
HAL Id: tel-04124264
https://theses.hal.science/tel-04124264

Submitted on 9 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embodied robot systems : control and learning for
skill-transfer from humans

Guillaume Gourmelen

To cite this version:
Guillaume Gourmelen. Embodied robot systems : control and learning for skill-transfer from hu-
mans. Human-Computer Interaction [cs.HC]. Université de Montpellier, 2022. English. �NNT :
2022UMONS091�. �tel-04124264�

https://theses.hal.science/tel-04124264
https://hal.archives-ouvertes.fr


THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITE DE MONTPELLIERDE L’UNIVERSITE DE MONTPELLIER

En Systèmes Automatiques et Microélectroniques

École doctorale : Information, Structures, Systèmes

Unité de recherche UMR5506

Embodied robot systems : control and learning for
skill-transfer from humans

Embodied robot systems : control and learning for
skill-transfer from humans

Présentée par Gourmelen Guillaume
Le 29 Novembre 2022

Sous la direction de Gowrishankar Ganesh
et Cherubini Andrea

Devant le jury composé de

Azevedo Christine, Directrice de Recherche, INRIA Examinatrice

Burdet Etienne, Professeur d’Université, Imperial College of Science, Technology and Medicine Rapporteur

Gaussier Philippe, Professeur d’Université, CY Paris Cergy Université Rapporteur

Gotlieb Arnaud, Directeur de Recherche, Simula Research Laboratory Président du jury

Gowrishankar Ganesh, Directeur de Recherche, CNRS-LIRMM Directeur de thèse

Cherubini Andrea, Professeur d’Université, Université de Montpellier-LIRMM Encadrant de thèse





ACKNOWLEDGEMENTS

I would like to thank :

The jury members for reading my manuscript, and assisting to my Defence.

My supervisor Ganesh Gowrishankar for giving me the chance to accomplish this
thesis for 3 years and 4 months.

Adrien Verhulst for the Co-limb shooting, setup and the precious help given during
my first year.

Yukiko Iwasaki for her help throughout my PhD and for all the good time we had
as office-mates.

Sasaki Tomoya, Ando Kozo, Iizuka Shuhei for their help before and during Sig-
graph Asia, without the complete team it would have been impossible to bring Meta-
limb in Brisbane, build it in the booth and manage all the hardware problems the hap-
pened there.

Matsumura-san from Karakuri Product for his help during the weeks I spent in his
office in Kanagawa.

Inami-sensei for accepting me in his lab almost 3 months in 2019 and the Tokyo
University Inami living lab secretary and students who welcomed me every-time.

Benjamin Navarro for his precious help on the robotic part of this thesis when he
was a post doc in the team and everything he taught me in order to understand pro-
gramming languages, ROS and the demystification of all the robotics equations we
needed to use in order to have the robots work.

The regular players of the lab board game club, our hiking team and the people
from our "potager" garden, Celia S and Silvia C for always being supportive.

Quentin M and Thomas G, old time friends, for always being here on the campus
when in need to talk.

Maxime M for your time he accorded to me, despite your own manuscript redac-
tion, to discuss Deep Learning and debug Tensor Flow based networks.

Yuquan Wang for all the discussion we had about academic research we had during
these long Saturday and weeknight of work in the empty lab and your help as a team
post-doc.



iv

Amaury Dechaux for your knowledge in data-science and statistics.

Virginie Feche who helped me wholeheartedly in organizing all the event we fea-
tured for the PhD Students like the IA teaching days, the PhD poster sessions and
seminaries, the PhD Discord Channel, the article writing sessions, and all the buying
we had to do.

Gwladys and Nadine from the LIRMM who helped me in managing all the trips
I made to Tokyo so I could spend time at Tokyo University, then supported me in
keeping lab access and solving administrative problems during the 4th year when I
was not funded.

Vincent Berry and Eric Dubreuil for trusting me to teach around an hundred hour
of classes and experiments to the Polytech students from "Informatique et Gestion" and
"Systèmes Embarqués" departments

My parents and my brother to have been here for me throughout these 9 years of
University.

Personal feedback about the Co-limb project Personally, this project and in parti-
cular preparing Siggraph Asia, taught me to work with a team as I almost had no other
teamwork opportunity during this thesis. Moreover this project being held in collabo-
ration with Tokyo University, I was mainly working with Japanese people, in Japanese,
as all students included in the project did not speak English. The two last weeks before
the conference I also had the opportunity to work at Karakuri, the company that de-
veloped Meta-Limbs, in order to speed up all the modifications and last minute tests
needed for Siggraph. This gave me an interesting insight of the way of working abroad
in Japan in both academia and in small companies.



RÉSUMÉ DE LA THÈSE

La plupart des robots sont meilleurs que les humains en termes de capteurs et d’ac-
tionneurs, ce qui leur permet d’avoir une meilleure perception, des mouvements plus
rapides et une force supérieure à celle des humains. Cependant, il leur manque la ca-
pacité humaine à prendre des décisions intelligentes de haut niveau dans des environ-
nements non structurés. Par conséquent, de nombreux systèmes complexes actuels,
tels que les robots de sauvetage, les UAV/UUV et les robots d’assistance chirurgicale,
utilisent des systèmes "humains dans la boucle", où le contrôle est partagé entre l’hu-
main et la machine. Cette thèse explore les "robots incarnés" comme un phénomène
prometteur pour améliorer le contrôle humain dans la boucle.

Par robots incarnés, nous nous référons aux robots attachés à l’opérateur humain,
et qui sont contrôlés par l’opérateur humain en utilisant des retours d’informations
(principalement visuel et haptique) qui lui font percevoir le robot comme une partie
de lui-même.

Nous avons tout d’abord travaillé avec un dispositif de bras de robot portable dis-
ponible pour concevoir un contrôleur d’admitance qui permettrait aux opérateurs hu-
mains de le contrôler et de l’utiliser intuitivement.

Deuxièmement, nous avons développé un système de téléopération incarné (Em-
bodied) pour un manipulateur sériel 7DoF en intégrant le système robotique avec un
dispositif de retour haptique et un casque de réalité virtuelle couplé à une caméra à
360 degrés.

Troisièmement, pour ce système, nous avons mis au point une procédure permet-
tant d’estimer l’impédance de l’opérateur humain sans avoir recours à l’électromyo-
graphie, et de l’utiliser pour contrôler l’impédance du robot, ce qui permet aux utilisa-
teurs d’imposer à la fois des mouvements et une impédance au robot.

Dernièrement, nous avons étudié l’apprentissage par démonstration en utilisant
des informations visuelles et de mouvement humain à travers le système incarné afin
pouvoir entrainer un agent à reproduire des mouvements humains.

Nous postulons que les systèmes incarnés peuvent améliorer l’apprentissage par la
démonstration en permettant un enseignement kinesthésique sans perte du point de
vue de l’opérateur et de la sensation de force. En effet, dans de tels systèmes, il est pos-
sible d’enregistrer tous les mouvements, toutes ce que a été vu et toutes les sensations
d’un être humain, ce qui en fait un outil idéal pour la mise en œuvre de techniques
d’apprentissage. Pour démontrer cette idée, nous avons développé une tâche deman-
dant à des participants humains de déplacer un curseur dans un labyrinthe en pré-
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sence de différents champs de force. Nous avons ensuite entraîné un agent de réseau
de neuronne sur ces comportements. En utilisant des réseaux tels que ResNet(Residual
Networks) et des Gated Recurrent Units, l’agentpeut apprendre des mouvements sem-
blables à ceux des humains, de les généraliser et de prédire le comportement humain
dans des trajectoires sur lesquelles il n’avait jamais été formé.

Nous concluons ce travail avec une discussion portant sur les résultats obtenus et
les perspectives pour la recherche dans les domaines du controle de robot incarnés et
de l’apprentissage par démonstration.



ABSTRACT

Most robots are better than humans in terms of sensors and actuators, which
allow them to have higher and better perception, and faster movements and super-
ior strength, than humans. However, what they lack is the human ability to make in-
telligent high level decisions in unstructured environments. Therefore, many current
complex systems, like rescue robots, UAV/UUVs, and surgery assistive robots, utilize
‘human in the loop’ systems, where the control is shared by the human and machine.
This PhD explores ‘embodied robots’ as a promising phenomenon to improve human-
in-the-loop control.

By embodied robots, we refer to robots attached to the human operator, and which
are controlled by the human operator using first person feedback (predominantly vi-
sual and haptic) that make him/her perceive the robot to be part of his/her self.

First, we worked with an available Wearable Robot Arm (WRA) device to design
an admittance controller that would let human operators control and use it intuitively.

Second, we developed an embodied teleoperation system for a 7DoF serial manipu-
lator by integrating the robot system with a haptic feedback device, and virtual reality
head mounted display coupled to a 360 degree camera.

Third, for this system, we developed a procedure to estimate the impedance of
the human operator without requirering electromyography, and use it for impedance
control of the robot, enabling users to impose both movements as well as impedance
on the robot slave.

Finally, we studied Learning from Demonstration (LfD) using visual and human
motion data through our embodied system. We postulate that embodied systems can
improve LfD by enabling kinesthetic teaching without losing of the operator’s point of
view and force sensation. Indeed in such systems it is possible to record every motion,
vision and feeling the human would have, making it ideal for the implementation of
machine learning techniques. To demonstrate this idea, we developed a task requiring
human participants to move through a maze in the presence of various force fields. We
then trained a deep learning network agent on these behaviors. By using a state of the
art pre-trained Residual Networks and Gated Recurrent Units, the machine learning
agent was able to learn ‘human-like’ movements and generalize, and predict human
behavior in trajectories that it was never trained on.

We conclude this work with a discussion of the achieved results and future perspec-
tives of research in the field of embodied control and Learning from Demonstration.
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NOMENCLATURE

• ANN : Artificial Neural Networks

• CNN : Convolutional Neural Network

• DoF : Degree of Freedom

• EMG : Electromyography

• GMM : Gaussian Mixture Models

• GRU : Gated Recurrent Unit

• HMD : Head Mounted Display

• HRI : Human Robot Interaction

• IRL : Inverse Reinforcement Learning

• LfD : Learning from Demonstration

• LSTM : Long Short Term Memory

• MDN : Mixture Density Network

• MLP : MultiLayer Perceptron

• NaN : Not a Number

• ResNet : Residual Network (pretrained)

• RL : Reinforcement Learning

• RHI : Rubber Hand Illusion

• RNN : Recurrent Neural Networks

• TCP : Terminal Control Point

• UAV : Unmanned Aerial Vehicle

• UUV : Unmanned Underwater Vehicle

• VR : Virtual Reality

• WRA : Wearable Robot Arm





INTRODUCTION

A century ago authors like Capek, Asimov, described the future of humanity with
robots alongside humans, would that be in utopian or dystopian works. The word
’Robot’ was introduced by Capek in RUR in which he described a society where all the
work is done by robots for the human’s sake. This idea comes from the greek philoso-
phy that thought that citizens would become free when they would stop working, lea-
ving all the work to their slaves. These human-like, anthropomorphic machines have
been found through the past few centuries : the automatons of Leonardo da Vinci in
the 15th century, the japanese puppet theatre called Bunraku in the 17th century are
few examples. But all these inventions have one common point: they could be control-
led by a human, from a remote place. And this point has not changed so much through
time.

"Autonomous" robots that require not much guidance from human are mainly found
in strictly controlled or modified environments, mainly in industries or warehouses.
The only "autonomous" robots present in human environments at a large scale are va-
cuum cleaning robots and alike, thanks to the recent advances of localization and path
planning like SLAM algorithms. Crucially, there are almost no autonomous robots that
can interact physically with humans, and in fact they are smoothly separated from
humans.

Most current robots capable of physically interacting with their environment, and
with humans are invariably teleoperated, with some human in the loop control. For
example, the submarine manipulator robots like Ocean One [Khatib et al., 2016], surgi-
cal robots (Da Vinci Surgical, Rosa Knee), co-bots, rescue robots [Liu and Nejat, 2013]
and even space robot [Papadopoulos et al., 2021]

Hence, human-in-the-loop control is still being used for complex task achievement
like rescue robots, collaborative robots fr industry, most UAV/UUV operation, or robot-
assisted surgery. Understanding that robotic systems will not work without human as-
sistance for at least a few years more from now on, in this thesis we decided to explore
the embodiment phenomenon to improve human-in-the-loop control.

The thesis, and my work was part of an international Japanese project in which the
group of Dr. Ganesh Gowrishankar from CNRS is a partner. The Inami Jizai Erato Pro-
ject was a 5 years project funded by the Japan Science and Technology (JST) institute.
The project takes an inter-disciplinary approach to understand, and address the chal-
lenges of technology to “extend” the human body. The project involved teams working
in Design, Virtual Reality, robotics, neuroscience and psychology and spanned seve-
ral major Japanese universities including The University of Tokyo, Waseda University,

1



Introduction

Keio University, The University of Electro-Communications, Toyohashi University of
Technology, as well as the Centre National de la Recherche Scientifique (CNRS), and S
Care Design Lab Japan.

In this thesis, we refer to a robotic human in loop system as "embodied" when the
robot is controlled by a human user with a first person visual point of view. The robot is
commanded by tracking of any limb of the human user, with the robot’s location mat-
ching, in first person perspective, the location of the human limb that the robot tracks.
The user is provided with relevant haptic information during in the task, and where
he/she would have felt the feedback in case he had used his own limb to perform the
task. Overall, the human user would feel as if an embodied robot was part of him/her
and replaced the limb/s used to control the robot .

In this thesis we will focus on the issues of embodiment on tele-operation and the
benefits and constraints of embodiment in regard to the control of and learning by
robots. We do not aim to improve other common problems in teleoperation, especially
delays, which we will consider as solved, or as a constraint in our investigations.

In this thesis, we will start with chapters on the Background and State-of-the-Art
where we will define backgrounds of the main concepts underlying this thesis. Spe-
cifically, we will discuss some background information on serial manipulator control,
haptic feedback device, teleoperation, tele-impedance, embodiment phenomenon, em-
bodied robot, deep learning and Learning from Demonstration

Then in the second chapter, I will present my work to develop an intuitive control-
ler and user interface for an embodied wearable system with two robot arms. The work
was performed in collaboration with the University of Tokyo and Published as an E-
tech paper at Siggraph Asia 2019, which is one of the two leading (and strictly revie-
wed) conference in the field of Graphics and Interactive techniques.

In the third chapter, I will then present the embodied teleoperation robot setup and
control, that I developed by integrating several hardware elements and software envi-
ronment. This setup was the base for the tele-impedance experiments and the Learning
from Demonstration experiments, which form a major part of this thesis.

The fourth chapter presents our implementation of a new human arm Impedance
estimation algorithm, and the implementation of tele-impedance in the embodied te-
leoperation setup. This work was presented at the IEEE Intelligent Robots and Systems
(IROS) 2021.

Chapters 5 and 6 will then present my work on the implementation of an embo-
died skill transfer system with our system. I discuss how an embodied tele-operation
setup is ideal in many respect for the implementation of the machine leaning based
algorithms to learn from a human and improve a robot’s skill. Chapter 5 will introduce
background on Machine and Deep Learning aspects to understand the choices made
in Chapter 6.

The Chapter 6 will then describe our Deep Learning-based architecture based on
visual recognition and our experiment environment. Then it will explain the results
obtained with the trained agent and will present a comparison of our results with hu-
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man participants.

Finally, Chapter 7 discussion the thesis contribution and give a perspective for fu-
ture developments.

Note about the QR Codes

This thesis contains some QR codes pointing to our Git repository. This is a complement to
the figure that represents those motions. All the QR codes are either flash-able by your smart-
phone to access the link or clickable to directly open the link in your internet browser.

3





CHAPTER 1

BACKGROUND AND STATE OF THE ART

Contents
1.1 Teleoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Haptic feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Impedance control in serial manipulators . . . . . . . . . . . . . . . . 7

1.4 Human impedance estimation . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Tele-impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Embodiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Embodied robot system . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Machine and Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 15

This thesis concerns embodied robot systems and skill transfer through these sys-
tems. We define embodiment, and describe the link between robotics and embodiment.
Embodied robots also need to be controlled, and teleoperated, with haptic feedback
devices to achieve embodiment. Furthermore, we also introduce Learning from De-
monstration in embodied robots, including Machine Learning and Deep Learning in
robotics or in robotic-related field.

1.1 Teleoperation

The word Teleoperation appeared in dictionaries only around 1975 but it was used
since before World War 2, when scientists started understanding that radioactive pro-
ducts are harmful to the human body. The need to manipulate these products for re-
search purposes from behind lead walls led to building some primitive mechanical
tele-operation systems. The first models were just mechanical-ball joints and transla-
ting links moving trough a lead wall, letting the teleoperator manipulate with four
Degree of Freedom with the help of a long clamp.

The first Master Slave teleoperation system was proposed by Raymond Goertz in
1947 in Chicago (Fig. 1.1). It was a mechanical teleoperation device where the teleo-
peration was bilateral. Goertz would later adapt this concept to electrically operated
actuators in order to get more remote teleoperation but lose bilaterality.
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As any teleoperation system has two sides, in this thesis from now on, the human
side will be called the teleoperator or the master and the robot side called the slave or
the manipulator system.

The word teleoperation also gave birth to the words tele-existence, tele-robotics,
tele-presence, tele-manipulation, tele-impedance over the time which are all teleope-
ration tasks but each has a specific meaning. Teleoperation has been used in many de-
vices such as for micromanipulation [Bolopion and Regnier, 2013], trough the Internet
communication network [Kebria et al., 2018], for arm robot mounted on UAV [Leica
et al., 2019], for Manipulation in space [Weber et al., 2019, Imaida et al., 2004],etc..

In this thesis we do not treat teleoperation aspects such as stability, time delay
concerns, passivity. We used teleoperation for teleimpedance purposes as described
in Section 1.5 in a bilateral teleoperation system. In order to achieve bilaterality, we
used the haptic feedback device presented in next Section.

FIGURE 1.1 – Raymond Goertz and his first teleoperation system, Source : Wikipedia Commons

1.2 Haptic feedback

Haptic feedback can be defined as the forces sensed or vibrations coming from any
device in reaction to the user action or environment changes. The word haptic comes
from a Greek word haphtésaï meaning feeling by touching. This sense combines 2 dif-
ferent type of information : the kinestetic or proprioception senses and the tactile infor-
mation should they be forces, shapes, textures or thermal exchanges. Haptic feedback
technologies are used in multiples fields, including video games, Virtual Reality, Ro-
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botics, Robotics Surgeries, Virtual Training, race simulations, planes simulations...

Haptic feedback usages can be separated in 2 categories :
-making the user feel a non physical, virtual, feedback
-reproducing physical signals to a remote location, for teleoperation purposes or am-
plification purposes.

There are two mains type of haptic feedback devices :
-the ones that only give feedback
-the ones that beside sending feedback can also read some of the user’s parameters,
like a relative pose, velocity etc...

For VR both types can be used but for the robotic and teleoperation uses only the
later is generally useful as it can generate the desired command to the robot. Haotic de-
vices are also present in multiple devices, from video games controller or smartphones
that will simply vibrate depending on the user action, to complex 6DoF haptic feed-
back devices. Indeed in case of robotics the feedback also depends on the position of
the physical interaction. So as a user you might receive a constant force feedback, but
feel a different force when the robot achieves some physical interaction.
In our experiment we use haptic feedback during teleoperation to have the user feel
forces created by physical interaction between the robot and its environment while
letting the user control the robot intuitively. To control the robot we used impedance
control as we will detail in the next section

1.3 Impedance control in serial manipulators

Serial manipulators can be controlled in multiple ways. The most popular in the
industry being position control or speed control. They consist in computing the posi-
tion or angular speed of each joint to lead to the given position or speed of the Terminal
Control Point (TCP). These methods are generally stable, precise and robust to external
disturbances. And this is exactly where the limit is reached. Indeed, if a contact were
to be made with the environment, there would be no compliance. The robot controller
would likely reach the desired command and an impact would likely occur. This is
especially problematic in tasks where the environment is not accurately well known
and for Human-Robot Interaction (HRI) since any impact would mean potential safety
issues for the human.

In order to achieve safely this kind of task, impedance control is generally used and
has made its proof since almost four decades [Hogan, 1984, Almeida et al., 1999, Jung
et al., 2004]. A torque-controlled enabled robot is needed to have a real, non simula-
ted, impedance control. It implies that each joints of the serial arm is equipped with a
torque sensor embedded and that each DC motor can be torque controlled. It is also
beneficial to have a force sensor mounted on the robot TCP measuring external forces
or an estimation of external forces, directly by using the embedded torque sensors.

In the case of impedance control, the command is not anymore a desired pose but a
desired impedance. The robot TCP is generally modeled as a mechanical mass-spring-
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"Haptic Gloves" from Manus VR "Omega" from Force dimension

"TorsionCrowds" from [Horie et al., 2020] "Haption Virtuose 6D" from Haption

"Hardlight VR" Haptic Suit "Phantom Sensable" from Horie and al

TABLE 1.1 – The 2 bottom-most left column devices are haptic feedback "only" devices. The
right column devices and left first device are haptic feedback device that can record the user’s
position, pose and/or velocity

damper system in the Task-Space with the following equation (1.1):
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F R = K∆xR + D∆ẋR + M∆ẍR, (1.1)

where F R ∈ R6 are the external forces applied to the robot TCP , K, D and M are the
positive-definite 6×6 matrices of stiffness, damping and mass, and ∆xR = xR

r −xR ∈
R6 is the difference between the reference and measured positions of the robot TCP

With impedance control, impedance values like stiffness and damping matrix would
be estimated for the controller to work. In general, the stiffness matrix K is chosen de-
pending on the need of the task, with an empirical process of trial an error to tune the
value and damping set to a value that would lead to an overdamped system so the
system stays stable. We explain how human arm impedance can be estimated the next
section.

1.4 Human impedance estimation

During impedance control the impedance values to be set to the robot should be
decided, and in some cases there is a need to change the robot impedance online. Since
our work is focusing on human-in-the-loop system, we decided to apply impedance
parameters taken from the human on the robot. In order to achieve this type of control
called tele-impedance (Section 1.5) we first need to estimate the teleoperator’s arm
impedance.

Human impedance estimation in regard to robotics has been popularly done through
EMG (Electromyography) sensors directly placed on the skin of the human user and
measure the electrical activity of the muscles. [Ganesh et al., 2010, Peternel et al., 2017,
Luo et al., 2019, Ajoudani et al., 2012]. In the field of teleoperation when robots are
impedance-controlled during teleoperation, the operator arm impedance can be used
to control intuitively the robot’s impedance. In these case, EMG sensors can be pla-
ced on different muscles of the arm. (Fig. 1.2). To estimate the human arm impedance
even if no external forces are applied on the human arm, hence co-contractions without
physical external contact are measurable.

The drawback of this method is that there are multiples sensors, hence data should
be treated and merged, and calibrated as it requires user-specific calibration [Ajoudani,
2016, Doornebosch et al., 2021] and it is also noisy. EMG also include muscle reflexes,
which are characterized by their own temporal and state dynamics [Doornebosch et al.,
2021] making impedance estimation non trivial. Less known methods also exist, like
measuring the force in the user’s hand grasp force because naturally the human tends
to close his hand when co-contracting muscle [Walker et al., 2010] but it only estimates
in 1-Dimension.

Another method consists in adding a vibrating device on the human wrist and by
knowing the vibration and by measuring the reaction in position, velocity and accele-
ration of human arm, it is possible to estimate impedance.[Gomi and Osu, 1996, 1998,
Burdet et al., 2001, Hill and Niemeyer, 2009]
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We decided not to use EMG due to the aforementioned drawbacks and developed
an online perturbation based impedance estimation methodology. That is, our method
uses the perturbations inherently present in the task to estimate the human’s arm im-
pedance. This is described in Chapter 4.

FIGURE 1.2 – EMG sensors fixed to a participant skin during one of our experiment

1.5 Tele-impedance

We call Tele-impedance a teleoperation where the slave robot is impedance control-
led and the master in the system has not only his/her movements sent trough the
teleoperation but also his/her arm impedance parameters estimated. In the case the
user‘s impedance is estimated in real time, this impedance estimation is then applied
to the slave robot, so the robot reacts in the same mechanical way as the human opera-
tor does, in position, velocity, acceleration and stiffness and damping. Tele-impedance
is being used in field like HRI or industrial tasks [Ajoudani, 2016, Doornebosch et al.,
2021]

In our work we use tele-impedance to improve our embodied setup. Indeed the
user can control the robot impedance in real time, which enables more possibilities
about task achievement but also improves Human Robot Interactions through an em-
bodied robot. The method used to estimate human arm impedance and apply it on the
robot impedance control, is described in Chapter 4.
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1.6 Embodiment

Embodiment or more specifically the sense of embodiment in a human being has
been defined as "the ensemble of sensations that arise in conjunction with being inside,
having, and controlling a body" ([Kilteni et al., 2012]), where "body" refers to a physical
or virtual body, not only a biological one. While this definition sounds complex, it
is quite simple to have a participant feel the sense of embodiment. The best known
experiment is the Rubber Hand Illusion (RHI) (Fig. 1.3) achieved by [Botvinick and
Cohen, 1998]. While a participant sits at a table a left rubber hand is placed at the
right to his/her real left hand, with an opaque screen preventing the participant from
seeing his/her own arm and hand. When done, the experimenter starts stroking the
participant’s left hand with a paintbrush while doing the same simultaneously at the
same position on the rubber hand with another paintbrush. This brings feeling where
the participant has an illusion that the rubber hand was his own hand.

Embodiment has also been used in robotics for multiples purposes. The rubber
hand illusion can also be achieved alone without experimenter through bilateral te-
leoperation Master-Slave robot system were the operator strokes the rubber hand with
an haptic feedback enabled pen, and the robot side strokes simultaneously the partici-
pant’s hand [Hara et al., 2016]. Embodiment has been shown to increase the acceptance
of the robot by humans [Ventre-Dominey et al., 2019] and embodiment of a human
on a robot has been proved to be preserved even through partial control of the robot
(stationary participant but walking robot for example) [Aymerich-Franch et al., 2016].
Embodiment during a robot teleoperation task has been proved to lead to better user-
satisfaction on the command and less time spent on the task [Almeida et al., 2014] and
lead to illusory haptic feedback [Aymerich-Franch et al., 2017]. Embodiment has also
been shown to be dependant of the time delay inherent to the robotic system [Arata
et al., 2014] and crucially has also been shown to improve attention allotment, and
hence performance in a dual motor task through an embodied robot system [Iwasaki
et al., 2022].

FIGURE 1.3 – Rubber hand illusion set-up picture Source : [Guterstam et al., 2011]
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1.7 Embodied robot system

As discussed in the precedent section embodiment can produce several improve-
ments during robot teleoperation. Hence in this thesis we will postulate that robot
embodiment improves performances of human using a robotic system. There could
be increases of concentration, reduce the feeling of scale inconsistencies, or of the ro-
bot DOF compared to the human. These same considerations have been taken in other
works that uses embodied robots [Toet et al., 2020b, Iwasaki et al., 2022]

Research started since a few years ago to develop Embodied robot systems for
multiple use-cases as wide as underwater robotics, UAV control, full body humanoid
control and robot arm control. (Table 1.4). This research topic has been fueled by the
emergencies of recent disasters like the 2011 earthquake followed by a tsunami that
stroke the Fukushima region of Japan and its nuclear power plant. The radiation emit-
ted in the region due to the incident affected the health of workers that helped rescue
and decontamination, [Hiraoka et al., 2015]. Sending robots, if reliable and controlled
in the right way could avoid these issues.

“Embodied Drone”from EPFL [Cherpillod et al., 2017] “Centauro” [Klamt et al., 2019]

“TELESAR VI from Tachi Lab” [Tachi et al., 2020] “Ocean One” [Khatib et al., 2016]

FIGURE 1.4 – Embodied robot for UAV,UUV, Humanoid and Rescue Robot.

Embodied robots are also starting to emerge in the manufacturing and service in-
dustry. They logically emerged at a faster pace than the research ones. Since 2020 and
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the pandemic, we observed a lot of companies developing embodied robots whose
main role is to interact with the environment. This might be explained by the surge
of the remote work and tele-presence trend that emerged worldwide during the Co-
vid19 related lockdowns. But due to the nature of under Research and Development
work produced by companies, it is difficult to obtain information about their products.
In 2020, when Telexistence (a Tokyo based startup) unveiled a video of their proto-
type,(Fig. 1.6) the upper limb humanoid robot is seen carrying plastic bottles to put
them over their respective shelves in a convenience store while being remotely control-
led with a VR HMD equipped operator. In 2021, Honda Research Institute released a
video of a prototype doing precision prehension remotely controlled with a VR HMD
equipped operator.(Fig. 1.5). And in 2022, West Japan Railway Co. released multiple
footage of a prototype they plan to be ready by 2024. It consists in an upper limb hu-
manoid robot attached to a construction vehicle in place of the nacelle (Fig. 1.7) The
operator here remotely controls with a VR HMD the arm and the head rotation of the
robot. They claim this product will be useful to repair railway pillars (Fig. 1.7).

We set up an embodied robot setup using haptic feedback, VR and 360° camera
which is presented in Chapter 3 We did not proved that embodiment phenomenon oc-
curred in our setup as it was not the main point of this PhD, but our setup was used in
another research work and it was proved to create embodiment, [Iwasaki et al., 2022].
Therefore we will postulate that embodiment is occurring in the concerned experiment
using our setup.

FIGURE 1.5 – Honda Research Institute’s Avatar Robot, credit: DPCcars
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FIGURE 1.6 – Telexistence Robot operating in a convenient store, credit: Telexistence.inc

FIGURE 1.7 – Rei shiki Robot operating metallic parts over a railway, credit: The Japan Time
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1.8 Machine and Deep Learning

1.8.1 Motivation

Machine Learning techniques including Deep Learning are now popular in both
research and companies since a few years. This can mainly be explained by two phe-
nomena, the price reduction of extremely powerful GPU equipped computers and the
availability of massive amount of data generally referred as big data. As storage be-
came cheaper and internet access faster, more and more databases became available
online from medical analysis results, categorized images, car driving pictures, music
classifications, etc. The robotics field is also evolving using Deep Learning but robots
impose specific constraints not present in other fields. Big databases of robot control,
motion, sensors, etc. are difficult to create since it would require hundreds of hours of
robot motion data. These constraints led to multiple robotic-related fields of research
like Reinforcement Learning [Zhang and Mo, 2021], One-Shot Policy Learning [Finn
et al., 2017, Santoro et al., 2016, Snell et al., 2017], Learning from Demonstration [Ravi-
chandar et al., 2020].

That Deep Learning ia a popular technique, is not the reason we chose to use it.
Its main advantage is its ability to correlates values, that at first sight did not seem
correlated and to learn patterns without prior knowledge about the input data. Indeed
these properties make Deep Learning interesting to learn from human motion and
decision making. As we still don’t fully understand human’s complex decision taking
process, this leads to situation in which it becomes hard to predict what will happen
so it can be "hard-coded" so a robot can act in the same way. In such scenarios, Deep
Learning becomes can learn and reproduce behavior that any human would naturally
have, but that would be hard to describe in terms of robot behaviors.

1.8.2 Learning from Demonstration : Overview

Reinforcement Learning(RL) has been applied in robotics to multiple tasks like au-
tonomous helicopter flight [Bagnell and Schneider, 2001],jumping dog robot [Kolter
and Ng, 2011], cart pole swing [Deisenroth and Rasmussen, 2011], robot hand comple-
ting rubik’s cube [OpenAI et al., 2019], the really impressive simulation of humanoid
and wheeled robots in Isaac Gym [Makoviychuk et al., 2021] and the robotic assem-
bly warehouse simulations [Narang et al., 2022]. However when using Reinforcement
Learning, the trained agent is not taught by any human, but has learned by itself, un-
supervised, in a simulator where the goal is to achieve a task through trial an error.
Reinforcement Learning methods use a cost function as a reward in order to teach the
agent if the trial was good enough or not, so it can gradually improve. While these
methods are popular they have strong requirements:

• The need of a realistic simulator of the robot and its environment.

• A good knowledge of what task should be achieved in order to define the re-
ward/cost function.
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• Thousands of simulations that can take a really long time to train.

With these requirements, from a robotics point a view, a lot of task become impos-
sible. For example every Human-Robot Interaction is hard to reproduce due to the dif-
ficulty to simulate human behavior, and it is not ofter possible to determine for every
task where what should be done. This later point is important when working with hu-
mans. Indeed there are a lot of tasks where it is not exactly well known how the human
does take its decision according to a lot of parameters.

An other method where learning is used to operate a robot is Learning from De-
monstration (LfD) [Argall et al., 2009, Calinon, 2018]. The advances in the field were
less impacting and seemed to go at a lower pace than the previously shown Reinfor-
cement Learning based task. The reason of this lack of impact is due to the nature of
Learning from Demonstrations : A human expert is needed to show the task to the
agent.

The process of LfD is generally done through the following steps [Pais Ureche and
Billard, 2015]
- Human expert achieves a demonstration in the task space and all data is recorded.
- This data is treated, filtered or analyzed in order to fit in the learning algorithm that
will come next like creating windowed-time series, video from pictures or vice-versa.
- The agent is trained with the previously recorded data by using either Deep Learning
algorithms, Policy Learning algorithms or more classical algorithms.

But most LfD methods have a fundamental problem : the body of the teacher and
the robot’s body are different [Dautenhahn and Nehaniv, 2002] (Chapter 14)
The kinesthetic method, that consists to have the user move the robot parts while it
is in gravity compensation mode, brings a nice aspect due to the fact the human can
feel applied forces trough the robot, feel mechanical constraints, etc. But this method
has a drawback when a high number of DoF should be moved by the human, with
humanoid for example it is difficult to imagine moving the whole robot like this while
still using the temporality contained in the data. Same goes to some extent to 7DoF
robots, since the redundancy will have to be managed.
Moreover in case of the need of visual data, the point of view of the human and the
potential camera field of view are likely to be different because it is not acceptable for
the human to obstruct the camera’s field of view. The human will teach from their own
point of view, but it might render differently from the robot’s one.

As explained in [Ravichandar et al., 2020] there are three main type of demonstra-
tions Teleoperation, Observation and Kinesthetic (Fig. 1.8). They can be classified in
three classes : Easiness of demonstration, possibility to control a high number of DoF
and easiness of mapping teaching and actions to realize.

We trust that Embodied Teleoperation could have the same advantages regarding
LfD, as the Teleoperation row in the table (Fig. 1.8) but it would keep the Ease of De-
monstration as explained in the sections 1.7 and 1.6
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FIGURE 1.8 – Differences between LfD teaching methods and their respective advantages
Source : [Ravichandar et al., 2020]

Our concern about the expert demonstration is also explained in [Sasaki and Yama-
shina, 2021] : Unfortunately, it is often difficult to obtain optimal demonstrations for many
tasks in real-world problems because the expert who tries to operate the robot so that it can
achieve tasks often makes mistakes due to various reasons, such as the difficulty of the task,
difficulty in handling the controller, limited observability of the environment, or the presence
of distraction. Hence we propose an embodied teaching methods using haptic feedback
teleoperated robot enhanced with a VR HMD device. We used short video clip of a
robot controlled by a human expert to train our agent composed of a pre-trained Re-
sidualNetwork (ResNet) and Gated Recurrent Units (GRU). The details of the model
and methods used to train our agent will be detailed in Chapter 6.

1.8.3 Differences with learning in video games

One could think that many complex problems in deep learning are already solved.
Computer graphic fields, video games and robotic, have a lot in common in terms
of simulation. They all use Inverse Kinematics to generate motion, body dynamics,
etc... however they differ in the sense that they can simulate everything and get huge
amount of data by letting a simulator run one week to simulate 10 years of time. The
key difference from our work is that in our study we will try to learn human behavior,
and for this, as will be discussed in the later chapter, embodied teleoperation provides
some key advantages.

Indeed in 2015, Alpha Go (a specialized Deep Learning Based Agent) beat the Ko-
rean world Go champion. The most arcade video games are currently played as better
by AI as humans thanks for example to the Open AI Gym framework [Nichol et al.,
2018]. More recently, Real Time Strategy video games like Starcraft, which consists in
planning challenges of multiple hundredth of units over hours of time in order to beat
the opponent player, has been participant to a newly developed network called Al-
phaStar which has reached the Grandmaster level by using supervised learning from
players data and simulation of more than 200 years (per different playable classes) with
reinforcement learning [Vinyals et al., 2019]

Racing games are also concerned by the recent advances of the technology, [Weiss
and Behl, 2020] presented a control technology using three high-level approaches :
mapping images, trajectory Waypoint Prediction and Trajectory Prediction with Bézier
Curves Trajectory Prediction to control actions like steering by using supervised lear-
ning from players data with haptic steering wheel controllers. This researches are also
clearly linked to autonomous driving.
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But these techniques also led to robot skill learning as it can be seen in NVIDIA’s
ISAAC Gym Reinforcement Learning simulator [Narang et al., 2022] (Fig. 1.9). Some of
those skills can be applied on real robot thanks to transfer learning [Kim et al., 2022].

FIGURE 1.9 – In parallel,128 Franka Panda Robot are tightening nuts on bolts inside the NVI-
DIA Isaac simulator Source [ISA]

1.8.4 Learning from Observation

Since the recent success of deep learning for learning features of complex visual
images input, vision-based control has become more considered in the field since it
has the interest to learn to control dynamical systems directly from raw images input.
These methods that learn policies to map visual input to classified movement action
were used to teach an agent to play Atari Games [Mnih et al., 2013] and control pre-
defined motion of a manipulator robot [Watter et al., 2015] , inverted pendulum in
simulation [Wahlström et al., 2015] [Levine et al., 2015] or even the billiard physics
[Fragkiadaki et al., 2015].

After the use of visual-based control in robotics, some works proposed methods
to learn Physics from Images stream input, ie. videos input. [Wu et al., 2015] and also
from static images [Mottaghi et al., 2015] It means it also become possible to control,
or predict physical motion which is useful in robotics or human motion field by lear-
ning dynamics of motion, collisions, etc.. For example, in [Jung et al., 2018, Rodríguez-
Hernandez et al., 2019] the authors use a CNN architecture to train an UAV to fly
through a gate by using visual data generated by an expert pilot.
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CHAPTER 2

CONTROL OF AN EMBODIED ROBOT :
THE CO-LIMBS CASE
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2.1 Introduction

The promising possibilities offered by supernumerary robotic wearable arms are
limited by the lack of an intuitive and robust user interface to control them. Here,
utilizing admittance control, we propose a ’Collaborative limbs’, or ’Co-limbs’ user
interface for wearable robot arms. The key feature of this user interface is its intuiti-
veness enabling even first time users to immediately move and use the normally stiff
robot arms for assistive tasks and even teach the robot simple and useful movements.
We demonstrate the diverse range of applications enabled by this simple yet powerful
user interface through example demonstrations in the Passive Assist, Power Assist and
Playback modes.

Imagine if you had two extra robotic arms to enable you to pull your luggage in
the airport and hold your coffee cup while you take the hand of your child, or to assist
you in holding a heavy box, or even to wave a hand fan back and forth on a hot day
while you read a newspaper. These promising and exciting possibilities have led to
the development of supernumerary Wearable Robotic Arms (WRA) by several groups
[Llorens-Bonilla et al., 2012, NAKABAYASHI et al., 2017], including ours [Sasaki et al.,
2017]. Yet, these designs remain limited to demonstrations, and have not found com-
mercial popularity because of the lack of intuitive and efficient user interfaces to ope-
rate them.
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The Co-Limbs user interface uses force sensors and admittance control to enable
a user to intuitively move and use the otherwise non-backdrivable wearable robotic
arms.

A good user interface should be intuitive to use and should enable the user to easily
convey to the robot what he/she wants, and how to achieve it. The first requirement
for any operation with the robot arm (like holding a cup, pulling the luggage, etc.) is
for it to be positioned and oriented appropriately. However, even this first operation
is difficult in the current WRA because of the popular use of servo motors in these
wearable systems- which helps reduce their weight, but the high gear ratios in these
motors results in the robot being stiff and servo control makes the robot non-back-
drivable. Positioning the robot arms thus requires the use of either joysticks, or tracking
of other limbs, which, due to positioning being in 12 dimensional space (3 position
+ 3 orientations) × 2 arms) and over a large workspace around the user’s body, can
require significant visual attention and time. To address this issue, here we propose
a simple but promising user interface, called ’Co-limbs’, that is based on the idea of
collaborative control [Peshkin et al., 2001] in which the user and robot work on the task
together. This interface is intuitive to use enabling even a first time user to immediately
position, orient and use the device in multiple scenarios, and even teach the WRA
simple movements.

2.2 Co-limb interface description
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FIGURE 2.1 – The Co-Limbs user interface uses force sensors and admittance control to enable
a user to intuitively move through force sensors levers and use the otherwise non-backdrivable
wearable robotic arms.

Humans are adept in embodying and using hand-held tools [Ganesh et al., 2014,
Tee et al., 2018]. They can immediately position and orient a hand held tool as per task
requirements, often requiring minimal visual feedback in order to do so. We therefore
hypothesized that an interface that promotes the wearable robot arms to be viewed
as tools by the user, would automatically make it easy for the user to operate them.
This however, is not directly possible in non-backdrivable system, like servo-motors.
But servos have the advantage to be light and do not require any external Pulse Width
Modulation (PWM) controller or mechanical brake. This can save a lot of weight in the
prototype of a Wearable Robot Arms

Here we used a Wearable Robot Arms prototype called Meta-Limb that was deve-
loped by Karakuri Product and Tokyo University’s Inami living lab [Sasaki et al., 2017,
Maekawa et al., 2019]

FIGURE 2.2 – Schematic of the frame of Meta-Limb, developed by Karakuri Product and Tokyo
University’s Inami living lab

Our work uses the aforementioned prototype that has been used for multiple works.
[Sasaki et al., 2017, Maekawa et al., 2019, Izumihara et al., 2019] Each arm is a 6DoF ro-
bot arm that was designed to match human morphology. But in this previous works,
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Meta-Limb was controlled with Unity, a 3D graphic engine used for Video Games and
VR, using Inverse kinematics and rigid bodies in the simulation. This choice is backed
by the fact that this prototype was used to be teleoperated by a remote user with a
HMD headset and a pair or controllers. To match our expectancies in term of robo-
tics, we decided to change the control software to OpenPHRI, [Navarro et al., 2018],
an open source robot control framework, in order to achieve a co-bot like control. Thus
Co-Limb is the name of this collaborative prototype based on Meta-Limb.

The Co-limbs system thus yields to have a handle equipped with a force sensor
(Fig. 2.3) (two Leptrino 6 Axis Force Sensor 055YA 501) on the forearm of each WRA
and utilize admittance control to allow the user to move the non-backdrivable arms.

FIGURE 2.3 – Co-Limb’s end effector with the switches present on each handles that lets the
user clutch the hand and trigger motion recording/replay for one arm.

In admittance control, the torque wrench W applied on each handle is recorded
in the force sensor coordinates (Wfsensor), and, knowing the current pose of the ro-
bot arm, transformed in the world space coordinates (T world(Q)fsensor), with Q a 7-
dimensional vector of the current joint states of each arm The force is then conver-
ted to a corresponding velocity in Cartesian coordinates with an assumed dynamics
ωworld = δ(m, d, Wworld), with mass m and damping d. Finally the joint velocities is cal-
culated using inverse kinematics as ωworld = IK(ωworld, Q). Our current application
is implemented in Linux using m = 1 kg, d = 15 kg/m and the inverse kinematics
functionality provided by the openPHRI package developed in our lab.
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FIGURE 2.4 – Admittance control scheme used for Co-limb

2.3 Main features

Our interface has several salient features that radically expand the applications of
a WRA systems.

• Its intuitiveness, enabling even a first time user to use it immediately with no
training (Fig. 2.5)

• Back-drivability, a key feature for user comfort, and enabling the user to easily
position the device for applications of passive assistive.

• Collaborative guidance: Two fundamental challenges for a robot interacting with
a human is to (1) understand the intention of the user, and (2) to plan its own mo-
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vements to help the user accordingly. Our interface proposes to overcome these
issues by allowing the user to collaboratively guide the robot, while benefiting
from the power assistance [Lee et al., 2012].

• Better teaching:The collaborative guidance opens up the possibility of using tea-
ching by demonstration [Haage et al., 2017] techniques to improve the skills of the
WRA (c.f. demonstration video).

• Versatility: While we do not show this in our current demonstration, the user
interface also allows us to modulate the dynamics felt by the user, allowing us
to make the WRA feel heavy or light, use the robot system to cancel possible
tremors and noise in the user input (for example when the system is used by a
elderly user)

FIGURE 2.5 – Instruction to use Co-limb from Left to Right : First the user should grab each
force handle, then apply some force to have the robot move. If the record switch was pressed
while the force was applied, the motion can be replayed without having to apply forces

2.4 Possible applications

We demonstrate the intuitiveness and versatility enabled by our proposed user in-
terface in three example modes of application utilizing the WRA device [Sasaki et al.,
2017].
First, the Passive Assist mode allows the user to orient the robot hands in the desired
postures and to utilize them in given scenarios (e.g. pull a suitcase or hold an umbrella,
c.f. video). The 1 DoF robot hand (open or close fingers) is activated by a switch on the
handle.
Second, the Power Assist (Fig. 2.9) mode allows the user to guide the robot arms and
pick up cumbersome loads (e.g. lifting a big box, c.f. video). Note that the weight of
the load is obviously transferred to the user (as the robot system is worn by the user),
but the robot distributes the load over the back and waist making it more comfortable
than lifting the load with their hands. The Power Assist mode can be particularly use-
ful for elderly users as it can assist their own body weight, for example, assist them in
standing up as in the third picture of the second row of (Fig. 2.6)
Third, the Playback mode allows the users to record and playback simple but useful
repetitive movements to the robot, so that the robot can then perform them without
user guidance (e.g. use a hand held fan, c.f. video). The record process was done by
recording the end effector trajectory and replaying it afterward. (Fig. 2.6)
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FIGURE 2.6 – Examples of possible passive and active applications

FIGURE 2.7 – Youtube Video of our Co-limbs Experiment (the QR code is a also clickable link)

FIGURE 2.8 – Examples of application : record a motion to have a fan move
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FIGURE 2.9 – Examples of application : Power assist

2.5 Contribution trough our Co-limb interface

In this study, we introduce a simple user interface for supernumerary wearable
robot arm systems. This interface utilizes a force sensor to enable users to guide the
robot arms and enable various passive and active assistance tasks, and enabling the
user to teach simple movements to the robot. The key feature of this user interface is its
intuitiveness and ease of use. We currently demonstrate the versatility of the interface
in three modes of application, and we are now developing its applications in the field
of elderly care where we believe it can be extremely useful.

2.6 Presentation at ACM Siggraph Asia

Our work has been presented at the Siggraph Asia 2019 conference in Brisbane in
the emerging technology paper. Siggraph conferences have a particularity for emer-
ging technology papers : the authors must bring their prototype to the conference and
have it displayed and tested by the public. This led us to spend three days displaying
Co-Limbs prototype (Fig. 2.10) to the public. We gathered interesting feedback from
the public, that seemed very happy to try Wearable Robot Arms for their first time
(Fig. 2.11). We had set-up multiple objects that they could grasp with the robot like
balls, plastic tray and sponges. But we also had some non anticipated problems in the
prototype electronics, and despite the fact we had brought spare components, it led in
having one arm not functioning during the last day. Despite all the fix we had to do on
Co-limbs during the conference, where it was used all day by the public, the safety of
the public was maintained and we could keep it almost functional until the end.

26



Control of an embodied robot : the Co-limbs case 2.6. Presentation at ACM Siggraph Asia

FIGURE 2.10 – Co-Limbs in our booth at Siggraph Asia 2019

FIGURE 2.11 – Co-limbs being tested by the public during Siggraph Asia 2019
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3.1 Introduction

In Chapter 2 we used the Wearable Robot Arm system of Tokyo University to in-
duce the sense of embodiment to the user. In this chapter we will explain the technical
choices we took when building our embodied robot system.

In order to reproduce the sense of embodiment which is needed in our teleoperation
experiments, we spent a non negligible time setting-up the Experimental Setup. The
key goal of the setup is the induce a feeling in the human user controlling a robot arm
that he is controlling his own arm. The setup is made out of 4 principles devices :

FIGURE 3.1 – Embodied teleoperation setup. Our setup consists of a Virtuose haptic device
and a Franka Panda robot. The operator wears a head mounted display and operates the robot
using the haptic device. He is provided with a first person visual display from a camera placed
above the Franka. The controller utilized to help him guide the trajectory and impedance of the
robot is explained in Sect. 3.4.

3.2 Hardware setup

• Haption Virtuose 3D large workspace haptic feedback device
[https://www.haption.com/fr/products-fr/virtuose-3d fr.html]

• a serial 7 DOF Franka Panda robot manipulator [https://www.franka.de/technology]

• A VR Head Mounted Device HMD [https://www.vive.com/fr/product/vive
pro/]

• A pan-tilt mounted stereo camera / a 360° camera
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3.2.1 Haptic Feedback Device

To completely feel the sense of embodiment, the user also needs to be able to feel
its own environment. This will be achieved trough an haptic feedback device that let
the user feel forces on the top of letting the user move freely the pose of the Haptic
Feedback device’s TCP in space. Our Haptic feedback device is a Haption Virtuose 3D
Fig 3.2 which can feedback a 3D linear force up to 10N constantly and 35N at peak.
Torque feedback were not possible with this model. We chose to control our haptic
feedback device in admittance mode, which means the input of the control of the haptic
feedback device is a force and the output a position. It fits the need of the robot being
controlled in impedance in the experiment we will explain in the chapter Sect. 4

FIGURE 3.2 – The Haption Virtuose 3D, our Haptic Feedback device, fixed to a high impedance
base. Indeed for the need of our vibration-based impedance estimation method, we opted for
this base in order not to estimate the furniture it’s placed on impedance instead of the human’s
arm one.
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FIGURE 3.3 – Virtuose’s workspace, Source : [https://www.haption.com/fr/products-
fr/virtuose-3d fr.html]

3.2.2 Robot manipulator

FIGURE 3.4 – The 7DoF Franka robot fixed to its base. This aluminium profile made base pro-
vides a sturdy base on which the robot’s TCP can reach positions below it’s base
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FIGURE 3.5 – Franka’s workspace, unit: milimeters , Source :
[https://www.franka.de/technology]

For the robot and haptic system we used a 7DoF serial manipulator Franka Panda
Fig 3.4

The system is then set up to move the target of the manipulator according to the
pose and velocity applied by the user on the force feedback device. Any force applied
on the robot generated by an external physical contact would lead to a force feedback
to the user. The controller used is detailed in Sect. 3.4

3.2.3 Virtual Reality Head Mounted Display

To achieve the sense of self-location near the robot, there is the need to transfer
the viewpoint of the user near the robot position. In order to achieve it, we placed a
pan-tilt mounted stereo camera near the robot first joint, at a distance comparable to
the one an adult would have between his/her head and shoulder. The camera being
a stereo camera it becomes possible for the user to have a sense of depth while wat-
ching the video stream. But in order to make use of the depth, we decided to send
both video streams to each eye of a Virtual Reality Head Mounted Display (VR HMD)
[https://www.vive.com/fr/product/vive pro/].

3.2.4 Camera setup

For our first experiment we used a consumer grade 360° camera, that would avoid
the use of a pan-tilt device, by rotating inside the 360° spherical image instead of mo-
ving the camera. This led to smoother images since there would have been no move-
ments of the lenses and thus the electronic image stabilisation is not used, and also less
mechanical devices in the system to control with potential latency. We had planned to
use two 360° cameras, but it seems that the stitch/un-stitch phase of two different 4K
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streams at the same time was not possible on the computer with these cameras. Un-
fortunately, the 360 camera’s we decided to use happened to have too strong delays
(between 500ms and 1000ms) for the task during real time streaming. We think this
is due to the image compression/decompression and stitching/un-stitching phases in
the streaming protocol and the fact that these cameras used USB2.0 standard, which
forces compression to a higher level than USB3.0 standard.

3.3 Software and middleware framework

Our C++ software programs were developed, using the PID11 (Packages Integral
Development) API maintained by R. Passama and B. Navarro. The objective is to create
en environment trough CMake where the user can program more easily by integrating
tools that are recurrently needed in robotics applications like loggers, real-time plots,
real-time web interfaces, different kind of filters, etc. It also manages dependencies
through Linux automatically and let the programs be installed as standalone app, so
that applications can be instantly deployed by any other user.

We also integrated ROS1 (Robotic Operating System) in our system in order to ma-
nage all the devices used in our embodied setup in a Linux computer. Indeed, ROS
lets the user create nodes to integrate all the devices in the same network so they can
communicate and send messages to each node. In our work ROS was used to have the
feedback device communicate with the robot (Fig. 3.6)

The VR system was managed by another computer that managed Steam VR for the
connection of the HMD to the system and Unity 3D to render the camera view in the
VR HMD.

FIGURE 3.6 – Global scheme of framework and software used for our setup
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3.4 Robot control

We consider a serial robot with k degrees of freedom with the following dynamic
model:

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ ∗ + τ ext (3.1)
H(q)q̈ + τ dyn = τ ∗ + τ ext. (3.2)

In these equations, H(q) ∈ Rk×k is the inertia matrix, C(q, q̇)q̇ ∈ Rk embeds Coriolis
and centrifugal effects, g(q) ∈ Rk are the joint torques induced by gravity, τ ∗ ∈ Rk is
the torque command and τ ext ∈ Rk the external torques applied to the robot. τ dyn are
the torques induced by Coriolis, centrifugal and gravitational forces

Since the goal of the controller is to realize Cartesian forces at the robot’s end-
effector, one simple way to compute τ ∗ would be to use:

τ ∗ = J⊤
RF R∗ + τ dyn (3.3)

where JR ∈ R6×k is the Jacobian matrix associated with the end-effector and F R∗ =
F R + F O ∈ R6 is the force to be realized. This is made up of two components.

The first component is our impedance controller:

F R = αK∆xR + βD∆ẋR + FI. (3.4)

While the R subscript represents the robot, F R is the command force of the robot and
xR, ẋR are the movement and velocity of the robot relative to the reference from the
operator (respectively xO

r and ẋO
r ); α is a scaling parameter on the human stiffness and

β a scaling parameter on the human damping. FI = mRẍR represents an approximated
Cartesian inertia compensation term.

The second component, F O is a pseudo interaction force that is used in Section
Sect. 4.4 to simulate force perturbations from an assisted patient as explained in the
next Chapter.

However, this approach does not ensure that the robot mechanical limits are respec-
ted. To cope with this issue, we use a quadratic programming approach including the
joint position, velocity and torque limits, to ensure admissibility of the torque control
inputs. The problem is formulated as follows:

minimize
τ , q̈

||τ − J⊤
RF R∗||22

subject to τ = Hq̈,

τ ′
min ≤ τ ≤ τ ′

max,

q̈min ≤ q̈ ≤ q̈max.

(3.5)

In this equation: q̈min and q̈max are k × 1 vectors computed to include also the joint
position and velocity limits (as in [Bouyarmane et al., 2017]), τ ′

min and τ ′
max are k × 1
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vectors accounting for the joint torque mechanical limits
[
−τ max τ max

]
with the Corio-

lis, centrifugal, gravity and external torques removed:

τ ′
min = −τ max − τ dyn − τ ext (3.6)

τ ′
max = τ max − τ dyn − τ ext. (3.7)

Once a solution to (3.5) is found, the joint torque command to be sent to the robot is:

τ ∗ = τ + τ dyn. (3.8)

3.5 Deep Learning software

For our Learning from Demonstration experiments in our Chapter 6 we used Py-
thon 3 and Tensor Flow. The communication with the haptic feedback device was
achieved using ROSpy, a ROS wrapper for Python. We had to develop from scratch
the python ROS node for our Haptic Feedback device as the one provided by the ma-
nufacturer was not working with python.
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4.1 Introduction

Human physical assistance requires the assistant to tune both his trajectory and
impedance in order to assist an individual as well as be guided by him. In this study
we propose a controller for teleoperated human assistance that allows the assistant
to guide the assisting robot in both trajectory and impedance. We propose to use the
inherent perturbations in the task, for impedance estimation, while a simple neuros-
cience based filter allows the reference estimation of the operator. We tested our impe-
dance estimation and the controller as a whole in two experiments in which a human
operator guided a robot suffering force perturbations that simulated a human patient.

4.2 Background

In 2009, adults of age 65 or more represented 11% of the world population, and this
percentage is expected to double by 2050 [UNR]. The percentage of elders above the
age of 65 is 28% in the European Union [2016], and it is expected to reach 34% in Japan
by 2030 [Muramatsu and Akiyama, 2011]. Elderly care and support, and specifically
the lack of human assistants to help them, is a major concern for health-care, and in this
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regard robots are seen as a promising tool [Broekens et al., 2009]. In this work, we are
interested in robotic elderly physical assistance, in scenarios such as lifting the person
out of the bath or chair, and for assistance in feeding, which have been identified as
priority tasks in elderly care [2014].

A human physician or physical assistant can help a person stand up or take a cup
to his/her mouth, in spite of arm tremor. In these interactions, the assistant is not (or
at least, is not always) the ‘leader’ who imposes or forces the patient’s movements.
The assistant in fact acts as a ‘collaborator’, who aids haptically, while predicting and
perceiving the motion intention [Ganesh et al., 2014, Kato et al., 2019, Takagi et al.,
2018], and constraints of the other individual. Ideally, one would like a robot assistant
to be able to do the same. However, this physical collaboration requires force and im-
pedance adaptations, and prediction of the haptic behavior, all of which are non-trivial
challenges for robots. And while researchers have proposed robot controllers which
mimic human impedance adaptation [Li et al., 2018, Yang et al., 2011, Ganesh et al.,
2010] and physical assistance [Takagi et al., 2017], these controllers are reactive, and
need a predefined reference, that is difficult to anticipate in an assistive scenario. It
will take some time before robots will be as effective as a human assistant.

Another way of replicating the human assistant’s behavior on a robot is to include
him/her ‘in the loop’, for example via tele-operation [Niemeyer et al., 2016]. In this
case, the physical assistant drives the behavior of the assisting robot. This is the fo-
cus of our study. In regard to patient or elderly care, teleoperation cannot remove the
requirement of the human assistant. Yet, it can aid one assistant help multiple indivi-
duals without going to every patient physically, hence it decreases the ‘assistants over
patients’ ratio.

Teleoperation traditionally uses either an impedance or an admittance framework
to connect the human ‘leader’ to the robot ‘follower’; the impedance in these scenarios
is either constant or adapted, but adapted relative to the environment, not the human
operator [Niemeyer et al., 2016]. Instead, for human assistance, we need a control fra-
mework that allows the transfer of impedance as well as kinematic trajectories from the
human operator to the assisting follower robot. We can try to achieve this with stiff po-
sition control, but the stability of such an arrangement is not possible due to limitations
of the control frequency and presence of feedback and control delays that are typical
of tele-operation setups [Mouri et al., 2017, Cortesao et al., 2006]. An alternate method
one may think of is to estimate the desired/reference trajectory and impedance of the
human operator and implement these as an impedance controller on the robot side.
While this method still suffers from performance issues due to feedback and control
delays, it can be passive and more efficient in terms of the stability. This however re-
quires one to estimate the human impedance, as well as movement reference online
during task performance.

The impedance applied by a human during a movement can be estimated either by
perturbing the human limb [Gomi and Kawato, 1997] or by estimating muscle activa-
tion using electromyography (EMG) or grip force. Many recent studies have utilized
EMG [Ganesh et al., 2010, Peternel et al., 2017, Luo et al., 2019, Ajoudani et al., 2012]
or grip force[Walker et al., 2010], [Takagi et al., 2020] for human impedance estima-
tion. Relying on muscle activation enables impedance estimation without the need for
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external perturbations. Besides, the changes in EMG and grip force are not only due
to the limb impedance (i.e., to the stiffness and damping parameters) but are person
specific, and also due to: limb motion trajectory, body posture and time (fatigue). The-
refore, while EMG or grip force may still be good methods to estimate impedance
in the absence of perturbations, they require user-specific calibration [Ajoudani, 2016,
Doornebosch et al., 2021]. On the other hand, in the presence of external perturbations,
particularly continuous and non-repetitive ones, EMG and grip force signals include
muscle reflexes, which are characterized by their own temporal and state dynamics
[Doornebosch et al., 2021] making impedance estimation non trivial.

Impedance can be estimated by adding controlled perturbations [Hill and Nie-
meyer, 2009], but this can be detrimental for the task. Yet, in tasks like human as-
sistance, which are themselves characterized by frequent perturbations, it is argua-
bly better to utilize this technique – i.e., to estimate the impedance from the recorded
perturbation forces and the resulting movement disturbances. Impedance measured
from perturbations can be more representative – quantitatively and qualitatively – than
the one estimated from muscle activation. Qualitatively, because it can enable better
measures of directional impedance variations, and quantitatively because the measu-
rement is directly at the human hand and it avoids the noise in EMG signals.

In this study, we propose a procedure for online (i.e., during the task) estimation of
the human impedance from the perturbations. We will focus on the estimation of the
stiffness and damping of the human operator, while assuming that the robot mass can
be compensated for. We also propose a method, inspired by neuroscience, to estimate
the reference trajectory of the human leader. Overall, our controller enables the transfer
of force, trajectory and impedance, in the presence of unknown external perturbations.
We test the controller in an embodied tele-assistance experiments.

The chapter is organized as follows. In Sect. 4.3, we present the tele-assistance fra-
mework, including human arm impedance parameters estimation and robot control.
Next in Sect. 4.4, we will present three experiments. Experiment 1 is to validate our hu-
man impedance estimation procedure. Then in Experiment-2, we test the impedance
estimation and controller in a maze task in which human operator was required to, in
some scenarios, guide the robot through a channel (a task requiring high impedance)
in the presence of external disturbances (which simulated a patient) in 1-dimension,
and in other scenarios, follow the directions preferred by the robot (a task requiring
low impedance). In this experiment we will neglect any feedback delays, and focus on
the issue of impedance and trajectory transfer assuming that popular methods of de-
lay compensation can be utilized as such. Finally in Experiment-3 we do a stress test
of the system in a scenario with 2-dimensional perturbations as well as a visual feed-
back delay of 500 ms. We summarize and discuss the results in the 4.5 section before
concluding in the section 4.6 .

4.3 Methods

Let us consider an operator using a haptic feedback enabled controller teleoperating
a serial robot manipulator.
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FIGURE 4.1 – Block diagram of our proposed controller and setup. The key features are the
robot reference estimation and the online perturbation based impedance estimation blocks.

In such a scenario, keeping the operator’s feeling of the system as transparent as
possible is the main challenge, in order to properly transfer the operator’s position,
force and impedance. We model the operator’s Cartesian arm impedance as a mecha-
nical mass-spring-damper system with the following equation (4.1):

F O = K∆xO + D∆ẋO + M∆ẍO, (4.1)

where F O ∈ R6 is the resulting force imposed on the human operator (through our
haptic device) , K, D and M are the positive-definite 6 × 6 matrices of stiffness, dam-
ping and mass, and ∆xO = xO

r − xO ∈ R6 is the error between the reference and
measured positions. Here the O superscript stands for Operator (i.e., the human lea-
der).

The operator’s spatial state
[
xO

r ẋO
r ẍO

r

]
is obtained using the encoder readings from

the haptic device. The estimation of his/her arm’s impedance parameters
[
K D M

]
is however not trivial. Several solutions have been proposed [Ajoudani, 2016, Hill and
Niemeyer, 2009, Walker et al., 2010, Luo et al., 2019] but all require additional and po-
tentially intrusive hardware. To cope with this issue, we propose a method to estimate
in real time the operator’s arm impedance parameters as well as the operator’s ’desi-
red states’ or reference using only the data available from the haptic device. We rely
on known properties of the human motor system to facilitate these estimations. These
parameters can then be transferred to the robot’s impedance controller, to better mimic
the operator’s behavior and increase the system transparency.

The whole procedure we use in our methods is described in (Fig. 4.1). We will start
by describing the reference estimation procedure in 4.3.1, then how we extract the im-
pedance parameters from the haptic device signals in 4.3.2, and finish with a descrip-
tion of the robot controller in 3.4.
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4.3.1 Reference estimation

Human movements are enabled by the simultaneous modulation of trajectory, force
and impedance [Wolpert et al., 2011, Ganesh and Burdet, 2013]. However, the modula-
tion of each one has properties determined by the human body sensory and mechani-
cal constraints[Etienne Burdet, 2013, Franklin et al., 2007]. Here, we utilize one of these
properties with regards to perturbation regulation; it has been shown that humans
compensate for lower frequency perturbations by using a synchronized and opposing
’reciprocal activation’ i.e., a feedforward force. On the other hand, as the perturbation
frequency increases, they increase ’co-contraction’ – hence impedance – to compensate
for perturbations, relying completely on impedance above a certain frequency thre-
shold[G.Ganesh, 2020]. This is because while human generated forces (in the absence
of impacts) can contain frequencies of over 10 Hz, the frequency of the controllable
movements are much lower. While the threshold frequencies change depending on the
limb in question, they decrease with the size of the limb. For the wrist, reciprocal acti-
vations fall to almost 20% of their values with a frequency of 3.5Hz [G.Ganesh, 2020].
Thus here we hypothesized 3Hz to be a suitable frequency threshold given that the
perturbations disturb the whole arm in our setup.

The above observations provide us with two intuitions that help us with the refe-
rence and impedance estimation of the operator. First, because the reference trajectory
is a component of the feedforward forces by the human operator, the lower frequency
components of the operator states are more likely to represent his reference.

Indeed the need to differentiate the operator’s reference (the target) and the opera-
tor’s impedance changes is crucial. Let’s take the case of a contact between the robot
arm and the environment : in the case of this contact force suddenly increasing, it is
not possible to deduce if the operator’s reference moved toward the environment and
hence the operator purposely augmented the contact force or if the operator just increa-
sed his own arm stiffness on the axis of the contact force, and as a result the reference
moved away from the robot increasing the contact force

And second, for impedance estimation, we should consider the high frequency
components of both the operator states and operator forces, because higher frequency
components are more likely to be a result of impedance and not feedforward forces or
reference changes.

We therefore split the observed variable on the operator side into two components:

[
xO

r ẋO
r ẍO

r

]
= LPF3(

[
xO ẋO ẍO

]
) (4.2)[

xO
p ẋO

p ẍO
p F O

p

]
= HPF3(

[
xO ẋO ẍO F O

]
). (4.3)

In these equations, the r subscript denotes the reference whereas the perturbed com-
ponent of the spatial state, denoted by subscript p, will be used for impedance estima-
tion, as we explain in the next section. LPF3 and HPF3 are respectively low and high
pass filters with cutoff frequency 3 Hz.

41



Impedance Estimation and Tele-impedance 4.4. Experiments and results

4.3.2 Impedance estimation procedure

The objective of the impedance estimation is to derive K and D from (4.1), know-
ning force F O generated by the haptic device, spatial state

[
xO ẋO ẍO

]
, reference state[

xO
r ẋO

r ẍO
r

]
given by (4.2) and a priori effective cartesian mass M . We consider the

mass of the operator to be constant, under the assumption that his/her body and arm
posture do not change significantly during operation. M was taken to be equal to 1Kg
in line with human arm reach modelling studies [Wolpert et al., 2011]

Then from (4.1), we estimate K and D using least squares fit over a window of n
consecutive samples:

A = (F − MẌ)J †
O, (4.4)

with:

A =
[
K D

]
(4.5)

F =
[
F O

p . . . F O
pn

]
(4.6)

Ẍ =
[ ¨xO

p . . . ¨xO
pn

]
(4.7)

JO =
[
∆xO

p . . . ∆xO
pn

∆ ˙xO
p . . . ∆ ˙xO

pn

]
, (4.8)

and J †
O denotes the Moore-Penrose pseudo-inverse of JO.

4.4 Experiments and results

4.4.1 Experimental Setup

We used three experiments to verify our stiffness estimation procedure and the tele
operated assistance system. The setup is depicted in (Fig. 6.5). It consisted of a 7DOF
robot arm Franka Panda and a haptic feedback device Haption Virtuose 3D which can
feedback 3 linear forces. We utilized a HTC Vive Pro HMD with a 360 degree camera to
make the operator see the task from the same point of view as if the robot was his/her
own arms, i.e. as if the robot was embodied [Toet et al., 2020a]. To verify the correctness
of the impedance estimator, we recorded Electromyography (EMG) in Experiment-1,
with the Delsys Trigno wireless EMG.

During the experiments, the stiffness estimated from the perturbations was smoo-
thed by a Butterworth low pass filter at 0.5 Hz (second order). On the other hand,
we could not use the damping parameters calculated on the human operator and had
to use the critical damping value calculated relative to the stiffness as D = 2

√
KM

(with Mass =1 Kg). We found that, probably due to the lack of an accurate mass com-
pensation on our robot, the human calculated damping parameters were not sufficient
to ensure stable performance. For security reasons, we also limited the robot stiffness
values between 100 N/m and 10000 N/m for each Cartesian axis.
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4.4.2 Experiment 1: Verification of our stiffness estimation

We started by verifying the correctness and resolution of our stiffness estimation.
Unfortunately, for the ground truth, we had to rely on muscle activation, hence electro-
myography (EMG), which as mentioned before suffers from various limitations related
to movements. To overcome them, we asked the participant to maintain a static arm
posture while being disturbed by force perturbations from the haptic device. Further-
more, we chose to make the perturbations repetitive (albeit at a high frequency of 3.5
Hz, so that the participant could not compensate via feedforward forces). The measures
ensured that a constant muscle activation (hence a specific EMG level) would represent
a constant impedance at the hand. In this scenario, the participants were provided with
a feedback of the estimated stiffness on a computer screen (see inset of (Fig. 4.2)) while
we asked them to maintain their stiffness at different target levels. We recorded EMG
from four muscles in the arm (Biceps Brachii, Triceps Brachii Lateral Head, Flexi Carpi
Radialis and Extensor Carpi Radialis) that were expected to contribute to the task space
stiffness of the hand in our task (see plots in (Fig. 4.2)). While the EMG levels do not di-
rectly give the absolute impedance of the hand, the total EMG level (represented by the
smooth envelope in (Fig. 4.2)) is known to correlate with the impedance, and stiffness
(assuming the damping correlates with the stiffness at the hand) of the hand. We could
observe different muscle pairs activating when the participants controlled their hand
stiffness in the X (left column of (Fig. 4.2)), Y (middle column) and Z (right column),
while the total EMG was found to co-vary with our estimated stiffness in each case.

FIGURE 4.2 – Experiment 1, validation of our stiffness estimation. The participant held the
Virtuose haptic device in the presence of perturbations and was provided with a feedback of
the estimated stiffness by our algorithm. He was required to match his stiffness to target values
displayed on the screen, represented here by cyan rectangle area in the estimation plot. We
compared his stiffness changes in X (left), Y (middle), and Z (right), with the EMG recorded on
four muscles and the total rectified EMG, representative of the arm impedance level. Note that
the EMG just served the purpose of validating the correctness of the stiffness changes estimated
by our algorithm an will not be used in our system for robot control.
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4.4.3 Experiment 2: Controller verification during tele-assistance

FIGURE 4.3 – Experiment 2, Assistance task. In the assistance task the operator was asked to
guide the robot with a pen through a maze (starting with the light green semi-circle and de-
fined by the black walls) while remaining inside the walls. Force perturbations on the robot
simulated the disturbances from an assisted elderly individual. We performed the two expe-
riments. Experiment 2A) The perturbations were in one dimension (Y) and the operator had
to guide the robot while regulating his y- impedance to keep the robot within the walls. 2B)
The operator was blind folded and asked to assist a simulated patient (simulated by the forces
on our robot) while being haptically guided by the patient to avoid an obstacle. The operator
worked in trials where the robot impedance was prefixed at 6000 N/m (upper panel) or es-
timated from the operator (lower panel). The operator did not have prior knowledge of the
condition or the direction of guidance. The average magnitude of y-jerk, observed between 0.5
seconds and 2 seconds after the guidance force was initiated, was significantly higher in case
of the fixed impedance trials (p < 0.045, 2 sample T-test). Error bars represent standard error.
C) Experiment-3 served as a stress test for our system in which we introduced perturbations in
two dimensions and there was a 500 ms delay in the visual feedback provided to the operator.
The stiffness ellipses calculated in the x-y space are shown in red and connected (with a thin
red line) to the position in space where they were calculated.

Next, in Experiment-2, we verified how our controller performed in an assistance
task and how the behavior differed when the robot impedance was kept constant. Ex-
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periment 2 had three conditions. In each condition, a ‘operator’ assistant guided a ro-
bot, while it helped a patient draw a line with a pen through a maze (starting with the
light green semi-circles and defined by the black walls, fig 4.3). We did not have a real
patient in the task. The patient’s perturbations were simulated by force perturbations
imposed on the robot, and the pen was held by the robot’s two-fingers gripper. The
type of perturbations and hence the impedance adaptations required by the operator
were varied across the three conditions (fig 4.3 A, B and C). Parameter α was set to 30
in Eqn. (3.4).

A) One-dimensional (Y) perturbations ((Fig. 4.3)A): We started with patient pertur-
bations only along the Y dimension, perpendicular to the required pen direction. The
perturbations were sinusoidal, with a Frequency of 3.5 Hz and 10N amplitude. The
operator was able to control his impedance (red traces) to regulate the movement of
the robot through the maze (blue traces). The Y displacement in time is also plotted
(green trace).

B) Adaptive vs Fixed impedance ((Fig. 4.3)B): Different human assistance task re-
quire different impedances. A task requiring the human-operator to both guide (in
direction) and assist (against perturbation) a patient requires higher impedances (like
in our above experiment), but when the guidance is expected from the patient, bet-
ter assistance is possible when the impedance of the robot is low. This variation is not
possible if we use a fixed impedance on the robot. To show this, in Experiment-1B we
created a scenario where the human operator assists according to guidance from the
patient (again simulated by forces on the robot). Experiment 1B required the human
operator to close his eyes and guide the robot, while a second experimenter applied
a programmed push on the robot (9 Newton force pulse in y-direction applied for
200 ms) in either direction to guides the human operator away from an obstacle he
would otherwise collide with. This scenario was repeated 12 times for the 2 directions
X 2 impedance settings (K=6000 N/m) of adaptive (estimated from the operator)X 3
repetitions (see (Fig. 4.3)B). The human operator was unaware of which impedance
setting and which direction of perturbation came in each trial. We calculated the ab-
solute mean jerk in the y-direction in the trials and observed that the mean jerk in
the 2 seconds after force perturbation was significantly higher for the fixed impedance
condition) see bar graph in (Fig. 4.3)B).

4.4.4 Experiment 3: Controller stress test

Finally in Experiment-3 we made a stress test of the impedance estimation and the
human- in loop controller. We introduced two changes in the task of Experiment-2A.
First, the operator was subjected to 2-dimensional random perturbations and he had to
adjust his impedance in two axes during the task. Second, the operator visual feedback
was subjected to a delay of 500 ms.

The results are shown in (Fig. 4.3)C. Though the operator found the task quite dif-
ficult, especially because of the visual delay, crucially we could verify that we could
measure and modulate the robot impedance in two dimensions. The X-Y stiffness va-
lues during the task are plotted as stiffness ellipses which represent the estimated force
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for unit displacement in every direction. Note that the Eigen direction of the stiffness
ellipses remain the same (while they change only in magnitude) because in this study
we assume the task space Kx and Ky to be independent, and we do not consider the
off diagonal terms in Eqn. (4.5).

FIGURE 4.4 – Youtube Video of our impedance estimation experiment (the QR code is a cli-
ckable link)

4.5 Contributions

In this study, we presented a human guided impedance controller during teleopera-
tion. We designed the controller envisaging use in assistive scenarios, where a human
physiotherapist or caregiver guides a follower robot to help elderly patients. These sce-
narios are characterized by perturbations from the individual and hence we propose to
estimate the human impedance directly from the perturbations. For this purpose, we
propose a methodology for online impedance estimation, and online reference estima-
tion from the human operator.

As mentioned in the experiments, we were unable to use the damping calcula-
ted from the human operator on our robot. We found these values too low, relative
to the stiffness, to ensure stable robot behavior. This comes as no surprise, given the
different inertias of human arm and robot. Ideally our controller, in which the robot
forces are fed to the operator and the operator movements are sent to the robot, should
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impose the human arm dynamics on the robot, therefore theoretically ensuring that
the human damping ratios are sufficient for the robot. In practice though, this is pos-
sible only if the mass of the robot is well compensated for, which is not a trivial chal-
lenge. From human studies we know that human damping increases monotonically
with stiffness[Etienne Burdet, 2013, Franklin et al., 2007]. Given these observations, tu-
ning the damping separately, like we did in our experiment, seems to be a quick and
sufficient solution for assistive tasks. However, further studies are required to clarify
this issue.

Human interactive behaviors are enabled by simultaneous adaptations of force, tra-
jectory and impedance. These adaptation are both predictive, to ensure stability when
an interaction starts, as well as reactive, to maintain the stability during perturbations
in a task. The method we propose here is specific for the measurement of reactive
impedance and is arguably better than muscle activation (EMG) based impedance es-
timations in the presence of perturbations (as discussed in the introduction). On the
other hand, muscle activation based techniques are the only ones available for impe-
dance estimations before the start of a movement, and in the absence of sufficient exter-
nal perturbations. Robust impedance estimation in real world tasks therefore requires
us to develop an integrated estimation framework in which the predictive impedance
changes can be measured using muscle activation (via EMG or grip force) and the reac-
tive changes are estimated using the perturbations, like we propose here in this study.

4.6 Conclusion

In conclusion, here we presented a methodology for impedance control during te-
leoperation with estimation and transfer of the reference and impedance from the hu-
man operator, to the robot. We provide a method of online human impedance estima-
tion using the perturbations inherent in the task. This first work provided the first step
towards an assistive teleoperated system for possible human assistance in the future.
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CHAPTER 5

DEEP LEARNING BACKGROUND
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5.1 Introduction

In our previous work we set-up an embodied robot system, this chapter will be
dedicated to the Machine Learning and Deep Learning background needed to unders-
tand the next chapter that will bring Learning from Demonstration in our embodied
robot system. We focused our learning to be computer vision based and labeled with
human expert produced motions.

This chapter will be dedicated to explain Learning concepts, architectures and Lear-
ning based Computer Vision related knowledge.
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5.2 Differences in Machine Learning methods

Given the previously cited objectives it would be possible to think about a lot of
different possible uses of Machine Learning, for example, policy learning and one shot
learning, Reinforcement Learning (RL), Inverse Reinforcement Learning(IRL), Artifi-
cial Neural Networks (ANN), MultiLayer Perceptron (MLP), Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN) like Long Short Term Memory
(LSTM), networks and Gated Recurrent Unit (GRU) or even state of the art Transfor-
mers.

5.3 Choices of architectures

One of the main choices we have made is to learn only from data that the human
operator directly senses or produces. We did not want to model our task but we wanted
the human to decide by themself given a task how to solve the problem as they would
want to. By doing this it would be possible to learn different aspects of the human way
to solve the task. But this decision restrained us on the type of network we could use.
For example, using Reinforcement Learning needs a simulator to generate data would
not be possible anymore, since our data should come only from the human. This led
us to use principally Neural Networks and vision based networks as the main input
would be pictures.

In the next sections we will detail the basic architectures used in Deep Learning.
Some of these architectures are not directly used in our work but the principles they
are based on are used in our work, so we estimated it would be needed to clarify some
points.

5.4 Terminology

We will first explain the most commons terms needed for understanding machine
learning, more specifically terms used in our work, needed to understand data struc-
tures, learning different phases and to clarify some common points that might be
confusing.

• Shape : the shape of any data, is the size of every array needed to represent it.
The shape of a pose array is (6,)
The shape of a HD colored picture is (1280,720,3)
The shape of a HD black and white video is (1280,720,1,W) with W the number
of frames.

• Dataset : when collecting data, the dataset is the whole data that will be used for
the training. It contains on one side the data the user wants to train on, which
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can be numerical signals, images, time-series, in 1 dimension or multiples. And
on the other side, if any, the labels that the user wants to compare the prediction
with, it can be the exact same type of data as cited before or classes, in classifi-
cation cases. Every set of data in the data-set must correspond to one set of label
The total data-set size is called DS.

• Input: the Network’s input is defined as the data, of one or multiple types, one
wants the network to train on.

• Output: the Network’s output is, given an Input, the result of the network. The
size and type of the output will be defined by the label’s shape.

• Label: the label refers to some data in the data-set, that will be used as a ground
truth used to compute the loss function. Ideally in a perfect network the output
should be equal to the the label.

• Supervised and unsupervised learning : In Machine Learning we can differen-
tiate two different type of learning, one where the whole dataset is labeled, in
this case it’s called supervised learning, and for unsupervised learning where the
dataset is not labeled and the aim of the learning is to find pattern in the non
labeled dataset.

• Epoch : during a training, an epoch corresponds to the fact that the learning al-
gorithm has been input exactly once with every data( or series of data) present in
the data-set.

• Batch : during one epoch, the gradient descent is not done on the whole data-set,
it would mean to load the whole data-set in the RAM or the VRAM which would
be impossible in some cases. Instead it is generally welcome to cut the data-set
in N different little data-set called batches. The gradient descent will be then ap-
plied to every batch in order to complete one epoch. The batch size BS is defined
as N = DS/BS. In the case there is a rest in the division, the leftover data can be
used in a non standard-sized batch or left out by the user.

• Nested Batches : when working with time-series, it is generally needed to not
only use as an input of the network a specific data but a window WS of data
around a specific time value. It is then needed to create batches of this window
in the data-set and to apply an increment i to this WS on the dataset in order to
get the nested batches. In the case i is inferior than WS some data will appear
multiple times in different Nested Batches. In the case Nested Batches are used,
one batch is not anymore composed of data taken from the data-set directly but
composed of BS Nested Batches.
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• Step : Every batch is composed of BS steps, every step takes the corresponding
input data from the data-set, the corresponding label and compute the loss func-
tion to output some loss.

• Training : In learning the phase when a loss function, the gradient descents are
applied to the data-set in order to update the weights of the network is called the
training.

• Prediction : Once the model is trained, the prediction phase consists in applying
the model and its weights to the new input, that were never seen by the network
and to obtain an output that represents what the network has learnt

• Validation dataset : During the training phase, at the end of every epoch, a pre-
diction the validation data is done. This validation data is a small but effective
percentage of the data-set (generally 20 percent) that was taken out from the
data-set before the first epoch started to be trained. By doing this the user can
after every epoch check the prediction accuracy of the current training on new
data, never input during the training phase.

• Normalization : normalize the data will bring all the different variables in the
same numerical range. This step is generally very important so that every input
has the same range as the network weights.

• Regression and Classification : in supervised learning, there are two ways to
label data. The first one is to label each data with other data, be it an image, a
tensor, a float; this is called regression. In which case the output of the network
will have the dimension of the label.
The second one consists in labeling with classes, which corresponds to a prede-
fined type. It is generally the case when a whole set of action is predefined or
when one wants to differentiate cars and buses for example. The output will be a
probability of confidence in each class used during training

• Loss Function : the loss function is a function that computes error between the
label yi and the output ŷi for every data in the dataset. One of the loss function
generally used in learning is the Mean Square Error :

MSE = 1
N

N∑
i=1

(yi − ŷi)2 (5.1)

with ŷi defined as the estimation of the labeled ground truth yi for the ith data
and within N , the number of batch size in one complete batch.
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5.5 Fully Connected layer

A Fully Connected (FC) layer also called Dense layer is a Neural Network Layer
composed of n weights all connected to all the weights of the next layer, as the name
implies.
The size of a fully connected layer output is then the number of weights n.
Each weight has its own value that the gradient descent will modify according to the
result of the loss function.
Once the weights have been properly trained the Output of the Fully Connected layer
should match the expected values for at least some given Input (Fig. 5.1).

FIGURE 5.1 – Example of a 2 Fully Connected layers network : the first one called "Hidden"
gets 3 inputs from the previous "Input" layer and the "Output" Layer gets 4 input, the output
from the "Hidden" layer

5.6 Convolution principle and convolutional layer (CNN)

Convolutions are the basis of computer vision and visual recognition.
In order to explain quickly what applying a convolution filter K to an image I means
we will use the figure (Fig. 5.2)
The convolution is applying a kernel K (also called filter) step by step by a pre-determined
step size (called stride), all over the image by starting by the up-right corner. The kernel
is sliding column after columns then changing row until it has reached column repea-
ting this process up til the bottom-left corner
For every step, every pixel on the image is multiplied element by element by the cor-
responding kernel value and are then replaced in a new matrix to obtain the output for
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the current location.
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FIGURE 5.2 – A convolution kernel K is applied to the input image I. Here the kernel size is
3x3

The idea to apply convolutions to Neural Networks was first introduced in the
1980s by Yann LeCun. This work was based on the work from Kunihiko Fukushima
in 1979, the neocognitron[Kunihiko, 1979], the first basic neural network using cells to
extract features from the input.
A CNN layer applies n convolutions to the input image or matrix. It uses hyper-
parameters like the padding size and the kernel size to apply every convolution as
would do a normal convolution filter at the difference that the user will define a num-
ber n of filters to apply.
This will output n filtered images that will be fed to a fully connected layer. Then
weights will be computed for each of the n filtered images to the output to find which
kernel filters work best on the input image. The objective is to find which convolutions
parameters works best to find features in images.

5.7 Pre-trained CNN : The example of VGG

A CNN can be trained on a lot of types of pictures to extract features but the idea to
train CNN on millions of different images to get a "general" image recognition network
has been done multiple times. We will explain the case of VGG, Very Deep Convolu-
tional Networks for Large-Scale Image Recognition [Simonyan and Zisserman, 2015].
VGG was trained over 1.3M images and over 1000 classes of objects. It consists in sta-
cking convolution layers, pooling layers and fully connected layers while decreasing
the width of the feature and increasing its depth as shown in (Fig. 5.3)
(Fig. 5.4) gives an idea of a comparison of performances between different pre-trained
networks.
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FIGURE 5.3 – Complete VGG-16 Architecture Source : [Loukadakis et al., 2018]

FIGURE 5.4 – Different pre-trained image recognition networks, by comparing their accuracy
with their number of weights. Source : [Canziani et al., 2016]
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5.8 Recurrent Neural Networks (RNN) and Long Short
Term Memory (LSTM) units

Recurrent Neural Network (RNN) is a kind of network that is able to learn tempo-
rality or trajectories over time or space. With these aspect it is a good approach to deal
with human motion [Hug et al., 2018]. These networks have shown success in Lan-
guage Processing for generating text (Sutskever et al., 2011), hand written characters
(Graves, 2013; Gregor et al., 2015), and even captioning images (Vinyals et al., 2014).

The Long Short Term Memory (LSTM) is a kind a RNN first developed in 1997
by Sepp Hochreiter and Jürgen Schmidhuber [Hochreiter and Schmidhuber, 1997] in
order to avoid vanishing gradient problems and make possible both long term me-
mory and short term memory in the same architecture. Then Gated Recurrent Unit
(GRU) came as an evolution from LSTM in 2014 by Kyunghyun Cho [Cho et al., 2014]
Contrary to the RNN the LSTM/GRU does not take as input only the previous state
and the current input but it takes also N memory cells states as an input. N is the
number of cell units defined in the architecture replacing the activation function of the
RNN. The LSTM are being widely used in the computer vision and robotics fields, they
were used by OpenAI to achieve dexterous movement to solve Rubik’s Cube with the
robot Shadow hand [Ope]
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FIGURE 5.5 – Composition of a RNN Architecture, xn represents the input, hn represents the
output and A the internal Architecture
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FIGURE 5.6 – A type of RNN Architecture : LSTM internal architecture
xn represents the input, cn represents the "memory", the output coming from the precedent
unit/cell, hn represents the output

5.9 YOLO

YOLO means You Only Look Once [Redmon et al., 2016], and is a Deep Learning
backed Computer Vision algorithm. As the names implies, it takes the whole image
as an input instead of multiples little images of the input image which makes it quite
faster than other learning based algorithms. It is mainly used for object recognition like
faces, cars etc in images and tracking in videos from classes on which it was trained
before. Its strength is that it does not only output a confidence over classes but also a
position and an area where this class might be present in the image.

5.10 Choosing the labels

In Deep Learning labeling will define the output of the network and in some case
the architecture of the network. In our case, the Learning from Demonstration gives
constraints related to robotics constraints, like the fact that data needs to come from
a sensor. It could be a picture from a camera, a depth-map, a 2D or 3D distance map
from a LIDAR, a time serie data from an All-or-Nothing sensor, a force/torque sensor,
a recording of motion in the Cartesian space or the joint space from a robot, etc. These
dataset are generally represented in their own frame, which might bring different pro-
blem.

Once the desired label chosen, it is first preferable to check the dataset for this la-
bel. In fact if this dataset is biased it will not lead to proper learning, similar to when
learning from only a few examples of one class would lead to biases in classification.
It can be seen in a simple example : let’s say I want to learn from a force sensor that
measures impacts, my dataset will be mostly composed of constant data and only in
some places the force value will change to represent the impact. In this case the dataset
will be biased because a simple regression will tend to learn the omnipresent constant
value, and will have a really good accuracy meanwhile it will not have caught what it
was trained on.
Some ways to work with biased datasets exist, like overweighting only the less repre-
sented samples, but they are hard to tune so we avoided using them.

Also, in the case the label has a particular shape, like pictures or videos, it is possible
that the architecture of the network in itself needs to be adapted. Indeed in case of next
frame prediction, in other words in order to synthesize new data, adding a classic Fully
Connected layer in the network would "break" the shape of the data and it is likely the
result of the training would not be as desired. In this case it might be better to add
layers of time seried convolution or Convolutional LSTM in case of pictures.

It is of course possible to label with multiple label that would represent a position
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in joint or cartesian space but it also possible to label with a time serie of these position
in order to learn some path planning for example or some multiple next step ahead
prediction.

Lastly, it is also better to check if the data does not contains any Not a Number
(NaN) values in the dataset. It is unlikely but possible due to an overflow of some
system when the data was recorded, some division by 0 or simply an ASCII character
or a string (possibly like a space character) present in the dataset. This would get the
gradient descent to propagate NaNs in the weights.

5.11 Dropout rate

The dropout layer is a layer that is applied after most types of layers, such as fully
connected layers, convolutional layers, and recurrent layers. It acts as a reset on the
output of the layer its applied to, therefore given a probability of occurrence chosen
beforehand (the dropout rate) the dropout layer will attribute 0 to the whole output of
specific layer its applied to. As explained in [Srivastava et al., 2014] it is useful to avoid
over-fitting during the training phase because the dropout will constrain the network
no to be too much confident in one particular example, which is especially the case
when network are really deep compared to the number of examples in the dataset.

It is important to note that during prediction, the dropout layer are not present
anymore in the model, so they do not interfere with the result, they are just effective
during training.

5.12 Learning Rate (LR)

The Learning Rate (LR) is the rate at which it’s possible to increase or decrease every
weight of the network during the training phase. This rate is comprised between 0 and
1, with generally initial value comprised between 0.01 and 0.0001.
In order to understand what influence the learning rate has on the gradient descent it
is generally explained in term of optimisation because the learning rate is also the "step
size" of each step during the gradient descent.
The gradient descent will start from the user defined value, in the case it was set too
high, it might step over the minimum. If it was set too low it will be stuck in any
local minimum and will never converge to the theoretical global minimum or a more
favorable local optima.

When choosing the value of the initial learning rate, it seems there is no perfect
value to start with, it is empirical, like finding the right gain for a PID. It is also known
that the more the network has trained on an important number of epochs the smaller
should be the learning rate. We then need some function to decrease the LR after every
epoch end, every epoch up until the end of the training.
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There are few ways to change the LR over time, as choosing an exponential decrease
over the number of epochs, or a decay scheduled after a fixed number of epochs but
in our work we chose to use the Cosine Decay method [Loshchilov and Hutter, 2016],
a decay method that proved its efficiency on multiple dataset like CIFAR, EMG times
series dataset or a downsized version of the ImageNet dataset (see (Fig. 5.7)).

This method consists in having a steep change in LR every epoch following a cosine-
like curve. By doing this, it allows the network to apply bigger changes to the weight
periodically regarding the number of epochs that have already passed. It allows the
gradient descent to once again go from another starting point in the case it was stuck
in some local minimum for example.

FIGURE 5.7 – Comparison of 3 Learning Rate (LR) decay methods : the schedule decay, the
exponential decay or the cosine decay. With this shape the Cosine method can avoid converging
too much in a not optimized minimum. Source : [Termritthikun et al., 2019]
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6.1 Introduction

Up to this chapter we have developed an embodied robot system and it’s control.
As we conjectured that human behavioral data could lead to novel learning from de-
monstration approaches, hence, we used our embodied system to achieve skill transfer
from human to robot. Indeed, the popularity of machine learning, like reinforcement
learning, learning from demonstration, during this decade increased incommensura-
tely due to the decreasing costs of GPUs and the availability of "big data". In this Chap-
ter we use Learning from Demonstration in a teleoperated embodied system in order
to teach an agent some human behavior.
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6.2 Methods

In this work we aimed to learn from demonstration in the embodied robotic tele-
operation system described before. We believe that using embodiment during a teleo-
peration task and learning from the data generated can bring more to learning from
demonstration (LfD) due to several advantages it provides- First, in an embodied teleo-
peration system where the human is provided with first person perspective, and suffi-
cient feedback, allows us to utilize the human cognitive skills to the full extent to solve
the constraints presented by the robot (kinematics, joint limits, dynamic constraints as
well as feedback constraints). Second, in an embodied setting all the feedback avai-
lable to the human passes through our embodied robot system, and hence observable.
Similarly, every action made by the human to control the robot also passes through
our embodied robot system. An embodied teleoperation setup is hence ideal for using
machine learning algorithms to map the sensory –motor processes defining the human
cognitive skill. Finally, embodied teleoperation has been shown to improve human per-
formance [Toet et al., 2020b, Iwasaki et al., 2022, Ventre-Dominey et al., 2019], pushing
the case that embodiment may help human behaviors while teaching robots.

To demonstrate this idea, here we chose a maze task and used a visual recognition-
based deep learning Agent to try to learn ‘human like’ movements in the maze. We
modified the dynamics presented to the humans by adding two velocity dependent
(damping) force fields, which lead to changes in their behavior in these mazes. We
show that in each case the Agent is able to human like behaviors and reproduce them
as such.

6.2.1 Overall Architecture of our work

FIGURE 6.1 – Overall architecture model training and testing
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Our work is composed of 5 main parts.
These parts are presented in the following figure (Fig. 6.1). We will describe each of the
blocks contained in the figure.

• Block 1 - Simulation guided by user

In order to create data to be learnt by our model, we asked a participant to control
the robot among the haptic feedback device and to move within the randomly
generated path up to the red color bar starting from the blue area 6.2. This parti-
cipant will be called afterward our Human Expert. Once the red color bar reached
a new path is generated and the blue and red rectangles have their position swap-
ped. By doing this the participant can move as long as needed with no need of
ever re-centering the haptic device neither stopping his motion. We decided to
give a two Dimensional task to the participant, where the goal is to move a cur-
sor freely in a video game like environment. [Moon and Seo, 2021, Poeller et al.,
2018].
By doing this we can easily obtain multiple kind of data : the visualization of the
task that the participant is currently seeing on the screen and the motion that the
participant is doing while controlling cursor at every time step.
Motion data can be of many kind but we decided to focus on relative position
motion in the task space.

More details in section Sect. 6.3.

• Block 2 - Data Recording To get the visual and positional data needed, we recor-
ded the picture in the simulator at a frequency of 12Hz. Indeed the more data is
recorded the more time training will take so we decided that it was a good com-
promise between performance and training time. The recording of the position
of the robot in the simulator frame is done as the same frequency and stored in
form of a CSV file.

Once all the trials were recorded, it is needed to transform the data in a format
that fits our architecture. First images are uncompressed (due to the JPG com-
pression) and down-scaled to 32x32 pixels and stacked to form batches of images
representing a video clip of n images. The downscaling is a mandatory step nee-
ded for RESnet, which was pretrained on RGB 32x32pixels pictures. The shape
of our only network input is (32,32,3,n) with n the number of previous images
from current to minus n-1. We used n=5 during our experiments. This process is
applied to every picture present in our image database, this is what we will call
from now on our input dataset.

Then every batch representing a video in the input dataset is attributed a label.
This label corresponds to the position of the robot in the next picture. Its shape is
(2,). This is what we will call the label dataset.

• Block 3 - Training

During the training phase the 2D relative position from the participant’s motion
dataset is used in order to label each video clip input. Instead of using the current
frame’s 2D relative position we chose to use the next frame position in order to
achieve prediction from the participant’s motion. Training results can be found
in Sect. 6.9.
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• Block 4 - Validation The previously generated model is tested on 30 percent of
the input dataset, the validation dataset, and loss is computed in order to get the
validation loss.

• Block 5 - Automated Play Simulation

Once trained, our model is integrated in the simulator and predicts the next (X,Y)
position with images as input in real-time. This inferred position is then applied
to the robot in order to close the loop of the control.

6.3 Visual Simulation

The graphic environment used for our robot simulation was created in Python with
PyQT5. This simple interface gives only important information to the human partici-
pant like where the goal is, what are the obstacles and the position of the robot control-
led by the participant.

Since our goal is to learn from motion our Deep Learning algorithm should use
labels from the human motion dataset and since we want to imitate the human reaction
to some pattern on the 2D task, we would need as input the recording of the visual task
achieved by the participant.

Due to the temporal property of motion in general we needed to use time series as
input for our network, hence we chose to use Gated Recurrent Unit (GRU) as it has
been largely used in pHRI and robotics [Sarvadevabhatla et al., 2016, Luo et al., 2021,
Yu et al., 2020]

By using haptic feedback device 2 points are achieved.

• First the human motion is not constrained due to the transparency and the low
inertia of these devices. Since the interface length and width both fit inside haptic
device workspace, the participant can move freely in the plane without constraints
and without thinking about re-calibrating the physical motion in the simulation.
We also choose the motion to be achieved in a horizontal plane, so we could ne-
glect gravity effects.

• The second point is that thanks to the haptic device the participant feels forces
when a collision occurs between the cursor and any obstacle. This has two conse-
quences : the participant feels more embodied in the system and generate only
data that corresponds well to the task. Indeed, simply clamping the robot out of
the obstacles would have the haptic feedback frame and the simulator frame be
de-synchronized.
With haptic feedback, the motion is achieved by the operator, even if he was
constrained, which reinforces the impression that obstacle should be avoided.
Also not disynchronising the motion of the participant and the image rendered in
the interface participate in the embodiment sensation of the tele-operator, indeed
we used a large haptic interface which allowed our user to never have to think to
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re-center the device inside the graphic interface’s frame. This would have been
necessary if we had used a little haptic device interface for example.

The communication of the haptic device and our graphical simulator is achieved
with ROS (noetic). The haptic feedback device can be set up in impedance mode or
admittance mode. For our use, the haptic feedback device is set up in impedance
mode, which makes us able to subscribe to the haptic feedback physical position data
stream and to publish forces to the device in order to simulate collisions, or impedance
changes. With this mode the teleoperator guides the robot in simulation by changing
his own hand position, and perceives collisions as the resultant forces that pushes his
hand away.

6.4 Train pattern and test pattern

We decide to separate out training maze pattern and our model testing maze pat-
tern for two main reasons:
Firstly, by having different patterns that the network was never taught on we can make
sure that the model generalizes well beyond the training set.
Secondly the test mazes pattern are chosen in a way it’s easy to analyse human motion
and accordingly the model’s predicted motion.

The simulator is composed of a 8x8 grid where the blue first row represents the
departure and the red last row the arrival line while the first and last column entirely
made out of black constraining the area.
In the middle, remains a white 6x6 grid. (Fig. 6.2)

FIGURE 6.2 – Left : Randomly generated path Right : path the model was never trained on
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6.5 Deep Learning Model

6.5.1 Pre-trained visual feature network : ResNET

Before talking about pre-tained convolutional network, there is the need to unders-
tand convolutional network and their uses in robotics. The use of computer vision
increased in the last decades with the decrease of costs of both camera technologies
and computing costs. Regular computer vision fields used a lot of convolutions to find
region of interests or features in a pictures . In 2012 Ciresan and al [Cireşan et al.,
2012], applied Convolutional Neural Networks (CNN) that learns convolution filters
and parameters in order to recognize and classify handwritten numbers from MNIST,
a handwritten number database.

Kaiming He and al. introduced RESnet in 2015 [He et al., 2016] and it has been one
of the biggest advances in Deep Learning : how to stack hundreds of layers in a deep
model without having a problem of degradation of the convergence result neither the
vanishing/exploding gradient problems. One part of the answer lies in the particula-
rity of RESnet (and HighWayNet a few months before). The residual elements, a feed-
forward connection that "skips" 2 layers every 2 layers, that tends to avoid a specific
layer if this layer hurt the performances of the complete network 6.3. ResNet was pre-
trained on ImageNet, a database composed of 14 Million images describing more than
20 000 categories of real life objects. It is composed of roughly 27 Millions weights wi-
thout counting the top layer used when classifying from different category. Hence our
choice to use this particular network : its efficiency in real life object detection would
allow us to use it to detect objects from a simulator as well as from real objects, with all
the complication that brings. RESnet is the most cited neural network paper, in 2022.

FIGURE 6.3 – A residual block : x represent the input, F a layer of any type. The output is then
F(x)+x which make possible the fact to avoid F(x) during the back-propagation, Source He et al.
[2016]
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6.5.2 Learning temporal structure : Gated Recurrent Units

As explained in Sect. 6.2.1, we want to learn motion, thus we need an architecture
that can learn temporality, not only visual features, like Recurrent Neural Networks,
Long Short Term Memories and Gated Recurrent Units.

For our architecture we chose to use Gated Recurrent Unit (GRU) because they are
the more recent and started to be used in robotics too [Chen et al., 2022, Patel et al.].
Indeed, GRU are preferred over LSTM in case of smaller dataset. LSTM have a more
complex architecture compared to GRU, hence they tend to need more data to be trai-
ned, which is not generaly the case in LfD.

6.5.3 Mixture Density Network

...
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FIGURE 6.4 – Example of a MDN architecture with 2 Inputs I1 and I2, n Hidden Layers and
the π,µ,α outputs.

The Mixture Density Networks (MDN) were first presented by Christopher M Bi-
shop in 1994 [Bishop, 1994]. They were developed in order to have a Neural Network
output a probability distribution when given some input tensor instead of outputting
a simple tensor regressed from the input.

This allows our network to output not a single tensor but a distribution characteri-
zed by one or multiple parameters based on Gaussian Mixture Model (GMM)

Indeed Mixture Density Networks are widely used in the more or less recent Deep
Learning field, for example it is being used by Apple in the Siri’s technology to find
means and variances of speech features for speech recognition [Siri, 2017], for speech
synthesis [Zen and Senior, 2014], for Uncertainty aware learning from complex real-
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world driving [Choi et al., 2018], for Movement Primitive Learning [Zhou et al., 2020],
for robot movement self recognition in a mirror [Lanillos, 2020].

Let’s take the example of a Gaussian distribution G(x), in this case these parameters
are : µ the conditional mean and σ the conditional standard deviation

G(x) = 1
σ

√
2π

exp
[
−1

2
(x − µ)2

σ2

]
(6.1)

A Gaussian Mixture Model p(y|x) is represented as a sum of Gaussian distributions
G(x) multiplied by πi(x) the mixing coefficients, which corresponds to the number of
mixture layers added after the hidden layers. C denotes the number of Gaussians used
in the GMM. It is important to note that the sum of the πi(x) mixing coefficients is equal
to 1.

p(y|x) =
C∑

c=1
πc(x)G(x, σ, µ),

C∑
c=1

πc(x) = 1 (6.2)

GMM are able to represent probabilities that are not only uni-modal but multi-
modal with multiple means and variances.

A Mixture Density Network is a network that learns the π, µ, σ parameters of a
GMM to represent an output; in our case, the output of our network.

(µx, µy)1 . . . (µx, µy)C

(σx, σy)1 . . . (σx, σy)C

π1 . . . πC



In order to choose which Gaussian G(x) from the GMM to use, the Softmax function
s(x) is used to get the maximal πc(x) value. Generally, the Softmax s(x) value is used
in Machine Learning as an activation function to get probabilities distribution from
non-normalized real numbers outputs, then find the highest probability to determine
the output of the network.

s(x) = exp(hi)∑C
j=1 exp(hj)

(6.3)

By using MDN and their probabilistic nature the output of our regression model
is a density probability function, not a simple tensor. The usual used Mean Squared
Error (MSE) cannot be used as is. It is generally admitted that instead of MSE the cost
function used should be the Negative Log Likelihood (NLL) L(x). But compared to
MSE whose mathematical limit limx→+∞ MSE(x) in 0, which is very useful in machine
learning to estimate the results of the model, the Negative Log Likelihood has a ma-
thematical limit limx→+∞ NLL(x) not defined, that can also have negative results.
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L(x) = − ln
C∑

i=1
p(y|x) (6.4)

which gives when the Negative Log Likelihood L(x) is applied to our Gaussian
Mixture Model :

L(p(y|x)) =
C∑

c=1
πc(x)

[
ln(σ) − ln(2π) − (x − µ)2

2σ2

]
(6.5)

To summarize, a trained Mixture Density Network is able to predict a conditional
density function of the labeled data from the input data. By using this conditional
density function, the aim is to obtain an uncertainty or a probability about the accuracy
of the output σ and the probability centered in µ, to compare a classic regression would
have output only µ.

Moreover by using multiples mixtures components π, the output is containing C
different Gaussian Distributions which we have to choose from by using the Softmax.
Overall it gives more detail about the uncertainty of the network output, which is so-
mething important in robotics in order to have reliable prediction would it be move-
ment generation or haptic guidance.

For the pre-built implementation of the Mixture Density Networks in TensorFlow,
we used an available open-source implementation keras-mdn-layer 1.

FIGURE 6.5 – MDN layer inserted in our deep learning architecture, with the GMM output

1. https://github.com/cpmpercussion/keras-mdn-layer
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6.6 Training Data

The training has been done in 2 phases with 2 different datasets. First, we trained
the network in order to get the model "understand" from the images the following
points :

• what is the goal

• what can be moved

• where to move

• how to move

The second training is a fine-tuning training. The method used is called transfer
learning, which consists in loading an already trained network and retrain it with ano-
ther dataset. Since the network was already trained, fine tuning is used here, hence
the Learning Rate LR is decreased from 0.0001 to 0.00001. The particularity of these
datasets is to be able to represent different human motion patterns that are unique to
R. Thanks to our haptic device, we use different physical constraints to have the hu-
man move differently but with different behavior, we will then acquire 3 datasets for
transfer learning.

Our first dataset is composed of 38551 points which represents 2h of human motion
without constraints made by our Human Expert. The (Fig. 6.6) represents the density
of of the global dataset motion in the 2D task space The density of points is contained
in the 800*800 pixel, size of our maze in the simulator.

FIGURE 6.6 – Representation in position of the pretraining dataset. This represents all the po-
sition accessed by our Human Expert during all of the dataset creation phase. The density of
point is represented by the color from blue to yellow, with yellow representing a high density
and blue a low density. This figure shows that the whole area was accessed equally by our Hu-
man Expert,except from the middle of the "start" zone and the "finish" zone.
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Afterwards, we used a second dataset. In this new dataset the only change applied
is a 15N.m-1.s damping constraint added on the Y axis of the haptic feedback device.
As a result, when the human operator will move left or right, a force in the opposite
direction relative to its velocity will be applied. The human will feel it as a viscosity
that tries to slow down the motion. In term of motion its possible to understand what
kind of effect these changes will have on the motion but as the human in the loop, we
do not exactly know how the whole trajectory will be affected.

The fine-tuning dataset procedure was done 3 times, one for each conditions to get
different dynamics.

For the example, one of our three fine tuning dataset is composed of 23371 points
which represents 1h of human motion with a Y-axis damping constraint The figure
(Fig. 6.7) represents the density of the global dataset motion in the 2D task space

FIGURE 6.7 – Representation in position of the fine tuning dataset with Y axis damping
constraints. This represents all the position accessed by our Human Expert during all of the
dataset creation phase. The density of point is represented by the color from blue to yellow,
with yellow representing a high Density and blue a low one. This figure shows that the whole
area was accessed equally by our Human Expert, except from the middle of the "start" zone
and the "finish" zone.

In order to get different behavior in terms of dynamics, a total of 3 dataset were
created :

• One with a Fx = 15N.m−1.s damping constraint applied on the Y axis (Right-Left)
of the haptic feedback device.

[
Fx

Fy

]
=

[
0 15
0 0

] [
ẋ
ẏ

]
(6.6)
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• One with a Fx = 15N.m−1.s damping constraint applied on the X (Front-Back)
axis of the haptic feedback device.

[
Fx

Fy

]
=

[
15 0
0 0

] [
ẋ
ẏ

]
(6.7)

• One with Fx = 0N.m−1.s damping constraints.

[
Fx

Fy

]
=

[
0 0
0 0

] [
ẋ
ẏ

]
(6.8)

with ẋ and ẏ the velocities in the Picture frame

6.7 First Approach

Our first approach to the problem when we started was to decouple the image re-
cognition part and the motion trajectory learning. We chose an architecture that would
be made of two blocs, one based on YOLO or a pre-trained network that outputs visual
features as 2D positions of multiples objects, and a RNN bloc to analyse these objects
motion. But we realized a mistake while testing this architecture, reducing the dimen-
sion of a picture to the simple position to the object does not help the network to train,
the features of the first bloc are too rich of information. These positions, while easily
understandable by any human, seem not to be so easy for an untrained network.
We then decide to move to a close architecture at the difference that the output of the
first bloc would be a visual feature tensor from ResNet. Hence it cannot be understood
by an human, it seemed to be easier for the RNN part to learn from this. Moreover, it is
still possible to visualize ResNet layers to try to "understand" what is happening, and
check the visual data integrity is still present in the network after the data-processing
phases.

6.8 Model Architecture

FIGURE 6.8 – Our end-to-end deep learning based neural network architecture
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In the previous section we defined every kind of architecture and explained our
choice to use them. In this section we will define the global architecture of our model.
This architecture is presented 6.8

As explained in Sect. 6.2.1 the input of our network is an array of RGB pictures, a
video clip.
In order to apply the pretrained RESnet network to a video, it is mandatory to use
what is called a time-series in TensorFlow in order to apply RESnet to every frame of
the input. In order to reduce the dimension of these features, a CNN is applied through
a time-serie to each of RESnet output. Once done, our video clip is transformed in a
timed array of visual features.
From now we will use Gated Recurrent Unit since we explained before it has been
showed they can grasp temporality.
We define in (Fig. 6.8) a GRU 3LR which represent three GRU layers stacked with their
output linked in the input of the next one. It has been showed to improve the efficiency
of RNN [Reimers and Gurevych, 2017, Wu et al., 2016, He et al., 2017] Inspired by the
concept of residual blocks, we propose to have a similar arrangement of our GRU 3LR
layers. This would avoid using a GRU if its result in training is not good enough.
Then a Fully Connected layer to reduce the dimension of the output followed by the
MDN layer. An example of TensorFlow model defining our architecture can be found
in appendix:tfmodelcode All the units present in each layer are detailed in Appendix 8
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6.9 Model Training

FIGURE 6.9 – First Training Dataset : Loss and Validation Loss over epochs. The upper graph
represent the 50 first epochs with ResNet layers freezed. The lower graph represents the 100
epochs with all weight unfreezed.

When using architecture containing Pre-trained models, it is generally admitted
that during the first training epochs the Pre-trained model’s weight should be freezed.
Indeed, since the other layers’s weights are set-up randomly, the back-propagation
would un-optimize the weight of the pre-trained layers.

On the training loss curve we will have the loss and the validation loss, as expected
in most training, but we will also have the loss and the validation loss while the pre-
trained layers were freezed, in our case, the ResNet internal layers (Fig. 6.9).

Once the model trained, we fine-tuned this same model with no constraint (Fig. 6.10),
Y-axis constrained data (Fig. 6.11) and X-axis constrained data (Fig. 6.12). This training
phase is done with ResNet freezed, since we want only the later layers to be fine-tuned.
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FIGURE 6.10 – Fine Tuning Training Loss with no constraints dataset. Since nothing new was
added to this dataset the network did not learn much more, hence the loss and validation loss
diverged from the very beginning

FIGURE 6.11 – Fine Tuning Training Loss with Right Left constraints dataset

FIGURE 6.12 – Fine Tuning Training Loss with Up Down constraints dataset
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6.10 RESnet internal layers

FIGURE 6.13 – This represents 64 different Convolutions applied to the input image of RestNet
at the internal Layer of Convolution number 2. It is possible to understand why be used by the
network to output it’s feature vector because some convolutions makes sense for an human.
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FIGURE 6.14 – This represents 64 different Convolutions applied to the input image of RestNet
at the internal Layer of Convolution number 4.
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FIGURE 6.15 – This represents 64 different Convolutions applied to the input image of RestNet
at the internal Layer of Convolution number 11. This layer become hard to analyse for an hu-
man but is closer to the output of the ResNet output feature vector

As explained before we use ResNet, a pre-trained visual recognition network. In
ResNet it is possible to get the output of internal middle layers so that when applied an
input picture (Fig. 6.13), (Fig. 6.14) and (Fig. 6.15) the output of the nb 2, nb 4 and nb 11
internal layers. This is especially useful for debugging, in order to be sure that all data
input in the system are well input, uncompressed, etc. It also represents CNN layers,
so some layers have have specifically trained to detect wall, some to detect the path,
some to detect the start and finish area, etc. By comparing output from different input
picture we are also able to check which convolutions are dependant of the differences
between our input and which are not. But the deeper the layer we want to visualize,
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the more difficult it is to interpret (Fig. 6.15).

6.11 Agent Task Achievement Analysis

In this section we will present the results obtained with the Deep Learning Agent
that was described in the previous chapter. We will compare our Agent motion and
behavior with the Human Expert that trained the datasets and with our participants in
order to prove that our Agent behavior can be treated as human-like in our scenario.
Our robot simulation and our scenarios were defined in the precedent Section 6.3

As described before, our robot is simulated by a green square moving in a white
path. The goal of the Human Expert was to go from the blue "starting" area to the red
"finish" area while avoiding entering black blocks.

All the Agent training was done trough LfD. Our Agent had no preconceived know-
ledge, neither policies, describing the environment, motions, dynamics or the task to
accomplish.

In 6.11 which link to an online video, we show a sample of our Human Expert
motion dataset, while moving the green robot in a few randomly generated maze, re-
corded with our simulator and haptic feedback device.

FIGURE 6.16 – Video of our Human Expert dataset used for training (the QR code is a clickable
link)

Our Agent learnt a few properties inherent to the task (Fig. 6.18), (Fig. 6.19), (Fig. 6.20)
and a few behavior of our human expert teacher (Fig. 6.17), (Fig. 6.21).

The next figures represent time sequence motions that have to be read from Left to
Right, following the numbers. They describe properties learnt by our agent.

6.11.1 Agent obstacle avoidance motion

In Figure 6.17, we generated a path not contained in the training dataset, fixed the
robot in the blue "starting" area next to the path beginning. As a result our Agent avoi-
ded the obstacles and found a trajectory to get to the red "finish" area without colliding
in the black "wall" area.
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a −→ b −→ c −→ d −→ e −→ f −→ g −→ h −→ i

FIGURE 6.17 – Fixed path that is not contained in our training dataset. The robot is placed in
the blue starting area. The Agent finds a path to move the green robot to the red "finish" area
while avoiding the obstacle.

In Figure 6.18 we chose a path that never appeared in our training dataset and
we swapped the blue "start" area and the red "finish" area from the frame 6.18.e. We
wanted to see if our Agent could change direction while moving, even if this was never
done in the training dataset. As a result we observe that our Agent learnt direction
based on the color area but also learnt to change direction during a motion, not only
when the robot was in the starting area.

a −→ b −→ c −→ d −→ e −→ f −→ g −→ h −→ i

FIGURE 6.18 – Red and Blue area swap places. It meant for the Human to change direction
during training since he was asked to go toward the red colored "finish" area. Our Agent also
learnt to change direction without never being explicitly explained.

For the 2 next Figures, we choose a randomly generated mazes and put the robot
in the blue "start" area in 2 different positions. In the Figure 6.19, the robot is placed
left and in the Figure 6.20 the robot is placed right. We observed that in both picture
the Agent find a way to the red "finish" area by taking completely different trajectories.
Note that this behavior shows that our Agent generalized movement according to the
color of the finish area and not its physical position.

a −→ b −→ c −→ d −→ e −→ f −→ g −→ h −→ i

FIGURE 6.19 – Example of a randomly generated maze, not contained in our training dataset.
Our robot is placed in the left part of blue starting area. The agent find a path to go to the red
"finish" area
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a −→ b −→ c −→ d −→ e −→ f −→ g −→ h −→ i

FIGURE 6.20 – Same randomly generated maze as in (Fig. 6.19). This time our robot is placed in
the right part of blue starting area. The agent find a path to go to the red "finish" area. The fact
that the agent did not tele-ported the robot to take the same path as the first example shows
that our Agent has generalized.

6.11.2 Agent motion example in case the path is not found by the
Agent

In Figure 6.21, we purposely generated a random maze where our robot could get
stuck and place it purposely in front of the path where it could get stuck. We observe
that our Agent learnt to go in the right direction despite the fact that the path is a
dead-end but learnt to come back to the blue "start" area when it got stuck with no
valid way to move on anymore. This is a good example of generalization because this
phenomenon represented only a small number of cases in the training dataset.

a −→ b −→ c −→ d −→ e −→ f −→ g −→ h −→ i

FIGURE 6.21 – Example of another randomly generated maze, not contained in our training
dataset. The robot is placed in the blue starting area, in front of an obstacle. The agent does not
find a path to go to the red "finish" area so came back in the blue "starting" area

6.12 Comparison with human movement

In the previous section, our Agent has been capable of moving the robot in the
maze, avoiding obstacles and learned to reach the red finish area even when the phy-
sical positions changed, after the training phases by our human expert. In this section
we will analyze our agent resulting motion. In order to do this we will use a fixed maze
with only one possible way to move through. This allows us to make statistics on the
data of multiple human participants and our Agent.

We asked 7 participants to perform in 3 mazes that were not contained in training
datasets we selected with the help of our haptic feedback device. We also asked our
human expert to perform in the same 3 mazes.

81

https://gite.lirmm.fr/erato/these-gourmelen/-/raw/main/Gif/right_on_rand.gif
https://gite.lirmm.fr/erato/these-gourmelen/-/raw/main/Gif/NotpathCameback.gif


Deep Learning based Skill Transfer 6.12. Comparison with human movement

Each participant was asked to move in the maze in the order as they appeared,
while going from the blue starting area to the red finish area while staying as much
as possible in the path of the maze and avoid touching the black area. We did not
specify any speed or time to our participants and if they touched the black wall, they
felt an haptic response to have they go back outside of the walls. We chose 3 dynamics
constraints 6.6 and asked them to perform the aforementioned task for every condition,
in different order for each participants. We recorded the position and the speed of the
robot during all the participants trials.

Our participants were shon the same 3 dynamics constraints 6.6 used for the crea-
tion of the dataset used in the transfer learning phase of our Agent, as explained in last
Chapter.

By analyzing the position of our Agent and our participant in each case we obtai-
ned the following results (Fig. 6.22). In orange is plotted the inter participant mean
trajectory, in light orange their standard deviation, and in cyan our Agent trajectory.

For our 9 cases, 3 mazes and 3 constraints, we computed the Pearson Coefficient
between the Agent motion and inter-participant mean, in order to quantify how much
both trajectories matches. We get for all of our 9 cases a Pearson Coefficient > 0.79 hence
a P value inferior to 0.001.

We can see that our Agent has learnt to make human-like trajectories, even in mazes
clearly different from the training dataset. In most of the trials, our Agent did not col-
lide with the black wall and could go up to the red finish area.
In the next section we will have a look at velocities of our agent in the maze. Indeed
our agent was never labeled with velocities during the training phase, neither taught
any notion of speed.
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FIGURE 6.22 – Participants and Agent trajectories :
For our 9 cases, 3 mazes and 3 constraints, in Orange is represented the inter-participant mean of our 7 participants, in shaded orange its standard
deviation and in cyan the Agent motion. For every maze we computed the Pearson Coefficient between both Agent motion and inter-participant
mean in order to quantify how much both trajectories matches. We get for all of our 9 cases a Pearson value inferior to 0.001
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6.13 Comparison with human velocity

In the previous section we showed that our Agent had learnt to make human like
trajectories, we analyzed the velocities of our Agent. We found they were also matching
and decided to use the velocities value to look at two points :

• Does our Agent matches human’s velocity in each of the chosen maze?

• Is human behavior changing between our constraint cases and has our Agent
learn these changes?

In order to verify our first question we used the data collected in the experiment de-
tailed in , and chose for multiple reasons to use velocity data. Indeed velocities are less
constrained by the maze shape than the positions, so diverging results could happen
naturally. Any agent that learnt how to move in this maze would give such trajectory
results, because in order to succeed there are no other choices than to take this path.

We noticed some differences occurred between the velocities of our Human Expert
and the participants. The first was the average velocity that was higher for the expert
than for the other participants. We had to multiply our Agent maximum velocity by
0.89 in order to have realistic matches between the participant and our Agent veloci-
ties. The coefficient was computed from the ratio of the inter-participant mean and our
Human Expert mean throughout every maze and every conditions. These can be ex-
plained by the fact that our Human Expert was overtrained on our task (the basic one
and the three constraint related ones) for about 45 minutes each.

The second difference was related to the three dynamic constraints we chose. In-
deed these dynamic constraints brought some differences in the behavior of our Hu-
man Expert. These differences were also visible in our Agent. But unfortunately these
differences were not present in our participant. The particularity may also come from
the participants that used the device a short time so the damping constraints were not
strong enough to have them feel fatigue in order to change the way they move. We are
not sure what caused this particular divergence in the results.

We obtained the following results by comparing Right-Left velocities between our
Agent and our participants . We used Pearson coefficient to show that our agent velo-
cities matches our inter-participant average velocities in each of our maze and case. We
found that in 7 cases out of 9, the Pearson Coefficient were significant for the number
of bin used in our data (14 bins were used). To be more precise, 1 case (PCoeff=0.48) has
a P value inferior to 0.1, 1 of 0.05 (PCoeff=0.56), 4 inferior to 0.01 and 1 inferior to 0.001
(PCoeff=0.91). We can conclude that our Agent learnt some way close to "human-way"
to move in these mazes. Now we have to see how it scores when our Agent is faced to
dynamic changes.

In order to show that our different dynamics constraints were affecting the agent,
we compared our Agent speed with the participant panel one. But we noticed that they
were not matching, indeed, our Agent was trained by our Human Expert only, so it can
reproduce only the way our Human Expert behaved. So we decided to compared our
human expert velocities with our agent not with the participants.
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In the (Fig. 6.24) we notice that between our three dynamic constraints there are
effects on Front-Bottom velocity. We notice that the speed in the Front-Back constrained
condition is significantly decreased on both Agent and Human Expert compared to the
Unconstrained condition.
We also notice in 2 cases out of 3 that the Right-Left constrained condition’s speed is
higher on both Human Expert and the Agent compared to the Unconstrained condition.
This means our Agent was able to learn details about dynamic changes during our
fine-tuning that were only constituted of changes in term of damping constraints.
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FIGURE 6.23 – Right-Left Speed : Human Novice participant versus Agent
In this figure we compare our participants’ Right-Left axis (in orange) intra-participant average speed versus the trained Agent one (in cyan) for
each of our 3 maze and our 3 conditions.
We used Pearson coefficient to compare the matching between each of the 2 averages. In our total of 9 cases, only 2 are insignificantly correlated in
the Maze 1, 1 case has a Pearson value inferior to 0.1, 1 of 0.05, 4 inferior to 0.01 and 1 inferior to 0.001
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FIGURE 6.24 – Front-Back Speed : Expert Teacher versus Agent
In this figure we compare Expert Teacher (in yellow) Front-Back axis average speed versus the
trained Agent one (in cyan) across our 3 conditions. We notice that the speed in the Front-Back
constrained condition is significantly decreased on both Agent and Human Expert compared to
the Unconstrained condition.
We also notice in 2 cases out of 3 that the Right-Left constrained condition’s speed is significantly
higher on both Human Expert and the Agent compared to the Unconstrained condition.
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6.14 Future work : Haptic Guidance

Haptic guidance in virtual or teleoperation environment have, for a long time, used
virtual fixtures [Rosenberg, 1993] or artificial force fields [Xiao and Hubbold, 1998] in
order to create control assistance and help the user move toward goal or prevent the
user to enter some areas. Robotics improved the uses of haptic devices due to the sim-
plicity to create haptic feedback (most robots have force or distance sensors) and the
necessity to operate non autonomous robot more accurately with improved stability
[Bettini et al., 2004]. Implementation wise haptic feedback greatly widened its range
during the last decades including haptic control devices, wrist haptic devices [Goto
et al., 2018], gloves, suits, steering wheels for application like parking [Tada et al.,
2016], for fatigue-related behavior enhancement, for teleoperated car control [Hosseini
et al., 2016], for teaching curve to new drivers [Mulder et al., 2008], teaching AirHockey
[Moon and Seo, 2021, 2019] It could improve fields like Computer interfaces, Virtual
Reality, driving assistance, robot teleoperation, UAV (unmanned aerial vehicle) like ae-
rial and marine/submarine, drones, surgical robotics and the teaching of these fields
to novice users.

6.15 Conclusion

Using a Deep Learning agent trained on our Human Expert Data, our agent learnt
multiple aspects of the task and of the human expert behavior. Our agent learnt visual
features like collision avoidance, color related direction, human trajectory behaviors
and human velocity behaviors. We compared our agent motion and velocities to the
human participants to prove that our agent has human like behavior. Our agent was
taught only from our human expert so it learnt only from him. But our Human Expert
was himself so trained with the haptic feedback device that some particularity appea-
red between our participant velocity and our human expert’s one. This showed our
agent really learned specific behaviors in only particular cases. This led to our Agent
being closer to what we had hoped of our Human Expert.
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DISCUSSION AND CONCLUSION
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7.1 Achievements

In this thesis we explored embodied robot control, human impedance estimation
and learning from demonstration.

We first achieved an intuitive admittance control on a wearable robot arm based on
force sensor levers that control each servo-motor controlled based arms. We introduce
a simple user interface for supernumerary wearable robot arm systems. This interface
utilizes a force sensor to enable users to guide the robot arms and enable various pas-
sive and active assistance tasks, and enabling the user to teach simple movements to
the robot. The key feature of this user interface is its intuitiveness and ease of use. We
currently demonstrated the versatility of the interface in three modes of application,
and we are now developing its applications in the field of elderly care where we be-
lieve it can be extremely useful.

Then we brought embodiment to robotics by implementing our own embodied ro-
bot system with a Haption Virtuose 3D haptic feedback device, a Franka Panda 7DoF
robot arm and a VR head mounted display coupled to a 360° camera. We exploited im-
pedance control and quadratic programming to operate safely the robot teleoperation.

We used this embodied robot setup to implement a novel human arm impedance
estimation method based on task-induced vibrations and applied this estimation to the
impedance controlled robot, achieving tele-impedance. For this purpose, we propose
a methodology for online impedance estimation, and online reference estimation from
the human operator. We designed the controller envisaging use in assistive scenarios,
where a human physiotherapist or caregiver guides a follower robot to help elderly
patients. These scenarios are characterized by perturbations from the individual and
hence we propose to estimate the human impedance directly from the perturbations.
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For this purpose, we propose a methodology for online impedance estimation, and
online reference estimation from the human operator.

As mentioned in the experiments, we were unable to use the damping calculated
from the human operator on our robot. We found these values too low, relative to the
stiffness, to ensure stable robot behavior. This comes as no surprise, given the different
inertia of human arm and robot. Ideally our controller, in which the robot forces are
fed to the operator and the operator movements are sent to the robot, should impose
the human arm dynamics on the robot, therefore theoretically ensuring that the human
damping ratios are sufficient for the robot. In practice though, this is possible only if
the mass of the robot is well compensated for, which is not a trivial challenge.

Human interactive behaviors are enabled by simultaneous adaptations of force, tra-
jectory and impedance. These adaptation are both predictive, to ensure stability when
an interaction starts, as well as reactive, to maintain the stability during perturbations
in a task. The method we propose here is specific for the measurement of reactive im-
pedance and is arguably better than muscle activation (EMG or grip force) based impe-
dance estimations in the presence of perturbations (as discussed in the introduction).
On the other hand, muscle activation based techniques are the only ones available for
impedance estimations before the start of a movement, and in the absence of sufficient
external perturbations. Robust impedance estimation in real world tasks therefore re-
quires us to develop an integrated estimation framework in which the predictive im-
pedance changes can be measured using muscle activation (via EMG or grip force) and
the reactive changes are estimated using the perturbations, like we propose here in this
study.

Lastly we used this same embodied robot setup to bring embodiment and Lear-
ning from Demonstration together. By using a Deep Learning agent trained on our
Human Expert Data, we could have our agent learn multiple aspect of our task and
of the human expert behavior. We used state-of-the-art visual recognition network Re-
sNET, Gated Recurrent Units and Mixtures Density Networks to train from short video
clip to get our Agent have planar motion. Our agent learnt visual feature like collision
avoidance, color related direction, human position behaviors and human velocity tra-
jectories without us never having explicitly write any policy or explain the constraints
or dynamics. We compared our agent motion and velocities to our human participants
to prove that our agent has human like behavior. This was proved for most of the beha-
viors, but unfortunately our agent learnt only from our Human Expert that was himself
so trained with the haptic feedback device that some particularity appeared between
our participant velocity and our human expert’s one. But this showed our agent could
learn behaviors specific to our Human Expert.

7.2 Future work

Our agent learnt well some human particularities in simulation but we never had
the opportunity to bring it in a real life environment. In the future we would like to
bring it to real life by applying transfer learning with a real life dataset.
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We also noticed our Agent had learnt specific behaviors of our Human Expert that
could not be found in the novice participants behaviors. This means that by creating
the dataset whith our system, our Expert acquired experience that was not acquired
by our novice participants. Hence it might become difficult to learn a specific behavior
of a unique novice participant since its behavior changes as long as he/she trains our
Agent. A possible solution could be to decrease the dataset length, but it could have
negative effect on the training, others would be to apply some transfer learning to our
current Agent with a shorter dataset created by a novice participant.

Also we think a new field can be studied with this agent and this way of training.
The field of haptic guidance, mainly in order to guide medical robots, could gain by
having these methods applied to. Indeed our agent showed it was able to catch indivi-
dual details of our Human Expert that our human participant panel did not possessed.
The learning process being completely intuitive for the human expert, inputs are taken
from images and labels from the guided robot position. This could lead to learn expert
way to have guidance through the haptic system, such as teleoperated medical robots,
to teach new users move as an expert and understand their wrong moves.
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CHAPTER 8

APPENDIX

Appendix A

Example of non sequential model description in TensorFlow

def GRU_MDN_model(IMG_SIZE,WINDOW_SIZE):

ResNet = ResNet50V2(
include_top= None, weights=’imagenet’, input_tensor=None,

pooling=None, input_shape=(IMG_SIZE, IMG_SIZE,3))
ResNet.trainable = True

model = tf.keras.Sequential()
dr = 0.3 #Dropout rate
unit =512 #Units number

init_lr = 0.0001 # Learning rate
decay_steps = 1000

IMG = layers.Input(shape=(WINDOW_SIZE,IMG_SIZE,IMG_SIZE,3))

RNfeature =
layers.TimeDistributed(ResNet,name="ResNetTrained")(IMG)

norm = layers.BatchNormalization()(IMG)

conv =
layers.TimeDistributed(layers.BatchNormalization())(RNfeature)

conv = layers.TimeDistributed(layers.Conv2D(kernel_size=2,
filters=unit, activation=’relu’,
padding="same"),name="Conv1")(conv)

conv = layers.Reshape((WINDOW_SIZE,unit))(conv)

gru = layers.GRU(unit, return_sequences=True, dropout=dr)(conv)
gru = layers.GRU(unit, return_sequences=True, dropout=dr)(gru)
gru = layers.GRU(unit, return_sequences=True, dropout=dr)(gru)
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mid1 = layers.BatchNormalization()(gru)

gru = layers.GRU(unit, return_sequences=True, dropout=dr)(mid1)
gru = layers.GRU(unit, return_sequences=True, dropout=dr)(gru)
gru = layers.GRU(unit, return_sequences=True, dropout=dr)(gru)
mid2 = layers.BatchNormalization()(conv1)
mid12 = layers.Subtract()([mid2, mid1])

gru = layers.GRU(unit, return_sequences=True, dropout=dr)(mid12)
gru = layers.GRU(unit, return_sequences=True, dropout=dr)(gru)
end3 = layers.GRU(unit, return_sequences=True, dropout=dr)(gru)

end3 = layers.Subtract()([end3, mid1])

outlayer = layers.Flatten()(end3)
outlayer = Dropout(dr)(outputs)

padding="same",name="Conv2D4"))(end3)
N_HIDDEN=unit #Hidden Unit number of the MDN
OUTPUT_DIMS=2 #Output dimension for the MDN
N_MIXES=15 #Number of mixing coefficient for the MDN

lr_decayed_fn =
tf.keras.optimizers.schedules.CosineDecay(init_lr, decay_steps)

outlayer = layers.Dense(N_HIDDEN, batch_input_shape=(None, 1),
activation=’relu’)(outlayer)

outlayer = mdn.MDN(OUTPUT_DIMS, N_MIXES)(outputs)

model = tf.keras.Model(inputs=[IMG], outputs=[outlayer])
model.compile(loss=mdn.get_mixture_loss_func(OUTPUT_DIMS,N_MIXES),optimizer=optimizers.Adam(learning_rate

=init_lr))

return model
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– Appendix B : Our architecture containing TensorFlow name and shape of every layer
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