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Abstract
Nonlinear focusing and reflection of weak acoustic shocks are important problems both in medical
ultrasound and in aeroacoustics. In aeroacoustics, studies of propagation and reflection from sur-
faces of high-amplitude N-wave are relevant to the sonic boom problem associated with jet noise
and with the development of civilian supersonic aircraft. In medical applications, high-intensity
focused ultrasonic acoustic fields are widely used for therapy and noninvasive surgery. In this con-
text, investigation of nonlinear acoustic fields and their characterization are of great importance.

In this thesis, the problem of characterization of high-amplitude N-wave generated in air by
an electric spark was studied by two optical methods: a Schlieren method and a Mach-Zehnder
interferometry method. Pressure waveforms were reconstructed either from the light intensity
patterns in the recorded images or from the signal of photodiode using an Abel-type transform.
The temporal resolution of reconstructed N-waves is six time better than that of the current state-
of-the-art microphones. Thus, proposed optical methods are perspective tools for calibration of
broadband acoustic microphones.

Developed optical techniques were applied to study the irregular reflection of spark-generated
N-wave from the plane rigid surface in air. The Schlieren optical system was used for visualization
of reflection pattern while the Mach-Zehnder interferometry method was applied to reconstruct
waveforms. It was shown that irregular reflection occurs in a dynamical way and the length of
the Mach stem increases with the propagation distance. Moreover, the Mach stem formation was
observed above the surface where the reflected front shock of the N-wave intersects with the
incident rear shock.

Characterization of nonlinear focused acoustic fields of medical devices is important to predict
and to control induced biological effects in tissue. In the thesis, nonlinear propagation effects were
analyzed for two modern medical devices: Duolith SD1 used in extracorporeal shock wave therapy
and Philips C5-2 array probe used in preliminary experiments to move kidney stones by acoustic
radiation force. A combined measurement and modeling approach was used for field characteriza-
tion of devices: the boundary condition for the modeling was set to match low power measurements
of the acoustic pressure field. In addition to characterization of real medical transducers, the theo-
retical investigation of nonlinear focusing of pulsed and periodic ultrasonic beams was performed
for Gaussian and piston sources using the KZK equation. The saturation mechanisms were found
different for cases of periodic and pulsed fields.

The reflection from the rigid boundary is considered in the thesis as a process similar to focus-
ing of axially symmetric beam since the normal derivative of the pressure on the axis of focused
beam and at the rigid surface in reflection wave pattern is equal to zero. Under this light, the
formation of spatial structures similar to Mach stem was observed at the focal area of medical
transducers and was described in numerical simulations within the framework of KZK equation.

Keywords: Nonlinear acoustics, N-waves, sonic boom, ultrasound, irregular reflection, Mach
stem, nonlinear focusing, extracorporeal shock-wave therapy, propulsion of kidney stones.
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Introduction

Nonlinear focusing of weak acoustic shocks and their reflection from different types of surfaces
are important problems in atmospheric and medical acoustics (Rudenko & Soluyan, 1977, Vino-
gradova et al., 1979,Hill et al., 2002,Bailey et al., 2003,Rudenko, 1995,Rudenko & Sapozhnikov,
2004, Rudenko, 2007). In medicine, high-energy focused shock pulses have been widely used for
about 30 years for the destruction of kidney stones in lithotripsy procedure (Hill et al., 2002,Bailey
et al., 2003). Currently, there are new medical applications using focused waves: extracorporeal
shock wave therapy, stopping internal bleeding (hemostasis), treatment of tumors by high inten-
sity focused ultrasound (Hill et al., 2002, Bailey et al., 2003, Rudenko, 2007). All these medical
applications use intensive (up to 30 kW/cm2 in the focal area of the beam) acoustic waves propa-
gating in nonlinear media. Induced biological effects are strongly dependent on the amplitude of
the shock front.

In aeroacoustics, nonlinear propagation and reflection of shock pulses are of special attention
due to development of new civil supersonic aircrafts (Plotkin, 2002). Shock pulses of sonic boom,
or N-waves, generated by supersonic motion of the airplane propagate through the atmosphere to
the ground, reflect from it and form an acoustic field with non-uniform pressure distribution close
to the ground. High peak positive and negative levels of acoustic pressure may be harmful to people
and buildings. Weak acoustic shocks are also generated by explosions, thunders, earthquakes,
collapse of cavitation bubbles, high-power electrical discharges, and even by loud playing on some
wind musical instruments (Rudenko, 1995, Hirschberg et al., 1996). Despite the difference of
practical applications, all these problems of medical and aeroacoustics have much in common
in terms of theoretical models since they are related to the propagation, nonlinear focusing and
reflection from the boundaries of shock acoustic waves.

Theoretical models describing these problems are quite complex, and analytical solutions can
be obtained only within the framework of simplified approximations. Numerical simulations com-
bined with laboratory experiments are used to describe in detail spatial and temporal structures of
acoustic fields of shock waves. It should be noted that the presence of shock in waveform compli-
cates significantly both numerical simulations and measurements. In simulations, the difficulties
are more of a technical nature and are caused by the need to use small time and spatial steps of
the numerical grid that requires using powerful supercomputers with large RAM size. Numerical
modeling of practical applications related to nonlinear focusing and propagation of shock waves
became possible only recently due to the rapid development of supercomputers and parallel com-
puting methods.

5



Introduction

Measurements of shock waves by acoustic methods are difficult from fundamental point of
view. First of all, a bandwidth of even modern broadband devices (condenser microphones and
fiber optic hydrophones) is limited at high frequencies that in many cases does not allow measure
the shock rise time (Loubeau et al., 2006). Second, waveforms measured by microphones are
distorted by wave diffracting on a surface of the microphone (Yuldashev et al., 2010b). Third,
the high-precision measurements of reflection pattern are impossible using a microphone since it
distorts the field structure by additional waves reflected from the microphone. Therefore, using
alternative methods, such as optical, is of great interest to measure shock acoustic waves without
distortion of their profiles and with high time resolution. In the thesis, optical measurements of
an N-wave during its propagation and reflection from the surface were performed by means of
two optical methods: the schlieren method (Karzova et al., 2015d, Karzova et al., 2015e) and the
Mach-Zehnder interferometry method (Yuldashev et al., 2015,Karzova et al., 2015c,Ollivier et al.,
2015, Karzova et al., 2015b).

The presence of the shock in acoustic waveform leads to several features in manifestation of
nonlinear effects in the processes of the focusing and reflection. One of the classic effects caused
by the presence of the shock is the formation of a three-wave structure near the reflecting surface
at small angles of incidence (Ben-Dor, 1992). This phenomenon was first experimentally observed
by Ernst Mach in 1868 (Mach, 1878) and has been studied well for strong step shocks when the
acoustic Mach number is close to one. While step shocks are typical for aerodynamics, acoustic
shock waves usually have more complicated waveforms of an N-wave (sonic boom waves), blast
waves, sawtooth waves, and others. In addition, in nonlinear acoustics the values of acoustic
Mach number are on the order of 10−3, which is at least one order smaller than in aerodynamics.
The reflection of such very weak, but nonetheless strongly nonlinear acoustic waves has not been
studied to the same extent. In the thesis, nonlinear reflection of an N-wave generated by a spark
source in air is studied experimentally (Karzova et al., 2015e,Karzova et al., 2015c,Karzova et al.,
2015b).

Another classic phenomenon caused by the presence of the shock is the saturation of acoustic
field parameters in nonlinear focused fields (Rudenko, 1995). The limitation of the acoustic pres-
sure at the focus need to be taken into account in medical applications using high-intensity focused
beams. Existing analytical solutions for estimation the saturation level of the pressure amplitude
at the focus were obtained in (Naugolnykh K.A. & Romanenko E.V., 1959, Ostrovskii & Sutin,
1975, Bacon, 1984, Shooter et al., 1974, Musatov et al., 1992) and could be used to predict peak
positive pressure at the focus of medical transducers. However, these estimates have been obtained
under different approximations and therefore are inaccurate.

Numerical experiment provides an accurate and detailed study of the acoustic field structure.
In the recent studies (Bessonova O.V. et al., 2009, Khokhlova et al., 2006, Bessonova O.V. et al.,
2010) nonlinear focusing of periodic waves in a saturation regime was investigated numerically
taking into account combined nonlinear effects, diffraction and absorption. Until now, no numer-
ical modeling has been performed yet to study saturation mechanisms in pulsed fields of weak
acoustic shocks. In the thesis, the effect of wave temporal and spatial structure on parameters of
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focused acoustic field in a saturation regime is investigated numerically (Karzova et al., 2012). In
addition, the formation of spatial structures similar to the Mach stem on the beam axis at the focus
is considered (Karzova et al., 2015e).

As mentioned above, the study of nonlinear effects in focused fields of modern medical devices
is an important problem of medical acoustics. Understanding the spatial and temporal structure of
acoustic fields of medical transducers is necessary for planning induced therapeutic effect and de-
velopment protocols ensuring the most effective treatment. Extracorporeal shock wave therapy
(ESWT) has been actively used recently to treat several musculoskeletal disorders (Kudo et al.,
2006, Rompe et al., 2003, Gerdesmeyer et al., 2003, Furia, 2005, Rompe, 2004). Therapeutic
bioeffects induced by ESWT include angiogenesis (blood vessel formation), osteogenesis (bone
formation), and antinociceptive effects. Although ESWT has been already used in clinics, the ac-
tual physical mechanisms of ultrasound action on bones and surrounding tissues in ESWT remain
unknown as well as a structure of the acoustic field of ESWT devices. Another new promising
medical application of shock waves is the recently developed use of focused ultrasonic radiation
force to move kidney stones and residual fragments out of the urinary collecting system (Shah
et al., 2010). A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic
pushing pulses. The probe works in regime of generating millisecond pulses at the very power
operational output (Shah et al., 2012). The optimization of array probe parameters and choos-
ing the optimal treatment protocols require the study of nonlinear acoustic fields generated by the
currently used probe at different regimes. In the thesis, nonlinear propagation effects were ana-
lyzed using a combined measurement and modeling approach (Kreider et al., 2013, Canney et al.,
2008,Bessonova & Wilkens, 2013): the boundary condition for the modeling was set to match low
power measurements of the acoustic pressure field (Perez et al., 2013,Karzova et al., 2013,Karzova
et al., 2015a).

Aims of the dissertation

The general aim of the dissertation is an experimental and theoretical study of nonlinear focusing
and reflection of weak acoustic shocks in the context of aeroacoustic problems and problems of
diagnostic and therapeutic medical ultrasound. According to this aim, the following challenges
can be outlined:

1. Development of optical methods to measure profiles of the N-wave in the laboratory experiment
in air. Investigation the applicability of the developed methods and their temporal resolution.

2. Experimental study of the nonlinear reflection of the N-wave from a flat rigid surface in air.
Determination the criteria for observation the irregular reflection.

3. Numerical simulation of nonlinear pulsed and periodic focused acoustic beams generated by
Gaussian transducers and piston ones. Study how wave temporal structure and source apodiza-
tion effect on limited values of the acoustic pressure at the focus. Observation the Mach
stem formation at the focus of medical transducers and its description within the framework
of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.
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4. Numerical and experimental study of nonlinear effects in the fields of modern diagnostic and
ESWT medical devices. Determination levels of acoustic pressures which provide shock front
formation at the focus and saturation of acoustic field parameters.

Presentations and conferences

The results included into the dissertation have been presented at the following Russian and inter-
national conferences: at the 162nd, 166th, 168th, and 169th meetings of Acoustical Society of
America (USA: San Diego, 2011, San Francisco, 2013, Indianapolis, 2014, Jacksonville, 2015),
at XII Russian school-seminar ”Waves phenomena in nonhomogeneous mediums” (Zvenigorod,
Russia, 2010), at the conference ”Waves-2013” (Krasnovidovo, Russia, 2013), at International
Congress on Ultrasonics (Gdansk, Poland, 2011), at the XV and XV Sessions of Russian Acousti-
cal Society (Saratov, 2011; Taganrog, 2012), at the joint meeting of Acoustical Society of France
and European Association of Acoustics ”Acoustics 2012” (Nantes, France, 2012), at 21st Interna-
tional Congress on Acoustics (ISA21, Montréal, Canada, 2013), at 3rd, 4th, and 5th Winter School
on Therapeutic Ultrasound (Les Houches, France, 2011, 2013, 2015), at the Summer School on
Nonlinear Acoustics and Complex Media (Oleron, France, 2014), at the First Russian conference
on Acoustics (Moscow, Russia, 2014), at the XXII International Conference of Students, Graduate
Students and Young Scientists ”Lomonosov-2015” (Moscow, Russia, 2015), at 20th International
Symposium on Nonlinear Acoustics and 2nd International Sonic Boom Forum (ISNA20, Lyon,
France, 2015). All the obtained results have been also discussed at the scientific seminars of the
Department of Acoustics of the Moscow State University and at the seminar of the N.N. Andreev
Acoustical Institute.

This work was partially supported by the grants RFBR 12-02-31830-mol_a, 12-02-09249, and
12-02-16094, by the international student award of the Acoustical Society of America, by the
Student stipend in theoretical physics from Dynasty Foundation, and by the special stipend of the
French Government for the preparation of the dissertation under the co-supervision in the frame
of the agreement between École Centrale de Lyon (France) and Physics Faculty of the Moscow
State University (Russia). Aeroacoustical experiments were performed at École Centrale de Lyon,
computational resources were provided by Supercomputer Center of MSU.

Publications

Main results of the dissertation are published in 24 papers, 6 of which are pre-reviewed articles in
journals, 12 are articles in conference proceedings and 6 are abstracts of conferences.

Author’s personal contribution

The author took part in all the steps of the research presented in the dissertation. Aeroacoustical
experimental data presented in the dissertation (Chapters 1 and 2) were obtained personally by the
author in collaboration with the team of LMFA, École Centrale de Lyon (Petr Yuldashev, Edouard
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Salze, Sébastien Ollivier, Emmanuel Jondeau, Jean-Michel Perrin). Measurements of acoustic
fields of new medical devices Duolith SD1 and Philips C5-2 presented in Chapter 4 were performed
by Camilo Perez and Bryan Cunitz (Center for Industrial and Medical Ultrasound, University of
Washington, Seattle), correspondingly. The author participated in planning, discussion and data
processing of these experiments.

Structure and volume of the dissertation

The dissertation consists of the introduction, four chapters, conclusions, appendix, and the list
of references. Each chapter, in addition to the original material, contains an introduction with
literature review and conclusions. The references list contains 128 articles on 8 pages; the total
volume of the dissertation is 120 pages, including 74 figures and 2 tables.

Figures and formulas in the dissertation are referred as (1.3) where the first number is the
chapter number and the second number is the number of the formula or the figure in this chapter.

Dissertation content

The first chapter is devoted to optical methods for measuring pressure profiles of N-wave gener-
ated by a spark source in air. In §1.1 a review of existing methods to measure acoustic shock waves
is presented and limitations of measuring N-waves by condenser microphones are discussed. Op-
tical methods are proposed to use as an alternative way for measurements of acoustic shock pulses.
In §1.2 the experimental setup designed for optical schlieren measurements of spark-generated
acoustic waves in homogeneous air is presented. A procedure of reconstruction of the acoustic
pressure waveforms from schlieren images is described in §1.3. Pressure waveforms were re-
constructed from the light intensity patterns in the recorded images using an Abel-type inversion
method. Absolute pressure levels were determined by analyzing at different propagation distances
the duration of the compression phase of pulses, which changed due to nonlinear propagation ef-
fects. Examples of the reconstructed pressure signatures at different distances from the source
are presented in §1.4. The time resolution of the method (3 μs) was restricted by the exposure
time of the high-speed camera. Another optical method proposed in the thesis for measurements
of spherically diverging N-waves is based on the Mach-Zehnder interferometry technique. The
experimental setup is described in §1.5. In §1.6 the reconstruction method to restore pressure
waveforms from optical phase signals is described. The reconstruction is based on an Abel-type
inversion. In contrast to the schlieren optical method, the Mach-Zehnder interferometery method
provides quantitative reconstruction of N-wave pressure waveforms and therefore it is a broad-
band laser microphone. The results of optical measurements obtained by using the Mach-Zehnder
interferometer are given in §1.7. The time resolution of interferometric method (0.4 μs) is mainly
determined by the finite beam width (about 0.1 mm). In §1.8 advantages and limitations of both
optical methods (schlieren method and the Mach-Zehnder interferometery method) for measure-
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ments of acoustic shock waves in air are discussed. In §1.9 conclusions of the first chapter are
given.

The second chapter of the thesis is devoted to experimental study of an irregular reflection of
an N-wave from a rigid surface in air. In §2.1 a review of existing theoretical and experimental
studies of shock wave reflection is presented, as well as reflection of weak shocks under von
Neumann paradox is considered. The classification of different reflection regimes of weak acoustic
shocks from the rigid surface is given in §2.2. The special attention is paid on the differences
between reflection of step-shocks and more complicated waveforms typical for acoustics. In §2.3
the experimental setup designed for schlieren optical visualization of shock wave reflection from a
rigid surface is presented. Schlieren images obtained in the experiment are shown and demonstrate
the dynamical irregular reflection of the N-wave with increasing length of the Mach stem when the
pulse propagated along the surface. Schlieren optical system provides visualization of reflection
pattern for the front shock of the N-wave. The Mach-Zehnder interferometery method was used
to measure pressure waveforms of the N-wave close to reflecting surface. In §2.4 experimentally
measured pressure waveforms are presented. The nonlinear interaction between reflected front
shock and incident rear shock of the N-wave is discussed in §2.5. The interaction leads the Mach
stem formation above the surface where these shocks intersect and overpressure area is formed
above the surface. In §2.6 conclusions of the second chapter are given.

In the third chapter mechanisms of nonlinear saturation in focused acoustic fields of periodic
waves and single pulses are considered. In §3.1 a review of analytical approaches providing estima-
tion of limiting values of peak positive pressure in periodic and pulsed focused fields are presented.
The possibility to observe the Mach stem formation in the axial focal area is discussed. In §3.2
a numerical model based on the KZK equation is described. The model was used to characterize
nonlinear focused fields of pulsed and periodic acoustic beams generated by a piston source and a
Gaussian source. In §3.3 the effect of the signal temporal structure on the limiting values of peak
pressures are discussed. It is shown that in periodic beams higher peak positive pressures could be
achieved than in pulsed beams. §3.4 is devoted to study the effect of source pressure distribution on
the spatial structure and limiting values of peak pressures in focused fields. The Gaussian sources
were found more appropriate for achieving high peak pressures at the small focal area than piston
sources. In §3.5 the interaction between shock fronts of the axially symmetric focused periodic
and pulsed fields is considered as a process similar to reflection from the rigid surface. It is shown
that the KZK equation allows describing the Mach stem formation in the focal area of the piston
source. The structure of the front patterns in the focal region of the beam resembled to the von
Neumann reflection as the result of interaction between the edge and the central waves coming
from the source. In §3.6 conclusions of the third chapter are given.

The fourth chapter is devoted to the characterization of nonlinear focused acoustic fields of new
medical devices used in extracorporeal shock wave therapy (ESWT) and in diagnostic ultrasound.
In §4.1 a review of perspectives to use ESWT for several muscular skeletal disorders is presented
as well as parameters of ESWT devices. Using of diagnostic probes to create focused ultrasonic
radiation force for moving kidney stones out of the urinary collecting system is discussed. The
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numerical modeling is an important tool for characterization of acoustic fields of these medical
devices. In §4.2 the nonlinear effects in focused acoustic field of electromagnetic device Duolith
SD1 of ESWT is studied using a combined measurement and modeling approach. The boundary
condition for nonlinear modeling of KZK equation was obtained from the experiment by applying
the method of the equivalent source. The method uses measurements to obtain parameters of
equivalent source, i.e., the source with the same acoustic field on the axis of the beam as the real
one. It was shown that in ESWT fields the shock front formation did not occur for the currently
machine settings. A true shock formation could be reached if the maximum initial pressure output
of the device is doubled. In §4.3 the combined measurement and modeling approach was used to
characterize the nonlinear ultrasonic field of the standard diagnostic probe Philips C5-2 used in
clinical experiments to push kidney stones. The measurements were done in two steps. The first
one was the measurements of low-amplitude pressure waveforms along the axis of the probe and
at its focal plane. These measurements were performed at low power output and were used to set
boundary condition to the numerical model. The second series of measurements were performed
at different output levels and were conducted for further comparison with the results of nonlinear
simulations. A 3D numerical model based on the Westervelt equation was used to simulate the
nonlinear acoustic field generated in water by the diagnostic probe at different output levels and
for different number of operating elements. It was shown that the pushing of kidney stones occurs
in a saturation regime. In §4.4 conclusions of the forth chapter are given.

In the general conclusions, the main results are briefly summarized.
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Chapter 1

Measurements of N -waves in air using
optical methods: a schlieren method and a
Mach-Zehnder interferometry method

§1.1 Introduction

High-amplitude (>1 kPa) and short duration (tens of microseconds) acoustic pulses are widely used
in downscaled laboratory experiments to simulate sonic boom propagation through atmospheric
inhomogeneities (Lipkens & Blackstock, 1998a, Lipkens & Blackstock, 1998b, Lipkens, 2002,
Davy & Blackstock, 1971, Blanc-Benon et al., 2005, Averiyanov et al., 2011b, Salze et al., 2014),
problems of architectural acoustics (Grillon et al., 1996), urban acoustics (Picaut & Simon, 2001,
Picaut et al., 2005) and outdoor sound propagation (Almgren, 1986). The most common ways
to generate such pulses in air are to use various spark sources: electrical sparks (Wright, 1983,
Yuldashev et al., 2010b, Orenstein, 1982), focused laser beams (Qin & Attenborough, 2004), or
explosive-type materials (Loubeau et al., 2006). The waveform of pulses produced in such ways is
not always known, but it is expected that due to the prevalence of nonlinear effects the initial pulse
becomes an N-wave quite soon. Following the current terminology, let us to call spark-generated
pulses as ”N-waves” (DuMond et al., 1946) because of their shape.

The study of the N-wave propagation in atmosphere is important due to high interest to de-
velopment of civil supersonic aircrafts and inherent sonic boom problem. Outdoor experiments of
sonic booms are not numerous because they are complex and expensive projects (Lee & Downing,
1991, Maglieri et al., 1992). In addition, it is not possible to control all parameters of the atmo-
sphere along the propagation path of the N-wave (Elmer & Joshi, 1994, Willshire & Devilbiss,
1992). Alternatively, laboratory-scaled model experiments could be performed instead of outdoor
measurements. In model experiments, parameters of an acoustic source and a propagation medium
are well controlled. Despite the fact that model experiments do not reproduce the tapered geometry
of a wavefront they are of great importance for understanding fundamental properties of nonlinear
propagation of N-waves.

Before studying the propagation of N-waves in complex cases of turbulent atmosphere, high-
precision measurements of N-waves should be performed first in a homogeneous medium. It turns
out that the actual waveform of spark-generated pulses, particularly their rarefaction phase, can
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be very different from the symmetric shape of an N-wave. Nevertheless, the N-wave model is
widespread to describe pressure signatures of shock pulses during their propagation in air (Wright,
1983, Yuldashev et al., 2010b, Averiyanov et al., 2011a). Even if the waveform is not restricted
to have the N-wave shape in simulations of pulse propagation through homogeneous (Yuldashev
et al., 2010b) and turbulent media (Averiyanov et al., 2011a), the N-wave assumption is still
often used to set a boundary condition to the model. This simplified assumption may introduce
errors, for example, in the simulation of pulse propagation through a caustic, in which the resulting
waveform resembles the derivative of an initial wave (Lipkens & Blackstock, 1998a, Averiyanov
et al., 2011a). Accurate measurement of high-amplitude and short-duration acoustic waveforms at
distances close to the source is therefore critical to accurately determine the boundary condition
for the modeling. Also it is important for studying the environmental impact of sonic boom as our
perception of a noise is largely determined by the rise time of the shock fronts, their amplitude and
duration of the N-wave (Fidell et al., 2002, Leatherwood & Sullivan, 1992).

Propagation of spark-generated acoustic pulses in homogeneous air has been studied exper-
imentally by several teams, particularly by Wright with co-workers (Wright, 1983, Wright &
McKittrick, 1967, Wright & Medendorp, 1968) and Yuldashev with co-workers (Yuldashev et al.,
2010b, Yuldashev et al., 2008b). Although several methods have been proposed to characterize
acoustic fields produced by sparks, certain measurement limitations still exist. The most common
approach is to measure pressure signatures of N-waves using acoustic microphones. However, the
bandwidth of commercially available high-frequency condenser microphones does not typically
exceed 150 kHz at -3 dB level, while the spectrum of shock pulses extends up to 1MHz; in addi-
tion, calibration of microphones at high frequencies is often not accurate. A microphone response
and the resulting waveform distortions are also dependent on the microphone mounting. This re-
sults in significant distortions of the measured waveforms and steep shock fronts (Yuldashev et al.,
2010b,Yuldashev et al., 2008b). In most cases there is no possibility to theoretically estimate these
distortions. Moreover, waveform measurements are impossible close to a spark source because
maximum pressure is out of a condenser microphone linear range. In addition, the pressure level is
so high that it can damage microphones. Note also that acoustic measurements could be performed
using piezoelectric dynamic pressure sensors, which are appropriate in the case of very high am-
plitude pressure waves (>100 kPa), but their main disadvantage is low sensitivity (14.5 mV/kPa)
and resolution (for example, 3.4 Pa for the model 113B28 PCB Piezotronics).

An alternative method to measure shock pulses produced by sparks is to use optical methods
instead of microphones. The basic principle of these methods is that the acoustic wave introduces
variations of air density and corresponding variations of optical refractive index; as a result, the
light beam deflects from its initial direction when passing through an acoustic signal.

Measurements of shock waves using optical methods have been widely treated in literature (Mach
& Salcher, 1887, Settles, 2001, Merzkirch, 1974, Yuldashev et al., 2008a, Yuldashev et al., 2010a,
Cowan & Hornig, 1950, Greene et al., 1951, Panda & Adamovsky, 1995, Panda, 1995). They can
be divided into three types: shadowgraphy, schlieren, and interferometry methods. However, al-
though weak shocks have been addressed (Settles, 2001), most of the effort was generally focused
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on measuring strong shocks created by supersonic flows; the thickness of strong shocks was usu-
ally estimated using indirect methods based on the shock speed measurements. For weak shocks
optical methods are usually used only for visualization of the field structure but not for quantitative
measurements of pressure waveforms.

In a recent work (Yuldashev et al., 2010b), an optical focused shadowgraphy technique was
used to visualize the front shock of spark-generated N-waves. An estimation of the front shock
width and rise time was then obtained, thanks to numerical simulation of optical beam propagation
through the shock. A good agreement with the measurements was shown (Yuldashev et al., 2010b).
Although the shadowgraphy technique provided a good temporal resolution of the high amplitude
front shock of the pulse, it was not sufficiently sensitive to restore the whole waveform or even
the rear shock of the pulse. The reason is that shadowgraphy method is sensitive to the second
derivative of pressure, i.e., it captures sharp changes of pressure at the front shock, while smooth
variations of pressure in the pulse are missed.

Holographic interferometry (Mizukaki, 2010) has been used to visualize explosion-type waves,
but the resolution and the accuracy of the restored waveforms were significantly lower than in the
microphone measurements. Laser interferometry can also be used to measure high-amplitude and
short duration acoustic pulses in air, however, to our knowledge, no quantitative analysis has been
performed to this day for shock waves (Smeets, 1977).

The goal of this chapter is to demonstrate that optical methods (the schlieren method and
the Mach-Zehnder interferometry method) are capable to reconstruct absolute pressure signatures
of spark-generated acoustic pulses in homogenous air (Karzova et al., 2015d, Yuldashev et al.,
2015). Both optical methods are based on the fact that the distribution of light intensity in the
measured schlieren images or in interference pattern is associated with the acoustic wave by the
Abel-type transform. In the case of the schlieren method Abel-type transform contains an unknown
normalization constant which does not permit to determine absolute pressure values, only the shape
of an acoustic signal can be reconstructed. Absolute pressure levels were obtained by analyzing
lengthening of the compression phase of the pulse with distance caused by amplitude-dependent
nonlinear propagation effects. The Mach-Zehnder interferometry method provides quantitative
accurate measurements of pressure signatures of N-waves. The time resolution in measured by
the Mach-Zehnder interferometer waveforms is six time better than the bandwidth of 1/8-inch
condenser microphones (Brüel&Kjær, B&K and G.R.A.S., Denmark); thus the Mach-Zehnder
interferometer is a reliable tool to calibrate broadband acoustical microphones.
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§1.2 Experimental setup for optical measurements using a
schlieren system

1.2.1 Visualization of shock fronts using a schlieren optical method

Optical schlieren method is widely used for a visualization of optical inhomogeneities in trans-
parent refracting media (Settles, 2001, Vasil’ev, 1964). The conventional schlieren system was
realized by German physicist August Toepler in 1867. The basic idea of the method is illustrated
in Fig. 1.1. A light beam from a point light source or a slit (1) is directed by lens or by system of
lenses and mirrors (2-2′) through the test object (3). After propagating through optical inhomoge-
neities (4) the light is focused on a sharp edge of an opaque screen (5) called a Foucault knife. If
there are no optical inhomogeneities light is blocked by the screen. In the presence of the optical
inhomogeneity (4) a part of rays is deflected and passes above the screen edge. A lens (6) is placed
behind the screen to project deflected light rays on a projection screen (7) and to obtain an image
(8) of optical inhomogeneities which scatter light. An optical knife (5) provides a dark background
on the screen (7) since it blocks undeflected rays and the schlieren image is bright. If the optical
knife (5) is removed the image is not contrast.

The propagation of acoustic waves in a medium introduces variations of air density and cor-
responding variations of optical refractive index. If the acoustic wave contains a shock front then
a large gradient of the refractive index will be created in the location of a shock. This allows to
use the schlieren method for optical visualization of shocks. The brightest parts of the schlieren
image correspond to the maximum values of pressure derivatives (Settles, 2001), i.e., demonstrate
the location of the shock front.

Figure 1.1: The scheme of the schlieren system. 1 – a point light sorce, 2-2′ – a system of lenses and
mirrors, 3 – test object, 4 – an optical inhomogeneity, 5 – an optical knife, 6 - a lens, 7 - a projection screen,
8 - a schlieren image. The figure is taken from the Internet: dic.academic.ru/dic.nsf/enc_physics/2531/.

1.2.2 Experimental setup

A top view of the experimental setup designed for optical schlieren measurements of spark-generated
acoustic waves in homogeneous air is shown in Fig. 1.2. A spark source (Fig. 1.3 (a)) with a 21 mm
gap between tungsten electrodes and with an applied voltage of 15 kV produced high amplitude
pressure pulses that readily turned to a shock waveform when propagating from the spark. The
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Figure 1.2: Illustration of the experimental setup, the view is from the top along the z axis. Acoustic
pulses are produced by a 15 kV spark source located at r = 0. Corresponding variations of the optical
refractive index are schematically shown by gradients of the gray color. A schlieren optical system used
to visualize the pressure wave consists of QTH continuous light source, a beam splitter, a spherical mirror,
an optical knife, and a high-speed camera (Phantom V12 CMOS). Solid lines with arrows illustrate the
trajectory of the light beam in the absence of acoustic wave.

repetition rate of the pulses was 1 Hz; the wavefront was assumed to have a spherical geometry.
Acoustic pulses introduced variations of air density and, as a result, variations of the optical re-
fractive index which are schematically shown in Fig. 1.2 by gradients of the gray color. These
variations were visualized using the schlieren method. The schlieren system was composed of
a quartz tungsten halogen (QTH) continuous white light source mounted in the geometrical fo-
cus of a spherical mirror with 1 m radius of curvature, a beam splitter, an optical knife (a ra-
zor edge), and a high-speed Phantom V12 CMOS camera. A metal plate with a circular hole of
2 mm in diameter was glued to the light source in order to have a point light source (Fig. 1.3 (b)).

a) b)

continuous
white light

Figure 1.3: (a) A spark source, (b) a light source
and a beam splitter.

Light beam was transmitted through the beam
splitter and through the test zone of the acoustic
pulse propagation. Then, the light reflected from
the mirror, intersected the test zone once again,
and propagated back to the beam splitter (solid
lines with arrows in Fig. 1.2).

Spatial variations of the light refractive index
n caused by the acoustic wave led to deviation of
a part of light rays from the initial propagation
direction. Light rays that were not deflected by
acoustic pressure inhomogeneities were blocked
by the optical knife located in the focal point of the beam. Deflected rays bent around the razor
edge were captured by a high-speed camera to form a schlieren image. Double passing of the light
beam through the test zone provided better contrast of the image. The brightness of these images
corresponds to modulation of the light intensity and is proportional to the gradient of acoustic
pressure (Settles, 2001).

17



Chapter 1. Measurements of N-waves in air using optical methods: a schlieren method and a
Mach-Zehnder interferometry method

§1.3 Theoretical background: reconstruction of an acoustic
waveform from a schlieren image

In this paragraph, the algorithm for reconstructing pressure signatures from schlieren images and
corresponding assumptions for its correct interpretation are presented. The proposed method in-
cludes two steps. First, the waveforms of acoustic pulses were obtained from schlieren images.
Then, the absolute pressure values were determined by analyzing the change in duration of the
compression phase of the pulses at different distances from the source.

1.3.1 Algorithm for reconstructing dimensionless pressure signatures of N -
wave using an Abel-type inversion method

Acoustic pressure p can be related to the perturbation of the optical refractive index n. The refrac-
tive index n is related to the air density ρ via the Gladstone-Dale constant K (Merzkirch, 1974):
n + n0 = 1 +K(ρ0 + ρ), where ρ0 is the ambient density, and ρ is the density perturbation caused
by the acoustic wave, n0 is the ambient refractive index. Under experimental condition, the density
perturbation can be regarded as a linear function of acoustic pressure p: ρ = p/c20, where c0 is the
ambient sound speed; higher order terms can be neglected as the acoustic pressure is small com-
pared to the ambient atmospheric pressure patm: p/patm ∼ 0.01. The refractive index therefore can
be expressed as

n = K
p

c20
. (1.1)

Variation of the refractive index n produces a phase shift ϕopt of the light beam. In the xy plane,
shown in Fig. 1.2, the phase shift accumulates while the light propagates along the y axis. Since
the phenomenon is symmetrical with respect to the plane z = 0, the light rays are assumed not
to deviate from the xy plane. Neglecting light reflection by acoustic inhomogeneities and taking
into account double crossing through the test zone, one can write the phase as ϕopt(x) = 2 · (2π/
λ)

+∞∫
−∞

n(x, y)dy, where λ is the optical wavelength. Radial symmetry of the wavefront allows us

to rewrite the expression for the phase as

ϕopt(x) = 2 · 2π
λ

+∞∫
0

2n(r =
√

x2 + y2)dy = 2 · 2π
λ

+∞∫
x

2n(r)rdr√
r2 − x2

. (1.2)

Equation (1.2) is the direct Abel transform of the function n(r) (Bracewell, reprint 2000). Inversion
of the Abel transform (1.2)and the relationship s = λϕopt/2π between the optical path length s

and the phase ϕopt gives

n(r) = − 1

2π

+∞∫
r

ds

dx

dx√
x2 − r2

. (1.3)
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In the experiments, the light intensity distribution I is the quantity measured in the perpendic-
ular image xz plane of the schlieren arrangement. For a schlieren system, the light intensity of
the image formed behind the optical knife is proportional to the angle of deviation of rays (Settles,
2001). Taking into account the spherical symmetry of the wavefront, the angle of light deviation
in the test zone can be written as ε=∂s/∂r1, where r1 =

√
x2 + z2 is the radial coordinate in the

image plane xz. Thus, the light intensity I(r1) in the schlieren image is

I(r1) = −C ∂s

∂r1
, (1.4)

where C is an unknown constant and the sign minus is introduced to account for the knife ori-
entation. For example, if the knife blocks the light from the opposite side of the beam, the same
schlieren image is formed but the bright areas of the image are replaced by the dark ones and vice
versa. Integrating the intensity in Eq. (1.4), one can obtain the optical path length s as

s(r1) =
1

C

+∞∫
r1

I(r′)dr′, (1.5)

where r′ is a dummy integration variable. Due to the radial symmetry of the optical path length s

in the plane xz, one could write Eq. (1.5) in the one dimensional (1D) case of z = 0

s(x) =
1

C

+∞∫
x

I(r′)dr′. (1.6)

Combining Eqs. (1.1), (1.3), and (1.6), one obtains the following relation between the pressure
signature p and the schlieren image intensity I:

p(r) = − c20
2πKC

+∞∫
r

d

dx

⎛
⎝ +∞∫

x

I(r′)dr′

⎞
⎠ dx√

x2 − r2
. (1.7)

Equation (1.7) contains the unknown constantC, which makes it impossible to reconstruct absolute
pressure levels directly from the images. Nonetheless, dimensionless pressure waveforms can be
reconstructed by calculating the integral

p(r) ∼
+∞∫
r

d

dx

⎛
⎝ +∞∫

x

I(r′)dr′

⎞
⎠ dx√

x2 − r2
. (1.8)

1.3.2 Estimation of the peak positive pressures from the pulse elongation

In order to determine the absolute pressure values in the reconstructed waveforms, the length-
ening of the N-wave with distance caused by nonlinear propagation effects was analyzed. The
analytic solution of the 1D simple wave equation generalized for spherically divergent waves was
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used (Pierce, 1981). The duration of the compression phase T at a distance r of a shock wave
having an amplitude p0 and a compression phase duration T0 (Fig. 1.4a) at the distance r0 is given
by

T (r)/T0 =
√
1 + σ0 ln(r/r0), (1.9)

where σ0 = (γ + 1)r0p0/2γpatmc0T0.
Here γ is the heat capacity ratio equal to 1.4 for air. In acoustics, Eq. (1.9) is associated with

nonlinear propagation of an ideal spherically divergent N-wave, but it also remains valid for non-
symmetrical shock waves if only the compression phase is considered. Equation (1.9) therefore,
can be applied to determine the pressure amplitude p0 from the duration of the compression phase
in the waveforms measured at different distances from the spark source. In the schlieren exper-
iment, the spatial extent d of the compression phase of the wave was measured instead of the
duration. However, since the acoustic wave does not change greatly over a propagation distance
equal to its wavelength, the duration of the compression phase can be related to its spatial extention
via the sound speed: d = Tc0.

1.3.3 Conditions for the applicability of an algorithm

spark source

r

light beam

width of the
test zone

r – λac

T0

p0p

t

a) b)

Figure 1.4: (a) Typical waveform produced by the spark
source; p0 and T0are the peak positive pressure and the du-
ration of the compression phase, correspondingly. (b) Sketch
illustrating the calculation of the width of the test zone. Loca-
tion of the acoustic pulse is shown in gray.

The reconstruction algorithm de-
scribed above is valid under several
assumptions. First, it is assumed that
the method is valid despite the op-
tical beam not being collimated as
in classical schlieren systems (Set-
tles, 2001). However, this assump-
tion is valid, since the width of the
test zone, i.e., the zone where the
light beam actually interacts with the
refractive index inhomogeneities, is
much smaller than the total beam
length, which is equal to twice the
radius of curvature of the mirror. Quantitatively, the width of the test zone is estimated as
2 ·√2λacr − λ2

ac, where λac is the wavelength of the acoustic wave (Fig. 1.4b). For a maximum
propagation distance of 50 cm and a wavelength of 2 cm, the width of the test zone is 28 cm, which
is small in comparison to 2 m of the beam length.

The second assumption is that the wave has a spherical wavefront in the xy plane, thus the
refractive index n(r) is a function of only the radial distance r. In the experimental conditions,
generally it is true; however, for large electrode gaps or small distances this assumption may be
slightly violated.

The third assumption is that optical beam propagation is considered in the framework of geo-
metrical optics [Eqs. (1.2) and (1.4)]. Moreover, it is assumed that optical rays passing through the
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test zone remain straight lines [Eq. (1.2]. These assumptions may be violated near strong shocks
where diffraction effects are important (Panda & Adamovsky, 1995, Yuldashev et al., 2010b). In
experiment, variations of refractive index n were less than 5% of its value in undisturbed medium
and the rise time of shock was about two orders smaller than the pulse duration, thus the framework
of geometrical optics is applicable.

1.3.4 Effect of the finite exposure time of the high-speed camera on the
waveforms
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Figure 1.5: Effect of a 3 μs exposure time of the
camera on the reconstructed waveform. Solid curve
is the initial N -wave that was numerically propa-
gated during 3 μs; dotted curve is the wave after
propagation; dashed curve is the averaged wave,
which imitates the measured waveform. The half
duration of the initial wave can be calculated as the
half duration of the averaged wave plus the half of
the exposure time (1.5 μs).

Accurate estimation of the compression phase
duration is a critical point of the method, since
this parameter is used to determine the peak
positive pressure. However, the duration of the
compression phase in the reconstructed dimen-
sionless waveforms was distorted because of a
finite exposure time (3 μs) of the high-speed
camera, i.e., the shock front was smeared. To
simulate the averaging effect induced by the
camera, numerical simulations based on the
Burgers equation generalized for relaxing ho-
mogeneous atmosphere were performed. Nu-
merical model is described in detail in (Yulda-
shev et al., 2010b). The high-speed camera
was assumed to perform a uniform temporal
averaging of acoustic pressures arriving at this
distance during the exposure time. An ideal
spherically diverging N-wave was numerically
propagated from the source. Then, for each dis-
tance where the measurements were taken, the
pressure was averaged over all waveforms (100
waveforms total) which passed through this point during the exposure time. The parameters of the
initial N-wave in the numerical model were: the peak pressure p0 = 2500 Pa at a distance from
the spark source r0 =105,6 mm; the shock rise time, defined as the time during which the acoustic
pressure increased from 10% to 90% of the peak positive pressure (Lipkens & Blackstock, 1998a),
was chosen according to the quasi-stationary solution of the Burgers equation as 0.07 μs; the du-
ration of the compression phase T0 (or the half duration) of the initial N-wave, defined as the time
between the points of the positive half peak at the front shock and zero pressure values, was chosen
T0 = 17 μs. Finally, for each distance, the averaged waveform was compared with the original
ideal N-wave at the same distance.
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A summary of the results of N-wave propagation modeling is presented in Fig. 1.5. The initial
N-wave (solid curve) is supposed to imitate a ”real” wave, while the averaged wave (dashed curve)
is a ”measured” wave. Note that in the space representation, the N-wave is no longer symmetric:
there is a small difference between values of the peak positive and negative pressures. This is
caused by the fact that the front shock is located farther from the source than the rear shock and
thus has smaller amplitude because of the spherical divergence of the field. The distance between
the propagated (dotted curve) and initial pulses corresponds to 3 μs and is about 1 mm.

The finite exposure time leads to the following effects. First, the coordinate of the peak positive
pressure and the angles of smooth slopes (more than 3 μs in time or 1 mm in space) of the real and
measured waveforms are unchanged. Second, the zero pressure position is shifted by a distance that
corresponds to half of the exposure time (see markers at zero pressure level in Fig. 1.5). Finally,
the whole duration of the measured wave becomes longer than the real one for a time interval equal
to the exposure time. Note also that the shock width (spatial equivalent of the rise time) obtained
from the averaged waveform (1 mm) is determined by the exposure time (3 μs). To evaluate the
duration of the compression phase correctly using the averaged wave, one should calculate the
duration between the peak positive and zero pressure levels and add half of the exposure time,
i.e., 1.5 μs in our case (lower right corner of Fig. 1.5). This method to properly evaluate the
duration of the compression phase of the pulse is found to be applicable for all distances where the
measurements were taken. Note that nonlinear distortions of the propagated wave (dotted curve)
are not significant and the correction to the half duration of the measured wave can be obtained
based on the assumption of linear plane wave propagation.

§1.4 Results of optical measurements performed by the schlieren
system

1.4.1 Dimensionless waveforms generated by the spark-source

An example of a schlieren image recorded with the high-speed camera is shown in Fig. 1.6. Since
the brightness of the schlieren image is proportional to the derivative of the pressure the bright
areas and the dark ones correspond to different signs of the derivative. One can clearly observe
the front shock of the pulse displayed as a bright stripe. The dark area following the front shock

Front shock

Rear shock 1 cm

Figure 1.6: A typical schlieren image recorded with the high-speed camera.
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1.4. Results of optical measurements performed by the schlieren system

corresponds to negative derivative, i.e., the pressure decreases. Finally there is second bright stripe
which is less contrast and wider than the first stripe. This area corresponds to the rear front of the
pulse. These features of the image demonstrate that the front shock of the spark-generated pulse is
sharper and shorter than the rear shock.
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Figure 1.7: Illustration of the pressure signature re-
construction from the schlieren image. The light
intensity with extracted background is shown in (a).
Individual distributions of light intensity were cal-
culated along 500 radial lines (examples are shown
by dashed lines). The intensity signal averaged over
500 radial lines is shown in (b). Reconstructed
waveform is presented in (c). All data shown in the
figure are normalized by the corresponding maxi-
mum values.

A typical schlieren image of the spark-
generated pulse measured in the xz plane and
processed in Matlab is shown in Fig. 1.6. Here
the averaged background image was extracted
to handle only the acoustical contribution to the
inhomogeneities of the refractive index n. The
radial symmetry of the wavefront was used to
average the intensity signal and to greatly in-
crease the signal to noise ratio. For this pur-
pose the individual distributions of light inten-
sity were calculated along 500 radial lines as
shown in Fig. 1.7(a). A two dimensional (2D)
interpolation was used for this calculation. Fi-
nally, these 1D distributions were averaged
to obtain the resulting signal I [Fig. 1.7(b)].
The inverse Abel transform is then applied to
the signal [Eq. 1.8] to calculate the waveform
[Fig. 1.7(c)]. Details about numerical calcula-
tion of the integral in Eq. 1.8 are discussed in
the Appendix A.
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Figure 1.8: Dimensionless waveforms reconstructed from the schlieren images at different distances from
the spark source. For every pulse, the distance r0 is defined as the coordinate of the peak positive pressure.
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Examples of waveforms, reconstructed at different distances from the spark source, are shown
in Fig. 1.8. The analysis of optical data gives waveforms as functions of the distance from the
source. Conversion of waveforms in time domain was done using the ambient sound speed c0

which was equal to 343 m/s for the experimental conditions (relative humidity 49%, temperature
292 K). The coordinate of the peak positive pressure is considered to be the propagation distance
r0 of the wave. Analyzing dimensionless waveforms plotted in Fig. 1.8, one can conclude that
close to the source the acoustic wave is very asymmetric: the negative peak is significantly lower
than the positive peak (waveform number 1 in Fig. 1.8) and the rear shock is very smooth and has
a long rise time (about 15 μs in time which corresponds to 5 mm in space) in comparison to the
front shock. These features are typical for the near field of blast waves (Brode, 1959). The front
shock is smeared to 3 μs due to the finite exposure time of the camera.

1.4.2 Reconstructed pressure signatures of N -wave

The duration of the compression phase was calculated as a function of the propagation distance
for reconstructed dimensionless waveforms. The smearing of the schlieren image during the ex-
posure time of the high-speed camera was took into account (see paragraph1.3.4). To estimate the
coefficient σ0 in Eq. (1.9), experimental data for (T/T0)

2 − 1 were linearly fitted as a function
of ln(r/r0) using the least squares method (Fig. 1.9). The origin of the graph in Fig. 1.9 corre-
sponds to T0 = 13.5 μs and r0 = 70.5 mm. Fifteen sparks were used to obtain the data presented
in Fig. 1.9. The value of 0.486 was obtained for the coefficient σ0 with a standard deviation of
0.013. The corresponding peak positive pressure was p0 = 2γpatmc0Tσ0/(γ + 1)r = 3.72 kPa.
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Figure 1.9: Experimental (markers) data for the du-
ration of the compression phase T as a function of
propagation distance r. The origin of the graph cor-
responds to T0 = 13,5 μs and r0 = 70,5 mm. Solid
line is obtained by linear fitting the experimental
values using the method of least squares, the coeffi-
cient of proportionality equals 0.486 with standard
deviation of 0.013.
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1.4. Results of optical measurements performed by the schlieren system

Finally, pressure amplitudes were found for all distances and thus pressure signatures were fully
reconstructed. Note that the temporal correction of 1.5 μs to the duration of the compression phase
was quite substantialŮwithout taking into account the reconstructed pressure amplitudes would be
up to 10% higher.

Reconstructed peak positive pressures at different distances from the spark source are shown
in Fig. 1.10 (markers). The power law p = p0(r/r0)

−1.2 provides a good approximation of the
peak pressure as a function of distance. Reed proposed (Reed, 1977) this relation for blast waves
and it is in good agreement with experimental values starting from about 100 mm from the source.
The discrepancy between the Reed relation and experimental values closer to the spark source
could be explained by less applicability of either the data processing method or the Reed relation.
Nevertheless, both dependencies predict extremely high peak positive pressure close to the spark
(about 12 kPa at the distance of 30 mm).

Examples of the reconstructed pressure signatures at different distances from the source are
shown in Fig. 1.11. One can observe that close to the source the duration of the compression
phase of the wave is about two times smaller than the duration of the rarefaction one (waveform at
r0 = 36 mm). As the acoustic wave propagates further from the source, it becomes more symmetric
and the rear shock becomes steeper, the rise time reaches 3 μs, which is equal to the resolution
time. The durations of compression and rarefaction phases of the wave equalize. Waveforms start
to resemble an N-wave only starting from the distances of about r0 = 500− 600 mm, but even at
the distance of r0 = 532 mm (last subfigure) the wave is still not fully symmetric, the peak positive
pressure being 1.2 times higher than the peak negative pressure. The measured front shock rise
time is limited by the exposure time of the camera and equals to 3 μs which corresponds to a 1 mm
shock thickness for all measured waveforms. Note that modern high-speed cameras can provide
images at lower exposure times (0.1 − 0.5 μs), so the time resolution of reconstructed waveforms
can be improved.
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Figure 1.12: (a) Illustration of the experimental setup based on the Mach-Zehnder interferometer.
(b) A photo of the experimental setup.

§1.5 Experimental setup for optical measurements using a
Mach-Zehnder interferometer

The experimental setup designed for measurements of weak acoustic shock waves using the Mach-
Zehnder interferometer is presented in Fig. 1.12 and includes optical and acoustical parts. In the
acoustic part the electrical spark source (Fig. 1.3 (a)) described above was used to generate N-
waves. The gap between two tungsten electrodes was set to 20 mm and supplied voltage was about
16-20 kV. The Mach-Zehnder interferometer was mounted on a 60 × 60 cm optical breadboard
(PBH51505, ThorLabs, Inc.) and was composed of a laser source 1©, two beam splitters ( 4© and
5©, 50/50 reflection/transmission), two flat mirrors 6© and 7©, three lenses 3© and a photodiode

sensor 8© (see Fig. 1.12 (a)). A He-Ne laser (wavelength λ = 632.8 nm) with a nominal power
of 10 mW was used as a coherent light source. Neutral filters were used to attenuate the light
beam power down to 1.3 mW to fit requirements of the photodiode sensor 2©. All optical ele-
ments (beamsplitters, mirrors, filters and lenses) were 25 mm in diameter. A first beamsplitter 4©
divides the incident laser beam into a reference beam and a probing beam. A second beamsplitter
sums these two beams to produce an interference intensity pattern at the photodiode surface. The
beamsplitters only approximately fitted the declared 50/50 reflection and transmission coefficients.
However, in the chosen propagation scheme the probing beam is first transmitted and then reflected
while the reference beam is reflected and then transmitted. Thus, deviation of reflection and trans-
mission coefficients from 50/50 ratio is compensated and beams had almost equal intensities at the
exit. Propagation paths of the reference and the probing beams formed a square with 35 cm side.

A focusing lens with 20 cm focal length was mounted between the laser and the first beam
splitter in order to reduce the probing beam thickness in the zone where the interaction with the
acoustic wave occurs 9©. Thinner probing beam provides better time resolution of the measurement
method. Two other focusing lenses (15 cm focal length) were placed a few centimeters after each
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1.5. Experimental setup for optical measurements using a Mach-Zehnder interferometer

of the two mirrors. These lenses compensate the divergence of the laser beam and reduce the beam
cross-section in order to collect its total optical power on the surface of the photodiode. The beams
were aligned in such a way that the output optical field contained only one interferometric fringe.
Thus, functioning of the interferometer in the infinite-fringe mode was realized (Merzkirch, 1974)

Light intensity at the exit of the interferometer was captured by a photodiode (NT53-372,
Edmund Optics) which has responsivity rp = 0.35 A/W at 632.8 nm optical wavelength, sur-
face of 3.2 mm2 and 45 pF of electric capacitance at zero bias voltage. The photodiode was
connected to a transimpedance amplifier to provide a linear relation between the light intensity
and the output voltage. The transimpedance amplifier was designed according to the guidelines
given in the Ref. (Graeme, 1996), figure. 3.14. The transmission impedance of the amplifier was
R = 2.2kΩ. Thus, the output voltage uph of the photodiode amplifier is related to the beam power
P as uph = rpRP . A low noise constant reverse bias (2.5 V) was applied to the photodiode to
reduce its capacitance and to increase bandwidth of the amplifier up to 16 MHz (at -3 dB).

The output voltage of the photodiode amplifier uph was fed to the first input of a fully differ-
ential amplifier with unit gain and 26 MHz bandwidth. An adjustable low noise reference voltage
source was connected to the second input of the differential amplifier to provide necessary bias to
the resulting output signal. The optical signal was measured at the first output of the differential
amplifier. Inverted signal from the second output of the differential amplifier (ufb) was applied to
an input of the feedback loop of a stabilization system.

In the stabilization system the input voltage ufb was filtered by a first-order low-pass filter with
τf = 20 ms time constant. The output of the filter was connected to a low frequency amplifier
(25 kHz bandwidth, gain 10) which was loaded to a piezoactuator. One mirror was glued to
the piezoactuator; thus its small displacement provided control on the optical phase difference
between the reference and the probing beams (Fig. 1.12 (a), 6©). The piezoactuator (AE0505D08F,
ThorLabs) lengthening coefficient was equal to κ = 9.1 · 10−8 m/V. The piezoactuator produces
the optical phase shift which is proportional to the applied voltage upz:

ϕpz(t) = 2
√
2k0κupz(t) = αupz(t) (1.10)

where k0 = 2π/λ is the optical wavenumber. The numeric coefficient 2
√
2 in the equation (1.10)

appears due to the fact that the piezoactuator moves the mirror along a diagonal between the
incident and the reflected light beams forming a right angle (Fig. 1.12). The parameter α =

2
√
2k0κ in the given experimental conditions was equal to 2.56 V−1.
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§1.6 Measurement of acoustical waveforms using a Mach-
Zehnder interferometer

1.6.1 Optical signal formation

Light intensity I formed by the interference of the reference and the probing beams at the surface
of the photodiode is described by the following equation (Born & Wolf, 1999):

I = IA + IB + 2
√
IAIB cosϕ, (1.11)

where IA and IB are the intensities of the probing and the reference beams after the second beam-
splitter, respectively, and ϕ is the optical phase difference between them. The measurement pro-
tocol was organized as follows. At the fist stage the laser source was disabled and the input bias
to the differential amplifier was adjusted in the way to produce zero output signal. Thus, light
intensity I is proportional to the output voltage signal and the same equation is applied:

uD = uA + uB + 2
√
uAuB cosϕ. (1.12)

Here uA is the voltage measured when the reference beam is shaded, and uB when the probing
beam is shaded. Excitation of low frequency mechanical oscillations of the experimental setup
produced corresponding variations of the optical phase difference. These low frequency phase
variations were used to check the quality of the interference. It was verified that the minimal value
of the measured voltage is equal to uDmin = uA + uB − 2

√
uAuB, and the maximal value is equal

to uDmax = uA + uB + 2
√
uAuB. At the second stage, the bias voltage was moved to the position

where the output voltage is equal to uC = −(uA+uB) in the absence of the optical signal from the
photodiode. In this case, when the optical signal is turned on, the output voltage of the differential
amplifier is proportional to the cosine function of the phase argument ϕ:

u = uD + uC = 2
√
uAuB cosϕ = u0 cosϕ, (1.13)

where u0 = 2
√
uAuB is the amplitude of voltage variations.

The total phase difference ϕ is the sum of the following items given by:

ϕ(t) = ϕ0 + ϕpz(t) + ϕac(t) + ϕn(t). (1.14)

Here ϕ0 is a constant phase difference related to initial adjustment of the interferometer, ϕac(t) is a
phase difference produced by the measured acoustic wave, and ϕn(t) is a phase related to mechan-
ical perturbations: ground vibrations, acoustic noise, air flows. For example, the interferometer
was sensitive even to voice and clapping hands.

The stabilization system was designed to keep the output voltage at zero level in the absence
of acoustic wave by compensating low frequency noise and forcing the phase ϕ to remain close to
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1.6. Measurement of acoustical waveforms using a Mach-Zehnder interferometer

the π/2 value. The functioning of the system is described in detail in (Yuldashev et al., 2015). As
a result, the output voltage is related to the phase difference associated with the measured acoustic
wave as:

u = u0 sin(ϕac(t) + ϕr(t)), (1.15)

where ϕr(t) is a fraction of the noise that was not completely compensated by the stabilization sys-
tem. Some uncompensated constant offsets also could be present in the function ϕr(t). However,
as the spectrum of the acoustic phase ϕac(t) is concentrated at high frequencies above several kHz
and the noise phase ϕr(t) is generally a low frequency function (from zero to hundred Hertz), it
was always possible to subtract this component, which appeared as an almost constant bias during
the acquisition time window.

1.6.2 Optical phase induced by the acoustic wave
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Figure 1.13: Illustration of the optical phase
integration along the probing laser beam prop-
agating through a radial distribution of the re-
fraction index inhomogeneities induced be the
acoustic wave.

A radially symmetric acoustic wave traveling
through the probing beam is schematically drawn in
Fig. 1.13. The probing beam is located at the dis-
tance x = r1 from the spark source. At any time
t, the refraction index distribution n(x, y, t) induced
by the acoustic wave leads to a phase difference:

ϕac(t) = k0

+∞∫
−∞

n(x = r1, y, t)dy. (1.16)

Since the distribution n(x, y, t) = n(r, t) is a ra-
dially symmetric function, equation (1.16) can be
written as:

ϕac(t) = 2k0

+∞∫
r1

n(r, t)rdr√
r2 − r21

. (1.17)

The analytical inversion of equation (1.17) to obtain n(r, t) is not known. However, as functions
n(r, t) at different times t are not independent and belong to the same traveling acoustic wave,
an approximate method to reconstruct the function n(r = r1, t) from the phase signal ϕac(t) can
be used. Since the acoustic wave does not change too much over a propagation distance equal
to its wavelength (for the N-wave it is the distance between front and rear shocks), the moving
object n(r, t) can be treated as a stationary function at some fixed time t, while the laser beam is
supposed to move along the x axis with the sound speed c0. Thus, using the Abel transform (1.17),
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and Eqs. (1.1), (1.15), one obtain an expression for pressure waveforms:

p(t) = − c20λ

2π2K

+∞∫
r

d

dr1

(
arcsin

u

2
√
uAuB

)
dr1√
r21 − r2

. (1.18)

Note that Eq. (1.18) was obtained under following assumptions: (1) the wavefront was sup-
posed to be spherical, (2) diffraction effects were neglected, (3) refraction of the laser beam on the
optical heterogeneity was not taken into account, and (4) function n(r = r1, t) was supposed to
be stationary while the laser beam passes optical inhomogeneities. As it was shown by numerical
methods in (Yuldashev et al., 2015), these approximations do not introduce significant errors in
the reconstructed signal and the error of the of Mach-Zehnder interferometry method is only 2 %.

§1.7 Results of optical experiments performed by the Mach-
Zehnder interferometer

Measurements were performed at distances from 10 cm up to 100 cm between the spark source and
the probing laser beam. At each distance 140 waveforms were recorded in order to allow statistical
analysis of the data.

An example of the reconstructed waveform with corresponding measured optical phase sig-
nal at the distance r = 20 cm are presented in Fig. 1.14. Here, the phase signal is a result of
post-processing: low-frequency and high-frequency noise filtering, background phase correction
(subtraction of a constant phase level which is present in the signal before arrival of the N-wave),
application of a time window to remove reflected waveforms arriving after the direct wave. The
order of the magnitude of the optical phase signal is about 1 radian for an N-wave with 1250 Pa
positive peak pressure.
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Figure 1.16: Theoretical (solid line) and experimental (markers) data obtained for N -wave parameters:
the peak positive and peak negative pressures (a), the half duration (b), and the shock rise time (c).

Waveforms at several different distances r are shown in Fig. 1.15. At each distance r, an exper-
imental waveform (solid line) was obtained by averaging 140 individual waveforms, appropriately
shifted in time to fit an average arrival time. The main features of nonlinear propagation of N-
wave have been already discussed previously in results of the schlieren measurements. However
note one more time that close to the source the acoustic wave rather resembles a blast wave than a
symmetric N-wave.

An experimental waveform at r = 10 cm was set as an initial waveform for the Burgers equa-
tion to perform numerical simulations, whose results were used to validate measurements. The
same numerical model was used earlier for evaluation of the effect of the finite exposure time
on duration of the compression phase (subsection 1.3.4). The simulated waveforms are shown in
Fig. 1.15 by black dashed lines. An excellent agreement between the experimental and theoretical
waveforms is observed, which confirms the Mach-Zehnder interferometer method.

Measured and modeled propagation curves of (a) the peak positive (p+) and peak negative
(p−) pressure, (b) the duration of the compression phase of the waveform (also called half du-
ration (Wright, 1983, Yuldashev et al., 2010b)), and (c) the shock rise time τsh are compared in
Figs. 1.16(a)-1.16(c). The error bars in Fig. 1.16 are obtained from statistical processing of 140
measured waveforms. The experimental and theoretical values of the positive peak pressure match
to within an interval of 8% (maximal relative difference is noted). Negative peak pressure – in
10%.

Half duration data are also in good agreement within an interval of 2% [Fig. 1.16(b)]. The in-
crease of the half duration for larger propagation distances is a classical nonlinear effect (Rudenko
& Soluyan, 1977). Since this effect is amplitude-dependent, it was used to deduce the amplitude of
the N-wave (Wright, 1983,Lipkens & Blackstock, 1998a,Yuldashev et al., 2008b,Yuldashev et al.,
2010b). However, with this method it is difficult to achieve an accuracy better than 10% (Yuldashev
et al., 2010b).

Experimental results for the shock rise time are less consistent with theory [Fig. 1.16(c)]. The
rise time is defined as the time for the pressure on the front shock to increase from 0.1p+ to
0.9p+. Experimental values of the rise time are always higher than theoretical values. With the
experimental conditions in this work, the time resolution is mainly determined by the laser beam
width and focal distance of the focusing lens (Yuldashev et al., 2010a). It follows from Fig. 1.16(c)
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that the experimental value of the time resolution is about 0.4 μs. This value is more than 6 times
better than that of standard condenser microphones (2.5-2.9 μs in the case of the Brüel & Kjær,
type 4138) and corresponds to 2.5 MHz bandwidth. Using a better quality laser beam, thinner
time resolution can be achieved. However, in the case of strong shocks (tens of kPa or more) or
very thin laser beams, diffraction of the optical field on the shock front can lead to degradation of
performance of the measurement method (Panda & Adamovsky, 1995).

§1.8 Comparison of optical methods: benefits and limita-
tions for acoustic field reconstruction

Optical methods presented in this chapter provide the attractive possibility to obtain quantitative in-
formation about characteristics of the high-amplitude and short duration acoustic pulses generated
by a spark in a homogeneous atmosphere. Let us discuss benefits and limitations of both schlieren
optical method and the Mach-Zehnder interferometry method for acoustic field reconstruction.

The optical schlieren method described in §1.2 and §1.3 has the time resolution limited by
the exposure time of the high-speed camera which was 3 μs in our case. Modern high-frequency
condenser microphones (for example Brüel & Kjær, type 4138) have the same time resolution,
but microphone measurements usually start from 150 to 200 mm away from the source where
the pressure levels are not very high and the response of the microphone is linear. In contrast,
there is no restriction on the minimal distance from the spark in the schlieren method: one can
obtain a schlieren image even at 30 mm from the spark and the corresponding waveform could
be reconstructed. Possibly, the data processing methodology is not highly accurate at distances
very close to the spark, but nonetheless one can obtain an approximate waveform that could not
be measured using microphones. Note also that in microphone measurements it is impossible to
estimate distortions induced by the wave diffraction on the microphone, microphone mounting
and its frequency response. Smearing of the schlieren image during the exposure time of the high-
speed camera is the main cause of distortion. This distortion is quite predictable quantitatively (as
discussed in §1.3.4).

The schlieren method has also some advantages with respect to the focused shadowgraphy tech-
nique described in (Yuldashev et al., 2010b). The contrast of shadowgrams (images obtained using
the focused shadowgraphy technique) is proportional to the second spatial derivative of pressure,
while the contrast of schlieren images is proportional to the gradient of pressure. The focused
shadowgraphy technique allowed visualizing the front shock of the pulse with a time resolution
better than 0.5 μs, which permitted to describe its fine structure. However, if this method is well
suited to measure shocks, it is not sufficiently sensitive to measure the pressure decrease following
the peak pressure nor the rear shock. The schlieren method is more sensitive to low amplitude
pressure variations, and therefore makes it possible to estimate the whole waveform except the fine
structure of the front shock (limitation due to the resolution of the camera). However, the exposure
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1.9. Conclusions

time of modern high-speed camera could reach 0.5 μs and the time resolution of the method could
be improved.

The accuracy of the schlieren method was found about 10-15%. Four main sources of error
are identified. First, the distortion due to the exposure time of the camera; second, assumptions
of geometrical optics and spherical symmetry in data processing; third, the low frequency noise
associated with slow variations of background intensity between snapshots, which is substantial
at large distances from the spark. Finally, although the spark source produces pulses with a good
repeatability, their initial amplitude and duration changes from pulse to pulse. This leads to dis-
persion in experimental data (Fig. 1.9).
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Figure 1.17: Comparison of pressure wave-
forms obtained using the optical schlieren
method (black line) and the Mach-Zehnder
interferometry method (red line) at distance
r = 10 cm from the spark source.

The Mach-Zehnder interferometry method is the
most promising among all optical methods since it
allows to restore pressure waveforms with the best
time resolution (0.4 μs in the experiment) and with
the best accuracy (2%). The time resolution of the
method is determined by the width of the laser beam
and could be improved by using a focusing lens. A
common disadvantage of the both optical methods
(schlieren and interferometry) is their applicability
only for waves which have spherical or cylindrical
geometry of the wavefront. Thus there is a limitation
on geometry of measured acoustic fields. The high
accuracy of the Mach-Zehnder interferometry method and its high time resolution allow to use it
for calibration of high-frequency condenser microphones.

The measurements of N-waves using the schlieren method and the Mach-Zehnder interferom-
etry method were performed by author with the time delay about two years, so a direct comparison
between obtained results was difficult. The atmospheric experimental conditions were changed
and electrodes of the spark source were replaced. Nevertheless a comparison between pressure
waveforms measured by the schlieren system and the Mach-Zehnder interferometer at the same
distance r = 10 cm show that results are in a very good agreement (Fig. 1.17). To obtain these
waveforms a dimensionless waveform measured in schlieren experiment was multiplied by peak
positive pressure level of waveform measured using the interferometer. The main difference be-
tween waveforms is in structure of the front shock, which is resolved better in the case of the
Mach-Zehnder interferometry method.

§1.9 Conclusions

The propagation of nonlinear spark-generated acoustic pulses in homogenous air was studied ex-
perimentally using two optical methods: the schlieren method and the Mach-Zehnder interferom-
etry method.
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Chapter 1. Measurements of N-waves in air using optical methods: a schlieren method and a
Mach-Zehnder interferometry method

The schlieren method allowed reconstructing dimensionless waveforms at distances from 30 mm
to 600 mm from the source. Analysis of schlieren images was based on the assumption of spherical
geometry of the acoustic field and the geometrical optics approximations. The reconstruction of
dimensionless acoustic waveforms was performed using the Abel-inversion transform. To evaluate
the smearing of the waveform during exposure time of the camera, the propagation of a spherical
diverging N-wave was simulated using the generalized Burgers equation. A method to evaluate the
duration of the compression phase taking into account exposure time of the camera was proposed.
The analysis of the elongation of the compression phase duration as a function of the propagation
distance allowed to reconstruct the absolute pressure values. The time resolution of the method
(3 μs) was restricted by the exposure time of the camera and thus the fine structure of the front
shock could not be resolved using the method. The schlieren method has two main advantages:
first, it allows reconstruction of the pressure signatures at distances close to the spark source (about
30 mm), where measurements using condenser microphones are impossible; second, it provides
the reconstruction of the whole waveform with the good accuracy that has not been achieved using
the focused shadowgraphy method.

The optical measurement method based on a Mach-Zehnder interferometer is most suitable
method to measure spherically diverging N-waves in homogeneous air. Pressure waveforms are
reconstructed from optical phase signal of interferometer using an Abel-type inversion. The inter-
ferometric method allows one to reach 0.4 μs of time resolution, which is 6 times better than the
time resolution of a 1/8-inch condenser microphone (2.5 μs). The Mach-Zehnder interferometry
method is a perspective tool for calibration of broadband condenser microphones.
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Chapter 2

Irregular reflection of an N -wave from a
rigid surface in air

§2.1 Introduction

2.1.1 Experiments of E.Mach demonstrated the irregular reflection of shocks

Ernst Mach

Spark source
(  )a ( )b

1878: Experiments by E. Mach

Figure 2.1: (a) Ernst Mach, (b) scheme of an experi-
ment performed by E. Mach to study shock wave re-
flection, the view is from the top.

Austrian physicist Ernst Mach (Fig. 2.1a)
was the first scientist who experimentally
observed the phenomenon of shock wave
reflection (Mach, 1878, Krehl & van der
Geest, 1991). In 1875 he performed very
simple and outstanding experiments: he
took a soot covered glass plate and put
two spark sources above the plate. These
sparks were triggered and produced shock
pulses simultaneously. Two spherical diver-
gent waves propagated above the plate and
marked the soot in their intersection location (Fig 2.1 (b)). After experiment, E. Mach noticed
a well-marked trace in the soot. It was a segment which was divided into two lines on its ends
(schematically shown as a solid curve in. Fig 2.1 (b)). Ernst Mach demonstrated a great intuition
for physical interpretation of observed phenomenon when he concluded that the classical law of
reflection was no more valid for shock waves. Moreover, he proposed that the one-line trajectory
in a soot indicated a new, irregular type of reflection, consisting of three shocks: the incident and
the reflected shocks which intersected above the surface, and a third one, later named the Mach
stem, which connected the intersection point with the surface.

2.1.2 Physical causes of the Mach stem formation

In aerodynamics, there is a well-known relation between the shock velocity u in undisturbed
medium and a pressure jump p on the shock front (Uizem, 1977): u(p) = c0 + εp/ρ0c0. It means
that the shock of greater amplitude propagates faster than the shock of less amplitude. In reflection,
the pressure perturbation caused by reflected wave is superimposed on one already caused by the
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Chapter 2. Irregular reflection of an N-wave from a rigid surface in air

incident wave. It leads to different velocities of incident and reflected shocks. The reflected shock
with greater speed starts to overtake the incident shock. If the nonlinear effects are strong or the
incident angle is small then the reflected shock could superimpose on the incident one and form
the united single shock front - the Mach stem. Thus, the Mach stem formation caused by different
speeds of two shock fronts because of nonlinear effects.

2.1.3 A three-shock theory of von Neumann

John von Neumann

( )a ( )b

Mach reflection effect

Incident shockReflected
shock

Mach stem

Triple point

Figure 2.2: (a) John von Neumann. (b) Description of
Mach reflection in a three-shock theory developed by
J. von Neumann in 1942. The figure is taken from (Ben-
Dor, 1992).

Theoretical investigation of the shock
wave reflection was first carried out al-
most 70 years later by von Neumann
(Fig. 2.2a) in 1943 (Neumann, 1974).
He described the irregular reflection by
a three-shock theory based on the as-
sumption that all the waves in the flow
are shaped as shocks of negligible curva-
ture and thickness, and obey the Rankine-
Hugoniot jump conditions (Pierce, 1981,
Ben-Dor, 1992), i.e., laws of mass, en-
ergy, and momentum conservation:
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Equations (2.1)–(2.9) are written in the coordinate system in which fronts are fixed, ϕi are incident
angles, θi are angles of a flow deflection from its initial propagation direction, ui are speeds of
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flows (Fig. 2.2). Solution of Rankine-Hugoniot jump conditions Eqs. (2.1)–(2.9) is:
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M2

1 sin
2 ϕ3 − 1

2 +M2
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and pressure ratios near the shock front are:
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Here Mi are Mach numbers which exceed the values of acoustic Mach number Ma by one. A
perpendicularity of the Mach stem to the surface is also proposed: θ3 = θ1 − θ2 = 0 and p3 = p4.

According to Eqs. (2.13)–(2.15), the transition from irregular reflection to regular one occurs
at ϕ3 = 0◦, i.e., then mathematically the Mach stem becomes parallel to the surface. This ratio is
known as the von Neumann criteria and written as:

p4
p1

= 1 +
2γ

γ + 1
(M2

1 − 1). (2.16)

The three-shock theory was found to be in good agreement with experiments only for strong
shocks when the acoustic Mach number Ma was greater than 0.47. For weaker shocks (0.1 <

Ma < 0.47) the three-shock theory was strongly disagreed with experimental observations sup-
ported by numerical simulations. For Ma < 0.1 the theory has no physically acceptable solutions
and predicts fundamental impossibility of irregular reflection, while the experimental data clearly
show that irregular type of reflection for such weak shocks does, in fact, exist. The conflict be-
tween three-shock theory and experimental results is known as the von Neumann paradox which
was first formulated by Bikhoff in 1950 (Birkhoff, 1950), and irregular reflection pattern in this
case is called the von Neumann reflection.

2.1.4 A review of researches devoted to an irregular reflection of shocks

Attempts to resolve the von Neumann paradox were undertaken by several authors in (Skews &
Ashworth, 2005, Colella & Henderson, 1990, Brio & Hunter, 1992, Guderley, 1962, Zakharian
et al., 2000, Vasil’ev & Kraiko, 1999). Although the von Neumann paradox is still considered
to be unresolved, performed experimental studies have revealed many new interesting features of
shock front interactions.
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Chapter 2. Irregular reflection of an N-wave from a rigid surface in air

Figure 2.3: Reflection patterns obtained in a shock tube for strong step shocks. The figure is taken from
(Semenov et al., 2012).

Most of the experiments to study the Mach reflection effect were performed in shock tubes
using methods of optical visualization (Semenov et al., 2012, Skews & Ashworth, 2005, Colella
& Henderson, 1990). In a shock tube, step shocks with plane front are produced. A wedge is
placed in a tube to observe the reflection of the flow by optical methods. Usually shadowgraphy
or schlieren methods are used for visualization of reflection pattern. In (Semenov et al., 2012) the
complicated spatial structures close to triple point were observed for Mach reflection (see Fig. 2.3)
and studied in detail (Semenov et al., 2012, Ben-Dor, 1992).

( )a ( )b

Figure 2.4: (a) The von Neumann reflection of step shock
observed in experiments in (Colella & Henderson, 1990).
(b) A sequence of triple points observed in experiments
in (Skews & Ashworth, 2005). The image on the right
is a raw shadowgram while the left image is in enhanced
contrast.

In 1990 Colella and Henderson were
the first who experimentally and numer-
ically observed a new type of reflection
of weak shocks (Ma = 0.05) from a
rigid boundary - the von Neumann reflec-
tion (Colella & Henderson, 1990). In this
new reflection type they saw no disconti-
nuity of the slope angle in transition from
the incident front to the Mach stem (see
Fig. 2.4a).

In addition to experimental studies of
weak shock reflection from surfaces, the-
oretical and numerical efforts were per-
formed in (Tesdall & Hunter, 2002, Brio
& Hunter, 1992, Zakharian et al., 2000,

Vasil’ev & Kraiko, 1999). In (Brio & Hunter, 1992) numerical modeling is used to study reflec-
tion of step shocks from a rigid boundary; the model is based on a two-dimensional (2D) Burgers
equation. This model allowed authors to observe the formation of a supersonic jet in a small region
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2.2. Types of reflection of weak acoustic shocks from a rigid surface

behind the Mach stem. Also the numerical model allowed to demonstrate a low-pressure area just
behind the triple point, that has been predicted previously only theoretically in (Guderley, 1962).
These features were also observed in numerical experiments in (Vasil’ev & Kraiko, 1999, Zakhar-
ian et al., 2000) based on Euler’s equation.

In 2002 Tesdall and Hunter (Tesdall & Hunter, 2002) used methods of numerical simulations
to find a more complex configuration in reflection pattern with a sequence of triple points in the
Mach stem. They showed that this spatial structure was located in a very small region below
the main triple point, its size was only 2% of the length of the Mach stem. Later Skews and
Ashworth (Skews & Ashworth, 2005) constructed a shock tube with diameter of 1.1 m and were
able to observe the Mach stem with an extremely large length of about 80 cm. The sequence
of triple points was indeed occurred on the Mach stem. Fig. 2.4b demonstrates images obtained
in (Skews & Ashworth, 2005) with one more triple point located below the main one (experiments
were performed in air, Ma = 0.04).

Note that all works mentioned above, both theoretical and experimental, are mainly in the
framework of aerodynamics and consider only plane step shocks with acoustic Mach numbers
Ma greater than 0.035 While step shocks are typical for aerodynamics, acoustic shock waves usu-
ally have more complicated waveforms of an N-wave, blast waves, sawtooth waves, and others.
In addition, in nonlinear acoustics the values of acoustic Mach number Ma are on the order of
10−2− 10−3, which is at least one order smaller than in aerodynamics. The reflection of such very
weak, but nonetheless strongly nonlinear acoustic waves has not been studied to the same extent.
Moreover, the reflection of acoustic shock waves occurs within the von Neumann paradox and thus
is not described by the three-shock theory. It is interesting to refer to historical background and
remember that von Neumann by himself considered acoustics and aerodynamics as two fundamen-
tally differing fields. In his opinion, small values of Mach number in acoustics lead to physical
impossibility to observe such nonlinear phenomena as irregular reflection (Neumann, 1974).

§2.2 Types of reflection of weak acoustic shocks from a rigid
surface

Nonlinear reflection of acoustic shock waves (Ma about 10−2 − 10−3) from a rigid surface was
investigated in recent works of Marchiano and co-authors (Marchiano et al., 2007, Baskar et al.,
2007). In work (Marchiano et al., 2007) reflection of periodic sawtooth waves (Ma = 2.3 ×
10−4) from rigid boundary was studied experimentally in water. Different reflection regimes were
observed and then studied in detail using methods of numerical simulations (Baskar et al., 2007).
It was shown that the type of reflection depends on the critical parameter a, defined by the shock
amplitude p, the grazing angle ϕ of the incident wave, and a coefficient of nonlinearity β of the
propagation medium:

a =
sinϕ√
2βMa

. (2.17)
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Figure 2.5: Consecutive reflection patterns of the N -wave obtained for different points on the surface. On
each pattern reflection of the front shock of the N -wave correspond to the left part of the image while
reflection of its rear shock - to the right one. The gradients of a color correspond to the pressure level:
white color corresponds to positive pressure, black color - to negative pressure. Figures were taken from
(Baskar et al., 2007).

Numerical simulations based on the KZ equation were used in (Baskar et al., 2007) to define
values of the critical parameter a corresponding to each reflection regime. For plane step shocks
four reflection regimes exist. Initially for 0 ≤ a ≤ 0.4 weak von Neumann reflection was observed.
The term ”weak von Neumann reflection” was introduced by the authors of (Baskar et al., 2007)
to describe the reflection pattern for almost grazing incidence when the reflected shock does not
exist, but the initial plane incident shock has a curvature close to the surface. The range of values
0.4 ≤ a ≤ √

2 corresponds to the von Neumann reflection, i.e., an irregular reflection regime
characterized mainly by the continuous slope of the shock front along the incident shock and the
Mach stem. For

√
2 ≤ a ≤ 5 the reflection occurs in a regular regime, but angles of the incident

and reflected waves are not equal. Finally, at a > 5 classical law of reflection is valid.
In work (Baskar et al., 2007) cases of an ideal plane N-wave and periodic sawtooth wave were

also studied in comparison with a step shock reflection. In contrast to step shocks, N-waves and
sawtooth waves were found reflected in a dynamical way: the length of the Mach stem was chang-
ing while the wave propagated along the surface. This is due to the fact that both the amplitude of
nonlinear wave and the incident angle are changed. Thus, current value of the critical parameter a
depends on location of reflection point on the surface. In addition, the evolution of the reflection
pattern for the front and the rear shocks of the N-wave was different.

Figure 2.5 presents the results on numerical simulation performed in (Baskar et al., 2007) for
initial current value of the critical parameter a = 0.5. Reflection patterns correspond to different
location of reflection point on the surface, from left to right the distance from the first point of the
shock wave reflection to the observed region increases. For the front shock of the N-wave authors
of (Baskar et al., 2007) obtained following values of the critical parameter a corresponding to
different types of reflection: for 0 ≤ a ≤ 0.4 weak von Neumann reflection occurred. This range
of values coincides with the corresponding one for a plane step shock case. Values 0.4 ≤ a ≤ 0.8

correspond to dynamical irregular reflection, when the length of the Mach stem first increases and
then decreases; for a > 0.8 reflection is regular. Thus, while the N-wave propagates along the
surface values of the critical parameter a are gradually increasing due to reducing the amplitude of
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method

the incident wave, as a result, the type of reflection varies from weak von Neumann reflection to
von Neumann reflection and finally to a regular reflection. Transition from one type of reflection to
the another one occurs differently for the rear shock of the N-wave. It is clearly seen (Fig. 2.5) that
there is secondary reflected shock behind the rear shock which is formed when irregular reflection
becomes regular, and then increases with increasing of the current value of a. Formation of the
secondary reflected shock was observed only in reflection of rear shock of the N-wave; there was
no such effect in the case of the periodic wave.

In this thesis, reflection of N-waves from rigid boundaries was investigated experimentally
using optical methods: the schlieren method and the Mach-Zehnder interferometry method. The
goals are to demonstrate experimentally how irregular reflection occurs in air for very weak spher-
ically diverging spark-generated pulses and to evaluate the values of the critical parameter a for
different types of reflection. This complements earlier experimental observations on irregular re-
flections of plane periodic waves in water (Marchiano et al., 2007) since spherical divergent waves,
single pulses, propagation in air, and variation in acoustic Mach number were considered.

The experiments were performed by the author of the dissertation in the LMFA at Ecole Cen-
trale de Lyon (France).

§2.3 Visualization of dynamic irregular reflection of a spher-
ical N -wave using an optical schlieren method

The experimental setup designed for optical visualization of shock wave reflection from a rigid
surface is shown in Fig. 2.6. Acoustic shock waves (1) were produced by a 15kV electric spark
source (2) with 21 mm gap between tungsten electrodes (its calibration is described in detail in a
previous chapter). Spherically divergent N-waves reflect from the rigid surface (3), located at a
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Figure 2.6: Illustration (a) and a photo (b) of the experimental setup: 1 – shock acoustic pulse, 2 – a
spark source, 3 – a rigid surface, 4 – reflection pattern consisting of incident and reflected fronts, 5 –
QTH continuous light source, 6 – a spherical mirror, 7 – a beam splitter, 8 – an optical knife, and 9 –
a high-speed camera (Phantom V12 CMOS). Solid lines with arrows illustrate the trajectory of the light
beam in the absence of acoustic wave.
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Figure 2.7: Optical visualization of a front shock reflection from a rigid surface. Reflection point is
positioned s = 4.6 cm (a) and s = 20.7 cm (b) away from the spark source. The rigid surface is located
in the bottom of each image; the wave propagates from left to right.

distance h under the spark. The emerging reflection pattern (4) was visualized using a schlieren
method. The schlieren system was composed of a quartz tungsten halogen (QTH) continuous
white light source (5) mounted in the geometrical focus of a spherical mirror (6) with 1m radius
of curvature, a beam splitter (7), an optical knife (a razor edge, 8), and a high-speed Phantom
V12 CMOS camera (9) with exposure time set to 1 μs. Light beam was transmitted through the
beam splitter (7) and through the test zone of the acoustic pulse reflection. Then, the light reflected
from the mirror (6), intersected the test zone once again, and propagated back to the beam splitter
[orange solid lines with arrows in Fig. 2.6a]. Double passing of the light beam through the test
zone provided better contrast of the image. Since the brightness of these images is proportional
to the gradient of the acoustic pressure, they depict qualitatively the reflection pattern of the front
shock of the pulse.

For visualizing the reflection pattern, an initial series of schlieren images was recorded without
acoustic wave to obtain the averaged background image. A second series of images was recorded
with the presence of acoustic wave. Raw images in the second series were dark and the front struc-
ture was not clearly seen without additional data processing. The averaged background image was
subtracted from every recorded image of the reflection pattern; this subtraction resulted in reduc-
tion of noise and enhancement of the image contrast. An additional processing was the averaging
of twenty images obtained from different sparks for a fixed source and reflection point configura-
tion at the same hsp, s, and ϕ (see Fig. 2.6a). In these images, the position of the reflection point
varied by less than 5 mm and the reflection patterns were juxtaposed before averaging. Schlieren
images [(19.5 ± 0.2) mm width × (12.2 ± 0.2) mm height] of the reflection patterns obtained in
this way are presented in Fig. 2.7.

In order to investigate independently the effect of the pressure level and the incident angle ϕ on
the reflection pattern, the position of the spark source was chosen so that the distance s between the
source and the reflection point was the same for each angle ϕ considered in the study [Fig. 2.6a].
The results are given in Fig. 2.7 for two values of acoustic Mach number Ma (i.e., two distances s
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Table 2.1: Experimental values of the critical parameter a for different types of reflection. Data were
obtained for two distances from the spark source.

Experimental parameters Weak von Neumann
reflection

von Neumann re-
flection Regular reflection

Ma×10−2 4.4± 0.4
Probably occurs for
a ≤ (0.38± 0.05)

(0.38±0.05) < a <
(1.05± 0.15)

a ≥ (1.05± 0.15)

Ma×10−3 6.0± 0.3
Probably occurs for
a ≤ (0.58± 0.2)

(0.58 ± 0.2) < a <
(1.1± 0.3)

a ≥ (1.1± 0.3)

between the source and the reflection point) and different values of the incident angle ϕ. The series
of frames in Fig. 2.7a was obtained at a distance s = (46 ± 4) mm away from the spark source,
which corresponded to an acoustic pressure amplitude for the incident wave p0 = (6.2± 0.5) kPa
and a value of the acoustic Mach number Ma = (0.044 ± 0.004). To estimate the value of the
acoustic Mach number its definition for the plane wave was used: Ma = p0/(γpatm), where γ =

1.4 is the adiabatic index for air and patm = 100 kPa is the atmospheric pressure. For the series of
frames in Fig. 2.7b, experimental parameters were s = (207±7) mm, p0 = (0.84±0.04) kPa, and
Ma = (0.0060± 0.0003). The coefficient of nonlinearity β was equal to 1.2 for the experimental
conditions of the relative humidity of 49% and temperature of 292 K.

For the grazing angle (ϕ = 0◦) the spark source was located right at the reflecting surface
(h = 0). In this case no reflected shock was observed for both values of acoustic Mach number
Ma (cases ϕ = 0◦ in Fig. 2.7). The same pattern was achieved also for the angles ϕ ≥ 7◦ when
Ma = 0, 044 and for ϕ ≥ 5◦ when Ma = 0, 006 (not shown here). Whether the absence of
visible reflected shock is a confirmation of the weak von Neumann reflection regime or is the
result of not enough sensitivity of the schlieren system still remains an open question. With further
increasing the incident angle ϕ, one can clearly observe the irregular type of reflection with Mach
stem formed close to the surface (ϕ = 14◦ for Ma = 0, 044 and ϕ = 7◦ for Ma = 0.006).
There were no visible slopes discontinuities between Mach stem and the incident shock which is
a feature characteristic for von Neumann reflection. Then for ϕ ≥ 20◦ (Ma = 0, 044) and ϕ ≥ 8◦

(Ma = 0.006) the regime of reflection is modified into regular reflection with incident and reflected
shocks merged right at the surface [cases ϕ = 21◦ and 30◦ in Fig. 2.7a; ϕ ≥ 12◦ and 30◦ in
Fig. 2.7b]. Experimental values of the critical parameter a = sinϕ/

√
2βMa corresponding to each

observed reflection regime are given in Table 2.1. Note that within experimental error the transition
between the different reflection regimes occurs for similar values of the critical parameter a.

Both amplitude p0 and grazing angle ϕ of the acoustic pulse change while the pulse propagates
along the surface that leads to the change of the current value of the critical parameter a. As a
result, the reflection pattern has a dynamic character changing with the propagation distance. This
was confirmed in the experiment: the length of the Mach stem increased when the pulse propagated
along the surface. For three consecutive schlieren images obtained at different distances from the
spark along the surface (Fig. 2.8), both parameters Ma and ϕ were decreasing and therefore had
different effect on the value of a. Increasing of the Mach stem length means that the value of a
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Figure 2.8: Three consecutive schlieren images from the high-speed camera obtained for the same position
of the spark source (ϕ = 14◦ and Ma = 0.044 for the first frame).

was decreasing and the variation of the grazing angle ϕ had stronger effect on a than the variation
of the Mach number Ma.

Thus, the optical schlieren method provides visualization of the N-wave front shock reflection
from the rigid boundary.Regular and irregular types of reflection were observed, and corresponding
values of the critical parameter a for each reflection regime were determined. The rear shock of
the spark-generated wave is less steep than the front shock, therefor it is more difficult to visualize
it using the schlieren system.

Obtained in the experiment value a = 1.1 ± 0.3 of the critical parameter corresponded to
transition from regular reflection to irregular one is in agreement with the theoretical value a =

0.8 obtained in (Baskar et al., 2007) by numerical modeling. Note that in (Baskar et al., 2007)
reflection of a plane N-wave was studied while in this experiment the wavefront was spherical
and the waveform was asymmetrical in contrast to an ideal N-wave; thus the discrepancy between
theory and experiment was supposed.

§2.4 Measurement of irregular reflection patterns using the
Mach-Zehnder interferometry method

A Mach-Zehnder interferometer was used for quantitative measurements of reflection patterns
formed in reflection of the N-wave from the rigid surface in air. The description of the experi-
mental setup is given earlier in §1.5, where the Mach-Zehnder interferometry method is applied to
measure N-waves in homogeneous air. The rigid surface made of plastic was located at distance
hsp = 21 mm below the spark source (Fig. 2.9). The reflection from the rigid boundary does not
change radial symmetry of the wavefront in the plane parallel to the surface. Thus, the Abel in-
version transform (1.18), required the spherical or cylindrical symmetry of the wavefront, remains
applicable.

A reflection pattern measured using the Mach-Zehnder interferometer is shown in Fig. 2.10a
for the case l = 25 cm, where l is a distance along the surface between a projection of a spark
source on a surface and a reflection point (see Fig. 2.9b). This pattern represents the results of
measured waveforms obtained at distances h from the rigid surface in the range from 2 mm up
to 30 mm with increments of 2 mm. Pressure levels are indicated by colors. The abscissa is a
time, thus a front shock of the N-wave coming earlier in time is left and the rear front is right. At
each height h above the surface, 140 waveforms were recorded in order to allow statistical analysis
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Figure 2.9: (a) Photo of the experimental setup based on the Mach-Zehnder interferometer. (b) The
scheme of the side view on the reflecting surface.

of the data. ”Average” waveform was selected from these 140 waveforms as a waveform with
the arrival time, duration, and peak positive and peak negative pressures closest to their averaged
values over all waveforms. It is clearly seen that the front shock of the N-wave is reflected from the
surface in an irregular way. Only one front (the Mach stem) forms at distances h ≤ 6 mm; starting
at h = 8 mm, it splits into two fronts (of incident and reflected waves). The structure of the front
shock in the vicinity of the triple point is shown in Fig.2.10b, where the Mach stem separation
into two fronts is observed. It is clearly seen that the rear ”shock” of the pulse is smoother than
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Figure 2.10: (a) Irregular reflection pattern obtained at distance l = 25 cm. (b) The zoom of the front
shock structure for waveforms measured at different height h above the surface. (c) Waveforms at different
height h from the surface.
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Figure 2.11: Irregular reflection pattern obtained at different distances l in irregular reflection of the N -
wave form the rigid surface.

the front shock. This fact is crucial for the nonlinear effects and the reflection of the rear shock
occurs in a regular regime (area 740 ≤ τ ≤ 760 in Fig. 2.10a). Pressure waveforms presented in
Fig. 2.10c for different heights h above the surface show that the rear front of the pulse initially
contains fronts of the incident and reflected waves (waveform at h = 2 mm) which subsequently
diverge from each other (waveforms at h = 16 and 30 mm).

The pressure level close to the surface exceeds more than twice the amplitude of the incident
shock front. In the case of linear reflection, the pressure is exactly doubled. Here, the pressure
amplitude of the incident front is 1 kPa, which is clearly seen on waveforms at h = 16 and 30 mm
when the incident front is already separated from the reflected one. The peak positive pressure
close to surface is 2.3 kPa (waveform at h = 2 mm), i.e., pressure increases in 2.3 times.

Consider how reflection pattern changes while the N-wave reflects from the surface at its dif-
ferent points (Fig. 2.11). In schlieren experiments (Fig. 2.8), the structure of the front shock of
the N-wave was visualized while measurements using the Mach-Zehnder interferometry method
provides quantitative information about the entire structure of the field. In Fig. 2.11 one can see
that the Mach stem is perpendicular to the surface and grows with the wave propagation along the
surface. The reflection of the rear shock is regular.
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Figure 2.12: The trajectory of the triple point.
Experimental points are shown by marker and
a linear fit is shown by a solid line.

The using of the Mach-Zehnder interferome-
try method allows also measurements of the tra-
jectory of the triple point (Fig. 2.12). One of the
main features distinguishing the step shock reflec-
tion from the reflection of acoustic waves is a dy-
namical character of the irregular reflection for the
last case (Baskar et al., 2007). In experiment, ir-
regular reflection of the pulse did occur in a dy-
namic way and the length of the Mach stem was
increased linearly while the pulse propagated along
the surface (Fig. 2.12). The linear interpolation of
the triple point trajectory to the surface predicts that

for current geometry configuration the transition between regular and irregular reflection occurs
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at l = 8 cm. Note that theoretical investigation of the plane N-wave reflection from the rigid
boundary (Baskar et al., 2007) predicts complicated nonlinear trajectory of the triple point. Here
one could suppose that this linear dependence is a result of the wavefront sphericity and thus of a
faster decrease of the energy on the front shock. Nevertheless, this linear dependance could be the
initial region of more complicated nonlinear dependance.

§2.5 Nonlinear interaction between the reflected front shock
of an N -wave and its incident rear shock

In reflection of the N-wave from the rigid surface nonlinear interaction between the incident and
reflected shocks of the wave leads to the Mach stem formation near the surface. The spatial struc-
ture like a Mach stem can also be formed above the surface in the region where reflected front
shock of the N-wave interacts with its incident rear front. Consider the reflection pattern obtained
in the experiment in the case of l = 13 cm (Fig. 2.11). The overpressure area above the surface is
clearly observed at hight h ≈ 4 cm and τ ≈ 400 μs (yellow area in the figure). The structure of
the fonts here is similar to the three-shock structure in irregular reflection; the difference is only in
the Mach stem orientation. In order to understand the reason of overpressure area formation here,
let one consider an evolution of waveforms with increasing height h above the surface (Fig. 2.13).
Near the surface at the height h = 2 mm the waveform is a single pulse; shock front corresponds
to the Mach stem and increasing of pressure in rarefaction phase corresponds to the incident and
reflected rear fronts of the N-wave. With increasing of the height h the Mach stem divides into two
fronts with the reflected front shock moving to the right on the waveform. At the same time parts
of waveform correspond to the incident and reflected rear fronts of the N-wave become farther
from each other. Incident rear front is moving contrary to the left. It is clearly seen how smooth
rear front comes on the reflected front shock on waveform at h = 36 mm. Then there is their
nonlinear interaction and merge into a single shock front (waveform at h = 44 mm) that is in fact
the Mach stem. Note that the peak positive pressure of this front ( 2.1 kPa) is about the amplitude
of the incident front shock and the waveform becomes similar to the two periods of the sawtooth
wave.

Thus, the formation of the Mach stem in reflection of the N-wave from rigid surfaces can occur
both near the surface and above the surface in the area where the incident rear shock intersect
reflected front shock of the N-wave. In the case of the ideal N-wave there are two shock fronts
in contrast to smooth rear front of spark-generated wave, therefore such interaction will be more
pronounced.

§2.6 Conclusions

In this chapter, reflection of spherically divergent spark-generated pulses from the rigid surface in
air was studied both by optical schlieren method and the Mach-Zehnder interferometry method.
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2.6. Conclusions

The optical schlieren method provides only visualization of reflection pattern structure while the
Mach-Zehnder interferometry method allows to reconstruct pressure waveforms in the pattern by
applying the inverse Abel transform to the phase of the measured signal. In experiments, dynam-
ical irregular reflection was observed and the values of critical parameter correspond to different
reflection regimes were found. It was shown that irregular reflection of pulses occurred in a dy-
namic way and that the trajectory of the triple point could be linearly interpolated within distances
available in the experiment.
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Chapter 3

Saturation mechanisms of shock wave
parameters in pulsed and periodic
high-intensity focused ultrasound beams

§3.1 Introduction

Focusing of high-intensity pulses and periodic waves is an important problem of nonlinear acous-
tics (Rudenko & Soluyan, 1977, Bailey et al., 2003). The interest to this subject, in particular,
is associated with a variety of medical applications of high-intensity ultrasound. Focused shock
pulses are used, for example, in lithotripsy (Averkiou & Cleveland, 1999) for destruction of kid-
ney stones while periodic sawtooth waves are used in noninvasive surgery to cause necrosis of
soft tissue tumors (Hill et al., 2002, Bailey et al., 2003). The efficiency of these procedures is
strongly dependent on the operational mode of a transducer, i.e., the number of generated pulses,
their waveforms, amplitude, and duration. To select the most optimal operational mode it is nec-
essary to be able to predict the parameters of generated fields and the biological effects caused by
them. Also, formation of shock fronts occurred due to nonlinear effects should be taken into ac-
count. In the case of strong manifestation of nonlinear effects, the effect of saturation is observed:
the acoustic field parameters at the focus of the transducer become not depending on the initial
pressure amplitude (Rudenko, 1995, Rudenko & Sapozhnikov, 2004).

The mechanisms causing the saturation effect are different for periodic and pulsed fields. This
leads to the fact that the limiting values of the acoustic field parameters are also different for
periodic and pulsed modes of focusing. In medical applications often it is necessary to obtain
a high value of the peak positive or negative pressure at the focus of the transducer. In a weak
nonlinear case, it is enough to increase the pressure amplitude at the transducer. However, if the
nonlinear effects are significant the increase of pressure amplitude at the source does not provide
pressure increase at its focus due to the saturation effect. In this case, higher pressure amplitude
can be obtained by using a signal with another temporal waveform.

In this chapter, a comparison of focusing efficiency for pulsed and periodic waves is performed
as well as a comparison with existing analytical solutions. Nonlinear propagation of focused
acoustic waves was studied using numerical simulations based on the Khokhlov-Zabolotskaya-
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Kuznetsov (KZK) equation. In simulations, cases of a piston and Gaussian sources were consid-
ered. Physical mechanisms causing saturation effects in focused acoustic fields are determined.

Also in this chapter the qualitative analogy between physical processes occurring in the focus-
ing of an axially symmetric beam and in reflection from plate rigid boundary is discussed. The
spatial structure of wavefront in the focal area is considered similarly to the Mach stem formation
in reflection of weak shocks considered in the previous chapter.

In this section, existing analytical approaches to evaluate the limiting pressure level at the
focus are considered in cases of periodic and pulsed ultrasonic beams. Then, experimental results
obtained by Kulkarny (Kulkarny, 1975) showing different spatial structures of waveforms at the
focus are presented.

3.1.1 The saturation effect in the fields of periodic waves: a literature review

The saturation effect of the peak positive pressure in periodic fields exists already in the case of
nonlinear propagation of a plane wave (Vinogradova et al., 1979). Due to nonlinear effects, an
initially harmonic wave becomes a sawtooth wave. Dependence of the peak positive pressure p+

of a periodic wave at distance x from the source is given by a solution of simple wave equation

∂p

∂x
=

ε

ρ0c30
p
∂p

∂τ
(3.1)

and can be written analytically as

p+
p0

= (1 +
ε

ρ0c
3
0

ωxp0)
−1. (3.2)

Here ε is the coefficient of the nonlinearity of the medium , ρ0 is the medium density, c0 is the
sound speed in an undisturbed medium, τ = t − x/c0 is the retarded time, and ω is a circular
frequency of the periodic wave.

Infinity increase of the initial pressure amplitude p0 → ∞ leads to the saturation effect when
the pressure amplitude psat at fixed distance x does not depend on p0

psat =
ρ0c

3
0

εωx
. (3.3)

Here, the saturation effect of the peak positive pressure is occurred due to energy attenuation on
formed shock front (Vinogradova et al., 1979).

In focusing, the amplitude of the wave is increased, thus, nonlinear effects become more signif-
icant. Nonlinear effects can be pronounced differently depending on the frequency of the wave, its
shape and amplitude and geometry of the transducer (Bessonova et al., 2009). Combined effects of
nonlinearity and diffraction can lead to different features of the acoustic field structure depending
on manifestation of nonlinear effects. When the nonlinear effects are moderate and shock front
formation doesn’t occur or occurs close to focal area, the nonlinear enhance of peak positive pres-
sure and intensity is observed at the focus (Naugolnykh K.A. & Romanenko E.V., 1959,Ostrovskii

52



3.1. Introduction

& Sutin, 1975). This occurs due to the better focusing of higher harmonics and their relative phase
shift caused by diffraction. In this case the peak negative pressure is less than it is predicted by
the linear theory (Bessonova et al., 2009). When nonlinear effects are strongly pronounced and
the shock formation occurs close to the transducer, the nonlinear attenuation of the shock front be-
comes significant and leads to the saturation effect (Ostrovskii & Sutin, 1975,Bacon, 1984,Shooter
et al., 1974).

a0

F

rфF

Figure 3.1: Geometry of the focusing.

There are different analytical approaches to evaluate
limiting values of the acoustic field parameters at the fo-
cus. The first approach was proposed by Naugolnykh and
Romanenko in 1959 (Naugolnykh K.A. & Romanenko
E.V., 1959). It is supposed that the spherical converging
wave is propagating from the piston source to the sphere
of radius rF (Fig. 3.1). This wave is described by the
generalized simple wave equation:

∂p

∂r
+

p

r
− ε

ρ0c
3
0

p
∂p

∂τ
= 0. (3.4)

Here r is a coordinate and τ = t− r/c0 is a retarded time. Distance rF is found in such way that
the pressure amplitude of one-dimensional linear spherical converging wave at this point rF will
be equal to the pressure amplitude of linear focused beam at focus F (Fig. 3.2), described by a
parabolic approximation of diffraction theory:

2ik
∂A

∂r
+Δ⊥A = 0, (3.5)

where p(r) = A(r) exp(−i(ωt−kr)), Δ⊥ = ∂2/∂r2+∂/r∂r is a Laplace operator in the cylindri-
cal coordinate system, k = ω/c0 is a wavenumber (Vinogradova et al., 1979). The exact solution
of Eq. (3.5) on the beam axis of the piston source is

A(r) =
2A0

1− r/F
sin

(
G
1− r/F

2r/F

)
, (3.6)

while for Gaussian source it is

A(r) =
A0√

(1− r/F )2 + (r/F )2/G2

, (3.7)

where G = ka20/2F is linear enhance coefficient and a0 is a transducer radius. In according to so-
lutions of Eqs. (3.6) and (3.7), the amplitude at the geometrical focus is A(r = F ) = A0ka

2
0/2F =

A0G (Fig. 3.2). Substituting this in equation describing linear propagation of spherical converging
wave ∂A/∂r + A/r = 0, for which A(r) = G/r, one obtains rF = F/G. At this distance from
the focus, the acoustic field is calculated for the one-dimensional nonlinear case (Eq. 3.4). For this
variable substitutions P̃ = pr/p0F , Θ = ωτ and σ = (εωp0F/ρ0c

3
0) ln(F/r) are used to obtain
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Eq. (3.4) in dimensionless form:
∂P̃

∂σ
− P̃

∂P̃

∂Θ
= 0. (3.8)

This is a simple wave equation. The amplitude of sawtooth wave is given from this equation for
regime of developed shock P̃ ≈ π/(1 + σ) ≈ π/σ (Vinogradova et al., 1979). Returning to the
dimensional variables one obtains a dependence of sawtooth wave amplitude on distance r:

p =
πρ0c

3
0

ωεr

1

ln(F/r)
. (3.9)

Then for rF = F/G the pressure amplitude, i.e., the pressure in a saturation regime is

psat =
πρ0c

3
0

εωF

G

lnG
=

πρ0c
2
0

2ε

(a0
F

)2 1

ln (ωa20/2c0F )
. (3.10)

One can see that the limiting pressure value psat depends on a geometry of the transducer (the
angle a0/F of focusing), parameters ε, ρ0, c0 of propagating medium, and the main frequency ω

of a wave. With greater focusing angle and less frequency, greater limiting value of the pressure
can be obtained.

r

A(r)

F

A
0
G

0

rF

Figure 3.2: The amplitude of the harmonic wave
as a function on the distance from the transducer
along its axis in a case of linear propagation. Black
color corresponds to piston source, red color - to
Gaussian source, and the blue color - to spherical
converging wave.

In effort of Ostrovskii and Sutin (Ostrovskii
& Sutin, 1975) an approximate approach of
alternative consideration of periodic wave fo-
cusing generated by piston source was applied.
Initially, the approach considers only nonlinear
focusing process neglecting diffraction effects.
Then, starting at some distance close to focus,
nonlinear effects are supposed negligible and
only diffraction effects are considered. Next,
in the focal area nonlinear effects once again
prevail over diffraction effects and a nonlin-
ear propagation of a plane wave is considered.
According to this approach, the pressure max-
imum is achieved at a distance before the geo-

metrical focus and equals

psat =
2ρ0c

3
0

εωF

G

ln η
. (3.11)

Here η is defined from equation Npshη ln η = 2π, where N = 2πεp0Fω/(ρ0c
3
0) is a nonlinear

parameter and psh is a shock amplitude. Limiting values of the peak positive pressure obtained by
using Eqs. (3.10) and (3.11) have the same order. In work (Ostrovskii & Sutin, 1975) the enhance
coefficient of peak positive pressure was found to be more than four times greater than it would be
in linear focusing.
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Approaches proposed in works (Naugolnykh K.A. & Romanenko E.V., 1959) and (Ostrovskii
& Sutin, 1975) allow the evaluation of the saturation pressure level for a piston source. However
the model of Gaussian source is also widespread. In 1984, Bacon proposed an approach which
allows to evaluate the limiting value of the peak positive pressure in the case of the Gaussian
source (Bacon, 1984). In this approach one-dimensional propagation of nonlinear acoustic wave
is considered in a tube whose walls are determined by localization of focused gaussian beam. The
propagation of such beam is described by the nonlinear evolution equation

∂p

∂r
− ε

ρ0c30
p
∂p

∂τ
+

1

2S

∂S

∂r
p = 0,

p(r = 0) = p0 sinω0τ, (3.12)

where S = S(r) = πa20(1 + r2/a20) is a cross-sectional area of a tube given by a gaussian beam.
Introducing new variables ỹ1 = p

√
S and ỹ2 so that dỹ2 = dr/

√
S(r), ỹ2(r = 0) = ỹ0 and

proceeding to dimensionless form, the first equation in (3.12) can be written in a form of a simple
wave equation and as in a previous case, one can evaluate the saturation pressure

psat =
πρ0c

3
0

εωF

G

ln 2G
. (3.13)

Eqs. (3.10), (3.11), and (3.13) provide similar values of the limiting pressure level at the focus.
Moreover for large values of linear enhance coefficient G
 2 the limiting pressure levels obtained
from all three equations will be the same.

As the nonlinear effects become more pronounced the saturation of the peak positive pressure
occurs not only at the focus but also at some distances close to the transducer. This phenomenon
was studied theoretically and experimentally in work (Shooter et al., 1974) for converging and di-
verging spherical waves. Theoretical analysis in work (Shooter et al., 1974) was performed using
the Eq. (3.8) for spherical waves in regimes when the sawtooth wave is already formed. For each
distance, the peak positive pressure of sawtooth wave was found as it was done in work (Naugol-
nykh K.A. & Romanenko E.V., 1959). The limiting value of the peak positive pressure at distance
rF coincided with the corresponding value obtained in (Naugolnykh K.A. & Romanenko E.V.,
1959).

All considered above approaches for evaluating parameters of nonlinear focused acoustic fields
neglect diffraction or account it separately from nonlinear effects, as it was done in work (Ostro-
vskii & Sutin, 1975). However, in focusing of high-intensity ultrasound waves used in medical
applications combined effects of nonlinearity and diffraction should be taken into account simulta-
neously, especially in a focal area. A method, taking into account combined nonlinear effects and
diffraction and allowed to find paraxial area of focused beams, was developed by Hamilton et al.

in (Hamilton et al., 1997). The system of nonlinear eikonal and energy transfer equations describ-
ing distortions of wavefront due to nonlinear and diffraction effects was obtained. Analysis of the
focusing gain G was performed using the KZ equation (Bakhvalov et al., 1982). It was shown that
until the shock front has not yet formed, nonlinear effects increase the focusing gain of the peak
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positive pressure due to more precise focusing of higher harmonics and phase shift between them
caused by diffraction effects. At the geometrical focus the relation of the peak positive pressure
p+ to amplitude of the initial wave p0 was found

p+
p0

= G

(
1 +

N

2

(π/2G)− ln(1/G)

1 + (1/G)2

)
∼ G+NG2. (3.14)

As one can see, when diffraction effects (coefficient G) are fixed this relation linearly increases
with increasing the amplitude of the initial wave (coefficient N). Note that Eq. (3.14) is applicable
only for weak nonlinear waves until shock formation occurred.

Focusing of periodic waves generated by piston source and Gaussian source is studied in detail
in works (Bessonova et al., 2009, Bessonova O.V. et al., 2009, Bessonova O.V. et al., 2010) using
the methods of numerical simulations based on the KZK equation (Bakhvalov et al., 1982). In
works (Bessonova et al., 2009) and (Bessonova O.V. et al., 2009) is was shown that existing
analytical assessments (3.10), (3.11), and (3.13) provide underestimated values of the peak positive
pressure. Increase of the pressure amplitude at the source leads to non monotonic change of the
focusing gain: initially it increases (up to 3.5 times) then decreases. The maximum of the focusing
gain is reached at such initial amplitude for which shock formation occurs at the focal area. The
saturation of the peak positive pressure in the case of piston source reaches for less values of
nonlinear parameter N , i.e., at lower initial pressure amplitude than it happens in the case of
Gaussian source.

In the thesis, focusing of periodic fields was also studied using numerical simulations of the
KZK equation as it was done in (Bessonova et al., 2009, Bessonova O.V. et al., 2009). This study
was performed for further comparison with focused fields of shock pulses which were not studied
using numerical methods before.

3.1.2 The saturation effect in pulsed fields: a literature review

Now consider approaches which are provided the evaluation of the limiting pressure values and
field structures in pulsed fields. In contrast to periodic fields, in pulsed fields the saturation effect
is not observed in one-dimensional case of nonlinear propagation of the plane wave (Vinogradova
et al., 1979). Solution of Eq.(3.1) for a single pulse with the shape of the N-wave is the following

p+
p0

=

(
1 +

ε

ρ0c
3
0T0

xp0

)− 1

2

, (3.15)

where T0 is a pulse duration. Peak positive pressure p remains dependant on the initial pressure
amplitude p0 even if the last one is infinitely increased p0 → ∞: p =

√
ρ0c30T0p0/εx. Thus,

nonlinear absorption of an energy on the developed shock is not enough to saturate parameters on
the pulsed field in the case of plane wave propagation. However, saturation effects do exist if the
pulsed field is focused.
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In effort of Sapozhnikov et al. focusing of acoustic pulses generated by Gaussian sources
is studied theoretically in a wide range of initial pressure amplitudes (Sapozhnikov, 1991). For
weakly pronounced nonlinear effects analysis of nonlinear focusing was performed alternatively,
as it was done in work (Ostrovskii & Sutin, 1975) for periodic fields. According to this approach
the path of the wave was divided into two segments. On each segment either nonlinear effects
or diffraction were negligible. Nonlinear effects were taken into account in the region between
transducer and the focal area; here the wave was supposed to be a spherically convergent wave.
In the focal area, wave supposed to be diffracted as a linear wave and nonlinear effects were not
accounted. The size of the focal region was chosen so that the limiting transition to the linear case
was carried out. In work (Sapozhnikov, 1991), it was shown that coordinate r = F − rF where
rF = F/G is satisfied to this requirement (geometry is similar to shown in Fig. 3.1). Then, at the
initial stage of propagation of the spherical converging wave its evolution can be expressed as an
implicit function:

p

p0
=

F

F − r
ϕ

(
t− r

c0
+

εp

ρ0c30
(F − r) ln

F

F − r

)
, (3.16)

where function ϕ is a temporal waveform. After substituting r = F − rF pressure p = pF on the
boarder of the focal region is

pF
p0

= Gϕ

(
τ + T0

pF
p0

N
lnG

G

)
, (3.17)

where T0 is an initial pulse duration. Then, solution (3.17) is used as a boundary condition to
resolve linear diffraction equation for propagation in a focal area. According to (Vinogradova
et al., 1979) the solution of linear diffraction equation on the beam axis in parabolic approximation
is

p

p0
=

+∞∫
−∞

ϕ(τ ′)g(r, τ − τ ′)dτ ′,

g(r, τ) =
1

|1− r/F |
∂

∂τ

[
H

(
τ

1− r/F

)
exp

(
− 2rc0τ

a20(1− r/F )

)]
. (3.18)

Here H(τ) is a Heaviside step function. The temporal waveform of a pulse at the focal plane is
found by expression (3.18), where instead of a0 and F one should use aF = a0rF/F and rF ,
correspondingly, and function ϕ(τ) should be replaced by pF (τ)/p0. Then the coefficient of the
pressure enhancement will be given by

p+
p0

=
G

1−N lnG
. (3.19)

At N = 1/lnG the shock front is formed at the waveform on the boarder of the focal area. At the
same time the coefficient of the pressure enhancement becomes infinite. It means that nonlinearity
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can not be neglected, i.e., the approach becomes unapplicable. Thus, estimation (3.19) is applicable
only for weak nonlinear cases when N < 1/lnG .

It was shown that linear diffraction does not limit the amplitude of shock waves. This limitation
is due to effect of nonlinear refraction (Musatov et al., 1992). Nonlinear refraction effect is caused
by amplitude dependant velocity of the shock. The speed of the shock front is determined by the
average pressure just before the shock front and behind it. Shock waves with greater amplitude
propagate faster than shocks of lower amplitudes.

F Fnonl

Figure 3.3: The effect of nonlinear re-
fraction on the beam focusing - beam
becomes defocused; focal area becomes
wider and shifts from the transducer. The
figure is taken from a review (Rudenko,
1995).

For Gaussian source the front velocity at the axis of
the beam is greater than on its periphery. That leads to
local defocusing of the beam and shift of the focal area
(Fig. 3.3). The width of the focal area becomes wider
than it would be in a linear case. Thus, for shock waves
diffraction effects are less significant than nonlinear ef-
fects and focusing of pulsed fields could be described
using ray approach. This approach was proposed by
Sapozhnikov (Sapozhnikov, 1991). Two methods to find
nonlinear rays for pulsed beams were applied to a pulse
with a shape of isosceles triangle. In first method rays are
lines perpendicular to shock front. Method of sequential
approximations were used to find a ray pattern. Linear
rays converging to a focus are used as a zero approximation. Along these rays the initial pulse
is directed. Parameters of found pulses are used for a first approximation. Then normals are
constructed to shock front and an initial pulse is propagated on new ray pattern, etc. For first ap-
proximation when the wave is supposed to be spherical the evaluation of the pressure amplitude
pnonl at the new nonlinear focus Fnonl where the wavefront becomes plane (see Fig. 3.3) is given
by

pnonl
p0

=
F

Fnonl

√
2

[
1 +N ln(

F

Fnonl
)

]−1/2
, (3.20)

where the coordinate of the front straightening Fnonl is found from

N

G

(
F

Fnonl

)
ln

(
F

Fnonl

)
=
√
2

(
1 +N ln

(
F

Fnonl

))1/2

. (3.21)

In this approach diffraction effects are supposed to be inessential. Also the effect of transverse
amplitude distribution on waveform structure is evaluated. However, this approach does not take
into account the inverse effect of waveform distortions on the pressure amplitude.

The second method taking into account this inverse effect is based on the assumption that
before shock formation there is no nonlinear absorptions and triangular pulse propagates along
linear rays (Sapozhnikov, 1991). After formation of the shock front at distance xsh the pulse
evolution is described by the simple wave equation with additional term accounting a tube section
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change Σ
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− εp

ρ0c30

∂p
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+
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dΣ

ds
p = 0. (3.22)

Here τ = t − (s − s1)/c0; s and s1 are ray coordinate and its initial value, correspondingly. This
approach takes into account the effect of the ray bending on the amplitude of the wave and provides
equations to find the peak positive pressure p+ at the focus:
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F
. (3.23)

Function Φ describes the amplitude distribution on the surface of transducer depending on trans-
verse coordinate a. Eqs. (3.23) were obtained in assumption of aberration-free approximation of
nonlinear geometrical acoustics and triangle waveform of the pulse. Eqs. (3.23) contain third-order
differential equations not solved analytically. Nevertheless a solution can be found by using meth-
ods of numerical integration. This was done in work (Musatov et al., 1992). The expression to
estimate limiting value of the pressure in focused pulsed field was obtained

psat = 1.5pinα
2, (3.24)

where pin = ρ0
2
0/2ε is inertial pressure in medium and α = a0/F is a focusing angle. In dimen-

sionless form it is
NP/G = 1.5, (3.25)

where P = p/p0 is dimensionless pressure amplitude, normalized on its initial value p0. Thus, lim-
iting value of pressure at the focus of Gaussian source generated pulsed field depends on only fo-
cusing angle α. This fact was confirmed in experiments (Musatov & Sapozhnikov, 1993a,Musatov
& Sapozhnikov, 1993b).

In the thesis, the study of focusing of pulsed fields is performed for piston source and Gaussian
source using methods of numerical simulations. Note that numerical simulation of focusing for
shock pulses is a more complex problem in comparison with simulation of periodic waves, since
it needs more calculation resources. In particular, for the same time and spatial steps of a grid,
simulation of pulsed signals requires the use of greater time window (more than ten times greater
even in a case of weak nonlinearity) than it is needed for periodic fields simulation. This leads to an
increase of the random access memory necessary for calculation and a corresponding increase of
calculation time even in the case of linear propagation. Numerical simulations of nonlinear focus-
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ing of pulsed fields became possible only lately due to the rapid progress of computing machinery
and methods of parallel computing.

3.1.3 The structure of wavefronts at the focal area

( )a

( )b

(с)

( )d

Figure 3.4: Wavefront geometry in focusing of
shock waves with different Mach numbers. (a)
Linear focusing, (b) focusing of weak shock
(Ma ∼ 10−2), (c) focusing of moderately strong
shock (Ma ∼ 10−1), (d) focusing of strong shock
(Ma ∼ 1). The figure is taken from PhD thesis
(Kulkarny, 1975).

Consider the focusing of an axial-symmetric
beam as a process in which the upper half of
the beam reflects from an axis of symmetry.
Such consideration is correct from a mathemat-
ical point of view since boundary conditions on
the beam axis and on reflecting rigid surface are
the same: the normal derivative of the pressure in
the transverse coordinate is equal to zero. Con-
sideration of focusing as a process similar to re-
flection is also in agreement with physical na-
ture. Such consideration is used, for example, in
optics and electrostatics in method of mirror im-
ages. Then it is logical that the Mach stem forma-
tion is observed not only in reflection from rigid
surfaces but also in focusing of axial-symmetric
beams, at least in a case of small focusing angles
and strongly nonlinear beams.

One of the few efforts to consider the Mach
stem formation in focusing of shocks was per-
formed by Kulkarny (Kulkarny, 1975). To gen-
erate focused step shocks he used a shock tube
with a parabolic reflector on its edge. The shad-
owgraphy method was used for optical visual-
ization of wavefront structures. The experiment
was conducted in air in the range of acoustic
Mach numbers 5 · 10−3 ≤ Ma ≤ 5 · 10−1. For
Ma ∼ 10−3 linear focusing regime was observed
as it is shown in Fig. 3.4(a). The intersection of
the central wave and the edge wave occurs ex-
actly at the focus. As the value of acoustic Mach
number increases up to Ma ∼ 10−2 velocity of
both central and edge waves is also increases and

front interaction occurs closer to reflector [Fig. 3.4(b)]. The focal area becomes cigar shaped. In
a paraxial area the Mach stem starts to form. With further increase of acoustic Mach number the
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focal area moves towards to reflector [Fig. 3.4(c),(d)]. The structure of fronts at the focal area
resembles to the one observed in a case of strong shock reflection from a rigid boundary.

Note that Kulkarny performed his experiment in the 70s when reflection of weak shocks in a
framework of the von Neumann paradox has not been relevant. Perhaps, this was a reason why the
experiment failed to observe the case when the Mach stem formed at Ma ∼ 10−3. More sensitive
to the pressure gradients optical system was necessary for that. Shadowgraphy method realized by
Kulkarny did not have sufficient sensitivity to such visualizations.

Later, the focusing of weak shock waves has been studied numerically in (Tabak & Rosales,
1994), but only step shock cases were considered. As it was mentioned above, acoustical waves
have more complicated waveforms than step shocks, thus focusing of acoustic weak periodic and
pulsed shocks still remains relevant.

For Mach stem formation, two shocks should interact. In the case of reflection they are incident
shock and reflected one, in focusing – shocks of the central wave and the edge wave. Interaction
between shock fronts of the periodic wave was studied numerically and compared with experi-
mental results in work (Khokhlova et al., 2001). Unfocused harmonic wave radiated by intense
continuous wave source with an oscillated near field was considered. It is shown that if a shock
formation occurs in a penultimate maximum of peak positive pressure distribution on the axis then
the center wave will interfere with the edge wave. Since the edge wave has reversed waveform,
the shock formation in its waveform occurs in another position. Thus, formation of two shocks in
each cycle of an initially harmonic wave, followed by their motion towards each other and further
collision, is observed. In (Khokhlova et al., 2001) interaction of shocks were considered in time
domain on the beam axis. The structure of wavefronts on the paraxial area potentially containing
the Mach stem was not considered. In the thesis of Bessonova the example of such structure is
demonstrated but it was not considered as the Mach stem formation (Bessonova, 2010).

In this thesis, numerical simulations revisiting the classical problem of shock wave focusing
under the light of Mach stem formation are performed. The model is based on a KZK equation for
axially symmetric nonlinear beams. In subsection §3.5 results are presented for piston source and
the possibility of the Mach stem formation in a focal area of medical transducers is discussed.

§3.2 Numerical model based on the KZK equation

The nonlinear propagation of high-intensity acoustic signals generated by focused sources is de-
scribed here using the KZK equation. The equation takes into account the combined effects of
nonlinearity, diffraction and absorption. For the axisymmetric beams the equation can be written
in dimensionless form as

∂

∂Θ

[
∂P

∂σ
−NP

∂P

∂Θ
− B

∂2P

∂Θ2

]
=

1

4G

(
∂2P

∂ρ2
+

1

ρ

∂P

∂ρ

)
, (3.26)

where P = p/p0 is the acoustic pressure normalized by the initial amplitude p0 at the transducer;
σ = x/F is the propagation distance normalized by the transducer focal length F ; ρ = r/a0 is the
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lateral distance normalized by the transducer radius a0; Θ = 2πτ/T0 is the dimensionless time;
τ = t − x/c0 is the retarded time; T0 is the signal duration (for the harmonic wave it equals to
one period). Equation (3.26) contains three dimensionless parameters: N = 2πFεp0/ρ0c

3
0T0 is

the nonlinear parameter, where ε is the coefficient of medium nonlinearity, G = πa20/c0FT0 is the
diffraction parameter and B is the absorption parameter.
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Figure 3.5: Initial waveforms on the
transducer (a) and waveforms in its fo-
cus (b) in the case of linear focusing with
G = 10. The harmonic wave is pre-
sented by the dashed curve, and pulse -
by the solid curve.

The initial pressure amplitudes of the harmonic wave
and the pulse are chosen so that in the case of linear fo-
cusing the shape and the peak positive pressure P+ am-
plitude of both signals at the transducer focus are the
same (Fig. 3.5). A harmonic wave was selected as the
initial periodic signal

P0 (Θ) = sinΘ. (3.27)

The pulsed regime is presented by a sequence of pulses
with low pulse-repetition frequency. The shape of each
pulse is a single period of a harmonic wave and the pres-
sure between pulses was taken to be constant. In this case
the signal value average over the time window was zero

P0 (Θ) =

{
1− 1/n0 − sinΘ, π/2 ≤ Θ ≤ 5π/2,

−1/n0, Θ ≤ π/2 and Θ ≥ 5π/2,
(3.28)

where 2πn0 is the length of the time window and n0 is
the integer number. In the case of G = 10 the value
n0 = 13 was used for a Gaussian source and n0 = 30

was used for a piston source. These initial conditions are
convenient for comparison of the periodic wave focusing
and focusing of single pulses in the nonlinear case.

The boundary condition was set in the plane σ = 0

and corresponded to a circular focused source with either Gaussian spatial apodization( 3.29) or
with uniform pressure amplitude distribution (3.30). Focusing of the beam is provided by a phase
shift, which increases quadratically with the transverse coordinate ρ

P (σ = 0, ρ,Θ) = P0

(
Θ+Gρ2

)
exp(−ρ2), (3.29)

P (σ = 0, ρ,Θ) =

{
P0 (Θ +Gρ2) , ρ ≤ 1,

0, ρ > 1.
(3.30)

The equation (3.26) with boundary conditions (3.29, 3.30) and initial waveforms (3.27, 3.28) was
solved numerically using a combined time-domain and frequency-domain approach based on a
method of splitting in physical factors. Diffraction effects are calculated in the frequency domain
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using the Crank-Nicholson algorithm of the second order of accuracy over both spatial coordi-
nates (Bessonova O.V. et al., 2009). Absorption effects are taken into account using the exact
solution for harmonics in the frequency domain (Filonenko & Khokhlova, 2001). Nonlinear ef-
fects are calculated in the time domain using the Godunov-type conservative numerical algorithm,
which is capable to model the propagation of nonlinear waves even in case if only 3-4 time grid
points per shock are present (Kurganov & Tandmor, 2000). Transition between spectral and time
domains is carried out using the fast Fourier transform. The algorithm was adapted for parallel
computation with the help of the OpenMP technology, which provided an opportunity to reduce
significantly the calculation time.

The parameters for the numerical scheme were chosen based on the condition of stability for
a numerical algorithm and a preset accuracy of calculation (2%). The calculation accuracy was
estimated by comparison of solutions obtained for steps of discretization differing twice. If so-
lutions differed by less than 2% than the discretization step was taken to be equal to the current
one. For the Gaussian source there are no strong pressure gradients along both transverse ρ and
lateral σ coordinates; thus, grid steps are chosen greater than in the case of piston source. For the
Gaussian source, diffraction step along the propagation coordinate was hσ = 10−3 and the step in
the transverse coordinate was hρ = 4.06 ·10−4. To satisfy the Kurant-Friedrichs-Levi condition for
the Godunov-type scheme several steps over nonlinearity were performed within each diffraction
step along the propagation coordinate. The nonlinearity step was hnonl was selected automatically
at each diffraction step hσ and varied within the range 7 · 10−5 ≤ hnonl ≤ 3 · 10−4. For a piston
source the step along propagation coordinate was reduced up to hρ = 1 · 10−4 for pulsed field;
other steps were similar to used in the case of Gaussian source. For periodic field of the piston
source steps were chosen hσ = hρ = 5 · 10−5.

The time step of numerical grid or the number of the harmonics taken into account in cal-
culation were also varied with propagation coordinate. Initially, 128 harmonics were taken into
account for a periodic wave and 8192 for a pulse. This number of harmonics was sufficient to
describe focusing with the selected precision in linear and weakly nonlinear cases (N < 0.1). The
number of accounted harmonics was increased with the propagation coordinate since the wave
became steeper. In a focal area 2048 harmonics were accounted for a periodic wave and 8192 for
a pulse in the case of Gaussian source while 16384 were used in a pulsed bean produced by the
piston source. Thus the minimal time stem was equal to ht = 5 · 10−3 and ht = 1.5 · 10−3 for
a pulsed and periodic fields, correspondingly. Artificial absorption to smooth large field gradients
in transverse directions leading to algorithm divergence was introduced (Bessonova O.V. et al.,
2010). Its value was selected from the condition for at least seven nodes of the time grid to fit a
shock front at the focus. In this case the absorption was small in near field and increased with the
propagation coordinate. In a focal area, the artificial absorption increased up to tenfold at G = 10

and 40 times at G = 40. The minimum value of the absorption coefficient was B = 5.4 · 10−3.
In numerical simulations, a priori knowledge about focusing geometry was used. For example,

in a focal area the calculation along the transverse coordinate was performed only over the region
where the peak positive pressure exceeded 0.06% of its maximum value.
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§3.3 Effect of a signal waveform on limiting values of shock
wave parameters in nonlinear focused beams

For numerical simulation of focused beams the following parameters in the equation (3.26) were
chosen: G = 10; 20; 40; 0 ≤ N ≤ 6. The peak pressure of p0 = 6 MPa, pulse duration of
T0 = 4 μs, an effective reflector radius a0 = 77 mm, and an effective focal distance F = 128 mm
are typical for the Dornier HM3 lithotripter (Averkiou & Cleveland, 1999) and correspond to the
dimensionless parameters G = 14 and N = 1.4. In the thesis most of the results are presented for
G = 10 and N = 1.0, which are close to the values, typical for the fields of clinical shock-wave
lithotripters. These values are also typical for medical transducers used in noninvasive surgery of
soft tissues (Hill et al., 2002).

Among the most important parameters of acoustic field are the peak positive P+ and peak
negative P− pressures at the focus of the transducer. The peak positive pressure of shock wave
determines the mechanical and thermal effects while the peak negative pressure is responsible for
cavitation. In a case of linear propagations, P+ and P− at the focus are the same for periodic wave
and the pulse (Fig. 3.5). Results of numerical simulations show the difference which occurs in the
nonlinear case.

Figure 3.6 presents two-dimensional patterns of spatial distributions for the peak positive (a,
b) and peak negative (c, d) pressures in a nonlinear beam (G = 10, N = 1.0) for periodic (a, c)
and pulsed (b, d) fields of Gaussian transducer. The distance σ = 1 corresponds to the geometrical
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Figure 3.6: Two-dimensional spatial distributions for the peak positive (a, b) and peak negative (c, d)
pressures in periodic (a, c) and pulsed (b, d) focused fields (G = 10, N = 1.0). White contours show the
boundaries of focal areas. Color indicates the levels of the pressures.
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Figure 3.7: The upper series: ray patterns for periodic (a) and pulsed (b) fields. Rays are shown by solid
lines and shock fronts – by dashed lines. The white dashed line indicates the front position at the point
of its straightening in the paraxial area. Colors indicate levels of the peak positive pressure (G = 10,
N = 1.0). The lower series: waveforms at the source axis of Gaussian transducer at different distances σ
in the cases of periodic (c) and pulsed (d) fields.

focus of the transducer which is located at σ = 0. One can see clearly that greater values of
both peak positive and negative pressures are achieved in a periodic field in comparison with the
corresponding values in a pulsed field. At the same time, the focal region of the peak positive
pressure in a periodic field is more compact in both longitudinal and transverse directions. In
Fig. 3.6 the size of the focal region is determined at e−1 level of the maximum peak pressure in
each case and indicated by a white contour. One can see that focused periodic fields are preferable
for achieving the highest peak positive and peak negative pressures at the focus of the transducer
than pulsed fields.

The focal area of P− is shifted toward to transducer for both periodic and pulsed fields (σ =

0.95) that should be taken into account in describing the cavitation effects. The focal area of P−
has a non symmetrical shape in the form of a dumbbell. For periodic field it has bigger size in
the direction to the source (Fig. 3.6c) while for a pulsed field asymmetry manifests in the opposite
direction [Fig. 3.6(d)]. This difference is due to the fact that there is no rarefaction phase in the
initial pulse profile. It appears only far from the source due to manifestation of diffraction effects.

Figure 3.7 presents ray patterns for periodic (a) and pulsed (b) fields in the case of Gaussian
source with G = 10 and N = 1.0. A dashed line indicates wave fronts that were determined at
each spatial point according to the maximum of the derivative from a waveform at this point. Solid
lines indicate rays plotted as perpendicular to wave fronts in dimensional coordinates. Let us to
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call the location of the maximum for the peak positive pressure P+ as a focus of the transducer.
For a periodic field, the maximum of P+ is achieved approximately at the geometrical focus of
the source (σ = 1.0). In pulsed fields, the maximum of P+ is reached behind the geometrical
focus at σ ≈ 1.1. In the linear case, the maximum of the peak positive pressure for periodic and
pulsed fields is attained shifts to at σ ≈ 0.98 due to diffraction effects (Rudenko & Soluyan, 1977).
Thus, the location of the focus is different in cases of linear and nonlinear focusing and depends
on temporal structure of the signal. Shift of the focus in high-intensity pulsed fields is caused by
nonlinear refraction which is pronounced stronger in pulsed fields than in periodic ones. This is
due to the fact that the shock front formed in an initially harmonic wave stays almost symmetrical
with respect to zero up to the focus and its velocity is almost unchanged.

Waveforms on the axis of the beam at different distances σ from the transducer are presented in
Fig. 3.7(c) for a periodic field. At σ = 0.8 a periodic waveform is still symmetrical with respect to
zero, i.e., the front velocity in the traveling coordinate system is close to zero. The pulse profile at
the same distance σ [Fig. 3.7(d)] is non symmetrical with zero pressure just behind the shock front.
Therefore, the shock front of a pulse propagates faster than the front of a saw-tooth wave. Thus,
the phenomenon of nonlinear refraction manifests strongly for a pulsed field than a periodic one.
The effect of nonlinear refraction in periodic fields is significant only in the focal region, where the
waveform becomes asymmetrical (a waveform at σ = 1.0). For pulsed fields the effect of nonlinear
refraction becomes significant immediately after shock front formation. The waveforms shown at
σ = 1.0 and σ = 1.07 correspond to foci of periodic (c) and pulsed (d) fields, correspondingly.
As one can see, the maximum pressure in the periodic field is higher than in pulsed field and the
pulse duration exceeds duration of a single period of a periodic wave. After passing the focus
(waveforms at σ = 1.2), pressure in both periodic and pulsed fields decreases and the shock front
in the traveling coordinate system is shifted to the left (i.e., it arrives earlier than a linear wave
would) because of the combined influence of nonlinear refraction and diffraction effects.

The white dashed lines in Fig. 3.7(a,b) indicate wavefronts when they become plane in the
paraxial area. The straightening of wavefronts occurs behind the focus and the wavefronts are still
converging in the region, where maxima of the peak positive pressures are reached. Wavefront
straightening in a pulsed field occurs farther from the focus than in a periodic field. This is also
caused by the phenomenon of nonlinear refraction, which pronounces weaker in periodic focused
beams than in pulsed ones.

The characteristic distortion of waveforms at the focus at different values of the nonlinear
parameter N can be observed in Fig. 3.8(a,b). The front position of a periodic wave changes
insignificantly, while the pulse front becomes strongly shifted to the left because of nonlinear
refraction. As the nonlinear parameter N grows, the pulse duration increases while the duration
of one period on a periodic wave does not change but the initially harmonic wave becoming a
saw-tooth wave. At the value of linear focusing gain G = 10 a shock front formation in focal
waveform in both periodic and pulsed fields occurs at N = 0.5. In a weakly nonlinear case (at
N < 0.5) the peak positive pressure in pulsed and periodic fields grows with the increase of the
nonlinear parameter N and then decreases after formation of a shock front (at N > 0.5) due to
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nonlinear absorption. Before formation of a shock front (at N < 0.5), the compression phase of
a pulse is shortened and then at N > 0.5 lengthened vice versa. The rarefaction phase of a pulse
is lengthened monotonically with the increase of N . In a periodic wave, the compression phase
becomes shorter and the rarefaction phase becomes longer as nonlinear effects become stronger.
Nevertheless, these changes are pronounce much more weakly in comparison with the pulsed case.
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Figure 3.8: Waveforms at the focus (at the lo-
cation of the maximum of the peak positive
pressure) for periodic (a) and pulsed (b) sig-
nals with G = 10 and different values of the
nonlinear parameter N = 0.2, 0.5, 1.0, and
3.0. Solid pink lines show waveforms at the
source.

Figure 3.9a presents saturation curves for the
peak positive pressure in periodic and pulsed fields
of Gaussian source. Saturation curves for a peri-
odic field are shown in dashed lines and for a pulsed
field in solid lines. Let one to assume that saturation
is achieved starting from the moment at which the
derivative of a saturation curve is 5% of its maximal
value. In this case for a periodic field saturation of
the peak positive pressure occurs at N = 5 and for a
pulsed field, at N = 1.5. Thus saturation in pulsed
fields occurs earlier than in periodic fields, i.e., at
smaller values of the nonlinear parameter N and
therefore at smaller values of pressure amplitude on
the source. In a weakly nonlinear case (at N < 0.5)
saturation curves for periodic and pulsed fields are
close to each other; i.e., the fields have close val-
ues of positive and negative pressures (Fig. 3.9a,b).
At large values of the nonlinearity coefficient N , the
peak positive pressure and the modulus of the peak
negative pressure in a periodic field are larger than
in a pulsed field. Saturation for the peak negative
pressure is not observed in the interval of studied
parameters N (Fig. 3.9b).

As one can see from Fig. 3.9(a), in the case of saturation for the peak positive pressure in pulsed
fields, the numerically calculated coefficient NP+/G ≈ 1.9. Thus in pulsed fields the limiting
peak positive pressure level predicted by Eq. (3.25) is ≈ 20% smaller than the one obtained by
numerical simulations taking into account diffraction effects. Note that the saturation level of the
peak positive pressure does not depend on value of G, i.e., on the initial duration of the pulse.
Similar phenomenon was predicted by Eq. (3.24).

Analytical expression (3.13) for peak positive pressure at the focus of periodic fields can be
written in a dimensionless form as

NP+/G =
π

ln (2G)
. (3.31)
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The values of saturation pressure obtained using this formula for different values of the linear
focusing parameter G are shown in different colors at the right from the legend in Fig. 3.9(a). As
one can see, at N = 6 the approximate formula of Eq. (3.31) gives a pressure value approximately
three times smaller than the one obtained in numerical calculation for a periodic field.
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Figure 3.9: Saturation curves for the peak pos-
itive (a) and negative (b) pressures. Dashed
lines correspond to the dependencies for a
periodic field and solid lines - to a pulsed
one. Thick light-blue lines show the satura-
tion curves plotted using the approximations
given by Eqs.(3.32)-(3.34). In the plot (a) at
the right from the legend different colors indi-
cate saturation levels calculated using the an-
alytical solution given by Eq.(3.31).

Since saturation curves for the peak positive
pressure [Fig. 3.9(a)] in periodic and pulsed fields
turned out to be almost independent of the diffrac-
tion parameter G, convenient approximations for
saturation curves for a periodic field

NP+/G = min(10N2, 2.15 lg(7N + 1)), (3.32)

and a pulsed field

NP+/G = min(10N2, 0.4 lg(N − 0.28) + 1.64).

(3.33)
can be used. Approximations are shown in Fig. 3.9
by thick light-blue lines. In both fields, the quadratic
increase of the peak positive pressure is observed in
a weakly nonlinear case and then gives place to a
slow logarithmic increase. Precisely this increase
describes saturation.

An analogous approximation was also selected
for estimating limiting values of the peak negative
pressure. Since these values are close in periodic
and pulsed fields identical approximations were se-
lected for both fields. Opposite to the saturation
curves for the peak positive pressure, the values of
the peak negative pressure at the given N depend on
the parameter G

N |P−|/G =
lg [(G/13 + 1.2)N + 1]

G/33 + 0.61
. (3.34)

Figures 3.10 (a,b) show waveforms at different transverse distances ρ from the beam axis at
the distance σ = 0.8 from the transducer. One can see that even at a small distance from the beam
axis (ρ = 0.24) the waveforms are almost undistorted though on the axis the shock front is already
formed in both periodic and pulsed fields.

Larger values of the peak positive pressure in periodic fields [Fig. 3.10(a)] can be explained
qualitatively in the following way. Because of the Gaussian spatial apodization of pressure ampli-
tude at the source, the peak pressure in the center wave is higher than in the wave coming from
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the source periphery. Since nonlinear effects manifest stronger for waves with larger amplitudes,
the waves coming from the source periphery are distorted much weaker than shock central waves
[Figs. 3.10(a,b)]. In nonlinear periodic fields, waves from the center of the source and its periphery
are focused almost to the geometrical focus of the source (Fig. 3.11). Increasing of the pressure
amplitude on the source leads to saturation effect for a center wave but not for waves coming from
the source periphery: they are always linear. This is the reason that the saturation curve for a peri-
odic field in the range of the studied parameters does not stabilize at a constant level and the value
of the peak pressure in the focus continues to grow slowly [Fig. 3.9(a)].
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Figure 3.10: Waveforms at different transverse
distances ρ to the beam axis at σ = 0.8 in the
cases of periodic (a) and pulsed (b) fields gen-
erated by a Gaussian source.

In contrast to periodic fields, the phenomenon
of nonlinear refraction is very significant in pulsed
fields. Waves from the central part of the source
are focused behind the geometrical focus due to
nonlinear refraction, while weaker waves from the
beam periphery still come approximately to the ge-
ometrical focus of the source (Fig. 3.11). Thus, in
distinction to a periodic field, in a pulsed field the
waves from the central part of the source and from
the source periphery are focused at different points
and, therefore, they do not amplify each other. This
leads to the fact that, in pulsed fields, a saturation
curve stabilizes at a constant pressure level lower in
comparison with pressure in periodic beams with
the same pressure amplitude at the source. Thus
limitation of the peak positive pressure in pulsed
fields is caused by the phenomenon of nonlinear
refraction.

Figure 3.12 presents the dependencies of the
beam energy on the distance σ from the source in
periodic (a) and pulsed (b) focused fields at differ-
ent values of the nonlinear parameter N = 0.2, 0.5, 1.0, and 3.0. The energy of a pulsed field at

Waves coming from
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Waves coming from

the source periphery

Pulse

Center wave

Center wave

σ

Periodic wave

Figure 3.11: Focusing waves coming from the central part of the Gaussian source and from its periphery.
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an arbitrary distance from the source was calculated as an integral over a time window and over
the beam aperture in squared pressure at each point. Then the energy was normalized to its initial
value. The energy over a single period was calculated as the energy of a periodic wave and also
normalized to its initial value

E

E0
=

∫∫
p2

p20
adadt. (3.35)
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Figure 3.12: Dependencies of the beam en-
ergy on propagation distance σ for the peri-
odic waves (a) and pulses (b) calculated with
different values of nonlinearity N = 0.2, 0.5,
1.0, and 3.0.

One can see from Fig. 3.12 that near the source
the energy of periodic and pulsed beams remains
constant. Then, starting from the distance σ corre-
sponding to the length of shock formation in wave-
forms at the beam axis, the energy starts to decrease
due to nonlinear absorption in shocks. It is well
known that in a plane nonlinear wave the energy
of a pulsed signal after shock formation decreases
with the distance as 1/σ and the energy of a periodic
field decreases faster as 1/σ2 (Rudenko & Soluyan,
1977). In this case the effect of pressure satura-
tion is observed in a plane periodic wave, while
there is no saturation for a pulsed signal (Rudenko,
1995,Rudenko & Sapozhnikov, 2004). In the case of
a focusing, the energy of a periodic field decreases
with the distance also faster than the energy of a
pulsed nonlinear field (Fig. 3.12). Thus nonlinear
absorption is pronounced stronger in focused peri-
odic nonlinear fields than in pulsed ones. This al-
lows one to conclude that the main mechanism lead-
ing to saturation in focused periodic fields is nonlin-

ear absorption. The effect of nonlinear refraction in significant only in a very small region near the
focus and is insignificant on the whole. For pulsed fields the main mechanism of saturation of the
peak positive pressure is nonlinear refraction.

Note that despite the fact that the energy of a periodic beam decreases faster, the maximum
attainable value of the peak positive pressure in a periodic field is higher than that in a pulsed one.
These peculiarities of nonlinear propagation provide a possibility to use beams of pulses for more
effective delivery of the wave energy to the focal region, and periodic waves - to achieve higher
values of the pressure amplitude in the focus.
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§3.4 Effect of source apodization on spatial structure and
limiting values of shock wave parameters in nonlinear fo-
cused beams

In a previous section it was shown that spatial structure and limiting values of acoustic parameters
of focused fields depend on the signal temporal structure. Results of numerical simulations demon-
strate that parameters of acoustic field are also strongly dependant on the distribution of the pres-
sure amplitude on the source (or so-called source apodization). In a current section, Gaussian and
uniform (piston) apodizations of the source are considered since they are the most widespread and
corresponded to real transducers used in medicine (Hill et al., 2002, Bailey et al., 2003, Averkiou
& Cleveland, 1999).

Figures 3.13 and 3.14 demonstrate two-dimensional spatial distributions of the peak positive
(Fig. 3.13) and peak negative (Fig. 3.14) pressures in the case of focused periodic (a, c) and pulsed
(b, d) fields produced by sources with Gaussian (a, b) and uniform (c, d) apodizations. Sizes of
focal areas are shown in white solid lines and were determined by level of e−1 from peak pressure
maximuma in each field. Differences in all four cases are clearly observed: for Gaussian source
focal areas of peak pressures are 2–3 times narrower along the propagation direction σ than in the
case of piston source. This is due to the fact that in fields produced by Gaussian sources, the shock
formation occurs only in the central part of the beam where pressures are higher than in periphery.
Waves from source periphery are coming in geometrical focus in Gaussian fields. Focusing of
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Figure 3.13: 2D spatial distributions of the peak positive pressure in cases of a Gaussian source (upper
series a, b) and piston source (lower series c, d). Distributions in left column (a, c) correspond to the
periodic field while the right column (b, d) - to the pulsed field. White solid lines indicate sizes of focal
areas. White dashed lines show the plane of the geometrical focus. Distributions are plotted for G = 40,
N = 1.0.
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Figure 3.14: 2D spatial distributions of the peak negative pressure in cases of a Gaussian source (upper
series a, b) and piston source (lower series c, d). Distributions in left column (a, c) correspond to the
periodic field while the right column (b, d) - to the pulsed field. White solid lines indicate sizes of focal
areas. White dashed lines show the plane of the geometrical focus. Distributions are plotted for G = 40,
N = 1.0.

the edge wave of the piston source occurs nonlinearly that enhances the effect of the nonlinear
refraction and increases sizes of the focal area.

Note that the transition of the source apodization from Gaussian to the uniform one changes
the structure of both periodic and pulsed fields. In periodic field, oscillating structure caused by
interference of the central and the edge waves appears [Figs. 3.13, 3.14 (c)]. In pulsed fields, there
are no spatial oscillations but nonlinear effects become significant not only for the central wave
but also for the edge wave.

Consider on-axis structure of nonlinear pulsed field produced by a focused piston source. In
Figs. 3.15, 3.16 distributions of peak positive and peak negative pressures are shown for different
values of the nonlinear parameter N . In the case of moderate focusing (Fig. 3.15, G = 10), the
increasing of the pressure amplitude on the source shifts the on-axis maximum of P+ away from
the source while the shock formation is not occurred. After formation of the shock front, focus
of P+ shifts in opposite direction, i.e., towards to the source. The trajectory of the focus is a
loop (Fig. 3.15). Focus displacement of P+ away from the transducer is caused by the effect of
nonlinear refraction. After shock is formed, nonlinear absorption becomes significant and focus
moves back to transducer. In the case of Gaussian source, focal area of P+ of pulsed field moves
away from the source in the whole range of N . Difference in trajectories indicates that nonlinear
refraction defocusing the beam is prevailing in Gaussian fields. For a piston source the structure
of the focal area is determined equally by both nonlinear refraction and nonlinear absorption. This
is due to the fact that nonlinear effects in Gaussian fields are significant only in paraxial part of
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Figure 3.15: Distributions of peak positive P+ and peak negative P− pressures on the axis of the piston
source in pulsed field at G = 10. Values of nonlinear parameter N are shown on the legend to Fig.3.16.
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Figure 3.16: Distributions of peak positive P+ and peak negative P− pressures on the axis of the piston
source in pulsed field at G = 40.

the beam with high pressure levels; while for a piston source nonlinear effects play significant role
over the whole surface of the transducer.

Interesting features are observed for strong focusing of pulsed field when the influence of
nonlinear refraction becomes more significant. In fig. 3.16, on-axis distributions of peak pressures
are shown for a piston source at G = 40. Before the shock formation, shift of the focus of P+ is
negligible and a displacement from the geometric focus (σ = 1) is about 3% of the focal length.
However, after shock is formed in a pulse profile, the focal region broadens and reaches in the
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longitudinal direction 30% of the focal length. The peak positive pressure remains constant along
the whole focal region: starting from N = 0.6 distributions in the region of the maximum of P+

contain a plateau (Fig. 3.16).
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Figure 3.18: A single period of periodic wave
in the area of the peak (G = 40, N = 0.5).

If nonlinear effects are strongly pronounced
(curve for N = 2.0 in Fig. 3.16) a maximum of
P+ is reached before the geometrical focus since
nonlinear absorption of energy on the shock front is
significant. Then there is a very gradual decline in
the peak positive pressure due to the appearance of
nonlinear refraction. Thus, nonlinear effects signifi-
cantly change the distribution of peak positive pres-
sure compared to the linear case. Changes in the
distribution of the peak negative pressure P− with
an increase of the pressure amplitude on the source (parameter N) is also quite strong, but it is
more predictable: the focal area of P− is slowly shifted to the source, |P−| is monotonically de-
creased. (Figs. 3.15, 3.16).

To analyze the focusing efficiency of periodic and pulsed fields produced by Gaussian and
piston sources, let one compare acoustic fields with the same focusing angle (parameter G) and the
same pressure amplitude p0 on the source (parameter N). Note that such comparison describes not
fully equivalent cases since the piston source at the same pressure amplitude p0 will be powered
more than a Gaussian source. However, the choice of the same pressure amplitude p0 on both
sources is caused to the same waveforms and peak pressures at the focus in the linear case for all
four acoustic fields. In this way periodic and pulsed fields generated by a Gaussian source were
compared in the previous section.

In Fig. 3.17, axial distributions of peak pressures P+ and P− are presented for all four cases
mentioned above. Dashed lines correspond to curves for periodic field, solid lines correspond to
pulsed field. Curves for a Gaussian source are shown by dark-blue color and curves for a piston
source are shown by red color. Distributions are given for two values of diffraction parameter
(G = 10 and G = 40) in cases of linear propagation N = 0.0 (a, b); nonlinear propagation at
N = 0.5 (c, d) when shock is just formed for Gaussian fields; and in a case of strong nonlinearity
at N = 1.0 (e, f) when shocks are developed for all fields. It is clearly seen that regardless the
source apodization and manifestation of nonlinear effects, in periodic fields levels of P+ and |P−|
are higher than in pulsed fields [Fig. 3.17(c–f)]. Thus, focusing of periodic fields is preferred
for achieving highest peak pressures. The second important feature is wider focal area in fields
produced by a piston source compared to size of focal area in Gaussian fields. This feature is
observed already in a linear case.

If the goal of focusing is to focus the acoustic beam in the focal region of the small size, one
should use a focused periodic field of a Gaussian source. Periodic fields produced by a piston
source contain sharp and narrow peaks in the distribution of P+ in the region before focus: an
example of such structure is clearly visible in Fig. 3.17(d). The reason for the formation of these
peaks is a merger of two shocks in one period of a periodic wave to one shock front and, as
a consequence, a sharp increase in the nonlinear absorption and rapid attenuation of the peak
amplitude (see Fig. 3.18).
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In strongly nonlinear focused fields [Fig. 3.17
(d,f)] produced by a Gaussian source, peak pres-
sures for periodic and pulsed fields are higher than
in the case of piston source. The reason is more
stronger manifestation of nonlinear effects for a
piston source: nonlinear effects are significant
along the whole transverse coordinate which leads
to stronger nonlinear absorption of energy and to
lower values of peak positive pressure at the focus
than in Gaussian fields. Thus, transducers with
Gaussian apodization are better suited to achieve
highest peak pressures in a small focal area than
piston sources.

Saturation curves of peak positive and neg-
ative pressures in the case of piston source are
shown in Fig. 3.19. In contrast to ones obtained in
Gaussian fields [Fig. 3.9(a)], saturation curves for
a piston source are no more superimposed for dif-
ferent values of the diffraction parameter G. This
means that limiting values of peak pressures for a
piston source depend on either pulse duration or

the frequency of the harmonic wave. For a case of G = 40 the peak positive pressure in pulsed
field reaches the saturation immediately after the formation of the shock front.

Saturation curves for peak negative pressure for periodic and pulsed fields differ no more than
35% [Fig. 3.19(b)]. Levels of |P−| in fields produced by a piston source are below corresponding
levels of |P−| in Gaussian fields [Fig. 3.9(b)].

§3.5 Interaction of shock fronts in nonlinear focused acous-
tic beams

As shown in the previous section, during the propagation of acoustic wave shock fronts of the
same wave can interact with each other (Fig. 3.18). To observe this phenomenon for periodic
waves, the shock formation should occur in the penultimate pressure maximum on the transducer
axis, then in the region of the main maximum central wave interferes with an edge wave. The
edge wave is reverse polarity wave, in which shock is formed in another part of the profile. As a
result, the formation of two shocks in the single period of the wave occurs and their interaction is
observed (Khokhlova et al., 2001). In the numerical simulations performed in this study, similar
phenomenon was also observed in nonlinear focusing of pulsed fields produced by a piston source
and oscillating near field was found absent. Such interaction of fronts in space, not in time, will
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Figure 3.20: Mach stem formation in the focused beams of periodic waves [(a)-(c)] and bipolar pulses
[(d)-(f)]. (a), (d) Temporal pressure waveforms at different transverse distances ρ from the beam axis. (b),
(e) Temporal derivatives of the pressure waveforms shown on (a) and (d) correspondingly, i.e., numerical
schlieren images. The darker greys indicate higher values of the derivatives. (c), (f) Initial waveform and
waveforms at different radial distances ρ from the axis indicated by arrows in (b) and (e) correspondingly.

be similar to the Mach stem formation described in detail in the previous chapter. This paragraph
will be devoted to this phenomenon.

It is interesting that attempts to ’find’ in numerical simulations the spatial structure similar to
the Mach stem were not successful in fields produced by Gaussian source regardless the temporal
structure of the signal. The Mach stem formation does not occur in fields of Gaussian source. This
is caused by the absence of the interaction of two shocks, for Mach stem formation the edge wave
should contain the shock front. In the case of Gaussian source the edge wave is always linear. Also
it was impossible to ’find’ the Mach stem formation in the focal area of piston source generated
pulses without pronounced rarefaction phase (for example, for pulse shown in Fig. 3.5(a)). There-
fore, nonlinear focused fields of harmonic wave and bipolar pulse produced by piston source were
chosen for the study.

First, consider results of modeling obtained at G = 10 and N = 1 for nonlinear propagation
of focused periodic acoustic waves [Figs. 3.20(a)-(c)]. It is clearly seen that the spatial structure
of the wave front is very similar to the von Neumann reflection: it contains one front intersecting
the beam axis (the Mach stem) further dividing into two fronts at each distance from the axis
[Figs. 3.20(a) and (b)]. A continuous slope can be seen between the focusing front and the Mach
stem that distinguishes the von Neumann reflection regime. Note that the Mach stem structure
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corresponds to one shock in one period of the wave [Fig. 3.20(c), waveform 1], while there are
two shocks in one period of the wave away from the axis at ρ = 0.016 [Fig. 3.20(c), waveform 2].
In (Khokhlova et al., 2001) it was shown that for the two shock structure in one period of the
harmonic wave, the higher shock is coming from the edge of the source, and the lower shock
is coming from its central part. The formation of the Mach stem structure in the focal area of
acoustic beams is thus the result of nonlinear interaction of shock fronts of the edge and central
waves. These two fronts merge, because the velocity of the shock depends on its pressure, the
higher shock in the waveform propagates faster than the lower shock. These two shocks collide
and the Mach stem forms in the beam region close to the axis.

In pulsed beams, the edge wave starts to collide with the central wave at the end of the pulse,
therefore the second shock front and Mach stem structure form within an initially negative phase
of the bipolar pulse [14 < Θ < 16 in Figs. 3.20(d) and (e)]. The front pattern in this case also
resembles the von Neumann reflection with continuous slope between the fronts of the central
wave and the Mach stem [Fig. 3.20(d)], but the front structure is blurred [Fig. 3.20(e)]. Smearing
of the front structure occurs since the edge wave in the pulsed fields is smoother than in the periodic
fields [Fig. 3.20(f), rear shocks of waveform 2 and waveform 3] and thus the values of the pressure
derivative are less. When the edge wave front merges with that of the central wave, they turn into
a sharp shock and provide the excess of the pressure amplitude on the rear shock [Fig. 3.20(f),
waveform 1]. This excess of the pressure is clearly observed as the white area in [Fig. 3.20(d)] at
the location of the Mach stem structure.

Thus, numerical simulations based on the KZK equation for nonlinear periodic and pulsed
acoustic beams in water showed a process analogous to the Mach stem formation. The structure of
the front patterns in the focal region of the beam resembled to the von Neumann reflection as the
result of interaction between the edge and the central waves coming from the source. For pulsed
beams the effect occurred only for the rear shock of the pulse. In periodic fields generated by a
piston source the Mach stem formation occurs at less values of nonlinear parameter N (i.e., at less
pressure amplitudes on the source) than in the case of pulsed field.

§3.6 Conclusions

The chapter describes the effects of nonlinear saturation in focused beams of periodic waves and
pulses generated by Gaussian and piston sources. Numerical simulations were based on the axial
symmetric KZK equation. It is shown that in periodic fields the saturation of the peak positive
pressure is mainly due to the effect of nonlinear absorption at the shock front. In acoustic fields of
single pulses the main mechanism of saturation is the nonlinear refraction. The level of the peak
positive pressure in the periodic field, achieved at the focus, appeared to be higher than that of the
single pulse. The total energy of the beam of the periodic wave, however, decreases much faster
with the distance from the source than that of the single pulse. These nonlinear propagation effects
propose a possibility to use pulsed beams for more effective delivery of the wave energy to the
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focal region while periodic waves are preferable to use for achieving higher peak pressures at the
focus. Also it was shown that the formation of the Mach stem could be observed in the focal area
of piston source in fields of periodic waves and bipolar pulses; and could be described using the
KZK equation.
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Chapter 4

Characterization of nonlinear focused
ultrasound fields of new medical devices

§4.1 Introduction
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Figure 4.1: Profiles of shock pulses mea-
sured at the focus of lithotripters Dornier
HM3 and Storz SLX. The figure is taken
from (Cleveland & McAteer, 2012).

Focusing of shock pulses is an important problem of non-
linear acoustics since focused shock waves are widely
used in medical applications. Lithotripters are among the
first medical devices which uses shock pulses in clinical
practice. For about 30 years lithotripters are used for de-
struction of kidney stones (Hill et al., 2002,Bailey et al.,
2003). There are three types of lithotripters: electrohy-
draulic, electromagnetic, and piezoelectric (Cleveland &
McAteer, 2012). Classification is based on the method
of the pulse excitation. The shock front in the initial pro-
file of the generated pulse is contained only in fields of
electrohydraulic lithotripter; the principle of its action is
based on creating an electrical discharge in one of the
foci of the elliptical reflector. Pulses generated by electromagnetic and piezoelectric sources ini-
tially do not contain shocks. In these cases, formation of the shock front occurs while pulse prop-
agates and is caused by nonlinear effects pronounced due to high pressure levels.

Examples of waveforms measured at the foci of electrohydraulic (Dornier HM3) and electro-
magnetic (Storz SLX) lithotripters are shown in Fig. 4.1. Typical parameters of pulses used in
lithotripsy are following: peak positive pressure is in the range from 30 to 110 MPa, peak negative
pressure is from -20 up to -5 MPa, and a duration of pulses is several microseconds (Cleveland &
McAteer, 2012).

Extracorporeal shock wave therapy (ESWT) is another important medical application of shock
pulses. Since the beginning of the 90s ESWT is used for noninvasive treatment of multiple muscu-
loskeletal disorders such as tendonopathies, plantar fasciitis, lateral epicondylitis, pain after joint
replacement, bedsores, etc (Kudo et al., 2006, Rompe et al., 2003, Gerdesmeyer et al., 2003, Fu-
ria, 2005, Rompe, 2004, Steinberg, July 2006). Therapeutic effects induced by ESWT include a
growth of blood vessels in a sore (angiogenesis effect) (Ito et al., 2009); osteogenesis effect (new
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bone formation) (Endres et al., 2008); and antinociceptive effect (Wang, 2003,Ohtori et al., 2001)
(Fig. 4.2). After ESWT procedure, a patient feels less pain, a possibility of movement in joints
appears, local metabolism becomes improved, and blood circulation is restored in tissue.

Biological effects of ESWT

angiogenesis osteogenesis antinociceptive
effect

induction of
blood vessel

growth

induction of bone
formation

analgetic action

Figure 4.2: Biological effects of ESWT; X-ray of
healing of fractures is taken from (Endres et al.,
2008).

Although ESWT is used clinically and
refers to the use of focused shock waves, phys-
ical mechanisms of ESWT action on bones
and tissues are not fully understood (Cleve-
land et al., 2007). It is believed that one of
the ESWT actions based on the cavitation ef-
fect on the boundary of two media. Acoustic
impedances of water and soft tissue are almost
the same and significantly less than acoustic
impedance of bone. As a result, propagating

pulses almost do not damage soft tissues but have a direct effect on the bone. When fractures grow
together slowly or false joints are formed, powerful pulses destroy the surface layer of the bone.
Micro-cracks and a large number of tiny fragments of bone are formed. Stimulation of bone for-
mation (osteogenesis) occurs and a blood supply in the fracture zone is improved (Steinberg, July
2006). A lot of clinical studies have shown high efficiency and effectiveness of the ESWT (Endres
et al., 2008, Wang, 2003, Kudo et al., 2006, Rompe et al., 2003, Gerdesmeyer et al., 2003, Furia,
2005, Rompe, 2004, Steinberg, July 2006, Ohtori et al., 2001). However, there are a number of
works (Brown et al., 2005, Buchbinder et al., 2002, Haake et al., 2002) which state that the posi-
tive effects of ESWT is a placebo effect while there are no therapeutic effects. The reason of this
disagreement is not full understanding of the physical and biological mechanisms of ESWT action
on biological tissues and lack of optimal treatment protocols for each of the diseases and for each
available device (Cleveland et al., 2007). If a treatment protocol is not sufficient the therapy has
no effects.

ESWT devices use the same methods of shock waves generating as lithotripters use. However,
there are also pneumatic (or ballistic) ESWT devices which are considered to be the most inex-
pensive and reliable (Cleveland et al., 2007). ESWT uses longer pulses than lithotripsy does: their
duration is about 20 μs in contrast to 5 μs in lithotripsy; peak positive pressures vary from 4 MPa
up to 40 MPa depending on the particular device model; peak negative pressures are in the range
from -20 MPa up to -4 MPa.

Pneumatic and electromagnetic ESWT devices are the most common in clinical practice. Acous-
tic fields generated by pneumatic ESWT device were studied by Cleveland (Cleveland et al., 2007)
for the model EMS Swiss Dolorclast Vet (Fig. 4.3a) used in veterinary practice. The emitter of this
model is equipped with radial (unfocused) and focusing applicators. However, measurements of
the field indicated that focused applicator on clinically significant distances (up to 12 cm from the
source) has qualitatively the same field structure as unfocused applicator has. This was explained
by too large focusing distance of the focused applicator. Pressure waveforms measured in water at
a distance of 1 cm from transducer are shown in Fig. 4.3 (b, c) for both applicators. Waveforms are
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Figure 4.3: (a) Pneumatic ESWT device, model EMS Swiss Dolorclast Vet. (b), (c) Pressure waveform
measured in water at a distance 1 cm from the source for unfocused and focused applicators, correspond-
ingly. Figures are taken from (Cleveland et al., 2007).

strongly different from ones used in lithotripsy (Fig. 4.1): they don’t contain typical for lithotripsy
pressure jump with a shock front at the beginning of the pulse.

In this chapter of the thesis the acoustic field of a clinical ESWT device (Duolith SD1 T-Top
produced by Storz Medical, Switzerland) is characterized in water using a combined measurement
and modeling approach.

Device Duolith SD1 is used in orthopedics, cosmetology, and neurology. The Duolith SD1
T-Top device has dual modes of operation, one called "focused shock wave therapy" (focused
electromagnetic head), and the other one is "radial shock wave therapy" (ballistic head). Radial
mode is used for the treatment of diseases with shallow location or required low energy surface
treatment. Focused therapy is used for the treatment which requires deeper penetration. Fig. 4.4
demonstrates how the treatment of a heel spur and tennis elbow occurs using the focused therapy
head (figures and acoustic parameters of generated pulses are taken from technical specification
sheet of Duolith SD1).

Focused fields of electromagnetic ESWT devices are more intensive compared to ones of pneu-
matic devices, therefore, nonlinear effects in case of electromagnetic sources are more substantial.

heel spur tennis elbow

Noninvasive treatment for muskuloskeletal
disorders by uolith SD1D

Parameters of ESWT medical device Duolith SD1

focus

F

4
0
 m

m

Parameters: aperture size mm40 ,
500-2000 1-8 ,pulses with repetition freq. Hz

2-4focusing gain times
0.15-0.35 / ,flux energy mJ mm

2

.transducer is axis-symmetric

Figure 4.4: Noninvasive treatment for orthopedic disorders using ESWT device Duolith SD1 (Storz Med-
ical, Switzerland). Figures and acoustic parameters of generated pulses are taken from technical specifi-
cation sheet of Duolith SD.
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Chapter 4. Characterization of nonlinear focused ultrasound fields of new medical devices

At the moment, the presence of shock front in pulses produced by electromagnetic ESWT devices
remains unknown; this problem is studied in section §4.2 using methods of numerical simulations.

2,3 MHz
Philips C5-2

Figure 4.5: Use of acoustic radiation force to push
kidney stones. Diagnostic probe Philips C5-2 con-
trolled by Verasonics is used for the procedure.

Another new promising medical applica-
tion of focused shock pulses is a treatment of
kidney stones by pushing small stones from
the kidney using an acoustic radiation force
(Fig. 4.5) (Shah et al., 2010). Formation of kid-
ney stones (nephrolithiasis) is a common uro-
logical disease, which affects about 10% of the
population during their lifetime. Nephrolithia-
sis may be asymptomatic and detected only at
the time of examination of the body in cases
of suspected other diseases. However, in the
85% cases kidney stones are beginning to move
from the kidneys through the ureters into the
bladder causing a blockage of the ureter and

severe pain attacks (renal colic). Patients describe renal colic to be extremely painful. Every
year thousands of operations to remove kidney stones are held. Mentioned above lithotripsy is
the medical procedure that is widely used for extracorporeal removal of kidney stones. It utilizes
high-energy focused shock pulses to break stone into small fragments which can pass from the
body in a natural way. However, remaining of residual stone fragments in the lower pole of the
kidney is a common problem confronted by urologists and documented in 21%-59% of patients
who underwent lithotripsy (Osman et al., 2005).

Ultrasonic propulsion of kidney stones is a new stone management technique being under de-
velopment. It uses a diagnostic ultrasound probe to create a real-time B-mode image and to gen-
erate a pulse to move the kidney stone out of the kidney with acoustic radiation force (Fig. 4.5).
Ultrasonic propulsion could be an alternative extracorporeal procedure to remove small kidney
stones by pushing them toward ureter; or effective method to facilitate passage of stone fragments
after lithotripsy.

Preliminary investigative clinical results of ultrasonic propulsion have been successful and the
displacements of kidney stones pushed by acoustic radiation force were fixed in experiments in the
porcine model (Shah et al., 2012). Recently, the method has been successfully tested on patients
volunteers who were waiting for a lithotripsy procedure (Hickey, January 10, 2014). In preliminary
experiments, the pushing of kidney stones were produced by a standard diagnostic probes (Philips
ATL HDI C5-2 and ATL HDI P4-1) generated long millisecond pulses at the highest possible
applied voltage. Physical principles and treatment protocols are still not developed for this new
technology.

This chapter of the thesis is devoted to investigation of nonlinear effects in the fields of mod-
ern diagnostic (Philips C5-2 probe) and ESWT (Duolith SD1) medical devices. The combined
measurement and modeling approach (Kreider et al., 2013, Canney et al., 2008, Bessonova &
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Wilkens, 2013) was used to describe the field structures. The approach is based on using low
power measurements to set boundary condition in numerical model (Perez et al., 2013, Karzova
et al., 2013, Karzova et al., 2015a). Experiments were performed in the Center for Industrial and
Medical Ultrasound (CIMU), University of Washington, Seattle. The author was participated in
planning of experiments, data processing and discussion of obtained data.

§4.2 Nonlinear effects in acoustic field of a clinical shock
wave therapy device Duolith SD1

4.2.1 Measurements of pressure waveforms by a fiber optic probe hydrophone
in water

therapy head

FOPH

water tank

5 mm

Figure 4.6: Measurements of pressure
waveforms at the plane located 5 mm far
from the source.

Experiments were performed in CIMU by its former PhD
student Camilo Perez (Perez C., 2015).

Measurements were performed on the portable
Duolith SD1 T-Top (Storz Medical AG, Tägerwilen,
Switzerland) ESWT device that uses a focused electro-
magnetic source. The electromagnetic source was cou-
pled with the standoff of 20 mm radius that contains
the oil bag attachment to the membrane of the therapy
head. The therapy head was located outside the water
tank (31 cm long×18 cm deep ×18 cm wide) and was coupled to the tank via a tegaderm win-
dow and coupling gel (Fig. 4.6). The maximum degassed level 8% O2 was at room temperature.
Measurements of the acoustic field were performed in water using a 3D computer-controlled posi-
tioning system (Velmex NF90, Bloomfield, NY) and a fiber optic hydrophone (FOPH 2000, RPI,
Acoustics, Germany; the fiber tip was 100 μs in diameter). The focal length of therapy head was
set F = 30 mm; the machine pulse repetition frequency was ranged from 1 to 8 Hz.

Alignment of the FOPH to the acoustic field was done by performing a raster scan in two
separate planes: One plane intersected the acoustic axis at the focus, with the maximum pressure
at the center. The other plane was distal to the first. The beam axis was found as a line crossing the
pressure maxima of the two planes. The FOPH was positioned parallel to the axis x of the beam.
Radial symmetry of the field emitted from the device was confirmed after initial experiments.

4.2.2 Setting a boundary condition in a model using a method of an equiva-
lent source

To set a boundary condition in numerical model the method of equivalent source was applied (Krei-
der et al., 2013,Canney et al., 2008,Bessonova & Wilkens, 2013,Perez et al., 2013,Karzova et al.,
2013, Karzova et al., 2015a). The method consists in using of experimental data to set parameters
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Figure 4.7: (a),(b),(c) Radial scan waveforms in a plane 5 mm from the standoff at radial distances r = 0,
7 and 14 mm, respectively. Typical measured waveforms are shown in blue, the waveforms after averaging
in red, and the numerical tails added to each waveform are shown in black. (d) The red curve shows the
decreasing pressure amplitude with radial distance. Additional waveforms were introduced from 14 mm
to 20 mm with the amplitude shown in green color.

of so-called ’equivalent source’, which generates the same acoustic field as the real transducer. In
experiments, pressure waveforms were measured radially in a plane as close to the therapy head
as possible for the existing experimental arrangement, which was approximately 5 mm from the
standoff (Fig. 4.6). The waveforms were measured from the beam axis at r = 0 up to the radial
coordinate r = 14 mm. Although the standoff radius was 20 mm, measurements at distances
14 < r < 20 mm were not collected because of low signal-to-noise levels. A total of 71 wave-
forms were measured with a spatial step 0.2 mm, time step 2 ns and duration 20 μs. Signals were
sampled at 500 MSample/s and each waveform was averaged over 20 individual waveforms. These
data were used to set a boundary condition for numerical modeling of the ESWT field.

Representative examples of averaged waveforms collected from the experiment for setting the
boundary condition are shown in Fig. 4.7 (a,b,c) in blue. In order to make them applicable for the
numerical simulations it was necessary 1) to reduce the noise level in the measured signal; 2) to
add the tail to each waveform for zero mean value of the signal (which is necessary for fast Fourier
transform (FFT) in numerical simulations); 3) to change the spatial step of the grid for boundary
condition; 4) to add waveforms in the radial scan from 14 mm to 20 mm from the axis. Each
procedure is described below in more detail.

Reducing the noise level in measured waveforms

To facilitate the modeling effort, each experimental waveform was numerically smoothed to reduce
the noise level in the measured signal. To avoid decreasing the signal amplitude in the smoothing
process each waveform was divided into two parts. The first part contained the region around the
maximum of the peak positive pressure (within 1.25 μs) and the second part contained the other
smoother parts of the pulse. The first part was numerically smoothed 3 times over 5 points that
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4.2. Nonlinear effects in acoustic field of a clinical shock wave therapy device Duolith SD1

allowed for keeping the same amplitude level. The second part of the signal was smoothed 3 times
over 30 points. The resulting smoothed waveforms are also shown in Fig. 4.7 (a,b,c) in red.

Requirement of zero mean value of the waveform

The general properties of the solution to the KZK equation yield that the time integral over the
pulse must be equal to zero, as the zero frequency component in the FFT series expansion of the
signal is eliminated by diffraction. To ensure that the pulses used for the boundary condition satisfy
this requirement, a tail of Δt = 30 μs duration was added at the end of each pulse as

p(t∗) = p1 cos
2 (πt∗/2Δt)− (p1 +

2S

Δt
) sin2 (πt∗/2Δt) . (4.1)

Here p1 is the pressure value at the last measured time point of each waveform, t∗ is time counted
from this last point, S is the integral over the averaged waveform. The absolute value of the
maximum pressure in the tail did not exceed 1.6 MPa, i.e., it was of the same order as the level
of noise in the measured waveforms (±0.7 MPa). The tails adding to waveforms are shown in
Fig. 4.7 (a,b,c) as black lines.

Changing steps of the grid

The radial step in the numerical modeling was further refined by adding 36 waveforms in between
each two experimental waveforms. Each of these 36 additional waveforms was obtained by linear
interpolating the pressure for each time point in the neighboring experimental waveforms. The
coefficients for interpolation were i/36 and (1 − i/36) where i is the number of an additional
waveform between the two experimental ones. As a result, the radial step was refined to 5.4 μ m
instead of 0.2 mm in the experiment.

With the numerically added tail, the number of time points increased to 25000, with a time step
of 2 ns. A requirement for FFT version used in our simulation program5 is setting the number of
time points as a power of 2. In order to satisfy this requirement the number of time points was
increased up to 32768 by padding the signals with zeros.

Adding waveforms at the edges of the source

To account for non-measured waveforms in the radial coordinate from 14 mm to 20 mm from the
axis, additional waveforms were numerically introduced in the boundary condition by taking the
very last radial waveform obtained at 14 mm and exponentially decreasing its amplitude along the
radial coordinate with a linear time delay that followed the overall geometry of the measured field.
The decrease in the pressure amplitude along the radial coordinate is shown on Fig. 4.7(d) as a
red line, additional waveforms were introduced with the amplitude shown in Fig. 4.7(d) by a green
line.

Obtained using the method of equivalent source boundary condition is shown in Fig. 4.8 and
was used in the modeling of KZK equation. Here, the time-axis of the signals is shifted by 32
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μs, so that its beginning corresponds to t = 0. In the simulations, boundary condition was set in
the window of 65.5 μs × 43.2 mm. Not shown in Fig. 4.8 part of boundary condition was equal
to zero. One can clearly see that the profiles have a different time delay depending on the radial
coordinate r, which will provide the focusing of the beam in the simulations.

4.2.3 Numerical modeling based on the KZK equation
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Figure 4.8: Boundary condition map for the
modeling algorithm.

The KZK equation (3.26) with the boundary condi-
tion described above (Fig. 4.8) was simulated using
an algorithm previously described in detail in sec-
tion §3.2. The parameters for the modeling were:
16384 harmonics, 32768 time-steps, 65.5 μs time
window, 2 ns time step, 43.2 mm radial window,
8000 radial grid points, 5.4 μm radial step, and
0.11 mm axial step.

4.2.4 Comparison of data obtained in
measurements and nonlinear modeling

Numerical simulations of ESWT device Duolith
SD1 were performed in wide range of supplied power. First, consider structure of the acoustic
field corresponding to the boundary conditions obtained from the experiment - this situation cor-
responds to supplied power used in clinical practice. To confirm the validity of the numerical
simulations, a series of measurements of pressure profiles was further conducted along the beam
axis and in the transverse direction in focal plane at F = 30 mm.
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Figure 4.9: Axial distribution of the measured peak
positive and peak negative pressures (black circles)
compared to the modeling results (red line). Blue
dash line corresponds to the position of the therapy
head of the standoff.

A comparison of the measurement and
modeling results for peak positive and negative
pressures along the axis is shown in Fig. 4.9.
Experimental results are shown by black cir-
cles and numerical results by red lines. The
position of the therapy head is marked by blue
dashed line. Modeling results are in a good
agreement with the experimental data for the
peak positive pressure and there are some dis-
crepancies for the peak negative pressure, but
they are all within the experimental error. It
was observed that the maximum of the peak
negative and positive pressures were achieved
in different spatial locations: at x = 29 mm

away from the therapy head for p+ and at x = 12 mm for p−. This difference is caused by a com-
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bination of nonlinear and diffraction effects. The measured and modeled waveforms at different
distances x from the source along the beam axis are shown in Fig. 4.10. Red color corresponds to
simulated waveforms and grey color corresponds to experimental ones. There is excellent agree-
ment between the measured and modeled axial waveforms, where again, the simulations predict a
slightly more negative peak pressure. Note that simulated waveforms are well fitted with experi-
mental ones in a sharp pressure jump at the front of the pulse formed due to nonlinear propagation
effects in the focused beam.

The radial (transverse) scans for peak positive p+ and peak negative |p−| pressures in the focal
plane F = 30 mm are shown in Fig. 4.11 in two perpendicular to the beam axis directions.The
modeling results are in excellent agreement with the measurements and confirm radial symmetry
of the acoustic field generated by Duolith SD1.

-5 0 5
5

10

15

20

25

30

35

40

r, mm

P
re

ss
u
re

  
M

P
a

,

-5 0 5

r, mm

modelingp+, exper.

|p-|, exper.

Figure 4.11: Radial (transverse) scans at the focus for
peak positive p+ and peak negative |p−| pressures in two
perpendicular to the beam axis directions.

Numerical modeling has a great ad-
vantage over experiment that provides full
reconstruction of the spatial structure of
the field that is difficult to implement in
the experiment. Spatial distributions of
the peak positive pressure p+, peak neg-
ative pressure p−, and intensity I are of
particular interest since p+ is associated
with the stress, p+ is associated with cav-
itation, and I is responsible for heating.
The 2D spatial distribution of these val-
ues obtained in numerical simulations are
shown in Fig. 4.12. One can see how different focal area of all three distributions: for p+ it has an
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sponds to measured profiles and red color to modeled ones.
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elongated shape along the axis of the beam and is localized at about a focal depth F = 30 mm;
focal areas of |p−| and I are wider in the transverse direction than the focal area of p+ and located
at a distance corresponding to about one third of the focal length F .

Numerical simulation were performed for a wide range of initial pressure amplitudes on the
source. This was done by scaling the pressure amplitudes of the boundary condition (Fig. 4.8)
from 0.4 to 2 in steps of 0.1. From these scaled pressures, the axial distributions and focusing
gain can be compared for increasing source output. Although this linear scaling does not precisely
correspond to changing the output level of the device, it was an adequate approach as nonlinear
effects were weak at the distance where measurements for the boundary condition were taken.

The results of these additional simulations are shown in Fig. 4.13a. The dashed lines cor-
respond to the results simulating the experimental conditions. One can see how the focal zone
changes with source pressure amplitude. With an increase in source output, the position of the
spatial maximum of p+ on the beam axis changes non-monotonically. It first moves away from
the source and then backward. This effect is typical for nonlinear focused beams and has been ob-
served in the earlier studies described in chapter 3 (§3.4) for focused pulsed fields. The shift away
from the source is characteristic for focusing without formation of shocks. It is caused by strength-
ening of the nonlinear self-refraction phenomenon because the speed of the pulse front depends on
its amplitude. At very high source outputs, when a shock is formed prefocally, strong absorption at
the shock results in diminishing of the peak positive pressure and the maximum moves backward.
Note also that the maximum shift in the natural focus from the lowest to highest setting is about
6 mm. The peak negative pressure maximum always moves toward the source with the increase of
its output.

Therapeutic bioeffects from ESWT are often categorized as being due to the presence of the
shock front. Despite the fact that the name of therapy requires a shock front, in work (Cleveland
et al., 2007) it was shown that the field of ballistic transducer EMS Swiss Dolorclast Vet, used in
veterinary medicine, does not contain not only shock fronts, but even sharp jumps in pressure. In
the case of electromagnetic transducer Duolith SD1 nonlinear effects are pronounced stronger than
in fields of ballistic transducers and the waveform of the pulse at the focus (Fig. 4.10) is similar to
one produced by lithotripters.
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and energy density (c) in the field generated with the short standoff obtained in the modeling of transducer
Duolith SD1.
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Figure 4.13: (à) Simulations of the axial peak pressure distributions. Inset: The focusing gain for the
peak positive pressure (inset). The dashed lines correspond to the results simulating the experimental
conditions. The inset shows the ratio of the peak positive pressure at the focus to its initial value at
the boundary as a function of the source pressure output. The dashed circle in the inset indicates the
experimental point corresponding to that gain curve. (b) Front at the focus of the transducer.

The shock front determines the minimum spatial scale at which the biological effects of ultra-
sound occur in the tissue. If the size of the cell is larger than the width of the shock front then the
shock front can break the cell membrane due to the formation of strong spatial gradient field. If the
shock front is wider than the cell size then it will cause only the acceleration in the cell movement.
The average size of a human cell is about 10-30 microns which corresponds to the time scale of the
order of 1 ns in the pressure waveform. The limited temporal resolution of the hydrophone (2 ns)
does not allow to register the fine structure of the front in measurements. However, to answer the
question whether the shock wave therapy IS a SHOCK wave therapy can be obtained by using
numerical simulations.

In Fig. 4.13 (b) a front at the focus obtained in numerical simulations is shown (distance
x = F = 30 mm, the whole waveform is shown in Fig. 4.10). It is clearly seen that the smooth
’pedestal’ rise precedes the sharp pressure jump. The classical definition of the shock front deter-
mines its duration τrt from 10% to 90% of the peak positive pressure (shock amplitude As) and the
shock is supposed to be governed by the stationary solution of the Burgers equation (Hamilton &
Blackstock, 1998)

p(τ) =
As

2

{
1 + tanh

(
εAs

2b
τ

)}
=

As

2

{
1 + tanh

(
τ

τ0

)}
, (4.2)

where τ is the retarded time, ε and b are coefficients of nonlinearity and the thermoviscous absorp-
tion of the propagation medium, correspondingly, τ0 = 2b/εAs.

In Fig. 4.13 (b) the part of the front corresponded to pressure rise from 10% to 90% of its
maximum value is shown. This part of the front contains a smooth ’pedestal’ rise. Thus, classical
definition of the shock rise time is not correct in this case. To account only the steepest part of the
front the shock rise time should be defined using its derivative. The 0.1As to 0.9As rise time of the
pressure at the shock in Eq. (4.2) is the length of time for the function tanh to change from -0.8 to
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0.8, and is equal to τrt = 2.2τ0. The time derivative of Eq. (4.2) is ∂p/∂τ = As/2τ0 · cosh−2(τ/τ0)
= As/2τ0 · (1 − tanh2(τ/τ0)). It is equal to 0.36 of the maximum value of the derivative when
tanh is equal to plus or minus 0.8. For a stationary shock such as governed by Eq.( 4.2) these two
definitions are equivalent.
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Figure 4.14: Definition of
the shock rise time used its
time derivative (level 0.36 of
the maximum level of the
derivative should be used).

The shock rise time described by Eq.( 4.2) is defined by com-
bined effects of nonlinearity and thermoviscous absorption. Non-
linear effects tend to steepen the shock, while thermoviscous effects
of energy absorption at the shock tend to smoothen it. The balance
of these two effects creates a shock of quasi stationary thickness τrt,
inversely proportional to the shock amplitude As. If the front of am-
plitude As has greater thickness than τrt then the front is not a shock
and potentially can be more steeper due to nonlinear effects.

Now estimate the thickness of the front at the focus of Duolith
SD1 and analyze whether the front is a shock. The rise time of the
front calculated on the level of 0.36 of the maximum of the pressure
derivative is 8 ns that corresponds to pressure Δp = 25 MPa at the
front (Fig. 4.14). In the case of the shock front with an amplitude
As = Δp/0.8 the thickness of the front defined from Eq.( 4.2) is
τrt = 0.28 ns (for propagation in water at ε = 3.5, b = 4.33 ·
10−3 kg/(c·m)). Thus, the shock formation did not occur for current
clinical machine Duolith SD1 settings.

Note that the estimation of the shock front thickness given above was obtained for propagation
in water. However, if the shock front formation is not occurred in water it will not be formed in
biological tissue since the absorption will be even more significant.

In focused nonlinear fields the shock front formation occurs then the focusing gain reached
its maximum (Bessonova O.V. et al., 2009, Rosnitskiy et al., 2015). The inset of Fig. 4.13 (a)
shows the peak positive focusing gain, given by the ratio of p+ at the focus to its initial value at
the boundary, as a function of the source pressure output. In our case, the experimental conditions
correspond to the output level that is lower than the level of the maximum focusing gain, i.e., the
shock has not yet formed. Apparently, if the device could generate an extra factor of 2 in pressure
at the source, a shock may indeed form at the focus.

§4.3 Nonlinear effects in ultrasound field of rectangular fo-
cused diagnostic-type transducer Philips C5-2

4.3.1 Low power measurements on the axis and in the focal plane of the
transducer

Measurements were performed in CIMU (Seattle) by Bryan Cunitz.
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Figure 4.15: Diagram of the experimental ar-
rangement for measurement of acoustic field
in water. Fiber optic hydrophone (FOPH) was
used for high-power measurements while low-
amplitude measurements were performed us-
ing a capsule hydrophone.

The illustration of the experimental setup for
pressure field measurements of Philips C5-2 abdom-
inal imaging probe (Philips, Bothel, WA) is de-
picted in Fig. 4.15. The focused pressure fields were
generated using a V-1 Verasonics ultrasound engine
with extended transmit burst capabilities (Verason-
ics, Kirkland, WA); the Verasonics was controlled
through an HP Z820 PC (HP, Palo Alto, CA) using
Windows 7 (Microsoft, Redmond, WA) and Matlab
2011b (Mathworks, Natick, MA). The probe was
fixed vertically in a large water tank facing down-
wards. Water was degassed to about 10% dissolved
oxygen. The axes of the probe were aligned to those
of a 3-axis positioner (Velmex, Bloomfield, NY). A
hydrophone was mounted to the positioner by a cus-
tom L-shaped fixture so that they were parallel to the
imaging probe.

High-power measurements were performed using a fiber optic hydrophone FOPH-2000 (RP-
Acoustics, Leutenbach, Germany, the size of the tip is 100 μm) that allows measurements of pres-
sure waveforms at frequencies up to 100 MHz. Fiber optic hydrophones have a relatively low sen-
sitivity (approximately MPa) but they are well suited for measurements of high-amplitude pressure
waveforms comprising steep parts.

Low-amplitude calibration measurements were performed using a capsule hydrophone HGL-
0085 in conjunction with AH-2010 preamplifier (Onda, Sunnyvale, CA). Capsule hydrophones are
used for measurements in the frequency range from 1 MHz to 20 MHz with pressure levels of the
order of several MPa. The sensitive surface of the capsular hydrophone HGL-0085 is a PVDF
membrane of 200 μm diameter.

The transmit signals were 75 cycles at f = 2.3 MHz with a pulse repetition frequency of
20 Hz. A trigger signal was generated by the Verasonics at the beginning of the transmit signal to
synchronize oscilloscope acquisition.

The C5-2 array probe comprises 128 single elements located on a cylindrical surface (see
Fig. 4.16). The projection of active probe surface onto the xy plane is a rectangle of the height
ly. Steering of the focus Fx in the xz plane is performing electronically by changing the pressure
phase over the probe elements in x-direction. The cylindrical acoustic lens focuses the field at a
constant depth Fy to reduce the divergence of the beam in the yz plane. Field measurements were
performed for the regimes with 16, 32, 40, 64, and 128 active elements; the centermost elements
for each configuration were used.

The exact geometrical parameters of the probe Philips C5-2 is unknown. Nominal parameters
of the C5-2 probe were approximately measured by a ruler: radius of curvature R ≈ 38 mm,
angle of aperture 2θ ≈ 40◦, and height ly ≈ 12 mm. Despite these values are not exact they give
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an initial approximation for fitting the parameters of an equivalent source in numerical modeling.
The product specification sheet from manufacturer provide nominal values of the width of each
element (0.37 mm) and the gap between them (0.05 mm). In experiments, delays to each of the
elements of the probe were programmed by a time of flight calculation using the speed of sound in
water as 1480 m/s and a focal position of z = Fx = 50 mm along the axis of the probe.

Fx

Fy

R

z

2θ

y

x

acoustic lens in
the planeyz

electronic focusing
in the planexz

ly

Figure 4.16: Geometry of focusing from the diagnos-
tic 2.3 MHz C5-2 array probe

The hydrophone measurements included
two steps. On the first one low-amplitude
measurements of pressure waveforms were
performed by capsule hydrophone along the
beam axis z and in two perpendicular direc-
tions x and y in the focal plane at z = 50 mm.
These measurements were carried out at the
lowest possible voltage (2 V) applied to the
probe and were used for setting a boundary
condition to numerical model. A step size
along the z-axis was 0.5 mm while transverse
scans were done along x- and y-axis with the
steps of 0.1 mm and 0.05 mm, correspond-

ingly.
The second step of measurements were carried out for a wide range of applied voltages (from

5 V to 90 V). Pressure nonlinear fields were measured using a fiber optic hydrophone. The location
of peak positive pressure was found using a transmit sequence with 128 elements at 50 V. At this
location, corresponded to z = 50 mm, all the waveforms were collected at the different number
of elements and different voltage levels. Each acquisition point used 128 averages with the FOPH
bandwidth set at 100 MHz and a sampling rate of 320 MHz. The waveform was calibrated and
deconvolved with a manufacturer supplied impulse response. Mean and standard deviation values
for maximum positive pressure and minimum negative pressure were taken for 50 of the 74 cycles
so that a steady state was reached in the waveform. These measurements were performed for
further comparison with results of numerical modeling of nonlinear acoustic field of the probe.

4.3.2 Setting the boundary condition for numerical model using low-amplitude
measurements of pressure waveforms

A boundary condition of numerical model was set by finding the best fit between distributions
of pressure amplitude on the beam axis and in the focal plane obtained in linear modeling and
in measurements. In numerical model, a continuous periodic wave of frequency f = 2.3 MHz
was used as an initial condition. The pulse length in experiments was chosen sufficiently long
(75 periods of harmonic wave) for such simplification in the modeling. The pressure amplitude
was assumed to be uniform over the cylindrical surface of the equivalent source. The phase was
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Table 4.1: Parameters of the equivalent source provided the best fit between results of linear field simu-
lations using the Rayleigh integral with ones obtained in measurements.

Number of elements 16 32 40 64 128

Angle of aperture θ, rad ×10−2 8.421 16.842 21.053 33.684 67.368
Initial pressure amplitude p0, kPa 295 275 265 217 160

Focal depth of acoustic lens Fy, mm 85 86 86 70 70
Other parameters Fx = 50 mm, R = 38 mm, ly = 12.5 mm

changed continuously over the source surface to provide the focusing in planes xz and yz

p(R, θ, y, t) = p0 sin

[
ωt+ k

(
Δx+

y2

2Fy

)]
, (4.3)

where Δx =
√
(R sin θ)2 + (R− R cos θ + Fx)2−Fx is a path difference of focused waves emit-

ted by the apex of the probe and by selected point on the surface of the probe; (R, θ, y) is a
cylindrical coordinate system with the origin at the center of curvature of the probe; ω = 2πf is a
cyclic frequency; k = 2πf/c0 is the wavenumber, and t is time. Changing number of the operating
elements was accounted in the model by changing the angle of aperture θ. Rayleigh integral was
used for numerical calculation of linear acoustic field:

p(�r, t) = −iρ0f
∫
S

u(�r′) exp(ik |�r − �r′|)
|�r − �r′| dS ′, (4.4)

where �r = {x, y, z}, ρ0 is the density of water, and u(�r′) is the complex amplitude of the vibration
velocity on the surface S of the probe.

Since parameters R, θ, ly, p0, Fx, and Fy of the probe were initially known only estimated, but
not exactly, numerical calculation of the linear field was carried out in several iterations. The first
time the field was calculated for approximate values of R, θ, ly given above in subsection 4.3.1,
and for Fx = Fy = 50 mm. Then, each of these five parameters was varied individually so
that the pressure amplitude distributions normalized by its maximum coincided well with those
measured at the first step of the experiment on the beam axis and in focal plane. Note that each of
parameters affects on a particular feature in the distributions and therefore was quite easy defined.
For example, parameter ly has predominant influence on the pressure distribution in the focal
plane along the y-axis, but has almost no effect on the axial distribution along the z-axis. After
finding the best fit values of parameters R, θ, ly, Fx, and Fy for configurations of 16, 32, 40,
64, and 128 active elements, the initial pressure amplitude p0 was determined by multiplying the
already found normalized distributions on required pressure at the focus. Obtained in this way
geometric parameters of the equivalent source are shown in Table 4.1 for a different number of
active elements.

Distributions of the pressure amplitude calculated numerically using the Rayleigh integral with
the best fit parameters given in Table 4.1 are shown in Fig. 4.17 and are compared with measure-
ments. The spatial structure of acoustic field of a C5-2 probe was strongly dependent on the
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number of active elements even in the case of a linear propagation. Fig. 4.17 demonstrates that
with increasing of number of active elements the size of the focal area reduces in both longitudinal
and transverse directions and the pressure amplitude at the focus increases.
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Figure 4.17: Comparison of simulated and mea-
sured acoustic pressure amplitude distributions at
the lowest probe output of 2V (linear propagation).
Axial pressure distributions are depicted in the left
column while two right columns depict distribu-
tions in two transverse directions in the focal plane
at z = 50 mm. Results are presented for 16, 32,
40, 64, and 128 active elements of the probe.

The numerical simulation of the linear field
of the probe allowed to characterize the field
structure in the entire space that is a time
consuming task in measurements. Fig. 4.18
presents the two-dimensional distributions of
the pressure amplitude in a plane located at a
distance of 2 mm from the apex of the probe (up-
per series) as well as the beam focusing in the xz
and yz planes (middle and lower rows, respec-
tively). On distributions in the plane z = 2 mm
the active surface of the probe is clearly visible
and schematically shown by white dotted lines.
Note that in the area in front of the edges of
the active surface the pressure amplitude is up
to two times higher than in the central part -
particularly it is clearly noticeable for configu-
ration of 128 elements. First, this is caused by
the fact that waves coming from the edges of the
probe are almost in phase. Second, they pass a
longer path than waves coming from the central
part of the probe and therefore increasing of the
amplitude associated with the wave focusing is
pronounced stronger. Distributions also clearly

demonstrate that near field of the probe is a very nonuniform along its surface since waves emitted
by the different elements interfere.

Now let one consider the structure of the field in the both focal planes of the beam (Fig. 4.18,
middle and bottom rows). Case of 16 active elements is a single configuration for which the size
of the active surface along the y-axis is greater than that along the x-axis. In this case the beam
is weak focused and pressure amplitude at the focus is only 2 times higher than its initial value.
The square shape of the active surface is achieved by powering the 32 elements of the probe. The
structure of the field in the xz and yz planes is almost identical and the size of the focal area in
both transverse directions is the same. One of the most common configuration used in clinical
practice is 40 active elements. In this mode, the focusing is quite effective since the focal pressure
amplitude is 6 times greater than its initial value. The transverse dimensions of the focal area
defined by the level of -6 dB are 2×3 mm along x and y axes, respectively. With a further increase
of the number of active elements, the focusing efficiency increases while the size of the focal areas
decreases (64 and 128 elements configurations in Fig. 4.18).
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Figure 4.18: Spatial distributions of the pressure amplitude obtained in numerical simulations of linear
propagation for 16, 32, 40, 64, and 128 active elements. White dashed curves show the active surface of
the probe.

4.3.3 Transfer of the boundary condition from cylindrical surface to the
plane

Once the parameters of the equivalent sorce were found on a cylindrical surface, the boundary
condition for modeling three-dimensional nonlinear field of the C5-2 probe was set on the plane
z = 0. For this aim pressure distribution in the plane (x, y, z = 0 mm) calculated using the
Rayleigh integral was transferred onto the plane (x, y, z = 0 mm) using the angular spectrum
method

p(z +Δz) = p(z) exp[iΔz(
√

k2 − k2
x − k2

y − k)], (4.5)

where kx and ky are spatial frequencies, Δz is the shift in z-axis z (Yuldashev P., 2011). The re-
sulting distribution at plane (x, y, z = 0 mm) was used as a boundary condition to the 3D nonlinear
ultrasound field modeling.

4.3.4 Numerical model based onWestervelt equation to calculate the three-
dimensional nonlinear field

The Westervelt equation written in a retarded time coordinate was used to simulate nonlinear field
generated by the probe (Westervelt, 1963)

∂2p

∂τ∂z
=

c0
2
Δp +

β

2ρ0c30

∂2p2

∂τ 2
+

δ

2c30

∂3p

∂τ 3
. (4.6)
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Figure 4.19: Comparison of single periods of wave at the focus of the probe obtained in numerical simu-
lations and measured in water.

Here τ = t − z/c0, Δp = ∂2p/∂x2 + ∂2p/∂y2 + ∂2p/∂z2; parameters ρ0, c0, ε, and δ are the
ambient sound speed, nonlinearity coefficient, and the thermoviscous absorption of the medium,
respectively. The values of the physical constants were chosen to represent the experimental mea-
surement conditions in water at room temperature ρ0 = 998 kg/m3, c0 = 1486 m/s, ε = 3.5,
δ = 4.33 · 10−6 m2/s. Equation (4.6) describes nonlinear propagation in one-direction along the
z-axis and in contrast to the KZK equation does not require the smallness of the diffraction angles.

Numerical algorithm for simulation the Westervelt equation (4.6) was developed in our labo-
ratory earlier by Petr Yuldashev (Yuldashev P., 2011). The author of the thesis set the boundary
and initial conditions to the solving code and found numerical grids. The details of the numerical
algorithm is presented in (Yuldashev P., 2011), only its main stages will be listed here.

The simulations were performed using the method of fractional steps with an operator splitting
procedure of second order. The diffraction operator was calculated in the frequency domain for
each harmonic component using the angular spectrum method. The absorption was calculated in
the frequency domain using an exact solution for each harmonic. The nonlinear operator was cal-
culated in the frequency domain using a forth-order Runge-Kutta method at small distances from
the probe and conservative time-domain Godunov-type scheme at greater distances. The switch to
the Godunov-type scheme was made at a distance z where the amplitude of the tenth harmonic ex-
ceeded 1% of the amplitude at the fundamental frequency f . Parameters of the numerical scheme
were: longitudinal step dz = 0.075 mm, transversal steps dx = dy =0.02 mm. Maximum number
of harmonics was set to 750.

4.3.5 Results on numerical simulations of nonlinear propagation, compari-
son with measurements

Numerical simulations of the three-dimensional nonlinear field of the diagnostic probe were per-
formed in a wide range of applied voltages. In modeling, the increase of the applied voltage was
simulated by increasing the pressure amplitude p0 of the initial harmonic wave. The relationship
between the pressure amplitude in the modeling and the applied voltage in experiment was found
by assuming a linear dependence between these values. To validate the results of the modeling
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of nonlinear propagation, calculated pressure waveforms at the beam focus at z = 50 mm were
compared with waveforms measured on the second stage of the experiment using a fiber optic hy-
drophone. Examples of measured waveforms and calculated ones are represented in Fig. 4.19 for
configurations of 16, 32, 40, 64, and 128 active elements at the applied voltage of 20 V (upper
row) and 60 V (bottom row).

Waveforms obtained numerically were in a good agreement (accuracy of 3%) with the exper-
imental data for all configurations except the case of 128 active elements. In the last case a good
agreement was observed only for voltages less than 25 V while for greater voltages modeling pre-
dicts higher values of the peak positive pressure than it was measured (see the last waveform in the
bottom row of Fig. 4.19). Further, it will be shown that this discrepancy is possible due to the fact
that the size of the focal area of the peak positive pressure p+ at applied voltages (above 25 V) be-
comes smaller than the size of FOPH surface (100 μm). This kind of problem has been observed
previously in the calibration of nonlinear fields produced by multielement arrays of therapeutic
clinical noninvasive surgery system (Kreider et al., 2013).
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Figure 4.20: Saturation curves for the peak
positive and negative pressures obtained in nu-
merical simulation (solid curves) and in hy-
drophone measurements (markers) for config-
urations of 16, 32, 40, 64, and 128 active ele-
ments of the probe.

Diagnostic probe Philips C5-2 is designed for
supplied voltages in the range from 2 V to 90 V. The
lower boundary of this range corresponds to ultra-
sound visualization regime used in a clinical prac-
tice. From physical point of view it is a linear prop-
agation of ultrasonic waves. Trial experiments to
push kidney stones were performed using the upper
limit of this range (90 V) when the wave profile is
highly distorted due to nonlinear effects and con-
tains a shock front. It is interesting to note that even
at voltages equal to 20 V the steep parts in profile
began to be formed and waveforms became to be
strongly asymmetric (top row in Fig. 4.19). The for-
mation of the shock front in waveforms occurred at
the applied voltages equal to about one-third of the
maximum.

The efficacy of the treatment can be increased by using higher transducer output to provide
stronger pushing force which requires greater focal pressure. However, nonlinear acoustic satu-
ration effect can be a limiting factor. Fig. 4.20 shows the saturation curves for peak positive p+

and peal negative p− pressures for configurations of 16, 32, 40, 64, and 128 active array elements.
Peak pressures were calculated at a distance z = 50 mm on the beam axis. Curves obtained in
numerical simulations are shown by solid lines while measurements are shown by markers. One
can see that starting from applied voltage of 50 V the peak positive pressure p+ increases very
slowly. If one assumes that the saturation of p+ occurs when derivatives from saturation curves are
less than 5% of its maximum value then the voltage level of 50 V will correspond to this threshold.
Thus, pushing of kidney stones by acoustic radiation force of the ultrasonic beam generated by
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a diagnostic probe is happening in a saturation regime. The limiting values of the peak positive
pressure at the focus are 20 MPa and 10 MPa for 64 and 32 active elements, correspondingly. Peak
negative pressures p− are not become at a constant level and decrease monotonically in the entire
voltage range. The minimum values of p− in the fields of diagnostic probe are achieved in the case
of 128 active elements and reachs -10 MPa.
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Figure 4.21: Waveforms at the focus of the probe
(z = 50 mm) obtained in numerical simulations
for 40 active elements of the probe.

The evolution of waveforms with the increas-
ing of applied voltage is shown in Fig. 4.21 at a
distance z = 50 mm for 40 active elements con-
figuration. It is clearly seen how initially har-
monic wave (profile at 5 V) distorts with increas-
ing of its amplitude and finally turns into a saw-
tooth wave with the shock front (profile at 90 V).
Note that changes in waveforms in the saturation
regime are minimal (profiles at 60 V and 90 V in
the figure).

Measurements of pressure waveforms in a
large volume of space with fine spatial step is

time consuming process. Numerical modeling has allowed to investigate in detail the spatial struc-
ture of the nonlinear ultrasonic field of the diagnostic probe with a spatial step of 5 times smaller
than the size of the hydrophone. Simulations were performed for the entire range of the voltage
applied to the probe. Let one first consider the results of the nonlinear simulation of peak pressure
distribution along the z-axis at different number of active elements (Fig. 4.22). In the case of 16
active elements the beam is narrow in the direction of x-axis, its focusing occurs less efficient than
in use of a larger number of active elements. Levels of the peak pressures at z = 50 mm differ
from ones in intra-focal maximum not more than 2 times. When one uses 40 active elements it
is necessary to take into account a significant shift of the maximum of the peak pressure from the
supposed focal depth z = 50 mm. The shift of the maximum of peak positive pressure first occurs
away from the probe and then towards to the probe, the shift of the focal area at voltage level of
90 V is about 1 cm. Similar effect is discussed in chapter 3 (§3.4) when focusing of pulsed fields
was considered. Also in chapter 3 (§3.4) the possibility of observing the sharp and narrow peaks
in the distribution of the p+ in the prefocal area of the periodic field was discussed. In the field of
a diagnostic probe this feature was observed in the case of 40 active elements in saturation regime
of p+ (shown in inset of Fig. 4.22). Minimum of the peak negative pressure p− is displaced with
pressure amplitude increase toward to the probe. If all 128 elements are active, the focusing occurs
almost exactly at the focus z = 50 mm.

Consider how a field spatial structure of the peak pressures in the xz plane of electronic fo-
cusing is changed with an applied voltage. Fig. 4.23 shows the two-dimensional distributions of
p+ and p− in the plane of the electronic focusing in the case of 40 active elements of the probe.
The first column shows the distributions corresponding to the quasi linear regime (15 V) when
waveform is not greatly distorted (see Fig. 4.21) and a shock front is not formed. Distributions of
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Figure 4.22: Distributions of peak pressures along the z-axis of the beam obtained in numerical simula-
tions for different number of active elements.

peak pressures p+ and p− in this case are similar in structure but the focal area of p+ has greater
length along the z-axis and located farther than the focal area of p−. The second column shows
the distribution in the nonlinear regime (30 V) when the waveform contains a shock front (see
Fig. 4.21). Distributions in the last column correspond to the saturation regime of the p+ (80 V).
With increase of applied voltage, the focal area of p+ becomes smaller in size but remaining highly
elongated along the z-axis of the probe. Interestingly that there are no fundamental changes in dis-
tributions of p− with an increase of applied voltage, only pressure levels are increased and a small
displacement (about 2-3 mm) of the focal area of p− is occurred toward to the probe.

Comparison of two-dimensional distributions of the peak positive p+ and peak negative p−

pressures in a saturation regime is demonstrated in Fig. 4.24 for configurations from 16, 40, and
128 active elements. It is clearly seen that the focal area of p+ dramatically reduces in the xz plane
with an increase of a number of active elements. In the case of 128 active elements the size of the
focal area of p+ along the x-axis is only 50 μm, which is 2 times smaller than the diameter of the
FOPH tip (100 μm). Such a small size of the focal area and a sharp pressure gradient out of its
boarder have led to significant differences (35 %) between the profiles measured by a hydrophone
and calculated numerically (see Fig. 4.20, case of 128 active elements and Fig. 4.19). Significant
changes with an increase in the number of active elements occur also in the yz plane of focusing of
the beam by acoustic lens. The size of the focal region dramatically reduced along the z-axis but
remained almost unchanged along y-axis. As a general conclusion one can say that using a greater
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Figure 4.23: Comparison of 2D spatial distributions of the peak positive and peak negative pressures in the
xz plane of electronical focusing at different values of applied voltages in the case of 40 active elements.
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saturation regime at applied voltage of 60 V for configuration of 16, 40, and 128 active elements of the
probe.

number of active elements in a saturation regime lead to shift of focal areas of peak positive and
negative pressures away from the probe, reducing of their sizes and increasing of peak pressure
levels.
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§4.4 Conclusions

Nonlinear effects in fields of ESWT and diagnostic-type medical transducers were studied both
theoretically and experimentally. It was shown that in the ESWT field the shock front formation
did not occur for the currently machine settings. A true shock formation could be reached if the
maximum initial pressure output of the device is doubled. In the field of diagnostic ultrasound
probe nonlinear saturation effect of peak pressures was observed. Formation of the shock front
occurs at levels of acoustic pressure about one third of those used in clinical experiments for
pushing kidney stones by ultrasound radiation force.
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Appendix A

Numerical calculation of the inverse Abel
transform from the light intensity pattern in
the schlieren image

In chapter 1 the method for reconstruction of dimensionless pressure waveforms from the light
intensity pattern in the schlieren image was proposed. Here consider the numerical calculation

of the integral
+∞∫
r

d/dx

(
+∞∫
x

I(r′)dr′
)
dx

/√
x2 − r2 in Eq. (1.8), which is used to reconstruct the

dimensionless waveform from the schlieren image. Inner integral A(x) =
+∞∫
x

I(r′)dr′ is calculated

using trapezoidal numerical integration while the outer integral contains a singularity at x → r

and could not be calculated in this way. To avoid singularity, the integrand is approximated using
a cubic spline interpolation and then calculated numerically.

Note that the investigated integral multiplied by the factor (−1/π) is the Abel inversion trans-
form that is written in general form as (Bracewell, reprint 2000)

B(r) = −1

π

+∞∫
r

dA

dx

dx√
x2 − r2

. (A.1)

One uses the next property of this inversion:

A =

+∞∫
x

2rBdr√
r2 − x2

= −2
+∞∫
x

√
r2 − x2

dB

dr
dr. (A.2)

Calculating the derivative, one finds dA/dx = 2
+∞∫
x

dB
dr
xdr

/√
r2 − x2. It follows that (dA/dx)|x=0 =

0.

Let us approximate A(x) using cubic spline interpolation:

A(x) = an + bn(x− xn) + cn(x− xn)
2 + dn(x− xn)

3 = αn + βnx+ γnx
2 + δnx

3 (A.3)

and assume that the function A(x) is given at the nodes of the uniform grid xn = Δ ·n, n = 1...N ,
where Δ is the mesh spacing.
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First, consider calculation for r = 0:

B(r = 0) = −1

π

+∞∫
0

dA

dx

dx

x
. (A.4)

Split the integral (A.4) for the sum of terms

B(r = 0) = −1

π

Δ∫
0

dA

dx

dx

x
− 1

π

n=N−1∑
n=1

(n+1)·Δ∫
n·Δ

dA

dx

dx

x
. (A.5)

Substituting the cubic spline approximation (A.3) with β0 = 0 (because (dA/dx)|x=0 = 0) in
Eq. (A.4), one obtains

B(r = 0) = −1

π
(2γ0Δ+

3

2
δ0Δ

2)− 1

π

n=N−1∑
n=1

[
βn ln(

b

a
) + 2γn(b− a) +

3

2
δn(b

2 − a2)

]
,

a = n ·Δ, b = (n + 1) ·Δ. (A.6)

Second, consider calculation for r = m ·Δ, m = 1...N − 1. Let A(x = N · Δ) = 0 because
A(x)→ 0 if x→∞. Replace the integral by the sum of integrals over the segments:

B(r = m ·Δ) = −1

π

n=N−1∑
n=m

(n+1)·Δ∫
n·Δ

dA

dx

dx√
x2 − r2

. (A.7)

Using cubic spline approximation (A.3) for every segment, one obtains

B(r = m ·Δ) = −1

π

n=N−1∑
n=1

In, where In = βn(b
′ − a′) + 2γnc [sh(b

′)− sh(a′)] +

+
3c2δn
2

(b′ − a′ +
1

2
[sh(2b′)− sh(2a′)]), a′ = arch(

a

c
), b′ = arch(

b

c
), c = m ·Δ. (A.8)

Thus, using Eqs. (A.6) and (A.8) it is possible to calculate the Abel inversion transform (A.1)
numerically by summing the results for each segment. However, the light intensity I is equal to
zero for distances x beyond the location of the pulse and therefore numerical integration requires
a finite window. In numerical simulations, the size of spatial window was equal to the size of the
schlieren image and the spatial step was 8 μs.
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Appendix B

Synthèse des résultats

Dans l’introduction nous présentons l’actualité du sujet de la thèse qui porte sur l’étude de la focali-
sation nonlinéaire et de la réflexion d’ondes de choc acoustiques. Dans le contexte des applications
aux ultrasons médicaux et à l’aéroacoustique l’état de l’art à ce jour des questions scientifiques est
exposé ainsi que les objectifs généraux. Ci-après nous résumons les travaux et les principaux
résultats obtenus.

Le premier chapitre est consacré à la mise en oeuvre des méthodes optiques pour la mesure
de profils de pression acoustique dans le cas d’une onde en N générée par une source d’étincelle
dans l’air. Dans le §1.1 un examen des méthodes existantes pour mesurer les ondes de choc acous-
tiques est présenté et les limites de la mesure par des microphones à condensateur sont discutés.
Les méthodes optiques proposées comme une alternative pour les mesures d’impulsions de choc
acoustiques sont l’ombroscopie schlieren et l’interferométrie. Dans le §1.2 le dispositif expéri-
mental conçu pour les mesures schlieren d’ondes acoustiques générées par une source à étincelles
en milieu homogène est présenté. Une procédure de reconstruction des formes d’onde de pression
acoustique à partir d’images schlieren est décrite dans le §1.3. Les formes d’onde de pression ont
été reconstruites à l’aide d’une méthode d’inversion de type Abel, à partir des cartes d’intensité
lumineuse enregistrées avec une caméra haute résolution et rapide. Les niveaux de pression ab-
solue ont été déterminés par une analyse à différentes de distances de propagation de la durée de
la phase de compression d’impulsions, qui est modifiée en raison des effets de propagation non
linéaire. Des exemples des signatures de pression reconstruites à différentes distances de la source
sont présentés dans le §1.4. Notons que la résolution temporelle de la méthode (3 μs) est limitée
par la durée d’exposition de la caméra à grande vitesse. Une autre méthode optique proposée dans
la thèse pour les mesures de forme sphérique divergeante d’onde en N est basée sur la technique
d’interférométrie Mach-Zehnder. Le dispositif expérimental est décrit dans le §1.5. Dans le §1.6
la méthode de reconstruction pour restaurer des formes d’onde de pression à partir de signaux de
phase optique est décrite. La reconstruction est basée sur une inversion de type Abel. Contraire-
ment à la méthode optique de strioscopie, la méthode de Mach-Zehnder permet la reconstruction
quantitative des formes d’ondes de pression d’onde en N et, par conséquent, on dispose ainsi
d’un "microphone laser" à large bande. Les résultats des mesures optiques obtenues à l’aide de
l’interféromètre de Mach-Zehnder sont données dans le §1.7. La résolution temporelle de la méth-
ode interféromètrique (0.4 μs) est principalement déterminée par la largeur finie du faisceau laser
(environ 0.1 mm). Dans le §1.8 les avantages et les limites des deux méthodes optiques (méthode
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schlieren et la méthode de interférometrie Mach-Zehnder) pour les mesures des ondes de choc
acoustiques dans l’air sont discutées.

Le deuxième chapitre de la thèse est consacré à l’étude expérimentale d’une réflexion ir-
régulière d’une onde en N sur une surface rigide . Dans le §2.1 nous présentons un examen
des études théoriques et expérimentales existantes sur la réflexion d’onde de choc ainsi que sur
la réflexion des chocs faibles avec le paradoxe de von Neumann. La classification des différents
régimes de réflexion de faibles chocs acoustiques sur une surface rigide est donnée dans le §2.2.
Une attention particulière est portée sur les différences entre la réflexion de "step-shock" et celle de
formes d’onde plus complexes typiques des applications en acoustique. Dans le §2.3 le dispositif
expérimental conçu pour la visualisation optique schlieren de la réflexion de l’onde de choc sur
une surface rigide est présenté. Les images schlieren obtenues dans l’expérience sont analysées.
Nous avons montré l’existence d’une réflexion irrégulière qui se traduit par un pied de Mach (Mach
stem) dont la longueur évolue dynamiquement lorsque l’impulsion se propage le long de la surface.
Le système optique schlieren permet une visualisation du motif de réflexion pour le choc avant de
l’onde en N . La méthode de interferomètre de type Mach-Zehnder a été utilisé pour mesurer les
formes d’onde de pression de l’onde en N proche de la surface réfléchissante. Dans le §2.4 les
formes d’ondes de pression mesurées expérimentalement sont analysés. L’interaction non linéaire
entre le choc avant réfléchi et le choc arrière incident de l’onde en N est discutée dans le §2.5.
L’interaction conduit à la formation de pieds de Mach au-dessus de la surface où se croisent ces
chocs et une zone de surpression est formée au-dessus de la surface.

Dans le troisième chapitre les mécanismes de saturation non linéaire des champs acoustiques
focalisés d’ondes périodiques et des impulsions courtes sont considérés. Dans le §3.1 un examen
des approches analytiques qui fournissent l’estimation des valeurs limites de pression positive max-
imale dans les faisceaux acoustiques périodiques et pulsés est détaillé. La possibilité d’observer
la formation d’un pied de Mach dans la zone focale axiale est discutée. Dans le §3.2 un modèle
numérique basé sur l’équation parabolique KZK est décrit. Le modèle a été utilisé pour carac-
tériser des champs focalisés non linéaires de faisceaux acoustiques impulsionnels ou périodiques
générés par une source de type piston et une source gaussienne. Dans le §3.3 l’effet de la signature
temporelle du signal sur les valeurs limites de pressions crêtes est discuté. Nous avons montré
que dans les faisceaux acoustiques périodiques les pressions crêtes positives sont plus élevées que
celles réalisées dans des faisceaux pulsés. Le §3.4 est consacrée à étudier l’effet de répartition
de la pression de la source sur la structure spatiale du faisceau ulstrasonore émis et les valeurs
limites de pressions crêtes dans les champs acoustiques focalisés. Nous montrons que les sources
gaussiennes sont plus appropriées pour atteindre les hautes pressions dans une zone focale de faible
taille que les sources de type piston. L’analyse du §3.5 de l’interaction entre les fronts de choc des
champs périodiques et pulsé focalisé à symétrie axiale montre qu’elle peut être considérée comme
un procédé similaire à la réflexion de la surface rigide. Il est aussi démontré que l’équation KZK
permet de décrire la formation d’un pied de Mach dans la zone focale pour une source de type
piston. La structure des motifs des fronts d’onde dans la région focale du faisceau ressemble à
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celle de la réflexion de von Neumann comme le résultat d’une interaction entre le bord et la partie
centrale de l’onde en provenance de la source ultrasonore.

Le quatrième chapitre est consacré à la caractérisation des champs acoustiques focalisés non
linéaires de nouveaux dispositifs médicaux utilisés dans la thérapie par ondes de choc extracor-
porelle (ESWT) et dans les sondes ultrasonores de diagnostique. Dans le §4.1 un examen des
perspectives d’utiliser l’ESWT pour plusieurs troubles musculo-squelettiques est présenté ainsi
que les paramètres de dispositifs de ESWT. La mise en oeuvre d’une sonde de diagnostic utilisant
la force de rayonnement d’une source ultrasonore focalisé pour déplacer les calculs rénaux du
système de collecte urinaire est également discutée. La modélisation numérique est de nos jours
un outil important pour la caractérisation des champs acoustiques de ces dispositifs médicaux.
Dans le §4.2 les effets non linéaires dans le faisceau acoustique focalisé du dispositif électromag-
nétique Duolith SD1 de ESWT sont étudiés en combinant mesures et modélisations numériques.
La condition limite pour la modélisation non linéaire avec l’équation KZK a été obtenue à partir
de l’expérience en appliquant la méthode de la source équivalente. Ainsi notre procédé utilise des
mesures pour obtenir des paramètres de source équivalente, à savoir la source avec le même champ
acoustique sur l’axe du faisceau comme la vraie. Il a été montré que, dans les champs ESWT la
formation choc ne se produit pas pour les paramètres d’utilisation actuelle de la machine. Une
véritable formation de choc pourrait être atteinte si l’amplitude de pression initiale maximale du
dispositif était doublée. Dans le §4.3 l’approche combinée mesure-modélisation a été utilisée pour
caractériser le champ ultrasonore non linéaire de la sonde de diagnostic standard Philips C5-2 util-
isé dans les expériences cliniques pour pousser les calculs rénaux. Les mesures ont été effectuées
en deux étapes. La première était la mesure des formes d’ondes de pression de faible amplitude le
long de l’axe de la sonde et dans son plan focal. Ces mesures ont été effectuées à faible puissance
de sortie et ont été utilisées pour définir la condition limite introduite dans le modèle numérique.
La seconde série de mesures a été effectuée à différents niveaux de sortie et a été réalisée pour
comparaison avec les résultats des simulations non linéaires. Un modèle numérique 3D basé sur
l’équation de Westervelt a été utilisé pour simuler le champ acoustique non linéaire générée dans
l’eau par la sonde de diagnostic à des niveaux de sortie différents et pour un nombre différent
d’éléments actifs dans la source ultrasonore. Il a été montré que la poussée des calculs rénaux se
produit en régime de saturation. Dans le §4.4 les conclusions du quatrième chapitre sont donnés.
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