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Abstract

Electroencephalography (EEG) is a widely-used noninvasive method to record brain activ-
ity. The high time resolution of EEG signals makes it a convenient method to analyze the time
course of cortical activity during a prescribed task. Here, we focus on the task of reconstructing
self-paced upper-limb movements directly from EEG signals. Numerous studies reported co-
herence between motoneuron activity and cortical activity in motor areas during motor tasks.
Motoneuron activity relates to muscle force and thus to joint torque. Therefore, it is reasonable
to presume that cortical activity reflects some aspects of joint kinematics during movement.
However, EEG only captures a partial and filtered version of cortical activity. Our objective is
to evaluate to what extent joint trajectories can be reconstructed from EEG signals.

We address identifying features and locations of EEG signals that may reflect joint kinemat-
ics. First, we investigate measures to represent EEG signals. As EEG signals exhibit properties
of nonlinear dynamical systems, we use complexity measures from chaos theory and statistical
physics to complement classical spectral features in characterizing EEG signals. The quality of
the complexity measures considered here depends on carefully selecting a resolution parame-
ter. We propose a novel approach to determine this parameter that allows robust estimation of
the measures. We validate our method on both simulated and real-world EEG data. Second,
we evaluate the correlation of EEG complexity measures with EMG activity and joint kinemat-
ics. We recorded EEG, electromyography (EMG), and joint trajectories of 9 subjects performing
self-paced cyclic elbow movements. By building statistical parametric maps of nonlinear EEG
features, we identify the locations and features most correlated with movement.

We then focus on reconstructing movement trajectories from EEG signals. In particular, we
observe that the performance of models reconstructing motion trajectory from EEG signals is
generally evaluated with correlation coefficients. We show that the test distribution of the coef-
ficient degenerates for strongly correlated series such as movement trajectory. In that case, the
test distribution of the correlation coefficient can be approximated by correcting its number of
degrees of freedom. We propose a new parametric approach to estimate the number of degrees
of freedom, which gives the appropriate test statistics. In light of the corrected distribution, we
show the limited performances of models decoding movement trajectories from EEG signals.
Finally, we construct a biologically-plausible model of the task involving a dynamic arm, a
Hill-type muscle, a model of the spinal cord, and a neural mass model. We show perspec-
tives and limitations arising from using a complex biophysical model with a state-of-the-art
Bayesian inversion scheme.
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Chapter 1

Introduction

1 Preamble

The initial objective of our research was to contribute to EEG-based brain-computer interfaces
under the idea that EEG signals are generated by chaotic dynamical systems. Indeed, EEG sig-
nals are most commonly dealt with using linear methods such as the Fourier transform (Cohen,
2014). EEG signals have dense power spectral densities and some portions of their power spec-
tra appear to be modulated almost independently from others. Therefore, analyzing power
spectra undeniably gives an insight on the cortical responses induced by particular event or
condition. However, frequency-based methods inherently integrate out the time course of EEG
signals, which is often aperiodic and irregular. Therefore, analyzing the evolution of EEG sig-
nals may highlight parts of the cortical responses that are missed by classical linear analyses.
In particular, looking at EEG signals through the perspective of nonlinear dynamical systems
is appealing because as stated in (Lehnertz, 1999): “deterministic chaos offers a striking expla-
nation for apparently irregular behavior, a characteristic feature of brain electrical activity”. In
other words, the apparent evolution of EEG signals justifies to complete frequencies analysis
with methods arising from chaos theory, without particular assumptions on the chaotic nature
of brain activity (which has already been largely debated, see (Korn & Faure, 2003)). The di-
rection followed here is that nonlinear complexity measures may be suitable to complement
frequency analysis. By the term nonlinear complexity measures, we denote generically various
quantities that capture some important aspects of chaotic dynamical systems, for instance frac-
tal dimensions or metric entropies. We follow the definition of chaos as “aperiodic bounded
dynamics in a deterministic system with sensitive dependence on initial conditions” (Kaplan
& Glass, 1997, Sec. 1.7, p.p. 27-28).

2 Estimating nonlinear complexity measures

Having in mind that we would need compute nonlinear complexity measures, the first ques-
tion that we address is a general one: how to select the parameters to estimate nonlinear com-
plexity measures? There are three parameters that appear repeatedly in different nonlinear
complexity measures. The first two parameters configure the delay embedding of a time se-
ries. Delay embedding follows from Takens theorem (Takens, 1981), which states that we can
use delay coordinates to reconstruct the phase space trajectory of a time series generated by a
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chaotic dynamical system, up to a nonlinear change of coordinates. Delay coordinates are vec-
tors composed of lagged observations from the time series. The embedding dimension defines
the dimension of the vector space of the reconstructed trajectory, i.e. the number of lagged ob-
servations in each vector. There are methods to empirically select the embedding dimension,
e.g. (Cao, 1997). In general, selecting the embedding dimension is not problematic because
chaotic attractors have a finite dimension; hence, nonlinear complexity measures converge to
a finite value when the embedding dimension becomes large. Then, the embedding lag parame-
ter defines the time lag between consecutive delay coordinates. The lag is selected from critical
points of the autocorrelation function and of the mutual information such that the coordinates
are mostly pairwise independent (Fraser & Swinney, 1986). The third parameter to select is
the radius, also called threshold or resolution, depending on the literature. This parameter de-
fines the size of a neighborhood in phase space and is used to construct a correlation sum which
estimates the average number of phase-space neighbors. The correlation sum is related to sev-
eral complexity measures such as the correlation dimension, the Kolmogorov-Sinai entropy, or
measures from the Recurrence Quantification Analysis framework. Despite of its importance
in computing nonlinear complexity measures, there were only few rigorous method to select
the radius parameter.

In Chapter 2, we propose a method to rigorously select the radius parameter. We notice that
the relative mean integrate squared error of the correlation sum is indeed the mean integrated
squared error of a kernel density estimator. In other words, we observe that the problem of
selecting the radius parameter is, to some extent, the same as selecting the optimal bin width
to construct an histogram of the phase-space density. This change of perspective is important
because the problem of selecting an optimal bin width has been extensively studied in the
statistics literature. Thus, there is a rich variety of methods to pick from. We follow a popular
method proposed in (Silverman, 1986) to derive a reference rule to select the radius. We obtain
a closed-form expression which scales the radius with the number of points in the series –
we can use a smaller radius when the series is longer because the point density is higher – and
with the “scale” of the series – we need a larger radius when a wider volume of the phase space
is occupied. Crucially, under common empirical setups, our reference rule yields values that
are close to values obtained with rule-of-thumbs deduced from empirical observations. Hence,
our approach justifies the validity of empirical rules found in the litterature and extends them
to more general empirical conditions. We confirm the adequacy of our method with both
numerical experiments and an application to EEG data.

3 Finding the appropriate application

After having identified a suitable parameter selection method to obtain robust estimates of
nonlinear complexity measures, we searched for an interesting application of nonlinear com-
plexity measures. In the literature, nonlinear complexity measures have been used to identify
regimes of cortical activity during certain conditions, for instance to detect epileptic seizures
(Ocak, 2009) or to recognize emotion (Yang et al., 2018). In these applications, nonlinear com-
plexity measures are used as features for classification. Indeed, complexity measures provide a
representation of the EEG signals in which the different conditions can be easily distinguished.
We attempt to use nonlinear complexity measures to address a more challenging problem: re-
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gressing the time course of continuous variables from EEG signals. As compared to classifica-
tion use-cases, regression is a more complex problem. A classification task require to construct
a map from a source domain to a countable set which is usually unordered (for instance, there
is no natural order between the two classes “epileptic” and “healthy” used in epilepsy detec-
tion). The countable-unordered nature of the target domain implies that classification amounts
to defining decision boundaries in the source domain (Bishop & Nasrabadi, 2006). In contrast,
regression needs to construct a map to an uncountable target domain which admits a topology
(for instance, a elbow angle of 90◦ is larger than an elbow angle of 70◦, and closer to an angle
of 89◦ than an angle of 83◦). Hence, reconstructing continuous variables from EEG signals is
a challenging question because the regression map needs to link the topology of the source
domain to that of the target domain.

We focused on reconstructing human arm movement from EEG signals. Our choice was
motivated by several reasons. First, movement is easy to measure and restricting motion to
specific joints or groups of muscles is relatively straightforward. Then, successfully recon-
structing movement from EEG signals would be a first step towards several biomedical appli-
cations, for instance, exoskeleton control or movement restoration for disabled people (Chapin
et al., 1999) or humanoid control (Gergondet et al., 2011) and embodiment (Aymerich-Franch et
al., 2016). Finally, reconstructing movement trajectories from EEG signals seems feasible from
a physiological point-of-view. Indeed, the question of reconstructing movement from cortical
activity is not new. Works with electrode arrays on nonhuman primates have highlighted vari-
ous properties of the motor cortex during movement (Georgopoulos et al., 1986). This resulted
in applications to movement decoding in rats (Chapin et al., 1999), rhesus macaques (Wess-
berg et al., 2000) and finally in human MEG (Georgopoulos et al., 2005) and ECoG (Schalk
et al., 2007). Following works on MEG and ECoG, researchers have tried to reconstruct move-
ment trajectories from EEG signals. Since the first efforts of (Bradberry et al., 2010), more than
twenty articles have addressed movement reconstruction from EEG signals with various de-
grees of success. This collection of works constitutes a valuable knowledge from which we
may build methods to reconstruct movement trajectories from nonlinear complexity measures
of EEG signals.

To our best knowledge, no other works used nonlinear complexity measures to reconstruct
movement trajectories from EEG signals. Therefore, it is legitimate to question on the mo-
tivations with respect to our aim. Our motivation comes from various works that observe
the multiscale behavior of complex systems. An important theoretical work is (Haken, 1978)
which consider that systems composed of a large number of individual components may ex-
hibit quite simple behavior. Haken is interested with framing the apparent reduction of the
number of degrees of freedoms of complex systems. The approach of synergetics is to realize
that a few collective variables, the order parameters, evolve slowly in time and govern the small-
scale behavior of individual components. Synergetics has been admirably applied to formulate
a model of phase-synchronization during finger movements (Haken et al., 1985). To summa-
rize, synergetics defends the idea that large and complex systems such as the brain (D’Angelo
& Jirsa, 2022; Haken, 2006, 2013) may be decomposed in interacting slow collective parameters
and fast individual states. This idea is also found in (Lesne, 2013), where time-scale separa-
tion is considered as a temporal equivalent to classical mean-field approaches and appear in
multiscale complex systems. In the specific case of the brain, (Kiebel et al., 2008) argues that
the hierarchy of temporal scales between integrated levels of sensory processing is indeed a
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necessary feature to adapt to an environment which evolves at different time scales.
We may still wonder whether these theories apply to EEG signals measured during move-

ment. The methodology to find such time-scale separation would be to analyze the time-
frequency representation of EEG signals, simply because changes of the power spectra over
time indicate that the spectral composition of “fast” components of the signal changes over
time. Indeed, modulation of the spectral composition of EEG signals during movement has
been repeatedly observed (van Wijk et al., 2012). In particular, a modulation of gamma-band
activity during movement was observed for MEG (Cheyne et al., 2008) and EEG signals (Ball
et al., 2008). Modulation of high-frequency activity has been also observed in the case of tread-
mill walking, where the stepping frequency is reflected in the amplitude of the gamma-band
activity (Seeber et al., 2015). Thus, empirical results in the literature suggest that a kind of
slow-fast decomposition occurs during movement. We can construct an analogous of time-
frequency analysis with nonlinear complexity measures using windowing (Zbilut et al., 2002).
In that case, we expect windowed nonlinear complexity measures to reflect slow changes in
the dynamics of fast variables.

In summary, we support the idea that movement could be a suitable application to investi-
gate methods to regress variables from EEG signals. Under the assumption that complex sys-
tems such as the brain admit a slow-fast decomposition, we propose to track the slow changes
in the fast dynamics of EEG signals using windowed nonlinear complexity measures. Our
proposition is supported by observations found in the literature, which indirectly observe a
slow-fast decomposition in time-frequency representation of EEG signals during movement.
We shall now identify the variable to regress from EEG signals.

Considering the neuroscience literature, there are several movement variables that we may
try to regress from EEG signals. In particular, we may try to reconstruct directly a position,
velocity, or acceleration. Decoding position and velocity would be motivated by observations
on the behavior of neural activity in the primary motor cortex during movement (Churchland
et al., 2006; Kakei et al., 1999; W. Wang et al., 2007), and decoding acceleration might be moti-
vated by relation of motor cortical activity with force (Cheney & Fetz, 1980; Georgopoulos et
al., 1992). It is important to note that one must select a reference frame to decode position, ve-
locity, or acceleration; for instance Cartesian or joint space. Understanding in which reference
frame neural signals code movement trajectories is far from being a trivial question. Globally,
it is assumed that movement is decomposed from high-level, extrinsic reference frame to low-
level, intrinsic reference frame (Bear et al., 2020; Kakei et al., 2001). Indeed, there is no evidence
supporting that movement is decomposed in a common reference frame and it is also likely
that the brain does not use any of the reference frame we are familiar with (Wu & Hatsopoulos,
2006). In contrast, the coherence between muscle activity and primary motor cortex activity
during movement is well documented (Baker et al., 1997; Conway et al., 1995; Mima & Hallett,
1999) and does not necessitate to select a particular kinematic variable nor reference frame.
Therefore in a first time, we directly focus on reconstructing some aspects of muscle activity.

In Chapter 3, we introduce our experimental setup and data gathering method. We col-
lected movement data together with EEG and EMG signals from 9 healthy participants. Par-
ticipants were asked to performed continuous, self-paced, unilateral elbow flexion/extension
movements during trials of about 23 to 24 seconds. The task – self-paced movements with
long durations – was selected to reproduce naturalistic movement conditions. We computed
Windowed Recurrence Quantification Analysis measures of both EEG and EMG signals. Im-
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portantly, we high-pass filtered both EEG and EMG signals before computing the measures
to remove spurious interactions with the low-frequency components of signals. We then con-
ducted a parametric analysis to investigate the relationships between WRQA measures of EEG
and EMG signals during movement. Our results indicate that there is an apparent decrease of
EEG signals “complexity” at movement onset which is maintained during movement. Indeed,
the result was already reported by (Pitsik et al., 2020) and our work rigorously completes these
findings with scalp maps of the correlation between WRQA measures of EEG and EMG signals
during movement. We observe significant negative correlations between measures from EMG
signals of the moving arm and measures for the EEG signals of the contralateral side of the
brain.

4 Reconstructing movement trajectories

After observing that there are significant correlation between nonlinear complexity measures
of EEG and EMG signals during movement, we try to address the question of reconstructed
movement trajectories from EEG signals. Before trying to reconstruct movement from nonlin-
ear complexity measures of EEG signals, we attempted to reproduce the literature on move-
ment “decoding” from low-frequency EEG signals, e.g. (Bradberry et al., 2010; Ofner & Müller-
Putz, 2012). The objective of this intermediate step was to gain insight on movement decoding
and have a baseline to compare other methods with. Surprisingly, we observed that model
used in the literature performed heterogeneously on our data. In particular, model perfor-
mance seem to negatively relate to movement variability and positively relate to movement
speed. Our observations motivated us to analyze more thoroughly the question of evaluating
the performance of the reconstruction models.

In the literature, Pearson’s correlation coefficient is the method of choice to evaluate the
performance of models reconstructing movement trajectories from EEG signals. In general, re-
lated works report correlation coefficients of ∼ 0.3, which is low as compared to the standards
of the statistics literature. However, we may expect a large number of outliers on a recon-
struction task and thus we might accept that a low correlation coefficient is already a good
result. In other words, we may accept that a good reconstruction model would perform poorly
due to the low signal-to-noise ratio of EEG signals and the presence of artifacts. Here, we ac-
cept this reasonable assumption but point out that using Pearson’s correlation coefficient as a
performance metrics brings another important problem.

In Chapter 4, we investigate the behavior of Pearson’s and Spearman’s correlation coef-
ficient in the case of time series. In particular, we report that large correlations coefficients
between two random, independent series are frequently observed when the series are strongly
autocorrelated. In fact, it is possible to correct the test distribution of the correlation coefficient,
which is derived under the assumption that samples are uncorrelated, to take in account the
autocorrelation of the series (M. Bartlett, 1935). The correction simply requires to configure the
test distribution with a number of effective degrees of freedoms, i.e. the size of an independent
sample which would produce the same test statistics as the autocorrelated series (Afyouni et
al., 2019). The number of degrees of freedoms used to configure the test distribution is impor-
tant because it determines how sharp is the test distribution and thus how is the correlation
coefficient between random series likely to be observed far from 0.
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We propose a parametric method to compute the number of effective degrees of freedoms
which is more simple than methods found in the literature and particularly suitable for our
application. Our approach fits the autocorrelation of the series using the autocorrelation of a
Gaussian process, which allows us to derive an expression to compute the number of effective
degrees of freedoms of a series. In addition, we use Rice’s formula (Rice, 1944), which gives
the expected number of zero crossings of a stochastic process (Cox & Miller, 2017). This is to
express the number of effective degrees of freedoms of a stochastic process as the expected
number of zero crossings of the process scaled by

√
π. We first confirm the adequacy of our

method with numerical experiments. Then, we reproduce two models to reconstruct move-
ment trajectories from low-frequency EEG signals. We take a closer look at the relationship
between model performance and movement parameters under the light of the expression de-
rived from Rice’s formula. We observe that movements with long or variable peak-to-peak
duration are systematically associated with insignificant reconstruction performance. In other
words, reconstruction models only give significant result with fast-oscillating movements, i.e.
with a large number of effective degrees of freedoms, and little movement variability.

5 Another approach to the question

The results of Chapter 4 mitigate the adequacy of models found in the literature on our data.
An alternative would be to construct more complex and expressive models. More complex
models could theoretically represent more complex regression maps. The extreme end of this
approach would be to use deep learning models to reconstruct movement data from EEG sig-
nals. Indeed, our attempts to use deep learning models did not result in groundbreaking
performances. In addition, we realized that deep learning models should be used with care
on EEG signals: deep learning models may learn to reconstruct the task from artifacts rather
than from brain signals. This is due to the low signal-to-noise ratio of EEG signals together
with the complexity of the task and the repeated presence of artifacts due to movement. For
instance, contraction of neck muscles or eye movements tracking the hand could be used by
the model to reconstruct movement trajectories, as already observed in linear models which
for EOG contributes largely to reconstruction performance (Ofner & Müller-Putz, 2012). There-
fore, even if a deep learning model could reconstruct movement trajectory from EEG signals,
it would be hard to defend that the model “decodes” movement from cortical activity. There-
fore, we decided to abandon deep learning models in favor of a Bayesian approach based on
“biologically-plausible” models, that is, models composed of physically meaningful parame-
ters which can be estimated to explain the data.

The structure and parameters of such models are guided by physical or physiological
evidence (or intuition). Such models are especially useful in uncover processes underlying
specific medical conditions, for instance epilepsy (Cooray et al., 2016; Jirsa et al., 2014; Pa-
padopoulou et al., 2015) or Parkinson disease (Rowe et al., 2010; van Wijk et al., 2018). The dis-
tribution of model parameters can be estimated from data using Bayesian inversion schemes
that allow to modulate the values of parameters that would well explain the data (i.e. the
likelihood) by expert or empirical knowledge about their distribution (i.e., priors) (Penny et
al., 2011). Crucially, the specific form of Bayesian models allows to easily compare mod-
els (Stephan et al., 2009) and therefore to test hypothesis about model structure, e.g. about
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the connectivity between different regions (K. J. Friston, 2011).

The kind of biologically-plausible models we are considering here is neuro-musculo-skeletal
(NMS) models. NMS models incorporate together models of brain activity, of muscle activity,
and of the skeletal. Although considering a general case would require complicated model-
ing, we can construct a simplified yet realistic model of our elbow movement task. In Chap-
ter 5, we build up a toy NMS model of elbow movements by assembling models of the arm,
of triceps and biceps muscles, and of cortical columns. Our skeletal model is a simplified
two-dimensional arm model with two degrees of freedom, which simply follows rigid body
dynamics. We use Hill’s muscle model (Hill, 1938) for both the elbow flexor, biceps bracchi,and
elbow extensor, triceps bracchi. Hill‘s muscle models give a relationship between the firing rate
of the muscle motor units and the linear force generated by muscle fibers. In addition, we
modeled muscle “sensing” units, type Ia and Ib afferents, using a linear relationship found in
the literature (Teka et al., 2017). We then use a model of the spinal cord (Li et al., 2015), which
transforms motor cortical activity into muscles inputs. Spinal cord is necessary to account for
the joint exhibition-inhibition of the flexor-extensor pairs (Bear et al., 2020; Li et al., 2015). Fi-
nally, we propose to model the cortical activity using neural mass models (David & Friston,
2003).

The objective of Chapter 5 is to highlight the perspectives of using such models but also
to point out current limitations of existing, state-of-the-art inversion methods. In theory, we
could investigate hypotheses about the particular timecourse of cortical activity during par-
ticular movements using our NMS model. However, it is highly complicate to invert such a
model or to formulate hypotheses due to the particular nature of the model considered here – a
hierarchical dynamical model, i.e. a cascade of input-state-output models – and to the continu-
ous nature of our experiment. We implemented one of the state-of-the-art method for inverting
dynamical systems, namely the Dynamic Expectation Maximization (DEM) algorithm (K. J.
Friston et al., 2008). DEM allows to solve triple estimation problems, i.e. estimating dynam-
ical states, model parameters, and model hyperparameters (for instance, the noise variance).
Trying to invert our NMS with DEM uncovers important problems arising when estimate a
complex model with multiple temporal scales during naturalistic experiments. We believe that
addressing these questions is necessary to enable exploring hypotheses about brain responses
during such experiments.

6 Overview

In this thesis, we aimed to challenge estimating human arm movement trajectories consider-
ing nonlinear dynamical properties of EEG signal. We addressed several facets of the problems
in our quest of achieving this goal. In Chapter 2, we propose a novel approach to determine
an important parameter in estimating nonlinear complexity measures, which provides robust
estimates in experimental conditions. In Chapter 3, we investigate the relationships between
the nonlinear complexity measures of EEG and EMG signals during movement. To that end,
we collected data in a calibrated experiment that involved self-paced elbow flexion-extension.
In Chapter 4, we propose a new method to correctly estimate the significance of correlation
coefficient in the case of strongly autocorrelated time series. By applying our method to com-
mon models reconstructing movement trajectories from EEG signals, we highlight potential
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caveats of using the correlation coefficient as a performance metrics. In Chapter 5, we consider
the question of identifying a biologically-plausible model of our task to decode movement
from EEG signals, and identify perspectives as well as important challenges that arise from
such a complicated modeling question. Finally, lessons learned and possible extensions of this
work are presented in Chapter 6.



Chapter 2

Selecting a threshold parameter to
compute nonlinear measures

Published as Medrano, J., Kheddar, A., Lesne, A., & Ramdani, S. (2021). Radius selection using kernel density
estimation for the computation of nonlinear measures. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 31(8), 083131. https://doi.org/10.1063/5.0055797.

Nonlinear measures computed from discrete time series are widely used to characterize
and identify their underlying dynamics. Such measures include entropies, dimensions and
indices that are derived from recurrence plots. These indices, all based on the fundamental
concept of correlation sum, have been shown to be effective in distinguishing dynamical
processes based on experimental data in various fields, e.g. mechanics, physiology, etc.
One crucial parameter involved in their estimation is the radius used to define neighbors
in the state space. Although many rule of thumbs are available, there is a need of well-
grounded theoretical criteria to correctly select this radius parameter. We propose to ad-
dress this issue using Kernel Density Estimation (KDE). We first demonstrate the theoretical
link between the correlation sum and the KDE framework. We then derive a loss function,
whose optimization is equivalent to the minimization of the mean integrated squared error
of a kernel density estimator, leading to a closed-form criterion for the radius parameter
selection. These findings moreover show how the estimator bias-variance trade-off deter-
mines a range for the radius values. Numerical experiments on both simulated (chaotic,
corrupted by additive noise) and real-world data are presented to assess our approach.

1 Introduction

Nonlinearity and chaos govern a wide variety of systems. They are found in neurons firing pat-
terns (Faure & Korn, 2001) and related electrophysiological signals (Freeman, 2003), and in unpre-
dictable changes of Earth climate (Ghil et al., 2008), to cite few examples. Nonlinear measures of such
systems are made more accurate thanks to an increasing interest in numerical tools suitable for non-
linear phenomena. Indeed, data generated by such systems are more suitable to nonlinear time series
analysis, which provide complementary information to traditional linear methods such as power spec-
trum analysis (Yang et al., 2018).

Our work focuses on estimating various metrics, measures (in the sense of quantitative indices),
and invariants that rely on the computation of a correlation sum. The correlation sum is the estimator
of the correlation integral, which is the mean probability that two points of the phase space trajectory
of a dynamical system are neighbors (Ott, 2002), i.e. the mean probability that their distance is less than
a parameter called radius, threshold or tolerance depending on the application domain. The correlation
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sum captures important aspects of the nonlinear dynamics. Therefore, it is a fundamental quantity
in various nonlinear measures: correlation dimension (Grassberger & Procaccia, 1983a), Kolmogorov-
Sinai entropy (Eckmann & Ruelle, 1985; Faure & Korn, 1998; Grassberger & Procaccia, 1983b), its ap-
proximate versions ApEn (Pincus, 1991) and SampEn (Richman & Moorman, 2000), Rényi’s entropies
(Principe, 2010; Singh & Prıéncipe, 2011), recurrence plots (Eckmann et al., 1987; Marwan et al., 2007)
and related metrics of recurrence quantification analysis (Grendár et al., 2013), etc.

In different nonlinear measures, the radius appears either as a variable or as a parameter. For
instance, the correlation dimension is computed by estimating a scaling factor on a logarithmic plot of
the correlation sum versus the radius. In contrast, a recurrence plot displays neighboring points on a
black and white image and requires to fix the radius parameter beforehand. In both cases, the radius is
selected as small as possible. As a correlation sum computed from a finite-length time series will likely
tend to 0 together with the radius parameter, the challenge is to identify a radius range corresponding to
a statistically useful distribution of neighbors. Eckmann and Ruelle (Eckmann & Ruelle, 1985) (Section
V.A.1.a.) refer to it as a “meaningful range” for the radius parameter. In our approach, we first derive
an expression of the optimal radius. Then, we introduce a range to select a radius parameter or to study
the properties of a function of the radius.

Several empirical rules exist to select a value or a range of values for the radius; however, they
generally focused on a particular nonlinear measure (Pincus, 1991; Webber & Marwan, 2015; Zbilut &
Webber Jr, 1992). Here, we introduce a method which can be applied to any nonlinear measure de-
rived from the correlation sum. Observing that log-correlation sums are particularly used in nonlinear
indices and that relative error arises from logarithmic error terms, we focus on minimizing a relative
error between the correlation sum and the correlation integral. We show that minimizing the relative
error term is equivalent to minimizing a well-known error used in the framework of Kernel Density
Estimation (KDE), widely studied in statistics (Silverman, 1986) and in signal processing (Gunduz &
Principe, 2009; Singh & Prıéncipe, 2011).

KDE denotes a family of non-parametric density estimation methods which generalize the well-
known histogram methods (Silverman, 1986). Simple probability functions called kernels are placed at
sample data points to approximate the underlying density function. In the KDE framework, the choice
of the kernel width influences the degree of smoothing of the estimated density function. Selecting the
kernel width is known as the bandwidth selection problem. The latter can be formulated simply as a bias-
variance trade-off. Bandwidth selection is an extensively studied problem (see (Jones et al., 1996) for a
brief review) with notable usages in signal processing, e.g. mutual information estimation (Moon et al.,
1995). The convergence of kernel density estimators for mixing dynamical systems was recently shown
in (Hang et al., 2018).

The relation between kernel density estimation and the correlation sum is noted in (Yu et al., 2000)
to estimate dynamical invariants in noisy situations. More recently, Gaussian kernels estimators of the
correlation integral are applied to estimate Rényi’s entropies (Erdogmus & Principe, 2006; Principe,
2010; Singh & Prıéncipe, 2011). Here, KDE is used not to derive new estimators of nonlinear mea-
sures but rather as a framework providing a systematic rule to select the radius in computing nonlinear
measures. We show that the radius minimizing the relative error of the correlation sum estimator is
equivalent to the bandwidth minimizing the Mean Integrated Squared Error (MISE) of a density esti-
mator (Section 3.1). Therefore, we use a bandwidth selection method from KDE to derive a closed-form
expression for the optimal radius (Section 3.2) and define a “meaningful range” for the radius variable
relatively to our optimum (Section 3.3). We conduct numerical experiments on well-known dynami-
cal systems. First, we study the behavior of the correlation sum estimator in the “meaningful range”
for signals of different lengths and noise levels (Section 4). Then, we estimate the Kolmogorov-Sinai
entropy of both simulated and real signals, using recurrence plots computed with an optimal radius
(Section 5).
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2 Correlation sum and correlation dimension

Let (X ,A, µ, T) be a measure-preserving dynamical system with X ⊂ Rd and µ the invariant measure
(probability distribution in the phase space invariant upon the dynamics). The correlation integral c(r)
is the mean probability to find a pair of points at two different time x, y ∈ X arbitrarily close, such that
the distance between x and y is less than a small radius parameter r (Ott, 2002; Singh & Prıéncipe, 2011):

c(r) = P
(
(x, y) : ‖x− y‖p < r

)
=

∫
x∈X

µ(Br(x))dµ(x) (2.1)

where Br(x) = {y ∈ X : ‖x− y‖p < r} is the generalized d-dimensional ball in Lp space, with radius
r and center x. In practice, an estimator of the correlation integral can be computed from a sample
trajectory xi ∈ Rd, 1 ≤ i ≤ n (Grassberger & Procaccia, 1983a):

C(r, n) =
1
n2

n

∑
i,j=1

Θ(r− ‖xi − xj‖p) −−−→n→∞
c(r) (2.2)

where Θ is Heaviside step function and C(r, n) is called the correlation sum (Grassberger & Procaccia,
1983a; Pesin, 2008). For small values of r, the correlation integral grows as a power law:

c(r) ≈ const× rD2 (2.3)

The quantity D2 is called the correlation dimension.

3 Kernel density estimation

A probability density function f may be estimated by placing smoothing kernels at each sample point. A
smoothing kernel K is defined as a valid probability density function, which satisfies (Silverman, 1986):∫

K(u)du = 1 ∀u ∈ R, K(u) ≥ 0 (2.4)

Without loss of generality, we introduce a scaled version of the kernel with a Lp norm and a scaling
factor h > 0, Kh(u) = h−dK(u/h), which is a valid kernel when K is a valid kernel. A simple kernel is
the uniform or boxcar kernel, which remains constant over a domain:

Kh(u) =
1

τp,dhd Θ(h− ‖u‖p) (2.5)

where Θ is Heaviside step function and τp,d is the volume of the unit ball defined by the norm p in a
d-dimensional space (see Appendix 1). Given samples xi ∈ Rd, 1 ≤ i ≤ n, distributed according to a
density f , a kernel density estimator of f is:

f̂h(x) = n−1
n

∑
i=1

Kh(x− xi) (2.6)

While kernel density estimators are consistent for i.i.d. samples, independence between consecutive
samples cannot generally be assumed for dynamical systems. Hang et al. (Hang et al., 2018) showed
that kernel density estimators are also consistent for dynamical systems with mixing properties and
weakly-continuous density function (more specifically C-mixing systems with pointwise α-Hölder con-
trollable density, see (Hang et al., 2018) defs. 1 and 2).

The bandwidth parameter h determines the “width” of the kernels and consequently the degree of
smoothing of the estimator. A plethora of methods exist to select the bandwidth parameter, see (Jones et
al., 1996). Among existing bandwidth selection methods, minimizing the Asymptotic Mean Integrated
Squared Error (AMISE), a Taylor expansion of the MISE of the estimator E[

∫
Rd( f (x) − f̂ (x))2dx], is
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appealing for practical applications as it allows to derive a closed-form expression of an approximately
optimal bandwidth (Silverman, 1986):

hAMISE =

[
W1(K)× d

n× [W2(K)]
2 ×W1(∇2 f )

]1/(d+4)

(2.7)

where the functionals Wi are defined as W1(g) =
∫

Rd g2(x)dx and W2(g) =
∫

Rd x2
1g(x)dx, where x1 is a

scalar component of x. Reference rules (Scott, 1979; Silverman, 1986) can be easily obtained by replacing
the unknown quantity W1(∇2 f ) with the quantity computed using a reference distribution, generally a
Gaussian distribution.

4 A reference rule for the optimal radius

To derive the expression of an optimal radius, we proceed as follows. First, we show that the radius
minimizing the relative error of the correlation sum estimator is equivalent to the bandwidth mini-
mizing the MISE of a particular density estimator. Second, we derive the closed-form expression of
the radius minimizing the AMISE of the estimator. Finally, we identify a meaningful range to select a
variable radius.

4.1 Criterion to select the radius

The correlation integral, c(r) = Eµ [µ(Br(x))], is generally estimated by the correlation sum, Ĉ(r, n) =
n−1 ∑n

i=1 µ̂(Br(xi)) (Eq. (2.1) and Eq. (2.2)). To obtain a good estimation of the correlation sum, we
shall minimize the error between an estimator of the invariant measure of a ball , µ̂(Br(x)), and the
true quantity µ(Br(x)). However, minimizing such error is not sufficient to provide a good estimation
for small r: the scale of the error decreases with r and systematically leads to the trivial solution r =

0. Indeed, when r decreases, the absolute error decreases while the relative error is multiplied by a
factor proportional to 1/r (Eq. (2.3)) and consequently blows up. Therefore, we want to find the radius
minimizing a relative error criterion on µ̂(Br(x)). Let λ be the Lebesgue measure, such that λ(Br) is the
volume of a ball with radius r. We use the fact that µ(Br(·)) is proportional to r (see (Eckmann & Ruelle,
1985), Section V.A.) and consequently that µ(Br(·)) ∝ λ(Br) to simplify the expression of the relative
error and express the following local relative error:

L(r, x) = E

[(
µ(Br(x))− µ̂(Br(x))

λ(Br)

)2
]

(2.8)

where the expectation is taken over samples used to construct the estimator. Given a fixed r, µ(Br(·)) is
a bounded function on X . We denote ρ the normalized density of µ(Br(·)), such that

ρ(x) =
µ (Br(x))∫
X µ(Br(x))dx

=
µ (Br(x))

λ(Br)
(2.9)

and, similarly, ρ̂r(x) = µ̂(Br(x))/λ(Br) the estimator of the normalized density ρ. After replacing in
Eq. (2.8), we obtain:

L(r, x) = E
[
(ρ(x)− ρ̂r(x))2

]
(2.10)

Then, integrating Eq. (2.10) over possible values of x gives a global criterion to select the optimal radius
ropt:

ropt = arg min
r
L(r) (2.11)
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where

L(r) =
∫
X

E
[
(ρ(x)− ρ̂r(x))2

]
dx (2.12)

With simple manipulations, we see that Eq. (2.12) is indeed the MISE between the estimator of the
normalized density ρ̂r and the true normalized density ρ (Silverman, 1986). Finally, ρ̂r can be identified
by replacing µ̂(Br(x)) with ρ̂r in the expression of the correlation sum estimator (Eq. (2.2)):

C(r, n) =
λ(Br)

n

n

∑
i=1

ρ̂r(xi) =
1
n2

n

∑
i,j=1

Θ(r− ‖xi − xj‖)

yielding

ρ̂r(x) =
1

nλ(Br)

n

∑
i=1

Θ(r− ‖x− xi‖) (2.13)

As λ(Bp,d
r ) = λ(Bp,d

1 )rd (1), we observe that ρ̂r is a kernel density estimator with a uniform kernel and a
bandwidth parameter r (Eq. (2.5)). Hence, it follows from Eq. (2.11) that the bandwidth minimizing the
MISE of the estimator ρ̂r can provide a good approximation of the optimal radius ropt minimizing the
relative error on the correlation sum estimator. Moreover, the AMISE method (Eq. (2.7)) can be used to
approximate ropt with a simple, closed-form expression that resembles to the empirical rules currently
used. In the next section, we use the AMISE minimization method to derive a reference rule for the
optimal radius.

4.2 Derivation of a reference rule for the optimal radius

As presented in section 3, a Taylor expansion of the MISE can be used to derive a closed-form expression
of the optimal bandwidth for an estimator. A particular interest for this method is motivated by the
possibility of deriving a closed-form expression of the optimal bandwidth. We use a reference Gaussian
distribution in Eq. (2.7) and derive the expressions for W1(K) and W2(K) for the uniform kernel (see
Appendix 2). Then, substituting these expressions into Eq. (2.7) gives the main result of the paper: a
reference rule radius ropt defined as

ropt = αp,d × ŝ× n−1/(d+4) (2.14)

where αp,d, depending on the norm and dimension, rescales ropt; ŝ is an estimate of the spread of data;
and n is the length of the trajectory in phase space.

Remark 2.1. In practice, the phase space is reconstructed using a time delay embedding procedure (according
to Takens theorem (Takens, 1981)) ; hence, if N denotes the length of the univariate time series, d the embedding
dimension and τ the delay, the length of the trajectory in reconstructed phase space is n = N − (d− 1)τ.

4.2.a Estimation of the spread ŝ

A first choice for the spread ŝ is the average marginal sample standard deviation, defined by σ̂ =√
d−1 ∑i Si,i, S ∈ Rd×d is the sample covariance matrix. When the d-dimensional sample is constructed

from an univariate time series using delay embedding, components on the diagonal of the sample
covariance matrix are equal: σ̂ is then the sample standard deviation of the time series. Alternatively,
as the interquartile range IQR is a good alternative to standard deviation for non-Gaussian data (see
(Silverman, 1986) for discussion), a common choice for ŝ is:

ŝ = min
(

σ̂,
IQR
1.34

)
. (2.15)
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4.2.b Derivation of the reference factor αp,d

The expression for the 1-dimensional reference factor is relatively straightforward: αp,1 = (12
√

π)1/5 ≈
1.843. The general closed-form expression for αp,d is more complex (see Appendix 2, Eq. (??)); however,
the expression can be simplified for common norms (Appendix 3):

α1,d =
[
(d + 2)! (d + 1)(

√
π)d

]1/(d+4)
(2.16)

α2,d = 2×
Γ
(

d
2 + 2

)
2

1/(d+4)

(2.17)

α∞,d =

[
36(
√

π)d

d + 2

]1/(d+4)

(2.18)

Moreover, αp,d is to be computed only once for common dimensions and norms. Hence, we report in
Table 2.1 some values of αp,d that can be used in Eq. (2.14).

αp,d
p

1 2 ∞

d

1 1.843 1.843 1.843
2 2.468 2.000 1.745
3 3.087 2.150 1.694
4 3.705 2.294 1.666
5 4.325 2.432 1.649

Table 2.1: Rounded values of the coefficient αp,d for common norms and dimensions. The
values can directly be used in reference rule radius, ropt = αp,d×min (σ̂, IQR/1.34)×n−1/(d+4).

4.3 Identification of a meaningful range for a variable radius

As discussed above, some nonlinear indices require selecting the range of radius values in which the
quantity is estimated. For instance, this applies to nonlinear indices quantifying a scaling exponent of
the form lim

r→0

log ν(Br)
log r (with ν a (with nu a probability distribution in the phase space), as often encoun-

tered in the chaotic systems literature (see e.g. (Ott, 2002; Pesin, 2008)). In practice, the limit r → 0 is
generally intractable, and estimations of ν for small r are highly variable due to poor statistics (Eckmann
& Ruelle, 1985). On the other hand, at a certain point, large r will not capture the desired scaling effect.
Hence, there is a range of values which must be selected to support a good estimation of the nonlinear
measure. Here, we introduce our arguments to guide the selection of a meaningful range for a variable
radius.

The AMISE can be expanded in an integrated squared bias and integrated variance of the density
estimator, giving the following expressions of bias and variance as functions of r (Silverman, 1986):

bias(r) ' r2

2
W2(K)∇2ρ(x) (2.19)

var(r) ' W1(K)
nrd ρ(x) (2.20)

The behavior of the relative error with r can be understood from Eq. (2.19) and Eq. (2.20): the bias is
proportional to r whereas the variance is inversely proportional to r. As ropt minimizes the AMISE,
the bias contribution increases with r while the variance decreases with r. However, the bias term only
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depends on r whereas the variance term decreases when the number of points increases. This obser-
vation –considering that usually the bandwidth minimizing the AMISE is too large, suggests selecting
the optimal radius ropt as the upper bound for the meaningful range. We introduce a range parameter
0 < β < 1 to select the lower bound as a fraction of ropt, such that the radius values lie within the range:

R =
[
βropt, ropt

]
(2.21)

Due to the relations Eq. (2.19) and Eq. (2.20), we argue that the value of β shall be decreased when
increasing the number of points.

5 Estimation of the correlation dimension

In the following, we investigate the behavior of the Grassberger and Proccacia algorithm for the esti-
mation of the correlation dimension. We compare the spread and bias of estimations in the full range of
available scales with estimations in the meaningful range derived in subsection 4.3.

5.1 The Grassberger and Proccacia algorithm

The correlation dimension D2 can be expressed as:

D2 = lim
r→0

log c(r)
log r

= lim
r→0

lim
n→∞

log C(r, n)
log r

(2.22)

The Grassberger and Proccacia algorithm (Grassberger & Procaccia, 1983a) for the empirical estimation
of the correlation dimension consists in computing the correlation sum for different values of r and plot-
ting log C(r, n) versus log r. The slope of the linear region in this logarithmic plot provide the desired
estimation of the correlation dimension D2 (Ott, 2002). Similarly to the original paper (Grassberger &
Procaccia, 1983a), we use linear regression to estimate the slope.

5.2 Procedure for generating reconstructed trajectories

We conducted numerical experiments on the Lorenz system (Lorenz, 1963) (σ = 10, β = 8
3 , ρ = 28,

dt = 0.01), the Rössler system (Rössler, 1976) (a = 0.1, b = 0.1, c = 14, dt = 0.05) and the Hénon map
(Hénon, 1976) (a = 1.4, b = 0.3). We apply the following procedure to generate random time series of
different length. After drawing a random initial state, we generate time series for all systems – using
a Runge-Kutta 4/5 method for Lorenz and Rössler – such that the length of the time series is N after
removing transients (sample series are presented in Figure 2.1). Then, the trajectory is reconstructed
using Takens delay embedding (series from the x coordinates were systematically used). The original
system dimension is used as embedding dimension d. The time delay parameter τ is set to 1 for the
Hénon map and selected as the first minimum of the time-delayed mutual information function (Fraser
& Swinney, 1986) for the Lorenz and Rössler systems. Please note that the length of the reconstructed
trajectories, n = N − (d− 1)τ, is used to compute the optimal radius using Eq. (2.14) (see Remark 2.1).

Remark 2.2. Here, we assume that the delay and embedding dimension are correctly selected as a bad phase
space reconstruction deteriorates the log C(r, n) versus log r plot (Kantz & Schreiber, 2004). In practice, this
embedding problem can be efficiently addressed as a plethora of methods exist to select the delay and the embedding
dimension (see for instance (Kantz & Schreiber, 2004), Ch. 3.3 and Ch. 9.2).

5.3 Numerical results for the radius range

Here, we visualize the meaningful range on the log-log plot of the correlation sum versus the radius.
We first generate 100 series for each system (4000 points for Rössler and Lorenz attractor, 200 points for
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Figure 2.1: Sample series for the Lorenz attractor (a), the Rössler attractor (b) and the Hénon
map (c). Series from the x coordinates were systematically used to reconstruct the trajectory
using Takens delay embedding.

Hénon map, respectively), select 25 random values of radius and compute the corresponding correla-
tion sums. We overlay the average value of ropt and the ranges with arbitrary values β ∈ {0.01, 0.1, 0.5}
on the plot of log C(r, n) vs log r. Results are presented in Figure 2.2. We observe that the spread of the
correlation sum over the runs is low at the location of reference radius and increases when the radius is
decreased. Hence, smaller values of β likely lead to higher variance estimations.

On Figure 2.2b, a knee is present around a value log(rknee) ' −1, such that the slope aleft in a left
range [r0, rknee] is higher than the slope aright in right range [rknee, r1]. In practice, a knee may appear
from the superposition of signals from non-interacting subsystems with different amplitude (Eckmann
& Ruelle, 1985). In this situation, aleft characterizes the two subsystems while aright corresponds only to
the system with the largest signal amplitude. Consequently, a careful analysis of the plot of log C(r, n)
vs log r might be necessary to select a range capturing the desired properties of systems under study.

5.4 Influence of the time series length

Using the procedure described in Section 5.2, we generate 100 trajectories for each length:
(a) N = 250, 500, 1000, 2500, 5000 for the Lorenz system,
(b) N = 500, 1000, 2500, 5000, 7500 for the Rössler system,
(c) N = 100, 250, 500, 1000, 2500 for the Hénon map.

Remark 2.3. Notice that the discrepancies for the number of points used for the three systems can be justified
by the resulting trajectories after time delay embedding. Indeed, when the number of points is too low, the recon-
structed trajectories cannot properly reflect the dynamics nor the correct dimension of the attractor. For instance,
in our experiments this was the case for time series of 100 points for the Rössler system.

We computed correlations sums for 20 values of r ranging between 10−8 and 2σ, where σ is the sample
standard deviation. We compared the estimation using the Grassberger and Proccacia algorithm on
the entire curve (the plateau on the right was omitted) with the estimation for 20 values of r in the
meaningful range (βropt, ropt), for values of β ∈ {0.01, 0.1, 0.5}. We show in Figure 2.3 a violin plot of
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Figure 2.2: Log-log plot of correlation sums versus the radius used to estimate the correlation
dimension for Lorenz (a), Rössler (b) and Hénon (c) systems. The dots correspond to estimates
of the correlation sum at random values of radius for trajectories integrated from random
initial states. The colored regions show different ranges defined by

[
βropt, ropt

]
, with β = 0.01

(in beige), 0.1 (in light blue) or 0.5 (in dark blue).

the estimated values depending on the duration of the time series and the range used to estimate the
dimension. We compare our estimations with the values of correlation dimension reported by Sprott
and Rowlands (Sprott & Rowlands, 2001) for much longer series (2.049 ± 0.096 for Lorenz attractor,
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1.986± 0.078 for Rössler attractor, 1.220± 0.036 for Hénon map).
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Figure 2.3: Influence of the number of points on the estimation of the correlation dimen-
sion from Lorenz (a), Rössler (b) and Hénon (c) systems. We compare the original version
of the Grassberger and Proccacia algorithm (red) with an estimation of the slope in the range[
βropt, ropt

]
, with β = 0.01 (beige), β = 0.1 (light blue), β = 0.5 (dark blue).

Overall, we observe that the spread of the estimations decreases with increasing β. With β = 0.01
(beige) the result is almost similar to the original version of the Grassberger and Proccacia algorithm
(red). In contrast, estimations for larger values of β are more localized, but around values of dimension
further apart from the reference dimension. We observe that the number of points affects significantly
the variance of the estimations for larger values of β. However, for both Rössler and Hénon attractors,
the range parameter β = 0.1 (light blue) gives estimations with lower variance and bias compared to
β = 0.5 (dark blue). This suggests that the range must be selected sufficiently large to provide a proper
support for dimension estimation. Moreover, although the bias of the Grassberger-Proccacia algorithm
is low in this setup, a single dimension estimate can be far from the true dimension. Therefore, one can
favor a smaller range for r to reliably estimate a quantity slightly lower than the true dimension.

We found qualitatively similar results for Lorenz and Rössler attractors when series of different
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length are obtained by downsampling an original series of fixed length (results not shown).

5.5 Influence of observational white noise
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Figure 2.4: Estimation of the correlation dimension from Lorenz (a), Rössler (b) and Hénon
(c) systems under different levels of additive white Gaussian noise: comparison of the orig-
inal Grassberger and Proccacia algorithm (blue) with an estimation of the slope in the range[
βropt, ropt

]
, with β = 0.01 (beige), β = 0.1 (light blue), β = 0.5 (dark blue).

Finally, we investigate the influence of observational noise on the estimation of the correlation di-
mension in the different ranges. Observational noise is ubiquitous in practical applications and creates
a knee on the plot of log C(r, n) versus log r, with a dimension at the left of the knee equal to the em-
bedding dimension (see (Eckmann & Ruelle, 1985; Grassberger & Procaccia, 2004)). Hence, the range
must be selected at the right of the knee to provide good estimations of the dimension.

We generate 100 time series of 1000 points for the three systems. Each series, with standard devia-
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tion σ, is corrupted with additive white Gaussian noise with standard deviation σnoise = k σ, where k de-
fines the noise level. As above, we compare the estimation of the original Grassberger and Proccacia al-
gorithm with the estimation in the different ranges (the reference radius Eq. (2.14) is computed for each
noise-corrupted series). We present in Figure 2.4 a violin plot for noise levels k = 0, 0.05, 0.1, 0.15, 0.2.
For both Rössler and Lorenz attractors, we observe that a noise level of 5% is sufficient to corrupt esti-
mations with the original version of the Grassberger and Proccacia algorithm (red) or the range β = 0.01
(beige). In contrast, larger values of β yield more consistent results under the different noise conditions.
Therefore, this observation suggests that in noise conditions, the correlation dimension can be more
robustly estimated from a smaller range of r.

6 Estimation of Kolmogorov-Sinai entropy using recurrence plots

In this section, we investigate the behavior of the goodness-of-fit of an estimator of a nonlinear mea-
sure with the radius parameter. We also study the reference radius inherent to Eq. (2.14) under dif-
ferent conditions. We use the reference radius in the construction of recurrence plots used to estimate
the Kolmogorov-Sinai (KS) entropy of Hénon map and apply similar method to real electroencephalo-
graphic (EEG) signals.

6.1 Recurrence plots and Kolmogorov-Sinai entropy

6.1.a Recurrence plots

Recurrence plots (Eckmann et al., 1987) display phase-space neighbors as a 2D black-and-white image
whose (i, j) element is black if trajectory points xi and xj are closer than a fixed radius ε. More formally,
from a phase-space trajectory {xi}, 1 ≤ i ≤ n, a recurrence plot RP(ε) ∈ Rn×n is defined as:

(RP(ε))i,j = Θ(ε− ‖xi − xj‖p) (2.23)

where Θ(·) denotes Heaviside step function, ‖ · ‖p is a norm, usually either L1, L2, or L∞. The patterns
in recurrence plots reflect properties of the underlying dynamical system and can be quantified using
the Recurrence Quantification Analysis (RQA) framework, providing a set of powerful non-parametric
visualization and characterization tools for nonlinear time series analysis. The relationship between
recurrence plots (and RQA measures) and the correlation sum intuitively follows Eq. (2.23) (Grendár
et al., 2013). Indeed, simple mathematical manipulations show that the recurrence rate, defined as the
average number of recurrent points in a recurrence plot, is equal to the correlation sum (Thiel et al.,
2003).

6.1.b Estimating Kolmogorov-Sinai entropy from recurrence plots

The Kolmogorov-Sinai (KS) or measure-theoretic entropy ((Kolmogorov, 1985; Sinai Ya, 1959)) measures
the evolution of uncertainty with the iteration of the map of a dynamical system. The lower bound K2,
often used as the estimate of KS entropy (Faure & Korn, 1998), is defined as (Grassberger & Procaccia,
1983b):

K2 = lim
r→0

lim
m→∞

lim
n→∞

1
∆t

log
Cm(r, n)

Cm+1(r, n)
(2.24)

Cm(r, n) denotes the correlation sum built from a delay-reconstructed trajectory in a m-dimensional L∞

space. While it is possible to approximate the KS entropy directly from correlation sums (Pincus, 1991;
Richman & Moorman, 2000), we rather consider the method in (Faure & Korn, 1998). The latter approx-
imates the KS entropy from the histogram of diagonal lines of length greater than m in a recurrence plot
RP(ε):

Nε(m) = card{(i, j) : ∀k ∈ {0, . . . , m− 1}, |ui+k − uj+k| < ε} (2.25)
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A diagonal of size m on a recurrence plot reflects that two trajectories stayed at a distance smaller than
a threshold ε for m time-steps, or equivalently that two delay-reconstructed vectors in m-dimensional
space are close under L∞ norm. Hence, the histogram of diagonal lines, Nε(m), captures information
similar to the correlation sum from delay-coordinates, Cm(r, n); whereas the parameters ε and r are
analogous in the two quantities. The main advantage of the Faure and Korn method is computational:
while Cm(r, n) is computed for several values of the embedding dimension m, the histogram Nε(m) is
computed only once. Then, using the diagonal line histograms to rewrite the KS entropy Eq. (2.24) as a
function of r = ε gives:

K2(r) = lim
m→∞

lim
n→∞

1
∆t

log
Nr(m + 1)
Nr(m + 2)

(2.26)

Faure and Korn (Faure & Korn, 1998) suggest to evaluate the average slope of a log Nr(m) vs m plot
for various values of r. Then, taking the limit r → 0 is supposed to converge to a constant value equal
to the KS entropy, K2, up to a scaling factor. However, selecting the smallest possible r to estimate the
limit r → 0 from real-world data (i.e. finite-size samples with noise) likely leads to estimations flawed
by a large variance, as discussed in (Faure & Lesne, 2015). Hence, the problem is to select a value
of r yielding the best possible estimations of the KS entropy. We use our reference radius (Eq. (2.14))
to compute the recurrence plot used to estimate the KS entropy. Recurrence plots and diagonal line
histograms were computed using the pyunicorn package (Donges et al., 2015).

6.2 Numerical experiments for the Hénon map

We generate 100 time series for each length (n = 150, 250, 500, 1500 points) from the standard Hénon
map (a = 1.4, b = 0.3). For each series, we use the Faure and Korn method and compute the value of
K2(r), Eq. (2.26), as a function log r curve for 50 values of log r ranging from−4 to 0.5. We then compute
the reference radius (Eq. (2.14)) — using the series length n and dimension d = 1 — and average the
values over series of same length. Results are presented in Figure 2.5.
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Figure 2.5: Estimation of Kolmogorov-Sinai entropy for time series from the Hénon map with
different lengths n. The filled areas corresponds to the 95% (Gaussian) confidence intervals
for each length. The vertical dashed lines represents the average reference radius associated
to each length. The horizontal dashed line indicates the reported entropy for Hénon map,
K2 = 0.42.

We notice that the variance of the estimation increases for decreasing radius and decreasing number
of points. This result is presumably due to a poor statistical power for small values of the radius and
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short time series. However, the estimation seems to converge in average to the theoretical value (HKS =

0.42 (Faure & Korn, 1998)) when r tends to 0. Notice that the right-most part of the plot exhibits a large
bias between the estimated and theoretical entropy values. Contrary to the variance, the bias does not
seem to decrease with increasing number of points. Thus this bias is more symptomatic of the radius
being too high to obtain any valuable information about the Hénon map. This bias-variance trade-off is
usually related to a Mean Squared Error (MSE) minimization problem.
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Figure 2.6: Estimation of the log-Mean Square Error of the Kolmogorov-Sinai entropy estima-
tor as a function of the radius value (lower is better). The filled areas corresponds to the 95%
bootstrap confidence interval for each length. We see that for different time series, the reference
radius gives a log-MSE value between −7 and −5.

As the MSE of an estimator quantifies the goodness-of-fit, the parameters of the estimator yielding
the minimum value of MSE can be systematically selected. We numerically compute the MSE of the
KS entropy estimator as a function of log r and use this plot as an objective criterion to evaluate the
adequacy of our reference radius. The MSE consists in the sum of a squared bias term, measuring the
difference between the theoretical value and the estimation, as well as the variance of the estimator.
We use a theoretical value K2 = 0.42 and all of the 100 sample series to compute the MSE, overlay the
reference radius averaged over series of same length, and show the results in Figure 2.6. For short time
series, we observe that the radius selected by the reference rule is systematically close to the minimum
of the MSE. For longer time series, the reference radius is larger than the minimum of the curve. Nev-
ertheless, for values of r < ropt, the slope of the MSE curve gets flatter for increasing number of points
and allows arbitrary selection of smaller radius values. We report similar observations for two other
estimators of the KS entropy, the Approximate and Sample entropies (results not shown).

6.3 Application to EEG signals in the context of epilepsy

To show the viability of our approach on real-world data, we apply our radius selection procedure to
estimate the KS entropy of epileptic EEG signals. A significant decrease of the EEG signal entropy at the
epileptic seizure location is a common feature for automatic seizure detection (Ocak, 2008; Srinivasan et
al., 2007). We use the data publicly available from the University of Bonn (Andrzejak et al., 2001), which
consists in five sets of EEG data. Each set contains 100 segments of 23.6 seconds recorded at 173.61Hz
(4096 points per segment), which were visually inspected for artifacts and band-pass filtered between
0.5Hz and 40Hz. Two sets contains surface EEG recorded from five healthy volunteers at rest, either
with closed (set O) and opened eyes (set Z). The three other sets, consisting in signals from five epileptic
patients recorded during presurgical evaluation, contain segments either from seizure-free intervals (at
epileptogenic site, set F, or at the hippocampal formation of the opposite hemisphere of the brain, set
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N) or during seizure (at epileptogenic site, set S).
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Figure 2.7: Estimation of the Kolmogorov-Sinai entropy from recurrence plots to discriminate
epileptic from healthy EEG signals: (a) and (b) show sample EEG signals and recurrence plots
for an healthy volunteer and an epileptic patient respectively. The value r = 1.843× ŝ× n−1/5

(Eq. (2.14)) is used to compute the recurrence plots from the univariate time series; (c) contains
a box plot of the estimated entropies for both control and epileptic groups. As expected, the
entropy values are significantly lower for the epileptic group.

Each record is divided in four segments of 1024 points. For each segment, we compute a recurrence
plot with the radius set by Eq. (2.14) and estimate the KS entropy using the Faure and Korn method.
Recurrence plots and signals sampled from the sets Z and F are shown in Figure 2.7a and Figure 2.7b.
We present in Figure 2.7c a box plot of the KS entropy for the healthy volunteers (control group) and the
epileptic patients. Our estimator gives an average KS entropy of 0.288± 0.005 (95% confidence interval)
for the epileptic group and 0.504± 0.006 for the control group, which confirms an average significant
decrease of the KS entropy with epilepsy, as reported in previous studies (Kannathal et al., 2005).

Finally, to compare the discrimination strength of common closed-form radius selection methods,
we estimate the KS entropy with each method, perform a two-samples Z-test (epileptic versus control
group) and collect the Z-score. We report a Z-score of Z = 45.3 (resp. Z = 39.3) for the r = 0.2σ

(resp. r = 0.1σ, with σ the series standard deviation) rule (Pincus, 1991), Z = 48.9 when the radius
is set to 10% of the maximum phase space neighborhood (Zbilut & Webber Jr, 1992), Z = 41.1 (resp.
Z = 34.6) when the radius is selected such that 10% (resp. 4%) of the number of points are selected
as neighbors (Kraemer et al., 2018; Webber & Marwan, 2015), Z = 54.9 for the reference rule radius
r = 1.843 × ŝ × n−1/5 (Eq. (2.14)). Subsequently, although all methods detect significant differences
between the two groups, the radius given by Eq. (2.14) gives the most statistically significant results.

7 Discussion and conclusion

We propose a new approach for selecting the radius parameter in nonlinear measures derived from the
correlation sum. We first formulate a relative error function on the quantities underlying correlation
sums. We show that minimizing the loss function is equivalent to minimizing the MISE of a kernel
density estimator. We use the AMISE minimization method to derive a closed-form expression to select
the radius. Additionally, we observe how the bias and variance of the estimator varies with the radius
and derive a “meaningful” range to select a variable radius.
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We investigate the behavior of the Grassberger and Proccacia algorithm for estimating the correla-
tion dimension in radius ranges of different size. We observe that the range parameter β can be selected
close to 1 for low-variance estimations, and close to 0 for low-bias estimations. However, the presence
of noise in the observed signal induces typical error in the estimations and leads to favor small ranges
close to the reference radius.

We then use the reference radius to construct recurrence plots for estimating the Kolmogorov-Sinai
entropy from both simulated and experimental signals. In a first analysis, we reconstruct the Mean
Squared Error curve of the entropy estimator for Hénon map and show that the reference radius is
close to the minimum of the curve. We confirm the experimental adequacy of the method by obtaining
significant results in characterizing epileptic EEG signals.

Moreover, our theoretical approach yields a reference radius that is similar to several existing radius
selection methods arising from empirical or numerical experience: the radius is a fraction of the scale
of the data (Pincus, 1991; Zbilut & Webber Jr, 1992) and compensates for the dimension of the data
(Kraemer et al., 2018).

For the specific case of recurrence plots, (Andreadis et al., 2020) recently proposed an empirical
procedure to identify an optimal radius value. They define a metric to measure the distance between
recurrence plots and compute the distance between recurrence plots constructed from the same time
series using increasing values of radius. The radius value is considered “optimal” when it minimizes
the distance between consecutive recurrence plots, i.e. such that a slightly changing the radius has the
minimal impact on the recurrence plot. The principal issues with this procedure are the computational
burden of building several recurrence plots and the difficulty to reliably identify the optimum. In
contrast, our method is computationally much more efficient and not restricted to recurrence plots.

Our numerical experiments suggest that the reference radius given in Eq. (2.14) can be used as
a default parameter to obtain robust and significant values for a number of different nonlinear tools
and measures: correlation dimension, recurrence plots, Kolmogorov-Sinai entropy. In future work,
we plan to investigate the relation between our optimal radius and the embedding parameters, which
play a role on the trajectories resolution in the reconstructed phase space. Additionally, we plan to
use the reference radius in EEG signal processing application, notably to extract dynamical features
characterizing the oscillatory dynamics of motor imagery EEG signals.



Chapter 3

Identifying statistical changes in
dynamical invariants

1 Introduction

Modulation of the high-frequency components of EEG signals has been observed during movement.
For instance, an increase of high frequency band power is observed in ECoG, EEG, and MEG in (Ball
et al., 2008; Cheyne et al., 2008; Miller et al., 2007). Interestingly, modulation of the beta and gamma
band power has been reported during walking (Seeber et al., 2014, 2015; Wagner et al., 2012), with a
phase locking between the gait cycle and the power modulation. This slow modulation of fast electro-
physiological signals is observed using time-frequency analysis.

Here, we claim that windowed recurrence quantification analysis (WRQA) can complement classi-
cal time-frequency analysis. Recurrence quantification analysis (RQA) refers to a set of measures that
quantify dynamical properties of signals (Webber & Marwan, 2015). RQA originates from the analysis
of nonlinear dynamical systems, which has been successfully applied to analysis of electrophysiological
signals (Stam, 2005; Thomasson et al., 2001). The windowed version of RQA (Zbilut et al., 2002) allow
to track the slow evolution of the dynamics of fast variables, where fast or slow refer to time constants
being respectively lesser or greater than the window size. Therefore, WRQA is loosely the nonlinear
analogous of time-frequency analysis.

We are interested in analyzing EEG during usual movement conditions. Therefore, we devised an
experimental setup that consists in a simple movement task but in which several parameters are uncon-
trolled. Eight participants are asked to perform self-paced elbow flexion-extension movement during
sessions of 23.5 seconds. Crucially, we did not specify the velocities nor the form of the movement
trajectories. We collected EEG, EMG, and motion capture data while the subject is moving.

We aim at finding whether WRQA measures of EEG signals are modulated during movement. In
addition, we want to investigate whether the modulation of WRQA signals depends on some param-
eters of movement trajectories. Besides, we are also interested in finding which type of movement
parameter (e.g. position, velocity, acceleration) and which reference frame are used to encode move-
ment in the brain. Indeed, there has been supporting evidence in favor of several hypotheses and no
consensus seems to emerge (Georgopoulos et al., 1992; W. Wang et al., 2007; Wu & Hatsopoulos, 2006).
Alternatively, EMG signals have been reported to correlate with EEG signals on the motor cortex and
are related to force generation (Liu et al., 2019; Mima & Hallett, 1999). Therefore, investigating the re-
lationship between EEG and EMG signals during movement contributes to question hypotheses about
how the brain encodes movement.

We investigate the correlation between nonlinear measures of EEG and nonlinear measures of EMG.
In other words, we try to assess whether changes in the dynamical properties of EEG signals during
movement are correlated to changes in the dynamical properties of the EMG signals on the moving

25
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arm. To assess correlation between EEG and EMG, we used a parametric approach based on statistical
parametric mapping (Penny et al., 2011). Statistical parametric mapping uses a general linear model to
formulate hypotheses about the presence of an effect. The statistical distribution of the model coeffi-
cients is known under a null hypothesis. Because a model is fitted at each channel, one can construct a
scalp map of the statistics and identify channels where the null hypothesis is significantly violated, i.e.
in our case where the EEG and EMG have correlated nonlinear measures.

The outline of this chapter is as follows. First, we present briefly recurrence plots, histograms of
recurrence structures, RQA measures. Then, we introduce WRQA measures and discuss their pros
and limitations. We introduce statistical testing under GLMs with SPMs, and the design matrices and
contrast vectors used on our data. We then present our experimental setup, data collection, and pre-
processing. Finally, we present single and group level analyses of the correlation between the nonlinear
measures of EEG and EMG signals.

2 Recurrence Quantification Analysis and dynamical invariants

2.1 Recurrence plot

Let x1, . . . , xn be a time series of m-dimensional vectors and a threshold value ε ∈ R+. We define
recurrences between two points xi, xj ∈ Rm as (Webber & Marwan, 2015):

R(i, j) = θ(ε− ‖xi − xj‖p) (3.1)

The recurrence plot is the n by n matrix R. The threshold value ε is an important parameter for con-
structing a recurrence plot. In the following, the threshold parameter is systematically selected using
the reference rule (Equation 2.14) derived in chapter 2.

2.2 Recurrence histograms

Several measures of the recurrence quantification analysis framework can be defined from the his-
tograms of the length of some structures: diagonal, vertical and white vertical lines (Webber & Mar-
wan, 2015, Chapter 1). The histograms are computed by counting the occurence of structures of length
l. First, we propose the following definitions for the occurence of structures:

Definition 3.1. Occurence of a diagonal line of length l starting at (i, j)

Di,j(l) = (1− R(i− 1, j− 1))(1− R(i + l, j + l))
l−1

∏
k=0

R(i + k, j + k) (3.2)

Definition 3.2. Occurence of a vertical line of length l starting at (i, j)

Vi,j(l) = (1− R(i, j− 1))(1− R(i, j + l))
l−1

∏
k=0

R(i, j + k) (3.3)

Definition 3.3. Occurence of a white vertical line of length l starting at (i, j)

Wi,j(l) = R(i, j− 1)R(i, j + l)
l−1

∏
k=0

(1− R(i, j + k)) (3.4)

Histograms count structures on the recurrence plot (Webber & Marwan, 2015):

Definition 3.4. Histograms of diagonal, vertical, white vertical lines

D(l) = ∑
i,j

Di,j(l) V(l) = ∑
i,j

Vi,j(l) W(l) = ∑
i,j

Wi,j(l) (3.5)
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2.3 Recurrence quantification analysis

We define a few important RQA measures that are commonly used in the literature. These RQA mea-
sures are functionals that quantify some properties of the histograms D, V and W. In the following, we
denote the histograms by h and define some useful functionals.

Definition 3.5. Proportion of recurrent points in a structure

PROP{h} =
∑l−1

k=lmin
kh(k)

∑l−1
k=1 kh(k)

(3.6)

Definition 3.6. Average length of a structure

AVG{h} = ∑n
k=lmin

kh(k)

∑n
k=lmin

h(k)
(3.7)

Definition 3.7. Entropy of the histogram of a structure

ENTR{h} = −
n

∑
k=lmin

h(k) log(h(k)) (3.8)

Definition 3.8. Maximal length of a structure

MAX{h} = max {lmin ≤ k ≤ n : h(k) > 0} (3.9)

We can now define common RQA measures from combining the PROP, AVG, ENTR, and MAX prop-
erties with the histograms of diagonal, vertical and white vertical lines, D, V and W.

2.4 Windowed RQA: applications, limitations, and motivations

Windowed recurrence plots and windowed RQA (WRQA) measures are recurrence plots and RQA
measures computed over segments of the original time series (Zbilut et al., 2002). Given a window
size κ, the recurrence plot of the segment [t− bκ/2c, t + bκ/2c] (bxc is the integer part of x) is used to
compute the RQA measures of time t. This method has the advantage of being simple to implement —
the RPs and RQA measures are the same but applied on a shorter time series.

Despite of their advantages, WRQA measures are possibly biased as compared to RQA measures
because windowing gives a biased estimate of the time-resolved histograms. In fact, when we consider
a single window of the original time series, we inevitably discard any relationship with preceding or
following segments. Therefore, structures — e.g. diagonal or vertical lines — overlapping over several
windows are chopped into pieces of smaller length. Hence, estimated WRQA measures are inherently
biased because histograms built on WRPs overcount small structures. However, it is reasonable to
assume that the bias depends mostly on the window size and thus might be considered constant for
similar window size (Elbert et al., 1994). With constant bias, we can compare RQA measures between
time windows because similar measures are shifted by the same bias. The constant bias assumption is
discussed thoroughly in (Elbert et al., 1994, Sec.II.F.2) for some dynamical invariants. To summarize,
relative changes in measures reflects important properties of the dynamics despite that windowed RQA
measures do not precisely estimate RQA measures.

In fact, WRQA measures are complementary to RQA measures. WRQA provide a time-resolved
information about the current dynamics of an observed system, regardless of its past and future. For in-
stance, any nonlinear dynamical system behaves locally like a linear system when the trajectory passes
close to one of its unstable fixed points1. This phenomena can be observed in Figure 3.1 where the aver-
age length of vertical lines is significantly higher than its asymptotic value for a piece of trajectory from

1This is a consequence of the Hartmann-Grobman theorem: dynamical systems can be linearized near their
fixed points (Chicone, 1999; Guckenheimer & Holmes, 2013).
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Name Definition Description

Determinism DET = PROP{D} Proportion of recurrent points
involved in diagonal lines

Laminarity LAM = PROP{V} Proportion of recurrent points
involved in vertical lines

Average diagonal length 〈L〉 = AVG{D}

Trapping Time 〈V〉 = TT = AVG{V} Average length of vertical
lines

Mean Recurrence Time 〈W〉 = MRT = AVG{W} Average length of white
vertical lines

Diagonal lines entropy LENTR = ENTR{D}

Vertical lines entropy VENTR = ENTR{V}

Recurrence time entropy WENTR = RTE = ENTR{W}

Maximal diagonal length LMAX = MAX{D}

Maximal vertical length VMAX = MAX{V}

Maximal white vertical length WMAX = MAX{W}

Table 3.1: Definition of RQA measures from functionals and structures histograms.

the Lorenz system. Another artificial example of this phenomena is presented in Figure 3.2, where the
Lorenz system was initialized closely to one of the fixed points (x0 = 0.1 + (

√
β(ρ− 1),

√
β(ρ− 1), ρ−

1)). We clearly observe that the entropy of diagonal lines, calculated WRPs of 300 points, is lower for the
4000 first points. It is not surprising to find WRQA measures that differ from the global RQA measures
because the Lorenz system behaves like a linear system in this region. Hence, it is reasonable to use
WRQA measures to analyze the evolution of the dynamical properties of the signal.

A particularly interesting application of WRQA measures is dynamical systems where slow unob-
served variables act as control parameters on the dynamics of fast observed variables. Such systems
are notably considered in the field of synergetics (Haken, 1978) where variables called order parameters
control the dynamics of the system. In particular, (Haken, 2006) argue that “the brain is conceived as
a self-organizing system operating close to instabilities where its activities are governed by collective
variables, the order parameters, that enslave the individual parts, i.e., the neurons”. Order parameter
essentially determine the modes and characteristics of the system. Under the synergetic perspective, the
dynamics of pools of neurons observed indirectly by EEG would be determined by order parameters.
Importantly, order parameters may evolve in time (Haken et al., 1985). Whence, under this synergetic
perspective2, WRQA measures of EEG signals might be sensitive to variation of order parameters that
guide neuronal activity.

2In fact, under a more general perspective the decomposition of complex systems in terms of a hierarchy of time
scales provides a convenient way to approach biological systems (Kiebel et al., 2008; Lesne, 2013)
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Figure 3.1: WRQA measures for 4 simulated signals (sine, Rössler, Lorenz, and Gaussian white
noise). We use 3rd-order interpolation to guarantee continuity between signals. WRQA mea-
sures are computed with a window size of 300 and consecutive windows have 299 overlapping
points to preserve the sampling rate of the original series. We observe that WRQA measures
reflect different aspects of the signals’s time course.

3 Data collection and preprocessing

In this section, we describe our experimental setup and preprocessing steps. Aspects of acquisition and
preprocessing described here do not relate to the current chapter but following chapters will refer to
this section in presenting the data.

3.1 Experiment setup

We collected data from 9 healthy volunteers (among which 2 females, 1 subject left-handed). All par-
ticipants gave their informed written consent before the experiment. The experimental procedure con-
formed the Declaration of Helsinki and was approved by the local ethics committee. None of the au-
thors participated to the study. Subject 1 was omitted from the analysis because of an experimental
problem.

Subjects were equipped with a EEG headcap, EMG sensors, and a motion capture system and asked
to perform self-paced unilateral flexion/extension of the elbow. Participants were sitting in a chair and
facing the screen issuing visual and auditory cues. The recording session was divided in 5 blocks of 4
minutes separated by 45-seconds break. Each block consist in a baseline collection (15 seconds) followed
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Figure 3.2: Lorenz system initialized near an unstable fixed point. We observe that the tra-
jectory resemble to that of a linear system. The value the WRQA ENTR measure reflects this
“predictability” and is therefore far from the asymptotic ENTR value.

by 8 movement trials of 23.5 seconds. The moving arm side was alternated between consecutive trials.
During the pause of 4.25 seconds at the end of each trial, the subjects returned to a rest position with
their hand on their knees. The beginning and end of movement were indicated by a visual and an
auditory cue. 1.5 seconds before onset, countdown to movement beginning and end was printed on the
screen. Stimulus was presented using the Expyriment Python package3 (Krause & Lindemann, 2014).
Our experimental procedure allowed us to collect about 8 minute of movement data per arm. Graphical
depiction of the experiment if shown in Figure 3.3.

Figure 3.3: Description of the experiment

In this study, participants were free to perform the movements at their own pace. More specifically,
participants were explicitely asked to perform elbow flexion and extension with varying amplitude and
speed. We recommended not to move at an unreasonable speed as it may cause large motion artifacts
on the EEG signals. Short movement breaks were also accepted. Our experimental design consisted in

3The poor timing precision of expyrimentwas recently noted by (Bridges et al., 2020). On their hardware, authors
report an average timing precision of 7.75ms and observe up to 100ms delay between visual and auditory cues.
Although it inherently impacts the experiment, these poor performances should have minor impact on our results
because our movement trials have a long duration. Moreover, (Bridges et al., 2020) report a high accuracy (< 1ms)
for the onset on visual stimuli. Thus, we expect our visual onset timing to be quite accurate.
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self-paced movements during long trials to reproduce naturalistic movement conditions4. Interestingly,
we observed that participants produced heterogeneous movement trajectories.

3.2 Data collection and preprocessing

3.2.a Streaming and synchronization

Our experiment necessitates to record simultaneously several data streams: motion capture, electro-
physiological signals, cues onset. These data streams have a different nature and rate: motion capture
data was acquired at 60Hz, electrophysiological signals at 2000Hz, and the markers of cues onset do
not have a fixed rate. We used the Lab Streaming Layer (LSL) (kothe2022lab) library to stream, collect,
and synchronize the data. LSL’s LabRecorder was used to generate a file containing the data with the
time stamps each data point for each stream. Because of their high sampling rate, electrophysiological
signals were sent by chunks of 8, thus dividing the stream rate by a factor 8. We wrote a command-line
interface to LSL for a quicker setup and debugging of complex LSL setup. The command line interface
is publicly available at https://github.com/yop0/lsl-cli.

Figure 3.4: Preprocessing pipeline for EEG (a), EMG (b), and motion capture (c) signals.

3.2.b Motion capture data

We used Noitom Neuron motion capture suit to collect the data. Data is processed by the proprietary
software Axis Neuron and we recorded both the skeleton configuration and the position of limbs in
Cartesian space. Due to the drift of joint trajectories given by the motion capture system in the absence
of whole-body motion, we preferred reconstructing the elbow angles from the Cartesian space data.
Signals were collected at 60Hz. After low-pass filtering at 8Hz with a fourth-order Butterworth filter,
we upsampled the time series to 200Hz. Then, we used first-order numerical differentiation to compute
derivatives up to the 3rd order (jerk).

3.2.c Electrophysiological signals

We used ANT Neuro eego sports to record both EEG and EMG data. The 64-channels Waveguard Net
headcap was used for EEG. The headcap uses Duke equidistant layout, as showed in Figure 3.5. EMG
sensors were placed on the middle of the biceps and triceps bracchii. All data were processed using the
mne-python library (Gramfort et al., 2013).

4Indeed, naturalistic experiment design become increasingly popular in the neuroimaging community as they
allow to observe the brain functionning under environmentaly normal conditions (Spiers & Maguire, 2007).

ttps://github.com/yop0/lsl-cli
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Figure 3.5: Sensor layout of the EEG headcap.

EEG We low-pass filtered EEG signals at 200Hz (fourth-order Butterworth) and downsample the sig-
nals to 400Hz to speed-up preprocessing. Then, we applied a Notch filter to attenuate the power-line
noise (50Hz and harmonics). We removed low-frequency components with high-pass filter (0.5Hz,
4th-order Butterworth) and led an Independent Component Analysis using the extended infomax al-
gorithm (T.-W. Lee et al., 1999). The 24 most prominent components were selected. Components were
visually inspected for artifacts. An average of 6.3 (standard deviation 1.3) components were eliminated.
As our experiment involved motion, we particularly focused on muscular artifacts. The classification
of muscular artifacts is subject to debate in the literature (McMenamin et al., 2011; Olbrich et al., 2011).
Following (Muthukumaraswamy, 2013), components were marked as movement artifacts due to their
rich spectral content at more than 30Hz and peripheral unipolar activation 5. 34% of artifacts compo-
nents were muscular artifacts. We show some typical independent components marked as muscular
artifacts in Appendix (Figure B.1). After ICA, we low-pass filtered the signals to 100Hz (fourth-order
Butterworth) and downsampled to 200Hz. Finally, we applied a surface Laplacian filter to remove low
spatial frequencies (Cohen, 2014).

EMG First, we applied a Notch filter (50Hz and harmonics) on EMG signals. Then, we bandpassed
the signals between 20Hz and 200Hz with a fourth-order Butterworth filter. We removed frequencies
below 20Hz because signals were corrupted by low-frequency artifacts due to cable motion. (De Luca
et al., 2010) suggest that a 20Hz high-pass frequency is ideal to avoid motion artifacts while preserving
signal information. Finally, signals were resampled to 200Hz to match the sampling rate of EEG and
motion capture data.

3.2.d Computation of WRQA measures

We computed WRQA measures for both EEG and EMG signals. In addition to the preprocessing pro-
cedure described above, we high-pass filtered the signals with a fourth-order Butterworth filter with a
cutoff frequency of 12Hz. This supplementary processing step is motivated by the observation made
on the work of (Pitsik et al., 2020). Pitsik and colleagues analyzed the modulation of WRQA measures
of EEG signals during movement, but without filtering the low frequencies components of the signals.
However, mu-band activity drops significantly during movement (Pfurtscheller et al., 2006). Due to
the 1/ f shape of EEG power spectrum, we can expect that a decrease in low-frequency power bands
decreases the overall amplitude of the signal. Thus, the trajectory is contained in a smaller volume of

5In addition, the ICLabel tutorial website was particularly helpful to gain experience in telling components
appart.

https://labeling.ucsd.edu/tutorial/labels
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phase space. Whence, for a fixed threshold value as used in (Pitsik et al., 2020), points are more likely
to be recurrent when low-frequency band power drops. Further studies would be necessary to under-
stand what this increased recurrence rate implies for other WRQA measures. Hence, we deliberately
filtered frequencies below mu-band activity to reduce the effect of mu-band decrease on our WRQA
measures 6.

WRQA measures were computed using the same procedure for EEG and EMG signals. We used
windows of 100 points (0.5s) with 60 points overlap between consecutive windows. We did not use
delay embedding. We constructed WRPs using the threshold defined by the reference rule introduced
in the previous chapter (Eq. (2.14)). The number of points in Eq. (2.14) was set to 100, i.e. the window
size. The data scale in Eq. (2.14) was fixed estimated for all data of each subject to avoid spurious inter-
actions due to changing threshold value. Thus, the threshold value did not change between consecutive
windows nor between trials. This is important to satisfy the constant-biased assumption discussed in
Section 2.4.

3.3 Statistical parametric mapping

Statistical Parametric Maps (SPMs)7 is a specific combination of statistical methods for investigating
relationship between physiological signals and variables of interest (K. J. Friston et al., 1994). These
methods are notably used in fMRI and EEG studies (Kiebel et al., 2005). SPMs consist in a General
Linear Model (GLM), contrast vectors to specify hypothesis, and a method for obtaining a significance
threshold for multiple comparisons. In this section, we state the general formulation of SPMs.

We consider our experiment with M = 8 subjects repeating N = 20 trials of an experiment under
Q = 2 conditions (right- and left-arm movement). For each WRQA measure, we want to test whether
there is a linear relationship between the EEG at channel k and the EMG signal of the moving arm. Let
yk

ijqt be the value at t (1 ≤ t ≤ T) of EEG at channel k (1 ≤ k ≤ K) for subject i (1 ≤ i ≤ M) during trial

j (1 ≤ j ≤ N) of condition q ∈ {R, L}. Similarly, let sl
ijqt be EMG feature f for arm side l ∈ {R, L}. We

want to identify the linear model:

yk
ijqt = βk

l sl
ijqt + εk

ijqt + . . . (3.10)

where coefficients βk
l are unique to each channel k, and arm l. Importantly, coefficients βk

l in this model
are the same for each subject i, trial j, condition q and time t. Hence, βk

l being nonzero implies that in
average – over subjects, trials, condition, and time – there is a linear relationship between the EEG at
channel k and the EMG of arm l. Omitted terms in Eq. (3.10) capture the variability or offsets across
subjects, trials, conditions and time. These are confounds and intercepts that compose linear transfor-
mation of the data points on the s− y space and enable comparing data from different conditions.

GLM is formulated using a design matrix constructed by stacking covariates – here, EMGs sl – with
confounds and intercept. Rows of the design matrix are observations – formerly indexed by (i, j, q, t) –
and columns are the values of covariates, confounds, and intercepts. Let X be the design matrix and Y
obtained by stacking each yk

ijqt for EEG at channel k. Then, the GLM is (Penny et al., 2011):

Y = Xβ + ε (3.11)

where ε is assumed centered Gaussian with variance σ2. A value for β can be obtained by solving the

6In general, the WRQA measures might not work as expected when the signal contains low frequency compo-
nents, because the modulation of the measures that appear between windows might be due to these slow compo-
nents. Thus, it is better to ensure that maximal period is greater than the window size.

7SPMs refer to the method to obtain voxel-wise statistics in fMRI studies and to investigate hypothesis about
the relationships between regions of the brain and experimental variables. Here, we do not deal with fMRI images,
thus “parametric analysis” would be a more adequate name. However, we preferred to keep the term SPM because
of the combination of methods and formulation that we used.
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Equation 3.12: Detailed composition of the general linear model Eq. (3.11)

least-square problem:

β̂ = arg min
β
‖Y− βX‖2

2 ⇔ β̂ = (XTX)−1XTY (3.13)

Let J = NMQT be the number of observations, p = rank(X), e = Y − Xβ̂ the residuals and σ̂2 =

(eTe)/(J − p) the sample variance. Under Gaussian assumption for ε, we have:

T =
β̂− β√

σ̂2(XTX)−1
∼ tJ−p (3.14)

where tJ−p is Student’s t-distribution with J-p degrees of freedom. Therefore, testing for a significant
relationship amounts simply to computing the p-value of Student’s t at β̂/

√
σ̂2(XTX)−1. Moreover,

hypotheses can be formulated as contrast vectors to test whether a linear combination of coefficients is
equal to a specific value. To test H0 : cT β = 0 for contrast vector c, we use (Penny et al., 2011):

T =
cT β̂√

σ̂2cT(XTX)−1c
(3.15)

Note that β̂ is computed for each channel k. In fact, SPM is a mass-univariate method: linear re-
lationship between EEG and covariates are tested separately, channel per channel. Like with other
mass-univariate methods, we face a multiple-comparison problem. To do inference involving several
channels — for instance, about the spatial extend of an effect — one needs to correct the threshold used
in the channel-level test to guarantee the desired group-level significance. Several approaches to solve
the multiple-comparison problem. Advanced methods from random field theory (Penny et al., 2011;
K. J. Worsley & Friston, 1995) can be used when coefficients are correlated between channels. Here,
we assume that coefficients are independent between channels and simply use Bonferroni correction.
As compared with methods from random field theory, Bonferroni correction renders our tests more
conservative: we are less prone to collect false positives but more likely to miss effects. However, as
we filtered low spatial frequencies using Laplacian filter during preprocessing, independence between
channels is a reasonable assumption.

It is important to mention that the test distribution is derived under the assumption that the residu-
als are Gaussian and i.i.d.Ṫhe normality of the residuals is not necessary for regression but may impact
the validity of the statistical analysis (Gelman & Hill, 2006). Here, we systematically check the quantile-
quantile plot of normal versus empirical quantiles to visually assess the normality of the residuals.
Regarding the i.i.d. assumption, we follow (Penny et al., 2011) and compute the covariance in time of
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residuals. Then, the Welch-Satterthwaite approximation is used to correct the number of degrees of
freedom. At the end, the value of J in the test distribution Eq. (3.14) is lower than NMQT but the cor-
rected value of J gives approximately the same statistics as if our data satisfied to the i.i.d. assumption.
The problem of degrees of freedom correction for autocorrelated time series will be treated extensively
in Chapter 5.

4 Results and discussion

4.1 Preliminary analysis of movement data

Before conducting more complex analysis, we compute the movement statistics for each participants.
As the movement are self-paced, movement amplitude and speed change between subjects. This may
imply that different “control schemes” were used by each participant and that the patterns of corti-
cal activity are different. Hence, identifying outliers subjects in terms of movement parameters may
provide a justification for these subjects being outliers in terms of EEG activity. Therefore, we need to
conduct this preliminary analysis to highlight between-subject differences.

To obtain the movement statistics, we first smooth the joint trajectories with a Gaussian filter to
remove spurious peaks in the signals. Then, we used scipy’s find_peak function (Virtanen et al., 2020)
to identify the peaks location. We collected the mean and standard deviation of the peak-to-peak am-
plitude and the average number of seconds per cycles (twice the average time between two peaks). In
addition, we computed the average velocity during movement. Results are shown in Figure 3.6.
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Figure 3.6: Movement statistics for all subjects and group average. The first and second row
are the mean and standard deviation of the peak-to-peak amplitude of the elbow motion, the
third row is the average velocity, and the fourth row the number of cycles per seconds

The average amplitude of the elbow flexion-extension is 69◦ for the left arm and 73◦ for the right
arm. The standard deviation of the peak-to-peak amplitude is in average 12◦ for the left arm and 13◦ for
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the right arm. We see that the movements of subject 4 are less homogeneous than the other subjects. The
group-averaged velocity is 60◦/s for the left arm and 71◦/s for the right arm. We observe that movements
of subjects 5 and 7 are faster compared to the rest of the group. Finally, the average cycle duration is 2.4
seconds for the left arm and 2.3 seconds for the right arm. Subject 4 and 9 made particularly lengthy
movement cycles.
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Figure 3.7: Typical movement trajectories for three representative subjects.

The movement statistics are heterogeneous between participants. Based on movement statistics,
we can divide subjects in three groups. Typical joint trajectories for each group are shown in Figure 3.7.
Subjects 4 and 9 performed slow movements with large amplitude and varied a lot the amplitude of
their movements. In contrast, subjects 3, 5, 6, and 7 performed fast movements but did not vary much
the movement amplitude. Finally, subjects 2 and 8 performed movements close to the group average.

4.2 EEG - EMG dynamical coherence in single subjects

4.2.a Single subject model

A model for the single subject is:

yk
jqt︸︷︷︸

EEG

= ζk
q(sjqt − s̄jq•)︸ ︷︷ ︸

EMG
of moving arm

+ κk
q(sjq̄t − s̄jq̄•)︸ ︷︷ ︸

EMG
of steady arm

+ ηk(gjqt − ḡ•••)︸ ︷︷ ︸
Average

scalp activity

+ µk︸︷︷︸
Mean

+ εk
jqt︸︷︷︸

Residuals

(3.16)

where the notation x̄ij• is used to denote the average over a dimension, i.e. x̄ij• = (1/nk)∑k xijk. We
review terms of Equation 3.16 one by one. First, ζk

q is the coefficient relating EEG with the EMG features
from the moving arm. The time average of the moving arm EMG features is substracted such that
sjqt − s̄jq• varies around 0. Thus, ζk

q is the EMG-EEG slope averaged trials and time. Then, κk
q is the

variation of EEG features that can be attributed to the steady arm EMG feature. ηk captures change
associated with mean scalp activity: gjqt is the mean feature value over all channels for each trial,
condition, and time. Finally, µk is the per-channel intercept. Here, the main effect is captured by ζk

q,
while κk

q, ηk, and µk capture confounding effects. Stacking (sjqt − s̄jq•), (sjq̄t − s̄jq̄•) for q ∈ {Right, Left},
(gjqt − ḡ•••), and µk gives the design matrix Xk ∈ R2NT×6 presented in Figure 3.8.

We use the contrast vector [1, 0, 0, 0, 0, 0]T (resp. [0, 1, 0, 0, 0, 0]T) to test the null hypothesis:

H0: “There is no linear correlation between the feature of EEG at channel k and the feature of EMG
at the right (resp. left) arm.”

or more compactly, H0: “ζk
R = 0” (resp. H0: “ζk

L = 0”). In addition, we use the contrast vector
[1,−1, 0, 0, 0, 0]T to test the hypothesis H0: “ζk

R = ζK
L ”, i.e. that there is no difference in correlation

between the left and right arm movement.

4.2.b Results

We construct SPMs of dynamical complexity for all WRQA measures of all subjects using the model
described by Eq. (3.16) and identify the channels exhibiting significant (p < 0.005) correlation with
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Figure 3.8: Design matrix for the single subject regression model. Values are shown in
grayscale with 0 being black and 1 being white. Columns are normalized to lie between 0
and 1. Column names correspond to the coefficient the column multiplies in Equation 3.16.
Rows correspond to individual observations. For more details, see Eq. (3.12).

features of EMG signals.

We first visually inspect the model residuals to assess the validity of any subsequent analysis. We
show in Figure 3.9 the residuals for some selected measures for subject 3. The selected measures, respec-
tively DET, <V>, LMAX, and WENTR, each come from a different histogram operator, respectively,
PROP (Def. 3.5), AVG (Def. 3.6), MAX (Def. 3.8), and ENTR (Def. 3.7)). We observe that the sample
quantiles of DET and ENTR strongly follow the quantiles of the normal distribution. Indeed, we ob-
served that this is the case for all measures deriving from the PROP and AVG operator. In the case of
PROP, we argue that the approximate normality observed here is due to the values of DET and LAM
being far from 1 and will not hold if the DET and LAM become too close to 1. Residuals are approxi-
mately normal, although it seems that the upper tail of the residuals distribution is longer than for the
normal distribution.

We report heterogeneous results between subjects but we observe that similar patterns appear in
several subjects. For instance, we report similar patterns for the SPMs for the LMAX measure for some
subjects (2, 4, 5, and 7). The SPMs for the selected subjects are presented in Figure 3.10. For these
subjects, the LMAX measure for channels on the left hand side of the scalp (for instance, 3L or 4L) show
significant negative correlations with the LMAX measure of the right biceps and significant positive
correlations with the LMAX measure of the left biceps. Similarly, channels on the right hand side of
the scalp show negative correlations with the contralateral biceps and and positive correlations with
the ipsilateral biceps. The same result can also be observed on the difference plot. The difference is
computed using the contrast vector [1,−1, 0, 0, 0, 0], where the first component corresponds to the right
arm. Thus, the t statistics is positive when ζk

R > ζk
L and negative when ζk

R < ζk
L. Thus, the difference

plot corroborates the previous result: there tend to be a negative correlation with the contralateral arm
and positive correlations with the ipsilateral side.

Similar results are obtained for other RQA features and presented in Appendix. However, it is not
clear whether the patterns that we observe illustrate a similar phenomena as they do not imply the same
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Figure 3.9: Normal Q-Q plot of the residuals of DET, <V>, LMAX, WENTR for subject 3.

electrodes nor the same scalp locations. We see here a limitation of the single subject analysis: we can
easily compute topographic plots for each measure and each subject but the patterns that appear may
differ a lot; thus, it becomes complicated to rigorously justify their apparent similarities. Therefore, we
move to multiple subjects analysis before further analyzing the results.

4.3 EEG - EMG dynamical coherence in multiple subjects

4.3.a Multiple subject model

A model for the multiple subject is:

yk
ijqt︸︷︷︸

EEG

= ζk
q(sijqt − s̄ijq•)︸ ︷︷ ︸

EMG
of moving arm

+ κk
q(sijq̄t − s̄ijq̄•)︸ ︷︷ ︸

EMG
of steady arm

+ ηk
i (gijqt − ḡi•••)︸ ︷︷ ︸

Average
scalp activity

+ µk
i︸︷︷︸

Mean

+ εk
ijqt︸︷︷︸

Residuals

(3.17)

Similarly to the single subject model, the two first terms of multiple subject model represent the linear
coefficient scaling EEG features at channel k with EMGs features at the moving and steady arm (ζk

q and
κk

q). These coefficients are common to all subjects, meaning that they capture an average effect over
subjects. In contrast, both scalp activity coefficient ηk

i and intercept µk
i are indexed by subject index i

and thus may capture a different effect for each subject. Stacking ζk
q and κk

q for each condition and ηk
i

and µk
i for each subject gives the design matrix Xk ∈ R∑i NiT×20 showed in Figure 3.11.
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Figure 3.10: Topographic maps of the LMAX measure for some subjects. The color map (blue
to red) indicates the value of the t-statistics (negative to positive). Significant channels are in
white circles (p < 0.005, Bonferroni correction). For “right” and “left” plots, this corresponds
to accepting Ha: “ζk

q < 0” (significant negative correlations) in blue regions and Ha: “ζk
q > 0”

(significant positive correlations) in red regions. For the difference plot, the accepted hypoth-
esis is Ha: “ζk

R > ζk
L” (larger correlation with right arm) in blue regions and Ha: “ζk

R < ζk
L”

(larger correlation with left arm) in red regions.

4.3.b Results

We compute the SPMs with the model from Eq. (3.17). Now, the results corresponds to a correlation
which appear as significant for the group (this does not necessarily corresponds to an effect that is sig-
nificant for each subject). The model residuals for some measures are shown in Figure D.1 and strongly
match to the normal distribution. In light of the observation made for the single subject analysis, we test
the one-sided hypothesis of significant negative correlation with the contralateral arm. The contrast vec-
tor the negative of the contrast in the single subject analysis, i.e. [−1, 0, 0, 0, 0, 0]T and [0,−1, 0, 0, 0, 0]T .
Hence, the colors on the topographic map are inverted as compared to 3.10. Results for some WRQA
measures are presented in Figure 3.13 (figures for remaining WRQA measures are presented in Ap-
pendix).

We observe that most of the electrodes showing strong negative correlations are located in the cen-
tral part of the scalp. The channel 4Z (which is roughly equivalent to FCz in the standard 20-20 system)
systematically shows significant correlations. Surrounding channels are also often significant. We also
observe an asymmetry between the scalp map in the left and the right condition. In the plots of RR,
DET, < W >, WENTR, we observe that more channels from the contralateral hemisphere show signif-
icant correlations. This is clear in the WENTR plot: the column of channels from 2L to 6L and from
1LA to 3LA (left part of the brain) show high negative correlation with the WENTR of the right biceps
EMG. Oppositely, channels from 3R to 6R and 2RA, 3RA (right part of the brain) show high negative
correlation with the left biceps.

So far, our results indicate that the “dynamical complexity” (as quantified by RQA measures) of
EEG signals is negatively correlated with that of the EMG of the contralateral biceps. These results
seems unexpected as we know that primate arms are controlled by the contralateral side of the motor
cortex (Bear et al., 2020). Thus, we may expect the dynamic features of neural activity to be positively
correlated with that of motor neurons activity. However, it is important to notice that we do not measure
directly the neural activity nor the activity of motor neurons and that we are working with dynamical
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Figure 3.11: Design matrix for the multiple subject regression model. Values are shown in
grayscale with 0 being black and 1 being white. Columns are normalized to lie between 0 and
1. Column names correspond to the coefficient the column multiplies in Equation 3.17. Rows
correspond to individual observations. For more details, see Eq. (3.12).

complexity measures. These measures are well-defined when dealing with autonomous dynamical
systems, but may provide suprising results in the case of stochastic processes and non-autonomous
dynamical systems. Hence, we look directly to the signals in the next section and show that our results
are indeed not surprising nor unprecedented in the literature.

4.4 Decreased EEG complexity with movement

4.4.a Related work

We previously observed that the dynamical complexity of EEG signals in the central part of the scalp
is negatively correlated to that of the EMG signals in the biceps, with a preference for contralateral
negative correlation. We start by mentioning that similar results have been reported by (Pitsik et al.,
2020), with different methods. In their work, (Pitsik et al., 2020) created three hybrid three-dimensional
dynamical systems. For each system, the dimensions corresponded to the EEG activity at three channels
selected on the longitudinal axis of the brain, for instance, CPz, Cz, and FCz. The trajectory of the
dynamical system is created from the signals of the three channels that compose the dimensions of the
system. The participants of the study were equipped with EEG and EMG and asked to perform simple
unilateral hand-closing movements after hearing a cue. The authors normalized the WRQA measures
with respect to resting state measures (a few seconds before movement onset) and noticed that DET
increased during movement while the WENTR diminished. Importantly, when the subjects closed one
hand, author noticed that the WRQA measures from the contralateral side of the brain departs further
its resting state value that the WRQA measures from the ipsilateral side of the brain.

Similarly to (Pitsik et al., 2020), we have WRQA measures during our movement trials. We compute
the “background activity” by averaging the value of the measures between 2.5 and 0.5 seconds prior
to movement onset and 0.5 to 2.5 seconds after movement end. Then, we substract the background
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Figure 3.12: Normal Q-Q plot of the LMAX residuals for RR, DET, LAM, and ENTR for the
multiple subjects model.

activity to the time course of the measures.

4.4.b Results

On Figure 3.14, we present group-averaged results for 3 EEG channels located over the primary motor
cortex (3LB, 4Z, and 3RB) and for biceps EMG of both arms. The results shown here cover the measures
presented in (Pitsik et al., 2020) (DET and WENTR) but also several other WRQA measures. The plate
containing all WRQA measures are shown in Appendix.

The first observation is that measures related to black structures (DET, LAM, 〈L〉, 〈V〉, LMAX,
VMAX, ENTR, and VENTR) of EEG signals increase after movement onset and only decrease at move-
ment end. In contrast, both recurrence time entropy (WENTR) of EEG signals decrease at movement
onset and until movement end. The joint decrease of recurrence time entropy and increase of measures
related to black structures (diagonal and vertical) is an indicator of reduced signal complexity. Hence,
we observe a decrease complexity in EEG signals from contralateral motor cortex, similarly to (Pitsik
et al., 2020).

Second, measures from EMG signals have an opposite behavior to EEG measures: when a measure
increases (resp. decreases) for EEG, it decreases (resp. increases) for EMG signal of the moving arm
biceps. This antitonic relationship between EEG and EMG measures is observed for all WRQA mea-
sures. This observation implies that EMG signal complexity decreases during movement. The result is
consistent with related studies (Farina et al., 2002; Zhang & Zhou, 2012).
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Figure 3.13: Multiple subject SPMs for several nonlinear complexity measures. The color map
(from red to blue) shows the value of the t statistics in scalp space (from lower to higher values).
Sensors with white circles show significant negative correlation with the EMG features. This
correspond to accepting Ha: “ζk

q < 0” (significant negative correlation) at p < 0.005 with
Bonferroni correction.

Our third observation is that measures from 3LB depart further appart from their mean than 3RB
during right hand movement. Similarly, it appears that 3RB is more affected by left hand movement
than 3LB. We show in Figure 3.15 the relative changes from baseline value. In the case of right arm
movements, measures from 3LB depart further from baseline than 4Z and 3RB. In contrast, absolute
relative changes are higher for 3RB during left arm movements. This result is consistent with the exist-
ing literature: the contralateral side of the brain is more modulated during unilateral movement (Bear
et al., 2020).

The fact that EEG and EMG are modulated in opposite directions can be understood. In fact, this
result is partially due to the adaptive radius that is used to compute the WRQA measures. At resting
state, EMG signals contain only noise, thus the measured dynamical complexity is high. When move-
ment starts, the amplitude of EMG signal increases; however, the radius fits to the standard deviation
of the signal and also increases. During movement, the EMG signal is “complex” but less than white
noise. Whence the dynamical complexity measured from EMG signals decreases during movement and
this is mostly due to a change in the nature of the signal. This is observed by large variation of the dy-
namical complexity measures of EMG signal during movement. In contrast the nature of EEG signals
does not vary much before and during movement and the order of change of the measures compared
to baseline is much smaller than for EMG.

In the light of our results, we understand that the large changes of the measures around movement
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Figure 3.14: DET and WENTR of EEG and biceps EMG signals during right and left arm move-
ments. Colorbands indicates standard error.

onset and movement end are responsible for the significant correlation found in the multiple subject
SPMs from the previous section. In contrast to the work of (Pitsik et al., 2020), we have here continuous
data and long movement sessions. Hence, it is interesting to isolate the transient effects due to onsets
and to investigate whether dynamical coherence exists during movement.

4.5 Analysis of EEG-EMG dynamical coherence during continuous movement

4.5.a Multiple subject model

We extend the model for multiple subjects Eq. (3.17) to integrate a confound with the rest condition.
Moreover, we divide the columns containing EMG activity between movement and rest. We define the
movement as the times between 2 seconds after onset and 2 seconds before movement end. Rest is 1
second before movement onset and 1 second after movement rest. Time points not included in the rest
or movement condition where removed from the analysis. We let θmov

t (resp. θrest
t ) be the indicator of

movement (resp. rest), i.e. θmov
t = 1 iff t is in the movement time range and similarly for θrest

t . The
model is

yk
ijqt︸︷︷︸

EEG

= θmov
t ζk

q(sijqt − s̄ijq•)︸ ︷︷ ︸
EMG

of moving arm
during movement

+ κk
q(sijq̄t − s̄ijq̄•)︸ ︷︷ ︸

EMG
of steady arm

+θrest
t γk

q(sijqt − s̄ijq•)︸ ︷︷ ︸
EMG

of steady arm
during rest

+ ηk
i (gijqt − ḡi•••)︸ ︷︷ ︸

Average
scalp activity

+ µk
i︸︷︷︸

Mean

+ εk
ijqt︸︷︷︸

Residuals

(3.18)

The first term represent the linear coefficient between EEG features at channel k and EMGs features
of the moving arm limited during movement (ζk

q). κk
q is the steady arm confound. γk

q captures the
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Figure 3.15: Bar plots of relative change from baseline for 3RB, 4Z, and 3LB during right and
left hand movements. Error bar indicates the 99% confidence interval of the mean. We observe
that absolute change in larger for 3LB during right hand movements and for 3RB during left
hand movements.

correlation of the moving arm during the resting phase. Other terms are similar to the previous multiple
subject models Eq. (3.17). The design matrix corresponding to this model is shown in Figure 3.16. Here,
we use the contrast vectors (1, 0, . . . ) and (0, 1, . . . ) to test for significant correlation with the right and
left arm and the vector (1,−1, 0, . . . ) to test for the preference of a channel for a side, i.e. ζk

R < ζk
L or

ζk
R > ζk

L.

4.5.b Results

We show in Figure 3.17 the SPMs testing for correlation of the EEG measures with EMG measures of the
right and left biceps, after removing the data points close to the movement onset and movement end.
A first observation is that there is several channels that show significant correlation but are not located
on the central regions of the scalp. This is different from the previous multisubject analysis where all
significant channels were located in the center of the scalp. Here, we see that some occipital channels
(7L, 8L, 9L, 5LC, 5LB) show significant positive correlation with measures from both biceps. Due to the
extreme location of the channels, we argue that the correlation is due to a muscular artifact from neck
muscle. This is not necessary an effect that is common to the group but may result from a single subject
having particularly strong artifacts in this location.

For both RR and DET, we observe that there is a negative correlation of the dynamical complexity
of the EEG signals with the EMG signals of the contralateral biceps. Oppositely, there is a positive
correlation with the ipsilateral arm. The results are less strong for LAM and ENTR, but the trend is
similar.

The results for the difference between the left and the right conditions are shown for some measures
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Figure 3.16: Design matrix for the multiple subject regression model. Values are shown in gray
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Column names correspond to the coefficient the column multiplies in Equation 3.18.
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Figure 3.17: Multiple subject SPMs for several nonlinear complexity measures. The color map
(from blue to red) shows the value of the t statistics in scalp space (from lower to higher val-
ues). Channels with significant t (p < 0.005, Bonferroni corrected) are shown in white circles.
Significant channels correspond to Ha: “ζk

q < 0” (significant negative correlation) in blue re-
gions and Ha: “ζk

q > 0” (significant negative correlation) in red regions.
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in Figure 3.18. The topographic maps corresponds to the null hypothesis H0: “ζk
R − ζk

L = 0” We clearly
see that on channels on the left hand side of the scalp the null hypothesis is violated by strongly negative
t statistics. Oppositely, channels on the right hand side of the scalp, the null hypothesis is violated by
strongly positive t statistics. We can conclude that ζk

R < ζk
L in the central left region and that ζk

R > ζk
L in

the central right region.
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Figure 3.18: Multiple subject SPMs for several nonlinear complexity measures. The color map
(from red to blue) shows the value of the t statistics in scalp space (from lower to higher val-
ues). Sensors with white circles show significant negative correlation with the EMG features
(p < 0.005, Bonferroni correction). Significant channels correspond to Ha: “ζk

R < ζk
L” (larger

correlation with left arm) in blue regions and Ha: “ζk
R > ζk

L” (larger correlation with right arm)
in red regions.

5 Conclusion

In this chapter, we investigated the correlation between the dynamical complexity of EEG signals and
EMG signals. The dynamical complexity was evaluated using several measures from the recurrence
quantification analysis framework. These measures capture important properties of complex dynam-
ical systems. Here, we needed a windowed version of RQA and justified is adequacy to obtain time-
resolved estimation of dynamical features of time series. We then introduced the statistical parametric
framework which incorporate several well-known methods to construct and test statistical hypotheses
in a simple manner. As our objective was to use WRQA with SPM, we justified that our data lead to
approximately Gaussian residuals.

We collected EEG, EMG, and motion capture data from several subject performing unilateral elbow
flexion-extension. After preprocessing the data, we computed the WRQA measures from the EEG and
EMG time series. We first constructed SPM on single and multiple subjects to identify EEG channels
where the dynamical complexity of the signal exhibited significant correlation with the dynamical com-
plexity of the EMG of the biceps of the moving arm. For each arm, we observed that several WRQA
measures showed negatively correlation with the contralateral side of the scalp.

Then, we analyzed more in detail the time course of several WRQA measures during movement.
In particular, we selected three EEG channels located on the left, center, and right of the scalp. For all
WRQA measures, we observed significant changes in both EEG and EMG at the beginning and at the
end of the movement. Interestingly, we report the same antitonic relationship that was reported in the
literature. We also noticed that the channel contralateral to the moving arm deviated more from its
resting state value than the other channels.

Finally, we removed signals close to the beginning or to the end of the movement trial and computed
new group-level SPMs. Our results suggest that the negative correlation between WRQA measures of
EEG in central lateral regions and EMG of the contralateral arm is maintained during movement.



Chapter 4

On degrees of freedom correction for
the correlation coefficient of time series

1 Introduction

In this chapter, we consider the problem of finding the number of “effective degrees of freedoms” of
time series. We are concerned with testing for significant correlation between movement trajectories. A
classical approach is to compute Pearson’s correlation coefficient between the series. However, the test
distribution of the Pearson correlation coefficient is limited to pairwise-independent samples. As move-
ment trajectories vary slowly with respect to the sampling rate of motion capture systems, consecutive
observations are strongly dependent. Hence, time series cannot be used with the classical test distribu-
tion of Pearson’s correlation coefficient. A solution to this problem is to assume that the test statistics
with dependent observations is distributed like the test statistics with a lower number of independent
observations. Thus, this number of “effective degrees of freedom” (e.d.f.) is the size of an independent
sample that would produce the same test statistics. It allows to test against a null-hypothesis derived
under the assumption of independent samples, even when the actual samples are not independent.

Bartlett (M. Bartlett, 1935) was the first to investigate the number of e.d.f. of the Pearson correlation
coefficient of dependent series. His approach was latter extended by (M. S. Bartlett, 1946) and works
of Bayley and Hammersley (Bayley & Hammersley, 1946) and Quenouille (Quenouille, 1947). All these
approaches were derived under the null hypothesis that the two time series are uncorrelated. (Pyper &
Peterman, 1998) discusses other methods from the oceanographic field which are derived from (M. S.
Bartlett, 1946; Bayley & Hammersley, 1946). More recently, (Afyouni et al., 2019) proposed a more
general approach which accommodates nonzero correlation between the series. Their approach reduces
to the expression proposed by Bayley and Hammersley in the case of zero correlation.

The accuracy of the number of e.d.f. yielded by the methods presented above depends on a good
estimation of the autocorrelation function (Afyouni et al., 2019). In fact, the number of e.d.f. depends
on the sum-of-squares of the autocorrelation function. Bias is introduced by summing up the square
of spurious autocorrelation terms in the the autocorrelation function tail. Regularization methods are
usually used to restrict the summation to a smaller interval of the autocorrelation function and thus
limit the bias by omitting spurious autocorrelation terms (Pyper & Peterman, 1998). When the series
are short and the autocorrelation decreases slowly, the mode of the regularized autocorrelation function
contribute largely to the d.f. correction term. Hence, we propose to construct a parametric estimate of
the number of e.d.f by fitting the the autocorrelation function mode with the autocorrelation of a known
stochastic process.

In a first time, we observe that the method on which rely the work of Bartlett and others is exactly

47
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the Welch-Satterthwaite approximation, which gives the number of e.d.f. for a weighted sum of chi-
square random variables. The Welch-Satterthwaite approximation can be written as the ratio of traces
of matrices (Penny et al., 2011). When the matrices are symmetric Toeplitz matrices – such as the au-
tocorrelation matrices for dependent samples – the Welch-Satterthwaite approximation reduces to the
formula given by Bayley and Hammersley (Bayley & Hammersley, 1946) and Quenouille (Quenouille,
1947).

Using work on Toeplitz matrices (Gray et al., 2006), asymptotic expressions of the Welch-Satterthwaite
approximation can be derived. Moreover, the expression can be further simplified using a Gaussian
(Laplace) approximation of autocorrelation functions with finite second-order derivatives. The final
expression depends on the second spectral moment of the process, which is defined as second-order
derivatives of the autocorrelation function at its mode. The second spectral moment is a measure of
the roughness of the underlying process and relates to several of its statistical properties (Cox & Miller,
2017). Moreover, the second spectral moment can be simply estimated from the variance of the first-
order derivatives of the series, as shown in (Cox & Miller, 2017) for stochastic processes and in (K. J.
Worsley & Friston, 1995; K. Worsley, 1996) and (Adler, 2010; Rosenblatt, 2012) for general random fields.
The main result of this chapter is two simple expressions for correcting the number of degrees of free-
dom for stochastic processes. For a series x = {x1, . . . , xn}, the number of effective degrees of freedoms
ν is asymptotically:

ν = n
√

var{ẋ}/π (4.1)

which is also related, by Rice’s formula (Rice, 1944), to the number of zero-crossings N0 of the series:

ν =
√

πN0 (4.2)

We show numerically that using Eq. (4.1) in the exact test distribution of the Pearson correlation
coefficient gives the appropriate false positive rate and enables testing for correlation between depen-
dent samples. We observe that the approach can also be used with Spearman’s correlation coefficient.
We use the proposed d.f. correction method with real motion capture data in two different applications.
In the first example, we show how the corrected p-values can be used to identify in-phase continuous
movements. We present quantile-quantile plot to compare our method with the literature. In a second
example, we show that our approach is adequate to evaluate the performance of models decoding joint
movements from EEG signals.

2 Problem statement

We conduct some numerical trials to reveal problems that arise when testing for a nonzero correla-
tion coefficient from series of dependent samples. To generate series of dependent observations, we
convolve series of independent observations with a Gaussian kernel. The size of the kernel is parame-
terized by its standard deviation λ which we refer to as the “smoothness” of the series. Importantly, we
compute the correlation coefficient between pairs of series that are generated independently. Therefore,
the correlation coefficient computed from pairs of series with the same smoothness follows the true
distribution of the null hypothesis of zero cross-correlation. The objective is to illustrate how the test
distribution of Pearson’s correlation coefficient, which relies on independence, degenerates when the
independence assumption is violated.

First, we generate some random i.i.d. normally distributed samples with zero mean and unit vari-
ance. We create normally distributed dependent samples by convolving the i.i.d. samples with a nor-
malized Gaussian kernel parameterized by a standard deviation λ. For 30 values of λ distributed be-
tween 0.1 and 10, we generate 65536 independent series of 1024 dependent observations. Because of
the convolution with the Gaussian kernel, each series has a Gaussian autocorrelation. We show in Fig-
ure 4.1 the mean and the 95% confidence interval for the correlation coefficient as a function of λ. We see
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that the smoothness has no impact on the average correlation: independent samples have in average a
correlation coefficient of zero. However, the spread of the CC largely increases with smoothness.
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Figure 4.1: Pearson correlation coefficient computed from stochastic processes with Gaus-
sian autocorrelation. The upper row shows sample random series with different degrees of
“smoothness”, where the smoothness is understood as the standard deviation of the Gaussian
kernel used to produce the series. The lower row illustrates the distribution of the correlation
coefficient as a function of the series smoothness. The shaded area corresponds to the 95%
interval under normal assumptions. This is indeed the distribution of the Pearson correlation
coefficient under the null hypothesis of zero correlation. The problem highlighted here is that
even if the mean of the correlation coefficient is zero, its standard deviation increases with
smoothness. Hence, smoother series are more likely to show high correlations.

Now, we consider what happens when testing against the zero-correlation hypothesis with depen-
dent samples. Here, we use the Python package scipy (Virtanen et al., 2020) which relies on exact test
distribution of the Pearson’s R under the null hypothesis (Hotelling, 1953)

f (r) =
(1− r2)

n
2−2

B
(

1
2 , 1

2 (n− 2)
) (4.3)

where n is the sample size and B is the Beta function. Note that both Matlab’s corr (corr2022matlab)
and R’s cor (stats package, (R Core Team, 2022)) use the Studentized version of the test, which is exact
for Gaussian samples (Teukolsky et al., 1992) and should produce the same results as presented here.
Another test statistics for correlation is built on Fisher’s z-transformation, z = atanh(r), which approx-
imately follows a normal distribution with standard error 1/

√
n− 3 (Fisher, 1915, 1921). Interestingly,

we can also use Fisher’s z-transformation with Spearman’s rank correlation coefficient, replacing the
standard error with

√
1.06/(n− 3) (Fieller et al., 1957). Spearman’s rank correlation coefficient (Spear-

man, 1904) is the Pearson’s correlation coefficient applied to the rank of samples and thus can be applied
to non-Gaussian data.

For different α levels and varying level of smoothness, we measure the false positive rate, i.e. the
percentage of points that are counted as significantly correlated. By definition, this percentage should
be close to the α-level. Results are presented in Figure 4.2 with 99% binomial confidence intervals. We
observe that the false positive rate leaves the α-level when the smoothness is greated that 0.4. This
illustrates the risk of testing for correlation from dependent samples; for instance, when testing at a
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Figure 4.2: False positive rate of the Pearson correlation test applied to stochastic processes
with Gaussian autocorrelation. Notice that process smoothness corrupts the test distribution.
Hence, smooth signals should not be used to test for correlation without correction.

significance level α = 5% with a smoothness of 2, the false-positive rate is about 30%, 6 times the
desired p-value. Therefore, correction for the test statistics is necessary.

3 Related work

3.1 Preamble

The problem of finding e.d.f. for time series have been approached several times since the seminal work
of Bartlett (M. Bartlett, 1935). The general approach is to consider two random variables X, Y with zero
mean and variance σx and σy. Given a sample of dependent observations {x1, . . . , xn} and {y1, . . . , yn}
with autocorrelation ρk and γk, the estimator for the cross-correlation is 1

n (∑
n
k=1 xkyk), and has mean

E

{
1
n ∑

k
xkyk

}
=

1
n ∑

k
E{xkyk} =

1
n ∑

k
E{xk} · E{yk} = 0 (4.4)

and variance

E

 1
n2

(
∑
k

xkyk

)2
 =

1
n2 E

{
∑
k

x2
ky2

k

}
+

2
n2 E

{
∑

i
∑
j>i

xiyixjyj

}

=
σ2

x σ2
y

n

(
ρ0γ0 + 2

n−1

∑
k=1

(n− k)
n

ρkγk

)
(4.5)

Now, let x̃k and ỹk, 1 ≤ k ≤ N, be a sample of independent observations from X and Y. Then, the
cross-covariance 1

N ∑k x̃k ỹk has zero mean and variance

E

 1
N2

(
∑
k

x̃k ỹk

)2
 =

σ2
x σ2

y

N
(4.6)
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Comparing Eq. (4.6) and Eq. (4.5), we see that

N = n

(
ρ0γ0 + 2

n−1

∑
k=1

(n− k)
n

ρkγk

)−1

(4.7)

When it is reasonable to assume that the estimator in the dependent case is distributed as the estimator
in the independent case, then we can consider that the estimator from dependent samples is roughly
distributed as an estimator with N d.f. and we say that 1

n (∑
n
k=1 xkyk) has N effective degrees of freedom.

3.2 Methods for finding the number of e.d.f.

Bartlett (M. Bartlett, 1935) considered first-order autoregressive processes with autocorrelation ρ and
proposed to approximate Eq. (4.7) with

νBa = n
(

1 + ρ2

1− ρ2

)
(4.8)

A few years latter, Bartlett published a novel treatment of the problem (M. S. Bartlett, 1946). Then,
Bayley and Hammersley (Bayley & Hammersley, 1946) proposed to use directly the expression from
Eq. (4.7):

νBH = n

(
ρ0γ0 + 2

n−1

∑
k=1

(n− k)
n

ρkγk

)−1

(4.9)

and Quenouille (Quenouille, 1947) used the expression

νQu = n

(
+∞

∑
k=−∞

ρkγk

)−1

(4.10)

The expressions proposed above are derived under the null hypothesis of zero correlation between x
and y. More recently, (Afyouni et al., 2019) proposed a novel expression which accommodates the case
of nonzero correlation. Under the null hypothesis, their expression reduces to Eq. (4.9). Hence, as we are
interested in finding e.d.f. for the test distribution under the null hypothesis, the expression proposed
by (Afyouni et al., 2019) is not considered here.

3.3 Link with Welch-Satterthwaite approximation

We show that the number of e.d.f. given by by Bayley and Hammersley Eq. (4.9) and Quenouille Eq. (4.10)
is equivalent to the well-known Welch-Satterthwaite approximation (Satterthwaite, 1946; Welch, 1947)
in the case of samples with the same autocorrelation γk = ρk. Let X a random vector of size n with zero
mean, unit variance and a covariance matrix Σ; the Welch-Satterthwaite approximation is

νWS =
tr(Σ)2

tr(ΣΣ)
(4.11)

Now, if the covariance between elements of X is given by a symmetric function Cov(Xi, Xj) = ρ|i−j|,
then Σ is a symmetric Toeplitz matrix, i.e.

Σ =



ρ0 ρ1 . . . ρn−1

ρ1 ρ0 . . . ρn−2
...

...
. . .

...

ρn−1 ρn−2 . . . ρ0
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or more compactly, Σij = ρ|i−j|. Toeplitz covariance matrices represent the autocorrelation matrices of
stochastic processes (Gray et al., 2006). In that case, the numerator of Eq. (4.14) becomes

tr(Σ)2 = n2ρ2
0 (4.12)

and the denominator is

tr(ΣΣ) = ∑
i

n

∑
j=1

ΣijΣji = ∑
i

n

∑
j=1

ρ2
|i−j| = ∑

i

(
ρ2

0 +
n−i

∑
k=1

ρ2
k +

i−1

∑
k=1

ρ2
k

)

= nρ2
0 + 2

n−1

∑
k=1

(n− k)ρ2
k (4.13)

Whence the number of degrees of freedom given by the Welch-Satterthwaite approximation is similar
to Eq. (4.9)

νWS = n

(
ρ2

0 + 2
n−1

∑
k=1

(n− k)
n

ρ2
k

)−1

(4.14)

3.4 Problem with current approaches

The methods mentionned above rely on estimating the autocorrelation function of the process and using
the sum of squares to correct the number of d.f. This formulation has the benefit of being quite generic
as it does not require any assumption on the underlying process. However, we shall show that this
methods systematically underestimates the number of e.d.f. Let ρ̂k be the unbiased estimator of the k-th
term ρk of the autocorrelation function

ρ̂k =
1

n− k

n−k

∑
i=1

xixi+k (4.15)

From the definition of the variance, we have

E{ρ̂2
k} = ρ2

k + var(ρ̂2
k) (4.16)

and thus

E{∑
k

ρ̂2
k} = ∑

k
ρ2

k + ∑
k

var(ρ̂2
k) (4.17)

Thus, if we estimate the number of e.d.f. given by Eq. (4.9) using Eq. (4.17), then the bias

E{ν̂− ν} = n E{ 1
∑k ρ̂2

k
− 1

∑k ρ2
k
} = n

∑k ρ2
k

E{∑k(ρ̂
2
k − ρ2

k)

∑k ρ̂2
k
} (4.18)

= −ν E{1/ ∑
k

ρ̂2
k} ∑

k
var(ρ̂k) (4.19)

From which

E{ν̂} =
(

1− E{1/ ∑
k

ρ̂2
k} ∑

k
var(ρ̂k)

)
ν (4.20)

Hence, directly computing the d.f. correction from an unbiased estimator of the autocorrelation func-
tion yields biased results. In particular, the variance of the estimator var(ρ̂k) is expected to increase
with k because the estimation is carried over decreasing number of points n− k (see the bounds of the
summation in Eq. (4.15)). In contrast, as the autocorrelation decreases, the contribution of terms ρ̂2

k to
the sum E{1/ ∑k ρ̂2

k} decreases with k. Therefore, zeroing the tails of the autocorrelation function is
expected to decrease the bias. This is the core idea of regularization methods. Several methods exist
for regularizing the autocorrelation function. Because our approach does not require to estimate the
autocorrelation function, we mention only the approach from (Pyper & Peterman, 1998) which is used
in our numerical experiments, similarly to (Afyouni et al., 2019). (Pyper & Peterman, 1998) proposed
to truncate after the n/5 first lags of the autocorrelation function. The interested reader can refer to
(Afyouni et al., 2019) for a more thorough review of regularization methods.
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4 A parametric approach to estimate the effective degrees of free-
dom for time series

4.1 Asymptotic effective degrees of freedoms

We observed that existing methods for degrees of freedoms are related to the Welch-Satterthwaite ap-
proximation. Thus, it is worth taking a closer look in the terms of Eq. (4.14) in the case of 1-dimensional
series. We derive here the Welch-Satterthwaite for asymptotically large Toeplitz matrices. We give an
explanation here and a simple proof in Appendix C. For a more general treatment, see e.g. (Ginovyan
& Sahakyan, 2013; Gray et al., 2006).

The numerator in the expression of the Welch-Satterthwaite approximation is the trace of a Toeplitz
matrix and is therefore nρ(0), where n is the size of the matrix and ρ(0) is the diagonal element. The
denominator is the trace of product of two Toeplitz matrix – which is not a Toeplitz matrix. Toeplitz
matrices represent a convolution operation; whereas the columns of the product matrix represents the
convolution the autocorrelation function with the columns of Σ. By construction, the j-th column of Σ
is the autocorrelation function shifted by tj, thus

(ΣΣ)ij = ∑
k

ρ(tk − ti)ρ(tj − tk)

We see that most diagonal elements of the product matrix correspond to the timestep where the mode
of the two convolved functions coincide. As the autocorrelation function is symmetric, this gives

(ΣΣ)ii = ∑
k
(ρ(tk − ti))

2

Although it is in general not true on the edges (i close to 1 or n), the impact of these terms on the trace of
the entire matrix becomes negligible when the matrix size increases. Thus, if we consider large matrices
and decreasing autocorrelation, then most of the diagonal elements represent the sum of squares of the
autocorrelation terms. Dividing by n and taking the limit of the Riemann sum yields

1
n

tr(ΣΣ) =
1
n ∑

i
∑

j
(ρ(tj − ti))

2 −−−−→
n→+∞

∫ +∞

−∞
(ρ(τ))2dτ

Thus, the Welch-Satterthwaite approximation is asymptotically

ν ≈ nρ(0)2∫ +∞
−∞ (ρ(τ))2dτ

(4.21)

For processes with known autocorrelation function, we can directly evaluate Eq. (4.21). Examples for
common autocorrelation function are presented in Table 4.1.

4.2 Laplace approximation of the autocorrelation function

Let ρ be the autocorrelation function of a stationary process. We assume that ρ has finite second-order
derivatives. The second-order expansion of ρ around its mode at τ = 0 is

ρ(τ) = ρ(0)− ρ′′(0)
τ2

2
+ . . .

and is similar (up to second-order) to a process with autocorrelation

r(τ) = e−τ2/2λ2

where
λ2 =

1
−ρ′′(0)
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Autocorrelation e.d.f.

δτ (white noise) n

e−τ2/2λ2
n/
√

πλ2

(2σ2/θ)e−θ|τ| (Ornstein-Ulhenbeck process) nθ3/σ4

φτ (first-order autoregressive process) −n log φ

sin(ατ)/(ατ) nα/π

sin2(ατ)/(ατ)2 n3α/2π

Table 4.1: Empirical degrees of freedoms for some common autocorrelation functions

This second-order approximation at the mode is known as the Laplace approximation (Bishop & Nasrabadi,
2006). The term ρ′′(0) that acts as a precision (inverse variance) in the Laplace approximation is the sec-
ond spectral moment of the process. For the approximating autocorrelation function, we have∫ ∞

−∞
(r(τ))2dτ =

∫ ∞

−∞
e−τ2/λ2

dτ =
√

π λ =

√
π

−ρ′′(0)
(4.22)

Plugin Eq. (4.22) in Eq. (4.21), we find that the number of e.d.f. for a process with second spectral
moment ρ′′(0) is approximately

ν =
n√
πλ

= n

√
−ρ′′(0)

π
(4.23)

Remark 4.1. The second spectral moment is a universal measure of “roughness” in the literature of stochastic
processes (Cox & Miller, 2017; K. J. Friston et al., 2008). In fact, the second spectral moment is related to the
average number of zero-crossings N0 by Rice’s formula (Rice, 1944) (for derivation, see (Cox & Miller, 2017, Ch.
7.4, Example 7.9)):

N0 = n
√
−ρ′′(0)/π (4.24)

Using Rice’s formula, we can derive a simple way to quickly estimate the number of e.d.f ν for an empirical time
series with N0 zero-crossings

ν =
√

πN0 (4.25)

In Figure 4.3, we plot the correlation factor ν/n as a function of the smoothness parameter λ. We see
that the number of e.d.f. decreases with the second spectral moment. The interpretation is the same as
for other approaches: smoother processes have less degrees of freedom. We see that when λ < 1/

√
π,

i.e. −ρ′′(0) > π, Eq. (4.23) yields more e.d.f. than the number of points in the series. Interestingly, the
critical point

√
π correspods to having N0 = n zero-crossings in the series of n points.

4.3 An unbiased estimator of smoothness

We give a sketch of proof that the variance of the first-order derivatives is an unbiased estimator of the
second spectral moment. For convenience, we use a Gaussian process, and let the reader refer to e.g.
(Cox & Miller, 2017, Ch 7.4), (Adler, 2010, Theorem 2.2.2.), (K. Worsley, 1996) for general cases.
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Figure 4.3: Correction factor, defined as the number of e.d.f. divided by the number of points,
as a function of the smoothness parameter. We see that the correction factor is greater than
1 when the smoothness is 1/

√
π ≈ 0.56 and converges to the correction factor given by the

Welch-Satterthwaite approximation (Eq. (4.14)) for higher smoothness.

Let X = (x1, . . . , xn)T be a series of Gaussian random vectors with mean µx, unit variance, and a
Toeplitz covariance matrix Σij = Cov(Xi, Xj) = ρ|i−j|. Assuming the series has time resolution δ, we
introduce the forward finite difference operator

D =
1
δ



−1 1 0

0 −1 1
. . .

. . . . . . . . . 0

0 −1 1


(4.26)

and observe that the series of first-order forward finite differences is given by

Ẋ def
=

(
x2 − x1

δ
, . . . ,

xn − xn−1

δ

)T
= DX

From the properties of the multivariate normal distribution, we have

Ẋ ∼ N (0, Λ) (4.27)

where Λ = DΣDT is the symmetric Toeplitz matrix with elements

(Λ)ij =
2ρ|i−j| − ρ|i−j+1| − ρ|i−j−1|

δ2

Interestingly, the elements of Λ are the second-order finite differences of ρ, i.e.

(Λ)ij = −ρ̈|i−j| (4.28)

Let 1
n ∑k ẋ2

k be the sample variance of the first-order finite differences ẋk = (xk+1 − xk)/δ. We observe
that

E

{
1
n ∑

k
ẋ2

k

}
=

1
n ∑

k
E{ẋ2

k} =
1
n

tr(Λ) = −ρ̈0 (4.29)

Thus,

lim
δ→0

1
n ∑

k
E{ẋ2

k} = −ρ′′(0) (4.30)
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Whence, the sample variance of the first-order derivatives is an unbiased estimator of the process rough-
ness. Replacing in Eq. (4.23) leads to the expression Eq. (4.1) presented in introduction

e.d.f. = n

√
1/n ∑ ẋ2

k
π

(4.31)

4.4 Relationship with resolution elements in neuroimaging

In the neuroimaging literature, the concept of resolution elements (resels) is closely related to the number
of e.d.f. (Penny et al., 2011). The FWHM is widely used in imaging problems. It naturally arises when
considering to the problem of finding the minimum separation distance that allow to distinguish two
features on an image (Logothetis, 2002) (see Figure 4.4). The FWHM criterion is one of the solutions,
with e.g. the Raileigh criterion, the Sparrow criterion (Cheng, 2009). The number of resels can thus
be interpreted as the maximal number of independent features we can distinguish in an image. The
number of resels is found by assuming that the images have been smoothed by a Gaussian kernel with
a certain width. The width of the smoothing kernel is parameterized in terms of Full-Width at Half-
Height, which is the distance between the points where the kernel reaches half of its peak value. It is
related to the standard deviation of the Gaussian kernel by the formula (Kiebel et al., 1999)

FWHM =
√

8 log 2 λ (4.32)

Distinguishable Welch-Satterthwaite

0
√
2πλ

FWHM criterion

0 FWHM

Indistinguishable

Figure 4.4: Distinguishing features on an image. The x-axis represents the sensor space and the
y-axis is the source intensity. Gaussian functions in black represent the spread of the original
sources on the sensor and the red curve is the perceived intensity. When the two sources are
separated from more than the FWHM, the perceived intensity allow to distinguish between
them. However, distinction is not possible when the separation becomes smaller. FWHM
is one of the criterions characterizing the minimal distinguishable distance and can be inter-
preted as the inverse of the maximal sampling rate.

In the 1-dimensional case, the formula giving the number of resels ν for a number of n voxels
reduces to (Penny et al., 2011):

Resels = n/FWHM (4.33)

The FWHM in fMRI studies is computed using the variance of the first-order derivatives, which is an
estimator of the smoothness of the random field (Kiebel et al., 1999; Penny et al., 2011; K. Worsley, 1996).
Thus, resels have a similar interpretation to e.d.f. and are based on the same mathematical tools used
to derive Eq. (4.1). Whence, it is interesting to compare the number of resels with the number of e.d.f.
given by Eq. (4.1). Let z = {z1, . . . , zn} be a series of independent observations of a random variable
(i.e., white noise). We define the Gaussian kernel

κ(t) = Ce−t2/2λ2
(4.34)

where C is a normalizing constant such that C2 = 1. The autocorrelation of the filtered signal x = κ ∗ z
is

r(τ) = (κ ∗ κ)(τ) = e−τ2/4λ2
(4.35)
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which has roughness

r′′(0) = − 1
2λ2 = − 4 log 2

FWHM2 (4.36)

where the last equality comes from Eq. (4.32). Plugin in Eq. (4.23) yields

ν =
n

FWHM

√
4 log 2

π
≈ 0.939× Resels (4.37)

Thus, the number of e.d.f. is quite close to the number of resolution elements, although it is a little bit
lower.

5 Numerical experiments

5.1 False positive rate for Gaussian processes with known smoothness

We use the procedure described in Section 2 to generate series with Gaussian autocorrelation. We evalu-
ate the Pearson correlation coefficient for series of 2048 points with smoothness (kernel width) ranging
between 0.1 and 100. We repeat 65, 536 independent experiments. As before, we use the exact test
distribution of the Pearson correlation coefficient under the null hypothesis of uncorrelated samples.
However, we use here the number of e.d.f. to parameterize the test distribution. Eq. (4.23) is used to
obtain the number of e.d.f., replacing n with the length of the series and λ with the standard deviation
of Gaussian autocorrelation. Note that we did not estimate the smoothness from the series but used
the exact analytical value to disentangle the problems of smoothness estimation and d. f . correction.
Hence, this corresponds to the case of known smoothness and yields results similar to the methods of
Bayley-Hammersley, Quenouille, and Welch-Satterthwaite.
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Figure 4.5: False Positive Rate of the Pearson correlation test with the correction of the number
of degrees of freedom.

We present the False Positive Rate as a function of kernel smoothness in Figure 4.5. As we did not
specify a maximal number of e.d.f., we observe that the False Positive Rate is far from the test level when
the process roughness is greater than π. This corresponds to a kernel smoothness of 1/

√
2π ≈ 0.399,

yielding a number of e.d.f. greater than the series length. Then, the 99% confidence interval of the FPR
contains the target α level up to a kernel smoothness of 30. This corresponds to an autocorrelation
taking about 42 points to decrease by a factor 1/e. For our series of 2048 points, this represents about
27 e.d.f. Hence, there seems to be a limitation when the number of e.d.f. is too low – roughly 1% of the
length of the series.
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5.2 False positive rate for Gaussian processes with unknown smoothness

We repeat the same procedure as in the previous section to generate random series with a Gaussian
autocorrelation. Similarly to before, we use series of 2048 points with smoothness between 0.1 and
100, and repeat the experiment 216 times. However, we estimate the correction factor directly from the
series instead of using the theoretical value. Therefore, we shall expect differences between the number
of degrees of freedoms given by the Welch-Satterthwaite approximation and by our approach. This
difference is due to the different estimation approach for the number of e.d.f. To compute the Welch-
Satterthwaite approximation, we use Eq. (4.9) where ρk is obtained with the unbiased estimator from
Eq. (4.15). Following (Pyper & Peterman, 1998), we truncate autocorrelation terms at lags greater than
n/5 = 410. Our approach uses Eq. (4.31) based of the variance of the first-order derivative of the
normalized series.

As in the problem statement (Section 2), we plot the false positive rate as a function of the smooth-
ness parameter for three test levels, α = 0.05, α = 0.01, α = 0.005. Results are shown in Figure 4.6.
For the Welch-Satterthwaite approximation , we see that the false positive rate is systematically lower
than the test level, thus the test is systematically too conservative. This is due to accumulating the
square of non-zero terms in the sample autocorrelation, as mentionned in Section 3.4. For the proposed
approach, the test level remain in the confidence interval for smoothness between 1 and 50. For low val-
ues of smoothness, the false positive rate obtained with the estimator is different from the theoretical
one (Figure 4.5). This is a natural limitation of estimating the roughness from the variance of first-order
derivatives: when consecutive samples with unit variance become independent, their finite differences
have variance 2, which limits the estimated roughness. In that case, the estimated number of e.d.f. is
wrong and the false positive rate is below the test level. For high values of smoothness, the false positive
rate drops for the same reason as mentioned in the previous section.

6 Application to movement trajectories

6.1 Detecting synchronous movements from motion capture data

Here, we analyze motion capture data that has been recorded during the preliminary study of an elec-
trophysiological experiment. Three (3) subjects were asked to perform self-paced elbow flexion/extension
movement. Movement phases lasted for 23.5 seconds and elbow flexion was measured using XSens
Awinda suit at a 60Hz rate, low-pass filtered, and upsampled to 200Hz. For an exploratory analysis
of the neuronal events accompanying movement, we want to isolate sessions during which the move-
ment of both arms were synchronized (in phase or anti-phase) from sessions with no apparent synchro-
nization. A simple approach is to compute the Pearson correlation coefficient between right-arm and
left-arm movement and to separate the sessions with significant correlation from the others. However,
the p-value associated with the Pearson correlation coefficient is unreasonably high: about 90% of trials
are significantly correlated with very low level of synchronization. Using the e.d.f. correction proposed
here, we separate synchronized movement from others.

We show some sample trajectories on Figure 4.7. The trajectories analyzed here have extremely
low roughness (≈ 0.0003) and hence very low number of e.d.f.. We evaluated the number of e.d.f. to
45.3± 3.0 for the right arm and 38.3± 2.2 for the left arm (p < 0.05). Hence, we are in the extreme case
mentioned in the previous section: the number of e.d.f. is roughly 1% of size of the series. Trajectories
on the first row are significantly correlated according to the uncorrected p-value but correspond to a
very low correlation coefficient. Indeed, once we take into account the degrees of freedom reduction
due to autocorrelation, the p-value increases drastically and samples are not considered as significantly
correlated. Trajectories presented on the second row are considered as significantly correlated, both
from the corrected and uncorrected p-values.

In addition, we use bootstrapping to generate samples from the null-distribution and compare the
p-values given by our approach with the p-values given by the bootstrap method. We use the phase-
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(a) Welch-Satterthwaite
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(b) Proposed
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Figure 4.6: False positive rate of the correlation test with the e.d.f. correction proposed by
Bayley and Hammersley (a) and our approach (b). Continuous error bands represent the 99%
binomial confidence interval.

randomized surrogate method (Schreiber & Schmitz, 1996) to construct random samples having the
same power spectral density, and thus the same autocorrelation, as the recorded trajectories. Phase-
randomized surrogates are created by adding to the signal a random phase uniformly distributed be-
tween −π and π,. We compute 256 surrogates for each trajectory and compute the Pearson and Spear-
man correlation coefficients between pairs of surrogates. We evaluate the p-values uncorrected and
corrected using Welch-Satterthwaite and the proposed approach. Results are presented as probability-
probability plots in Figure 4.8.

Interestingly, we observe the effect of the bias in the Welch-Satterthwaite approximation (Eq. (4.20)):
as the estimated number of e.d.f. is lower than the real value, the test distribution is less sharp, thus the
p-value estimated for extreme correlation coefficient is lower. In contrast, the test distribution that
comes from our approach relies on the assumption that the autocorrelation is Gaussian. Hence, we
neglect some of the long-range correlations in the signal. Thus, we overestimate the number of e.d.f., our
test distribution is sharper than it should be, and we have more extreme p-values than bootstrapped.
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Figure 4.7: Sample movement trajectories showing significant correlation according to the
Pearson coefficient. Series in the first row show significant correlation (p < 0.01, no correc-
tion) according to the uncorrected test distribution. Series in the second row show significant
correlation (p < 0.01, e.d.f. correction) with the corrected test distribution. We see that tra-
jectories with low correlation coefficient may be marked as significantly correlated with the
uncorrected test distribution may not be significantly correlated when we take autocorrelation
into account.

6.2 Accuracy of models reconstructing movement trajectories from EEG signals

In this section, we address the problem of evaluating the accuracy of models reconstructing move-
ment trajectories from EEG signals. In the literature, reconstruction methods have been evaluated on
a variety of movement types. To our best knowledge, these work systematically report the correla-
tion coefficient between executed and reconstructed movement trajectories. In Table 4.2, we show an
overview of movement types and performance metrics used in related works. We observe that the
correlation coefficient is systematically reported and that the scale of the coefficient varies greatly. In
particular, we see that some works report very low correlation coefficients which may be insignificant
if the autocorrelation of the series is taken into account.

We are interested in evaluating the significance of the performance of some reconstruction meth-
ods. In addition, we investigate interactions between movement parameters and decoding accuracy.
We use the data collected during our experiment on elbow movement. A complete description of
our experimental procedure is given in Section 3.2. To summarize, 8 subjects were asked to perform
self-paced, continuous, unilateral elbow flexion/extension during 23.5s-trials. Participants alternated
between right- and left-arm movement. Participants were free to vary the speed and amplitude of the
movements and produced movement trajectories with heterogeneous statistical properties, as observed
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Figure 4.8: Probability-probability plots of the bootstrap versus theoretical p-values. Shown p-
values are uncorrected (a), corrected with the Welch-Satterthwaite method (b), and corrected
with our approach (c). The mean-squared error are indicated to quantify the deviation from
the line of identity.

in Section 4.1.
We focus on methods based on slow-cortical potentials (SPCs), i.e. EEG signals at low frequencies,

to reconstruct joint trajectories from EEG signals. SCPs-based methods have been introduced first and
extensively studied in the literature (e.g. (Antelis et al., 2013; Bradberry et al., 2010; Kim et al., 2014;
Ofner & Müller-Putz, 2012)). To obtain SCPs, we filter EEG signals between 0.5 and 4Hz with a fourth-
order Butterworth fitter. Two reconstruction models are evaluated. The first model is a simple linear
model, as proposed in (Ofner & Müller-Putz, 2012). This model is a Wiener filter which reconstructs
each point of the movement trajectory from EEG signals at different lags. We used a number of lags
of 10 (Bradberry et al., 2010) and a lag of 10ms (Ofner & Müller-Putz, 2012). The second model is a
Kalman filter. All parameters of the models are identified using the expectation-maximization algo-
rithm (Ghahramani & Hinton, 1996). The mathematical aspect of these models is not treated here, but a
quick introduction to Kalman filtering is given in Appendix.

We compute Spearman’s correlation coefficient for each trial of each subject. Visual inspection of
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the histograms of the trajectories indicated that our data is non-normal, which motivates our choice
of using Spearman’s correlation coefficient. Scores are computed using leave-one-out cross-validation:
models are trained on all the trials of the subject except the trial for which the score is computed. For
instance, scores for trial 1 of subject 3’s left-arm movements is computed with a model trained on trials
2 to 20 of subject 3’s left-arm movements. In addition, we compute the two-sided p-value associated
with Spearman’s r using the Fisher z-transformation method, as presented in Section 2. We estimate the
number of e.d.f. using Eq. (4.31). Importantly, the variance of the series was estimated from the executed
trajectories, to preclude any effect from our reconstruction model on the number of e.d.f.

6.2.a Results and discussion

First, we evaluate for our two reconstruction models the average reconstruction score for each subject.
Results are presented in Figure 4.9. For right arm movements, the group median of reconstruction
scores are 0.09 for the linear model and 0.05 for the Kalman filter. For left arm movement, the group
median of reconstruction scores 0.09 for the linear model and 0.07 for the Kalman filter. Results are
heterogeneous across subjects. For both arms, the median score of subject 3 and subject 7 is higher than
the group median. Poor performance are systematically obtained for subjects 4 and 9 and for left arm
movements for subject 8. Interestingly, during the preliminary analysis of movement data (Section 4.1),
we observed that subjects 4 and 9 performed slow movements with large amplitude and varied a lot the
amplitude of their movements. Hence, this might indicate that the parameters of movement trajectories
influence the reconstruction performance.
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Figure 4.9: Per-subject reconstruction score for right- and left-arm movements.

To confirm that reconstruction performance is related to movement parameters, we show executed
and reconstructed movement trajectories with correlation coefficient associated with low and high p-
values. This corresponds to movement trajectories that were well or badly reconstructed. Results are
presented in Figure 4.10 for the linear model. Results are similar for Kalman filter and shown in Ap-
pendix 2 (Figure C.1). We observe that movement trajectories that are well reconstructed “oscillate”
more quickly than movement trajectories that are badly reconstructed. For instance, 18 cycles were re-
alized during the trial 19 of left-arm movements of subject 6 (Figure 4.10, upper-right quadrant). The
movement trajectory was fairly well reconstructed from EEG signals, with a correlation coefficient of
0.73 (corrected p = 7.6× 10−14). In contrast, only 5 complete cycles were realized during the trial 18
of right-arm movements of subject 4 (Figure 4.10, lower-left quadrant). The movement trajectory was
badly reconstructed with a correlation coefficient of 0.01 (corrected p = 0.86).

To illustrate the strong interdependence between movement parameters and reconstruction accu-
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Figure 4.10: Sample executed and reconstructed movement trajectories, associated with low p-
values (first row) and high p value (second row). Trajectories are reconstructed with the linear
model.

racy, we present scatter plots of the p-value associated with the reconstruction score against the mean
and standard deviation of movement cycles. Results are shown in Figure 4.11 for the linear model and
in Appendix 2, Figure C.2 for the Kalman filter. We observe that low p-values are systematically ob-
tained for movement trajectories with a low cycle duration. Equivalently, trajectories with long mean
cycle duration are systematically badly reconstructed. In addition, low p-values are exclusively associ-
ated with trajectories with little variation in their cycle duration. In summary, trajectories consisting in
fast and precise cycles are well reconstructed while trajectories with slow or variable cycles are badly
reconstructed. In the case of precise cycles, the correlation coefficient might be unadequate because the
trajectory is closer to a periodic function with noise than to a stochastic process.
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Figure 4.11: p-value of the decoding accuracy of the linear decoding model versus of mean
and standard deviation of movement cycles. Each marker represent the value obtained for a
single trial of a single subject.
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Finally, we illustrate and discuss an interesting observation that occurred during our analysis. In
some situations, two trajectories with a similar reconstruction score differed greatly in terms of p value.
This phenomena is illustrated in Figure 4.12. We observe that the two trajectories have similar recon-
struction score but the significance of these scores differ by an order 102. In fact, this phenomena is
partly due to a difference in the number of e.d.f. of the two series. In the trajectory of trial 9 of right
arm movements for subject 5, we can count 38 zero-crossings. Using Eq. (4.2), we can estimate that
the trajectories has 38

√
π ≈ 67 e.d.f.. In contrast, the trajectory of the fourth trial of right arm move-

ment by subject 8 has 18 zero-crossings which result in 18
√

π ≈ 32 e.d.f.. Equivalently, the statistics of
the first series are virtually produced with twice more independent samples than the statistics of the
second series. Whence, differences in p-values are unsurprising. This result implies that we must inter-
pret the correlation coefficient conditionally to the “smoothness” of the series. In particular, operations
such as averaging correlation coefficients might produce unexpected results because the distribution of
individual coefficients might differ strongly.
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Figure 4.12: Two sample trajectories with similar correlation coefficient. The p-values asso-
ciated to the correlation coefficient differ by an order 102 because of the differences in the
smoothness of the series.

7 Conclusion

In this work, we considered the problem of testing for significant correlation from autocorrelated series.
Several works have proposed to find the number of e.d.f. of the series. The number of e.d.f. correspond to
the size of a sample of independent observations that would produce the same statistics. The number of
e.d.f. can then be used in the test distribution of the correlation coefficient even if the distribution relies
on an independence assumption. Related methods require to estimate the autocorrelation function,
which can be problematic when testing correlation between two unique and smooth series.

Here, we show that works in the literature are indeed related to the well-known Welch-Satterthwaite
approximation with particular Toeplitz matrices. We propose to use the asymptotic extension of the
approximation in an integral form. Using a Laplace approximation of the autocorrelation function, we
derive a simple formula giving the number of e.d.f. of stochastic processes having an autocorrelation
with finite second-order derivatives. The expression depends on the second-order derivatives of the
autocorrelation function at its mode, which is a measure of the roughness of the process and relates
to several of its statistical properties. Works on random field have highlighted that roughness can be
easily estimated from the variance of the first-order time derivatives of the process. We use these results
to propose a new estimator for the number of e.d.f.. In addition, we use Rice’s formula to derive an
estimator of e.d.f. based on the number of zero-crossings. We confirm the adequacy of our approach on
random series. We use bootstrapping to compute the false positive rate of our approach as a function
of the smoothness of the signal. We also highlight problems in current approaches due to a wrong
estimation of the autocorrelation function.

Finally, we use our approach on real motion capture data from a neurophysiological experiments.
First, we use the Spearman correlation coefficient to separate synchronous and asynchronous move-
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ment trajectories. In addition, we create phase-randomized surrogates to construct quantile-quantile
plots of the p-values yielded by the different e.d.f. correction methods. We observe that our approach
give adequate results, despite the fact that the data are extremely smooth. Second, we use our approach
to obtain corrected p-values for the Spearman correlation coefficient between executed movement tra-
jectories and trajectories reconstructed from EEG signals. We reproduce well-known methods from the
literature and apply them to our movement data. We interpret our results in the light of the e.d.f.

Overall, our results indicate that Pearson and Spearman correlation coefficients can be applied to
time series and even used for significance testing. However, as the “smoothness” of individual series
impacts their test distribution, further work is required to assess whether group-level statistics can be
produced from individual coefficients.
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Reference Movement type Subj. Metrics CC

(Bradberry et al., 2010) Reaching 5 CC 0.2 to 0.35

(Ofner & Müller-Putz, 2012) Self-paced 5 CC 0.23 to 0.35

(Antelis et al., 2013) Reaching 7 CC, NRMSE 0.15 to 0.37

(Kim et al., 2014) Loop 10 CC, NRMSE 0.35 to 0.65

(Robinson et al., 2015) Reaching 7 CC 0.6

(Korik et al., 2016) Reaching 4 CC 0.2 to 0.5

(Úbeda et al., 2018) Loop (lower limb) 4 CC, others 0.35 to 0.55

(Korik et al., 2018) Reaching 12 CC 0.4

(Veslin et al., 2019) Reaching (elbow flexion) 6 CC, MSE 0.33 to 0.98

(Jeong et al., 2019) Reaching 5 CC 0.8

(Kobler, Almeida, et al., 2020) Loop 12 CC 0.5 to 0.85

(Mondini et al., 2020) Pursuit 10 CC 0.28

(Kobler, Sburlea, et al., 2020) Pursuit 15 CC 0.8

(Martıénez-Cagigal et al., 2020) Pursuit 5 CC 0.35 to 0.48

(Müller-Putz et al., 2021) Pursuit 1 CC, amplitude 0.23 to 0.36

Table 4.2: Related work on decoding movement trajectories from EEG signals. The abbrevia-
tions are MSE for Mean Squared Error, NRMSE for Normalized Root Mean Squared Error. We
report group-averaged values when possible, otherwise minimum and maximum scores. The
objective of reported values is to indicate the scale of the scores. The interested reader should
refer to the related references to properly assess the performance of a method.



Chapter 5

Modelling the movement and the brain:
perspectives and challenges

1 Introduction

In this chapter, we are interested in devising and estimating a simplified model of elbow movements.
Our thoughts in favor of this approach follow from the fact that the task is relatively simple and might
be well captured by a biologically-plausible model, guided by physical evidence.

A simple musculoskeletal model could suffice because our task is relatively simple: participants
realized movements with one degree of freedom joint. The approximate dynamics of the arm can be
obtained with rigid body dynamics. The combined forces from the pair of antagonist muscles, the
biceps and triceps brachii, determine the exogenous joint torque. The modeling of muscular forces has
been well-studied in the 20th century and resulted, for instance, in Hill’s muscle model (Hill, 1938).
Therefore, by combining Hill’s muscle models of both biceps and triceps with the rigid body dynamics
of the arm, we obtain a simple musculoskeletal model.

Modeling the cortical activity and its coupling to muscle motoneurons activity is less straightfor-
ward but yet feasible. A model of the spinal cord is necessary to incorporate cortical activity with the
muscle motoneurons activity that enter Hill’s muscle models. The circuitry of the spinal cord is respon-
sible for closed-loop modulation of muscle forces that pervades reflex arcs (Bear et al., 2020). In order
to model this circuitry, we must equip our muscle models with afferent neurons that give a feedback
on the muscle configuration. Fortunately, simplified models of both afferents neurons and of the spinal
cord are found in the literature (Hao et al., 2013; Li et al., 2015; Teka et al., 2017). Finally, we can use
one of the numerous models of the cortical activity as measured in electrophysiology. To summarize,
building a simplified model of the cortical activity and corticospinal tracts may also be feasible.

Because we only measure a subset of the variables of our model, we need an advanced Bayesian
estimation scheme. During the movement task, only joint angle, EMG signals, and EEG signals are
measured. It is important to notice that there are many aspects of our model that we are hidden to our
measurement setup. For instance, we may only guess the timecourse of the spinal neurons activities,
the time constants of the excitatory populations in cortical columns, or the noise variance of the motion
capture system. In general, the literature gives us prior ideas on the distribution of parameter values.
These prior distributions can be used to weight the likelihood of the measurements under our model
and thus refined from the measurements. In other word, we may use Bayes rule to obtain the posterior
distributions of states (i.e. the variables varying in time), parameters (i.e. the variables fixed in time)
and hyperparameters (i.e. the variables configuring the shapes of distributions). Because our model
contains nonlinear mappings, we need an advanced Bayesian scheme to solve this triple estimation
problem.

Here, we use a variational Bayesian estimation scheme called DEM (K. J. Friston et al., 2008). The

67
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go-to method to solve triple-estimation problems is to use a nonlinear variant of Kalman filter with the
Expectation-Maximization algorithm; however, the strongly-nonlinear nature of the problem at hand
precludes this solution. In contrast, the DEM algorithm has been constructed to work well on nonlinear
problems. DEM is an instance of variational or approximate Bayes methods, which refers to a group of
methods that transform the ill-defined problem of estimating a posterior distribution into an optimiza-
tion problem (Bishop & Nasrabadi, 2006). The optimization problem is to minimize the variational free
energy (VFE), which is the divergence between the approximate and true posterior plus the model evi-
dence, i.e., the log-probability of the measurements under our model. While the divergence and model
evidence are individually intractable, the VFE can be evaluated. In other words, our Bayesian triple-
estimation problem reduces to minimizing a single, global quantity. Under this perspective, the DEM
algorithm solves the problem quite straightforwardly: it minimizes the VFE with respect to the states,
parameters, and hyperparameters, using gradient descent for each of these three quantities.

So far, we briefly presented a set of models that can be assembled to build a neuromusculoskeletal
model. In addition, we introduced a powerful estimation scheme that can be used with such model.
Trying to use the model and the estimation scheme together allowed us to discover technical problems.
Thus, our objective in this chapter is to highlight some challenges that need to be tackled to enable
inverting such kind of model on real data. The rest of the chapter is organized as follows. First, after
briefly introducing the Kalman filter, we extensively present the DEM algorithm. In particular, we
provide a numerical comparison of the two methods, based on our own Python implementation of DEM
– the code to reproduce the results is available online. Then, we present our results and discussion. In
the result and discussion section, we build up the neuromusculoskeletal model from the arm model to
the neural masses. At each stage, we present some generated trajectories and, where possible, some
inversion on real movement data. In addition, we show the problems that may arise at that stage and
discuss possible ways to resolve them. In a last section, we give a brief summary and discussion.

2 Bayesian inversion of nonlinear dynamical systems

2.1 Kalman Filtering and generalization

Since the seminal paper of R.E. Kalman in 1960 (Kalman, 1960), the Kalman filter has been extensively
used in research and industrial application. The Kalman filter solves the Bayesian filtering problem in
the case of linear dynamic models with additive white Gaussian noise. Given a series of measurements
and a probabilistic generative model (that is, a dynamical model with a description of the statistical
properties of the noise), the Kalman filter finds the most likely state of the system at present time.

The Kalman filter is originally limited to linear systems but may be extended to nonlinear ones.
Nonlinear systems are problematic because the predictive density originates from a nonlinear function
and thus do not generally take a convenient form. In that case, three natural solutions arise. First,
we can use a set of random samples (particles) to model our state distribution. The moments of the
distribution of the state variables is not explicitly modeled, but can be retrieved at any time from the
particles. This method is known as particle filtering and will not be further treated here. Second, we
can assume that nonlinear functions are relatively smooth with respect to the spread of our data, and
linearize the function around the mean to get the variance of the projected data. More precisely, let f be
the nonlinear function with Jacobian J f and X a normal random vector such as X ∼ N (µ, Σ), we have

f (X) ≈ Y ∼ N
(

f (µ), J f (µ)ΣJT
f (µ)

)
Using the linearization, we construct a reasonable approximation to the transformed distribution when
the function is sufficiently smooth. Kalman filter using this transform are known as Extended Kalman
filters (EKF). The third approach to overcome nonlinear functions takes ideas from both EKF and parti-
cle filtering. Similarly to the EKF, we will try to identify the moments of the distribution after applying
the function. And similarly to the particle filters, we will use a set of samples points that we will project
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independently. However, the points are not randomly sampled but are rather important points of the
normal distribution. Basically, these points relates to moments of the distribution, thus we project them
using the nonlinear function and then fit the normal distribution that has the same points. The trans-
formation is known as unscented transform and is used in the Unscented Kalman filter (UKF).

Using Kalman filter and generalization, we can perform a Bayesian inversion and identify the most
likely sequence of hidden states that produced our observations, given a probabilistic model. However,
in some applications, we do not have an exact model or have only a partial knowledge of some aspects
of the model. Thus, we may want to identify unknowns from the data. Our partial knowledge may
comprise some priors on the distribution of some parameters but also some priors on the probabilis-
tic model — hyperparameters, typically, the distribution of the covariance matrices. The expectation-
maximization (EM) algorithm can be used to estimate parameters and hyperparameters. The typical
estimation scheme for dynamical models is the following. First, we specify a probabilistic model and
some priors. We initialize the model using the expectations of the prior. Then, we run the filter on a set
of data to produce filtered state estimate. This step is important, because it allows us to create sample
trajectories for the system states, even though we did not observe them. Then1, we can directly find the
maximum-a-posteriori (MAP) values for each parameter and hyperparameter. This is the most crucial
step of EM: given a first guess on model parameters, we create some plausible trajectories for the hidden
states that we use directly in the equations as if the real trajectories of the hidden states were observed.
By repeating this scheme, we are guaranteed to converge to a local minima.

EM with Kalman filtering form a powerful scheme to solve triple inversion problems — estimating
states, parameters, hyperparameters — in a Bayesian way. However, this inversion scheme becomes
greatly limited on highly nonlinear models such as biophysical models. A major limitation comes from
the inability of the Kalman filter and of its nonlinear generalization to track robustly hidden states.
In the next section, we introduce another inversion scheme that comprises Kalman filter and EM as a
particular case: the Dynamic Expectation Maximization.

2.2 Dynamic Expectation Maximization

In this section, we give a brief introduction to Dynamic Expectation Maximization (DEM) and illustrate
on numerical examples its difference with the Kalman filtering approach. As the scheme incorporates
a large number of new ideas, a thorough presentation of DEM is incompatible with brevity. Therefore,
although an effort is made to explain essential ideas and reproduce important figures, many technical
details have been omitted and we let the reader refer to the original paper (K. J. Friston et al., 2008) for
any supplementary details.

2.2.a Hierarchical dynamic model

We assume here that we deal with nonlinear hierarchical dynamic model, i.e. a cascade of models

vL = ηv + zL+1 (5.1){
ẋL = fL(xL, vL; θ) + wL

vL−1 = gL(xL, vL; θ) + zL
(5.2)

. . .{
ẋ2 = f2(x2, v2; θ) + w2

v1 = g2(x2, v2; θ) + z2
(5.3)

{
ẋ1 = f1(x1, v1; θ) + w1

y = g1(x1, v1; θ) + z1
(5.4)

1A supplementary step is to use a smoother (roughly, a backward filter) to produce state estimates that also
integrate subsequent observations. However, this is out of the scope of this treatment and was omitted for brevity.
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We see that the input of the model at each level is the output of the model that is directly above. The
terms w = (w1, . . . , wL)

T and z = (z1, . . . , zL+1)
T are Gaussian innovations with zero mean and covari-

ance matrices Σw and Σz. These covariance matrices are random variables governed by some hyperpa-
rameters λ with mean µλ and covariance Σλ

2. The term ηv gives the mean of the input at the highest
hierarchical level. Functions may have some parameters to estimate, in that case they are parameter-
ized by the general vector θ, which contains the parameters of all functions. θ is also a normal random
variable with mean µθ and covariance Σθ . The values of µθ and Σθ are used to formulate our priors on
the distribution of the parameters. For instance, we can formulate that the typical value of the maximal
force produced by the Biceps Bracchi is 2300N and that we expect the exact value to differ between
individuals.

2.2.b Condensed notation

As the hierarchical model presented before is not very convenient to deal with, we simplify the notation.
We stack all states derivative ẋ1, . . . , ẋL in a column vector

ẋ = (ẋ1, . . . , ẋL)
T (5.5)

Note that each ẋi is itself a vector of size nx
i and thus the size of ẋ is ∑L

i=1 nx
i . We proceed similarly for

the outputs

v = (y, v1, . . . , vL)
T (5.6)

We see that ẋ and v are two random variables with a multivariate normal distribution

ẋ ∼ N ( f , Σw) v ∼ N (g, Σz) (5.7)

where f and g are the mean of the states and outputs, i.e.

f = ( f1(x1, v1; θ), . . . , fL(xL, vL; θ))T (5.8)

g = (g1(x1, v1; θ), . . . , gL(xL, vL; θ), ηv)
T (5.9)

In addition, we will stack the time-varying variables a random variable

u = (ẋ, v)T (5.10)

The distribution of u follows from that of x and v

u ∼ N (µu, Σu) (5.11)

where

µu =

 f

g

 Σu =

Σw 0

0 Σz

 (5.12)

2.2.c Variational Free Energy

We will now introduce the cost function that is optimized by the DEM algorithm. Given observed data
y, we want to obtain the posterior distribution p(u, θ, λ|y) of the states u, parameters θ, and hyperpa-
rameters λ. Let Z = {u, θ, λ} be the set of these hidden variables. The posterior distribution is

p(Z|y) = p(y|Z)p(Z)
p(y)

=
p(y|Z)p(Z)∫

p(y, Z)dZ
(5.13)

2We will not cover how covariance matrices are formed from the hyparameters because it falls beyond the scope
of this chapter.
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We see that the denominator in Eq. (5.13) is an integral over hidden variables, which implies integrating
over all possible trajectory, under each possible value of parameter and hyperparameter. Naturally, this
renders the problem intractable. DEM, as other Variational Bayes methods, proposes to approximate
the posterior with a function q. For any choice of q, we can measure its distance to the true posterior
p(Z|y) using the Kullback-Leibler (KL) divergence:

DKL ( q(Z) || p(Z|y) ) =
∫

q(Z) log
q(Z)

p(Z|y)dZ = F + log p(y) (5.14)

F is the Variational Free-Energy (VFE, also known as the negative evidence-lower bound)

F = −
∫

q(Z) log
p(y, Z)
q(Z)

dZ = Eq{− log p(Z, y)}+ H{q} (5.15)

where H[q] is the entropy of the distribution q and the term Eq{− log p(Z, y)} is the expectation of the
complete-data likelihood when the hidden variables are sampled from the approximating distribution.
Finally, noticing that the term log p(y) in Eq. (5.14) is independent of q yields the important result of this
section: minimizing the free-energy minimizes the distance between the approximating distribution q
and the true posterior distribution.

2.2.d Mean-field approximation

We did not make any assumption on q to derive the previous results. Hence, we are free to choose
q in a form that renders the variational free-energy easy to compute. This is the motivation for the
particular form of the hierarchical dynamic model that was introduced before (Eq. (5.1)): using Gaussian
distributions, we only need to estimate two sufficient statistics – the mean and the covariance. To
furthermore simplify the problem, we force our approximating distribution q to factorize over states
u, parameters θ, and hyperparameters λ. In other words, the function q for our hierarchical dynamic
model is

q(u, θ, λ) = qu(u)qθ(θ)qλ(λ) (5.16)

where qu (resp., qθ , qλ) is Gaussian, parameterized by its mean µu (resp., µθ ,µλ) and its covariance Σu

(resp., Σθ ,Σλ). Note that some of these distribution parameters depends on each other, for instance, the
mean of the states µu is a function of the parameters θ. To make Eq. (5.16) operate, we need to make
a mean-field approximation, i.e. assume that the distribution of one variable (e.g. u) is obtained at the
mean of the other variables (e.g. µu(θ) ≡ µu(µθ)). The mean-field approximation make some terms
appear in the expression of the free-energy, but these terms will be omitted here for simplicity.

2.2.e Inversion scheme

We can now explain the DEM inversion scheme. The general idea behind the DEM algorithm is to
estimate states, parameters, and hyperparameters such that they minimize the VFE. As we mentioned
before, minimizing the VFE renders our approximating density close to the true posterior density. DEM
solves this optimization problem with a gradient descent on the VFE. However, as we have to deal with
both time-varying and static quantities, there are some technical details to considers.

First, let us reintroduce time, which was deliberately kept out of the equations for simplicity. Here,
the time varying quantity is u ≡ u(t) which comprises the states and outputs of each system. Both the
parameters θ and the hyperparameters λ are kept static3. DEM scheme consist in two steps that deal
with dynamic and static quantities. The first step is analogous of the filtering step in the EM algorithm:
the D-step of DEM estimates the posterior distribution of the state variables. The posterior is obtained
by using a gradient descent on the free-energy. Because the system evolution is dictated by differential

3Alternatively, generalized filtering could be used to estimate of time-varying parameters (K. Friston et al., 2010).
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equations, the gradient descent scheme takes the form of a flow−∂uF acting on the system. This results
in a new set of differential equations that can be integrated using any integration scheme – here, a local
linearization scheme (Ozaki, 1992). This step allows to obtain the mean of the approximate posterior
for the next time point. Then, the covariance of the approximate posterior is given by the Hessian of the
VFE evaluated at the posterior mean4. To summarize, at each timestep, we use the “variational flow” to
obtain the sufficient statistics of a Gaussian distribution that best approximate the posterior distribution
of each state.

When the entire sequence has been processed, we can use the sequence of means of the state dis-
tribution to compute the gradients of the VFE with respect to the parameters and hyperparameters.
Because of the mean field approximation, the VFE used to update the parameters and hyperparam-
eters is different from that used to update the states. Parameters and hyperparameters are updated
using a “static” VFE, usually termed variational free-action (VFA). While the VFE is evaluated at each
timestep and represent an instantaneous quantity, the VFA is static and contains the time integral of
the VFE evaluated at the mean of approximate states posterior. In other words, the parameters and
hyperparameters are updated to minimize the path integral of the VFE — whence the term free-action.
This gradient descent of the VFA with respect to the parameters and hyperparameters constitutes the
E- and M-steps.

2.2.f Generalized coordinates

Generalized coordinates is a crucial aspect of DEM that enable filtering on nonlinear systems. So far,
we deliberately ignored generalized coordinates to keep the notation uncluttered. In fact, to introduce
generalize coordinates, we need to replace all time-varying quantities u by

ũ = (u, u′, u′′, . . . )T (5.17)

which contains derivatives of u up to order n. Interestingly, the vector of generalized coordinates ũ
is sufficient to obtain a local expansion of the trajectory around u. Hence, filtering now takes also
place at the level of the derivatives. The mean of the generalized states ũ, f̃ = ( f , f ′, f ′′, . . . )T and
g̃ = (g, g′, g′′, . . . )T , are expressed from the generalized coordinates:

f ′ = ∂x f x′ + ∂v f v′ g′ = ∂xgx′ + ∂vgv′

f ′′ = ∂x f x′′ + ∂v f v′′ g′′ = ∂xgx′′ + ∂vgv′′

. . . . . .

where ∂x f ≡ ∂ f /∂x. To use generalized coordinates, we also need to formulate how the noise w and
z impact higher-order derivatives. In DEM, the noise is assumed to have a Gaussian autocorrelation
parameterized by the roughness parameter (see Chapter 4 for more details). Therefore, the covariance
matrix in generalized coordinates can be explicitly calculated. Because the random innovations prop-
agates in the generalized coordinates, we have some uncertainty about the derivatives of the states.
Hence, during the D-step, the flow of the VFE acts on the generalized coordinates. Therefore, in con-
trast to Kalman filter, the filtering step of DEM does not simply estimate the mean and covariance of
the state at a particular time, but estimates a stochastic process which locally approximates the piece of
trajectory.

A claim of the (K. J. Friston et al., 2008) is that the DEM algorithm can be applied to chaotic systems
because of the generalized coordinates. In fact, this statement can furthermore extended: when applied
to dynamical systems with a strange attractor and a smooth observation function, using generalized
coordinates enable filtering on an embedding of the original attractor. We give in Appendix 1 a simple
proof that generalized coordinates, as defined in DEM, can be used to embed a strange attractor. This

4This can be shown very simply, by writing down the VFE of the Gaussian distribution and solving ∂Σu F = 0,
see (Zeidman et al., 2022).
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result is proved for more general cases by a (less famous) theorem in Takens’ work (see (Takens, 1981,
Theorem 3)). This embedding theorem for generalized coordinates supports the adequacy of using
generalized coordinates to filter chaotic dynamical systems.

2.3 Implementation details

Results presented in this chapter come from our Python implementation of the DEM algorithm. Our
implementation is extensively based on the original Matlab implementation in the SPM software but
differs in some aspects. The commented pseudo-code of the algorithm is given in Algorithm 1. Cru-
cially, we replaced the numerical differentiation scheme by symbolic differentiation based on Sympy
and Symengine. This allows to use analytical derivatives automatically derived from the analytical ex-
pressions of the dynamic and observation functions. We validated our implementation by reproducing
some examples of the original DEM paper. The code is available at https://github.com/yop0/dempy.
In addition, the code for reproducting the results of this chapter is available at https://github.com/yop0/nms-
model.

2.4 Comparison of the extended Kalman filter with DEM filtering

In this section, we present some numerical results reproduced from the original DEM paper and rele-
vant for our application5. In particular, one of the claim of (K. J. Friston et al., 2008) is that the DEM
algorithm uncovers the true state-space trajectories of chaotic system. In contrast, authors argue that
conventional filters such as the Extended Kalman Filter (EKF) are unable to converge to the true trajec-
tory and “succumb to the system’s attractor” (K. J. Friston et al., 2008). Here, we analyze more in depth
the behavior of both inversion schemes in the case of chaotic systems. In chaotic systems, even a perfect
knowledge of the equations of the system is not sufficient: knowledge of the initial state is necessary to
track the evolution of the system because of the sensitivity to initial conditions.

To highlight this phenomena, (K. J. Friston et al., 2008) proposed to consider the Lorenz system in
the case where the sum of the three states is observed with additive noise. The parameters are assumed
known but the initial state is unknown. This example is used to illustrate the differences between DEM
and EKF on chaotic systems. The parameters are found DEM_demo_lorenz.m in the DEM toolbox of
SPM12. The equations for the Lorenz systems used here are:

ẋ = 18y− 18x,

ẏ = 46.94x− 2xz− y,

ż = 4xy− 4z,

v = x + y + z.

The variance of the state noise is assumed very low (e−16) and the output noise on v has unit vari-
ance. The equations are integrated with a local linearization scheme (Ozaki, 1992) with a timestep6

dt = 1/128. We generated a series of 1024 observations by integrating the system from the initial state
(x0, y0, z0) = (0.9, 0.8, 30). We then inverted the model, i.e. estimated the executed trajectories from
the generated observations, using another initial state (x0, y0, z0) = (1, 1, 16). For the DEM algorithm,
we used generalized coordinates up to order 8. For the EKF, we additionally used a backwards pass
with the Rauch-Tung-Striebel (RTS) smoother (Rauch et al., 1965). Thus, in contrast to DEM and EKF,
the “EKF with smoother” (EKF-RTS) algorithm is noncausal. More specifically, both EKF and DEM
estimate the state distribution from past and present observations whereas EKF-RTS additionally uses
future observations. This difference must be kept in mind when comparing EKF-RTS with DEM or EKF.
Results of the inversion for the EKF, EKF-RTS and the DEM algorithm are shown in Figure 5.1. The fig-

5We also present in Appendix the figures for the linear convolution model with the parameters found in the
DEM_demo_convolution_LAP.m file from the DEM toolbox of SPM12

6We used a smaller timestep than the original paper to obtain smoother time series.

https://github.com/yop0/dempy
https://github.com/yop0/nms-model
https://github.com/yop0/nms-model
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Algorithm 1: Pseudo-code of the (simplified) DEM algorithm
Data: models, priors, input series m, output observations y, number of steps nE, nM, nT

Result: approximate posterior distribution of states, parameters, and hyperparameters

for 1 ≤ i ≤ nE do
A← 0 // reset the VFE accumulator

/* D-step: update states distribution */
for 1 ≤ t ≤ nT do

(x̃, ṽ)← µ̃u // unpack current states

ṽl = η̃v + m̃(t) // initialize top-level input
for 1 ≤ l ≤ L do // propagate predictions through the hierarchy

ẋl = fl(xl , vl , µθ) // compute dynamics at level l
vl−1 = gl(xl , vl , µθ) // compute output at level l

ẍl = ∂x flx′l + ∂v flv′l // compute derivatives of dynamics
v̇l−1 = ∂xglx′l + ∂vglv′l // compute derivatives of output
. . . // ... up to a defined order

end
˙̃x = (ẋ, ẍ, . . . )T // define generalized coordinates of states
˙̃v = (v, v̇, . . . )T // define generalized coordinates of causes

F(t)← F( ˙̃x, ṽ, ỹ(t); µθ , Σz(µλ), Σw(µλ)) // compute the VFE for timestep t
A← A− F(t) // accumulate VFE over time

ũ′ = (ẋ, ẍ, . . . , v̇, v̈ . . . )T // define derivatives of the generalized states
ũ′ ← ũ′ − ∂ũF(t) // compute the dynamics of the generalized states
µ̃u(t)← INTEGRATE(ũ, ũ′) // update the mean of generalized states
Σ̃u(t)← ∂ũũF(t) // compute the covariance of generalized states

end

/* M-step: update hyperparameters distribution */
for 1 ≤ j ≤ nM do

µλ ← µλ − ∂λ A // update the mean of hyperparameters
Σλ ← ∂λλ A // compute the covariance matrix of hyperparameters

end

/* E-step: update parameters distribution */
µθ ← µθ − ∂θ A // update the mean of parameters
Σθ ← ∂θθ A // compute the covariance matrix of parameters

end
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(a) EKF (b) EKF-RTS

(c) DEM

Figure 5.1: Comparison of EKF (a), EKF-RTS (b), and DEM algorithm (c) to invert the Lorenz
system with unknown initial state. Figures on the upper row show the estimated and realized
(unobserved) trajectories. Figures on the lower row show the Euclidean distance in phase-
space between the estimated and realized trajectories. We see that phase-space error for the
EKF-RTS is bounded below 10, while the error for the DEM algorithm is bounded below 2.
The phase-space error for the EKF does not seem to converge: the system “succumb to the
attractor”. Thus, the DEM algorithm provides a powerful alternative to conventional EKF or
EKF-RTS schemes.

ure also shows the course of the phase-space distance between the realized and estimated trajectories.
In the case of the EKF, the reconstructed trajectory is qualitatively different from the realized trajectory,
i.e. peaks and cycles do not appear at the same location (see for instance between timestep 100 and 300).
The EKF-RTS gives better estimates than the EKF alone and the reconstructed trajectory is qualitatively
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similar to the original trajectory. However, the phase space distance is clearly higher than for the DEM
algorithm. Indeed, this example provide striking evidence motivating to use the DEM algorithm to
invert chaotic or highly nonlinear systems: in a single forward pass, the DEM algorithm uncovers the
realized trajectory with a satisfying precision. The difference in precision between DEM and EKF-RTS
is clearly visible when observing the trajectories in phase-space. In Figure 5.2, we show the realized and
reconstructed trajectories projected on (x, y) and (x, z) planes for both EKF-RTS and DEM. We clearly
see that the trajectory reconstructed by the EKF-RTS does not match the realized trajectory, whereas
only minor errors appear on the trajectory reconstructed by the DEM algorithm.

3 On modelling the arm

3.1 Dynamic model of the arm

We present a simple model of a two dimensional arm with two degrees of freedom. Shoulder joint is
only modeled to modulate the influence of gravity on motion. We consider the antagonist muscles for
elbow flexion/extension: biceps and triceps brachii. The force exerted by the two muscles determines
the stiffness of the joint. The center of mass of the upper-arm and forearm is considered centered on
each limb segment. Prior distribution of the masses and segment dimensions are derived from the
physiological tables in (Drillis et al., 1964). All parameters values are given in Appendix 2.

The elbow flexion angle is actuated by both biceps and triceps. Muscle insertions represent the
distance between the elbow joint and the muscle connection to the forearm. Values of muscle insertions
are set to 2cm for both biceps and triceps to obtain moment arms similar to (Murray et al., 1995). From
muscle insertions and dimension of the upper arm, we can derive the moment arm formula using
the muscle excursion method (An et al., 1984). Let ~lb and ~lt be muscle vectors pointing towards the
shoulder, ~db and ~dt insertion vectors from elbow joint towards muscle insertion and ~L the humerus
vector pointing towards the shoulder. These quantities follow the equality:

~L = ~db +~lb = ~dt +~lt (5.18)

Using position of muscles insertions, we can compute the muscle lengths:

lb
def
= ‖~lb‖ =

√
d2

b + L2 − 2dbL cos q lt
def
= ‖~lt‖ =

√
d2

t + L2 + 2dtL cos q (5.19)

The length of the muscle can then be used to compute the biceps and triceps moment arms rb and rt

(An et al., 1984; Sherman et al., 2013):

rb
def
=

dlb
dq

=
dbL sin q√

d2
b + L2 − 2dbL cos q

rt
def
=

dlt
dq

=
−dtL sin q√

d2
t + L2 + 2dtL cos q

(5.20)

In order to avoid singularities, we clip the minimum values of muscles moment arms to 0.01. The
torque from the gravity is given by τg = l1 sin(q− qS)m1g, where qS is the shoulder angle. We model
maximal flexion and extension bounds as viscoelastic moments, τbounds ≡ τbounds(q, q̇). The total torque
generated by the muscles is τmuscles = −rbFb − rtFt. The angular acceleration results from the sum of
torques:

q̈ =
1

mL2 (τg + τmuscles + τbounds) = f (q, q̇, Fb, Ft) (5.21)

As the dynamics is defined by a second-order differential equation, we must transform the model into
a couple of first order differential equations:{

q̇ = v + wv

v̇ = f (q, ω, qS, Fb, Ft) + wa
(5.22)
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Figure 5.2: Realized phase-space trajectories for the Lorenz system and reconstructions by the
EKF-RTS (a) and DEM algorithm (b). The first column shows projection on the (x, y) plane and
the second column shows projection on the (x, z) plane. For the DEM, the second row shows
zooms on the central part of the attractor.
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Figure 5.3: Schematic of 2-d arm model.

where q and v are the model states and qS, Fb, and Ft are the model inputs. wv and wa are the dynamic
noise, where wv has a very small variance (σ2

v ≈ 0) and wa has a variance σa. Having noise in the
equation of q̇ is surprising but reflects the fact that all variables are random variables in DEM. We
discuss this issue in detail thereafter. Finally, we assume that we measure directly the joint angle with
observation noise:

y = q + zy (5.23)

where zy has variance σ2
y .

3.2 Face validity: generating and inverting some movement trajectories

To evaluate the face validity of our model, we generate some movement trajectories. We input a cosine
torque in our arm model

τmuscles(t) = α + β cos(γt)

where α, β, and γ are randomly drawn (α ∼ N (−1, 0.25), β ∼ N (0.7, 1.), α ∼ N (0.25, 0.01)). We
generate series of 1024 points with a integration step δt = 0.01. Some sample trajectories are shown in
Figure 5.4.

We observe that the inversion scheme successfully recovers the input torque. However, we also see
that the state representing the mean velocity does not always match the derivative of the mean position.
This can be observed on second figure of the states trajectories, where the orange curve, representing
the mean velocity, is sometimes negative while the position, on the blue curve, is increasing (see for
instance at t = 6s). This is surprising because, mathematically, the expectation and derivation operator
commutes, thus the mean velocity should be the time derivative of the mean position. Hence, the DEM
algorithm can yield inconsistent trajectories. Indeed, we show in the next section that this problem is
not specific to our model but might be expected for most systems governed by classical mechanics.

3.3 Second-order models from classical mechanics, generalized coordinates, and
generalized fluctuations

Our simple dynamical model of the arm is based on rigid body dynamics which follows from classical
mechanics. We explain here why a particular care is necessary when using systems driven by classical
mechanics with generalized coordinates.

3.3.a Random fluctuations in rigid body systems

In classical mechanics, the total energy of closed systems is distributed between their position and
momentum, and exchanges between these two quantities and with the environment are described by
the equations of motion (Goldstein, 1980). Crucially, distinct closed systems interact through changes
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(a) Inputs

(b) States

(c) Outputs

Figure 5.4: Sample generated and inverted trajectories of the arm model in response to a cosine
torque. Generated input and state trajectories are in dashed strokes. The mean of the inverted
trajectories are in plain strokes. Color bands indicate the posterior standard deviation. Rows
corresponds to inputs (a), states (b), and outputs (c) trajectories. The inputs are the shoulder
angle (qS, radians) and the muscle torque (T, N.m). The states are the elbow angle (q, radians)
and the elbow angular velocity (dq, rad/s). The output is the elbow angle. The samples are
generated using T = α + β cos(γt) where (α, β, γ) is approximately (−0.75, 0.56, 0.31) for the
blue boxes, (−1.61,−0.65, 0.40) for the yellow boxes, and (−1.17, 0.57, 0.27) for the red boxes.
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of momentum, i.e. forces. Consequently, the random fluctuations in the environment of mechanical
systems act as random forces (Kerr & Graham, 2000). In other words, the environmental noise causes
random accelerations (random fluctuation in momentum, assuming constant mass) (K. Friston, 2019;
K. Friston & Ao, 2012). Therefore, introducing noise in a second-order system gives:

q̈ = f (q, q̇, u) + wa (5.24)

where u represents the system input (that enter through muscle forces) and wa represents random fluc-
tuation in acceleration7. For second-order systems, the initial value problem is solved by transforming
systems in first-order systems with twice more state variables, thus, Eq. (5.24) is transformed in:

{
v̇ = f (q, v, u) + wa

q̇ = v + wv
(5.25)

where the system states are its position q and velocity v. Crucially, the random fluctuations in velocity
wv have zero variance because random fluctuations enter the system as random accelerations exclu-
sively. This is important because in the DEM algorithm all states are treated as random variables.

3.3.b Problem statement

Using the DEM algorithm with our arm model, or with any other system, requires that we embed
the model in generalized coordinates. Using two generalized coordinates is sufficient to highlight our
problem. With two generalized coordinates, the model from Eq. (5.25) is described by nine equations:

y = q + zy q̇ = v + wv v̇ = f (q, v, u) + wa

y′ = q′ + z′y q̇′ = v′ + w′v v̇′ = ∂q f q′ + ∂v f v′ + w′a

y′′ = q′′ + z′′y q̇′′ = v′′ + w′′v v̇′′ = ∂q f q′′ + ∂v f v′′ + w′′a

These nine equations describe the conditional part of our generative model (the other part being the
priors). The first column corresponds to the model output in generalized coordinates. The second
and third column gives the evolution of the position and the velocity in our (generalized) model. The
notation might appear surprising and reads as follows. Using q̇′ as an example, q̇′ defines a stochastic
differential equation which models the distribution of the first generalized derivative q′ of the position
q conditioned on the velocity v. The stochastic part of the equation is w′v, which is the first derivative of
the noise process wv.

The VFE of the model is the expectation of the complete data likelihood under our approximate
posterior density plus the entropy of our approximate posterior. Because we work under Gaussian
assumption, the entropy depends on the covariance only. Similarly, the complete data likelihood can be
divided in a part depending only on the covariances and another part depending on the means. We are
interested in a problem which concerns the means so we group all other terms under a single constant.
Let µq, µ′q, µ′′q be the posterior means of the generalized position, µv, µ′v, µ′′v the posterior means of the
generalized velocity, and let f̄ , f̄ ′, f̄ ′′ be the generalized accelerations computed by our model at the
current mean position and velocity (i.e. f̄ ≡ f (µq, µv, 0)). We can use these posterior means to evaluate

7Note that the environmental noise (with standard deviation σ) enters the equation weighted by the inertia of
the system (i.e. the standard deviation of ηq is σ/(mL2))



3. On modelling the arm 81

the VFE:

F(t) =
1
2
(y− µq)2

σ2
z

+
1
2

(y′ − µ′q)2

α1σ2
z

+
1
2

(y′′ − µ′′q )2

α2σ2
z

+
1
2

(µ′q − µv)2

σ2
v

+
1
2

(µ′′q − µ′v)2

β1σ2
v

+
1
2
(µ′v − f̄ )2

σ2
a

+
1
2
(µ′′v − f̄ ′)2

γ1σ2
a

+ const (5.26)

where the important terms for our problem are on the second line of the VFE (Eq. (5.26)). The evolution
of the states in the DEM scheme follow a gradient descent on the VFE, which means that the differential
equations that are effectively integrated during the D-step are of the form

d
dt

µx = µ′x − ∂µx F (5.27)

Taking the mean velocity µv as an example, its evolution through the inversion scheme is governed by
the differential equation:

d
dt

µv = µ′v − ∂µv F = µ′v +
∂ f
∂v

µ′v − f̄
σ2

a
+

µ′q − µv

σ2
v

(5.28)

Here, we see that the consistency of having the mean velocity µv being the first derivative of the mean
position µ′q appears as a “target” that is tracked with a time constant σ2

z . This is not a problem if we can
guarantee that µv converges quickly to µ′q. Therefore, if we want the solution to remain consistent over
time, we need to have σ2

v << σ2
a . Similarly, for the equation of µ′q:

d
dt

µ′q = µ′′q − ∂µ′q F = µ′′q +
y′ − µ′q

α1σ2
y

+
∂ f
∂q

µ′′v − f̄ ′

γ1σ2
a
−

µ′q − µv

σ2
v

(5.29)

There, we have to guarantee that σ2
v << γ1σ2

a and σ2
v << α1σy. There are technical reasons that make

this solution undesirable. When working with systems under classical mechanics, we have generally a
good confidence in the state equations and would assume that a great part of the observed unexplained
variability comes from the inputs (for instance, the muscle forces in our model). Thus, we will generally
have σ2

a greatly smaller than the input variance. This results in another inequality to satisfy and implies
that σ2

v would need to be extremely small. This leads to a numerically unstable problem because σ2
v

appears both as a denominator and in logarithms in the VFE. Even in the case where σ2
a is not small,

we still need to make sure that σ2
v is small with respect to all other variances of the model to ensure that

µv converges quickly to µ′q. It is important to remember that some variances may need to be estimated
during the M-step. Therefore, guaranteeing at all time the internal consistency of the solutions is far
from being trivial.

Now, let’s highlight a second problem that appear with second-order systems. Let assume that the
current posterior means are consistent, i.e. µv = µ′q, µ′v = µ′′q . Plugin in Eq. (5.28) yields:

d
dt

µv = µ′v +
∂ f
∂v

µ′v − f̄
σ2

a
(5.30)

Similarly, replacing in Eq. (5.29) gives:

d
dt

µ′q = µ′v +
y′ − µv

α1σ2
y

+
∂ f
∂q

µ′′v − f̄ ′

γ1σ2
a

(5.31)

Subtracting the two equations gives:

d
dt
(µ′q − µv) =

y′ − µv

α1σ2
y

+
∂ f
∂q

µ′′v − f̄ ′

γ1σ2
a
− ∂ f

∂v
µ′v − f̄

σ2
a

(5.32)

=
y′ − µv

α1σ2
y

+
∂ f
∂q

∂F
∂ f ′
− ∂ f

∂v
∂F
∂ f

(5.33)
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We see that the derivative is not necessarily zero, thus having a consistent estimate is not sufficient for
the estimates to remain consistent. Importantly, we observe that first term is due to the fact that the
mean velocity µv is not involved in predicting the first derivative of the observation y′, whereas the
first derivative of the mean position µ′q is. In the following, we use this observation to present a simple
workaround that partly address the consistency problem.

3.3.c Workaround and perspectives

To summarize, the DEM scheme as introduced in (K. J. Friston et al., 2008) does not provide consis-
tent solutions for dynamical systems of the second (and higher) order. This phenomena is especially
problematic in the case of systems derived from classical mechanics for which the random fluctuations
create random accelerations only. The inconsistency of the solutions partly due to the fact that interme-
diate states are considered as random variables. The intuitive solution of setting their variance to a very
small value is not sufficient to guarantee the consistency of the scheme. Finding a systematic way to
guarantee the consistency of the solutions for second order dynamical systems could be an interesting
update to the DEM algorithm8. We believe that this may be done analytically by using the two first
generalized coordinates (µq and µ′q) to predict the acceleration.

We propose a simple workaround for this problem. The idea is to artificially augment the obser-
vation y with a fake observation of its velocity y′ with a variance α1σ2

y . This solution makes the term
(y′ − µv)/(α1σ2

y ) cancel in Eq. (5.33), so the derivative of the internal consistency error is simply

d
dt
(µ′q − µv) =

∂ f
∂q

∂F
∂ f ′
− ∂ f

∂v
∂F
∂ f

which we assume to be small9. This solution does not require any modification to the DEM algorithm.

To validate experimentally our proposed solution, we generate samples trajectories using a cosine
input torque and estimate the mean state trajectories, with and without the virtual velocity observation.
The velocity is computed using finite differences on the position trajectories. The output variance of the
velocity is set to the variance of the position scaled by a factor 1/(2s2), where s is the smoothness of
the output noise process (here, 1/8). This follows from the variance of the velocity of a process with
Gaussian autocorrelation (see (K. J. Friston et al., 2008), Eq. 53). 8 samples of 1024 points are generated
for 8 cosine frequencies between 0.5Hz and 2Hz. For each sample, we compute the mean squared error
between the first generalized coordinate of the mean position µ′q and the mean velocity µv. Results are
presented in Figure 5.5. We see that the adding a velocity observation scales down the mean squared
internal consistency error by a factor 10−5. In addition, it appear that the correction decreases the effect
of the frequency of the input cosine on the consistency error.

We emphasize that the proposed workaround does not completely solve the consistency problem.
Our concern is that the filtering equations of the D-step that appear in DEM are indeed found in both
generalized filtering (K. Friston et al., 2010) and active inference (Parr et al., 2022). Finding an analytical
solution to this problem is beyond the scope of this research work but is an important question that
remains to be solved.

8Indeed, the equations of the D-step are also governing the filtering schemes in generalized filtering (K. Friston
et al., 2010) and active inference (Parr et al., 2022), thus this problem also appears in these frameworks.

9Reducing the term ∂ f
∂q

∂F
∂ f ′ −

∂ f
∂v

∂F
∂ f is not trivial, although its symmetry reminds us of Lie brackets. It seems to

quantify the degree of noncommutativity of the position and velocity in computing the VFE flow with respect to
the velocity. Tools from differential topology might be helpful in analyzing this term.
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Figure 5.5: Mean squared error between the first derivative of the position in generalized co-
ordinates and the mean velocity. “Uncorrected” bars corresponds to using the DEM algorithm
with observed position only. “Corrected” bars corresponds to solution with observed position
and velocity.

4 On modelling musculo-spinal loops

4.1 Modelling the muscles

We use Hill’s muscle model (Hill, 1938) to model both biceps and triceps. The formulation used here
derives from (Desplenter & Trejos, 2018). Hill’s muscle model is composed of a contractile element and
a elastic elements. The force is given by:

FRTE = (FMCE + FMEE) cos
(

l0 sin(φ0)

l

)
(5.34)

where the force of the muscle contractile element FMCE depends on muscle activation, length, and ve-
locity:

FMCE = aFmax fl(l) fv(v) (5.35)

The functions fl and fv correspond to force-length and force-velocity relationships:

fl(l) = exp
(
− (l − l0)2

(Wl0)2

)
fv(v) =


vmax + v
vmax − v

A
if v < 0

gmaxv + cd
v + cd

otherwise.
cd =

vmax A(gmax − 1)
A + 1

(5.36)

where l0 is the optimal muscle length, W is a shape parameter, vmax is the maximal velocity, A and cd
are shape parameters, and gmax is the maximal eccentric concentric force. The force of the muscle elastic
element FMEE is given by:

FMEE =

{
k1(l − lslack) if l < lslack

k1(l − lslack) + k2(l − lslack)
2 otherwise.

(5.37)

where lslack is the slack length of the muscle, and k1 and k2 configure the slack elasic response. Note that
the model per se is not dynamic: we can directly compute the force from the length and linear velocity
of the muscle and the motoneuron activity. However, the rising time of the motoneurons activity is
usually modeled with a linear differential equation with time constant τact.
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4.2 Modelling the spinal control loops

4.2.a Type Ia and Ib afferents model

Muscle afferents provide sensory feedback on the muscle configuration (Bear et al., 2020). We use the
model of afferents given by (Teka et al., 2017) and adapted from (Prochazka, 1999). The firing rate
of afferents sensory fibers is modeled by two linear models. Type Ia afferents capture the strain of
the muscle spindles located inside the muscle and provide feedback on several muscular states, in
particular the muscle length (Bear et al., 2020, Ch. 13). The dynamics of muscle spindles is neglected
here. The firing rate of type Ia afferents depends on muscle length and velocity and on motoneurons
activity (Teka et al., 2017):

Ia = kv
v

vmax
+ kl

l − 0.2l0
l0

+ kaa + const (5.38)

Type Ib afferents capture the strain in the Golgi tendon organs located at the muscle extremities and
provide feedback on the muscle force (Bear et al., 2020, Ch. 13). Their firing rate is proportional to the
muscle force (Prochazka, 1999), and modeled by the linear relationship (Teka et al., 2017):

Ib = kF
F− 0.1Fmax

Fmax
(5.39)

4.2.b A model of the spinal cord

Using a model of the spinal cord is crucial for a neuromusculoskeletal model because it incorporates
several important neuronal connections that are necessary to generate natural movements (Li et al.,
2015). For instance, the activity of type Ib afferents (related to force) inhibits the alpha motoneurons that
causes muscle contraction (Bear et al., 2020, Ch. 13, Fig. 13.24). This feedback loop naturally constrains
the muscle force. Another example is the gamma loop which enables length-control. The activation of
alpha motoneurons causes contraction of muscle fibers which reduces the length of the muscle spin-
dle and therefore deactivate the type Ia afferents. This causes the activation of gamma motoneurons
because type Ia afferents have inhibitory connection to gamma motoneurons in the spinal cord (Bear
et al., 2020, Ch. 13, Fig. 13.23). The spinal cord is also responsible for the reciprocal inhibition of antag-
onist muscles: contraction of a muscle (e.g. the biceps brachii) causes the relaxation of the antagonist
muscle (e.g. the triceps brachii). This is due to the presence of an inhibitory interneuron between type Ia
afferents and alpha motoneurons of the antagonist muscle (Bear et al., 2020, Ch. 13, Fig. 13.25).

We use here a model based on the model of the spinal cord proposed in (Hao et al., 2013; Li et
al., 2015) and depicted in Figure 5.6. The model is appealing because most of the spinal circuitry
is described with simple relationships between normalized neuronal activations. The model inputs
are normalized neuronal activities descending from the motor cortex and divided in six variables:
αd, αst, αsb, γd, γst, γsb. The α and γ variables respectively target alpha and gamma motoneurons. The
activities are assumed to configure either the static configuration (subscript s) or the dynamic state (sub-
script d). The static activities target either the biceps brachii muscle (subscript b) or the triceps brachii
muscle (subscript t). In contrast to static variables, dynamic variables are described only with two vari-
ables because of the equality constraints αd = αdb = αdt and γd = γdt = 1− γdb. Our model is slightly
different from (Li et al., 2015). First, we remove the dynamics of the pool of α motoneuron because it al-
ready features in our muscle model. Second, we did remove the noise input to the pool of α motoneuron
because we are working directly with distribution. The resulting model gives the normalized activities
of the triceps and biceps motoneuron pools (resp. YMNt and YMNb). It uses directly the afferents activity
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Figure 5.6: A model of the spinal cord. Reproduced with permission from (Li et al., 2015).

Itr.
a , Itr.

b (from triceps) and Ibi.
a , Ibi.

b (from biceps).

propriospinal neurons activity

{
YPNt = αd − dtγd + at Itr.

a

YPNb = αd − db(1− γd) + ab Ibi.
a

(5.40)mt = αst+YPNt
1+gt(αst+YPNt)

mb = αsb+YPNb
1+gb(αsb+YPNb)

(5.41)

α motoneurons activity

{
YαMNt = (1 + st Itr.

a − rt Ibi.
a − bt Itr.

b )mt

YαMNb = (1 + sb Ibi.
a − rb Itr.

a − bb Ibi.
b )mb

(5.42)

The terms dt and db configure the gain of the dynamic γd input to the propriospinal neural pools.

4.3 Face validity

We generate some data with the model of the spinal cord, two Hill’s muscles, and the arm dynamics.
The four models are integrated in a single level of the hierarchical model, as discussed more in depth
thereafter. At the second level, we used the pendulum equations to simulate a value of γd oscillating
around 0.5. Thus, omitting noise terms, γd follows the equation:

γd(t) = 0.5 + u cos(2π f t)

where the parameters u = 0.3 and f = 0.5 where introduced to model the amplitude and frequency
of the oscillations. Other model parameters are presented in Appendix 2. We also use parameters to
set the static values of γsb, γst, αsb, αst. These parameters were tuned manually. Alternatively, one
could configure the static “resting pose” for the arm and use DEM to invert the model and estimate the
necessary values of the static parameters.

We generate a trial of 1024 points (10.24s). Results are presented in Figure 5.7. We observe that
varying the value of γd is sufficient to generate movement. In particular, we see that the normalized
activations of the biceps α motoneurons and triceps α motoneurons are conversely modulated. This is
the expected behavior: the spinal circuitry handles the reciprocal inhibition of antagonist muscles.
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(a) Spinal cord inputs

(b) Motoneurons

(c) Elbow

(d) Afferents

Figure 5.7: Sample trajectories for the spino-musculo-skeletal model. The first row represent
the variables of the spinal model, where a ≡ α and g ≡ γ. On the second row are the αMN

activities. The third row contains the model output, i.e. the angle and angular velocity of the
elbow joint. On fourth row are the afferents variables.
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4.4 Closing the loop: the problem with hierarchical models

When introducing the functions of the spinal cord, we indicated that several control loops underpinning
reflex arcs were implemented by the spinal circuitry. In particular, we mentioned that muscle afferents
where particularly useful in enabling closed-loop control of some muscular variables such as force or
length. In this section, we emphasize problems due to closed loops.

DEM is essentially built on hierarchical models. The directed acyclic nature of hierarchical models
make the predictions flow from higher-hierarchical levels to lower-hierarchical levels. In other words,
propagating through the hierarchy is sufficient to evaluate or to invert the model. The hierarchical
structure is convenient to work with because it breaks down a complex generative model into a chain
of simpler ones. In addition, it allows to investigate the properties of each subsystem independently
from the others. In other words, we can estimate the first level variables from the data, and then use the
posterior of the first level to estimate the second level, and repeat this process throughout the hierarchy
(K. J. Friston et al., 2016). Thus, we can estimate each model individually and do not need to re-estimate
the lower level models. In particular, we can investigate hypothesis about higher-level models (e.g.
the functional form of the cortico-spinal connections) without having to re-estimate the lower-level
model parameters (e.g. the weight or length of the forearm)10. In other words, hierarchical structure is
important from a computational and practical perspective because it allows to decompose the problem
of inverting complex models constructed under different hypotheses.

The limitation is that closed-loop mechanisms, which pervades biological systems, do not fit to
the directed structure of hierarchical models. For instance, we used a single “spino-musculo-skeletal”
model because the musculospinal loop links the spinal and muscle models and the muscles length and
velocity depend on the elbow angle and velocity. In addition, if we were to model sensorimotor cortical
loops, then we would need to formulate a single “cortico-spino-musculo-skeletal” model. In summary,
although hierarchical models allow to break down complex systems in simpler components, we need
to use them on systems which do not comply to their structure. This stands as an inherent limitation of
using hierarchical models for complex systems.

5 On modelling cortical columns

5.1 Time-resolved inversion of neural mass models

Neural mass models can be used to model the electric potentials measured in electrophysiology (Jansen
& Rit, 1995). Neural masses have been used to model EEG signals during epilepsy (Grimbert & Faugeras,
2006) but also evoked electrophysiological responses to stimuli (David & Friston, 2003). In the later case,
the response is mostly governed by a large change in the deterministic input. In the general case, the
input of the neural mass model is noise that represents unmodeled background activity from other
cortical areas. In that case, the evolution of neural mass models is essentially driven by noise. When
noise drive the system, we cannot directly use the equations of a neural model model as equations of
a dynamic model in DEM. Indeed, trying to do so would imply to estimate the timecourse of the in-
put noise, which is unreasonable. Therefore, the problem of inverting the electrophysiological response
must be formulated differently.

We describe a simple approach to the problem based on (Jafarian et al., 2021; R. Moran, 2015; R. J.
Moran et al., 2007). The core idea is to decouple the dynamics of fast neuronal variables from the
dynamics of the slow physiological parameters. It is assumed that the slow parameters govern the
fixed points of the fast variables. Following from the center manifold theorem, the dynamics of the fast
variables is linearized at the fixed points. Because the fast variables are linearized, we can compute their
response function in the operational domain and thus compute the spectral representation of the output

10This is due to recent advances on parametric empirical Bayes: when generative models differ only by their
priors, we only need to invert the model once, and we can then reuse the model to compute the VFE under a
different set of priors (see (K. J. Friston et al., 2016), Eq. 10).
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from the spectrum of the input. Hence, we can compute a complex multivariate normal distribution in
the spectral domain which is parameterized by the slow variables. The complex multivariate normal
distribution is taken as the conditional distribution of a windowed Fourier transform of the EEG signal,
and used to compute a VFE. (Jafarian et al., 2021) proposes to test hypotheses about the evolution of
parameters through time using parametric empirical Bayes. A model of spectral responses is inverted
for each time window, which yields a series of posterior distribution of parameters. Modeling of the
between-window evolution of slow variables is performed from the series of posterior distributions.

In modeling arm movements, we have to deal with a dynamical model of the arm and muscles.
Therefore, although it is acceptable to assume that the neuronal responses are fast compared to the
dynamic of the (spino-)musculoskeletal model, we cannot divide the measurement time series in inde-
pendent windows. A possible approach is to specify a model of the slow variables dynamics in DEM.
The observation function of the system is the response function of the fast variables. We describe our
model more in details in the next section.

5.2 Neural mass model of spectral responses

We used here the neural mass model of spectral responses presented in (R. J. Moran et al., 2007) and
adapted for DEM. The model is obtained by linearizing a model of cortical columns found in (David
et al., 2006). The model is essentially similar to the classical Jansen-Rit model (Jansen & Rit, 1995) but
features additional populations that enable richer spectral output (in particular high-frequency activity,
see (David et al., 2006) for details). The fast variables (x) are governed by a set of linear equations which
depend on the slow variables (r): {

ẋ = A(r)x + B(r)u

y = C(r)x
(5.43)

where the matrices A, B, and C are given in 3.1. Transforming the system to the operational domain
using Laplace transform results in the following pair of equations{

sX = A(r)X + B(r)U

Y = C(r)X
(5.44)

where s = j2π f . The response function H(r, s) is given by

H(r, s) =
Y
U

= C(r)(sI− A(r))−1B(r) (5.45)

In practice, we select a set of specific frequencies ( f0, f1, . . . ) at which we want to evaluate the model
(here, 25 frequencies linearly spaced between 1 and 50Hz). We use the relationship s = j2π f to compute
the response at each frequency in function of input of each frequency (i.e. Y(j2π f ) = H(r, j2π f )U(j2π f )).
Thus, our observation model is h(r, u) ≡ (H(r, j2π f0)U(j2π f0), H(r, j2π f1)U(j2π f1), . . . ). Finally, the
total response model is {

ṙ = f (r, u)

Y = h(r, u)
(5.46)

The vector of slow variables contains the classical parameters of the neural mass models, such as the
time constants of the excitatory and inhibitory population (τe and τi), their gain He and Hi, the between
population couplings Ci. To show the influence of each parameter on the response spectra, the transfer
function plots from (R. J. Moran et al., 2007, Fig. 7) were reproduced with our implementation and
are presented in 3.2. In addition, we construct a simple example to show how this model can be used
with DEM. We let the dynamics of the slow variables be a simple exponential decay from twice their
default value to half their default value. We generate an input spectra with three frequency bands (resp.
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10Hz, 36Hz, 70Hz) and modulated the amplitudes of each band with a sinus with different frequencies
(resp. 0.1Hz, 0.2Hz, 0.3Hz). Complex spectra is obtained by multiplying the spectral amplitude with
a random phase (Schreiber & Schmitz, 1996). Hence, the model input was a complex time-frequency
spectra with 128 time points and 10 frequency points, as shown in Figure 5.8. As expected, we observe
that the spectral response change with time and tends to attenuate high frequency inputs. Therefore,
using the slow-fast decomposition approach should enable evaluating hypotheses on the continuous
changes in the parameters of neural mass models.

6 Conclusion and future work

In this chapter, we attempted to used a neuromusculoskeletal model with an advanced DEM scheme.
This challenging task allowed us to highlight some limitations of the DEM algorithm. While some
limitations are due to the numerical solvability of the problem, others are inherent to the problem of
modeling complex, multiscale systems.

In a first part of the chapter, we introduced the DEM algorithm as an extension of the Kalman filter.
We gave an overview of the algorithm, its pseudo-code, and a Python implementation. In addition, we
provided mathematical evidence supporting some claims made by the authors of the algorithm. The
authors claimed that filtering chaotic system in DEM was possible because of the introduction of gen-
eralized coordinates, that represent a trajectory using its value and its derivatives up to a defined order.
We show that the generalized coordinates formed indeed an embedding for the observed trajectory
from a strange attractor, as shown by a theorem by Takens (Takens, 1981). This motivate to use DEM
with nonlinear or chaotic systems.

In a second part of the chapter, we introduced subsets of our neuromusculoskeletal model and use
them to highlight and discuss issues of the DEM algorithm. We first introduced an arm model with two
degrees of freedom based on rigid body dynamics. In these models, the random fluctuations act only
as random forces and do not impact directly the velocity. Unfortunately, this is not feasible in DEM
which represents all variables as random quantities. We showed that setting the variance of random
fluctuations in velocity to a low value was not sufficient to guarantee the consistency of the solutions.
A workaround for this issue is to augment the observations with an observation of the velocity.

We then introduced a model of arm muscles and of the spinal cord. Control loops in the spinal cord
are responsible for important features of naturalistic movement. However, modeling these control loops
cannot be done using the hierarchical structure used in DEM. This is an inevitable issue because the
process that is modeled is not hierarchical. We think that nonhierarchical systems pervades biological
processes and that although quite convenient, the framework of hierarchical dynamical systems will
rarely be usable.

Third, we discussed the problem of modeling systems with different temporal scales. In the case of
modeling the brain activity during arm movement, we have dynamics at different scales: the cortical
activity evolve quickly with respect to arm movement. We presented an interesting approach based on
decoupling the slow and fast variables. More specifically, the dynamics of the fast variables is linearized
around fixed points determined by slow variables. This allow to compute the (linear) response function
of the fast system and to perform filtering in the spectral domain.

Although we identified some challenges in using complex model with the DEM algorithm, we do
not report any major limitations. In other words, a workaround or solution can be found for all the
issues that we encountered. Future work may leverage these results and focus on modeling of neuro-
spinal connections, identifying adequate priors, and inverting the complete model of elbow movements
from real data.
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(a) Input spectra

(b) Output spectra

(c) Slow variables

Figure 5.8: Continous changes in slow variables inducing changes in the spectral response
of an neural mass model. Parameters (c) follow an exponential decay. Parameters variation
changes the spectral response of the neural mass model (b), which attributes different weights
to different input frequencies.



Chapter 6

Discussion and conclusion

In this concluding chapter, we discuss more in depth some of the themes developed in this thesis.

1 Towards naturalistic experiments

When introducing the experimental setup used to collect arm motion data from our participants, we
mentioned that our setup aimed at reproducing “naturalistic” movement conditions. These movement
conditions were initially motivated by a specifically challenging application. We wanted to build a BCI
for whole-body human tracking that can later be used for BCI humanoid robot control. This applica-
tion inherently features a substantial environmental noise as compared to well-controlled neuroscience
experiments. Thus, reproducing movement conditions essentially aimed at building a reconstruction
model that remains useful outside of the laboratory setup. Succeeding in constructing such a model
would have implied finding robust features that distinguish clearly despite environmental perturba-
tion. This constitutes indeed a complex neuroimaging task!

During the two last decades, there has been an increasing research interest in studying the brain
in its natural environment (Maguire, 2012). Indeed, neuroscience has for long focused on studying
responses elicited by controlled stimuli. This has been criticized because the truth is that our environ-
ment features rich and complex stimuli (Nastase et al., 2020). Therefore, an increasing amount of works
are investigating the brain responses in ecologically plausible environments. For instance, neuroscien-
tists studied the brain during driving (Spiers & Maguire, 2006), free recall (Polyn et al., 2005), movie
watching (Hasson et al., 2004; Nishimoto et al., 2011) — which is incidentally at the seed of an exciting
emerging field, neurocinematics (Hasson et al., 2008).

Methods to investigate hypotheses from neuroimaging data of brain responses have been thor-
oughly studied in the case of simple stimuli. However, methods for studying the brain responses in
ecologically-plausible situations are still in their infancy. This is due to mainly three reasons. First,
natural stimuli are multimodal; thus, they are complicated to model and elicit multimodal responses.
Second, subjects are actors in natural situations, meaning that they do not only respond to stimuli but
also behave (Krakauer et al., 2017). Third, naturalistic stimuli evolve in time; hence, we must consider
entangled responses to different stimuli. Therefore, studying the brain in natural situations is a quite
challenging.

A systematic, statistically-valid approach is still to be identified to evaluate hypotheses during
naturalistic experiments. In particular, the nature of measured signals may sometimes preclude clas-
sical analysis and lead to misinterpretations of the results. For instance, some works used correla-
tion coefficients to assess the possibility of reconstructing movement from EEG signals, e.g., citebrad-
berry2010reconstructing,ofner2012decoding. This approach is appealing because theoretically simple.
However, we showed in Chapter 4 that the distribution of the correlation coefficient degenerates for
autocorrelated time series. Importantly, we also showed that the correlation coefficient must be in-
terpreted conditionally to the smoothness of the series. The corollary is that reporting a correlation
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coefficient alone might lead to a wrong interpretation on its significance. In addition, further researches
are required to evaluate whether averaging correlation coefficients from series with different smooth-
ness is well defined. To sum-up, despite their ease of use, evaluating hypotheses with simple statistical
tools requires a particular care with the kind of series found in naturalistic experiments. Therefore,
using more advanced and more robust statistical methods might be a good alternative to ensure the
statistical validity of the results.

From first principles, a systematic way of evaluating hypotheses is to model the subject responses
under the different hypotheses. The Neyman-Pearson lemma ensures us that the strongest statistical
test is always to compare models on their ability to predict our observations (Neyman & Pearson, 1933).
Therefore, we can claim that investigating hypotheses about physiological responses to natural stimuli
requires to build generative models of the responses under the different hypotheses.

In Chapter 5, we have tried to model subject responses in a non-constrained movement task. Our
results suggest promising perspective to modeling multimodal responses in non-conditioned settings.
However, although our movement task is simple, as compared to everyday tasks, we yet faced impor-
tant problems in modeling it. In particular, we showed that even using an advanced Bayesian method,
there remain challenges in inverting complicated models. While some of these problem concern techni-
cal issues and might be solved rapidly, for instance inverting models from classical mechanics, other are
more fundamental and require to cope with the nature of the modeled phenomena, for instance circular
causality and multiscale properties (Breakspear, 2017; D’Angelo & Jirsa, 2022; Haken, 2006).

2 Modeling multiscale systems

The multiscale properties are pervasive in complex systems such as biological systems (Lesne, 2013),
and the brain is no exception (D’Angelo & Jirsa, 2022). These multiscale properties are characterized
by a complex evolution at mixed scales of both temporal and spatial dimensions. Importantly, the
mean field argument, which arises from statistical physics and allows to “zoom-out” by averaging
interactions, might fail to capture the circular dependence between different scales (Lesne, 2013). Even
under mean field assumptions, modeling multiscale problems remains complicated.

Approaches based on phase transitions proved to be a useful tool in modeling the temporal multi-
scale nature of the brain (Haken, 2006). As we mentioned during the introduction, (Haken et al., 1985)
proposed to model hand synchronization as stable modes of a fast dynamics controlled by slow param-
eters. More recently, Jirsa and colleagues (Jirsa et al., 2014) introduced the Epileptor, a multiscale model
of seizure dynamics based on the concept of phase transitions governed by slow dynamical variables.
These methods provide an interesting approach to multiscale modeling. However, because natural
stimuli elicit multimodal responses, it is plausible that part of the physiological response is driven by
unmodeled exogenous variables, i.e., noise.

In Chapter 5, we saw that when timescale decoupling can be assumed, approaches based on the
center manifold theorem could prove to be useful to model multiscale electrophysiological responses,
even when the response is partially driven by noise. In particular, we saw that the response of the fast
variables could be used as the observation function for a state-space model of the dynamics of slow
variables. We showed that this enables to model continuous changes in slow variables while keeping
the rich spectral content due to the fast dynamics.

A perspective for the slow-fast decoupling approach is to replace or extend the spectral output with
statistical measures of the dynamical complexity. In Chapter 3, we emphasized that statistical measures
of dynamical complexity could complete the spectral analysis for nonlinear dynamical systems. Par-
ticularly, this motivated the use of windowed recurrence quantification analysis (WRQA). The results
obtained on Chapter 3 show that WRQA might be appealing to follow the evolution of parameters
governing the dynamics of fast variables. In addition, we showed in Chapter 2 that RQA measures
could be robustly estimated under practical conditions. More generally, we argue that using windowed
estimates of some sufficient statistics of dynamical complexity might improve the reconstruction of the
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trajectories of slow variables.
RQA measures might be a step towards these sufficient statistics. However, RQA measures are

intercorrelated (Webber & Marwan, 2015) and it is therefore complicated to understand how changes in
the dynamics impact each measure. This shortcoming could be addressed by constructing analytically
the measures for models of the system under study. In other words, if we can relate the value of RQA
measures to some parameters of the system’s model, then we do not need to understand changes in
RQA measures because we can directly work with changes in the parameters.

An effort has been made to develop parametric approaches to RQA (Ramdani et al., 2016; Ram-
dani et al., 2018), with successful applications to electroencephalographic data (Ramdani et al., 2021).
We think that generalizing this approach to more advanced biophysical systems such as neural mass
models is a promising perspective. In fact, the approach taken by spectral neural mass models, i.e.,
linearizing the dynamics and deriving the spectral response to the noise spectrum, might be leveraged
by building models of the RQA measures of neural masses.

3 A systematic approach to behavior modeling

Beyond the complexity of dealing with multiscale properties, we need a systematic approach to model
the behavioral aspect of subject responses to natural stimuli. Indeed, we actively seek for information
in unconditioned settings. An example can be found in vision, the gaze of subjects actively parses its
environment (Parr, 2019). Similarly, during our movement task, we might assume that the subject ac-
tively tried to follow a virtual target. Our motivation might be to investigate whether different “control
schemes” may explain the variability of the movement trajectories, as reported in Chapter 3. For in-
stance, we may want to evaluate the hypothesis that subjects performing fast, cycle movements used
a different control strategy than those performing slow, discontinuous movements. Evaluating this
hypothesis requires to model the subject proactive behavior in tracking its virtual target.

Fortunately, a general theory of behavior has started to gain interest in the scientific community.
During the last decade, the free-energy principle (K. Friston, 2009) and active inference (Parr et al., 2022)
were considered as possible explanations for sentient behavior. The free-energy principle states that
pertaining systems, such as the living ones, use their internal states to minimize their variational free
energy and thus build a model of the hidden causes of their perceptions (K. Friston, 2010). In addition,
under this principle, living systems also use their active states – that is, states that have an influence
on the environment – to reduce their uncertainty about the world. These concepts have been both
acclaimed and criticized by the scientific community (see, e.g., (Aguilera et al., 2021) and the numerous
related responses).

Regardless whether biological systems actually comply to it, the free-energy principle provides
an appealing framework to build models of behavior (Parr et al., 2022). More specifically, the free-
energy principle and active inference are interesting from a neuroimaging perspective because they
provide a systematic way to obtain generative models of behavior. This property has been used to build
generative models for active vision (Parr, 2019; Parr et al., 2021). In addition, the authors used their
models to evaluate different hypotheses about the connectivity between regions of the brain during
active vision (Parr et al., 2019).

We believe that the active inference framework will allow to derive behavioral models of free move-
ments under different hypothesized motor control schemes. Evaluating hypotheses will be possible
using Bayesian model comparison (K. J. Friston et al., 2016). Importantly, behavioral models derived in
the active inference framework will feature the limitations discussed in Chapter 5, in particular circular
causality and multiscale properties. Circular causality underpins motor control loops. Movement con-
struction involves several brain regions and ultimately project on a few neurons in the spinal cord (Bear
et al., 2020); therefore, movement production involves multiple spatial scales. In addition, movement
and neuronal activity span different time scales. We showed that modeling these properties is not triv-
ial. Therefore, active inference gives promising tracks for the future of neuroimaging, but important



94 Chapter 6. Discussion and conclusion

questions related to modeling complex systems are yet to be solved.
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Appendix A

Mathematical derivation of the optimal
radius

1 Volume of generalized balls

Let Bp,d
r (x) be an open d-ball of size r in an Lp space, i.e. Bp,d

r (x) = {y ∈ Rd : ‖x− y‖p < r}. We write

τp,d = λ(Bp,d
1 ) the volume of the generalized unit ball, where λ is the Lebesgue measure. The volume

of a generalized ball of radius r is λ(Bp,d
r ) = τp,drd. The general formula for the volume of a generalized

unit ball is ((X. Wang, 2005)):

τp,d =
(2Γ( 1

p + 1))d

Γ( d
p + 1)

(A.1)

which can be simplified for common Lp spaces:

τ1,d =
2d

d!
τ2,d =

π
d
2

Γ( d
2 + 1)

τ∞,d = 2d (A.2)

Γ denotes Euler’s gamma function with the property Γ(z + 1) = zΓ(z).

2 Derivation of a reference rule for the uniform kernel

The expression of the bandwidth minimizing the Asymptotic Mean Integrated Squared Error is ((Sil-
verman, 1986), Eq. 4.14 and 4.15):

hAMISE =

[
W1(K) · d

n · [W2(K)]
2 ·W1(∇2 f )

]1/(d+4)

(A.3)

where Wi are the functionals W1(g) =
∫

Rd g2(u)du and W2(g) =
∫

Rd u2
1g(u)du, where u1 is the first

component of u ∈ Rd (as the kernel is symmetric, it is sufficient to consider only u1 in W2). We compute
W1 for the uniform kernel:

W1(K) =
∫

Rd

K2(u)du =
∫

Bp,d
1 (0)

(
1

τp,d

)2

du =
1

τp,d
(A.4)

W1(∇2ρ) for a d-dimensional Gaussian reference distribution φ is given in (Silverman, 1986, Eq. 4.13):

W1(∇2ρ) ≈W1(∇2φ) = (2
√

π)−d
(

d/2 + d2/4
)

(A.5)
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Then, W2 in the 1-dimensional case:

W2(K) =
∫
R

u2K(u)du =

1∫
−1

u2

τp,1
du =

1
3

(A.6)

For d ≥ 2, using ui to denote the i-th coordinate of u ∈ Rd:

W2(K) =
∫

Rd

u2
1K(u)du

=
1

τp,d

∫
R

u2
1

 ∫
Rd−1

Θ(1− (|u1|p +
d

∑
i=2
|ui|p)1/p)dud . . . du2

 du1

Changing to spherical coordinates~u2:d = (η,~ξ) with an orientation vector~ξ and a radius η = (∑d
i=2 |ui|p)1/p

and :

W2(K) =
1

τp,d

∫
R

u2
1

∞∫
η=0

∫
Rd−2

Θ
(

1− (|u1|p + ηp)1/p
)

d~ξ dη du1

=
τp,d−1

τp,d

∫
R

u2
1

∞∫
η=0

(d− 1)ηd−2Θ
(

1− (|u1|p + ηp)1/p
)

dη du1

=
τp,d−1

τp,d

1∫
u1=−1

u2
1

(1−|u1|p)1/p∫
η=0

(d− 1)ηd−2dη du1

=
τp,d−1

τp,d

1∫
u1=−1

u2
1

(
(1− |u1|p)1/p

)(d−1)
du1

=
τp,d−1

τp,d

2
3 2F1

(
3
p

,
1− d

p
;

3 + p
p

; 1
)

where 2F1(a, b; c; z) is the Gaussian hypergeometric function. Finally, using the fact that
τp,d−1

τp,d
=

Γ( d
p +1)

2Γ( 1
p +1)Γ( d−1

p +1)
,

(see Appendix A.1) and the expansion of 2F1 at z = 1 (Olver et al., 2020, Eq. 15.4.20), we can further
simplify:

W2(K) =
τp,d−1

τp,d

2Γ
(

1 + 3
p

)
Γ
(

d−1
p + 1

)
3Γ
(

d+2
p + 1

) =
Γ
(

d
p + 1

)
Γ
(

1 + 3
p

)
3Γ
(

d+2
p + 1

)
Γ
(

1
p + 1

) (A.7)

We then derive the reference rule by plugging the appropriate values in Eq. (A.3). First, we derive
the expression in the simple 1 dimensional case, which is independent from p:

ropt =
[
12
√

π
]1/5 · ŝ · n−1/5 ≈ 1.843 · ŝ · n−1/5 (A.8)

The general formula for d ≥ 2 is more complex:

ropt =

 4d(2
√

π)2

τp,dd(d + 2)
×

(
3Γ
(

d+2
p + 1

)
Γ
(

1
p + 1

))2

(
Γ
(

d
p + 1

)
Γ
(

1 + 3
p

))2


1/(d+4)

· ŝ · n−1/(d+4)

=

4(2
√

π)d
(

3Γ
(

d+2
p + 1

)
Γ
(

1
p + 1

))2

τp,d(d + 2)
(

Γ
(

d
p + 1

)
Γ
(

1 + 3
p

))2


1/(d+4)

· ŝ · n−1/(d+4) (A.9)
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3 Simplification of the reference rule for common norms

We address the case p = 1:

ropt =

[
4(2
√

π)d (3Γ (d + 3) Γ (2))2

τp,d(d + 2) (Γ (d + 1) Γ (4))2

]1/(d+4)

· ŝ · n−1/(d+4)

=
(
(
√

π)d(d + 1) (d + 2)!
)1/(d+4)

· ŝ · n−1/(d+4) (A.10)

Then, the limiting case p→ ∞:

ropt =

[
4(2
√

π)d (3Γ (1) Γ (1))2

τp,d(d + 2) (Γ (1) Γ (1))2

]1/(d+4)

· ŝ · n−1/(d+4)

=

[
36(
√

π)d

d + 2

]1/(d+4)

· ŝ · n−1/(d+4) (A.11)

Finally the case p = 2:
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4(2
√
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))2

τ2,d(d + 2)
(
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))2
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=
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(
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)
( d
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(
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(
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(
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2
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2 )
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1/(d+4)

· ŝ · n−1/(d+4)

=

[
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(
d
2
+ 1
)
(d + 2)

]1/(d+4)
· ŝ · n−1/(d+4)

= 2

Γ
(

d
2 + 1

)
2

1/(d+4)

· ŝ · n−1/(d+4) (A.12)
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Additionnal figures for Chapter 3

Figure B.1: Typical independent components marked as muscular artifacts (from subject 2, 5,
and 6).
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Figure B.2: Normal Q-Q plot of the LMAX residuals for the multiple subjects model.
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Figure B.3: Normal Q-Q plot of the LMAX residuals for the multiple subjects model.
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Figure B.4: Multiple subject SPMs for several nonlinear complexity measures. Colormap
shows the value of the T statistics in scalp space (arbitrary units). Sensors with white circles
show significant negative correlation with the EMG features (p < 0.01, Bonferroni corrected).
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Figure B.4: Multiple subject SPMs for several nonlinear complexity measures. Colormap
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Figure B.5: RQA measures and Sampen of EEG and biceps EMG signals during right and left
arm movements. Colorbands indicates standard error. We observe a systematic contravariant
evolution of EEG and EMG signals: when a nonlinear measure of the moving arm EMG signal
increases (resp. decrease), the measure of the EEG signal on the primary motor cortex decreases
(resp. increases). In addition, we see that movement is associated with increased complexity of
the moving arm EMG signal (e.g. DET decreases, SAMPEN increases). In contrast, movement
is associated with decreased signal complexity of the EEG signal.
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Figure B.6: Multiple subject SPMs for several nonlinear complexity measures. Colormap
shows the value of the T statistics in scalp space (arbitrary units). Sensors with white circles
show significant negative correlation with the EMG features (p < 0.01, Bonferroni corrected).
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Figure B.6: Multiple subject SPMs for several nonlinear complexity measures. Colormap
shows the value of the T statistics in scalp space (arbitrary units). Sensors with white circles
show significant negative correlation with the EMG features (p < 0.01, Bonferroni corrected).
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Figure B.7: Multiple subject SPMs for several nonlinear complexity measures. Colormap
shows the value of the T statistics in scalp space (arbitrary units). Sensors with white circles
show significant negative correlation with the EMG features (p < 0.01, Bonferroni corrected).



Appendix C

Supplementary material for Chapter 4

1 Derivation of Welch-Satterthwaite approximation of some station-
ary processes

Consider a stationary process with absolutely decreasing autocorrelation ρ. We discretize ρ as ρk =

ρ(kε) with ε > 0 and 1 ≤ k ≤ n. Let Σ be the n× n Toeplitz matrix generated by ρ, i.e. Σij = ρ|i−j|. The
number of e.d.f.s given by the Welch-Satterthwaite approximation is

e.d.f. =
tr(Σ)2

tr(ΣΣ)
(C.1)

First, we observe that

tr(Σ)2 =

(
n

∑
i=1

ρ0

)2

= n2ρ2
0 (C.2)

and

tr(ΣΣ) =
n

∑
i=1

(
ρ2

0 +
n−i

∑
k=1

ρ2
k +

i−1

∑
k=1

ρ2
k

)
(C.3)

We shall prove that
1
n

tr(ΣΣ) ≈
∫ +∞

−∞
(ρ(τ))2dτ

The idea of the proof is to assume some order of decrease for the autocorrelation such that the contri-
bution of tail part of the autocorrelation becomes insignificant. In that case, most terms in tr(ΣΣ) Let
s = bn1/γc with γ > 1 and bxc is the integer part of x. We further assume that |ρk| ≤ αk−β with α > 0
and β > γ/2. We write

Si = ρ2
0 +

n−i

∑
k=1

ρ2
k +

i−1

∑
k=1

ρ2
k

and

Ms = ρ2
0 + 2

s

∑
k=1

ρ2
k

the sum appearing in Eq. (C.3). For s ≤ i ≤ n− s, we have

Ms ≤ Si < Ms +
i

∑
k=s+1

ρ2
s

For 0 ≤ i < s and n− s < i ≤ n, we simply notice that

0 ≤ Si < sρ2
0
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Thus, using
1
n

tr(ΣΣ) =
1
n

n

∑
i=1

Si

we have
n− s

n
Ms ≤

1
n

tr(ΣΣ) <
n− s

n
Ms +

s
n

ρ2
0 +

(n− 2s + 1)(n− 2s + 2)
2n

ρ2
s

where
(n− 2s + 1)(n− 2s + 2)

2n
ρ2

s ∝ n1−2β/γ

Observing that 1− 2β/γ < 0, we have

lim
n→+∞

1
n

tr(ΣΣ) = ρ(0) + 2
+∞

∑
k=1

ρ(kε) (C.4)

which leads to the desired result

lim
ε→0

lim
n→+∞

1
n

tr(ΣΣ) =
∫ +∞

−∞
(ρ(τ))2dτ (C.5)

Finally, replacing in Eq. (C.1) yields Eq. (4.21):

νWS =
tr(Σ)2

tr(ΣΣ)
=

n2ρ2
0

tr(ΣΣ)
≈ nρ2

0∫ +∞
−∞ (ρ(τ))2dτ

(C.6)

2 Additional figures
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Figure C.1: Sample executed and reconstructed movement trajectories, associated with low
p-values (first row) and high p value (second row). Trajectories are reconstructed with the
Kalman filter model.
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Figure C.2: p-value of the decoding accuracy of the Kalman filter model versus of mean and
standard deviation of movement cycles.
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Supplementary material for Chapter 5

1 Proof of the embedding theorem for generalized coordinates

Generalized coordinates of order p of a time series x are:

x̃(t) =



x(t)

x′(t)

x′′(t)

x′′′(t)

. . .


= lim

dt→0



x(t)

(x(t)− x(t− dt))/dt

(x(t)− 2x(t− dt) + x(t− 2dt))/dt2

(x(t)− 3x(t− dt) + 3x(t− 2dt)− x(t− 3dt))/dt3

...


(D.1)

= lim
dt→0

diag{



1

1/dt

1/dt2

1/dt3

. . .


} ·



1

1 1

1 2 1

1 3 3 1

...
. . .


· diag{



1

−1

1

−1

. . .


} ·



x(t)

x(t− dt)

x(t− 2dt)

x(t− 3dt)

...


(D.2)

Whence, generalized coordinates with order p are obtained by a linear transformation of the vector
(x(t), . . . , x(t − pdt)). The linear transformation has full rank as the product of two diagonal matrix
and a lower Pascal matrix (the determinant of a lower Pascal matrix is 1, see (Brawer & Pirovino, 1992)).
As the (linear) map from delay coordinates to generalized coordinates is invertible, it is a smooth dif-
feomorphism (J. M. Lee, 2013). Now, if x is the observation through a smooth map of the trajectory
of a dynamical system with a strange attractor with dimension n, then, from Takens theorem, an em-
bedding of the attractor can be constructed from delayed coordinates (x(t− 2ndt), . . . , x(t)) (Sauer et
al., 1991). Therefore, by composition, the attractor in generalized coordinates is an embedding of the
original attractor when p ≥ 2n.
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2 Parameter tables

Name Value Ref.

Body height 1.75

Relative forearm size 0.1648 (Drillis et al., 1964, Table I)

Relative upper arm size 0.1959 (Drillis et al., 1964, Table I)

Relative hand size 0.11465 (Drillis et al., 1964, Table I)

Relative humerus size 0.8

Body weight 70

Relative forearm weight 0.00762 (Drillis et al., 1964, Table II)

Relative upper arm weight 0.01373 (Drillis et al., 1964, Table II)

Relative hand weight 0.00361 (Drillis et al., 1964, Table II)

Constraints: Max elbow flexion 0.523599

Constraints: Max elbow extension 2.827433

g 9.81

Table D.1: Parameters of the skeletal model. All parameters with a dimension are in SI units.
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Name Value Name Value

Biceps insertion 0.02 Triceps insertion 0.02

Biceps tendon length 0.145 Triceps tendon length 0.155

Biceps muscle - Fmax 2874.67 Triceps muscle - Fmax 2397.12

Biceps muscle - l0 0.13 Triceps muscle - l0 0.15

Biceps muscle - φ0 0.0 Triceps muscle - φ0 0.2094

Biceps muscle - W 0.56 Triceps muscle - W 0.56

Biceps muscle - vmax 1.3 Triceps muscle - vmax 1.3

Biceps muscle - A 0.25 Triceps muscle - A 0.25

Biceps muscle - gmax 1.5 Triceps muscle - gmax 1.5

Biceps muscle - lslack 0.18 Triceps muscle - lslack 0.21

Biceps muscle - k1 10.0 Triceps muscle - k1 10.0

Biceps muscle - k2 10000.0 Triceps muscle - k2 10000.0

Biceps muscle - τact 0.625 Triceps muscle - τact 0.625

Table D.2: Parameters of muscle models. Muscle parameters are from (Desplenter & Trejos,
2018). Insertion and tendon length have been selected manually. All parameters with a dimen-
sion are in SI units.
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Name Value Name Value

Biceps gain - ab 0.1 Triceps gain - at 0.1

Biceps gain - db 1.0 Triceps gain - dt 1.0

Biceps gain - pb 0.0 Triceps gain - pt 0.0

Biceps gain - rb 0.1 Triceps gain - rt 0.1

Biceps gain - sb 0.2 Triceps gain - st 0.2

Biceps gain - gb 0.2 Triceps gain - gt 0.2

Biceps gain - bb 0.1 Triceps gain - bt 0.1

Table D.3: Parameters of the spinal cord model, from (Li et al., 2015).
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3 Spectral neural mass model

3.1 Equations

We put here the equations of the linearized neural mass model. The fast variables are driven by the
system

ẋ = Ax + Bu (D.3)

y = Cx (D.4)

where

A =



0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

−κ2
e 0 0 −2κe 0 0 0 0 κeHeγ1g 0 0 0

κeHeγig −κ2
e 0 0 −2κe 0 0 0 0 0 0 0

0 0 −κ2
i 0 0 −2κi 0 0 0 0 0 κiHiγ4g

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 −κ2
e −2κe κeHeγ3g 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 −κ2
i −2κi κiHiγ5g

0 0 0 0 0 0 0 1 0 0 −1 0


(D.5)

BT =

(
0 0 0 κeHe 0 0 0 0 0 0 0 0

)
(D.6)

C =

(
0 0 0 0 0 0 0 0 1 0 0 0

)
(D.7)

3.2 Transfer functions

We present here the reproduction of the results for the neural mass model of spectral responses, intro-
duced in (R. J. Moran et al., 2007). Similarly to the original article ((R. J. Moran et al., 2007, Fig. 7)),
we varied the parameters one by one, the other ones set to their default values, and plot the frequency
responses of the linearized model.
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(a) Excitatory time constant τe (ms) (b) Inhibitory time constant τi (ms)

(c) Excitatory maximum depolarization He (mV) (d) Inhibitory maximum depolarization Hi (mV)

(e) First coupling C1 (f) Second coupling 2 C2

Figure D.1: Change in spectral content with model parameters.
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(g) Third coupling 3 C3 (h) Fourth coupling 4 C4

(i) Fifth coupling 5 C5 (j) Rate to voltage gain ρ1

Figure D.1: Change in spectral content with model parameters.





Bibliography

Adler, R. J. (2010). The geometry of random fields. SIAM. (Cit. on pp. 48, 54).

Afyouni, S., Smith, S. M., & Nichols, T. E. (2019). Effective degrees of freedom of the pearson’s
correlation coefficient under autocorrelation. NeuroImage, 199, 609–625. https ://doi .
org/10.1016/j.neuroimage.2019.05.011 (cit. on pp. 5, 47, 51, 52, ix)

Aguilera, M., Millidge, B., Tschantz, A., & Buckley, C. L. (2021). How particular is the physics
of the free energy principle? Physics of Life Reviews. https://doi.org/10.1016/j.plrev.
2021.11.001 (cit. on p. 93)

An, K., Takahashi, K., Harrigan, T., & Chao, E. (1984). Determination of muscle orientations
and moment arms. Journal of biomechanical engineering, 106(3), 280–282. https ://doi .
org/10.1115/1.3138494 (cit. on p. 76)

Andreadis, I., Fragkou, A. D., & Karakasidis, T. E. (2020). On a topological criterion to se-
lect a recurrence threshold. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(1),
013124. https://doi.org/10.1063/1.5116766 (cit. on p. 24)

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indica-
tions of nonlinear deterministic and finite-dimensional structures in time series of brain
electrical activity: Dependence on recording region and brain state. Physical Review E,
64(6), 061907. https://doi.org/10.1103/PhysRevE.64.061907 (cit. on p. 22)

Antelis, J. M., Montesano, L., Ramos-Murguialday, A., Birbaumer, N., & Minguez, J. (2013).
On the usage of linear regression models to reconstruct limb kinematics from low fre-
quency eeg signals. PloS one, 8(4), e61976. https ://doi .org/10.1371/journal .pone.
0061976 (cit. on pp. 61, 66)

Aymerich-Franch, L., Petit, D., Ganesh, G., & Kheddar, A. (2016). The second me: Seeing the
real body during humanoid robot embodiment produces an illusion of bi-location. Con-
sciousness and cognition, 46, 99–109. https://doi.org/10.1016/j.concog.2016.09.017 (cit.
on pp. 3, vii)

Baker, S., Olivier, E., & Lemon, R. (1997). Coherent oscillations in monkey motor cortex and
hand muscle emg show task-dependent modulation. The Journal of physiology, 501(Pt
1), 225. https://doi.org/10.1111/j.1469-7793.1997.225bo.x (cit. on pp. 4, viii)

123

https://doi.org/10.1016/j.neuroimage.2019.05.011
https://doi.org/10.1016/j.neuroimage.2019.05.011
https://doi.org/10.1016/j.plrev.2021.11.001
https://doi.org/10.1016/j.plrev.2021.11.001
https://doi.org/10.1115/1.3138494
https://doi.org/10.1115/1.3138494
https://doi.org/10.1063/1.5116766
https://doi.org/10.1103/PhysRevE.64.061907
https://doi.org/10.1371/journal.pone.0061976
https://doi.org/10.1371/journal.pone.0061976
https://doi.org/10.1016/j.concog.2016.09.017
https://doi.org/10.1111/j.1469-7793.1997.225bo.x


124 Bibliography

Ball, T., Demandt, E., Mutschler, I., Neitzel, E., Mehring, C., Vogt, K., Aertsen, A., & Schulze-
Bonhage, A. (2008). Movement related activity in the high gamma range of the human
eeg. Neuroimage, 41(2), 302–310. https://doi.org/10.1016/j.neuroimage.2008.02.032
(cit. on pp. 4, 25, vii)

Bartlett, M. S. (1946). On the theoretical specification and sampling properties of autocorrelated
time-series. Supplement to the Journal of the Royal Statistical Society, 8(1), 27–41. https :
//doi.org/10.2307/2983611 (cit. on pp. 47, 51)

Bartlett, M. (1935). Some aspects of the time-correlation problem in regard to tests of signifi-
cance. Journal of the Royal Statistical Society, 98(3), 536–543. https://doi.org/10.2307/
2342284 (cit. on pp. 5, 47, 50, 51, ix)

Bayley, G., & Hammersley, J. (1946). The" effective" number of independent observations in an
autocorrelated time series. Supplement to the Journal of the Royal Statistical Society, 8(2),
184–197. https://doi.org/10.2307/2983560 (cit. on pp. 47, 48, 51)

Bear, M., Connors, B., & Paradiso, M. A. (2020). Neuroscience: Exploring the brain, enhanced edi-
tion: Exploring the brain. Jones & Bartlett Learning. (Cit. on pp. 4, 7, 39, 42, 67, 84, 93, viii,
x).

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4).
Springer. https://doi.org/10.5555/1162264. (Cit. on pp. 3, 54, 68, vi)

Bradberry, T. J., Gentili, R. J., & Contreras-Vidal, J. L. (2010). Reconstructing three-dimensional
hand movements from noninvasive electroencephalographic signals. Journal of neuro-
science, 30(9), 3432–3437. https://doi.org/10.1523/jneurosci.6107-09.2010 (cit. on pp. 3,
5, 61, 66, vii, ix)

Brawer, R., & Pirovino, M. (1992). The linear algebra of the pascal matrix. Linear Algebra and Its
Applications, 174, 13–23. https://doi.org/10.1016/0024-3795(92)90038-c (cit. on p. 115)

Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience 2017
20:3, 20, 340–352. https://doi.org/10.1038/nn.4497 (cit. on p. 92)

Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The timing mega-study: Com-
paring a range of experiment generators, both lab-based and online. PeerJ, 8, e9414.
https://doi.org/10.7717/peerj.9414 (cit. on p. 30)

Cao, L. (1997). Practical method for determining the minimum embedding dimension of a
scalar time series. Physica D: Nonlinear Phenomena, 110(1-2), 43–50. https://doi.org/10.
1016/s0167-2789(97)00118-8 (cit. on pp. 2, v)

Chapin, J. K., Moxon, K. A., Markowitz, R. S., & Nicolelis, M. A. (1999). Real-time control of
a robot arm using simultaneously recorded neurons in the motor cortex. Nature neuro-
science, 2(7), 664–670. https://doi.org/10.1038/10223 (cit. on pp. 3, vii)

Cheney, P. D., & Fetz, E. E. (1980). Functional classes of primate corticomotoneuronal cells and
their relation to active force. Journal of neurophysiology, 44(4), 773–791. https://doi.org/
10.1152/jn.1980.44.4.773 (cit. on pp. 4, viii)

https://doi.org/10.1016/j.neuroimage.2008.02.032
https://doi.org/10.2307/2983611
https://doi.org/10.2307/2983611
https://doi.org/10.2307/2342284
https://doi.org/10.2307/2342284
https://doi.org/10.2307/2983560
https://doi.org/10.5555/1162264
https://doi.org/10.1523/jneurosci.6107-09.2010
https://doi.org/10.1016/0024-3795(92)90038-c
https://doi.org/10.1038/nn.4497
https://doi.org/10.7717/peerj.9414
https://doi.org/10.1016/s0167-2789(97)00118-8
https://doi.org/10.1016/s0167-2789(97)00118-8
https://doi.org/10.1038/10223
https://doi.org/10.1152/jn.1980.44.4.773
https://doi.org/10.1152/jn.1980.44.4.773


Bibliography 125

Cheng, J. (2009). The principles of astronomical telescope design (Vol. 360). Springer. https://doi.
org/10.1007/b105475. (Cit. on p. 56)

Cheyne, D., Bells, S., Ferrari, P., Gaetz, W., & Bostan, A. C. (2008). Self-paced movements induce
high-frequency gamma oscillations in primary motor cortex. Neuroimage, 42(1), 332–
342. https://doi.org/10.1016/j.neuroimage.2008.04.178 (cit. on pp. 4, 25, vii)

Chicone, C. (1999). Ordinary differential equations with applications, Springer. (Cit. on p. 27).

Churchland, M. M., Santhanam, G., & Shenoy, K. V. (2006). Preparatory activity in premotor
and motor cortex reflects the speed of the upcoming reach. Journal of neurophysiology,
96(6), 3130–3146. https://doi.org/10.1152/jn.00307.2006 (cit. on pp. 4, viii)

Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. MIT press. (Cit. on
pp. 1, 32, v).

Conway, B., Halliday, D., Farmer, S., Shahani, U., Maas, P., Weir, A., & Rosenberg, J. (1995).
Synchronization between motor cortex and spinal motoneuronal pool during the per-
formance of a maintained motor task in man. The Journal of physiology, 489(3), 917–924.
https://doi.org/10.1113/jphysiol.1995.sp021104 (cit. on pp. 4, viii)

Cooray, G. K., Sengupta, B., Douglas, P. K., & Friston, K. (2016). Dynamic causal modelling of
electrographic seizure activity using bayesian belief updating. NeuroImage, 125, 1142–
1154. https://doi.org/10.1016/J.NEUROIMAGE.2015.07.063 (cit. on pp. 6, x)

Cox, D. R., & Miller, H. D. (2017). The theory of stochastic processes. Routledge. (Cit. on pp. 6, 48,
54, ix).

D’Angelo, E., & Jirsa, V. (2022). The quest for multiscale brain modeling. Trends in Neurosciences.
https://doi.org/10.1016/J.TINS.2022.06.007 (cit. on pp. 3, 92, vii)

David, O., & Friston, K. J. (2003). A neural mass model for meg/eeg:: Coupling and neuronal
dynamics. NeuroImage, 20(3), 1743–1755. https://doi.org/10.1016/j.neuroimage.2003.
07.015 (cit. on pp. 7, 87, x)

David, O., Kiebel, S. J., Harrison, L. M., Mattout, J., Kilner, J. M., & Friston, K. J. (2006). Dynamic
causal modeling of evoked responses in eeg and meg. NeuroImage, 30(4), 1255–1272.
https://doi.org/10.1016/j.neuroimage.2005.10.045 (cit. on p. 88)

De Luca, C. J., Gilmore, L. D., Kuznetsov, M., & Roy, S. H. (2010). Filtering the surface emg sig-
nal: Movement artifact and baseline noise contamination. Journal of biomechanics, 43(8),
1573–1579. https://doi.org/10.1016/j.jbiomech.2010.01.027 (cit. on p. 32)

Desplenter, T., & Trejos, A. L. (2018). Evaluating muscle activation models for elbow motion
estimation. Sensors, 18(4), 1004. https://doi.org/10.3390/s18041004 (cit. on pp. 83, 117)

Olver, F. W. J., Daalhuis, A. B. O., Lozier, D. W., Schneider, B. I., Boisvert, R. F., Clark, C. W.,
B. R. Mille and, B. V. S., Cohl, H. S., & M. A. McClain, e. (2020). Nist Digital Library of
Mathematical Functions. http://dlmf.nist.gov/. (Cit. on p. 98)

Donges, J. F., Heitzig, J., Beronov, B., Wiedermann, M., Runge, J., Feng, Q. Y., Tupikina, L.,
Stolbova, V., Donner, R. V., Marwan, N., Et al. (2015). Unified functional network and
nonlinear time series analysis for complex systems science: The pyunicorn package.

https://doi.org/10.1007/b105475
https://doi.org/10.1007/b105475
https://doi.org/10.1016/j.neuroimage.2008.04.178
https://doi.org/10.1152/jn.00307.2006
https://doi.org/10.1113/jphysiol.1995.sp021104
https://doi.org/10.1016/J.NEUROIMAGE.2015.07.063
https://doi.org/10.1016/J.TINS.2022.06.007
https://doi.org/10.1016/j.neuroimage.2003.07.015
https://doi.org/10.1016/j.neuroimage.2003.07.015
https://doi.org/10.1016/j.neuroimage.2005.10.045
https://doi.org/10.1016/j.jbiomech.2010.01.027
https://doi.org/10.3390/s18041004
http://dlmf.nist.gov/


126 Bibliography

Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(11), 113101. https://doi.org/
10.1063/1.4934554 (cit. on p. 21)

Drillis, R., Contini, R., & Bluestein, M. (1964). Body segment parameters. Artificial limbs, 8(1),
44–66. https://doi.org/10.5040/9781492595809.ch-003 (cit. on pp. 76, 116)

Eckmann, J.-P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence plots of dynamical systems.
EPL (Europhysics Letters), 4(9), 973. https ://doi .org/10.1209/0295- 5075/4/9/004
(cit. on pp. 10, 20)

Eckmann, J.-P., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. In The theory
of chaotic attractors (pp. 273–312). Springer. https://doi.org/10.1007/978-0-387-21830-
4_17. (Cit. on pp. 10, 12, 14, 16, 19)

Elbert, T., Ray, W. J., Kowalik, Z. J., Skinner, J. E., Graf, K. E., & Birbaumer, N. (1994). Chaos
and physiology: Deterministic chaos in excitable cell assemblies. Physiological reviews,
74(1), 1–47. https://doi.org/10.1152/physrev.1994.74.1.1 (cit. on p. 27)

Erdogmus, D., & Principe, J. C. (2006). From linear adaptive filtering to nonlinear information
processing-the design and analysis of information processing systems. IEEE Signal Pro-
cessing Magazine, 23(6), 14–33. https://doi.org/10.1109/SP- M.2006.248709 (cit. on
p. 10)

Farina, D., Fattorini, L., Felici, F., & Filligoi, G. (2002). Nonlinear surface emg analysis to de-
tect changes of motor unit conduction velocity and synchronization. Journal of Applied
Physiology, 93(5), 1753–1763. https://doi.org/10.1152/japplphysiol.00314.2002 (cit. on
p. 41)

Faure, P., & Korn, H. (1998). A new method to estimate the Kolmogorov entropy from recur-
rence plots: Its application to neuronal signals. Physica D: Nonlinear Phenomena, 122(1-4),
265–279. https://doi.org/10.1016/s0167-2789(98)00177-8 (cit. on pp. 10, 20–22)

Faure, P., & Korn, H. (2001). Is there chaos in the brain? I. Concepts of nonlinear dynamics and
methods of investigation. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de
la Vie, 324(9), 773–793. https://doi.org/10.1016/S0764-4469(01)01377-4 (cit. on p. 9)

Faure, P., & Lesne, A. (2015). Estimating Kolmogorov entropy from recurrence plots. In Recur-
rence quantification analysis (pp. 45–63). Springer. https://doi.org/10.1007/978-3-319-
07155-8_2. (Cit. on p. 21)

Fieller, E. C., Hartley, H. O., & Pearson, E. S. (1957). Tests for rank correlation coefficients. i.
Biometrika, 44(3/4), 470–481. https://doi.org/10.2307/2332878 (cit. on p. 49)

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in sam-
ples from an indefinitely large population. Biometrika, 10(4), 507–521. https://doi.org/
10.2307/2331838 (cit. on p. 49)

Fisher, R. A. (1921). On the’probable error’of a coefficient of correlation deduced from a small
sample. Metron, 1, 1–32. https://doi.org/10.2307/2331798 (cit. on p. 49)

https://doi.org/10.1063/1.4934554
https://doi.org/10.1063/1.4934554
https://doi.org/10.5040/9781492595809.ch-003
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1007/978-0-387-21830-4_17
https://doi.org/10.1007/978-0-387-21830-4_17
https://doi.org/10.1152/physrev.1994.74.1.1
https://doi.org/10.1109/SP-M.2006.248709
https://doi.org/10.1152/japplphysiol.00314.2002
https://doi.org/10.1016/s0167-2789(98)00177-8
https://doi.org/10.1016/S0764-4469(01)01377-4
https://doi.org/10.1007/978-3-319-07155-8_2
https://doi.org/10.1007/978-3-319-07155-8_2
https://doi.org/10.2307/2332878
https://doi.org/10.2307/2331838
https://doi.org/10.2307/2331838
https://doi.org/10.2307/2331798


Bibliography 127

Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from
mutual information. Physical review A, 33(2), 1134. https://doi.org/10.1103/physreva.
33.1134 (cit. on pp. 2, 15, vi)

Freeman, W. J. (2003). Evidence from human scalp electroencephalograms of global chaotic
itinerancy. Chaos: An Interdisciplinary Journal of Nonlinear Science, 13(3), 1067–1077. https:
//doi.org/10.1063/1.1596553 (cit. on p. 9)

Friston, K. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive
Sciences, 13, 293–301. https://doi.org/10.1016/j.tics.2009.04.005 (cit. on p. 93)

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature reviews neuroscience,
11(2), 127–138. https://doi.org/10.1038/nrn2787 (cit. on p. 93)

Friston, K. (2019). A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184.
https://doi.org/10.48550/arXiv.1906.10184 (cit. on p. 80)

Friston, K., & Ao, P. (2012). Free energy, value, and attractors. Computational and mathematical
methods in medicine, 2012. https://doi.org/10.1155/2012/937860 (cit. on p. 80)

Friston, K., Stephan, K., Li, B., & Daunizeau, J. (2010). Generalised filtering. Mathematical Prob-
lems in Engineering, 2010. https://doi.org/10.1155/2010/621670 (cit. on pp. 71, 82)

Friston, K. J. (2011). Functional and effective connectivity: A review. Brain connectivity, 1(1),
13–36. https://doi.org/10.1089/brain.2011.0008 (cit. on pp. 7, x)

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. (1994).
Statistical parametric maps in functional imaging: A general linear approach. Human
brain mapping, 2(4), 189–210. https://doi.org/10.1002/hbm.460020402 (cit. on p. 33)

Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., Van Wijk, B. C., Ziegler, G., &
Zeidman, P. (2016). Bayesian model reduction and empirical bayes for group (dcm)
studies. Neuroimage, 128, 413–431. https://doi.org/10.1016/j.neuroimage.2015.11.015
(cit. on pp. 87, 93)

Friston, K. J., Trujillo-Barreto, N., & Daunizeau, J. (2008). Dem: A variational treatment of dy-
namic systems. Neuroimage, 41(3), 849–885. https://doi.org/10.1016/j.neuroimage.
2008.02.054 (cit. on pp. 7, 54, 67, 69, 72, 73, 82, xi)

Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cam-
bridge university press. (Cit. on p. 34).

Georgopoulos, A. P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding
of force. Science, 256(5064), 1692–1695. https://doi.org/10.1126/science.256.5064.1692
(cit. on pp. 4, 25, viii)

Georgopoulos, A. P., Langheim, F. J., Leuthold, A. C., & Merkle, A. N. (2005). Magnetoen-
cephalographic signals predict movement trajectory in space. Experimental brain re-
search, 167(1), 132–135. https://doi .org/10.1007/s00221- 005- 0028- 8 (cit. on pp. 3,
vii)

https://doi.org/10.1103/physreva.33.1134
https://doi.org/10.1103/physreva.33.1134
https://doi.org/10.1063/1.1596553
https://doi.org/10.1063/1.1596553
https://doi.org/10.1016/j.tics.2009.04.005
https://doi.org/10.1038/nrn2787
https://doi.org/10.48550/arXiv.1906.10184
https://doi.org/10.1155/2012/937860
https://doi.org/10.1155/2010/621670
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1016/j.neuroimage.2015.11.015
https://doi.org/10.1016/j.neuroimage.2008.02.054
https://doi.org/10.1016/j.neuroimage.2008.02.054
https://doi.org/10.1126/science.256.5064.1692
https://doi.org/10.1007/s00221-005-0028-8


128 Bibliography

Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of
movement direction. Science, 233(4771), 1416–1419. https://doi.org/10.1126/science.
3749885 (cit. on pp. 3, vii)

Gergondet, P., Druon, S., Kheddar, A., Hintermüller, C., Guger, C., & Slater, M. (2011). Using
brain-computer interface to steer a humanoid robot, In 2011 ieee international conference
on robotics and biomimetics. IEEE. https://doi.org/10.1109/robio.2011.6181284. (Cit. on
pp. 3, vii)

Ghahramani, Z., & Hinton, G. E. (1996). Parameter estimation for linear dynamical systems
(cit. on p. 61).

Ghil, M., Chekroun, M. D., & Simonnet, E. (2008). Climate dynamics and fluid mechanics:
Natural variability and related uncertainties. Physica D: Nonlinear Phenomena, 237(14-
17), 2111–2126. https://doi.org/10.1016/j.physd.2008.03.036 (cit. on p. 9)

Ginovyan, M. S., & Sahakyan, A. A. (2013). On the trace approximations of products of toeplitz
matrices. Statistics & Probability Letters, 83(3), 753–760. https://doi.org/10.1016/j.spl.
2012.11.019 (cit. on p. 53)

Goldstein, H. (1980). Classical mechanics. Addison-Wesley. https://doi.org/10.1002/0471654817.
ch3. (Cit. on p. 78)

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R.,
Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. S. (2013). MEG and EEG data
analysis with MNE-Python. Frontiers in Neuroscience, 7(267), 1–13. https://doi.org/10.
3389/fnins.2013.00267 (cit. on p. 31)

Grassberger, P., & Procaccia, I. (1983a). Characterization of strange attractors. Physical review
letters, 50(5), 346. https://doi.org/10.1007/bfb0091924 (cit. on pp. 10, 11, 15)

Grassberger, P., & Procaccia, I. (1983b). Estimation of the Kolmogorov entropy from a chaotic
signal. Physical review A, 28(4), 2591. https://doi.org/10.1103/physreva.28.2591 (cit. on
pp. 10, 20)

Grassberger, P., & Procaccia, I. (2004). Measuring the strangeness of strange attractors. In The
theory of chaotic attractors (pp. 170–189). Springer. https://doi.org/10.1007/978-0-387-
21830-4_12. (Cit. on p. 19)

Gray, R. M. Et al. (2006). Toeplitz and circulant matrices: A review. Foundations and Trends®
in Communications and Information Theory, 2(3), 155–239. https ://doi .org/10 .1561/
9781933019680 (cit. on pp. 48, 52, 53)

Grendár, M., Majerová, J., & Špitalský, V. (2013). Strong laws for recurrence quantification anal-
ysis. International Journal of Bifurcation and Chaos, 23(08), 1350147. https://doi.org/10.
1142/s0218127413501472 (cit. on pp. 10, 20)

Grimbert, F., & Faugeras, O. (2006). Analysis of jansen’s model of a single cortical column (Doctoral
dissertation). INRIA. (Cit. on p. 87).

Guckenheimer, J., & Holmes, P. (2013). Nonlinear oscillations, dynamical systems, and bifurcations
of vector fields (Vol. 42). Springer Science & Business Media. (Cit. on p. 27).

https://doi.org/10.1126/science.3749885
https://doi.org/10.1126/science.3749885
https://doi.org/10.1109/robio.2011.6181284
https://doi.org/10.1016/j.physd.2008.03.036
https://doi.org/10.1016/j.spl.2012.11.019
https://doi.org/10.1016/j.spl.2012.11.019
https://doi.org/10.1002/0471654817.ch3
https://doi.org/10.1002/0471654817.ch3
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1007/bfb0091924
https://doi.org/10.1103/physreva.28.2591
https://doi.org/10.1007/978-0-387-21830-4_12
https://doi.org/10.1007/978-0-387-21830-4_12
https://doi.org/10.1561/9781933019680
https://doi.org/10.1561/9781933019680
https://doi.org/10.1142/s0218127413501472
https://doi.org/10.1142/s0218127413501472


Bibliography 129

Gunduz, A., & Principe, J. C. (2009). Correntropy as a novel measure for nonlinearity tests.
Signal Processing, 89(1), 14–23. https://doi.org/10.1016/j.sigpro.2008.07.005 (cit. on
p. 10)

Haken, H. (1978). Synergetics: Self-organization and clinical psychology. Springer. https ://doi .
org/https://doi.org/10.1007/978-3-642-96469-5. (Cit. on pp. 3, 28, vii)

Haken, H. (2006). Synergetics of brain function. International journal of psychophysiology, 60(2),
110–124. https://doi.org/10.1016/j.ijpsycho.2005.12.006 (cit. on pp. 3, 28, 92, vii)

Haken, H. (2013). Principles of brain functioning: A synergetic approach to brain activity, behavior
and cognition (Vol. 67). Springer Science & Business Media. (Cit. on pp. 3, vii).

Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human
hand movements. Biological cybernetics, 51(5), 347–356. https : / / doi . org / 10 . 1007 /
bf00336922 (cit. on pp. 3, 28, 92, vii)

Hang, H., Steinwart, I., Feng, Y., & Suykens, J. A. (2018). Kernel density estimation for dynami-
cal systems. The Journal of Machine Learning Research, 19(1), 1260–1308. https://doi.org/
10.5555/3291125.3291160 (cit. on pp. 10, 11)

Hao, M., He, X., Xiao, Q., Alstermark, B., & Lan, N. (2013). Corticomuscular transmission of
tremor signals by propriospinal neurons in parkinson’s disease. https://doi.org/10.
1371/journal.pone.0079829 (cit. on pp. 67, 84)

Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., & Heeger, D. J. (2008).
Neurocinematics: The neuroscience of film. Projections, 2, 1–26. https://doi.org/10.
3167/PROJ.2008.020102 (cit. on p. 91)

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of
cortical activity during natural vision. science, 303(5664), 1634–1640. https://doi.org/
10.1126/science.1089506 (cit. on p. 91)

Hénon, M. (1976). A two-dimensional mapping with a strange attractor. In The theory of chaotic
attractors (pp. 94–102). Springer. https ://doi .org/10 .1007/978- 0 - 387- 21830- 4_8.
(Cit. on p. 15)

Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of
the Royal Society of London. Series B-Biological Sciences, 126(843), 136–195. https://doi.
org/10.1098/rspb.1938.0050 (cit. on pp. 7, 67, 83, x)

Hotelling, H. (1953). New light on the correlation coefficient and its transforms. Journal of the
Royal Statistical Society. Series B (Methodological), 15(2), 193–232. https://doi.org/10.
1111/j.2517-6161.1953.tb00135.x (cit. on p. 49)

Jafarian, A., Zeidman, P., Wykes, R. C., Walker, M., & Friston, K. J. (2021). Adiabatic dynamic
causal modelling. NeuroImage, 238, 118243. https://doi.org/10.1016/j.neuroimage.
2021.118243 (cit. on pp. 87, 88)

Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation
in a mathematical model of coupled cortical columns. Biological cybernetics, 73(4), 357–
366. https://doi.org/10.1007/bf00199471 (cit. on pp. 87, 88)

https://doi.org/10.1016/j.sigpro.2008.07.005
https://doi.org/https://doi.org/10.1007/978-3-642-96469-5
https://doi.org/https://doi.org/10.1007/978-3-642-96469-5
https://doi.org/10.1016/j.ijpsycho.2005.12.006
https://doi.org/10.1007/bf00336922
https://doi.org/10.1007/bf00336922
https://doi.org/10.5555/3291125.3291160
https://doi.org/10.5555/3291125.3291160
https://doi.org/10.1371/journal.pone.0079829
https://doi.org/10.1371/journal.pone.0079829
https://doi.org/10.3167/PROJ.2008.020102
https://doi.org/10.3167/PROJ.2008.020102
https://doi.org/10.1126/science.1089506
https://doi.org/10.1126/science.1089506
https://doi.org/10.1007/978-0-387-21830-4_8
https://doi.org/10.1098/rspb.1938.0050
https://doi.org/10.1098/rspb.1938.0050
https://doi.org/10.1111/j.2517-6161.1953.tb00135.x
https://doi.org/10.1111/j.2517-6161.1953.tb00135.x
https://doi.org/10.1016/j.neuroimage.2021.118243
https://doi.org/10.1016/j.neuroimage.2021.118243
https://doi.org/10.1007/bf00199471


130 Bibliography

Jeong, J.-H., Shim, K.-H., Kim, D.-J., & Lee, S.-W. (2019). Trajectory decoding of arm reach-
ing movement imageries for brain-controlled robot arm system, In 2019 41st annual
international conference of the ieee engineering in medicine and biology society (embc). IEEE.
https://doi.org/10.1109/embc.2019.8856312. (Cit. on p. 66)

Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I., & Bernard, C. (2014). On the nature of
seizure dynamics. Brain, 137, 2210–2230. https://doi.org/10.1093/BRAIN/AWU133
(cit. on pp. 6, 92, x)

Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection for
density estimation. Journal of the American statistical association, 91(433), 401–407. https:
//doi.org/10.1080/01621459.1996.10476701 (cit. on pp. 10, 11)

Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the
primary motor cortex. Science, 285(5436), 2136–2139. https://doi.org/10.1126/science.
285.5436.2136 (cit. on pp. 4, viii)

Kakei, S., Hoffman, D. S., & Strick, P. L. (2001). Direction of action is represented in the ventral
premotor cortex. Nature neuroscience, 4(10), 1020–1025. https://doi.org/10.1038/nn726
(cit. on pp. 4, viii)

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions
of the ASME–Journal of Basic Engineering, 82(Series D), 35–45 (cit. on p. 68).

Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. (2005). Entropies for detection
of epilepsy in eeg. Computer methods and programs in biomedicine, 80(3), 187–194. https:
//doi.org/10.1016/j.cmpb.2005.06.012 (cit. on p. 23)

Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis (Vol. 7). Cambridge university
press. https://doi.org/10.1007/springerreference_205493. (Cit. on p. 15)

Kaplan, D., & Glass, L. (1997). Understanding nonlinear dynamics. Springer Science & Business
Media. (Cit. on pp. 1, v).

Kerr, W. C., & Graham, A. (2000). Generalized phase space version of langevin equations and
associated fokker-planck equations. The European Physical Journal B-Condensed Matter
and Complex Systems, 15(2), 305–311. https://doi.org/10.1007/s100510051129 (cit. on
p. 80)

Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain. PLoS
computational biology, 4(11), e1000209. https://doi.org/10.1371/journal.pcbi.1000209
(cit. on pp. 3, 28, vii)

Kiebel, S. J., Poline, J.-B., Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). Robust smoothness
estimation in statistical parametric maps using standardized residuals from the general
linear model. Neuroimage, 10(6), 756–766. https://doi.org/10.1006/nimg.1999.0508
(cit. on p. 56)

Kiebel, S. J., Tallon-Baudry, C., & Friston, K. J. (2005). Parametric analysis of oscillatory activity
as measured with eeg/meg. Human brain mapping, 26(3), 170–177. https://doi.org/10.
1002/hbm.20153 (cit. on p. 33)

https://doi.org/10.1109/embc.2019.8856312
https://doi.org/10.1093/BRAIN/AWU133
https://doi.org/10.1080/01621459.1996.10476701
https://doi.org/10.1080/01621459.1996.10476701
https://doi.org/10.1126/science.285.5436.2136
https://doi.org/10.1126/science.285.5436.2136
https://doi.org/10.1038/nn726
https://doi.org/10.1016/j.cmpb.2005.06.012
https://doi.org/10.1016/j.cmpb.2005.06.012
https://doi.org/10.1007/springerreference_205493
https://doi.org/10.1007/s100510051129
https://doi.org/10.1371/journal.pcbi.1000209
https://doi.org/10.1006/nimg.1999.0508
https://doi.org/10.1002/hbm.20153
https://doi.org/10.1002/hbm.20153


Bibliography 131

Kim, J.-H., Bießmann, F., & Lee, S.-W. (2014). Decoding three-dimensional trajectory of exe-
cuted and imagined arm movements from electroencephalogram signals. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, 23(5), 867–876. https://doi.org/
10.1109/tnsre.2014.2375879 (cit. on pp. 61, 66)

Kobler, R. J., Almeida, I., Sburlea, A. I., & Müller-Putz, G. R. (2020). Using machine learning
to reveal the population vector from eeg signals. Journal of Neural Engineering, 17(2),
026002. https://doi.org/10.1088/1741-2552/ab7490 (cit. on p. 66)

Kobler, R. J., Sburlea, A. I., Mondini, V., Hirata, M., & Müller-Putz, G. R. (2020). Distance-and
speed-informed kinematics decoding improves m/eeg based upper-limb movement
decoder accuracy. Journal of Neural Engineering, 17(5), 056027. https : / / doi . org / 10 .
1088/1741-2552/abb3b3 (cit. on p. 66)

Kolmogorov, A. N. (1985). A new metric invariant of transitive dynamical systems and auto-
morphisms of Lebesgue spaces. Trudy Matematicheskogo Instituta imeni VA Steklova, 169,
94–98 (cit. on p. 20).

Korik, A., Sosnik, R., Siddique, N., & Coyle, D. (2016). Imagined 3d hand movement trajectory
decoding from sensorimotor eeg rhythms, In 2016 ieee international conference on systems,
man, and cybernetics (smc). IEEE. https://doi.org/10.1109/smc.2016.7844955. (Cit. on
p. 66)

Korik, A., Sosnik, R., Siddique, N., & Coyle, D. (2018). Decoding imagined 3d hand move-
ment trajectories from eeg: Evidence to support the use of mu, beta, and low gamma
oscillations. Frontiers in neuroscience, 12, 130 (cit. on p. 66).

Korn, H., & Faure, P. (2003). Is there chaos in the brain? ii. experimental evidence and related
models. Comptes rendus biologies, 326(9), 787–840. https://doi.org/10.1016/j.crvi.2003.
09.011 (cit. on pp. 1, v)

Kraemer, K. H., Donner, R. V., Heitzig, J., & Marwan, N. (2018). Recurrence threshold selec-
tion for obtaining robust recurrence characteristics in different embedding dimensions.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(8), 085720. https://doi.org/
10.1063/1.5024914 (cit. on pp. 23, 24)

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017).
Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93, 480–490. https:
//doi.org/10.1016/J.NEURON.2016.12.041 (cit. on p. 91)

Krause, F., & Lindemann, O. (2014). Expyriment: A python library for cognitive and neuro-
scientific experiments. Behavior Research Methods, 46(2), 416–428. https://doi.org/10.
3758/s13428-013-0390-6 (cit. on p. 30)

Lee, J. M. (2013). Smooth maps. In Introduction to smooth manifolds (pp. 32–49). Springer. https:
//doi.org/10.1007/0-387-22739-3_6. (Cit. on p. 115)

Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an
extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural
computation, 11(2), 417–441. https : / / doi . org / 10 . 1162 / 089976699300016719 (cit. on
p. 32)

https://doi.org/10.1109/tnsre.2014.2375879
https://doi.org/10.1109/tnsre.2014.2375879
https://doi.org/10.1088/1741-2552/ab7490
https://doi.org/10.1088/1741-2552/abb3b3
https://doi.org/10.1088/1741-2552/abb3b3
https://doi.org/10.1109/smc.2016.7844955
https://doi.org/10.1016/j.crvi.2003.09.011
https://doi.org/10.1016/j.crvi.2003.09.011
https://doi.org/10.1063/1.5024914
https://doi.org/10.1063/1.5024914
https://doi.org/10.1016/J.NEURON.2016.12.041
https://doi.org/10.1016/J.NEURON.2016.12.041
https://doi.org/10.3758/s13428-013-0390-6
https://doi.org/10.3758/s13428-013-0390-6
https://doi.org/10.1007/0-387-22739-3_6
https://doi.org/10.1007/0-387-22739-3_6
https://doi.org/10.1162/089976699300016719


132 Bibliography

Lehnertz, K. (1999). Non-linear time series analysis of intracranial eeg recordings in patients
with epilepsy—an overview. International Journal of Psychophysiology, 34(1), 45–52. https:
//doi.org/10.1016/s0167-8760(99)00043-4 (cit. on pp. 1, v)

Lesne, A. (2013). Multiscale analysis of biological systems. Acta Biotheoretica, 61(1), 3–19. https:
//doi.org/10.1007/s10441-013-9170-z (cit. on pp. 3, 28, 92, vii)

Li, S., Zhuang, C., Hao, M., He, X., Marquez, J. C., Niu, C. M., & Lan, N. (2015). Coordinated
alpha and gamma control of muscles and spindles in movement and posture. Frontiers
in Computational Neuroscience, 9. https://doi.org/10.3389/FNCOM.2015.00122 (cit. on
pp. 7, 67, 84, 85, 118, x)

Liu, J., Sheng, Y., & Liu, H. (2019). Corticomuscular coherence and its applications: A review.
Frontiers in human neuroscience, 13, 100. https://doi.org/10.3389/fnhum.2019.00100
(cit. on p. 25)

Logothetis, N. K. (2002). The neural basis of the blood–oxygen–level–dependent functional
magnetic resonance imaging signal. Philosophical Transactions of the Royal Society of Lon-
don. Series B: Biological Sciences, 357(1424), 1003–1037. https://doi.org/10.1098/rstb.
2002.1114 (cit. on p. 56)

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20(2),
130–141. https://doi.org/10.1201/9780203734636-38 (cit. on p. 15)

Maguire, E. A. (2012). Studying the freely-behaving brain with fmri. NeuroImage, 62, 1170–1176.
https://doi.org/10.1016/J.NEUROIMAGE.2012.01.009 (cit. on p. 91)

Martıénez-Cagigal, V., Kobler, R. J., Mondini, V., Hornero, R., & Muller-Putz, G. R. (2020). Non-
linear online low-frequency eeg decoding of arm movements during a pursuit tracking
task, In 2020 42nd annual international conference of the ieee engineering in medicine & bi-
ology society (embc). IEEE. https://doi.org/10.1109/embc44109.2020.9175723. (Cit. on
p. 66)

Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis
of complex systems. Physics reports, 438(5-6), 237–329. https : / / doi .org / 10 . 1016/ j .
physrep.2006.11.001 (cit. on p. 10)

McMenamin, B. W., Shackman, A. J., Greischar, L. L., & Davidson, R. J. (2011). Electromyogenic
artifacts and electroencephalographic inferences revisited. NeuroImage, 54(1), 4–9. https:
//doi.org/10.1016/j.neuroimage.2010.07.057 (cit. on p. 32)

Medrano, J., Kheddar, A., Lesne, A., & Ramdani, S. (2021). Radius selection using kernel den-
sity estimation for the computation of nonlinear measures. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 31(8), 083131. https://doi.org/10.1063/5.0055797 (cit. on
p. 9)

Miller, K. J., Leuthardt, E. C., Schalk, G., Rao, R. P., Anderson, N. R., Moran, D. W., Miller,
J. W., & Ojemann, J. G. (2007). Spectral changes in cortical surface potentials during
motor movement. Journal of Neuroscience, 27(9), 2424–2432. https://doi.org/10.1523/
jneurosci.3886-06.2007 (cit. on p. 25)

https://doi.org/10.1016/s0167-8760(99)00043-4
https://doi.org/10.1016/s0167-8760(99)00043-4
https://doi.org/10.1007/s10441-013-9170-z
https://doi.org/10.1007/s10441-013-9170-z
https://doi.org/10.3389/FNCOM.2015.00122
https://doi.org/10.3389/fnhum.2019.00100
https://doi.org/10.1098/rstb.2002.1114
https://doi.org/10.1098/rstb.2002.1114
https://doi.org/10.1201/9780203734636-38
https://doi.org/10.1016/J.NEUROIMAGE.2012.01.009
https://doi.org/10.1109/embc44109.2020.9175723
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.neuroimage.2010.07.057
https://doi.org/10.1016/j.neuroimage.2010.07.057
https://doi.org/10.1063/5.0055797
https://doi.org/10.1523/jneurosci.3886-06.2007
https://doi.org/10.1523/jneurosci.3886-06.2007


Bibliography 133

Mima, T., & Hallett, M. (1999). Corticomuscular coherence: A review. Journal of clinical neuro-
physiology, 16(6), 501. https ://doi .org/10.1097/00004691- 199911000- 00002 (cit. on
pp. 4, 25, viii)

Mondini, V., Kobler, R. J., Sburlea, A. I., & Müller-Putz, G. R. (2020). Continuous low-frequency
eeg decoding of arm movement for closed-loop, natural control of a robotic arm. Journal
of Neural Engineering, 17(4), 046031. https://doi.org/10.1088/1741-2552/aba6f7 (cit. on
p. 66)

Moon, Y.-I., Rajagopalan, B., & Lall, U. (1995). Estimation of mutual information using kernel
density estimators. Phys. Rev. E, 52, 2318–2321. https://doi.org/10.1103/PhysRevE.52.
2318 (cit. on p. 10)

Moran, R. (2015). State space models and their spectral decomposition in dynamic causal mod-
eling. Advanced State Space Methods for Neural and Clinical Data, 114. https://doi.org/
10.1017/cbo9781139941433.006 (cit. on p. 87)

Moran, R. J., Kiebel, S. J., Stephan, K. E., Reilly, R. B., Daunizeau, J., & Friston, K. J. (2007). A
neural mass model of spectral responses in electrophysiology. NeuroImage, 37(3), 706–
720. https://doi.org/10.1016/j.neuroimage.2007.05.032 (cit. on pp. 87, 88, 119)

Müller-Putz, G. R., Mondini, V., Martıénez-Cagigal, V., Kobler, R. J., Pereira, J., Dias, C. L.,
Hehenberger, L., & Sburlea, A. I. (2021). Decoding of continuous movement attempt in
2-dimensions from non-invasive low frequency brain signals, In 2021 10th international
ieee/embs conference on neural engineering (ner). IEEE. https://doi.org/10.1109/ner49283.
2021.9441346. (Cit. on p. 66)

Murray, W. M., Delp, S. L., & Buchanan, T. S. (1995). Variation of muscle moment arms with
elbow and forearm position. Journal of biomechanics, 28(5), 513–525. https://doi.org/10.
1016/0021-9290(94)00114-j (cit. on p. 76)

Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle artifacts in meg/eeg:
A review and recommendations. Frontiers in human neuroscience, 7, 138. https://doi.
org/10.3389/fnhum.2013.00138 (cit. on p. 32)

Nastase, S. A., Goldstein, A., & Hasson, U. (2020). Keep it real: Rethinking the primacy of
experimental control in cognitive neuroscience. NeuroImage, 222, 117254. https://doi.
org/10.31234/osf.io/whn6d (cit. on p. 91)

Neyman, J., & Pearson, E. S. (1933). Ix. on the problem of the most efficient tests of statistical
hypotheses. Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, 231(694-706), 289–337. https://doi.org/
10.1098/rsta.1933.0009 (cit. on p. 92)

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). Reconstruct-
ing visual experiences from brain activity evoked by natural movies. Current biology,
21(19), 1641–1646. https://doi.org/10.1016/j.cub.2011.08.031 (cit. on p. 91)

Ocak, H. (2008). Optimal classification of epileptic seizures in EEG using wavelet analysis and
genetic algorithm. Signal processing, 88(7), 1858–1867. https : / / doi . org / 10 . 1016 / j .
sigpro.2008.01.026 (cit. on p. 22)

https://doi.org/10.1097/00004691-199911000-00002
https://doi.org/10.1088/1741-2552/aba6f7
https://doi.org/10.1103/PhysRevE.52.2318
https://doi.org/10.1103/PhysRevE.52.2318
https://doi.org/10.1017/cbo9781139941433.006
https://doi.org/10.1017/cbo9781139941433.006
https://doi.org/10.1016/j.neuroimage.2007.05.032
https://doi.org/10.1109/ner49283.2021.9441346
https://doi.org/10.1109/ner49283.2021.9441346
https://doi.org/10.1016/0021-9290(94)00114-j
https://doi.org/10.1016/0021-9290(94)00114-j
https://doi.org/10.3389/fnhum.2013.00138
https://doi.org/10.3389/fnhum.2013.00138
https://doi.org/10.31234/osf.io/whn6d
https://doi.org/10.31234/osf.io/whn6d
https://doi.org/10.1098/rsta.1933.0009
https://doi.org/10.1098/rsta.1933.0009
https://doi.org/10.1016/j.cub.2011.08.031
https://doi.org/10.1016/j.sigpro.2008.01.026
https://doi.org/10.1016/j.sigpro.2008.01.026


134 Bibliography

Ocak, H. (2009). Automatic detection of epileptic seizures in eeg using discrete wavelet trans-
form and approximate entropy. Expert Systems with Applications, 36(2), 2027–2036. https:
//doi.org/10.1016/j.eswa.2007.12.065 (cit. on pp. 2, vi)

Ofner, P., & Müller-Putz, G. R. (2012). Decoding of velocities and positions of 3d arm movement
from eeg, In 2012 annual international conference of the ieee engineering in medicine and
biology society. IEEE. https://doi.org/10.1109/embc.2012.6347460. (Cit. on pp. 5, 6, 61,
66, ix, x)

Olbrich, S., Jödicke, J., Sander, C., Himmerich, H., & Hegerl, U. (2011). Ica-based muscle arte-
fact correction of eeg data: What is muscle and what is brain?: Comment on mcme-
namin et al. Neuroimage, 54(1), 1–3. https://doi.org/10.1016/j.neuroimage.2010.04.256
(cit. on p. 32)

Ott, E. (2002). Chaos in dynamical systems. Cambridge university press. https://doi.org/10.
1017/cbo9780511803260. (Cit. on pp. 9, 11, 14, 15)

Ozaki, T. (1992). A bridge between nonlinear time series models and nonlinear stochastic dy-
namical systems: A local linearization approach. Statistica Sinica, 113–135 (cit. on pp. 72,
73).

Papadopoulou, M., Leite, M., van Mierlo, P., Vonck, K., Lemieux, L., Friston, K., & Marinazzo,
D. (2015). Tracking slow modulations in synaptic gain using dynamic causal mod-
elling: Validation in epilepsy. NeuroImage, 107, 117–126. https ://doi .org/10 .1016/
J.NEUROIMAGE.2014.12.007 (cit. on pp. 6, x)

Parr, T. (2019). The computational neurology of active vision (Doctoral dissertation). UCL (Univer-
sity College London). (Cit. on p. 93).

Parr, T., Mirza, M. B., Cagnan, H., & Friston, K. J. (2019). Dynamic causal modelling of active
vision. Journal of Neuroscience, 39(32), 6265–6275. https://doi.org/10.1523/jneurosci.
2459-18.2019 (cit. on p. 93)

Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active inference: The free energy principle in mind,
brain, and behavior. MIT Press. (Cit. on pp. 82, 93).

Parr, T., Sajid, N., Da Costa, L., Mirza, M. B., & Friston, K. J. (2021). Generative models for active
vision. Frontiers in Neurorobotics, 15, 34. https://doi.org/10.3389/fnbot.2021.651432
(cit. on p. 93)

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical
parametric mapping: The analysis of functional brain images. Elsevier. (Cit. on pp. 6, 26, 33,
34, 48, 56, x).

Pesin, Y. B. (2008). Dimension theory in dynamical systems: Contemporary views and applications.
University of Chicago Press. https://doi.org/10.7208/chicago/9780226662237.001.
0001. (Cit. on pp. 11, 14)

Pfurtscheller, G., Brunner, C., Schlögl, A., & Da Silva, F. L. (2006). Mu rhythm (de) synchro-
nization and eeg single-trial classification of different motor imagery tasks. NeuroImage,
31(1), 153–159. https://doi.org/10.1016/j.neuroimage.2005.12.003 (cit. on p. 32)

https://doi.org/10.1016/j.eswa.2007.12.065
https://doi.org/10.1016/j.eswa.2007.12.065
https://doi.org/10.1109/embc.2012.6347460
https://doi.org/10.1016/j.neuroimage.2010.04.256
https://doi.org/10.1017/cbo9780511803260
https://doi.org/10.1017/cbo9780511803260
https://doi.org/10.1016/J.NEUROIMAGE.2014.12.007
https://doi.org/10.1016/J.NEUROIMAGE.2014.12.007
https://doi.org/10.1523/jneurosci.2459-18.2019
https://doi.org/10.1523/jneurosci.2459-18.2019
https://doi.org/10.3389/fnbot.2021.651432
https://doi.org/10.7208/chicago/9780226662237.001.0001
https://doi.org/10.7208/chicago/9780226662237.001.0001
https://doi.org/10.1016/j.neuroimage.2005.12.003


Bibliography 135

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the
National Academy of Sciences, 88(6), 2297–2301. https://doi.org/10.1073/pnas.88.6.2297
(cit. on pp. 10, 20, 23, 24)

Pitsik, E., Frolov, N., Hauke Kraemer, K., Grubov, V., Maksimenko, V., Kurths, J., & Hramov,
A. (2020). Motor execution reduces eeg signals complexity: Recurrence quantification
analysis study. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(2), 023111.
https://doi.org/10.1063/1.5136246 (cit. on pp. 5, 32, 33, 40, 41, 43, viii)

Polyn, S. M., Natu, V. S., Cohen, J. D., & Norman, K. A. (2005). Category-specific cortical activ-
ity precedes retrieval during memory search. Science, 310, 1963–1966. https://doi.org/
10.1126/SCIENCE.1117645/SUPPL_FILE/POLYN.SOM.PDF (cit. on p. 91)

Principe, J. C. (2010). Information theoretic learning: Renyi’s entropy and kernel perspectives. Springer
Science & Business Media. https://doi.org/10.1007/978-1-4419-1570-2. (Cit. on p. 10)

Prochazka, A. (1999). Quantifying proprioception. Progress in brain research, 123, 133–142. https:
//doi.org/10.1016/s0079-6123(08)62850-2 (cit. on p. 84)

Pyper, B. J., & Peterman, R. M. (1998). Comparison of methods to account for autocorrelation in
correlation analyses of fish data. Canadian Journal of Fisheries and Aquatic Sciences, 55(9),
2127–2140. https://doi.org/10.1139/f98-104 (cit. on pp. 47, 52, 58)

Quenouille, M. H. (1947). Notes on the calculation of autocorrelations of linear autoregressive
schemes. Biometrika, 34(3/4), 365–367. https://doi.org/10.2307/2332450 (cit. on pp. 47,
48, 51)

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for
Statistical Computing. Vienna, Austria. https://www.R-project.org/. (Cit. on p. 49)

Ramdani, S., Bouchara, F., Lagarde, J., & Lesne, A. (2016). Recurrence plots of discrete-time
gaussian stochastic processes. Physica D: Nonlinear Phenomena, 330, 17–31. https://doi.
org/10.1016/j.physd.2016.04.017 (cit. on p. 93)

Ramdani, S., Bouchara, F., & Lesne, A. (2018). Probabilistic analysis of recurrence plots gener-
ated by fractional gaussian noise. Chaos: An Interdisciplinary Journal of Nonlinear Science,
28(8), 085721. https://doi.org/10.1063/1.5030522 (cit. on p. 93)

Ramdani, S., Boyer, A., Caron, S., Bonnetblanc, F., Bouchara, F., Duffau, H., & Lesne, A. (2021).
Parametric recurrence quantification analysis of autoregressive processes for pattern
recognition in multichannel electroencephalographic data. Pattern Recognition, 109, 107572.
https://doi.org/10.1016/j.patcog.2020.107572 (cit. on p. 93)

Rauch, H. E., Tung, F., & Striebel, C. T. (1965). Maximum likelihood estimates of linear dynamic
systems. AIAA journal, 3(8), 1445–1450. https://doi.org/10.2514/3.3166 (cit. on p. 73)

Rice, S. O. (1944). Mathematical analysis of random noise. The Bell System Technical Journal,
23(3), 282–332. https://doi.org/10.1002/j.1538-7305.1944.tb00874.x (cit. on pp. 6, 48,
54, ix)

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate
entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Phys-

https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1063/1.5136246
https://doi.org/10.1126/SCIENCE.1117645/SUPPL_FILE/POLYN.SOM.PDF
https://doi.org/10.1126/SCIENCE.1117645/SUPPL_FILE/POLYN.SOM.PDF
https://doi.org/10.1007/978-1-4419-1570-2
https://doi.org/10.1016/s0079-6123(08)62850-2
https://doi.org/10.1016/s0079-6123(08)62850-2
https://doi.org/10.1139/f98-104
https://doi.org/10.2307/2332450
https://www.R-project.org/
https://doi.org/10.1016/j.physd.2016.04.017
https://doi.org/10.1016/j.physd.2016.04.017
https://doi.org/10.1063/1.5030522
https://doi.org/10.1016/j.patcog.2020.107572
https://doi.org/10.2514/3.3166
https://doi.org/10.1002/j.1538-7305.1944.tb00874.x


136 Bibliography

iology, 278(6), H2039–H2049. https ://doi .org/10 .1152/ajpheart .2000 .278 .6 .h2039
(cit. on pp. 10, 20)

Robinson, N., Guan, C., & Vinod, A. (2015). Adaptive estimation of hand movement trajectory
in an eeg based brain–computer interface system. Journal of neural engineering, 12(6),
066019. https://doi.org/10.1088/1741-2560/12/6/066019 (cit. on p. 66)

Rosenblatt, M. (2012). Stationary sequences and random fields. Springer Science & Business Media.
https://doi.org/10.1007/978-1-4612-5156-9. (Cit. on p. 48)

Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397–398. https:
//doi.org/10.1016/0375-9601(76)90101-8 (cit. on p. 15)

Rowe, J. B., Hughes, L. E., Barker, R. A., & Owen, A. M. (2010). Dynamic causal modelling of
effective connectivity from fmri: Are results reproducible and sensitive to parkinson’s
disease and its treatment? NeuroImage, 52, 1015–1026. https : / / doi . org / 10 . 1016 / J .
NEUROIMAGE.2009.12.080 (cit. on pp. 6, x)

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components.
Biometrics bulletin, 2(6), 110–114. https://doi.org/10.2307/3002019 (cit. on p. 51)

Sauer, T., Yorke, J. A., & Casdagli, M. (1991). Embedology. Journal of statistical Physics, 65(3),
579–616. https://doi.org/10.1007/bf01053745 (cit. on p. 115)

Schalk, G., Kubanek, J., Miller, K. J., Anderson, N., Leuthardt, E. C., Ojemann, J. G., Limbrick,
D., Moran, D., Gerhardt, L. A., & Wolpaw, J. R. (2007). Decoding two-dimensional
movement trajectories using electrocorticographic signals in humans. Journal of neu-
ral engineering, 4(3), 264. https://doi.org/10.1088/1741-2560/4/3/012 (cit. on pp. 3,
vii)

Schreiber, T., & Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Physical
review letters, 77(4), 635. https://doi.org/10.1103/physrevlett.77.635 (cit. on pp. 59, 89)

Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605–610. https:
//doi.org/10.1093/biomet/66.3.605 (cit. on p. 12)

Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T., & Müller-Putz, G. R. (2014). Eeg beta sup-
pression and low gamma modulation are different elements of human upright walking.
Frontiers in human neuroscience, 8, 485. https://doi.org/10.3389/fnhum.2014.00485 (cit.
on p. 25)

Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T., & Müller-Putz, G. R. (2015). High and
low gamma eeg oscillations in central sensorimotor areas are conversely modulated
during the human gait cycle. Neuroimage, 112, 318–326. https://doi.org/10.1016/j.
neuroimage.2015.03.045 (cit. on pp. 4, 25, viii)

Sherman, M. A., Seth, A., & Delp, S. L. (2013). What is a moment arm? calculating muscle effec-
tiveness in biomechanical models using generalized coordinates, In International design
engineering technical conferences and computers and information in engineering conference.
American Society of Mechanical Engineers. https://doi.org/10.1115/detc2013-13633.
(Cit. on p. 76)

https://doi.org/10.1152/ajpheart.2000.278.6.h2039
https://doi.org/10.1088/1741-2560/12/6/066019
https://doi.org/10.1007/978-1-4612-5156-9
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1016/J.NEUROIMAGE.2009.12.080
https://doi.org/10.1016/J.NEUROIMAGE.2009.12.080
https://doi.org/10.2307/3002019
https://doi.org/10.1007/bf01053745
https://doi.org/10.1088/1741-2560/4/3/012
https://doi.org/10.1103/physrevlett.77.635
https://doi.org/10.1093/biomet/66.3.605
https://doi.org/10.1093/biomet/66.3.605
https://doi.org/10.3389/fnhum.2014.00485
https://doi.org/10.1016/j.neuroimage.2015.03.045
https://doi.org/10.1016/j.neuroimage.2015.03.045
https://doi.org/10.1115/detc2013-13633


Bibliography 137

Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). CRC press.
https://doi.org/10.1201/9781315140919. (Cit. on pp. 2, 10–14, 97, vi)

Sinai Ya, G. (1959). On the notion of entropy of a dynamical system, In Doklady of russian
academy of sciences. https://doi.org/10.1007/978-0-387-87870-6_1. (Cit. on p. 20)

Singh, A., & Prıéncipe, J. C. (2011). Information theoretic learning with adaptive kernels. Signal
Processing, 91(2), 203–213. https://doi.org/10.1016/j.sigpro.2010.06.023 (cit. on pp. 10,
11)

Spearman, C. (1904). The proof and measurement of association between two things. American
Journal of Psychology, 15, 72–101. https://doi.org/10.1037/11491-005 (cit. on p. 49)

Spiers, H. J., & Maguire, E. A. (2006). Thoughts, behaviour, and brain dynamics during nav-
igation in the real world. NeuroImage, 31, 1826–1840. https : / / doi . org / 10 . 1016 / J .
NEUROIMAGE.2006.01.037 (cit. on p. 91)

Spiers, H. J., & Maguire, E. A. (2007). Decoding human brain activity during real-world expe-
riences. Trends in Cognitive Sciences, 11, 356–365. https://doi.org/10.1016/J.TICS.2007.
06.002 (cit. on p. 31)

Sprott, J. C., & Rowlands, G. (2001). Improved correlation dimension calculation. International
Journal of Bifurcation and Chaos, 11(07), 1865–1880. https://doi.org/10.1142/s021812740100305x
(cit. on p. 17)

Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG
detection using artificial neural networks. IEEE Transactions on information Technology in
Biomedicine, 11(3), 288–295. https://doi.org/10.1109/titb.2006.884369 (cit. on p. 22)

Stam, C. J. (2005). Nonlinear dynamical analysis of eeg and meg: Review of an emerging field.
Clinical neurophysiology, 116(10), 2266–2301. https://doi.org/10.1016/j.clinph.2005.06.
011 (cit. on p. 25)

Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model
selection for group studies. Neuroimage, 46(4), 1004–1017. https://doi.org/10.1016/
s1053-8119(09)71793-8 (cit. on pp. 6, x)

Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems and turbu-
lence, warwick 1980 (pp. 366–381). Springer. https://doi.org/10.1007/bfb0091924. (Cit.
on pp. 1, 13, 73, 89, v)

Teka, W. W., Hamade, K. C., Barnett, W. H., Kim, T., Markin, S. N., Rybak, I. A., & Molkov,
Y. I. (2017). From the motor cortex to the movement and back again. PloS one, 12(6),
e0179288. https://doi.org/10.1371/journal.pone.0179288 (cit. on pp. 7, 67, 84, x)

Teukolsky, S. A., Flannery, B. P., Press, W., & Vetterling, W. (1992). Numerical recipes in c. SMR,
693(1), 59–70 (cit. on p. 49).

Thiel, M., Romano, M. C., & Kurths, J. (2003). Analytical description of recurrence plots of
white noise and chaotic processes. arXiv preprint nlin/0301027. https ://doi .org/10.
1142/s0218127407019949 (cit. on p. 20)

https://doi.org/10.1201/9781315140919
https://doi.org/10.1007/978-0-387-87870-6_1
https://doi.org/10.1016/j.sigpro.2010.06.023
https://doi.org/10.1037/11491-005
https://doi.org/10.1016/J.NEUROIMAGE.2006.01.037
https://doi.org/10.1016/J.NEUROIMAGE.2006.01.037
https://doi.org/10.1016/J.TICS.2007.06.002
https://doi.org/10.1016/J.TICS.2007.06.002
https://doi.org/10.1142/s021812740100305x
https://doi.org/10.1109/titb.2006.884369
https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1016/s1053-8119(09)71793-8
https://doi.org/10.1016/s1053-8119(09)71793-8
https://doi.org/10.1007/bfb0091924
https://doi.org/10.1371/journal.pone.0179288
https://doi.org/10.1142/s0218127407019949
https://doi.org/10.1142/s0218127407019949


138 Bibliography

Thomasson, N., Hoeppner, T. J., Webber Jr, C. L., & Zbilut, J. P. (2001). Recurrence quantification
in epileptic EEGs. Physics Letters A, 279(1-2), 94–101. https://doi.org/10.1016/S0375-
9601(00)00815-X (cit. on p. 25)

Úbeda, A., Azorıén, J. M., Farina, D., & Sartori, M. (2018). Estimation of neuromuscular primi-
tives from eeg slow cortical potentials in incomplete spinal cord injury individuals for
a new class of brain-machine interfaces. Frontiers in computational neuroscience, 12, 3.
https://doi.org/10.3389/fncom.2018.00003 (cit. on p. 66)

van Wijk, B. C., Beek, P. J., & Daffertshofer, A. (2012). Neural synchrony within the motor
system: What have we learned so far? Frontiers in human neuroscience, 6, 252. https :
//doi.org/10.3389/fnhum.2012.00252 (cit. on pp. 4, vii)

van Wijk, B. C., Cagnan, H., Litvak, V., Kühn, A. A., & Friston, K. J. (2018). Generic dynamic
causal modelling: An illustrative application to parkinson’s disease. NeuroImage, 181,
818–830. https://doi.org/10.1016/J.NEUROIMAGE.2018.08.039 (cit. on pp. 6, x)

Veslin, E., Dutra, M., Bevilacqua, L., Raptopoulos, L., Andrade, W., & Soares, J. (2019). Decod-
ing elbow movement with kalman filter using non-invasive eeg, In 2019 ieee colombian
conference on applications in computational intelligence (colcaci). IEEE. https://doi.org/10.
1109/colcaci.2019.8781800. (Cit. on p. 66)

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., Et al. (2020). Scipy 1.0: Fundamental algo-
rithms for scientific computing in python. Nature methods, 17(3), 261–272. https://doi.
org/10.14293/s2199-1006.1.sor-life.a7056644.v1.rysreg (cit. on pp. 35, 49)

Wagner, J., Solis-Escalante, T., Grieshofer, P., Neuper, C., Müller-Putz, G., & Scherer, R. (2012).
Level of participation in robotic-assisted treadmill walking modulates midline sensori-
motor eeg rhythms in able-bodied subjects. Neuroimage, 63(3), 1203–1211. https://doi.
org/10.1016/j.neuroimage.2012.08.019 (cit. on p. 25)

Wang, W., Chan, S. S., Heldman, D. A., & Moran, D. W. (2007). Motor cortical representation
of position and velocity during reaching. Journal of neurophysiology, 97(6), 4258–4270.
https://doi.org/10.1152/jn.01180.2006 (cit. on pp. 4, 25, viii)

Wang, X. (2005). Volumes of generalized unit balls. Mathematics Magazine, 78(5), 390–395. https:
//doi.org/10.2307/30044198 (cit. on p. 97)

Webber, C., & Marwan, N. (2015). Recurrence quantification analysis. Theory and Best Practices.
https://doi.org/10.1007/978-3-319-07155-8 (cit. on pp. 10, 23, 25, 26, 93)

Welch, B. L. (1947). The generalization of ‘student’s’problem when several different population
varlances are involved. Biometrika, 34(1-2), 28–35. https://doi.org/10.1093/biomet/34.
1-2.28 (cit. on p. 51)

Wessberg, J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K., Kim, J.,
Biggs, S. J., Srinivasan, M. A., & Nicolelis, M. A. (2000). Real-time prediction of hand
trajectory by ensembles of cortical neurons in primates. Nature, 408(6810), 361–365.
https://doi.org/10.1038/35042582 (cit. on pp. 3, vii)

https://doi.org/10.1016/S0375-9601(00)00815-X
https://doi.org/10.1016/S0375-9601(00)00815-X
https://doi.org/10.3389/fncom.2018.00003
https://doi.org/10.3389/fnhum.2012.00252
https://doi.org/10.3389/fnhum.2012.00252
https://doi.org/10.1016/J.NEUROIMAGE.2018.08.039
https://doi.org/10.1109/colcaci.2019.8781800
https://doi.org/10.1109/colcaci.2019.8781800
https://doi.org/10.14293/s2199-1006.1.sor-life.a7056644.v1.rysreg
https://doi.org/10.14293/s2199-1006.1.sor-life.a7056644.v1.rysreg
https://doi.org/10.1016/j.neuroimage.2012.08.019
https://doi.org/10.1016/j.neuroimage.2012.08.019
https://doi.org/10.1152/jn.01180.2006
https://doi.org/10.2307/30044198
https://doi.org/10.2307/30044198
https://doi.org/10.1007/978-3-319-07155-8
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1038/35042582


Bibliography 139

Worsley, K. J., & Friston, K. J. (1995). Analysis of fmri time-series revisited—again. Neuroimage,
2(3), 173–181. https://doi.org/10.1006/nimg.1995.1023 (cit. on pp. 34, 48)

Worsley, K. (1996). An unbiased estimator for the roughness of a multivariate gaussian ran-
dom field. Montreal: Department of Mathematics and Statistics, University of McGill (cit. on
pp. 48, 54, 56).

Wu, W., & Hatsopoulos, N. (2006). Evidence against a single coordinate system representation
in the motor cortex. Experimental brain research, 175(2), 197–210. https://doi.org/10.
1007/s00221-006-0556-x (cit. on pp. 4, 25, viii)

Yang, Y.-X., Gao, Z.-K., Wang, X.-M., Li, Y.-L., Han, J.-W., Marwan, N., & Kurths, J. (2018). A
recurrence quantification analysis-based channel-frequency convolutional neural net-
work for emotion recognition from eeg. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 28(8), 085724. https://doi.org/10.1063/1.5023857 (cit. on pp. 2, 9, vi)

Yu, D., Small, M., Harrison, R. G., & Diks, C. (2000). Efficient implementation of the Gaussian
kernel algorithm in estimating invariants and noise level from noisy time series data.
Physical Review E, 61(4), 3750. https://doi.org/10.1103/physreve.61.3750 (cit. on p. 10)

Zbilut, J. P., Thomasson, N., & Webber, C. L. (2002). Recurrence quantification analysis as a
tool for nonlinear exploration of nonstationary cardiac signals. Medical engineering &
physics, 24(1), 53–60. https://doi.org/10.1016/s1350-4533(01)00112-6 (cit. on pp. 4, 25,
27, viii)

Zbilut, J. P., & Webber Jr, C. L. (1992). Embeddings and delays as derived from quantification
of recurrence plots. Physics letters A, 171(3-4), 199–203. https://doi.org/10.1016/0375-
9601(92)90426-m (cit. on pp. 10, 23, 24)

Zeidman, P., Friston, K., & Parr, T. (2022). A primer on variational laplace. https://doi.org/10.
31219/osf.io/28vwh (cit. on p. 72)

Zhang, X., & Zhou, P. (2012). Sample entropy analysis of surface emg for improved muscle
activity onset detection against spurious background spikes. Journal of Electromyography
and Kinesiology, 22(6), 901–907. https://doi.org/10.1016/j.jelekin.2012.06.005 (cit. on
p. 41)

https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1007/s00221-006-0556-x
https://doi.org/10.1007/s00221-006-0556-x
https://doi.org/10.1063/1.5023857
https://doi.org/10.1103/physreve.61.3750
https://doi.org/10.1016/s1350-4533(01)00112-6
https://doi.org/10.1016/0375-9601(92)90426-m
https://doi.org/10.1016/0375-9601(92)90426-m
https://doi.org/10.31219/osf.io/28vwh
https://doi.org/10.31219/osf.io/28vwh
https://doi.org/10.1016/j.jelekin.2012.06.005




Présentation en français

141





Résumé

L’électroencéphalographie (EEG) est une méthode non-invasive largement utilisée pour observer l’activité
cérébrale. La haute résolution temporelle des signaux EEG en fait une méthode pratique pour analyser
l’évolution temporelle de l’activité corticale pendant une tâche donnée. Cette thèse se focalise sur la
tâche de reconstruction des mouvements du membre supérieur à un rythme propre, directement à par-
tir des signaux EEG. En effet, de nombreuses études ont rapporté une cohérence entre l’activité des
motoneurones et l’activité corticale dans les zones motrices pendant les tâches motrices. L’activité des
motoneurones est liée à la force musculaire et donc au couple articulaire. Par conséquent, on pourrait
supposer que l’activité corticale reflète certains aspects de la cinématique de l’articulation pendant le
mouvement. Néanmoins, l’EEG ne capte qu’une partie infime et filtrée de l’activité corticale. Notre
objectif est alors plus modestement d’évaluer dans quelle mesure les trajectoires articulaires peuvent
être reconstruites à partir des signaux EEG.

Nous cherchons à identifier les caractéristiques et les emplacements des signaux EEG qui peu-
vent refléter la cinématique des articulations. Tout d’abord, nous étudions les mesures permettant de
représenter les signaux EEG. Comme ces derniers présentent des propriétés de systèmes dynamiques
non-linéaires, nous utilisons des mesures de complexité issues de la théorie du chaos et de la physique
statistique pour compléter les caractéristiques spectrales classiques dans la caractérisation des signaux
EEG. La qualité des mesures de complexité considérée dans cette thèse dépend du choix judicieux
d’un paramètre de résolution. Nous proposons une nouvelle approche pour déterminer ce paramètre
qui permet une estimation robuste des mesures. Nous validons notre méthode sur des données EEG
simulées et réelles. Ensuite, nous évaluons la corrélation des mesures de complexité EEG avec l’activité
EMG et la cinématique des articulations. Nous avons enregistré l’EEG, l’électromyographie (EMG) et
les trajectoires articulaires de neuf sujets effectuant des mouvements cycliques, non contraints, du coude
à leur rythme. En construisant des cartes statistiques paramétriques des caractéristiques non-linéaires
de l’EEG, nous identifions les emplacements et les caractéristiques les plus corrélés avec le mouvement.

La performance des modèles qui reconstruisent la trajectoire du mouvement à partir des signaux
EEG est usuellement évaluée à l’aide de coefficients de corrélation. Nous montrons que la distribution
du coefficient dégénère pour les séries fortement corrélées comme la trajectoire du mouvement. Dans ce
cas, la distribution de test du coefficient de corrélation peut être approximée en corrigeant son nombre
de degrés de liberté. Nous proposons une nouvelle approche paramétrique pour estimer le nombre de
degrés de liberté, qui donne les statistiques de test appropriées. À la lumière de la distribution corrigée,
nous analysons les performances d’un modèle décodant les trajectoires de mouvement à partir des
signaux EEG. Enfin, nous construisons un modèle biologiquement plausible de la tâche comprenant un
modèle bras dynamique, un modèle de muscle de Hill, un modèle de la moelle épinière et un modèle de
masse neuronale. Nous montrons les perspectives et les limites découlant de l’utilisation d’un modèle
biophysique complexe avec un schéma d’inversion Bayésien de pointe.
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Récapitulatif

1 Préambule

L’objectif initial de cette thèse était de contribuer aux interfaces cerveau-ordinateur par EEG, en suivant
l’idée que ces signaux sont générés par des systèmes dynamiques chaotiques. En général, les signaux
EEG sont traités par des méthodes linéaires telles que la transformée de Fourier (Cohen, 2014). Les
signaux EEG ont de larges spectres et la puissance spectrale de certaines bandes de fréquences sem-
ble modulée indépendamment des autres bandes. Ainsi, l’analyse spectrale donne indéniablement un
aperçu des réponses corticales induites par un événement ou une condition particulière. Cependant,
les méthodes spectrales intègrent par nature l’évolution temporelle des signaux EEG, qui est souvent
apériodique et irrégulière. Par conséquent, une analyse directe de l’évolution des signaux EEG pour-
rait mettre en évidence des caractéristiques corticales qui ne sont pas révélées par les analyses linéaires
classiques. En particulier, il est attrayant d’analyser les signaux EEG du point de vue des systèmes dy-
namiques non-linéaires car, comme indiqué dans (Lehnertz, 1999) : “le chaos déterministe offre une expli-
cation patente à un comportement apparemment irrégulier, caractéristique de l’activité électrique du cerveau”. En
d’autres termes, l’évolution apparente des signaux EEG justifie de compléter les analyses fréquentielles
par des méthodes issues de la théorie du chaos, sans hypothèses particulières sur la nature chaotique
de l’activité cérébrale (qui a déjà été largement débattue, voir (Korn & Faure, 2003)). Ainsi, ce travail de
recherche repose sur l’idée que les mesures de complexité dynamique peuvent être appropriées pour
compléter l’analyse fréquentielle. Le terme mesures de complexité dynamique, désigne de manière
générique des caractéristiques diverses des systèmes dynamiques chaotiques, par exemple les dimen-
sions fractales ou les entropies métriques. Nous suivons la définition du chaos comme “dynamique
bornée apériodique dans un système déterministe avec une dépendance sensible aux conditions ini-
tiales” (Kaplan & Glass, 1997, Sec. 1.7, p.p. 27-28).

2 Estimer des mesures de complexité dynamique

Sachant que nous avons besoin de calculer des mesures de complexité dynamique, la première ques-
tion que nous abordons est d’ordre plutôt général : comment choisir les paramètres d’estimation des
mesures de complexité dynamique ? Il y a trois paramètres qui apparaissent de manière répétée dans
différentes mesures de complexité dynamique. Les deux premiers paramètres configurent la reconstruc-
tion de l’espace des phases d’une série temporelle par la méthode des délais. Cette méthode découle
du théorème de plongement de Takens (Takens, 1981), qui stipule que la trajectoire d’un vecteur com-
posé d’observations retardées d’une série temporelle générée par un système chaotique constitue un
plongement de l’attracteur sur lequel évolue la trajectoire en espace de phase du système chaotique.
La dimension de reconstruction définit la dimension de l’espace vectoriel de la trajectoire reconstru-
ite, c’est-à-dire le nombre d’observations retardées dans chaque vecteur. Il existe des méthodes pour
sélectionner empiriquement la dimension de reconstruction, par exemple (Cao, 1997). En général, la
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sélection de la dimension de reconstruction ne pose pas de problème car les attracteurs chaotiques
ont une dimension finie ; par conséquent, les mesures de complexité dynamique convergent vers une
valeur finie lorsque la dimension de reconstruction devient grande. Le second paramètre est le délai,
qui définit le décalage temporel entre les coordonnées consécutives. Le décalage est sélectionné à partir
des points critiques de la fonction d’autocorrélation ou de l’information mutuelle, de sorte à ce que les
coordonnées soient généralement deux-à-deux indépendantes (Fraser & Swinney, 1986). Le troisième
paramètre à sélectionner est le rayon, également appelé seuil ou résolution, selon la littérature. Ce
paramètre définit la taille d’un voisinage dans l’espace des phases et est utilisé pour construire une
somme de corrélation qui estime le nombre moyen de voisins dans l’espace des phases. La somme de
corrélation est liée à plusieurs mesures de complexité telles que la dimension de corrélation, l’entropie
de Kolmogorov-Sinaï, ou des mesures issues de l’analyse par quantification des récurrences. Malgré
son importance dans le calcul des mesures de complexité dynamiques, il n’existe que peu de méthodes
rigoureuses pour sélectionner le rayon.

Dans le chapitre 2, nous proposons une méthode pour sélectionner rigoureusement le paramètre du
rayon. Nous remarquons que l’erreur relative quadratique moyenne intégrée de la somme de corréla-
tion est en fait l’erreur quadratique moyenne intégrée d’un estimateur par noyau. En d’autres termes,
nous observons que le problème de sélection du rayon est, dans une certaine mesure, identique au
problème de sélection d’une largeur de fenêtre optimale pour construire un histogramme de la densité
de l’espace des phases. Ce changement de perspective est important car le problème de sélection d’une
largeur optimale de fenêtre a été largement étudié dans la littérature statistique. Il existe donc une
grande variété de méthodes parmi lesquelles choisir. Nous utilisons une méthode proposée dans (Sil-
verman, 1986) pour dériver une règle de référence pour le rayon. Nous obtenons une expression analy-
tique qui adapte le rayon en fonction du nombre de points dans la série – permettant d’utiliser un rayon
plus petit lorsque la série est plus longue car la densité de points est plus élevée – et avec l’"échelle" de
la série – permettant d’utiliser un rayon plus grand lorsqu’un plus grand volume de l’espace des phases
est occupé. Dans des configurations empiriques courantes, notre règle de référence donne des valeurs
qui sont proches des valeurs obtenues avec les règles empiriques traditionnellement utilisées. Ainsi,
notre approche justifie la validité des règles empiriques trouvées dans la littérature et les étend à des
conditions empiriques plus générales. Nous confirmons l’adéquation de notre méthode par des expéri-
ences numériques et une application à des signaux EEG.

3 Trouver l’application appropriée

Après avoir identifié une méthode appropriée pour sélectionner les paramètres d’estimation des mesures
de complexité dynamique, nous avons cherché une application adéquate pour mettre en valeur l‘utilisation
de ces mesures. Dans la littérature, les mesures de complexité dynamique ont été utilisées pour iden-
tifier des régimes d’activité corticale dans des conditions particulières, par exemple pour détecter des
crises d’épilepsie (Ocak, 2009) ou pour reconnaître des émotions (Yang et al., 2018). Dans ces applica-
tions, les mesures de complexité dynamiques sont utilisées comme caractéristiques pour la classifica-
tion. En effet, les mesures de complexité fournissent une représentation des signaux EEG dans laquelle
les différentes conditions peuvent être facilement distinguées. Nous cherchons ici à utiliser les mesures
de complexité dynamiques pour résoudre un problème plus difficile : régresser l’évolution temporelle
de variables continues à partir de signaux EEG. La régression est un problème plus complexe que la clas-
sification. Une tâche de classification nécessite de construire une fonction d’un domaine source vers un
ensemble dénombrable qui est généralement non ordonné (par exemple, il n’y a pas d’ordre naturel entre
les deux classes “épileptique” et “sain” utilisées dans la détection de l’épilepsie). La nature dénom-
brable et non ordonnée du domaine cible implique que la classification revient à définir des frontières
de décision dans le domaine source (Bishop & Nasrabadi, 2006). En revanche, une tâche de régression
implique de construire une fonction vers un domaine cible indénombrable qui admet une topologie (par
exemple, un angle de coude de 90◦ est plus grand qu’un angle de coude de 70◦, et plus proche d’un
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angle de 89◦ que d’un angle de 83◦). Par conséquent, la reconstruction de variables continues à partir de
signaux EEG est une question difficile car la fonction de régression doit relier la topologie du domaine
source à celle du domaine cible.

Nous nous sommes intéressés à la reconstruction de mouvement de coude à partir de signaux EEG
chez l’humain. Notre choix a été motivé par plusieurs raisons. Tout d’abord, les mouvements sont
faciles à mesurer et il est relativement simple de restreindre ces mouvements à des articulations ou
des groupes de muscles spécifiques. Ensuite, réussir à reconstruire des mouvements à partir des sig-
naux EEG serait un premier pas vers plusieurs applications biomédicales, par exemple, le contrôle
d’exosquelettes ou la restauration de mouvement pour les personnes handicapées (Chapin et al., 1999)
ou le contrôle d’humanoïdes (Gergondet et al., 2011) et l’encorporation (Aymerich-Franch et al., 2016).
Enfin, la reconstruction de trajectoires de mouvements à partir de signaux EEG semble réalisable d’un
point de vue physiologique. En effet, l’idée de reconstruire des trajectoires de mouvement à partir
de l’activité corticale n’est pas nouvelle. Des travaux avec des réseaux d’électrodes sur des primates
non humains ont mis en évidence diverses propriétés du cortex moteur pendant le mouvement (Geor-
gopoulos et al., 1986). Ces travaux ont débouché sur des applications au décodage du mouvement chez
le rat (Chapin et al., 1999), le macaque rhésus (Wessberg et al., 2000) et enfin chez l’homme à partir
de signaux MEG (Georgopoulos et al., 2005) et ECoG (Schalk et al., 2007). Suite aux travaux sur des
signaux MEG et ECoG, les chercheurs ont essayé de reconstruire les trajectoires de mouvement à partir
des signaux EEG. Depuis les premiers efforts de (Bradberry et al., 2010), plus d’une vingtaine d’articles
ont abordé la reconstruction de mouvements à partir de signaux EEG, avec différents degrés de réus-
site. Cette collection de travaux constitue une base de connaissances précieuse à partir de laquelle nous
pouvons construire des méthodes de reconstruction des trajectoires de mouvement à partir de mesures
de complexité dynamiques des signaux EEG.

A notre connaissance, aucun autre travail n’a utilisé des mesures de complexité dynamique pour
reconstruire des trajectoires de mouvement à partir de signaux EEG. Il est donc légitime de s’interroger
sur les motivations d’une telle approche. Notre motivation provient de divers travaux scientifiques
ayant décrit le comportement multi-échelle des systèmes complexes. Un travail théorique important
est issu de la théorie synergétique (Haken, 1978) qui considère que les systèmes ayant un grand nombre
de composants individuels peuvent présenter un comportement global assez simple. Haken s’intéresse
à l’explication de la réduction apparente du nombre de degrés de liberté dans les systèmes complexes.
L’approche synergétique consiste à observer que quelques variables collectives, les paramètres d’ordre,
évoluent lentement dans le temps et gouvernent le comportement à petite échelle des composants in-
dividuels. La synergétique a été admirablement appliquée pour formuler un modèle de synchronisa-
tion de phase pendant les mouvements des doigts (Haken et al., 1985). Pour résumer, la synergétique
défend l’idée que les systèmes complexes tels que le cerveau (D’Angelo & Jirsa, 2022; Haken, 2006,
2013) peuvent être décomposés en paramètres collectifs lents et en états individuels rapides. Cette idée
se retrouve également dans (Lesne, 2013), où la séparation des échelles de temps est considérée comme
un équivalent temporel des méthodes de champ moyen et apparaît dans les systèmes complexes multi-
échelles. Dans le cas spécifique du cerveau, (Kiebel et al., 2008) soutient qu’une hiérarchie d’échelles
temporelles entre différents niveaux de traitement sensoriel est nécessaire pour s’adapter à un environ-
nement qui évolue à différentes échelles de temps.

On peut cependant se demander si ces théories s’appliquent aux signaux EEG mesurés pendant
le mouvement. L‘approche intuitive pour analyser une telle séparation d’échelle temporelle serait
d’utiliser des représentations temps-fréquence des signaux EEG. En effet, les variations de puissance
spectrale dans le temps indiquent que la composition spectrale des composantes “rapides” du signal
est changeante. D’un point de vue empirique, la modulation de la composition spectrale des signaux
EEG au cours du mouvement a été observée à plusieurs reprises (van Wijk et al., 2012). En particulier,
une modulation de l’activité dans la bande gamma pendant le mouvement a été observée pour les sig-
naux MEG (Cheyne et al., 2008) et EEG (Ball et al., 2008). La modulation de l’activité à haute fréquence a
également été observée dans le cas de la marche sur tapis roulant, où la fréquence du pas se reflète dans
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l’amplitude de l’activité de la bande gamma (Seeber et al., 2015). Ainsi, les résultats empiriques de la lit-
térature suggèrent qu’une forme de décomposition lent-rapide se produit pendant le mouvement. Nous
pouvons donc envisager de construire un analogue de l’analyse temps-fréquence avec des mesures de
complexité dynamiques en utilisant des méthodes de fenêtrage (Zbilut et al., 2002). Dans ce cas, nous
nous attendons à ce que les mesures de complexité dynamique fenêtrées reflètent des changements
lents dans la dynamique des variables rapides.

En résumé, nous soutenons l’idée que le mouvement pourrait être une application appropriée pour
étudier les méthodes de régression de variables à partir de signaux EEG. En partant du principe que les
systèmes complexes tels que le cerveau admettent une décomposition lent-rapide, nous proposons de
suivre les changements lents dans la dynamique rapide des signaux EEG en utilisant des mesures de
complexité dynamique par fenêtre. Notre proposition est soutenue par des observations trouvées dans
la littérature, qui observent indirectement une décomposition lent-rapide par le biais d’analyses temps-
fréquence de signaux EEG pendant le mouvement. Nous devons à présent identifier quelle variable de
mouvement reconstruire à partir des signaux EEG.

Selon la littérature des neurosciences, il existe plusieurs variables de mouvement que nous pou-
vons tenter de régresser à partir des signaux EEG. En particulier, nous pouvons essayer de reconstruire
directement une position, une vitesse ou une accélération. Le décodage de la position et de la vitesse
serait motivé par des observations sur le comportement de l’activité neuronale dans le cortex moteur
primaire pendant le mouvement (Churchland et al., 2006; Kakei et al., 1999; W. Wang et al., 2007), et
le décodage de l’accélération pourrait être motivé par la relation entre l’activité du cortex moteur et la
force (Cheney & Fetz, 1980; Georgopoulos et al., 1992). Il est important de noter que l’on doit choisir
un référentiel pour décoder la position, la vitesse ou l’accélération. Par exemple l’espace cartésien ou
l’espace articulaire. Comprendre dans quel référentiel les signaux neuronaux codent les trajectoires de
mouvement est loin d’être une question triviale. Généralement, on suppose que le mouvement est dé-
composé d’un référentiel extrinsèque de haut niveau à un référentiel intrinsèque de bas niveau (Bear
et al., 2020; Kakei et al., 2001). En revanche, il n’y a aucune preuve que le mouvement soit décomposé
dans un référentiel commun et il est également probable que le cerveau n’utilise aucun des référentiels
qui nous sont familiers (Wu & Hatsopoulos, 2006). La cohérence entre l’activité musculaire et l’activité
du cortex moteur primaire pendant le mouvement est, au contraire, bien documentée (Baker et al., 1997;
Conway et al., 1995; Mima & Hallett, 1999) et ne nécessite pas de sélectionner une variable cinématique
particulière ni un référentiel. Ainsi, dans un premier temps, nous nous concentrons directement sur la
reconstruction de certains aspects de l’activité musculaire.

Dans le chapitre 3, nous présentons notre dispositif expérimental et notre méthode de collecte de
données. Nous avons collecté les données de mouvement ainsi que les signaux EEG et EMG de 9 par-
ticipants en bonne santé. Les participants devaient effectuer des mouvements non contraints de flex-
ion/extension unilatérale du coude, continus et à un rythme non imposé, pendant des essais d’environ
23 à 24 secondes. La tâche — mouvements à un rythme propre avec de longues durées — a été choisie
pour reproduire des conditions de mouvement normales. Nous avons calculé les mesures d’analyse par
quantification des récurrences sur fenêtres glissantes (WRQA) des signaux EEG et EMG. Nous avons
appliqué un filtre passe-haut aux signaux EEG et EMG avant de calculer les mesures afin de supprimer
les interactions parasites avec les composantes basse fréquence des signaux. Nous avons ensuite ef-
fectué une analyse paramétrique pour étudier les relations entre les mesures WRQA des signaux EEG
et EMG pendant le mouvement. Nos résultats indiquent qu’il y a une diminution apparente de la
“complexité” des signaux EEG au début du mouvement qui est maintenue pendant le mouvement. Ce
résultat avait déjà été rapporté par (Pitsik et al., 2020) et notre travail complète de manière rigoureuse
ces résultats avec des cartes topographiques des corrélations entre les mesures WRQA des signaux
EEG et EMG pendant le mouvement. Nous observons des corrélations négatives significatives entre les
mesures des signaux EMG du bras en mouvement et les mesures des signaux EEG du côté controlatéral
du cerveau.
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4 Reconstruire des trajectoires de mouvement

Après avoir observé qu’il existe une corrélation significative entre les mesures de complexité dynamique
des signaux EEG et EMG pendant le mouvement, nous essayons d’aborder la question de la recon-
struction des trajectoires de mouvement à partir des signaux EEG. Avant de reconstruire le mouve-
ment à partir de mesures de complexité dynamique, nous avons tenté de reproduire la littérature sur
le“décodage” du mouvement à partir de signaux EEG basse fréquence tel qu‘il a été décrit par certains
auteurs’ (Bradberry et al., 2010; Ofner & Müller-Putz, 2012). L’objectif de cette étape intermédiaire était
de mieux comprendre le décodage du mouvement et de disposer d’une méthode de référence à laquelle
comparer d’autres méthodes. Nous avons observé que les modèles utilisés dans la littérature avaient
des performances disparates sur nos données. En particulier, la performance des modèles semble être
liée négativement à la variabilité du mouvement et positivement à la vitesse du mouvement. Nos ob-
servations nous ont incité à analyser plus en profondeur la question de l’évaluation des performances
des modèles de reconstruction.

Dans la littérature, le coefficient de corrélation de Pearson est la mesure généralement choisie pour
évaluer la performance des modèles de reconstruction de mouvement à partir de signaux EEG. Les
travaux connexes font état de coefficients de corrélation de l’ordre de 0.3, ce qui est faible par rapport
aux normes de la littérature statistique. Cependant, nous pouvons nous attendre à un grand nombre
de valeurs aberrantes dans une tâche de reconstruction et donc accepter qu’un faible coefficient de
corrélation soit déjà un bon résultat. En d’autres termes, nous pouvons accepter qu’un bon modèle de
reconstruction soit peu performant en raison du faible rapport signal/bruit des signaux EEG et de la
présence d’artefacts. Nous ferons avec cette hypothèse, mais soulignons qu’utiliser un coefficient de
corrélation comme mesure de performance pose un autre problème important.

Dans le chapitre 4, nous étudions le comportement des coefficient de corrélation de Pearson et de
Spearman dans le cas de séries temporelles. En particulier, nous rapportons que de grands coefficients
de corrélation entre deux séries aléatoires et indépendantes sont fréquemment observés lorsque les
séries sont fortement autocorrélées. Par ailleurs, il est possible de corriger la distribution de test du
coefficient de corrélation, qui est obtenue sous l’hypothèse que les échantillons sont non corrélés, pour
prendre en compte l’autocorrélation des séries (M. Bartlett, 1935). La correction nécessite simplement
de configurer la distribution de test avec un certain nombre de degrés de liberté effectifs, c’est-à-dire la
taille d’un échantillon indépendant qui produirait les mêmes statistiques que la série autocorrélée (Afy-
ouni et al., 2019). Le nombre de degrés de libertés utilisé pour configurer la distribution de test est
important car il détermine l’étalement de la distribution de test et donc la probabilité qu’un coefficient
de corrélation entre séries indépendantes soit observé loin de zéro.

Nous proposons une méthode paramétrique pour calculer le nombre de degrés de liberté effectifs.
Notre méthode est plus simple que les méthodes trouvées dans la littérature et particulièrement adap-
tée à notre application. Notre approche approche la fonction d’autocorrélation de la série en utilisant
l’autocorrélation d’un processus gaussien, ce qui nous permet de dériver une expression analytique
pour calculer le nombre de degrés de liberté effectifs d’une série. De plus, nous utilisons la formule de
Rice (Rice, 1944), qui donne le nombre moyen de passages par zéro d’un processus stochastique (Cox
& Miller, 2017). La formule de Rice nous permet d’exprimer le nombre de degrés de libertés effectifs
d’un processus stochastique comme le nombre moyen de passages par zéro du processus multiplié par√

π. Nous confirmons d’abord l’adéquation de notre méthode par des expériences numériques. En-
suite, nous reproduisons deux modèles de reconstruction de mouvement à partir de signaux EEG basse
fréquence. Nous examinons de plus près la relation entre la performance des modèles et les paramètres
du mouvement à la lumière de l’expression dérivée de la formule de Rice. Nous observons que les mou-
vements dont la période est longue ou variable sont systématiquement associés à des performances de
reconstruction insignifiantes. En d’autres termes, les modèles de reconstruction ne donnent des résul-
tats significatifs qu’avec des mouvements à oscillation rapide, c’est-à-dire avec un grand nombre de
degrés de liberté effectifs et une faible variabilité du mouvement.
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5 Une autre approche

Les résultats du chapitre 4 relativisent l’adéquation des modèles trouvés dans la littérature avec nos
données. Une alternative serait de construire des modèles plus complexes et plus expressifs. Des mod-
èles plus complexes pourraient théoriquement représenter des fonctions de régression plus complexes.
Poussée à l’extrême, cette approche conduirait à utiliser des modèles d’apprentissage profond pour
reconstruire les trajectoires de mouvement à partir des signaux EEG. Nos tentatives d’utilisation de
modèles d’apprentissage profond n’ont pas donné lieu à des performances satisfaisantes. En outre,
nous avons réalisé que les modèles d’apprentissage profond devaient être utilisés avec précaution sur
les signaux EEG : les modèles d’apprentissage profond peuvent apprendre la tâche de reconstruction
à partir d’artefacts plutôt que de signaux cérébraux. Cela est dû au faible rapport signal/bruit des
signaux EEG ainsi qu’à la complexité de la tâche et à la présence répétée d’artefacts dus au mouve-
ment. Par exemple, la contraction des muscles du cou ou les mouvements des yeux qui suivent la main
pourraient être utilisés par le modèle pour reconstruire les trajectoires de mouvement, comme cela a
déjà été observé dans les modèles linéaires qui, pour l’EOG, contribuent largement aux performances
de reconstruction (Ofner & Müller-Putz, 2012). Par conséquent, même si un modèle d’apprentissage
profond pouvait reconstruire des trajectoires de mouvement à partir des signaux EEG, il serait difficile
de défendre le fait que le modèle “décode” le mouvement à partir de l’activité corticale. Nous avons
donc décidé d’abandonner les modèles d’apprentissage profond en faveur d’une approche bayésienne
basée sur des modèles biologiques plausibles, c’est-à-dire des modèles composés de paramètres ayant
une interprétation physique et qui peuvent être estimés pour expliquer les données.

La structure et les paramètres de ces modèles sont guidés par des preuves physiques ou physi-
ologiques (ou par l’intuition). Ces modèles sont particulièrement utiles pour découvrir les processus
qui sous-tendent des situations cliniques spécifiques, par exemple dans le cas de l’épilepsie (Cooray et
al., 2016; Jirsa et al., 2014; Papadopoulou et al., 2015) ou la maladie de Parkinson (Rowe et al., 2010; van
Wijk et al., 2018). La distribution des paramètres du modèle peut être estimée à partir des données en
utilisant des schémas d’inversion bayésiens qui permettent de pondérer les valeurs des paramètres qui
expliquent correctement les données par des connaissances a priori sur leur distribution (Penny et al.,
2011). La forme spécifique des modèles bayésiens permet de comparer facilement les modèles (Stephan
et al., 2009) et donc de tester des hypothèses sur la structure du modèle, par exemple sur la connectivité
entre différentes régions (K. J. Friston, 2011).

Nous considérons ici un modèle neuro-musculo-squelettique (NMS) intégrant des modèles de l’activité
cérébrale, de l’activité musculaire et du squelette. Bien que considérer un cas général nécessiterait une
modélisation complexe, nous pouvons construire un modèle simplifié mais réaliste de notre tâche de
mouvement du coude. Dans le chapitre 5, nous construisons un modèle NMS de ce mouvement en
assemblant des modèles du bras, des muscles triceps et biceps, et des colonnes corticales. Notre mod-
èle squelettique est un modèle de bras simplifié en deux dimensions avec deux degrés de liberté, régi
par la dynamique des corps rigides. Nous utilisons le modèle musculaire de Hill (Hill, 1938) pour le
fléchisseur du coude, biceps bracchi, et l’extenseur du coude, triceps bracchi. Les modèles musculaires de
Hill donnent une relation entre la fréquence d’activation des neurones moteurs du muscle et la force
linéaire générée par les fibres musculaires. De plus, nous avons modélisé les “capteurs” du muscle, les
afférents de type Ia et Ib, en utilisant une relation linéaire trouvée dans la littérature (Teka et al., 2017).
Nous utilisons ensuite un modèle de la moelle épinière (Li et al., 2015), qui transforme l’activité corti-
cale motrice en entrées musculaires. Un modèle de la moelle épinière est nécessaire pour rendre compte
du phénomène d’inhibition réciproque des muscles antagonistes (Bear et al., 2020; Li et al., 2015). En-
fin, nous proposons de modéliser l’activité corticale à l’aide de modèles de masse neuronaux (David &
Friston, 2003).

L’objectif du chapitre 5 est de mettre en évidence les perspectives d’utilisation de tels modèles mais
aussi de souligner les limites actuelles des méthodes d’inversion existantes. En théorie, nous pourrions
étudier des hypothèses sur l’évolution temporelle de l’activité corticale pendant le mouvement en util-
isant notre modèle NMS. Cependant, il est très compliqué d’inverser un tel modèle ou de formuler



6. Synthèse xi

des hypothèses en raison de la nature particulière du modèle considéré ici — un modèle dynamique
hiérarchique, c’est-à-dire une cascade de modèles entrée-état-sortie — et de la nature continue de notre
expérience. Nous avons implémenté une des méthodes de pointe pour l’inversion de systèmes dy-
namiques, à savoir l’algorithme Dynamic Expectation Maximization (DEM) (K. J. Friston et al., 2008).
L‘algorithme DEM permet de résoudre des problèmes d’estimation triple, c’est-à-dire d’estimation con-
jointe de trajectoires d’états, de paramètres et des hyperparamètres du modèle (par exemple, la variance
du bruit). En essayant d’inverser notre NMS avec DEM, nous avons découvert d’importants problèmes
survenant lors de l’estimation d’un modèle complexe intégrant de multiples échelles temporelles au
cours d’une expérience en conditions normales. Nous pensons qu’il est nécessaire de répondre à ces
questions pour permettre l’exploration d’hypothèses sur les réponses du cerveau lors de telles expéri-
ences.

6 Synthèse

Dans cette thèse, nous avons voulu relever le défi d’estimer des trajectoires des mouvements du bras
humain en considérant les propriétés dynamiques non-linéaires des signaux EEG. Nous avons abordé
plusieurs facettes du problème. Dans le chapitre 2, nous proposons une nouvelle approche pour déter-
miner un paramètre important dans l’estimation des mesures de complexité non-linéaire, permettant
d’obtenir des estimations robustes dans des conditions expérimentales. Dans le chapitre 3, nous étu-
dions les relations entre les mesures de complexité dynamique des signaux EEG et EMG pendant le
mouvement. Nous avons recueilli des données dans le cadre d’une expérience impliquant des mou-
vements libres de flexion-extension du coude. Dans le chapitre 4, nous proposons une nouvelle méth-
ode pour estimer correctement la signification des coefficients de corrélation dans le cas de séries tem-
porelles fortement autocorrélées. En appliquant notre méthode à des modèles classiques de reconstruc-
tion de trajectoires de mouvements à partir de signaux EEG, nous mettons en évidence les limites poten-
tielles de l’utilisation de coefficient de corrélation comme mesure de performance. Dans le chapitre 5,
nous examinons la question de l’identification d’un modèle biologiquement plausible de notre tâche de
décodage du mouvement à partir des signaux EEG, et nous analysons les perspectives ainsi que les dé-
fis importants qui découlent d’une question de modélisation aussi complexe. Enfin, les leçons apprises
et les extensions possibles de ce travail sont présentées dans le chapitre 6.
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