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Enfin, dans la partie III qui ne contient que le chapitre 7, nous donnons quelques conclusions et décrivons les futures directions de recherche.
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Introduction en français

En optimisation polynomiale, il est bien connu que le calcul de l'infimum d'un polyn ôme sur un ensemble semi-algébrique est NP-dur. Pour contourner ce problème de calcul, on peut utiliser des hiérarchies de relaxations semi-définies et la théorie des sommes de carrés (SOS) de polyn ômes, dans laquelle chaque programme semi-défini peut être résolu, jusqu'à une précision arbitraire, en temps polynomial. Dans ce cadre, la non-négativité des polyn ômes est remplacée par la propriété d'être SOS. Par conséquent, l'évaluation de la non-négativité des polyn ômes basée sur les décompositions SOS est un problème d'actualité dans le domaine de l'optimisation polynomiale.

Les certificats de non-négativité sont généralement abordés par le biais du calcul de décompositions SOS qui reposent sur des solveurs numériques efficaces numériques efficaces pour la programmation semi-définie. Par conséquent, les certificats obtenus de cette manière sont approximatifs et donc non exacts. Pour certaines applications critiques, il est important de calculer réellement des certificats exacts de non-négativité.

Le but de cette thèse est de calculer des certificats exacts de non-négativité pour des polyn ômes basés sur des décompositions SOS avec des coefficients rationnels. Les certifications utilisant SOS font face aux deux difficultés suivantes. Premièrement, en raison du fait que l'ensemble des polyn ômes non-négatifs est significativement plus grand que celui des polyn ômes SOS, les certifications basées sur les décompositions SOS ne peuvent pas être appliquées à tous les polyn ômes non négatifs. Deuxièmement, il existe des polyn ômes à coefficients rationnels qui sont SOS à coefficients réels mais qui ne sont pas SOS à coefficients rationnels.

Dans cette thèse, nous fournissons des algorithmes symboliques pour calculer les décompositions SOS modulo l'idéal gradient des polyn ômes multivariés réels non négatifs sous une condition de généricité. Ces algorithmes peuvent traiter un large éventail de problèmes qui sont hors de portée des algorithmes les plus avancés. Nous calculons également les sommes des décompositions des carrés hermitiens pour les polyn ômes trigonométriques complexes univariés qui sont positifs sur le cercle unité avec des gaussiens. De plus, nous analysons la complexité binaire de ces algorithmes et déduisons les limites de taille binaire de ces certificats. Enfin, nous implémentons ces algorithmes dans le système de calcul formel MAPLE et l'environnement de programmation JULIA et évaluons leurs performances sur quelques benchmarks standards.

Thèmes de recherche et motivations

Nous désignons par N l'ensemble des nombres naturels, par Z l'ensemble des entiers, et par Q, Q + , R et C les corps des nombres rationnels, rationnels non négatifs, réels et complexes, respectivement. Soit x le vecteur de n variables (x 1 , . . . , x n ). Soit K un un corps, nous désignons par K[x] l'anneau de polyn ômes avec le corps de base K et les variables x.

Certificats exacts pour les polyn ômes multivariés réels

Un polyn ôme f dans R[x] de degré d est non-négatif sur R n s'il ne prend que des valeurs non négatives. Fournir des conditions vérifiables ou une procédure pour vérifier la nonnégativité des polyn ômes est une question cruciale dans la théorie de l'optimisation polynomiale [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF][START_REF] Parrilo | Chapter 3: Polynomial optimization, sums of squares, and applications[END_REF]. Il existe plusieurs questions d'actualité concernant la non-négativité des polyn ômes telles que [START_REF] Parrilo | Chapter 3: Polynomial optimization, sums of squares, and applications[END_REF] : Comment decider de la non-négativité de f ? Est-il possible de certifier la non-négativité de f ? Quelle est la complexité de la décision de la non-négativité de f ? Quelle est la structure de l'ensemble des polyn ômes non-négatifs?

Nos recherches dans cette thèse se concentrent sur la certification et la et les problèmes de complexité.

Non-négativité et sommes des carrés. La non-négativité de f découle du fait que f peut être décomposé comme une somme de carrés (SOS) de polyn ômes, à savoir

f = q 2 1 + • • • + q 2 r , (1.1) 
o ù q 1 , . . . , q r sont dans R[x], pour un certain r ∈ N \ {0}. Le membre de droit de (1.1) est appelé une décomposition SOS de f et fournit un certificat de non-négativité pour f . La relation entre les propriétés de non-négativité et de SOS des polyn ômes a été étudiée depuis la fin du 19ème siècle, conduisant au 17ème problème de Hilbert. Le théorème de Hilbert, dans [START_REF]Ueber die Darstellung definiter Formen als Summen von Formenquadraten[END_REF], dit que la non-négativité et la propriété SOS des polyn ômes homogènes sont équivalentes si et seulement si n = 2, d = 2, ou (n, d) = [START_REF] Babaeinejadsarookolaee | The power grid library for benchmarking AC optimal power flow algorithms[END_REF][START_REF] Bai | On floating point errors in Cholesky[END_REF]. Il découle du théorème de Hilbert que, pour les autres cas, l'ensemble des polyn ômes non-négatifs contient strictement l'ensemble des polyn ômes SOS. En 1967, Motzkin a donné le premier polyn ôme explicite p M non négatif et pourtant non SOS. [START_REF] Motzkin | The arithmetic-geometric inequality[END_REF],

p M := x 2 1 x 2 2 (x 2 1 + x 2 2 -3) + 1. (1.2)
Quantitativement, Blekherman [START_REF] Blekherman | There are significantly more nonegative polynomials than sums of squares[END_REF] a prouvé que pour tout degré fixe d ≥ 4, si le nombre de variables est suffisamment grand alors l'ensemble des polyn ômes non-négatifs est significativement plus grand que celui des polyn ômes SOS. Notons que, l'ensemble des polyn ômes non négatifs et celui des polyn ômes SOS sont significativement plus grands. Notons que ces deux ensembles définissent tout deux des c ônes convexes and que tout deux sont de dimension complète dans R d [x], l'espace de tous les polyn ômes de degré au plus égal à d [START_REF] Reznick | Sum of even powers of real linear forms[END_REF].

Rappelons que la non-négativité de f peut également être certifiée si f peut être décomposé en une somme de carrés de fonctions rationnelles, c'est-à-dire que chaque q dans (1.1) est une fraction de deux polyn ômes non triviaux dans R[x],

f = u 1 v 1 2 + • • • + u r v r 2 , (1.3) 
Le 17ème problème de Hilbert en 1900 [START_REF] Hilbert | Mathematical problems[END_REF] était le suivant : "Pour tout f ∈ R[x], est-il vrai que si f est non négatif sur R n alors f est une somme de carrés de fonctions rationnelles?"

Artin a donné une réponse affirmative [2] en 1927. Par exemple, la non-négativité du polyn ôme de Motzkin p M peut être certifiée en en l'écrivant comme une SOS de fonctions rationnelles:

p M = 1 x 2 1 + x 2 2 (x 2 1 (1 -x 2 ) 2 + x 2 2 (1 -x 1 ) 2 + x 2 1 x 2 2 (x 2 1 + x 2 2 -2) 2 ).
Nous nous intéressons également à la question du nombre maximal de carrés r et le degré maximal de u , v dans la décomposition (1.3). En 1967, Pfister [START_REF] Pfister | Zur darstellung definiter funktionen als summe von quadraten[END_REF] a prouvé que si f ∈ R[x] est non-négatif alors f est une somme de 2 n carrés de fonctions rationnelles, ce nombre ne dépendant que du du nombre de variables. Lombardi, Perrucci et Roy ont prouvé en 2014 que si f est non-négatif alors f peut s'écrire comme une somme de carrés de fonctions rationnelles de degré au plus 2 2 2 d 4 n en [START_REF] Lombardi | An elementary recursive bound for effective Positivstellensatz and Hilbert's 17th problem[END_REF].

La relation entre la non-négativité et the propriété SOS des polyn ômes peut être trouvée plus en détail dans les monographies [START_REF] Laurent | Sums of squares, moment matrices and optimization over polynomials[END_REF][START_REF] Marshall | Positive polynomials and sums of squares[END_REF][START_REF] Powers | Certificates of Positivity for Real Polynomials: Theory, Practice, and Applications[END_REF], ou dans le article de synthèse [START_REF] Parrilo | Chapter 3: Polynomial optimization, sums of squares, and applications[END_REF].

Sommes de carrés à coefficients rationnels. Soit f ∈ Q[x] un polyn ôme à coefficients rationnels. On dit que f est somme (pondérée) de carrés à coefficients rationnels si f peut s'écrire sous la forme

f = c 1 s 2 1 + • • • + c r q 2 r ,
o ù c 1 , . . . , c r sont dans Q, et q 1 , . . . , q r sont dans Q[x], pour un certain nombre d'entiers positifs r.

Tout polyn ôme univarié non négatif f ∈ Q[x 1 ] à coefficients rationnels peut être décomposé en tant que somme pondérée de carrés à coefficients rationnels [START_REF] Landau | Über die darstellung definiter funktionen durch quadrate[END_REF][START_REF] Pourchet | Sur la représentation en somme de carrés des polyn ômes à une indéterminée sur un corps de nombres algébriques[END_REF]. Landau [START_REF] Landau | Über die darstellung definiter funktionen durch quadrate[END_REF] a prouvé en 1905 que le nombre maximal de carrés est au plus égal à huit, c'est-àdire que r ≤ 8. Ce résultat a été amélioré par Pourchet [START_REF] Pourchet | Sur la représentation en somme de carrés des polyn ômes à une indéterminée sur un corps de nombres algébriques[END_REF] en 1971 par r ≤ 5.

Il y a plus de dix ans, Sturmfels a soulevé la question de savoir si un polyn ôme à coefficients rationnels est nécessairement une SOS de polyn ômes à coefficients rationnels. Scheiderer a donné une réponse négative dans [START_REF] Scheiderer | Sums of squares of polynomials with rational coefficients[END_REF], o ù il a construit des familles de polyn ômes homogènes explicites à coefficients rationnels qui sont SOS avec des coefficients réels mais pas avec des coefficients rationnels. Il a souligné explicitement que le polyn ôme

p S = x 4 1 + x 1 x 3 2 + x 4 2 -3x 2 1 x 2 x 3 -4x 1 x 2 2 x 3 + 2x 2 1 x 2 3 + x 1 x 3 3 + x 2 x 3 3 + x 4 3 (1.4)
a une décomposition SOS avec des coefficients réels mais qu'il n'existe pas de décompositions SOS avec des coefficients rationnels [START_REF] Scheiderer | Sums of squares of polynomials with rational coefficients[END_REF].

Pour les sommes de carrés de fonctions rationnelles avec des coefficients rationnels, Jannsen a fait remarquer dans [START_REF] Jannsen | Hasse principles for higher-dimensional fields[END_REF] que, avec n ≥ 2, si f ∈ Q[x] est non-négatif alors f est une somme de 2 n+1 carrés de fonctions rationnelles sur Q.

Somme des carrés et programmes semi-définis.

Il est intéressant de noter que le problème de l'expression d'un polyn ôme sous forme de SOS peut être examiné du point de vue de l'optimisation convexe. Nous sommes en mesure de décider si un polyn ôme peut être décomposé en SOS par le biais de la programmation semi-définie.

Un programme semi-défini (SDP en abrégé) est le problème d'optimisation suivant [START_REF] Wolkowicz | Handbook of semidefinite programming: theory, algorithms, and applications[END_REF] minimize tr(CX) subject to tr(A i X) = b i , i = 1, . . . , m, X 0, o ù X, C, A i sont des matrices symétriques réelles, b i dans R ; X est la variable matricielle variable, C, A i , et b i ∈ R sont des données, et tr(•) représente l'opérateur de trace matricielle habituel. Par conséquent, la fonction objectif et les contraintes sont convexes.

La caractéristique cruciale du SDP est sa convexité. Ce problème convexe peut être résolu par des méthodes de point intérieur (voir, par ex, [START_REF] Boyd | Convex optimization[END_REF]Chapitre 11]), des méthodes du premier ordre (voir, par ex, [START_REF] Beck | First-order methods in optimization[END_REF]) ou les méthodes de l'ellipsoïde (voir, par exemple [START_REF] Gr | Geometric Algorithms and Combinatorial Optimization[END_REF]Chapitre 3]).

On désigne par v d (x) = (1, x 1 , x 2 , . . . , x n , x 1 x 2 , . . . , x d n ) T vecteur contenant tous les monômes de degré au plus égal à d. La longueur du vecteur v d (x) est égale à ( n+d d ). Choi, Lam, et Reznick [19] ont établi le fait que f ∈ R[x] est SOS si et seulement s'il existe une matrice semi-définie positive Q, c'est-à-dire que Q est une matrice symétrique ayant des valeurs propres non négatives, telle que que f = v T d Qv d . Une telle matrice Q est appelée une matrice de Gram associée à f . Puisque le calcul de telles matrices Gram se réduit à la résolution d'inégalités matricielles linéaires, le calcul d'une décomposition SOS de f se résume à la résolution d'un problème de faisabilité SDP.

En pratique, les résolutions SDP fournissent des approximations numériques ; par conséquent les décompositions SOS obtenues par cette méthode sont approximatives et donc non exactes, voir, par exemple, [START_REF] Waki | Strange behaviors of interiorpoint methods for solving semidefinite programming problems in polynomial optimization[END_REF] ou [49, Chapitre 2].

Sommes de carrés et optimisation polynomiale.

Au cours des deux dernières décennies, inspirée par les travaux de Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] et de Parrilo [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF], la théorie SOS ainsi que la programmation semi-définie ont été des méthodologies très populaires pour attaquer un problème d'optimisation polynomiale.

Pour décrire brièvement cette idée, nous considérons le problème non contraint comme suit :

f inf := inf x∈R n f (x).

(1.5)

Ce problème est NP-dur [START_REF] Murty | Some NP-complete problems in quadratic and nonlinear programming[END_REF] lorsque le degré de f est supérieur ou égal à 4. Clairement, ce problème peut être reformulé comme suit :

f inf = sup ρ s.t. f -ρ ≥ 0 on R n . (1.6) 
En remplac ¸ant la condition de non-négativité non négative dans (2.6) par une condition plus facile à gérer est une idée naturelle pour traiter le le problème (2.6). Par la suite, le remplacement de la condition de non-négativité par la condition SOS proposée par Shor [START_REF] Shor | Class of global minimum bounds of polynomial functions[END_REF] mène à une relaxation SOS de (2.5) comme suit :

f sos := sup ρ s.t. fρ is SOS.

(1.7)

Comme l'ensemble des polyn ômes non négatifs contient celui des polyn ômes SOS, f sos est une borne inférieure de f inf . La relation entre la programmation semi-définie et la théorie SOS nous permet de calculer f sos via un programme semi-défini qui peut être résolu en temps polynomial jusqu'à une précision prescrite [START_REF] Porkolab | On the complexity of semidefinite programs[END_REF][START_REF] De Klerk | On the Turing model complexity of interior point methods for semidefinite programming[END_REF].

Problem 1. Le premier sujet de cette thèse porte sur les certificats exacts de non-négativité pour polynômes multivariés réels basés sur des décompositions SOS à coefficients rationnels.

Nous sommes intéressés par les algorithmes de certification, leur complexité binaire ainsi que les implémentations.

Comme décrit ci-dessus, notre motivation principale vient du besoin de certificats exacts pour l'optimisation polynomiale certifiée. Nous rappelons et soulignons ici les deux difficultés auxquelles nous sommes confrontés :

• L'ensemble de polyn ômes non-négatifs est significativement plus grand que l'ensemble des polyn ômes SOS.

• Il existe des polyn ômes à coefficients rationnels qui sont SOS à coefficients réels, mais pas à coefficients rationnels.

Certificats exacts pour les polyn ômes complexes univariés

On désigne par i l'unité imaginaire. Pour une variable ou un nombre complexe v, nous 

f (z) = f 0 + f 1 z + f1 z + • • • + f d z d + fd z d , avec f 0 ∈ R et d ∈ N.
g(z) = f 0 + f 1 z + f1 z + • • • + f d zd + fd z d , puisque ζ = ζ -1 pour ζ ∈ C . Remarquons également que pour tout ζ ∈ C , g(ζ) = g( ζ)
∈ R, de sorte que g est un polyn ôme hermitien. Enfin, notons que pour tout polyn ôme hermitien g, il existe f ∈ H [z] tel que les restrictions à C des applications

ζ → g(ζ) et ζ → f (ζ) coïncident.
Somme des carrés hermitiens. On dit que f est un somme de carrés hermitiens, SOHS en abrégé, s'il existe un certain r ∈ N \ {0} et des polyn ômes s 1 , . . . , s r dans C[z] tels que 

f (z) = s 1 (z)s 1 (z) + • • • + s r (z)s r (z). ( 1 
f = a × d ∏ k=1 (z -a k ) × 1 z -āk , o ù (a 1 , 1/ ā1

Polyn ômes multivariés

Pour le cas multivarié, c'est-à-dire n ≥ 3, Hilbert [START_REF]Ueber die Darstellung definiter Formen als Summen von Formenquadraten[END_REF] a prouvé que tout polyn ôme homogène non négatif de degré d dans R[x] est SOS si et seulement si d = 2 ou (n, d) = [START_REF] Babaeinejadsarookolaee | The power grid library for benchmarking AC optimal power flow algorithms[END_REF][START_REF] Bai | On floating point errors in Cholesky[END_REF]. Dans ce travail, il a prouvé que, pour n = 3, tout polyn ôme non négatif de degré 4 est une somme de trois carrés.

À la suite de ces travaux fondateurs [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF], les hiérarchies de programmes semidéfinis donnent des approximations des décompositions SOS pondérées de polyn ômes positifs. Plusieurs heuristiques ont été proposées pour élever ces approximations à des décompositions exactes SOS du polyn ôme d'entrée. En commenc ¸ant par la méthode rouding-projection soulevée par Peyrl et Parrilo [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF], cette méthode peut être appliquée pour les polyn ômes situés à l'intérieur du c ône des polyn ômes SOS, et suivie par des méthodes hybrides numériques-symboliques [START_REF] Kaltofen | Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars[END_REF][START_REF] Kaltofen | A proof of the monotone column permanent (MCP) conjecture for dimension 4 via sums-of-squares of rational functions[END_REF][START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF]. Il convient de noter que les algorithmes de [START_REF] Kaltofen | Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars[END_REF][START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF] nous permettent de calculer des décompositions SOS sur certains exemples dégénérés ou de calculer des SOS de fractions rationnelles. Les problèmes de complexité sont étudiés sous l'angle des techniques de perturbation-compensation afin de calculer des décompositions SOS à l'intérieur du c ône SOS [START_REF] Magron | On exact Polya and Putinar's representations[END_REF][START_REF] Magron | RealCertify: a Maple package for certifying nonnegativity[END_REF][START_REF] Magron | On exact Reznick, Hilbert-Artin and Putinar's representations[END_REF]. Des algorithmes généraux pour calculer de tels certificats exacts au moyen de décompositions SOS ont été conc ¸u, soit pour le calcul des décompositions SOS à coefficients rationnels [START_REF] El Din | Computing rational points in convex semialgebraic sets and sums-of-squares decompositions[END_REF] ou avec des nombres algébriques en calculant des solutions exactes à des programmes semi-définis exactes de programmes semi-définis [START_REF] Henrion | Exact algorithms for linear matrix inequalities[END_REF].

Des certificats exacts alternatifs de non-négativité, par exemple, des sommes de nombres .

I grad ( f )), c'est-à-dire que f s'écrit comme suit c 1 s 2 1 + • • • + c k s 2 k + n ∑ i=1 q i ∂ f ∂x i , o ù
• Nous concevons une variante de l'algorithme précédent, nommée sosgradient.

(Algorithme 4). Sur entrée f ∈ Q[x] comme ci-dessus, cet algorithme décompose f en une somme de fractions rationnelles fractions rationnelles modulo l'idéal gradient associé à f . Nous prouvons que cette variante utilise O (τ + n + d)d 4n+4 opérations booléennes et présente donc une meilleure complexité que Algorithme sosgradientshape.

Nous soulignons que que ces estimations de complexité sont intéressantes pour la communauté de l'optimisation polynomiale, car elles donnent des limites de degré pour les multiplicateurs SOS requis lorsque l'utilisation de la variante de ce que l'on appelle la "hiérarchie Moment-SOS" ou la hiérarchie de Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] pour minimiser les polyn ômes sur leurs idéaux gradients [START_REF] Nie | Minimizing polynomials via sum of squares over the gradient ideal[END_REF]. En effet, de telles limites de degré se traduisent par des taux de convergence pour le schéma d'optimisation sous-jacent et nous permettent d'estimer la complexité globale du co ût de calcul.

Résultats expérimentaux. Nos deux algorithmes ont été mis en oeuvre à l'aide du système algébrique informatique MAPLE. Nous présentons des expériences pratiques qui montrent que nos algorithmes peuvent déjà évaluer la non-négativité de nombreux polyn ômes qui sont hors de portée, par exemple, des méthodes hybrides calculant des sommes de carrés des décompositions telles que [START_REF] Magron | On exact Polya and Putinar's representations[END_REF].

• Nos expériences pratiques montrent que Algorithme sosgradient peut évaluer la non-négativité des polynômes multivariés d'un large ensemble d'exemples qui sont hors de portée de l'état de l'art lorsque le nombre de variables et le degré augmentent. Ces deux algorithmes sont plus co ûteux que l'algorithme csos1 parce que nous remplac ¸ons l'isolation de la racine complexe par la résolution complexe de SDP. Malgré leur plus grande complexité, ils permettent de traiter des problèmes d'optimisation contraints et de concevoir des filtres.

Décompositions SOHS exactes de polyn ômes complexes univariés

Résultats expérimentaux. Ces algorithmes ont été implémentés en utilisant le langage de programmation JULIA [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF].

• Nous présentons des expériences pratiques montrant que l'algorithme csos1 fonctionne plus rapidement que les autres algorithmes, ce qui coïncide avec nos résultats théoriques de complexité. De plus, nous nous appuyons sur csos3 pour concevoir des filtres de manière certifiée. Certificates of non-negativity are usually tackled through the computation of SOS decompositions which rely on efficient numerical solvers for semi-definite programming.

Organisation de la thèse

Consequently, certificates obtained in this way are approximate and therefore non-exact.

For some critical applications, it is important to actually compute exact certificates of non-negativity.

The aim of this thesis is to compute exact certificates of non-negativity for polynomials based on SOS decompositions with rational coefficients. Certifications using SOS face the following two difficulties. Firstly, due to the fact that the set of non-negative polynomials is significantly larger than that of SOS polynomials, certifications based on SOS decompositions cannot be applied to all non-negative polynomials. Secondly, there exist polynomials with rational coefficients that are SOS with real coefficients but are not SOS with rational coefficients.

In this thesis, we provide symbolic algorithms to compute SOS decompositions modulo the gradient ideal of non-negative real multivariate polynomials under a genericity condition. These algorithms can tackle a large range of problems which are out of reach for state-of-the-art algorithms. We also compute sums of Hermitian squares decompositions for complex trigonometric univariate polynomials that are positive on the unit circle with Gaussian coefficients. Moreover, we analyze the bit complexity of these algorithms and deduce bitsize bounds of such certificates. Finally, we implement these algorithms in the computer algebra system MAPLE and the programming environment JULIA and evaluate their performance on some standard benchmarks. 

Research topics and motivations

We denote by N the set of natural numbers, by Z the set of integers, and by

Q, Q + , R
and C the fields of rational, non-negative rational, real and complex numbers, respectively. Let x be the n-tuple of variables (x 1 , . . . , x n ). Let K be a field, we denote by K[x] the polynomial ring with base field K and variables x.

Exact certificates for real multivariate polynomials

A polynomial f in R[x] of degree d is non-negative over R n if it takes only non-negative values. Providing checkable conditions or a procedure for verifying non-negativity of polynomials is a crucial issue in polynomial optimization theory [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF][START_REF] Parrilo | Chapter 3: Polynomial optimization, sums of squares, and applications[END_REF]. There are several topical questions concerning non-negativity of polynomials such as [START_REF] Parrilo | Chapter 3: Polynomial optimization, sums of squares, and applications[END_REF]: How do we decide non-negativity of f ? Is it possible to certify the non-negativity of f ? What is the complexity of deciding non-negativity of f ? What is the structure of the set of non-negative polynomials? Our research in this thesis focuses on the certification and complexity issues.

Non-negativity and sums-of-squares. Clearly, the non-negativity of f follows from the fact that f can be decomposed as a sum of squares (SOS) of polynomials, namely

f = q 2 1 + • • • + q 2 r , (2.1) 
where q 1 , . . . , q r are in R[x], for some r ∈ N \ {0}. The right-hand side of (2.1) is called an SOS decomposition of f and provides a certificate of non-negativity for f .

The relationship between the properties of non-negativity and SOS of polynomials has been investigated since the late 19th century, raising Hilbert's 17th problem. Hilbert's theorem, in [START_REF]Ueber die Darstellung definiter Formen als Summen von Formenquadraten[END_REF], says that non-negativity and SOS property of homogeneous polynomials are equivalent if and only if n = 2, or d = 2, or (n, d) = [START_REF] Babaeinejadsarookolaee | The power grid library for benchmarking AC optimal power flow algorithms[END_REF][START_REF] Bai | On floating point errors in Cholesky[END_REF]. It follows from Hilbert's theorem that, for other cases, the set of non-negative polynomials strictly contains the set of SOS polynomials. In 1967, Motzkin gave the first explicit polynomial p M that was non-negative but not SOS [START_REF] Motzkin | The arithmetic-geometric inequality[END_REF],

p M := x 2 1 x 2 2 (x 2 1 + x 2 2 -3) + 1. (2.2)
Quantitatively, Blekherman [START_REF] Blekherman | There are significantly more nonegative polynomials than sums of squares[END_REF] proved that for any fixed degree d ≥ 4, if the number of variables is large enough then the set of non-negative polynomials is significantly larger than that of SOS polynomials. Note that, the set of non-negative polynomials and that of SOS polynomials are convex cones and both of them are full-dimensional in R d [x] the space of all polynomials of degree at most d [START_REF] Reznick | Sum of even powers of real linear forms[END_REF].

Recall that non-negativity of f can also be certified if f can be decomposed as a sum of squares of rational functions, i.e., every q in (2.1) is a fraction of two nontrivial

polynomials in R[x], f = u 1 v 1 2 + • • • + u r v r 2 , (2.3) 
Hilbert's 17-th problem in 1900 [START_REF] Hilbert | Mathematical problems[END_REF] was the following: For any f ∈ R[x], is it true that if f is non-negative over R n then f is a sum of squares of rational functions? Artin

gave an affirmative answer [2] in 1927. For example, the non-negativity of Motzkin's polynomial p M can be certified by writing it as an SOS of rational functions as follows:

p M = 1 x 2 1 + x 2 2 (x 2 1 (1 -x 2 ) 2 + x 2 2 (1 -x 1 ) 2 + x 2 1 x 2 2 (x 2 1 + x 2 2 -2) 2 ).
We are also interested in the question about the maximal number of squares r and the maximal degree of u , v in the decomposition (2.3). In 1967, Pfister [START_REF] Pfister | Zur darstellung definiter funktionen als summe von quadraten[END_REF] proved that if f ∈ R[x] is non-negative then f is a sum of 2 n squares of rational functions, that number depending only on the number of variables. Lombardi, Perrucci and Roy proved in 2014 that if f is non-negative then f can be written as a sum of squares of rational functions of degree at most 2 2 2 d 4 n in [START_REF] Lombardi | An elementary recursive bound for effective Positivstellensatz and Hilbert's 17th problem[END_REF].

The relationship between non-negativity and the SOS property of polynomials can be found in more detail in the monographs [START_REF] Laurent | Sums of squares, moment matrices and optimization over polynomials[END_REF][START_REF] Marshall | Positive polynomials and sums of squares[END_REF][START_REF] Powers | Certificates of Positivity for Real Polynomials: Theory, Practice, and Applications[END_REF], or in the survey article [START_REF] Parrilo | Chapter 3: Polynomial optimization, sums of squares, and applications[END_REF].

Sums of squares with rational coefficients. Let f ∈ Q[x] be a polynomial with rational coefficients. One says that f is (weighted) sum of squares with rational coefficients if it can be written

f = c 1 s 2 1 + • • • + c r q 2 r ,
where c 1 , . . . , c r are in Q + , and q 1 , . . . , q r are in Q[x], for some positive integer r.

Any non-negative univariate polynomial f ∈ Q[x 1 ] with rational coefficients can be decomposed as a weighted sum of squares with rational coefficients [START_REF] Landau | Über die darstellung definiter funktionen durch quadrate[END_REF][START_REF] Pourchet | Sur la représentation en somme de carrés des polyn ômes à une indéterminée sur un corps de nombres algébriques[END_REF]. Landau [START_REF] Landau | Über die darstellung definiter funktionen durch quadrate[END_REF] proved in 1905 that the maximal number of squares is at most eight, i.e., r ≤ 8. This result was improved by Pourchet [START_REF] Pourchet | Sur la représentation en somme de carrés des polyn ômes à une indéterminée sur un corps de nombres algébriques[END_REF] in 1971 by r ≤ 5.

More than ten years ago, Sturmfels raised the question whether a polynomial with rational coefficients is necessarily an SOS of polynomials with rational coefficients.

Scheiderer gave a negative answer in [START_REF] Scheiderer | Sums of squares of polynomials with rational coefficients[END_REF], where he constructed families of explicit homogeneous polynomials with rational coefficients that are SOS with real coefficients but not with rational coefficients. He pointed out explicitly that the polynomial

p S = x 4 1 + x 1 x 3 2 + x 4 2 -3x 2 1 x 2 x 3 -4x 1 x 2 2 x 3 + 2x 2 1 x 2 3 + x 1 x 3 3 + x 2 x 3 3 + x 4 3 (2.4)
has an SOS decomposition with real coefficients but there are no SOS decompositions with rational coefficients [START_REF] Scheiderer | Sums of squares of polynomials with rational coefficients[END_REF].

For sums of squares of rational functions with rational coefficients, Jannsen pointed out in [START_REF] Jannsen | Hasse principles for higher-dimensional fields[END_REF] that, with n ≥ 2, if f ∈ Q[x] is non-negative then f is a sum of 2 n+1 squares of rational functions over Q.

Sums of squares and semi-definite programs. Interestingly, the problem of expressing a polynomial as an SOS can be examined from the viewpoint of convex optimization.

We are able to decide whether a polynomial can be decomposed as an SOS decomposition through semi-definite programming.

A semi-definite program (SDP for short) is the following optimization problem [START_REF] Wolkowicz | Handbook of semidefinite programming: theory, algorithms, and applications[END_REF] minimize tr(CX)

subject to tr(A i X) = b i , i = 1, . . . , m, X 0,
where X, C, A i are real symmetric matrices, b i in R; X is the matrix variable, C, A i , and b i ∈ R are given data, and tr(•) stands for the usual matrix trace operator. Consequently, the objective function and the constraints are convex. The crucial feature of SDP is its convexity. This convex problem can be solved by interior-point methods (see, e.g., [START_REF] Boyd | Convex optimization[END_REF]Chapter 11]), first-order methods (see, e.g., [START_REF] Beck | First-order methods in optimization[END_REF]) or ellipsoid methods (see, e.g., [START_REF] Gr | Geometric Algorithms and Combinatorial Optimization[END_REF]Chapter 3]).

Denote by v d (x) = (1, x 1 , x 2 , . . . , x n , x 1 x 2 , . . . , x d n ) T the vector containing all monomials of degree at most d. The length of the vector v d (x) is equal to ( n+d d ). Choi, Lam, and Reznick [19] established the fact that f ∈ R[x] is SOS if and only if there exists a positive semi-definite matrix Q, that is Q is a symmetric matrix having non-negative eigenvalues, such that f = v T d Qv d . Such a matrix Q is called a Gram matrix associated to f . Since computing such Gram matricies reduces to solving linear matrix inequalities, computing an SOS decomposition of f boils down to solving an SDP feasibility problem.

In practice, SDP solvers provide numerical approximations; therefore SOS decompositions obtained by this method are approximate and hence not exact, see e.g., [START_REF] Waki | Strange behaviors of interiorpoint methods for solving semidefinite programming problems in polynomial optimization[END_REF] or [START_REF] Magron | The quest of modeling, certification and efficiency in polynomial optimization[END_REF]Chapter 2].

Sums of squares and polynomial optimization. In the last two decades, inspired by the work by Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] and Parrilo [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF], SOS theory along with semi-definite programming have been very popular methodologies with which to attack a polynomial optimization problem.

To briefly describe this idea, we consider the unconstrained problem as follows:

f inf := inf x∈R n f (x). (2.5) 
This problem is NP-hard [START_REF] Murty | Some NP-complete problems in quadratic and nonlinear programming[END_REF] when the degree of f is greater than or equal 4. Clearly, this problem can be reformulated as follows:

f inf = sup ρ s.t. f -ρ ≥ 0 on R n . (2.6)
Replacing the non-negativity condition in (2.6) by a more tractable one is a natural idea to handle the problem (2.6). Hereafter, replacing the non-negativity condition by the SOS condition proposed by Shor [START_REF] Shor | Class of global minimum bounds of polynomial functions[END_REF], we obtain an SOS relaxation of (2.5) as follows:

f sos := sup ρ s.t. f -ρ is SOS. (2.7)
As the set of non-negative polynomials contains that of SOS polynomials, f sos is a lower bound of f inf . The relationship between semi-definite programming and SOS theory allows us to compute f sos via a semi-definite program which can be solved in polynomial time up to prescribed accuracy [START_REF] Porkolab | On the complexity of semidefinite programs[END_REF][START_REF] De Klerk | On the Turing model complexity of interior point methods for semidefinite programming[END_REF].

Problem 1. The first topic in this thesis is about exact certificates of non-negativity for real multivariate polynomials based on SOS decompositions with rational coefficients. We are interested in certification algorithms, their bit complexity as well as implementations.

As described above, our main motivation comes from the need for exact certificates for certified polynomial optimization. We recall and emphasize here the two difficulties we are facing:

• The set of non-negative polynomials is significantly larger than the set of SOS polynomials.

• There exist polynomials with rational coefficients that are SOS with real coefficients, but not with rational coefficients.

Exact certificates for complex univariate polynomials

Denote by i the imaginary unit. For a complex variable or number v, we denote by v its conjugate. Let z be a complex variable. For a complex univariate polynomial

h(z) = h 0 + h 1 z + . . . + h d z d in C[z], where h k ∈ C, we define h (z) := h0 + h1 1 z + • • • + hd 1 z d .
The unit circle C is defined by

C := {ζ ∈ C : |ζ| = 1}. One can see that ζ = ζ -1 and ζ ζ = 1, for ζ ∈ C .
Hence, on the unit circle, the product hh is the square of the modulus of h.

Trigonometric univariate polynomials.

Let H [z] be the set of trigonometric univariate polynomials defined as a subset of Laurent polynomials with complex coefficients and complex variable z as follows:

f (z) = f 0 + f 1 z + f1 z + • • • + f d z d + fd z d , with f 0 ∈ R and d ∈ N. By convention, when f d = 0, d is the degree of f ; the degree of the zero polynomial is -∞. Clearly, if f ∈ H [z] then f has real values on the unit circle. Furthermore, if α is a root of f then its reciprocal 1/ ᾱ is also a root of f .
Since we work with base fields of characteristic zero, we see polynomials through the evaluation maps they define rather than as algebraic objects. Note that for f ∈ H [z], the restriction of the map ζ → f (ζ) over the unit circle C coincides with the evaluation map defined by the polynomial

g(z) = f 0 + f 1 z + f1 z + • • • + f d zd + fd z d , since ζ = ζ -1 for ζ ∈ C . Note also that for any ζ ∈ C , g(ζ) = g( ζ)
∈ R, so that g is a Hermitian polynomial. Finally, note that for any Hermitian polynomial g, there exists

f ∈ H [z] such that the restrictions to C of the maps ζ → g(ζ) and ζ → f (ζ) coincide.
Sum of Hermitian squares. One says that f is a sum of Hermitian squares, SOHS for short, if there exists some r ∈ N \ {0} and polynomials s 1 , . . . , s r in C[z] such that

f (z) = s 1 (z)s 1 (z) + • • • + s r (z)s r (z). (2.8)
This terminology of Hermitian squares comes from the above discussion as

s j (ζ) = s j ( ζ) for all ζ ∈ C . Clearly, if f is SOHS as in (2.8) then, because of s j (z)s j (z) = |s j (z)| 2 over C , f is non-negative over C .
According to the Riesz-Fejér spectral factorization theorem (see, e.g., [22, Theorem 1.1]), any trigonometric univariate polynomial f which is non-negative over the unit circle C can be written as a Hermitian square. Moreover, from its proof [22, pp. 3-5], one has

f = a × d ∏ k=1 (z -a k ) × 1 z -āk ,
where (a 1 , 1/ ā1 ) . . . , (α d , 1/ ād ) are d pairs of roots of f , and a is a positive scalar. This allows us to design an algorithm to compute certificates of non-negativity for f in which we are required to manipulate exactly all 2d complex roots of f . Normally, this algorithm is applied with approximate computations, leading to approximate certificates of non-negativity over C . We aim to compute exact certificates of non-negativity of trigonometric polynomials. In particular, when the coefficients are Gaussian integers, i.e., with real and imaginary parts being integers, exact SOHS decompositions of f can be computed by hybrid numeric-symbolic methods.

Problem 2. The second topic in this thesis is about exact certificates of non-negativity for trigonometric univariate polynomials based on SOHS decompositions with Gaussian coefficients.

We are also interested in certification algorithms, their bit complexity, and implementations.

Our motivation comes from design problems in discrete-time signal processing. In particular, for the design of finite impulse response (FIR) filters in signal processing, minimizing the stop-band energy is a crucial issue [START_REF] Dumitrescu | Positive trigonometric polynomials and signal processing applications[END_REF]Chapter 5]. Computing exact SOHS decompositions of trigonometric univariate polynomials in this context appears to be a natural computational issue.

Related works for exact SOS decompositions 2.2.1 Univariate polynomials

It is well-known that every non-negative univariate polynomial f ∈ R[x 1 ] with real coefficients can be decomposed as a sum of at most two squares of polynomials. Also, any non-negative univariate polynomial f ∈ Q[x 1 ] is a weighted sum of squares with rational coefficients [START_REF] Landau | Über die darstellung definiter funktionen durch quadrate[END_REF][START_REF] Pourchet | Sur la représentation en somme de carrés des polyn ômes à une indéterminée sur un corps de nombres algébriques[END_REF].

In the literature, we know of two algorithms that compute exact SOS decompositions of a non-negative polynomial f ∈ Q[x 1 ] with rational coefficients. The first one [START_REF] Schweighofer | Algorithmische beweise f ür nichtnegativ-und positivstellensätze[END_REF] was raised by Schweighofer in 1999 and relies on real root isolation, quadratic approximation of positive polynomials, and square-free decomposition. The second one was proposed by Chevillard, Harrison, Joldes, and Lauter [START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF] in 2011 and is based on complex root isolation and square-free decomposition. Their bit complexities and benchmarks are given in [START_REF] Magron | Algorithms for weighted sum of squares decomposition of non-negative univariate polynomials[END_REF].

Recently, Krick, Mourrain, and Szanto in [START_REF] Krick | Univariate rational sums of squares[END_REF] have proposed a necessary and sufficient condition for the non-negativity of a polynomial

f ∈ Q[x 1 ] over the real roots of another polynomial g ∈ Q[x 1 ].
In particular, under a mild condition, f is non-negative on all the real roots of g if and only if f is an SOS modulo g. In their paper, they also provide an algorithm to compute an SOS decomposition.

Multivariate polynomials

For the multivariate case, i.e., n ≥ 3, Hilbert [START_REF]Ueber die Darstellung definiter Formen als Summen von Formenquadraten[END_REF] proved that every non-negative homogeneous polynomial of degree d in R[x] is SOS if and only if d = 2 or n = 3 and d = 4. In this work, he proved that, for n = 3, every non-negative polynomial of degree 4 is a sum of three squares.

Following the seminal works [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF], hierarchies of semi-definite programs yield approximations of weighted SOS decompositions of positive polynomials. Several heuristics have been proposed to lift such approximations to exact SOS decompositions of the input polynomial. Starting with the rouding-projection method raised by Peyrl and Parrilo [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF], this method can be applied for polynomials lying on the interior of the cone of SOS polynomials, and followed by hybrid numerical-symbolic methods [START_REF] Kaltofen | Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars[END_REF][START_REF] Kaltofen | A proof of the monotone column permanent (MCP) conjecture for dimension 4 via sums-of-squares of rational functions[END_REF][START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF]. Note that the algorithms in [START_REF] Kaltofen | Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars[END_REF][START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF] allow us to compute SOS decompositions on some degenerate examples or compute SOS of rational fractions. Complexity issues are studied through the lens of perturbation-compensation techniques to compute SOS decompositions in the interior of the SOS cone [START_REF] Magron | On exact Polya and Putinar's representations[END_REF][START_REF] Magron | RealCertify: a Maple package for certifying nonnegativity[END_REF][START_REF] Magron | On exact Reznick, Hilbert-Artin and Putinar's representations[END_REF]. General algorithms for computing such exact certificates by means of SOS decompositions have been designed, either for computing SOS decompositions with rational coefficients [START_REF] El Din | Computing rational points in convex semialgebraic sets and sums-of-squares decompositions[END_REF] or with algebraic numbers by computing exact solutions to semi-definite programs [START_REF] Henrion | Exact algorithms for linear matrix inequalities[END_REF].

Alternative exact certificates of non-negativity, for instance, sums of non-negative circuits and sums of arithmetic-geometric-exponentials [START_REF] Magron | Exact optimization via sums of nonnegative circuits and arithmetic-geometric-mean-exponentials[END_REF][START_REF] Wang | A second order cone characterization for sums of nonnegative circuits[END_REF] can also be used.

However, they face similar issues to the ones met by SOS techniques when it comes with generality.

Deciding non-negativity if a polynomial f ∈ Q[x] over an arbitrary semi-algebraic set can be done exactly using computer algebra algorithms. The best complexities for such a decision procedure are achieved by algorithms making effective the so-called critical point method [START_REF] Grigor | Solving systems of polynomial inequalities in subexponential time[END_REF][START_REF] Basu | A new algorithm to find a point in every cell defined by a family of polynomials[END_REF]. Further practical developments are given in [START_REF] Bank | On the geometry of polar varieties[END_REF][START_REF] Bank | Polar varieties and efficient real elimination[END_REF][START_REF] Bank | Generalized polar varieties: Geometry and algorithms[END_REF][START_REF] El Din | Polar varieties and computation of one point in each connected component of a smooth real algebraic set[END_REF] and their applications in polynomial optimization are given in [START_REF] Greuet | Global optimization of polynomials restricted to a smooth variety using sums of squares[END_REF][START_REF] Greuet | Probabilistic algorithm for polynomial optimization over a real algebraic set[END_REF][START_REF] Bank | Intrinsic complexity estimates in polynomial optimization[END_REF]. Note that, even if these algorithms are exact (i.e., their results are exact provided that no bug has been encountered), they do not provide a certificate assessing non-negativity which can be checked a posteriori since these are root-finding algorithms. Their complexities are exponential in the dimension of the ambient space as they reduce the input problem to computing finitely many critical points of some well-chosen maps. Therefore, the idea of considering gradient ideals is natural.

In summary, such gradient ideals can be used to reduce the dimension of the set over which certifying non-negativity can be done. Under some assumptions, this idea is translated in [START_REF] Parrilo | An explicit construction of distinguished representations of polynomials nonnegative over finite sets[END_REF] to an algorithm assessing the non-negativity of a given

f ∈ R[x].
Precisely, assuming the gradient ideal I grad ( f ) (which is the set of all algebraic combinations of the partial derivatives of f ) is zero-dimensional and radical, and that f reaches its infimum over R n , this algorithm computes an SOS decomposition of f in the quotient ring R[x]/I grad ( f ) (or, in other words, an SOS decomposition of f modulo I grad ( f )), i.e., f is written as

c 1 s 2 1 + • • • + c k s 2 k + n ∑ i=1 q i ∂ f ∂x i ,
where the s i 's and the q i 's lie in R[x] and the c i 's are positive in R. A similar result slightly relaxing the above assumptions is given in [START_REF] Nie | Minimizing polynomials via sum of squares over the gradient ideal[END_REF]. Note that when f has coefficients in Q, there is no given guarantee that an SOS decomposition of it in Q[x]/I grad ( f ) will have rational coefficients too.

Applying Parrilo's result in [START_REF] Parrilo | An explicit construction of distinguished representations of polynomials nonnegative over finite sets[END_REF], one can conclude that a polynomial f ∈ R[x] is nonnegative of over the real variety of an ideal I if and only if f is SOS over the quotient ring R[x]/I. Nie, Demmel, and Sturmfels in [START_REF] Nie | Minimizing polynomials via sum of squares over the gradient ideal[END_REF] showed that a polynomial f ∈ R[x] which is non-negative over its real gradient variety is SOS modulo the gradient ideal of f provided the gradient ideal is radical or f is strictly positive over the real gradient variety [START_REF] Nie | Minimizing polynomials via sum of squares over the gradient ideal[END_REF].

Contributions

Exact SOS decompositions of real multivariate polynomials

We consider the problem of computing an exact SOS decomposition of a real multivariate polynomial with rational coefficients, f ∈ Q[x]. We summarize our contributions as follows.

Existence of certificates of non-negativity with rational coefficients. We provide a necessary and sufficient condition for the non-negativity of f ∈ Q[x] under a genericity condition.

• Assume that the gradient ideal associated to f is zero-dimensional and radical and that f reaches its infimum over R n . We prove in Theorem 5.1.1 that f is nonnegative over R n if and only if f is an SOS of polynomials with rational coefficients over the quotient ring Q[x]/I grad ( f ). We rely on an algebraic elimination procedure based on the Shape Lemma (see Lemma 3. Algorithms and bit complexities. The next problem we tackle is to design algorithms that compute such certificates of non-negativity as well as to estimate their bit complexity for non-negative polynomial f that satisfies the conditions in Theorem 5.1.1. To measure the bitsize of a polynomial with rational coefficients, we will use its height, defined as in Section 4.1.

• From the proof of Theorem 5.1.1, we derive the algorithm sosgradientshape (Algorithm 3) to compute an SOS decomposition of polynomials modulo the gradient ideal of f . We prove that, given as input an n-variate polynomial f in Q[x] of degree d with maximum bitsize of its coefficients τ, this algorithm uses

O((τ + n + d) 2 d 6n + (τ + n + d)d 6n+4 )
boolean operations. This estimate is better than the complexity estimate given in [START_REF] Magron | On exact Reznick, Hilbert-Artin and Putinar's representations[END_REF]Theorem 12], where the reported number is O(τ 2 (4d + 2) 15n+6 ).

• We design a variant of the previous algorithm, named sosgradient (Algorithm 4).

On input f ∈ Q[x] as above, this algorithm decomposes f as a sum of rational fractions modulo the gradient ideal associated to f . We prove that this variant uses

O (τ + n + d)d 4n+4
boolean operations and hence has a better complexity than sosgradientshape.

We emphasize that such complexity estimates are of interest to the polynomial optimization community as they give degree bounds for the SOS multipliers required when using the variant of the so-called "Moment-SOS hierarchy" or Lasserre's hierarchy [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] to minimize polynomials over their gradient ideals [START_REF] Nie | Minimizing polynomials via sum of squares over the gradient ideal[END_REF]. Indeed, such degree bounds translate to convergence rates for the underlying optimization scheme and allow us to estimate the overall computational cost complexity.

Experimental results. Both our algorithms have been implemented using the computer algebra system MAPLE. We report on practical experiments, showing that our algorithms can already assess the non-negativity of numerous polynomials that are out of reach of, e.g., hybrid methods computing sums of squares decompositions such as [START_REF] Magron | On exact Polya and Putinar's representations[END_REF].

• Our practical experiments show that Algorithm sosgradient can assess the nonnegativity of multivariate polynomials of a large set of examples which are out of reach of the state of the art when both the number of variables and degree increase.

Exact SOHS decompositions of complex univariate polynomials

We design three algorithms to compute exact SOHS decompositions of polynomials in H (Z)[z] that are positive over the unit circle C . These algorithms are based on perturbation-compensation or rounding-projection techniques. Additionally, we analyze their bit complexities and output size as.

The first algorithm is called csos1 (Algorithm 5). Algorithm csos1 uses a perturbationcompensation methodology in which the numerical step computes an approximate SOHS decomposition for a well-chosen perturbation of the input polynomial with complex root isolation. We obtain the bit complexity of the algorithm as follows:

• On input f , where f has no multiple roots, csos1 computes an SOHS decomposition of f with (modulus of) Gaussian coefficients using at most O d 6 (d + τ) bit operations.

In addition, the maximum bitsize of the output coefficients is bounded from above by

O(d 5 (d + τ)).
The two other algorithms are called csos2 and csos3 (Algorithms 6 and 7, respectively).

We design two algorithms csos2 and csos3 which are based on complex semi-definite programming. In Algorithm csos2, we compute an approximate SOHS decomposition for the perturbation by using complex SDP solving. Algorithm csos3 is an adaptation of the rounding-projection algorithm raised by Peyrl and Parrilo [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF]. The bit complexities of these two algorithms are similar because we use complex SDP solving for both:

• On input f , csos2 and csos3 compute SOHS decompositions of f with (modulus of) Gaussian coefficients using at most O(d 13 (d + τ) 2 ) bit operations. In addition, the maximal bitsize of the output coefficients is bounded from above by O(d 6 (τ + d)).

These two algorithms are more expensive than Algorithm csos1 because we replace complex root isolation by complex SDP solving. Despite their worse complexity, they allow one to handle constrained optimization problems and to design filters.

Experimental results. These algorithms have been implemented using the programming environment JULIA [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF].

• We report on practical experiments showing that Algorithm csos1 runs faster than the other algorithms, coinciding with our theoretical complexity results.

Furthermore, we rely on csos3 to design filters in a certified way.

Organization of the thesis

This thesis includes three parts. Part I is the preliminary part which contains Chapters 3 and 4. In these chapters, we recall basic notions and fundamental results from algebraic geometry and computational commutative algebra, as well as bit complexity results for polynomial system solving.

Our main contributions appear in Part II which includes the following chapters:

• Chapter 5 is dedicated to exact certificates of non-negativity for real multivariate polynomials. The content of this chapter is from the paper entitled "Sum of squares decompositions of polynomials over their gradient ideals with rational coefficients" by Victor Magron, Mohab Safey El Din, and Trung Hieu Vu [START_REF] Magron | Sum of squares decompositions of polynomials over their gradient ideals with rational coefficients[END_REF] which has been accepted for publication in SIAM Journal of Optimization, 2022.

• Chapter 6 presents results on exact certificates of positivity for complex univariate polynomials. These results have been published in the paper entitled "Exact SOHS decompositions of trigonometric univariate polynomials with Gaussian coefficients" This chapter recalls basic notions and results from algebraic geometry and computational commutative algebra such as gradient ideals and varieties, Gr öbner bases, and the Shape lemma that are essential for the contribution part. The first two sections are inspired by the monograph by Cox, Little, and O'Shea [START_REF] Cox | Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra[END_REF].

Here and subsequently, K is a field and x = (x 1 , . . . , x n ) is a tuple of n variables. We denote by K[x] the ring of polynomials in x over K. Every monomial in K[x] can be written as

x α = x α 1 1 . . . x α n n , where α = (α 1 , . . . , α n ) ∈ N n .
One writes a polynomial f as the finite sum of terms a α x α :

f = ∑ α a α x α ,
where a α ∈ K is the coefficient of x α . We denote by deg( f ) the degree of f , i.e., deg( f

) = max{|α| = α 1 + • • • + α n : a α = 0}.

Gradient ideals and varieties

This section aims to introduce the main ingredients for Chapter 5 that are gradient ideals and gradient varieties.

Definition 3.1.1 (Ideal). An additive subgroup I of K[x] is an ideal of K[x] if hg ∈ I for any h ∈ I and g ∈ K[x].
Given a system of polynomials g 1 , . . . , g r in K[x], we denote by g 1 , . . . , g r the ideal generated by this system, i.e., g 1 , . . . , g r = {q

1 g 1 + • • • + q r g r : q i ∈ K[x]}.
According to Hilbert's basis theorem (see, e.g., [20, Ch.2, §5, Thm. 4]), every ideal in R[x] is a finitely generated ideal, i.e., if I is an ideal of K[x] then there exist g 1 , . . . , g r ∈ K[x] such that I = g 1 , . . . , g r . Definition 3.1.2 (Gradient ideal). Let f be a polynomial in K[x]. The gradient ideal of f , denoted by I grad ( f ), is the ideal generated by all partial derivatives of f in K[x], i.e.,

I grad ( f ) := ∂ f ∂x 1 , . . . , ∂ f ∂x n .
Example 3.1.1. We consider the polynomial f E in two variables x 1 , x 2 of degree 4 with real coefficients

f E = 2x 2 1 + 4x 1 x 2 + x 4 2 + 3. (3.1)
The gradient ideal 

I grad ( f E ) is I grad ( f E ) = 4x 1 + 4x 2 , 4x 1 + 4x 3 2 . ( 3 
V(I ) := {a ∈ C n : ∀g ∈ I, g(a) = 0}. (3.3)
From the definition, the algebraic variety associated to I is the set of complex points on which the polynomials in I simultaneously vanish. We now recall some useful terminology concerning quotients of polynomial rings.

Definition 3.1.6 (Congruent modulo). Let I be an ideal, and let p, q in K[x]. One says that p and q are congruent modulo I, denoted by p ≡ a mod I, if pq belongs to I. 

K[x]/I = {[q] : q ∈ K[x]},
where [q] is the equivalence class of q, i.e., [q] = {p ∈ R[x] : p ≡ q mod I}. On the quotient K[x]/I, we can define sum and product operations as follows:

[p] + [q] := [p + q], [p] • [q] := [p • q],
for any p, q in R[x]. The quotient K[x]/I is a commutative ring under the operations given above.

Let V ⊂ C n be a variety. The set of all polynomials that vanish on V is an ideal of K[x]

I(V ) := {q ∈ R[x] : q(x) = 0 for all x ∈ V }. (3.4) Given an ideal I of R[x], its radical is the ideal √ I := {q ∈ R[x] : q m ∈ I for some m ∈ N}.
Clearly, I ⊂ √ I. One has the following definition for the case that the converse inclusion holds. Let I be radical. According to Hilbert's Strong Nullstellensatz, I(V(I )) = I. This implies that if a polynomial g vanishes at all points of V(I ) then g must belong to I.

The most important consequence of the Nullstellensatz is that it allows us to build a strong relationship between algebra and geometry. In particular, if we restrict to radical ideals of R[x], then the maps V and I, defined respectively in (3. 

Gr öbner bases of ideals

We give the definition of a Gr öbner basis of an ideal, their elementary properties, and a criterion to check whether a given generating set of an ideal is a Gr öbner basis. These will be ingredients in the next section (Section 3.3) and will be used to prove Theorems 1. < is a total ordering on N n , i.e., < is transitive, and for every pair α, β in N n , exactly one of the three statements α < β, β < α, and α = β holds;

2. < is a well-ordering on N n , i.e., every non-empty subset of N n has a smallest element under the relation <;

3. If α < β and γ ∈ N n then α + γ < β + γ.
We write

x α < x β if α < β.
Example 3.2.1. We consider two important monomial orderings on K[x] that will be used in the thesis. First, one says α < lex β if the leftmost non-zero entry of βα is positive; This relation is a monomial ordering on N n called lexicographic order. Second, one says α < grlex β if |α| < |β|, or |α| = |β| and α < lex β; in this case, < grlex is a graded lexicographic order on N n .

Let < be a monomial ordering on K[x] and I = {0} be an ideal. We denote by LT( f ) the leading term of f ∈ I with respect to <, i.e., if f = ∑ α a α x α then LT( f ) = a β x β such that a β = 0 and α < β for any α with a α = 0. In this case, mdeg( f ) = β is called the multi-degree of f , and a β is called the leading coefficient of f . Denote by LT(I ) the set of all leading terms LT(g) of g ∈ I with respect to <, and by LT(I ) the ideal generated by the elements of LT(I ).

Definition 3.2.2 (Gr öbner basis). Fix a monomial order < on K[x].

A finite subset G = {g 1 , . . . , g r } of I is said to be a Gröbner basis of I with respect to the order < if LT(g 1 ), . . . , LT(g r ) = LT(I ) .

Using the convention that ∅ = {0}, we define the empty set to be the Gr öbner basis of the zero ideal.

In the following example, we will give a subset that is not a Gr öbner basis . A subset that is a Gr öbner basis will be shown later. 

g 1 = x 3 1 -2x 1 x 2 , g 2 = x 2 1 x 2 -2x 2 2 + x 1 ,
and use the graded lexicographic ordering on monomials in R[x 1 , x 2 ]. We can see that

x 2 1 = x 1 g 2 -x 2 g 1 ∈ I, hence x 2 1 = LT(x 2 1 ) ∈ LT(I ) . However, x 2 1 is not divisible by LT(g 1 ) = x 3 1 or LT(g 2 ) = x 2 1 x 2 .
According to [20, Ch. 2 §2, Lemma 2], x 2 1 does not belong to LT(g 1 ), LT(g 2 ) . This implies that {g 1 , g 2 } is not a Gr öbner basis for I.

Assume that G is a Gr öbner basis of I with respect to some monomial order < and that p is a polynomial in K[x]. The remainder of the division of p by G does not depend on how the elements of G are listed. Hence, the remainder is unique. Furthermore, the remainder is zero if and only if p belongs to the ideal.

Note that every ideal I in K[x] has a Gr öbner basis. If G = {g 1 , . . . , g r } is a given basis of I and < is a given monomial order, Buchberger's Algorithm [20, Ch. 2 §7] allows us to compute a Gr öbner basis with respect to < based on G. Moreover, Buchberger's Criterion tells us whether a given generating set of an ideal is a Gr öbner basis.

We now recall Buchberger's Criterion that will be used in the proof of Theorems 4.3.2 and 5.2.1. Suppose that polynomials p, q ∈ K[x] have multi-degrees mdeg(p) = α = (α 1 , . . . , α n ) and mdeg(p) = β = (β 1 , . . . , β n ) with respect to the monomial order <. We denote γ i := max{α i , β i } and x γ is the least common multiple of LT(p) and LT(q), written x γ = lcm(LT(p), LT(q)). The S-polynomial of p and q is the combination

S(p, q) = x γ LT(p) × p - x γ LT(q) × q.
Theorem 3.2.1 (Buchberger's Criterion). Let G = {g 1 , . . . , g r } be a basis of I. Then, G is a Gröbner basis if and only if, for any pair i = j, the remainder of the division of S(g i , g j ) by G is zero.

The following example illustrates Buchberger's Criterion.

Example 3.2.3. We consider the ideal I grad ( f E ) = g 1 , g 2 defined in Example 3.1.1, where

g 1 = x 1 + x 2 , g 2 = x 1 + x 3
2 with the graded lexicographical order x 1 < x 2 . We see that LT(g 1 ) = x 2 , α = mdeg(g 1 ) = (0, 1), LT(g 2 ) = x 3 2 , β = mdeg(g 2 ) = (0, 3); thus, γ = (0, 3). The S-polynomial of g 1 and g 2 is

S(g 1 , g 2 ) = x 3 2 x 2 × (x 1 + x 2 ) - x 3 2 x 3 2 × (x 1 + x 3 2 ) = x 1 x 2 2 -x 1 .
According to Buchberger's Criterion, {g 1 , g 2 } is not a Gr öbner basis of I grad ( f E ).

Definition 3.2.3. A Gr öbner basis G is reduced if the leading coefficient of g is 1, for all g ∈ G, and there are no monomials of g lying in LT(G) \ {g} .

For a given monomial ordering, every ideal I has a unique reduced Gr öbner basis.

Example 3.2.4. We consider the ideal I = g 1 , g 2 , where g 1 = x 3 1x 1 and g 2 = x 2 + x 1 with the graded lexicographical order x 1 < x 2 . Using Buchberger's Criterion, we can show that {g 1 , g 2 } is a Gr öbner basis of I. Furthermore, we can check that this is the reduced Gr öbner basis.

Shape position of a zero-dimensional and radical ideal

This section introduces notions and results concerning the so-called Shape Lemma that is the key to reduce a multivariate problem to a univariate one in our research. We will exploit these results in the proofs of the existence of SOS decompositions in Theorems 5.1.1 and 5.2.1 in Chapter 5.

Assume that I is a zero-dimensional and radical ideal in Q[x] and that G is the reduced Gr öbner basis of I with respect to the lexicographical order

x 1 < • • • < x n .
Definition 3.3.1. One says that I is in shape position if G has the form:

G = [w, x 2 -v 2 , . . . , x n -v n ], (3.5) 
where w, v 2 , . . . , v n are polynomials in K[x 1 ] and deg w = #V(I ).

The following lemma, named Shape Lemma, gives us a criterion for being in shape position of an ideal.

Lemma 3.3.1 (Shape Lemma, [START_REF] Gianni | Algebraic solution of systems of polynomial equations using Gr öbner bases[END_REF]). Let I be a zero-dimensional and radical ideal and < be a lexicographic monomial order in Q

[x]. If V(I ) is the union of δ points in C n with distinct x 1 - coordinates, then I is in shape position as in (3.5), where v 2 , . . . , v n are polynomials in Q[x 1 ] of degrees at most δ -1. Example 3.3.1. Consider the ideal I grad ( f E ) defined in (3.
2) which is zero-dimensional and radical with the graded lexicographical order x 1 < x 2 . An easy computation shows that I grad

( f E ) = x 1 + x 2 , x 1 + x 3 2 = x 3 1 -x 1 , x 2 + x 1 .
We see that I grad ( f E ) is in shape position as in (3.5), where w(x

1 ) = x 3 1 -x 1 , δ = 3 and v 2 = -x 1 of degree 1. Definition 3.3.2. Let V be a zero-dimensional algebraic subset of C n . A zero-dimensional rational parametrization Q = ((w, κ 1 , . . . , κ n ), λ) of V consists of n + 1 univariate polyno- mials w, κ 1 , . . . , κ n in Q[t]
such that w is monic and square-free, deg κ i < deg w, for i = 1, . . . , n, and a Q-linear form λ in n variables satisfying λ(κ 1 , . . . , κ n ) = tw mod w, where w is the derivative of w, such that

V = κ 1 (t) w (t) , . . . , κ n (t) w (t) : w(t) = 0 .
The condition on the linear form λ states that the roots of w are precisely the values taken by λ on V, and that λ separates V, i.e., λ(x) = λ(y) for any distinct pair x, y in V.

Note that there exist algorithms to compute a zero-dimensional rational parametrization of a zero-dimensional algebraic subset given by a polynomial sequence with rational coefficients [START_REF] Rouillier | Solving zero-dimensional systems through the rational univariate representation[END_REF][START_REF] Giusti | A gr öbner free alternative for polynomial system solving[END_REF].

Example 3.3.2. Consider the ideal I grad ( f E ) given in (3.2) which is zero-dimensional.
Its variety has a zero-dimensional rational parametrization ((w, κ 1 , κ 2 ), λ) given by

λ = x 1 , w = t 3 -t, κ 1 = -t 1 , κ 2 = 2t. (3.6) 
One has w = 3t 2 -1 and

V grad ( f E ) = -2t 3t 2 -1 , 2t 3t 2 -1 : t 3 -t = 0 . (3.7)
The polynomial w has three real roots which are -1, 0, and 1. By replacing t with these values in (3.7), we obtain the variety V grad ( f E ) as follows:

V grad ( f E ) = {(0, 0), (1, 1), (1, -1)} .
This set coincides with the set computed in Example 3.1.2.

The following lemma points out the explicit shape position of a zero-dimensional and radical ideal I through a zero-dimensional rational parametrization of its variety. Importantly, the proof shows us how to compute the reduced Gr öbner basis of I with respect to a given lexicographical order.

Lemma 3.3.2. Let I be a zero-dimensional and radical ideal, and < be a lexicographic monomial order in Q To measure the complexity of algorithms we use bit complexity. In this chapter, we provide fundamental results on bit complexity analysis of algorithms concerning univariate and multivariate divisions, computing zero-dimensional rational parametrizations, solving semi-definite programs, and computing lower bounds of the minimum of a polynomial on the unit circle. These are tools we rely on to investigate the bit complexity of our new algorithms.

[x]. Assume that Q = ((w, κ 1 , . . . , κ n ), x 1 ) is a zero-dimensional rational parametri- zation of V = V(I ).

Bitsize of polynomials with rational coefficients

We use the height of a polynomial with rational coefficients to measure its bitsize that is where i is the imaginary unit. For a non-zero polynomial f with (Gaussian) rational coefficients, we define the height of the polynomial f , denoted by ht( f ), as the maximum bitsize of the non-zero coefficients of f . For two maps p, q : N m → R, one writes "p(v) = O(q(v))" when there exists b ∈ N such that p(v) ≤ bq(v), for all v ∈ N m . We use the notation p(v) = O(q(v)) when p(v) = O(q(v) log k q(v)) for some k ∈ N.

SOS decomposition of non-negative univariate polynomials

In our study, the key idea to handle the multivariate case of computing SOS decompositions is reducing the problem to the univariate case. Hence, we need to recall known results related to SOS decompositions of univariate polynomials which will be used in the proof of Theorems 5. 

h = 2(t - 1 4 ) 2 + 79 8 = 1 2 t 4 + 3 2 (t 2 - 5 2 ) 2 + 13 2 t 2 + 5 8 . 
To compute an SOS decomposition of a non-negative univariate polynomial with rational coefficients, we use the algorithm by Schweighofer [START_REF] Schweighofer | Algorithmische beweise f ür nichtnegativ-und positivstellensätze[END_REF] named univsos1 or the algorithm by Chevillard, Harrison, Joldes, and Lauter [START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF] named univsos2. Here, we need to recall their bit complexities. From the theoretical results below, it is worth mentioning that univsos2 runs faster than univsos1. 

Univariate and multivariate division algorithms

We now establish the bit complexity of the Euclidean division algorithm and a multivariate division algorithm which will be used later on to investigate the bit complexity of our algorithms. Set q := q + h 5:

Euclidean division algorithm

Set r := rhb We denote by r i (resp. q i , h i ) the value of r (resp. q, h) after the i-th iteration of the while loop from Line 2. The initial values are q 0 = 0 and r 0 = a. After each iteration of the while loop, the degree of r is strictly decreasing. Hence, the while loop will terminate after k iterations, where k ≤ dm.

We now compute the numbers of boolean operations to perform the operations in Lines

3-5. From h i = lc(r i-1 )/lc(b)t deg r i-1 -deg b in Line 3, we observe that ht(h i ) = max{ht(b), ht(r i-1 )} ≤ max{τ, ht(r i-1 )} ≤ τ + ht(r i-1 ), (4.1) 
and the number of boolean operations to perform Line 3 is bounded by τ + ht(r i-1 ).

Note that the number of boolean operations to perform the operation in Line 4 is bounded by O(1). We consider the operation in Line 5, i.e., r i = r i-1h i b. The estimate in (4.1) implies ht(h i b) ≤ 2τ + ht(r i-1 ); then the bitsize of r i is bounded by 2τ + ht(r i-1 ). We get the recurrence formula ht(r i+1 ) ≤ ht(r i ) + 2τ, for each i = 0, . . . , k, with ht(r 0 ) = τ. It follows that ht(r i ) ≤ 2iτ + τ, for each i = 0, . . . , k. This yields

ht(r) = ht(r k ) ≤ 2(d -m)τ + τ = O((d -m)τ).
In Line 5, the number of boolean operations to compute

h i b is O(m(τ + ht(r i-1 ))), so r i is also computed in O(m(τ + ht(r i-1 ))) boolean operations.
From above, to compute every iteration in Line 2, we need O(mτ(dm)) the boolean operations. Since the algorithm has at most dm iterations, the number of boolean operations to perform the algorithm is O(mτ(dm) 2 ).

To complete the proof, we estimate the bitsize of q. Since q i = q i-1 + h i , from (4.1), one has ht(q i ) ≤ max{ht(q i-1 ), ht(h i )} ≤ ht(q i-1 ) + τ + ht(r i-1 ).

This yields ht(q) ≤ (d -m)τ + ht(r) = O((d -m)τ)
. This is the desired estimate.

Multivariate division algorithm Eliminate

Denote by Q(x 1 ) the field of rational fractions in variable x 1 with coefficients in Q. With the lexicographic monomial order 

x 2 < • • • < x n ,
= n ∑ i=2 φ i (x i - a i a 0 ) + r, (4.2) 
we iterate classical univariate divisions by x i -a i a 0 for i = n, . . . , 2 considering them as univariate in x i so that we eliminate step by step the variables x n , . . . , x 2 in g. The details of this algorithm, which we name Eliminate, are given in Algorithm 2. The inputs of Eliminate are g, a 0 , a 2 , . . . , a n and its outputs are the quotients [φ 2 , . . . , φ n ] and the remainder r. Theorem 4.3.2. Let g be in Q[x 1 ][x 2 , . . . , x n ], and a 0 , a 2 , . . . , a n be in Q[x 1 ]. We consider the lexicographic monomial order x 2 < • • • < x n on Q(x 1 )[x 2 , . . . , x n ]. On input g, a 0 , a 2 , . . . , a n , Eliminate terminates and outputs quotients φ 2 , . . . , φ n ∈ Q(x 1 )[x 2 , . . . , x n ] and remainder r ∈ Q(x 1 ) satisfying (4.2).

Algorithm 2 Elimination algorithm

Eliminate := proc(g, a 0 , a 2 , . . . , a n )

Input: n + 1 polynomials g ∈ Q[x 1 ][x 2 , . . . , x n ], a 0 , a 2 , . . . , a n ∈ Q[x 1 ] Output: φ 2 , . . . , φ n in Q(x 1 )[x 2 , . . . , x n ] and r ∈ Q(x 1 ) satisfying (4.2) 1: Set r n+1 := g 2: for i = n to 2 do 3: Compute φ i := quo(r i+1 , x i -a i a 0 , x i ) 4:
Substitute x i by a i a 0 in r i+1 to define r i := r i+1 (x 1 , . . . , x i-1 , a i a 0 ) 5: done 6: Set r := r 2 7: return [φ 2 , . . . , φ n ], and r Proof. Let us consider the list of polynomials in Q(x 1 )[x 2 , . . . , x n ]:

G = [x 2 - a 2 a 0 , . . . , x n - a n a 0 ],
where a 0 , a 2 , . . . , a n are polynomials in

Q[x 1 ], with a 0 = 0. Algorithm Eliminate outputs [φ 2 , . . . , φ n ] ⊂ Q(x 1 )[x 2 , . . . ,
x n ] and r ∈ Q(x 1 ). We now prove that these polynomials are the quotients and remainder of the multivariate division of g by the list G, i.e., they satisfy (4.2).

In Line 3, φ i is the quotient of the univariate division (in the variable x i ) of r i+1 by x i -a i a 0 . Since the degree of x i in x i -a i a 0 is 1, φ i belongs to Q(x 1 )[x 2 , . . . , x i ]. The remainder r i of the division in Line 3 is given in Line 4 after replacing x i by a i a 0 in r i+1 . Hence one has r i ∈ Q(x 1 )[x 2 , . . . , x i-1 ]. After Lines 3-4, we obtain

r i+1 = φ i x i - a i a 0 + r i . (4.3) 
Therefore, after Line 6, we get g = ∑ n i=2 φ i (x i -a i a 0 ) + r, with r ∈ Q(x 1 ). Based on Buchberger's Criterion (Theorem 3.2.1), we can see that the system of n -1 polynomials

[x 2 - a 2 a 0 , . . . , x n - a n a 0 ]
is a Gr öbner basis of the ideal generated by this system with respect to the lexicographic monomial order

x 2 < • • • < x n in Q(x 1 )[x 2 , . . . , x n ].
Hence, φ 2 , . . . , φ n and r are uniquely defined. The correctness of the algorithm is proved.

To illustrate how Eliminate works, we consider a simple example.

Example 4.3.1. Consider polynomials g = x 2 1 + x 1 x 2 + 2x 2 2 in Q[x 1 ,
x 2 ] and a 0 = x 2 1 + 1, and

a 2 = x 1 in Q[x 1
]. We will perform the division of g by x 2a 2 /a 0 . Since n = 2, we only need to compute the quotient φ 2 and remainder r,

g = φ 2 x 2 - a 2 a 0 + r.
By performing Line 3, we obtain

φ 2 = quo(g, x 2 - a 2 a 0 , x 2 ) = x 1 + 2x 2 + 2x 1 x 2 1 + 1 .
The remainder r is computed by performing Line 4. One has that

r = g(x 1 , a 2 a 0 ) = x 1 + x 2 1 x 2 1 + 1 + 2x 2 1 (x 2 1 + 1) 2 .
The bit complexity of Algorithm Eliminate is given in the following lemma. Proof. Firstly, we estimate the bitsizes of φ i , for i = 2, . . . , n. From the definition of r i in Line 4, one sees that ht(r i ) ≤ ht(r i+1 ) + 2dτ a . Since ht(r n+1 ) = τ g , the bitsize of r i is bounded from above by τ g + 2(n -1)dτ a . The relation (4.3) leads to ht(φ i ) ≤ ht(r i+1r i ) + ht(x i -a i a 0

).

Because ht(r i+1r i ) ≤ max{ht(r i+1 ), ht(r i )} and ht( a i a 0 ) ≤ 2τ a , we get

ht(φ i ) ≤ τ g + 2(nd -d + 1)τ a .
It follows that ht

(φ i ) = O(τ g + ndτ a ).
Clearly, the number of boolean operations to perform Lines 3 and 4 are O(τ g + ndτ a ) and O(1) respectively. The for loop in Line 2 has n -1 steps. Therefore, the number of boolean operations to perform the loop is O(nτ g + n 2 dτ a ). This is also the number of boolean operations that Algorithm Eliminate uses.

Computing zero-dimensional rational parametrizations

In our new algorithms (Algorithms 3 and 4) in Chapter 5, we need to compute a zerodimensional rational parametrization of the algebraic variety associated to a zero-dimensional and radical ideal. The bit complexity of this procedure has been pointed out in [77, Corollary 2]. In this section, we estimate the bit complexity of an algorithm (in the proof of Lemma 3.3.2) which computes a shape position from a zero-dimensional parametrization.

Let f be in Q[x] of degree d and bitsize τ. Assume that V grad ( f ) is finite. By applying [77, Corollary 2] to the system of partial derivatives of f , we obtain the following corollary which states that there exists an algorithm computing a zero-dimensional rational parametrization of V grad ( f ).

Corollary 4.4.1. Assume that V grad ( f ) is finite. There exists a probabilistic algorithm that takes f as in input, and that produces one of the following outputs:

a) either a zero-dimensional rational parametrization of V grad ( f ), b) a zero-dimensional rational parametrization of degree less than that of V grad ( f ), c) or fails.

In any case, the algorithm uses

O n 2 (d + τ)d 2n+1 n + d d (4.4) 
boolean operations. Moreover, the polynomials w, κ 1 , . . . , κ n involved in the parametrization output have degrees at most (d -1) n and bitsize O ((d

+ τ + n)(d -1) n ) .
Proof. Assume that the sequence of partial derivatives

∂ f ∂x 1 , . . . , ∂ f ∂x n (4.5)
is given by a straight-line program Γ of size L, i.e., the program uses L elementary operations +, -, × to evaluate the sequence (4.5) from variables x 1 , . . . , x n and integers with bitsizes at most max n i=1 {ht ∂ f ∂x i }.

We claim that L is O(d( n+d d )). Indeed, f has at most ( n+d d ) terms and each term in f is defined by at most d + 1 multiplications. Hence, the size of a straight-line program Γ f which defines f does not exceed (d + 1)( n+d d ). 

+ ht(κ i ) = O((τ + n + d)(d -1) 2n ) + O((τ + n + d)(d -1) n ).
After simplifying the last estimate, the bitsize of bκ i is bounded from above by O((τ + n + d)(d -1) 2n ). Hence, the bitsize of ηbκ i , where η is the minimum common denominator of all non-zero coefficients of bκ i , can be estimated as follows

ht(ηbκ i ) ≤ 2 ht(bκ i ) ≤ O((τ + n + d)(d -1) 2n ).
In the proof of Lemma 3.3.2, we considered the division of bκ i by w and defined v i = bκ i mod w. Thus, the degree of v i is at most deg w ≤ (d - 

Q of V grad ( f ), requires O((τ + n + d) 2 (d -1) 6n + (n -1)(τ + n + d)(d -1) 5n )
boolean operations, as a consequence of (4.7) and (4.10). By applying further simplifications, we obtain the desired result (4.6).

Solving semi-definite programs

Our two algorithms (Algorithms 6 and 7) in Chapter 6 are based on complex semidefinite programming. Thus, we need to recall some notions related to semi-definite programming together complexity considerations.

Background on semi-definite matrices

One says that Q ∈ C n×n is a Hermitian matrix if Q is equal to its own conjugate transpose QT , also denoted by Q . That is, if its entries satisfy q ij = qji for all 1 ≤ i, j ≤ n. Clearly, all entries lying on the diagonal of a Hermitian matrix are real numbers. We denote by H n the set of all Hermitian n × n-matrices. We denote by S n the set of all real symmetric n × n-matrices.

A matrix Q ∈ H n is said to be positive semi-definite (resp. definite) if Q has only nonnegative (resp. positive) eigenvalues, and in this case we use the notation Q 0 (resp. Q 0). The Cholesky decomposition of a Hermitian positive-definite matrix Q is the product LL , where L is a lower triangular matrix with real and positive diagonal entries, and L is the conjugate transpose of the matrix L. A related variant of the Cholesky decomposition is the LDL decomposition, Q = LDL , where L is a lower unit triangular matrix, i.e. the diagonal elements of L are required to be 1, and D is a diagonal matrix.

The following result is obtained by applying directly the argument in the proofs of [4, Lemma 2.1 & Theorem 3.2] in the complex case, and will be used to investigate the bit complexity of Algorithms csos2 and csos3 based on SDP solving in Chapter 6.

Lemma 4.5.1 ([4]). Let Q ∈ H n be positive definite with Gaussian entries. Assume that L is the factor of Q computed by Cholesky's decomposition with finite precision δ c . Then, we have

LL = Q + H, where |H ij | ≤ (n + 1)2 -δ c |Q ii Q jj | 1 -(n + 1)2 -δ c . (4.11)
In addition, if the smallest eigenvalue λ of Q satisfies the inequality

2 -δ c < λ n 2 + n + (n -1) λ , (4.12) 
Cholesky's decomposition returns a nonsingular factor L with Gaussian entries.

Bit complexity of solving semi-definite programs

A complex semi-definite program (SDP for short) is defined as the following optimization problem: minimize tr(CX)

subject to tr(A i X) = b i , i = 1, . . . , m, X 0 
where X ∈ H n is the matrix variable, the matrices C, A i ∈ H n and b i ∈ R n are given data and tr(•) stands for the usual matrix trace operator. Consequently, the objective function and the constraints are convex.

The previous problem becomes a real SDP if the data is real, i.e., the matrices X, C and A i are real symmetric matrices. When the SDP problem is given by rational data, we use the bit complexity analysis of the ellipsoid method by Khachiyan and Porkolab [START_REF] Porkolab | On the complexity of semidefinite programs[END_REF].

Theorem 4.5.2 ([69]

). We consider the real semi-definite feasibility problem

tr(A i X) ≤ b i , i = 1, . . . , m, X 0,
where A i ∈ S n with rational entries, b i ∈ Q n are given and X ∈ S n is the variable. Assume that the maximal bitsize of their entries is τ, the accuracy δ and the radius bound R of computation are given. Then, to compute an approximate solution within the accuracy δ of this SDP, we need to perform O(n 4 log 2 (2 τ n R 2 δ )) iterations of the ellipsoid method, where each iteration requires O(n 2 (m + n)) arithmetic operations over log 2 (2 τ n R 2 δ )-bit numbers.

Other estimates

This section provides a lower bound for a complex univariate polynomial with Gaussian integers on the unit circle. This lower bound allows us to estimate bit complexities of the two algorithms csos1 and csos2 in Chapter 6.

Distance between the roots of a complex univariate polynomial

For a polynomial

f = f 0 + • • • + f d z d ∈ C[z] of degree d, the minimal distance between the roots α 1 , . . . , α d of f is defined by sep( f ) := min{|α i -α j |, α i = α j }.
The norm of f is defined as Assume that f has no multiple root. The minimal distance between the roots of f satisfies

f := | f d | + • • • + | f 0 |.
sep( f ) ≥ √ 3 d d 2 +1 f d-1
.

Therefore, one needs an accuracy of δ = O(τd) to compute distinct approximations of the roots of f with complex root isolation.

Proof. By [57, Theorem 2], one has:

sep( f ) ≥ 3| Disc( f )| d d 2 +1 f d-1 , ( 4.13) 
where

Disc( f ) = f 2d-2 d ∏ j<k (α j -α k ) 2
is the discriminant of f . Note that Disc( f ) can be written as a polynomial in f 0 , . . . , f d with integer coefficients, thus Disc( f ) ∈ Z[i] and one has | Disc( f )| ≥ 1 which from (4.13), implies

sep( f ) ≥ 3| Disc( f )| d d 2 +1 f d-1 ≥ √ 3 d d 2 +1 f d-1
, the desired inequality.

The minimum of a real bivariate polynomial on the unit circle

The following lemma provides a lower bound on the minimum of a real bivariate polynomial over the unit circle in R 2 .

Lemma 4.6.2. Let p ∈ Z[x, y] be a real bivariate polynomial of degree d and τ be the maximum bitsize of its coefficients. Assume that p is positive on the unit circle C . Then, the minimum of p on C satisfies the following inequality:

p min := min{p(x, y) :

x 2 + y 2 = 1} ≥ 2 -O(d 3 (d+τ)) .
Proof. We consider the following algebraic set:

V := (x, y, m) ∈ C 3 : p(x, y) -m = y ∂p ∂x -x ∂p ∂y = 0, x 2 + y 2 = 1 .
Note that the projection of V on the m-axis defines the critical values of the restriction of the evaluation map z → p(z) to C which contains p min .

Assume that V is finite. By [77, Corollary 2], there is a zero-dimensional parametrization of V defined by univariate polynomials with bitsizes upper bounded by O(d 3 (d + τ)). Since there exists (x 0 , y 0 ) on C such that (x 0 , y 0 , p min ) belongs to V, p min is a (non-zero) root of a univariate polynomial of degree at most O(d 3 τ). Hence, the Cauchy bound [START_REF] Cauchy | Calcul des indices des fonctions[END_REF] yields:

|p min | ≥ 2 -O(d 3 (d+τ)) .
Assume now that V is not finite. By Krull's theorem [START_REF] Krull | Idealtheorie in Ringen ohne Endlichkeitsbedingung[END_REF], this implies that C is contained in the complex zero set defined by

y ∂p ∂x -x ∂p ∂y = 0,
whence is a factor of this polynomial. This implies that there exists a factorization p = p 1 p 2 where p 1 is a power of x 2 + y 2c (where c is a constant) and the zero set of the polynomial y ∂p 2 ∂x x ∂p 2 ∂y has a zero-dimensional intersection with C . This yields the following analysis. The set V is the union of a 1-dimensional component containing points (m, x, y) where (x, y) ranges over C and m = c -1, and a 0-dimensional component containing points (m, x, y) which are solutions to

p(x, y) = m, y ∂p 2 ∂x -x ∂p 2 ∂y = 0, x 2 + y 2 = 1.
Applying the argument in the second paragraph of the proof to the above system ends the proof.

CHAPTER 5

Exact SOS decompositions over gradient ideals with rational coefficients Here, we consider the problem of computing exact certificates for non-negativity of real multivariate polynomials. We build on previous works by Parrilo, Nie, Demmel and Sturmfels who introduced certificates of non-negativity modulo gradient ideals [START_REF] Parrilo | An explicit construction of distinguished representations of polynomials nonnegative over finite sets[END_REF][START_REF] Nie | Minimizing polynomials via sum of squares over the gradient ideal[END_REF].

We prove that if the polynomial under consideration has rational coefficients then such certificates can be obtained exactly over the rationals and we provide exact algorithms to compute them. We analyze the bit complexity of these algorithms and deduce bitsize bounds of such certificates.

This chapter contains three sections. In Section 5.1, we prove the existence of an SOS of polynomials modulo the gradient ideal of f , we introduce Algorithm sosgradientshape and analyze its bit complexity. Our results towards decomposing f as an SOS of rational fractions modulo the gradient ideal along with Algorithm sosgradient are presented in Section 5.2. Practical experiments are given in the last Section 5.3.

Most of the content of this chapter is from the paper [START_REF] Magron | Sum of squares decompositions of polynomials over their gradient ideals with rational coefficients[END_REF] entitled "Sum of squares decompositions of polynomials over their gradient ideals with rational coefficients" by Victor Magron, Mohab Safey El Din, and Trung Hieu Vu.

SOS of polynomials modulo gradient ideals

We recall that f is an SOS of polynomials over the quotient ring Q

[x]/I grad ( f ) if there exists g ∈ I grad ( f ) such that f -g is SOS in Q[x], i.e., f can be decomposed f = s ∑ j=1 c j q 2 j + n ∑ i=1 φ i ∂ f ∂x i ,
for some polynomials q 1 , . . . , q s , φ 1 , . . . , φ s in Q[x] and positive numbers c 1 , . . . , c s in Q.

The existence of an SOS decomposition over the rationals

The main result of this subsection is stated below. This result provides a necessary and sufficient condition for the non-negativity of f ∈ Q[x] under a generic condition. Its proof is constructive, in that we show explicitly how to compute an SOS decomposition over gradient ideals with rational coefficients.

Theorem 5.1.1. Let f ∈ Q[x]
be such that the following conditions hold:

a) The infimum f inf = inf{ f (x) : x ∈ R n } is attained.
b) The gradient ideal I grad ( f ) is zero-dimensional and radical.

Then, f is non-negative over R n if and only if f is an SOS of polynomials over the quotient ring

Q[x]/I grad ( f ).
Proof. Suppose that f is non-negative over R n and #V grad ( f ) = δ. We prove that f is an SOS of polynomials over the quotient ring Q[x]/I grad ( f ). We consider the two following cases: CASE 1. Distinct points in V grad ( f ) have distinct x 1 -coordinates. We now consider the lexicographic monomial order

x 1 < x 2 < • • • < x n on Q[x].
Since the gradient ideal is zero-dimensional and radical, according to the Shape Lemma (Lemma 3.3.1), the reduced Gr öbner basis of I grad ( f ) has the following form:

[w, x 2 -v 2 , . . . , x n -v n ], (5.1) 
where v 2 , . . . , v n are polynomials in Q[x 1 ] of degree at most δ -1. We denote

h(x 1 ) := f (x 1 , v 2 , . . . , v n ), (5.2)
where x i is replaced by v i in f for i = 2, . . . , n. With the order <, we divide fh by the system in (5.1) using the division algorithm in [20, Ch. 2, Sec 3.]. Then, there exist

φ 1 , . . . , φ n in Q[x], and r in Q[x 1 ] such that f -h = φ 1 w + n ∑ i=2 φ i (x i -v i ) + r, (5.3) 
with deg r < δ. Let x be in V grad ( f ). From (5.2) and ( 5.3), one sees that f (x) = h(x).

Hence, fh vanishes on V grad ( f ). Clearly, the value of

φ 1 w + ∑ n i=2 φ i (x i -v i ) is zero on V grad ( f )
. This implies that r also vanishes on the image set π(V grad ( f )), where

π(x 1 , . . . , x n ) = x 1 . Since distinct points in V grad ( f ) have distinct x 1 -coordinates, it holds that #π(V grad ( f )) = #V grad ( f ) = δ.
As deg r < δ, we conclude that r ≡ 0. Hence, from (5.3), we obtain the following representation:

f = h + φ 1 w + n ∑ i=2 φ i (x i -v i ).
(5.4)

The set {(x 1 , x 2 , . . . ,

x n ) ∈ R n : x 2 = v 2 , . . . , x n = v n } defines a curve which is parame- trized by x 1 .
Recall that f is non-negative over R n . Hence f is non-negative over this curve. Since f takes the same values over this curve as h takes over x 1 when x 1 ranges in R, one can conclude that the univariate polynomial h is also non-negative over R. According to the results on SOS decompositions of univariate polynomials with rational coefficients in Theorem 4.2.1, h is a sum of s squares in Q[x 1 ], i.e., there exist q 1 , . . . , q s ∈ Q[x 1 ] and c 1 , . . . , c s in Q + such that h = c 1 q 2 1 + • • • + c s q 2 s . Therefore, from (5.4), we assert that f is an SOS of polynomials over Q[x]/I grad ( f ). CASE 2. There are two distinct points in V grad ( f ) such that their x 1 -coordinates are equal. According to [75, Lemma 2.1], there is j ∈ {1, . . . , (n -1)δ(δ -1)/2} such that the linear function

u := x 1 + jx 2 + • • • + j n-1 x n
separates V grad ( f ), i.e., u(x) = u(y) for any distinct points x, y in V grad ( f ). We consider the change of variables y = Tx, where

T =        1 j j 2 • • • j n-1 0 1 0 • • • 0 0 0 1 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • 1        . (5.5)
We note that T is an invertible matrix. Therefore, we can obtain a polynomial g(y) = f (T -1 y) ∈ Q[y] in new variables y 1 , y 2 , . . . , y n such that g is non-negative and the infimum

g inf = inf{g(y) : y ∈ R n } is attained. By the chain rule ∇g = ∇ f • T -1 , we have V grad (g) = {y ∈ C n : y = Tx, x ∈ V grad ( f )}.
Thus, the gradient ideal I grad (g) is zero-dimensional and radical. Since y 1 = u(x) separates V grad ( f ), distinct points in V grad (g) have distinct y 1 -coordinates.

We now apply Case 1 for g. There exists an SOS decomposition of g modulo I grad (g)

g(y) = s ∑ j=1 c j q2 j (y) + n ∑ i=1 φi (y) ∂g ∂y i , ( 5.6) 
where q1 , . . . , qs , φ1 , . . . , φn ∈ Q[y] and c 1 , . . . , c s ∈ Q + . By replacing y by Tx and ∂g ∂y i by

∂ f ∂x i • T -1 in (5.6)
, we obtain a decomposition of f as follows:

f (x) = g(Tx) = s ∑ j=1 c j q2 j (Tx) + n ∑ i=1 φi (Tx) ∂ f ∂x i • T -1 . (5.7) Since ( ∂ f ∂x i • T -1 )(Tx) = ∂ f ∂x i (x), (5.7
) is an SOS decomposition of f modulo I grad ( f ). To complete the proof, we need to prove the reverse conclusion. Suppose that f is SOS over the quotient ring Q[x]/I grad ( f ), i.e., f can be decomposed as follows:

f = s ∑ j=1 c j q 2 j + n ∑ i=1 φ i ∂ f ∂x i , (5.8) 
for some polynomials q 1 , . . . , q s , φ 1 , . . . ,

φ n ∈ Q[x], and c 1 , . . . , c s in Q + . Let x inf ∈ R n be such that f (x inf ) = f inf .
Then, x inf is a critical point of f over R n , i.e., x inf belongs to the variety V grad ( f ). Thus, we have

n ∑ i=1 φ i (x inf ) ∂ f ∂x i (x inf ) = 0.
From (5.8), we see that f (x inf ) = ∑ s j=1 c j q 2 j (x inf ) and so this value is non-negative. By assumption, for all x in R n , f (x) ≥ f (x inf ). Hence, f is non-negative over R n . Remark 5.1.1. Assume that Q is a real field and that R is the real closure of Q. All arguments in the proof of Theorem 5.1.1 can be applied for f in Q[x]. Hence, the conclusion of Theorem 5.1.1 holds for the case Q[x], i.e., f is non-negative over R n if and only if f is an SOS of polynomials over the quotient ring Q[x]/I grad ( f ) provided that the infimum f inf = inf{ f (x) : x ∈ R n } is attained and that the gradient ideal I grad ( f ) is zero-dimensional and radical. Remark 5.1.2. In the proof of Theorem 5.1.1, one can see that fh vanishes not only on V grad ( f ) but also on the variety defined by x 2v 2 , . . . , x nv n . Hence, φ 1 in (5.4) is zero and (5.4) 

becomes f = c 1 q 2 1 + • • • + c s q 2 s + ∑ n i=2 φ i (x i -v i ).
Remark 5.1.3. Note that if f does not attain its infimum, it could be SOS modulo the gradient ideal but fail to be non-negative, as it may be negative at points where the Example 5.1.3. The gradient ideal of the Motzkin polynomial p M given in (2.2) is neither radical nor zero-dimensional. We consider the positive polynomial g = x 2 1 + x 2 2 and see that the gradient ideal of the product polynomial f M := gp M is radical and zerodimensional. According to Theorem 5.1.1, f M is an SOS of polynomials modulo the ideal I grad ( f M ). This provides indirectly a certificate of non-negativity of the Motzkin polynomial.

Description of the algorithm

The proof of Theorem 5.1.1 allows us to design an algorithm to compute a rational SOS decomposition of polynomials modulo the gradient ideal of a non-negative polynomial.

The input of sosgradientshape is a non-negative polynomial f ∈ Q[x] whose gradient ideal I grad ( f ) is zero-dimensional, radical, and satisfies Shape Lemma's assumption, i.e., all points in V grad ( f ) have distinct x 1 -coordinates. Our software implementation first checks that the gradient ideal is zero-dimensional and radical, and returns an error if the assumption is not satisfied. To do so, we rely on the procedures IsZeroDimensional and IsRadical from the Maple package PolynomialIdeals. These are all based on Gr öbner bases computations (see e.g. [START_REF] Cox | Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra[END_REF]).

The output includes the cardinality δ = #V grad ( f ), the lists of polynomials and numbers [w, v 2 , . . . , v n ], [q 1 , . . . , q s ], [φ 2 , . . . ,

φ n ] ⊂ Q[x], and [c 1 , . . . , c s ] ⊂ Q + satisfying the relation f = s ∑ j=1 c j q 2 j + n ∑ i=2 φ i (x i -v i )
From Remark 5.1.2, we do not need to compute φ 1 because it always equals zero.

In Line 1, we compute the reduced Gr öbner basis G for I grad ( f ) by relying on the zero-dimensional rational parametrization of V grad ( f ) mentioned in Lemma 3.3.2. In Line 2, we compute the quotients φ 2 , . . . , φ n and the remainder r of the division of f by G. In Line 3, we compute a rational weighted SOS decomposition of the nonnegative univariate polynomial h by using Algorithm univsos1 or Algorithm univsos2

described in [53, Fig. 1] or [53, Fig. 2], respectively.

Remark 5.1.4. Suppose that the Shape Lemma assumption does not hold for I grad ( f ), i.e., there are two distinct points in V grad ( f ) such that their x 1 -coordinates are equal. As mentioned in the proof of Theorem 5.1.1, we can find an invertible matrix T given by (5.5), make a change of variables y = Tx and assign g(y) := f (T -1 y). Here, we have

y 1 = x 1 + jx 2 + • • • + j n-1 x n
Algorithm 3 Computing SOS of polynomials modulo the gradient ideal sosgradientshape := proc( f )

Input: f ∈ Q[x]
non-negative over R n such that I grad ( f ) is zero-dimensional and radical and all points in V grad ( f

) have distinct x 1 -coordinates Output: δ in N, [q 1 , . . . , q s ], [w, v 2 , . . . , v n ] ⊂ Q[x 1 ], [φ 2 , . . . , φ n ] ⊂ Q[x], [c 1 , . . . , c s ] ⊂ Q + satisfying f = s ∑ j=1 c j q 2 j + n ∑ i=2 φ i (x i -v i ).
(5.9) 

⊂ Q + . Since #V grad ( f ) = #V grad (g), one has δ = δ.
The new polynomial g can be decomposed as follows:

g(y) = s ∑ j=1 c j q2 j (y 1 ) + φ1 (y) w(y 1 ) + n ∑ i=2 φi (y)(y i -vi (y 1 )).
Hence, f can be decomposed as:

f (x) = s ∑ j=1 c j q2 j (u(x)) + φ1 (Tx) w(u(x)) + n ∑ i=2 φi (Tx)(x i -vi (u(x))), (5.10) 
where

u(x) = x 1 + jx 2 + • • • + j n-1 x n .
Clearly, [w(u), x 2 -v2 (u), . . . , x nvn (u)] is also a basis for V grad ( f ). Hence, (5.10) provides us an SOS decomposition of f modulo the gradient ideal of f .

To illustrate how the algorithm works, we consider the following simple example.

Example 5.1.4. Consider the polynomial f E = 2x 2 1 + 4x 1 x 2 + x 4 2 + 3. This polynomial is non-negative over R n . Firstly, the gradient ideal I grad ( f E ) is given by

I grad ( f E ) = 2x 1 + 2x 2 , 4x 1 + 4x 3 2
which is zero-dimensional and radical. We compute the reduced Gr öbner basis of

I grad ( f E ), namely [x 3 1 -x 1 , x 2 + x 1 ], here v 2 (x 1 ) = -x 1 , δ = deg(x 3 1 -x 1 ) = 3 = #V grad ( f E ).
Secondly, with the order x 1 < x 2 , the quotients of the division of f by the Gr öbner basis are φ 1 = 0 and

φ 2 = -x 3 1 + x 2 1 x 2 -x 1 x 2 2 + x 3 2 + 4x 1
, and the remainder is given by

h(x 1 ) = f E (x 1 , v 2 ) = x 4 1 -2x 2 1 + 3.
Thirdly, one gets an SOS decomposition h = (x 2 1 -1) 2 + 2. Finally, we obtain the following SOS decomposition of f E modulo its gradient ideal: 

f E = (x 2 1 -1) 2 + 2 + (-x 3 1 + x 2 1 x 2 -x 1 x 2 2 + x 3 2 + 4x 1 ) × (x 1 + x 2 ).
= f - n ∑ i=2 φ i (x i -v i ) = h.
In Line 3, the univariate polynomial h is non-negative with rational coefficients. Thus, by using univsos1 or univsos2 [START_REF] Magron | Algorithms for weighted sum of squares decomposition of non-negative univariate polynomials[END_REF], we can compute an SOS decomposition of h, h = c 1 q 2 1 + • • • + c s q 2 s . Hence, according to the proof of Theorem 5.1.1, we get (5.9) which is an SOS decomposition modulo the gradient ideal of f .

Bit complexity analysis

This subsection investigates the bit complexity of Algorithm sosgradientshape. Assume that d and τ are the degree and an upper bound of the bitsize of the coefficients of f ∈ Q[x] respectively. We provide estimates for the bitsizes of polynomials in the output of sosgradientshape( f ) as well as for the number of boolean operations required to execute it.

To analyze the bit complexity of Algorithm 3, we need to estimate bit complexities of all steps in Lines 1-3. We first analyze bit complexities for computing SOS decompositions of the non-negative univariate polynomial h in Line 3.

Proposition 5.1.3. Let v 2 , . . . , v n be as in Lemma 3.3.2 and h(x 1 ) = f (x 1 , v 2 , . . . , v n ). 

(d -1) n . Since deg f = d and h(x 1 ) = f (x 1 , v 2 , . . . , v n ), the degree of h is at most d(d -1) n .
Let β be the minimum common denominator of all non-zero coefficients of h. Computing an SOS decomposition of h boils down to computing an SOS decomposition of βh.

In particular, the execution time of univsos1 (resp., univsos2) on h is the same as for βh. Now we estimate the bitsize of the polynomial βh ∈ 

From (5.13) and above results, we obtain the following bitsize estimate for βh:

O 2(τ + d(τ + n + d)d 3n ) = O (τ + n + d)d 3n+1 .
To compute an SOS decomposition of βh, we rely on univsos1 or univsos2. From Theorem 4.2.2, the boolean running time of univsos1 corresponds to the quantity given by (5.11). If we use univsos2 then the number of boolean operations, by applying Theorem 4.2.3, will be bounded from above by

O d 4 (d -1) 4n + d 4 (τ + n + d)(d -1) 6n ,
which can be further reduced to (5.12). We are now ready to analyze the bit complexity of Algorithm 3.

Theorem 5.1.5. Let f ∈ Q[x] of degree d and let τ be the maximum bitsize of its coefficients. Assume that the two conditions in Theorem 5.1.1 hold. Then, on input f , sosgradientshape

runs in O (τ + n + d) 2 d 6n + (τ + n + d)d 3n+1 (d n+1 /2) 3d n+1 /2 (5.14) or O 
(τ + n + d) 2 d 6n + (τ + n + d)d 6n+4 (5.15) 
boolean operations if in Line 3 we use Algorithm univsos1 or Algorithm univsos2, respectively.

Proof. Assume that in Line 3 we use univsos1 to compute an SOS decomposition of h.

Then, the number of boolean operations that sosgradientshape uses to compute the SOS decomposition of f is the sum of the four following numbers:

1. The number of boolean operations required to compute the zero-dimensional rational parametrization Q of V grad ( f ) as in (4.4).

2. The number of boolean operations required to compute w, v 2 , . . . , v n ∈ Q[x 1 ], defined in Lemma 4.4.2 as in (4.6).

3. The number of boolean operations required to compute an SOS decomposition of h by using Algorithm univsos1 as in (5.11).

4. The number of boolean operations required to compute φ 2 , . . . , φ n in the output of sosgradientshape by using Eliminate (mentioned in Proposition 5.1.4).

This sum equals

O n 2 (d + τ)d 2n+1 n + d d + (τ + n + d) 2 d 6n + (τ + n + d)d 3n+1 d n+1 2 3d n+1 /2 + (τ + n + d)n 2 d 3n+2 .
In this sum, the third term is larger than the first and last term for large enough d and n, yielding the estimate (5.14). If in Line 3 we use univsos2, the number of boolean operations of the algorithm is

O n 2 (d + τ)d 2n+1 n + d d + (τ + n + d) 2 d 6n + (τ + n + d)d 6n+4 + n 2 (τ + n + d)d 3n+2 .
Noting that ( n+d d ) ≤ (d + 1) n ≤ d 2n for large enough d and n, we obtain (5.15).

Theorem 5.1.6. Assume that f ∈ Q[x] satisfies the conditions of Theorem 5.1.5. Let w, v 2 , . . . , v n , and h be as in Proposition 5.1.3. Then, the maximum bitsize of the coefficients involved in the SOS decomposition of h obtained by using Algorithm univsos1 and Algorithm univsos2 are bounded from above, respectively, by

O (τ + n + d)(d n+1 /2) 3d n+1 /2 d 3n+1 , (5.16) and O 
(τ + n + d)d 5n+3 .
(5.17)

Proof. From the proof of Proposition 5.1.3, the estimates for degree and bitsize of βh are d(d -1) n and O (τ + n + d)d 3n+1 , respectively. According to Theorem 4.2.2 and Theorem 4.2.3, the maximum bitsize of the coefficients involved in the SOS decomposition of βh obtained by using univsos1 and univsos2 are bounded from above by (5.16) and (5.17), respectively.

SOS of rational fractions modulo gradient ideals

In this section, we explain how to decompose f ∈ Q[x] as an SOS of rational fractions modulo its gradient ideal. We recall that f ∈ Q[x] is an SOS of rational fractions in Q(x), where Q(x) is the field of rational fractions in the variable x over Q, if there

exist rational fractions f 1 , . . . , f s in Q(x) and [c 1 , . . . , c s ] ⊂ Q + such that f = ∑ s j=1 c j f 2 j .
Furthermore, f is an SOS of rational fractions over the quotient ring Q(x)/I grad ( f ) if there exists g ∈ I grad ( f ) such that fg is an SOS of rational fractions in Q(x), i.e., f can be decomposed as follows:

f = s ∑ j=1 c j f 2 j + n ∑ i=1 φ i ∂ f ∂x i ,
for some rational fractions f 1 , . . . , f s , φ 1 , . . . , φ s in Q(x) and [c 1 , . . . , c s ] ⊂ Q + .

The existence of an SOS decomposition over the rationals

Denote by Q(x 1 )[x 2 , . . . , x n ] the space of polynomials in n -1 variables (x 2 , . . . , x n ) with coefficients in Q(x 1 ).

In the following theorem, we prove the existence of an SOS decomposition of rational fractions modulo the gradient ideal for f . Theorem 5.2.1. Assume that f ∈ Q[x] is a non-negative polynomial of degree d and that I grad ( f ) is zero-dimensional and radical. Let Q = ((w, κ 1 , . . . , κ n ), x 1 ) be a zero-dimensional rational parametrization of V grad ( f ). Then, f can be decomposed as an SOS of rational fractions modulo the gradient ideal, in particular

f = 1 (w ) d s ∑ j=1 c j q 2 j + n ∑ i=1 φ i (w ) d w x i -κ i , (5.18) 
for some q 1 , . . . ,

q s ∈ Q[x 1 ], φ 1 , . . . , φ n ∈ Q[x], and [c 1 , . . . , c s ] ⊂ Q + .
Proof. The gradient variety of f can be represented as follows:

V grad ( f ) = {x ∈ C n : w x 1 -κ 1 = • • • = w x n -κ n = 0}. (5.19) 
Because I grad ( f ) is radical, according to Theorem 3.1.1 (Hilbert's Strong Nullstellensatz), one has

I grad ( f ) = w x 1 -κ 1 , . . . , w x n -κ n .
We now apply the argument in the proof of Theorem 5.1.1. By substituting x i = κ i w in f , for i = 2, . . . , n, we obtain a univariate polynomial h(x 1 ) such that

f x 1 , κ 2 w , . . . , κ n w = 1 (w ) d h.
(5.20)

Since f is non-negative with even degree d, h is also non-negative. In addition, the coefficients of w , κ 1 , . . . , κ n and f are rational numbers. Therefore, the coefficients of h are also rational numbers. Applying Theorem 4.2.1 for h, we conclude that there are q 1 , . . . , q s in Q

[x 1 ] and [c 1 , . . . , c s ] ⊂ Q + such that h = s ∑ j=1 c j q 2 j . (5.21) 
Next, one considers the division of (w

) d f -h by [w x 1 -κ 1 , . . . , w x n -κ n ] with the lexicographic order x 1 < • • • < x n .
Based on Buchberger's Criterion (Theorem 3.2.1), we can show that [w x 1κ 1 , . . . , w x nκ n ] is a Gr öbner basis of the ideal generated by this system with respect to the order < in Q[x]. Hence, there exist a (unique) list of quotients [φ 1 , . . . ,

φ n ] in Q[x], and r in Q[x 1 ] such that (w ) d f -h = n ∑ i=1 φ i (w x i -κ i ) + r, (5.22) 
with r of smaller degree than the cardinality δ of V grad ( f ). Note that the gradient variety of f can be represented as in (5.19). From (5.20), one sees that (w ) d f -h vanishes on V grad ( f ). With the same arguments as in the proof of Theorem 5.1.1, we conclude that r ≡ 0. Hence, from (5.20), (5.21), and (5.22), we obtain a representation of f as in (5.18).

Remark 5.2.1. In Theorem 5.2.4, we assume that Q = ((w, κ 1 , . . . , κ n ), x 1 ) is a zerodimensional rational parametrization of V grad ( f ) which is a generic assumption. In this assumption, the linear form λ is given by λ(x) = x 1 . If this assumption does not hold, we can change the coordinate system such that the obtained polynomial (with new variables) satisfies this assumption as in Case 2 of the proof of Theorem 5. 

= 1 (w ) d s ∑ j=1 c j q 2 j + n ∑ i=2 φ i (w ) d w x i -κ i .
(5.23)

To illustrate the formula (5.23), we consider the simplest case with n = 2 and d = 2 as follows.

Example 5.2.1. Consider the polynomial

f E = 2x 2 1 + 4x 1 x 2 + x 4 2 + 3, that is non-negative over R n . The gradient variety of f has a zero-dimensional rational parametrization Q = ((w, κ 1 , κ 2 ), λ) given by λ = x 1 , w = x 3 1 -x 1 , κ 1 = -2x 1 , κ 2 = 2x 1 .
One has w = 3x 2 1 -1. By replacing x 2 = κ 2 /w in f E , we obtain 4 , where h = 162x 10 1 + 243x We only need to compute φ 2 , which we find to be

f E x 1 , κ 2 w = 2x 2 1 + 4x 1 κ 2 w + κ 2 w 4 + 3 = h (3x 2 1 -1)
φ 2 = (81x 8 1 -108x 6 1 + 54x 4 1 -12x 2 1 + 1)x 3 2 + 324x 9 1 -432x 7 1 + 216x 5 1 -48x 3 1 + 4x 1 + 1 3x 2 1 -1 (162x 9 1 -216x 7 + 108x 5 1 -24x 3 1 + 2x 1 )x 2 2 + 1 (3x 2 1 -1) 2 (324x 10 1 -432x 8 1 + 216x 6 1 -48x 4 1 + 4x 2 1 )x 2 + 1 (3x 2 1 -1) 3 (648x 11 1 -864x 9 1 + 432x 7 1 -96x 5 1 + 8x 3 1 ).
From the above results, we obtain an SOS decomposition of rational functions modulo the gradient ideal of f E .

Algorithm to compute an SOS of rational fractions

From the proof of Theorem 5.2.1, we design the algorithm sosgradient to compute an SOS decomposition of rational fractions for f . This algorithm is obtained by a modification of Line 1 in sosgradientshape to get a zero-dimensional rational parametrization of the gradient variety of f .

Algorithm 4

Computing SOS of rational fractions modulo the gradient ideal sosgradient := proc( f )

Input: f ∈ Q[x]
of degree d such that f is non-negative over R n and I grad ( f ) is zerodimensional and radical

Output: [w, κ 1 , . . . , κ n ], [q 1 , . . . ,

q s ] ⊂ Q[x 1 ], [ψ 2 , . . . , ψ n ] ⊂ Q(x 1 )[x 2 , . . . , x n ], and [c 1 , . . . , c s ] ⊂ Q + satisfying f = 1 (w ) d s ∑ j=1 c j q 2 j + n ∑ i=2 ψ i (w ) d x i - κ i w . (5.24) 
1: Compute a zero-dimensional rational parametrization [w, κ 1 , . . . , κ n ] of V grad ( f )

2: Compute the quotients [ψ 2 , . . . , ψ n ] and the remainder h of the division of (w ) d f by

[x 2 - κ 2 w , . . . , x n - κ n w ] by performing Eliminate((w ) d f , w , κ 2 , . . . , κ n ) 3: Compute a rational weighted SOS decomposition of h = c 1 q 2 1 + • • • + c s q 2 s 4: return [w, κ 1 , . . . , κ n ], [q 1 , . . . , q s ], [ψ 2 , . . . , ψ n ], and [c 1 , . . . , c s ]
The input of sosgradient is a non-negative polynomial f in Q[x] whose gradient ideal I grad ( f ) is zero-dimensional and radical. The outputs are a zero-dimensional rational parametrization of V grad ( f ), a list of univariate polynomials [q 1 , . . . , q s ] ⊂ Q[x 1 ], and a list [ψ 2 , . . . , ψ n ] in Q(x 1 )[x 2 , . . . , x n ] satisfying (5.24). Note that the ψ i 's in (5.18) and φ i 's

Bit complexity analysis

To conclude this section, we estimate the bitsizes of the polynomials in the output as well as the number of boolean operations required to perform Algorithm sosgradient. Proof. We compute the division of (w ) d f by [x 2 -κ 2 w , . . . , x n -κ n w ] by performing the procedure Eliminate((w ) d f , w , κ 2 , . . . , κ n ). We obtain the list of quotients [ψ 2 , . . . , ψ n ] and the remainder h. The degree of (w ) d f in variables x 2 , . . . , x n is d, and the height is ht((w

) d f ) = O (τ + n + d)d n+1 . By applying Lemma 4.3.3 with ht(κ i ) = O ((τ + n + d)(d -1) n ), we obtain the conclu- sions. Theorem 5.2.4. Let f ∈ Q[x]
of degree d and let τ be the maximum bitsize of its coefficients. Assume that f is non-negative over R n and that I grad ( f ) is zero-dimensional and radical. Then, on input f , Algorithm sosgradient uses The underlying reason is that the maximum bitsizes of w, v 2 , . . . , v n are (d -1) 2n times bigger than the ones of κ 1 , . . . , κ n that are obtained by a zero-dimensional rational parametrization of the gradient variety.

O (d n+1 /2) 3d n+1 /2 (τ + n + d)d n+1 , (5.25) or O 

Practical experiments

This section is dedicated to showing experimental results obtained by using the algorithms sosgradientshape (Algorithm 3 from Section 5.1) and sosgradient (Algorithm 4 from Section 5.2). Both algorithms are implemented in MAPLE, and the results are obtained on an Intel Xeon E7-4820 CPU (2GHz) with 1.5 TB of RAM.

In practice, univsos2 runs faster than univsos1, which is consistent with the theoretical results stated in Theorems 4.2.2 and 4.2.3. In addition, as mentioned in Remark 5.2.4, it is practically faster to compute SOS decompositions involving rational fractions than polynomials.

We compare timings of the slowest algorithm, sosgradientshape using univsos1, with the fastest algorithm, sosgradient using univsos2. For each algorithm, the first step consists of obtaining h by computing either the reduced Gr öbner basis (using the procedure Basis in MAPLE) in sosgradientshape or the zero-dimensional rational parame- 

a 4 + b 2 1 + • • • + b 2 n + c + 10 6
, where a (resp., b i , c) is a dense linear (resp., quadratic, cubic) polynomial in n variables.

The coefficients of a (resp., b i , c) are chosen randomly in {-1, 1} (resp., {-3, . . . , 3}, {-1, 0, 1}) with respect to the uniform distribution. For n ≥ 4, sosgradientshape failed to provide an SOS decomposition as the execution of univsos1 did not finish after 12 hours of computation, as indicated by the symbol "-" in the corresponding lines.

The underlying reason is that τ h and d h are both very large and that the complexity of univsos1 is exponential in the degree of h (Theorem 4.2.2). Note that the intermediate polynomials correspond to worst cases, i.e., the maximum possible degree of w is attained, namely δ = deg w = (d -1) n , so the degree of h is also maximum, i.e., deg h = d(d - , where a (resp., b, c) is a dense linear (resp., cubic, cubic) polynomial in n variables. Coefficients of a (resp., b i , c) are chosen randomly in {±1, ±2} (resp., {-3, . . . , 3}, {-1, . . . , 1}) with respect to the uniform distribution. Note that here the univariate polynomials generated when running the algorithm do not correspond to the worst case scenario in terms of degree and bitsize. For both algorithms, we denote by τ (10 4 -bits) the average bitsize of the output and by t the average runtime in seconds.

From this table, we deduce that when the number of variables n increases, then the rate of success of multivsos decreases. This fact illustrates Blekherman's theorem [START_REF] Blekherman | There are significantly more nonegative polynomials than sums of squares[END_REF] which says that if the degree d ≥ 4 is fixed then, as the number of variables n grows, the cone of non-negative polynomials is significantly bigger than the cone of SOS polynomials. It also illustrates that sosgradient can tackle a large range of problems which are out of reach of state-of-the-art algorithms such as multivsos. When multivsos succeeds in computing SOS decompositions, then it provides more concise certificates than sosgradient while also being more efficient. However, when d = 4 and n = 5, multivsos can only decompose 4 polynomials out of 50 while sosgradient succeeds for all of them. This demonstrates the need of alternative procedures such as sosgradient for polynomials which presumably do not lie in the interior of the SOS cone.

CHAPTER 6

Exact SOHS decompositions of trigonometric univariate polynomials with Gaussian coefficients In this chapter, we design, analyze and compare, theoretically and practically, three hybrid numeric-symbolic algorithms for computing weighted sums of Hermitian squares decompositions for trigonometric univariate polynomials positive on the unit circle with Gaussian coefficients. The numerical steps on which the first and second algorithm rely are complex root isolation and semi-definite programming, respectively. Exact sum of Hermitian squares decompositions are obtained thanks to compensation techniques.

The third algorithm, also based on complex semi-definite programming, is an adaptation of the rounding and projection algorithm by Peyrl and Parrilo [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF]. We compare their performances on randomly chosen benchmarks, and further design a certified finite impulse filter. This chapter has three sections. Sections 6.1, 6.2, and 6.3 introduce Algorithms csos1, csos2, and csos3, respectively, and analyze their bit complexities. Practical experiments are given in Section 6.4.

Most of the content of this chapter is from the paper [START_REF] Magron | Exact SOHS decompositions of trigonometric univariate polynomials with Gaussian coefficients[END_REF] entitled "Exact SOHS decompositions of trigonometric univariate polynomials with Gaussian coefficients" by Victor Magron, Mohab Safey El Din, Markus Schweighofer, and Trung Hieu Vu.

Algorithm based on root isolation

The set of trigonometric univariate polynomials with Gaussian integer coefficients, denoted by H (Z)[z], is a subset of Laurent polynomials with complex variable z as follows:

f (z) = f 0 + f 1 z + f1 z + • • • + f d z d + fd z d , (6.1) 
with d ∈ N, f 0 ∈ Z and f j ∈ Z[i] for j = 1, . . . , d.

Assume that f ∈ H (Z)[z] is positive on the unit circle. According to the proof of the Riesz-Fejér spectral factorization theorem [22, pp. 3-5], f can be written as an SOHS with a single term as follows:

f = a × d ∏ k=1 (z -a k ) × 1 z -āk , (6.2) 
where (a 1 , 1/ ā1 ) . . . , (a d , 1/ ād ) are d pairs of roots of f , and a is a positive scalar.

We propose the first algorithm, called csos1, to compute an exact SOHS decomposition of f ∈ H (Z)[z] being positive on the unit circle C . It puts into practice a perturbationcompensation procedure based on complex roots isolation, and can be viewed as the extension of the procedure univsos2 (stated in [START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF] and analyzed in [53, § 4]) to the complex setting. 

Description and correctness

f (z) = ε + u 0 -2 d ∑ k=1 |u k | + d ∑ k=1 |u k | z k + u k |u k | 1 z k + ūk |u k | + α d ∏ k=1 (z -α k ) 1 z -ᾱk with ε + u 0 -2 d ∑ k=1 |u k | > 0. (6.3)
In Line 1 we replace z by x + iy in f where x, y are (real) variables to obtain a real bivariate polynomial p of degree d. Since, by assumption, f is positive over the compact set C , there exists ε > 0 small enough, such that pε is positive on C . The first while loop from Lines 2 and 3 computes such positive rational number ε. To do so, it uses an auxiliary procedure hasrealrootoncircle, which returns true if pε cancels on the unit circle C = {(x, y) ∈ R 2 : x 2 + y 2 -1 = 0}. Such a procedure is easily obtained with any polynomial system solver for bivariate polynomial systems. In practice, we use the real root solver MSOLVE [START_REF] Berthomieu | Msolve: A library for solving polynomial systems[END_REF].

In the second while loop from Line 5 to 13, the algorithm computes at Line 6 Gaussian approximations α 1 , . . . , α d , where |α i | < 1 for i = 1, . . . , d (and their conjugates), of the complex roots of fε with accuracy δ. This is done using the procedure complexroots which on input a rational fraction and a required accuracy δ returns all the complex roots of the numerator of the fraction at accuracy δ (see, e.g., [START_REF] Bini | Solving secular and polynomial equations: A multiprecision algorithm[END_REF]).

Algorithm 5

Computing SOHS decomposition based on root isolation csos1 := proc( f ) Compute [α 1 , . . . ,

Input: f ∈ H (Z)[z]
α d ] := complexroots( f -ε, δ) |α i | < 1, i = 1, . . . , d 7: 
Compute

F := ∏ d k=1 (z -α k ) z -1 -ᾱk 8:
Compute α := coeffs( fε, 0)/coeffs(F, 0) and u := ( fε) -αF The idea is to obtain, up to proper scaling α, an approximate SOHS decomposition F of fε. The auxiliary procedure coeffs provides the list of coefficients of a polynomial, e.g., coeffs( fε, 0) returns the constant term of fε. We then consider the difference u at Line 8 which is the difference between fε and its approximate SOHS decomposition which can be written as follows:

u = u 0 + u 1 z -1 + ū1 z + • • • + u d z -d + ūd z d .
As proved in Section 6.1.2, if the precision of root isolation is large enough, then the stopping condition

ε > 2 d ∑ k=1 |u k | -u 0 (6.4)
In addition,

u k z -k + ūk z k = |u k | z k + u k |u k | z -k + ūk |u k | -2|u k |, (6.5) 
yielding (6.3). The scaling α at Line 8 is actually an approximation of the scaling a from the decomposition (6.2) of f . Since both coeffs( fε, 0) and coeffs(F, 0) are rational, α is also rational.

Clearly, the polynomial F and the term on the right-hand side of (6.5) are SOHS. Hence, as the stopping condition (6.4), the right-hand side of (6.3) is a sum of d + 2 Hermitian squares involving Gaussian (or Gaussian modulus) numbers.

Bit complexity analysis

We now analyze the bit complexity of Algorithm csos1. From Lemma 6.1.1, there exists a positive integer

N = O(d 3 (d + τ)) (6.6)
such that fε is positive on C , with ε = 1 2 N . We define m := 2d and

g := z d ( f -ε) = fd z 2d + • • • + f1 z d+1 + ( f 0 -ε)z d + f 1 z d-1 + • • • + f d . (6.7) 
Note that g and fε have the same roots, and that g ∞ ≤ f ∞ + ε. Denote by ζ 1 , . . . , ζ m the (exact) complex roots of g and by ζ 1 , . . . , ζ m their approximations with a precision δ, so that ζ j = ζ j (1 + e j ), where |e j | ≤ 2 -δ for j = 1, . . . , m. We consider a new polynomial g which is defined as follows:

g := fd (z -ζ 1 ) . . . (z -ζ m ).
The polynomial u defined in Line 8 satisfies z d u = gg .

We now prove that at a precision δ, where

δ = N + log 2 ((2d + 1) 2 g ∞ ) = O(d 3 (d + τ)),
we ensure that the coefficients of u satisfy the stopping condition (6.4) of the algorithm.

Here, one can take N = Cd 3 (d + τ), for a large enough constant C > 1. One has

e := 2 -δ < 1 δ < 1 Cd 3 (d + τ) < 1 m(m + 1) < 1 m . ( 6.8) 
Let j be in {0, 1, . . . , d}. Using Vieta's formulas (see, e.g., [START_REF] Vinberg | A course in algebra[END_REF]Ch.3,p.89]), we have

∑ 1≤i 1 <•••<i j ≤m ζ i 1 • • • ζ i j = (-1) j g m-j
g m = (-1) j g m-j fd . (6.9)

Similarly, we have

∑ 1≤i 1 <•••<i j ≤m ζ i 1 • • • ζ i j = (-1) j g m-j fd . ( 6.10) 
We estimate an upper bound for the coefficient ūd-j of the polynomial u. Clearly, one has ūd-j = g m-jg m-j . From (6.9) and (6.10), we see that 

| ūd-j | = | fd | ∑ 1≤i 1 <•••<i d+j ≤m ζ i 1 • • • ζ i d+j -ζ i 1 • • • ζ i d+j (6.11) = | fd | ∑ 1≤i 1 <•••<i d+j ≤m ζ i 1 • • • ζ i d+j 1 -(1 + e i 1 ) • • • (1 + e i d+j
-(1 + e i 1 ) • • • (1 + e i d+j ) ≤ |θ d+j | ≤ (m + 1)e.
From the above presentation of | ūd-j | in (6.11) and (6.9), we obtain the following estimates:

| ūd-j | ≤ | fd | |g m-j | | fd | (m + 1)e ≤ g ∞ (m + 1)e. ( 6 

.13)

The conclusion holds for j = 0, . . . , d so one has

2 d ∑ k=1 |u k | -u 0 = 2 d-1 ∑ j=0 | ūd-j | -u 0 ≤ e(m + 1) 2 g ∞ ≤ e(m + 1) 2 g ∞ . It follows from δ = N + log 2 (2d + 1) 2 g ∞ that e(2d + 1) 2 g ∞ = ε. Therefore, ε > 2 ∑ d k=1 |u k | -u 0 holds when δ = O(d 3 (d + τ)).
We choose e j = e = 2 -δ and z j = z j (1 + 2 -δ ). This implies that

| ūd-j | = | fd ||1 -(1 + 2 -δ ) d+j |, for all j = 0, . . . , d. It follows from ht( fd ) ≤ τ, ht(δ) = O(d 3 (d + τ)), and ht(ε) = O(d 3 (d + τ)), that ht( ūd-j ) = O(d 3 (d + τ) + (d + j)d 3 (d + τ)) = O(d 4 (d + τ)).
The maximal bitsize of the coefficients of u is bounded from above by O(d 4 (d + τ)).

We now estimate the bit complexity of the coefficient α in (6.3). From Line 8 in csos1,

one has α = f 0 -ε F 0 , where F 0 = g d is the constant term of F. Clearly, ht( f 0 -ε) = O(d 3 (d + τ)).
Let {α 1 , . . . , α d , 1 ᾱ1 , . . . , 1 ᾱd } be the approximate roots of the polynomial z d ( fε). By applying Lemma 4.6.1 to the polynomial obtained by multiplying z d ( fε) with the least common multiple of its coefficients, we require an accuracy of at least O(Nd) to compute distinct approximations of its roots in the worst case. Since (6.6), the last bound becomes O(d 4 (d + τ)).

Because of (6.10), one has Proof. The algorithm includes two steps. We consider the first step, checking that the polynomial g defined in (6.7) in the previous proof has no real root on the unit circle.

g d = (-1) d fd ∑ 1≤i 1 <•••<i d ≤m ζ i 1 • • • ζ i d , ( 6 
Let ε be given as in Lemma 6.1.1 with ht(ε) = O(d 3 (d + τ)).

Algorithm based on complex SDP solving

This section states and analyzes another perturbation-compensation algorithm, named csos2, to compute an SOHS decomposition of a trigonometric polynomial being positive on C . In the algorithm, the approximate SOHS decomposition for the perturbation is computed by using complex SDP solving. It can be viewed as the adaptation of the procedure intsos (stated and analyzed in [52, § 3]) to the complex univariate setting.

Let I d stands for the identity matrix of size d. 

= ε + u 0 -2 d ∑ k=1 |u k | + d ∑ k=1 |u k | z k + u k |u k | z -k + ūk |u k | + d ∑ k=0 s k s k . (6.15)
The first while loop of csos2 (Lines 2-3) is exactly the same as in csos1 to obtain ε ∈ Q + such that fε is positive on C . Then, instead of using root isolation as in csos1, csos2

Algorithm 6 Computing SOHS decomposition based on complex SDP solving csos2 := proc( f ) Compute

Input: f ∈ H (Z)[z] positive on C of degree d Output: ε ∈ Q + , [u 0 , u 1 , . . . , u d ] in Q[i], [s 0 , . . . , s d ] in Q[i][z]
( Q, λ) := sdp( f -ε, δ, R) 7:
Compute [s 0 , . . . , With fε, δ, and R, the sdp function calls an SDP solver to compute a rational approximation Q, which is positive definite, of a Gram matrix associated to fε and a rational approximation λ of its smallest eigenvalue. As in [START_REF] Magron | On exact Reznick, Hilbert-Artin and Putinar's representations[END_REF], we analyze the complexity of this procedure by assuming that sdp relies on the ellipsoid algorithm [START_REF] Gr | Geometric Algorithms and Combinatorial Optimization[END_REF], running in polynomial-time within a given accuracy δ and a radius bound R on the Frobenius norm of Q. Its outputs are obtained by solving the following complex SDP:

s d ] := cholesky( Q, λ, δ c ) f -ε ∑ d k=0 s k s k 8: Compute u := ( f -ε) -∑ d k=0 s k s k , [u 0 , u 1 , . . . , u d ] := coeffs(u) 9: if ε > 2 ∑ d k=1 |u k | -u
λ min = max Q,λ λ s.t. tr(Θ k Q) = f k -(ε • 1 k=0 ), k = -d, . . . , d , (6.16 
)

Q λI d+1 , λ ≥ 0 , Q ∈ C (d+1)×(d+1) ,
where Θ k is the elementary Toeplitz matrix with ones on the k-th diagonal and zeros elsewhere, i.e. 1 k=0 = 1 if k = 0 and 0 otherwise. The equality constraints of the SDP (6.16) correspond to the relation fε = v d Q v d . This SDP (corresponding to the SDP (2.14) in [START_REF] Dumitrescu | Positive trigonometric polynomials and signal processing applications[END_REF]) computes the Gram matrix associated to f with the largest minimal eigenvalue.

The cholesky function computes first an approximate Cholesky's decomposition LL of Q with precision δ c and provides as output a list of polynomials [s 0 , . . . ,

s d ] in Q[i][z],
where s k is the inner product of the (k + 1)-th row of L by v d . One would expect to have fε = ∑ d k=0 s k s k after using exact SDP and Cholesky's decomposition. Since the SDP solver is not exact, we have to consider the difference u = fε -∑ d k=0 s k s k and proceed exactly as in csos1 to obtain an exact SOHS decomposition. Remark 6.2.1. According to [START_REF] Dumitrescu | Positive trigonometric polynomials and signal processing applications[END_REF]Remark 2.8], we can convert the complex SDP (6.16) to a real one. Indeed, the variable matrix Q can be written as Q = Q re + iQ im , where Q re and Q im are real matrices. Hence, the constraint tr(Θ 

k Q) = f k -ε • 1 k=0 can be replaced by two constraints, tr(Θ k Q re ) = re( f k -ε • 1 k=0 ) and tr(Θ k Q im ) = im( f k -ε • 1 k=0 ). Moreover, the condition Q 0 is equivalent to Q re -Q im Q im Q re 0. Example 
∈ Q + of bitsize O(d 3 (d + τ)) such that f -ε is positive on C , δ of bitsize O(d 3 (d + τ)) and R of bitsize O(ht(d) + τ) such that Q -ε d+1 I d+1 is a Gram matrix associated to f -ε with Q - ε d + 1 I d+1 2 -δ I d+1 and tr((Q -εI d+1 ) 2 ) ≤ R. ( 6 
= 2 -N with N = O(d 3 (d + τ)) such that f -3ε/2 > 0 on C . Let δ := N + 1 + log 2 (d + 1) = O(d 3 (d + τ))
so that 2 -δ ≤ ε 2(d+1) . Note that v d v d = d + 1. Thus, we have the following representation:

f -ε = v d Q - ε d + 1 I d+1 v d . Since f -ε -2 -δ (d + 1) ≥ f -3ε/2 is positive over the unit circle, the Gram matrix associated to f -ε -2 -δ (d + 1
) is positive definite. Specifically, we have that

Q - ε d + 1 I d+1 -2 -δ I d+1 0. Let R := f 0 (d + 1). It follows that R is of bitsize O(ht(d) + τ).
Note that the equality constraint of SDP (6.16) with k = 0 reads tr

(Q) = f 0 -ε ≤ f 0 . The maximal eigenvalue of Q is less than f 0 and tr((Q -εI d+1 ) 2 ) ≤ tr(Q 2 ) ≤ (d + 1) f 2 0 = R 2 .
This is the last desired inequality. Theorem 6.2.2. Let f ∈ H (Z)[z] be positive on C of degree d. On input f , Algorithm csos2 terminates and outputs an SOHS decomposition of f as in (6.15).

Proof. Since fε is positive on C , according to [22, Theorem 2.5], SDP (6.16) always has a strictly feasible solution for precision parameters (δ, R) with bitsizes as in Lemma 6.2.1 and the sdp function returns an approximate Gram matrix Q associated to fε such that Q 2 -δ I d+1 and tr(Q 2 ) ≤ R 2 as in (6.17). In particular, we obtain a rational approximation λ ≥ 2 -δ of the smallest eigenvalue of Q. Let δ c be the smallest integer such that

2 -δ c < 2 -δ (d + 1) 2 + d + 1 + d2 -δ .
Since the following function in the variable t,

t → t (d + 1) 2 + d + 1 + dt ,
increases on [0, +∞) and λ ≥ 2 -δ , the inequality (4.12) holds. According to Lemma 4.5.1, at Line 6 we compute an approximate Cholesky decomposition of Q by using the cholesky procedure. We obtain a nonsingular factor Q = LL , where L has Gaussian entries.

We denote s k := L v d and consider the difference polynomial

u = ( f -ε) -∑ d k=0 s k s k .
The second while loop (Lines 5-12) terminates when the stopping condition (6.4) is fulfilled. This condition holds if |u k | ≤ ε 2d+1 , for all k = 0, . . . , d. We prove that these last conditions hold when δ and δ c are both large enough. Indeed, we have

u k = f k -ε k - d ∑ j=0 s j s j k , k = -d, . . . , d, (6.18) 
where ε 0 = ε, ε k = 0 for k = 0, and (∑ d j=0 s j s j ) k is the coefficient of monomial z k in the involved polynomial. Recall that the positive definite matrix Q computed by the SDP solver is an approximation of the Gram matrix associated to fε. With the precision δ, from (6.18) and Q 2 -δ I, we see that

| f k -ε k -tr(Θ k Q)|=| f k -ε k -∑ i+j=k Qij |≤ 2 -δ .
Furthermore, from (4.11), the approximate Cholesky decomposition LL of Q performed at precision δ satisfies LL = Q + H and

|H ij | ≤ (d + 2)2 -δ c | Qii Qjj | 1 -(d + 2)2 δ c
, for all i, j in {-d, . . . , d}. Applying the Cauchy-Schwarz inequality for the trace function, we see that

d ∑ k=-d | Qkk | = tr( Q) ≤ tr( Q2 ) tr(I) ≤ R √ d + 1.
So, for each k in {-d, . . . , d}, we have

∑ i+j=k Qii Qjj ≤ ∑ i+j=k Qii + Qjj 2 ≤ tr( Q) ≤ R √ d + 1. (6.19) 
Therefore, we have

∑ i+j=k Qij - d ∑ j=0 s j s j k = ∑ i+j=k Qij -∑ i+j=k LL k = ∑ i+j=k H ij .
It follows from (4.11) and (6.19) that the last number is bounded by

∑ i+j=k Qij - d ∑ j=0 s j s j k ≤ (d + 2)2 -δ c 1 -(d + 2)2 -δ c ∑ i+j=k | Qii Gjj | ≤ R √ d + 1(d + 2)2 -δ c 1 -(d + 2)2 -δ c . Take the smallest δ such that 2 -δ ≤ ε 2(2d+1) = 1 (2d+1)2 N+1 as well as the smallest δ c such that R √ d + 1(d + 2)2 -δ c 1 -(d + 2)2 -δ c ≤ ε 2(2d + 1) ,
i.e., δ = N + 1 + log 2 (2d + 1) and

δ c = log 2 R + log 2 (d + 2) + log 2 (2 N+1 (2d + 1) 3/2 + 1) .
From (6.18) and above inequalities, we obtain the following estimates:

|u k | ≤ f k -ε k -∑ i+j=k Qij + ∑ i+j=k Qij - d ∑ j=0 s j s j k ≤ ε 2(2d + 1) + ε 2(2d + 1) = ε 2d + 1 .
This guarantees that the second while loop terminates for large enough δ and δ c , with bitsizes O(d 3 (d + τ)). 

Bit complexity analysis

Algorithm based on rounding-projection technique

In this chapter, we introduce Algorithm csos3 which is an adaptation of the roundingprojection method by Peyrl and Parrilo, stated in [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF] and analyzed in [52, § 3.4], and investigate its bit complexity.

Description

The input of csos3 is a polynomial f ∈ H (Z) [z] As in csos2, the first while loop from Lines 3-8 provides an approximate Gram matrix Q associated to f and an approximation λ of its smallest eigenvalue. In Line 11, we round the matrix Q up to precision δ to obtain a matrix Q, with Gaussian coefficient entries. The for loop from Line 12 to Line 15 is the projection step to ensure that the equality constraints of SDP (6.16) hold exactly. Then, we compute the LDL decomposition of Q. The list [c 0 , . . . , c d ] is the list of coefficients of the diagonal matrix D and each s k is the inner product of the (k + 1)-th row of L with the vector v d of all monomials up to degree d. If all c k 's are positive rationals and all polynomials s k have Gaussian coefficients, then the second while loop ends. Otherwise, we increase the precision δ. such that Algorithm csos3 terminates and outputs an SOHS decomposition of f .

Correctness and bit complexity analysis

Proof. After the second while loop (Lines 10-20), we obtain the positive definite matrix Q associated to f with the smallest eigenvalue λ. Let N ∈ N be the smallest integer satisfying 2 -N ≤ λ. From Lemma 6.2.1, the bitsize of N is O(d 3 (d + τ)). The matrix Q is obtained after the rounding step at Line 11. The number δ E stands for the distance between Q and Q which is defined as follows (all norms in a Euclidean space are equivalent):

2 -δ E := ∑ i,j ( Qij -Q ij ) 2 .
Since δ is the precision of rounding, one has | Qij -Qij | ≤ 2 -δ for all i, j in {0, . . . , d}.

As in the proof of Theorem 6. The running time O(d 13 (d + τ) 2 ) is estimated as the running time of csos2.

Positivity verification

We consider a family of trigonometric polynomials with Gaussian integer coefficients

f d = 10d + d ∑ k=1 ((1 -i)z -k + (1 + i)z k ),
for d ∈ {50, 100, 150, 200, 250}. On the unit circle C , each such f d is positive since z -k + z k ≥ -2. We provide certificates of positivity for these polynomials by computing exact SOHS decompositions though csos1, csos2 and csos3.

For csos1, we use a precision δ = 64 (bits) to isolate complex roots. As a side note, we were not able to use arbitrary-precision SDP solvers (e.g., SDPA-GMP) within csos2 and csos3, because JUMP only allows us to rely on double floating-point arithmetic at the moment. The running times (in seconds) of the three algorithms are reported in 

Design of a certified linear-phase FIR filter

This section is devoted to the design of a linear-phase Finite Impulse Response (FIR)

filter. This boils down to solving an energy minimization problem. To obtain a certified filter, we first solve a semi-definite optimization problem (corresponding to SDP (5.12) from [START_REF] Dumitrescu | Positive trigonometric polynomials and signal processing applications[END_REF]) and transform the numerical output into an exact certificate via a projection procedure similar to the one used in csos3.

An FIR filter of order d is an univariate trigonometric polynomial with real coefficients

H(z) = d ∑ k=-d h k z -k
where h := [h 0 , . . . , h d ] be the coefficient vector of H. Since we work on the unit circle, we have z = exp(iω), for ω ∈ R, and we abuse notation by writing H(ω) instead of H(z). The passband and stopband are [0, ω p ] and [ω s , π] respectively, where ω p , ω s are given. The stopband energy of the FIR filter is

E s = 1 π π ω s |h(ω)| 2 dω.
To design such a linear-phase filter, we minimize the stopband energy under modulus constraints involving two parameters γ p , γ s :

min We will reformulate the above optimization problem to an SDP. To do so, we need to recall some notations. We denote Θ k ∈ R (d+1)×(d+1) by the elementary Toeplitz matrix with ones on the k-th diagonal and zeros elsewhere, for k = 0, . . . After solving (6.23), we obtain numerical values for the coefficients of h and the entries of Q 1 , . . . , Q 7 , which are further rounded to ĥ and Q1 , . . . , Q7 . To project Q1 to a matrix Q 1 satisfying the first set of equality constraints in SDP (6. 

H∈H [z]

Exact certificates for complex polynomials

Conclusions. We have designed three algorithms, of polynomial bit complexity, to compute weighted sums of Hermitian squares decompositions for trigonometric univariate polynomials positive on the unit circle with Gaussian coefficients. Note that positivity of such a trigonometric polynomial f is equivalent to that of a polynomial

a 0 + d ∑ k=1
a k cos(kt) + b k sin(kt) for all t ∈ [0, 2π], where a k , b k are rational coefficients obtained from the coefficients f i . In turn, if we do the change of variables t = 2 arctan(x) then the trigonometric polynomial becomes a rational function whose denominator is a power of (1 + x 2 ). Thus, this boils down to proving the positivity of a real univariate polynomial and so one can apply the methods from [START_REF] Magron | Algorithms for weighted sum of squares decomposition of non-negative univariate polynomials[END_REF].

Perspectives. In the future, we plan to develop and improve our algorithms as follows:

Improving the bit complexity. The bit complexities obtained in Sections 6.2 and 6.3 are somehow artificial as they are based on the complexity of the ellipsoid method. In the practical experiments shown in Section 6.4, we relied on interior-point methods to solve the SDPs. The corresponding complexity has been recently analyzed in [START_REF] De Klerk | On the Turing model complexity of interior point methods for semidefinite programming[END_REF].

Even though in the latter article, the exponents of the bounds are not explicitly given, it would certainly be possible. Hence, the bit complexities in Sections 6.2 and 6.3 can be reduced. Moreover, it would also be possible to improve the resulting estimates by exploiting the specific structure of the Toeplitz/Gram matrices involved in our SDP program. Gluing together such results would certainly help to explain the discrepancy between our theoretical (high) complexity bounds and our practical (good) algorithmic performance for our application of filter design, as in Example 6.4.1.

Extension to the multivariate case. It is possible to extend our algorithm to the multivariate case, considering non-negativity on the unit n-circle. In this setting, the degree of the squares can be higher than the degree of the input polynomial. We plan to estimate the degree bound for the squares in our SOHS decompositions by relying on the kernel polynomial method used in [START_REF] Fang | The sum-of-squares hierarchy on the sphere and applications in quantum information theory[END_REF][START_REF] Slot | Sum-of-Squares hierarchies for polynomial optimizatpion and the Christoffel-Darboux kernel[END_REF].

Extension to optimal power flow problems. We also intend to extend our certification techniques to the sparse setting [START_REF] Wang | CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization[END_REF] to obtain guaranteed bounds for optimal power flow instances [START_REF] Babaeinejadsarookolaee | The power grid library for benchmarking AC optimal power flow algorithms[END_REF] that are complex multivariable polynomial optimization problems.

Investigating non-negativity. We leave the situation where the input polynomial vanishes on the unit circle for future investigation. The extension beyond positivity is significantly more difficult and, in particular, none of our three algorithms can be applied to this case. This is because when f cancels on the unit circle, the perturbation steps in Algorithms csos1 and csos2 do not work and a Gram matrix associated to f will not be in the interior of the positive semi-definite matrix cone and so the rounding-projection method [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF] cannot be applied.
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  3.1) to reduce the problem to the univariate case. Interestingly, Theorem 5.1.1 can be applied to Robinson's polynomial (see Example 5.1.1), as well as Scheiderer's polynomial (see Example 5.1.2) which do not have an SOS decomposition with rational coefficients.
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. 2 )

 2 Definition 3.1.3. (Algebraic variety) Let I be an ideal of R[x]. The algebraic variety associated to I is defined as

Definition 3 . 1 . 7 (Example 3 . 1 . 3 .

 317313 Radical ideal). The idealI is radical if I = √ I. Consider the ideal I = x 3 1 x 2 in R[x 1 , x 2 ]. Its radical is √ I = x 1 x 2 . Clearly, x2 1 x 2 belongs to √ I but it does not belong to I. This implies I = √ I and therefore I is not radical. Hilbert's Strong Nullstellensatz [20, Ch. 4, §2, Thm. 6]) tells us that if a polynomial g vanishes at all points of the variety V(I ) then some power of g itself must belong to √ I. This property will be used in the proof of Theorem 5.2.1 in Chapter 5. Theorem 3.1.1 (Hilbert's Strong Nullstellensatz). Let I be an ideal in R[x]. Then, I(V(I )) = √ I.

  3) and(3.4), are inverses of each other, and they define bijections between the set of radical ideals and varieties[START_REF] Cox | Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra[END_REF] Ch. 4, §2, Thm. 7].

5. 1 .

 1 1 and 5.2.1 in Chapter 5. Encoding a monomial x α by a n-tuple α in N n allows us to construct a one-to-one correspondence between the monomials and N n . Hence, if we have an ordering < on N n , then we can build an ordering < on the monomials of K[x]. Definition 3.2.1. A monomial ordering < on K[x] is a relation < on N n satisfying the three following conditions:

Example 3 . 2 . 2 .

 322 ([20, Ch. 2 §5, Example 2]) We consider the ideal I = g 1 , g 2 , where

  defined as follows. The bitsize of an integer b is denoted by ht(b) := log 2 (|b|) + 1 when b = 0 and by ht(0) := 1, where log 2 is the binary logarithm. Given a ∈ Z and b ∈ Z with b = 0 and gcd(a, b) = 1, we define ht (a/b) = max(ht(a), ht(b)). If a, b ∈ Q, we define the bitsize of a Gaussian rational number as ht(a + ib) = max(ht(a), ht(b)),

Lemma 4 . 3 . 1 .Algorithm 1 1 : 2 : 3 :

 4311123 Let a, b be polynomials in Z[t], with deg a = d ≥ m = deg b, and τ be an upper bound of ht(a) and ht(b). To compute the quotient q and the remainder r of the division of a by b, we use the Euclidean division algorithm [85, Algorithm 2.5]. This algorithm uses O mτ(dm) 2 boolean operations. Furthermore, both bitsizes of q and r are bounded from above by O (τ(dm)). We recall the Euclidean division algorithm [85, Algorithm 2.5] in Algorithm 1 to compute the quotient q and the remainder r of the division of a by b, i.e., a = qb + r with deg r < deg b. Euclidean division algorithm Input: polynomials a, b ∈ Z[t] Output: polynomials q, r ∈ Q[t] such that a = qb + r and deg r < deg b Set q := 0 and r := a while deg r ≥ deg b do Set h := lc(r)/lc(b)t deg r-deg b 4:

6 : done 7 :

 67 return q and r Proof. Assume that a, b are polynomials in Z[t] with deg a = d ≥ deg b = m and that ht(a), ht(b) are bounded from above by τ.

Proposition 5 . 2 . 3 .

 523 Assume that τ is the bitsize of f in the input of sosgradient. To compute [ψ 2 , . . . , ψ n ] in the output, Eliminate runs in O n 2 (τ + n + d)d n+1 boolean operations. Moreover, the bitsize of ψ i is O n(τ + n + d)d n+1 , for i = 2, . . . , n.
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2 3: done 4 :

 24 is positive on C of degree d and has no multiple rootsOutput: ε, a ∈ Q + , u 0 ∈ Q, two lists [u 1 , . . . , u d ] and [α 1 , . . . , α d ] in Q[i]providing an SOHS decomposition of f on C as in (6.3) 1: Set δ := 1, ε := 1 and compute p := f (x + iy) z = x + iy, z -1 = xiy 2: while hasrealrootoncircle(pε) do ε := ε Set boo := false 5: while not boo do 6:

9 : 10 : 14 :

 91014 Compute [u 0 , u 1 , . . . , u d ] := coeffs(u) if ε > 2 ∑ d k=1 |u k |u 0 then boo :return ε, α, u 0 , [u 1 , . . . , u d ], [α 1 , . . . , α d ]

Theorem 6 . 1 . 3 .

 613 Assume that f ∈ H (Z)[z] is positive on C of degree d, bitsize τ and that f has no multiple roots. On input f , csos1 computes an SOHS decomposition of f with Gaussian (or Gaussian modulus) coefficients whose the maximum bitsize is bounded from above by O(d 5 (d + τ)). Proof. Firstly, let us show that the bitsizes of u 0 , . . . , u d , α 1 , . . . , α d and α in (6.3) are bounded from above by O(d 5 (d + τ)). The proof is almost the same as in the univariate real setting [53, Theorem 23], thus we only provide the main ingredients and skip some technical details.

1 :

 1 providing an SOHS decomposition of f as in (6.15) Set δ := 1, R := 1, δ c = 1, ε := 1 and compute p := f (x + iy) 2: while hasrealrootoncircle(pε) do ε := ε

13 :

 13 0 then boo := true 10:else δ := 2δ, R := 2R, δ c := 2δ c return ε, [u 0 , u 1 , . . . , u d ], [s 0 , . . . , s d ]relies on complex SDP (Line 6) and Cholesky's decomposition (Line 7) to compute an approximate SOHS decomposition of the perturbed polynomial.

Next, we compute

  the cost of calling cholesky in Line 7. Note that Cholesky's decomposition is performed in O(n 3 sdp ) arithmetic operations over δ c -bit numbers. Because δ c = O(d 3 (d + τ)) and n sdp = d + 1, cholesky runs in boolean time O(d 6 (d + τ)). The other elementary arithmetic operations of Algorithm csos2 have a negligible cost with respect to the sdp procedure. Hence, the algorithm runs in boolean time O(d 13 (d + τ) 2 ). The bitsize of the output coefficients is upper bounded by the output bitsize of the Cholesky's decomposition of the matrix Q, that is O(δ c (d + 1) 3 ) = O(d 6 (d + τ)).

  of degree d which is positive over C . The outputs consist of a list [c 0 , . . . , c d ] ⊂ Q + and a list of polynomials [s 0 , . . . , s d ] in Q[i][z] that provide an SOHS decomposition of f , namely

Theorem 6 . 3 . 1 .Algorithm 7 Q 15 : done 16 : 21 :

 6317151621 For f ∈ H (Z)[z] positive on C of degree d and bitsize τ, there exist precisions δ, δ upper bounded by O(d 3 (d + τ)), and a radius bound R upper bounded by O(ht(d) + τ) Computing SOHS decomposition based on rounding-projection technique csos3 := proc( f )Input: f ∈ H (Z)[z] positive on C of degree d Output: [c 0 , . . . , c d ] ⊂ Q + and [s 0 , . . . , s d ] ⊂ Q[i][z]providing an SOHS decomposition of f as in (6.20) 1: Set δ := 1, R := 1, δ c = 1, δ := 1 2: Set boo := false 3: while not boo do 4: Compute ( Q, λ) := sdp( f , δ, R) for j ∈ {0, . . . , d}, k ∈ {0, . . . , j} do 13:ComputeQ j,j-k := Qj,j-k -1 d-k+1 (∑ d i=k Qi,i-kf k ) 14: Compute Q j-k,j := Q j,j-k Q = Compute [c 0 , . . . , c d ; s 0 , . . . , s d ] := ldl(Q) f = ∑ d k=0 c k s k s k 17: if c 0 , . . . , c d ∈ Q + ,s 0 , . . . , s d ∈ Q[i][z] then boo :return [c 0 , . . . , c d ], [s 0 , . . . , s d ]

Theorem 6 . 3 . 2 .

 632 2.2, at the SDP precision δ, one has Q 2 -δ I. By[67, Proposition 8], csos3 terminates and outputs such matrix Q together with an SOHSdecomposition of f if 2 -δ + 2 -δ E ≤ 2 -N . (6.21) By repeating the argument in the proof of [52, Theorem 13], we can conclude that ht(N) = O(d 3 (d + τ)) ensures the condition (6.21). Similar to the argument in the proof of Lemma 6.2.1, the sdp function is successful if R is O(ht(d) + τ). As emphasized in [52, § 3.4], it turns out that the two algorithms csos2 and csos3 have the same bit complexity. We omit any technicalities as the proof is almost the same as [52, Theorem 12]. Let f ∈ H (Z)[z] be positive on C of degree d and coefficients of maximum bitsize τ. On input f , csos3 outputs an SOHS decomposition of f with Gaussian coefficients using at most O(d 13 (d + τ) 2 ) bit operations. Additionally, the maximal bitsize of the output coefficients is bounded from above by O(d 6 (d + τ)). Proof. For f ∈ H (Z)[z] positive over C with degree d and maximal bitsize τ, there exist δ, δ with bitsizes upper bounded by O(d 3 (d + τ)), and R with bitsize upper bounded by O(ht(d) + τ) such that Algorithm csos3 outputs an SOHS decomposition of f . The bitsize of the output coefficients is upper bounded by the output bitsize of the LDL T decomposition of the matrix Q, that is O( δ(d + 1) 3 ) = O(d 6 (d + τ)).

  . |H(ω) -1| ≤ γ p , ∀ω ∈ [0, ω p ], |H(ω)| ≤ γ s , ∀ω ∈ [ω s , π] . (6.22) 

  , d. Denote by C = Toep(c 0 , . . . , c d ) the Toeplitz matrix with the first row (c 0 , . . . , c d ), wherec k = 1 -ω s π , if k = 0, -sin kω s kπ , if k > 0. J dbeing the counter identity matrix of size d. The matrix Φ k ∈ R (d-1)×(d-

2 )Φ k - 1 4 (Φ k- 2 +Example 6 . 4 . 1 .

 242641 [START_REF] Dunning | JuMP: A modeling language for mathematical optimization[END_REF], we apply the formula in Line 13 of Algorithm csos3 after replacing f k by p k := (1 + γ p )1 k=0 -ĥk . Similarly, we obtain the two matrices Q 2 and Q 3 := Q3 satisfying the second set of equality constraints in SDP (6.23), after substitution by ĥk -(1γ p )1 k=0tr a + b 2 (Φ k-1 + Φ k+1 ) -(ab + 1 Φ k+2 ) Q 3 ,Eventually, similar projection steps provide the remaining matrices Q 4 , . . . , Q 7 so that all equality constraints in (6.23) hold exactly. As in[START_REF] Dumitrescu | Positive trigonometric polynomials and signal processing applications[END_REF] Example 5.1], we design a filter with parameters d = 25,ω p = π/5, ω s = π/4, γ p = 1/10 (corresponding to a passband ripple of 1.74 dB) and γ s = 0.0158 (a stopband attenuation of 36 dB). We first obtain a numerical lower bound of the stopband energy E s = 4.461501 × 10 -5 . However, this bound happens to be inexact as the Gram matrices obtained after the projection step are not positive semidefinite anymore. To overcome this certification issue, we replace the last constraint in (6.23) by Q 7 -10 -9 I 24 0. Doing so, we can successfully project the approximate Gram matrices into exact ones with positive eigenvalues, and obtain a certified exact lower bound of E s = 4.461503 × 10 -5 in 0.74 seconds. CHAPTER 7. CONCLUSIONS AND PERSPECTIVES gradient ideal. In Example 5.1.3 we proposed a certificate of non-negativity for the Motzkin polynomial whose gradient ideal does not satisfy the condition. Note that the condition is generic. Hence, if we perturb the original polynomial with a tiny change then the condition holds. Along this line, we shall study coercive polynomials which are dense in Q[x] w.r.t the 1 -norm [37].

  .8) Cette terminologie des carrés hermitiens provient de la discussion ci-dessus sous la forme s j (ζ) = s j ( ζ) pour tout ζ ∈ C . Clairement, si f est SOHS comme dans (1.8) alors, à cause de s j (z)s j (z) = |s j (z)| 2 sur C , f est non-négatif sur C . Selon le théorème de factorisation spectrale de Riesz-Fejér (voir, par exemple, [22, Theorem 1.1]), tout polyn ôme trigonométrique univarié f qui est non négatif sur le cercle

unité C peut être écrit comme un carré hermitien. De plus, d'après sa preuve

[22, pp. 3-5]

, on a

2 Travaux connexes pour les décompositions SOS exactes 1.2.1 Polyn ômes univariés

  Il est bien connu que tout polyn ôme univarié non négatif f ∈ R[x 1 ] avec des coefficients réels peut être décomposée comme une somme d'au plus deux carrés de polyn ômes.De même, tout polyn ôme non négatif univarié non négatif f ∈ Q[x 1 ] est un somme pondérée de carrés à coefficients rationnels[START_REF] Landau | Über die darstellung definiter funktionen durch quadrate[END_REF][START_REF] Pourchet | Sur la représentation en somme de carrés des polyn ômes à une indéterminée sur un corps de nombres algébriques[END_REF].Dans la littérature, nous connaissons deux algorithmes qui calculent les décompositions exactes SOS exactes d'un polyn ôme non négatif f ∈ Q[x 1 ] à coefficients rationnels. Le premier[START_REF] Schweighofer | Algorithmische beweise f ür nichtnegativ-und positivstellensätze[END_REF] a été soulevé par Schweighofer en 1999 et s'appuie sur l'isolement des

) . . . , (α d , 1/ ād ) sont d paires de racines de f , et a est un scalaire positif. Ceci nous permet de de concevoir un algorithme pour calculer les certificats de nonnégativité de f dans lequel nous devons manipuler exactement toutes les 2d racines complexes de f . Normalement, cet algorithme est appliqué avec des calculs approximatifs, ce qui conduit à des certificats approcimatifs de non-négativité sur C . Nous cherchons à calculer des certificats de non-négativité exacts de non-négativité des polyn ômes trigonométriques. En particulier, lorsque les coefficients sont des entiers Gaussiens, c'est-à-dire que les parties réelles et imaginaires sont des entiers, les décompositions SOHS exactes de f peuvent être calculées par des méthodes numériques-symboliques hybrides. Problem 2. Le deuxième sujet de cette thèse porte sur les Certificats exacts de nonnégativité pour les polynômes trigonométriques univariés basés sur les décompositions SOHS avec coefficients gaussiens. Nous sommes également intéressés par les algorithmes de certification, leur complexité en bits et leurs implémentations. Notre motivation provient de problèmes de conception dans le traitement du signal en temps discret. En particulier, pour la conception de filtres à réponse impulsionnelle finie (FIR) dans le traitement du signal, la minimisation de l'énergie de la bande d'arrêt est une question cruciale [22, Chapitre 5]. Calculer des décompositions SOHS exactes pour des polyn ômes trigonométriques univariés polyn ômes univariés dans ce contexte semble donc être un problème de calcul naturel.

1.2. TRAVAUX CONNEXES POUR LES D ÉCOMPOSITIONS SOS EXACTES 1.racines réelles, l'approximation quadratique des polyn ômes positifs et la décomposition sans carré. Le second a été proposée par Chevillard, Harrison, Joldes, et Lauter [18] en 2011 et est basée sur l'isolation des racines complexes et la décomposition sans carré. Leurs complexités binaires et leurs benchmarks sont donnés dans [53]. Récemment, Krick, Mourrain, et Szanto dans [41] ont proposé une condition nécessaire et suffisante pour la non-négativité d'un polyn ôme f ∈ Q[x 1 ] sur les racines réelles d'un autre polyn ôme g ∈ Q[x 1 ]. En particulier, sous une condition légère, f est nonnégatif sur toutes les racines réelles de g si et seulement si f est un SOS modulo g. Dans leur article, ils fournissent également un algorithme pour calculer une décomposition SOS.

3 Contributions 1.3.1 Décompositions SOS exactes de polyn ômes réels multivariés

  

les s i et les q i se situent dans R[x] et les c i sont positifs dans R. Un résultat similaire en relâchant légèrement les hypothèses ci-dessus est donné dans

[START_REF] Nie | Minimizing polynomials via sum of squares over the gradient ideal[END_REF]

. Notez que lorsque f a des coefficents dans Q, il n'y a pas de garantie donnée qu'une décomposition SOS décomposée de celui-ci dans Q[x]/I grad ( f ) aura également des coefficients rationnels.

En appliquant le résultat de Parrilo dans

[START_REF] Parrilo | An explicit construction of distinguished representations of polynomials nonnegative over finite sets[END_REF]

, on peut conclure qu'un polyn ôme f ∈ R[x] est non négatif sur la variété réelle d'un idéal I si et seulement si f est SOS sur l'anneau quotient R[x]/I. Nie, Demmel et Sturmfels dans

[START_REF] Nie | Minimizing polynomials via sum of squares over the gradient ideal[END_REF] 

ont montré qu'un polyn ôme f ∈ R[x] non négatif sur sa variété réelle gradiente est SOS modulo l'idéal gradient de f à condition que cet idéal soit radical ou que f soit strictement positif sur la variété réelle de gradient

[START_REF] Nie | Minimizing polynomials via sum of squares over the gradient ideal[END_REF]

.

1.

Nous considérons le problème

du calcul d'une décomposition SOS exacte d'un polyn ôme multivarié réel à coefficients rationnels, f ∈ Q[x]. Nous résumons nos contributions comme suit : Existence de certificats de non-négativité avec des coefficients rationnels. Nous fournissons une condition nécessaire et suffisante pour la non-négativité de f ∈ Q[x] sous une condition de généricité. • Supposons que l'idéal de gradient associé à f est radical et de dimension nulle et que f atteint son infimum sur R n . Nous prouvons dans le théorème 5.1.1 que f est non-négatif sur R n si et seulement si f est un SOS de polynômes à coefficients rationnels sur l'anneau quotient Q[x]/I grad ( f ). Nous nous appuyons sur une procédure d'élimination algébrique basée sur le Lemme de Forme (voir Lemma 3.3.1) pour réduire le problème au cas univarié. Il est intéressant de noter que le théorème 5.1.1 peut être appliqué au polyn ôme de Robinson (voir Exemple 5.1.1), ainsi qu'au polyn ôme de Scheiderer (voir Exemple 5.1.2) qui n'ont pas de décomposition SOS à coefficients rationnels. Algorithmes et complexités des bits. Le problème suivant auquel nous nous attaquons est de concevoir des algorithmes qui calculent de tels certificats de non-négativité ainsi que d'estimer leur complexité binaire. Pour mesurer la taille du bit d'un polyn ôme à coefficients rationnels, nous utiliserons son hauteur, défini comme dans la section 4.1. • De la preuve du théorème 5.1.1, nous dérivons l'algorithme sosgradientshape (Algorithme 3) pour calculer une décomposition SOS de polyn ômes modulo l'idéal gradient de f . Nous prouvons que, étant donné en entrée un polyn ôme de n-variétés f ∈ Q[x] de degré d avec un maximum de maximale de ses coefficients τ, cet algorithme utilise O((τ + n + d)

2 d 6n + (τ + n + d)d 6n+4 ) boolean opérations booléennes. Cette estimation est meilleure que l'estimation de la complexité donnée dans [52, Theorem 12], o ù le nombre rapporté est O(τ 2 (4d + 2) 15n+6

  Sur l'entrée f , o ù f n'a pas de racines multiples, csos1 calcule une décomposition SOHS de f avec des coefficients (modulo de) gaussiens en utilisant au maximum d 6 (d + τ) opérations sur les bits. De plus, la taille maximale des bits des coefficients de sortie est bornée dans O(d 5 (d + τ)).

	Les deux autres algorithmes sont appelés csos2 et csos3. (Algorithmes 6 et 7, respec-
	tivement). Nous concevons deux algorithmes csos2 et csos3 qui sont basés sur la
	programmation semi-définie complexe. Dans l'algorithme csos2, nous calculons une
	décomposition SOHS approximative pour la perturbation à l'aide de la résolution SDP
	complexe. L'algorithme csos3 est une adaptation de l'algorithme d'arrondissement-
	projection d'arrondi-projection soulevé par Peyrl et Parrilo [67]. Les complexités binai-
	res de ces deux algorithmes sont similaires car nous utilisons la résolution SDP complexe
	pour les deux :
	• Sur l'entrée f , csos2 et csos3 calculent les décompositions SOHS de f avec (modulus
	de) coefficients gaussiens en utilisant au maximum O(d 13 (d + τ) 2 ) opérations sur bits.
	De plus, la taille binaire maximale des coefficients de sortie est limitée par dessus par
	O(d 6 (τ + d)).

Nous concevons trois algorithmes pour calculer les décompositions SOHS exactes de polyn ômes dans H (Z)[z] qui sont positifs sur le cercle unité C . Ces algorithmes sont basés sur des techniques de compensation de perturbation ou de projection d'arrondi. De plus, nous analysons leur complexité binaire et la taille de leur sortie.

Le premier algorithme est appelé csos1 (Algorithme 5). L'algorithme csos1 utilise une méthode de perturbation-compensation dans laquelle l'étape numérique calcule une décomposition approximative de SOHS approximative pour une perturbation bien choisie du polyn ôme d'entrée avec isolation des racines complexes isolement. Nous obtenons la complexité binaire de l'algorithme comme suit :

•

Contents 2.1 Research topics and motivations . . . . . . . . . . . . . . . . . . . . . . 16

  

	2.1.1 Exact certificates for real multivariate polynomials . . . . . . . . 16
	2.1.2 Exact certificates for complex univariate polynomials . . . . . . 20
	2

.2 Related works for exact SOS decompositions . . . . . . . . . . . . . . 21

  

	2.2.1 Univariate polynomials . . . . . . . . . . . . . . . . . . . . . . . 21
	2.2.2 Multivariate polynomials . . . . . . . . . . . . . . . . . . . . . . 22
	2

.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

  

	2.3.1 Exact SOS decompositions of real multivariate polynomials . . 24
	2.3.2 Exact SOHS decompositions of complex univariate polynomials 25

2.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

  

  It is worth noting here that if I is zero-dimensional then we can get a bound on the expected cardinality of V(I ), denoted by #V(I ), from Bezout's theorem [20, Ch.8, §7, Thm. 10]. In particular, if the gradient ideal I grad ( f ) is zero-dimensional, then #V(I grad ( f )) is bounded from above by (d -1) n , where d is the degree of f .

Definition 3.1.4 (Gradient variety). Let f be a polynomial in K[x]. The gradient variety of f is respectively the algebraic variety associated to I grad ( f ). We denote V grad ( f ) by the gradient variety associated to f . Example 3.1.2. An easy computation shows that the gradient variety of the polynomial f E in Example 3.1.1 is the following set that has only real points

V grad ( f E ) = {(0, 0), (1, 1), (1, -1)} . Definition 3.1.5 (Zero-dimensional ideal). The ideal I is zero-dimensional if V(I ) is finite and non-empty.

The dimension of the empty set is conventionally -1.

4 Bit complexity results for polynomial system solving Contents 4.1 Bitsize of polynomials with rational coefficients

  Then, there exist polynomials w, v 2 , . . . ,v n in Q[x 1 ] satisfying deg v i < deg w, for i = 2, . . . , n, such that I = w, x 2v 2 , . . . , x nv n .

Proof. Because w is square-free and w is the derivative of w, one sees that the gcd of w and w is 1. From the extended Euclidean algorithm [85, Algorithm 3.14], there exist two CHAPTER . . . . . . . . . . .
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  1.1 and 5.2.1 in Chapter 5.It is well-known that f ∈ R[t] is non-negative over R if and only if f is SOS. This property holds also for polynomials with coefficients in a subfield K of R. More precisely, we have the following theorem:

Theorem 4.2.1

([43, 70]

). Let K be a subfield of R and f ∈ K[t]. Then, f is non-negative over R if and only if f admits a weighted SOS decomposition of polynomials in K[t], i.e., there exists a positive integer s, non-negative numbers c 1 , . . . , c s ∈ K and polynomials g 1 , . . . , g s ∈ K[t], such that f = ∑ s j=1 c j g 2 j . Example 4.2.1. Consider the univariate polynomial h(t) = 2t 4t 2 + 10 in Q[t]. One has the following two weighted rational SOS decompositions of h as follows:

  Let h ∈ Z[t] be a non-negative univariate polynomial of degree d and bitsize τ. Then, on input h, univsos2 runs in O d 3 + d 2 τ boolean operations and the maximum bitsize of the coefficients involved in the SOS decomposition is bounded from above by O d 3 + d 2 τ .

	O	d 2	3d 2	τ
	boolean operations and the maximum bitsize of the coefficients involved in the SOS decomposition
	is bounded from above by			
	O	d 2	3d 2	τ .
	Theorem 4.2.3 ([53], Theorems 23-24).			

Theorem 4.2.2

([53]

,

. Let h ∈ Z[t] be a non-negative univariate polynomial of degree d and bitsize τ. Then, on input h, univsos1 runs in

  Assume that g ∈ Q[x 1 ][x 2 , . . . , x n ] has degree d in x 2 , . . . , x n and bitsize τ g , and that the polynomials a 0 , a 2 , . . . , a n ∈ Q[x 1 ] have bitsizes at most τ a . Then, Eliminate runs in O nτ g + n 2 dτ a boolean operations and the bitsizes of the outputs φ 2 , . . . , φ n are in O τ g + ndτ a .

Lemma 4.3.3.

  -1) n (log d + τ + n + (d -1)) = O (τ + n + d)(d -1) n , Let I be a zero-dimensional and radical ideal, and < be a lexicographic monomial order in Q[x]. To compute the reduced Gröbner basis [w, x 2v 2 , . . . , x nv n ] from the zerodimensional rational parametrization Q = ((w, κ 1 , . . . , κ n ), x 1 ) as in the proof of Lemma 3.3.2, we use For every i = 2, . . . , n, we estimate the bitsize of the polynomial bκ i . Recall from Corollary 4.4.1 that deg κ i ≤ (d -1) n , hence from (4.9) one has deg bκ i ≤ 2(d -1)

	By applying Baur-Strassen Theorem [10, + n(d -1) + n 2 ) . After reducing this formula, we get (4.4). Furthermore, the polynomials in the output Theorem 1], the size L is O(d( n+d d )). Recall that ht ∂ f operations of the algorithm is O n 2 d 2n (log d + τ + (d -1))(d n + d d have degrees at most (d -1) n and bitsize O (d as claimed. Lemma 4.4.2. (4.7) boolean operations. The bitsize of b is bounded by O (τ + n + d)(d -1) 2n . (4.8) Furthermore, one sees that the degree of b satisfies ∂x one of the outputs given as in items a)-c) of Corollary 4.4.1. The number of boolean deg b ≤ deg w -deg gcd(w, w ) = deg w ≤ (d -1) n . (4.9)

i ≤ log d + ht( f ) = log d + τ,

for i = 1, . . . , n. By applying

[START_REF] El Din | Bit complexity for multi-homogeneous polynomial system solving-application to polynomial minimization[END_REF] Corollary 2] 

for the system 4.5 and a single group of variables, there exists an algorithm that takes the system as input and that produces

O (τ + n + d)

2 d 6n (4.6) boolean operations. Moreover, the polynomials w, v 2 , . . . , v n have degrees at most (d -1) n and their maximum bitsizes are bounded from above by O((τ + n + d)d 3n ). Proof. By Corollary 4.4.1, the degree of w is at most (d -1) n and so deg w is at most (d -1) n -1. Assume that β is the positive minimum common denominator of all nonzero coefficients of w. Then, βw and βw belong to Z[t]. Clearly, deg(βw ) = deg(βw) -1, deg(βw) ≤ (d -1) n , and the bitsizes of βw and βw are bounded from above by O ((τ + n + d)(d -1) n ). We can apply [85, Theorem 6.52] to βw and βw . The extended Euclidean algorithm computes the Bézout coefficient of βw , denoted by b, using O(τ + n + d) 2 (d -1) 6n ) n . From (4.8), we obtain ht(bκ i ) ≤ ht(b)

  1) n . From Lemma 4.3.1, the Euclidean division algorithm computes v i using at most

	O((τ + n + d)(d -1) 5n )	(4.10)

boolean operations. Thus, the bitsize of

v i is O((τ + n + d)(d -1) 3n ), for i = 2, . . . , n.

Therefore, computing [w, v 2 , . . . , v n ] from the zero-dimensional rational parametrization

  The following lemma is an immediate consequence of[START_REF] Mahler | An inequality for the discriminant of a polynomial[END_REF] Theorem 2].

Lemma 4.6.1. Let f ∈ Z[i][z] of degree d and τ be the maximum bitsize of its coefficients.

1 :

 1 Compute the reduced Gr öbner basisG = [w, x 2v 2 , . . . , x nv n ] of I grad ( f ), with the lexicographical ordering x 1 < x 2 < • • • < x n ,and δ = deg w 2: Compute the quotients [φ 2 , . . . , φ n ] and remainder h of the division of f by G by performing Eliminate( f , 1, v 2 , . . . , v n )

3: Compute a rational weighted SOS decomposition

h = c 1 q 2 1 + • • • + c s q 2 s 4: return δ, [q 1 , . . . , q s ], [

φ 2 , . . . , φ n ], [w, v 2 , . . . , v n ], and [c 1 , . . . , c s ] for some j > 0 and y i = x i for i = 2, ..., n. We get a new non-negative polynomial in n new variables with rational coefficients g(y) whose gradient ideal satisfies the Shape Lemma assumption. Now, we can apply sosgradientshape for g(y) and obtain as output the number δ, two lists [ q1 , . . . , qs ], [ w, v2 , . . . , vn ] of polynomials in Q[y 1 ], a list [ φ1 , . . . , φn ] of polynomials in Q[y], and a list [c 1 , . . . , c s ]

  To compute an SOS decomposition of h, Algorithm univsos1 and Algorithm univsos2 run inO (d n+1 /2) 3d n+1 /2 (τ + n + d)d 3n+1(5.11)

	and	
	O (τ + n + d)d 6n+4	(5.12)
	boolean operations, respectively.	

Proof. Let τ v = max i {ht(v i )}. Lemma 3.3.2 tells us that the bitsize of τ v is bounded from above by O (τ + n + d)d 3n , and that the polynomials w, v 2 , . . . , v n have degree at most

  Proposition 5.1.4. Let v 2 , . . . , v n be as in Proposition 5.1.3. To compute the list φ 2 , . . . , φ n in the output of sosgradientshape, Eliminate runs in O(n 2 (τ + n + d)d 3n+1 ) boolean operations and the bitsizes of φ 2 , . . . , φ n are O n(τ + n + d)d 3n+1 . Proof. From Lemma 4.4.2, the bitsize of polynomial v i is at most O((τ + n + d)d 3n ). We divide f by [x 2v 2 , . . . , x nv n ] while performing Eliminate( f , 1, v 2 , . . . , v n ) described as in Algorithm 2 to obtain quotients [φ 2 , . . . , φ n ] and remainder h = h(x 1 , v 2 , . . . , v n ). Applying Lemma 4.3.3 for this division, we conclude that Eliminate runs in O(n 2 (τ + n + d)d 3n+1 ) boolean operations, the estimate for the bitsize of φ i is O n(τ + n + d)d 3n+1 as claimed.

  The degree of the remainder h (as defined in(5.20)) in Line 2 of sosgradient is at most d(d -1) n + d and its bitsize is O (τ + n + d)d n+1 . To compute an SOS decomposition of h, by applying Theorems 4.2.2 and 4.2.3, Algorithms univsos1 and univsos2 use Assume that f ∈ Q[x] satisfies the conditions of Theorem 5.2.4. Then, the maximum bitsizes of the coefficients involved in the SOS decomposition of h, obtained by using Algorithm univsos1 and Algorithm univsos1, are bounded from above respectively by O (d n+1 /2) 3d n+1 /2 (τ + n + d)d n+1 and O (τ + n + d)d 3n+3 . Proof. From the proof of Theorem 5.2.4, the degree of h is at most d(d -1) n and the bitsize of h is O (τ + n + d)d n+1 . The conclusions follow from Theorems 4.2.2 and 4.2.3 and the second assertion in Proposition 5.2.3. In general, sosgradient is faster than sosgradientshape at certifying non-negativity of polynomials with rational coefficients. When relying on univsos2, by comparing the estimates in (5.15) and (5.26), we conclude that the number of boolean operations to run sosgradientshape is about d 2n times larger than that of sosgradient.

	Remark 5.2.4.	
	O (d n+1 /2) 3d n+1 /2 (τ + n + d)d n+1	(5.27)
	and	
	O (τ + n + d)d 4n+4	(5.28)
	boolean operations, respectively. The estimates (5.25) and (5.26) are obtained from

((τ + n + d)d 4n+4 ) (5.26) boolean operations if in Line 3 we use Algorithm univsos1 or Algorithm univsos2, respectively. Proof. From Corollary 4.4.1, w, κ 1 , . . . , κ n in the zero-dimensional parametrization of V grad ( f ) have degree at most (d -1) n and bitsize O ((τ + n + d)(d -1) n ).

Corollary 4.4.1, Proposition 5.2.3, and the estimates (5.27) and (5.28) with the same line of reasoning as in the proof of Theorem 5.1.5.

Theorem 5.2.5.

Table 5 .

 5 trization (using the procedure RationalUnivariateRepresentation in MAPLE) in sosgradient. The runtime of this step is denoted by t h . The degree and the bitsize of h are denoted by d h and τ h , respectively. The second step outputs an SOS decomposition of the non-negative univariate polynomial h by using either Algorithm univsos1 in sosgradientshape or Algorithm univsos2 in sosgradient. Here, t sos is the runtime of the second step and τ sos is the maximum bitsize of the output polynomials. 1: Comparison of performance between sosgradientshape and sosgradient In Table5.1, we consider random polynomials of fixed degree d = 4 with number of variables n between 2 and 5 generated as follows:

					sosgradientshape				sosgradient	
					bitsize 10 6 -bits	time (s)		bitsize 10 4 -bits	time (s)
	n	τ	δ	d h	τ h	τ sos	t h	t sos	d h	τ h	τ sos	t h	t sos
	2	74	9	32	0.3	8.1	0.1	2.6	36	0.5	1.6	0.1	1.8
	3 149 27 104 2.4	153	1.1 781 108 6.6	13.4	0.2 13.3
	4 312 81 320 117	-	399	-	324 88	169	3.9	505
	5 590 243 968	-		-		972 940	1306	169 4965

Table 5 .

 5 1) nd (resp. d(d -1) n ) in sosgradientshape (resp. in sosgradient). For such cases, sosgradient cannot compute decompositions for n ≥ 4 (corresponding to deg h ≥ 324) within 12 hours. 2: Comparison of performance between sosgradientshape and multivsosNext, we compare the performance of sosgradient (using univsos2) and Algorithm multivsos[START_REF] Magron | RealCertify: a Maple package for certifying nonnegativity[END_REF]. Recall that multivsos is designed to compute SOS decompositions of polynomials lying in the interior of the SOS cone. We report our experimental results in Table5.2, obtained with seven classes of 50 randomly generated polynomials. The random polynomials corresponding to the four first rows, with d = 4 and n = 2, . . . , 5, are obtained in a similar way:a 4 + b 2 1 + b 2 2 + c + 10 6, where a (resp., b i , c) is a dense linear (resp., quadratic, cubic) polynomial in n variables. The coefficients of a (resp., b i , c) are chosen randomly in {±1, ±2} (resp., {-3, . . . , 3}, {-1, . . . , 1}) with respect to the uniform distribution. The polynomials from the three last rows, with d = 6 and n = 2, 3, 4, are constructed in a similar way: a 6 + b 2 + c + 10 6

		multivsos		sosgradient
	d, n success	τ	t	τ	t
	4, 2	100%	1.3 0.16	2	2
	4, 3	94%	3.7 0.26 18	22
	4, 4	38%	8.9 0.18 78	153
	4, 5	8%	12.5 0.32 234	630
	6, 2	82%	3.5 0.24 45	142
	6, 3	0%			160	500
	6, 4	0%			744	4662

  Algorithm csos1 takes as input a polynomial f ∈ H (Z)[z] of degree d which is positive on C and that f has no multiple roots. It outputs two positive rational numbers ε and α, a rational number u 0 , and two lists of Gaussian numbers [u 1 , . . . , u d ] and [α 1 , . . . , α d ] such that

Description.

  Lemma 3.3] for e i 1 , . . . , e i d+j , we get (1 + e i 1 )• • • (1 + e i d+j ) ≤ 1 + θ d+j with

						) .	(6.12)
	Apply [33, |θ d+j | ≤	(d + j)e 1 -(d + j)e	≤	me 1 -me	.
	Since (6.8), we have				
	(m + 1)e -	me 1 -me	=	e(1 -m(m + 1)e) 1 -me	≥ 0.
	This yields me 1-me ≤ (m + 1)e. So, we can conclude that
	1				

  Finally, the maximal bitsize of the u k 's and α is bounded from above by O(d 5 (d + τ)), as claimed. Assume that f ∈ H (Z)[z] be positive on C of degree d and bitsize τ and that f has no multiple roots. On input f , csos1 computes an SOHS decomposition of f using at most O d 6 (d + τ) bit operations.

	.14)
	where ζ j ∈ {α 1 , . . . , α d , 1 ᾱ1 , . . . , 1 ᾱd }. Since ht(α i ) = O(d 4 (d + τ)), from (6.14) we have
	the following estimates
	ht(g d ) ≤ d ht(α i ) + log 2 ≤ d ht(α Theorem 6.1.4. 2d d

i ) + d log 2 (d + 1) = O(d 5 (d + τ)).

1 Description and correctness Description.

  The input of Algorithm csos2 includes a polynomial f ∈ H (Z)[z] of degree d which is positive on C . The outputs are ε ∈ Q + , a list of Gaussian numbers [u 0 , u 1 , . . . , u d ], and a list of polynomials [s 1 , . . . , s

Given f ∈ H [z] of degree d, recall that a Hermitian matrix Q ∈ C (d+1)×(d+1) is a Gram matrix associated with f if f = v d Q v d , where v d := (1, z, . . . , z d ) T

contains the canonical basis for polynomials of degree d in z. By [22, Theorem 2.5], f is positive on C if and only if there exists a positive definite Gram matrix associated to f .

6.2.d ] in Q[i][z]

providing an SOHS decomposition of f as follows f

  Let f ∈ H (Z)[z] be positive on C of degree d and bitsize τ. Assume that Q is a positive definite Gram matrix associated to f . Then, there exist ε

				Q =	76207117 82595451 -84775740 90917777 i 1 -i 42387870 1 -i 90917777	,
	and	U =	1 42387870 90917777 -42387870 90917777 i 0 1	, D =	76207117 82595451 0	0 42387870 90917777	.
	We have u 0 = 0, u 1 =	-1781161 35367472262109859495610 , s 0 = 1, and s 1 = 42387870 90917777 -42387870 90917777 i + 1 z .
	Clearly, ε = 1 > 2 ×	1781161 35367472262109859495610 , so the condition in Line 9 is satisfied. Then, f
	has an exact SOHS decomposition as follows:	
	f = 1 -2 ×	1781161 35367472262109859495610 + 76207117 82595451 × 1 × 1
			+ 90917777 42387870 × 42387870 90917777 -42387870 90917777 i + 1 z × 42387870 90917777 + 42387870 90917777 i + z .
	The lemma below prepares the correctness and bit complexity analysis of csos2.
	Lemma 6.2.1.						

6.2.1. Consider the polynomial

f = 5 + (1 + i)z -1 + (1i)z that is positive on C .

We provide an SOHS decomposition of f by using csos2. Similarly, as in Example 6.1.1, with ε = 1, we can check that pε is positive on C . With precision δ = 2

64 

, we compute the complex approximation matrix Q. Here, we use the UD decomposition of Q. We have Q = UDU , where

  .17) Proof. By Lemma 6.1.1, there is a positive integer N and ε

  To investigate the computational cost of the call to sdp at Line 6, we rely on the bit complexity analysis of the ellipsoid method[START_REF] Porkolab | On the complexity of semidefinite programs[END_REF]. Denote n sdp = d + 1 by the size of Q and m sdp = 2d + 1 by the number of affine constraints of the SDP (6.16). (2τ n sdp R 2 δ )) = O(d 7 (d + τ)), O(n 2 sdp (m sdp + n sdp )) = O(d 3 ),Therefore, to compute the approximate Gram matrix Q, the ellipsoid algorithm runs in boolean time O(d 13 (d + τ) 2 ).

	According to
	Theorem 4.5.2, SDP (6.16) is solved in
	O(n 4 sdp log 2 (2 τ n sdp R 2 δ ))
	iterations of the ellipsoid method, where each iteration requires
	O(n 2 sdp (m sdp + n sdp ))
	arithmetic operations over log 2 (2 τ n sdp R 2 δ )-bit numbers. We obtain the following esti-
	mates:
	O(n 4 sdp log 2

Theorem 6.2.3. Let f ∈ H (Z)[z] be positive on C of degree d and coefficients of maximum bitsize τ. On input f , csos2 computes an SOHS decomposition of f with (modulus of)

Gaussian coefficients using at most O(d 13 (d + τ) 2 ) bit operations. In addition, the maximal bitsize of the output coefficients is bounded from above by O(d 6 (τ + d)).

Proof. Firstly, we prove that Algorithm csos2 runs in O(d

13 

(d + τ) 2 ) boolean operations. Assume that ε, δ, R and δ c are given as above so that, before terminating, csos2 performs a single iteration in each while loop. From Lemma 6.2.1, the bitsize of R is O(ht(d) + τ) and the bitsize of each ε, δ, δ c is upper bounded by O(d 3 (d + τ)). and O(log 2 (2 τ n sdp R 2 δ )) = O(d 3 (d + τ)).

Table 6 .

 6 1. As expected from the theoretical bit complexity results from Theorem 6.1.3 and Theorem 6.2.3, Algorithm csos1 performs better than csos2 and csos3. Moreover, csos2 is faster than csos3 because of the fact that the latter algorithm requires the computation of an exact Cholesky's factorization. Even though csos1 happens to be the best choice to verify the positivity of polynomials with known coefficients, the use of an SDP solver is mandatory to optimize over positive polynomials with unknown coefficients, as demonstrated in the next subsection.

			csos1			csos2	csos3
	d	t ε	t u total t ε	t u	total	total
	50 0.2 0.3	0.6	0.2	6.6	6.8	7.7
	100 1.6 2.9	4.5	1.6	128	130	184
	150 5.2 13	19	5.2	830	838	1460
	200 24 26	51	24	3460	3485	7214
	250 64 55	120	64 10553 10622 24852

Table 6 .

 6 1: Performance of Algorithms csos1, csos2, and csos3

  1) is defined as in[START_REF] Dumitrescu | Positive trigonometric polynomials and signal processing applications[END_REF] Formula 2.95, p.50], they are zero matrices whenever k is out of range.As shown in[22, § 5.1.1], the optimization problem (6.22) can be reformulated as the SDP minh, Q 1 ,..., Q 7 h T Ch (1 + γ p )1 k=0h k = L k (Q1) , h k -(1γ p )1 k=0 = L k,0,ω p (Q 2 , Q 3 ) , s.t. γ s 1 k=0h k = L k,ω s ,π (Q 4 , Q 5 ) , γ s 1 k=0 + h k = L k,0,ω p (Q 6 , Q 7 ) , k = 0, . . . , d , Q 1 0, . . . , Q 7 0,(6.23)whereQ 1 , Q 2 , Q 4 , and Q 6 are real (d + 1) × (d + 1)-matrices, Q 3 , Q 5 and Q 7 are real (d -1) × (d -1)-matrices, L k (A) = tr(Θ k A),andL k,α,β (A, B) = tr(Θ k A) + tr a + b 2 (Φ k-1 + Φ k+1 ) -(ab + 1 2 )Φ k -1 4 (Φ k-2 + Φ k+2 ) B ,with a = cos α, b = cos β. By contrast with the unconstrained case (Algorithm csos3), this program involves 7 real Gram matrix variables and d + 1 real variables h 0 , . . . , h d , which are the coefficients of the polynomial corresponding to the filter.

PART I PRELIMINARIES

gradient does not vanish. This is illustrated by the example

whose gradient ideal is generated by x, y. Hence, f is 1 2 modulo its gradient ideal while it can have negative values (e.g. along the sequence of points 1 k , k for k ≥ 1). Hence, condition a) in Theorem 5.1.1 is used only to prove the reverse conclusion. Therefore, even without this condition, the following assertion still holds: Assume that I grad ( f ) is zero-dimensional and radical. If f is non-negative over R n , then f is SOS modulo I grad ( f ).

Theorem 5.1.1 provides certificates of non-negativity for polynomials in Q[x] which satisfy its assumptions and which are not SOS of polynomials with real (or rational) coefficients. We illustrate this with two examples.

Example 5.1.1. We consider the Robinson polynomial [START_REF] Robinson | Some definite polynomials which are not sums of squares of real polynomials. Selected questions of algebra and logic (collection dedicated to the memory of A. I. Malcev)[END_REF],

that is non-negative but cannot be represented as an SOS of polynomials. By substituting the third variable x 3 by 1 in p R , we get the following non-negative polynomial:

Because p R is the homogenization of f R , f R cannot be represented as an SOS of polynomials [START_REF] Marshall | Positive polynomials and sums of squares[END_REF]Proposition 1.2.4]. The gradient ideal I grad ( f R ) is zero-dimensional and radical. Thus, Theorem 5.1.1 tells us that f R is an SOS of polynomials modulo I grad ( f R ).

Example 5.1.2. We consider the Scheiderer polynomial given in (2.4) that can be decomposed as an SOS of polynomials with algebraic coefficients but cannot be decomposed as an SOS of polynomials with rational coefficients. By replacing the third variable x 3 by -1, we obtain the non-negative polynomial

Note that the conclusion in [58, Proposition 1.2.4] holds for polynomials with rational

Hence, the polynomial f S is also SOS with algebraic coefficients but not SOS with rational ones. The gradient ideal I grad ( f S ) satisfies the zero-dimensional and radical condition. Hence, according to Theorem 5.1.1, f S is an SOS of polynomials over the quotient ring Q[x]/I grad ( f S ).

An explicit SOS decomposition of f S will be given later in Example 5.2.2.

(5.24) are different up to a multiplier w , in particular ψ i = w φ i . Here, we prefer using ψ i as computing ψ i 's through the division algorithm Eliminate is convenient.

In Line 1, we compute a zero-dimensional rational parametrization [w, κ 1 , . . . , κ n ] of the variety V grad ( f ). In Line 2, by using Algorithm Eliminate, we compute the quotients [ψ 2 , . . . , ψ n ] of the division of (w ) d f by

Note that the remainder of this division coincides with h given in (5.20). In Line 3, we compute a rational weighted SOS decomposition of the univariate polynomial h by relying on Algorithms univsos1 or univsos2.

The correctness of sosgradient is proved in a similar way as for sosgradientshape in Theorem 5.1.2.

Theorem 5.2.2. Let f ∈ Q[x] be non-negative over R n and I grad ( f ) be zero-dimensional and radical. On input f , Algorithm sosgradient terminates and the outputs provide us an SOS decomposition of f as in (5.18).

We present an explicit SOS decomposition for the polynomial f S which was obtained from Scheiderer's polynomial in Example 5.1.2. Here, we rely on sosgradient to get the SOS decomposition.

Example 5.2.2. We first compute a zero-dimensional rational parametrization Q of the gradient variety V grad ( f S ):

In f S , by substituting x 2 = κ 2 /w as in (5.20), we get the non-negative univariate polynomial h = 1679616x 36

Through Algorithm Eliminate, we obtain the quotients of the division in Line 2 of sosgradient: ψ 1 = 0 and ψ 2 given at polsys.lip6.fr/∼hieu/phisos.mm. By using univsos2 to compute an SOS decomposition of h, we obtain the list sos given in the above webpage such that h = ∑ m i=1 sos[2i -1]sos[2i] 2 , where sos[i] stands for the i-th entry of sos and m is the half length of sos. Combining the above results, we obtain an SOS of rational fractions modulo the gradient of f S as in (5.24). is fulfilled, otherwise the precision is increased.

To illustrate csos1, we use the following simple example. Example 6.1.1. Let f = 5 + (1 + i)z -1 + (1i)z which is positive on C . We obtain p = 5 + 2x + 2y. With ε = 1, we check with hasrealrootoncircle that pε is positive on C . With precision δ = 16, we compute complex approximation roots α 1 and ᾱ1 of fε, here α 1 = -7 4 -7 4 i. Defining F = (zα 1 )(z -1 -ᾱ1 ), we obtain α = 32 57 ,

57 , thus the condition (6.4) is satisfied. Then, f has an exact SOHS decomposition as follows:

To prove the correctness of the two algorithms csos1 and csos2 and estimate their bit complexities, we need the following lemma. Proof. By Lemma 6.1.1, there exits a positive rational ε such that fε is also positive on C . Thus, the first while loop (from Line 2 to Line 3) of Algorithm csos1 terminates.

The magnitude of the coefficients of the difference polynomial u defined in Line 9 converges to 0 as the precision δ of the complex root finder goes to infinity (because of the continuity of roots with respect to coefficients). This implies that the condition of Line 10 is fulfilled after finitely many iterations, thus the second loop (from Line 5 to Line 13) always terminates. Eventually, we have

We provide an SOHS decomposition of f using csos3. With precision δ = 2 64 , we obtain the approximate matrix Q,

1449 .

After the rounding and projection steps (Lines 12-15), we have

Computing the LDL factorization of Q, we obtain

.

Hence, we have an SOHS decomposition of f as follows:

Practical experiments

This section is dedicated to experimental results for our three certification algorithms, csos1, csos2 and csos3, stated in Section 6.1, 6.2 and 6.3, respectively. Firstly, we compare their performance towards certifying positivity on the unit circle for trigonometric polynomials with Gaussian coefficients. Next, we describe how to extend our third algorithm, csos3, to design a finite impulse response (FIR) filter in a certified fashion.

Our code is implemented in JULIA, available online at polsys.lip6.fr/∼hieu/csos.zip, and the results are obtained on an Intel Xeon 6244 CPU (3.6GHz) with 1.5 TB of RAM.

In csos1 and csos2, we compute ε such that fε is positive on C in Lines 2-3 by using MSOLVE [START_REF] Berthomieu | Msolve: A library for solving polynomial systems[END_REF] within the Julia library GroebnerBasis.jl. The corresponding running time is denoted by t ε . We denote by t u the running time spent to compute the difference polynomial u and to perform the comparison involving its coefficients and ε. In the algorithm csos1, we compute approximate roots of fε with the arbitrary-precision library PolynomialRoots.jl [START_REF] Skowron | General complex polynomial root solver and its further optimization for binary microlenses[END_REF]. In csos2 and csos3, we model SDP (6.16) though JUMP [START_REF] Dunning | JuMP: A modeling language for mathematical optimization[END_REF] and solve it with Mosek [1]. Exact arithmetic is performed with the CALCIUM library available in Nemo.jl.

CHAPTER 7

Conclusions and Perspectives

We summarize the main obtained results of the thesis and propose several directions to develop or improve them. 

Exact certificates for real polynomials

Conclusions. In Chapter 5, we designed and analyzed two algorithms to decompose a non-negative polynomial as an SOS of polynomials/rational fractions modulo the gradient ideal with rational coefficients. The correctness of our framework relies on a genericity condition, namely that the gradient ideal of the input polynomial is zerodimensional and radical. Practical experiments demonstrated that our algorithms can tackle a large range of problems that are out of reach for state-of-the-art algorithms.

Perspectives. We plan to further develop and improve our algorithms in the following directions:

Extension to the constrained case. We aim to provide a necessary and sufficient condition for the non-negativity of f ∈ Q[x] over a real algebraic variety by relying on polar varieties, as in [START_REF] Greuet | Global optimization of polynomials restricted to a smooth variety using sums of squares[END_REF].

Exploiting specific structures. We shall improve the scalability of our algorithms by exploiting the specific structure of the input polynomial, such as correlative [START_REF] Lasserre | Convergent SDP-relaxations in polynomial optimization with sparsity[END_REF] or term sparsity [START_REF] Wang | Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension[END_REF], symmetries [START_REF] Riener | Real root finding for equivariant semi-algebraic systems[END_REF] or by using recent improvements on the computation of critical sets when the related system is invariant under group actions [START_REF] Faugère | Computing critical points for invariant algebraic systems[END_REF].

Improving the bit complexity. We shall improve the bit complexities of the two algorithms sosgradientshape and sosgradient by reducing the degree of the univariate polynomial h in (5.2). Indeed, h is non-negative over the real roots of w in (5.1). Hence, the results of [START_REF] Krick | Univariate rational sums of squares[END_REF] can be applied.

Looking for new certificates. We also plan to seek new certificates for non-negativity of polynomials without imposing the zero-dimensional and radical condition on the