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Abstract

The variable kinematics approach allows to choose different plate models according to
the desired level of accuracy. Furthermore, the mixed ESL/LW approach of SGUF
makes the model particularly convenient for sandwich structures analysis. The Sub-
laminate Generalized Unified Formulation (SGUF) is extended for the first time to the
framework of Finite Element Method (FEM) for both displacement-based and mixed
(RMVT) formulation. A substitute interpolation for the transverse shear strain field,
referred to as QC4/CL8 interpolation, makes the developed FEs locking free and in-
sensitive to mesh distortion. The complete expression of finite element matrices for
the PVD-based and RMVT-based elements is provided. The possibility of exactly
satisfying transverse stress boundary conditions for RMVT-based elements is also in-
vestigated for the first time. The flexibility and accuracy of the computational approach
is demonstrated on linear static problems of sandwich plates and beams ranging from
global bending response to local indentation problems. The challenging phenomenon
experienced by laminated composite plates at free edges, known as free-edge effect, is
also addressed.

Free and forced vibration of sandwich beams and plates hosting viscoelastic ma-
terial (VEM) layers are also investigated. A brief survey on viscoelastic models in
both time- and frequency-domain is presented along with the solution strategies. In
particular, the frequency-dependent behaviour of VEM is modelled according to the
fractional derivatives Zener-type model or conventional series development based on
the Generalised Maxwell model. The damped properties, i.e. modal loss factors and
damped eigenfrequencies, are obtained within the complex modulus approach and com-
pared to those available in the literature for conventional and unconventional sandwich
configurations. The frequency response of sandwich panels is computed by a direct
approach, i.e. by solving the linear system of equations as many times as the number
of frequencies set in the frequency bandwidth of interest.

Finally, stability considerations are addressed within the framework of the classical
linearised stability analysis considering a symmetric cross-ply laminate subjected to
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a uniaxial uniform strain. The role of geometric and elastic properties on buckling
loads and buckled shapes is emphasised by referring to a sandwich panel uniformly
strained along the longitudinal direction. The onset of local instabilities in the face
sheet of a sandwich panel under three-point flexion solicitation are also addressed.
Convergence studies are performed to establish the minimum number of elements for
the local instabilities to be grasped.

It is demonstrated that the proposed approach is capable of recovering full three-
dimensional response with a 2D FE mesh and with less degrees of freedom than the
conventional models available in commercial FE packages. All the findings presented in
this dissertation relied on an in-house Finite Element code developed throughout the
doctoral project. The proposed Finite Plate Elements are implemented via Fortran
subroutines. A dedicated Python GUI (Graphical User Interface) drives the model
in the range of admissible analyses. The solution of the linear systems relies on a
direct sparse solver, namely the PARDISO Solver Project, whilst generalised eigenvalue
problems are solved by resorting the ARnoldi PACKage (ARPACK).
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Résumé

L’approche à cinématique variable permet de choisir différents modèles de plaques
selon le niveau de précision souhaité. De plus, l’approche mixte ESL/LW de SGUF
rend le modèle particulièrement pratique pour l’analyse des structures sandwich. La
Sublaminate Generalized Unified Formulation (SGUF) est étendue pour la première fois
au cadre de la Méthode des Éléments Finis (MEF) pour la formulation classique aux
déplacements et mixte (RMVT). Une interpolation de substitution pour le champ de
déformation de cisaillement transverse, appelée interpolation QC4/CL8, rend les EFs
développé libres du verrouillage et insensibles à la distorsion du maillage. L’expression
complète des matrices pour les éléments basés sur PVD et RMVT est fournie. La
possibilité de satisfaire exactement les conditions aux limites des contraintes transverses
pour les éléments basés sur la formulation mixte RMVT est également étudiée pour
la première fois. La flexibilité et la précision de l’approche de calcul sont démontrées
sur des problèmes statiques linéaires de plaques et de poutres sandwich allant de la
réponse globale de flexion aux problèmes d’indentation locale.

Les vibrations libres et forcées des poutres et plaques sandwich abritant des couches
de matériaux viscoélastique (VEM) sont également étudiées. Une brève étude sur les
modèles viscoélastiques dans les domaines temporel et fréquentiel est présentée avec les
stratégies de solution. En particulier, le comportement en fonction de la fréquence du
VEM est modélisé selon le modèle aux dérivés fractionnaires de type Zener ou modèle
de Maxwell généralisé par une expansion en série. Les propriétés amorties, c.-à-d. les
facteurs de perte modaux et les fréquences propres amorties, sont obtenues dans le
cadre de l’approche par module complexe et comparées à celles disponibles dans la
littérature pour des configurations sandwich conventionnelles et non conventionnelles.
La réponse en fréquence des panneaux sandwich est calculée par une approche directe,
c.-à-d. en résolvant le système linéaire d’équations autant de fois que le nombre de
fréquences définies dans la bande passante d’intérêt.

Enfin, la stabilité des structures composites est abordée dans le cadre de l’analyse
classique de stabilité linaire en considérant un stratifié croisé symétrique soumis à

v



une déformation uniforme uniaxiale. Le rôle des propriétés géométriques et élastiques
sur les charges de flambement et les déformées modales est mis en évidence en se
référant à un panneau sandwich uniformément tendu dans la direction longitudinale.
Le début des instabilités locales dans la peau en compression d’un panneau sandwich
sous la sollicitation de flexion en trois points est également abordé. Des études de
convergence sont réalisées pour établir le nombre minimum d’éléments à saisir pour
que les instabilités locales soient saisies.

Il est démontré que l’approche proposée est capable de récupérer une réponse tridi-
mensionnelle avec un maillage 2D EF et avec moins de degrés de liberté que les modèles
classiques disponibles dans les logiciels aux éléments finis commerciaux. Tous les
résultats présentés dans cette thèse s’appuient sur un code interne aux éléments finis
développé tout au long du projet doctoral. Les éléments finis proposés sont implémentés
via des routines Fortran. Une interface graphique Python dédiée pilote le modèle dans
la gamme des analyses admissibles. La solution des systèmes linéaires repose sur un
solveur direct, le PARDISO Solver Project, tandis que le problème aux valeurs propres
généralisé est résolu en utilisant le ARnoldi PACKage (ARPACK).
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Introduction

Sandwich structures are widely employed in applications requiring high weight-specific
bending stiffness, for instance aeronautics [1] or naval engineering [2]. Furthermore, the
materials constituting the skins and the core can be specifically tailored to furnish, e.g.,
high energy absorption, acoustic damping, electro-mechanical wave absorption, thermal
insulation and fire resistance, which make sandwich panels very suitable candidates for
an extremely wide range of engineering applications [3, 4]. A discussion about sandwich
panels’ applications with respect to their eco-efficiency in view of an environmental
footprint reduction of structures has been recently provided by Resende Oliveira et al.
[5]. The inherent heterogeneity of composite sandwich structures leads to the definition
of three scales. The distinction relies on the characteristic length of the heterogeneity
(see Figure 1) and can be summarized as follows: (i) the microscale identifies the
fibre-matrix heterogeneity within the individual plies, microstructure of the cellular
structure of the honeycomb core, (ii) the mesoscale identify the heterogeneity at bi-
material interface across the composite stack, (iii) the macroscale interests the global
behaviour of the whole structure.

a

hp

d

Macroscale [m] Mesoscale [mm] Microscale [µm]

Figure 1: Characteristic lenght scales of a composite sandwich structure.

The development of mathematical theories and numerical models able to ensure
an accurate description of both global (macroscale) and local (mesoscale) response of

xxi



composite sandwich structures is therefore crucial in the design process. But besides
the reliability aspect, numerical models must be effective, i.e. an accurate prediction
must be delivered with minimal computational effort. In this context, due to geometric
considerations, classical two-dimensional (2D) models such as the Classical Laminate
Theory (CLT) or First-order Shear Deformation Theory (FSDT) have been widely used
throughout the years. Nevertheless, classical 2D models turn out to be inadequate in
describing composite sandwich structures at the mesoscale level due to their hetero-
geneous cross-sections. Advanced 2D models may hence be addressed by referring for
example to the partially mixed variational statement formulated by Reissner [6, 7], and
therefore referred to as Reissner’s Mixed Variational Theorem (RMVT), to cope with
heterogeneity at bi-material interfaces. In particular, partially mixed models allows
for the continuity requirement of the transverse stress field at plies’ interfaces to be
fulfilled.

This work aims at developing a reliable and effective numerical tool able to predict
both global and local responses of composite sandwich beams and plates according to
different analyses as outlined in the following section.

Structure of the thesis

This dissertation consists of 6 chapters according to the following outline. Chap-
ter 1 provides a brief literature survey about the main topics addressed in the present
work, namely sandwich panels modelling, variable kinematics approaches, viscoelas-
tically damped sandwich structures and buckling of sandwich panels. In Chapter 2,
displacement-based (PVD) and mixed (RMVT) variational principles are used to derive
the semi-discrete governing equations within the framework of Sublaminate General-
ized Unified Formulation (SGUF). The through-the-thickness behaviour of the field
variables is axiomatically postulated at sublaminate level by choosing the order of
expansion as well as the description (ESL or LW) along the thickness direction in-
dependently for each of the variables involved in the formulation. The 2D governing
equations are solved in a weak form using the Finite Element Method (FEM). Numer-
ical tests are performed to prove the robustness of the proposed FEs concerning the
shear locking pathology and mesh distortion.

Chapter 3 presents an assessment and validation of the proposed model when ap-
plied to the mechanical analysis of composite structures. Particular emphasis is ad-
dressed on problems characterized by steep stress gradients, such as free-edge effects
or indentation problems. The dynamic behaviour of sandwich panels with viscoelastic
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cores is investigated in Chapter 4. The complex modulus approach is employed to
compute the dynamic response in the frequency domain. The predicted damped prop-
erties obtained within the proposed FE approach are compared to several benchmark
problems found in literature. Chapter 5 deals with the linearised stability analysis of
composite laminates and sandwich panels. The initial stress matrix is derived within
the SGUF variable kinematics approach by referring to von Kármán nonlinearities.
The proposed FEs are applied to global and local buckling analyses and compared
against solutions available in the literature or obtained by commercial FE packages.
Finally, Chapter 6 draws the conclusions of the thesis and provides an outlook towards
future developments.
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Chapter 1

Literature Review

Modelling of sandwich panels. A sandwich panel is a structure made up of thin
stiff skins, possibly composite, that are separated by a thick and relatively weak core.
The analysis and design of composite sandwich panels requires refined models to cope
with the strong mismatch between facings and core in terms of mechanical stiffness and
geometric thickness. In fact, the strong face-core heterogeneity renders classical models
for composite structures, such as Classical Lamination Theory (CLT) or First order
Shear Deformation Theory (FSDT), inappropriate for evaluating bending deflections or
vibration characteristics [8]. The need for detailed models is even more stringent if the
attention is to be given to local stress response, which is a necessary step for a reliable
prediction of the complex failure modes that characterise sandwich panels [9, 10]. As
pointed out by Birman and Kardomateas [11], refined models are mandatory also in
view of resolving multifield interactions and/or cross-scaling effects, which constitute
relevant axis of development towards advanced sandwich applications. For instance,
in order to improve the fidelity of the macro/meso-scale models that are customarily
employed for the sizing of built-up panel structures, homogenization schemes have been
recently proposed that take into account the cellular structure of commonly employed
core micro-structures [12–14].

A large number of refined, high-order two-dimensional (2D) models have been thus
proposed with the aim of attaining sufficient accuracy without resorting to computa-
tionally expensive full three-dimensional (3D) models. Early developments have been
exhaustively summarised and assessed by Noor and Burton [15, 16], for more recent
overviews we refer to [17–21]. Over the last years, it is worth mentioning the extension
from 1D (beams or wide plates) to 2D plate models of the Enhanced High-order Sand-
wich Panel Theory (EHSAPT) [22] and its extension towards geometrically nonlinear
analysis [23].
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Since they rely on ad hoc assumptions, the accuracy of such axiomatically derived
structural models is problem-dependent, for it depends on the physics of the considered
problem (materials, geometry, loading . . . ) as well as on the output quantity of interest
in the analysis. The variational-asymptotic approach is a mathematically very elegant
manner to cope with this fundamental issue of reduced-order models [24], and it has
conducted to relevant applications in the field of the mechanical response of sandwich
structures [25, 26]. However, its generalization to complex problems, e.g., involving
multifield couplings, still requires a heavy mathematical effort.

A very flexible and general framework for implementing virtually any kind of struc-
tural 1D beam and 2D plate/shell models has been proposed by Carrera with his Unified
Formulation (CUF) [27–29] and subsequently generalized by Demasi (GUF) [30–32].
The dimensional reduction is carried out within the framework of two variational state-
ments: the classical displacement-based approach expressed by the Principle of Virtual
Displacements (PVD), and the mixed approach proposed by Reissner and referred to
as Reissner Mixed Variational Theorem (RMVT) [6, 7]. RMVT allows to introduce
independent assumptions for the field variables requiring to be interlaminar continu-
ous, i.e., the displacements and the transverse stresses, thus permitting the model to
a priori fulfil the so-called “C0

z −Requirements” [33]. Axiomatic variable kinematics
models are then constructed that can adopt Equivalent Single Layer (ESL) as well as
Layer-Wise (LW) descriptions for the field variables. By virtue of the Unified For-
mulation, these models are expressed in a compact index notation that enables their
implementation in terms of kernel arrays or fundamental nuclei. As a result, the user
can select the model to be employed in the analysis at runtime, thus depending on
the desired accuracy and intended output. Since the most refined models of CUF and
GUF are capable of representing 3D stress states and singularities through the lami-
nate thickness, see, e.g., [34, 35], the error introduced by a given model with respect to
a certain output quantity can be quantitatively assessed, hence allowing to resolve the
problem-dependent accuracy issue by resorting to an Axiomatic/Asymptotic Method
(AAM) [36–42].

D’Ottavio formally extended GUF upon enabling the possibility of selecting dif-
ferent models for individual sublaminates, which consist of an arbitrary number of
contiguous plies within the composite stack [43]. The resulting Sublaminate GUF
(SGUF) affords thus a mixed ESL/LW description, illustrated in Figure 1.1, which is
particularly meaningful for sandwich panels: in fact, different models can be adopted
for the thin and stiff skins and the thick and compliant core layers [44]. Therefore, this
feature allows to further optimise the number of unknown functions of the structural
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model without affecting the accuracy.

z

ESL

z

LW

z

LW

ESL

Figure 1.1: Example of different through-thickness models of a multilayered plate.

SGUF has been successfully employed in the framework of a Ritz solution method
to the analysis of bending, vibration and buckling of sandwich plates and shells, which
could comprise also multiple cores and piezoelectric patches [45–49].

Viscoelastic sandwich structures. Nowadays, especially in automotive and aero-
nautic industries, structures embedding a layer made up of viscoelastic material (VEM)
are of great concern thanks to its capability of suppressing mechanical vibrations and
of reducing noise [50, 51]. This kind of structures are naturally assimilated to sand-
wich panels featured with a viscoelastic core interconnecting two structural skins. It
is remarkable that the viscoelastic layer sandwiched between two stiff skins does not
need to be thick for attaining satisfying damping properties [52]. However, the benefits
offered by embedding a damping layer in the structure come along with some mod-
elling issues, ranging from the physical mechanisms of the viscoelastic layer up to the
structural response. In the following, the modelling techniques that have been used
through the years to describe the behaviour of VEM are briefly discussed. The focus
is given to models inscribed within the Complex Modulus Approach (CMA) in view of
their FE implementation [53].

Complex viscoelastic rheological models based on generalised Maxwell model or
the generalised Kelvin chain are widely employed to describe the frequency-dependent
behaviour of VEM. Among them, it is worth citing the Golla-Hughes-McTavish (GHM)
[54] and the Anelastic Displacement Field (ADF) [55]. As a general rule, models based
upon series developments can require a large number of parameters for accurately
describing the response of VEM, especially if weakly frequency-dependent materials
are considered. As an alternative, constitutive laws described by fractional derivatives
(FD) [56–58] have been proposed which require a relatively low number of material
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parameters, typically four or five [59, 60]. Moreover, the system causality is ensured
contrary to viscoelastic models based upon conventional series development such as
the GHM or the ADF.

Since the shear-related deformation of the weak viscoelastic core due to the outer
stiff layers can not be neglected, refined models need to be considered. Many structural
models based on the Finite Element Method (FEM) have been developed through the
years to describe the dynamic response of composite sandwich panels hosting a VEM
core layer . Early applications consider three-dimensional (3D) FEs to model the vis-
coelastic core layer. [61–65]. Two-dimensional (2D) plate or shell FEs are used for the
thin face sheets and nodal linkage ensure bonding at face-core interfaces. Although the
3D FEs modelling provides accurate predictions, it requires time-intensive simulations.
To alleviate the computational burden of 3D modelling techniques, refined 2D models
shall be addressed. As already mentioned, LW or ZigZag are required to cope with
the strong material mismatch between core and skins [17, 66, 67]. The CLT, when
applied to the face sheets, allows to account for the bending stiffness, whilst the axial
and shear stresses in the core are included by assuming at least FSDT. LW theories
employed to model sandwich structures hosting a VEM layer are discussed in the fol-
lowing. Daya et al. [68] investigated the nonlinear vibrations of viscoelastic sandwich
beams by assuming the Euler-Bernoulli theory for the thin face sheets whilst the dis-
placement field in the viscoelastic core is modelled according to the first-order shear
deformation theory. Moreira et al. [67] developed a layerwise FSDT model for the
dynamic analysis of sandwich plate hosting a thin viscoelastic core layer. An enhanced
description of the transverse shear strain can be achieved by assuming an HSDT for the
viscoelastic core layer [69–71]. Plagianakos and Savaranos [72] includes quadratic and
cubic polynomial distributions of the in-plane displacements along with linear layerwise
theories. In addition, interlaminar shear stress compatibility conditions are imposed
to meet the C1 requirement of transverse shear stresses at plies interfaces. Araujo et
al. [69] proposed a mixed layerwise FEM-based model which considers both active and
passive damping. Passive damping is entrusted with the strong shear deformation of
the viscoelastic core layer, whilst active damping is introduced by piezoelectric patches.
The displacement field in the viscoelastic core is modelled according to HSDT, whilst
FSDT is used for the anisotropic face plies and the piezoelectric plies. The limitations
of these models are mainly related to their ad-hoc assumptions of the field variables in
the face sheets and core layers. Indeed, even though the FSDT is seen to be adequate
to model the mechanical behaviour of the thin face sheets, the theory that must be used
in the viscoelastic core layer for the prediction to be accurate is problem-dependent.
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In particular, Douglas and Yang [73] provided a comprehensive investigation about the
role of the transverse compressional damping in the vibratory response of three-layer
elastic-viscoelastic-elastic (EVE) beams. The outcomes of the investigation suggest the
use of full 3D constitutive law to account for the transverse normal strain which affects
the dynamic response in a narrow frequency bandwidth centred at the compressional
frequency value. In this context, Ren et al. [74] proposed a layerwise model in which
the face sheets satisfy the CLT assumptions whilst the moderately thick viscoelastic
core layer meets a general high-order deformation theory allowing for different polyno-
mials expansion for the in-plane and transverse displacement. It has been proven that
compressive and extensional deformations in the viscoelastic core have to be included
if an accurate prediction of the energy dissipation of the structure due to the damping
layer is sought. This need is even more stringent if structures with multiple cores are
to be studied [49]. It thus becomes clear how axiomatic approaches allowing for the
kinematics assumptions in the viscoelastic layer to be tuned according to the specific
problem represent a turning point in sandwich structure modelling. Ferreira et al.
[66] proposed a layerwise finite element models for viscoelastic sandwich plate based
upon the CUF assuming a linear piecewise distribution of the displacement variables
across each individual plies. A comprehensive model assessment is given by Filippi and
Carrera in [75] where the modelling advantages offered by the unified formulation are
emphasised in the scope of harmonic analysis of passively damped structures.

Buckling of sandwich structures. By virtue of their high bending rigidity, sand-
wich panels show an improved resistance to buckling as well [4, 10]. However, the
thin skins supported by a lightweight core are prone local instabilities referred to as
wrinkling, in which the face sheets buckle in a short-wavelength of the order of the core
thickness [76]. An outstanding contribution to the understanding of the wrinkling phe-
nomenon has been given by Fagerberg [77–80], ranging from the effects of anisotropy
in the face sheets up to the transition from wrinkling to the pure compression failure.
It is worth emphasising that this instability does not only arise in compressed struts,
but it is likely to occur also in the skin under compression under a global bending
deformation [81]. Since this failure mechanism is often catastrophic, it is important to
accurately calculate the critical wrinkling loads for a reliable sizing of sandwich panels.

The short-wavelength of the wrinkling has called for a representation of this mech-
anism as a material failure: given the geometric and constitutive properties of skins
and core, analytical formulas for the critical loads have been proposed irrespective of
the actual loading and boundary conditions of the panel. This approach proves effec-
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tive inasmuch as it can be employed within large scale models of built-up structures,
such as the Global FE Model of an aircraft [82]. An extensive literature review over
the analytical wrinkling formulae can be found in [83] and in the more recent critical
assessment by Ginot et al. [84]. It turns out that the validity of such analytical expres-
sions is confined to specific classes of problems and that they prove rather inaccurate
when applied on configurations that do not meet the assumptions upon which they are
based.

Solid FE models have been also developed for investigating the wrinkling failure
[85–87], which are, however, too computationally intensive to be used in a preliminary
design phase. So-called ”unified” approaches based on high-order structural models
have been also proposed that are capable of predicting both global buckling and local
wrinkling [88, 89]. These approaches are attractive because they open the possibility
of investigating the interaction between global and local instabilities [90, 91].

CUF models, accounting for geometrical nonlinearities, have been developed by
Pagani and Carrera for buckling and post-buckling analyses of laminated composites
beams and isotropic plates [92–94]. CUF and SGUF models have been also applied
successfully to sandwich buckling and wrinkling problems by referring to Navier-type
[95] and to Ritz solutions [46]. The Ritz method does in particular allow to broaden
the studies towards anisotropic panels with arbitrary boundary conditions. Thanks to
the adopted high-order in-plane functions, it has been proven that very refined SGUF
models are capable of grasping the short wavelength response even in configurations
involving anisotropic face sheets and multi-axial loads. These findings are the encour-
aging starting points for the finite element developments proposed in Chapter 5 of this
dissertation.



Chapter 2

Sublaminate-GUF FEM

Contents
2.1 Geometry description . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Variational statements . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Principle of Virtual Displacements . . . . . . . . . . . . . . . 9

2.2.2 Reissner’s Mixed Variational Theorem . . . . . . . . . . . . . 10

2.2.3 Variable-kinematics plate model in SGUF . . . . . . . . . . . 10

2.2.4 The semi-discrete governing equations of the plate . . . . . . 12
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2.3 FE Approximations for SGUF plate models . . . . . . . . 14
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2.4 Numerical transverse shear locking test . . . . . . . . . . . 16

2.5 Mesh distortion test . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Geometry description

Let us consider a multilayered rectangular plate of total thickness h, composed of
Np orthotropic, elastic and perfectly bonded plies occupying the volume V = Ω ×
{−h/2 ≤ x3 ≤ h/2} in the Cartesian frame (x1, x2, x3 ≡ z), see Figure 2.1 (left). The
reference surface Ω is thus chosen to lie in the plate midplane (z = 0). The boundary
∂V is split in the portion ∂Vu with an imposed displacement field ū and ∂Vt with
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imposed tractions t̄ such that ∂Vu ∪ ∂Vt = ∂V and ∂Vu ∩ ∂Vt = ∅. Unless differently
stated, the Einstein summation convention is employed with Latin indices varying in
{1, 2, 3} and Greek indices in {1, 2}. The laminate cross-section is shown in Figure 2.1
(right), where p = 1, 2 . . . Np is the index for the physical plies and k = 1, 2 . . . Nl

is the index for the numerical layers in which the laminate is subdivided into. The
number of physical plies composing the kth numerical layer is indicated as Nk

p . Non-
dimensional coordinates ζk ∈ {−1, 1} and ζp ∈ {−1, 1} are introduced in order to define
the interpolations across the thickness of the kth layer and the pth ply, respectively:

ζ□ = 2
h□

z − z□t + z□b
z□t − z□b

with □ = p, k (2.1)

where hk = zk
t − zk

b and hp = zp
t − zp

b denotes the layer and ply thickness, respectively.
The relation between the non-dimensional ply-specific and layer-specific coordinates is
obtained as:

ζp = hk

hp

ζk + 2
hp

(
z0k

− z0p

)
= 2

ζp,t
k − ζp,b

k

(
ζk − ζp,t

k + ζp,b
k

2

)
(2.2)

where z0□ = (z□t + z□b )/2 are the mid-plane coordinates of the kth layer (□ = k) and the
pth ply (□ = p), respectively. Finally, ζp,t

k and ζp,b
k are the values of the non-dimensional

coordinate ζk at the top and bottom interfaces, respectively, of the physical ply p inside
the kth sublaminate, i.e., ζp

(
ζk = ζp,t

k

)
= 1 and ζp

(
ζk = ζp,b

k

)
= −1.

x
y

z

b
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H
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Figure 2.1: Multilayered plate as an assembly of Np physical plies (left) and Nl numerical layers
(right). Global z, layer-specific zk and ply-specific zp coordinates are used for the description of the
model along with the non-dimensional layer- and ply-specific coordinates ζk and ζp[43].
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2.2 Variational statements

Variational formulations are used to introduce the axiomatic modeling along the thick-
ness coordinate. The conventional displacement-based approach (PVD) as well as the
mixed approach by Reissner (RMVT) will be employed for deriving the governing equa-
tions of the composite plate. In either case, the governing equations are expressed by
equating the internal virtual work with the virtual work done by the external tractions
t̄:

δWi = δWe with δWe =
∫

∂Vt

δu t̄ dΓ (2.3)

where δ is the usual variational operator and u the displacement vector field. Invoking
the assumption of small perturbations, the setting is provided by the classical linear
elasticity with small displacements and strains:

ϵij = 1
2
(
ui,j + uj,i

)
(2.4)

2.2.1 Principle of Virtual Displacements

The Principle of Virtual Displacements (PVD) yields the weak form of the equilibrium
equations under the assumption of a compatible kinematic field and the verification of
the constitutive law. The strain and stress fields are split into their in-plane (subscript
b), transverse normal (subscript n) and transverse shear (subscript s) components as

ϵb =
[
ϵ11 ϵ22 2ϵ12

]T
; ϵn = ϵ33; ϵs =

[
2ϵ23 2ϵ13

]T

σb =
[
σ11 σ22 σ12

]T
; σn = σ33; σs =

[
σ13 σ23

]T (2.5)

where T is the transposition operator. Referring to the contracted (Voigt) notation,
the constitutive link for each physical ply p is expressed in matrix form in the Cartesian
frame (x, y, z) of the plate as




σb

σn

σs




(p)

=




C̃bb C̃bn 0
C̃T

bn C̃nn 0
0 0 C̃ss




(p) 


ϵb

ϵn

ϵs




(p)

(2.6)

in which the stiffness coefficients C̃ of the orthotropic ply are expressed in the plate’s
Cartesian frame through a rotation angle θp about the z−axis [96] (more details are
given in Appendix A). The virtual internal work for the PVD is thus expressed by the
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following integral equation

δWint =
∫

V
δϵT

b σb + δϵT
nσn + δϵT

s σs dV =

=
∫

Ω

Np∑

p=1

∫

hp

{
δϵ

(p)T
b C̃(p)

bb ϵ
(p)
b + δϵ

(p)T
b C̃(p)

bn ϵ(p)
n + δϵ(p)T

n C̃(p)T
bn ϵ

(p)
b + δϵ(p)T

n C̃(p)
nn ϵ(p)

n

+ δϵ(p)T
s C̃(p)

ss ϵ
(p)
s dz

}
dx dy

(2.7)

2.2.2 Reissner’s Mixed Variational Theorem

The RMVT allows to introduce independent approximations for the transverse stress
field in view of an a priori fulfilment of the interlaminar equilibrium [6, 7]. The virtual
internal work for the RMVT can be written as

δWint =
∫

V
δϵT

b σb + δϵnσn + δϵT
s σs + δσT

n (ϵn − en) + δσT
s (ϵs − es) dV

=
∫

Ω

Np∑

p=1

∫

hp

{
δϵ

(p)T
b C(p)

bb ϵ
(p)
b + δϵ

(p)T
b C(p)

bn σ(p)
n + δϵ(p)T

n σ(p)
n + δϵ(p)T

s σ(p)
s + δσ(p)T

n ϵ(p)
n

+ δσ(p)T
n C(p)T

bn ϵ
(p)
b − δσ(p)T

n Cnnσ(p)
n + δσ(p)T

s ϵ(p)
s − δσ(p)T

s C(p)
ss σ

(p)
s dz

}

dx dy

(2.8)
in which the following definitions have been used for the in-plane stresses σb and the
transverse strains e = [en es]T in each ply p:




σb

en

es


 =




Cbb Cbn 0
−CT

bn Cnn 0
0 0 Css







ϵb

σn

σs


 (2.9)

where the coefficients of this mixed form of Hooke’s law are related to those of Eq. (A.9)
by

Cbb = C̃bb + C̃bnC̃−1
nn C̃T

bn; Cbn = C̃bnC̃−1
nn ; Cnn = C̃−1

nn ; Css = C̃−1
ss (2.10)

2.2.3 Variable-kinematics plate model in SGUF

The plate model is defined upon introducing ad hoc assumptions for the distribution
across the thickness of the generic dependent variable U of the variational framework
to be used, i.e., U ∈ {ui} for a PVD model and U ∈ {ui, σi3} for an RMVT model. The
assumptions are expressed in each sublaminate k and independently for each variable
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Uk according to the GUF notation [43] as follows

Uk (x, y, zk) =
Nk

U∑

µU =0
FµU (ζ) Ûk

µU
(x, y) (2.11)

In each sublaminate, the generic variable Uk can be described either in an ESL sense by
setting ζ = ζk, or in a LW sense by setting ζ = ζp. In this latter case, the approximation
is defined as the assembly all Nk

p ply-specific contributions:

Uk (x, y, zk) =
Nk

p∑

p=1
U (p) (x, y, zp) =

Nk
p∑

p=1

Nk
U∑

µU =0
FµU (ζp) Û (p)

µU
(x, y) (2.12)

where the symbol ”∑” is employed with abuse of notation to express the assembly
of plies’ contributions. Note that Eq. (2.12) implies that the expansion order Nk

U

is the same for all the Nk
p plies within the sublaminate. The model for the whole

multilayer is eventually constructed upon assembling in a LW sense all sublaminate-
specific contributions. The adopted thickness functions are defined in terms of the
orthogonal Legendre polynomials Pn(ζ):

P0 = 1; P1 = ζ; Pn+1 = (2n + 1)ζ Pn − nPn−1

n + 1 (2.13)

The thickness functions are defined as:

Nk
U = 0 : F0 = 1; Nk

U ≥ 1 : F0(ζ) = P0(ζ) − P1(ζ)
2 ; F1(ζ) = P0(ζ) + P1(ζ)

2 ;

Fr(ζ) = Pr(ζ) − Pr−2(ζ) for r ≥ 2
(2.14)

It is noted that this approximation is used for both ESL and LW descriptions. A
slope discontinuity at plies’ interfaces can be introduced within an ESL description by
referring to Murakami’s zig-zag function (MZZF). The MZZF allows the displacement
field to emulate the zig-zag effect when superposed to Eq. (2.11). According to [97],
the Murakami’s zig-zag function M (z) is defined as

M (z) = (−1)p ζp (2.15)

A detailed review about the use of MZZF in modelling multilayered structures is given
in [98]. The assembly procedures of LW contributions is carried out by imposing the
continuity of the variable U , i.e., by stating the perfect bond condition of adjacent plies
and sublaminates. By virtue of the property F0(−1) = F1(1) = 1, Fr(±1) = 0, it is
straight-forward to enforce the continuity within a classical assembly procedure, see
[43] for more details.
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2.2.4 The semi-discrete governing equations of the plate

The approximations across the thickness coordinate that define the plate model are
introduced following the compact notation Eq. (2.12) into the virtual work expressions
Eq. (2.7) (PVD) or Eq. (2.8) (RMVT). As a result, the virtual internal work defined
by the generic unknown variable Us and the virtual variation δUq can be expressed as

δWint

(
δÛq(x, y), Ûs(x, y)

)
=

Nl∑

k=1

Nk
p∑

p=1
δW

(p)
int

(
δÛ (p)

q (x, y), Û (p)
s (x, y)

)
(2.16)

where the contribution of the pth ply of the kth sublaminate can be written as follows:

δW
(p)
int

(
δÛ (p)

q , Û (p)
s

)
=
∫

Ω

(
∂q

µ

[
δÛ (p)

qµq
(x, y)

])
Z

p µUq τUs

∂q
z Uq ∂s

zUs QS

(
∂s

τ

[
Û (p)

sτs
(x, y)

])
dx dy

(2.17)
The operator ∂q

µ [·] (resp. ∂s
τ [·]) indicates that the variable Ûs

(
resp. δÛq

)
may be par-

tially derived with respect to the in-plane coordinates, depending on the strain compo-
nent involved in the specific virtual work contribution being considered. Furthermore,
the thickness integral Z has been introduced as

Z
p µUq τUs

∂q
z Uq ∂s

zUs QS =
∫

hp

(
∂q

z

[
FµUq

(ζp)
])

cp
QS

(
∂s

z

[
FτUs

(ζp)
])

dz (2.18)

where the notation ∂z [·] indicates that a derivation with respect to the thickness coor-
dinate z may be required for defining the strain component pertaining to the specific
contribution to the virtual work. The coefficient cp

QS can represent a material param-
eter (with Q, S ∈ {1, 6}), or a unitary coefficient, because in RMVT the compatible
transverse strains are directly work-conjugated to the transverse stress variables. Note
also that transverse stress variables are never derived with respect to any coordinate
when the RMVT in Eq. (2.17) is used.

Eq. (2.17) is the generic expression of the model-invariant kernel of the semi-discrete
stiffness matrix, which is computed upon cycling over all indices q, µq, s, τs and subse-
quently assembled over all plies p and sublaminates k. Specific instances of the kernels
are formed by expressing all individual virtual work contributions pertaining to the
model. PVD-based models rely on 6 kernels, whereas RMVT-based models require 17
kernels (if the locking-free interpolation scheme is addressed, see Section 2.3.2).

The thickness integrals are explicitly carried out and assembled across the whole
multilayer section, which yields the dimensionally reduced 2D model. The strong form
of the 2D governing equations, obtained upon integration by parts of those terms
subjected to the derivative ∂q

µ, have been given in [43] and solved the framework of the
Navier solution. Weak-form solutions have been addressed in [45] by referring to the
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Ritz method. In this thesis, reference is made to the weak-form solution defined within
FEM, as discussed in the following.

2.2.5 Employed models and acronyms

Unless stated otherwise, SGUF models for the sandwich plates are specified by the
GUF-type model employed for the facesheets and the core separated by a slash, see
also [43]. The meaning of the models’ acronyms is recalled in Figure 2.2. The plane
stress assumption σ33 = 0 is represented in RMVT-models by dropping off the σ33

variable, which is indicated in the acronym by replacing the expansion order Ns3 by a
dot (·). Simplified CUF-type acronyms are used if the same description (ESL or LW)
and expansion order N is used for all variables, e.g., DZ2 Z2 = EDZ2, ML7 L7

L7 L7 = LM7,
ME4 E4

Z4 Z4 = EMZ4 etc. FSDT is obtained as ED10, CLT is obtained from FSDT upon
penalyzing the transverse shear stiffness.

D
M

ds1Ns1, ds2Ns2, ds3Ns3

du1Nu1, du2Nu2, du3Nu3

dui = E (ESL) or Z (ZZ) or L (LW)

dsi = E (ESL) or L (LW)

Figure 2.2: Model acronym in the framework of GUF.

2.2.6 Transverse stress boundary conditions

It is worthwhile noticing that some additional features are here introduced for the first
time concerning the approximations of the transverse stresses in mixed RMVT-based
models. In particular, prescribed zero values can be enforced as homogeneous boundary
conditions for the transverse shear stresses, across the thickness at the top and/or
bottom surfaces z = ±H

2 and for the nodal DOF of the FE in the (x, y)−plane. In
order to indicate the exact satisfaction of the homogeneous boundary conditions for the
transverse shear stress at the plates’ top and bottom surfaces, the symbol � is appended
after the expansion order, e.g., EM2 � ·

10 is a refined FSDT that retains a quadratic
transverse shear stress satisfying the homogeneous conditions σα3(x, y, ±H

2 ) = 0. Due
to symmetry considerations, sometimes only the upper half of the laminate is to be
considered (e.g. symmetric lamination schemes), in this situation the homogenous
condition on transverse stress field must be enforced only at top surface and it will be
referred to as �.
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2.3 FE Approximations for SGUF plate models

Four-node from the Lagrangian family and eight-node serendipity quadrilateral ele-
ments are used to discretize the laminate in-plane behaviour (see Figure 2.3 and Fig-
ure 2.4).

y

x

1 (x1, y1)

2 (x2, y2)

3 (x3, y3)

4 (x4, y4)

η

ξ

η

ξ

1 (−1,−1) 2 (1,−1)

3 (1, 1)4 (−1, 1)

Nodes Gauss points

Figure 2.3: Four-node Lagrangian quadrangular element in the physical Cartesian frame (x, y) and
in the natural frame (ξ, η).

y

x

1 (x1, y1)

2 (x2, y2)

3 (x3, y3)

4 (x4, y4)

η

ξ

η

ξ

1 (−1,−1)

2 (1,−1)

3 (1, 1)
4 (−1, 1)

5 (0,−1)

7 (0, 1)

8 (−1, 0)
6 (1, 0)

5 (x5, y5)

6 (x6, y6)

8 (x8, y8)

7 (x7, y7)

Nodes Gauss points

Figure 2.4: Eight-node serendipity quadrangular element in the physical Cartesian frame (x, y) and
in the natural frame (ξ, η).

The isoparametric interpolation is employed for the displacement variables as well
as the stress variables for the RMVT-based formulation except for the z-constant term
of the transverse shear strains γµ3. Knowing this term to be responsible of the so-called
shear locking pathology for thin plates, the field-compatible approximations QC4 (4-
node) and CL8 (8-node) have been used to interpolate it over the element [99, 100].
The QC4 and CL8 interpolations were first proposed by Polit [101] for FSDT and
were recently extended to variable-kinematics CUF-type models by Le [99, 100]. It
is worthwhile noticing that QC4 interpolation is equivalent to MITC4 proposed by
Dvorkin and Bathe in [102] and applied to CUF-based FEs by Cinefra et al. [103].
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2.3.1 Strain-displacement relations

The development of FEs for the QC4/CL8 interpolations requires a new definition
of the strain field. As already discussed, this interpolation has been introduced as a
countermeasure to the shear locking pathology that affects thin structures and that
results in a spuriously stiff bending response. In particular, only the z−constant part
of the transverse shear strain field is responsible of this pathology, hence this will be
the term the new field-compatible interpolation is addressed to. By introducing the
compact matrix notation, the geometrical relation between the strain field and the
assumed displacement field reads:

ϵ
(p)
b (x, y, zp) = FbµU (zp) Bbi (x, y) U(p)

µU i

ϵ(p)
n (x, y, zp) = FnµU (zp) Bni (x, y) U(p)

µU i

ϵ(p)
s (x, y, zp) = γ0 (x, y) + γh (x, y, zp) =

= J−1F0
sµU

B̄si (x, y) U(p)
µU i + Fh

sµU
(zp) Bsi (x, y) U(p)

µU i

(2.19)

with U
(p)
µU i the displacement DOF vector of the i-th node related to the ply p and the

expansion order index µU :

U(p)
µU i =

[
Uxµux

Uyµuy
Uzµuz

](p) T

i
(2.20)

The index i goes to 1 up to the number of nodes in the element. The explicit expressions
for the matrices containing the through-thickness functions (FbµU , FnµU , F0

sµU
and Fh

sµU
)

as well as the ones containing the in-plane derivatives of the shape functions (Bbi, Bni,
B̄si and Bsi) are given in Appendix B.2. It should be noticed that the matrix FsµU has
been split in the z−constant part F0

sµU
and the higher-order, z−dependent part Fh

sµU
in

order to introduce the correction in B̄si for the shear locking pathology. Furthermore,
the z− constant part of the transverse shear field is defined in the natural coordinates
(ξ, η) in order to enhance the plate response to distorted element geometries, through
the introduction of the Jacobian matrix J evaluated at Gauss points in the definition
of γ0. The z−dependent part of transverse shear strains are interpolated as usual by
means of isoparametric shape functions. The 4- and 8-node isoparametric interpolation
has been widely used and argued in literature and for this reason is here omitted
for brevity. The interpolation scheme involved in the definition of the z−constant
component γ0 of the transverse shear strain field is detailed in Appendix B.1.
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2.3.2 FE matrices

The governing equations for both PVD-based and RMVT-based formulations are finally
derived by substituting the strain-displacement relations (Eq. (2.19)) in the weak form
of the equilibrium equations (Eq. (2.7), Eq. (2.8)) along with the constitutive law
(Eq. (A.9), Eq. (2.9)). They lead to the following algebraic systems in which the
unknowns are the through-thickness parameters defining the displacement field and,
for the RMVT approach, the transverse stress field:

PVD:




Kuxux Kuxuy Kuxuz

Kuyuy Kuyuz

sym Kuzuz







Ux

Uy

Uz


 =




Rx

Ry

Rz


 (2.21)

RMVT:




Kuxux Kuxuy 0uxuz Kuxsx Kuxsy Kuxsz

Kuyuy 0uyuz Kuysx Kuysy Kuysz

0uzuz Kuzsx Kuzsy Kuzsz

Ksxsx Ksxsy 0sxsz

sym Ksysy 0sysz

Kszsz







Ux

Uy

Uz

Sx

Sy

Sz




=




Rx

Ry

Rz

0

0

0




(2.22)

It is worth emphasising that, in contrast to the algebraic systems of the RMVT formu-
lation obtained in the framework of Navier’s strong form solution or Ritz’ weak form
solutions, the coupling terms Kuxsy and Kuysx are non-zero due to the QC4 interpo-
lation scheme. All kernels from which the contributions of the stiffness matrices are
obtained through opportune cycling over the various indices are explicitly expressed in
Appendix C.

2.4 Numerical transverse shear locking test

In this section, the robustness of the present finite plate element with respect to trans-
verse shear locking pathology is demonstrated considering the example illustrated in
Figure 2.5. The exact 3D elasticity solution proposed by Pagano in [104] has been
extended by Kardomateas towards more realistic core materials, in particular trans-
versely isotropic cores that are stiffer in the transverse direction than in the in-plane
directions, e.g., honeycomb cores [105].

This exact solution is here used to evaluate the convergence properties of the devel-
oped FEs. The Kardomateas-TestCase (K-TC) considers a simply-supported square
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three-layered sandwich panel subjected to a bi-sinusoidal pressure load, see Figure 2.5,
with Graphite/Epoxy unidirectional faces and a glass-phenolic honeycomb core. The
geometry and material data are listed in Table 2.1.

x
y

z

b

a

H

c

f

Figure 2.5: K-TC: Three-layered, sim-
ply supported square plate under a bi-
sinusoidal pressure load.

Table 2.1: K-TC: Sandwich plate geometry
and material data.

a = b = {10, 102, 103} H;
f = {2, 0.2, 0.02} mm; 2c = {16, 1.6, 0.16} mm

T300/5208 Glass-phenolic
Graphite/Epoxy honeycomb

E11 [GPa] 181 0.032
E22 [GPa] 10.3 0.032
E33 [GPa] 10.3 0.3

ν12 0.277 0.25
ν13 0.277 0.027
ν23 0.4 0.027

G12 [GPa] 7.17 13
G13 [GPa] 7.17 48
G23 [GPa] 5.96 48

The results are evaluated in terms of the following non-dimensional local response
parameters:

Ū (z) = ux (−a/2, 0, z) Ef
11

q0HS3 ; V̄ (z) = uy (0, −b/2, z) Ef
11

q0HS3 ;

W̄ (z) = uz (0, 0, z) Ef
11

100q0H
; S̄αα (z) = σαα (0, 0, z) 1

q0S2 ;

S̄xy (z) = σxy (−a/2, −b/2, z) 1
q0S2 ; S̄xz (z) = σxz (−a/2, 0, z) 1

q0S
;

S̄yz (z) = σyz (0, −b/2, z) 1
q0S

; S̄zz (z) = σzz (0, 0, z) 1
q0

(2.23)

where S = a/H is the plate’s length-to-thickness ratio, Ef
11 is the Young’s modulus

of the face material and q0 the amplitude of the pressure load. A regular mesh is
considered with N = 1, 2, 4, 8, 16, 32 elements along the edges of the quarter plate
(see Figure 2.6), whose length-to-thickness ratio ranges from thick S = 10 up to thin
S = 103 plate. The convergence analysis is carried out for two representative models,
namely the displacement-based FSDT/FSDT and the RMVT-based EM2 � ·

10 /EM21
32. FE

results are reported in terms of relative error with respect to the Navier-type closed-
form solution for the corresponding model. These analytical solutions are given in
Table 2.2, whose values are labelled by the superscript a. The non-dimensional in-plane
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displacement Ū is evaluated at the bottom of the plate, the transverse displacement W̄

and bending stress S̄xx at the top surface and the transverse stress S̄xz at facesheet-core
interface. Note that throughout the thesis, transverse stresses for PVD-based models
are evaluated through the constitutive law.

x

y

N = 2 N = 4 N = 8

Figure 2.6: Regular meshes for the quarter plate.

Table 2.2: K-TC: Reference values obtained by the Navier-type closed-form solution.

Model S = a/H Ūa (−H/2) W̄ a (H/2) S̄a
xx (H/2) S̄a

xz (0.4H−)

FSDT/FSDT
10 0.4918643294 230.2174542 1.6339367620 0.2068595369
102 0.3162183647 230729.4323 1.01546741 0.3061014777
103 0.3166019035 2018522809 1.014763335 0.3092905016

EM2 � ·
10 /EM21

32

10 0.4903456822 231.7002615 1.640280194 0.2065009079
102 0.3162178627 230733.5721 1.0154599550 0.3059699424
103 0.3166018998 2018523087 1.0147632530 0.3091640006

Figure 2.7 and Figure 2.8 report, in log-log scale, the relative error of non-dimensional
local response parameters for the four-node element (left) and eight-node element
(right) with respect to the number of nodes, for three different length-to-thickness
ratios (S = 10, 102 103). Both displacement-based and mixed model are investigated.

For the displacement-based model, the strong locking pathology affecting the fully-
integrated isoparametric (ISO4) element when the plate becomes thin (S ≥ 102) is
eliminated by resorting to the QC4 interpolation, which thus recovers the asymptotic
linear convergence rate. The quadratic eight-node element is less sensitive to shear
locking phenomenon with respect to the linear four-node element. Nevertheless, for the
very thin plate S = 103, the element locks when the isoparametric interpolation scheme
is employed. Furthermore, as the plate becomes thinner, the eight-node isoparametric
element loses the monotone convergence rate as can be inferred from Figure 2.7 and
Figure 2.8 (right). On the other hand the asymptotic quadratic convergence rate of
the displacement field is perfectly recovered by the CL8 interpolation.
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As far as the mixed RMVT based model is concerned, the isoparametric four-node
mixed element is much less sensitive to shear locking [106], which thus yields very
similar results compared to the mixed element whose transverse shear strain is in-
terpolated following the QC4 scheme. Indeed, several plate FE have been developed
based on mixed formulations for alleviating the locking issues [107–110]. Neverthe-
less, the locking-free QC4/CL8 interpolation schemes provides more accurate results
as well as a better convergence rate (especially for thin plates) than the corresponding
isoparametric element also in the case of full-mixed model.

Transverse stress symmetry conditions. Figure 2.9 compares the convergence
of the RMVT-model for the whole plate to that obtained for the quarter plate for a
fixed value of length-to-thickness ratio (S = 10), in which the symmetry conditions are
imposed on both displacement and transverse stresses. A perfect match can be appre-
ciated which proves that it is possible to enforce boundary conditions on transverse
stress variables on the FE nodes. Whenever symmetry considerations can be exploited
in the 2D domain to reduce the size of the FE mesh, results obtained by RMVT models
will henceforth verify a priori the homogeneity of the transverse shear stresses at the
symmetry edges.
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Figure 2.9: K-TC. Comparison between the convergence for the whole plate case and the quarter
plate with displacement and stress symmetry boundary conditions.
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2.5 Mesh distortion test

The same test-case investigated in Section 2.4 is addressed to asses the performance of
the present finite plate element with respect to distorted meshes. A length-to-thickness
ratio of 10 is considered along with a total thickness H = 20 mm, resulting in a plate
dimension a = 200 mm. A 2 × 2 mesh is considered for the quarter plate. The degree
of mesh distortion is represented by the dimension s, defining the coordinates of the
mid-node, ranging from the undistorted case (s = 0) up to the most distorted mesh
with s = ±24 (see Figure 2.10). Considering the dimensions of the plate, the mid-node
is hence located at (−a/4 + s, −a/4 + s). The results are given in terms of normalized

x

y s = −8

s
=

−
8

s = 24

s
=

24

Figure 2.10: Mesh distorsion defined by the parameter s for the quarter plate.

non-dimensional local parameter W̄ in Eq. (2.23) with respect to the undistorted mesh
value W̄ (0).

The sensitivity analysis is carried out for the displacement-based and the mixed
models already discussed in Section 2.4. Figure 2.11 shows the results obtained for
both linear four-node (top) and quadratic eight-node elements (bottom). As far as
the four-node element is concerned, the QC4 interpolation scheme turns out to be
less sensitive to mesh distortion compared to the isoparametric element, regardless the
variational formulation. As pointed out in Section 2.4, the eight-node element proves to
be very robust not only regarding locking pathology but also mesh distortion. It can be
noticed that the sensitivity to mesh distortion completely vanish for the displacement-
based model when the CL8 interpolation scheme is considered.
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The mixed ESL/LW approach turns out to be particularly suitable for describing
the behaviour of bi-dimensional structures such as sandwich composite plates. In this
chapter several numerical tests will be performed in order to highlight the capability
of the presented FEM-based tool to deal with challenging, fully three-dimensional
problems, starting with the free edge effect in laminated plates [111–113]. Then, a
model assessment is provided by referring to the three-dimensional elasticity solution
for sandwich plates proposed in [114]. ESL models fail to accurately recover the full
3D response of sandwich plates especially when a high facesheet-to-core stiffness ratio
occurs. On the other hand a full LW model lead to a number of DOFs comparable to
those required by a 3D finite element. Moreover, a sandwich plate is made up of thin
and stiff facesheets and one or multiple thick and compliant cores, in which the three-
dimensional stress state is normally confined. The SGUF approach is hence exploited
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in order to enrich the kinematics model in the sandwich core as well as to regroup the
plies constituting the composite face sheets. The FE formulation allows to explore a
wide range of practical problems thanks to its flexibility to easily deal with any kind of
boundary and loading conditions. In this context a numerical investigation has been
carried out on the indentation benchmarks proposed in [115–118] with the purpose of
assessing the mixed ESL/LW FEM tool as a reliable software for recovering sandwich
plates behaviour while reducing the computational cost.

3.1 Free-edge effect in symmetric composite lami-
nates

Delamination is known to be one of the major failure mechanisms in multilayered
composites structures. The causes lie in the significant interlaminar stresses which
arise in particular at the free edges, due to mismatch in geometric and elastic properties
between plies [119]. This phenomenon, referred as free-edge effect, leads to a fully three-
dimensional stress state, therefore computationally efficient two-dimensional theories,
such as CLT, fail to grasp the steep stress gradient occurring in the proximity of the
free edge [120]. This section points out the capability of the proposed finite plate
element within the framework of the mixed ESL/LW approach to accurately capture
the three-dimensional response of composite laminates. The case study is illustrated in
Figure 3.1 and the material properties of the orthotropic plies are reported in Table 3.1.

ε0

ε0

x
y

z

b

b

a

H

Figure 3.1: Rectangular panel subjected to
uniform axial strain ϵ0.

Table 3.1: Geometric and material
data for the free-edge testcase.

a = 20b; b = 8hp; H = 4hp

hp [mm] 1
E11 [GPa] 137.9
E22 [GPa] 14.48
E33 [GPa] 14.48
Gi3 [GPa] 5.86

νi3 0.21

It considers a symmetric laminate made up of four layers loaded by a uniform axial
strain ϵ0 acting along the x−direction. The plies are assumed to be of equal thickness
hp = 1 mm, so that the total thickness of the panel is H = 4hp. The plate width is



3.1 Free-edge effect in symmetric composite laminates 27

taken to be 2b with b = 8hp. The plate length-to-width ratio needs to be sufficiently
large to entail a stress state independent of the x−coordinate by virtue of Saint Venant
principle. A unitary axial strain ϵ0 is applied via a prescribed longitudinal displacement
ū = a/2 at x = ±a/2 (see Figure 3.1). Under these assumptions, the equilibrium
equations without body forces read

∂σyx

∂y
+ ∂σzx

∂z
= 0,

∂σyy

∂y
+ ∂σzy

∂z
= 0,

∂σyz

∂y
+ ∂σzz

∂z
= 0 (3.1)

with σzy = σyz due to rotational equilibrium. Assuming a traction-free condition along
the edges of the panel, the following boundary conditions are to be met

σyy = σyz = σyx = 0 at y = ±b (3.2)

in addition to the static condition at plate’s top and bottom faces σiz (x, y, z = ±H/2) =
0. Two lamination schemes are investigated, the cross-ply [0◦/90◦]s and [90◦/0◦]s lami-
nates. Special emphasis will be given to the appropriate through-thickness approxima-
tions. Indeed, stability of mixed formulations has been investigated by Boffi et al. in
[121]. It is well known that the axiomatic transverse stress field must be wisely chosen
to prevent spurious oscillations in the solution, see also Demasi [122].

3.1.1 Cross-ply laminates

The cross-ply lamination schemes [0◦/90◦]s and [90◦/0◦]s are studied in this section.
Due to problem symmetry, only the quarter plate is considered. Furthermore, the
symmetric stacking sequence allows to further reduce the computational model by
considering only the upper half of the laminate relative to the mid-surface. The in-
plane discretization involves 35 elements along the y−direction with a non-unit spacing
ratio in order to obtain the smallest elements drew near to the free-edge (Figure 3.2).
Due to the constant strain state along the x−direction entailed by the large length-to-

x

y

N
y
=

35
(b
f
=

30
)

Nx = 1

Figure 3.2: FE in-plane discretization employed for the free-edge benchmark. The refinement along
the y−direction is necessary to grasp the steep gradients in proximity of the free edge.

width ratio of the plate, only one finite element is considered along the longitudinal
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axis. The results obtained with different advanced models are compared to those given
by Wang and Crossman [111] and Tahani and Nosier [112]. It should be noted that
the transverse stress values provided by Wang and Crossman [111] at the free edge
(y = b) are actually located at y = 0.9985b and that Tahani and Nosier [112] refers
to the most expensive model, in terms of computational effort, obtained by employing
15 mathematical layers for each physical ply of the laminate. Since no normal-shear
coupling is present for cross-ply laminates, the symmetry conditions are defined as:

ux (x = 0, y, z) = 0; uy (x, y = 0, z) = 0; uz (x, y, z = 0) = 0

σxz (x = 0, y, z) = 0; σyz (x, y = 0, z) = 0
(3.3)

Because of the symmetry along the z-direction, only the traction-free condition at the
top face of the reduced model is enforced by constraining the transverse stresses DOF
at z = H

2 to be nil. The symbol � is hence appended to transverse stress variable
expansion order to complete the model acronym (see Section 2.2.5). In accordance
with [122], RMVT-based models require particular attention in choosing the number
of transverse stress parameters. This choice is not entirely free and the number of
parameters employed to model the displacement field must be taken into account to
avoid spurious oscillations in the solution. Due to homogeneous boundary conditions
on transverse stress field, the following relation stands as a general rule [123]:

Nsi
= Nui

+ 1 with i = x, y, z (3.4)

Figure 3.3 and Figure 3.4 report the transverse shear stress σyz and transverse normal
stress σzz evolution along the normalized y−coordinate at bi-material interface z = hp

and at laminate mid-surface z = 0 (only for the normal component of the transverse
stress field). The y-coordinate is normalized with respect to the half-width b of the
panel. The RMVT-based model LM5 � 5 �

44 , meeting the condition expressed in Eq. (3.4),
is considered.

The transverse normal stress along the half-width at laminate mid-surface is shown
in Figure 3.3. A good agreement can be found between the present solution and the
reference curves for both [0◦/90◦]s and [90◦/0◦]s lamination schemes. As the free-edge
is approached, the interlaminar normal stress rises or the [0◦/90◦]s laminate (or drops
for the [90◦/0◦]s) although a finite value seems to be attained at y = b. A slightly
different converged value at free-edge is obtained compared to the one given by Wang
and Crossman. A different behaviour can be observed at bi-material interface for
the [0◦/90◦]s lamination scheme (Figure 3.4a) where the steep stress gradient suggests
the presence of a singularity at free edge As far as the transverse shear stress at bi-
material interface is concerned (Figure 3.4b), no singular behaviour occurs at y = b, the
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Figure 3.3: Transverse normal stress along the mid-plane z = 0 for the cross-ply lamination scheme
[0◦/90◦]s under a uniform extension ϵ0 along the x−direction.
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(a) Transverse normal stress.
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(b) Transverse shear stress.

Figure 3.4: Interlaminar stresses along the bi-material interface z = hp for the cross-ply lamination
scheme [0◦/90◦]s under a uniform extension ϵ0 along the x−direction.

transverse shear stress increases towards the free edge to finally meet the traction-free
condition at free edge in a natural manner within the partially mixed formulation. It
is to be noted that the magnitude of transverse shear stress at free edge is almost the
same for both configuration despite the change in sign.

In Figure 3.5 the interlaminar normal stress along the free-edge is plotted for both
[0◦/90◦]s and [90◦, 0◦]s lamination schemes. The hybrid-stress-based FE formulation
proposed by Spilker and Chou [124] has been also referred for the [90◦, 0◦]s case. The
partially mixed CUF-based LM4 model is also included. It is observed that the in-
terlaminar normal stress between the plies with different orientation is smaller for the
[90◦, 0◦]s when compared to [0◦/90◦]s. The partially mixed formulations exhibit an
oscillatory behaviour around solutions found in literature. Moreover, the CUF-based
model is found to violate the homogenous condition at plate’s top surface. Within
the GUF, the variable expansion orders are tuned independently, allowing to increase
the order so to impose stress boundary conditions without undermining the stability
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Figure 3.5: Through-thickness distribution of transverse normal stress at free-edge (y = b) for
the cross-ply lamination schemes [0◦/90◦]s and [90◦, 0◦]s under a uniform extension ϵ0 along the
x−direction.

considerations of [122, 123]. However, the nil derivative condition of transverse normal
stress at laminate top surface is still violated. To overcome these issues and provide a
proper representation of the transverse normal stress at free edge a refinement of the
through-thickness assumption is to be considered. In Figure 3.6 (left) this refinement is
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Figure 3.6: Influence of assumed transverse stress field on through-thickness distribution of σzz at
plate free-edge for the [90◦/0◦]s cross-ply laminate under a uniform extension ϵ0 along the x−direction.

firstly obtained by increasing the expansion orders for the transverse stress field. The
magnitude of interlaminar normal stress at bi-material interface is shown to increase
with increased Nsz . However, the pattern of the response still remains oscillatory. The
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influence of through-thickness assumptions for the plies with different orientation is
also studied upon using different models for the outer ply (90◦) and the inner ply (0◦).
This is done by introducing 2 sublaminates (see Figure 3.6 right). The top layer is al-
ways modelled according to EM7 � 7 �

66 in order to allow to impose the stress BC at the top
surface. Since no homogenous conditions are to be imposed on inner layer, a classical
CUF model with N ∈ {3, ..., 6} is employed. It is observed that the transverse normal
stress distribution in the ply oriented at 90◦ is slightly affected by the expansion order
chosen for the 0◦ layer. Nevertheless, no substantial improvement can be appreciated
and a further model refinement is therefore presented next.
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Figure 3.7: Convergence of interlaminar normal stress in [90◦/0◦]s laminate under a uniform exten-
sion ϵ0 along the x−direction.

In Figure 3.7 the SGUF model LM6/LM7 � 7 �
66 is considered for further refinement

by splitting each physical ply into p (with p ∈ {2, 6, 10}) mathematical layers. The
convergence analysis shows that increasing the number of mathematical layers alleviates
the oscillatory nature of response along with ensuring the zero derivative condition
expressed by Eq. (3.1). No significant improvement is experienced refining the model
with more than six mathematical layers. The peak stress at bi-material interface
steadily increases as the number of mathematical layers is increased until the converged
value of p = 6 is attained. As far as the the maximum value of interlaminar normal
stress at laminate mid-plane (z = 0) is concerned, the partially mixed LM6/LM7 � 7 �

66

model is sufficient to accurately grasp the normal stress value, regardless any further
refinement by means of mathematical layers. A comparison with the results reported in
Figure 3.5b shows that the present model is capable of resolving the very steep gradient
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at bi-material interface to a higher extent with respect to previously published results.

3.2 Models assessment for sandwich panels

Numerical studies are conducted in this section to assess the accuracy of both displacement-
based and partially mixed models in retrieving the global/local response of a sandwich
panel under static loading conditions. Particular emphasis shall be addressed to SGUF
idealisation of the composite stack as a tool able to provide as accurate predictions as
most refined models but significantly reducing the global size of the problem.

3.2.1 Kardomateas sandwich panel

The Kardomateas-TestCase (K-TC) described in Section 2.4 is here considered to assess
several plate theories. Different displacement-based as well as mixed models have been
investigated by evaluating the through-thickness distributions of the parameters in
Eq. (2.23) and by comparing them to the exact 3D solution proposed in [114]. Based
on the previous convergence analysis, a mesh of 16 × 16 elements is used for a quarter
plate and the QC4 interpolation is adopted for the PVD models in order to remove
the shear locking pathology. In their comprehensive assessment of PVD models for
sandwich applications Carrera and Brischetto [8] have shown that an Equivalent Single
Layer (ESL) description for the displacement field leads to significant error for very
high skin-to-core stiffness ratios. The results in Table 3.2 extend this result to the
partially mixed formulation, which is shown to exhibit the same issue for low order
CUF models (i.e., EM2). The results also confirm that the use of Murakami’s Zig-Zag
function (MZZF) improves the accuracy of ESL description for the displacement-based
as well as the mixed formulations leading to the conclusion that it is more important
to resolve the slope discontinuity of the displacement field across the facesheet-core
interface rather than to enhance the polynomial order of the approximation. The
beneficial effect of MZZF is also visible in the distributions displayed in Figure 3.8.

On the other hand, high order Layer-Wise (LW) models are able to accurately re-
cover the 3D response of the sandwich plate. As it can be appreciated in Figure 3.9, the
interlaminar discontinuity of the transverse stress field of displacement-based models,
can be reduced upon increasing the expansion order of the approximation, up to match
the a priori continuous transverse stress field of RMVT-based models.

Table 3.2 reports results also for several SGUF models, in which one sublaminate
is used for each of the facesheets and the core. Thanks to the SGUF approach, the
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Table 3.2: K-TC: Assessment of classical and mixed models. Values in parentheses are the absolute
percentage errors with respect to the exact 3D solution.

Model (nDOF) Ū (−H/2) W̄ (H/2) S̄xx (H/2) S̄xz (0.4H−)

Ref [114] 0.4903 231.37 1.6421 0.2064

Displacement-based models

ED2 (9) 0.3005 (38.71%) 29.812 (87.12%) 0.9719 (40.81%) 0.0089 (95.71%)
ED4 (15) 0.3892 (20.63%) 130.31 (43.68%) 1.2759 (22.30%) 0.0341 (83.48%)
EDZ4 (18) 0.4901 (0.05%) 231.26 (0.05%) 1.6292 (0.78%) 0.2052 (0.55%)
LD4 (39) 0.4908 (0.09%) 231.48 (0.05%) 1.6407 (0.08%) 0.2061 (0.11%)

CLT/FSDT (9) 0.4941 (0.78%) 230.14 (0.53%) 1.6386 (0.21%) 0.2066 (0.11%)
FSDT/FSDT (9) 0.4923 (0.40%) 230.33 (0.45%) 1.6327 (0.57%) 0.2066 (0.13%)
FSDT/ED12 (11) 0.4909 (0.12%) 231.78 (0.18%) 1.6394 (0.16%) 0.2079 (0.73%)
FSDT/ED32 (15) 0.4909 (0.12%) 231.78 (0.18%) 1.6394 (0.16%) 0.2063 (0.05%)

Mixed models w/o homogeneous stress BC

EM2 (18) 0.1809 (63.11%) 158.55 (31.47%) 0.6436 (60.81%) 0.3601 (74.47%)
EM4 (30) 0.4747 (3.19%) 223.95 (3.21%) 1.5893 (3.21%) 0.1522 (26.23%)
EMZ4 (33) 0.4940 (0.74%) 231.96 (0.25%) 1.6512 (0.56%) 0.1858 (9.96%)
LM4 (78) 0.4910 (0.13%) 231.71 (0.15%) 1.6416 (0.03%) 0.2067 (0.15%)

EM2·
10/EM0·

10 (19) 0.4926 (0.46%) 230.55 (0.35%) 1.6336 (0.51%) 0.2072 (0.38%)
EM2·

10/EM2·
10 (23) 0.4926 (0.46%) 230.55 (0.35%) 1.6336 (0.51%) 0.2071 (0.36%)

EM2·
10/EM01

12 (23) 0.4912 (0.17%) 232.01 (0.27%) 1.6403 (0.11%) 0.2071 (0.37%)
EM2·

10/EM21
32 (31) 0.4912 (0.17%) 232.01 (0.28%) 1.6404 (0.10%) 0.2068 (0.21%)

Mixed models w/ homogeneous stress BC on σαz

EM2�·
10/EM0·

10 (15) 0.4924 (0.42%) 230.58 (0.34%) 1.6331 (0.55%) 0.2072 (0.38%)
EM2�·

10/EM2·
10 (19) 0.4924 (0.42%) 230.58 (0.34%) 1.6331 (0.55%) 0.2071 (0.34%)

EM2�·
10/EM01

12 (19) 0.4910 (0.14%) 232.03 (0.29%) 1.6397 (0.14%) 0.2071 (0.37%)
EM2�·

10/EM21
32 (27) 0.4910 (0.13%) 232.04 (0.29%) 1.6398 (0.14%) 0.2068 (0.21%)

facesheet-core interface can be described in a LW sense and dedicated expansion orders
can be used in individual sublaminates: it is hence possible to locally enrich the model
for the relatively soft and thick core while keeping simple models for the relatively stiff
and thin facesheets, which eventually allows to reduce the number of DOF without
affecting the accuracy.

Figure 3.10 compares the local response evaluated in the PVD framework against
the 3D solution [114]. The facesheets are modelled according to CLT or FSDT and dif-
ferent kinematics for the core have been investigated, ranging from kinematics invoking
the plane-stress constitutive law (FSDT) up to fully 3D models (ED12 and ED32). The
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Figure 3.8: K-TC: Influence of MZZF on Equivalent Single Layer plate theories.
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Figure 3.9: K-TC: Transverse stress S̄xz discontinuity at layer interfaces for displacement-based
models.

benefits of an explicit representation of the facesheet-core interfaces are clearly visible:
all SGUF models yield errors well below 1%. The advantage is also obvious of enhanc-
ing the transverse normal response by locally increasing the expansion order inside the
core layer only. Since the transverse normal deformation is mostly confined within
the thick core layer, all RMVT models reported in Table 3.2 adopt simple plane-stress
models for the facesheets without any substantial accuracy loss.

The discontinuity of the derivative at layer interfaces, imposed by the fact that
the sublaminates are always assembled in layerwise-sense, provides a very good agree-
ment between the in-plane response of the sandwich plate and the reference solution.
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Moreover, a linear approximation across the thickness appears to be sufficient for the
present example. The transverse displacement is quite good as long as a kinemat-
ics is chosen that involves a 3D constitutive law for the core is chosen. Low order
displacement-based models can only provide a rough estimate of the transverse stress
field. In order to obtain an accurate estimate of transverse stresses through the thick-
ness direction of the plate several RMVT models have been investigated in Table 3.2.
All facesheet models involve a constant deflection so the postulated transverse stress
field neglects the transverse stretch. For the core, kinematics up to a quadratic out-
of-plane displacement are considered and for them the transverse stretch is no longer
neglected.

Finally, Figure 3.11 compares the through-thickness distribution of the transverse
shear stresses S̄xz and S̄yz for the mixed SGUF-based model EM2.

10/EM21
32 against the

equivalent PVD-based model. The accuracy improvement is actually modest unless
the homogeneous boundary conditions at the plate’s top and bottom surfaces are ex-
actly prescribed: the model EM2 � ·

10 /EM21
32 is clearly capable of recovering the exact 3D

solution with 15 displacement DOF and 12 stress DOF per node.

3.2.2 Cho-Averill sandwich panel

The sandwich panels studied by Cho and Averill [125] (S1-TC) is addressed to highlight
the versatility of the sublaminate version of GUF compared to classical CUF and
fully three-dimensional approaches. It considers a simply-supported thick square plate
(length-to-thickness ration a/H = 4) with a symmetric sandwich section made up of
a weak core constrained by two laminated facesheets. Each facesheet consists of five
plies and has a thickness hf equal to 10% of the total thickness H. The remaining 80%
is occupied by the weak core material. A bi-sinusoidal pressure load of magnitude q

is applied at top surface. The geometric and material properties are summarized in
Table 3.3. The lamination scheme is reported in Table 3.4 where the relative thickness
as well as the material is assigned to each ply. Since loading and boundary conditions
exhibit a symmetric behaviour along both x and y directions, only the quarter plate
is modelled. Symmetry boundary conditions are thus exploited for both displacement
and transverse stress fields.

The elasticity solution given by Burton and Noor [15] and the 3D finite element
solution obtained by means of the commercial software Abaqus are used for comparison.
A converged solution is obtained by discretizing the sandwich structure with 8 × 8
quadratic brick elements C3D20R in the (xy) −plane directions. The through-thickness
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discretization involves 2 elements for each ply constituting the facesheet and 3 elements
for the thick core. A total number of 28539 DOFs is associated to this 3D Abaqus
model. The same in-plane discretization of the 3D Abaqus model will be used for all
the presented bi-dimensional models. Hence, the mesh will be characterised by 8 × 8
eight-node serendipity elements.

x
y

z

b

a

H

hf

Figure 3.12: S1-TC: Square sandwich
panel subjected to bi-sinusoidal pressure
load.

Table 3.3: S1-TC: Geometric and material
data.

a = 4; b = a; S = a/H = 4; hf/H = 0.1

M1 M2 M3 C1

E11 [GPa] 6.9 224.8 172.4 0.345
E22 [GPa] 172.4 69 69 1.034
E33 [GPa] 6.9 69 69 0.345
G12 [GPa] 3.45 56.6 3.45 0.15
G13 [GPa] 1.38 56 3.45 0.15
G23 [GPa] 3.45 3.45 1.38 0.290

ν12 0.01 0.10 0.25 0.01
ν13 0.25 0.10 0.25 0.15
ν23 0.25 0.25 0.25 0.15

Table 3.4: S1-TC: Lamination scheme.

Ply n. 1 2 3 4 5 6 7 8 9 10 11

hp/H 0.01 0.025 0.015 0.02 0.03 0.8 0.03 0.02 0.015 0.025 0.01
Material M1 M2 M3 M1 M3 C1 M3 M1 M3 M2 M1

CUF-type model LM2. The first analysis aims at comparing the 3D approach
against the hierarchical bi-dimensional refined models in the framework of CUF. The
comparison is carried out via a direct correlation between the number of degrees of
freedom (DOFs) required by the models. The most refined model within the CUF
formulation, involving a comparable number of DOFs, is the partially mixed layerwise
model with an assumed quadratic expansion along the thickness direction. All results
are provided in terms of nondimensional stresses with respect to the magnitude of the
bi-sinusoidal pressure load q, versus the nondimensional thickness coordinate z/H. The
through-thickness distributions of in-plane stress components σxx and σxy is plotted in
Figure 3.13. The facesheet region is enlarged and shaded in light gray. A perfect
correlation between the 3D and 2D CUF model is found for both direct and shear
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stress components, both accurately recover the elasticity solution. By contrast, as far
as the transverse stress field is concerned, the classical CUF model fails to properly
predict the distributions along the thickness direction, see Figure 3.14. In particular,
an oscillatory behaviour of solution is visible in facesheets intralaminar regions. These
oscillations may be explained by the difficulty of low order CUF models to naturally
satisfy the traction-free conditions for the transverse stresses at plate’ top and bottom
faces. As it can be seen in the magnified region next to the top and bottom surfaces
of Figure 3.14, an oscillation is introduced in these plies by the quadratic LM2 model.
This oscillation is then propagated in the other plies of the facesheet.

The second analysis aims to show how this issue can be easily overcome by the SGUF
approach, i.e., regrouping the plies constituting the facesheet into one sublaminate and
selecting different orders of expansion for displacement and transverse stress fields. The
two models depicted in Figure 3.15 are considered to prove the full potential of the
modelling through sublaminates.

SGUF model 1 & 2: 3 sublaminates. Due to the mismatch, in terms of elastic
properties, between the facesheets and the core, the most intuitive idealization consists
in splitting the sandwich panels into three sublaminates, see Figure 3.15 (left). The
weak core is modelled according to EM22

33 theory. Two distinct GUF models for the
facesheets are investigated:

• in the former the equivalent FSDT plate theory within the partially mixed formu-
lation is used for the facesheet. The model acronym is thus EM2 � ·

10 /EM22
33/EM2 � ·

10 .

• the second model is EM2 � 3
14 /EM22

33/EM2 � 3
14 and it assumes a cubic expansion of the

transverse normal stress along the facesheet thickness. It is to be noted that a
fourth order transversal displacement is needed in this case to prevent spurious
oscillations to occur [122].

For both models the traction-free condition at plate’s top and bottom surfaces for the
transverse shear field is enforced by constraining the corresponding DOF to be nil.

Figure 3.16 and Figure 3.17 report the through-thickness distributions of the in-
plane stress components σxx and σxy, and transverse stress components σxz and σzz

respectively. As far as the in-plane behaviour is concerned, both the low order and re-
fined GUF model for the facesheet provide an accurate representation of the mechanics
across the facesheet and a good agreement is found when comparing the models with
the elasticity solution given by Burton and Noor. The parabolic distribution of the
transverse shear stress as well as the maximum value are well recovered despite the
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use of an Equivalent Single Layer theory. Although the EM2 � ·
10 /EM22

33/EM2 � ·
10 theory

neglects the transverse normal stress in the facesheets, an accurate prediction across
the core is still achieved. Moreover, the interlaminar value at facesheet-core interface
seems not to suffer the lack of stress parameters in the adjoining regions, as long as
a rich enough expansion in the core region is set. The EM2 � 3

14 /EM22
33/EM2 � 3

14 model,
retaining a cubic expansion of the transverse normal stress across the facesheets, is in
good agreement with the reference solution not only but also the static conditions at
plate’s top bottom surface are met in a completely natural manner.

SGUF model 3: 2 sublaminates. As already discussed in Section 3.1, interlami-
nar stresses are the cause of the onset and progression of delamination in the laminated
composites. Therefore, determining the stress state at layer interfaces accurately is cru-
cial for design purposes. However, in order to obtain an accurate prediction in those
regions, layerwise theories are to be considered with a consequent increase in global
size of the problem with increased number of layers. In addition, in most scenarios
the region where the maximum stress value is supposed to be reached is known, de-
pending on laminate stacking sequence. In this case, in view of minimizing the number
of DOF, refined models could be used only in those areas of the laminated compos-
ite where an accurate prediction is required while low order models may be employed
to describe the regions devoid of interest. The mixed ESL/LW approach allows to
explore unconventional configurations precisely for addressing this need. In this con-
text, a second idealization including only two sublaminates is depicted in Figure 3.15
(right). The first sublaminate regroups the bottom skin and the core layer while the
top facesheet layers form the second sublaminate. The most computationally efficient
partially mixed theory is used for the first sublaminate, in particular the EM0·

10. It
still retains a FSDT theory for the displacement field, but in this case the transverse
shear field is assumed to be constant along the thickness direction and the transverse
normal stress is neglected. This assumption does not lead to any spurious oscillation
since no-homogeneous boundary condition is enforced at plate’s bottom surface. The
sublaminate regrouping the upper facesheet layers is modelled once again according
to EM2 � 3

14 . The through-thickness distributions of the transverse stress field for the
two-sublaminates idealization model are shown in Figure 3.18.

The transverse shear stress at core-upper facesheet interface is accurately predicted
even if a constant distribution is assumed across the first sublaminate, see Figure 3.18a.
On the other hand, the maximum value attained in the facesheet is slightly underes-
timated. The transverse normal stress distribution across the upper facesheet is in
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perfect agreement with the elasticity solution as it can be seen in Figure 3.18b. Fi-
nally, the total number of DOFs related to each model is resumed in Table 3.5. The
full layerwise CUF model stand as the most expansive model when compared with
3D model obtained in Abaqus and the presented 2D theories based on SGUF. On the
other hand, SGUF models leads to a significant reduction of the computational cost
being still able to provide a quasi-3D level of accuracy. It has been proved that the
number of unknown functions can be shrunk even more if an accurate representation is
required only in a narrow region of the laminated composite, assessing the modelling
through sublaminates as an effective global-local technique for multilayered structures
analysis.

Table 3.5: S1-TC: DOFs comparison between commercial software 3D FEM and 2D models.

Model DOFs

Abaqus 3D 28539
CUF model LM2 31050

SGUF model 1 EM2 � 3
14 /EM22

33/EM2 � 3
14 11700

SGUF model 2 EM2 � ·
10 /EM22

33/EM2 � ·
10 8100

SGUF model 3 EM0·
10/EM2 � 3

14 5850

3.3 Local bending and indentation problems

A class of problems involving a three-dimensional deformation state is addressed in this
section. Classical bi-dimensional models fail to grasp the local effects due to particular
loading conditions. For example, localised pressures or concentrated forces call for
a refinement of the through-thickness approximation to describe the steep gradients
in the proximity of the loaded area. An assessment and validation of the present
FE approach in dealing with challenging, three-dimensional problems is given in the
following by addressing the Meyer-Piening case study [126] and the Navarro indentation
problem [116].

3.3.1 Meyer-Piening benchmark

The analytical solution provided by Meyer-Piening [126] for three-dimensional class
of problems involving sandwich plates is used here in order to assess the proposed
numerical tool. The Meyer-Piening TestCase (M-TC) considers a simply supported
rectangular unsymmetric sandwich plate subjected to a localised transverse pressure.
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The sandwich plate geometry, as well as the elastic properties for the thin facesheets
and the core are summarized in Table 3.6. A uniform pressure load p0 = 1 MPa is
applied at top surface on a rectangular area delimited by x ∈ [47.5, 52.5] mm and by
y ∈ [90, 110] mm, as illustrated in Figure 3.19.

H

a

b

Figure 3.19: M-TC: Sandwich plate with lo-
calised uniform pressure.

Table 3.6: M-TC: Geometric and
material data

a = 100 mm; b = 200 mm; H = 12 mm

Lower face Core Upper face

h [mm] 0.5 11.4 0.1
θ 0 0 0

E11 [GPa] 70 3 70
E22 [GPa] 71 3 71
E33 [GPa] 69 2.8 69
G [GPa] 26 1 26

ν 0.3 0.25 0.3

A strong form solution can be obtained by means of a quasi-analytical Navier-
type solution with a Fourier series expansion for representing the localised pressure
load. The in-plane distributions for this benchmark are characterized by significant
gradients in proximity of the localised pressure load. For this reason, a regular mesh
is refined towards the plate center as illustrated in Figure 3.20. Exploiting symmetry,
only one-quarter of the plate needs to be modeled and it has been discretized with
8 × 12 elements.

Present FE results are compared in Table 3.7 against the results obtained with the
Navier solution by considering the mixed model LM7 in order to establish the error
induced by the FE approach. To emphasize the role played by the presence of the
sublaminates, the values are evaluated at the top and bottom of the sandwich plate
as well as at facesheet-core interfaces located at z = 5.9 and z = −5.5. The results
provided by the FEM model are seen to closely match the reference ones, with an
absolute percentage of errors less than 5%.

An assessment is next carried out to highlight the capability of SGUF models to
accurately reproduce the sandwich plate response with a reduced number of DOFs
when compared to the high-order full LW model LM7. The results of this analysis are
summarized in Table 3.8. The variables uz, σxx and σzz are evaluated at the center of
the plate (x = 0, y = 0) and the transverse shear stress σxz at the boundary of the load
application area, where its maximum value is reached (x = −2.5, y = 0). Table 3.8
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Table 3.7: M-TC: Comparison between Navier-type solution and FEM solution for the LM7 model

Model z uz [mm] σxx [MPa] σxz [MPa] σzz [MPa]

LM7a 6 -3.78 -624 0 -1.04
5.9+ -3.78 580 -0.17 -0.85
−5.5− -2.14 -138 -0.04 -0.18
-6 -2.14 146 0 0

LM7 6 -3.73 (1.16%) -625 (0.27%) 0 (0.00%) -1 (4.00%)
5.9+ -3.73 (1.16%) 582 (0.34%) -0.17 (0.00%) -0.83 (2.4%)
−5.5− -2.13 (0.47%) -138 (0.00%) -0.04 (0.00%) -0.17 (5.55%)
-6 -2.13 (0.47%) 146 (0.00%) 0 (0.00%) 0 (0.00%)

reports also the active parameters at node of the hierarchical model, referred to as
nDOF.

Figure 3.21 shows the transverse displacement uz and the bending stress σxx dis-
tributions along two sections cut at x = 0 and y = 0, where x̄ = 2x/a and ȳ = 2y/b

are the non-dimensional coordinates spanning the x and y directions respectively. The
results show that the use of FSDT for modeling the core is not suitable for grasping
the local indentation: the core kinematics must include the transverse normal stretch
if the effect of the local pressure load is to be resolved. As long as the in-plane gra-
dients of the response are concerned, no difference is appreciated between the mixed
EM2·

10/EM21
32 model and the displacement-based FSDT/ED32 model.

In order to appreciate the difference between the RMVT-based and PVD-based
models, Figure 3.22 reports the through-thickness distributions of the transverse dis-
placement uz, the bending stress σxx and transverse stresses σxz and σzz. The improved
transverse stress response of mixed models is obvious. Furthermore, it is possible to
enhance the transverse stress approximation locally in the core and the facesheets so
to very accurately retrieve the reference solution, see Figure 3.22c and Figure 3.22d.
The effect is particularly emphasized of exactly satisfying the homogeneous stress con-
ditions at the plate’s top and bottom surfaces. As already mentioned in Section 3.1,
the expansion orders for the transverse stress variables in RMVT models can not be
freely chosen without considering the displacement field. In particular, a number of
displacement parameters greater than the stress parameters (Nu > Ns) produces spu-
rious kinematic modes resulting in an oscillatory behaviour of the displacement field.
On the opposite, if a number of stress parameters greater than the displacement pa-
rameters is set (Ns > Nu), spurious stress modes occur and the oscillations migrate to
the transverse stress variables. So, Ns = Nu should be preferred. Moreover, if stress
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Table 3.8: M-TC: Assessment of classical and mixed SGUF models for the Meyer-Piening sandwich
plate under a localised pressure load. The absolute percentage error is calculated w.r.t. LM7 solution.

Model (nDOF) z uz [mm] σxx [MPa]

LM7 (132) 6 -3.73 (-) -625 (-)
5.9+ -3.73 (-) 582 (-)
−5.5− -2.13 (-) -138 (-)
-6 -2.13 (-) 146 (-)

FSDT/FSDT (9) 6 -2.65 (28.95%) -73 (88.32%)
5.9+ -2.65 (28.95%) 39 (93.30%)
−5.5− -2.65 (24.41% ) -276 (100.00%)
-6 -2.65 (24.41%) 283 (93.84%)

FSDT/ED32 (15) 6 -3.72 (0.27%) -610 (2.4%)
5.9+ -3.72 (0.27%) 567 (2.58%)
−5.5− -2.12 (0.47%) -138 (0.00%)
-6 -2.12 (0.47%) 146 (0.00%)

EM2·
10/EM21

32 (31) 6 -3.73 (0.00%) -613 (1.92%)
5.9+ -3.73 (0.00%) 569 (2.23%)
−5.5− -2.13 (0.00%) -139 (0.72%)
-6 -2.13 (0.00%) 147 (0.68%)

EM2�·
10/EM21

32 (27) 6 -3.73 (0.00%) -613 (1.92%)
5.9+ -3.73 (0.00%) 580 (0.34%)
−5.5− -2.13 (0.00%) -139 (0.72%)
-6 -2.13 (0.00%) 147 (0.68%)
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BCs are imposed, Ns must be augmented by the number of suppressed stress DOF.

3.3.2 Indentation of a sandwich beam

The indentation of a sandwich beam is finally investigated by referring to the problem
considered by Navarro et al. [116] and, therefore, referred to as Navarro-TestCase (N-
TC). In contrast to previous TC, here a beam problem is considered. The problem
is defined in the (x, z)−plane as displayed in Figure 3.23, with a concentrated load
P = 1000 N acting at the centre of the beam at the top surface and the bottom of the
beam fully clamped (ux = uz = 0). The data for geometry and material properties
is given in Table 3.9. Symmetry is exploited to reduce the computational model to
one-half of the beam.

H x

z

P

Figure 3.23: N-TC: Sandwich beam with in-
dentation load.

Table 3.9: N-TC: Geometric and
material data.

a = 100 mm; b = 1 mm; H = 31 mm

Core Upper face

h [mm] 30 1
θ 0 0

E11 [GPa] 0.2 100
E22 [GPa] 0.2 100
E33 [GPa] 0.2 100
G [GPa] 0.087 38.46

ν 0.15 0.3

Navarro et al. developed a very effective model for core crushing, which is based
on a semi-analytical continuum-based model proposed by Vlasov [116]: considering
a homogenous and isotropic core, its elastic response is given in terms of a simple
two-parameters “elastic foundation” model, which relies upon the assumption of zero
in-plane displacement in the core and on a decay function of the core deformation that
annihilates the perturbation at the bottom of the core [127, 128].

In the following, present SGUF FEM results are compared against the semi-analytical
Vlasov’s model as well as a reference elasticity solution obtained by the commercial FE
package Abaqus. It will be shown that the present approach, which is more general
than Vlasov’s “elastic foundation” model, is capable of providing very accurate results
with only a 2D mesh in the (xy) −plane and reduced number of DOF when compared
to the commercial FE packages. Following [116], the Abaqus model for one-half of
the beam consists of 200 two-nodes shear-deformable plane beam elements (B21) for
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the facesheet and 4200 four-nodes plane stress elements (CPS4R) for the core. This
results in a discrete model with 9805 DOF. The axial displacement ux inside the core
is suppressed in order to better reproduce Vlasov’s assumption.

The present SGUF models adopt FSDT for the facesheet and high-order models for
the core, in which the axial displacement is expanded only linearly along the thickness
in order to minimise the axial deformation of the core as per Vlasov’s assumption.
High-order expansions are adopted for the transverse displacement in the core, rang-
ing from cubic up to sixth-order: the core models are thus expressed as ED1 Nuz

with
Nuz ∈ {3, . . . 6}. As far as the 2D mesh is concerned, the beam is modeled with only
one 4-node plate element across the width, by imposing uy = 0. 50 elements are used
along the beam axis, with a bias factor (the ratio of the largest edge size to the small-
est) of 10 to increase the mesh density towards the loading area to accurately grasp the
localised stress field (Figure 3.24). The number of total DOF of the considered SGUF
models is compared against the Abaqus model in Table 3.10. Figure 3.25 shows the
distributions along the beam axis (x−direction) of the transverse displacement uz and
bending stiffness σxx at the top of the skin (z = H/2 = 15.5 mm), as well as the trans-
verse shear stress σxz and the transverse normal stress σzz in the core just below the
interface with the facesheet (z = 14.5 mm). A very satisfying agreement of the SGUF
model FSDT/ED14 with the reference Abaqus solution is obtained. The discrepancy
in the maximum transverse shear stress (Figure 3.25c) is attributed to the particular
kinematics that has been adopted inside the core. Concerning Vlasov’s model, it is
capable of very precisely reproducing the local indentation of the facesheet (transverse
displacement and bending stress, see Figure 3.25a and Figure 3.25b), but the transverse
stresses inside the core appear to be less accurate. In particular, the maximum value
of the transverse normal stress predicted by Vlasov’s model in correspondence of the
concentrated load is quite unsatisfactory (Figure 3.25d).

Figure 3.26 shows the convergence of transverse normal stress at the facesheet-core
interface upon increasing the expansion order Nuz , with emphasis on the region of
the applied concentrated load. It can be seen that the maximum compressive stress
appears to converge towards a finite value of approximately -95 MPa. Therefore, the
present SGUF modeling approach allows to recover full three-dimensional results with
a simple 2D mesh and, hence, a reduced number of DOF compared to the standard
FEM available in commercial packages (see Table 3.10).
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Figure 3.10: K-TC: Through-thickness distributions of local response parameters for displacement-
based SGUF models.
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Figure 3.16: S1-TC: Through-thickness distribution of nondimensional in-plane stress components
σxx/q at (x = 0, y = 0) (a) and σxy/q at (x = −a/2, y = −b/2) (b). Comparison between different
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Figure 3.17: S1-TC: Through-thickness distribution of nondimensional transverse stress components
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Table 3.10: N-TC: DOFs comparison between commercial software FEM and 2D SGUF model.

Model DOFs

ED13/FSDT 1020
ED14/FSDT 1122
ED15/FSDT 1224
ED16/FSDT 1326

Abaqus 9805
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In this chapter, free and forced vibrations of sandwich beams and panels with
embedded viscoelastic layer are studied. Governing equations of motion are derived



56 Chapter 4. Viscoelastic Dynamic Analysis of Sandwich Panels

for classical displacement-based models as well as for advanced models based on par-
tially mixed formulation, and then solved via FE method. The Complex Modulus
Approach (CMA) is used to model the constant or frequency-dependent viscoelastic
material (VEM) behaviour. In this context, the Anelastic Displacement Field (ADF)
and Fractional Derivatives Zener (FDZ) constitutive models are used for representing
the frequency-dependence of VEM. Modal loss factors and damped eigenfrequencies
can be obtained by employing a complex eigensolver or by resorting the modal strain
energy (MSE) approach [63, 129]. These resolution methods will be assessed referring
to the viscoelastic sandwich beam studied by Bilasse et al. in [130]. A frequency-
dependent viscoelastic law leads to a nonlinear eigenvalue problem, hence an iterative
algorithm based on fixed-point iteration method has been implemented and successfully
validated against the sandwich plate hosting a 3M-ISD polymer core. Further studies
have been conducted on a triple-core sandwich construction designed by the Garteur
consortium [131] in order to emphasise the role of transverse normal deformation of the
weak viscoelastic layer. The forced harmonic response of viscoelastic sandwich plate is
also discussed and the results are compared to Ritz solution given by D’Ottavio et al.
in [49].

4.1 Viscoelastic models in time- and frequency-domain

Starting from the assumption of linear viscoelasticity, the one-dimensional constitutive
law in the time-domain for an isotropic viscoelastic material (VEM), taking into ac-
count the previous history of deformation ϵ (t), is given by the Riemann convolution
integral [132]

σ (t) =
∫ t

−∞
E (t − τ) dϵ (τ)

dτ
dτ (4.1)

where E (t) is the relaxation modulus. Upon introducing the scalar function describing
the material memory h (t), the relaxation modulus can be written as [133]

E (t) = E0 − h (t) (4.2)

where E0 = E (t → 0) is the instantaneous modulus. Note that the following relation
for the memory function h (t) holds

h (t) = 0 for t < 0 (4.3)

which implies the h (t) being a causal function, i.e. the response is influenced only
by the history of deformation. If the instantaneous strain does not have any viscous
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effects, the stress-strain relation in Eq. (4.1) becomes [133]

σ (t) = E0ϵ (t) −
∫ t

−∞
h (t − τ) dϵ (τ)

dτ
dτ (4.4)

In FE applications the damping behaviour is typically modelled in the frequency-
domain due to difficulties in experimentally measuring the relaxation modulus in the
time-domain [134]. The constitutive damping model in the frequency-domain shall
meet the condition expressed in Eq. (4.3). In other words, the corresponding time-
domain model need to be causal. A frequency-domain model, fulfilling the causality
condition, can be obtained by applying the Fourier transform to the time-domain model
in Eq. (4.4), yielding the following definition of the complex modulus E∗:

E∗ (ω) = E ′ (ω) + i E ′′ (ω) = E ′ (ω) [1 + i η (ω)] (4.5)

where i =
√−1 is the imaginary unit. The real part of the complex modulus, denoted

by E ′ = E∗ (ω → 0), is called storage modulus, the imaginary part is a measure of the
dissipated energy and for this reason E ′′ is referred as loss modulus. Consequently, the
prime and double-prime notations do not imply any derivatives. The loss factor η (ω)
is defined as the ratio between the loss and storage modulus

η (ω) = E ′′ (ω)
E ′ (ω) (4.6)

For a linear, homogeneous and isotropic viscoelastic material the following relationship
between the extensional and shear modulus holds

G∗ (ω) = E∗ (ω)
2 (1 + ν) (4.7)

where, for simplicity, the Poisson’s ratio ν is assumed to be independent from fre-
quency. In the next paragraphs, the viscoelastic models in the frequency domain used
throughout the thesis are presented.

4.1.1 Structural damping model

The structural damping model, also referred as to hysteretic damping, is widely em-
ployed to describe the viscoelastic behaviour of those materials whose dynamic prop-
erties are not significantly affected by the working frequency. The loss factor and
dynamic modulus are assumed to be constant and Eq. (4.5) becomes:

E∗ = E ′ (1 + i η) (4.8)

Despite the simplicity of the model, the constant assumption for the loss factor leads
to the violation of memory function causality as extensively discussed in [135, 136].
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4.1.2 Anelastic Displacement Fields model

Lesieutre and Bianchini [55] provided a linear viscoelasticity model based on the decom-
position of displacement field in an elastic part and an anelastic one, which describes
that part of strain which is not instantaneously proportional to stress. The frequency
dependence of stiffness and damping for a viscoelastic material, modelled via the ADF
approach has the form

G∗ (ω) = G0


1 +

n∑

j=1

∆jω

ω − i Ωj


 (4.9)

where G∗ is the complex modulus, ω is the angular frequency in radians per second
and G0 takes on the same physical meaning of E ′ in Eq. (4.5). The parameter n is
the number of anelastic displacement fields used in the model, each characterized by a
relaxation time Zj = 1/Ωj and a relaxation strength ∆j (j = 1, 2, . . . , n). The accuracy
of the ADF model in describing the frequency-dependent behaviour of a viscoelastic
material depends on the number of anelastic displacement fields used in the series. It is
to be noted that the values defining the series are identified in a specific frequency range,
the model reliability is guaranteed insofar solely inside such identification frequency
range.

4.1.3 Fractional Derivatives Zener model

Through the years, fractional derivatives models has been proved to be a very suit-
able way to describe the frequency-dependent behaviour of the dynamic properties of
viscoelastic materials [137–140]. The basic assumption is to leave behind the viscous
dashpot element in the classic spring-dashpot model on behalf of a more physical rep-
resentation of the dynamic behaviour. Note that the viscous dashpot assumes the solid
to behave like a fluid regarding the internal friction nature of the solid itself. In the
fractional derivatives model the stress is assumed to be directly proportional to the
strain through the differential operator dα/dtα with 0 < α < 1. The main advantage
of fractional derivatives models is to be sought in using relatively few parameters com-
pared to ADF model. In the following, reference will be made to the four-parameter
Zener type model firstly introduced by Caputo et al. [141, 142]. The stress-strain
relationship in the time domain, for the four-parameter model, can be hence defined
by the linear differential equation [59]

σ (ω) + τα dασ (t)
dtα

= G0ϵ (t) + G∞τα dαϵ (t)
dtα

(4.10)
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where G0 has the same meaning given in Eq. (4.9), G∞ = G∗ (ω → ∞) is the unrelaxed
or asymptotic modulus and τ is the relaxation time. Note that for the model to be
physically meaningful and comply with the second law of thermodynamics [143], the
following conditions must hold

G∞ > G0 ≥ 0 , τ > 0 (4.11)

which add to the condition on fractional derivative order α already introduced. Upon
using the Fourier transform on Eq. (4.10), the stress-strain relationship in the frequency
domain reads

σ∗ (ω) =
[

G0 + G∞ (i ωτ)α

1 + (i ωτ)α

]
ϵ∗ (ω) = G∗ (ω) ϵ∗ (ω) (4.12)

The complex modulus associated to the four parameters fractional derivatives model
is thus

G∗ (ω) =
[

G0 + G∞ (i ωτ)α

1 + (i ωτ)α

]
(4.13)

4.2 Free-vibration analysis

The nonlinear generalized eigenvalue problem for the sandwich panel hosting a frequency-
dependent viscoelastic layer reads

[
K∗ (ω) − λ2 (ω) M

]
U∗ = 0 (4.14)

in which K∗ and M are the global complex stiffness and mass matrices of the structure
respectively, obtained in FEM analysis upon assembling the element matrices, and λ2

and U∗ are the complex eigenvalues and complex modal shapes of the system. The
complex stiffness matrix K∗ can be written as:

K∗(ω) = KR (ω) + i KI (ω) (4.15)

where KR and KI are the real and the imaginary part giving the stiffness and the
damping of the structure, respectively. If a frequency-independent VEM material is
considered, e.g. a material whose dynamic properties are described by the structural
damping model, Eq. (4.14) reduces to the following linear form

[
K∗ − λ2M

]
U∗ = 0 (4.16)

The resolution methods of problem Eq. (4.14) (or Eq. (4.16)), as well as the iteration
algorithms for the nonlinear counterpart of the generalized eigenvalue problem, are
described hereafter.
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4.2.1 Complex Eigensolution (CE) approach

The Arnoldi algorithm [144] is being exploited to solve the generalized eigenvalue prob-
lem for all the numerical applications treated throughout the thesis. The CE method
consists in solving the generalized eigenvalue problem of Eq. (4.16) by considering the
complex stiffness matrix K∗ within the Arnoldi algorithm. As a result, the eigenvalues
and eigenvector are complex. The complex eigenvalue λ of the i−th mode is given by:

λ2
i = ω2

i (1 + i ηi) (4.17)

where ωi is the natural frequency and ηi the modal loss factor. Natural frequencies are
defined as the real part of the corresponding eigenvalue:

ωi =
√

Re (λ2
i ) (4.18)

As far as the modal loss factor is concerned, within the CE method it is simply defined
as the ratio between the imaginary part and the real part of the eigenvalue:

ηi = Im (λ2
i )

Re (λ2
i )

(4.19)

Notwithstanding the complex approach provides an accurate solution, complex eigen-
solvers require a relevant computational effort.

4.2.2 Iterative Complex Eigensolution (ICE) approach

An iterative CE scheme (ICE) is to be considered for solving Eq. (4.14), i.e. for VEM
exhibiting a frequency-dependent behaviour. In this case an even higher computational
effort is required since the solver has to seek for complex eigensolutions, for each mode,
as many times as requested by the convergence to be achieved. The Iterative Complex
Eigensolution (ICE) approach is referred in this thesis [145]. It is based on the fixed-
point iteration method and the initial guess of the natural frequencies is obtained by
solving the real eigenvalue problem. A detailed representation of the ICE algorithm is
given in Algorithm 1. The number of iterations requested for achieving convergence is
further discussed.
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Algorithm 1 The ICE algorithm for N modes [49].
1: solve Eq. (4.14) with ω = 0: compute λ (0) ▷ Initial guess: N real eigenvalues
2: for i = 1 : N do
3: Initialize the error ε = 1 and the eigenfrequency ω̃ = λi (0)
4: while ε > εtol do ▷ used tolerance: εtol = 10−6

5: solve [K∗ (ω̃) − λ2 (ω̃) M]U∗ = 0

6: compute the error: ε = |ω̃ −
√

Re (λ2
i (ω̃))|√

Re (λ2
i (ω̃))

7: update the eigenfrequency: ω̃ =
√

Re (λ2
i (ω̃))

8: end while
9: ωi = ω̃; ηi =

Im
(
λ2

i

)

Re (λ2
i ) ▷ converged solution: damped eigenfrequency & modal loss factor

10: end for

4.2.3 Modal Strain Energy (MSE) approach

The modal strain energy (MSE) method was introduced as an efficient approach to esti-
mate the modal loss factors of structures hosting viscoelastic damping layers. [146, 147].
Based on the assumption that the undamped modes are representative of the damped
system, Johnson and Kienholz [63] proposed a direct method which consist in provid-
ing an estimation of the modal damping ratio as the ratio between the storage energy,
evaluated from the modal strain energy of the entire structure, and the dissipation
energy, calculated from the undamped modal shapes. The storage energy is obtained
from Eq. (4.16) upon considering the real part only of the complex stiffness matrix
K∗. Thus, the complex eigenvalue problem in Eq. (4.16) reduces to the following real
counterpart

[
KR − λ2M

]
U = 0 (4.20)

where the eigenvalues λ2 and the eigenvectors U are real quantities. The modal loss
factor, within the MSE approach, is expressed as

ηi = uT
i KI ui

uT
i KR ui

(4.21)

where ηi and ui are the loss factor and the undamped modal shape of the i−th mode.
Since the influence of the imaginary modal shapes is neglected, the accuracy of the
estimated modal loss factor is strongly affected by the damping properties of VEM
and its usage is hence restricted to lightly damped structures.
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4.2.4 Iterative Modal Strain Energy (IMSE) approach

An iterative version of the MSE, referred as to IMSE, has been proposed to estimate
the damping properties of a structure embedding frequency-dependent viscoelastic lay-
ers. The variation of storage and dissipation energy with changed frequency is to be
considered in order to obtain an accurate estimation of the modal loss factor. Thus, the
initial guess, obtained just like the ICE procedure by considering a nil initial circular
frequency, is subsequently updated taking into account the change in stiffness induced
by the frequency-dependent VEM. The iterative procedure stops when the requested
level of accuracy, set by the chosen tolerance value, is achieved. A representation of
the IMSE procedure is given in Algorithm 2.

Algorithm 2 The IMSE algorithm for N modes [49].
1: solve Eq. (4.14) with ω = 0: compute λ (0) ▷ Initial guess: N real eigenvalues
2: for i = 1 : N do
3: Initialize the error ε = 1 and the eigenfrequency ω̃ = λi (0)
4: while ε > εtol do ▷ used tolerance: εtol = 10−6

5: solve [Re (K∗ (ω̃)) − λ2 (ω̃) M]U = 0

6: compute the error: ε = |ω̃ − λi (ω̃) |
λi (ω̃)

7: update the eigenfrequency and modal shape: ω̃ = λi (ω̃); ui = ui (ω̃)
8: end while
9: ωi = ω̃; ηi = uT

i Im (K (ωi)) ui

uT
i Re (K (ωi)) ui

▷ converged solution: damped eigenfrequency & modal loss

factor
10: end for

4.2.5 Sandwich beam-plate with polymer core

The viscoelastic sandwich beam-plate (B1-TC) studied in [129, 130, 148] is addressed
in order to validate the proposed finite plate element against the dynamic behaviour
of slightly to very damped structures. It considers a beam-plate made up of a thin
polymer layer (core) constrained by two elastic facesheets. The material and struc-
tural data are summarised in Table 4.1. The viscoelastic behaviour of the core is
described within the structural damping approach (see Section 4.1.1) and is, therefore,
frequency-independent: constant loss factor is taken as ηc ∈ {0.1, 0.6, 1, 1.5}. Three
sublaminates have been employed to discretize the through-thickness behaviour of the
sandwich structure, each of them modelled according to FSDT with a unitary shear
correction factor. It is worth noting that the three sublaminates approach is, in this
case, equivalent to the LW displacement-based GUF model that goes by the acronym
LD10. As far as the in-plane discretization is concerned, due to the high length-to-
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thickness ratio (S = 56) 14 CL8 elements are used along the longitudinal direction
(x−axis). Only one finite element is used cross the width, so as to allow a direct
comparison between the present 2D FE and the 1D models used in the references.

x
y

z

b

a
H

f

c

Figure 4.1: B1-TC: Sandwich beam-plate
geometry.

Table 4.1: B1-TC: Geometric and mate-
rial data.

a = 177.8 mm; b = 12.7 mm
f = 1.524; c = 0.127 mm; H = 3.175 mm

Core Facesheet
θ [◦] 0 0

E0 [MPa] 1.794 -
E [MPa] - 69000

ν 0.3 0.3
G0 [MPa] 0.69 -
G [MPa] - 26538.5

ρ
[
kg/m3

]
968.1 2766

Both CE and MSE resolution methods are investigated. In particular, an attempt
to comprehensively establish the application domain of the MSE approach regarding
the damped properties of VEM as well as the degree of hyperstaticity is given. Ta-
ble 4.2 compares the damped eigenfrequencies f and the normalized modal loss factors
η/ηc corresponding to the first four vibration modes obtained by the present 2D FE
approach against two 1D beam models: the exact analytical formula given by Rao
[149], if the simply supported configuration (SFSF) is considered, and the FE solution
proposed by Bilasse et al in [150] for the cantilever configuration (CFFF). In addition,
2D FE results given by Bilasse in [130] and obtained by resorting to the asymptotic
numerical method (ANM), are also listed. A perfect agreement is observed when com-
paring the results obtained with the present CE approach to those pertaining to one
dimensional beam reference models. Furthermore, an accuracy improvement with re-
spect to the FE solution given in [130] may be noted for the vibration modes aside from
the fundamental flexural mode. Indeed, the solution provided by Bilasse is shown to
slightly overestimate the value of damped eigenfrequencies when compared to present
results regardless of boundary conditions set or loss factor of VEM. Concerning the
modal loss factor, an opposite behaviour is observed with an underestimation of the
modal damping, even though the difference is less noticeable.
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Figure 4.2: B1-TC: Eigenfrequency and modal loss factor percentage errors of the MSE approach
compared to the Complex Eigensolution (CE) of the SFSF (left) and CFFF (right).

Table 4.2 reports also the comparison between CE and MSE methods in terms of
percentage error related to modal frequencies and loss factor, calculated as

∆f = fCE − fMSE

fCE
× 100 and ∆η = ηCE − ηMSE

ηCE
× 100 (4.22)

The error distributions versus the mode number for four different values of VEM loss
factor ηc are plotted in Figure 4.2. Both simply supported and cantilever configurations
are investigated. For ηc = 0.1 the MSE method exactly recovers the eigenfrequencies
and modal loss factors obtained with the complex approach. As the material loss
factor increases, the use of MSE method leads to non-negligible errors, especially if
the firsts eigenmodes are considered. Indeed, the influence of imaginary modal shapes
is noteworthy in the low frequency range and becomes less relevant as the frequencies
increases. Concerning the two sets of boundary conditions, it is observed that the
MSE appears to be more inaccurate in predicting the damped properties in the CFFF
configuration rather than the SFSF. Since the damping is essentially due to the shear
deformation of the constrained VEM, this increased inaccuracy is attributed to the
different relevance of transverse shear strain energy in the two configurations. This
phenomenon mostly affects the modal loss factor with an increase of roughly 60% of
error between the two SFSF and CFFF configurations. This analysis leads to the
conclusion that, as computationally efficient as the MSE method is, a CE approach
is to be considered for highly damped structures especially if an accurate prediction
of the modal loss factor is sought. The MSE method remains a viable option for
slightly damped structure, providing an accurate solution while drastically reducing
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the computational cost of the analysis when compared to the complex eigensolvers
[49].

4.2.6 Triple-core Sandwich Panel

The present FE is next applied to a triple-core sandwich structure designed by the
Garteur consortium, and therefore referred to as Garteur-TestCase (G-TC), and ad-
dressed to noise reduction essentially in helicopter cabins. Benchmark studies have
been carried out by Simon et al with a view to assessing mathematical and numerical
approaches to describe the vibro-acoustic behaviour of helicopter trim-panels [131]. In
particular, the SGUF within the weak-form solution obtained by the Ritz method has
been proved to be a reliable tool for acoustic transmission loss estimation. In addition,
D’Ottavio et al has broadened the investigation conducted in [131] to refined kinemat-
ics models. As a result, high-order theories turn out to be necessary if a proper and
comprehensive characterization of the dynamic behaviour is sought [49]. In the follow-
ing, results obtained with the present FE will be compared with those given in [49],
providing a validation of the proposed plate element in handling unconventional panel
configurations. Some additional consideration will be also made about the influence of
FE discretization on the dynamic response.

x
y

z

b

a

H

SL1

SL2

SL3

SL4

SL5 GFRP

Nomex
Glue

Melamine foam

Glue
Nomex

GFRP

Figure 4.3: G-TC: Geometry and composite stack of the triple-core sandwich panel. Idealization of
the whole stack into five sublaminates.

The G-TC considers a fully clamped (CCCC) square panel made up of 13 plies
forming a triple-core sandwich. The composite stack arrangement is illustrated in
Figure 4.3 and summarized in Table 3.3 along with the geometric and viscoelastic
material data. The stiffness of the panel is mainly given by the outer facesheets made
up of a set of 4 glass fabric (GFRP) plies, whereas the damping properties are obtained
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Table 4.3: G-TC: Geometric/material data and stacking sequence of the triple-core sandwich panel.

a = b = 840 mm; H = 21.68 mm

Material (ply no.) hp E11 = E22 [MPa] E33 [MPa] ν G11 [MPa] G22 [MPa] G33 [MPa] η ρ
[
kg/m3

]

GFRP (1 − 4; 10 − 13) 0.275 21000 21000 0.13 3000 3000 3000 0.01 1600
Nomex (5; 9) 3 1 330 0 1 85 38 0.05 96
Glue (6; 8) 0.240 1.950 1.950 0.4 700 700 700 0.01 1050

Melamine foam (7) 13 0.5 0.23 0 0.065 0.065 0.065 0.1 11.7

by embedding a melamine foam core glued between two nomex honeycomb cores. The
elastic properties are given in the laminate reference frame so each layer is assumed to
be oriented at 0◦. It is worth noticing that no Poisson coupling is assumed in the nomex
plies nor in the melamine foam. Frequency-independent loss factors are considered for
all the materials. The considerations outlined in [48] have driven the idealization of
the stack into five sublaminates, as shown in Figure 4.3: the outer glass fabric layers
are regrouped into one sublaminate modelled according to FSDT with reduced stiffness
coefficients; a single sublaminate with a LD10 theory is used for the nomex and glue
layers; the melamine foam core forms the 3th sublaminate for which 3 different plate
theories will be used: FSDT, ED12 and ED32.

Following the notation used in [49], the 3 different kinematic models for the melamine
foam core are hereinafter referred to as MF{1, 0}, MF{1, 2} and MF{3, 2}. FSDT
and ED12 plate theories involve a shear correction factor of κ2 = 5/6 to enhance the

�
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Figure 4.4: G-TC: Frequency and modal loss factor distributions corresponding to the first 300
vibration modes of the CCCC triple-core panel for three different kinematic models used for the
melamine foam core.
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numerical predictions especially in the low frequency range. As far as the in-plane
discretization is concerned, a mesh of 16 CL8 elements for the four edges of the panel
is employed.

Figure 4.4 reports the first 300 eigenfrequencies for the 3 plate theories adopted for
the melamine foam. Starting from a frequency value of approximately 620 Hz, a change
of slope is observed for the models retaining a three-dimensional constitutive law. This
results in increased loss factor due to the presence of thickness modes associated to the
melamine foam stretch. From this point onwards, both short-wave in-plane modes and
long-wave thickness modes coexist increasing the so-called modal-density. Obviously, a
mode involving thickness-wise effects can not be grasped by the bi-dimensional model
MF{1, 0}, whose modal density remains constant over the whole frequency range.

Furthermore, the use of a higher-order approximation for the in-plane displacement

(a) Mode 1: 24.97 Hz
(b) Mode 91: 621.0
Hz (c) Mode 2: 44.26 Hz

(d) Mode 92: 621.7
Hz

(e) Mode 4: 60.52 Hz
(f) Mode 94: 622.6
Hz (g) Mode 5: 72.05 Hz

(h) Mode 6: 623.6
Hz

Figure 4.5: G-TC: Modal shapes comparison between couples of modes exhibiting the same in-plane
pattern but a different behaviour along the thickness direction.
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does not result in any significant benefit since the MF{1, 2} and MF{3, 2} overlap
perfectly. As far as the modal loss factor is concerned, it is worth emphasising that
starting from the transition frequency value, the modes involving a change of the
melamine foam thickness become predominant, thus a jump in the modal loss factor
distribution in Figure 4.4 (top) is experienced to get to the material loss factor of the
melamine foam.

Figure 4.5 shows the in-plane pattern and cross-sectional view for 4 couples of
modes sharing the same number of half-waves along the in-plane directions. Despite
each couple has a similar in-plane pattern, a completely different behaviour is observed
along the thickness direction. As already discussed, from a frequency of 621 Hz the
modes start involving a significant transverse deformation of the melamine foam core as
clearly shown by modal shape cross-sections (where the melamine foam core is shaded
in yellow for the sake of clarity).

Finally, Figure 4.6 shows the modal distribution of both frequency and modal loss
factor for four different meshes compared to the converged Ritz solution obtained with
an expansion order of 26 in both directions [49]. The convergence analysis has been
carried out for the MF{1, 2} model. As expected, a coarse FE discretization skips
several vibration modes, resulting in a steeper modal distribution. As the number of
elements increases, a flatter curve is obtained until a near-perfect overlapping of FE and
Ritz solutions when convergence is achieved. It is worth noting that, notwithstanding
the chosen in-plane discretization, the frequency value corresponding to the transition is

f = 620Hz
MF{1,2}

Ritz
present 16×16
present 12×12
present 10×10
present 8×8
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1000

1500

2000

2500

Mode number
0 50 100 150 200 250 300

Figure 4.6: G-TC: Convergence analysis of the present FE with respect to Ritz solution with
R = S = 26.
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accurately recovered. This represents a valuable information at the preliminary design
stage to establish the frequency range where long-wave thickness modes are expected
to appear.

4.2.7 Sandwich plate with frequency-dependent core

The capability of the present FE of dealing with frequency-dependent VEM are eval-
uated by referring to the sandwich plate investigated by Bilasse et al. in [49, 130] and
referred to as B2-TC. It considers a very thin rectangular plate (a/H ≈196) made up of
two stiff elastic skins which constrain a thin layer of isotropic and frequency-dependent
3M-ISD112 VEM. The geometric and elastic material data are summarized in Table 4.4.
The ADF approach (see Section 4.1.2) is used to model the frequency-dependent elastic
moduli of the 3M-ISD112 material. In particular, the 6-parameters model (3 anelastic
fields, each requiring 2 parameters), referred to hereinafter as ADF-3 and defined in
Table 4.5, provides an accurate representation of the VEM damped properties in the
frequency range of interest[151] and therefore it will be addressed for the present anal-
ysis. It is worth noting that, since the viscoelastic properties are strongly affected by
the working temperature, the parameters defining the frequency-dependent behaviour
of VEM must be identified in a specific temperature range. For the present analysis a
temperature of 27◦C is considered.

x
y

z

b

a
H

f

c

Figure 4.7: B2-TC: Sandwich plate geome-
try.

Table 4.4: B2-TC: Geometric and material
data.

a = 348 mm; b = 304.8 mm
f = 0.762 mm; c = 0.254 mm; H = 1.778 mm

3M-ISD122 (27◦C) Facesheet
E0 [MPa] 1.794 -
E [MPa] - 68900

ν 0.5 0.3
G0 [MPa] 0.5 -
G [MPa] - 26500

ρ
[
kg/m3

]
1600 2740

In the first place, a convergence analysis with respect to the FE discretization is
performed for both CCCC and CFCF sets of boundary conditions where the iterative
CE (ICE) procedure detailed in Section 4.2.2 has been used to solve the nonlinear eigen-
value problem. A three-sublaminates idealization of the composite stack is assumed.
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Table 4.5: B2-TC: Maxwell series terms at 27◦C of the 3M-ISD112 viscoelastic material [55].

j ∆j Ωj

1 0.746 468.7
2 3.265 4742.4
3 43.284 71532.5
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Figure 4.8: B2-TC: FE Convergence rate of the viscoelastic response (f, η) for the first 4 vibration
modes of the CCCC (left) and CFCF (right) sandwich panel.

Each sublaminate is modelled according to FSDT kinematics with reduced stiffness
coefficients. Indeed, no significant thickness-wise effects are experienced due to the
slenderness of the sandwich panel. On the other hand, the high length-to-thickness
ratio calls for the CL8 quadratic element to avoid locking pathology. Figure 4.8 shows
the convergence rate of the damped eigenfrequency and modal loss factor versus the
number of nodes, in semi-logarithmic scale, for the first 4 vibration modes of the CCCC
(left) and CFCF (right) sandwich panel. Plate boundary conditions and modal num-
ber notwithstanding, the damped frequency converges very quickly and a value of 113
nodes turns out to be sufficient, corresponding to a 6 × 5 mesh (in x and y directions,
respectively). However, a finer mesh is required for the modal loss factor to converge.
Moreover, the convergence rate strongly depends on mode number and considered
boundary condition. Indeed, the 4th mode of the CCCC configuration needs a 16 × 14
quadratic elements for the modal loss factor of to converge. This accuracy comes along
a significant increase in computational cost which must be taken into account especially
if an iterative solver is involved.

Table 4.6 compares the undamped f0 and damped f eigenfrequencies and modal
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Table 4.6: B2-TC: Undamped and damped eigenfrequencies and modal loss factors for the first four
vibration modes of the CFCF and CCCC sandwich plate with a frequency-dependent core’s modulus.
Comparison between the iterative procedures ICE and MSE against the Ritz solution given in [49].

Present ICE Present IMSE Ritz ADF-3 [49]
BC f0 [Hz] f [Hz] η f [Hz] η ∆f [%] ∆η [%] f0 [Hz] f [Hz] η

CFCF 44.26 46.69 0.223 46.00 0.231 1.48 -3.81 44.26 46.69 0.223
54.86 58.32 0.214 57.37 0.225 1.63 -5.38 54.87 58.33 0.214

100.43 112.28 0.248 108.86 0.279 3.05 -12.28 100.43 112.28 0.248
107.46 117.61 0.258 115.68 0.270 1.64 -4.49 107.46 117.61 0.258

CCCC 76.57 83.10 0.253 81.69 0.265 1.70 -4.46 76.57 83.10 0.253
133.50 146.92 0.269 144.44 0.281 1.69 -4.31 133.49 146.91 0.269
153.54 168.78 0.268 166.05 0.279 1.62 -4.06 153.52 168.76 0.269
204.40 225.63 0.282 221.81 0.294 1.69 -4.00 204.34 225.59 0.283

loss factors η obtained by the present FE approach with both ICE and IMSE pro-
cedures to those given by D’Ottavio with the Ritz approach in [49] for the two sets
of boundary conditions previously investigated. The undamped eigenfrequency f0 is
obtained by solving the eigenvalue problem of Eq. (4.14) under the assumption ω = 0.
The converged value of the eigenfrequency at the end of the iterative process is labelled
as f . For the sake of comparison, the reference Ritz solution listed in Table 4.6 refers
to the same ADF-3 model and the ICE procedure and involves an expansion order of
10 in both x and y directions (R = S = 10). Relying on the previous convergence anal-
ysis, a 16 × 14 mesh has been employed to ensure a FE converged solution. A perfect
agreement is found between the present FE approach and the Ritz solution. The per-
centage differences between the damped properties obtained with the IMSE and those
calculated by exploiting the ICE procedure are also reported in Table 4.6. A quite
acceptable approximation is obtained for both damped eigenfrequency and modal loss
factor at the end of the iterative procedure, with a percent error which sticks around
1.5% and 4%, respectively. The 3th mode is seen to deviate from this trend, leading
to a non-negligible increase in the percent error when adopting the IMSE method.
This phenomenon may be explained by the strong coupling experienced for this mode
for which the contribution of the imaginary modal shape can not be neglected. It is
worth underlying the number of iterations required by the two implemented iterative
procedures: assuming a tolerance value of εtol = 1e−6, the ICE needs 6 iterations to
converge, whereas only 5 iterations appears to be sufficient for the IMSE procedure. As
mentioned in [49], Ritz method required 7 iterations, if the ICE procedure is considered
and 6 for the IMSE. The gap of one iteration between the two procedures is retained,
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but the Ritz method appears to converge more slowly with respect to the present FE
approach.
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4.3 Frequency Response Function (FRF) of Vis-
coelastic Sandwich Panels

The semi-discrete dynamic equilibrium equations of a system hosting viscoelastic damp-
ing plies within the framework of finite element method reads

Mü (t) + [KR (ω) + i KI (ω)] u (t) = f (t) (4.23)

It is worth mentioning that in Eq. (4.23) the only source of damping is given by the
imaginary part of stiffness matrix, i.e. no damping proportional to the velocity is
considered. Assuming an harmonic load in the form

f (t) = Fei ωt (4.24)

where F is the constant amplitude vector, the steady state harmonic response can be
written as

u (t) = U∗ (ω) ei ωt (4.25)

where U∗ (ω) is the complex generalized displacement vector. Substituting Eq. (4.25)
and Eq. (4.24) into Eq. (4.23) yields

[
KR (ω) + i KI (ω) − ω2M

]
U∗ (ω) = F (4.26)

The Direct Frequency Response (DFR) consist in solving the algebraic system in
Eq. (4.26) for each value of frequency the frequency range of interest is discretised
into, providing the entire response of the system in the frequency domain. This crite-
rion is employed to build the Frequency Response Function (FRF), particularly useful
to quantify the response of the system to a specific excitation. The FRF is obtained
from Eq. (4.26) considering a single input (external excitation) Fi applied at i−th DOF,
and a single output (a displacement) U∗

o corresponding to the o−th DOF and solving
the algebraic system of equations for all the values of frequency in the bandwidth of
interest [

KR (ωl) + i KI (ωl) − ω2
l M

]
U∗ (ωl) = Fi (4.27)

Based on the specific application, the receptance FRF is evaluated as

Hoi (ωl) = U∗
o (ωl)
Fi

(4.28)

or in decibel
Hoi (ωl) = 20log10

∣∣∣∣∣
U∗

o (ωl)
Fi

∣∣∣∣∣ (4.29)
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where Fi is the only non-zero component of the amplitude vector and U∗
o (ωl) is the

displacement measured at o−th DOF of the vector U∗ (ωl). Figure 4.9 illustrates the
flow diagram, which is merely a representation of the implemented algorithm, allowing
to generate the frequency response function of the system.

ω = ωl

K∗ (ω) = KR (ω) + iKI (ω)

[
K∗ (ω)− ω2M

]
U∗ (ω) = Fi

Hoi (ω)

ω = ω0, . . . , ωl, . . . , ωf

Figure 4.9: Frequency Response Function evaluation algorithm [145].

4.3.1 Harmonic analysis of sandwich plate with frequency-
dependent core

The same case study of Section 4.2.7 involving the frequency-dependent 3M-ISD112
VEM is addressed to provide further insights about the capability of the developed
FE numerical tool. This time the sandwich panel, whose geometric and material data
are given in Table 4.4, is simply supported on the four edges (SSSS) and subjected to
a harmonic point load excitation of amplitude F = −2 kN acting at the top surface
at point P (−a/4, −b/4, H/2) as shown in Figure 4.10. A converged mesh involving
8 CL8 elements in both x and y directions is employed. Figure 4.11 shows the
damped dynamic response of the sandwich panel in the frequency band f ∈ [0, 300]
Hz. The receptance FRF, expressed in decibel, is evaluated in terms of transverse
displacement uz, measured at the bottom surface of the plate and at the same in-plane
coordinates of the applied harmonic excitation. The present FE solution is compared
to converged Ritz solution given by D’Ottavio et al. [49] and to results obtained by
Bilasse et Oguamanam [152]. In particular, only the resonance and anti-resonance
frequency values are extrapolated from the curves given in [152]. The solution of
Ref.[152] is obtained by assuming the face sheets to be modelled according to the
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P

F
x

y

z

b

a

Figure 4.10: B2-TC: Simply supported sandwich plate with 3M ISD112 frequency-dependent core
subjected to a harmonic point load excitation.
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Figure 4.11: B2-TC: Frequency Response Function (FRF) of the simply supported sandwich panel
with 3M ISD112 frequency-dependent core for a bandwidth of 300 Hz.

classical Kirchhoff-Love plate theory, whilst the FSDT is used for the core. A refined
FE mesh resulting in a number of DOF equal to 5887 is employed in Ref.[152]. It is
worth noticing that Bilasse and Oguamanam’s solution is based on the assumption that
the damped eigenfrequency may be approximated by the undamped value obtained by
solving the corresponding real generalized eigenvalue problem. All results are obtained
with the DFR detailed in Section 4.2 by assuming the frequency dependence of VEM
properties to be described according to the ADF-3 model. Figure 4.11 comes along
with further information about the modal shape corresponding to each resonant peak.
The position of the harmonic excitation triggers a specific set of modes characterized
by a non-nil vertical deflection of the point right where the load is applied. Over the
frequency band, a sort of pattern which involves an increasing number of half-waves
along the in-plane directions with increased peak number can be recognised. A very
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good agreement is found between the present FE approach and both Ritz and Bilasse
and Oguamanam’ solutions, providing a validation of the numerical tool in dealing
with the forced vibrations of damped sandwich structures.

4.3.2 FRF of viscoelastic sandwich beam with SVDT core

The harmonic response of a three-layered sandwich beam is investigated in this section
by referring to the problem studied by Cortés et al. [153] and, therefore referred to
as Cortés-TestCase (C-TC). The sandwich beam consists of two constraining metallic
layers enclosing an isotropic and frequency-dependent viscoelastic core made up of
Soundown Vibration Damping Tile (SVDT) material. The dimensions and material
properties of the beam are presented in Table 4.7 and illustrated in Figure 4.12.

x
y

z

b

a
H

f

c

Figure 4.12: C-TC: Sandwich beam-plate
geometry.

Table 4.7: C-TC: Geometric and material
data.

a = 200 mm; b = 20 mm
f = 1; c = {1, 5, 10} mm
H = {3, 7, 12} mm

Core (SVDT) Facesheet
E0 [MPa] 353 -
E [MPa] - 176200

ν 0.45 0.3
G0 [MPa] 121.7 -
G [MPa] - 67769

ρ
[
kg/m3

]
1423 7782

The frequency-dependence of VEM elastic properties is represented by the four param-
eters fractional derivative Zener (FDZ) model described in Section 4.1.3. The complex
Young’s modulus is hence written as:

E∗ = E0 + E∞ (i ωτ)α

1 + (i ωτ)α (4.30)

The parameters E0, Einf , τ, α are obtained by fitting the experimental data of the stor-
age modulus and loss factor identified by Cortés and Elejabarrieta [153, 154]. Their
values are summarised in Table 4.8. Cortés et al. employ a plane beam model, for which
3D solutions are obtained by discretizing the sandwich cross-section (the (xz) −plane)
with plane stress elements. A converged mesh involving 60 four-node bilinear elements
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Table 4.8: C-TC: Parameters of the FDZ model employed for the frequency-dependent viscoelastic
core.

E0 [MPa] E∞ [MPa] τ [µs] α

353 3462 314.9 0.873

along the longitudinal direction of the beam is considered. An accurate description
of the through-thickness displacement and stress field is ensured by using 4 elements
along the thickness direction for each layer. Based on that, 793 nodes and 1586 DOF
are associated to the FE model. On the other hand, a beam-plate approach is pro-
posed within the present FE framework where only one finite plate element is used to
discretize the beam width (y−direction). Concerning the longitudinal direction of the
beam, 20 CL8 elements have shown to provide the desired level of accuracy for the
mesh to be considered converged. Consequently, 103 nodes are associated to the mesh.
The validation of the present FE approach is carried out by assuming a layerwise FSDT
description (LD10) of the multilayered structure. The theory-related number of DOFs
associated to this model is 9, resulting in a total number of DOFs of 927.

The first analysis is about the dynamic response of the cantilever sandwich beam
subjected to a harmonic unitary point load excitation acting oat the bottom surface at
point P (−a/2, 0, −H/2), as shown in Figure 4.13. The response is evaluated in terms

y
x

z

F

P

M

uz

Figure 4.13: C-TC: Cantilever three-layered sandwich beam with SVDT core layer subjected to a
harmonic unitary point load excitation.

of the transverse displacement uz measured at the same in-plane coordinates of the
point P but at the top surface (point M in Figure 4.13). Since a unitary amplitude
is considered for the harmonic excitation, the transverse displacement and the unique
non-nil element of the FRF receptance matrix have the same value. The influence
of the VEM layer on the dynamic behaviour of the three-layered sandwich beam is
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studied regarding the thickness of the viscoelastic core layer. Three thicknesses for the
SVDT material layer are therefore considered, spanning from thin c = 1 mm to very
thick c = 10 mm with an intermediate value of c = 5 mm.

Figure 4.14 plots the transverse displacement in logarithmic scale observed at point
M (see Figure 4.13) for the three different thicknesses of the core layer in the frequency
band [0 − 4] kHz. The present FE results are seen to be in perfect agreement with the
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Figure 4.14: C-TC: Frequency response function for the cantilever sandwich beam and three different
thicknesses of the SVDT core: (a) c = 1 mm, (b) c = 5 mm, (c) c = 10 mm.

2D model given by Cortés et al. in [153], providing a validation of the present beam-
plate approach. As expected, increasing the thickness of the core results in decreasing
the amplitude of the response as well as the number of resonance frequencies due to
the additional stiffness of the sandwich structure.

The second analysis sets the focus on establishing the nature and extent of elastic
properties of the viscoelastic core in affecting the dynamic response of the three-layered
sandwich beam. For this purpose, three different facesheet-to-core stiffness ratios are
investigated. In particular, the complex modulus of the viscoelastic core layer is ob-
tained from Eq. (4.30) upon multiplying by a factor of 100, 10−2 and 10−4 and referred
to as hard, moderately hard and soft core, respectively. As far as the plate theory is
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concerned, a sublaminate idealization of the multilayered structure is considered in
addition to the LD10 theory previously used. The bottom and top skins are still mod-
elled according to FSDT, but this time the transverse displacement in the core layer
is assumed to be quadratic along the thickness direction in order to retain the 3D
constitutive law without introducing the Poisson locking. The acronym associated to
this model is hence FSDT/ED12. Figure 4.15 compares the transverse displacement
measured at point M for the three elastic properties and thicknesses values used for
the core layer in the frequency band [0 − 4] kHz. The thickness of the viscoelastic layer
notwithstanding, no differences are noticed between LD10 and FSDT/ED12 throughout
the whole frequency band of interest when the structure hosts the hard core. Indeed,
as long as the facesheet-to-core stiffness ratio is low, the thickness-wise deformation of
the core is negligible, yielding an equivalence of LD10 and FSDT/ED12 theories. As
the stiffness of the viscoelastic layer decreases, the curve pertaining to the plane-stress
model of the core starts deviating from the FSDT/ED12 one. This effect is more pro-
nounced as the thickness of the core increase. Concerning the soft core, it is worth
noticing that the response is merely affected by the choice of the plate theory when the
thin core case is considered (Figure 4.15a). On the other hand, if a quadratic trans-
verse displacement is considered, the additional damping introduced by the increased
thickness results in a much more flat FRF where the peaks appear to be rounded-off.
In addition, at high frequencies both in-plane and long-wave thickness modes coexist
leading to a higher modal density, as it can be observed in Figure 4.15c. The LD10

theory being unable to grasp the thickness modes associated to the stretch of the core
is seen to have a lower number of peaks than the FSDT/ED12.

To sum up, pure three-dimensional effects arise with increased thickness and facesheet-
to-core stiffness ratio especially in the higher frequency band. As a result, the plane
stress assumption underlying the FSDT turns out to be inadequate to accurately de-
scribe these thickness-wise effects. Refined theories, retaining a fully three-dimensional
constitutive law, are therefore required to correctly grasp the damped behaviour of
sandwich structures hosting a very soft and thick viscoelastic layer. The variable
kinematics approach allows hence to adapt the computational model to the problem
considered.
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Figure 4.15: C-TC: Frequency response function of the cantilever sandwich beam plate with soft-
moderately hard-hard core. Three different thicknesses of the SVDT material core are studied: (a)
c = 1 mm, (b) c = 5 mm, (c) c = 10 mm
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The global and local instability phenomena of multilayered structures under differ-
ent loading conditions are discussed in this chapter. Particular emphasis is placed on
the failure mechanisms of sandwich panels due to compressive stress. The variational
framework of the classical linearised stability analysis for the present variable kinemat-
ics approach is derived in the first section. A first validation is given by addressing
the overall buckling of a symmetric cross-ply laminate under a uniaxial compression
[155]. This case study is also used to assess the influence of von Kàrmàn’s assumptions
on buckling loads prediction. Local instabilities (wrinkles) are addressed in the last
section. This failure mechanism concerns the face sheets of sandwich panels and it
is characterized by a half-wavelength of the order of the panel thickness or smaller.
Therefore, a very fine FE mesh is in general required.
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5.1 Extension of SGUF to geometrical nonlineari-
ties

The general framework for a geometrically nonlinear analysis is first presented, which
will be subsequently simplified to derive the initial “geometrical” stress matrix required
for conducting the classical linearized buckling analysis.

A Total Lagrangean approach is adopted, in which the deformation of the body
is described in terms of Cartesian coordinates xi used to define the geometry in the
initial (undeformed) configuration, Displacements and their gradients are defined with
respect to the Cartesian axis xi. Strains and stresses are thus referred to the initial
configuration and the integrals are accordingly evaluated with respect to the initial
volume V 0 and bounding surfaces S0 = ∂V 0. Neglecting body forces, the PVW in the
finite displacement settings reads [156, Eq. (3.49)]

∫

V 0
σijδEij dV −

∫

S0
σ

F̄iδui dS = 0 (5.1)

where F̄i is the external force vector per unit (undeformed) surface that is prescribed
on the portion S0

σ of S. Displacements ūi are prescribed at the remaining portion of
the boundary S0

u, with S0
u ∪ S0

σ = S and S0
u ∩ S0

σ = ∅. The virtual internal work is
expressed in terms of Green-Lagrange (GL) strains Eij and the work-conjugate second
Piola-Kirchkoff (PK2) stresses σij. The general definition of the GL strain field is [156,
Eq. (3.19)]

Eij = 1
2
(
ui,j + uj,i

)
+ 1

2
(
uk,iuk,j

)
= ϵij + ηij (5.2)

The incremental formulation of the PVW Eq. (5.1) represents the final configuration
Ω as an initial (equilibrium) state ΩI that is perturbed by the configuration Ω′:

∫

V 0

(
σij(I) + σ′

ij

)
δ
(
Eij(I) + E ′

ij

)
dV −

∫

S0
σ

(
F̄i(I) + F̄ ′

i

)
δu′

i dS = 0 (5.3)

The stress state has been decomposed into that pertaining to the initially stressed
state σij(I) and that related to the perturbation σ′

ij. The analysis will be limited to
geometrical nonlinearities with finite displacements, a linear elastic constitutive law is
therefore employed as

σij = Cijkl

(
Ekl (I) + E ′

kl

)
(5.4)
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The GL strains related to the perturbation are obtained as

2E ′
ij = 2

(
Eij(I) + E ′

ij

)
− 2Eij(I) =

=
[
(ui + u′

i) ,j +
(
uj + u′

j

)
,i

]
+
[
(uk + u′

k) ,i (uk + u′
k) ,j

]

−
(
ui,j + uj,i

)
−
(
uk,iuk,j

)
=

=
(
δkj + uk,j

)
u′

k,i
+ (δki + uk,i) u′

k,j
+ u′

k,i
u′

k,j

(5.5)

where δij denotes the Kronecker symbol. These incremental GL strains are conve-
niently decomposed into the contributions that depends linearly and quadratically on
the perturbation displacements:

E ′
ij = eij (u′

l) + ηij (u′
lu

′
m) (5.6)

The virtual variation of the incremental PVW Eq. (5.3) are taken only for the pertur-
bation displacements u′

i because the initial state ΩI is a given (fixed) equilibrium state
for which ∫

V 0
σij(I)δe′

ij dV −
∫

S0
σ

F̄i(I)δu′
i dS = 0 (5.7)

Finally, “small perturbation” are assumed, which allows to linearise the incremental
PVW upon retaining only contributions at most quadratic in u′

i:

�������:(u′
i)

3

δeijCijklηkl �������:(u′
i)

3

δηijCijklekl �������:(u′
i)

4

δηijCijklηkl (5.8)

The incremental form of the PVW eventually reads:
∫

V 0
δη′

ijσij(I) + δe′
ijCijkle

′
kl dV −

∫

S0
σ

F̄ ′
i δu′

i dS = 0 (5.9)

This variational form can be conveniently used for solving static deformation problems
involving large displacements by means of incremental-iterative solution algorithms. In
the following, further assumptions are introduced that limit the scope to a bifurcation
buckling problem.

5.1.1 Linear bifurcation buckling (Euler method)

Within the classical Euler’s method, the geometrical nonlinearity is introduced to pro-
vide the possibility of a system to have multiple equilibrium solutions under a given
load, i.e., to characterise a “bifurcation point”. In this framework, the already intro-
duced “small perturbation” represents the possible equilibrium configuration adjacent
to the “initial” one under the same external actions. Therefore, the external load is
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not incremented (F̄ ′
i ≡ 0), and the incremental PVW furnishes an eigenvalue problem

whose eigenvalue corresponds to the initial stress state at which a (non-zero) pertur-
bation exists: ∫

V 0
δη′

ijσij(I) + δe′
ijCijkle

′
kl dV = 0 (5.10)

The following additional simplifying assumptions are conveniently introduced to
focus on the bifurcation buckling of panels under initial in-plane stresses.

• von Kármán approximation: since the principal buckling mode of in-plane stressed
panels concerns the out-of-plane deflection, it is convenient to retain only the non-
linear contribution of the transverse displacement u3 to the in-plane strains E ′

αβ.
Therefore, the general GL perturbation strains Eq. (5.6) are reduced to

E ′
αβ = e′

αβ(u′
i) + η′

αβ(u′
3

2); and E ′
i3 = ϵ′

i3 = 1
2
(
u′

i,3 + u′
3,i

)
(5.11a)

where

e′
αβ = 1

2
(
u′

α,β
+ u′

β,α

)
+ u3,αu′

3,β
= ϵ′

αβ + u3,αu′
3,β

; η′
αβ = 1

2u′
3,αu′

3,β
(5.11b)

• Undeformed pre-stressed configuration: the approximation is next introduced
that neglects the changes of geometrical configuration that may be induced by
the initial stress state, i.e. only the initial stress is retained. This amounts
to consider ΩI as the stress-free reference configuration Ω0 with, in particular,
u′

3 ≈ 0 in Eq. (5.11). Therefore the nonlinear perturbation strains are further
reduced to

E ′
αβ = 1

2
(
u′

α,β
+ u′

β,α

)
+ 1

2u′
3,αu′

3,β
= ϵ′

αβ + η′
αβ (5.12)

• Nonlinear strains are discarded from the definition of the initial in-plane stresses:

σαβ (I) = CαβklEkl (I) ≈ Cαβklϵkl (I) (5.13)

This assumptions allows to obtain a linear eigenvalue problem since the initial
stress (the eigenvalue) results to be independent of the perturbation.

Finally, the variational framework for the linear bifurcation buckling problem of a
body under an initial in-plane stress has the following expression

∫

V 0
δη′

αβ σαβ (I) + δϵ′
ij Cijkl ϵ′

kl dV = 0 (5.14)

The initial stress is as usual defined as a reference stress state σ0
αβ (I) that is scaled

by a load factor λ. The reference stress state can be defined in different manners as
detailed below.
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1. Prescribed uniform stress: σ0 constant in the whole body

2. Prescribed uniform strain: a uniform strain ϵ0 is prescribed over the whole do-
main, and the corresponding initial stress is defined from Eq. (5.13). It is custom-
ary to refer to a plane stress setting, i.e., σi3 (I) ≡ 0, in order to properly account
for a pure in-plane stress state. Thus the initial in-plane stresses are related to
the initial (infinitesimal) in-plane strains through the reduced stiffness:

σαβ (I) = QP Q ϵQ (I) (5.15)

with P, Q ∈ {1, 2, 6} are the indices of the compact notation corresponding to
the in-plane quantities and QP Q = CP Q − CP 3C3Q/C33.

3. In-plane stresses obtained from a previous FE computation: a linear static com-
putation is at first carried out to obtain the initial stresses from Eq. (5.15), in
which the strains are computed as usual from the nodal solution. It is worth em-
phasising that, depending on the nodal solution, the approximation of Eq. (5.12)
can generate some inaccuracies.

5.1.2 Definition of the initial stress matrix

After introducing suitable approximation for the displacement unknowns within a dis-
cretization scheme, we look for the value λ such that a non-trivial perturbed configu-
ration {U′}T , {0} exists (adjacent equilibrium state) that verifies:

{δU′}T [K + λKσ] {U′} = {0} (5.16)

In this context, the matrix Kσ is known as ”initial stress” matrix. Following Eq. (5.9),
it is defined as

{U′}T [Kσ] {U′} =
∫

V 0
δη′

µτ σµτ(I) dV =
∫

V 0
δη′

P Q̃P QϵQ(I) dV (5.17)

Substituting the definition of the initial membrane stress
∫

V 0
δη′

P Q̃P QϵQ(I) dV =
∫

V 0
δη′

1

(
Q̃11ϵ1(I) + Q̃12ϵ2(I) + Q̃16ϵ6(I)

)
+

+δη′
2

(
Q̃12ϵ1(I) + Q̃22ϵ2(I) + Q̃26ϵ6(I)

)
+

+δη′
6

(
Q̃16ϵ1(I) + Q̃26ϵ2(I) + Q̃66ϵ6(I)

)
dV

(5.18)

The virtual variations of the incremental strain that is quadratic in the perturbation
displacements U ′ read

δη′
1 = δu′

3,1u′
3,1 ; δη′

2 = δu′
3,2u′

3,2 ; δη′
6 = δu′

3,1u′
3,2 + δu′

3,2u′
3,1 (5.19)
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The linear strain of the initial pre-buckling configuration (I) are

ϵ1(I) = u1(I),1 ; ϵ2(I) = u2(I),2 ; ϵ6(I) = u1(I),2 + u2(I),1 (5.20)

Thus, dropping out the subscript (I)

{δU′}T [Kσ] {U} =
∫

V 0
δu′

3,1

(
Q̃11ϵ1 + Q̃12ϵ2 + Q̃16ϵ6

)
u′

3,1+

+δu′
3,2

(
Q̃12ϵ1 + Q̃22ϵ2 + Q̃26ϵ6

)
u′

3,2+

+δu′
3,1

(
Q̃16ϵ1 + Q̃26ϵ2 + Q̃66ϵ6

)
u′

3,2+

+δu′
3,2

(
Q̃16ϵ1 + Q̃26ϵ2 + Q̃66ϵ6

)
u′

3,1 dV =

=
∫

V 0
δu′

3,1

{
Q̃11u1,1 + Q̃12u2,2 + Q̃16u1,2 + Q̃16u2,1

}
u′

3,1+

+δu′
3,2

{
Q̃12u1,1 + Q̃22u2,2 + Q̃26u1,2 + Q̃26u2,1

}
u′

3,2+

+δu′
3,1

{
Q̃16u1,1 + Q̃26u2,2 + Q̃66u1,2 + Q̃66u2,1

}
u′

3,2+

+δu′
3,2

{
Q̃16u1,1 + Q̃26u2,2 + Q̃66u1,2 + Q̃66u2,1

}
u′

3,1 dV

(5.21)

The same through-thickness plate approximation introduced in Section 2.2.3 according
to SGUF notation, is used for the virtual variations of the displacement increments.
The summation index for the virtual variation is µ, that for the unknown is τ . Similar
expressions are hence introduced for the displacements at the initial configuration (I),
for which the summation index γ is used:

ux(I) (x, y, z) =
Nux∑

γux =0
Fγux

(z) ûγux
(x, y)

uy(I) (x, y, z) =
Nuy∑

γuy =0
Fγuy

(z) ûγuy
(x, y)

uz(I) (x, y, z) =
Nuz∑

γuz =0
Fγuz

(z) ûγuz
(x, y)

(5.22)

where the subscript (I) has been dropped out from the in-plane functions ûγ without
loss of clarity. These expressions are substituted into the variational statements and
derivatives as well as integrations with respect to the through-thickness coordinate
x3 = z are carried out explicitly. The through-thickness integrals for the initial stress
matrix [Kσ] have to include the actual displacements uα(I), with α = 1, 2 due to von
Kármán approximation. Note that only in-plane derivatives occur in the initial stress
matrix. Following the notation proposed in Eq. (2.18), the through-thickness integrals
are

Zµur τus γuα
urusut

=
∫ ztop

p

zbot
p

Fµur
Fτus

Fγuα
dz (5.23)
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Note that the integration is intended to be carried out over the thickness hp =
[
zbot

p , ztop
p

]

of each ply separately. The initial stress matrix thus reads

{
δû′

µ

}T [
Kσ

µτ

]
{û′

τ } =
∫

V 0

∂ δû′
zµuz

∂y






Q̃12Z

µuz τuz γux
uzuzux

∂ûxγux

∂x
+ Q̃22Z

µuz τuz γuy
uzuzuy

∂ûyγuy

∂y
+

+Q̃26Z
µuz τuz γux
uzuzux

∂ûxγux

∂y
+ Q̃26Z

µuz τuz γuy
uzuzuy

∂ûyγuy

∂x




∂û′
zτuz

∂y
+

+

Q̃16Z

µuz τuz γux
uzuzux

∂ûxγux

∂x
+ Q̃26Z

µuz τuz γuy
uzuzuy

∂ûyγuy

∂y
+

+Q̃66Z
µuz τuz γux
uzuzux

∂ûxγux

∂y
+ Q̃66Z

µuz τuz γuy
uzuzuy

∂ûyγuy

∂x




∂û′
zτuz

∂x



+

+
∂ δû′

zµuz

∂x






Q̃16Z

µuz τuz γux
uzuzux

∂ûxγux

∂x
+ Q̃26Z

µuz τuz γuy
uzuzuy

∂ûyγuy

∂y
+

+Q̃66Z
µuz τuz γux
uzuzux

∂ûxγux

∂y
+ Q̃66Z

µuz τuz γuy
uzuzuy

∂ûyγuy

∂x




∂û′
zτuz

∂y
+

+

Q̃11Z

µuz τuz γux
uzuzux

∂ûxγux

∂x
+ Q̃12Z

µuz τuz γuy
uzuzuy

∂ûyγuy

∂y
+

+Q̃16Z
µuz τuz γux
uzuzux

∂ûxγux

∂y
+ Q̃16Z

µuz τuz γuy
uzuzuy

∂ûyγuy

∂x




∂û′
zτuz

∂x



 dx dy

(5.24)
The in-plane incremental solution in the FEM framework is expressed as follow:

δû′
µux

(x, y) =
n∑

i=1
Ni (x, y) δUxµux i

; û′
τux

(x, y) =
n∑

j=1
Nj (x, y) Uxτux j

δû′
µuy

(x, y) =
n∑

i=1
Ni (x, y) δUyµuy i

; û′
τuy

(x, y) =
n∑

j=1
Nj (x, y) Uyτuy j

δû′
µuz

(x, y) =
n∑

i=1
Ni (x, y) δUzµuz i

; û′
τuz

(x, y) =
n∑

j=1
Nj (x, y) δUzτuz j

(5.25)

where n is the number of FE nodes. Expansions of the virtual variation and of the
unknown are discriminated through the use of the summation indices i and j respec-
tively. Differentiation and integration with respect to the in-plane coordinates x, y as
they occur in the initial stress matrix are carried out according to following notation:

Idefghn
urusuαijl =

∫

Ω

∂d+eNuri

∂xd∂ye

(
∂h+nNuαl

∂xh∂yn

)
∂f+gNusj

∂xf∂yg
dx dy (d, e, f, g, h, n = 0, 1) (5.26)
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where N is the FE interpolation over the 2D elementary domain. The initial stress
stiffness matrix has finally the following expression:

{
δU ′

µi

}T [
Kσ

µτij

] {
U ′

τj

}
= δU ′

zµuz i




Q̃11Z
µuz τuz γux
uzuzux

I101010
uzuzuxijlUxγux l

+ Q̃12Z
µuz τuz γuy
uzuzuy I101001

uzuzuyijlUyγuy l
+

+Q̃16Z
µuz τuz γux
uzuzux

I101001
uzuzuxijlUxγux l

+ Q̃16Z
µuz τuz γuy
uzuzuy I101010

uzuzuyijlUyγuy l
+

+Q̃12Z
µuz τuz γux
uzuzux

I010110
uzuzuxijlUxγux l

+ Q̃22Z
µuz τuz γuy
uzuzuy I010101

uzuzuyijlUyγuy l
+

+Q̃26Z
µuz τuz γux
uzuzux

I010101
uzuzuxijlUxγux l

+ Q̃26Z
µuz τuz γuy
uzuzuy I010110

uzuzuyijlUyγuy l
+

+Q̃16Z
µuz τuz γux
uzuzux

I011010
uzuzuxijlUxγux l

+ Q̃26Z
µuz τuz γuy
uzuzuy I011001

uzuzuyijlUyγuy l
+

+Q̃66Z
µuz τuz γux
uzuzux

I011001
uzuzuxijlUxγux l

+ Q̃66Z
µuz τuz γuy
uzuzuy I011010

uzuzuyijlUyγuy l
+

+Q̃16Z
µuz τuz γux
uzuzux

I100110
uzuzuxijlUxγux l

+ Q̃26Z
µuz τuz γuy
uzuzuy I100101

uzuzuyijlUyγuy l
+

+Q̃66Z
µuz τuz γux
uzuzux

I100101
uzuzuxijlUxγux l

+ Q̃66Z
µuz τuz γuy
uzuzuy I100110

uzuzuyijlUyγuy l
U ′

zτuz j

(5.27)

Note that no transverse shear appears in the initial stress matrix, therefore the classical
isoparametric approach can be used for the FE approximations. Furthermore, the
summation convention over repeated indices implies that the sum over the expansion
indices γ and l used for the definition of the initial stress must be carried out for each
couple of indices µ, τ and i, j.

5.2 Global buckling of multilayered panels

The failure mechanism which involves the whole structure and referred to as overall
buckling, is investigated in this section. The buckling preload is determined by uni-
formly straining the structure along the longitudinal direction. No explicit pre-buckling
analysis is then required because a uniform strain is directly imposed. A model assess-
ment is provided in order to establish the influence of through-the-thickness approxi-
mation on the critical buckling load prediction.

5.2.1 Uniaxial compression of symmetric cross-ply laminates

A validation and assessment of the proposed hierarchic approach is given in this section
by referring to the buckling problem proposed by Noor [155], and therefore referred to
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as Noor-TestCase (No-TC). It considers a symmetric cross-ply laminate [0◦/90◦/ . . . ]
with an odd number of plies. Two stacking sequences which involve, respectively,
three (Figure 5.1(a)) and nine (Figure 5.1(b)) plies are investigated. For both stacking
sequences, the outer plies are oriented at 0◦. The total thickness of the plies at 0◦ and
90◦ is the same. Based on the number of plies Np and on the total thickness of the
plate H, the relative thickness of plies oriented at 0◦ and 90◦ is calculated as:

h0◦

H
= 1

Np + 1 ; h90◦

H
= 1

Np − 1 (5.28)

The geometric and elastic properties are given in Table 5.1. Two width-to-thickness
ratio are investigated, ranging from moderately-thick (b/H = 10) to thin (b/H = 100)
plate.

ε0xx

ε0xx

x
y

z

b

a

H

a) Np = 3 b) Np = 9

0◦

90◦

0◦

x

z

0◦
90◦
0◦
90◦
0◦
90◦
0◦
90◦
0◦

x

z

Figure 5.1: No-TC: Cross-ply laminate ge-
ometry.

Table 5.1: No-TC: Geometric and mate-
rial data.

a = b = 10 mm
b/H = {10, 100} ⇒ H = {1, 0.1} mm

Material 1
EL [MPa] {3, 10, 20, 30, 40}
ET [MPa] 1

νLT 0.25
νT T 0.25

GLT [MPa] 0.6
GT T [MPa] 0.5

Pre-buckling. The pre-buckling equilibrium configuration is determined by assum-
ing an imposed uniform strain along the x−direction, as shown in Figure 5.1. The
resulting layerwise uniform stress σp

0xx in the initial configuration is calculated accord-
ing to the stiffness coefficient C̃p

11 as:

σp
0xx = C̃p

11ϵ0xx (5.29)

where the imposed initial strain ϵ0xx is assumed to be unitary in the following for
simplicity. All the results presented hereinafter are given in terms of nondimensional
buckling load N̄ , calculated as:

N̄ = Ncr
b2

ET H3 (5.30)
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where Ncr is the critical load, defined as

Ncr = λcrϵ0xx

Np∑

p=1

∫

hp

C̃p
11 dz = Ã11λcrϵ0xx (5.31)

In Eq. (5.31), Ã11 is the membrane stiffness coefficient of the multilayered composite
plate and λcr is the lowest eigenvalue of the linearized buckling problem expressed by
Eq. (5.16).

Buckling. A preliminary analysis is performed to establish the convergence be-
haviour of the present FE solution. The three-ply lamination scheme of Figure 5.1(a)
is considered. The orthotropic ratio is set to EL/ET = 10. All edges of the plate are
simply-supported. The convergence analysis is carried out for both moderately-thick
(b/H = 10) and thin (b/H = 100) plate. Given the symmetry of the problem, only
the quarter plate is modelled and a regular mesh with N = 1, 2, 4, 6, 8, 10 quadratic
elements along the edges of the quarter plate is considered: For the thick plate case
(b/H = 10) the isoparametric 8-node FE are used, while the CL8 FE are employed for
the thin plate case (b/H = 100), in order to avoid transverse shear locking issues.

Table 5.2 compares the nondimensional buckling load obtained with the present
FE approach against those obtained with the Navier’s method for several hierarchical
models. When available, the exact 3D elasticity solution of Noor [155] is also listed
for an additional comparison. Percent differences are reported in the parenthesis with
respect to the Navier solution. Since both present FE and Navier approaches rely on
the same approximations along the thickness direction of the plate, and for this latter
the solution in the 2D domain is found in a closed-form, the percent differences allow
to provide a direct measure of the quality of the in-plane discretization.
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The convergence behaviour of several CUF models is also presented in Table 5.2.
FSDT model involves a shear correction factor of κ = 5/6 to enhance the numeri-
cal prediction of the buckling load. The results for the most refined mesh from both
moderately-thick and thin plates are in perfect agreement with those obtained within
the Navier’s method, demonstrating that the present FE approach allows an accurate
prediction of the buckling behaviour of multilayered composite plate. The quadratic
element is found to converge very quickly since a 2 × 2 mesh leads to a percent differ-
ence less than 1%. The same convergence rate can be appreciated for the thin plate
case, demonstrating the absence of shear locking pathology. The most refined mesh,
involving 10 × 10 quadratic elements, ensure a perfect convergence with respect to
Navier solution and will be therefore used for all results presented hereinafter.

Table 5.3 outlines the influence of the orthotropy ratio EL/ET and the number of
plies on the buckling loads for symmetric cross-ply laminates with a width-to-thickness
ratio equal to 10. The comparison is made in terms of nondimensional buckling load
N̄ as expressed in Eq. (5.30). The value in parentheses indicates the percent difference
between the present FE solution and the exact 3D elasticity given by Noor[155]. A
close agreement is found when the most refined plate model (LD4) is considered. It is
worth noting that a cubic expansion is sufficient to provide a converged solution within
the presented testcase.

The accuracy of low order models is affected by the orthotropy ratio of the plate: as
the ratio EL/ET increases, a higher value of the percent difference is obtained meaning
an overestimation of the buckling load. This trend is somehow reversed once the
convergence of the axiomatic model is achieved (LD3 and LD4 models). Furthermore,
ESL models appears to be sufficient for laminates with a low orthotropy ratios; a LW
description is to be considered for an accurate prediction if the laminate has a high
orthotropy ratio.

Increasing the number of plies results in a laminate which behaves like an isotropic
material, the net effect of the orthotropy ratio becomes therefore less important. As a
results, a quadratic order for the polynomial approximation is found to be adequate to
provide an accurate prediction of the buckling loads.

The influence of different boundary conditions on nondimensional uniaxial buckling
load N̄ = Ncrb

2/ET H3 is investigated in Table 5.4 for both moderately-thick and thin
plates and different orthotropy ratios. The plate is considered simply-supported (S)
along the edges parallel to the y−axis, whereas the edges parallel to the x−axis may be
simply-supported (S), clamped (C) or free (F). Since only the quarter plate is modelled,
symmetry conditions are prescribed at the left and bottom edges, and for this reason
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Table 5.3: No-TC: Nondimensional uniaxial buckling load N̄ = Ncrb2/ET H3 of a simply-supported
symmetric square plate (b/H = 10) loaded in compression with an imposed uniform strain: assessment
of classical models for different orthotropy ratios EL/ET and number of plies Np.

Model EL/ET

3 10 20 30 40

Np = 3
Exact 3D [155] 5.3044 9.7621 15.0191 19.3040 22.8807
LD4 5.3052 (0.015) 9.7629 (0.008) 15.0197 (0.004) 19.3046 (0.003) 22.8812 (0.002)
LD3 5.3052 (0.015) 9.7629 (0.008) 15.0197 (0.004) 19.3046 (0.003) 22.8812 (0.002)
LD2 5.3067 (0.043) 9.7711 (0.092) 15.0464 (0.182) 19.3584 (0.282) 22.9690 (0.386)
LD1 5.3583 (1.016) 9.8531 (0.932) 15.2144 (1.300) 19.6300 (1.689) 23.3474 (2.040)
EDZ4 5.3054 (0.019) 9.7695 (0.076) 15.0468 (0.184) 19.3614 (0.297) 22.9740 (0.408)
ED4 5.3058 (0.026) 9.7706 (0.087) 15.0513 (0.214) 19.3718 (0.351) 22.9923 (0.488)
ED3 5.3061 (0.032) 9.7720 (0.101) 15.0552 (0.240) 19.3786 (0.386) 23.0022 (0.531)
ED2 5.3557 (0.967) 9.9946 (2.382) 15.6459 (4.173) 20.4028 (5.692) 24.4817 (6.997)
ED1 5.6321 (6.178) 10.2038 (4.525) 15.8102 (5.267) 20.5359 (6.382) 24.5912 (7.476)
FSDT (κ = 5/6) 5.3992 (1.787) 9.9654 (2.083) 15.3514 (2.213) 19.7567 (2.345) 23.4529 (2.501)
Np = 9
Exact 3D [155] 5.3352 10.0417 15.9153 20.9614 25.3436
LD4 5.3355 (0.006) 10.0420 (0.003) 15.9156 (0.002) 20.9617 (0.001) 25.3438 (0.001)
LD3 5.3355 (0.006) 10.0420 (0.003) 15.9156 (0.002) 20.9617 (0.001) 25.3438 (0.001)
LD2 5.3355 (0.006) 10.0420 (0.003) 15.9157 (0.003) 20.9619 (0.002) 25.3442 (0.002)
LD1 5.3417 (0.122) 10.0585 (0.167) 15.9588 (0.273) 21.0401 (0.375) 25.4622 (0.468)
EDZ4 5.3357 (0.009) 10.0461 (0.044) 15.9315 (0.102) 20.9939 (0.155) 25.3950 (0.203)
ED4 5.3385 (0.062) 10.0575 (0.157) 15.9622 (0.295) 21.0487 (0.416) 25.4765 (0.524)
ED3 5.3385 (0.062) 10.0579 (0.161) 15.9630 (0.300) 21.0502 (0.424) 25.4786 (0.533)
ED2 5.3811 (0.860) 10.2302 (1.877) 16.4245 (3.199) 21.8793 (4.379) 26.7208 (5.434)
ED1 5.6645 (6.172) 10.4567 (4.133) 16.6136 (4.388) 22.0409 (5.150) 26.8602 (5.984)
FSDT (k=5/6) 5.4127 (1.453) 10.1896 (1.473) 16.1460 (1.450) 21.2651 (1.449) 25.7153 (1.467)

they are omitted from the notation. Two letters are therefore sufficient to uniquely
define the boundary conditions of the plate. For instance, the notation SC will refer
to the quarter plate, simply supported along the right edge and clamped along the top
edge. Particular attention should be paid on the use of symmetry boundary conditions
because only symmetric modal shapes (and corresponding critical loads levels) will
be considered. The buckling mode of the investigated configurations is always the
fundamental bending mode, which is symmetric.

It is observed that the less the structure is constrained, the more the most refined
LD4 solution is quickly recovered. So, for the thin plate case, a quadratic order of the
polynomial expansion provides converged solutions for both SF and SS configurations,
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Table 5.4: No-TC: Nondimensional uniaxial buckling load N̄ = Ncrb2/ET H3 of a three-ply symmet-
ric square plate loaded in compression with an imposed uniform strain: influence of different boundary
conditions for a moderately-thick (b/H = 10) and thin (b/H = 100) plate and varying the orthotropy
ratio EL/ET .

Model EL/ET

3 20 40

Boundary conditions Boundary conditions Boundary conditions

SF SS SC SF SS SC SF SS SC

a/h = 10
LD4 2.1575 5.3052 9.2446 10.9448 15.0197 22.3841 17.6416 22.8812 32.3409
LD3 2.1575 5.3052 9.2447 10.9448 15.0197 22.3845 17.6416 22.8812 32.3417
LD2 2.1577 5.3067 9.2595 10.9464 15.0464 22.6827 17.6460 22.9690 33.0632
LD1 2.1696 5.3583 9.3663 11.0832 15.2144 22.8904 18.0010 23.3474 33.4903
EDZ4 2.1579 5.3054 9.2491 10.9558 15.0468 22.6097 17.6711 22.9740 32.9270
ED4 2.1580 5.3058 9.2505 10.9564 15.0513 22.6664 17.6718 22.9923 33.1022
ED3 2.1582 5.3061 9.2534 10.9592 15.0552 22.6825 17.6782 23.0022 33.1372
ED2 2.1756 5.3557 9.4139 11.4075 15.6459 24.2536 18.8590 24.4817 34.9639
ED1 2.2387 5.6321 9.8844 11.4412 15.8102 24.5099 18.8753 24.5912 37.1383
FSDT (κ = 5/6) 2.1789 5.3992 9.3751 11.0325 15.3514 23.5703 17.7343 23.4529 35.0266
a/h = 100
LD4 2.2889 5.7489 10.6568 14.4829 19.6494 31.6866 28.7411 35.9422 56.3383
LD3 2.2889 5.7489 10.6568 14.4829 19.6495 31.6866 28.7411 35.9422 56.3383
LD2 2.2889 5.7489 10.6571 14.4830 19.6498 31.6943 28.7413 35.9436 56.3676
LD1 2.2983 5.7994 10.7663 14.4940 19.6964 31.7946 28.7595 35.9967 56.4735
EDZ4 2.2890 5.7489 10.6573 14.4834 19.6499 31.6934 28.7428 35.9440 56.3639
ED4 2.2891 5.7489 10.6575 14.4838 19.6499 31.6955 28.7428 35.9443 56.3721
ED3 2.2892 5.7489 10.6577 14.4839 19.6499 31.6960 28.7430 35.9443 56.3726
ED2 2.2894 5.7495 10.6600 14.4916 19.6600 31.7266 28.7732 35.9804 56.4775
ED1 2.3622 6.0718 11.2957 14.5657 19.9422 32.2725 28.8487 36.2580 57.0139
FSDT (κ = 5/6) 2.2892 5.7500 10.6377 14.4854 19.6553 31.6994 28.7463 35.9554 56.4184

whereas the more constrained one (SC) requires the polynomial order to be at least
cubic. This trend is confirmed for the thick plate case also, and irrespective of the
orthotropy ratio. Furthermore, the FSDT model with a shear correction factor κ = 5/6
provides a nearly perfect estimation of the critical buckling load for the SF configuration
and b/h = 100.

All these results are presented for the first time and can be used as a benchmark
for further investigations.
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5.3 Local instabilities of sandwich panels

Local instabilities arising in the composite face sheets of sandwich structures due to
mismatch in geometric and elastic properties of the constituent plies are studied in this
section. Indeed, the higher stiffness of face sheets compared to the core cause them to
carry the whole compressive load the sandwich plate is subjected to. Consequently, an
unstable behaviour may be locally detected in the outer skins while the whole structure
remains stable [83]. In the following, two different loading conditions are investigated:

Uniaxial compression. An uniaxial unitary compression strain is imposed along the
longitudinal direction of the panel. The resulting compression stress is uniform along
the ply thickness and proportional to its stiffness coefficient Cp

11. Both global and local
buckling can occur depending on geometry and relative properties between skins and
core.

Transverse load. A three-point-bending test is performed. The transverse load trig-
gers a non-uniform stress state across the face sheets. In particular, a transverse load
acting downwards causes the top face sheet to be compressed (negative axial stress
σxx) and the bottom one to be in tension (positive axial stress σxx), in the bent con-
figuration. The compressed face sheet may therefore buckle into the core by forming
short-wavelength wrinkles.

5.3.1 Wrinkling of sandwich strut under uniaxial compression

The capability of the present FE to accurately recover both buckling loads and buckled
shapes for a variety of skins and core considerations is demonstrated by referring to the
case study of Ref.[83]. It considers a sandwich panel subjected to uniaxial compression
along the longitudinal direction as shown in Figure 5.2 for which analytical solutions
were found by referring to the CUF LM4 model and Navier’s solution. The case study
will be referred to as D’Ottavio TestCase (DO-TC). Following the work of Ref.[83], the
problem is confined in the (xz) −plane corresponding to the cross section of the plate
by resorting the plane strain assumption.
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ε0xx

ε0xx

x
y

z

b

a
H

f

c

Figure 5.2: DO-TC: Sandwich beam-plate
geometry.

Table 5.5: DO-TC: Geometric and mate-
rial data.

a = 5H; b = 1 mm; H = 50 mm
f = RfH; 2c = H − 2f

Core (c) Facesheet (f )
θ [◦] 0 0

E11 [GPa] χEc
33 70

E22 [GPa] χEc
33 70

E33 [GPa] kEf
11 70

ν 0 0
G12 [GPa] 0.5Ec

11 35
G13 [GPa] 0.5Ec

33 35
G23 [GPa] 0.5Ec

33 35

The geometric and material properties are summarised in Table 5.5. The sandwich
structure has a total thickness H = 50 mm. The length in the longitudinal direction is
assumed to be a = 5H in order to promote the short-wavelength wrinkling instability.
Since the effects in the y−direction are disregarded, the width is set to b = 1 mm.
The three parameters Rf , k and χ are introduced to define the following characteristic
ratios:

• face-to-core thickness ratio: Rf = f

H

• face-to-core stiffness ratio: k = Ef
x

Ec
x

• core orthotropy ratio: χ = Ec
z

Ec
x

Furthermore, in order to avoid spurious initial stresses in directions which are different
from those in which the sandwich panel is strained (x-direction), all Poisson’s ratios
are set to zero. The structure is simply supported along the edges parallel to the
y−direction. The plane strain condition is achieved by constraining the displacement
uy. The boundary conditions applied to the sandwich panel are thus:

uz (x = ±a/2, y, z) = uy (x, y, z) = 0 (5.32)

Convergence study. A preliminary analysis is carried out to establish the conver-
gence behaviour of the present FE. Both linear four-node and quadratic eight-node
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elements are investigated. The in-plane discretization involves N = 32, 64, 128, 256
QC4 or N = 16, 32, 64, 128 CL8 elements along the x−direction whereas only one
element is used along the width direction of the panel.

Table 5.6 lists the critical buckling load Ncr for different combinations of the three
parameters Rf , k and χ. The same formula of Eq. (5.31) is here employed to calculate
the critical buckling load Ncr. In order to establish an ”honest” correlation between
QC4 and CL8 results, the number of nodes is appended, in subscript, to the number of
elements. A displacement-based CUF model with an expansion order of four, namely
LD4, is considered for this convergence analysis. It is worth noting, though, that no
DOFs in y−direction are present, regardless of the model employed, since the plane
strain condition is imposed.

Comparison is made with respect to the buckling load obtained with the Navier
solution and the same LD4 model. The number of halfwaves along the x−direction
and whether the buckled shape is antisymmetric (A) or symmetric (S) are written in
superscript after the computed buckling load. The overall buckling load is character-
ized by only one halfwave and an antisymmetric shape. Local instabilities involve a
higher number of halfwaves and a buckled shape which may be either symmetric or
antisymmetric. For further insight about the definition of antisymmetric and sym-
metric buckled shapes readers may refer to [83]. For the sake of comparison, percent
differences are also reported in parentheses.

The results show that overall buckling occurs for either thick faces (Rf = 0.1)
or a stiff core (k = 0.1). In all other cases, the lowest critical load corresponds to a
wrinkling-type instability, whose wave-length depends on the characteristic ratios of the
sandwich section as well as on the core orthotropy ratio χ. This parameter is further
shown to be important for defining wether the mode is antisymmetric or symmetric:
it appears that the symmetric mode is triggered when the in-plane stiffness of the core
is less than its transverse stiffness.
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It is observed that the overall buckling load is easily grasped by the coarsest mesh,
regardless of interpolation order (linear or quadratic). Nevertheless, a slight error
in buckling load prediction is obtained for the linear element when compared to the
quadratic one. Table 5.6 shows that local instabilities call for a refinement of the in-
plane discretization. It is worth noting that this need for increased number of elements
along the longitudinal direction strongly depends upon the number of halfwaves which
characterize the buckled shape. Moreover, the error in buckling load value comes
along with an erroneous prediction of the buckled shape: For all the configurations
studied in this section, a percent difference of < 0.5% in the buckling load is found to
provide the correct number of wrinkles of the buckling mode. It is worth noting that
the convergence slows down for both linear and quadratic FEs as the axial rigidity of
the core is weakened (i.e., for the case χ = 0.001). As far as linear interpolation is
concerned, four elements appear to be sufficient to properly resolve the half-wave of the
wrinkling mode. Nevertheless, percent differences in the buckling load prediction may
vary from ≈ 1.5% for the thinnest face sheet configuration, up to ≈ 2% and ≈ 10%
for orthotropic cores. On the other hand, the quadratic element looks more suited to
grasp the wrinkling response characterized by short half-wavelength. Indeed, a mesh
involving two elements per halfwave is proven to accurately predict both buckling load
(percent differences < 0.6%) and buckled shape.

Further insight about the convergence behaviour of the presented FE is given in
Figure 5.3 (linear element) and Figure 5.4 (quadratic element). The percent differences
reported in Table 5.6 are plotted, in log-log scale, against the number of nodes in the
mesh. The buckled shape corresponding to the most refined mesh is also shown. All the
conclusions previously drawn are demonstrated by referring to the convergence curves
of Figure 5.3 and Figure 5.4. In addition, the convergence rate for the QC4 element
is found to be quadratic, whereas the CL8 element exhibits a cubic convergence rate.
It appears that the convergence rate of the buckling load is one order faster when
compared to the static response (Section 2.4).
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Model assessement. A model assessment is next performed to investigate the in-
fluence of the plate theory used for the core ply on the critical buckling load. Based on
the previous convergence study, a mesh of 64 × 1 CL8 elements will be used. Within
the present FEM approach, the face sheets are modelled according to FSDT, whilst
the core model is progressively refined by increasing the order of the theory, ranging
from ED12 up to ED77 =ED7. Indeed, FSDT is found to be adequate to represent
the buckling phenomenon in the thin face sheets [46]. On the other hand, according
to the sandwich configuration, the through-thickness approximation in the core must
be enhanced to grasp not only the correct buckling load, but also the correct num-
ber of halfwaves which characterize the buckled configuration [83]. The results are
summarized in Table 5.7, where the buckling loads are reported for different sandwich
configurations. Values in parentheses identify the number of nodal DOFs associated to
the model. Entries in bold indicate converged solutions with respect to the core model,
obtained with the lowest number of nodal DOFs. Two results presented by D’Ottavio
in Ref.[83] are used for comparison:

Solid FEM: A converged FEM solution obtained with the commercial software Ansys.
The problem is defined in the (xz)-plane by modelling the sandwich panel cross section.
A linear four-node element under the plane strain assumption is employed. The FE
mesh involves 256 elements along the longitudinal (x) direction, whereas 4 and 60
elements are used for the face sheets and the core, respectively.

Navier: A LM4 model whose through-the-thickness approximation is enhanced by
subdividing the core ply into 3 computational layer. This model provides a converged
solution in terms of both buckling load and buckled shape.

The Navier solution of the LD4 model of the previous convergence analysis is also
reported as an additional comparison solution. As far as the overall buckling is con-
cerned (for the sandwich configurations defined by k = 0.002, Rf = 0.1, χ = 1.0 and
k = 0.1, Rf = 0.02, χ = 1.0), it is observed that the model ED32 (Nux = 3, Nuz = 2)
guarantees a converged solution, so long as at least a cubic expansion is assumed for
the axial displacement. However, as the axial rigidity of the sandwich panel decreases,
the short half-wavelength of the wrinkles calls for a refinement of the core theory. The
SGUF model FSDT/ED76 has proven able to cope with the local response for all the
sandwich panel configurations here presented, yielding quasi-3D solution while drasti-
cally reducing the number of DOFs with respect to the converged mixed model of Ref.
[83].



5.3 Local instabilities of sandwich panels 105

Table 5.7: DO-TC: Uniaxial buckling loads Ncr [N/mm] of a sandwich panel loaded in compression
with an imposed uniform strain: influence of core model for different sandwich configurations. Bold
values identify the converged solution asking for the lowest number of nodal DOFs.

Model (nDOF) Rf (k = 0.002, χ = 1.0) k (Rf = 0.02, χ = 1.0) χ (Rf = 0.02, k = 0.02)

0.01 0.1 0.001 0.1 0.001 0.1

Ansys [83] 818.8031,A 3528.01,A 945.9313,A 197921,A 2767.623,S 6464.933,A

Navier 3Nc
p LM4 [83] (126) 813.4732,A/S 3528.01,A 945.0213,A 197911,A 2758.024,S 6426.933,A/S

LD4 (39) 840.2531,A 3528.01,A 948.5012,A 197911,A 2773.623,S 6702.930,S

FSDT/ED7 (28) 815.6331,A 3528.21,A 945.4013,A 197921,A 2776.723,S 6461.233,A

FSDT/ED76 (27) 815.6331,A 3528.21,A 945.4013,A 197921,A 2776.823,S 6461.233,A

FSDT/ED75 (26) 818.1931,S 3528.21,A 945.4013,A 197921,A 2776.823,S 6468.133,S

FSDT/ED74 (25) 828.9530,A 3528.21,A 945.4013,A 197921,A 2777.123,S 6476.232,A

FSDT/ED73 (24) 875.9729,S 3528.21,A 949.3713,S 197921,A 2777.123,S 6695.730,S

FSDT/ED72 (23) 1029.126,A 3528.21,A 960.1212,A 197921,A 2807.223,S 7734.625,A

FSDT/ED67 (26) 816.9131,S 3528.21,A 945.5113,A 197921,A 2776.723,S 6467.433,S

FSDT/ED6 (25) 818.1931,S 3528.21,A 945.5113,A 197921,A 2776.823,S 6468.133,S

FSDT/ED65 (24) 818.1931,S 3528.21,A 945.5113,A 197921,A 2776.823,S 6468.133,S

FSDT/ED64 (23) 830.8431,A 3528.21,A 945.5113,A 197921,A 2777.123,S 6486.632,A

FSDT/ED63 (22) 875.9729,S 3528.21,A 949.3713,S 197921,A 2777.123,S 6695.730,S

FSDT/ED62 (21) 1029.326,A 3528.21,A 960.1512,A 197921,A 2807.223,S 7736.925,A

FSDT/ED57 (24) 819.7031,A 3528.21,A 945.5113,A 197921,A 2776.723,S 6481.932,A

FSDT/ED56 (23) 819.7031,A 3528.21,A 945.5113,A 197921,A 2776.823,S 6481.932,A

FSDT/ED5 (22) 825.5831,S 3528.21,A 945.5113,A 197921,A 2776.823,S 6486.632,A

FSDT/ED54 (21) 830.8431,A 3528.21,A 945.5113,A 197921,A 2777.123,S 6486.632,A

FSDT/ED53 (20) 877.9229,S 3528.21,A 949.8813,S 197921,A 2777.123,S 6719.930,S

FSDT/ED52 (19) 1029.326,A 3528.21,A 960.1512,A 197921,A 2807.223,S 7736.925,A

FSDT/ED47 (22) 822.5532,S 3528.21,A 948.6712,A 197921,A 2776.723,S 6586.532,S

FSDT/ED46 (21) 825.1132,A 3528.21,A 948.6712,A 197921,A 2776.823,S 6595.832,S

FSDT/ED45 (20) 825.5831,S 3528.21,A 948.7312,A 197921,A 2776.823,S 6595.832,S

FSDT/ED4 (19) 840.7731,A 3528.21,A 948.7312,A 197921,A 2777.123,S 6719.930,S

FSDT/ED43 (18) 877.9229,S 3528.21,A 949.8813,S 197921,A 2777.123,S 6719.930,S

FSDT/ED42 (17) 1030.526,A 3528.21,A 961.2912,A 197921,A 2807.223,S 7780.725,A

FSDT/ED37 (20) 824.1732,S 3528.21,A 948.6712,A 197921,A 2789.023,S 6880.031,A

FSDT/ED36 (19) 825.1132,A 3528.21,A 948.6712,A 197921,A 2789.123,S 6880.031,A

FSDT/ED35 (18) 827.6432,S 3528.21,A 948.7312,A 197921,A 2789.123,S 6967.530,A

FSDT/ED34 (17) 840.7731,A 3528.21,A 948.7312,A 197921,A 2790.923,S 6967.530,A

FSDT/ED3 (16) 888.4630,S 3528.21,A 960.6013,S 197921,A 2790.923,S 7780.725,A

FSDT/ED32 (15) 1030.526,A 3528.21,A 961.2912,A 197921,A 2807.423,S 7780.725,A

FSDT/ED27 (18) 824.1732,S 3528.31,A 958.5113,S 198771,A 2789.023,S 7182.235,S

FSDT/ED26 (17) 826.3232,A 3528.31,A 958.5113,S 198771,A 2789.123,S 7188.436,A

FSDT/ED25 (16) 827.6432,S 3528.31,A 958.5113,S 198771,A 2789.123,S 7222.934,S

FSDT/ED24 (15) 841.2431,A 3528.31,A 959.9413,A 198771,A 2790.923,S 7381.434,A

FSDT/ED23 (14) 888.4630,S 3528.31,A 960.6013,S 198771,A 2790.923,S 7810.731,S

FSDT/ED2 (13) 1037.427,A 3528.31,A 980.8612,A 198771,A 2807.423,S 9245.21,A

FSDT/ED17 (16) 826.3232,A 3528.31,A 958.8213,S 198771,A 6606.736,S 7186.834,S

FSDT/ED16 (15) 826.3232,A 3528.31,A 958.8313,S 198771,A 6651.435,S 7188.436,A

FSDT/ED15 (14) 841.2431,A 3528.31,A 958.8313,S 198771,A 6651.435,S 7224.634,S

FSDT/ED14 (13) 841.2431,A 3528.31,A 959.9413,A 198771,A 6982.135,A 7381.434,A

FSDT/ED13 (12) 909.3728,S 3528.31,A 960.9413,S 198771,A 7279.933,S 7830.132,S

FSDT/ED12 (11) 1037.427,A 3528.31,A 980.8612,A 198771,A 9032.130,A 9245.21,A
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5.3.2 Sandwich face sheets wrinkling under transverse load

The second example aims to demonstrate the capability of the present computational
approach to compute wrinkling loads for sandwich panels that work in bending. Indeed,
the compression stress state in one of the face sheets may result in local instability
which propagates rapidly to the weak core. If the plate model is sufficiently rich, the
present 2D FEM is capable of grasping this complex failure mechanism. The analysis
refers to the three-point bending test studied by Yuan et al. [115], and therefore
referred to as Yuan-TestCase (Y-TC). It considers a wide sandwich panel made up of
two thin and stiff face sheets of Kevlar and a weak and thick foam core from Evonik
industries, namely ROHACELL® 50. Both face sheet and core materials are assumed
to be isotropic. The geometric and elastic properties are summarized in Table 5.8.

x
y

z

b

a
H

f

c

Figure 5.5: Y-TC: Sandwich beam-plate ge-
ometry.

Table 5.8: Y-TC: Geometric and material
data.

a = 300 mm; b = 60 mm
f = 0.5; 2c = 19.05 mm
H = 20.05 mm

ROHACELL® 50 Kevlar
E [MPa] 52.5 27400

ν 0.25 0.3
G [MPa] 21 10538.5

The sandwich panel is subjected to a concentrated force acting at the centre along
the z−direction of the panel. The typically three-dimensional boundary conditions of
the three-point bending test are reproduced in a very straightforward manner within
the present SGUF modelling: the roller boundary condition can in fact be accurately
reproduced by constraining the transverse displacement at the panel’s bottom surface
and at specific locations along the x−coordinate (see Figure 5.6). Since both loading
and boundary conditions exhibit symmetry about the midspan, only the left half-panel
is modelled. The problem is again studied under the plane strain assumption, which is
obtained by constraining all displacements along y. With reference to the axes defined
in Figure 5.5, the boundary conditions applied to the left half-panel are thus:

uy (x, y, z) = ux (0, y, z) = uz (−a/2, y, −H/2) = 0 (5.33)
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SGUF: FSDT/ED32
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Figure 5.6: Y-TC: Roller boundary condition of the three-point bending test and plane strain
assumption within the present bi-dimensional approach.

and the load is introduced as
∫ b/2

−b/2
Pz (x = 0, y, z = H/2) dy = −P (5.34)

Comparison is made with respect to the results of Ref.[115] along with a solid elasticity
with 2D plane strain FEM solution obtained with the commercial software package
Abaqus. In Ref.[115] authors employ the EHSAPT formulated by Phan [117] which
corresponds to the SGUF model CLT/ED32. For the sake of comparison with the
results presented in Ref.[115], the present FE mesh involves 340 linear elements along
the x−direction of the half-panel and only one element is used along the width direction.
To properly describe the steep gradients in the proximity of the loaded area, the mesh
is refined with a bias factor (bf) of 50 is set towards the symmetry axis, see Figure 5.7.
Through the thickness direction, 4 elements are used for the face sheets and 15 for the
core. The influence of the kinematic model of the core is investigated by considering

x

z

Nx = 340 (bf = 50)

N
c z
=

1
5

N
f z
=

4

x

z

Nx = 340 (bf = 50)

N
c z
=

15
N

f z
=

4

Figure 5.7: Y-TC: FE model in Abaqus.

four different SGUF models. The face sheets are always modelled according to FSDT,
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whilst the core considers either theories retaining the full three-dimensional constitutive
law or reduced stiffness coefficients.

Pre-buckling. The first analysis is about the static response of the sandwich panel
in a three-point bending configuration. Since within the present FE approach large
displacements and non-linear effects are neglected in the definition of the strains, only
results concerning the geometrically linear EHSAPT will be addressed from Ref.[115].
In Figure 5.8 the applied load is plotted against the transverse displacement at the

0

500

1000

1500

2000
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3000

Abaqus
EHSAPT
FSDT/ED7
FSDT/ED 32

FSDT/ED 12

FSDT/FSDT

0 2 4 6 8 10 12 14 16 18 20

P

P
[N

]

uz [mm]

Figure 5.8: Y-TC: Transverse displacement uz at sandwich panel midspan for different values of
transversal load P .

middle point of the top surface. Results from Ref.[115] and the ones obtained with the
commercial software Abaqus are included for comparison. Since all nonlinear terms
are neglected, the displacement is proportional to the applied load. A good agreement
is found between Abaqus and present FE results as long as the kinematics in the
core takes into account the transverse compressibility. On the other hand, a small
discrepancy is observed when referring to the EHSAPT solution.

Figure 5.9 shows the distributions of in-plane stress σxx and transverse normal
stress σzz across the core ply at the symmetry plane (x = 0) and for a load P = −1300
N. Abaqus results are taken here as a reference solution. As expected, the model
retaining a bi-dimensional constitutive law in the core fails to predict the pure three-
dimensional stress state. The EHSAPT assumes for the core a cubic distribution of
the in-plane displacement variables and a quadratic distribution for the transverse
displacement. For this reason, the FSDT/ED32 solution agrees very well with the
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Figure 5.9: Y-TC: Stress distributions in the core at x = 0: a) axial stress, b) transverse normal
stress.

geometrically linear EHSAPT solution reported in Ref.[115] obtained with the linear
form of EHSAPT. Nevertheless, the FSDT/ED32 provides a slightly better prediction of
the stress magnitude at the upper face-core interface when compared to EHSAPT. This
is attributed to the Kirchhoff hypothesis that EHSAPT retains for the behaviour of
the face sheets. The quadratic approximation of the transverse displacement leads to a
linear transverse strain ϵzz across the core. As a result, an erroneous linear distribution
of the transverse normal stress is predicted. In particular, low-order theories and the
linear EHSAPT underestimate the transverse normal stress at the upper face-core
interface. On the other hand, FSDT/ED7 model yields a very accurate solution which
is seen to perfectly match the Abaqus results.

The axial stress distribution across the face sheets is plotted in Figure 5.10 in order
to comprehensively understand the onset of local instabilities. For the sake of clarity,
the face sheets regions are shaded in gray. It is observed that, since the transverse load
acts downwards, the lower face sheet is subjected to a tensile load (σxx > 0). However,
the upper face sheet can experience both tension and compression across the thickness,
depending on the theory used to model the core. This phenomenon can in fact be
explained by the effect of the local indentation, which introduces a local bending of
the top face sheet. So, the FSDT/FSDT model has a top skin that is entirely in
compression since the core is not allowed to stretch. The slight discrepancy between
Abaqus and present FE solutions suggests that a refinement of the theory in the upper
face sheet may be required to cope with the steep gradients induced by the localized
load.
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Figure 5.10: Y-TC: Axial stress distribution across the face sheets thickness at x = 0.

Buckling. The second analysis deals with the buckling response of the sandwich
panel in the three-point bending configuration. By following the derivation presented
in Section 5.1, the previous static analysis with P = −1 N is used to define the initial
stress state.

Table 5.9: Y-TC: First three buckling loads of the sandwich strut in the three-point bending config-
uration.

Mode Abaqus FSDT/ED7 (28) FSDT/ED32 (15) FSDT/ED12 (11) FSDT/FSDT (9)

1 -2264.2 -2248.2 -2359.2 -2431.1 -9.3e+12
2 2326.3 2283.3 2402.6 2519.7 -8.0e+14
3 -2464.3 -2453.0 -2582.5 -2692.5 -2.5e+15

The parentheses identify the number of nodal DOF associated to the model.

The bucking loads for the first 3 modes are listed in Table 5.9. The number of nodal
DOFs is also included to provide a qualitative estimation of the computational effort
associated with each hierarchical model. In order to provide a physical interpretation
of the numerical values of Table 5.9, the buckled shapes of the first 2 modes are shown
in Figure 5.11. At first, it is remarked that the first buckling mode is associated
to a negative eigenvalue, irrespective of the model. Looking at Figure 5.11a, this
mode is shown to correspond to a local instability (wrinkling) of the bottom face
sheet — i.e., this wrinkling mode would occur if the sandwich was loaded with a
force acting upwards. The reason for this is to be found in the local in-plane stress
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distributions obtained from the pre-buckling analysis and reported in Figure 5.10. In
fact, multiplying by -1 the acting load P , the bottom skin would buckle first because
its initial stress would be entirely in compression, whilst the top face sheet is seen
to experience a local bending with in-plane stresses that are partially in tension and
partially in compression. The first positive eigenvalue is associated to the second mode,
which corresponds to the local wrinkling of the top face sheet, as it would have been
expected from the three-point bending configuration. It is worthwhile emphasising that
the wrinkling modes cannot be grasped unless the kinematic model adopted for the
core allows for its compressibility: results for the FSDT/FSDT model are obviously
completely meaningless. Finally, it is noticed the very good agreement between the
most refined FSDT/ED7 SGUF model and the quasi-3D solution provided by Abaqus
in terms of both, the wrinkling load (a difference of less of 0.2% is obtained) and the
modal shape.
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(a) Abaqus. Mode 1: P = −2264.2 N (b) Abaqus. Mode 2: P = 2326.3 N

(c) FSDT/ED7. Mode 1: P = −2248.2 N (d) FSDT/ED7. Mode 2: P = 2283.3 N

(e) FSDT/ED32. Mode 1: P = −2359.2 N (f) FSDT/ED32. Mode 2: P = 2402.6 N

(g) FSDT/ED12. Mode 1: P = −2431.1
N (h) FSDT/ED12. Mode 2: P = 2519.7 N

(i) FSDT/FSDT. Mode 1: P = −9.3e+12
N

(j) FSDT/FSDT. Mode 2: P = −8.0e+14
N

Figure 5.11: Y-TC: Buckled shapes of the sandwich strut in the three-point bending configuration
for the first two buckling modes. Influence of the SGUF model on buckling pattern.



Chapter 6

Conclusions & Outlook

This PhD thesis has extended for the first time the variable kinematics plate mod-
eling approach referred to as Sublaminate Generalized Unified Formulation (SGUF),
to the general Finite Element framework. The idealisation of the composite stack
into sublaminates allows to locally refine the theory to account for shear and trans-
verse strain, whilst low-order theories can be still used in those regions where a three-
dimensional stress state is not expected to occur. Bi-linear four-nodes and quadratic
eight-nodes elements of general quadrilateral shape have been formulated for conven-
tional displacement-based as well as RMVT-based mixed plate models. The adopted
QC4/CL8 interpolations for the transverse shear strain makes the element locking-free
and robust against distorted mesh. A new in-house code has been implemented from
scratch to host the FE development. The proposed FE has been applied in the first
place to investigate the static response of sandwich panels, ranging from global bending
up to local indentation under a concentrated load. The results demonstrate the flexi-
bility of the approach, that allows to adapt the number of DOF (i.e., the computational
effort) depending on the desired accuracy and selecting independently the in-plane mesh
density and the through-thickness model parameters. It has been shown that FE mesh
refinement and dedicated high-order models for selected sublaminates allow to recover
the complex three-dimensional response of the facesheets and the core with a number
of DOF that is far below that required by currently available approaches in commercial
FE packages. The possibility of exactly satisfying the transverse stress BC in RMVT-
based models has been exploited thanks to the independent choice of expansion orders
for displacement and stress fields, thus avoiding spurious oscillations induced by mis-
matches between the kinematic and static field approximations. Enhanced accuracy
could be attained, as exemplarily demonstrated in the free-edge analysis of laminates:
the bi-material interface singularity could be extremely well resolved with stress fields



114 Chapter 6. Conclusions & Outlook

accurately meeting the equilibrium conditions.
Subsequently, the dynamic behaviour of composite sandwich structures hosting one

or more viscoelastic layers has been addressed. The frequency-dependent behaviour of
the viscoelastic layer has been described within the Complex Modulus Approach by
resorting to the Zener-type fractional derivative (FDZ) model and to a more conven-
tional model relying on series expansions (ADF). Iterative procedures have also been
implemented to deal with nonlinear generalized eigenvalue problem. Due to the possi-
bility of optimizing the number of DOF, the SGUF approach proved to be a powerful
tool whenever an iterative resolution algorithm is required for the problem to be solved.
Natural frequencies and resonance peak amplitudes calculated with the proposed FE
have been compared to those reported in the literature, pointing out the robustness and
reliability of the present approach in predicting the dynamic response of a sandwich
structure, irrespective of either the geometric or material properties of the viscoelastic
layer.

The last part of the thesis set the focus on the stability of sandwich panels. Thanks
to the refined models, long-wave (global) as well as short-wave buckling (wrinkling)
have been addressed. The analysis is performed within the framework of classical
linearised stability analysis. Different ways of defining the pre-buckling state have
been implemented: the initial stress matrix can be computed starting from a direct
definition of a strain or stress state (e.g. uniformly strained panels), or more generally
from a preliminary static FE computation. It is worth noting that no post-processing
of the preliminary static step is needed since the invariant fundamental nuclei defining
the initial stress matrix have been directly derived in terms of displacement unknowns.
First, a validation and assessment is given by considering an uniaxial compression
obtained by uniformly straining the cross section of the panel. In this case, the initial
stress is simply evaluated from the constitutive law. The buckling load sensitivity
with respect to the face sheets thickness and material properties of the constituents
has been investigated. The proposed FE has shown quasi-3D accuracy in recovering
both periodic global and local buckling response of symmetric sandwich structures,
irrespective of geometric or constitutive parameters used in the analysis. In particular,
low-order core models retaining at least a quadratic distribution of the transverse
displacement provide an accurate prediction of the overall buckling load. Nevertheless,
they fail in describing the local buckling of the face sheets (wrinkling). Indeed, high-
order core models are seen to be needed whenever local instabilities characterised by
short half-wavelengths occur. Further studies have been conducted to establish the
onset of local instabilities of a sandwich panel in the three-point bending configuration.
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The proposed FE has been proven able to predict the expected non-periodic local
instabilities arising in the proximity of the loaded area due to the compression stress
state experienced by one of the face sheets.

Outlook. Future developments of the proposed FE code will be directed towards
curved shell geometries as well as the solution of non-linear problems. The extension
of the geometric non-linearity to the complete tangent operator and towards the full
non-linear strains will allow to broaden substantially the field application of the de-
veloped computational tool. Material nonlinearities could be included in particular
to analyse delamination. Industrially relevant problems such as skin-core debonding,
ply drop-off and open- as well as filled-hole configurations could be analysed with the
proposed FE tool. Furthermore, it is worthwhile exploring the possibility to couple
the variable kinematics approach offered by the SGUF with the FEM so to adopt
different models in different elements within a global-local modelling strategy. Rele-
vant literature to this topic is already available [157, 158]. Finally, it is important to
underline the practical relevance of the interfaces between theoretical modelling, nu-
merical simulations and experimental evidence. In this sense, some activities directed
towards a dialogue with experiments have been already started and shall be further
developed. The identification of viscoelastic FDZ parameters from experimental FRF
has been attempted within a collaboration with the IST of Lisbon in the framework of
the French-Portuguese Pessoa program. SGUF models have been already challenged
with respect to wrinkling problems of sandwich structures representative of the Elixir
aircraft: this collaboration could be further extended to the FE program presented in
this thesis, upon including e.g. imperfect geometries, material nonlinearities and more
complex loading conditions.



116 Chapter 6. Conclusions & Outlook



Bibliography

[1] B. Castanie, C. Bouvet, and M. Ginot. Review of composite sand-
wich structure in aeronautic applications. Compos. C, 1:100004, 2020.
doi:10.1016/j.jcomc.2020.100004. (cit. on p. xxi).

[2] G. Palomba, G. Epasto, and V. Crupi. Lightweight sandwich structures for
marine applications: a review. Mech. Adv. Mater. Struct., 0(0):1–26, 2021.
doi:10.1080/15376494.2021.1941448. (cit. on p. xxi).

[3] J. M. Davies. Lightweight sandwich construction. Blackwell Science Ltd., Hobo-
ken, NJ, 2008. (cit. on p. xxi).

[4] J. R. Vinson. The Behavior of Sandwich Structures of Isotropic and Composite
Materials. Technomic Publishing Co., 2018. (cit. on pp. xxi and 5).

[5] P. R. Oliveira, M. May, T. H. Panzera, and S. Hiermaier. Bio-based/green
sandwich structures: A review. Thin-Wall. Struct., 177:109426, 2022.
doi:10.1016/j.tws.2022.109426. (cit. on p. xxi).

[6] E. Reissner. On a certain mixed variational theorem and a proposed application.
Int. J. Numer. Meth. Eng, 20(7):1366–1368, 1984. doi:10.1002/nme.1620200714.
(cit. on pp. xxii, 2, and 10).

[7] E. Reissner. On a mixed variational theorem and on shear de-
formable plate theory. Int. J. Numer. Meth. Eng, 23(2):193–198, 1986.
doi:10.1002/nme.1620230203. (cit. on pp. xxii, 2, and 10).

[8] E. Carrera and S. Brischetto. A comparison of various kinematic models for
sandwich shell panels with soft core. J. Compos. Mater., 43(20):2201–2221, 2009.
doi:10.1177/0021998309343716. (cit. on pp. 1 and 32).

[9] I. M. Daniel, E. E. Gdoutos, K. Wang, and J. L. Abot. Failure Modes
of Composite Sandwich Beams. Int. J. Damage Mech., 11(4):309–334, 2002.
doi:10.1106/105678902027247. (cit. on p. 1).

[10] L. A. Carlsson and G. A. Kardomateas. Structural and Failure Mechanics of
Sandwich Composites. Springer, 2011. (cit. on pp. 1 and 5).

[11] V. Birman and G. A. Kardomateas. Review of current trends in research

117

http://dx.doi.org/10.1016/j.jcomc.2020.100004
http://dx.doi.org/10.1080/15376494.2021.1941448
http://dx.doi.org/10.1016/j.tws.2022.109426
http://dx.doi.org/10.1002/nme.1620200714
http://dx.doi.org/10.1002/nme.1620230203
http://dx.doi.org/10.1177/0021998309343716
http://dx.doi.org/10.1106/105678902027247


118 Bibliography

and applications of sandwich structures. Compos. B: Eng., 142:221–240, 2018.
doi:10.1016/j.compositesb.2018.01.027. (cit. on p. 1).

[12] A. D. Hasanyan and A. M. Waas. Micropolar Constitutive Relations for Cellular
Solids. J. Appl. Mech., 83(4), 2016. doi:10.1115/1.4032115. (cit. on p. 1).

[13] A. T. Karttunen, J. N. Reddy, and J. Romanoff. Two-scale micropolar plate
model for web-core sandwich panels. Int. J. Appl. Mech., 170:82–94, 2019.
doi:10.1016/j.ijsolstr.2019.04.026. (cit. on p. 1).

[14] F. Tornabene, M. Viscoti, R. Dimitri, and M. A. Aiello. Higher order formulations
for doubly-curved shell structures with a honeycomb core. Thin-Wall. Struct.,
164:107789, 2021. doi:10.1016/j.tws.2021.107789. (cit. on p. 1).

[15] W. S. Burton and A. K. Noor. Assessment of computational models for sandwich
panels and shells. Comput. Meth. in Appl. Mech. Eng., 124(1):125–151, 1995.
doi:10.1016/0045-7825(94)00750-H. (cit. on pp. 1 and 37).

[16] A. K. Noor, W. S. Burton, and C. W. Bert. Computational Models for Sandwich
Panels and Shells. Appl. Mech. Rev., 49(3):155–199, 1996. doi:10.1115/1.3101923.
(cit. on p. 1).

[17] H. Hu, S. Belouettar, M. Potier-Ferry, and E. M. Daya. Review and assessment of
various theories for modeling sandwich composites. Compos. Struct., 84(3):282–
292, 2008. doi:10.1016/j.compstruct.2007.08.007. (cit. on pp. 1 and 4).

[18] I. Kreja. A literature review on computational models for laminated composite
and sandwich panels. Cent. Eur. J. Engng., 1:59–80, 2011. doi:10.2478/s13531-
011-0005-x. (cit. on p. 1).

[19] A. S. Sayyad and Y. M. Ghugal. On the free vibration analysis of laminated com-
posite and sandwich plates: A review of recent literature with some numerical re-
sults. Compos. Struct., 129:177–201, 2015. doi:10.1016/j.compstruct.2015.04.007.
(cit. on p. 1).

[20] M. F. Caliri, A. J. M. Ferreira, and V. Tita. A review on plate and shell theories
for laminated and sandwich structures highlighting the Finite Element Method.
Compos. Struct., 156:63–77, 2016. doi:10.1016/j.compstruct.2016.02.036. (cit. on
p. 1).

[21] S. Irfan and F. Siddiqui. A review of recent advancements in finite ele-
ment formulation for sandwich plates. Chinese J. Aero., 32(4):785–798, 2019.
doi:10.1016/j.cja.2018.11.011. (cit. on p. 1).

[22] F. Siddiqui and G. Kardomateas. Extended higher-order sandwich panel theory
for plates with arbitrary aspect ratios. J. Mech. Mater. Struct., 14(4):449–459,
2019. doi:10.2140/jomms.2019.14.449. (cit. on p. 1).

http://dx.doi.org/10.1016/j.compositesb.2018.01.027
http://dx.doi.org/10.1115/1.4032115
http://dx.doi.org/10.1016/j.ijsolstr.2019.04.026
http://dx.doi.org/10.1016/j.tws.2021.107789
http://dx.doi.org/10.1016/0045-7825(94)00750-H
http://dx.doi.org/10.1115/1.3101923
http://dx.doi.org/10.1016/j.compstruct.2007.08.007
http://dx.doi.org/10.2478/s13531-011-0005-x
http://dx.doi.org/10.2478/s13531-011-0005-x
http://dx.doi.org/10.1016/j.compstruct.2015.04.007
http://dx.doi.org/10.1016/j.compstruct.2016.02.036
http://dx.doi.org/10.1016/j.cja.2018.11.011
http://dx.doi.org/10.2140/jomms.2019.14.449


Bibliography 119

[23] F. Siddiqui and G. A. Kardomateas. Nonlinear static analysis of plates with
arbitrary aspect ratios using Extended Higher Order Sandwich Panel Theory.
Int. J. Non-Lin. Mech., 132:103701, 2021. doi:10.1016/j.ijnonlinmec.2021.103701.
(cit. on p. 1).

[24] V. L. Berdichevskii. Variational-asymptotic method of constructing a the-
ory of shells. J. Appl. Math. Mech., 43(4):711–736, 1979. doi:10.1016/0021-
8928(79)90157-6. (cit. on p. 2).

[25] V. L. Berdichevskii. An asymptotic theory of sandwich plates. Int. J. Eng. Sci,
48(3):383–404, 2010. doi:10.1016/j.ijengsci.2009.09.001. (cit. on p. 2).

[26] S. Lee, C.-Y. Lee, and D. H. Hodges. On the mechanics of composite sandwich
plates with three-dimensional stress recovery. Int. J. Eng. Sci, 157:103406, 2020.
doi:10.1016/j.ijengsci.2020.103406. (cit. on p. 2).

[27] E. Carrera. Theories and Finite Elements for Multilayered Plates and Shells:A
Unified compact formulation with numerical assessment and benchmarking. Arch.
Comput. Meth. Eng., 10(3):215–296, 2003. doi:10.1007/BF02736224. (cit. on p.
2).

[28] E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino. Finite element analysis of
structures through unified formulation. John Wiley & Sons, Ltd, 2014. (cit. on
p. 2).

[29] E. Carrera, G. Giunta, and M. Petrolo. Beam Structures: Classical and Advanced
Theories. John Wiley & Sons, 2011. (cit. on p. 2).

[30] L. Demasi. ∞3 Hierarchy plate theories for thick and thin composite plates:
The generalized unified formulation. Compos. Struct., 84(3):256–270, 2008.
doi:10.1016/j.compstruct.2007.08.004. (cit. on p. 2).

[31] L. Demasi. ∞6 Mixed plate theories based on the Generalized Unified For-
mulation. Part I: Governing equations. Compos. Struct., 87(1):1–11, 2009.
doi:10.1016/j.compstruct.2008.07.013. (cit. on p. 2).

[32] L. Demasi. Partially Layer Wise advanced Zig Zag and HSDT models
based on the Generalized Unified Formulation. Eng. Struct., 53:63–91, 2013.
doi:10.1016/j.engstruct.2013.01.021. (cit. on p. 2).

[33] E. Carrera. C0
z requirements—models for the two dimensional analysis of mul-

tilayered structures. Compos. Struct., 37(3):373–383, 1997. doi:10.1016/S0263-
8223(98)80005-6. (cit. on p. 2).

[34] L. Demasi. 2D, Quasi 3D and 3D Exact Solutions for Bending of Thick
and Thin Sandwich Plates. J. Sandwich Struct. Mater., 10(4):271–310, 2008.
doi:10.1177/1099636208089311. (cit. on p. 2).

http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103701
http://dx.doi.org/10.1016/0021-8928(79)90157-6
http://dx.doi.org/10.1016/0021-8928(79)90157-6
http://dx.doi.org/10.1016/j.ijengsci.2009.09.001
http://dx.doi.org/10.1016/j.ijengsci.2020.103406
http://dx.doi.org/10.1007/BF02736224
http://dx.doi.org/10.1016/j.compstruct.2007.08.004
http://dx.doi.org/10.1016/j.compstruct.2008.07.013
http://dx.doi.org/10.1016/j.engstruct.2013.01.021
http://dx.doi.org/10.1016/S0263-8223(98)80005-6
http://dx.doi.org/10.1016/S0263-8223(98)80005-6
http://dx.doi.org/10.1177/1099636208089311


120 Bibliography

[35] E. Carrera, A. Garcia de Miguel, G. A. Fiordilino, and A. Pagani. Global/local
analysis of free-edge stresses in composite laminates. In AIAA Scitech 2019 Fo-
rum, AIAA SciTech Forum. American Institute of Aeronautics and Astronautics,
2019. (cit. on p. 2).

[36] E. Carrera and M. Petrolo. Guidelines and Recommendations to Construct
Theories for Metallic and Composite Plates. AIAA J., 48(12):2852–2866, 2010.
doi:10.2514/1.J050316. (cit. on p. 2).

[37] E. Carrera and M. Petrolo. On the Effectiveness of Higher-Order Terms in Refined
Beam Theories. J. App. Mech., 78(2), 2010. doi:10.1115/1.4002207. (cit. on p.
2).

[38] E. Carrera, F. Miglioretti, and M. Petrolo. Guidelines and Recommendations on
the Use of Higher Order Finite Elements for Bending Analysis of Plates. Int. J.
Comput. Methods Eng., 12(6):303–324, 2011. doi:10.1080/15502287.2011.615792.
(cit. on p. 2).

[39] L. Demasi and W. Yu. Assess the Accuracy of the Variational Asymptotic Plate
and Shell Analysis Using the Generalized Unified Formulation. Mech. Adv. Mater.
Struct., 20(3):227–241, 2013. doi:10.1080/15376494.2011.584150. (cit. on p. 2).

[40] D. S. Mashat, E. Carrera, A. M. Zenkour, and S. A. Al Khateeb. Ax-
iomatic/asymptotic evaluation of multilayered plate theories by using sin-
gle and multi-points error criteria. Compos. Struct., 106:393–406, 2013.
doi:10.1016/j.compstruct.2013.05.047. (cit. on p. 2).

[41] M. Petrolo, M. Cinefra, A. Lamberti, and E. Carrera. Evaluation of mixed the-
ories for laminated plates through the axiomatic/asymptotic method. Compos.
B: Eng., 76:260–272, 2015. doi:10.1016/j.compositesb.2015.02.027. (cit. on p. 2).

[42] M. Petrolo and A. Lamberti. Axiomatic/asymptotic analysis of refined layer-
wise theories for composite and sandwich plates. Mech. Adv. Mater. Struct.,
23(1):28–42, 2016. doi:10.1080/15376494.2014.924607. (cit. on p. 2).

[43] M. D’Ottavio. A Sublaminate Generalized Unified Formulation for the
analysis of composite structures. Compos. Struct., 142:187–199, 2016.
doi:10.1016/j.compstruct.2016.01.087. (cit. on pp. 2, 8, 11, 12, and 13).

[44] M. Botshekanan Dehkordi, M. Cinefra, S. M. R. Khalili, and E. Carrera. Mixed
LW/ESL models for the analysis of sandwich plates with composite faces. Com-
pos. Struct., 98:330–339, 2013. doi:10.1016/j.compstruct.2012.11.016. (cit. on p.
2).

[45] M. D’Ottavio, L. Dozio, R. Vescovini, and O. Polit. Bending analysis of composite
laminated and sandwich structures using sublaminate variable-kinematic Ritz

http://dx.doi.org/10.2514/1.J050316
http://dx.doi.org/10.1115/1.4002207
http://dx.doi.org/10.1080/15502287.2011.615792
http://dx.doi.org/10.1080/15376494.2011.584150
http://dx.doi.org/10.1016/j.compstruct.2013.05.047
http://dx.doi.org/10.1016/j.compositesb.2015.02.027
http://dx.doi.org/10.1080/15376494.2014.924607
http://dx.doi.org/10.1016/j.compstruct.2016.01.087
http://dx.doi.org/10.1016/j.compstruct.2012.11.016


Bibliography 121

models. Compos. Struct., 155:45–62, 2016. doi:10.1016/j.compstruct.2016.07.036.
(cit. on pp. 3 and 12).

[46] R. Vescovini, M. D’Ottavio, L. Dozio, and O. Polit. Buckling and wrin-
kling of anisotropic sandwich plates. Int. J. Eng. Sci, 130:136–156, 2018.
doi:10.1016/j.ijengsci.2018.05.010. (cit. on pp. 3, 6, and 100).

[47] M. D’Ottavio, L. Dozio, R. Vescovini, and O. Polit. The Ritz – Sublaminate
Generalized Unified Formulation approach for piezoelectric composite plates. Int.
J. Smart Nano Mater., 9(1):34–55, 2018. doi:10.1080/19475411.2017.1421275.
(cit. on p. 3).

[48] A. Gorgeri, R. Vescovini, and L. Dozio. Analysis of multiple-core sandwich cylin-
drical shells using a sublaminate formulation. Compos. Struct., 225:111067, 2019.
doi:10.1016/j.compstruct.2019.111067. (cit. on pp. 3 and 65).

[49] M. D’Ottavio, A. Krasnobrizha, E. Valot, O. Polit, R. Vescovini, and L. Dozio.
Dynamic response of viscoelastic multiple-core sandwich structures. J. Sound
Vibr., 491:115753, 2021. doi:10.1016/j.jsv.2020.115753. (cit. on pp. 3, 5, 54, 59,
60, 64, 65, 67, 68, 69, 70, and 72).

[50] M. D. Rao. Recent applications of viscoelastic damping for noise control in
automobiles and commercial airplanes. J. Sound Vib., 262(3):457–474, 2003.
doi:10.1016/S0022-460X(03)00106-8. (cit. on p. 3).

[51] X. Q. Zhou, D. Y. Yu, X. Y. Shao, S. Q. Zhang, and S. Wang. Research and
applications of viscoelastic vibration damping materials: A review. Compos.
Struct., 136:460–480, 2016. doi:10.1016/j.compstruct.2015.10.014. (cit. on p. 3).

[52] B. M. Shafer. An overview of constrained-layer damping theory and application.
Proc. Meet. Acoust., 19(1):065023, 2013. doi:10.1121/1.4800606. (cit. on p. 3).

[53] C. M. A. Vasques, R. Moreira, and J. Rodrigues. Viscoelastic Damping Tech-
nologies–Part I: Modeling and Finite Element Implementation. J. Adv. Research
Mech. Engng., 1, 2010. (cit. on p. 3).

[54] D. J. McTavish and P. C. Hughes. Modeling of Linear Viscoelastic Space Struc-
tures. J. Vib. Acoust., 115(1):103–110, 1993. doi:10.1115/1.2930302. (cit. on p.
3).

[55] G. A. Lesieutre and E. Bianchini. Time Domain Modeling of Linear Viscoelastic-
ity Using Anelastic Displacement Fields. J. Vibr. Acoust., 117(4):424–430, 1995.
doi:10.1115/1.2874474. (cit. on pp. 3, 56, and 69).

[56] R. L. Bagley and P. J. Torvik. A Theoretical Basis for the Application
of Fractional Calculus to Viscoelasticity. J. Rheol., 27(3):201–210, 1983.
doi:10.1122/1.549724. (cit. on p. 3).

http://dx.doi.org/10.1016/j.compstruct.2016.07.036
http://dx.doi.org/10.1016/j.ijengsci.2018.05.010
http://dx.doi.org/10.1080/19475411.2017.1421275
http://dx.doi.org/10.1016/j.compstruct.2019.111067
http://dx.doi.org/10.1016/j.jsv.2020.115753
http://dx.doi.org/10.1016/S0022-460X(03)00106-8
http://dx.doi.org/10.1016/j.compstruct.2015.10.014
http://dx.doi.org/10.1121/1.4800606
http://dx.doi.org/10.1115/1.2930302
http://dx.doi.org/10.1115/1.2874474
http://dx.doi.org/10.1122/1.549724


122 Bibliography

[57] R. C. Koeller. Applications of Fractional Calculus to the Theory of Viscoelas-
ticity. J. App. Mech., 51(2):299–307, 1984. doi:10.1115/1.3167616. (cit. on p.
3).

[58] R. L. Bagley and P. J. Torvik. On the Fractional Calculus Model of Viscoelastic
Behavior. J. Rheol., 30(1):133–155, 1986. doi:10.1122/1.549887. (cit. on p. 3).

[59] T. Pritz. Analysis of four-parameter fractional derivative model of real solid
materials. J. Sound Vib., 195(1):103–115, 1996. doi:10.1006/jsvi.1996.0406. (cit.
on pp. 4 and 56).

[60] T. Pritz. Five-parameter fractional derivative model for polymeric damping mate-
rials. J. Sound Vib., 265(5):935–952, 2003. doi:10.1016/S0022-460X(02)01530-4.
(cit. on p. 4).

[61] Y. P. Lu, J. W. Killian, and G. C. Everstine. Vibrations of three layered damped
sandwich plate composites. J. Sound Vib., 64(1):63–71, 1979. doi:10.1016/0022-
460X(79)90572-8. (cit. on p. 4).

[62] M. L. Soni and F. K. Bogner. Finite Element Vibration Analysis of Damped
Structures. AIAA J., 20(5):700–707, 1982. doi:10.2514/3.51127. (cit. on p. 4).

[63] C. D. Johnson and D. A. Kienholz. Finite Element Prediction of Damping in
Structures with Constrained Viscoelastic Layers. AIAA J., 20(9):1284–1290,
1982. doi:10.2514/3.51190. (cit. on pp. 4, 54, and 59).

[64] R. Moreira and J. Rodrigues. Constrained Damping Layer Treat-
ments: Finite Element Modeling. J. Vib. Control, 10:575–595, 2004.
doi:10.1177/1077546304039060. (cit. on p. 4).

[65] F. S. Barbosa and M. C. R. Farage. A finite element model for sandwich viscoelas-
tic beams: Experimental and numerical assessment. J. Sound Vib., 317(1):91–
111, 2008. doi:10.1016/j.jsv.2008.03.013. (cit. on p. 4).
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Appendix A

Constitutive arrays of a lamina

A.1 Classic form of Hooke’s law

Referring to the contracted (Voigt-Kelvin) notation, the generalised Hook’s law for an
anisotropic material in the orthogonal Cartesian coordinate system (x1, x2, x3) reads:

σi = C̄ijϵj (A.1)

where σi and ϵj are the stress and strain components respectively and C̄ij the stiffness
coefficients. For a general hyperelastic material, i.e., a material for which there is a
strain energy density function U0 (ϵi) such that σi = ∂U0/∂ϵi = C̄ijϵj, the stiffness
matrix C̄ has 21 independent elastic coefficients since C̄ij = C̄ji, hence Eq. (A.1) can
be written as: 




σ1

σ2

σ3

σ4

σ5

σ6





=




C̄11 C̄12 C̄13 C̄14 C̄15 C̄16

C̄22 C̄23 C̄24 C̄25 C̄26

C̄33 C̄34 C̄35 C̄36

C̄44 C̄45 C̄46

sym C̄55 C̄56

C̄66








ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6





(A.2)

If the material has three mutually orthogonal planes of symmetry (orthotropic material)
the number of material parameters is reduced to 9 :





σ1

σ2

σ3

σ4

σ5

σ6





=




C̄11 C̄12 C̄13

C̄22 C̄23

C̄33

C̄44

sym C̄55

C̄66








ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6





(A.3)
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The stiffness coefficients C̄ij are evaluated from the engineering parameters as follows:

C̄11 = 1 − ν23ν23

E2E3∆
, C̄12 = ν21 + ν31ν23

E2E3∆
= ν12 + ν32ν13

E1E3∆

C̄13 = ν31 + ν21ν32

E2E3∆
= ν13 − ν12ν23

E1E2∆

C̄22 = 1 − ν13ν31

E1E3∆
, C̄23 = ν32 + ν12ν31

E1E3∆
= ν23 + ν21ν13

E1E3∆

C̄33 = 1 − ν12ν21

E1E2∆
, C̄44 = G23, C̄55 = G31, C̄66 = G12

∆ = 1 − ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13

E1E2E3

(A.4)

where Ei is the Young’s modulus in the i direction, Gij is the shear modulus in the
i − j plane, and νij is the Poisson’s ratio of the strain in the j direction to the strain
in the i direction due to an applied stress in the i direction.

A unidirectional fiber-reinforced lamina can be treated as an orthotropic material
by assuming the material symmetry planes to be parallel and transverse to the fiber
direction. However, in the most common case, the layer-specific orientation of the
lamina doesn’t coincide with the laminate coordinate system the lamina belongs to,
except for the transverse normal direction to the lamina (z ≡ x3). Thus, it is necessary
to introduce the transformation relations to map the stresses and strains from the
material (m) to the laminate (l) frame. By referring to Figure A.1, where θp indicates
the fiber orientation of layer p w.r.t. the material coordinate, the transformation
matrices for a rotation about a transverse normal to the lamina read:

x

z ≡ x3

y

x1

x2

θp

θp

Figure A.1: Material (x1, x2, x3) and laminate (x, y, z) coordinate system of a lamina
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Tp
σm→σl

= Tp =




cos2 θp sin2 θp 0 0 0 − sin 2θp

sin2 θp cos2 θp 0 0 0 sin 2θp

0 0 1 0 0 0
0 0 0 cos θp sin θp 0
0 0 0 − sin θp cos θp 0

sin θp cos θp − sin θp cos θp 0 0 0 cos2 θp − sin2 θp




(A.5)

Tp
ϵm→ϵl

= TpT =




cos2 θp sin2 θp 0 0 0 sin θp cos θp

sin2 θp cos2 θp 0 0 0 − sin θp cos θp

0 0 1 0 0 0
0 0 0 cos θp − sin θp 0
0 0 0 sin θp cos θp 0

− sin 2θp sin 2θp 0 0 0 cos2 θp − sin2 θp




(A.6)

where T is the transposition operator. The material stiffness matrix in the laminate
frame, for an orthotropic lamina, is given by:

C̃p = TpC̄pTpT =




C̃11 C̃12 C̃13 0 0 C̃16

C̃22 C̃23 0 0 C̃26

C̃33 0 0 C̃36

C̃44 C̃45 0
sym C̃55 0

C̃66




p

(A.7)

The strain and stress fields are split into their in-plane (subscript Ω), transverse normal
(subscript n) and transverse shear (subscript s) components as

ϵΩ =
[
ϵxx ϵyy 2ϵxy

]T
; ϵn = ϵzz; ϵs =

[
2ϵyz 2ϵxz

]T

σΩ =
[
σxx σyy σxy

]T
; σn = σzz; σs =

[
σxz σyz

]T (A.8)

Finally, the constitutive link for each physical ply p is expressed in matrix form in the
laminate frame (x, y, z) as




σΩ

σn

σs




p

=




C̃ΩΩ C̃Ωn 0
C̃nΩ C̃nn 0

0 0 C̃ss




p 


ϵΩ

ϵn

ϵs




p

(A.9)
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where

C̃p

ΩΩ =




C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66




p

; C̃p

Ωn =




C̃13

C̃23

C̃63




p

; C̃p
nn = C̃p

33;

C̃nΩ =
[
C̃13 C̃23 C̃p

63

]p
; C̃p

ss =

C̃44 C̃45

C̃45 C̃55




p

(A.10)



Appendix B

FE Approximations and arrays

B.1 QC4/CL8 interpolation schemes

The modified field-compatible shape functions N rU
i (with U ∈ {ux, uy, uz} and r ∈

{x, y}) used to interpolate the z− constant part of the transverse shear strains γ0
xz and

γ0
yz in Eq. (2.19) are:



N x

i

N y
i




U

= J−1
(GP )




N ξ
i

N η
i




U

=

j11 j12

j21 j22




(GP ) 


N ξ
i

N η
i




U

(B.1)

where j
(GP )
αβ (with α, β ∈ {1, 2}) are the inverse terms of Jacobian matrix at Gauss

point.

N ξU
i =

2∑

I=1
CξI

(ξ, η) γξU
i (ξI , ηI)

N ηU
i =

2∑

J=1
CηJ

(ξ, η) γηU
i (ξJ , ηJ)

(B.2)

where γξU
i and γηU

i are the z−constant reduced transverse shear strains evaluated at ty-
ing points (see Figure B.1 and Figure B.2). The explicit expressions of the interpolation
functions are

• QC4 interpolation functions

Cξ1 (ξ, η) = 1 − η

2 ; Cξ2 (ξ, η) = 1 + η

2

Cη1 (ξ, η) = 1 − ξ

2 ; Cη2 (ξ, η) = 1 + ξ

2

(B.3)
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• CL8 interpolation functions

Cξ1 (ξ, η) = −1
4
(
η +

√
3ξ
)

(1 − η) ; Cη1 (ξ, η) = −1
4
(
ξ +

√
3η
)

(1 − ξ)

Cξ2 (ξ, η) = −1
4
(
η −

√
3ξ
)

(1 − η) ; Cη2 (ξ, η) = −1
4
(
ξ −

√
3η
)

(1 − ξ)

Cξ3 (ξ, η) = 1
4
(
η +

√
3ξ
)

(1 + η) ; Cη3 (ξ, η) = 1
4
(
ξ +

√
3η
)

(1 + ξ)

Cξ4 (ξ, η) = 1
4
(
η −

√
3ξ
)

(1 + η) ; Cη4 (ξ, η) = 1
4
(
ξ −

√
3η
)

(1 + ξ)

Cξ5 (ξ, η) = (1 − η2) ; Cη5 (ξ, η) = (1 − ξ2)

(B.4)

η

ξ

1 2

34

I1

I2

J1 J2

Nodes

Tying points for γ0ξ

Tying points for γ0η

Figure B.1: Tying points for the QC4 iterpolation functions.

η

ξ

1/
√
31/

√
3

1 2

34

5

6

7

8

I3

I2

I4

I1

I5

η

ξ

1/
√
3

1/
√
3

1 2

34

5

6

7

8

J3J4

J2J1

J5

Nodes

Tying points for γ0ξ

Tying points for γ0η

Figure B.2: Tying points for the CL8 iterpolation functions.

Using Einstein notation, the transverse shear strains components in Eq. (B.2) are
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written as
γξux

i (ξI , ηI) = Ni (ξI , ηI) J
(I)
11 (ξI , ηI) + NRT

i,ξ (ξI , ηI)

γ
ξuy

i (ξI , ηI) = Ni (ξI , ηI) J
(I)
12 (ξI , ηI) + NST

i,ξ (ξI , ηI)

γξuz
i (ξI , ηI) = Ni,ξ (ξI , ηI)

γηux
i (ξJ , ηJ) = Ni (ξJ , ηJ) J

(J)
21 (ξJ , ηJ) + NRT

i,η (ξJ , ηJ)

γ
ηuy

i (ξJ , ηJ) = Ni (ξJ , ηJ) J
(J)
22 (ξJ , ηJ) + NST

i,η (ξJ , ηJ)

γηuz
i (ξJ , ηJ) = Ni,η (ξJ , ηJ)

(B.5)

where J
(t)
αβ (with t ∈ {1, 2}) are the terms of Jacobian matrix evaluated at tying point

t. The functions NRT
i and NST

i for the four-node element are given as:

• four-node finite element

NRT
i| i=1,2

(ξ, η) = 1
8
[
(−1)i J

(i)
11 ξ

(
1 − ξ2

)
(1 + ηiη) − J

(i)
21 (1 + ξiξ) η

(
1 − η2

)]

NRT
i| i=3,4

(ξ, η) = 1
8
[
(−1)i+1 J

(i)
11 ξ

(
1 − ξ2

)
(1 + ηiη) + J

(i)
21 (1 + ξiξ) η

(
1 − η2

)]

NST
i| i=1,2

(ξ, η) = 1
8
[
(−1)i J

(i)
12 ξ

(
1 − ξ2

)
(1 + ηiη) − J

(i)
22 (1 + ξiξ) η

(
1 − η2

)]

NST
i| i=3,4

(ξ, η) = 1
8
[
(−1)i+1 J

(i)
12 ξ

(
1 − ξ2

)
(1 + ηiη) + J

(i)
22 (1 + ξiξ) η

(
1 − η2

)]

(B.6)

• eight-node finite element

NRT
i| i=1,2,3,4

(ξ, η) = 1
12
[
−J

(i)
11 ξ

(
ξ2 − 1

)
(1 + ηiη) − J

(i)
21 (1 + ξiξ) η

(
η2 − 1

)]

NRT
i| i=5,7

(ξ, η) = 1
6
[
J

(i)
11 ξ

(
ξ2 − 1

)
(1 + ηiη)

]

NRT
i| i=6,8

(ξ, η) = 1
6
[
J

(i)
21 (1 + ξiξ) η

(
η2 − 1

)]

NST
i| i=1,2,3,4

(ξ, η) = 1
12
[
−J

(i)
12 ξ

(
ξ2 − 1

)
(1 + ηiη) − J

(i)
22 (1 + ξiξ) η

(
η2 − 1

)]

NST
i| i=5,7

(ξ, η) = 1
6
[
J

(i)
12 ξ

(
ξ2 − 1

)
(1 + ηiη)

]

NST
i| i=6,8

(ξ, η) = 1
6
[
J

(i)
22 (1 + ξiξ) η

(
η2 − 1

)]

(B.7)

where J
(i)
αβ are the terms of Jacobian matrix at node i.
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B.2 Arrays containing the thickness and in-plane
interpolation functions

The arrays containing the through-thickness approximations and the shape functions
(and their derivatives) introduced in the definition of the strain field in Eq. (2.19) are:

FbµU (zp) =




Fµux
(zp) 0 0 0

0 Fµuy
(zp) 0 0

0 0 Fµux
(zp) Fµuy

(zp)


 (B.8)

FnµU (zp) =
[
0 0 Fµuz,z

(zp)
]

(B.9)

F0
sµU

=

F 0

µux,z
F 0

µuy,z
F 0

µuz
0 0 0

0 0 0 F 0
µux,z

F 0
µuy,z

F 0
µuz


 (B.10)

Fh
sµU

(zp) =

F h

µux,z
(zp) 0 F h

µuz
(zp) 0

0 F h
µuy,z

(zp) 0 F h
µuz

(zp)


 (B.11)

Bbi (x, y) =




Ni,x (x, y) 0 Ni,y (x, y) 0
0 Ni,y (x, y) 0 Ni,x (x, y)
0 0 0 0




T

(B.12)

Bni (x, y) =




0 0 0 0
0 0 0 0
0 0 0 Ni (x, y)




T

(B.13)

B̄si (x, y) =




N xux
i (x, y) 0 0

0 N xuy

i (x, y) 0
0 0 N xuz

i (x, y)
N yux

i (x, y) 0 0
0 N yuy

i (x, y) 0
0 0 N yuz

i (x, y)




(B.14)

Bsi (x, y) =




Ni (x, y) 0 0 0
0 Ni (x, y) 0 0
0 0 Ni,x (x, y) Ni,y (x, y)




T

(B.15)



Appendix C

Fundamental nuclei of the
Sublaminate-Generalized Unified
Formulation

C.1 Displacement-based formulation

The fundamental nuclei of the displacement-based formulation derived from Eq. (2.7)
are

Kpµux τux ij
uxux

= Z
pµux τux
uxux11 ◁ Ni,xNj,x ▷ Ω +Z

pµux τux
uxux16 ◁ Ni,yNj,x ▷ Ω +

+ Z
pµux τux
uxux16 ◁ Ni,xNj,y ▷ Ω +Z

pµux τux
uxux66 ◁ Ni,yNj,y ▷ Ω +

+ Z
pµux,z τux,z 00
uxux44 ◁ N yux

i N yux
j ▷ Ω +Z

pµux,z τux,z 00
uxux45 ◁ N xux

i N yux
j ▷ Ω +

+ Z
pµux,z τux,z 00
uxux45 ◁ N yux

i N xux
j ▷ Ω +Z

pµux,z τux,z h0
uxux45 ◁ Ni N yux

j ▷ Ω +

+ Z
pµux,z τux,z 0h
uxux45 ◁ N yux

i Nj ▷ Ω +Z
pµux,z τux,z 00
uxux55 ◁ N xux

i N xux
j ▷ Ω +

+ Z
pµux,z τux,z 0h
uxux55 ◁ N xux

i Nj ▷ Ω +Z
pµux,z τux,z h0
uxux55 ◁ Ni N xux

j ▷ Ω +

+ Z
pµux,z τux,z hh
uxux55 ◁ NiNj▷ Ω

(C.1)
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K
pµux τuy ij
uxuy = Z

pµux τuy

uxuy12 ◁ Ni,xNj,y ▷ Ω +Z
pµux τuy

uxuy26 ◁ Ni,yNj,y ▷ Ω +

+ Z
pµux τuy

uxuy16 ◁ Ni,xNj,x ▷ Ω +Z
pµux τuy

uxuy66 ◁ Ni,yNj,x ▷ Ω +

+ Z
pµux,z τuy,z 00
uxuy44 ◁ N yux

i N yuy

j ▷ Ω +Z
pµux,z τuy,z 0h
uxuy44 ◁ N yux

i Nj ▷ Ω +

+ Z
pµux,z τuy,z 00
uxuy45 ◁ N xux

i N yuy

j ▷ Ω +Z
pµux,z τuy,z 00
uxuy45 ◁ N yux

i N xuy

j ▷ Ω +

+ Z
pµux,z τuy,z 0h
uxuy45 ◁ N xux

i Nj ▷ Ω +Z
pµux,z τuy,z h0
uxuy45 ◁ Ni N yuy

j ▷ Ω +

+ Z
pµux,z τuy,z hh
uxuy45 ◁ NiNj ▷ Ω +Z

pµux,z τuy,z 00
uxuy55 ◁ N xux

i N xuy

j ▷ Ω +

+ Z
pµux,z τuy,z h0
uxuy55 ◁ Ni N xuy

j ▷ Ω

Kpµux τuz ij
uxuz

= Z
pµux τuz,z

uxuz13 ◁ Ni,xNj ▷ Ω +Z
pµux τuz,z

uxuz36 ◁ Ni,yNj ▷ Ω +

+ Z
pµux,z τuz 00
uxuz44 ◁ N yux

i N yuz
j ▷ Ω +Z

pµux,z τuz 0h
uxuz44 ◁ N yux

i Nj,y ▷ Ω +

+ Z
pµux,z τuz 00
uxuz45 ◁ N xux

i N yuz
j ▷ Ω +Z

pµux,z τuz 00
uxuz45 ◁ N yux

i N xuz
j ▷ Ω +

+ Z
pµux,z τuz 0h
uxuz45 ◁ N yux

i Nj,x ▷ Ω +Z
pµux,z τuz 0h
uxuz45 ◁ N xux

i Nj,y ▷ Ω +

+ Z
pµux,z τuz h0
uxuz45 ◁ Ni N yuz

j ▷ Ω +Z
pµux,z τuz hh
uxuz45 ◁ NiNj,y ▷ Ω +

+ Z
pµux,z τuz 00
uxuz55 ◁ N xux

i N xuz
j ▷ Ω +Z

pµux,z τuz 0h
uxuz55 ◁ N xux

i Nj,x ▷ Ω +

+ Z
pµux,z τuz h0
uxuz55 ◁ Ni N xuz

j ▷ Ω +Z
pµux,z τuz hh
uxuz55 ◁ NiNj,x▷ Ω

K
pµuy τuy ij
uyuy = Z

pµuy τuy

uyuy22 ◁ Ni,yNj,y ▷ Ω +Z
pµuy τuy

uyuy26 ◁ Ni,xNj,y ▷ Ω +

+ Z
pµuy τuy

uyuy26 ◁ Ni,yNj,x ▷ Ω +Z
pµuy τuy

uyuy66 ◁ Ni,xNj,x ▷ Ω +

+ Z
pµuy,z τuy,z 00
uyuy44 ◁ N yuy

i N yuy

j ▷ Ω +Z
pµuy,z τuy,z h0
uyuy44 ◁ Ni N yuy

j ▷ Ω +

+ Z
pµuy,z τuy,z 0h
uyuy44 ◁ N yuy

i Nj ▷ Ω +Z
pµuy,z τuy,z hh
uyuy44 ◁ NiNj ▷ Ω +

+ Z
pµuy,z τuy,z 00
uyuy45 ◁ N xuy

i N yuy

j ▷ Ω +Z
pµuy,z τuy,z 00
uyuy45 ◁ N yuy

i N xuy

j ▷ Ω +

+ Z
pµuy,z τuy,z 0h
uyuy45 ◁ N xuy

i Nj ▷ Ω +Z
pµuy,z τuy,z h0
uyuy45 ◁ Ni N xuy

j ▷ Ω +

+ Z
pµuy,z τuy,z 00
uyuy55 ◁ N xuy

i N xuy

j ▷ Ω
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K
pµuy τuz ij
uyuz = Z

pµuy τuz,z

uyuz23 ◁ Ni,yNj ▷ Ω +Z
pµuy τuz,z

uyuz36 ◁ Ni,xNj ▷ Ω +

+ Z
pµuy,z τuz 00
uyuz44 ◁ N yuy

i N yuz
j ▷ Ω +Z

pµuy,z τuz 0h
uyuz44 ◁ N yuy

i Nj,y ▷ Ω +

+ Z
pµuy,z τuz h0
uyuz44 ◁ Ni N yuz

j ▷ Ω +Z
pµuy,z τuz hh
uyuz44 ◁ NiNj,y ▷ Ω +

+ Z
pµuy,z τuz 00
uyuz45 ◁ N xuy

i N yuz
j ▷ Ω +Z

pµuy,z τuz 00
uyuz45 ◁ N yuy

i N xuz
j ▷ Ω +

+ Z
pµuy,z τuz 0h
uyuz45 ◁ N yuy

i Nj,x ▷ Ω +Z
pµuy,z τuz 0h
uyuz45 ◁ N xuy

i Nj,y ▷ Ω +

+ Z
pµuy,z τuz h0
uyuz45 ◁ Ni N xuz

j ▷ Ω +Z
pµuy,z τuz hh
uyuz45 ◁ NiNj,x ▷ Ω +

+ Z
pµuy,z τuz 00
uyuz55 ◁ N xuy

i N xuz
j ▷ Ω +Z

pµuy,z τuz 0h
uyuz55 ◁ N xuy

i Nj,x ▷ Ω +

Kpµuz τuz ij
uzuz

= Z
pµuy,z τuz,z

uzuz33 ◁ NiNj ▷ Ω +Z
pµuz τuz 00
uzuz44 ◁ N yuz

i N yuz
j ▷ Ω +

+ Z
pµuz τuz 0h
uzuz44 ◁ N yuz

i Nj,y ▷ Ω +Z
pµuz τuz h0
uzuz44 ◁ Ni,y N yuz

j ▷ Ω +

+ Z
pµuz τuz hh
uzuz44 ◁ Ni,yNj,y ▷ Ω +Z

pµuz τuz 00
uzuz45 ◁ N xuz

i N yuz
j ▷ Ω +

+ Z
pµuz τuz 00
uzuz45 ◁ N yuz

i N xuz
j ▷ Ω +Z

pµuz τuz 0h
uzuz45 ◁ N yuz

i Nj,x ▷ Ω +

+ Z
pµuz τuz 0h
uzuz45 ◁ N xuz

i Nj,y ▷ Ω +Z
pµuz τuz h0
uzuz45 ◁ Ni,y N xuz

j ▷ Ω +

+ Z
pµuz τuz h0
uzuz45 ◁ Ni,x N yuz

j ▷ Ω +Z
pµuz τuz hh
uzuz45 ◁ Ni,yNj,x ▷ Ω +

+ Z
pµuz τuz hh
uzuz45 ◁ Ni,xNj,y ▷ Ω +Z

pµuz τuz 00
uzuz55 ◁ N xuz

i N xuz
j ▷ Ω +

+ Z
pµuz τuz 0h
uzuz55 ◁ N xuz

i Nj,x ▷ Ω +Z
pµuz τuz h0
uzuz55 ◁ Ni,x N xuz

j ▷ Ω +

+ Z
pµuz τuz hh
uzuz55 ◁ Ni,xNj,x▷ Ω

where ◁ ▷ Ω denotes the integral over the in-plane domain Ω.
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C.2 RMVT-based formulation

The fundamental nuclei of the RMVT-based formulation derived from Eq. (2.8) are

Kpµux τux ij
uxux

= Z
pµux τux
uxux11 ◁ Ni,xNj,x ▷ Ω +Z

pµux τux
uxux16 ◁ Ni,yNj,x ▷ Ω +

+ Z
pµux τux
uxux16 ◁ Ni,xNj,y ▷ Ω +Z

pµux τux
66uxux

◁ Ni,yNj,y▷ Ω

K
pµux τuy ij
uxuy = Z

pµux τuy

uxuy12 ◁ Ni,xNj,y ▷ Ω +Z
pµux τuy

uxuy26 ◁ Ni,yNj,y ▷ Ω +

+ Z
pµux τuy

uxuy16 ◁ Ni,xNj,x ▷ Ω +Z
pµux τuy

uxuy66 ◁ Ni,yNj,x▷ Ω

Kpµux τsx ij
uxsx

= Z
pµux,z τsx 0a
uxsx ◁ N xux

i Nj ▷ Ω +Z
pµux,z τsx ha
uxsx ◁ NiNj▷ Ω

K
pµux τsy ij
uxsy = Z

pµux,z τsy 0a
uxsy ◁ N yux

i Nj▷ Ω

Kpµux τsz ij
uxsz

= Z
pµux τsz
uxsz13 ◁ Ni,xNj ▷ Ω +Z

pµux τsz
uxsz63 ◁ Ni,yNj▷ Ω

K
pµuy τuy ij
uyuy = Z

pµuy τuy

uyuy22 ◁ Ni,yNj,y ▷ Ω +Z
pµuy τuy

uyuy26 ◁ Ni,xNj,y ▷ Ω +

+ Z
pµuy τuy

uyuy26 ◁ Ni,yNj,x ▷ Ω +Z
pµuy τuy

uyuy66 ◁ Ni,xNj,x▷ Ω

K
pµuy τsx ij
uysx = Z

pµuy,z τsx 0a
uysx ◁ N xuy

i Nj▷ Ω

K
pµuy τsy ij
uysy = Z

pµuy,z τsy 0a
uysy ◁ N yuy

i Nj ▷ Ω +Z
pµuy,z τsy ha
uysy ◁ NiNj▷ Ω

K
pµuy τsz ij
uysz = Z

pµuy τsz

uysz23 ◁ Ni,yNj ▷ Ω +Z
pµuy τsz

uysz63 ◁ Ni,xNj▷ Ω

Kpµuz τsx ij
uzsx

= Zpµuz τsx 0a
uzsx

◁ N xuz
i Nj ▷ Ω +Zpµuz τsx ha

uzsx
◁ Ni,xNj▷ Ω

K
pµuz τsy ij
uzsy = Z

pµuz τsy 0a
uzsy ◁ N yuz

i Nj ▷ Ω +Z
pµuz τsy ha
uzsy ◁ Ni,yNj▷ Ω

Kpµuz τsz ij
uzsz

= Z
pµuz,z τsz
uzsz ◁ NiNj▷ Ω

Kpµsx τsx ij
sxsx

= −Z
pµsx τsx
sxsx55 ◁ NiNj▷ Ω

K
pµsx τsy ij
sxsy = −Z

pµsx τsy

sxsy45 ◁ NiNj▷ Ω

K
pµsy τsy ij
sysy = −Z

pµsy τsy

sysy44 ◁ NiNj▷ Ω

Kpµsz τsz ij
szsz

= −Z
pµsz τsz
szsz33 ◁ NiNj▷ Ω

(C.2)



Appendix D

Comparison between conventional
3D and refined 2D FEM

This Appendix aims at establishing a honest comparison between the conventional 3D
FEM and the refined 2D modelling techniques developed throughout the thesis, with
particular emphasis on the analysis of sandwich structures. The main drawback of 3D
FEs in modelling the thin facesheets of sandwich panels lies in the fact that to obtain
an accurate description of the transverse stress field, several solid elements across the
thickness may be required. As a result, the element slenderness (ratio between the
main dimension and the thickness) increases, entailing a risk of accuracy degradation.
Simultaneously refining the in-plane domain discretization is the acknowledged manner
to avoid the numerical issues which may arise due to excessive slenderness of 3D FEs.
The resulting model may hence come along with a heavy computational effort.

Contrary to most works available in open literature, the analysis presented in this
Appendix intends to carry out the 3D vs 2D comparison by allowing the 3D FE to have
a non-unit slenderness ratio. The sandwich panel investigated in Section 2.4 and Sec-
tion 3.2.1 is addressed. The 3D FEM solution is obtained with the commercial software
package Abaqus. The 20 nodes brick element with reduced integration of the standard
element library, namely the C3D20R element, is used for the analysis. The influence of
the element slenderness is studied by keeping fixed the in-plane discretization and by
progressively increasing the number of elements used through-the-thickness. In par-
ticular, 16 C3D20R elements are used along both x and y directions; the number of
elements across the facesheets ranges from 1 to 7 (N skin

elt ∈ {1, 7}), while the discretiza-
tion in the core layer involves 1 to 5 elements (N core

elt ∈ {1, 5}). Table D.1 lists the aspect
ratio of the most slender element in the mesh, referred to as wSelt, where the super-
script w stands for worst, as the number of 3D elements used in the facesheets varies.

145



146 D Comparison between conventional 3D and refined 2D FEM

Tables from D.2 to D.5 report the maximum value of the out-of-plane displacement
uz, the bending stress σxx, the transverse shear stress σxz and the transverse normal
stress σzz, respectively, for different discretization parameter pairs N skin

elt − N core
elt . Bold

values identify the converged solution which is defined as the value obtained with the
most refined discretization, i.e. N skin

elt = 7 and N core
elt = 5.

Table D.1: Aspect ratio of the most slender 3D element.

N skin
elt

1 2 3 4 5 6 7
wSelt 3.125 6.25 9.375 12.5 15.625 18.75 21.875

Table D.2: Maximum value of the transverse displacement uz [mm] of a simply-supported sandwich
panel with increasing the FE discretization across the thickness.

N skin
elt

umax
z 1 2 3 4 5 6 7

N
co

re
el

t

1 2.55631 2.55635 2.55635 2.55635 2.55635 2.55635 2.55635
2 2.55631 2.55635 2.55635 2.55636 2.55636 2.55636 2.55636
3 2.55631 2.55635 2.55635 2.55636 2.55636 2.55636 2.55636
4 2.55631 2.55635 2.55635 2.55636 2.55636 2.55636 2.55636
5 2.55631 2.55635 2.55635 2.55636 2.55636 2.55636 2.55636

Bold values identify the converged solution

Table D.3: Maximum value of the in-plane stress σxx [MPa] of a simply-supported sandwich panel
with increasing the FE discretization across the thickness.

N skin
elt

σmax
xx 1 2 3 4 5 6 7

N
co

re
el

t

1 164.213 164.276 164.305 164.318 164.324 164.328 164.330
2 164.213 164.276 164.305 164.318 164.324 164.328 164.330
3 164.213 164.276 164.305 164.318 164.324 164.328 164.330
4 164.213 164.276 164.305 164.318 164.324 164.328 164.330
5 164.213 164.276 164.305 164.318 164.324 164.328 164.330

Bold values identify the converged solution

It is worth noticing that the element slenderness ranges from wSelt ≈ 3 up to
wSelt ≈ 22, thus deviating even significantly from the widely suggested unitary value.
Nevertheless, no accuracy degradation is observed, demonstrating the reliability and
robustness of the C3D20R element even for high values of the slenderness ratio.
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Table D.4: Maximum value of the transverse shear stress σxz [MPa] of a simply-supported sandwich
panel with increasing the FE discretization across the thickness.

N skin
elt

σmax
xz 1 2 3 4 5 6 7

N
co

re
el

t

1 2.71967 2.23114 2.32143 2.32544 2.30610 2.28414 2.28921
2 2.71966 2.23124 2.32143 2.32541 2.30608 2.28411 2.28922
3 2.71967 2.23125 2.32140 2.32541 2.30607 2.28411 2.28922
4 2.71967 2.23125 2.32140 2.32541 2.30607 2.28411 2.28922
5 2.71967 2.23125 2.32140 2.32541 2.30607 2.28411 2.28922

Bold values identify the converged solution

Table D.5: Maximum value of the transverse normal stress σzz [MPa] of a simply-supported sandwich
panel with increasing the FE discretization across the thickness.

N skin
elt

σmax
zz 1 2 3 4 5 6 7

N
co

re
el

t

1 1.00958 1.00439 1.00249 1.00164 1.00115 1.00081 1.00054
2 1.00958 1.00439 1.00249 1.00164 1.00115 1.00081 1.00054
3 1.00958 1.00439 1.00249 1.00164 1.00115 1.00081 1.00054
4 1.00958 1.00439 1.00249 1.00164 1.00115 1.00081 1.00054
5 1.00958 1.00439 1.00249 1.00164 1.00115 1.00081 1.00054

Bold values identify the converged solution

Since the physics of the problem does not involve important gradients in the core
layer, only one element is sufficient to provide a converged solution, irrespective of the
variable of interest. Furthermore, no significant improvement in terms of local max-
imum values is observed by increasing the number of elements across the facesheets
beyond 2. However, a mesh refinement is still required if a thorough description of the
transverse stress field across the facesheets is sought. The through-thickness distribu-
tions of the transverse shear stress σxz and transverse normal stress σzz are plotted in
Figure D.1 and Figure D.2, respectively. One element for the core layer is considered
whereas the discretization parameter N skin

elt is varied from the coarsest value (N skin
elt = 1)

up to the most refined one (N skin
elt = 7). It is observed that the quadratic and cubic

distribution of the σxz and σzz, respectively, is only achieved by increasing the number
of elements used across the facesheet. The refinement allows also to reduce the dis-
continuity at facesheet-core interfaces and to fulfill the traction conditions at the top
surface. Moreover, at least 5 elements are needed for meeting the condition σzz,z = 0
at the top surface. It is worth noticing that the most refined discretization provides
the most accurate 3D solution, even if the slenderness ratio of the facesheets elements
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Figure D.1: Through-thickness distribution of the transverse shear stress σxz at (x = −a/2, y = 0).
Comparison between 3D solutions by varying the number of FEs across the skins.
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Figure D.2: Through-thickness distribution of the transverse normal stress σzz at (x = 0, y = 0).
Comparison between 3D solutions by varying the number of FEs across the skins.

is ≈ 22. To sum up, the following conclusions can be drawn:

• FE elements implemented in commercial software packages are based on displace-
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ment formulations and therefore require the use of a large number of 3D elements
along the thickness direction to provide a thorough description of the transverse
stresses distributions across the sandwich panel’s thickness.

• Due to the robustness of the C3D20R element, a slenderness ratio greater than
1 is not found to lead to any accuracy degradation.

• The global size of the problem may significantly increase whenever steep gradients
across the thickness are to be grasped.

The last point paves the way for a comparison between the 3D and 2D modelling
approaches. Based on the previous convergence analysis, two conventional 3D models
are selected: the computationally efficient and accurate model with N skin

elt = 5 and the
most refined one (N skin

elt = 7). Both models consider one element across the core layer.
As far as the 2D modelling approach is concerned, the same in-plane discretization f
the 3D models is adopted: a 16×16 CL8 mesh is therefore used. Four different models
along the thickness direction are investigated:

LD3. A layerwise displacement-based CUF model with a cubic expansion order along
the thickness direction for the displacement variables.

LM3. A layerwise mixed CUF model with a cubic expansion order along the thickness
direction for both displacement and transverse stress variables.

LM3�3
33 . LM3 model, but with homogeneous boundary conditions on transverse shear

stresses exactly verified at plate’s top/bottom surfaces.

EM3�3
33 /EM01

12. A mixed SGUF model with one sublaminates for each ply. The
facesheets are modelled according to LM3�3

33 , while a low-order mixed model retain-
ing a quadratic distribution of the transverse displacement is employed for the core
layer, namely the EM01

12 model.

Figure D.3 and Figure D.4 show the through-thickness distributions of the trans-
verse stress variables σxz and σzz. It is observed that the LD3 model overestimates the
maximum value of the transverse shear stress σxz of nearly 9%. Moreover, the inter-
laminar continuity as well as the homogeneous condition of the transverse shear stress
at plate’s top/bottom surfaces and of the transverse normal stress at plate’s bottom
surface are violated. No significant improvement is introduced when referring to the
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Figure D.3: Through-thickness distribution of the transverse shear stress σxz at (x = −a/2, y = 0).
Comparison between 3D and present 2D solutions. 3D models involve only one element in the core
(N core

elt = 1).
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Figure D.4: Through-thickness distribution of the transverse normal stress σzz at (x = 0, y = 0).
Comparison between 3D and present 2D solutions. 3D models involve only one element in the core
(N core

elt = 1).
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Table D.6: Local response and DOFs comparison between analytical solution [114], conventional 3D
FEM and 2D models.

Model z [mm] σxz [MPa] ∆σxz [%] σzz [MPa] ∆σzz [%] DOFs

Ref [114] 10 0.00000 1.00000 -
8+ 2.06377

0.00
0.92377

0.00
8− 2.06377 0.92377

N skin
elt = 7, N core

elt = 1 10 0.01418 1.00054 52989
8+ 2.07851

1.18
0.92430

0.04
8− 2.06669 0.92469

N skin
elt = 5, N core

elt = 1 10 0.02688 1.00115 39525
8+ 2.09134

2.46
0.92437

0.03
8− 2.06669 0.92469

LD3 10 0.10570 1.00433 24990
8+ 2.16930

10.4
0.91958

0.44
8− 2.06541 0.92397

LM3 10 0.10129 0.98845 49980
8+ 2.06482

0.00
0.92267

0.00
8− 2.06482 0.92267

LM3�3
33 10 0.00000 0.99984 49980

8+ 2.06418
0.00

0.92437
0.00

8− 2.06418 0.92437

EM3�3
33 /EM01

12 10 0.00000 1.00002 39151
8+ 2.06751

0.00
0.92421

0.00
8− 2.06751 0.92421

LM3 model except for the interlaminar continuity of the transverse stress field, which
is a priori fulfilled thanks to RMVT. Indeed, in order to improve the corresponding
displacement-based solution, the assumed stress field in the mixed approach should be
somehow constrained, as stated by Fraejis de Veubeke [159]. A very accurate prediction
is hence obtained when the LM3 model is constrained by imposing the homogeneous
static conditions on the transverse shear field (LM3�3

33 model). The SGUF model allows
to recover the LM3�3

33 model solution while drastically reducing the DOFs in the core
layer.

Finally, Table D.6 provides a measure of both accuracy and computational bur-
den associated to each model. Conventional 3D FEM and refined 2D solutions are
compared to the analytical solution given by Kardomateas in [114]. In particular, the
static condition at top surface is studied along with the facesheet-core discontinuity by
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extracting the values of both transverse shear stress σxz and transverse normal stress
σzz at coordinate z ∈ {8−, 8+, 10}. The measure of the interlaminar discontinuity is
given by referring to the jump ∆ defined as follows:

∆S =
∣∣∣S
(
z = 8+

)
− S

(
z = 8−

)∣∣∣× 100 (D.1)

with S ∈ {σxz, σzz}. It is worth noticing that the conventional 3D FEM fails to meet the
interlaminar continuity condition, suggesting a further refinement of the discretization
in both facesheet and core layers with a consequent increase in the number of DOFs.
The displacement-based LD3 model requires the lowest computational overhead but
it is found to be inadequate when it comes to accurately predict the transverse shear
stresses. On the other hand, the LM3 model and its improvement towards exact
fulfilment of the homogeneous top/bottom conditions (LM3�3

33 ), both involve a number
of DOFs comparable to those required by the conventional 3D FEM. The global/local
modelling technique offered by the SGUF model allows to find an excellent compromise
between the accuracy of the solution and the computational effort required by the
analysis.
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