lyapunov-Krasovskii Functionals (LKF) were
studied in [91]. Importantly, the existence of a quadratic LKF is a necessary and
sufficient condition for a linear time-delay system to be exponentially stable [21,
Theorem 2.1].

For exponentially stable linear time-delay systems, a quadratic LKF can be
constructed by identifying its time derivative with a prescribed quadratic func-
tional [91, 20, 40, ]. The LKF is then constructed from the delay Lyapunov ma-
trix, the solution to a system of linear matrix differential equations associated with
specific boundary conditions [43, Chapter 2]. Based on these results, to conclude
on stability using the obtained LKF, its positivity must be verified, which can be a
difficult task [43, pp. 73-74]. To check the positivity of the obtained LKF, necessary
conditions based on its evaluation for particular functions are presented in [24].
In a different vein, the relation between the delay Lyapunov matrix and the eigen-
values of the time-delay system is presented in [63], where a numerical method
for determining the stability exponent and the eigenvalue abscissas is provided.

In other numerical approaches for stability analysis, the LKF is defined in terms
of a fixed number of parameters. Then the stability conditions impose constraints
on the set of parameters that verify both upper and lower bounds on the LKF
and the strict negativity of its time derivative along the trajectories of the system.
These formulations are most often expressed as SemiDefinite Programs (SDP) [82],
the solution of which yields the LKF parameters. The first numerical methods
to compute LKF based on SDP imposed rather simple functional structures [104,

, 83]. More complex structures, where the parameters are coefficients of poly-
nomials, were introduced thanks to polynomial optimization or projection meth-
ods [88, ]. To check the stability conditions associated with projection meth-
ods, some known inequalities such as the Wirtinger inequality are employed [97].

In this chapter, we present linear time-delay systems and recall the associated
version of Krasovskii's theorem in Section 4.1. An overview of an analytical method
for constructing a quadratic LKF with prescribed time derivatives is presented in
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Section 4.2. Importantly, we prove that the kernel in a double integral term of the
constructed LKF has a non-separable form. Finally, we present a literature review
on the topics addressed in the second part of this manuscript, that is, existing
methods to verify bounds on the Lyapunov-Krasovskii functionals.

4.1 Stability of time-delay systems

Consider a linear time-delay system of the form

dit_x(z?) — An(D) + Ag(F—h),  VE> 0,
‘T(D = (Po({), vt € [_h70]7

where A € R™™", A; € R™", his a strictly positive scalar constant, and ¢, €
PC(]—h,0],R"™) is the initial function of (4.1), where PC(]a, b], R") is the space of
piecewise continuous functions mapping the interval [a, b] into R™. To make the
presentation of the results more compact and to simplify the system representa-
tion using projections into sets of functions defined on the interval [0, 1], for » > 0,
we recast (4.1) as the following interconnection of an ordinary differential equa-
tion and a transport equation [50, Chapter 2],

(4.1)

0=—h = 0=0,
=0 = 6=1,
do 1 _
= — hdb=db
dg h ’

and the equation

%gb(g, 1) = Ap(f, 1) + Aud(£,0),  Vi>0,

00(0.0) = T06(L.0),  V(E.0) € [0, +00) x [0,1].

1_
Introducing t = Et’ we obtain



and the equation

SO1) = hAG( 1) + hAD(L0), Vb0,
B0, 0) = (1, 0),  V(t,8) € [0,+00) x [0, 1],

which is equivalent to

%qﬁ(t, 1) = A1o(t, 1) + Apo(t, 0), vVt >0, (4.2a)
0ip(t,0) = Oyo(t,0), V(t,6) € [0,+00) x [0,1], (4.2b)
where A; = hA and Ay = hA, and the initial function
#(0,0) = @o(hf — h), Vo € [0,1].

Note that, in the above representation, the delay h appears as a parameter on the
system matrices.

The goal of this part of the manuscript is to study the exponential stability of
the origin of (4.2) by searching for a stability certificate, namely, the LKF satisfying
the sufficient conditions of the Krasovskii theorem [49], stated below consider-
ing (4.2).

Theorem 4.1 ([49, 43]). The origin of system (4.2) is Globally Exponentially Stable (GES)
if there exists a functional V : PC([0, 1], R") — R such that the following conditions
hold

1. For some positive o, oo

arllp(W? < V(p) < aallplliy, Vo € PC([0,1],R"). (4.3)

2. For some (8 > (0 the inequality

d

SVt 1),6(t) < =Blet DI?, >0, (4.4)

holds along the solutions of the system.

Note that the above theorem is not the only existing approach for stability
analysis of time-delay systems using a Lyapunov-Krasovskii functional. Some al-
ternative methods aim to derive stability conditions based on system transforma-
tions [28]—see Appendix C.

4.2 Construction of Lyapunov-Krasovskii function-
als using the delay Lyapunov matrix
This section provides an overview of an analytical method to obtain quadratic LKFs,

based on the delay Lyapunov matrix that results from prescribing time derivatives.
The method parallels the computation of Lyapunov matrices for delay-free linear

77



systems obtained from the solution to the Lyapunov equation, where the positive
definiteness of the Lyapunov matrix is a necessary and sufficient condition for
stability. The contents of Section 4.2.1 and Section 4.2.2 are well known and are
presented here to highlight the main differences with the approaches based on
convex optimization for the computation of LKFs.

The construction of a quadratic LKF with a prescribed time derivative started
in [91], where a system of matrix algebraic and partial differential equations was
derived for computing the LKF. The set of matrix equations was further studied
by [20, 21], and it is now well established [43] that the Lyapunov-Krasovskii func-
tional associated with the prescribed time derivative can be constructed from the
delay Lyapunov matrix [40]. The delay Lyapunov matrix is a matrix function U :
R — R™™ obtained from the solution to the linear matrix differential equation

and algebraic constraints [44, 40] given by
d
@U(Q) =U(0)A, + U0 — 1) Ao, Vo > 0, (4.5)
U(—-0)=U"(6), V6>0, (4.6)
and
U(0)A; +U(=1)Ag + AT U(0) + AJU(1) = —W. (4.7)

The three previous relations are known as the dynamic, symmetric, and algebraic
properties, respectively.

4.2.1 Computation of the delay Lyapunov matrix

The solution of the delay Lyapunov matrix U(#), for § € [—1, 1], associated with
a symmetric matrix W is determined by two auxiliary matrices Y'(#) and Z(0),
for 6 € [0, 1], which are solutions of the following boundary value problem [44] of

linear matrices ordinary differential equations

d
d (4.8)
A Z(0) = —ATY (6) = A Z(9),

and the boundary conditions

Y(0) = Z(1),
ATY(0) +Y(0)A + Ay Y (1) + Z(0)Ag = —W.

(4.9)

In[44], itis shown that if system (4.2) is exponentially stable, then it satisfies the
Lyapunov condition [43, Definition 2.6]. In this case, we have det (M + Ne*) # 0,
where

(4.10)

L_ A1®In A0®In
S| -LeA] LA

M = [ In ® [n Oan ® Onxn:| ’
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and
N = Onxn ® Onxn _In ® In
| L®A] 00k @ Opxn)

and (4.8)-(4.9) admits a unique solution, given by

vec(Y(0))| _ 1 1 | vec(Opxn)
[VeC(Z(Q))] = e"(M + Net) {_ Vec(W)l : Ve e [0, 1], 4.11)

where, for any matrix X € R"*", we define the vector vec(X) by stacking up the
columns of X. Moreover, [11] introduces the following lemma.

Lemma4.2([11]). The spectrum of system (4.8) is symmetric with respect to the origin
of the complex plane.

Denote by k the number of pairs of eigenvalues of L and by r;, fori =1,--- |k,
the size of the largest Jordan block associated with one of its eigenvalues ;. From
(4.11), using Lemma 4.2, the matrices Y (0) and Z(6) can be decomposed [11] as

Y(0)=YF"(0), Vv8elo1],

. (4.12)
Z(0)=ZF"(0), V0eo,1],

where Y and Z are constant matrices in R™*", with p, = >, 37 | 2and F(0) =

[/1(8) -~ fp.(0)] ® L, where, foralli=1,--- ,p,,
ﬁ(e) E {6j:)\19’ . 707’1716i)\197 . ’ei)\kG’ . ’erkflei)\ke}’ (4.1 3)
with +);, fori =1,..., k, the eigenvalues of matrix L.

From [44], the delay Lyapunov matrix U : [—1,1] — R™*" of the time-delay
system (4.2), associated with a symmetric matrix W, is given by

1 1

“Y(0)+-ZT(1—0), Voe[o1]
U) =12 o (4.14)
SV (=0)+5Z(1+6), Ve [-1,0),

with Y, Z solution of (4.8)-(4.9). Therefore, from (4.12)-(4.13), we have that the
delay Lyapunov matrix is expressed in terms of the 2n? exponential functions
in (4.13).

Remark 4.1. In [64], a relation between the spectrum of a time-delay system and
that of an auxiliary delay-free system of matrix equations is established. Namely,
it is shown that any pure imaginary eigenvalue of the time-delay system (4.2) is
also an eigenvalue of the auxiliary system (4.8)-(4.9).

4.2.2 Construction of the Lyapunov-Krasovskii functional

The steps to obtain V satisfying the conditions (4.3)-(4.4) are summarized as fol-
lows
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Step 1. Assign the time derivative of V (p) along the solution of (4.2) as

d

Ev(gb(t? 1)7 ¢(t7 )) = _w(gb)v (4.15)

where, for some 3 > 0, w(¢) satisfies w(¢) > B||¢(t,1)||? forall ¢ > 0.

Step 2. Compute the delay Lyapunov matrix on the interval [—1, 1] by solving
the differential equation (4.5) and algebraic constraints (4.6)-(4.7). The
matrix W, in (4.7), depends on the parameters W; included in w (see
the paragraph below).

Step 3. Construct the corresponding functional V.
Step 4. Verify whether the bounds in (4.3) hold.

To illustrate these steps, let us consider two different choices for the func-
tional w. First, consider

w(p) = ¢ (t, HYWoo(t, 1), (4.16)

where W} is a positive definite matrix, and let us denote V;, the solution to (4.15)
(Step 1), which is obtained by first computing the delay Lyapunov matrix U(0), 6 €
[—1, 1], associated with the matrix W = W} in (4.8)-(4.9) (Step 2). Then, from [45],
the functional V; is expressed as (Step 3)

oo = [T 070l [ty G0N ()]

Oan
1 1
+ / / T (O)ATU (6 — ) Agp(n)dndo. (4.17)
0 0

It has been shown in [40] that there exist exponentially stable systems for
which the lower bound in (4.3) does not hold for V; in (4.17). Therefore, these in-
stances of system (4.2) will not verify both conditions of Theorem 4.1 even if (4.15)
holds with w as in (4.16). However, it is shown that, for an exponentially stable sys-
tem (4.2), using w as

1
w(¢) = ¢ (t, NWood(t, 1) + ¢ (t,0)W1(t,0) + / o' (t,0)Wap(t,0)dh, (4.18)
0
where Wy, Wy, and W, are positive definite matrices, we obtain a necessary and

sufficient condition for the lower bound in (4.3) to hold for a solution to (4.15).
And Steps 2 and 3 above give

V(p(1), p()) = Volp(1), p(-)) + /0 p " (0) (W, + 0W3)p(6)de

- [ e[S ] e @

i /0 /o P (0)Ag U (0 — ) Aop(n)dndd,
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where the delay Lyapunov matrix U(0), § € [—1,1], is associated with the ma-
trix W = Wy + W1+ Wy in (4.9). For an exponentially stable system, considering w
as in (4.18) guarantees the lower bound in (4.3)—see [40, 45].

It remains to carry out Step 4 above. A necessary and sufficient condition for
the system (4.2) to be exponentially stable is that the LKF in (4.19), associated with
functional w given by (4.18), is positive. Hence, from U(#), W;, and W5, the stabil-
ity analysis is reduced to the verification of the positivity of V(p). However, given
a functional such as (4.17) or (4.19), it is generally difficult to check its positivity
forany p € PC([0,1],R") using its analytical expression. Instead, in [24], a stabil-
ity analysis tool for determining instability regions of linear time-delay systems is
proposed. For a particular function, it provides necessary conditions in terms of
the delay Lyapunov matrix to guarantee that a quadratic lower bound on the LKF
is satisfied (see also [32] and [23]).

In the rest of the chapter, we will consider a general parameterization of LKFs
as

= [ b sl ) B

R(6
* /0 /0 p"(0)T(0,n)p(n)dndd, (4.20)

with P € S*, @Q : [0,1] — R, R : [0,1] — S", and T : [0,1] x [0,1] — R™*™,
where S" is the set of n x n real symmetric matrices. Note that in this parame-
terization R is not necessarily affine. Note also that the functional (4.19) can be
obtained when

P =U(0), (4.21a)
Q(8) = U (0)A,, Vo € [0, 1], (4.21b)
R(6) = W, + 0, Vo € [0,1], (4.21¢)
T(0,n) = AgU(8 — 1) A, V(0,n) € [0,1] x [0, 1]. (4.21d)

As an example of LKF construction, consider the time-delay system given by
t(t) = —ax(t) — fx(t — h), (4.22)

where aand g are scalars, with o < (. It can be represented asin (4.2), where Ay =
—hp and A; = —ha. This example is regularly used in the literature to illustrate
different approaches to construct Lyapunov-Krasovskii functionals—see, e.g., [91]
and [40]. The delay Lyapunov matrix U(#), for § € [—1, 1], associated with a ma-
trix W is given by (4.14), where

_ [=ha —hp
L= | hB ha ] ’
! 0
M=1"2na —hﬁ}’
0 -1
N=1 s o0 } ’
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and vec(W) = W.
Let us define

k=+/[?— a2,
we have
k cos(khf) — asin(kh0) _ Bsin(kho)
L _ k
© = Bsin(kho) k cos(kh) + asin(kho)
k k
and
(M+Neb)™
—Bsin(kh) + k —asin(kh) — k cos(kh)
k
h(apfsin(kh) — Bk cos(kh) — 2ak) _B —f sm k:h )+ k)
k
_ B(-—Bsin(kh) + k) asin( kh ) + k cos(kh)
_ 1 ksin(kh) — cos(kh)aa — B h(ksin(kh) — cos(kh)«
9k | aBsin(kh) — Bk cos(kh) — 2ak —Bsin(kh) + k

ksin(kh) — cos(kh)a — h(ksin(kh) — cos(kh)a — f3)
Then, from (4.11), we have, for all 6 € [0, 1],

[ sin(khO)  cos(kh@)(asin(kh) + kcos(kh))
V(o) = <_ 2kh  2kh(ksin(kh) — a cos(kh) — ﬁ)) W

and

B cos(kh®)(k — B sin(kh)) sin(khé)(a + B cos(kh))
2(0) = (_ 2kh(ksin(kh) — avcos(kh) — B)  2kh(ksin(kh) — o cos(kh) — 5)) w.

Therefore, from (4.14), we have, for all § € [0, 1],

2U00) =Y (0)+Z"(1-0)
= 2Y(0)
_ (_sin(kzh@) _ cos(kht)(asin(kh) + k:cos(kh))) W

kh kh(ksin(kh) — acos(kh) — )

Hence, we consider )
F(0) = [cos (hkf) sin (hkb)] .

From (4.21b), the parameter Q(6) can be written as Q() = Y " (0)Ay = QF ' (0),

where o B(asin(kh) + k cos(kh)) B
9= sz(ksin(k:h) — acos(kh) — ﬁ)) v (%) W} '

Also, from (4.21a), we have

B B asin(kh) + k cos(kh)
P=Y(0)= (‘ 2kh(k sin(kh) — o cos(kh) — 5)) ' (4.23)
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4.2.3 The parameter T is not separable

Let us note thatthe parameter 7'(¢, n) in (4.20) is expressed as in (4.21d) in terms of
the solution to (4.8)-(4.9) using U(0) in (4.14). This section studies the separability
of T'(6,n), namely we study whether 7" obtained from the construction of the LKF
by assigning the time derivative, as discussed above, can be expressed as the
product of functions as

T(0,n)=FO)TF (),  ¥(0,n) €0,1] x [0,1],

with T € S™«. This is a relevant property since the use of a separable T is a key

step in obtaining sufficient SDP-based stability conditions [90, ]. Let us first
observe that using (4.12), (4.14), and (4.21d), we obtain
TET(O—n), VYo—nelo,1],
(o) =4 L 0 ey (4.24)
F(=0+n)T", Y8—ne]-1,0),

where T e R™ "« js a constant matrix.

Below, we show that T" as in (4.21d) is not separable. Therefore, the same
term in the LKF using the delay Lyapunov matrix will not possibly appear in SDP-
based approaches that assume its separability. Let us first consider the following
lemma [1271]—see [96] for an alternative approach.

Lemma 4.3. A function k : [0,1] x [0,1] — R can be written as k(x,y) = u(x)o(y)
for some functions p, o : [0, 1] — R if and only if, for every x, y, w, z € [0, 1], it holds
that

Kz, y)r(w, 2) = k(z, 2)k(w, y). (4.25)

Proof. The necessary condition follows directly from the commutativity of mul-
tiplication, since with k(z,y) = pu(z)o(y) we have
k(@ y)k(w, 2) = plx)o(y)p(w)o(z) = k(z, 2)k(w, y).

To prove the sufficiency, we consider two cases. In the first case, we suppose
that the function x(a,b) = 0, for all (a,b) € [0,1] x [0,1]. Then, in this case, we
have p(z) = 0 and o(y) = 0, for all , y € [0,1]. In the second case, we assume
that 3(a, b) € [0, 1] x [0, 1] such that k(a, b) # 0, then (4.25) gives

k(z,y)r(a,b) = k(x,b)r(a,y),
which implies that
(o) = rla, b2l

rla,y) 0
k(a,b)

We now apply the necessary and sufficient condition in the above lemma to
concludethat T in (4.21d)is notseparable. Leta, b, ¢, and d be scalars satisfying 0 <

thus, for all z, y € [0,1], u(z) = k(x,b) and o(y) =
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d <c<b<a<]1.Following (4.24), we have

and
T(c,b) = F(—c+b)T".

Therefore, by selecting a = b, ¢ = d, and ¢ < b, we have
T(a,b)T(c,d) # T(a,d)T(c,b).

For example, in the scalar case (n = 1), using (4.24), the parameter T" can be
written as

aer0=n) 4 ye=AO0-n) Vo —n € 0,1],
e e A=) g € [-1,0),

T(H,n)z{

for some values of a, v, A # 0. In this case, we have

T(a BT (c.d) = (X6 4 3¢ 6D) (N 4 60
= (a+7)’

and

T(a,d)T(c,b) = (ae)‘(a_d) + ve_x(a_d))(ae’\(_”b) + 76_”\(_C+b))
_ (ae)\(—c-i-b) + ,ye—A(—c-i—b))Q‘

Therefore, since the last term varies with —c + b, we can find a pair (¢, b) such that
T(a,b)T(c,d) # T(a,d)T(c,b).

Thus, from Lemma 4.3, we conclude that 7'(0,n) in (4.21d) is not separable.

The above section presented the main properties of the analytical method to
construct LKF from the delay Lyapunov matrix. We highlighted the main aspects
that are in contrast with methods based on semidefinite programming for the
computation of LKF, namely the presence of a finite number of exponential func-
tions (4.13) in the definition of the LKF parameters and the fact that the resulting
parameter 7'(6,n) in (4.21d) appearing in the double integral in (4.20) is not sepa-
rable.

Chapter 5 studies parameterized functions @, R, and T'in the LKF (4.20) con-
sidering a generic set of linearly independent functions, thus allowing to treat sets
as (4.13) or polynomials. The goal is to propose tests based on semidefinite pro-
gramming obtained by projecting the dynamics of a time-delay system into the
same set of linearly independent functions that define the functions @, R, and 7.
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4.3 Literature review on LKF

The analytical method for constructing a quadratic Lyapunov-Krasovskii functional
with a prescribed time derivative was introduced in [91]. A system of matrix equa-
tions was derived by identifying the time derivative of a general form of quadratic
functional along the solution of a linear time-delay system with a prescribed time
derivative functional. This system of matrix equations includes a linear matrix
partial differential equation, ordinary matrix differential equations, and matrix al-
gebraic equations.

This approach for constructing Lyapunov-Krasovskii functionals was further
studied in [20, 40, 21, , 64]. The steps to obtain a Lyapunov-Krasovskii func-
tional, as presented in Section 4.2.2, was formulated in [20], in which stability and
instability theorems for a linear time-delay system are represented using Hermi-
tian forms. It is shown that if the time-delay system is exponentially stable, then
there exists a solution to the system of matrix equations that is obtained by iden-
tifying the Lyapunov-Krasovskii functional.

In [40] and [1711], systems composed of an ordinary matrix differential equa-
tion and matrix algebraic constraints, similar to thatin (4.5)-(4.7), were adopted to
construct Lyapunov-Krasovskii functionals. In[1711], itis stated that a delay Lyapu-
nov matrix is determined from these three properties, (4.5)-(4.7). It is also stated
that if a time-delay system satisfies the Lyapunov condition [43, Definition 2.6],
then, for any symmetric matrix W, there exists an associated delay Lyapunov ma-
trix. In [40], it is shown that the unique solution of this system has an improper
integral form that depends on the fundamental matrix. The explicit solution to a
system of matrix equations as in (4.5)-(4.7) is studied in [11]. It is shown that, for
any W € S, the solution of (4.5)-(4.7) belong to a finite space of n? exponential
functions in the set (4.13).

In [111], the existence of the lower bounds for functionals of the form (4.17),
associated with functional w given by (4.15), is studied. The paper shows that,
for the case of exponentially stable systems, functionals of the form (4.17) admit
a local cubic lower bound. In [40], the Lyapunov-Krasovskii functional presented
there is equivalent to that in (4.19), associated with functional w given by (4.18).
For this functional, quadratic lower and upper bounds of the form given in (4.3)
were provided. The paper also mentions that, for the case of exponentially stable
systems, functionals of the form (4.17) do not admit a quadratic lower bound. A
brief account of the theory of Lyapunov matrices and functionals appears in [42].

Consequently, from the results presented in [40], a Lyapunov-Krasovskii func-
tional that yields necessary and sufficient conditions for the stability of a linear
time-delay system can be constructed using the approach in [97].

The relation between the delay Lyapunov matrix and the eigenvalues of the
time-delay system is presented in [63], where a numerical method for determin-
ing the stability exponent and the eigenvalue abscissas is provided. This result
highlights the relation between the delay Lyapunov matrix and the stability of a
time-delay system. However, finding the stability conditions of a linear time-delay
system in terms of the delay Lyapunov matrix U(6) is a difficult problem. The first
result in this direction was obtained in [71], where some necessary and sufficient
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conditions are derived for the case of scalar equations. In [24], a stability analysis
tool for determining instability regions of linear time-delay systems is provided.
For a particular initial function, it provides necessary conditions in terms of the
delay Lyapunov matrix to guarantee that a quadratic lower bound on the Lya-
punov-Krasovskii functional is satisfied. They introduce properties on the delay
Lyapunov matrix in terms of the fundamental matrix. In [25], it is shown that any
continuously differentiable function can be approximated by a particular func-
tion that depends on the fundamental matrix of the time-delay system. Based on
these results, in [23] and [32], it is proved that a finite number of mathematical
operations is sufficient to verify the stability inequality.

In Section 4.2.3, we showed that the parameter T in the Lyapunov-Krasov-
skii functional obtained from the delay Lyapunov matrix is not separable. To
provide bounds on the Lyapunov-Krasovskii functional, in the numerical meth-
ods [90, ], the parameter 7' is replaced by a separable function. Further de-
tails on these numerical methods are presented in Chapter 5. Alternatively, a
semi-separable kernel for the parameter T is studied in [89]. It is shown that
semi-separable kernels, parameterized by positive semidefinite matrices, have
advantages over separable kernels for the stability analysis of linear time-delay
systems. However, to conclude on the positivity of the Lyapunov-Krasovskii func-
tional, the positivity of the single integral term and the positivity of the double
integral term in the expression of this functional are treated separately. Hence,
sufficient conditions for the positivity of the proposed Lyapunov-Krasovskii func-
tional are provided. The way to handle the positivity of the Lyapunov-Krasovskii
functional with a separable kernel was later improved in [87], in which the Lyapu-
nov-Krasovskii functional is constructed using a combined multiplier and integral
operator parameterized using positive semidefinite matrices. Slack variables are
also created to account for the limited equivalence between the multiplier and
the integral operator. These results include positive operators defined by multi-
pliers and semi-separable kernels are applied to the study of partial differential
equations in [30] and [31].
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Chapter 5

Verification methods for the
Lyapunov-Krasovskii functional
inequalities

In this chapter, we study projection-based parameterizations of Lyapunov-Krasov-
skii Functionals (LKF) to analyze the stability of linear time-delay systems. The set
of functions considered in the projections can be an arbitrary set of linearly inde-
pendent functions or include solutions of the delay Lyapunov matrix. From them
we construct a Lyapunov-Krasovskii functional associated with a prescribed time
derivative. We compare two approaches for the stability analysis of time-delay
systems based on SemiDefinite Programming (SDP), namely the method based
on integral inequalities and the method based on sum-of-squares programming,
which have emerged as the main optimization-based methods to compute LKFs.
We discuss the main assumptions and establish connections between both meth-
ods. Finally, we formulate a projection-based method allowing to use general sets
of functions to parameterize LKFs, thus encompassing the sets of polynomial func-
tions in the literature. The solutions of the proposed stability conditions and the
construction of the corresponding LKFs as stability certificates are illustrated with
numerical examples.

The LKF associated with the delay Lyapunov matrix, as shown in the previous
chapter, can not be directly constructed using the polynomial-based SDP meth-
ods in the literature. We propose in this chapter a more general parameteriza-
tion of LKFs than the existing polynomial parameterizations or piecewise linear
parameterizations [34, 77/], and we formulate the associated stability conditions
as constraints of SDPs. The first step towards the general formulation is to rep-
resent the original time-delay system in projected coordinates related to a set of
linearly independent functions, which can be for instance exponential functions or
polynomials. Moreover, in the projected coordinates, it is possible to apply either
Sum-of-Squares (SOS) methods [90] or methods using integral inequalities [100],
both leading to SDP formulations to compute LKFs. We discuss the key differ-
ence between the two approaches, which is mainly in the way the constraints are
enforced on the delay interval.

We point out the main assumptions leading to the approaches based on pro-
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jections, requiring the use of sets of functions closed under differentiation and
structured parameters in the LKF, in particular the separability of the kernel in a
double integral term, a feature in contrast to the LKF obtained from the delay Lya-
punov matrix. For the methods based on integral inequalities, we present a result
allowing to retrieve integral inequalities used in the literature for the computation
of LKFs, namely the Bessel-Legendre inequality and the Jensen inequality. We also
show that methods based on integral inequalities impose one of the parameters
of the LKF to be an affine function.

This chapter is organized as follows: The dynamics of the time-delay system
are presented in Section 5.1, where the description of the system using projec-
tions is also introduced. Two approaches for stability analysis of linear time-delay
systems are formulated in Proposition 5.5 and Proposition 5.8, in Section 5.2. The
advantages of each method and a comparison between them are also provided.
In Section 5.3, these approaches are applied to several time-delay systems in the
literature. Then, in Section 5.4, we apply the obtained results to the electric power
steering and steer-by-wire systems. We also show how the provided results can
be extended to study the behavior of the steering systems, such as the decay rate.
The mathematical proofs of the proposed results are given in Appendix B.

Notation

For z € R", we denote ||z| = /) ., z7 its Euclidean norm. We denote the inner
product between f and g in Ly([0, 1], R) by

(f. ) = / £(6)g(6)de.

and || fllp) = ([, f). For a set of linearly independent functions {f,---, f,}
verifying f; € H'([0,1],R)—namely, for alli = 1,--- ,p, fi, f/ € Ly([0, 1], R), with
f1(6) = dfi(9)/db, for all § € [0, 1]—we define f(6) = [f1(8) --- f,(F)] and

F(0) = f(0) ® I, (5.1)
where ® stands for the Kronecker product and I,, is the identity matrix of dimen-

sion n. The notation 0,,«,, stands for the zero matrix of n rows and m columns.
We denote

F'(0) = %F(Q). (5.2)
Let us also define the matrix
(f1, f1) 0 . 0
L Y 53
Und) o ) nh
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Fy

also written as F =

Bl
The diagonal elements of I are the elements of the matrix
D= Dp @ I, (5.4)

where Dz = diag(|| f1 150+ 1 fllf,1)) @and diag(v) is the diagonal matrix with the
entries of vector v on its diagonal.
We also define the matrix

(fo 1) (ffa) - (o fy)
P (for [1) (S f3) - (for )

o — . . . & Ina
<fp7f{> <fp7fé> <fp7f;/;>
which can be rewritten as Fy = | : |, with Fy; = [(fi, L, .. ({fi f;)]n}.
Fa,

We denote PC([a,b],R™) the space of piecewise continuous functions map-
ping the interval [a,b] into R". The linear span of a set {f,---, f,} of linearly
independent functions, denoted span (fi,- - - , f), is the smallest linear subspace
that contains all of functions in the set { fi,--- ., f, }.

Let S” be the set of n x n real symmetric matrices, SZ, be the set of positive
semidefinite matrices, and S?, be the set of positive definite matrices. For the
vector Z,,(0) = [1 o --- 9’”} containing all monomials up to degree m in vari-
able ¢, denote Z,, ; = Z,,(f) ® 1, and denote the set of sum-of-squares matrices
of dimension d x d and degree m

sG] = {Z,) J(0)M Zyna(0) | M € SZg} .

5.1 Delay systems with projections

Consider a linear time-delay system of the form

o(t, 1) = A1g(t, 1) + Agg(t,0), ¥t >0, (5.5a)
at¢(tv 9) = a@é(ta 9), v(tv 9) € [07 _I_OO) X [07 1}7 (55b)

where A; € R™", Ay € R™", and ¢, € PC([—h,0],R") is the initial function,

The above interconnection of an ordinary differential equation and a transport
equation was also adapted in Chapter 4 of this manuscript to model delay sys-
tems. We can alternatively write it in the following compact form

] ¢(t71)
{ai;?t}g)] _ {ofjn Ofxon o}zn} [ d)(t,%] , Y(t,0) € [0, 4+00) x [0,1]. (5.6)



Note that, in the above equation, the state ¢(¢,0) appears only in the term on
the right hand side. Thus, the constant matrix that describes the dynamics of the
above system is not a square matrix.

We rewrite the dynamics (5.5) by using projections of the state into an arbitrary
set of linearly independent functions. Let { f1,-- - , f,} be a set of linearly indepen-
dent functions, with f; € H'([0,1],R), fori = 1,--- ,p, not necessarily orthogonal.
For any piecewise continuous function p : [0, 1] — R™, let p,o(#) = p(#) and define
recursively, fori =1,--- |p,

with p; € R", p; = [, .. 5™ ]", where each component ﬁf.k) is recursively defined,
fork=1,---,n,as
(k)
(k) <pr(i_1)7 fi)
P = (5.8)
||fi||[2071}
We obtain from (5.7)
p
p(0) = prp(0) + Y pifi(6). (5.9)
=1

To simplify the notation, we use below p, = p,, as the residual term, we introduce
the vector p : [0, +00) — R,

P1
o= 1", (5.10)
P
and we use (5.1) to write (5.9) as
0)=|F() I, p ) 5.11
p(0) = [F(6) ][m@)] (5.11)

Using the above decomposition of p, we obtain the following two lemmas.

Lemma 5.1. Consider (5.7)-(5.9), we have

1
/ FT(0)p,(6)d6 = (D — F7)p, (5.12)
0

with Dy as in (5.4).

Lemma 5.2. Consider (5.7)-(5.9), we have
B 1
p=F1 / FT(0)p(6)do. (5.13)
0

The proofs of the above two lemmas are given in Appendix B.

90



Remark 5.1. The matrix F in (5.3) has a lower triangular structure with non-zero
diagonal elements. For an orthogonal set of functions, that is, for a set of functions
satisfying (f;, f;) =0, forall 7,5 =1,--- ,pand i # j, (5.12) becomes

1
/ FT(0)py(t,0)d0 = Oy
0

In case the set {fi,---, f,} is not closed under differentiation, define a set
of linearly independent functions {f,11,--- , fy+p. } defined on the interval [0, 1],
with 0 < p. < psuch that, forall: € {1,--- ,p},

fi' S span(fl,--- ,fp,fp+1,"' »fp+pe)

and
span (fi, -+, fp) Nspan (fps1, -+, fpep.) = {0}

In this case, we define f.(0) = [fp11(0) -+ fpip ()] and F.(0) = f.(0) @ I,,. We
can then express F”in (5.2) as

F'(0) = F(0)X + F.(0)X.. (5.14)

with X € R™*" and X, € R"<*"?, Otherwise, in casetheset {f;,--- , f,} is closed
under differentiation, namely if there exists a matrix X such that F’(¢) = F'()X,
then, F.(0) and X, are empty matrices. For example, let n = 1 and consider the
set of shifted Legendre polynomial functions [93] up to degree two, thatis F'(f) =

1 20-—1 w — 11. Therefore, we have p, = 0and {fps1, -, fpip.} = 0. We
obtain
0 20
F'()=F(@®) |0 0 6].
000
As a second example, let n = 1 and consider the set of trigonometric functions

F(0) = [1 sin(f) sin(26)]. Therefore, we havep. = 2and F, () = [cos(d) cos(26)].
We obtain

1y 010
F'(0) = F(6)03x5 + [cos(f) cos(26)] [0 0 2] :
System (5.5) can be expressed in terms of projections of the state ¢ into the set

of functions { f1,-- - , f,} and the residuals ¢, as detailed in the proposition below,

where we use F, = F(0) and F; = F(1).

Proposition 5.3. Consider system (5.5). The dynamics of &(-), ¢,(-,1), and ¢,(-,0)
are governed by

. o(1)
p(t) o(t)
o8, 1) | =T(0) | ¢.(t.1) |,  V(t,0) €[0,+00) x [0,1], (5.15)
at¢r(t> 9) ¢7“ (t7 O)
a@¢r(t> 6)
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where T : [0, 1] — R*P+2)xnp+re+3) js given by

FF,— FXT(Dp— F7) _FXT
A0F0+A1F1 F 1F3+F1F 1XT(DF—FT) F1F71X;r
FI(0) — F(0)F-1Fy+ F(O)FXT (D — F7) F(B)F—XT
FF] CFUE O
Ay = BFET Ao+ B FET Opn |
_FOFF FOFE I,

(0) =

¢, verifies (5.12), for all t > 0, namely [ FT(0)¢,(t,0)d0 = (Dp — FT)o(t), and &
depends on ¢, as

1
a(t) = / FT(0)6,(t.0)d0, Vi >0, (5.16)

where F, is obtained from an extension of the set of functions whenever F' is expressed
as in (5.2).

The proof of the above proposition is given in Appendix B. In case the set
{fi,--, fp}is clos~ed under differentiation, we can express the dynamics (5.15)
without the term ¢, as in (5.16),

(t, 1) | =Ts(0) D) (e, 0) € [0, +00) x [0,1], (5.17)
) A
el O (1,0)
where I, : [0, 1] — R P+2xn(r+3) js given by
By — FXT(Dp — FT) P

Lo(0) = | AoFo + APy — I UFp + FUFIX (Dp — F) Ay = BETUR
F(O)X — FO)F'Fy+ F(O)F'X"(Dp — FT)  —F(O)F'F]

_F_lfg Onp><n

Ao—i‘FlF_lFJ Opxn
FOF'F] 1,

Therefore, for aset of functions { f1,- - - , f,} closed under differentiation, namely
satisfying F’(0) = F(0)X, we obtain a simpler expression than (5.15). Note that
both (5.15) and (5.17), depending on the choice of F'(6), are equivalent to (5.5)
since no approximation is made and the dynamics of the residuals ¢, are kept.

5.2 SDP-based stability conditions using a separa-
ble parameter T
This section illustrates how the use of a separable 7" in the Lyapunov-Krasovskii

functional given by (4.20) is suitable for SDP-based formulations to verify the con-
ditions of Theorem 4.1. Whenever the set of functions parameterizing ) and a
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separable T is the same as the set used to express the system in projected coor-
dinates asin (5.15), the LKF is expressed as a quadratic form in the projected coor-
dinates of the system. We also show that the parameterization of R is crucial for
the formulation of SDP tests to verify the positivity of functionals as (4.20). Indeed,
methods using integral inequalities impose this function to be affine, where SOS-
based methods allow for polynomial parameterizations of this function.

5.2.1 General formulation

We have shown that the analytical solution detailed in Section 4.2 yields a ma-
trix function 7' in the LKF that is not separable. However, to obtain a numerical
formulation suitable for the verification of the Lyapunov inequalities, the usual
approach is to impose a separable structure for 7', as in [100, 90], without a di-
rect relation to the solution of the equations (4.5)-(4.7). As a result, by imposing a
separable T, we look for the LKF parameters satisfying inequalities instead. The
key advantage, in comparison with the analytical method exposed in Section 4.2,
is that we formulate the search for the parameters of V satisfying both the pos-
itivity conditions, as in (4.3), and the negativity of the time derivative along the
solution of the time-delay system, as in (4.4).

This section presents methods to find the parameters of V satisfying (4.3)-(4.4)
using semidefinite programming. The contribution is to present a unified method
based on projections for a general set of linearly independent functions. More-
over, we relate two different approaches, namely the approach based on integral
inequalities and the approach based on computing SOS decompositions. These
approaches have emerged in recent years as systematic methods encompassing
previous SDP-based results for the computation of LKFs. In particular, we point
out the common features between SOS and Legendre polynomial projections (re-
lated to the integral inequality methods discussed in this section) showing that
the main difference consists in the choice of the parameter R in (4.20) and how
the conditions for its positivity are treated in the inequalities. Furthermore, we
show that different polynomial bases are equivalent and that the general projec-
tion method allows to consider sets of functions that are not polynomials. For
instance, we can handle projections on the set of functions in (4.13), appearing in
the delay Lyapunov matrix.

In the rest of the chapter, we impose
(A) The parameter T in (4.20) is written as
T(0,m) = F(O)TF' (n),
with T € S,

(B) The parameter Q in (4.20) depends linearly on Jir fori=1,--- ,p,as Q) =
P Qifi(0) =QFT(9),whereQ; e R™™and Q = [Q1 Q2 -+ Q).

Thus, using Lemma 5.2, we have
1 1 o
/ / p ()T (0,m)p(n)dndd = p"FTTEp (5.18)
0 0
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Theorem 4.1

Choose p linearly inde-
pendent functions and

f%,W?’,Wf’,a,n,d,%J 3 impose structures for T’
l ; and @ verifying (A) and (B)
| SoIve (4.8) to obtain U | | [
”””” l”””” | Theorem 5.4
i Construct V as in (4.20) 3 2 3 2 Assumption 5.1
””””” L””””’ SRS holds
=i
| Verify the positivity o vl 2is Proposition 5.5 -=MM3 57 [ osition 5.8
erify the positivity o R roposition 5. roposition 5.
”””””””””” <, Z R e
: Fo), Ry ., R(0)
Lemma 4.3: T | polynomials .2 affine
does not verify (A) | 'S
} Corollary 5.12 o' o |Corollary 5.10
| O\ (O}
| A : £
: \r_e
1 : )
| 3
e e \Cr———————>————————‘
! Obtaln V asin (5.29) w ! Obtaln V asin (5.25)

Figure 5.1: Flowchart of the structure of Part Il.

and

/ 1 QF T (0)p(0)do = QFp.

0

CHOICE OF T AND Q

CHOICE OF R

(Projection Step)

Figure 5.1 summarizes the steps to obtain an LKF, it also presents the relations
between the stability analysis results presented in this chapter. Using (A) and (B)
above and applying the results of Theorem 4.1 with the Lyapunov-Krasovskii func-
tional in the projected coordinates, the stability conditions of a linear time-delay
system can be expressed as matrix inequalities with an affine dependence on the

parameters P, Q, R, and T as in the following theorem.

Theorem 5.4. [f3a;,8 >0, P € S", Q € R, R :[0,1] — S", T € S, Sy €
Rnpxnp Sl Rnxnp S eRnpxnp S ERn(pe—i—Q ><np S eRannpe S eRnpeane S2
R2»mee, two differentiable functions C : [0,1] — S"®*Y) and C : [0,1] — StPHret2),

and a set of linearly independent functions { fi, ..., f,} such that
Q(Q) > On(p+2)><n(p+2), Vo e [O, 1],

and

Q(Q) < On(ptpet3) xn(p+pe+3)» v € [0,1],
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where

O FTQT + F P FT(0)R(0)
Q)= | QF PR oo e
R(0)F(0) O " R(0)
So(Dp—FT)—I—(l?p—F)SOT (Dp — F)S] | —SoFT(0)
+ SI(DF’ - FT) Oan 4\ —SlFT(H)
! o FlTFl Fl—l— | Onpxn
| OO e | R L O
Oy 1 O Oy O ! O
and
Q) =
[ Qu(0) + Q[ (0) —FTTX] Qi3 Qu | —FT(O)R(9) ]
_)geTF Onpexnp6 B Onpe xXn Onl;exn : 7Onpe><n
QlTs Oanpp Q33:" 9;3 Q34 : _QXeTFeT(e)
QITAL Oanpe Q;,r4 _R(O) I Oan
e lmm o — -
—R'(0)F(0) Onxcnpe ~F,(0)X.Q" 0Opxn ' —R(0)
So(Dp — F') +(Dp = F)S§  (Dp = F)S| | =SoF" (0)
o Sbr=F Ontps2xntoet2) | =1F (0)
—F(0)Sy —F@)S] " Opxn
Ongxnp SO B 0n£><2n ; _‘gOFeT(e)
S§ S+ST s =S E(0)
Tl Qe S Oxan 1 =5 F(0).
_FG(Q)SJ —FE(Q)S’;— _Fe<0)‘§;— 1 Onxn
C'(0) = C(1) + C(0) | Ongprpet2)xn
,,,,,,,,,,,,,, S e
0n><n(p+pe+2) 1 Onxn
[ F1TF1 Onp><npe FlT Onpxn ; Onpxn
Onpexnp Onpgxnpe Onpexn Onpgxn : Onpexn
-+ ﬁ Fl Oanpe -[n Oan : Onxn
Onxnp On><npe Onxn Onxn [ Onxn
,,,,,,,,,,,,,,,,,,,,,, ———— -
0n><np Onxnpe On><n Onxn 1 0n><n




with
1
Qu=F'"TF+F PR +F'Q"F+F'QF + / FT(O)R(O)F(0)ds,
0
Q0O =(FTT+F Q) (Fy—X"(Dp —F")+ (F'QT" + F/ P)(AyFy + A F)
+ FT(O)R(O)F'(0),
Qus=(F'T+F'QF +(F'Q" +F'P)A, + F/R(1) + (F Ay + F/ AP
+(Fy — (Dp = F))QT,
Qu=—(F'T+F QF +(F'Q"+FP)A— Fy R(0),
. _ 1
Qz3 = PA + QF + §R<1)7
Qs = PAy — QF,,

where F, is obtained from an extension of the set of functions whenever F' is expressed
as in (5.14), then the origin of (5.5) is GES.

The proof of the above theorem is given in Appendix B.

Remark 5.2. By convention [26, 76], we consider that the product of an empty
matrix of dimension m x 0 and an empty matrix of dimension 0 x n is a matrix
of dimension m x n with all elements equal to 0. Hence, if the set {f;,--- , f,} is
closed under differentiation, then p. = 0 and the matrices F.(6), X., Sy, S1, and S,,
that appear in Theorem 5.4, are empty matrices. Therefore, we have the products

QXeTFeT(e) = Onxen,
SOFGT(Q) - 0np><n7
SoF(6) = O,
and X.TF and S, F.' (§) are empty matrices.

To formulate an SDP test based on the use of integral inequalities and to sim-
plify the SOS programming formulation, in addition to (A) and (B), we introduce
the following assumption that simplifies the conditions in Theorem 5.4.

Assumption 5.1. The set of linearly independent functions is closed under differ-
entiation, thatis F’(0) = F(0)X, for some matrix X € R"7*"P,

Note that Assumption 5.1 holds for any set of p polynomial functions con-
structed using the terms of degree less than or equal to p — 1 in a polynomial
basis. Under Assumption 5.1, we obtain the following proposition, using (5.17)
instead of (5.15).

Proposition 5.5. If 3 a;,8 > 0, P € S", Q € R™™, R : [0,1] — S, T € S™,
Sy € Rxmp, G ¢ R, G € R™*™, S, ¢ R*™ ™, two differentiable functions C' :
[0,1] — S*®*V and C : [0,1] — S™"*2), and a set of linearly independent functions
{f1,..., f,} closed under differentiation such that

Qo) > On(p+2) xn(p+2) Vo € 10, 1], (5.20)
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where Q(0) as in (5.19), and

QS(Q) < On(p+3)><n(p+3), Vo € [0, 1], (5.21)
where
Q511_+ O Qa2 9513 —FT(0)R'(9)
— Q;I—lg 9322 + QQQ 9823 ! On><n
Q,(0) = Ol QLs  —R(O0)1  Ouxn
,,,,,,,,,,,,,,,,,,,,,, m— —————— -
—R’(@)F(@) On><n Onxn ! _R/(e)
So(Dp — F') + (Dp = F)Sy  (Dp— F)S{ | =SoF(0)
o SPr-FH Oxen 2 =51F ().
—F(0)Sy —F(0)S] ' Opxn
_ _ _ FlTFl FlT Oann ; Oann
Cl(e) - C(l) + O(O) ; On(p+2)><n Fl In Onxn ! Onxn
tl oo +6 ] 0 0 Opn 1 0 ,
0 | nxXnp nxn nxn | nxn
nxn(p+2) nxn | |- m — - = — — — -
Oanp Oan Oan 1 Oan
(5.22)
with

Qsll — (FTT + FlTQ)(Fa - XT<DF~ — FT)) + (FTQT + FlTP)(AOFO + A1F1>

+ [ Foropows,
Ouis = (FTT+ FIQ)E] +(FTQT + E] P)Ay + EJ R() + (F{ A] + F A)P
+(F, —(Dp - F)X)Q",
Qus=—(F'T+F'QF, +(F'Q" + F P)A, — F, R(0),
Qu2 = PAL + QF] + %R(l),
Qu3 = PAy — QF,
then the origin of (5.5) is GES.

Proof. The proof of the above proposition directly results from the proof of The-
orem 5.4, where p. = 0 and F” is expressed as in Assumption 5.1. O

Remark 5.3. The set of functions in (4.13), obtained from the delay Lyapunov ma-
trix (4.14) verifies Assumption 5.1 and may be used to parameterize the LKF and
to verify the conditions in Proposition 5.5. The difference in the parameteriza-
tion we propose and the solution using the delay Lyapunov matrix remains the
structure imposed for parameter T following item (A) above and on the choice of
parameter R.

The proposition below states the equivalence of the conditions in Theorem 5.4
(or in Proposition 5.5) for two sets of functions defined on the interval [0, 1].
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Proposition 5.6. Let {f,,---, f,} and {¢1,--- ,9,}, where, fori =1,--- p, fi,g; €
Ly(]0, 1], R) satisfying

[fl(‘g) fp(e)]:[gl(9> gp(e)} Ba

where B € RP*? s a non-singular matrix. If Theorem 5.4 or Proposition 5.5 are feasible
with the set { f1,-- - , f,}, then they are also feasible with the set {g1,--- , g, }.

The proof of the above proposition is given in Appendix B. An implication of
the above proposition is that given a polynomial set of functions satisfying The-
orem 5.4, it is possible to find unknowns in the theorem for a different set of
polynomials with the same degrees. On the other hand, the choice of orthogonal
polynomials may be more suitable for the numerical solution, as detailed in Sec-
tion 5.3 below. Proposition 5.5 requires the verification of (5.20)-(5.21) that is, two
matrix inequalities on the interval [0, 1]. In the rest of the section, we present two
approaches that allow to verify these inequalities.

5.2.2 Formulation based on integral inequalities

In this section, we present conditions to verify the inequalities (5.20)-(5.21) in Pro-
position 5.5 by using a general formulation for integral inequalities. We show how
the proposed formulation encompasses the use of integral inequalities such as
Jensen's inequality [98] and Bessel-Legendre inequality. Indeed, these are shown
to correspond to particular choices of Legendre polynomials as the set of linearly
independent functions in the projections. The key step in this formulation is to
split the inequalities into a term containing the projected variables p and another
term containing the residual p,, which is the only term left within an integral. As
a result, it allows us to formulate the stability conditions with constant matrix in-
equalities. Moreover, we show that with the proposed formulation it suffices to
consider an affine parameter R. The results in this section are built upon the fol-
lowing lemma.

Lemma 5.7. Let S € S, then for any function p € PC([0,1],R") and any set of
linearly independent functions { fi,--- , f,}, we have

/0 T (0)Sp(0)d0 > T (Dy © 5)p.

The proof of the above lemma is given in Appendix B.

The following proposition uses the integral inequality of Lemma 5.7 to obtain
a set of conditions to verify the inequalities of Proposition 5.5. For this reason, we
call it formulation based on integral inequalities.

Proposition5.8. [f3a;,3>0,P€S", Q e R™™, R:[0,1] - S", T eS”, S e§",
S € S", and a set of linearly independent functions { f1, ..., f,} such that

Qp > On(pt1)xn(p+1);
R()>S,  VoeD 1], (5.23)
S Z Onxnv
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and

R(0)>S, VvOe|o,1], (5.24)
S > Opxn,
where . o
q — |%ut+(DpesS) FPLEQT IR
P PF +QF P I,
and
- Qi1 + Q;1_1 —(Dr®S) - QplZ_ @plB
Q, = 9;12 Qo2 + QJQQ Qo3
Qs Qs —R(0)
F'F, F Oppxn
+ 5 Fl In Onxn )
Oanp OnXTL Oan
with

Qu=F'"TF+F PF,+F'Q"F, + F/QF,

Q= (F'T+F'Q)(Fy— X" (Dp — F")+(FTQ" + F/ P)(AoFy + A1 Fy)
+ SETR)F, — SERO)F,

Qo= (F'T+F'QF +(F'Q" +F/P)A, + F ' R(1) + (Fy Al + B AP
+(Fy — (D = F)X)Q",

Qs = —(F T+ F[Q)F, + (FTQ" + F P)A, — F, R(0).

Qu0 = QF + PA, + %R(l),

Qpas = —QF, + PA,,

then the origin of (5.5) is GES.

The proof of the above proposition is given in Appendix B.

Remark 5.4. Recall that, from Proposition 5.6, the conditions in Theorem 5.4 (also
in Proposition 5.5) are equivalent for any linear combination of functions in a set
of functions {f1,---, f,}. The conditions in Proposition 5.8 instead, depend on
the selected set of functions and may not hold for another set obtained from the
linear combination of a set for which the conditions hold true. The reason for this
is that the inequality from Lemma 5.7, used in the proposition, depends on the set
of functions. The numerical examples in Section 5.3 will highlight this difference
by applying the conditions to different sets of polynomials.

Following the conditions of Proposition 5.8, the proposition below shows that
it is sufficient to consider R as an affine function.

Proposition 5.9. /f 3 oy, 3 > 0 and matrices P € S", Q € R™™, T ¢ S, S € S,
S €S, and R : [0,1] — S™ such that the conditions of Proposition 5.8 hold. Then the
conditions also hold with matrices P* = P, Q* = Q, T* = T, and with S* = R(0),
S* = R(1) — R(0), and R*(0) = (1 — ) R(0) + OR(1), for all § € [0, 1].
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Proof. LetP,Q,T,S,S,and R(f) be such that the conditions of Proposition 5.8
are satisfied. By (5.23), we have R(0) > S, for all § € [0,1]. Then, since R(0) > S
and R(1) > S, we obtain

R(0)>(1—6)S+6S=8S,  Voelo1],

hence, R*(#) > S, forall 6 € [0,1].
Moreover, by (5.24), we have R'(§) > S, for all § € [0, 1]. Then, we have

1 1
R(1) — R(0) = / R'(0)d6 > / Sdo = S.
0 0

Therefore, since R*'(§) = R(1) — R(0), we also verify R*'(§) > S, for all 6 € [0, 1].
In addition, since S and S appear in the diagonal blocks of ©, and ©,, the inequal-
ities (5.23) and (5.24) also hold if S and S are respectively replaced by the upper
bounds R(0) and R(1) — R(0). O

Therefore, using integral inequalities, the conditions of Proposition 5.8 can be
reduced to the verification of some constant linear matrix inequalities (matrices
that do not depend on the parameter ). Hence, an affine structure for R is not
an assumption made to obtain Proposition 5.8 but rather it is a consequence of
the use of the integral inequality of Lemma 5.7. From Proposition 5.8 and Propo-
sition 5.9, we obtain the following corollary.

Corollary 5.10. If3;,3 >0, P €S, Q ¢ R™™, R, € S", R, € S", T € S™, and
a set of linearly independent functions { fi,..., f,} such that the inequalities (5.23)
and (5.24) in Proposition 5.8 are satisfied with

R((g) - Ro + 6‘R1,
R07
Rh

i
(I

then the origin of (5.5) is GES.

To the stability test in Corollary 5.10, obtained from the structures imposed
for @, T and R, we associate the following LKF candidate for system (5.17)

Vi(p,pr(1),p:(-)) = [pj(sl)r [pF?TQF e ?FTQT] [pfl)}

' AT T FT(0) P
+/0 6" p)(0)] { I ] (Ro +6Ry) [F(0) I,] [pr 9)] df, (5.25)
where Qpll = FTTF + Fl—rppl + FTQTFl + FlTQF
We end this section by showing that the integral inequality provided in Lemma 5.7
is a general formulation of some integral inequalities used in the literature. The
expression for Dy used below is given in the Notation.
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Integral inequalities as particular cases of Lemma 5.7

1. Bessel-Legendre inequality. Let {f1,-- - , f,} be the set of the first p shifted
Legendre polynomial functions [93], then, for any matrix S € S%,, we obtain

1
/ P (0)Sp(0)d8 > pT (Ds © ),
0

where, from the definition of Dz, the above choice of the set {fi, - fo}
gives i )
1 0 0
0 1 .
~ 3
Dy = N 0
0 1
2p+1]

and p is the projected term. The above integral inequality is equivalent to
Bessel-Legendre integral inequality provided in [93, Lemma 2], where the
projected term is not normalized there.

2. Bessel-Legendre integral inequality. Let {/;,--- ,[,_;} the set of the first
p — 1 shifted Legendre polynomial functions and define

L) = [(®) - L,1(9)].
Let g € C°, g € Ly([0,1],R), and introduce g, : [0,1] — R as
9+(0) = g(0) — L(0)3,

where .
=L [ L@,
0
and
<l17 ll) 0 0
= 0 (lg,1s)
: .. 0
0 0 (lp—1,lp-1)
Consider the set of functions {l1,--- ,1,_1, g, }. Then, for any matrix S € S,
we obtain .
| " @000 = 57 (Ds 0 )5
0
where } )
1 0 0 0
0 1 .
~ 3 .
Dp = . 0
0 0 L 0
2p—1)+1
0 0 (9r> 9r) |
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and p is the projected term. The above integral inequality is equivalent to
Bessel-Legendre integral inequality presented in [100, Lemma 2].

3. Jensen’s inequality. Consider the set of functions {1}, which gives Dz = 1
and p = fol p(0)dh. Then, from Lemma 5.7, we obtain

1
| " @sperdo = 5755,
0

forany matrix S € S%,. The above integral inequality is equivalent to Jensen'’s
inequality [98, Lemma 2].

5.2.3 Formulations based on polynomial SOS constraints

In this section, we consider {f,---, f,} to be a set of polynomials verifying As-
sumption 5.1. We propose an SOS formulation as an SDP-based test to verify the
conditions of Proposition 5.5. Thereby, we show that we can carry out a projection
step to represent the system as in (5.17) and benefit from the SOS constraints to
verify matrix inequalities on a bounded interval such as (5.20) and (5.21) in Pro-
position 5.5.

Before presenting the SOS constraints associated with the projections pro-
posed in Proposition 5.5, we start by reformulating the SOS constraints for stabil-
ity analysis of linear time-delay systems without projections, as presented in [90],
in terms of the dynamics (5.5).

Consider the Lyapunov-Krasovskii functional in (4.20), then its time derivative
along the solution of (5.5) is given by

V(¢(t7 1)? (t 0)7 ¢(t7 )) =

| rw N’ Tu PAy — Q(0) T13(9)] o(t, 1>]
/ st.0)| [ATP—QT(0)  —RO) T | |6t.0)|ds
0 ¢(t7 6) TIS T;—B _R/(9> (b(t? 9)
[ [ e [P SO o i,
where
Ty, =PA + A P+Q(1)+QT(1) + R(1), (5.26)
T13(0) = A Q) — Q'(0) +T(1,0), (5.27)
and

To3(0) = Ag Q(0) — T(0,6). (5.28)

Let T'(0,n) = F(0)TF"(n), for some T € S™, and Assumption 5.1 holds, then,
from [90], we obtain the following proposition.

Proposition 5.11. If 3 ay, 8 > 0, P € S*, Q € R™*"™, polynomial R : [0,1] — S",
T € S™, real polynomial matrices C : [0,1] — S™ and C : [0,1] — S*", and two real

102



polynomial matrices Ny : [0,1] — S™ and N, : [0, 1] — S** and an integer m such that

T(0) — Ni(0)0(1 — 6) € =™"[6)],
Ni(0) € X™"[6],

T > Oppxnps

— () — No(0)0(1 — ) € =™ [0,
No(0) € B™*[9)],

XT+TX" > 0ppsenp,

where
P+ C(O)-C(1)+C(0) —anl, Q)
o) = Q) R(0)
and
Yu+pBL  PAy—Q(0) Tis(0)
Y(0) = Ag P —Q7(0) —R(0) | Tos

where Y1, Y13, and Y3 respectively as in (5.26), (5.27), and (5.28), then the origin
of (5.5) is GES.

In contrast to the above presented SOS formulation represented in the origi-
nal coordinates of the time-delay system, using projections the SOS formulation
associated with the conditions of Proposition 5.5 are formulated as below.

Corollary 5.12. [f3a;, 3 > 0, P € S, Q € R™", polynomial R : [0,1] — S*, T €
S, Sy, € Rxme, 5, ¢ R™", Sy € R™*™, G, ¢ R> "™, real polynomial matrices C :
0,1] — S"P+Y and C : [0, 1] — S"®*+2), and a set of polynomial functions { f1, .. ., f,}
and two real polynomial matrices Ny : [0,1] — S"P+2), N, : [0,1] — S"**3) and an
integer m such that

Q(0) — N1(0)6(1 — 6) € ©nP+2)[g],
Ny(8) € @2 g),

—Q,(0) — No(0)0(1 — 0) € @3],
Ny(6) € - ®+g),

where Q) and Q, are respectively given by (5.19) and (5.22), then the origin of (5.5)
is GES.

To the stability test in Corollary 5.12, obtained from the structures imposed
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for @, T'and R, we associate the following LKF candidate for system (5.5)
V(ﬁ, pr(1)7pr('))

T e —
_ ﬁ pll FTP —+ FTQT ﬁ
- {pr(l ] {PFl Yor P ] {pr(l)l (5.29)

+ /0 [T 0] (0)] [F;(m} R(6) [F(0) zn]{ [(39)] a9,

T

where O, = FTTF + FPF + FTQ"F + FJQF + [} FT(0)R(9)F(0)d9 and
Quuu = FTTF + F'PF, + FTQTF, + F'QF. Note that the only difference with
respect to the LKF used in formulation based on integral inequalities as given in
(5.25) is that the parameter R above can be a polynomial and not only an affine
function.

The literature on the use of SOS methods to the stability analysis of time-delay
systems can be traced back to [90]. Since significant progress was achieved [89,

, 88], in particular, in [87] the assumption on the separability could be dropped.

Remark 5.5. Alternatively to the separable T"in (A) above, a semi-separable kernel
for the parameter T is studied in [89]. It is shown that semi-separable kernels,
parameterized by positive semidefinite matrices, have advantage over separable
kernels for the stability analysis of linear time-delay systems. However, to con-
clude on the positivity of the LKF, the positivity of the single integral term and the
positivity of the double integral term in the LKF are treated separately. Hence, suf-
ficient conditions for the positivity of the proposed LKF are provided. The way to
handle the positivity of the LKF with a semi-separable kernel was later improved
in [87], in which the LKF is constructed using a combined multiplier and integral
operator parameterized using positive semidefinite matrices. These results were
also applied to the study of partial differential equations in [31].

The numerical examples section below indicates that the conditions in Pro-
position 5.11 and Corollary 5.12 introduce more decision variables than Corol-
lary 5.10, and the computation effort is more significant than Corollary 5.10. The
main contrasts between the two tests are on the possible use of a polynomial
function R instead of the simple affine structure in Corollary 5.10 and on the way
(5.20) and (5.21) are checked on the interval [0,1]. Proposition 5.11 and Corol-
lary 5.12 introduce variables N; and N,, and need to enforce that these multipliers
are non-negative by imposing them to be SOS.

5.3 Numerical validation on academic examples

In the following, we use the inequalities given in Corollary 5.10, Proposition 5.11,
and Corollary 5.12 for the stability analysis of linear systems with a single delay.
The integral inequality approach of Corollary 5.10 consider different sets of func-
tions while the SOS approaches of Proposition 5.11 and corollary 5.12 can only
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use polynomial parameterizations. In contrast, the approaches based on Corol-
lary 5.10, where a lower bound of the integral of Lemma 5.7 is used, are limited
to affine parameterizations of R, while Proposition 5.11 and Corollary 5.12 allow
us to treat a polynomial R of any degree pr. Moreover, we show the advantages
of the projection methods by comparing the approaches based on projections
(Corollary 5.10 and Corollary 5.12) to an SOS approach without projections (Pro-
position 5.11).

To illustrate the discussed methods, let us start with some benchmark exam-
ples from the literature. The first example is a classical scalar system studied
in [91], where the analytical solution of the Lyapunov-Krasovskii functional asso-
ciated with a prescribed time derivative is given.

5.3.1 Example 1

Consider the time-delay system

d(t,1) = —ho(t,0), V>0,

019(t,0) = Opop(t,0), V(t,0) € [0, +00) x [0, 1]. (5.30)

It can be represented as in (5.5), where Ay = —h and A; = 0. This system is stable
for h = 0. Using a frequency-domain analysis, it can be shown that the maximum
allowable delay is h,,., = 7/2—see, e.g., [78, Proposition 3.15].

First, we start to compute the analytical solution of the LKF. Let impose the
time derivative of the Lyapunov-Krasovskii functional as in (4.15)-(4.18) with W, =
W, =W,y =1, thatis

»wwwwwmww»:—&wn—wmm—l¢%ww. (5.31)

Thus W = Wy + Wy + W, = 3. By solving the boundary value problem (4.8) and
boundary value conditions (4.9), we obtain the delay Lyapunov matrix associated
with W, as in (4.14),

_ 3sin(hd)  3cos(h) cos(hb)

_ . , V0 e€[0,1],
h h(sin(h) —
U(o) = 35111(2]10) 3C?)S(<h) c(os>(h«9)1) o 10
2h  2h(sin(h) — 1)’ €=1.0)
Therefore, from (4.20) and (4.21), we obtain
. 3cos(h)
D)) = T T — sin QY| L)
wmm>AMmp@ﬂwb@w1JLMM

+/0 /0 p"(0)T(0,n)p(n)dndo,

where
_ 3sin(hf)  3cos(h) cos(hb)

Qo) 2 2(sin(h) — 1)

105



999077
i
i
74
7
7
7

7
7
7

77

77

117
7

5
-
_

7
7,
//Z’/ 7

7
7
7
7
2

77
7
7
7
7
7
7

2/
g
v/ 7
Y/
Y

7
77
774/
7

Z
)

117722077
y
7
y 4
V7
.
y
7
7
///Z/

Figure 5.2: (a) 3D plot for the analytical solution of 7. (b) 3D plot for the solution
obtained to the inequalities in Corollary 5.10 with the set {1, cos(hf), sin(hf)}.

and
_ 3sin(ht — hn)  3cos(h) cos(hb — hn) B
T(0.7) 2h e =1 el (5.32)
=9 3sin(hé — hn) ~ 3cos(h) cos(hb — hn) 0 — 1 € [~1,0) '
2h 2h(sin(h) —1) 1 )

As shown in Section 4.2.3, the parameter T is not separable, and it is difficult
to show that the lower bound for V' as in (4.3) holds. Then, to apply the results
from Section 5.2, we consider a separable function 7" with respect to the set of
functions in (4.13) as Section 5.2 as

1
T0,n) = F@O)TF(n) = [1 cos(hf) sin(h6)] T cos((hn)) : (5.33)
sin(hn

Using this separable form, Corollary 5.10 can be applied for the set of linearly in-
dependent functions {1, cos(hf),sin(h#)}. The obtained numerical results show
that the system is stable for all € [0, 1.5707963]. Therefore, with only three func-
tions {1, cos(hd), sin(h#)}, we obtain the delay margin of = /2 with 7-digit accuracy.
Figure 5.2 compares the analytical expression of T" given by (5.32) to the numeri-
cal approximation of T" provided by (5.33), for b = 1. It is possible to notice in the
figure on the left that the analytical expression of T is not differentiable in the set
{(0,m) | n=0,0 € [0,1]}. The numerical results of Corollary 5.10, Proposition 5.11,
and Corollary 5.12 are presented for two sets of polynomial functions in Table 5.1
(Canonical polynomials) and Table 5.2 (shifted Legendre polynomials). The exact
value of the delay margin can be achieved for a large enough number p of linearly
independent functions.
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5.3.2 Example 2

Consider the linear time-delay system (5.5) with

—2h 0 —h O
Alz[ 0 —O.Qh} and Ay = {—h —h}’ (5.34)

taken from [99]. The origin is GES for h = 0. Using a frequency-domain analysis,
the maximum allowable delay is h,,,, = 6.1725—see, e.g., [78, Proposition 3.9].
The delay interval certified GES using the time-domain stability analysis results
(Corollary 5.10, Proposition 5.11, and Corollary 5.12) are reported in Table 5.3,
Table 5.4, Table 5.5, and Table 5.6.

In all the considered approaches, for large enough p, the stability analysis re-
sults are close to the exact value of the delay margin. Moreover, the use of higher
degree polynomials to parameterize R may have an advantage when solving the
SOS constraints, which is not possible with Corollary 5.10; see the columns of Ta-
ble 5.3 and Table 5.4 for p = 2, 3, or 4.

Table 5.5 reports results obtained with Corollary 5.10 using different polyno-
mial bases. Table 5.6 reports the results using sets of functions with 9 elements in
Corollary 5.10, which can be polynomial, exponential, or trigonometric functions;
or a combination of them. Only Legendre and Chebyshev polynomials achieved
the stability limit with the accuracy of 4-digit. The results using exponential and
trigonometric functions are reported in the last two rows of the table. For trigono-
metric functions, we used k, = v/194/10, the modulus of a pure imaginary eigen-
value of the matrix L in (4.10) for this example data. The last set of functions in
Table 5.6 corresponds to the set (4.13) obtained with (5.34).

5.3.3 Example 3

Consider the linear time-delay system (5.5) with

0 0 hO 000 0
0 0 0 h 000 0
A=l 0 oo M A=lg 90 a6
0 —16h 0 0 00 h 0

taken from [100]. Based on a frequency-domain analysis, this system has three
stable delay intervals [0.4108,0.7509], [2.054,2.252], and [3.697, 3.754]—see, e.g.,
[27]. The time-domain stability analysis results obtained with Corollary 5.10 are
reported in Figure 5.3. The SOS results from Corollary 5.12 provide approximately
the same results as those provided by the constant LMI conditions from Corol-
lary 5.10 with shifted Legendre polynomials. For the clarity of the figure illustrat-
ing the results, we have omitted the results obtained by the SOS constraints.
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and YALMIP [

h (secs)

scalar unknowns.

In Corollary 5.12, denote by m¢ and m¢, respectively, the degrees of the poly-
nomials appearing in C(6) and C(6). Denote, moreover, by m; and m,, respec-
tively, the degrees of the polynomials in the multipliers N, (#) and N»(6), and by pr
the degree of the polynomials in R(#). Then, the SOS constraints in Corollary 5.12
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Figure 5.3: Results for Example 3, using Corollary 5.10.

5.3.4 Notes on the numerical implementation

The numerical tests presented in this section were obtained using MOSEK [
1. We reported the computational time for the solution of the
associated SDPs to Corollary 5.10, Proposition 5.11, and Corollary 5.12 without
including the parsing time. The main difference in computation time is related
to the number of variables in the SDPs. We compare the number of variables in
Corollary 5.10 and Corollary 5.12, the two results using projections.

The inequalities in Corollary 5.10 contain

5(n*+n) 5, n*p*  np
T TPty Ty
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contain

n> n Sn*p®  n
7%—5+4n2p+(pR+1)n2+(pR+1)n—|— 2p +7p
N me(n*(p+1)? +np +n) N me(n?(p+2)? + np + 2n)
2
mi(n®(p+2)2 +np+2n)  mo(n*(p+3)* +np + 3n)
* 2 + 2

scalar unknowns.
To solve the SOS programs related to Proposition 5.11 and Corollary 5.12, we
used
me = me = 2p + prg, and mi; = mg = 8.

5.4 Applications to steering systems

In this section, we illustrate how the results obtained in this chapter can be used
for applications to the Electric Power Steering (EPS) and Steer-by-Wire (SBW) sys-
tems. First, we use the stability conditions formulated in Corollary 5.10 to retrieve
the delay margin of the steering systems and we compare the results to those
obtained in chapters 2 and 3 where a frequency domain approach was adopted.
We also show that the Lyapunov-Krasovskii functionals can be used to estimate
the decay rate of the steering systems defined as below.

Definition 5.1 ([73]). Consider the solutions s of the equation det(s/,, — A4; —
e *Ay) = 0, where A;, Ay are the matrices that appear in the dynamics equa-
tion of the time-delay system (5.5). For g > 0, system (5.5) is said to be g-stable if
Re(s) + 8 < 0. Or, equivalently, the system

é(tv 1) = (Al + 5In)£<t7 1) + eﬁhA(Jg(t7 0)7 Vt Z 07
DE(t,0) = Bpe(1,0),  V(t,0) € [0, +00) x [0, 1],

is GES. In other words, system (5.5) is GES with the decay rate £.

(5.36)

We can then use the above definition to estimate the decay rate of a delay
system as (5.5). To evaluate the decay rate we carry out a line search on the pa-
rameter 3 by evaluating whether system (5.36) is GES, namely, whether the global
exponential stability conditions of Theorem 4.1 hold for (5.36).

5.4.1 Applications to the EPS

Consider the electric power steering system studied in Chapter 2 with filter Cs.
As explained in Section 4.1, the dynamics of the pinon subsystem depicted in Fig-
ure 2.3 can be written in the state-space representation as in (5.5), where z(t) =

[6,8) 6,8)] ",

0 h 0 0
A= | kh oh|, and Ay=| Kkh  Kkh
g, J, Jpa
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As in the numerical examples of Chapter 2, we consider J, = 0.11Kg.m?, &k, =
143.24 Nm/rad, 0, = 16.79 Nm.s/rad, and we set K = 35 and w, = 39.15 Hz.

The origin is GES for h = 0. From Proposition 2.3, the maximum allowable
delay is hy,q4, = 5.8673 ms. Table 5.7 reports the stability analysis results obtained
with Corollary 5.10 using different polynomial bases. The Legendre and Cheby-
shev polynomials achieved the stability limit with the accuracy of 4-digit.

The eigenvalues of matrix L in (4.10) associated with the above dynamics of
the electric power steering system are given by

oph

AN = —
1 Jp’

hy/—K?k2 + o2w?

Jpwa

Ao ,
and A\; = Ay = 0. Therefore, the last two rows of Table 5.8 reported the stability
results using exponential and trigonometric functions.

In the numerical results of Table 5.9, we use the Lyapunov-Krasovskii func-
tional inequalities provided in this chapter to obtain a lower bound to the decay
rate of the electric power steering system following Definition 5.1. Namely, the
stability conditions of Corollary 5.10 are used to provide a lower bound on the
value of the parameter S in Definition 5.1, with matrices A, and A; as above.
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5.4.2 Applications to the SBW

Consider the SBW system (3.1)-(3.2) with 7, = 7, = 0and 7, = 7 = h, forsome h >
0, that is

Jubo (1) + 0B (1) = T (t) + T(t),
Jpép@) + Upép(t) = Tp(t) + Tr(t)a
with the control law
Tw(t) = kw(ep(t —h) = 0,(t) + pw(ép(t —h) — 9w(t))a
To(t) = kp(Bu(t — 1) = 0,(t)) + pp(Bus (t — B) — 6,(1)).

As in the numerical example in Chapter 3, we consider J, = 0.11 Kg.m? and we
set k, = 5013.4 Nm/rad, and o, = 1.35 Nm.s/rad.
We assume that the road torque T, is given by

T, (t) = —k:Oy(t) — prép(t)a

where k, = 300 Nm/rad and p, = 25 Nm.s/rad.
Then, for T,(t) = 0, the above system can be written as in (5.5), where

[0 h 0 0 ]
k,h
A = Jw Jw
1 0 0 0 h
(kp + k) (op + pp £ pr)l
0 0 — —
L Jp Jp i
and
0 0 0 0 T
k,h h
0 o Dwlt pull
An = Jw Jw
0 0 0 0 0
Bhoph o
R/AA |

The origin is GES for h = 0. Using the results of Section 3.2, the maximum
allowable delay is h,.. = 20.0996 ms. Table 5.10 reports results obtained with
Corollary 5.10 using different polynomial bases. The Legendre and Chebyshev
polynomials achieved the stability limit with the accuracy of 4-digit. Table 5.11
reports the decay rate estimates obtained with different polynomial sets, where
all considered sets reached the same estimate for only two functions. Increasing
the number of functions did not improve the estimate.
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5.5 Conclusions

We studied the problem of stability analysis of time-delay systems with a single
delay. By recalling the results on the analytical construction of LKF by assigning
derivatives, in Chapter 4, we point out the difficulties in assessing the positivity
of the functional obtained from the delay Lyapunov matrix. Moreover, we high-
light the advantages and drawbacks of the two main trends in SDP approaches
that emerged in the last decade for the analysis of time-delay systems, namely
the SOS approaches and the approaches based on projections. Importantly, here
we show that SOS methods can also be formulated using projections. For this rea-
son, we use instead of projections the term integral inequalities to describe these
approaches.

A limiting assumption in both approaches is the hypothesis on the separa-
bility of the double integral term in the LKF. Such an assumption is not always
considered in SOS methods [87]. It allows, however, to show the connections be-
tween SOS and integral inequalities methods. Moreover, the general formulation
presented here allows to consider projections on functions other than polynomi-
als. We also show that the technique to test the positivity of integral forms with
projections encompasses the set of Bessel-Legendre integral inequalities and is
applicable to general functions [100]. The results can readily be extended (as suf-
ficient stability conditions) to systems with distributed delays and systems with
multiple delays, which were not introduced here to simplify the exposition of the
results. Finally, the need for more general projection functions than polynomials
can also appear in other contexts such as the stability analysis of nonlinear partial
differential equations [33, 1.
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Conclusions and perspectives

Motivated by control problems in steering systems, we have developed methods
for control design and stability analysis of systems with delays. We have shown
that taking into account the presence of delays in a steering system is essential
since they can degrade vibration attenuation and reduce stability margins. In par-
ticular, the delays limit the admissible values of the assist gain and thus reduce
the level of driver comfort. We introduced a generic model for steering systems
with delays encompassing several examples of steering systems and, in particular,
electric power steering and steer-by-wire systems. We described a list of perfor-
mance requirements and associated them with metrics that allow us to assess
and compare the proposed controllers.

Our study started with the electric power steering system, which has a single
delay in its main feedback loop, consisting of a second-order transfer function
in feedback with different filter structures. An analytical expression for a tight
lower bound on the delay margin was proposed as a function of the filter and
system parameters. Thanks to the fixed structure of the filter, we were able to
select the system and control parameters that affect the stability and performance
degradation of the steering system.

We then addressed a more complex case, the steer-by-wire system, which has
multiple delays. We considered proportional-derivative control architectures and,
to remove the internal delays, we proposed a modified Smith predictor adapted
to steering systems. This modification to the proportional-derivative control ar-
chitecture overcame the lack of robustness with respect to the internal and trans-
mission delays, especially for high gains of the steering system. Thanks to this
modification, the closed-loop stability is only a function of the round-trip delays
and does not depend separately on each feedback loop delay. In addition, to
assess the stability of the steer-by-wire systems, we provided a method to ap-
proximate the delay margin based on the Padé approximation of the open-loop
transfer function.

To overcome the restrictions associated with the frequency-domain approach,
which prevents the study of nonlinear torque maps, we have also explored a time-
domain approach. We first revised the problem of constructing Lyapunov-Krasov-
skii functionals for linear time-delay systems using the delay Lyapunov matrix. We
discussed the properties of these functionals and highlighted the main assump-
tions needed to compute the Lyapunov-Krasovskii functionals using semidefinite
programming and how they differ from the Lyapunov-Krasovskii functionals con-
structed using the delay Lyapunov matrix. In particular, we showed that the ker-
nel of a double integral term in the Lyapunov-Krasovskii functional could not be
written as a separable function.
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Table 5.12: Summary of the contributions of the thesis. Contributions (C) in red,
Bibliographical studies (B) in , and Didactic illustrations (I) in blue.

I Steering systems
1 Preliminaries on steering systems

1.1 A model for steering systems | & B
1.2 Control objectives and performance criteria | & B
B

2 Increasing the delay margin of electric power steering systems
2.1 EPS model and problem statement I

2.2 Robustness with respect to delays C

2.3 Simulations C&l
3 Increasing the delay margin of steer-by-wire systems

3.1 A modified Smith predictor C

3.2 Stability analysis C

3.3 Simulations C&l

Il Lyapunov-Krasovskii functional computation approaches
4 Preliminaries on time-domain stability analysis
4.1 Stability of time-delay systems I

B&C
B
5 Verification methods for the Lyapunov-Krasovskii functional
inequalities
5.1 Delay systems with projections C
5.2 SDP-based stability conditions using a separable parameter T C
5.3 Numerical validation on academic examples C&l
5.4 Applications to steering systems C&l

Then, we presented the two numerical approaches that are used to check
bounds on the Lyapunov-Krasovskii functionals, namely the method based on the
use of integral inequalities and the method based on sum-of-squares decomposi-
tions, highlighting the advantages of each method. Moreover, we showed how the
method based on integral inequalities allows to recover known integral inequali-
ties used in the literature. We have also shown that the projection-based method
leads either to a sum-of-squares representation or to a formulation with constant
linear matrix inequalities (for the approach based on integral inequalities).

Importantly, the general formulation presented in Chapter 5 allows consid-
ering projections on functions other than polynomials. Moreover, the proposed
approach can be useful in providing solutions to several problems associated with
Lyapunov-Krasovskii functionals. The obtained results are applied to the steering
systems in Section 5.4, where the Lyapunov-Krasovskii functional is used to com-
pute the delay margin and determine the decay rate of the steering system.
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Finally, these results can be extended to systems with distributed delays and
systems with multiple delays. In addition, the choice of more general projection
functions than polynomials will have advantages in studying nonlinear partial dif-
ferential equation systems [33, ].

Summary of the contributions

In what follows, we highlight the main results and contributions of each chapter.
Importantly, we believe that the results of Chapters 2, 3, and 5 are new. Chap-
ter 2 is now accepted, up to a minor revision, in International Journal of Control,
Chapter 3 has been published in the Proceedings of the International Symposium
on Advanced Vehicle Control; and Chapter 5 has been submitted to SIAM Journal on
Control and Optimization.

These contributions propose two distinct approaches for stability analysis and
control design of linear time-delay systems, the approach using Laplace trans-
form and the approach using Lyapunov-Krasovskii functional. For this reason,
the manuscript is composed of two parts, in which these two approaches are de-
veloped.

In addition, to emphasize the contributions of our work, preliminary results
are presented and discussed in the first chapter of each part. Chapter 1 gave a
generic model for steering systems, where we highlighted the presence of delays
in the system. Thanks to this generic model, we could define the required per-
formance criteria of a steering system and introduce some metrics to evaluate
the performance of a controller in this system. Chapter 4 gave an overview of a
method to construct Lyapunov-Krasovskii functionals from a solution to the de-
lay Lyapunov matrix. We describe there the set of functions that constitute this
matrix. In addition, we prove that the parameter in the double integral term of
this Lyapunov-Krasovskii functional is not separable. The main points addressed
in Chapters 1 and 4:

+ Description of a generic model for steering systems;

* Presentation of an existing method for constructing Lyapunov-Krasovskii
functions using the delay Lyapunov matrix and proof that the parameter
in the double integral term of this functional is not separable.

Chapter 2 provides a delay margin analysis of electric power steering systems
using lead-lag filter structures. The delay margin was lower-bounded as explicit
functions of the filter parameters. We focused on filters with a limited order to
allow an analytical computation of the delay margin as a function of the filter pa-
rameters. We also gave guidelines on adjusting the different filter parameters to
ensure system stability. In this chapter, to motivate the assumption of constant
delays, we presented the sources of delays in an electric power steering system
and discussed why these delays could be considered constant. In addition, simula-
tion tests considering time-varying delays are also discussed to assess the impact
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of such perturbations by means of an example. We compared our results with
recent results in the literature. Main contributions of Chapter 2:

*+ Presentation of the impact of delays on an EPS system.
+ Alower bound of the delay margin by analytical expressions.

+ Guidelines to adjust the different parameters of the filter.

Chapter 3 proposed a modified Smith predictor adapted to steer-by-wire sys-
tems. The proposed controller removes the internal delays from the feedback
loops of the steering system and showed an advantage in increasing the delay
margin of the steering systems. In addition, this proposed control architecture
is associated with a stability analysis approach which provides an approximation
of the delay margin of the steering system using a Padé approximation. Main
contributions of Chapter 3:

« A modified Smith predictor for SBW systems.

+ A simple stability analysis approach that gives an analytical lower bound of
the delay margin.

Chapter 5 rewrote the dynamics of a time-delay system by projecting the state
into a set of linearly independent functions. Based on this representation of the
time-delay system, two formulations for the stability conditions of a time-delay
system were formulated there (Corollary 5.10 and Corollary 5.10). They general-
ize existing approaches in the literature for stability analysis using semidefinite
programming and make connections between them. Moreover, the proposed
approach allows parameterizing Lyapunov-Krasovskii functional using any set of
linearly independent functions. The main tool to obtain the formulation proposed
in Corollary 5.10 is the use of an integral inequality. The generalized formulation
proposed in this chapter leads to a general form of integral inequalities allowing
us to retrieve some integral inequalities used in the literature. Main contributions
of Chapter 5:

* A projection method to represent the dynamics of a time-delay system in
projected coordinates.

+ Formulation of the stability conditions of the time-delay system using two
numerical approaches: method based on the use of integral inequalities and
method based on the sum-of-squares programming.

+ Comparison of the two numerical approaches mentioned above for stability
analysis and discussion of the main assumptions used to obtain them.

+ Ageneral form of integral inequalities based on projections and formulation
of some integral inequalities used in the literature.
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Perspectives

Some comments and perspectives for future research on the topics described in
this manuscript are given below.

In Chapter 2, to provide an explicit expression of the delay margin allowing to
adjust the different filter parameters, we consider the delay margin as the only
variable of the objective function associated with the optimization problem. This
choice was made because increasing the delay margin of the system usually has
a positive impact on most performance criteria considered for the steering sys-
tem. Nevertheless, thanks to the metrics introduced in Chapter 1 to assess the
performance of steering systems (the hysteresis, the bandwidth of the system,
or induced norms of the transfer functions presented there), more complex ob-
jective functions can be considered. However, the analytical bounds proposed in
Chapter 2, which are also used to provide filter design guidelines, could be difficult
to obtain with these more sophisticated objective functions. In this case, instead
of analytical expressions, we would rely on numerical methods to compute the
filter parameters and use delay margins as constraints. Another direction of re-
search is to analyze the modified Smith predictor approach described in Chapter 3
for the case of electric power steering systems. Moreover, the analytical results
to estimate the delay margin for electric power steering systems, presented in
Chapter 2 of this manuscript, assume that the delay is constant. Even though the
simulations in this chapter show a high degree of robustness to some time-vary-
ing delay signals, it is unclear whether or not these analytical results (obtained
from a frequency-domain analysis of the system) can ensure the stability of the
system in the case of a time-varying delay. Finally, even though the linearized sys-
tem remains insightful to design control laws, it yields local stability conditions.
The stability analysis of the nonlinear system (including a nonlinear torque map)
is needed to assess global stability and the region of attraction.

In Chapter 3, similarly to Chapter 2, the internal delays and the transmission
delays for steer-by-wire systems are also considered constant. In addition, esti-
mates of the internal delays and the dynamics equations of the steering wheel
and the pinion subsystems are used in the inner feedback loops around the con-
trollers. It is therefore crucial to find the admissible uncertainty margin on the
estimated internal delays as well as on the parameters of the steering system.
In contrast, in a scenario where the steer-by-wire system is teleoperated, the as-
sumption of constant delays becomes too restrictive and has to be dropped. Fi-
nally, we must mention that the proposed controllers for steering systems were
only verified with simulations. Simulations are very restricted environments and
do not reflect all characteristics of an actual vehicle and neglect some dynamics
of the system. A first critical modeling to be introduced is the model of the forces
in different simulation conditions [81].

Concerning the second part of the manuscript, we parameterized a Lyapu-
nov-Krasovskii functional for continuous time-delay systems with a finite number
of linearly independent functions. The results can be extended for discrete-time
systems [1071, 22, 12]. For these systems, the matrix that describes the dynamics
of this discrete-time system has large dimensions, especially if the values of the
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delays are large compared to the discretization time. Consequently, to construct
a Lyapunov-Krasovskii functional, many scalar unknowns are required within a
convex optimization problem, requiring high computation time to solve the as-
sociated semidefinite programming problem. Furthermore, Lyapunov matrix can
also be defined for the discrete-time systems as shown in [56] for some particular
systems.

Moreover, we mainly focus on the use of the Lyapunov-Krasovskii functional
for stability analysis of linear time-delay systems. This functional can also be used
to compute upper exponential estimates (decay rate) of the solutions of time-
delay systems, as shown in Section 5.4 for application to steering systems. We
would also like to establish input-output performance indices, for delay systems
with disturbance inputs, using Lyapunov-Krasovskii functionals, and relate these
performance indicators to the performance metrics defined in Chapter 1. More-
over, we would like to assess the advantage of using a polynomial R(6) in the
sum-of-squares methods to obtain tighter estimates of the convergence rates.
In addition, the projection methods introduced in Section 5.1 to represent the dy-
namics equation of linear time-delay systems could be equivalently used to obtain
sufficient stability conditions for nonlinear systems with time-delays.

Finally, one challenging problem is the design of feedback control laws for
time-delay systems. The resulting stability conditions obtained with Lyapunov-
Krasovskii inequalities yield constraints of a nonconvex optimization problem.
In [17], the dynamics equation of a linear time-delay system is restated as & =
Ax(t), where Ais an unbounded operator. Itis shown that the stability conditions
of the system are equivalent to the existence of a positive operator P satisfying
some conditions [17, Theorem 5.1.3]. In [88], a dual version of these results is in-
troduced, and the stabilizability conditions are formulated as a convex optimiza-
tion problem. These dual stability conditions are then formulated as positivity of
a dual form of a Lyapunov-Krasovskii functional. A second potential approach is
to define dual and adjoint systems [6, Chapter 1] for a linear time-delay system.
However, the relationship between the stability of the dual system and the stabil-
ity of the original time-delay system has to be established.
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Appendix A

Technical proofs of Chapter 2

Lemma A.1 and proof of Proposition 2.3

The following lemma, see [9] and [66], will be used to prove Proposition 2.3 and
at several other places of Chapter 2.

Lemma A.1. Suppose that ¢ > 0, n > 0. Then,

L, &+

tan , En <1,
- 1—¢&n
() tan™" € + tan~"n = § &n =1,
tan ! Sl +m, &n>1;
1—&n
ji) tan~' ¢ —tan~'n = tan~! 5_77,,
(ii) § n 1T én

I ) ,
(iii) r@ﬁ < tan 15 <&

(i) 0 <tan~'¢ < g

Proof of Proposition 2.3. /tem (i). Let w.(w,) be the unity-gain crossover frequency
of the open-loop transfer function P(s)Cs(s). If it exists, the frequency @.(w,) is
necessarily a positive real root of the polynomial equation

K2
O (wq) — (F +2— 48) O (we) +1— K*=0. (A.1)

a

Observe that the closed-loop delay margin is infinite if and only if the Nyquist
diagram of the open-loop transfer function does not intersect the unity gain circle
(at a strictly positive frequency). Hence, to have infinite delay margin, the above
polynomial should not have any strictly positive real root. By Routh’s criterion,
this is equivalent to condition (2.10) of the Proposition’s first item.
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Item (ii). The open-loop transfer function is given by

K (Wi + 1)
P(S)CQ(S) = m. (A2)

Denote by p; and p, the two poles of the system. Since the system is stable, there
exist two real numbers o > 0and g > Osuchthatp; = —a+j6and p; = —a—j0.
From (A.2), we have o = ¢ and a? + 5% = 1.

Define s = jw. The phase of the open-loop transfer function is given by

w w + w —
p(w) = tan™! — — tan™! wth_ tan™! w=b_ T
We o a

The delay margin is given by

where

K? K2 2
§+2—4C2+\/<F+2—4<2> — 4+ 4K?

a a

We(wa) = 5
d
is the largest root of equation (A.1). Indeed, - <M is a strictly decreasing
W w
function of w. Using Lemma A.1.(i), we obtain the solutions of the delay margin
AT(w,) stated in the proposition. a

Proof of Theorem 2.4

T(w;) = 0. Based on this observation,

AT (w,)

d
we have that any interval I = [0}, 00) satisfying T

. dA
At the optimal value w’ we have that

Wa
< 0, Vw, € I, yields an

upper bound @¥ for w!. The goal in the steps detailed below is to obtain small
values for w;.

First step. Consider the derivative of w.(w,) in (2.12) with respect to w,,

do.(we) _K2X(wa)

dw, - wW3we(wy)’ (A-3)
where i,
X(wa) = Ce (wa) . (A.4)

K? 2
\/<—2+2—4g2) — 4+ 4K
wa
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Since we assume that (2.6) does not hold, following Proposition 2.3.(i), condi-
tion (2.10) does not hold. Therefore @.(w,) is well defined and @.(w,) is well de-
fined and verifies @.(w,) > 0, Vw, > 0. Moreover,

K2 2
<—2+2—4§2> —4+4K?2 >0, Yw, >0,
w

a

therefore X(w,) > 0, hence (A.3) is negative. It follows that @.(w,) is a strictly
decreasing function of w,. In addition, from (2.12) we have

wali>n—&}oo Wc(wa) = We,
with @, as in (2.7). Since @, is strictly decreasing on w,, the above limit implies
Oe(wa) > @, Yw, > 0. (A.5)

In (A.4), replacing the expression of @.(w,) given by (2.12) leads to

K2 K2 2
_+2_4C2+\/(F+2_4<2) 44+ 4K

w2 :
X(wq) = ) (A.6)
K2 2
2\/<—2+2—4§2) — 4+ 4K?
wa
We can show that
1 if K >1
X(w,) << ’ A7
(w)_{co, if K <1and2¢y/T—C < K. (A7)

Indeed, since we assume that (2.6) does not hold let us consider the two cases
below:

* For K > 1, (cases | and lll)

K? K? 2
F+2_4C2<\/<§+2_452) — 4+ 4K2, We > 0.

a a

This implies that, from (A.6), X (w,) < 1;
« For K <1land2(y/1—(? < K, (cases Il and IV)

K2 K2 2
F+2—4C22\/(F+2—4<2> —4+4K2, (Ua>0.

In this case, from (A.6), we have
KQ
— +2-4¢°
X(wa) < t: < Co,

K2 2
\/(—2+2—4g2) — 4+ 4K?
wa

where the second inequality is obtained by observing that, in this case, the
function X (w,) is strictly increasing, and by letting w, — oc.
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Second step. For K > 2( (cases | and ll), from (2.7) we obtain w.(K,¢) > 1.
Indeed, the function &, is strictly increasing with respect to K and @ .(K,() = 1
when K = 2¢. Moreover, from (A.5), we have &.(w,) > &, Yw, > 0 which gives
Oe(wq) > 1, Vw, > 0. In this case, using Item (ii) of Proposition 2.3, we have

tan~1 @e(wa) + tan™! ~QQCWC(W_G)1
AT (wa) = o Gelwa) =1 (A8)

We(wy)

of which the derivative with respect to w, gives

tan~! ©el(a) +tan !
dAT(wy) d Wy 02 (w,) — 1

dw, dw, WDe(wq)

Multiplying the above expression by @w?(w,), we obtain

Bo(toa) L ((Zele)
-9 dA?‘(wa) e dw, Wq d@c(wa) _1 a’c(wa)
@ (Wa) = - - tan

dw, |+ 03 (wa) dw, W,

wy

o) d ( 2(@e(wa) )

e\Wa) g ?Z(wa) _21  doe(wa) tan~! M (A.9)
1+ (2@’_(“)> dw, O2(wa) — 1

Wz (wa) — 1

From (2.12), we have the following derivatives

a4 (M) __Gelwn)  KPX(wa) (A.10)

dw, We w? Wi (wa)

and

 wile(wa) (@2 (wa) — 1)?

-G+ () A1)

(W2 (wa) = 1)* \ dwa

d ( 2(We(wa) ) _ 20K*(@Z(wa) +1)X (wa)

Replacing (A.3), (A.10), and (A.11) in (A.9) and using Item (iii) of Lemma A.1, in
the Appendix, we have
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AAT (w,) w2 Wt K2X (w,) ACwa@? (wa)
2 < a a c
“elwn) =g < e R S P B
1+ ==
wa
_‘Dg(wa) + K?X(wa) (@2 (wa) + A0wi2 (wa) + 405 (wa)
_ W % wa(@2(wa) — 1)?
- ~2
1 + wc (L;)a)
wa
W (w,) K?X (w,) 4w + 4w, w2 (wg)
C _ 1 a C
T ( P (* () — 1)
- ~2
1 _|_ wc (C;')a)
w

5 in the above expression, we have

%>P>_(1—@@m

- (@2wa) = DY

~2
and since 1 < @, < @.(w,), we can conclude that % is a strictly de-
~2 ~2
creasing function of w.(w,). Thus (@g(&i@ 12 < (@gw_c e and we obtain
Wz (Wa)
dAT 2 K2X (wq 4Cwq (W2 2
wg(wa> T(wa) < (i}a (w ) 1+ CWA(WC +wa) —-11.
dec, 52 (wa) ot (@2 - 1)
1+ 5
wa
@2 (Wa)
. w? .
Using m < 1 gives
1+ 5
wa
3 dAT(w,)  K?X(w,) 4Cwa (W? + w?)
2 a a 1 a c a _ 1
Celwa) =0 < T @2 —1)2

With the upper bounds of X (w,) in (A.7), the above inequality yields
« For K > 1, (case l)

dAAT(w,) _ K? 4 cw, + cowl —w)

Y

dw, wi
* For K <1, (casell)
a’?(wa)

a_

dAT(w,) _ K?¢y + c1cowq + cacowd — wl

dw, wi
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The above expressions can be used to obtain values of &}, from which we have

dAT (w, . .
M < 0, Vw, > @w. Note, however, to obtain values bounding the set where

< 0, we must find roots of the polynomials K2 + cjw, + cow? — wi
and K?¢y + cicow, + cacow? — w?. To obtain an explicit expression for @*, given
by the explicit solution of a polynomial of degree 4, we introduce upper-bounds
on the right hand side of the above inequalities by applying the Cauchy-Schwarz
inequality either to the terms c¢;w, and cow3, or to the terms ¢ cow, and cacow?. The

above inequality gives

* For K > 1, (case l)

2 2 4

ad o w w

AAT(w,) K24+ 24 28 4 2c20? + —2 — ot

(,7)2((,0 ) a < 2 2 8
Y dw, wi ’
* For K <1, (casell)
Aack Wl wi

L dAT(w,) | B+ = S 2wl + -
w2 (wa) o < i :

Again, applying the Cauchy-Schwarz inequality to the term w?, c3w?, and ciciw?,
we obtain

* For K > 1, (case l)

2 1 W wt oWt
_ K241y 4y Za g4y Za Ta 4
o)A TR T TR TRA g TR T
Y dw, wi ’
* For K <1, (casell)
Az 1wl wt oWl
_ K2 A0 4 -4 Zeygidd ey Ta 4
@2@ )dAT(wa) g Co + 5 + 5 + 3 + 8cy¢y + 3 + 3 W,
Y dw, wi '

Thus, from the roots to the right hand side of the above two inequalities, we
dAT(wy)

get directly the explicit upper bound @} stated in the theorem for which "

is negative for all w, > w.

Third step. The argument invoked at the beginning of the Second step, for K <
2( (cases lll and IV), gives w. < 1. From (2.12), we can show that @.(w,) < 1 if and

K
/4(2 _ KQ
Therefore, given any pair (K, () in the set lll U IV, from Item (iv) of Lemma A.1, we
have, for all w, > 0,

2 ~C a . — 2 ~C a
max < tan~! M < T <  min —tan ™! Cw~—<M) +7. (A12)
Be(wa)>1 W2 (w,) — 1 2 Ge(wa)<1 1 — @2 (w,)

only if w, > . Then, in this case, the set {w, | @.(w,) < 1} is not empty.
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-1 Wc(wa)
W,

tan

Moreover, since —
Oe(wa)
also have, for all w, > 0,

¢ is a decreasing function with respect to w.(w,), we

tan~! ©e(wa) tan~! @e(wa)
max { ———%2 % min YW L (A.13)
Be(wa)>1 De(wa) Be(wa)<1 Oc(wa)

Using (A.12), (A.13), and Proposition 2.3.(ii), we can show that, for all w, > 0,
the delay margin in the case where @.(w,) < 1 (which is only possible in the cases
Il and IV) is larger than the delay margin in the case where &.(w,) > 1. For this
reason, and using the fact that the set {w, | @.(w,) > 1} is not empty, we consider
the case where @.(w,) < 1to maximize the delay margin. In this case, from (2.11),

we have B B
tan™! _wc(wa) —tan~! —2wa(wa)
W 1 — 02 (wa)
e (wa)
From the above expression, we then follow closely the developments starting
from (A.8) in the above Second step, which we omit for brevity, to arrive at the

following expressions

A%(wa) =

* For K > 1, (case lll)

a.,
Y
dw, 4w

dAT(wg) _ 4+ 4K +2(2 + c2) + 32(c5 + ¢f) — wi

@7 (wa)

« For K <land2(+/1—(? < K, (case IV)

dAT(w,) - 4+4K?%co+2(2 + c2)c3 + 32(ch + ¢f)cp — wi
dwq 4wt '

@z (wa)

Finally, from the right hand side of the last inequality, we get directly the explicit
upper bound @} stated in the theorem. g

Lemma A.2 and proof of Theorem 2.5

We provide here the following lemma, which is used in the proof, given below, of
Theorem 2.5.

Lemma A.2. for any scalar K > 0, let the function Z : Ry x R.q — R.( be defined
as

We(Wa, K
Z(wa, K) = Y (w,, K) tan ™' =222 Y . (A14)
Wa w3 (wa, K)
e
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where

K2 4
el + T 4K K2 "
Go(wa, K) = \| — = and Y (wa, K) Celwi K) a1
4
We 54 + 4K?
wa
Moreover, let the function ¢ : R.o — R+ be defined as
B2 (0)
B2(0) +
BW) .y B0 >y (9)
¥) = ——~tan — , (A.16)
) R R ()
292
where
1 1

I
5 =\ L and W)—,/%M. (A17)

The functions Z and 1) have the following properties:
(i) There exists a unique solution o > 0 of the implicit equation () = 0.
(i) For anyn € Ry and K € R, we have Z(av/Kn, K) = 1(an).

(iii) For any fixed value of K > 0, the equation Z(w,, K) = 0 admits a unique
solution w, = aVK.

dip(V)
v

Proof of Lemma A.2. /tem (i). Let us first show that < 0. The derivative of ¢

with respect to ¢ is given by

po) 4 (ﬂ)

() _ d <ﬂw> )t B0) 0w \ ()
A dw, \97(0) B°0)
+ T
(v d (B9 BAW) d (B*()
) 2ﬁ(ﬁ>% N B g ( 2 ) @) \ 2
B () 320\ 32(9)\
1—’_? (1+ ﬁ(Q)) (1+ 19<2>)
From (A.17), we have % (%) < 0 forall ¥ > 0. Using Lemma A.1.(iii), the
above expression is upper-bounded by
dB0) g9 L (52(19)) B*W) d <52(19)>
) . 20 g T\ T ) mwar w C(A18)

S A ' (HBZ@)Q : <(1+%g9>)2

138



From (A.17), we have

I BB

1 /1
@‘l— @—i—él

1 1
ag) 1 [@ETyw !
) 1 '
2 W+4

1
Using the fact that 0 < < 1 and since > 0, the above
8 1 = PB()
2 7 +4
equation gives
1 dp(v)
— < . .
TR S <0 (A.19)

Using (A.19), we have

d ()  28(9) (dB(W) B)

. ( ) =D (A <o (A20)

Then, since the last term in (A.18) is negative, it gives

a5 (1 . 51(;9)) ABO) | g L (52(19))

aw(o) _ I TANT;
v <1+519(279)>
dpw)  28%(0)dp(w) | 26°(0) (dB(W)  B()
(AEO)_ﬁw) w2 A P (dﬁ - 0)
B(0)\’
~ )
- B9)\*
<1+ - )
2 250)
(A!9) 93 93
B2\
(1+ Bl )

Using the fact that, from (A.17), we have () > 1, the above inequality gives

dy (V)
W < 0.

Therefore, the function «(¥) is a strictly decreasing function with respect to ¢.
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To obtain existence and uniqueness of a solution to ¢(J) = 0, we show that
}}r}% () > 0and 19lim Y(¥) < 0. From (A.17), we have
— —+00

lim @ =1 (A.21)
90 1
Y
and
(W)
11913% = 1. (A.22)
92
We also have
191_1513006(19) =1 (A.23)
and
i (9) =2. (A.24)

Then, let us consider the expression of ¥ (¥) in (A.16). Using (A.21) and (A.22),
namely by replacing 5(¢) by % and replacing ~(¢) by % we obtain

5)
5(9) +
. . 92~
lim () = 5 — lim ——— ) =7
192

And, using (A.23) and (A.24), namely by setting 5(¢) = 1 and v(J) = 2, we obtain

2(9
. Ak 19’2»;(19%
ﬂgrfmw(ﬁ) =0- ﬂgr-{loo 52(19) =1
1+ 5

Therefore, since ¢ (v) is positive near zero, negative at +o0o, and it is continuous
and a strictly decreasing function with respect to 4, then, the solution of ¥)(9) = 0
exists and is unique.

Item (ii). To show that, for any n € R., and K € R+, we have Z(avVKn, K) =
Y (an), consider (A.14) and (A.15) to obtain

1 @elaVEn, K)

Z(aVKn, K) =Y (aVKn, K) tan a—m

w.(avVEn, K)

@f avVK JK)4 ———Y aVK K
) ( n, K) N ( n, K)
1+wf(a\/fn,K) ’

a?Kn?
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K? K*
ERN -

a?2Kn? atK?
@c(a\/fn,K) = 7 5 7
= VKB(an),
and
2_
Y(aoVKn, K) = USCACEY)
K4
a\/?n\/m -+ 4K2
_ K*VEp(an)
1
aVEnK, | —— +4
'ty
_ KB(om)
any(an)

Replacing the expression of @.(av/Kn, K) and Y (av/Kn, K) in the expression of
Z(av/'Kn, K) and simplifying with K, we thus have, for any € R.yand K € R,
Z(a/Kn, K) = 1(an), where 1 is given by (A.16).

Item (iii). For a fixed value of K, suppose thatw, = z*is asolutionto Z(w,, K) =
0. From Item (i), we have Z(a/Kn, K) = 1(an).

xr
Take n = ——, we obtain
T WE
x*
=0
o (7%)

since by assumption Z(z*, K) = 0. Then, from /tem (i), we must have

x*

= .

VK

Therefore, w, = =* = a/K is the unique solution of Z(w,, K) = 0. 0

Proof of Theorem 2.5. The goal in the steps detailed below is to obtain the asymp-
tote of w}, the value of w, yielding the optimal delay margin A7(w,), as K tends
to +oo.

First step. For any fixed value of { > 0, using the results of Theorem 2.4 (case
1), there exist a scalar § > 0, where w’(K,¢) < §v/K as K tends to +oo. Then,
from (2.12), for any w, < 0v'K we have

C as K?
lim Qe(wa, K, ) ~ 1. (A.25)
K—4o0 KQ K4
— + — + 4K?2
wa wa
2



We thus have that Klir}rl We(w,) = +00. Using the argument invoked at the begin-
—+400

ning of Second step in the proof of Theorem 2.4, for K > 2¢, we have @.(w,) > 1.
In this case, from (2.11), we have

of which the derivative with respect to w, gives

NC a 2 ~C a
tan—1 < (wa) + tan~! —Cw (wa)

dAT (w,) d Wy 02 (w,) — 1

dw, dw, We(wa)

Multiplying the above expression by @w?(w,), we obtain

~ d [ @e(w,)
L dAT(w,) “C(““)d_wa( wa) db(wa) . 1 Gelwa)
wc(wa) dw, = cbf(wa) — o tan w—a

1+ 2
. d 2¢0c(wq)
Gelwa) g (a)g(wa) - 1) doe(wa) |y 20@e(wa)

1+ ( 2ch(wa) )2 dwa Qg(wa) - 1

w2 (wa) — 1

(A.26)

From (A.3), (A.4), (A.10), and (A.11), we can obtain

d ( e (wa) )
) dw, Wy
lim

K—+too  @e(Wa) K20 (we) ’

(A.27)

2
w? 4

lim - —1, (A.28)

K500 K2 (wq)

and




0¢s
Now, using the above three limits and since lim _26@c(wa)_ = 0, we have

K—+o0 (I)E(Lua) —1

o, \ B2 wa) — 1) d@e(wa) I 2¢0c(wWa)
1+ ( 2(e(wa) ) deo, Welwa) — 1
lim “e(wa) — 1 =0
Kotee o d [(@o(wa) |
wC(wa)dwa ( Wa ) dioe(wa) , _y We(wa)
02 (wy)  dw, tan Wy
1+ -t

2
Wa

Therefore, from (A.26), we obtain the following expression:

dAT(w,
22w 2T
li dwa =1
im - =1
Koo () d [ @c(wa)
N dw, We de(w,) 1 We(wa)
@02 (wg) dog " w
1+ c a a a

Using (A.27)and (A.28), namely, replacing

dwy, -

w? 4
a
wat | — T 4K
w(l

(S )y Sl) e

and replacing dw;(w“) by — Delca) in the above equation and multiplying
Wa 4
Wiy | 54 + 4K?
wa
by w?, we obtain
dAT(w,
22 L)
lim R Yw, > 0, (A.29)

K—+oo Z(wa,K) ’

where, using (A.25), Z(w,, K) is given by (A.14) in Lemma A.2.

Second step. Using Lemma A.2, the optimal solution w (K, () exists and is
unique. Now, consider a function ¢ : Ryy — R., such that p(K) < §vK sat-
isfying

“(K
lim walK C)

K—too  @(K) =L (A.30)

Setting w, = ¢(K), and from the fact that w’ yields the maximum delay margin,

dAT T

I (,0) = 0,thus (w3 el (K, O))* (i (. ) =

0. Hence, using the above equivalence between w} (K, () and ¢(K), we have

namely, forall K,

lim ()@ (oK) 22T

K—+o0 ¢

() =0,
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Therefore, from (A.29), we must have

lim Z(p(K),K)=0. (A.31)

K—+c

Third step. Consider the unique solution a > 0 of (A.16) and let us rewrite p(K)
as

p(K) = aVEn(K),
avVK

, K
where n : R.y — R5. Let us suppose that (A.31) holds and that Kl_lffoo oK) # 1,

which from the above equation is equivalent to Khrf n(K) # 1. UsingLemmaA.2,
— 400

we have Z(avV/EKn(K), K) = (an(K)). Since the unique solution of equation ¢(¢) =
0is ¥ = o we have that

W (a lim n(K)) £ 0.

K—+o00

The continuity of ¢ thus implies that

lim ¢ (an(K)) # 0,

K—+o00

which from Lemma A.2.(ii) implies

lim Z(p(K), K) #0,

K—+oco
thatis, (A.31) can not hold, leading to a contradiction. We thus conclude that

/K _

li 1

and, from (A.30), we have
by “alELQ)
m ———e—-

= 1.
K—+o00 Oé\/?
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Appendix B

Technical proofs of Chapter 5

Proof of Lemma 5.1

From (5.7), we have
p
pr(0) = priin)(0) = D pifi(0).
i=j

Multiplying the above equation by f;(6), for j = 1,--- ,p, and integrating from 0
to 1 with respect to 0, we obtain, using (5.8),

T@ jH 9: ,.j_19j<9d9— AZ' 16 39d9
/Op()f()d /Op( V0 ;p/of()f()
(pgl(;,l),fj) p 1

{ ; ]Zm | r@s00
Wyt ] =i 0

—pi | L0 50)d0 =S p; | £:0)1;(0)d6.
p]/o £,(0)1,(60) Z,o/ £(6)7,(60)

Evaluating the above equation for j = 1,--- , p, we obtain Lemma 5.1. g

Proof of Lemma 5.2

Since, from (5.7),
Pr(i—l)(e) = Pr(i-2) (0) = pi—1 fi—1(0)
and p,o(0) = p(#), we obtain

1£:O) o, =

S—

(p<e> - iﬁjfjw)) fi0)d0

p(0) fi(0)do — Fiflﬁ-

0

S—

This is equivalent to

5= / p(0)£:(6)db.
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Therefore, considering the above equation, fori = 1,...,p, we obtain

which is equivalent to (5.13). [l

Proof of Proposition 5.3

From (5.11), we have that the derivative of ¢ with respect to ¢ gives

at¢<t7 9) = 8t¢r(t7 9) + F(9)¢E(t)>
and its derivative with respect to 6 gives

Dpo(t,0) = Dy, (t,0) + F'(0)(t). (B.1)
Thus, using (5.5b), we obtain the following identity

(1)
O (t,0) = [F'(0) I, —F(0)] 89¢f(t,9) : (B.2)

(1)
From (5.5a), we have ¢(t,1) = Ag¢(t,0) + A1¢(t, 1), which using (5.11), gives

Or(t,1) + Fioft) = Ag (00(t,0) + Fod(t)) + A1 (an(t,1) + Fid(t))

or, equivalently
Ot 1) = [AgFy + AiFy Ay Ay —F]

From (5.8), we also have

~

1 1
it:— 8rz’— t,@z(‘)d@
)= T Jy A 050
Since, from (5.7),

Orbr(i—1)(t,0) = Orpr(i—2)(t,0) — %ifl(t)fifl(e)a
and ¢.o(t,0) = ¢(t,0), we obtain

@0 = [ (atqs(t,e)—i&(wfj(m) )0
_ /O Do (t, 0) £:(0)d0 — Fi1(2).
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The last expression is equivalent to

1
Fip(t) = /0 Dyp(t, ) f:(0)do. (B.4)

Moreover, using (B.1), we have
1 1 p R
/0 e (1,0) £:(0)d0 = / <8e¢r(t,9)+z¢j(t)f§(9)) f(0)d6
j=1

:/ Dr(t,0) £;(0)d0 + Fyib(2).
0

Therefore, considering (B.4), andi =1, ..., p, we obtain

. 1
Fo(t) = /0 F(0)0p0,(0,)d0 + Fyo(t). (B.5)

By applying integration by parts, we obtain

1 1
| ET O e0a8 =~ [ FTO0.(0.00a8+ Fo.(01) ~ F 6.(2.0)
0 0
= _XT(DF - FT)Qg(t) - XeT(ZB(t) + FlT(br(t? 1) - FJ¢r(t7 O),

where ¢(t) satisfies (5.16).
Finally, from (B.5), we have

~

o(t) = (F~'Fy— F' X (Dp — F1))b(t) — F' X (1)
+ F 'R ¢.(t,1) — F'F) ¢,(t,0). (B.6)

Therefore, from (B.6), and by replacing the expression of (B.6) into (B.2) and (B.3),
we obtain (5.15). 0

Proof of Theorem 5.4

First step. For any piecewise continuous function p : [0, 1] — R”, from (5.11), we
have, for the terms with P in (4.20)

FTPF, F] P} {

e = o] [ |0

For the terms with Q(#), since Q(#) = QF " (6) and from (5.12),

o) [ ewtow =17 ] 5% a0 | ) @

} . (B.7)

. YTETQF Oppn] [ 57
— [pT pj(m/o { 1QF’ Oan} {PZ(Q)} dé. (B.8)
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For the term with R(6),

[ om0 [l "] o] 09

where R; = [\' FT(0)R(0)F(6)d6.
From (5.18), (B.7), (B.8), and (B.9), we obtain

T

5
Pr )} do, (B.10)

where

ROFO)  Open R(6)

Second step. Since, by Lemma 5.1, [ F(8)p,(8)d0 = (Dp — FT)p, we have

/1 [DF - FT Onpxn _FT(Q)} [@"?D] df = Onp><1-
‘ pr(0)

Then, for any Sy € R"™*™ and S; € R™*™, we define

Wo(ﬁapr(l)a pr('))

Applying the fundamental theorem of calculus, for any differential matrix func-
tions C : [0, 1] — Sre+>xn+D) ‘we define

wipemi= [ 0] [Gew-corcol] 7 ]

Thus,

v(lo) - Oél”ﬂ(l)HQ - V(ﬁ? pT(1)7 )Or()) + WO(ﬁ? pT(1)7 )Or()) + Wl(ﬁ? pT(l))
T F Oupn
— oy Fl [n ! Onxn

Oanp OTLXTL j OTLXTL



Third step. The time derivative of (B.10) along the solution of (5.5), is given by

d TORE (1)
Ev(gb(t%qbr(tvl)?gbr(tf)):2/ ¢r(t7 ) QV(Q) 8t¢r<t71) d@,
0 ¢T<t7 ) at¢r(t>9)
and, from (5.15), we obtain
o ()
U 1| o(t) o(t)
V(6(0),8(0),0n (8.1, 6.0,0).0n(6) =2 [ [on(t,1)| AOT) | 6.01) | .
O |on(t,0) ¢r(t,0)
89¢r<t70>

Since

/¢Tt9 )0y, (t,0)db

1 1 ¢T(t’]‘) ' R(l) Oan O’an ¢T(t7]‘)
—/‘<m@ﬂ> Onin —R(O)  Open | |n(2,0)| db,
2Jo ij !o ] [ wj

and

5T () / (FT(0)R(6) + FT Q(0))0s6 (1, 0)d6 =

o R(F + Q" ()F " ot 1)
¢T(t)/ [ —R(0)Fy — QT (0)Fy ] [@(@0)] de,
O [—R(O)F(0) + R(0)F () + Q" () ¢ (t,0)
then, V is given by

where .
(1)
(t)
n(t,0) = | ¢.(t,1)
¢, (t,0)
¢T' (t7 6)
and
Qu(0) +Qf,(0) —FTTX] O Qu  —FT(O)R(0)
—Xe TF OWDeane Onpexn Onpexn Onpexn
QV = Q;r3 Oanpe 933 “I‘ Q?TE} Q34 _Q_XJFJ(H) .
91—4 Onxnpe Qi—l’,—zl _ _R<O) Onxn
—R'(0)F(0) Opscnpe. —Fo(0)XQT  Opn —R/(0)
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Since [, FT(0)¢,(t,0)d0 = (Dp — FT)¢(t), we have

1
/ [DF —FT Oann(pe-i-?) _FT(Q)] 77(t:9>d0 = Onp><1a
0

then, for any S, € R™”*™ and S; € R*P+t2xm2 e have
. ! So i
Wo(n(t.)) = 2 / D60 | 8 | [Dr— FT Oupniss) —FT(0)] n(t, 0)d0
0

Onxnp

=0.

Similarly, since fol ET(0)p.(t,0)d0 = ¢(t), we have

1
/ [Onpexnp Ipe OnpeXQn _Fe—l—(e):l n(t7 g)de - O”pe><17
0

then, for any S, € R™*"ve, 5, € R™e*pe and S, € R2"*"P¢ we have
So
Si

2

[Onpesnp Ipe Ouporan —F(0)] n(t,0)d6

On XNPe

Applying the fundamental theorem of calculus, for any differential matrix func-
tions C(0) : [0, 1] — Snp+pe+2xn(p+p+2) we define

WQ(&@% gg(t), ¢r (tv 1)a¢r (ta O))

1 o(t) ] o(t)
=[] [ee-cmrcol | 40
. (t,0) ¢r(t,0)

Thus, by adding V, W, Wi, and W», we obtain

V(@) + Bllo(t, D> = V(n(t, ) + Wo(n(t, ) + Wan(t,-)) + Wa(n(t, )
FlTFl 0np><np8 FlT Onpxn ; Onpxn
Onpexnp Onpexnpe Onpexn Onpexn : Onpexn

—|—ﬁ Fl Onxnpe [n Onxn : On><n
Onxnp Onxnpe 0n><n Onxn [ Onxn

Fourth step. By Theorem 4.1, the origin is GES. a
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Proof of Proposition 5.6

By projecting the function p respectively on the set {fi,---, f,} and {g1,- -

asin (5.11), we obtain
p(0) = F(0)p" + pl(0)

and
p(0) = G(0)p? + pl(0),
where
FO)=[h0) - f0)] L
and

G(0) = [01(0) - gp(0)] @ L.
Using Lemma 5.2 and since F'(0) = G(0)(B ® I,,), we have
B 1
pl=F! / FT(0)p(0)db
0

—FYBT®1,) / 1 GT(0)p(6)do

and

where F and G are structured as in (5.3).
Then, we obtain

pl=F (B @ L,)Gp

and
pl(0) = (G(0) = F(O)F (B  I,)G)p* + pi(6).

Therefore, we have

T T T o
V(p) = anllp(D)|? =/O pl(1)| Q) [pff(lil do

pl(0) pl(0
[ T 59
= [ || Ko@) |s01)| o,
R AG pi(0)
where B B

Fﬂil(B—_r ® [n)G _ Onpxn Oann
K=|G1)-F)F'(B'"®IL)G I, On

GH) — FO)F Y (BT @ I,)G Onyxrn I

s Gp}



And

¢’ () ¢’ (t)
. Lol | ¢/ (t)
V(¢)+6H¢(t,1>\l2=/ ol (t, 1) Q) |¢f(t,1)] do
O | #l(t,0) o1 (t,0)
] (t,0)] ol (t,0)
aonN $ (1)
1| @9(t) )
= [ et n| ETROK [ot01.1)] do
O |#(t,0) ¢(t,0)
| 92(t,0) ] PI(1,0)
where
F‘il(BT ® In)é Oannpe 0np><n Onpxn Onpxn
Onpexnp (B_1®In) Onpexnpe Onpexn Onp5><n
K= |G(1) = F)F ' (B'®@L)G  Opxup, i Onsn Opxn
G(0) = FOO F ' (B"®L,)G  Opxnp. Opscn I, Opsn
GO)—FOF B ®L)G  Onxnp. Onscn Onxen I,

Since F, B, and G are full rank matrices, K is also a full rank matrix. There-

fore, the matrix Q in Theorem 5.4 is a positive definite matrix, if and only
matrix K ' MK is positive definite. Note that the above statements stay va
the matrix €2, in Proposition 5.5, where p. = 0.

Proof of Lemma 5.7

We have

[rosuow- [ L] {755 70 ol

Since S is a symmetric matrix, we have

1

[ mosnww =05 [ Fopom

and, from Lemma 5.1, we have
1
1,5) [ FT @) (0)d8 = (1, S)(Dg ~ F)p
0
Again, since S is a symmetric matrix, we have

/ FT(0)SF0)d0 = (I, 5) / FT(0)F(6)0

=(I,®S)(F+F" — Dp).
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Therefore, using (B.12)-(B.13) in (B.11), we obtain

/01 p'(0)Sp(0)do = /01 {pf@)}T [FTéQ}?£<9) FTK(S’H)S} [Pf@)} do
- ol [T P G
> p'(Dp ® 8)p,
since (I, ® S)Dr = D ® S and S is positive semidefinite. a

Proof of Proposition 5.8

Consider V in the proof of Theorem 5.4 and Proposition 5.5, for p. = 0, and setting
S0 = Onpxnpr S1 = Opxnps @aNd C(0) = 0,,541)xn(p+1), fOr all 8 € [0, 1], we obtain

V(ﬁ, pr(D?ﬂr(')) =

[ 5 1 [+ FT(OROF®O) FTQT +F P F()R(H)
/ [ ] [ GF + PF, P Oren ]
0 R(0)F(6) Onsn R(6)

!
pr(1)] db.
pr(0)

Since, from Lemma 5.7, we have [ p"(0)Sp(0)d0 > p" (Dy ® S)p, for any positive
semidefinite matrix .S, we obtain

Vip) = Vip) — / pT(0)Sp(0)d8 + T (Dr ® 9)p.

That is equivalent to

>
—_

N—

—

s[5 1 [t (Dpas) FTQT AT

V(p) = arllp(* = [pf()l)] { Q_EFPFl | P Hﬂr
T|: ,6 :|
pr(1) | db.
pr(0)

] 5L
! pr(l) Fl [n pr(l)
[ o 7 [FTO) FT(6)
[ o] | 0 | (RO = 5) | 00
0 (0) I, I,
From the above expression, we conclude that the LKF is positive definite if the
inequalities in (5.23) hold.

Pr
Similarly, from the expression of the time derivative of the LKF given in the
proof of Theorem 5.4 and Proposition 5.5, for p. = 0, and setting Sy = Onpxnps
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ggii Qpll + Q;;rll 3 QplQ_ Qpl?) ggii
Qs Qpaz + Qpy (pas
¢r(t> 1) QT QT —R(O) ¢r(t7 1)
¢r(t,0) P P ¢r(t,0)
OB &(t)
| e FT(0) FTO) 1| a0
- / ¢T(t7 1) On(pﬁ+2)><n R/(9> On(Pe+2)><” ¢T(t7 1) do.
oot L o Lot 0)
¢r(t,0) ¢r(t,9)

Since, from Lemma 5.7, we have [ ¢"(0)S¢(6)d0 > ¢' (Dy® S)é, for any positive
semidefinite matrix .S, we obtain

. . 1 — A ~ — A
Vie) < Ve + [ 67 )50(0)d0— 67 (D& 5)o
That is equivalent to

V(o) + Bllo(t, 1)||* <

28 Qi+ Ly ~ (Dr®5) Qo s 28
1) i Gt S |1 (01
o 0 U RO |70
. (t,0) ¢ (t,0)
o0 1 FTR T O] | 20
Ol D0y O O | |01
or(t,0) ¢r(t,0)
o 1 o(t)
| e F(0) T FETO) T e
_/ O (6, 1) | |Ongper2ysn | (RI(O) = 5) | Ongpesoyxn | | d0(t,1) | dF-
0 | 6, (t.0) I, In @r(t,0)
. (t,0) ¢r(t,0)

From the above expression, we conclude that the time derivative of the LKF
along the solution of the time-delay system is negative if the inequalities in (5.24)
hold. U
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Appendix C

Adopted methods to reduce the
conservatism of stability criteria

We give an overview of the stability criteria using Lyapunov-Krasovskii function-
als. The following list summarizes some of the widely used techniques to verify
Lyapunov-Krasovskii functionals.

* Integral inequalities [84, 85]: Jensen’s inequality [98, 72], Wirtinger-based
integral inequality [97], Wirtinger-based double integral inequality [83].

* Double integral forms of Lyapunov-Krasovskii functional [84, 85, 72].
* Triple integral forms of Lyapunov-Krasovskii functional [104, 83].

* Cross terms [46].

*+ Free-weighting matrices [37, 38].

* Reciprocally convex approach [86].

+ Descriptor model transform [29].

+ Delay decomposition [36, ].

Mainly, based on the above results, modifying the original Lyapunov-Krasov-
skii functional with additional terms as the term & adopted in [29], cross terms
of variables [46], and multiple integral terms [104] can reduce the conservatism
of stability criteria. Below, we show that some of these additional terms adopted
in the literature yield particular parameterizations of the complete Lyapunov-Kra-
sovskii functional introduced in [44], given by

V(p) = 57 (0)P(0) + 257 (0) /@ 0)do + / T(0)R(0)p(0)d6

// \3(n)dndd, (C.1)

where p € PC([~h,0],R"), P € S", Q : [=h,0] = R™", R : [~h,0] — S", and
T :[=h,0] x [—h,0] — R™™,
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For the sake of simplicity, we focus on the linear time-delay system of the form

d
%x(t) = Ax(t) + Agz(t — h), Vit >0, (€.2)
z(t) = @o(t), vt € [—h, 0],

where A € R™", A, € R™™, h is a positive scalar, and ¢y, € PC([—h,0],R") is the
initial function of (C.2).

Let us start with the terms with multiple integral forms. We state the following
lemma.

Lemma C.1. For any continuous function f : [—h,0] — R, we have

/:h /:f(u)duds - /;h<s —t+h)f(s)ds (C.3)
/:h /St /ut f(v)dvduds = %/tjh(s —t+h)*f(s)ds.

Proof. Consider the double integral term. By switching the order of integration,

and

we obtain
t t t u
/ /f(u)duds:/ fuw)dsdu

t—h Js t—h Jt—h

t
= / (u—t+h)f(u)du.
t—h
Consider the triple integral term. Define f(u f f(v)dv, we have

/tjh /: /utf(v)dvduds: /:h /: Flu)duds.

From (C.3), we have [, [! f(u)duds = [/, (s —t + h) f(s)ds, then we obtain
t t t t t _
/ / / f(v)dvduds = / / f(u)duds
t—hJs Ju t—h Js

= /th(s —t+h)f(s)ds

Since f(s f f(u)du, we have

/tth/:/utf(v)dvduds:/tt (5 — t 1+ h)F(s)ds
:/t (s —t+h) / f(u)duds
:/th/ (s —t+h)f(u)duds.
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Finally, by switching the order of integration, we obtain

/tth/:/utf(v)dvduds:/tth/t(s_t+h)f(u)dud8
X

/ (s —t+h)f(u)dsdu
t—h Jt—n
—E/t_h(u—IH-h) f(u)du.

a
As a first example, for any p € H'([—h,0],R"), let us consider the functional
proposed in [84], given by

Vours(,5) = 07 (0)Pp(0) + / 0)Qp(6)d0 + / / W)AL X Agp(n)dnds,
(C.4)
where P, ), X € S, and A, as in (C.2).
Using Lemma C.1, this functional can be written as

0 0

pT OO0+ [ 6+ 1) O)A]X Aap()d.
—h
(C.5)
The time derivative of the above Lyapunov-Krasovskii functional along the so-
lution of the time-delay system (C.2) is given by

Veark(ps ) = p' (0)Pp(0) + /

—h

Veark(x, &) = 22 (t)Pa(t) + 2" (1)Qx(t) — x " (t — h)Qx(t — h)
+ haT () AT X Ayi(t) — / " T (0) AT X Ay (6)d6.
t—h

Now, we will try to find another Lyapunov-Krasovskii functional Vear Of the
complete type given in (C.1) and such that its time derivative along the solution

of the system (C.2) is equal to that of Vp,,4, that is Veew = Vparr. To that aim, for
any p € H'([—h,0],R"), let us define a function p : [-2h,0] — R™, such that, for
all6 e [~h, 0],

pO)=p(0) and  Agp(0 —h) = —Ap(0) + p(0).
Then, consider the functional in (C.5) and replacing p by p, we obtain

0

Veus(p) =77 O)PB0) + [ 57 (0)Q5(6)d6

[oeno po-n) [ arxada ag [0, e

The time derivative of the above considered Lyapunov-Krasovskii functional along
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the solution of the time delay system (C.2) is given by

‘;/park(x) = 22" (t)Pa(t) + 2" ()Qz(t) — 2 (t — h)Qx(t — h)
+hzT(t) ' (t—h)] Eﬂ Aj XA [A A4 Lﬂ(f(—t)h)}

- /tth [z7(6) =70 h)] [ﬁﬂ AJXA (A AJ) L(g(ﬁ)m] "

Since we evaluate the dynamics (C.2) with the initial condition ¢ (6) = 5(0), for
all 6 € [—2h, 0], we have

T(t+0) = Ax(t + 0) + Agz(t +60 — h), vVt > 0and 6 € [—h,0].

Therefore, we obtain

VPark(x) - Vpark(l', ZE)

Note that the Lyapunov-Krasovskii functional Vpari IS Written in the form of a
complete Lyapunov-Krasovskii functional in (C.1) with n = 2n,

D P On><n

F= {0 0] ’

Q(e) = 02n><2n7

Ro) = [QF O+ MATAZXAA (04 ) ATA; X AyAy
T 0+ RAJATXAA 0+ Rh)AT A X AgAgl’

T(ea 77) - 02n><2na
and
_ 5(0)
0= 560

As a second example, consider the functional proposed in [46], given by

V(o) = [o70) %o 0] [ 1] [0 ]
o |p(0) ’ Qu(0) Q12(0) Qi3(0)| [p(0)
+ / o) |QLO) Quld) Qu(®)| |o6)| do. ()
i p0)] QL) Qnd) Qu®)] L)

where, fori # jintheseti, j € {1,2,3}, Py, Qi € S* and P, Q;; € R™*". Its time
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derivative along the solution of the time-delay system (C.2) is given by

Vicun(i,8) =2 [57(0) [ a7 (0] anJrf_Zg fn(f))de Pm} {fjjﬁé)d@}

+21’T(t)/ [Q12(0) Qu3(0)] [xg i )] de

+22'(t) [Q12(0) Qi3(0 Bgﬂ
—2&"(t) [Qua(=h) Qus(- ﬁg ]
270 [ [@a®) Qw0 HaIC
w0 ol 32 320 (6]
ey oo [0 Q][]
_ / (; [2T(t+0) @T(t+0)] [g 22((9)) gijjgzﬂ [iﬁiizi] ao.

Now, we will try to find another Lyapunov-Krasovskii functional Vi, of the
complete type given in (C.1) and such that its time derivative along the solution

of the system (C.2) is equal to that of Vi, that is Vi = Viim. To that aim, for
any p € H'([—h,0],R"), let us define a function 5 : [-2h,0] — R", such that, for
all6 e [~h, 0],

p0) =p@) and  Agp(0 —h) =—Ap(0) + p(0).

Then, consider the functional in (C.6) and replacing p by p, we obtain

Fian() =77 0) (P + [ Qu0) de) 5(0)

r20p70) 5] [ (300 O] A0 T

5(0) Qx(0
+/_i [57(0) 570 h)] [sz( )+Q5?;§()34+ATQ23 AT%?; } { ]d@

Lo o ][ e

—_h Onxn Onxn

where

Qn(@) = Pio+ Q12(0) + Q13(6)A + ATQ33(9)A;
Qu2(0) = AJQL5(0) + A] Qs3(0) A,
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and )

Q22(0) = Aj Qs3(6) Ag
The time derivative of the above considered Lyapunov-Krasovskii functional along
the solution of the time delay system (C.2) is given by

‘N/sz(x) =2z (t) <P11 + /_(; Qll(‘g)d‘9> a(t)

2pT0 «Te-n] (200 8e0] 00

“2le O aie-h) [gﬁg Zi 8;;2 ol s <(tt—_ 2]2))}
o)

i o [ 540 G,

WA+t —mA; 1" [0 [Qu®) Q0] [ x(t+6)
T 2 |:1'(t — h)A + w(t — 2h)Ad:| /—h |:Q1|—2((9) QQQ(Q)] |:$(t + 0 — h):| d9

+[2T() 2Tt —h)] [sz(0)+sz(0)A+ ATQL(0) AJQ;@)(())} [ (x(t) }

Q23(0)A Onxn t—h)
_[9”((1575_2};3)]T{Q22(—h)+@53(( )1)4—|—ATQ23 ATQ23 ][ t 2h}
x(t — 23 Onxn -
O w0 ] [@ha6) + Qha(0)A + AT, ATQ x(t +0)
Ll ) [0 %50, o (PP

e v L

Oan OHXTL

—2[aT(t—h) a'(t—2n)] /_(; [01:2:” 8Ziﬂ [ﬁ(t(—igf)h)] ds.

Since we evaluate the dynamics (C.2) with the initial condition (6) = 5(0), for
all 6 € [—2h, 0], we have

T(t+0) = Ax(t +0) + Agz(t +60 — h), vVt > 0and 6 € [—h,0].

Therefore, we obtain '
Note that the Lyapunov-Krasovskii functional Vicim IS Written in the form of a
complete Lyapunov-Krasovskii functional in (C.1) with i = 2n,

b {P + /2, Qu(6)do o] |

S Qn @12

Q(9> - |:Q1|—2 Q22:| )

pio) — [2200)+Qu®)4 + TQL0) ATQL0)
B Q23(0)Aq Onscn |

o=y o]
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and
p(0) = [ﬁ('g(ﬁ)h)} :

As a third example, consider the functional presented in [83], given by

-
p(0) Py Py Pi3 Py p(0)
Vem(p, p) ( h) P, Py Py Py OP(_h)
f fe (n)dnde Py Py Py Pu] |[Z, [ p(n)dndd
0
S11 5121 {p(g)l
i do
0
Dii Dia| |p(n)
A { il
()] D, Das| |p(n) "

/// ¢)d¢dndf, (C.8)

where T' € S" and, for i # jintheseti,j € {1,2,3,4}, P,, Sy, Di; € S* and P,
SZ]I D’L] E R?’LXTL.
Using Lemma C.1, this functional can be written as

T

p(0) Py Py Pi3 Py p(0)
Vem(p, p) = p=h) Pl; P2T2 Pog - Py op(_h)
f (Q)d(g P13 P23 P33 P34 7hp(0>d6
L fe p(ydndd] [Pl Py Py Pul |[°, [) p(n)dndo
+/0 {p(e)] lsl1+h( + h)Dyy S12+h(9+hle12 ] {P(Q)] .
w 1PO)] | S, +h(0+h)D], Sy + h(B + h)Dyy + — SO+ h?T 5(0)

The time derivative of the above Lyapunov-Krasovskii functional along the so-
lution of the time-delay system (C.2) is given by

T

(x@)) Py Py P3 Py (s‘v(t))
: Pl P P. P. z(t—h
Vm " 12 22 23 24

@@ =1 oy | PG P Py Pa| | S

L hfg n)dndG Pl Py P Pu] ([, fg dnde

Si1+ h*Dyy Si2 4+ h* D1y 0
4 {:1:‘( )}
Sl + h*D)y  Sog + h*Day + ET (0)

- ¢<_h>1 e
o I N S e | i
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Now, we will try to find another Lyapunov-Krasovskii functional Vp,, such that
its time derivative along the solution of the system (C.2) is equal to that of Vp,,,

thatis Ve, = Vpm. To that aim, for any p € H'([—h, 0], R™), let us define a function
p: [—2h,0] — R", such that, for all € [—h, 0],

Then, consider the functional in (C.5) and replacing p by p, we obtain

Vem(p) = [p7(0) 5T (=h)] [ﬁﬁ i;j {ﬁ?(—ol)z)}
_ 5 “rp 4+ (0+h)P Onxn p(0
w27 i) [ [P§§+Ee+h§£i onxn] [ﬁ(g(—)hﬂ "

N /0 5(6) T {Su + ATS), + S10A+ AT Sp A SipAq+ ATSQQAd] [ p(0) } 40
_p [P0 =) Aj S+ AJS12A AJ Sas Ay 56— h)

0 ~ T TpT . T T ~
I . ,0((9) h(9 i h) D+ A TD3T+ D3TA + A" DA D3Ad_|—_|— A' DAy ) p(9) do
Lo ATD] + Al DyA AT Dy Ay 76— h)

0o _ h? ATTA ATTAL [ 5(9)
B [pT(6) 570 —h)] 5 (0+h)? [A;TA A}TAﬂ L?(g - h)} “

N
N /°h /0 {ﬁ(g(f)h)r [pgg+2<n+h>P34+<e+h><n+h>P44 o} L}(ﬁ@h)] dndd.

O?’L Xn O’fL Xn

The time derivative of the above considered Lyapunov-Krasovskii functional along
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the solution of the time delay system (C.2) is given by

Vem(e)=2[27(t) =7 (t=h)] [gﬁ gﬂ [Ax?txﬁt%;f jlzg(t_—h )2h)]

calero aTe-m) [ e [0,

+2[27(t) (- h)] [22 O] [5((;—_ 2%}

Onxn
0
+2[zT(t) " (t—h)] /_h [P24 0| [2(t+6—h) do
Si1+ ATS + S12A+ AT S0 A S1pAg+ AT S0 A z(t)
T T 11 12 12 22 1244 2244
+ [;E (t) x (t h)] |: ATSIQ + ATslgA ATSQQAd (ﬁ(t — h)

_ a)‘(t — ) Sll + ATS + S124 + ATSQQA S12A44 + ATSQQAd J](t — h)
.I‘(t — 2h) ATS;—Q ATSHA A SQQAd a?(t - Qh)

T Tis 2 Dl + 14TD;)r + D3A + ATDQA D3Ad + ATDQAd .’I,‘(t)
et 2Tt m]h { ATDI + AT DyA ATDoAg | |a(t— 1)
L0 att+e) T o [Pr+ATD] + DA+ ATD A Dyda+ ATDoAd| [ a(t+6)

z(t+60—h) AjDJ +A]DyA Al D2 Ay z(t+60—h)

+ 2T 2Tt —h) nt [ATTA ATTAd} { x(t) ]

2 |AJTA A]TAg| |x(t+—h)

+ / ’ [2T(t+0) «T(t+0—h)]h*0+h) [ﬁ;ﬁ g;ﬁﬂ [x(f(i;e)h)] 9
/}L[ T(t+0) 2 (t+0—h)] [(77 gn’ilp‘*‘* gziz] [x(f(f_;ﬁ)h)} dndf
/ / T(t+0) «T(t+0—h)] {2]334 +0§i: P FPas 8Ziﬂ [x(;f(j;;ﬁ)h)} dndf

FofeT(t) ST ) /Oh {ng +2(0 + h)OJZ?,X4n+ h(0 + h) Py 8Ziﬂ { (f(i;f)h)] d
-n @t [ Oh ol | AN

Since we evaluate the dynamics (C.2) with the initial condition y(0) = p(0), for
all @ € [—2h, 0], we have

B(t+0) = Ax(t + 0) + Agz(t +6 — h), vVt > 0and 6 € [—h,0].

Therefore, we obtain '
me(l’) = me(l’,i’).

Note that the Lyapunov-Krasovskii functional Vp,, is written in the form of a
complete Lyapunov-Krasovskii functional.

As a conclusion, a general approach to construct Lyapunov-Krasovskii func-
tionals is to represent the original time-delay system in projected coordinates
(augmented dynamics) and to parameterize the complete Lyapunov-Krasovskii
functional given in (C.1).
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Abstract: Steering assistance helps the driver to ma-
neuver the vehicle by reducing the steering effort. In
the case of electric power steering and steer-by-wire,
the assistance system is composed of electrical drives
placed at the rack pinion (allowing the wheels to move)
and at the steering wheel (providing the driver a feeling
of the forces acting on the wheels). These architectures
introduce, however, delays in the feedback loops of the
system. To ensure its stability in the presence of delays,
one can reduce the assist gain or increase the damping
of the steering wheel, but this negatively impacts the
system’s performance and degrades the force feedback
returned to the driver. In order to counter this limi-
tation, we design and analyze control laws for steering
systems that increase (compared to current strategies)
the delay margin of the system. We use a frequency-
domain approach to analyze the constraints imposed
by the stability of the feedback system generating the
steering wheel torque. Our algorithms rely on classical

proportional-derivative control architectures, including
torque maps and filters. The simplicity of the proposed
methods allows an analytical computation of the delay
margin. In addition, to make our results more gen-
eral (for example, for nonlinear torque maps), we de-
velop time-domain techniques to analyze the stability
of linear time-delay systems using Lyapunov-Krasovskii
functionals. We formulate a projection-based method
allowing general sets of functions to parameterize Lya-
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results are also applied to the test case of steering sys-
tems.
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