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Mise à

Chapter 0

General introduction

The following work is a part of the industrial chair between Mines Saint-Étienne/LGF laboratorary (UMR CNRS 5307) and the Hexcel Reinforcements company 1 . This collaboration aims at improving the understanding of direct processes for the manufacturing of composite materials through numerical simulation. Indeed, infusion-based processes represent a relevant alternative to more classical autoclave strategies that induce significant manufacturing costs. In addition, they are also particularly appropriate for the production of large and thin industrial parts such as encountered in the aeronautical industry for structural applications. However, those processes involve complex interactions between various physical phenomena that must be well understood to master the production of expensive and critical composite parts. This study focuses on modelling the flow observed during the impregnation of the reinforcement by the liquid resin. More specifically, due to the intrinsic multiscale nature of the fibrous structure, upscaling strategies are considered in order to define a homogeneous equivalent medium and to identify the associated upscaled properties that are relevant at industrial scale.

Composite materials

Composite materials are made of several immiscible phases in order to yield specific properties that are more attractive than those of the materials taken separately. This covers a wide range of materials from reinforced concrete to wood [2,3]. We here consider two phases: a fibrous reinforcement and a thermosetting polymer matrix [4] (Fig. 1).

The reinforcement is made of an arrangement of continuous carbon fibres, each with a diameter of approximately 7 µm [START_REF] Vaughan | Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites[END_REF]. Carbon fibres have the advantage of showing extremely competitive mechanical properties in comparison with their density. As the orientation of the fibres defines the main directions of mechanical performance for the composite materials, various fibrous semiproducts can be designed on purpose, including unidirectional, bidirectional or more complex 3D architectures [START_REF] Byun | Modelling and characterization of textile structural composites: A review[END_REF]. We are here studying a unidirectional arrangement in which all the fibres are considered to lie along a given direction. This work focuses on the plane that is transverse to the fibre axis as it raises significant modelling and measurement issues in the process under study. The fibre cross-section can be reasonably considered as circular leading to model the fibrous structure as a set of non-overlapping disks. Although this is not a limitation for the present modelling approach, the matrix can be taken as an organic thermosetting polymer, typically an epoxy resin [2]. The polymerisation induced by the addition of a cross-linking chemical species and a temperature rise finally gives a solid matrix with high mechanical properties. Due to the creation of strong chemical bounds, they generally outperform thermoplastic resins, even though the recycling of such composite materials still constitutes an ongoing field of research [START_REF] Vita | Comparative life cycle assessment and cost analysis of autoclave and pressure bag molding for producing CFRP components[END_REF]. The rheology of the resin under consideration is assumed to be Newtonian with a viscosity around 10 -3 Pa.s [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF].

Such composite materials are usually referred to as Carbon fibre Reinforced Polymer (CFRP) and offer excellent mechanical properties associated with a low density (Fig. 2) which makes them particularly relevant for the transportation industry. Though not limited to such applications, they are typically encountered in aeronautical structural parts as a substitution to heavier metallic materials [START_REF] Blais | Modélisation et suivi du procédé par infusion de résine sur une nouvelle génération de renforts structuraux pour l'aéronautique[END_REF]. 

Manufacturing processes

Manufacturing processes

Several strategies can be identified in order to manufacture the composite materials presented in the previous section. Historically, such materials were industrially produced through autoclave processes that require the storage of preimpregnated fibres at low temperature as well as a considerable amount of energy to heat the autoclave chamber [START_REF] Wang | Design optimization of molds for autoclave process of composite manufacturing[END_REF]. In seek of less expensive manufacturing processes that can be suitable for large industrial parts, Liquid Composite Moulding (LCM) strategies have been developed as Out-of-Autoclave (OOA) solutions [START_REF] Pillai | Modeling the unsaturated flow in liquid composite molding processes: a review and some thoughts[END_REF]. They generally consist in filling an initially dry fibrous preform with a polymer resin at liquid state. After this impregnation step, a temperature rise accelerates the curing of the polymer leading to the manufacturing of the composite material. Different kinds of LCM processes are considered in practice depending on the flow and moulding strategies [START_REF] Fleischer | Composite materials parts manufacturing[END_REF].

Here, Liquid Resin Infusion (LRI) is studied [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF] (Fig. 3). The dry preform lies on a semi-mould and is isolated from the outer environment thanks to a vacuum bag. Then the air initially contained within the preform is pumped out of the system. The induced pressure drop between lower and upper sides acts as a driving force that leads the resin to flow into the preform. In order to achieve a homogeneous filling, the resin first flows within a distribution medium located at the bottom of the preform [START_REF] Blais | Modélisation et suivi du procédé par infusion de résine sur une nouvelle génération de renforts structuraux pour l'aéronautique[END_REF]. This homogeneously distributed resin then fills the preform across its thickness. The LRI strategy represents a suitable process for high performance composite materials, especially for large thin industrial parts, while involving low manufacturing costs. It is however necessary to guarantee the high quality and the reproducibility of the manufacturing step. This especially involves to ensure an optimal impregnation of the reinforcement [START_REF] De Almeida | Effect of void content on the strength of composite laminates[END_REF] while complying with the initially specified dimensions. This may be difficult due to the transient pressure equilibria at play in the reinforcements [START_REF] Pacquaut | Couplage Stokes/Darcy dans un cadre Level-set en grandes déformations pour la simulation des procédés d'élaboration par infusion de résine[END_REF]. As a consequence, the physical phenomena and their interactions which occur during infusion have to be well understood in order to master the manufacturing process.

Manufacturing processes

The LRI process displays a highly multi-physical behaviour with complex interplays. Indeed, solid mechanics (preform deformation), fluid mechanics (resin flow), chemical kinetics (curing reaction) and heat transfer coexist within the process and strongly interact, involving a highly coupled modelling [START_REF] Trochu | Advanced numerical simulation of liquid composite molding for process analysis and optimization[END_REF] (Fig. 4). This study only focuses on the resin flow within the preform. Consequently the flow is assumed to be isothermal, chemical reactions are not taken into account and the fibrous structure is assumed to be rigid. Even if the problem has been simplified, modelling the flow remains a difficult task. Indeed, by filling the preform, the liquid resin replaces the rarefied air that is initially contained [START_REF] Pillai | Modeling the unsaturated flow in liquid composite molding processes: a review and some thoughts[END_REF]. A two-phase flow between the resin and the rarefied air is thus observed in a complex fibrous medium. Moreover, as the space between carbon fibres is around 10 µm, capillary effects arising from surface tension phenomena should be taken into account [START_REF] Teixidó | Capillary effects in fiber reinforced polymer composite processing: A review[END_REF]. They also constitute an additional driving force for the resin flow that competes with the pressure drop due to the air pull-out. This competition is crucial as it directly affects the quantity of rarefied air entrapped during the impregnation, generally referred to as void content [START_REF] Leclerc | Porosity reduction using optimized flow velocity in resin transfer molding[END_REF][START_REF] Sisodia | Highresolution computed tomography in resin infused woven carbon fibre composites with voids[END_REF][START_REF] Sas | A methodology to reduce variability during vacuum infusion with optimized design of distribution media[END_REF][START_REF] Lebel | Void content analysis and processing issues to minimize defects in liquid composite molding[END_REF]. These voids will be critical for the whole composite material as they correspond to stress concentration areas where cracks may be initiated [START_REF] Xueshu | A review of void formation and its effects on the mechanical performance of carbon fiber reinforced plastic[END_REF][START_REF] Matuzaki | Analytical prediction of void formation in geometrically anisotropic woven fabrics during resin transfer molding[END_REF][START_REF] Yang | Influence of fabric shear and flow direction on void formation during resin transfer molding[END_REF].

It is thus paramount to master the resin flow that occurs during the impregnation step in order to guarantee the quality and the durability of the composite part. However, different scales of description can be identified due to the intrinsic multiscale nature of the fibrous structure. The choice of the considered scale leads to different models for the flow. These scales are now presented and the framework of the study is detailed.

Different scales of description

Figure 4: Interactions between physical phenomena ocurring in direct manufacturing processes of composite materials (adapted from [START_REF] Blais | Modélisation et suivi du procédé par infusion de résine sur une nouvelle génération de renforts structuraux pour l'aéronautique[END_REF][START_REF] Pacquaut | Couplage Stokes/Darcy dans un cadre Level-set en grandes déformations pour la simulation des procédés d'élaboration par infusion de résine[END_REF]).

Different scales of description

The fibrous structure can be studied through three main scales, starting from the most local one, corresponding to the fibre scale, to the most global that represents the part scale. Between those, an intermediate scale can be defined, corresponding to the yarn (i.e. bundle of fibres) scale. Those scales of description are now detailed.

Microscopic scale

The scale of the fibres corresponds to the most local description of the flow. As indicated previously, our study sets in the plane transverse to the fibres axis, where the fibrous structures can be wisely considered as a set of disks. In a first approach, the fibrous arrangement can be considered as regular, thus constituting periodic arrays of cylinders [START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF]. However, the experimentally observed microstructures generally show complex fibrous arrangements with an inherent variability (Fig. 5) [START_REF] Vaughan | Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites[END_REF][START_REF] Wang | Micromechanical modeling of fiberreinforced composites with statistically equivalent random fiber distribution[END_REF][START_REF] Thomas | Representative volume element of anisotropic unidirectional carbon-epoxy composite with high-fibre volume fraction[END_REF]. This results in considering the fibre placement as random, hence a statistical approach to describe the local flows [START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF][START_REF] Ismail | Discrete element method for generating random fibre distributions in micromechanical models of fibre reinforced composite laminates[END_REF].

The random morphology of the fibrous microstructures can be characterised by numerous statistical descriptors. In a first approach, the geometries are classically described by the fibre volume ratio V f that describes the proportion of reinforcement in the composite material [START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF][START_REF] Carman | Fluid flow through granular beds[END_REF]. For aeronautical applications, it is generally around 60% as it is usually considered as the optimum ratio between reinforcement and matrix for mechanical performance issues [START_REF] Thomas | Representative volume element of anisotropic unidirectional carbon-epoxy composite with high-fibre volume fraction[END_REF]. As the fibre volume ratio influences the material properties at first order, it will be considered in a first approach as the input control parameter for the microstructures under study. Further morphological descriptors can be then introduced to describe the random fibrous structures more precisely (Appendix A) [START_REF] Chen | The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest interfiber spacing[END_REF][START_REF] Yazdchi | Microstructural effects on the permeability of periodic fibrous porous media[END_REF][START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF][START_REF] Kumar | Voronoi cell volume distribution and configurational entropy of hard-spheres[END_REF].

The fibrous geometries at microscopic scale are generally made of a large set of fibres to model the internal randomness of the microstructures (Fig. 5). Considering larger and larger systems tends 0.3. Different scales of description to homogenise the overall flow behaviour. This finally leads to the identification of a volume size from which the flow behaviour is globally homogeneous [START_REF] Du | On the size of representative volume element for Darcy law in random media[END_REF]. From there, statistical representative volume elements can be defined [START_REF] Trias | Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers[END_REF]. This point will be widely detailed in the following study. As a rough estimate, several hundreds of fibres are generally needed to retrieve a description of the flow that is statistically relevant.

Figure 5: Microscopic scale: microstructure made of carbon fibres (adapted from [START_REF] Caglar | Deep learning accelerated prediction of the permeability of fibrous microstructures[END_REF][START_REF] Katar | Evaluate state-of-the-art carbon fibers' composites (CFC) as finishing materials in building construction[END_REF]).

Mesoscopic scale

Carbon fibres are generally bundled together to form tows or yarns (Fig. 6). This defines an upper mesoscopic scale. The resin flow is thus observed between the tows but also inside them. This entails a dual-scale modelling of the flow [START_REF] Tan | Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows[END_REF]. This competition between inter-tow and intratow flows is of prime importance since it directly rules the final void content. Indeed, capillarydominated flows tend to induce micro-voids (i.e. void entrapment within tows) while viscousdominated ones generally favor macro-voids (i.e. void between tows). Considering such dualscale flows, an optimal impregnation scenario that both minimizes the micro-void and macro-void contents is described in the literature [START_REF] Lebel | Void content analysis and processing issues to minimize defects in liquid composite molding[END_REF]. However, both scales are rarely studied separately: this especially makes necessary further analysis on the micro-void formation, mainly for experimental considerations regarding the local characteristic length at play.

Depending on the models, the intra-tow area can be represented differently. A first strategy consists in representing each fibre composing the tows [START_REF] Li | A study on resin infusion and effects of reinforcement structure at dual scales by a quasi-realistic numerical simulation method[END_REF][START_REF] Durville | Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[END_REF]. This naturally provides a very accurate description of the intra-yarn region. However, tows can be composed of thousands of fibres: such a fully explicit representation of the pore structure becomes quickly cumbersome, especially when several tows are considered. Homogenisation techniques are generally preferred. Instead of representing explicitly the underlying pore structure, a homogeneous equivalent orthotropic medium is considered [START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF][START_REF] Syerko | A numerical approach to design dual-scale porosity composite reinforcements with enhanced permeability[END_REF]. The flow behaviour is then ruled by laws that links homogenised variables together [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF]. These laws generally stem from an upscaling procedure where the fibre-scale flow within representative volume elements is homogenised to characterise the global behaviour. More specifically, the homogenenous equivalent medium is generally characterised by its permeability in a first approach. This quantity, which represents the ability of the porous medium to allow fluids to pass through it, has thus been extensively studied in the literature. However, as detailed later, permeability quickly becomes unsuitable to model flows such as those observed in the LRI process where a transient behaviour is observed with several phases in presence. 

Macroscopic scale

None of both scales previously introduced are appropriate in an industrial context. In fact, manufacturers usually work at macroscopic scale where the industrial part is represented through Computer-Assisted Design (CAD) models. As the characteristic length of the industrial parts can be several meters, an explicit representation of the internal fibrous structure is unreachable, not only due to the architecture complexity, but also to the inherent variabilities across the scales (Fig. 7). The whole volume is thus considered as a homogenous equivalent medium, reinforcing the importance of accurate upscaling procedures [START_REF] Blais | Modélisation et suivi du procédé par infusion de résine sur une nouvelle génération de renforts structuraux pour l'aéronautique[END_REF][START_REF] Andriamananjara | Modélisation numérique des procédés LCM à l'échelle des milieux homogènes équivalents en cours de déformation-intégration de la pression capillaire lors de l'infusion et équilibrage post-infusion[END_REF]. 

Framework and objectives of the study

This study considers the fibre scale where the resin flow between carbon fibres is considered. This scale representing only few micrometers, an experimental approach is generally difficult to carry out. In addition, fluid mechanics equations cannot be solved analytically in such complex geometries. This leads to consider a numerical approach in which the conservation laws are solved at pore scale. The obtained local description of the flow is then upscaled to define and characterise a homogeneous equivalent medium (Fig. 8).

This induces various difficulties, from the physical modelling, to the numerical scheme, through the upscaling methods. Such a complex transient two-phase flow in a porous medium is usually simplified in a first approach by only considering a steady resin flow. This allows to highly alleviate the model as a single fluid mechanics problem has to be solved. Morever, the upscaling procedure in this context has been widely studied and is now grounded.

Framework and objectives of the study

The approach followed here consists in performing flow upscaling for a large number of random fibrous microstructures so as to characterise the macroscopic behaviour in a statistical fashion, in consistency with the stochastic nature of the local structure. This will be first carried out in steady one-phase flow scenario before tackling more realistic transient two-phase cases.

The method that is developed at Mines Saint-Étienne to numerically model transient two-phase flows will be first summarised. It results from the numerous years of research including several PhD theses [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF][START_REF] Andriamananjara | Modélisation numérique des procédés LCM à l'échelle des milieux homogènes équivalents en cours de déformation-intégration de la pression capillaire lors de l'infusion et équilibrage post-infusion[END_REF][START_REF] Pacquaut | Couplage Stokes/Darcy dans un cadre Level-set en grandes déformations pour la simulation des procédés d'élaboration par infusion de résine[END_REF][START_REF] Celle | Couplages fluide/milieu poreux en grandes déformations pour la modélisation des procédés d'élaboration par infusion[END_REF][START_REF] Puaux | Simulation numérique des écoulements aux échelles microscopique et mésoscopique dans le procédé RTM[END_REF][START_REF] Orm | VMS (Variational MultiScale) stabilization for Stokes-Darcy coupled flows in porous media undergoing finite deformations: application to infusion-based composite processing[END_REF][START_REF] Blais | Modélisation et suivi du procédé par infusion de résine sur une nouvelle génération de renforts structuraux pour l'aéronautique[END_REF]. More specifically, this work can be seen as a direct continuity of Chevalier's one [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. As a consequence, the general findings and developments of this work will be first recalled. In order to replace them in a research context, an overview of the similar techniques encountered in the literature will be also presented. Whereas Chevalier's work was mainly centered on numerical methods, this study can be seen as the improvement and exploitation of those in a context of homogenisation. Therefore, an in-depth state-of-the-art on the upscaling methods will be presented. Emphasis will be placed on the connection between the approach of composite materials community and those encountered in other fields and especially in hydrogeology.

The three next chapters will be constituted of articles, for which a summary is now presented:

• Article 1: Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF].

From the random generation of numerous periodic fibrous microstructures, representative volume elements are defined and single-phase steady flow simulations are performed. The permeability is then approached in a statistical way through the characterisation of distributions. In addition to statistical tools such as statistical hypothesis tests, the study uses a machine-learning method, namely Gaussian process regression. The influence of the morphological parameters and the fluid-fibre slip phenomenon are investigated. This finally yields an analytical law that includes statistical features while providing a min-max bounding for permeability.

• Article 2: Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media.

Usual upscaling procedures for transient two-phase flows in porous media are reviewed, compared and adapted to fibrous structures. A set of appropriate and independent scalar descriptors is then identified. Next, the upscaling of the flow in a given fibrous microstructure can be accurately characterised. Results are found to be consistent with the literature and allow to reappraise some of the commonly encountered methods. This work especially focuses on the resulting action of the capillary effects, the saturation and the time evolution of the flow front within the random fibrous structure.

• Article 3: Upscaling transient two-phase flows in random fibrous media: combined influence of morphology and flow regime.

Transient two-phase flows are simulated in randomly generated microstructures, following the Statistical Volume Element approach. The flows are macroscopically characterised through the saturation and the resulting capillary pressure. Then, the influence of both the fibre volume fraction and the flow regime on those quantities is assessed, leading to identify the relations that rule the flow at the upper scale in an equivalent homogeneous medium. The coincidence between the flow in the impregnated volume and a time-independent single-phase flow is finally assessed, giving a domain of validity where Darcy's law turns out to be a proper simplification.

0.4. Framework and objectives of the study Figure 8: Upscaling procedure: the behaviour at pore scale is homogenised to retrieve an upscaled response ruling an homogeneous equivalent medium at upper scales.

Résumé en français

Nous nous intéressons ici aux procédés de fabrication de matériaux composites alliant un renfort en fibres de carbone à une matrice époxy. Permettant des gains économiques significatifs par rapport aux méthodes traditionnelles en autoclave, les procédés de fabrication directs constituent une stratégie particulièrement adaptée à l'élaboration de pièces industrielles de grande taille et de faible épaisseur, à l'image des pièces aéronautiques structurales. De façon plus précise, nous étudions ici le procédé par infusion dans lequel un renfort fibreux sec est placé dans un demi-moule avant d'être imprégné par la résine à l'état liquide sous l'impulsion d'un tirage au vide. L'intérêt de ce tirage est double : compacter la préforme pour limiter le taux de porosité et favoriser l'imprégnation en agissant comme une force motrice pour la résine qui vient alors s'écouler dans la préforme en remplaçant l'air appauvri initialement présent. Afin d'assurer la qualité optimale des pièces produites, notamment vis-à-vis de l'homogénéité de la matrice, la phase d'imprégnation doit être maîtrisée. La modélisation de cette étape constitue un défi scientifique compte-tenu de son caractère multi-physique hautement couplé. Nous nous limiterons ici au problème de mécanique des fluides isotherme, supposé prédominant.

Étudier la phase d'imprégnation revient alors à modéliser un écoulement diphasique transitoire où sont aussi observés des effets capillaires résultant de la proximité entre les fibres de carbone. Compte tenu du caractère multi-échelle du renfort fibreux, l'imprégnation peut être alors décrite à des échelles différentes. Raisonner à l'échelle des fibres, de l'ordre du micron, permet une description précise de l'écoulement mais néanmoins inadaptée à un contexte industriel où il est généralement pertinent de se placer à l'échelle de la pièce produite. Des stratégies de montée en échelle sont alors développées afin de connecter ces échelles de description dans le but de transposer l'information physique locale vers les échelles supérieures. En outre, les arrangements fibreux localement observés présentent une variabilité géométrique intrinsèque menant à considérer un milieu stochastique où les fibres sont placées de façon aléatoire. Une dimension statistique doit donc être incorporée à la procédure de montée en échelle.

Framework and objectives of the study

La littérature montre que les approches expérimentales souffrent généralement d'un manque de reproductibilité associé à des incertitudes considérables. Parallèlement à cela, les développements analytiques se heurtent à la complexité des géométries considérées pour lesquelles il n'est pas possible de proposer des solutions explicites. Nous envisagerons donc une stratégie numérique dans laquelle les équations de conservation seront résolues par une méthode éléments finis stabilisée sur des géométries fibreuses générées de façon aléatoire. L'exploitation des champs solutions permettra ensuite d'effectuer la montée en échelle des écoulements, caractérisée de façon statistique, dans le cas monophasique permanent puis dans le cas diphasique transitoire.

Ce travail s'intègre à la chaire industrielle entre les Mines Saint-Étienne et Hexcel Reinforcements et compile trois articles, déjà publiés ou en cours de publication. Le premier se concentre sur l'étude statistique du tenseur de perméabilité associé à des microstructures fibreuses aléatoirement générées. L'influence des paramètres morphologiques et du phénomène de glissement à l'interface entre les fibres et le fluide y est notamment étudiée. Une relation analytique intégrant des considérations probabilistes est finalement proposée, bornant doublement la perméabilité statistique du milieu considéré. Ce travail incorpore notamment des méthodes d'apprentissage machine. Le second article porte sur les procédures de montée en échelle dans le cas d'écoulements diphasiques transitoires. Les méthodes communément rencontrées dans la littérature sont présentées, comparées puis adaptées au cas de l'imprégnation de milieux fibreux. Ce second travail permet notamment leur réexamen dans le but d'améliorer leur cohérence vis-à-vis de la physique des écoulements considérés. Le troisième et dernier article se base sur les méthodes précédemment identifiées pour effectuer la montée en échelle statistique en régime diphasique transitoire. Pour ce faire, une base de données est constituée à partir de simulations d'écoulements en milieux aléatoires. Elle se compose des paramètres d'écoulement et des caractéristiques morphologiques en entrées, et des grandeurs de montée en échelle en sorties, et sera finalement exploitée de façon statistique.

Chapter 1

Modelling a transient two-phase flow in fibrous media: from finite element simulation at fibre scale to upscaling procedures

In direct manufacturing processes of composite materials, transient two-phase flows in fibrous media are observed. This part details our approach to model such flows, from the physical equations to the numerical resolution by a finite element method. Emphasis will be placed on the hypotheses and the relevance of our strategy as well as on the difficulties that usually arise when it comes to simulate these flows. Next, upscaling strategies that are commonly encountered in the literature will be reviewed and shortly explained. By positioning our study with respect to the existing methods, its contributions and novelties will be finally highlighted.

Domains et notations

The notations to describe the transient two-phase flow are detailed here. As the impregnation phenomenon occurs, the vapor phase occupying a domain Ω V is gradually replaced by a liquid phase that occupies domain Ω L (Fig. 1.1). Those domains are thus time-dependent : Ω V = Ω V (t) and Ω L = Ω L (t), with t the time variable. The union of those domains corresponds to the computational domain where the flow will be described : Ω = Ω L ∪ Ω V of boundary ∂Ω. The liquid and vapor domains intersect to form the liquid-vapor interface Γ LV (t) = Ω L (t) ∩ Ω V (t).

The impregnation occurs in a porous medium composed of carbon fibres that constitute a domain Ω S of boundary ∂Ω S . Interactions between the fluid and the solid phase such as poroelasticity or elastocapillarity are neglected here. Indeed, the fibres are considered to be fixed, meaning that Ω S does not depend on time. This domain intersects with fluid phases to give the liquid-solid Γ LS (t) and vapor-solid Γ SV (t) interfaces. The three phases meet in a contact line The derivation of local equations that describe the flow is briefly recalled. Those stem from the conservation of mass and momentum for both fluid phases. The general form of conservation equations is now recalled. The conservation of an extensive quantity E i over a domain ω i (t) ⊂ Ω i of boundary ∂ω i is considered here, with i = L, V (Fig. 1.2). For simplicity sake, E i is supposed to be a scalar. The quantity E i can be expressed as an integral of an intensive quantity I i over the domain ω i :

L (t) = Ω L (t) ∩ Ω V (t) ∩ Ω S , corresponding to a point in 2D.

Fluid problem

E i (t) = ω i I i (x, t) dV (1.1)
where x is the space variable. The overall variation of E i over time has to take into account two contributions. First, the time dependance of I i within ω i (t). Second, the fact that the domain boundary ∂ω i is moving at a velocity v due to material motion. This adds a flux contribution I i v over the boundary. The overall time variation can be finally expressed as:

dE i dt = d dt ω i I i dV = ω i ∂I i ∂t dV + ∂ω i I i v • n dS (1.2)
with n is the outward unit normal to the surface. Those variations arise either from surface s surf or volume s vol source terms that create or annihilate the quantity I over the domain ω i . As a consequence, the temporal derivative can be also written as:

dE i dt = ω i s vol dV + ∂ω i s surf • n dS. (1.3)
Equalising Eq.1.2 and Eq.1.3 and using the divergence theorem allows us to finally retrieve the local expression of conservation equations:

∂I i ∂t + ∇ • (I i v) = ∇ • s surf + s vol in Ω i (1.4)

Fluid problem

with ∇ the spatial gradient operator. 

Mass conservation

The relation presented in Eq.1.4 is first applied to the mass. As no creation or annihilation are observed, a first continuity equation on density ρ i of phase i can be obtained:

∂ρ i ∂t + ∇ • (ρ i v) = 0 in Ω i . (1.5)
In the following, the fluids are supposed to be incompressible meaning that both liquid and vapor densities are considered to be constant over time and space. This hypothesis simplifies Eq.1.5 into:

∇ • v = 0 in Ω i . (1.6) 
The incompressibility hypothesis seems natural for the liquid phase as its density is generally known to be insensitive to pressure or temperature variations. However, considering the vapor phase as incompressible is a strong hypothesis. Indeed, the volume of a gaseous phase is expected to decrease when the pressure rises. This can be illustrated by considering an ideal gas for which the isothermal compressibility χ T can be directly expressed as a function of pressure p: χ T (ideal gas) = 1 p .

(1.7)

In the following, the compressibility will be considered as zero in the model. This will have significant physical and numerical consequences. For instance, bubbles resulting from air entrapment will conserve their volume throughout the flow. The final void content may thus be overestimated. Numerically speaking, the pressure inside small bubbles may diverge and reach values several orders of magnitude higher than the median fluid pressure. This may affect the stability of the numerical scheme.

Momentum conservation

In a similar fashion, Eq.1.4 is applied to the momentum. Unlike mass conservation for a closed system, surface and volume source terms should be taken into account. The volume term corresponds to body forces f V acting on the domain Ω i : gravity, electromagnetic interactions,... The surface contributions are the forces that ensure the cohesion of the matter. They are modelled by 1.2. Fluid problem the Cauchy stress tensor σ that represents the surface interactions between infinitesimal neighbour domains. This gives the following equation on the volume momentum ρv:

∂ρ i v ∂t + ∇ • (ρ i v ⊗ v) = ∇ • σ + f V in Ω i (1.8)
The left-hand side can be developed and simplified by recalling mass conservation equation (Eq.1.5):

∂ρ i v ∂t + ∇ • (ρ i v ⊗ v) = v ∂ρ i ∂t + ∇ • (ρ i v) =0 +ρ i ∂v ∂t + v∇v . (1.9)
This simplified expression can be then fed into Eq.1.8 to get:

ρ i ∂v ∂t + ρ i v∇v = ∇ • σ + f V in Ω i . (1.10)
The next step consists in making explicit the Cauchy stress tensor σ, which is usually decomposed into an isotropic part corresponding to pressure term p and a deviatoric part τ :

σ = 1 d T r(σ) + τ = -pI + τ (1.11)
where d is the dimension of the problem. The model needs then a constitutive law to relate the deviatoric tensor τ to the strain rate ˙ = 1 2 (∇v + ∇v T ). In the case of a Newtonian fluid, with incompressibility assumption, the shear behaviour of the fluid is expressed with a linear relation between both tensors: the constant slope is 2µ i and corresponds to twice the viscosity associated with phase i. Making this assumption leads to:

∇ • σ = -∇p + ∇ • (2µ i ˙ ) = -∇p + µ i ∆v.
(1.12)

This gives the final form of the momentum balance for a Newtonian fluid, with incompressibility assumption, for which each term can be physically interpreted:

ρ i ∂v ∂t Transient effects + ρ i v∇v Convection = -∇p Pressure term + µ i ∆v Viscous dissipation + f V Body forces in Ω i . (1.13) 
Both Eqs.1.6 and 1.13 form the Navier-Stokes equations for an Newtonian fluid, in the case of an incompressible flow [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF].

From Navier-Stokes to Stokes equations

The Navier-Stokes system has been derived in the previous section and reads:

Find v and p that respect boundary conditions and such that, for i ∈ {L, V },

ρ i ∂v ∂t + ρ i v∇v = -∇p + µ i ∆v + f V ∇ • v = 0 in Ω i . (1.14)
The momentum conservation equation (Eq.1.13) is the sum of terms, the magnitude of which can be compared for simplification purpose. Various dimensionless numbers are then generally introduced 1.2. Fluid problem as ratios of two phenomena in competition. The Reynolds number Re compares inertial and viscous contributions [START_REF] Reynolds | XXIX. an experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[END_REF]:

Re = Inertial terms Viscous dissipation = ρ V Ľ μ (1.15)
where ρ is the characteristic density, μ the characteristic viscosity, V the characteristic velocity and Ľ the chacteristic length of the flow.

In the situation under consideration, the resin is a viscous fluid that slowly impregnates the fibrous porous medium [START_REF] Govignon | Simulation of the reinforcement compaction and resin flow during the complete resin infusion process[END_REF]. This results in a very low Reynolds number that usually leads to drop the inertial and transient terms [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. This finally yields the Stokes problem that reads, if no body force is considered [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF]: Find v and p that respect boundary conditions and such that, for i = L, V :

0 = -∇p + µ i ∆v ∇ • v = 0 in Ω i . (1.16)
It should be noticed that momentum conservation is now reduced to the classical equilibrium equation: ∇ • σ = 0. From now on, this equation will be considered to describe the flow under study.

Boundary and interface conditions

A boundary value problem is considered here: boundary conditions are thus prescribed at the borders of the computation domain ∂Ω and are usually divided into two main categories. First, Dirichlet boundary conditions are related to velocity and prescribed on ∂Ω D ⊂ ∂Ω. In a similar way, Neumann conditions are associated with the pressure field and are prescribed on ∂Ω N ⊂ ∂Ω, with ∂Ω N ∩ ∂Ω D = ∅. As discussed later, results may vary significantly whether a pressure drop (Neumann condition) or a flow rate (Dirichlet condition) is prescribed at the boundaries of the volume.

The problem also involves interfaces between the solid phase and the fluids: Ω ∩ Ω S . A velocity condition is prescribed at these interfaces. As the liquid and vapor phases cannot penetrate the fibres, normal velocity vanishes on this boundary: v • n = 0 on Γ LS ∪ Γ SV . On the contrary, different choices can be encountered for the tangential velocity. Classically, a no-slip condition is prescribed: v • t = 0. Combining this with the non-penetration condition leads to cancel the velocity at the interface: v = 0. However, cancelling the tangential velocity can be criticised. Indeed, at very local scale, typically at the order of the micrometer and lower, fluid slip can be observed at the solid interface: v • t = 0 [START_REF] Bocquet | Nanofluidics, from bulk to interfaces[END_REF][START_REF] Vinogradova | Drainage of a thin liquid film confined between hydrophobic surfaces[END_REF][START_REF] Neto | Boundary slip in Newtonian liquids: a review of experimental studies[END_REF].

Moreover, for two-phase flows, the tangential velocity at the liquid-vapor-solid junction determines the motion of the flow front. Cancelling the tangential component would thus lead to an immobile contact line: this contradiction is known as the Huh-Scriven paradox [START_REF] Huh | Hydrodynamic model of steady movement of a solid/liquid/fluid contact line[END_REF][START_REF] Shikhmurzaev | Singularities at the moving contact line. Mathematical, physical and computational aspects[END_REF]. In other words, the no-slip condition would lead to a non-physical singularity of the shear stress at the contact line. Solving this paradox and more generally, modelling the contact line motion, represents a huge ongoing area of research [START_REF] Snoeijer | Moving contact lines: scales, regimes, and dynamical transitions[END_REF]. As those problems are directly related to capillary effects, they will be further explained in the dedicated section.

Navier slip condition addresses Huh-Scriven paradox [START_REF] Zhang | Distinguished limits of the navier slip model for moving contact lines in Stokes flow[END_REF] and generalises the usual tangential velocity conditions at solid interface (Fig. 1.3). It relates the tangential velocity to fluid shear stress at the interface through a slip length λ:

v • t = λ µ n • σ • t on Γ LS ∪ Γ SV .
(1.17)

Fluid problem

Slip length has to be seen as the intensity of the fluid slip phenomenon. Geometrically, it can be considered as the fictitious length where the extrapolation of the tangential velocity field becomes zero [START_REF] Neto | Boundary slip in Newtonian liquids: a review of experimental studies[END_REF]. In composite impregnation, slip length generally lies between 0.1 nm and few micrometers [START_REF] Bocquet | Nanofluidics, from bulk to interfaces[END_REF][START_REF] Maali | Measurement of the slip length of water flow on graphite surface[END_REF]. In numerical practice, implementing this law is convenient as extreme values yield the following cases [START_REF] Vinogradova | Drainage of a thin liquid film confined between hydrophobic surfaces[END_REF][START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF]:

• λ → 0: no-slip scenario is retrieved. Tangential velocity vanishes involving a velocity vector equal to zero at the interface.

• λ → ∞: free-slip scenario is retrieved. Tangential velocity behaves freely as if no condition was prescribed. 

Numerical approach

The Stokes problem (Eq.1.16) is solved with a finite element method [START_REF] Orm | VMS (Variational MultiScale) stabilization for Stokes-Darcy coupled flows in porous media undergoing finite deformations: application to infusion-based composite processing[END_REF]. This first requires to derive the weak integral form of the Stokes problem. From the computational domain Ω, Lebesgue space of square-integrable functions L 2 (Ω) as well as Sobolev space H 1 (Ω) are thus introduced:

L 2 (Ω) = f : Ω → R | Ω f 2 dV < ∞ H 1 (Ω) d = f ∈ L 2 (Ω) d | ∇f ∈ L 2 (Ω) d×d . (1.18)
The following function spaces are then introduced:

V = {v ∈ H 1 (Ω) d | v = v on ∂Ω D } V = {v ∈ H 1 (Ω) d | v = 0 on ∂Ω D } P = L 2 (Ω)
.

(1.19)

After multiplying the momentum conservation (Eq.1.16, first line) equation by a test function v ∈ V and mass conservation (Eq.1.16, second line) by a test function p ∈ P, both problems are integrated over the domain Ω. Summing both equations gives the following equation:

Ω -v • ∇p dV + Ω v • µ i ∆v dV - Ω p ∇ • v dV = 0.
(1.20)

Fluid problem

Integrations by parts are then performed displaying explicitly Neumann conditions in the formulation. The geometry is then discretised: the domain Ω is approximated by Ω h , composed of a finite set of simplex elements Ω e , which correspond in our case to triangles in 2D or tetrahedra in 3D:

Ω ≈ Ω h = e Ω e . (1.21) 
A finite element approximation is here introduced. It consists in approaching v (resp. p) with v h (resp. p h ) belonging to the finite dimension space V h ⊂ V (resp. P h ⊂ P). This finally gives the following discrete velocity-pressure mixed weak formulation:

Find v h ∈ V h , p h ∈ P h such that, ∀v h ∈ V h , ∀p h ∈ P h , e Ωe ∇ • v h p h dV - ∂Ω N ∩∂Ωe v h • n p h dS - Ωe µ i ∇v h : ∇v h dV - Ωe p h ∇ • v h dV = 0.
(1.22) In the context of this work, the same approximation order is chosen for velocity and pressure fields. Piecewise linear approximations are here considered for both fields. Such a P1/P1 formulation does not respect the inf-sup stability condition [START_REF] Dobrowolski | On the LBB condition in the numerical analysis of the Stokes equations[END_REF][START_REF] Fortin | Mixed and hybrid finite element methods[END_REF]. As a consequence, a stabilisation method has been implemented [START_REF] Orm | VMS (Variational MultiScale) stabilization for Stokes-Darcy coupled flows in porous media undergoing finite deformations: application to infusion-based composite processing[END_REF].

Here, a Variational MultiScale (VMS) framework has been selected [START_REF] Hughes | The variational multiscale method-a paradigm for computational mechanics[END_REF][START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF]. This classically consists in decomposing the fields as the sum of the discrete approximated field and a lower scale component that is not captured by the finite element grid (Fig. 1.4). The main idea is to consider that the scheme is unstable due to the absence of the subgrid components in the formulation. Those will be denoted by a prime symbol. Both solution and test fields are thus decomposed as follows:

       v = v h + v p = p h + p v = v h + v p = p h + p (1.23)
with V = V h ⊕ V and P = P h ⊕ P , where the prime symbol refers to the subgrid field spaces. This yields two problems: a finite element scale problem and a subgrid problem. In the Algebraic SubGrid Scale (ASGS) method [START_REF] Codina | A stabilized finite element method for generalized stationary incompressible flows[END_REF], the subgrid fields are directly proportional to the finite element residuals:

v ≈ τ v [∇p h -µ i ∆v h )] Momentum FE residual (1.24) p ≈ τ p ∇ • v h Mass FE residual (1.25)
where the stabilisation parameters τ v and τ p are here expressed as [START_REF] Liu | Towards void formation and permeability predictions in LCM processes: a computational bifluid-solid mechanics framework dealing with capillarity and wetting issues[END_REF]:

τ v ∝ h 2 e µ τ p ∝ µ . (1.26)
where h e is the characteristic length of element e. Casting Eqs.1.24 and 1.25 into the finite element scale problem finally yields a formulation that is similar to Eq.1.22 with additional stabilisation terms. The detailed stabilised weak form can be found in [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. Such a method has been considered here for its simplicity of implementation as well as its robustness. In addition, the numerical validity of this approach has been illustrated in various contributions [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF][START_REF] Orm | VMS (Variational MultiScale) stabilization for Stokes-Darcy coupled flows in porous media undergoing finite deformations: application to infusion-based composite processing[END_REF][START_REF] Liu | Towards void formation and permeability predictions in LCM processes: a computational bifluid-solid mechanics framework dealing with capillarity and wetting issues[END_REF]. An example of simulation performed with the presented method is shown in Fig. 1.5. 

Interface problem 1.3.1 Modelling a moving interface

Considering a transient two-phase flow, the interface between liquid and vapor phases Γ LV (t) can move over time. This motion has thus to be taken into account in the model in order to identify the phase location at any time. To do so, various methods have been developed [START_REF] Scardovelli | Direct numerical simulation of free-surface and interfacial flow[END_REF]. The most common ones are represented in Fig. 1.6. They can be first separated into two categories : Lagrangian and Eulerian methods. Lagrangian approaches [START_REF] Tuković | A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow[END_REF][START_REF] Quan | A moving mesh interface tracking method for 3D incompressible two-phase flows[END_REF] use a moving mesh that follows material motion. It thus provides an accurate representation of the interface. However, the mesh may undergo severe deformations that will involve remeshing steps [START_REF] Scardovelli | Direct numerical simulation of free-surface and interfacial flow[END_REF]. In addition, topological changes such as interface splitting or coalescence are hard to handle.

Eulerian approaches are based on a fixed mesh from which the interface can be described either explicitly (interface tracking) or implicitly (interface capturing). Explicit methods allow a precise location of the interface by tracking particle trajectories initially located either on a given phase (volume-tracking) [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF] or on the interface (surface-tracking) [START_REF] Popinet | A front-tracking algorithm for accurate representation of surface tension[END_REF]. This method has some major drawbacks [START_REF] Unverdi | A front-tracking method for viscous, incompressible, multi-fluid flows[END_REF]: if the interface stretches, the marker particles will move away from each other leading to a locally imprecise description of the interface. On the contrary, if the interface shrinks, the density of marker particles will increase involving an overly detailed description of the interface. Last but not least, topological changes are complex to address.

Volume-of-Fluid (VOF), level-set and phase-field methods are the most common implicit approaches. The principle of these methods is briefly described:

• In the VOF method [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF][START_REF] Gopala | Volume of fluid methods for immiscible-fluid and free-surface flows[END_REF], the computation domain is discretised into cells within which the liquid fraction is evaluated. If the liquid fraction value belongs to ]0, 1[, the interface can be located in the cell. The liquid fraction field is then convected in the velocity field through an advection equation. Even though the method naturally induces the conservation of the volume, a precise reconstruction of the interface can be difficult.

• The level-set method [START_REF] Osher | Level set methods: an overview and some recent results[END_REF][START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF] is based on a scalar field φ that corresponds to the signed distance to the interface. The field is then transported through an advection equation. Such an approach describes with accuracy the geometry of the interface, outcompeting VOF methods. However, the method does not inherently ensure volume conservation. Besides, convection does not conserve mathematical properties related to a distance function: this requires an additional step known as reinitialisation.

• The phase-field method [START_REF] Jacqmin | Calculation of two-phase Navier-Stokes flows using phase-field modeling[END_REF][START_REF] Anderson | Diffuse-interface methods in fluid mechanics[END_REF] adds a thermodynamical consideration to the model. The interface is considered to be diffuse through an order parameter F , comparable to the phase 1.3. Interface problem fraction. Indeed, the interface is located wherever F belongs to ]0, 1[. The edge values 0 and 1 describe the fluid and vapor phases. The originality of the approach is to relate the variation of F to the gradient of chemical potential. This finally results in a Cahn-Hilliard equation that models interface mobility while being consistent with the physical principles. Phase-field method has been found to outperform level-set method especially for volume conservation and interfacial spurious current issues [START_REF] Amiri | Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium[END_REF]. However, the approach has not been selected in this work as it requires the introduction of a bandwith parameter to be tuned.

As modelling moving interfaces is a concern in many fields, a lot of approaches can be found in the literature, including hybrid techniques that have not been detailed here [START_REF] Unverdi | A front-tracking method for viscous, incompressible, multi-fluid flows[END_REF][START_REF] Tryggvason | A front-tracking method for the computations of multiphase flow[END_REF]. In the context of this work, a method that accurately locates the interface while easily dealing with topological changes such as interface merging or splitting is sought. As a consequence, the level-set method has been chosen, it is now described more precisely.

Level-set method

The level-set method decribes the interface through a field φ corresponding to the distance between a given point x and the interface. More specifically, φ is a continuous signed distance function, meaning that the values are positive on one side of the interface and negative on the other one (Fig. 1.7). As a consequence, the zero isovalue matches the interface Γ LV (Eq.1.27).

φ(x, t) =      dist (x ; Γ LV (t)) if x ∈ Ω V \ Γ LV (t) -dist (x ; Γ LV (t)) if x ∈ Ω L \ Γ LV (t) 0 if x ∈ Γ LV (t)
.

(1.27)

As the field describes the distance to the interface, a precise reconstruction of Γ LV can be achieved. Moreover, geometrical characterics of the interface can be easily derived. Indeed, the unitary normal n to the interface can be expressed as:

n = ∇φ ∇φ . (1.28)
The mean curvature C of the interface can be easily computed from the normal vector (Eq.1.28):

C = ∇ • n. (1.29)
To model the motion of the interface, the field is then transported through an advection equation. This requires an advective velocity that corresponds to the fluid velocity v in multiphase flow modelling: The problem to be solved corresponds to a hyperbolic first-order partial derivative equation. Initial and boundary conditions are thus added so that the problem can be solved in the computation domain Ω. The problem finally reads as:

∂φ ∂t + v • ∇φ = 0. ( 1 
     ∂φ ∂t + v • ∇φ = 0 ∀x ∈ Ω, ∀t ∈ [t 0 , t f ] φ(x, t = t 0 ) = φ t 0 (x) ∀x ∈ Ω φ(x, t) = φ in (x, t) ∀x ∈ ∂Ω in , ∀t ∈ [t 0 , t f ] (1.31)
where t 0 (resp. t f ) is the initial (resp. final) computation time and ∂Ω in ⊂ ∂Ω is the inflow boundary.

Numerical approach

For simplicity, the problem is solved with the same finite element method, using the same spatial discretisation. The weak formulation of the problem as well as the stabilisation method and time discretisation are quickly described.

Time discretisation

The time derivative has first to be treated. A θ-method has been implemented for the sake of versatility. Through a parameter θ ∈ [0, 1], it allows to generalise common numerical schemes such as the explicit Euler (θ = 0) or implicit Euler methods (θ = 1). Denoting the n-th computation step with a n exponent, Eq.1.30 becomes:

φ n+1 -φ n ∆t + θv n+1 • ∇φ n+1 + (1 -θ)v n • ∇φ n = 0. (1.32)
This numerical scheme is unconditionnally stable for θ ≥ 0.5. Choosing θ = 0.5 allows to retrieve a Crank-Nicolson scheme that shows a convergence order in O(∆t 2 ). This outperforms Euler schemes having a convergence order in O(∆t). As a consequence, θ = 0.5 will be chosen in the following.

Interface problem

Finite element modelling

The finite element solving of Eq.1.31 requires to derive its weak formulation. To do so, function spaces S 0 and S φ in are introduced from Sobolev space H 1 (Eq.1.18):

S 0 = φ ∈ H 1 (Ω)/ ∀x ∈ ∂Ω in , φ = 0 S φ in = φ ∈ H 1 (Ω)/ ∀x ∈ ∂Ω in , φ = φ in . (1.33)
The integral weak formulation is obtained by multiplying Eq.1.30 by a test function φ ∈ S 0 and then by integrating over the computation domain Ω. The problem can be rewritten as follows:

Find φ ∈ S φ in such that, ∀φ ∈ S 0 , Ω φ φ n+1 -φ n ∆t dV + Ω θφ v n+1 • ∇φ n+1 dV + Ω (1 -θ)φ v n • ∇φ n dV = 0. (1.34)
Due to the discretisation of Ω (Eq.1.21), the levelset function φ (resp. φ ) is now approximated by φ h (resp. φ h ) belonging to the space S φ in h ⊂ S φ in (resp. S 0 h ⊂ S 0 ) in which continuous piecewise linear functions are again considered. The problem finally becomes :

Find φ h ∈ S φ in h such that, ∀φ h ∈ S 0 h , Ω h φ h φ n+1 h -φ n h ∆t dV + Ω h θφ h v n+1 • ∇φ n+1 h dV + Ω h (1 -θ)φ h v n • ∇φ n h dV = 0.
(1.35) When the usual Galerkin method is employed, a same approximation space is chosen for both test and weight functions. This leads to an unstable finite element approximation of hyperbolic problems. As a consequence, the problem presented in Eq.1.35 needs to be stabilised. This is achieved here through a Streamline Upwind/Petrov-Galerkin (SUPG) scheme [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF][START_REF] Burman | Consistent supg-method for transient transport problems: Stability and convergence[END_REF]. This results in adding a diffusion term to the finite element formulation that acts in the direction of the flow with a convective velocity v n+1 . This term is introduced by modifying the test function space to S 0 h such that:

φ h = φ h + τ e v n+1 • ∇φ h with φ h ∈ S 0 h . (1.36)
This expression involves a stabilisation parameter τ e that is defined for any element e as:

τ e = 1 2 
h e v n+1 e (1.37)
where h e is the characteristic length of element e and v e the average velocity for this element.

The SUPG stabilised problem finally reads:

Find φ h ∈ S φ in h such that, ∀ φ h ∈ S 0 h , Ω h φ h φ n+1 h -φ n h ∆t dV + Ω h θ φ h v n+1 • ∇φ n+1 h dV + Ω h (1 -θ) φ h v n • ∇φ n h dV = 0. (1.38) 1.3. Interface problem 1.3.3.

Reinitialisation step

The level-set method is based on a continuous distance function φ. This implies that the gradient of φ has to be unitary. In the context of interface modelling, the area of interest of the level-set function φ is restricted to the vicinity of Γ LV , V(Γ LV ). As a consequence, it has to be ensured that:

∇φ = 1 in V(Γ LV ) ⊂ Ω. (1.39)
However, the level-set function φ that is solution of the convection problem (Eq.1.38) does not necessarily respect the gradient property expressed in Eq.1.39. In order to satisfy this condition, a reinitialisation step follows the convection problem (Fig. 1.8). This consists in recomputing φ values to be consistent with Eq.1.39 while preserving the position of the interface (i.e. the zero iso-value of φ) computed from Eq.1.38.

Two strategies are commonly encountered in the literature. Most often, the strategy is indirect, meaning that a differential equation is solved on the domain, ensuring the respect of Eq.1.39 (Fig. 1.8). A Hamilton-Jacobi equation is thus considered [START_REF] Min | On reinitializing level set functions[END_REF]: .40) with τ called a fictive time and sgn(•) a smoothed sign function. The resolution requires a fictive time step ∆τ that should be seen as a bandwidth around the interface within which the level-set field is reinitialised after one increment. As a consequence, ∆τ is generally chosen to be equal to the mesh size ∆x [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. In the end, N resolution steps are needed to propagate the unitary gradient from the interface to the whole vicinity of the interface V(Γ LV ) ≈ N ∆x. One of the advantage of this technique is that Eq.1.40 can be rewritten as a convection problem that is similar to the level-set transport problem (Eq.1.30). As a consequence, the use of this technique implies a rather light implementation phase. 

∂ϕ ∂τ + sgn(ϕ 0 )( ∇ϕ -1) = 0 ϕ 0 = ϕ(x, τ = 0) = φ(x, t) . ( 1 

Interface problem

Even if this strategy is widely encountered in the literature, several drawbacks should be noticed. Due to hyperbolic nature of the equation under consideration, the resolution may diverge in practice, affecting the whole stability of the simulation. But, the main limit of this technique is the introduction of tuning parameters (i.e. ∆τ and N ) that may have an influence on the solution (Fig. 1.9). In our case study, the state of the system at a given time depends on all the previous time steps. As a consequence, the impact of the tuning parameters can be significant. In this work, the introduction of such parameters has been limited as much as possible, in order to avoid the accumulation of layers of complexity that may be interdependent and that would involve a cumbersome parametric study. In that purpose, an alternative direct reinitialisation strategy has been considered (Fig. 1.8). Direct reinitialisation consists in reconstructing the field φ geometrically after the convection step. For each node of the discretisation, the distance to the interface has to be recomputed [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF][START_REF] Ngo | Efficient direct re-initialization approach of a level set method for unstructured meshes[END_REF]. In practice, considering the space discretisation, it is equivalent to compute the distance between N node points and a polygonal chain composed of N edge edges (Fig. 1.8). The naive resolution therefore involves an algorithmic complexity of O(N node N edge ). This can be improved by considering a k -d tree implementation [START_REF] Shakoor | An efficient and parallel level set reinitialization method-application to micromechanics and microstructural evolutions[END_REF]. A proper partition of the space can drop the complexity to O(N node log(N edge )) if N node N edge , which is generally the case. However, this requires a recursive algorithm with rather complex stop criteria and potential difficulties when it comes to discontinuous interfaces. The performance of the initial algorithm can be however significantly enhanced by considering only the nodes that are located in the interface vicinity V(Γ LV ). In addition, parallel computing can be easily implemented so as to accelerate the computation [START_REF] Shakoor | An efficient and parallel level set reinitialization method-application to micromechanics and microstructural evolutions[END_REF].

Finally, the direct reinitialisation strategy allows to circumvent the drawbacks of the Hamilton-Jacobi technique and will be therefore considered in the following. In order to avoid unreasonable computation time, the implementation has been multithreaded and only the nodes located in V(Γ LV ) are considered. A reinitialisation of the whole domain Ω is however performed every N reinit Ω increments to ensure the stability of the computation. Arbitrarily, we will take in the following N reinit Ω = 6.

Capillary effects

Capillary effects

Due to the proximity between carbon fibres, capillary effects play an important role in the flow under consideration and must be taken into account by the model.

Physical modelling 1.4.1.1 Surface tension

At atomistic scale, the molecules located at the surface of a system are engaged in less chemical boundings than those in the bulk (Fig. 1.10). This results in a higher energy at the system surface. As a consequence, the system tends to minimise this excess energy to reach stability: this results macroscopically in a surface tension effect. This especially induces a stress tensor jump at the interface for which expression can be analytically derived.

Figure 1.10: Illustration of surface tension effects in the case of a liquid drop on a solid substrate (adapted from [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]).

Let Γ be an interface at equilibrium between two phases with a unit normal vector n. We here refer to a 2D case as represented in Fig. 1.11. In this case, the interface is a 1D curve parameterised by an arc length s. The tangential vector to the interface is denoted as t, with dt ds = C n and where C is the mean curvature of the interface. The interface is subject to the stress vectors associated with each phase σ i • n and with the surface tension f that acts as surface force. The force balance thus gives:

Γ df ds ds + Γ σ 1 • n -σ 2 • n σ•n ds = 0 (1.41)
where the stress jump is denoted as σ • n . It seems natural to consider that the surface tension force f is oriented along the surface:

f = γt (1.42)
where γ is called the surface tension coefficient. The relation presented in Eq.1.42 can be rigorously justified from mechanical equilibrium [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. Casting Eq.1.42 into Eq.1.41 leads to an equation that can be generalised in 3D [START_REF] Bruchon | Finite element setting for fluid flow simulations with natural enforcement of the triple junction equilibrium[END_REF]:

σ • n = - α=1,2 ∇ α (γt α ) (1.43)

Capillary effects

where ∇ α (resp. t α ) is the derivative (resp. tangent vector) with respect to the surface coordinate α. The product can be developed making explicit two terms:

σ • n = α -γ∇ α t α -∇ α γ • t α = -γC n - α ∇ α γ • t α =0 . (1.44)
The first term corresponds to the Laplace's law, while the second one is referred to as Marangoni effect: this will be neglected in our model as surface tension coefficients are supposed to be constant over space. In addition, the stress vector associated with the solid phase vanishes as fibres are considered to be rigid. Finally, the capillary contribution reads:

   σ • n LV = -γ LV C n at Γ LV σ • n = γ LS C n at Γ LS σ • n = γ SV C n at Γ SV . (1.45)
This contribution competes with the viscous effects. Consequently, the relative magnitudes of both phenomena are compared through a dimensionless number called capillary number Ca that characterises the flow under study:

Ca = μ V γ (1.46)
where μ and V have been introduced in Eq.1.15 and where γ is the characteristic surface tension value. 

Wetting

As it is observed in infusion processes, three different phases are generally considered: resin, rarefied air and fibres. All these phases intersect in a triple line L where surface tensions arising from the different interfaces interact (Fig. 1.12). This results in wetting phenomena.

The triple line is assumed to be at equilibrium. Therefore, the force balance accounts for surface tensions and solid reaction R s which is assumed to be normal to solid surface (Fig. 1.12):

γ SL t SL + γ SV t SV + γ LV t LV -R s n = 0 on L .
(1.47)

Projecting along the tangential gives Young's equation [START_REF] Young | III. an essay on the cohesion of fluids[END_REF]:

cos θ c = γ SV -γ SL γ LV (1.48)

Capillary effects

where θ c is the static contact angle, a characteristic of the capillary equilibrium of the system. However, in practice, wettability can hardly be reduced to a single contact angle. Indeed, a complex interplay of chemical, physical and topographical phenomena leads to a well-known, yet poorly understood, contact angle hysteresis [START_REF] Eral | Contact angle hysteresis: a review of fundamentals and applications[END_REF][START_REF] Butt | Contact angle hysteresis[END_REF][START_REF] Marmur | Thermodynamic aspects of contact angle hysteresis[END_REF][START_REF] Divin-Mariotti | Texturation micrométrique de surface par procédé mécanique de moletage pour optimiser la tenue mécanique des assemblages collés[END_REF][START_REF] Makkonen | A thermodynamic model of contact angle hysteresis[END_REF]. Even for a static system, the contact angles can lie between two extreme values -an advancing contact angle (maximum value) and a receding contact angle (receding value) -beyond which the system moves [START_REF] Snoeijer | Moving contact lines: scales, regimes, and dynamical transitions[END_REF]. The consideration of moving flow front naturally raises the question of the interface conditions to apply, especially at the contact line. As explained before, they must adress the Huh-Scriven paradox (Section 1.2.1.5) while being consistent with the physics of capillarity. However, capillary equations that have been presented before derive from an equilibrium assumption and thus fail to describe the intrinsic dynamic behaviour of the flow front motion.

Although being widely observed in everyday life phenomena such as wicking [START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF], dynamics in capillary effects still represent an active modelling field in the scientific community [START_REF] Rougier | Slip transition in dynamic wetting for a generalized Navier boundary condition[END_REF][START_REF] Teixidó | Capillary effects in fiber reinforced polymer composite processing: A review[END_REF][START_REF] Gründing | An enhanced model for the capillary rise problem[END_REF]. A considerable amount of work can be especially found on the characterisation and modelling of dynamic contact angles [START_REF] Kunz | A two-phase SPH model for dynamic contact angles including fluid-solid interactions at the contact line[END_REF]. From molecular kinetics [START_REF] Blake | Kinetics of liquidliquid displacement[END_REF], hydrodynamics [START_REF] Cox | The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow[END_REF][START_REF] Voinov | Hydrodynamics of wetting[END_REF] or combined models [START_REF] Petrov | A combined molecular-hydrodynamic approach to wetting kinetics[END_REF], the dynamic contact angle can be related to the capillary number and flow parameters. Such relations can thus be associated with a velocity slip condition to close the problem and to finally model the contact line motion with physical consistency [START_REF] Yokoi | Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface[END_REF]. However, the wide variety of contact angle models may lead to consider other paths [START_REF] Rougier | Slip transition in dynamic wetting for a generalized Navier boundary condition[END_REF]. For instance, the Interface Formation Model [START_REF] Shikhmurzaev | The moving contact line on a smooth solid surface[END_REF] considers a surface tension gradient in the contact line vicinity and yields a Generalised Navier Boundary Condition (GNBC) in which the dynamic contact angle is directly incorporated without considering further constitutive relation [START_REF] Shang | GNBC-based front-tracking method for the three-dimensional simulation of droplet motion on a solid surface[END_REF][START_REF] Qian | A variational approach to moving contact line hydrodynamics[END_REF][START_REF] Qian | Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows[END_REF]. In this part, an emphasis has been placed on dynamic contact angle which only represents a small part of the research about dynamic capillary effects. These effects will be detailed in the next sections.

Numerical approach

The numerical approach to deal with capillary effects is now detailed. As noticed previously, momentum conservation in Stokes problem is reduced to the usual divergence-free equation: 

∇ • σ = 0 in Ω. ( 1 
∂Ω\(∂Ω N ∪∂Ω D ) σ • n • v dS = Γ SL σ • n • v dS + Γ SV σ • n • v dS - Γ LV [σ V -σ L ] • n • v dS. (1.50)
The integrals reveal the capillary effects (Eq.1.45) as well as the Navier slip boundary condition (Eq.1.

3) for the interfaces with the solid phase:

∂Ω\(∂Ω N ∪∂Ω D ) σ•n•v dS = Γ SL γ SL C n - µ λ SL v •v dS+ Γ SV γ SV C n - µ λ SV v •v dS+ Γ SV [γ SV C n]•v dS.
(1.51)

Capillary terms can then be integrated by parts to derive explicitly contact line contribution. For that purpose, the mean curvature can be rewritten as the gradient of the tangent vector with respect to the surface coordinates (Eq.1.44):

Γ i γ i C n • v dS = Γ i γ i (∇ α t α ) • v dS = ∂Γ i γ i t • v dl A - Γ i γ i t • ∇ α v dS (1.52)
with i ∈ {LS, SV, LV } and where an integration by parts has been carried out. In practice, the surface gradient term in Eq.1.52 is expressed as a regular gradient projected over the tangent direction through the projection operator [START_REF] Bruchon | Finite element setting for fluid flow simulations with natural enforcement of the triple junction equilibrium[END_REF]:

t • ∇ α v = [I -n ⊗ n] :
∇v . Such a formulation benefits from the level-set approach for which the normal vector to the interface can be easily computed (Eq.1.28).

Then the boundary term on ∂Γ i , A, can be decomposed as a contact line component on L and a complementary part on ∂Γ i \ L :

i=SV,LS,LV ∂Γ i γ i t α • v dl = L [γ SL t SL + γ SV t SV + γ LV t LV ] • v dl + i=SV,LS,LV ∂Γ i \L γ i t i • v dl = L R s n • v =0 dl + i=SV,LS,LV ∂Γ i \L γ i t i • v dl . (1.53)
The contact line term reveals the surface tension equilibrium that is equal to the solid reaction, oriented along the direction normal to the interface (Eq. 1.47). This contribution finally vanishes as the normal component of velocity is zero due to the non-penetration condition [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. The complementary term on ∂Γ i \ L is strictly speaking not zero even if it is usually cancelled by choosing appropriate boundary conditions.

Injecting those developments into Eq.1.51 leads to the final form for interfacial terms:

∂Ω\(∂Ω N ∪∂Ω D ) σ • n • v dS = j=SV,LS Γ j µ λ j v • v dS (Navier slip) + i=SV,LS,LV Γ i γ i (I -n i ⊗ n i ) : ∇v dS (surface tension) + i=SV,LS,LV ∂Γ i \L γ i t i • v dl (complementary capillary term)
.

(1.54)
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It has to be noticed that Young's equation (Eq.1.48) does not appear in the formulation. More generally, no term on the triple line L is observed in Eq.1.54. Indeed, the integration by parts performed in Eq.1.53 leads to weakly prescribe the mechanical equilibrium on the triple line. As a consequence, the notion of contact angle, as presented in Eq.1.48, is absent from our model. This allows us not to introduce any additional relation that may contain tuning parameters. Through a drop spreading numerical experiment such as depicted in Fig. 1.13 and other test cases [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF], it can be shown that our model satisfactorily converges towards the theoretical contact angle predicted by Young's equation, validating the approach (Fig. 1.14) [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. This section aims at detailing some key points about the numerical implementation, especially regarding capillary terms. A first issue to tackle is the condition on the time step to guarantee the stability of the numerical scheme [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF][START_REF] Denner | Breaching the capillary time-step constraint using a coupled VOF method with implicit surface tension[END_REF]. It has been shown that this condition is particularly restrictive [START_REF] Popinet | Numerical models of surface tension[END_REF], and even intrinsic to the problem under consideration, thus independent of the numerical scheme [START_REF] Denner | Numerical time-step restrictions as a result of capillary waves[END_REF]. Indeed, the time step must be small enough to capture the fastest capillary waves. A solution consists in dampening rather than solving the fastest modes that are responsible for the numerical instability [START_REF] Popinet | Numerical models of surface tension[END_REF].

To do so, a semi-implicit formulation has been considered here: it adds a viscosity-like term that allows to greatly stabilise the scheme, thus alleviating the condition on the time step [START_REF] Hysing | A new implicit surface tension implementation for interfacial flows[END_REF][START_REF] Bänsch | Finite element discretization of the Navier-Stokes equations with a free capillary surface[END_REF]. This also significantly limits the interfacial parasitic currents. Indeed, an unprecise discretisation of the interface leads to an error on the curvature and thus to locally unbalanced stresses (Eq. 1.45). This entails unphysical velocities, also called spurious currents, that tend to deteriorate the interface [START_REF] Lafaurie | Modelling merging and fragmentation in multiphase flows with SURFER[END_REF][START_REF] Aboukhedr | Simulation of micro-flow dynamics at low capillary numbers using adaptive interface compression[END_REF][START_REF] Abadie | On the combined effects of surface tension force calculation and interface advection on spurious currents within volume of fluid and level set frameworks[END_REF][START_REF] Francois | A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework[END_REF]. The implemented semi-implicit scheme has been found to strongly limit this phenomenon, improving the overall stability [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF].

Another issue related to the numerical treatment of capillary effects is the assessment of surface tension integral over the moving liquid-vapor interface Γ LV (Eq.1.54) which can cut elements. The interface then divides the elements into two areas with different material properties, one corresponding to the liquid and the other one to the vapor. A severe jump of material properties is thus observed across the interface.

In order to address these problems, two strategies are usually encountered. The first one is the Continuum Surface Force (CSF) method and consists in turning surface integral into volume integral through Heaviside function [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF][START_REF] Yokoi | A density-scaled continuum surface force model within a balanced force formulation[END_REF][START_REF] Puaux | Simulation numérique des écoulements aux échelles microscopique et mésoscopique dans le procédé RTM[END_REF]. The initially sharp interface is smoothened over a short distance where the material parameters vary continuously (Fig. 1.15). This method is particularly relevant when diffuse interface strategies such as phase-field are considered [START_REF] He | Phase-field simulation of small capillary-number two-phase flow in a microtube[END_REF]. However, as the level-set field locates precisely the position of the interface, this strategy is not necessarily relevant.

The second approach is the Surface Local Reconstruction (SLR) method where the interface is here assumed to be sharp [START_REF] Pino Muñoz | A finite element-based level set method for fluid-elastic solid interaction with surface tension[END_REF][START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF][START_REF] Blais | Modélisation et suivi du procédé par infusion de résine sur une nouvelle génération de renforts structuraux pour l'aéronautique[END_REF]. For each element that is cut, the exact position of the interface is retrieved from the level-set field. This is rather efficient since the level-set problem lies on the simplex discretisation, intersections are thus quite straight to determine. Then, from the existing nodes and the intersection between the interface and the element edges, subelements are created (Fig. 1.15). In our case, only integration points are added without any increase in the number of nodes: the size of the finite element problem does not change. This leads to perform an exact integration over the element with the right material properties. The method is then more accurate than the CSF one, but above all it does not involve any additional parameter that may affect the numerical results. This method has been therefore considered. The presence of an interface induces discontinuities on the pressure field which requires a special attention from a numerical point of view. A jump of the pressure field is naturally observed due to surface tension effects as depicted in Laplace's law (Eq.1.43). The jump of material properties across the interface also entails discontinuities either on the pressure field itself, due to density jump, or on its gradient, due to viscosity jump. Yet, discontinuous fields cannot be modelled with the standard Galerkin approach where the fields are supposed to be continuous. Both strong and weak discontinuities, respectively on the field and on its gradient, should thus be captured by an appropriate method. Once again, due to the choice of a level-set method, non-smoothing approaches are preferred.

A wide range of options can thus be identified including discontinuous Galerkin method [START_REF] Bastian | A fully-coupled discontinuous galerkin method for two-phase flow in porous media with discontinuous capillary pressure[END_REF], extended finite element method [START_REF] Groß | An extended pressure finite element space for two-phase incompressible flows with surface tension[END_REF], ghost fluid method [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[END_REF][START_REF] Owkes | A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows[END_REF]. Ultimately, an enriched finite element method has been chosen. For each element cut by the interface, an enriched approximation space is considered. Three degrees of freedom are added: two for the pressure discontinuity [START_REF] Ausas | A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows[END_REF][START_REF] Ausas | An improved finite element space for discontinuous pressures[END_REF] and one for the gradient jump [START_REF] Coppola-Owen | Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions[END_REF]. A shape function M j vanishing at each node is then associated with each degree of freedom (Fig. 1.16). For an element e, the approximation of pressure field p e h thus becomes:

p e h = # node i N e i p e i Standard Galerkin approximation + # added dof j M e j pe j Enrichement (1.55)
where N e i is a standard shape function associated with node i of element e and pe j the enrichment degree of freedom j which is associated with M e j . As a consequence, the method does not add any further node to the problem. Instead, the introduction of the quantities pe j leads to additional equations on the existing nodes.

As the additional degrees of freedom are localised in the element, they can be condensed, meaning that can be expressed with respect to the initial nodal degrees of freedom. As a consequence, the size of the global system remains unchanged [START_REF] Ausas | A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows[END_REF][START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. The method thus only adds terms in the existing formulation without any change in the mesh structure. This preserves a light computational cost only limited by products and inversions of small size matrices [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. 

Problem coupling

Both fluid and interface capturing methods have been introduced independently: these problems need now to be coupled. Several paths can be considered.

The most straightforward strategy consists in solving both problems successively, in a staggered manner. An input level-set function splits the computational domain into initial liquid and vapor domains from which a first fluid problem is solved. The fluid velocity solution is then injected as a convective velocity for the level-set problem, leading to a next time step. The procedure is repeated until reaching the final time. This constitutes the weak coupling strategy (Fig. 1.17). Considering a given time, the weak coupling does not give a solution that both satisfies the fluid and level-set problems at once. Both problems can thus be expected to be coupled in a stronger way. For that purpose, they can be encompassed in a master non-linear problem of unknowns (v, p, φ), the resolution of which yields a global solution. For a given time, iterations between both problems are performed until a chosen convergence criteria are met (Fig. 1.18).

Problem coupling

An important benefit of an iterative scheme is to gradually reduce the non-physical diffusion term introduced with the semi-implicit strategy (Section 1.5). However, as iterations progressively remove the stabilisation term, parasitic currents increase which in turn increase the pseudodiffusion term and so on. This results in oscillatory interactions between spurious currents and the stabilisation term which may lead to a non-convergence of the master problem [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. As a consequence, considering a convergence criterion on the master problem may not be appropriate. Instead, the computation can be stopped when the interface is considered to be sufficiently stable, leading to a weaker convergence criterion yet more relevant in practice. In addition to computional performances and numerical robustness, the choice of the coupling scheme influences the results and raises questions on the physical modelling. From drop spreading numerical experiments, it has been shown that the coupling strategy alters directly the flow dynamics as well as the interface geometry [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. For instance, the strong coupling allows to converge quickly towards the static contact angle while it may be hardly reached for weak coupling. As previously discussed, when the position of the interface moves over time, the contact angle generally differs from the static one, as a perfect mechanical equilibrium is not reached. The strong coupling ensures a global equilibrium at any given time which can thus be critised when it comes to a transient two-phase flow.

Overall, both coupling strategies have been found to give satisfactory results [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. Yet, in this work, geometries under consideration can be very large, easily exceeding several millions of degrees of freedom. From those geometries, transient simulations with strong time step restrictions have to be performed. In the end, simulating a transient two-phase flow within a fibrous microstructure requires numerous expensive computation steps. The overall computational cost induced by a single simulation is thus significant both in terms of time and space. Therefore, a strong coupling strategy may be inappropriate as a higher number of computation steps are needed to reach a global convergence between problems. As a consequence, a weak coupling strategy, with small time steps, has been chosen here. Further studies should be carried out to assess more precisely the influence of the coupling strategy on the results, and to justify which strategy is the most physically consistent (Fig. 1.19). The physical and numerical modelling of the two-phase flow have been detailed. Our strategy leans on the resolution of local conservation law on realistic geometries. Our approach has the advantage of limiting, as much as possible, the use of constitutive laws especially when it comes to capillarity. The equations are solved within a finite element framework implemented in Z-set1 software. The stabilisation strategies and methods have been selected for simplicity of implementation, versatility, robustness and, most of all, the absence of tuning parameter. A validation case test is presented in Appendix D. This numerical strategy will be used to perform impregnation simulations in fibrous microstructures in the rest of this work2 .

Different upscaling procedures

We have described both the physical and numerical modelling of the flow at pore-scale. As explained previously, the flow has then to be upscaled to define a homogeneous equivalent medium that is relevant in an industrial context.

Separation of the description scales

The whole upscaling procedure is based on the observation of the relation between scales. The microscopic scale is characterised by a length r that corresponds here to the mean radius of the carbon fibres. This local behaviour is then homogenised over a volume, the characteristic length of which is L. Considering the local randomness of the medium, the volume must include a sufficiently high number of fibres in order to grasp the average behaviour relevantly. This should especially guarantee the independance with respect to the boundary conditions [START_REF] Ostoja-Starzewski | Microstructural randomness versus representative volume element in thermomechanics[END_REF].

Let Λ be the characteristic length associated with the upper scale which corresponds either to a tow or a part, depending on the situation. The homogenisation length must be sufficiently small compared to Λ so that a continuum can be considered at the upper scale. This also prevents the homogenisation volume to encompass macro-heterogeneities or edge effects from the macroscopic 1.7. Different upscaling procedures structure. This finally results in the following scale separation bounding that needs to be fulfilled in order to guarantee the relevance of the upscaling procedure (Fig. 1.20): r L Λ.

(1.56)

Introducing ε as the ratio between L and Λ, scales are well separated if:

ε = L Λ 1.
(1.57)

The homogenisation length L should be further characterised. The upper bound from Eq.1.56 is generally satisfied in the situation under consideration. For instance, tows generally contain several thousands of fibres while the convergence of the homogenised properties is generally achieved for few hundreds of fibres. The lower bound will be discussed in details in the next sections. 

From Stokes equation to Darcy's law

The case of a single phase steady flow is first considered. A lot of works based on different approaches have focused on the homogenisation of Stokes equations. Without diving into cumbersome mathematical developments, an overview of these methods is presented.

Volume averaging

A volume averaging procedure can be performed to carry out the upscaling [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Valdes-Parada | Validity of the permeability Carman-Kozeny equation: A volume averaging approach[END_REF][START_REF] Soulaine | Modélisation des écoulements dans les garnissages structurés: de l'échelle du pore à l'échelle de la colonne[END_REF][START_REF] Hassanizadeh | Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws[END_REF]. The volume averaging operator needs first to be introduced:

• : ψ → ψ = 1 V V ψ dV (1.58)
where ψ is a field variable such as the velocity or the pressure. The operator is then applied on a volume V = O(L d ) where a Stokes flow is observed. This volume must be a Representative Volume Element (RVE) so that the homogenisation procedure can be properly performed.

Representative volume element (RVE)

A RVE can be identified as the smallest volume for which the averaged property becomes independent of the volume size (Fig. 1.21). In other words, it corresponds to the smallest volume that reaches stability with respect to the homogenisation procedure. However, defining a RVE in a rigourous way can be difficult [START_REF] Ostoja-Starzewski | Material spatial randomness: From statistical to representative volume element[END_REF][START_REF] Moumen | Numerical evaluation of the representative volume element for random composites[END_REF]. In addition to the separation of the scales (Section 1.7.1), the RVE should also exhibit further properties to define a proper homogenisation volume. First, 1.7. Different upscaling procedures it should be statistically homogeneous, meaning that the statistical description of the geometry is invariant by translations [START_REF] Ostoja-Starzewski | Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions[END_REF]. Ergodicity is then assumed. This means that the behaviour of the overall structure can be retrieved from the average behaviour of smaller structures. In other words, space average matches ensemble average [START_REF] Ostoja-Starzewski | Material spatial randomness: From statistical to representative volume element[END_REF]. Although being difficult to justify in practice, the assumption is paramount here as it underpins the whole work. Indeed, from the analysis of realisations, that corresponds here to randomly generated microstructures, the ergodicity assumption states that the behaviour of the larger structure can be deduced.

In practice, the complexity of giving a proper definition for the RVE leads to various methods of characterisation: energy criterion [START_REF] Hill | Elastic properties of reinforced solids: some theoretical principles[END_REF], independence on the boundary conditions [START_REF] Moumen | Numerical evaluation of the representative volume element for random composites[END_REF], purely geometrical representativity [START_REF] Melro | Generation of random distribution of fibres in longfibre reinforced composites[END_REF][START_REF] Grufman | Determining a representative volume element capturing the morphology of fibre reinforced polymer composites[END_REF],... Considering realisations of random geometries, the RVE size can be identified when the upscaled properties have converged in average with a stable standard deviation [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF][START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF][START_REF] Chen | The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest interfiber spacing[END_REF]. Trias et al. introduced the concept of statistical representative volume element (SRVE) [START_REF] Trias | Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers[END_REF]. The representativity is then assessed with respect to both effective mechanical response and morphological structure, which is close to the strategy employed in the present study. 

Upscaling procedure

Once a RVE has been defined, the homogenisation procedure can be performed. The averaging operator is first applied to Stokes equations. The fields are then decomposed as a sum of an average component, that varies slowly and associated with the macroscale, and a deviation, that varies quickly and which is associated with the microscale (Fig. 1.22) [START_REF] Gray | A derivation of the equations for multi-phase transport[END_REF]:

ψ = ψ + ψ .
(1.59)

It seems important to notice that some assumptions are made here on the characteric frequency of variation of ψ and ψ , and not on their relative amplitude [START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?[END_REF]. However, it is often encountered that ψ ψ . The problem is usually closed by the introduction of a relation, referred to as closure relation that links the pertubation to the average or/and its gradient [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF]. This operates the connection between the microscopic and macroscopic scales. Such a relation can be cast as:

ψ = A • ψ (1.60)

Different upscaling procedures

where A is a closure variable. Finally, a problem is obtained for both macro and micro scales. The macroscopic problem relates the averaged (i.e. homogenised) variables. In the case of flow within porous media, this problem involves a tensor, the permeability K, that is intrinsic to the pore structure and that is an effective property of the porous medium. The permeability tensor naturally arises from the volume averaging procedure. It can be directly computed from the closure variables that are solutions of a closure problem. This problem derives from the injection of the closure relation (Eq.1.60) into the microscopic problem. It corresponds to an integro-differential boundary problem that can be complex to solve.

The closure problem is usually defined on a unit cell which consists in a fictitious medium, generally periodic for computation simplification [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF], and representative of the medium under consideration. It can be seen as a generally idealised representation of the porous medium. However, this notion differs from the RVE concept as detailed in [START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?[END_REF]. Note that, in the context of this work, both concepts may coincide as we consider periodic fibrous microstructures, the size of which is defined from the convergence of the averaged properties. 

Asymptotic homogenisation

The other main strategy to perform a homogenisation procedure is based on asymptotic analysis [START_REF] Auriault | Taylor dispersion in porous media: analysis by multiple scale expansions[END_REF][START_REF] Khuzhayorov | Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media[END_REF][START_REF] Chamsri | Derivation of Darcy's law using homogenization method[END_REF][START_REF] Boutin | Study of permeability by periodic and self-consistent homogenisation[END_REF]. Fields are expected to be a function of two independent position variables: x, a fast varying variable at local scale, and X, a slow varying one defined at macroscale. Both are linked by the scale parameter ε (Eq.1.57). We thus have:

ψ = ψ(X, x) x = 1 ε X .
(1.61)

Different upscaling procedures

This especially implies to rewrite the differential operators. For instance, the gradient operator becomes, through the chain rule:

∇ψ = ∇ X ψ + 1 ε ∇ x ψ. (1.62)
At local scale, the pore structure is generally assumed to be periodic over the local domain [START_REF] Boutin | Study of permeability by periodic and self-consistent homogenisation[END_REF][START_REF] Boutin | Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range[END_REF]. In other words, the whole pore structure can be retrieved by spatial tesselation of a unit cell. Even if the periodicity condition is convenient in practice, it can be relaxed, leading to more general results. The next step consists in expressing the fields as an asymptotic expansion with respect to ε:

ψ(X, x) = ε 0 ψ 0 (X, x) + ε 1 ψ 1 (X, x) + ... (1.63)
where the ψ i are periodic over the local domain. Classically, the order of the terms determines their weight in the decomposition. It is therefore common to conserve the two first orders. However, if scales are poorly separated further orders may be kept. Remark that the term order is not related to a specific scale. For instance, unlike ψ , ψ 0 does not correspond to the macroscopic contribution but depends on both X and x [START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?[END_REF]. Considering both Eq.1.62 and Eq.1.63 finally leads to rewrite Stokes equations, making explicit a polynomial on ε. Gathering the terms of same orders then gives a set of linear equations for which the form of the solution can be obtained. Finally, integrating over the domain yields the macroscopic constitutive law. 

Darcy's law

The overview of these methods highlights some similarities though the approaches follow different philosophies. A thorough comparison of both volume averaging and asymptotical methods is presented in [START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?[END_REF]. Other approaches are worth being reported. For instance, Hassanizadeh goes back to the second law of thermodynamics following Coleman-Noll procedure [START_REF] Hassanizadeh | Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws[END_REF][START_REF] Cimmelli | A generalized Coleman-Noll procedure for the exploitation of the entropy principle[END_REF]. Gray and Miller incorporate thermodynamical constraints into the averaging theory to improve the physical soundness of classical upscaling methods [START_REF] Gray | Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview[END_REF][START_REF] Gray | Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 3. Single-fluid-phase flow[END_REF]. More recently, Standnes used Langevin equation to describe the motion of a fluid particle within the porous medium as a Brownian particle [START_REF] Standnes | Derivation of the conventional and a generalized form of Darcy's law from the Langevin equation[END_REF].

Different upscaling procedures

All these approaches converge to justify the empirical macroscopical law proposed by Darcy in 1856 [START_REF] Darcy | Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d[END_REF] which can be written in its 3D generalised form as:

V = - 1 µ K • ∇P (1.64)
where V (resp. P ) is the macroscopic velocity (resp. pressure). This law has been then widely generalised to take further phenomena into account: viscous effects (Brinkman equation) [START_REF] Brinkman | On the permeability of media consisting of closely packed porous particles[END_REF], inertial effects (Forchheimer's law) [START_REF] Chen | Derivation of the Forchheimer law via homogenization[END_REF], gravity [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF],... The permeability tensor K appears as the key quantity in Darcy's law (Eq.1.64) as it characterises the pore structure at continuum scale. Permeability can be theoretically assessed from the homogenisation procedures presented previously. However, these are not necessarily convenient in practice: instead, Eq.1.64 is generally turned into a scalar equation. The permeability is then expressed in a simpler way:

K ≈ µ Q A ∆P L -1 (1.65)
where real materials in experimental studies or RVE/unit cells for computations, are submitted to a pressure drop ∆P over a distance L, involving a flow-rate Q across their cross-section A (Fig. 1.24).

Similarly, permeability can be assessed by measuring the pressure drop after prescribing a flow rate onto the system. Both methods are equivalent as long as scale separation is respected, since it guarantees the independence of the upscaled properties from the boundary conditions (Section 1.7.1). 

Permeability in the composite materials community

Permeability has been extensively studied in the literature, especially in the composite materials community, whether from an experimental, analytical, or numerical points of view. Experimentally, permeability is retrieved by observing flows within macroscopic fibrous reinforcement fabrics. A permeability, that is defined at the sample scale, is then derived from Eq.1.24. Through various benchmark exercices, experimental permeability has been found to suffer from a wide scattering, up to one order of magnitude, attributed to sample variability, uncertainties and most of all, human factors such as modelling choices [START_REF] Arbter | Experimental determination of the permeability of textiles: A benchmark exercise[END_REF][START_REF] Vernet | Experimental determination of the permeability of engineering textiles: Benchmark II[END_REF][START_REF] Yong | Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise[END_REF][START_REF] Sharma | Permeability measurement methods in porous media of fiber reinforced composites[END_REF]. Besides, permeability is retrieved from measurements that are performed either during or after the impregnation phase [START_REF] Park | Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review[END_REF]. Both choices can be criticised as they deviate from the initally proposed Darcy's law. The first strategy will be addressed in the dedicated section. Concerning the second method, the measurement is carried 1.7. Different upscaling procedures out after the impregnation step, when an equilibrium between liquid and vapor phases is observed [START_REF] Sisodia | Highresolution computed tomography in resin infused woven carbon fibre composites with voids[END_REF][START_REF] Nguyen | Permeability of natural fiber reinforcement for liquid composite molding processes[END_REF]. This final equilibrium involves stable air areas that result from vapor entrapment in the wake of the flow. This void content depends on flow conditions and therefore on the previous transient phase [START_REF] Lebel | Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements[END_REF]. This is a noticeable discrepancy from initial Darcy's law, where a steady flow of a single phase was originally considered.

Analytical developments for permeability predictions are based on solving Stokes equations on unit cells. After integrating the velocity to reveal the flow rate, permeability is identified by analogy with scalar Darcy's law (Eq.1.65). Permeability is then usually expressed as a function of the fibre volume fraction V f . Gebart's model is generally considered as a reference result [START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF]. From unit cell of quadratic and hexagonal fibre packings and using lubrication approximations, analytical expressions for longitudinal and transverse permeabilities, respectively K and K ⊥ , are proposed:

           K = r 2 8 α 1 (1 -V f ) 3 V 2 f K ⊥ = r 2 α 2 -1 + V max f V f 5 2
(1.66)

where α 1 , α 2 and V max f are explicit geometrical constants and r the constant fibre radius. Other models, based on different assumptions or geometries, are also commonly used in the literature [START_REF] Bruschke | Flow of generalized newtonian fluids across a periodic array of cylinders[END_REF][START_REF] Carman | Fluid flow through granular beds[END_REF]. Some of them are represented in Fig. 1.25. However, analytical approches generally lean on strong assumptions about the flow associated with idealised or simplified geometries [START_REF] Tamayol | Analytical determination of viscous permeability of fibrous porous media[END_REF]. This limits the representativity of such results which can hardly model realistic situations where a significant geometrical variability is generally encountered. Even if analytical models provide a quick estimation of permeability, it appears clearly that they suffer from unavoidable limitations. This leads to consider numerical approaches where solution fields are approximated in more representative geometries. tions are thus solved through numerous numerical methods, including finite differences [START_REF] Verleye | Permeability of textile reinforcements: Simulation, influence of shear and validation[END_REF], Fast Fourier Transform [START_REF] Willot | The permeability of boolean sets of cylinders[END_REF], Lattice Boltzmann [START_REF] Belov | Modelling of permeability of textile reinforcements: lattice Boltzmann method[END_REF][START_REF] Eshghinejadfard | Calculation of the permeability in porous media using the lattice Boltzmann method[END_REF][START_REF] Nabovati | A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[END_REF], finite volumes [START_REF] Caglar | Permeability of textile fabrics with spherical inclusions[END_REF][START_REF] Ali | In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach[END_REF][START_REF] Song | Prediction of permeability tensor for three dimensional circular braided preform by applying a finite volume method to a unit cell[END_REF], finite elements [START_REF] Ngo | Microscale permeability predictions of porous fibrous media[END_REF][START_REF] Wong | Comparisons of novel and efficient approaches for permeability prediction based on the fabric architecture[END_REF][START_REF] Ali | Non-destructive evaluation of through-thickness permeability in 3D woven fabrics for composite fan blade applications[END_REF][START_REF] Endruweit | A model for the in-plane permeability of triaxially braided reinforcements[END_REF][START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF][START_REF] Zeng | Numerical prediction of in-plane permeability for multilayer woven fabrics with manufacture-induced deformation[END_REF]. The numerical approaches are frequently applied at mesoscopic scale whether from idealised generated unit cells [START_REF] Carlone | Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes[END_REF][START_REF] Zeng | Numerical prediction of in-plane permeability for multilayer woven fabrics with manufacture-induced deformation[END_REF][START_REF] Verpoest | Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis[END_REF][START_REF] Karaki | Progress in experimental and theoretical evaluation methods for textile permeability[END_REF][START_REF] Endruweit | Effect of specimen history on structure and in-plane permeability of woven fabrics[END_REF], reconstructed geometries from tomography [START_REF] Ali | In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach[END_REF][START_REF] Ali | XCT-scan assisted flow path analysis and permeability prediction of a 3D woven fabric[END_REF][START_REF] Ali | Application of X-ray computed tomography for the virtual permeability prediction of fiber reinforcements for liquid composite molding processes: A review[END_REF][START_REF] Wijaya | A novel methodology to construct periodic multilayer 2D woven unit cells with random nesting configurations directly from µCT-scans[END_REF][START_REF] Straumit | Computation of permeability of a non-crimp carbon textile reinforcement based on X-ray computed tomography images[END_REF] or random unit cells [START_REF] Nabovati | A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[END_REF][START_REF] Vanaerschot | Stochastic multi-scale modelling of textile composites based on internal geometry variability[END_REF][START_REF] Vanaerschot | Experimentally validated stochastic geometry description for textile composite reinforcements[END_REF]. As indicated previously, such mesoscale studies often consider a dual-scale permeability as the flow is observed between and inside the tows. The flows inside the tows are frequently modelled through a homogeneous equivalent medium, typically ruled by Darcy's or Brinkman's law.

Similar to this work, some studies focus on a more local behaviour, at the scale of the fibres. In consistency with experimental observations [START_REF] Gommer | Quantification of micro-scale variability in fibre bundles[END_REF][START_REF] Vaughan | Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites[END_REF], the fibrous structure is generally regarded as random which results in considering a stochastic permeability [START_REF] Gommer | Influence of the micro-structure on saturated transverse flow in fibre arrays[END_REF]. As the random pore structure can hardly be reduced to its fibre volume fraction only (Appendix A), the permeability is then related to further statistical descriptors such as tortuosity [START_REF] Yazdchi | Microstructural effects on the permeability of periodic fibrous porous media[END_REF], nearest-neighbour distance [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF][START_REF] Li | Influence of structural parameters at microscale on the fiber reinforcement[END_REF], Delaunay triangulation [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF][START_REF] Yazdchi | Upscaling and microstructural analysis of the flow-structure relation perpendicular to random, parallel fiber arrays[END_REF] or Voronoi tesselation characteristics [START_REF] Seuffert | Micro-scale permeability characterization of carbon fiber composites using micrograph volume elements[END_REF]. This leads to practical relations that assess permeability while including statistical considerations [START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF]. However, we think that such statistical studies can be deepened by characterising permeability distributions more thoroughly, studying the interactions between morphological parameters (Appendix C) or accounting for other physical phenomena such as fluid slip.

Permeability thus appears as the key parameter to characterise the upscaling procedure when time-independent single-phase flows within fibrous media are considered. However, as mentioned previously, the impregnation step consists in a transient two-phase flow which therefore deviates from Darcy's law hypotheses. After impregnation of the fibrous structure, that is to say when the flow reaches steadiness, the porous medium is virtually never fully saturated as vapor bubbles are entrapped in the wake of the flow. As a consequence, permeability may be unadapted to deal with the upscaling of the flows under consideration. For a sufficiently low final void content, both time-independent single-phase and steady two-phase scenarios are expected to coincide. In such case, which can be especially observed in the areas that are sufficiently far from the flow front and where steadiness is reached, permeability should model properly the flow. Yet, a more precise and general description naturally requires upscaling quantities that are better suited for transient two-phase flow within porous media. Those will be described in the next section.

Upscaling procedure for a transient multiphase flow 1.7.3.1 Generalisation of Darcy's law to two-phase flow

We are now considering transient two-phase flows within a porous medium. This adds numerous difficulties into the models, such as dynamic effects, capillarity, or moving contact line. The upscaling of such flows has been a major topic of research for decades, impulsed by oil recovery or exploitation of aquifers. Later on, the composite materials community showed interest in this problem, as the notion of permeability was not sufficient to macroscopically describe the complex flows observed in the processes [START_REF] Yeager | Role of fiber distribution and air evacuation time on capillary driven flow into fiber tows[END_REF]. A brief review of the different upscaling approaches is now presented.

Theoretical works have been initially developed to justify the extension of Darcy's law to the transient two-phase cases. Both volume averaging [START_REF] Whitaker | Flow in porous media II: The governing equations for immiscible, two-phase flow[END_REF][START_REF] Lasseux | Two-phase inertial flow in homogeneous porous media: A theoretical derivation of a macroscopic model[END_REF] and asymptotic homogenisation [START_REF] Auriault | Nonsaturated deformable porous media: Quasistatics[END_REF] methods led to sucessfully generalise the relation. The macroscopic momentum conservation then reads:

V α = - 1 µ α K α • ∇P α (1.67)
1.7. Different upscaling procedures with α = L, V . Strictly speaking, this equation should involve coupling terms, which vanish in the context of this work as a high viscosity contrast is observed between the fluid phases [START_REF] Whitaker | Flow in porous media II: The governing equations for immiscible, two-phase flow[END_REF]. This expression is very similar to Eq.1.64 and involves a phase-dependent effective permeability term K α that will be discussed in the next sections.

The mass conservation equation is also altered as the flow changes the proportion of liquid and vapor phases over time. The proportion of phase α inside the pore volume is referred to as saturation S α . As the whole pore volume is full of liquid and vapor phases, the sum of the phase saturations equates unit. The mass conservation equation reads:

(1 -V f ) ∂S α ∂t + ∇ • V α = 0 (1.68) with α S α = 1. (1.69)
Then, Eq.1.67 can be injected into Eq.1.68 to yield Richards equation [START_REF] Allen | Numerical modelling of multiphase flow in porous media[END_REF]. The unknowns thus become S α and P α since velocity no more appears explicitly in the equation.

Transient two-phase flows are naturally more difficult to upscale than steady monophasic flows, due to the multiplicity of physical phenomena at play. As a consequence, analytical models can be difficult to propose [START_REF] Picchi | Relative permeability scaling from pore-scale flow regimes[END_REF][START_REF] Baron | Méthodes numériques pour les écoulements en milieu poreux: estimations a posteriori et stratégie d'adaptation[END_REF][START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF][START_REF] Brooks | Hydraulic properties of porous media[END_REF][START_REF] Haverkamp | A comparison of numerical simulation models for one-dimensional infiltration[END_REF][START_REF] Ginting | Computational upscaled modeling of heterogeneous porous media flow utilizing finite volume method[END_REF]. Upscaling procedure are then generally performed either experimentally or numerically. Similarly to the steady case, flows are considered within representative geometries such as fabrics in composites or rocks in soil science. However, as detailed in the next sections, the experimental approach can hardly investigate local phenomena and is generally limited to measure quantities at the system scale such as saturation or inlet/oulet pressure difference. This often leads to adapt the upscaling procedure to fit the experimental constraints.

A numerical strategy seems therefore particularly suited for upscaling procedures as it permits to evaluate the fields at any time and position. However, as presented in the previous sections, the numerical schemes can be complex and generally relies on strong modelling choices. In addition, the position of the flow front computed at a given time depends on all the previous time steps. A memory effect is thus observed. This constitutes a problem since both modelling and numerical errors can accumulate over time [START_REF] Hu | Wettability effects on supercritical CO 2brine immiscible displacement during drainage: Pore-scale observation and 3D simulation[END_REF]. This can especially make difficult the prediction of flow path across the pore structure [START_REF] Ferrari | Challenges in modeling unstable two-phase flow experiments in porous micromodels[END_REF][START_REF] Ling | Modeling variability in porescale multiphase flow experiments[END_REF][START_REF] Fakhari | A phase-field lattice boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO 2 sequestration at pore scale[END_REF]. In order to assess the validity of the numerical approach, simulations are frequently compared with experimental flows performed on designed micromodels (Appendix D) [START_REF] Konangi | Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions[END_REF][START_REF] Sivanesapillai | Fluid interfaces during viscous-dominated primary drainage in 2d micromodels using pore-scale sph simulations[END_REF][START_REF] Yan | Transient two-phase flow in porous media: A literature review and engineering application in geotechnics[END_REF][START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF][START_REF] Zarikos | Manufacturing a micromodel with integrated fibre optic pressure sensors[END_REF].

Capillary pressure and saturation

At this point, the problem has six unknown fields (S α , V α , P α ) for only five relations (Eqs.1.67, 1.68,1.69). The system should be closed by adding a relation between pressure and saturation [START_REF] Niessner | Comparison of two-phase Darcy's law with a thermodynamically consistent approach[END_REF]. To do so, similarly to the local Laplace's law, the pressure difference between phases P L -P V is generally assimilated to a macroscopic capillary pressure P c :

P c = P L -P V .
(1.70)

In practice, the relation between P c and S L is then determined to close the problem. The determination of such curve represents a dense and active area of research [START_REF] Alazaiza | Characterization of capillary pressure-saturation relationships for double-porosity medium using light transmission visualization technique[END_REF]. Yet, some analytical 1.7. Different upscaling procedures models are commonly used to describe that relation in a first approach. One can especially notice Brooks-Corey (Eq.1.71) [START_REF] Brooks | Hydraulic properties of porous media[END_REF] and van Genuchten (Eq.1.72) [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF] models: However, it is commonly acknowledged that P c -S L curves are not unique and are especially dependent on the flow scenario. In order to get rid of the hysterisis phenomenon, an additional parameter needs to be considered: the specific interfacial area a LV [START_REF] Hassanizadeh | Toward an improved description of the physics of two-phase flow[END_REF][START_REF] Porter | Lattice-Boltzmann simulations of the capillary pressure-saturation-interfacial area relationship for porous media[END_REF][START_REF] Karadimitriou | Micromodel study of two-phase flow under transient conditions: Quantifying effects of specific interfacial area[END_REF][START_REF] Niessner | Modeling two-phase flow in porous media including fluid-fluid interfacial area[END_REF][START_REF] Niessner | Modeling kinetic interphase mass transfer for twophase flow in porous media including fluid-fluid interfacial area[END_REF]. This naturally increases the complexity for determining capillary pressure curves.

P c = P BC S -1 λ BC L (1.71) P c = P vG S --1 m vG L -1 1 n vG . ( 1 
The fact that capillary pressure matches the difference of averaged pressure between phases (Eq.1.70) is not necessarily straightforward [START_REF] Hassanizadeh | Thermodynamic basis of capillary pressure in porous media[END_REF]. This definition is however convenient in practice, especially from an experimental point of view where the measurement of the local pressure field can be complex. Indeed, for upscaling purpose, experiments are generally carried out in samples by prescribing a flow rate. It is then convenient to measure the pressure difference between the inlet and outlet, which is assumed to correspond to the capillary pressure P c , following Eq.1.70. Experimentally, it is thus often considered that:

P c ≈ |P (inlet) -P (outlet)| (1.73)
This makes it possible to follow the evolution of capillary pressure over time and to finally relate it to saturation S L in order to retrieve the constitutive law. In spite of its practical interest, 1.7. Different upscaling procedures this can be critised in several ways. Capillary effects arise from a purely interfacial phenomenon. It can thus be surprising that capillary pressure matches a quantity defined at volume scale. Indeed, the pressure difference exposed in Eq.1.70 and Eq.1.73 may result from other phenomena that are not necessarily related to capillarity [START_REF] Bottero | From local measurements to an upscaled capillary pressure-saturation curve[END_REF]. It has been especially shown that such expressions are only valid at equilibrium [START_REF] Gray | TCAT analysis of capillary pressure in non-equilibrium, twofluid-phase, porous medium systems[END_REF][START_REF] Hassanizadeh | Thermodynamic basis of capillary pressure in porous media[END_REF]. Experimenters should thus wait for an equilibrium that may take several hours or days to be reached in order to be physically consistent. Such a considerable duration is explained by the time needed for the forces at play to be balanced throughout the volume. This may entail long phenomena of fluid redistribution [START_REF] Schlüter | Time scales of relaxation dynamics during transient conditions in two-phase flow[END_REF]. To model those dynamic effects, a corrective term is generally added leading to define a dynamic capillary pressure P dyn c that corresponds to the instantaneous phase pressure difference [START_REF] Hassanizadeh | Dynamic effect in the capillary pressuresaturation relationship and its impacts on unsaturated flow[END_REF][START_REF] Goel | Experimental investigation of nonequilibrium capillarity effects: Fluid viscosity effects[END_REF][START_REF] Das | Dynamic effects in capillary pressure relationships for two-phase flow in porous media: Experiments and numerical analyses[END_REF][START_REF] Zhuang | The effect of dynamic capillarity in modeling saturation overshoot during infiltration[END_REF]:

P dyn c = P c -τ dyn ∂S L ∂t (1.74)
where τ dyn is a damping time coefficient controlling the rate to reach the equilibrium. This coefficient has been extensively studied showing that its value can span several orders of magnitude with complex dependancies [START_REF] Li | The dynamic effect in capillary pressure during the displacement process in ultra-low permeability sandstone reservoirs[END_REF][START_REF] Bottero | Nonequilibrium capillarity effects in two-phase flow through porous media at different scales[END_REF][START_REF] Hassanizadeh | Dynamic effect in the capillary pressuresaturation relationship and its impacts on unsaturated flow[END_REF][START_REF] Camps-Roach | Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling[END_REF][START_REF] Das | Dynamic effects in capillary pressure relationships for two-phase flow in porous media: Experiments and numerical analyses[END_REF]. In spite of its complexity, the coefficient is sometimes assessed from an analytical relation proposed by Stauffer [START_REF] Stauffer | Time dependence of the relations between capillary pressure, water content and conductivity during drainage of porous media[END_REF].

Even if the strategy that has been presented permits an upscaling procedure that leads to a satisfactory macroscopical description for given configurations, major shortcomings have been highlighted. Indeed, an accurate model requires the tedious determination of complex capillary pressure relations, which are also geometry-dependent. In the end, the amount of work induced by the upscaling of capillary pressure is tremendous, while suffering from a lack of theoretical soundness.

In the composite materials community, the macroscopic resultant of capillary effects quickly became a topic of interest since it appeared to represent a non-negligible complementary force influencing the impregnation [START_REF] Teixidó | Capillary effects in fiber reinforced polymer composite processing: A review[END_REF]. Notably, it has been experimentally remarked that capillary effects act as an additional driving force that tends to accelerate the impregnation [START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF]. As detailed previously, capillarity also influences the final void content [START_REF] Schell | Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding[END_REF]. As a consequence, the resulting effect of capillary phenomena has been studied through the characterisation of a capillary pressure [START_REF] Koubaa | Investigation of capillary impregnation for permeability prediction of fibrous reinforcements[END_REF][START_REF] Amico | An experimental study of the permeability and capillary pressure in resin-transfer moulding[END_REF][START_REF] Teixidó | Capillary effects in fiber reinforced polymer composite processing: A review[END_REF]. Most of these studies are experimental and may suffer from a lack of a sound theoretical basis.

Even though the underlying physical phenomena are similar for both soil science and composite materials community, the approaches that are encountered in both communities may differ. This can be explained as both communities used to be poorly connected, especially because the applications are far apart with different constraints. Unlike soil science, capillary pressure is considered in the composite materials community as a time-independent quantity that characterises the flow. It can thus be seen as an intrinsic property of the system under consideration, rather than a saturation-dependent quantity [START_REF] Andriamananjara | Modélisation numérique des procédés LCM à l'échelle des milieux homogènes équivalents en cours de déformation-intégration de la pression capillaire lors de l'infusion et équilibrage post-infusion[END_REF][START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF]. In this context, capillary pressure is generally computed from 1D impregnation experiments. From the position of the flow front over time, capillary pressure is retrieved by identification between measurements and an analytical solution [START_REF] Koubaa | Investigation of capillary impregnation for permeability prediction of fibrous reinforcements[END_REF]. It is also usually assessed from analytical models that relate directly capillary pressure to morphological descriptors of the pore structure [START_REF] Willenbacher | Out-of-plane capillary pressure of technical textiles[END_REF][START_REF] Gourichon | A new numerical procedure to predict dynamic void content in liquid composite molding[END_REF][START_REF] Facciotto | Modeling of anisotropic dual scale flow in rtm using the finite elements method[END_REF][START_REF] Amico | An experimental study of the permeability and capillary pressure in resin-transfer moulding[END_REF][START_REF] Neacsu | Spontaneous radial capillary impregnation across a bank of aligned micro-cylinders-Part I: Theory and model development[END_REF]. More recently, the quantity has been assessed after assuming an equivalence between Washburn's equation and Darcy's law [START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF]. Finally, the values of capillary pressure that are identified show a wide scattering that span from few hundreds of pascals to several tens of kilopascals. This may lead to contradictory conclusions about the importance of capillary effects in the manufacturing processes of composite materials. This dispersion can be observed in Fig. 1.27 where some values of capillary pressure found in the 1.7. Different upscaling procedures literature are represented. Yet, it should be noticed that experiments are carried out with different liquids and flow settings, as well as different materials and semi-products architectures: all this directly influences the result. In that sense, it can be difficult to compare the results with each other. Upscaled capillary pressure is here expected to stem from a sound physical definition. Getting back to the initial physical laws, capillarity can either be expressed directly through pressure drop at the interface, or indirectly from Laplace's law. Both relations are defined at the interface level. They should be then integrated over the interface, rather than over the volume, to yield more appropriate macroscopic definitions for capillary pressure [START_REF] Starnoni | On the concept of macroscopic capillary pressure in two-phase porous media flow[END_REF][START_REF] Li | An improved method for estimating capillary pressure from 3D microtomography images and its application to the study of disconnected nonwetting phase[END_REF][START_REF] Armstrong | Linking pore-scale interfacial curvature to column-scale capillary pressure[END_REF][START_REF] Meisenheimer | Exploring the effect of flow condition on the constitutive relationships for two-phase flow[END_REF]. Such approaches can be justified from a theoretical point of view [START_REF] Jackson | Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 6. Two-fluid-phase flow[END_REF][START_REF] Lasseux | A macroscopic model for immiscible two-phase flow in porous media[END_REF][START_REF] Gray | TCAT analysis of capillary pressure in non-equilibrium, twofluid-phase, porous medium systems[END_REF]. However, in practice, neither the pressure drop at the interface, nor the interface curvature can easily be measured [START_REF] Herring | Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone[END_REF]. These limits can be circumvented through numerical simulation, and further upscaling stategies will be proposed [START_REF] Armstrong | Linking pore-scale interfacial curvature to column-scale capillary pressure[END_REF].

Relative permeability

Generalised Darcy's law (Eq.1.67) involves a phase-dependent permeability quantity K α , called effective permeability. In the hydrogeology community, this quantity is generally considered to be a function of the saturation, introducing another constitutive relationship [START_REF] Raeini | Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces[END_REF]. Considering the invading liquid phase, V L should be zero in absence of liquid phase (S L = 0) and should match K when the medium is fully saturated (S L = 1). As a consequence, following Eq.1.67, it is generally assumed that:

K L = k r (S L )K (1.75)
where k r is a non-dimensional relative permeability coefficient with k r (S L = 0) = 0 and k r (S L = 1) = 1 [START_REF] Das | A numerical study of microheterogeneity effects on upscaled properties of two-phase flow in porous media[END_REF][START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF]. Similarly to capillary pressure (Fig. 1.28), Brooks-Corey (Eq.1.76) and van

Different upscaling procedures

Genuchten (Eq.1.77) models are frequently employed to model the behaviour of k r :

k r = S 2+3λ BC λ BC L (1.76) k r = S 1 2 L 1 -1 -S 1 m vG L m vG 2
.

(1.77) Even if the use of relations between relative permeability and saturation can be convenient in practice, their lack of physical justification has been pointed out [START_REF] Hassanizadeh | Toward an improved description of the physics of two-phase flow[END_REF]. In addition, for a given material, such curves have been found to be dependent on other parameters such as fluid relative properties or flow settings [START_REF] Raeini | Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces[END_REF].
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In the composite material community, the permeability term associated with a multiphase flow has been also widely studied. The quantity is generally referred to as unsatured permeability and its introduction leans more on experimental convenience rather than a physically-based justification [START_REF] Park | Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review[END_REF]. Generalised Darcy's law in 1D is then turned into a scalar equation and integrated, to retrieve the position of the flow front over time. This involves a permeability term which is sometimes even assimilated to the usual permeability, and can be assessed from flow front position measurements [START_REF] Weitzenböck | Radial flow permeability measurement. part A: Theory[END_REF][START_REF] Adams | Radial penetration of a viscous liquid into a planar anisotropic porous medium[END_REF]. This can be critised as soon as such transient measurements encompass other phenomena like capillarity: saturated and unsaturated permeabilities have to be distinguished [START_REF] Park | Unsaturated and saturated permeabilities of fiber reinforcement: critics and suggestions[END_REF][START_REF] Li | Dynamic capillary impact on longitudinal micro-flow in vacuum assisted impregnation and the unsaturated permeability of inner fiber tows[END_REF][START_REF] Francucci | Study of saturated and unsaturated permeability in natural fiber fabrics[END_REF][START_REF] Larson | Insights from in-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds[END_REF][START_REF] Salvatori | Permeability and capillary effects in a channel-wise non-crimp fabric[END_REF][START_REF] Caglar | Assessment of capillary phenomena in liquid composite molding[END_REF][START_REF] Staal | In-series sample methodology for permeability characterization demonstrated on carbon nanotube-grafted alumina textiles[END_REF][START_REF] Naik | Permeability characterization of polymer matrix composites by RTM/VARTM[END_REF].

Conclusion on upscaling methods

Usual methods for upscaling flows within porous media have been briefly exposed. Even though the procedure to address single-phase steady flow is rather established, discrepancies are observed when it comes to the transient two-phase case. The approaches encountered in soil science have 1.8. Objectives of the study been especially detailed as the associated community has significantly contributed to the study of such problems. However, the involved models generally require constitutive relations that suffer from a lack of physical grounding though they can be convenient to determine and to use in practice. Still, their rigourous determination can be extremely time consuming. Even if these approaches may yield a satisfactory modelling of the flow, numerous shortcomings have been highlighted, leading us to reconsider them.

The resulting capillary pressure is here expected to be computed at the interface level, rather than at the whole volume scale. First, this seems consistent with the physical phenomenon under consideration, but it is also in agreement with recent observations from the literature [START_REF] Lasseux | A macroscopic model for immiscible two-phase flow in porous media[END_REF][START_REF] Ferrari | Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy[END_REF][START_REF] Starnoni | On the concept of macroscopic capillary pressure in two-phase porous media flow[END_REF]. In addition, the dependency between resulting capillary pressure and saturation can be critised. Indeed, defining a resulting capillary pressure at the interface level may lead to consider it as an intrisic property of the fluids and pore structure, regardless of the saturation state of the structure. This is consistent with the usual consideration of capillary pressure in the composite materials community.

Relative permeability will not be considered in this work. Even if theoretical works justify the soundness of Darcy's law extension to multiphase flows, determining an effective permeability is not straightforward and still raises open questions. We assume that the difference between saturated and unsaturated permeability can be attributed to capillary effects [START_REF] Caglar | Assessment of capillary phenomena in liquid composite molding[END_REF][START_REF] Salvatori | Permeability and capillary effects in a channel-wise non-crimp fabric[END_REF]. In other words, capillary effects are here considered not to be encompassed by Darcy's law. It is equivalent to assume that the capillary and viscous effects are independent. Consequently, an additionnal contribution, that is purely related to capillarity, will be considered in the macroscopical model [START_REF] Andriamananjara | Modélisation numérique des procédés LCM à l'échelle des milieux homogènes équivalents en cours de déformation-intégration de la pression capillaire lors de l'infusion et équilibrage post-infusion[END_REF][START_REF] Gommer | Stochastic modelling of textile structures for resin flow analysis[END_REF][START_REF] Schell | Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding[END_REF].

Objectives of the study

In this work, numerical simulations of flows will be performed in randomly generated fibrous microstructures so as to carry out an upscaling procedure within a statistical context. Both timeindependent single-phase and transient two-phase flow cases will be addressed. The approach first requires an algorithm for the random generation of fibrous microstructures. The representativity of such geometries has to be assessed by comparison with experimentally observed microstructures. After determining a RVE size relative to the property under consideration, microstructures can be generated massively and meshed. Flows simulations are next performed following the physical and numerical modelling detailed previously. Appropriate upscaling procedures are finally proposed and applied, leading to retrieve descriptive quantities which can be analysed in a statistical way.

The contributions of this work are multiple and help to address the shortcomings mentioned in the previous sections. First, the whole study allows to characterise a statistical behaviour in order to model the variability inherent to fibrous structures, in consistency with the ergodicity assumption. Statistical studies on permeability that can be found in the literature often lean on a basic characterisation of distributions. We do think that the statistical study can be deepened by considering further data-science tools including machine-learning techniques, such as Gaussian Process Regression (Appendices B,C).

In addition, the extension of the statistical study to the transient two-phase case represents a major novelty to our knowledge. This first requires to clarify the upscaling procedure in order to identify quantities that suitably grasp the physics of the flow under consideration. The upscaling quantities are here expected to be stochastic scalars that only depend on the pore structure and flow parameters. Lastly, this work aims at connecting the upscaling approaches present in the 1.8. Objectives of the study composite materials community to the methods developed in other fields such as soil science.

This work compiles three articles, already published or in the process of publishing, that give answers to the exposed concerns. The first one explores the probabilistic characterisation of permeability that is linked to some morphological descriptors of the fibrous structure. Taking into account fluid slip phenomenon, permeability is finally bounded in two different ways, leading to an analytical law that incorporates both physical and stochastic considerations. The second paper focuses on the upscaling procedure in the case of transient two-phase flows. More specifically, upscaling descriptors from different communities are discussed, compared, and adapted to retrieve a set of variables that is suitable for the case under consideration. The third article also deals with the two-phase transient case and explores the dataset composed of morphological and flow parameters as inputs, and upscaling descriptors identified in the previous paper as outputs.

Résumé en français

L'écoulement diphasique transitoire local est décrit par les équations de conservation de la masse et de la quantité de mouvement, correspondant aux équations de Navier-Stokes. Dans le cadre du travail réalisé, la faible valeur de nombre de Reynolds pousse à se limiter aux équations de Stokes. Le modèle incorpore les effets capillaires issus des phénomènes de tension de surface. La loi de Laplace reliant le saut de vecteur de contrainte à l'interface à la courbure moyenne est alors considérée. Enfin, la présence de ligne triple où les trois phases se rencontrent et interagissent pousse à la prise en compte des phénomènes de mouillage. Ceux-ci nécessitent généralement la caractérisation d'angle de contact ainsi que des phénomènes physiques complexes associés. Cet angle est ici considéré comme une conséquence des phénomènes de tension de surface et ne sera pas explicitement présent dans la modélisation.

La résine envahissant l'espace poral au cours de l'imprégnation, une interface mobile entre les phases liquide et vapeur doit être considérée. Celle-ci est modélisée par une méthode level-set qui se base sur un champ de distance signée à l'interface et qui est ensuite convecté par le champ de vitesse du fluide. Pour garantir le respect des propriétés mathématiques inhérentes à une fonction level-set, une étape de réinitialisation doit être envisagée. Pour des raisons de stabilité et d'absence de paramètres d'ajustement, une stratégie directe, basée sur une reconstruction géométrique du champ de distance est considérée ici.

Les problèmes fluide et level-set sont résolus par une méthode éléments finis qui nécessite des schémas de stabilisation. Le problème fluide est stabilisé par une méthode ASGS issue du cadre VMS tandis qu'une méthode SUPG est sélectionnée pour le problème level-set. Bénéficiant de leur robustesse et de leur relative simplicité d'implémentation, les méthodes numériques sont implémentées dans le logiciel Z-set et s'appuient sur des travaux préalables de notre équipe.

Le couplage entre les deux problèmes soulève des questions de modélisation, à la fois physique et numérique. Les problèmes peuvent être résolus successivement menant à un couplage faible. Néanmoins, des stratégies itératives menant à une solution plus globale vis-à-vis des deux problèmes considérés, peuvent aussi être envisagées. Compte-tenu de l'important coût numérique des simulations réalisées, un couplage faible sera envisagé.

La présence d'une interface liquide/vapeur induit certaines difficultés qui nécessitent un traitement numérique adéquat. Afin de calculer les intégrales d'interface et d'identifier précisément la position des phases en présence, l'interface est reconstruite localement de façon exacte à l'aide d'une méthode SLR. La présence de discontinuités faible et forte pour le champ de pression pousse à enrichir l'espace d'approximation de la pression, sans introduire de degré de liberté supplémentaire.

Objectives of the study

Enfin, un schéma semi-implicite permet de stabiliser grandement la méthode en rajoutant un terme de diffusion qui limite les courants parasites dus à la tension de surface et allège les conditions de stabilité particulièrement restrictives sur le pas de temps.

Les méthodes de montée en échelle permettent ensuite de transposer la description locale des écoulements vers les échelles supérieures. Dans le cas monophasique permanent, les méthodes d'homogénéisation usuelles justifient la loi de Darcy initialement introduite de façon empirique. La relation fait intervenir la notion de perméabilité comme un paramètre clé dans la procédure de montée en échelle. Bien que cette grandeur ait été particulièrement étudiée dans la littérature, elle ne permet pas une description pertinente du régime diphasique transitoire, ce qui mène à considérer des stratégies spécialement adaptées à ce type d'écoulement. La montée en échelle de tels écoulements représente une thématique de recherche centrale en science des sols. Les stratégies classiquement rencontrées s'appuient sur des travaux théoriques rigoureux qui généralisent notamment la loi de Darcy. Néanmoins, elles reposent sur des lois dont la validité et la cohérence physique peuvent être discutées. Parallèlement à ces approches, la communauté des matériaux composites s'appuie généralement sur des mesures expérimentales de pressions capillaires ou de perméabilités insaturées dont les définitions diffèrent de la science des sols. L'absence de socle théorique rigoureux permettant de justifier de telles approches reste néanmoins notable.

Les limites et divergences des stratégies de montée en échelle dans le cadre du régime diphasique transitoire poussent ainsi à envisager d'autres méthodes, davantage centrées sur les équations physiques régissant les écoulements et appropriées à la description de l'imprégnation de milieux fibreux. En outre, la stochasticité géométrique des milieux considérés mène à considérer une procédure de montée en échelle réalisée de façon statistique, en cohérence avec l'hypothèse d'ergodicité.

Chapter 2

Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF] Accepted on 6 July 2021 in International Journal of Multiphase Flow

In this article, a statistical study on transverse permeability of random fibrous medium is performed. For that purpose, numerous random numerical microstructures are generated with constant or randomly varying fibre radii. Their statistical representativity with respect to experimental data is first briefly discussed. Flow simulations are then performed on these digital microstructures to retrieve their full transverse permeability tensor. The representative volume element (RVE) size is determined by studying convergence of permeability distribution when domain size increases. This allows to characterise the medium isotropy as well as the impact of geometrical randomness on permeability. The approach also integrates Gaussian process regression, that is a Bayesian machine learning model, to consider variability within interpolation in the proposed permeability predictive model. In addition, this paper considers the impact of fluid slip at liquid/fibre interface on permeability for random fibrous media. An analytical expression is proposed to describe precisely the transition from a no-slip to a free-slip regime. This allows us to propose a probabilistic model that links permeability to both the fibre volume ratio and slip length. This finally yields two bounds for transverse permeability of fibrous media: a first related to statistical scattering and a second purely linked to fluid slip.

Introduction

Permeability is a key notion for describing flows within porous materials. As a consequence, this tensorial characteristic has been extensively studied in numerous scientific communities [START_REF] Darcy | Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF] including modelling of manufacturing processes such as Liquid Composite Moulding (LCM) for long carbon fibre reinforced polymers wherein a viscous fluid impregnates fibrous preforms [START_REF] Trochu | Advanced numerical simulation of liquid composite molding for process analysis and optimization[END_REF][START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF][START_REF] Calado | Effective average permeability of multi-layer preforms in resin transfer molding[END_REF][START_REF] Park | Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review[END_REF].

Classically, flows in porous media can be studied at various scales. Experimental approaches to describe permeability of fibrous materials operate at a macroscopic scale (i.e. the laboratory 2.1. Introduction scale). They were found to suffer from a lack of reproducibility as well as a high sensitivity to laboratories settings [START_REF] Arbter | Experimental determination of the permeability of textiles: A benchmark exercise[END_REF][START_REF] Vernet | Experimental determination of the permeability of engineering textiles: Benchmark II[END_REF]. On the contrary, analytical and computational approaches consist in local studies of flows across fibrous microstructures. Both local and macroscopic descriptions can be connected through an upscaling procedure from which permeability naturally shows up. Considering local scale approaches, analytical models that are convenient to use [START_REF] Carman | Fluid flow through granular beds[END_REF][START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF][START_REF] Bruschke | Flow of generalized newtonian fluids across a periodic array of cylinders[END_REF] lean on geometrical simplifications that do not allow to consider realistic systems with intrinsic variabilities (e.g. random fibre radius, random fibre placement,...) as observed in manufacturing processes. These limitations lead researchers to develop numerical strategies to characterise permeability more accurately [START_REF] Nedanov | A method to determine 3D permeability of fibrous reinforcements[END_REF][START_REF] Orm | A robust monolithic approach for resin infusion based process modelling[END_REF][START_REF] Comas-Cardona | A generic mixed fesph method to address hydro-mechanical coupling in liquid composite moulding processes[END_REF]. This approach first requires virtual geometries. Those can be obtained from digitisation of real-world materials thanks to recent tomography techniques [START_REF] Zeng | Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties[END_REF][START_REF] Ali | Non-destructive evaluation of through-thickness permeability in 3D woven fabrics for composite fan blade applications[END_REF] or in a pure numerical way with textile modelling software [START_REF] Lomov | Textile composites: modelling strategies[END_REF][START_REF] Durville | Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[END_REF] or random nonoverlapping disk algorithms. The latter will be detailed in Section 2.2.1. This work is primarily oriented towards modelling the manufacturing processes of composite materials, although these results can be relevant wherever a viscous flow in a fibrous medium is observed: textile, biomechanics,... In this study, no direct comparison with experimental permeability measurements will be carried out. However, comparisons with other numerical results -which has been found to be consistent with the experiment -will be performed.

From those fibrous geometries, mass (Eq.2.1) and momentum (Eq.2.2) local conservation equations for a Newtonian incompressible viscous fluid (i.e. Stokes equations) are classically solved to first represent the fluid flow across the fibrous arrangements and then to assess their permeability:

∇ • v = 0 (2.1) µ L ∆v -∇p = 0 (2.2)
where v is the fluid velocity, p the fluid pressure and µ L the fluid viscosity. This is done through various numerical methods: Finite Element Method (FEM) [START_REF] Taylor | A numerical solution of the Navier-Stokes equations using the finite element technique[END_REF], Lattice Boltzman Method (LBM) [START_REF] He | Lattice boltzmann model for the incompressible Navier-Stokes equation[END_REF], Fast Fourier Transform (FFT) [START_REF] Wiegmann | Computation of the permeability of porous materials from their microstructure by FFF-Stokes[END_REF][START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF],... As indicated previously, those local equations can be upscaled to get a macroscopic description of the fluid flow within the porous structure. This corresponds to Darcy's law [START_REF] Darcy | Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Auriault | Heterogeneous medium. Is an equivalent macroscopic description possible?[END_REF]:

∇ • V = 0 (2.3) V = - 1 µ L K • ∇P (2.4)
where V (resp. P ) is the upscaled velocity (resp. pressure) and K the second-order permeability tensor. This permeability term naturally comes from the upscaling procedure: it encompasses all the effects leading to the fluid energy loss, i.e. fluid viscosity effects and its contact with fibres [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF].

Hence both contributions of flow channels formed between fibres and fluid/fibres interaction should be investigated. It has been also highlighted that permeability may be affected by thermal effects or by the type of fluid under consideration [START_REF] Standnes | Implications of molecular thermal fluctuations on fluid flow in porous media and its relevance to absolute permeability[END_REF]: those contributions will be neglected here. In practice, solution fields at the local scale are integrated to then compute permeability from Eq.2.4 (Section 2.2.3). Permeability tensor K is generally represented by a diagonal matrix since fluid is assumed to flow along the principal directions of the medium under consideration. This assumption is however rarely verified [START_REF] Nabovati | A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[END_REF] as computing off-diagonal components of the permeability tensor may be challenging. In this paper, geometrical periodicity allows to provide periodic boundary
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conditions leading to a direct computation of the off-diagonal components. The importance of those terms will be discussed. That upscaling procedure must be performed on a representative volume element (RVE) that is the smallest geometry for which permeability becomes independent of the domain size [START_REF] Hill | Elastic properties of reinforced solids: some theoretical principles[END_REF][START_REF] Trias | Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers[END_REF][START_REF] Grufman | Determining a representative volume element capturing the morphology of fibre reinforced polymer composites[END_REF][START_REF] Swaminathan | Statistically equivalent representative volume elements for unidirectional composite microstructures: Part I-Without damage[END_REF][START_REF] Gitman | Representative volume: Existence and size determination[END_REF][START_REF] Bodaghi | On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: A review[END_REF]. Numerical permeability of fibrous media is then generally studied from single deterministic unit cells that are supposed to be representative of real-world materials [START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF][START_REF] Ngo | Microscale permeability predictions of porous fibrous media[END_REF]. Yet, fibrous materials display a natural geometrical complexity that justifies a statistical modelling [START_REF] Zhang | Statistical modeling of in-plane permeability of non-woven random fibrous reinforcement[END_REF][START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF][START_REF] Chen | The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest interfiber spacing[END_REF][START_REF] Yazdchi | Upscaling and microstructural analysis of the flow-structure relation perpendicular to random, parallel fiber arrays[END_REF]. As a consequence, for a given fibre volume fraction V f value, permeability tensor of numerous random RVEs should be computed to provide an accurate characterisation of the property. This is done in this paper where the tensors computed from microstructures are regarded as realisations of a permeability continuous random variable. Only few papers can be found with a similar methodology for permeability study of fibrous materials [START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF][START_REF] Zhang | Statistical modeling of in-plane permeability of non-woven random fibrous reinforcement[END_REF]. This approach differs from [START_REF] Trias | Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers[END_REF][START_REF] Trias | Random models versus periodic models for fibre reinforced composites[END_REF] where a statistical RVE (SRVE) is defined as a geometry sufficiently large to capture both physical and geometrical information.

As noticed previously, permeability can be related to fluid/fibres interaction. As a consequence, the condition provided at the liquid/solid interface has a direct impact on the permeability. As carbon fibre radius is around 3.3 µm [START_REF] Vaughan | A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials[END_REF] and industrial requirements for V f may be close to 0.6, flow channels between fibres may become submicrometric. At this scale, the usual no-slip condition at the liquid/solid interface should be reconsidered to take fluid slip into account [START_REF] Stone | Engineering flows in small devices: microfluidics toward a lab-on-a-chip[END_REF][START_REF] Neto | Boundary slip in Newtonian liquids: a review of experimental studies[END_REF][START_REF] Zhu | Limits of the hydrodynamic no-slip boundary condition[END_REF]. Fluid slip is an active research topic in various communities [START_REF] Rougier | Slip transition in dynamic wetting for a generalized Navier boundary condition[END_REF][START_REF] Lauga | Microfluidics: The No-Slip Boundary Condition[END_REF][START_REF] Chen | General criteria for the estimation of effective slip length over corrugated surfaces[END_REF][START_REF] Sharma | Slip flow through microchannels with lubricant-infused bi-dimensional textured surfaces[END_REF][START_REF] Kurotani | A novel physical mechanism of liquid flow slippage on a solid surface[END_REF]. It can be explained by surface roughness effects as well as chemical fluid/solid affinity [START_REF] Jiménez Bolaños | Derivation of the Navier slip and slip length for viscous flows over a rough boundary[END_REF]. This is in line with industrial observations according to which permeability measurements may be sensitive to carbon fibres surface treatment [START_REF] Dukkipati | Experimental investigation of fiber sizing-test fluid interaction for in-plane permeability measurements of continuous fibers[END_REF]. Fluid slip consideration is also convenient when it comes to modelling moving fluid front in transient multiphase flows as it allows to alleviate Huh-Scriven paradox [START_REF] Huh | Hydrodynamic model of steady movement of a solid/liquid/fluid contact line[END_REF]. Details on fluid slip origins and terminologies can be found in [START_REF] Vinogradova | Wetting, roughness and flow boundary conditions[END_REF].

Mathematically, fluid slip is generally expressed through Navier slip condition [START_REF] Navier | Mémoire sur les lois du mouvement des fluides[END_REF] at the liquid/solid interface Γ LS . It relates tangential fluid velocity to shear components of fluid Cauchy stress tensor σ (Fig. 2.1):

v • t = - λ µ L t • σ • n on Γ LS (2.5)
where λ is the slip length, and t (resp. n) is a unit tangential (resp. normal) vector to Γ LS . This generalises no-slip (λ → 0) and free-slip conditions (λ → ∞) [START_REF] Vinogradova | Drainage of a thin liquid film confined between hydrophobic surfaces[END_REF][START_REF] Venkatesan | On the Navier-slip boundary condition for computations of impinging droplets[END_REF]. Many articles can be found on experimental or numerical determination of slip length for various fluid/solid couples [START_REF] Joseph | Direct measurement of the apparent slip length[END_REF][START_REF] Ramos-Alvarado | Hydrodynamic slip length as a surface property[END_REF][START_REF] Kobryn | Slip boundary conditions in nanofluidics from the molecular theory of solvation[END_REF]. It is generally found to span from 10 -9 m to 10 -6 m. Maali et al. [START_REF] Maali | Measurement of the slip length of water flow on graphite surface[END_REF] estimate the slip length for water/graphite couple to be 8 ± 2 nm. It can be then remarked that those orders of magnitude can be comparable to the characteristic size of flow channels within our microstructures. Slip length will be considered here as a constant parameter even if its dependencies to other characteristics of the flow might be complex and still on study [START_REF] Rougier | Slip transition in dynamic wetting for a generalized Navier boundary condition[END_REF][START_REF] Andrienko | Boundary slip as a result of a prewetting transition[END_REF][START_REF] Maciel | On the wall slip of polymer blends[END_REF][START_REF] Jiménez Bolaños | Derivation of the Navier slip and slip length for viscous flows over a rough boundary[END_REF]. However, as slip length mainly acts as an intrinsic property of the fluid/solid couple, it seems appropriate to consider it as independent of the imposed pressure drop -at least for a Newtonian fluid. The influence of slip length value on permeability of idealised geometries has been investigated in few articles [START_REF] Feuillebois | Transverse flow in thin superhydrophobic channels[END_REF][START_REF] Feuillebois | Effective slip over superhydrophobic surfaces in thin channels[END_REF][START_REF] Bazant | Tensorial hydrodynamic slip[END_REF][START_REF] Kumar | Permeability and effective slip in confined flows transverse to wall slippage patterns[END_REF]. One of the novelties of this paper is to consider fluid slip on numerous RVEs of fibrous media on top of other sources of variability. We will first describe the microstructure generation method and its representativity (Section 2.2.1). Full permeability tensor (Section 2.2.3) of numerous generated geometries will be then computed from finite element solving (Section 2.2.2) of Stokes equation. This will allow to determine the domain size to reach a RVE (Section 2.3.1). Then isotropy of the RVEs will be discussed (Section 2.3.2). The influence of fibres centre randomness (Section 2.3.3) and radius variability (Section 2.3.4) on permeability will be also detailed. Gaussian process regression (Section 2.2.4) will be integrated into the statistical analysis. In the end, fluid slip will be considered and its influence on permeability will be characterised (Section 2.3.5). A probabilistic model that links permeability to V f and slip length will be finally proposed. This will give boundings to stochastic permeability. Those results will be then discussed (Section 2.4): comments will be first made about the variability of permeability. Then the influence of fluid slip on permeability -with slip lengths consistent with available experimental measurements -will be discussed.

Materials and methods

Materials and methods

Microstructure generation algorithm and representativity

Various numerical methods for microstructure generation can be found in the literature [START_REF] Yang | A new method for generating random fibre distributions for fibre reinforced composites[END_REF][START_REF] Melro | Generation of random distribution of fibres in longfibre reinforced composites[END_REF][START_REF] Wongsto | Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section[END_REF]. Those consist in non-overlapping disk placement methods that are finally supposed to be representative of the transverse section of long fibre composite materials. The most straightforward algorithm is named hard-core method and consists in placing fibre centers totally randomly before performing a non-overlapping test of 2D cross-sections [START_REF] Buryachenko | Quantitative description and numerical simulation of random microstructures of composites and their effective elastic moduli[END_REF]. This method is highly limited by jamming effect that prevents from reaching high V f . The algorithm can be adapted to reduce this effect and provide geometrical periodicity [START_REF] Melro | Generation of random distribution of fibres in longfibre reinforced composites[END_REF].

Another technique consists in starting from an initial configuration that is subsequently perturbated randomly by picking a random displacement vector for each fibre [START_REF] Gusev | Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite[END_REF][START_REF] Wongsto | Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section[END_REF][START_REF] Catalanotti | On the generation of RVE-based models of composites reinforced with long fibres or spherical particles[END_REF]. Potentialbased methods that consider fibres as a set of interacting particles seem to be the most efficient to reach high V f [START_REF] Ismail | Discrete element method for generating random fibre distributions in micromechanical models of fibre reinforced composite laminates[END_REF][START_REF] Liu | Micro-flow model with a new algorithm of random fiber distribution over the transverse cross-section[END_REF]. In spite of the efficiency of the presented algorithms, the question of representativity still remains. This is regularly assessed through Complete Spatial Randomness (CSR) characterisation thanks to related tools such as Ripley's function [START_REF] Ripley | Modelling spatial patterns[END_REF]. However, such a consideration does not lie on experimental observations. In addition, total randomness cannot be observed at high V f due to the non-overlapping condition. Indeed, it entails forbidden positions
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for fibre placement that result in a biased CSR: this is comparable to an interaction potential between fibres [START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF][START_REF] Ghosh | Quantitative characterization and modeling of composite microstructures by Voronoi cells[END_REF][START_REF] Grufman | Determining a representative volume element capturing the morphology of fibre reinforced polymer composites[END_REF]. To overcome this issue, generation algorithms that are directly based on experimental parameters distribution can be also proposed [START_REF] Vaughan | A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials[END_REF]. Despite the representativity of these approaches, it has been finally shown in [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF] that fibrous geometries and permeability results slightly depend on generation algorithm, at least for moderate V f values. At last, only few algorithms take radius randomness into account [START_REF] Liu | Micro-flow model with a new algorithm of random fiber distribution over the transverse cross-section[END_REF][START_REF] Matsumura | Numerical simulation of fluid flow through random packs of cylinders using immersed boundary method[END_REF] while it may entail an additional source of variability. Its influence will be investigated in this paper.

In the context of this study, the requirements related to the generation method were multiple. First, the algorithm should reach V f values around 0.6 to be relevant for industrial applications. Then the generated microstructures should display a variability C r of fibre radius r that is set at 10% in this work. Fibre radius should follow a normal distribution: r ∼ N (r, C r r) = N (r, 0.1r). The microstructures should also be periodical to provide periodic boundary conditions. Indeed, this allows to be consistent with rigourous homogeneisation procedures and to reach a RVE for smaller domain size since edge effects are prevented [START_REF] Yvonnet | Computational Homogenization of Heterogeneous Materials with Finite Elements[END_REF]. At last, the method should be computationnally efficient enough to generate numerous microstructures.

For all these reasons, this work focus on a simple method that generates microstructures within a square domain of size L 2 by perturbating an initally dense quadratic packing (Fig. 2.2). It is based on an algorithm proposed in [START_REF] Gusev | Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite[END_REF] with some differences. Fibre centres are first placed according to a quadratic packing of maximum compacity. Then random radii are picked in a Gaussian law N (r, C r r) and a non-overlapping condition is enforced. The value of r can be directly computed from both domain size and V f :

r = L V f N f b π (2.6)
where N f b is the number of fibre contained inside the domain that is explicitly calculated from V f and L considering a quadratic packing. Then a random displacement vector is applied on each fibre. This displacement is kept if it does not lead to fibre overlapping or to a distance between fibres so small that it could cause mesh refinement issues: it is here chosen to reject distances inferior to 0.07r. This is repeated N p times. That step also provides geometrical periodicity as a fibre going out of the domain reenters on the opposite side. The algorithm is also convenient to generate microstructures with a constant fibre 2.2. Materials and methods radius by taking C r

1. An example of numerically generated microstructure with varying radius can be observed in Fig. 2

.3.

Other generation algorithms have also been tested. It has been remarked that the targeted fibre radius variance could be difficult to retrieve, especially for high V f values. This is directly related to the non-overlapping rejecting test. The generation algorithm described previously has been found to be suitable to limit this problem. Indeed, for all the V f considered here, a Gaussian radius variability with C r ∼ 10% can be retrieved. Through this algorithm, the obtained V f value may slightly differ from the targeted one, especially for V f > 0.55. Indeed, a limit is observed for V f ∼ 0.62: higher V f values cannot be reached. Even if the maximum compacity for a quadratic packing is close to 0.78, a compromise between obtaining very high V f values and mesh issues has to be achieved. Indeed, for very high V f values, flow channels become so narrow that ensuring a sufficient number of finite elements to represent the flow profile correctly may be complex. It should be remarked that this issue could be alleviated by using anisotropic mesh adaptation techniques [START_REF] Digonnet | Massively parallel anisotropic mesh adaptation[END_REF] that would help to reach higher V f values. Representativity of the generated microstructures should be next assessed. The CSR criterion is here rejected due to the arguments developed previously : the non-overlapping condition makes irrelevant complete spatial randomness as it acts as an interaction potential between fibres. We choose to compare first and second nearest neighbour (NN) distance distributions of the generated microstructures to experimental ones. Further microstructural parameters are commonly used in literature : Delaunay triangulation [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF], Voronoi tesselation characteristics [START_REF] Kumar | Voronoi cell volume distribution and configurational entropy of hard-spheres[END_REF],... However, first and second NN distances are one of the most straightforward tools to characterise fibrous microstructures on a first approach. These morphological parameters measure short-range interactions of the particules.

Experimental microstructure analyses are so rare that we struggled to find some well described data for comparing with our virtual microstructures. In Fig. 2.4, we compared our NN distributions to results from Vaughan and McCarthy [START_REF] Vaughan | A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials[END_REF] that consider experimental distributions of carbon fibres for high performance composite materials with high V f value. First NN distribution can be reasonably modelled with a Gaussian law, while 2nd NN distribution fit a nearly symmetric lognormal law. It can observed that both 1st NN distributions are centred on close values while differences can been seen for the 2nd NN. Furthermore, variance is significatly higher for numerically 2.2. Materials and methods generated microstructures. However, it should be remarked that the experimental distribution relies on a single microstructure while several fibrous geometries should be analysed to retrieve a more representative distribution. Further comparisons should be carried out when supplementary documented data are made available. Nonetheless, mean NN distances of our generated microstructures are rather close to experimental ones which give us confidence on the relevance of representativity of the generation algorithm. By comparing 1st NN distribution for different numbers of perturbations N p , it can be seen in Fig. 2.5 that distributions become stable from N p = 1000. In a similar fashion, it has been observed that permeability distributions are nearly unchanged from 1000 perturbations, for a same set of input parameters. For the rest of the study, N p = 5000 will be chosen. 

Numerical strategy

Stokes equations are solved on fluid domain Ω L (Fig. 2.6) using a stabilised FEM approach implemented in Z-Set software1 which has been widely presented in former articles [START_REF] Chevalier | Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements[END_REF][START_REF] Pacquaut | Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes-Darcy flows[END_REF][START_REF] Orm | A robust monolithic approach for resin infusion based process modelling[END_REF]]. An Algebraic Sub-Grid Scale (ASGS) [START_REF] Codina | A stabilized finite element method for generalized stationary incompressible flows[END_REF][START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF] stabilisation scheme is implemented to circumvent Ladyzhenskaya-Babuška-Brezzi [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] condition with a piecewise linear approximation of both velocity and pressure fields. Accounting for Navier slip in the weak formulation can be now briefly described, further details are presented in [START_REF] Chevalier | Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements[END_REF]. The weak formulation of the problem is obtained by multiplying Stokes equations by appropriate test functions and then integrating by parts. This leads to a surface integral term T on the boundaries of the fluid domain, ∂Ω L . For single-phase flow, the integral is decomposed into two terms: a Neumann boundary condition term on RVE boundaries (i.e. the imposed stress vector on RVE boundaries), T ∂Ω N , and a complementary term on the fibre contours, T Γ LS , that naturally reveals the Navier slip condition:

T = T ∂Ω N + T Γ LS (2.7)
with:

T Γ LS ≡ Γ LS σ • n • v dΓ = Γ LS - µ L λ v • v dΓ (2.8)
by considering Eq.2.5 and where v is a test function with suitable properties. Computational times strongly depend on both domain size and V f . For V f = 0.5 and L/r = 60, the mesh around 10 6 nodes leading to 3×10 6 degrees of freedom (two per nodes for velocity and one 2.2. Materials and methods for pressure) (Fig. 2.7). The number of nodes has been optimised using an adaptative mesh: 8 points are regurlarly placed on the contour of each fibre. For each point, the first NN inter-fibre distance is computed to define a mesh size map (Fig. 2.7). This finally permits to retrieve the minimum number of elements (i.e. 8 elements from our tests) within each flow channel between fibres to ensure a good representation of the parabolic Poiseuille-like flow. The full computation chain, from microstructure generation to flow simulations, has been performed on a desktop computer (CPU: i5-8500, 6×3.0 GHz ; RAM: 16 Gb) and lasts approximately 10 minutes with a direct solver for the finite element linear system: around 80% of the computation time is taken by the resolution of the FEM problem. Computational times are thus reasonable enough to generate data massively. 

Boundary conditions and permeability tensor computation

The permeability tensor K (Eq.2.4) is considered as a continuous random variable: each permeability tensor k computed from a generated microstructure is regarded as a realisation of K. The computation of k is detailed in the following.

Considering a given microstructure, constant pressures p 1 and p 2 are applied on opposite boundaries entailing a pressure difference ∆p = p 2 -p 1 (Fig. 2.6). Pressure is weakly imposed through the Cauchy stress tensor: n • σ • n = -p 1 or -p 2 on ∂Ω N . Note that for this linear approach the computed permeability does not depend on the pressure differential. Since the mesh is periodic, a periodic velocity is easily prescribed on perpendicular edges (Fig. 2.6):

v(x, 0) = v(x, L) v(0, y) = v(L, y)
for a pressure drop along x direction y direction .

(2.9)

This allows the full permeability tensor k to be computed from outgoing flows (Fig. 2.8). Let's assume that a pressure difference ∆ j p is imposed over a length L j , along the j direction characterised by a unit vector e j . The upscaled pressure gradient is usually linearised: ∇p D = (∆ j p/L j ) e j . The

upscaled velocity component v D i is generally defined as v D i = Q i /A i where Q i = A i v •e i dA i is the
flow-rate through cross-section A i . Darcy's law can thus be rewritten (Eq.2.4) so that permeability
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can be computed:

k ij = -v D i µ L L j ∆ j p = - Q i A i µ L L j ∆ j p . (2.10)
It is important to notice that the computation of off-diagonal components of permeability tensor from perpendicular outgoing flow is allowed by periodic boundary conditions. A comparable method for permeability calculation can be found in [START_REF] Nabovati | A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[END_REF]. As a general notation, the overscript bar (e.g. k) will denote for the rest of the paper the empirical mean computed from realisations. 

Gaussian process regression

Several kinds of variability affect the permeability values in this study. As a consequence, it is relevant to consider the resulting permeability through a regression method that naturally takes into account those variabilities and proposes an uncertainty estimation for interpolation. Moreover, as computation may be expensive, the regression should be efficient even for small databases. For all these reasons, a Bayesian machine-learning approach, namely Gaussian Process Regression (GPR), is selected here [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF]. The basics of GPR are now detailed. GPR is equivalent to kriging [START_REF] Krige | A statistical approach to some basic mine valuation problems on the witwatersrand[END_REF][START_REF] Matheron | Principles of geostatistics[END_REF][START_REF] Gratiet | Multi-fidelity Gaussian process regression for computer experiments[END_REF] even if both approches are different: GPR uses a Bayesian framework while kriging is based on the best linear unbiased predictor.

A dataset D is considered :

D = (X 1 , Y 1 ), ..., (X N , Y N ) = X D , Y D . (2.11)
From D, the image Y * of an new input X * / ∈ D through the unknown function to model f is sought. For sake of simplicity, the case f : R → R is presented here even though the approach can be generalised for higher dimension spaces. GPR is based on a probabilistic interpolation of data: f is seen as a random variable. In other terms, the probability of a model knowing the dataset D is considered. The latter can be rewritten using Bayes formula. A hypothesis on the
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prior probability distribution should be then proposed. GPR assumes that the model probability follows a Gaussian process:

∀f X 1 ,...,Xn = f (X 1 ), ..., f (X n ) , f X 1 ,...,Xn ∼ N (0, C) (2.12)
where C corresponds to the covariance matrix that can be expressed with a kernel function c according to Mercer's theorem. The choice of the kernel function makes an assumption on the regularity of the function to model. In the context of this study, variations are supposed to be rather smooth leading to consider a common radial basis function:

C ij = c(X i , X j ) = σ exp - (X i -X j ) 2 2 2 c (2.13)
where σ and c are two hyper-parameters. The previous assumptions on the Gaussian behaviour allows to use related powerful properties. They especially state that Y * knowing D and X * (i.e. the new wanted output knowing the related new input and the dataset) follows a Gaussian trend with explicit formula for parameters:

p(Y * |D, X * ) ∼ N (µ * , Σ * ) (2.14) with: µ * = c(X * , X D ) T • c(X D , X D ) + νI -1 • Y (2.15) and Σ * = c(X * , X * ) -c(X * , X D ) T • c(X D , X D ) -1 + νI • c(X * , X D ) (2.16)
with c(X * , X D ) = c(X * , X 1 ), ..., c(X * , X N ) and c(X D , X D ) = c(X i , X j ) ij . Eq.2.15 should be seen as the most probable output for X * while Eq.2.16 is the related uncertainty on interpolation. This is illustrated in Fig. 2.9 as an example where the dataset contains only six (X i , Y i ) couples: Eq.2.15 corresponds to the blue continuous line while Eq.2.16 corresponds to the light blue shaded zone. A noisy GPR formulation is considered here (Eq.2.15, 2.16): a diagonal perturbation term νI is added. Such a term has a double interest. First, it adds a flexibility on dataset points. This prevents from overfitting but also allows taking dataset variability into account (Fig. 2.9, 2.10). Second, the noisy formulation has also a purely numerical role. Indeed, Eq.2.16 relies on inverting a matrix that can be poorly conditionned due to the use of a quadratic exponential function (Eq.2.13). Noise terms thus make inversion stable. In the context of this work, we select the noise intensity α to have a physical meaning, it will be equal to the variability observed at each dataset point. At last, it should be remarked that the derivation of hyper-parameters σ and c have not been detailed yet. Those are classicaly computed afterwards by maximisation of the marginal likelihood function. 
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RVE determination

The first step of our approach consists in determining the RVE size to ensure the validity of the upscaling process. Classicaly, permeability is computed for increasing domain size. The minimum length to retrieve a reasonable convergence towards an asymptotical value corresponds to the RVE size δ RV E . The convergence pattern is characterised by a clear convergence of mean value as well as a decrease of the variability [START_REF] Du | On the size of representative volume element for Darcy law in random media[END_REF]: the domain becomes large enough to capture the statistical information of the medium. The value of δ RV E clearly depends on V f . It can be expected that δ RV E diminishes when V f increases as geometrical arrangement tends towards a hexagonal pattern that can be described with a well-known unit cell [START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF]. In addition, δ RV E can be related to the type of boundary condition that are applied. Indeed, periodic boundary conditions are known to help convergence as it gets rid of edge effects since the space is toroidal [START_REF] Yvonnet | Computational Homogenization of Heterogeneous Materials with Finite Elements[END_REF].

Permeability tensor is thus computed for various domain size δ at different V f values. Domain size is here expressed as a dimensionless quantity :

δ = L r . (2.17) 
A no-slip condition is first considered at fluid-solid interface as Navier slip is supposed not to have a significant impact on RVE size. For each (δ, V f ) couple, 30 microstructures are considered. This allows to determine the RVE related to a given V f value. We have considered V f ∈ {0.3, 0.4, 0.5, 0.6} to describe situations from highly porous cases to the ones observed in the manufacture of high performance composite materials. An exemple of convergence plot for permeability of diagonal terms is represented in Fig. 2.11 for both constant and random Gaussian radii. As indicated earlier, microstructures with a constant radius are obtained by setting a coefficient of variability for the fibre radius close to zero (i.e. C r 1). Those curves follow the expected trend as mean values converge towards a constant value and variability decreases. When convergence is reached for diagonal terms, off-diagonal components are found to be two orders of magnitude lower than diagonal ones. It has thus been chosen to neglect them. Those results follow the conclusions of [START_REF] Nabovati | A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[END_REF]. It should be reported that, for a given microstructure, discrepancies are observed between off-diagonal terms whereas permeability tensor is generally considered as symmetric. Those differences can be attributed to numerical artefacts or permeability computing method. This is not really problematic as far as the weight of those terms is irrelevant.
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The value of δ RV E is now estimated. For all V f values, the coefficient of variability C k (i.e. the ratio between the standard deviation and the mean value) decreases when δ increases until being stable at around 3%. Similar observations can be found in [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF] for constant fibre radii. Based on this observation, we first choose to define δ RV E as the first value from which C k becomes lower than 5%. Estimations of δ RV E from this criterion are proposed in Table 2.1. As convergence patterns are similar for both diagonal terms, a single δ RV E is indicated for both k xx and k yy . Results follow the expectations as δ RV E decreases when V f value increases. It is also relevant to notice that, for a same V f value, δ RV E is higher for a random radius. Indeed, radius variability brings an additional statistical information: the RVE is then larger in order to grasp it.

However, the convergence criterion may be limited. Indeed, even when dispersion is stable, distributions and especially mean values can be locally sensitive to the domain size. Broadly speaking, giving a precise value of δ RV E is not necessarily straightforward and relevant due to the stochastic character of the study. To circumvent this problem, it has been chosen to consider δ RV E ∼ 100 for all V f . Indeed, this value seems to be large enough to provide convergence in any case. It is also rigourously consistent with the scale separation hypothesis which is the basement of homogeneisation procedures [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF]. This choice is critical in terms of computation effort. 

V f = 0.3 V f = 0.4 V f = 0.5 V f = 0.6 δ RV E [constant

RVEs isotropy

From Fig. 2.11, it can be noticed that k xx and k yy distributions at convergence are very close: this is more clearly illustrated in Fig. 2.12. Both seem to follow a Gaussian trend [START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF][START_REF] Zhang | Statistical modeling of in-plane permeability of non-woven random fibrous reinforcement[END_REF]. A Kolmogorov-Smirnov statistical hypothesis test [START_REF] Hodges | The significance probability of the smirnov two-sample test[END_REF] can be performed to justify rigourously the similarity of the distributions. This test is based on the comparison between the cumulative distribution function of both samples. The associated null hypothesis supposes an equality between both cumulative distribution fonction. A risk of 5% has been chosen. For all V f values, p-values are retrieved : all are superior to 0.53. As they are significantly higher than the risk, this leads to conserve the null hypothesis:

K xx d = K yy (2.18)
where d = means "equal in distribution". Considering that the perturbation step of generation algorithm is isotropic, it can be definitively stated that:

K xx = K yy (2.19)
This means that microstructures are statistically isotropic in the plane (e x , e y ) which is consistent with both ergodicity hypothesis and the generation method. Similar observations have been made in [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF]. This also explains the irrelevance of off-diagonal terms for RVEs. In the following, permeability will thus be considered as a scalar. In a similar fashion, k will denote realisation of a random permeability variable K. 

Variability related to fibre centre randomness

We first describe the influence of fibre centre location, induced by the proposed generation method, on permeability. For that purpose, permeability for a constant radius can be compared with various analytical robust models. Those models generally consider unit cells for which fibre centres are placed periodically allowing geometrical simplifications. Gebart permeabilities [START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF] have thus been considered. A comparison is observed in Fig. 2.13. It can be seen that analytical models do not manage to model the data properly for the V f values considered. Indeed, geometrical randomness decreases considerably the permeability values. This could have been inferred since the
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flow channels formed between fibres become more tortuous than for regular packings. The difference between the results from analytical models and those obtained from random microstructures can be measured by studying the mean value, εk , of all relative differences ε k,i . Mean relative differences between data mean values and Gebart permeabilities (Table 2.2) are both significantly high. It can be remarked that εk is lower for Gebart's quadratic model. Moreover, it can be seen in Fig. 2.13 that this model is more efficient than the hexagonal one for high V f value. This is explained by the selected generation algorithm: for high V f values, the memory of the initial packing still remains. Nevertheless, with little computional efforts, the geometrical stochastic character of the permeability can be highlighted. The results are now compared to permeability values from similar studies that has been shown to be in agreement with experimental data [START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF][START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF]. The microstructures of these works also show a constant fibre radius while the generation algorithms are different. Results are presented in Fig. 2.14. A good agreement is globally observed as it can be confirmed by computing εk . It should be noted that εk is computed from mean values. As a result, it does not take into account the observed permeability distribution. For instance, the mean relative difference for [START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF] seems to be high while both distributions (Fig. 2.14) appear to be consistent. It should be remarked that results from [START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF] show a high dispersion (∼ 15%) that may question the representativity of the geometries in consideration. Yet, all the results show a clear linear trend between the logarithm of mean permeability and V f as it is confirmed by the GPR and its uncertainty (Fig. 2.14). The mean relative difference between data mean values and a linear model is close to 0.5%. As a consequence,
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for the range of V f values considered (i.e. V f ∈ [0.3, 0.6]), it can be assumed:

log k r2 ∝ V f .
(2.20)

As noticed previously, for a given V f , permeability distribution follows a Gaussian law with a low coefficient of variability. Values of C k are presented in Table 2.3 for various V f values. The interest of considering a coefficient of variability rather than a standard deviation is to reason with a dimensionless quantity that can be compared for different V f , which is necessary since permeability spans several orders of magnitude. It can be seen from Table 2.3 that this variability is globally stable w.r.t. to V f and close to 3%. This statistical variability can be integrated into the model by multiplying the relation between permeability and fibre volume ratio (Eq.2.20) by a random variable γ ∼ N (1, 3%):

K r2 = γ exp (c 1 + c 2 V f ) (2.21)
where c 1 and c 2 are the coefficients from linear regression (Eq.2.20) (c 1 ≈ 1.18, c 2 ≈ -11.8). This allows a probabilistic modelling of the permeability behaviour, involving an explicit random variable. This finally leads to a first statistical bounding for permeability of random fibrous media with circular cross-sections. It should be noticed from Fig. 2.14 that all the results match well for high porosity values. This shows that the generation algorithms are equivalent for low V f . Indeed, few fibres are observed within the RVEs and consequently, the non-overlapping condition is no more critical. At the opposite, when V f value is high, the specificities of the selected generation algorithms may affect more directly permeability distributions [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF]. However, the overall good agreement between the presented models gives us confidence about the universality of coefficients c 1 and c 2 in similar cases. 
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V f 0.3 0.4 0.5 0.6 C k (%) 2.6 2.6 3.0 2.9 

Variability related to radius randomness

The influence of radius randomness on permeability is here investigated. Most of the studies in literature are performed with constant radius which is not consistent with experimental observations. Yet, radius randomness changes flow channel width and tortuosity: it can be expected to alter permeability. As introduced earlier, fibre radii are supposed to follow a normal law with of 10% variability. Permeability values are computed from numerous RVE for constant and random radii. Both histograms are compared in Fig. 2.15. The fibre radius variability does not seem to have a significant impact on permeability distribution. This observation can be confirmed with a Kolmogorov-Smirnov test. For all V f values considered, each p-value is higher than 20% which leads to conserve the null hypothesis according to which both samples follow the same distribution. This allows to show that fibre radius variability does not affect significantly permeability. This can be explained as the radii follow a Gaussian law centered in r. As a result, even if the flow channels width is altered, overall contribution equilibrates which leads to an unsignificant global effect. Such an observation may thus justify the consideration of a constant fibre radius which has several important implications. First, it makes possible to consider a simpler generation algorithm with smaller computation domains (Section 2.3.1). Then, Eq.2.21 remains valid for random radii with a variability of 10%. For a higher radius variability (e.g. glass fibres) or for non-circular cross-sections (e.g. flax fibres), those results should be reconsidered. 

Variability related to slip length consideration

We now consider Navier slip (Eq.2.5) at the fluid-solid interface. As explained in introduction, both analytical and computational upscaling procedures usually assume a no-slip condition while fibre treatment has been experimentally shown to alter fluid flow within the porous medium [START_REF] Dukkipati | Experimental investigation of fiber sizing-test fluid interaction for in-plane permeability measurements of continuous fibers[END_REF].
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For a given microstructure, fluid slip is expected to increase permeability as it gets easier for the liquid to flow across the porous medium. This can be simply highlighted considering a Poiseuille flow between two planes separated by a distance a (Fig. 2.16). Permeability κ can computed analytically by solving Stokes equations, integrating velocity field and then identifying with Darcy's law:

κ = a 2 12 + aλ 2 . (2.22)
When slip length vanishes, Eq.2.22 corresponds to no-slip permeability. In a free-slip scenario, permeability becomes infinite. Despite the simplicity of this example, it allows to underline the significant importance of slip length on permeability. As a consequence, permeability cannot be only considered as an intrinsic geometrical property like it is quasi-systematically assumed in literature. On the contrary, permeability should be related to fluid shear that has two origins: the tortuosity of flow channels (i.e. a geometrical contribution) and the condition at liquid/solid interface. This especially explains why permeability cannot be defined in a Poiseuille flow with free-slip (Eq.2.22) as the fluid is not sheared. However, when the fluid is Newtonian with a no-slip condition, the interface contribution does no longer induce variability and permeability can be considered as a morphological property of the medium. The influence of slip length on permeability is represented in Fig. 2.17 for a given random microstructure with random radii. Permeability computed with fluid slip K s is bounded between no-slip K and free-slip permeabilities K f s as Navier slip (Eq.2.5) generalises both conditions. We have considered slip length values significantly superior to the ones encountered experimentally [START_REF] Joseph | Direct measurement of the apparent slip length[END_REF][START_REF] Kobryn | Slip boundary conditions in nanofluidics from the molecular theory of solvation[END_REF] (typically 10 -9 -10 -6 m) in order to capture and characterise precisely the transition between regimes. GPR has been performed to model the trend: the related uncertainty is relatively low. Mean value of GPR perfectly match a sigmoid model. The following relation can thus be proposed:

K s = K + K f s -K 1 + 1 2 r λ = K 1 - 1 -α 1 + 1 2 r λ (2.23)
where α = K f s /K represents the amplitude of fluid slip phenomenon. The influence of slip length on permeability can be now expressed for numerous microstructures at a given V f value (Fig. 2.18). This allows to integrate the statistical variability into the study of fluid slip. It is relevant to notice in Fig. 2.18 that microstructure statistical variability, even with random radii, is relatively low in comparison with the curve amplitude due to the slip effect. The coefficient of variability is globally similar for all the λ values. Once again, GPR is performed from mean values with a noise equal to the variance. It also follows a sigmoid trend which confirms the validity of Eq.2.23. In addition, Eq.2.23 seems to hold well for different V f values without further fit parameters, as it can be observed in Table 2.4. This equation can also be useful in practice to determine slip length values as discussed in Section 2.4.2. 
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V f 0.3 0.4 0.5 0.6 εk (%) 0.75 1.2 0.91 1.3 We expect the fluid slip importance to rise when fibre volume fraction gets higher as the slip surface increases. We thus consider α as a function of V f (Fig. 2. [START_REF] Sas | A methodology to reduce variability during vacuum infusion with optimized design of distribution media[END_REF]). It should be noticed that the ratio between no-slip and free-slip permeabilities can reach a decade for V f of interest in high performance composites. As the relation between the logarithm of α and V f is linear in a first approach, we write:

log(α) = βV f (2.24)
where β is the slope of the linear regression (β ≈ 3.65) This relation can be injected to Eq.2.23 to get:

K s = K 1 - 1 -exp(βV f ) 1 + 1 2 r λ . (2.25)
Eq.2.25 requires no-slip permeability K which can be retrieved numerically or experimentally in practice. In the context of this work, K carries the stochastic information of the model: it is expressed as a random variable. Its expression is directly linked to V f as proposed previously in Eq.2.21. This finally provides a general bounding of permeability including both fluid slip and statistical variability:

K s = r2 γ exp (c 1 + c 2 V f ) 1 - 1 -exp(βV f ) 1 + 1 2 r λ . (2.26) 
It can be remarked from the mathematical expression of the sigmoid model (Eq.2.23) that the transition zone from no-slip to free-slip regime is not affected by V f . This means that, indepedently from V f , the regime transition always occurs for slip lengths between 10 -9 m and 10 -4 m. Those values are close to realistic values of λ meaning that fluid slip may affect permeability in practice (Section 2.4.2). Finally, permeability can be expressed as a function of the slip length and V f that are two independent variables. Both analytical (Eq.2.26) and GPR approaches are in very good agreement and permit a good modelling of data. The mean relative difference between analytical model and data is about 2.35%. It should be remarked that Eq.2.26 only holds for the transverse permeability in a 2D case. Longitudinal permeability should also be considered [START_REF] Shou | On the longitudinal permeability of aligned fiber arrays[END_REF][START_REF] Devalve | An analytical model for the longitudinal permeability of aligned fibrous media[END_REF] to retrieve a more complete and realistic model. Further studies should be performed to clarify this point, that is out of the scope of this work. 

Discussion

On permeability variability

Variability of permeability values is now discussed. We have highlighted that common analytical models based on geometrical simplifications cannot inherently model random fibrous medium permeability. As noticed before, for a given V f value, this variability is approximately 3% regardless of radius randomness. It seems acceptable to consider this variability as low. This observation gives an interesting insight to studies that aim at finding the best correlations between permeability and various microstructural parameters [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF][START_REF] Matsumura | Numerical simulation of fluid flow through random packs of cylinders using immersed boundary method[END_REF]. Indeed, while V f is the most straightforward parameter to describe fibrous microstructures, it captures nearly 95% of the observed variability. This confirms that V f is a first-order parameter for the characterisation of fibrous media permeability as it is generally assumed. Therefore further morphological parameters may allow us to describe the remaining variability or else to propose a better correlation with permeability than V f . Those observations regarding the low variability of permeability values computed from RVEs may also justify the use of deterministic relations. Depending on the context of further works, this may be justified as far as RVEs are supposed to grasp the statistical variability of a medium.

Numerical application for fluid slip influence

In the previous sections, theoretical influence of slip length on permeability has been examined. However, as a wide range of λ were considered, some values were considerably higher than the orders of magnitude that are typically found in literature. As a consequence, it seems relevant to study the influence of slip length for more realistic values.

As a numerical application, we consider here r = 3.5 µm, V f = 0.6, that is a typical value for high-performance applications and λ = 8 ± 2 nm that was experimentally estimated in [START_REF] Maali | Measurement of the slip length of water flow on graphite surface[END_REF] for water on a plane graphite surface, assuming that this slip length can characterise carbon
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fibre/fluid interactions. The extreme values have been considered for slip length (i.e. 6 nm and 10 nm). It should be remarked that those values do not take surface roughness effects into account [START_REF] Maali | Measurement of the slip length of water flow on graphite surface[END_REF]: such additional effects would tend to increase slip length. By application of Eq.2.25, results presented in Table 2.5 are retrieved: assuming Gaussian distributions, intervals that contain 95% of the distributions can be proposed. This leads to a confidence interval [3.24 , 3.71]×10 -14 m 2 for permeability. Considering mean values, it can be seen that the relative difference w.r.t. no-slip situation is near 3%. This is comparable with statistical variability (Section 2.4.1). In other words, taking fluid slip into account or not would lead, at least, to an uncertainty as large as statistical variability. This can justify the importance of fluid slip in real-world applications, for example in composite materials manufacturing. This also confirms experimental observations from [START_REF] Dukkipati | Experimental investigation of fiber sizing-test fluid interaction for in-plane permeability measurements of continuous fibers[END_REF] where sizing (i.e. a chemical surface treatment of fibres) can divide permeability values up to 4 times. Moreover it should be noticed that slip length of 10 -6 -10 -4 m can be found in [START_REF] Rougier | Slip transition in dynamic wetting for a generalized Navier boundary condition[END_REF]. Even if those values were back-calculated for transient multiphase flow involving capillarity, they would lead to huge differences between permeability computed with fluid slip or no-fluid slip conditions (Table 2.5). This highlights the necessity of accurate slip length value for the resin/carbon couple under consideration in LCM processes. It should be also noticed that the difference between free-slip and no-slip permeabilities is close to one order of magnitude (Table 2.5, Fig. 2. [START_REF] Sas | A methodology to reduce variability during vacuum infusion with optimized design of distribution media[END_REF]). As a consequence, the bounding of permeability related to fluid slip is particularly wide in comparison with statistical bounds.

Finally, Eq.2.23 can also be useful for experimental determination of slip length from real-world fibrous materials. Indeed, the equation does not show any tuning parameter for a given microstructure. Thereby, permeability K should be first measured experimentally. Then, digitisation of the medium (e.g. through X-ray tomography) may allow to estimate K f s with numerical simulation. This may lead to retrieve the slip length from Eq.2.23. Naturally, this would rely on the validity of Eq.2.23: further studies should be carried out to show the relevance of the expression especially for other radius distributions or for random slip length values within a microstructure.

No-slip λ = 6 nm λ = 10 nm λ = 1 µm λ = 100 µm Free-slip 95% of permeability distribution [3.15 , 3.55 
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The main results of the study are summarised here:

• Numerous periodic fibrous microstructures have been generated numerically through a simple and fast algorithm. The RVE size has been determined through a convergence study of permeability components. To simplify the determination of RVE size, it has been set to meet the scale separation hypothesis.

• A statistical study has been performed using several data-related tools such as Kolmogorov-Smirnov statistical hypothesis testing or Gaussian process regression: those allowed us to take variability into account in a response model. The permeability tensor can thus be reduced to a single scalar value as long as isotropy is met statistically.

• Two kinds of geometrical variability have been considered. Fibre center location randomness has been shown to alter significantly permeability values, highlighting the importance of a statistical modelling. Considering a Gaussian distribution for fibre radius -with a radius variability up to 10% -has been shown to have a negligible impact on permeability.

• Permeability has been then found to follow a Gaussian distribution with a relatively low coefficient of variability (∼ 3%) providing a narrow confidence interval for permeability. This has also lead to consider V f as a relevant morphological parameter for permeability characterisation as it explains on its own more than 95% of the variability.

• Fluid slip at fibre/liquid interface has been taken into account. A sigmoid transition has been observed between no-slip and free-slip regimes. This model has been then connected to the early statistical study to get a global equation that encompasses both phenomena. This has finally provided a double bounding for permeability.

Résumé en français

Cet article consiste en une étude statistique de la perméabilité transverse pour des milieux fibreux aléatoires. Des microstructures sont ainsi générées de façon stochastique, avec des rayons variables ou constants. Leur représentativité vis-à-vis des données expérimentales est d'abord étudiée. À partir de ces géométries, des simulations d'écoulements monophasiques permanents sont effectuées afin d'extraire un tenseur de perméabilité transverse. Une taille de Volume Élémentaire Représentatif (VER) est alors déterminée en étudiant la convergence des distributions de perméabilité lorsque la taille du domaine augmente. L'isotropie du milieu et l'impact de la stochasticité géométrique sur la perméabilité sont ensuite évalués. Cette étude utilise notamment la méthode de régression par processus gaussien afin d'intégrer la variabilité statistique dans le modèle prédictif. Enfin, le glissement à l'interface liquide/fibres est pris en compte via la loi de Navier, et son impact sur la perméabilité des milieux considérés est clarifié. Une expression analytique est proposée pour décrire précisément la transition entre l'absence totale de glissement et le glissement libre au niveau de l'interface. Finalement, un modèle probabiliste est proposé pour relier la perméabilité au taux volumique de fibres et à la longueur de glissement. La perméabilité transverse est alors bornée de deux manières, à partir de son comportement statistique et du phénomène de glissement.

Chapter 3

Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media

Resubmitted after revisions to Transport in Porous Media

Transient two-phase flows within fibrous media are considered at local scale. Upscaling these flows represents a key procedure towards a tractable description in an industrial context. However, the task remains challenging as a time-dependent behaviour is observed within a geometrically complex structure with interplay of various physical phenomena (capillary effects, viscous dissipation,...). The usual upscaling strategies, encountered in both soil sciences and composite materials communities are reviewed, compared, and finally adapted to reach a method that is relevant to describe fibrous media imbibition. Using finite element flow simulations on statistical representative volume elements, the proposed approach first considers several definitions for saturation in order to characterise the flow dynamics as well as the characteristic length associated with the transient behaviour. Next, two methods are proposed to assess a resulting capillary pressure, demonstrating the importance to properly define the capillary pressure acting on the interface. The first one considers the mean pressure jump at the interface while the second one uses a machine-learning technique, namely Gaussian Process Regression, to retrieve the mean curvature of the interface. Those methods are found to be both consistent and in agreement with the results from the literature. Finally, a novel approach that stochastically describes the position of the flow front through a presence distribution is detailed. The spread of the front can be compared to the saturation length and its value has been found to be small enough to be neglected at upper scale, justifying the use of sharp interface models for similar porous media and flow settings.

Introduction

Multiphase flows in fibrous media are commonly observed in numerous fields going from soil science [START_REF] Yan | Transient two-phase flow in porous media: A literature review and engineering application in geotechnics[END_REF][START_REF] Whitaker | Flow in porous media II: The governing equations for immiscible, two-phase flow[END_REF][START_REF] Hassanizadeh | Toward an improved description of the physics of two-phase flow[END_REF] to composite manufacturing processes [START_REF] Michaud | A review of non-saturated resin flow in liquid composite moulding processes[END_REF][START_REF] Bodaghi | On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: A review[END_REF] where a carbon fibre preform that initially contains rarefied air is filled with a liquid resin. A multiphase flow resin/air within a porous fibrous medium is thus observed. This medium naturally shows several scales of description, starting from the scale of the carbon fibre (∼ µm) to the scale of the industrial part (∼ m). As flow models must be adapted to the scale of representation, connecting those micro-3.1. Introduction scopic and macroscopic scales has been a major concern in the scientific community. As a first approach, a permeability tensor that represents the ability of the fibrous structure to be crossed by a fluid is generally studied. This concept has been first introduced following Darcy's works to macroscopically describe a monophasic steady flow in a porous medium [START_REF] Darcy | Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d[END_REF]. Besides, the complexity of a multiphase flow can hardly be reduced to a single tensor. Such flows are indeed considerably more challenging to describe as several phases are observed with a moving interface. The observed behaviour becomes non-linear, time-dependent and sensitive to many parameters such as fluid properties or boundary conditions. In addition to this, the vicinity between carbon fibres, around few micrometers, leads to consider capillary effects and consequently a sentivity to surface tension coefficients [START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF][START_REF] Teixidó | Capillary effects in fiber reinforced polymer composite processing: A review[END_REF].

From early theoretical works, upscaling strategies from Representative Volume Elements (RVE) have been proposed to transpose the microscopic description of multiphase flows in porous media towards an upper scale [START_REF] Kalaydjian | A macroscopic description of multiphase flow in porous media involving spacetime evolution of fluid/fluid interface[END_REF][START_REF] Hassanizadeh | Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Hassanizadeh | Toward an improved description of the physics of two-phase flow[END_REF]. Those have been mainly developed by the hydrogeology community for the study of flows within soils or rocks. Later on, the composite materials community have developed its own approaches, that are particularly suited for the study of fibrous materials impregnation but that may suffer from a lack of sound theoretical ground. The novelty of this contribution consists in operating an explicit connection between both types of approaches, so as to retrieve a rigourous, precise, and complete description that is adapted to the imbibition of fibrous media while carrying the specificities and constraints inherent to composite materials.

Saturation

The most straighforward upscaling quantity is the liquid saturation S L ∈ [0, 1] that describes the proportion of liquid within the poral space. As imbibition is considered here, S L increases over time from 0 to a maximal value S max L = S L (t → ∞) obtained when the two-phase flow reaches steadiness. The relation S L = S L (t) characterises the global dynamics of the flow. The asymptotic saturation value S max L is lower than 1 as the flow tends to entrap air bubbles behind the front. This proportion of residual phase at final state is a concern in many fields since it can be associated with a recovery ratio in hydrology [START_REF] Ambekar | Pore-resolved two-phase flow in a pseudo-3D porous medium: Measurements and volume-of-fluid simulations[END_REF] or a void content in the composite materials community [START_REF] Kuentzer | Correlation of void distribution to vartm manufacturing techniques[END_REF]. As bubble entrapment phenomenon results from velocity inhomogeneity over the volume, S max L value is expected to be directly dependent on the competition between viscous and capillary effects. This is expressed through the capillary number Ca that is defined here as:

Ca = µ L v in γ LV (3.1)
where µ L is the liquid viscosity, v in the inlet velocity and γ LV the surface tension coefficient from the liquid-vapor interface.

Studying the saturation finally describes a complex phenomenon through a single time-dependent scalar. It is especially convenient at upper scales where the two-phase flow can be modelled as a transport of saturation in an equivalent homogeneous medium [START_REF] Gopala | Volume of fluid methods for immiscible-fluid and free-surface flows[END_REF]. However, in the context of an upscaling procedure, a global saturation only provides a rough description of the flow without spatial information. As a consequence, a first improvement consists in defining saturation at a more local scale. This is observed in the literature related to composite materials processes where local saturation curves are often considered [START_REF] Labat | Original use of electrical conductivity for void detection due to injection conditions of composite materials[END_REF][START_REF] Park | Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review[END_REF][START_REF] Villière | Dynamic saturation curve measurement in liquid composite molding by heat transfer analysis[END_REF][START_REF] Gascón | Numerical prediction of saturation in dual scale fibrous reinforcements during liquid composite molding[END_REF][START_REF] Nordlund | Dynamic saturation curve measurement for resin flow in glass fibre reinforcement[END_REF], they consist in representing saturation as a function of position at a given time. A transition between two saturation regimes is observed, its characteristic width is referred to as saturation length. This approach is particularly suited for the type of flow and geometry under consideration, that is to say the impregnation of 3.1. Introduction fibrous reinforcements as encountered in aeronautical structural applications and that locally show a statistically homogeneous nature. It thus may be complex to transpose to other specific contexts, like wicking in 3D structures, where further difficulties arise, such as pore delays [START_REF] Fischer | Four-dimensional imaging and free-energy analysis of sudden pore-filling events in wicking of yarns[END_REF].

Capillary effects

Capillary effects rising from surface tension phenomena act as a complementary force in the filling of fibrous microstructures. However, in a more general context, it depends on the fluids under consideration as well as the pore structure. In the context of manufacturing processes of composite materials, it is generally considered as a driving force that helps the impregnation [START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF]. In any case, this contribution has to be upscaled. This is achieved through the introduction of a resulting capillary pressure P c . Though the capillary pressure term is widely encountered in literature, it may admit several definitions and approaches. In literature and especially in the hydrogeology community, it is generally defined at the volume scale [START_REF] Hassanizadeh | Thermodynamic basis of capillary pressure in porous media[END_REF]. A first definition P vol c is thus obtained as the difference between volume-averaged phase pressure:

P vol c = p V V -p L L (3.2)
where p i is the pressure field associated to phase i. From now on, L will refer to the liquid phase, V to the vapor phase and S to the solid one. Such a definition (Eq.3.2) requires volume-averaging operator:

• i = 1 |Ω i | Ω i • dV. (3.3) 
Those volume-defined capillary pressures are generally expressed as a function of the saturation S L [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF]. The determination of capillary pressure-saturation curves constitutes a huge area of research as they are considered to characterise the two-phase flow at a macroscopic level. They finally provide a simple macroscopic relation that is convenient to use in practice especially when transport of saturation is considered.

However, obtaining capillary pressure-saturation curves is challenging for several reasons. First, an hysterisis phenomenon is classicaly observed between the imbibition and drainage curves [START_REF] Hassanizadeh | Dynamic effect in the capillary pressuresaturation relationship and its impacts on unsaturated flow[END_REF]. Besides, it has been shown that equilibrium must be reached so that Eq.3.2 match the capillary pressure [START_REF] Armstrong | Linking pore-scale interfacial curvature to column-scale capillary pressure[END_REF][START_REF] Ferrari | Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy[END_REF]. This especially makes the experimental determination of P vol c -S L curves very time-consuming since for a given saturation value, the flow may take several hours to stabilise towards a steady state [START_REF] Schlüter | Time scales of relaxation dynamics during transient conditions in two-phase flow[END_REF]. In parallel, flows observed in practice generally show a transient behaviour where the static equilibrium is never met. This finally leads to consider dynamic capillary effects for which a considerable amount of contribution can be found [START_REF] Camps-Roach | Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling[END_REF][START_REF] Joekar-Niasar | Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling[END_REF][START_REF] Hassanizadeh | Dynamic effect in the capillary pressuresaturation relationship and its impacts on unsaturated flow[END_REF]. In the context of these works, the instantaneous difference of phase pressure P vol,dyn c is then measured and related to the static pressure through the (de)saturation rate [START_REF] Hassanizadeh | Thermodynamic basis of capillary pressure in porous media[END_REF]:

P vol,dyn c = P vol c -τ dyn ∂S L ∂t (3.4)
where the dynamic coefficient τ controls the rate to reach the equilibrium. The value for this coefficient can span several orders of magnitude and its dependancies are complex and still on study [START_REF] Camps-Roach | Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling[END_REF][START_REF] Dahle | Bundle-of-tubes model for calculating dynamic effects in the capillary-pressure-saturation relationship[END_REF][START_REF] Joekar-Niasar | Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling[END_REF][START_REF] Cai | Determination of dynamic capillary effect on two-phase flow in porous media: A perspective from various methods[END_REF][START_REF] Hassanizadeh | Dynamic effect in the capillary pressuresaturation relationship and its impacts on unsaturated flow[END_REF]. It should be noticed that P vol,dyn c is sometimes referred to as dynamic capillary pressure which is somehow ambiguous as the quantity does not rely on any rigourous justification based on capillary laws.
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Interfacial capillary pressure

In spite of its apparent simplicity and the convenience of its use, a capillary pressure-saturation relationship can finally be complex to determine and raise numerous modelling questions. More generally, assuming that capillary effects match a global difference between phase pressures is not straightforward [START_REF] Bottero | From local measurements to an upscaled capillary pressure-saturation curve[END_REF]. Mathematically, capillary action is taken into account through Laplace's law (Eq.3.5) that only holds at the interface between two phases:

p j = γ j C in Γ j (t) (3.5)
where p j is the pressure field discontinuity at interface Γ j , characterised by its surface tension γ j and by a mean curvature C . As a consequence, a rigourous upscaling procedure cannot retrieve a volume definition of capillary pressure. All these arguments lead to reavalute the common volume definition of capillary pressure.

To be consistent with the physics of the problem, as well as the upscaling procedure, a resulting capillary pressure computed at the interface level should be considered [START_REF] Ferrari | Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy[END_REF][START_REF] Joekar-Niasar | Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling[END_REF]. Starting from Eq.3.5, a surface averaging over the liquid-vapor interface can be carried out through an operator • LV :

• LV = 1 |Γ LV | Γ LV • dS. (3.6)
This gives two other approaches for considering resulting capillary pressure. A first one consists in averaging the pressure jump [START_REF] Konangi | Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions[END_REF][START_REF] Starnoni | On the concept of macroscopic capillary pressure in two-phase porous media flow[END_REF] while the second integrates the mean curvature over the interface [START_REF] Armstrong | Linking pore-scale interfacial curvature to column-scale capillary pressure[END_REF][START_REF] Shokri | Impact of displacement direction relative to heterogeneity on averaged capillary pressure-saturation curves[END_REF][START_REF] Starnoni | On the concept of macroscopic capillary pressure in two-phase porous media flow[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF]:

P p c = p LV LV , (3.7) 
P C c = γ LV C LV . (3.8)
As capillary pressure becomes defined at interface level, its dependancies to time or saturation can be reappraised. Indeed, capillary pressure does not correspond anymore to a volume scale driving force that may depend on the proportion of each phase. Instead, the resulting capillary action can be expected to be only a function of the porous geometry and surface tension coefficients. This is in agreement with the composite materials literature [START_REF] Willenbacher | Out-of-plane capillary pressure of technical textiles[END_REF][START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF] in which capillary pressure is considered as an intrinsic property of the porous medium and fluids.

Description of the flow front

Finally, a novel method to characterise the flow front is proposed in this work. As the flow front is fragmented and discontinuous within the complex poral structure, modelling it in a deterministic way may be criticised [START_REF] Nordlund | Dynamic saturation curve measurement for resin flow in glass fibre reinforcement[END_REF]. Consequently, a statistical modelling is proposed where the flow front is characterised by a presence distribution. At an upper scale, this allows us to assess the mean position of the flow front as well as its spread across the poral structure, which is particularly relevant in the study of complex porous media. This paper will first recall the numerical strategy for the simulation of transient two-phase flow (Section 3.2.1). Next, the proposed upscaling procedure will be detailed (Section 3.2.2). Then the results will be presented (Section 3.3) and discussed (Section 3.4).

Materials and methods

Materials and methods

The physical modelling of transient two-phase flow is now detailed. Such a problem is solved within a stabilised finite element framework that has been presented in previous studies and that will be briefly recalled here. Particuliar attention is paid to the generation method of fibrous geometries and to boundary conditions. Then the proposed upscaling method will be explained.

Numerical simulation of a two-phase flow within a fibrous medium

Physical problem and conservation laws

Two-phase flows with a moving interface are here adressed by solving two coupled problems. The first one corresponds to the fluid problem and consists in solving mass and momentum conservation equations on the computational domain Ω (Fig. 3.1). Both liquid and vapor phases are assumed to be Newtonian fluids and the flow incompressible. As the invading phase under consideration shows a high viscosity and low velocity, a sufficiently low Reynolds number can be assumed:

Re = 2rρ L v in µ L 1 (3.9)
where ρ L is the liquid density and r the average fibre radius. Consequently, the convective and transient terms of Navier-Stokes equations can be discarded. As a consequence, Stokes equations are here considered [START_REF] Chevalier | Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements[END_REF]. Let us consider that phase i ∈ {L, V } occupies a domain Ω i (t) at time t. The following problem is solved:

∇ • v = 0 µ i ∆v -∇p = 0 in Ω i (t). ( 3 

.10)

As an interface condition, no-slip is prescribed on the fibres. Capillary effects are taken into account through Laplace's law already introduced in Eq.3.5 where j ∈ {LV, LS, SL} (Fig. 3.1). The contributions associated to the solid phase in Eq.3.5 vanish, as the fibres are supposed to be non-deformable. As a numerical consequence, the solid domain Ω S is not meshed. Surface tension coefficients and viscosities are chosen to be consistent with experimental measurements [START_REF] Pucci | Tensiometric method to reliably assess wetting properties of single fibers with resins: Validation on cellulosic reinforcements for composites[END_REF] encountered in direct manufacturing processes of composite materials, and can be found in Table 3.1.

Figure 3.1:

Imbibition in a fibrous medium: domains, boundaries and notations.

Materials and methods

The model requires to locate the phases and the liquid-vapor interface Γ LV in order to compute capillary terms or to apply the proper fluid properties. The interface is here modelled implicitly with a level-set method. The method leans on a scalar field φ that describes the signed distance between each point of the computational domain and the liquid-vapor interface [START_REF] Osher | Level set methods: an overview and some recent results[END_REF]. Therefore the zero iso-value of the field correponds to the liquid-vapor interface. The whole field is then convected in the fluid velocity field v to describe the moving interface [START_REF] Chevalier | Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements[END_REF]:

∂φ ∂t + v • ∇φ = 0 in Ω (3.11)
with Ω = Ω L ∪ Ω V . The resolution of Eq.3.11 requires both initial and boundary conditions. The initial level-set field corresponds to a plane liquid/vapor interface, close to the inlet boundary. A boundary condition, usually on the inlet boundary, is prescribed as a non-zero constant value for which the sign indicates which phase enters the volume. Finally, to ensure that the field φ remains a distance function throughout the computation, a reinitilisation step is performed [START_REF] Shakoor | An efficient and parallel level set reinitialization method-application to micromechanics and microstructural evolutions[END_REF][START_REF] Min | On reinitializing level set functions[END_REF].

γ SV (N/m) γ SL (N/m) γ LV (N/m) µ V (Pa.s)
µ L (Pa.s) 54.7 × 10 -3 25.9 × 10 -3 50.8 × 10 -3 1.71 × 10 -5 2.76 × 10 -3 Table 3.1: Fluid properties chosen for the numerical simulations.

Numerical strategy for solving the physical problem

The problem described in the previous section (Eqs. 3.10,3.11) is solved with a finite element approach through an in-house implementation in Z-set software 1 . The validity of the numerical strategy has been proved in various contributions [START_REF] Chevalier | Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements[END_REF][START_REF] Blais | Resin infusion-based processes simulation: coupled Stokes-Darcy flows in orthotropic preforms undergoing finite strain[END_REF][START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF][START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF][START_REF] Liu | Towards void formation and permeability predictions in LCM processes: a computational bifluid-solid mechanics framework dealing with capillarity and wetting issues[END_REF][START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF][START_REF] Orm | A robust monolithic approach for resin infusion based process modelling[END_REF][START_REF] Pacquaut | Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes-Darcy flows[END_REF]. The fluid problem is solved using linear approximations for both velocity and pressure fields, associated with an ASGS strategy [START_REF] Codina | A stabilized finite element method for generalized stationary incompressible flows[END_REF][START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF]. The implementation of capillary conditions at interfaces will not be detailed here but further explanations can be found in [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. Then, the level-set field is also approximated by linear functions and its convection (Eq.3.11) is stabilised by a SUPG method [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF]. Both fluid and level-set problems share the same mesh and are weakly coupled. An example of simulation within a fibrous microstructure is represented in Fig. 3.2.

Generation of fibrous microstructures

The porous medium under consideration is made of long carbon fibres. As a consequence, it is common to work within the plane that is tranverse to the fibre axis [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF]. This leads us to consider a 2D flow around a set of disks.

Fibrous microstructures have thus been randomly generated, from an input value of fibre volume ratio V f , and through an algorithm detailed in a previous contribution [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF]. In that paper, it was shown that the generated microstructures are statistically representative of real fibrous structures with respect to both mechanical response and geometrical considerations. In that sense, the microstructures can be considered as Statistical Representative Volume Elements (SRVE) [START_REF] Trias | Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers[END_REF]. The geometries are thus able to grasp the inherent randomness of the medium. To our knowledge, studying the impregnation of fibrous media from such volumes through transient two-phase flow simulations is a novelty, as similar studies are generally based on idealised representations of fibrous structures, using unit cells for instance. In [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF], a (S)RVE size has been determined for permeability considering steady flow simulations. It has been remarked that RVE is met for a size L such that L/r ≈ 80. However, for significantly lower value of L/r, the results have been found to yield permeabilities very close to the asymptotic value. As a result, the RVE size has been set at 50 as a satisfactory trade-off between the statistical representativity and the computation cost. Fibre density will be kept here at 50% to consider an intermediate value.

Upscaling methods

Saturation

Saturation S L is defined here as the proportion of liquid volume |Ω L | over the overall pore volume |Ω|:

S L = |Ω L | |Ω| . (3.12) 
It is thus defined at the volume scale and gives a global characterisation of the flow. Its temporal evolution translates the overall dynamics of the flow. It especially depends on the flow control that is prescribed through inlet/outlet boundaries of the volume (Fig. 3.3). The imbibition of the fibrous structure is mainly driven by the boundary conditions prescribed at the inlet/outlet boundaries. Depending on whether a pressure drop or a flow rate is prescribed, the dynamics of impregnation can be significantly different. Consequently, as discussed in the next paragraph, the type of flow control influences direclty the time evolution of S L .

When the same constant flow rate is prescribed at the inlet/outlet boundaries, the time evolution of S L is first linear as the incompressible fluid is forced to travel the same distance at any time (Fig. 3.3). Then, saturation converges towards an asymptotic value S max L as the flow reaches steadiness. On the contrary, if a pressure drop between the inlet and oulet boundaries is prescribed, the time evolution of S L is non-linear and a clear transition between flow regimes is complex to identify. As the liquid fills the pore space, the overall volume viscosity increases and the fluid displacement induced by the pressure drop becomes increasingly smaller. Consequently,
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the average fluid velocity may drop by several orders magnitude between the beginning and the end of the simulation. This may alter the flow behaviour over time, particularly the competition between viscous and capillary effects which is represented through the capillary number Ca [START_REF] Kang | Formation of microvoids during resin-transfer molding process[END_REF] (Eq.3.1).

In infusion-based manufacturing processes for composite materials, a pressure drop is imposed at the industrial part scale. At the local scale under consideration, this would lead to prescribe different pressure values on opposite sides of the domain. However, the aim of this study is to characterise the upscaling of local flows. For this purpose, it seems necessary to have a strong control on the flow regime throughout the simulation: a flow rate control will be prescribed on the volume in the rest of the study. A wall condition (i.e. v = 0) is applied on the boundaries that are parallel to the imposed flow. Note that, although the microstructure is periodic, no periodic boundary condition has been used here. Indeed, in the case of a two-phase flow a periodic boundary condition should ensure the periodicity of the velocity, but should also guarantee that the same phase is considered on the corresponding nodes of both boundaries. Since the mechanical response is supposed to be independent of such boundary conditions as soon as the geometry can be regarded as a RVE, which is the case here [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF], wall conditions have been considered throughout this study. This provides a time characterisation of the flow that also depends on the position. The s L (A) values are expected to be zero as long as the flow does not reach the section under consideration. Then a transition until a maximum value s max L (A) should occur [START_REF] Gascón | Numerical prediction of saturation in dual scale fibrous reinforcements during liquid composite molding[END_REF]. This value allows to characterise the steady flow that sets in section A. The transition time between the transient and steady states thus give an information about the local dynamics of the flow. However, it is more suitable to deal with a space variable as retrieving a physical time from numerical simulation of two-phase flow can be difficult [START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF][START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF]. In the literature, local saturation is expressed as a function of the position considering that each section reaches full saturation. This assumption does not hold here as the void content at final state is not necessarily negligible. This leads to introduce the following quantity R:

R(t; A) = s L (t; A) s max L (A) . (3.14) 
It describes, at time t and for a given section A, how reached the steady state is. As a consequence, R = 0 indicates that the fluid has not reached the section A yet. Inversely, the value R = 1 means that the flow is steady. For any value between 0 and 1, the flow is considered as transient. The value of R can be represented at a given time t as a function of the section position. Assuming an imbitition from the left side to the right one as depicted in Fig. 3.4, R(A; t) is expected to go from 1 to 0. The transition zone between those asymptotic values is associated to a saturation length s corresponding to partially saturated zone. As the poral structure is isotropic, we expect this saturation length to stabilise towards a constant value. Even if the volume does not reach the rigorous RVE size, s should be compared to the domain characteristic length so as to give first conclusions about the separation of scales.
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Resulting capillary pressure

The resulting capillary pressure is here computed at the interface level from Eqs.3.7 and 3.8. The methods to evaluate these quantity in practice are now detailed. An expression for the macroscopic capillary pressure is first obtained from the average pressure jump at the interface (Eq.3.7). To do so, elements of the mesh that are cut by the interface (i.e. the zero iso-value of the φ field) are scanned. For each one, the difference of mean pressure on either side of the interface is computed. This gives a distribution of local capillary pressure from which the median value is taken. This quantity will be referred to as pressure jump capillary pressure and denoted as P p c . A second possibility to compute the capillary pressure is to consider the average mean curvature (Eq.3.8). Such an approach is usually avoided as it requires a double derivative computation which is numerically sensitive. As the liquid-vapor interface is generally non-continuous and fragmented, one must first isolate each continuous piece of Γ LV . Considering the linear approximation of the fields, every interface piece corresponds to a small set of continuous segments which have first to be smoothened so that the mean curvature can be computed.

As a method suitable for small dataset while providing a good smoothing of the curves, a Gaussian Process Regression (GPR) technique is here selected [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF][START_REF] Trochu | A contouring program based on dual kriging interpolation[END_REF][START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF]. Here, each continuous piece of interface is seen as a parametric curve. For each one, a GPR is carried out with the arc length as input and each cartesian coordinates as outputs. Then the mean curvature can be easily computed for each continous piece of the interface. This yields a distribution of mean curvature from which the median value is taken to retrieve a representative scalar quantity. This will be referred to as mean curvature capillary pressure and denoted as P C c . Despite the efficiency of the method, a considerable number of GPRs is required leading to significant computational costs.

Those methods for computing the interfacial capillary pressure are validated with the following test case: a 2D bubble with a unitary radius (i.e. a unitary curvature) is placed in a square domain (Fig. 3.5). As a unitary surface tension coefficient is chosen, the capillary pressure is expected to be equal to one. In addition, a very low pressure drop is prescribed on the volume to make the bubble move slighly on the fixed mesh (Fig. 3.5). As the pressure drop has a low intensity, no geometrical change of the bubble is observed and a simple translation occurs. This aims at assessing the robustness of the methods throughout the simulation. The results of both methods are compared in Fig. 3.6 for a given mesh. The relative error with respect to the expected unitary capillary pressure is plotted. As for all the presented graphs, time t is normalised by the final time t f . Even though both curves show a certain variability, it lies under 1% in absolute value. Furthermore, the median error for both capillary pressures gives very satisfactory results. The mesh convergence has also been studied as represented in Fig. 3.7. As expected, the finer the mesh, the smaller the error. It should be remarked that mean curvature capillary pressure gives more precise results for a given mesh. The technique is especially very performing for coarse meshes. As regards the pressure jump capillary pressure, the precision of the method is enhanced by the enrichement of the elements cut by interface [START_REF] Chevalier | Accounting for capillary effects in level-set based Finite Elements modelling of impregnation in fibrous media[END_REF][START_REF] Ausas | A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows[END_REF]. Finally, both methods quickly converge towards the expected theoretical value. This gives us confidence in both of the proposed approaches. 
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Statistical description of the flow front

A new method to define the flow front position in the homogenised equivalent representation is now detailed. The main idea is to assume that the transient behaviour is only localised in a band, the characteristic length of which corresponds to the flow front width, as depicted in Fig. 3.8. Outside this area, the behaviour is assumed to be steady. Indeed, a static equilibrium between phases is supposed to be met upstream while the fluid have not reached the downstream area yet. Inside F (Fig. 3.8), the liquid-vapor interface is generally non-continuous. The presented approach considers the position of the interface within F through a statistical description. Considering our numerical approach, the interface corresponds to a set of segments for which endpoints position are denoted as

x F i = (x F i , y F i ).
The coordinate that follows the flow direction is considered as a realisation of a random variable. In the example described in Fig. 3.8, this corresponds to the abscissa of the points that compose the interface and it is denoted as I x F . This random variable is expected to follow a Gaussian law, as the interface is mainly centred around a certain position and its density then decays symmetrically from it. This method requires the identification of the flow front which can be difficult in practice.

Here, the domain is divided into rectangles in the direction of flow (Fig. 3.9). For each rectangle, the most downstream point of the interface is fetched (x * for the dark blue rectangle in Fig. 3.9) and its associated piece of interface is retrieved (the green piece of interface in Fig. 3.9). This method allows a good reconstruction of the interface even if some errors of attribution may occur (Fig. 3.10). 
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Results obtained through the methods detailed previously are now presented. Transient twophase flow simulations have been carried out in a numerically generated fibrous microstructure with a fibre density V f equal to 50% and a capillary number Ca equal to 10 -3 . This value is frequently chosen in the composite materials community as it has been shown to minimise the vapor content at final state, optimising therefore the impregnation quality [START_REF] Leclerc | Porosity reduction using optimized flow velocity in resin transfer molding[END_REF][START_REF] Ruiz | Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites[END_REF].

Global and local saturations

The global saturation S L is first considered. An example of temporal evolution for S L has been represented in Fig. 3.11. As noticed previously, such a curve shows two regimes: a linear transient phase and a subsequent convergence towards a two-phase equilibrium as the liquid has filled-in the volume. Despite the simplicity of this behaviour, several upscaling descriptors with physical meaning can be extracted. The slope of the first phase can be computed to characterise the global dynamics of the flow. Then, the time to reach stability may be compared between different microstructures with the same fibre density and simulation parameters. At last, the asymptotic saturation value S max L corresponds to the residual proportion of vapor phase which is usually referred to as a void content in the composite materials community. Due to the flow incompressibility hypothesis, S max L may overestimate the experimentally observed values as density inside bubbles cannot change. These three descriptors (i.e. saturation curve slope, filling time and maximum saturation) will be studied more precisely through a statistical further study. Saturation defined at section level is now under consideration. It can be first represented as a function of time for different sections of a same geometry. The observed behaviour follows the expected sigmoid as represented in Fig. 3.12 for three given sections. As noticed previously, it is suitable to transpose the curve into the spatial domain to retrieve a saturation length. This has been achieved by considering the ratio R introduced in Section 3.2.2.1 as depicted in Fig. 3.13 at three given times. From the transition width of these curves, saturation length s can be derived at any given time. As a consequence, it can be considered as time-dependent as depicted in Fig. 3.14. To recover a representative scalar quantity, saturation length is considered to be globally stable around a finite value * s , represented by a dashed line in Fig. 3.14. In the case under consideration, this saturation length value is found to be around 7.6r. This means that the RVE size is sufficient here for the flow to settle in steady regime. 
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Resulting capillary pressure

The resulting capillary pressure is computed throughout the simulation duration. Both methods that have been presented previously are considered. The temporal evolution of P p c and P C c is represented in Fig. 3.15. It can be observed that both behaviours are in very close agreement. The curves eventually converge towards very similar asymptotic values. These will be denoted by a star in exponent (i.e. P p * c and P C * c ). We have here:

P p * c ≈ P C * c = 12.7 kPa. (3.15)
The time to reach stability can be interpreted as the time necessary to loose memory of the initialisation state. A certain amount of time is therefore required to reach a physically consistent state. This is the behaviour of a statistically isotropic porous medium [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF], however stability might not be met for more complex poral structure materials [START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF]. Comparing Fig. 3.11 and Fig. 3.15, it must be noticed that the capillary pressures P p c and P C c converge while the global saturation is not stable yet. This shows that interface-defined capillary pressure becomes here independent of both time and saturation.

The results are in agreement with other recent works in which capillary pressure defined at the interface level tends to converge after a certain time. This reinforces the idea that capillary pressure, as defined here, can be considered as a function of the geometry and the interface properties only. Based on such a definition, it can be regarded as independent on the saturation. Consequently, considering an interfacial capillary pressure avoids the use of saturation-capillary pressure relationship which limits have been highlighted previously. 

Statistical description of the flow front

A methodology to describe the flow front in terms of probability of presence has been described in Section 3.2.2.3. An example of distribution of flow front at a given time t is represented in Fig. 3.16. The distribution can be modelled by a Gaussian law N (η, Ξ; t) as justified in Section 3.2.2.3. However, this trend is not necessarily clear in practice. Indeed, identifying precisely the flow front can be difficult [START_REF] Park | Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review[END_REF][START_REF] Causse | Capillary characterization of fibrous reinforcement and optimization of injection strategy in resin transfer molding[END_REF]. Attribution errors such as depicted in Fig. 3.10 may lead to alter the observed distribution. Yet, such a modelling will be kept as a first approach.

The temporal evolution of the flow front distribution is represented in Fig. 3.17. The mean value η(t) shows a linear trend over time. The standard deviation Ξ(t) starts to increase before being roughly stable around a value Ξ * . From Fig. 3.17, this asymptotic value is estimated at Ξ * = 5.6r. 

Discussion

Results from the proposed upscaling procedure have been presented in the previous section. These have now to be compared to experimental observations or to other numerical studies.

Saturation

Analogous curves to those represented in Fig. 3.11 can be found in the literature for similar boundary conditions [START_REF] Villière | Dynamic saturation curve measurement in liquid composite molding by heat transfer analysis[END_REF][START_REF] Gascón | Numerical prediction of saturation in dual scale fibrous reinforcements during liquid composite molding[END_REF]. Even for different geometries and scales, as long as a flow rate is prescribed, the saturation increases linearly until reaching a plateau. Asymptotic saturation value S max L should also be compared to void content obtained in other study for similar Ca. However, most of the contributions on fibrous media set at an intermediate mesoscopic scale: a dual-scale medium is thus considered as the liquid phase flows within and around yarns (i.e. bundle of fibres) [START_REF] Devalve | Simulation of void formation in liquid composite molding processes[END_REF][START_REF] Park | Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review[END_REF][START_REF] Schell | Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding[END_REF][START_REF] Leclerc | Porosity reduction using optimized flow velocity in resin transfer molding[END_REF][START_REF] Villière | Dynamic saturation curve measurement in liquid composite molding by heat transfer analysis[END_REF]. This work focuses more specifically on the fibre scale: only microvoids are studied here.

The fraction of residual vapor phase retrieved here is significantly higher than values commonly found in the literature. These generally lie between 1% and 10% for similar capillary numbers. It
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should be noticed that fibre fraction within yarns can reach really high values, around 75% [START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF]. For such a compacity, the fibrous arrangement tends towards a regular hexagonal packing. This entails an overall regular advancement of the flow front and thus a lower final void content. Moreover, further mechanisms such as air compressibility and dissolution [START_REF] Park | Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review[END_REF] tend also to diminish the residual proportion of vapor phase.

As regards local saturation, making a comparison with other studies can be complex. Indeed, most of them are located at a mesoscale involving a much larger saturation length. Here, the computed saturation length is around 25 µm for a mean fibre radius of 3.5 µm. Considering the directly upper scale on the order few millimeters [START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF], the scales seem to be well seperated. This means that at upper scales, the width of the unsaturated zone present at fibre scale can be neglected. In other terms, in 2D, the moving interface within the yarns can be wisely modelled by a 1D front in the equivalent homogeneous medium as it can be done with a level-set method.

Capillary pressure

A consistency between both methods to assess a resulting capillary pressure has been shown previously. Close asymptotic values are thus obtained and should be now compared to experimental results. Capillary pressure assessment in fibrous media has been a concern of the composite materials community over the past twenty years [START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF][START_REF] Schell | Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding[END_REF][START_REF] Willenbacher | Out-of-plane capillary pressure of technical textiles[END_REF][START_REF] Amico | An experimental study of the permeability and capillary pressure in resin-transfer moulding[END_REF][START_REF] Koubaa | Investigation of capillary impregnation for permeability prediction of fibrous reinforcements[END_REF]. However, a huge dispersion of the results can be observed in practice as depicted in Fig. 3.15. Therefore, the comparison of our results with those found in the literature can be a difficult task, especially because fibre volume ratio or the geometries can be different. However, the orders of magnitude remain consistent. Moreover, the mean value of the capillary pressure results found in the literature is 12.2 kPa. This value is very close to the asymptotic capillary pressure retrieved in this study (Eq.3.15). In addition, it seems appropriate to consider some of the presented experimental results as relevant bounds for capillary pressure. Considering Fig. 3.15, results from [START_REF] Amico | An experimental study of the permeability and capillary pressure in resin-transfer moulding[END_REF] represents a relevant lower bound while Pucci et al. measurements [START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF] give a satisfactory upper bound.

Analytical models have been also established to assess capillary pressure within fibrous media [START_REF] Vilà | An in situ investigation of microscopic infusion and void transport during vacuum-assisted infiltration by means of x-ray computed tomography[END_REF][START_REF] Pillai | Wicking across a fiber-bank[END_REF][START_REF] Bayramli | The normal (transverse) impregnation of liquids into axially oriented fiber bundles[END_REF][START_REF] Neacsu | Spontaneous radial capillary impregnation across a bank of aligned micro-cylinders-Part I: Theory and model development[END_REF][START_REF] Ahn | Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements[END_REF][START_REF] Yeager | Prediction of capillary pressure for resin flow between fibers[END_REF]. The macroscopic contribution of capillary pressure is then expressed as:

P c = γ SV -γ SL r V f 1 -V f (3.16)
where r is the fibre radius. For our material data and replacing r by the mean fibre radius r, this equation (Eq.3.16) estimates the resulting capillary pressure at 8.2 kPa as represented in Fig. 3.15. Even if this value is lower than ours, it provides a satisfactory estimation. Indeed, we are considering here a single random microstructure: a further statistical assessment of the capillary pressure should be performed. In addition, the stochasticity of the geometry under consideration (i.e. radius randomness, fibre position randomness,...) may alter the expression of Eq.3.16.

Statistical description of the flow front

In Section 3.3.3, the flow front distribution has been characterised by a Gaussian law. The advancement of distribution mean value has been shown to be linear over time for flow rate inlet control conditions. This is consistent with the saturation curve represented in Fig. 3.11. We can thus write: η(t) ∝ S L (t).

(3.17)
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The standard deviation Ξ(t) of the flow front distribution can be physically interpreted as a bandwidth within which the transient behaviour is contained. This is very close to the concept of saturation length that has been introduced previously. It should be remarked that both s and Ξ * have comparable values. Seeing these quantities as characteric length for the transient behaviour, both approaches appear to be consistent. Once again, it can be concluded that the spread of the flow front can be neglected at upper scales. This may justify the use of deterministic approach at both mesoscale and macroscale. Moreover, this reaffirms the relevance of considering a sharp interface at upper scales. This conclusion directly depends on the kind of porous medium under consideration as well as the flow parameters such as the capillary number [START_REF] Ferrari | Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy[END_REF]. In a more general case, the tools presented here provide a detailed description of the flow and give a thorough upscaling procedure. Finally, in the context of this work, results arising from saturation (Section 3.3.1) and from the consideration of a flow front distribution (Section 3.3.3) are in close agreement. As noticed previously, this latter technique requires the identification of the flow front which can be challeging in practice. As a result, it seems preferable to use saturation-based methods for similar porous media and flow settings.

SRVEs and statistical mechanical response

In Section 3.2.1.3, the microstructures under consideration have been qualified as Statistical Representative Volume Elements, following the results from a previous study [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF] and the definition from [START_REF] Trias | Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers[END_REF]. Indeed, our geometries are randomly generated and have been found to provide both a mechanical and geometrical representativity. In other words, given the SRVE nature of the generated geometries, the mechanical response of a single microstructure will be representative of a whole family of other geometries generated with similar fibre volume ratio and with analoguous flow conditions. To illustrate it, the response of six randomly generated volumes with V f equal to 50% are presented in Fig. 3.18 and Fig. 3.19, for Ca = 10 -3 . It can be seen that the responses are indeed very close, both in terms of saturation or capillary pressure, even if an intrinsic dispersion is naturally observed. Since the present work aims at demonstrating the basics of the stochastic upscaling methodology dedicated to transient flows in composites manufacturing, a single SRVE has been considered. Obviously, a more exhaustive study is requested to further investigate the statistical upscaled flows in the space of the physical and geometrical descriptors. 

Conclusion

This work contributes to bridge the approaches developed by hydrogeology and composite materials communities in order to reach an upscaling method that is adapted to the impregnation of fibrous materials. From an in-depth analysis of the methods encountered in literature, a re-
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examination of the usual upscaling descriptors has been performed, so that they can relevantly characterise the imbibition of fibrous materials.

From 2D SRVEs, flow simulations have been performed through a stabilised finite element method. Upscaling methods have been then identified from the developments of various scientific communities. Those have been adapted to the context of random fibrous media at microscale and further strategies have been proposed.

First, the notion of saturation, that usually describes the proportion of liquid within the poral space, has been considered both at volume and section scales. Their temporal and/or spatial evolution naturally leads to upscaling descriptors related to saturation dynamics or void content. Results are consistent and the some identified discrepancies with the literature has been justified. Local saturation allows to determine a saturation length within which the transient behaviour is supposed to be contained. This length represents around 15% of the domain size. This allows us to conclude that the scales are well separated as the domain encompasses the entire transient behaviour. At upper scales, the width of the unsaturated zone may be neglected for the standard composite materials under consideration.

Then two methods have been proposed to assess a resulting capillary pressure from the interface behaviour. Both approaches have been validated on a test case and show an excellent agreement. A convergence of the capillary pressure is observed over time. It is thus independent of the saturation and only depends on the interface properties and inlet flow control. This may avoid the use of a cumbersome relationship between saturation and capillary pressure. Our values of capillary pressure have been then shown to be in accordance with other analytical and experimental results.

A novelty of this approach is to describe the flow front through a statistical modelling. After identifying the position of the flow front, a presence distribution of the flow front is retrieved. In a first approach, this can be considered as a Gaussian law whose parameters behaviour are consistent with our proposed approach. In the situation under consideration, the spread parameter of the distribution is significantly lower than the characteristic length of the upper scale. This again jutifies deterministic modelling of the flow front at upper scales, for fibrous materials in the context of direct manufacting processes. However, in the case of larger anisotropic porous media, the distribution spread may not be negligible anymore and the proposed statistical characterisation may be particularly relevant.

Finally, the proposed strategy allows a thorough upscaling of the microscopic behaviour while justifying or reappraising some of the usual methods found in the literature. Both capillary number and fibre volume ratio has been kept constant here. Further studies should consider them as input variables of a more comprehensive model in which the presented upscaling descriptors are the output. This will allow us to build a dataset so as to perform a more complete statistical characterisation of the upscaling.

This contribution focuses on the upscaling methods so as to retrieve a novel procedure that is suited for the impregnation of fibrous materials. The statistical upscaling descriptors that have been highlighted are mostly scalar quantities and provide a thorough macroscopic characterisation of the flow under consideration. In future contributions, the influence of the flow settings and pore structure on those descriptors will be investigated in order to extract constitutive laws ruling the imbibition of fibrous structures.

Conclusion

Résumé en français

On considère ici des écoulements diphasiques transitoires au sein de structures fibreuses statistiquement homogènes. La montée en échelle de tels écoulements constitue une étape cruciale vers l'obtention de modèles adaptés à l'échelle industrielle. Cette tâche est néanmoins délicate dans la mesure où différents phénomènes physiques interviennent et interagissent entre eux, dans des structures géométriquement complexes. Les stratégies de montée en échelle couramment rencontrées en étude des sols ou dans la communauté des matériaux composites sont identifiées, comparées et finalement adaptées afin de proposer une méthode pertinente pour l'imprégnation des milieux fibreux statistiquement homogènes. En se basant sur des simulations d'écoulements par éléments finis dans des volumes élémentaires statistiquement représentatifs, l'approche proposée considère plusieurs définitions pour la saturation afin de caractériser la dynamique d'écoulement ou encore la longueur caractéristique associée au comportement transitoire, nommée longueur de saturation. Deux méthodes sont ensuite proposées pour évaluer la pression capillaire résultante. Les deux approches se basent sur une définition interfaciale de la pression capillaire, la première en considérant le saut de pression moyen à l'interface, et la seconde en se basant sur la courbure moyenne de l'interface, calculée à partir d'une méthode de régression par processus gaussien. Les méthodes sont validées sur un cas simple avant d'être comparées dans le cas de l'imprégnation d'une structure fibreuse. Les résultats obtenus sont en accord, et cohérents avec les valeurs rencontrées dans la littérature associée aux matériaux composites. Enfin, une approche statistique pour la description de la position de l'interface à travers à une distribution de présence est détaillée. L'étalement de la distribution peut être comparé à la longueur de saturation, et s'avère être suffisamment petit pour être négligé à l'échelle supérieure, justifiant une modélisation macroscopique non-diffuse de l'interface.

Chapter 4

Upscaling transient two-phase flows in random fibrous media: combined influence of morphology and flow regime

Submitted to Transport in Porous Media

The impregnation of fibrous media is here studied, following a Statistical Volume Element (SVE) modelling. Transient two-phase flows across randomly generated microstructures are simulated using a stabilised finite element scheme, coupling a Stokes solver to a level-set method and accounting for surface tension effects. The flows are then macroscopically characterised by upscaling descriptors, namely the saturation and the interface-defined capillary pressure, which are found to depend both on the pore structure and the flow regime. These dependencies are made explicit and the results compared with those from similar studies, providing an extension of previous observations to a wider spectrum of flow regimes. A major novelty of this contribution is the rational quantification of a validity domain for Darcy's law, or in other words, a converged material and geometrical configuration within which the flow in the impregnated volume can be wisely simplified to a time-independent single-phase flow. Finally, the influence of the viscosity ratio of both fluids on the upscaling descriptors is found to be negligible for the range of parameter values that has been studied, demonstrating the relevance of using the capillary number as a descriptor for the flows under consideration.

Introduction

Transient two-phase flows in porous media are frequently encountered in a wide range of applications [START_REF] Horgue | An open-source toolbox for multiphase flow in porous media[END_REF][START_REF] Yao | Application of process tomography to multiphase flow measurement in industrial and biomedical fields: A review[END_REF], including direct manufacturing processes of composite materials, where the impregnation stage controls to a large extent the final part quality [START_REF] Michaud | A review of non-saturated resin flow in liquid composite moulding processes[END_REF][START_REF] Teixidó | Capillary effects in fiber reinforced polymer composite processing: A review[END_REF]: classically, a dry carbon or glass fibre reinforcement is filled by a resin that replaces the rarefied air, initially present. As the fibrous medium exhibits a multiscale nature, this imbibition can be described at different scales, starting from the fibre scale [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF][START_REF] Chevalier | Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements[END_REF] (i.e. few micrometers) to the manufactured part scale [START_REF] Andriamananjara | Numerical modeling of local capillary effects in porous media as a pressure discontinuity acting on the interface of a transient bi-fluid flow[END_REF] (i.e. several meters). In order to retrieve models suited to an industrial context, it becomes necessary to connect those microscopic and macroscopic descriptions, this can be achieved through upscaling procedures [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Auriault | Taylor dispersion in porous media: analysis by multiple scale expansions[END_REF].

Upscaling such flows has been a major concern in various scientific communities, giving rise to
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different approaches adapted to the constraints of each field. Upscaling procedures are generally performed from Representative Volume Elements (RVEs) [START_REF] Hill | Elastic properties of reinforced solids: some theoretical principles[END_REF][START_REF] Ostoja-Starzewski | Material spatial randomness: From statistical to representative volume element[END_REF] that are supposed to reproduce the response of the porous medium. However, considering a RVE requires to work with very large geometries, leading here to prohibitive simulation costs. To circumvent this problem, Statistical Volume Elements (SVE) can be used: the RVE behaviour is statistically approached by the apparent response of smaller realisations of the medium, such as subdomains of an initial structure [START_REF] Abedi | Effect of boundary condition and statistical volume element size on inhomogeneity and anisotropy of apparent properties[END_REF]. This approach is particularly adapted to the modelling of media with geometrical variability, as it the case for fibrous structures [START_REF] Vaughan | A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials[END_REF][START_REF] Gommer | Analysis of filament arrangements and generation of statistically equivalent composite micro-structures[END_REF][START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF][START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF]. Therefore, random fibrous microstructures will be here generated, that have been proven to statistically represent the behaviour of fibrous reinforcements [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF][START_REF] Geoffre | Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media[END_REF]. Such a strategy follows the ergodic assumption, according to which the overall behaviour can be retrieved from the average behaviour of random smaller structures [START_REF] Ostoja-Starzewski | Material spatial randomness: From statistical to representative volume element[END_REF].

After generating realisations of fibrous microstructures, their response is assessed through a finite element simulation of transient two-phase flow. The simulated flows are then macroscopically characterised by upscaling quantities that must describe with accuracy the impregnation of the fibrous medium and the physical phenomena at play, such as the contribution associated with capillary effects or the final air content. Those upscaling descriptors naturally depend on both the flow regime and the morphology of the fibrous microstructure [START_REF] Konangi | Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions[END_REF][START_REF] Ferrari | Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy[END_REF]. Through the statistical analysis of those dependencies, laws that macroscopically describe the impregnation step will be finally identified (Fig. 4

.1).

Some studies can be found in the literature on the characterisation of upscaled flows from realisations of random fibrous media [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF][START_REF] Bodaghi | On the statistics of transverse permeability of randomly distributed fibers[END_REF]. However, those generally assimilate the impregnation to a steady single-phase flow, simplifying considerably the physical and numerical modelling. In such a context, the flow can be macroscopically described by a permeability tensor [START_REF] Darcy | Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d[END_REF], which is then connected to morphological descriptors. To our knowledge, this work is one of the first to extend the statistical upscaling characterisation to transient two-phase flows, improving the realism of the modelling and making explicit the influence of the flow regime and pore structure on the impregnation of random fibrous structures.

In the paper, physical and numerical modelling will be first detailed, as well as the geometries and the upscaling descriptors selected (Section 4.2). Then the results will be presented with a focus on the liquid saturation and the capillary pressure with a special emphasis on their dependencies to the fibre volume fraction and the capillary number (Section 4.3). Those results will be then discussed and especially compared to other studies from the literature (Section 4.4). Finally, a domain of validity for the usual Darcy's law will be identified. The overall methodology of this article is illustrated in Fig. 4.1. 
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The physical modelling of the impregnation is first described (Section 4.2.1). The problem is then solved by a stabilised finite element method that is briefly presented (Section 4.2.2). At last, an emphasis is placed on the geometries under consideration (Section 4.2.3) and the upscaling descriptors to characterise the impregnation (Section 4.2.4).

Physical modelling of the impregnation

Let Ω i be the domain associated with phase i. From now on, i = L (resp. i = V ) will refer to the fluid (resp. vapor) phase. The computational domain will be denoted as Ω = Ω L ∪ Ω V . The subscript • S will refer to the solid phase. These domains are represented in Fig. 4.2.

Considering the value of resin viscosity (Tab.4.1) and the relative low magnitude of the velocity [START_REF] Park | Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review[END_REF], the mass and momentum conservation laws are expressed through Stokes equations, which are assumed to rule the flow under consideration [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF]:

-∇p + µ i ∆v = 0 ∇ • v = 0 in Ω i (t). (4.1) 
where µ i is the viscosity of phase i, p the fluid pressure and v the fluid velocity field. The material properties used in the following of this study are presented in Tab.4.1. Since three phases are observed in the system, capillary effects arising from surface tension phenomena are to be taken into account. They are classically encompassed in the modelling through Laplace's law, which relates the local stress vector jump σ • n at interface Γ j to the mean curvature C of Γ j [START_REF] Bruchon | Finite element setting for fluid flow simulations with natural enforcement of the triple junction equilibrium[END_REF]:

σ • n = γ j C n in Γ j (t) (4.2) 
with j ∈ {LV, LS, V S} indexing each kind of interface, and γ j the surface tension coefficient associated with interface Γ j , which unit normal vector is n.
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Like in any other flow, capillary contribution (Eq.4.2) competes with the viscous effects (Eq.4.1). This competition is assessed through the capillary number Ca, defined here as:

Ca = µ L v γ LV (4.3)
where v is a characteristic value of the velocity. This quantity is commonly considered to characterise impregnation problems in the composite materials community and will be consequently used to identify the flow under consideration. This assumption will be discussed in a subsequent dedicated part (Section 4.4.4).

We want here to keep the capillary number value constant over time in order to guarantee a stable competition between viscous and capillary effects throughout the flow. As a consequence, a constant flow rate will be prescribed at inlet/outlet boundaries. We thus consider v = v in with v in , the inlet prescribed velocity. A wall condition will be prescribed at the other boundaries and on the fibres contour: v = 0. Prescribing this condition on the fibres contour leads here to consider only the surface tension associated with the liquid-vapor interface (Tab.4.1).

The liquid-vapor interface Γ LV is captured by using a level-set method [START_REF] Osher | Level set methods: an overview and some recent results[END_REF]. The method is based on a signed distance field φ to the liquid-vapor interface. The zero isovalue thus corresponds to Γ LV . Elsewhere, the sign of φ locates the domains Ω L and Ω V , as depicted in Fig. 4.2. The field is then convected through the fluid velocity v to model the motion of the interface [START_REF] Chevalier | Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements[END_REF]:

∂φ ∂t + v • ∇φ = 0 in Ω. (4.4) 
This problem requires boundary and initial conditions to be solved. An input field φ(t = t 0 ), corresponding to a plane located very close to the inlet, gives a first liquid/vapor partition at initial time t 0 . A boundary condition is prescribed on the inlet boundary to determine which phase enters the geometry. The level-set problem then requires a reinitialisation computation to ensure that φ remains a distance field after the convection step (Eq.4.4). This is achieved here with a geometrical direct method [START_REF] Shakoor | An efficient and parallel level set reinitialization method-application to micromechanics and microstructural evolutions[END_REF], that has been multi-threaded for CPU optimisation. 

Numerical resolution

Both fluid and level-set problems are solved on the same mesh through a finite element method, implemented in Z-set1 software and extensively detailed and validated in former contributions [START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF][START_REF] Liu | Towards void formation and permeability predictions in LCM processes: a computational bifluid-solid mechanics framework dealing with capillarity and wetting issues[END_REF][START_REF] Abouorm | Monolithic approach of Stokes-Darcy coupling for LCM process modelling[END_REF][START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF][START_REF] Chevalier | Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements[END_REF]. The fluid problem uses a linear approximation for both velocity and pressure fields and is stabilised by an ASGS method from the VMS framework [START_REF] Codina | Variational multiscale methods in computational fluid dynamics[END_REF]. The level-set problem also uses a linear approximation function and is stabilised by a SUPG method [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF]. The numerical method that has been implemented to take surface tension effects into account is detailed in [START_REF] Chevalier | Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements[END_REF][START_REF] Bruchon | Finite element setting for fluid flow simulations with natural enforcement of the triple junction equilibrium[END_REF] Both fluid and level-set problems are weakly coupled which means that, at every time step, the Stokes problem is first solved and then the level-set methodology is applied, thus updating the position of the liquid-vapor interface. This is followed by the next time increment.

Fibrous geometries and SVE

The reinforcements under consideration are made of long carbon fibres that are globally parallel to each other. In accordance with the composite literature, the plane that is transverse to the fibre axis is here only considered since the transverse flows are the most complex to characterise and to predict due the small size of the associated scale and to a complex pore structure. Fibrous microstructures are generated randomly through an algorithm that has been detailed in a previous contribution [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF]. As the generated microstructures are statistically homogeneous, they are characterised by their fibre volume fraction V f . The fibres radius r follows a gaussian law, centred on r = 3.5 µm and with 10% of variability, following experimental observations [START_REF] Vaughan | A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials[END_REF]. The characteristic length L of the microstructures has to be large with respect to r in order to grasp the geometrical variability of the medium (i.e. contains enough information). This follows the scale separation hypothesis that sustains upscaling procedures,

δ = L r 1. (4.5) 
The RVE is theoretically retrieved for the limit δ → ∞ or, in practice, for geometries large enough to satisfactorily respect Eq.4.5 [START_REF] Ostoja-Starzewski | Material spatial randomness: From statistical to representative volume element[END_REF][START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]. As mentioned previously, the consideration of RVE thus involves considerable computational resources so that simulations can be performed. In order to alleviate the computation cost, a strategy consists in considering several realisations of smaller geometries called Statistical Volume Elements (SVE), for which the response statistically approaches the RVE response [START_REF] Yin | Statistical volume element method for predicting microstructure-constitutive property relations[END_REF]. In the context of this work, performing an impregnation simulation is extremely expensive both in terms of time and space computational resources. As a consequence, the SVE approach is particularly adapted to the present situation, especially since it mimics the geometrical variability inherent to fibrous structures. Since the smaller the δ values, the higher the number of realisations necessary to approach the RVE behaviour [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF], δ ≈ 50 has been shown to be an appropriate value. Still, the computations remain extremely expensive to perform and a complete impregnation simulation takes between 15 and 25 days, depending on the V f value (CPU Intel Xeon Gold 6128, 3.4GHz, RAM : 128 Go, multi-thread implementation).
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As an example, a generated microstructure with δ = 50 and V f = 0.59 shows 551,288 nodes, 1,653,864 degrees of freedom and requires 4,785 time steps, resulting in approximately 21 days of computations. For a few (V f , Ca) couples, single realisations will be considered.

Upscaling descriptors

As indicated previously, the impregnation flow simulation must be characterised through upscaling descriptors. The most straighforward description consists in evaluating the proportion of the liquid phase throughout the simulation. This is classicaly achieved with the saturation S L that is expressed here as:

S L (t) = |Ω L (t)| |Ω| (4.6)
where | • | is the volume, or surface in 2D, associated with the domain. As an imbibition is considered, S L is supposed to increase up to reaching an asymptotic value S max L = S L (t → ∞). This value is strictly smaller than one as the domain is never fully saturated at final state, due to the improper filling caused by the viscous and capillary effects in the fibre network [START_REF] Lebel | Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements[END_REF]. This limit is of prime importance in the context of composite materials as the entrapped bubbles form critical zones of mechanical weakness that have to be avoided as much as possible in the manufactured part [START_REF] Park | Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review[END_REF][START_REF] Kang | Formation of microvoids during resin-transfer molding process[END_REF]. In other words, a maximum value of S max L guarantees an optimal impregnation which entails a maximal in-service durability of the manufactured material.

In direct manufacting processes, the capillary effects are generally considered as a significant complementary force that tends to help the impregnation [START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF][START_REF] Teixidó | Capillary effects in fiber reinforced polymer composite processing: A review[END_REF]. As a consequence, the upscaling of this contribution, through a resulting capillary pressure, is a crucial point that has been widely studied in the literature. Yet, depending on the community, the notion of capillary pressure may differ. In hydrogeology, the capillary pressure is generally defined at the volume scale like the pressure difference between liquid and vapor phases. This definition is especially convenient from an experimental point of view, as it is considered to match the pressure difference between the inlet and the outlet boundaries [START_REF] Niessner | Comparison of two-phase Darcy's law with a thermodynamically consistent approach[END_REF][START_REF] Hassanizadeh | Thermodynamic basis of capillary pressure in porous media[END_REF]. However, the capillary pressure defined in this way shows a complex and hysteretic dependency to saturation [START_REF] Hassanizadeh | Toward an improved description of the physics of two-phase flow[END_REF]. Moreover, the definition is established at volume scale, which can be questioned insofar as capillary effects purely arise from interfacial phenomena [START_REF] Hassanizadeh | Thermodynamic basis of capillary pressure in porous media[END_REF]. On the contrary, some contributions have underlined the relevance of considering an interface-defined capillary pressure that becomes independent of the saturation state of the volume. It is then more an intrinsic characteristic of both the porous medium and the fluids in presence [START_REF] Starnoni | On the concept of macroscopic capillary pressure in two-phase porous media flow[END_REF][START_REF] Ferrari | Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy[END_REF][START_REF] Lasseux | On the developments of Darcy's law to include inertial and slip effects[END_REF][START_REF] Konangi | Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions[END_REF]. This definition is consistent with the notion of capillary pressure met in the composite materials community [START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF][START_REF] Schell | Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding[END_REF][START_REF] Willenbacher | Out-of-plane capillary pressure of technical textiles[END_REF].

Consequently, a resulting capillary pressure P c computed at the interface level will be considered here. As indicated earlier, surface tension phenomena imply a pressure discontinuity at the interface, modelled by Laplace's law (Eq.4.2). The resulting capillary pressure will be therefore considered as equal to the average pressure jump across the interface [START_REF] Geoffre | Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media[END_REF]:

P c = p LV (4.7)
where • LV is the averaging operator over the interface Γ LV , expressed as

• LV = 1 Γ LV Γ LV • dS. (4.8) 4.3. Results 

Results

The upscaling descriptors detailed in Section 4.2.4 are now computed from impregnation simulations performed in randomly generated fibrous microstructures. Both the influence of the pore structure, through V f , and of the flow regime, through Ca, on those quantities are characterised. Considering a given microstructure, the assumption is made that a flow can be characterised by its associated capillary number only (Eq.4.3), like it is generally admitted in the composite materials literature [START_REF] Michaud | A review of non-saturated resin flow in liquid composite moulding processes[END_REF]. Since the viscosity and the surface tension values are kept constant here, the flow is thus supposed to be defined by the prescribed inlet velocity only. This strong assumption is not necessarily straightforward, as the influence of other parameters such as the viscosity ratio is neglected for instance, and will be consequently discussed in a dedicated section (Section 4.4.4).

Each flow simulation will be associated with a Ca value and will be performed on a domain Ω, which corresponds to a realisation of fibrous microstructure through the generation algorithm (Fig. 4.1). In this work, we will consider all the 16 couples (V f , Ca) belonging to {0.3, 0.4, 0.5, 0.6}× {10 -4 , 10 -3 , 10 -2 , 10 -1 }. This allows the study to cover most of the cases present in the composite materials community in terms of fibre density and flow regime.

Saturation

The saturation S L is first analysed. The values of Ca under consideration (i.e. Ca ≥ 10 -4 ) are sufficiently high for the prescribed inlet velocity to act as the leading driving force for the simulated impregnations. As a constant inlet velocity is here prescribed, the liquid phase advances linearly over time in the pore structure. In other words, the saturation rate ṠL is constant over time. Once the liquid phase has invaded the whole structure, the saturation is stabilised around its maximum value S max L . This behaviour can be observed in Fig. 4.3 for three realisations. In this illustration case, V f = 50% and Ca = 10 -3 have been chosen. From six realisations, the upscaling descriptors are statistically assessed as ṠL = 1.1 × 10 2 s -1 (C v = 10%) and S max L = 0.82 (C v = 1.5%) where the overline corresponds to the mean value and C v is the coefficient of variation, that is to say the ratio between the standard deviation and the mean. Those values thus display a satisfactorily low dispersion, pointing out that the realisations show an analoguous response, hence validating the choice of microstructure size (δ ≈ 50).

The upscaling descriptors can now be expressed as functions of V f and Ca as illustrated in Fig. 4.4 and Fig. 4.5. As regards Fig. 4.4, the ṠL curves show an expected linear trend with respect to Ca. Indeed, the capillary number Ca is modified by varying the prescribed inlet velocity, while both µ L and γ LV values are held constant. The filling rate is thus logically proportional to the prescribed velocity, independently from the pore structure, hence: This also explains why, for a given value of Ca, the behaviours observed for different V f are very close. Yet, small differences can be noticed and explained by the fact that the capillary

ṠL ∝ Ca ∝ v in . ( 4 
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contribution increases as the width of the flow channels shrinks in the microstructures, thus for higher V f values.

The dependency of S max L with respect to V f and Ca is now addressed (Fig. 4.5). It can be verified that S max L shows an increasing linear trend with respect to Ca, while globally following the V f order. However, a higher variability is observed in comparison with Fig. 4.4. as a function of V f and Ca. A cross is plotted when a single realisation is considered while a bar represents the min-max dispersion when several realisations have been considered.

Capillary pressure

The results associated with the capillary pressure are now presented. The time evolution of the capillary pressure, such as defined in Eq.4.7, is depicted for different realisations in Fig. 4.6, with V f = 0.4 and Ca = 10 -3 . The capillary pressure is shown to converge towards an asymptotic value P * c . In order to compare the convergence pattern between capillary pressure and saturation, a saturation curve is also plotted in this same Fig. 4.6 -other realisations yield very similar saturation curves. It can be observed that the capillary pressure converges before the stabilisation of the saturation [START_REF] Geoffre | Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media[END_REF]. In the example of realisation 4 in Fig. 4.6, the convergence of capillary pressure is observed when S L ≈ 0.4 and the corresponding flow state is illustrated. For all the couples (V f , Ca) under consideration, the value at convergence is independent from the saturation state of the volume. This convergent trend can be explained as the generated fibrous microstructures show a statistically homogeneous nature [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF]. Therefore, P * c will be used as an upscaling descriptor to characterise the impregnation under consideration, and especially the interaction between the fluids and the pore structure. Taking into account the different realisations for the case depicted in Fig. 4.6, the capillary pressure can be assessed as P * c = 7.0 kPa (C v = 10%). Again, a low variability is retrieved, showing a similar behaviour between realisations for a given (V f ,Ca) couple.

The asymptotic capillary pressure P * c is now plotted as a function of V f and Ca (Fig. 4.7). The values of P * c shows a significant dependency to Ca, especially at high Ca value (> 10 -3 -10 -2 ). It is thus interesting to notice that P * c also depends on the flow regime and not only on the fluids and fibrous medium properties. The capillary pressure also increases when V f rises. As discussed later in Section 4.4.3, this could be anticipated as the flow channels between fibres narrow, increasing the magnitude of capillary effects [START_REF] Masoodi | A general formula for capillary suction-pressure in porous media[END_REF][START_REF] Rougier | Modélisation multi-échelle de l'imprégnation d'un milieu fibreux: morphologie, mouillage et perméabilité[END_REF]. Those dependencies will be further discussed in the dedicated section (Section 4.4). A cross is plotted when a single realisation is considered while a bar represents the min-max dispersion when several realisations have been considered.
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The whole results are now discussed. Comparisons with other studies from the literature are performed so as to assess the relevance of our results. Then, configuration bounds for which the Darcy's law can properly represent the converged flow will be identified by comparing transient two-phase simulations to time-independent single phase simulations. Finally, the influence of the fluids viscosity ratio will be discussed.

Maximum saturation

Various contributions have already studied the final content of residual phase reached after an imbibition or drainage flow. Our results corroborate both experimental and numerical observations performed on a wide range of porous media, including fibrous-like geometries [START_REF] Ambekar | Pore-resolved two-phase flow in a pseudo-3D porous medium: Measurements and volume-of-fluid simulations[END_REF][START_REF] Hu | Effect of capillary number on morphological characterizations of trapped gas bubbles: Study by using micro-tomography[END_REF][START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF][START_REF] Tang | New capillary number definition for micromodels: The impact of pore microstructure[END_REF]. It has been shown that high Ca values tend to generate a large number of residual ganglia with small sizes, while low Ca values entail less yet bigger ganglia [START_REF] Ambekar | Pore-resolved two-phase flow in a pseudo-3D porous medium: Measurements and volume-of-fluid simulations[END_REF][START_REF] Hu | Effect of capillary number on morphological characterizations of trapped gas bubbles: Study by using micro-tomography[END_REF]. On balance, the proportion of residual phase is minimised for high Ca values, which is also observed here (Fig. 4.5). As mentionned in [START_REF] Avendaño | Effect of surface wettability on immiscible displacement in a microfluidic porous media[END_REF], high Ca values make the flow front more stable, yielding a more regular advancement and a lower vapor phase entrapment. In other words, an optimal impregnation scenario is retrieved when the advancement of the flow front is as uniform as possible.

In a similar manner, the composite materials community has extensively studied the fraction of vapor remaining after impregnation of fibrous structures, which is generally referred to as void content and which is equal here to 1 -S max L . However, most of these studies consider mesoscopic 4.4. Discussion dual-scale geometries, where the resin flows between and inside yarns (i.e. bundles of fibres) [START_REF] Geoffre | Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: from Stokes to Stokes-Darcy simulations[END_REF][START_REF] Tan | Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows[END_REF]. In such cases, plotting the final void content as a function of Ca generally leads to a V-shaped curve, revealing an optimal impregnation scenario that minimises the void content, and which is generally observed for a capillary number approximately equal to 10 -3 , depending of the geometries under consideration [START_REF] Michaud | A review of non-saturated resin flow in liquid composite moulding processes[END_REF][START_REF] Lebel | Void content analysis and processing issues to minimize defects in liquid composite molding[END_REF]. This optimal scenario is identified as the one that guarantees the most uniform advancement of the flow front at both intra-yarn and inter-yarn scales. More generally, in dual-scale geometries the alteration of the flow front may mitigate the conclusion drawn for single-scale geometries. Direct comparisons with measurements on composites may not be straight

Considering identical capillary numbers, the S max L values presented here are slighly lower than those encountered in the literature associated with composite materials. For instance, for V f ≈ 50% and Ca ≈ 3 × 10 -3 , a filling ratio around 94% is observed experimentally in [START_REF] Zingraff | Resin transfer moulding of anionically polymerised polyamide 12[END_REF], while S max L ≈ 86% is obtained here. However, as mentionned previously, these studies introduce a further dual-scale complexity. Besides the geometrical discrepancies, this slight difference can be also explained by the presence of further physical mechanisms that may be involved when the impregnation is experimentally performed and that are not taken into account in our model. Indeed, thermochemical effects [START_REF] Zingraff | Resin transfer moulding of anionically polymerised polyamide 12[END_REF] or fluid slip phenomena [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF] have been especially remarked and may lead to decrease the void content [START_REF] Zingraff | Resin transfer moulding of anionically polymerised polyamide 12[END_REF].

It is therefore complex to find similar studies which our results can be compared with. Nevertheless, from a micro-model study, Ambekar et al. [START_REF] Ambekar | Pore-resolved two-phase flow in a pseudo-3D porous medium: Measurements and volume-of-fluid simulations[END_REF] considered geometries somehow close to those presented here, and found flow simulations results in agreement with their experiments. From both experiments and simulations, they retrieved a filling ratio around 80% for V f = 0.55 and Ca = 7 × 10 -4 . For similar parameter values, S max L is here assessed around 82% from Fig. 4.5, showing that both studies are satisfactorily consistent. This gives us confidence on the validity of our model to predict filling ratio in statistically homogeneous fibrous structures.

Domain of validity for Darcy's law

The impregnation is here assimilated to a transient two-phase flow, denoted as T2, inducing many difficulties in terms of modelling or numerical requirements. At the expense of the physical representativity, it is thus frequently simplified in a steady single-phase resin flow, denoted as S1, which significantly alleviates the computational costs as the problem becomes time-independent and circumvents the modelling of a liquid/vapor interface. In addition, the upscaling procedure of such flows has been extensively studied and benefits from a sound theoretical ground. Indeed, the flow is macroscopically described by Darcy's law [START_REF] Darcy | Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF], involving a permeability tensor as an upscaling descriptor, which models the influence of the pore structure and the fluid slip on the flow [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF]. The permeability has thus been widely studied, especially by the composite materials community, whether numerically [START_REF] Bodaghi | On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: A review[END_REF], analytically [START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF] or experimentally [START_REF] Arbter | Experimental determination of the permeability of textiles: A benchmark exercise[END_REF].

It is thus paramount to determine under which conditions the assumption of a time-independent single-phase flow holds. For various Ca values, we have compared the converged states (i.e. when t → ∞) for a transient two-phase flow simulation, denoted as T2 * , with a time-independent singlephase flow simulation. For given realisations of microstructures, two flow simulations have thus been performed, one S1 and one T2, with the same prescribed flow rate. Both simulations are then compared. The pressure drop ∆P between the inlet and oulet boundaries is measured for both cases and compared, introducing the pressure drop ratio ε ∆P as:

ε ∆P (t) = ∆P T 2 (t) -∆P S1 ∆P S1 . (4.10) 
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The quantity ε is represented as a function of time in Fig. 4.8 for a same fibrous microstructure, with V f = 0.5. The difference between S1 and T2 cases when time tends towards infinity (i.e. when T2 * is reached) is denoted as ε * ∆P = ε ∆P (t → ∞). This value is indicated in Fig. 4.8 for the two presented cases and allows us to assess the coincidence between S1 and T2 * states. As observed in Fig. 4.8, this quantity depends directly on Ca, thus on S max L according to Fig. 4.5. This dependency is further highlighted in Fig. 4.9 where ε * ∆P is plotted as a function S max L and Ca for different impregnation simulations performed in randomly generated microstructures. As expected, for low S max L value, which corresponds to high Ca here (Fig. 4.5), the vapor phase content can be neglected, and both S1 and T2 * states match. Let us assume that a satisfactory coincidence between both states is reached for ε * ∆P < 10%. Considering that the dependency between log ε ∆P and S max L is linear (Fig. It has been shown that the two-phase equilibrium that is established once the volume is impregnated can be assimilated to a single-phase flow when the residual phase content is sufficiently low, which corresponds here to high Ca values. A validity threshold has been given for this equivalence and the induced error has been measured. Under this threshold, the flow can be macroscopically described by Darcy's law, and therefore by the permeability of the pore structure only. In practice, this gives a validity condition for Darcy's law to macroscopically model flows within impregnated areas (i.e. sufficiently far the flow front) of statistically homogeneous fibrous structures. 

Capillary pressure

Capillary pressure has been extensively studied for the impregnation of fibrous media for the composites literature. However, as mentioned previously, the capillary pressure values are established for dual-scale geometries and span from few pascal to several kilopascal [START_REF] Willenbacher | Out-of-plane capillary pressure of technical textiles[END_REF][START_REF] Pucci | Capillary wicking in a fibrous reinforcement-Orthotropic issues to determine the capillary pressure components[END_REF][START_REF] Amico | An experimental study of the permeability and capillary pressure in resin-transfer moulding[END_REF]. It is thus difficult to identify reference results from which the values retrieved here can be relevantly compared.

However, analytical models can be found to express capillary pressure as a function of the pore morphology, generally for idealised fibrous media [START_REF] Rougier | Modélisation multi-échelle de l'imprégnation d'un milieu fibreux: morphologie, mouillage et perméabilité[END_REF]. As observed in spontaneous rise in capillary tubes where the capillary effects increase when the flow channel is narrow, the capillary pressure is here expected to increase with V f [START_REF] Francucci | Capillary effects in vacuum-assisted resin transfer molding with natural fibers[END_REF]. This has been especially shown in various works where the capillary pressure can be considered as proportionnal to V f /(1 -V f ) ratio [START_REF] Masoodi | A general formula for capillary suction-pressure in porous media[END_REF][START_REF] Rougier | Modélisation multi-échelle de l'imprégnation d'un milieu fibreux: morphologie, mouillage et perméabilité[END_REF][START_REF] Verrey | Dynamic capillary effects in liquid composite moulding with non-crimp fabrics[END_REF]. For instance, Ahn et al. [START_REF] Ahn | Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements[END_REF] retrieved:

P c = γ SV -γ SL r V f 1 -V f (4.11)
where r is the mean fibre radius. In Fig. 4.10, our results of capillary pressure are plotted as a function of V f /(1 -V f ) and compared to Eq.4.11. The proportionality with respect to V f /(1 -V f ) can also be observed here. Our results give capillary pressures higher than from Ahn et al. model even though a consistency is retrieved for increasingly lower Ca value. The difference can be mainly attributed to viscous effects as Eq.4.11 is supposed to be independent of the viscous contribution. This also explains 4.4. Discussion why the difference with Ahn et al. results increases as Ca rises. The discrepancy between both studies can also be attributed to the geometrical stochasticity that is included in our model.

Similar works that use an interface-defined capillary pressure focus on capillary numbers that not exceed 10 -3 while a broader range of Ca values is considered here. From Fig. 4.7, it can be observed that the capillary pressure is nearly independent from the capillary number up to Ca ≈ 10 -3 -10 -2 , as pointed out by other studies [START_REF] Ferrari | Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy[END_REF][START_REF] Konangi | Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions[END_REF]. For higher Ca values, viscous effects increasingly affect the capillary pressure. Therefore, it can be concluded here that the interfacedefined capillary pressure can be used to characterise the interaction between the pore structure and the fluids, independently from the inlet velocity, as long as Ca is sufficiently low. This study confirms the results from other studies and extends them to wider range of Ca values. 

Influence of fluid viscosity ratio

Considering a given fibrous microstructure, the capillary number Ca has been here assumed to characterise with uniqueness any transient two-phase flow. As all the fluid properties have been kept constant, the impregnation has been assumed to be described by the prescribed inlet velocity only, following Eq.4.3. Yet, the influence of the other parameters involved in Ca (i.e. µ L and γ LV ) on the upscaled quantities under study (i.e. S L and P c ) should also be assessed. Indeed, it has been especially shown that the viscosity ratio has a direct influence on the impregnation pattern [START_REF] Ferrari | Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy[END_REF][START_REF] Michaud | A review of non-saturated resin flow in liquid composite moulding processes[END_REF].

Keeping the capillary number Ca constant, different viscosity ratios M n have been considered by changing the initial liquid viscosity µ L (Tab.4.1) into µ L,n = nµ L with n a real number. The viscosity ratio is then expressed as:

M n = µ L,n µ V = n µ L µ V . ( 4 
.12)

Discussion

As the liquid viscosity µ L has been modified into µ L,n , the initial liquid-vapor surface tension γ LV (Tab.4.1) has to be changed accordingly so that capillary number Ca is constant (Eq.4.3). Consequently, γ LV is changed into γ LV,n = nγ LV , leading to:

Ca = µ L,n v in γ LV,n = µ L v in γ LV = cst. (4.13)
In the following, a given microstructure with V f = 0.5 will be considered and the capillary number will be set equal to 10 -3 , keeping the same prescribed inlet velocity. The impact of the viscosity ratio on the previously studied quantities is now discussed. Considering first the liquid saturation, the curves are not impacted by a change of M n ratio, as expected and depicted in Fig. 4.11. Indeed, as a flow rate is prescribed at the boundary of the volume, the invading liquid phase is forced to travel the same distance at each computational step, independently from its viscosity and γ LV value. This observation should naturally differ if a pressure drop is prescribed instead. The capillary pressure may be expected to depend on M n . As indicated earlier, both µ L and γ LV have been modified to consider different M n while keeping Ca constant. This can be a problem at first glance as γ LV naturally influences the capillary pressure. Yet, following Laplace's law (Eq.4.2), this dependency can be clearly identified. As a consequence, the ratio P * c /γ LV will be considered in order to get rid of the influence of γ LV on the capillary pressure and to characterise only the viscosity change.

This quantity P * c /γ LV has been plotted for different M n in Fig. 4.12, where the axes have been normalised by the values associated with the reference case n = 1. It can be seen that the capillary pressure, as it is defined here from Eq.4.7, does not depend significantly on M n ratio as 4.5. Conclusion it only induces a maximum deviation from the reference case of 12%, for the wide M n range under consideration.

It can be concluded that the viscosity ratio M n does not have a significant effect on both the saturation and the capillary pressure. As a consequence, the assumption according to which an impregnation can be characterised with uniqueness by a single capillary number value, regardless of the viscosity ratio, is here validated for the wide range of M n under consideration. 

Conclusion

This contribution focuses on the upscaling of fibrous media impregnation. Flow simulations have been performed at the fibre scale through a stabilised finite element method that couples a Stokes and a level-set problem while accounting for the capillary effects. Randomly generated fibrous microstructures have been considered, that are representative of real geometries, following the SVE method. Several realisations of microstructures, smaller than the RVE are considered, leading to affordable though CPU-demanding simulations. The response of the RVE is then statistically approached.

Next, the simulated flows have been characterised through upscaling descriptors, namely the saturation and the capillary pressure, for which the influence of the flow regime and pore structure have been assessed. As a flow rate is prescribed at volume inlet, the saturation shows first a linear evolution over time until stabilising towards a value that is strictly smaller than one, due to the viscous/capillary competition in the geometrically irregular medium. This value is of prime importance in the composites community as it is directly associated with the void content, which is detrimental for the composite parts and should thus be minimised as much as possible. An optimal impregnation scenario is retrieved when the flow front advancement throughout the structure is The values of saturation after impregnation presented here are slightly higher than those encountered in the composites literature but remain consistent with similar studies based on micromodels. From pressure drop comparisons, it is then shown that the steady two-phase flow reached after the medium impregnation can be assimilated to a time-independent single-phase flow, for sufficienly low void content (S max L > 90%). This quantatively bounds a configuration from which the computational costs can be significantly alleviated and inside which the usual Darcy's law, thus the permeability, can be used to model the flow under consideration. In practice, this will help to assess whether impregnated zones, that are located far from the flow front, can be reasonably described by Darcy's law at macroscopic scale.

The capillary pressure has then been considered since it represents an additional contribution to the prescribed flow rate that favours the impregnation in this context. The resulting capillary pressure has been defined here at the interface level, through the averaging of the pressure across the liquid-vapor interface. The capillary pressure defined as such is shown to converge over time, making it independent from the saturation level and thus providing a characterisation of the pore structure and of the fluids in presence. This asymptotic value has been regarded as the resulting capillary pressure and its dependencies with respect to Ca and V f have been clarified. As proposed by different models, the capillary pressure is shown to be proportional to V f /(1 -V f ) ratio and depends on Ca. Our study also confirms previous results and extends them showing that interfacedefined capillary pressure is little sensitive to viscous effects, as long as the capillary number is sufficiently low.

Finally, our work identifies three successive flow regimes during the impregnation of statistically homogeneous fibrous structures:

• The flow loses memory of its initial non-physical state: the saturation increases linearly and the capillary pressure is not stable. As the initial liquid-vapor partition is set as a plane, a certain time is needed to deviate from this initial configuration.

• The flow reaches statistical steadiness: the saturation increases linearly and the capillary pressure becomes stable. As the structure is statistically homogeneous, the transient twophase flow converges towards a state where its time behaviour does no longer changes.

• The volume is impregnated: both the saturation and the capillary pressure are stable. The volume can be considered as filled by the liquid and it can be characterised by its residual void content. This state (T2 * ) can be considered as a steady single-phase phase flow (S1) if this void content is sufficiently low. If both states coincide, the computational cost associated with the simulation can be significantly alleviated and the flow can be characterised by the permeability of the pore structure only. Otherwise, an apparent hydraulic conductivity can be employed to macroscopically describe the flow in an equivalent homogeneous media which deviation from the usual permeability can be retrieved from the values of ε ∆P (Fig. 4.8,4.9).

As commonly assumed in the composite materials community, considering a given geometry, the capillary number has been assumed to characterise a given impregnation with uniqueness. This assumption has been investigated, by considering different viscosity ratios for a constant Ca and a given microstructure. It turns out that the viscosity ratio has only little impact on both the saturation and the capillary pressure for the range of Ca and M n values under consideration. This validates here the capillary number as an appropriate descriptor to characterise impregnation problems.

Conclusion

This work is, to our knowledge, one of the first to study the upscaling of two-phase flow within randomly generated fibrous microstructures, and to detail explicitly the dependence of both saturation and an interface-defined capillary pressure on the flow regime and on the pore structure. Those relationships will be used at the upper scale to describe the flow in an equivalent homogeneous medium. However, experimental comparison points are lacking, since composite materials literature usually studies dual-scale fibrous structures, introducing the complexity of further impregnation mechanisms. Future studies should account for such geometries and effects.

Résumé en français

L'imprégnation de milieux fibreux est étudiée ici, en adoptant une modélisation par volumes élémentaires statistiques (VES). Des écoulements diphasiques transitoires sont alors simulés dans des microstructures générées aléatoirement, en s'appuyant sur un schéma par éléments finis stabilisé, couplant un solveur Stokes à une méthode level-set, tout en prenant en compte les effets de tension de surface. Les écoulements sont alors caractérisés macroscopiquement par des descripteurs de montée en échelle, correspondant à la saturation et la pressure capillaire définie au niveau de l'interface, qui dépendent à la fois de la structure poreuse et du régime d'écoulement. Ces dépendances sont explicitées et les résultats comparés à ceux d'études similaires, permettant l'extension d'observations précédemment rapportées à une plage plus importante de régimes d'écoulement. Une contribution novatrice de travail correspond à l'identification rigoureuse d'un domaine de validité pour la loi de Darcy, autrement dit, une configuration pour laquelle l'écoulement au sein du volume imprégné peut être raisonnablement simplifié en un écoulement monophasique indépendant du temps. Enfin, l'influence du rapport de viscosité des deux phases fluides sur les descripteurs de l'écoulement apparaît ici comme négligeable pour la gamme de paramètres étudiée, justifiant le nombre capillaire comme un descripteur pertinent des écoulements décrits.

General conclusion

This PhD thesis forms part of the industrial chair between Mines Saint-Étienne and Hexcel Reinforcements company for the numerical modelling of infusion-based manufacturing processes of composite materials. Previous works from this project were dedicated to numerical developments and implementations respectively for the microscopic and macroscopic descriptions of the flows observed during the impregnation phase, where a dry reinforcement is filled by a resin, replacing the air initially present. As these microscopic and macroscopic approaches have been established independently, it was necessary to connect them through an upscaling procedure, this was the aim of this present work.

A transient two-phase flow within a complex fibrous structure is observed during the impregnation step. At local scale, the medium is composed of fibres showing an intrinsic variability both in terms of position and radius distribution. In line with the literature, the study considers flows in the plane transverse to fibre axis as it raises substantial issues for the characterisation of the impregnation. From random perturbations of initially regular packings of disks, periodic fibrous microstructures have been generated and shown to be representative of experimentally-observed transverse arrangements, providing an accurate description of geometrical stochasticity. Those microstructures have then been generated massively to statistically approach the response of large fibrous structures.

For this purpose, flows have been simulated within the generated microstructures through a finite element method, addressing first the idealised case of a steady single-phase flow, and thereafter a more realistic transient two-phase scenario. In our case study, the fluid mechanics problem can be restrained to solve Stokes equations as a low Reynolds number is considered. The numerical method however requires a stabilisation strategy since both velocity and pressure fields use a same approximation space. An ASGS stabilisation, belonging to the VMS framework, has been chosen here. The model should also account for the presence of a liquid-vapor interface when two-phase flows are considered. This has been achieved through a level-set method that captures the interface while identifying the precise location of each phase. The advancement of the flow front is modelled by the convection of the whole level-set field in the fluid velocity field. The computation also needs a stabilisation scheme which corresponds here to a SUPG method. The convection is then followed by a direct geometrical reinitialisation step which ensures that the level-set field remains a distance function throughout the computations.

The numerical method also accounts for capillary effects which resulting contribution usually acts as a significant additional force in impregnation problems, given the micrometric proximity between fibres. As a sharp interface model is employed through the level-set method, the capillary contribution from Laplace's law can be computed exactly from a local reconstruction of the interface. In order to reduce parasitic effects that here arise as spurious interfacial currents, a semiimplicit formulation has been considered, providing a stabilising viscous-like dissipation. Finally,

Conclusion

the elements cut by the moving interface have been enriched by the introduction of three additional degrees of freedom that models the discontinuities of the pressure field induced by the jump of material properties on either side of the interface. The numerical method has then been validated, taking a complex drainage experiment as a test case. Results have been shown in excellent agreement with both experimental and numerical studies, giving us confidence in the predictive performances of our model.

Once the numerical strategy is validated, the question of the upscaling procedure arises. The upscaling framework for steady single-phase flow is clearly established as the relevance of Darcy's law to macroscopically describe such flows has been extensively shown. In such case, the flow can be characterised by the permeability of the pore structure only, which has been widely studied by the composite materials literature for fibrous structures. However, when transient two-phase flows are considered, the upscaling procedures become less straighforward and discrepancies between scientific communities can be observed. The methods generally focus on the characterisation of the saturation state of the medium and the assessment of a resulting capillary pressure, although the definition of these notions may vary depending on the application field.

The results presented through three chapters, each corresponding to an article, can be summarised as follows :

• Considering statistically homogeneous fibrous arrangements, the permeability tensor in the plane normal to the fibre axis can be reduced to a single scalar, as statistical isotropy is observed. As the permeability of the medium is directly related to the pore structure, it can be expressed as a function of various morphological descriptors. However, the usual ones have been found to be equivalent in their description of the permeability and consequently, the most simple has been kept, namely the fibre volume fraction V f . As shown in many other studies, the permeability decreases exponentially when V f increases. For a given fibre volume fraction, the permeability follows a gaussian distribution with a variability of 3%. The randomness associated with the fibre position has been found to significantly reduce the permeability as the tortuosity increases, while the influence of the radius variability on the permeability has been found to be negligible.

• The permeability of a medium does not only characterise the geometry of the pore structure, but also the interaction between the fluid and solid phases. The fluid slip phenomenon at fibre surface has been taken into account, regarding the micrometric size of the geometries under consideration, and has been found to significantly alter the permeability results. A difference up to one order of magnitude can be observed between the two extreme cases when it comes to homogenise Stokes flows to Darcy's law, corresponding to the free-slip case and to the no-slip scenario, that is to say the usual assumption. As the magnitude of the fluid slip varies significantly from a study to another, the conclusions on the influence of the fluid slip phenomenon on the permeability may differ. Both statistical dispersion and fluid slip effects on permeability have been made explicit in an unified analytical law.

• When it is modelled as a transient two-phase flow, the impregnation shows different behaviours depending on the prescribed inlet conditions. A velocity inlet condition has been prescribed here to ensure a constant filling rate of the volume so that the capillary number, which corresponds to the ratio between the viscous and capillary effects, is constant throughout the simulation. Considering a given microstructure, the impregnation can thus 4.5. Conclusion be characterised by its corresponding capillary number. The couple (V f , Ca) therefore characterises both the pore structure and the flow regime, and has been considered here to identify a given impregnation scenario with uniqueness. The viscosity ratio has not been found to substantially improve the description of the impregnation, for the range of fluid properties that has been studied.

• Considering a couple (V f , Ca), the transient two-phase flows in the media under consideration can be first described by the saturation, which can be defined at various scales to provide a precise characterisation of the flow. As an inlet velocity is prescribed, the global saturation rises linearly over time, regardless the fluid properties, until reaching a value that is strictly smaller than one, due to the capillary/viscous competition in an irregular pore structure. This value corresponds to the final filling ratio of the volume S max L and can be used as a scalar quantity to characterise the impregnation. Considering a given couple (V f , Ca), S max L has been found to show a relative low variability when different realisations of microstructures are considered. Following observations from other studies, S max L then rises linearly with Ca as the advancement of the flow front becomes more uniform within the structure.

• The saturation can also be defined at lower scale, from the sections that are perpendicular to the flow. This local saturation is first expressed as a function of time, but can be transposed into the space domain to identify a bandwidth within which the transient behaviour (i.e. the moving flow front) is contained. The size of this bandwith has been referred to as saturation length and has been found to be significantly smaller that the domain size. This justifies the use of sharp interface model, such as provided by the level-set method, at the upper scale. Similar results have been found analysing the distribution of moving flow front throughout the structure.

• The resulting contribution of surface tensions effects, usually referred to as capillary pressure, is frequently defined, at the volume scale, like the macroscopic difference of pressure between the liquid and vapor phases, leading to hysteretic dependencies to the saturation state of the volume. To reduce this effect, the capillary pressure can be defined at the interface level.

From the averaging of Laplace's law, two definitions have been proposed: one based on the computation of the interface curvature through Gaussian process regression, and another one from the average pressure drop at the interface. Both methods have been validated on a test case and are found to be consistent for more complex flows. Therefore, only the pressure drop method has been kept as it entails a significantly lower computational cost.

• For statistically homogeneous fibrous structures, the resulting capillary pressure is found to asymptotically converge after a first transient regime. This steady state is observed while the global saturation keeps increasing, revealing a flow regime where the transient behaviour is stable over time. This asymptotic value is thus independent from the saturation state of the volume and shows a low variability when several realisations of microstructures are considered. Therefore it characterises the impregnation problem under study and can be associated with a couple (V f , Ca). The dependency on the fibre volume ratio and on the capillary number has been made explicit. As shown in other studies, the capillary pressure is found to be proportional to the ratio V f /(1 -V f ) and independent from Ca if the capillary number is sufficiently low. Our values of capillary pressure are consistent with those encountered in the composite materials literature.

Conclusion

• Once the fluid has entirely impregnated the fibrous structure, the two-phase flow reaches a steady state that can be compared with a time-independent single-phase flow (i.e. a Darcy flow). Both cases coincide when the void content is sufficiently low, corresponding here to high values of capillary number. A criterion has been given to assess this coincidence and has revealed a good match between both flows when S max L is superior to 90%. This gives a validity configuration from which Darcy's law can be wisely used to describe flows in impregnated zones at an upper scale.

This work thus provides an in-depth study on the upscaling of impregnation problems in fibrous media. It operates a connection between developments that have been previously established in the context of the Mines Saint-Étienne/Hexcel Reinforcements industrial chair, at both microscopic and macroscopic scales. The results of this PhD thesis can be now employed to feed the macroscopic modelling that has been formerly developed for the impregnation of industrial parts, including capillary stresses and non-constant permeability.

First, this work gives insights on the scale separation in both kinds of flow simulations. Considering time-independent single-phase flow, the RVE size has been shown to be reached for a domain size approximately equal to 90 times the mean fibre radius, depending on the V f . Beyond this value, the statistical variability is considered to be stable and a proper scale separation is achieved. For smaller geometries showing a similar statistical homogeneity, a higher variability is observed although results are statistically centred on the RVE value, in consistency with the SVE modelling. When it comes to the transient two-phase case, the scale separation can hardly be assessed by increasing the domain size as the computational effort quickly becomes unaffordable. Yet, a saturation length has been identified, corresponding to a bandwith size within which the transient effects are contained. Moreover, the transient behaviour is shown to no longer change from the moment when the flow loses memory of its initial non-physical state. As a consequence, for fibrous structures that are sufficiently larger than the saturation length, the moving interface can be modelled at the upper scale through a sharp modelling, as proposed in previous works, and the zones located at the rear of the flow front can be modelled by an equivalent homogeneous medium, which will be ruled by Darcy's law if the associated void content is sufficiently low (i.e. S max L > 90% here). The saturation length has been approximately assessed as 8 times the mean fibre radius, for V f = 0.5 and Ca = 10 -3 , which corresponds to standard impregnation parameters in the composites literature. This value naturally depends on both the pore morphology and flow regime. Even though the saturation length can be expected to decrease with Ca, as high inlet velocities are shown to make the impregnation more homogeneous throughout the structure, those dependencies are not straightforward and will be addressed in further studies.

As a perspective to this work, the additional capillary contribution that can be prescribed macroscopically on the sharp interface, as proposed in Andriamananjara's works, can be now directly related to the local fibre volume fraction. From the macroscopic velocity, a residual void content map can be associated with the zones that are already impregnated by the resin. Knowing the local V f , those areas can be then modelled by their permeability if the proposed criterion associated with Darcy's law, based on the pressure drop, is valid. If this criterion is not fully respected, a correction term may be applied from this work to the usual permeability in order to account for the discrepancy. In addition, the proposed upscaled models presented throughout this thesis take into consideration the inherent variability of the underlying structure through a statistical dispersion.

This work however leaves some questions open for further studies. Among these, some issues 4.5. Conclusion on both numerical and physical modelling can be raised. Our study has reduced conservation laws to Stokes equations that neglect both transient and inertial effects. However, as the capillary number increases, the inlet velocity also rises, as well as the Reynolds number. As a consequence, similarly to analoguous numerical studies, these effects should be taken into account by solving Navier-Stokes equations which raise further concerns on the numerical strategy, as pointed out in previous developments.

Then, a weak coupling between the fluid and level-set problems has been selected here. Yet, from numerical drop spreading experiments that have been previously carried out, the strong iterative strategy has been shown to be preferable for the convergence towards the expected static contact angle. Besides numerical considerations, the choice of coupling strategy directly influences the physical modelling of the flow as the strong coupling assumes a global mechanical equilibrium. Further studies should assess the physical and numerical relevance of both coupling strategies.

In the transient two-phase case, a no-slip condition (i.e. v = 0) has been prescribed at the interface between the fluids and the fibres. Such a condition should prevent the creation of new triple lines and should force the liquid-vapor interface to wrap around the obstacles. Moreover, the no-slip condition does not overcome the Huh-Scriven paradox and should prevent the triple lines from moving. In practice, the convection of the level-set field, weakly coupled to the fluid problem, allows us to circumvent this problem although this solution is not satisfactory from a modelling point of view. This interface condition also cancels the terms associated with the solid-liquid and solid-vapor surface tension terms that are present in the weak formulation. The capillary effects are thus only modelled by the liquid-vapor surface tension contribution when a no-slip condition is prescribed. Therefore, the contact angle that should result here from the equilibrium of the different surface tension contributions cannot be reached. Yet, from Kunz's micro-model test case, our simulations get as close as possible to the experiment when the no-slip condition is considered. Prescribing a no-slip condition thus raises crucial modelling questions that should be addressed in further studies.

This work addresses the case of statistically homogenous fibrous structures, with circular crosssections. Yet, in practice, the geometries can be more complex, showing a higher variability, as observed for natural fibres, and the scales in presence can be poorly separated, as noticed for stack of reinforcement plies for instance. This work should thus be extended to a broader range of fibrous materials and should investigate the impact of local geometrical heterogeneities and defects on the flows. Next, a natural continuation of this work should be to consider dual-scale fibrous structures in order to accurately compare our results with those from the composite materials literature. The introduction of an additional scale will entail further impregnation mechanisms as well as a supplementary viscous/capillary competition that must be investigated.

Conclusion

Conclusion en français

Cette thèse s'inscrit dans le cadre de la chaire industrielle entre Mines Saint-Étienne et l'entreprise Hexcel Reinforcements pour la modélisation numérique des procédés de fabrication par infusion de matériaux composites. Les travaux précédents de ce projet ont été dédiés aux développements et aux implémentations numériques nécessaires à une description à la fois microscopique et macroscopique des écoulements observés durant la phase d'imprégnation, durant laquelle un renfort sec est rempli par une résine, chassant l'air appauvri initialement présent. Les approches microscopiques et macroscopiques ayant été développées de façon indépendante, il convient à présent de les connecter via une procédure de montée en échelle.

Un écoulement diphasique transitoire au sein d'une structure fibreuse complexe est observé lors de la phase d'imprégnation. À l'échelle locale, le milieu se constitue de fibres présentant une variabilité intrinsèque dans leur arrangement et rayon. L'étude présentée se place dans le plan transverse à l'axe des fibres, particulièrement problématique en termes de caractérisation de l'imprégnation. Par perturbations aléatoires d'arrangements initialement réguliers, des microstructures fibreuses périodiques, prenant en compte la stochasticité géométrique, sont générées et leur représentativité vis-à-vis de structures observées expérimentalement mise en évidence. Ces microstructures sont générées massivement afin d'approcher statistiquement la réponse de structures fibreuses de grande taille.

Dans cet objectif, des écoulements sont simulés au sein des microstructures générées à travers une méthode par éléments finis, en considérant premièrement le cas idéalisé d'un écoulement monophasique permanent puis le scénario plus réaliste d'écoulements diphasiques transitoires. Dans notre cadre d'étude, le problème de mécanique des fluides peut se restreindre à la résolution des équations de Stokes, le nombre de Reynolds considéré étant suffisamment faible. La méthode numérique nécessite une stratégie de stabilisation dans la mesure où les champs de vitesse et de pression utilisent le même espace d'approximation. Une stabilisation ASGS, issue du cadre des méthodes VMS, a été choisie ici. L'approche modélise aussi la présence d'une interface liquidevapeur lorsque des écoulements diphasiques sont considérés. Ceci est réalisé grâce à une méthode level-set qui capte l'interface tout en identifiant la localisation de chaque phase. L'avancement du front d'écoulement est modélisé par convection du champ de level-set dans le champ de vitesse fluide. Le calcul nécessite à nouveau un schéma de stabilisation qui correspond ici à une méthode SUPG. La convection est suivie d'une étape de réinitialisation, assurant que le champ de level-set conserve les propriétés d'une fonction distance.

La méthode numérique prend en compte les effets capillaires qui constituent une force supplémentaire significative dans les problèmes d'imprégnation, compte-tenu de la proximité micrométrique des fibres. La modélisation nette (i.e. non-diffuse) de l'interface permet le calcul précis de la contribution capillaire issue de la loi de Laplace, en s'appuyant sur une reconstruction locale de l'interface. Afin de réduire les effets des courants parasites à l'interface, une formulation semiimplicite a été considérée. Enfin, les éléments coupés par l'interface ont été enrichis de trois degrés de liberté supplémentaires afin de capter les discontinuités induites par le saut de propriétés matériaux. La méthode numérique est finalement validée via un cas test de drainage. Les résultats obtenus sont en excellent accord avec l'essai expérimental et les études numériques, nous donnant confiance en la capacité prédictive du modèle proposé.

La question de la procédure de montée en échelle se pose ensuite. Dans le cas d'écoulements monophasiques permanents, la procédure est clairement établie ; la pertinence de la loi de Darcy pour décrire macroscopiquement de tels écoulements ayant été montrée à de multiples reprises.

Conclusion

L'écoulement peut être alors décrit par la perméabilité de la structure poreuse, grandeur qui a été largement étudiée par la littérature composites dans le cadre des milieux fibreux. Néanmoins, lorsque des écoulements diphasiques transitoires sont considérés, les procédures de montée en échelle se complexifient et des différences entre les communautés scientifiques apparaissent. Les approches se concentrent généralement sur la caractérisation de l'état de saturation du milieu et sur l'évaluation d'une pression capillaire résultante, bien que les définitions de ces notions puissent varier selon le champ d'application.

Les résultats présentés tout au long de ce travail à travers trois chapitres, correspondant chacun à un article, peuvent être résumés ainsi :

• Considérant des arrangements fibreux statistiquement homogènes, le tenseur de perméabilité peut être réduit à un scalaire car une isotropie statistique est observée. La perméabilité du milieu étant directement reliée à la structure poreuse, elle peut être exprimée comme une fonction de différents descripteurs morphologiques. Cependant, les descripteurs usuels apparaissent comme équivalents dans leur description de la perméabilité, poussant à garder uniquement le plus simple, en l'occurrence la fraction volumique de fibres V f . Comme montré dans d'autres études, la perméabilité décroît exponentiellement lorsque V f augmente. Pour une fraction volumique de fibres donnée, la perméabilité suit une distribution gaussienne, de variabilité égale à 3%. Le caractère aléatoire de la position des fibres réduit la perméabilité de façon significative, tandis que l'impact de la variabilité du rayon est négligeable.

• La perméabilité du milieu ne caractérise pas seulement la structure porale mais aussi l'interaction entre les phases solide et liquide. Le glissement du fluide à la surface des fibres a été étudié, mettant en évidence son influence considérable sur les valeurs de perméabilité. Une différence d'un ordre de grandeur peut être observée entre les cas extrêmes, correspondant à un glissement total et à un glissement nul. En considérant des valeurs de longueur de glissement identifiées dans la littérature, l'influence du glissement fluide sur la perméabilité varie significativement. Les effets de la dispersion statistique et du glissement sur la perméabilité ont été explicitées dans un loi analytique commune. • Lorsque le fluide a entièrement imprégné la structure fibreuse, l'écoulement diphasique atteint un état permanent qui peut être comparé à un écoulement monophasique, indépendant du temps. Les deux cas coïncident lorsque le taux de vide résiduel est suffisamment faible, ce qui correspond ici à des nombres capillaires élevés. Un critère a été proposé pour évaluer cette coïncidence, permettant d'identifier une correspondance satisfaisante lorsque S max L est supérieur à 90%. Ceci permet d'aboutir à un domaine de validité dans lequel la loi de Darcy peut être raisonnablement utilisée à l'échelle supérieure pour caractériser l'écoulement dans les zones imprégnées.

Conclusion

Ce travail constitue une étude approfondie sur la montée en échelle des problèmes d'imprégnation en milieux fibreux. Il établit une connexion entre les développements précédemment établis dans la contexte de la chaire industrielle entre Mines Saint-Étienne et Hexcel Reinforcements, aux échelles microscopique et macroscopique. Les résultats de cette thèse pourront être employés pour alimenter les modèles macroscopiques d'imprégnation de pièces industrielles, antérieurement développés.

En premier lieu, ce travail apporte un éclairage sur la séparation des échelles considérées, pour les deux types d'écoulements envisagés. Dans le cas d'un écoulement monophasique permanent, il a été montré que le taille de VER était atteinte pour une taille de domaine approximativement égale à 90 rayons de fibres moyens. Au delà de cette valeur, la variabilité statistique est considérée comme suffisamment stable et les échelles convenablement séparées. Pour des géométries plus petites mais toujours statistiquement homogènes, une variabilité plus importante est observée bien que les résultats soient centrés autour de la réponse du VER, en accord avec la modélisation par VES. Lorsque des écoulements diphasiques transitoires sont considérés, étudier la séparation d'échelle en augmentant la taille du volume de travail devient difficile car les coûts calculatoires impliqués augmentent déraisonnablement. Cependant, une longueur de saturation a été identifiée, correspondant à une largeur de bande dans laquelle les effets transitoires sont contenus. De plus, le comportement transitoire ne change plus à partir du moment où l'écoulement perd la mémoire de son état initial. Par conséquent, pour des structures suffisamment grandes par rapport à la longueur de saturation, l'interface peut être décrite à l'échelle supérieure par une modélisation non-diffuse et les zones localisées à l'arrière du front peuvent être représentées par un milieu homogène équivalent, qui peut obéir à la loi de Darcy si le taux de vide est suffisamment faible. La longueur de saturation a été évaluée ici à 8 rayons de fibres moyens, pour V f = 0,5 et Ca = 10 -3 , ce qui correspond à des paramètres d'imprégnation courants dans la littérature composites. Cette valeur dépend à la fois de la morphologie porale et du régime d'écoulement. Bien qu'il puisse être attendu que la longueur de saturation diminue avec Ca car les vitesses d'écoulements élevées tendent à homogénéiser l'avancement du front, ces dépendances ne sont pas triviales et devront être étudiées dans de futurs travaux.

En guise de perspective à ce travail, la contribution capillaire imposée à l'échelle supérieure au niveau de l'interface, proposée dans les travaux de thèse d'Andriamananjara, peut être maintenant directement reliée au taux volumique de fibres local. Ensuite, à partir de la vitesse macroscopique, une carte de taux de vide résiduel pourra être associée aux zones déjà imprégnées par la résine. Connaissant le V f local, ces zones pourront être modélisées par leur perméabilité si le critère proposé associé à la loi de Darcy est valide. Si ce critère n'est pas parfaitement respecté, un terme de correction issu de ce travail pourra être appliqué à la perméabilité usuelle pour prendre en compte l'écart observé. Enfin les modèles proposés à travers cette étude pourront rendre en compte de la variabilité intrinsèque des structures sous-jacentes via une dispersion statistique.

Cette étude laisse certaines questions ouvertes pour des travaux futurs, notamment quant à la modélisation physique et numérique des écoulements considérés. Notre étude a réduit les lois de conservation aux équations de Stokes qui négligent à la fois les effets transitoires et inertiels. Cependant, lorsque le nombre capillaire augmente, la vitesse d'entrée et donc le nombre de Reynolds suivent la même tendance. Ainsi, les effets préalablement cités doivent potentiellement être pris en compte par la résolution des équations de Navier-Stokes, ce qui pose de nouvelles questions, notamment sur la stratégie numérique choisie, comme mis en évidence lors de développements précédents.

Une stratégie de couplage faible entre les problèmes fluide et level-set a été sélectionnée ici. Or, à partir d'expériences numériques d'étalement de goutte réalisées dans la thèse de Chevalier, il a 4.5. Conclusion été montré qu'une stratégie de couplage forte itérative permettait une meilleure convergence vers l'angle de contact statique attendu. Au delà des considérations numériques, le choix de la méthode de couplage influence directement la modélisation physique, un couplage fort supposant un équilibre mécanique global. Les études futures devront évaluer la pertinence physique et numérique des deux stratégies.

Dans le cas d'écoulements diphasiques transitoires, une condition de non-glissement a été imposée à l'interface entre le fluide et les fibres. Une telle condition devrait empêcher la création de nouvelles lignes triples et forcer l'interface liquide-vapeur à envelopper les obstacles. Ce comportement n'est ni observé expérimentalement ni dans nos simulations compte-tenu de la convection du champ de level-set, faiblement couplé au problème fluide. De plus, cette condition annule les termes associés aux tensions de surface solide-liquide et solide-vapeur présents dans la formulation faible. Les effets capillaires ne sont donc modélisés ici que par la tension de surface liquide-vapeur. Pourtant, à partir du cas test proposé par Kunz, nos simulations sont au plus proche des essais expérimentaux lorsque cette condition est considérée. Appliquer cette condition de non-glissement pose donc des questions de modélisation cruciales qui devront être abordées dans les développements à venir.

Ce travail s'est concentré sur le cas de structures fibreuses statistiquement homogènes. En pratique, les géométries observées sont généralement plus complexes et les échelles difficilement séparées. Dans de tels cas, les inhomogénéités géométriques devront être étudiées à l'échelle locale. Enfin, une poursuite naturelle de ce travail sera de considérer des structures fibreuses à double échelle afin de comparer plus précisément nos résultats à ceux de la littérature composites. L'introduction d'une échelle supplémentaire entraînera de nouveaux mécanismes d'imprégnation et complexifiera alors la compétition entre effets visqueux et capillaires, nécessitant une étude spécifique de ces phénomènes.

Appendix A Statistical morphological descriptors for random fibrous media

This section focuses on the morphological descriptors that are able to characterise random fibrous media. As long carbon fibres macroscopically parallel to each other are considered, only the plane which is transverse to fibre axis is studied. In this plane, the fibre placement can be assumed as random with a variability of 10% regarding the fibre radius (Fig. A.1), in consistency with experimental observations [START_REF] Vaughan | A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials[END_REF][START_REF] Ismail | Discrete element method for generating random fibre distributions in micromechanical models of fibre reinforced composite laminates[END_REF]. Various statistical descriptors can be proposed to describe the geometry composed of N f b fibres. Usually, the pore structure is reduced to its fibre volume fraction V f , which is the most straightforward descriptor. However, further statistical parameters can be proposed. Most of the statistical descriptors encountered in the literature are used to characterise point patterns. Here, it can be criticised to reduce the fibres to their centre as their area induces a non-overlapping condition between disks. The morphological descriptors should be computed from geometrical considerations only, without carrying out any numerical simulation as it can be done for tortuosity assessment for instance. Taking these constraints into consideration, morphological descriptors have been proposed and are now decribed. First, the distance to the n-th nearest fibre δ n has been considered [START_REF] Catalanotti | On the generation of RVE-based models of composites reinforced with long fibres or spherical particles[END_REF]. We limit our study to n = 1, 2, 3. To take the area of the fibres into account, the inter-fibre distance is considered. As illustrated in Fig. A.2, considering a fibre i, characterised by its center position c i and its radius r i , δ i n is given by:

δ i n = D i n where D i = sort dist(c i , c i ) -r i -r i . (A.1)
where sort() corresponds to a sorting function in ascending order. For each case, 30 microstructures have been generated. The curves seem to flatten when the neighbour order increases. Curve profiles are nearly unchanged for various V f values. The horizontal shift with respect to zero, clearly observed for V f = 0.6, is explained by the minimum inter-fibre distance that is precribed for meshing purpose. As already observed in the literature [START_REF] Catalanotti | On the generation of RVE-based models of composites reinforced with long fibres or spherical particles[END_REF], the distributions clearly follow a gamma distribution which probability density f Γ is given by:

f Γ (x; a 1 , a 2 , a 3 ) = 1 a 2 Γ(a 3 ) x -a 1 a 2 a 3 -1 exp x -a 1 a 2 (A.2)
where Γ() is the gamma function. 

A.2 Delaunay triangulation

Fibrous microstructures are frequently described by the characteristics of the Delaunay triangulation [START_REF] Yazdchi | Upscaling and microstructural analysis of the flow-structure relation perpendicular to random, parallel fiber arrays[END_REF][START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF]. Delaunay triangulation is a triangulation from a set of points such that, for each triangle, no point lies within the circumscribing circles. Here, the Delaunay triangulation is performed from the centres of the fibres (Fig From the triangulation, the pore structure can be statistically described. The shortest edge length per triangle γ T or per point γ P can be especially studied [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF] 

A.3 Voronoi tesselation

Voronoi diagram corresponds to the dual graph of Delaunay triangulation: both are thus directly related [START_REF] Aurenhammer | Voronoi diagrams-a survey of a fundamental geometric data structure[END_REF]. Geometrically speaking, the vertices of Voronoi cells are the circumscribing circle centres of Delaunay triangles. Voronoi edges are generated through perpendicular bisectors of Delaunay edges. This forms convex polygons called Voronoi cells that constitute a tesselation (Fig. A.8). Similarly to Delaunay triangulation, statistical characterisation of the pore structure can be performed from Voroinoi cells [START_REF] Kumar | Voronoi cell volume distribution and configurational entropy of hard-spheres[END_REF][START_REF] Oger | Voronoi tessellation of packings of spheres: topological correlation and statistics[END_REF]. First, the number of edges per cell can be assessed. Distributions are represented in Fig. A.9 for two different fibre volume fractions considering a large number of fibrous microstructures. For both V f values, the distributions are centred around 6, which corresponds to complete spatial randomness [START_REF] Yazdchi | Upscaling and microstructural analysis of the flow-structure relation perpendicular to random, parallel fiber arrays[END_REF]. A morphological characterisation can also be obtained through Voronoi cell volume which can be regarded as a local measurement of the free space given to a fibre. Volume can be easily computed as cells are convex [START_REF] Kumar | Properties of a two-dimensional Poisson-Voronoi tesselation: a Monte-Carlo study[END_REF]. This has been done for various V f (Fig.A.10). Distributions follow a gamma law, as observed in the literature [START_REF] Kumar | Voronoi cell volume distribution and configurational entropy of hard-spheres[END_REF]. When V f increases, the distribution sharpens since the arrangement tends towards a dense hexagonal pattern, with similar hexagonal Voronoi cells. The Voronoi cells can also give information on the local fibre density through the definition of a local fibre volume ratio [START_REF] Schaller | Non-universal Voronoi cell shapes in amorphous ellipsoid packs[END_REF][START_REF] Grufman | Determining a representative volume element capturing the morphology of fibre reinforced polymer composites[END_REF]. For a Voronoi cell i of area A i and associated with a fibre of radius r i , the local fibre volume ratio V i f is defined, in 2D, as: 

V i f = πr 2 i A i . (A.

A.5. Conclusion

where W ij is a weight term, characterising the interaction between points i and j. Its definition is arbitrary and corresponds here to:

W ij = 1 x i -x j if i = j 0 else . (A.5)
The interaction between two distinct points thus decreases with their distance. In order to normalise weight values, each weight term is then divided by ij W ij . Moran's I is bounded between -1 and 1, a positive (resp. negative) value meaning a positive (resp. negative) autocorrelation. No spatial autocorrelation is observed when I = 0.

Moran's I is here expected to measure the heterogeneity of flow channel width. As a consequence, the field F i is chosen here to correspond to the first neighbour inter-fibre distance δ 1 , defined at each fibre centre c i . Strictly speaking, Moran's I must be interpreted through a statistical hypothesis test where the null hypothesis corresponds to the absence of autocorrelation [START_REF] Cliff | Spatial autocorrelation: a review of existing and new measures with applications[END_REF]. In this study, the value computed from Eq.A.4 will be kept to characterise a given microstructure.

A.5 Conclusion

A set of morphological descriptors has been presented here. This provides a thorough and appropriate characterisation of given fibrous microstructures. From the most straightforward parameter corresponding to V f , the description is enriched by studying the statistical behaviour of the nearest neighbour distance or the characteristics of Delaunay triangulation or Voronoi tesselation. This pool of parameters can be then used to build a dataset that can be related to the permeability of the pore structure for example. This will be further presented in Appendix C. with C nn ij = C(X i , X j ) and where N () is here a multivariate Gaussian distribution. To illustrate multivariate gaussian distributions, a two-dimensional example is provided (Fig. B.1). We assume here that:

(X 1 , X 2 ) = (0, 1) (f (X 1 ), f (X 2 )) ∼ N (0, In spite of the simplicity of this discrete example, the influence of the covariance is clearly illustrated and its generalisation to continuous cases, corresponding to Gaussian processes, can be well understood and is now presented. Following Mercer's theorem [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF], the covariance between two points X, X can be given by a kernel function. Such functions are symmetric semi-definite positive functions and take the distance between X and X as argument. Intuitively, the farther the points, the lower the covariance.

A kernel has thus to be selected which corresponds to a decisive modelling choice. A lot of kernels can be encountered in practice which generally differ from each other by their regularity properties [START_REF] Durrande | Étude de classes de noyaux adaptées à la simplification et à l'interprétation des modèles d'approximation[END_REF]. However, the Radial Basis Function (RBF) is usually used: Data are now incorporated into the modelling. To do so, models are constrained to pass through the data. In other words, we consider here p(f (X * )|f (X) = Y ), corresponding to the posterior (Eq.B.2). From the prior assumption (Eq.B.3), it can be shown that this probability follows a multivariate Gaussian from which the parameters can be analytically expressed:

C RBF (X, X ) = σ exp - X -X 2
   p(f (X * )|f (X) = Y ) ∼ N (µ * , Σ * ) µ * = C(X * , X) T • C(X, X) -1 • Y Σ * = C(X * , X * ) -C(X * , X) T • C(X, X) -1 • C(X * , X) (B.8)
with C(X * , X) = (C(X * , X 1 ), ..., C(X * , X N )) T ∈ R N and C(X, X) = (C(X i , X j )) 1≤i,j≤N ∈ R N ×N , also known as Gram matrix.

In practice, the mean value µ * corresponds to the most probable output, and the standard deviation Σ * to the uncertainty. An example is depicted in , it can be seen that GPRs are very performing for small datasets. When the size of the dataset increases, the method may become time-consuming as the computations require the inversion of the non-sparse matrix C(X, X) for the determination of hyper-parameters (Eq.B.9), or the assessment of µ * and Σ * (Eq.B.8).

Lastly, data have been considered as noiseless so far. However, in practice, data are generally subject to a statistical variability. In the GPR formulation presented before, this variability is not taken into account and, as the models are forced to pass through the data, overfitting issues are observed (Fig. B.6). For that purpose, a noisy GPR formulation is generally considered [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF]. A noise ν is then added to the model:

Y = f (X) + ν (B. 10 
)
where ν ∼ N (0, ν). Finally, this only slightly changes the formulation by adding a noise-related term on Gram matrix terms of Eq.B.8 and B.9. In those equations, C(X, X) terms will become C(X, X) + νI. The GPR method has been presented with isotropic kernels such as the usual Radial Basis Function (RBF):

C RBF (X, X ) = σ exp - X -X 2 2 2 c (C.1)
with X, X ∈ R N F and N F is the number of features. Such a kernel involves two hyper-parameters, namely σ and c . It is thus characterised as isotropic, meaning that all directions of the data space share the same hyper-parameters. In other words, each feature has the same weight with respect to the output. This is not necessarily the case in practice, as some features may be decorrelated from the output while a restricted pool of others may provide accurate predictions. Anisotropic kernel can be built to account for the heterogeneity of relevance between directions. From Eq.C.1, the RBF kernel can be alternatively expressed in an anisotropic form as:

C aniso RBF (X, X ) = σ N f i=1 exp - (X i -X i ) 2 2 2 c,i (C.2)
where c,i is the correlation length associated with direction i. The number of hyper-parameters naturally rises from 2 to N f + 1, making the description more accurate in spite of an increasing computational cost. Those hyper-parameter values are again determined through the maximisation of marginal likelihood (Appendix B) which sustains the whole method. The weight w i of feature i with respect to the output is assessed as:

w i = -1 c i N f j=1 -1 c,j . (C.3)
By comparing the different values of w i , feature selection can be carried out. The use of GPR finally permits to accomplish both regression and feature selection with a single method. Such an approach is particularly relevant for small dataset, which is the case here as flow simulations may be long to be performed. On the top of that, the method is rather simple to implement and versatile, which explains why it has been chosen in this study. The validity of this method has been assessed for various toy datasets which are not presented here1 . Among all the parameters that have been described in Appendix A, only five will be considered here: N f b , V f and the mean distance to the first three nearest neighbours δ1 , δ2 , δ3 . Those are computed for 138 generated microstructures with L/r = 50 where L is the domain size and r the mean radius. The isotropic permeability K is then computed from a Stokes flow simulation. An anisotropic RBF kernel has been considered (Eq.C.2). The dataset is split into a training subset (90% of the dataset) and a test subset (10% of the dataset). A noisy formulation has been considered. The intensity of the noise ν has been found to have a significant impact on the weights w i (Eq.C.3) associated with each direction. The mean value m ε and the standard deviation σ ε of the error between the predicted value and the test values are plotted in Fig. C.2 for different noise intensity ν. A trade-off between m ε and σ ε is sought here. As a consequence, the selected value of noise intensity is chosen as the one that minimises the quantity m ε × σ ε , which corresponds here to ν = 1.46. Results are now presented, beginning with feature selection. The weights w i of each morphological descriptor with respect to the permeability are depicted in Fig. C.3. According to the presented approach, V f (w V f = 69.61%) and δ3 (wδ 3 = 29.98%) are the most dominant morphological parameters to describe the permeability. The volume fraction V f is generally considered to be the parameter of first order to describe the permeability of fibrous structures [START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF][START_REF] Bruschke | Flow of generalized newtonian fluids across a periodic array of cylinders[END_REF]. Regarding δ3 , several articles also link the permeability to the nearest neighbours distance [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF][START_REF] Endruweit | Stochastic analysis of fibre volume fraction and permeability in fibre bundles with random filament arrangement[END_REF]. The results presented here are thus consistent with the literature.

The regression results are presented in Fig. C.4 in the plane (N f b , log K). The predictions of the GPR are shown to be accurate, with an relative error between the most probable output and the test data always inferior to 12% (Fig.C.4). All the test data lie within the 95% confidence interval. It should be noticed that our approach can be critised since the test data are not supposed to be involved in the training phase. This is justified as the feature selection is most important than the regression here. Indeed, the main goal of the approach is to identify a restricted pool of morphological descriptors that relevantly describe the permeability. Once this subset has been determined, a predictive model can be built afterwards from any regression method. The dataset composed of the morphological parameters and the permeability can be visualised by representing the pairwise dependencies between all features (Fig.C.5). It can be observed that the features are highly correlated with each other. In addition, most of the dependencies seems to be linear with a low statistical variability. Finally, each feature is shown to be highly correlated with the permeability, with a clear bijective trend. It can be concluded that all the parameters are equivalent to describe the permeability, and therefore any of them can be chosen. The most simple parameter, namely V f , is thus selected. Finally, the permeability of complex fibrous structures can be predicted with a single morphological parameter. This can be explained by the fact that the fibrous structures are sufficiently large and statistically homogeneous, meaning that the whole geometrical stochasticity can be characterised simply by the fibre volume fraction. This confirms in a rigourous way an assumption that is commonly made in the literature [START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF].

It should be noticed that the use of the kriging with anisotropic kernel to perform feature selection is not necessarily relevant here as similar conclusions can be retrieved simply by analysing the pore structure from a physical point of view. The method is however promising and can be used for similar problems, when a small dataset is considered, as it is generally the case when the data stems from costly numerical simulations. Such a flow has been chosen here as a test case for several reasons. First, the flow is close to those encountered in our study for the impregnation of fibrous structures. The pore structure is simple enough to be reproduced numerically with accuracy, but complex enough to assess the validity of the modelling strategy in terms of flow path or ganglia predictions. Such an evaluation is not possible with geometrically oversimplified test case, such as Poiseuille flow. In addition, this test case has been also used by other teams, like Konangi et al. [START_REF] Konangi | Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions[END_REF], to assess their numerical strategy. Lastly, the proposed method to retrieve the capillary pressure can be evaluated.

However, some differences with the flow simulations presented throughout this work can be noticed. First of all, impregnation problems are studied in this work, corresponding to an imbibition and not on a drainage scenario. The characteristic length associated with the flows are also different. Carbon fibres radius measures approximately 3.5 µm while the obstacle radius is around 200 µm. As a consequence, the physical phenomena that are involved in both cases may differ. For instance, at micrometric scale, fluid slip at liquid/fibre interface may have an influence on the flow [START_REF] Geoffre | Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip[END_REF]. From a numerical point of view, Kunz et al. uses a Smoothed Particle Hydrodynamics (SPH) method to solve Navier-Stokes equations while a finite element approach is considered here for Stokes equations. In addition, they prescribe a contact angle at triple lines of 45 • . In our modelling, no contact angle is considered as the mechanical equilibrium is weakly prescribed at the triple lines. Even though some differences are observed, the experiment under consideration provides a satisfactorily test case to assess the validity of our modelling strategy and to compare our results with experimental observations. Experimental [START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF] and numerical results [START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF][START_REF] Konangi | Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions[END_REF] are compared in Fig. D.2. To do so, four reference states S 0 , S 1 , S 2 , S 3 observed during the experimental drainage are considered. The corresponding times are indicated for each case, assuming S 0 as the initial time. For each numerical work, the comparable flow states are represented.

It can be seen that all the numerical strategies satisfactorily predict the flow path as well as the ganglia position and size. However, the time associated with each state does not match between the simulations and the experiment. Kunz et al. attribute this discrepancy to an additional flow resistance and to a stick-slip phenomenon [START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF]. However, both Konangi et al. and Kunz et al. simulations are in agreement, regarding the time predictions. A factor of 10 can be observed between our simulations and the other two. This can be explained as our model is two-dimensional, contrary to the others: the geometry height H = 0.1 mm is not taken into account. This has an significant impact on the characteristic velocity of the flow, as a pressure drop is prescribed at the volume inlet/outlet. Assuming the flow-rate Q to be constant in the height direction, the 3D and 2D cases can be related as:

Q 3D = S v • dS = H v • d = HQ 2D (D.1)
where S (resp. ) is the section in 3D (resp. 2D). As the unit system is in millimeters here, the discrepancy of one order of magnitude between both cases can be explained. Even though discrepancies can be observed, all the results give a similar order of magnitude. It can be remarked that our results are especially close to those from Konangi et al.. The deviations between each work can be attributed to experimental uncertainties and to the difference of the methods for capillary pressure assessment. Here, the capillary pressure is computed from the average pressure drop at the liquid-vapor interface. The correction term proposed by Kunz et al. [START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF] to account for the tridimensionnal effects is also included, adding a contribution of 778 Pa to the capillary pressure. Our modelling strategy of transient two-phase flow within porous structures has been validated from a micromodel experiment [START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF]. The results have been compared to three reference results, including both numerical and experimental works. Our observations are consistent with the other numerical studies and the main discrepancies have been explained. Comparing now to experimental results, the proposed strategy predicts with accuracy the flow path, the ganglia position and the capillary pressure. However, some differences are observed between the numerical approaches and experimental observations. Those can be attributed to modelling errors, but also to the experimental procedure. Indeed, with a numerical method akin to Konangi et al., Ambekar et al. obtain very accurate time predictions for similar geometries [START_REF] Ambekar | Pore-resolved two-phase flow in a pseudo-3D porous medium: Measurements and volume-of-fluid simulations[END_REF].

This test case can be considered as severe compared to the flow within fibrous microstructures studied in this work. Indeed, the micromodel structure (Fig.D.1) is narrow, making the edge effects non-negligible. The geometry also contains right angles and a significant disparity in terms of obstacle radius, hence an important dispersion of flow channel width. This entails various difficulties that are not necessarily present in fibrous microstructures. Even though the test case is not fully representative of the impregnation problems we address, the study leads us to validate the proposed modelling strategy. Upscaling procedure: the behaviour at pore scale is homogenised to retrieve an upscaled response ruling an homogeneous equivalent medium at upper scales. . . . . 
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 1 Composite materials

Figure 1 :

 1 Figure 1: The composite materials under consideration are composed of a carbon fibre reinforcement associated with an epoxy resin matrix. Some examples of applications are illustrated in the lower part of the figure, including the Airbus A350 XWB aircraft which is built with 53% of composite materials in mass.

Figure 2 :

 2 Figure 2: Ashby chart for density and Young's modulus highlighting the relevance of composite materials (adapted from https://www.grantadesign.com/education/students/charts/).

Figure 3 :

 3 Figure 3: Simplified representation of the Liquid Resin Infusion (LRI) process.
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 4 Framework and objectives of the study

Figure 6 :

 6 Figure 6: Mesoscopic scale: interlock architecture of yarns or tows (adapted from [41]).

Figure 7 :

 7 Figure 7: Macroscale scale: examples of carbon fibre/epoxy composite parts (aeronautical engine fan blade, acoustic guitar).
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 11 Figure 1.1: Transient two-phase flow in a fibrous structure: phases, domains and notations.
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 12 Figure 1.2: Conservation equations: notations and representation of the time dependancies.
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 13 Figure 1.3: Navier slip interface condition and slip length.

Figure 1 . 4 :

 14 Figure 1.4: VMS framework and ASGS method: example of the pressure field decomposition.
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 15 Figure 1.5: An example of Stokes simulation in a simplified fibrous microstructure: normalised velocity and pressure fields.
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 16 Figure 1.6: Usual techniques for the modelling of moving interfaces.

Figure 1 . 7 :

 17 Figure 1.7: Example of level-set modelling for a circular interface.

Figure 1 . 8 :

 18 Figure 1.8: Levelset problem: convection and direct/indirect reinitialisation. The interface is discretised into line elements that form a polygonal chain.
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 19 Figure 1.9: Hamilton-Jacobi reinitialisation: influence of the tuning parameters on the flow behaviour.
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 111 Figure 1.11: Domains and notations for the derivation of Laplace's law.
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 112 Figure 1.12: Wetting: liquid drop on a plane solid substrate.
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 113114 Figure 1.13: Numerical experiment of a spreading liquid drop on a solid substrate.
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 5 Interface, capillarity and numerical implementation 1.5 Interface, capillarity and numerical implementation

1. 5 .Figure 1 . 15 :

 5115 Figure 1.15: Illustration of Continuum Surface Force and Surface Local Reconstruction methods.

Figure 1 . 16 :

 116 Figure 1.16: Shape functions associated with pressure discontinuity (left) and pressure gradient discontinuity (right) in the context of enriched finite element method.

Figure 1 . 17 :

 117 Figure 1.17: Illustration of the weak coupling strategy.
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 118 Figure 1.18: Illustration of the strong coupling strategy.
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 7119 Figure 1.19: Illustration of some effects of the coupling strategies on the flow front position.
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 120 Figure 1.20: Representation of the separation of the description scales.

Figure 1 . 21 :

 121 Figure 1.21: Identification of a RVE size from the independence of the homogenisation volume chracteristic length.
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 122 Figure 1.22: Volume averaging procedure for homogenisation.

Figure 1 . 23 :

 123 Figure 1.23: Asymptotic method for homogenisation.

Figure 1 . 24 :

 124 Figure 1.24: Practical determination of permeability.

Figure 1 . 25 :

 125 Figure1.25: Usual analytical models for permeability prediction[START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF][START_REF] Bruschke | Flow of generalized newtonian fluids across a periodic array of cylinders[END_REF][START_REF] Carman | Fluid flow through granular beds[END_REF].
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 72126 Figure 1.26: Brooks-Corey and van Genuchten models for capillary pressure, where n vG and λ BC refer to Eqs.1.72 and 1.71.

Figure 1 . 27 :

 127 Figure 1.27: Capillary pressure values from composites literature. Flow settings and materials are presented as X a b where X is the geometry of the reinforcement (UD: unidirectionnal, PW: plain weave, M: mat, T: twill, NCF: non-crimp fabric), a the flow direction (IP : in plane, OOP : out of plane, //: along the fibres, ⊥: perpendicular to the fibres, in plane) and b the material type (g: glass, c: carbon).

Figure 1 . 28 :

 128 Figure 1.28: Brooks-Corey and van Genuchten models for relative permeability, where n vG and λ BC refer to Eqs.1.76 and 1.77.
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 21 Figure 2.1: Fluid slip and slip length.
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 22 Figure 2.2: Algorithm for microstructure generation.

Figure 2 . 3 :

 23 Figure 2.3: A numerically generated microstructure (V f = 0.5, r ∼ N (r, 0.1r), L/r ∼ 85).

Figure 2 . 4 :

 24 Figure 2.4: Nearest neighbour distance distributions normalised by r (∼ 2.3 × 10 4 generated microstructures, V f = 0.59, N p > 1000).
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 25 Figure 2.5: Gaussian fit of first nearest neighbour distance distribution for various N p values (V f = 0.59).

Figure 2 . 6 :

 26 Figure 2.6: Domains, equations and boundary conditions for a flow in the x direction.

Figure 2 . 7 :

 27 Figure 2.7: Numerical flow simulation (velocity magnitude field, ×10 -3 mm/s) and adapted mesh.
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 28 Figure 2.8: Illustration of the permeability computation method for a pressure gradient along x direction.
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 29 Figure 2.9: Illustration of noiseless GPR.
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 210 Figure 2.10: Illustration of noisy GPR.

Figure 2 . 11 :

 211 Figure 2.11: Convergence plot for diagonal terms: mean values and standard deviations (V f = 0.4, left: constant radius, right: random radius).

Figure 2 . 12 :

 212 Figure 2.12: Histograms of diagonal permeabilities normalised by r2 ((a) V f = 0.3, (b) V f = 0.5).

Figure 2 . 14 :

 214 Figure 2.14: Permeability normalised by r2 as a function of V f : comparison with other studies.

Figure 2 . 15 :

 215 Figure 2.15: Histogram of permeability normalised by r2 for constant and random radii ((a): V f = 0.3, (b): V f = 0.5).
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 216 Figure 2.16: Poiseuille flow and slip length.

Figure 2 . 17 :

 217 Figure 2.17: Permeability normalised by r2 as a function of slip length for a given microstructure (V f = 0.4).

Figure 2 . 18 :

 218 Figure 2.18: Permeability normalised by r2 as a function of slip length with consideration of statistical variability (V f = 0.3, 30 RVEs for each λ value).

Figure 2 . 19 :

 219 Figure 2.19: Decimal logarithm of mean α as a function of V f .

Figure 3 . 2 :

 32 Figure 3.2: A simulation example of transient two-phase flow within a generated fibrous microstructure: (a) location of the phases (blue: liquid, grey: vapor), (b) normalised velocity magnitude.
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 3334 Figure 3.3: Temporal evolution of global saturation S L for different inlet boundary conditions.
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 35 Figure 3.5: Test case for the validation of the resulting capillary pressure computation : parameters, boundary conditions and mesh (1,655 nodes). A pressure drop of low intensity p is prescribed.
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 36 Figure 3.6: Relative error between reference value and the two methods to assess the resulting capillary pressure for a given mesh (1215 nodes).
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 37 Figure 3.7: Mesh convergence for the two methods to assess the resulting capillary pressure.
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 38 Figure 3.8: Statistical approach to describe the flow front.
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 39 Figure 3.9: A method to identify the flow front.
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 310 Figure 3.10: Example of flow front identification.
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 311312 Figure 3.11: Temporal evolution of the global saturation.
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 313 Figure 3.13: Spatial evolution of the ratio R for three given times.
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 314 Figure 3.14: Temporal evolution of the saturation length normalised by the mean fibre radius.
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 315 Figure 3.15: Temporal evolution of the resulting capillary pressure defined at the interface level: proposed methods and literature.
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 316317 Figure 3.16: Distribution of flow front at t/t f = 0.73.
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 318 Figure 3.18: Time evolution of the global saturation for six randomly generated microstructures (V f = 50%, Ca = 10 -3 ).

Figure 3 . 19 :

 319 Figure 3.19: Time evolution of the resulting capillary pressure for six randomly generated microstructures (V f = 50%, Ca = 10 -3 ).
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 41 Figure 4.1: Methodology followed in this article: two-phase flow simulations are performed in randomly generated fibrous microstructures. Upscaling descriptors characterise the simulated flows, and their statistical behaviour can be related to the input parameters to identify macroscopic relations.

Figure 4 . 2 :

 42 Figure 4.2: Example of flow simulation in randomly generated microstructure: domains, mesh, velocity and pressure fields.
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 2 Materials and methods γ LV (N/m) µ V (Pa.s) µ L (Pa.s) 50.8 × 10 -3 1.71 × 10 -5 2.76 × 10 -3

Figure 4 . 3 :

 43 Figure 4.3: Saturation vs. time for three realisations of SVE (V f = 50%, Ca = 10 -3 ).

Figure 4 . 4 :

 44 Figure 4.4: Saturation rate ṠL as a function of V f and Ca. A cross is plotted when a single realisation is considered while a bar represents the min-max dispersion when several realisations have been considered.
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 45 Figure 4.5: Maximum saturation S max L

Figure 4 . 6 :

 46 Figure 4.6: Resulting capillary pressure vs. time for four realisations of SVE (V f = 40%, Ca = 10 -3 ). The saturation associated with the realisation 4 is plotted and the corresponding flow state at capillary pressure convergence is represented.

Figure 4 . 7 :

 47 Figure 4.7: Capillary pressure P * c as a function of V f and Ca. A cross is plotted when a single realisation is considered while a bar represents the min-max dispersion when several realisations have been considered.

  4.9), T2 * is supposed to match S1 case for S max L ≈ 90% or, considering Fig.4.5, from Ca ≈ 10 -2 .
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 48 Figure 4.8: Relative difference ε ∆p on the pressure drop between time-independent single-phase (S1) and transient two-phase (T2) simulations for a given fibrous microstructure (V f = 0.5). The time is normalised by the final computational time t f . The notation T2 * indicates when the T2 simulation reaches steadiness.
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Figure 4 . 9 :

 49 Figure 4.9: Difference between time-independent single-phase (S1) and converged transient twophase (T2 * ) flow simulations as a function of the void content S max L and the capillary number Ca. The Darcy's law domain corresponds to the area where ε * ∆p < 10%.

  -1 (reg. lin.) Ca = 1e-2 (data) Ca = 1e-2 (reg. lin.) Ca = 1e-3 (data) Ca = 1e-3 (reg. lin.) Ca = 1e-4 (data) Ca = 1e-4 (reg. lin.)[START_REF] Ahn | Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements[END_REF] 
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 410 Figure 4.10: Capillary pressure as a function of V f /(1 -V f ) and Ahn et al. model [340].

Figure 4 . 11 :

 411 Figure 4.11: Liquid saturation S L vs. time for different viscosity ratios M n , considering a given microstructure that is represented in the bottom right corner (V f = 0.5).

Figure 4 .

 4 Figure 4.12: P * c /γ LV as a function of the viscosity ratio for a given microstructure. The axes are normalised by the values associated with the reference case n = 1.0.
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 5 Conclusionthe most uniform, which corresponds here to high Ca values. The results have been shown to be in accordance with the literature.
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 1 Figure A.1: A realisation of random fibrous microstructure and the associated distribution of fibre radius (V f = 0.5, normalised).
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 1 Distance to the n-th nearest fibre A.1 Distance to the n-th nearest fibre

Figure A. 2 :

 2 Figure A.2: Illustration of δ 1 , δ 2 and δ 3 .

Figure A. 3 :

 3 Figure A.3: Distributions of inter-fibre distance to the 1st, 2nd and 3rd nearest fibre δ 1 , δ 2 , δ 3 for two different fibre volume ratios V f and Gamma law fit. 30 microstructures have been considered in each case.

  .A.4).

Figure A. 4 :

 4 Figure A.4: Delaunay triangulation for a given fibrous microstructure.

  (Fig.A.5). Distributions of γ T and γ P are represented respectively in Fig.A.6 and Fig.A.7for two different V f . It can be seen that the fibre volume fraction affects significantly the distribution profile. However, for a same V f , γ T and γ P distributions are analoguous. Contrary to δ n , the distributions do not fit an usual probability law.

Figure A. 5 :

 5 Figure A.5: Illustration of γ T and γ P .

Figure A. 6 :

 6 Figure A.6: Distributions of shortest Delaunay edge length per point γ P for different fibre volume ratios. 30 microstructures have been considered in each case.

Figure A. 7 :

 7 Figure A.7: Distributions of shortest Delaunay edge length per triangle γ T for different fibre volume ratios. 30 microstructures have been considered in each case.

Figure A. 8 :

 8 Figure A.8: Voronoi tesselation for a given fibrous microstructure.

Figure A. 9 :

 9 Figure A.9: Distributions of edge number per Voronoi cell. 30 microstructures have been considered in each case.

Figure A. 10 :

 10 Figure A.10: Distributions of volume of Voronoi cells and gamma law fit. 30 microstructures have been considered in each case.

3 )

 3 Distributions are depicted inFig.A.11 for two fibre volume ratios. It can be noticed that the mean value of both distributions, shown with continuous lines in Fig.A.11, are very close to the global V f value, validating V i f as a local measurement of the fibre density. Both distributions fit a gamma law.
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 6 Some realisations through both processes are depicted as dots in the plane (f (X 1 ), f (X 2 )) in the upper part of Fig.B.1, and in the plane (X, f (X)) in the lower part of Fig.B.1.The diagonal terms of C 22 correspond to the variance, or in other words, to the range of dispersion associated with each ouput component. In the example, a unit variance for both f (X 1 ) and f (X 2 ) is considered, leading to statistically observe 95% of the realisations between -1.96 and 1.96. Off-diagonal terms correspond to the covariance, or in other words, to how much f (X 1 ) and f (X 2 ) are correlated to each other. In the example depicted in Fig.B.1, it can be especially observed that f (X 1 ) and f (X 2 ) are closer to each other when the covariance is higher. The ellipses in Fig.B.1 represents isovalues of each probability density function. When the covariance increases, the ellipses shrink and converge towards the line f (X 1 ) = f (X 2 ).

Figure B. 1 :

 1 Figure B.1: Influence of the covariance matrix on multivariate Gaussian distributions.

  σ and c are known hyper-parameters which have a great influence on the models. The procedure to determine these values will be detailed later in this appendix. Such a kernel is infinitely differentiable and thus generates very smooth models. Realisations of a gaussian process GP (0, C RBF ) with σ = 1 and c = 2 are depicted in the left side of Fig.B.2 in coloured lines. It should be noted that C RBF (X, X) = σ, therefore σ corresponds to the variance. As a consequence, considering σ = 1, 95% of the realisations statistically lies between -1.96 and +1.96. The influence of the kernel function is represented in the right part of Fig.B.2 in the plane (X, X ). This figure highlights the role of the correlation length c that acts as a critical interaction distance between two points.

Figure B. 2 :

 2 Figure B.2: Realisations of a Gaussian process, using a RBF kernel with σ = 1 and c = 2, and the associated correlation matrix.

  Fig.B.3 in the case of a cosine function. It can be seen that the interpolation quickly converges towards the expected function when the dataset size increases. The left part of Fig.B.3 shows realisations, or samples, from the posterior distribution, depicted in the right part of Fig.B.3 and characterised by µ * and Σ * .It can be seen that the realisations pass through all the data, meaning that the uncertainty Σ * is zero on the dataset points, as retrieved from Eq.B.8. In the areas poorly covered by the dataset, the dispersion between samples rises and the uncertainty naturally increases. As illustrated in Fig.B.4, the posterior distribution is naturally retrieved asymptotically when the number of samples increases.
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 3 Figure B.3: Posterior distributions and samples for different dataset.
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 49 Figure B.4: Increasing number of samples from the posterior distribution (the mean is indicated in dark blue and the uncertainty at 95% in light blue).
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 5 Figure B.5: Influence of the correlation length on the posterior distribution (the mean is indicated in dark blue and the uncertainty at 95% in light blue). The optimal c minimises the marginal likelihood.

x 2 Figure B. 6 :

 26 Figure B.6: Overfitting and noisy GPR formulation (the mean is indicated in dark blue and the uncertainty at 95% in light blue).
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 2 Figure C.2: Influence of the noise intensity ν on the predictions of the GPR method: mean value m ε and standard deviation σ ε associated with the error between test data and predicted values.

Figure C. 3 :

 3 Figure C.3: Weight w i of each morphological descriptor with respect to the permeability.

Figure C. 4 :

 4 Figure C.4: Regression and associated error on test data depicted in the plane (N f b , log K): most probable output and uncertainty at 95%. All the data have been normalised.
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 5 Figure C.5: Visualisation of the dependencies between features and their relation with permeability. All the data have been normalised.
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 2 Figure D.2: Comparison between similar configurations: experimental and numerical results from Kunz et al. (SPH, Navier-Stokes) [203], Konangi et al. (finite volumes, VOF, Navier-Stokes) [200] and our study (finite element, level-set, Stokes).
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 3 Figure D.3: Capillary pressure vs. saturation: comparison between experimental and numerical studies.
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  .49) Therefore, the derivation of the weak formulation shows a boundary term on ∂Ω. This boundary contribution can be decomposed into a Neumann condition on ∂Ω N , a Dirichlet condition on ∂Ω D

	1.4. Capillary effects
	and a complementary term on ∂Ω \ (∂Ω N ∪ ∂Ω D ) which corresponds to the interface terms and
	which reads:

Table 2 .

 2 

	radius]	80	85	75	60
	δ RV E [r ∼ N (r, 0.1r)]	95	90	90	70

1: Estimation of δ RV E for different V f values.

2.3. Results

Table 2 . 2 :

 22 Mean relative difference w.r.t. mean permeability values.

	Normalised permeability	10 2 10 1		Gebart hexa. (1992) Gebart quad. (1992) GPR mean GPR uncertainty (95%)	
		0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 V f	
					(2012)
	εk (%)	78.4	39.9	19.4	14.4

Figure 2.13: Permeability normalised by r2 as a function of V f : influence of fibres center randomness. Gebart (hexa.) Gebart (quad.) Bodaghi et al. (2016) Yazdchi et al.
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 23 Coefficient of variability of permeability for different V f values.
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 24 Mean relative difference between data mean values and sigmoid model.

Table 2 . 5 :

 25 Mean permeability (no-slip and realistic slip length).
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 41 Fluid properties chosen for the numerical simulations.

•

  Lorsqu'elle est modélisée comme un écoulement diphasique transitoire, l'imprégnation montre un comportement différent selon les conditions d'écoulement imposées. Une condition sur la vitesse rentrante est ici appliquée pour assurer un taux de remplissage constant, de telle façon à ce que le nombre capillaire, correspondant au rapport entre les effets visqueux et capillaires, soit constant tout au long de la simulation. Pour une microstructure donnée, l'imprégnation peut être donc caractérisée par son nombre capillaire associé. Le couple (V f , Ca) décrit donc à la fois la structure porale et le régime d'écoulement, et a été considéré ici comme identifiant un scénario d'écoulement avec unicité. Le rapport des viscosités des phases fluides n'améliore pas de façon significative la description de l'écoulement, pour la gamme de propriétés fluides étudiée.et peut être utilisée comme une quantité scalaire caractérisant l'imprégnation. Pour un couple (V f , Ca) donné, S max L montre une faible variabilité relative entre différentes réalisations de microstructures. En accord avec les observations d'autres études, S max L augmente linéairement avec Ca, l'avancement du front d'écoulement devenant plus uniforme au sein de la structure.• La saturation peut être définie à une échelle inférieure, au niveau des sections perpendiculaires au sens de l'écoulement. Cette saturation locale est d'abord exprimée en fonction du temps avant d'être transposée dans le domaine spatial permettant d'identifier une bande dans laquelle les effets transitoires sont contenus. La taille de cette bande est nommée longueur de saturation et s'avère être significativement plus petite que la taille du domaine. Ceci justifie l'utilisation d'une modélisation nette pour l'interface à l'échelle supérieure. Des résultats similaires ont été obtenus en analysant la distribution de front d'écoulement mobile à travers la structure.• La contribution résultante des effets capillaires, généralement identifiée en une pression capillaire, est fréquemment définie à l'échelle du volume comme la différence macroscopique de pression entre les phases liquide et vapeur, menant à des dépendances hystérétiques à l'état de saturation du volume. Pour réduire cet effet, la pression capillaire est définie au niveau de l'interface. En moyennant la loi de Laplace sur l'interface, deux définitions peuvent être proposées: une première basée sur la courbure moyenne de l'interface, calculée ici grâce à la régression par processus gaussien, et une seconde à partir du saut du pression moyen à l'interface. Les deux méthodes ont été validées sur un cas test et sont cohérentes pour des écoulements plus complexes. Finalement, seule la méthode basée sur le saut de pression a été retenue, induisant un moindre coût de calcul. • Pour des structures fibreuses statistiquement homogènes, la pression capillaire résultante converge asymptotiquement après un premier régime transitoire. Cet état convergé est observé alors que la saturation continue d'augmenter, mettant en évidence un régime d'écoulement pour lequel les effets transitoires deviennent stables au cours du temps. La valeur asymptotique est alors indépendante de l'état de saturation du volume et sa variabilité statistique est relativement faible lorsque plusieurs réalisations sont considérées. Par conséquent, la grandeur caractérise le problème d'imprégnation étudié et peut être associée à un couple (V f , Ca). La dépendance à la fraction volumique de fibres et au nombre capillaire a été explicitée. Comme montré dans d'autres études, la pression capillaire est ici proportionnelle au rapport V f /(1 -V f ) et indépendante du nombre capillaire lorsque Ca est suffisamment faible. Les valeurs de pression capillaire présentées sont cohérentes avec celles rencontrées dans la littérature.

	4.5. Conclusion
	valeur correspond à taux de remplissage du volume S max L

• Considérant un couple (V f , Ca) donné, l'écoulement diphasique transitoire dans les milieux considérés est d'abord décrit par la saturation, pouvant être définie à différentes échelles pour aboutir à une caractérisation complète de l'écoulement. Puisqu'une vitesse d'entrée est imposée, la saturation globale augmente linéairement au cours du temps, indépendamment des propriétés fluides, jusqu'à atteindre une valeur strictement inférieure à un, compte-tenu de la compétition entre effets capillaires et visqueux dans une structure porale irrégulière. Cette

  State Our simulation Konangi et al. Kunz et al.Table D.2: Liquid saturation S L for the four reference states.

					Experiment
	S 0	0.86	0.86	0.83	0.82
	S 1	0.72	0.72	0.69	0.67
	S 2	0.69	0.52	0.66	0.64
	S 3	0.48	0.47	0.41	0.43

1

  The composite materials under consideration are composed of a carbon fibre reinforcement associated with an epoxy resin matrix. Some examples of applications are illustrated in the lower part of the figure, including the Airbus A350 XWB aircraft which is built with 53% of composite materials in mass. . . . . . . . . . . . . . . . . 2 Ashby chart for density and Young's modulus highlighting the relevance of composite materials (adapted from https://www.grantadesign.com/education/students/ charts/). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Simplified representation of the Liquid Resin Infusion (LRI) process. . . . . . . . . . 4 Interactions between physical phenomena ocurring in direct manufacturing processes of composite materials (adapted from [9, 14]). . . . . . . . . . . . . . . . . . . . . . 5 Microscopic scale: microstructure made of carbon fibres (adapted from [36, 37]). . . 6 Mesoscopic scale: interlock architecture of yarns or tows (adapted from [41]). . . . . 7 Macroscale scale: examples of carbon fibre/epoxy composite parts (aeronautical engine fan blade, acoustic guitar). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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Remerciements

A. 4 Moran's I Lastly, the spatial autocorrelation has been investigated. Spatial autocorrelation consists in determining if the value of a point field at a given position is influenced by its surrounding [START_REF] Geary | The contiguity ratio and statistical mapping[END_REF][START_REF] Moran | Notes on continuous stochastic phenomena[END_REF]. In other words, it describes homogeneity (i.e. positive autocorrelation) or heterogeneity (i.e. negative autocorrelation) in the spatial distribution of a field (Fig. A.12). When there is no spatial autocorrelation, field values are uniformly randomly distributed in space. Spatial autocorrelation can be measured through various indicators, including Moran's I that is the most common [START_REF] Moran | Notes on continuous stochastic phenomena[END_REF][START_REF] -Y. Yun | Manifold embedding of heterogeneity in permeability of a woven fabric for optimization of the VARTM process[END_REF]. Let (F 1 , ..., F n ) be a given discrete field of mean value F, defined at respective positions (x 1 , ..., x n ). Moran's I is a global indicator that measures covariance between neighbours:

Appendix B

Basics of Gaussian Process Regression (GPR)

Gaussian process regression (GPR) is a Bayesian method for regression problems that can be seen as a supervised learning technique [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF]. This method has been historically referred to as kriging, following Krige's works on best linear unibiased predictors [START_REF] Krige | A statistical approach to some basic mine valuation problems on the witwatersrand[END_REF][START_REF] Matheron | Principles of geostatistics[END_REF]. While both approaches are different in their philosophy, their equivalence can be shown [START_REF] Gratiet | Multi-fidelity Gaussian process regression for computer experiments[END_REF]. In practice, both GPR and kriging terms can be equivalently encountered in the litterature, even though GPR is generally associated with the machine learning paradigm, while kriging usually refers to geostatistics. The basics of this technique are presented here.

Let D be a dataset, composed of input/output observations (X i , Y i ) i=1,...,N such as:

We assume that the relation between inputs and outputs can be described by a model f such that f (X) = Y . Considering a new input X * / ∈ D and knowing D, the problem is now to estimate which output Y * associated with X * is the most likely and with which uncertainty. This problem is approached in a probabilistic way and the models are thus considered as stochastic. Therefore, the probability of a model, knowing the data, is sought. The use of Bayes formula leads to reverse the formulation of this problem, which can be expressed with informal notations as:

Consequently, the posterior distribution is sought and expressed as a function of a prior distribution and a likelihood term. The prior corresponds to an assumption on the model behaviour, without consideration of the data. This assumption is a key point in the approach insofar as it will sustain the whole model. In the context of GPR, the models are assumed to follow a Gaussian process:

This Gaussian process is characterised by a constant mean value, that is usually set at zero, and by its covariance C. The prior assumption expressed in Eq.B.3 is equivalent to:

Appendix C

Kriging with anisotropic kernel for supervised feature selection

The problem is here to relate morphological descriptors of the fibrous microstructures to their permeability. As fibrous media display an intrinsic variability, here modelled by random fibre placements and random radii, they can be characterised by statistical geometrical descriptors (Appendix A). In addition, the permeability of the fibrous media is a quantity of prime interest when it comes to impregnation problems, that is mainly controlled by the geometry of the pore structure [START_REF] Yazdchi | Micro-macro relations for flow through random arrays of cylinders[END_REF][START_REF] Yazdchi | Upscaling and microstructural analysis of the flow-structure relation perpendicular to random, parallel fiber arrays[END_REF][START_REF] Gebart | Permeability of unidirectional reinforcements for RTM[END_REF]. The question is now to know which subset of descriptors is the most relevant to describe the permeability and to build a predictive model ( The first concern is a supervised feature selection problem while the second corresponds to an usual regression. Supervised feature selection problems are generally addressed using three different approaches: filter methods [START_REF] Sánchez-Maroño | Filter methods for feature selection-a comparative study[END_REF], wrapper methods [START_REF] Kohavi | Wrappers for feature subset selection[END_REF] and embedded methods [START_REF] Grabczewski | Feature selection with decision tree criterion[END_REF][START_REF] Muthukrishnan | Lasso: A feature selection technique in predictive modeling for machine learning[END_REF], from which the approach described here can be associated. To tackle both feature selection and regression problems, the Gaussian Process Regression (Appendix B) method has been used with an anisotropic kernel. Such an approach can be also referred to as Automatic Relevance Determination (ARD) [START_REF] Despotovic | Speech based estimation of parkinson's disease using gaussian processes and automatic relevance determination[END_REF][START_REF] Paananen | Variable selection for gaussian processes via sensitivity analysis of the posterior predictive distribution[END_REF] and is now described.

Appendix D Validation of the modelling strategy on Kunz's micromodel test case

The validity of the modelling strategy for transient two-phase flows with capillarity is now assessed. It is rather complex to find in the literature test case for such flows, especially in fibrouslike structures. The method is here validated from Kunz et al. test cases presented in [START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF] 1 . This consists in a drainage problem within a rectangular geometry with cylindrical obstacles of different radius, as illustrated in Fig.D.1. A pressure drop is prescribed at the boundaries of the volume which forces a non-wetting phase (i.e. water) to replace a wetting phase (i.e. Fluorinert) initially present. This flow has been performed both experimentally and numerically [START_REF] Kunz | Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[END_REF]. Material properties selected for this study are indicated in Tab.D.1. To be consistent with the results presented previously in the manuscript, the word wetting phase (resp. non-wetting phase) will be associated with the liquid (resp. vapor) phase, although both phases are liquid in Kunz et al. work. This does not have an influence on the model as the same equations are solved for both liquid and vapor phase. 1 https://www.youtube.com/watch?v=SqZ4JShJih4
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Abstract :

Transient two-phase flows in porous media are widely encountered in engineering problems, including LCM processes for the manufacturing of composite materials where a dry reinforcement is impregnated by a liquid resin. Such flows have to be studied at local scale, meaning at the fibres scale, then upscaled to feed the industrial models that will be used to simulate the impregnation step at the macroscopic scale. In this work, 2D periodic geometries representative of experimentally-observed microstructures are retrieved from a generation algorithm that accounts for the intrinsic geometrical stochasticity. From those randomly generated geometries, numerical simulations of impregnation flows are carried out, relying on a stabilised finite element method that couples a Stokes solver to a level-set method with consideration of surface tension effects. Those flows are then macroscopically described through upscaling procedures that require a proper scale separation and that vary according to the type of flow under consideration. In the simplified case of a time-independent singlephase flow that is first addressed, the description can be reduced to the permeability tensor for which the statistical dependencies on both the pore structure and fluid/solid interactions are investigated. When transient two-phase flows are considered, the upscaling procedure becomes more complex to perform. The methods commonly encountered in the literature in different scientific communities must be adapted to retrieve a relevant and complete description of the flows under consideration that characterises the impregnation state of the medium as well as the resulting contribution of the capillary effects. The dependencies of the identified upscaling descriptors, namely saturation and capillary pressure, on the flow regime and on the pore morphology are then studied to finally identify governing laws that macroscopically rule the impregnation of the fibrous medium.