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Abstract

Energy flexibility of an electric utility customer is the capability of changing its power con-
sumption from the normal consumption pattern. Energy flexibility on the demand side is a
major resource for ensuring the grid stability, avoiding activation of carbon-intensive energy
resources, avoiding costly investments for the reinforcement of the grid infrastructure and con-
struction of new power plants. In this context, buildings have a great potential due to their
thermal inertia (capacity of storing and discharging thermal energy).

The objective of this thesis is to study and propose efficient solutions for the estimation and
optimal control of energy flexibility in buildings. The diversity of buildings in terms of thermal
characteristics, Heating, Ventilation and Air-Conditioning (HVAC) systems, meters, sensors
and actuators is considerable. It follows that the flexibility can be generated by different
manners, and the exact impact of the different available options is often unknown. Given this
complexity, available methods are rarely scalable nor easily implementable.

The solutions investigated in this thesis are designed to address real-life implementation
issues: availability of data, scalability, genericity, integration to available building management
systems, thermal comfort requirements. Consequently, they are based on commonly available
data (sensors, meters and actuators) in buildings and do not impact the thermal comfort levels
defined by the building managers.

A solution that addresses the above objective and implementation constraints is HVAC
load control via indoor temperature setpoint adjustments. The first part of this thesis is
therefore focused on exploration of methods for day-ahead forecasting of the total HVAC
power consumption profile, based on commonly available features: global indoor temperature
setpoints, indoor temperature, weather data, time related data. Since indoor temperature
reflects the thermal state of the building, similar methods have been investigated for forecasting
its dynamics. Cascaded predictions have been tested, which imply using indoor temperature
forecasts for predicting the power consumption. Regarding this option, results show that the
propagation of the indoor temperature forecasts errors is prohibitive.

Based on the first investigations, a predictive model for power consumption forecasting
has been implemented, based on supervised learning. To capture the dynamical behavior of
power consumption, without forecasting the evolution of indoor temperature, actual and past
values of the selected features are used for predicting the actual HVAC load.

A second part of the thesis is focused on refining and integrating the predictive model in a
demand response framework, consisting in load shedding incentives. Load shedding is achieved
using inherent energy storage capability of the building (preheating/precooling). Based on a
simplistic demand response program that compensates the shedded load, an optimization-
based strategy has been proposed to perform optimized load shedding operations. An estima-
tion of the possible income based on the given program has been carried out.
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Résumé

La flexibilité des clients, vis-à-vis du système électrique, désigne la capacité de modifier tempo-
rairement leur profil de consommation. Il s’agit d’une ressource non-négligeable pour la gestion
efficace du réseau électrique : réduction de la consommation d’énergie carbonée, maintien de
la stabilité du réseau, atténuation des courbes de la demande électrique, limitation des in-
vestissements dans la construction des nouveaux moyens de production et dans l’extension ou
la consolidation du réseau électrique. Dans ce cadre, les bâtiments ont un grand potentiel
qui peut être exploité grâce à l’inertie thermique qui les caractérise (capacité de stocker et
restituer l’énergie sous forme de chaleur).

L’objectif de cette thèse est la conception de solutions pour estimer et piloter de manière
optimisée la flexibilité énergétique des bâtiments. La diversité des bâtiments en termes de
caractéristiques thermiques, systèmes de Chauffage, Ventilation et Climatisation (CVC), ac-
tionneurs et capteurs accessibles est considérable. Il en résulte que la flexibilité peut être
produite de différentes manières et l’impact exact des nombreuses options disponibles est sou-
vent mal connu. Compte tenu de cette complexité, les méthodes qui peuvent être conçues et
déployées facilement font défaut.

Les solutions étudiées cherchent à répondre à l’objectif fixé tout en considérant des prob-
lématiques d’implémentation réelles : accès aux données, généricité, intégration aux systèmes
de gestion existants, barrières d’acceptation liées au confort thermique. Ainsi, elles sont basées
sur des données (capteurs, compteurs et actionneurs) généralement disponibles et communs
à la plupart des bâtiments, et ne dégradent pas le niveau de confort thermique établi par les
gestionnaires de bâtiments.

Une solution qui répond aux objectifs et contraintes fixées consiste dans le pilotage de
la consommation énergétique par l’intermédiaire du contrôle de la consigne de température
intérieure. La première partie de cette thèse est ainsi focalisée sur l’exploration des méthodes
visant à prédire, pour un horizon de 24 heures, le profil de puissance totale consommée dans
un bâtiment, en fonction de variables explicatives disponibles : consignes globales de la tem-
pérature intérieure, température intérieure, données météo. Puisque la température intérieure
reflète l’état thermique dans un bâtiment, des méthodes similaires pour prédire sa dynamique
ont été étudiées. Des solutions de prédiction en cascade ont notamment été testées, impli-
quant l’utilisation des prédictions de la température intérieure pour la prédiction du profil
de puissance consommée. Sur ce point, les résultats ont montré un impact rédhibitoire des
erreurs de prédictions de la température.

Sur la base des premières investigations, un modèle prédictif de la puissance consommée,
basé sur des outils d’apprentissage supervisé a été adopté. Afin de capturer la dynamique, sans
prédire l’évolution de la température intérieure, les valeurs actuelles et passées des variables
explicatives sont utilisées pour la prédiction de la puissance consommée à un instant donné.

La deuxième partie de la thèse est dédiée au raffinement et l’utilisation de l’outil de prédic-
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tion développé, dans le cadre d’un programme de réponse à la demande, incitant à la réduction
de la consommation énergétique. L’effacement de la consommation est accompli en utilisant les
capacités intrinsèques de stockage thermique d’un bâtiment (préchauffage/pré-climatisation).
Sur la base d’un programme rudimentaire, rémunérant l’effacement de la consommation, une
stratégie d’optimisation a été a été mise en place pour effectuer des effacements de manière
optimisée. Une estimation des bénéfices tirés de l’intégration de ce programme a été faite.

Cette thèse a été réalisée dans le cadre d’un partenariat entre Schneider Electric, GIPSA-
Lab et l’Institut MIAI Grenoble Alpes, avec le soutien de l’Association Nationale de la
Recherche et de la Technologie (ANRT).
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Chapter 1

General introduction

1.1 Electrical grid transformation and the active role of build-
ings

The electrical grid is evolving, from centralized production assets and passive interactions
between the main electrical system and end-users, towards distributed smaller power sources
and complex energy transfers among grid participants. The sector is subject to increasing
uncertainties - electricity market deregulation, intermittent nature of certain grid assets, mul-
tiplication of electric vehicles - that are all additional challenges for operating the grid. In this
context, a strategic shift from supply that adapts to demand, to demand that also adapts to
supply, has been engaged.

In a potentially highly electrified future, the importance of DR, as a mean of inducing
changes in the electric usage of end-users, is enhanced. Applications are possible on the main
electrical grid as well as in local microgrids. In the first case the benefits are multiple, for
instance reducing carbon intensive power plants usage, consolidating grid stability reserves,
avoiding investments in grid extensions and construction of new power plants. In the second
case, DR allows optimising local energy usage and maximising the grid resilience and reliability.

Some DR programs have been around since a long time now, for instance Time Of Use
(TOU) electricity rates, that discourage energy consumption when the cost of electricity gen-
eration is high. DR, and more generally Demand Side Management, is however evolving. New
opportunities are confirmed, markets rules are established, new control strategies are adapted
for optimizing grid management. On the end-user side, the capability to answer to DR in-
centives depends, among other things, on the DR program requirements and the customer
operational constraints.

Buildings, in this context, have been identified as a major source of energy flexibility due to
several elements: the significant part of the total energy consumption that the building sector
accounts for, the inherent ability to store energy under a thermal form, the low investment
needed for energy flexibility management. Potential value exists in all sorts of buildings:
conventional or energy efficient, residential or tertiary buildings, etc. Energy efficiency at
a local level has been the major focus of optimization strategies in conventional buildings.
DR is inciting buildings to participate actively to the grid management, thus bringing new
challenging problems from a broader perspective.

1
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Accounting for the major energy consumption in a building, the contribution from Heating,
Ventilation, and Air-Conditioning system (HVAC) systems is crucial. Adjusting the HVAC
load might involve different subsystems and actuators: chilled/hot water temperature set-
points, mass flow rates, air flow rates, supply air temperatures, zone temperature setpoints
and humidity levels, etc. The interactions between the subsystems, and the various nonlinear
behaviours, makes the control very complex. Furthermore estimating the load impact of a
particular control action is challenging. HVAC load control problems have been tackled in
numerous ways using classical model-based or model-free optimal control frameworks. The
methods found in literature and applied in practice differ greatly in modelling complexity,
optimal policy training duration, the diversity of actuators and sensors, occupant’s comfort
impact, precision, etc.

1.2 Aims of the thesis

The main focus of the thesis is the design of a suitable data-driven model, based on the
available sensors and meters, that allows accurate estimations of HVAC load with respect to
the control actions. Because the indoor temperature contains important information about the
past dynamics of the building, attempts for its accurate estimation in a day-ahead framework
were also made. In a second stage, evaluation of DR benefits is carried out on a complex
simulated building.

The considered approaches, in contrast with methods found in the state of the art, have
the following technical features:

• They are based only on common available data such as indoor zone temperatures, indoor
temperature setpoints, HVAC total power consumption, weather conditions

• They use indoor temperature setpoints as control actions

It follows that the designed model is not tailored for a specific building, HVAC system or
DR mechanism, does not require extensive system data, is capable of capturing complex system
nonlinearities, enables explicit comfort control/maintenance, allows simple implementation
with no additional investments for installing sensors and actuators. The targeted use-case is a
day-ahead DR program that offers financial compensation for load reduction during strategic
time slots. In order to maintain indoor thermal comfort, load reduction is achieved by load
shifting, i.e. preheating or precooling the building. The associated benefit is determined
by the balance between the load reduction and the increase of the total power consumption
occurring with the precooling/preheating. The data-driven model is therefore used to estimate
the optimal precooling/preheating operation.
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1.3 Outline of the thesis

The thesis manuscript is organized as follows:

A first introductory part is articulated around the new challenges for energy management
in buildings and state of the art solutions.

Chapter 2 Control and optimization of HVAC systems - objective and chal-
lenges
This first chapter introduces the subject of Demand Response programs. Follows an
overview of HVAC system processes and components. The subject of optimal control
of HVAC systems is then introduced, with examples of classical methods. The key fea-
tures/pain points of each category, with respect to the desired application, are empha-
sized, motivating the adopted approach.

Chapter 3 Problem setting and adopted approach synthesis
In this second chapter, the adopted approach for enabling the energy consumption flexi-
bility in buildings is briefly described, along with the data used for the assessment, and
a summary of the final solution and results.

In a second part, HVAC power consumption and indoor temperature forecasting is in-
vestigated in a quite experimental way, covering questions such as building behaviours under
temperature setpoint changes, model structure and explanatory variables, sources of modelling
errors.

Chapter 4 Data-driven modelling for power consumption and indoor temper-
ature forecasting
In this chapter, experimental modelling approaches are tested for short term forecasting
of HVAC load. Since indoor temperature reflects the current and past thermal states of
the building, equivalent techniques have been studied for indoor temperature forecast-
ing as well. More precisely, have been tested linear state-space models, autoregressive
random forest predictive models, "classical" random forest predictive models, as well as
structured explicit models (for indoor temperature only).

In a third part, predictive modelling is investigated mainly under the angle of Demand Re-
sponse.

Chapter 5 Predictive modelling using boosted trees
Given the elements from the previous part, the adopted solution is described: features,
learning experiments, validation on available buildings.

Chapter 6 Economical evaluation of the energy flexibility potential
In this chapter the assumed DR mechanism is described, along with the optimal partici-
pation strategy. Economical results of the energy flexibility valued in such a program is
provided. Besides, the impact of some thermal characteristics of the building is discussed.
An economical comparison with the usual way of ensuring load shedding, by lowering the
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setpoints, is also provided.

General conclusion
The general conclusion discusses the main results and highlights the challenges and un-
certainties that still have to be answered in order to provide a operational solution.



Part I

Background and problem setting
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Chapter 2

Control and optimization of HVAC
systems - objective and challenges

2.1 Buildings in the new energy landscape

The evolution of communication technologies, the development of concepts such as smart
buildings together with Building Management Systems (BMS) spreading and the subsequently
large amount of data generated, fostered research studies which focus on modelling, forecast-
ing, retrofitting and controlling issues in buildings. For a very high-level view of the new
opportunities that the data "deluge" leveraged, readers may refer to (Alanne et al. 2022).
Large amounts of data and highly connected devices allow functions such as: monitoring,
predicting, controlling, interacting and managing (Alanne et al. 2022). Besides the possible
enhancements of energy performance and comfort, efforts have been deployed to enable build-
ings to become truly active components of the electrical grid. The importance of DR and
the need of flexibility on the consumer side has been highlighted since the increasing share
of renewable energy and distributed storage systems in the electrical grid. Indeed, the in-
herent uncertainty and limited controllability of some grid assets motivated stakeholders to
seek balance between demand and supply by intelligent management of the customer power
consumption. DR programs were thus introduced to motivate users to transition to an active
role in planning and operating the power systems, by adapting their consumption to some
signals that depend on the electrical grid constraints or the market. Rigorously, the Federal
Energy Regulatory Commission defines DR as "Changes in electric usage by demand-side
resources from their normal consumption patterns in response to changes in the price of elec-
tricity over time, or to incentive payments designed to induce lower electricity use at times of
high wholesale market prices or when system reliability is jeopardized".

DR programs are based on motivations offered for reducing the power consumption. Usu-
ally DR programs are categorized based on the type of motivation, as illustrated in fig. 2.1.
Implicit motivations (price-based and non-dispatchable) are based on the end-user reaction
to price signals, for instance TOU, Real-Time Pricing, Critical Peak Pricing, etc. Explicit
motivations (commited and dispatchable) are based on rewards offered for the reduction of
the power consumption at certain moments, for instance Direct Load Control, interruptible
load programs, capacity reserves market, etc. By reflecting in this way the supply and demand
balance, the marginal cost of electricity and more generally the global cost of the utility, DR
programs encourage users to adapt their energy consumption and avoid activation of carbon-
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challenges

intensive energy resources during peak hours. On a longer timescale, this helps avoiding
costly investments for the reinforcement of the grid infrastructure and construction of new
power plants. Extensive information about DR schemes, stakeholders and load management
strategies in smart grids is given in (Vardakas et al. 2014) and (Alizadeh et al. 2012).

Demand Response

Explicit / Incen�ve-based / Dispatchable Implicit / Price-based / Non-dispatchable

Direct load control mechanisms

Interrup�ble/curtailable load control

Frequency reserves (ancillary services)

Capacity reserves market

Balancing energy market

Demand side bidding market

Time of use (TOU)

Real �me pricing (RTP)

Cri�cal peak pricing (CPP)

Figure 2.1: Types of DR programs.

Buildings in particular have been successfully integrated in Direct Load Control programs,
given the significant electricity consumption and their flexible demand. In France, for example,
Direct Load Control schemes for buildings are integrated in ancillary services programs such
as frequency control. For this service, buildings are usually grouped by an intermediary
market participant, called an aggregator, in order to form a power reserve. The national
transmission system operator (RTE) contracts participation agreements with reserve providers
and activates the reserves as needed in order to ensure grid balance in real time. Apart
from this example, flexibility products can be remunerated for different services and through
different market mechanisms. There is no unified common architecture of such mechanisms
among the European countries, and even less along continents. Even though several DR
programs have common features among many countries, their implementation in practice
varies substantially. In France, the explicit flexibility products can take the form of capacity
or energy products and can be valued on several, possibly interdependent markets. In the first
category the participants are remunerated based on a fixed price (in €/MW) for modulating
their consumption during a given time-slot. The energy is necessarily remunerated on an
energy market. Several mechanisms are available: demand response tenders, capacity market,
manual frequency restoration and replacement reserves tenders, frequency containment reserve
tenders, interruptability tenders. In the second category, participants are remunerated (in
€/MWh) for an effective load reduction or generation for a determined power and duration.
The energy can be valued via frequency containment or restoration mechanisms, balancing
mechanisms, Notification d’Échanges de Blocs d’Effacement (NEBEF) mechanism.

Fig. 2.2 below illustrates the interactions among participants for power system balancing
in the French context, where the electricity system is a deregulated market. Two key roles
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are played by the Balance Responsible Parties (BRPs) and the Balancing Service Providers
(BSPs). The first balancing level is ensured by the Balance Responsible Party (BRP). Any
activity on the French electricity market (generation, consumption, selling, purchasing) must
be performed under the responsibility of a BRP, who is responsible for settling imbalances
between injections and withdrawals in its balance perimeter. A second level is provided by the
Balancing Service Provider (BSP) and the Transmission System Operator (TSO) who ensures
the balancing via dedicated mechanisms. An end-user for instance can participate to the power
system balancing through different paths. The participation by contracting directly with the
BRP or the BSP is possible as well as through intermediate participants such as aggregators or
retailers. Globally the involved market mechanisms, the interactions between the stakeholders,
the contractual commitments (duration of events, notification periods, events, etc.) and the
remuneration for the products are complex and under constant evolution.

Genera�on asset

End user / Consumer
Aggregator

Retailer

Trader

BRP BSP

Wholesale TSO

Figure 2.2: An example of power system balancing in a deregulated electricity market.

Despite the complexities, the flexibility potential of buildings thanks to their thermal
inertia has been investigated and pointed out. One advantage of integrating systems like
buildings in DR programs is the cost effectiveness (Olsthoorn et al. 2017), compared, for
instance, to building new power plants to ensure the demand at all times. Furthermore, given
the advances in building management systems and building standards, newly constructed
buildings are very energy-efficient and sometimes energy self-sufficient. As a consequence,
energy efficiency is not the primary goal anymore. DR schemes allow in this case new streams
of revenue, ways of lowering the energy bill or efficient management of microgrids.

In this work, the focus is put on thermal mass activation by precooling or preheating (in
summer and winter respectively). In the case of precooling, the energy storage is activated by
lowering the indoor temperature setpoints, for instance when the energy price is low. When
the prices become high, the stored thermal energy is released by resetting the temperature
setpoints to their nominal values, resulting in lower energy demand. In this case the cooling or
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the heating load is shifted in time according to the DR incentive. This operation can be seen as
a form of short-term energy storage that can be charged and discharged when convenient in a
control strategy that operates zone air temperatures. From a physical point of view, thermal
mass activation is a consequence of conditioning the thermal zone air, which enables heat
transfer to the building mass. The potential of shifting the power consumption, especially in
office buildings due to their typically high thermal mass, can be quite important, but limited
however to ensure the thermal comfort of the occupants (Olsthoorn et al. 2017).

Building an optimal strategy for managing the HVAC system is not trivial, especially
when occupants comfort is at stake. As pointed out in (Vázquez-Canteli et al. 2019), given
the actual low utility prices, DR programs that impact comfort and preferred electricity usage
might not be widely accepted. This has been also mentioned in (Schubnel et al. 2021) and
highlighted by many clients of Schneider Electric. Therefore, as soon as we leave the domain
of rule-based or expert-based strategies for DR, the complexity of finding an optimal solution
requires advanced techniques from the field of optimal control and modelling of the considered
system. The next part will address this question by referencing studies that are focused on
optimal control of HVAC systems, and investigating which techniques might be suited in the
DR context.

2.2 A short overview of HVAC systems

The goal of the HVAC system is maintaining in an efficient manner a comfortable and pro-
ductive environment in buildings, such as residential houses, schools, retails stores, offices
factories, etc. This implies maintaining indoor temperature and humidity in a comfortable
range, but also ensuring that the air is free from contaminants. Therefore HVAC processes
include:

1. heating and cooling, by adding or removing thermal energy to a space in order to raise,
lower or maintain temperature at comfortable levels;

2. humidifying and dehumidifying, by adding or removing water vapor to the air in order
to raise, lower or maintain the moisture levels in a comfortable range;

3. cleaning, by removing dust, biological contaminants or other particles, to ensure a good
air quality;

4. ventilating, by bringing fresh air from outdoor in order to dilute the gaseous contam-
inants, and more generally circulating and mixing air, to ensure good ventilation and
thermal energy transfers.

Each process depends on external factors such as the environment, the climate or the time of
the year.

HVAC components fall usually in four categories:
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1. primary heating and cooling system, for example boilers, furnaces, expansion coils,
chillers, cooling towers, etc.;

2. distribution system, which ensures the transport of heating and cooling to the indoor
spaces, for example pumps, pipes, coils, valves, fans, dampers;

3. delivery components which introduce the heating and cooling into the spaces, such as
fan-coil units, radiators, diffusers;

4. control components, which manage the operation of all the components for comfort,
process and energy efficiency. Some controllers can be connected together in a building
management system to optimize comfort energy and facility management.

HVAC systems can be further categorized depending on the used medium for distributing
heating and cooling: all-air systems, all-water systems and air-and-water systems. In a par-
ticular building we can find central HVAC systems, meaning that primary heating and cooling
components provide the service for the entire building, while the other components might be
distributed through the building. In contrast, decentralized systems pack all the components
into a complete unit which can serve a particular zone.

What is challenging when dealing with HVAC systems is the fact that there are a myriad
of possible configurations and components. The task of designing optimal control strategies is
therefore a complex one and the approaches can be as numerous as the possible configurations.
In the next section we will review some classical methods and highlight their limitations when
dealing with such complex systems.

2.3 Background on control and optimization of HVAC systems

The HVAC system of a building is usually the system that affects the most the energy use
of the building. As a result, a lot of efforts are concentrated on controlling it efficiently.
Optimization of the HVAC processes allows energy cost, CO2 or energy consumption efficiency,
while satisfying the desired indoor comfort. It’s worth noting that the cost efficiency doesn’t
lead necessarily to energy efficiency and that indoor comfort is an antagonist objective with
respect to energy consumption and cost.

A detailed overview of different supervisory control classes such as model-based or perfor-
mance map-based can be found in (S. Wang and Ma 2008). As mentioned in this review, the
classical approach to the problem of optimal control is considering overall system character-
istics and interactions among HVAC subsystems. Hence the optimization problem might be
fundamentally different depending on the HVAC system, the building characteristics and the
targeted application, as the references that follow will show.

When dealing with optimization of large and complex systems, the conventional approach
is model-based optimization. This implies identification of models that describe the HVAC
system energy consumption and the thermal dynamics of the building. Reinforcement learning
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(RL) is emerging as a model-free alternative, as it offers a paradigm of learning directly an
optimal control policy, based on the quality of the results obtained with controls undertaken
in a wide set of circumstances.

Note that expert systems (that can be considered in some cases as a model-free tech-
nique) or performance map control are also viable solutions, and are usually implemented as
a first step toward efficient control of HVAC systems. Expert systems are based on specific
human expert knowledge and consist in determining energy or cost-efficient control settings
for HVAC system operation given the operating conditions. Even though such systems are
usually automated, the expert rules are often static and depend on the richness of the expert
knowledge database. Performance maps are used for controlling efficiently HVAC components
and are obtained through simulation or real-world tests of the system over the expected range
of operating conditions. Both methods reveal their limitations when dealing with large and
complex HVAC systems, and therefore will not be further discussed.

2.3.1 Model-based optimal control

Model-based control is achieved by using models to estimate various variables of interest
needed to formulate the underlying optimization problem (objective and constraints). Mod-
elling approaches for buildings and their sub-systems dynamics are usually classified in three
categories: white-box, black-box, and grey-box modelling. (X. Li et al. 2014).

White-box modelling The approach referred to as white-box modelling or physical mod-
elling is based on whole-building simulating software that incorporates knowledge based mod-
elling of the underlying phenomena. For example in (Zhao et al. 2015), the authors used a
detailed physical model in a Model Predictive Control (MPC) framework, that targets mini-
mization of the HVAC energy consumption (cost function) while maintaining indoor thermal
comfort (operational constraints).

In practice, the drawbacks of such an approach are substantial. In the case where a
digital twin is developed, the model is built based on accurate system information.
Regarding the structural elements, this implies that the most accurate information
should be collected, such as thermal characteristics of materials, windows size, zone
layout, etc. All the elements of the HVAC system and the corresponding low level
controllers should also be accurately modelled. The whole modelling process is time
consuming and requires advanced domain expertise. In case the model is slightly
simplified, the calibration phase to match simulation outputs to true data can be
quite challenging. It goes without saying that such approaches are hardly scalable
given the fact that the modelling phase starts from scratch for each investigated
building. Moreover, the simulation can be computationally very demanding, and
complex to integrate in standard efficient and robust optimization frameworks.
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Grey-box modelling Grey-box modelling uses simplified physical descriptions of a building
in the form of explicit equations. The modelling is based on physical insights of the thermal
behaviour of the building and the HVAC system operation. Therefore the structure of the
model is defined by the user, through dynamical differential equations that represent the
conduction, convection and capacitance phenomena. Usually the building thermal dynamics
can also be represented by using an Equivalent Thermal Parameter (ETP) concept involving a
thermal Resistance and Capacitance (RC) network. The complexity of the model varies with
the targeted precision in the description of the thermal coupling and layers. For example a
building can be considered as a single zone and its external envelope modeled through only one
resistance and capacitance, or it can be modelled as multi-zone structure where each external
wall has a multi-layer model with a given number of resistors and capacitors.

For an extensive review of the method, including naming conventions, fundamental aspects,
modelling approaches and applications, one may refer to (Y. Li et al. 2021) and (Maasoumy
et al. 2016). Details about model structure, parameters and RC network order estimations
can be found in (Braun et al. 2002).

As an example of such modelling, the authors in (Lee et al. 2008) have used a model-based
method to limit peak-demand by thermal mass activation. The considered zones were modeled
as a single zone with four structural elements: an external wall, an internal wall, a roof and
a floor. Using RC equivalent networks, an energy balance is deduced for each of these four
structural elements. The resulting thermal network can also be arranged in a state-space form
where the ensemble of state variables is given by two nodal temperatures for each of the four
structural elements. The input variables are the indoor, outdoor and ground temperatures,
solar radiation absorbed on external walls and on the roof, solar radiation transmitted through
windows and absorbed on the floor, internal radiative gains for the floor, external walls, and
internal walls, and internal convective gains for the interior air. The output of the model is
the rate of instantaneous heat gain to the building air. This model is used to estimate, for a
specific zone temperature, the heat transferred to the air, associated to the building structure.
A second energy balance is introduced, describing the dynamics of the zone temperature under
sensible cooling load and heat gains associated to the structural elements. The derived models
are used in an optimization problem to determine the temperature setpoint trajectory that
minimizes the peak cooling load during a demand-limiting period. The cooling loads for zones
operated with a demand-limiting control are compared to night setup control loads.

Another example of equivalent RC model is given in (S. Wang and X. Xu 2006). In the
proposed model, the associated heat transfers for the main elements (walls, roof, windows,
internal masses and internal air) are considered, as well as latent, infiltration, occupancy, lights
and equipment’s heat gains. The paper describes the numerous complexities linked to heat
gains estimations, for instance estimating convective and radiative components of internal gain
from occupancy, lighting and equipments; estimating solar heat gains on different external wall
surfaces or transmitted through windows; etc. The building model was validated by using it
to predict the cooling load given the indoor air temperature and, in reverse mode, to predict
the uniform indoor air temperature given the measured cooling load and other estimated heat
gains.

In (Kelman et al. 2011) authors studied a MPC approach in a typical commercial building
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for widely known energy savings programs. They proposed a first-order thermal model to
approximate the energy balance and zone temperature dynamics. The controlled variables
are the mass flow rates and supply temperatures to each zone by the air handling unit, the
fraction of supply flow recirculated from zones and the air handling unit cooling coil outlet air
temperature setpoint. The indoor air temperature dynamics is approximated with a first-order
model, meaning that the thermal capacitance of the indoor air and the structural elements
of the zones are all lumped in a single thermal capacitance. Heat gains associated with
occupancy, equipment, and heat transfer with the ambient/exterior air are assumed to be
known in advance. The cooling and heating load is estimated using an energy balance of
the air handling unit. Finally the system dynamics and other variable equalities (such as
power used by the supply fan and the heating and cooling coils, cooling coil inlet and return
air temperatures) are expressed in a bilinear form. Bilinear state-space models were also
employed in (Lamoudi et al. 2011) and (Kolokotsa et al. 2009), where authors have used
physical insights for building modelling intended for control of heating, cooling, lighting and
blinds. The complexity of such models is variable, for instance in (Lamoudi et al. 2011)
each zone of the building was modelled separately in order to describe the dynamics of the
temperature, CO2 and indoor illuminance. In order to use the model in an energy optimization
framework, the power consumption was assumed to exhibit a linear behavior with respect to
the control action.

In (Berthou et al. 2014) several RC structures were compared with respect to their ability
to predict heating and cooling demands and indoor air temperature. Beyond zone cooling and
heating loads, the only heat gains considered were solar heat gains on the walls and transmitted
through the windows.The two solar heat gains were estimated using a specific model that uses
geometrical information of the building, cloud cover data, solar radiation from the weather
file, and time of the day data. The HVAC system is not modeled but is assumed to have a
known limited heating/cooling power.

More detailed modelling allows explicit representation of the control influence on the power
consumption. For instance in (Sun, Luh, Jia, and Yan 2013) and (Sun, Luh, Jia, Jiang, et al.
2013) a system specific control was investigated. Two HVAC components are controlled: the
general fresh air unit and the fan coil unit of each zone. The corresponding actions are fresh
air unit outlet air temperature, fan coil unit outlet air temperatures in each zone, fresh air
unit air flow rates and fan coil unit air flow rates in each zone. To solve the optimization
problem, the state of the system (indoor air temperature, wall temperature, indoor humidity,
and indoor CO2 concentration for each zone) is estimated based on equations of energy and
mass conservation, which depend on the control actions. In addition, the energy consumption
of chillers, pumps, and cooling towers and the fans in the fresh air unit and fan coil units, is
estimated using specific dedicated models and physical insights.
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Grey-box modelling still faces several challenges. Depending on the HVAC system,
the building configuration and the optimization objective, one has to decide what
physical phenomena should be modelled in detail. Depending on the complexity of
the model, the number of parameters to estimate can be very high. Finding a good
balance between accuracy and simplicity is a difficult task in this kind of applica-
tions.
The main difficulty comes however from the fact that the paradigm relies on mod-
elling heat transfers in a zone. The final equations are describing evolution of indoor
temperature in a zone given a set of heat gains (cooling/heating, occupancy, ir-
radiance, etc.) or inversely - the cooling/heating gains given indoor temperature
dynamics and heat gains from auxiliary sources. This requires the estimation of
the heating or cooling power transferred to the zone, as well as the rest of the heat
gains, which is far from being a straightforward task. For example, estimating the
heating or cooling load per zone, when the production system is centralized, might
be impossible without specific sensors. If the heating system is regulated using a
heating curve depending on the outside temperature, the estimation of quantities
such as maximum power is very difficult. Therefore, the operation complexity, the
interaction between the different HVAC subsystems, the system constraints and the
nonlinearities of the production and distribution system makes it very difficult to
build a mathematical knowledge-based model to predict the energy consumption.
When integrated in a control framework, modelling the dynamics of power consump-
tion with respect to the chosen set of actuators is necessary. Most frequently this is
dealt with by assuming control of heat load directly, or assuming a simple law, for
instance a linear behavior, between the actuator and the power consumption. Several
approaches can be found in literature that deal with this issue: building a mathemat-
ical model of the HVAC system, that integrates a wide set of actuators and sensors
(i.e. hot or chilled water heat flows, air flow rates, valve positions and temperatures
in various locations of the HVAC system); assuming a simple law, for instance a
linear behavior, between the actuator and the power consumption; assuming control
of heat load directly; assuming a simple control strategy such as switching on or off
the heating/cooling system. The following examples show that these methods are
adopted as well in black-box or model-free approaches.

Black-box modelling Another approach is using purely statistical or data-driven tech-
niques, with no knowledge needed regarding the mathematical structure of the system and
the corresponding dynamics. For an in-depth view of data-driven techniques for estimation of
building energy consumption, readers may refer to (Seyedzadeh et al. 2018). Machine Learn-
ing (ML) and statistical methods are used to predict energy demand of a building and other
related variables with different objectives: long and short term forecasting (hourly, daily,
monthly, etc.) without controllable inputs, optimisation of structural parameters (thermal
insulation, glazing properties, etc.), model-based control, etc.

(a) Forecasting only models
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It’s worth mentioning that a considerable fraction of data-driven techniques focuses on
forecasting, with no inherent control application possible. The objective in this case is to
accurately predict short-term (hourly or daily) or long-term (monthly or yearly) energy
consumption based on past data and sometimes weather or usage forecasts. Such mod-
els, trained with actual building energy consumption data, are valuable and have been
adopted for measurement, verification or ongoing commissioning of building performance.
For instance in (Dong et al. 2005), the monthly energy consumption is predicted using
Support Vector Machine algorithms trained on three types of weather data: monthly
mean outdoor dry-bulb temperature, relative humidity and global solar radiation.
Dealing with short-term predictions, in (Sha et al. 2019) authors investigated daily energy
consumption predictions by using three features: degree-day (based on outdoor temper-
ature and the energy profile pattern of the considered building), day type (1–8, where
8 represents holidays), and month type (1–12). For this task they tested the prediction
accuracy of three popular ML algorithms were: multi-variable linear regression, support
vector machine, and artificial neural network. The authors in (Fan et al. 2014) focused
on the next day energy consumption and peak power demand predictions. They investi-
gated a feature selection strategy and compared a set of popular algorithms, for instance
multiple linear regression, autoregressive integrated moving average, support vector re-
gression, random forests, multi-layer perceptron, etc.
A long short-term memory neural network model in (Sendra-Arranz et al. 2020) forecasts
the next day multi-step power consumption using relevant data from previous time-steps.
Neural network models were also used in (Karatasou et al. 2006), where authors discuss
predictive performance of the models for single-step and multi-step forecasting of energy
consumption when using a set of independent inputs (environmental or calendar) or when
past values of the load are considered. In (Guo et al. 2014) a statistical method based on
two separate time-indexed autoregressive models with exogenous inputs is investigated
for hourly cooling demand predictions. A first model is used for predictions of 1 to 6
hours ahead, while the second one is used for estimating 7 to 24 hours ahead. The model
uses two exogenous input variables - outdoor temperature and relative humidity. Time
lags for the autoregressive inputs and exogenous variables were chosen based on literature
and analysis of the cooling load.
Black-box modelling can also be applied for commissioning or in the planning phase.
For example, optimizing design parameters based on ML energy consumption predictions
(Solmaz 2020).

The aforementioned approaches are not explicitly control oriented. They can be effi-
ciently used for predicting loads under normal conditions, where recent information
or daily repeating patterns are sufficient for a good estimation. Given the structure
of the models and the importance of previous steps measurements, the accuracy of
the predictions in dynamical conditions should be carefully analysed. The propaga-
tion of the forecasting errors through a prediction horizon is not usually evaluated,
although it could condition the use of such methods in a control framework.

(b) Control-oriented models
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Proceeding to explicit control-oriented models, the examples hereafter give an idea of the
variety of specific problems related to control that were tackled in the literature and the
corresponding appropriate data-driven techniques.

Some classical system identification approaches to derive models for control in buildings
have a long history. In (Mustafaraj et al. 2010) authors investigated linear parametric
models such as box–jenkins, autoregressive with external inputs, autoregressive moving
average with external inputs, and output error models, that could be used for optimiz-
ing the HVAC control. They tested the ability of the models to output up to two hours
ahead predictions of room temperature and relative humidity by considering outside tem-
perature and relative humidity, supply air flow-rate, temperature and relative humidity,
chilled and hot water temperature. In (Jiménez et al. 2008) an overview of some non-
linear and linear models, appropriate for modelling the thermal dynamics in buildings,
is given. The difference between the two families is demonstrated in a case study, where
the example belonging to the nonlinear type falls into the category of grey-box mod-
elling. Regarding the model choice, parametric models or linear regressions limitations
have been pointed out in the case of high nonlinearities that characterises buildings and
HVAC systems (Y. Chen et al. 2022), (Berthou et al. 2012).
Nonlinear black-box models have yielded promising results. Given the diversity of build-
ings, HVAC systems and targeted applications, the feature selection of such models differ
accordingly. In (Kim 2020) authors adopted neural networks techniques to model the
thermal dynamics of the building. More specifically neural networks were trained to
predict the indoor temperature of each zone based on controllable (power consumption),
feedback (indoor temperature), and environmental input variables (can include exterior
temperature, solar irradiance, wind speed, occupancy or thermal load). Neural networks
were used to schedule the optimal power inputs of the HVAC system during the next 24
hours under variable energy prices. The approach has two main limitations. As men-
tioned for the grey-box modelling, energy measurements for building sub-systems or zones
are not commonly available. Moreover the control of the power consumption per zone is
a non realistic assumption.
In (Manjarres et al. 2017) authors investigate optimal control in a building by switch-
ing on/off the HVAC system and scheduling the operation of the mechanical ventilation
based on the weather forecast and estimated indoor temperature. A Random Forest (RF)
model is used to estimate internal temperature based on historical outdoor and indoor
temperature and humidity, occupancy data and weather forecasts. The model is used in
an iterative manner to predict if the comfort would be satisfied or not with respect to
the computed optimal control. The method can be applied successfully for energy saving
strategies such as optimal stop or optimal start. However for DR applications, additional
opportunities provided by preheating or precooling cannot be exploited.
A common trend is identification of models based on a relatively large set of sensor data
and assuming access to an also large or system specific set of actuators. In (G. Xu 2012)
for instance, a multi layer perceptron was used to model energy consumption and tem-
perature based on a set of controllable and uncontrollable inputs and their respective
lagged or forecasted values. The model was used in a continuous optimization framework
searching for the optimal supply air temperature and the supply air duct static pressure
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setpoints. In parallel, in (Tang 2010), different ML algorithms were tested to model the
indoor temperature, indoor humidity, indoor CO2 concentration and the energy consump-
tion of an air handling unit, based on 10 relevant inputs such as air handling unit supply
air temperature setpoint, supply air duct static pressure setpoint, chilled water coil valve
position, etc. Furthermore the modelling and optimization of the energy consumption of
specific HVAC components (chillers, fans, pumps, variable air volume box) was studied
using six different data-mining algorithms.
The major drawback in this case is that in real life applications, energy measurements
for building sub-systems are not commonly available and installing sensors, actuators,
and other expensive equipment might be prohibitive. This also implies that the model is
inherently building-specific and that its structure in terms on inputs and outputs should
be tailored for each considered building.

Integrating instantaneous feedback, such as in (C. Zhang et al. 2019), has also been fre-
quently considered. In this study, authors seek optimal control of the zone supply fan
air mass flow rate and temperature setpoints, to maintain temperature at desired level
while reducing the power consumption. The proposed method relies on a long short-term
memory neural network to estimate zone temperatures and power demand based on the
previous observations and control actions. The model is used in a MPC framework to
determine optimal controls. In a second step, a neural network is trained on observation
and action pairs returned from the MPC, in order to imitate the MPC optimal output
and speed up the control decision making. The approach is legitimate in continuous opti-
mal control. However, if the application implies optimal scheduling for a longer horizon,
the result will be conditioned by the model’s predictive ability when used iteratively on
a longer horizon.

To overcome some limitations mentioned above, regarding the modelling efforts needed
for detailed mathematical models or realistic implementation of models based on large
sensor and actuator sets, global setpoint change rules have been considered. For instance
authors in (Nghiem et al. 2017) use an autoregressive gaussian process to model the
building’s power demand in response to DR control signal ut ∈ [−1, 1]. Each building
implements its own strategy to increase (ut > 0) or decrease (ut < 0) the power consump-
tion proportionally to the received DR control signal u (for instance adjusting the global
temperature setpoints by −2u (℃) implies raising or lowering the setpoints by up to 2℃
compared to the nominal values). The implemented strategy is supposed to satisfy the
occupant comfort, while reacting to ut. The inputs of the model are the current hour-
of-day, the current and past control inputs (DR control signal ut), the current and past
outside air temperature and humidity as well as past power demands. The model was
tested successfully for multistep-ahead predictions, by propagating the expected power
consumption values. The data was obtained by simulating a month building operation
with random DR signals ut ∈ [−1, 1] during weekdays. The model was trained on three
weeks of data, and one week was used for validation. Finally the model was used in a
MPC demand tracking control problem. The objective is to track, during several hours,
a power consumption profile provided by the DR program, which is below the baseline.
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A battery is also considered, to improve the tracking quality by limiting the model un-
certainty effects.
Adjusting power demand to DR by setpoint control was also investigated in (Behl et al.
2016). Different data-driven models were investigated for predicting the power consump-
tion of the building based on data such as: weather (outdoor temperature, humidity
etc.), schedules (setpoints of chilled water supply temperatures, supply air temperature
and zone air temperature, time of day, etc.), state data (chilled and hot water supply
temperatures, indoor air temperature, supply air temperature, lighting levels). Several
methods based on regression trees are proposed for different objectives: DR baseline pre-
diction (in the absence of a demand response event), DR strategy evaluation and DR
optimal control. The baseline power consumption model, trained on weather and time
related variables, was evaluated on real hourly data. For DR evaluation, the model fea-
tures included also schedules and zone temperatures. More specifically auto-regressive
trees were used to predict power consumption for a one-hour horizon (duration of the
DR event). Zone temperature were estimated using additional auto-regressive trees. The
models were used to estimate the best DR strategy and the associated power consump-
tion, from a set of rule based strategies. Each strategy has defined control schedules for
chilled water set-point, zone temperature set-point, and lighting set-point during the DR
event. In a similar simulation experiment, the models were used to determine, in a closed-
loop fashion, the control actions that maximize the power curtailment while maintaining
occupant comfort.
The last two methods are scalable and can be seamlessly implemented in a Building
Management System (BMS). The propagated errors induced by the use of auto-regressive
models are limited, although in the second reference only a short term horizon of 1 hour
was studied. Both methods implement power shedding strategies which consist, for in-
stance, in increasing the indoor cooling temperature setpoints during a DR event. Such
strategies however might not be accepted by building managers. Indeed, for energy ef-
ficiency reasons, buildings are usually operated at the comfort limits, and little or no
deviation beyond is accepted. In such cases, instead of load curtailment, a load shifting
strategy by precooling the building can be implemented. This strategy has the advantage
of respecting predefined comfort bounds.

2.3.2 Model-free optimal control

RL has emerged as a different approach that tries to overcome some of the model-based
method’s pain points (modelling and control complexity, scalability), by learning optimal con-
trol from interacting with the system directly. Although methods based on tuning control
settings in order to improve performance or implementing expert rules can be also considered
as model-free, their capabilities are quickly limited in complex situations and systems. RL
paradigm implies supervisory control without building a model of the system and has been
considered as a promising method for model-free optimal control design. The method relies
on interacting with the system and learning the optimal control strategy to be adopted. For
applications considered here, the learning is achieved by continuously evaluating the results of
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control actions in terms of state (observations/measurements of the environment or the sys-
tem, such as occupancy, indoor or outdoor temperature and humidity) and reward (incentive
reflecting the optimization goal, such as a penalty for the energy consumption of the HVAC
system or a penalty for the occupant thermal discomfort). A non negligible advantage of RL
is being able to adapt seamlessly to environmental, structural or system changes in a building,
where model-based or expert-based control needs retraining, remodelling or rebuilding the
knowledge database.

For an overview of the subject and examples related to DR readers may refer to (Vázquez-
Canteli et al. 2019). The examples hereafter are focused on optimal control for energy efficiency
and some DR applications.

RL techniques have been often investigated in use-cases for energy efficiency optimization
by on/off operations. In (Barrett et al. 2015) authors propose a method that learns to opti-
mally switch on or off the heating/cooling. To ensure occupants comfort, Bayesian inference is
used to predict occupancy. The method was tested on a first-order equivalent thermal build-
ing model with no additional stochastic heat gains other than those from the heating/cooling
system. Compared to an expert rule control that defines an optimal start and stop of the
system, the RL technique allowed an improvement of 10% in costs. A similar approach was
investigated in (Ruelens, Iacovella, et al. 2015) for finding optimal start and stop schedules of
heat pumps in residential houses that respect comfort ranges during occupancy.

The next examples have more complex or broader action spaces. In (Henze et al. 2011)
authors investigated the performance of RL techniques for the operation of electrical thermal
storage systems in buildings. The RL controller was trained to optimally adjust the charging
rate of the thermal storage system under variable cost of electricity.

Also specific to DR applications, authors in (Ruelens, Claessens, et al. 2017) proposed a
batch RL method to construct control policies for two types of thermostatically controlled
loads - heat-pumps and electric water heaters. The method is applied first in a dynamic
pricing DR model, where the agent learns an optimal close-loop control policy that minimizes
the electricity cost. In a second DR case, the RL agent constructs and tracks an optimal
day-ahead scheduling consumption program.

The authors in (Y. Wang et al. 2017) investigated advanced RL techniques for optimization
of energy consumption by controlling room cooling setpoints. The set of state observations
gathered at every control time-step are outdoor temperature, indoor temperature, previous
time-step cooling power load, solar irradiance. The control action is a discrete room cooling
temperature setpoint, the cost function is composed of a weighted sum of two objectives:
thermal comfort and energy demand. A similar objective has been investigated in (Gao et al.
2019), where a deep RL technique is used to dynamically control the temperature and hu-
midity setpoints while seeking energy efficiency and ensuring occupants comfort. The set of
indoor and outdoor temperature and humidity is considered as state observations, while the
actions are temperature and humidity setpoints .
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A substantial number of methods are evaluated on simple building architectures
(single or very few zones) or simplified physical models (for example a second
order model of the indoor temperature dynamics) with little complex dynamics
or constraints. However, the bottleneck of mode-free RL approaches is the
prohibitive training process duration, especially when facing complex situations,
systems or non-stationary environments. For instance in (Wei et al. 2017) the
training is performed on 100 months data (more than 8 years). (Mocanu et al.
2019) achieved a convergence of the optimal controller after 3500 episodes of
on-line training, where every episode represents an average of 20 random days
of the database (more than 9 years). The RL agent in (Azuatalam et al. 2020)
needs 60000 hours of training for convergence (more than 6 years).

To reduce the training time, techniques based on a physical or data-driven model first for
training offline the RL controller have been proposed. Although this is a conceivable solution,
one may argue that this step cuts off RL methods of their main advantage. The examples
hereafter fall into this category.

Authors in (Schubnel et al. 2021) proposed the use of a reduced model, such as a neural
network architecture, which is first trained on data generated with a coarse model of the
system and then shortly retrained on historical data via transfer learning techniques. The
obtained reduced model is used in a RL framework to train an agent offline to control blind
opening in each zone and heating temperature supply, cooling temperature supply, ventilation
temperature supply of the central HVAC system. In (Nikovski et al. 2013) a markov decision
process framework is investigated for indoor temperature setpoints optimization using a third-
order thermal equivalent model and an estimated coefficient of performance of the HVAC
system. Authors in (Urieli et al. 2013) have used a linear regression based on 14 relevant
features in order to model the effects of the actions, in other words - the transition functions.
Based on the learned model, the RL agent uses a lookahead policy to choose the optimal
actions. The framework was applied for finding optimal running schedules of heat pumps and
auxiliary heating systems in residential houses, that respect comfort ranges during occupancy.
The training in (Ding et al. 2019) is executed on a realistic physical model using E+ simulation
software. The whole-building modelling approach was adopted as well in (Wei et al. 2017),
(Azuatalam et al. 2020) and (Z. Zhang et al. 2019).

2.4 Conclusion

To summarize, methods differ substantially depending on the fixed objective, the comfort
constraints, the available data from sensors or technical documentation and the accessible
actuators. Given all possible configurations of HVAC systems, a rigorous comparison
between all the modelling and optimization approaches in the state of the art is very
tricky if not impossible. This is especially true for solutions that are tailored for specific
systems. Some key features in each method allow to make the choice in a particular
context.
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challenges

The vast majority of RL methods tackle the optimal control task in a closed-loop fashion,
i.e the control policy depends on the current measurement of the state and direct feedback
from users. Several DR programs however expect in advance an optimal control plan of
the HVAC system and the corresponding estimation of the power consumption. If such
estimations are possible for our problem, it’s still unclear what is the expected precision.
Together with the prohibitive training process duration, this seems to indicate that RL
might not be adapted for all applications.
Black-box models have been widely investigated thanks to their ability to capture nonlin-
earities, that often characterize systems such as buildings. Their precision is conditioned
by the set of inputs, that should be carefully selected. For example, it is generally known
that power consumption is autocorrelated and that it depends, among other factors, on
the indoor temperature. Therefore, single-step models that depend on past time-step
measurements might be very precise but unusable in some frameworks where long term
open-loop predictions are required, i.e. when continuous measurements of power and in-
door temperatures are not available.
Grey-box modelling is based on physical insights of building’s thermal dynamics and ac-
curate model of the HVAC equipment. Therefore, a first model describes the evolution
of the indoor temperature, depending on different heat transfers that occur in a certain
zone. A second model is meant to describe the consumed power of the HVAC system
depending on a set of external conditions and control variables. Usually, the metered
consumed power of the HVAC systems is not equivalent to the input of energy in the
zone, therefore the weakness of the approach lies at the welding spot of the two necessary
models. In some cases, a valid simple relation can be found between the power consump-
tion and the heat input in a building. In real life situations this is often not feasible due
to the complexity of the HVAC system. This induces the need of modelling the function-
ing of the specific equipment and bridging the gaps between the modelled control, power
consumption and heat transferred to the indoor space. In most cases, the required set of
sensors and actuators needed for a precise global model is large and tailored for a specific
system.
Physical modelling requires huge amounts of real system data to be collected: building
layout, physical properties of the construction materials, HVAC components and func-
tioning. The modelling process itself requires advanced expert knowledge. In almost all
cases the exact system components cannot be faithfully modeled, which requires tailored
solutions to represent the desired phenomena or components. This normally leads to a
tricky calibration phase. Finally, depending on the building size and the sophistication
of the model, the simulation time can be substantial. For instance the digital twin of the
new energy efficient building of Schneider Electric - IntenCity - requires 15 hours for a
whole year simulation. Using such a model to test control scenarios for one-day horizon,
as in the proposed solution, would require more than 3 hours of computation time.



Chapter 3

Problem setting and adopted
approach synthesis

3.1 Investigated use-case and adopted approach

This research focuses on the use-case of office buildings participating in a day-ahead DR
program that values energy flexibility. Flexibility can be generated by different manners,
however, the exact impact of the available options is often unknown. The task is difficult given
the large diversity of buildings in terms of thermal characteristics, HVAC configurations and
components, and available or accessible actuators and sensors. Moreover, the global behaviour
of the building and the interaction between different HVAC subsystems are complex and
highly nonlinear functions, explaining why the task of optimal control of energy consumption
in buildings is a difficult one.

We have seen in the previous chapter some classical approaches to deal with operational
optimization of HVAC systems. The cornerstone of model-based techniques is the model
itself, and one usually tries to balance the complexity and the precision. RL methods that
try to overcome modelling difficulties are still subject to training duration capabilities. Ac-
cordingly, this motivates a black-box modelling approach, adapted to a set of constraints,
challenges and specific use-case expectations.

The first source of complexity that shaped the proposed methodology is linked to the
comfort of the occupants in an office building. Facility managers are often reluctant
to adopt control strategies that might negatively impact the comfort. A convenient way of
treating this constraint is by ensuring that eventual control operations will cause indoor tem-
perature to vary in a certain comfort range, predefined by the facility operator. Incidentally,
the comfort range defines also the setpoints for heating or cooling activation: [T sp

min, T
sp
max].

T sp
min being the setpoint below which the heating is activated and T sp

max the setpoint above
which the cooling is activated.

A second source of complexity lies in the need for a sufficiently reliable estimation of the
flexibility potential. Indeed, some DR programs require the power consumption schedule
or an estimation of the shedded energy. This is also of interest if the building is integrated
in a microgrid or aggregated with other grid assets, for which a global optimized schedule
is computed in advance. Consequently, if power consumption can be lowered for a certain
duration, with respect to a baseline, then it is essential to quantify the result.

23
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Other challenges were set based on Schneider Electric’s past experiences with operational
optimization of HVAC systems: prioritize scalable methods that are easy to duplicate on
different buildings, that can be integrated in a BMS in a simple manner with minor or
no equipment investments and that can adapt easily to changes that might occur in buildings
(HVAC system or structural modifications).

An intuitive approach that could satisfy all the above constraints is controlling indoor tem-
perature setpoints1. Firstly, setpoint modification inside comfort bounds guarantees comfort
at all times. Secondly, the choice of the inputs and outputs for the data-driven model is such
that the model is agnostic to the building specific set of actuators and sensors as well as to
the degree of accessibility of the actuators internal tuning and characteristics, and therefore
potentially applicable to different buildings without much effort besides data collection for
training. In order to design such a scalable method, only data from commonly available
sensors and meters are to be considered: temperature setpoints, indoor temperature, total
power consumption, and exogenous data such as outdoor temperature, solar irradiance and
time related information. Moreover, the integration in a BMS is non-intrusive and can be
achieved by establishing a simple communication channel. The BMS delivers continuous
information such as total power consumption, indoor and outdoor temperatures, and other
relevant available measures. The designed model-based optimization module, sends daily, or
more frequently if needed, the optimized indoor temperature setpoint schedule intended to
overwrite the default one.

The method investigated in this work is novel in regard to the following features and
minimalist assumptions:

• the modelling is purely data-based and system agnostic;

• data comes from common available sensors and meters (indoor temperature, indoor
temperature setpoints, weather conditions, total HVAC power consumption);

• the indoor setpoint control can be implemented in a straightforward way;

• comfort is ensured at all times;

• the method is suitable for explicit DR programs, where an evaluation of control actions
is needed for a given horizon (24 hours for instance).

Given the comfort contraints, flexibility activation by load shifting will be studied in this
work. In practice this is achieved by modifying the baseline indoor temperature setpoints to
preheat/precool the indoor space before a DR event. The effect is activation of the inherent
thermal storage capacity of the building. When the setpoints are reset to their baseline values,
the thermal inertia of the building, or in other words discharging of the stored thermal energy,
will induce a reduction of power consumption.

1In a general case, a control strategy for each individual zone in the building can be applied. In this work,
however, the control concerns global setpoints (as an average of the individual zone setpoints for instance).
The proposed adjustments of the setpoints will consist of lowering or raising the setpoints of all zones (or a
predefined set of zones) by the same amount. Accordingly, a mean indoor temperature and a total power
consumption of the HVAC system are considered.
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Simulation results in Fig. 3.1 illustrate a preheating example in winter. The global lower
comfort bound (heating temperature setpoint T sp

min) is set to 21℃. In order to react efficiently
to a DR event that starts at 7PM, without impacting occupants comfort, the temperature
setpoints of the building are increased to 25℃ during 1 hour before the DR event. This allows
passive accumulation of heat in the air and the building structure, that is released during a
DR event, by resetting the heating setpoint back to its nominal value.

Preheating
Load increase

DR event
Load reduction

Figure 3.1: An example of Demand Response, given a comfort range [Tmin
sp , Tmax

sp ]. The
global temperature setpoints are increased to 25℃ before a DR event. This allows passive
accumulation of heat in the air and the building structure, that is released at the beginning
of the DR event, by resetting the setpoints back to their nominal value.

This type of operation can be employed in different DR programs: TOU tariffs, critical peak
pricing, supply of ancillary services. However, the benefits of power consumption limitation
must be balanced with the increase of the total power consumption occurring with the precool-
ing/preheating, and any associated benefit can only be determined with respect to a baseline
estimate and the DR remuneration associated to the reduction in the power use induced by
the operation. In this work we assume that DR incentives materialize as remunerations for
a reduced amount of energy at the specified interval of time. In practice the problem can
be formulated in the exact same way for TOU electricity rates. Subsequently, an optimiza-
tion framework has to be implemented in order to determine the optimal control based on the
power reduction during the DR event, the increase of power during the preheating/precooling,
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the baseline energy cost and the DR remuneration.

An abstract view of the framework is illustrated hereafter on a simplified building example
in the heating season. The example building is composed of several zones and a global HVAC
system with production and distribution elements as in Fig. 3.2. Sensors are available in each
zone i for measuring the indoor temperature Tin,i, which is controlled by default tempera-
ture setpoints schedules T sp baseline

i sent by the BMS to the local controllers. The heating is
produced by the central plant and distributed according to individual thermostat controllers.
Energy meters are available for the global production and distribution systems, recording the
associated power consumption Pproduction and Pdistribution.

Figure 3.2: A simplified building example. The building is composed of several zones and a
global HVAC system with production and distribution elements.

Fig. 3.3 illustrates the BMS-induced coupling. In this example a trained model estimates
total HVAC power consumption based on features such as heating temperature setpoints and
weather data (exterior temperature Text and solar irradiance Irr). To enable the learning of
such a model with a reasonable amount of data, mean temperature setpoints over the zones are
considered. Given a DR incentive, the optimization module uses power model predictions to
perform a day-ahead optimization of the preheating, and outputs an indoor global temperature
setpoint schedule T sp. The BMS can adapt it depending on zone particular constraints, and
communicate the resulting zone schedules T sp

i to the local controller of each zone i.
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BMS

Identified power model Optimization
,

Figure 3.3: BMS coupling in the simplified building example. Data from sensors and meters
are collected by the BMS. Through the BMS, the user defines the default temperature set-
points for each zone. Given a DR incentive, the integrated optimization brick computes and
communicates a new global setpoint schedule that is applied to the individual zones.

For the sake of clarity, only the winter/heating season will be treated, although the method
can be applied without loss of generality to the summer/cooling season. Learning different
models for heating/cooling and summer/winter seasons is also justifiable by the fact that
HVAC cooling and heating systems might be fundamentally different and display distinctive
power consumption profiles.

For simplicity sake, only the mean average temperature and setpoints among zones (bal-
anced by the surface area) are used for the results showed here. This is also motivated by the
fact that handling only a mean temperature, especially if the number of zones is high, reduces
the complexity of the model. Averaging the temperatures, however, leads inevitably to a loss
of information. For instance at a particular time, mean indoor temperature being above the
mean heating temperature setpoint does not imply that the heating system is off. Indeed, the
temperature variation between zones can be substantial and some particular zones can still be
heated while the temperature in others are varying inside the comfort temperature bounds,
as illustrated in Fig. 3.4. Nonetheless, the investigated methods allow integration of zone
specific data, without loss of generality.

As already mentioned, the only variable considered, that accounts for the power consump-
tion of the HVAC system, is the total power consumption as an aggregation from all the
components (ventilation, heating, cooling, etc.). This aggregation is particularly important to
investigate given the variety of HVAC systems and the different ways of metering the power
consumption in real buildings. Nonetheless, as for the indoor temperature, the method can
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be adapted seamlessly if finer information is available.

The value of the solution is highlighted in this work with respect to the electrical grid. It
is assumed therefore that such a solution is intended to be implemented in buildings equipped
with HVAC systems that have a predominant electrical power consumption. Even though the
diversity of HVAC systems can imply different energy carriers, the implementation of such a
solution is not prejudiced. On the contrary, as long as a meaningful connection exists between
global thermostat settings and the electrical power consumption, the approach is meant to
deal with the complex and nonlinear relations between the energy input and the heat transfer
to the conditioned space.
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Figure 3.4: Mean temperature in the building (15 zones) compared to three distinct zone tem-
peratures. The power consumption variation regarding the relation between between global
temperature setpoints and mean temperature is less obvious due to zone disparities.

It should be noted that weather forecast uncertainties have not been considered in this
thesis. Since the assumed DR program is based on day-ahead notifications, experiments are
still needed to test the sensibility of the resulting models with respect to weather forecast
uncertainty.
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Based on the concepts from above, the next chapters will detail the final approach used for
power consumption estimations (features, regression model) and the optimization framework
(DR mechanism, load shifting strategy). Results obtained with a set of other modelling
approaches, that shaped the final one, are also discussed. To test the different methods,
several datasets have been used throughout this study, corresponding to simulated buildings
of different complexities. The next section describes these buildings/datasets.
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3.2 Case studies

The method developed in this work was tested in several ways. The modelling precision was
tested on simulation data from different publicly available sources and internally developed
simulation buildings. Economical evaluation of the energy flexibility, in a DR framework, was
estimated using a building simulated in IDA ICE simulation software. In all the case studies,
a perfect weather forecast has been considered.

3.2.1 An IDA ICE simulated building

A physical model of a typical medium-size office building constitutes the reference for this
research work. The simulated building was used in the complete procedure of modelling and
DR optimization.

Note that IDA ICE is a high fidelity simulating environment - IDA Indoor Climate and
Energy (IDA ICE) simulation software provided by EQUA Simulation AB. IDA ICE is a
building design tool based on an extensible equation-based simulation framework, in which
way it resembles to the well known Modelica-based simulation frameworks. IDA ICE offers
detailed and dynamic multi-zone simulation capabilities, with true modelling of control loops,
advanced HVAC modelling. It also offers capabilities in terms of model integration for example
co-simulation and functional mock-up interface integration, which we have used in this study.
It has been successfully tested and adopted by industry, as well as Schneider Electric, in a
wide range of projects for calibration or digital-twin applications (for example the EU projects
TRIBUTE Béguery, Petit-Pierre, et al. 2017 and HOMES Béguery, Lamoudi, et al. 2011).
Readers may refer to Sahlin et al. 2004 for more details about the IDA ICE characteristics.

The designed simulation building model is 3-level building with 11 offices, 2 meeting rooms
and 2 open spaces. The simulated climate is based on Chicago historical weather data.

Figure 3.5: Test building representation. The building represents a medium-size office building
with 15 zones.
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The HVAC system includes two central subsystems: a central air handling unit and the
primary heating and cooling system, represented by a boiler and a chiller. The boiler supplies,
with a constant performance, hot water to the zones and to the central air handling unit. The
supply hot water temperature setpoint is a function of outside air temperature. Therefore, the
total available heating load is varying with the outside temperature. The chiller supplies cold
water to the zones and to the central air handling unit, depending on a variable coefficient of
performance.

The central air handling unit is designed to supply fresh air to the zones. The supply air is
conditioned using heating and cooling coils with water mass flow control. The heating and
cooling water is supplied by the boiler and the chiller. An air-to-air heat exchanger allows to
recover heat from exhaust air and to transfer it to the supply air.

Fan coils in each zone ensure thermal conditioning based on waterborne heating and cooling.
The nominal power in each zone is specified for a set of design conditions. Therefore the
effective heating or cooling power will vary depending on the indoor temperature and the
difference between inlet and outlet water temperature.

The simulation tool allows faithfull modelling of control loops and integrates complex
phenomena such as solar radiation to different surfaces depending on orientation, internal and
external shadings, thermal bridges, various heat exchanges between construction elements,
internal gains and masses. The level of complexity of the building represents a real challenge,
and hence a good validating framework for building agnostic control design as the one claimed
in this contribution.

Note that the same temperature setpoints schedule has been applied for all zones. Similarly,
occupant presence schedules (described by a working day [0, 1] profile) are the same for all
zones and working days, although the assigned number of occupants differ among the zones.

Schematic views of the building are presented in Appendix A.

3.2.2 A Synthetic Building Operation Dataset

In order to test the relevance of the power model’s structure, a publicly available dataset based
on the United States Department of Energy (U.S. DOE) detailed medium-sized reference office
building was used. The simulated building represents an office with different types of zones
spread on three floors. The total floor area is equal to 4890 m2. Each floor is equipped with
an air handling unit and each zone has a variable volume air terminal unit with electric reheat
coils. Annual simulations are available, obtained using 30 years of historical weather data in
three different regions including Miami, San Francisco, and Chicago. Data contains system
operating conditions: HVAC, various electric loads, occupancy, lighting, weather data and
total energy consumption at 10-minute intervals. The dataset is described in detail in (H. Li
et al. 2021).
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3.2.3 A Digital Twin of a large office building

Another tested dataset was available on the Schneider Electric Exchange platform. The build-
ing has a total floor area of 10250 m2 and is located in Grenoble. The dataset includes time-
series for over 2700 sensors, recording occupancy, energy, comfort and environment variables,
system setpoints.

3.2.4 An Equivalent Thermal Parameter simulated building

In order to confirm some intuitions regarding the performance of data-driven models and to
build up the complexity of the final solution, a simplified building, represented by an Equiva-
lent Thermal Parameter (ETP) simulation model, was used. Since the thermal dynamics are
fully understood, the performance of state-space models for instance, investigated in the next
chapter, can be easily explained.

The simplified building consists in two heat flow equations that describe the thermal
dynamics. The first one describes a given zone indoor temperature evolution, submitted to
different heat transfers: direct heat exchanges with the outdoor air, heat transfers through
external walls, heat exchanges with adjacent zones, solar irradiance, equipment and occupants
and HVAC system heat gains. The indoor temperature dynamics are described mathematically
through a first differential equation that accounts for the above mentioned heat transfers.
Accordingly, the mathematical equation can be expressed for a given zone j as follows:

1

Cin,j
Ṫin,j =

1

Rin w,j
(Tw,j − Tin,j) +

1

Rin ext,j
(Text − Tin,j) +

∑
i ̸=j

1

Radj i,j
(Tin,i − Tin,j)

+ Φirr,j + Φocc,j + Φh,j (3.1a)

Where Tin,j is the indoor temperature, Tw,j is the temperature associated with the external
walls, Text is the outdoor temperature, Tin,i is the indoor temperature of the adjacent zone i;
Φirr,j , Φocc,j , Φh,j are heat gains associated to solar irradiance, occupancy and HVAC heating;
Cin,j represents the thermal mass parameter of the air; Rin w,j , Rin ext,j and Radj i,j are lumped
thermal resistances between the interior and the exterior walls, between the interior and the
exterior and between the interior and the adjacent zones respectively.

A second differential equation describes exterior wall temperature dynamics, submitted to
heat exchanges with the outdoor atmosphere and the indoor air. This allows to simulate a
more realistic indoor temperature behavior linked to the thermal inertia of the envelope.

1

Cw,j
Ṫw,j =

1

Rin w,j
(Tin,j − Tw,j) +

1

Rw ext,j
(Text − Tw,j) (3.1b)

Where Cw,j represents the lumped thermal mass parameter of the external wall, Rin w,j

and Rw ext,j are lumped thermal resistances between the external wall and the interior air and
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between the external wall and the exterior air respectively. All the thermal parameters have
been tuned in order to represent realistic thermal dynamics.

The HVAC heat gain in a given zone is controlled by a Proportional Integral (PI) controller:

Φh,j = max(0,min(Φh,j ,

∫
KI(T

sp
j − Tin,j)dt+KP (T

sp
j − Tin,j))) (3.1c)

Where Φh,j is the HVAC maximum heating power, KI and KP are PI controller parameters
and T sp

j is the temperature heating setpoint. Since in this particular case there is no additional
equipment, the total power consumption P of the HVAC system is equivalent to the total
heating gains multiplied by the Coefficient of Performance (COP): COP ∗

∑
j
Φh,j .

Additional features were implemented in order to enhance the complexity of the building.
A multi-zone configuration was enabled, with varying parameters among zones. The solar heat
gains depend therefore on the configuration (orientation, glazing area, inter-zone connections).
The simulated solar heat gains are also impacted by a varying cloud cover. Additionally, a
varying occupancy profile was implemented.

3.3 Adopted approach synthesis

The adopted approach for enabling the energy flexibility in a building is based on regression
predictive modelling of the HVAC power consumption. This section offers a summary of
the modelling, optimization framework and main results. The case study is a medium office
building modeled in IDA ICE simulation software.

Learning and testing dataset Two distinct meteorological years have been used for train-
ing and testing purposes, corresponding to Chicago location. Experiments showed the interest
of adopting a seasonal approach, therefore this work treats the winter/heating season only:
November 2001 - March 2002 for training and November 2002 - March 2003 for testing. The
data sampling time is 15 minutes.

The shedded HVAC load can only be determined with respect to a baseline estimate.
Simulations showed that the preheating operations can have a lasting effect on power con-
sumption profile, therefore the experiment for model learning should be carefully designed.
To enable an unbiased baseline modelling and DR outcome estimation, the learning dataset
has been constructed by simulating two preheating operations per day, every other week. Ran-
dom preheating operations have been simulated in terms of setpoint increase with respect to
the baseline values, duration and time of the day. For a DR purpose, two distinct models
are learned. The main one, based on weeks with simulated preheating operations, is used
for predicting the HVAC load during preheating and shedding. A secondary one, based on
weeks where the default operating temperature setpoints are applied, is used for predicting
the baseline energy consumption.
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Model features and algorithm To capture the dynamical behaviour of the building the
following features have been considered (cf. Section 5.1):

• Weather data: outdoor temperature and solar irradiance;

• Time related data: time of the day, day of the week;

• Past indoor temperature setpoints and weather conditions.

The set of features is meant to contain the necessary information for recovering the current
thermal state of the building. It should be noted here that depending on the thermal charac-
teristics and behaviour of a given building, lag values for the past inputs should be optimized
accordingly.

For this particular problem, the extreme gradient boosting algorithm XGBoost (T. Chen
et al. 2016) turned out very convenient, in terms of tuning and accuracy.

Model Validation The testing dataset consists in two random preheating operations dur-
ing working days. The accuracy of the main model are R2=0.95 and Weighted Absolute
Percentage Error (WAPE)=0.10. Fig. 5.3 and 5.4 in Section 5.1 illustrate the prediction
errors.

DR market and optimization framework HVAC load flexibility is assumed to be acti-
vated in the context of a DR program. The DR program consists in day-ahead incentives for
reducing the HVAC load during specific intervals of time (events) next day. Two fixed DR
notifications each day are assumed: from 7 to 10AM and from 5 to 8PM. For details reader
can refer to Section 6.1.

Participation in a given DR event is decided by estimating the balance between the pre-
heating cost and the remuneration for the shedded energy. For a given DR event, the load
profile (and consequently the preheating/shedded energy) depends on the preheating settings:
preheating duration ∆tpreheat, start of shedding tshedstart, temperature setpoint increase with
respect to the default/baseline profile ∆T sp

min.

Let x = (∆T sp
min,∆tpreheat, tshedstart) be the set of decision variables for a given DR event. The

shedding duration θ = ∆tshed is fixed to one hour, so x and θ define the preheating settings
for that event.
Consequently the maximum predicted net benefit B̂ 2 for a given DR event is defined by the
difference between the DR participation reward and the cost of the preheating operation:

B̂ = max
x

(r|∆Êshed(x, θ)| −∆Êpreheat(x, θ)) (3.2)

Where r is the ratio between the reward for DR participation and the energy cost during
the preheating time-interval. In the DR framework, r is supposed to represent the intrinsic

2The estimate of a variable x is noted x̂
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"value" of the shedded energy, in a period of grid stress, with respect to the cost of the energy
in a normal period. This is based on a simplistic assumption according to which the baseline
energy price and the reward level are known and fixed by the grid operator/DR program. It
follows also that the price of the energy is constant during preheating and similarly, during
DR, the compensation rate for the shedded energy is also constant. Although the defined
reward factor does not rely on existing DR programs, one may interpret the following results
as compensation levels for which buildings may be motivated to adopt a proactive position
and participate to grid services.
The real and estimated energy consumption difference, ∆Ê(σ) = Ê(σ) − Ê(σ)baseline and
∆E(σ) = E(σ) − Ê(σ)baseline, where σ ∈ {preheat, shed}, for a preheating setting (x, θ), are
defined with respect to the baseline load profile, i.e. the load profile in absence of any DR
participation. ∆Ê(σ) is predicted using the two regression predictive models detailed in the
paragraphs above. The observed energy consumption difference ∆E(σ) still needs estimation
of the baseline energy consumption. The corresponding baseline model is used for this intent.

Participation to a DR event is triggered if the predicted maximum income is positive.
Subsequently, the total income for the triggered set of DR events is computed a posteriori
based on the effective power consumption profile.

Given the two daily DR notifications, the optimal preheating settings x are computed, for
a fixed shedding duration of one hour. The income optimization is carried out by discretizing
the decision variables and carrying an exhaustive search of the optimal set of preheating
parameters x.

Estimation of DR income Three economical results have been deducted, which are de-
tailed in Section 6.2. In real life situations, the DR program integration would be conditioned
by the availability of precise enough forecasting models, trained on representative instances of
DR. The results hereafter are related to different assumptions regarding the available amount
of learning data.

In the first case, the forecasting models are trained on a whole winter season before inte-
grating the DR mechanism. The total benefit for the next winter season, relative to the total
baseline energy cost, is 0.2% and 7.9%, for reward factors r = 2 and r = 5 respectively (see
Fig. 6.3).

A second investigation shows similar DR income if the main model is retrained every month
during the DR program, by integrating new available data with preheating instances in the
training dataset.

A third experiment considers the case where the DR mechanism is integrated faster. Only
one month of data is used for training the main model, before integrating the DR program.
The model is then retrained periodically by incorporating new data from DR actions. The
experiment supposes however a baseline prediction tool which, in this case, is the same as in
the first two cases above. Results show that the income loss is limited to 22% for r = 2, and
2.5% for r = 5 (see Fig. 6.5).
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Additional results of DR income with respect to building thermal characteristics and DR
program are given in Section 6.2 and Section 6.3.
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In this chapter, several methods for indoor temperature and power consumption prediction
will be investigated, starting with simple linear models and moving towards more complex
regression models. These investigations have been very experimental in nature, starting from
initial understanding and intuitions about the building behaviour, and then in reaction to the
identified sources of model errors. With the objective of developing good-enough models using
as less data as possible, the results presented in this chapter show not only the best results
obtained but also the drawbacks of simpler, intermediate models that have been tested.

Given the considered DR mechanism, the optimal indoor temperature setpoint schedule
should be chosen for the next day. The corresponding power consumption modelling accu-
racy is investigated from this angle. The proposed control of indoor temperature setpoints,
inside defined comfort bounds, implies that comfort is guaranteed at all times. Nevertheless,
predicting indoor temperature can be useful for estimating the power consumption, and will
also be investigated in this chapter. Indeed, indoor temperature contains information about
present and past thermal dynamic states of the building, which is confirmed by the results in
the following sections.
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To better identify potential modelling limitations, both simulation data issued with ETP
and IDA ICE buildings (cf. section 3.2.4 and 3.2.1) will be used. First, results for state-
space model estimation are presented. State of the art references suggest that, despite the
nonlinearities characterizing a building, such a linear model can capture the main thermal
dynamics. Linear models are especially tempting given their simplicity. Moreover, since the
indoor temperature is controlled by a temperature setpoint schedule, our intuition was that
linear models could perform well enough on average in closed loop. Based on ETP building
data, the exact impact of different heat gains (HVAC, solar, ambient, occupancy) on indoor
temperature has been studied. The limitation of such models, given partial disturbance/inputs
knowledge, is pointed out, additionally to limitations regarding nonlinearities.

In a second step, more complex approaches are tested (see Fig. 4.1 below), based on
supervised learning approaches.

Linear state-space 
models

AR RF models RF modelsRF model
Structured

dynamic model

AR RF model RF model

Figure 4.1: Explored modelling approaches and the modelling/forecasting targets. Six mod-
elling approaches are discussed, designed for indoor temperature, total HVAC load, or both.
Starting with state of the art linear models, then cascaded predictions of indoor temperature
and HVAC load, followed by HVAC load prediction only.

More specifically, an autoregressive random forest approach (current output depends on
past inputs and outputs) has been studied, where indoor temperature predictions are fed in
to the power consumption model. Results indicate that the accuracy is low due to indoor
temperature forecasting errors and error propagation through the prediction horizon, and
suggest that a larger lag should be used for the autoregressive features. On this basis, a
"classical" RF modelling approach has been tested (in contrast to the autoregressive approach,
the current output does not depend on past inputs). Results show that the accuracy is
improved compared to the autoregressive approach where previous step input and outputs are
considered in the feature vector. In parallel, a structured nonlinear model has been designed in
order to improve the indoor temperature predictions. The accuracy of the model is comparable
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to a RF approach, however the method relies on finely tuned ramp temperature setpoint
profiles for the preheating operations. Additional investigations are needed to determine how
the indoor temperature evolves depending on the fixed ramp and what is the impact on the
passive stored energy, compared to step preheating schedules such as presented in Part I.
Finally, it seems that, due to the sensitivity of the power consumption forecasts to the errors
of the indoor temperature predictions, the best strategy is to bypass the indoor temperature
modelling. This is achieved by considering current and past inputs for the power consumption
modelling, which most probably allows reconstitution of past states of the building, normally
reflected by the indoor temperature.

4.1 Errors metrics

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2

The coefficient of determination R2 provides a measure of goodness of fit. A higher value
indicates a better accuracy. It compares the model errors to the variance of the target y and
represents therefore the proportion of variance that can be explained by the features. Since
the variance is dataset dependent, R2 score may not be comparable across different datasets.

WAPE =

∑n
i=1 |yi − ŷi|∑n

i=1 |yi|

WAPE measures the overall deviation of forecasted values from observed values. A lower value
indicates a better accuracy. It has the advantage of being scale-independent, and can be used
to compare forecast performance across different data sets. As it is sensitive to relative errors,
WAPE is great for measuring a model’s performance when the dataset has low or intermittent
values. However, WAPE needs a meaningful zero value for the target variable. So it may not
be suited for predicting variables such as exterior temperatures, for instance.
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Figure 4.2: R2 and WAPE errors. Subfigure (a) illustrates the case where the predictions are
a translation of an original signal. Subfigure (b) illustrates the case where predictions include
a noise sine signal (same amplitude and frequency) added to three different original signals.

4.2 Linear state-space modelling

As mentioned in Chapter 2, grey-box models have been widely used to represent the dynamics
in buildings. The models usually describe the thermal dynamics, i.e. the dynamics of indoor
temperature given the set of heat gains (cooling/heating, occupancy, irradiance, etc.) or
inversely, the cooling/heating gains given indoor temperature dynamics and heat gains from
auxiliary sources (namely occupancy, irradiance, outdoor). Since heating/cooling power is
not usually directly controllable, additional steps are needed in order to describe the function
between the applied control and the power consumption. As an alternative that enables the
use of a model in a straightforward way in control strategies, introducing the temperature
setpoints in the set of inputs can be considered, as it has been studied in (Berthou et al.
2012) and (Berthou et al. 2014). To test this idea and evaluate how temperature setpoints
can be included in the model, an evaluation of state-space models was performed. By tackling
different system complexities, the limitations of such an approach were highlighted.

In its discrete-time process form, a stochastic state-space model can be written as follows:

xt+1 = Axt +But + wt (4.1a)

yt = Cxt +Dut + vt (4.1b)

Where x represents the state of the system (in contrast to grey-box modelling, x has not
necessarily a physical meaning here); u is the system input; y is the vector of outputs (will be
considered power and temperature); wt and vt are state and output measurement noises re-
spectively; A,B,C and D are appropriate size matrices to be identified, t denotes the time-step
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(15 minutes sampling time). Note that depending on the modelling approach, the terminology
might differ. Therefore, in the following sections, the AI/ML terms are also employed, that
refer to X as the set of inputs/features/predictive variables and to y as the output/target.

For the identification procedure, an open-source system identification package for Python
(Armenise et al. 2018), freely available at GITHUB: https://github.com/CPCLABUNIPI/
SIPPY, was used. More specifically the subspace identification algorithm N4SID was applied.

The identification was performed on two different buildings: an ETP 9-zone building and
an IDA ICE building (cf. section 3.2.4 and 3.2.1). As mentioned in the problem statement, in
the case of a multi-zone building, all zone specific variables are averaged and the total power
used by the building is considered. To facilitate the analysis, the identification and the testing
were performed on the same 3 months winter period. Note however that ETP and IDA ICE
buildings have been simulated with different weather profiles.

4.2.1 Linear state-space modelling of the thermal dynamics

State-space 
model

State-space 
model

Figure 4.3: Linear state-space identification of the thermal dynamics model. Schematic rep-
resentation of the approach, input variables and outputs.

In a first step, the ability of linear models to capture the thermal dynamics in a building was
tested. This follows the reasoning behind parametric modelling found in literature (see for
instance (Mustafaraj et al. 2010), (Braun et al. 2002), (Kolokotsa et al. 2009)) although in
this case no particular structure for the state-space model matrices, i.e. system parameters,
is assumed. The approach falls therefore in the category of black box modelling.

ETP building case. One advantage of considering a parametric simulation building is al-
lowing an easy analysis of how unknown disturbances affect the thermal dynamics model.
The results hereafter show the modelling precision in two different cases: when all inputs
affecting the system are known, i.e. exact heat gains from all sources, and when some un-
known/partially known disturbances are considered. The latter is motivated by the fact that,
in practice, the exact heat gains in each zone are complex to estimate; this is especially true
for solar and occupancy heat gains. Therefore, in the second tested case, the occupancy heat
gains are not included in the input set, and a global solar irradiance profile, as expected from
a weather provider, is used instead of precise value of the solar heat gains affecting the zones.

https://github.com/CPCLABUNIPI/SIPPY
https://github.com/CPCLABUNIPI/SIPPY
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a) Fully known disturbances
When all heat gains affecting the zones were considered, i.e. P , Φirr, heat transfers with
ambient air and Φocc, the state-space modelling was able to capture precisely the system
dynamics in the case of an ETP building. The identification of a heating power model in this
case is performed with inputs u = (Tin, Text,Φirr,Φocc)

T and output y = P .
The identification of a temperature model is based on inputs u = (P, Text,Φirr,Φocc)

T and
output y = Tin.

This is an expected result given that the identified model is equivalent to the linear system
formed by eq. (3.1a) and (3.1b) in Section 3.2.4, describing the building thermal dynamics. It
can be noted here that dealing with an average indoor temperature and a total heating power
has negligible effects.

b) Unmeasured disturbances
Assuming unknown occupancy heat gains and solar irradiance from a weather provider, the
identified model precision is reduced to R2=0.94 and WAPE=0.12, compared to a perfect
identification in the previous case where precise solar and occupancy heat gains were used.
Identification results are illustrated in Fig. 4.4 below.

Identification of an indoor temperature model, with inputs u = (P, Text,Φirr)
T and output

y = Tin, results in a quite bad modelling precision: R2=0.12 and WAPE=0.04. The fit between
the estimated and observed values are illustrated in Fig. 4.5 below.

IDA ICE building case. For the IDA ICE building, only the case with partially known
heat gains was considered. The error statistics are R2=0.83 and WAPE=0.25 for the power
model.

The temperature model identification results in R2=0.69 and WAPE=0.04.
Fitting results can be seen in Fig. 4.6 and Fig. 4.7.

In these first tests, the impact of unknown disturbances affecting the zones was evaluated.
The results show that the system can be perfectly identified if all the heat gains affecting
the thermal system are considered. However the impact of unknown disturbances can be
considerable. This is especially critical for the indoor temperature model identification, as
indicated by the corresponding mediocre accuracy. Note here that the identification results
depend highly on the considered time interval. For example in the ETP building case, an
identification with inputs u = (P, Text,Φirr)

T and output y = Tin, performed on January-
February instead of February-March leads to R2=0.64 and WAPE=0.04 (instead of R2=0.12
and WAPE=0.04).

Since HVAC power is not usually directly controllable, we move forward to the fixed
objective of designing a convenient model that describes power consumption as a function of
indoor temperature setpoints, among other available data. In the next subsection, the effects
on adding the control actions to the input set is investigated.
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Figure 4.4: State-space modelling given partially known heat gains affecting the zones, with
u = (Tin, Text,Φirr)

T and output y = P . ETP building.
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Figure 4.5: State-space modelling given partially known heat gains affecting the zones, with
u = (P, Text,Φirr)

T and output y = Tin. ETP building
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Figure 4.6: State-space modelling given partially known heat gains affecting the zones, with
u = (Tin, Text,Φirr)

T and output y = P . IDA ICE building.

15

20

T 
(°

C)

Tin observed
Tin predicted
Tsp

min

0

25

50

P 
(k

W
) P observed

25-12-2001 00:00

29-12-2001 00:00

01-01-2002 00:00

05-01-2002 00:00

09-01-2002 00:00

13-01-2002 00:00

17-01-2002 00:00

Time

10

0

10

T e
xt

 (°
C)

Text

Figure 4.7: State-space modelling given partially known heat gains affecting the zones, with
u = (P, Text,Φirr)

T and output y = Tin. IDA ICE building
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4.2.2 Linear state-space modelling using indoor temperature setpoints

State-space 
model

State-space 
model

Figure 4.8: Linear state-space model identification using indoor temperature setpoints.
Schematic representation of the approach, input variables and outputs.

Similarly as in (Berthou et al. 2012) and (Berthou et al. 2014), a state-space modelling was
performed using temperature setpoints. The resulting model, in this case, could be integrated
directly in an optimization framework.

ETP building case.
a) Fully known disturbances

When all heat gains were precisely considered, the state-space model with
u = (Tmin

sp , Text,Φirr,Φocc)
T and output y = P describes no longer a linear system, given

the nonlinearity induced by the heating power limits. Identifications lead to R2=0.82 and
WAPE=0.23 for the heating power model identification. If indoor temperature is included in
the input set, i.e. u = (Tin, T

min
sp , Text,Φirr,Φocc)

T , the identification procedure recovers the
linear model and leads to an almost perfect accuracy. This is an ideal case however, as in
practice indoor temperature is unkown in advance.

The indoor temperature modelling with u = (Tmin
sp , Text,Φirr,Φocc)

T and output y = Tin

leads to R2=0.86 and WAPE=0.01.

b) Unmeasured disturbances
Additionally to the characteristic nonlinearity, if unknown inputs are assumed, the accuracy
drops to R2=0.76 and WAPE=0.29 for the heating power model, as illustrated in Fig. 4.9.

It’s worth mentioning here that if indoor temperature is included in the set of inputs, the
model precision is improved: R2=0.86 and WAPE= 0.20.

An equivalent modelling procedure applied to the indoor temperature
(inputs u = (Tmin

sp , Text,Φirr)
T and output y = Tin), results in R2=0.85 and WAPE=0.01.

The Fig. 4.10 illustrates the results.

IDA ICE building case. The identification leads to R2=0.62 and MAPE=0.38 for the
power consumption model with inputs u = (Tmin

sp , Text,Φirr)
T (see Fig. 4.11) and R2=0.84

and WAPE=0.24 if the indoor temperature is included in the set of inputs.
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The temperature model precision is R2=0.84 and WAPE=0.03. The goodness of fit be-
tween estimated and observed values is illustrated in Fig. 4.12 below.

Overall, this section confirms the linear model limitations when dealing with unmeasured
disturbances and complex systems that exhibit nonlinearities, especially when dealing with
the HVAC load. Moreover, models turned out highly sensible to the identification time period,
requiring a further investigation on how much data should be used for identification, how the
model parameters are varying and in which cases the models underperform. For instance,
despite the limitations of a linear model, in some cases results suggest that since the indoor
temperature is controlled, a temperature model based on temperature setpoints can lead to a
satisfying model. If this is possible in some limited cases, linear models are clearly not accurate
enough for our application. This motivates exploration of more complex power consumption
modelling approaches and precise temperature models, estimations of which could be used for
in the power model. The next section will describe the steps taken in this direction.
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Figure 4.9: State-space modelling given partially known heat gains affecting the zones, with
u = (Tmin

sp , Text,Φirr)
T and output y = P . ETP building.



4.2. Linear state-space modelling 49

18

20
T 

(°
C)

Tin observed
Tin predicted
Tsp

min

0

100

P 
(k

W
) P observed

07-01-2010 00:00

09-01-2010 00:00

11-01-2010 00:00

13-01-2010 00:00

15-01-2010 00:00

17-01-2010 00:00

19-01-2010 00:00

21-01-2010 00:00

23-01-2010 00:00

Time

10

0

10

T e
xt

 (°
C)

Text

Figure 4.10: State-space modelling given partially known heat gains affecting the zones, with
u = (Tmin

sp , Text,Φirr)
T and output y = T . ETP building.

15

20

T 
(°

C)

Tin observed
Tsp

min

0

50

P 
(k

W
) P observed

P predicted

25-12-2001 00:00

29-12-2001 00:00

01-01-2002 00:00

05-01-2002 00:00

09-01-2002 00:00

13-01-2002 00:00

17-01-2002 00:00

Time

10
0

10

T e
xt

 (°
C)

Text

Figure 4.11: State-space modelling given unknown disturbances, with u = (Tmin
sp , Text,Φirr)
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and output y = P . IDA ICE building.
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Figure 4.12: State-space modelling given unknown disturbances, with u = (Tmin
sp , Text,Φirr)

T

and output y = T . IDA ICE building.

4.3 Autoregressive Random Forest regression predictive mod-
elling

RF modelRF model

Figure 4.13: Auto-regressive Random Forest regression predictive modelling of power con-
sumption and indoor temperature. Schematic representation of the approach, input variables
and outputs.

From physical insights and from the results presented in the previous section, it can be seen
that the indoor temperature carries important information about past states of the building
that describes the power consumption profile at a given instant. Therefore, both power and
temperature modelling are dealt with in this section. To model the dynamical system, an
auto-regressive feature is implemented, that consists in integrating past input and output
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values in the regressor set. For this modelling task we use a RF regression and a one step lag
value N = 1 (15 minutes) for the auto-regressive variables. The function to approximate can
be expressed therefore as follows:

Pt ≈ fRF (Xt, Xt−1, Pt−1) (4.2)

where X = (Tin, T
min
sp , Text,Φirr)

T and the output to estimate is the power consumption. For
the power consumption data-driven model, the set of features X is composed of manipulated
and non manipulated variables (weather data, indoor temperature estimations, temperature
setpoints). As mentioned above, in addition to learning a power consumption model, a second
similar model is introduced to predict the indoor temperature in the building based on weather
data and temperature setpoints.

For finite horizon predictions the estimated values provided by the models are used recur-
sively until the end of the prediction horizon, i.e. at every time-step of the prediction horizon,
first the indoor temperature is predicted. Then the power consumption model uses the past
and current temperature forecast, along with past power forecast in order to compute the next
time-step forecast.

ETP building case. The models were trained on November-December simulation data,
obtained with the 9-zone ETP building. For testing, January-February data was used. Fig.
4.14 below illustrates how the estimation errors are propagated through the prediction horizon.
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Figure 4.14: Error propagation through the 24h prediction horizon for indoor temperature
(left) and power consumption (right) models. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, Xt−1, Tin,t−1), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, Xt−1, Pt−1), X = (Tin, T
min
sp , Text,Φirr)

T . Validation on a 9-zone ETP building
with night setback temperature control.

Firstly, an error compensation can be observed in Fig. 4.14, towards the end of the horizon.
Overall, given that indoor temperature is tightly following the temperature setpoint, the error
metrics are good. However, the power consumption is varying greatly even with small indoor
temperature errors and depending on if the indoor temperature is correctly predicted below or
above the heating temperature setpoint. Adds up the disturbances during the day (occupancy,
solar heat gains), causing the power consumption forecast errors to be concentrated mostly
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on daytime periods. The goodness of fit between 1-hour ahead forecasts and observed values
is illustrated in Fig. 4.17. The equivalent results for 24-hour ahead forecasts are illustrated in
Fig. 4.18.

IDA ICE building case. In this second case the models were trained on one winter season
(November - March) and the next winter season was used for testing.

0 10 20
Prediction horizon (hour)

0.80

0.85

0.90

0.95

1.00

R
2

R2 T

0.00

0.05

0.10

0.15

0.20

W
AP

E

WAPE T

0 10 20
Prediction horizon (hour)

0.5

0.6

0.7

0.8

0.9

1.0

R
2

R2 P

0.00

0.05

0.10

0.15

0.20

0.25

0.30

W
AP

E

WAPE P

Figure 4.15: Error propagation through the 24h prediction horizon for indoor temperature
(left) and power consumption (right) models. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, Xt−1, Tin,t−1), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, Xt−1, Pt−1), X = (Tin, T
min
sp , Text,Φirr)

T . Validation on IDA ICE building with
night setback temperature control.

For this second building, the error levels are comparable to the previous building case
(Fig. 4.15). It can be seen though that the temperature is not controlled at all times, and
the transients observed during night setback and weekends seem more complex to model,
resulting in slightly worse error metrics. The goodness of fit between 1-hour ahead forecasts
and observed values is illustrated in Fig. 4.19. The equivalent results for 24-hour ahead
forecasts are illustrated in Fig. 4.20.
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Figure 4.16: Error propagation through the 24h prediction horizon for indoor temperature
(left) and power consumption (right) models. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, Xt−1, Tin,t−1), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, Xt−1, Pt−1), X = (Tin, T
min
sp , Text,Φirr)

T . Validation on IDA ICE building with
simulated preheating operations.
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To validate further the modelling approach, a second simulation dataset was used, with
representative instances of DR events, i.e. random preheating operations represented by step
temperature setpoints. The results in Fig. 4.16 show the error propagation through the
prediction horizon and suggest that the method struggles to reflect correctly the HVAC load
variations through the prediction horizon. Fitting results for 1-hour ahead and 24-hour ahead
forecasts are illustrated in Fig. 4.21 and Fig. 4.16 respectively.

Given the model structure here, including autoregressive terms in the feature set might
lead to a naive learning. A possible solution is modelling, for instance, the variation of
power consumption based on previous observations:

∆Pt ≈ fRF (Xt, Xt−1, Pt−1) (4.3)

where X = (Tin, T
min
sp , Text,Φirr)

T and the output to estimate is the power consumption
variation with respect to the previous observation. A similar procedure is applied for indoor
temperature modelling. Tested on the dataset with simulated preheating operations, the
results indicate a similar modelling performance.

Overall the observations suggest that the approach is fragile. The indoor temperature pre-
dictions impact highly the power consumption predictions. Also the error propagation through
the prediction horizon, due to the autoregressive feature, leads to non-negligible errors.
In order to mitigate the effects of the indoor temperature prediction errors, one possibility is
considering a larger lag value. The power consumption model could therefore extract informa-
tion about the thermal state of the building directly from the weather data instead of relying
on indoor temperature predictions. Here a lag value N=8 of two hours was considered. Since
the dataset sampling frequency is 15 minutes, the resulting high number of features could
lead to an overfitting problem. The applied solution to alleviate this phenomena consists in
considering the average of the autoregressive terms - X̄t−1,...,t−N , T̄t−1,...,t−N , P̄t−1,...,t−N - over
the given lag interval t − 1, ..., t − N . This can also have the effect of reducing error propa-
gation through the prediction horizon, by breaking the relation between current and previous
step observations. The results are presented in Appendix B, and confirm indeed the benefit
of considering a larger lag value.

The results above motivate the following bifurcations. One of the further investigations
(see subsection 4.4.2) is intended to alleviate the effects of the indoor temperature forecasting
errors on the HVAC load predictions, by eliminating the indoor temperature from the set
of inputs. The second one is an attempt to alleviate the error propagation through the
prediction horizon, by considering a more classical approach, in which no autoregressive terms
are considered for the HVAC load forecasting (see section 4.4 below).
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Figure 4.17: 1-hour ahead forecasting results. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, Xt−1, Tin,t−1), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, Xt−1, Pt−1), X = (Tin, T
min
sp , Text,Φirr)

T . Validation on a 9-zone ETP building
with night setback temperature control.
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Figure 4.18: 24-hour ahead forecasting results. Auto-regressive RF estimators for indoor
temperature: Tin,t ≈ fRF (Xt, Xt−1, Tin,t−1), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, Xt−1, Pt−1), X = (Tin, T
min
sp , Text,Φirr)

T . Validation on ETP building with
night setback temperature control.



4.3. Autoregressive Random Forest regression predictive modelling 55

15

20

T 
(°

C)

Tin observed
Tin predicted
Tsp

min

0

20

40
P 

(k
W

) P observed
P predicted

09-12-2002 00:00

11-12-2002 00:00

13-12-2002 00:00

15-12-2002 00:00

17-12-2002 00:00

19-12-2002 00:00

21-12-2002 00:00

23-12-2002 00:00

25-12-2002 00:00

Time

10
0

10

T e
xt

 (°
C)

Text

Figure 4.19: 1-hour ahead forecasting results. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, Xt−1, Tin,t−1), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, Xt−1, Pt−1), X = (Tin, T
min
sp , Text,Φirr)

T . Validation on IDA ICE building with
night setback temperature control.
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Figure 4.20: 24-hour ahead forecasting results. Auto-regressive RF estimators for indoor
temperature: Tin,t ≈ fRF (Xt, Xt−1, Tin,t−1), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, Xt−1, Pt−1), X = (Tin, T
min
sp , Text,Φirr)

T . Validation on IDA ICE building with
night setback temperature control.
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Figure 4.21: 1-hour ahead forecasting results. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, Xt−1, Tin,t−1), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, Xt−1, Pt−1), X = (Tin, T
min
sp , Text,Φirr)

T . Validation on IDA ICE building with
simulated preheating operations.
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Figure 4.22: 24-hour ahead forecasting results. Auto-regressive RF estimators for indoor
temperature: Tin,t ≈ fRF (Xt, Xt−1, Tin,t−1), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, Xt−1, Pt−1), X = (Tin, T
min
sp , Text,Φirr)

T . Validation on IDA ICE building with
simulated preheating operations.
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4.4 Random Forest regression predictive modelling

RF modelRF model

Figure 4.23: Random Forest regression predictive modelling of power consumption and indoor
temperature. Schematic representation of the approach, input variables and outputs.

In this section a static power map is identified based on a set of features encompassing weather
conditions, indoor temperature, indoor temperature setpoints, time-based information such as
Time Of Day (TOD) and Day Of Week (DOW). Adding time-based information to the set
of inputs seemed important, since autoregressive terms are no longer considered. Note also
that the effect of improved accuracy is not of magnitude of invalidating further comparisons
and conclusions. Indoor temperature are supposed to accurately describe the thermal state
of the building while the time-based variables, such as the hour of the day or the day of the
week, are meant to capture time-related patterns, for instance occupancy or weekday/weekend
transitions.

Again, a RF regression algorithm was used. The power consumption function to approxi-
mate can be expressed as follows:

Pt ≈ fRF (Xt) (4.4)

where X = (Tin, T
min
sp , Text,Φirr, TOD,DOW )T and the output to estimate is the power

consumption P .

The indoor temperature is estimated based on a similar model trained on features such
as weather conditions, indoor temperature setpoints, TOD and DOW. In the case of the
indoor temperature however, the past inputs are crucial for describing the current output. As
suggested at the end of the last section, a lag value N of two hours is applied. The function
to approximate can be represented as follows:

Tin,t ≈ fRF (Xt, X̄t−1,...,t−N ) (4.5)

where X = (Tmin
sp , Text,Φirr, TOD,DOW )T , the output to estimate is the indoor temperature

Tin, and X̄t−1,...,t−N is the average of the autoregressive terms over the considered lag interval
t− 1, ..., t−N .

The same training and testing datasets as in the last section were used.
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ETP building case. In the ideal case where indoor temperature is known the power con-
sumption model errors metrics are R2=0.98 and WAPE=0.06.

The error metrics for the temperature model are R2=0.94 and WAPE=0.01. As a result, if
forecasted indoor temperature is used to predict the power consumption, the error metrics for
the power model become R2=0.96 and WAPE=0.08. Fig. 4.24 illustrates the corresponding
results.

IDA ICE building case. In the case of IDA ICE building with night setback setpoints,
the errors metrics when using observed indoor temperature are R2=0.97 and WAPE=0.08.

The error metrics for the temperature model are R2=0.91 and WAPE=0.01. If forecasted
indoor temperature is used to predict the power consumption, the error metrics for the power
model become R2=0.86 and WAPE=0.17. Fig. 4.25 illustrates the corresponding results.

To validate further the modelling approach, a second simulation dataset was used, with
representative instances of DR events. More specifically, random preheating operations were
simulated, represented by step temperature setpoints. When using the observed temperatures,
the power model error metrics are R2=0.96 and WAPE=0.08. The temperature model however
results in R2=0.83 and WAPE=0.01. Subsequently, when using forecasted temperatures, the
power model inherits the temperature modelling errors, leading to an accuracy R2=0.84 and
WAPE=0.19.

In this last case, it seems that the diverse set of control actions is leading to a less accurate
temperature model. Indeed, the thermal dynamics to be captured depend on the temperature
setpoint profile, and in this specific case they are complex. For instance, when night setback
is applied, the stored energy in the building is released during the night. As a consequence,
the impact of solar or occupancy heat gains during the day will not necessarily lead to a
visible variation with respect to the heating temperature setpoints, in contrast to simulating
preheating operations case, with no night setback. Additionally in the latter case, the temper-
ature is often in transient phases and a set of behaviours have to be captured by the model.
For example, depending on the ambient conditions the preheating temperature setpoints are
not always reached, or not reached with the same speed. Also the observed inertia after a
preheating episode will depend on the preheating duration and the preheating temperature
setpoints.

Given the mediocre accuracy in this last case, where preheating scenarios are simulated,
and since this is exactly the type of dynamics we target when dealing with flexibility for
DR mechanisms, one may wonder if indoor temperature could be modelled using domain
knowledge. For instance, by assuming ramp preheating setpoints, in such a way that the
temperature increases by following tightly the setpoint profile, the temperature profile during
the preheating operation can be considered as known. Based on this type of control and
knowledge of the thermal dynamics, an explicit structured model can be developed. This idea
is developed further in the next section.
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Figure 4.24: RF estimators for indoor temperature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N ), where X =

(Tmin
sp , Text,Φirr, TOD,DOW )T and N=8 (2 hours), and power consumption: Pt ≈ fRF (Xt),

X = (Tin, T
min
sp , Text,Φirr, TOD,DOW )T . Validation on ETP building with night setback

temperature control.
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Figure 4.25: RF estimators for indoor temperature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N ), where X =

(Tmin
sp , Text,Φirr, TOD,DOW )T and N=8 (2 hours), and power consumption: Pt ≈ fRF (Xt),

X = (Tin, T
min
sp , Text,Φirr, TOD,DOW )T . Validation on IDA ICE building with night setback

temperature control.
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Figure 4.26: RF estimators for indoor temperature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N ), where X =

(Tmin
sp , Text,Φirr, TOD,DOW )T and N=8 (2 hours), and power consumption: Pt ≈ fRF (Xt),

X = (Tin, T
min
sp , Text,Φirr, TOD,DOW )T . Validation on IDA ICE building simulated using

step setpoints representative of DR control.

4.4.1 Structured data-driven modelling of indoor temperature

RF model
Structured

dynamic
model

Figure 4.27: Structured data-driven modelling of indoor temperature and RF regression pre-
dictive modelling of power consumption. Schematic representation of the approach, input
variables and outputs.

In the previous sections, data-driven modelling approaches have been investigated and the
importance of the indoor temperature when describing the power consumption variation has
been illustrated. For the targeted application, the control actions have to be decided in
advance, hence, the indoor temperature needs to be estimated. The data-driven models how-
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ever struggle to capture correctly the temperature dynamics, especially when a diverse set
of temperature setpoint modifications is considered. The temperature dynamics are however
more or less difficult to model, depending on how the temperature setpoints are modified.
The approach investigated in this section is based on this observation. Given that the indoor
temperature is a controlled variable, it is reasonable to assume that the preheating can be per-
formed in such a way that the indoor temperature variation is closely controlled. For instance,
slow ramp setpoints allow to rise the indoor temperature tightly at the desired temperature
setpoint, therefore the temperature profile during the preheating operation can be considered
as known. Given this system knowledge and based on physical insights about the drivers of
the indoor temperature dynamics, the following nonlinear explicit model was developed:

T+ = SatT
sp
max

T sp
min

[
p1T + p2T̄ext + p3Text + p4Φirr + p5 + e

]
(4.6)

T̄+
ext = p6T̄ext + (1− p6)Text (4.7)

e+= e+ β(Tmeas − T ) (4.8)

• p2T̄ext Inertia

• p3Text Exterior heat gains

• p4Φirr Solar heat gains

• p5 Basic permanent heat gains

• e Slow correction term

The saturation expresses the fact that the comfort bounds [T sp
min, T

sp
max] are closely re-

spected. Given the major heat exchanges affecting a zone, the evolution of the indoor temper-
ature is influenced by its current value, by an inertia term T̄ext (associated to slow dynamics
of the building’s thermal mass that depend on the ambient temperature), by heat exchanges
with the exterior Text, by solar heat gains Φirr, and eventual unknown auxiliary heat gains. A
correction term e allows slow rectification of the predicted temperature based on on-line ob-
servations. The corresponding parameter β is chosen such that the correction term accounts
for persistent errors. For instance, given the 15 minutes sampling time, β = 0.01 allows a
correction of 0.04℃ per degree of error that lasts 1 hour.

It’s worth mentioning here that the modelling approach described in this section results
from several iterations. A general modelling approach namely, describing all the temper-
ature dynamics, was tested. Instead of the saturation operator a set of parameters are
identified for each of the following contexts :

• T sp
min < Tin < T sp

max

• Tin > T sp
max (cooling is on)

• Tin < T sp
min (heating is on)
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The advantage is that the preheating dynamics is modelled precisely for all temperature
setpoint profiles. The difficulties arise from different sources. Firstly, the model accu-
racy is sensible to seasonality effects. To improve the accuracy, identification on short
time-intervals was tested as an option, but turned out complicated in practice. Indeed, de-
pending on the considered time intervals, the different contexts are not encountered with
the same frequency, which leads often to a poor accuracy and unrealistic parameters. The
option of identifying parameters based on ambient temperature, in order to reflect the sea-
sonality effects, doesn’t seem to be sufficient. A second major difficulty was the transition
between contexts, which the model is not able to perform smoothly.

As before, the model parameters are identified using on a first winter season data, and
the identification results are investigated based on a second season data. For the parameter
identification procedure, a nonlinear optimization algorithm was used, publicly available at
https://github.com/mazenalamir/torczon.

The model is tested first in a closed-loop fashion, i.e. considering on-line observations of the
indoor temperature and correcting the next-step temperature estimations. The resulting error
metrics for the temperature model are R2=0.95 WAPE=0.01. Subsequently, for the power
model using estimated temperatures, the errors are R2=0.86 and WAPE=0.20 (in the ideal
case, where observed indoor temperatures are used, results are R2=0.90 and WAPE=0.15).
However, given that the models are supposed to be used for forecasting a horizon of 24 hours,
the correction term cannot be updated continuously. By assuming a correction every 24 hours,
the error metrics for the temperature are R2=0.93 and WAPE=0.01. The errors for the power
are unchanged with respect to the on-line corrections case: R2=0.86 and WAPE=0.20. The
forecasting results are illustrated in Fig. 4.28.

The interest of such an explicit temperature model should be compared with the ML ap-
proach seen at the beginning of this section. In the case where a RF temperature model is used
(R2=0.91 and WAPE=0.01), the errors of the power model are R2=0.88 and WAPE=0.18,
see Fig. 4.29 below.

The interpretability and the accuracy of such a structured explicit model are non-negligeable
advantages. However, since the model performance is conditioned by the hypothesis of a fine
temperature control, additional investigations are necessary to determine how exactly the pre-
heating should be performed. More precisely, should be studied the maximum steepness of
the preheating ramps (in order to guarantee that the indoor temperature can follow the set-
points) depending on the exogenous variables, as well as the impact in terms of inertia/passive
energy storage. In what follows however, it has been decided to simplify this task by assuming
step preheating setpoints. This has been also motivated by the results from the next subsec-
tion, showing comparable precision of the HVAC load modelling without predicting the indoor
temperature (more precisely, when eliminating the indoor temperature from the regressor and
using current and past values of the features), the errors of the power model being R2=0.88
and WAPE=0.18 for this dataset.

https://github.com/mazenalamir/torczon
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Figure 4.28: Indoor temperature predictions based a nonlinear explicit model. RF estimator
for power consumption: Pt ≈ fRF (Xt), X = (Tin, T

min
sp , Text,Φirr, TOD,DOW )T . Validation

on IDA ICE building simulated using ramp preheating setpoints.
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Figure 4.29: RF estimators for indoor temperature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N ), where X =

(Tmin
sp , Text,Φirr, TOD,DOW )T and N=8 (2 hours), and power consumption: Pt ≈ fRF (Xt),

X = (Tin, T
min
sp , Text,Φirr, TOD,DOW )T . Validation on IDA ICE building simulated using

ramp preheating setpoints.
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4.4.2 RF regression predictive modelling of power consumption only

RF model

Figure 4.30: RF regression predictive modelling of power consumption. Schematic represen-
tation of input variables and output.

To mitigate the effects of the indoor temperature prediction errors, and the cumulative effects
of the autoregressive feature errors, the solution investigated in this section consists in elimi-
nating the autoregressive features and circumventing the use of indoor temperature predictions
by considering a large enough feature lag value N for power consumption forecasting. The
information about about the past states of the building could therefore be directly extracted
from the weather data instead of relying on indoor temperature predictions. The function to
approximate can be expressed therefore as follows:

Pt ≈ fRF (Xt, Xt−1, ..., Xt−N ) (4.9)

where X = (Tmin
sp , Text,Φirr)

T and the output to estimate is the power consumption P .

Here a lag value N of two hours was considered. To avoid dealing with a high number of
features that could lead to an overfitting problem, the average of the autoregressive terms are
considered - X̄t−1,...,t−N - over the lag interval t− 1, ..., t−N .

The results for the ETP multizone building are R2=0.97, WAPE=0.07, for the IDA ICE
building with night setback temperature setpoint schedules: R2=0.94, WAPE=0.11, in the
case of IDA ICE building with preheating events: R2=0.94, WAPE=0.11. Fig. 4.31, Fig. 4.32
and Fig. 4.33 below illustrate these results.

In the case where autoregressive terms, with a lag N of 2 hours, are considered, as
expressed by the equation hereafter, the accuracy is improved for the beginning of the
prediction horizon. The improvement varies however among the datasets. In the case of
IDA ICE building with DR preheating operations, the accuracy ranged from R2=0.96 and
WAPE=0.06 to R2=0.93 and WAPE=0.13 at the 24 hours horizon, with an equivalent
error as the non-autoregressive variant above, at the middle of the prediction horizon.

Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ) (4.10)
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Figure 4.31: RF power consumption forecasting results based on past and current feature
values: Pt ≈ fRF (Xt, X̄t−1,...,t−N ), where X = (Tmin

sp , Text,Φirr, TOD,DOW )T and N=8 (2
hours). Validation on ETP building with night setback temperature control.
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Figure 4.32: RF power consumption forecasting results based on past and current feature
values: yt ≈ fRF (Xt, X̄t−1,...,t−N ), where X = (Tmin

sp , Text,Φirr, TOD,DOW )T and N=8 (2
hours). Validation on IDA ICE building with night setback temperature control.



66
Chapter 4. Data-driven modelling for power consumption and indoor

temperature forecasting

22

24

T 
(°

C)

Tin observed
Tsp

min

0

20

40

P 
(k

W
) P observed

P predicted

31-12-2002 00:00

01-01-2003 00:00

02-01-2003 00:00

03-01-2003 00:00

04-01-2003 00:00

Time

10
0

10

T e
xt

 (°
C)

Text

Figure 4.33: RF power consumption forecasting results based on past and current feature
values: yt ≈ fRF (Xt, X̄t−1,...,t−N ), where X = (Tmin

sp , Text,Φirr, TOD,DOW )T and N=8 (2
hours). Validation on IDA ICE building with representative DR preheating operations.
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4.5 Conclusion

Preliminary studies were performed using linear state-space modelling approaches. Based
on two different simulated buildings, the results show the impact of unknown disturbances
on one hand, and on the other hand, the limitations of such models when dealing with
nonlinearities specific to buildings. These tests also confirmed that modelling the power
consumption as a function of indoor temperature (besides other exogenous variables) is
much easier than modelling the power consumption as a function of indoor temperature
setpoints. On the contrary, since indoor temperature is a controlled variable, it can be
accurately modelled based on indoor temperature setpoints. Nevertheless, the robust-
ness and the global precision of this approach is not sufficient for the targeted application.

Moving to more advanced techniques, two different approaches were then tested for
temperature and power consumption forecasting: a RF regression with autoregressive
features and a "classical" RF regression. In the first case, the propagation of errors
through the prediction horizon as well as the impact of indoor temperature prediction
errors causes a mediocre accuracy. Considering large lag values attenuates these effects
and improves considerably the results. Additionally, an attempt was made to improve
the indoor temperature forecasts based on a nonlinear structured dynamic model. The
resulting precision was comparable to a RF model. However, the model performance is
conditioned by the hypothesis of a fine temperature control with ramp setpoints and
additional investigations are necessary to determine how exactly the preheating should
be performed. Finally, results indicate that a convenient approach consists in bypassing
the indoor temperature forecasting and learning a power consumption model based on
current and past feature values (Tmin

sp , Text,Φirr, TOD,DOW ). Thus, past thermal state
information is extracted directly from temperature setpoint and exogenous data instead
of, possibly erroneous, predicted indoor temperature. This idea is adopted and refined
in the next chapter.
The modelling accuracy for these approaches, at the end of the 24 hours prediction
horizon, is summarized in Table 4.1, 4.3 and 4.2.

Experiments suggest also that efforts should be concentrated on precise modelling of the
targeted dynamics instead of modelling the whole range of observed phenomena in a
building. On this matter, results presented above are already one step in this direction,
as the models are learned using heating/winter data only. It should be noted that the
mentioned approaches were tested on full year datasets and that the resulting global
models are sensibly less precise. This suggests that the best approach is to learn distinct
models for winter and summer seasons, and possibly an additional one for dealing with
inter-seasonal periods, when both cooling and heating might occur. This is also supported
by the fact that HVAC cooling and heating systems might be fundamentally different in
terms of technology, efficiency, energy vectors, and consequently display distinctive power
consumption profiles.
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ETP building IDA ICE building

Temperature Power Temperature Power

R2 WAPE R2 WAPE R2 WAPE R2 WAPE

AR RF (15 min lag) 0.94 0.01 0.70 0.27 0.91 0.01 0.80 0.20
AR RF (2 h lag) 0.97 0.01 0.92 0.13 0.92 0.01 0.93 0.11
RF 0.94 0.01 0.96 0.07 0.91 0.01 0.85 0.17
RF 0.97 0.06 0.95 0.10
AR RF (2 h lag) 0.97 0.07 0.95 0.10

Table 4.1: Simulation with night setback temperature control. First three approaches are
based on chain indoor temperature and HVAC power consumption forecasting, while the
last two methods bypass usage of indoor temperature predictions.

IDA ICE building

Temperature Power

R2 WAPE R2 WAPE

AR RF (15 min lag) 0.84 0.01 0.80 0.23
AR RF (2 h lag) 0.81 0.01 0.87 0.17
RF 0.84 0.01 0.87 0.26
RF 0.94 0.11
AR RF (2 h lag) 0.93 0.10

Table 4.2: Simulation with step setpoints, equivalent to preheating operations for DR.
First three approaches are based on chain indoor temperature and HVAC power con-
sumption forecasting, while the last two methods bypass usage of indoor temperature
predictions.

IDA ICE building

Temperature Power

R2 WAPE R2 WAPE

RF 0.91 0.01 0.88 0.18
Explicit temperature model 0.93 0.01 0.86 0.20

Table 4.3: Simulation with ramp setpoints. Approaches are based on chain indoor temper-
ature and HVAC power consumption forecasting. The first approach uses RF regression
indoor temperature prediction, while the second one uses a structured dynamical model.
Power consumption is forecasted using RF regression.
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In the previous chapter, several approaches were tested, which aim for short-term forecast-
ing (upcoming day in this case) of the power consumption profile, based on indoor temperature
setpoints and other commonly available data such as weather forecasts. The adopted approach
stems from the last chapter’s conclusions. Here, the approach will be described in detail: fea-
tures, learning data, validation results on additional buildings, before moving to the next
chapter describing the application in the DR context.

5.1 Structure of the solution

Model features As suggested by the results from the last section, instead of estimating
the indoor temperature profile, the thermal state of the building is recovered by incorporating
information about the past conditions into the regressor, i.e. past mean values of the ambient
air temperature and solar irradiance, as well as the past temperature setpoint profile. Fig.
5.1 hereafter illustrates this for the IDA ICE building case.
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tt-6h t-2h

Predic�ve 
ML model

Figure 5.1: Feature set for power consumption forecasting.

Data enhancement In some cases, adding rolling window average values of the originally
15-minutes-sampled data (see Fig. 5.2 below), to the learning dataset, improves the model by
smoothing the forecasts, reinforcing the dependency between the target and the features and
inferring additional meaning about the features. Are applied here rolling averages up to two
hours.

…
t t+1h t+2h

Averaged data
added for each
instant t

Figure 5.2: Augmenting the original dataset with rolling window averages of the data in order
to smoothen the forecasts and reinforce the dependency between the target and the features.

Learning algorithm We use a ML-based algorithm, XGboost (extreme gradient boosting)
(T. Chen et al. 2016), for the prediction of the HVAC load. The XGboost algorithm has
advantageous characteristics: it does not require fine-tuning of the hyperparameters or inten-
sive pre-processing of the data, it can incorporate interactions between features and capture
complex nonlinear relationships between the target and features, it is not prone to over-fitting,
it allows model interpretability, and compared to previously used RF algorithms - it is highly
efficent in terms of computation time. Note that several other regression ML algorithms have
been tested: support vector machines, k nearest neighbors, RF, multi-layer perceptron, long
short-term memory networks. Among them, RF and long short-term memory networks models
were showing comparable precision.
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5.2 Validation on available building case-studies
IDA ICE building (c.f. Section 3.2.1) As in the previous chapter, the model is validated
using simulation data consisting in two random preheating events during working hours, one in
the first and another in the second half of the day. The accuracy is R2=0.95 and WAPE=0.10.
Fig. 5.3 and 5.4 below illustrate the prediction errors.
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Figure 5.3: Fitting results of the adopted solution. Validation on IDA ICE building simulated
with two random preheating scenarios each working day. Train data: November 2001 - March
2002, test data: November 2002 - March 2003.
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Figure 5.4: Power consumption forecasting results of the adopted solution. Validation on IDA
ICE building simulated with two random preheating scenarios each working day. Train data:
November 2001 - March 2002, test data: November 2002 - March 2003.



74 Chapter 5. Predictive modelling using boosted trees

Digital twin building In the case of the digital twin building (c.f. Section 3.2.3), 137
days in the summer period June-October 2019 happened to contain all necessary features and
enough data for training and testing. Synthesizing indoor temperature setpoint data turned
out difficult. Indeed, data for more than 180 zones was available, with often inconsistent values
across the selected time period. Since a detailed investigation of all the respective time-series
seemed time-consuming, indoor temperature setpoints of a single zone was selected in order to
test the solution. Although this assumption doesn’t allow a rigorous conclusion, given that the
proposed method requires averaged data of all zones, it is realistic to assume for this building
a certain similarity of temperature control across different zones. When testing on 30% of the
available data (a suitable splitting procedure for time-series must be selected), the resulting
accuracy is R2=0.89 and WAPE=0.17. As illustrated in Fig. 5.5, the HVAC load is correctly
captured on average, although it is clear that information is lacking to accurately describe the
observed power consumption oscillations.
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Figure 5.5: HVAC electrical load forecasting results of the adopted solution. Validation on
Digital Twin building. Test data: 30% of the available June-October 2019 data.
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A synthetic dataset The synthetic dataset (c.f. Section 3.2.2) offers time-series for different
building efficiencies (low, standard or high, depending on factors such as envelope thermal
resistance, COP of AHU, etc.), locations (San Francisco - moderate/mild weather, Miami
- hot and humid weather, Chicago - cold winter and hot summer) and historical weather
conditions. Although indoor temperature setpoints are available, zone areas are difficult to
retrieve. Thus, it was decided here to consider a simple average of the setpoints over the zones,
without balancing them by the respective zone surfaces.

In the case of the simulation dataset with standard efficiency, San Francisco location and
typical meteorological year, the building was mostly in cooling mode. For the selected year,
the testing data ratio was fixed to 30%, the resulting accuracy is R2=0.97, WAPE=0.09. As
illustrated in Fig. 5.6, the HVAC cooling load function is correctly captured on average. HVAC
cooling load was also targeted in the case of Miami location simulation data. Using similar
training/testing ratio, the accuracy is R2=0.98, WAPE=0.07. In the Chicago case, given the
marked seasonality, only the winter/heating mode was selected. Training and testing was
realized using two different winter seasons (January - March), and without including rolling
average windows in the final dataset. The resulting accuracy is R2=0.92, WAPE=0.22. Fig.
5.7 below illustrates the results for Chicago location.
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Figure 5.6: HVAC electrical cooling load forecasting results of the adopted solution. Valida-
tion on a Synthetic building operation dataset. The dataset corresponds to a building with
standard efficiency, San Francisco location and typical meteorological year. For testing pur-
poses, 30% of the available data was used.
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Figure 5.7: HVAC electrical heating load forecasting results of the adopted solution. Valida-
tion on a Synthetic building operation dataset. The dataset corresponds to a building with
standard efficiency, Chicago location and typical meteorological year. Two different winter
seasons are used for training and testing purposes.

5.3 Construction of the Demand Response learning dataset

In order to design a realistic experimentation for data collection, and enable efficient learning
of the HVAC load function, preheating scenarios had to be simulated in a particular fashion,
as a result of thermal inertia effects. Indeed, frequent preheating operations induce, over time,
an accumulation of passive stored energy, the effect of which can last up to several days. Fig.
5.8 bellow illustrates the difference between the power consumption profile, when preheating
operations are performed, and the baseline power consumption profile. One can see that once
the setpoints are reset to their baseline value, the power consumption attains its baseline level
roughly 12h after the last preheating event.

As a result, past preheating events might influence the energy balance of the future ones. In
order to simplify the analysis, this phenomena is avoided by allowing a sufficient delay between
two preheating events. In practice, two preheating/shedding events per day are simulated, one
in the first half of the day, from 7AM to 12AM, and another from 5PM to 8PM. In these time
intervals, random preheating events in terms of start, duration, and temperature setpoint are
simulated.

Additionally, the outcome of a given DR operation (DR revenue/modified power consump-
tion) is computed based on the estimation of the baseline energy consumption, i.e. the HVAC
load under normal operation. Therefore, in order to accurately estimate the baseline power
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consumption profile, preheating operations are performed once every week. The weeks without
any preheating operation constitute the baseline learning dataset.

As usually in the case of ML algorthims, an efficient model supposed a rich enough learn-
ing dataset. The whole methodology is therefore conditioned by the facility manager
permission to modify indoor temperature setpoints, in order to constitute the learning
dataset.

The corresponding baseline model accuracy is R2=0.90 and WAPE=0.09. Training data
corresponds to half of a winter season, and testing data corresponding to the next winter
season simulated baseline HVAC load.
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Figure 5.8: Power consumption profile given preheating operations and baseline load profile
(under normal temperature setpoint control) which reflect the lasting effects of frequent pre-
heating operations.

Several other approaches have been tested for estimating the baseline power consumption.
For instance, evaluation of the baseline power consumption based on historical values, con-
sisting in searching the last occurrence of similar operating conditions (indoor temperature
setpoint, weather conditions, TOD, DOW), or computing the average of all such historical
occurrences. In a more advanced manner, a regression based on k-nearest neighbors was
tested. The accuracy of such methods did not surpass the baseline model presented above.
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5.4 Zoom on preheating and shedded energy depending on the
preheating parameters

A further insight of how the building responds to preheating operations and what inertia
phenomena are expected is given first in this section. A specific set of simulations were
performed, consisting in preheating scenarios for each working day in a month, with a fixed
start of shedding. Fig. 5.9 below illustrates an example of such scenarios for one day.
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Figure 5.9: Example of preheating scenarios for one day. Given the fixed start of shedding
at 17:00, preheating operations with temperature setpoints [22, 23, 24, 25 ℃] and duration of
[0.5, 1, 1.5, 2, 2.5, 3 hours] were simulated. The baseline scenario is defined by a temperature
setpoint of 21 ℃ during the day and 17 ℃ during the night and weekends.

Fig. 5.10 below illustrates, for a given day, how preheating and shedded energy varies
depending on the preheating temperature setpoint and duration (the considered shedding
duration is 1 hour). A linear relation appears between the total preheating energy and the
prehating duration. The shedded energy displays a decreasing rate, due to the limited capacity
of storing thermal energy.
The relation becomes more complex when looking at the preheating temperature setpoints. For
instance, in some cases the available heating power is not enough to reach the fixed temperature
setpoints, since the available heating power is directed by a weather compensation control and
depends also on the indoor temperature.
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Figure 5.10: Preheating and shedded energy variation depending on the preheating tempera-
ture setpoint and duration. The considered shedding duration is 1 hour

The preheating and shedded energy is additionally influenced by weather conditions, oc-
cupancy, as well as the past conditions. Fig. 5.11 below illustrates how the preheating and
shedded energy varies among days, given a fixed temperature preheating setpoint of 22 ℃.
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Figure 5.11: Preheating and shedded energy variation depending on the day. The considered
shedding duration is 1 hour and the preheating temperature setpoint is 22 ℃.
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5.5 Zoom on forecasting accuracy during Demand Response
events

Preheating operations for passive energy storage, followed by the opposite phenomena when
indoor temperature setpoints are reset to their default values, imply fast dynamics, especially
since the proposed framework is based on step setpoint modifications. This subsection intends
to illustrate the modelling accuracy precisely during preheating and shedding.

As mentioned in the previous section, the learning dataset is built by simulating two
preheating/shedding events per day, one in the first half of the day, from 7AM to 12AM,
and another from 5PM to 8PM. In this time intervals, random preheating events (in terms
of start, duration, and temperature setpoint) are simulated. Preheating/shedding events are
simulated every other week. A secondary model, intended for baseline HVAC load predictions,
is trained on weeks with no preheating/shedding events. Fig. 5.12, 5.13, 5.14, below illus-
trates the accuracy on selected preheating timesteps, shedding timesteps (1 hour time-interval
after a preheating operation), and the baseline power consumption during the preheating and
shedding time-intervals.

In the economical evaluation that follows, the total energy consumption over the time-
intervals of interest (preheating/shedding) will be considered. Appendix C illustrates the
corresponding accuracy of the mean power consumption over the time-intervals of interest.
The accuracy of finer-grained forecasts may not comply with actual requirements of some
DR mechanisms. For instance, DR mechanisms organised by the French transmission system
operator (RTE), are based on power consumption metering down to 10 minutes time-steps.
Nevertheless, requirements in terms of accuracy are still to be adapted to office/commercial
buildings end-users, which do not have the same constraints and capabilities as historical
flexibility participants. Meanwhile other techniques can be used, in order to cope with accuracy
requirements. For instance integrating energy storage devices, or managing a pool of buildings
which can be mutually operated to compensate, behind the meter, the eventual commitment
errors in a DR framework.
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Figure 5.12: Power consumption forecasting accuracy on selected preheating timesteps.
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Figure 5.13: Power consumption forecasting accuracy on selected shedding timesteps (1 hour
time-interval after a preheating operation).
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Figure 5.14: Baseline power consumption forecasting accuracy on selected preheating and
shedding timesteps.
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In this chapter the flexibility value is estimated based on a DR program model. A sim-
plified DR program is assumed, consisting in day-ahead notifications of load shedding. The
participating end-user is compensated for the amount of shedded energy.
The compensation is expressed here as a reward factor r, a ratio between the reward level for
DR participation and the cost of energy during the preheating time-interval. For instance,
if applied in a TOU cost of electricity pricing framework, it represents the ratio between the
on-peak and the off-peak energy cost. In this DR framework, r is supposed to represent the
intrinsic "value" of the shedded energy, in a period of grid stress, with respect to the cost of
the energy in a normal period. This is based on a simplistic assumption according to which
the baseline energy price and the reward level are known and fixed by the grid operator/DR
program. It follows also that the price of the energy is constant during preheating and simi-
larly, during DR, the compensation rate for the shedded energy is also constant. Although the
defined reward factor does not rely on existing DR programs, one may interpret the following
results as compensation levels for which buildings may be motivated to adopt a proactive
position and participate to grid services.

The shedded energy depends on how the preheating is performed. Hereafter are described
the corresponding participation policy and the optimization strategy of the preheating param-
eters.

An economical estimation of the flexibility value is performed, showing the possible DR
income depending on the remuneration for the flexibility service. Further insights are provided
about the optimality of the decisions. A comparison is also performed with the classical
shedding strategy by lowering the indoor temperature setpoints.
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6.1 Demand Response mechanism and participation strategy

HVAC load flexibility is assumed to be activated in the context of a DR program. As already
mentioned, the DR program that values energy flexibility "products", is supposed to be based
on a day-ahead notification. Practically, DR incentives for specific intervals of time (events)
during the next day are supposed to be sent to the end-user. In what follows, it is assumed
that two DR notifications are sent each day, which correspond to usual peak hours for the
electrical grid: from 7:00 to 10:00 and from 17:00 to 20:00.

Participation in a given DR event is decided by the end-user, by predicting the balance
between the preheating cost and the remuneration for the shedded energy.

Fig. 6.1 below illustrates a DR scenario and the energy quantities that have to be esti-
mated.

Preheating
Load increase

DR event
Load reduction

Figure 6.1: Example of a DR event. Participation to a given DR event is determined by
the balance between the preheating energy ∆Epreheat and the remunerated shedded energy
∆Eshed.

For a given DR event, the load profile will depend on the preheating settings, more pre-
cisely: preheating duration ∆tpreheat = tshedstart−tpreheatstart , start of the shedding tshedstart, and setpoint
increase with respect to the baseline profile ∆T sp

min = T sp
min − T sp baseline

min .

Let x be the set of decision variables for a given DR event, and θ represent a fixed shedding
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duration ∆tshed = tshedend − tshedstart of one hour:

x = (∆tpreheat, tshedstart,∆T sp
min)

θ = ∆tshed

Therefore x and θ define the preheating and shedding settings for a given event.

Consequently, the maximum estimated net benefit for a given DR event is defined by the
difference between the DR participation reward and the cost of the preheating operation:

B̂ = max
x

(r|∆Êshed(x, θ)| −∆Êpreheat(x, θ)) (6.1)

where r is the ratio between the reward level for DR participation and the cost of energy
during the preheating time-interval.

The estimated and real energy consumption difference, for a preheating setting (x, θ), are
defined with respect to the baseline HVAC load profile, i.e. the load profile in absence of any
DR participation, as follows:

∆Ê(σ) = Ê(σ) − Ê(σ)baseline (6.2a)

∆E(σ) = E(σ) − Ê(σ)baseline (6.2b)

where σ ∈ {preheat, shed}.

The baseline load can only be estimated, and the method used for this intent can be
certified by the DR market operators beforehand. Since DR strategies usually consist in
curtailing the HVAC system consumption, classical methods for baseline load calculation are
mostly suited for this specific use-case. For instance, one of the methods applied by the French
TSO consists in setting the baseline value based on metered power consumption before and
after a curtailment event. In the case here, such a method is obviously not suited. Among
other possibilities, certifying a prediction tool for default load estimation suits the best our
case. For this intent, the prediction model is trained on the weeks of the training data without
setpoint modifications, as detailed in section 5.3.

Participation to a DR event is triggered if the predicted maximum benefit is positive. The
real event benefit is evaluated once the setpoint control has been applied:

B = (r|∆Eshed(x, θ)| −∆Epreheat(x, θ)) (6.3)

Subsequently, the total income for a given set of DR events is defined as follows :

Btotal =
∑
B̂>0

B (6.4)

In in this chapter is evaluated, for a limited set of DR events, the ratio between the total
DR benefit and the baseline energy cost during the whole winter season, where the DR benefit
is the result of the application of computed optimal preheating parameters for each triggered
DR event.



86 Chapter 6. Economical evaluation of the energy flexibility potential

6.2 Optimization of Demand Response flexibility

Given the two daily DR notifications: from 7 to 10AM, and from 5 to 8PM, the end-user
decides the optimal preheating settings x. The shedding duration is fixed to one hour.

t t+24h

DR
no�fica�on

7:00

DR
no�fica�on

8:00 10:009:00 17:00 18:00 20:0019:00

Fixed 1 hour shedding30 min – 2 hours preheating
+1 – +4°C

Figure 6.2: Day-ahead DR participation optimization which consists in determining the opti-
mal preheating duration, preheating temperature setpoint and start of the shedding.

The benefit optimization is carried out by exhaustive search of the optimal set of preheating
parameters x. More specifically, the decision variables are discretized as follows:

⇒ the beginning of the shedding can occur during the DR notifications,i.e. [7:00, 7:30,
8:00, 8:30, 9:00]/[17:00, 17.30, 18:00, 18:30, 19:00],

⇒ the preheating duration ranges from 0.5 hour to 2 hours, i.e. [0.5; 1; 1.5; 2 hours],

⇒ the setpoint increase for preheating, with respect to the fixed 21 ℃ baseline, ranges from
1 to 4 ℃, i.e. [1, 2, 3, 4 ℃].

A total of 80 scenarios are therefore to be evaluated for each DR event in order to determine
the optimal setting. Obviously, discretization may not allow to find the global optimum of
the expected benefit, but it has been mentioned as a good option to keep the integration in a
BMS relatively simple.

Using the designed predictive models, the whole process can be synthesized as follows:

1. For each day-ahead DR notification, and scenario x, predict the corresponding energy
consumption Ê(σ), as well as the baseline energy consumption Ê(σ)baseline, where σ ∈
{preheat, shed}.

2. Estimate the shedded and preheating energy ∆Ê(σ), where σ ∈ {preheat, shed} (Eq.
6.2).
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3. Based on the reward factor r, evaluate the corresponding economic balance and deter-
mine the optimal preheating setting x (Eq. 6.1).

4. If a positive benefit is expected, apply the estimated optimal temperature setpoint mod-
ification and measure the shedded and preheating energy ∆E(σ) (Eq. 6.2).

5. Compute a posterirori the actual DR event participation benefit (Eq. 6.1).

Three economical results are presented hereafter. All concern the IDA ICE simu-
lated building.

In the first case, the predictive models (main and baseline) are trained on a
whole winter season, November 2001 - March 2002, before integrating the DR
mechanism. The total benefit represents the DR outcome for the next winter season, Nov
2002-March 2003. Fig. 6.3 illustrates, for different reward factors r, the ratio between the
total DR income and baseline energy cost for the considered winter season.
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Figure 6.3: DR participation income relative to the baseline energy cost. Training on Nov.
2001 - March 2002. DR participation during Nov. 2002 - March 2003.
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Figure 6.4: Number of triggered events (estimated positive benefit B̂ > 0).
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In a second case, the main predictive model is retrained every month once
the DR program is launched. The evaluation, performed only for a reward factor r = 5,
shows similar total relative income (7.8%), despite retraining with new data. This reveals that
an eventual precision improvement in this case does not lead to different optimal decisions.
A different conclusion might be drawn if a DR program with commitment error penalties is
considered.

In the third case, the participation to DR starts right away and the main
forecasting tool is retrained periodically, by incorporating new gathered DR ob-
servations in the initial learning dataset. More specifically, the initial learning is based
on one month data, November 2002, then every month the predictive model is retrained. Note
that, since November 2002 is used for learning only, the total income is computed for Decem-
ber 2002 - March 2003. Note also that the considered baseline predictive model is trained
using the same data as in the first case. This assumption, of having prior baseline operation
data, might be restrictive. Fig. 6.5 illustrates, for different reward factors r, the ratio between
the total DR income and baseline energy cost for December 2002 - March 2003.
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Figure 6.5: DR participation income relative to the baseline energy cost. Initial training on
Nov. 2002, and retraining every month. The continuous learning case income is compared to
the default one, where a whole winter season dataset is used for learning before integrating
the DR program. DR participation during Dec. 2002 - March 2003.

By using the proposed method, the flexibility leverages non-negligible income based on
realistic DR market assumptions. For a reward factor r = 5, the total income from DR
participation represents 7.9 % of the total baseline energy cost for the considered winter
season.
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Seemingly due to the thermal inertia, no increase was observed in the overall energy
consumption for the considered winter season November 2002 - March 2003 (less than
0.01%). The reason for this is that the difference between the energy increase during
preheating is compensated by the energy decrease during shedding, observed for a longer
period than the considered DR time interval.

To allow a degree of freedom regarding the shedding time-frame, it was optimistically
assumed here that preheating can be performed during the DR notifications and all the
shedding proposals are accepted. In practice, depending on the type of the DR contract,
this might not be acceptable. Assuming such a case with random notifications inside
previously defined DR time intervals that impose tshedstart, preliminary results indicate a
20% benefit loss.
If the DR program is integrated straight away, based on one month learning data, the
benefit loss for r = 2 is limited to 22 %, while for r = 5 the benefit loss is less than 2.5
%. This indicates that, provided with a baseline load prediction tool, the method can be
functional in a short amount of time.
In this particular study, a constant indoor temperature setpoint was considered for the
baseline calculations. Generally, a night setback temperature control is applied in build-
ings in order to reduce the total energy consumption. Technically, this could have the
effect of yielding a higher relative DR income, although in the particular building studied
here, the resulting baseline energy consumption was roughly the same when a reduced
temperature setpoint of 15 ℃ between 22PM and 5AM was tested.

6.2.1 Delve into optimization results and impact of forecasting errors

The optimization process is based on imperfect predictions. Therefore, the optimality of the
taken decisions can only be confirmed by simulating the whole set of 80 preheating scenarios.
This task being tedious and time consuming, a partial check was carried out in two steps.

In a first step, the optimal start of shedding tshedstart was investigated. To this end,
all possible scenarios tshedstart were simulated, whereas the preheating duration ∆tpreheat and the
preheating temperature setpoint increase ∆T sp

min, for each DR event, were fixed to the values
found via the optimization process described above. The reward factor was set to r = 5.

It follows that the decision with respect to tshedstart was indeed optimal in 114 cases, out of the
total 201 DR events. The benefit loss corresponding to the suboptimal tshedstart is 12.5%, corre-
sponding to 1% of loss relative to the baseline energy cost. The matrix hereafter illustrates,
for the 201 DR events, the true optimal tshedstart versus the estimated optimal tshedstart, and the
corresponding count values.
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Figure 6.6: Optimality of the decisions with respect to the start of shedding tshedstart. Subfigure
(a) illustrates results for the DR events in the morning and subfigure (b), for the DR events
in the evening. According to the matrix, tshedstart =19:00 was indeed optimal in 38 evening DR
cases. In 15 cases, tshedstart =18:30 would have been the optimal decision, instead of 19:00.

In a second step, decisions with respect to the determined preheating duration
and temperature setpoint have been investigated. To this end, all the scenarios (a
total of 16) of ∆tpreheat and ∆T sp

min were simulated, by applying the optimal tshedstart determined
in the first step.

Except for one event, the estimated optimal preheating duration ∆tpreheat was indeed optimal,
and equal to 30 minutes. Indeed, a longer preheating duration doesn’t lead to a noticeable
benefit given the sensible increase of the preheating energy. This characteristic is expected to
vary depending on the thermal properties of the building. In the IDA ICE reference building
case, it has been observed that the temperature transients are fast. In the training dataset,
once the shedding starts, indoor temperature drops to the baseline setpoint value after roughly
30 minutes in most cases. This suggests that the building has a low flexibility capability and
that there is no additional benefit of longer preheating duration.
The resulting benefit loss is 14.5 %, or 1.1 % relative to the baseline energy cost, and is there-
fore mainly due to suboptimal ∆T sp

min and tshedstart. This value accounts for prediction errors
in all three preheating parameters, although it is not a upper indicator, as not all possible
scenarios have been simulated.

An additional result is related to the preheating temperature setpoint. In the 114 cases
out of the total 201 DR events, for which tshedstart and ∆tpreheat were indeed optimal, the income
loss induced by incorrect estimation of ∆T sp

min is of 2.4 %. The matrix in Fig. 6.7 hereafter
illustrates the true optimal versus the estimated optimal decision counts, for the 114 DR
events.
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Figure 6.7: Optimality of the decisions with respect to ∆T sp
min (∆tpreheat turned out to be

optimal in all cases). According to this matrix, preheating with ∆T sp
min=4 ℃ was indeed

optimal in 59 DR events. In 7 cases ∆T sp
min=4 ℃ would have been optimal, instead of the

decided ∆T sp
min=3 ℃.

Estimations of the benefit loss due to prediction errors show that the income loss is 14.5
%, or 1.1 % relative to the baseline energy cost. The study was performed for a reward
r = 5. It follows that the errors are mostly due to suboptimal tshedstart. The optimal
preheating duration is correctly predicted in almost all cases.

6.2.2 Building characteristics impact on flexibility capability

In order to get an idea of how the building characteristics could influence the flexibility capacity
of a building, several tests have been realized with modified characteristics of the reference
IDA ICE building. More precisely, have been tested a version with decreased glazing insulation
and a 6-floor version building (cf. Mohamad EL HALLAB, Development and benchmarking
of building energy optimization solutions for demand-response. Master Thesis, Grenoble INP,
2022).

Decreased glazing insulation Besides a decreased insulation, a higher value of solar heat
gain coefficient was set (fraction of the solar radiation that heats the indoor space, which
includes both the radiation transmitted directly through the window and the part of solar
radiation that is first absorbed by the glazing and passed further through convection/long-
wave radiation phenomena).

It has been noticed that such thermal modification had the effect of higher HVAC heating
power consumption at night/when solar irradiance is low, and lower power consumption during
time-periods when solar irradiance is high. Indeed, during low irradiance periods, the internal
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heat dissipates more through the low insulated glazing, which induces a higher HVAC heating
power consumption compared to the default building version. When irradiance values are high
however, the transmitted radiation through the window surpasses the heat dissipated through
conduction, inducing a less power consumption compared to the default building.

An evaluation of the flexibility capability was performed, as for the default building, by
optimizing the DR participation with a reward factor r = 5. On average, the shedded energy
∆Eshed was decreased by 8%, and the preheating energy ∆Epreheat was decreased by 3.6%.
The total baseline power consumption for the considered winter season increased however by
1%. Compared to the default building, several instances were encountered where the cooling
was activated, obviously inducing high prediction errors.

The total achieved income Btotal was only 2% lower than in the default building case,
being equal to 7.8% relative to the total baseline energy cost.

Increased number of floors By increasing the number of floors, from 3 to 6, the total
envelope area relative to the total indoor volume is reduced. Therefore, compared to the
default building, the relative thermal heat dissipation through the envelope is lower, which
has a potential effect of increasing the thermal inertia.

The evaluation of the flexibility value, as above, allowed to notice an increase of 52% of
total benefit Btotal. Nevertheless, when put in perspective with the increase of 80% of the
baseline power consumption, the total benefit relative to the baseline energy cost is 6.8%.
Indeed, the preheating energy increased by 87% and the amount of shedded energy increased
only by 57%. This behaviour is due to the fact that the building has a very low power
consumption during the day. Limiting the heat dissipation by increasing the number of floors
has a limited effect on shedding capabilities, as power consumption is already very low.

6.3 Comparison with a classical load shedding approach

In Chapter 2, several examples of data-driven demand response were cited. Among them,
approaches proposed in (Nghiem et al. 2017) and (Behl et al. 2016) are also based on setpoint
control. Power curtailment however is achieved there by lowering the setpoint with respect
to the default schedule, although they do not handle comfort requirements in the same way.
This section intends provides some elements of comparison with such a DR strategy. The full
modelling and optimization framework is adapted to this type of DR mechanism hereafter.

Construction of the learning dataset The learning dataset was created by simulating,
every other week, a sine temperature setpoint profile with a period of 3 hours and 1℃ am-
plitude, such that the maximum value is 21 ℃ (the baseline value) while the minimum is 19
℃.

As before, two models were trained on alternate weeks data of a full winter season: one



6.3. Comparison with a classical load shedding approach 93

for baseline predictions (based on constant setpoints data), and another on sine temperature
setpoint profile. Accuracy of the model on unseen simulation data with sine setpoint profile
is R2=0.93, WAPE=0.12.

DR mechanism assumptions and participation strategy To ensure a base of compar-
ison with the main results, the following DR market assumptions are taken. As before, it is
assumed that two DR notifications are sent each day: from 7 to 10AM and from 5 to 8PM. In
contrast to the previous case, the outcome of a shedding operation by lowering the setpoint
can only be positive. For a given DR event, the load profile will depend on the start and
the duration of the shedding, as well as the setpoint decrease. As before, a fixed shedding
duration of one hour is considered. Lowering the setpoint implies comfort degradation, on
which a cost must be imputed in order to enable a comparison with the main results. Given
the subjectivity of such an estimation, they are not translated/quantified economically here.
The setpoints are allowed to be lowered by only 1℃. As in previous approach, the comfort
constraints and the margin of action are supposed to be decided beforehand by the facility
manager.

Optimization of Demand Response flexibility Since ∆T sp
min has been fixed to -1℃, and

the shedding duration is fixed to 1 hour, the decision variable is the beginning of the shedding,
which can take place during the DR notifications,i.e. [7:00, 7:30, 8:00, 8:30, 9:00]/[17:00, 17.30,
18:00, 18:30, 19:00].

Let x = tshedstart and the fixed parameters θ = (tshedend −tshedstart,∆T sp
min), such that x and θ define

the shedding for the given DR event. Consequently, the maximum estimated net benefit for
a given DR event is defined by the participation reward:

B̂ = max
x

(−r|∆Êshed(x, θ)|) (6.5)

where r is the ratio between the reward level for DR participation and the default energy cost.

The real and estimated energy consumption difference, for a preheating setting (x, θ), are
defined with respect to the baseline load profile, i.e. the load profile in absence of any DR
participation.

Participation to a DR event is triggered if the estimated maximum benefit is positive
(negative values may occur due to prediction errors). The real event benefit is evaluated once
the setpoint control has been applied:

B̂ = |r∆Eshed| (6.6)

As already mentioned, the forecasting models are trained on a whole winter season (Nov.
2001 - March 2002) dataset, the DR participation is tested on Nov. 2002 - March 2003.
By fixing the reward factor r to 5, the relative income allowed by DR participation is 10.1
%. It’s worth mentioning that, in this test, a strategy preventing the rebound effects was
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not implemented. The rebound effect neutralized the shedding effect and resulted in 0.2 %
increase in the total power consumption over the considered winter season.
Another way of comparing the result hereby with the previous approach is by considering, in
both cases, the total DR compensation (the compensation for one event is r|∆Êshed(x, θ)|).
It appears therefore that the DR effective income is 25% lower compared to the previous
approach.

6.4 Conclusion

In this section, an estimation of the flexibility capability, valued on in the context of a DR
program, has been performed using the designed predictive models in an optimization
framework. First, the possible DR income has been evaluated in the case where one
year of training data is available. For shedding reward factors from 5 to 3, the benefit
ranges from 7.9 % to 2.0%, relative to the baseline energy cost (energy cost when no DR
actions are performed). Experiments also show that, provided a baseline load prediction
tool, the method can be implemented quickly, by continuous model relearning. In this
particular case, the loss due to less precise predictions is relatively limited.

Flexibility capacity has also been studied under the angle of building characteristics.
Results show that less insulated glazing has negligible effects. The effect of doubling the
building floors has the effect of increasing by only 52% the total DR income.

Finally, the proposed method is used to compare load shedding by passive energy storage
with the case of a more classical method of load shedding, consisting in decreasing the
temperature setpoints by 1 ℃. The total DR compensation is in this case 25% lower
compared to the preheating framework, and this is achieved at the cost of degraded
occupant comfort.



General conclusion and perspectives

This work focuses on efficient activation of the energy flexibility in buildings. The research
was carried on data-driven modelling and control of buildings for DR.

Part I provided the motivation for such a research. From the application side, are high-
lighted different cases where flexibility is valuable. A broad picture of key actors and Demand
Response mechanisms is drawn. From an implementation point of view, a recall of the classical
approaches for modelling and optimal control is given.
Two main pain-points are highlighted. The first one is the need of a precise model describ-
ing the dynamical behaviour of a building. This is often dealt with by designing a complex
model, which needs precise knowledge of the building thermal characteristics and HVAC sys-
tems. Such models rely on a significant, and thus hardly implementable, amount of sensors
and actuators. From a practical point of view, such an approach is time-consuming and im-
plies scalability and integration issues. Simpler models are often based on unrealistic control
actions or very simplistic assumptions regarding the HVAC power consumption dynamics. For
example, control of the total HVAC power consumption is often assumed and used in energy
optimization problems. In real life however this is possible only for a limited type of systems
and buildings.
A second pain point is related to the indoor comfort. Classical load curtailment schemes
imply, for example, switching off the heating/cooling, or lowering the heating temperature
setpoints/increasing the cooling temperature setpoints for a limited amount of time. Building
managers seem however reluctant to flexibility proposals that might impact the occupants
comfort.
The proposed and investigated approach is put forth from these two perspectives. Firstly,
the flexibility is supposed to be activated by indoor temperature setpoint control, inside pre-
defined comfort bounds. This is achieved by shifting the energy consumption, i.e. preheat-
ing/precooling the building, therefore enabling passive energy storage, and releasing the stored
energy during a DR event. Secondly the flexibility quantification and optimization is done
by modelling the dynamical behaviour of the HVAC power consumption, without integrating
any precise information about the building characteristics. The modelling is based on ML
regression tools and uses commonly available data: indoor temperature setpoints, weather
data such as exterior temperature and solar irradiance, total HVAC power consumption.

Part II dealt with exploration of modelling approaches of the HVAC power consumption
and indoor temperature dynamics. The estimated HVAC power consumption function is
meant to be used for evaluating the result of a setpoint control in a DR strategy. The interest
of having an indoor temperature model is twofold. It incorporates information of past thermal
states of the building, therefore it can be used to precisely estimate the power consumption
at given moment. It can also be used in more classical optimization strategy for energy
savings, such as optimal start or optimal stop. This exploration phase showed that a cascaded
prediction approach of indoor temperature and power consumption leads to non-negligible
errors. A subsequent model has been adopted that bypasses indoor temperature usage.

95
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Part III focused on DR and the refinement of the model to fit this objective. Have been
investigated here the experiment design for collecting the learning data, feature selection, base-
line estimation for evaluation of the flexibility capability, model accuracy given the observed
dynamics. For a simplistic DR program, an optimization framework has been designed for
evaluating the DR potential. The study was based on a medium-office use-case, simulated in
IDA ICE.
Based on a reward factor (remuneration for the shedded energy compared to the baseline
energy cost, which can also be comprehended as on peak/off peak electricity prices ratio) the
potential income of activating the flexibility in a DR program has been evaluated. For the
reference building, the income for a winter season can represent 7.9 % with respect to the total
baseline energy cost, for a reward factor of 5. The study has an interest both for the end-user
and for a potential DR program manager. For the user it helps evaluating the interest of a
DR program and how the income can differ depending on the building thermal characteristics.
For the DR program managers, it provides an indication of what signal/incentive has to be
sent to the end-user to effectively enable the wanted flexibility service.

Several challenges are yet to be treated in order to follow with an effective implementation
of the framework:

1. Flexibility optimization: In this work, the optimization was performed based on an
exhaustive search. A finer control could be tested, based on continuous optimization
techniques. Since the problem is supposed to be solved offline, computing efficiency is
not of special concern. Finer control however, if proven worthwile, raises the question
of model learning capabilities. It has been observed, for instance, that the accuracy
of a model trained with preheating operations with temperature setpoint increase of
only 1 ℃ above the baseline, is sensibly higher (compared to the investigated case with
random preheating setpoints of 1,2,3 or 4 ℃). It has also been observed that the model
precision for unseen setpoint values can be quite bad. In the case of further enlargement
of the explored setpoint space, one can wonder if an under-fitting problem will arise.
In such a case, one may try circumventing the problem by performing an interpolation
of two estimates, in order to get a value for an intermediate variable, such as indoor
temperature setpoint, not present in the training dataset. Additionally, in the use-case
treated here, in a majority of cases the optimization resulted in minimal preheating
duration. It would be interesting to investigate how to efficiently explore the research
space and refine the results.

2. DR program: The flexibility value has been studied here by assuming a simplistic DR
program, based on shedded energy remuneration. Different DR program assumptions
(variable compensation for shedded energy, variable energy tariffs, commitment penal-
ties, communication delays, etc.) redesign the objective function. Although the income
related to the program is expected to change, the proposed framework can be applied di-
rectly. The limitation of the proposed method however stems from the variable flexibility
potential of the building. A too rigorous framework, for instance default commitment on
an amount of shedded energy, with little notification time, seems hardly implementable
in buildings. On this subject, some questions deserve a more in-depth investigation.
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For instance, the hypothesis of commitment deviation penalties can be studied, together
with corresponding optimization strategies. On this matter, slow on-line correction of
the benefit estimations has been briefly investigated. First results suggest that the tem-
poral link between the errors is not strong enough for such a method.
Moreover, the question of power consumption metering frequency and the according
required modelling precision can be further looked upon. This opens perspectives in
terms of optimisation of multiple resources (buildings, storage systems) to compensate
the potential errors.

3. Temperature setpoint control: For the reference IDA ICE building, used in the
complete learning and optimization framework, an identical temperature setpoint profile
among the zones was considered, and the control decisions have been applied in an
identical manner to the whole set of zones. Two questions can be further investigated.
One is optimal control given heterogeneous setpoint profiles among zones. Here it might
be relevant to include more specific model features, for instance setpoints for each zone
group/type. On this matter, the modelling accuracy was validated on other available
building datasets (c.f. Section 5.2), which have heterogeneous setpoint profiles. The
second question is linked to controlling only a given set of zones, which can arise in
practice. Although the method can be directly applied here, the control impact on the
total HVAC power consumption should be especially looked upon.

4. HVAC subsystem and energy carrier: In the considered building use-cases, the
energy carrier for the HVAC system is electricity. HVAC subsystem or energy carrier
heterogeneity constitutes a serious problem to investigate from the modelling point of
view. An example that constitutes a challenge is storage systems (hot water buffer tank
for instance), which might decouple the energy consumption profile from the control
actions. Differences among zones, in terms of installed systems, are also of interest
(for instance zones having different or multiple heating/cooling systems installed). The
applicable solutions will depend on the available data. If HVAC electrical power con-
sumption data is available, the proposed method can be applied, even though the benefit
level is expected to be impacted. Regarding underlying control mechanisms such as en-
ergy storage systems or alternating energy carriers, the interest of ML algorithms is
specifically in their capability of capturing such complex behaviours. Although the pro-
posed framework doesn’t claim a general success, it can be easily tested even in these
situations.

5. Weather and occupancy uncertainties: Investigations in this work are based on
perfect knowledge of weather conditions. A natural extension of the work is looking for
how uncertainties impact both modelling and the control strategy, and what solutions
can be applied to mitigate the observed effects. A natural approach here is integrating
statistical knowledge about weather predictions. The DR commitments could then be
decided based on computed income expectation and respective lower and upper bounds.
Occupancy uncertainties impact should first be evaluated. In case it is identified as a
non-negligible source of errors, additional relevant features can be added to the prediction
model, such as seasonal or holiday data. Dedicated forecasting techniques can also be
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considered for estimating occupancy levels in buildings. This possibility will depend on
the available relevant data.

6. Building’s flexibility potential: the results presented in this work, regarding the
flexibility value, were obtained using a simulated medium-size office building. This
particular building seems however quite limited in terms of flexibility capabilities, due to
two characteristics. Firstly, the thermal transients observed after a preheating operation
are very fast, even for high temperature setpoints and long preheating duration. Indoor
temperature reaches the baseline value generally in less than 30 min. Secondly, the
building has a very high global thermal efficiency. Therefore during optimization, a
significant number of DR events occurred during very low energy consumption, therefore
when energy shedding is very low. This suggests that this building is not the one for
which the flexibility value is the highest. Broadly speaking, for actors such as Schneider
Electric, it would be interesting to explore a panel of different representative buildings
(for instance small/medium/large size, high/low efficiency, high/low thermal mass) in
order to establish which end-users can provide a flexibility service and at what extent.
A study regarding the flexibility potential depending on the weather season or climate
could also be of interest. A simulation framework seems an appropriate solution for such
an evaluation.
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Appendix A

Schematic view of the IDA ICE
simulated building

Figure A.1: Schematic view of the building.
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Figure A.2: Schematic view of the primary system.

Figure A.3: Schematic view of the AHU system.



Appendix B

AR RF model for power consumption
and indoor temperature estimation

In this appendix, results for Autoregressive Random Forest modelling with a lag value N of
two hours are presented. Practically, are considered the average of the autoregressive terms -
X̄t−1,...,t−N , T̄t−1,...,t−N , P̄t−1,...,t−N - over the lag interval t− 1, ..., t−N .

B.1 ETP building
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Figure B.1: Error propagation through the 24h prediction horizon for indoor temperature (left)
and power consumption (right) models. Auto-regressive RF estimators for indoor temperature:
Tin,t ≈ fRF (Xt, X̄t−1,...,t−N , T̄in,t−1,...,t−N ), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ), X = (Tin, T
min
sp , Text,Φirr)

T ), N=8 (2 hours). Valida-
tion on ETP multizone building with night setback temperature control.
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estimation
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Figure B.2: 1-hour ahead forecasting results. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N , T̄in,t−1,...,t−N ), X = (Tmin

sp , Text,Φirr)
T , and power

consumption: Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ), X = (Tin, T
min
sp , Text,Φirr)

T ), N=8 (2
hours). Validation on ETP multizone building with night setback temperature control.
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Figure B.3: 24-hour ahead forecasting results. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N , T̄in,t−1,...,t−N ), X = (Tmin

sp , Text,Φirr)
T , and power

consumption: Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ), X = (Tin, T
min
sp , Text,Φirr)

T ), N=8 (2
hours). Validation on ETP multizone building with night setback temperature control.
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B.2 IDA ICE building with night setback temperature control
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Figure B.4: Error propagation through the 24h prediction horizon for indoor temperature (left)
and power consumption (right) models. Auto-regressive RF estimators for indoor temperature:
Tin,t ≈ fRF (Xt, X̄t−1,...,t−N , T̄in,t−1,...,t−N ), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ), X = (Tin, T
min
sp , Text,Φirr)

T ), N=8 (2 hours). Valida-
tion on IDA ICE building with night setback temperature control.
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Figure B.5: 1-hour ahead forecasting results. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N , T̄in,t−1,...,t−N ), X = (Tmin

sp , Text,Φirr)
T , and power

consumption: Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ), X = (Tin, T
min
sp , Text,Φirr)

T ), N=8 (2
hours). Validation on IDA ICE building with night setback temperature control.
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Figure B.6: 24-hour ahead forecasting results. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N , T̄in,t−1,...,t−N ), X = (Tmin

sp , Text,Φirr)
T , and power

consumption: Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ), X = (Tin, T
min
sp , Text,Φirr)

T ), N=8 (2
hours). Validation on IDA ICE building with night setback temperature control.

B.3 IDA ICE building with DR representative step setpoints
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Figure B.7: Error propagation through the 24h prediction horizon for indoor temperature (left)
and power consumption (right) models. Auto-regressive RF estimators for indoor temperature:
Tin,t ≈ fRF (Xt, X̄t−1,...,t−N , T̄in,t−1,...,t−N ), X = (Tmin

sp , Text,Φirr)
T , and power consumption:

Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ), X = (Tin, T
min
sp , Text,Φirr)

T ), N=8 (2 hours). Valida-
tion on IDA ICE building with simulated preheating operations.
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Figure B.8: 1-hour ahead forecasting results. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N , T̄in,t−1,...,t−N ), X = (Tmin

sp , Text,Φirr)
T , and power

consumption: Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ), X = (Tin, T
min
sp , Text,Φirr)

T ),N=8 (2
hours). Validation on IDA ICE building with simulated preheating operations.
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Figure B.9: 24-hour ahead forecasting results. Auto-regressive RF estimators for indoor tem-
perature: Tin,t ≈ fRF (Xt, X̄t−1,...,t−N , T̄in,t−1,...,t−N ), X = (Tmin

sp , Text,Φirr)
T , and power

consumption: Pt ≈ fRF (Xt, X̄t−1,...,t−N , P̄t−1,...,t−N ), X = (Tin, T
min
sp , Text,Φirr)

T ), N=8 (2
hours). Validation on IDA ICE building with simulated preheating operations.





Appendix C

Forecasting accuracy during Demand
Response events

Hereafter, accuracy is illustrated when considering mean power consumption over the time-
intervals of interest (preheating/shedding).
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Figure C.1: Mean power consumption forecasting accuracy during preheating.
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Figure C.2: Mean power consumption forecasting accuracy during shedding (1 hour time-
interval after a preheating operation).
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Figure C.3: Mean baseline power consumption forecasting accuracy during preheating.
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Figure C.4: Mean baseline power consumption forecasting accuracy during shedding.



Appendix D

Load shedding by lowering the
temperature setpoints
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Figure D.1: Power consumption profile under shedding operations by lowering the temperature
setpoints, and baseline load profile (under normal temperature setpoint control).
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Appendix E

Résumé en français

E.1 Introduction

E.1.1 Contexte général

Le monde énergétique aujourd’hui subit un changement total de paradigme. On observe
une transition d’une production énergétique centralisée et des interactions linéaires entre les
producteurs, les distributeurs les consommateurs, vers une interaction plus complexe où le
consommateur joue un rôle actif. Cette transformation est due à plusieurs facteurs: la dérégu-
lation du marché de l’énergie, la nature intermittente des nouveaux moyens de production de
l’électricité, la multiplication de voitures électriques et des moyens de stockage de l’énergie.
Dans ce contexte incertain, la flexibilité énergétique des consommateurs est devenu un moyen
crucial pour la gestion efficace du réseau électrique et un vecteur de la transition énergétique.

La flexibilité de la consommation énergétique est appelée aussi réponse à la demande ou
DR (Demand Response). Elle comprend les moyens mis en place pour modifier le profil de
consommation énergétique des utilisateurs, à la demande de partis tierces, tels que le gestion-
naire du réseau de transport ou de distribution de l’électricité, des agrégateurs, des opérateurs
des réseaux électriques indépendants. L’intérêt de disposer d’une flexibilité au niveau des
utilisateurs est multiple: réduire la consommation d’énergie carbonée, atténuer les courbes
de la demande électrique, assurer la stabilité du réseau, éviter les investissements dans la
construction des nouveaux moyens de production et l’extension ou la consolidation du réseau
électrique.
Certains programmes de DR tels que les tarifs d’électricité heures creuses/heures pleines ont
été adoptés à grande échelle. Néanmoins, le cadre lié à la flexibilité énergétique est en plein
évolution. Des nouvelles opportunités sont étudiées et confirmées, des nouveaux acteurs in-
tègrent le marché, des cadres réglementaires sont établis et des stratégies d’exploitation de la
flexibilité énergétique sont mises en place.

Les bâtiments, dans ce contexte, ont été identifiés comme des systèmes disposant d’une
flexibilité non négligeable, compte tenu de l’inertie thermique les caractérisant. Cette ressource
a l’avantage de ne pas nécessiter des coûts d’investissements ou d’exploitation importants.
Le système HVAC (en français CVC pour Chauffage, Ventilation et Climatisation) compte
généralement pour une grande partie de la consommation énergétique totale d’un bâtiment.
L’opération efficace d’un tel système, en termes de coût, de consommation énergétique ou
bien émissions de CO2, nécessite une adaptation du contrôle de la "flexibilité" au contexte

113



114 Appendix E. Résumé en français

(météo, usages, prix d’énergie, etc.) dans lequel le système est opéré. La flexibilité peut
être produite de différentes manières et l’impact exact des nombreuses options disponibles
est souvent mal connu. En effet, la diversité des bâtiments en termes de caractéristiques
thermiques, de systèmes HVAC, d’actionneurs et de capteurs accessibles est considérable. Le
comportement global d’un bâtiment et l’interaction entre les sous-systèmes HVAC présentent
des caractéristiques complexes et non linéaires, rendant difficile l’optimisation du pilotage de la
consommation énergétique. Les méthodes traitées dans la littérature et appliquées en pratique
diffèrent de plusieurs points de vue: objectif d’optimisation; méthode de contrôle; complexité
de modélisation; diversité des informations, capteurs, ou actionneurs; impact sur le confort
des occupants; précision de l’évaluation des actions de pilotage.

E.1.2 État de l’art

Les travaux ayant comme objectif le contrôle opérationnel optimal des systèmes HVAC sont,
pour la plupart, basés sur une approche de modélisation du bâtiment et son système HVAC.

La modélisation diffère en termes de complexité, et donc de précision. Typiquement une
modélisation relativement complexe est réalisée en utilisant un large panel de variables: ouver-
ture des vannes, débits d’eau chaude/froide, vitesse des ventilateurs, consommation électrique
des sous-systèmes HVAC, consommation électrique par zone, gains de chaleur secondaires
(liées à l’irradiation solaire ou à l’occupation), etc. Dans la pratique, l’accès à une telle variété
d’actionneurs/capteurs/compteurs est très souvent irréaliste ou demande des investissements
conséquents. De plus, une telle approche n’est pas facilement reproductible, demande une ex-
pertise poussée et peut nécessiter un grand effort d’intégration dans un système informatique
existant de gestion technique de bâtiment.

Une autre tendance consiste à approximer le comportement thermique du bâtiment via
une modélisation moins complexe. L’approche repose généralement sur une modélisation
simple des équations différentielles dynamiques représentant les principaux phénomènes ther-
miques (conduction, convection, phénomènes capacitifs). En fonction de la structure choisie
pour modéliser ces phénomènes, la fonction mathématique peut avoir un sens physique. Les
paramètres de cette fonction sont identifiés sur la base de données d’entrée et de sortie (les
entrées étant les variables explicative et les sorties, les variables à expliquer). La modélisation
du système HVAC n’est généralement pas proposée, la variable de contrôle étant typiquement
la consommation énergétique, ou une fonction associée très simplifiée. Or en réalité la puis-
sance consommée n’est souvent pas pilotable directement, et le lien entre la commande et la
consommation est complexe.

Enfin, d’autres approches existent, ne nécessitant pas une modélisation préalable, parmi
lesquelles l’apprentissage par renforcement. Plusieurs études ont montré la capacité de ces
algorithmes à exploiter efficacement la flexibilité énergétique des bâtiments. Des efforts con-
sidérables sont cependant nécessaires afin de réduire la quantité de données nécessaire pour
aboutir à des résultats satisfaisants.
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E.1.3 Objectif des travaux et approche investiguée

Ces travaux on eu pour but l’investigation de méthodes de modélisation et de contrôle optimal,
visant à exploiter la flexibilité énergétique des bâtiments. Les méthodes considérées devaient
répondre à plusieurs objectifs: permettre l’exploitation optimale de la flexibilité énergétique
des bâtiments et une quantification, en termes de consommation énergétique, des options
possibles; être facilement déployables sans connaissance des sous-systèmes spécifiques ou des
caractéristiques thermiques à chaque bâtiment; utiliser uniquement des données généralement
disponibles; ne pas impacter le confort thermique des occupants.

Compte tenu des difficultés d’implémentation réelle des méthodes mentionnées plus haut,
une approche pratique a été envisagée, qui consiste à modifier les consignes de températures
intérieure dans le but de piloter la consommation HVAC. L’enjeu conséquent est de déterminer
comment, et dans quelle mesure, le profil de consommation énergétique peut être correctement
approximé sur la base des consignes de température intérieure et d’autres données disponibles
telles que les conditions météo. Pour cet objectif, les méthodes d’apprentissage Machine
Learning (ML) sont alléchants grâce à leur capacité d’approximer des dynamique non-linéaires
complexes.

Preheating
Load increase

DR event
Load reduction

Figure E.1: Un exemple d’opération de DR. La consigne Tmin
sp dans le bâtiment est augmentée

à 25℃ avant un évènement de DR. Cela permet une accumulation d’énergie dans l’air est les
éléments structurels du bâtiment, qui peut être déchargée à la demande, en remettant la
consigne à sa valeur de 21℃ par défaut.
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Par souci de clarté, uniquement la saison d’hiver/chauffage a été traitée, même si la sai-
son d’été/climatisation peut être traitée de la même façon, sans perte de généralité. Il est
supposé ici que le confort dans un bâtiment est défini par une consigne de température de
chauffage T sp

min et une température de consigne de climatisation T sp
max. Ainsi, afin de répondre

à l’objectif de maintien du confort thermique, tout en procédant à une baisse/effacement de
consommation énergétique à la demande, le décalage de la consommation énergétique s’impose
comme solution. Concrètement cela s’opère en préchauffant les espaces, préliminairement à
une opération de DR visant une réduction de la consommation.

Le préchauffage peut être opéré en augmentant temporairement la consigne T sp
min globale,

dans la bande de confort prédéfinie par le gestionnaire du bâtiment. L’opération mène ainsi
à un stockage passif d’énergie, grâce aux propriétés thermiques du bâtiment. Cette énergie
peut être ensuite libérée lors d’un évènement de DR visant la réduction de la consommation,
en remettant la consigne T sp

min à sa valeur par défaut. La Figure E.1 ci-dessus illustre une
telle opération en hiver. La consigne globale de température de chauffage T sp

min est fixée à
21℃. Pour répondre à une demande d’effacement de consommation d’énergie à partir du 7h,
sans impacter le confort thermique, la consigne est augmentée à 25 ℃ pour une durée d’une
heure. A 7h la consigne est remise à sa valeur par défaut, permettant ainsi une réduction de
la consommation énergétique.

Ce type d’opération peut être envisagé dans le cadre de plusieurs programmes de DR:
tarifs variables de l’électricité, participation aux services système, tarification des pointes.
Néanmoins, le bénéfice potentiel pour le bâtiment participant doit être calculé par rapport au
coût induit par l’opération de préchauffage. Par ailleurs, la compensation pour un service de
flexibilité doit être calculée par rapport à l’estimation d’un profil de consommation de base.

Cette étude est basée sur un modèle simplifié de DR, qui se matérialise par des incitations
financières transmises en amont, pour la réduction de la consommation énergétique pour
des durées limitées de temps. Le travail est ainsi articulé pour répondre à cet objectif. Une
première étape est la mise en place un outil qui permet d’estimer la dynamique de la puissance
totale consommée par le système HVAC, en fonction de la consigne globale de température
appliquée et d’autres données disponibles telles que les conditions météo. Une deuxième étape
vise à intégrer l’outil prédictif dans un cadre d’optimisation, afin de déterminer l’opération
optimale a effectuer, en fonction du niveau de rémunération pour le niveau de flexibilité atteint,
et compte tenu des conditions exogènes dans lequel le bâtiment est opéré.

E.2 Étude exploratoire des méthodes de prédiction de la con-
sommation énergétique et de la température intérieure

Plusieurs approches ont été testées pour la prévision de la consommation énergétique des
bâtiments. Le cadre fixé dans la section précédente implique la garantie du maintien du con-
fort à tout moment. Cependant, l’estimation de la dynamique de la température intérieure,
en fonction du contrôle, permettrait d’étendre ce cadre à d’autres opérations d’optimisation
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énergétique, tel que la commande optimale de marche/arrêt du système HVAC. De plus, la
température intérieure reflète l’état thermique du bâtiment, et permet d’estimer précisément
la consommation énergétique à un moment donné. Par conséquent, la prédiction de la tem-
pérature intérieure également été étudiée.

Ces études ont eu également pour objectif de forger une compréhension du comportement
dynamique des bâtiments et de la puissance consommée associée, ou encore de l’impact des
variables inconnues sur la précision des modèles. Deux bâtiments ont été utilisés pour les
expérimentations: un bâtiment paramétrique basée sur des équations différentielles décrivant
la dynamique thermique, et un bâtiment de bureaux simulé avec le logiciel IDA ICE.

La Figure E.2 ci-dessous regroupe l’ensemble des méthodes testées.

Linear state-space 
models

AR RF models RF models

RF model
Structured 

dynamic model
AR RF model RF model

Figure E.2: Méthodes de modélisation explorées et variables à prédire. Les flèches indiquent
une prédiction en cascade, de la température intérieure qui est utilisée ensuite pour la prédic-
tion de la puissance consommée.

Dans un premier temps, des modèles linéaires espace-état type "boîte noire", ont été
investigués. La capacité de ce type de modèles de représenter les principaux phénomènes
thermiques a été testée, ainsi que la précision de modélisation lorsque des apports thermiques
non-mesurables impactent le système étudié. Leur limitation par rapport à ce dernier point à
été soulignée. La modélisation a également été testée en prenant en compte les consignes de
température comme variable d’entrée. Au moins en ce qui concerne la température intérieure,
l’intuition ici était basée sur le fait que celle-ci est contrôlée par les consignes de température.
Un modèle, même linéaire, pourrait capter cette dynamique en boucle fermée. Globalement,
les résultant de cette approche ont motivé la transition vers de modèles plus puissants.

Dans un second temps, des méthodes d’apprentissage supervisé ont été utilisées, basées
notamment sur des forêts d’arbres décisionnels. Des versions autorégressives ont été testées
également (la sortie actuelle du modèle dépend également des entrées et des sorties passées).
Les modèles autorégressifs, dans une perspective de prévision sur un horizon de temps de 24
heures, entraîne une accumulation des erreurs non négligeable.
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A été explorée également la prédiction en cascade, de la température intérieure puis de la puis-
sance consommée. Cette exploration a indiqué une sensibilité importante des estimations de
puissance aux erreurs de prédiction de la température intérieure. Enfin, les résultats montrent
l’intérêt de prédire la puissance consommée actuelle à partir des entrées actuelles et passées.
Cette méthode a été retenue pour passer à l’étape suivante où les prédictions de consomma-
tion sont utilisées dans le cadre d’un programme de DR. Les sections suivantes discutent donc
de l’adaptation du modèle prédictif à objectif, ainsi que de l’estimation des revenus possibles
grâce à l’intégration d’un tel programme.

E.3 Modélisation prédictive pour l’exploitation de la flexibilité
énergétique

Compte tenu des observations précédentes, la configuration suivante a été adoptée en termes
de modélisation:

Variables explicative

• Données météo: température intérieure et irradiation solaire

• Données temporelles: jour de la semaine, heure

• Variables de contrôle: consigne de température intérieure de chauffage

• Moyenne passée des variables météo et profil passé de la consigne de température

Cas d’étude Le cas d’étude est un bâtiment moyen de bureaux simulé avec le logiciel IDA
ICE.

Données d’entraînement Afin de répondre à l’objectif de DR, l’expérimentation servant
à collecter les données d’entraînement du modèle prédictif devait tenir compte plusieurs ob-
servations et contraintes. Premièrement, le résultat d’une opération d’effacement peut être
calculée uniquement par rapport à l’estimation d’un profil de consommation de base. Or les
résultats de simulation montrent une inertie thermique importante lorsque des opérations de
préchauffage répétées sont effectuées. Un laps de temps relativement important doit être donc
considéré, après des opérations de préchauffage, avant d’observer une consommation énergé-
tique revenue à la normale.
De plus, le bilan énergétique d’une opération peut être influencé par les opérations précédentes,
ce qui peut compliquer voire même fausser les analyses. En conséquence, la base de donnée
d’entraînement a été constituée en simulant des opérations de préchauffage, uniquement deux
fois par jour, une semaine sur deux. Ainsi, deux modèles ont été constitués: un servant à
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l’objectif principal de prédire la puissance consommée résultant d’un changement de consigne
de température, et un deuxième servant à la prédiction du profil de consommation de base.

Les données d’entraînement ont été collectées sur la base de simulation d’une saison d’hiver
(Novembre 2001 - Mars 2002), avec les données climatiques de Chicago.

Algorithme utilisé Dans cette étude, XGBoost est utilisé comme modèle d’apprentissage.

Validation du modèle prédictif La précision du modèle a été testée sur plusieurs sets de
données simulées publiquement accessibles, ainsi que sur le bâtiment de référence simulé avec
IDA ICE. Pour ce dernier, la validation a été effectuée sur la saison d’hiver Novembre 2002
- Mars 2003. Le modèle affiche un coefficient de détermination R2 = 0.95, et une erreur de
pourcentage absolu pondéré WAPE=0.10.

E.4 Évaluation économique du potentiel de flexibilité énergé-
tique

Hypothèses du programme de DR et stratégies de participation L’activation de la
flexibilité énergétique est supposé avoir lieu dans le cadre d’un programme de DR. Dans
ce cadre, les participants reçoivent des signaux journaliers pour le lendemain, incitant à
l’effacement de la consommation énergétique durant des périodes de temps définies. Deux
notifications par jour sont considérés dans cette étude: de 7h00 à 10h00 et de 17h00 à 20h00.
La participation à un événement donné est décidé par le consommateur en estimant le bilan
entre le coût l’énergie consommée pour effectuer un préchauffage, et la rémunération pour
l’énergie effacée.

Pour chaque évènement, le profil de consommation va dépendre de la durée ∆tprechauffe et
de la température de préchauffage par rapport à la consigne ∆T sp

min, ainsi que du moment de
l’effacement teffacestart . Les modèles prédictifs sont ainsi utilisés afin d’évaluer le bilan énergétique
en fonction de ces paramètres de préchauffage. Les paramètres optimaux de préchauffage sont
déterminés pour chaque évènement, compte tenu d’un taux de rémunération donné (rapport
entre le niveau de rémunération pour l’énergie effacée et le prix de l’énergie consommée pendant
le préchauffage).

En pratique, par rapport à une consigne de température intérieure de 21 ℃, des scénarios
de préchauffage de 30 minutes à 2 heures, avec de températures de 22℃ à 25℃, ont été évalués.
La durée d’effacement a été fixée à 1 heure.

Évaluation économique de l’intégration d’un programme de DR Un premier ré-
sultat montre les bénéfices réalisables dans le cas où une saison d’hiver est utilisée pour
l’apprentissage des modèles. Le programme de DR est intégré la saison suivante et les ré-
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sultats sont estimés par rapport à la facture énergétique de base totale (facture de l’énergie
pour la toute la saison). Il en résulte un bénéfice allant de 0.2% à 7.9%, pour des taux de
rémunération de r = 2 à r = 5 respectivement.

Dans un deuxième temps, les données initiales sont enrichies chaque mois avec les données
résultant de la participation au mécanisme de DR, et le modèle de prédiction est réappris. Les
résultats montrent, pour un facteur de rémunération r = 5, un niveau de bénéfice équivalent
au premier cas.

Dans un troisième cas, il est supposé que le mécan isme de DR est intégré après seulement
un mois de collecte de données pour le modèle principal. Celui-ci est ré-entraîné mensuellement
en intégrant les données résultant de la participation au mécanisme de DR. Il est supposé
néanmoins qu’un outil servant à estimer la consommation de base est disponible. Les résultats
montrent une réduction du bénéfice total, liée aux erreurs de prédiction, limitée à 22% pour
r = 2, et 2.5% pour r = 5.

Des études additionnelles ont été menées, concernant l’impact des caractéristiques ther-
miques du bâtiment (isolation et taille) sur la capacité de flexibilité. Des éléments de com-
paraison ont été également fournis par rapport à un effacement classique, impliquant une
diminution de la consigne de température intérieure.

E.5 Conclusion générale et perspectives

Les travaux de cette thèse ont eu pour objectif la conception de solutions permettant d’estimer
avec assez de précision et de piloter de manière optimale, la flexibilité énergétique des bâti-
ments. L’approche proposée cherche à répondre à l’objectif fixé, tout en considérant des
problématiques d’implémentation réelles : accès aux données, réplicabilité, intégration aux
systèmes de gestion existants, barrières d’acceptation liées au confort thermique. Ainsi, elle
est basée sur des données (capteurs, compteurs et actionneurs) généralement disponibles et
communes à la plupart des bâtiments, et ne dégrade pas le niveau de confort thermique établi
par les gestionnaires de bâtiments.

Afin de répondre aux objectifs et contraintes fixées, la consommation énergétique est pilotée
par l’intermédiaire du contrôle de la consigne de température intérieure. Une partie de cette
thèse est ainsi focalisée sur l’exploration des méthodes visant à prédire, pour un horizon de 24
heures, le profil de puissance totale consommée dans un bâtiment. Uniquement des variables
explicatives généralement disponibles sont considérées: consignes globales de la température
intérieure, données météo, données temporelles (heure de la journée, jour de la semaine). Sur
la base des premières investigations, un modèle prédictif de la puissance consommée, basé sur
des outils d’apprentissage supervisé a été adopté.

Dans un second temps, la méthode de prédiction a été raffinée afin d’être utilisée dans un
programme de réponse à la demande, incitant à la réduction de la consommation énergétique.
L’effacement de la consommation est accompli en utilisant les capacités intrinsèques de stock-
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age thermique d’un bâtiment (préchauffage/pré-climatisation).
Sur la base d’un programme rudimentaire, rémunérant l’effacement de la consommation, une
stratégie d’optimisation a été a été mise en place pour effectuer les effacements de manière
optimisée. Une estimation des bénéfices tirés de l’intégration de ce programme a été faite.
Ce bénéfice atteint 7,9 % par rapport à la facture énergétique totale de base pour la saison
d’hiver considérée, lorsque le taux de rémunération est égal à 5 (rapport entre le niveau de
rémunération pour l’énergie effacée et le prix de l’énergie de base). Les recherches devraient
néanmoins être élargies pour dresser une image complète du potentiel d’une telle approche.
Il serait notamment souhaitable d’appliquer la méthode sur d’autres types de bâtiments, dif-
férents en termes de caractéristiques thermiques mais également en termes de systèmes HVAC.
Des programmes plus complexes de DR devraient également être traités, afin d’obtenir des
indications quant aux limites de la méthode proposée.
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Résumé — La flexibilité énergétique des bâtiments est une ressource non-négligeable pour la
gestion efficace du réseau électrique. La flexibilité peut être produite de différentes manières
et l’impact exact des options disponibles est souvent mal connu. En effet, la diversité des
bâtiments en termes de caractéristiques thermiques, systèmes CVC, actionneurs et capteurs,
est considérable. Les travaux de cette thèse ont eu pour objectif la conception de solutions
génériques et extensibles, dans un but d’estimer et d’optimiser la flexibilité énergétique des
bâtiments. Les travaux ont été focalisés sur une stratégie de décalage de la consommation,
accomplie par le contrôle de la consigne de température intérieure. L’effet en termes de con-
sommation énergétique est estimé par l’intermédiaire d’outils d’apprentissage supervisé. Sur
la base d’un programme rudimentaire valorisant l’effacement de la consommation énergétique,
une stratégie a été proposée pour réaliser des effacements de manière optimisée.

Mots clés : Chauffage, Ventilation et Climatisation (CVC). Bâtiments. Flexibilité
énergétique. Optimisation. Modélisation. Apprentissage supervisé.

Abstract — Energy flexibility of buildings is a major resource for efficient management of
the electrical grid. Flexibility can be generated by different manners and the exact impact
of various available options is often unknown. Indeed, the diversity of buildings in terms of
thermal characteristics, HVAC systems, meters, sensors and actuators is considerable. The
objective of this thesis is designing scalable and generic solutions, for precise estimation and
optimization of the energy flexibility of buildings. The work is focused on a HVAC load shifting
strategy, by indoor temperature setpoint control. The effect of the control in terms of energy
consumption is estimated using supervised learning methods. Given a simplistic demand
response program, that remunerates load shedding, a framework is proposed to optimize load
shedding management.

Keywords: Heating, Ventilation and Air-Conditioning (HVAC). Buildings. Energy flex-
ibility. Optimisation. Predictive modelling. Machine Learning.
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