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Angular Contact Ball Bearings are widely used in aerospace industry because of their ability to work at high-speed and to support important loads. Depending on operating conditions, kinematic and dynamic behaviours are complex and bearing design optimisation is essential. That is why this study aims at continuing Leblanc and Nelias' quasi-static model with balls and rings. Difficulty of this model lies in the fact that up to four ball-race contact points are considered. As well, all balls degrees of freedom are calculated without making any kinematic assumption. Then, one of the purpose of this thesis is to improve computation of friction forces, EHD lubrication and kinematics at each point of contact ellipse. The model is also harmonized in order to get a single system of equations that better deals with numerical discontinuities due to contact changes. Solutions are proposed to extend operating conditions at lower speeds and higher radial loads or misalignments.

Besides, aeronautical industry is currently developing ball bearings with cages made of lighter but softer materials. Such bearings experience cage deformation and stress concentration due to ball-to-pocket impacts. These are produced during acceleration and deceleration phases or during cruise when operating with combined thrust and radial load. That is why this study aims, in a second time, at adding cage into the quasi-static model. Ball-to-pocket and cage-race interactions are considered as well as global and local cage elasticity in three dimensions. Finally, the whole system is transposed in dynamics in order to be solved over time and to consider acceleration components.

For various operating conditions, ball kinematics, ball-race interactions, cage center motion, cage local and global deformations are analysed. Model validation is done by comparison with existing models or with experimental results found in literature.

Si la thèse est un projet très solitaire, l'encadrement technique et l'entourage humain sont essentiels et font toute la différence. C'est pourquoi, je souhaite avant tout remercier mon directeur de thèse Daniel Nélias pour m'avoir permis de réaliser cette thèse. Merci pour sa confiance, son optimisme permanent et pour avoir toujours cru en la réussite du projet. Mais surtout, merci d'avoir pris le temps de m'aider, me conseiller et partager ses connaissances. Merci de m'avoir permis de partir en conférence et de m'avoir mis en contact avec certains experts du domaine. En particulier, ces travaux n'auraient jamais été aussi aboutis sans l'intervention d'Alexandre Leblanc, co-directeur de thèse. Je le remercie pour son implication, sa rigueur et ses conseils toujours très pertinents. Je remercie également les professeurs David Dureisseix et Régis Dufour pour s'être penché à plusieurs reprises sur certains de mes problèmes et m'avoir apporté des solutions. Je souhaite aussi remercier Samy Lacroix pour s'être replongé dans le code et avoir répondu à mes questions.

La thèse a commencé et s'est terminée en entreprise, chez Safran Aircraft Engines. Merci à toutes les personnes du bureau des méthodes et des roulements pour leur accueil, leur gentillesse et leur aide. Je remercie tout particulièrement mes encadrants Julien Leroux, Geoffray Deterre et Daniel Bainachi pour m'avoir fait confiance, m'avoir donné tant de liberté dans mes travaux et pour avoir été si compréhensifs sur le fait qu'ils ne puissent pas se dérouler comme prévu. Merci pour le support technique et humain, mon expérience chez Safran a été très enrichissante. C'est notamment grâce à eux et à Daniel Nélias que je pourrais la poursuivre chez Safran Helicopter Engines, je leur en suis très reconnaissance. Merci également de m'avoir apporté le support de MECALAM; start-up dans laquelle je remercie Quentin Thoret-Bauchet et François Besson pour leur aide, leur rigueur et les très bons échanges que nous avons pu avoir.

Je tiens également à remercier tous les membres du laboratoire que j'ai eu la chance de côtoyer. J'adresse tout d'abord mes remerciements à Isabelle et Sophie, pour leur gentillesse, leur réactivité et tous leurs services. Je remercie ensuite les anciens doctorants de la team Algeco: Zi, Médéric, Florian, Efoe, Alexis (x2), Tristan (x2), Noël, Thomas, Raphaël, Yvan, Zhaofeng, Du, Marie, Ethel. Un énorme merci pour leur accueil, leurs conseils et surtout pour les parties de Coinche, apéros, raclettes, soirées jeux, week-end ski, ect. La relève MIMESIS et MULTIMAP est bien là, pleine d'énergie, de bonne humeur et de blagues raffinées ; merci à Julie, Adrien, Victor, Pierre, Nicolas, Zineb, Audrey et Loïc. Je n'oublie pas les personnes des autres équipes avec qui j'ai eu la chance d'échanger en TP ou en conférences notamment Lucas, Jonathan, Éric, Nicolas, Aurore ou Augustin. De façon plus générale, merci à toute l'INSA et au LaMCoS. Ces huit années m'auront énormément apporté tant intellectuellement qu'humainement grâce à des équipes pédagogiques et des étudiants bienveillants et investis.

Pour terminer, je remercie mes parents et mon frère pour m'avoir toujours supportée, guidée et aidée dans mes projets. Enfin, un grand merci à Pauline (x2), Camille (x2), Marine et Elsa, mes copines du Béarn et d'ailleurs, pour leur éternel soutien et tous les bons moments partagés.

Résumé

Les roulements à billes à contact oblique sont particulièrement utilisés dans l'industrie aérospatiale pour leurs capacités de fonctionnement à grandes vitesses et fortes charges. Sous certaines conditions de fonctionnement, le comportement cinématique et la dynamique de billes sont particulièrement complexes et l'optimisation du roulement essentielle. C'est pourquoi cette étude vise à poursuivre le modèle quasi-statique avec billes et bagues, initialement développé par Leblanc et Nélias. Une des principales difficultés réside dans le fait qu'un à quatre points de contact bille-piste soient considérés. Également, tous les degrés de liberté de billes sont calculés sans avoir recours à des hypothèses cinématiques simplificatrices. Ainsi, l'un des objectifs de cette thèse est d'améliorer les méthodes de calcul d'efforts, de lubrification et la cinématique de billes calculée en chaque point de l'ellipse de contact. Ce modèle est aussi uniformisé pour ne considérer qu'un seul système d'équations permettant de limiter les discontinuités numériques liées aux changements de contacts. Des solutions sont proposées pour étendre les conditions de fonctionnement à de plus petites vitesses et de plus grands chargements radiaux et mésalignements.

Par ailleurs, l'industrie aéronautique développe actuellement des roulements à billes avec des matériaux de cage plus légers mais aussi plus souples. De tels roulements sont sujets à d'importantes déformations et concentrations de contraintes dues aux chocs billesalvéoles. Ceux-ci ont lieu lors des phases d'accélérations ou de décélérations, voir en régime de croisière lorsque le roulement est soumis à des efforts axiaux et radiaux combinés. Cette thèse a donc également pour objectif d'ajouter la cage au modèle quasi-statique initial. Les interactions billes-alvéoles et cage-piste sont modélisées, tout comme l'élasticité de cage globale et locale en 3 dimensions. In fine, l'ensemble du système est transposé en dynamique pour être résolu temporellement et prendre en compte les accélérations.
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Mots-clés:

Introduction Aircraft engines bearings

Bearing is a common mechanism used in many applications like bikes, cars, washing machines, tower cranes or wind turbines. In this thesis, we are interesting in Angular Contact Ball Bearings (ACBB) present on aircraft engines. As illustrated in Figure 1, turbojet engine is a cutting-edge technology with different stages designed to catch and accelerate airflow. This generates a thrust force that propel the airplane according to Newton's law of action-reaction. Safran Aircraft Engines and General Electric Aviation [START_REF] Gomez | LEAP-1A[END_REF] During operation, as represented on Figure 2, streamlined blades of the fan continuously aspirate air into the engine. The airflow enters the compressor that increases its pressure in order to get optimum pressure and temperature for combustion. Then, high-pressure airflow is mixed with kerosene before entering combustion chamber where combustion of the mixture generates air acceleration. At the last stage, energy arising from pressure and speed of hot gazes, drives a rotating turbine that drives itself fan and compressor at the entrance. Is this way, a continuous movement of the engine is ensured. Finally, high-speed airflow is ejected at the exit to propel the aircraft. In simple flow turbojet engines, all the flow takes this path. Such engines are mainly used in military applications because of their high efficiency above Mach 1. For civilian applications, double flow turbojet engines are preferred because of their low fuel consumption and noise reduction. In this technology, 20% of the flow passes by the core with its compression and depression stages, whereas 80% bypasses it and is only accelerated by the fan and directly ejected in outlet [START_REF] Beyer | Semi-analytical modeling of damage under contact loading : Application to heterogeneous materials[END_REF]. Regarding bearings, they are mounted between rotors and stator at different levels of the engine. They ensure axial shaft rotation, transfer forces from the shaft to the outside and reduce friction. Ball bearings 1 and 3 and cylindrical bearings 2 and 5 schematized in Figure 3, are always present in engines. In order to gain weight, inter-shaft bearing 4 can be added between high-pressure and low-pressure rotors. However, it can generate vibrational issues since energy is transferred between both shafts [START_REF] Dumartineix | Modélisation et étude de la dynamique complexe d'un système bi-rotor aubagé couplé[END_REF].

Introduction

Figure 3 : Bearings present at each stage of aircraft engines [START_REF] Dumartineix | Modélisation et étude de la dynamique complexe d'un système bi-rotor aubagé couplé[END_REF] Introduction

Bearing designs

Angular Contact Ball Bearings are made of an inner ring (IR) that rotates with shaft and that is in contact with balls. These last ones have an orbital motion around shaft and 3D self-rotations. They transfer forces from IR to outer ring (OR). This last one is bound to stator, the fixed part of the engine. Ball-ring contacts occur on races where balls can slide, roll and spin, resulting in complex kinematics. A cage is also present to distribute balls around the bearing and to avoid their collision. Besides, aircraft engines work under high-speeds and high-temperatures that is why lubricant circulates between each element. Purpose is to reduce scuffing, friction, heating and to transfer energy outside. Grease lubricated bearings are limited in speed and fatigue-life because grease tends to heat-up and to leak outside the bearing. That is why, this study focuses on oil-lubricated ACBB, more appropriated to high-speed applications. [START_REF] Lacroix | Analyse et validation expérimentale d'un modèle de roulement à billes à quatre points de contact à bagues déformables par découplage des effets locaux et structuraux[END_REF] Currently, major part of ball bearings are Deep Groove Ball Bearings (DGBB). They do not present ring truncations, then they have two contact points (one on IR and another one on OR). They are mainly designed to support radial load but can withstand small axial load or misalignment. ACBB carries higher thrust load but only in one direction. Mounting two ACBB backto-back allows to handle thrust load in two directions. Like DGBB, they only support small axial misalignment. Some of them only have one truncation, generally on the inner ring. Then, under combined axial and radial load, 1, 2 or 3 contact points can be present. To be able to support higher radial loads, ACBB can have two truncations (one on each ring), then they can have up to 4 contact points. Some SAE engines are made of these 4 contact points ball bearings, also called FCPBB. Because of operating conditions, in practice, SAE FCPBB mainly works under 2 contact-points. Contrary to ordinary ACBB, they are able to support axial load in two directions. Races are not portions of spheres anymore but arches as shown in Figure 5. These arches give space at the top to better drain lubricant and to set up holes on OR to evacuate it. Advantage of working with further contact points is that centrifugal forces are better distributed, then ball-race normal loads are less concentrated, fatigue life is significantly increased. However, many studies have shown that working under more than two contact points complicates kinematics, increases skidding, scuffing risk or friction [START_REF] Hamrock | Analysis of an Arched Outer-Race Ball Bearing Considering Centrifugal Forces[END_REF], [START_REF] Leblanc | Ball Motion and Sliding Friction in a Four-Contact-Point Ball Bearing[END_REF].
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To limit the number of contact points, a solution is to reduce radial load. That is why in turbo-machineries, ACBB are coupled with cylindrical roller bearings (CRB) that take over radial forces. Indeed, CRB supports important radial load but limited axial load and misalignment. As a matter of fact, thrust load induces friction at roller end-to-race flange contact that creates problematic roller skewing. Other applications like landing systems, use tapered roller bearings (TRB). With their conical rollers, they can handle high radial load, high thrust load in one direction but limited misalignment. Like ACBB, axial load in two directions can be carried by arranging two TRB back-to-back. Spherical roller bearings (SRB) are designed with a spherical outer race and one or two sets of rollers with barrel shapes. With such design, rollers conform closely to races. Cage, IR and rollers can rotate in an additional direction. Then, high radial load, axial misalignment and some axial load can be handled [START_REF] Prenger | Modeling the Dynamics of Rolling Element Bearings Using ADAMS[END_REF]. 

Motivations and objectives

Initially ball bearings were entirely made of steel. Thereafter, for high-speed applications, hybrid bearings with ceramic balls were developed in order to reduce mass, inertial forces, then contact loads. As well, cages with lighter materials like aluminium, S-Monek, graphite, nylon or cast iron were designed [START_REF] Harris | Essential Concepts of Bearing Technology[END_REF]. These recent years, polymeric cages are getting more and more attention because of their low density, manufacturing and assembly assets, good chemical resistance, low friction, low coefficient of thermal expansion and quiet running. Especially, Safran Aircraft Engines (SAE) is interesting in polymeric cages made of PEEK (polyetheretherketone) which has a density six times lower than steel. However, such material is also softer and results in large stresses under ring misalignment or in radial cage deformation, under high-speeds, because of centrifugal forces. Experiences have particularly shown local ball-to-pocket deformations and three-dimensional cage ovalisation during acceleration and deceleration phases or during cruise when the bearing is submitted to combined load, misalignment or unbalanced defects. For these reasons, 3D cage flexibility should be considered while designing bearings. However, before 2019 and the beginning of this thesis, no model considering 3D cage elasticity existed in literature. And, recent models developed are not open access which explains SAE interest in this subject. Besides, SAE bearing design department is currently using ADORE computer code [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF] to develop and improve their bearings. Even if this dynamic model is very achieved, it does not consider cage flexibility or ACBB with rings truncations. User does not have control on the whole model and few modelling details stays unclear. That is why in 2007, SAE in collaboration with LaMCoS laboratory, started to develop BB20: a quasi-static ball bearing code. It considers balls and rings with lubrication, inertial forces, drag forces, external shaft forces, ball-race normal and friction forces for ACBB with 1 to 4 contact points [START_REF] Leblanc | Ball Motion and Sliding Friction in a Four-Contact-Point Ball Bearing[END_REF], [START_REF] Leblanc | Analysis of Ball Bearings with 2, 3 or 4 Contact Points[END_REF]. Rings deformations were also added in 2014 [START_REF] Lacroix | Four-Point Contact Ball Bearing Model With Deformable Rings[END_REF]. If this computer code has proven its efficiency for many years, few limitations have been noticed. Indeed, it is mainly adapted to high-speed and high axial-to-radial load ratios. Few results are unexpected and indicates problems like in stiffness matrix computation, in PV product (contact pressure time sliding speeds) or in certain friction forces.

Consequently, in this study, BB20 quasi-static code will first be pursued to understand unexpected results, to fix problems and to extend working conditions. In a second time, cage will be added and its flexibility will be considered both locally and globally in three dimensions. In a third time, reflection on dynamical modelling will be conducted. Developed model should solve bearing equilibrium under low or high speeds and small or important axial, radial loads and misalignment. Cage center motions, cage deformations, ball-to-pocket interactions and cage centering forces should be calculated. With this computer code we should be able, for given working conditions, to estimate optimal geometry and materials that ensure effective bearing behaviour and long lifetime. Before starting this code development, a bibliographic study about ACBB modelling is led in order to better understand possibilities, limits and novelties that can be brought. 1 Time independent models

First reference models

In this section, quasi-static and quasi-dynamic models that are time independents are addressed. Usually, they can be solved by a basic Newton-Raphson algorithm. A quasi-static model consists in solving the static equilibrium of a mechanism but by considering inertial effects (centrifugal forces and gyroscopic moments). Generally, such model only takes into accounts balls, rings and lubricant interactions since the cage mostly contributes in dynamics. A quasi-dynamic model consists in solving the dynamic equilibrium of a mechanism by considering first derivatives of rotational speed vectors and second derivatives of element position vectors as a function of position instead of time. For example, ball rotational accelerations ω are computed from azimuth angle ψ j and orbital velocity ω j m such that dω j dt = ω j m dω j dψ j . Is this way, the system of equations is simplified and computational time is saved compared to the full dynamic resolution. Generally, steady state conditions are applied, cage motion is considered and ball precession velocity ω j m is differentiated from cage rotational velocity ω c . Nevertheless, the distinction between quasi-static and quasi-dynamic models can differ depending on authors since difference is thin.

Quasi-static

In 1959, Jones [START_REF] Jones | Ball Motion and Sliding Friction in Ball Bearings[END_REF] developed a quasi-static model for high-speed ACBB. This model considers one point of contact between ball and inner ring and one between ball and outer ring. At each contact, the Hertzian pressure resulting from elastic deformations creates slippage. The resulting friction forces are calculated using Coulomb's model and integrating shear stress over the pressure ellipse. Ball centrifugal forces and gyroscopic moments are present and auxiliary relations enable to consider ball-races spinning, slipping and rolling velocities. Then, the problem consists in solving eight equations:

-Two geometrical constraints defining locations of ball center relative to raceway curvature center as schematized on Figure 1.1. -Two equilibrium equations on forces on each ring. -Two equilibrium equations on forces and two on momentums on each ball. The associated unknowns are β j , β ′j the pitch and yaw angles that defines ball rotation directions, r ′j i ,r ′j o the effective rolling radius that locates the position of pure rolling, P j i ,P j o the contact pressures, and α j i , α j o the contact angles between balls and inner or outer races as represented on Figure 1.2. However, the analytical closed form solution of this system cannot be found directly. So, to avoid the use of iterative methods and high-speed computer, Jones assumed that the ball rolls without spin on one race called the "controlling" one, and rolls and spin on the other race. Then, motional resistance to gyroscopic moment only occurs at the controlling raceway whereas gyroscopic slippage occurs at the other one. As represented on Figure 1.2, coefficients λ i and λ o are introduced to model gyroscopic moment distribution. To define the type of control, Jones introduced criterion (1.1) that postulates that outer raceway control (ORC) applies if the inequality is satisfied (λ o = 2,λ i = 0) and that inner raceway control (IRC) applies otherwise (λ o = 0, λ i = 2). Such hypothesis highly simplifies the problem and enables to obtain explicit formulas on pitch angle β j such as summarised in two first columns of Table 1.3.

Time independent models

Note that in expression (1.1), Q i , Q o are ball-race normal load, a i , a o are ellipse major semi-axis, α i , α o are contact angles and E i , E o are complete elliptic integral of the second kind.

Q o a o E o cos(α i -α o ) > Q i a i E i (1.1)
Figure 1.1 : Geometric constraints on the bearing However, such hypothesis has been rapidly questioned by experimental studies. For example, Shevchenko and Bolan [START_REF] Shevchenko | A visual study of ball motion in a high-speed thrust bearing[END_REF] found different results when comparing Jones' analytic model to contact angle measurements. Poplawski and Mauriello [START_REF] Poplawski | Skidding in lightly loaded high-speed ball thrust bearings[END_REF] restricted ORC to light-loads conditions, because they observed that increasing thrust load decreases skidding and makes slide-to-roll (S/R) ratio at the outer race approaching S/R at the inner race. Kingsbury [START_REF] Kingsbury | Ball motion in angular contact bearings[END_REF], by investigating experimental slip, pivoting, spin and precession of ACBB, deduced that races control slipping motion at ball-race contact whereas cage controls spinning.

Consequently, Harris [START_REF] Harris | Ball Motion in Thrust-Loaded, Angular Contact Bearings With Coulomb Friction[END_REF] further worked on Jones' analytical model and confirmed its accuracy, but also its complexity which explains the use of raceway control hypothesis (RCH). However, he showed that such simplification was not appropriate to predict S/R, friction torque and frictional heat generation. He modified the later system [START_REF] Harris | An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings[END_REF] to get rid of this assumption and to consider resistance to gyroscopic slippage at both raceways, simple drag forces, inertia forces and three-dimensional ball motion with precession, pitch and yaw angles. Above all, Harris implemented EHD lubrication by considering the film thickness of an isothermal Newtonian lubricant. Such study gave results closer to experiments and confirmed that RCH does not hold under certain operating conditions, particularly under EHD lubrication or when traction coefficient is not high enough to prevent gyroscopic slip. Mauriello [START_REF] Mauriello | Rolling element bearing retainer analysis[END_REF] also developed a general model that only considers 5-DOF on balls in order to avoid the use of raceway control hypothesis. Retainer is also introduced with corresponding normal and traction forces, but without ball-to-retainer impacts since same orbital speed is assumed. With this method, RCH is verified under low axial-loads where skidding occurs, but it appears to be less correct for higher thrust loads.

In 1973, Hamrock and Anderson developed a simplified thrust loaded arched outer-race ball bearing model (ARBB) [START_REF] Hamrock | Analysis of an Arched Outer-Race Ball Bearing Considering Centrifugal Forces[END_REF] which was mainly based on geometrical considerations. It was the first model dedicated to an ARBB, here with three contact points. Later, Hamrock [START_REF] Hamrock | Ball Motion and Sliding Friction in an Arched Outer Race Ball Bearing[END_REF] improved this model by following Jones' theory [START_REF] Jones | Ball Motion and Sliding Friction in Ball Bearings[END_REF] and by considering gyroscopic moments and sliding friction. These modifications have shown that the amount of spinning on the outer race of arched bearing is an order of magnitude greater than conventional ones. To get the initial conditions for its dynamic resolution, Gupta [START_REF] Gupta | Dynamics of Rolling-Element Bearings-Part I: Cylindrical Roller Bearing Analysis[END_REF],

Time independent models [START_REF] Gupta | Dynamics of Rolling-Element Bearings-Part II: Cylindrical Roller Bearing Results[END_REF], [START_REF] Gupta | Dynamics of Rolling-Element Bearings-Part III: Ball Bearing Analysis[END_REF], [START_REF] Gupta | Dynamics of Rolling-Element Bearings-Part IV: Ball Bearing Results[END_REF] also developed a quasi-static model without cage but particularly complete with consideration of centrifugal forces, EHD lubrication and thermal effects. If gyroscopic momentums were not considered and if Jones RCH [START_REF] Jones | Ball Motion and Sliding Friction in Ball Bearings[END_REF] was made, these assumptions were abandoned later in dynamics.

Quasi-dynamic

First ACBB quasi-dynamic models date back to the 1970's with Boness [START_REF] Boness | The Effect of Oil Supply on Cage and Roller Motion in a Lubricated Roller Bearing[END_REF], Poplawski [START_REF] Poplawski | Slip and Cage Forces in a High-Speed Roller Bearing[END_REF] or Rumbarger [START_REF] Rumbarger | Gas Turbine Engine Mainshaft Roller Bearing-System Analysis[END_REF] for roller bearings that especially focused on lubrication, thermal effects and cage slip. Regarding ball bearings, Harris and Mindel [START_REF] Harris | Rolling element bearing dynamics[END_REF] pursued Harris' quasi-static model [START_REF] Harris | An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings[END_REF]. They considered cage-to-pocket normal and friction forces and cage-ring normal forces or cage rail-to-raceway HD friction forces, depending on cage riding type and interaction intensity. Crecelius developed SHABERTH code [START_REF] Crecelius | Computer program operation manual on SHABERTH. A computer program for the analysis of the steady state and transient thermal performance of shaft-bearing systems[END_REF] on the same principle but with a different parametrisation of orthoradial ball-to-pocket displacements, and a different method to compute ball-to-pocket and cage-ring interactions depending if dry, HD or EHD contacts are present. A thermal resolution was also introduced. Gentle and Boness [START_REF] Boness | Ball motion in thrust loaded ball bearings[END_REF], [START_REF] Gentle | Prediction of Ball Motion in High-Speed Thrust-Loaded Ball Bearings[END_REF] set up an EHL traction formulation in a quasi-dynamic DGBB and ACBB model in order to understand more accurately ball bearing kinematics and skidding motion. Dominy [START_REF] Dominy | The Nature of Slip in High-Speed Axially Loaded Ball Bearings[END_REF] also developed a simplified dynamical model that focuses on cage motion, friction forces (drag), traction forces and spinning power to investigate the nature and causes of slip in lightly loaded BB under axial load. As well, to compute ACBB frictional losses and evaluate silicon nitride BB, Aramaki [6] and Shoda [START_REF] Shoda | The Performance of a Hybrid Ceramic Ball Bearing Under High Speed Conditions with the Under-Race Lubrication Method[END_REF] reused Harris and Mindel's [START_REF] Harris | Rolling element bearing dynamics[END_REF] approach. They added modifications such as different cage interactions formulations or the implementation of centrifugal and thermal expansions. In all of these quasi-dynamic models one of the most important issue was to represent accurately cage motion, traction forces, lubrication with thermal effects and to ensure numerical continuity while contact changes.

Lubrication modeling 1.2.1 Film thickness

At the beginning, bearing models considered dry contacts by neglecting film thickness. Ertel [START_REF] Ertel | Hydrodynamic Lubrication based on New Principles[END_REF] and Grubin [START_REF] Grubin | Fundamentals of the Hydrodynamic Theory of Lubrication of Heavily Loaded Cylindrical Surfaces[END_REF] were the first one to introduce a formulation of film thickness for a stationary line contact, as a function of relative speeds, load and lubricant parameters. Later, Dowson and Higginson [START_REF] Dowson | Elasto-Hydrodynamic Lubrication-The Fundamentals of Roller and Gear Lubrication[END_REF] also proposed an isothermal EHD lubricant film thickness for a line contact. Boness [START_REF] Boness | The Effect of Oil Supply on Cage and Roller Motion in a Lubricated Roller Bearing[END_REF] used this theory to model fully lubricated roller bearings and showed that a reduction in oil supply decreases cage slip significantly. Harris [START_REF] Harris | An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings[END_REF] also modelled EHD lubricated ACBB under purely axial load, but he assumed that all balls presented same film thickness and rolling speed. Then, Poplawski [START_REF] Poplawski | Slip and Cage Forces in a High-Speed Roller Bearing[END_REF] developed a model for full film lubricated rolling bearings under axial and radial loads. It differentiates each roller parameters (load, speed, film thickness) and considers cage friction and drag forces (pushing, unbalance and churning effects) in order to study their influence on skidding. This work marked the beginning of the bearing code COBRA that has now become a reference among bearing computation codes. In 1967, in order to consider film thickness reduction due to temperature, Cheng [START_REF] Cheng | A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders[END_REF], [START_REF] Cheng | Calculation of Elastohydrodynamic Film Thickness in High Speed Rolling and Sliding Contacts[END_REF] introduced a coefficient on Dowson's formulation to include thermal effects and side leakage. Rumbarger [START_REF] Rumbarger | Gas Turbine Engine Mainshaft Roller Bearing-System Analysis[END_REF] con-1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling sidered this improvement with Poplawski's [START_REF] Poplawski | Slip and Cage Forces in a High-Speed Roller Bearing[END_REF] novelties in its rolling bearing model. He also computed drag torque on rolling elements, thermal and centrifugal expansions and conducted a thermal analysis. Always based on Dowson's study, Allen, Townsend and Zaretsky [START_REF] Allen | Elastohydrodynamic Lubrication of a Spinning Ball in a Nonconforming Groove[END_REF], [START_REF] Allen | Comparison of Conventional and Microasperity Elastohydrodynamic Lubrication of a Ball Spinning in a Nonconforming Groove[END_REF], [4] developed an EHD theory with a new lubricant rheological model to predict spinning friction in non-conforming grooves. They introduced it into a fully lubricated ACBB model [START_REF] Townsend | Friction losses in a lubricated thrust-loaded cageless angular-contact bearing[END_REF] that considers friction torque due to spinning, rolling resistance, drag and material hysteresis.

Later, Hamrock and Dowson [START_REF] Hamrock | Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part I-Theoretical Formulation[END_REF], [START_REF] Hamrock | Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III-Fully Flooded Results[END_REF], [START_REF] Hamrock | Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part II-Ellipticity Parameter Results[END_REF], [START_REF] Hamrock | Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part IV-Starvation Results[END_REF], [START_REF] Hamrock | Ball Bearing Lubrication (The Elastohydrodynamics of Elliptical Contacts)[END_REF] proposed film thickness expressions for circular and elliptical EHL contact either fully lubricated or starved. This formulation relies on three parameters on material, speed and load. This theory is today the reference for film thickness computation. Other authors proposed similar formulas as Chittenden [START_REF] Chitenden | A Theoretical Analysis of the Isothermal Elastohydrodynamic Lubrication of Concentrated Contacts. I. Direction of Lubricant Entrainment Coincident with the Major Axis of the Hertzian Contact Ellipse[END_REF] for punctual contacts or Archard and Cowking [START_REF] Archard | Paper 3: Elastohydrodynamic Lubrication at Point Contacts[END_REF] for elliptic contacts. Moes and Venner [START_REF] Venner | Multilevel solution of the EHL line and point contact problems[END_REF] also introduced solutions for line contact and 2D circular contact problems with a set of two parameters that regroups Hamrock and Dowson parameters. Nijenbanning [START_REF] Nijenbanning | Film thickness in elastohydrodynamically lubricated elliptic contacts[END_REF] extended this model to elliptic contact by introducing an ellipticity parameter. All of these models present the advantage to propose a single and continuous solution to represent the EHL film thickness under any lubrication regime (rigid isoviscous, elastic isoviscous, rigid piezoviscous or elastic piezoviscous).

To compute correctly these EHD film thicknesses, it is essential to consider lubricant rheology and properties under high pressure and temperature [START_REF] Vergne | Tribological and rheological properties of a MIL-L-23699 lubricant[END_REF]. First rheological parameter to compute is dynamic viscosity µ, the simplest expression was given by Barus' [START_REF] Barus | Isothermals, isopiestics and isometrics relative to viscosity[END_REF] where µ is an exponential function of pressure. Gupta [START_REF] Gupta | On the Traction Behavior of Several Lubricants[END_REF] modified it to consider temperature. However, this law is very inaccurate under high pressure. Then, Roelands [START_REF] Roelands | Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils (Dr In dissertation at Technical University of Delft[END_REF] proposed a law for mineral or synthetic lubricants. Prat [START_REF] Prat | New Results in High Pressure and Low Temperature Rheology of Liquid Lubricants for Space Applications[END_REF] also developed a power low, however it does not account for temperature and it is not suitable under very high pressure. Finally, an appropriate model for aeroengine lubricants is the modified W.L.F for William, Landel and Ferry model [START_REF] Vergne | Tribological and rheological properties of a MIL-L-23699 lubricant[END_REF] resulting from Winer's previous work [START_REF] Yasutomi | An Application of a Free Volume Model to Lubricant Rheology I-Dependence of Viscosity on Temperature and Pressure[END_REF]. It is based on free volume dependence on temperature and pressure. Another parameter essential to compute film thickness is α * , the reciprocal asymptotic isoviscous pressure as explained by Bair [START_REF] Bair | An Experimental Verification of the Significance of the Reciprocal Asymptotic Isoviscous Pressure for EHD Lubricants[END_REF] and expressed by Blok [START_REF] Blok | Inverse problem in hydrodynamic lubrication and design directives for lubricated flexible surfaces[END_REF].

Traction forces

Traction forces are computed by integration of shear stress or traction coefficient over the ellipse of contact between two bodies. Different models exist to express traction coefficient as a function of the slip velocity between two bodies. They can be divided into three types such as presented in Table 1.1. The first one, expressed in Eq. (1.2), is simplified and consists in a Newtonian behaviour with linear evolution of traction coefficient with slip at low sliding and a constant traction coefficient otherwise. Another traction model was proposed by Kragelskii [START_REF] Kragelskii | Friction and Wear: Calculation Methods[END_REF] to represent more accurately traction variation with slip. In Eq. (1.3), coefficients A, B, C and D are empirical constants derived from experimental traction tests. Gupta [START_REF] Gupta | Elastohydrodynamic Lubrication[END_REF], [START_REF] Gupta | On the Traction Behavior of Several Lubricants[END_REF] with DREB (Dynamics of Roller Element Bearing) or Crecelius [START_REF] Crecelius | Computer program operation manual on SHABERTH. A computer program for the analysis of the steady state and transient thermal performance of shaft-bearing systems[END_REF] with SHABERTH code were among the first to promote such EHL semiempirical traction model. They implemented them in their computer code and considered lubricant drag forces and churning moments due to ball motion in surrounding lubricant. Then, they underlined the need to consider EHL lubrication, traction and both cage and thermal effects to investigate bearing motion and particularly skidding.

Time independent models

Simple-type

Kragelskii-type Maxwell-type
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Table 1.1 : Traction coefficient expressions

Because of inaccuracy in previous EHD traction lubricant models, Gentle and Boness [START_REF] Boness | Ball motion in thrust loaded ball bearings[END_REF], [START_REF] Gentle | Prediction of Ball Motion in High-Speed Thrust-Loaded Ball Bearings[END_REF] developed their own model for DGBB and ACBB. They formulated an expression of traction forces as a function of pressure, S/R ratio and lubricant coefficients determined experimentally. They also understood the need to add an elastic force that acts when lubricant is not too viscous and that is proportional to shear modulus and inversely proportional to film thickness. Then, such model anticipated the need of a Maxwell-type one. Results were very close to experiment and showed the importance of EHD traction modelling. This model also enabled to understand better ball bearing kinematics and particularly skidding motion.

Subsequently, a complex Maxwell type traction model [START_REF] Nélias | Traction behavior of some lubricants used for rolling bearings in spacecraft applications: Experiments and thermal model based on primary laboatory data[END_REF] was developed, as formulated in (1.4). It express shear rate γ by summing an elastic part ( γE ) with a viscous component ( γ V ) developed by Johnson and Tevaarwerk [START_REF] Johnson | Shear behaviour of elastohydrodynamic oil films[END_REF]. For a Newtonian fluid, i.e., for low shear stress, the shear behaviour is linear, only made of the elastic component ( γE ). On the contrary, for a non-Newtonian fluid, or for high shear stress, different nonlinear forms F of the viscous term have been proposed by Ree and Eyring [START_REF] Ree | Theory of Non-Newtonian Flow. I. Solid Plastic System[END_REF], [START_REF] Ree | Theory of Non-Newtonian Flow. II. Solution System of High Polymers[END_REF], Bair and Winer [START_REF] Bair | Rheological response of lubricants in EHD contacts[END_REF], [START_REF] Bair | Shear Strength Measurements of Lubricants at High Pressure[END_REF], Gecim and Winer [START_REF] Gecim | Lubricant Limiting Shear Stress Effect on EHD Film Thickness[END_REF] or by Elsharkawy and Hamrock [START_REF] Elsharkawy | Subsurface Stresses in Micro-EHL Line Contacts[END_REF]. Such shear rates can be defined in two directions according to sliding motion. Note also that, depending on the model, reference shear stress τ ref becomes characteristic stress τ o or limiting shear stress τ L . As well, shear stress τ and shear modulus G are pressure and temperature dependant as expressed by Gupta [START_REF] Gupta | Viscoelastic effects in MIL-L-7808-Type lubricant, Part I: Analytical formulation[END_REF]. Thereafter, this Maxwell traction model was widely used. For example, Chittenden [START_REF] Chittenden | Power loss prediction in ball bearings[END_REF] employed it with Gecim and Winer shear stress formulation [START_REF] Gecim | Lubricant Limiting Shear Stress Effect on EHD Film Thickness[END_REF] to compute rolling, sliding and spinning power losses in an EHD lubricated ball bearing in dynamics. Nélias [START_REF] Nélias | Etude du glissement dans les roulements à billes grande vitesse de turbomachines[END_REF] also used this Maxwell traction model with Ree-Eyring shear stress formulation [START_REF] Ree | Theory of Non-Newtonian Flow. I. Solid Plastic System[END_REF], [START_REF] Ree | Theory of Non-Newtonian Flow. II. Solution System of High Polymers[END_REF], to compute quasi-static motion of a ball bearing submitted to axial and radial loads. Features of Nélias' model are the consideration of EHD lubrication and a planar cage with cage-ring interaction represented by HD short journal bearing theory and ball-to-pocket interactions by barrel-plan theory in one direction and short journal bearing in another direction. Such model shows 1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling good correlation with experimental results, it especially appears that ball-ring sliding motion increases by decreasing axial or radial loads [START_REF] Nélias | Glissement dans les roulements à billes grande vitesse sous charges axiales et radiales[END_REF]. Later, this model was reused to compute and locate power losses due to friction forces and sliding speeds in an ACBB [START_REF] Nélias | Power Loss of Gearbox Ball Bearing Under Axial and Radial Loads[END_REF]. Such study proves the important role of cage-slip, rotational shaft speed and oil flow in power losses.

We should precise that there does not only exists these three types of traction models, but they are the most frequently used for ACBB modelling. For more details, in Tables A.1 to A.6, for each ACBB model presented in this review, we have associated the corresponding traction model used at ball-race interaction. But in any case, analytical traction models developed are always based on the same principle that is to say that they depend on sliding, temperature and contact pressure. They are always based on experimental results because lubricant coefficients are needed. This is particularly a limit raised by Gupta [START_REF] Gupta | Current Status of and Future Innovations in Rolling Bearing Modeling[END_REF] because traction experiments require specialized test rigs and the amount of lubricant traction data available is few, especially for solid lubricants. Then a limited amount of lubricant can be modelled in traction.

Thermal effects

If film thicknesses presented previously were isothermal, for high rolling or sliding velocities, energy is dissipated by shearing, then lubricant temperature increases which decreases oil viscosity and film thickness. That is why a thermal reduction factor ϕ T was first introduced by Cheng [START_REF] Cheng | A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders[END_REF], then modified by Wilson, Sheu and Murch [START_REF] Murch | A Thermal Elastohydrodynamic Inlet Zone Analysis[END_REF], [START_REF] Wilson | Effect of Inlet Shear Heating Due to Sliding on Elastohydrodynamic Film Thickness[END_REF] and finally improved by Gupta [START_REF] Gupta | Viscoelastic effects in MIL-L-7808-Type lubricant, Part I: Analytical formulation[END_REF]. Such coefficient is a function of contact pressure and surfaces velocities. Another formulation of thermal reduction factor ϕ T adapted to linear contact was also introduced by Hsu and Lee [START_REF] Hsu | An Efficient Algorithm for Thermal Elastohydrodynamic Lubrication Under Rolling/Sliding Line Contacts[END_REF].

As well, thermal effects can be considered in shear stress computation on the basis of Johnson and Tevaarwerk work [START_REF] Johnson | Shear behaviour of elastohydrodynamic oil films[END_REF], [START_REF] Tevaarwerk | The Influence of Fluid Rheology on the Performance of Traction Drives[END_REF] improved by Houpert [START_REF] Houpert | Rheological and Thermal Effects in Lubricated E.H.D. Contacts[END_REF], [START_REF] Houpert | Rheological and Thermal Effects in Lubricated E.H.D. Contacts[END_REF], [START_REF] Houpert | New Results of Traction Force Calculations in Elastohydrodynamic Contacts[END_REF], [START_REF] Houpert | Fast Numerical Calculations of EHD Sliding Traction Forces; Application to Rolling Bearings[END_REF]. As for that, Maxwell shear rate equation is coupled with an energy equation integrated along the film thickness and with an equation giving temperature rise along contact surface. To solve this system Houpert [START_REF] Houpert | Fast Numerical Calculations of EHD Sliding Traction Forces; Application to Rolling Bearings[END_REF] proposed fast and accurate procedures for nonlinear viscoelastic sliding traction force in one or two directions. In this model, it is confirmed that elastic effects are needed to compute lateral traction forces when spin occurs in ACBB.

Let's note again that DREB [START_REF] Gupta | Elastohydrodynamic Lubrication[END_REF], [START_REF] Gupta | On the Traction Behavior of Several Lubricants[END_REF] and SHABERTH codes [START_REF] Crecelius | Computer program operation manual on SHABERTH. A computer program for the analysis of the steady state and transient thermal performance of shaft-bearing systems[END_REF] were pioneers in bearings thermal modelling. Especially, Gupta solved three thermal equations on shear rate to compute EHL thermal lubrication and Crecelius solved an entire system of heat transfer equations to map temperatures over the bearing. Later, Poplawski [START_REF] Poplawski | Predicting Steady-State Temperature, Life, Skid, and Film Thickness in a Greased Preloaded Hybrid Ball Bearing[END_REF] adapted SHABERTH into SHABHYB for hybrid ACBB with grease oil. As for that, ball-race contact model was adapted, thermal and lubrication models were modified after benchmarking and experimental measuring and skidding criteria were improved to include a peak traction coefficient at ball/race contacts. RBL4 code designed by Legrand [159] is another example of quasi-static ACBB model that considers accurately thermal lubricant effects. It considers arched-races with two, three or four contact points, centrifugal forces, gyroscopic moments, normal and tangential forces, spinning, rolling, sliding motions, tangential elastic deformations and thermal effects in EHD film thickness and in lubricant shearing computation but with a procedure a bit different than Houpert's [START_REF] Houpert | Fast Numerical Calculations of EHD Sliding Traction Forces; Application to Rolling Bearings[END_REF]. 

Skidding issues

High speed ACBB are subjected to skidding which is gross sliding motion at ball-inner race contact that creates important surface shear stresses and unstable cage speed. It also increases lubricant and bearing temperatures, accelerates wear and reduces bearing life and reliability. It occurs when applied load is too low to develop sufficient EHD tractive force to overcome cage drag, then slips occur at the contact. As well, forces are not enough to prevent gyroscopic spin that is to say to keep the ball rotational axis aligned with rolling axis, then spinning motion also contributes to skidding.

Skidding criteria

For thrust loaded bearings, several authors developed criteria to evaluate the threshold over which skidding occurs. The four majors ones are summarised in Table 1.2. Based on raceway control hypothesis, Jones [START_REF] Jones | The mathematical theory of rolling-element bearings[END_REF] proposed equation (1.5) on gyroscopic momentum at the controlling ball-race contact. Poplawski and Mauriello [START_REF] Poplawski | Skidding in lightly loaded high-speed ball thrust bearings[END_REF] extended it for distributed gyroscopic effects at inner and outer race contacts. Hirano [START_REF] Hirano | Motion of a Ball in Angular-Contact Ball Bearing[END_REF], based on axially loaded ACBB experiences, underlined that skidding occurred when relation (1.6) was satisfied. Kliman proposed the similar expression (1.7), but different in amplitude, that suggests that skidding can be limited by minimizing the difference between inner and outer ring contact angles. From his previous model [START_REF] Boness | Ball motion in thrust loaded ball bearings[END_REF], Boness [START_REF] Boness | Minimum Load Requirements for the Prevention of Skidding in High Speed Thrust Loaded Ball Bearings[END_REF] ran several computations for different bearing characteristics, lubricants and operating conditions to establish the empirical equation (1.8). It relates maximum Hertzian pressure at inner race contact that predicts minimum thrust load over which skidding does not occur. Nevertheless, many parameters are involved in skidding, then these criterion are not sufficient to estimate its occurrence. As a consequence, more refined models were developed in order to investigate qualitatively skidding in details.
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Parameters to limit skidding

Harris [START_REF] Harris | An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings[END_REF] is considered as a pioneer in investigating skidding in quasi-static models, especially with lubrication and without raceway control hypothesis. However, first ACBB skidding models were only considering thrust external load and constant contact angles over the bearing. Liao and Lin [START_REF] Liao | A New Method for the Analysis of Deformation and Load in a Ball Bearing With Variable Contact Angle[END_REF] developed a different parametrization than Jones to compute contact forces and angles by assuming that osculation of inner and outer raceways was the same and that inner ring displacements were known. This study proved that contact angle variation is not influenced by axial but only by radial load. Increasing this load increases maximum contact load for balls located near the application point, but decreases those of balls at the opposite side. Bearings submitted to combined load also experiences ball slip at ball-race contact. Subsequently, to differentiate inner and outer ring contact angles, authors added centrifugal forces [START_REF] Liao | Ball bearing skidding under radial and axial loads[END_REF] but assumed the same one for every ball. Results analysis shows that increasing ω c , increases inner-race contact angles α i , decreases outer-race contact angles α o , and that maximal α i and minimal α o are located at the opposite of the radial load application point. Above all, this study shows that limiting cage rotational speed ω c is the first criterion to apply to reduce skidding.

Increasing axial load can be another solution. Skidding is inevitable when combining axial and radial deformations. However, for a given cage rotational speed, depending on these deformations, the authors found refined functions defining skidding threshold. Later, they also added misalignment [START_REF] Liao | An Analysis of Misaligned Single-Row Angular-Contact Ball Bearing[END_REF] and validated the model by a comparison with Jones' model. They proved its computational time improvement, its efficiency and showed that increasing angular misalignment lowered axial and radial load capacities. They also took over the model without misalignment [START_REF] Liao | Ball bearing skidding under radial and axial loads[END_REF] to add thermal effects. As for that, they implemented Hamrock Dowson film thickness and traction forces due to frictional heat created by shear stress formulated by Kannel and Walowit relation [START_REF] Kannel | Simplified Analysis for Tractions Between Rolling-Sliding Elastohydrodynamic Contacts[END_REF]. With this thermal model [START_REF] Liao | Rolling-Sliding Analysis in Ball Bearing Considering Thermal Effect[END_REF], sliding velocities and friction forces at ball-to-inner race contact are increased. Wang [START_REF] Wang | Modeling high-speed angular contact ball bearing under the combined radial, axial and moment loads[END_REF] also continued the isothermal model [START_REF] Liao | Ball bearing skidding under radial and axial loads[END_REF] and considered different centrifugal force and gyroscopic moment for each ball for an ACBB under combined radial, axial and moment loads. To improve skidding prediction, Yoshida [START_REF] Yoshida | Analysis of Cage Slip in Ball Bearings Considering Non-Newtonian Behavior and Temperature Rise of Lubricating Oil[END_REF] added in Jones' theory, one equation on cage with cage-race HD interactions. He also represented fluid as non-Newtonian with Eyring theory [START_REF] Ree | Theory of Non-Newtonian Flow. I. Solid Plastic System[END_REF], [START_REF] Ree | Theory of Non-Newtonian Flow. II. Solution System of High Polymers[END_REF]. He solved energy equations to compute ball-race film thickness, ball, inner and outer ring temperatures in order to estimate the temperature rise induced by ball slip. As well, Xu [START_REF] Xu | A preload analytical method for ball bearings utilising bearing skidding criterion[END_REF] used Harris' [START_REF] Harris | An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings[END_REF] and Jones' theory and Hirano's criterion [START_REF] Hirano | Motion of a Ball in Angular-Contact Ball Bearing[END_REF] to estimate the optimum preload to limit skidding and heat generation for given bearing parameters and running speed in a high-speed ACBB.

In 2018, Oktaviana [START_REF] Oktaviana | Skidding analysis of angular contact ball bearing subjected to radial load and angular misalignment[END_REF] used De Mul's model [START_REF] De Mul | Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom While Neglecting Friction-Part II: Application to Roller Bearings and Experimental Verification[END_REF] and Hirano's criterion [START_REF] Hirano | Motion of a Ball in Angular-Contact Ball Bearing[END_REF] to evaluate the influence of external loading, rotational speed and angular misalignment on bearing skidding. They observed that under purely axial load, increasing misalignment increases skidding. However, for given bearing conditions, it exists an optimal misalignment angle to avoid skidding. For bearing submitted to axial and radial loads, increasing misalignment will develop two skidding regions instead of one. And, increasing radial load will increase these areas. Besides, the initial contact angle does not influence skidding for axially loaded bearings whereas for bearings under combined loads, increasing this angle will enlarge skidding area.

Time independent models
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Models without raceway control hypothesis

RCH has been widely used in literature, however under specific operating conditions such assumption does not hold. That is why many recent studies interested in ways to get rid of it.

Geometric assumption

One of the most simplified method is to use the geometric hypothesis that considers equal gyroscopic moment distribution between inner and outer race (λ i =λ o =1), then pitch angle is the mean of contact angles and S/R ratio are equal on both races.

Hybrid theory

Another method based on d'Alembert's principle was established by Changan [START_REF] Changan | Raceway control assumption and the determination of rolling element attitude angle[END_REF] to compute yaw angle as a function of kinematic parameters and loads. Corresponding formulas are summarized in Table 1.3. Advantage of this hybrid theory is that, contrary to discrete RCH, it considers a continuous gyroscopic moment distribution between races. Like most theories, it assumes an equal coefficient of friction between both races, as expressed in (1.9).

µ j = T j i Q j i = T j o Q j o ⇔ λ i + λ o = 2 (1.9)
This hybrid theory has been reemployed by many searchers. For instance, Lei [START_REF] Lei | A New Method for Computing Contact Angle of High Speed Ball Bearing[END_REF] compared Jones' model with a quasi-static planar ACBB model that couples Hybrid theory with an EHD lubrication model based on a semi-empirical friction coefficient. As well, Noel [START_REF] Noel | Complete Analytical Expression of the Stiffness Matrix of Angular Contact Ball Bearings[END_REF] investigated the influence of kinematic hypothesis on gyroscopic moments and stiffness matrix. Like Harris, they observed that ORC applies for high-speed and light loaded bearings. Hybrid theory is suitable under these conditions, but also under higher loads. Geometric hypothesis is less correct than hybrid one, but easier to implement and provide good results for significantly loaded bearings. Wang [START_REF] Wang | Modeling angular contact ball bearing without raceway control hypothesis[END_REF] and Zhang [START_REF] Zhang | A novel model for high-speed angular contact ball bearing by considering variable contact angles[END_REF], [START_REF] Zhang | Effect of the ring misalignment on the service characteristics of ball bearing and rotor system[END_REF] also used hybrid hypothesis for ACBB under combined axial, radial and momentum loads.

1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling It appears that radial load causes contact angles variation over the bearing and uneven load distribution. However, the use of a proper momentum can compensate it and improve load distribution and service characteristics under combined load. On the contrary, misalignment reduces bearing performances under pure axial load. Rabréau [START_REF] Rabréau | Influence of bearing kinematics hypotheses on ball bearing heat generation[END_REF] also coupled a thermal FE model with a kinematic model with either Hybrid or Jones' model to investigate their influence on internal kinematics and frictional torque. Recently, Liu [START_REF] Liu | Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions[END_REF] developed an optimised algorithm that uses Hybrid theory to study the effects of elastic modulus, ball diameter, radial clearance, rotational speed and ring angular misalignment on time-varying stiffness matrix.

Contact friction minimisation

Another approach is to focus on contact friction minimization. For instance, Dusserre and Nélias [START_REF] Dussèrre-Telmon | Roulements à billes lubrifiés: contrôle partagé de la bille entre la bague intérieure et la bague extérieure: Roulements. I[END_REF] have shown that bearing components were working such that spinning power losses between inner and outer races were minimal. Then, pitch angle β is equal to IRC pitch angle β i when operating under low speeds and high loads, it is equal to ORC pitch angle β o for high speeds and light-loads and it is distributed between those angles otherwise. As well, Foord [START_REF] Foord | High-speed ball bearing analysis[END_REF] replaced RCH by a minimisation of the total contact friction power. It enables to compute accurate kinematics for any load or speed condition. The only limit occurs when axial and radial loads are of a similar magnitude. To compute EHD traction model in quasi-static, Gupta proposed first [START_REF] Gupta | On a kinematic hypothesis for angular contact ball bearings[END_REF] to replace RCH by a constraint that minimises frictional energy due to rolling element-inner and outer races slip with respect to pitch angle. Later, improvements [START_REF] Gupta | Minimum Energy Hypothesis in Quasi-Static Equilibrium Solutions for Angular Contact Ball Bearings[END_REF] gave realistic rolling and slipping motions at ball-race contacts, with an efficient friction simulation much closer to dynamical results than RCH.

Ball torque equilibrium

For ACBB with tractive lubricant in aircraft gas turbine engines, especially under high speed and temperature operating conditions, Chapman [START_REF] Chapman | Angular Contact Ball Bearing Dynamics, an Experimental and Theoretical Investigation[END_REF] has led an experimental study that proves that RCH is inadequate to compute ball axis attitude angle and ball rotational speed. Then, he proposed to compute β by a moment balance calculation. For rings with same conformity, it appears that β is shared between IRC and ORC for low speed whereas β is a bit smaller than β ORC at high speed. In a similar way, Brecher [START_REF] Brecher | Calculation of Kinematics and Friction of a Spindle Bearing Using a Local EHL Friction Model[END_REF] iterated on ball pitch and yaw angles and ball and cage rotational velocities to access ball torque equilibrium. Contrary to most models, friction coefficient is not based on usual EHL theory but is expressed by an empirical relation that applies locally at each contact and determined from experiments. Likewise, Bozet and Servais [START_REF] Bozet | Influence of the Balls Kinematics of Axially Loaded Ball Bearings on Coulombic Frictional Dissipations[END_REF] developed a quasi-static, axially loaded, dry lubricated, ball bearing model to compute the pitch angle without RCH but by ball equilibrium resolution and by neglecting yaw angle. Significant differences have been observed compared with traditional RCH models, especially in terms of power losses. Later, they considered transverse loads T j i and T j o due to gyroscopic torques [START_REF] Servais | New computational method of the ball/race contacts transverse loads of high speed ball bearings without race control hypothesis[END_REF]. Contrary to other models, they did not impose prescribed values on T j i and T j o but they iterated on λ j i and λ j o through a process that consists in studying in detail ball kinematics (transverse slip speed fields) to equilibrate transverse torque then transverse load and ball spin attitude. Results have shown the strong influence of bearing rotational speed and ball spin attitude angle on the transverse loads. Leblanc and Nélias [START_REF] Leblanc | Ball Motion and Sliding Friction in a Four-Contact-Point Ball Bearing[END_REF], [START_REF] Leblanc | Analysis of Ball Bearings with 2, 3 or 4 Contact Points[END_REF] Time independent models interested in ACBB with 2, 3 or 4 contact points and computed pitch and yaw angles without any assumption but by a resolution of ball equilibrium equations. They showed that raceway control hypothesis is less correct when more than two contact-points are present. This model also enables to better understand arched bearing kinematics and particularly the fact that getting two contact points on a race distributes loads but also increases sliding and spinning motions. Then, it enhances friction power losses, surface friction shear stresses, pressure-velocity product, so surface temperatures. However, drain holes can be designed on arched races to improve lubricant flow, to reduce oil churning and to compensate friction power losses.

Rolling contact analysis

Chen [START_REF] Chen | Quasi-static analysis of thrust-loaded angular contact ball bearings part I: theoretical formulation[END_REF], [START_REF] Chen | Quasi-static analysis of thrust-loaded angular contact ball bearings. Part II: Results and discussion[END_REF] used rolling contact theory, a new differential slip model and linked creepage with slip and spin ratio to determine precisely ball and raceway relative motions without making RCH or any assumption on traction forces. Such developed model enables to represent more accurately ball kinematics (friction, traction, sliding and spinning at ballrace contacts).

Other areas explored

Based on Jones' and Harris' [START_REF] Harris | An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings[END_REF] theory, many ACBB quasi-static models could be developed, each one presenting its advantages depending on application field. For example, de Mul [START_REF] De Mul | Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom While Neglecting Friction-Part II: Application to Roller Bearings and Experimental Verification[END_REF] developed a highly modular, systematic and complete system to compute equilibrium, loads and bearing stiffness analytically for any kind of bearing. To model a coupled spindle-bearing system made of spindle shaft, ACBB and housing, Jorgensen [START_REF] Jorgensen | Dynamics of Spindle-Bearing Systems at High Speeds Including Cutting Load Effects[END_REF] reused de Mul's theory, whereas Cao [START_REF] Cao | A General Method for the Modeling of Spindle-Bearing Systems[END_REF] or Shin [START_REF] Shin | Bearing Nonlinearity and Stability Analysis in High Speed Machining[END_REF] used Jones' analysis directly. Both of them solved ACBB quasi-static problem and computed stiffness matrix to introduce it into a dynamic spindle system. Shin has especially shown the influence of speed variation on the decrease of bearing stiffness and natural frequencies that impacts the prediction of stability lobes. Ignacio Amasorrain [START_REF] Ignacio Amasorrain | Load distribution in a four contact-point slewing bearing[END_REF] proposed a procedure to compute load distribution, ball-race contact parameters and ring motion in a four contact-point slewing bearing under axial, radial and moment load working at low speeds. Jedrzejewski and Kwasny [START_REF] Jedrzejewski | Modelling of angular contact ball bearings and axial displacements for high-speed spindles[END_REF] also developed an ACBB model for high-speed spindle bearing with moving sleeves in order to forecast moving sleeve position depending on bearing kinematical operating conditions. Brecher [START_REF] Brecher | Cage Friction in High-Speed Spindle Bearings[END_REF] also proposed a very simplified procedure to compute cage friction in spindle bearings. He considers a constant cage-to-outer race contact and a unique ball-to-pocket contact with normal forces and Coulomb's friction forces. Thermal and centrifugal expansion of cage and outer ring are also implemented to estimate the effects of radial clearance on cage friction. For thrust loaded ACBB, Antoine [5] proposed a precise and quick tool to compute explicitly inner and outer ring contact angles depending on preload and rotational speed. Chunjiang [START_REF] Chunjiang | Analysis on the load characteristics and coefficient of friction of angular contact ball bearing at high speed[END_REF] investigated the influence of axial load and rotational speed on ball-race contact angles, normal forces, centrifugal forces, gyroscopic torque and coefficient of friction with their own quasi-static model of thrust loaded ACBB. Zeng [START_REF] Zeng | Study on Simplified Model and Numerical Solution of High-Speed Angular Contact Ball Bearing[END_REF] also proposed a novel calculation method to improve non-linear quasi-static resolution. As for that, recursive relations are found to reduce the number of unknowns, a new initialization method is used and an improved 1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling artificial bee colony algorithm is developed to improve solutions accuracy, computational time and reliability in solving large root difference problems.

Many studies also interested in computing ACBB running torque that is to say the moment required to sustain a constant rotational speed. It is directly related to power losses, heat generation and bearing efficiency. For example, Houpert [START_REF] Houpert | Ball Bearing and Tapered Roller Bearing Torque: Analytical, Numerical and Experimental Results[END_REF] proposed expressions to compute hydrodynamic rolling forces, elastic rolling moments and friction moments due to curvature effects and pivoting at ball-race contacts. Then, he obtained sliding forces by ball equilibrium. Finally, he derived the running torque on the bearing by summing all forces and moments around rotational axis. Joshi [START_REF] Joshi | Running Torque of Slow Speed Two-Point and Four-Point Contact Bearings[END_REF] also computed bearing running torque of an ACBB with 2 or 4 contact points under high load and slow speed. As for that, they simplified Leblanc and Nélias' model [START_REF] Leblanc | Ball Motion and Sliding Friction in a Four-Contact-Point Ball Bearing[END_REF] by neglecting centrifugal forces and gyroscopic moments. Tong and Hong [START_REF] Tong | Study on the running torque of angular contact ball bearings subjected to angular misalignment[END_REF] also proposed new formulations for EHL rolling resistance and spinning friction, and considered elastic hysteresis friction, differential sliding losses and lubricant viscous drag. Later, this model was coupled with de Mul's one [START_REF] De Mul | Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom While Neglecting Friction-Part II: Application to Roller Bearings and Experimental Verification[END_REF] and gyroscopic effects were added in order to study the effects of angular misalignment on the running torque of ACBBs under different preloads [START_REF] Tong | Improved formulation for running torque in angular contact ball bearings[END_REF]. In all these running torque studies, particular attention has been paid to model friction coefficient. As well, they all concluded that hydrodynamic rolling forces and spinning friction were the main components responsible for running torque.

Regarding quasi-dynamics, Yan [START_REF] Yan | Investigation on heat dissipation characteristic of ball bearing cage and inside cavity at ultra high rotation speed[END_REF] developed a model that computes balls, rings, and planar cage motion combined with heat transfers through a heat-flux method. They investigated oil-air flow, lubrication and thermal ball bearing performances depending on pocket shape (spherical or cylindrical), cage guiding type, cage guiding clearance and pocket clearance. Similarly, Yang [START_REF] Yang | Influence of cage clearance on the heating characteristics of high-speed ball bearings[END_REF] developed another planar cage quasi-dynamic model coupled with a convective heat transfer system. They studied the influence of cage guiding clearance and pocket hole clearance on high-speed ACBB heating characteristics. On the same principle, Wen [START_REF] Wen | Influence of angular misalignment on the tribological performance of high-speed micro ball bearings considering full multibody interactions[END_REF] developed a quasi-dynamic planar cage model for highspeed micro ball bearing. It appears that angular misalignment significantly modifies ballrace contact load, contact angle, spinning and skidding velocity variations over a cycle. Under axial load, angular misalignment increases bearing power losses, decreases fatigue life, whereas for combined loads, depending on misalignment direction and amplitude it can either improve or alter power losses and fatigue life. We should note that contrary to traditional models, SHABERTH code [START_REF] Crecelius | Computer program operation manual on SHABERTH. A computer program for the analysis of the steady state and transient thermal performance of shaft-bearing systems[END_REF] or these last quasi-dynamic models do not neglect ball-to-pocket orthoradial displacements due to radial load or misalignment. They also usually consider ball rotation velocities (ω j m , ω j x , ω j y , ω j z ) as unknowns instead of ball self-rotations (pitch β j and yaw β ′j angles) and effective rolling radius r ′j i , r ′j o . Wang [START_REF] Wang | Analysis on dynamic characteristics of aero-engine high-speed roller bearings[END_REF] and Cui [START_REF] Cui | Research on dynamic performances of high-speed rolling bearing and rotor system of aeroengine[END_REF] also developed READ (Rolling Element Bearing Advanced Dynamics), a 3D quasi-dynamic model for aero-engine ball bearings. For high-speed and heavy-load ACBB, Shi [START_REF] Shi | Coupling study on dynamics and TEHL behavior of high-speed and heavy-load angular contact ball bearing with spinning[END_REF] reused Cui's [START_REF] Cui | Research on dynamic performances of high-speed rolling bearing and rotor system of aeroengine[END_REF] model with consideration of spinning, sliding and rolling motions. At ball-race contact, they solved EHL problem by multi-grid method in parallel with thermal equations. Results show that full film lubrication occurs under normal operating conditions whereas poor lubrication occurs when the bearing slow down, start-up or shut-down. That is why they extended this coupled quasi-dynamic/TEHL model to mixed lubrication regime [START_REF] Shi | Mixed thermal elastohydrodynamic lubrication analysis with dynamic performance of aero ball bearing during start-up and shut-down[END_REF]. As for that, continuous Reynolds equations, film thickness equations and film energy equations are considered whether the contact is under EHL or boundary lubrication. Similarly, Wu [START_REF] Wu | Investigation on the angular contact ball bearings under low speed and heavy load with coupled mixed lubrication and quasi-dynamic analysis[END_REF] coupled mixed lubrication Time dependent models with Wang's model [START_REF] Wang | Analysis on dynamic characteristics of aero-engine high-speed roller bearings[END_REF] in order to investigate the effects of rotational velocity, inner raceway curvature coefficient or initial contact angle on bearing behaviour under mixed lubrication. Li [START_REF] Li | Traction behaviours of aviation lubricating oil and the effects on the dynamic and thermal characteristics of high-speed ball bearings[END_REF] also implemented on Wang's model [START_REF] Wang | Analysis on dynamic characteristics of aero-engine high-speed roller bearings[END_REF], curve fitted relationships of traction coefficient obtained from experimental studies on aviation lubricating oil. Results especially show that ball-race traction force and relative sliding speeds causes a greater increase of outer race temperature than inner race one. Cui [START_REF] Cui | Limiting speeds of high-speed ball bearings considering prevention of skidding and overheating conditions[END_REF] recently reused its quasidynamic model and coupled it with a thermal model based on moving heat source method. Minimum load to prevent skidding, maximal load to prevent overheating and maximal speed to avoid both of them were evaluated depending on operating conditions such as rotational speed, axial, radial loads, oil or grease lubrication, ceramic or steel balls.

Time dependent models

Dynamic models consider time-dependant accelerations of bearing components. Usually, quasi-static or quasi-dynamic solutions are used to initialise such dynamical problems. Systems of equations are solved with a time step numerical scheme, like fourth order Runge Kutta (RK4), which can be time consuming [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF]. Consequently, dynamic developments were made possible by constant improvements of computer machines performances. And, with the increasing of high-speeds, loads and temperatures in ball bearings, searchers had to further interest in these time dependant models. But, one of the most important issue in dynamic modelling is the investigation of cage motion and stability. Indeed, the cage is a critical component in bearings and can be subject to defective operation, excessive wear or failure. Difficulties in setting up experimental studies in dynamics due to the requirement of sophisticated instrumentation and measurement systems, also explains the need for analytical models development.

Bases on cage dynamical motion

Kingsbury [START_REF] Kingsbury | Torque variations in instrument ball bearings[END_REF] conducted an experimental study and brought solid bases to understand cage dynamical motion. He measured cage orbital velocity about its mass center, cage mass center angular velocity, races speeds and bearing torque. Then, as schematized in Figure 1.3, he observed a whirling motion which is a very fast translation of the center of mass of the retainer in a rotational motion around the bearing center. When whirl velocity α and whirl radius r w are constant over time, a pure tone at a particular pitch angle can be heard, this phenomenon is called pure whirl. On the contrary, if whirl velocity and whirl radius vary irregularly in an erratic motion, large changes in bearing torque are observed, a noisy irregular sound can be heard also called squeal. These cage center motions are illustrated in Figure 1.4. Besides, if whirl velocity is equal to bearing angular velocity, bearing torque is unchanged, this is synchronous whirl. When whirl velocity is equal to ball group velocity the mode is stable with a uniform torque, otherwise a ball jump mode is observed with a sinusoidal torque variation. Later, Kingsbury and Walker [START_REF] Kingsbury | Motions of an Unstable Retainer in an Instrument Ball Bearing[END_REF] further investigated bearing instabilities and confirmed that during squeal, a highfrequency retainer motion is superimposed to the retainer ball group rotation rate. As well, whirl is driven by friction and ball-to-pocket geometry, then squeal can be limited by an asymmetric ball distribution, by adding oil lubricant or by reducing applied axial load to limit ball-race traction. He also observed that whirl frequency is approximately 1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling proportional to ball spin rate and that for inner-race guided cage, whirl velocity is in the same direction as retainer rotational speed whereas it is in the opposite direction for outer-race guidance. We should also note that squeal instabilities do not obviously lead to important damages. Thereafter, a stable cage motion will be defined by a constant whirl speed (equal to cage rotational speed), a regular whirl orbit and a constant whirl radius. 

Dynamical reference models

The first analytical dynamic model was designed by Walters [START_REF] Walters | The Dynamics of Ball Bearings[END_REF] with the code BASDAP which is a Ball And Separator Dynamic Analysis for ball bearings. It considers 4-DOF for balls and 6-DOF for separator and solves Jones' ball/race elasticity problem independently to dynamic analysis. Particular attention was also paid to compute ball-to-races, ball-to-separator and separator-to-races normal and traction forces depending on lubrication and component positions. Especially, when a ball contacts the separator, Walters imposed a constraint such that the normal ball and separator velocities are equal at the contact point. Then, separator motion relative to ball motion was observed and especially orbital speeds like whirling. Later, Kannel and Bupara [START_REF] Kannel | A Simplified Model of Cage Motion in Angular Contact Bearings Operating in the EHD Lubrication Regime[END_REF] programmed BASDAP II that simplifies cage motion in a plan, but considers ball-to-pocket impacts with traction, normal spring and damping effects depending on EHD lubrication. Ball-cage bouncing and ball sliding over the film results in cage-race energy dissipation. Results align with Kingsbury's observations and showed that stable motion highly depends on lubricant since it is enhanced by low ball-to-pocket friction coefficient, low lubricant viscosity or low film thickness that affect damping.

In the 1970's, Gupta developed BDYN (Bearing DYNamic) and DREB (Dynamics of Rolling Element Bearings) [START_REF] Gupta | Dynamics of Rolling-Element Bearings-Part III: Ball Bearing Analysis[END_REF], [START_REF] Gupta | Dynamics of Rolling-Element Bearings-Part IV: Ball Bearing Results[END_REF] considering all bearing dynamical elements with hydrodynamic or dry interactions. Later, with RAPIDREB and ADORE (Advanced Dynamics of Rolling Element Bearings) [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF], Gupta improved lubrication models. Then, thermal effects were added, and today, ADORE still continues to be developed. An animated interface called AGORE (Animated Graphics of Rolling Elements) was also created to visualise bearing motion. While very complete as it considers any kind of bearing, all possible interactions, solid effects or defaults, ADORE limitation is that cage is assumed to be rigid even if it can be considered segmented between pockets. Also, only two contact points between balls and rings are considered, the system is solved in a fixed referential coordinate frame and is particularly time-consuming. This model enabled to observe typical ball bearing phenomenon and instabilities such as skidding or whirling. Extensive investigations on the effect of misalignment, squeeze-film, clearances, radial-toaxial load ratio or lubrication models on accelerations, contact and friction forces or power losses enabled to better understand bearing dynamics and to improve the model over the years. Especially, important achievements have been done on EHD traction, lubrication and thermal models that highly influence bearing behaviour.

In order to lead a parametric and optimisation study with a more cost effective code than ADORE, Meeks [START_REF] Meeks | The Dynamics of Ball Separators in Ball Bearings-Part I: Analysis[END_REF], [START_REF] Meeks | The Dynamics of Ball Separators in Ball Bearings-Part II: Results of Optimization Study[END_REF] developed a SEParator DYNamic program (SEPDYN) for ball bearing under axial load. The analytic problem is simplified with two dynamic equations for balls and six for the separator. To reduce resolution complexity, the system is solved in rotating coordinate frames instead of fixed inertial one. Different cage types are considered (ball or race-guided, with conical or cylindrical pockets). Results showed the influence of high friction and traction coefficients, of high separator-races and separatorpocket clearances on ball-to-pocket collision forces, wear energy dissipated, whirl and squeal frequencies. Later, the system was improved into BABERDYN [START_REF] Meeks | Ball Bearing Dynamic Analysis Using Computer Methods-Part I: Analysis[END_REF] to consider radial load and misalignment, inertial effects, lubricant film, torque, heating and power dissipation.

Later, Boesiger [START_REF] Boesiger | An Analytical and Experimental Investigation of Ball Bearing Retainer Instabilities[END_REF] developed PADRE for Planar Analysis of a Dynamic Retainer that considers thrust loaded ball bearings with 2-DOF for balls without inertial effects.

1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling Retainer interactions are precisely introduced, especially with the consideration of cage flexibility and asymmetric cages. A retainer instability investigation showed the whirl occurrence at a characteristic frequency and its sensitivity with ball-to-retainer friction increasing.

For the company SKF, Stacke [START_REF] Stacke | BEAST-a rolling bearing simulation tool[END_REF], [START_REF] Stacke | Dynamic behaviour of rolling bearings: Simulations and experiments[END_REF] designed BEAST, a very complete 3D BEAring Simulation Tool, that models the dynamic of all kind of bearing with any geometry, external load or lubricated conditions. It has proven its efficiency to solve industrial problems and to understand better cage motion and ball-to-pocket interactions around the bearing depending on loads applied.

Cage stability evaluation

All dynamical models are more or less the same, the only difference is the consideration or not of typical effects like inertia, external load and various interactions between balls, cage, races and lubricant. In these tables, unless stated otherwise, ball-race and ball-topocket normal forces are represented by Hertzian theory, ball-race friction forces by shear stress integration over contact surface for given traction and lubrication model. Cagerace interactions are represented by short journal bearing theory [START_REF] Frene | Hydrodynamic Lubrication[END_REF] if no contact occurs and sometimes usual normal and friction forces are also added if contact is considered. Regarding friction, pure sliding with high velocities occurs at ball-to-pocket and cage-race contact, then frictional behaviour is represented by a constant coefficient.

Gupta developed an important work to characterise factors influencing cage instabilities in solid lubricated ball and cylindrical bearings. First, he investigated the effect of friction [START_REF] Gupta | Frictional Instabilities in Ball Bearings[END_REF] on ball and cage stability by studying ball-race sliding velocities, cage whirl orbit motion, velocity and time average wear rates of bearing elements for different Kragelskii-type or simplified traction curves. To minimise instabilities it appears that lubricant should present a limited traction slope at low slip rates for any interaction and a minimum negative slope at high slip velocities for ball-race traction. Then, he investigated the influence of cage unbalance [START_REF] Gupta | Cage unbalance and wear in ball bearings[END_REF], [START_REF] Gupta | Ball Bearing Response to Cage Unbalance[END_REF] on ACBB motion experimentally and numerically with ADORE. For both inner and outer-race guided cages, stable cage whirl occurs at any rotational speed. On the contrary, if cage unbalance increases under a certain level, cage interactions are more important, whirl radius increases and whirl velocity varies. With excessive unbalance, ball-cage collisions are also extended in time which worsen cage wear. Such behaviours are confirmed by power loss and time-averaged wear rates of cage which increase with unbalance. Besides, for inner race guided bearing, cage-race contact occurs at the opposite location of unbalance which increases cage wear then unbalance itself and instabilities. And, the severity of this interaction increases with rotational speed and unbalance. On the contrary, for outer race guided bearing, the contact occurs at the same location as the unbalance which limits this phenomenon, such bearing is "self-balanced". In another parametric study, Gupta [START_REF] Gupta | Modeling of Instabilities Induced by Cage Clearances in Ball Bearings[END_REF] has also shown that increasing ball-to-pocket clearance triggers instabilities at a certain threshold and that an optimal ratio of cage-race to ball-pocket clearances exists. And, if these conclusions only apply for the solid-lubricated bearing studied with given geometry, it clearly appears that correlations exist between cage clearances and stability. Besides, Gupta [START_REF] Gupta | Dynamic loads and cage wear in high-speed rolling bearings[END_REF] investigated the influence of the type of load variation on ball-race contact load variation, whirl motion, ball-to-pocket contact amplitude and duration, then on the steady-state wear rate Time dependent models of the cage. In terms of stability, contact severity, wear and risk of failure, results show that the stationary radial load is preferable than unbalanced load rotating with the shaft which is itself less critical than a radial load rotating at half the shaft speed.

Based on Discrete Element Method (DEM), Saheta [START_REF] Saheta | Dynamics of rolling element bearings using discrete element method[END_REF] developed an efficient Dynamic Bearing Model (DBM) for ACBB and DGBB. 6-DOF are considered for each element represented with simple geometries and with dry contact interactions in order to save computational time. A parametric study was led and confirmed previous observations from Gupta [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF] and Kingsbury [START_REF] Kingsbury | Torque variations in instrument ball bearings[END_REF] about the effects of rotational velocity and ball-race traction models on ball and cage motion. Especially, at high-speed, if increasing the slope of the traction curve reduces ball-race slipping, it increases fluctuations in cage whirl and radial velocities then motion is unstable. However, a symmetric distribution of balls around the bearing can limit such instabilities. This model also proves that cage velocities fluctuations are enhanced by ball-to-pocket friction coefficient increasing, that ball-race maximum stresses increases with race curvature, that reducing ball-race clearance reduces slip and maximum contact load whereas reducing ball-to-pocket clearance increases the region of slip at ball-inner race contact. Later, Ghaisas [START_REF] Ghaisas | Dynamics of Cylindrical and Tapered Roller Bearings Using the Discrete Element Method[END_REF] replaced the simple traction model by a microslip model to consider the curvature of contact ellipse and the different slipping velocities on each slice of the surface. This consideration tends to increase ball angular velocity computed, especially on the loaded zone of the bearing. Lubricant effects are also implemented with drag forces computation and ball-to-pocket normal forces modified to consider the effect of EHD or PVR (piezoviscous rigid) film thickness on elastic deformation computation. DBM was also extended to cylindrical and tapered roller bearing with the consideration of new effects like churning, rolling friction or the computation of roller-race normal forces by slicing method. Based on DBM theory, Prenger [START_REF] Prenger | Modeling the Dynamics of Rolling Element Bearings Using ADAMS[END_REF] also modelled in three-dimension ACBB, DGBB and SRB dynamics on ADAMS software. Every element interaction is defined on subroutines with the possibility, at each contact, to consider dry or lubricated interaction to compute normal forces. Friction forces and momentums are also calculated with Kragelskii's traction coefficient along with spin-resisting moment on the ellipse of contact. Later, Dattawadkar [START_REF] Dattawadkar | Analysis of wind turbine pitch control bearings-discrete element method and finite element analysis[END_REF] extended DBM to four contact point ACBB and confirmed the effectiveness of such bearings to support large axial and moment load.

Liu [START_REF] Liu | Dynamic stability analysis of cages in high-speed oil-lubricated angular contact ball bearings[END_REF] also developed an ACBB dynamical model with only 3-DOF in translation for inner ring but with 3D cage. All possible interactions were taken into account with usual bearings theories. In particular, oil damping at ball-race contact is represented by Sarangi's [START_REF] Sarangi | Stiffness and damping characteristics of lubricated ball bearings considering the surface roughness effect. part 1: Theoretical formulation[END_REF] expression, whereas imperfect elastic contact is considered by material damping implementation at each possible contact. Cage motion analysis confirms that improving cage stability requires to increase inner ring rotational speed or applied load to limit skidding, to choose material with an important coefficient of restitution that enhances damping effects and to restrict the ratio of pocket clearance to guiding clearance below a value of 1 in order to avoid ball-to-pocket collisions then cage-race collisions. To investigate the effect of external load on cage stability, Ye [START_REF] Ye | Cage Instabilities in High-Speed Ball Bearings[END_REF], [START_REF] Ye | Effect of external loads on cage stability of high-speed ball bearings[END_REF] developed a 4-DOF cage dynamical model with only normal and dry friction forces at each contact. Under steady state, analysis of whirl track, cage sliding-ratio and deviation ratio of cage whirl speed confirms that stability increases with axial load but decreases with radial load. On the contrary, during starting process, if radial load has little influence, axial load plays an opposite role on cage dynamics and enhances instabilities. Niu [START_REF] Niu | An investigation on the occurrence of stable cage whirl motions in ball bearings based on dynamic simulations[END_REF] has adopted 1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling Gupta's BB dynamical model [START_REF] Gupta | Dynamics of Rolling-Element Bearings-Part III: Ball Bearing Analysis[END_REF], [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF] for an outer-race guided cage in order to deepen previous researches on cage stability. An extensive analyse of stable and unstable motion under skidding conditions shows precisely the involvement of ball-to-pocket normal and friction forces, of cage-race forces, of centrifugal forces and the role of combined load or spacing between balls in ensuring constant whirl radius and velocity. Zhang [START_REF] Zhang | Impact of lubricant traction coefficient on cage's dynamic characteristics in high-speed angular contact ball bearing[END_REF] studied the dynamical behaviour of ACBB for three lubricants presenting different viscosity and temperature resistance. Kragelskii's traction coefficients are determined experimentally and expressed as a function of lubricant temperature, entrainment speed and normal load. Analysis of cage's mass center motion, period of dynamic response and cage's slip ratio, under different temperature, axial or radial load, shows the influence of lubricant traction coefficient on cage dynamical characteristics and stability. Then, depending on working conditions an appropriate lubricant can be chosen. Using the same approach, Liu [START_REF] Liu | The effect of lubricant temperature on dynamic behavior in angular contact ball bearings[END_REF] investigated effects of lubricant type and temperature on skidding behaviour and ballto-pocket impacts. It appears that increasing lubricant temperature reduces ball-race traction coefficient, especially in the radially loaded zone and under low axial load. As a consequence, sliding and spinning velocities increase, whereas ball-to-pocket contact forces decrease. Under high temperatures, increasing axial load is a solution to limit skidding and ball-to-pocket forces. As well, dynamic behaviour is different depending on lubricant viscosity-temperature coefficient, then on temperature resistance. That is why, according to operating temperature, the appropriate lubricant should be chosen. Later, balls, cage and shaft assembly gravity effects [START_REF] Liu | Nonlinear Dynamic Behavior of Angular Contact Ball Bearings under Microgravity and Gravity[END_REF] were added in this model in order to compare bearing behaviour under microgravity and gravity. Analysis of skidding, impact forces and cage center orbital motion shows that stability is improved under microgravity whereas under gravity, traditional dynamical bearing problems gets worse with shaft assembly increasing.

Bovet [START_REF] Bovet | An approach for predicting the internal behaviour of ball bearings under high moment load[END_REF] developed a non-planar dynamical model for BB submitted to high moment load, then to important cage-race impacts. That is why these interactions are accurately represented through a hybrid short journal model that considers the transition from hydrodynamic to metal-to-metal contact by boundary layer theory. An equivalent viscoelastic hinge joint is also present on the inner ring to represent shaft dependence, so inertia, damping and rigidity of the rest of the system. Results confirms the importance of these new features for moment load modelling. And, severe cage-race and ball-to-pocket impacts simulated under high moment load, corroborate with experimental observations. Wang [START_REF] Wang | Investigation on contact angle of ball bearings[END_REF] used Gupta's approach to investigate the effects of bearing parameters and working conditions on BB performances judged by different parameters such as contact angle, contact stiffness, edge angle and edge distance. One of the novelties is the consideration of time-varying contact stiffness. Nogi [START_REF] Nogi | A Dynamic Analysis of Cage Instability in Ball Bearings[END_REF] also used Gupta's formalism to study the cage dynamical stability in a ball bearing submitted to purely axial load. Usual EHD theories are employed excepted for cage-race interaction where instead of short journal bearing HD theory, only physical contact is calculated with Palmgren formula for normal load and with a constant coefficient for friction forces. Ball-race damping is also considered to stabilise contact load fluctuation. Evolution of cage center orbital motion and whirl velocities with traction coefficient, bearing speed or balls separation confirms previous studies observations about cage stability, particularly Kingsbury's [START_REF] Kingsbury | Motions of an Unstable Retainer in an Instrument Ball Bearing[END_REF] one. The authors also postulated that cage instability occurs when cage friction coefficient is greater than a critical coefficient µ c formulated as a function of cage mass, ball-race traction, cage Time dependent models rotational velocity, ball-cage contact stiffness and number of balls.

Recently, for bearings working under radial clearance and dominant radial load, Razpotnik [START_REF] Razpotnik | A smooth contact-state transition in a dynamic model of rolling-element bearings[END_REF] found an efficient method to solve instability problems due to ball-race contact transitions. As for that, when contact deformation gets closer to zero, they proposed to replace this deformation by a smoothed expression which is a function of radial displacement. With such procedure, deformation, force and stiffness are continuous functions and continuously differentiable. Such model showed significant stability improvements and a reduction in computational time. And, even if it was applied in a vibrational study of shaft-bearing-housing assembly, it may be rapidly extended to dynamical ACBB studies with cage and lubrication. Yao [START_REF] Yao | Multibody dynamics simulation of thinwalled four-point contact ball bearing with interactions of balls, ring raceways and crown-type cage[END_REF] modelled four-contact points ball bearings on a multibody dynamic software. Hertzian contact, dry Coulomb friction and damping forces are defined at ball-race, ball-pocket and cage-ring contacts. Dynamical results show that under pure radial load there is always four-point contact at ball-race, whereas under combined loads there is four-point contact in the loaded zone and two in the nonloaded zone. Load distribution is also influenced by applied moment load. As well, with four-contact points there is always a pair of opposite contact-points that present major dynamic load and contact angle compared to a secondary pair of contact-points. Han [START_REF] Han | Investigation of cage motions affected by its unbalance in a ball bearing[END_REF] developed an ACBB planar dynamical model that considers cage unbalance forces. Results show that increasing cage mass unbalance improves cage center regular motion and increases whirl radii. On the contrary, cage unbalance has no effect on ball-to-pocket contact forces, but increases cage-guiding race forces which results in cage guiding surface wear.

Skidding issues in dynamics

Most skidding studies are in quasi-statics, they usually use kinematic assumptions and cannot be used to study the influence of time variation. Gupta [START_REF] Gupta | Generalized dynamic simulation of skid in ball bearings[END_REF], [START_REF] Gupta | Transient Ball Motion and Skid in Ball Bearings[END_REF] conducted a dynamical skidding study that formulates in 3D the generalized equations of motion of a ball in a thrust loaded ACBB. Especially, EHD lubrication and three possible traction models were implemented. Results showed that ORC hypothesis does not hold for given EHL conditions and especially under low traction coefficient that allows for gyroscopic slip. Inner ring acceleration enabled to better understand skidding mechanism in dynamics. The program also proved its ability to determine the required preload to prevent skidding and to compute the product of normal load by slip velocity in order to estimate wear due to skidding. The limit is that cage is not considered yet, whereas it has an important influence on ball dynamics. Later, Jain [START_REF] Jain | A dynamic model to predict the occurrence of skidding in windturbine bearings[END_REF] developed a simpler model where ball distribution of load is first solved in quasi-static and then skidding is investigated in dynamics for ACBB under combined loads. As for that, centrifugal forces, gyroscopic moments and usual ball-race interactions are considered, whereas a 1-DOF cage is represented by springs of very high stiffness interacting between balls. Results showed that under radial load, skidding is not equally distributed over the bearing. It is especially higher in unloaded zones and maximum at the entry to load-zone where contact load is minimum. Also, compared to pure axial load, a larger force is needed to minimize skidding. And, if increasing loads can reduce the length of skid zone, it cannot totally eliminate skidding. Nevertheless, this model is limited since it neglects cage inertia which has an important effect on cage speed, especially for time-varying operating conditions. Consequently, Tu 1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling [START_REF] Tu | An analytical model to investigate skidding in rolling element bearings during acceleration[END_REF] developed a planar dynamical model to investigate skidding during acceleration. The model is very basic since it neglects lubrication and only centrifugal forces, gravity, Hertzian normal forces and Coulomb friction forces at ball-race and ball-to-pocket contacts are considered. However, it is reliable and enables to better understand the effect of radial load and acceleration on skidding. The limit is that it does not consider the fact that ball spinning axis is not aligned with bearing axis, whereas spinning greatly influences skidding. Then, Chen and Shao [START_REF] Chen | Vibration Modeling of Lubricated Rolling Element Bearing Considering Skidding in Loaded Zone[END_REF], [START_REF] Shao | Investigation on skidding of rolling element bearing in loaded zone[END_REF] studied skidding of rolling elements entering the loaded zone of a radially loaded bearing with and without lubrication. They showed that lubrication decreases the length of the loaded zone and the amplitude of rolling elements owns rotational speeds, but increases slip velocities and time duration of slip.

Wang [START_REF] Wang | Investigation of skidding in angular contact ball bearings under high speed[END_REF] and Han [START_REF] Han | Nonlinear dynamic model for skidding behavior of angular contact ball bearings[END_REF] both developed very complete dynamical 3D models for ACBB under combined loads. They both considered spinning motion, centrifugal forces, EHD lubrication, traction and drag forces. Ball-cage interactions are again represented by springs of high stiffness. Wang's results confirm those of previous studies with spinning motion explanation. They also confirm the importance of lubrication parameters, of centrifugal expansion that reduces skidding threshold and of bearing rotational speed that severer skidding. Han [START_REF] Han | Nonlinear dynamic model for skidding behavior of angular contact ball bearings[END_REF] observed that constant radial load decreases slipping velocities in high-loaded bearing zones whereas it increases them in lower loaded zones, then it makes skidding become more serious. Nevertheless, for a given region, increasing time-variant radial load can increase slipping velocities during a cycle but decrease it at next cycle. Then, no conclusion can be drawn on the effect of time-variant load on skidding, excepted that it increases maximal slipping velocity. Later, Wang [START_REF] Wang | Effect of race conformities in angular contact ball bearing[END_REF] added ball rolling friction and film thickness thermal effects to this dynamical model. The purpose was to study the race conformity influence on ball skidding and ball-race contact forces. It appears that under light axial load, open inner race and tight outer race conformities are preferred to limit skidding whereas under important loads, tight inner and outer races are preferred to limit contact pressure, then to improve bearing fatigue life. Starting from the original model [START_REF] Wang | Investigation of skidding in angular contact ball bearings under high speed[END_REF], they also modified traction forces by the use of curve-fitted EHL parameters to consider the effect of surface roughness and temperature rise due to sliding [START_REF] Wang | Effects of raceway surface roughness in an angular contact ball bearing[END_REF]. Under low axial load, results show that raceway surface roughness reduces sliding velocity and spinning speed then limits skidding especially on the inner ring. However, for any axial load, increasing raceway surface roughness reduces film thickness, worsen lubrication performances, induce stress fluctuation in the substrate and stress concentration near the surface. Then, smooth surfaces are preferred under high axial load. More recently, Fang [START_REF] Fang | Determination of Optimum Preload Considering the Skidding and Thermal Characteristic of High-Speed Angular Contact Ball Bearing[END_REF] developed a quasi-static 3D model with all of previous effects and with cage-guiding race interactions in addition. A thermal model was also implemented to show severe influence of skidding on temperature rise. Results also confirm skidding increasing with bearing speed, and the existence of an optimum preload to minimize it.

For the first time, Ma [START_REF] Ma | A study on the dynamic contact feature of four-contact-point ball bearing[END_REF] developed a 3D-dynamical model for four contact point ball bearing (FCPBB) with EHD traction forces and 3-DOF cage. He showed that when axial load increases, bearing changes from 3 contact points with important skidding, to 2 contact points without skidding. The third contact-point on the outer race has important spin-to-roll ratio that generates heat and risks of burn or failure even if main contact has the largest PV (contact pressure x sliding speed) value. Under important radial load, during one revolution, balls can have 2, 3 or 4 contact points. Under two contact points, Time dependent models PV factor is maximum on main contact, whereas it is maximum at sub-contact under four contact points. Ma [START_REF] Ma | Structural optimization of ball bearings with three-point contact at high-speed[END_REF] also used this model to investigate FCPBB optimum working conditions and outer race optimum geometry. At high speeds, working under three contact points better distributes centrifugal forces, limits contact angles differences, weakens the softening effect of high speed on stiffness, increases fatigue life, but also increases friction forces. Generally, an optimum curvature center eccentricity exists to improve fatigue life, whereas under skidding conditions, larger eccentricity and smaller groove curvature coefficient are preferable to limit PV factor, sliding and to increase fatigue life.

Improved models for surface defects

Bearings are subjected to localized defects like pits, cracks or spalls that lead to vibrations when the ball rolls over them. To prevent resulting failures, condition monitoring and fault diagnosis have recently become important subjects of research. Most models that consider surface defects are in quasi-statics or do not take into account 3D motion, ballrace slipping, lubrication or cage contribution [START_REF] Liu | Overview of dynamic modelling and analysis of rolling element bearings with localized and distributed faults[END_REF]. However, under high-speed such effects are substantial for accurate defect modeling. Ashtekar and Sadeghi [START_REF] Ashtekar | A New Approach to Modeling Surface Defects in Bearing Dynamics Simulations[END_REF] added in DBM [START_REF] Ghaisas | Dynamics of Cylindrical and Tapered Roller Bearings Using the Discrete Element Method[END_REF] effects of dents with sinusoidal profiles. In this dry contact elastic model they modified the Hertzian force-deflection relationship with a different exponent n function of dent geometry and loading. It appears that balls rolling over dent generates vibrations that have negative effects on balls, rings and cage behaviour. And, inner race speed increasing, dent size increasing, offset of dent from race centerline or the presence of a cluster worsen such vibrational phenomena. Later, they also modelled in DBM bumps, dents, spalls and debris represented by spherical defects [START_REF] Ashtekar | Surface defects effects on bearing dynamics[END_REF]. They used the superposition principle to add or subtract to Hertzian contact force or pressure, an Hertzian force or pressure due to defect height or depth. Results confirm that localize defects modify contact force amplitude, direction and dynamical behaviour of all bearing components.

As well, employing Gupta's formalism [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF], Niu [START_REF] Cao | Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways[END_REF] developed a dynamical model for high-speed ball bearing with ball-races normal load, relative slip and simplified traction forces. Raceways localized surface defects are accurately represented by the addition of a deflection due to material absence and by the modification of Hertzian contact stiffness and contact forces direction due to curvature changes. Later, cage was added and surface defect model was improved by considering the finite size of the ball instead of a point mass contact [START_REF] Niu | A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects[END_REF]. Results show the influence of rotational speed, axial and radial forces, initial contact angle and defect size on motions and ball passing frequencies especially under skidding operating conditions.

Qin [START_REF] Qin | Multiple-degree-of-freedom dynamic model of rolling bearing with a localized surface defect[END_REF] also modelled fault dynamics for high-speed ACBB. As for that, Jones-Harris quasi-static problem with inertial effects is solved for a planar ACBB. Then, balls dynamic is simulated with the use of a B-spline fitting displacement excitation to represent the fault. Later, 5-DOF were considered for inner ring, and cage was added with ball-to-pocket interactions represented by spring-damper systems [START_REF] Qin | A fault dynamic model of high-speed angular contact ball bearings[END_REF]. The displacement excitation function was also replaced by a half-sine function to characterize the defect. These models accurately represent the real excitation and enable to observe that impulse duration, amplitude and ball-to-pocket forces increase with defect size. As well, with rotational speed and radial load increasing, the amplitude of acceleration vibration increases and cage motion changes from regular to erratic.

1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling Wen [START_REF] Wen | Dynamic behaviors of angular contact ball bearing with a localized surface defect considering the influence of cage and oil lubrication[END_REF] also modified their quasi-dynamic ACBB model [START_REF] Wen | Influence of angular misalignment on the tribological performance of high-speed micro ball bearings considering full multibody interactions[END_REF] in dynamics and to implement a localized outer-race surface defect with a constraint on depth profile. They added EHL damping by short bearing theory for planar cage-guiding race interaction and by a constant for other components. For axial or combined loads, results showed the negative influence of surface defect scale and position, on angular misalignment, ballto-pocket collisions, ball-race contact loads and traction forces over cycles. Then, they modified this model by representing ball-raceway contact with starved lubrication [START_REF] Wen | Starved lubrication analysis of angular contact BB based on multi degree of freedom tribo-dynamic model[END_REF]. As for that, Masjedi and Khonsari's [START_REF] Masjedi | A study on the effect of starvation in mixed elastohydrodynamic lubrication[END_REF] mixed EHL theory is used to modify smooth and fully lubricated oil film thickness. It considers effects of surface roughness and of the degree of starvation which describes changes of mass flow rate. Traction forces and momentums are also revised to take into account asperities effects and previous planar cage model is transformed in 3 dimensions. Results show that ball-raceway starvation severity reduces oil-film thickness, increases ball-to-pocket impact load for combined loads and influences skidding behaviour and traction forces which modifies sliding, spinning velocities then gyroscopic effects at each race.

Cage elastic behaviour

With the development of high-speed bearings with cages made of lighter but softer materials, the necessity to model cage flexibility became essential. With PADRE, Boesiger [START_REF] Boesiger | An Analytical and Experimental Investigation of Ball Bearing Retainer Instabilities[END_REF] was the first one to consider cage elasticity locally. As for that, Hertzian ball-to-pocket penetration is considered in series with pocket web bending deflection and Hertzian raceretainer deflexion in series with radial flexing of the retainer. In each case, bending and radial deflexion are determined by finite element method (FEM) and the resulting contact force is modified by a displacement-proportional energy loss term or damping. The limit of this model is that it neglects cage global deformation.

Later, Hahn [START_REF] Hahn | Dynamik-Simulation von Wälzlagerkäfigen[END_REF] developed a dynamical DGBB model that considers 3D cage elasticity with a FEA approach limited to linear-elastic materials. The macroscopic deformation of cage structure is defined as a deflection between pockets contact surfaces, whereas only micro-elastic deformations are allowed at ball-to-pocket iso-viscous contacts. Many phenomena are also considered such as squeeze-film damping effects, combined loads, misalignment or manufacturing inaccuracies.

Pederson and Sadeghi [START_REF] Pederson | The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings[END_REF], [START_REF] Pederson | The influence of cage flexibility on bearing dynamics and performance[END_REF] introduced a planar Flexible Cage Model in DBM code designed for DGBB [START_REF] Ghaisas | Dynamics of Cylindrical and Tapered Roller Bearings Using the Discrete Element Method[END_REF], [START_REF] Saheta | Dynamics of rolling element bearings using discrete element method[END_REF]. As schematised in Figure 1.5, the cage is divided into N spring-mass-damper translational systems where masses are centered on pockets. Torsional springs are also present between three consecutive pockets to provide a restoring moment. These stiffnesses are computed on the FEM software ANSYS, then a lumped mass model is solved for the cage and is finally inserted in DBM global system. Results show the importance of cage flexibility modelling. Indeed, rigid cage model predicts significantly higher ball-to-pocket contact forces and larger minimum ball-to-pocket clearances required to reduce normal forces and instabilities like whirl. [START_REF] Pederson | The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings[END_REF], [START_REF] Pederson | The influence of cage flexibility on bearing dynamics and performance[END_REF] For DGBB and ACBB, Weinzapfel and Sadeghi [START_REF] Weinzapfel | A Discrete Element Approach for Modeling Cage Flexibility in Ball Bearing Dynamics Simulations[END_REF] developed in DBM another model of deformable cage in a plan but with three-dimensional motion. As for that, pockets are assumed to be rigid, bridges are divided into finite elements linked by viscoelastic fibers comparable to spring-damper systems and massless rigid beams connect pockets to bridges as represented in Figure 1.6. Damping coefficient is derived from empirical relationships and stiffness is computed from a force-deflection relationship of a FE model. Resulting efforts are then introduced in DBM system of equations.

Results confirms the significant reduction of ball-to-pocket contact forces and ball-race slip velocities with flexible cage. Tilt angle also presents smaller amplitude, steady state is reached faster and whirl radius increases with elastic modulus. In contrast, flexibility does not change whirl frequencies, cage motion or velocity in case of radial load. This study also confirms Walters' [START_REF] Walters | The Dynamics of Ball Bearings[END_REF] and Meeks' [START_REF] Meeks | The Dynamics of Ball Separators in Ball Bearings-Part II: Results of Optimization Study[END_REF] conclusions about the role of centrifugal forces in making the cage maintain its radial position by overcoming cage friction forces and by increasing whirl radius to a constant value. Ashtekar and Sadeghi [START_REF] Ashtekar | A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods[END_REF] continued to work on DBM and combined this discrete element ball bearing dynamic model (DEM) with a 3D explicit finite element model (EFEM) of cage. As for that, the bearing cage is analytically meshed and the FE problem with boundary conditions and applied forces is solved at each RK4 time step in order to compute velocities and displacements at each node. An accurate and continuous procedure is also implemented to link DEM to EFEM problem, especially at ball-to-pocket contact 1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling because ball forces acts at several pocket nodes. Results analysis confirmed Weinzapfel and Sadeghi's [START_REF] Weinzapfel | A Discrete Element Approach for Modeling Cage Flexibility in Ball Bearing Dynamics Simulations[END_REF] observations. As well, for flexible cage, elastic deformations appear to be at the origin of multiple oscillations at ball-to-pocket impacts, centrifugal forces to be responsible for global cage expansion, deformation and resulting stresses. Moment load also increases magnitude and duration of ball-to-pocket impacts that generates stress cycles in the bridge and rail cage sections leading to fatigue failures. It's worth noting that those three models developed in DBM by Sadeghi's team, particularly improved flexible cage understanding and modelling. However, they were limited to ball guided cages, then cage-race interactions were not considered.

For NTN company, Sakaguchi [START_REF] Sakaguchi | Dynamic Analysis of Cage Behavior in a Tapered Roller Bearing[END_REF], [START_REF] Sakaguchi | Dynamic Analysis of Cage Stress in Tapered Roller Bearings Using Component-Mode-Synthesis Method[END_REF], [START_REF] Sakaguchi | Dynamic Analysis of Cage Stress in Needle Roller Bearings Under Planetary Motions[END_REF] developed planar flexible cage models for tapered and needle roller bearings. However, 2D or 3D bearing geometry and bodies interaction forces are modelled on MSC. ADAMS, a multibody dynamic analysis software. If damping effects are neglected, elastic deformations and resultant cage stresses are derived in different points by Component Mode Synthesis method in ADAMS. Later, these two models were combined and organized on a simplified interface called IBDAS (Integrated Bearing Dynamic Analysis System) [START_REF] Sekiya | Integrated Bearing Dynamic Analysis System[END_REF]. This system was extended to any kind of bearing and a Guyan reduction was applied to the FE cage system in order to reduce computation time. A comparison with a FE model shows that the accuracy of this CMS method highly depends on eigenmodes and boundary points chosen. We should also precise that these models proved that unequal steady distribution of rolling elements had an effect on stable whirl motion and particularly increases whirl radius.

For TIMKEN, Houpert developed CAGEDYN [START_REF] Houpert | CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations Part I: Basic Tribology Concepts[END_REF], [START_REF] Houpert | CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations Part II: Description of the Numerical Tool and Its Outputs[END_REF], [START_REF] Houpert | CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations. Part III: Experimental Validation[END_REF], a planar dynamical model for roller bearings with flexible cages. As schematised in Figure 1.7, cage 2Delasticity is represented at ball-to-pocket impact by an equivalent stiffness that comprises Hertzian contact stiffness and bridge structural stiffness responsible for its bending. This last one is determined analytically if the beam has a simple shape and numerically by FEA otherwise. As well, cage-guiding ring Hertzian contact stiffness is added in series with a contact stiffness defined by standard load-ring ovalization relationship. If structural damping is neglected, effects of sliding, rolling, friction, traction or lubrication are particularly well considered. Model validation proves its high efficiency and confirms the importance of implementing bridge structural stiffness when the latter is small. It also shows its effectiveness in predicting cage damage by computing impact force on bridges, then Von Misses stresses to compare them to cage material fatigue limit.

Figure 1.7 :

Houpert's flexibility modeling [START_REF] Houpert | CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations Part I: Basic Tribology Concepts[END_REF] Time dependent models Qian [START_REF] Qian | Dynamic simulation of cylindrical roller bearings[END_REF] also developed CyBeSime, a 3D dynamical Simulation code for CRB with any cage type. It is based on the multibody dynamic software SIMPACK where forces and solid or lubricated interactions are precisely defined in FORTRAN routines. Cage deformation and pocket-to-roller stiffness are computed in real time on Abaqus, and results obtained are automatically exported on SIMPACK for global bearing resolution. Contrary to other studies, results between rigid and flexible cages do not show differences in terms of roller-to-pocket contact forces or slip velocities. However, CyBeSime proves to be an efficient tool to optimise cage pocket geometry or structural design, to predict cage wear and vibrations, to better understand bearing behaviour as instabilities (whirl or squeal), motions, speeds and to investigate effects of parameters (misalignment, radial load, clearances, materials, type of cage, etc.) on contact forces, pitch and yaw angles.

Li [START_REF] Li | Dynamic characteristics of ball bearing with flexible cage lintel and wear[END_REF] developed a 3D dynamical model of high-speed ball bearing with flexible cage lintel represented by 3D beam elements with 6-DOF at each node as represented in Figure 1.8. To model global cage flexibility, nodal displacements, force vectors and stiffness matrices are defined locally before being converted into the overall coordinate system. To compute ball-to-pocket interactions, geometric displacements are considered with the addition of the term BPWL that represents the amount of ball-to-pocket wear loss. Then, beams static equilibrium is solved on nodal displacements and on beam deformation, is this way, ball-to-pocket position and contact-force interactions are recalculated, and the procedure is repeated until forces does not vary anymore. As well, ball-to-raceway and cage-race contact and friction forces are computed with usual theories. Finally, the resulting system of dynamical equations on balls, cage and rings is solved by an RK4 scheme. Results show the influence of BPWL on cage center trajectory, on skidding ratio fluctuation and on total cage forces, then on bearing elements interactions. Liu [START_REF] Liu | Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions[END_REF] developed a planar dynamical model to investigate the influence of cage flexibility and impact load on skidding performances. As for that, dried and Hertzian contacts are considered for ball-race and ball-to-pocket interactions whereas races do not act on cage. To represent cage flexibility, cage pockets are lumped to springs whith stiffnesses calculated by FEM as schematised in Figure 1.9. Note that cage-to-pocket clearance is ignored, then springs can only be compressed and they only work under contact conditions. Results confirms that high radial load and small inner ring rotational 1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling speed limits skidding. A comparison between rigid and flexible cage model shows that neglecting cage elasticity underestimates cage skidding and overestimates rolling element skidding in self-rotational direction. Indeed, if ball-race contact forces do not change between the two models, ball-race friction forces and ball-to-pocket normal forces are higher for the flexible cage because ball-race slipping velocities are also higher. Another consequence is that it takes less time to a reach stable motion state with the flexible cage model. This study also shows that increasing cage stiffness reduces cage and rolling element-race slipping velocities, then it limits skidding. Then, cage flexibility is a subject that has been investigated only recently. Few studies interest in ACCB guided by inner or outer race, many flexible cage models are planar or based on a multibody dynamic analysis software. That is why, starting from Leblanc's previous work [START_REF] Leblanc | Analysis of Ball Bearings with 2, 3 or 4 Contact Points[END_REF], authors aim at developing their own dynamical flexible cage model for ACBB with 2, 3 or 4 contact point in the future.

Squeeze-film damping modeling

A new feature to consider in dynamics is damping effect that can come from different sources as material hysteresis, fluid film or dry friction. From the first research, like those of Vichard [START_REF] Vichard | Transient effects in the lubrication of hertzian contacts[END_REF] or Dareing [START_REF] Dareing | Fluid Film Damping of Rolling Contact Vibrations[END_REF], it was shown that lubricant film damping is one of the most important source of total damping and that it is primarily generated by squeezefilm mechanism in EHL contacts. Later, for cage-race interaction, Gupta [START_REF] Gupta | Analysis of Cage Motion[END_REF] extended short journal bearing theory by adding a squeeze-film term that depends on film thickness evolution over time. Subsequently, for an ACBB subjected to an oscillating radial load, Walford and Stone [START_REF] Walford | The Sources of Damping in Rolling Element Bearings under Oscillating Conditions[END_REF] proposed to model ball-race interaction by the Hertzian contact stiffness K c in parallel with the squeeze-film damping at the entry of contact zone f e as schematised in Figure 1.10. Analysis of radial and axial stiffness and damping and comparison with experiments shows that damping magnitude is preload dependant and that bearing joints are another source of bearing damping that should be considered in dynamical modelling especially at high-speed. [START_REF] Walford | The Sources of Damping in Rolling Element Bearings under Oscillating Conditions[END_REF] Time dependent models Hagiu and Gafitanu [START_REF] Hagiu | Dynamic characteristics of high speed angular contact ball bearings[END_REF] added inlet zone rigidity k ef in parallel with elastic Hertzian stiffness k c and entry zone squeeze-film damping h ef as represented in Figure 1.11. They also considered EHD lubrication film thickness h min by Hamrock Dowson [113] formula multiplied by Wilson and Murch [START_REF] Murch | A Thermal Elastohydrodynamic Inlet Zone Analysis[END_REF] thermal factor and Olaru [START_REF] Olaru | Starvation in ball bearings[END_REF] starvation factor. ACBB axial, radial and angular stiffnesses and dampings were investigated. And, experimental comparison shows that shaft-inner ring and housing-outer ring should be additional sources of damping under high-speed conditions. To compute squeeze-film damping, some studies are based on the change of mutual approach like those of Hagiu [START_REF] Hagiu | Dynamic characteristics of high speed angular contact ball bearings[END_REF] or Sarangi [START_REF] Sarangi | Stiffness and damping characteristics of lubricated ball bearings considering the surface roughness effect. part 1: Theoretical formulation[END_REF] whereas others are based on the change of film thickness like those of Wijnant [START_REF] Wijnant | Contact dynamics in the field of elastohydrodynamic lubrication[END_REF], Nonato [START_REF] Nonato | An approach for including the stiffness and damping of elastohydrodynamic point contacts in deep groove ball bearing equilibrium models[END_REF], Wensing [START_REF] Wensing | On the dynamics of ball bearings[END_REF], Dietl [START_REF] Dietl | Damping and Stiffness Characteristics of Rolling Element Bearings -Theory and Experiment[END_REF] or Zhang [START_REF] Zhang | Dynamic Behaviors of the Elastohydrodynamic Lubricated Contact for Rolling Bearings[END_REF]. They generally follow the same procedure that consists in solving a transient EHL line or point contact problem, usually by Van Nijenbanning's [START_REF] Nijenbanning | On the overrolling of local imperfections in rolling bearings[END_REF] or Venner's [START_REF] Venner | Multigrid techniques: A fast and efficient method for the numerical simulation of elastohydrodynamically lubricated point contact problems[END_REF] multigrid method in order to compute lubricant and structural elements vibration response. From the logarithmic decrement of the response, squeeze film damping is calculated. Then, various numerical data are curve fitted by least square method to obtain a general expression on oil-film damping between roller and race. A similar expression is usually proposed for stiffness, is this way each ball-race interaction is described by a spring-damper system as schematised in Figure 1.13. These systems are then inserted in a whole dynamical bearing model.

Mostofi [START_REF] Mostofi | Oil film thickness and pressure distribution in Elastohydrodynamic elliptical contacts[END_REF] followed this procedure, solved EHL point contact problem numerically and proposed a film thickness expression as a function of contact parameters and especially of integrated pressure which depends on squeeze velocity. Later, Rahnejat [START_REF] Rahnejat | The Vibrations of Radial Ball Bearings[END_REF] reused this theory and computed in axial and radial direction, the vibrational response and squeeze film damping of a rotating shaft supported by two lubricated DGBB. Increasing the number of balls reduces film thickness and damping coefficient in unloaded region, whereas increasing load increases squeeze-film damping coefficient.

For an EHL-line contact problem, Dietl [START_REF] Dietl | Damping and Stiffness Characteristics of Rolling Element Bearings -Theory and Experiment[END_REF], [START_REF] Dietl | Rolling bearing damping for dynamic analysis of multi-body systems-experimental and theoretical results[END_REF] also derived an equivalent oil-film damping coefficient c EHL at the inlet zone of the contact. In parallel, he estimated viscous material damping coefficient c h due to dry Hertzian contact. This coefficient depends on a loss factor, on local contact stiffness and on frequency vibration. The system was then applied at each ball-race contact, as schematised in Figure 1.12. Damping matrix was also computed for the whole 5-DOF bearing. Experimental comparisons confirmed efficiency of these two formulations to predict bearing damping. Results also show that the damping coefficient increases with axial preload, lubricant viscosity, roller number or contact surface, but decreases with starvation, with an excessive amount of oil or with rotational speed. Damping is also highly dependant on lubricant temperature, since temperature depends on rotational speed but influences oil viscosity.

1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling Figure 1.12 : Dietl's squeeze-film modeling [START_REF] Dietl | Damping and Stiffness Characteristics of Rolling Element Bearings -Theory and Experiment[END_REF], [START_REF] Dietl | Rolling bearing damping for dynamic analysis of multi-body systems-experimental and theoretical results[END_REF] Wensing [START_REF] Wensing | On the dynamics of ball bearings[END_REF] solved time-dependant EHL point contact problem and proposed a curve fitted formula for damping coefficient as a function of dimensionless contact parameters (geometry, materials, load, frequency). Spring-damper systems were inserted in a whole dynamical bearing model where shaft, housing and outer ring are modelled by finite element method. Results show that two dampers are necessary for the ball to damp principal bearing resonances. And, viscosity increases damping values whereas starvation, load or speed decreases them significantly.

Wijnant [START_REF] Wijnant | Contact dynamics in the field of elastohydrodynamic lubrication[END_REF] also used this methodology to investigate dry contact and lubricated contact under fully flooded or starved condition and for circular or elliptic EHL contacts. Curve fitted expressions were proposed for contact stiffness and viscous damping as a function of Moes-Venner parameters [START_REF] Venner | Multilevel solution of the EHL line and point contact problems[END_REF] with damping computed from solutions for sinusoidally varying loads. For EHL point contact problem with consideration of surface roughness, Sarangi [START_REF] Sarangi | Stiffness and damping characteristics of lubricated ball bearings considering the surface roughness effect. part 1: Theoretical formulation[END_REF], [START_REF] Sarangi | Stiffness and damping characteristics of lubricated ball bearings considering the surface roughness effect. part 2: Numerical results and application[END_REF] derived empirical formulas on lubricant stiffness and damping of a single ball-race contact. Analysis of these expressions indicates that stiffness and damping increase with load capacity, but decrease with speed, material or ellipticity parameters. They are also a function of hydrodynamic roughness and surface pattern parameters. Damping is also inversely proportional to a geometrical parameter that conforms with ball-race contact. Then, the overall stiffness and damping matrices of the radially loaded bearing can be computed by replacing each ball by an equivalent spring-damper system made of two spring-dampers in series, as represented in Figure 1.14. Results show that damping cannot be neglected for lubricated ball bearings dynamic modelling. Later, Sarangi [START_REF] Sarangi | On the Dynamics of Elastohydrodynamic Mixed Lubricated Ball Bearings. Part I: Formulation of Stiffness and Bibliography Damping Coefficients[END_REF] reused the same approach to compute lubricant stiffness and damping for mixed lubricated point contact problem. As for that, contact asperities were considered in pressure computation with the use of Greenwood and Tripp model. Consequently, an additional parameter on contact stiffness K ′ was added in curve-fitted formulas on lubricant stiffness K l and Time dependent models damping C l at entry contact region. And, an additional stiffness formula K a was curvefitted to represent asperity contact stiffness at the center of contact as schematised in Figure 1.15. Physically, when the contact stiffness parameter K' increases, more asperities are in contact then contact stiffness K a increases, whereas lubricant stiffness K l and damping C l decrease considerably. As well, contact stiffness K a increases with roughness pattern parameter or load capacity. Then, a dynamical, planar and non-linear ball bearing model [START_REF] Sarangi | On the Dynamics of Elastohydrodynamic Mixed Lubricated Ball Bearings. Part II: Non-Linear Structural Vibration[END_REF] was developed to study the influence of previous parameters on vibrational response. Especially, the effect of EHL damping in reducing ball bearing vibrations was shown. Zhang [START_REF] Zhang | Dynamic Behaviors of the Elastohydrodynamic Lubricated Contact for Rolling Bearings[END_REF] also derived stiffness and damping coefficients for transient EHL and free vibration models and under wider load and speed ranges than previous studies. Another feature is the consideration of the influence of working load and speed on inlet length and natural frequency computation. Such considerations significantly modify damping results, 1. From quasi-static to dynamic, a Review about Angular Contact Ball Bearing modelling especially under heavy load and high speed. It is also shown that stiffness and damping increases with lubricant ambient viscosity, whereas damping decreases with pressureviscosity coefficient. Nonato [START_REF] Nonato | On the non-linear dynamic behavior of elastohydrodynamic lubricated point contact[END_REF], [START_REF] Nonato | An approach for including the stiffness and damping of elastohydrodynamic point contacts in deep groove ball bearing equilibrium models[END_REF] also derived non-linear stiffness and linear viscous damping expressions to model EHD film effects under harmonic loading. Then, these effects were implemented in a planar DGBB model to compute resulting restoring and dissipative forces. Bizarre [START_REF] Bizarre | Formulation of five degrees of freedom ball bearing model accounting for the nonlinear stiffness and damping of elastohydrodynamic point contacts[END_REF] also used this method to solve EHD contact problem in parallel with 5-DOF ACBB equilibrium based on Harris and Mindel's kinematic approach [START_REF] Harris | Rolling element bearing dynamics[END_REF]. One of the differences with the DGBB model is the distinction of contact angles between inner and outer raceways, then the necessity to compute damping and stiffness at each contact over the bearing. Results differences between dry and EHD approaches show the necessity to consider these EHD dynamic parameters. And, computational efficiency was also shown which can be interesting to introduce this model in a rotor system with lubricated ACBB. Dong [START_REF] Dong | Effect of elastohydrodynamic lubrication on the dynamic analysis of ball bearing[END_REF] also solved steady and transient EHL contact problem, considered energy conservation theory, a harmonic sinusoidal load, and curve fitted mutual approach and damping coefficient as a function of load and entrainment velocity. These EHD effects were implemented in a 3D dynamic, axially loaded ball bearing model based on Gupta's formalism [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF]. Results between dry and EHD model are significantly different under low axial load because contact forces are low, ball motion is unsteady then damping effects are important. Guessasma [START_REF] Guessasma | Three-Dimensional DEM Modelling of Ball Bearing with Lubrication Regime Prediction[END_REF] proposed a dynamical 3D discrete element model for radial ball bearing where, under mixed lubrication, material damping and Walford's [START_REF] Walford | The Sources of Damping in Rolling Element Bearings under Oscillating Conditions[END_REF] fluid film damping are considered in parallel. Feature of this model is that at each contact, each time step, lubrication regime is accurately and smoothly determined from fluid parameter and friction coefficient analysis on Stribeck curve [START_REF] Stribeck | Ball Bearings for Various Loads[END_REF]. Results show that lubrication regimes highly depend on inner ring rotational speed whereas radial load and diametral clearance have minor effects. Sun [START_REF] Sun | Calculation method for comprehensive damping of ball bearings based on multigrid method[END_REF] also solved EHD point contact problem with the use of multi-grid method to compute pressure and film thickness distributions over the contact. Then, damping is calculated by the ratio between the change of force and the contact velocity. An experimental study was led in parallel in order to validate theoretical results. It was confirmed that damping increases with radial load, but decreases with rotational speed.

Conclusions 3 Conclusions

Ball bearing is an old mechanism that has known important development these past eighty years in parallel with aero-spatial evolutions. Indeed, bearings were subjected to get larger diameters, higher speeds, higher temperatures or wider load range (axial, radial, moment loads). Such modifications significantly change physical behaviour. Many models and experiences have been led to optimise their design. Especially, several quasi-static and quasi-dynamic models have been developed to better understand Angular Contact Ball Bearing behaviour. For different working conditions (speeds, axial, radial loads, misalignments, bearing geometry, etc.), these models allowed to study balls equilibrium, contact angles distribution, pitch angle evolution or ball kinematics. Importance of accurately considering EHD lubrication through film thickness, traction, starvation, dynamic viscosity definitions or thermal considerations was shown. First models like those of Jones, Harris or Crecelius are still considered as references. However, many researches have been led to improve them and especially to get rid of raceway control hypothesis. Some of them use geometric assumptions to compute pitch angle, others are minimizing contact friction or directly solving ball torque equilibrium. Depending on model applications, some authors investigated parameters influencing skidding, others interested in spindle bearings, or in calculating running torque. Few models interested in 3 or 4 contact point ball-bearing or considered yaw angle. Quasi-static and quasi-dynamic models are timecomputational efficient and give a first outlook of ball-race equilibrium. However, analysis of cage motion, of accelerations or of accurate behaviour under important radial load or misalignment, requires dynamical studies. ADORE and BEAST were among the first bearing dynamics computer codes developed. Their continuous improvements until today makes them one of the most important. More recently, Purdue University searchers, supervised by Sadeghi, developed DBM and made major advances in the domain. Chinese tribologist community also led many studies and brought important knowledges on the subject. Most dynamical models have same structures and considers more or less same interactions at ball-race, cage-race and ballto-pocket contacts. Nevertheless, depending on authors, different bearing behaviours are studied under different working conditions. Especially, cage center of mass motion and ball-to-pocket interactions have been analysed for different ball-race friction models, cage speeds, cage unbalances, cage guidances, ball-to-pocket or cage-race clearances, lubricant types, lubricated conditions, raceway conformities, surface roughness, temperatures, gravity, axial, radial and moment loads. Is this way, bearing behaviour could be understood more precisely and working conditions to get stable cage whirl and to avoid skidding could be identified. To consider dynamic effects of EHD lubrication, some studies interested in modelling squeeze-film damping, especially at ball-race contacts. As well, to avoid bearing failures, more and more authors are modelling in dynamics, surface defects like dents, bumps, spalls or debris. Recently, with polymeric cages development, searchers started to implement cage flexibility in their models. If such investigations stay limited at the moment, improvements are expected in the coming years. 

Markers definition

In this section, the quasi-static model of Angular Contact Ball Bearing developed by Leblanc, Nelias and Lacroix [START_REF] Lacroix | Four-Point Contact Ball Bearing Model With Deformable Rings[END_REF], [START_REF] Leblanc | Ball Motion and Sliding Friction in a Four-Contact-Point Ball Bearing[END_REF], [START_REF] Leblanc | Analysis of Ball Bearings with 2, 3 or 4 Contact Points[END_REF] is improved. In such study the bearing is double-arched, then 1, 2, 3 or 4 contact points are present between balls and rings. The bearing has 5 degrees of freedom (3 translations, 2 rotations) due to external loads. Inner ring rotates at shaft speed Ω i and outer ring at speed Ω o in global coordinates system. The analysis is static with consideration of inertial effects. Consequently, only balls and rings are considered since cage is a dynamic body.

Markers definition 1.Global coordinate system R G

The formalism described in Lacroix's thesis [START_REF] Lacroix | Analyse et validation expérimentale d'un modèle de roulement à billes à quatre points de contact à bagues déformables par découplage des effets locaux et structuraux[END_REF] is reused here. The orientation of bearing axis x G is reversed in order to work in a direct coordinate system as represented in Figure 2.1. Then, R G is the global coordinate system of the bearing. It is considered as Galilean and it defines bodies positions under initial conditions without external forces applied. In this system, the center G represents bearing center, outer ring center and inner ring center initially. x G axis is bearing rotational axis, whereas y G and z G define outer ring medium plan.

Inner ring coordinates systems 1.2.1 Inner ring position R i1

In this study, rings are supposed to be rigid, only local deformations at ball-race contacts are considered. Because of external loads, inner ring center G i1 moves relative to bearing center G. To model corresponding degrees of freedom, the inner ring local coordinate system R i1 is defined as represented in Figure 2.1. Then, inner ring has 3 degrees of freedom in translation δ x , δ y , δ z and 2 degrees of freedom in rotation θ y , θ z . Because those displacements and rotations are small, R G and R i1 systems are almost equivalent. Then, for the sake of simplicity, future projections related to inner ring will be defined in the global coordinate system R G .

R G = {G, x G , y G , z G } (2.1) R i1 = {G i1 , x i1 , y i1 , z i1 } (2.2) δ = GG i1 =    δ x δ y δ z    R G (2.
3)

θ y = (x G , x i1 ′ ) = (z G , z i1 ) (2.4) θ z = (x i1 ′ , x i1 ) = (y G , y i1 ) (2.5)
2. Quasi-static model with balls and rings

Inner ring rotation R i

Because of shaft speed, inner ring also rotates around its own axis (G i1 , x i1 ) at rotational speed ω i . To model this motion, the coordinate system R i is defined such as represented in Figure 2.2. Note that rotational speed ω i is the time derivative of θ i/i1 angle. Again, because of small inner ring motion, it can be considered that x i1 is equivalent to x G , then that inner ring rotates around bearing axis (G, x G ).

R i = {G i1 , x i1 , y i , z i } (2.6
)

θ i/i1 = (y i1 , y i ) = (z i1 , z i ) (2.7
) In global coordinate system R G , each ball j rotates around (G, x G ) axis. This motion is called ball orbit or precession. As schematized in Figure 2.3, corresponding local coordinates systems are R j b1 . They define each ball orbital position ψ j at pocket center G j p such that initially, balls are equally distributed around the bearing (cf. expression (2.10), where ψ c is angular position of the first ball). Time derivative of ball position B j is ball precession speed ω j m , that can differ from one ball to another one. That is why, in quasi-static, we suppose that the average of ball precession speeds is cage rotational speed as expressed in (2.11).

Ω i/i1 = θi/i1 • x i1 = ω i • x i1 (2.8) x G y G z G G δ G i1 θ y θ z y i1 θ z x i1 θ y z i1
R j b1 = G j p , x G , y j b1 , z j b1
(2.9)

ψ j = ψ c + 2π N (j -1) = (y G , y j b1 ) = (z G , z j b1 ) (2.10
)

ω c = N j=1 ω j m N (2.11)
2. Quasi-static model with balls and rings 

X G Z G x j b1 y j b1 , y j b2 β β ′ ω R ω y ω z ω x x j b2 x j b3 z j b1 z j b2 , z j b3 y j b3 G β β ′
GB j =     x j G y j G z j G     R G =     δ j bx dm 2 + δ j by 0     R j b1 (2.12) 1.3.2 Balls own rotations R j b2 , R j b3
Each ball rotates in three directions around its own axis. The first rotation is around (B j , x j b3 ) axis and related to ω j R the ball own rotational speed. The second rotation is around (B j , z j b2 ) axis and related to β j . This angle is caused by centrifugal forces. The last rotation is around (B j , y j b1 ) and related to β ′j . This angle is caused by gyroscopic effects. To define these three consecutive rotations, coordinates systems R j b2 and R j b3 are introduced as schematized in Figure 2.5. Consequently, ball rotational speed is expressed by relation (2.17) in ball coordinate system R j b1 .

R j b2 = B j , x j b2 , y j b2 , z j b2 (2.13) R j b3 = B j , x j b3 , y j b3 , z j b3 (2.

14)

Markers definition

β j = (x j b2 , x j b3 ) = (y j b2 , y j b3 ) (2.15)
β ′j = (x j b1 , x j b2 ) = (z j b1 , z j b2 ) (2.16
)

ω j R =    ω j x ω j y ω j z    R j b1 =     ω j R cos β j cos β ′j ω j R sin β j -ω j R cos β sin β ′j     R j b1
(2.17 Thereafter, index k equal to i or o will refer to inner or outer race, and index m equal to 1 or 2 will refer to contact side 1 or 2. Coordinates systems R j km are introduced to orient each contact and resulting ellipse on ball j. As schematized in Figure 2.6, in this system, Y j km defines the contact normal that faces outwards from ball. X j km is directed along major ellipse axis and Z j km along minor ellipse axis.

R j km = I j km , X j km , Y j km , Z j km (2.18)
For these contacts definitions, we assume that all contact points belong to the same plan B j , x G , y j b1 . As well, contact angles α j km can take positive or negative values between -π/2 and +π/2. By convention, an angle α j km is positive if it is directed from y j b1 axis to Y j km axis. Then, a positive angle α j k1 at side 1 corresponds to a contact at the right side whereas a negative angle α j k1 corresponds to a contact at the left side. The inverse applies for contact angle α j k2 at side 2.

α j km = (y j b1 , Y j km ) (2.19)
2. Quasi-static model with balls and rings Consequently, several contact combinations can be modelled. They are associated to a Contact Configuration (LM CC j ) value and summarized in Table 2.1. However, physically, because of centrifugal forces, a total detachment from outer ring cannot occur. Then, cases LM CC j = 6 and LM CC j = 12 are not allowed. As well, inner race and outer race contacts cannot take place on the same side. That is why, case LM CC j = 3 is allowed if α j i1 and α j o2 have same signs and LM CC j = 8 if α j i2 and α j o1 have same signs. Case LM CC j = 10 is allowed if α j i1 and α j o1 have opposite signs and case LM CC j = 11 is allowed if α j i2 and α j o2 have opposite signs. Besides, a deformation δ j km and a film thickness h j km are defined at each possible contact point I j km . These components are directed along Y j km axis. For the sake of simplicity, we speak about contact when δ j km computed is positive. Then, film thickness h j km that separates ball from race is calculated from Hamrock Dowson theory [START_REF] Hamrock | Ball Bearing Lubrication (The Elastohydrodynamics of Elliptical Contacts)[END_REF], with a thermal reduction factor from Gupta [START_REF] Gupta | Viscoelastic effects in MIL-L-7808-Type lubricant, Part I: Analytical formulation[END_REF]. On the contrary, when δ j km is equal to zero or negative, we consider that no contact occurs. Then, δ j km defines the gap between ball and race whereas film thickness h j km is set to zero.

LM CC j Contacts 0 I1 I2 O1 O2 1 O1 O2 2 O1 O2
δ j km = δ j km Y j km
(2.20)

h j km = h j km Y j km (2.

21)

Geometric equations In this study, rings are supposed to be rigid, only local deformations at ball-race contacts are considered. As well, ring curvature centers are supposed to be fixed in inner ring coordinate system R i1 and to remain in (B j , x G , y j b1 ) plan related to each ball. Then, curvature centers displacement along z j b1 axis is neglected. Geometric equations are based on geometric closures on B j C j km . These vectors define the distance between raceway curvature center and ball center as schematized on Figure 2.7. They are expressed by relation (2.22) where δ j km is the ball displacement induced by contact point deformation, and h j km is the corresponding lubricant film thickness.

Geometric equations

|B j C j km | = GE j km = (f k -0.5) D + δ j km -h j km with k = o, i and m = 1, 2 (2.22) 
To cope with projections on x G axis when α j km becomes negative, λ coefficients have also been introduced. They are equal to ±1 and expressed in (2.23), (2.24), (2.25) and (2.26). They are based on sign function such that sgn(x) = x |x| .

λ j o =    sgn(F X ) if GE j o1 sin α j o1 + GE j o2 sin α j o2 = 0 sgn(GE j o1 sin α j o1 + GE j o2 sin α j o2 ) otherwise
(2.23)

λ j i =    sgn(F X ) if GE j i1 sin α j i1 + GE j i2 sin α j i2 = 0 sgn(GE j i1 sin α j i1 + GE j i2 sin α j i2 ) otherwise
(2.24)

λ j o2 =    sgn(F X ) if GE j o2 sin α j o2 = 0 sgn(GE j o2 sin α j o2 ) otherwise
(2.25)

λ j i1 =    sgn(F X ) if GE j i1 sin α j i1 = 0 sgn(GE j i1 sin α j i1 ) otherwise (2.26)
2. Quasi-static model with balls and rings

Geometric closure on outer ring

First geometric closure involves that outer ring does not move :

C j o1 C j o2 = g o x G (2.27)
In this equation, we introduce ball center B j in order to get functions of B j C j om vectors:

C j o1 B j + B j C j o2 = g o x G (2.28)
Finally, we project relation (2.28) on x G and y j b1 axis to obtain two geometric equations (2.29), (2.30) on the outer ring.

f j ORx = GE j o1 sin α j o1 + GE j o2 sin α j o2 -g o λ j o = 0 (2.29)
f j ORy = GE j o1 cos α j o1 -GE j o2 cos α j o2 = 0 (2.30)

Geometric closure on inner ring

Second geometric closure involves that inner ring rotates :

C j i1 C j i2 = g i x i1 (2.31)
Similarly, we introduce ball center B j in order to get functions of B j C j im vectors:

C j i1 B j + B j C j i2 = g i x i1 (2.32)
We express x i1 vector in ball coordinate system R j b1 :

x i1 =      cos θ y cos θ z cos ψ j sin θ z -sin ψ j sin θ y cos θ z -sin ψ j sin θ z -cos ψ j sin θ y cos θ z      R j b1 (2.33)
Finally, we project relation (2.32) on x G and y j b1 axis to obtain two geometric equations (2.34), (2.35) on the inner ring.

f j IRx = GE j i1 sin α j i1 + GE j i2 sin α j i2 -g i λ j i cos θ z cos θ y = 0 (2.34) f j IRy = -GE j i1 cos α j i1 + GE j i2 cos α j i2 -g i λ j i (cos ψ j sin θ z -sin ψ j sin θ y cos θ z ) = 0 (2.

35)

Geometric equations

Geometric closure on inner and outer ring

To consider relative displacements between inner and outer ring, we make a geometric closure that uses a curvature center on each ring and each side:

C j i1 B j + B j C j o2 + C j o2 C j ini i1 = C j i1 G i1 + G i1 G + GC j ini i1 (2.36)
Then, we detail each component of equation (2.36):

C j i1 B j + B j C j o2 = GE j i1      sin α j i1 -cos α j i1 0      R j b + GE j o2      sin α j o2 -cos α j o2 0      R j b
(2.37)

C j o2 C j ini i1 =      -( go 2 λ j o2 + g i 2 λ j i1 ) A cos α f 0      R j b , with A = |C j o2 C j ini i1 | = (f o + f i -1)D (2.38) C j i1 G i1 =      g i 2 λ j i -( dm 2 + (f i -0.5)D cos α f ) cos ψ j -( dm 2 + (f i -0.5)D cos α f ) sin ψ j      R i1 =      -R 1 -R 2 cos ψ j -R 2 sin ψ j      R i1 =      -R 1 cos θ y cos θ z + R 2 cos ψ j cos θ y sin θ z -R 2 sin ψ j sin θ y -R 1 sin θ z -R 2 cos ψ j cos θ z R 1 sin θ y cos θ z -R 2 cos ψ j sin θ z sin θ y -R 2 sin ψ j cos θ y      R G (2.39) G i1 G =      -δ x -δ y -δ z      R G (2.40) GC j ini i1 =      R 1 R 2 cos ψ j R 2 sin ψ j      R G (2.41)
Finally, we add these vectors and project the sum on x G and y j b1 to get geometric equations (2.42), (2.43) on inner and outer rings.

f j IRORx = -GE j i1 sin α j i1 -GE j o2 sin α j o2 + g o 2 λ j o2 + g i 2 λ j i1 -δ x + R 1 -R 1 cos θ y cos θ z + R 2 cos ψ j cos θ y sin θ z -R 2 sin ψ j sin θ y (2.42) f j IRORy = GE j i1 cos α j i1 + GE j o2 cos α j o2 + -δ y -R 1 sin θ z -R 2 cos ψ j cos θ z cos ψ j -A cos α f + -δ z + R 1 sin θ y cos θ z -R 2 cos ψ j sin θ y sin θ z -R 2 sin ψ j cos θ y sin ψ j + R 2 (2.43)
2. Quasi-static model with balls and rings

Choice of equations depending on rings truncations

Depending on bearing type and especially depending on ring truncations, certain races will never get more than one contact point. In such a case, geometric equations presented above are no longer valid. That is why, for each bearing we distinguish four possible configurations that are function of ring truncations. Then, depending on the bearing studied, a set of geometric equations adapted to truncations is applied. Description of these configurations and corresponding equations are summarized in Table 2 Truncations 

g i = g o = 0 g i = 0, g o ̸ = 0 g i ̸ = 0, g o = 0 g i ̸ = 0, g o ̸ = 0
α j i2 = δ j i2 = 0 α j i2 = δ j i2 = 0 IR along x G , y j b1 IR along x G , y j b1 Geometric α j o1 = δ j o1 = 0 OR along x G , y j b1 α j o1 = δ j o1 = 0 OR along x G , y j b1 equations IR -OR IR -OR IR -OR IR -OR along x G , y j b1 along x G , y j b1 along x G , y j b1 along x G , y j b1
d m = d m + 2 [(f o -0.5) D + δ o2 ] cos α o2 -2(f o -0.5)D cos α f (2.44)
At each ball-race contact, R k defines the radius of deformed pressure surface in plane of major axis of pressure ellipse. It is calculated by averaging radii of balls and raceway curvatures:

R k = 2f k D 2f k + 1 with k = i, o (2.

45)

Ball kinematic

Is this way, we can geometrically compute r km , the distance between ball center B j and a point X km on surface ellipse. Note that for convenience, exponent j referring to ball index is omitted in this section. 

r km = R 2 k -X 2 km -R 2 k -a 2 km + D 2 2 -a 2 km with k = i, o and m = 1, 2 (2.46) 

Detailed computation for outer race, side 2

On contact ellipse located at the outer race, side 2, because of outer race relative rotation, each point (X o2 , Z o2 ) on ball j has the translational velocity V b/o2 (I o2 ) :

V b/o2 (I o2 ) = V b/o2 (G i1 ) + I o2 G i1 ∧ Ω b/o2 = 0 - d m 2 y j b1 + r o2 Y o2 ∧ -ω o x G V b/o2 (I o2 ) = - d m 2 ω o -r o2 ω o cos α o2 Z o2 (2.47)
As well, each point (X o2 , Z o2 ) on ball j has the translational velocity V b (I o2 ) due to ball self-rotation:

V b (I o2 ) = V b (B j ) + I o2 B j ∧ ω R = 0 -r o2 Y o2 ∧ ω R x j b3 V b (I o2 ) =      -r o2 ω z 0 r o2 (ω x cos α o2 + ω y sin α o2 )      R o2 (2.48)
Then, at side 2, V Xo2 and V Zo2 , ball velocities relative to outer race in X o2 and Z o2 directions, are expressed by :

V Xo2 = V b/o2 (I o2 ) + V b (I o2 ) .X o2 = -r o2 ω z (2.49) V Zo2 = V b/o2 (I o2 ) + V b (I o2 ) .Z o2 = - d m 2 ω o -r o2 ω o cos α o2 + r o2 (ω x cos α o2 + ω y sin α o2 )
(2.50) Similarly, each point (X o2 , Z o2 ) on ball j has the rotational speed Ω b/o2 due to outer race relative rotation and Ω b due to ball self-rotation.

Ω b/o2 = -ω o x G =      -ω o cos α o2 ω o sin α o2 0      R o2 (2.51
)

Ω b = ω r x j b3 =      ω x cos α o2 + ω y sin α o2 -ω x sin α o2 + ω y cos α o2 ω z      R o2 (2.52)
Then, ball-race rolling speed ω Ro2 and spinning speed ω So2 are calculated:

ω Ro2 = Ω b/o2 + Ω b .X o2 = -ω o cos α o2 + ω x cos α o2 + ω y sin α o2 (2.53
)

ω So2 = Ω b/o2 + Ω b .Y o2 = ω o sin α o2 -ω x sin α o2 + ω y cos α o2 (2.

54)

Ball kinematic

Kinematic synthesis at 4 contacts

• Relative speeds on outer race, side 2

In above kinematic relations, we can replace ball-self rotations ω x , ω y , ω z by their developed expressions (2.17). Then, ball kinematics at outer race, side 2 can be expressed by:

V Xo2 = ω R r o2 cos β sin β ′ (2.55) V Zo2 = - d m ω o 2 + r o2 ω o -cos α o2 + ω R ω o cos β cos β ′ cos α o2 + sin β sin α o2 (2.56
)

ω Ro2 = ω o -cos α o2 + ω R ω o cos β cos β ′ cos α o2 + sin β sin α o2 (2.57
)

ω So2 = -ω o -sin α o2 + ω R ω o cos β cos β ′ sin α o2 -sin β cos α o2 (2.58)
Using different projections, same procedure is applied at the three other ball-race contacts to compute translational velocities, spinning and rolling speeds. Corresponding expressions are synthesized below by relations (2.59) to (2.70).

• Relative speeds on outer race, side 1

V Xo1 = ω R r o1 cos β sin β ′ (2.59) V Zo1 = - d m ω o 2 + r o1 ω o -cos α o1 + ω R ω o cos β cos β ′ cos α o1 -sin β sin α o1 (2.60
)

ω Ro1 = ω o -cos α o1 + ω R ω o cos β cos β ′ cos α o1 -sin β sin α o1 (2.61
)

ω So1 = -ω o sin α o1 - ω R ω o cos β cos β ′ sin α o1 + sin β cos α o1 (2.62)
• Relative speeds on inner race, side 1

V Xi1 = ω R r i1 cos β sin β ′ (2.63) V Zi1 = - d m ω i 2 + r i1 ω i cos α i1 - ω R ω i cos β cos β ′ cos α i1 + sin β sin α i1 (2.64) ω Ri1 = ω i cos α i1 - ω R ω i cos β cos β ′ cos α i1 + sin β sin α i1 (2.65
)

ω Si1 = -ω i sin α i1 + ω R ω i -cos β cos β ′ sin α i1 + sin β cos α i1 (2.66)
• Relative speeds on inner race, side 2

V Xi2 = ω R r i2 cos β sin β ′ (2.67) V Zi2 = - d m ω i 2 + r i2 ω i cos α i2 - ω R ω i cos β cos β ′ cos α i2 -sin β sin α i2 (2.68) ω Ri2 = ω i cos α i2 - ω R ω i cos β cos β ′ cos α i2 -sin β sin α i2 (2.69
)

ω Si2 = -ω i -sin α i2 + ω R ω i cos β cos β ′ sin α i2 + sin β cos α i2 (2.70)
2. Quasi-static model with balls and rings Note that these kinematic results are different than those presented in literature by Jones [START_REF] Jones | Ball Motion and Sliding Friction in Ball Bearings[END_REF] or Harris [START_REF] Harris | Advanced Concepts of Bearing Technology: Rolling Bearing Analysis[END_REF]. It is because we define ball motion in a direct coordinate system whereas Jones and Harris work in an indirect one.

Point of pure rolling

When ball and race translational velocities are equal, pure rolling occurs at the effective rolling radius r ′ km :

V b (I km ) = V b/km (I km ) (2.71)
Consequently, kinematic relations (2.72) to (2.75) applies.

-

ω i cos α i1 d m 2 cos α i1 -r ′ i1 = r ′ i1 (ω x cos α i1 + ω y sin α i1 ) (2.72) -ω i cos α i2 d m 2 cos α i2 -r ′ i2 = r ′ i2 (ω x cos α i2 -ω y sin α i2 ) (2.73) -ω o cos α o1 d m 2 cos α o1 -r ′ o1 = -r ′ o1 (ω x cos α o1 -ω y sin α o1 ) (2.74) -ω o cos α o2 d m 2 cos α o2 -r ′ o2 = -r ′ o2 (ω x cos α o2 + ω y sin α o2 ) (2.75) 
Such equations can be written in a different way as in (2.76) to (2.83). However, in this quasi-static problem, r ′ i1 and r ′ o2 are the unknowns of the Newton-Raphson scheme. Then, ξ 1 and ξ 2 are computed with relations (2.76) and (2.79) and r ′ i2 and r ′ o1 are calculated with relations (2.81) and (2.82). In these relations, r ′ km define the effective rolling radius which is the distance between ball center and a point of pure rolling. This point is not necessarily located on surface ellipse, especially if ball-race sliding occurs. r ′ km is not to be confused with r km , the distance between ball center B j and a point X km on surface ellipse.

ξ 1 = ω R ω i = -dm 2r ′ i1 + cos α i1 cos β cos β ′ cos α i1 + sin β sin α i1 (2.76) ξ 1 = ω R ω i = -dm 2r ′ i2 + cos α i2 cos β cos β ′ cos α i2 -sin β sin α i2 (2.77) ξ 2 = ω R ω o = dm 2r ′ o1 + cos α o1 cos β cos β ′ cos α o1 -sin β sin α o1 (2.78) ξ 2 = ω R ω o = dm 2r ′ o2 + cos α o2 cos β cos β ′ cos α o2 + sin β sin α o2 (2.79) Forces definition r ′ i1 = -dm 2 ξ 1 (cos β cos β ′ cos α i1 + sin β sin α i1 ) -cos α i1 (2.80) r ′ i2 = -dm 2 ξ 1 (cos β cos β ′ cos α i2 -sin β sin α i2 ) -cos α i2 (2.81) r ′ o1 = dm 2 ξ 2 (cos β cos β ′ cos α o1 -sin β sin α o1 ) -cos α o1 (2.82) r ′ o2 = dm 2 ξ 2 (cos β cos β ′ cos α o2 + sin β sin α o2 ) -cos α o2 (2.83)
From inner and outer race rotational speeds Ω i and Ω o , and from above kinematic relations, we can compute races relative speeds ω i and ω o , ball precession speed ω m and ball self-rotational speed ω R . Is this way, all ball kinematics is defined.

ω o = ξ 1 ξ 2 -ξ 1 (Ω i -Ω o ) (2.84
)

ω i = (Ω i -Ω o ) + ω o (2.85
)

ω m = Ω o -ω o (2.86) ω R = (Ω i -Ω o )ξ 2 ξ 1 (ξ 2 -ξ 1 ) (2.87) 
4 Forces definition

External forces on the inner ring

Inner ring is subject to external forces caused by many factors such as preloads or shaft misalignments. Corresponding torsor T j ext/IR is defined at bearing center G in global coordinate system R G .

T j ext/IR =    -F X -F Y -F Z 0 -M Y -M Z    R G (2.88)

Forces due to ball motion

Ball self-rotation and ball orbital motion result in inertia and drag forces gathered in torsor T j /b defined at ball center B j in ball coordinate system R j b1 .

T j /b =    0 F j c F j dr 0 M j GY M j GZ    R j b1 (2.89)
Indeed, because of their orbital motion, each ball of mass m b , is subject to a centrifugal force F j c directed along the outer normal y j b1 :

F j c = m b d m 2 (ω j m ) 2 (2.90)
2. Quasi-static model with balls and rings

As well, because of their self-rotation, each ball of inertia momentum I b , is subject to a gyroscopic momentum M j GY along y j b1 and M j GZ along z j b1 :

M j GY = -I b ω j R ω j m cos β j sin β ′j (2.91) M j GZ = -I b ω j R ω j m sin β j (2.92)
Similarly, because of their orbital motion, balls move throughout lubricant in orthoradial direction z j b1 . This creates an oleodynamic force or drag force F j dr in the opposite direction. This force can be expressed by relation (2.93) with a simple drag model defined in SI units. From experimental results, Harris' [START_REF] Harris | Advanced Concepts of Bearing Technology: Rolling Bearing Analysis[END_REF] developped a comparable relation expressed in (2.94) in anglo-saxon units (lb, inch, s).

F j dr = - 1 2 C d ρ m πD 2 4 ω j m d m 2 2
(2.93)

F j dr = - C d π ρ m D 2 (ω j m d m ) 1.95 32g
(2.94)

In both expressions, C d is the drag coefficient set by BB20 user. Its value varies with Reynolds number such as reported by Schlichting [START_REF] Schlichting | Boundary layer theory[END_REF]. As well, ρ m is air/oil lubricant mixture density. If f oil , the oil fraction in the mixture, is known, ρ m can be calculated by relation (2.95). Otherwise, if W lub , the lubricant flow, is known, XCAV, the oil percentage in the mixture, can be calculated from Parker [START_REF] Parker | Comparison of predicted and experimental thermal performance of angular-contact ball bearings[END_REF] relation defined in (2.96). In this expression XCAV is in percent, W lub in cm 3 /min, d m in mm and N i in rpm. 

ρ m = f oil ρ oil + (1 -f oil ) ρ air ( 2 

Coulomb's friction

At each ball-race contact, from the unknown δ j km , Hertzian theory is applied to compute contact parameters such as normal force Q j km , contact stiffness K, pressure P j km or semimajor and semi-minor axes of ellipse a j km , b j km .

Q j km = K (δ j km ) 3 2 
(2.97)

Friction forces also act at each contact, they are defined by Coulomb's model presented in Jones' study [START_REF] Jones | Ball Motion and Sliding Friction in Ball Bearings[END_REF]. In this model, macro-sliding due to ball-race kinematics is considered. Shear stress that depends on contact pressure, is integrated on each point of ellipse surface and corresponding forces are projected along each axis. Especially, as expressed in (2.99), F j Xkm and M j Rkm correspond to friction along X 

T j km/b =    F j Xkm -Q j km F j Zkm M j Rkm M j Skm M j Zkm    R j km
(2.98)

F j Xkm = 3Q j km µ 2π 1 -1 √ 1-q 2 - √ 1-q 2 1 -q 2 -t 2 sin φ dtdq F j Zkm = 3Q j km µ 2π 1 -1 √ 1-q 2 - √ 1-q 2 1 -q 2 -t 2 cos φ dtdq M j Rkm = 3Q j km µ 2π 1 -1 √ 1-q 2 - √ 1-q 2 r 1 -q 2 -t 2 cos φ dtdq M j Skm = 3Q j km µa 2π 1 -1 √ 1-q 2 - √ 1-q 2 1 -q 2 -t 2 q 2 + t 2 k 2 cos (φ -θ) dtdq M j Zkm = 3Q j km µ 2π 1 -1 √ 1-q 2 - √ 1-q 2 r 1 -q 2 -t 2 sin φ dtdq (2.99) with q = X a , t = Z b , k = a b , tan θ = Z X = t kq tan φ =   ρω j S sin θ + V j X -ρω j S cos θ -V j Z   =   Zω j S + V ′j X -Xω j S -V j Z   =      t k + V j X aω j S -q - V j Z aω j S     
(2.100)

2. Quasi-static model with balls and rings Note that in previous BB20 (version 4), cos φ, sin φ and cos (φθ) were calculated by trigonometric relations. However, we noticed that these relations, just like arctan function, were valid on ] -π 2 ; π 2 [ interval. That is why, in this new version, φ and θ are calculated by arctan2 function which is valid on ] -π; π[ interval.

As well, in BB20V4, F j Xkm , F j Zkm and M j Rkm were projected in an opposite direction than in BB20V5. Is this way torsor T j km/b was defined like in Jones' model. However, to have opposite friction forces and sliding speeds, torsor defined in (2.98) is according to us the correct one.

Friction forces computation 5 Friction forces computation

Analytic expressions

Integrals (2.99) must be solved numerically. To begin, we express all of them by the general form (2.101). Then, variable change x = ax and z = bz √ 1 -x 2 is applied to get relation (2.102). To solve this last one, different methods with more or less advantages can be used.

I = a -a b √ 1-( x a ) 2 -b √ 1-( x a ) 2 1 - x a 2 - z b 2 f (x, z) dzdx (2.101) I = ab 1 -1 (1 -x 2 ) 1 -1 1 -z2 f (ax, bz 1 -x 2 ) dzdx (2.102)

Gupta's method

To solve such integrals, Gupta [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF] proposed to apply the polar variable change x = ar cos θ and z = br sin θ, in order to get relation (2.103), also written in (2.104).

I = ab 1 0 r 1 -r 2 2π 0
f (ar cos θ, br sin θ) dθdr (2.103)

I = ab 1 0 1 -r 2 F (r) dr with F (r) = r 2π 0 f (ar cos θ, br sin θ) dθ (2.104)
To evaluate the inner integral F (r), midpoint method is applied. It consists in dividing integration domain into 2m equal sections. Integral of each section [c; d] is approximated by a rectangle centered in the middle as expressed by relation (2.105). The whole integral is obtained by adding all of these contributions.

d c f (x) dx = (d -c) f c + d 2 (2.105)
Brought back to our problem, F (r) integral is partitioned into 2m rectangles from 0 to 2π, and midpoint method is applied to get relation (2.106). Geometrically, m represents the number of equally spaced points on a circle of radius r.

F (r) ≈ πr m 2m i=1 f ar cos πi m , br sin πi m (2.106)
Regarding outer integral, by its form, it can be approximated by Gauss-Chebyshev quadrature but limited to [0; 1] interval instead of [-1; 1]. Then, expression (2.107) is obtained where w j and r j are weights and roots related to this quadrature. Corresponding values for n = 5 are synthesized in Table 2.3. Finally, from inner and outer integral estimations, the initial double integral I is expressed by the following double summation:

1 0 1 -r 2 F (r) dr ≈ n j=1 w j F (r j ) (2.
I ≈ ab n j=1   w j πr j m 2m i=1 f ar j cos πi m , br j sin πi m    (2.108)
Gupta estimated that m = 72 and n = 5 were adequate to get a good accuracy. However, if this method is time effective, it is also less robust because contact ellipse is meshed with equal elements. Indeed, if mesh can be improved by increasing m or n values, all elements are fixed at the same size. This can cause important integral computation errors when points of zero sliding are met because it causes discontinuous derivatives.

Gauss-Legendre's method

Development of this method was initially inspired by Legrand's work [START_REF] Legrand | Logiciel RBL4-Modélisation des Roulements à Billes à Contact Oblique[END_REF] implemented in RBL4 code. However, study of contact ellipses led us to use different Gaussian quadratures and to define different partitioning with other directions and with computations adapted to BB20 coordinate systems and kinematics.

To know which quadrature using in order to integrate functions defined in (2.99), we studied evolution of these functions over contact ellipses. As for that, asymptotic expansions of integrands were calculated when ellipse coordinates (x, z) gets closer to values that cancel sliding velocities (zω j S + V j X ) and (-xω j S -V j Z ). Asymptotic expansions obtained presented finite values. Sliding velocities quotient that corresponds to tan φ function were also plotted for the bearing defined in Table 2.4. For example, tan φ function obtained for first ball is reported in Figure 2.12. All results confirmed that tan φ has finite values. This indicates that integrands do not present singularities over contact ellipses. Then, classical Gauss-Legendre quadrature is suitable to integrate these functions. This quadrature has the advantage to refine mesh at integration limits -1 and 1.

In this problem, to compute accurately integrals (2.99), mesh should be refined in regions where integrands vary significantly. To identify these regions, integrands of F j Xkm , F j Zkm , M j Skm , M j Rkm , M j Zkm and corresponding sliding speeds were plotted. Analysis of integrands showed important variations along x when sign of (-xω j S -V j Z ) changes and along z when sign of (zω j S + V j X ) changes. This is noticeable if we compare evolution of sliding lines of Figure 2.13, with F j Xkm integrands of Figure 2.14 and with sliding speeds

Friction forces computation of Figure 2.15. This phenomena indicates that zero sliding lines and instantaneous centre of rotation will have to be identified to partition contact ellipses. Then, integrals will be calculated on each portion with Gauss-Legendre quadrature that will improve mesh density in regions where integrand vary significantly. Is this way, discontinuities and errors sources found with Gupta's method will be avoided. To begin integral computation, we seek on contact ellipse, for which abscissas x, transverse speeds become equal to zero. According to kinematic relations, V Zkm is a function of x such that:

N D (m) d m (m) J d (mm) f i f o g i g o F X (N) F Y (N) Ω i (rpm) 20 
V Zkm (x) = γ 1 + r km γ 2 with r km = R 2 k -x 2 + γ 3 (2.109)
and

γ 1 = - d m 2 ω k (2.110) γ 2 =                ω o -cos α o2 + ω R ωo (cos β cos β ′ cos α o2 + sin β sin α o2 ) if km = o2 ω o -cos α o1 + ω R ωo (cos β cos β ′ cos α o1 -sin β sin α o1 ) if km = o1 ω i cos α i1 -ω R ω i (cos β cos β ′ cos α i1 + sin β sin α i1 ) if km = i1 ω i cos α i2 -ω R ω i (cos β cos β ′ cos α i2 -sin β sin α i2 ) if km = i2
(2.111)

γ 3 = -R 2 k -a 2 km + D 2 2 -a 2 km (2.112)
Consequently, equation (2.113), that defines zero transverse speed, has two solutions x 1 and x 2 expressed in (2.114).

-V Zkm (x) -x ω skm = 0 (2.113)

x 1,2 = -ω skm (γ 1 + γ 2 γ 3 ) ± γ 2 R 2 k (ω 2 skm + γ 2 2 ) -(γ 1 + γ 2 γ 3 ) 2 ω 2 skm + γ 2 2
(2.114)

We define x 1,2 = x 1,2 /a and consider that a solution x 1,2 is correct, that is to say belongs to contact ellipse, if x 2 1,2 ≤ 1. In such a case, we set:

q 1 = max -1, min(x 1 , x 2 ) (2.115) q 2 = min max(x 1 , x 2 ), 1 (2.116) 
Then, we partition contact ellipse into 1, 2 or 3 zones located between zero sliding abscissas

x 1 and x 2 : zone 1 x ∈ [v 1,1 , v 1,2 ] with v 1,1 = -1 v 1,2 = q 1 (2.117) zone 2 x ∈ [v 2,1 , v 2,2 ] with v 2,1 = q 1 v 2,2 = q 2 (2.118) zone 3 x ∈ [v 3,1 , v 3,2 ] with v 3,1 = q 2 v 3,2 = 1 (2.119)
Mathematically, by partitioning the integral along x, expression (2.102) of double integral I becomes:

I = ab 3 k=1    v k,2 v k,1 (1 -x 2 ) 1 -1 1 -z2 f ax, bz 1 -x 2 dzdx   
(2.120)

2. Quasi-static model with balls and rings Regarding outer integral, variable change v = x and u = z gives:

J = v 2 v 1 F (v) dv with F (v) = (1 -v 2 ) 1 -1 1 -u 2 f av, bu 1 -v 2 du (2.121)
To apply Gaussian quadrature, J integral must be limited to [-1; 1] interval. That is why variable change

s = 2v-v 1 -v 2 v 2 -v 1
is applied and we obtain :

J = v 2 -v 1 2 1 -1 G(s) ds with G(s) = F (v 2 -v 1 )s + v 2 + v 1 2 (2.122)
This integral can be approximated by Gauss-Legendre quadrature such that:

J ≈ v 2 -v 1 2 N k j=1 w j G(s j ) (2.123)
In this expression, w j and s j are weights and roots of the quadrature. They are calculated numerically for a given quadrature order N k . This order corresponds to the number of sections to mesh contact ellipse in each zone k. It is fixed between 2 and 30 and calculated in (2.124) such that total number of sections is close to N t , the value specified by user.

N k =      max 2, N t (v k,2 -v k,1 ) 2 if v k,2 -v k,1 > 0 0 if v k,2 -v k,1 ≤ 0 (2.124)
To compute inner integral, we seek in x 1 or x 2 , if longitudinal speed (zω s + V X ) gets equal to zero. In such a case, an instantaneous centre of rotation (ICR) is present on contact ellipse, partitioning along z direction is necessary. This is especially visible on Figure 2.14, for inner ring side 1, where important integrand variations occurs along both

x and z directions when approaching the ICR. To compute ordinates z 1 or z 2 , respectively related to x 1 or x 2 , we apply relation (2.125).

z 1,2 = - V Xkm (x 1,2 ) ω skm (x 1,2 ) (2.125)
Then, we define z 1,2 = z 1,2 /b and consider that an ICR belongs to contact ellipse if

x 2 1,2 + z 2 1,2 ≤ 1.
In such a case, we set relations (2.126), (2.127), otherwise we set p 1 = -1 and/or p 2 = 1 to do not partition along z.

p 1 = max -1, min(z 1 , z 2 )
(2.126)

p 2 = min max(z 1 , z 2 ), 1 (2.127) 
Then, we divide contact ellipse into 1, 2 or 3 zones located between zero sliding ordinates z 1 and z 2 :

zone 1 z ∈ [u 1,1 , u 1,2 ] with u 1,1 = -1 u 1,2 = p 1 (2.128) zone 2 z ∈ [u 2,1 , u 2,2 ] with u 2,1 = p 1 u 2,2 = p 2 (2.129) zone 3 z ∈ [u 3,1 , u 3,2 ] with u 3,1 = p 2 u 3,2 = 1 (2.

130)

Friction forces computation

By partitioning inner integral along z, F (v) expression (2.121) becomes:

F (v) = (1 -v 2 ) 3 k ′ =1    u k ′ ,2 u k ′ ,1 1 -u 2 f av, bu 1 -v 2 du    (2.131) Again, to limit integral to [-1; 1] interval, variable change s ′ = 2u-u 1 -u 2 u 2 -u 1
is applied and we obtain :

F (v) = (1 -v 2 ) 3 k ′ =1 u k ′ ,2 -u k ′ ,1 2 1 -1 H(s ′ ) ds ′ with H(s ′ ) = 1 -u 2 f av, bu 1 -v 2 and u = s ′ (u k ′ ,2 -u k ′ ,1 ) + u k ′ ,2 + u k ′ ,1 2 (2.132)
This integral can be approximated by Gauss-Legendre quadrature such that:

F (v) ≈ (1 -v 2 ) 3 k ′ =1 u k ′ ,2 -u k ′ ,1 2 N k ′ j ′ =1 w j ′ H(s j ′ ) (2.133)
Here again, w j ′ and s j ′ are weights and roots of the quadrature calculated numerically for a given quadrature order N k ′ defined in (2.124). Note also that F (v) defines a pressure density that vary significantly in regions around v k,1 , v k,2 , u k ′ ,1 and u k ′ ,2 . However, with this method, finer mesh is modeled at integral limits, then in these required regions.

Finally, from above ellipse partitions and integrals approximations, the initial double integral I can be expressed by the following quadruple summation:

I = ab 3 k=1 v k,2 -v k,1 2     N k j=1 w j (1 -v 2 j ) 3 k ′ =1 u k ′ ,2 -u k ′ ,1 2 N k ′ j ′ =1 w j ′ H(s j ′ )     with H(s j ′ ) = 1 -u 2 j ′ f av j , bu j ′ 1 -v 2 j and v j = (v k,2 -v k,1 )s j + v k,2 + v k,1 2 ; u j ′ = (u k ′ ,2 -u k ′ ,1 )s j ′ + u k ′ ,2 + u k ′ ,1 2 
(2.134)

Monte-Carlo's method

To compute a double integral, Monte-Carlo's method generates

N M C random points (x i , y j ) over the integration domain [a, b] × [c, d].
Then, integrand f is evaluated in each point and total integral is estimated by summing all these evaluations f (x i , y j ) and by multiplying it by the ratio domain area/number of points, such as defined in relation (2.135). Brought back to our problem, integral I, defined in (2.101), can be approximated by expression (2.136). This method is easy to program and gives very accurate results without meshing problems found with previous methods. However, to avoid important computational errors, lot of points N M C are required. Then, f (x i , y j ) must be evaluated many times which is very time consuming.

2. Quasi-static model with balls and rings

I = d c b(y) a(y) f (x, y)dxdy ≈ (d -c) N M C i,j (b(y j ) -a(y j )) f (x i , y j ) (2.135) I ≈ 4ab N M C i,j 1 - x i a 2 1 - x i a 2 - z j b 2 f (x i , z j ) (2.136)

Validation

Friction without spinning or transverse sliding

• Analytic solutions

To validate integration methods, we first study a case without spinning ω j Skm or transverse sliding V j Xkm . In such a case, friction forces F j Xkm , M j Zkm , M j Skm are equal to zero. Pure longitudinal sliding V j Zkm occurs whereas β j , β ′j angles and gyroscopic momentums are negligible. As illustrated on Figure 2.16, on contact ellipse, sliding speeds get equal to zero in a maximum of two points located in c 1 and c 2 along X axis. On each side of these points, directions of longitudinal speed V j Zkm or friction force F j Zkm are opposite. That is why ellipse can be partitioned in three zones and forces can be expressed by relations (2.138) and (2.139). After computation, analytic solutions (2.140), (2.141) on F j Zkm and M j Rkm are obtained.

F j Xkm = M j Zkm = M j Skm = 0 (2.137) F j Zkm = 3Q j km µ 2π 3 k=1 ± v 2,k v 1,k √ 1-q 2 - √ 1-q 2 1 -q 2 -t 2 sign(V j Z0 ) dtdq with          v 1,1 = -1 v 2,1 = c 1 v 1,2 = c 1 v 2,2 = c 2 v 1,3 = c 2 v 2,3 = 1 (2.138) M j Rkm = 3Q j km µ 2π 1 -1 √ 1-q 2 - √ 1-q 2
r km dF j Zkm (2.139) To get a numerical solution with pure transversal sliding, bearing presented in Table 2.4 is reused excepted that pure axial load F X = 150N is applied and that friction coefficient is divided by 10. Under these conditions, BB20 quasi-static code converges to a solution with all balls identicals and with sliding lines distribution of Figure 2.17.

F j Zkm = Q j km µ 1 - 3 2 (c 2 -c 1 ) + 1 2 (c 3 2 -c 3 1 ) sign(V j Z0 ) (2.140) M j Rkm = F j Zkm D 2 2 -a 2 -R 2 k -a 2 + 3Q j km µ 4 R k sign(V Z0 ) 1 2 cos 3 λ 3 -c 2 cos 3 λ 2 + c 1 cos 3 λ 1 sin 2 λ 3 + (cos λ 3 -c 2 cos λ 2 + c 1 cos λ 1 + λ 3 -λ 2 + λ 1 sin λ 3 )(1 - 1 4 sin 2 λ 3 ) with sin λ 1 = ac 1 R k ; sin λ 2 = ac 2 R k ; sin λ 3 = a R k (2.141)

Figure 2.17 : Sliding lines on contact ellipses

This test case has been run 3 times with friction forces calculated either by Gupta, Gauss-Legendre or Monte-Carlo method. We also ran this test case with analytical solution. However, system diverged because during first iterations, pure transversal sliding does not occur. Then this simplified model is not appropriate to solve a whole system. It can be used just as a way of comparison once we are sure there is no spinning or longitudinal sliding. To do that, we extracted BB20 solution outputs from Gauss-Legendre test and computed friction forces with each method. Results are synthesized on Table 2.5. As expected, Monte-Carlo method is the closest to analytical one. Gauss-Legendre method is very similar, Gupta's method is comparable excepted for F j Zo2 . For outer race, F j Xo2 and M j Zo2 are not negligible which makes us think that, despite sliding lines profile, hypothesis of pure transverse sliding is not correct on this race. 

F j Xi1 -1.74746E-2 -1.58402E-2 -1.79318E-2 0 M j Zi1 -1.50827E-4 -1.50827E-4 -1.570114E-4 0 M j Si1 2.39647E-5 2.03182E-5 1.78833E-5 0 

Table 2.5 : Comparison of friction forces calculated with different methods

On Figure 2.18, for each method, we plotted evolution of friction forces over iterations. Note that we did not report M j Rkm and M j Zkm because they respectively have same profile as F j Zkm and F j Xkm . We can observe that Gupta's method gives similar results to Monte-Carlo excepted for M j So2 . Indeed, this momentum oscillate and the system has difficulties to converge with a persistently small error. Gauss-Legendre and Monte-Carlo results are almost equal for inner race whereas important differences are observed for outer race, especially for M j So2 . Final results on ball parameters are summarised in Table 2.6. Gauss-Legendre solution is particularly close to Monte-Carlo. Gupta's method is also comparable and differences does not physically change bearing behaviour.

To conclude, Monte-Carlo method appears to be the most accurate to compute friction forces. However, a million points N M C had to be used to converge. Then, computations took several hours whereas other methods required less than 30 seconds. For this reason, Monte-Carlo method is not suitable in practice. Gauss-Legendre method is more adapted to our problem, it has the best accuracy-to-computation time ratio even if results calculated are not exactly equal to Monte-Carlo's.

Friction for combined axial and radial loads (rolling, sliding, spinning)

To study if spinning and transversal sliding are correctly considered in integral computations, bearing presented in Table 2.4 is used again with combined forces F X =15 000N and F Y =7 500N, F Y =10 500N or F Y =14 000N. Friction forces were plotted at first and last iteration of BB20 resolution. Results for outer race, F Y =14 000N, are reported on Figure 2.19. For all tests, we observed that Monte-Carlo and Gauss-Legendre methods were almost equal. Small differences are due to Monte-Carlo convergence difficulties. At first iteration, some differences are noticeable between Gupta and other methods, especially for outer race contact. These differences have cancelled at last iteration. Balls characteristics given in output were also plotted and very similar results were obtained between all methods. This confirms accuracy of Gauss-Legendre methods compared with Gupta's method, especially when pure rolling occurs. Note that Gupta's method is almost twice faster than Gauss-Legendre since no ellipse partitioning is done. However, Gauss-Legendre stays more recommended, particularly in case of critical operating conditions.

Figure 2.19 :

For each method, outer race friction forces obtained for F X =15 000N and

F Y =14 000N
Quasi-static resolutions 6 Quasi-static resolutions

R1 Resolution

Before solving the complete quasi-static system with balls and rings, a first resolution called R1, is led in order to get simple initial values. In this procedure, external forces on the inner ring, ball centrifugal forces and ball-race normal forces are the only one of concern. In other words, gyroscopic effects, drag forces and ball-race friction forces are neglected.

Inner race equilibrium

In this R1 resolution, inner ring is subject to external forces and ball-race normal forces coming from N balls, that is why forces equilibrium gives:

F ext/IR + N j=1 Q j i1 + Q j i2 = 0 (2.142)
After projecting normal forces in global coordinate system R G , equations on the sum of forces on the inner ring in x G , y G and z G directions are obtained:

-F X - N j=1 -sin α j i1 Q j i1 + sin α j i2 Q j i2 = 0 (2.143) -F Y - N j=1 cos ψ j (cos α j i1 Q j i1 + cos α j i2 Q j i2 ) = 0 (2.144) -F Z - N j=1 sin ψ j (cos α j i1 Q j i1 + cos α j i2 Q j i2 ) = 0 (2.145)
Momentum equilibrium on the inner ring is calculated at bearing center G such that:

M /IR (G) = M ext/IR (G) + N j=1 Q j i1 ∧ GI j i1 + Q j i2 ∧ GI j i2 = 0 (2.146)
To compute GI j im , we use inner ring center G I and consider the fact that inner ring translates of δ and rotates of [θ], such that GC j′ im = δ + [θ]GC j im . We also know that

GC j i1 =      R 1 R 2 cos ψ j R 2 sin ψ j      R G , GC j i2 =      -R 1 R 2 cos ψ j R 2 sin ψ j      R G
, and GI j im = GC j′ im + C j′ im I j im .

2. Quasi-static model with balls and rings Then, we can compute GI j im coordinates:

     x j 1 y j 1 z j 1      R G =      R 1 cos θ z cos θ y + R 2 (-cos θ y sin θ z cos ψ j + sin θ y sin ψ j ) R 1 sin θ z + R 2 cos θ z cos ψ j -R 1 sin θ y cos θ z + R 2 (sin θ z sin θ y cos ψ j + cos θ y sin ψ j )      R G +      +f i D sin α j i1 -f i D cos α j i1 cos ψ j -f i D cos α j i1 sin ψ j      R G (2.147)      x j 2 y j 2 z j 2      R G =      -R 1 cos θ z cos θ y + R 2 (-cos θ y sin θ z cos ψ j + sin θ y sin ψ j ) -R 1 sin θ z + R 2 cos θ z cos ψ j +R 1 sin θ y cos θ z + R 2 (sin θ y sin θ z cos ψ j + cos θ y sin ψ j )      R G +      -f i D sin α j i2 -f i D cos α j i2 cos ψ j -f i D cos α j i2 sin ψ j      R G (2.148)
Consequently, from relations (2.146), (2.147), (2.148) , equations on the sum of momentums on the inner ring in y G and z G directions, at bearing center G are obtained:

-M Y + N j=1 z j 1 sin α j i1 Q j i1 -z j 2 sin α j i2 Q j i2 + sin ψ j (x j 1 cos α j i1 Q j i1 + x j 2 cos α j i2 Q j i2 ) = 0 (2.149) -M Z + N j=1 -cos ψ j (x j 1 cos α j i1 Q j i1 + x j 2 cos α j i2 Q j i2 ) -y j 1 sin α j i1 Q j i1 + y j 2 sin α j i2 Q j i2 = 0 (2.150)

Balls equilibrium

In this R1 resolution, each ball is subject to centrifugal forces and ball-race normal forces coming from four contacts, then forces equilibrium gives:

F j c + Q j i1 + Q j i2 + Q j o1 + Q j o2 = 0 (2.151)
After projecting in ball coordinate system R j b1 , equations on the sum of forces on each ball j in x G and y j b1 directions are obtained:

F j R1/bx = -Q j i1 sin α j i1 + Q j i2 sin α j i2 -Q j o1 sin α j o1 + Q j o2 sin α j o2 = 0 (2.152) F j R1/by =Q j i1 cos α j i1 + Q j i2 cos α j i2 -Q j o1 cos α j o1 -Q j o2 cos α j o2 + F j c = 0 (2.153)
Note that ball forces equilibrium along z j b1 and ball momentums equilibrium are not solved in R1 resolution. Instead, ball kinematics is assumed such that effective rolling radius r ′j km are equal to ball radius. Kinematic parameters ξ j 1 and ξ j 2 are deduced from relations (2.76) and (2.79). Races relative speeds ω j i , ω j o , ball precession speeds ω j m and ball self-rotation speeds ω j R result from kinematic relations (2.84) to (2.87). As well, ball self rotation β ′j is supposed to be equal to zero whereas outer race control (ORC) hypothesis is applied to compute β j . Indeed, β j is assumed to be balanced between left and right outer race contact angles such as defined by relation (2.154).

Quasi-static resolutions

β j = -γ o1 β j o1 + γ o2 β j o2 with              γ ok = Q j ok (Q j o1 ) 2 +(Q j o2 ) 2 β j ok = arctan sin α j ok cos α j ok + D d m (2.154)
Nevertheless, for final R1 iteration, if LM CC j = 3, that is to say if ball contacts each race in one point, β j is calculated without ORC hypothesis. Indeed, Dusserre and Nélias [START_REF] Dussèrre-Telmon | Roulements à billes lubrifiés: contrôle partagé de la bille entre la bague intérieure et la bague extérieure: Roulements. I[END_REF] showed that ball angle β j was shared between inner race control angle β j i and outer race control angle β j o such that power loss at ball-race contact is minimum. Then, β j calculated is shared between β j i and β j o such that ball energy equilibrium is satisfied. Is this way, accuracy of β j predicted for R2 initialisation is enhanced. ). • 4N Hertzian deformations at ball-race contacts (δ j i1 , δ j i2 , δ j o1 , δ j o2 ). This system is solved numerically by a Newton-Raphson algorithm. However, convergence difficulties occurs when the bearing support important radial load or misalignment. In such a case, balls located at the opposite of the load tend to lose contact with inner race. To solve this problem, a numerical procedure is implemented to increase incrementally radial and misalignment input parameters. Is this way, system is solved step-by-step by initialising unknowns of the next step with previous solution that is less radially loaded or less misaligned.

β j o =
2. Quasi-static model with balls and rings

Stiffness matrix computation

At the end of R1 resolution, bearing stiffness matrix K Stif f defined in (2.157) is calculated. Note that this matrix could be calculated at the end of R2 resolution. However equations are much complicated in R2, computation time would be significantly increased without important accuracy improvement. Procedure to compute stiffness matrix was developed by Leblanc in 2008 [START_REF] Leblanc | Analysis of Ball Bearings with 2, 3 or 4 Contact Points[END_REF]. We just corrected few mistakes and adapted it to equations modifications brought in this version. 

K Stif f =                     ∂F X ∂δ x ∂F X ∂δ y ∂F X ∂δ z ∂F X ∂θ y ∂F X ∂θ z ∂F Y ∂δ x ..
                   
(2.157)

R2 Resolution

R2 resolution uses R1 results to initialise unknowns. In this procedure, R1 kinematic hypothesis on ball parameters do not hold anymore. Instead, complete ball equilibrium is solved to compute accurately β j , β ′j , r ′j km , then ω j o , ω j i , ω j m and ω j R . As well, now all external forces T j ext/IR , ball motion forces T j /b and ball-race contact forces T j km/b including friction are considered.

Inner ring equilibrium

Inner ring is subject to external forces, ball-race normal and friction forces arising from N balls, that is why forces equilibrium is given by:

F ext/IR + N j=1 F b/i1 + F b/i2 = 0 (2.158)
After projecting each contribution in global coordinate system R G , quasi-static equations on the sum of forces on the inner ring in x G , y G and z G directions are obtained:

F QS/IRx = -F X - N j=1 -sin α j i1 Q j i1 -cos α j i1 F j Xi1 + sin α j i2 Q j i2 -cos α j i2 F j Xi2 = 0
(2.159)

F QS/IRy = -F Y - N j=1 cos ψ j (cos α j i1 Q j i1 -sin α j i1 F j Xi1 + cos α j i2 Q j i2 + sin α j i2 F j Xi2 ) -sin ψ j (F j Zi1 + F j Zi2 ) = 0 (2.

160)

Quasi-static resolutions

F QS/IRz = -F Z - N j=1 sin ψ j (cos α j i1 Q j i1 -sin α j i1 F j Xi1 + cos α j i2 Q j i2 + sin α j i2 F j Xi2 ) + cos ψ j (F j Zi1 + F j Zi2 ) = 0 (2.161)
To compute momentum equilibrium on the inner ring, the point G I is not used like in R1 resolution. Indeed, Coulomb's friction momentums are expressed at ball center B j . That is why momentums are transposed in this point:

M /IR (G) = M ext/IR (G)+ N j=1 M b/i1 (B j )+M b/i2 (B j )+(F b/i1 +F b/i2 )∧GB j (2.162)
To compute GB j , intermediate point C j o2 is used. This curvature center is the most relevant point because a total ball detachment cannot happen on the outer ring. And, if the outer race contact is lost at side 2, formulas remain valid since δ j o2 can take negative values.

GB j = GC j o2 + C j o2 B j (2.163) GB j =      + go 2 λ j o dm 2 -(f o -0.5)D cos α f 0      R j b +      -GE o2 sin α j o2 GE o2 cos α j o2 0      R j b (2.164)
The projection in global coordinate system R G gives ball center coordinates:

     x j G y j G z j G      R G =      + go 2 λ j o -GE o2 sin α j o2 ( dm 2 -(f o -0.5)D cos α f + GE o2 cos α j o2 ) cos ψ j ( dm 2 -(f o -0.5)D cos α f + GE o2 cos α j o2 ) sin ψ j      R G (2.165)
Note again that, in the above expression, ball orthoradial displacements along z j b1 are neglected. Such hypothesis will be revised in quasi-dynamics because of cage contribution and ball-to-pocket interactions.

Finally, after combining equations (2.162) and (2.165), quasi-static equations on the sum of momentums on the inner ring in y G and z G directions are obtained:

M QS/IRy = -M Y - N j=1 -sin α j i1 M j Ri1 -cos α j i1 M j Si1 + sin α j i2 M j Ri2 -cos α j i2 M j Si2 cos ψ j -sin ψ j (M j Zi1 + M j Zi2 ) + z j G -cos α j i1 F j Xi1 -sin α j i1 Q j i1 -cos α j i2 F j Xi2 + sin α j i2 Q j i2 -x j G (-sin α j i1 F j Xi1 + cos α j i1 Q j i1 + sin α j i2 F j Xi2 + cos α j i2 Q j i2 ) sin ψ j + cos ψ j (F j Zi1 + F j Zi2 ) = 0 (2.166)
2. Quasi-static model with balls and rings

M QS/IRz = -M Z - N j=1 (-sin α j i1 M j Ri1 -cos α j i1 M j Si1 + sin α j i2 M j Ri2 -cos α j i2 M j Si2 ) sin ψ j + cos ψ j (M j Zi1 + M j Zi2 ) + x j G (-sin α j i1 F j Xi1 + cos α j i1 Q j i1 + sin α j i2 F j Xi2 + cos α j i2 Q j i2 ) cos ψ j -sin ψ j (F j Zi1 + F j Zi2 ) -y j G (-cos α j i1 F j Xi1 -sin α j i1 Q j i1 -cos α j i2 F j Xi2 + sin α j i2 Q j i2 ) = 0
(2.167)

Balls equilibrium

Each ball is subject to forces due to their motion and to ball-race normal and friction forces coming from four contacts. Then, forces equilibrium on each ball gives:

F j /b + F j i1/b + F j i2/b + F j o1/b + F j o2/b = 0 (2.168)
After projecting in ball coordinate system R j b1 , quasi-static equations on the sum of forces on each ball j in x G , y j b1 and z j b1 directions are obtained:

F j QS/bx = -Q j i1 sin α j i1 + Q j i2 sin α j i2 -Q j o1 sin α j o1 + Q j o2 sin α j o2 -F j Xi1 cos α j i1 -F j Xi2 cos α j i2 + F j Xo1 cos α j o1 + F Xo2 cos α j o2 = 0 (2.169) F j QS/by = Q j i1 cos α j i1 + Q j i2 cos α j i2 -Q j o1 cos α j o1 -Q j o2 cos α j o2 -F j Xi1 sin α j i1 + F j Xi2 sin α j i2 -F j Xo1 sin α j o1 + F Xo2 sin α j o2 + F j c = 0 (2.170) F j QS/bz = F j Zi1 + F j Zi2 + F j Zo1 + F j Zo2 + F j dr = 0 (2.171)
Computation of momentum equilibrium on each ball j is straightforward since torsors T j km/b and T j /b are expressed at ball center B j :

M j /b (B j ) + M j i1/b (B j ) + M j i2/b (B j ) + M j o1/b (B j ) + M j o2/b (B j ) = 0 (2.172)
After projecting in ball coordinate system R j b1 , quasi-static equations on the sum of momentums on the ball j in x G , y j b1 and z j b1 directions, are obtained: M QS/by : (2.174) We run BB20 with these four bearings under different axial and radial loads between minimums and maximums accepted by each one. For all bearings, under important axial load, system always converges rapidly. It generally takes around 16 iterations for R1 and 10 for R2. However, when axial-to-radial load ratio gets closer to 1, for balls located at the opposite of radial load, a fall in precession ω j m and self-rotation speed ω j R is observed. This fall is illustrated on Figure 2.20 where results for bearing A under an axial load F X =7500N and an increasing radial load F Y are reported. If this fall does not prevent algorithm to converge, such solutions are not physically possible.

M j QS/bx = +M j Si1 sin α j i1 -M j Si2 sin α j i2 + M j So1 sin α j o1 -M j So2 sin α j o2 -M j Ri1 cos α j i1 -M j Ri2 cos α j i2 + M j Ro1 cos α j o1 + M j Ro2 cos α j o2 = 0 (2.173) M j QS/by = -M j Si1 cos α j i1 -M j Si2 cos α j i2 + M j So1 cos α j o1 + M j So2 cos α j o2 -M j Ri1 sin α j i1 +M j Ri2 sin α j i2 -M j Ro1 sin α j o1 + M j Ro2 sin α j o2 + M j GY = 0 (2.174) M j QS/bz = M j Zi1 + M j Zi2 + M j Zo1 + M j Zo2 + M j GZ = 0 (2.
dm 2 N F 2 X + F 2 Y + F 2 Z β ′j α f M QS/bz : (2.175) β j α f f j ORx : (2.
When radial load gets larger than axial load, balls located at the opposite from radial load detach from inner race and BB20 computes values equal to zero for ω j m and ω j R . Algorithm diverges or converge towards non physical solutions. Nevertheless, we observed that bearing C, which is made to work with important radial loads, converges for bigger radial-to-axial load ratios. In practice, all these bearings never work with radial loads larger than 2 3 of axial loads. However, bearing designers are asking for a computer code that works for the load panel presented.

In previous version of BB20, when a ball detached from inner race, equations (2.171) to (2.175) on ball equilibrium were not solved. Instead, β j and β ′j angles were set at zero and effective rolling radius r ′j i1 , r ′j o2 were supposed to be equal to ball radius. In this new version, we deleted all locks that forced convergence. However, after many researches and algorithm improvements, we did not find a solution that solves this ball-detachment problem. We assume that, in quasi-static and if we only consider balls and rings, the system is not designed for important radial loads. Indeed, when a ball detach from inner race, it only gets in contact with outer race and get positioned at groove middle such that β j and β ′j are equal to zero and that α j o2 is equal to zero if outer ring is not truncated or that α j o1 and α j o2 are equal if it is truncated. If inner race does not drive the ball anymore, cage is supposed to take over this role. Since cage is not considered yet in BB20, this explains why it cannot converge under these conditions. Mathematically, when a ball detach from inner race, friction forces on inner race and gyroscopic momentums get equal to zero. Then, in ball equilibrium equations (2.169) to (2.175), no momentum is present to balance outer race momentum.

Quasi-static resolutions Also, only drag force F j dr balances outer race friction F j Zom . This explains why ω j m and ω j R values tend to zero. This also confirms necessity to consider ball-cage forces. Dynamic modelling with additional inertial effects should also allow to solve this problem.

Figure 2.20 : Illustration of ball rotations fall for bearing A

• Solution proposed Under important radial loads, bearing designers need a computer code that gives at least load distribution for all balls and a complete solution for balls that stay attached to inner race. To satisfy this demand, we differentiate two kind of balls; those in contact with inner race and those detached or at limit of contact. We consider that a ball belongs to this second category if its orbital speed ω j m is less than 20% of balls maximal one or if ball-to-inner race contact Q j im is less than 10% of balls maximal one. For these (almost) detached balls, we suppose that β j , β ′j angles are equal to zero and that ω j i , ω j o , ω j m , ω j R speeds are equal to attached ball average one. Then, equations (2.171) to (2.175) on ball equilibrium are not solved anymore. Instead, β j and β ′j angles are set to zero and ball radius are calculated by kinematic relations (2.72) and (2.75).

Quasi-static model with balls and rings

With this procedure, convergence is forced and solution on β j , β ′j , ω j m , ω j R is approximated for (almost) detached balls. Nevertheless, this solution gives a first outlook of bearing equilibrium before modelling cage. Indeed, tests were rerun with these modifications and convergence improvements are noticeable. For these four bearings, more than 1000 tests have been done and less than 5% diverged. Computational difficulties mainly happen when axial-to-radial load ratio gets closer to 1. Modification of Newton-Raphson relaxation criteria makes converge some of these cases but makes diverge other ones. This shows that remaining diverging cases are only due to numerical limitations and not to physical errors in the model.

Ball results obtained for bearing A are presented in Figure 2 Note also that instead of forcing ω j i , ω j o , ω j m , ω j R to be equal to attached ball average ones, we have tried to force these speeds to be equal to maximal one. Is this way we thought we could get results closer to a sinusoid. However, system did not succeed to converge. We suppose that such method does not work because it overestimates cage speed ω c . In any case, new solution proposed to manage ball detachment appears to be satisfying as a first approach to always make the system converge and have a first idea of bearing equilibrium.

New features of BB20 version 5

Quasi-static model presented above was not entirely developed during this thesis. Indeed, basis were already present in BB20 version 4. However, some mistakes have been found in previous system, algorithm was not optimal with important numerical discontinuities, computer code was over-constrained in order to make it converge towards a solution that was not always physically correct. These limits were not visible while working with important axial load. However, they appeared to be problematic while trying to add cage contributions.

To solve these problems, we first transposed the whole system in a direct coordinate system since previous version was based on Jones' indirect system [START_REF] Jones | Ball Motion and Sliding Friction in Ball Bearings[END_REF]. Unknowns and coordinate systems were also defined to only work with positive axial loads and positive angles. This limited working conditions but also forced the solution to converge toward false values. Indeed, depending on speed and combined loads, contact angles α j km or ball self-rotation angles β j , β ′j can take negative values even if axial load is positive. That is why, this new definition of contact angles, of ball rotations and adaptation of equations to negative values were necessary. In BB20V4, when a ball lost a contact with a race, elastic deformation δ j km was put to zero. Then, at each iteration, depending on ball-race contacts and LM CC j values, geometric equations had to be adapted which created important numerical discontinuities. Now, with consideration of film thickness h j km and negative δ j km , an unique system of equation is solved. To deal with different ring truncations and to work with a continuous system of equations, we also created the whole procedure presented in section 2.4. Then, numerical resolution is smooth and contact differentiations with LM CC j is only used to relax Newton-Raphson scheme between two successive iterations in order to avoid aberrant contacts.

Quasi-static resolutions

As well, we optimised drag model to consider lubricant flow effect. We verified and improved the whole procedure of friction forces computation. Especially, we completely revised Gauss-Legendre's method and implemented Monte-Carlo's one. To optimise computational efficiency, converging loops of R1 and R2 have also been deeply revised. Projections of friction forces were changed. We revised stiffness matrix computation and procedure to deal with ball-to-inner race detachments. Equations and unknowns nondimensionalization is also a novelty in BB20V5. Order of equations and unknowns in the program has also been modified to associate each equation with its corresponding unknown. All these modifications brought us to verify and adapt all equations and computational code. Is this way, quasi-static BB20 is made of a unique system of equations, it is better conditioned, it better deals with contact changes over iterations and does not force any solution. It is adapted to larger working conditions in terms of bearing geometry, speed or load. Previous errors have been rectified, then cage should be modelled without problems.

Results analysis 7.1 Investigation of existing bearings

Pure axial load

To pursue BB20 validation, we run four tests on bearing A where we vary axial load F X , shaft speed N i and friction coefficient µ such as indicated in Table 2 

Results analysis

As well, on inner race of tests C and D, pure sliding occurs in a constant direction, then we verify that V j Zi1 and F j Zi1 are opposite. From Table B.1, we also confirm that F j Xkm and M j Zkm are opposite to M j GZ in order to balance this gyroscopic momentum, as predicted by Figures 2.9 and 2.10. We also check that M j Skm and ω j Skm are always opposite. We expected M j Rkm and ω j Rkm to be in reverse directions. However, if M j Ro2 and ω j Ro2 have opposite signs, M j Ri1 and ω j Ri1 have same signs. Then, if we can validate all friction forces directions, this last one stays questionable. Note however that ω j Rkm is not involved in any BB20 computation.

Besides, we can observe on sliding lines profile of test A, that under high speed, high axial load, ball rolls, spins and slides on both races. When speed is reduced, spinning ω j s then gyroscopic momentums decrease whereas contact angles tend to be equal. When axial load is reduced, as shown in Figure 2.22 for test C, on the inner race, pure rolling point translates longitudinally and skidding occurs since spinning is negligible compared to transversal sliding. When friction is increased and axial load stays small, as represented on Figure 2.22 for test D, skidding occurs on both races. All these results confirms that BB20 models physical behaviour expected from an ACBB submitted to pure axial load. 

Combined axial and radial loads

First results on bearing behaviour under combined loads were presented in section 6.2.4. When radial load is less or equal than axial load, results are in adequacy with literature. Indeed, we can observe on Figure 2.21, for F Y =6 000N, that inner race contact angle α j i1 is always larger than outer race α j o2 whereas inner race normal load Q j i1 is less than outer race Q j o2 . Attitude angle β j is comprised between inner and outer race contact angles. Since radial load is applied on ball 11, it is the one with the higher normal loads and contact angles. Orbital speed plot also confirms that balls decelerate when they enter the loaded zone and accelerate when they come out.

On Figures 2.23 and 2.24, for different radial loads, we reported sliding lines profile of few balls. Under small radial loads, all balls roll, spin and slide on both races as illustrated on Figure 2.23. When radial load increases, normal load increases then outer race ellipse gets larger whereas inner race ellipse gets smaller. For first balls, point of pure rolling on the inner race translates longitudinally and skidding occurs as visible on Figure 2.24 for balls 1 and 5 under radial load of 7 000N. Note that these balls are those subjected to ω j m and ω j R fall. For even larger radial loads, as under F Y =8 000N, on radially loaded balls, spinning occurs at inner race contact then outer race controls ball.

Comparison BB20 Version 4 vs 5

To compare this new version of BB20 with previous one, we interest in bearing D under an axial load of 100 000N and an increasing radial load. Results obtained with both versions are presented in Figure 2.25. Note that results reported for BB20V5 are shifted of 10 balls. Indeed, this new model is defined in a direct coordinate system, then axis z j b1 has rotated of 180 • . So to compare same loaded balls as BB20V4, either we set the first ball with ψ c at 180 • or we inverse the sign of applied radial load. As well, we would have expected to get opposite signs of β j between BB20V4 and V5. But since F j Xkm , F j Zkm and M j Rkm directions were reversed, same signs for β j are obtained with both versions. On Figure 2.25, for radial loads of 50 000N or 75 000N, we can observe that orbital speeds ω j m and ball rotational speeds ω j R are significantly higher for BB20V4, especially for radially loaded balls. Pitch angles β j , yaw angles β ′j , contact angles α j o2 and normal loads Q j o1 also have more important variations in version 4. We also ran BB20V5 with previous friction forces projections and obtained very close results to BB20V4. This shows that amplitude differences between BB20V4 and V5 are directly due to F j Xkm , F j Zkm and M j Rkm projections. For radial load of 100 000N, in BB20V4, balls 9 to 13 have detached from inner race whereas in BB20V5, only ball 11 has detached and balls 8, 9, 10, 12, 13, 14 are at limit of detachment. Considering almost detached balls gives smoother curves on orbital and rotational speeds such as noticeable in Figure 2.25 where peaks on 8 th and 14 th balls decreased of a factor 5 between V4 and V5. Finally, different kinematics are calculated between BB20V4 and V5. We cannot say if new results are more or less correct than previous ones. As we will see in next sections, no model in literature has exactly the same physics to be compared with BB20. And, leading experimental study on quasi-static parameters like pitch, yaw or contact angles is a complicated task. However, we will see that obtaining less important orbital speed variations is preferable for future cage computations. Under different operating conditions, experiences have been led by bearing designers at Safran, to measure driving torque and rings temperatures. Especially, hybrid bearing defined in Table 2.10, was tested under an oil shut-off. After results exploitation, a power loss of 6587W was estimated. Same test is run with BB20 without considering film thickness or drag forces. A power loss P of 9 658W is obtained. Then, 31% difference is observed between experiments and model. This difference is acceptable and may be due to the fact that friction coefficient considered is equal to 0.065. This is an important value, a coefficient around 0.04 may have given closer results. This analysis shows that power loss is a useful tool to validate a model. It is easily measured experimentally and calculated numerically. That is why, power dissipated at all contacts and arising from dry and lubricated effects, will have to be added in future versions of BB20. 

P = N j=1 m=1,2 ω j i -M j Sim sin α j im + M j Rim d j m -r ′j im cos α j im r ′j im +ω j o M j Som sin α j om + M j Rom d j m + r ′j om cos α j om r ′j om (2.176) N D (m) d m (m) J d (mm) f i f o g i g o Ω i (rpm) F X F Y 21 0

Reference analytical models

In order to validate our model with two contact points, an investigation is led to compare BB20 outputs with Harris [START_REF] Harris | Advanced Concepts of Bearing Technology: Rolling Bearing Analysis[END_REF] and ADORE quasi-static [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF] results. Gupta developed a quasi-static code to solve bearing equilibrium without cage. All of kinematic effects considered in BB20 quasi-static, are also modelled in ADOREQS except for drag force and β ′j angle. To compute orientation of ball angular velocity vector, depending on user choice, Raceway Control Hypothesis (RCH) or Minimum Energy Hypothesis (NRJ) are applied. This last method was developed recently by Gupta [START_REF] Gupta | Minimum Energy Hypothesis in Quasi-Static Equilibrium Solutions for Angular Contact Ball Bearings[END_REF]. For a given lubrication model, it consists in searching for β j angle such that frictional energy dissipated at ball-race contacts is minimum. This iterative procedure is much time consuming than RCH. However, rolling and spinning are considered at both raceways, more than one point of pure rolling can be present and point of pure rolling is not obviously located at ellipse center. Gupta has shown that QS results obtained with this method are much closer to dynamical results than those given by RCH method.

• Shaft speed effects In 1971, Harris developed a model based on Jones' work [START_REF] Jones | Ball Motion and Sliding Friction in Ball Bearings[END_REF] in order to study ACBB without making raceway control hypothesis (RCH). In his first model [START_REF] Harris | Ball Motion in Thrust-Loaded, Angular Contact Bearings With Coulomb Friction[END_REF], such as represented on Figure 2.16, he supposed that only longitudinal sliding and spinning occur. Then, he only calculated friction forces F j Zkm , M j Rkm and M j Skm . To get rid of double integral, as we did in section 5.2.1, he supposed that a maximum of two lines of pure rolling occurs in surface ellipse. He also supposed that angle θ n is small. This angle is defined between ball-center-to-ellipse center axis and ball center-to point of pure sliding Results analysis axis as expressed by relation (2.177). Is this way, analytic expressions on F j Zkm , M j Rkm and M j Skm are obtained. Since M j Zkm is not considered, ball momentum equation on z j b1 is not solved, β ′j angles and gyroscopic momentums M j GZ are supposed to be equal to zero. Consequently, friction coefficient is calculated such that this gyroscopic slippage gets equal to zero. Note that Harris defined these parameters with different names, but for the sake of clarity, we adapted them to our model.

sin θ n = x ′ n r n (2.177)
Then, he led a parametric study on bearing defined in Table 2.11, and made vary shaft speed from 0 to 10 000 rpm. We also run these tests on BB20 and ADOREQS computer code. As for that, we applied a constant friction coefficient µ=0.065. Results from all tests are synthesized in Figures 2.26 to 2.29. ω Rkm for inner race (IR1) and outer race (OR2). We can observe that ADORE RCH compute a solution with inner race control (ω So2 ̸ = 0, ω Si1 = 0) at speeds below 8 000 rpm and outer race control (ω So2 = 0, ω Si1 ̸ = 0) at higher speeds. BB20 curves have similar shapes excepted that control is always slightly shared between both races at low and high speeds. For speeds lower than 4 000 rpm, balls mainly spin on 2. Quasi-static model with balls and rings outer race, whereas they mainly spin on inner race for higher speeds. For speeds higher than 10 000 rpm, BB20 curve on SR-OR2 seems to tend to zero, then to outer race control. At low speed, ADOREQS with minimum energy hypothesis gives results comparable to BB20. For higher speeds, SR ratio changes in sign which is surprising. However, SR-OR2 tend to zero such as predicted by RCH. SR ratio computed by Harris is significantly larger than other ones. We suppose that this difference comes from friction coefficient that is not prescribed but calculated such that gyroscopic momentum M j GZ is minimum. As well, at low speeds, balls mainly spin on inner race which is at the opposite from other models. This difference may be due to the fact that θ n is neglected which seems to be an important approximation. For speeds higher than 4 000 rpm, SR ratios change in sign and SR-OR2 tend to get equal to zero, which is comparable to ADORE with minimum energy hypothesis. At this point, we cannot say if sign inversion of SR ratio with speed should be expected or not. However, we believe that Harris' model is too much simplified to correctly model ball spinning and rolling. Gupta's model with minimum energy hypothesis is the one that model physics the most accurately. BB20 is closer to this model which comforts us in its correctness. Note that measuring experimentally spinning and rolling motions at each contact is almost impossible. No article about such experience has been found in literature. 2.27 presents evolution of pitch angle β j with shaft speed. For all models, we can observe an abrupt change of this angle at same speeds values as abrupt spinto-roll ratio change. Differences in speeds between BB20 and Harris may be due to friction coefficient definition. BB20 and ADORE RCH have same shape as Harris but different amplitudes. We can ask ourselves if these differences are due to BB20 mistakes, to hypothesis in ADORE RCH or to Harris' model hypothesis. Especially, neglecting β ′j angle and transversal speed may have significant impact on β j computation. Figure 2.28 presents evolution of cage-to-shaft speed ratio ωc N i with shaft speed. BB20 is close to Harris at low speeds. ADORE results are different at all speeds even if magnitude stays comparable. We can assume that differences between models are due to friction coefficient and drag force considerations. Indeed, these elements have direct effects on cage speed ω c . Drag is not considered in ADOREQS and Harris did not mentioned it either.
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Figure 2.29 presents evolution of ball rotation-to-shaft speed ratio ω R N i with shaft speed. Same order of magnitude is obtained with all models. BB20 and ADOREQS curves are very close.

• Axial load effects Later, Harris improved this model to include EHD film thickness and drag forces [START_REF] Harris | An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings[END_REF]. However, he did not specified values taken by drag coefficient C d or oil fraction in the mixture. He considered all friction forces F j Xkm , F j Zkm , M j Rkm , M j Zkm , M j Skm without simplifying double integrals like previously. He led a novel parametric study on same bearing but fixed shaft speed at 27 000 rpm and varied axial load between 400N and 1900N. We also run these tests with ADOREQS and BB20 and obtained results of Figures 2.30 and 2.31. Figure 2.30 presents evolution of spin-to-roll ratio with axial load F X . We can observe that all curves have similar shapes but different amplitudes. ADORE RCH computes a solution with outer race control. ADORE with minimum energy hypothesis is close to BB20 with same amplitude difference on SR-I1. For SR-O2 ratio, results given by ADORE min NRJ are questionable since SR-O2 is far from zero and becomes larger than SR-I1 for F X = 800N . This indicates an unexpected change in raceway control. Harris amplitudes are also very different than other models. This may be due to friction coefficient and drag forces definition. 2.31 presents evolution of cage-to-shaft speed ratio with axial load F X . We can observe that ADORE and Harris with RCH have similar results. BB20 is also close but with amplitude differences under low axial loads. For all models, cage speed decreases with axial load whereas it increases for Harris' one. This phenomena is due to drag effect that decelerates cage speed under low axial load. Indeed, as illustrated on Figure 2.32, when drag coefficient C d is increased in BB20, cage slows down more and more under low axial loads. Same behaviour is observed on Figure 2.33 when friction coefficient µ is decreased. Then, Harris differences observed in Figure 2.31 are also due to the fact that friction coefficient is prescribed differently. 

Quasi-static model with balls and rings

Experience measuring pitch angle β j

After comparing BB20 with Harris and Gupta's studies, many questions remain outstanding. Comparing results between different models is a tricky thing since each model has its own hypothesis that significantly influence resulting behaviour. Another way of validating BB20 is to compare with experiments. Many parameters calculated in quasi-static (spinning, rolling, ball rotations, normal loads or contact angles) are very difficult to be measured experimentally. However, in 1990, Kawamura [START_REF] Kawamura | Motion of Unbalanced Balls in High-Speed Angular Contact Ball Bearings[END_REF] succeeded to measure 3D ball motion by magnetizing an unbalanced ball drilled with a hole and by measuring 3D voltage with the use of Hall elements. Cage and shaft speeds were also recorded. For axial load of 392N or 588N, for ACBB defined in Table 2.12, shaft speed was varied between 400 and 12 000 rpm. Data were recorded for ball A which has an unbalance eccentricity of 3µm and for ball B which has 0.3µm unbalance eccentricity. Results obtained by Kawamura and BB20 are reported on Figures 2.34 and 2.35. For this bearing, Kawamura showed that friction coefficient µ was comprised between 0.006 and 0.02. That is why BB20 is run in this range. Concerning pitch angle plotted on Figure 2.34, for F X = 392N, experimental results are very close to BB20 with µ = 0.006. For F X = 588N, they are very close to BB20 with µ = 0.02. At low speed, results from ball B are closer to BB20 than results from ball A. This is logical because unbalance is not considered in BB20, then ball B which has the less unbalance eccentricity is the closest one to BB20. And, Kawamura has shown that unbalance eccentricity affected regularity and stability of ball motion at low speeds.
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On Figure 2.35, only ball A is reported because comparable results were measured experimentally with ball B. This shows that unbalance does not influence ball rotation to cage rotation speeds ratio. Results between BB20 and experiments are very close especially under high friction coefficient. If curve shapes are similar, a small vertical shift is observed. This is probably due to the fact that cage is not considered yet, then its rotational speed ω c is underestimated. In any case, BB20 and experimental results for β and ω R are comparable which makes us think that BB20 correctly models ball self-rotations under pure axial load.

To conclude, ACBB with 1, 2, 3 or 4 contact points are modelled by solving balls and rings quasi-static equilibrium. Lubrication, inertia, external forces on inner ring, ballrace normal and friction forces are considered. Compared with models in the literature, important feature of BB20 is the possibility to get more than 2 ball-race contact points and the consideration of yaw angle β ′j due to gyroscopic momentum M j GY . Another specificity is that no raceway control hypothesis is done to compute kinematics. Then, nothing is neglected and all balls degrees of freedom are calculated by solving bearing equilibrium.

Ball-race interactions are accurately modelled by considering spinning, rolling, macrosliding at contact and by integrating shear stress on each point of surface ellipse. All these elements significantly complicate kinematic behaviour and numerical resolution, but improve model accuracy. It was also shown that modifications brought in this version reduce constraints, improves numerical continuity, robustness, computational time and allows to work under a larger panel of operating conditions.

Results obtained under pure axial load or moderated radial loads, are in agreement with physics expected. When radial load becomes larger than axial load, model limitations are reached. Then, cage and dynamical effects should be considered to compute balls rotations without making important hypothesis. Results validation by comparison with literature is complicated since each model has its own considerations. However, comparable behaviours were observed and makes us believe on model correctness even if few questions remain and should be kept in mind while pursuing development. Validation by experiments is also limited by difficulties to measure kinematic parameters of interest. However, satisfying results were obtained while comparing BB20 with power loss measured by Safran, or with pitch angle, ball and cage rotations experienced by Kawamura. Cage can be considered as a rigid or flexible body in three-dimensions. In any case, it has six degrees of freedom as represented in Figure 3.1. Indeed, cage center G c translates of x c , y c , z c and rotates of θ cx , θ cy , θ cz relative to bearing center G. R c is the coordinate system related to these motions. As mentioned previously, cage also rotates around bearing axis
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x G at ω c speed. In quasi-static and quasi-dynamic, this speed is supposed to be the average of balls precessions.

R C = {G C , x C , y C , z C } (3.1)
δ c = GG c =      x c y c z c      R G (3.2)
θ cx = (y G , y c ) = (z G , z c ) (3.3) θ cy = (z G , z c ) = (x G , x c ) (3.4) θ cz = (x G , x c ) = (y G , y c ) (3.5 
) Initially, when cage is centered on the bearing and has not moved yet, each pocket is located in G j p and defined locally by coordinate system R j p . Since cage rotational speed is supposed to be the average of balls precessions, this coordinate system is equivalent to ball position coordinate system R j b1 .

ω c = N j=1 ω j m N (3.6) x G y G z G G δ G C θ cy θ cz θ cx y c θ cz x c θ cy θ cx z c
R j p ≡ R j b1 = G j p , x G , y j p , z j p (3.7)

ψ j = ψ c + 2π N (j -1) = (y G , y j p ) = (z G , z j p ) (3.8) 1.1.3 Pocket removed position R j p ′
Like cage, pockets have six degrees of freedom as schematized in Figure 3.2. In global coordinate system, pocket centers P j translates of δ j px , δ j py , δ j pz and rotates of θ j px , θ j py , θ j pz relative to pocket initial position G j p . R j p ′ is the coordinate system that defines this removed position.

R j p ′ = P j , x j p ′ , y j p ′ , z j p ′ (3.9) G j p P j = δ j p =      δ j px δ j py δ j pz      R G (3.10) θ j px = (y j p , y j p ′ ) = (z j p , z j p ′ ) (3.11) θ j py = (z j p , z j p ′ ) = (x j p , x j p ′ ) (3.12) θ j pz = (x j p , x j p ′ ) = (y j p , y j p ′ ) (3.13)

Bridge position R j br

Each bridge is defined at its center G j br , by coordinate system R j br . As illustrated in Figure 3.3, this position corresponds to initial pocket position with an additional rotation ofπ N .

R j br ≡ R j b1 = G j br , x G , y j br , z j br (3.14)

ψ j br = ψ c + 2π N (j -1.5) = (y G , y j br ) = (z G , z j br ) (3.15)
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Relative displacements 1.2.1 Balls positions

In quasi-static, ball position was defined by relation (2.12). However, ball orthoradial displacement δ j bz was neglected, which is no longer valid with cage contribution. Indeed, as represented on Figure 3.4, pocket center P j and ball center B j are not combined anymore and ball-to-pocket interactions can occur. Nevertheless, determination of δ j bz is tricky since ball motion is already entirely defined. Adding another unknown would overstress the system. The solution found to estimate these variables is to consider ball number 1 as reference with δ 1 bz set to 0. Then, we suppose that following balls have a displacement δ j bz equal to previous ball displacement δ j-1 bz with an additional increment ∆ j bz . This increment, defined by relation (3.16), corresponds to ball acceleration between two positions. To compute it, we assume that time step ∆τ between two balls is the average time travelled by cage. With such definition, balls accelerations ωj m are approximated as a function of positions and speeds instead of real time. That is why we speak about quasi-dynamics of cage. Note that a coefficient λ c is introduced in this expression. It is normally equal to 1 but during numerical procedure, it will be used as a relaxation coefficient comprised between 10 -6 and 1.

∆ j bz = ω j m -ω j-1 m 2 d m 2 ∆τ with ∆τ = 2π N ω c (3.16) δ j bz =      0 if j = 1 δ j-1 bz + λ c ω j m -ω j-1 m ω c π N d m 2 otherwise (3.17)
Now that balls orthoradial displacements are known from expression (3.17), coordinates of ball mass center are updated with relation (3.18) and balls displacements relative to initial pockets centers are assessed by relation (3.19). 

GB j =      x j G y j G z j G      R G =      δ j bx dm 2 + δ j by δ j bz      R j b1 =      go 2 λ j o -GE o2 sin α j o2 ( dm 2 -(f o -0.5)D cos α f + GE o2 cos α j o2 ) cos ψ j -δ j bz sin ψ j ( dm 2 -(f o -0.5)D cos α f + GE o2 cos α j o2 ) sin ψ j + δ j bz cos ψ j      R G (3.18) G j p B j = δ j b =      δ j bx δ j by δ j bz      R G =      x j G y j G -dm 2 cos ψ j z j G -dm 2 sin ψ j      R G (3.19)

Pockets motions

When cage is considered as rigid, pocket displacements δ j p and rotations θ j p are only due to cage rigid motion. That is why, δ c and θ c are unknowns of the problem and δ j p , θ j p are deduced from relations (3.20) and (3.21).

G j p P j =      δ j px δ j py δ j pz      R G =      x c -R c cos ψ j θ cz + R c sin ψ j θ cy y c -R c sin ψ j θ cx z c + R c cos ψ j θ cx      R G (3.20)      θ j px θ j py θ j pz      R G =      θ cx θ cy θ cz      R G (3.21)
On the contrary, as illustrated in Figure 3.5, when cage is considered as flexible, pocket motions δ j p , θ j p , are the contribution of cage rigid body modes δ j c , θ j c and of elastic deformations δ j el , θ j el . That is why, δ j p and θ j p cannot be expressed directly and becomes unknowns of elastic problem instead of δ c , θ c . 
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Ball-to-pocket geometric approach

From ball and pocket respective displacements, we can compute ball-to pocket displacements δ j pb by relation (3.22). We also define C j b the closer point on ball that approaches the point on pocket C j p . We suppose that ball-to-pocket interaction occurs in (P j , x j p , z j p ) plan. Then, we assume that film thickness h j f , geometric approach ∆pb j and normal contact force do not have component along y j p . Consequently, geometric approach ∆ j pb is the projection of δ j pb in (P j , x j p , z j p ) plan, as expressed in (3.23). As well, we define direction of ball-to-pocket approach by ϕ j angle such as reported in Figure 3.6 and in expression (3.24). We will also suppose for the future, that ball-to-pocket clearance is a geometric constant, that is to say that ball and pocket macroscopic deformations are neglected even when cage is considered as flexible.

P B j = δ j pb =      P B j x P B j y P B j z      R G =      δ j bx -δ j px δ j by -δ j py δ j bz -δ j pz      R G (3.22) ∆ j pb = (P B j x ) 2 + (-P B j y sin ψ j + P B j z cos ψ j ) 2 (3.23)            cos ϕ j = P B j x ∆ j pb sin ϕ j = -P B j y sin ψ j +P B j z cos ψ j ∆ j pb (3.24)
2 Ball-to-pocket interactions Balls have complex motions with three self-rotations. That is why, ball-to-pocket interactions involve two phenomenon:

• Hydrodynamic (HD) or elastohydrodynamic (EHD) contact due to rotation ω j yp = ω j R sin β j in (G j p , y j p , z j p ) plan.

• Short journal bearing effect due to rotation ω j xp = ω j R cos β j cos β ′j in (G j p , z j p , x j p ) plan.

Ball-to-pocket interactions 

Interactions in (G j

p , y j p , z j p ) plan

Barrel-plan HD contact

Ball-to-pocket hydrodynamic interaction in (G j p , y j p , z j p ) plan is equivalent to a barrel-plan contact as schematized in Figure 3.7. This theory, developed in Nelias' thesis [START_REF] Nélias | Etude du glissement dans les roulements à billes grande vitesse de turbomachines[END_REF], gives HD normal force (3.25) and friction force (3.26) expressions of a fully lubricated contact between a barrel and a plan. To assess these forces, the relative velocity U (3.27) projected in (G j p , y j p , z j p ) plan and equivalent radius R x , R y (3.28) are computed. Barrel-plan forces also depends on lubricant dynamic viscosity µ, on half length of the contact l, here half cage thickness h c and above all on film thickness h 0 at the given contact. 3. Quasi-dynamic model with cage

F = 2µU R x R y 3 -3 1 1 L 2 + η 2 arctan 1 1 L 2 + η 2 dη with L = l 2R y h 0 (3.26) U = D 2 ω j R cos β j cos β ′j (3.27)    R x = R p R b R p -R b R y = R b with R b = D 2 and R p = c p + D 2 (3.28)

Dry contact

When two bodies get closer and film thickness gets smaller, contact interaction changes from hydrodynamic to elastohydrodynamic, then bodies deform with an elastic deformation δ j H . In such case, barrel-plan HD theory does not apply and normal contact force is characterised by Hertzian theory (3.29) instead.

W j H = K H (δ j H ) 3 2 
(3.29)

As well, by curve-fitting numerical solutions from 2D contact under EHD or PE (piezoviscous elastic) lubrication regimes, Hamrock and Dowson [START_REF] Hamrock | Ball Bearing Lubrication (The Elastohydrodynamics of Elliptical Contacts)[END_REF] developed formula (3.30).

It links film thickness with contact parameters such as load, speed or materials properties written in (3.31). More details about rheological parameters defined in these relations and in all BB20 interactions are presented in Appendix C.

H HD = 1.69 U ′0.67 G ′0.53 W ′-0.067 (1 -0.61e -0.73 k ′ )R y with k ′ = 1.03 Rx Ry 0.64 (3.30)                       
Young's equivalent modulus 1

E ′ = 1 2 ( 1-ν 2 b E b + 1-ν 2 c E c ) Dimensionless velocity U ′ = µU E ′ R y Dimensionless force W ′ = W E ′ R 2 y
Dimensionless elasticity modulus :

G ′ = α * E ′ (3.31)
Besides, when bodies deform elastically and when ball slips on pocket at relative speed U, shearing of solid fluid film occurs. Resulting shear force F j τ is calculated by considering non-Newtonian behaviour and by integrating shear stress limit τ L on contact ellipse. This stress τ L is defined by an isothermal, Maxwell-type, traction model with a Ree-Eyring visco-elastic formulation. Corresponding expression is reported in (3.32), where a, c are ellipse semi-axes and P is the average contact pressure. Lubricant parameters τ L0 , α τ , β τ , T 0 come from Nelias' experimental results [START_REF] Nélias | Contribution à l'étude des roulements[END_REF] obtained for Mobil Jet-oil II with MIL-L-23699 specification.

F j τ = ellipse τ L dS = π a c τ L (T, P ) with τ L (T, P ) = τ L0 e (α τ P +β τ ( 1 T -1 T 0
)) (3.32) Ball-to-pocket interactions

Contact forces continuity

Figure 3.8 : Contact at each side As schematized in Figure 3.8, ball-to-pocket interaction in (G j p , y j p , z j p ) plan takes place at two locations:

• at front side where ball gets closer to pocket.

• at rear side which is opposite and where ball moves away from pocket.

At rear side, film thickness h j r arises from geometric relation (3.33), normal force W j r and friction force F j r are deduced from barrel-plan relations (3.25) and (3.26).

h j r = c p 2 + ∆ j pb (3.33)
At front side, computation of normal and friction forces is tedious. Depending on ball-to-pocket relative positions, different contact model applies and transition from one model to another one results in important numerical discontinuities.

Indeed, as represented on the right part of graphics 3.9, when film thickness (or positive gap: h j f = cp 2 -∆ j pb ) decreases to get closer to zero, barrel-plan normal load W j BP tends to infinity. This is due to the fact that W j BP is inversely proportional to the root of film thickness. Such exponential increase generates discontinuities when film thickness changes between two iterations. This also confirms that barrel-plan HD theory does not apply below a minimal film thickness.

On the left part of graphics 3.9, Hertzian load W j H is plotted by supposing that elastic deformation is equal to ball-to-pocket penetration: δ j H = -cp 2 + ∆ j pb . Then, it can be observed that normal load increases rapidly with penetration. This is due to the fact that W j H is proportional to δ j H at power 1.5. Note that physically, ball never penetrates pocket, a film is always present between bodies and gap cannot be negative. However, such case can be numerically encountered before reaching a converged state.
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Analysis of these two curves in zero, also shows a discontinuity of normal load between barrel-plan and Hertzian model when changing from HD to EHD contact. Many procedures have been tested to find a solution to this problem. Optimal method selected is to define h j tr , the film thickness transition from HD to EHD regime. This transition occurs when Moes-Venner parameter M ′ , defined by relation (3.34), becomes greater than 10. Then, h j tr is calculated by Hamrock Dowson film thickness formula (3.30) with W ′ fixed such that M ′ = 10.

M ′ = W ′ U ′-0.75 (3.34) 
Is this way, we consider that barrel-plan HD theory applies when gap is greater than

h j tr .
For lower values, Hertzian theory is applied with a δ j H value translated of h j tr . This translation does not introduce important error on load computation since W j H is particularly small when δ j H = h j tr . This equivalent model is represented by the grey plot on Figure 3.9. With such model, transition between HD and EHD regimes is smooth and normal load does not take infinite values when film thickness tends to zero. Consequently, depending on ball-to-pocket positions and pocket clearance c p , the following procedure is applied to compute contact forces at the front side:

• Hydrodynamic contact prevails if cp 2 -∆ j pb ≥ h j tr : Then, film thickness h j f is calculated from geometric relation (3.35), HD normal force W j BP and friction force F j f are deduced from barrel-plan relations (3.25) and (3.26). From the knowledge of film thickness h j f , Hamrock-Dowson formula (3.30) is used in the reversed direction to compute dry normal load W j H . Then, Hertzian deformation δ j H is calculated by applying relation (3.29) in the reversed direction. From dry contact parameters, shear force F j τ is obtained by relation (3.32).

h j f = c p 2 -∆ j pb (3.35)
Ball-to-pocket interactions 

δ j H = | c p 2 -∆ j pb -h j tr | (3.36) 
Finally, for any lubrication regime, from HD and EHD contributions, equivalent normal load at front side is estimated by relation (3.37). Similarly, friction force at front side is expressed in (3.38) and shear force in (3.39).

W j f = W j BP h j f h j f + δ j H + W j H δ j H h j f + δ j H (3.37) F j f = F j f h j f h j f + δ j H (3.38) F j τ = F j τ δ j H h j f + δ j H (3.39)

Forces summary

To summarize, ball-to-pocket forces acting in (G j p , y j p , z j p ) plan are normal and friction forces at front and rear side (W j f , W j r , F j f , F j r ) and shear forces F j τ at front side. They act such that friction and shear are opposed to sliding speed U and that normal forces are directed toward the body of interest. Then, contact forces and momentums of pocket-onball at ball center B j , in ball coordinate system R j b1 , are expressed by:

F j bp/b =      (W j f -W j r ) cos ϕ j -sin β j cos β ′j (F j r -F j f -F j τ ) (F j r -F j f -F j τ ) cos β j (W j f -W j r ) sin ϕ j + sin β j sin β ′j (F j r -F j f -F j τ )      R j b1 (3.40) M j bp/b (B j ) =      D 2 (F j r + F j f + F j τ ) sin ϕ j cos β j D 2 (sin ϕ j cos β ′j + cos ϕ j sin β ′j )(F j r + F j f + F j τ ) sin β j -D 2 (F j r + F j f + F j τ ) cos ϕ j cos β j      R j b1 (3.41)
Forces and momentums of ball-on-pocket are opposed to pocket-on-ball ones. They are projected in global coordinate system R G because equilibrium equations on pocket or cage will be defined in this system. Ball-on-pocket momentums are also transposed at pocket center P j .

F j bp/p = -F j bp/b (3.42)
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M j bp/p (P j ) = -M j bp/b (B j ) + P B j ∧ F j bp/p (3.43)
Then, contact forces and momentums of ball-on-pocket at pocket center P j , in global coordinate system R G , are expressed by:

F j bp/p =      -F j bp/bx -F j bp/by cos ψ j + F j bp/bz sin ψ j -F j bp/by sin ψ j -F j bp/bz cos ψ j      R G (3.44) M j bp/p (P j ) =      -M j bp/bx + P B j y F j bp/pz -P B j z F j bp/py -M j bp/by cos ψ j + M j bp/bz sin ψ j + P B j z F j bp/px -P B j x F j bp/pz -M j bp/by sin ψ j -M j bp/bz cos ψ j + P B j x F j bp/py -P B j y F j bp/px      R G (3.45)
2.2 Interaction in (G j p , z j p , x j p ) plan

Considering forces acting in (G j p , z j p , x j p ) plan is essential to gain in accuracy and to understand all mechanisms involved in cage behaviour. To model these interactions, we assume that corresponding contact is lightly loaded, that fluid is Newtonian and that bodies deformations are negligible. We also suppose that ball and pocket are co-axial and that the ratio cage thickness h c to ball diameter D is less than 1/6. Then, this interaction can be assimilated to an infinitely short hydrodynamic journal bearing. Note that in fact the ratio cage thickness to ball diameter h c /D is between 1/3 and 1/2. That is why an improvement of this model could be considered a posteriori. 

Short journal bearing modeling for HD contact

When film thickness h j f is greater than or equal to h j tr , lubrication regime is hydrodynamic and short journal bearing (SJB) theory applies directly. In this problem, we consider ball as a shaft of radius R 1 = R b and pocket as a pad of radius R 2 = R p . Ball rotates around y j p at speed ω 1 = ω j yp = ω j R sin β j whereas pocket does not rotate around y j p : ω 2 = 0.

Ball-to-pocket interactions

Contact width is equal to cage thickness h c and eccentricity is equal to geometric approach ∆ j pb . We also define in (3.46) eccentricity ratio ϵ as the ratio between eccentricity and radial clearance.

ϵ = 2∆ j pb c p (3.46)
Then, application of SJB theory gives attitude angle ϕ j sb , hydrodynamic load W j sb , friction torque on ball C j b and friction torque on pocket C j p as expressed in (3.47), (3.48), (3.49), (3.50).

tan ϕ j sb = π 4 √ 1 -ϵ 2 ϵ sign(ω j R sin β j ) (3.47) W j sb = µ |ω j R sin β j | R p h 3 c c 2 p ϵ 1 -ϵ 2 2 16ϵ 2 + π 2 (1 -ϵ 2 ) (3.48) C j b = - µ R 3 p ω j R sin β j h c c p 2π(2 + ϵ) (1 + ϵ) √ 1 -ϵ 2 (3.49) C j p = -C j b + ∆ j pb W j sb sin ϕ j sb (3.50)
These contact parameters are schematized in Figure 3.10. Note that, because of fluid rotation ω j yp , hydrodynamic load W j sb is directed by attitude angle ϕ j sb . This direction is different than ϕ j that orient contact approach with normal load W j f such as illustrated in Figure 3.7. Indeed, according to SJB theory, attitude angle ϕ j sb is defined by relation (3.51).

ϕ j sb = (W j sb , W j f ) (3.51)

Extension of short journal bearing theory to EHD contact

When film thickness h j f is less than h j tr , lubrication regime is elastohydrodynamic, SJB theory does not apply anymore. Indeed, when film thickness reduces, ∆ j pb gets closer to half pocket clearance cp 2 , relative eccentricity ϵ tends to 1, (1 -ϵ 2 ) tends to zero, load W j sb and torques C j b , C j p tend to infinity. Nevertheless, a detailed analysis of SJB theory enables to understand that component cp 2 (1 -ϵ) characterises shaft-pad minimum film thickness. Then, SJB theory can be extended to EHD contact by replacing cp 2 (1 -ϵ) by h j f and ϵ by 1. Is this way, relations (3.52) to (3.56) are obtained. ϵ = 1 (3.52)

ϕ j sb = 0 (3.53) W j sb = µ |ω j R sin β j | R p h 3 c h j f 2 (3.54) C j b = - 3π 2 µ R 3 p ω j R sin β j h c 2c p h j f (3.55) C j p = -C j b (3.56)
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Forces summary

For both HD and EHD regimes, when fluid flow changes from laminar to turbulent, that is to say when Reynolds number R e gets greater than 3 000, a correction on friction torques C j b and C j p is applied such that:

C j turb = C j lam (1 + 0.0012R 0.94 e ) with R e = ρ |ω j R sin β j | D c p 4µ (3.57) 
Besides, from attitude angle definition (3.51), relation (3.58) can be deducted and load W j sb can be projected in ball coordinate system R j b1 . However, to avoid the use of arctangente function that can introduce numerical errors, explicit expression of ϕ j is not calculated. Instead, sin ϕ j and cos ϕ j expressed in (3.24), are combined with trigonometric relations to project W j sb in R j b1 system.

(x j p , W j sb ) = ϕ j -ϕ j sb + π (3.58)
Is this way, SJB forces and momentums of pocket-on-ball, at ball center B j , in ball coordinate system R j b1 , are expressed by:

F j sb/b =      -W j sb (-cos ϕ j cos ϕ j sb -sin ϕ j sin ϕ j sb ) 0 -W j sb (-sin ϕ j cos ϕ j sb + cos ϕ j sin ϕ j sb )      R j b1 (3.59) M j sb/b (B j ) =      0 C j b 0      R j b1 (3.60)
SJB forces and momentums of ball-on-pocket, at pocket center P j , in global coordinate system R G , are expressed by:

F j sb/p =      -F j sb/bx F j sb/bz sin ψ j -F j sb/bz cos ψ j      R G (3.61) M j bp/p (P j ) =      0 C j p cos ψ j C j p sin ψ j      R G (3.62)
Cage-ring interactions

Total interactions

To conclude on ball-to-pocket total interactions, resulting forces and momentums are the sum of contributions in (G j p , y j p , z j p ) and (G j p , z j p , x j p ) plans as expressed in relations (3.63) to (3.66).

F j p/b = F j bp/b + F j sb/b (3.63) M j p/b (B j ) = M j bp/b (B j ) + M j sb/b (B j ) (3.64) F j b/p = F j bp/p + F j sb/p (3.65) M j b/p (P j ) = M j bp/p (P j ) + M j sb/p (P j ) (3.66)
Moreover, since rigid cage equilibrium will be defined at cage center G c , ball-to-pocket momentum M j b/p (P j ) is transposed in this point:

M j b/c (G c ) = M j b/p (P j ) + G c P j ∧ F j b/p (3.67) M j b/c (G c ) =      M j b/px (P j ) + R c cos ψ j F j b/pz -R c sin ψ j F j b/py M j b/py (P j ) + R c sin ψ j F j b/px M j b/pz (P j ) -R c cos ψ j F j b/px      R G (3.68)
3 Cage-ring interactions

General model

If cage-inner race clearance c IR is less than cage-outer race clearance c OR , cage is guided by inner ring and hydrodynamic interaction occurs between these solids. Otherwise, cage is guided by outer ring and hydrodynamic interaction occurs with this ring. In any case, guiding clearance is defined by relation (3.69) and cage interactions with left and right races are considered independently. Is this way, different shoulder diameters can be considered at each side of a given ring: de il , de ir for left, right inner race and de ol , de or for left, right outer race. This distinction of upstream and downstream races is also an alternative to model a dissymmetry in cage temperature.

c G = min(c IR , c OR ) with    c IR = D ci -0.5(de il + de ir ) c OR = 0.5(de ol + de or ) -D co (3.69)
To model these interactions, we assume that contact between cage and guiding race is lightly loaded, that fluid is Newtonian and that bodies deformations are negligible. We also suppose that cage and guiding race are co-axial and that the ratio race width L km to shoulder diameter de km is less than 1/6. Then, this interaction can be assimilated to an infinitely short hydrodynamic journal bearing in (G, y G , z G ) plan. With such hypothesis ring misalignment is not considered. Its implementation should be done in future versions. When c IR ≤ c OR , cage-inner races interactions occur, then cage-outer races forces F c/OR , M c/OR are set to zero. To apply SJB theory to cage and inner races, we consider that left or right inner race is shaft (solid 1) of radius R 1 = 0.5de im , rotational speed ω 1 = Ω i and that cage is pad (solid 2) of radius R 2 = 0.5D ci , rotational speed ω 2 = ω c . From cage and inner ring coordinates in (G, y G , z G ) plan, eccentricity is defined by relation (3.70).
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e = O 1m O 2m = (δ y -y c ) 2 + (δ z -z c ) 2 (3.70) 
On the contrary, when c OR > c IR , cage-outer races interactions occur, then cage-inner races forces F c/IR , M c/IR are set to zero. To apply SJB theory to cage and outer races, we consider that left or right outer race is pad (solid 2) of radius R 2 = 0.5de om , rotational speed ω 2 = Ω o and that cage is shaft (solid 1) of radius R 1 = 0.5D co , rotational speed ω 1 = ω c . Since outer ring is supposed to be centered on the bearing in G, from cage coordinates in (G, y G , z G ) plan, eccentricity is defined by relation (3.71).

e = O 1m O 2m = y 2 c + z 2 c (3.71)
For both interactions, relative eccentricity is defined in (3.72) as the ratio between eccentricity and half guiding clearance.

ϵ = 2e c G (3.72)

Cage-ring interactions

From bearing geometry, contact widths L km at left and right side of both rings are calculated by relation (3.73). In this expression, k refers to inner or outer race and m to left or right side. w Bk is ring width, f k is race conformity and C km,x G , C km,y j b1 are raceway curvature center positions along x G and y j b1 .

L km = 0.5w Bk + λC km,x G -(f k D) 2 -(C km,y j b1 -0.5de km ) 2 with λ = +/ -1 for m = l/r (3.73)
This theory applies to model both rigid and elastic cages. However, for rigid cage, quasi-dynamic resolution consists in solving cage equilibrium at cage center G c . On the contrary, for flexible cage, quasi-dynamic resolution consists in solving pocket equilibrium at pocket center G j p . That is why computation of cage-ring interactions has to be done for whole cage on one hand, and for each pocket on the other hand.

Computation for whole cage

For rigid cage resolution, SJB theory is applied directly to the whole cage to obtain at each race k, each side m, attitude angle ϕ km , hydrodynamic load W km , friction torque on shaft C 1km and friction torque on pad C 2km as expressed in (3.74), (3.75), (3.76), (3.77). Note also that cage and inner ring rotation speeds are high, then fluid flow is turbulent and correction (3.78) is applied on torque computation.

tan ϕ km = π 4 √ 1 -ϵ 2 ϵ sign(ω 1 -ω 2 ) (3.74) 
W km = µ |ω 1 R 1 -ω 2 R 2 | L 3 km c G ϵ (1 -ϵ 2 ) 2 16ϵ 2 + π 2 (1 -ϵ 2 ) (3.75) C 1km = - µ R 3 2 (ω 1 -ω 2 ) c G 2π L km (2 + ϵ) (1 + ϵ) √ 1 -ϵ 2 (3.76) 
C 2km = -C 1km + e W km sin ϕ km (3.77) C j turb = C j lam (1 + 0.0012R 0.94 e ) with R e = ρ |ω 1 R 1 -ω 2 R 2 | c G 2µ (3.78) 
To project normal force W km in global coordinate system R G , angle ϕ Gk is defined between z G and eccentricity direction O 1m O 2m as schematized in Figure 3.11. This angle is calculated by relation (3.79) for cage-inner races interactions and by relation (3.80) for cage-outer races.

ϕ Gi = (z G ; O 1m O 2m ) such that                  if z c -δ z ̸ = 0 : tan ϕ Gi = y c -δ y z c -δ z if z c -δ z = 0 and          if y c -δ y = 0 : ϕ Gi = 0 if y c -δ y < 0 : ϕ Gi = π 2 if y c -δ y > 0 : ϕ Gi = -π 2 (3.79)
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ϕ Go = (z G ; O 1m O 2m ) such that                if z c ̸ = 0 : tan ϕ Go = y c z c if z c = 0 and          if y c = 0 : ϕ Go = 0 if y c > 0 : ϕ Go = π 2 if y c < 0 : ϕ Go = -π 2 (3.80)
Figure 3.12 : Cage-inner races interactions Finally, to compute cage-race forces we suppose that each force apply at the middle width of the race in N km . We also assume that torques apply in O 1m or O 2m such as illustrated in Figure 3.12.

Consequently, forces and momentums of cage on inner race, at bearing center G, are expressed by:

F c/IR = m=l,r      0 W im sin(ϕ im -ϕ Gi ) W im cos(ϕ im -ϕ Gi )      R G (3.81) M j c/IR (G) = m=l,r M j c/IRm (O 1m ) + GN im ∧ F c/IRm (3.82) M c/IR (G) = m=l,r      C 1im -W im cos(ϕ im -ϕ Gi ) δ x + 0.5λ(w IR -L im ) W im sin(ϕ im -ϕ Gi ) δ x + 0.5λ(w IR -L im )      R G with λ = -/ + 1 for m = l/r (3.83)
Forces and momentums of inner race on cage at cage center G c are expressed by:

F IR/c = -F c/IR (3.84)
Cage-ring interactions

M j IR/c (G c ) = m=l,r M j IR/cm (O 2m ) + G c N im ∧ F IR/cm (3.85) M IR/c (G c ) = m=l,r      C 2im W im cos(ϕ im -ϕ Gi ) δ x + 0.5λ(w IR -L im ) -W im sin(ϕ im -ϕ Gi ) δ x + 0.5λ(w IR -L im )      R G with λ = -/ + 1 for m = l/r (3.86)
Forces and momentums of outer race on cage at cage center G c are expressed by:

F OR/c = m=l,r      0 W om sin(ϕ om -ϕ Go ) W om cos(ϕ om -ϕ Go )      R G (3.87) M j OR/c (G c ) = m=l,r M j OR/cm (O 1m ) + G c N om ∧ F OR/cm (3.88) M OR/c (G c ) = m=l,r      C 1om -W om cos(ϕ om -ϕ Go ) 0.5λ(w OR -L om ) W om sin(ϕ om -ϕ Go ) 0.5λ(w OR -L om )      R G with λ = -/ + 1 for m = l/r
(3.89) Note that forces and momentums of cage on outer race are not calculated because no equilibrium is made on outer race.

Computation for each pocket

Computation of cage-race forces for flexible cage is more complicated since cage is segmented in N elements. Forces of each race section on each pocket must be calculated. As for that, SJB theory is revised from the beginning. Indeed, in general theory, normal load and friction torque are calculated by integrating respectively, hydrodynamic pressure and shear stress, on the whole bearing. Now, to compute normal load W j km and friction torque C j km on each pocket j, hydrodynamic pressure and shear stress are only integrated on each element. Corresponding integration interval is defined in (3.90) and taken as bridge angular position on both sides of a pocket.

a j ; b j = ψ j br ; ψ j+1 br = 2π N (j -1.5) + ψ c ; 2π N (j -0.5) + ψ c (3.90)
Pockets are separated into two categories depending on their orbital position:

• Pockets in active zone where ϕ Gk + π 2 ≤ ψ j ≤ ϕ Gk + 3π 2 , hydrodynamic pressure is positive and normal load is calculated by pressure integration on [a j ; b j ].

• Pockets in passive zone where ϕ Gk + 3π 2 ≤ ψ j ≤ ϕ Gk + 5π 2 , pressure and normal load are supposed to be equal to zero.

Quasi-dynamic model with cage

Each zone also presents a different shear stress. Then, after computation, different normal load W j km and friction torque C j km are obtained for pockets located in each zone. Corresponding expressions are summarised by relations (3.91) to (3.95). Note that torque correction (3.78) is again applied on C j km since fluid flow is turbulent.

W j km =    (W j tkm ) 2 + (W j rkm ) 2 if ψ j ∈ active zone 0 if ψ j ∈ passive zone (3.91) W j tkm = µ |ω 1 R 1 -ω 2 R 2 | L 3 km c 2 G 2ϵ (1 -ϵ 2 ) 2 (cos ψ j b ) 2 -(cos ψ j a ) 2 2 -ϵ(cos ψ j b -cos ψ j a ) (3.92) W j rkm = µ |ω 1 R 1 -ω 2 R 2 | L 3 km c 2 G ϵ (1 -ϵ 2 ) 1.5 ψ j b -ψ j a - sin(2ψ j b ) -sin(2ψ j a ) 2 (3.93) C j km =          µ R 3 2 (ω 1 -ω 2 ) c G 2L km √ 1-ϵ 2 ψ j b -ψ j a if j ∈ active zone µ R 3 2 (ω 1 -ω 2 ) c G 2L km (1+ϵ) √ 1-ϵ 2 ψ j b -ψ j a -ϵ(sin ψ j b -sin ψ j a ) if j ∈ passive zone (3.94) 
                   cos ψ j c = ϵ+cos c 1+ϵ cos c sin ψ j c = √ 1-ϵ 2 sin c 1+ϵ cos c sin(2ψ j c ) = √ 1-ϵ 2 sin(2c) 1+ϵ cos(2c)
with c = a j , b Finally, to compute race-to-pocket forces, we suppose that each force apply at the middle length of a pocket in N j m such as schematized in Figure 3.13. Normal load W j km is directed along y j p and friction torque C j km around x G . Consequently, forces and momentums of inner race on pocket j, at pocket center G j p , are expressed by:

F j IR/p = m=l,r      0 W j im cos ψ j W j im sin ψ j      R G (3.96) M j IR/p (G j p ) = m=l,r M j IR/pm (G j p ) + G j p N j m ∧ F IR/pm (3.97) M j IR/p (G j p ) = m=l,r      C j im -0.25λW j im sin ψ j (w c + D p ) 0.25λW j im cos ψ j (w c + D p )      R G with λ = -/ + 1 for m = l/r (3.98)
Similarly, forces and momentums of outer race on pocket j, at pocket center G j p , are expressed by:

F j OR/p = m=l,r      0 -W j om cos ψ j -W j om sin ψ j      R G (3.99) M j OR/p (G j p ) = m=l,r M j OR/pm (G j p ) + G j p N j m ∧ F OR/pm (3.100) M j OR/p (G j p ) = m=l,r      -C j om 0.25λW j om sin ψ j (w c + D p ) -0.25λW j om cos ψ j (w c + D p )      R G with λ = +/ -1 for m = l/r (3.101)

Rigid cage resolution

Quasi-dynamic (QD) resolution of ACBB with rigid cage is straightforward and consists in adding cage-race forces and pocket-to-ball forces in previous quasi-static (QS) equations on inner ring and balls. Six equations on cage are also added to solve its equilibrium.

Inner Ring equilibrium

In QD, sum of forces and momentums that apply on the inner ring, at bearing center G, in x G , y G and z G directions, includes QS contribution and cage-to-inner race interactions such that: 

F QD/IRx = F QS/IRx + F c/IRx = 0 (3.
M QD/IRz = M QS/IRz + M c/IRz = 0 (3.106)
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Balls equilibrium

In QD, sum of forces and momentums that apply on each ball j at their center B j , in

x G , y j b1 and z j b1 directions, includes QS contribution and pocket-to-ball interactions such that:

F j QD/bx = F j QS/bx + F j p/bx = 0 (3.107)
F j QD/by = F j QS/by + F j p/by = 0 (3.108)

F j QD/bz = F j QS/bz + F j p/bz = 0 (3.109) M j QD/bx = M j QS/bx + M j p/bx = 0 (3.110) M j QD/by = M j QS/by + M j p/by = 0 (3.111) M j QD/bz = M j QS/bz + M j p/bz = 0 (3.112)
In R2 resolution with cage, when balls (almost) detach from inner race, balls equations are not modified anymore. Then, no convergence is forced on β j , β ′j , ω j m or ω j R .

Cage equilibrium

In QD, sum of forces and momentums on cage, that apply at its center G c , in x G , y G and z G directions, includes cage-ring forces and ball-to-pocket forces coming from N balls. These equilibrium equations are expressed by: 

F QD/cx = F IR/cx + F OR/cx + N j=1
F QD/cz = F IR/cz + F OR/cz + N j=1 F j b/pz = 0 (3.115) M QD/cx = M IR/cx + M OR/cx + N j=1 M j b/cx = 0 (3.116) M QD/cy = M IR/cy + M OR/cy + N j=1 M j b/cy = 0 (3.117) M QD/cz = M IR/cz + M OR/cz + N j=1 M j b/cz = 0 (3.118)

Numerical procedure

Then, QS system of 12N+5 equations becomes a QD system of 12N+5+6 equations. Six additional equations are related to cage equilibrium with cage center positions x c , y c , z c and cage rotations θ cx , θ cy , θ cz as unknowns. These cage equations and unknowns are also nondimensionalized by parameters given in Table 3.1.

Rigid cage resolution

Then, this dimensionless system of 12N+11 QD equations is solved with same Newton-Raphson scheme as QS one. Note that QS solution of R2 resolution is used to initialise balls and inner ring unknowns of QD problem. Regarding initialisation of cage unknowns, axial displacement x c is set equal to balls average position along x G . If cage is guided by inner ring, it is assumed that other cage displacements and rotations are initially equal to inner ring ones. If cage is guided by outer ring, it is assumed that cage is initially centered on bearing, then all cage unknowns, except for x c , are set to zero.

Equation

Parameter Unknown Parameter

F QD/cx : (3.113) x c F QD/cy : (3.114) F 2 X + F 2 Y + F 2 Z y c c G 2 F QD/cz : (3.115) z c M QD/cx : (3.116) θ cx M QD/cy : (3.117) dm 2 F 2 X + F 2 Y + F 2 Z θ cy π N M QD/cz : (3.118) θ cz
Table 3.1 : Cage parameters used to nondimensionalize related equations or unknowns At first iterations of R2 resolution with cage, precession speeds calculated are far from real values because cage was not considered before. Under important radial load, consecutive balls can have important precession speeds differences. Consequently, ballto-pocket orthoradial displacements δ j bz , defined in (3.17), can be very large. Then, in (G j p , y j p , z j p ) plan, radially loaded balls are under EHD regime. Elastic deformations δ j H and normal loads W j f are large compared with unloaded balls that are under HD regime. In (G j p , z j p , x j p ) plan, extended theory of short journal bearing is used for radially loaded balls. Film thickness is particularly small, then load W j sb and torques C j b , C j p are very large. Numerically, load differences between radially loaded and unloaded balls create an ill conditioned Jacobian matrix and cage does not succeed to balance itself.

This problem can be solved by improving numerical procedure. As for that, on the one hand, R2 resolution with cage is first solved without considering ball-to-pocket interactions in (G j p , z j p , x j p ) plan. Once cage is balanced, these forces are introduced in the system in order to refine solution. This is made possible by the fact that ball-to-pocket SJB interactions are of the second-order even if they can be responsible for converging problems when suddenly, film thickness gets particularly small. On the other hand, a coefficient λ c is introduced in ball-to-pocket orthoradial displacement expression (3.17). This coefficient allows to relax δ j bz value when important precession differences occurs between two consecutive balls. This coefficient is comprised between 10 -6 and 1. It is fixed at the beginning of each iteration such that all ball-to-pocket normal loads W j f are less than 5 000N. Numerically, we observe that λ c is always equal to 1 under small radial loads. But, when radial load is increased, this coefficient gets smaller at first iterations. Then, it increases step by step as bearing with cage balances itself and as ball precession differences reduce. In any case, system is not considered as converged if λ c is less than 1.
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Over iterations, if system no longer changes because of too small λ c , W j f is authorized to be larger than 5 000N and λ c is increased incrementally. Note that if W j f can take values larger than 5 000N, once converged this normal load is never larger than a dozen Newtons. This is logical since in quasi-dynamics, ball-to-pocket impacts are not considered, then only small interactions occurs.

Flexible cage resolution 5.1 Cage elasticity definition

To model cage flexibility, we divide it into finite elements centered on each bridge. Each node corresponds to pocket center such as represented on Figure 3.14. In this finite element model, we suppose that nodal forces directly applies on the node. Is this way, use of shape functions is not necessary. Each bridge is defined by a 3D beam with 6 degrees of freedom at each node: δ j pz for traction, δ j px , δ j py , θ j px , θ j py for bending and θ j pz for torsion, such as schematized in Figure 3.15. Each element is defined by a stiffness matrix K el of size 12 by 12 and expressed in bridge coordinate system R j br such as defined in (3.119). Transfer matrix P j K defined in (3.120), enables to transpose K el in global coordinate system R G in order to obtain K j G computed in (3.121). Numerically, assembling all these element matrix K j G between all bridges, gives the global cage stiffness matrix K cage of size 6N by 6N and defined in global coordinate system R G . Multiplication of K cage by related degrees of freedom at each node gives nodal elastic deformation forces and momentums such as calculated in (3.122). (3.120)

Flexible cage resolution

K el =                                                  0 12EIx L 3 br 0 -6EIx L 2 br 0 0 0 -12EIx L 3 br 0 -6EIx L 2 br 0 0 0 0 ES L br 0 0 0 0 0 -ES L br 0 0 0 0 -6EIx L 2 br 0 4EIx L br 0 0 0 6EIx L 2 br 0 2EIx L br 0 0 6EIy L 2 br 0 0 0 4EIy L br 0 -6EIy L 2 br 0 0 0 2EIy L br 0 0 0 0 0 0 GJ L br 0 0 0 0 0 -GJ L br -12EIy L 3 br 0 0 0 -6EIy L 2 br 0 12EIy L 3 br 0 0 0 -6EIy L 2 br 0 0 -12EIx L 3 br 0 6EIx L 2 br 0 0 0 12EIx L 3 br 0 6EIx L 2 br 0 0 0 0 -ES L br 0 0 0 0 0 ES L br 0 0 0 0 -6EIx L 2 br 0 2EIx L br 0 0 0 6EIx L 2 br 0 4EIx L br 0 0 6EIy L 2 br 0 0 0 2EIy L br 0 -6EIy L 2 br 0 0 0 4EIy L br 0 0 0 0 0 0 -GJ L br 0 0 0 0 0 GJ L br                                                  R j br with    L br = π(Dco+D ci ) 2N S = h c w c G c = Ec
K j G = P j K -1 K el P j K (3.121)                F 1 el M 1 el (P j ) ... ... F N el M N el (P j )                R G = K cage                δ 1 p θ 1 p ... ... δ N p θ N p                R G (3.122)
3. Quasi-dynamic model with cage

Pocket equilibrium

In QD, sum of forces and momentums on each pocket j, that apply at its center P j , in

x G , y G and z G directions, includes race-to-pocket forces, ball-to-pocket forces and nodal elastic deformation forces. These equilibrium equations are expressed by: 

F j QD/px = F j IR/px + F j OR/px + F j b/px -F j elx = 0 (3.

Numerical procedure

Then, with flexible cage modelling, a QD system of 12N+5+6N equations is solved. Inner ring and ball equilibrium equations defined for rigid cage are the same for flexible cage. Nevertheless, 6 cage equilibrium equations (3.113) to (3.118) are replaced by 6N pocket equilibrium equations (3.123) to (3.128). Related unknowns are pockets displacements δ j px , δ j py , δ j pz and rotations θ j px , θ j py , θ j pz . These pocket equations and unknowns are also nondimensionalized by parameters given in Table 3 

Cage center motions and pocket elastic deformations

Pocket unknowns calculated numerically are made of one component related to rigid body motion (RBM) and another one related to elastic deformations such as defined in relation (3.129) and in Figure 3.5. But rigid body motion of each pocket δ j RBM is due to cage center rigid motion as expressed in (3.130).

Flexible cage resolution

               δ 1 p θ 1 p ... ... δ N p θ N p                =                δ 1 θ 1 ... ... δ N θ N                RBM +                δ 1 θ 1 ... ... δ N θ N                elastic (3.129) δ j RBM = δ j c = δ c + G j p G ∧ θ c (3.130)
Consequently, from the knowledge of pockets center motions δ j p , θ j p , we can compute each of these component by searching for cage center motions δ c , θ c , such that pocket elastic deformations are minimum:

min   δ c θ c     δ j θ j   elastic 2 (3.131)
After computations we obtain rigid cage center motions defined in (3.132), rigid pocket motions in (3.133) and pocket elastic deformations in (3.134). Finally, with this posttreatment of pockets unknowns, we assess in three-dimensions the elastic and rigid body movement of the whole cage.

  δ c θ c   = (P T P ) -1 P T                δ 1 p θ 1 p ... ... δ N p θ N p                (3.132)   δ j θ j   RBM = P j   δ c θ c   with P j =                1 0 0 0 R c sin ψ j -R c cos ψ j 0 1 0 -R c sin ψ j 0 0 0 0 1 R c cos ψ j 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1                and P =      P 1
... 2.8. An axial load between 50 and 100 000N is applied. Cage has a pocket clearance of 525µm and a guiding clearance of 1.085mm. Outer race diameter is changed to consider in one case a cage centered on inner race and in another case a cage centered on outer race. These tests are also run with rigid and flexible cages. First results are gathered in Figure 3.16. For a given guidance, we can observe that rigid and flexible cage results are almost equal. This is due to the fact that under pure axial load, ball-to-pocket displacements and interactions are very small, cage stacks up against guiding race, then cage elastic deformations are negligible.

P N      (3.133)                δ j x δ j y δ j z θ j x θ j y θ j z                elastic =                δ j px δ j py δ j pz θ j px θ j py θ j pz                -                δ cx -R c cos ψ j θ cz + R c sin ψ j θ cy δ cy -R c sin ψ j θ cx δ cz + R c cos ψ j θ cx θ cx θ cy θ cz                RBM (3.
Cage rotation along bearing axis x G is reported on Figure 3.16 (a). As expected, because of cage-race SJB interactions, when cage is centered on IR, cage rotation θ cx is positive, inner race drives the cage because its rotational velocity Ω i is higher than ω c . On the contrary, when cage is centered on OR, cage rotation θ cx is negative since outer race does not rotate. Same phenomena can be observed on Figure 3.16 (c) where P B j x and P B j z , the ball-to-pocket positions along x j p and z j p , are reported. Axis orientation used is the same as in Figure 3.6. When cage is centered on IR, P B j z are negative which means that cage pulls balls whereas when cage is centered on OR, P B j z are positive, cage slows down balls. We can also note that, when cage is centered on IR, P B j x are positive whereas they are negative under OR guidance. This is because, as shown in Figure 3.16 (b), δ j px are more negative under IR guidance, then δ j bx -δ j px are positive. x c and δ x , cage and inner race displacements along x G , are plotted on Figure 3.16 (b). As expected, cage moves in same direction as inner race. Inner race displacements δ x obtained are the same whatever cage guidance or cage model considered. When cage is centered on IR, x c and δ x are closer than under OR guidance since influence of IR is more important. Axial displacements increase with axial load because contact angles increase too.

Ball-to-pocket normal loads W f are reported on Figure 3.16 (d). These loads are only the contribution of barrel-plan hydrodynamic effects since Hertzian deformations are negligible under pure axial load. In absolute value, normal loads W f decrease with axial loads, then balls are better centered on pockets. Normal loads are higher for IR guidance since cage rotations θ cx and ball-to-pocket displacements P B j are also higher. These differences are due to lubricant drag forces and to the fact that balls are always guided by inner race. Note also that under low axial loads, a small spike is present on all curves. Same trend is observed if we plot the evolution of cage rotational speed ω c . Indeed, under low axial loads, ω c is small, ball skidding occurs because axial load is too small to drive balls in rotation. For rigid cage centered on IR, ball-race kinematics is analysed in details. Main results are gathered on Figure 3.17. Ball-race contact loads and friction forces are plotted on Figure 3.17 (a). Because of centrifugal forces, ball-to-outer race contact load Q o2 is always larger than Q i1 , the inner race one. These loads increase linearly with axial load whereas friction forces F Xo2 and F Xi1 increase logarithmically. These friction forces oppose gyroscopic moment, then this momentum also increase with axial load. Friction forces along z j b1 also increase with axial load but their value are significantly lower than F Xo2 , F Xi1 forces. Friction F Zi1 is also larger than F Zo2 even if Q i1 is less than Q o2 . This behaviour is in agreement with results presented in literature, like in Wen and Meng's article [START_REF] Wen | Starved lubrication analysis of angular contact BB based on multi degree of freedom tribo-dynamic model[END_REF]. Few differences may be due to the fact that, in BB20, ball-race friction is modelled by a constant coefficient µ. In future works, to refine kinematics, this EHD model should be improved.

Results analysis

Ball-race contact angles α i1 , α o2 and ball self-rotations β are plotted in Figure 3.17 (b). As expected, inner race contact angle is always larger than outer race one. These angles increase with axial load even if α o2 increase is more important. β angle is always close to α o2 , which reflect a trend in outer race control. This trend is confirmed by Figure 3.17 (c) and (d), where spinning, sliding speeds and PV factors are plotted. Indeed, balls mainly slide and spin on the inner race, especially under low axial load. When axial load increases, sliding on the inner race decreases whereas it increases on the outer race.

3. Quasi-dynamic model with cage PV factor follows the same tendency since spinning is directly related to this product. However, if tests are run until F X =100 000N, this bearing usually works for much smaller loads around 15 000N. Then, results for loads larger than 40 000N should be analysed with precaution. Note also that PV factor is an important criteria used by industry to design bearings because it is an indicator of wear and heat generation. Figure 3.17 : Ball-race kinematics for rigid cage centered on IR Besides, we interested in the evolution of β ′ angle with axial load F X and shaft speed Ω i . We can observe on Figure 3.18 (a) that, for a given speed Ω i , under small axial loads, β ′ increases abruptly until reaching a maximum. For larger axial loads, β ′ decreases more slowly. The higher the speed Ω i , the more β ′ is large and reached for important loads. We can notice on Figure 3.18 (b) that, for a given axial load F X , β ′ is close to zero at low speeds because gyroscopic momentum M j GY is too small to turn the ball in transverse direction. When speed increases, ball precession ω j m , gyroscopic momentum M j GY and β ′j angle increase until reaching a maximum. For larger speeds, β ′j decreases because ball sticks at outer race bottom, contact angle α j o2 and β j angle decrease too. As well, the higher the axial load, the more β ′ is large and reached at high-speeds. 

Combined loads with a rigid cage

In this section, bearing A centered on inner race, is investigated with a rigid cage. An axial load F X of 15 000N and radial loads F Y varying between 100 and 15 000N are applied. Since -F Y is applied on inner race, ball 11 it the most loaded.

• Cage center motion Positions of cage center x c , y c , z c and inner race centers δ x , δ y , δ z are reported on Figure 3.19 (a). When radial load increases, cage and IR displacements decrease in a negative direction along x G . Along y G , cage and IR centers move of a few microns in a negative direction. IR center does not move along z G whereas cage center significantly moves in a positive direction. This displacement of z c is caused by cage-race SJB effects and by the fact that each ball has a different load. This phenomena is also observable in Figure 3. 19 (b) where cage-to-inner race attitude angle ϕ i , defined in (3.74), is plotted. As expected, when radial load is equal to zero, relative eccentricity ϵ is equal to 1, then ϕ i is equal to 90 • . When radial load increases, cage is more and more off-centered, relative eccentricity reduces, then attitude angle decreases.

In this test, cage-race clearance is large and equal to 1.085mm, then relative eccentricity stays close to 1 and attitude angle decreasing is small. Under important radial loads and small guiding clearances, this angle should tend to zero. In such conditions, cage-race dry contact almost occur. However, only SJB HD contact is considered in BB20. When cage-race dry contact is found, Newton-Raphson solution is relaxed until calculating cage-race HD interaction. Then, we did not succeed to make converge tests with small clearances and important radial loads. This indicates the necessity to model cage-race dry contact in future works. Even if we do not expect to converge towards such contact, it should be used in iterative process before converging towards quasi-dynamic solution. In any case, dynamical experiences have already shown cage-race collisions, then their consideration will be important when modelling dynamics. Note also that in SJB model, bearings are supposed to be coaxial. Such hypothesis does not hold when misalignment is applied on the inner ring. To solve such a case, SJB solutions with misaligned axis, like that of Gomez-Mancilla [START_REF] Gomez-Mancilla | Journal bearings with misaligned axes[END_REF], should be implemented in the future. x G is almost symmetric between loaded and unloaded balls whereas it is asymmetric for GC j o2 • x G . Indeed, under radial load of 15 000N, for ball-to-outer race contact, loaded balls move of 45µm maximum from pure axial load position, whereas unloaded balls move of 15µm maximum in opposite direction. For inner race contacts, these displacements are of 170µm for both balls 1 and 11. Then, we can also note that ball-to-inner race motion is 4 times larger than ball-to-outer race. z < 0) which means that cage pull them. This position is mainly due to inner race guidance and to drag forces. When radial load increases, differences in ball-to-pocket positions between consecutive balls increase. Displacement P B j z increases in negative value for loaded balls, whereas it decreases and gets closer to zero for unloaded balls. When radial load gets larger than 10 000N, P B j x of unloaded balls is getting negative whereas P B j z is getting positive. Then, some balls locate at one side of the pocket whereas other balls get positioned at the opposite. Loaded balls are pulled by the cage, unloaded balls pull the cage.

Results analysis

If we look at Figure 3.23 (g) where balls precession ω j m are plotted, we can observe that balls decelerate when they enter the loaded zone and accelerate when they exit it. This is due to the fact that outer race contact angles α j o2 decrease in loaded zone and increase in unloaded zone. These results agree with physical behaviour described in literature. z is directly related to F j p/bz since same tendencies (up to an overall sign) are observable. On the contrary, F j p/bx does not have same evolution as P B j x which shows that ball-to-pocket position along x G is influenced by other forces like those of adjacent balls.

Contribution of barrel-plan normal load W j f is plotted in Figure 3.23 (e) whereas contribution of ball-to-pocket SJB normal load W j sb is plotted on Figure 3.23 (f). Under small radial loads, W j f are centered around -1N whereas W j sb are centered on zero. When radial load increases, both loads vary around these values. However, if W j f amplitude does not exceed 2.5N, W j sb variation is 10 times larger. Then, ball-to-pocket SJB effect is predominant on barrel-plan effect when ball-to-pocket interaction is under HD lubrication. This phenomena is confirmed if we compare Figure 3.23 (c) with (f) under large radial loads. Indeed, same spikes around balls 8 and 14 are present on both plots which confirms that forces F j p/bz are mainly due to SJB forces. In dynamics, because of EHD lubrication, we expect Hertzian loads to be larger than these SJB forces.

If we compare Figure 3.23 (a), (b) with (e), we can confirm that barrel-plan normal loads W j f are directly related to ball-to-pocket displacements. Under small radial loads, they are not equal to zero but almost constant because of small P B j . Under important radial loads, they are maximum when P B j are maximum and film thickness h j f are minimum . Ball-to-pocket SJB normal loads W j sb are related both to P B j and to ball self-rotations β j . Indeed, β j are maximum for loaded balls and minimum for unloaded balls. On Figure 3.23 (f), we can observe that W j sb are equal to zero when radial load is equal to zero. Under combined loads, they are small for balls located in unloaded zone. In such cases, even if P B j are not minimum, ball self-rotations β j are small, then W j sb are small too. When balls are getting loaded, β j increase, then, according to relations (3.47) 3. Quasi-dynamic model with cage to (3.50), SJB effect is more important. However, because of small P B j , SJB forces of loaded balls 10, 11, 12 are almost equal to zero, even if β j is maximum.

In Figure 3.23 (h), ball-to-pocket minimal clearance min j=1,N

( cp 2 -∆ j pb ), is plotted for increasing radial loads. Results are given for R2 resolution without cage and for R2 with rigid cage. We can observe that without considering cage, then by directly applying λ c = 1, negative clearances are obtained for radial loads larger than 5 000N. This would mean that balls hit the pocket under such loads. By considering cage, then by increasing λ c incrementally, cage equilibrates to get positive clearances until 15 000N. Physically, balls are not supposed to hit cage under relatively small radial loads. That is why, results with cage appears to be closer to reality and confirm the need to introduce it into the model.

Nevertheless, for radial loads larger than 15 000N, then for axial-to-radial load ratios smaller than 1, BB20 does not converge with cage. This is due to the fact that some balls start to detach from inner race, important precession differences ω j m are calculated between successive balls, then δ j pb are important, ball-to-pocket clearances are negative, pocket normal loads W j f are huge, cage does not succeed to equilibrate. Physically, we cannot say if these ball-to-pocket collisions really occur. Indeed, quasi-dynamic hypotheses on δ j bz and ω c limit computation accuracy, especially under important radial loads. Then, we should not draw attive conclusions on bearing behaviour under such conditions. By solving BB20 in dynamics, we should get rid of such hypotheses, then simulate a behaviour closer to reality and be able to answer these questions.

Combined loads with a flexible cage

• Steel cage BB20 is run again with bearing A centered on inner race, with F X = 15 000N, with increasing radial loads F Y but with a flexible cage made of steel. Results on cage motion, IR displacements, cage-race SJB interactions and ball-to-pocket minimal clearance are gathered in Figure 3.24. For radial loads smaller than 7 000N, comparable results are obtained between rigid and flexible cage. For larger loads, evolution of cage displacements x c are more abrupt for flexible cage, SJB forces F IR/cy , F IR/cz are slightly higher whereas M IR/cx and cage rotations θ cx are smaller.

Nevertheless, these results were obtained without considering errors on pocket motions unknowns δ p and θ p . Then, converging conditions only depended on ball and inner race error variation between two iterations. We have also tried to run these tests by considering pockets errors, but it did not converge for radial loads larger than 7 000N. In such a case, even if errors on balls and IR were small, BB20 continued to solve the Newton Raphson scheme until relative variation of pocket unknowns over iterations were less than 10 -3 . Finally, system did not equilibrate, the problem was over-relaxed because cage-race dry contacts were found. These results show again that cage-race collisions should be considered in future works and that numerical improvements are still needed. In particular, instead of post-treating cage RBM, implementing in the Newton-Raphson scheme the equation (3.132) on cage minimisation and cage center motions as unknowns may be a solution to improve numerical resolution of flexible cage. To return to Figure 3.24, we can now assume that differences between rigid and flexible cage, observed for radial loads larger than 7 000N, are due to the fact that system is not really converged. x are always between 0 and 20µm for flexible cage whereas they vary between 0 and 100 µm for rigid cage. Such differences are unexpected and prove that these two tests are not converged.

Besides, pocket elastic rotations θ j elcx , θ j elcy , θ j elcz obtained are always less than 0.005 • , which is negligible. Pocket elastic deformations δ j elcx , δ j elcy , δ j elcz are plotted on Figure 3.26. Deformations δ j elcx , δ j elcz are equal to zero for the most loaded ball and the lowest loaded ball, whereas they are maximum for balls located in between. On the contrary, deformations δ j elcy are maximum for the most loaded ball and the lowest loaded ball. For all deformations, maximal amplitude increases with radial load. However, for F Y =10 000N and F Y =12 000N, δ elcx are smaller than under 8 000N. This confirm again that these two tests are not converged. In any case, elastic deformations have amplitudes of several hundred microns which is non negligible.

Consequently, in quasi-dynamics, if modelling cage flexibility does not influence cage center rigid body motions, it reveals that cage is subject to structural deformations even when ball-to-pocket and cage-race interactions are under HD regime. In dynamics, EHD interactions should happen, then influence of cage flexibility on cage motion and elastic deformations should be more important. These tests with varying radial loads are rerun with a cage made of PEEK. However, it only converged for radial loads less or equal than 8 000N because cage-race dry contacts were obtained for larger loads. Under radial loads lower than 8 000N, cage RBM, cagerace and ball-to-pocket interactions are comparable with steel ones. On the contrary, cage elastic deformations differs, as illustrated in Figure 3.27. Indeed, if δ j elcx are similar with both cages, δ j elcy and δ j elcz are larger with PEEK. In particular, for a radial load of 8 000N, these deformations are 30% larger with PEEK cage. This is due to the fact that PEEK elastic modulus is 52 times lower than steel and that Poisson's coefficient is 25% larger, such as reported in Table 3.3. Then, E and G c parameters are smaller, components of stiffness matrix K el , defined in (3.119), are also smaller, PEEK cage is softer and subjected to larger deformations. We can also note that evolution of δ j elcy and δ j elcz with ball position is a sinusoid for steel cage whereas it is more erratic with PEEK. Regarding computational time, it is worth noting that R1 resolution of a single test, always lasts less than a second. R2 resolution without cage lasts around 90 seconds which is much lower than R2 with cage. Indeed, with cage consideration, because of the need to increase incrementally ball-to-pocket ortho-radial displacements δ j bz , number of iterations needed to converge is much important. To get an idea, under pure axial load, computational time is comprised between 500 and 700 seconds. It vary linearly with increasing radial load, to be larger than 4 000 seconds when F Y =15 000N. This time is comparable whether if rigid or flexible cages are considered. If this time may seem important, we expect dynamic computations to be much more consuming. Besides, these results were obtained with jacobian matrix calculated numerically by a Fortran routine.

Material

Quasi-dynamic model with cage

Computing analytic jacobian reduces this computational time of a factor 14 but gives less accurate results. 

Comparison with a 4 contact-points literature model

In this section, we are comparing BB20 with Ma's model [START_REF] Ma | A study on the dynamic contact feature of four-contact-point ball bearing[END_REF] which is one of the only one to consider the dynamics of ACBB with up to 4 contact points. Compared with BB20, this model is solved in dynamics, cage has only 3 degrees of freedom, ball-race traction coefficient is defined by Kragelskii's model [START_REF] Kragelskii | Friction and Wear: Calculation Methods[END_REF] with Gupta's coefficients [START_REF] Gupta | Real-Time Dynamics Modeling of Cryogenic Ball Bearings With Thermal Coupling[END_REF] and ball-topocket interactions are only modelled by Hertzian contact for normal load and Coulomb's theorem for friction. Above all, ball gyroscopic momentums are not considered in this model. Tests are run with the bearing defined in Table 3.4, with outer race guidance and under high-speed (Ω i = 5000rpm), small loads (always lower than 3 000N). Main contact corresponds to inner race side 1 (IR1) and outer race side 2 (OR2) whereas sub contact corresponds to inner race side 2 (IR2) and outer race side 1 (OR1). These secondary contacts are less loaded and occur under specific conditions. Some parameters like material properties (elastic modulus, density), lubricant properties, drag coefficient C d or friction coefficients are not specified in Ma's article. Consequently, in order to get comparable cage-to-shaft speed ratios ωc Ω i , we fixed ball-race friction coefficient µ at 0.01, oil fraction in the mixture f oil at 0.15 and drag coefficient C d at 0.4. Such values do not seem aberrant even if we usually work with a coefficient µ =0.065. These results for ωc Ω i are plotted in Figure 3.28 (g). As well, BB20 tests were first run with steel material. However, we obtained transitions from 3 to 2 contact-points for F X =7 000N whereas it occurs at 2 400N with Ma's model. This reveal a difference in contact stiffness. Then, in BB20, we let rings and cage in steel but fixed ball elastic modulus at 10 GPa, Poisson's coefficient at 0.3 and density at 3 950kg/m 3 . Is this way, as observable in Figure 3.28 (h), contact transition with BB20 occurs around 2 400N too.

Results analysis

Notation

• F X <400N With both models, for axial loads smaller than 400N, 3 contact-points are present: two on outer race and one on inner race side 1. We can observe in Figure (g) that cage speed increases with axial load. In Figure (c), ball-to-inner race sliding speed in the rolling direction is very important but decreases with axial load. In figure (a), at 3 contacts, normal load increases with F X because of centrifugal force increasing. Then, as observable in Figure (d), (e), (f), contact pressures and traction forces at 3 contacts increase too, whereas PV factor of inner-race contact is important and decrease because of sliding speed decrease.

Quasi-dynamic model with cage

All these results shows that, for axial loads smaller than 400N, ball skidding occurs because applied load is too small to develop sufficient EHD tractive force to overcome cage drag and prevent gyroscopic spin.

• 400N< F X <2 400N When axial load is larger than 400N but smaller than 2 400N, skidding does not occur anymore. Then, cage speed is more stable and sliding speeds of main contacts are very small. On the contrary, sliding speed of OR1 contact increases before falling down to zero when this contact is lost for F X =2 400N. This increase is due to the fact that axial force changes ball angular velocity. Contact loads of main contacts increase linearly with axial load whereas OR1 contact load decreases to zero for F X =2 400N. For main contact, inner race contact load is always a bit larger than outer race one which shows that centrifugal forces stay relatively small. Main contact loads are also at least one order of magnitude larger than sub contact. Contact pressures present same evolutions as contact loads excepted that curves are flatter because of non-linear relationship between contact stress and contact force. PV factors of main contacts are almost equal to zero since sliding speeds are very small whereas PV factor of OR1 increases until 1 900N and then decreases and gets equal to zero for 2 400N because contact is lost.

• 2 400N< F X <3000N When axial load is larger than 2400N, the sub contact on outer race is lost, related parameters are equal to zero. Only IR1 and OR2 contacts remain, corresponding parameters present same evolution as when 400N< F X <2 400N.

• Differences analysis Excepted for traction forces, BB20 and Ma's curves present same evolutions. Only differences are in amplitudes. In Figure 3.28 (a), we can observe that contact loads of main contacts are comparable between BB20 and Ma's model. Ma's loads are just about 40N larger than BB20. For sub contact OR1, contact loads are comparable under small axial loads. When axial load gets closer to 400N, Ma's contact load increase is larger than BB20, with a difference of a factor 2 at 400N. For larger loads, these differences decrease.

Concerning contact angles plotted in Figure 3.28 (b), with Ma's model these angles are almost constant, excepted for α j o1 that fall to zero when contact is lost. Under 3 contactpoints, outer race contact angles are almost equal whereas inner race contact angle is always larger than outer race ones. Outer-race contact angles obtained with BB20 are comparable whereas inner-race contact angle is 30% smaller than with Ma's model. In BB20, this angle also decrease with axial load and is smaller than outer race angles which is unexpected. BB20 and Ma's sliding speeds of Figure 3.28 (c) are comparable for main contacts whereas sliding speed evolution for OR1 is rather linear with Ma and exponential with BB20. Contact pressures and PV factors obtained with Ma's model are four times larger than with BB20, such as illustrated in Figure 3.28 (d), (f).

Results analysis

Figure 3.28 :

Comparison between BB20 and Ma [START_REF] Ma | A study on the dynamic contact feature of four-contact-point ball bearing[END_REF] under pure axial load 3. Quasi-dynamic model with cage Regarding traction forces represented in Figure 3.28 (e), under small axial loads, these forces are much larger with Ma's model whereas contact loads of main contacts are comparable. Maybe, this difference is due to the fact that Ma's friction coefficient is larger than BB20's one. As well, when axial load is larger than 400N, then when sliding speeds of main contacts are equal to zero, Ma's friction forces are constant because Kragelskii's model is applied. On the contrary, Coulomb's model with constant friction coefficient is applied in BB20, then traction forces increase with contact load. Such differences show the influence of EHD traction model on ball kinematics. This confirm that this model should be improved in BB20.

Finally, BB20 and Ma's models are comparable. Few differences can be attributed to the fact that each model makes its own hypothesis. This study of ACBB with more than 2 contact points under increasing axial load shows that getting a third contact is non negligible and complicates ball kinematics. When axial load increases, bearing changes from 3 contacts with skidding, to 3 contacts without skidding, then to 2 contacts without skidding either. The third contact-point on the outer race has important sliding, then spin-to-roll ratio that generates heat and risks of burn or failure even if main contact has the largest PV value.

Combined loads

Figure 3.29 : Comparison between BB20 and Ma [START_REF] Ma | A study on the dynamic contact feature of four-contact-point ball bearing[END_REF] under combined loads Tests are still run with a speed of 5 000rpm but with combined loads F X = F Y =1 000N. Results obtained with BB20 and Ma's models are gathered in Figure 3.29. We can observe that with Ma's model, balls 1, 2, 3, 14, 15, 16 have 4 contact-points, balls 4, 5, 6, 11, 12, 13 have 3 contact-points (two on OR, one on IR) and balls 7 to 10 have 2 contactpoints (one on each race). On the contrary, BB20 never works under 4 contact-points, many tests have been run without succeeding to get two contact-points on inner race. In the present test, balls 1 to 5 and 12 to 16 have 3 contact-points whereas balls 6 to 11 have 2 contact-points on OR, then these last balls are detached from IR. These contact differences between both models are non negligible and probably due to the fact that BB20 is solved in quasi-dynamics and Ma's model in dynamics. We have also already noticed limits of BB20 quasi-dynamics in solving problems with axial-to-radial loads ratios greater than or equal to 1. The fact that Ma's model does not consider gyroscopic effects may also explain contact differences.

Nevertheless, we can notice in Figure 3.29 (a), that for non-detached balls, contact loads of main contacts are comparable. Sub contact loads are never comparable because of the absence of fourth contact in BB20 or the absence of ball detachment in Ma's results. Contact angles reported in Figure 3.29 (b) are also comparable in amplitudes, differences are due to contact-point differences. Finally, we have decided here to do not report further plots on sliding speeds, contact pressures, traction forces or PV factors because contact differences make kinematics too different to be compared. Such study may be interesting once BB20 will be transposed in dynamics. However, this combined load study of ACBB with up to 4 contact-points, shows again that getting more than two contact-points significantly changes ball kinematics.

Quasi-dynamic model with cage 7 Summary

To conclude on quasi-dynamic modelling of ACBB with rigid or flexible cage, we can summarize all cage interactions by diagram of Figure 3.30. Resolution reuse R2 quasistatic system with balls and rings. Cage interactions and corresponding equations are added to solve its equilibrium.

An extensive study has been led in order to better understand the influence on bearing behaviour of operating conditions (axial, radial load, shaft speed), bearing materials and geometry (cage guidance, pocket clearance, guiding clearance, ring truncations). Contribution of each force, like inertia, cage-race SJB, ball-to-pocket SJB, barrel-plan or ball-race interactions, has been analysed in order to understand the impact on cage center motion, ball-to-pocket positions, ball-race contacts, inner race motion and ball kinematics. It appears that motion of each element is closely related to that of each other. It was also shown that ACBB kinematics is a complex mechanism not only related to ball-race interactions but also to cage effects, to gyroscopic motion in two directions (β, β ′ ) and to additional ball-race contact-points. Besides, if modelling cage flexibility in quasi-dynamics does not influence cage center motion, it reveals non negligible pocket elastic deformations even if cage interactions are under HD regime.

We should recognize that this quasi-dynamic model still has some limits like its ability to work with radial loads larger than axial load. Ball-race EHD traction model could also be refined, cage-race dry contact and SJB misalignment could be considered. However, in terms of accuracy and computational time, this model appears to be a good compromised between quasi-statics and dynamics. In any case, its development was essential to set solid basis before modelling dynamics. 

Inertia matrices

In dynamics, masses and moments of inertia of solids (S * ) are needed. In BB20, either user directly enter their values, or it is calculated by following theory.

Inner ring

To compute its inertia matrix I(G, (S IR )), the inner ring is considered as a hollow cylinder of height w IR , internal diameter d ei1 , external diameter d ei2 and mass m cyl . To represent races curvature, this cylinder is cut by a half-torus of mass m t , small-radii r t = f i D and large-radii R t = 0.5d ei2 . As a consequence, inner ring mass is expressed by Eq. (4.1), whereas diagonal inertia matrix is expressed by Eq. (4.2). Note that, because of small inner ring displacements δ, this matrix is supposed to be the same at bearing center G and inner ring center G i1 .

m IR = m cyl -m t with    m cyl = ρ IR π 4 (d 2 ei2 -d 2 ei1 ) w IR m t = 1 2 ρ IR 2π 2 R t r 2 t (4.1) I(G, (S IR )) =      I IRx 0 0 0 I IRy 0 0 0 I IRy      R G with    I IRx = m cyl 8 (d 2 ei1 + d 2 ei2 ) -m t (R 2 t + 3 4 r 2 t ) I IRy = m cyl 12 ( 3 4 (d 2 ei1 + d 2 ei2 ) + w 2 IR -m t 2 (R 2 t + 5 4 r 2 t ) (4.2)
Inner ring dynamic behavior is directly linked to shaft behavior. To consider this contribution, another hollow cylinder of height w s , internal diameter d s1 , external diameter d s2 , mass m s and inertia matrix I(G, (S IR )) is added to inner ring components. Depending on user, either shaft dimensions are directly entered or shaft is considered as a full cylinder four times larger than inner ring.

m s = ρ s π 4 (d 2 s2 -d 2 s1 )w s (4.3) I(G, (S s )) =      I sx 0 0 0 I sy 0 0 0 I sy      R G with    I sx = ms 8 (d 2 s1 + d 2 s2 ) I sy = ms 12 ( 3 4 (d 2 s1 + d 2 s2 ) + w 2 s (4.4)

Balls

Balls are defined as spheres of diameter D, mass m b and diagonal inertia matrix

I(B j , (S j b )) at their center. m b = ρ b π 6 D 3 (4.5) I(B j , (S j b )) =      I b 0 0 0 I b 0 0 0 I b      R j b1 with I b = m b 10 D 2 (4.6)
Inertia matrices

Cage

To compute cage mass m c and cage inertia matrix I(G c , (S c )), we first consider that cage is a hollow cylinder of height w c , internal diameter d c1 , external diameter d c2 , mass m cy and inertia matrix I(G c , (S cy )).

m cy = ρ c w c π 4 (d 2 c2 -d 2 c1 ) (4.7) I(G c , (S cy )) =      I cy-x 0 0 0 I cy-y 0 0 0 I cy-y      R G avec    I cy-x = mcy 8 (d 2 c2 + d 2 c1 ) I cy-y = mcy 12 3 4 (d 2 c1 + d 2 c2 ) + w 2 c (4.8)
This cage cylinder has N cylindrical holes corresponding to pockets. Such holes have a height h c , a radii R p , a mass m p , an inertia matrix I(G j p , (S j p )) at pocket center and I(G c , (S j p )) at cage center.

m p = ρ c πR 2 p h c (4.9) I(G j p , (S j p )) =      I px 0 0 0 I py 0 0 0 I px      R j p with    I px = mp 12 (3R 2 p + h 2 c ) I py = mp 2 R 2 p (4.10) I(G c , (S j p )) =      I j P X 0 0 0 I j P Y I j P Y Z 0 I j P Y Z I j P Z      R G with                I j P X = I px + m p R 2 c I j P Y = I py cos 2 ψ j + (I px + m p R 2 c ) sin 2 ψ j I j P Y Z = (I py -I px -m p R 2 c ) cos ψ j sin ψ j I j P Z = I py sin 2 ψ j + (I px + m p R 2 c ) cos 2 ψ j (4.11)
Then, cage mass m c and cage inertia matrix I(G c , (S c )) are computed in Eq. (4.12), (4.13) by subtracting pocket components from cage cylinder. Note that in order to work with a diagonal matrix, the extra-diagonal terms I cyz are neglected if ball number N is uneven whereas they are equal to zero if N is even.

m c = m cy -N m p (4.12) I(G c , (S c )) =      I cx 0 0 0 I cy I cyz 0 I cyz I cz      R G with                I cx = I cy-x -N j=1 I j P X I cy = I cy-y -N j=1 I j P Y I cyz = -N j=1 I j P Y Z = 0 I cz = I cy-y -N j=1 I j P Z (4.13)
4. Dynamic model 2 Dynamic torsors

Inner ring

To compute the dynamic torsor of inner ring with shaft D (S IR )/R G , we consider once again small inner ring displacements δ. Especially, we suppose that inner ring displacements δ x , δ y , δ z are small in front of accelerations δx , δy , δz , θy , θz . We should specify that such hypothesis does not hold in the case of blade loss. Then, from inner ring accelerations, we directly compute the dynamic resulting D(G, (S IR )/R G ) in Eq.(4.15) and the dynamic momentum δ(G, (S IR )/R G ) in Eq. (4.16).

D (S IR )/R G =    D(G, (S IR )/R G ) δ(G, (S IR )/R G )    R G (4.14) D(G, (S IR )/R G ) = (m IR + m s )A(G i1 , (S IR )/R G ) = (m IR + m s )      δx δy δz      R G (4.15) δ(G, (S IR )/R G ) = d(I(G, (S s + S IR ))Ω (S IR )/R G ) dt R G =      (I IRx + I sx ) ΩI (I IRy + I sy ) θy (I IRy + I sy ) θz      R G (4.16)

Balls

In dynamics, ball angular position previously defined by ψ j becomes ψ j b which is a function of ψ j the angular pocket center position and θ j m the ball-to-pocket relative rotation such as defined in Eq. (4.17). Then, in ball coordinate system R j b1 , ball position GB j is defined by relation Eq. (4.18). Corresponding accelerations are expressed in Eq. (4.19) and dynamic resulting D(B j , (S j b )/R G ) in Eq. (4.20).

ψ j b = ψ j + θ j m with ψ j = ψ c + 2π N (j -1) (4.17) GB j =      x j G y j G z j G      =      go 2 λ j o -GE o2 sin α j o2 dm 2 -(f o -0.5)D cos α f + GE o2 cos α j o2 dm 2 θ j m      R j b1 (4.18)      ẍj G ÿj G zj G      =      -( δj o2 -ḧj o2 ) sin α j o2 -2( δj o2 -ḣj o2 ) αj o2 cos α j o2 ( δj o2 -ḧj o2 ) cos α j o2 -2( δj o2 -ḣj o2 ) αj o2 sin α j o2 dm 2 ( ωj m -ωc )      R j b1 +      -GE j o2 -( αj o2 ) 2 sin α j o2 + αo2 cos α j o2 -GE j o2 ( αj o2 ) 2 cos α j o2 + αo2 sin α j o2 0      R j b1 (4.19) Dynamic torsors D(B j , (S j b )/R G ) = m b A(B j , (S j b )/R G ) = m b      ẍj G ÿj G zj G      R j b1 (4.20)
Balls kinetic momentums are calculated from Eq. (4.21) to (4.23). Then, by time derivation, dynamic momentums are calculated in Eq. (4.25).

σ(B j , (S j b )/R G ) = I(B j , (S j b ))Ω (S j b )/R G (4.21) Ω (S j b )/R G =      ω j m 0 0      R G +      ω j r 0 0      R j b3 +      0 0 β     R j b2 +      0 β′ 0      R j b1 (4.22) σ(B j , (S j b )/R G ) = I b      ω j m + ω j r cos β j cos β ′j + βj sin β ′j ω j r sin β j + β′j -ω j r cos β j sin β ′j + βj cos β ′j      R j b1 (4.23) δ(B j , (S j b )/R G ) =   dσ(B j , (S j b )/R G ) dt   R j b1 (4.24) δ(B j , (S j b )/R G ) = I b     
ωj m + ωj r cos β j cos β ′j + ω j r (-βj sin β j cos β ′j -β′j cos β j sin β ′j ) ωj r sin β j + ω j r βj cos β j ωj r cos β j sin β ′j -ω j r (-βj sin β j sin β ′j + β′j cos

β j cos β ′j )      R j b1 +I b      βj sin β ′j + βj β′j cos β ′j β′j βj cos β ′j -βj β′j sin β ′j      R j b1 (4.25)

Cage

In dynamics, cage self-rotation previously called θ cx is included in ψ c , itself included in ψ j . Then, pocket removed positions are defined by relations (4.26) and (4.27).

G j p P j =      δ j px δ j py δ j pz      R G =      x c -R c cos ψ j θ cz + R c sin ψ j θ cy y c z c      R G (4.26)      θ j px θ j py θ j pz      R G =      0 θ cy θ cz      R G (4.27)

Dynamic model

Cage dynamic torsor D (Sc)/R G computation is immediate since it directly depends on accelerations of cage unknowns. This torsor is made of dynamic resulting D(G c , (S c )/R G ) expressed in Eq. (4.29) and dynamic momentum δ(G c , (S c )/R G ) expressed in Eq. (4.30).

D (Sc)/R G =    D(G c , (S c )/R G ) δ(G c , (S c )/R G )    R G (4.28) D(G c , (S c )/R G ) = m c A(G c , (S c )/R G ) = m c      ẍc ÿc zc      R G (4.29) δ(G c , (S c )/R G ) = d(I(G c , (S c ))Ω (Sc)/R G ) dt R G =      I cx ωc I cy θcy I cz θcz      R G (4.30)

Dynamic equations

Dynamic equations (4.31) to (4.47) are made of quasi-dynamic equations with the addition of acceleration component calculated in dynamic torsors. Later, dynamic forces like unbalance or ball-race, cage-race and ball-to-pocket damping should be implemented. 5 System resolution

Inner ring

Balls

m b -( δj o2 -ḧj o2 ) sin α j o2 -2( δj o2 -ḣj o2 ) αj o2 cos α j o2 -GE j o2 -( αj o2 ) 2 sin α j o2 + αo2 cos α j o2 = F j QD/bx (4.36) m b ( δj o2 -ḧj o2 ) cos α j o2 -2( δj o2 -ḣj o2 ) αj o2 sin α j o2 -GE j o2 ( αj o2 ) 2 cos α j o2 + αo2 sin α j o2 = F j QD/by

Cage

m c ẍc = F QD/cx ( 4 
i1 -ḧj i1 -GE j i1 αj2 i1 sin α j i1 + 2( δj i1 -ḣj i1 ) αj i1 + GE j i1 αj i1 cos α j i1 + δj i2 -ḧj i2 -GE j i2 αj2 i2 sin α j i2 + 2( δj i2 -ḣj i2 ) αj i2 + GE j i2 αj i2 cos α j i2 - d 2 dt 2 g i λ j i cos θ z cos θ y = 0 (4.50) -δj i1 -ḧj i1 -GE j i1 αj2 i1 cos α j i1 + 2( δj i1 -ḣj i1 ) αj i1 + GE j i1 αj i1 sin α j i1 + δj i2 -ḧj i2 -GE j i2 αj2 i2 cos α j i2 -2( δj i2 -ḣj i2 ) αj i2 + GE j i2 αj i2 sin α j i2 - d 2 dt 2 g i λ j i (cos ψ j b sin θ z -sin ψ j b sin θ y cos θ z ) = 0 ( 4 
-GE j i1 αj2 i1 sin α j i1 + 2( δj i1 -ḣj i1 ) αj i1 + GE j i1 αj i1 cos α j i1 + δj o2 -ḧj o2 -GE j o2 αj2 o2 sin α j o2 + 2( δj o2 -ḣj o2 ) αj o2 + GE j o2 αj o2 cos α j o2 = d 2 dt 2 -δ x + R 1 -R 1 cos θ y cos θ z + R 2 cos ψ j b cos θ y sin θ z -R 2 sin ψ j b sin θ y (4.52) -δj i1 -ḧj i1 -GE j i1 αj2 i1 cos α j i1 + 2( δj i1 -ḣj i1 ) αj i1 + GE j i1 αj i1 sin α j i1 -δj o2 -ḧj o2 -GE j o2 αj2 o2 cos α j o2 + 2( δj o2 -ḣj o2 ) αj o2 + GE j o2 αj o2 sin α j o2 = d 2 dt 2 R 2 + -δ y -R 1 sin θ z -R 2 cos

Adaptive Stepsize Runge-Kutta-Fehlberg algorithm

Different implicit or explicit algorithms exist to solve dynamical systems made of real-time differential equations. Depending on system characteristics, computation cost or accuracy expected, each one has its advantages and disadvantages. In dynamics, ball bearings have components with frequency differences of several orders. They are also subjected to important discontinuities due to ball-to-pocket and cage-race impacts. For these reasons, Gupta [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF] stated that explicit methods were more suitable to model bearing dynamics with cage. Many authors like Walters [START_REF] Walters | The Dynamics of Ball Bearings[END_REF], Meeks [START_REF] Meeks | Ball Bearing Dynamic Analysis Using Computer Methods-Part I: Analysis[END_REF] or Liu [START_REF] Liu | Nonlinear Dynamic Behavior of Angular Contact Ball Bearings under Microgravity and Gravity[END_REF], also developed dynamical ball bearing codes and confirmed efficiency of explicit algorithms like Runge-Kutta-Fehlberg (RKF) method. Particularity of Fehlberg method is that it proposes RK tables for higher orders than 4. It also estimates error at each step in order to adapt accurately step-size. That is why, this RKF method is implemented in BB20 with possibility to set the order between 1 and 7 depending on precision and time-computation expected.

For given initial conditions X 0 on a set of vector unknowns X, this method solves the differential system of equations (4.54) and gives evolution of these unknowns on discretised time interval [t 0 , t f ]. As for that, at each new time t n+1 , formula (4.55) is applied to compute new unknowns x k , k being the position in vector X. In this expression, A ij , B i , C i and D i are scalar components of RKF tables defined in literature [START_REF] Fehlberg | Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize control[END_REF], [START_REF] Fehlberg | Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems[END_REF].

   Ẋ = f (X, t) X = X 0 at t = t 0 (4.54) System resolution                x k (t n+1 ) = x k (t n ) + ∆t n+1 s i=0 C i K i Err k (t n+1 ) = s i=0 (D i -C i ) K i with K i = f x k (t n )+∆t n+1 s j=1
A ij K j , t n +B i ∆t n+1 (4.55) To adapt time step ∆t, at each time t n+1 , for each variable x k , truncation error Err k (t n+1 ) is calculated by relation (4.55). For a RKF method at order m, this error is the difference between solution calculated at order (m+1) and solution calculated at order m. According to Gupta [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF] and as expressed in (4.56), norm of errors vector |Err(t n+1 )| varies as (m + 1) th power of previous step size ∆t n . Then, at each time step, step size ∆t n+1 is adapted by relation (4.57), where ϵ R3 is error tolerance set by user. To avoid increasing or decreasing step size too much, γ factor is limited between 0. [START_REF] Houpert | The Film Thickness in Piezoviscous-Rigid Regime; Film Thickness Lubrication Regimes Transition Criteria[END_REF] 

System of equations and unknowns

From dynamic equations expressed in sections 3 and 4, vector unknown X and corresponding system of equation Ẋ = f (X, t) to be solved are summarised in Tables 4.1 and 4.2. To initialise unknowns X 0 , solution of R2 with cage is used for lengths, rotations unknowns, cage speed ω c , precession speeds ω j m and ball rotational speeds ω j R whereas other unknowns are set to zero.

Note that in this dynamic system, quasi-static unknowns r ′j i1 and r ′j o2 have been replaced by ω j m and ω j R . Then ξ j 1 and ξ j 2 are obtained by relations (4.58), (4.59) and effective rolling radius r ′j km by relations (2.80) to (2.83).

ξ j 1 = ω j R Ω i -ω j m (4.58) ξ j 2 = ω j R Ω o -ω j m (4.59)
Besides, Gupta [START_REF] Gupta | Advanced Dynamics Of Rolling Elements[END_REF] specified the importance of nondimensionalizing equations of motion in order to correctly estimate local truncation error. As for that, length unknowns were nondimensionalized by ball radius D 2 , forces by axial load F X and time by a combination of ball mass m b , ball radius and axial load such as defined in relation (4.60). Such strategy should be implemented in BB20 in order to work with consistent time steps comprised between 0 and 1.

t * = t m b D 2F X (4.60)
At the moment, all this theory on dynamic modelling has been programmed in BB20. However, improvements still need to be made in order to get exploitable results. 

Summary

Previous chapters have shown the necessity to transpose BB20 in dynamics. This work has been started here. As for that, balls, cage and inner race masses, inertia matrix and dynamic torsors have been defined. New dynamic system of equations and unknowns have been set. This system can be solved by a Runge-Kutta-Fehlberg algorithm that computes problem unknowns at each time-step and that adapts step size at each step. At the moment, numerical developments are still needed to get exploitable results. This should be done in a future thesis.

Conclusion

To conclude, this thesis focused on BB20, a computer code that solves quasi-static equilibrium of four contact point ball bearings. In initial model, only balls and rings are considered with lubrication, inertia, external loads on inner ring, ball-race contact and friction forces. A detailed state of the art of literature models revealed that BB20 was one of the most accurate ACBB existing model. Indeed, it considers up to 4 ball-race contact points and does not make any raceway control hypothesis to compute kinematics. Instead, all balls degrees of freedom are calculated by solving forces and torques equilibrium. Especially, both pitch and yaw angles, arising from two gyroscopic momentums, are computed. Ball-race interactions are accurately modelled by considering spinning, rolling, macro-sliding at contact and by integrating shear stress on each point of surface ellipse. Is this way, detailed kinematic behaviour is calculated. However, all these considerations make numerical resolution particularly tricky to be solved. Then, because of initial BB20 complexity and limitations, algorithm optimisation and models improvements had to be done before considering cage effects. As for that, model has been transposed in a direct coordinate system. Unknowns, coordinate systems and equations have been redefined to consider negative angles and reverse thrust load. Ball-race deformations and film thickness definition have also been reconsidered to work with a single, continuous and smooth system of equations adapted to any contact and any ring truncations. Numerical scheme, drag model, friction forces computation and system nondimensionalization have also been revised in details. It was shown that all these modifications reduce converging constraints, improve numerical continuity, system conditioning, robustness and computational time. This new model is also adapted to larger operating conditions in terms of bearing geometry, speeds or loads.

Consequently, under pure axial load or moderated radial loads, analysis of ball kinematic parameters and sliding lines on contact ellipse is in agreement with expected results. When radial load becomes larger than axial load, ball-to-inner race detachments and falls in ball-speeds are observed. Model is not adapted anymore, cage and dynamical effects should be considered. However, a solution with hypothesis on balls rotations, have been proposed to get a first overview on bearing equilibrium.

A comparative study with literature reference models has also been conducted. Similar behaviours have been observed between models, which confirms BB20 correctness. BB20 has also been validated by comparison with Safran's power loss experiments and with Kawamura's measurements of pitch angle, ball and cage rotations. Nevertheless, validation of a quasi-static model turned out to be complicated because on the one hand, each literature model makes its own hypothesis, and on the other hand, experiments are limited by ability to measure kinematic parameters.

Conclusion

In a second time, cage has been added into the model. As for that, cage rotational speed and ball-to-pocket ortho-radial displacements are estimated by a quasi-dynamic approach. Cage-to-guiding race interactions are modelled by short journal bearing theory. Ball-to-pocket interactions are also represented, in a given plan, by SJB theory adapted to HD or EHD regimes. In an orthogonal plan, ball-to-pocket interactions combine different effects. Indeed, barrel-plan theory models HD normal and frictions forces. EHD interactions are defined by Hertzian contact for normal loads and by dry shearing for friction forces. Numerical procedures have been developed to manage with discontinuities between these HD to EHD regimes. A strategy has also been set up to deal with important ortho-radial displacements and SJB forces that can cause singularities. Then, cage equilibrium is reached step-by-step. This involves larger computational time but ensures greater robustness.

In addition, cage can be considered as a rigid or flexible body. With rigid model, cage is defined as a single solid and 6 equations on cage center are solved. With flexible model, cage is divided into N finite elements and 6N equations on pockets are solved. Structural dynamics methods are used to compute 3D cage flexibility with both global and local deformations.

This quasi-dynamic model has been run with increasing axial loads. When cage is guided by the inner race, axial displacements and ball-to-pocket normal loads are larger than under outer race guidance. Under IR guidance, cage self-rotations and ball-to-pocket displacements are such that cage pulls balls whereas under OR guidance, balls are pulled by the cage. Ball kinematics have also been investigated under pure axial loads. If general results agree with literature, BB20 showed in addition the non negligible influence of axial load and shaft speed on yaw angle.

Tests have also been run with combined axial and radial loads. Because of cage-race SJB interactions, cage rotates on itself and gets positioned at 90 • from radial load. And, these motions increase with radial load. As well, analysis of ball-to-pocket minimal clearance confirmed the necessity to take cage into account. Its influence on ball kinematics and ball-race contact points location have been demonstrated. It has also been shown that, under small radial load, all balls are positioned at the same place in the pocket. When radial load increases, each ball gets positioned differently until that loaded balls stand at one side of the pocket and unloaded balls at the opposite side. To better understand this behaviour, contribution of kinematic parameters and ball-to-pocket forces in each plan have been analysed. It appears that each effect is related to others by precise mechanisms.

Flexible cage has also been studied. Convergence difficulties have been observed because of quasi-dynamic limits and of simplifications on cage-race interactions. Similar cage center motions have been observed between flexible and rigid models. However, flexible cage experiences non negligible pocket elastic deformations, especially with soft materials like PEEK. Besides, rigid quasi-dynamic model has been compared with a dynamical model of four contact-point ball bearing. Similar results have been observed, which strengthens our belief in BB20 correctness. Transposition in dynamics should allow to get even closer results. Above all, this comparative study with ACBB working under 1, 2, 3 or 4 contact-points, confirmed the influence of rings truncations and pointed out that getting a third contact-point particularly complicates kinematics.

Conclusion

Finally, computational time analysis has shown that quasi-dynamic resolution was much longer than quasi-static, even if it cannot be longer than dynamics. Then, quasidynamic model is a practical tool to get a first overlook on bearing behaviour with cage. Its development was essential to introduce cage accurately, its limits have been raised and justified the necessity to transpose BB20 in dynamics. As for that, bodies inertia parameters and dynamic torsors have been defined before setting the system of equations. This system can be solved by a Runge-Kutta-Fehlberg algorithm that computes problem unknowns at each time-step. This dynamic modelling approach has been started. However, numerical developments are still needed to get correct results.

Prospects

Once the basic dynamical model solved, additional effects should be considered. For example, ball-race, cage-race and ball-to-pocket squeeze-film damping are non negligible dynamical phenomena caused by film thickness variations. Cage weight or bodies unbalance could also be added as an option. Lubrication could be improved by considering thermal effects, starvation or by improving ball-race traction model. Indeed, instead of considering a constant coefficient, Kragelskii or Maxwell-type formulations should be used. They are function of sliding speeds and lubricant characteristics, then they are more accurate. Cage-race interactions are also limited to SJB theory with coaxial bearings. To be able to represent rings misalignment, SJB solutions with misaligned axis should be considered. Cage-race dry contact should also be made possible, especially to improve numerical resolution when such contact is met over iterations.

Besides, this computer code will be used to design new cages and to validate manufacturing defects (clearances, fits, etc.). That is why, cage asymmetries should be modelled with possibility to change pockets geometry independently of one another. And, if most cages are made of cylindrical pockets, other shapes like oblong pockets exist. With such geometry, ball-to-pocket clearance is increased, then collisions are limited. It would be interesting to investigate the influence of pocket geometry on kinematics, contact forces or cage center motions. To improve cage flexible model, stiffness matrix could be imported from a finite element software, rather than being calculated analytically. Is this way, different cage architectures could be considered. As well, to avoid bearing failures, surface defects like dents, bumps, spalls or debris could be added. In such a case, dynamics is essential since surface imperfections involve ball speed reduction and risks of ball-to-pocket collisions.

As well, aircraft engines bearings are submitted to important temperatures. Lubricant flow between upstream and downstream side can result in large temperature differences, then in asymmetric forces distribution. That is why, influence of such parameter could be taken into account through a thermo-mechanical model. Finally, in previous BB20 version, rings and housing deformations were considered by coupling BB20 with a finite element approach. In this new version, we did not report coordinate systems modifications to this deformable model. This could be done in order to investigate in dynamics the influence of rings deformations.

Thus, all these prospects show the huge potential offered by BB20 once the dynamic solved.

A. Review summarising Tables ϕ T G : Gupta [START_REF] Gupta | Viscoelastic effects in MIL-L-7808-Type lubricant, Part I: Analytical formulation[END_REF] ϕ SC : Chiu [START_REF] Chiu | An Analysis and Prediction of Lubricant Film Starvation in Rolling Contact Systems[END_REF] ϕ SHD : Hamrock and Dowson [START_REF] Hamrock | Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part IV-Starvation Results[END_REF] ϕ SO : Olaru [START_REF] Olaru | Starvation in ball bearings[END_REF] When pitch angle is calculated, following method can be used:

-ED : Equal distribution between races -HT : Hybrid theory -min : Contact friction minimisation µ : Friction coefficient is set to prevent gyroscopic slippage -RCA : Rolling Contact Analysis -RCH : Raceway Control Hypothesis -M : Ball torque equilibrium As well, 1 or 2 gyroscopic momentums can be calculated. In quasi-static, they arise from pitch and yaw angle computations. Note that if a data is not given in a table, either it is not considered in the model or information was not found. 

Friction coefficients

At ball-race contacts, a constant friction coefficient, set by user, is considered. At cagerace and ball-to-pocket interactions, constant coefficients equal to dynamic viscosity µ(T, P ) are also considered. However, for continuity reasons, when shear force F j sh is greater than 10% of normal load W j f , we set F j sh equal to 0.1W j f . In other words, at high pressures, shear force is replaced by a Coulomb's law with a friction coefficient of 0.1.

Thermal reduction factor on film thickness

Under high-speed and important sliding, energy loss due to shearing and temperature increasing occurs at contact. Since oil viscosity decreases rapidly with temperature, film thickness is reduced too. That is why, a reduction factor on film thickness ϕ T is considered at ball-race contact. It is expressed by Gupta's [START_REF] Gupta | Viscoelastic effects in MIL-L-7808-Type lubricant, Part I: Analytical formulation[END_REF] relation in (C.4), where L and S are dimensionless parameters that characterize, respectively, thermal load and sliding. Normal load effects are given by P m , the maximum Hertzian pressure. Angular Contact Ball Bearings are widely used in aerospace industry because of their ability to work at high-speed and to support important loads. Depending on operating conditions, kinematic and dynamic behaviours are complex and bearing design optimisation is essential. That is why this study aims at continuing Leblanc and Nelias' quasi-static model with balls and rings. Difficulty of this model lies in the fact that up to four ball-race contact points are considered. As well, all balls degrees of freedom are calculated without making any kinematic assumption. Then, one of the purpose of this thesis is to improve computation of friction forces, EHD lubrication and kinematics at each point of contact ellipse. The model is also harmonized in order to get a single system of equations that better deals with numerical discontinuities due to contact changes. Solutions are proposed to extend operating conditions at lower speeds and higher radial loads or misalignments.

     L = -∂µ ∂T (U 1 +U 2 ) 2 4K f S = 2 U 1 -U 2
Besides, aeronautical industry is currently developing ball bearings with cages made of lighter but softer materials. Such bearings experience cage deformation and stress concentration due to ball-to-pocket impacts. These are produced during acceleration and deceleration phases or during cruise when operating with combined thrust and radial load. That is why this study aims, in a second time, at adding cage into the quasi-static model. Ball-to-pocket and cage-race interactions are considered as well as global and local cage elasticity in three dimensions. Finally, the whole system is transposed in dynamics in order to be solved over time and to consider acceleration components.

For various operating conditions, ball kinematics, ball-race interactions, cage center motion, cage local and global deformations are analysed. Model validation is done by comparison with existing models or with experimental results found in literature. 
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 1 Figure 1 : LEAP-1A engine designed by CFM International, a joint-venture gatheringSafran Aircraft Engines and General Electric Aviation[START_REF] Gomez | LEAP-1A[END_REF] 
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 1314 Figure 1.3 : Kingsbury's model for cage whirl motion at initial position and at 90• , schematized by Niu[START_REF] Niu | An investigation on the occurrence of stable cage whirl motions in ball bearings based on dynamic simulations[END_REF] 
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 15 Figure 1.5 : Pederson's flexibility modeling[START_REF] Pederson | The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings[END_REF],[START_REF] Pederson | The influence of cage flexibility on bearing dynamics and performance[END_REF] 
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 16 Figure 1.6 : Weinzapfel's flexibility modeling[START_REF] Weinzapfel | A Discrete Element Approach for Modeling Cage Flexibility in Ball Bearing Dynamics Simulations[END_REF] 
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 18 Figure 1.8 : Li's flexible cage model[START_REF] Li | Dynamic characteristics of ball bearing with flexible cage lintel and wear[END_REF] 
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 19 Figure1.9 : Liu's flexibility modeling[START_REF] Liu | Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions[END_REF] 
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 110 Figure 1.10 : Walford's squeeze-film modeling[START_REF] Walford | The Sources of Damping in Rolling Element Bearings under Oscillating Conditions[END_REF] 
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 111 Figure 1.11 : Hagiu's squeeze-film modeling [106]
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 113 Figure 1.13 : Wijnant's squeeze-film modeling[START_REF] Wijnant | Contact dynamics in the field of elastohydrodynamic lubrication[END_REF] 
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 114 Figure 1.14 : Sarangi's squeeze-film modeling [225] under pure EHD lubrication
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 115 Figure 1.15 : Sarangi's squeeze-film modeling [227] under mixed EHD lubrication
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 2223224 Figure 2.2 : Inner ring self-rotation
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 13326 Figure 2.6 : Contacts orientations Each ball can have 1, 2, 3 or 4 contact points with races in I j km . Thereafter, index k equal to i or o will refer to inner or outer race, and index m equal to 1 or 2 will refer to contact side 1 or 2. Coordinates systems R
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 27 Figure 2.7 : Curvature centres at inner and outer ring
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 28 Figure 2.8 : Contact parameters on outer race, side 2
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 214215 Figure 2.14 : F Xkm integrands over contact ellipses
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 216 Figure 2.16 : Sliding speed V j Zkm and friction force F j Zkm without spinning or transverse sliding
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 221 Figure 2.21 : Results for bearing A after ball detachment improvements
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 222 Figure 2.22 : Sliding lines for bearing A, under different working conditions

Figure 2 . 23 :

 223 Figure 2.23 : Sliding lines for bearing A under low radial loads
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 224225 Figure 2.24 : Sliding lines for bearing A under important radial loads
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 2262 Figure 2.26 : Evolution of spin-to-roll ratio at inner and outer race with shaft speed Figure 2.26 presents with shaft speed N i , evolution of spin-to-roll ratio ω Skmω Rkm for inner race (IR1) and outer race (OR2). We can observe that ADORE RCH compute a solution with inner race control (ω So2 ̸ = 0, ω Si1 = 0) at speeds below 8 000 rpm and outer race control (ω So2 = 0, ω Si1 ̸ = 0) at higher speeds. BB20 curves have similar shapes excepted that control is always slightly shared between both races at low and high speeds. For speeds lower than 4 000 rpm, balls mainly spin on
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 227 Figure 2.27 : Evolution of pitch angle β with shaft speed

Figure

  Figure2.27 presents evolution of pitch angle β j with shaft speed. For all models, we can observe an abrupt change of this angle at same speeds values as abrupt spinto-roll ratio change. Differences in speeds between BB20 and Harris may be due to friction coefficient definition. BB20 and ADORE RCH have same shape as Harris but different amplitudes. We can ask ourselves if these differences are due to BB20 mistakes, to hypothesis in ADORE RCH or to Harris' model hypothesis. Especially, neglecting β ′j angle and transversal speed may have significant impact on β j computation.
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 228229 Figure 2.28 : Evolution of cage-to-shaft speed ratio ωc N i with shaft speed
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 230 Figure 2.30 : Evolution of spin-to-roll ratio at inner and outer race with axial load

Figure

  Figure2.31 presents evolution of cage-to-shaft speed ratio with axial load F X . We can observe that ADORE and Harris with RCH have similar results. BB20 is also close but with amplitude differences under low axial loads. For all models, cage speed decreases with axial load whereas it increases for Harris' one. This phenomena is due to drag effect that decelerates cage speed under low axial load. Indeed, as illustrated on Figure2.32, when drag coefficient C d is increased in BB20, cage slows down more and more under low axial loads. Same behaviour is observed on Figure2.33 when friction coefficient µ is decreased. Then, Harris differences observed in Figure2.31 are also due to the fact that friction coefficient is prescribed differently.
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 231 Figure 2.31 : Evolution of cage-to-shaft speed ratio ωc N i with axial load
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 232233 Figure 2.32 : Influence of drag coefficient C d on cage speed ω c Figure 2.33 : Influence of friction coefficient µ on cage speed ω c
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 36 Figure 3.6 : Ball-to-pocket geometric interaction
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 39 Figure 3.9 : Normal load evolution with ball-to-pocket gap cp 2 -∆ j pb , for different contact models
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 310 Figure 3.10 : Short journal bearing interaction

Figure 3 . 11 :

 311 Figure 3.11 : Short journal bearing parameters

Figure 3 . 13 :

 313 Figure 3.13 : Races-Pocket interactions
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 314315 Figure 3.14 : Cage discretisation by finite elements
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 1 Pure axial load • Cage interactionsTo begin quasi-dynamic validation, tests are run with bearing A defined in Table
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 316 Figure 3.16 : Results for different type of cages under pure axial load
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 318 Figure 3.18 : Evolution of β ′ with axial load F X and shaft speed Ω i for rigid cage centered on IR
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 3319 Figure 3.19 : Rigid cage results with an increasing radial load

  (c), (d). Indeed, according to SJB expressions (3.70) to(3.86), when radial load increases, cage-race eccentricity increases, then relative eccentricity gets closer to 1, cagerace hydrodynamic loads W km and friction torques C 1km increase which explains that F c/IRy , F c/IRz and M c/IRx increase too.To better understand cage behaviour, we plotted inFigures 3.20 

  and 3.21, the evolution of |G I C j i1 | and |GC j o2 | over the bearing. These scalars define the distance between inner or outer ring center and race curvature centers. These distances reflect ball-race contact point motion relative to ring center. On both Figures (d) we can observe that radial load does not influence location of ball-race contact points along y G and z G . On the contrary, as noticeable on Figures (a), (b), (c), when radial load is applied, ball-race contact points are shifted from pure axial load position, in x G direction. This motion increase with radial load. It is directed in one direction for loaded balls and in opposite Results analysis direction for unloaded balls. It is always maximum for loaded ball 11 and unloaded ball 1. Variation G I C j i1 •
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 320321 Figure 3.20 : Positions of ball-to-inner race contact points: |G I C j i1 |

  (a), (b) as a function of ball number. Under small radial loads, all balls are positioned on the same side of the pocket. They are at the back side (P B j
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 322 Figure 3.22 : Ball-to-pocket displacements in (G j p , z j p , x j p ) plan, for rigid cage F j p/bz and F j p/bx , the ball-to-pocket forces along z j p and x G , are plotted in Figure 3.23 (c) and (d). These forces are the contribution of barrel-plan normal and friction forces, Hertzian load, shear force and ball-to-pocket SJB forces. By comparing Figure 3.23 (a) with (c) and Figure (b) with (d), we can observe that evolution of P B jz is directly related to F j p/bz since same tendencies (up to an overall sign) are observable. On the contrary, F j p/bx does not have same evolution as P B j x which shows that ball-to-pocket position along x G is influenced by other forces like those of adjacent balls.Contribution of barrel-plan normal load W j f is plotted in Figure3.23 (e) whereas contribution of ball-to-pocket SJB normal load W j sb is plotted on Figure3.23 (f). Under small radial loads, W j f are centered around -1N whereas W j sb are centered on zero. When radial load increases, both loads vary around these values. However, if W j f amplitude does not exceed 2.5N, W j sb variation is 10 times larger. Then, ball-to-pocket SJB effect is predominant on barrel-plan effect when ball-to-pocket interaction is under HD lubrication. This phenomena is confirmed if we compare Figure3.23 (c) with (f) under large radial loads. Indeed, same spikes around balls 8 and 14 are present on both plots which confirms that forces F j p/bz are mainly due to SJB forces. In dynamics, because of EHD lubrication, we expect Hertzian loads to be larger than these SJB forces.If we compare Figure3.23 (a), (b) with (e), we can confirm that barrel-plan normal loads W j f are directly related to ball-to-pocket displacements. Under small radial loads, they are not equal to zero but almost constant because of small P B j . Under important radial loads, they are maximum when P B j are maximum and film thickness h j f are minimum . Ball-to-pocket SJB normal loads W j sb are related both to P B j and to ball self-rotations β j . Indeed, β j are maximum for loaded balls and minimum for unloaded balls. On Figure3.23 (f), we can observe that W j sb are equal to zero when radial load is equal to zero. Under combined loads, they are small for balls located in unloaded zone. In such cases, even if P B j are not minimum, ball self-rotations β j are small, then W j sb are small too. When balls are getting loaded, β j increase, then, according to relations(3.47) 
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 323324 Figure 3.23 : Ball-to-pocket interactions under increasing radial loads
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 325 Figure 3.25 : Ball-to-pocket displacements in (G j p , z j p , x j p ) plan, for flexible cage
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 326327 Figure 3.26 : Pocket elastic deformations with steel cage
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: Bearing configurations and corresponding equations

3 Ball kinematic

Ball kinematic is directly related to interactions with inner and outer race, especially with ω i and ω o , the relative angular velocity of inner and outer race. The operating pitch diameter d m , represented in Figure

2

.8, is defined by :

Table 2 . 3 :

 23 Roots and weights for n = 5
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	Friction forces computation

6 : Results obtained with different methods 2. Quasi-static model with balls and rings

  [START_REF] Martin | Lubrication of gear teeth[END_REF] , δ y , δ z , θ y , θ z ) or 3 forces, 2 momentums (F X , F Y , F Z , M Y , M Z ) or 3 displacements, 2 momentums (δ x , δ y , δ z , M y , position angles induced by gyroscopic and centrifugal motions (β j , β ′j ). • 2N effective rolling radius at ball-race contacts (r ′j i1 , r ′j o2 ). Besides, to improve numerical resolution and especially Jacobian conditioning, each equation and each unknown are nondimensionalized by a parameter given in Table2.7.

				Quasi-static resolutions
	6.2.3 Numerical procedure			
	BB20 solves in quasi-static a system of 12N+5 equations with: • 5 equilibrium equations on inner ring: (2.159), (2.160), (2.161), (2.166), (2.167). • 6N equilibrium equations on balls: (2.169), (2.170), (2.171), (2.173), (2.174), (2.175). • 6N geometric equations between balls and rings: (2.29), (2.30), (2.34), (2.35), (2.42), (2.43).
	The related unknowns are: • 3 displacements, 2 rotations on inner ring (δ x M z ). • 4N ball-race contact angles (α j i1 , α j i2 , α j o1 , α j o2 ). • 4N Hertzian deformations at ball-race contacts (δ j i1 , δ j i2 , δ j o1 , δ j o2 ). • 2N ball Equation Parameter Unknown	Parameter
	F QS/IRx : (2.159)			δ x	
	F QS/IRy : (2.160) F QS/IRz : (2.161)		F 2 X + F 2 Y + F 2 Z	δ y δ z	D 2
	M QS/IRy : (2.166) M QS/IRz : (2.167)	dm 2	F 2 X + F 2 Y + F 2 Z	θ y θ z	π N
	F j QS/bx : (2.169)			α j o2	α f
	F j QS/by : (2.170)	N F 2 X + F 2 Y + F 2 Z	δ j o2	D 2
	F j QS/bz : (2.171)			r ′j o2	D 2
	M j QS/bx : (2.173)			r ′j i1	D 2

Table 2 .

 2 [START_REF] Brecher | Cage Friction in High-Speed Spindle Bearings[END_REF] 

			α j o1	
	f j IRx : (2.34) f j IRORx : (2.42)	D 2	α j i2 α j i1	α f
	f j ORy : (2.30) f j IRy : (2.35) f j IRORy : (2.43)	D 2	δ j o1 δ j i2 δ j i1	D 2

7 : Parameters used to nondimensionalize related equation or unknown 2. Quasi-static model with balls and rings 6.2.

4 Ball-to-inner race detachment

  • Initial observations To validate BB20, we interest in four bearings currently mounted on aircraft engines designed by Safran company. Their main characteristics are given in Table 2.8.

	Bearing N D (m) d m (m) J d (mm)	f i	f o	g i	g o Ω i (rpm) F X (kN) F Y (kN)
	A	20 0.019	0.15	0.13	0.52 0.51 ̸ = 0	0	17 500	[1; 15]	[0.1; 15]
	B	17 0.018	0.12	0.14	0.52 0.51 ̸ = 0 ̸ = 0	23 900	[1; 300]	[0.1; 30]
	C	24 0.029	0.25	0.13	0.51 0.51 ̸ = 0	0	5 000	[1; 100]	[1; 15]
	D	20 0.045	0.35	0.17	0.51 0.51 ̸ = 0 ̸ = 0	3 700	[10; 200] [0.1; 100]

Table 2 .8 : Bearing data
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  .21. When radial load F Y is less or equal than 7 000N, all balls are attached to inner race. All curves (excepted those of β ′j ) have sinusoidal shapes. For F Y =7 000N, a small fall already occurs. For F Y =9 000N, balls 1, 2, 19, 20 are detached and balls 3, 4, 5, 6, 17, 18 are almost detached from inner race, then their computation is forced. For F Y =10 000N, balls 1, 2, 3, 19, 20 are detached and balls 4, 5, 6, 16, 17, 18 are almost detached. This detachment has no influence on outer race loads and contact angles computed. For inner race, as expected, contact angles and loads tend to zero. Ball speeds are particularly impacted by this detachment since they are prescribed. Consequently, curves obtained does not have sinusoidal shape anymore.

Table 2 . 9 :

 29 .9. Main results obtained are gathered in Appendix B, Table B.1. Operating conditions applied for bearing A under pure axial load We work under pure axial load, then all balls have same kinematics with two contact points and with sliding lines of Figure 2.22. Spinning direction is clearly visible on ellipses of test B. Is this way we can verify that ω j

	Test	A	B	C	D
	F X (N)	15 000	15 000	150	150
	Ω i (rpm)	17 500	1 750	17 500	17 500
	µ	0.065	0.065	0.065	0.65

Si1 , M j Si1 and ω j So2 , M j So2 are opposite.

Table 2 .
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	.045	0.34	0.14	0.508 0.513 ̸ = 0 ̸ = 0	3050	347 300 15 000

10 : Data of bearing tested 7.2 Comparison with literature

Table 2 .
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	8.731	48.54	24.5 0.52 0.52 0 0	442	0

11 : Bearing design data from Harris' first study

[START_REF] Harris | Ball Motion in Thrust-Loaded, Angular Contact Bearings With Coulomb Friction[END_REF] 

Table 2 . 12 :

 212 Bearing design data from Kawamura's study[START_REF] Kawamura | Motion of Unbalanced Balls in High-Speed Angular Contact Ball Bearings[END_REF] 2. Quasi-static model with balls and rings

	min)

Table 3 . 2 :

 32 .2. This system is solved with same Newton-Raphson scheme. Regarding initialisation, cage motions are initialised like in rigid cage problem. Then, pocket unknowns are initialised by applying relations (3.20) and(3.21). Pocket parameters used to nondimensionalize related equation or unknown

	Equation	Parameter	Unknown	Parameter
	F j QD/px : (3.123)		δ j px	
	F j QD/py : (3.124)	N F 2 X + F 2 Y + F 2 Z	δ j py	cp 2
	F j QD/pz : (3.125)		δ j pz	
	M j QD/px : (3.126)		θ j px	
	M j QD/py : (3.127)	N R p F 2 X + F 2 Y + F 2 Z	θ j py	π N
	M j QD/pz : (3.128)		θ j pz	

Table 3 . 3

 33 

		Elastic modulus (GPa)	Poisson's coefficient	Density (kg/m 3 )
	Steel	200	0.3	7850
	PEEK	3.85	0.4	1300

: Material properties of steel and PEEK • Computational time

Table 3 . 4
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		Parameter	Unity Value
	N	Ball number		16
	D	Ball diameter	mm 17.464
	d i	IR diameter	mm 84.925
	d o	OR diameter	mm 120.14
	r i	IR groove curvature radius (r i = f i D)	mm	9.15
	r o	OR groove curvature radius (r o = f o D) mm	9.25
	e i	IR curvature eccentricity (e i = 0.5 g i )	mm	0.183
	e o	OR curvature eccentricity (e o = 0.5 g o )	mm	0.298
	D p	Pocket diameter	mm	17.7
	D co	Cage outer diameter	mm	111

: Data of bearing tested

6.2.1 Pure axial load

To begin, tests are run with constant speed of 5 000rpm and pure axial loads varying between 100 and 3 000N. Results obtained with BB20 and Ma's model are gathered in Figure

3

.28. On each plot, continuous line refers to BB20 and dashed line to Ma.
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							Elastic displacements minimisation
							+ Rigid body motion definition
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  and 4.|Err(t n+1 )| ∼ (∆t n ) m+1 (4.56) ∆t n+1 = γ ∆t n with γ = 0.8 ϵ R3 |X(t n )| |Err(t n+1 )|

	1/m	(4.57)

Table 4 . 1 :

 41 Inner ring and cage unknowns and equations in dynamics

	Summary

Table 4 . 2 :

 42 Balls unknowns and equations in dynamics

Table A . 1 :

 A1 Quasi-static and quasi-dynamic sophisticated models

			Inner ring	Balls	Cage	Inner ring	EHD Film thickness Balls Cage	Squeeze-film damping	Traction model EHD Film thickness	Contact points Traction model		Pitch computation Contact points	Normal + Friction forces Normal + Friction forces	Squeeze-film damping	Normal + Friction forces Normal + Friction forces	Squeeze-film damping	Centrifugal forces Centrifugal forces	Gyroscopic Moments Gyroscopic Moments	Viscous drag forces Viscous drag forces	Cage Flexibility
	Bearing type ACBB Bearing type ACBB All ACBB All BB ACBB, DGBB ACBB ACBB, TRB, DGBB, CRB Authors -CODE [Ref] Yang [273] Authors -CODE [Ref] Year 2016 Yan [272] 2015 Gupta -BDYN,DREB,ADORE [86]-[103] Shi -READ [235] 2020 Stacke -BEAST [240][239] Li -READ [162] 2019 Saheta -DBM [221] Cui -READ [52] 2019 Ghaisas -DBM [79] ACBB, DGBB Ashtekar -DBM[10][11]	Degrees of freedom 5 6 Year 5 6 1975-2020 3 3 5 6 ✓ 2000 5 6 ✓ 2001 5 6 ✓ 2003 2008-2010	Degrees of freedom 6 6 6 6 6 6 HD [140] ✓ 6 ✓ 6 ✓ 6 6 6 6 6 6 6	✓	Ball -Races = Ball -Races = HD,ϕ T G , ϕ SHD K [103] 2 2 [51] 2 [191] [1] ✓ 2 [230] K 2 [30][113] [108] [30] HD =		2 2 2 2 2	Ball -Pocket ✓ Ball -Pocket ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	Cage -Ring ✓ Cage -Ring ✓ ✓ ✓ ✓ ✓ ✓ ✓	✓ ✓	Additional forces ✓ Additional forces 2 ✓ ✓ 2 ✓ ✓ 2 ✓ ✓ ✓ 2 ✓ 2 ✓ ✓ ✓ 2 2 ✓ ✓ 2 ✓ 2 ✓ 2
	ACBB BB	Wu -READ [270] Ashtekar -DBM [9] 2021	5	6 2012	✓	6		6	✓	6		[14] [31] HD	2 K [91]		2	✓ ✓		✓		✓ ✓	2 2	✓	3D
	ACBB DGBB MicroBB DGBB BB, CRB ABB ACBB ABB ABB ACBB ACBB DGBB ACBB CRB ACBB	Poplawski -SHABHYB [207] Weinzapfel -DBM [262] 1996 Wen [265] 2020 Pederson -DBM [203][204] Crecelius -SHABERTH [46] 1977 Yao [274] Shoda [238] 1997 Ma [173][174] Leblanc -BB20 [157] [158] 2007, 2008 Li [161] Aramaki [6] 1988 Hahn [107] Chen -SACAB [38][39] 2012 Qian -CyBeSime [211] Gao [75]	5 5 5 5 5 1	6 2009 6 2005 6 2018 6 2022 6 2020 6 2005 5 2013 2021	3 3 3 1 1	6 6 6 5 6 6 6 5	AC, ϕ T C , ϕ SC 6 5 HD 6 3 AC, ϕ T C , ϕ SC 6 6 6 3 HD 6 6 HD 6 6 6 6 ✓ 4 4	✓ [31] HD N [31] HD ✓ K [94] = [142] [53] = [201] [175] HD	2 K [91] 2 [230] 2 2 K [282] 4 K [95] 2 ✓ 2 K [184] [117]	µ RCH 2 2 4 M 3-4 M 2 M 2 RCA 2	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓		✓	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	2 2 2 2 2 2 2 2 1 2 1	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	2D 2D 3D 3D 3D 2D
	ABB ACBB	Hamrock [110] Wen, Meng [264]	1975	3	6 2021	0	5		6		6	✓	= [177]	3 [176] [265]	M 2	✓	✓	✓		✓	✓ ✓	2 2
	BB, RB ACBB BB BB BB ACBB ACBB ACBB ACBB BB ACBB BB BB	Harris [120], Mindel [123] Wen, Meng [263] Servais [232] Niu [193] Bozet [27] Liu [169] Legrand -RBL4 [159] Wang [259] Tong [244] [245] Wang [254] Shi -READ [236] Nogi [196] Niu [194]	1972 2017 2016 1997 2017 2015	5 5 2 6 5 5	6 2021 6 2015 6 2011 6 2017 6 2016 6 2017 2016	1	5 6 3 3 6 1 6		6 6 6 6 6 6 6	AC 3 6 6 1 HD 6 ✓ 6 6	✓ ✓ ✓ ✓	N HD ✓ = [42][101] C, ϕ T W S , ϕ SHD HD, ϕ T G [16] [285] [170] [51] HD [91]	2 [176] [265] 2 N 2 K [32] 2 [48] 2 [97] 2 [137] [217] N	M 2 M 2 M 2 M 2 ED 2 2 2	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	✓ ✓	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓		✓	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	2 2 2 1 1 1 2 1 1 1 2	✓ ✓ ✓ ✓ ✓ ✓
	ACBB	Zhang [281]			2016		5		6		6		✓	K		2	✓		✓		✓	✓

Table A . 4 :

 A4 Sophisticated dynamical models

	Inner ring Degrees Balls of freedom 3 6 3 6 2 3 6 6 6 6 5 6 3 6 2 2 4 2 2 6 6 6 6 5 6 2 3 3 6 5 5 5 4 6 6 6 -0.0002 Cage Squeeze-film damping 3 3 1 6 ✓ 6 3 3 6 6 3 6 3 3 6 0 4 1 1 1 1 6 6 6 C -8.845 -0.815 0.561 0.0078 0.0056 -13E-9 0.0035 -2.2E-6 -0.084 -0.021 -0.021 72.5 -0.043 -2598 -62.4 3854 -2825 0.001 0.083 275 Table A.5 : Developed dynamical models B. R2 results under pure axial load EHD Film thickness Traction model Bearing type Authors -CODE [Ref] Year Ball -Races ACBB Liu [172] 2020 K [281] ACBB Liu [171] 2020 = RB Liu [167] 2021 [86] [79] BB Dong [60] 2015 ✓ [261] ACBB Bovet [26] 2016 [191] [138] [217] ACBB Fang [68] 2018 HD K [281] ACBB Han [118] 2018 HD [13] [117] ACBB Meeks -SEPDYN [181][180] 1984 [103] ACBB Meeks -BABERDYN [182] 1996 [103] ACBB Kannel -BASDAP II [148] 1978 [18] ✓ Gyro-bearing Walters -BASDAP [253] 1971 ✓ ✓ CMGB Boesiger -PADRE [22] 1991 [143] RB Houpert -CAGEDYN [129][130][131] 2010 [125] [127] ACBB, SRB, DGBB Prenger [210] 2003 [30] [113] K BB Niu [33] 2014 N BB Ye [276][277] 2015 [261] BB, RB Shao [37] [233] 2014 HD K [86] ACBB Wang [258][260] 2015 HD [48] ACBB Han, Chu [117] 2015 HD N ACBB Gao [74] 2020 HD [50] NRB, TRB Sakaguchi [223][224] 2006,2009 [201] [175] K [184] NRB Sakaguchi [222] 2006 [31] C, ϕ T G K [184] TRB, NRB Sekiya [231] 2011 [201] [175] K [184] Test A B D F j Xi1 (N) -42.5 -3.37 0 F j Xo2 (N) -149.5 -3.46 0 F j Zi1 (N) 7.338 1.577 -1.85 F j Zo2 (N) 0.595 -1.699 -535 Friction M j Ri1 (N.m) 0.070 0.014 0.0176 forces M j Ro2 (N.m) 0.014 -0.013 4.83 M j Si1 (N.m) 0.052 0.051 -49E-9 M j So2 (N.m) -0.028 0.051 -0.0072 M j Zi1 (N.m) -0.404 -0.032 0 M j Zo2 (N.m) -1.410 -0.033 0 V j Xi1 (m/s) -1.160 -0.00088 0 V j Xo2 (m/s) -1.160 -0.00088 0 V j Zi1 (m/s) -0.358 0.0063 3.61 Ball V j Zo2 (m/s) -0.605 -0.00158 -0.031 kinematics ω j Si1 (rad/s) -3396 -57.5 -5749 ω j So2 (rad/s) 176.2 -44.2 3.65 ω j Ri1 (rad/s) 7677 792 6838 ω j Ro2 (rad/s) -6640 -638 -7108 M j GY (N.m) 0.106 0.000 0.000 Ball motion M j GZ (N.m) 1.813 0.032 0.000 forces F j c (N) 1494 14 1729 C. Rheological parameters α * = 10 -9 A 00 T + A 01 T 2 + A 10 T -T c0 + A 11 (T -T c0 ) 2 (C.3)	Contact points 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Normal + Friction forces Ball -Squeeze-film damping Pocket ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	Normal + Friction forces Cage Squeeze-film damping -Ring ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	Centrifugal forces Additional Gyroscopic Moments Viscous drag forces forces ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ ✓ 1 ✓ 1 ✓ ✓ ✓ ✓ 2 ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ ✓ 1 ✓ ✓ 1 ✓ 1 ✓ 1	Cage Flexibility 2D ✓ 2D 3D 2D ✓
		F j dr (N)	-7.933	-0.074	-1.460	-18.891
		ω j m (rpm)	8022	777	3442	8628
		ω j R (rpm) β j ( • )	-71100 16.33	-6752 32.40	-30414 4.01	-76507 0.00
	Bearing	β ′j ( • )	0.98	0.01	0.04	0.00
	parameters	α j i1 ( • )	38.3	32.6	36.7	40.1
		α o2 ( • )	19.9	32.3	3.3	0.0
		δ j i1 (µm)	10.212	10.904	0.472	0.175
		δ j o2 (µm)	13.805	9.125	3.146	16.936
	Table B.1 : Results obtained for bearing A under pure axial load

  : Angular Contact Ball Bearing, Modelling, Quasi-static, Dynamic, Cage, Flexible, Contact mechanics, Lubrication.
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Summary

Appendix A

Review summarising Tables

Main features of each model are summarised in Tables A. [START_REF] Aihara | An experimental study of viscous rolling friction with reference to surface roughness at elasto-hydrodynamic contacts[END_REF] to A.6. They are organized from the most complete to the most simplified. However, such classification is highly modular depending if we consider that a modelling criteria, as avoiding RCH, considering gyroscopic momentum or 4 contact-points, is more important than another one. As well, certain model are considered as simplified because main feature is not to model ACBB but to consider a specificity like damping, raceway defect or cage flexibility. This does not mean that the model is basic or uninteresting. Note also that if a data is not given in a table, either it is not considered in the model or information was not found.

Bearing types are defined with following notations:

-ACBB : 

Consequently, to model lubricant in all ball-to-pocket interactions, viscosity is calculated at cage temperature T c and at ambient pressure P a such that F (P a ) = 0 and T g (P a ) = T g0 . Note that under EHD regime, viscosity is also considered at ambient pressure because contact pressure is already taken into account in film thickness through load parameter W ′ . For cage-race interaction, viscosity is calculated at a temperature equal to cage-race average one, and at ambient pressure P a because pressure is low. For ball-race interactions, viscosity is calculated at race temperature T i or T o , and at ambient pressure