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1. Introduction

The mathematical frequency representation of signals was first introduced by Fourier
[1], and initially used to study the propagation of heat between solids [2]. The Fourier
transform (FT) was thus defined as a tool to perform frequency analysis, but real signals
often have time varying frequencies which FT cannot capture. To analyze such signals,
time-frequency representations were considered, and transforms such as the short-time
Fourier transform (STFT) [3], spectrogram and wavelet transform [4] were introduced,
where the latter is effective for analyzing the information content of images [5]. Such
transforms however suffer from Heisenberg’s uncertainty [6, 7], meaning the signal cannot
be arbitrarily well localized both in time and frequency. To circumvent this problem,
the Wigner-Ville transform was defined [8], but at the cost of interfering artifacts that
hampered the readability of this representation [9]. As a consequence, other transforms
came to light, as the reallocation method [10] and the synchrosqueezing transform [11],
detailed later in this chapter.

1.1. Short-Time Fourier Transform and Spectrogram

The Fourier transform provides a mathematical representation of the frequencies of a
signal. Given a signal f ∈ L1(R), it is defined by [12, Chapter 3],

Ff (η) =

∫
R
f(τ)e−2iπτηdτ. (1.1)

The frequency representation given by Ff does not depend on time. To study signals
with varying frequencies, other transforms are required. In this thesis, we are going to
study signals with both varying frequency and amplitude, namely non-stationary signals.
Therefore, in order to perform their time frequency (TF) analysis, we recall the definition
of the most commonly used time frequency representations (TFRs).

1



CHAPTER 1. INTRODUCTION

1.1.1. Continuous Formalism

The modified STFT of a signal f ∈ L2(R) using a window g ∈ L2(R) is an invertible
linear and continuous application, defined by [12, Chapter 3],

V g
f (t, η) =

∫
R
f(u)g(u− t)e−2iπη(u−t)du, (1.2)

and the spectrogram by |V g
f (t, η)|

2. If f is analytic, i.e. f only contains positive frequen-
cies, and if f, g ∈ L1(R)∩L2(R), and g(0) ̸= 0, then by applying Plancherel theorem one
obtains,

f(t) =
1

g(0)

∫
R+

V g
f (t, η)dη. (1.3)

Or if g ̸= 0, as {u 7→ g(t− u)e2iπ(t−u)η} is a frame of L2(R),

f(t) =
1

∥g∥2

∫
R2

V g
f (u, η)g(t− u)e2iπ(t−u)ηdudη. (1.4)

Or if Ff ∈ L1(R), g ∈ L1(R) and
∫
R g(τ)dτ ̸= 0, using the overlap-add method [13,

14],

f(t) =
1∫

R g(τ)dτ

∫
R2

V g
f (u, η)e

2iπ(t−u)ηdudη. (1.5)

1.1.2. Discrete Formalism

In order to proceed with the practical study of techniques expressed with continuous
variables, we need to adapt the above formalism to a discrete framework. In this regard,
we consider the signal f to be a discrete sequence of length L such that f [n] = f(nL),
for n = 0, · · · , L − 1, and that (g[n])n∈Z are the samples at n

L of the window, which is
further truncated to be supported on {−M, · · · ,M} such that 2M + 1 ≤ N , where N is
the number of frequency bins. In that context, the discrete STFT of f is defined by [15]

V g
f [m, k] :=

∑
n∈Z

f [n]g[n−m]e−2iπ
k(n−m)

N

=
n=M∑
n=−M

f [m+ n]g[n]e−2iπ kn
N

=
N−1∑
n=0

f [n+m−M ]g[n−M ]e−2iπ k
N
(n−M),

(1.6)

2



1.2. REASSIGNMENT AND SYNCHROSQUEEZING

with 2M + 1 ≤ N , where N is the number of frequency bins, m ∈ {0, · · · , L − 1}, and
k ∈ {0, · · · , N − 1} corresponding to the frequency k L

N . The discrete transform is also
invertible [15], if g[0] ̸= 0,

f [n] =
1

g[0]N

N
2
−1∑

k=−N
2

V g
f [n, k]. (1.7)

Or if one assumes that f is L-periodic, g ̸= 0,

f [n] =
1

N∥g∥2

N−1∑
k=0

n+M∑
m=n−M

V g
f [m mod L, k]g[n−m]ei2π

k(n−m)
N . (1.8)

Or, still assuming f L-periodic, if
M∑

m=−M

g[m] ̸= 0,

f [n] =
1

N
M∑

m=−M

g[m]

N−1∑
k=0

n+M∑
m=n−M

V g
f [m mod L, k]ei2π

k(n−m)
N . (1.9)

In these last two cases, the STFT of f is also L-periodic with respect to time.

1.2. Reassignment and Synchrosqueezing

According to the uncertainty principle, for the STFT or the spectrogram, the energy is
spread over the TF plane. To circumvent this effect, considering a signal f ∈ L2(R) and
a window g ∈ S(R), one may define a TF point (t̂f (t, η), ω̂f (t, η)), called centroïd, on
which to reallocate the energy of the STFT, provided V g

f (t, η) ̸= 0, and defined by [16]

t̂f (t, η) := t− 1

2π
∂η arg V

g
f (t, η), (1.10)

and
ω̂f (t, η) :=

1

2π
∂t arg V

g
f (t, η). (1.11)

In practice, t̂f (t, η) and ω̂f (t, η) are computed through the definition of complex reas-
signment operators [17],

t̃f (t, η) := t+
V tg
f (t, η)

V g
f (t, η)

(1.12)

3



CHAPTER 1. INTRODUCTION

ω̃f (t, η) := η − 1

2iπ

V g′

f (t, η)

V g
f (t, η)

, (1.13)

and then ω̂f (t, η) = ℜ{ω̃(t, η)} and t̂f (t, η) = ℜ{t̃(t, η)}, where ℜ{x} denotes the real
part of x. When f is a pure tone, namely f = Ae2iπϕ(t) with ϕ(t) = ωt, then ω̂f (t, η) = ω

for any (t, η) in the TF plane [17]. This means that ω̂f gives the frequency ω of the
pure tone f . In the general case, where the amplitude A(t) and the frequency ϕ′(t)

depends on time, ω̂f becomes an estimate of ϕ′. It is also important to note that the
operators ω̃f and t̃f only depend on the computation of three STFTs and are therefore
easy to compute. Then, assuming f ∈ L1(R) ∩ L2(R) and

∫
R g ̸= 0, the reassignment

method (RM) associated with t̂f and ω̂f is defined by [16],

RM(t, η) =

∫
R2

|V g
f (τ, ξ)|

2δ(t− t̂f (τ, ξ))δ(η − ω̂f (τ, ξ))dτdξ (1.14)

However, RM is not invertible because the phase is lost in the process, and therefore
one may instead consider reallocating the STFT along the frequency axis only, which
brings about the Fourier-based synchrosqueezing transform (FSST) whose principle is
detailed hereafter.

1.2.1. Definition of the synchrosqueezing

FSST was introduced in [17, 18], and using both assumptions (1.5) and g ∈ S(R), it is
defined by,

T g
f (t, η) :=

∫
R
V g
f (t, ξ)δ(η − ω̂f (t, ξ))dξ. (1.15)

Provided g(0) ̸= 0 one has, when f is analytic,

f(t) =
1

g(0)

∫
R+

T g
f (t, η)dη. (1.16)

This transform leads to a sparser TFR than the STFT but is very sensitive to frequency
modulation. In that context, to improve ω̂f , the following complex modulation operator
was introduced [17],

q̃f (t, η) :=
∂tω̃f (t, η)

∂tt̃f (t, η)
=

1

2iπ

V g′′

f (t, η)V g
f (t, η)−

(
V g′

f (t, η)
)2

V tg
f (t, η)V g′

f (t, η)− V tg′

f (t, η)V g
f (t, η)

. (1.17)

Local modulation is given by q̂f (t, η) := ℜ{q̃f}. An illustration of q̂f is given in Figure
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1.3. MULTICOMPONENT SIGNALS
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Figure 1.1.: (a) STFT of f(t) = exp(2iπ(50(t4 + t3 + t2) + 100t)); (b) instantaneous chirp rate
CR(t) = 600t2 + 300t+ 100

1.1. Furthermore, for a linear chirp with Gaussian modulated amplitude f , namely
f(t) = A(t)e2iπϕ(t) where log(A(t)) and ϕ(t) are second order polynomials, q̂f (t, η) is
the chirp rate (CR), namely q̂f = ϕ′′(t) [17, 19]. Using q̃f , the second order frequency
reallocation operator was introduced,

ω̂
[2]
f (t, η) = ℜ

{
ω̃f (t, η)− q̃f (t, η)(t− t̃f (t, η))

}
, (1.18)

which verifies ω̂[2]
f (t, η) = ϕ′(t). The second order Fourier-based synchrosqueezing trans-

form (FSST2) can then be defined [17, 19],

T g,2
f (t, η) :=

∫
R
V g
f (t, ξ)δ(η − ω̂

[2]
f (t, ξ))dξ. (1.19)

Note that to evaluate q̃f and ω̂
[2]
f only requires to compute five STFTs. The Fourier

based synchrosqueezing has been extended to the N -th order [20], denoted T g,N
f , which we

will detail and use only in Chapter 4. Note that the synchrosqueezing transform (SST)
was initially introduced in the wavelet framework [21], but in the context of this thesis,
we will stick to the STFT formalism.

1.3. Multicomponent signals

Many real world non-stationary signals can be described using the formalism of multicomponent
signals (MCSs). For instance, real world audio signals such as piano, clarinet [22], bird
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CHAPTER 1. INTRODUCTION

songs [23], speech [24] but also signals from electrocardiograms [25–27], thoracic and
abdominal movements [28], and underwater propagation [29].

A MCS f containing P modes is defined by,

f(t) =

P∑
p=1

fp(t), (1.20)

with fp(t) = Ap(t)e
2iπϕp(t) where Ap is the instantaneous amplitude and ϕp is the instan-

taneous phase. Then, the instantaneous frequency (IF) of fp is given by ϕ′p. When the IF
of the modes are well separated in frequency, curves reflecting the energy of each mode
can be observed in the TFR, as illustrated in Figure 1.2.

0 0.5 1 1.5
0

10

20

30

40

50

60

70

Figure 1.2.: Spectrogram of a bat echolocation signal.

Therefore, MCS are commonly analyzed in time and frequency [18].

Then, its ideal TFR is given by,

ITFf (t, η) =

P∑
p=1

Ap(t)δ(η − ϕ′p(t)), (1.21)

where δ is the Dirac distribution. It is said ideal in the sense that it is perfectly localized,
both in time and frequency. The SST aims towards this representation and is close to it
when the signal meets the assumptions the transform is designed for. An illustration of
ideal time frequency representation (ITF) is given in Figure 1.3.
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Figure 1.3.: (a): STFT of a MCS, (b) ITF of the signal of (a).

1.3.1. Mode retrieval

When considering a MCS f , there is no general formula to recover each of its modes.
The process of computing an approximation of a mode is called mode retrieval (MR).
Existing techniques use various TFRs such as the continuous wavelet transform, as for
instance in [30], or in the context of synchrosqueezing [21]. When STFT is used, one can
take advantage of its linearity, namely,

V g
f (t, η) =

P∑
p=1

V g
fp
(t, η), (1.22)

as for instance, in [15] to perform MR based on hard-thresholding.

Then, the retrieval of fp is performed using one of the approximation formulae of
V g
fp
(t, η) (1.3), (1.4) or (1.5), depending on what assumptions are made on f and g.

FSST was also used for that matter, for instantaneous frequency estimation [31], for
non-stationnary modes [32], a thorough mathematical study being available in [33].

When the separation in the TF plane is difficult, adaptive approaches can also be
considered, namely the analysis window may vary in time or frequency, as in the case of
adaptive wavelets based SST [34], or in the case of adaptive STFT based SST [35] which
has recently been used, in [36] for multicomponent signal separation.

For the sake of completion, we note that other techniques, not based on TFR, are also
used, as those based on chirplet [37] or ridglet [38] transforms.

7



CHAPTER 1. INTRODUCTION

1.4. Outline of the Following Chapters

In Chapter 2, we will carry out TF analysis of a MCS affected by noise in order to
perform MR. In our approach, we are first going to analyze the TF plane to associate
TF regions to each mode. This task is called ridge detection (RD) as those regions often
look like ridges due to the amount of energy they contain [39]. Then, we perform a local
analysis in the vicinity of the ridges in order to approximate the corresponding modes
using a linear chirp based model. This enables us to express the STFT of the mode in a
closed form and then to define a numerical procedure to perform MR.

In Chapter 3, we will perform a TF analysis of the interference of MCSs. We will first
characterize an interference pattern called time frequency bubble (TFB) theoretically and
subsequently introduce a technique for their identification in the TF plane, which we
validate numerically. At end of the chapter, we will present perspective using a different
TF approach to identify interference based on the spectrogram zeros. For this purpose,
we study the energy distribution related to the Voronoi cell, which will be continued in
a near future.

In Chapter 4, we will recall the definition of high order Fourier-based synchrosqueezing
transform (FSSTN), and then, we will show how to make an adaptive choice of its order
based on an energy based criterion, and validate this technique numerically.

In Chapter 5, considering that FSST2 is relevant in very noisy situations, we will study
its associated CR estimator. We illustrate that the errors introduced by the noise have
an oscillatory nature and propose a technique to filter out most of them. We will finally
validate its accuracy on numerical experiments and its stability on real data.

In Chapter 6, we will study a TF approach for heart rate (HR) estimation on electrocardiogram
(ECG) signals. Assuming that an ECG signal can be represented by a harmonic model,
we will propose a TF technique for HR estimation, and show that the choice of the TFR
has a huge impact on the accuracy. Finally, we will introduce an algorithm based on
FSST for the estimation of the HR and evaluate it on synthetic and real ECG signals.

8



1.5. LIST OF PUBLISHED ARTICLES LINKED TO THE CONTRIBUTIONS OF
THIS THESIS

1.5. List of published articles linked to the contributions of
this thesis

In the context of Chapter 2,

• N. Laurent and S. Meignen, “A novel ridge detector for nonstationary multicompo-
nent signals: Development and application to robust mode retrieval”, IEEE Trans-
actions on Signal Processing, vol. 69, pp. 3325–3336, 2021

• N. Laurent and S. Meignen, “A novel time-frequency technique for mode retrieval
based on linear chirp approximation”, IEEE Signal Processing Letters, vol. 27,
pp. 935–339, 2020

In the context of Chapter 4,

• N. Laurent and S. Meignen, “A new adaptive technique for multicomponent signals
reassignment based on synchrosqueezing transform”, in 2022 30th European Signal
Processing Conference (EUSIPCO), IEEE, 2022, to appear

In the context of Chapter 5,

• N. Laurent et al., “On local chirp rate estimation in noisy multicomponent sig-
nals: With an application to mode reconstruction”, IEEE Transactions on Signal
Processing, vol. 70, pp. 3429–3440, 2022

In the context of Chapter 6,

• N. Laurent et al., “A novel algorithm for heart rate estimation based on syn-
chrosqueezing transform”, in 2021 29th European Signal Processing Conference
(EUSIPCO), IEEE, 2021, pp. 1286–1290

9





2. Mode Retrieval Based on Robust
Ridge Detection and Linear Chirp
Approximation

2.1. Introduction

In this chapter, we perform TF analysis to design a MR technique robust to noise. For
this task, we are going to rely on curves called ridges which approximate the IF of the
modes of a MCS [45, 46]. The detection of those curves is preformed by a RD.

In a first part of this chapter, we consider the ridge detection in the case of noise. In
the literature, there exist RD based on different TFR, for instance the continuous wavelet
transform [47], the Wigner Ville transform [48], or on STFT [49]. In our approach, we use
TF regions with high energy as an indicator of signal information [50, 51]. The technique
we detail is designed to be robust to noise, and therefore, it does not assume that the
ridge is continuous. Instead of trying to follow a ridge, it uses structures based on local
maxima along the frequency axis (LMMFs).

In the second part of this chapter, we design a MR technique based on a RD for noisy
signals. We show that even with perfect ridge detection, the quality of the reconstruction
cannot be guaranteed. One possible approach is to perform hard thresholding and pro-
ceed to the reconstruction of the signal [15]. However, TF regions related to the signal
are still affected by noise. Our approach tries to limit the effect of the noise in the signal
domain by using a linear chirp model.

At the end of this chapter, we finally perform numerical validation of the techniques
and draw conclusions on their behaviors.

This chapter is based on the work published in [41] and [40].
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CHAPTER 2. MODE RETRIEVAL BASED ON ROBUST RIDGE DETECTION
AND LINEAR CHIRP APPROXIMATION

As we will always consider noisy situations, let us introduce the noisy signal,

f̃(t) := f(t) + ε(t), (2.1)

where f is the MCS and ε is a complex, zero mean, white Gaussian noise with variance
σ2ε . We assume ε to be independently and identically distributed (i.i.d) with respect to
time and that its real and imaginary parts are independent as well. In the remainder of
this chapter, we will also use a discrete setting for f̃ , by considering it as a sequence of
length L with f̃ [n] = f

(
n
L

)
.

2.2. Basics of Ridge Detection

Performing ridge detection on f̃ consists of associating TF curves to the modes of f̃ .
The objective of this section is to understand basics of what makes a RD robust to noise.
Therefore, we first study the effect of ε on non-robust RDs, the focus being put on a very
commonly used one, which we call simple ridge detector (S-RD), in the sequel and that
we introduce hereafter.

2.2.1. Simple STFT-Based Ridge Detection

The RD introduced by [47] is based on finding the location of the maxima of energy in
the spectrogram. It consists of determining the P ridges associated with the modes in
the TF plane by computing:

max
Γ

P∑
p=1

L−1∑
n=0

|V g

f̃
[n,Γp[n]] |2 − α(∆1Γp[n])

2 − β(∆2Γp[n])
2, (2.2)

with Γ = (Γp)p=1,··· ,P , α and β both positive, and in which ∆1Γp[n] (resp. ∆2Γp[n]) is
the first order (resp. second) order finite differences approximating ϕ′′p[n] (resp. ϕ(3)p [n]).
To consider penalization terms is however not relevant at low noise level [52], and these
are therefore often left apart. Alternatively, one can use a bound Bf on the frequency
modulation of the modes to extract a first ridge, and then replace (2.2) by a peeling
algorithm. In a nutshell, a first ridge is extracted as follows [49]:

max
Γ1

L−1∑
n=0

|V g

f̃
[n,Γ1[n]] |2, s.t. |∆1Γ1[n]| ≤ Bf . (2.3)
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2.2. BASICS OF RIDGE DETECTION

In practice, to compute Γ1, one initializes Γ1[n0] to k0 := argmax
0≤k≤N−1

|V g

f̃
[n0, k]|. Then,

to define Γ1 on {n0 + 1, · · · , L − 1}, one uses the following induction principle starting
from n = n0:

Γ1[n+ 1] := argmax
k

{
|V g

f̃
[n+ 1, k]|, s.t. |k − Γ1[n]| ≤ Bf

}
. (2.4)

The same principle is applied on {0, · · · , n0 − 1}, starting from n = n0 and replacing
n + 1 by n − 1 in (2.4). Finally, the procedure is run again starting from other initial
time indices to define other candidates for Γ1, and the ridge finally kept among all the
candidates is the one maximizing the energy in the TF plane, i.e.

∑
n
|V g

f̃
[n,Γ1[n]]|2.

Then, to compute the next ridges, one introduces the following set, for p > 1:

Sp(n) = {0 ≤ k ≤ N − 1, s.t |k − Γq[n]| ≥ ∆, 1 ≤ q < p} , (2.5)

and then the pth ridge is computed using the same principle as for Γ1 except the initial-
ization index is defined as k0 := argmax

k∈Sp(n)
|V g

f̃
[n0, k]| and then (2.4) is replaced by:

Γp[n+ 1] := argmax
k∈Sp(n+1)

{
|V g

f̃
[n+ 1, k]|, s.t.|k − Γp[n]| ≤ Bf

}
. (2.6)

Such a technique is iterated until P ridges (Γp)p=1,··· ,P are extracted. There are however
two strong limitations to S-RD:

* Each ridge is built assuming that the selection of the maximum around the current
position provides with a continuous curve on which the coefficients are associated
with signal information. This assumption does not hold when the noise is too
strong. Indeed, in such a case, zeros of STFT may appear at TF locations cor-
responding the IFs of the modes. This is illustrated on a linear chirp in Figure
2.1 in which we display the magnitude of the LMMFs associated with the three
largest STFT modulus maxima at each time instant, along with the true IF (signal
to noise ratio (SNR) = -10 dB).

* The jumps allowed between two successive time indices depend on the modulation
parameter Bf which is fixed a priori, and thus this method does not adapt to the
local variations of the frequency modulation of the modes.

We next recall the RD proposed in [49], where the chaining of the coefficient is made
more adaptive by removing the modulation parameter Bf and exploiting the modulation
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Figure 2.1.: LMMFs corresponding to the three largest STFT modulus maxima for each time
instant along with the true IF (dashed line) of the linear chirp (SNR= -10 dB )

2.2.2. Modulation Based Ridge Detection

To circumvent the lack of adaptivity of S-RD to the local variations of the frequency mod-
ulation of the modes, a novel approach called modulation based ridge detector (MB-RD)
was proposed in [49]. In a nutshell, this approach extracts the first ridge, MB-RD uses
the same induction principle as S-RD, but considers the complex modulation operator
q̂f̃ defined in Section 1.2 instead of Bf , namely,

Γ1[n+ 1] := argmax
k

{
|V g

f̃
[n+ 1, k]|, |k − Γ1[n]− q̂f̃ [n,Γ1[n]]

N

L2
| ≤ C

}
, (2.7)

the user-defined constant C compensating for potential local frequency modulation es-
timation errors. MB-RD is proved to be slightly sensitive to C when the noise level is
low [49] (the simulations in that paper only considered a SNR larger than 0 dB), but
the estimator q̂f̃ is not robust enough when the noise is too strong, which leads to bad
results.

Furthermore, both techniques are based on the assumption that the IF of a mode at
each time index can be associated with a continuous sequence of energetic TF coefficients,
which may not be the case in heavy noise situations. Another limitation of S-RD and
MB-RD is that they build the ridges one after the other using the peeling algorithm
recalled in Section 2.2.1: if the ridge detection fails for one mode, it will also fail for the
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next ones. To deal with all these issues, the concept of relevant ridge portions (RRPs) is
introduced in the following section, and subsequently used to define a new RD, for which
the approach significantly differs from S-RD and MB-RD.

2.3. Definition of a New Robust Ridge Detector

The objective of this section is to define a RD robust to noise. Its algorithm can be
divided in three major steps. The first step consists of identifying energetic chains of
coefficients belonging to the signal, called RRPs. The second step associates RRPs
that have connected basins of attraction. Such a basin is a TF regions, where all the
coefficients points towards the same RRP. The last step consists of two nested iterative
procedures. The first one selects a combination of RRPs to associate with each mode.
Each of them represents initial TF coefficients that can be trusted to be associated with
one mode of the signal. The second one, uses the initialization given by the first procedure
to associate a TF curve with each mode using an iterative procedure based on weighted
spline. We name the solution given by this algorithm relevant ridge portion based ridge
detector (RRP-RD).

2.3.1. Definition of Relevant Ridge Portions

To have a robust RD, we first define a structure that persists even when noise strongly
impacts the signal. For that purpose, we use q̂f̃ to define a stable direction in the TF
plane between two neighboring LMMFs. Denoting a generic LMMF by [n,m[n]], we
introduce,

Definition 2.3.1. Let [n,m[n]] and [n+1,m[n+1]] be two LMMFs, they satisfy relation
([n,m[n]] ∼ [n+ 1,m[n+ 1]]) if and only if,

m[n+ 1] = argmin
k

{∣∣∣∣k −m[n]− q̂f̃ [n,m[n]]
N

L2

∣∣∣∣ , s.t. [n+ 1, k] LMMF
}

m[n] = argmin
k

{∣∣∣∣m[n+ 1]− k − q̂f̃ [n+ 1,m[n+ 1]]
N

L2

∣∣∣∣ , s.t. [n, k] LMMF
}
.

(2.8)

If [n,m[n]] ∼ [n + 1,m[n + 1]], q̂f̃ is a relevant operator giving the direction from
[n,m[n]] to [n + 1,m[n + 1]] and vice-versa, meaning that q̂f̃ gives a stable orientation.
A ridge portion (RP) is then defined by extending relation ∼ to any time instants n, n0
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that are not necessarily neighbors. Assuming, without loss of generality, that n > n0, we
define relation ↔,

Definition 2.3.2. Let [n,m[n]] and [n0,m[n0]] be two LMMFs such that n ≥ n0 + 1,
then define:

([n0,m[n0]] ↔ [n,m[n]]) ⇔

∃ [n0 + 1,m[n0 + 1]], · · · , [n− 1,m[n− 1]] LMMFs

∀i = n0, · · · , n− 1, [i,m[i]] ∼ [i+ 1,m[i+ 1]]

(2.9)

A RP R containing LMMF [n0,m[n0]], is finally defined by:

R[n0,m[n0]] = {[n,m[n]], s.t. [n,m[n]] ↔ [n0,m[n0]]} . (2.10)

Note that, if [n,m[n]] ∈ R[n0,m[n0]] then R[n,m[n]] = R[n0,m[n0]].
The definition of RPs allows considering the discontinuities in the ridges associated

with a mode. However, to separate the noise from the signal, a criterion needs to be
defined. Using the assumptions made on the noise ε [53], we have that,

Var (ℜ{V g
ε [n, k]}) = Var (ℑ{V g

ε [n, k]}) = σ2ε∥g∥22.

Then, remarking that |V g
ε |2

σ2
ε∥g∥22

is χ2 distributed with two degrees of freedom and assuming
the variance of the noise σ2ε is known, the probability that |V g

ε [n, k]| ≥ βσε∥g∥2 is smaller
than 10% if β = 2, and 1% if β = 3. So, by considering only the LMMFs [n,m[n]] such
that |V g

f̃
[n,m[n]]| ≥ βσε∥g∥2 with β ≥ 2 one removes many LMMFs corresponding to

noise. In practice, σε is unknown, but can be approximated using the estimate γ = σε∥g∥2
defined by [54, 55],

γ̂ =

median
∣∣∣∣ℜ{V g

f̃
[n, k]

}
n,k

∣∣∣∣
0.6745

,

in which median represents the median of the coefficients. One can then set a meaningful
threshold on the STFT , taking into account the above probabilities, and considering

S(β) =
{
[n, k], |V g

f̃
[n, k]| ≥ βγ̂

}
. (2.11)

Using S(β), we are able to define a RRP, that is a RP satisfying relation ↭ defined
by,
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Definition 2.3.3. Let [n,m[n]] and [n0,m[n0]] be two LMMFs such that n ≥ n0 + 1,
then define:

[n0,m[n0]] ↭ [n,m[n]] ⇔


∃ [n0 + 1,m[n0 + 1]], · · · , [n− 1,m[n− 1]] LMMFs

∀i = n0, · · · , n− 1,

[i,m[i]] ∼ [i+ 1,m[i+ 1]]

[i,m[i]] ∈ S(β)

(2.12)

Any LMMF belonging to a RRP is called a relevant LMMF. To properly separate
signal from noise, a study of the parameter β is required.

Fixing the parameter β for the RRPs

A crucial issue is then how to fix the parameter β. For that purpose, we numerically
investigate the existence of relevant LMMFs around the true IF when β varies. To define
a meaningful interval around the true IF, we first compute analytical expressions of the
STFT assuming a local linear chirp approximation for the modes. To this end, we set g
to be a Gaussian window for two reasons:

* First because it simplifies the computation of q̂f̃ .

* Second because the expression of the STFT of a signal that can be locally approx-
imated by a linear chirp is particularly simple [19].

Indeed, let g be the discrete Gaussian window g[n] = e−π n2

σ2L2 , to increase the read-
ability of the TFR, we choose the value of σ whose associated STFT modulus minimizes
the Rényi entropy and should therefore provide good localization. Such a choice for σ is
proved to minimize interference between the modes in the TF plane [56, 57]. With such
a window, if f can be locally approximated by a linear chirp with constant amplitude A,
i.e. f [n] ≈ Ae2iπϕ[n], with ϕ a second order polynomial, one has [19],

|V g
f [n, k]| ≈ ALσ(1 + σ4ϕ′′[n]2)−

1
4e

−π σ
2(k L

N
−ϕ′[n])2

1+σ4ϕ′′[n]2 ,
(2.13)

which is a Gaussian function with standard deviation,

∆LC [n] =
1√
2πσ

√
1 + σ4ϕ′′[n]2. (2.14)

For V g
f , the LMMF associated with the largest STFT modulus maximum at time index

n has its ordinate in the interval I[n] = [(ϕ′[n]−∆LC [n])
N
L , (ϕ

′[n] + ∆LC [n])
N
L ]. When

some noise is added, this is no longer true. In the following experiment, we assume ϕ′

17
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and ϕ′′ are known, and assess the proportion corresponding to the number of relevant
LMMFs with ordinate in I[n] when n varies, namely:

P(β) =
# {[n,m[n]] ∈ S(β) with m[n] ∈ I[n]}

L
, (2.15)

where #X denotes the cardinal of the set X. Using numerical validation, we show how
to set β as high as possible to filter out the noise while keeping P(β) as high as possible.
Such a value for β enables to keep a maximum of relevant LMMFs in I which will help
us associate them to the same modes by connecting their corresponding RRPs.

We carry out the validation of the choice of β for the three signals of Figure 2.2 (a),
which, from top to bottom, are more and more modulated, and get the results of Figure
2.2 (b). These latter correspond to experiments with an input SNR of -10 dB, meaning
that the noise is very strong. The quantity P(β) is almost constant for β between 0

and 2, before decreasing rapidly. We are therefore going to choose β = 2 assuming that
there will be enough RRPs to represent the ridge of each mode. From now on, β equals
2 unless mentioned otherwise.

1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 2.2.: (a): from top to bottom: STFT of a linear chirp, of a signal with cosine phase, and of
a signal with oscillatory phase; (b): P(β) for these three signals when the input SNR
equals -10 dB as well as the proportion of time indices n, at which the relevant LMMF
with ordinate in I[n] corresponds to the largest STFT modulus maximum (curves
denoted by "Max, linear chirp", "Max, cosine", and "Max, modulated cosine"). The
results are averaged over 100 noise realizations.
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2.3.2. Grouping RRPs Based on Basins of Attraction

In this subsection, the objective is to group RRPs using the connection of their basin
of attractions (BAs) to finally assign these groups to one mode of the signal. For that
purpose, we will use the reallocation vectors (t̂f̃ [n, k], ω̂f̃ [n, k]) defined in 1.2. Indeed, a
BA associated with the RRP Ri can be defined by,

Bi :=

{
[n, k]; argmin

[x,y]∈RRPs
∥(t̂f̃ [n, k], ω̂f̃ [n, k])− [x, y]∥ ∈ Ri

}
. (2.16)

However, many BAs are associated with noise, and therefore we impose more conditions
to keep the most energetic part of Bi. To do so, we consider a hard thresholding (HT)
approach,

BHT
i =

{
Bi
⋂
S(2) if Ri

⋂
S(3) ̸= ∅

∅ otherwise ,
(2.17)

In short, BHT
i is more likely related to the signal than Bi, since it contains at least one

coefficient in S(3).
We then gather together connected BHT

i s in the TF plane to obtain a set of larger TF
regions which are denoted by {(CHT

j )j} in the sequel.

2.3.3. New RD Definition

In this subsection, we detail how we use the gathered BAs to associate a TF a curve to
each mode of the signal. This is done using Algorithm 1 which we detail here. First, in
order to avoid mixing ridges associated with different modes, the algorithm looks for P
elements in {(CHT

j )j} coexisting in time. Indeed, ridges that coexist in time cannot belong
to the same mode. In this approach, we consider the P -tuple coexisting on the longest set
of time indices first. Therefore, Algorithm 1 starts with the ranking procedure “sort-by-
coexistence”, to rank P -tuples of {(CHT

j )j} from the ones coexisting the longest to the
shortest, and we denote this ranking by ({Cκ

p=1,··· ,P })κ. The first tuple of this ranking,
namely (C0

p)p=1,··· ,P , should contain one long ridge for each mode p. Because {(CHT
j )j} is

finite, ({Cκ
p=1,··· ,P })κ is a finite sequence, and we denote the last element index by κmax.

Next, we iterate over this ranked set to associate possible solutions for the ridge detec-
tion. At the κ-th iteration, where κ ∈ {0, · · · , κmax}, we consider that the coefficients
defined by Aκ

p = (C0
p∪C1

p∪· · ·∪Cκ
p )∩S(3) represent robust signal information that should

be used as a basis to define the ridge of the mode p. In Algorithm 1, the procedure
“fit-spline” defines an initial ridge using the following weighted spline approximation
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formula,

sκp,initial = argmin
s

(1− λ)
∑

[n,m[n]]∈Aκ
p

(
m[n]

L

N
− s(

n

L
)

)2

|V g

f̃
[n,m[n]]|+ λ

∫ 1

0
(s′′(t))2dt,

 .
(2.18)

Then, “fit-spline” further iterates, by taking into account the elements in {(CHT
j )}

that sκp,initial crosses in (2.18). It continues to iterate until the spline stabilizes, meaning
no new element are crossed in {(CHT

j )}. We denote the stabilized spline by sκp .

Algorithm 1: New RD
Input : {CHT

j },P , S(3)
(Cκ

p ) = sort-by-coexistence({CHT
j })

for κ = 0, · · · , κmax do
for p = 1, · · · , P do

Aκ
p =

(
C0
p ∪ · · · ∪ Cκ

p

)
∩ S(3)

sκp = fit-spline(Aκ
p , {CHT

j })
Compute energy Eκ

p using (2.20)
end

end
Compute index κfin using (2.19)
Define the final ridges as sfinp := sκ

fin

p

Finally, we define the index κfin of the solution by

κfin := argmax
κ s.t. (sκp )p

are not crossing.

P∑
p=1

Eκ
p , (2.19)

where Eκ
p corresponds to the energy associated with mode p and is defined by,

Ek
p :=

∑
[n,m[n]]∈Ak

p ,

[n,⌊skp [n]NL ⌉]∈Ck
p

|V g

f̃
[n,m[n]]|, (2.20)

in which ⌊X⌉ denotes the nearest integer to X. In short, {sfinp } is chosen among the
κmax + 1 solutions. It maximizes an energy and contain no crossing splines. We denote
this ridge detector RRP-RD.

We display on the first row of Figure 2.3 the modulus of the STFT of noisy two-
mode signals made either of two linear chirps, of two modes with cosine phase, or of a
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linear chirp plus an exponential chirp. In each case, we consider complex white Gaussian
noise and the input SNR equals −10 dB. On the second row of Figure 2.3, we display
(sfinp )p=1,2 computed with the optimization procedure just described. We notice that
RRP-RD seems to be well adapted to deal with MCSs in the presence of heavy noise
regardless of the modulation of the modes.
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Figure 2.3.: (a): STFT modulus of two noisy linear chirps (SNR = -10 dB, σ = 0.0188); (b):
STFT modulus of two noisy modes with cosine phase, with different modulation
(SNR = -10 dB, σ = 0.0175); (c): STFT modulus of a signal made of a linear chirp
and a mode with exponential phase (SNR = -10 dB, σ = 0.0241); (d): (sfinp )p=1,2

computed for the signal displayed in (a); (e): same as (d) but for the signal whose
STFT modulus is displayed in (b); (f): same as (d) but for the signal whose STFT
modulus is displayed in (c).

2.3.4. Comparison of RRP-RD, S-RD and MB-RD on Simulated Signals

In this subsection, we draw conclusions on the efficiency of RRP-RD compared with
S-RD and MB-RD. In Figure 2.4 we show numerical results on the comparison of these
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algorithms when the input SNR varies between -10 and 0 dB for the three signals of
Figure 2.3. In particular, we here compare how close the ridge provided by any of the
methods is close to the true IF for all the modes. For that purpose, we define the SNR
by,

SNR(x, y) = 20 log10(∥x∥/∥y − x∥), (2.21)

where y is an approximation of x. The first thing to notice is that RRP-RD always gives
a significantly better SNR, from which we deduce that RRP-RD is indeed more robust
to noise. Furthermore, the result are better when the smoothing parameter λ is larger.
This can be explained by the fact that for those three signals, the IF is smooth, and a
large λ enables to reduce the impact of the irregularities brought by strong noise.

We notice that the results for the two linear chirps of Figure 2.3 (a) are the best in
terms of SNR, as displayed in Figure 2.4 (a) and (d). Then for the most modulated
signals of Figure 2.3 (c) and (d), the smoothing effect of λ becomes less desirable as the
noise level diminishes.

It is worth noting that, because the noise is strong, S-RD behaves better than MB-RD.
Indeed, this can be explained by the fact that MB-RD relies on the unstable frequency
modulation estimate q̂f̃ . In fact, the latter may point very far from the true IF of a
mode, even if it is evaluated close to the IF, thus explaining why S-RD leads to better
results.

In the sequel, we will study the improvement brought by RRP-RD for MR.
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Figure 2.4.: (a): Comparison between S-RD, MB-RD and RRP-RD, for the mode f1 of the signal
of Figure 2.3 (a), computation of output SNR between IF ϕ′1 and estimated IF with
respect to input SNR (the results are averaged over 40 realizations of noise); (b):
same as (a) but for the mode f1 of the signal of Figure 2.3 (b); (c): same as (a) but
for the mode f1 of the signal of Figure 2.3 (c); (d): same as (a) but the mode f2 of
the signal of Figure 2.3 (a); (e): same as (b) but the mode f2 of the signal of Figure
2.3 (b); (f): same as (c) but the mode f2 of the signal of Figure 2.3 (c).

2.4. Linear Chirp Approximation

Once the ridges are detected, another issue is that of MR. For that purpose, we perform
local TF analysis around the ridge to get an approximation of its associated mode, based
on a simplified linear chirp model. Let us assume that the signal is a linear chirp of the

form f(t) = Ae2iπ(at+b t2

2
), and g(t) is the Gaussian function e−π t2

σ2 . The STFT can then
be seen as the Fourier transform of a Gaussian, and reads,

V g
f (t, η) = f(t)

∫
R
e
−π

(
1
σ2+iϕ′′

)
(τ−t)2

e−2iπ(τ−t)(η−ϕ′(t))dτ. (2.22)
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For a Gaussian function of the form h(t) = e−πzt2 , where z = reiθ, with r ∈ R+ and
θ ∈ R, such that ℜ(z) > 0, its Fourier transform admits the following closed form,

F(h)(η) = r−
1
2 e−i θ

2 e
−π
z

η2 . (2.23)

The proof is analogous to the case where z is real. Based on (2.23), one can deduce
the analytic expression of V g

f [19],

V g
f (t, η) = Ar−

1
2 e−i θ

2e
−πσ2(1+ibσ2)

1+(bσ2)2
(η−a−bt)2

= V g
f (t, a+ bt)e

−πσ2(1+ibσ2)
1+(bσ2)2

(η−a−bt)2

= V g
f (t, ϕ

′(t))e
−πσ2(1+iϕ′′(t)σ2)

1+(ϕ′′(t)σ2)2 (η−ϕ′(t))2
,

(2.24)

with r =
√

1
σ4 + ϕ′′(t)2 and θ = tan−1(−ϕ′′(t)σ2). If the monocomponent signal f

departs from a linear chirp, the above equalities become approximations, which are fur-
thermore only valid for η in the vicinity of ϕ′(t). Applying this approximation to fp, we
obtain for η in the vicinity of ϕ′p(t),

V g
fp
(t, η) ≈ V g

fp
(t, ϕ′p(t))e

−πσ2(1+iϕ′′p (t)σ
2)

1+(ϕ′′p (t)σ2)2
(η−ϕ′p(t))2

(2.25)

Then, remarking that at TF location (t, ϕ′p(t)), the STFT of the mode fq, for q ̸= p,
is close to 0 we replace in (2.25) V g

fp
(t, ϕ′p(t)) by V g

f (t, ϕ
′
p(t)),

V g
fp
(t, η) ≈ V g

f̃
(t, ϕ′p(t))e

−πσ2(1+iϕ′′p (t)σ
2)

1+(ϕ′′p (t)σ2)2
(η−ϕ′p(t))2

. (2.26)

This last equation gives us a way to approximate each mode in the general case of a
MCS. However, ϕ′p(t), and ϕ′′p(t) are not known, and we are now going to explain how
the FSST2 [19] provides reasonable values for ϕ′p(t) and ϕ′′p(t).

2.5. Approximation of ϕ′ and ϕ′′ Based on FSST2 and Ridge
Detection

The objective of this section is to explain how the IF and CR estimators involved in
the definition of FSST2, introduced in Section 1.2, can be used in the model introduced
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above. In fact, to get an acceptable level of accuracy, those estimates are to be evaluated
in TF regions associated with high energy called ridges. Therefore, denoting the ridge
by Γp, setting ψ′

p(t) = ω̂
[2]

f̃
(t,Γp(t)), and ψ′′

p(t) = q̂f̃ (t,Γp(t)), this enables, from (2.24),
to approximate the STFT of fp by

V g
fp
(t, η) ≈ V g

f̃

(
t, ψ′

p(t)
)
e
−πσ2(1+iψ′′p (t)σ

2)

1+(ψ′′p (t)σ2)2
(η−ψ′

p(t))
2

. (2.27)

Finally, the reconstruction of mode fp is carried out either through equation (1.5, page
2), (1.4, page 2), or (1.3, page 2) replacing V g

f by the approximation of V g
fp

given by
(2.27).

It is important to remark here that the approximation of V g
fp

uses only STFTs of f̃
evaluated in the vicinity of the ridge associated with fp, which will prove to be the very
reason why the just described approach for mode retrieval is well adapted to handle
the mode-mixing issue. However, up to now, we have only presented the approach for
continuous time signals, and it needs to be adapted to discrete time signals, as explained
hereafter.

2.6. Linear Chirp Based Mode Retrieval Technique

To implement the just described mode retrieval technique, we use the discrete setting of
f̃ , recalling that f̃ [n] = f̃(nL). In that context, the discrete mode (fp[n])n is associated
with a ridge (Γp[n])n corresponding to frequency indices in {0, · · · , N − 1}. We then
set ψ′

p[n] := ω̂
[2]

f̃
[n,Γp[n]] and ψ′′

p [n] := q̂f̃ [n,Γp[n]] approximating ϕ′p(
n
L) and ϕ′′p(

n
L)

respectively. Remarking, using rectangular integration, that V g

f̃
(nL , k

L
N ) ≈

V g

f̃
[n,k]

L , using
(2.26) and (2.27), we obtain,

V gfp [n, k] ≈ LV gfp(
n

L
, k
L

N
) ≈ LV g

f̃

(n
L
, ϕ′p(

n

L
)
)
e
−
πσ2(1+iϕ′′p(nL )σ2)

1+(ϕ′′p(nL )σ2)2
(kLN −ϕ′p(nL))

2

≈ LV g
f̃

(n
L
, ψ′

p[n]
)
e
−πσ2(1+iψ′′p [n]σ2)

1+(ψ′′[n]σ2)2 (kLN −ψ′p[n]))
2

,

(2.28)

for which an approximation of V g
f

(
n
L , ψ

′
p[n]

)
from values of the discrete STFT is needed.

For that purpose, let us consider k0 := ⌊ψ′
p[n]

N
L ⌉, where ⌊x⌉ denotes the closest integer
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to x. Because V g

f̃

(
n
L , ψ

′
p[n]

)
≈ V g

fp

(
n
L , ψ

′
p[n]

)
, using (2.27), we may write,

V gf

(n
L
, ψ′

p[n]
)
≈ V g

f̃
(
n

L
, k0

L

N
)e

πσ2(1+iψ′′p [n]σ
2)

1+(ψ′′p [n]σ2)2
(k0

L
N−ψ′

p[n])
2

≈ 1

L
V g
f̃
[n, k0]e

πσ2(1+iψ′′p [n]σ
2)

1+(ψ′′p [n]σ2)2
(k0

L
N−ψ′

p[n])
2

.

(2.29)

From (2.28) and (2.29) we get that,

V g
fp
[n, k] ≈V g

f̃
[n, k0]e

πσ2(1+iψ′′p [n]σ
2)

1+(ψ′′p [n]σ2)2
[(k0LN −ψ′

p[n])
2−(kLN −ψ′

p[n])
2]

≈V g

f̃
[n, k0]e

πσ2(1+iψ′′p [n]σ
2)

1+(ψ′′p [n]σ2)2
[L(k0−k)N (

L(k0+k)
N −2ψ′

p[n])]
.

(2.30)

If we denote Ṽ g
fp

the estimation of V g
fp

given by (2.30), the retrieval of fp can be carried
out either through (1.7, page 3), if g[0] ̸= 0,

fp[n] ≈
1

g[0]N

N
2
−1∑

k=−N
2

Ṽ g
fp
[n, k], (2.31)

or assuming f is L-periodic, through (1.8, page 3), if we assume f is L-periodic, g ̸= 0,

fp[n] ≈
1

N∥g∥2

N−1∑
k=0

n+M∑
m=n−M

Ṽ g
fp
[n, k]g[n−m]ei2π

k(n−m)
N . (2.32)

In a noisy context, all the above expressions can be used replacing f by its noisy
version f̃ . The techniques given by (2.31) and (2.32) are respectively denoted M1 and
M2. When making abstraction of the reconstruction given by (1.7, page 3) and (1.8,
page 3), this technique is called linear chirp based retrieval (LCR).

2.7. Alternative Techniques for Mode Retrieval: HT,
SSR-HT

The HT technique when used for the retrieval of the mode fp of a MCS [15] consists of
considering in the reconstruction process only some coefficients of V g

f̃
in the vicinity of

Γ̃p, the ridge associated with f̃p the noisy version of fp. For that purpose, one defines
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for each time indexed by n, an interval Jp[n] =
[
η−p [n], η

+
p [n]

]
such that:

η−p [n] := argmax
k

{
kL

N
< Γ̃p[n], |V g

f̃
[n, k]| < 3γ̂

}
η+p [n] := argmin

k

{
kL

N
> Γ̃p[n], |V g

f̃
[n, k]| < 3γ̂

}
.

(2.33)

The reconstruction of the modes is carried out summing the coefficients over Jp using
(1.7, page 3), if g[0] ̸= 0,

fp[n] ≈
1

g[0]N

∑
k∈Jp[n]

V g

f̃
[n, k], (2.34)

or assuming f is L-periodic, through (1.8, page 3), if we assume f is L-periodic, g ̸= 0,

fp[n] ≈
1

N∥g∥2

∑
k∈Jp[n]

n+M∑
m=n−M

V g

f̃
[n, k]g[n−m]ei2π

k(n−m)
N . (2.35)

Similarly to LCR, we respectively name those techniques HT M1 and HT M2.

For the sake of comparison, we also briefly recall the principles of a denoising tech-
nique called shifted-symmetrized-regularized hard-thresholding (SSR-HT), and introduced
in [58], which consists of an improvement of HT technique based on a linear chirp ap-
proximation for the mode. It first shifts the real and imaginary parts of V g

f̃
such that

their respective maximum in Jp is centered on Γp in the frequency axis. We denote the
shifted STFT by V Sg

p,f̃
. Then the symmetrization is defined by,

SYMg

f̃ ,p
[n, k] =

1

2

(
V Sg

p,f̃
[n, k] + V Sg

p,f̃
[n, 2Γp[n]− k]

)
× 1Jp [k]. (2.36)

where 1Jp [k] = 1 if k ∈ Jp and 1Jp [k] = 0 otherwise. Next, SSR-HT smoothes real and
imaginary parts of SYMf̃ ,p using piecewise cubic Hermite interpolation, that we denote
by SSRg

f̃ ,p
. Finally, as for LCR and HT, if g[0] ̸= 0,

fp[n] ≈
1

g[0]N

N
2
−1∑

k=−N
2

SSRg

f̃ ,p
[n, k], (2.37)

or assuming f is L-periodic, through (1.8, page 3), if we assume f is L-periodic, g ̸= 0,

fp[n] ≈
1

N∥g∥2

N−1∑
k=0

n+M∑
m=n−M

SSRg

f̃ ,p
[n, k]g[n−m]ei2π

k(n−m)
N . (2.38)
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Here again, similarly to LCR and HT, we respectively denote the two reconstruction
techniques by SSR M1 and SSR M2.

2.8. Numerical Applications

In this section, we first show the benefits of LCR when the input SNR is between 0 and
10 dB. At such noise levels, all RD are working fine and RRP-RD does not bring any
significant improvement. Therefore, we assume that there are no problems with RD, and
we focus on comparing HT, SSR-HT with LCR. Then, we further study HT and LCR
techniques, when the input SNR is between −10 and 0 dB, in which cases, RRP-RD is
used to detect the ridges. Finally, we show that LCR can be used to solve the mode
mixing issue.

2.8.1. Comparison of Mode Retrieval Techniques on a Monocomponent
Signal

We study the efficiency of LCR for the signals of Figure 2.5 (a), (b) and (c); the results
being depicted in Figure 2.6. As the input SNR varies between 0 and 10 dB, we use
S-RD as it is working fine at such noise levels.

We notice that LCR gives better output SNR than HT and SSR-HT in each case,
whatever the noise level. We also note that LCR is only slightly sensitive to the technique
used for mode reconstruction (M2 seems a little better than M1, but the latter is much
faster than the former). On the contrary, SSR-HT behaves worse when the modulation
decreases, since the quality of reconstruction is hampered by frequency resolution when
M2 is used. Finally, comparing the results of Figure 2.6 (b) and (c), we notice that LCR
is efficient for a wide range of frequency modulation for the mode.

2.8.2. Study of the Robustness of Mode Retrieval

In this section, we investigate the robustness of mode retrieval techniques MR based on
S-RD and LCR (S-LCR-MR) and MR based on RRP-RD and LCR (RRP-LCR-MR),
and draw a conclusion of the impact of ridge detection on MR.

First, RRP-LCR-MR provides significant improvement compared with other MR tech-
niques that rely on RRP-RD [40]. Now, we focus on the impact of RD in heavy noise
situations. To do so, we consider the signals of Figure 2.3 (a), (b), (c), for which we
obtain the results of Figure 2.7 (a), (b), (c) respectively. In these figures, RRP-LCR-MR
is compared with S-LCR-MR and the benefits of using RRP-RD transpires in the better
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Figure 2.5.: (a): STFT of f(t) = e2iπ(250t+568 t2

2 ); (b): STFT of f(t) = e2iπ(1200t+60 cos(2πt)); (c):
STFT of f(t) = e2iπ(2000t+238 cos(2πt)).
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Figure 2.6.: (a): Signal reconstruction results for the signal of Figure 2.5 (a) using HT, SSR-HT
and LCR on the ridge provided by S-RD. the mode is reconstructed using either
(1.7, page 3) or (1.8, page 3) ; (b): Same as (a) but for the signal depicted in Figure
2.5 (b); (c): Same as (a) but for the signal depicted in Figure 2.5 (c).

output SNR. Even when the noise has a strong impact on the entire STFT, a good ridge
detection is necessary to improve MR. In fact, the accuracy of RRP-RD allows to get
more accurate IF and CR estimates, by using sfinp instead of ω̂[2]

f̃
and (sfinp )′ instead of

q̂f̃ . This can be checked numerically, as depicted in Figure 2.8 and justify their usage as
IF and CR estimators.
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Figure 2.7.: (a): For each mode p = 1, 2, output SNR between mode fp of signal of Figure 2.3
(a) and reconstructed mode using either S-LCR-MR or RRP-LCR-MR (the results
are averaged over 40 noise realizations); (b): same but with signal of Figure 2.3 (b);
(c): same but with signal of Figure 2.3 (c);
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Figure 2.8.: (a): computation of the output SNR associated with the estimation of ϕ′ with sfin

(computed for different values of λ) or with ω̂[2] for the first mode of Figure 2.3
(a); (b): computation of the SNR associated with the estimation of ϕ′′ with (sfin)′

(computed for different values of λ) or with q̂f̃ for the first mode of Figure 2.3 (a).

2.8.3. Mode Mixing Issue

In this section, we study the ability offered by HT, SSR-HT and LCR to accurately
separate two close modes in a MCS provided they admit two separate ridges. When the
modes are close in the TF plane, the modulus of the STFT between the two modes is
oscillating, due to interference. Therefore, some coefficients located between two modes
cannot be reasonably associated with one of them. This phenomenon is often called mode
mixing in the literature. It was studied in the context MR, by comparing empirical

30



2.9. APPLICATION TO GRAVITATIONAL-WAVE SIGNALS

0.2 0.4 0.6 0.8

time

1000

1200

1400

1600

1800

2000

fr
e

q
u

e
n

c
y

0 10 20 30
0

5

10

15

20

25

30

35

40

(a) (b)

Figure 2.9.: (a): STFT of signal made of two close chirps; (b): Reconstruction results using (1.7,
page 3) for each of the two modes depicted in (a) using S-RD.

mode decomposition and FSST [18], and also in [59], to improve the empirical mode
decomposition. In such a case, one may also consider the adaptive transforms [36], and
perform MR based on the signal sepration operator.

To illustrate how we tackle this issue, we consider the two mode signal whose STFT
is depicted in Figure 2.9 (a), for which mode separation is challenging. In particular,
we notice that at a low noise level and when using HT or SSR-HT, the threshold used
for the determination of intervals Jp is lower, at many time instants, than the minimum
value of the modulus of STFT between the two ridges associated with the modes. This
results in mode mixing with these two techniques. In Figure 2.9 (b), we display the results
corresponding to the retrieval of the modes f1 and f2. With HT and SSR-HT techniques,
when the noise level is low, we get that for many time indices n, J1[n] = J2[n], hence
the poor results. On the contrary, the separation of the two modes with LCR remains
satisfactory whatever the noise level.

As a remark, the reconstruction formula used with HT, SSR-HT, and LCR is (1.7,
page 3), to use (1.8, page 3) instead would not change the conclusions.

2.9. Application to Gravitational-Wave Signals

In this section, we investigate the applicability of RRP-RD and RRP-LCR-MR to a
transient gravitational-wave signal, generated by the coalescence of two stellar-mass black
holes. This event, called GW150914, was detected by the LIGO detector Hanford,
Washington and closely matches the waveform Albert Einstein predicted almost 100
years ago in his general relativity theory for the inspiral, the merger of a pair of black
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holes and the ringdown of the resulting single black hole [60]. The observed signal has a
length of 3441 samples in T = 0.21 seconds.
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Figure 2.10.: (a): STFT modulus (σ = 0.0105) of the Hanford signal along with the ridge ob-
tained with RRP-RD and FSST4; (b): illustration of signal reconstruction based
on RRP-LCR-MR and the numerical relativity; (c): SNR corresponding to the
reconstruction of the signal using either RRP-LCR-MR, RRP-MR or FSST4-MR
(the ground truth is assumed to be the one produced by numerical relativity). The
results are averaged over 40 realizations of noise.

Because the signal is real, it cannot be analytic and we therefore use the reconstruction
formula associated with real signals,

f̃ [n] =
2

g[0]N
ℜ


N
2
−1∑

k=0

V g

f̃
[n, k]

 . (2.39)

For the sake of comparison, we consider the fourth-order Fourier-based synchrosqueez-
ing transform (FSST4), an efficient reassignment technique introduced in [61]. Note that,
as mentioned in Section 1.2, the generalized FSSTN technique will be defined in Chapter
4. We first display in Figure 2.10 (a), the modulus of the STFT of such a signal, along
with the ridge associated with FSST4 and the spline obtained using RRP-RD. We notice
that RRP-RD and FSST4 leads to very similar results, and that both techniques enable
the detection of the ringdown.

We then investigate the quality of signal reconstruction by comparing it with the
one given by the numerical relativity [62], when one uses either MR based on RRP-
RD and HT (RRP-MR), RRP-LCR-MR or MR based on FSST4 (FSST4-MR). An
illustration of the reconstructed signal obtained with RRP-LCR-MR superimposed on
the one given by the numerical relativity is displayed in Figure 2.10 (b). Then, we
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estimate the quality of signal reconstruction with the three techniques when the input
SNR varies. The results depicted in Figure 2.10 (c) show that the three methods behave
similarly, though RRP-MR and RRP-LCR-MR are always slightly better. What is very
specific to the studied gravitational wave signal is that the part associated with the strong
frequency modulation is very energetic, and a slight inaccuracy in IF estimation using
the spline approximation at the locations corresponding to strong frequency modulation
has a strong impact on mode reconstruction with RRP-LCR-MR. For this reason, it
may not be that interesting to use the latter technique instead of RRP-MR in that
context. It is also worth noting here that FSST4-MR is very specific to signals containing
very oscillatory phases, which is the case of the gravitational wave when the ringdown
occurs. For any other modes like those studied before, a lower order synchrosqueezing
transform would lead to better results [63]. Another limitation of the techniques based
on synchrosqueezing transforms is that there are not adapted to long signals since the
reconstruction of the modes from these transforms when the hop-size is larger than one
is not tractable [15]. Finally, as FSST4-MR uses S-RD, it depends on the user defined
parameter Bf which is not the case of RRP-MR or RRP-LCR-MR. These last techniques
thus offer a nice alternative to the best state-of-the-art techniques for the reconstruction
of very complex signals such as gravitational-wave signals.

2.10. Conclusion

In this chapter, we proposed a new ridge detection technique and investigated its po-
tential use for MR. We introduced the combination of the so-called RRP-RD and LCR
techniques, which leads to satisfactory MR results. However, when considering heavy
noise, it becomes a lot more challenging since the noise affects the coefficients of the
entire TF plane. In particular, we showed that even with very accurate IF and CR es-
timates, MR is still challenging and the proposed combination of RRP-RD and LCR is
a good answer to that problem. However, it is important to note that our approach is
unable to deal with crossing modes, since, in that case, one cannot associate a ridge with
each mode. This requires a better understanding of interference, which we will be the
topic of Chapter 3. We will also see in Chapter 4, that the noise still has a huge impact
on the amplitude of the modes and, therefore an ideal RD is not sufficient for accurate
MR.
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3. Time Frequency Analysis of
Interference

3.1. Introduction

In this chapter, we study the time and frequency interference of a MCS, which arise when
two modes are close in the TF plane, thus creating interference patterns.

In a first part of this chapter, we carry out the mathematical study of the conditions
for interference patterns called TFBs to appear. TFBs were originally introduced in
[64] with mathematical characterizations of this phenomenon in the case of two pure
harmonics. We also study this situation and extend it to signals made of two parallel
linear chirps. Then, because in practice, the conditions for TFBs to appear are difficult
to evaluate, and for the purpose of considering general MCSs, we detail a special RD
that is able to detect the merging of ridges that coincides with the presence of TFBs.
We then perform a numerical validation of the technique, on noisy MCSs.

In the second part of this chapter, we consider a different approach to detect interfer-
ence patterns based on the analysis of the zeros of the spectrogram, and show perspectives
on how to perform a separation between different types of zeros.

3.2. On the Existence of Time Frequency Bubbles

In this section, we investigate the number of existing local maxima of the spectrogram
along the frequency axis (LMFs) when two modes are interfering. Depending on the
situation in time and frequency, we show that when modes are merging or are too close
in the TF plane, there may only be one LMF associated with both modes.

In what follows, to characterize these situations, we will use the notion of TFB, which
corresponds to the following definition:

This chapter is based on the work by S. Meignen, T. Oberlin, and N. Laurent, “On the Study of
Interference and their Localization in the Time-Frequency Plane” submitted to IEEE TSP.
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Definition 3.2.1. Two modes make a TFB in the TF plane when the LMFs associated
with each mode merge.

We now investigate the existence of TFBs when the signal is the sum of two pure tones
and then explain how the obtained results can be extended to the case of two parallel
linear chirps. As explained in Chapter 2, a Gaussian window is well adapted for such a
study as it allows working with closed form expressions thus enabling the mathematical

analysis. Therefore, we set the window g(t) = e−π t2

σ2 .

3.2.1. Case of the Sum of Two Pure Tones

Let f(t) = f1(t) + f2(t) with f1(t) = Aei2πξ1t and f2(t) = ei2πξ2t, where ξ1 < ξ2. As one
has V g

f1
(t, η) = σAei2πξ1te−π(η−ξ1)2σ2 and V g

f2
(t, η) = σei2πξ2te−π(η−ξ2)2σ2 ,

|V g
f (t, η)|

2 = σ2
(
A2e−2πσ2(η−ξ1)2 + e−2πσ2(η−ξ2)2

+ 2Ae−πσ2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t)

)
.

(3.1)

A first property of |V g
f (., η)|

2, where . means we consider this variable, is that it attains
its maximum at tk = k

ξ2−ξ1
, k ∈ Z for which:

|V g
f (tk, η)|

2 = σ2(Ae−πσ2(η−ξ1)2 + e−πσ2(η−ξ2)2)2. (3.2)

Denoting the local extrema of the spectrogram along the frequency axis by local extrema
of the spectrogram along the frequency axis (LEFs), the study of |V g

f (tk, .)|
2 leads to:

Proposition 3.2.1. |V g
f (tk, .)|

2 has three LEFs (two LMFs and a local minimum) if and
only if α :=

√
π
2σ(ξ2 − ξ1) > 1 and

| log(A)| < −2 arccosh(α) + 2α
√
α2 − 1.

In any other case, |V g
f (tk, .)|

2 has a unique extremum which is a LMF.

The proof is given in Appendix A.1. Having studied the situation at tk, we can
generalize this result to any time t through:

Proposition 3.2.2. |V g
f (t, .)|

2 has three LEFs (two LMFs and a local minimum) if and
only if α :=

√
π
2σ(ξ2 − ξ1) > 1 and

| log(A)| < −2 arccosh(α) + 2α
√
α2 − 1.
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In any other case, there exists some time t where |V g
f (t, .)|

2 has a unique extremum which
is a LMF.

The proof is given in Appendix A.2. This proposition means that, if the spectrogram
exhibits two LMFs at tk, it is the same for any time t, and it tells us when two pure
tones are generating TFBs.

Note that, when A = 1 and since −2 arccosh(α)+2α
√
α2 − 1 is an increasing function

which equals 0 at 1, when α > 1 we always have −2 arccosh(α) + 2α
√
α2 − 1 > 0, and

thus the second condition in Proposition 3.2.2 is useless. As a consequence, when A = 1

TFBs exist only when α ≤ 1. Also, comparing the hypotheses in Propositions 3.2.1 and
3.2.2, we notice that the presence of TFBs is only determined by the behavior of the
spectrogram at time tk. Finally, denoting by (tk, ηk) the location of a LMF at tk, this
TF point also corresponds to a maximum of the spectrogram along the time axis and
thus it is a local maximum of the bidimensional function |V g

f (t, η)|
2.

To give a first illustration of TFBs we consider the spectrogram of the sum of two
pure tones, in Figure 3.1 (a) and (b), A = 1 and the conditions of Proposition 3.2.2
are fulfilled in (a) but not in (b) TFBs being thus present in the latter case. Finally, in
Figure 3.1 (c), A ̸= 1 and the conditions of Proposition 3.2.2 are fulfilled. In each case, we
also plot the zeros and the local maxima of the spectrogram along with the spectrogram
ridges corresponding to the chaining along the time axis of LMFs. As expected, the local
maxima are located on spectrogram ridges at t = tk.

3.2.2. Case of Two Parallel Linear Chirps

Our goal is now to extend the previous study to parallel linear chirps. We thus consider
f(t) = f1(t) + f2(t) with f1(t) = Ae2iπϕ1(t) and f2(t) = e2iπϕ2(t), with ϕk(t) = akt+

C
2 t

2

with C constant.

As one has a similar formula to (2.24, page 24),

V g
f1
(t, η) = f1(t)r

−1/2e
−πσ2(1+iCσ2)(η−ϕ′1(t))

2

1+C2σ4 e−i θ
2 (3.3)

with r =
√
1+C2σ4

σ2 and θ = atan(−Cσ2), one obtains:

|V g
f (t, η)|

2 =
1

r

(
A2e−2π

(η−ϕ′1(t))
2

r2σ2 + e−2π
(η−ϕ′2(t))

2

r2σ2

+ 2Ae−π
[(η−ϕ′1(t))

2+(η−ϕ′2(t))
2]

r2σ2 cos(2πϕ(t, η))

)
,

(3.4)
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Figure 3.1.: (a): spectrogram of two parallel pure harmonic modes with the same amplitude,
when there exists three LEFs at each time instant (the ridges corresponding to the
chaining of LMFs are also superimposed); (b): spectrogram of two parallel pure
harmonic modes exhibiting TFBs; (c): same as (a) but when the pure harmonic
modes have different amplitude (three LEFs are still present at each time instant
but the symmetry no longer exists). In each case, we also plot the zeros and the
local maxima of the spectrogram.

with ϕ(t, η) = (a2 − a1)
(
t+ C

r2σ2

(
η − Ct− a1+a2

2

))
. Let us then consider the set of TF

points (t, η) such that cos(2πϕ(t, η)) = λ. These points correspond to

ϕ(t, η) =
arccos(λ)

2π
+ k for k ∈ Z ⇔ t = Dη +Bλ

k
(3.5)

with D = C
C2−r2σ2 and

Bλ
k =

C2(a22 − a21) + r2σ2(arccos(λ)
π + 2k)

2(r2σ2 − C2)(a2 − a1)
.

We deduce from (3.4) that:

|V g
f (Dη +B1

k, η)|2 =
1

r

(
Ae−π( 1−CD

rσ
)2(η−a1+CB1

k
1−CD

)2 + e−π( 1−CD
rσ

)2(η−a2+CB1
k

1−CD
)2
)2

, (3.6)

which is the same expression as (3.2), replacing σ, ξ1 and ξ2 by 1−CD
rσ , a1+CB1

k
1−CD and

a2+CB1
k

1−CD , and thus one can deduce the following

Proposition 3.2.3. |V g
f (t, η)|

2 has three extrema (two maxima and one minimum) along
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the line t = Dη +B1
k if and only if αC =

√
π
2
a2−a1
rσ > 1, and then

| log(A)| < −2 arccosh(αC) + 2αC

√
α2
C − 1,

and a unique maximum along that line otherwise.

The proof is the same as that of Proposition 3.2.1. Then one generalizes Proposition
3.2.2 as follows:

Proposition 3.2.4. |V g
f (t, η)|

2 has three extrema (two maxima and one minimum) along
the line t = Dη +Bλ

k if and only if αC =
√

π
2
a2−a1
rσ > 1, and then

| log(A)| < −2 arccosh(αC) + 2αC

√
α2
C − 1,

and a unique maximum along that line otherwise.

So the presence of TFBs is here related to what happens when λ = 1. Let us denote by
(tk, ηk) a local maximum on the line t = Dη +B1

k and then a neighboring point (t, η) of
(tk, ηk) in the direction of vector (1, C). For such a point, one has η−ϕ′1(t) = ηk−ϕ′1(tk)
and η − ϕ′2(t) = ηk − ϕ′2(tk) and, as cos(2πϕ(t, η)) < 1, one gets that (tk, ηk) is also a
maximum in the direction of vector (1, C), and thus a local maximum of the bidimensional
function |V g

f (t, η)|
2. Note finally that, contrary to what happens in the pure tones case,

(1, C) is not orthogonal to (D, 1).
An illustration is given in Figure 3.2 (a) where the spectrogram of two parallel linear

chirps is displayed and for which there exist three extrema along direction t = Dη+Bλ
k .

Then, in Figure 3.2 (b), the case where there exists only one maximum for some value
of λ is displayed (TFBs are thus present). Finally, in Figure 3.2 (c) one considers a case
where there are three extrema along direction t = Dη + Bλ

k when A is no longer equal
to 1. In each case, the zeros and the local maxima of the spectrogram are also plotted.
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Figure 3.2.: (a): Spectrogram of two parallel linear chirps with the same amplitude, when there
always exists three extrema in the direction D; (b): Spectrogram of two parallel
linear chirps when TFBs are present. Three extrema no longer exist in the direction
D; (c): same as (a) but when the linear chirps have different amplitude (three
extrema are still present along the direction D). In (a) to (c), we also plot the zeros
and the local maxima of the spectrogram.

3.3. Localizing TFBs Based on a New RD

In this section, we design a technique for the detection of TFBs. Indeed, the conditions
we expressed above require the knowledge on the frequency and modulation of the signal,
which is not the case in practice.

From the definition of TFBs, we propose to define a new RD to find the LMFs that are
merging. However, the previously introduced RD such as S-RD in Section 2.2.1, MB-RD
in Section 2.2.2 and RRP-RD in Section 2.3.3 are not compatible for such a task, because
they do not allow ridges to cross. Therefore, in the section below, we explain how to
build a new RD enabling mode crossing.

3.3.1. New RD Enabling the Merging of Ridges

In Chapter 2, the RDs we introduced are specifically designed to work for non-crossing
modes and cannot be used as is to detect TFBs. To build the new RD enabling the
merging of ridges, and because we only consider input SNR above 5dB, we propose to
modify S-RD introduced in Section 2.2.1, which gives good results in such situations.
In the case of S-RD, the ridge Γp defined by means of (2.6, page 13) cannot cross the
previously detected ridges, and is not necessarily made of LMFs. To circumvent these
two limitations of S-RD, we still use the same initialization process, namely, for an
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initialization at time index n0,

Γp[n0] = argmax
0≤k≤N−1

|V g

f̃
[n0, k]|, (3.7)

but replace (2.6, page 13) by

Γp[n+ 1] := argmin
k

{
|k − Γp[n]| ≤ Bf , s.t.|V g

f [n+ 1, k]| LMF
}
. (3.8)

This has two straightforward consequences. First, it is possible that Γp merges with
some of the previously computed ridges, and second, the ridge points are all LMFs. As a
consequence, if no LMF is found in the interval of interest, the construction of the ridge
is stopped, which was not the case with S-RD. The second consequence is that, contrary
to S-RD, when two LMFs are found in the interval of interest one considers the closest
to the current position rather than the global maximum on the interval.

Note that to extract a ridge with S-RD, the procedure is run with different initial-
izations and the ridge associated with the largest energy is kept. When using (3.8) to
compute Γp instead, the latter may have points in common with the previously computed
ridges, thus the energy we associate with Γp corresponds this time to the sum of the spec-
trogram coefficients that do not belong to the previously computed ridges. Meanwhile
we also define the length of Γp as the length of the ridge portions belonging only to Γp

and not to the previously computed ridges. Thus, in that context, we no longer perform
the ridge detection until P ridges are detected, but until a small fraction of the energy
is not contained in the vicinity of the detected ridges. In what follows, this RD will be
called redundant ridge detector (R-RD), to emphasize the fact that some ridges may have
some points in common.

An illustration of the practical impact of using R-RD instead of S-RD is given in
Figure 3.3 (a) and (b), corresponding to the detection of two ridges with S-RD and to
the application of R-RD respectively. As explained above, S-RD enforces the detection
of two separate ridges that are not made of LMFs, contrary to R-RD with which the
extracted ridge portions can be on top of one another and are necessarily made of LMFs.
In the presence of noise, R-RD is slightly adapted so as to ensure the ridges are made
of significant LMFs. For that purpose, let f̃ = f + ε be a noisy signal, with ε a zero
mean complex Gaussian white noise. To find out the regions where significant coefficients
are located, we consider the hard-thresholded spectrogram S(3) that we defined in 2.11.
This means that we consider coefficients such that |V g

f̃
[n, k]| > 3γ̂ where γ is an estimate

of σ∥h∥2.
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Figure 3.3.: (a): ridges detected using S-RD; (b): ridges detected using R-RD.

In such a noisy context, to build a ridge, one considers the same initialization procedure
as previously replacing f by f̃ and maximizing only over TF points in S(3), and then
the construction follows (3.8) considering only the TF points that are in S(3). All the
ridges are extracted iteratively, and the extraction is stopped when the last computed
ridge has a length below some threshold. When some noise is present, it is more efficient
to put a bound on the ridge length rather than on the remaining energy away from the
ridges since, due to noise, this energy can be large. This RD will be called redundant
ridge detector in noise (R-RDN) in the sequel.

3.3.2. Using New RDs to Detect and Localize TFBs

Based on the previous analysis, a simple criterion to investigate whether the proposed
new RDs are efficient to detect TFBs is to find out the instances when some ridges have
merged. To measure this, let us consider that either with R-RD or R-RDN, depending
on whether the signal is noisy or not, K ridges (Γk)k=1,··· ,K have been extracted. Then,
let us define the following quantity:

R(σ) =

 1, if min
n,1≤i<j≤K

(|Γi[n]− Γj [n]|) = 0

0, otherwise.
(3.9)

Thus, R(σ) = 1 when some ridges have some points in common, and it is equal to zero
otherwise. We will see in the Results section that the values of R computed from the
extracted ridges are in accordance with the necessary and sufficient conditions on the
existence of TFBs given by the theoretical analysis of Section 3.2.
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Once we know two ridges have some points in common in the TF plane, we spot where
the merging occurs, the position of which being an estimate of the location of a TFB. An
illustration of the procedure is given in Figure 3.4, first row and in the absence of noise
(so we use R-RD for ridge detection). The STFT in Figure 3.4 (a) to (c) are computed
with σ = 0.02, 0.03, and 0.04 respectively. The stars on these figures indicate where some
ridges have merged. It is interesting to notice that, as expected, a smaller σ creates more
interference between the modes and thus more TFBs. In that case, by increasing σ, it is
possible to get three disjoint ridges (see Figure 3.4 (c)), telling us that the separation of
the modes will be easier with such a σ. Then, on the second row of Figure 3.4, we give
an illustration in the presence of noise, considering the same signal as on the first row,
and with σ = 0.04 as we know such a value leads to three different ridges in the absence
of noise. In that context, we use R-RDN for ridge detection, and consider different noise
levels (input SNR of 20, 10 and 5 dB) corresponding to Figure 3.4 (d) to (f). In these
figures, we plot TF regions corresponding to S(3) and then the ridges computed in these
regions using R-RDN. We notice that for the studied noise, the merging of the ridges are
located in the same regions as in the noiseless case, when the input SNR is larger than 5
dB, which means the detection of TFBs using the proposed approach seems to be robust
to noise. Nevertheless, at this stage, no general conclusions can be drawn since only one
realization of the noise is considered, therefore the quality of the detection is going to be
investigated more in details in the following section.
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Figure 3.4.: (a): STFT of a three mode signal along with the ridges superimposed, in the def-
inition of the Gaussian window σ = 0.02, the stars corresponds to the locations of
the merging of ridges (R-RD is used for ridge detection); (b): same as (a) but with
σ = 0.03 ; (c): same as (a) but with σ = 0.04 ;(d): study of the same signal as in
(a) with some white Gaussian added noise (input SNR 20 dB), and σ = 0.04 in the
definition of the Gaussian window; (e): same as (d) except the input SNR equals 10
dB;(f): same as (d) except the input SNR equals 5 dB.

3.4. Results

In this section, we first investigate how the proposed new RDs enable us to detect TFBs.
Then, we study whether the localization of the merging of ridges computed with our
algorithm is a robust criterion to localize TFBs. Finally we propose an application of
the potential use of the localization of TFBs for the analysis of vibrato signals.
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3.4.1. TFB Detection Based on new RDs

We investigate here how well the merging of ridges with the RDs we propose reflects
the presence of TFBs in the TF plane. To do so, we first consider the case of the sum
of two pure tones and then the case of two parallel linear chirps. For that purpose we
use the signal of Figure 3.1 (a), which corresponds to the sum of two pure tones with
the same amplitude. In such a case, we know ξ2 − ξ1 and we make σ vary: TFBs are
present when α =

√
π
2σ(ξ2 − ξ1) ≤ 1 and not otherwise. This defines a function of σ

equal to 1 when a TFB is present and to 0 otherwise. This function is denoted by ground
truth (GT) hereafter. Then, from (3.9), R(σ) = 1 when some ridges have some points in
common and is equal to zero otherwise. So R should be close to GT if it is relevant to
detect the presence of TFBs. To check this, In Figure 3.5 (a), we display R along with
GT, in noiseless and noisy cases, R-RD and R-RDN being used respectively to compute
the different ridges. We notice that the appearance of TFBs corresponds to σ below a
certain threshold, which is computed with a great accuracy using (3.9) for input SNR
larger than 20 dB. This threshold is slightly increased when an heavier noise is added
to the signal, meaning the noise creates some TFBs that are not present in the noiseless
case.

Now, if one considers the signal of Figure 3.1 (c), where the modes are with different
amplitude, GT has to be modified because TFBs are present either if α ≤ 1 or if α > 1

and | log(A)| ≥ −2 arccosh(α)+ 2α
√
α2 − 1. In Figure 3.5 (b), we display GT, as well as

R, for the just mentioned signal, and we notice that the appearance of TFBs is detected
for a very similar value of σ than that given by the theory when little noise is added. As
in the previous case, we notice that, for some values of σ, the noise creates some TFBs
that are not present in the noiseless case. Note finally that when (3.9) is used to estimate
the presence of TFBs when the signal is made of two parallel linear chirps, similar results
to those displayed in Figure 3.5 are obtained.

The question we would like to address is whether the TFBs generated by noise is
detrimental to the performance of the procedure we propose to localize the TFBs of the
noiseless signal.

3.4.2. TFBs Localization Based on Ridge Merging

We hypothesized in the previous section that the locations of the merging of ridges were
a good indicator of those of TFBs, even in noisy situations. The results depicted on the
second row of Figure 3.4 were encouraging in that matter, but should be generalized to
many different realizations of the noise to conclude. For that purpose, we again consider
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Figure 3.5.: (a): TFB detection for the signal of Figure 3.1 (a) either in the noiseless case or for
different noise levels, using the function R, along with the ground truth; (b): TFB
detection for the signal of Figure 3.1 (c) using either R or the ground truth. The
results are averaged over 10 realizations of the noise.

the signal studied in Figure 3.4, and compute the STFT with σ = 0.04, for which, in
the absence of noise, the merging of ridges only occurs between the pure tone signal and
the linear chirp. To investigate whether this is still the case in the presence of noise, we
compute two masks corresponding to where the interference between two modes f1 and
f2 are significant, namely we define the region of interference of level T as:

IT (f1, f2) =
{
[n, k], s.t.|ℜ(V g

f1
[n, k]V g

f2
[n, k]

∗
)| ≥ T

}
. (3.10)

We compute these masks when the modes f1 and f2 are the pure tone signal and the
linear chirp of Figure 3.4, and we refer to that mask as zone 1, in what follows. This
mask is depicted in Figure 3.6 (a). Then, we carry out the same computation when the
modes f1 and f2 are the linear chirp and the mode with sinusoidal phase of Figure 3.4,
and the obtained mask is referred to as zone 2, in what follows (this mask is depicted
in Figure 3.6 (b)). Having defined these masks we investigate whether the procedure
described in Section 3.3 localizes the merging of ridges mainly in zone 1 when the noise
level varies, bearing in mind TFBs are only present in zone 1 in the absence of noise.
In Figure 3.6 (c), we display on the top graph the percentage of detections in zone 1,
zone 2 and elsewhere in the TF plane (which we denote by false detections). We notice
that whatever the noise level, some TFBs are always detected in zone 1, while TFBs are
very rarely detected in zone 2 when the noise level is low, and false detections are also
very rare. Notice that, though detection in zone 2 and false detections increase when the
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noise level increases, these correspond to very few TF points. Indeed, for each realization
of the noise we compute the proportion of points corresponding to TFB detections that
belong to each region, and remark that only very few TF points are detected outside of
zone 1 as illustrated on the bottom graph of Figure 3.6 (c), in which the proportions of
TF points in zone 1, zone 2 and elsewhere, are depicted. This means that the proposed
procedure is very efficient to localize the TFBs of the original signal.
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Figure 3.6.: (a): Interference mask associated with the constant and linear chirps of Figure 3.4,
denoted by zone 1; (b): Interference mask associated with the linear chirp and
the mode with sinusoidal phase of Figure 3.4, denoted by zone 2; (c): top graph:
percentage of detection of TFBs in zone 1, zone 2, and elsewhere (false detections)
when the noise level varies, bottom graph: percentage of points associated with the
detection of TFBs in the different zones when the noise level varies (the number of
noise realization equals 30).

3.4.3. Application to Voice Signals

In this section, our goal is to give an illustration of the potential interest of the procedure
we propose to localize TFBs in practical situations, and in particular for the study of
voice signals. Indeed, for such signals, it is of interest to have access to its different
harmonics, which can be done by extracting the ridges associated with them in the TF
plane. A natural question one then asks is whether this ridge extraction can be trusted.
We are going to show that the procedure we propose to localize TFBs offers, in some
way, an answer to that question.

To illustrate this, we consider the voice signal of a 22-year-old female taken from the
recording 62 of the Saarbruken Voice Database [65]. This signal contains 126902 samples
for a length of 2.538 seconds and for efficiency purpose, we resample it by a factor of 10.
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It contains sustained /a/ vowels of the type “low-high-low” meaning there is a change on
the pitch of the signal. The STFT of such a signal is depicted in Figure 3.7 (a), (b) and
(c) for the same value of σ. In Figure 3.7 (a), we consider that 95 % of the total energy
is contained in the vicinity of the ridges when applying R-RD, and in Figure 3.7 (b) 98
% of the energy is contained in the vicinity of the ridges. We notice in Figure 3.7 (a)
that the ridge associated with higher frequencies mixes the information corresponding to
different harmonics. By considering a higher level of energy contained in the vicinity of
the ridges as in Figure 3.7 (b), one detects a TFB at the time instant where the ridge
detection was not correct in Figure 3.7 (a). This means that, at this time instant, the
frequency resolution is not sufficient to well separate some of the ridges and thus the
associated harmonics: the algorithm we propose to localize TFBs tells us where to pay
particular attention.
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Figure 3.7.: (a): STFT of a voice signal (recording 62 of the Saarbruken Voice Database [65])
along with the ridges associated with 95% of the total energy (no TFB is detected);
(b): same as (a) but when 98% of the total energy is located in the vicinity of the
ridges (a TFB corresponding to the white star symbol is detected); (c): same as (a)
but in the presence of noise (a TFB is detected is detect in the same TF region as
in (b).

Now in Figure 3.7 (c), we consider a noisy version of the same signal (input SNR 20
dB), compute the spectrogram with the same window as previously, then the ridges using
R-RDN and finally localize TFBs. We remark that, due to noise, the ridge associated
with higher frequencies in Figure 3.7. (a) is split into several ridge portions but also that
a TFB is still detected at the time where interference occurred in Figure 3.7 (b). So, the
procedure we propose to localize TFBs is interesting in that it tells us, even in a noisy
context, where the frequency (or time) resolution in the spectrogram is not fine enough
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to well separate the harmonics.

3.5. Analysis of Interference Based on the Zeros of the
Spectrogram

In this section, we consider an approach based on the zeros of the spectrogram to localize
interference. In some sense, this approach can be seen as dual to the one proposed just
above, in that ridges are often associated with high energy TF regions.

The zeros have already been used in TF analysis, for instance, in the context of the
auditory system [66], where, using reassignment, the repulsive effect of the zeros is illus-
trated, or in the context of [67] where the relation between the poles of the phase with
the location of the zeros is investigated.

Then in [68], it is explained that the STFT can be viewed as a function of the complex
plane, using the Bargmann factorization of the STFT [69, Section 3.4]. It can in fact be
regarded as an entire function that is completely characterized by its zeros, which, by
construction [68], are the zeros of the STFT.

The Delaunay triangulation based on the spectrogram’s zeros is a TFR that can be used
for denoising and MR purposes [68]. Succinctly explained, since the distance between
two neighboring zeros should not exceed a certain value [68], it is proposed in that paper
to consider the Delaunay triangulation of the zeros and then to discriminate the zeros
related to the signal from those related to noise by considering a threshold on the length
of the triangle edges. To build the signal domain, the following simple procedure is
considered [68]: The shape of triangles associated with noise have a specific distribution.
When a triangle is an outlier for this distribution, it is associated with signal. Adjacent
outliers are then considered belonging to the same mode, enabling MR.

Further mathematical description is given in [70], on statistical properties, notably the
link between zeros and Gaussian analytic functions. When one considers a complex and
i.i.d. white Gaussian noise ε, the zeros of its spectrogram are the set of TF coefficients
satisfying |V g

ε (t, η)|2 = 0, and their distribution is uniform on the TF plane [70].
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Figure 3.8.: Illustration of the zero based Delaunay triangulation, where the red circles represent
the zeros of the spectrogram.

3.6. Perspectives for a Zero Based Technique to Identify
Interference

In this section, we study how to identify the signal domain in the TF plane, using the
zeros of the spectrogram. As explained in the previous section, this has been done in [68],
but in our case, we also want to identify interference in the TF plane,meaning we want to
split the TF plane into three categories associated with either noise, interference or signal.
We also consider a different approach, where we study the Voronoi cells associated with
the zeros instead of their Delaunay triangles. To illustrate the perspectives described
in this section, we consider the signal f̃ = f1 + f2 + ε, where f1 and f2 are two pure
harmonics (PHs) that interfere with each other, and ε is a complex and i.i.d. white
Gaussian noise. In Figure 3.9 (a), we depict the Voronoi cells of the zeros of the modulus
of the STFT, namely |V g

f̃
|, where g is a Gaussian window.

In order to separate the TF plane, we aim at identifying three types of zeros associated
with one category. We propose to discriminate them using the distribution of energy in
their Voronoi cells; such a cell is denoted by Ci

f̃
, and is a polygon composed of Ji segments

Ci,j

f̃
for j ∈ {1, · · · , Ji}. Figures 3.9 (b), (c) and (d) respectively illustrate Voronoi cells

associated with noise, interference and the signal. In these figures, one can observe that
the energy in a segment can be significantly larger when it crosses signal information.
Taking into account these observations, our goal is to study the maximum energy on a
segment Ci,j

f̃
, defined by

M i,j

f̃
= max

(t,η)∈Ci,j

f̃

|V g

f̃
(t, η)|2. (3.11)

50



3.6. PERSPECTIVES FOR A ZERO BASED TECHNIQUE TO IDENTIFY
INTERFERENCE

(a) (b)

(c) (d)

Figure 3.9.: (a): Magnitude of the STFT of two PHs affected by noise, with superimposed
Voronoi cells; (b): Zoom on (a) on a Voronoi cell associated with noise; (c): Zoom
on (a) on a Voronoi cell associated with interference; (d): Zoom on (a) on a Voronoi
cell associated with signal.
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Figure 3.10.: Histogram associated with the selection of the maximum value on ≈ 80 000 segments
of Voronoi cells in the case of pure noise.

In order to identify the type of cell Ci
f̃
, we assume that there exist a threshold E such

that if M i,j

f̃
> E , then Ci,j

f̃
crosses the signal domain. Then, by defining

Emax
i = max

j∈{1,··· ,Ji}
M i,j

f̃
(3.12)

Emin
i = min

j∈{1,··· ,Ji}
M i,j

f̃
, (3.13)

we propose to separate the cells by utilizing the following scheme.
If Emin

i > E , Ci
f̃

is related to interference, if Emax
i ≤ E , Ci

f̃
is related to noise and

otherwise, Ci
f̃

is related to signal. However, the choice of E is delicate, and to set it in

a meaningful way, we propose to study the distribution M i,j
ε , meaning we only consider

pure noise.
A similar problem was dealt with in [71], where the distribution of the spectrogram

maxima was identified to follow a Gumbel law. In our case, we restrict our selection of the
maximum in a segment of a cell. Namely, first look to determine the law associated with
M i,j

f̃
. Using numerical computation, we depict the histogram of its probability density

function in Figure 3.10 and plan identify the law and parameters in a near future.

3.7. Conclusion

In this chapter, we studied two different approaches on interference. The first is based
on TFBs, for which we carried out the study of the mathematical conditions for their
appearance. Then, we introduced a technique to detect TFBs for a general MCS and
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use numerical validation to show its accuracy in noisy conditions. We also performed
its validation on a real signal, which illustrates that the technique can be used as an
indicator of the ridge detection quality.

In the last part of the chapter, we study a different approach based on the zeros of the
spectrogram. We proposed a scheme that uses the distribution of the energy around the
Voronoi cells associated with the zeros to determine TF regions associated with noise,
interference or signal. Assuming that the maxima of the energy in the border of a Voronoi
cells and the maxima of the spectrogram are similarly distributed, a new technique could
be designed to separate the TF regions, which we plan to investigate in the future.
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4. Towards Adaptive and Robust
Synchrosqueezing

4.1. Introduction

In this chapter, we first recall that to get closer to the ideal time frequency representation
when the modes of a MCS have strong frequency modulation, FSST2 was generalized
to any order N through FSSTN [61]. While to use a N larger than 2 can be profitable
in some instances, it is hard to determine which N is the best in a particular situation.
Ideally, one would seek to find N in accordance with the order of the phase [72], but the
latter is unknown in general. Furthermore, FSSTN, with N large, is sensitive to noise
[72]. In this chapter, we design a technique that aims to determine the best N locally
in the TF plane. Our approach is based on energy concentration, which we interpret as
the quality of the reassignment performed by FSSTN. Note that in [73], a multitapered
wavelet based SST was introduced to obtain better concentrated TFR and represents an
alternative to our technique.

4.2. Definition of FSSTN

The objective of this section is to recall the definition of FSSTN, introduced in [20, 61].
To motivate this work, we mention that even though FSST2 leads to a concentrated TFR
for linear chirps with Gaussian modulated amplitudes, it is not perfect for a general MCS.
For instance, if a mode has a polynomial phase of order greater than two, then one needs
a transform of higher order to obtain an accurate reassigned transform, this is precisely
the aim of FSSTN.

The definition of FSSTN is based on a Taylor expansion of the signal’s amplitude and
phase. Let us consider the single mode signal f(t) := A(t)e2iπϕ(t), where we assume

This chapter is based on the work published in [42] (to appear).
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log(A) and ϕ to be polynomial of degree N . Let t ∈ R, the N -th order expansion of A
and ϕ at τ is

f(τ) = exp

(
N∑
k=0

(τ − t)k

k!

{
[log(A(t))](k) + 2iπϕ(k)(t)

})
. (4.1)

Considering g ∈ L2(R), if f ∈ L2(R), its STFT satisfies,

V g
f (t, η) =

∫
R
exp

(
N∑
k=0

τk

k!

{
[log(A(t))](k) + 2iπϕ(k)(t)

})
g(τ)e−2iπτηdτ (4.2)

By differentiating with respect to t and then by dividing by 2πV g
f one obtains,

ω̃f (t, η) :=
∂tV

g
f (t, η)

2iπV g
f (t, η)

=
N∑
k=1

r
[N ]
k (t)

V tk−1g
f (t, η)

V g
f (t, η)

, (4.3)

where

r
[N ]
k (t) =

1

(k − 1)!

(
[log(A(t))](k)

2iπ
+ ϕ(k)(t)

)
. (4.4)

In order to define the N -th order local IF estimate, we first set,

ω̃
[N ]
f (t, η) = ω̃f (t, η)−

N∑
k=2

r
[N ]
k (t)

V tk−1g
f (t, η)

V g
f (t, η)

= r
[N ]
1 (t) (4.5)

and then define ω̂[N ]
f (t, η) := ℜ{ω̃[N ]

f (t, η)} where in our case, ω̂[N ]
f (t, η) = ϕ′(t). A simple

way to compute r[N ]
1 is first, using (4.3), to remark that

1

2iπ
∂tV

g
f (t, η) =

N∑
k=1

r
[N ]
k (t)V tk−1g

f (t, η), (4.6)

and that ∂ηV
g
f (t, η) = −2iπV tg

f (t, η). Then, we deduce the following equality [77],

1

2iπ


∂tV

g
f

i
2π∂η∂tV

g
f

...
iN−1

(2π)N−1∂
N−1
η ∂tV

g
f

 =


V g
f V tg

f · · · V tN−1g
f

V tg
f V t2g

f · · · V tNg
f

...
...

. . .
...

V tN−1g
f V tNg

f · · · V t2(N−1)g
f



r
[N ]
1

r
[N ]
2
...

r
[N ]
N

 = DR. (4.7)
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Finally, based on simple properties of the determinant of matrices, setting,

M1 =


∂tV

g
f V tg

f · · · V tN−1g
f

i
2π∂η∂tV

g
f V t2g

f · · · V tNg
f

...
...

. . .
...

iN−1

(2π)N−1∂
N−1
η ∂tV

g
f V tNg

f · · · V t2(N−1)g
f

 , (4.8)

one obtains
r
[N ]
1 =

1

2iπ
det(D−1) det(M1) =

1

2iπ

det(M1)

det(D)
. (4.9)

Then, as ∂tV
g
f = i2πηV g

f − V g′

f , one gets, for any l ≥ 1:

∂lη∂tV
g
f = (−2iπ)l

(
−kV tl−1g

f − V tlg′

f + 2iπηV tlg
f

)
, (4.10)

leading to det(M1) = i2πη det(D)− det(U1)− det(V1) with

U1 =


0 V tg

f · · · V tN−1g
f

V g
f V t2g

f · · · V tNg
f

...
...

. . .
...

(N − 1)V tN−2g
f V tNg

f · · · V t2(N−1)g
f

, (4.11)

V1 =


V g′

f V tg
f · · · V tN−1g

f

V tg′

f V t2g
f · · · V tNg

f
...

...
. . .

...

V tN−1g′

f V tNg
f · · · V t2(N−1)g

f

, (4.12)

and thus

ω̂
[N ]
f = ℜ

{
r
[N ]
1

}
= η − 1

2π
ℑ
{
det(U1) + det(V1)

det(D)

}
. (4.13)

Finally, FSSTN is defined by [20, 61],

T g,N
f (t, η) :=

∫
R+

V g
f (t, τ)δ

(
η − ω̂

[N ]
f (t, τ)

)
dτ. (4.14)
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And, similarly to (1.16, page 4), FSSTN is invertible,

f(t) =
1

g(0)

∫
R
T g,N
f (t, η)dη. (4.15)

4.3. Adaptive selection of the order

The objective of this section is to set the order N of FSSTN locally, to get a sharp TFR.
In the general case, one does not know the signal’s modulation, and therefore it is not
possible to set the order of FSSTN to the degree of the phase. An adaptive way to set
N would be to measure the concentration of energy, and find N that maximizes it.

Let us first consider the general case of a noisy MCS affected by the same kind of white
Gaussian noise as in Chapter 2.

f̃ = f + ε (4.16)

where f is a MCS in L1(R) ∩ L2(R) of P modes, and ε a white Gaussian noise. Our
interest is to concentrate the energy to ease the reading of the signal in the TF plane, and
for that purpose, we consider that for each mode p, its ridge Γp is given by a RD. We then
measure the concentration of energy on the ridge in T g,N

f . In the ideal case, considering
a monocomponent signal f(t), based on the reconstruction formula of FSSTN, all the
information is located on the ridge,

f(t) ≈
T g,N

f̃
(t,Γ(t))

g(0)
. (4.17)

Based on that, we measure the energy concentration using the following estimate of the
instantaneous amplitude, when g(0) > 0,

Ep
N (t) =

∣∣∣T g,N

f̃
(t,Γp(t))

∣∣∣
g(0)

, (4.18)

where g is a window in L1(R) ∩ L2(R) and RD is performed on T g,N

f̃
. With a contin-

uous ridge, where in the ideal case Γp(t) = ϕ′p(t), the selection of N could be made by
maximizing (4.18), by introducing

N p(t) = argmax
N∈N

Ep
N (t). (4.19)

For the sake of evaluating the relevance of this method, using the invertibility of FSSTN,
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we define,

RN p

fp (t) :=
T
g,N p(t)

f̃
(t,Γp(t))

g(0)
, (4.20)

which is an estimate of the p-th mode, namely fp(t) ≈ RN p

fp
(t). This enables us to make

the comparison of this technique with the signal in terms of SNR. Before that, in order
to proceed with the practical study of this method, we first detail the corresponding
discrete framework.

We consider the sequence f̃ [n] = f̃(nL), where n ∈ {1, · · · , L}. The discrete FSSTN
definition is given by,

T g,N

f̃
[n,w] =

J∑
k=1

V g

f̃
[n, k]δ{w, ⌊ω̂[N ]

f̃
[n, k]⌉} (4.21)

where ⌊x⌉ is the closest integer to x ∈ R and δ is the Kronecker symbol. We also recall
that the discrete version of ω̂[N ]

f̃
used in 4.21 only uses the discrete formalism of the

STFT.

However, by using this transform directly, instabilities related to the noise and numer-
ical computations may significantly worsen the quality of mode reconstruction with our
method. Indeed, when ω̂

[N ]

f̃
[n, k] is located between two frequency bins, it is likely that

the energy will be dispatched in the upper and lower bins. Obviously, this will impact
the measure given by (4.18). To avoid this effect, we consider a variant of T g,N

f̃
, where

we shift the frequency grid by q ∈ {0, 12} of a frequency bin and choose q that maximizes
the concentration. For that purpose, we define the shifted variant of FSSTN by,

T g,N

f̃,q
[n,w] :=

J∑
k=1

V g

f̃
[n, k]δ{w, ⌊ω̂[N ]

f̃
[n, k] + q⌉}, (4.22)

where J is the number of frequency bins. Then a second issue is that we cannot compute
FSSTN for all N ∈ N, and therefore we set N0 ∈ N and consider orders up to N0. Taking
the shift into account, we define the energy concentration for N ∈ {1, · · ·N0} in the
discrete framework by,

Ep
N [n] := max

q∈{0, 1
2
}

∣∣∣T g,N

f̃,q
[n,Γp[n]]

∣∣∣
g(0)

, (4.23)

which represents an estimate of the instantaneous amplitude in the discrete case. Note
that the ridge given by Γp is also computed on T g,N

f̃,q
, and that as a consequence, the shift

is fixed independently for each mode.
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In that context, we set N p[n] = argmaxN∈{1,··· ,N0}E
p
N [n]. This allows us to set the

proper choice of q depending on n using,

Qp[n] := argmax
q∈{0, 1

2
}

∣∣∣T g,N

f̃,q
[n,Γp[n]]

∣∣∣ . (4.24)

Finally, to approximate the mode, as in (4.20), we set,

RN p

fp [n] =
1

g(0)
T
g,N p(t)

f̃ ,Qp[n]
[n,Γp[n]]. (4.25)

To draw conclusions on the quality of our method, we can now compute the output SNR
using this estimate of fp.

4.3.1. Numerical Results for the Monocomponent Case

In this subsection, we consider monocomponent signals with constant amplitude A =

1. We first look at amplitude estimates given by EN , for N ∈ {2, · · · , 4}. Note that
first order is not considered, as it does not take any modulation into account, and is
significantly worse than other orders.

In Figure 4.1 (a), the signal has a high-order and oscillating frequency. From 4.1 (b),
we remark that E4 is stable around one and is the best estimate for this signal. In Fig
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Figure 4.1.: (a): magnitude of the STFT of a mode with an oscillating phase; (b): EN for
2 ≤ N ≤ 4 for the signal whose STFT is depicted in (a)

4.2 (a), we consider a signal that is more modulated than the previous one. In this case,
E2, E3 and E4, are respectively depicted on Figure 4.2 (b), (c) and (d). This time,
the best choice is not as obvious because E4 creates overshoots, but still, on average,
the estimation is much better. Such overshoots are explained by time interference that
locally increase the energy.
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Figure 4.2.: (a): STFT magnitude of a mode with dumped sinusoidal frequency and amplitude
A = 1; (b),(c),(d): E2,E3 and E4 for the mode corresponding to (a), respectively.

In Figure 4.3, we proceed with the comparison between the adaptive selection of the
order for RN

f and RN
f measured in terms of output SNR associated with mode recon-

struction when the level of noise varies. It is clear that the adaptive technique allows
good reconstruction quality. We also note that when the noise level is strong, RN

f gives
similar results to FSST2.

We next focus on the results for MCSs.

4.3.2. Numerical Results for the Multicomponent Case

In this subsection, we illustrate the benefits of adaptive selection of the orders for each
mode.

For that purpose, we consider the signal of Figure 4.4 (a), which contains two modes
where, this time, the amplitude varies. The output SNR for the different techniques is
depicted in Figure 4.4 (b). As expected, using RN p

fp
leads to a higher output SNR, which
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Figure 4.3.: (a): output SNR corresponding to SNR(f,RNf − f) for N = 2, · · · , 4 or to
SNR(f,RN

f − f) for the signal of Figure 4.1 (a); (b): same as (a) but for the signal
of Figure 4.2 (a).

means that an adaptive selection of the order depending on time is beneficial compared
with using FSSTN with a fixed order N . The rationale for such a behavior is that with,
in the case of MCSs, the choice of the order can be set independently for each mode.
Finally, we also note that when the input SNR is around 10 dB or below, fixing N = 2,
namely considering R2

fp
is competitive, like in the monocomponent case presented in

previous the subsection.

0 0.2 0.4 0.6 0.8

100

200

300

400

500

(a)

10 20 30 40 50
0

20

40

10 20 30 40 50
0

5

10

15

(b)

Figure 4.4.: (a): modulus of the STFT of the sum of two modes with varying amplitude; (b):
mode reconstruction results as a function of input SNR.
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4.3.3. Application to a Bat Echolocation

We now investigate how the proposed adaptive technique improves the quality of recon-
struction on a bat echolocation call whose STFT magnitude is depicted in Figure 4.5 (a).
In our study, we only look for the three most energetic modes in ridge detection and put

RNa
f :=

3∑
p=1

RN p

fp
, Na meaning we consider an adaptive N in the MCS case. Similarly

to RNa
f , we respectively denote signal reconstruction from the three detected modes for,

1 ≤ N ≤ 4, by RN
f . We then compare RNa

f and RN
f , for different N , to f in terms of

SNR, and we again notice that the first technique is much better than the others (see
the Table of Figure 4.5 (b)).
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4 7.7444

Na 10.7182
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Figure 4.5.: (a): STFT modulus of a bat echolocation call; (b): SNR corresponding to signal
reconstruction from the coefficients on the ridges of the 3 most energetic detected
modes.

4.4. Conclusion

In this chapter, we defined an indicator of energy concentration that we used in order
to select the appropriate order of FSSTN to improve TFR readability. To assess this
improvement, we measured the quality of mode reconstruction considering a fixed or
adaptive order in synchrosqueezing transforms. Numerical results showed that the adap-
tive technique is of better quality in general, but that FSST2 is also a good choice in
very noisy conditions.
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5. Study of the Chirp Rate Estimate in
Case of Noise

In this chapter, the objective is to estimate the CR, in a way that is robust to noise.
Such an estimate is of interest, notably in synthetic aperture radar and inverse synthetic
aperture radar imaging [74], and in voice signals to study the jitter phenomenon [75, 76].
We focus on the CR estimator in FSST2 and first study its behavior in noisy conditions.
In the previous chapter, the numerical simulations showed that the second order is rel-
evant to consider when the noise is strong, and enables good energy concentration, and
that to consider a higher order for FSSTN does not improve the result when the input
SNR is around 10 dB or below. When one performs a study in very noisy conditions,
FSST2 is a valid choice of representation. However, in Chapter 2, we highlighted that
this estimate is sensitive to noise and required further investigations. With that in mind,
we study how the noise damages the CR estimate and show that the estimation error
is oscillatory. Then, we detail a technique to filter out most of these oscillations using
the power spectral density of the error. We finally evaluate the quality of the filtered
estimate and its stability to noise on a real voice signal.

To carry out this study, a general definition of the STFT is required, because the noise
is not a Lebesgue-integrable function. With a proper definition, the STFT of the noise
can be considered as a random variable. For that purpose, we will consider that ε is a
tempered distribution, namely ε ∈ S′(R), and define the STFT by [70],

V g
ε (t, η) =

∫
R
g(τ − t)e−2iπ(τ−t)ηdBε(τ), (5.1)

where g ∈ S(R). The right-hand side is an Itô integral with respect to the one dimensional
Brownian motion Bε(τ). The derivative of Brownian motion is a white Gaussian noise
and therefore one can think of dBε(τ) as ε(τ)dτ . It follows that V g

ε (t, η) has a covariance
given by the 2-by-2 square matrix σ2ε∥g∥22I2 [78].

This chapter is based on the work published in [43].

65



CHAPTER 5. STUDY OF THE CHIRP RATE ESTIMATE IN CASE OF NOISE

We now proceed with the analysis of the CR estimate for a monocomponent signal f ,

setting f̃ = f + ε and g(t) = e−π t2

σ2 . Remarking that g ∈ S(R) and using the properties
of g, we compute a simpler expression of q̂f̃ . For the sake of clarity, we omit time-
frequency coordinates (t, η) in the most complicated expressions, and first remark that
in our context, one has

q̂f̃ = − 1

2π
ℑ

 (V g

f̃
)2

V g

f̃
V t2g

f̃
− (V tg

f̃
)2

 . (5.2)

Indeed, in equation (1.17, page 4) with our choice for g, the STFTs depending on g′

can be simplified using V g′

f̃
(t, η) = −2 π

σ2V
tg

f̃
(t, η). Having a simple expression of q̂f̃ , our

interest is now to denoise it.

5.0.1. Study of a Simplified CR Estimate

Now, we further simplify q̂f̃ by identifying negligible terms and thus defining new estima-
tors. In Section 2.5, we detailed that the STFT of a linear chirp is a Gaussian centered
at ϕ′(t) with respect to frequency. This means that its frequency derivative vanishes at
ϕ′(t). Recalling that,

−∂η
2iπ

V g
f (t, η) = V tg

f (t, η), (5.3)

and assuming that f can be approximated by a linear chirp, we use that V tg
f (t, ϕ′(t)) ≈ 0,

and simplify the operator by making a Taylor expansion, in the vicinity of the ridge.

q̂f = − 1

2π
ℑ


V g
f

V t2g
f

1

1− (V tg
f )2

V g
f V t2g

f

 ≈ − 1

2π
ℑ

{
V g
f

V t2g
f

}
. (5.4)

From (5.4), we define the new estimate based on the last approximation by,

q̄f := − 1

2π
ℑ

{
V g
f

V t2g
f

}
. (5.5)

Taking the noise into account, one gets,

q̄f+ε = − 1

2π
ℑ

{
V g
f + V g

ε

V t2g
f + V t2g

ε

.

}
. (5.6)
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Numerically, we show that q̄f+ε varies similarly to q̂f+ε for the three signals of Figure
5.1 (a), (b) and (c), as illustrated on Figure 5.1 (d), (e) and (f). We also notice that
the quality of the estimation changes with the modulation of the signal. In order to
denoise q̄f+ε, we are going to study it as a random variable. We first study the bias of
ℜ{q̄f+ε(t, η)} as an estimate of ϕ′′(t).

Proposition 5.0.1. At a STFT ridge point (t, ϕ′(t)) of a linear chirp one has:

E {q̄f+ε} = E
{
− 1

2π
ℑ{Z}

}
= ϕ′′(t)

1− e
−

|V t
2g
f

|2

σ2ε∥t2g∥2

 ,

where σ2ε is the variance of the noise and Z(t, η) =
V g
f+ε(t,η)

V t2g
f+ε(t,η)

.

The proof is given in Appendix B.1. We remark that the bias depends on V t2g
f , which

we develop below to study its effect. In the general case, one has [77]

V tkg
f (t, η) =

(
i

2π

)k

∂kηV
g
f (t, η)

=
−σ2(1 + iϕ′′(t)σ2)

1 + (ϕ′′(t)σ2)2

[
i(η − ϕ′(t))V tk−1g

f (t, η)− k − 1

2π
V tk−2g
f (t, η)

]
,

(5.7)

and thus,

V tkg
f (t, ϕ′(t)) =

σ2(1 + iϕ′′(t)σ2)

1 + (ϕ′′(t)σ2)2
k − 1

2π
V tk−2g
f (t, ϕ′(t)), (5.8)

which implies that [19, proposition 1] (omitting (t, ϕ′(t)) for the sake of simplicity),

|V t2g
f | =

σ2
∣∣∣V g

f

∣∣∣
2π
√
1 + (ϕ′′(t)σ2)2

=
Aσ2

2π(1 + (ϕ′′(t)σ2)2)3/4
. (5.9)

Then since ∥t2g∥2 = σ5
∫
τ4e−2πτ2dτ = 3σ5

(2π)24
√
2
, we deduce that,

|V t2g
f |2

∥t2g∥2
=

A24
√
2

3σ(1 + (ϕ′′(t)σ2)2)3/2
. (5.10)

This means that the bias is growing with the modulation. In the case of the signals we

depict in Figure 5.1 (a), (b) and (c), the bias is negligible, meaning that E
{

|V t2g
ε |

|V t2g
f |

}
=

σε∥t2g∥
|V t2g

f |
is small. We use this opportunity to simplify the estimate even more, using the
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Figure 5.1.: (a): STFT modulus of a noisy linear chirp with the STFT ridge superimposed; (b):
same as (a) but for a noisy chirp with fourth order polynomial phase; (c): same
as (a) but for a noisy mode with oscillating phase; (d): CR estimator q̂f+ε or q̄f+ε
estimated on the STFT ridge of the noisy signal whose STFT modulus is represented
in (a), along with the true CR, for t between 0.3 and 0.5; (e): same as (d) but for
the signal whose STFT modulus is represented in (b); (f): same as (d) but for the
signal whose STFT modulus is represented in (c). The input SNR is 10 dB.
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following first order Taylor expansion,

q̄f+ε = − 1

2π
ℑ
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V g
f + V g
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ε

}
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(5.11)

In this last expression, as q̄f (t, η) is very close to ϕ′′(t), this means that the other term
is responsible for the estimation error, that we detail hereafter,
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(5.12)

We therefore define the error function by, G(t) := V t2g
ε (t,ϕ′(t))

V t2g
f (t,ϕ′(t))

− V g
ε (t,ϕ′(t))

V g
f (t,ϕ′(t))

. As we saw

previously on Figure 5.1 (d), (e) and (f), G is oscillatory, we study its power spectral
density (PSD) for the sake of removing these oscillations.

5.0.2. Power Spectral Density of the Error

Case of a Pure Harmonic Signal

First, in the particular case where ϕ′′(t) is null, namely f(t) = e2iπη0t, we remark that
V g
f (t, ϕ

′(t)) = f(t) and rewrite:

G(t) =
2π

σ2
V t2g
ε (t, ϕ′(t))

V g
f (t, ϕ

′(t))
− V g

ε (t, ϕ′(t))

V g
f (t, ϕ

′(t))

=

(
2π

σ2
V t2g
ε (t, ϕ′(t))− V g

ε (t, ϕ
′(t))

)
e−2iπη0t,

(5.13)
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to get the following:

Proposition 5.0.2. The power spectral density of G(t) is

PG(η) = σ2εσ
64π2η4e−2πσ2η2 .

The proof is available in Appendix B.2.

Case of a Linear Chirp

Now let us consider the more general case of a linear chirp f(t) = e2iπ(at+
b
2
t2) = e2iπϕ(t),

for which we may write on the STFT ridge, using (5.8),

V g
f

V t2g
f

=
2π(1 + (bσ2)2)

σ2(1 + ibσ2)
=

2π

σ2
(1− ibσ2), (5.14)

and thus:

G(t) =
2π
σ2 (1− ibσ2)V t2g

ε (t, ϕ′(t))− V g
ε (t, ϕ′(t))

V g
f (t, ϕ

′(t))
, (5.15)

leading to the following:

Proposition 5.0.3. The power spectral density of G(t) is

PG(η) =
σ2εσ

64π2η4

(1 + b2σ4)2
e
− 2πσ2η2

1+b2σ4 .

The proof is available in Appendix B.3.

5.0.3. Filtering the Oscillatory Error

Using the PSD computed above, we justify the use of a low-pass filter on q̂f̃ . We first
look for the maximum value of PG, by focusing on HG :=

√
PG, as it has its maximum

at the same frequency and has a simpler expression. In the case of a PH, when ϕ′′ = 0,
we remark that

HG

(
1√
πσ

)
= 2σσεe

−1. (5.16)

For the purpose of defining a low-pass filter, we first define a cutoff value that we denote
ηc,0. We propose to choose c ∈ ]0, 1], and set the respective fraction of the maximum
value such that HG(ηc,0) = cHG

(
1√
πσ

)
. To solve such an equation, we make use of the

Lambert W function, denoted by W,
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σεσ
32πη2c,0e

−πσ2η2c,0 = 2σσεce
−1 ⇔ ηc,0 =

√
−W(−ce−1)

σ
√
π

. (5.17)

In the case of a linear chirp, when ϕ′′ = b and with the same reasoning, the maximum is
reached at ηm =

√
1+b2σ4

σ
√
π

. It verifies

HG(ηm) = 2σεσe
−1. (5.18)

Then, similarly to the PH case, we set ηc,b at which HG(ηc,b) = cHG(ηm) and solve its
corresponding equation,

σεσ
32πη2c,b

(1 + b2σ4)
e
−

πσ2η2c,b

1+b2σ4 = 2cσεσe
−1 ⇔ ηc,b = (1 + σ4b2)1/2

√
−W(−ce−1)

σ
√
π

. (5.19)

However, this time, ηc,b depends on the chirp rate b. Therefore, in the numerical simula-
tions, we are going to set the low-pass filter at frequency ηc,0. As ηc,0 ≤ ηc,b, we expect
to filter out more energy.

5.1. Evaluating the CR Filtering Process

In this section, we evaluate the quality of the filtered CR estimate that we denote by
F (q̂f̃ ) with q̂f̃ . We make this comparison in terms of output SNR with the true CR,
namely SNR(ϕ′′, E−ϕ′′), where E is any of the estimates. We also set c = 1√

10
resulting

on a cut-off frequency at 10% of the maximum value. We study this choice of c for
modulated and non-modulated modes in order to draw conclusions.

We first illustrate the effect of the filter in Figure 5.2 (d), (e) and (f). We remark that
most of the oscillations are removed even though some remain but at low amplitude.
Then, in Figure 5.2 (a), (b) and (c), we notice that up to a SNR of 40 dB, for the
three signals considered, F (q̂f̃ ) offers significant improvement. Indeed, a close look at
the box-plots tells us that the worst estimation of F (q̂f̃ ) is significantly better than the
best estimate of q̂f̃ , assuming that the RD is able to detect the ridge, which may not be
the case for the signal of Figure 5.1 (c) at 0 dB.

The purpose of Figure 5.3 is to show that the threshold ηc,0 is still interesting to
consider, even when the signal is modulated. On Figure 5.3 (a), we remark that the
same cut-off frequency can be used, resulting only in a small loss of energy. On Figure
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Figure 5.2.: (a): boxplot corresponding to the output SNR associated with CR estimators q̂f+ε
or F (q̂f+ε) evaluated on the STFT ridges of the noisy signal corresponding to Figure
5.1 (a) over 100 realizations of the noise when the input SNR varies; (b): same as
(a) but for the noisy signal corresponding to Figure 5.1 (b); (c): same as (a) but for
the noisy signal corresponding to Figure 5.1 (c); (d): q̂f+ε and F (q̂f+ε) computed
for a noisy version of the signal of Figure 5.1 (a), along with the ground truth ϕ′′(t)
(input SNR = 10 dB); (e): same as (d) but for the signal of Figure 5.1 (b); (f): same
as (d) but for the signal of Figure 5.1 (c).
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Figure 5.3.: (a): magnitude of the DFT of ϕ′′ for the signals of Figure 5.1 (a) and Figure 5.1 (b);
(b): same as (a) but for the signal of Figure 5.1 (c).

5.3 (b), for the most modulated signal, the loss of energy is even smaller.

5.1.1. Improving Linear Chirp Based Mode Retrieval

In this section, we investigate how to use the filtered CR estimator defined in Section
5.0.3 to improve LCR technique introduced in Section 2.6. We recall that this technique
assumes a local linear chirp approximation for a mode, thus its STFT can be approxi-
mated by [19]:

V g
f (t, η) ≈ V g

f,approx(t, η) := A(t)e
−πσ2 1+iC(t)σ2

1+(C(t)σ2)2
(η−B(t))2

, (5.20)

where A(t), B(t) and C(t) are respectively estimates of V g
f (t, ϕ

′(t)), ϕ′(t) and ϕ′′(t). In
that context, mode reconstruction is performed by summing the approximation given by
(5.20) over frequencies to obtain:

f(t) ≈ 1

g(0)

∫
R
V g
f,approx(t, η)dη, (5.21)

LCR technique is then based on a specific choice for A(t), B(t) and C(t). To compute
the estimate B(t) of ϕ′(t), the technique uses the local instantaneous frequency estimator
ω̂
[2]
f = ℜ

{
ω̃
[2]
f

}
that we introduced with FSST2 in section 1.2, with:

ω̃
[2]
f =

{
ω̃f +

∂ηω̃f

∂η t̃f
× (t− t̃f ) if ∂η t̃f ̸= 0

ω̃f otherwise,
(5.22)
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Figure 5.4.: (a): percentage of improvement for the LCR technique computed using
(5.27) for the signal of Figure 5.1 (a) where the estimates for (ϕ′′, ϕ′) are
(F (q̂f+ε(t, Rf+ε(t))), ω

[2]
f+ε(t, Rf+ε(t))), (F (q̂f+ε(t, Rf+ε(t))), ϕ

′), or (ϕ′′, ϕ′);(b):
same as (a) but for the signal of Figure 5.1 (b) ;(c): same as (a) but for the signal
of Figure 5.1 (c)

where ω̃f and t̃f were introduced in Section 1.2. More precisely, denoting by Rf (t) the
STFT ridge corresponding to f , B(t) is set to ω̂

[2]
f (t, Rf (t)), C(t) to q̂f (t, Rf (t)), and

finally A(t) to V g
f (t, ω̂

[2]
f (t, Rf (t))). When one considers the noisy signal f + ε with n a

complex Gaussian white noise, similar estimates are derived replacing f by f + ε in the
definitions of A, B and C, which are thus all impacted by noise.

We now investigate the improvement brought by setting C(t) to F (q̂f+ε(t, Rf+ε(t)))

instead of q̂f+ε(t, Rf+ε(t)) in LCR technique, A(t) and B(t) remaining unchanged. We
are going to compare this technique to original LCR and, to measure the impact of the
estimator B on LCR technique, to implementations of LCR in which B(t) is set to ϕ′(t)
and C(t) either to F (q̂f+ε(t, Rf+ε(t))) or to ϕ′′(t). To clarify this, as LCR can be viewed
as a function of 3 parameters, we define:

LCRA,B,C(t, η) := A(t)e
−πσ2 1+iC(t)σ2

1+(C(t)σ2)2
(η−B(t))2

. (5.23)

In that framework, the original LCR technique corresponds to

(A,B,C) = (A0, B0, C0) :=

(
V g
f+ε(t, ω̂

[2]
f+ε(t, Rf+ε(t))),

ω̂
[2]
f+ε(t, Rf+ε(t)), q̂f+ε(t, Rf+ε(t))

)
,

(5.24)
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the proposed technique to:

(A,B,C) = (A0, B0, F (q̂f+ε(t, Rf+ε(t)))), (5.25)

while the other two references to

(A,B,C) = (A0, ϕ
′(t), F (q̂f+ε(t, Rf+ε(t))))

(A,B,C) = (A0, ϕ
′(t), ϕ′′(t)).

(5.26)

For a monocomponent signal f , we define f(A,B,C) the reconstructed signal using LCR
technique with the set of parameters (A,B,C). Then, using the definition of SNRout

introduced in (2.21, page 22), we compute the percentage of improvement brought by
using a set (A,B,C) different from (A0, B0, C0) as follows:

SNRout(f(A,B,C), f)− SNRout(f(A0,B0,C0), f)

SNRout(f(A0,B0,C0), f)
× 100. (5.27)

The results are depicted in Figure 5.4 for the three signals of Figure 5.1 and when
(A,B,C) are either defined by (5.25) or (5.26). First, these clearly show the improvement
brought by using F (q̂f+ε(t, Rf+ε(t))) instead of q̂f+ε(t, Rf+ε(t)). Second, these results
also tell us that to know the actual ϕ′(t) does not result in an extra improvement when
compared with the proposed method. Finally, we notice that to know the actual ϕ′′

enables a better mode reconstruction, but only at high SNRs and only for the first two
signals. On the contrary, the gain of knowing the true IF and CR does not result in a
significant improvement in terms of reconstruction for the last signal, except at very low
SNR, but then ridge detection may fail, making the interpretation of the results more
difficult.

So, we reach the conclusion that the proposed estimator
(
F (q̂f+ε(t, Rf+ε(t))), ω̂

[2]
f+ε(t, Rf+ε(t))

)
for (ϕ′′, ϕ′) leads to nearly optimal reconstruction. If one would like to further improve
mode reconstruction with LCR technique one should investigate how to find a better
estimate of V g

f (t, ϕ
′(t)) than A0(t), but this is beyond the scope of this thesis.

5.2. Frequency Variation of a Voice Signals

In this section, the objective is to study the stability of the estimate F (q̂f̃ ) which we apply
to the same voice signal as in Section 3.4.3, namely the recording 62 of the Saarbruken
Voice Database [65]. The signal depicted in Figure 5.5 shows its TFR with superimposed
ridge. We recall that it contains sustained /a/ vowels of the type “low-high-low”, and
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Figure 5.5.: ridge corresponding to the fundamental frequency superimposed on the STFT of the
recording 62 taken from [65].

we want our CR estimate to preserve the change in pitch. On figure 5.6, we compare
the stability of F (q̂f̃ ) and q̂f̃ over 100 realizations of noise. We test this for three noise
levels, in 5.6 (a), (d) for 5dB, 5.6 (b), (e) for 10dB and 5.6 (c), (f) for 15dB. In all cases,
the 5% and 95% quantiles associated with the estimation of F (q̂f̃ ) are much closer to the
estimation without noise and still preserve the variation of the pitch that we remark on
Figure 5.5 around 0.75s and 1.65s. We may therefore conclude that F (q̂f̃ ) seems to be
improved in terms of stability with respect to q̂f̃ .
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Figure 5.6.: (a): for 100 realizations of the noise, the range corresponding to the 5% and 95%
quantiles of q̂f+ε evaluated on the STFT ridge corresponding to the fundamental
frequency of the noisy signal whose STFT modulus is displayed in Figure 5.5, q̂f on
the ridge corresponding to the fundamental frequency of the noiseless signal being
also superimposed (input SNR = 5 dB for the noise); (b): same as (a) but with
input SNR= 10 dB; (c): same as (a) but with input SNR= 15 dB. (d): same as (a)
but using the filtered estimator F (q̂f+ε) instead of q̂f+ε, F (q̂f ) is also superimposed
; (e): Same as (d) but with input SNR= 10 dB; (f): same as (d) but with input
SNR= 15 dB.
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5.3. Conclusion

In this chapter, we introduced the filtering of the CR estimator associated with FSST2 to
remove most of the oscillatory errors due to noise. We carried out the theoretical study
of the estimator in both pure harmonic and linear chirp cases. We also evaluated the
filtered estimate on numerical experiments, first on synthetic signals, where the filtered
estimator gives significant improvement compared to the original one, in terms of output
SNR. In a second part, we verified on a real voice signal that it is also more robust,
meaning that the noise has a smaller effect on the estimation. From these results, we
conclude that the filtered estimate is significantly more robust to noise.
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6. SST Based Heart Rate Estimation

6.1. Introduction

The estimation of the HR is still an active topic of research and includes various ap-
proaches such as time based R-peak detection [79, 80] or TF analysis [81, 82]. The latter
is relevant for the study of physiological signals, as they can be highly non-stationary.
ECG signals are such cases, in which the shape of heart beat, namely the QRS complex,
varies and can make time based analysis difficult. ECGs are actively studied using TF
analysis, for instance, it is used to detect sleep apnea [83], to study arrhythmia [84], to
identify coronary artery diseases [85] or to separate fetal ECG from that of the mother
on abdominal ECG signal of pregnant women [86].

In this chapter, our goal is to estimate the HR of an ECG signal, which we assume
to be harmonic. Thus, we are going to look for the fundamental frequency (FF) as
it represents an estimate of the HR. To perform this estimation, some existing TF
techniques try to estimate the spectrogram using non-negative matrix factorization, as
for instance on PCGs [87] and ECGs [88] signals. In our case, we propose to define a
dictionary matching both the choice of TFR and the harmonicity of the signal, which we
only use to estimate the HR.

The layout of the chapter is as follows: first we define the harmonic model of a MCS
and then use earth mover distance (EMD) to select a component in a dictionary for HR
estimation. Finally, we discuss the influence of the choice of TFR on the quality of HR
estimation and perform numerical assessment of the technique on synthetic and real ECG
signals.

This chapter is based on the work published in [44].
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6.2. Sparsity of Harmonic Signals and Application to ECG
Signals

A harmonic signal is a specific type of MCS defined by,

f(t) =
P∑

p=1

Ap(t)e
2iπpϕ(t). (6.1)

For such a signal, ϕ′(t) is the FF. In the case of an ECG signal, the instantaneous HR
in beats per minute (bpm) at time t is given by 60ϕ′(t).

6.2.1. Dictionary Based Analysis of the Magnitude

We propose to study the magnitude of harmonic signals in a TFR X using a dictionary
W containing Ke components. A good choice of the number of components Ke enables
a good frequency resolution. In order to compare X with a component of W, we propose
to use the EMD and to collect this information in a matrix H. We finally use the latter
to select the best component and estimate the heart rate. The dictionary matrix W is
fixed and describes possible structures of harmonicity depending on the variation of the
FF. In the case of ECG signals, we consider a variation of the FF between 30 and 180
bpm and thus, with an accuracy of 1 bpm, set Ke to 151.

In Figures 6.1 (a) and (b), we respectively display the STFT and FSST2 magnitude
of one real ECG signal. We look for dictionaries allowing us to reasonably characterize
these TFRs, and we assume FSST and FSST2 share the same dictionary. In the case of
STFT, the dictionary takes into account the spreading of the energy in the TF plane.
We denote this dictionary by W0 and give an illustration in Figure 6.1 (c), where the
spreading of energy assumes that the analysis window is Gaussian. In the case of FSST
and FSST2, the dictionary is built assuming perfect energy reassignment, meaning a
single nonzero coefficient is enough to represent a harmonic. We denote this dictionary
by W1 and give an illustration in Figure 6.1 (d). Note that for these two dictionaries, a
high component index takes more harmonics into account that for a low component index.
We assume that, as long that the highest component has enough harmonics and that the
frequency range of the dictionary takes the sampling rate into account, it provides a good
representation of the signal. We can confirm this in Figures 6.1 (a) and (b), where most
of the energy is located in the lower part of the TFR.

Our objective is to compare HR detection when the considered representations are
STFT, FSST and FSST2. We do not take into account higher orders of FSSTN as it
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Figure 6.1.: (a): STFT of an ECG generated following [92]; (b): FSST2 of the same ECG; (c):
Dictionary matrix W1 used with STFT-based approach; (d): Dictionary matrix W0

used with FSST2-based approach. For the sake of legibility, in (c) and (d) we do not
normalize the column of the matrices.

does not increase the accuracy of the estimation.

In order to make a decomposition, one needs to set the cost function D. In the case
where D is the Euclidian distance, the decomposition is a least-square minimization
problem,

H = argmin
H0

∥X−WH0∥2,

and thus H satisfies WTWH = WTX, and is not necessarily unique because WTW

is not invertible. Since the FF is associated with only one component of W, we impose
stronger conditions to obtain the unicity of the solution. At each time instant, we com-
pute the EMD [93] between the i-th column of W and the n-th column of X to obtain
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a matrix H defined by,

Hi,n = d(Wi,Xn), (6.2)

where d is the EMD.

In this setting, finding a minimum in H is equivalent to finding the most relevant
component to associate with the signal at a time index, and to estimate the associated
FF. We denote this component by i0 which satisfies,

i0 = argmin
i

Hi,n. (6.3)

In the following section, we propose an algorithm to estimate the HR using i0 for which
we take into account the accuracy induced by the choice of the representation for X.

6.2.2. Algorithm for HR Computation

We consider the HR estimate as the minimum on i of argmin
i

d(Wi,Xn). To assess the

quality of this estimate, we set

îM = median
n

(
argmin
i∈1,··· ,Ke

d(Wi,Xn)

)
(6.4)

and consider it as an estimate of the mean HR. We now seek to evaluate the quality of
the HR estimate given by the minimum of the EMD. For that purpose, we define the
following range of frequencies, Î := [ 3̂iM4 , 3̂iM2 ] that we consider as valid, and then define
B̂ as follows:

B̂ :=

#{n, argmin
i

d(Wi,Xn) ∈ Î}

N
. (6.5)

The choice for Î is supported by the fact that, assuming that the HR varies slowly, the
upper harmonic admits 3̂iM

2 as a lower bound and that no minimum should be detected
under the lower bound of the FF, namely 3̂iM

4 . Based on this model, we may define the
probability of false detection as Pf = 1− B̂.

However, in order to trust the median, we have to make sure that Pf <
1
2 and that the

signal is sufficiently long. For that purpose, imposing that the median of the detection
computed from time indices 1, · · · , nmed is exact with probability p0 or above, we compute

82



6.2. SPARSITY OF HARMONIC SIGNALS AND APPLICATION TO ECG
SIGNALS

the minimal value of nmed using

nmed = min

n ≥ 1 s.t.
n/2∑
k=0

Ck
nP

k
f (1− Pf )

n−k ≤ p0

 . (6.6)

The estimation of the HR at time indices 1, · · · , nmed can then be done through Algo-
rithm 2, where we look for the components in Î to avoid selecting a component related to
noise or harmonics. Then, having defined the HR for the first nmed indices, the estimation
carries on with Algorithm 3 which is used to estimate HR after time instant nmed. To
make our detection more robust, we propose to take into account the standard deviation
of previous detections, denoted by ∆n, to define a range of relevant components. Such a
range is defined using a parameter γ, the choice of which is discussed in Section 6.2.4.

Note that because Algorithm 3 considers only a subset of H, it does not require to
compute the EMD for all components Ke.

Algorithm 2: HR estimation step 1
Input : W,X, nmed

for n = 1, · · · , nmed do
ĩ[n] = argmin

i∈[1,Ke]
d(Wi,Xn)

end

îM = median
{̃
i[n], n = 1, · · · , nmed

}
for n = 1, · · · , nmed do

î[n] = argmin
i∈[ 3

4
îM , 3

2
îM ]

d(Wi,Xn)

end

Algorithm 3: HR estimation step 2
Input : W,X, nmed, î[1, · · · , nmed], γ
for n = nmed + 1, · · · , L do

∆n = std
{̂
i[k], k = 1, · · · , n− 1

}
î[n] = argmin

[̂i[n−1]−γ∆n ,̂i[n−1]+γ∆n]

d(Wi,Xn)

end
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HR Mean B̂ STFT B̂ FSST B̂ FSST2

60 bpm 39.61% 94.34% 75.4%

70 bpm 81.18% 99.14% 90.04%

80 bpm 100% 100% 100%

Table 6.1.: Computation of B̂ on syntethic ECG signals with different HR means when either
STFT, FSST or FSST2 are used to compute X

6.2.3. Determination of the Probability of False Detection

To compare the different probabilities of false detection depending on the type of TFR
used to define X, we consider synthetic ECGs generated as in [92], compute the corre-
sponding STFT, FSST, and FSST2 and then (6.3) for each time instant when X is asso-
ciated with one of the just mentioned TFRs. With these synthetic signals, the mean HR
component iM is known, and we measure good detection by considering I = [3iM4 , 3iM2 ]

and then

B =

#{n, argmin
i

d(Wi,Xn) ∈ I}

N
, (6.7)

the probability of false detection being 1−B.
We numerically notice that, with STFT or FSST2 the minimum of the EMD is much

more likely to be associated with a sub-harmonic than when FSST is used, resulting in a
much higher probability of false detection, and this is true whatever the mean HR ( the
results are depicted in Table. 6.1).

An illustration of this is given in Figure 6.2 (a)-(c) when the TFR are either STFT,
FSST and FSST2, respectively: the white curves correspond to the indices associated
with the minimal EMD for each time index n. We notice that false detections usually
occur when HR changes rapidly, and, as the signal is quasi-harmonic, to make a linear
chirp approximation on the modes, as is done in FSST2, results in error at these time
indices. As our plan is to use EMD for HR computation, we will make use of FSST
rather than STFT or FSST2.

6.2.4. Study of Synthetic ECG

The goal of this section is to define an appropriate choice for parameter γ used in Al-
gorithm 3. For that purpose, we investigate how good this algorithm is to estimate the
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Figure 6.2.: In these figures, the HR varies around 65 bpm, which corresponds to the index 35
of the dictionary. (a): modulus of STFT, the white curve corresponds to the indices
associated with the minimal EMD (B̂ = 39.61%); (b):same as (a) but for FSST
(B̂ = 94.34%) (c):same as (a) but for FSST2 (B̂ = 75.4%).

mean and standard deviation of HR, which are input parameters of the function ecgsyn
introduced in [92]. In what follows, we denote by HRsynthe mean heart rate and by σsyn
its standard deviation. To make HR estimation realistic, we consider HRsyn = 60 bpm
(corresponding to component index 31) and σsyn = 2 bpm. Such a signal enables a clear
separation between harmonics and enough HR variability, so that its study is useful for
the analysis of real ECGs that comes next. For that type of signals, we compute the mean
of î along with its standard deviation, expressed in terms of a number of components,
both as a function of γ. The results depicted in Figures 6.3 (a) and (b) show that the
proposed algorithm enables very accurate estimations of both the mean and standard
deviation of HR provided γ is taken around 2.5. Note that the range for γ to retrieve
the mean and standard deviation of HR is very similar when either FSST or FSST2 are
considered.

6.2.5. Study of Real ECGs

We here study ECGs extracted from SiSEC database [94], which correspond to thoracic
recordings, which can be contaminated by different types of noises.Our HR estimation
computed on such a signal, using γ = 2.5, fixed as explained in Section 6.2.4, is depicted
in Figure 6.4 (a).

As FSST somehow reduces the noise while enhances the significant harmonics, the
proposed HR estimation algorithm never gets trapped by minima that arise at sub-
harmonic locations. We display HR estimations given by î in Figure 6.4 (b) (white line)
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Figure 6.3.: (a): Estimation of HR mean from î. (b): Estimation of the corresponding standard
deviation.

along with the TF region corresponding to standard deviation ∆n, when n varies.
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Figure 6.4.: (a) FSST based EMD of a real ECG signal. (b) HR detection on the same signal
using γ = 2.5.

6.3. Conclusion

In this chapter, we studied the particular case of harmonic signals in the context of ECG
to estimate the HR. We first showed that the choice of TFR can have a huge impact
on the accuracy of estimations, and that even though FSST does not take frequency
modulation into account, it provides the best results. Based on a reliable HR estimator
and a relevant choice of TFR, we designed an algorithm to track the HR in time. We
evaluated this algorithm on synthetic and real ECG signals to show numerically the
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relevance of the proposed approach.
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7. Conclusion

7.1. Contributions

In the context of this thesis, we performed STFT based TF analysis of MCSs.
In Chapter 2, the contribution is two-fold: first, we designed a technique to identify

ridges in the TF plane under very noisy conditions. The key point was to take into
account that there is no continuous ridge associated with a mode, and to gather ridge
portions to identify each mode. The second contribution was to use a linear chirp model
to perform MR. Given the ridges of the signals, we locally approximate the linear chirp
and recover the TFR for each mode.

In Chapter 3, we defined interference structures called TFBs and performed their
complete mathematical characterization for the case of two parallel linear chirps. For
practical purposes, we designed a technique to detect the TFBs, based on the detection
of merging rigdes. Finally, we considered perspectives, using a different approach based
on the spectrogram zeros.

In Chapter 4, we studied FSSTN and remarked that the selection of the order of this
technique can be done by maximizing the concentration of energy. Then, since FSST2
performs well in noisy situations, we studied its associated CR estimator and observed
that the errors due to noise are oscillatory. Therefore, we analyzed the power spectral
density of the latter, to design a filtering technique, improving its accuracy.

In Chapter 6, we performed HR estimation on ECG signals, assuming that they can
be modeled as a harmonic signal. We first compared the accuracy of a HR estimator
based on the EMD, and demonstrated that the choice of the TFR can be critical. We
finally designed an algorithm to detect the HR, taking into account the modulation of
the signal.

7.2. Future research

To improve the state of the art, related to the techniques introduced in this thesis, we
propose several directions we detail below.
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Ridge detection in noisy conditions does not work on a general MCS. It can be im-
proved by taking into account interference of crossing modes, and define ridges only when
relevant, for example, when modes are partially defined in time.

The IF estimator associated with FSSTN is sensitive to noise and its improvement in
terms of accuracy would make FSSTN more stable. In Chapter 4, we made progress
towards such an estimate in the case of FSST2, by remarking that the nature of the
error associated with the CR estimator is oscillatory, enabling the design of a denoising
technique. Further research on high order IF estimators may lead to the design of an
adaptive technique in noisy case, which should match the order of FSSTN with the phase
for each mode of the signal.

Concerning the particular case of ECG signals, more knowledge on interference and
TF localization can also help to identify the HR. Particularly, the case of measuring the
fetal HR from a single abdominal ECG channel is a challenging task, since mother and
fetal heart beats can interfere. Moreover, it also has the added difficulty that the fetal
signal have less power and its HR is therefore more difficult to read.
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A. Time Frequency Analysis of
Interference

A.1. Proof of Proposition 3.2.1

Let us consider the function (Ae−πσ2(η−ξ1)2 + e−πσ2(η−ξ2)2)2 having the same extrema as

l(η) = Ae−πσ2(η−ξ1)2 + e−πσ2(η−ξ2)2 .

Defining ξ = ξ2−ξ1
2 and making the change of variables η = ν + ξ1+ξ2

2 , one gets:

l(ν +
ξ1 + ξ2

2
) = Ae−πσ2(ν+ξ)2 + e−πσ2(ν−ξ)2 ,

which we denote by q(ν). Differentiating q, one obtains:

q′(ν) = −2πσ2e−πσ2(ν2+ξ2)[
A(ν + ξ)e−2πσ2ξν + (ν − ξ)e2πσ

2ξν
]

= 2πσ2e−πσ2ν2e−πσ2ξ2ξ(Ae−2πσ2ξν + e2πσ
2ξν)(

−ν
ξ
− Ae−2πσ2ξν − e2πσ

2ξν

Ae−2πσ2ξν + e2πσ2ξν

)
= 2πσ2e−πσ2ν2e−πσ2ξ2ξ(Ae−2πσ2ξν + e2πσ

2ξν)(
−ν
ξ
+ tanh(2πσ2ξν − log(A)

2
)

)
.

So q′(ν) has the sign of h(ν) := −ν
ξ + tanh(2πσ2ξν − log(A)

2 ) whose derivative is:

h′(ν) =
−1 + 2πσ2ξ2

(
1− tanh2(2πσ2ξν − log(A)

2 )
)

ξ
,
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which is negative if 2πσ2ξ2 ≤ 1. In such a case, q′ is decreasing and then and as
lim

ν→−∞
q′(ν) = +∞ and lim

ν→+∞
q′(ν) = −∞, it annihilates once and thus l has a unique

extremum which is a maximum.

Now when 2πσ2ξ2 > 1, h′ has two zeros, and one has the following table of variations:

ν −∞ ν1 ν2 +∞
h′(ν) − 0 + 0 −

+∞ h(ν2)
h(ν)

h(ν1) −∞

If h(ν1) ≥ 0, then h(ν) and hence q′(ν) annihilates once and changes signs at some ν ′2
in ]ν2,+∞[. q(ν) is strictly increasing on ]−∞, ν ′2] and strictly decreasing on [ν ′2,+∞[,
and thus has a maximum at ν = ν ′2 which is the unique extremum.

If h(ν2) ≤ 0, h(ν) and hence q′(ν) annihilates and changes signs once for a certain ν ′1
in ]−∞, ν1[ and then q has a maximum at ν = ν ′1 which is its unique extremum.

If h(ν1) < 0 and h(ν2) > 0, h(ν) and q′(ν) annihilate and change sign 3 times, once in
]−∞, ν1[, once in ]ν1, ν2[, and once in [ν2,+∞[, and thus q has three extrema.

To determine when q has three extrema we need to compute h(ν1) and h(ν2). Remem-
ber that ν1 and ν2 are the roots of h′ thus also of

1− 1

2πσ2ξ2
= tanh2(2πσ2ξν − log(A)

2
)

and therefore

ν1 =
1

2πσ2ξ

(
log(A)

2
+ atanh

(
−
√
1− 1

2πσ2ξ2

))
ν2 =

1

2πσ2ξ

(
log(A)

2
+ atanh

(√
1− 1

2πσ2ξ2

))
,
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and thus as α =
√

π
2σ(ξ2 − ξ1) =

√
2πσξ, we may write:

h(ν1) = − log(A)

4πσ2ξ2
−

arctanh(−
√

1− 1
2πσ2ξ2

)

2πσ2ξ2

−
√

1− 1

2πσ2ξ2

= − log(A)

2α2
−

arctanh(−
√
α2−1
α )

α2
−

√
α2 − 1

α

= − log(A)

2α2
−

log(α−
√
α2−1

α+
√
α2−1

)

2α2
−

√
α2 − 1

α

h(ν2) = − log(A)

2α2
−

log(α+
√
α2−1

α−
√
α2−1

)

2α2
+

√
α2 − 1

α
.

From this we deduce that h(ν1) < 0 and h(ν2) > 0, and thus q has three extrema, if and
only if:

| log(A)| < 2α
√
α2 − 1− log(

α+
√
α2 − 1

α−
√
α2 − 1

)

= 2α
√
α2 − 1− 2 arccosh(α).

A.2. Proof of Proposition 3.2.2

To prove Proposition 3.2.2 one needs the following

Lemma A.2.1. Assume α is defined as in Proposition 3.2.1, and define γ = cos(2π(ξ2−
ξ1)t), |V g

f (t, .)|
2 has three extrema if and only if α >

√
1+γ
2 and

| log(A)| < − arccosh(X2) + 2α2

√
X2

2 − 1

X2 + γ
,

with X2 = γ(α2 − 1) + α
√
γ2(α2 − 2) + 2. In any other case, |V g

f (t, .)|
2 has a unique

extremum.

Proof. Let us consider the function:

l(η) = A2e−2πσ2(η−ξ1)2 + e−2πσ2(η−ξ2)2

+2Ae−πσ2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t),

and then put γ = cos(2π(ξ2 − ξ1)t). Making the change of variables η = ν + ξ1+ξ2
2 and
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putting ξ = ξ2−ξ1
2 , one may define:

f1(ν) =l(ν +
ξ1 + ξ2

2
)

=e−2πσ2(ν2+ξ2)(A2e−4πσ2ξν + e4πσ
2ξν + 2Aγ).

Putting ν = log(A)+µ
4πσ2ξ

, enables us to define:

f1(ν) =f2(µ)

=e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]
(Ae−µ +Aeµ + 2Aγ)

=e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]
2A(cosh(µ) + γ).

The derivative of f2 reads:

f ′2(µ) =e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]

2A

[
− log(A) + µ

4πσ2ξ2
(cosh(µ) + γ) + sinh(µ)

]
which has the sign of (assuming γ ̸= −1):

h(µ) := − log(A) + µ

4πσ2ξ2
+

sinh(µ)

cosh(µ) + γ

= − log(A) + µ

2α2
+

sinh(µ)

cosh(µ) + γ
.

Differentiating h we get

h′(µ) = − 1

2α2
+

cosh(µ)(cosh(µ) + γ)− sinh2(µ)

(cosh(µ) + γ)2

= − 1

2α2
+

1 + γ cosh(µ)

(cosh(µ) + γ)2
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which has the same sign as

Y (cosh(µ)) = −(cosh(µ) + γ)2

2α2
+ 1 + γ cosh(µ)

= −cosh(µ)2

2α2
+ γ(1− 1

α2
) cosh(µ) + 1− γ2

2α2

=
1

α2
(−cosh(µ)2

2
+ γ(α2 − 1) cosh(µ) + α2 − γ2

2
).

The term inside the parentheses is a second order polynomial in cosh(µ) whose discrim-
inant reads: ∆ = α2(γ2(α2 − 2) + 2) > 0. The roots of this polynomial are denoted by
X1 and X2 with X1 < X2, and Y (X) < 0 if X ∈]−∞, X1[

⋃
]X2,+∞[ and Y (X) > 0

if X ∈]X1, X2[. To know the location of cosh(µ) with respect to X1 and X2, one first
compute Y (1) = (γ + 1)(1 − γ+1

2α2 ) which has the same sign as α2 − γ+1
2 . Assuming

α ≤
√

γ+1
2 , Y (1) ≤ 0 and 1 belongs to ]−∞, X1] or [X2,∞[. As X1+X2

2 = γ(α2−1) < 1,
1 belongs to ]X2,+∞[. Finally, as cosh(µ) ≥ 1, Y (cosh(µ)) and thus h′(µ) are negative.
From this study one deduces the following table of variations:

µ −∞ µ1 +∞
+∞

h(µ)
−∞

f ′2(µ) + 0 −

f2(µ)

and l(η) has a unique extremum which is a maximum when α ≤
√

γ+1
2 .

If one now assumes that α >
√

γ+1
2 , then Y (1) > 0 and thus 1 belongs to ]X1, X2[.

As cosh(µ) ∈ ]X1, X2[ is equivalent to |µ| < arccosh(X2), Y (cosh(µ)) < 0 if

µ ∈ ]−∞,− arccosh(X2)[
⋃

] arccosh(X2),+∞[,

and Y (cosh(µ)) is positive otherwise, leading to the following table of variations:

µ −∞ − arccosh(X2) arccosh(X2) +∞
h′(µ) − 0 + 0 −

+∞
h(µ)

−∞

h(µ) vanishes with a change of sign only once at some µ = µ1 if and only if h(− arccosh(X2)) ≥
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0 or h(arccosh(X2)) ≤ 0. In this case, we deduce that

µ −∞ µ1 +∞
f ′2(µ) + 0 −

f2(µ)

meaning l(η) has a unique extremum (which is a maximum).
If h(− arccosh(X2)) < 0 and h(arccosh(X2)) > 0, h(µ) vanishes and changes signs

three times at some µ = µ1, µ2 and µ3 leading to the following table of variations for
f2:

µ −∞ µ1 µ2 µ3 +∞
h(µ) + 0 − 0 + 0 −

f2(µ)

In such case, l(η) has three extrema: 2 maxima and a mimimum.
Finally, to specify in which situations l has three extrema, we remark that

h(arccosh(X2)) > 0

⇔ log(A) < − arccosh(X2)) + 2α2

√
X2

2 − 1

X2 + γ

h(−arccosh(X2)) < 0

⇔ − log(A) < − arccosh(X2)) + 2α2

√
X2

2 − 1

X2 + γ
.

So l(η) has three extrema if and only if α >
√

1+γ
2 and then if | log(A)| < − arccosh(X2))+

2α2
√

X2
2−1

X2+α with X2 = γ(α2 − 1) + α
√
γ2(α2 − 2) + 2.

To prove Proposition 3.2.2, assume that −1 < γ ≤ 1. f ′2(µ) has the sign of:

h(µ) = − log(A) + µ

4πσ2ξ2
+

sinh(µ)

cosh(µ) + γ
,

which one denote by h(µ, γ), rewritten as:

h(µ, γ) = − log(A) + µ

2α2
+

sinh(µ)

cosh(µ) + γ
.

We know from the lemma that f2 has three extrema if and only if α >
√

1+γ
2 and

h(− arccosh(X2), γ) < 0 and h(arccosh(X2), γ) > 0. Let us show that this is equivalent
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to:
∃ y0 < 0 h(y0, γ) < 0 and y′0 > 0 h(y′0, γ) > 0.

This condition is a necesssary condition since the values y0 = − arccosh(X2) and y′0 =

arccosh(X2), satisfy the property. Conversely, let us assume that there exist y0 < 0

and y′0 > 0 such that h(y0, γ) < 0 and h(y′0, γ) > 0. As lim
µ→+∞

h(µ, γ) = −∞ and

lim
µ→−∞

h(µ, γ) = +∞, h(., γ) (and also f ′2(µ) ) vanishes and changes signs three times,

respectively on the intervals ] −∞, y0[, ]y0, y′0[, and on ]y′0,+∞[, and thus f2 has three
extrema.

Let us now show that, if the function f2 has three extrema for γ = 1, it also has
three extrema for γ ∈]− 1, 1]. Based on the characterization using the function h of the
existence of three extrema, assume there exist y0 < 0 and y′0 > 0 such that h(y0, 1) and
h(y′0, 1) > 0. Then as γ ∈]− 1, 1] one has ∀µ ∈ R 1

cosh(µ) ≥
1

cosh(µ)+1 , which means that

∀µ ≥ 0, sinh(µ)
cosh(µ)+γ ≥ sinh(µ)

cosh(µ)+1 and ∀µ ≤ 0, sinh(µ)
cosh(µ)+γ ≤ sinh(µ)

cosh(µ)+1 . Finally, one deduces
that ∀µ ≥ 0, h(µ, γ) ≥ h(µ, 1) and ∀µ ≤ 0, h(µ, γ) ≤ h(µ, 1), which means in particular
that h(y′0, γ) ≥ h(y′0, 1), and that h(y0, γ) ≤ h(y0, 1), implying that h(y′0, γ) > 0 and
h(y0, γ) < 0. Thus whatever γ ∈]− 1, 1], the function h satisfies the condition for f2 to
have three extrema.

So finally, we may conclude that the function f2 has three extrema whatever γ ∈ [−1, 1],
if and only if α > 1 and | log(A)| < −2 arccosh(α) + 2α

√
α2 − 1.
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B. Towards Robust and Adaptive
Synchrosqueezing

B.1. Proof of Proposition 5.0.1

In what follows, we omit (t, η) in the definition of the STFTs!s (STFTs!s). Let us first
remark that:

E{V g
f+ε} = V g

f , E{V t2g
f+ε} = V t2g

f

since V g
ε and V t2g

ε are both with zero mean. Let us denote by m = (V g
f , V

t2g
f )T . Then

denoting by v = (V g
f+ε, V

t2g
f+ε)

T , and σ2ε the variance of the noise (the real and imaginary
part of the noise are assumed to be decorrelated), we have:

E{(v −m)(v −m)H} =

[
E{|V g

ε |2} E{V g
ε (V

t2g
ε )∗}

E{(V g
ε )∗V

t2g
ε } E{|V t2g

ε |2}

]
=

[
σ2ε∥g∥2 σ2ε∥tg∥2

σ2ε∥tg∥2 σ2ε∥t2g∥2

]
.

Based on the results in [95, Eq. (44)], denoting Z =
V g
f+ε

V t2g
f+ε

, we have that:

E {Z} =
V g
f

V t2g
f

+

(
∥tg∥2

∥t2g∥2
−

V g
f

V t2g
f

)
e
−

|V t
2g
f

|2

σ2ε∥t2g∥2 ,

so that one gets:

E
{
− 1

2π
ℑ{Z}

}
= − 1

2π
ℑ

{
V g
f

V t2g
f

}
(1− e

−
|V t

2g
f

|2

σ2ε∥t2g∥2 ).
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At (t, ϕ′(t)) one finally has

E
{
− 1

2π
ℑ{Z}

}
= ϕ′′(t)

1− e
−

|V t
2g
f

|2

σ2ε∥t2g∥2

 .

B.2. Proof of Proposition 5.0.2

Remarking that in that case ϕ′(t) = η0, we may write:

V t2g
ε (t, η0)e

−2iπη0t =

∫
R
n(τ)(τ − t)2g(τ − t)e−2iπη0τdτ

V g
ε (t, η0)e

−2iπη0t =

∫
R
n(τ)g(τ − t)e−2iπη0τdτ,

so we get that:

G(t) =
2π

σ2
V t2g
ε (t, η0)e

−2iπη0t − V g
ε (t, η0)e

−2iπη0t

=

∫
R
n(τ)(

2π

σ2
(τ − t)2 − 1)g(τ − t)e−2iπη0τdτ

=
σ2

2π

∫
R
n(τ)g′′(τ − t)e−2iπη0τdτ.

Let us then write the auto-correlation function of this random variable:

E [G(t)G(t− x)∗] =

∫
R2

E
[
n(τ)n(τ ′)

]
g′′(τ)g′′(τ ′ + x)

σ4e−2iπη0(τ−τ ′)

4π2
dτdτ ′

=
σ4

4π2
σ2ε

∫
R
g′′(τ)g′′(τ + x)dτ

=
σ4

4π2
σ2εg

′′ ∗ g′′(−x),

using the fact that g′′ is even. So the studied process is wide-sense stationary and its
power spectral density, i.e. the Fourier transform of the auto-correlation function, reads:

F σ4

4π2 σ
2
εg

′′∗g′′(−x)
(η) = σ2ε

σ4

4π2
Fg′′∗g′′(η)

∗

= σ2ε
σ4

4π2
ĝ′′(η)2

= σ2εσ
44π2η4ĝ(η)2

= σ2εσ
64π2η4e−2πσ2η2 .

X
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B.3. Proof of Proposition 5.0.3

In such a case, we have ϕ′(t) = a+ bt, and thus we may write:

V t2g
ε (t, ϕ′(t))e−2iπϕ(t) = eiπbt

2

∫
R
ε(τ)(τ − t)2g(τ − t)e−2iπϕ′(t)τdτ

V g
ε (t, ϕ

′(t))e−2iπϕ(t) = eiπbt
2

∫
R
ε(τ)g(τ − t)e−2iπϕ′(t)τdτ,

Furthermore, from [19, proposition 1], we may write:

V g
f (t, ϕ

′(t)) = (1 + b2σ4)−
1
4 e−i

atan(−bσ2)
2 e2iπϕ(t) = Be2iπϕ(t),

so that one may rewrite G as:

G(t) =

(
2π

σ2
(1− ibσ2)V t2g

ε − V g
ε

)
B−1e−2iπϕ(t)

= B−1eiπbt
2

∫
R
ε(τ)

(
2π

σ2
(1− ibσ2)(τ − t)2 − 1

)
g(τ − t)e−2iπϕ′(t)τdτ

= B−1eiπbt
2

[
σ2

2π

∫
R
ε(τ)g′′(τ − t)e−2iπϕ′(t)τdτ − i2πb

∫
R
ε(τ)(τ − t)2g(τ − t)e−2iπϕ′(t)τdτ

]
.

Then the auto-correlation function of G reads:

E [G(t)G(t− x)∗] =
e−iπbx2

σ2ε

(1 + b2σ4)
1
2{

σ4

4π2

∫
R
g′′(τ)g′′(τ + x)e−2iπbxτdτ

ibσ2
∫
R
τ2g(τ)g′′(τ + x)e−2iπbxτdτ

−ibσ2
∫
R
(τ + x)2g′′(τ)g(τ + x)e−2iπbxτdτ

4π2b2
∫
R
τ2g(τ)(τ + x)2g(τ + x)e−2iπbxτdτ

}
.
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So the process is wide-sense stationary. Now, making a last change of variables, we
obtain:

E [G(t)G(t− x)∗] =
σ2ε

(1 + b2σ4)
1
2{

σ4

4π2

∫
R
g′′(τ − x

2
)g′′(τ +

x

2
)e−2iπbxτdτ

+ibσ2
∫
R
(τ − x

2
)2g(τ − x

2
)g′′(τ +

x

2
)e−2iπbxτdτ

−ibσ2
∫
R
(τ +

x

2
)2g′′(τ − x

2
)g(τ +

x

2
)e−2iπbxτdτ

+4π2b2
∫
R
(τ − x

2
)2g(τ − x

2
)(τ +

x

2
)2g(τ +

x

2
)e−2iπbxτdτ

}
.

Now, one can check that the auto-correlation function can be rewritten in terms of the
function:

L(τ) =

(
σ2

2π
g′′(τ)− i2πbτ2g(τ)

)
eiπbτ

2

since one has:

E [G(t)G(t− x)∗] =
σ2ε

(1 + b2σ4)
1
2

∫
R
L(τ − x

2
)L(τ +

x

2
)∗dτ.

So, computing the Fourier transform of this auto-correlation, one gets:∫
R
E [G(t)G(t− x)∗] e−2iπxηdx

=
σ2ε

(1 + b2σ4)
1
2

∫
R

∫
R
L(τ − x

2
)L(τ +

x

2
)∗e−2iπxηdxdτ

=
σ2ε

(1 + b2σ4)
1
2

∫
R
WL(τ, η)dτ,

in which WL is the Wigner-Ville distribution of L. From the properties of the Wigner-
Ville distribution, we deduce that the modulus squared of the Fourier transform of L
reads:

|L̂(η)|2 =

∫
R
WL(τ, η)dτ.
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B.3. PROOF OF PROPOSITION 5.0.3

Now as we use a Gaussian window we can have an analytic expression for L̂. Indeed,
some simple computations lead to:

L(τ) = ((
2π

σ2
τ2 − 1)− i2πbτ2)g(τ)eiπbτ

2

= (−2π(− 1

σ2
+ ib)τ2 − 1)eπ(−

1
σ2+ib)τ2

So, if one considers the Fourier transform of this function, one gets:

L̂(η) = −1+ibσ2

2πσ2

d2F
e
−π( 1−ibσ2

σ2 )τ2
)

dη2
(η)−F

e
−π( 1−ibσ2

σ2 )τ2
(η)

= − (1−ibσ2)
1
2

2πσ
d2e

−π( σ2

1−ibσ2 )η2

dη2
− σe

−π( σ2

1−ibσ2 )η2

(1−ibσ2)
1
2

= − σ32π

(1−ibσ2)
3
2
η2e

−π( σ2

1−ibσ2 )η
2

.

From this, we finally deduce that the power spectral density of G1 is:

PG1(η) =
σ2εσ

64π2η4

(1 + b2σ4)2
e
− 2πσ2η2

1+b2σ4 .
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Abstract

Time-frequency analysis is commonly used to study real world signals. These can often
be described as multicomponent signals made of the sum of frequency and amplitude
modulated modes. This thesis describes time-frequency techniques to study such signals
in heavy noise situations, by dealing with three major issues. The first one is to design
robust ridge detection technique and linear chirp approximation to improve instantaneous
frequency estimation and mode reconstruction. The results demonstrate that an accurate
ridge detection is a necessary but not a sufficient condition to ensure an accurate mode
reconstruction. The second issue is the identification and the separation of interfering
modes. To address this issue, the approach we propose focuses on ridge detection to
localize patterns, coined time frequency bubbles, associated with interference in the time-
frequency plane. The third issue is on the adaption of the synchrosqueezing transform
to the frequency modulation of the modes and to noise. Regarding the first aspect,
an energy based criteria is defined to measure the concentration of a time-frequency
representation, which we use to adapt the synchrosqueezing technique. On the noise
issue, based on a theoretical study of the effect of noise on the chirp rate estimator
used in synchrosqueezing transforms, a new chirp rate denoising technique is proposed
improving the estimation. The fourth and last issue is the heart rate estimation on ECG
signals using time-frequency analysis, for which we design a specific algorithm. We show
that the choice of the representation has huge consequences and demonstrate that it
should be taken into account.

Résumé

L’analyse temps-fréquence est fréquemment utilisée pour étudier les signaux du monde
réel. Ceux-ci peuvent souvent être décrits comme des signaux multicomposantes, représen-
tés sous la forme d’une somme de modes, modulés en amplitude et en fréquence. Cette
thèse traite de techniques temps-fréquence pour l’étude de tels signaux dans des situa-
tions où le niveau de bruit est élevé pour trois principales problématiques. La première
est l’élaboration de détection de ligne de crêtes et l’approximation basées sur un modèle
de chirp linéaire dans l’objectif de gagner en précision sur l’estimation de la fréquence in-
stantanée et la reconstruction des modes. La deuxième problématique est l’identification
et la séparation de modes qui interfèrent. Cette problématique est adressée, nous pro-
posons une approche basée sur la détection de ligne de crête pour identifier des structures
appelées bulles temps-fréquence, associées à l’interférence sur le plan temps-fréquence. La
troisième problématique porte sur l’adaptation du synchrosqueezing à la modulation en
fréquence des modes ainsi qu’au bruit. Sur ce premier aspect, nous définissons un critère
basé sur l’énergie pour mesurer la concentration des représentations temps-fréquence, que
nous utilisons pour adapter le synchrosqueezing. Concernant le problème du bruit, en
nous basant sur l’étude théorique de l’effet du bruit sur l’estimateur de la modulation en
fréquence, utilisée pour le synchrosqueezing, nous proposons une nouvelle technique de
débruitage de manière à obtenir une meilleure estimation. Nous traitons une quatrième
problématique, qui concerne l’estimation de la fréquence cardiaque en utilisant une ap-
proche temps-fréquence, pour laquelle nous construisons un algorithme. Nous montrons
que le choix de la représentation à de grandes conséquences et qu’elle doit être prise en
compte.
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