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1.4 Organisation de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Introduction 15

2.1 Research topics and motivations . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Exact certificates for real multivariate polynomials . . . . . . . . . 16

2.1.2 Exact certificates for complex univariate polynomials . . . . . . . 20

2.2 Related works for exact SOS decompositions . . . . . . . . . . . . . . . . 21

2.2.1 Univariate polynomials . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Multivariate polynomials . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Exact SOS decompositions of real multivariate polynomials . . . 24

2.3.2 Exact SOHS decompositions of complex univariate polynomials . 25

2.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii



CONTENTS iii

I Preliminaries 27

3 Basic notions of algebra and geometry 28

3.1 Gradient ideals and varieties . . . . . . . . . . . . . . . . . . . . . . . . . 28
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List of Acronyms and Symbols

SOS sum of squares

SOHS sum of Hermitian squares

SDP semi-definite program

N {0, 1, 2, . . . }

Z the set of integer numbers

Q the field of rational numbers

Q+ the set of non-negative rational numbers

R the field of real numbers

C the field of complex numbers

i the imaginary unit

C the complex unit circle

x (x1, . . . , xn)

K[x] the ring of polynomials with coefficients over K

K(x) the field of rational functions with coefficients over K

〈g1, . . . , gr〉 the ideal generated by g1, . . . , gr

∂ f
∂xi

the partial derivative of f w.r.t. the variable xi

Igrad( f ) the gradient ideal of the polynomial f

V(I) the algebraic variety associated to the ideal I

Vgrad( f ) the gradient variety of the polynomial f

I(V) the ideal of all polynomials in K[x] that vanish on the variety V
√
I the radical of the ideal I

#S the cardinality of the set S

ht( f ) the height of polynomial f with (Gaussian) rational coefficients
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Q � 0 Q is a positive semi-definite matrix

Q � 0 Q is a positive definite matrix

tr(Q) the trace of the matrix Q

H [z] the set of trigonometric polynomials in variable z with complex coefficients

H (Z)[z] the set of polynomials in H [z] with Gaussian integer coefficients
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CHAPTER 1

Introduction en français

En optimisation polynomiale, il est bien connu que le calcul de l’infimum d’un polynô-
me sur un ensemble semi-algébrique est NP-dur. Pour contourner ce problème de
calcul, on peut utiliser des hiérarchies de relaxations semi-définies et la théorie des
sommes de carrés (SOS) de polynômes, dans laquelle chaque programme semi-défini
peut être résolu, jusqu’à une précision arbitraire, en temps polynomial. Dans ce cadre,
la non-négativité des polynômes est remplacée par la propriété d’être SOS. Par conséq-
uent, l’évaluation de la non-négativité des polynômes basée sur les décompositions
SOS est un problème d’actualité dans le domaine de l’optimisation polynomiale.

Les certificats de non-négativité sont généralement abordés par le biais du calcul de
décompositions SOS qui reposent sur des solveurs numériques efficaces numériques
efficaces pour la programmation semi-définie. Par conséquent, les certificats obtenus
de cette manière sont approximatifs et donc non exacts. Pour certaines applications
critiques, il est important de calculer réellement des certificats exacts de non-négativité.

Le but de cette thèse est de calculer des certificats exacts de non-négativité pour des
polynômes basés sur des décompositions SOS avec des coefficients rationnels. Les
certifications utilisant SOS font face aux deux difficultés suivantes. Premièrement, en
raison du fait que l’ensemble des polynômes non-négatifs est significativement plus
grand que celui des polynômes SOS, les certifications basées sur les décompositions
SOS ne peuvent pas être appliquées à tous les polynômes non négatifs. Deuxièmement,
il existe des polynômes à coefficients rationnels qui sont SOS à coefficients réels mais
qui ne sont pas SOS à coefficients rationnels.

Dans cette thèse, nous fournissons des algorithmes symboliques pour calculer les déc-
ompositions SOS modulo l’idéal gradient des polynômes multivariés réels non négatifs
sous une condition de généricité. Ces algorithmes peuvent traiter un large éventail de
problèmes qui sont hors de portée des algorithmes les plus avancés. Nous calculons
également les sommes des décompositions des carrés hermitiens pour les polynômes
trigonométriques complexes univariés qui sont positifs sur le cercle unité avec des
gaussiens. De plus, nous analysons la complexité binaire de ces algorithmes et dédui-
sons les limites de taille binaire de ces certificats. Enfin, nous implémentons ces algori-
thmes dans le système de calcul formel MAPLE et l’environnement de programmation
JULIA et évaluons leurs performances sur quelques benchmarks standards.

2



1.1. THÈMES DE RECHERCHE ET MOTIVATIONS 3

1.1 Thèmes de recherche et motivations

Nous désignons par N l’ensemble des nombres naturels, par Z l’ensemble des entiers,
et par Q, Q+, R et C les corps des nombres rationnels, rationnels non négatifs, réels et
complexes, respectivement. Soit x le vecteur de n variables (x1, . . . , xn). Soit K un un
corps, nous désignons par K[x] l’anneau de polynômes avec le corps de base K et les
variables x.

1.1.1 Certificats exacts pour les polynômes multivariés réels

Un polynôme f dans R[x] de degré d est non-négatif sur Rn s’il ne prend que des valeurs
non négatives. Fournir des conditions vérifiables ou une procédure pour vérifier la non-
négativité des polynômes est une question cruciale dans la théorie de l’optimisation
polynomiale [64, 65]. Il existe plusieurs questions d’actualité concernant la non-négati-
vité des polynômes telles que [65] : Comment decider de la non-négativité de f ? Est-il
possible de certifier la non-négativité de f ? Quelle est la complexité de la décision de la
non-négativité de f ? Quelle est la structure de l’ensemble des polynômes non-négatifs?
Nos recherches dans cette thèse se concentrent sur la certification et la et les problèmes
de complexité.

Non-négativité et sommes des carrés. La non-négativité de f découle du fait que f
peut être décomposé comme une somme de carrés (SOS) de polynômes, à savoir

f = q2
1 + · · ·+ q2

r , (1.1)

où q1, . . . , qr sont dans R[x], pour un certain r ∈ N \ {0}. Le membre de droit de (1.1)
est appelé une décomposition SOS de f et fournit un certificat de non-négativité pour f .

La relation entre les propriétés de non-négativité et de SOS des polynômes a été étudiée
depuis la fin du 19ème siècle, conduisant au 17ème problème de Hilbert. Le théorème
de Hilbert, dans [34], dit que la non-négativité et la propriété SOS des polynômes
homogènes sont équivalentes si et seulement si n = 2, d = 2, ou (n, d) = (3, 4). Il
découle du théorème de Hilbert que, pour les autres cas, l’ensemble des polynômes
non-négatifs contient strictement l’ensemble des polynômes SOS. En 1967, Motzkin a
donné le premier polynôme explicite pM non négatif et pourtant non SOS. [60],

pM := x2
1x2

2(x2
1 + x2

2 − 3) + 1. (1.2)

Quantitativement, Blekherman [15] a prouvé que pour tout degré fixe d ≥ 4, si le
nombre de variables est suffisamment grand alors l’ensemble des polynômes non-négat-
ifs est significativement plus grand que celui des polynômes SOS. Notons que, l’ensem-
ble des polynômes non négatifs et celui des polynômes SOS sont significativement plus
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grands. Notons que ces deux ensembles définissent tout deux des cônes convexes and
que tout deux sont de dimension complète dans Rd[x], l’espace de tous les polynômes
de degré au plus égal à d [72].

Rappelons que la non-négativité de f peut également être certifiée si f peut être décom-
posé en une somme de carrés de fonctions rationnelles, c’est-à-dire que chaque q` dans
(1.1) est une fraction de deux polynômes non triviaux dans R[x],

f =

(
u1

v1

)2

+ · · ·+
(

ur

vr

)2

, (1.3)

Le 17ème problème de Hilbert en 1900 [35] était le suivant : “Pour tout f ∈ R[x], est-il
vrai que si f est non négatif sur Rn alors f est une somme de carrés de fonctions rationnelles?”
Artin a donné une réponse affirmative [2] en 1927. Par exemple, la non-négativité
du polynôme de Motzkin pM peut être certifiée en en l’écrivant comme une SOS de
fonctions rationnelles:

pM =
1

x2
1 + x2

2
(x2

1(1− x2)2 + x2
2(1− x1)

2 + x2
1x2

2(x2
1 + x2

2 − 2)2).

Nous nous intéressons également à la question du nombre maximal de carrés r et le
degré maximal de u`, v` dans la décomposition (1.3). En 1967, Pfister [68] a prouvé que
si f ∈ R[x] est non-négatif alors f est une somme de 2n carrés de fonctions rationnelles,
ce nombre ne dépendant que du du nombre de variables. Lombardi, Perrucci et Roy
ont prouvé en 2014 que si f est non-négatif alors f peut s’écrire comme une somme de

carrés de fonctions rationnelles de degré au plus 222d4n

en [48].

La relation entre la non-négativité et the propriété SOS des polynômes peut être trouvée
plus en détail dans les monographies [46, 58, 71], ou dans le article de synthèse [65].

Sommes de carrés à coefficients rationnels. Soit f ∈ Q[x] un polynôme à coefficients
rationnels. On dit que f est somme (pondérée) de carrés à coefficients rationnels si f
peut s’écrire sous la forme

f = c1s2
1 + · · ·+ crq2

r ,

où c1, . . . , cr sont dans Q, et q1, . . . , qr sont dans Q[x], pour un certain nombre d’entiers
positifs r.

Tout polynôme univarié non négatif f ∈ Q[x1] à coefficients rationnels peut être décom-
posé en tant que somme pondérée de carrés à coefficients rationnels [43, 70]. Landau
[43] a prouvé en 1905 que le nombre maximal de carrés est au plus égal à huit, c’est-à-
dire que r ≤ 8. Ce résultat a été amélioré par Pourchet [70] en 1971 par r ≤ 5.
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Il y a plus de dix ans, Sturmfels a soulevé la question de savoir si un polynôme à
coefficients rationnels est nécessairement une SOS de polynômes à coefficients ration-
nels. Scheiderer a donné une réponse négative dans [79], où il a construit des familles
de polynômes homogènes explicites à coefficients rationnels qui sont SOS avec des
coefficients réels mais pas avec des coefficients rationnels. Il a souligné explicitement
que le polynôme

pS = x4
1 + x1x3

2 + x4
2 − 3x2

1x2x3 − 4x1x2
2x3 + 2x2

1x2
3 + x1x3

3 + x2x3
3 + x4

3 (1.4)

a une décomposition SOS avec des coefficients réels mais qu’il n’existe pas de décompo-
sitions SOS avec des coefficients rationnels [79].

Pour les sommes de carrés de fonctions rationnelles avec des coefficients rationnels,
Jannsen a fait remarquer dans [36] que, avec n ≥ 2, si f ∈ Q[x] est non-négatif alors f
est une somme de 2n+1 carrés de fonctions rationnelles sur Q.

Somme des carrés et programmes semi-définis. Il est intéressant de noter que le
problème de l’expression d’un polynôme sous forme de SOS peut être examiné du point
de vue de l’optimisation convexe. Nous sommes en mesure de décider si un polynôme
peut être décomposé en SOS par le biais de la programmation semi-définie.

Un programme semi-défini (SDP en abrégé) est le problème d’optimisation suivant [90]

minimize tr(CX)

subject to tr(AiX) = bi, i = 1, . . . , m,

X � 0,

où X, C, Ai sont des matrices symétriques réelles, bi dans R ; X est la variable matricielle
variable, C, Ai, et bi ∈ R sont des données, et tr(·) représente l’opérateur de trace
matricielle habituel. Par conséquent, la fonction objectif et les contraintes sont convexes.
La caractéristique cruciale du SDP est sa convexité. Ce problème convexe peut être
résolu par des méthodes de point intérieur (voir, par ex, [16, Chapitre 11]), des méthodes
du premier ordre (voir, par ex, [11]) ou les méthodes de l’ellipsoı̈de (voir, par exemple
[31, Chapitre 3]).

On désigne par vd(x) = (1, x1, x2, . . . , xn, x1x2, . . . , xd
n)

T vecteur contenant tous les mon-
ômes de degré au plus égal à d. La longueur du vecteur vd(x) est égale à (n+d

d ). Choi,
Lam, et Reznick [19] ont établi le fait que f ∈ R[x] est SOS si et seulement s’il existe une
matrice semi-définie positive Q, c’est-à-dire que Q est une matrice symétrique ayant
des valeurs propres non négatives, telle que que f = vT

d Qvd. Une telle matrice Q est
appelée une matrice de Gram associée à f . Puisque le calcul de telles matrices Gram se
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réduit à la résolution d’inégalités matricielles linéaires, le calcul d’une décomposition
SOS de f se résume à la résolution d’un problème de faisabilité SDP.

En pratique, les résolutions SDP fournissent des approximations numériques ; par
conséquent les décompositions SOS obtenues par cette méthode sont approximatives
et donc non exactes, voir, par exemple, [86] ou [49, Chapitre 2].

Sommes de carrés et optimisation polynomiale. Au cours des deux dernières décen-
nies, inspirée par les travaux de Lasserre [44] et de Parrilo [63], la théorie SOS ainsi que
la programmation semi-définie ont été des méthodologies très populaires pour attaquer
un problème d’optimisation polynomiale.

Pour décrire brièvement cette idée, nous considérons le problème non contraint comme
suit :

finf := inf
x∈Rn

f (x). (1.5)

Ce problème est NP-dur [61] lorsque le degré de f est supérieur ou égal à 4. Clairement,
ce problème peut être reformulé comme suit :

finf = sup ρ s.t. f − ρ ≥ 0 on Rn. (1.6)

En remplaçant la condition de non-négativité non négative dans (2.6) par une condition
plus facile à gérer est une idée naturelle pour traiter le le problème (2.6). Par la suite,
le remplacement de la condition de non-négativité par la condition SOS proposée par
Shor [81] mène à une relaxation SOS de (2.5) comme suit :

fsos := sup ρ s.t. f − ρ is SOS. (1.7)

Comme l’ensemble des polynômes non négatifs contient celui des polynômes SOS, fsos
est une borne inférieure de finf. La relation entre la programmation semi-définie et la
théorie SOS nous permet de calculer fsos via un programme semi-défini qui peut être
résolu en temps polynomial jusqu’à une précision prescrite [69, 21].

Problem 1. Le premier sujet de cette thèse porte sur les certificats exacts de non-négati-
vité pour polynômes multivariés réels basés sur des décompositions SOS à coefficients rationnels.
Nous sommes intéressés par les algorithmes de certification, leur complexité binaire
ainsi que les implémentations.

Comme décrit ci-dessus, notre motivation principale vient du besoin de certificats exacts
pour l’optimisation polynomiale certifiée. Nous rappelons et soulignons ici les deux
difficultés auxquelles nous sommes confrontés :

• L’ensemble de polynômes non-négatifs est significativement plus grand que l’ens-
emble des polynômes SOS.
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• Il existe des polynômes à coefficients rationnels qui sont SOS à coefficients réels,
mais pas à coefficients rationnels.

1.1.2 Certificats exacts pour les polynômes complexes univariés

On désigne par i l’unité imaginaire. Pour une variable ou un nombre complexe v, nous
notons v̄ son conjugué. Soit z une variable complexe. Pour un polynôme complexe
univarié

h(z) = h0 + h1z + . . . + hdzd

dans C[z], où hk ∈ C, nous définissons

h?(z) := h̄0 + h̄1
1
z
+ · · ·+ h̄d

1
zd .

Le cercle unité C est défini par

C := {ζ ∈ C : |ζ| = 1}.

On voit que ζ̄ = ζ−1 et ζζ̄ = 1, pour ζ ∈ C . Par conséquent, sur le cercle unité, le
produit hh? est le carré du module de h.

Polynômes trigonométriques univariés. Soit H [z] l’ensemble des polynômes trigonom-
étriques univariés défini comme un sous-ensemble des polynômes de Laurent à coeffic-
ients complexes et en la variable complexe z comme suit :

f (z) = f0 +
( f1

z
+ f̄1z

)
+ · · ·+

( fd

zd + f̄dzd
)

,

avec f0 ∈ R et d ∈ N. Par convention, lorsque fd 6= 0, d est le degré de f ; le degré
du du polynôme zéro est −∞. Clairement, si f ∈ H [z] alors f a des valeurs réelles sur
le cercle unité. De plus, si α est une racine de f alors sa réciproque 1/ᾱ est aussi une
racine de f .

Puisque nous travaillons avec des corps de base de caractéristique zéro, nous voyons
les polynômes à travers les cartes d’évaluation qu’ils définissent plutôt que comme des
objets algébriques. Notez que pour f ∈ H [z], la restriction de la carte ζ 7→ f (ζ) sur le
cercle unité C coı̈ncide avec l’application d’évaluation définie par le polynôme

g(z) = f0 +
(

f1z̄ + f̄1z
)
+ · · ·+

(
fd z̄d + f̄dzd

)
,

puisque ζ̄ = ζ−1 pour ζ ∈ C . Remarquons également que pour tout ζ ∈ C , g(ζ) =

g(ζ̄) ∈ R, de sorte que g est un polynôme hermitien. Enfin, notons que pour tout
polynôme hermitien g, il existe f ∈ H [z] tel que les restrictions à C des applications
ζ 7→ g(ζ) et ζ 7→ f (ζ) coı̈ncident.
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Somme des carrés hermitiens. On dit que f est un somme de carrés hermitiens, SOHS
en abrégé, s’il existe un certain r ∈ N \ {0} et des polynômes s1, . . . , sr dans C[z] tels
que

f (z) = s1(z)s?1(z) + · · ·+ sr(z)s?r (z). (1.8)

Cette terminologie des carrés hermitiens provient de la discussion ci-dessus sous la
forme s?j (ζ) = sj(ζ̄) pour tout ζ ∈ C . Clairement, si f est SOHS comme dans (1.8) alors,
à cause de sj(z)s?j (z) = |sj(z)|2 sur C , f est non-négatif sur C .

Selon le théorème de factorisation spectrale de Riesz-Fejér (voir, par exemple, [22, Theo-
rem 1.1]), tout polynôme trigonométrique univarié f qui est non négatif sur le cercle
unité C peut être écrit comme un carré hermitien. De plus, d’après sa preuve [22, pp.
3–5], on a

f = a×
d

∏
k=1

(z− ak)×
(1

z
− āk

)
,

où (a1, 1/ā1) . . . , (αd, 1/ād) sont d paires de racines de f , et a est un scalaire positif.
Ceci nous permet de de concevoir un algorithme pour calculer les certificats de non-
négativité de f dans lequel nous devons manipuler exactement toutes les 2d racines
complexes de f . Normalement, cet algorithme est appliqué avec des calculs approxima-
tifs, ce qui conduit à des certificats approcimatifs de non-négativité sur C . Nous cherch-
ons à calculer des certificats de non-négativité exacts de non-négativité des polynômes
trigonométriques. En particulier, lorsque les coefficients sont des entiers Gaussiens,
c’est-à-dire que les parties réelles et imaginaires sont des entiers, les décompositions
SOHS exactes de f peuvent être calculées par des méthodes numériques-symboliques
hybrides.

Problem 2. Le deuxième sujet de cette thèse porte sur les Certificats exacts de non-
négativité pour les polynômes trigonométriques univariés basés sur les décompositions SOHS
avec coefficients gaussiens. Nous sommes également intéressés par les algorithmes de
certification, leur complexité en bits et leurs implémentations.

Notre motivation provient de problèmes de conception dans le traitement du signal en
temps discret. En particulier, pour la conception de filtres à réponse impulsionnelle
finie (FIR) dans le traitement du signal, la minimisation de l’énergie de la bande d’arrêt
est une question cruciale [22, Chapitre 5]. Calculer des décompositions SOHS exactes
pour des polynômes trigonométriques univariés polynômes univariés dans ce contexte
semble donc être un problème de calcul naturel.
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1.2 Travaux connexes pour les décompositions SOS exactes

1.2.1 Polynômes univariés

Il est bien connu que tout polynôme univarié non négatif f ∈ R[x1] avec des coefficients
réels peut être décomposée comme une somme d’au plus deux carrés de polynômes.
De même, tout polynôme non négatif univarié non négatif f ∈ Q[x1] est un somme
pondérée de carrés à coefficients rationnels [43, 70].

Dans la littérature, nous connaissons deux algorithmes qui calculent les décompositions
exactes SOS exactes d’un polynôme non négatif f ∈ Q[x1] à coefficients rationnels. Le
premier [80] a été soulevé par Schweighofer en 1999 et s’appuie sur l’isolement des
racines réelles, l’approximation quadratique des polynômes positifs et la décomposition
sans carré. Le second a été proposée par Chevillard, Harrison, Joldes, et Lauter [18] en
2011 et est basée sur l’isolation des racines complexes et la décomposition sans carré.
Leurs complexités binaires et leurs benchmarks sont donnés dans [53].

Récemment, Krick, Mourrain, et Szanto dans [41] ont proposé une condition nécessaire
et suffisante pour la non-négativité d’un polynôme f ∈ Q[x1] sur les racines réelles
d’un autre polynôme g ∈ Q[x1]. En particulier, sous une condition légère, f est non-
négatif sur toutes les racines réelles de g si et seulement si f est un SOS modulo g. Dans
leur article, ils fournissent également un algorithme pour calculer une décomposition
SOS.

1.2.2 Polynômes multivariés

Pour le cas multivarié, c’est-à-dire n ≥ 3, Hilbert [34] a prouvé que tout polynôme
homogène non négatif de degré d dans R[x] est SOS si et seulement si d = 2 ou (n, d) =
(3, 4). Dans ce travail, il a prouvé que, pour n = 3, tout polynôme non négatif de degré
4 est une somme de trois carrés.

À la suite de ces travaux fondateurs [44, 63], les hiérarchies de programmes semi-
définis donnent des approximations des décompositions SOS pondérées de polynômes
positifs. Plusieurs heuristiques ont été proposées pour élever ces approximations à des
décompositions exactes SOS du polynôme d’entrée. En commençant par la méthode
rouding-projection soulevée par Peyrl et Parrilo [67], cette méthode peut être appliquée
pour les polynômes situés à l’intérieur du cône des polynômes SOS, et suivie par des
méthodes hybrides numériques-symboliques [38, 39, 40]. Il convient de noter que
les algorithmes de [38, 40] nous permettent de calculer des décompositions SOS sur
certains exemples dégénérés ou de calculer des SOS de fractions rationnelles. Les
problèmes de complexité sont étudiés sous l’angle des techniques de perturbation-
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compensation afin de calculer des décompositions SOS à l’intérieur du cône SOS [50,
51, 52]. Des algorithmes généraux pour calculer de tels certificats exacts au moyen
de décompositions SOS ont été conçu, soit pour le calcul des décompositions SOS à
coefficients rationnels [78] ou avec des nombres algébriques en calculant des solutions
exactes à des programmes semi-définis exactes de programmes semi-définis [32].

Des certificats exacts alternatifs de non-négativité, par exemple, des sommes de nombres
non négatifs et les sommes d’exponentielles arithmétiques-géométriques [56, 87] peuvent
également être utilisés. Cependant, ils sont confrontés à des problèmes similaires à ceux
rencontrés par les techniques SOS en matière de généralité.

Décider de la non-négativité d’un polynôme f ∈ Q[x] sur un ensemble semi-algébrique
arbitraire peut être fait exactement en utilisant des algorithmes de calcul formel. Les
meilleures complexités pour une telle procédure de décision sont obtenues par des
algorithmes rendant efficace la méthode dite du point critique [30, 9]. D’autres dévelop-
pements pratiques sont présentés dans [5, 6, 7, 76] et leurs applications en optimisation
polynomiale sont données dans [28, 29, 8]. Notez que, même si ces algorithmes sont
exacts (c’est-à-dire que leurs résultats sont exacts à condition qu’aucun bug n’ait été
rencontré), ils ne fournissent pas de certificat de non-négativité qui puisse être vérifié
a posteriori puisqu’il s’agit d’algorithmes de recherche de racines. Leurs complexités
sont exponentielles dans la dimension de l’espace ambiant, car ils réduisent le problème
d’entrée au calcul d’un nombre fini de points critiques de certaines applications bien
choisies. Par conséquent, l’idée de considérer les idéaux gradients est naturelle.

En résumé, de tels idéaux de gradient peuvent être utilisés pour réduire la dimension de
l’ensemble sur lequel la certification de non-négativité peut être effectuée. l’ensemble
sur lequel la certification de la non-négativité peut être faite. Sous certaines hypothèses,
cette idée est traduite dans [66] dans un algorithme évaluant la non-négativité d’une
rupture de ligne donnée f ∈ R[x]. Précisément, en supposant l’idéal de gradient idéal
Igrad( f ) (qui est l’ensemble de toutes les combinaisons combinaisons algébriques des
dérivées partielles de f ) est de dimension nulle et radicale, et que f atteint son infimum
sur Rn, cet algorithme calcule une décomposition SOS de f dans l’anneau quotient
quotient R[x]/Igrad( f ) (ou, en d’autres termes, une décomposition SOS de f modulo
Igrad( f )), c’est-à-dire que f s’écrit comme suit

c1s2
1 + · · ·+ cks2

k +
n

∑
i=1

qi
∂ f
∂xi

,

où les si et les qi se situent dans R[x] et les ci sont positifs dans R. Un résultat similaire
en relâchant légèrement les hypothèses ci-dessus est donné dans [62]. Notez que lorsque
f a des coefficents dans Q, il n’y a pas de garantie donnée qu’une décomposition SOS
décomposée de celui-ci dans Q[x]/Igrad( f ) aura également des coefficients rationnels.
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En appliquant le résultat de Parrilo dans [66], on peut conclure qu’un polynôme
f ∈ R[x] est non négatif sur la variété réelle d’un idéal I si et seulement si f est SOS
sur l’anneau quotient R[x]/I . Nie, Demmel et Sturmfels dans [62] ont montré qu’un
polynôme f ∈ R[x] non négatif sur sa variété réelle gradiente est SOS modulo l’idéal
gradient de f à condition que cet idéal soit radical ou que f soit strictement positif sur
la variété réelle de gradient [62].

1.3 Contributions

1.3.1 Décompositions SOS exactes de polynômes réels multivariés

Nous considérons le problème du calcul d’une décomposition SOS exacte d’un polynô-
me multivarié réel à coefficients rationnels, f ∈ Q[x]. Nous résumons nos contributions
comme suit :

Existence de certificats de non-négativité avec des coefficients rationnels. Nous fournissons
une condition nécessaire et suffisante pour la non-négativité de f ∈ Q[x] sous une
condition de généricité.

• Supposons que l’idéal de gradient associé à f est radical et de dimension nulle et
que f atteint son infimum sur Rn. Nous prouvons dans le théorème 5.1.1 que f est
non-négatif sur Rn si et seulement si f est un SOS de polynômes à coefficients rationnels
sur l’anneau quotient Q[x]/Igrad( f ). Nous nous appuyons sur une procédure
d’élimination algébrique basée sur le Lemme de Forme (voir Lemma 3.3.1) pour
réduire le problème au cas univarié. Il est intéressant de noter que le théorème 5.1.1
peut être appliqué au polynôme de Robinson (voir Exemple 5.1.1), ainsi qu’au
polynôme de Scheiderer (voir Exemple 5.1.2) qui n’ont pas de décomposition SOS
à coefficients rationnels.

Algorithmes et complexités des bits. Le problème suivant auquel nous nous attaquons est
de concevoir des algorithmes qui calculent de tels certificats de non-négativité ainsi
que d’estimer leur complexité binaire. Pour mesurer la taille du bit d’un polynôme à
coefficients rationnels, nous utiliserons son hauteur, défini comme dans la section 4.1.

• De la preuve du théorème 5.1.1, nous dérivons l’algorithme sosgradientshape

(Algorithme 3) pour calculer une décomposition SOS de polynômes modulo
l’idéal gradient de f . Nous prouvons que, étant donné en entrée un polynôme de
n-variétés f ∈ Q[x] de degré d avec un maximum de maximale de ses coefficients
τ, cet algorithme utilise Õ((τ + n+ d)2d6n + (τ + n+ d)d6n+4) boolean opérations
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booléennes. Cette estimation est meilleure que l’estimation de la complexité don-
née dans [52, Theorem 12], où le nombre rapporté est Õ(τ2(4d + 2)15n+6).

• Nous concevons une variante de l’algorithme précédent, nommée sosgradient.
(Algorithme 4). Sur entrée f ∈ Q[x] comme ci-dessus, cet algorithme décompose
f en une somme de fractions rationnelles fractions rationnelles modulo l’idéal grad-
ient associé à f . Nous prouvons que cette variante utilise Õ

(
(τ + n + d)d4n+4)

opérations booléennes et présente donc une meilleure complexité que Algorithme
sosgradientshape.

Nous soulignons que que ces estimations de complexité sont intéressantes pour la
communauté de l’optimisation polynomiale, car elles donnent des limites de degré
pour les multiplicateurs SOS requis lorsque l’utilisation de la variante de ce que l’on
appelle la ”hiérarchie Moment-SOS” ou la hiérarchie de Lasserre [44] pour minimiser
les polynômes sur leurs idéaux gradients [62]. En effet, de telles limites de degré se
traduisent par des taux de convergence pour le schéma d’optimisation sous-jacent et
nous permettent d’estimer la complexité globale du coût de calcul.

Résultats expérimentaux. Nos deux algorithmes ont été mis en œuvre à l’aide du système
algébrique informatique MAPLE. Nous présentons des expériences pratiques qui mont-
rent que nos algorithmes peuvent déjà évaluer la non-négativité de nombreux polynô-
mes qui sont hors de portée, par exemple, des méthodes hybrides calculant des sommes
de carrés des décompositions telles que [50].

• Nos expériences pratiques montrent que Algorithme sosgradient peut évaluer la
non-négativité des polynômes multivariés d’un large ensemble d’exemples qui sont hors
de portée de l’état de l’art lorsque le nombre de variables et le degré augmentent.

1.3.2 Décompositions SOHS exactes de polynômes complexes univariés

Nous concevons trois algorithmes pour calculer les décompositions SOHS exactes de
polynômes dans H (Z)[z] qui sont positifs sur le cercle unité C . Ces algorithmes sont
basés sur des techniques de compensation de perturbation ou de projection d’arrondi.
De plus, nous analysons leur complexité binaire et la taille de leur sortie.

Le premier algorithme est appelé csos1 (Algorithme 5). L’algorithme csos1 utilise
une méthode de perturbation-compensation dans laquelle l’étape numérique calcule
une décomposition approximative de SOHS approximative pour une perturbation bien
choisie du polynôme d’entrée avec isolation des racines complexes isolement. Nous
obtenons la complexité binaire de l’algorithme comme suit :
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• Sur l’entrée f , où f n’a pas de racines multiples, csos1 calcule une décomposition SOHS
de f avec des coefficients (modulo de) gaussiens en utilisant au maximum

(
d6(d + τ)

)
opérations sur les bits. De plus, la taille maximale des bits des coefficients de sortie est
bornée dans Õ(d5(d + τ)).

Les deux autres algorithmes sont appelés csos2 et csos3. (Algorithmes 6 et 7, respec-
tivement). Nous concevons deux algorithmes csos2 et csos3 qui sont basés sur la
programmation semi-définie complexe. Dans l’algorithme csos2, nous calculons une
décomposition SOHS approximative pour la perturbation à l’aide de la résolution SDP
complexe. L’algorithme csos3 est une adaptation de l’algorithme d’arrondissement-
projection d’arrondi-projection soulevé par Peyrl et Parrilo [67]. Les complexités binai-
res de ces deux algorithmes sont similaires car nous utilisons la résolution SDP complexe
pour les deux :

• Sur l’entrée f , csos2 et csos3 calculent les décompositions SOHS de f avec (modulus
de) coefficients gaussiens en utilisant au maximum Õ(d13(d + τ)2) opérations sur bits.
De plus, la taille binaire maximale des coefficients de sortie est limitée par dessus par
Õ(d6(τ + d)).

Ces deux algorithmes sont plus coûteux que l’algorithme csos1 parce que nous rempla-
çons l’isolation de la racine complexe par la résolution complexe de SDP. Malgré leur
plus grande complexité, ils permettent de traiter des problèmes d’optimisation con-
traints et de concevoir des filtres.

Résultats expérimentaux. Ces algorithmes ont été implémentés en utilisant le langage de
programmation JULIA [13].

• Nous présentons des expériences pratiques montrant que l’algorithme csos1 fon-
ctionne plus rapidement que les autres algorithmes, ce qui coı̈ncide avec nos
résultats théoriques de complexité. De plus, nous nous appuyons sur csos3 pour
concevoir des filtres de manière certifiée.

1.4 Organisation de la thèse

Cette thèse comprend trois parties. La partie I est la partie préliminaire qui contient les
chapitres 3 et 4. Dans ces chapitres, nous rappelons des notions de base et des résultats
fondamentaux de géométrie algébrique et d’algèbre commutative effective, ainsi que
des résultats de complexité binaire pour la résolution de systèmes polynomiaux.

Nos principales contributions apparaissent dans la partie II qui comprend les chapitres:



14 CHAPTER 1. INTRODUCTION EN FRANÇAIS

• Le chapitre 5 est consacré aux certificats exacts de de non-négativité pour les
polynômes multivariés réels. Le contenu de ce chapitre est tiré de l’article intitulé
“Sum of squares decompositions of polynomials over their gradient ideals with rational
coefficients” par Victor Magron, Mohab Safey El Din, et Trung Hieu Vu [55] qui a
été accepté pour publication dans le SIAM Journal of Optimization, 2022.

• Le chapitre 6 présente des résultats sur les certificats exacts de positivité pour
les polynômes complexes univariés. Ces résultats ont été publiés dans l’article
intitulé “Exact SOHS decompositions of trigonometric univariate polynomials with Gaus-
sian coefficients” [54] par Victor Magron, Mohab Safey El Din, Markus Schweighofer
et Trung Hieu Vu dans les “Proceedings of the 2022 International Symposium on
Symbolic and Algebraic Computation”, Villeneuve-d’Ascq, France, 2022.

Enfin, dans la partie III qui ne contient que le chapitre 7, nous donnons quelques
conclusions et décrivons les futures directions de recherche.



CHAPTER 2

Introduction

In polynomial optimization, it is well-known that computing the infimum of a polyno-
mial on a semi-algebraic set is NP-hard. To bypass this computational issue, one can
use hierarchies of semi-definite relaxations and the theory of sums of squares (SOS
for short) of polynomials, in which every semi-definite program can be solved, up
to arbitrary precision, in polynomial time. Within this framework, non-negativity of
polynomials is replaced by the property of being SOS. Hence, assessing non-negativity
of polynomials based on SOS decompositions is a topical issue in polynomial optimi-
zation.

Certificates of non-negativity are usually tackled through the computation of SOS dec-
ompositions which rely on efficient numerical solvers for semi-definite programming.
Consequently, certificates obtained in this way are approximate and therefore non-exact.
For some critical applications, it is important to actually compute exact certificates of
non-negativity.

The aim of this thesis is to compute exact certificates of non-negativity for polynomials
based on SOS decompositions with rational coefficients. Certifications using SOS face
the following two difficulties. Firstly, due to the fact that the set of non-negative polyn-
omials is significantly larger than that of SOS polynomials, certifications based on SOS
decompositions cannot be applied to all non-negative polynomials. Secondly, there
exist polynomials with rational coefficients that are SOS with real coefficients but are
not SOS with rational coefficients.

In this thesis, we provide symbolic algorithms to compute SOS decompositions modulo
the gradient ideal of non-negative real multivariate polynomials under a genericity
condition. These algorithms can tackle a large range of problems which are out of
reach for state-of-the-art algorithms. We also compute sums of Hermitian squares
decompositions for complex trigonometric univariate polynomials that are positive on
the unit circle with Gaussian coefficients. Moreover, we analyze the bit complexity of
these algorithms and deduce bitsize bounds of such certificates. Finally, we implement
these algorithms in the computer algebra system MAPLE and the programming envir-
onment JULIA and evaluate their performance on some standard benchmarks.
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2.1 Research topics and motivations

We denote by N the set of natural numbers, by Z the set of integers, and by Q, Q+, R

and C the fields of rational, non-negative rational, real and complex numbers, respecti-
vely. Let x be the n-tuple of variables (x1, . . . , xn). Let K be a field, we denote by K[x]
the polynomial ring with base field K and variables x.

2.1.1 Exact certificates for real multivariate polynomials

A polynomial f in R[x] of degree d is non-negative over Rn if it takes only non-negative
values. Providing checkable conditions or a procedure for verifying non-negativity of
polynomials is a crucial issue in polynomial optimization theory [64, 65]. There are
several topical questions concerning non-negativity of polynomials such as [65]: How
do we decide non-negativity of f ? Is it possible to certify the non-negativity of f ? What
is the complexity of deciding non-negativity of f ? What is the structure of the set of
non-negative polynomials? Our research in this thesis focuses on the certification and
complexity issues.

Non-negativity and sums-of-squares. Clearly, the non-negativity of f follows from
the fact that f can be decomposed as a sum of squares (SOS) of polynomials, namely

f = q2
1 + · · ·+ q2

r , (2.1)

where q1, . . . , qr are in R[x], for some r ∈ N \ {0}. The right-hand side of (2.1) is called
an SOS decomposition of f and provides a certificate of non-negativity for f .
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The relationship between the properties of non-negativity and SOS of polynomials has
been investigated since the late 19th century, raising Hilbert’s 17th problem. Hilbert’s
theorem, in [34], says that non-negativity and SOS property of homogeneous polyno-
mials are equivalent if and only if n = 2, or d = 2, or (n, d) = (3, 4). It follows
from Hilbert’s theorem that, for other cases, the set of non-negative polynomials strictly
contains the set of SOS polynomials. In 1967, Motzkin gave the first explicit polynomial
pM that was non-negative but not SOS [60],

pM := x2
1x2

2(x2
1 + x2

2 − 3) + 1. (2.2)

Quantitatively, Blekherman [15] proved that for any fixed degree d ≥ 4, if the number
of variables is large enough then the set of non-negative polynomials is significantly
larger than that of SOS polynomials. Note that, the set of non-negative polynomials
and that of SOS polynomials are convex cones and both of them are full-dimensional in
Rd[x] the space of all polynomials of degree at most d [72].

Recall that non-negativity of f can also be certified if f can be decomposed as a sum
of squares of rational functions, i.e., every q` in (2.1) is a fraction of two nontrivial
polynomials in R[x],

f =

(
u1

v1

)2

+ · · ·+
(

ur

vr

)2

, (2.3)

Hilbert’s 17-th problem in 1900 [35] was the following: For any f ∈ R[x], is it true
that if f is non-negative over Rn then f is a sum of squares of rational functions? Artin
gave an affirmative answer [2] in 1927. For example, the non-negativity of Motzkin’s
polynomial pM can be certified by writing it as an SOS of rational functions as follows:

pM =
1

x2
1 + x2

2
(x2

1(1− x2)2 + x2
2(1− x1)

2 + x2
1x2

2(x2
1 + x2

2 − 2)2).

We are also interested in the question about the maximal number of squares r and the
maximal degree of u`, v` in the decomposition (2.3). In 1967, Pfister [68] proved that if
f ∈ R[x] is non-negative then f is a sum of 2n squares of rational functions, that number
depending only on the number of variables. Lombardi, Perrucci and Roy proved in
2014 that if f is non-negative then f can be written as a sum of squares of rational

functions of degree at most 222d4n

in [48].

The relationship between non-negativity and the SOS property of polynomials can be
found in more detail in the monographs [46, 58, 71], or in the survey article [65].

Sums of squares with rational coefficients. Let f ∈ Q[x] be a polynomial with ratio-
nal coefficients. One says that f is (weighted) sum of squares with rational coefficients
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if it can be written

f = c1s2
1 + · · ·+ crq2

r ,

where c1, . . . , cr are in Q+, and q1, . . . , qr are in Q[x], for some positive integer r.

Any non-negative univariate polynomial f ∈ Q[x1] with rational coefficients can be
decomposed as a weighted sum of squares with rational coefficients [43, 70]. Landau
[43] proved in 1905 that the maximal number of squares is at most eight, i.e., r ≤ 8. This
result was improved by Pourchet [70] in 1971 by r ≤ 5.

More than ten years ago, Sturmfels raised the question whether a polynomial with
rational coefficients is necessarily an SOS of polynomials with rational coefficients.
Scheiderer gave a negative answer in [79], where he constructed families of explicit
homogeneous polynomials with rational coefficients that are SOS with real coefficients
but not with rational coefficients. He pointed out explicitly that the polynomial

pS = x4
1 + x1x3

2 + x4
2 − 3x2

1x2x3 − 4x1x2
2x3 + 2x2

1x2
3 + x1x3

3 + x2x3
3 + x4

3 (2.4)

has an SOS decomposition with real coefficients but there are no SOS decompositions
with rational coefficients [79].

For sums of squares of rational functions with rational coefficients, Jannsen pointed out
in [36] that, with n ≥ 2, if f ∈ Q[x] is non-negative then f is a sum of 2n+1 squares of
rational functions over Q.

Sums of squares and semi-definite programs. Interestingly, the problem of express-
ing a polynomial as an SOS can be examined from the viewpoint of convex optimization.
We are able to decide whether a polynomial can be decomposed as an SOS decompo-
sition through semi-definite programming.

A semi-definite program (SDP for short) is the following optimization problem [90]

minimize tr(CX)

subject to tr(AiX) = bi, i = 1, . . . , m,

X � 0,

where X, C, Ai are real symmetric matrices, bi in R; X is the matrix variable, C, Ai, and
bi ∈ R are given data, and tr(·) stands for the usual matrix trace operator. Consequently,
the objective function and the constraints are convex. The crucial feature of SDP is its
convexity. This convex problem can be solved by interior-point methods (see, e.g., [16,
Chapter 11]), first-order methods (see, e.g., [11]) or ellipsoid methods (see, e.g., [31,
Chapter 3]).
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Denote by vd(x) = (1, x1, x2, . . . , xn, x1x2, . . . , xd
n)

T the vector containing all monomials
of degree at most d. The length of the vector vd(x) is equal to (n+d

d ). Choi, Lam, and
Reznick [19] established the fact that f ∈ R[x] is SOS if and only if there exists a
positive semi-definite matrix Q, that is Q is a symmetric matrix having non-negative
eigenvalues, such that f = vT

d Qvd. Such a matrix Q is called a Gram matrix associated to
f . Since computing such Gram matricies reduces to solving linear matrix inequalities,
computing an SOS decomposition of f boils down to solving an SDP feasibility problem.

In practice, SDP solvers provide numerical approximations; therefore SOS decomposi-
tions obtained by this method are approximate and hence not exact, see e.g., [86] or [49,
Chapter 2].

Sums of squares and polynomial optimization. In the last two decades, inspired by
the work by Lasserre [44] and Parrilo [63], SOS theory along with semi-definite prog-
ramming have been very popular methodologies with which to attack a polynomial
optimization problem.

To briefly describe this idea, we consider the unconstrained problem as follows:

finf := inf
x∈Rn

f (x). (2.5)

This problem is NP-hard [61] when the degree of f is greater than or equal 4. Clearly,
this problem can be reformulated as follows:

finf = sup ρ s.t. f − ρ ≥ 0 on Rn. (2.6)

Replacing the non-negativity condition in (2.6) by a more tractable one is a natural idea
to handle the problem (2.6). Hereafter, replacing the non-negativity condition by the
SOS condition proposed by Shor [81], we obtain an SOS relaxation of (2.5) as follows:

fsos := sup ρ s.t. f − ρ is SOS. (2.7)

As the set of non-negative polynomials contains that of SOS polynomials, fsos is a
lower bound of finf. The relationship between semi-definite programming and SOS
theory allows us to compute fsos via a semi-definite program which can be solved in
polynomial time up to prescribed accuracy [69, 21].

Problem 1. The first topic in this thesis is about exact certificates of non-negativity for
real multivariate polynomials based on SOS decompositions with rational coefficients. We are
interested in certification algorithms, their bit complexity as well as implementations.

As described above, our main motivation comes from the need for exact certificates for
certified polynomial optimization. We recall and emphasize here the two difficulties
we are facing:
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• The set of non-negative polynomials is significantly larger than the set of SOS
polynomials.

• There exist polynomials with rational coefficients that are SOS with real coefficients,
but not with rational coefficients.

2.1.2 Exact certificates for complex univariate polynomials

Denote by i the imaginary unit. For a complex variable or number v, we denote by v̄ its
conjugate. Let z be a complex variable. For a complex univariate polynomial

h(z) = h0 + h1z + . . . + hdzd

in C[z], where hk ∈ C, we define

h?(z) := h̄0 + h̄1
1
z
+ · · ·+ h̄d

1
zd .

The unit circle C is defined by

C := {ζ ∈ C : |ζ| = 1}.

One can see that ζ̄ = ζ−1 and ζζ̄ = 1, for ζ ∈ C . Hence, on the unit circle, the product
hh? is the square of the modulus of h.

Trigonometric univariate polynomials. Let H [z] be the set of trigonometric univariate
polynomials defined as a subset of Laurent polynomials with complex coefficients and
complex variable z as follows:

f (z) = f0 +
( f1

z
+ f̄1z

)
+ · · ·+

( fd

zd + f̄dzd
)

,

with f0 ∈ R and d ∈ N. By convention, when fd 6= 0, d is the degree of f ; the degree
of the zero polynomial is −∞. Clearly, if f ∈ H [z] then f has real values on the unit
circle. Furthermore, if α is a root of f then its reciprocal 1/ᾱ is also a root of f .

Since we work with base fields of characteristic zero, we see polynomials through the
evaluation maps they define rather than as algebraic objects. Note that for f ∈ H [z],
the restriction of the map ζ 7→ f (ζ) over the unit circle C coincides with the evaluation
map defined by the polynomial

g(z) = f0 +
(

f1z̄ + f̄1z
)
+ · · ·+

(
fd z̄d + f̄dzd

)
,

since ζ̄ = ζ−1 for ζ ∈ C . Note also that for any ζ ∈ C , g(ζ) = g(ζ̄) ∈ R, so that g is
a Hermitian polynomial. Finally, note that for any Hermitian polynomial g, there exists
f ∈H [z] such that the restrictions to C of the maps ζ 7→ g(ζ) and ζ 7→ f (ζ) coincide.
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Sum of Hermitian squares. One says that f is a sum of Hermitian squares, SOHS for
short, if there exists some r ∈N \ {0} and polynomials s1, . . . , sr in C[z] such that

f (z) = s1(z)s?1(z) + · · ·+ sr(z)s?r (z). (2.8)

This terminology of Hermitian squares comes from the above discussion as s?j (ζ) =

sj(ζ̄) for all ζ ∈ C . Clearly, if f is SOHS as in (2.8) then, because of sj(z)s?j (z) = |sj(z)|2

over C , f is non-negative over C .

According to the Riesz-Fejér spectral factorization theorem (see, e.g., [22, Theorem 1.1]),
any trigonometric univariate polynomial f which is non-negative over the unit circle C

can be written as a Hermitian square. Moreover, from its proof [22, pp. 3–5], one has

f = a×
d

∏
k=1

(z− ak)×
(1

z
− āk

)
,

where (a1, 1/ā1) . . . , (αd, 1/ād) are d pairs of roots of f , and a is a positive scalar. This
allows us to design an algorithm to compute certificates of non-negativity for f in
which we are required to manipulate exactly all 2d complex roots of f . Normally, this
algorithm is applied with approximate computations, leading to approximate certificates
of non-negativity over C . We aim to compute exact certificates of non-negativity of
trigonometric polynomials. In particular, when the coefficients are Gaussian integers,
i.e., with real and imaginary parts being integers, exact SOHS decompositions of f can
be computed by hybrid numeric-symbolic methods.

Problem 2. The second topic in this thesis is about exact certificates of non-negativity for
trigonometric univariate polynomials based on SOHS decompositions with Gaussian coefficients.
We are also interested in certification algorithms, their bit complexity, and implemen-
tations.

Our motivation comes from design problems in discrete-time signal processing. In
particular, for the design of finite impulse response (FIR) filters in signal processing,
minimizing the stop-band energy is a crucial issue [22, Chapter 5]. Computing exact
SOHS decompositions of trigonometric univariate polynomials in this context appears
to be a natural computational issue.

2.2 Related works for exact SOS decompositions

2.2.1 Univariate polynomials

It is well-known that every non-negative univariate polynomial f ∈ R[x1] with real
coefficients can be decomposed as a sum of at most two squares of polynomials. Also,
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any non-negative univariate polynomial f ∈ Q[x1] is a weighted sum of squares with
rational coefficients [43, 70].

In the literature, we know of two algorithms that compute exact SOS decompositions of
a non-negative polynomial f ∈ Q[x1] with rational coefficients. The first one [80] was
raised by Schweighofer in 1999 and relies on real root isolation, quadratic approxima-
tion of positive polynomials, and square-free decomposition. The second one was
proposed by Chevillard, Harrison, Joldes, and Lauter [18] in 2011 and is based on
complex root isolation and square-free decomposition. Their bit complexities and ben-
chmarks are given in [53].

Recently, Krick, Mourrain, and Szanto in [41] have proposed a necessary and sufficient
condition for the non-negativity of a polynomial f ∈ Q[x1] over the real roots of another
polynomial g ∈ Q[x1]. In particular, under a mild condition, f is non-negative on all
the real roots of g if and only if f is an SOS modulo g. In their paper, they also provide
an algorithm to compute an SOS decomposition.

2.2.2 Multivariate polynomials

For the multivariate case, i.e., n ≥ 3, Hilbert [34] proved that every non-negative
homogeneous polynomial of degree d in R[x] is SOS if and only if d = 2 or n = 3
and d = 4. In this work, he proved that, for n = 3, every non-negative polynomial of
degree 4 is a sum of three squares.

Following the seminal works [44, 63], hierarchies of semi-definite programs yield
approximations of weighted SOS decompositions of positive polynomials. Several heuris-
tics have been proposed to lift such approximations to exact SOS decompositions of the
input polynomial. Starting with the rouding-projection method raised by Peyrl and
Parrilo [67], this method can be applied for polynomials lying on the interior of the
cone of SOS polynomials, and followed by hybrid numerical-symbolic methods [38, 39,
40]. Note that the algorithms in [38, 40] allow us to compute SOS decompositions on
some degenerate examples or compute SOS of rational fractions. Complexity issues
are studied through the lens of perturbation-compensation techniques to compute SOS
decompositions in the interior of the SOS cone [50, 51, 52]. General algorithms for
computing such exact certificates by means of SOS decompositions have been designed,
either for computing SOS decompositions with rational coefficients [78] or with alge-
braic numbers by computing exact solutions to semi-definite programs [32].

Alternative exact certificates of non-negativity, for instance, sums of non-negative
circuits and sums of arithmetic-geometric-exponentials [56, 87] can also be used.
However, they face similar issues to the ones met by SOS techniques when it comes
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with generality.

Deciding non-negativity if a polynomial f ∈ Q[x] over an arbitrary semi-algebraic set
can be done exactly using computer algebra algorithms. The best complexities for such
a decision procedure are achieved by algorithms making effective the so-called critical
point method [30, 9]. Further practical developments are given in [5, 6, 7, 76] and their
applications in polynomial optimization are given in [28, 29, 8]. Note that, even if
these algorithms are exact (i.e., their results are exact provided that no bug has been
encountered), they do not provide a certificate assessing non-negativity which can be
checked a posteriori since these are root-finding algorithms. Their complexities are
exponential in the dimension of the ambient space as they reduce the input problem to
computing finitely many critical points of some well-chosen maps. Therefore, the idea
of considering gradient ideals is natural.

In summary, such gradient ideals can be used to reduce the dimension of the set over
which certifying non-negativity can be done. Under some assumptions, this idea is
translated in [66] to an algorithm assessing the non-negativity of a given
f ∈ R[x]. Precisely, assuming the gradient ideal Igrad( f ) (which is the set of all algebraic
combinations of the partial derivatives of f ) is zero-dimensional and radical, and that
f reaches its infimum over Rn, this algorithm computes an SOS decomposition of f in
the quotient ring R[x]/Igrad( f ) (or, in other words, an SOS decomposition of f modulo
Igrad( f )), i.e., f is written as

c1s2
1 + · · ·+ cks2

k +
n

∑
i=1

qi
∂ f
∂xi

,

where the si’s and the qi’s lie in R[x] and the ci’s are positive in R. A similar result
slightly relaxing the above assumptions is given in [62]. Note that when f has coeffic-
ients in Q, there is no given guarantee that an SOS decomposition of it in Q[x]/Igrad( f )
will have rational coefficients too.

Applying Parrilo’s result in [66], one can conclude that a polynomial f ∈ R[x] is non-
negative of over the real variety of an ideal I if and only if f is SOS over the quotient
ring R[x]/I . Nie, Demmel, and Sturmfels in [62] showed that a polynomial f ∈ R[x]
which is non-negative over its real gradient variety is SOS modulo the gradient ideal
of f provided the gradient ideal is radical or f is strictly positive over the real gradient
variety [62].
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2.3 Contributions

2.3.1 Exact SOS decompositions of real multivariate polynomials

We consider the problem of computing an exact SOS decomposition of a real multivar-
iate polynomial with rational coefficients, f ∈ Q[x]. We summarize our contributions
as follows.

Existence of certificates of non-negativity with rational coefficients. We provide a necessary
and sufficient condition for the non-negativity of f ∈ Q[x] under a genericity condition.

• Assume that the gradient ideal associated to f is zero-dimensional and radical
and that f reaches its infimum over Rn. We prove in Theorem 5.1.1 that f is non-
negative over Rn if and only if f is an SOS of polynomials with rational coefficients over
the quotient ring Q[x]/Igrad( f ). We rely on an algebraic elimination procedure
based on the Shape Lemma (see Lemma 3.3.1) to reduce the problem to the univ-
ariate case. Interestingly, Theorem 5.1.1 can be applied to Robinson’s polynomial
(see Example 5.1.1), as well as Scheiderer’s polynomial (see Example 5.1.2) which
do not have an SOS decomposition with rational coefficients.

Algorithms and bit complexities. The next problem we tackle is to design algorithms that
compute such certificates of non-negativity as well as to estimate their bit complexity
for non-negative polynomial f that satisfies the conditions in Theorem 5.1.1. To measure
the bitsize of a polynomial with rational coefficients, we will use its height, defined as in
Section 4.1.

• From the proof of Theorem 5.1.1, we derive the algorithm sosgradientshape

(Algorithm 3) to compute an SOS decomposition of polynomials modulo the
gradient ideal of f . We prove that, given as input an n-variate polynomial f in
Q[x] of degree d with maximum bitsize of its coefficients τ, this algorithm uses

Õ((τ + n + d)2d6n + (τ + n + d)d6n+4)

boolean operations. This estimate is better than the complexity estimate given in
[52, Theorem 12], where the reported number is Õ(τ2(4d + 2)15n+6).

• We design a variant of the previous algorithm, named sosgradient (Algorithm 4).
On input f ∈ Q[x] as above, this algorithm decomposes f as a sum of rational
fractions modulo the gradient ideal associated to f . We prove that this variant
uses

Õ
(
(τ + n + d)d4n+4

)
boolean operations and hence has a better complexity than sosgradientshape.
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We emphasize that such complexity estimates are of interest to the polynomial optim-
ization community as they give degree bounds for the SOS multipliers required when
using the variant of the so-called “Moment-SOS hierarchy” or Lasserre’s hierarchy [44]
to minimize polynomials over their gradient ideals [62]. Indeed, such degree bounds
translate to convergence rates for the underlying optimization scheme and allow us to
estimate the overall computational cost complexity.

Experimental results. Both our algorithms have been implemented using the computer
algebra system MAPLE. We report on practical experiments, showing that our algo-
rithms can already assess the non-negativity of numerous polynomials that are out of
reach of, e.g., hybrid methods computing sums of squares decompositions such as [50].

• Our practical experiments show that Algorithm sosgradient can assess the non-
negativity of multivariate polynomials of a large set of examples which are out of reach of
the state of the art when both the number of variables and degree increase.

2.3.2 Exact SOHS decompositions of complex univariate polynomials

We design three algorithms to compute exact SOHS decompositions of polynomials
in H (Z)[z] that are positive over the unit circle C . These algorithms are based on
perturbation-compensation or rounding-projection techniques. Additionally, we ana-
lyze their bit complexities and output size as.

The first algorithm is called csos1 (Algorithm 5). Algorithm csos1 uses a perturbation-
compensation methodology in which the numerical step computes an approximate
SOHS decomposition for a well-chosen perturbation of the input polynomial with
complex root isolation. We obtain the bit complexity of the algorithm as follows:

• On input f , where f has no multiple roots, csos1 computes an SOHS decomposition of
f with (modulus of) Gaussian coefficients using at most Õ

(
d6(d + τ)

)
bit operations.

In addition, the maximum bitsize of the output coefficients is bounded from above by
Õ(d5(d + τ)).

The two other algorithms are called csos2 and csos3 (Algorithms 6 and 7, respectively).
We design two algorithms csos2 and csos3 which are based on complex semi-definite
programming. In Algorithm csos2, we compute an approximate SOHS decomposition
for the perturbation by using complex SDP solving. Algorithm csos3 is an adaptation
of the rounding-projection algorithm raised by Peyrl and Parrilo [67]. The bit complex-
ities of these two algorithms are similar because we use complex SDP solving for both:
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• On input f , csos2 and csos3 compute SOHS decompositions of f with (modulus of)
Gaussian coefficients using at most Õ(d13(d + τ)2) bit operations. In addition, the
maximal bitsize of the output coefficients is bounded from above by Õ(d6(τ + d)).

These two algorithms are more expensive than Algorithm csos1 because we replace
complex root isolation by complex SDP solving. Despite their worse complexity, they
allow one to handle constrained optimization problems and to design filters.

Experimental results. These algorithms have been implemented using the programming
environment JULIA [13].

• We report on practical experiments showing that Algorithm csos1 runs faster
than the other algorithms, coinciding with our theoretical complexity results.
Furthermore, we rely on csos3 to design filters in a certified way.

2.4 Organization of the thesis

This thesis includes three parts. Part I is the preliminary part which contains Chapters 3
and 4. In these chapters, we recall basic notions and fundamental results from algebraic
geometry and computational commutative algebra, as well as bit complexity results for
polynomial system solving.

Our main contributions appear in Part II which includes the following chapters:

• Chapter 5 is dedicated to exact certificates of non-negativity for real multivariate
polynomials. The content of this chapter is from the paper entitled “Sum of squares
decompositions of polynomials over their gradient ideals with rational coefficients” by
Victor Magron, Mohab Safey El Din, and Trung Hieu Vu [55] which has been
accepted for publication in SIAM Journal of Optimization, 2022.

• Chapter 6 presents results on exact certificates of positivity for complex univariate
polynomials. These results have been published in the paper entitled “Exact
SOHS decompositions of trigonometric univariate polynomials with Gaussian coefficients”
[54] by Victor Magron, Mohab Safey El Din, Markus Schweighofer, and Trung
Hieu Vu in the Proceedings of the 2022 International Symposium on Symbolic
and Algebraic Computation, Villeneuve-d’Ascq, France, 2022.

Finally, in Part III which contains only Chapter 7, we give some conclusions and outline
future research directions.
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CHAPTER 3

Basic notions of algebra and geometry
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This chapter recalls basic notions and results from algebraic geometry and computational
commutative algebra such as gradient ideals and varieties, Gröbner bases, and the
Shape lemma that are essential for the contribution part. The first two sections are
inspired by the monograph by Cox, Little, and O’Shea [20].

Here and subsequently, K is a field and x = (x1, . . . , xn) is a tuple of n variables. We
denote by K[x] the ring of polynomials in x over K. Every monomial in K[x] can be
written as xα = xα1

1 . . . xαn
n , where α = (α1, . . . , αn) ∈ Nn. One writes a polynomial f as

the finite sum of terms aαxα:
f = ∑

α

aαxα,

where aα ∈ K is the coefficient of xα. We denote by deg( f ) the degree of f , i.e., deg( f ) =
max{|α| = α1 + · · ·+ αn : aα 6= 0}.

3.1 Gradient ideals and varieties

This section aims to introduce the main ingredients for Chapter 5 that are gradient
ideals and gradient varieties.

Definition 3.1.1 (Ideal). An additive subgroup I of K[x] is an ideal of K[x] if hg ∈ I for
any h ∈ I and g ∈ K[x].

Given a system of polynomials g1, . . . , gr in K[x], we denote by 〈g1, . . . , gr〉 the ideal
generated by this system, i.e.,

〈g1, . . . , gr〉 = {q1g1 + · · ·+ qrgr : qi ∈ K[x]}.

According to Hilbert’s basis theorem (see, e.g., [20, Ch.2, §5, Thm. 4]), every ideal in
R[x] is a finitely generated ideal, i.e., if I is an ideal of K[x] then there exist g1, . . . , gr ∈
K[x] such that I = 〈g1, . . . , gr〉.

28



3.1. GRADIENT IDEALS AND VARIETIES 29

Definition 3.1.2 (Gradient ideal). Let f be a polynomial in K[x]. The gradient ideal of f ,
denoted by Igrad( f ), is the ideal generated by all partial derivatives of f in K[x], i.e.,

Igrad( f ) :=
〈

∂ f
∂x1

, . . . ,
∂ f
∂xn

〉
.

Example 3.1.1. We consider the polynomial fE in two variables x1, x2 of degree 4 with
real coefficients

fE = 2x2
1 + 4x1x2 + x4

2 + 3. (3.1)

The gradient ideal Igrad( fE) is

Igrad( fE) =
〈
4x1 + 4x2, 4x1 + 4x3

2
〉

. (3.2)

Definition 3.1.3. (Algebraic variety) Let I be an ideal of R[x]. The algebraic variety
associated to I is defined as

V(I) := {a ∈ Cn : ∀g ∈ I , g(a) = 0}. (3.3)

From the definition, the algebraic variety associated to I is the set of complex points on
which the polynomials in I simultaneously vanish.

Definition 3.1.4 (Gradient variety). Let f be a polynomial in K[x]. The gradient variety
of f is respectively the algebraic variety associated to Igrad( f ). We denote Vgrad( f ) by
the gradient variety associated to f .

Example 3.1.2. An easy computation shows that the gradient variety of the polynomial
fE in Example 3.1.1 is the following set that has only real points

Vgrad( fE) = {(0, 0), (1, 1), (1,−1)} .

Definition 3.1.5 (Zero-dimensional ideal). The ideal I is zero-dimensional if V(I) is finite
and non-empty.

The dimension of the empty set is conventionally −1. It is worth noting here that if
I is zero-dimensional then we can get a bound on the expected cardinality of V(I),
denoted by #V(I), from Bezout’s theorem [20, Ch.8, §7, Thm. 10]. In particular, if the
gradient ideal Igrad( f ) is zero-dimensional, then #V(Igrad( f )) is bounded from above
by (d− 1)n, where d is the degree of f .

We now recall some useful terminology concerning quotients of polynomial rings.

Definition 3.1.6 (Congruent modulo). Let I be an ideal, and let p, q in K[x]. One says
that p and q are congruent modulo I , denoted by p ≡ a mod I , if p− q belongs to I .
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Note that congruence modulo I is an equivalence relation on K[x]. The quotient of
K[x] modulo I , denoted by K[x]/I , is the set of equivalence classes of the equivalence
relation modulo I :

K[x]/I = {[q] : q ∈ K[x]},

where [q] is the equivalence class of q, i.e., [q] = {p ∈ R[x] : p ≡ q mod I}. On the
quotient K[x]/I , we can define sum and product operations as follows:

[p] + [q] := [p + q], [p] · [q] := [p · q],

for any p, q in R[x]. The quotient K[x]/I is a commutative ring under the operations
given above.

Let V ⊂ Cn be a variety. The set of all polynomials that vanish on V is an ideal of K[x]

I(V) := {q ∈ R[x] : q(x) = 0 for all x ∈ V}. (3.4)

Given an ideal I of R[x], its radical is the ideal
√
I := {q ∈ R[x] : qm ∈ I for some m ∈N}.

Clearly, I ⊂
√
I . One has the following definition for the case that the converse

inclusion holds.

Definition 3.1.7 (Radical ideal). The ideal I is radical if I =
√
I .

Example 3.1.3. Consider the ideal I =
〈

x3
1x2
〉

in R[x1, x2]. Its radical is
√
I = 〈x1x2〉.

Clearly, x2
1x2 belongs to

√
I but it does not belong to I . This implies I 6=

√
I and

therefore I is not radical.

Hilbert’s Strong Nullstellensatz [20, Ch. 4, §2, Thm. 6]) tells us that if a polynomial g
vanishes at all points of the variety V(I) then some power of g itself must belong to√
I . This property will be used in the proof of Theorem 5.2.1 in Chapter 5.

Theorem 3.1.1 (Hilbert’s Strong Nullstellensatz). Let I be an ideal in R[x]. Then,
I(V(I)) =

√
I .

Let I be radical. According to Hilbert’s Strong Nullstellensatz, I(V(I)) = I . This
implies that if a polynomial g vanishes at all points of V(I) then g must belong to I .

The most important consequence of the Nullstellensatz is that it allows us to build a
strong relationship between algebra and geometry. In particular, if we restrict to radical
ideals of R[x], then the maps V and I, defined respectively in (3.3) and (3.4), are inverses
of each other, and they define bijections between the set of radical ideals and varieties
[20, Ch. 4, §2, Thm. 7].
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3.2 Gröbner bases of ideals

We give the definition of a Gröbner basis of an ideal, their elementary properties, and a
criterion to check whether a given generating set of an ideal is a Gröbner basis. These
will be ingredients in the next section (Section 3.3) and will be used to prove Theorems
5.1.1 and 5.2.1 in Chapter 5.

Encoding a monomial xα by a n-tuple α in Nn allows us to construct a one-to-one corres-
pondence between the monomials and Nn. Hence, if we have an ordering < on Nn,
then we can build an ordering < on the monomials of K[x].

Definition 3.2.1. A monomial ordering < on K[x] is a relation < on Nn satisfying the
three following conditions:

1. < is a total ordering on Nn, i.e., < is transitive, and for every pair α, β in Nn,
exactly one of the three statements α < β, β < α, and α = β holds;

2. < is a well-ordering on Nn, i.e., every non-empty subset of Nn has a smallest
element under the relation <;

3. If α < β and γ ∈Nn then α + γ < β + γ.

We write xα < xβ if α < β.

Example 3.2.1. We consider two important monomial orderings on K[x] that will be
used in the thesis. First, one says α <lex β if the leftmost non-zero entry of β − α is
positive; This relation is a monomial ordering on Nn called lexicographic order. Second,
one says α <grlex β if |α| < |β|, or |α| = |β| and α <lex β; in this case, <grlex is a graded
lexicographic order on Nn.

Let < be a monomial ordering on K[x] and I 6= {0} be an ideal. We denote by LT( f )
the leading term of f ∈ I with respect to <, i.e., if f = ∑α aαxα then LT( f ) = aβxβ such
that aβ 6= 0 and α < β for any α with aα 6= 0. In this case, mdeg( f ) = β is called the
multi-degree of f , and aβ is called the leading coefficient of f . Denote by LT(I) the set of
all leading terms LT(g) of g ∈ I with respect to <, and by 〈LT(I)〉 the ideal generated
by the elements of LT(I).

Definition 3.2.2 (Gröbner basis). Fix a monomial order < on K[x]. A finite subset
G = {g1, . . . , gr} of I is said to be a Gröbner basis of I with respect to the order <

if
〈LT(g1), . . . , LT(gr)〉 = 〈LT(I)〉 .

Using the convention that 〈∅〉 = {0}, we define the empty set to be the Gröbner basis
of the zero ideal.
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In the following example, we will give a subset that is not a Gröbner basis . A subset
that is a Gröbner basis will be shown later.

Example 3.2.2. ([20, Ch. 2 §5, Example 2]) We consider the ideal I = 〈g1, g2〉, where

g1 = x3
1 − 2x1x2, g2 = x2

1x2 − 2x2
2 + x1,

and use the graded lexicographic ordering on monomials in R[x1, x2]. We can see that
x2

1 = x1g2 − x2g1 ∈ I , hence x2
1 = LT(x2

1) ∈ 〈LT(I)〉. However, x2
1 is not divisible by

LT(g1) = x3
1 or LT(g2) = x2

1x2. According to [20, Ch. 2 §2, Lemma 2], x2
1 does not belong

to 〈LT(g1), LT(g2)〉. This implies that {g1, g2} is not a Gröbner basis for I .

Assume that G is a Gröbner basis of I with respect to some monomial order < and that
p is a polynomial in K[x]. The remainder of the division of p by G does not depend
on how the elements of G are listed. Hence, the remainder is unique. Furthermore, the
remainder is zero if and only if p belongs to the ideal.

Note that every ideal I in K[x] has a Gröbner basis. If G = {g1, . . . , gr} is a given basis
of I and < is a given monomial order, Buchberger’s Algorithm [20, Ch. 2 §7] allows
us to compute a Gröbner basis with respect to < based on G. Moreover, Buchberger’s
Criterion tells us whether a given generating set of an ideal is a Gröbner basis.

We now recall Buchberger’s Criterion that will be used in the proof of Theorems 4.3.2
and 5.2.1.

Suppose that polynomials p, q ∈ K[x] have multi-degrees mdeg(p) = α = (α1, . . . , αn)

and mdeg(p) = β = (β1, . . . , βn) with respect to the monomial order <. We denote
γi := max{αi, βi} and xγ is the least common multiple of LT(p) and LT(q), written
xγ = lcm(LT(p), LT(q)). The S-polynomial of p and q is the combination

S(p, q) =
xγ

LT(p)
× p− xγ

LT(q)
× q.

Theorem 3.2.1 (Buchberger’s Criterion). Let G = {g1, . . . , gr} be a basis of I . Then, G is a
Gröbner basis if and only if, for any pair i 6= j, the remainder of the division of S(gi, gj) by G is
zero.

The following example illustrates Buchberger’s Criterion.

Example 3.2.3. We consider the ideal Igrad( fE) = 〈g1, g2〉 defined in Example 3.1.1,
where g1 = x1 + x2, g2 = x1 + x3

2 with the graded lexicographical order x1 < x2. We see
that LT(g1) = x2, α = mdeg(g1) = (0, 1), LT(g2) = x3

2, β = mdeg(g2) = (0, 3); thus,
γ = (0, 3). The S-polynomial of g1 and g2 is

S(g1, g2) =
x3

2
x2
× (x1 + x2)−

x3
2

x3
2
× (x1 + x3

2) = x1x2
2 − x1.
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According to Buchberger’s Criterion, {g1, g2} is not a Gröbner basis of Igrad( fE).

Definition 3.2.3. A Gröbner basis G is reduced if the leading coefficient of g is 1, for all
g ∈ G, and there are no monomials of g lying in 〈LT(G) \ {g}〉.

For a given monomial ordering, every ideal I has a unique reduced Gröbner basis.

Example 3.2.4. We consider the ideal I = 〈g1, g2〉, where g1 = x3
1 − x1 and g2 = x2 + x1

with the graded lexicographical order x1 < x2. Using Buchberger’s Criterion, we can
show that {g1, g2} is a Gröbner basis of I . Furthermore, we can check that this is the
reduced Gröbner basis.

3.3 Shape position of a zero-dimensional and radical ideal

This section introduces notions and results concerning the so-called Shape Lemma that
is the key to reduce a multivariate problem to a univariate one in our research. We will
exploit these results in the proofs of the existence of SOS decompositions in Theorems
5.1.1 and 5.2.1 in Chapter 5.

Assume that I is a zero-dimensional and radical ideal in Q[x] and that G is the reduced
Gröbner basis of I with respect to the lexicographical order x1 < · · · < xn.

Definition 3.3.1. One says that I is in shape position if G has the form:

G = [w, x2 − v2, . . . , xn − vn], (3.5)

where w, v2, . . . , vn are polynomials in K[x1] and deg w = #V(I).

The following lemma, named Shape Lemma, gives us a criterion for being in shape
position of an ideal.

Lemma 3.3.1 (Shape Lemma, [26]). Let I be a zero-dimensional and radical ideal and < be a
lexicographic monomial order in Q[x]. If V(I) is the union of δ points in Cn with distinct x1-
coordinates, then I is in shape position as in (3.5), where v2, . . . , vn are polynomials in Q[x1]

of degrees at most δ− 1.

Example 3.3.1. Consider the ideal Igrad( fE) defined in (3.2) which is zero-dimensional
and radical with the graded lexicographical order x1 < x2. An easy computation shows
that

Igrad( fE) =
〈

x1 + x2, x1 + x3
2
〉
=
〈

x3
1 − x1, x2 + x1

〉
.

We see that Igrad( fE) is in shape position as in (3.5), where w(x1) = x3
1 − x1, δ = 3 and

v2 = −x1 of degree 1.
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Definition 3.3.2. Let V be a zero-dimensional algebraic subset of Cn. A zero-dimensional
rational parametrizationQ = ((w, κ1, . . . , κn), λ) of V consists of n + 1 univariate polyno-
mials w, κ1, . . . , κn in Q[t] such that w is monic and square-free, deg κi < deg w, for
i = 1, . . . , n, and a Q-linear form λ in n variables satisfying λ(κ1, . . . , κn) = tw′ mod w,
where w′ is the derivative of w, such that

V =

{( κ1(t)
w′(t)

, . . . ,
κn(t)
w′(t)

)
: w(t) = 0

}
.

The condition on the linear form λ states that the roots of w are precisely the values
taken by λ on V , and that λ separates V , i.e., λ(x) 6= λ(y) for any distinct pair x, y in V .

Note that there exist algorithms to compute a zero-dimensional rational parametrization
of a zero-dimensional algebraic subset given by a polynomial sequence with rational
coefficients [75, 27].

Example 3.3.2. Consider the ideal Igrad( fE) given in (3.2) which is zero-dimensional.
Its variety has a zero-dimensional rational parametrization ((w, κ1, κ2), λ) given by

λ = x1, w = t3 − t, κ1 = −t1, κ2 = 2t. (3.6)

One has w′ = 3t2 − 1 and

Vgrad( fE) =

{( −2t
3t2 − 1

,
2t

3t2 − 1

)
: t3 − t = 0

}
. (3.7)

The polynomial w has three real roots which are −1, 0, and 1. By replacing t with these
values in (3.7), we obtain the variety Vgrad( fE) as follows:

Vgrad( fE) = {(0, 0), (1, 1), (1,−1)} .

This set coincides with the set computed in Example 3.1.2.

The following lemma points out the explicit shape position of a zero-dimensional and
radical ideal I through a zero-dimensional rational parametrization of its variety.
Importantly, the proof shows us how to compute the reduced Gröbner basis of I with
respect to a given lexicographical order.

Lemma 3.3.2. Let I be a zero-dimensional and radical ideal, and < be a lexicographic monomial
order in Q[x]. Assume thatQ = ((w, κ1, . . . , κn), x1) is a zero-dimensional rational parametri-
zation of V = V(I). Then, there exist polynomials w, v2, . . . , vn in Q[x1] satisfying deg vi <

deg w, for i = 2, . . . , n, such that I = 〈w, x2 − v2, . . . , xn − vn〉.

Proof. Because w is square-free and w′ is the derivative of w, one sees that the gcd of w
and w′ is 1. From the extended Euclidean algorithm [85, Algorithm 3.14], there exist two



3.3. SHAPE POSITION OF A ZERO-DIMENSIONAL AND RADICAL IDEAL 35

Bézout coefficients of w and w′, namely a, b in Q[x1], with aw+ bw′ = 1. For i = 2, . . . , n,
we see that w′xi(t) = κi(t) for any t satisfying w(t) = 0. As deg κi < deg w and the
linear form λ = x1 separates V , we have w′xi = κi. This yields bw′xi = bκi. Since bw′ =
1 − aw, we observe that xi − awxi = bκi and, hence, xi = bκi mod w. By denoting
vi := bκi mod w, we obtain w, v2, . . . , vn which are the desired polynomials.

Example 3.3.3. Consider the ideal Igrad( fE) in Example 3.3.2. The zero-dimensional
rational parametrization of Vgrad( fE) is given in (3.6). Apply the procedure in the proof
of Lemma 3.3.2, we obtain w = x3

1 − x1 and v2 = −x1.
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To measure the complexity of algorithms we use bit complexity. In this chapter, we
provide fundamental results on bit complexity analysis of algorithms concerning uni-
variate and multivariate divisions, computing zero-dimensional rational parametriza-
tions, solving semi-definite programs, and computing lower bounds of the minimum
of a polynomial on the unit circle. These are tools we rely on to investigate the bit
complexity of our new algorithms.

4.1 Bitsize of polynomials with rational coefficients

We use the height of a polynomial with rational coefficients to measure its bitsize that is
defined as follows. The bitsize of an integer b is denoted by ht(b) := blog2(|b|)c + 1
when b 6= 0 and by ht(0) := 1, where log2 is the binary logarithm. Given a ∈ Z and
b ∈ Z with b 6= 0 and gcd(a, b) = 1, we define ht (a/b) = max(ht(a), ht(b)). If a, b ∈ Q,
we define the bitsize of a Gaussian rational number as ht(a + ib) = max(ht(a), ht(b)),
where i is the imaginary unit. For a non-zero polynomial f with (Gaussian) rational
coefficients, we define the height of the polynomial f , denoted by ht( f ), as the maximum
bitsize of the non-zero coefficients of f .

For two maps p, q : Nm → R, one writes “p(v) = O(q(v))” when there exists b ∈ N

such that p(v) ≤ bq(v), for all v ∈ Nm. We use the notation p(v) = Õ(q(v)) when
p(v) = O(q(v) logk q(v)) for some k ∈N.

36
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4.2 SOS decomposition of non-negative univariate polynomials

In our study, the key idea to handle the multivariate case of computing SOS decomposi-
tions is reducing the problem to the univariate case. Hence, we need to recall known
results related to SOS decompositions of univariate polynomials which will be used in
the proof of Theorems 5.1.1 and 5.2.1 in Chapter 5.

It is well-known that f ∈ R[t] is non-negative over R if and only if f is SOS. This
property holds also for polynomials with coefficients in a subfield K of R. More preci-
sely, we have the following theorem:

Theorem 4.2.1 ([43, 70]). Let K be a subfield of R and f ∈ K[t]. Then, f is non-negative over
R if and only if f admits a weighted SOS decomposition of polynomials in K[t], i.e., there exists
a positive integer s, non-negative numbers c1, . . . , cs ∈ K and polynomials g1, . . . , gs ∈ K[t],
such that f = ∑s

j=1 cjg2
j .

Example 4.2.1. Consider the univariate polynomial h(t) = 2t4 − t2 + 10 in Q[t]. One
has the following two weighted rational SOS decompositions of h as follows:

h = 2(t− 1
4
)2 +

79
8

=
1
2

t4 +
3
2
(t2 − 5

2
)2 +

13
2

t2 +
5
8

.

To compute an SOS decomposition of a non-negative univariate polynomial with ratio-
nal coefficients, we use the algorithm by Schweighofer [80] named univsos1 or the
algorithm by Chevillard, Harrison, Joldes, and Lauter [18] named univsos2. Here, we
need to recall their bit complexities. From the theoretical results below, it is worth
mentioning that univsos2 runs faster than univsos1.

Theorem 4.2.2 ([53], Theorems 16–17). Let h ∈ Z[t] be a non-negative univariate polynomial
of degree d and bitsize τ. Then, on input h, univsos1 runs in

Õ
((d

2

) 3d
2

τ
)

boolean operations and the maximum bitsize of the coefficients involved in the SOS decomposition
is bounded from above by

O
((d

2

) 3d
2

τ
)

.

Theorem 4.2.3 ([53], Theorems 23–24). Let h ∈ Z[t] be a non-negative univariate polynomial
of degree d and bitsize τ. Then, on input h, univsos2 runs in Õ

(
d3 + d2τ

)
boolean operations

and the maximum bitsize of the coefficients involved in the SOS decomposition is bounded from
above by O

(
d3 + d2τ

)
.
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4.3 Univariate and multivariate division algorithms

We now establish the bit complexity of the Euclidean division algorithm and a multiva-
riate division algorithm which will be used later on to investigate the bit complexity of
our algorithms.

4.3.1 Euclidean division algorithm

Lemma 4.3.1. Let a, b be polynomials in Z[t], with deg a = d ≥ m = deg b, and τ be an
upper bound of ht(a) and ht(b). To compute the quotient q and the remainder r of the division
of a by b, we use the Euclidean division algorithm [85, Algorithm 2.5]. This algorithm uses
O
(
mτ(d−m)2) boolean operations. Furthermore, both bitsizes of q and r are bounded from

above by O (τ(d−m)).

We recall the Euclidean division algorithm [85, Algorithm 2.5] in Algorithm 1 to comp-
ute the quotient q and the remainder r of the division of a by b, i.e., a = qb + r with
deg r < deg b.

Algorithm 1 Euclidean division algorithm

Input: polynomials a, b ∈ Z[t]
Output: polynomials q, r ∈ Q[t] such that a = qb + r and deg r < deg b

1: Set q := 0 and r := a
2: while deg r ≥ deg b do
3: Set h := lc(r)/lc(b)tdeg r−deg b

4: Set q := q + h
5: Set r := r− hb
6: done
7: return q and r

Proof. Assume that a, b are polynomials in Z[t] with deg a = d ≥ deg b = m and that
ht(a), ht(b) are bounded from above by τ. We denote by ri (resp. qi, hi) the value of
r (resp. q, h) after the i-th iteration of the while loop from Line 2. The initial values
are q0 = 0 and r0 = a. After each iteration of the while loop, the degree of r is strictly
decreasing. Hence, the while loop will terminate after k iterations, where k ≤ d−m.

We now compute the numbers of boolean operations to perform the operations in Lines
3–5. From hi = lc(ri−1)/lc(b)tdeg ri−1−deg b in Line 3, we observe that

ht(hi) = max{ht(b), ht(ri−1)} ≤ max{τ, ht(ri−1)} ≤ τ + ht(ri−1), (4.1)
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and the number of boolean operations to perform Line 3 is bounded by τ + ht(ri−1).
Note that the number of boolean operations to perform the operation in Line 4 is
bounded by O(1). We consider the operation in Line 5, i.e., ri = ri−1 − hib. The
estimate in (4.1) implies ht(hib) ≤ 2τ + ht(ri−1); then the bitsize of ri is bounded by
2τ +ht(ri−1). We get the recurrence formula ht(ri+1) ≤ ht(ri)+ 2τ, for each i = 0, . . . , k,
with ht(r0) = τ. It follows that ht(ri) ≤ 2iτ + τ, for each i = 0, . . . , k. This yields

ht(r) = ht(rk) ≤ 2(d−m)τ + τ = O((d−m)τ).

In Line 5, the number of boolean operations to compute hib is O(m(τ + ht(ri−1))), so ri

is also computed in O(m(τ + ht(ri−1))) boolean operations.

From above, to compute every iteration in Line 2, we need O(mτ(d−m)) the boolean
operations. Since the algorithm has at most d − m iterations, the number of boolean
operations to perform the algorithm is O(mτ(d−m)2).

To complete the proof, we estimate the bitsize of q. Since qi = qi−1 + hi, from (4.1), one
has

ht(qi) ≤ max{ht(qi−1), ht(hi)} ≤ ht(qi−1) + τ + ht(ri−1).

This yields ht(q) ≤ (d−m)τ + ht(r) = O((d−m)τ). This is the desired estimate.

4.3.2 Multivariate division algorithm Eliminate

Denote by Q(x1) the field of rational fractions in variable x1 with coefficients in Q. With
the lexicographic monomial order x2 < · · · < xn, we consider the standard multivariate
division [20, Ch. 2, Sec 3.] of g ∈ Q[x1][x2, . . . , xn] by the list

[x2 −
a2

a0
, . . . , xn −

an

a0
],

where a0, a2, . . . , an ∈ Q[x1]. To compute the quotients φ2, . . . , φn ∈ Q(x1)[x2, . . . , xn]

and remainder r ∈ Q(x1), here

g =
n

∑
i=2

φi(xi −
ai

a0
) + r, (4.2)

we iterate classical univariate divisions by xi − ai
a0

for i = n, . . . , 2 considering them
as univariate in xi so that we eliminate step by step the variables xn, . . . , x2 in g. The
details of this algorithm, which we name Eliminate, are given in Algorithm 2. The
inputs of Eliminate are g, a0, a2, . . . , an and its outputs are the quotients [φ2, . . . , φn]

and the remainder r.

Theorem 4.3.2. Let g be in Q[x1][x2, . . . , xn], and a0, a2, . . . , an be in Q[x1]. We consider the
lexicographic monomial order x2 < · · · < xn on Q(x1)[x2, . . . , xn]. On input g, a0, a2, . . . , an,
Eliminate terminates and outputs quotients φ2, . . . , φn ∈ Q(x1)[x2, . . . , xn] and remainder
r ∈ Q(x1) satisfying (4.2).
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Algorithm 2 Elimination algorithm

Eliminate := proc(g, a0, a2, . . . , an)

Input: n + 1 polynomials g ∈ Q[x1][x2, . . . , xn], a0, a2, . . . , an ∈ Q[x1]

Output: φ2, . . . , φn in Q(x1)[x2, . . . , xn] and r ∈ Q(x1) satisfying (4.2)
1: Set rn+1 := g
2: for i = n to 2 do
3: Compute φi := quo(ri+1, xi − ai

a0
, xi)

4: Substitute xi by ai
a0

in ri+1 to define ri := ri+1(x1, . . . , xi−1, ai
a0
)

5: done
6: Set r := r2

7: return [φ2, . . . , φn], and r

Proof. Let us consider the list of polynomials in Q(x1)[x2, . . . , xn]:

G = [x2 −
a2

a0
, . . . , xn −

an

a0
],

where a0, a2, . . . , an are polynomials in Q[x1], with a0 6= 0. Algorithm Eliminate outputs
[φ2, . . . , φn] ⊂ Q(x1)[x2, . . . , xn] and r ∈ Q(x1). We now prove that these polynomials
are the quotients and remainder of the multivariate division of g by the list G, i.e., they
satisfy (4.2).

In Line 3, φi is the quotient of the univariate division (in the variable xi) of ri+1 by xi− ai
a0

.
Since the degree of xi in xi − ai

a0
is 1, φi belongs to Q(x1)[x2, . . . , xi]. The remainder ri of

the division in Line 3 is given in Line 4 after replacing xi by ai
a0

in ri+1. Hence one has
ri ∈ Q(x1)[x2, . . . , xi−1]. After Lines 3-4, we obtain

ri+1 = φi

(
xi −

ai

a0

)
+ ri. (4.3)

Therefore, after Line 6, we get g = ∑n
i=2 φi(xi − ai

a0
) + r, with r ∈ Q(x1). Based on

Buchberger’s Criterion (Theorem 3.2.1), we can see that the system of n− 1 polynomials

[x2 −
a2

a0
, . . . , xn −

an

a0
]

is a Gröbner basis of the ideal generated by this system with respect to the lexicographic
monomial order x2 < · · · < xn in Q(x1)[x2, . . . , xn]. Hence, φ2, . . . , φn and r are uniquely
defined. The correctness of the algorithm is proved.

To illustrate how Eliminate works, we consider a simple example.

Example 4.3.1. Consider polynomials g = x2
1 + x1x2 + 2x2

2 in Q[x1, x2] and a0 = x2
1 + 1,

and a2 = x1 in Q[x1]. We will perform the division of g by x2 − a2/a0. Since n = 2, we
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only need to compute the quotient φ2 and remainder r,

g = φ2

(
x2 −

a2

a0

)
+ r.

By performing Line 3, we obtain

φ2 = quo(g, x2 −
a2

a0
, x2) = x1 + 2x2 +

2x1

x2
1 + 1

.

The remainder r is computed by performing Line 4. One has that

r = g(x1,
a2

a0
) = x1 +

x2
1

x2
1 + 1

+
2x2

1

(x2
1 + 1)2

.

The bit complexity of Algorithm Eliminate is given in the following lemma.

Lemma 4.3.3. Assume that g ∈ Q[x1][x2, . . . , xn] has degree d in x2, . . . , xn and bitsize τg,
and that the polynomials a0, a2, . . . , an ∈ Q[x1] have bitsizes at most τa. Then, Eliminate
runs in

Õ
(
nτg + n2dτa

)
boolean operations and the bitsizes of the outputs φ2, . . . , φn are in Õ

(
τg + ndτa

)
.

Proof. Firstly, we estimate the bitsizes of φi, for i = 2, . . . , n. From the definition of ri

in Line 4, one sees that ht(ri) ≤ ht(ri+1) + 2dτa. Since ht(rn+1) = τg, the bitsize of ri is
bounded from above by τg + 2(n− 1)dτa. The relation (4.3) leads to

ht(φi) ≤ ht(ri+1 − ri) + ht(xi −
ai

a0
).

Because ht(ri+1 − ri) ≤ max{ht(ri+1), ht(ri)} and ht( ai
a0
) ≤ 2τa, we get

ht(φi) ≤ τg + 2(nd− d + 1)τa.

It follows that ht(φi) = Õ(τg + ndτa).

Clearly, the number of boolean operations to perform Lines 3 and 4 are Õ(τg + ndτa)

and O(1) respectively. The for loop in Line 2 has n− 1 steps. Therefore, the number of
boolean operations to perform the loop is Õ(nτg + n2dτa). This is also the number of
boolean operations that Algorithm Eliminate uses.

4.4 Computing zero-dimensional rational parametrizations

In our new algorithms (Algorithms 3 and 4) in Chapter 5, we need to compute a zero-
dimensional rational parametrization of the algebraic variety associated to a zero-dimen-
sional and radical ideal. The bit complexity of this procedure has been pointed out in
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[77, Corollary 2]. In this section, we estimate the bit complexity of an algorithm (in
the proof of Lemma 3.3.2) which computes a shape position from a zero-dimensional
parametrization.

Let f be in Q[x] of degree d and bitsize τ. Assume that Vgrad( f ) is finite. By applying [77,
Corollary 2] to the system of partial derivatives of f , we obtain the following corollary
which states that there exists an algorithm computing a zero-dimensional rational para-
metrization of Vgrad( f ).

Corollary 4.4.1. Assume that Vgrad( f ) is finite. There exists a probabilistic algorithm that
takes f as in input, and that produces one of the following outputs:

a) either a zero-dimensional rational parametrization of Vgrad( f ),

b) a zero-dimensional rational parametrization of degree less than that of Vgrad( f ),

c) or fails.

In any case, the algorithm uses

Õ
(

n2(d + τ)d2n+1
(

n + d
d

))
(4.4)

boolean operations. Moreover, the polynomials w, κ1, . . . , κn involved in the parametrization
output have degrees at most (d− 1)n and bitsize Õ ((d + τ + n)(d− 1)n) .

Proof. Assume that the sequence of partial derivatives

∂ f
∂x1

, . . . ,
∂ f
∂xn

(4.5)

is given by a straight-line program Γ of size L, i.e., the program uses L elementary
operations +,−,× to evaluate the sequence (4.5) from variables x1, . . . , xn and integers
with bitsizes at most maxn

i=1{ht
(

∂ f
∂xi

)
}.

We claim that L is O(d(n+d
d )). Indeed, f has at most (n+d

d ) terms and each term in f is
defined by at most d + 1 multiplications. Hence, the size of a straight-line program Γ f

which defines f does not exceed (d + 1)(n+d
d ). By applying Baur-Strassen Theorem [10,

Theorem 1], the size L is O(d(n+d
d )).

Recall that

ht
(

∂ f
∂xi

)
≤ log d + ht( f ) = log d + τ,

for i = 1, . . . , n. By applying [77, Corollary 2] for the system 4.5 and a single group of
variables, there exists an algorithm that takes the system as input and that produces
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one of the outputs given as in items a)– c) of Corollary 4.4.1. The number of boolean
operations of the algorithm is

Õ
(

n2d2n(log d + τ + (d− 1))(d
(

n + d
d

)
+ n(d− 1) + n2)

)
.

After reducing this formula, we get (4.4). Furthermore, the polynomials in the output
have degrees at most (d− 1)n and bitsize

Õ
(
(d− 1)n(log d + τ + n + (d− 1))

)
= Õ

(
(τ + n + d)(d− 1)n

)
,

as claimed.

Lemma 4.4.2. Let I be a zero-dimensional and radical ideal, and < be a lexicographic monomial
order in Q[x]. To compute the reduced Gröbner basis [w, x2 − v2, . . . , xn − vn] from the zero-
dimensional rational parametrizationQ = ((w, κ1, . . . , κn), x1) as in the proof of Lemma 3.3.2,
we use

Õ
(
(τ + n + d)2d6n) (4.6)

boolean operations. Moreover, the polynomials w, v2, . . . , vn have degrees at most (d− 1)n and
their maximum bitsizes are bounded from above by Õ((τ + n + d)d3n).

Proof. By Corollary 4.4.1, the degree of w is at most (d − 1)n and so deg w′ is at most
(d− 1)n − 1. Assume that β is the positive minimum common denominator of all non-
zero coefficients of w. Then, βw and βw′ belong to Z[t]. Clearly,

deg(βw′) = deg(βw)− 1, deg(βw) ≤ (d− 1)n,

and the bitsizes of βw and βw′ are bounded from above by Õ ((τ + n + d)(d− 1)n).
We can apply [85, Theorem 6.52] to βw and βw′. The extended Euclidean algorithm
computes the Bézout coefficient of βw′, denoted by b, using

Õ(τ + n + d)2(d− 1)6n) (4.7)

boolean operations. The bitsize of b is bounded by

O
(
(τ + n + d)(d− 1)2n) . (4.8)

Furthermore, one sees that the degree of b satisfies

deg b ≤ deg w− deg gcd(w, w′) = deg w ≤ (d− 1)n. (4.9)

For every i = 2, . . . , n, we estimate the bitsize of the polynomial bκi. Recall from
Corollary 4.4.1 that deg κi ≤ (d − 1)n, hence from (4.9) one has deg bκi ≤ 2(d − 1)n.
From (4.8), we obtain

ht(bκi) ≤ ht(b) + ht(κi) = Õ((τ + n + d)(d− 1)2n) + Õ((τ + n + d)(d− 1)n).
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After simplifying the last estimate, the bitsize of bκi is bounded from above by
Õ((τ + n + d)(d− 1)2n). Hence, the bitsize of ηbκi, where η is the minimum common
denominator of all non-zero coefficients of bκi, can be estimated as follows

ht(ηbκi) ≤ 2 ht(bκi) ≤ Õ((τ + n + d)(d− 1)2n).

In the proof of Lemma 3.3.2, we considered the division of bκi by w and defined vi = bκi

mod w. Thus, the degree of vi is at most deg w ≤ (d − 1)n. From Lemma 4.3.1, the
Euclidean division algorithm computes vi using at most

Õ((τ + n + d)(d− 1)5n) (4.10)

boolean operations. Thus, the bitsize of vi is Õ((τ + n + d)(d− 1)3n), for i = 2, . . . , n.
Therefore, computing [w, v2, . . . , vn] from the zero-dimensional rational parametrization
Q of Vgrad( f ), requires

Õ((τ + n + d)2(d− 1)6n + (n− 1)(τ + n + d)(d− 1)5n)

boolean operations, as a consequence of (4.7) and (4.10). By applying further simplifi-
cations, we obtain the desired result (4.6).

4.5 Solving semi-definite programs

Our two algorithms (Algorithms 6 and 7) in Chapter 6 are based on complex semi-
definite programming. Thus, we need to recall some notions related to semi-definite
programming together complexity considerations.

4.5.1 Background on semi-definite matrices

One says that Q ∈ Cn×n is a Hermitian matrix if Q is equal to its own conjugate transpose
Q̄T, also denoted by Q?. That is, if its entries satisfy qij = q̄ji for all 1 ≤ i, j ≤ n. Clearly,
all entries lying on the diagonal of a Hermitian matrix are real numbers. We denote by
Hn the set of all Hermitian n× n-matrices. We denote by Sn the set of all real symmetric
n× n-matrices.

A matrix Q ∈ Hn is said to be positive semi-definite (resp. definite) if Q has only non-
negative (resp. positive) eigenvalues, and in this case we use the notation Q � 0 (resp.
Q � 0). The Cholesky decomposition of a Hermitian positive-definite matrix Q is the
product LL?, where L is a lower triangular matrix with real and positive diagonal
entries, and L? is the conjugate transpose of the matrix L. A related variant of the
Cholesky decomposition is the LDL decomposition, Q = LDL?, where L is a lower
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unit triangular matrix, i.e. the diagonal elements of L are required to be 1, and D is
a diagonal matrix.

The following result is obtained by applying directly the argument in the proofs of [4,
Lemma 2.1 & Theorem 3.2] in the complex case, and will be used to investigate the bit
complexity of Algorithms csos2 and csos3 based on SDP solving in Chapter 6.

Lemma 4.5.1 ([4]). Let Q ∈ Hn be positive definite with Gaussian entries. Assume that L is
the factor of Q computed by Cholesky’s decomposition with finite precision δc. Then, we have
LL? = Q + H, where

|Hij| ≤
(n + 1)2−δc

√
|QiiQjj|

1− (n + 1)2−δc
. (4.11)

In addition, if the smallest eigenvalue λ̃ of Q satisfies the inequality

2−δc <
λ̃

n2 + n + (n− 1)λ̃
, (4.12)

Cholesky’s decomposition returns a nonsingular factor L with Gaussian entries.

4.5.2 Bit complexity of solving semi-definite programs

A complex semi-definite program (SDP for short) is defined as the following optimization
problem:

minimize tr(CX)

subject to tr(AiX) = bi, i = 1, . . . , m,

X � 0

where X ∈ Hn is the matrix variable, the matrices C, Ai ∈ Hn and bi ∈ Rn are given
data and tr(·) stands for the usual matrix trace operator. Consequently, the objective
function and the constraints are convex.

The previous problem becomes a real SDP if the data is real, i.e., the matrices X, C and
Ai are real symmetric matrices. When the SDP problem is given by rational data, we
use the bit complexity analysis of the ellipsoid method by Khachiyan and Porkolab [69].

Theorem 4.5.2 ([69]). We consider the real semi-definite feasibility problem

tr(AiX) ≤ bi, i = 1, . . . , m, X � 0,

where Ai ∈ Sn with rational entries, bi ∈ Qn are given and X ∈ Sn is the variable. Assume
that the maximal bitsize of their entries is τ, the accuracy δ and the radius bound R of computa-
tion are given. Then, to compute an approximate solution within the accuracy δ of this SDP, we
need to perform O(n4 log2(2

τn R 2δ)) iterations of the ellipsoid method, where each iteration
requires O(n2(m + n)) arithmetic operations over log2(2

τn R 2δ)-bit numbers.
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4.6 Other estimates

This section provides a lower bound for a complex univariate polynomial with Gaussian
integers on the unit circle. This lower bound allows us to estimate bit complexities of
the two algorithms csos1 and csos2 in Chapter 6.

4.6.1 Distance between the roots of a complex univariate polynomial

For a polynomial f = f0 + · · ·+ fdzd ∈ C[z] of degree d, the minimal distance between
the roots α1, . . . , αd of f is defined by

sep( f ) := min{|αi − αj|, αi 6= αj}.

The norm of f is defined as ‖ f ‖ := | fd|+ · · ·+ | f0|. The following lemma is an immediate
consequence of [57, Theorem 2].

Lemma 4.6.1. Let f ∈ Z[i][z] of degree d and τ be the maximum bitsize of its coefficients.
Assume that f has no multiple root. The minimal distance between the roots of f satisfies

sep( f ) ≥
√

3

d
d
2+1‖ f ‖d−1

.

Therefore, one needs an accuracy of δ = Õ(τd) to compute distinct approximations of the roots
of f with complex root isolation.

Proof. By [57, Theorem 2], one has:

sep( f ) ≥
√

3|Disc( f )|
d

d
2+1‖ f ‖d−1

, (4.13)

where

Disc( f ) = f 2d−2
d ∏

j<k
(αj − αk)

2

is the discriminant of f . Note that Disc( f ) can be written as a polynomial in f0, . . . , fd

with integer coefficients, thus Disc( f ) ∈ Z[i] and one has |Disc( f )| ≥ 1 which from
(4.13), implies

sep( f ) ≥
√

3|Disc( f )|
d

d
2+1‖ f ‖d−1

≥
√

3

d
d
2+1‖ f ‖d−1

,

the desired inequality.
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4.6.2 The minimum of a real bivariate polynomial on the unit circle

The following lemma provides a lower bound on the minimum of a real bivariate
polynomial over the unit circle in R2.

Lemma 4.6.2. Let p ∈ Z[x, y] be a real bivariate polynomial of degree d and τ be the maximum
bitsize of its coefficients. Assume that p is positive on the unit circle C . Then, the minimum of
p on C satisfies the following inequality:

pmin := min{p(x, y) : x2 + y2 = 1} ≥ 2−Õ(d3(d+τ)).

Proof. We consider the following algebraic set:

V :=
{
(x, y, m) ∈ C3 : p(x, y)−m = y

∂p
∂x
− x

∂p
∂y

= 0, x2 + y2 = 1
}

.

Note that the projection of V on the m-axis defines the critical values of the restriction
of the evaluation map z 7→ p(z) to C which contains pmin.

Assume that V is finite. By [77, Corollary 2], there is a zero-dimensional parametriza-
tion of V defined by univariate polynomials with bitsizes upper bounded by
Õ(d3(d + τ)). Since there exists (x0, y0) on C such that (x0, y0, pmin) belongs to V, pmin

is a (non-zero) root of a univariate polynomial of degree at most O(d3τ). Hence, the
Cauchy bound [17] yields:

|pmin| ≥ 2−Õ(d3(d+τ)).

Assume now that V is not finite. By Krull’s theorem [42], this implies that C is contained
in the complex zero set defined by

y
∂p
∂x
− x

∂p
∂y

= 0,

whence is a factor of this polynomial. This implies that there exists a factorization
p = p1 p2 where p1 is a power of x2 + y2 − c (where c is a constant) and the zero set of
the polynomial

y
∂p2

∂x
− x

∂p2

∂y
has a zero-dimensional intersection with C . This yields the following analysis. The
set V is the union of a 1-dimensional component containing points (m, x, y) where
(x, y) ranges over C and m = c− 1, and a 0-dimensional component containing points
(m, x, y) which are solutions to

p(x, y) = m, y
∂p2

∂x
− x

∂p2

∂y
= 0, x2 + y2 = 1.

Applying the argument in the second paragraph of the proof to the above system ends
the proof.
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CHAPTER 5

Exact SOS decompositions over gradient ideals with
rational coefficients
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Here, we consider the problem of computing exact certificates for non-negativity of real
multivariate polynomials. We build on previous works by Parrilo, Nie, Demmel and
Sturmfels who introduced certificates of non-negativity modulo gradient ideals [66, 62].
We prove that if the polynomial under consideration has rational coefficients then such
certificates can be obtained exactly over the rationals and we provide exact algorithms
to compute them. We analyze the bit complexity of these algorithms and deduce bitsize
bounds of such certificates.

This chapter contains three sections. In Section 5.1, we prove the existence of an SOS of
polynomials modulo the gradient ideal of f , we introduce Algorithm sosgradientshape

and analyze its bit complexity. Our results towards decomposing f as an SOS of rational
fractions modulo the gradient ideal along with Algorithm sosgradient are presented in
Section 5.2. Practical experiments are given in the last Section 5.3.

Most of the content of this chapter is from the paper [55] entitled “Sum of squares decomp-
ositions of polynomials over their gradient ideals with rational coefficients” by Victor Magron,
Mohab Safey El Din, and Trung Hieu Vu.
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5.1 SOS of polynomials modulo gradient ideals

We recall that f is an SOS of polynomials over the quotient ring Q[x]/Igrad( f ) if there
exists g ∈ Igrad( f ) such that f − g is SOS in Q[x], i.e., f can be decomposed

f =
s

∑
j=1

cjq2
j +

n

∑
i=1

φi
∂ f
∂xi

,

for some polynomials q1, . . . , qs, φ1, . . . , φs in Q[x] and positive numbers c1, . . . , cs in Q.

5.1.1 The existence of an SOS decomposition over the rationals

The main result of this subsection is stated below. This result provides a necessary and
sufficient condition for the non-negativity of f ∈ Q[x] under a generic condition. Its
proof is constructive, in that we show explicitly how to compute an SOS decomposition
over gradient ideals with rational coefficients.

Theorem 5.1.1. Let f ∈ Q[x] be such that the following conditions hold:

a) The infimum finf = inf{ f (x) : x ∈ Rn} is attained.

b) The gradient ideal Igrad( f ) is zero-dimensional and radical.

Then, f is non-negative over Rn if and only if f is an SOS of polynomials over the quotient ring
Q[x]/Igrad( f ).

Proof. Suppose that f is non-negative over Rn and #Vgrad( f ) = δ. We prove that f
is an SOS of polynomials over the quotient ring Q[x]/Igrad( f ). We consider the two
following cases:

CASE 1. Distinct points in Vgrad( f ) have distinct x1-coordinates. We now consider the
lexicographic monomial order x1 < x2 < · · · < xn on Q[x]. Since the gradient ideal
is zero-dimensional and radical, according to the Shape Lemma (Lemma 3.3.1), the
reduced Gröbner basis of Igrad( f ) has the following form:

[w, x2 − v2, . . . , xn − vn], (5.1)

where v2, . . . , vn are polynomials in Q[x1] of degree at most δ− 1. We denote

h(x1) := f (x1, v2, . . . , vn), (5.2)

where xi is replaced by vi in f for i = 2, . . . , n. With the order <, we divide f − h by
the system in (5.1) using the division algorithm in [20, Ch. 2, Sec 3.]. Then, there exist
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φ1, . . . , φn in Q[x], and r in Q[x1] such that

f − h = φ1w +
n

∑
i=2

φi(xi − vi) + r, (5.3)

with deg r < δ. Let x be in Vgrad( f ). From (5.2) and (5.3), one sees that f (x) = h(x).
Hence, f − h vanishes on Vgrad( f ). Clearly, the value of φ1w + ∑n

i=2 φi(xi − vi) is zero
on Vgrad( f ). This implies that r also vanishes on the image set π(Vgrad( f )), where
π(x1, . . . , xn) = x1. Since distinct points in Vgrad( f ) have distinct x1-coordinates, it
holds that

#π(Vgrad( f )) = #Vgrad( f ) = δ.

As deg r < δ, we conclude that r ≡ 0. Hence, from (5.3), we obtain the following
representation:

f = h + φ1w +
n

∑
i=2

φi(xi − vi). (5.4)

The set {(x1, x2, . . . , xn) ∈ Rn : x2 = v2, . . . , xn = vn} defines a curve which is parame-
trized by x1. Recall that f is non-negative over Rn. Hence f is non-negative over
this curve. Since f takes the same values over this curve as h takes over x1 when x1

ranges in R, one can conclude that the univariate polynomial h is also non-negative
over R. According to the results on SOS decompositions of univariate polynomials
with rational coefficients in Theorem 4.2.1, h is a sum of s squares in Q[x1], i.e., there
exist q1, . . . , qs ∈ Q[x1] and c1, . . . , cs in Q+ such that h = c1q2

1 + · · ·+ csq2
s . Therefore,

from (5.4), we assert that f is an SOS of polynomials over Q[x]/Igrad( f ).

CASE 2. There are two distinct points in Vgrad( f ) such that their x1-coordinates are
equal. According to [75, Lemma 2.1], there is j ∈ {1, . . . , (n− 1)δ(δ− 1)/2} such that
the linear function

u := x1 + jx2 + · · ·+ jn−1xn

separates Vgrad( f ), i.e., u(x) 6= u(y) for any distinct points x, y in Vgrad( f ). We consider
the change of variables y = Tx, where

T =


1 j j2 · · · jn−1

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 . (5.5)

We note that T is an invertible matrix. Therefore, we can obtain a polynomial g(y) =

f (T−1y) ∈ Q[y] in new variables y1, y2, . . . , yn such that g is non-negative and the
infimum ginf = inf{g(y) : y ∈ Rn} is attained. By the chain rule ∇g = ∇ f ◦ T−1,
we have

Vgrad(g) = {y ∈ Cn : y = Tx, x ∈ Vgrad( f )}.
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Thus, the gradient ideal Igrad(g) is zero-dimensional and radical. Since y1 = u(x) sepa-
rates Vgrad( f ), distinct points in Vgrad(g) have distinct y1-coordinates.

We now apply Case 1 for g. There exists an SOS decomposition of g modulo Igrad(g)

g(y) =
s

∑
j=1

cjq̄2
j (y) +

n

∑
i=1

φ̄i(y)
∂g
∂yi

, (5.6)

where q̄1, . . . , q̄s, φ̄1, . . . , φ̄n ∈ Q[y] and c1, . . . , cs ∈ Q+. By replacing y by Tx and ∂g
∂yi

by
∂ f
∂xi
◦ T−1 in (5.6), we obtain a decomposition of f as follows:

f (x) = g(Tx) =
s

∑
j=1

cjq̄2
j (Tx) +

n

∑
i=1

φ̄i(Tx)
∂ f
∂xi
◦ T−1. (5.7)

Since ( ∂ f
∂xi
◦ T−1)(Tx) = ∂ f

∂xi
(x), (5.7) is an SOS decomposition of f modulo Igrad( f ).

To complete the proof, we need to prove the reverse conclusion. Suppose that f is SOS
over the quotient ring Q[x]/Igrad( f ), i.e., f can be decomposed as follows:

f =
s

∑
j=1

cjq2
j +

n

∑
i=1

φi
∂ f
∂xi

, (5.8)

for some polynomials q1, . . . , qs, φ1, . . . , φn ∈ Q[x], and c1, . . . , cs in Q+. Let xinf ∈ Rn be
such that f (xinf) = finf. Then, xinf is a critical point of f over Rn, i.e., xinf belongs to the
variety Vgrad( f ). Thus, we have

n

∑
i=1

φi(xinf)
∂ f
∂xi

(xinf) = 0.

From (5.8), we see that f (xinf) = ∑s
j=1 cjq2

j (xinf) and so this value is non-negative. By
assumption, for all x in Rn, f (x) ≥ f (xinf). Hence, f is non-negative over Rn.

Remark 5.1.1. Assume that Q is a real field and that R is the real closure of Q. All
arguments in the proof of Theorem 5.1.1 can be applied for f in Q[x]. Hence, the
conclusion of Theorem 5.1.1 holds for the case Q[x], i.e., f is non-negative over Rn if
and only if f is an SOS of polynomials over the quotient ring Q[x]/Igrad( f ) provided
that the infimum finf = inf{ f (x) : x ∈ Rn} is attained and that the gradient ideal
Igrad( f ) is zero-dimensional and radical.

Remark 5.1.2. In the proof of Theorem 5.1.1, one can see that f − h vanishes not only
on Vgrad( f ) but also on the variety defined by 〈x2 − v2, . . . , xn − vn〉. Hence, φ1 in (5.4)
is zero and (5.4) becomes f = c1q2

1 + · · ·+ csq2
s + ∑n

i=2 φi(xi − vi).

Remark 5.1.3. Note that if f does not attain its infimum, it could be SOS modulo the
gradient ideal but fail to be non-negative, as it may be negative at points where the
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gradient does not vanish. This is illustrated by the example

f = x2 + (xy− 1)2 − 1
2

whose gradient ideal is generated by x, y. Hence, f is 1
2 modulo its gradient ideal while

it can have negative values (e.g. along the sequence of points
( 1

k , k
)

for k ≥ 1). Hence,
condition a) in Theorem 5.1.1 is used only to prove the reverse conclusion. Therefore,
even without this condition, the following assertion still holds: Assume that Igrad( f )
is zero-dimensional and radical. If f is non-negative over Rn, then f is SOS modulo
Igrad( f ).

Theorem 5.1.1 provides certificates of non-negativity for polynomials in Q[x] which
satisfy its assumptions and which are not SOS of polynomials with real (or rational)
coefficients. We illustrate this with two examples.

Example 5.1.1. We consider the Robinson polynomial [74],

pR = x6
1 + x6

2 + x6
3 − x4

1x2
2 − x4

1x2
3 − x4

2x2
1 − x4

2x2
3 − x4

3x2
1 − x4

3x2
2 + 3x2

1x2
2x2

3,

that is non-negative but cannot be represented as an SOS of polynomials. By substituting
the third variable x3 by 1 in pR, we get the following non-negative polynomial:

fR = x6
1 + x6

2 − x4
1x2

2 + 3x2
1x2

2 − x2
1x4

2 − x4
1 − x4

2 − x2
1 − x2

2 + 1.

Because pR is the homogenization of fR, fR cannot be represented as an SOS of polyno-
mials [58, Proposition 1.2.4]. The gradient ideal Igrad( fR) is zero-dimensional and
radical. Thus, Theorem 5.1.1 tells us that fR is an SOS of polynomials modulo Igrad( fR).

Example 5.1.2. We consider the Scheiderer polynomial given in (2.4) that can be decom-
posed as an SOS of polynomials with algebraic coefficients but cannot be decomposed
as an SOS of polynomials with rational coefficients. By replacing the third variable x3

by −1, we obtain the non-negative polynomial

fS = x4
1 + x1x3

2 + x4
2 + 3x2

1x2 + 4x1x2
2 + 2x2

1 − x1 − x2 + 1.

Note that the conclusion in [58, Proposition 1.2.4] holds for polynomials with rational
coefficients, i.e., g ∈ Q[x] is SOS in Q[x] if and only if its homogenization is in Q[x].
Hence, the polynomial fS is also SOS with algebraic coefficients but not SOS with
rational ones. The gradient ideal Igrad( fS) satisfies the zero-dimensional and radical
condition. Hence, according to Theorem 5.1.1, fS is an SOS of polynomials over the
quotient ring Q[x]/Igrad( fS).

An explicit SOS decomposition of fS will be given later in Example 5.2.2.
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Example 5.1.3. The gradient ideal of the Motzkin polynomial pM given in (2.2) is neither
radical nor zero-dimensional. We consider the positive polynomial g = x2

1 + x2
2 and

see that the gradient ideal of the product polynomial fM := gpM is radical and zero-
dimensional. According to Theorem 5.1.1, fM is an SOS of polynomials modulo the
ideal Igrad( fM). This provides indirectly a certificate of non-negativity of the Motzkin
polynomial.

5.1.2 Description of the algorithm

The proof of Theorem 5.1.1 allows us to design an algorithm to compute a rational SOS
decomposition of polynomials modulo the gradient ideal of a non-negative polynomial.

The input of sosgradientshape is a non-negative polynomial f ∈ Q[x] whose gradient
ideal Igrad( f ) is zero-dimensional, radical, and satisfies Shape Lemma’s assumption,
i.e., all points in Vgrad( f ) have distinct x1-coordinates. Our software implementation
first checks that the gradient ideal is zero-dimensional and radical, and returns an error
if the assumption is not satisfied. To do so, we rely on the procedures IsZeroDimensional
and IsRadical from the Maple package PolynomialIdeals. These are all based on
Gröbner bases computations (see e.g. [20]).

The output includes the cardinality δ = #Vgrad( f ), the lists of polynomials and numbers

[w, v2, . . . , vn], [q1, . . . , qs], [φ2, . . . , φn] ⊂ Q[x], and [c1, . . . , cs] ⊂ Q+

satisfying the relation

f =
s

∑
j=1

cjq2
j +

n

∑
i=2

φi(xi − vi)

From Remark 5.1.2, we do not need to compute φ1 because it always equals zero.
In Line 1, we compute the reduced Gröbner basis G for Igrad( f ) by relying on the
zero-dimensional rational parametrization of Vgrad( f ) mentioned in Lemma 3.3.2. In
Line 2, we compute the quotients φ2, . . . , φn and the remainder r of the division of f
by G. In Line 3, we compute a rational weighted SOS decomposition of the non-
negative univariate polynomial h by using Algorithm univsos1 or Algorithm univsos2

described in [53, Fig. 1] or [53, Fig. 2], respectively.

Remark 5.1.4. Suppose that the Shape Lemma assumption does not hold for Igrad( f ),
i.e., there are two distinct points in Vgrad( f ) such that their x1-coordinates are equal. As
mentioned in the proof of Theorem 5.1.1, we can find an invertible matrix T given by
(5.5), make a change of variables y = Tx and assign g(y) := f (T−1y). Here, we have

y1 = x1 + jx2 + · · ·+ jn−1xn
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Algorithm 3 Computing SOS of polynomials modulo the gradient ideal

sosgradientshape := proc( f )

Input: f ∈ Q[x] non-negative over Rn such that Igrad( f ) is zero-dimensional and
radical and all points in Vgrad( f ) have distinct x1-coordinates

Output: δ in N, [q1, . . . , qs], [w, v2, . . . , vn] ⊂ Q[x1], [φ2, . . . , φn] ⊂ Q[x], [c1, . . . , cs] ⊂
Q+ satisfying

f =
s

∑
j=1

cjq2
j +

n

∑
i=2

φi(xi − vi). (5.9)

1: Compute the reduced Gröbner basis G = [w, x2 − v2, . . . , xn − vn] of Igrad( f ), with
the lexicographical ordering x1 < x2 < · · · < xn, and δ = deg w

2: Compute the quotients [φ2, . . . , φn] and remainder h of the division of f by G by
performing Eliminate( f , 1, v2, . . . , vn)

3: Compute a rational weighted SOS decomposition h = c1q2
1 + · · ·+ csq2

s

4: return δ, [q1, . . . , qs], [φ2, . . . , φn], [w, v2, . . . , vn], and [c1, . . . , cs]

for some j > 0 and yi = xi for i = 2, ..., n. We get a new non-negative polynomial
in n new variables with rational coefficients g(y) whose gradient ideal satisfies the
Shape Lemma assumption. Now, we can apply sosgradientshape for g(y) and obtain
as output the number δ̄, two lists [q̄1, . . . , q̄s], [w̄, v̄2, . . . , v̄n] of polynomials in Q[y1], a
list [φ̄1, . . . , φ̄n] of polynomials in Q[y], and a list [c1, . . . , cs] ⊂ Q+. Since #Vgrad( f ) =

#Vgrad(g), one has δ̄ = δ. The new polynomial g can be decomposed as follows:

g(y) =
s

∑
j=1

cjq̄2
j (y1) + φ̄1(y)w̄(y1) +

n

∑
i=2

φ̄i(y)(yi − v̄i(y1)).

Hence, f can be decomposed as:

f (x) =
s

∑
j=1

cjq̄2
j (u(x)) + φ̄1(Tx)w̄(u(x)) +

n

∑
i=2

φ̄i(Tx)(xi − v̄i(u(x))), (5.10)

where
u(x) = x1 + jx2 + · · ·+ jn−1xn.

Clearly, [w(u), x2 − v̄2(u), . . . , xn − v̄n(u)] is also a basis for Vgrad( f ). Hence, (5.10)
provides us an SOS decomposition of f modulo the gradient ideal of f .

To illustrate how the algorithm works, we consider the following simple example.

Example 5.1.4. Consider the polynomial fE = 2x2
1 + 4x1x2 + x4

2 + 3. This polynomial is
non-negative over Rn. Firstly, the gradient ideal Igrad( fE) is given by

Igrad( fE) =
〈
2x1 + 2x2, 4x1 + 4x3

2
〉
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which is zero-dimensional and radical. We compute the reduced Gröbner basis of
Igrad( fE), namely [x3

1 − x1, x2 + x1], here v2(x1) = −x1,

δ = deg(x3
1 − x1) = 3 = #Vgrad( fE).

Secondly, with the order x1 < x2, the quotients of the division of f by the Gröbner basis
are φ1 = 0 and φ2 = −x3

1 + x2
1x2 − x1x2

2 + x3
2 + 4x1, and the remainder is given by

h(x1) = fE(x1, v2) = x4
1 − 2x2

1 + 3.

Thirdly, one gets an SOS decomposition h = (x2
1 − 1)2 + 2. Finally, we obtain the

following SOS decomposition of fE modulo its gradient ideal:

fE = (x2
1 − 1)2 + 2 + (−x3

1 + x2
1x2 − x1x2

2 + x3
2 + 4x1)× (x1 + x2).

Theorem 5.1.2. Let f be a non-negative polynomial in Q[x]. Suppose that Igrad( f ) is zero-
dimensional and radical, and all points in Vgrad( f ) have distinct x1-coordinates. On input
f , sosgradientshape terminates and computes an SOS decomposition of f modulo Igrad( f )
with rational coefficients.

Proof. Assume that f ∈ Q[x] is non-negative over Rn and its gradient ideal is zero-
dimensional and radical. Here, we use the lexicographic monomial order x1 < x2 <

· · · < xn. Because the Shape Lemma assumption holds, the reduced Gröbner basis of
Igrad( f ) in Line 1 has the form G = [w, x2 − v2, . . . , xn − vn], and can be computed by
using a zero-dimensional rational parametrization of Vgrad( f ) as in Lemma 3.3.2. In
Line 2, we compute the quotients [φ2, . . . , φn] and the remainder r of the division of f
by G by performing Eliminate( f , 1, v2, . . . , vn) (as in Algorithm 2). Here, we see that r
coincides with h, where h = f (x1, v2, . . . , xn) as in the proof of Theorem 5.1.1, because
of

r = f −
n

∑
i=2

φi(xi − vi) = h.

In Line 3, the univariate polynomial h is non-negative with rational coefficients. Thus,
by using univsos1 or univsos2 [53], we can compute an SOS decomposition of h, h =

c1q2
1 + · · ·+ csq2

s . Hence, according to the proof of Theorem 5.1.1, we get (5.9) which is
an SOS decomposition modulo the gradient ideal of f .

5.1.3 Bit complexity analysis

This subsection investigates the bit complexity of Algorithm sosgradientshape. Assu-
me that d and τ are the degree and an upper bound of the bitsize of the coefficients
of f ∈ Q[x] respectively. We provide estimates for the bitsizes of polynomials in



5.1. SOS OF POLYNOMIALS MODULO GRADIENT IDEALS 57

the output of sosgradientshape( f ) as well as for the number of boolean operations
required to execute it.

To analyze the bit complexity of Algorithm 3, we need to estimate bit complexities of all
steps in Lines 1–3. We first analyze bit complexities for computing SOS decompositions
of the non-negative univariate polynomial h in Line 3.

Proposition 5.1.3. Let v2, . . . , vn be as in Lemma 3.3.2 and h(x1) = f (x1, v2, . . . , vn). To
compute an SOS decomposition of h, Algorithm univsos1 and Algorithm univsos2 run in

Õ
(
(dn+1/2)3dn+1/2(τ + n + d)d3n+1

)
(5.11)

and

Õ
(
(τ + n + d)d6n+4

)
(5.12)

boolean operations, respectively.

Proof. Let τv = maxi{ht(vi)}. Lemma 3.3.2 tells us that the bitsize of τv is bounded
from above by Õ

(
(τ + n + d)d3n), and that the polynomials w, v2, . . . , vn have degree

at most (d − 1)n. Since deg f = d and h(x1) = f (x1, v2, . . . , vn), the degree of h is at
most d(d− 1)n.

Let β be the minimum common denominator of all non-zero coefficients of h. Compu-
ting an SOS decomposition of h boils down to computing an SOS decomposition of βh.
In particular, the execution time of univsos1 (resp., univsos2) on h is the same as for
βh. Now we estimate the bitsize of the polynomial βh ∈ Z[x1]. By the definition of h,
we observe that ht(h) ≤ τ + dτv. It follows that ht(βh) ≤ ht(β) + τ + dτv. By definition
we have ht(β) ≤ τ + dτv. This yields

ht(βh) ≤ 2 (τ + dτv) . (5.13)

From (5.13) and above results, we obtain the following bitsize estimate for βh:

Õ
(
2(τ + d(τ + n + d)d3n)

)
= Õ

(
(τ + n + d)d3n+1

)
.

To compute an SOS decomposition of βh, we rely on univsos1 or univsos2. From
Theorem 4.2.2, the boolean running time of univsos1 corresponds to the quantity given
by (5.11). If we use univsos2 then the number of boolean operations, by applying
Theorem 4.2.3, will be bounded from above by

Õ
(

d4(d− 1)4n + d4(τ + n + d)(d− 1)6n
)

,

which can be further reduced to (5.12).
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Proposition 5.1.4. Let v2, . . . , vn be as in Proposition 5.1.3. To compute the list φ2, . . . , φn

in the output of sosgradientshape, Eliminate runs in Õ(n2(τ + n + d)d3n+1) boolean
operations and the bitsizes of φ2, . . . , φn are Õ

(
n(τ + n + d)d3n+1).

Proof. From Lemma 4.4.2, the bitsize of polynomial vi is at most Õ((τ + n + d)d3n). We
divide f by [x2− v2, . . . , xn− vn] while performing Eliminate( f , 1, v2, . . . , vn) described
as in Algorithm 2 to obtain quotients [φ2, . . . , φn] and remainder h = h(x1, v2, . . . , vn).
Applying Lemma 4.3.3 for this division, we conclude that Eliminate runs in Õ(n2(τ +

n+ d)d3n+1) boolean operations, the estimate for the bitsize of φi is Õ
(
n(τ + n + d)d3n+1)

as claimed.

We are now ready to analyze the bit complexity of Algorithm 3.

Theorem 5.1.5. Let f ∈ Q[x] of degree d and let τ be the maximum bitsize of its coefficients.
Assume that the two conditions in Theorem 5.1.1 hold. Then, on input f , sosgradientshape
runs in

Õ
(
(τ + n + d)2d6n + (τ + n + d)d3n+1(dn+1/2)3dn+1/2

)
(5.14)

or
Õ
(
(τ + n + d)2d6n + (τ + n + d)d6n+4

)
(5.15)

boolean operations if in Line 3 we use Algorithm univsos1 or Algorithm univsos2, respectively.

Proof. Assume that in Line 3 we use univsos1 to compute an SOS decomposition of h.
Then, the number of boolean operations that sosgradientshape uses to compute the
SOS decomposition of f is the sum of the four following numbers:

1. The number of boolean operations required to compute the zero-dimensional
rational parametrization Q of Vgrad( f ) as in (4.4).

2. The number of boolean operations required to compute w, v2, . . . , vn ∈ Q[x1],
defined in Lemma 4.4.2 as in (4.6).

3. The number of boolean operations required to compute an SOS decomposition of
h by using Algorithm univsos1 as in (5.11).

4. The number of boolean operations required to compute φ2, . . . , φn in the output
of sosgradientshape by using Eliminate (mentioned in Proposition 5.1.4).

This sum equals

Õ
(

n2(d + τ)d2n+1
(

n + d
d

)
+ (τ + n + d)2d6n + (τ + n + d)d3n+1

(dn+1

2

)3dn+1/2
+

(τ + n + d)n2d3n+2
)

.
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In this sum, the third term is larger than the first and last term for large enough d and
n, yielding the estimate (5.14). If in Line 3 we use univsos2, the number of boolean
operations of the algorithm is

Õ
(

n2(d + τ)d2n+1
(

n + d
d

)
+ (τ + n + d)2d6n + (τ + n + d)d6n+4 + n2(τ + n + d)d3n+2

)
.

Noting that (n+d
d ) ≤ (d + 1)n ≤ d2n for large enough d and n, we obtain (5.15).

Theorem 5.1.6. Assume that f ∈ Q[x] satisfies the conditions of Theorem 5.1.5. Let w,
v2, . . . , vn, and h be as in Proposition 5.1.3. Then, the maximum bitsize of the coefficients
involved in the SOS decomposition of h obtained by using Algorithm univsos1 and Algorithm
univsos2 are bounded from above, respectively, by

Õ
(
(τ + n + d)(dn+1/2)3dn+1/2d3n+1

)
, (5.16)

and

Õ
(
(τ + n + d)d5n+3) . (5.17)

Proof. From the proof of Proposition 5.1.3, the estimates for degree and bitsize of βh
are d(d− 1)n and Õ

(
(τ + n + d)d3n+1), respectively. According to Theorem 4.2.2 and

Theorem 4.2.3, the maximum bitsize of the coefficients involved in the SOS decompo-
sition of βh obtained by using univsos1 and univsos2 are bounded from above by
(5.16) and (5.17), respectively.

5.2 SOS of rational fractions modulo gradient ideals

In this section, we explain how to decompose f ∈ Q[x] as an SOS of rational fractions
modulo its gradient ideal. We recall that f ∈ Q[x] is an SOS of rational fractions in
Q(x), where Q(x) is the field of rational fractions in the variable x over Q, if there
exist rational fractions f1, . . . , fs in Q(x) and [c1, . . . , cs] ⊂ Q+ such that f = ∑s

j=1 cj f 2
j .

Furthermore, f is an SOS of rational fractions over the quotient ring Q(x)/Igrad( f ) if
there exists g ∈ Igrad( f ) such that f − g is an SOS of rational fractions in Q(x), i.e., f
can be decomposed as follows:

f =
s

∑
j=1

cj f 2
j +

n

∑
i=1

φi
∂ f
∂xi

,

for some rational fractions f1, . . . , fs, φ1, . . . , φs in Q(x) and [c1, . . . , cs] ⊂ Q+.
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5.2.1 The existence of an SOS decomposition over the rationals

Denote by Q(x1)[x2, . . . , xn] the space of polynomials in n− 1 variables (x2, . . . , xn) with
coefficients in Q(x1).

In the following theorem, we prove the existence of an SOS decomposition of rational
fractions modulo the gradient ideal for f .

Theorem 5.2.1. Assume that f ∈ Q[x] is a non-negative polynomial of degree d and that
Igrad( f ) is zero-dimensional and radical. Let Q = ((w, κ1, . . . , κn), x1) be a zero-dimensional
rational parametrization of Vgrad( f ). Then, f can be decomposed as an SOS of rational fractions
modulo the gradient ideal, in particular

f =
1

(w′)d

s

∑
j=1

cjq2
j +

n

∑
i=1

φi

(w′)d

(
w′xi − κi

)
, (5.18)

for some q1, . . . , qs ∈ Q[x1], φ1, . . . , φn ∈ Q[x], and [c1, . . . , cs] ⊂ Q+.

Proof. The gradient variety of f can be represented as follows:

Vgrad( f ) = {x ∈ Cn : w′x1 − κ1 = · · · = w′xn − κn = 0}. (5.19)

Because Igrad( f ) is radical, according to Theorem 3.1.1 (Hilbert’s Strong Nullstellensatz),
one has

Igrad( f ) =
〈
w′x1 − κ1, . . . , w′xn − κn

〉
.

We now apply the argument in the proof of Theorem 5.1.1. By substituting xi =
κi
w′ in

f , for i = 2, . . . , n, we obtain a univariate polynomial h̄(x1) such that

f
(

x1,
κ2

w′
, . . . ,

κn

w′
)
=

1
(w′)d h̄. (5.20)

Since f is non-negative with even degree d, h̄ is also non-negative. In addition, the
coefficients of w′, κ1, . . . , κn and f are rational numbers. Therefore, the coefficients of h̄
are also rational numbers. Applying Theorem 4.2.1 for h̄, we conclude that there are
q1, . . . , qs in Q[x1] and [c1, . . . , cs] ⊂ Q+ such that

h̄ =
s

∑
j=1

cjq2
j . (5.21)

Next, one considers the division of (w′)d f − h̄ by [w′x1 − κ1, . . . , w′xn − κn] with the
lexicographic order x1 < · · · < xn. Based on Buchberger’s Criterion (Theorem 3.2.1),
we can show that [w′x1 − κ1, . . . , w′xn − κn] is a Gröbner basis of the ideal generated
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by this system with respect to the order < in Q[x]. Hence, there exist a (unique) list of
quotients [φ1, . . . , φn] in Q[x], and r in Q[x1] such that

(w′)d f − h̄ =
n

∑
i=1

φi(w′xi − κi) + r, (5.22)

with r of smaller degree than the cardinality δ of Vgrad( f ). Note that the gradient variety
of f can be represented as in (5.19). From (5.20), one sees that (w′)d f − h̄ vanishes on
Vgrad( f ). With the same arguments as in the proof of Theorem 5.1.1, we conclude that
r ≡ 0. Hence, from (5.20), (5.21), and (5.22), we obtain a representation of f as in
(5.18).

Remark 5.2.1. In Theorem 5.2.4, we assume that Q = ((w, κ1, . . . , κn), x1) is a zero-
dimensional rational parametrization of Vgrad( f ) which is a generic assumption. In this
assumption, the linear form λ is given by λ(x) = x1. If this assumption does not hold,
we can change the coordinate system such that the obtained polynomial (with new
variables) satisfies this assumption as in Case 2 of the proof of Theorem 5.1.1.

Remark 5.2.2. Denote by degx1
f the degree of f in the variable x1. From (5.20), we see

that deg h̄ does not exceed degx1
f + d deg(w′), where deg w′ = deg w − 1. Thus, the

degree of the univariate polynomial h̄ is at most d(d− 1)n.

Remark 5.2.3. From (5.20), one can see that (w′)d f − h̄ vanishes on the variety defined
by 〈w′x2 − κ2, . . . , w′xn − κn〉. Hence, φ1 in (5.18) is zero and (5.18) becomes

f =
1

(w′)d

s

∑
j=1

cjq2
j +

n

∑
i=2

φi

(w′)d

(
w′xi − κi

)
. (5.23)

To illustrate the formula (5.23), we consider the simplest case with n = 2 and d = 2 as
follows.

Example 5.2.1. Consider the polynomial fE = 2x2
1 + 4x1x2 + x4

2 + 3, that is non-negative
over Rn. The gradient variety of f has a zero-dimensional rational parametrization
Q = ((w, κ1, κ2), λ) given by

λ = x1, w = x3
1 − x1, κ1 = −2x1, κ2 = 2x1.

One has w′ = 3x2
1 − 1. By replacing x2 = κ2/w′ in fE, we obtain

fE

(
x1,

κ2

w′
)
= 2x2

1 + 4x1

( κ2

w′
)
+
( κ2

w′
)4

+ 3 =
h̄

(3x2
1 − 1)4

,

where
h̄ = 162x10

1 + 243x8
1 − 432x6

1 + 226x4
1 − 42x2

1 + 3.

By using univsos2 to compute an SOS decomposition of h, one has
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h̄ = 82863
512

(
x5

1 −
6493
4096 x3

1 +
20213
65536 x1

)2
+ 82863

512

( 70819
32768 x4

1 +
70819
32768 x2

1 +
2171
16384

)2
+ 81

512 x10
1 +

87698926233
549755813888 x8

1 +
43587401805
274877906944 x6

1 +
89433872333
549755813888 x4

1 +
343326283161
2199023255552 x2

1 +
21763571433
137438953472 .

We only need to compute φ2, which we find to be

φ2 = (81x8
1 − 108x6

1 + 54x4
1 − 12x2

1 + 1)x3
2 + 324x9

1 − 432x7
1 + 216x5

1 − 48x3
1 + 4x1 +

1
3x2

1−1 (162x9
1 − 216x7 +

108x5
1 − 24x3

1 + 2x1)x2
2 +

1
(3x2

1−1)2 (324x10
1 − 432x8

1 + 216x6
1 − 48x4

1 + 4x2
1)x2 +

1
(3x2

1−1)3 (648x11
1 − 864x9

1 +

432x7
1 − 96x5

1 + 8x3
1).

From the above results, we obtain an SOS decomposition of rational functions modulo
the gradient ideal of fE.

5.2.2 Algorithm to compute an SOS of rational fractions

From the proof of Theorem 5.2.1, we design the algorithm sosgradient to compute
an SOS decomposition of rational fractions for f . This algorithm is obtained by a
modification of Line 1 in sosgradientshape to get a zero-dimensional rational parame-
trization of the gradient variety of f .

Algorithm 4 Computing SOS of rational fractions modulo the gradient ideal

sosgradient := proc( f )

Input: f ∈ Q[x] of degree d such that f is non-negative over Rn and Igrad( f ) is zero-
dimensional and radical

Output: [w, κ1, . . . , κn], [q1, . . . , qs] ⊂ Q[x1], [ψ2, . . . , ψn] ⊂ Q(x1)[x2, . . . , xn], and
[c1, . . . , cs] ⊂ Q+ satisfying

f =
1

(w′)d

s

∑
j=1

cjq2
j +

n

∑
i=2

ψi

(w′)d

(
xi −

κi

w′
)

. (5.24)

1: Compute a zero-dimensional rational parametrization [w, κ1, . . . , κn] of Vgrad( f )

2: Compute the quotients [ψ2, . . . , ψn] and the remainder h̄ of the division of (w′)d f by

[x2 −
κ2

w′
, . . . , xn −

κn

w′
]

by performing Eliminate((w′)d f , w′, κ2, . . . , κn)

3: Compute a rational weighted SOS decomposition of h̄ = c1q2
1 + · · ·+ csq2

s

4: return [w, κ1, . . . , κn], [q1, . . . , qs], [ψ2, . . . , ψn], and [c1, . . . , cs]

The input of sosgradient is a non-negative polynomial f in Q[x] whose gradient ideal
Igrad( f ) is zero-dimensional and radical. The outputs are a zero-dimensional rational
parametrization of Vgrad( f ), a list of univariate polynomials [q1, . . . , qs] ⊂ Q[x1], and a
list [ψ2, . . . , ψn] in Q(x1)[x2, . . . , xn] satisfying (5.24). Note that the ψi’s in (5.18) and φi’s
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(5.24) are different up to a multiplier w′, in particular ψi = w′φi. Here, we prefer using
ψi as computing ψi’s through the division algorithm Eliminate is convenient.

In Line 1, we compute a zero-dimensional rational parametrization [w, κ1, . . . , κn] of the
variety Vgrad( f ). In Line 2, by using Algorithm Eliminate, we compute the quotients
[ψ2, . . . , ψn] of the division of (w′)d f by

[x2 −
κ2

w′
, . . . , xn −

κn

w′
].

Note that the remainder of this division coincides with h̄ given in (5.20). In Line 3,
we compute a rational weighted SOS decomposition of the univariate polynomial h̄ by
relying on Algorithms univsos1 or univsos2.

The correctness of sosgradient is proved in a similar way as for sosgradientshape in
Theorem 5.1.2.

Theorem 5.2.2. Let f ∈ Q[x] be non-negative over Rn and Igrad( f ) be zero-dimensional and
radical. On input f , Algorithm sosgradient terminates and the outputs provide us an SOS
decomposition of f as in (5.18).

We present an explicit SOS decomposition for the polynomial fS which was obtained
from Scheiderer’s polynomial in Example 5.1.2. Here, we rely on sosgradient to get
the SOS decomposition.

Example 5.2.2. We first compute a zero-dimensional rational parametrization Q of the
gradient variety Vgrad( fS):

w = 4x9
1 + x6

1 − 16x5
1 − 4x3

1 − 4x2
1 − 1,

κ1 = 15x7
1 − 32x6

1 − 9x4
1 − 36x3

1 − 6x1 − 4,

κ2 = −3x6
1 + 64x5

1 + 24x3
1 + 28x2

1 + 9.

In fS, by substituting x2 = κ2/w′ as in (5.20), we get the non-negative univariate
polynomial h̄ = 1679616x36

1 + 3359232x34
1 − 559872x33

1 − 13670208x32
1 + 11197440x31

1 − 32799168x30
1 +

7301664x29
1 + 40124160x28

1 − 56581740x27
1 + 118393488x26

1 − 29030400x25
1 − 11429649x24

1 + 91968984x23
1 −

162286560x22
1 + 52664472x21

1 − 95470992x20
1 − 51948224x19

1 + 37314854x18
1 − 36173624x17

1 + 103156448x16
1 +

27660704x15
1 + 94133752x14

1 + 56849248x13
1 + 51186288x12

1 + 42348048x11
1 + 20765728x10

1 + 17391200x9
1 +

7273168x8
1 + 4607744x7

1 + 1946186x6
1 + 880960x5

1 + 413632x4
1 + 86580x3

1 + 75816x2
1 + 6561.

Through Algorithm Eliminate, we obtain the quotients of the division in Line 2 of
sosgradient: ψ1 = 0 and ψ2 given at polsys.lip6.fr/∼hieu/phisos.mm. By using
univsos2 to compute an SOS decomposition of h̄, we obtain the list sos given in the
above webpage such that h̄ = ∑m

i=1 sos[2i− 1]sos[2i]2, where sos[i] stands for the i-th
entry of sos and m is the half length of sos. Combining the above results, we obtain an
SOS of rational fractions modulo the gradient of fS as in (5.24).

https://polsys.lip6.fr/~hieu/phisos.mm
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5.2.3 Bit complexity analysis

To conclude this section, we estimate the bitsizes of the polynomials in the output as
well as the number of boolean operations required to perform Algorithm sosgradient.

Proposition 5.2.3. Assume that τ is the bitsize of f in the input of sosgradient. To compute
[ψ2, . . . , ψn] in the output, Eliminate runs in Õ

(
n2(τ + n + d)dn+1) boolean operations.

Moreover, the bitsize of ψi is Õ
(
n(τ + n + d)dn+1), for i = 2, . . . , n.

Proof. We compute the division of (w′)d f by [x2 − κ2
w′ , . . . , xn − κn

w′ ] by performing the
procedure Eliminate((w′)d f , w′, κ2, . . . , κn). We obtain the list of quotients [ψ2, . . . , ψn]

and the remainder h̄. The degree of (w′)d f in variables x2, . . . , xn is d, and the height is

ht((w′)d f ) = Õ
(
(τ + n + d)dn+1

)
.

By applying Lemma 4.3.3 with ht(κi) = Õ ((τ + n + d)(d− 1)n), we obtain the conclu-
sions.

Theorem 5.2.4. Let f ∈ Q[x] of degree d and let τ be the maximum bitsize of its coefficients.
Assume that f is non-negative over Rn and that Igrad( f ) is zero-dimensional and radical. Then,
on input f , Algorithm sosgradient uses

Õ
(
(dn+1/2)3dn+1/2(τ + n + d)dn+1

)
, (5.25)

or
Õ((τ + n + d)d4n+4) (5.26)

boolean operations if in Line 3 we use Algorithm univsos1 or Algorithm univsos2, respectively.

Proof. From Corollary 4.4.1, w, κ1, . . . , κn in the zero-dimensional parametrization of
Vgrad( f ) have degree at most (d− 1)n and bitsize Õ ((τ + n + d)(d− 1)n). The degree of
the remainder h̄ (as defined in (5.20)) in Line 2 of sosgradient is at most d(d− 1)n + d
and its bitsize is Õ

(
(τ + n + d)dn+1). To compute an SOS decomposition of h̄, by

applying Theorems 4.2.2 and 4.2.3, Algorithms univsos1 and univsos2 use

Õ
(
(dn+1/2)3dn+1/2(τ + n + d)dn+1

)
(5.27)

and

Õ
(
(τ + n + d)d4n+4

)
(5.28)

boolean operations, respectively. The estimates (5.25) and (5.26) are obtained from
Corollary 4.4.1, Proposition 5.2.3, and the estimates (5.27) and (5.28) with the same line
of reasoning as in the proof of Theorem 5.1.5.
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Theorem 5.2.5. Assume that f ∈ Q[x] satisfies the conditions of Theorem 5.2.4. Then, the
maximum bitsizes of the coefficients involved in the SOS decomposition of h̄, obtained by using
Algorithm univsos1 and Algorithm univsos1, are bounded from above respectively by

Õ
(
(dn+1/2)3dn+1/2(τ + n + d)dn+1

)
and

Õ
(
(τ + n + d)d3n+3) .

Proof. From the proof of Theorem 5.2.4, the degree of h̄ is at most d(d − 1)n and the
bitsize of h̄ is Õ

(
(τ + n + d)dn+1). The conclusions follow from Theorems 4.2.2 and

4.2.3 and the second assertion in Proposition 5.2.3.

Remark 5.2.4. In general, sosgradient is faster than sosgradientshape at certifying
non-negativity of polynomials with rational coefficients. When relying on univsos2, by
comparing the estimates in (5.15) and (5.26), we conclude that the number of boolean
operations to run sosgradientshape is about d2n times larger than that of sosgradient.
The underlying reason is that the maximum bitsizes of w, v2, . . . , vn are (d− 1)2n times
bigger than the ones of κ1, . . . , κn that are obtained by a zero-dimensional rational para-
metrization of the gradient variety.

5.3 Practical experiments

This section is dedicated to showing experimental results obtained by using the algo-
rithms sosgradientshape (Algorithm 3 from Section 5.1) and sosgradient (Algorithm
4 from Section 5.2). Both algorithms are implemented in MAPLE, and the results are
obtained on an Intel Xeon E7-4820 CPU (2GHz) with 1.5 TB of RAM.

In practice, univsos2 runs faster than univsos1, which is consistent with the theoretical
results stated in Theorems 4.2.2 and 4.2.3. In addition, as mentioned in Remark 5.2.4,
it is practically faster to compute SOS decompositions involving rational fractions than
polynomials.

We compare timings of the slowest algorithm, sosgradientshape using univsos1, with
the fastest algorithm, sosgradient using univsos2. For each algorithm, the first step
consists of obtaining h by computing either the reduced Gröbner basis (using the proc-
edure Basis in MAPLE) in sosgradientshape or the zero-dimensional rational parame-
trization (using the procedure RationalUnivariateRepresentation in MAPLE) in
sosgradient. The runtime of this step is denoted by th. The degree and the bitsize of h
are denoted by dh and τh, respectively. The second step outputs an SOS decomposition
of the non-negative univariate polynomial h by using either Algorithm univsos1 in
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sosgradientshape or Algorithm univsos2 in sosgradient. Here, tsos is the runtime of
the second step and τsos is the maximum bitsize of the output polynomials.

sosgradientshape sosgradient

bitsize 106-bits time (s) bitsize 104-bits time (s)
n τ δ dh τh τsos th tsos dh τh τsos th tsos
2 74 9 32 0.3 8.1 0.1 2.6 36 0.5 1.6 0.1 1.8
3 149 27 104 2.4 153 1.1 781 108 6.6 13.4 0.2 13.3
4 312 81 320 117 – 399 – 324 88 169 3.9 505
5 590 243 968 – – 972 940 1306 169 4965

Table 5.1: Comparison of performance between sosgradientshape and sosgradient

In Table 5.1, we consider random polynomials of fixed degree d = 4 with number of
variables n between 2 and 5 generated as follows: a4 + b2

1 + · · ·+ b2
n + c + 106, where

a (resp., bi, c) is a dense linear (resp., quadratic, cubic) polynomial in n variables.
The coefficients of a (resp., bi, c) are chosen randomly in {−1, 1} (resp., {−3, . . . , 3},
{−1, 0, 1}) with respect to the uniform distribution. For n ≥ 4, sosgradientshape
failed to provide an SOS decomposition as the execution of univsos1 did not finish after
12 hours of computation, as indicated by the symbol “−” in the corresponding lines.
The underlying reason is that τh and dh are both very large and that the complexity of
univsos1 is exponential in the degree of h (Theorem 4.2.2). Note that the intermediate
polynomials correspond to worst cases, i.e., the maximum possible degree of w is
attained, namely δ = deg w = (d − 1)n, so the degree of h is also maximum, i.e.,
deg h = d(d− 1)n − d (resp. d(d− 1)n) in sosgradientshape (resp. in sosgradient).
For such cases, sosgradient cannot compute decompositions for n ≥ 4 (corresponding
to deg h ≥ 324) within 12 hours.

multivsos sosgradient

d, n success τ t τ t
4, 2 100% 1.3 0.16 2 2
4, 3 94% 3.7 0.26 18 22
4, 4 38% 8.9 0.18 78 153
4, 5 8% 12.5 0.32 234 630
6, 2 82% 3.5 0.24 45 142
6, 3 0% 160 500
6, 4 0% 744 4662

Table 5.2: Comparison of performance between sosgradientshape and multivsos

Next, we compare the performance of sosgradient (using univsos2) and Algorithm
multivsos [51]. Recall that multivsos is designed to compute SOS decompositions of
polynomials lying in the interior of the SOS cone. We report our experimental results
in Table 5.2, obtained with seven classes of 50 randomly generated polynomials. The
random polynomials corresponding to the four first rows, with d = 4 and n = 2, . . . , 5,
are obtained in a similar way: a4 + b2

1 + b2
2 + c + 106, where a (resp., bi, c) is a dense
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linear (resp., quadratic, cubic) polynomial in n variables. The coefficients of a (resp.,
bi, c) are chosen randomly in {±1,±2} (resp., {−3, . . . , 3}, {−1, . . . , 1}) with respect to
the uniform distribution. The polynomials from the three last rows, with d = 6 and
n = 2, 3, 4, are constructed in a similar way: a6 + b2 + c + 106, where a (resp., b, c) is
a dense linear (resp., cubic, cubic) polynomial in n variables. Coefficients of a (resp.,
bi, c) are chosen randomly in {±1,±2} (resp., {−3, . . . , 3}, {−1, . . . , 1}) with respect to
the uniform distribution. Note that here the univariate polynomials generated when
running the algorithm do not correspond to the worst case scenario in terms of degree
and bitsize. For both algorithms, we denote by τ (104-bits) the average bitsize of the
output and by t the average runtime in seconds.

From this table, we deduce that when the number of variables n increases, then the
rate of success of multivsos decreases. This fact illustrates Blekherman’s theorem
[15] which says that if the degree d ≥ 4 is fixed then, as the number of variables
n grows, the cone of non-negative polynomials is significantly bigger than the cone
of SOS polynomials. It also illustrates that sosgradient can tackle a large range of
problems which are out of reach of state-of-the-art algorithms such as multivsos. When
multivsos succeeds in computing SOS decompositions, then it provides more concise
certificates than sosgradient while also being more efficient. However, when d = 4
and n = 5, multivsos can only decompose 4 polynomials out of 50 while sosgradient

succeeds for all of them. This demonstrates the need of alternative procedures such as
sosgradient for polynomials which presumably do not lie in the interior of the SOS
cone.
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In this chapter, we design, analyze and compare, theoretically and practically, three
hybrid numeric-symbolic algorithms for computing weighted sums of Hermitian squa-
res decompositions for trigonometric univariate polynomials positive on the unit circle
with Gaussian coefficients. The numerical steps on which the first and second algorithm
rely are complex root isolation and semi-definite programming, respectively. Exact sum
of Hermitian squares decompositions are obtained thanks to compensation techniques.
The third algorithm, also based on complex semi-definite programming, is an adapta-
tion of the rounding and projection algorithm by Peyrl and Parrilo [67]. We compare
their performances on randomly chosen benchmarks, and further design a certified
finite impulse filter.

This chapter has three sections. Sections 6.1, 6.2, and 6.3 introduce Algorithms csos1,
csos2, and csos3, respectively, and analyze their bit complexities. Practical experi-
ments are given in Section 6.4.

Most of the content of this chapter is from the paper [54] entitled “Exact SOHS decompo-
sitions of trigonometric univariate polynomials with Gaussian coefficients” by Victor Magron,
Mohab Safey El Din, Markus Schweighofer, and Trung Hieu Vu.
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6.1 Algorithm based on root isolation

The set of trigonometric univariate polynomials with Gaussian integer coefficients,
denoted by H (Z)[z], is a subset of Laurent polynomials with complex variable z as
follows:

f (z) = f0 +
( f1

z
+ f̄1z

)
+ · · ·+

( fd

zd + f̄dzd
)

, (6.1)

with d ∈N, f0 ∈ Z and f j ∈ Z[i] for j = 1, . . . , d.

Assume that f ∈ H (Z)[z] is positive on the unit circle. According to the proof of the
Riesz-Fejér spectral factorization theorem [22, pp. 3–5], f can be written as an SOHS
with a single term as follows:

f = a×
d

∏
k=1

(z− ak)×
(1

z
− āk

)
, (6.2)

where (a1, 1/ā1) . . . , (ad, 1/ād) are d pairs of roots of f , and a is a positive scalar.

We propose the first algorithm, called csos1, to compute an exact SOHS decomposition
of f ∈H (Z)[z] being positive on the unit circle C . It puts into practice a perturbation-
compensation procedure based on complex roots isolation, and can be viewed as the
extension of the procedure univsos2 (stated in [18] and analyzed in [53, § 4]) to the
complex setting.

6.1.1 Description and correctness

Description. Algorithm csos1 takes as input a polynomial f ∈ H (Z)[z] of degree d
which is positive on C and that f has no multiple roots. It outputs two positive rational
numbers ε and α, a rational number u0, and two lists of Gaussian numbers [u1, . . . , ud]

and [α1, . . . , αd] such that

f (z) =
(

ε + u0 − 2
d

∑
k=1
|uk|

)
+

d

∑
k=1
|uk|

(
zk +

uk

|uk|

)( 1
zk +

ūk

|uk|

)
+ α

d

∏
k=1

(z− αk)

(
1
z
− ᾱk

)
with

(
ε + u0 − 2

d

∑
k=1
|uk|

)
> 0. (6.3)

In Line 1 we replace z by x + iy in f where x, y are (real) variables to obtain a real
bivariate polynomial p of degree d. Since, by assumption, f is positive over the compact
set C , there exists ε > 0 small enough, such that p− ε is positive on C . The first while
loop from Lines 2 and 3 computes such positive rational number ε. To do so, it uses an
auxiliary procedure hasrealrootoncircle, which returns true if p − ε cancels on the
unit circle C = {(x, y) ∈ R2 : x2 + y2 − 1 = 0}. Such a procedure is easily obtained
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with any polynomial system solver for bivariate polynomial systems. In practice, we
use the real root solver MSOLVE [12].

In the second while loop from Line 5 to 13, the algorithm computes at Line 6 Gaussian
approximations α1, . . . , αd, where |αi| < 1 for i = 1, . . . , d (and their conjugates), of the
complex roots of f − ε with accuracy δ. This is done using the procedure complexroots
which on input a rational fraction and a required accuracy δ returns all the complex
roots of the numerator of the fraction at accuracy δ (see, e.g., [14]).

Algorithm 5 Computing SOHS decomposition based on root isolation

csos1 := proc( f )

Input: f ∈H (Z)[z] is positive on C of degree d and has no multiple roots
Output: ε, a ∈ Q+, u0 ∈ Q, two lists [u1, . . . , ud] and [α1, . . . , αd] in Q[i] providing an

SOHS decomposition of f on C as in (6.3)
1: Set δ := 1, ε := 1 and compute p := f (x + iy) . z = x + iy, z−1 = x− iy
2: while hasrealrootoncircle(p− ε) do ε := ε

2

3: done
4: Set boo := false
5: while not boo do
6: Compute [α1, . . . , αd] := complexroots( f − ε, δ) . |αi| < 1, i = 1, . . . , d
7: Compute F := ∏d

k=1 (z− αk)
(
z−1 − ᾱk

)
8: Compute α := coeffs( f − ε, 0)/coeffs(F, 0) and u := ( f − ε)− αF
9: Compute [u0, u1, . . . , ud] := coeffs(u)

10: if ε > 2 ∑d
k=1 |uk| − u0 then boo := true

11: else δ := 2δ

12: end
13: done
14: return ε, α, u0, [u1, . . . , ud], [α1, . . . , αd]

The idea is to obtain, up to proper scaling α, an approximate SOHS decomposition F of
f − ε. The auxiliary procedure coeffs provides the list of coefficients of a polynomial,
e.g., coeffs( f − ε, 0) returns the constant term of f − ε. We then consider the difference
u at Line 8 which is the difference between f − ε and its approximate SOHS decomposi-
tion which can be written as follows:

u = u0 +
(

u1z−1 + ū1z
)
+ · · ·+

(
udz−d + ūdzd

)
.

As proved in Section 6.1.2, if the precision of root isolation is large enough, then the
stopping condition

ε > 2
d

∑
k=1
|uk| − u0 (6.4)
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is fulfilled, otherwise the precision is increased.

To illustrate csos1, we use the following simple example.

Example 6.1.1. Let f = 5 + (1 + i)z−1 + (1− i)z which is positive on C . We obtain
p = 5+ 2x + 2y. With ε = 1, we check with hasrealrootoncircle that p− ε is positive
on C . With precision δ = 16, we compute complex approximation roots α1 and ᾱ1 of
f − ε, here α1 = − 7

4 −
7
4 i. Defining F = (z− α1)(z−1 − ᾱ1), we obtain α = 32

57 ,

u = f − ε− αF =
( 1

57
+

i
57

)
z−1 +

( 1
57
− i

57

)
z.

Clearly, ε = 1 > 2
√

2
57 , thus the condition (6.4) is satisfied. Then, f has an exact SOHS

decomposition as follows:

f =
(

1− 2
√

2
57

)
+

√
2

57

(
z +

1 + i√
2

)(
z−1 +

1− i√
2

)
+

32
57

(
z +

7
4
+

7
4

i
)(

z−1 +
7
4
− 7

4
i
)

.

To prove the correctness of the two algorithms csos1 and csos2 and estimate their bit
complexities, we need the following lemma.

Lemma 6.1.1. Let f ∈ H (Z)[z] be positive on C , of degree d and τ be the maximum bitsize
of its coefficients. Then, there exists a positive integer N = Õ(d3(d + τ)) such that f − 1

2N is
positive on C .

Proof. We replace z by x + iy and z−1 by x − iy in f , then obtain p(x, y). Because
f belongs to H (Z)[z], one has p ∈ Z[x, y] with degree d and bitsize O(ht(d) + τ).
Clearly,

pmin := min{p(x, y) : x2 + y2 = 1} = min{ f (z) : |z| = 1}.

From Lemma 4.6.2, we can choose a positive integer N = Õ(d3(d + τ)) large enough
such that pmin > 1

2N . This implies that f − 1
2N is positive on C .

Theorem 6.1.2. Assume that f ∈ H (Z)[z] is positive on C of degree d and that f has no
multiple roots. On input f , Algorithm csos1 terminates and outputs an SOSH decomposition
of f as in (6.3).

Proof. By Lemma 6.1.1, there exits a positive rational ε such that f − ε is also positive on
C . Thus, the first while loop (from Line 2 to Line 3) of Algorithm csos1 terminates.
The magnitude of the coefficients of the difference polynomial u defined in Line 9
converges to 0 as the precision δ of the complex root finder goes to infinity (because
of the continuity of roots with respect to coefficients). This implies that the condition
of Line 10 is fulfilled after finitely many iterations, thus the second loop (from Line 5 to
Line 13) always terminates. Eventually, we have

f = ε + u0 +
(

u1z−1 + ū1z
)
+ · · ·+

(
udz−d + ūdzd

)
+ aF.
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In addition,
ukz−k + ūkzk = |uk|

(
zk +

uk

|uk|

)(
z−k +

ūk

|uk|

)
− 2|uk|, (6.5)

yielding (6.3). The scaling α at Line 8 is actually an approximation of the scaling a from
the decomposition (6.2) of f . Since both coeffs( f − ε, 0) and coeffs(F, 0) are rational,
α is also rational.

Clearly, the polynomial F and the term on the right-hand side of (6.5) are SOHS. Hence,
as the stopping condition (6.4), the right-hand side of (6.3) is a sum of d + 2 Hermitian
squares involving Gaussian (or Gaussian modulus) numbers.

6.1.2 Bit complexity analysis

We now analyze the bit complexity of Algorithm csos1.

Theorem 6.1.3. Assume that f ∈ H (Z)[z] is positive on C of degree d, bitsize τ and that
f has no multiple roots. On input f , csos1 computes an SOHS decomposition of f with
Gaussian (or Gaussian modulus) coefficients whose the maximum bitsize is bounded from above
by Õ(d5(d + τ)).

Proof. Firstly, let us show that the bitsizes of u0, . . . , ud, α1, . . . , αd and α in (6.3) are
bounded from above by Õ(d5(d + τ)). The proof is almost the same as in the univariate
real setting [53, Theorem 23], thus we only provide the main ingredients and skip some
technical details.

From Lemma 6.1.1, there exists a positive integer

N = Õ(d3(d + τ)) (6.6)

such that f − ε is positive on C , with ε = 1
2N . We define m := 2d and

g := zd( f − ε) = f̄dz2d + · · ·+ f̄1zd+1 + ( f0 − ε)zd + f1zd−1 + · · ·+ fd. (6.7)

Note that g and f − ε have the same roots, and that ‖g‖∞ ≤ ‖ f ‖∞ + ε. Denote by
ζ1, . . . , ζm the (exact) complex roots of g and by ζ ′1, . . . , ζ ′m their approximations with a
precision δ, so that ζ ′j = ζ j(1 + ej), where |ej| ≤ 2−δ for j = 1, . . . , m. We consider a new
polynomial g′ which is defined as follows:

g′ := f̄d(z− ζ ′1) . . . (z− ζ ′m).

The polynomial u defined in Line 8 satisfies zdu = g− g′.

We now prove that at a precision δ, where

δ = N + log2((2d + 1)2‖g‖∞) = Õ(d3(d + τ)),
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we ensure that the coefficients of u satisfy the stopping condition (6.4) of the algorithm.
Here, one can take N = Cd3(d + τ), for a large enough constant C > 1. One has

e := 2−δ <
1
δ
<

1
Cd3(d + τ)

<
1

m(m + 1)
<

1
m

. (6.8)

Let j be in {0, 1, . . . , d}. Using Vieta’s formulas (see, e.g., [84, Ch.3, p.89]), we have

∑
1≤i1<···<ij≤m

ζi1 · · · ζij = (−1)j gm−j

gm
= (−1)j gm−j

f̄d
. (6.9)

Similarly, we have

∑
1≤i1<···<ij≤m

ζ ′i1 · · · ζ
′
ij
= (−1)j

g′m−j

f̄d
. (6.10)

We estimate an upper bound for the coefficient ūd−j of the polynomial u. Clearly, one
has ūd−j = gm−j − g′m−j. From (6.9) and (6.10), we see that

|ūd−j| = | f̄d|

∣∣∣∣∣∣ ∑
1≤i1<···<id+j≤m

(
ζi1 · · · ζid+j − ζ ′i1 · · · ζ

′
id+j

)∣∣∣∣∣∣ (6.11)

= | f̄d|

∣∣∣∣∣∣ ∑
1≤i1<···<id+j≤m

ζi1 · · · ζid+j

(
1− (1 + ei1) · · · (1 + eid+j)

)∣∣∣∣∣∣ . (6.12)

Apply [33, Lemma 3.3] for ei1 , . . . , eid+j , we get (1 + ei1) · · · (1 + eid+j) ≤ 1 + θd+j with

|θd+j| ≤
(d + j)e

1− (d + j)e
≤ me

1−me
.

Since (6.8), we have

(m + 1)e− me
1−me

=
e(1−m(m + 1)e)

1−me
≥ 0.

This yields me
1−me ≤ (m + 1)e. So, we can conclude that∣∣∣1− (1 + ei1) · · · (1 + eid+j)

∣∣∣ ≤ |θd+j| ≤ (m + 1)e.

From the above presentation of |ūd−j| in (6.11) and (6.9), we obtain the following estimates:

|ūd−j| ≤ | f̄d|
|gm−j|
| f̄d|

(m + 1)e ≤ ‖g‖∞(m + 1)e. (6.13)

The conclusion holds for j = 0, . . . , d so one has

2
d

∑
k=1
|uk| − u0 = 2

d−1

∑
j=0
|ūd−j| − u0 ≤ e(m + 1)2‖g‖∞ ≤ e(m + 1)2‖g‖∞.
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It follows from δ = N + log2

(
(2d + 1)2‖g‖∞

)
that e(2d + 1)2‖g‖∞ = ε. Therefore,

ε > 2 ∑d
k=1 |uk| − u0 holds when δ = Õ(d3(d + τ)).

We choose ej = e = 2−δ and z′j = zj(1 + 2−δ). This implies that

|ūd−j| = | f̄d||1− (1 + 2−δ)d+j|,

for all j = 0, . . . , d. It follows from ht( f̄d) ≤ τ, ht(δ) = Õ(d3(d + τ)), and ht(ε) =

Õ(d3(d + τ)), that

ht(ūd−j) = Õ(d3(d + τ) + (d + j)d3(d + τ)) = Õ(d4(d + τ)).

The maximal bitsize of the coefficients of u is bounded from above by Õ(d4(d + τ)).

We now estimate the bit complexity of the coefficient α in (6.3). From Line 8 in csos1,
one has α = f0−ε

F0
, where F0 = g′d is the constant term of F. Clearly, ht( f0 − ε) =

Õ(d3(d + τ)).

Let {α1, . . . , αd, 1
ᾱ1

, . . . , 1
ᾱd
} be the approximate roots of the polynomial zd( f − ε). By

applying Lemma 4.6.1 to the polynomial obtained by multiplying zd( f − ε) with the
least common multiple of its coefficients, we require an accuracy of at least Õ(Nd)
to compute distinct approximations of its roots in the worst case. Since (6.6), the last
bound becomes Õ(d4(d + τ)).

Because of (6.10), one has

g′d = (−1)d f̄d ∑
1≤i1<···<id≤m

ζ ′i1 · · · ζ
′
id

, (6.14)

where ζ ′j ∈ {α1, . . . , αd, 1
ᾱ1

, . . . , 1
ᾱd
}. Since ht(αi) = Õ(d4(d + τ)), from (6.14) we have

the following estimates

ht(g′d) ≤ d ht(αi) + log2

(
2d
d

)
≤ d ht(αi) + d log2(d + 1) = Õ(d5(d + τ)).

Finally, the maximal bitsize of the uk’s and α is bounded from above by Õ(d5(d + τ)),
as claimed.

Theorem 6.1.4. Assume that f ∈H (Z)[z] be positive on C of degree d and bitsize τ and that
f has no multiple roots. On input f , csos1 computes an SOHS decomposition of f using at
most Õ

(
d6(d + τ)

)
bit operations.

Proof. The algorithm includes two steps. We consider the first step, checking that the
polynomial g defined in (6.7) in the previous proof has no real root on the unit circle.
Let ε be given as in Lemma 6.1.1 with

ht(ε) = Õ(d3(d + τ)).
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Relying on Sylvester–Habicht sequences [47, Corollary 5.2], we can check it by using

O((2d)2 ht(ε)) = Õ(d5(d + τ))

boolean operations. In the second step, we compute approximate complex roots of g
and check the condition at Line 10. It follows from [59, Theorem 4] that isolating disks
of radius less than 2−δ for all complex roots of g(z) can be computed in

Õ(d3 + d2 ht(ε) + dδ)) = Õ(d6(d + τ))

boolean operations. The computation of all uk has a negligible cost with respect to
the computation of the complex roots. Therefore, we conclude that csos1 runs in
Õ(d6(d + τ)) boolean operations.

6.2 Algorithm based on complex SDP solving

This section states and analyzes another perturbation-compensation algorithm, named
csos2, to compute an SOHS decomposition of a trigonometric polynomial being positive
on C . In the algorithm, the approximate SOHS decomposition for the perturbation is
computed by using complex SDP solving. It can be viewed as the adaptation of the
procedure intsos (stated and analyzed in [52, § 3]) to the complex univariate setting.

Let Id stands for the identity matrix of size d. Given f ∈ H [z] of degree d, recall that a
Hermitian matrix Q ∈ C(d+1)×(d+1) is a Gram matrix associated with f if f = v?d Q vd,
where

vd := (1, z, . . . , zd)T

contains the canonical basis for polynomials of degree d in z. By [22, Theorem 2.5], f is
positive on C if and only if there exists a positive definite Gram matrix associated to f .

6.2.1 Description and correctness

Description. The input of Algorithm csos2 includes a polynomial f ∈ H (Z)[z] of
degree d which is positive on C . The outputs are ε ∈ Q+, a list of Gaussian numbers
[u0, u1, . . . , ud], and a list of polynomials [s1, . . . , sd] in Q[i][z] providing an SOHS decom-
position of f as follows

f =
(

ε + u0 − 2
d

∑
k=1
|uk|

)
+

d

∑
k=1
|uk|

(
zk +

uk

|uk|

)(
z−k +

ūk

|uk|

)
+

d

∑
k=0

s?k sk. (6.15)

The first while loop of csos2 (Lines 2–3) is exactly the same as in csos1 to obtain ε ∈ Q+

such that f − ε is positive on C . Then, instead of using root isolation as in csos1, csos2
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Algorithm 6 Computing SOHS decomposition based on complex SDP solving

csos2 := proc( f )

Input: f ∈H (Z)[z] positive on C of degree d
Output: ε ∈ Q+, [u0, u1, . . . , ud] in Q[i], [s0, . . . , sd] in Q[i][z] providing an SOHS

decomposition of f as in (6.15)
1: Set δ := 1, R := 1, δc = 1, ε := 1 and compute p := f (x + iy)
2: while hasrealrootoncircle(p− ε) do ε := ε

2

3: done
4: boo := false
5: while not boo do
6: Compute (Q̃, λ̃) := sdp( f − ε, δ, R)
7: Compute [s0, . . . , sd] := cholesky(Q̃, λ̃, δc) . f − ε ' ∑d

k=0 s?k sk

8: Compute u := ( f − ε)−∑d
k=0 s?k sk, [u0, u1, . . . , ud] := coeffs(u)

9: if ε > 2 ∑d
k=1 |uk| − u0 then boo := true

10: else δ := 2δ, R := 2R, δc := 2δc

11: end
12: done
13: return ε, [u0, u1, . . . , ud], [s0, . . . , sd]

relies on complex SDP (Line 6) and Cholesky’s decomposition (Line 7) to compute an
approximate SOHS decomposition of the perturbed polynomial.

With f − ε, δ, and R, the sdp function calls an SDP solver to compute a rational approxi-
mation Q̃, which is positive definite, of a Gram matrix associated to f − ε and a rational
approximation λ̃ of its smallest eigenvalue. As in [52], we analyze the complexity of
this procedure by assuming that sdp relies on the ellipsoid algorithm [31], running
in polynomial-time within a given accuracy δ and a radius bound R on the Frobenius
norm of Q̃. Its outputs are obtained by solving the following complex SDP:

λmin = max
Q,λ

λ

s.t. tr(ΘkQ) = fk − (ε · 1k=0), k = −d, . . . , d , (6.16)

Q � λId+1 , λ ≥ 0 , Q ∈ C(d+1)×(d+1) ,

where Θk is the elementary Toeplitz matrix with ones on the k−th diagonal and zeros
elsewhere, i.e. 1k=0 = 1 if k = 0 and 0 otherwise. The equality constraints of the
SDP (6.16) correspond to the relation f − ε = v?d Q vd. This SDP (corresponding to the
SDP (2.14) in [22]) computes the Gram matrix associated to f with the largest minimal
eigenvalue.

The cholesky function computes first an approximate Cholesky’s decomposition LL?
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of Q̃ with precision δc and provides as output a list of polynomials [s0, . . . , sd] in Q[i][z],
where sk is the inner product of the (k + 1)-th row of L by vd. One would expect to
have f − ε = ∑d

k=0 s?k sk after using exact SDP and Cholesky’s decomposition. Since the
SDP solver is not exact, we have to consider the difference u = f − ε− ∑d

k=0 s?k sk and
proceed exactly as in csos1 to obtain an exact SOHS decomposition.

Remark 6.2.1. According to [22, Remark 2.8], we can convert the complex SDP (6.16) to
a real one. Indeed, the variable matrix Q can be written as Q = Qre + iQim, where Qre

and Qim are real matrices. Hence, the constraint tr(ΘkQ) = fk − ε · 1k=0 can be replaced
by two constraints, tr(ΘkQre) = re( fk − ε · 1k=0) and tr(ΘkQim) = im( fk − ε · 1k=0).
Moreover, the condition Q � 0 is equivalent to[

Qre −Qim
Qim Qre

]
� 0.

Example 6.2.1. Consider the polynomial f = 5+(1+ i)z−1 +(1− i)z that is positive on
C . We provide an SOHS decomposition of f by using csos2. Similarly, as in Example
6.1.1, with ε = 1, we can check that p− ε is positive on C . With precision δ = 264, we
compute the complex approximation matrix Q̃. Here, we use the UD decomposition of
Q̃. We have Q̃ = UDU?, where

Q̃ =

[ 76207117
82595451 −

84775740
90917777 i 1− i

1− i 90917777
42387870

]
,

and

U =

[
1 42387870

90917777 −
42387870
90917777 i

0 1

]
, D =

[ 76207117
82595451 0

0 90917777
42387870

]
.

We have u0 = 0, u1 = −1781161
35367472262109859495610 , s0 = 1, and s1 =

( 42387870
90917777 −

42387870
90917777 i

)
+ 1

z .
Clearly, ε = 1 > 2× 1781161

35367472262109859495610 , so the condition in Line 9 is satisfied. Then, f
has an exact SOHS decomposition as follows:

f =
(
1− 2× 1781161

35367472262109859495610

)
+ 76207117

82595451 × 1× 1

+ 90917777
42387870 ×

( 42387870
90917777 −

42387870
90917777 i + 1

z

)
×
( 42387870

90917777 +
42387870
90917777 i + z

)
.

The lemma below prepares the correctness and bit complexity analysis of csos2.

Lemma 6.2.1. Let f ∈H (Z)[z] be positive on C of degree d and bitsize τ. Assume that Q is a
positive definite Gram matrix associated to f . Then, there exist ε ∈ Q+ of bitsize Õ(d3(d + τ))

such that f − ε is positive on C , δ of bitsize Õ(d3(d + τ)) and R of bitsize O(ht(d) + τ) such
that Q− ε

d+1 Id+1 is a Gram matrix associated to f − ε with

Q− ε

d + 1
Id+1 � 2−δ Id+1 and

√
tr((Q− εId+1)2) ≤ R. (6.17)
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Proof. By Lemma 6.1.1, there is a positive integer N and ε = 2−N with N = Õ(d3(d+ τ))

such that f − 3ε/2 > 0 on C . Let

δ := dN + 1 + log2(d + 1)e = Õ(d3(d + τ))

so that 2−δ ≤ ε
2(d+1) . Note that v?d vd = d + 1. Thus, we have the following represent-

ation:
f − ε = v?d

(
Q− ε

d + 1
Id+1

)
vd.

Since f − ε − 2−δ(d + 1) ≥ f − 3ε/2 is positive over the unit circle, the Gram matrix
associated to f − ε− 2−δ(d + 1) is positive definite. Specifically, we have that(

Q− ε

d + 1
Id+1

)
− 2−δ Id+1 � 0.

Let R := f0
√
(d + 1). It follows that R is of bitsize O(ht(d) + τ). Note that the equality

constraint of SDP (6.16) with k = 0 reads tr(Q) = f0 − ε ≤ f0. The maximal eigenvalue
of Q is less than f0 and

tr((Q− εId+1)
2) ≤ tr(Q2) ≤ (d + 1) f 2

0 = R2.

This is the last desired inequality.

Theorem 6.2.2. Let f ∈H (Z)[z] be positive on C of degree d. On input f , Algorithm csos2

terminates and outputs an SOHS decomposition of f as in (6.15).

Proof. Since f − ε is positive on C , according to [22, Theorem 2.5], SDP (6.16) always
has a strictly feasible solution for precision parameters (δ, R) with bitsizes as in Lemma
6.2.1 and the sdp function returns an approximate Gram matrix Q̃ associated to f − ε

such that Q̃ � 2−δ Id+1 and tr(Q2) ≤ R2 as in (6.17). In particular, we obtain a rational
approximation λ̃ ≥ 2−δ of the smallest eigenvalue of Q̃. Let δc be the smallest integer
such that

2−δc <
2−δ

(d + 1)2 + d + 1 + d2−δ
.

Since the following function in the variable t,

t 7→ t
(d + 1)2 + d + 1 + dt

,

increases on [0,+∞) and λ̃ ≥ 2−δ, the inequality (4.12) holds. According to Lemma 4.5.1,
at Line 6 we compute an approximate Cholesky decomposition of Q̃ by using the
cholesky procedure. We obtain a nonsingular factor Q̃ = LL?, where L has Gaussian
entries.

We denote sk := L?vd and consider the difference polynomial
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u = ( f − ε)−∑d
k=0 s?k sk.

The second while loop (Lines 5–12) terminates when the stopping condition (6.4) is
fulfilled. This condition holds if |uk| ≤ ε

2d+1 , for all k = 0, . . . , d. We prove that these
last conditions hold when δ and δc are both large enough. Indeed, we have

uk = fk − εk −
( d

∑
j=0

s?j sj

)
k

, k = −d, . . . , d, (6.18)

where ε0 = ε, εk = 0 for k 6= 0, and (∑d
j=0 s?j sj)k is the coefficient of monomial zk in the

involved polynomial. Recall that the positive definite matrix Q̃ computed by the SDP
solver is an approximation of the Gram matrix associated to f − ε. With the precision
δ, from (6.18) and Q̃ � 2−δ I, we see that

| fk − εk − tr(ΘkQ̃)|=| fk − εk − ∑
i+j=k

Q̃ij|≤ 2−δ.

Furthermore, from (4.11), the approximate Cholesky decomposition LL? of Q̃ performed
at precision δ satisfies LL? = Q̃ + H and

|Hij| ≤
(d + 2)2−δc

√
|Q̃iiQ̃jj|

1− (d + 2)2δc
,

for all i, j in {−d, . . . , d}. Applying the Cauchy-Schwarz inequality for the trace function,
we see that

d

∑
k=−d

|Q̃kk| = tr(Q̃) ≤
√

tr(Q̃2)
√

tr(I) ≤ R
√

d + 1.

So, for each k in {−d, . . . , d}, we have∣∣∣ ∑
i+j=k

√
Q̃iiQ̃jj

∣∣∣ ≤ ∑
i+j=k

Q̃ii + Q̃jj

2
≤ tr(Q̃) ≤ R

√
d + 1. (6.19)

Therefore, we have∣∣∣ ∑
i+j=k

Q̃ij −
( d

∑
j=0

s?j sj

)
k

∣∣∣ = ∣∣∣ ∑
i+j=k

Q̃ij − ∑
i+j=k

(
LL?

)
k

∣∣∣ = ∣∣∣ ∑
i+j=k

Hij

∣∣∣.
It follows from (4.11) and (6.19) that the last number is bounded by∣∣∣ ∑

i+j=k
Q̃ij −

( d

∑
j=0

s?j sj

)
k

∣∣∣ ≤ (d + 2)2−δc

1− (d + 2)2−δc ∑
i+j=k

√
|Q̃iiG̃jj| ≤

R
√

d + 1(d + 2)2−δc

1− (d + 2)2−δc
.

Take the smallest δ such that 2−δ ≤ ε
2(2d+1) = 1

(2d+1)2N+1 as well as the smallest δc such
that

R
√

d + 1(d + 2)2−δc

1− (d + 2)2−δc
≤ ε

2(2d + 1)
,
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i.e., δ = dN + 1 + log2(2d + 1)e and

δc = dlog2 R + log2(d + 2) + log2(2
N+1(2d + 1)3/2 + 1)e.

From (6.18) and above inequalities, we obtain the following estimates:

|uk| ≤
∣∣∣ fk − εk − ∑

i+j=k
Q̃ij

∣∣∣+ ∣∣∣ ∑
i+j=k

Q̃ij −
( d

∑
j=0

s?j sj

)
k

∣∣∣
≤ ε

2(2d + 1)
+

ε

2(2d + 1)
=

ε

2d + 1
.

This guarantees that the second while loop terminates for large enough δ and δc, with
bitsizes Õ(d3(d + τ)).

6.2.2 Bit complexity analysis

Theorem 6.2.3. Let f ∈ H (Z)[z] be positive on C of degree d and coefficients of maximum
bitsize τ. On input f , csos2 computes an SOHS decomposition of f with (modulus of)
Gaussian coefficients using at most Õ(d13(d + τ)2) bit operations. In addition, the maximal
bitsize of the output coefficients is bounded from above by Õ(d6(τ + d)).

Proof. Firstly, we prove that Algorithm csos2 runs in Õ(d13(d+ τ)2) boolean operations.
Assume that ε, δ, R and δc are given as above so that, before terminating, csos2 performs
a single iteration in each while loop. From Lemma 6.2.1, the bitsize of R is O(ht(d) + τ)

and the bitsize of each ε, δ, δc is upper bounded by Õ(d3(d + τ)).

To investigate the computational cost of the call to sdp at Line 6, we rely on the bit
complexity analysis of the ellipsoid method [69]. Denote nsdp = d + 1 by the size of Q̃
and msdp = 2d + 1 by the number of affine constraints of the SDP (6.16). According to
Theorem 4.5.2, SDP (6.16) is solved in

O(n4
sdp log2(2

τnsdp R 2δ))

iterations of the ellipsoid method, where each iteration requires

O(n2
sdp(msdp + nsdp))

arithmetic operations over log2(2
τnsdp R 2δ)-bit numbers. We obtain the following esti-

mates:

O(n4
sdp log2(2

τnsdp R 2δ)) = Õ(d7(d + τ)), O(n2
sdp(msdp + nsdp)) = O(d3),

and
O(log2(2

τnsdp R 2δ)) = Õ(d3(d + τ)).
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Therefore, to compute the approximate Gram matrix Q̃, the ellipsoid algorithm runs in
boolean time Õ(d13(d + τ)2).

Next, we compute the cost of calling cholesky in Line 7. Note that Cholesky’s decom-
position is performed in O(n3

sdp) arithmetic operations over δc-bit numbers. Because
δc = Õ(d3(d + τ)) and nsdp = d + 1, cholesky runs in boolean time Õ(d6(d + τ)). The
other elementary arithmetic operations of Algorithm csos2 have a negligible cost with
respect to the sdp procedure. Hence, the algorithm runs in boolean time Õ(d13(d+ τ)2).

The bitsize of the output coefficients is upper bounded by the output bitsize of the
Cholesky’s decomposition of the matrix Q̃, that is O(δc(d + 1)3) = Õ(d6(d + τ)).

6.3 Algorithm based on rounding-projection technique

In this chapter, we introduce Algorithm csos3 which is an adaptation of the rounding-
projection method by Peyrl and Parrilo, stated in [67] and analyzed in [52, § 3.4], and
investigate its bit complexity.

6.3.1 Description

The input of csos3 is a polynomial f ∈ H (Z)[z] of degree d which is positive over
C . The outputs consist of a list [c0, . . . , cd] ⊂ Q+ and a list of polynomials [s0, . . . , sd] in
Q[i][z] that provide an SOHS decomposition of f , namely

f =
d

∑
k=0

cks?k sk. (6.20)

As in csos2, the first while loop from Lines 3–8 provides an approximate Gram matrix
Q̃ associated to f and an approximation λ̃ of its smallest eigenvalue. In Line 11, we
round the matrix Q̃ up to precision δ̂ to obtain a matrix Q̂, with Gaussian coefficient
entries. The for loop from Line 12 to Line 15 is the projection step to ensure that the
equality constraints of SDP (6.16) hold exactly. Then, we compute the LDL? decompo-
sition of Q. The list [c0, . . . , cd] is the list of coefficients of the diagonal matrix D and
each sk is the inner product of the (k+ 1)-th row of L with the vector vd of all monomials
up to degree d. If all ck’s are positive rationals and all polynomials sk have Gaussian
coefficients, then the second while loop ends. Otherwise, we increase the precision δ̂.

6.3.2 Correctness and bit complexity analysis

Theorem 6.3.1. For f ∈H (Z)[z] positive on C of degree d and bitsize τ, there exist precisions
δ, δ̂ upper bounded by Õ(d3(d + τ)), and a radius bound R upper bounded by O(ht(d) + τ)
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Algorithm 7 Computing SOHS decomposition based on rounding-projection technique
csos3 := proc( f )

Input: f ∈H (Z)[z] positive on C of degree d
Output: [c0, . . . , cd] ⊂ Q+ and [s0, . . . , sd] ⊂ Q[i][z] providing an SOHS decomposition

of f as in (6.20)
1: Set δ := 1, R := 1, δc = 1, δ̂ := 1
2: Set boo := false
3: while not boo do
4: Compute (Q̃, λ̃) := sdp( f , δ, R)
5: if λ̃ > 0 then boo := true
6: else δ := 2δ, R := 2R
7: end
8: done
9: Set boo := false

10: while not boo do
11: Compute Q̂ := round(Q̃, δ̂)

12: for j ∈ {0, . . . , d}, k ∈ {0, . . . , j} do
13: Compute Qj,j−k := Q̂j,j−k − 1

d−k+1 (∑
d
i=k Q̂i,i−k − fk)

14: Compute Qj−k,j := Q?
j,j−k . Q = Q?

15: done
16: Compute [c0, . . . , cd; s0, . . . , sd] := ldl(Q) . f = ∑d

k=0 cks?k sk

17: if c0, . . . , cd ∈ Q+, s0, . . . , sd ∈ Q[i][z] then boo := true
18: else δ̂ := 2δ̂

19: end
20: done
21: return [c0, . . . , cd], [s0, . . . , sd]
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such that Algorithm csos3 terminates and outputs an SOHS decomposition of f .

Proof. After the second while loop (Lines 10–20), we obtain the positive definite matrix
Q associated to f with the smallest eigenvalue λ. Let N ∈ N be the smallest integer
satisfying 2−N ≤ λ. From Lemma 6.2.1, the bitsize of N is Õ(d3(d + τ)). The matrix Q̂
is obtained after the rounding step at Line 11. The number δE stands for the distance
between Q̂ and Q which is defined as follows (all norms in a Euclidean space are
equivalent):

2−δE :=
√

∑
i,j
(Q̂ij −Qij)2.

Since δ̂ is the precision of rounding, one has |Q̂ij − Q̃ij| ≤ 2−δ̂ for all i, j in {0, . . . , d}.
As in the proof of Theorem 6.2.2, at the SDP precision δ, one has Q̃ � 2−δ I. By [67,
Proposition 8], csos3 terminates and outputs such matrix Q together with an SOHS
decomposition of f if

2−δ̂ + 2−δE ≤ 2−N . (6.21)

By repeating the argument in the proof of [52, Theorem 13], we can conclude that
ht(N) = Õ(d3(d + τ)) ensures the condition (6.21).

Similar to the argument in the proof of Lemma 6.2.1, the sdp function is successful if R
is O(ht(d) + τ).

As emphasized in [52, § 3.4], it turns out that the two algorithms csos2 and csos3 have
the same bit complexity. We omit any technicalities as the proof is almost the same as
[52, Theorem 12].

Theorem 6.3.2. Let f ∈ H (Z)[z] be positive on C of degree d and coefficients of maximum
bitsize τ. On input f , csos3 outputs an SOHS decomposition of f with Gaussian coefficients
using at most Õ(d13(d + τ)2) bit operations. Additionally, the maximal bitsize of the output
coefficients is bounded from above by Õ(d6(d + τ)).

Proof. For f ∈H (Z)[z] positive over C with degree d and maximal bitsize τ, there exist
δ, δ̂ with bitsizes upper bounded by Õ(d3(d + τ)), and R with bitsize upper bounded
by O(ht(d) + τ) such that Algorithm csos3 outputs an SOHS decomposition of f . The
bitsize of the output coefficients is upper bounded by the output bitsize of the LDLT

decomposition of the matrix Q, that is

O(δ̂(d + 1)3) = Õ(d6(d + τ)).

The running time Õ(d13(d + τ)2) is estimated as the running time of csos2.
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Example 6.3.1. Consider the polynomial f = 5 + (1 + i)z−1 + (1− i)z that is positive
on C . We provide an SOHS decomposition of f using csos3. With precision δ = 264,
we obtain the approximate matrix Q̂,

Q̂ =

[
1.8551 1− i
1 + i 2.1449

]
.

After the rounding and projection steps (Lines 12–15), we have

Q =

[ 4177311994322459
2251799813685248 1− i

1 + i 4829887260418533
2251799813685248

]
.

Computing the LDL factorization of Q, we obtain

L =

[
1 0

2251799813685248
4177311994322459 (1 + i) 1

]
, D =

[ 4177311994322459
2251799813685248 0

10034741182345744764918476089639
9406470370520464927385643384832

]
.

Hence, we have an SOHS decomposition of f as follows:

f = 4177311994322459
2251799813685248 ×

(
1 + 2251799813685248

4177311994322459 (1 + i)× 1
z

)
×
(
1 + 2251799813685248

4177311994322459 (1− i)× z
)

+ 10034741182345744764918476089639
9406470370520464927385643384832 × 1× 1.

6.4 Practical experiments

This section is dedicated to experimental results for our three certification algorithms,
csos1, csos2 and csos3, stated in Section 6.1, 6.2 and 6.3, respectively. Firstly, we
compare their performance towards certifying positivity on the unit circle for trigonom-
etric polynomials with Gaussian coefficients. Next, we describe how to extend our third
algorithm, csos3, to design a finite impulse response (FIR) filter in a certified fashion.

Our code is implemented in JULIA, available online at polsys.lip6.fr/∼hieu/csos.zip,
and the results are obtained on an Intel Xeon 6244 CPU (3.6GHz) with 1.5 TB of RAM.

In csos1 and csos2, we compute ε such that f − ε is positive on C in Lines 2–3 by using
MSOLVE [12] within the Julia library GroebnerBasis.jl. The corresponding running
time is denoted by tε. We denote by tu the running time spent to compute the difference
polynomial u and to perform the comparison involving its coefficients and ε. In the
algorithm csos1, we compute approximate roots of f − ε with the arbitrary-precision
library PolynomialRoots.jl [82]. In csos2 and csos3, we model SDP (6.16) though
JUMP [23] and solve it with Mosek [1]. Exact arithmetic is performed with the CALCIUM

library available in Nemo.jl.

https://polsys.lip6.fr/~hieu/csos.zip
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6.4.1 Positivity verification

We consider a family of trigonometric polynomials with Gaussian integer coefficients

fd = 10d +
d

∑
k=1

((1− i)z−k + (1 + i)zk),

for d ∈ {50, 100, 150, 200, 250}. On the unit circle C , each such fd is positive since
z−k + zk ≥ −2. We provide certificates of positivity for these polynomials by computing
exact SOHS decompositions though csos1, csos2 and csos3.

For csos1, we use a precision δ = 64 (bits) to isolate complex roots. As a side note, we
were not able to use arbitrary-precision SDP solvers (e.g., SDPA-GMP) within csos2

and csos3, because JUMP only allows us to rely on double floating-point arithmetic
at the moment. The running times (in seconds) of the three algorithms are reported in
Table 6.1. As expected from the theoretical bit complexity results from Theorem 6.1.3
and Theorem 6.2.3, Algorithm csos1 performs better than csos2 and csos3. Moreover,
csos2 is faster than csos3 because of the fact that the latter algorithm requires the
computation of an exact Cholesky’s factorization. Even though csos1 happens to be
the best choice to verify the positivity of polynomials with known coefficients, the use
of an SDP solver is mandatory to optimize over positive polynomials with unknown
coefficients, as demonstrated in the next subsection.

csos1 csos2 csos3

d tε tu total tε tu total total
50 0.2 0.3 0.6 0.2 6.6 6.8 7.7
100 1.6 2.9 4.5 1.6 128 130 184
150 5.2 13 19 5.2 830 838 1460
200 24 26 51 24 3460 3485 7214
250 64 55 120 64 10553 10622 24852

Table 6.1: Performance of Algorithms csos1, csos2, and csos3

6.4.2 Design of a certified linear-phase FIR filter

This section is devoted to the design of a linear-phase Finite Impulse Response (FIR)
filter. This boils down to solving an energy minimization problem. To obtain a certified
filter, we first solve a semi-definite optimization problem (corresponding to SDP (5.12)
from [22]) and transform the numerical output into an exact certificate via a projection
procedure similar to the one used in csos3.

An FIR filter of order d is an univariate trigonometric polynomial with real coefficients

H(z) =
d

∑
k=−d

hkz−k
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where h := [h0, . . . , hd] be the coefficient vector of H. Since we work on the unit circle,
we have z = exp(iω), for ω ∈ R, and we abuse notation by writing H(ω) instead of
H(z). The passband and stopband are [0, ωp] and [ωs, π] respectively, where ωp, ωs are
given. The stopband energy of the FIR filter is

Es =
1
π

∫ π

ωs

|h(ω)|2dω.

To design such a linear-phase filter, we minimize the stopband energy under modulus
constraints involving two parameters γp, γs:

min
H∈H [z]

Es

s.t. |H(ω)− 1| ≤ γp, ∀ω ∈ [0, ωp],

|H(ω)| ≤ γs, ∀ω ∈ [ωs, π] .

(6.22)

We will reformulate the above optimization problem to an SDP. To do so, we need to
recall some notations. We denote Θk ∈ R(d+1)×(d+1) by the elementary Toeplitz matrix
with ones on the k-th diagonal and zeros elsewhere, for k = 0, . . . , d. Denote by

C = Toep(c0, . . . , cd)

the Toeplitz matrix with the first row (c0, . . . , cd), where

ck =

{
1− ωs

π , if k = 0,
− sin kωs

kπ , if k > 0.

We define

C̃ = PTCP � 0,

where

P =

0 Jd
1 0
0 Id

 ,

and Jd being the counter identity matrix of size d. The matrix Φk ∈ R(d−1)×(d−1) is
defined as in [22, Formula 2.95, p.50], they are zero matrices whenever k is out of range.
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As shown in [22, § 5.1.1], the optimization problem (6.22) can be reformulated as the
SDP

min
h, Q1,..., Q7

hTC̃h

(1 + γp)1k=0 − hk = Lk(Q1) ,
hk − (1− γp)1k=0 = Lk,0,ωp(Q2, Q3) ,

s.t. γs1k=0 − hk = Lk,ωs,π(Q4, Q5) ,
γs1k=0 + hk = Lk,0,ωp(Q6, Q7) , k = 0, . . . , d ,

Q1 � 0, . . . , Q7 � 0,

(6.23)

where Q1, Q2, Q4, and Q6 are real (d + 1) × (d + 1)-matrices, Q3, Q5 and Q7 are real
(d− 1)× (d− 1)-matrices, Lk(A) = tr(Θk A), and

Lk,α,β(A, B) = tr(Θk A) + tr
(( a + b

2
(Φk−1 +Φk+1)− (ab+

1
2
)Φk−

1
4
(Φk−2 +Φk+2)

)
B
)

,

with a = cos α, b = cos β. By contrast with the unconstrained case (Algorithm csos3),
this program involves 7 real Gram matrix variables and d + 1 real variables h0, . . . , hd,
which are the coefficients of the polynomial corresponding to the filter.

After solving (6.23), we obtain numerical values for the coefficients of h and the entries
of Q1, . . . , Q7, which are further rounded to ĥ and Q̂1, . . . , Q̂7. To project Q̂1 to a matrix
Q1 satisfying the first set of equality constraints in SDP (6.23), we apply the formula
in Line 13 of Algorithm csos3 after replacing fk by pk := (1 + γp)1k=0 − ĥk. Similarly,
we obtain the two matrices Q2 and Q3 := Q̂3 satisfying the second set of equality
constraints in SDP (6.23), after substitution by

ĥk − (1− γp)1k=0 − tr
(( a + b

2
(Φk−1 + Φk+1)− (ab +

1
2
)Φk −

1
4
(Φk−2 + Φk+2)

)
Q3

)
,

Eventually, similar projection steps provide the remaining matrices Q4, . . . , Q7 so that
all equality constraints in (6.23) hold exactly.

Example 6.4.1. As in [22, Example 5.1], we design a filter with parameters d = 25,
ωp = π/5, ωs = π/4, γp = 1/10 (corresponding to a passband ripple of 1.74 dB) and
γs = 0.0158 (a stopband attenuation of 36 dB). We first obtain a numerical lower bound
of the stopband energy E′s = 4.461501 × 10−5. However, this bound happens to be
inexact as the Gram matrices obtained after the projection step are not positive semi-
definite anymore. To overcome this certification issue, we replace the last constraint
in (6.23) by Q7 − 10−9 I24 � 0. Doing so, we can successfully project the approximate
Gram matrices into exact ones with positive eigenvalues, and obtain a certified exact
lower bound of Es = 4.461503× 10−5 in 0.74 seconds.
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CHAPTER 7

Conclusions and Perspectives

We summarize the main obtained results of the thesis and propose several directions
to develop or improve them.

Contents
7.1 Exact certificates for real polynomials . . . . . . . . . . . . . . . . . . . 89
7.2 Exact certificates for complex polynomials . . . . . . . . . . . . . . . . 90

7.1 Exact certificates for real polynomials

Conclusions. In Chapter 5, we designed and analyzed two algorithms to decompose
a non-negative polynomial as an SOS of polynomials/rational fractions modulo the
gradient ideal with rational coefficients. The correctness of our framework relies on a
genericity condition, namely that the gradient ideal of the input polynomial is zero-
dimensional and radical. Practical experiments demonstrated that our algorithms can
tackle a large range of problems that are out of reach for state-of-the-art algorithms.

Perspectives. We plan to further develop and improve our algorithms in the following
directions:

Extension to the constrained case. We aim to provide a necessary and sufficient condition
for the non-negativity of f ∈ Q[x] over a real algebraic variety by relying on polar
varieties, as in [28].

Exploiting specific structures. We shall improve the scalability of our algorithms by
exploiting the specific structure of the input polynomial, such as correlative [45] or term
sparsity [88], symmetries [73] or by using recent improvements on the computation of
critical sets when the related system is invariant under group actions [25].

Improving the bit complexity. We shall improve the bit complexities of the two algorithms
sosgradientshape and sosgradient by reducing the degree of the univariate polyno-
mial h in (5.2). Indeed, h is non-negative over the real roots of w in (5.1). Hence, the
results of [41] can be applied.

Looking for new certificates. We also plan to seek new certificates for non-negativity
of polynomials without imposing the zero-dimensional and radical condition on the

89
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gradient ideal. In Example 5.1.3 we proposed a certificate of non-negativity for the
Motzkin polynomial whose gradient ideal does not satisfy the condition. Note that the
condition is generic. Hence, if we perturb the original polynomial with a tiny change
then the condition holds. Along this line, we shall study coercive polynomials which
are dense in Q[x] w.r.t the `1-norm [37].

7.2 Exact certificates for complex polynomials

Conclusions. We have designed three algorithms, of polynomial bit complexity, to
compute weighted sums of Hermitian squares decompositions for trigonometric univ-
ariate polynomials positive on the unit circle with Gaussian coefficients. Note that
positivity of such a trigonometric polynomial f is equivalent to that of a polynomial

a0 +
d

∑
k=1

ak cos(kt) + bk sin(kt)

for all t ∈ [0, 2π], where ak, bk are rational coefficients obtained from the coefficients
fi. In turn, if we do the change of variables t = 2 arctan(x) then the trigonometric
polynomial becomes a rational function whose denominator is a power of (1 + x2).
Thus, this boils down to proving the positivity of a real univariate polynomial and so
one can apply the methods from [53].

Perspectives. In the future, we plan to develop and improve our algorithms as follows:

Improving the bit complexity. The bit complexities obtained in Sections 6.2 and 6.3 are
somehow artificial as they are based on the complexity of the ellipsoid method. In
the practical experiments shown in Section 6.4, we relied on interior-point methods
to solve the SDPs. The corresponding complexity has been recently analyzed in [21].
Even though in the latter article, the exponents of the bounds are not explicitly given,
it would certainly be possible. Hence, the bit complexities in Sections 6.2 and 6.3 can
be reduced. Moreover, it would also be possible to improve the resulting estimates by
exploiting the specific structure of the Toeplitz/Gram matrices involved in our SDP
program. Gluing together such results would certainly help to explain the discrepancy
between our theoretical (high) complexity bounds and our practical (good) algorithmic
performance for our application of filter design, as in Example 6.4.1.

Extension to the multivariate case. It is possible to extend our algorithm to the multivariate
case, considering non-negativity on the unit n-circle. In this setting, the degree of the
squares can be higher than the degree of the input polynomial. We plan to estimate
the degree bound for the squares in our SOHS decompositions by relying on the kernel
polynomial method used in [24, 83].
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Extension to optimal power flow problems. We also intend to extend our certification
techniques to the sparse setting [89] to obtain guaranteed bounds for optimal power
flow instances [3] that are complex multivariable polynomial optimization problems.

Investigating non-negativity. We leave the situation where the input polynomial vanishes
on the unit circle for future investigation. The extension beyond positivity is significantly
more difficult and, in particular, none of our three algorithms can be applied to this case.
This is because when f cancels on the unit circle, the perturbation steps in Algorithms
csos1 and csos2 do not work and a Gram matrix associated to f will not be in the
interior of the positive semi-definite matrix cone and so the rounding-projection method
[67] cannot be applied.
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[2] E. Artin. Über die zerlegung definiter funktionen in quadrate. In Abhandlungen
aus dem mathematischen Seminar der Universität Hamburg, volume 5, pages 100–115.
Springer, 1927.

[3] S. Babaeinejadsarookolaee, A. Birchfield, R. D. Christie, C. Coffrin, C. DeMarco,
R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang, et al. The power grid
library for benchmarking AC optimal power flow algorithms. arXiv preprint
arXiv:1908.02788, 2019.

[4] Z. Bai, J. Demmel, and A. McKenney. On floating point errors in Cholesky. University
of Tennessee, 1989.

[5] B. Bank, M. Giusti, J. Heintz, M. S. El Din, and E. Schost. On the geometry of
polar varieties. Applicable Algebra in Engineering, Communication and Computing,
21(1):33–83, 2010.

[6] B. Bank, M. Giusti, J. Heintz, and G. M. Mbakop. Polar varieties and efficient real
elimination. Mathematische Zeitschrift, 238(1):115–144, 2001.

[7] B. Bank, M. Giusti, J. Heintz, and L. M. Pardo. Generalized polar varieties:
Geometry and algorithms. Journal of complexity, 21(4):377–412, 2005.

[8] B. Bank, M. Giusti, J. Heintz, and M. Safey El Din. Intrinsic complexity estimates
in polynomial optimization. Journal of Complexity, 30(4):430–443, 2014.

[9] S. Basu, R. Pollack, and M.-F. Roy. A new algorithm to find a point in every cell
defined by a family of polynomials. In Quantifier elimination and cylindrical algebraic
decomposition, pages 341–350. Springer, 1998.

[10] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical computer
science, 22(3):317–330, 1983.

[11] A. Beck. First-order methods in optimization. SIAM, 2017.

[12] J. Berthomieu, C. Eder, and M. Safey El Din. Msolve: A library for solving
polynomial systems. In Proceedings of ISSAC, page 51–58, 2021.

92



BIBLIOGRAPHY 93

[13] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[14] D. A. Bini and L. Robol. Solving secular and polynomial equations: A
multiprecision algorithm. Journal of Computational and Applied Mathematics,
272:276–292, 2014.

[15] G. Blekherman. There are significantly more nonegative polynomials than sums
of squares. Israel Journal of Mathematics, 153(1):355–380, 2006.

[16] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

[17] A. L. B. Cauchy. Calcul des indices des fonctions. Journal de l’Ecole Polytechnique,
15(25):176 – 229, 1832.

[18] S. Chevillard, J. Harrison, M. Joldeş, and C. Lauter. Efficient and accurate
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solving. Journal of complexity, 17(1):154–211, 2001.

[28] A. Greuet, F. Guo, M. Safey El Din, and L. Zhi. Global optimization of
polynomials restricted to a smooth variety using sums of squares. Journal of
Symbolic Computation, 47(5):503–518, 2012.

[29] A. Greuet and M. Safey El Din. Probabilistic algorithm for polynomial
optimization over a real algebraic set. SIAM Journal on Optimization, 24(3):1313–
1343, 2014.

[30] D. Y. Grigor’ev and N. N. Vorobjov Jr. Solving systems of polynomial inequalities
in subexponential time. Journal of symbolic computation, 5(1-2):37–64, 1988.

[31] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, volume 2 of Algorithms and Combinatorics. Springer, second corrected
edition edition, 1993.

[32] D. Henrion, S. Naldi, and M. Safey El Din. Exact algorithms for linear matrix
inequalities. SIAM Journal on Optimization, 26(4):2512–2539, 2016.

[33] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[34] Hilbert. Ueber die Darstellung definiter Formen als Summen von
Formenquadraten. Mathematische Annalen, 32:342–350, 1888.

[35] D. Hilbert. Mathematical problems. In Mathematics: People· Problems· Results, pages
273–278. Chapman and Hall/CRC, 2019.

[36] U. Jannsen. Hasse principles for higher-dimensional fields. Annals of Mathematics,
pages 1–71, 2016.

[37] V. Jeyakumar, J. B. Lasserre, and G. Li. On polynomial optimization over
non-compact semi-algebraic sets. Journal of Optimization Theory and Applications,
163(3):707–718, 2014.

[38] E. Kaltofen, B. Li, Z. Yang, and L. Zhi. Exact certification of global optimality of
approximate factorizations via rationalizing sums-of-squares with floating point
scalars. In Proceedings of the twenty-first international symposium on Symbolic and
algebraic computation, pages 155–164, 2008.



BIBLIOGRAPHY 95

[39] E. Kaltofen, Z. Yang, and L. Zhi. A proof of the monotone column permanent
(MCP) conjecture for dimension 4 via sums-of-squares of rational functions. In
Proceedings of the 2009 conference on Symbolic numeric computation, pages 65–70, 2009.

[40] E. L. Kaltofen, B. Li, Z. Yang, and L. Zhi. Exact certification in global polynomial
optimization via sums-of-squares of rational functions with rational coefficients.
Journal of Symbolic Computation, 47(1):1–15, 2012.

[41] T. Krick, B. Mourrain, and A. Szanto. Univariate rational sums of squares. Revista
de la Union Matematica Argentina, 2022.

[42] W. Krull. Idealtheorie in Ringen ohne Endlichkeitsbedingung. Mathematische
Annalen, 101(1):729–744, 1929.
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