
HAL Id: tel-04121867
https://theses.hal.science/tel-04121867v1

Submitted on 8 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Usage of Quadtree in Deep Neural Networks to
Represent Data For Navigation From a Monocular

Camera
Daniel Braun

To cite this version:
Daniel Braun. The Usage of Quadtree in Deep Neural Networks to Represent Data For Navigation
From a Monocular Camera. Signal and Image Processing. Université Bourgogne Franche-Comté,
2022. English. �NNT : 2022UBFCK094�. �tel-04121867�

https://theses.hal.science/tel-04121867v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE

PREPAREE A l’UNIVERSITE DE BOURGOGNE

Ecole doctorale no ED37
Sciences Physiques pour l’Ingénieur et Microtechniques (SPIM)

Doctorat en Instrumentation et Informatique de l’Image

Par

M. Daniel BRAUN

L’utilisation de Quadtree dans les Réseaux de Neurones Profonds pour Représenter les Données
pour la Navigation à partir d’une Caméra Monoculaire.

The Usage of Quadtree in Deep Neural Networks to Represent Data for Navigation from a
Monocular Camera.

Thèse présentée et soutenue à Le Creusot, le 14 décembre 2022

Composition du Jury :

M. Thierry CHATEAU Professeur des universités, Université Clermont Auvergne Président
Mme Sylvie CHAMBON Maître de conférences, INP Toulouse - ENSEEIHT Rapporteur
M. Vincent FREMONT Professeur des universités, Ecole Centrale de Nantes Rapporteur
M. Cédric DEMONCEAUX Professeur des universités, Université de Bourgogne- Directeur de thèse

Franche-Comté (Dijon) - Laboratoire ImViA
M. Pascal VASSEUR Professeur des universités, Université de Picardie Jules Verne Codirecteur de thèse
M. Olivier MOREL Maître de conférences, Université de Bourgogne-Franche Codirecteur de thèse

-Comté (Dijon) - Laboratoire ImViA

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Daniel Braun

04-02-2023

i

Dedication

I would like to dedicate this work to my three-year-old son, Léonce, and to my little angle,
Ézechiel, who left us far too soon.

iii

Acknowledgments

I would like to express my sincerest appreciation to my advisors, Cédric Demonceaux,
Olivier Morel and Pascal Vasseur, for their trust, guidance, support, and encouragement
throughout this project. Their expertise and feedback have played a crucial role in shaping
the direction and outcome of my project.

I would also like to thank the members of my thesis jury, Thierry Chateau, Sylvie Chambon,
and Vincent Frémont, for their time, effort, and dedication in reviewing my thesis. Their
acceptance to be part of the jury has been a great honor.

I would like to extend my appreciation to my colleagues at ImViA ViBot for their ongoing
support throughout my research, both in professional matters and during coffee breaks,
whether it was in person or remotely.

I would like to thank my friends and family for their support and the interest they showed
of my work, even though some of them had a hard time understanding what I was doing.

I would like to extend my warmest gratitude to my parents for their unwavering love and
support throughout my life. Their hard work and dedication in raising me has made it
possible for me to be where I am today. I am forever grateful for everything they have
done for me and without them, this achievement would not have been possible.

Finally, I would like to offer my heartfelt thanks to my wife who willingly accepted to join
me in this journey. She has been the most supportive and understanding during the ups and
downs of my mood, making this experience so much more enjoyable. She has been my
rock and gave me everything I could have ever wanted, including making me a husband
and a father. Thank you for everything.

v

Abstract

Depth acquisition represents a key element for navigation tasks. It is, therefore, one of the
major research topics in computer vision. Many approaches have been developed to address
this problem by constructing the depth from series of images. However, there is a minimal
case proposing a prediction from a single image, made possible with the emergence of deep
learning approaches. The latter makes it possible to consider a reduction in both hardware
and computing time costs, which is beneficial for embedded systems. However, network
architecture remains a heavy process requiring a lot of GPU memory. Few approaches
have proposed addressing this problem by developing lightweight architectures, allowing
real-time execution. We propose to investigate this problem from another angle, consisting
in carefully selecting the operations to execute rather than lightening the architecture. It is
based on the Quadtree Generating Networks framework which takes advantage of sparse
convolutions to only operate necessary operations to generate the quadtree, thus reducing
the computational cost. This method, initially developed for semantic segmentation, will
be applied in this study to data acquisition problems for navigation. Namely, the image
segmentation for obstacle avoidance and the generation of compressed depth maps into
quadtree. It will be demonstrated, through a series of experiments, that the quadtree
compression allows a significant reduction of the memory requirement with a limited loss
of accuracy. The level of compression of the prediction is fully adjustable for the depth
estimation, making it adaptable to all situations.

The thesis is written in english and is 92 pages long, including 6 chapters, 35 figures and
13 tables.

vii

List of Abbreviations and Terms

CNN Convolutional Neural Network.
FCN Fully Convolutional Network.
FLOPs Floating-points operations.
GPU Graphics Processing Units.
GT Ground truth.
IMU Inertial Measurement Unit.
LiDAR The Light Detection and Ranging is a laser scanning sensor to

acquire a 3D point cloud of the surrounding environment.
OGN Octree Generating Networks.
QGN Quadtree Generating Networks.
RGB Type of camera acquiring colors encoded as three channels: red,

green and blue.
RGBD Type of camera providing both color (RGB) and depth (D) data.
RMSE Root Mean Square Error.
SfM Structure from Motion.
SLAM Simultaneous Localization And Mapping.
SSIM Structural Similarity Index Measure.

ix

Table of Contents

List of Figures . xiii

List of Tables . xv

1 Introduction . 1
1.1 Context and Motivations . 1

1.2 Scope and Objectives . 3

1.3 Contributions . 3

1.4 Document Organization . 4

2 Related Literature . 7
2.1 Quadtree Data Structure for Deep Learning 7

2.1.1 Quadtree and Octree Representation 7

2.1.2 Quadtree for Navigation . 9

2.1.3 Quadtree in Deep Learning . 10

2.2 Monocular Depth Estimation . 12

2.2.1 Problem Statement . 12

2.2.2 Self-Supervised Learning . 13

2.2.3 Evaluation Metrics . 16

2.3 Semantic Segmentation . 17

2.3.1 Deep Learning Architectures . 17

2.3.2 Segmentation Datasets . 19

2.3.3 Perspectives . 20

3 Quadtree Segmentation for Obstacle Avoidance 23
3.1 Segmentation for Obstacle Avoidance 23

3.1.1 Objectives . 23

3.1.2 Generating Labels from Depth Information 24

3.1.3 Self-supervised Reference Map 28

3.2 Quadtree Generating Networks for Segmentation 30

3.2.1 Network Architecture . 30

3.2.2 The Mixed Class . 31

3.2.3 Training . 32

3.3 Experiments . 34

3.3.1 Qualitative Results . 34

x

TABLE OF CONTENTS xi

3.3.2 Accuracy . 36

3.3.3 Reliability . 37

3.3.4 Network Complexity . 38

3.4 Summary . 39

4 Quadtree Depth for Navigation . 41
4.1 The Navigation Map . 41

4.1.1 Objectives . 41

4.1.2 Compressing the Monocular Depth Prediction 43

4.2 Self-Supervised Training . 43

4.2.1 Network Architecture . 44

4.2.2 Multi-Scale Prediction . 44

4.2.3 Monocular Training . 45

4.2.4 Encoder Pretraining . 47

4.3 Experiments . 47

4.3.1 The Quadtree Navigation map 47

4.3.2 Quadtree structure likelihood . 48

4.3.3 Depth Evaluation . 51

4.3.4 Memory Footprint Analysis . 52

4.4 Summary . 52

5 The Optimum Quadtree of a Depth Map 55
5.1 The Optimum Quadtree . 55

5.1.1 Objectives . 55

5.1.2 Probabilistic Subdivision Decision 56

5.1.3 Forcasting the Influence of the Quadtree Compression on the Depth
Prediction . 58

5.2 Supervised Training . 59

5.2.1 Network Architecture . 59

5.2.2 Loss Function . 60

5.2.3 Guided Supervision . 62

5.3 Experiments . 63

5.3.1 Depth Estimation . 63

5.3.2 Quadtree Subdivision . 65

5.3.3 Qualitative Results . 69

5.3.4 Runtime Evaluation and Software Limitation 69

5.4 Summary . 71

6 Conclusion and Future Works . 73
6.1 Conclusion . 73

xii TABLE OF CONTENTS

6.2 Perspectives . 75
6.3 Future Works . 75

6.3.1 The Icosahedron Grid to Represent the Sphere 75
6.3.2 From the Quadtree to the Heptatree 77

A Quadtree Decoder Details . 79

B Prediction Quadtre Decomposition . 81

References . 84

List of Figures

1 Representation of the quadtree data structure applied to images. 8

2 An intensity image and its corresponding depth map, from Middlebury
Stereo Datasets [68], converted into quadtree. 9

3 Monocular depth self-supervised learning. 13

4 Overview of popular datasets for image segmentation. 19

5 Quadtree scene segmentation for obstacle avoidance. 24

6 Comparison between semantic segmentation and depth segmentation. . . 25

7 Extracting the ground class from the normal map. 26

8 Monocular depth values distribution and correspondences. 27

9 Image compression rate due to the quadtree representation as a function of
the number of segmentation classes. 28

10 Overview of the full segmentation computation. 30

11 Architecture of the quadtree segmentation network. 31

12 Quadtree prediction decomposition. 32

13 Training optimization curve. 34

14 Qualitative prediction overview. 35

15 Quadtree distribution per level. 38

16 Monocular prediction overview of the N-QGN framework. 42

17 Quadtree subdivision criterion . 44

18 Output quadtree prediction decomposition. 45

19 Qualitative prediction overview. 49

20 Quadtree distribution per level. 50

21 Method overview. Visual results of the framework compared with dense
monocular methods. 56

22 Theoretical evolution of the depth accuracy and network complexity with
respect to the compression rate of the quadtree prediction. 58

23 Decoder layer details . 59

24 Training diagram of N-QGNv2. 60

25 Output quadtree prediction decomposition 62

26 Quadtree distribution per level. 66

27 Qualitative quadtree depth prediction overview. 68

28 Runtime with respect to the encoder, compression rate and input image
resolution. 70

xiii

xiv LIST OF FIGURES

29 Methods prediction overview applied on the same input image. 73
30 Spherical image projected into the equirectancular plane. 76
31 From the icosahedron to the regular 2D grid. 76
32 Quadtree, Heptatree and Interconnected Heptatree 77

33 Qualitative results of the quadtree decomposition of the segmentation
framework with ResNet18 and ResNet50 architectures. 81

34 Qualitative results of the quadtree decomposition of the N-QGN framework
with the ResNet18 architectures at compression rates 10 and 30. 82

35 Qualitative results of the quadtree decomposition of the N-QGNv2 frame-
work with the MobileNetv2 and ResNet18 architectures at compression
rates 10 and 30. 83

List of Tables

1 Results from QGN [79] on the memory consumption, networks complexity
and accuracy with respect to state of the art methods. 11

2 Comparison ot the accuracy of monocular depth methods from the state-
of-the-art on the Kitti dataset [31]. 15

3 Quantitative results on the Eigen split evaluation set [24]. 29
4 Intersection over Union per class and in average (mIoU). 36
5 Confusion Matrix representing the segmentation distribution per class. . . 37
6 Networks complexity. 39

7 Quadtree Structure Likelihood. 50
8 Depth evaluation on the Eigen split benchmark on the dataset Kitti. 51
9 Comparison of model size and complexity 52

10 Depth accuracy metrics of methods trained with a ResNet 18 encoder. . . 64
11 Depth accuracy metrics of methods trained with a mobilenetv2 encoder. . 64
12 Evaluation of the quadtree structure likelihood at two compression rate

and at two image size on the Kitti dataset [31]. 65

13 Quadtree decoder details for the N-QGNv2 with an input image of size
192×640. 79

xv

Chapter 1

Introduction

1.1 Context and Motivations

Autonomous navigation is one of the main research topic in robotics and computer vision.
It consists of acquiring data of the surrounding environment and of using it to decide on
the most appropriate path to follow. The strategy may vary depending on the objective, but
whether it is to find the shortest, fastest or safest route, the decision has to be made based
on its perception of the world. Therefore, it is preferable to have the most appropriate
solution, depending on the desired application. The choice of solution will also vary based
on the available sensors on the systems, which is largely defined by the dimensions and
the budget of the mobile system. The same set of sensors cannot be implemented whether
it is on a car or on a drone which has strict size and weight limitations.

From this point, the choice of approach will diverge between solution proposing to fuse
information from a set of sensors and those extracting the most information available
from a single sensor. The objective of the latter being to be lighter, to offer an interesting
trade-off between computation cost and accuracy, while also being cheaper. Single sensor
systems are either using LiDAR1 or RGB2 camera. LiDAR is a 360 degree laser scanner,
mainly based on the time of flight (ToF) technology, generating a three-dimensional point
cloud of the scene, providing an accurate sampling of obstacles location. It is on of the
most reliable solution to acquire depth information and is doing it in every directions
making it even more interesting. Yet, it remains an expansive sensor with some limitations,
such as the point cloud being too sparse for some applications and the negative effect of

1Acronym for "light detection and ranging".
2Acronym for "Red, Green and Blue" corresponding to the three channels composing the image color.

1

2 CHAPTER 1. INTRODUCTION

the sunlight on the acquisition [41]. Therefore, the use of camera is generally preferred
in single sensor application, as it is a cheaper and represents a more versatile solution.
However, as it only produces a two dimensional information, the extraction of depth, when
using geometrical algorithm approaches, requires the acquisition of two or more images
of the scene as theorized by Hartley and Zisserman in [38]. It is performed in practice by
either adding a second camera in order to form a calibrated stereo system, or by estimating
the relative motion of the camera between two time stamps. Both solutions can be used
to navigate by successively aggregating scene information using SLAM [74] or SfM [73]
algorithms.

For the last decade, deep learning approaches have progressively conquered the computer
vision research fields [1]. Thus, new methods, in today’s literature, not featuring deep
learning became the exception. Indeed, the neuron architectures have demonstrated
there capability to efficiently solve and outperform numerous problems that were once
accomplished with classical algorithms. Most importantly, they expanded the research to
new fields that were hardly achievable before, among which are semantic segmentation
[29] and monocular depth estimation [22]. Both topics are transforming information from
an single image into something else they have learnt to predict through a training procedure.
The semantic segmentation consists of classifying information in the image based on its
type, which is highly valuable to increase the scene understanding. The monocular depth
estimation consists, as indicated by its name, of predicting depth from a single image. It is
normally an ill-posed problem, as two images are usually required to triangulate points as
explained before. But through learning, and in similar image configurations, the network
manages to estimate distance of objects by considering the global context of the scene.
Both approaches are interpreting and solving there tasks by mimicking what they learned
during training. The downside being the method performances depends on the training set
and may produce aberrant results when processing images from outside the scope. Depth
prediction methods trained on outdoor urban scenes may misinterpret distances on indoor
images due to the layout differences.

Even if those monocular depth prediction methods are producing satisfying results, they
are scarcely used for real-time navigation [22]. This limitation can be explained by
different factors. As discussed earlier, the quality of the prediction depend on the datasets
used for training, meaning the quality might diminish to become unreliable in a different
environments. Deep learning networks can also be expansive to compute, depending on
their network size. Some of those approaches are focused on dense 3D reconstruction and
are essentially working on improving the network architecture or the training procedure
to outperform the current state of the art [10, 60, 54]. Yet, others addressed this issue by
developing lightweight solutions specifically designed for real-time applications [80, 16].

1.2. SCOPE AND OBJECTIVES 3

But it necessarily comes at the expense of prediction accuracy or input image resolution.
Subsequently, it all comes to a trade-off between the computation cost and the accuracy of
the prediction.

1.2 Scope and Objectives

This thesis is part of the ANR CLARA, which gathers different research projects whose
aim at solving problems related to the navigation of autonomous UAVs. The tasks have
been divided between perception and control to achieve such goal. The objective of this
thesis is to explore solutions for perception from RGB camera. The choice has been made
to research solutions for compressed representation. It emerged from the observation that
today’s research on depth acquisition is mostly oriented toward higher accuracy rather
than time efficiency for real time application. In additions, works related to sparsity in
the network architecture is expanding and represents a promising alternative solution to
dense neural networks. They assume that by carefully selecting the operations to perform,
methods are able to achieve similar results at cheaper price [47].

It is proposed in this work to explore an alternative solution consisting of introducing
sparsity in the network to generate a compressed prediction organized into quadtree. It
permits to reduce the computation cost, thus to accelerate the execution time, while keeping
high resolution at the necessary locations in the image. Indeed, a quadtree is a hierarchical
tree data structure composed of nodes. Each node stores the data and position on the tree,
which indicates its localization on the image and the size of the area it represents. For the
specific case of images, they represent square area in the image and can then be subdivided
into four smaller square area of equal size. The advantage of the tree structure is that it
allows information representing of different size in the image to coexist, permitting to
compress the data while preserving important information at higher resolution. Quadtrees
are normally used to compressed dense information, inducing the higher resolution has to
be known. With the usage of the Quadtree Generating Networks (QGN) framework [14],
it is possible to directly infer a quadtree by skipping the computation of all data that will
not be present in the compressed representation.

1.3 Contributions

The work presented in this manuscript has led to the publication of the following three
papers:

� "N-QGN: Navigation Map from a Monocular Camera using Quadtree Generating

4 CHAPTER 1. INTRODUCTION

Networks."
Daniel Braun, Olivier Morel, Pascal Vasseur & Cédric Demonceaux.
In 2022 IEEE International Conference on Robotics and Automation (ICRA).

� "Quadtree Segmentation Network for Obstacle Avoidance in Monocular Naviga-
tion."
Daniel Braun, Olivier Morel, Pascal Vasseur & Cédric Demonceaux.
In 2022 IEEE International Conference on Intelligent Transportation Systems

(ITSC).

� "Optimized Quadtree Depth Estimation from a Monocular Camera."
Daniel Braun, Olivier Morel, Pascal Vasseur & Cédric Demonceaux.
Under Review at IEEE Robotics and Automation Letters.

1.4 Document Organization

The document is organized as follows:

Chapter 2 provides a condensed analysis of the literature and how it relates to the presented
works. Topics related to segmentation, monocular depth prediction and the use of quadtree
representation in deep learning will be covered.

Chapter 3 presents the quadtree segmentation work applied to obstacle avoidance. It
allows a first overview of the use of Quadtree Generating Networks as well as a reflection
on unsupervised segmentation.

Chapter 4 focuses on the interest of Quadtree Generating Networks applied to the com-
pression of continuous information such as depth data. It explores solutions to efficiently
compress information while limiting the loss of precision while being trainable in an
self-supervised manner.

Chapter 5 proposes to combine the best of both worlds from the two previous approaches
while improving the results. It presents how the learning guidance and the prediction
of the optimum quadtree structure by the network allow to improve the results in terms
of accuracy and stability. Improvements on the implementation have also been made to
achieve a real-time inference.

Chapter 6 is the conclusion of these research works and proposes perspectives on the
evolution as well as future works to be considered.

1.4. DOCUMENT ORGANIZATION 5

The choice was made to separate the chapters by application as it permits to follow the
progression path and the improvements made in the use of Quadtree Generating Network,
which acts as a thread through the document.

Chapter 2

Related Literature

This chapter consists of an overview of the works from the literature related to our studies.
It begins with a presentation of the quadtree data structures applied to computer vision and
its benefits for deep learning approaches. It continues with the evolution on the monocular
depth estimation and its interests for navigation. The last section presents the evolution of
image segmentation approaches using deep learning, the main benchmark datasets and the
perspectives toward self-supervised training and real-time inference.

2.1 Quadtree Data Structure for Deep Learning

This section presents the dual benefit of using quadtree data structure in deep learning
approaches. The first part is redefining the quadtree and octree representation in computer
vision. The second part presents their applications to navigation. The third part is presenting
their benefits for deep learning.

2.1.1 Quadtree and Octree Representation

The quadtree is a hierarchical tree data structure [66] that is deeply tight to the image
processing field since it was first introduced nearly 40 years ago by Samet et al. [66].
It consists of representing information in an image as graph of interconnected nodes, as
illustrated in Figure 1. It results in a tree following a hierarchical structure, as the nodes
location in the tree defines their position in the image and the area they represent. As
opposed to the representation in the form of a grid of pixels, the quadtree data structure
permits to information of different sizes to coexist. This allows a lot of freedom to compress
information in areas with little texture or low interest.

7

8 CHAPTER 2. RELATED LITERATURE

Figure 1. Representation of the quadtree data structure applied to images. On the left is a
perspective view representing the subdivision of the quadtree nodes. On the right is the
recomposed image.

The quadtree, as defined by [14], can be described by the following equation 2.1. It is a
set of N nodes, of which the ith node is characterized by its depth level li in the tree, its
centroid coordinates (xi, yi) and its value vi.

Q = {(li, xi, yi, vi) | i = {1, .., N}} (2.1)

The depth level of the tree corresponds in the image as the size of the square area rep-
resented by its node. Therefore, the quadtree will often be separated by its nodes depth
level and noted Ql = {Q | li = l}. All these nodes form an image of the scene at a given
resolution. In general, the quadtree can be seen as a multi-resolution sparse representation
of the image, as in Figure 1.

Another popular tree data structure is the octree [53], which corresponds to the 3-
dimensions counterpart of the quadtree. It follows the exact same logic, except it represents
3D volumes and the nodes are subdivided into 8 sub-cubes instead of 4 sub-squares. They
are, as such, the compressed representation of the voxel1 grid. A similar definition can be
applied using 3D coordinates for its centroid (xi, yi, zi) to form the octree O as follows:

O = {(li, xi, yi, zi, vi) | i = {1, .., N}} (2.2)

1unit cube on a 3-dimensional regular grid. It is the equivalent in 3D of a pixel.

2.1. QUADTREE DATA STRUCTURE FOR DEEP LEARNING 9

a) Intensity Image b) Depth Map

Figure 2. An intensity image and its corresponding depth map, from Middlebury Stereo
Datasets [68], converted into quadtree. As suggested by [79], pixels in the depth map are
generally more compressed than in the intensity image. It implies all pixels inside a same
node necessarily share the same depth information.

2.1.2 Quadtree for Navigation

The data structure similarity between octree and quadtree implies the progression and
use of these two approaches are linked. Even though, octree approaches have been more
used for navigation because of the huge benefit brought by compression. Methods such as
Octomap [40] have allowed to generate large occupancy maps. Point clouds are aggregated
on navigation sequences to update the probable locations of obstacles on the map. Nodes
are subdivided if higher resolution is necessary to describe the volume, but could also
be merged if all the sub-nodes share the same values. Therefore, the addition of new
information does not necessary induce a growth of stored data in the map.

Applications using the quadtree data structure for navigation remain limited. It is often
preferred to use the image according to a regular pixel grid, even if it means working
with smaller images. Indeed, the conversion to quadtree is necessarily done in post-
processing, adding computation time. This implies that the gain in speed induced by the
compression must be significant to justify its use. Besides, the manipulation of data in tree
form is not trivial and requires the use of algorithms optimized for these operations [70].
However, one notable method [79] proposed to use quadtree compression for real-time
dense mapping. They started from the observation that in most cases, the same area of
the image is more compressed when it represents a depth value than a light intensity, as
illustrated in Figure 2. Therefore, the quadtree compression of the input image does not
degrade the depth prediction. This allows significant compression of the input images -
which enables real-time depth prediction using the dynamic belief propagation [87]. This
method consists of iteratively estimating and updating the depth values by combining
information from nearby previous frames. Working with quadtree structure permits to only
estimate a sparse depth on the node centroids. The full depth map can then be reconstructed

10 CHAPTER 2. RELATED LITERATURE

using interpolations.

2.1.3 Quadtree in Deep Learning

2.1.3.1 Sparse Convolutions

Convolutional neural networks (CNN) consist in processing the input data of the network
through a sequence of convolution operations. The data are organized in the form of
tensors, corresponding to dense multi-dimensional arrays. They are generally organized as
B × C ×H ×W when the input is two-dimensional and B × C ×H ×W ×D when
it is three-dimensional. B corresponds to the batch size, i.e. the number of independent
data processed in parallel. C is the number of channels and H , W , D are respectively the
height, the width and the depth of the data.

Convolution-based approaches in computer vision represent, along with transformers [45],
the vast majority of the state of the art in deep learning. These methods have in common
that they manipulate dense data structures, which is not adequate to the use of the quadtree.
However, the need arose to apply convolutions on sparse data. Whether the data is natively
sparse [75] or rendered sparse through the network [58]. This is made possible with the
development of sparse convolutions [35] which allow to ignore locations containing no
data. In practice, this corresponds to pixels containing zero values, which are thus removed
from the activation map. It is the latter that defines the data to be taken into account in the
calculation of convolutions. Subsequently, less information are to be computed, reducing
the networks complexity and the floating-points operations (FLOPs).

2.1.3.2 Quadtree Generating Networks

The Quadtree Generating Networks (QGN) [79] and its big brother Octree Generating
Networks (OGN) [77] are convolutionnal decoder architectures transforming an input dense
information into an optimized tree-based representation. These methods are proposing a
coarse to fine prediction, where at each step only the set of data that needs to be refined
are processed. This procedure implies the coexistence on the same plane information with
different dimensions, thus organized as a quadtree/octree structure.

QGN is proposing a quadtree semantic segmentation and OGN a 3d shape prediction
with probability outputs being either labeled as empty, filled or mixed. The two methods
have in common the mixed status, indicating the corresponding node cannot be classified
at this resolution and thus have to be subdivided. It is in that sense that tree structure
is constructed inside the decoder. Subsequent layers will only processed nodes which
received the mixed status on the previous step. Therefore, a large amount of computation

2.1. QUADTREE DATA STRUCTURE FOR DEEP LEARNING 11

Method Model Memory (GB) FLOPs (×1012) mIoU (%)

Dilatation

DRN-C-42 [89] 3.77 1.07 70.9
DRN-D-105 [89] 15.15 1.91 75.6
DeepLabv3 [9] 14.27 1.97 79.3

CCNet [42] 14.33 1.55 79.8

QGN
dense 5.85 0.48 78.2

quadtree 3.66 0.25 73.0

Table 1. Results from QGN [79] on the memory consumption, networks complexity and
accuracy with respect to state of the art methods. Experiments have been conducted on
Cityscapes [20] for input resolution of 2048× 1024.

can be saved, significantly reducing the need in memory.

Methods are trained with a ground-truth supervision by optimizing the cross-entropy
loss function. The mixed status is considered by the network as an extra class, and will
implicitly learn to predict the structure through training. Nonetheless, it is acknowledge
that the usage as guidance of the ground-truth tree structure during training time greatly
improves the performances. The way the pixels are propagated through the decoder is
highly dependent on the quality of the prediction. It appeared in practice to be unreliable
for training and therefore a ground truth (GT) guidance is preferred. If such data is not
available, it is suggested to either pretrain the model to have reliable prediction from the
start or to propagate all pixels to achieve a dense equivalent training. For the latter, it will
induce highest memory consumption as the prediction will be dense. At inference time,
the absence of guidance is no longer an issue, as the network learnt to predict the structure.

As mentioned early, the interest of the method is its capability to reduce the memory
consumption compared to dense equivalent methods as demonstrated in QGN. The table 1
is demonstrating this benefit while still achieving top accuracy level. It allows us to situate
the method in the context of the state of the art. The method is lighter than the others
even in its dense use, i.e. by propagating all the pixels thus without any compression. On
the mIoU results, its performances are better than DRN-D-105 [89], while being lighter
on the FLOPs and GPU memory use. Beyond that, the method proposes to compress
the prediction in quadtree and thus to reduce it even further. Yet, the loss in accuracy is
significant, with a loss of 5 points compared to the dense prediction. However, this loss
is accompanied by a huge gain on the computational cost and offers a trade-off between
lightness and accuracy. It can be compared with DRN-C-42 [89] by proposing equivalent
memory use with a reduction of FLOPs and an increase of accuracy.

12 CHAPTER 2. RELATED LITERATURE

2.2 Monocular Depth Estimation

2.2.1 Problem Statement

Monocular depth methods consist of proposing a pixel to depth prediction from a single
image. This solution emerged with the pioneer work of Eigen et al. [25] who searched for
solutions to increase the understanding of massively available images on the web. At the
time, numerous solutions already existed to acquire depth from stereo images but the works
on single frame were extremely limited. This comes from the fact that the monocular depth
prediction is an ill-posed problem with uncertainty arising from the incapability to properly
estimate the scale. Three-dimensional data are generally acquired by triangulating points at
different locations from a set of images. The use of CNN permits to lift these ambiguities
by extracting key features from the image and enables to understand the context and the
nature of the information.

Ever since the early work from Eigen et al. [25] the research community of monocular
depth estimation kept growing and remains largely active as of today. Each method comes
with innovative changes to increase the prediction. These approaches can be categorized
into three main families which are the supervised, self-supervised and semi-supervised
training. The goal remains unchanged, but the way to achieve it differs. Supervised
learning consists of training the network to mimic the GT depth [49]. The optimization
loss function is generally based on pixel-wise minimization of the L1, L2, log depth or
Berhu functions [56]. But the access to the full GT depth is not always possible and can
be expansive to generate. Subsequently, semi-supervised training proposes to integrate
external information to enrich learning. This can take several forms, such as the use
of synthetic data [90], a LiDAR sensor giving partial depth data [63] or the access to
the normal surface [62]. These methods are also geometric based and aims at enforcing
the consistency of the external data source. Lastly, some approaches have turned to
unsupervised learning which consists in evaluating the capacity of the prediction to verify
geometric properties. Indeed, the calculation of a depth map from a set of images is a
known geometric property. It is therefore possible to reverse the problem and use the
predicted depth to recreate the missing image pair from the first image. The objective is to
virtually recreate an existing close image and to evaluate the resulting photometric error
[30, 92].

2.2. MONOCULAR DEPTH ESTIMATION 13

I1(x)

I2(x)

CNN

D(x) = fB
d(x)

Inverse Warping Iw(x) = I2→1(x)

Figure 3. Monocular depth self-supervised Learning. Photometric reprojection error
between I1 and the warped image I2→1. D(x) is the predicted disparity map and is equal
to fB/d(x).f is the focal distance, B the baseline between the two cameras and d(x) the
depth.

2.2.2 Self-Supervised Learning

The studies presented in this manuscript are mainly derived from self-supervised ap-
proaches. This choice stems from the desire to offer an easily adaptable solution that does
not depend on the availability of a GT or external sensors. Subsequently it is proposed in
this section to deepen the evolution of these approaches and to detail some key points.

It was demonstrated in [30] the capability to predict a monocular depth map using self
supervised learning. It is based on minimizing the photometric reprojection error between a
pair of stereo calibrated images, as illustrated in Figure 3. The predicted disparity is used to
warp the second image (I2) into the first one (I1) to minimize the loss Lreproj = ‖Iw−I1‖2,
with Iw the reprojection of I2 into I1. Yet, the photometric error is non-informative in
textureless areas permitting equally good disparity map to coexist. This issue was initially
solved by adding a L2 regularization Lsmooth = ‖∇D‖2 to smooth the disparity prediction
(D) by penalizing discontinuities. These two functions result in a weighted sum used to
optimize the depth prediction as follows:

Lglobal = Lreproj + 0.01 · Lsmooth (2.3)

The loss function has since been improved [32] by combining a L1 and a single scale SSIM
[83] to better optimize the photometric reprojection, in equation 2.4. The two terms are
weighted by a constant generally at α = 0.85 [32]. Also, the previously used smoothing
function induces a loss of sharpness at the edge of the objects in the image. This effect has
been corrected by making the smoothing function sensitive to edges, by basing it on the

14 CHAPTER 2. RELATED LITERATURE

gradient of the image ∂I , as described in equation 2.5.

Lreproj = α
1− SSIM(I1, Iw)

2
+ (1− α) ‖I1 − Iw‖ (2.4)

Lsmooth = |∂xD|e−‖∂xI1‖ + |∂yD|e−‖∂yI1‖ (2.5)

These two terms still remains the core elements of the self-supervised loss function as of
today. However, improvements have been made to increase the accuracy and make training
more flexible. We can note the addition of the left-right consistency which proposes to
compare the disparity predictions made on the left and right images [32]. Furthermore, by
coupling the prediction to a posenet [44], it is possible to obtain the relative pose between
two images and thus to work with a sequence instead of a stereo pair [92].

One of the major papers on self-supervised depth prediction, monodepth2 [33], proposed
to combine optimization on a sequence and on the stereo pair to combine the best of both
worlds. Indeed, this allows to increase the number of viewpoints to refine the optimization
and to avoid occlusion problems. The latter is addressed that in case of good prediction, an
occluded area induces a higher photometric error than a non-occluded area. Moreover, by
multiplying the points of view, it is likely to eliminate all blind spots. Consequently, the
minimum reprojection error per pixel is preferred to the average error. This last framework
remains a reference in monocular depth prediction as it presented solid precision and
published an easy to use code available on github.

New approaches have since succeeded in improving these performances by proposing some
adjustments. They include the use of depth maps computed from a stereo pair. It allows to
distill this prediction to the monocular network during training with the equation 2.6 [11,
60]. But the distillation is only transmitted on failing cases, i.e. where the photometric
error with the monocular prediction is greater than the one computed with the stereo depth.
This guarantees not to degrade the prediction by adding this distillation term.

Ldist = log(|D − D̂|+ 1) (2.6)

2.2. MONOCULAR DEPTH ESTIMATION 15

Year Methods Sup Param AbsRel↓ SqRel↓ RMSE↓ RMSE a1↑ a2↑ a3↑Log↓
2014 Eigen [25] S 71M 0.190 1.515 7.156 0.270 0.692 0.899 0.967
2019 Wang [81] S - 0.088 0.245 1.949 0.127 0.915 0.984 0.996
2020 Patil [59] S - 0.102 0.655 4.148 0.172 0.884 0.966 0.987
2021 Bhat [4] S 78M 0.058 0.190 2.360 0.088 0.964 0.995 0.999
2022 Huynh [43] S 2.1M 0.133 - 5.157 - 0.842 0.948 0.980
2016 Garg [30] U 17M 0.152 1.226 5.849 0.246 0.784 0.921 0.967
2017 Zhou [92] U 42M 0.208 1.768 6.865 0.283 0.678 0.885 0.957
2017 Godard [32] U 31M 0.133 1.142 5.533 0.230 0.830 0.936 0.970
2018 Poggi [61] U 1.9M 0.153 1.363 6.030 0.252 0.789 0.918 0.963
2019 Godard [33] U 15M 0.106 0.818 4.750 0.196 0.874 0.957 0.979
2020 Liu [50] U 0.2M 0.141 1.080 5.264 0.216 0.825 0.941 0.976
2020 Zhao [91] U - 0.113 0.704 4.581 0.184 0.871 0.961 0.984
2021 Peng [60] U 27M 0.099 0.754 4.490 0.183 0.888 0.963 0.982
2021 Watson [84] U - 0.098 0.770 4.459 0.176 0.900 0.965 0.983
2022 Tao [76] U 14M 0.107 0.765 4.532 0.184 0.893 0.963 0.983
2017 Kuznietsov [48] Semi 81M 0.113 0.741 4.621 0.189 0.862 0.960 0.986
2019 Cho [17] Semi - 0.099 0.748 5.599 0.183 0.880 0.959 0.983
2020 Guizilini [36] Semi - 0.102 0.698 4.381 0.178 0.896 0.964 0.984
2022 Baek [3] Semi 18M 0.101 0.657 4.262 0.176 0.892 0.966 0.984

Table 2. Comparison ot the accuracy of monocular depth methods from the state-of-the-art
on the Kitti dataset [31] on the Eigen split [25] benchmark evaluation. Input image size
is 192 × 640 and the output depth range is from 0 to 80m. Methods are separated by
supervision type with "S" for supervised, "U" for unsupervised and "Semi" for semi-
supervised. Param corresponds to the networks parameters, when available. The best
results per type is bold and the second best is underlined.

Abs Rel(x, y) =
1

N

N∑
i

|xi − yi|
yi

(2.7)

Sq Rel(x, y) =
1

N

N∑
i

(xi − yi)2

yi
(2.8)

RMSE(x, y) =

√√√√ 1

N

N∑
i

(xi − yi)2 (2.9)

RMSE Log(x, y) =

√√√√ 1

N

N∑
i

(log(xi)− log(yi))
2 (2.10)

a1(x, y) =
1

N

N∑
i

(
max(

xi
yi
,
yi
xi

) < 1.25

)
(2.11)

a2(x, y) =
1

N

N∑
i

(
max(

xi
yi
,
yi
xi

) < 1.252

)
(2.12)

a3(x, y) =
1

N

N∑
i

(
max(

xi
yi
,
yi
xi

) < 1.253

)
(2.13)

16 CHAPTER 2. RELATED LITERATURE

2.2.3 Evaluation Metrics

The depth prediction quality is usually measured with comparison to GT depth. Yet, as
mentioned earlier, the GT can be difficult to acquire, thus a restricted number of datasets
can be used for the evaluation. In addition, it is better to compare with other state-of-the-art
methods, so the same datasets are often used. Indeed, the performances of a network is
linked to its training set and may produce poor results when tested outside its domain
of expertise. For a fair evaluation, the methods must have been trained on the same
dataset. Subsequently, Kitti [31] is the most commonly used dataset for monocular depth
evaluation, even though it has been released 10 years ago. But this choice is not only
made by default. It is an easily accessible dataset, offering numerous urban navigation
sequences and equipped with a calibrated sensor set including cameras, IMU and LiDAR.
Alternatively, the NYU-Depth V2 dataset [57] is largely used for indoor applications.

The method performances are measured with a pixel-wise evaluation on the following error
functions. They are respectively the absolute relative, the square relative, the root mean
square error (RMSE) and the RMSE on logarithmic values. The last three equations a1 to
a3 are the accuracy measuring of the likelihood between the prediction and the groundtruth
at three different threshold levels. The benchmark remains the same since the beginning
and is usually called Eigen split [25] in reference to the author. It is a set of 697 test images
on which are aligned the GT corresponding to the LiDAR point cloud at the timestamp.

In table 2 are gathered performances of monocular depth prediction methods from the
state of the art. As anticipated, supervised methods are achieving higher accuracy as GT
is available during training. As such, Bhat et al. [4] are proposing to use transformers
architecture for a more adaptative prediction, resulting in higher precision but at the cost
of a bigger network with 78M parameters. In constrast, the semi-supervised training
does not seem to produce much better results than self-supervised. However, it can be
noticed the state-of-the-art keeps being regularly outperformed. It is therefore likely that
the performance will be further improved in the coming years.

There is also a great disparity in the number of network architecture parameters. These
data are unfortunately not always available, which complicates the analysis. However,
the more complex architectures tend to obtain better results. Indeed, more operations are
performed which allows a great flexibility inducing a better prediction to some extent. Yet,
more parameters generally implies a higher network complexity, requiring more training
with more data and result in a slower inference runtime. Subsequently, some approaches
are proposing lightweight architecture for real-time monocular depth estimation [43, 61,
50].

2.3. SEMANTIC SEGMENTATION 17

2.3 Semantic Segmentation

Image segmentation is an essential task in computer vision and image processing, as it
allows to add understanding in a scene. It is therefore widely studied and implemented in
all domains whether it is autonomous navigation, medical imaging, video surveillance and
many others. A wide variety of algorithms have been developed to solve this problem, in-
cluding thresholding [46], k-means clustering [37] or Markov random fields [21]. However,
as in many other fields, these methods have been dethroned by deep learning applications
due to their game changing performances. They managed to get the best results on all
popular benchmarks and exceeded all expectations in the field [55]. Therefore, this section
covers the deep learning aspect of the semantic segmentation, from an overview of some
notable architectures, to the main datasets employed and the limits and expectations of the
approach.

2.3.1 Deep Learning Architectures

Most of the improvements in prediction performance for semantic segmentation are due to
the development of new network architectures. Indeed, the training procedure is essentially
the same from one method to another and relies primarily on the per-pixel minimization
of the cross-entropy loss function. The method is trained to reproduce the segmentation
classes fixed by the ground truth data. This section presents the principal methods that
have marked the evolution of semantic segmentation prediction.

One of the first semantic segmentation approaches was proposed in [52]. It is a fully
convolutional network (FCN) composed, as the name suggests, only of convolution layers
while removing the fully connected layers. It provides the advantage of working with
different image sizes, making it easily adaptable to the input data. It outperformed
the methods of the time and demonstrated the capability to train a network to learn
segmentation. Yet, it has the downside of being too slow for realtime applications and
is not able to consider global context of the image. The latter point has been corrected
in ParseNet [51] by adding a context vector into the prediction process consisting of the
averaged feature maps.

Eventually, the FCN has been put aside and replaced by CNN architectures. These
approaches remain widely popular due to their versatility and performances. The most
popular model is undoubtedly the encoder-decoder. The encoder performs a series of
convolutions, nonlinear activation functions and pooling operations to extract a low-
dimensional feature map, called latent space, from the input image. This latent space

18 CHAPTER 2. RELATED LITERATURE

is then decoded via a series of transposed operations, similar to those performed in the
encoder to recreate an output image containing the inferred data.

CNN methods were initially based on VGGNet [72], which were designed by investigating
the effect of the convolutional network depth on the accuracy. It resulted in a simple,
yet efficient, architecture composed of a set of convolution layers, pooling layers and
ended up with fully connected layers. Badrinarayanan et al. proposed in SegNet [2] an
adaptation of VGGNet by removing fully connected layers to make the network lighter.
This new architecture has made it possible to divide the number of parameters by ten while
remaining more efficient.

The U-Net [64] architecture, originally designed for biomedical image segmentation,
proposed a solution to reduce the number of images required for training and to localize
high resolution features. It is achieved by feeding into the decoder feature maps predicted
after each layer of the encoder. It permits to contract the network to better capture
the image context and enable features localization. Indeed, the reinjection of features
from the encoder permits gradient decay during backpropagation inducing to loss pattern
information. From this architecture emerged many others and its structure is still widely
used, especially in other fields, such as for depth prediction [92].

As demonstrated by the previous methods, the key to improve prediction accuracy lies in
two principles: the network depth and the training data. These two aspects tide together,
as a deeper network requires more images to be correctly trained. Indeed, it is composed
of more parameters, i.e. more variables to optimize. This problem has been addressed
by ResNet [39] which proposed a residual learning framework. It consists of combining
together the input and the output of weighted layers sequence, while allowing to increase
the depth of the network without changing the number of parameters. It is therefore easier
to train while resulting in improved results. The simplicity and efficiency of the framework
makes it still highly used on methods with the best performances [8, 27].

To limit the network complexity, CNN like VGGNet or ResNet are primarily composed of
convolutions with kernel size of 3×3. To extend this receptive field, Dilated Convolutional
Models introduced a dilatation rate to transform a 3× 3 kernel into 5× 5 while preserving
its 9 parameters. This framework has been popularized with the Deeplab family [7, 8],
which presents increasingly good results.

Most recently, segmentation tasks have explored the use of attention-based methods [28].
They permit to weight each individual pixel to grant a variable level of importance to areas
in the image. This attention mechanism has the advantage of being more efficient than the

2.3. SEMANTIC SEGMENTATION 19

Figure 4. Overview of popular datasets for image segmentation. From top to bottom,
PASCAL Visual Object Classes (VOC) [26], Cityscapes [20] with its fine and coarse
segmentation, Kitti-STEP [85] and SYNTHIA [65].

classical pooling operations [55].

2.3.2 Segmentation Datasets

It is proposed in this section to present the main datasets used to train and evaluate
segmentation methods, some of which are illustrated in Figure 4. Segmentation approaches
are nowadays mostly supervised, which means that each of these datasets must propose
labels for each of their classes. As the creation of annotations is costly, the number of
images with GT is necessarily limited. As explained previously, the number of available
data will condition the training capacities of a network and thus the accuracy of its
prediction. To overcome this problem, it is possible to use an augmentation process. It
consists in applying some transformations on the images to generate new ones which will
be perceived differently by the network. These transformations can take various forms
such as a homographic transformation of the image or a modification of the feature map or
a combination of both. This allows to increase the performance of the network on small
datasets, by limiting overfitting.

The PASCAL Visual Object Classes (VOC) [26] is a highly popular dataset as it proposes

20 CHAPTER 2. RELATED LITERATURE

annotations for classification, segmentation, detection, action recognition and person layout.
It consists of a set of over 40,000 annotated images into 20 classes representing objects,
animals or persons, thus the background is not considered. It also defined the intersection
over union (IoU) function, which remains the most commonly used metric for semantic
evaluation:

IoU =
TP

TP + TN + FN
(2.14)

where TP, TN and FN are respectively the true positives, the true negatives and the false
negatives.

The Cityscapes [20] dataset has been specifically designed for urban scene semantic
understanding. It presents a key challenge for autonomous navigation applications as it
offers a variety of street scenes acquired from 50 different cities. It consists of a set of
5,000 annotated images with an addition of 20,000 coarsely annotated images as illustrated
in Figure 4. It contains 25 labeled classes, themselves organized into 7 groups.

The Kitti [31] dataset was not published with any annotated data for image segmentation.
However, due to its great popularity for navigation applications, many people have offered
their own annotations. A segmentation dataset Kitti-STEP [85] has recently been published,
proposing 20,000 annotated images. The data are based on the Cityscapes classes and were
generated using a DeepLab based network [12]. The predicted segmentations have then
been refined by human annotators.

As the number of available datasets proposing labeled images are limited, the usage of
simulators such as SYNTHIA [65] permits to generate realistic synthetic data. It aims
at being combined with existing real world annotated data to improve performances.
Similarly, SynWoodscape [69] dataset aims at simulating the Woodscape [88] dataset by
recreating similar conditions. It permits to largely expand the annotated data which were
limited on the real-world dataset.

2.3.3 Perspectives

The need for access to a large amount of annotated data for training is an obstacle for
segmentation prediction. Subsequently, weakly supervised and unsupervised methods are
starting to appear. Therefore, transfer learning based approaches [71] are being developed.
It consists in pretraining a network on a large dataset to predict generic classes and to use it

2.3. SEMANTIC SEGMENTATION 21

to fine-tune another network on a few images to learn a more specific segmentation. Fully
self-supervised training presents the next challenge in semantic segmentation. However,
this raises many questions on how to achieve this segmentation and certainly requires
rethinking the way to train these networks.

As for depth prediction, the main criterion demonstrating the quality of a method is the
accuracy of its prediction. The execution time is therefore secondary and rarely measured.
Many approaches, such as FCN based methods, do not allow real time, with an execution
time higher than 100ms. Fortunately, methods like Deeplab, based on the use of dilated
convolutions, allow to reduce the execution time by approaching a real-time operation.
This means progress can still be made to propose reliable real-time methods.

In the same way as for the execution time, segmenting architectures are generally heavy
and require a large amount of GPU memory. However, it can be noted that the trend is
to decrease this by proposing lighter innovative architectures. This allows to reduce the
number of parameters and thus the need for training data while making the architecture
embeddable and working in real time. While lighter architecture struggle to compete with
larger architecture, they offer a more favorable ratio between the precision and the memory
usage.

Chapter 3

Quadtree Segmentation for Obstacle
Avoidance

This chapter presents our contributions to generate a quadtree segmentation for obstacle
avoidance. It is based on the Quadtree Generating Networks (QGN) architecture [14],
permitting to directly infer a quadtree data structure from an input image. In order to
develop an easily adaptable method, segmentation labels are constructed automatically
from depth information instead of being annotated by human supervision. After introducing
the concept of segmentation for obstacle avoidance, this chapter will deeply describe the
QGN used to fulfill the application. Extended experiments will end the chapter to discuss
on the interests of the method with respect to a dense equivalent.

3.1 Segmentation for Obstacle Avoidance

This initial section defines the objectives of the method and how the reference segmentation
maps are generated.

3.1.1 Objectives

Autonomous navigation is one of the primary subjects in computer vision and robotics.
It is a mandatory first step for the system to be able to move safely in its environment in
order to achieve any desired tasks. Safe navigation requires for the robot to be able to
localize itself in its environment and to avoid obstacles. To accomplish those navigation
tasks, systems are typically equipped with sensors able to acquire depth information, like a
LiDAR or a RGBD camera. In recent years, deep learning approaches emerged, permitting

23

24 CHAPTER 3. QUADTREE SEGMENTATION FOR OBSTACLE AVOIDANCE

input RGB image

output segmentation with quadtree grid

Figure 5. Quadtree scene segmentation for obstacle avoidance.

to infer depth using a single camera as input [25]. As of today, those methods are not as
accurate as stereo cameras methods. Yet, they have the advantage of working with a single
RGB camera, which avoids the need for a system of synchronized and calibrated cameras,
while being more compact.

In this chapter, we focused our interest on obstacle detection from a single image to be used
in real-time. Therefore, we proposed a solution using a single camera as input to generate
segmentation of the image to support the decision on avoiding obstacles as illustrated
in Figure 5. The method uses a deep neural network to predict the segmentation, which
will be learnt through a training procedure supervised by a depth aware method. In order
the accelerate the inference, the approach is based on QGN [14]. The quadtree decoder
presents the advantage of considerably reducing the computational complexity of the
network. Indeed, some areas in the image can be classified at low resolution. Thus, the
pixels that have already been classified can be ignored in the rest of the decoder, thanks to
the usage of submanifold sparse convolutions [9]. It permits to focus the attention on areas
requiring a higher degree of accuracy to be segmented.

3.1.2 Generating Labels from Depth Information

3.1.2.1 Depth Segmentation versus Semantic Segmentation

Segmentation networks are broadly used for semantic scene understanding. In the case of
navigation, it consists of detecting cars, roads, buildings, and others. Those methods have
been largely studied and are able to provide accurate segmentation. Yet, they have with the
issue of requiring access to ground truth labels for training. As the semantic information is
based on the human understanding of the scene, the labels annotation have to be supervised,
which is costly and time consuming. In addition, the quality of the annotations will depend

3.1. SEGMENTATION FOR OBSTACLE AVOIDANCE 25

on who is generating them, inducing bias.

The obstacle avoidance task is generally performed based on depth information as it
provides an accurate understanding of the scene’s geometry. From the knowledge of the
distance to objects, the best path can be derived to navigate safely. The emergence of
monocular depth estimation methods have shown that this information can be acquired
from a single image. Subsequently, it is proposed to do scene segmentation for obstacle
avoidance using a monocular camera. It is initially constructed geometrically from a depth
map and be used as ground truth during the training phase.

input image semantic segmentation (handmade)

ref. depth ref. depth segmentation

Figure 6. Comparison between semantic segmentation and depth segmentation.

The choice of segmentation classes is made by taking into account the obstacle avoidance
objectives. The framework must be able to identify the area where it is safe to navigate
as well as to classify the obstacles according to their level of depth. This led to propose a
segmentation in four classes: one is segmenting the ground, and the other three are splitting
the depth according to the distance of the obstacles. The ground class represents the safe
area in which the autonomous system is allowed to navigate. The following three classes
are based on the depth and indicate the level of priority with which the system must take
into account the obstacles. The proposed segmentation is presented in Figure 6 along the
semantic segmentation and the depth map.

This choice of solution does not apprear to be straight forward and could appear counter-
intuitive as depth information seems to be a better fit. Yet, by combining the scene
segmentation into a limited number of classes and with the usage of Quadtree Generating
Network [14], it is possible de generate a light solution proposing complementary results
as depth.

26 CHAPTER 3. QUADTREE SEGMENTATION FOR OBSTACLE AVOIDANCE

Depth Map Normal Map

Raw Mask Cleaned Mask

Figure 7. Extracting the ground class from the normal map computed from the depth map.
The resulting mask is cleaned to remove the outliers caused by the top of the cars’ surfaces.

3.1.2.2 Differentiating the Ground as a Safe Area to Navigate

For urban applications as proposed in the Kitti dataset [31], the viewpoint of the cameras
installed on the car is consistent on the entire sequences. It is therefore possible to
consistently extract relevant information with basic image processing tools. Indeed, the
scene is constantly observed from the same angle. Therefore, the direction of the normal
vectors of the ground will remain the same on the entire sequence. The normal field can be
computed from the depth map to extract the ground. It corresponds to the safe area where
the mobile system is allowed to safely navigate.

n(x, y) =
v(x, y)

‖v(x, y)‖2
, where v(x, y) = [−∂z(x, y)

∂x
,−∂z(x, y)

∂y
, 1] (3.1)

The normal vector is perpendicular to the surface and can be computed from the depth
map as described in Equation 3.1. The depth value is noted z(x, y) in the point (x, y). The
direction of the normal vector can be obtained by computing the local derivative of the
depth in the x and y direction. It can be achieved in practice by computing the image
gradient using a Sobel filter as illustrated in Figure 7. By looking at the normal map, it is
visible that the ground can be extracted by a simple threshold. Yet, it results with having
some outliers, mainly corresponding to the top of the cars, which have there normal vectors
with the similar direction as the ground as illustrated on the normal map in the Figure 7.
With the assumption that the ground represents a large and continuous area; the outliers
can be removed by using post-processing computer vision tools to remove small isolated
areas. Some outliers may persist in limited numbers such as they will have no affect on the
training procedure.

3.1. SEGMENTATION FOR OBSTACLE AVOIDANCE 27

0 20 40 60 80
0

20

40

60

80

predicted depth (m)

gr
ou

nd
tr

ut
h

de
pt

h
(m

)

Correspondences

0 20 40 60
0

2

4

6
·105

depth (m)

nu
m

be
ro

fo
cc

ur
en

ce
s

Distribution

prediction
ground truth

Figure 8. Monocular depth values distribution and correspondences with the ground truth
on urban scenes.

3.1.2.3 Applying a Threshold on Depth Values

The segmentation is dividing the images into four classes: one is used to detect the ground,
and the other three are classifying the information according to their distance. In this
section will be discussed the choice leading to the three classes to represent the depth.

The segmentation will be performed using information from a single image and will be
closely related to depth. Therefore, the segmentation into classes must be made with
knowledge of the general behavior of monocular depth network performances on the depth
prediction. Indeed, even if our method does not directly predict depth, it is highly related
to it and is expected to replicate similar behavior. This analysis is done by extracting the
data of the testing set from the Kitti dataset [31]. It is composed of original images not
used during the training procedure, with access to ground truth depth data acquired using
a LiDAR sensor. The objective of this study is to visualize how is predicted the depth
by searching for correspondences and distribution with respect to the ground truth, as
illustrated in Figure 8.

The correspondence graph consists of doing a pixel-matching between the predicted values
and the corresponding ground truth depth values. The graph is representing the disparity
of the prediction as box plot. The darker blue is the median, and the blue represents the
values contained between the first to the third quartile and the light blue covers the lower to
the higher limit, which represents 99.65% predicted values. The second graph represents
the data distribution per depth value for the prediction and ground truth. The two curves
largely overlap as the data distribution is highly similar.

28 CHAPTER 3. QUADTREE SEGMENTATION FOR OBSTACLE AVOIDANCE

3 4 5 6 7 8
15

20

25

30

35

number of classes

C
om

pr
es

si
on

ra
te

Figure 9. Image compression rate due to the quadtree representation as a function of the
number of segmentation classes.

These two graphs are highlighting the nature of the urban depth information, with a
significant majority of the information extracted from the images representing depth below
20 meters. These over-representations can be seen on the correspondence graph on the left,
where the error is much smaller below 20 meters. Indeed, the network was able to optimize
the quality of its prediction on this interval during the training. It results in a trustworthy
depth inference at short range and a hazardous one at long range, beyond 40 meters.

The first intention was to segment the depth into two classes: the close obstacles and
the rest which can be ignored. It would have resulted in an image segmented into three
classes, permitting a high compression rate of the image with the quadtree representation,
as illustrated in Figure 9. However, by analyzing the monocular depth prediction, it seemed
patent that the depth splitting into two classes will lack reliability. Indeed, it would have
result with a sizeable percentage of false positives. Adding more classes inevitably result
in the decrease of the image compression rate, as each class will describe smaller areas.
Based on Figure 9, the decision is made to limit the prediction to four classes to keep a
high compression rate while still obtaining a reliable prediction. Indeed, separating the
depth values into three classes offers the advantage of having a middle class acting as a
buffer between the close obstacles to cautiously consider and the far obstacles that can be
ignored.

3.1.3 Self-supervised Reference Map

The previous sections presented the solutions to extract the different classes from a depth
map. In this section is presented the implemented algorithm to infer the dense depth
information. Except for the specific case of the monocular depth estimation, at least two
images are required to triangulate the position of the obstacle and estimate the depth. For
cost efficiency, depth is generally acquired from a calibrated stereo system. Standard

3.1. SEGMENTATION FOR OBSTACLE AVOIDANCE 29

Method Input Size Abs Rel↓ Sq Rel↓ RMSE↓ RMSE
a1↑ a2↑ a3↑

Log↓
Ours Stereo 192 x 640 0.072 0.681 3.924 0.168 0.931 0.965 0.981

EPCDepth [60] Mono 192 x 640 0.099 0.754 4.490 0.183 0.888 0.963 0.982
SingleNet [11] Mono 320 x 1024 0.094 0.681 4.392 0.185 0.892 0.962 0.981

StereoNet-D [11] Stereo 320 x 1024 0.048 0.482 3.393 0.105 0.969 0.989 0.994

Table 3. Quantitative results on the Eigen split evaluation set [24].

computer vision algorithms can be used to perform stereo matching to compute the pixels
disparity between the two images. As the system is calibrated, accurate depth, noted d,
can be obtained from the computed disparity, noted D. With knowledge of the baseline
between the two cameras and the focal length respectively noted b and f , in Equation 3.2,
for every pixel pi in the image.

d(pi) =
b · f
D(pi)

(3.2)

However, those standard computer vision methods tend to compute a sparse depth map
due to the occlusion in the images between views. Convolutional neural network depth
prediction methods have demonstrated their capability to efficiently fill the gaps, by hallu-
cinating what might represent the correct depth in the occluded areas. Some approaches,
such as PSMNet [6], are proposing efficient solution for stereo matching depth estimation
but results in a heavy network using 3D convolutions blocks. A lighter architecture has
been preferred based on monocular depth networks [11, 60] but with a pair of images
as input. This network has been trained using state-of-the-art monocular depth learning
methods on the Kitti dataset [31]. It has accuracy results in between the monocular and
the stereo performances as illustrated in table 3. It could have been possible to adopt a
method proposing higher accuracy, such as StereoNet-D [11], but the weights and the
implementation of the network are not openly accessible. Therefore, it was preferred a
method implementing a simpler architecture, but with a completely known and controlled
pipeline.

The overview of the complete reference segmentation process is presented in Figure 10.
The depth is predicted with our stereo network and used to generate the segmentation. The
ground class is extracted from the normal map and applied on top of the three depth related
classes. It means it has the priority and is substituted for the other classes.

30 CHAPTER 3. QUADTREE SEGMENTATION FOR OBSTACLE AVOIDANCE

image left

image right

depth map

normal map

depth segmentation (3 classes)

ground segmentation (1 class)

full segmentation (4 classes)

Stereo Network

Figure 10. Overview of the full segmentation computation, used as reference to train our
network.

3.2 Quadtree Generating Networks for Segmentation

This second section now focuses on the implementation of the method by presenting the
architecture of the network, the specificities of the quadtree prediction and the training
phase.

3.2.1 Network Architecture

The network illustrated in Figure 11 is based on the quadtree generating network (QGN)
proposed by [14]. It is a U-Net [64] architecture composed of a dense ResNet [39]
encoder and sparse ResNet decoder. The sparse decoder consists of submanifolds sparse
convolutions blocks [35], which exclusively performs operations on active sites, i.e. where
there is data to be processed. Initially designed for sparse input data processing, they are
suited for quadtree construction, where the information is voluntarily reduced.

The strategy behind QGN is to directly generate a quadtree through the decoder without
having to compute the maximum resolution dense prediction. Indeed, some information
can be correctly predicted at low resolution from the first layers of the decoder. Further
processing of this information will not amend the output. Subsequently, they can be
stored into the quadtree and removed from the set of active sites to be unprocessed by the
following layers of the decoder.

3.2. QUADTREE GENERATING NETWORKS FOR SEGMENTATION 31

Q4

Q3

Q2

Q1

Q0

Q5

Input Image

Prediction Layer

Encoder ResNet Block

Decoder Sparse Conv Block

Skip Connections and Sparsification

Figure 11. Architecture of the quadtree segmentation network. It is based on a U-Net with
a dense ResNet encoder in blue and a sparse decoder in green. The prediction layers, in
orange, are generating each level of the quadtree from low to high resolution.

The active sites represent the set of features that needs to be processed by the sparse
convolution. It can be considered as a binary mask applied to the tensor where the active
sites are the values associated with a 1 in the mask. Thus, it makes it possible to modify
the set of active sites as desired to decide what to be processed in the subsequent layer of
the decoder. This sparsification process is done at the same time as the skip connection
and is represented by the red circles in Figure 11. The set of actives sites is decided based
on the segmentation obtained at the output of the prediction layers.

3.2.2 The Mixed Class

Each prediction layer in the decoder outputs a sparse segmented map, noted Ql with l
representing the quadtree level, as presented in Figure 11. The activation masks can be
built from the segmentation, which will define the set of active sites for the subsequent
layer of the decoder. It is obtained by applying a filter on the values of Ql to determine
which class obtained the highest score. In standard segmentation methods, the highest
score indicates to which class a pixel belong. For quadtree segmentation, the map is
constructed recursively from low to high resolution. Therefore, it is acknowledged that
areas in the image can be composed of several classes, thus have to be subdivided to be
classified. It is represented by the introduction of a mixed class, as proposed in [14].

32 CHAPTER 3. QUADTREE SEGMENTATION FOR OBSTACLE AVOIDANCE

Input

Full Segmentation

Q5 Q4 Q3

Q2 Q1 Q0

Figure 12. Quadtree prediction decomposition. On the top left the input image and the
bottom left the recomposed output prediction. Q5 to Q0 are the outputs of each prediction
layers. We have the mixed class in white, the Ground class in gray, the Close class in red,
the Middle class in yellow and the Far class in green. The pixels in black stores no value:
it’s the area which have been predicted by previous layers of the decoder.

The addition of a mixed class permits to indicate the area that cannot be classified at the
current resolution. Therefore, the corresponding pixels have to be subdivided to seek more
details. Regarding the other pixels that have been successfully classified, it is unnecessary
to look for more details at higher resolution. Consequently, they can be withdrawn from
the active sites and will not be processed in the subsequent layers of the decoder. The
activation map A is defined for each value vi as follow:

A(vi) =

1, if arg max(vi) = m,

0, else,
(3.3)

where m is the channel number of the mixed class, and i is the index of the pixel in the
segmentation map.

3.2.3 Training

3.2.3.1 Loss Function

As in [14], the learning process is based on the multi-scale minimization of the cross-
entropy loss function, noted H. The optimization is performed between each of the
predictions Ql and the reference map decomposed into quadtree Q∗l for every classes on
every scale level composing the quadtree. In our study case, the quadtree is composed of
six levels, inducing l = {0, .., 5}. The loss is computed for each level of the quadtree Ql

as follows:

Ll =
1

Nl

Nl∑
i=1

H(vi, Q
∗
l (xi, yi)) (3.4)

3.2. QUADTREE GENERATING NETWORKS FOR SEGMENTATION 33

where Nl is the number of elements in Ql. The functionH compares the predicted value vi
to the reference value at the same location in the image (xi, yi), such as Q∗l (xi, yi) = v∗i .

Considering the Ql are sparse predictions, there is a portion of the image that is not
evaluated as it does not store any prediction value. As illustrated in Figure 12, this
portion represented in black, is growing bigger after each prediction, with the latest
only representing a fraction of the image. For them in order to remain impactful in the
minimization process, the global loss is a weighted sum of the Ll terms as presented in
Equation 3.5, with λl a coefficient defined empirically before the training.

L =
1

6

5∑
l=0

λlLl. (3.5)

3.2.3.2 Guided Supervision

The use of QGN offers the advantage of only computing the necessary operations to predict
the quadtree. The drawback is the prediction quality depends on the capability of the
network to correctly identify those operations. As explained in section 3.2.2, this decision
is made based on the set of active sites which indicates to the sparse convolution the
features to consider. During the inference, these active sites are defined by the prediction
from the previous layer, at the locations where the mixed class gets the highest score. This
behavior can cause some issues in the early stage of the training, where the network lacks
of efficiency.

With a hazardous prediction, it is certain that the quadtree structure will be completely
different from the expected one. As explained earlier, the optimization procedure is only
able to evaluate the predicted values. With a completely unpredictable quadtree structure,
it is impossible to estimate in which direction the optimization will converge. Even in a
case of a convex optimization with a unique solution, supervised by the reference map,
it is impossible to foresight the time required for a proper training. To address this issue,
it is proposed to guide the training by providing to the network the proper subdivision
as defined by the reference map, regardless of the network’s prediction. The differences
between the guided and not guided training are presented in Figure 13 and clearly illustrate
the guidance allowing for better optimization.

34 CHAPTER 3. QUADTREE SEGMENTATION FOR OBSTACLE AVOIDANCE

0 1 2 3 4 5

·104

1

1.2

1.4

1.6

Step

L
os

s

Training Optimization Curve

guided
not guided

Figure 13. Training optimization curve. Comparison of the Loss value between the guided
and not guided training over the 50,000 first steps of the learning.

3.3 Experiments

Experiments are conducted on the Kitti dataset [31]. It offers urban images acquired from
cameras in a car, which allows exploring the scene from a constant point of view on entire
video sequences. Our method is evaluated under two architectures: sparse ResNet 18 and
50 and compared with the equivalent dense version, which has been trained using the same
loss function but to output a dense prediction.The double objectives of those experiments
are to evaluate the reliability of the proposed segmentation and the capability of the sparse
methods to equal or outperform its dense equivalent.

3.3.1 Qualitative Results

Qualitative results are presented in Figure 14, allowing a visual comparison of the methods
with the reference map. From a global observation, all methods are providing an equivalent
quality of prediction. It is an anticipated result considering they all followed the same
training procedure, with having differences only in their architecture. It also implies that
the use of the QGN algorithms allows results equivalent to those of standard CNN methods.
Yet, sparse ResNet 18 method, using QGN, seems to be noisier in its detection of close

obstacles represented by the red class. The biggest differences between methods are at the
junction between the middle and far range classes, respectively in yellow and green. They
are both depth related classes, and are describing the extended range of scenes, which can
be inaccurate from a single image, as previously illustrated in Figure 8.

3.3. EXPERIMENTS 35

(a
)I

np
ut

(b
)R

ef
er

en
ce

M
ap

(c
)D

en
se

R
es

N
et

18
(d

)S
pa

rs
e

R
es

N
et

18
(e

)D
en

se
R

es
N

et
50

(f
)S

pa
rs

e
R

es
N

et
50

1. 2. 3. 4. 5. 6. 7. 8. 9. Fi
gu

re
14

.Q
ua

lit
at

iv
e

pr
ed

ic
tio

n
ov

er
vi

ew
.F

ro
m

le
ft

to
rig

ht
,t

he
si

ng
le

in
pu

ti
m

ag
e

(a
),

th
e

re
fe

re
nc

e
m

ap
(b

)c
on

st
ru

ct
ed

in
se

lf
su

pe
rv

is
ed

m
an

ne
r

fr
om

a
de

pt
h

pr
ed

ic
tio

n
ne

tw
or

k
se

gm
en

te
d

in
to

cl
as

se
s,

th
en

fr
om

(c
)t

o
(f

)a
re

th
e

pr
ed

ic
tio

n
of

ea
ch

m
et

ho
ds

.

36 CHAPTER 3. QUADTREE SEGMENTATION FOR OBSTACLE AVOIDANCE

Methods
Close
(red)

Middle
(yellow)

Far
(green)

Ground
(gray)

mIoU

Dense ResNet 18 68.48% 54.8% 66.5% 90.7% 70.1%
Sparse ResNet 18 65.3% 50.1% 65.2% 89.9% 67.6%
Dense ResNet 50 72.1% 60.9% 68.8% 90.2% 73.0%
Sparse ResNet 50 71.9% 59.4% 70.6% 91.4% 73.3%

Table 4. Intersection over Union per class and in average (mIoU).

This sample of nine images from the Kitti testing set provides a broad variety of the method
behavior. It is capable to detect close obstacles ahead as in 4th image or even no obstacle at
all in the 9th. It also highlights the limits of using a self-supervised method as a reference
instead of a certified ground truth. Indeed, in the 7th image, the store’s window on the right
is classified as a far obstacle in the reference map. Similarly on the 8th image, the car on
the left is partially classified as ground. As presented earlier, the reference segmentation
is constructed by transforming depth data, without having a global understanding of the
scene. Still, the segmentation networks managed to correct those limitations to provide
a more accurate representation than the one from reference. Furthermore, it can also be
observed that Sparse ResNet 18 generates a coarser prediction. In images 2 and 8, the
segmentation between the close and middle classes is uncertain in some areas, leading to
speckled results. This behavior is not desired, as it necessarily increases the size of the
quadtree by forcing access to high resolution pixel-level details.

3.3.2 Accuracy

The table 4 compares the accuracy of the methods on the intersection-over-union (IoU)
criterion for each class and on average (mIoU). This metric evaluates the capability of the
method to correctly classify the information in the image and can be computed by applying
the following equation:

IoU =
Area of Overlap
Area of Union

(3.6)

The first observation is the similarity in the results between the sparse and dense methods,
with an advantage for the sparse ResNet 50. The ground class obtains in all cases the most
accurate prediction. The method seems to have difficulties to correctly classify the buffer
middle class, which is in between close and far obstacles. As explained in section 3.1.2.3,
this result was expected due to the edge effects between the depth-based classes.

3.3. EXPERIMENTS 37

Dense 18 Dense 50 Ground Truth

Sparse 18 Sparse 50 Close Middle Far Ground

Prediction

Close
90.18% 91.09% 7.03% 6.47% 0.34% 0.23% 2.45% 2.21%

88.38% 91.22% 8.12% 6.20% 0.47% 0.25% 3.04% 2.33%

Middle
16.89% 12.69% 73.51% 79.28% 8.49% 6.97% 1.12% 1.06%

21.79% 13.84% 67.40% 77.55% 9.24% 7.35% 1.56% 1.26%

Far
2.17% 1.01% 22.07% 19.08% 75.24% 79.39% 0.53% 0.53%

2.22% 1.02% 21.47% 19.22% 75.52% 79.06% 0.79% 0.69%

Ground
3.11% 2.55% 1.26% 1.11% 0.57% 0.54% 95.06% 95.79%

2.98% 2.53% 1.17% 1.08% 0.49% 0.51% 95.36% 95.88%

Table 5. Confusion Matrix representing the segmentation distribution per class of the
prediction with respect to the ground truth for each method. All four are presented in
the same table with their values exposed in the corners of each cell in the order indicated
at the top left of the table. Green bold values on the diagonal represents the accuracy
and the underlined values are the highest accuracy per class. The others are the incorrect
classification. The values are meant to be read in line.

3.3.3 Reliability

The objective of our method is to do segmentation applied for navigation. Besides,
our classes are significantly related to each other since they describe, for three of them,
a simplified depth information. As a result, there are edge effects that minimize the
performances of the intersection over union (IoU) metrics. It is proposed to expand
previous experiments with the evaluation of the methods reliability.

It is achieved by analyzing the confusion matrix presented in table 5. It permits to highlight
the distribution of the true and the false positives per class, i.e. the areas misclassified
from one class to another with regard to the ground truth. Values of the four methods
are displayed in the same table. Thus, each cell contains four values and is ordered as
indicated in the top left corner of the table. It is intended to be read in line, so each for
each method, the distribution sum up to 100% per line. For example, the sparse method
with ResNet 18 has its prediction of the close class being correctly matched (true positive)
in 88.38% of the time, and wrongfully matched (false positive) as middle in 8.12% of the
time, as far in 0.47% of the time and as ground in 3.04% of the time.

For navigation purposes, a high accuracy is required for the detection of the nearest
obstacles. This task is primarily performed by the two classes close and ground. The
ground class has 95% of true positives for each of the four methods, confirming the good
IoU results. The close class has a score over 90% for the ResNet 50 methods and presents
almost no critical cases. Indeed, two-thirds of the false positives indicate obstacles closer

38 CHAPTER 3. QUADTREE SEGMENTATION FOR OBSTACLE AVOIDANCE

Q5 Q4 Q3 Q2 Q1 Q0

0

10

20

30

40

50
42.6

18.4

13.6

9.9
8.1 7.5

49.6

20.4

13.5

8.8

5.2
2.6

Pe
rc

en
ta

ge
(%

)

Sparse ResNet 18
Sparse ResNet 50

Figure 15. Quadtree distribution per level. Percentage of the images predicted by each
layer of the decoder in average over a set of 700 images. Nearly 50% of a segmentation in
the image can be predicted from the first layer of the decoder.

than they really are. The highest concern is for the middle class which shows over 20% of
false positives. In practice, with such results, the middle class would have to be considered
as an area to avoid, similarly to the close class. But it fulfills its initial goal, which is to be
a buffer between the close and far obstacles and ensuring separation. Those two classes
have a very low overlap with less than 3% of false positives between one another.

When comparing approaches to each other, the ResNet 50 based methods are the ones with
the highest accuracy. Besides, for the two classes of interest close and ground, the best
performances are obtained with the ResNet 50 sparse method, using QGN. It is, therefore,
the most efficient of the four presented methods.

3.3.4 Network Complexity

The quadtree data structure allows compressing significantly the information. The Figure
15 presents the data distribution among each depth level of the quadtree, from Q5 to Q0.
Between 40 to 50% of the information can be predicted by the first prediction layer of the
decoder (Q5). It means that the rest of the decoder only has to process less than 60% of the
information. This percentage decreases after each prediction layer, leaving only a small
portion of the data to be processed by the last layers. Since the decoder is composed on
submanifold sparse convolutions [35], operations are only computed on active sites, i.e.
information that have not been classified by previous prediction layers. Ideally, the two
distributions must have been equal, as the predicted quadtree should be the same. But the
differences in the predictions are inducing some biases, making the ResNet 50 proposing a
more compressed representation.

3.4. SUMMARY 39

Method FLOPs Parameters Memory
Dense ResNet 18 24G 27.4M 0.78GB
Sparse ResNet 18 10G 26.5M 0.83GB
Dense ResNet 50 56G 72.3M 1.14GB
Sparse ResNet 50 19G 70.7M 1.27GB

Table 6. Networks complexity. Compare the FLOPs, the network parameters and the
memory consumption of each method.

The subdivision into quadtree permits to drastically reduce the floating-points operations
per seconds (FLOPs) compared to regular CNN approaches, as presented in table 6. Yet
the memory usage remains equivalent due to the necessity to provide a dense prediction at
full resolution, reconstructed from the quadtree layers. Note that the FLOPs are related to
the quadtree size. Subsequently, it can fluctuate from one view to another. The number of
parameters remains mathematically high and is almost equivalent to the dense counterpart
due to the similarity in the architecture. Yet, for the same reasons as for the FLOPs, the
prediction is highly sparse and all the parameters are unsolicited during the inference.

3.4 Summary

In this chapter, we have presented a segmentation framework dedicated to obstacle detection
using a monocular navigation system. The proposed network architecture is derived from
QGN and provides efficient prediction of a limited set of classes relevant for obstacle
avoidance task. The reference segmentation map has been constructed from a stereo depth
prediction network and converted into classes through geometric operations.

The experiments conducted on the Kitti dataset highlighted our method capability to achieve
similar segmentation precision as the dense counterpart but with a reduced computational
complexity. Indeed, the quadtree data structure permits to drastically reduce the density
of the prediction. It was also demonstrated that most of the information can be extracted
within the first few layers of the decoder justifying the usage of quadtrees that avoids
unnecessary computations.

The method has been experimented with both ResNet 18 and ResNet 50 convolutional
blocks. The quantitative results benefit the ResNet 50 solution, yet it is composed of almost
three times more parameters. Therefore, it seems the sparse ResNet 18 is more appropriate
for lighter applications. The trade-off between the network’s complexity and the accuracy
of the output would need to be discussed during the deployment of the solution on an
autonomous driving system.

Chapter 4

Quadtree Depth for Navigation

This chapter explores the use of quadtree generation to obtain a compressed representation
of a depth map to be used for navigation. The first part defines the framework of this
navigation map. The second part presents its implementation in a self-supervised way. The
third part presents the results obtained with this method.

4.1 The Navigation Map

This first section presents the objectives of the method and the impact of the quadtree
compression applied to depth values.

4.1.1 Objectives

The precedent chapter presented a method to predict a segmentation map for obstacle
avoidance. The limited number of classes permitted to fully benefit from the quadtree
generating networks to obtain a compressed representation. Yet, detecting obstacles
can be insufficient, as it does not permit a mapping of the environment. Therefore, the
autonomous system might benefit from being able to extract more information about the
scene’s geometry by acquiring a depth map. But in practice, the same degree of precision
is not required everywhere on the image. Besides, slight details are simply not relevant
for the navigation task. Consequently, it is proposed in this chapter to present a method
to estimate a compressed depth map that focuses on important details and on close range
obstacles. The information is organized as a quadtree and predicted from a single image,
as illustrated in Figure 16.

41

42 CHAPTER 4. QUADTREE DEPTH FOR NAVIGATION

Input Image Output Navigation Map

3D Projection

Figure 16. Monocular prediction overview of the N-QGN framework. At the top are the
input image and the output depth map quadtree. At the bottom is the 3D projection of the
quadtree depth information.

In many situations, it is required to manage compressed information as it permits to limit
the size of the point cloud. Indeed, a dense depth map generates one information per pixel,
which can be too expansive to process in real time for an embedded system. This solution
is generally addressed by down sampling the information or by extracting close range
depth values. While the first solution might induce to omit some significant information,
the second is unsuitable for open areas such as urban scenes. The main observation to
make is the same level of information is not required at close and at long range and must
be adaptable. From this multi-scale free representation, it is possible to take advantage of
the quadtree algorithm.

One could argue the quadtree can be constructed from the dense depth map to obtain the
desired compressing and the appropriate data organization. But it would require to be
post-processed, adding extra time to the computation pipeline. On the contrary, with the
usage of QGN, the quadtree can be directly predicted saving computation time. Similarly
than for the segmentation task, the depth prediction would benefit from the usage of sparse
convolutions [34] to only process information required to construct the quadtree.

This implementation will combine the work developed on the quadtree segmentation task
with self-supervised monocular depth methods. The similar QGN architecture as presented
in Figure 11 in chapter 3 will be used, but trained using self-supervised monocular depth
loss function. The novelty of the approach comes from the nodes subdivision decision.
Contrary to the segmentation task, there are no classes, so no simple way to do the quadtree
subdivision. The depth represents a continuous information, and a specific criterion must
be defined to rule the manner the quadtree nodes will be subdivided.

4.2. SELF-SUPERVISED TRAINING 43

4.1.2 Compressing the Monocular Depth Prediction

Depth information on the image will not serve the same purpose depending on its values.
A good precision is required at short range as it permits to accurately detect upcoming
obstacles to navigate safely. The long range depth helps to increase the map accuracy over
time by providing rough estimation of far obstacles. Yet it is generally taken into account
with a high uncertainty coefficient as the uncertainty grows with range as explained in
section 3.1.2.3. Subsequently, the subdivision criterion will favor short-range accuracy and
be based on the disparity value. The disparity is equivalent to the inverse of the depth, so a
small disparity variation will have more impact at long range than at short range.

It is intended for this work to be completely self-supervised and only driven by the predicted
depth values. Therefore, the quadtree must be constructed without the complete knowledge
of the dense information. As a result, it will be constructed from the root of the tree,
based on the predicted disparity information at that resolution. The disparity map will
be scanned per block of four pixels to decide if more information have to be extracted at
that location in the image. The nodes will be split if the highest difference between the
four children values (vi, i = 1..4) exceeds a threshold τ . On the image, it will consist of
applying patches A of size 2x2 with a stride of 2, as illustrated in the following equation:

A =

12×2 if max(vi)−min(vi) > τ,

02×2 else.
(4.1)

The Figure 17 illustrates the behavior of the criterion on disparity and on depth values.
The comparison is performed based on the pair of values min and max inside an area. If
this pair is located under the curve, the nodes will be subdivided. A higher threshold value
will result in a more restrictive criterion. The decision will define the activation map of
the following layer in the decoder, but will have no impact on the already predicted values
regardless of the criterion results.

4.2 Self-Supervised Training

This section presents the details of the unsupervised training phase resulting in the predic-
tion of the navigation map. It will present the architecture of the network, the multi-scale
training, the optimization of the monocular depth and the adjustments to be made for the
specificity of a sparse prediction.

44 CHAPTER 4. QUADTREE DEPTH FOR NAVIGATION

2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

max disparity

m
in

di
sp

ar
ity

Criterion on disparity

τ = 0
τ = 0.005
τ = 0.010
τ = 0.025

0 20 40 60 80
0

20

40

60

80

max depth

m
in

de
pt

h

Criterion on depth

τ = 0
τ = 0.005
τ = 0.010
τ = 0.025

Figure 17. Quadtree subdivision criterion. The nodes are subdivided if the pair of values
(max, min) intersect under the curve.

4.2.1 Network Architecture

The network is using the same architecture as the segmentation approach in chapter 3. It is
a U-Net composed of a dense ResNet encoder and a sparse decoder based on QGN. From a
single image, the method predicts a quadtree representation of the scene, corresponding to a
multi-scale sparse depth prediction. The subdivision decision is deduced from the predicted
depth information to decide the locations where more details have to be extracted in the
image. This subdivision decision is represented by the activation maps Al, computed based
on the disparity values from Ql as presented in Figure 18, with l ∈ [1, 5] corresponding to
the predicted quadtree level. At the beginning of each decoder layer, the activation map
Al+1 calculated in the previous prediction step is used to define the set of active sites for
the sparse feature map.

As presented in Equation 4.1, the subdivision criterion is set by threshold value which is
defined prior training. This means that the network is trained and optimized to predict
depth data at the compression level set by the threshold value. A new training is necessary
to obtain data with another compression ratio. The criterion is such that a decrease in the
value increases the compression rate, thus reducing the computational complexity.

4.2.2 Multi-Scale Prediction

The multi-scale depth map prediction method is particularly well fitted for quadtree
prediction because it is in essence a multiscale representation. During training, the multi-
scale photometric error minimisation loss from self-supervised depth prediction can be
directly used by extracting multi-scale representation from a quadtree.

4.2. SELF-SUPERVISED TRAINING 45

Q5 Q4 Q3

Q2 Q1 Q0

A5 A4 A3

A2 A1 A0

∅

Figure 18. Output quadtree prediction decomposition. The network decoder is predicting
the sparse depth mapsQ5 toQ0. From each of them is deduced the corresponding activation
map A5 to A1 for the next layer of the decoder. A0 is not computed as it is predicted by
the last layer.

As illustrated in Figure 18, the network is generating a multi-scale sparse prediction,
with only the important details being computed. But the quadtree information can be
combined to create a dense depth representation at the desired resolution. It consists of
reconstructing the image by preserving the highest available resolution. This operation
is defined in Equation 4.2 to combine data from the lowest resolution Q5 to the highest
desired resolution Qn with n ∈ {4, ..., 0}.

Q5→n = Qn +
5∑

i=n+1

Qi · (1− Ai−1) (4.2)

where Ai−1 is the active site map of Qi−1 with values in Ai−1 ∈ {0, 1}. Values are kept
from a specific level of the quadtreeQi only on the inactive site locations, which correspond
to the highest available resolution.

4.2.3 Monocular Training

This quadtree recombination permits to consider the predictions as a full pixel-wise multi-
scale depth map. In that sense, we can apply the same loss function from [33], which is a

46 CHAPTER 4. QUADTREE DEPTH FOR NAVIGATION

combination of a photometric error loss Lp and a per-pixel smoothness loss Ls:

L =
1

N

N∑
i

(µLi
p + λLi

s) (4.3)

with N being the number of levels in the quadtree and µ and λ are constants value chosen
empirically. In this approach, N = 6 as it is the sum of the loss function optimized on the
prediction of Q0 to Q5. The values have been set to µ = 1 and λ = 10−3 as it is done in
the litterature [32].

The photometric reprojection error, noted pe, between a source It and a target image It′

can be expressed as follows:

Lp = min
t′
pe(It, It′→t) (4.4)

with It′→t being the projection of It′ into the frame t based on the knowledge of the
predicted depth, the relative pose and the camera intrinsic parameters. The photometric
error is a combination of L1 norm and SSIM such as

pe(Ia, Ib) =
α

2
(1− SSIM(Ia, Ib)) + (1− α)‖Ia − Ib‖ (4.5)

where α is a constant value set to 0.85 [32].

The smoothness loss in Equation 4.6 is sharpening the edges and is encouraging smooth
values on textureless areas. As a result, the depth prediction will have smaller variations
along the value. It leads to a higher compression of the quadtree as less subdivision is
required to describe the scene.

Ls = |∂xd∗t |e−|∂xIt| + |∂yd∗t |e−|∂yIt|, (4.6)

with d∗t = dt/d̄t the mean-normalized inverse depth to prevent the depth to diminish [82].

4.3. EXPERIMENTS 47

4.2.4 Encoder Pretraining

Correctly optimizing a quadtree prediction can be difficult. As explained earlier, it is a
sparse prediction, meaning there is a part of the information that has not been computed.
Thus, it is not possible to minimize the error on this missing part. Therefore, the optimiza-
tion is limited to the actual predicted information. The issue has been addressed in the
precedent chapter by guiding the supervision with data from the reference map.

But, in the case of a self-supervised training, there exist no reference map to use as guidance.
Therefore, it is required to have a good first estimate to ensure that the optimization process
will not diverge. It leads to the solution of pretraining the encoder to predict monocular
dense depth maps. Therefore, it has already learn how to extract relevant depth features.
Indeed, the latent space between a dense depth network and the N-QGN is highly similar
as the extracted information is largely overlapping.

4.3 Experiments

In this section is discussed the capability of the end-to-end network to efficiently construct
a quadtree navigation map and how it competes with equivalent quadtree constructed from
dense information. Experiments were conducted on the Kitti dataset [31] as it is widely
used for depth map prediction, permitting to be easily compared with the state of the art.

4.3.1 The Quadtree Navigation map

This method was the first to propose to directly generate a depth map as a compressed
quadtree. We since developed a second approach which will be further discussed in the
following chapter. For the time being, the performances of N-QGN will be compared
to dense monocular depth prediction methods which were optimized with the same loss
function. To evaluate the methods on a fair level of comparison, the dense depth map will
be converted into quadtree with an equivalent level of compression. Indeed, the generated
navigation map does not aim at out-performing dense prediction, but rather to propose an
interesting trade-off between accuracy and compression.

With the usage of the quadtree subdivision decision function, the compression of the
prediction can be adjusted before training. In this study, the experiments are conducted at

48 CHAPTER 4. QUADTREE DEPTH FOR NAVIGATION

two levels of compression defined according to:

Compression rate =
](D)

](Q)
(4.7)

where D and Q are the number of elements in the quadtree and in the dense prediction
respectively.

Qualitative results of each evaluated methods are presented in Figure 19. To better
appreciate the quadtree structure, it is overlayed on the prediction map. As a result, the
part of the image reaching the highest resolution will appear black as the overlay will hide
the data. Visually, the N-QGN seems to predict results highly similar to the ones generated
from dense data and manage to provide a convincing depth prediction. The quadtree
structure is consistent with the objectives. It gives less importance to the details, as desired,
which allows a stronger compression in some areas without real loss of information. Yet,
there is some limitations, as illustrated in the 5th image, where the methods seem to fail to
uniformly subdivide the wall on the right of the image.

4.3.2 Quadtree structure likelihood

The data structure in the quadtree is evaluated by taking as reference the structure obtained
with LEAStereo. It is taken as a baseline a dense monocular approach converted into a
quadtree.The structure likelihood is computed as presented in Equation 4.8 and consists of
comparing the subdivision decision per node as described in the binary activation map A.

L =
1

6

5∑
i=0

(
1

Ni

Ni−1∑
j=0

(
1− |aij − a∗ij|

))
(4.8)

with aij and a∗ij the jth element of the binary activation maps of respectively the prediction
Ai and the reference A∗i which defines the quadtree structure. This function is defined
such that a quadtree constructed randomly would score a correspondence of 50% with the
reference. The results are presented in table 7 and highlight the capability of the method to
generate quadtree structure. It obtains a convincing level of similarity regarding to the one
constructed from dense information.

The likelihood score is providing a global indication of two quadtrees similarities. But it is
compelling to analyse the data distribution among each level of the quadtree. The Figure
20 is composed of two graphs presenting the data distribution along the different levels of

4.3. EXPERIMENTS 49

co
m

pr
es

si
on

ra
te

=
30

co
m

pr
es

si
on

ra
te

=
10

(a
)I

np
ut

(b
)R

ef
er

en
ce

M
ap

(c
)M

on
od

ep
th

2
(d

)N
-Q

G
N

(e
)M

on
od

ep
th

2
(f

)N
-Q

G
N

1. 2. 3. 4. 5. 6. 7. 8. 9. Fi
gu

re
19

.
Q

ua
lit

at
iv

e
pr

ed
ic

tio
n

ov
er

vi
ew

.
Fr

om
le

ft
to

ri
gh

t,
th

e
si

ng
le

in
pu

ti
m

ag
e

(a
),

th
e

st
er

eo
re

fe
re

nc
e

m
ap

[1
3]

(b
),

M
on

od
ep

th
2

[3
3]

co
nv

er
te

d
in

to
qu

ad
tr

ee
co

m
pr

es
se

d
30

tim
es

(c
),

N
-Q

G
N

co
m

pr
es

se
d

30
tim

es
(d

),
M

on
od

ep
th

2
[3

3]
co

nv
er

te
d

in
to

qu
ad

tr
ee

co
m

pr
es

se
d

10
tim

es
(e

)a
nd

N
-Q

G
N

co
m

pr
es

se
d

10
tim

es
(f

).
Th

e
co

m
pr

es
si

on
ra

te
is

av
er

ag
ed

ov
er

a
se

to
fv

al
id

at
io

n
im

ag
es

an
d

ca
n

va
ry

fr
om

on
e

im
ag

e
to

an
ot

he
ra

s
it

is
de

pe
nd

en
to

ft
he

ge
om

et
ry

of
th

e
sc

en
e.

50 CHAPTER 4. QUADTREE DEPTH FOR NAVIGATION

Methods
compression quadtree structure

rate likelihood
monodepth2[33] + quadtree 30 88.0%

N-QGN (ours) 30 83.5%
monodepth2[33] + quadtree 10 85.7%

N-QGN (ours) 10 83.0%

Table 7. Evaluation of the quadtree prediction likelihood at two compression rate on
the Kitti 2012 benchmark. The stereo network LEAStereo [13] is used as reference.
Monodepth2 converted into quadtree is used as baseline.

Q5 Q4 Q3 Q2 Q1 Q0

0

10

20

30

40

21.3

25.7

40.4

8.23

3.14
1.23

16.4

26.4

35.7

18

2.6
0.8

18.2

32.2

22

24.6

2.4
0.6

Pe
rc

en
ta

ge
(%

)

Compression rate = 30

Reference
Monodepth2

N-QGN

Q5 Q4 Q3 Q2 Q1 Q0

0

10

20

30

6

16.4

24.5

35.2

15

2.9
3.8

14

25.4

35.9

18.7

2.3

5

21.5

23.7

30.7

15.7

3.5

Pe
rc

en
ta

ge
(%

)

Compression rate = 10

Reference
Monodepth2

N-QGN

Figure 20. Quadtree distribution per level. Percentage of the images predicted by each
layer of the decoder in average over a set of 700 images. On the top is the graph with
the quadtree compressed 30 times, and on the bottom it is compressed 10 times. On each
graph, the distribution of the reference LEAStereo, monodepth2 into quadtree and N-QGN
(ours) are compared.

4.3. EXPERIMENTS 51

Methods
Comp.

Abs Rel↓ Sq Rel↓ RMSE↓ RMSE
a1↑ a2↑ a3↑

ratio Log↓
monodepth2 + quad. 30 0.125 0.856 5.309 0.204 0.843 0.950 0.981

N-QGN (ours) 30 0.120 0.928 5.084 0.202 0.858 0.951 0.978
monodepth2 + quad. 10 0.118 0.802 5.031 0.196 0.860 0.955 0.981

N-QGN (ours) 10 0.116 0.881 4.946 0.197 0.867 0.955 0.979
monodepth2 1 0.107 0.804 4.667 0.187 0.885 0.961 0.981

Table 8. Depth evaluation on the Eigen split [25] benchmark on the dataset Kitti.

the quadtree at the two compression rates. Each graph is comparing the presented method
N-QGN with the reference map, used for the evaluation, and the monocular depth network
[33] converted into quadtree, used as baseline. The percentage associated with each Qi

is the average percentage of information from that Qi that is featured in the recombined
quadtree. A significant percentage for one of the Qi means that it largely describes the
final quadtree.

For the quadtree with a compression rate of 30, only a thin portion of the image is predicted
in the last two levels Q1 and Q0. It permits for a high reduction of the computational
cost, compare to the dense methods. Surprisingly, the data distribution of N-QGN is
different than the other two methods, permitting to have more data at Q2 for an equivalent
compression rate. This observation point that some areas have been over-subdivided due
to the way the quadtree is constructed. For the compression rate of 10, the three methods
are following the same distribution, with Q5 and Q0 representing a small portion of the
image. The data is less compressed which can be seen visually with the majority of the
data being predicted in Q2 instead of Q4/Q3 with higher compression.

4.3.3 Depth Evaluation

The accuracy of predicted depth is evaluated on the Kitti dataset using the Eigen split
benchmark [25]. It consists of evaluating the error with respect to the ground truth on a set
of testing images which were not used during training. The error is measured using several
metrics as presented in table 8. As for the quadtree distribution, the N-QGN method is
compared with monodepth2 converted into quadtree at two levels of compression. The
results of the dense monodepth2 are also listed to allow to contextualize the influence of
the compression on the predictions.

Except for the square relative metric, which presents a significant loss, the N-QGN is
achieving a higher accuracy at equivalent level of compression compare to monodepth2.
Indeed, the quadtree network has been trained to predict depths at these compression

52 CHAPTER 4. QUADTREE DEPTH FOR NAVIGATION

Methods FLOPs Parameters
monodepth2 [33] 8.0G 14.842M

N-QGN (comp. rate = 30) 5.3G 13.115M
N-QGN (comp. rate = 10) 5.7G 13.115M

Table 9. Comparison of model size and complexity

levels and proposes the proper value minimizing the error. In contrast, the compression in
quadtree of the dense baseline is done by averaging values of the pixels at the compressed
locations - which may cause an error increase. It is also notable that the loss in precision
with respect to the dense method is reasonably small. This opens the discussion on the
consequences of this decrease in real environment.

4.3.4 Memory Footprint Analysis

As explained before, the quadtree generating network is using sparse convolutions [34]
to reduce the computation cost, by only computing operations on the active sites, i.e. the
non-zero features storing data. Therefore, the complexity of the network is linked to the
sparsity of the prediction. The Figure 20 illustrates the data distribution in the quadtree,
between Q0 to Q5, and the resulting compression rate. Therefore, the more the information
is compressed, the less floating point operations (FLOPs) have to be performed by the
network. The table 9 presents the gain concerning the FLOPs induced by the compression.
Sparse convolutions are only used in the decoder, making it the only one benefiting from
this compression. It justifies the reason the reduction is not higher. Overall, the gain
between the compression of 10 and 30 is not significant. Consequently, it seems more
appropriate to work with the lower compression as it provides a more accurate depth
prediction.

4.4 Summary

In this chapter, it was demonstrated the capability to directly predict depth under a quadtree
data structure without a full knowledge of the dense information. The experiments have
highlighted that the method is able infer an accurate compressed depth information, thus
to provide a depth map for navigation. It takes advantage of the submanifold sparse
convolution to eliminate superfluous information inside the network. Therefore, it is no
longer necessary to use dense prediction to infer a quadtree. Sparse convolutions were
initially designed to efficiently process incomplete or discrete data. In that sense, the data
can be willingly sparsified to produce sparse representation from dense data to focus the
interest on relevant information.

4.4. SUMMARY 53

The monocular quadtree depth prediction is a double challenge. It combines the ill-
posed problem of predicting the depth from a single image and the quadtree subdivision
decision from a limited knowledge of the information. Yet, we have come up with a
simple and efficient solution to address this challenge. Deciding for the subdivision upon
the knowledge of the four direct children of each node allows to reduce the problem
complexity. As a result, we have a self-supervised method presenting compressed, yet
accurate performances.

Our study focuses on producing a light representation by deliberately choosing a strict
subdivision criterion. An alternative would be to predict the most accurate quadtree depth
map to compete with the state of the art. Indeed, the last layers of the decoder only deal
with a fraction of the image, which are mostly edges. So, it makes them more specialized
to efficiently predict a specific information.

Chapter 5

The Optimum Quadtree of a Depth Map

It is proposed in this chapter to extend the concept studied previously by suggesting a
quadtree depth prediction compressed into an optimum quadtree structure as if it was
constructed with dense knowledge. This allows to set new objectives, to discuss the
modifications brought to the training procedure and to study the consequences on the
prediction quality.

5.1 The Optimum Quadtree

This first section presents the new objectives to achieve with this framework as well as the
changes applied to the subdivision criterion.

5.1.1 Objectives

It was demonstrated in the previous chapter the capability of a network to predict a
quadtree representation of depth for navigation. The method focused on predicting a highly
compressed representation by defining a very strict subdivision criterion. The quadtree was
constructed inside the decoder by applying a criterion on the predicted disparity values.
Therefore, no knowledge of the optimum quadtree was integrated in the optimization phase.
Subsequently, there was no guarantee the training would converge to the optimal solution.
In this chapter, it is proposed to integrate the prediction of the optimum quadtree subdivision
into the network. This addition permits to achieve a different objective compared to the
previous implementation. The knowledge of the optimum quadtree subdivision is bringing
the depth prediction closer to the actual uncompressed dense depth prediction. Therefore,
the study will investigate the difference of accuracy between the quadtree prediction versus

55

56 CHAPTER 5. THE OPTIMUM QUADTREE OF A DEPTH MAP

a) Input Image b) Quadtree Output

c) Dense baseline d) Densified Output

Figure 21. Method overview. (a) is the input RGB image, (b) is the predicted depth
quadtree with a compression rate of 10, (c) is the dense prediction using monodepth2 [33]
and (d) the densified quadtree depth from (b) with bilinear interpolation.

the dense depth prediction, as illustrated in Figure 21.

In this manner, it will be introduced in this network a probabilistic subdivision prediction
to decide how to efficiently compress the quadtree. This probabilistic prediction will be
supervised during training by a dense depth prediction network. For this purpose, the
stereo depth network introduced in Chapter 3, regarding the segmentation approach, will be
used as a training reference. It offers the advantage of constructing the reference quadtree
structure with the complete knowledge of the pixel-wise depth values. The subdivision
criterion can thus follow more advanced rules than the one used in N-QGN [5].

It is also proposed in this chapter to study the inference time of quadtree based networks.
The gain in complexity and computational cost is undeniable, as shown previously. How-
ever, the use of sparse convolutions in this case may lead to slowdowns which can hinder
a real-time execution. It is therefore proposed to explain these limitations and propose
solutions to overcome them.

5.1.2 Probabilistic Subdivision Decision

The probabilistic subdivision decision is a map, predicted by the network along side the
depth, to determine the set of active sites for the subsequent layer of the decoder. It is, in
some sort, serving an equivalent purpose as the mixed class introduced in chapter 3 for
the quadtree segmentation. This probabilistic map stores information for each pixel in the
interval [0, 1]. The 0s representing the certainty of not subdividing and the 1s the certainty
of subdividing the pixels. As this decision only allows two states, the predicted value will
be binarized with the threshold value of 0.5. This probabilistic map will frequently be
referred as the activation map noted A, as it defines the set of active sites for the sparse

5.1. THE OPTIMUM QUADTREE 57

convolutions in the decoder.

Contrary to the segmentation, the depth represents a continuous information, and gathering
nodes per equal information is not likely going to compress the data. Consequently, this
subdivision criterion has to be a trade-off between compression rate and depth accuracy.
Similarly to the N-QGN approach in chapter 4, the criterion is applied on disparity values
as they are more discriminative at short range. Therefore, even with a linear criterion, it
will favor details at close range over unrelevant details at the back of the scene. Contrary
to the N-QGN framework, the subdivision decision is to be learnt during the training.
Therefore, it has to be supervised by a depth prediction method, to have access to the
optimum subdivision. Subsequently, the stereo network, presented in chapter 3, will be
used as a training reference.

The access to a dense supervision permits to construct the subdivision criterion on the
knowledge of the full information. Consequently, it is based on the standard deviation of
points in the area, noted σ(p) with p a set of N pixels as described in equation 5.1, with p̄
the average value in p.

σ(p) =

√∑N
i=1(pi − p̄)2

N
. (5.1)

If the standard deviation σ exceeds a pre-defined threshold value, it would mean the
disparity values are different enough to justify for this node to be subdivided into quadtree.

Ultimately, it is considered that beyond a certain distance, the depth prediction is no longer
reliable, as presented in the Figure 8 in the chapter 3. Consequently, a maximum threshold
is applied to the criterion to not search for details beyond a certain distance. On a set of
pixels of disparity values, it means we are not seeking details if all values are lower than a
threshold. In conclusion, the subdivision criterion is defined as follow:

A(p) =

1, if σ(p) > τ AND max(p) < λ,

0, else,
(5.2)

with τ and λ are two threshold values set before training. τ permits to adjust the accepted
deviation and λ the maximum depth. They both define the compression rate of the predicted
quadtree.

58 CHAPTER 5. THE OPTIMUM QUADTREE OF A DEPTH MAP

10 20 30 40 50

0.87

0.88

0.88

0.89

Compression ratio

A
cc

ur
ac

y
(a

1)

10 20 30 40 50

5

5.5

6

6.5

·109

Compression ratio

C
om

pl
ex

ity
(F

L
O

Ps
)

Accuracy
Complexity

Figure 22. Theoretical evolution of the depth accuracy and network complexity with
respect to the compression rate of the quadtree prediction. The compression criterion is
applied to dense depth estimation framework to obtain an estimate of the expected accuracy.
It also provides the data distribution in the quadtree from which results the complexity
reduction.

5.1.3 Forcasting the Influence of the Quadtree Compression on the
Depth Prediction

The experiments conducted on the previous methods have demonstrated the similarity
of the results obtained between dense and sparse approaches. This allows to forcast the
expected results of the sparse method by applying the compression criterion, presented
in the section above, on a dense framework. The variation of the compression criterion
permits to draw a trend curve presented in Figure 22. It also shows the gain induced on
the complexity of the network. These data are deduced from the distribution of the data
between the different levels of the quadtree, i.e. the spread over Q5 to Q0. As explained
previously, once a piece of information has been predicted at a quadtree level, it is removed
from the activation map. It is therefore no longer taken into account in the following layers
of the decoder.

The monodepth2 framework [33], which presents similarities in its architecture with our
sparse framework, is used as a baseline to plot the trend curve in Figure 22. The subdivision
criteria, defined in Equation 5.2, is composed of the two variables λ and τ . They define
the maximum depth and minimum disparity variations to look for more detail in the depth
data, respectively. The curve in Figure 22 presents the evolution of τ ∈ [0, 0.006] with a
progression step of 10−4. The variable λ is set to a constant value of 50 meters, considering
long range depth predictions are known to be unreliable as presented in Figure 8.

5.2. SUPERVISED TRAINING 59

sparse spconv upsample + spconv

spconv +
sigmoid

encoder features: Cout×Hout×Wout

Cin×Hin×Win

Al

Ql

Cout×Hout×Wout

Figure 23. Decoder layer details.

The results unsurprisingly show a decrease in accuracy as the compression rate increases.
Three inflection points are observed on the curve and are located around the values 4, 12
and 30. They show a slowing down of the loss of accuracy, corresponding to stability
plates. At these locations, the gap between two measurements is greater, so the criterion λ
adjustment gathers similar information in the image, having little impact on the accuracy.
Outside these areas, the compression adjustment causes a real loss of information.

The evolution of the complexity of the network does not follow the same trend and
proposes a drastic reduction in the number of FLOPs as soon as the compression is halved.
Beyond this point, the slope of the curve slows down progressively and seems to approach
an asymptotic value after the information has been compressed 50 times. Indeed, the
optimization is only done on the decoder which represents 2.1 GFLOPs out of the 6.6 in
total. In the end, to find the criterion that offers the best trade-off, we have to select the one
with the largest gap between the two curves, which is the value 5.5 in this case. However,
this is only an estimate of the theoretical behavior of the network. Therefore, the most
interesting trade-off is probably located in a range of compression rate between 2 and 20.
For the experiments, the two compression rates of 10 and 30 will be considered thereafter
to evaluate the gain of the usage of a quadtree compression.

5.2 Supervised Training

The new subdivision criterion used to build the quadtree structure requires a reference map
during training. This section details the changes in the network architecture, the optimiza-
tion loss function, and the training guidance to improve the quality of the prediction.

5.2.1 Network Architecture

Similarly to precedent architecture presented in Figure 11, this N-QGNv2 architecture is
based on an U-Net [64] composed of a dense encoder and a sparse decoder. To evalute the

60 CHAPTER 5. THE OPTIMUM QUADTREE OF A DEPTH MAP

Ir

Il

Stereo Net

Quadtree Net

D∗

Q∗

Q

Q∗

A∗

Q

A

Q∗

A∗

Q

A

Q∗

A∗

Q

A

Q∗

A∗

Q

A

Q∗

A∗

Q

A

D

Ldist

Lquad

Lrep + Lsmooth

Figure 24. Training diagram of N-QGNv2. The Quadtree network learning is supervised
by stereo network and is also taking advantage of self-supervised monocular training loss
function. For more stability, the quadtree subdivision is guided by the reference map
during training.

influence of the encoder onto the prediction, the experiments will be conducted on either
with ResNet 18 [39], as used in N-QGN [5] or with MobileNetv2 [67], a lighter alternative.
Concerning the decoder, two changes have been made. First, the activation map is now
predicted by the network and used to sparify the feature map. Then, the short connection
to feed the encoder features to the decoder is done between the two convolutions, just after
the upsampling operations as illustrated in Figure 23. In N-QGN, it was original performed
during sparsification operation in the following layer, to limit the switching operations
between sparse and dense. Indeed, those operations are slowing down the execution as
they require a data reindexing during the conversion from dense to sparse. However, it
is possible to speed up the process by using on the data indexes given by the predicted
sparse activation map. It is therefore possible to integrate the encoder information earlier,
just after the upsampling operation, as it is normally done in a classical U-Net. The main
advantage is that the features processed at a time when the information is less sparse.
Therefore, more data can be taken into account by the network.

5.2.2 Loss Function

As illustrated in Figure 24, the loss function is composed of four terms as the network is
predicting simultaneously two information: the depth information structured as a quadtree
Q and the subdivision probability A. The problem has to be optimized on various levels.

At first, the optimization is made on the predicted depth values, by applying photometric

5.2. SUPERVISED TRAINING 61

reprojection error Lreproj and smoothing Lsmooth in self-supervised manner, respectively
presented in equation 2.4 and 2.5 in section 2.2.2. They are evaluated on multi-scale with
the densified disparity map D reconstructed from the set of Q and A.

In the mean time, the network is trained in a teacher/student relation, with a guidance
composed of two terms. The teacher, or reference network, has been trained upstream
to predict dense disparity information from stereo images as presented in section 3.1.3.
The knowledge of dense depth information allows extracting the optimum quadtree rep-
resentation fitting to the criterion defined in section 5.1.2. This dual depth and quadtree
subdivision masks, noted respecively Q∗ and A∗, are feeded to the network and used as
ground truth during training. The disparity is optimized with the following distillation
function Ldist, initially presented in section 2.2.2:

Ldist =
1

Nl

Nl∑
i=1

log(|di − d∗i |+ 1). (5.3)

with di the disparity value of the ith pixel in Ql and d∗i the reference disparity value from
Q∗l at the same location. The quadtree subdivision probability map Al aims at minimizing
the binary cross entropy function to fit the reference A∗l :

Lquad =
−1

Nl

Nl∑
i=1

(a∗i log(ai) + (1− a∗i) log(1− ai)) (5.4)

where ai and a∗i respectively corresponds to the predicted and ground truth probability
value of subdivision of the ith pixel in Al and A∗l . It can be noted a∗i is storing binary
values to represent the subdivision state of each pixel in the reference map.

Ultimately, the global loss function represents the weighted sum of the four previous terms
averaged over the number of depth levels of the quadtree (L = 6 in our current approach).

Lglobal =
1

L

L−1∑
l=0

(Ldist + αLquad + βLrep + γLsmooth) (5.5)

62 CHAPTER 5. THE OPTIMUM QUADTREE OF A DEPTH MAP

Q5 Q4 Q3

Q2 Q1 Q0

A5 A4 A3

A2 A1 A0

∅

Figure 25. Output quadtree prediction decomposition. The network decoder is predicting
the sparse depth maps Q5 to Q0, and the activation maps A5 to A1. A0 is not computed
as is predicted by the last layer. Pixels on the activation map with values over 0.5 are
subdivided for the next layer of the decoder.

5.2.3 Guided Supervision

During the training phase, the subdivision is guided by the reference network similarly
as it was done for the segmentation task in Chapter 3. As illustrated in Figure 24, the set
of reference activation maps A∗ is feeded to the QGN decoder, permitting to guide the
network toward the optimum solution. At inference time, the guidance is removed, and the
network is able to predict the quadtree representation without the help of any supervision.
As explained before, it ensures the consistency and repeatability of the training.

Contrary to the segmentation approach, the learning of activation maps is here decorrelated
from the rest of the data to be optimized. However, the depth optimization is dependent on
the compression constraints imposed by the activation map. This means that the network
is optimizing in parallel two semi-independent variables, whose convergence point can
be different. Besides, as illustrated in Figure 25, the predicted information are more and
more sparse as we advance in the decoder. But, it is not possible to take into account in
the optimization process data that have not been predicted by the network. It implies that,
without guidance, the training process may conclude the optimal solution consists in not
subdividing the data beyond a certain layer in the decoder. This implies no predictions
could be generated on subsequent layers and therefore no optimization is possible at these
locations. This behavior is absolutely not desired and can be prevented with reference
guidance.

5.3. EXPERIMENTS 63

5.3 Experiments

Experiments are conducted on the Kitti dataset [31] to evaluate the performances of this
new N-QGNv2 framework. The objective is to measure the quality of the generated
quadtree by considering the depth prediction and the tree structure. The inference speed
will also be measured with comparison to dense equivalent methods and with N-QGN [5],
presented in precedent chapter. As many parameters influence the quality of the prediction,
the experiments are conducted at two levels of compression, with two different encoders
and at two image resolutions. This multi-settings evaluation will permit to better consider
the impact of the quadtree decoder on the prediction quality and speed.

5.3.1 Depth Estimation

The main objective of the network is to generate a compact representation of depth
information using a quadtree structure. However, this compression comes with a cost, and
the predictions may not be as accurate as those made with dense inference. Despite this,
the loss is expected to be minimal to be a worthwhile trade-off for the increased speed.

The entire study is presented in tables 10 and 11, which correspond to methods using
respectively a ResNet 18 and MobileNetv2 encoders. The first one is classically used
for monocular depth prediction [33, 60] and the second one is designed for embedded
network systems [15]. They are both presenting accuracy results by following standard
evaluation metrics on the Eigen split Benchmark [23]. The methods are evaluated at
resolution 192 × 640 and 320 × 1024. For the method with a ResNet 18 encoder, it is
compared with EPCDepth [60], Monodepth2 [33] and our previous method N-QGN [5].
For the MobileNet, it is compared to a network trained by following standard monocular
depth training.

The new framework is outperforming N-QGN by improving the accuracy and largely
decreasing the runtime. As it will be further discussed in following sections, the gain in
speed is due to the new decoder architecture and its implementation with an alternative
library. Being able to predict the quadtree structure permits to avoid missing information
as it could happen with N-QGN, implicitly reducing the error.

Even if a drop of accuracy can be observed compare to dense methods, the results are close
and generally the second best when compared to the compressed versions. Interestingly,
our method with a resnet 18 encoder, compressed 30 times, with an image size 320× 1024

equals the performances of EPCDepth with image 192× 640 while still being faster. This

64 CHAPTER 5. THE OPTIMUM QUADTREE OF A DEPTH MAP

Methods
Comp.

H x W fps↑ AbsRel↓ SqRel↓ RMSE↓ RMSE
a1↑ a2↑ a3↑

ratio Log↓
EPCDepth [60] 1 192x640 17.6 0.099 0.754 4.490 0.183 0.888 0.963 0.982

Monodepth2 [33] 1 192x640 41.5 0.108 0.820 4.693 0.188 0.884 0.961 0.981
N-QGN [5] 10 192x640 5.8 0.116 0.881 4.946 0.197 0.867 0.955 0.979

EPCDepth [60] 10* 192x640 17.6* 0.116 0.731 4.624 0.189 0.873 0.962 0.983
monodepth2 [33] 10* 192x640 41.5* 0.107 0.756 4.729 0.188 0.879 0.960 0.982

Ours 10 192x640 41.9 0.110 0.764 4.723 0.188 0.874 0.960 0.982
N-QGN [5] 30 192x640 6.0 0.120 0.928 5.084 0.202 0.858 0.951 0.978

EPCDepth [60] 30* 192x640 17.6* 0.119 0.749 4.784 0.192 0.864 0.960 0.983
monodepth2 [33] 30* 192x640 41.5* 0.109 0.763 4.846 0.190 0.873 0.958 0.982

Ours 30 192x640 44.9 0.113 0.792 4.783 0.189 0.871 0.960 0.983

EPCDepth [60] 1 320x1024 7.7 0.093 0.671 4.297 0.178 0.899 0.965 0.983
Monodepth2 [33] 1 320x1024 17.9 0.104 0.775 4.562 0.191 0.887 0.959 0.981
EPCDepth [60] 10* 320x1024 7.7* 0.102 0.657 4.294 0.178 0.898 0.966 0.984

monodepth2 [33] 10* 320x1024 17.9* 0.107 0.741 4.524 0.186 0.886 0.962 0.982
Ours 10 320x1024 21.0 0.104 0.702 4.532 0.183 0.887 0.962 0.983

EPCDepth [60] 30* 320x1024 7.7* 0.103 0.656 4.346 0.178 0.895 0.966 0.984
monodepth2 [33] 30* 320x1024 17.9* 0.107 0.737 4.569 0.186 0.883 0.962 0.982

Ours 30 320x1024 25.1 0.104 0.706 4.523 0.181 0.887 0.963 0.983

*Dense methods are geometrically converted into quadtree by applying the same criterion used to train ours.
The conversion time is not considered in the frame per second (fps) results.

Table 10. Depth accuracy metrics of methods trained with a ResNet 18 encoder. Results on
Kitti dataset [31] using the Eigen split evaluation [24] and are organized by compression
rate. Bold values are the best score of the category and underlined are the second best.

Methods
Comp.

H x W fps↑ AbsRel↓ SqRel↓ RMSE↓ RMSE
a1↑ a2↑ a3↑

ratio Log↓
MobileNetv2 1 192x640 46.8 0.133 1.044 5.293 0.213 0.836 0.946 0.976
MobileNetv2 10* 192x640 46.8* 0.132 0.967 5.274 0.213 0.831 0.945 0.977

Ours 10 192x640 49.8 0.133 1.004 5.319 0.210 0.831 0.945 0.978
MobileNetv2 30* 192x640 46.8* 0.134 0.965 5.375 0.215 0.825 0.943 0.976

Ours 30 192x640 50.6 0.135 1.003 5.315 0.211 0.829 0.944 0.978

MobileNetv2 1 320x1024 19.3 0.122 0.987 5.051 0.200 0.859 0.954 0.980
MobileNetv2 10* 320x1024 19.3* 0.120 0.896 4.940 0.198 0.859 0.955 0.981

Ours 10 320x1024 26.2 0.120 0.881 5.001 0.195 0.858 0.955 0.981
MobileNetv2 30* 320x1024 19.3* 0.120 0.886 4.973 0.198 0.856 0.955 0.981

Ours 30 320x1024 29.7 0.125 0.937 5.073 0.201 0.850 0.952 0.980

*Dense methods are geometrically converted into quadtree by applying the same criterion used to train ours.
The conversion time is not considered in the frame per second (fps) results.

Table 11. Depth accuracy metrics of methods trained with a mobilenetv2 encoder. Results
on Kitti dataset [31] using the Eigen split evaluation [24] and are organized by compression
rate.

5.3. EXPERIMENTS 65

Methods Encoder
192 x 640 320 x 1024

comp. 10 comp. 30 comp. 10 comp. 30
EPCDepth ResNet 18 84.4 % 88.2 % 84.4 % 87.5 %

monodepth2 ResNet 18 87.8 % 90.3 % 86.2 % 88.6 %
N-QGNv2 ResNet 18 88.4 % 90.9 % 86.2 % 89.8 %

MobileNetv2 MobileNetv2 87.3 % 89.8 % 85.7 % 88.5 %
N-QGNv2 MobileNetv2 85.6 % 89.5 % 83.7 % 87.5 %

Table 12. Evaluation of the quadtree structure likelihood at two compression rate and at
two image size on the Kitti dataset [31]. The likelihood is computed with respect to the
stereo network reference used for training. The dense methods are converted into quadtree
and used as baseline. The highest performances are in bold.

is where quadtree compression is interesting. It struggles to be competitive on equal terms
because of the constraints applied. But it is able to work with larger images at low cost
which allows to compensate the loss due to compression.

The same applies to the results with the mobilenetv2 encoder. The gain in execution
time remains limited for inference on low resolution images, but becomes interesting at
high resolution by going from 19.6 to 29.7 frames per second. Surprisingly, the data
compression also permits to improve results on the RMSE and RMSE Log metrics. It
can be observed on the monodepth2 results at high resolution in Table 10 and on the
MobileNetv2 results in Table 11. This can be explained by the fact that compression can
bring a smoothing on the data, which can lead to a decrease of the prediction errors.

Ultimately, it is important to note that the computation times for the dense methods
compressed in quadtree are given as an indication. It does not take into account the time
needed for post-processing for compression. This widens the gap in execution time for
anyone wishing to work with quadtree information.

5.3.2 Quadtree Subdivision

5.3.2.1 Data Distribution

The quadtree compression implies the depth information is distributed into various levels of
the hierarchical tree. This data distribution is presented in Figure 26 and is compared with
N-QGN [5] and the stereoNet reference used for training. For a same compression rate,
the distribution is relatively similar, except for the N-QGN, as the subdivision criterion is
different. Nonetheless, they all have the last level Q0 only representing small areas in the
image, which typically corresponds to object edges.

66 CHAPTER 5. THE OPTIMUM QUADTREE OF A DEPTH MAP

Q5 Q4 Q3 Q2 Q1 Q0

0

10

20

30

40

29.8

22.3

32.3

12.3

2 1.3

18.2

32.2

22

24.6

2.4
0.6

26.8

21.8

37.9

11

1.7
0.8

Pe
rc

en
ta

ge
(%

)

Compression rate = 30

Reference
N-QGN

N-QGNv2

Q5 Q4 Q3 Q2 Q1 Q0

0

10

20

30

16.2

18.3

20.6

30.2

11.9

2.8

5

21.5

23.7

30.7

15.7

3.5

12

15.6

21.6

36.3

11.6

2.9

Pe
rc

en
ta

ge
(%

)

Compression rate = 10

Reference
N-QGN

N-QGNv2

Figure 26. Quadtree distribution per level. Percentage of the images predicted by each
layer of the decoder in average over a set of 700 images. On the top is the graph with the
quadtree compressed 30 times, and on the bottom it is compressed 10 times. On each graph,
the distribution of the reference StereoNet, N-QGN and our new framework N-QGNv2 are
compared.

5.3. EXPERIMENTS 67

The data distribution provides some interesting information about the scene geometry. The
subdivision criterion based on disparity value deviation applies a threshold to a maximum
depth. It results in the information in the quadtree being separated by following this
criterion. The first levels Q5 to Q3 are mainly flat areas with slight local deviations. The
last levels Q2 to Q0 represent edges in the images, which are principally areas with the
highest uncertainty. In addition, at high compression rate, these last layers are mostly
ignored to merely represent a few percentages of the information in the depth map.

5.3.2.2 Subdivision Prediction

For this approach, the subdivision decision is predicted by the network along side the depth.
It has been learnt based on the subdivision computed on the reference stereo network by
applying the defined criterion. Its precision has been evaluated and is oscillating between
85 and 90% of likelihood to the reference quadtree, computed with knowledge of the dense
information. It is computed based on the following equation:

L =
1

5

5∑
i=1

(
1

Ni

Ni∑
j=1

(
1− |āij − a∗ij|

))
(5.6)

with āij and a∗ij the jth element of the binary activation maps of respectively the prediction
Ai and the reference A∗i , which defines the quadtree structure. The function is such that it
considers equally each prediction Ai to balance the influence of the highest resolutions con-
taining more pixel values. A quadtree constructed randomly would score a correspondence
of 50% with this metric.

These results highlight the ability of the network to predict a coherent quadtree partitioning.
The prediction of the structure instead of a deduction, as it was done in the precedent
work permits to improve the results. One can notice that, in Table 12, the method with
the highest compression rate provides a slightly better likelihood. This comes from the
fact the information is more compressed, implying the last layers’ predictions are mostly
composed of zeros values, as less information are predicted there. The construction of
a quadtree is a recursive process whose results depend at each level on the results of the
previous one. Therefore, the results building the last levels of the quadtree, corresponding
to the last layers of the decoder, are necessarily more uncertain and subject to more error.

68 CHAPTER 5. THE OPTIMUM QUADTREE OF A DEPTH MAP

(a)InputIm
age

(b)R
eference

(c)E
PC

D
epth

(d)M
onodepth2

(e)N
-Q

G
N

(f)N
-Q

G
N

v2
(O

urs)

1.2.3.4.5.6.7.8.9.

Figure
27.Q

ualitative
quadtree

depth
prediction

overview
.From

leftto
right(a)the

inputim
age,(b)the

stereo
reference

m
ap

used
fortraining,(c)

E
PC

D
epth

converted
into

quadtree,(c)M
onodepth2

converted
into

quadtree,(d)the
N

-Q
G

N
m

ethod
and

(e)ourN
-Q

G
N

v2
m

ethod.R
esults

are
displayed

w
ith

a
com

pression
rate

of10.

5.3. EXPERIMENTS 69

5.3.3 Qualitative Results

Qualitative results are presented in Figure 27, comparing the new framework with the
reference map, EPCDepth [60], the monodepth2 [33] and N-QGN [5]. To increase the
readability of the quadtree structure, the border of each node is represented by black lines.

The nine images tend at proposing various scenario to evaluate the behavior of the method.
Due to the geometry of the outdoor scenes and the presence of a vanishing point in the
images, some areas like the road cannot be highly compressed. Some other parts, like close
obstacles or fronto-parallel surfaces are highly compressed as they offer small disparity
deviations in the values. This can be observed more particularly on images 3 to 5 with
a high compressions on the cars and on the hedge facing the road. Besides, a strong
compression is also observable in the background of the images, where the depth value is
high, as the subdivision criterion is comparing disparity variations. Thus, the compression
in the image largely depends on the geometry of the scene, because it is related to the
distance and orientation of the objects.

Concerning the predicted quadtree structure, our approach proposes a coherent represen-
tation with respect to the one from the reference map. Some inconsistencies can still be
noted on bushes in the image 3, as it appears to be the case for most methods. Compared to
previous version N-QGN, the prediction is smoother and less subject to over-subdividing
nodes, as can be observed on the road areas or more specifically on images 7 and 9 from
Figure 27. Ultimately, it seems challenging to tell apart the depth maps obtained directly
through our adaptation of the Quadtree Generating Network and the one constructed from
dense information.

5.3.4 Runtime Evaluation and Software Limitation

Over the entire studies conducted in this thesis, it has been made clear the quadtree
generating network permits to reduce the computational cost. The data can be compressed
to limit the amount of operations to compute. Most importantly, this compression is not
degrading too much the prediction quality.

The runtime experiments have been performed on a computer equipped with a GPU Nvidia
Quadro P620 and a process Intel Core i7-9850H CPU at 2.60GHz× 12. This configuration
might not represent the reality of embedded systems, but provides a base of comparison
between dense and quadtree based inference methods. Results are presented in Table 10
and 11, next to the corresponding accuracy metrics. The runtime is dependent of the data

70 CHAPTER 5. THE OPTIMUM QUADTREE OF A DEPTH MAP

20 30 40 50

0.84

0.86

0.88

1
1030

1

10 30

1 10

30

1 10 30

frame per second (fps)

ac
cu

ra
cy

(a
1)

mobilenetv2-192x640
resnet18-192x640

mobilenetv2-320x1024
resnet18-320x1024

Figure 28. Runtime with respect to the encoder, compression rate and input image
resolution. The label values on the point represent the compression rate.

compression and the choice of encoder.

Comparison with N-QGN [5] is not featured in the figure ahead, as it was demonstrated
in table 10 the new framework is working faster. It is due to the improvements made
on both the architecture and the implementation. This new framework is predicting how
the nodes in the quadtree are subdivided, which goes faster than the previous solution
consisting of geometrically computing it from partial data. Besides, the framework has
been implemented with the SpConv [86] library providing a heavily-optimized sparse
convolution solution and goes faster than SparseConvNet [34] previously used. In addition,
we optimized the dense-to-sparse operation which was running slow due to the re-indexing
procedure.

Figure 28 is highlighting the trade-off proposed by the usage of quadtree solutions. They
are all proposing faster inference with lower accuracy, even if for the solutions with a
resnet18 encoder, the gain in speed is minimal at low resolution. With Quadtree Generating
Network (QGN), the gain in speed is only made possible by implementing a sparse decoder.
Therefore, it has been decided to evaluate the impact a lighter encoder such as mobilenetv2
[67] could have on the runtime. It is, as expected, infering faster and is even able to reach
50 fps with our framework at low resolution, but comes at the cost of loss in accuracy.

5.4. SUMMARY 71

5.4 Summary

This new method has demonstrated its efficiency to infer a direct quadtree representation
of the scene. It allows focusing the interest on the most significant parts of the images to
reduce the computing cost, with a minimal loss of accuracy. Compared to the previous
method, the new framework is able to infer a faster and more accurate quadtree. It was
made possible by predicting the proper way to construct the quadtree, instead of computing
it based on partial depth data. The new implementation has also drastically reduced the
inference time. The method is also proposing an interesting trade-off between speed and
accuracy, especially for systems interested to work with depth represented as quadtree.
The method is easily adaptable to any other architecture and consists of replacing the dense
decoder with a sparse alternative.

The conducted experiments once again demonstrated the potential of quadtree generating
networks. The usage of sparse convolutions permits to reduce the computation cost of
the state of the art architectures without significant loss of accuracy. Even if the gain is
slight at low resolution, it becomes genuinely interesting with bigger input images. The
capability of the network to be able to efficiently predict how the quadtree nodes should be
subdivided opens up prospects for more advanced subdivision criteria. One could consider
taking into account the semantic of the scene in the subdivision criterion to have a depth
resolution depending on which class it belongs.

Chapter 6

Conclusion and Future Works

6.1 Conclusion

It was proposed in those works to explore the capability of the Quadtree Generating
Networks applied to navigation tasks. It offers the double interest of allowing the generation
of compressed data organized as a quadtree and of reducing the network computational
cost through the use of sparse convolutions. These benefits are particularly interesting for
navigation approaches. The same degree of precision is not required everywhere in the
image, and a fast application capable of operating in real time is desired.

The study is organized around three works enriching the understanding of the scene from a
single image, as illustrated in Figure 29. Based on monocular depth estimation works, these
methods respectively propose a scene segmentation for obstacle avoidance and two depth
maps for navigation. The first depth prediction method seeks an aggressive compression

Input Image Quadtree Segmentation

Navigation Map (N-QGN) Optimum Quadtree Depth (N-QGNv2)

Figure 29. Methods prediction overview applied on the same input image.

73

74 CHAPTER 6. CONCLUSION AND FUTURE WORKS

of the information, at the risk of losing details. The second aims at learning the optimal
quadtree structure according to advanced criteria.

The approach infering a segmentation map into a quadtree led to the exploration of
two interesting notions: The generation of a quadtree using a sparse decoder and the
construction of an unsupervised segmentation scheme. Experiments have shown the same
level of accuracy can be achieved with this sparse method than with its dense equivalent.
The difference is the segmentation map prediction can be greatly compressed, drastically
reducing the computational requirements. Besides, the choice was made to propose the
segmentation adapted to the problems of obstacle avoidance. It was generated from depth
information and therefore did not require manual annotation of the images. This allows the
segmentation from unsupervised information, making the method more flexible to other
environments.

The second approach, called N-QGN, proposes to transpose the use of QGN from segmen-
tation to depth prediction. It is recognized that to navigate, the same level of accuracy is
not needed everywhere in the image and that very fine details are not important. Therefore,
depth data can be compressed while remaining relevant for navigation. The network has
been trained in a self-supervised manner by applying a constraint on the predicted data to
iteratively build the quadtree. The experiments permitted to validate the feasibility and
reliability of the method to achieve similar results as if constructed from dense equivalent
framework, while being lighter.

The third approach, called N-QGNv2, aims at predicting the optimum quadtree depth. As
for the precedent method, the information is still compressed, thus suitable for navigation
application. However, the quadtree structure is inferred by the network instead of being
deduced from partial depth information. It permits to learn advanced subdivision criterion,
generated from dense information. The study has also been expanded to different image
sizes and encoder architectures to evaluate their impact on the prediction accuracy and
runtime. Even if the compression into quadtree induces a loss of accuracy, the gain in
speed is noticeable, especially with high-resolution images.

Ultimately, these studies permitted to explore an alternative path to the dominant trend in
deep neural networks. Dense architectures are not the only possible options as it may be
beneficial to make them sparse to better address a given problem. This may lead to a loss
in accuracy, but the gain in computational cost may be beneficial. It comes down to finding
the perfect trade-off.

6.2. PERSPECTIVES 75

6.2 Perspectives

The introduction of sparsity in the deep neural networks permits to reduce the FLOPs, thus
speeding the process at reduced cost, with a limited loss of accuracy. Yet, with the QGN
framework, the encoder is based on dense convolutional architecture. With the sparsity of
the decoder, a lot of features are pruned during the quadtree construction. Subsequently,
numerous of features computed in the encoder ended up being unused. From this fact, one
could imagine to rethink the entire architecture, in order to make it completely sparse for
an extensive reduction of computation with a restricted loss of accuracy.

The sparsity in the networks architecture is becoming extensively popular as illustrated
by the work of Kurtz et al. [47] on the subject. They are demonstrating the capability
of sparse neural networks to compete with popular dense models such as ImageNet for
the image classification, running only on CPUs. This corroborates the fact that not all
connections in the network are relevant for the inference, and some of them can be pruned
without suffering from significant loss. As of today, similarly to our approaches, the
sparse networks are derived from dense networks to offer a trade-off between computation
cost and accuracy. But it is fair to assume new architecture will emerge that are natively
designed for sparse convolutions. As such, they permit either achieve different tasks or
compete the dense approaches. In any case, with the emergence of giant architectures
requiring massive amounts of GPU memory, it is obvious that not everyone will have the
financial means to follow this path. Therefore, sparse architecture seems to be a good
alternative to bring neural networks to a reasonable size.

6.3 Future Works

6.3.1 The Icosahedron Grid to Represent the Sphere

In future works, it may be interesting to expand this solution to other modalities, such as
the omnidirectional images. Indeed, the gain in popularity of 360◦ vision cameras has
drastically decrease their cost. Subsequently, they are now intensively studied in computer
vision research. They are small enough to be carried on a drone and to provide a complete
image of the scene, similar to a sphere. However, for practical reasons, this sphere is
reprojected on a plane, called equirectangular projection. The coordinates of this plane
correspond to the longitudes and latitudes of the sphere, which gives an image strongly
distorted at the poles as illustrated in Figure 30. These strong distortions in the image
impose the use of convolutions adapted to the sphere when using convolutional neural
networks [18].

76 CHAPTER 6. CONCLUSION AND FUTURE WORKS

a) Sphere b) Equirectangular Projection

Figure 30. Spherical image projected into the equirectancular plane.

Figure 31. From the icosahedron to the regular 2D grid. From left to right, the 3d represen-
tation of the icosahedron, its unfolded representation and its transformation according to a
regular mesh.

However, other modes of representation exist, such as the cubemap [78] or the icosahedron
mapping [19]. The first one is approximating the sphere as a cube, projecting the scene
into 6 squares. it has the advantage of correcting the distorsions in the image, making
it compatible with most of the processing tools used on perspective images. However,
it has the disadvantage of sampling the image unevenly, grabbing more details at the
square corners than at the center. Another solution consists of projecting the sphere
into the icosahedron, illustrated in Figure 31. It is a regular polyhedron composed of
twenty triangular faces, on which are projected the spherical image. It has the advantage
of correcting distortions while offering an almost perfect regular grid on the image. It
correspond to a grid H0, at its lowest resolution, with points located on the twelve vertices
of the polyhedron itself. The resolution can be increased to the grid H1 by splitting each
triangle into four sub-triangles, introducing 3 new points located at the middle of each
edges of the original triangles. Due to adjacency, some points are present on two triangle,
bringing the number of points to 42 instead of 72. This process can be repeated n times to
generate a grid Hn composed of N = 5 · 22n+1 + 2 points [19].

6.3. FUTURE WORKS 77

However, the hexagonal mesh of the icosahedron makes it difficult to manipulate the image.
Nonetheless, it has been shown in [19] that it is possible to perform a transformation
on the icosahedron to bring the hexagonal grid back to a regular grid with some minor
adjustments. Indeed, the pixels present on the vertices of the polyhedron (thick black lines)
have the specificity of being in the adjacency of 5 other pixels, while the others follow a
hexagonal grid. This particularity will have to be taken into account when processing the
image. The resulting regular grid is composed of five blocks of 2n × 2n+1 pixels, which
with the padding will correspond to a shape of 5× (2n + 2)× (2n+1 + 2).

6.3.2 From the Quadtree to the Heptatree

The idea behind the use of the icosahedron to return to a regular grid is to develop a solution
allowing to adapt the work explored with Quadtree Generating Networks on the sphere.
The equirectangular projection, which is more frequently used for these approaches, does
not fit to a quadtree data structure. On the contrary, the regular grid obtained with the
icosahedron allows us to consider this solution. However, this grid is only regular for
computational convenience, but it does represent an information following an hexagonal
grid. Therefore, the choice is made to explore the possibility of working on a heptatree
data strucutre, as illustrated in Figure 32.

The way the Hn grid is organized and how it subdivides from one resolution to another
does not permit to use a standard heptatree. Indeed, the nodes are interconnected and
would result in a structure organized as presented in Figure 32. It implies the nodes, except
from the central ones, are linked to two fathers’ nodes. The subdivision decision, would
then have to depend on the values of these two nodes.

Quadtree Heptatree Heptatree
Interconnected

Figure 32. Quadtree, Heptatree and Interconnected Heptatree

Appendix A

Quadtree Decoder Details

The N-QGNv2 architecture, presented in Chapter 5, is composed of a dense ResNet 18
encoder and a sparse quadtree decoder detailed in Figure 13. The prediction layers are
infering the Q and A, which correspond respectively to the disparity and activation maps
at the given resolution. The predicted activation map is used to sparsify the feature map for
the upcoming layer. As such, the decoder is composed of sparse convolutions manipulating
sparse feature maps, With the exception of the one of the first prediction layer, which
processed the dense features from the encoder.

Layer Operations Number of Filters Kernel Size Output Size
- Input features - - 6×20×512

Prediction 5 Dense Conv 2 1×1 6×20×2

0

Sparse Conv 256 3×3 6×20×256
Up Sample 1 1×1 12×40×256

Sparse Conv 256 3×3 12×40×256
Prediction 4 Sparse Conv 2 1×1 12×40×2

1

Sparse Conv 128 3×3 12×40×128
Up Sample 1 1×1 24×80×128

Sparse Conv 128 3×3 24×80×128
Prediction 3 Sparse Conv 2 1×1 24×80×2

2

Sparse Conv 64 3×3 24×80×64
Up Sample 1 1×1 48×160×64

Sparse Conv 64 3×3 48×160×64
Prediction 2 Sparse Conv 2 1×1 48×160×2

3

Sparse Conv 32 3×3 48×160×32
Up Sample 1 1×1 96×320×32

Sparse Conv 32 3×3 96×320×32
Prediction 1 Sparse Conv 2 1×1 96×320×2

4

Sparse Conv 16 3×3 96×320×16
Up Sample 1 1×1 192×640×16

Sparse Conv 16 3×3 192×640×16
Prediction 0 Sparse Conv 1 1×1 192×640×1

Table 13. Quadtree decoder details for the N-QGNv2 with an input image of size 192×640.

79

Appendix B

Prediction Quadtre Decomposition

ResNet18 encoder - QGN-ResNet18 decoder
Input

Full Segmentation

Q5 Q4 Q3

Q2 Q1 Q0

ResNet50 encoder - QGN-ResNet50 decoder
Input

Full Segmentation

Q5 Q4 Q3

Q2 Q1 Q0

Figure 33. Qualitative results of the quadtree decomposition of the segmentation framework
with ResNet18 and ResNet50 architectures.

81

82 APPENDIX B. PREDICTION QUADTRE DECOMPOSITION

ResNet18 encoder - QGN-ResNet18 decoder - Compression rate of 10
Input

Full Segmentation

Q5 Q4 Q3

Q2 Q1 Q0

ResNet18 encoder - QGN-ResNet18 decoder - Compression rate of 30
Input

Full Segmentation

Q5 Q4 Q3

Q2 Q1 Q0

Figure 34. Qualitative results of the quadtree decomposition of the N-QGN framework
with the ResNet18 architectures at compression rates 10 and 30.

83

MobileNetv2 encoder - Quadtree decoder - Compression rate of 10
Input

Densified Depth

Q5 Q4 Q3

Q2 Q1 Q0

ResNet18 encoder - Quadtree decoder - Compression rate of 10
Input

Densified Depth

Q5 Q4 Q3

Q2 Q1 Q0

MobileNetv2 encoder - Quadtree decoder - Compression rate of 30
Input

Densified Depth

Q5 Q4 Q3

Q2 Q1 Q0

ResNet18 encoder - Quadtree decoder - Compression rate of 30
Input

Densified Depth

Q5 Q4 Q3

Q2 Q1 Q0

Figure 35. Qualitative results of the quadtree decomposition of the N-QGNv2 framework
with the MobileNetv2 and ResNet18 architectures at compression rates 10 and 30.

References

[1] Md Zahangir Alom et al. “The history began from alexnet: A comprehensive survey
on deep learning approaches”. In: arXiv preprint arXiv:1803.01164 (2018).

[2] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation”. In: IEEE transactions

on pattern analysis and machine intelligence 39.12 (2017), pp. 2481–2495.

[3] Jongbeom Baek, Gyeongnyeon Kim, and Seungryong Kim. “Semi-Supervised
Learning with Mutual Distillation for Monocular Depth Estimation”. In: arXiv

preprint arXiv:2203.09737 (2022).

[4] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. “AdaBins: Depth Es-
timation Using Adaptive Bins”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). June 2021, pp. 4009–4018.

[5] Daniel Braun et al. “N-QGN: Navigation Map from a Monocular Camera using
Quadtree Generating Networks”. In: arXiv preprint arXiv:2202.11982 (2022).

[6] Jia-Ren Chang and Yong-Sheng Chen. “Pyramid stereo matching network”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 5410–5418.

[7] Liang-Chieh Chen et al. “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs”. In: IEEE transactions

on pattern analysis and machine intelligence 40.4 (2017), pp. 834–848.

[8] Liang-Chieh Chen et al. “Encoder-decoder with atrous separable convolution for
semantic image segmentation”. In: Proceedings of the European conference on

computer vision (ECCV). 2018, pp. 801–818.

[9] Liang-Chieh Chen et al. “Rethinking atrous convolution for semantic image seg-
mentation”. In: arXiv preprint arXiv:1706.05587 (2017).

[10] Zhi Chen et al. “Revealing the Reciprocal Relations Between Self-Supervised Stereo
and Monocular Depth Estimation”. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision. 2021, pp. 15529–15538.

85

86 REFERENCES

[11] Zhi Chen et al. “Revealing the Reciprocal Relations Between Self-Supervised Stereo
and Monocular Depth Estimation”. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV). Oct. 2021, pp. 15529–15538.

[12] Bowen Cheng et al. “Panoptic-deeplab: A simple, strong, and fast baseline for
bottom-up panoptic segmentation”. In: Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition. 2020, pp. 12475–12485.

[13] Xuelian Cheng et al. “Hierarchical Neural Architecture Search for Deep Stereo
Matching”. In: Advances in Neural Information Processing Systems 33 (2020).

[14] Kashyap Chitta, Jose M Alvarez, and Martial Hebert. “Quadtree generating net-
works: Efficient hierarchical scene parsing with sparse convolutions”. In: Proceed-

ings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
2020.

[15] Yu-Chen Chiu et al. “Mobilenet-SSDv2: An improved object detection model
for embedded systems”. In: 2020 International conference on system science and

engineering (ICSSE). IEEE. 2020, pp. 1–5.

[16] Mian-Jhong Chiu et al. “Real-time Monocular Depth Estimation with Extremely
Light-Weight Neural Network”. In: 2020 25th International Conference on Pattern

Recognition (ICPR). IEEE. 2021, pp. 7050–7057.

[17] Jaehoon Cho et al. “A large rgb-d dataset for semi-supervised monocular depth
estimation”. In: arXiv preprint arXiv:1904.10230 (2019).

[18] Taco S Cohen et al. “Spherical cnns”. In: arXiv preprint arXiv:1801.10130 (2018).

[19] Taco Cohen et al. “Gauge equivariant convolutional networks and the icosahedral
CNN”. In: International conference on Machine learning. PMLR. 2019, pp. 1321–
1330.

[20] Marius Cordts et al. “The cityscapes dataset for semantic urban scene understand-
ing”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2016, pp. 3213–3223.

[21] George R Cross and Anil K Jain. “Markov random field texture models”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 1 (1983), pp. 25–39.

[22] Xingshuai Dong et al. “Towards Real-Time Monocular Depth Estimation for
Robotics: A Survey”. In: arXiv preprint arXiv:2111.08600 (2021).

[23] David Eigen and Rob Fergus. “Predicting Depth, Surface Normals and Semantic
Labels With a Common Multi-Scale Convolutional Architecture”. In: Proceedings

of the IEEE International Conference on Computer Vision (ICCV). Dec. 2015.

REFERENCES 87

[24] David Eigen and Rob Fergus. “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture”. In: Proceedings of

the IEEE international conference on computer vision. 2015, pp. 2650–2658.

[25] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth map prediction from a
single image using a multi-scale deep network”. In: arXiv preprint arXiv:1406.2283

(2014).

[26] Mark Everingham et al. “The pascal visual object classes (voc) challenge”. In:
International journal of computer vision 88.2 (2010), pp. 303–338.

[27] Jun Fu et al. “Adaptive context network for scene parsing”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision. 2019, pp. 6748–6757.

[28] Jun Fu et al. “Dual attention network for scene segmentation”. In: Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition. 2019,
pp. 3146–3154.

[29] Alberto Garcia-Garcia et al. “A survey on deep learning techniques for image and
video semantic segmentation”. In: Applied Soft Computing 70 (2018), pp. 41–65.

[30] Ravi Garg et al. “Unsupervised cnn for single view depth estimation: Geometry to
the rescue”. In: European conference on computer vision. Springer. 2016, pp. 740–
756.

[31] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous
driving? the kitti vision benchmark suite”. In: 2012 IEEE conference on computer

vision and pattern recognition. IEEE. 2012, pp. 3354–3361.

[32] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. “Unsupervised monoc-
ular depth estimation with left-right consistency”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2017, pp. 270–279.

[33] Clément Godard et al. “Digging into self-supervised monocular depth estimation”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
2019, pp. 3828–3838.

[34] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. “3D Semantic
Segmentation with Submanifold Sparse Convolutional Networks”. In: CVPR (2018).

[35] Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. “3d semantic
segmentation with submanifold sparse convolutional networks”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2018, pp. 9224–
9232.

[36] Vitor Guizilini et al. “Semantically-guided representation learning for self-
supervised monocular depth”. In: arXiv preprint arXiv:2002.12319 (2020).

88 REFERENCES

[37] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-means clustering
algorithm”. In: Journal of the royal statistical society. series c (applied statistics)

28.1 (1979), pp. 100–108.

[38] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[39] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–
778.

[40] Armin Hornung et al. “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees”. In: Autonomous robots 34.3 (2013), pp. 189–206.

[41] Ching-Pai Hsu et al. “A review and perspective on optical phased array for auto-
motive LiDAR”. In: IEEE Journal of Selected Topics in Quantum Electronics 27.1
(2020), pp. 1–16.

[42] Zilong Huang et al. “Ccnet: Criss-cross attention for semantic segmentation”. In:
Proceedings of the IEEE/CVF international conference on computer vision. 2019,
pp. 603–612.

[43] Lam Huynh et al. “Lightweight Monocular Depth with a Novel Neural Architec-
ture Search Method”. In: Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision. 2022, pp. 3643–3653.

[44] Alex Kendall, Matthew Grimes, and Roberto Cipolla. “Posenet: A convolutional
network for real-time 6-dof camera relocalization”. In: Proceedings of the IEEE

international conference on computer vision. 2015, pp. 2938–2946.

[45] Salman Khan et al. “Transformers in vision: A survey”. In: ACM Computing Surveys

(CSUR) (2021).

[46] Ralf Kohler. “A segmentation system based on thresholding”. In: Computer Graph-

ics and Image Processing 15.4 (1981), pp. 319–338.

[47] Mark Kurtz et al. “Inducing and Exploiting Activation Sparsity for Fast Inference
on Deep Neural Networks”. In: Proceedings of the 37th International Conference

on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings
of Machine Learning Research. Virtual: PMLR, 13–18 Jul 2020, pp. 5533–5543.
URL: http://proceedings.mlr.press/v119/kurtz20a.html.

[48] Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe. “Semi-supervised deep learn-
ing for monocular depth map prediction”. In: Proceedings of the IEEE conference

on computer vision and pattern recognition. 2017, pp. 6647–6655.

http://proceedings.mlr.press/v119/kurtz20a.html

REFERENCES 89

[49] Jae-Han Lee and Chang-Su Kim. “Monocular depth estimation using relative depth
maps”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2019, pp. 9729–9738.

[50] Jun Liu et al. “MiniNet: An extremely lightweight convolutional neural network
for real-time unsupervised monocular depth estimation”. In: ISPRS Journal of

Photogrammetry and Remote Sensing 166 (2020), pp. 255–267.

[51] Wei Liu, Andrew Rabinovich, and Alexander C Berg. “Parsenet: Looking wider to
see better”. In: arXiv preprint arXiv:1506.04579 (2015).

[52] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks
for semantic segmentation”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2015, pp. 3431–3440.

[53] Donald Meagher. “Geometric modeling using octree encoding”. In: Computer

graphics and image processing 19.2 (1982), pp. 129–147.

[54] S. Mahdi H. Miangoleh et al. “Boosting Monocular Depth Estimation Models to
High-Resolution via Content-Adaptive Multi-Resolution Merging”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
June 2021, pp. 9685–9694.

[55] Shervin Minaee et al. “Image segmentation using deep learning: A survey”. In:
IEEE transactions on pattern analysis and machine intelligence (2021).

[56] Yue Ming et al. “Deep learning for monocular depth estimation: A review”. In:
Neurocomputing 438 (2021), pp. 14–33.

[57] Pushmeet Kohli Nathan Silberman Derek Hoiem and Rob Fergus. “Indoor Segmen-
tation and Support Inference from RGBD Images”. In: ECCV. 2012.

[58] Angshuman Parashar et al. “SCNN: An accelerator for compressed-sparse convo-
lutional neural networks”. In: ACM SIGARCH computer architecture news 45.2
(2017), pp. 27–40.

[59] Vaishakh Patil et al. “Don’t forget the past: Recurrent depth estimation from monoc-
ular video”. In: IEEE Robotics and Automation Letters 5.4 (2020), pp. 6813–6820.

[60] Rui Peng et al. “Excavating the Potential Capacity of Self-Supervised Monocular
Depth Estimation”. In: Proceedings of the IEEE/CVF International Conference on

Computer Vision. 2021, pp. 15560–15569.

[61] Matteo Poggi et al. “Towards real-time unsupervised monocular depth estimation
on cpu”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE. 2018, pp. 5848–5854.

90 REFERENCES

[62] Xiaojuan Qi et al. “Geonet: Geometric neural network for joint depth and surface
normal estimation”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018, pp. 283–291.

[63] Jiaxiong Qiu et al. “Deeplidar: Deep surface normal guided depth prediction for
outdoor scene from sparse lidar data and single color image”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,
pp. 3313–3322.

[64] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medical

image computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[65] German Ros et al. “The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016, pp. 3234–3243.

[66] Hanan Samet. “The quadtree and related hierarchical data structures”. In: ACM

Computing Surveys (CSUR) 16.2 (1984), pp. 187–260.

[67] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4510–4520.

[68] Daniel Scharstein and Richard Szeliski. “High-accuracy stereo depth maps using
structured light”. In: 2003 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2003. Proceedings. Vol. 1. IEEE. 2003, pp. I–I.

[69] Ahmed Rida Sekkat et al. “SynWoodScape: Synthetic Surround-view Fisheye Cam-
era Dataset for Autonomous Driving”. In: arXiv preprint arXiv:2203.05056 (2022).

[70] Clifford A Shaffer and Hanan Samet. “Optimal quadtree construction algorithms”.
In: Computer Vision, Graphics, and Image Processing 37.3 (1987), pp. 402–419.

[71] Suvash Sharma et al. “Semantic segmentation with transfer learning for off-road
autonomous driving”. In: Sensors 19.11 (2019), p. 2577.

[72] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[73] Shiyu Song and Manmohan Chandraker. “Robust scale estimation in real-time
monocular SFM for autonomous driving”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2014, pp. 1566–1573.

[74] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. “Visual SLAM algorithms:
a survey from 2010 to 2016”. In: IPSJ Transactions on Computer Vision and

Applications 9.1 (2017), pp. 1–11.

REFERENCES 91

[75] Haotian Tang et al. “Searching efficient 3d architectures with sparse point-voxel
convolution”. In: European conference on computer vision. Springer. 2020, pp. 685–
702.

[76] Bo Tao et al. “Self-supervised monocular depth estimation based on channel atten-
tion”. In: Photonics. Vol. 9. 6. MDPI. 2022, p. 434.

[77] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. “Octree generating
networks: Efficient convolutional architectures for high-resolution 3d outputs”.
In: Proceedings of the IEEE international conference on computer vision. 2017,
pp. 2088–2096.

[78] Fu-En Wang et al. “Bifuse: Monocular 360 depth estimation via bi-projection
fusion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2020, pp. 462–471.

[79] Kaixuan Wang, Wenchao Ding, and Shaojie Shen. “Quadtree-accelerated real-
time monocular dense mapping”. In: 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 1–9.

[80] Linda Wang, Mahmoud Famouri, and Alexander Wong. “DepthNet Nano: A highly
compact self-normalizing neural network for monocular depth estimation”. In: arXiv

preprint arXiv:2004.08008 (2020).

[81] Rui Wang, Stephen M Pizer, and Jan-Michael Frahm. “Recurrent neural network
for (un-) supervised learning of monocular video visual odometry and depth”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2019, pp. 5555–5564.

[82] Yang Wang et al. “Occlusion aware unsupervised learning of optical flow”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 4884–4893.

[83] Zhou Wang et al. “Image quality assessment: from error visibility to structural
similarity”. In: IEEE transactions on image processing 13.4 (2004), pp. 600–612.

[84] Jamie Watson et al. “The temporal opportunist: Self-supervised multi-frame monoc-
ular depth”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2021, pp. 1164–1174.

[85] Mark Weber et al. “Step: Segmenting and tracking every pixel”. In: arXiv preprint

arXiv:2102.11859 (2021).

[86] Yan Yan. SpConv: Spatially Sparse Convolution Library. original-date: 2019-01-
19T02:57:09Z. Aug. 2022. URL: https://github.com/traveller59/
spconv.

https://github.com/traveller59/spconv
https://github.com/traveller59/spconv

92 REFERENCES

[87] Jonathan S Yedidia, William Freeman, and Yair Weiss. “Generalized belief propaga-
tion”. In: Advances in neural information processing systems 13 (2000).

[88] Senthil Yogamani et al. “Woodscape: A multi-task, multi-camera fisheye dataset for
autonomous driving”. In: Proceedings of the IEEE/CVF International Conference

on Computer Vision. 2019, pp. 9308–9318.

[89] Fisher Yu and Vladlen Koltun. “Multi-scale context aggregation by dilated convolu-
tions”. In: arXiv preprint arXiv:1511.07122 (2015).

[90] Shanshan Zhao et al. “Geometry-aware symmetric domain adaptation for monocular
depth estimation”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2019, pp. 9788–9798.

[91] Wang Zhao et al. “Towards better generalization: Joint depth-pose learning without
posenet”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2020, pp. 9151–9161.

[92] Tinghui Zhou et al. “Unsupervised learning of depth and ego-motion from video”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 1851–1858.

	List of Figures
	List of Tables
	Introduction
	Context and Motivations
	Scope and Objectives
	Contributions
	Document Organization

	Related Literature
	Quadtree Data Structure for Deep Learning
	Quadtree and Octree Representation
	Quadtree for Navigation
	Quadtree in Deep Learning

	Monocular Depth Estimation
	Problem Statement
	Self-Supervised Learning
	Evaluation Metrics

	Semantic Segmentation
	Deep Learning Architectures
	Segmentation Datasets
	Perspectives

	Quadtree Segmentation for Obstacle Avoidance
	Segmentation for Obstacle Avoidance
	Objectives
	Generating Labels from Depth Information
	Self-supervised Reference Map

	Quadtree Generating Networks for Segmentation
	Network Architecture
	The Mixed Class
	Training

	Experiments
	Qualitative Results
	Accuracy
	Reliability
	Network Complexity

	Summary

	Quadtree Depth for Navigation
	The Navigation Map
	Objectives
	Compressing the Monocular Depth Prediction

	Self-Supervised Training
	Network Architecture
	Multi-Scale Prediction
	Monocular Training
	Encoder Pretraining

	Experiments
	The Quadtree Navigation map
	Quadtree structure likelihood
	Depth Evaluation
	Memory Footprint Analysis

	Summary

	The Optimum Quadtree of a Depth Map
	The Optimum Quadtree
	Objectives
	Probabilistic Subdivision Decision
	Forcasting the Influence of the Quadtree Compression on the Depth Prediction

	Supervised Training
	Network Architecture
	Loss Function
	Guided Supervision

	Experiments
	Depth Estimation
	Quadtree Subdivision
	Qualitative Results
	Runtime Evaluation and Software Limitation

	Summary

	Conclusion and Future Works
	Conclusion
	Perspectives
	Future Works
	The Icosahedron Grid to Represent the Sphere
	From the Quadtree to the Heptatree

	Quadtree Decoder Details
	Prediction Quadtre Decomposition
	References

