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In this thesis we study three partial differential equations in the context of uniformly accurate approximations. First we propose a new class of uniformly accurate splitting methods for the Benjamin-Bona-Mahony equation which converge uniformly in the dispersive parameter ε. The proposed splitting schemes are furthermore asymptotic convergent and preserve the KdV limit. We carry out a rigorous convergence analysis of the splitting schemes exploiting the smoothing properties in the system. This will allow us to establish improved error bounds with gain either in regularity (for non smooth solutions) or in the dispersive parameter ε.T h el a t t e rw i l lb ei n t e r e s t i n gi n regimes of a small dispersive parameter. We will in particular show that in the classical BBM case P(∂ x )=∂ x our Lie splitting does not require any spatial regularity, i.e, first order time convergence holds in H r for solutions in H r without any loss of derivative. This estimate holds uniformly in ε. In regularizing regimes ε = O(1) we even gain a derivative with our time discretisation at the cost of losing in terms of 1 ε . Then we treat a highly oscillatory problem that requires targeted numerical schemes. We propose a novel class of uniformly accurate integrators for the Klein-Gordon equation which capture classical c = 1 as well as highly-owescillatory non-relativistic regimes c 1 and, at the same time, allow for low regularity approximations.

In particular, the schemes converge with order τ and τ 2 , respectively, under lower regularity assumptions than classical schemes, such as splitting or exponential integrator methods, require. The new schemes in addition preserve the nonlinear Schrödinger (NLS) limit on the discrete level. More precisely, we will design our schemes in such a way that in the limit c ! ∞ they converge to a recently introduced class of low regularity integrators for NLS.

Applying the concepts developed here, we present a class of asymptotic consistent exponential-type integrators for Klein-Gordon-Schrödinger systems that capture all regimes from the slowly varying classical regime up to the highly oscillatory non-relativistic limit regime. We achieve convergence of order one and two that is uniform in c without any time step size restrictions. In particular, we establish an explicit relation between gain in negative powers of the potentially large parameter c in the error constant and loss in derivative.

Finally, steering away from uniform low regularity approximation, we introduce a class of time integrators for dispersive equations which allow us to reproduce the dynamics of the solution from the classical ε = 1 up to long wave limit regime ε ⌧ 1 on the natural time scale of the PDE t = O( 1 ε ). Most notably the global error of our new schemes is of order τε (for the first-order scheme) and τ 2 ε (for the second-order scheme) on time intervals

For the four schemes we propose, we will illustrate our theoretical findings by means of numerical simulations.
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Dans cette thèse, nous étudions trois équations aux dérivées partielles dans le contexte des approximations uniformément exactes. Nous proposons tout d'abord une nouvelle classe de méthodes de splitting uniformément exactes pour l'équation de Benjamin-Bona-Mahony qui convergent uniformément en le paramètre de dispersion ε.

Les schémas proposés sont en outre asymptotiquement convergents et préservent la limite KdV. Nous conduisons une analyse rigoureuse de la convergence des schémas de splitting en exploitant les propriétés de régularisation du système. Cela nous permettra d'établir de meilleures bornes d'erreur avec un gain soit en régularité (pour les solutions non lisses) soit en le paramètre dispersif ε, le dernier cas étant intéressant dans les régimes de petit paramètre dispersif. Nous montrerons en particulier que, dans le cas classique BBM où P(∂ x )=∂ x ,l es c h é m ad e Lie splitting ne requiert aucune régularité spatiale, c'est-à-dire que la convergence temporelle du premier ordre se vérifie dans H r pour les solutions dans H r sans aucune perte de dérivée. Cette estimation est uniforme en ε.

Dans des régimes régularisants ε = O(1), nous gagnons même une dérivée avec notre discrétisation temporelle au prix d'une perte en termes de 1 ε . Nous traitons ensuite un problème hautement oscillatoire qui nécessite des schémas numériques ciblés. Nous proposons une nouvelle classe de méthodes numériques uniformément exactes pour l'équation de Klein-Gordon qui capturent les régimes classiques c = 1 ainsi que les régimes non-relativistes hautement oscillatoires c 1 et, en même temps, permettent des approximations de régularité faible. Plus particulièrement, les schémas convergent avec un ordre en τ et τ 2 , respectivement, sous des hypothèses de régularité plus faibles que celles requises par les schémas classiques. Les nouveaux schémas préservent en outre la limite vers l'équation non linéaire de Schrödinger (NLS) au niveau discret. Plus précisément, nous concevons nos schémas de telle sorte que dans la limite c ! ∞ ils convergent vers une classe récemment introduite d'intégrateurs de faible régularité pour NLS. En appliquant les concepts développés ici, nous présentons une classe de méthodes numériques, asymptotiquement consistentes de type exponentiel pour des systèmes de Klein-Gordon-Schrödinger qui capturent tous les régimes depuis le régime classique de variation lente jusqu'au régime limite non relativiste hautement oscillatoire. Nous obtenons une convergence d'ordre un et deux qui est uniforme en c sans aucune restriction de taille du pas de temps. En particulier, nous établissons une relation explicite entre le gain en termes de puissances négatives du paramètre potentiellement grand c dans la constante d'erreur et la perte en dérivée.

Enfin, en sus de l'approximation uniforme de régularité réduite, nous introduisons une classe d'intégrateurs en temps pour les équations dispersives qui nous permettent de reproduire la dynamique de la solution depuis le régime classique ε = 1 jusqu'au régime limite des ondes longues ε ⌧ 1 à l ' é c h e l l e d e t e m p s n a t u r e l l e d e l ' E D P t = O( 1 ε ). Plus particulièrement l'erreur globale de nos nouveaux schémas est d'ordre τε (pour le schéma du premier ordre) et τ 2 ε (pour le schéma du second ordre) sur des intervalles de temps de longueur O ⇣ 1 ε ⌘ .

Pour les quatre schémas que nous proposons, nous illustrerons nos résultats théoriques par des simulations numériques.

Mots-clés : Équation de Benjamin-Bona-Mahony, équation de Klein-Gordon, système de Klein-Gordon-Schrödinger, intégrale hautement oscillatoire, consistance asymptotique, précision uniforme, régime des grandes ondes.

6 Groundbreaking achievements have been made in the last century when it comes to structure preserving numerical algorithms, a pillar in the field of numerical analysis. They are motivated by the key question "What structural properties within the behaviour of the solutions to di↵erential equations are we able to numerically reproduce?", in addition to more fundamental questions like improving precision and reducing computational costs.R e s u l t ss o far have heavily relied on considerably significant smoothness assumptions on the initial data, so as to make sure that the numerical methods do not break down. This has left a gap in the simulation of non-smooth phenomena, such as blow-up phenomena and turbulences. The main topic of this thesis is one attempt at bridging this gap, within the framework of three dispersive equations.

The structure preserving aspects of the numerical schemes we will present in this first part of the thesis touch on uniform accuracy and asymptotic consistency.

In cases where the dynamics of the solution of a partial differential equation are governed and highly influenced by a parameter, special care needs to be put into the relation between this parameter and the error constants. This is the reason why many of these equations need targeted numerical schemes. Throughout this thesis we will see three of these instances , where, in some cases we profit from the presence of this parameter in error bounds, in terms of higher accuracy, namely in Chapters 2 and 4, and in others where we aim to avoid introducing the parameter in the error bounds altogether in order to achieve uniform accuracy, which is the case in Chapters 3 and 4.

When dealing with equations governed by a parameter, it is also desirable to preserve the limiting behaviour of the solution within the numerical scheme. This means that, the solution of our numerical scheme should converge towards the approximated solution of the limit equation or system of equations in the same analytical sense.

In what follows we introduce the three equations whose numerical approximations will be studied in the first part of this thesis. More detailed introductions, as well as the state of the art will be heading the dedicated chapters.

The Benjamin-Bona-Mahoney equation

First we will consider the Benjamin-Bona-Mahoney equation given by ∂ t u(t, x)+ P(∂ x )

1 ε∂ 2 x u(t, x)+ε ∂ x 1 ε∂ 2 x u 2 (t, x)=0,
where P is a polynomial in ∂ x that will be further defined in Chapter 2. This section is based on a contribution to the journal BIT Numer. Math. The dispersive parameter 0 < ε  1 strongly governs the solution to this equation.

The main difficulty lies in regimes of small dispersion parameter ε ⌧ 1, as is illustrated in the following estimate

∂ x 1 ε∂ 2 x f r  min ⇢ 1 ε k f k r 1 , k f k r+1 .
In this context, we develop and conduct a careful error analysis of high order splitting methods that converge uniformly in ε. Smoothing properties of the leading differential operator that one can intuitively expect from the estimate above, have made low regularity convergence results possible, allowing for error bounds that hold for both the regimes where ε = 1 and the more challenging ε ! 0.

Our main convergence result reads as follows: At order p = 1, 2, 3, 4 our splitting method of order p satisfies the global error bound

ku(t n ) u n k r  ε 1 σ τ p c sup 0tt n ku(t)k r+1+pλ 2σ ! with 0  σ  1,
where λ denotes the degree of the leading differential operator P(∂ x ).

In addition, our schemes are asymptotically consistent, allowing to capture the limit regime where the Benjamin-Bona-Mahony equation in the classical case P(∂ x )=∂ x collapses to the Korteweg-de Vries equation.

The Klein-Gordon equation and Klein-Gordon-Schrödinger systems

We then move on to consider the Klein-Gordon equation, as well as a Klein-Gordon-Schrödinger system. These sections will be based on two contributions by the author and collaborators to the journals SIAM J. Numer.

Anal. and Journal of Comp. and Applied Math. This implies that, adding to the challenge of low regularity approximation, we tackle the challenge of highly oscillatory problems. The Klein-Gordon equation is given by c 2 ∂ tt z ∆z + c 2 z = |z| 2 z, z(0, x)=z 0 (x), ∂ t z(0, x)=c 2 z 0 0 (x).

The parameter c 1, proportional to the speed of light, plays a very important role in the behaviour of the solution and gives rise to two different regimes. We distinguish between the so-called relativistic regime,w h e r e c = 1,a n dt h enon-relativistic regime with c 1, which. brings in a significant additional challenge in terms of its numerical treatment, given the highly oscillatory nature of its solution, strongly governed by the parameter c.

Classical numerical methods that are employed to approximate the dynamics of partial differential equations stem from methods developed in the context of ordinary differential equations, where the oscillations of the solution are explicitly captured by the scheme at each discrete time step. However, these methods were not made with high oscillations in mind and they break down in these contexts. Even so-called Gautschi-type methods, that were constructed for the numerical approximation of the solution of oscillatory second-order ordinary differential equations fail to capture the highly oscillatory behaviour of the equations we consider.

In order to illustrate this phenomenon, we have chosen a classical Exponential Integrator out of the cluster of classical numerical schemes, and in Figures 1.1.1 and 1.1.2, we can observe that the solution given by the classical scheme completely fails in this context. The idea behind the construction of the methods we propose is based on the iteration of the formula of variation of constants within the nonlinearity. This introduces a nonlinear frequency interaction related to the frequencies triggered by the leading differential operators in Fourier space. How we approximate these highly oscillatory inte-grals that arise while iterating the formula of variation of constants is key both in order to obtain an approximation that is robust in highly oscillatory regimes, as well as in an effort not to introduce high order derivatives in our error bounds, thus allowing for lower regularity assumptions. Thoroughly studying the structure of the local error terms, we will notice their commutator structure. Taking advantage of this commutator structure has allowed for some cancellation of terms involving higher order derivatives, allowing for lower regularity assumptions than preexisting methods.

In the case of Klein-Gordon-Schrödinger systems,

c 2 ∂ tt z(t, x) ∆z(t, x)+c 2 z(t, x)=|ψ(t, x)| 2 , i∂ t ψ(t, x)+ 1 2 ∆ψ(t, x)+ψ(t, x)z(t, x)=0,
the interactions between the respective leading operators of each equations present an additional challenge in the methodology discussed above, as the commutator structure of the local error terms will not necessarily cancel out higher order derivatives, given that there are two different differential operators involved. In this case, one way to resolve this issue has been to develop the scheme in a way that, in the local error terms, these higher order derivative terms are paired with negative powers of the potentially large parameter c.I np r a c t i c e ,i nt h e fully discrete case, this allows for a relaxation of regularity assumptions, as will be further explained in Chapter 4.

Both in the case of the Klein-Gordon equation and in the Klein-Gordon-Schr dinger system, additionally, we are interested in preserving the limiting behaviour of the solution. Indeed, as c ! ∞, the solution converges to the solution of a Schrödinger system and we will show that our schemes are coherent with this property of the solution.

Approximation on long time scales

Steering away from low regularity approximation, in the last part of this thesis, we take a look at a problem that has a naturally long time scale. This chapter is based on a publication submitted by the author and collaborators to the journal Math. Comp.

Numerical methods that approximate the dynamics of partial differential equations rely on convergence bounds that, at a time step t n ,t a k et h ef o r m

ku exact (t n ) u n approx k∆tK 1 e K 2 T end ,
where K 1 > 0 and K 2 > 0 are constants that depend on the norm of u and ∆t is the time step size. The reason for this is discussed in the appendix, where we explain the idea behind a Lady Windermere's fan argument, a method used to obtain such global error bounds.

In a bound of this form we clearly see the drastic influence of the end time T end in the error bound of a numerical scheme. It is no surprise that accuracy turns out to have a very delicate dependence on the time scales of the simulation. The lack of reliability over long time scales that numerical methods may have supposes a road block when it comes to constructing bridges between theoretical and numerical analysis of partial differential equations.

These bridges are necessary and beneficial for many reasons. For instance, numerical simulations can provide insight and intuition that could push experts to wonder whether or not a result in theoretical analysis of partial differential equations could be improved. In other words, if limitations of the particular tools used in theoretical proofs are what is standing in the way of improving a result, or rather if there is truly a physical constraint that is intrinsic to the problem at hand.

We will consider the following family of dispersive equations

∂ t u(t, x)+∂ x m L ( p ε∂ x )u(t, x)+ε∂ x m Q ( p ε∂ x )u 2 (t, x)=0 (t, x) 2 R ⇥ T,
where m L and m Q are smooth symbols that will be further detailed in Chapter 5. This family comprises equations such as the Benjamin-Bona-Mahony equation, the Korteweg-de-Vries equation and the Whitham equation, for different choices of m L and m Q .

For the first time we exploit the advantage of methods based on the iteration of the formula of variation of constants within the nonlinearity, introduced in Chapters 3 and 4, on long time scales which were so far restricted to low regularity data on short times (that is T = 1).

The main challenge in the theoretical and numerical analysis of this family of equations on long time scales

t = O( 1 ε
) lies in the loss of derivative in the nonlinearity. This loss of derivative presents issues in the stability analysis of classical numerical schemes, even on short time intervals, to the point where convergence can only be shown for semi-discrete approximations and under significantly restrictive assumptions that will be further discussed in Chapter 5.

Notation and Assumptions

The error analysis that constitutes the footing of our results follows the structure of a so called Lady Windermere's fan argument and the details of how such an argument is generally carried out have been moved to the appendix.

For reasons regarding ease of implementation and clarity of presentation, we impose periodic boundary conditions, i.e. x 2 T d ,w h e r eT d is the d-dimensional torus. However, we note that nor the construction nor the analysis of our scheme depends on any Fourier expansion techniques, and thus can be generalised to bounded domains x 2 Ω ⇢ R d equipped with suitable boundary conditions, as well as the full space x 2 R d .F o re x a m p l e , techniques such as Finite Element Methods may be used as a spatial discretization. On the other hand, by means of pseudo-differential operators one might generalize our theoretical results in order to tackle the theoretical analysis of the methods on more general bounded domains.

We denote by vk the k-th Fourier coefficient of a function v :

T d ! C, given by vk = 1 (2π) d Z T d v(x)e ik•x dx, where k • x = k 1 x 1 + •••+ k d x d , which then give the expansion v(x)= ∑ k2Z d vk e ik•x .
In the following we fix r > d 2 and we denote by k.k r the standard H r = H r (T d ) Sobolev norm, that is given by

kvk 2 r = ∑ k2Z d (1 + |k|) 2r | vk | 2 , (1.2.1)
where

|k| 2 = k 2 1 + •••+ k 2 d .
We will denote by T the end of the time interval of each of the exact solutions we will consider.

For this choice of r, the following well-known Bilinear Estimate holds

k fgk r  C r,d k f k r kgk r , (1.2.2)
for some constant C r,d > 0 independent of f and g.S e et h eA p p e n d i xi n( Bro23) for a rigorous derivation of this estimate.

The O notation

For simplicity, we may occasionally make use of O-notation. We stress, that this use is exclusively restricted to constants independent of the key parameters in each context, i.e., in the context of the H r norm, we say that

v w = O(z) if kv wk r  kkzk r ,
where v, w, z 2 H r , for some constant k that can be chosen independently of the parameter relevant to the specific chapter. We will explicitly state the dependency of constants on the key parameters throughout this work.

For a differential operator L , we also may state a claim of the form

f g = O(L h),
for f , g 2 H r and h such that L h 2 H r .W h e n e v e rt h i si st h ec a s e ,w em e a nt h a t

k f gk r  KkL hk r ,
where K > 0 is a constant chosen independently of the relevant parameters in the specific chapters.

The ϕ-functions

In this section we introduce a family of functions that will be used in Chapters 3 and 4, throughout the discussion of the numerical methods for the Klein-Gordon equation, as well as for Klein-Gordon-Schrödinger systems. We introduce this family of functions with the purpose of simplifying error bounds and the stability analysis, profiting from properties of these well-studied functions. In addition, their use also eases the implementation of these methods. We refer to (HO10) for more details on this family of functions.

Definition 1.2.1 (The ϕ-functions). We let, for ξ 2 C,

ϕ 0 (ξ )=e ξ and ϕ k (ξ )= Z 1 0 e (1 θ )ξ θ k 1 (k 1)! dθ , k 1.
In particular, we will encounter

ϕ 1 (ξ )= e ξ 1 ξ , (1.2.3) and ϕ 2 (ξ )= ϕ 1 (ξ ) 1 ξ . (1.2.4)
We also note

ϕ 1 (ξ )=1 + O(ξ ) (1.2.5)
and the fact that these functions satisfy ϕ k (0)= 1 k! . The following Lemma will be essential in order to find a uniform bound on ϕ 1 and ϕ 2 .

Lemma 1.2.2. Let x 2 R.T h e nw eh a v e |e ix 1||x|.

Proof. For x 0 we set

g(x)=|e ix 1| 2 = 2(1 cos(x))
and Taylor series expansion gives

g(x)=g(0)+ Z x 0 g 0 (y)dy.
It holds g(0)=0 and A similar proof holds for x < 0. This results in the following bound that will yield stability of the schemes.

Corollary 1.2.3. Let τ > 0 and let L be a di↵erential operator such that it generates a strongly continuous semigroup e tL , t 0, that is bounded in H r .T h e nf o ra l lf 2 H r it holds

kϕ 1 (iτL ) f k r kf k r uniformly in τ.
Proof. We denote by L k the kth Fourier multiplier corresponding to L . It holds

kϕ 1 (iτL ) f k 2 r = ∑ k2Z d (1 + |k|) 2r e iτL k 1 iτL k 2 | fk | 2  ∑ k2Z d (1 + |k|) 2r | fk | 2 = k f k 2 r ,
where we have used that, by Lemma 1.2.2, it holds for all k 2 Z d that

e iτL k 1 iτL k 2  1.
Next, we state an essential Lemma on the integration of oscillations.

Lemma 1.2.4. For m, l 2 Z, l 6 = 0, c 0 and t 0 we have

Z t 0 se imc 2 s ϕ 1 (i`c 2 s)ds = t i`c 2 ⇣ ϕ 1 (i(`+ m)c 2 t) ϕ 1 (imc 2 t) ⌘ .
Proof. The assertion follows thanks to

Z t 0 se imc 2 s ϕ 1 (ilc 2 s)ds = Z t 0 s e i(m+`)c 2 s e imc 2 s i`c 2 s = t i`c 2 ⇣ ϕ 1 (i(`+ m)c 2 t) ϕ 1 (imc 2 t) ⌘ .
In particular, we have

Z t 0 sϕ 1 (i`c 2 s)ds = 1 i`c 2 Z t 0 ⇣ e i`c 2 s 1 ⌘ ds = t i`c 2 ⇣ ϕ 1 (i`c 2 t) 1 ⌘ = t 2 ϕ 2 (i`c 2 t).
Definition 1.2.5 (The Ψ-functions). For ξ 2 C we set

Ψ k (ξ )= Z 1 0 e ξθ θ k 1 (k 1)! dθ , k 1.
In particular, we have

Ψ 2 (ξ )= ϕ 0 (ξ ) ϕ 1 (ξ ) ξ .
(1.2.6)

Implementation details

As mentioned in the discussion of the assumptions we make for this thesis, we use a standard Fourier pseudospectral method to approximate the spatial derivatives. Spectral methods are a wide class of techniques that are aimed at solving both ordinary and partial differential equations as well as eigenvalue problems involving them.

The ansatz of this class of methods relies on the representation of the solution by means of a basis. We then truncate this series representation. In order to make an appropriate choice of basis one must keep in mind the computational efforts involved in the numerical approximation of the corresponding coefficients. In our case, by means of the Fast Fourier Transform, we are able to very efficiently compute an approximate discrete Fourier transform. It has been shown, see e.g. [START_REF] Shen | Spectral methods: algorithms, analysis and applications[END_REF], that this method yields spectral accuracy, provided we have periodic boundary conditions. For us, this means that the contribution of the spatial discretization to the total error of our numerical experiments is negligible compared to that of the approximation of the dynamics. This allows for error plots that illustrate our theoretical results in a very transparent way, even though we restrict our theoretical error analysis to the approximation of the dynamics.

In application, an explicit representation of the exact solution is, in most cases, unobtainable. Thus we need an alternative way of verifying the validity of our numerical approximation. To this end we have employed an adaptive ODE solver (ode45 integrated in Matlab) paired with the Fourier pseudospectral method presented above.

The error computations in our numerical simulations will be done in the discrete H r -Sobolev norm. This means that we will approximate the spatial derivatives via the Fourier pseudospectral method and then approximate the integrals via the trapezoidal rule.

We now present the two types of algorithm we employ in order to generate the two types of plots that illustrate the results in this work. Suppose that y(t) is the exact solution of the partial differential equation in question and y n is the numerical approximation on a uniform time mesh t n = nτ, n = 0,...,N T ,w h e r eτ is the time step size and T = N T τ. Suppose that σ is the parameter of our partial differential equation.

Algorithm for computing speed of convergence 1. Time discretization set up: define the end time T , and the different number of time steps and time step sizes {N 1 ,...,N M } and {τ 1 ,...,τ M },w h e r eT = N i τ i .

2. Spatial discretization set up: define spatial mesh size h, number of Fourier modes and Fourier multipliers.

3. Define initial value y 0 = y(0).

Compute reference solution y n

ref , n = 0,...,N T .

5.

For each τ i 2{τ 1 ,...,τ M } compute approximations for each discrete time step: y n i , n = 0,...,N i . 6. For each τ i 2{τ 1 ,...,τ M } compute the following error

sup n2{0,...,N i } ky n i y n ref k r in the discrete H r -Sobolev norm.
7. Display the errors from the previous step in a doubly logarithmic plot over {τ 1 ,...,τ M }.

Algorithm for computing asymptotic accuracy

1. Define the list of different values of the parameter {σ 1 ,...,σ L }.

2. Time discretization set up: define end time T ,t i m es t e ps i z eτ and number of time points N.

3. Spatial discretization set up: define spatial mesh size h, number of Fourier modes and Fourier multipliers.

4. Define initial values y 0 = y(0).

5. Compute the solution of the limit system y n lim , n = 0,...,N.

6.

For each σ i 2{σ 1 ,...,σ L } compute approximations for each discrete time step y n i , n = 0,...,N.

7.

For each σ i 2{σ 1 ,...,σ L } compute the following error sup n2{0,...,N}

ky n i y n lim k r .
in the discrete H r -Sobolev norm.

8. Display the errors from the previous step in a doubly logarithmic plot over {σ 1 ,...,σ L }.

Contributions of the thesis

In the following we will provide the reader with an overview of the structure and main results of this thesis, chapter by chapter. Throughout this work, in each chapter, we thoroughly illustrate our theoretical findings by means of numerical simulations. These chapters will be followed by an outlook, where different possible expansions of these ideas will be discussed.

This thesis is structured as follows:

• Chapter 2: Uniformly Accurate Splitting Schemes for the Benjamin-Bona-Mahony equation. We consider the Benjamin-Bona-Equation, and we develop high order splitting schemes that are uniformly accurate and asymptotic preserving. Our main convergence result reads as follows: At order p = 1, 2, 3, 4 our splitting method of order p satisfies the following global error bound that, in particular, yields convergence uniformly in ε.

ku(t n ) u n k r  ε 1 σ τ p c sup 0tt n ku(t)k r+1+pλ 2σ ! with 0  σ  1,
where λ denotes the degree of the leading differential operator P(∂ x ).

This result illustrates a relation between a gain in ε in the error constant, which can be advantageous when 0  ε ⌧ 1, and a relaxation of regularity assumptions. Convergence order, as well as this gain in accuracy for smaller ε are illustrated via numerical experiments. Additionally, numerical experiments result in asymptotic convergence of order O(ε).

• Chapter 3: Uniformly Accurate Integrators for the Klein-Gordon equation. In this chapter we treat a highly oscillatory problem, that of numerically approximating the solution to the Klein-Gordon equation. We develop targeted integrator type schemes of first and second order that fulfill error bounds that are independent of the parameter c, that triggers intense oscillations in the solution, yielding a numerical method that is robust to highly oscillatory solutions. In addition, this method preserves the limit behaviour of the solution as c ! ∞ and, through our careful error analysis, we achieve convergence rates while relaxing regularity assumptions of pre-existing methods. The result corresponding to our first order scheme reads:

Theorem: Fix r > d/2 and assume that the solution of the Klein-Gordon equation satisfies u 2 C ([0, T ]; H r+1 ).

Then there exists a τ 0 > 0 such that for all 0 < τ  τ 0 the following global error estimate holds for u n defined in (3.3.20)

ku(t n ) u n k r  τK sup 0tt n ku(t)k r+1 ! ,
where K depends on t n and the H r+1 norm of the solution u, but can be chosen independently of c.

This result signifies an achievement of convergence that is uniform in c, under reduction of regularity assumptions compared to pre-existing methods. A landscape of pre-existing methods that deal with the this equation will be provided in this chapter. Moreover, a second order counterpart is derived. Its theoretical convergence analysis is carefully conducted and illustrated via numerical experiments.

The second result of this chapter is the theoretical bound for asymptotic accuracy that establishes a relation in terms of the parameter c between the solution of the Klein-Gordon equation and that of the limit system, that will defined in the chapter.

Theorem: Fix r > d/2 and assume that the solution of the Klein-Gordon equation satisfies u 2 C ([0, T ]; H r+3+ε ) for some ε > 0.T h e nt h e r ee x i s t saτ 0 > 0 such that for all τ < τ 0 the asymptotic error estimate holds for u n defined in (3.3.20)a n du n ⇤,∞ , the numerical solution of the limit system, defined in (3.3.22)

ku n e ic 2 t n u n ⇤,∞ k H r  c 1 K ⇣ sup 0tt n ku(t)k r+3+ε ⌘
where K depends on the H r+3+ε norm of the solution u, but can be chosen independently of c.

• Chapter 4: Uniformly Accurate Integrators for Klein-Gordon-Schrödinger systems. In this chapter we apply the ideas developed in Chapter 3 to a Klein-Gordon-Schrödinger system, where there is the additional challenge of the nonlinear interaction between the leading differential operators, that significantly complicate the method of iterating the formula of variation of constants within the non-linearity. The result for the first order method reads as follows.

Theorem: Fix r > d 2 and assume that the solution (u, ψ) of the Klein-Gordon-Schrödinger system satisfies u 2 C ([0, T ], H r+2+2α ) and ψ 2 C ([0, T ], H r+5+4α ), 0  α  1.T h e nt h e r ee x i s t saτ 0 > 0 such that for all 0 < τ  τ 0 the following estimate holds for (u n , ψ n ) defined in (4.4.15)a n d( 4.4.28)r e s p e c t i v e l y

ku(t n ) u n k r  τ 2 K 1 ⇣ sup t n tt n+1 ku(t)k r+2 , sup t n tt n+1 kψ(t)k r+2 ⌘ + τ 2 c 2α K 2 ⇣ sup t n tt n+1 ku(t)k r+2α+2 , sup t n tt n+1 kψ(t)k r+2α+2 ⌘ + τ 2 c 4α K 3 ⇣ sup t n tt n+1 kψ(t)k r+4α+5 ⌘ , and 
kψ(t n ) ψ n k r  τ 2 K 4 ⇣ sup t n tt n+1 ku(t)k r+2 , sup t n tt n+1 kψ(t)k r+2 ⌘ + τ 2 c 2α K 5 ⇣ sup t n tt n+1 ku(t)k r+2+2α , sup t n tt n+1 kψ(t)k r+2+2α ⌘
where 0  α  1 and, in particular, K i > 0 (i = 1,...,5), can be chosen independently of c.

This result can be interpreted as a theoretical error bound that illustrates a possible compromise between additional accuracy and regularity assumptions as compared to pre-existing methods. As will be stated as a remark in the chapter, in practice, in the fully discrete case, this additional accuracy, in the case c 1, could be achieved even without fulfilling the regularity assumptions of this theoretical result, as a consequence of the negative powers of c present in the error bounds overpowering the higher Sobolev norms in the error terms. A second order counterpart is also presented in the chapter, together with its thorough error analysis, as well as numerical simulations.

Similarly to the previous chapter, we also have obtained a theoretical bound showing the asymptotic consistency of our schemes. The result can be expressed in the following form:

For u n and ψ n given by (4.3.7)a n d( 4.3.11) respectively it holds

u n+1 = e 1 2 iτ∆ u n + O(c 2 ),
and

ψ n+1 = e iτ∆ ψ n + O(c 2 ).
The terms before the O-notation denote the exact solution of the limit system, presented in more detail in the chapter. In the numerical experiments we illustrate this result, and, in addition, we numerically test its tightness by verifying the asymptotic behaviour of the solution with rougher initial data.

• Chapter 5: Integrators for Dispersive Equations in the Low Wage Regime. We shift our focus away from low regularity approximation, and we consider a family of dispersive equations that have a naturally long time scale. We develop integrator type numerical schemes that provide a reliable approximation over long time scales. Our result for the first order method reads as follows.

Theorem: Fix β := min(2, β L + β Q ) and assume that the solution u of the dispersive equation satisfies u 2

C ([0, T ]; H 6 β ).T h e nt h e r ee x i s t saτ 0 > 0 such that for all 0 < τ  τ 0 and t n  T the global error estimate holds for u n defined in (5.1.6)

ku(t n ) u n k L 2  t n τε 2 c sup 0tt n ku(t)k 2 ! e ct n ε + c L t n τε 2 ε 1 β 2 c sup 0tt n ku(t)k 6 β ! e ct n ε ,
where c depends on the H 3 norm of the solution u.

β L and β Q depend on the smooth symbols m L and m Q that will be properly introduced in the chapter and that are related to different types of equations within this family of dispersive equations.

This result illustrates the validity and robustness of our simulations over long time intervals, namely due to the presence of the parameter ε in the exponent within the error constant. For reference, in this context, a long time interval is considered to be an interval whose length has order O( 1 ε ),w h e r eε 2 (0, 1]. Surprisingly, we gain positive powers of the parameter ε as multiplicative constant within our error bounds, which results in a potential gain in accuracy, in the case of small ε. In the chapter we also present a second order counterpart, followed by its error analysis and numerical experiments.

UNIFORMLY ACCURATE SPLITTING SCHEMES FOR THE BENJAMIN-BONA-MAHONY EQUATION

This chapter is based on (CCS22b).

Introduction

We consider the Benjamin-Bona-Mahony (BBM) equation,

∂ t u(t, x)+ P(∂ x ) 1 ε∂ 2 x u(t, x)+ε ∂ x 1 ε∂ 2 x u 2 (t, x)=0,
(2.1.1) also known as the regularized long-wave equation, which describes the behaviour of shallow water waves in direction 1+1. Here, P denotes a polynomial in ∂ x which we will define below.

In recent years the theoretical and numerical analysis of the BBM equation has gained a lot of attention, see for instance (Avr87; AG85; FL05; Sta05) for wellposedness results and (AVSS09; DKM13; Güc17)f o rn u m e r i c a l approximation methods, as well as (BMGN18) for the numerical analysis of the linearised BBM equation. Due to their easy practical implementation and efficiency, splitting methods provide a particular attractive class of methods to approximate the time dynamics of (2.1.1). For an extensive overview on splitting methods we refer to (HLW06; MQ02)a n dt h er e f e r e n c e st h e r e i n ,a sw e l la st o( HKRT11; HLR13) for their analysis in context of the Korteweg-de Vries equation. Composition methods, which are tailored for near-integrable problems which are exactly solvable up to a small perturbation in terms of ε,a r es t u d i e di n [START_REF] Robert | Composition methods in the presence of small parameters[END_REF] in the context of ordinary differential equations and allow for error bounds at order O(ετ 2n + ε 2 τ 2 ) with positive coefficients and only n stages (τ denoting the time step size). Previously proposed splitting methods for the BBM equation are so far, however, restricted to the smooth setting ε = 1 (see, e.g., (Güc17)), where in the classical case P(∂ x )=∂ x the BBM equation (2.1.1)r e d u c e st oaregularized ordinary di↵erential equation. The latter holds true due to the regularisation of the leading operator

P(∂ x ) 1 ∂ 2 x = O ⇣ ∂ 1 x ⌘ for P(∂ x )=∂ x . (2.1.2)
Let us also mention finite volume schemes for BBM that were recently introduced in (DKM13) along with extensive numerical experiments. A rigorous convergence analysis is, however, up to our knowledge still lacking in the general ε-dependent nonlinear setting (2.1.1) which is strongly governed by the dispersive parameter 0 < ε  1.

The main difficulty lies in regimes of small dispersion parameter ε ⌧ 1, where the nice regularisation property (2.1.2) breaks down and instead turns into a loss of derivative. This drastic change of behaviour holds true due to the estimate

∂ x 1 ε∂ 2 x f r  min ⇢ 1 ε k f k r 1 , k f k r+1 .
The aim of this chapter lies in the development and convergence analysis of high order splitting schemes that reproduce the dynamics of the solution u(t, x) of the generalised BBM equation (2.1.1) from the smooth setting ε = 1 up to the limit regime ε ! 0. We construct high order splitting methods that converge uniformly in ε,s e e also, Bao et al. for uniformly accurate schemes for Klein-Gordon type equations (e.g., (BFS22; BFS18)). More precisely, we will prove low regularity error estimates in case of non smooth solutions with uniform convergence in ε, as well as improved error estimates for smooth solutions with gain in ε.T h el a t t e ri si np a r t i c u l a ri n t e r e s t i n g in regimes of small dispersive parameter ε. Our main convergence result reads as follows: At order p = 1, 2, 3, 4 our splitting method of order p satisfies the global error bound

ku(t n ) u n k r  ε 1 σ τ p c sup 0tt n ku(t)k r+1+pλ 2σ ! with 0  σ  1, (2.1.3)
where λ denotes the degree of the leading differential operator P(∂ x ). We carry out the error analysis for the Lie, Strang, a third and a fourth order splitting method. Our error analysis, however, also holds true for other high order splitting methods as the particular values of weights and stages is not relevant for establishing our main convergence result.

In the classical case P(∂ x )=∂ x such that λ = 1 we in particular observe that no additional regularity of the solution is needed in our Lie splitting approximation (i.e., p = 1), if choosing σ = 1, at the cost of no longer gaining in terms of ε. Low regularity integrators for other nonlinear dispersive equations such as nonlinear Schrödinger and Korteweg-de Vries equations were recently introduced in (ORS20; ORS21; RS21; RS22).

Our convergence result (2.1.3) holds uniformly in ε, see also Figure 2.7.1. In the regularizing regime ε = O(1) one can in addition show that thanks to the smoothing property (2.1.2) we gain smoothness at the cost of loosing in terms of 1 ε . More precisely, the following regularized convergence holds true for our Lie splitting method

ku(t n ) u n k r  τ 1 ε c sup 0tt n ku(t)k r 2+λ ! . (2.1.4)
This result is, in particular in the classical setting P(∂ x )=∂ x (that is λ = 1), interesting from a theoretical point of view as we gain in regularity with our Lie discretisation. Note that in the latter case first order time convergence holds in H r for solutions in H r 1 . However, in practical computations one needs to couple the Lie time discretisation with a suitable spatial discretisation which will again require some smoothness of the initial data. We also refer to (Güc17) for sharp error estimates in the regularizing regime ε = O(1).

Our uniformly accurate splitting schemes for BBM furthermore allow us to capture the limit regime where the BBM equation in the classical case P(∂ x )=∂ x collapses to the Korteweg-de Vries (KdV) equation (see, e.g., (BMGN18))

∂ t u KdV + ∂ x u KdV + ε∂ x u 2 KdV + ε∂ 3 x u KdV = 0.
(2.1.5)

In the error analysis of the splitting schemes we will heavily exploit the structure of the operator

L ε = ∂ x 1 ε∂ 2 x (2.1.6)
and its smoothing property which strongly depends on the dispersive parameter ε. Note that for ε = O(1) we gain regularization thanks to the observation that

L ε = O ⇣ 1 ε ∂ 1 x ⌘
,w h e r e a sf o rε ! 0 we loose a full derivative due to the limit behaviour L ε=0 = O (∂ x ). Interpolating this gain in regularity and loss in ε will allow us to establish the improved global error estimates (2.1.3). We will focus on methods up to order four. However, our construction and analysis can be extended to arbitrary high order.

Outline of the chapter. In Section 2.2 we introduce the general framework. Then we will discuss the Lie, Strang and higher order splitting method in Sections 2.3 to Section 2.6. In each section we will develop a uniformly accurate splitting scheme up to the desired order and carry out its global error analysis. We will prove in each section the global error estimate (2.1.3) for the particular value of 1  p  4. Numerical experiments in Section 2.7 underline our theoretical findings.

Notation and assumptions. We assume that P is a polynomial of degree λ 1 such that Re P(ix)=0,f o ra l l x 2 R. This assumption will allow us to employ splitting methods of order p 3 with real valued coefficients.

Note that similar uniform bounds could be achieved if we relax this constraint and allow the use of complex valued coefficients, we refer to Corollary 3.1 in (CCDV09)f o rf u r t h e rd e t a i l s .

We will fix r > 1 2 and further set for ε 0

L ε,λ = P(∂ x ) 1 ε∂ 2 x .
(2.1.7)

General splitting framework

In this section we present the general framework of splitting methods, which will be the core of the numerical methods presented in this chapter. The key idea is the following: instead of solving the full problem (2.1.1), we split the BBM equation (2.1.1) into the linear and nonlinear subproblem

∂ t w(t, x)= εL ε w 2 (t, x), (S1) 
∂ t v(t, x)= L ε,λ v(t, x). (S2)
To obtain an approximation to the original solution u of (2.1.1) we then compose the solutions of the corresponding subproblems for a small time step size τ up to the desired order.

On the one hand, we note that the linear subproblem (S2) can be solved exactly in Fourier space with the exact solution v(t)=e tL ε,λ v(0).I n d e e d ,w es e et h a t

∂ t v(t, x)=∂ t ∑ k2Z e ik•x vk (t)= L ε,λ ∑ k2Z e ik•x vk (t)= ∑ k2Z P(ik) 1 + εk 2 e ik•x vk (t)
such that by comparison of coefficients, in the Fourier basis, we obtain

vk (t)=e t P(ik)
1+εk 2 vk (0).

The nonlinear subproblem (S1), on the other hand, can not be solved exactly. Thus we will have to approximate it numerically. For this purpose we consider the corresponding mild solution

w(t n + τ)=w(t n ) εL ε Z τ 0 w 2 (t n + s) ds.
(2.2.1)

Then we find approximations w n ⇡ w(t n , x) by means of truncated Taylor series expansions of w 2 (t n + s).I no r d e r to guarantee the full order of convergence of the splitting schemes we have to use a (high order) expansion of the correct order for the approximation of the nonlinear problem (S1). The detailed approximation for the Lie, Strang and higher order splitting methods is given below.

The above considerations will allow us to construct compositions of the form

u(t n+1 , x) ⇡ u n+1 = Ψ τ (u n )= ⇣ Ψ d N τ 2 Ψ c N τ 1 ••• Ψ d 2 τ 2 Ψ c 2 τ 1 Ψ d 1 τ 2 Ψ c 1 τ 1 ⌘ (u n ), (2.2.2)
where Ψ τ 2 will denote the exact flow of the linear subproblem (S2)a n dΨ τ 1 the numerical flow given by a suitable approximation to (2.2.1). The real valued coefficients c 1 , d 1 ,...,c N , d N , N 1 are chosen according to order conditions for splitting methods, see, e.g., [START_REF] Haier | Geometric Numerical integration: structurepreserving algorithms for ordinary di↵erential equations[END_REF]. We will give the detailed construction up to order four in more detail below.

In our local error analysis it will be in particular important to study the gain/loss in regularity and ε.T h e mentioned result gives a derivation of the local error representation of a general scheme of the form (2.2.2)i n the case where the flows Ψ t 1 (•) and Ψ t 2 (•) are linear exponential operators. We will extend the analysis to our nonlinear ε dependent setting. For this purpose we will express the exact flow of the nonlinear subproblem (S1) in terms of its Lie derivative. For an introduction to Lie derivatives, see, e.g., (HLW06, Section III.5.1). In case of our nonlinear subproblem (S1)t h eL i ed e r i v a t i v et a k e st h ef o r m

D 1 = εL ε w 2 ∂ ∂ w . (2.2.3)
We denote by Φ t 1 (•) the exact flow of (S1). Then, for any differentiable function F : R ! R we have, by the chain rule, that

d dt F(Φ t 1 (w)) = ⇣ D 1 F ⌘ (Φ t 1 (w)).
Taylor series expansion of F around the point t = 0 yields

F(Φ t 1 (w)) = ∑ k 0 t k k! (D k 1 F)(w)=e tD 1 F(w),
and, in particular, taking F = Id allows us to express the exact flow Φ t 1 (•) of (S1)b y )). Note that the operator flow e tD 1 is bounded in H r (T) as the Lie derivative D 1 can be bounded uniformly in ε without involving any derivatives, see Lemma 2.2.1 below. The boundedness of e tD 1 implies the local well-posedness of (S1)i nH r (T). In addition, we will study the smoothing property of the operator L ε in Lemma 2.2.1 which will allow weaker regularity assumptions in the corresponding local error bounds for non smooth solutions and gain in ε for small dispersive parameters at the loss of one derivative.

Φ t 1 (w)=e tD 1 w, w 2 H r (2.2.4) (see ( HLW06 
Lemma 2.2.1. Let f 2 H r+1 2σ (T). It holds that

kεL ε f k r  ε 1 σ k f k r+1 2σ , 0  σ  1.
Proof. We have that

kεL ε f k 2 r = ∑ k2Z (1 + |k|) 2r εik 1 + εk 2 2 | fk | 2  ∑ k2Z (1 + |k|) 2r εk (εk 2 ) σ 2 | fk | 2  ε 2(1 σ ) k f k 2 r+1 2σ .
Furthermore, we will encounter partial derivatives with respect to time of the nonlinearity w 2 (t),a st h e y naturally appear in the remainder terms of the truncated Taylor series expansion. Thus, we collect the regularity result in the following lemma.

Lemma 2.2.2. Fix r > 1 2 and let w(t) 2 C [0, T ], H r (T , be the solution of (S1) and m 2 N 1 .T h e nf o ra l l 0  t  T we have

k∂ m t w 2 (t)k r  ε m(1 σ ) K( sup 0tT kw(t)k max{r+i 2iσ : 0im} ), 0  σ  1,
where we assume that r + i 2iσ > 1/2 for i = 0,...,m 1.

Proof. The claim follows by induction together with Lemma 2.2.1 and the bilinear estimate (1.2.2).

We verify the base case m = 1 . Note that as r > 1 2 we have

k∂ t w 2 (t)k r = k2w(t)( εL ε w 2 (t))k r  ε 1 σ K( sup 0tT kw(t)k max{r,r+1 2σ } )).
Now, assuming that the assertion holds for m 2 N, we observe that

∂ m+1 t w 2 (t)=∂ m t (2w(t)( εL ε w 2 (t))) = m ∑ k=0 ✓ m k ◆ (2∂ k t w(t))(εL ε ∂ m k t w 2 (t)),
and, in addition,

∂ k t w(t)= εL ε ∂ k 1 t w 2 (t),f o rk 1.
Applying the induction assumption and (1.2.2)w efi n d

k∂ m+1 t w 2 (t)k r  ε (m+1)(1 σ ) K( sup 0tT kw(t)k max{r+i 2iσ : 0im+1} ), provided that r + i 2iσ > 1 2 ,f o ri = 0,...,m.
Before we begin, let us address the generalisation of polynomials P(∂ x ) in the following remark.

Remark 2.2.3. In higher order splitting methods we (in general) encounter negative coefficients c 1 ,...,c N and d 1 , d N ,r e c a l l( 2.2.2). Those are proven necessary in (BC05), and in particular, it is shown that the threshold is order three. This explains the additional assumptions on P which guarantees that all weighted operator flows

Ψ d j τ
2 are linear isometries such that negative coefficients in the high order splitting methods can be used (as we can go both forward and backward in time). An alternative approach of higher order splitting methods is given in (HO09), via the use of complex coefficients. This would allow for a more general structure of P.

In the following section we will collect some important estimates in the stability and local error analysis of the splitting methods.

Some important estimates

For u(t) 2 H r (T), t 2 R, we denote by Φ τ (•) the exact flow of the BBM equation (2.1.1) that is given by

Φ τ (u(t n )) = e τL ε,λ u(t n ) εL ε Z τ 0 e (τ s)L ε,λ Φ s (u(t n )) 2 ds (2.2.5)
such that in particular we have

u(t n + τ)=Φ τ (u(t n )).
In order to carry out the error analysis we will make use of the following lemma that can be proven in the same fashion as Lemma 2.2.1.

Lemma 2.2.4. Let f 2 H r+λ . It holds that kL ε f k r  min ( 1 ε k f k r 1 , k f k r+1 ) and kL ε,λ f k r  min ( c P ε k f k r+λ 2 , k f k r+λ ) ,
for a constant c P > 0 that can be determined explicitly and depends only on the polynomial P in L ε,λ .

Proof. For f 2 H r+λ (T) we have

kL ε f k 2 r = ∑ k2Z (1 + |k|) 2r ik 1 + εk 2 2 | fk | 2  ∑ k2Z\{0} (1 + |k|) 2r 1 εk 2 | fk | 2 + | f0 | 2
and, on the other hand,

kL ε,λ f k 2 r = ∑ k2Z (1 + |k|) 2r P(ik) 1 + εk 2 2 | fk | 2  ∑ k2Z\{0} (1 + |k|) 2r P(ik) εk 2 2 | fk | 2 + P(0) ε 2 | f0 | 2  ∑ k2Z (1 + |k|) 2r G(ik) ε 2 | fk | 2 ,
for some polynomial G of degree λ 2.

Note that for P(x)=∑ λ m=0 a m x m it holds, for k 2 Z \{0},

|G(ik)| max m=0,...λ |a m | λ ∑ m=0 |k m 2 |λ max m=0,...λ |a m ||k λ 2 |.
This allows us to conclude

kL ε,λ f k 2 r  ∑ k2Z (1 + |k|) 2r |k λ 2 | 2 λ max m=0,...λ |a m | ε Setting c := λ max m=0,...λ |a m | concludes the proof.
The following lemmata will be essential in the stability analysis of the splitting methods.

Lemma 2.2.5. For all f 2 H r (T) and all t 2 R it holds

ke tL ε,λ f k r = k f k r .
Proof. Let f 2 H r (T) and t 2 R.T h e nw eh a v et h a t

ke tL ε,λ f k 2 r = ∑ k2Z (1 + |k|) 2r e P(ik)t 1+εk 2 2 | fk | 2 = ∑ k2Z (1 + |k|) 2r | fk | 2 = k f k 2 r .
(2.2.6) Lemma 2.2.6. For all f 2 H r (T) and all t 2 R it holds k(e tL ε,λ 1)

f k r |t|k f k r+λ . Proof. k(e tL ε,λ 1) f k 2 r = ∑ k2Z (1 + |k|) 2r e P(ik)t 1+εk 2 1 2 | fk | 2 = ∑ k2Z (1 + |k|) 2r P(ik)t e P(ik)t 1+εk 2 1 P(ik)t 2 | fk | 2  ∑ k2Z (1 + |k|) 2r |P(ik)t| 2 | fk | 2 =|t| 2 k f k 2 r+λ .

Lie Splitting for BBM

In this section we construct a uniformly accurate Lie splitting method for the BBM equation (2.1.1)a n dc a r r y out its error analysis.

Derivation

To develop the first order Lie splitting method we have to derive a locally second-order approximation to the nonlinear supbroblem (S1). Formally, Taylor series expansion of w 2 (t n + s) gives

w(t n + τ)=w(t n ) εL ε Z τ 0 w 2 (t n + s) ds = w(t n ) τεL ε w 2 (t n )+R 1 (w),
where by Lemma 2.2.1 and Lemma 2.2.2 the remainder R 1 (w) satisfies the bound

kR 1 (w)k r = εL ε Z τ 0 s ds ∂ t w 2 (t) t=ξ r  ε 2(1 σ ) τ 2 K,
where ξ 2 [t n ,t n+1 ], and some constant K = K(sup 0tT kw(t)k max{r+1+i (2+2i)σ ,r : i=0,1} ) > 0,w h e r e0  σ  1.

This motivates us to define the numerical flow as follows

Ψ τ 1 (w(t n )) := w(t n ) τεL ε w 2 (t n ), Ψ τ 2 (v(t n )) := e τL ε,λ v(t n ) (2.3.1)
such that the corresponding Lie splitting

u n+1 = Ψ τ 2 ⇣ Ψ τ 1 (u n ) ⌘ takes the form u n+1 = e τL ε,λ ⇣ u n τεL ε (u n ) 2 ⌘ , (2.3.2) u 0 = u(0).
We will prove below that the Lie splitting u n defined in (2.3.2) approximates the exact BBM solution u(t) at time t n up to order one.

Error Analysis of the Lie splitting scheme

The estimates in Section 2.2.1 allow us to prove the following convergence result.

Theorem 2.3.1. Fix 0  σ  1 and r > 1/2 with r + 1 2σ > 1/2 and let 0 < ε  1.W ea s s u m et h a tt h ee x a c t solution of (2.1.1) satisfies u 2 C ⇣ [0, T ], H r+1 2σ +λ (T) ⌘ .
T h e nt h e r ee x i s t saτ 0 > 0 such that for all τ  τ 0 and t n  T the Lie splitting u n defined in (2.3.2) satisfies the global error estimate

ku(t n ) u n k r  τε 1 σ K, for a constant K = K(sup t2[0,T ] ku(t)k r+1 2σ +λ ) > 0.
Proof. We treat the local error and the stability estimates separately. Then we can conclude the proof via a Lady

Windemere's fan argument (see, e.g., (HLW06)).

Local error analysis. The local error consists of two parts: We need to consider both the error that arises from the splitting ansatz, known as the commutator error, and the error of the truncated Taylor series expansion within the approximation of the nonlinear problem (S1). Adding and subtracting the term εL ε

R τ 0 e (τ s)L ε,λ u 2 (t n ) ds gives Φ τ (u(t n )) Ψ τ 2 ⇣ Ψ τ 1 (u(t n )) ⌘ r  εL ε e τL ε,λ Z τ 0 e sL ε,λ (u 2 (t n + s) u 2 (t n )) ds r + εL ε e τL ε,λ Z τ 0 (e sL ε,λ 1)u 2 (t n ) ds r  ε 1 σ Z τ 0 e sL ε,λ (u 2 (t n + s) u 2 (t n )) ds r+1 2σ + ε 1 σ Z τ 0 (e sL ε,λ 1)u 2 (t n ) ds r+1 2σ
.

(2.3.3)

Here, the second inequality follows by Lemma 2.2.1 and Lemma 2.2.5. We may bound the first term using the following observation

u 2 (t n + s) u 2 (t n )=s ∂ t u 2 (t) t=ξ ,
for some ξ 2 [t n ,t n+1 ]. Thus, we obtain thanks to Lemma 2.2.5 that

Z τ 0 e sL ε,λ (u 2 (t n + s) u 2 (t n )) ds r+1 2σ  Z τ 0 s sup 0ξ τ ∂ t u 2 (t) r+1 2σ ds  τ 2 sup 0ξ τ ⇣ ku(ξ )L ε,λ u(ξ )k r+1 2σ + ku(ξ )εL ε u 2 (ξ )k r+1 2σ ⌘  τ 2 K, for some K = K(sup t2[0,T ] ku(t)k r+1 2σ +λ ) > 0.
This follows by (1.2.2)a sw ea s s u m et h a tr + 1 2σ > 1 2 .A s for the second term in (2.3.3) it follows by Lemma 2.2.6 and by (1.2.2)t h a n k st or

+ λ + 1 2σ > 1 2 that Z τ 0 (e sL ε,λ 1)u 2 (t n ) ds r+1 2σ  τ 2 K, for some K = K(ku(t n )k r+1 2σ +λ ) > 0.
Plugging the above two estimates into (2.3.3), we obtain the full local error bound

Φ τ (u(t n )) Ψ τ 2 ⇣ Ψ τ 1 (u(t n )) ⌘ r  τ 2 ε 1 σ K 1 ( sup ξ 2[0,T ] ku(ξ )k r+1 2σ +λ ). (2.3.4)
Stability analysis. Using Lemma 2.2.5 we obtain

Ψ τ 2 ⇣ Ψ τ 1 ( f (t n )) ⌘ Ψ τ 2 ⇣ Ψ τ 1 (g(t n )) ⌘ r ke τL ε,λ ( f (t n ) g(t n ))k r + kτεL ε e τL ε,λ ( f 2 (t n ) g 2 (t n ))k r = k f (t n ) g(t n )k r + kτεL ε ( f 2 (t n ) g 2 (t n ))k r .
For the second term it holds by (1.2.2)t h a n k st or > 1 2 and Lemma 2.2.4 that

kτεL ε ( f 2 (t n ) g 2 (t n ))k r  τk f (t n )+g(t n ))k r k f (t n ) g(t n ))k r  τM 1 k f (t n ) g(t n )k r ,
where

M 1 = M 1 (r, k f (t n )k r , kg(t n )k r ) > 0.
Thus, we obtain the following stability estimate

Ψ τ 2 ⇣ Ψ τ 1 ( f (t n )) ⌘ Ψ τ 2 ⇣ Ψ τ 1 (g(t n )) ⌘ r  (1 + τM 1 )k f (t n ) g(t n )k r . (2.3.5) Global error analysis. Inserting zero in terms of Ψ τ 2 ⇣ Ψ τ 1 (u(t n ))
⌘ we obtain thanks to the triangle inequality that

ku(t n+1 ) u n+1 k r = kΦ τ (u(t n )) Ψ τ 2 ⇣ Ψ τ 1 (u n ) ⌘ k r kΦ τ (u(t n )) Ψ τ 2 ⇣ Ψ τ 1 (u(t n )) ⌘ k r + kΨ τ 2 ⇣ Ψ τ 1 (u(t n )) ⌘ Ψ τ 2 ⇣ Ψ τ 1 (u n ) ⌘ k r .
We may now apply the local error bound (2.3.4)a sw e l la st h es t a b i l i t ye s t i m a t e( 2.3.5) to obtain

ku(t n+1 ) u n+1 k r  τ 2 ε 1 σ K 1 +(1 + τM 1 )ku(t n ) u n k r .
Iterating the above estimate we can conclude by a Lady Windermere's fan argument (see appendix) that

ku(t n+1 ) u n+1 k r  τ 2 ε 1 σ K 1 ( sup ξ 2[0,T ] ku(ξ )k r+1 2σ +λ )+(1 + τM 1 )ku(t n ) u n k r ,
where

M 1 = M 1 (r, ku(t n )k r , ku n k r ) > 0.
Remark 2.3.2. Note that in our stability argument (2.3.5) we cannot exploit any gain in ε as we can not measure the right hand side in a stronger norm than the left hand side. The latter would cause the break down of our stability argument.

Remark 2.3.3. The regularized convergence estimate (2.1.4) follows similarly by observing that the local Lie splitting error satisfies thanks to Lemma 2.2.4 the regularized error estimate

Φ τ (u(t n )) Ψ τ 2 ⇣ Ψ τ 1 (u(t n )) ⌘ r  τ 2 1 ε K( sup ξ 2[0,T ] ku(ξ )k r 2+λ ),
due to the smoothing property of the operator L ε,λ (cf. also (2.1.2)). In order to close the stability argument in the case that 2 + λ < 0 one thereby first needs to prove convergence in H r 2+λ for solutions in H r 2+λ .I n d e e d , cf. (2.3.3), using Lemma 2.2.1 with σ = 1 2 ,L e m m a s2.2.4 and 2.2.5 and following the argumentation that leads to (2.3.4) gives, for r 2

+ λ > 1 2 εL ε e τL ε,λ Z τ 0 e sL ε,λ (u 2 (t n + s) u 2 (t n )) ds r 2+λ  τ 2 2 sup 0ξ τ p ε ✓ ku 2 (ξ )k 2 r 2+λ + ε c P ku(ξ )k r 2+λ
◆ .

On the other hand, the second term in (2.3.3) can be bounded as follows. By Lemmas 2.2.1 and 2.2.5 it holds

εL ε e τL ε,λ Z τ 0 (e sL ε,λ 1)u 2 (t n ) ds r 2+λ  Z τ 0 k(e sL ε,λ 1)u 2 (t n )k r 2+λ ds.
Now, a modification of the proof of Lemma 2.2.6 yields the following. Note that if 2 + λ < 0 then P(x)=ax + b,

for some a, b 2 C.T h e n , k(e sL ε,λ 1)u 2 (t n )k 2 r 2+λ  s 2 ∑ k2Z\{0} (1 + |k|) 2(r 2+λ ) a(ik)+b 1 + εk 2 2 | \ u 2 (t n ) k | 2 + s 2 |b| 2 | \ u 2 (t n ) 0 | 2  s 2 ∑ k2Z\{0} (1 + |k|) 2(r 2+λ ) a + b ε 2 | \ u 2 (t n ) k | 2 + s 2 |b| 2 | \ u 2 (t n ) 0 | 2  s 2 |a + b| 2 ε 2 ku 2 (t n )k 2 r 2+λ .
This convergence bound in H r 2+λ for solutions in H r 2+λ allows us to conclude a priori the boundedness of the numerical solution in H r 2+λ ,a s

Ψ τ 2 ⇣ Ψ τ 1 (u(t n )) ⌘ r 2+λ  Φ τ (u(t n )) Ψ τ 2 ⇣ Ψ τ 1 (u(t n )) ⌘ r 2+λ + Φ τ (u(t n )) r 2+λ ,
and the right hand side is bounded as shown above and due to local wellposedness of the analytical solution.

Strang Splitting for BBM

In this section we construct a uniformly accurate Strang splitting method for the BBM equation (2.1.1)andca rry out its error analysis.

Derivation

We look at the subproblems (S1), (S2)a n dd e fi n et h eS t r a n gs p l i t t i n g

Ψτ := Ψ τ 2 2 Ψτ 1 Ψ τ 2 2 .
(2.4.1)

We have to derive a suitable numerical Ψ1 flow. Thereby it is essential to develop a second (or higher) order approximation to the nonlinear subproblem (S1) as otherwise the full second order convergence of the Strang splitting (2.4.1) would break down. Formally, Using Taylor series expansion of w 2 (t n + s) gives

w(t n + τ)=w(t n ) εL ε Z τ 0 w 2 (t n + s) ds = w(t n ) εL ε Z τ 0 ⇣ w(t n ) 2 + 2sw(t n )∂ t w(t) t=t n ⌘ ds + R 2 (w) = w(t n ) τεL ε w(t n ) 2 + τ 2 ε 2 L ε ⇣ w(t n )L ε w 2 (t n ) ⌘ + R 2 (w),
where R 2 (w) is the remainder of the truncated Taylor series expansion and thus satisfies, for some ξ 2 [t n ,t n+1 ],

kR 2 (w)k r = εL ε Z τ 0 s 2 2 ∂ 2 t w 2 (t) t=ξ ds r  τ 3 6 sup t n tt n+1 k∂ 2 t w 2 (t)k r  ε 3(1 σ ) τ 3 K,
for some K = K(sup t n tt n+1 kw(t)k max{r+1+i (2+2i)σ : 0i2} ) > 0,w h e r e0  σ  1. The structure of the error constant follows by Lemma 2.2.2.

The above expansion motivates us to define

Ψτ 1 (w n ) := w n τεL ε (w n ) 2 + τ 2 ε 2 L ε (w n L ε (w n ) 2 ) (2.4.2)
such that the Strang splitting (2.4.1)t a k e st h ef o r m

Ψτ (u n )=e τL ε,λ u n τεe τ 2 L ε,λ L ε ⇣ e τ 2 L ε,λ u n ⌘ 2 + τ 2 ε 2 e τ 2 L ε,λ L ε ⇣⇣ e τ 2 L ε,λ u n ⌘ L ε ⇣ e τ 2 L ε,λ u n ⌘ 2 ⌘ .
(2.4.3)

Error Analysis of the Strang splitting scheme

Theorem 2.4.1. Fix 0  σ  1 and r > 1 2 such that r + 1 2σ > 1 2 and assume that the exact solution of (2.1.1)

satisfies u 2 C ⇣ [0, T ], H r+1+2λ 2σ (T) ⌘ .
T h e nt h e r ee x i s t saτ 0 > 0 such that for all 0 < τ  τ 0 and t n  T the Strang splitting u n defined in (2.4.3) satisfies the global error estimate

ku(t n ) u n k r  τ 2 ε 1 σ K, for a constant K = K(sup t2[0,T ] ku(t)k r+1+2λ 2σ ) > 0.
Proof. We employ the same technique as in the previous section and treat local error and stability estimates separately.

Local Error analysis. Recall the structure of the Strang splitting scheme (2.4.3). On the other hand, if we apply the midpoint rule to the exact flow we obtain

Φ τ (u(t n )) = e τL ε,λ u(t n ) εL ε Z τ 0 e (τ s)L ε,λ Φ s (u(t n )) 2 ds = e τL ε,λ u(t n ) τεL ε e τ 2 L ε,λ Φ τ 2 (u(t n )) 2 + R 0 = e τL ε,λ u(t n ) τεL ε e τ 2 L ε,λ ⇣ e τ 2 L ε,λ u(t n ) ⌘ 2 + 2τε 2 L ε e τ 2 L ε,λ ⇣ e τ 2 L ε,λ u(t n ) ⌘ L ε Z τ 2 0 e ( τ 2 ξ )L ε,λ Φ ξ (u(t n )) 2 dξ + R 00 ,
where R 0 is the remainder of the midpoint rule, and thus has the form

kR 0 k r  εL ε Z τ 0 s 2 2 ∂ 2 s Φ s (u(t n )) 2 ds r  τ 3 ε 1 σ K 0 , (2.4.4) for some K 0 = K 0 (kuk r+2λ 2σ +1 ) > 0,b y( 1.2.
2) and the bounds on the operators L ε and L ε,λ found in Lemmas 2.2.1 and 2.2.4,a n df o rr + 1 2σ > 1 2 . R 00 is the remainder that consists of R 0 as well as the integral term of Φ τ 2 (u(t n )) squared, for which we have by (1.2.2)a n dL e m m a s2.2.1 and 2.2.5 that

kR 00 k r kR 0 k r + τεL ε e τ 2 L ε,λ εL ε Z τ 2 0 e ( τ 2 ξ )L ε,λ Φ ξ (u(t n )) 2 dξ ! 2 r  τ 3 ε 1 σ K 00 , (2.4.5)
for some K 00 = K 00 (kuk r+1 2σ +2λ ) > 0,b y ( 1.2.2), as r + 1 2σ > 1 2 . Next we apply the approximations

e ( τ 2 ξ )L ε,λ = 1 + O ✓ τ 2 ξ ◆ L ε,λ ! , Φ ξ (u(t n )) 2 = u 2 (t n )+O(ξ L ε )
in the expansion of the exact solution which gives

Φ τ (u(t n )) = e τL ε,λ u(t n ) τεL ε e τ 2 L ε,λ ⇣ e τ 2 L ε,λ u(t n ) ⌘ 2 + τ 2 ε 2 L ε e τ 2 L ε,λ ⇣ e τ 2 L ε,λ u(t n ) ⌘ L ε u 2 (t n )+R 000 , (2.4.6)
where the remainder R 000 satisfies

kR 000 k r kR 00 k r + 2τε 2 L ε e τ 2 L ε,λ ⇣ e τ 2 L ε,λ u(t n ) ⌘ L ε Z τ 2 0 (e ( τ 2 ξ )L ε,λ 1)Φ ξ (u(t n )) 2 dξ r + 2τε 2 L ε e τ 2 L ε,λ ⇣ e τ 2 L ε,λ u(t n ) ⌘ L ε Z τ 2 0 (Φ ξ (u(t n )) 2 u 2 (t n )) dξ r  τ 3 ε 1 σ K 000 , (2.4.7)
for some K 000 = K 000 (kuk r+1 2σ +2λ ) > 0. The second inequality in (2.4.7) follows by (1.2.2)a n dL e m m a s2.2.1, 2.2.4, 2.2.5 and 2.2.6.

Comparing (2.4.3)a n d( 2.4.6), we see that the terms of order 0 and 1 in τ coincide, and those of order 3 and higher are collected in the remainder term R 000 . For the terms of order 2 we see that 

kε 2 e τ 2 L ε,λ L ε ⇣ e τ 2 L ε,λ u(t n ) ⌘ L ε ⇣ e τ 2 L ε,λ u(t n ) ⌘ 2 ε 2 L ε e τ 2 L ε,λ ⇣ e τ 2 L ε,λ u(t n ) ⌘ L ε u 2 (t n )k r = ε 2 e τ 2 L ε,λ L ε " ⇣ e τ 2 L ε,λ u(t n ) ⌘ L ε ⇣⇣ e τ 2 L ε,λ u(t n ) ⌘ 2 u 2 (t n ) ⌘ # r  ε ⇣ e τ 2 L ε,λ u(t n ) ⌘ L ε ⇣⇣ e τ 2 L ε,λ u(t n ) ⌘ 2 u 2 (t n ) ⌘ r 1  τC 2 r,d ε 1 σ ku(t n )k r+λ 2σ +1 , ( 
kΦ τ (u(t n )) Ψτ (u(t n ))k r  τ 3 ε 1 σ K 2 , (2.4.9)
for some

K 2 = K 2 (kuk r+2λ 2σ +1 ) > 0. Stability analysis. Using Lemma 2.2.1,( 2.2.6)a n d( 1.2.2) we obtain k Ψ( f (t n )) Ψ(g(t n ))k r kf (t n ) g(t n )k r + kτεL ε ⇣ e τ 2 L ε,λ f (t n ) ⌘ 2 τεL ε ⇣ e τ 2 L ε,λ g(t n ) ⌘ 2 k r + kτ 2 ε ⇣ e τ 2 L ε,λ f (t n ) ⌘ L ε ⇣ e τ 2 L ε,λ f (t n ) ⌘ 2 τ 2 ε ⇣ e τ 2 L ε,λ g(t n ) ⌘ L ε ⇣ e τ 2 L ε,λ g(t n ) ⌘ 2 k r .
(2.4.10)

In particular, as

r > 1 2 ,b y( 1.2.2)w eh a v et h a t kτ ⇣ e τ 2 L ε,λ f (t n ) ⌘ 2 τ ⇣ e τ 2 L ε,λ g(t n ) ⌘ 2 k r  τC r k f (t n )+g(t n )k r k f (t n ) g(t n )k r (2.4.11)
and, similarly,

kτ 2 ε ⇣ e τ 2 L ε,λ f (t n ) ⌘ L ε ⇣ e τ 2 L ε,λ f (t n ) ⌘ 2 τ 2 ε ⇣ e τ 2 L ε,λ g(t n ) ⌘ L ε ⇣ e τ 2 L ε,λ g(t n ) ⌘ 2 k r  τ 2 C 2 r k f (t n ) g(t n )k r k f (t n )k 2 r 1 + τ 2 C 2 r kg(t n )k r k f (t n )+g(t n )k r 1 k f (t n ) g(t n )k r 1 ,
(2.4.12) assuming r 1 > 1 2 . Collecting our results in (2.4.10), (2.4.11)a n d( 2.4.12) leads to the following stability estimate 

k Ψτ ( f (t n )) Ψτ (g(t n ))k r  (1 + τM 2 )k f (t n ) g(t n )k r , (2.4.13) for some M 2 = M 2 (k f (t n )k r , kg(t n )k r , τ) > 0.T h

At h i r do r d e rS p l i t t i n gm e t h odf o rB B M

Derivation

In this section we present a third order splitting scheme which is derived in (Rut83) for the integration of Hamilton's equations and takes the form

Ψτ = Ψ d 3 τ 2 Ψc 3 τ 1 Ψ d 2 τ 2 Ψc 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 , (2.5.1)
with the weights

c 1 = 7 24 , c 2 = 3 4 , c 3 = 1 24 , d 1 = 2 3 , d 2 = 2 3 and d 3 = 1. (2.5.2)
The linear flow Ψ t 2 (•) is again given by (1.2.6) and we are left with deriving a suitable third order approximation Ψt 1 (•) to the the nonlinear problem (S1). Taylor series expansion yields that

w(t n + τ)=w(t n ) εL ε Z τ 0 w 2 (t n + s) ds = w(t n ) εL ε Z τ 0 w 2 (t n )+2sw(t n )∂ t w(t n )+ s 2 2 ∂ 2 t w 2 (t n ) ! ds + R 3 (w), (2.5.3) 
where R 3 (w) satisfies the following bound

kR 3 (w)k r = εL ε Z τ 0 s 3 6 ds∂ 3 t w 2 (t) t=ξ r  ε 3 3σ τ 4 K, (2.5.4) 
for some K = K(sup t n tt n+1 kw(t)k max{r+i 2iσ : 0i3} ) > 0,b yL e m m a2.2.2.

The expansion (2.5.3) motivates us to define the numerical nonlinear flow as follows

Ψτ 1 (w n ) := w n τεL ε w n + τ 2 ε 2 L ε w n L ε (w n ) 2 τ 3 6 ε 3 L ε ⇣ L ε (w n ) 2 ⌘ 2 2 3 τ 3 ε 3 L ε w n L ε w n L ε (w n ) 2
(2.5.5) which together with (2.5.1) defines our third order splitting scheme.

Error Analysis of the third order splitting scheme

The main idea in (DT10) is to interpret the solution provided by the splitting operator

Ψ t (•) defined in (2.2.2)
for the approximation of the general evolutionary problem

∂ t y =(A + B)y,
as the exact solution of the differential equation

∂ t z(t)=(A + B)z(t)+R(t),
where R is a remainder term. In (2.2.2) A is an unbounded operator involving the Laplacian and B is a multiplication operator defined by the potential. The corresponding Duhamel's formula of the difference Φ t (•)

Ψ t (•)
gives a representation of the error in terms of Φ t (•) and R (recall, the flows Φ t (•) given in (2.2.5)andΨ t (•)

given in (2.2.2)). Finally, some further manipulation of the remainder R gives explicit order conditions on the splitting coefficients c i , d i , i = 1,...,N.W er e f e rt o( DT10) for all the details on the representation of R and the resulting order conditions for the coefficients of splitting methods. Alternatively, in (HLW06), order conditions for splitting method coefficients are derived via the use of the so called BCH-formula. However, in our work, we have to be careful about the precise dependence on ε in all error constants.

Theorem 2.5.1. Fix 0  σ  1 and r > 1 2 such that r + 1 2σ > 1 2 and assume that the exact solution of (2.1.1)

satisfies u 2 C ⇣ [0, T ], H r+1+3λ 2σ (T) ⌘ .
T h e nt h e r ee x i s t saτ 0 > 0 such that for τ  τ 0 and t n  T ,t h et h i r d order splitting scheme u n defined in (2.5.1) allows the global error estimate

ku(t n ) u n k r  ε 1 σ τ 3 K, for a constant K = K(sup t2[0,T ] ku(t)k r+1+3λ 2σ ) > 0.
Proof. We use the main tools in the convergence analysis of high order splitting schemes, namely their commutator structure. As the splitting scheme now has three stages, a naive approach analogous to the previous sections becomes much more involved. Therefore, we will exploit the general local error structure of high order splitting methods, see, e.g., (DT10; HLW06). In our local error analysis it will be in particular important to study the gain/loss in regularity and ε. The mentioned result gives a derivation of the local error representation of a general scheme of the form (2.2.2)i nt h ec a s ew h e r et h efl o w sΨ t 1 (•) and Ψ t 2 (•) are linear exponential operators. We will extend the analysis to our nonlinear ε dependent setting. For this purpose we will express the exact flow of the nonlinear subproblem (S1) in terms of its Lie derivative, recall (2.2.3).

Local Error analysis. We add and subtract the splitting scheme given by the weights c i , d i , i = 1, 2, 3 (cf (2.5.2)), and the exact flows Φ t 1 (•) and Φ t 2 (•)of the two sub-problems (S1)a n d( S2). This way we find an upper bound for the local error by means of the commutator error and the error R 3 given in (2.5.4). More precisely, we obtain

kΦ τ (u(t n )) Ψτ (u(t n ))k r kΦ τ (u(t n )) ⇣ Φ d 3 τ 2 Φ c 3 τ 1 Φ d 2 τ 2 Φ c 2 τ 1 Φ d 1 τ 2 Φ c 1 τ 1 ⌘ (u(t n ))k r + k ⇣ Φ d 3 τ 2 Φ c 3 τ 1 Φ d 2 τ 2 Φ c 2 τ 1 Φ d 1 τ 2 Φ c 1 τ 1 ⌘ (u(t n )) Ψτ (u(t n ))k r .
(2.5.6) Thanks to (DT10, Theorem 1), the first term can be expressed as follows

kΦ τ (u(t n )) ⇣ Φ d 3 τ 2 Φ c 3 τ 1 Φ d 2 τ 2 Φ c 2 τ 1 Φ d 1 τ 2 Φ c 1 τ 1 ⌘ (u(t n ))k r = Z τ 0 Φ τ s R(s) ds ! (u(t n )) r ,
where the remainder has the form

R(s)=Φ d 3 τ 2 Φ c 3 τ 1 Ω(s) Φ d 2 τ 2 Φ c 2 τ 1 Φ d 1 τ 2 Φ c 1 τ 1 ,
and, by the choice of c i , d i , i = 1, 2, 3, (which satisfy the order conditions (4.3a) and (4.3b) in (DT10)), Ω has the form

Ω(s)=c 1 J s + (d 2 D 1 , J s + (c 2 L ε,λ , J s + (d 1 D 1 , L ε,λ )))
with 

J s ± (L 1 , L 2 )= Z s 0 e ±tL 1 [L 1 , L 2 ]e ⌥tL 1 dt, ( 2 
kΦ τ (u(t n )) ⇣ Φ d 3 τ 2 Φ c 3 τ 1 Φ d 2 τ 2 Φ c 2 τ 1 Φ d 1 τ 2 Φ c 1 τ 1 ⌘ (u(t n ))k r  τ 4 ε 1 σ K 3,1 , (2.5.8) for some K 3,1 = K 3,1 (ku(t n )k r+1+3λ 2σ ) > 0.
On the other hand, we need to derive a bound on the second term in (2.5.6), which arises from the approximations of the exact nonlinear flow Ψt 1 (•) carried out in (2.5.1). Adding and subtracting the terms

⇣ Ψ d 3 τ 2 Φ c 3 τ 1 Ψ d 2 τ 2 Ψc 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ (u(t n )) and ⇣ Ψ d 3 τ 2 Φ c 3 τ 1 Ψ d 2 τ 2 Φ c 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ (u(t n )) gives k ⇣ Φ d 3 τ 2 Φ c 3 τ 1 Φ d 2 τ 2 Φ c 2 τ 1 Φ d 1 τ 2 Φ c 1 τ 1 ⌘ (u(t n )) Ψτ (u(t n ))k r = k ⇣ Φ d 3 τ 2 Φ c 3 τ 1 Φ d 2 τ 2 Φ c 2 τ 1 Φ d 1 τ 2 Φ c 1 τ 1 ⌘ (u(t n )) ⇣ Ψ d 3 τ 2 Ψc 3 τ 1 Ψ d 2 τ 2 Ψc 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ (u(t n ))k r k ⇣ Φ d 3 τ 2 Φ c 3 τ 1 Φ d 2 τ 2 Φ c 2 τ 1 Φ d 1 τ 2 Φ c 1 τ 1 ⌘ (u(t n ))) ⇣ Ψ d 3 τ 2 Φ c 3 τ 1 Ψ d 2 τ 2 Φ c 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ (u(t n ))k r +k ⇣ Ψ d 3 τ 2 Φ c 3 τ 1 Ψ d 2 τ 2 Φ c 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ (u(t n )) ⇣ Ψ d 3 τ 2 Φ c 3 τ 1 Ψ d 2 τ 2 Ψc 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ (u(t n ))k r +k ⇣ Ψ d 3 τ 2 Φ c 3 τ 1 Ψ d 2 τ 2 Ψc 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ (u(t n )) ⇣ Ψ d 3 τ 2 Ψc 3 τ 1 Ψ d 2 τ 2 Ψc 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ (u(t n ))k r  K 0 k ⇣ Φ c 3 τ 1 Φ d 2 τ 2 Φ c 2 τ 1 Φ d 1 τ 2 ⌘⇣ R 3 (u(t n )) ⌘ k r +K 0 k ⇣ Φ c 3 τ 1 Φ d 2 τ 2 ⌘⇣ R 3 (Φ d 1 τ 1 Ψc 1 τ 1 (u(t n )) ⌘ k r +K 0 kR 3 (Φ d 2 τ 1 Ψc 2 τ 1 Φ d 1 τ 1 Ψc 1 τ 1 (u(t n ))k r ,
for some K 0 > 0 chosen such that ke τD 1 gk r  K 0 kgk r holds for all g 2 H r . In addition, the last inequality follows by definition of R 3 ,s e e( 2.5.4). Thanks to (1.2.2)a n dL e m m a2.2.1 we can bound Ψt 1 (•) defined in (2.5.5)f o r all t 2 R as follows

k Ψt 1 f k r kf k r + τk f k r 1 + τ 2 C r k f k r 1 k f 2 k r 1 + τ 3 6 C r k f 2 k 2 r 2 + 2 3 τ 3 C 2 r k f k r 1 k f k r 2 k f k r 3  K, for some K = K(k f k r ) > 0.
We thus obtain the following bound, using (2.5.4)a n dL e m m a2.2.5,

k ⇣ Φ c 1 τ 2 Φ d 1 τ 1 Φ c 2 τ 2 Φ d 2 τ 1 Φ c 3 τ 2 Φ d 3 τ 1 ⌘ (u(t n )) Ψτ (u(t n ))k r  τ 4 ε 1 σ K 3,2 ,
(2.5.9)

for some K 3,2 = K 3,2 (ku(t n )k r+1+3λ 2σ ) > 0.
Finally, plugging (2.5.8)a n d( 2.5.9)i n t o( 2.5.6) we obtain the total local error bound

kΦ τ (u(t n )) Ψτ (u(t n ))k r  τ 3 ε 1 σ (K 3,1 + K 3,2 ).
(2.5.10) Stability analysis. We first prove a stability estimate for Ψt 1 (•).F o ri 2{1, 2, 3} we have

k Ψc i τ 1 f (t n ) Ψc i τ 1 g(t n )k r kf (t n ) g(t n )k r + τkεL ε ( f (t n ) g(t n ))k r + τ 2 kε 2 L ε f (t n )L ε f (t n ) 2 ε 2 L ε g(t n )L ε g(t n ) 2 k r + τ 3 6 kε 2 L ε ⇣ L ε f (t n ) 2 ⌘ 2 ε 3 L ε ⇣ L ε g(t n ) 2 ⌘ 2 k r + 2 3 τ 3 kε 2 L ε f (t n )L ε f (t n ) 2 ε 2 L ε g(t n )L ε g(t n ) 2 k r  (1 + τM 0 3 )k f (t n ) g(t n )k r , for some M 0 3 = M 0 3 (k f k r , kgk r ) > 0.
Note that the last inequality follows by (1.2.2)a n dL e m m a2.2.4.I t e r a t i n g this argument one obtains, using Lemma 2.2.5, Remark 2.5.2. The local error analysis carried out for the third order method (2.5.1) also holds true for other third order splitting methods as the argument does not depend on the particular choice of weights c 1 ,...,c s and d 1 ,...,d s . Moreover, the error analysis can be extended to higher order splitting methods, see Section 2.6 for a fourth order splitting.

k Ψτ ( f (t n )) Ψτ (g(t n ))k r = k ⇣ Ψ d 3 τ 2 Ψc 3 τ 1 Ψ d 2 τ 2 Ψc 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ ( f (t n ) g(t n ))k r  (1 + τM 0 3 )k ⇣ Ψ d 2 τ 2 Ψc 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ ( f (t n ) g(t n ))k r  (1 + τM 0 3 ) 2 k ⇣ Ψ d 1 τ 2 Ψc 1 τ 1 ⌘ ( f (t n ) g(t n ))k r  (1 + τM 0 3 ) 3 k f (t n ) g(t n )k r  (1 + τM 3 )k f (t n ) g(t n )k r , for M 3 := 3M 0 3 + 3τM 02 3 + τ 2 M 03 3 > 0.

Af o u r t ho r d e rS p l i t t i n gm e t h odf o rB B M

Derivation

In this section we consider a fourth order splitting scheme given by

Ψτ = Ψc 1 τ 1 Ψ d 1 τ 2 Ψc 2 τ 1 Ψ d 2 τ 2 Ψc 3 τ 1 Ψ d 3 τ 2 Ψc 4 τ 1 Ψ d 3 τ 2 Ψc 3 τ 1 Ψ d 2 τ 2 Ψc 2 τ 1 Ψ d 1 τ 2 Ψc 1 τ 1 (2.6.1)
with weights

c 1 = 0.0792036964311957, d 1 = 0.209515106613362, c 2 = 0.353172906049774, d 2 = 0.143851773179818, c 3 = 0.0420650803577195, d 3 = 0.5 d 2 d 1 , c 4 = 1 2(c 1 + c 2 + c 3 ).
For its derivation we refer to the original reference (BM00)a sw e l la st o( MQ02, Section 4.9).

Again it remains to construct a fourth order integrator for the nonlinear supbroblem (S1). For this purpose we expand the corresponding mild formulation up to order four

w(t n + τ)=w(t n ) εL ε Z τ 0 w 2 (t n + s) ds = w(t n ) εL ε Z τ 0 w 2 (t n )+2sw(t n )∂ t w(t n )+ s 2 2 ∂ 2 t w 2 (t n )+ s 3 6 ∂ 3 t w 2 (t n ) ! ds (2.6.2) + R 4 (w),
where R 4 (w), for some ξ 2 [t n ,t n+1 ], satisfies the following bound

kR 4 (w)k r = εL ε Z τ 0 s 4 24 ds ∂ 4 t w 2 (t) t=ξ r  ε 4 4σ τ 5 K, (2.6.3) for some K = K(sup t n tt n+1 kw(t)k max{r+i 2iσ : 0i4} ) > 0,b yL e m m a2.2.2.
The above expansion motivates us to define the following numerical flow

Ψτ 1 (w n ) := w n τεL ε w n + τ 2 ε 2 L ε w n L ε (w n ) 2 1 6 τ 3 ε 3 L ε ⇣ L ε (w n ) 2 ⌘ 2 2 3 τ 3 ε 3 L ε w n L ε w n L ε (w n ) 2 + 1 2 τ 4 ε 4 L ε ⇣ L ε (w n ) 2 ⌘⇣ L ε w n L ε (w n ) 2 ⌘ + 1 6 τ 4 ε 4 L ε w n L ε ⇣ L ε (w n ) 2 ⌘ 2 + 1 3 τ 4 ε 4 L ε w n L ε w n L ε w n L ε (w n ) 2 .
(2.6.4)

Similarly to the convergence analysis of the third order splitting scheme of Section 2.5.2 we obtain the following fourth order convergence result.

Theorem 2.6.1. Fix 0  σ  1 and r > 1 2 such that r + 1 2σ > 1 2 and assume that the exact solution of (2.1.1)

satisfies u 2 C ⇣ [0, T ], H r+1+4λ 2σ (T) ⌘ .
T h e nt h e r ee x i s t saτ 0 > 0 such that for τ  τ 0 and t n  T the fourth order splitting u n defined in (2.6.1) (together with (2.6.4)) satisfies the global error estimate

ku(t n ) u n k r  ε 1 σ τ 4 K, for a constant K = K(sup t2[0,T ] ku(t)k r+1+4λ 2σ ) > 0.
Proof. The proof follows with similar arguments as given in Section 2.5.2 for the third order method and will be omitted here.

Numerical Experiments

In this section we underline our theoretical convergence result (2.1.3)w i t hn u m e r i c a le x p e r i m e n t s . I np a r t i c u l a r we observe that our splitting schemes converge with desired order O(τ p ε) for p = 1, 2, 3, 4.F o r t h e s p a t i a l discretisation we employ a standard Fourier pseudospectral method. More specifically, we choose the highest Fourier mode to be M = 200, which corresponds to ∆x ⇡ 0.0314 and integrate the following initial value up to time T = 5 u(0, x)= 3 sin(2x) 2 cos(x) .

In Figure 2.7.1 we plot the time-step size versus the discrete L 2 error of the first (2.3.2), second (2.4.1), third

(2.5.1) and fourth (2.6.1) order splitting scheme for different values of ε. In order to generate this result we used the method itself with a step size of τ = 10 15 as a reference solution, after comparing its accuracy with an approximation via the ode45 solver, integrated in Matlab with a very fine time step size.

In Figure 2.7.2 we furthermore underline the asymptotic convergence of our splitting method to the the KdV limit equation (2.1.5). For this purpose we plot the difference between the Lie splitting solution of the BBM equation (2.1.1) and the numerical solution of the KdV equation (2.1.5) for different values of ε.T h en u m e r i c a l experiment underlines the asymptotic convergence of order O(ε). 

UNIFORMLY ACCURATE INTEGRATORS FOR THE KLEIN-GORDON EQUATION

This chapter is based on (CCS22a).

Introduction

We consider the nonlinear Klein-Gordon equation

c 2 ∂ tt z ∆z + c 2 z = |z| 2 z, z(0, x)=z 0 (x), ∂ t z(0, x)=c 2 z 0 0 (x) (3.1.1)
which in the so-called non-relativistic limit regime c ! ∞ collapses to the classical cubic nonlinear Schrödinger equation. More precisely, the exact solution z of (3.1.1) allows (for sufficiently smooth data) the expansion

z(t, x)= 1 2 ⇣ e ic 2 t u ⇤,∞ (t, x)+e ic 2 t v ⇤,∞ (t, x) ⌘ + O(c 2 ) (3.1.2)
on a time-interval uniform in c,w h e r e(u ⇤,∞ , v ⇤,∞ ) satisfy the cubic Schrödinger limit system

i∂ t u ⇤,∞ = 1 2 ∆u ⇤,∞ + 1 8 ⇣ u ⇤,∞ 2 + 2 v ⇤,∞ 2 ⌘ u ⇤,∞ u ⇤,∞ (0)=ϕ iγ i∂ t v ⇤,∞ = 1 2 ∆v ⇤,∞ + 1 8 ⇣ v ⇤,∞ 2 + 2 u ⇤,∞ 2 ⌘ v ⇤,∞ , v ⇤,∞ (0)=ϕ iγ (3.1.3) with initial values z(0, x) c!∞ ! ϕ(x) and c 1 ⇣ c 2 ∆ ⌘ 1/2 ∂ t z(0, x) c!∞ ! γ(x),
see (MN02, Formula (1.3)) and for the periodic setting (FS14, Formula (37)).

Reproducing this limit behaviour, and in general non relativistic regimes of large c, on the discrete level is highly challenging as the large parameter c 1 triggers oscillations of type

✓ e `ic p c 2 ∆t ◆ `2Z
which are difficult to resolve numerically without imposing severe step size restrictions at the cost of huge computational costs. We refer to (EFHI09; HLW06) and the references therein for an introduction and overview on highly-oscillatory problems. Gautschi-type methods (see (HL99)) were first analyzed in (BD12)a n di n t r od u c e a global error of order c 4 τ 2 which requires the CFL-type condition c 2 τ < 1. To overcome this difficulty so-called limit integrators which reduce the highly-oscillatory problem to the corresponding non-oscillatory limit system (i.e., c ! ∞ in (3.1.1)) as well as uniformly accurate schemes based on multiscale expansions were introduced in (FS14)a n d( BCZ14; BFS18; CCLM15)f o rsmooth solutions (at least in H 6 ).

We also refer to (BCF21) for recent results on improved error bounds on time splitting methods for long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity in the relativistic c = 1 regime.

In the very recent work (RS21), a low regularity approximation technique for a class of abstract evolution equations, including parabolic as well as wave type systems, was introduced. This new approach in general allows us to resolve the time dynamics of PDEs under lower regularity assumptions (in space) than classical methods, such as splitting or exponential integrator methods, require.

Up to now it was an open question whether one can couple the idea of low regularity integrators in space and low regularity (or more precisely uniformly accurate) integrators in time. The main difficulty lies in controllingon the discrete level -the underlying oscillations triggered by the leading operator

ch∇i c = c p ∆ + c 2 . (3.1.4)
This is much more involved than in previous works (BFS18; RS21)w h e r ee i t h e r( i )c = 1 such that no time oscillations appear or (ii) all regimes of c are captured, however, ∆ is considered to be "neglectable" (as smooth solutions are imposed) and the coupled oscillations e itch∇i c can be simply expanded into a Taylor series More precisely, we will design our schemes in such a way that in the limit c ! ∞ we recover a low regularity integrator discretisation of NLS (see, e.g., (OS18)).

Compared to previously proposed uniformly accurate schemes (such as (BFS18)) and the new regularity framework introduced for non oscillatory problems ((RS21)) the construction is in our setting much more delicate as the full spectrum of frequencies triggered by ∆ is coupled with the possible large parameter c.T h ek e ys t e pl i e s in suitable two-and three-scale expansions and the essentiel estimates on the commutator structure of (3.1.4) (see Lemma 3.3.3). This will allow us, in the construction and error analysis of the new schemes, to establish estimates that hold uniformly in c.

Outline of the chapter. We will motivate the new first order scheme (3.3.20) in Section 3.3 and its second order counterpart (3.4.19) in Section 3.4. We state their uniform and asymptotic convergence in Theorem 3.3.11, Theorem 3.3.13,T h e o r e m3.4.5 and Remark 3.4.7, respectively. Our ideas can be extended to higher order methods. Numerical experiments in Section 3.5 underline our theoretical findings.

Notation. In the following we fix r > d/2. We will assume periodic boundary conditions that is x 2 T d .O u r ansatz can, however, be extended to bounded domains x 2 Ω ⇢ R d (equipped with suitable boundary conditions) and the full space x 2 R d with Fourier analysis on R d and suitable extension techniques on bounded domains. For the possible implementation on bounded domains we refer to finite difference and finite element methods (see, also [START_REF] Bao | Comparison of numerical methods for the nonlinear klein-gordon equation in the nonrelativistic limit regime[END_REF]) and for the full space setting to Malmquist-Takenaka functions (see, e.g., (IKSW21)).

Formulation as a first order system

For a given c > 0, we define the operator

h∇i c = p ∆ + c 2 (3.2.1)
which as a Fourier multiplier takes the form

(h∇i c ) k = p k 2 + c 2 .
With this notation at hand, we can rewrite the Klein-Gordon equation (3.1.1) as a first-order system in time. For this purpose we set

u = z ic 1 h∇i 1 c ∂ t z, v = z ic 1 h∇i 1 c ∂ t z (3.2.2)
such that in particular

z = 1 2 (u + v). (3.2.3) If z is real, then u ⌘ v.
A short calculation shows that in terms of the variables u and v equation (3.1.1)r e a d s

i∂ t u = ch∇i c u + ch∇i 1 c f ( 1 2 (u + v)), i∂ t v = ch∇i c v + ch∇i 1 c f ( 1 2 (u + v)) (3.2.4)
with the nonlinearity

f (z)=|z| 2 z.
and initial conditions (see (3.1.1))

u(0)=z(0) ic 1 h∇i 1 c z 0 (0), and v(0)=z(0) ic 1 h∇i 1 c z 0 (0).

(3.2.5)

Now we are in the position to derive the first order low regularity uniformly accurate scheme. To present the main ideas more clearly, in the following we will restrict our attention to the real case z(t, x) 2 R such that by Remark 3.2 we have that u = v. However, the proposed construction and analysis can be easily extended to the complex setting.

3.3 Afi r s to r d e rl o wr e g u l a r i t yu n i f o r m l ya c c u r a t ei n t e g r a t o r

Duhamel's formula for (3.2.4)r e a d s

u(t)=e itch∇i c u(0) i 1 8 ch∇i 1 c e itch∇i c Z t 0 e isch∇i c u(s)+u(s) 3 ds (3.3.1)
and we are left with approximating the above integral. Naively we could apply a straightforward Taylor series expansion of the solution

u(s)=u(0)+s • ∂ t u(0)+....
This would, however, introduce powers of c 2 due to the observation that

∂ t u(t)=ich∇i c u(t)+ lower order terms, ch∇i c = c 2 1 2 ∆ + ....
In order to overcome this and allow for uniform convergence in c at low regularity we will iterate Duhamel's formula (3.3.1) in the spirit of

u(s)=e isch∇i c u(0)+R 1 (s, u), (3.3.2) 
where the remainder can be bounded uniformly in c and does not require any spatial regularity of the solution.

More precisely, the following lemma holds.

Lemma 3.3.1. The following bounds hold:

1. kch∇i 1 c k r  1, 2. ke itch∇i c k r = 1 8t 2 R.
Proof. We know that the Fourier multiplier of the h∇i c operator takes the form

(h∇i c ) k = p k 2 + c 2 . We observe that it holds c p k 2 + c 2 2 = 1 p (k/c) 2 + 1 2 2  1.
On the other hand, it holds for the corresponding Fourier multiplier, that

e itc p k 2 +c 2 2 = 1, since tc p k 2 + c 2 is strictly real valued.
And this gives the following bound

kR 1 (s, u)k r = 1 8 ch∇i 1 c e isch∇i c Z s 0 e is 1 ch∇i c u(s 1 )+u(s 1 ) 3 ds 1 r  sK( sup 0ts ku(t)k r ). (3.3.3)
Plugging the expansion (3.3.2)i n t o( 3.3.1)t h u sy i e l d st h a t

u(t)=e itch∇i c u(0) i 1 8 ch∇i 1 c e itch∇i c Z t 0 e isch∇i c
⇣ e isch∇i c u(0)+e isch∇i c u(0)

⌘ 3 ds + R 2 (t, u) (3.3.4)
where the remainder R 2 (t, u) satisfies the bound

kR 2 (t, u)k r  t 2 K( sup 0tt ku(t)k r ). (3.3.5)
Hence, we are left with deriving a low regularity uniformly accurate approximation to the central oscillatory integral

I (t, ch∇i c , u(0)) := Z t 0 e isch∇i c
⇣ e isch∇i c u(0)+e isch∇i c u(0)

⌘ 3 ds. (3.3.6)
For this purpose we introduce the operator

L c = ch∇i c c 2 .
With this notation at hand the principal oscillations (3.3.6)t a k et h ef o r m

I (t, ch∇i c , u(0)) = Z t 0 e is(L c +c 2 ) ⇣ e is(L c +c 2 ) u(0)+e is(L c +c 2 ) u(0) ⌘ 3 ds. (3.3.7)
Note that the operator L c can be (for smooth solutions) uniformly bounded with respect to c. More precisely, it holds that

kL c vk r = ⇣ c p ∆ + c 2 c 2 ⌘ v r  1 2 kvk r+2 . (3.3.8)
One can see this via the Taylor series expansion of the function x ! c p x 2 + c 2 . In contrast to previous works we, however, will not base our schemes on the above estimate. In contrast, it will be essential in our low regularity approximations to also embed the oscillations e itL c (triggered by ∆) into our numerical discretisation and not simply neglect them by a Taylor series expansion

e itL c = 1 + O(t∆)
in the spirit of (3.1.5).

In order to capture all oscillations we will tackle each oscillatory integral in (3.3.7)s e p a r a t e l y

I (t, ch∇i c , u(0)) = Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) u(0) ⌘ 3 ds (3.3.9) + 3 Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) u(0) ⌘ 2 e is(c 2 +L c ) u(0) ds (3.3.10) + 3 Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) u(0) ⌘ 2 e is(c 2 +L c ) u(0) ds (3.3.11) + Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) u(0)
⌘ 3 ds.

(3.3.12)

Beforehand we introduce a commutator type definition which will be essential in our local error estimates. 

C [H, L ](v 1 , ••• , v n )= L (H (v 1 , •••v n )) + n ∑ i=1 D i H(v 1 , ••• , v n ) • L v i (3.3.13)
where D i H stands for the partial differential of H with respect to the variable v i . The functions v i , i = 1,...,n, are smooth enough such that (3.3.13) is well defined. We will also make use of the iterated commutator

C 2 [H, L ](v 1 , ••• , v n )=C [C [H, L ], L ](v 1 , ••• , v n ).
Furthermore, we set

f cub (v, w, z)=vwz. Lemma 3.3.3 (Bound on the commutator). Let r > d/2 and v, w, z 2 H r+2 .W eh a v et h a t kC [ f cub (•, •, •), L c ](v, w, z)k r  k 1 kvk r+1 kwk r+1 kzk r+1 kC 2 [ f cub (•, •, •), L c ](v, w, z)k r  k 2 kvk r+2 kwk r+2 kzk r+2
for constants k 1 , k 2 > 0 which can be chosen independently of c.

Proof. We will show that for f quad (v, w)=vw have that

C [ f quad (•, •), L c ](v, w)=O (∇v∇w) (3.3.14)
and

C 2 [ f quad (•, •), L c ](v, w)=O (∆v∆w) . (3.3.15)
The assertions for f cub then follow the line of argumentation.

Note that

C [ f quad (•, •), L c ](v, w)= (ch∇i c c 2 )(vw)+w(ch∇i c c 2 )v + v(ch∇i c c 2 )w. (3.3.16)
In the following we use for k, l 2 Z d the notation

kl = k 1 l 1 + ...+ k d l d and |k| 2 = k 2 1 + ...+ k 2 d .
Then we observe that in Fourier space we obtain

(ch∇i c c 2 )(vw)=c 2 r 1 ∆ c 2 1 ! (vw)= ∑ k,l e ikx vk l ŵl c 2 r 1 + k 2 c 2 1 ! = ∑ k,l2Z d e ikx vk l ŵl k 2 q 1 + k 2 c 2 + 1 such that by (3.3.16)w eh a v e C [ f quad (•, •), L c ](v, w)= ∑ k,l2Z d e ikx vk l ŵl 0 B @ k 2 q 1 + k 2 c 2 + 1 (k l) 2 q 1 + (k l) 2 c 2 + 1 l 2 q 1 + l 2 c 2 + 1 1 C A = ∑ k,l2Z d e ikx vk l ŵl ✓ T 1 (k) T 2 (k l) T 3 (l)
◆ .

(3.3.17)

Without loss of generality let us assume that |l| < |k l|. Then we can bound the third term T 3 in (3.3.17)a s follows

∑ k,l2Z d e ikx vk l ŵl T 3 (l) = ∑ k,l2Z d e ikx vk l ŵl l 2 q 1 + l 2 c 2 + 1 < ∑ k,l2Z d | vk l ||k l|| ŵl ||l| (3.3.18)
such that only first order derivatives are required and it remains to establish a suitable bound on the difference

T 1 (k) T 2 (k l) in (3.
3.17). For this purpose we set

D 1 (k)= r 1 + k 2 c 2 + 1, D 2 (k l)= r 1 + (k l) 2 c 2 + 1.
Then we have that

T 1 (k) T 2 (k l)= k 2 q 1 + k 2 c 2 + 1 (k l) 2 q 1 + (k l) 2 c 2 + 1 = k 2 ✓ q 1 + (k l) 2 c 2 + 1 ◆ (k l) 2 ✓ q 1 + k 2 c 2 + 1 ◆ D 1 (k)D 2 (k l) = k 2 ✓ q 1 + (k l) 2 c 2 q 1 + k 2 c 2 ◆ +2kl ✓ q 1 + k 2 c 2 + 1 ◆ l 2 ✓ q 1 + k 2 c 2 + 1 ◆ D 1 (k)D 2 (k l) .
As we assume that |l| < |k l| we can bound the second and third term similarly as in (3.3.18)a n di tr e m a i n st o bound the first term

T 0 (k, k l)= k 2 ✓ q 1 + (k l) 2 c 2 q 1 + k 2 c 2 ◆ D 1 (k)D 2 (k l) .
We note that

T 0 (k, k l)= k 2 ✓ 1 + (k l) 2 c 2 ◆ ⇣ 1 + k 2 c 2 ⌘ ! D 1 (k)D 2 (k l) D 1 (k)+D 2 (k l) 2 = k 2 c 2 ⇣ 2kl + l 2 ⌘ D 1 (k)D 2 (k l) D 1 (k)+D 2 (k l) 2 .
Next we use that

1 D 1 (k)D 2 (k l) D 1 (k)+D 2 (k l) 2  1 D 1 (k)D 1 (k)  c 2 k 2 .
Hence, thanks to |l| < |k l| we obtain that

|T 0 (k, k l)| 2kl + l 2  3|k l||l|
and we can conclude similar to (3.3.18). Therefore, we obtain that

kC [ f quad (•, •), L c ](v, w)k r  k 1 kvk r+1 kwk r+1
for some constant k 1 independent of c.

For the second assertion (3.3.15) we observe by using Definition 3.3.2 that

C 2 [ f quad (•, •), L c ](v, w)=L 2 c h vw i 2L c h (L c v)w +(L c w)v i + 2 h L c v ih L c w i + h L 2 c v i w + h L 2 c w i v = ∑ k,l2Z d e ikx vk l ŵl M(k, l, k l)
with the Fourier multiplier

M(k, l)= " k 2 D(k) # 2 2 k 2 D(k) " l 2 D(l) + (k l) 2 D(k l) # + 2 l 2 D(l) (k l) 2 D(k l) + " l 2 D(l) # 2 + " (k l) 2 D(k l) # 2
and

D( j)= r 1 + j c 2 + 1 for j 2 Z d .
Rearranging the terms, i.e., using that

2 l 2 D(l) (k l) 2 D(k l) + " l 2 D(l) # 2 + " (k l) 2 D(k l) # 2 = " l 2 D(l) + (k l) 2 D(k l) # 2
we find that

M(k, l)= " k 2 D(k) # 2 2 k 2 D(k) " l 2 D(l) + (k l) 2 D(k l) # + " l 2 D(l) + (k l) 2 D(k l) # 2 = " k 2 D(k) l 2 D(l) (k l) 2 D(k l) # 2 .
Thus, we can conclude, by the proof of the first assertion, see also (3.3.17)t h a t

kC 2 [ f quad (•, •), L c ](v, w)k r  k 2 kvk r+2 kwk r+2
for some constant k 2 independent of c. This proves the second assertion. Now we are in the position to develop suitable uniformly accurate low regularity approximations to the central oscillations I (t, ch∇i c , u(0)) given in (3.3.9)-( 3.3.12). Lemma 3.3.4 (Approximation of the integral (3.3.9)). It holds that

Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) v ⌘ 3 ds = tϕ 1 (2ic 2 t)v 3 + O ⇣ t 2 C [ f cub (•, •, •), L c ](v, v, v) ⌘ .
Proof. We note that

I 1 (t, ch∇i c , v) := Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) v ⌘ 3 ds = Z t 0 e 2ic 2 s e isL c ⇣ e isL c v ⌘ 3 ds.
Next we define the filtered function

N (s 1 , L c , v)=e is 1 L c ⇣ e is 1 L c v ⌘ 3
which allows us to express the oscillatory integral as follows

I 1 (t, ch∇i c , v)= Z t 0 e 2ic 2 s N (s, L c , v)ds.
Taylor series expansion of N (s 1 , L c , v) around s 1 = 0 yields by noting that

N (0, L c , v)=v 3
the following expansion

I 1 (t, ch∇i c , v)= Z t 0 e 2ic 2 s ✓ v 3 + Z s 0 ∂ s 1 N (s 1 , L c , v)ds 1 ◆ ds.
The assertion thus follows from the observation that

∂ s 1 N (s 1 , L c , v)= iL c e is 1 L c ⇣ e is 1 L c v ⌘ 3 + 3ie is 1 L c ⇣ e is 1 L c v ⌘ 2 ⇣ e is 1 L c L c v ⌘ which implies ∂ s 1 N (s 1 , L c , v)=e is 1 L c C [ f cub (•, •, •), iL c ] ⇣ e is 1 L c v, e is 1 L c v, e is 1 L c v ⌘ .
Lemma 3.3.5 (Approximation of the integral (3.3.10)). It holds that

3 Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) v ⌘ 2 e is(c 2 +L c ) v ds = 3tv 2 ϕ 1 ( 2itL c )v + O ⇣ t 2 C [ f cub (•, •, •), L c ](v, v, v) ⌘ .
Proof. We note that

Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) v ⌘ 2 e is(c 2 +L c ) v ds = Z t 0 e isL c  ⇣ e isL c v
⌘ 2 e isL c v ds

= Z t 0 ✓ v 2 e 2isL c v + Z s 0 ∂ s 1 N (s, s 1 , L c , v)ds 1 ◆ ds,
where we have introduced the filtered function

N (s, s 1 , L c , v)=e is 1 L c  ⇣ e is 1 L c v ⌘ 2 e is 1 L c e 2isL c v . (3.3.19)
The assertion thus follows from the observation that

∂ s 1 N (s, s 1 , L c , v)=e is 1 L c C [ f cub (•, •, •), iL c ] ⇣ e is 1 L c v, e is 1 L c v, e is 1 L c e 2isL c v ⌘ .
Lemma 3.3.6 (Approximation of the integral (3.3.11)). It holds that

3 Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) v ⌘ 2 e is(c 2 +L c ) v ds = 3tvϕ 1 ( 2itch∇i c )v 2 + O ⇣ t 2 C [ f cub (•, •, •), L c ](v, v, v) ⌘ .
Proof. Similarly to above we define a filtered function, where we now need a three scale formulation due to the quadratic term u 2 ,

N (s, s 1 , s 2 , L c , v)=e is 1 L c  ⇣ e is 1 L c v ⌘ e 2isL c e is 1 L c e is 2 L c ⇣ e is 2 L c v ⌘ 2 .
Taylor series expansion around s 1 = 0 and s 2 = 0 yields with the observation

N (s, 0, 0, L c , v)=ve 2isL c v 2 that Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) v ⌘ 2 e is(c 2 +L c ) v ds = Z t 0 e 2isc 2 N (s, s, s, L c , v)ds = Z t 0 e 2isc 2 ✓ N (s, 0, s, L c , v)+ Z s 0 ∂ ξ N (s, ξ , s, L c , v)dξ ◆ ds = Z t 0 e 2isc 2 ✓ N (s, 0, 0, L c , v)+ Z s 0 ∂ s 1 N (s, s 1 , s, L c , v)dξ + Z s 0 ∂ s 2 N (s, 0, s 2 , L c , v)dξ ◆ ds = Z t 0 e 2isc 2 ✓ ve 2isL c v 2 + Z s 0 ∂ s 1 N (s, s 1 , s, L c , v)ds 1 + Z s 0 ∂ s 2 N (s, 0, s 2 , L c , v)ds 2 ◆ ds = Z t 0 ve 2is(L c +c 2 ) v 2 ds+ Z t 0 ✓ Z s 0 ∂ s 1 N (s, s 1 , s, L c , v)ds 1 + Z s 0 ∂ s 2 N (s, 0, s 2 , L c , v)ds 2 ◆ ds.
The assertion follows by noting that L c + c 2 = ch∇i c together with the definition of the ϕ 1 function and commu- tator C .

Lemma 3.3.7 (Approximation of the integral (3.3.12)). It holds that

Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) v ⌘ 3 ds = tϕ 1 ( 2it(ch∇i c + c 2 ))v 3 + O ⇣ t 2 C [ f cub (•, •, •), L c ](v, v, v) ⌘ .
Proof. Similarly to above we define the filtered function

N (s, s 1 , L c , v)=e is 1 L c e 2isL c ⇣ e is 1 L c v ⌘ 3 such that Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) v ⌘ 3 ds = Z t 0 e 4isc 2 N (s, s, L c , v)ds = Z t 0 e 4isc 2 ✓ N (s, 0, L c , v)+ Z s 0 ∂ s 1 N (s, s 1 , L c , v)ds 1 ◆ ds = Z t 0 e 4isc 2 e 2isL c v 3 ds+ Z t 0 Z s 0 ∂ s 1 N (s, s 1 , L c , v)ds 1 ds
The assertion follows by noting that 2L c + 4c 2 = 2(ch∇i c + c 2 ).

Lemma 3.3.4 -3.3.7 together with the commutator bound given in Lemma 3.3.3 allow us to obtain the following corollary on a uniformly accurate low regularity expansion of the underlying oscillations.

Corollary 3.3.8. The oscillations I (t, ch∇i c , v) defined in (3.3.6) allow the expansion

I (t, ch∇i c , v)=tϕ 1 (2ic 2 t)v 3 + 3tv 2 ϕ 1 ( 2itL c )v + 3tvϕ 1 ( 2itch∇i c )v 2 + tϕ 1 ( 2it(ch∇i c + c 2 ))v 3 + O ⇣ t 2 (∇v) 3 ⌘ .
Corollary 3.3.8 together with the expansion of the exact solution given in (3.3.4) motivates the first order uniformly accurate low regularity integrator

u n+1 = e iτch∇i c u n iτ 1 8 ch∇i 1 c e iτch∇i c  ϕ 1 (2ic 2 τ)(u n ) 3 + 3(u n ) 2 ϕ 1 ( 2iτL c )u n + 3u n ϕ 1 ( 2iτch∇i c )(u n ) 2 + ϕ 1 ( 2iτ(ch∇i c + c 2 ))(u n ) 3 .
(3.3.20)

In the next sections we will carry out the error and asymptotic analysis of the above scheme.

Local error analysis

We start with the local error analysis. For this purpose we will denote by ϕ t the exact flow of (3.1.1)a n db yΦ τ the numerical flow defined by the scheme (3.3.20), such that u(t n + τ)=ϕ τ (u(t n )) and u n+1 = Φ τ (u n ).

Lemma 3.3.9. Fix r > d/2.T h el o c a le r r o rϕ τ (u(t n )) Φ τ (u(t n )) satisfies

ϕ τ (u(t n )) Φ τ (u(t n )) = O ⇣ τ 2 C [ f cub (•, •, •), L c ](v 1 , v 2 , v 3 )(t) ⌘ for v j (t) 2{u(t), u(t)}.
Proof. The assertion follows by the expansion of the exact solution given in (3.3.4) together with the error bound (3.3.5) and Corollary 3.3.8.

Stability analysis

Lemma 3.3.10. Fix r > d/2.

T h en u m e r i c a lfl o wd e fi n e db yt h es c h e m e(3.3.20) is stable in H r in the sense

that for two functions v, w 2 H r we have that

kΦ τ (v) Φ τ (w)k r  e τL kv wk r
where the constant L depends on the H r norm of v and w.

Proof. The assertion follows thanks to the estimates in Lemma 3.3.1 together with Corollary 1.2.3.

Global error

Theorem 3.3.11. Fix r > d/2 and assume that the solution of (3.1.1) satisfies u 2 C ([0, T ]; H r+1 ).T h e nt h e r e exists a τ 0 > 0 such that for all 0 < τ  τ 0 the following global error estimate holds for u n defined in (3.3.20)

ku(t n ) u n k r  τK sup 0tt n ku(t)k r+1 ! ,
where K depends on t n and the H r+1 norm of the solution u, but can be chosen independently of c.

Proof 

⇣ kz(0)k r+1 , kc 1 h∇i 1 c z 0 (0)k r+1 ⌘ > 0 such that u 2 C ([0, T ]; H r+1 ).

Asymptotic convergence to low regularity NLS limit integrator

Note that for c ! ∞ we formally observe that 

ch∇i 1 c ! 1, L c ! 1 2 ∆,
u n+1 ! e ic 2 τ e iτ 1 2 ∆  u n iτ 3 8 (u n ) 2 ϕ 1 (iτ∆)u n .
The latter is exactly the low regularity integrator for the NLS limit system (3.1.3) originally proposed in (OS18).

In the following we will establish the precise asymptotic approximation result.

Let us denote by u n ⇤,∞ the low regularity NLS integrator defined by the sequence (cf. (OS18))

u n+1 ⇤,∞ = e iτ 1 2 ∆  u n ⇤,∞ iτ 3 8 (u n ⇤,∞ ) 2 ϕ 1 (iτ∆)u n ⇤,∞ . (3.3.22)
Then we obtain the following asymptotic convergence of the uniformly accurate low regularity integrator u n (defined in (3.3.20)) for the Klein-Gordon equation (3.1.1) towards the low regularity NLS integrator u n ⇤,∞ (defined in (3.3.22)) which approximates the NLS equation (3.1.3).

Theorem 3.3.13. Fix r > d/2 and assume that the solution of (3.1.1) satisfies u 2 C ([0, T ]; H r+3+ε ) for some ε > 0.T h e nt h e r ee x i s t saτ 0 > 0 such that for all τ < τ 0 the asymptotic error estimate holds for u n defined in (3.3.20) and u n ⇤,∞ defined in (3.3.22)

ku n e ic 2 t n u n ⇤,∞ k H r  c 1 K ⇣ sup 0tt n ku(t)k r+3+ε ⌘
where K depends on the H r+3+ε norm of the solution u, but can be chosen independently of c.

Proof. First we note that for τ  1 c we have, by the asymptotic approximation on the continuous level which holds at order 1 c (cf. (3.1.2), with c 1) as well as the first order time convergence of the scheme u n towards Klein-Gordon and u n ⇤,∞ towards NLS, that

u n+1 e ic 2 t n+1 u n+1 ⇤,∞ H r  u(t n+1 ) e ic 2 t n+1 u ⇤,∞ (t n+1 ) H r + u n+1 u(t n+1 ) H r + u n+1 ⇤,∞ u⇤, ∞(t n+1 ) H r  k ✓ τ + 1 c ◆  k 1 c .
Next let us assume that τ > 1 c . Taking the difference of (3.3.20)a n d( 3.3.22)( t h el a t t e rm u l t i p l i e dw i t ht h e oscillatory phase e ic 2 t n+1 (cf. (3.1.2))) we see thanks to Lemma 3.3.1 that

ku n+1 e ic 2 t n+1 u n+1 ⇤,∞ k H r  e iτch∇i c u n e ic 2 τ e iτ 1 2 ∆ e ic 2 t n u n ⇤,∞ r + τ 3 8 e iτch∇i c ch∇i 1 c  (u n ) 2 ϕ 1 ( 2iτL c )u n e ic 2 τ e iτ 1 2 ∆  (e ic 2 t n u n ⇤,∞ ) 2 ϕ 1 (iτ∆)e ic 2 t n u n ⇤,∞ r + τ ϕ 1 (2ic 2 τ)(u n ) 3 r + 3τ u n ϕ 1 ( 2iτch∇i c )(u n ) 2 r + τ ϕ 1 ( 2iτ(ch∇i c + c 2 ))(u n ) 3 r . (3.3.23)
First we use that

ch∇i 1 c = 1 q 1 ∆ c 2 = 1 + O ✓ ∆ c 2 ◆ which implies that k ⇣ ch∇i 1 c 1 ⌘ vk r  k c 2 kvk r+2 .
Hence, we obtain the estimate

τ 3 8 e iτch∇i c ch∇i 1 c  (u n ) 2 ϕ 1 ( 2iτL c )u n e ic 2 τ e iτ 1 2 ∆  (e ic 2 t n u n ⇤,∞ ) 2 ϕ 1 (iτ∆)e ic 2 t n u n ⇤,∞ r  τ 3 8 e iτch∇i c ⇣ ch∇i 1 c 1 ⌘  (u n ) 2 ϕ 1 ( 2iτL c )u n r + τ 3 8 e iτch∇i c  (u n ) 2 ϕ 1 ( 2iτL c )u n e ic 2 τ e iτ 1 2 ∆  (e ic 2 t n u n ⇤,∞ ) 2 ϕ 1 (iτ∆)e ic 2 t n u n ⇤,∞ r  k τ c 2 ku n k r+2 + τ 3 8 e iτch∇i c  (u n ) 2 ϕ 1 ( 2iτL c )u n e ic 2 τ e iτ 1 2 ∆  (e ic 2 t n u n ⇤,∞ ) 2 ϕ 1 (iτ∆)e ic 2 t n u n ⇤,∞ r .
Next we use that for any 0 6 = ξ 2 R it holds that

τkϕ 1 (ic 2 τξ)k r = e ic 2 τξ 1 ic 2 ξ r  2 c 2 |ξ | .
Furthermore, by the expansion

ch∇i c = c 2 1 2 ∆ + O ∆ 1+α c 2α ! for 0  α  1 we see (by choosing α = 1 2 )t h a t ⇣ e iτch∇i c e ic 2 τ e iτ 1 2 ∆ ⌘ v r  k τ c kvk r+3 .
Finally let us note that

τϕ 1 ( 2iτL c ) τϕ 1 (iτ∆)= Z τ 0 ⇣ e 2isL c e is∆ ⌘ ds = Z τ 0 e is∆ ⇣ e 2is(L c 1 2 ∆) 1 ⌘ ds which implies that τ ϕ 1 ( 2iτL c ) ϕ 1 (iτ∆) v r  τ c kvk r+3 .
Applying the above estimates in (3.3.23) we obtain that

u n+1 e ic 2 t n+1 u n+1 ⇤,∞ H r  (1 + τk 0 ) u n e ic 2 t n u n ⇤,∞ r + τ 1 c k 1 ⇣ ku n k r+3 ⌘ + c 2 k 2 ku n k r , (3.3.24)
where the constant k 0 depends on ku n k r and ku n ⇤,∞ k r , k 1 depends on ku n k r+3 and k 2 on ku n k r , but both constants can be chosen independently of c.I t e r a t i n g( 3.3.24) we obtain that

u n+1 e ic 2 t n+1 u n+1 ⇤,∞ H r  1 c K 1 ⇣ sup 0kn ku k k r+3 ⌘ + 1 c 2 τ K 2 sup 0kn ku k k r ! ,
where K 1 , K 2 can be chosen independently of c.A sw ea s s u m et h a tτ > 1 c we can conclude that

u n+1 e ic 2 t n+1 u n+1 ⇤,∞ H r  1 c K 1 ⇣ sup 0kn ku k k r+3 ⌘ .
Note that the regularity assumption u 2 C ([0, T ]; H r+3+ε ) implies a priori the boundedness of the numerical solution in H r+3 ,i . e . ,t h a tsup 0kn ku k k r+3 < +∞ by the global convergence result in Theorem 3.3.11.T h i s yields the assertion.

Remark 3.3.14. On the theoretical level one can show asymptotic convergence (without or lower rate) under much lower regularity assumptions, see, e.g. (MN02, Theorem 1.1).

As e c o n do r d e rl o wr e g u l a r i t yu n i f o r m l ya c c u r a t ei n t e g r a t o r

Iterating Duhamel's formula for (3.2.4) we obtain

u(t)=e itch∇i c u(0) i 1 8 ch∇i 1 c e itch∇i c I (t, ch∇i c , u(0)) 3i 1 8 ch∇i 1 c e itch∇i c Z t 0 e isch∇i c ✓ e isch∇i c u(0) ◆ 2 ( i 1 8 ch∇i 1 c )e isch∇i c I (s, ch∇i c , u(0)) ! ds 3i 1 8 ch∇i 1 c e itch∇i c Z t 0 e isch∇i c ✓ e isch∇i c u(0) ◆ 2 (i 1 8 ch∇i 1 c )e isch∇i c I (s, ch∇i c , u(0)) ! ds 3i 1 8 ch∇i 1 c e itch∇i c Z t 0 e isch∇i c ✓ e isch∇i c u(0) ◆ 2 ( i 1 8 ch∇i 1 c )e isch∇i c I (s, ch∇i c , u(0)) ! ds 3i 1 8 ch∇i 1 c e itch∇i c Z t 0 e isch∇i c ✓ e isch∇i c u(0) ◆ 2 (i 1 8 ch∇i 1 c )e isch∇i c I (s, ch∇i c , u(0)) ! ds 6i 1 8 ch∇i 1 c e itch∇i c Z t 0 e isch∇i c ✓ e isch∇i c u(0) 2 ( i 1 8 ch∇i 1 c )e isch∇i c I (s, ch∇i c , u(0)) ◆ ds 6i 1 8 ch∇i 1 c e itch∇i c Z t 0 e isch∇i c ✓ e isch∇i c u(0) 2 (i 1 8 ch∇i 1 c )e isch∇i c I (s, ch∇i c , u(0)) ◆ ds + B 1 (t, u) (3.4.1)
where we have used the notation (3.3.6), i.e., that

I (s, ch∇i c , u(0)) = Z s 0 e is 1 ch∇i c ⇣ e is 1 ch∇i c u(0)+e is 1 ch∇i c u(0) ⌘ 3 ds 1 .
The remainder B 1 (t, u) thereby satisfies

kB 1 (t, u)k r  t 3 K( sup 0ts ku(t)k r ). (3.4.2)
Thanks to the first order scheme we know that

I (s, ch∇i c , u(0)) = sϕ 1 (2ic 2 s)(u(0)) 3 + 3s(u(0)) 2 ϕ 1 ( 2isL c )u(0) + 3su(0)ϕ 1 ( 2isch∇i c )(u(0)) 2 + sϕ 1 ( 2is(ch∇i c + c 2 ))(u(0)) 3 + B 2 (s, u)
where the remainder satisfies

kB 2 (s, u)k r  s 2 K( sup 0ts ku(t)k r+1 ).
Together with the expansion ch∇i c = c 2 + O(∆) (cf. (3.3.8)) which formally implies that

sϕ 1 ( `isch∇i c )= Z s 0 e `is 1 ch∇i c ds 1 = Z s 0 ⇣ e `is 1 c 2 + O(s 1 ∆) ⌘ ds 1 = sϕ 1 ( `isc 2 )+O(s 2 ∆)
we thus obtain

u(t)=e itch∇i c u(0) i 1 8 ch∇i 1 c e itch∇i c I (t, ch∇i c , u(0)) 3i 1 8 ch∇i 1 c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) ◆ 2 e I (s, c 2 , u(0)) ! ds 3i 1 8 ch∇i 1 c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) ◆ 2 e I (s, c 2 , u(0)) ! ds 3i 1 8 ch∇i 1 c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) ◆ 2 e I (s, c 2 , u(0)) ! ds 3i 1 8 ch∇i 1 c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) ◆ 2 e I (s, c 2 , u(0)) ! ds 6i 1 8 ch∇i 1 c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) 2 e I (s, c 2 , u(0)) ◆ ds 6i 1 8 ch∇i 1 c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) 2 e I (s, c 2 , u(0)) ◆ ds + B 3 (t, u) (3.4.3) with e I (s, ch∇i c , u(0)) = is 1 8 ch∇i 1 c e isc 2  (ϕ 1 (2ic 2 s)(u(0)) 3 + 3|u(0)| 2 u(0) + 3u(0)ϕ 1 ( 2isc 2 )(u(0)) 2 + ϕ 1 ( 4isc 2 )(u(0)) 3
and where the remainder B 3 (t, u) satisfies

kB 3 (t, u)k r  t 3 K( sup 0ts ku(t)k r+2 ). (3.4.4)
With this, Lemma 1.2.4 and definitions (1.2.4)a n d( 1.2.6) at hand, we obtain

i 1 8 ch∇i 1 c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) ◆ 2 e I (s, c 2 , u(0)) ! ds = i 1 8 ch∇i 1 c e itc 2 Z t 0 e 2isc 2 u(0) 2 ✓ is 1 8 ch∇i 1 c  ϕ 1 (2ic 2 s)(u(0)) 3 + 3|u(0)| 2 u(0) + 3u(0)ϕ 1 ( 2isc 2 )(u(0)) 2 + ϕ 1 ( 4isc 2 )(u(0)) 3 ◆ ds = 1 8 • 1 8 ch∇i 1 c e itc 2 ✓ u(0) 2 ch∇i 1 c  t 2ic 2 (ϕ 1 (4ic 2 t) ϕ 1 (2ic 2 t))(u(0)) 3 + 3t 2 Ψ 2 (2ic 2 t)|u(0)| 2 u(0)+3t 2 u(0)ϕ 2 (2itc 2 )(u(0)) 2 + t 4ic 2 (ϕ 1 ( 2ic 2 t) ϕ 1 (2ic 2 t))(u(0)) 3 ◆ =: M 1 (t, c 2 , u(0)) (3.4.5) i 1 8 ch∇i c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) ◆ 2 e I (s, c 2 , u(0)) ! ds = i 1 8 ch∇i 1 c e itc 2 Z t 0 u(0) 2 ✓ is 1 8 ch∇i 1 c  ϕ 1 ( 2ic 2 s)(u(0)) 3 + 3|u(0)| 2 u(0) + 3u(0)ϕ 1 (2isc 2 )(u(0)) 2 + ϕ 1 (4isc 2 )(u(0)) 3 ◆ ds =+t 2 1 64 ch∇i 1 c e itc 2 ✓ u(0) 2 ch∇i 1 c  ϕ 2 ( 2ic 2 t)u(0) 3 + 3 2 |u(0)| 2 u(0) + 3u(0)ϕ 2 (2itc 2 )u(0) 2 + ϕ 2 (4itc 2 )u(0) 3 ◆ =: M 2 (t, c 2 , u(0)) (3.4.6) i 1 8 ch∇i 1 c e itc Z t 0 e isc 2 ✓ e isc 2 u(0) ◆ 2 e I (s, c 2 , u(0)) ! ds = i 1 8 ch∇i 1 c e itc 2 Z t 0 e 2isc 2 u(0) 2 ✓ is 1 8 ch∇i 1 c  ϕ 1 (2ic 2 s)(u(0)) 3 + 3|u(0)| 2 u(0) + 3u(0)ϕ 1 ( 2isc 2 )u(0) 2 + ϕ 1 ( 4isc 2 )(u(0)) 3 ◆ = 1 64 ch∇i 1 c e itc 2 ✓ u(0) 2 ch∇i 1 c  t 2 ϕ 2 ( 2ic 2 t)u(0) 3 + 3t 2 Ψ 2 ( 2ic 2 t)|u(0)| 2 u(0) + 3t 2ic 2 u(0)(ϕ 1 ( 4ic 2 t) ϕ 1 ( 2ic 2 t))u(0) 2 + t 4ic 2 (ϕ 1 ( 6itc 2 ) ϕ 1 ( 2itc 2 ))u(0) 3 ◆ =: M 3 (t, c 2 , u(0)) (3.4.7) i 1 8 ch∇i 1 c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) ◆ 2 e I (s, c 2 , u(0)) ! ds = i 1 8 ch∇i 1 c e itc 2 Z t 0 e 4isc 2 u(0) 2 ✓ is 1 8 ch∇i 1 c  ϕ 1 ( 2ic 2 s)(u(0)) 3 + 3|u(0)| 2 u(0) + 3u(0)ϕ 1 (2isc 2 )(u(0)) 2 + ϕ 1 (4isc 2 )(u(0)) 3 ◆ = 1 64 ch∇i 1 c e itc 2 ✓ u(0) 2 ch∇i 1 c  t 2ic 2 (ϕ 1 ( 6ic 2 t) ϕ 1 ( 4ic 2 t))u(0) 3 + 3t 2 Ψ 2 ( 4ic 2 t)|u(0)| 2 u(0)+ 3t 2ic 2 u(0)(ϕ 1 ( 2ic 2 t) ϕ 1 ( 4ic 2 t))u(0) 2 + t 2 ϕ 2 ( 4ic 2 t)u(0) 3 ◆ =: M 4 (t, c 2 , u(0)) (3.4.8) i 1 8 ch∇i c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) 2 e I (s, c 2 , u(0)) ◆ ds = i 1 8 ch∇i 1 c e itc 2 Z t 0 |u(0)| 2 ✓ is 1 8 ch∇i 1 c  ϕ 1 (2ic 2 s)(u(0)) 3 + 3|u(0)| 2 u(0) + 3u(0)ϕ 1 ( 2isc 2 )(u(0)) 2 + ϕ 1 ( 4isc 2 )(u(0)) 3 ◆ ds = t 2 64 ch∇i 1 c e itc 2 ✓ |u(0)| 2 ch∇i 1 c  ϕ 2 (2ic 2 t)u(0) 3 + 3 2 |u(0)| 2 u(0) + 3u(0)ϕ 2 ( 2ic 2 t)u(0) 2 + ϕ 2 ( 4ic 2 t)u(0) 3 ◆ =: M 5 (t, c 2 , u(0)) (3.4.9) i 1 8 ch∇i 1 c e itc 2 Z t 0 e isc 2 ✓ e isc 2 u(0) 2 e I (s, c 2 , u(0)) ◆ ds = i 1 8 ch∇i 1 c e itc 2 Z t 0 e 2isc 2 |u(0)| 2 ✓ is 1 8 ch∇i 1 c  ϕ 1 ( 2ic 2 s)(u(0)) 3 + 3|u(0)| 2 u(0) + 3u(0)ϕ 1 (2isc 2 )(u(0)) 2 + ϕ 1 (4isc 2 )(u(0)) 3 ◆ ds = 1 64 ch∇i 1 c e itc 2 ✓ |u(0)| 2 ch∇i 1 c  t 2ic 2 (ϕ 1 ( 4ic 2 t) ϕ 1 ( 2ic 2 t))u(0) 3 + 3u(0)t 2 Ψ 2 ( 2ic 2 t)u(0) 2 + 3u(0)t 2 ϕ 2 ( 2ic 2 t)u(0) 2 + t 4ic 2 (ϕ 1 (2ic 2 t) ϕ 1 ( 2ic 2 t))u(0) 3 ◆ =: M 6 (t, c 2 , u(0)).
(3.4.10)

The above calculations allow us to express (3.4.3) as follows

u(t)=e itch∇i c u(0) i 1 8 ch∇i 1 c e itch∇i c I (t, ch∇i c , u(0)) + 3 4 ∑ j=1 M j (t, c 2 , u(0)) + 6M 5 (t, c 2 , u(0)) + 6M 6 (t, c 2 , u(0)) + B 3 (t, u), (3.4.11)
where the remainder satisfies (3.4.4). Thus, it remains to derive a second order uniformly accurate, low regularity approximation to the central oscillations I (t, ch∇i c , u(0)) defined in (3.3.6). We will again treat each integral separately

I (t, ch∇i c , u(0)) = Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) u(0) ⌘ 3 ds (3.4.12) + 3 Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) u(0)
⌘ 2 e is(c 2 +L c ) u(0) ds (3.4.13)

+ 3 Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) u(0)
⌘ 2 e is(c 2 +L c ) u(0) ds (3.4.14)

+ Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) u(0)
⌘ 3 ds.

(3.4.15)

Lemma 3.4.1 (Second order approximation of the integral (3.4.12)). It holds that

Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) v ⌘ 3 ds = tϕ 1 (2ic 2 t)v 3 + tϕ 2 (2ic 2 t) ✓ e itL c ⇣ e itL c v ⌘ 3 v 3 ◆ + O ⇣ t 3 C 2 [ f cub (•, •, •), L c ](v, v, v) ⌘ .
Proof. As in Lemma 3.3.4 we define the filtered function

N (s 1 , L c , v)=e is 1 L c ⇣ e is 1 L c v ⌘ 3
which allows us to express the oscillatory integral (3.4.12) as follows

I 1 (t, ch∇i c , v)= Z t 0 e 2ic 2 s N (s, L c , v)ds.
Now we employ a second order expansion of N (s, L c , v) around s = 0

N (s, L c , v)=N (0, L c , v)+s∂ s N (0, L c , v)+ Z s 0 Z s 1 0 ∂ 2 ξ N (ξ , L c , v)dξ ds 1 where ∂ 2 s 1 N (s 1 , L c , v) obeys the improved error structure ∂ 2 s 1 N (s 1 , L c , v)=e is 1 L c C 2 [ f , L c ] ⇣ e is 1 L c v, e is 1 L c v, e is 1 L c v ⌘ (3.4.16)
where we recall that

C 2 [ f , L c ]=C ⇥ C [ f , L c ] , L c ⇤ .
Thanks to Lemma 3.3.3 and the fact that e iξ L c is a linear isometry in H r for all ξ 2 R we have that

Z s 0 Z s 1 0 ∂ 2 ξ N (ξ , L c , v)dξ ds 1 r  Z s 0 Z s 1 0 C 2 [ f , L c ] ⇣ e iξ L c v, e iξ L c v, e iξ L c v ⌘ r dξ ds 1  k Z s 0 Z s 1 0 e iξ L c v 3 r+2 dξ ds 1  k 2 s 2 kvk 3 r+2 .
Thus, we obtain that

I 1 (t, ch∇i c , v)= Z t 0 e 2ic 2 s ⇣ v 3 + s∂ s N (0, L c , v) ⌘ ds+ O ⇣ t 3 C 2 [ f cub (•, •, •), L c ](v, v, v) ⌘ .
(3.4.17)

where we have used that N (0, L c , v)=v 3 .

In order to guarantee stability of the scheme we will not explicitly embed ∂ s N (0, L c , v) into our scheme.

Instead we will exploit that formally we have for some 0  η  t that

∂ s N (0, L c , v)= δ s N (s, L c , v) t | s=t + O ⇣ t∂ 2 s N (0, L c , v)
⌘ with the standard shift operator

δ ζ g(ζ ) := g(ζ ) g(0) such that δ ζ N (ζ , L c , v) t | ζ =t = 1 t ✓ e itL c ⇣ e itL c v ⌘ 3 v 3 ◆ .
Together with (3.4.17) and the definition of the ϕ 2 function (see (1.2.4)) this yields the assertion.

Lemma 3.4.2 (Second order approximation of the integral (3.4.13)). It holds that

3 Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) v ⌘ 2 e is(c 2 +L c ) v ds = 3tv 2 ϕ 1 ( 2itL c )v + 3t e itL c  ⇣ e itL c v ⌘ 2 e itL c ϕ 2 ( 2itL c )v v 2 ϕ 2 ( 2itL c )v ! + O ⇣ t 3 C 2 [ f cub (•, •, •), L c ](v, v, v) ⌘ .
Proof. The proof follows similarly to the proof of Lemma 3.4.1 by including the approximation

∂ s N (s, 0, L c , v)= δ s 1 N (s, s 1 , L c , v) t | s 1 =t + O ⇣ t∂ 2 s 1 N (s, s 1 , L c , v) ⌘ for the appropriate filtered function (cf. (3.3.19)) N (s, s 1 , L c , v)=e is 1 L c  ⇣ e is 1 L c v ⌘ 2 e is 1 L c e 2isL c v
into the numerical discretisation. With the observation that

∂ s N (s, 0, L c , v)= 1 t e itL c  ⇣ e itL c v ⌘ 2 e itL c e 2isL c v v 2 e 2isL c v ! + O ⇣ t∂ 2 s 1 N (s, s 1 , L c , v) ⌘
we thus obtain

Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) v ⌘ 2 e is(c 2 +L c ) v ds = Z t 0 ✓ N (s, 0, L c , v)+s∂ s 1 N (s, 0, L c , v)+ Z s 0 ∂ 2 s 1 N (s, s 1 , L c , v)dξ ◆ ds = tv 2 ϕ 1 ( 2itL c )v + t e itL c  ⇣ e itL c v ⌘ 2 e itL c ϕ 2 ( 2itL c )v v 2 ϕ 2 ( 2itL c )v ! + O ⇣ t 3 C 2 [ f cub (•, •, •), L c ](v, v, v) ⌘ .
Lemma 3.4.3 (Approximation of the integral (3.4.14)). It holds that

3 Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) v ⌘ 2 e is(c 2 +L c ) v ds = 3tvϕ 1 ( 2itch∇i c )v 2 + 3t ✓ e itL c  ⇣ e itL c v ⌘ ϕ 2 ( 2itch∇i c )e itL c v 2 vϕ 2 ( 2itch∇i c )v 2 ◆ + 3t ✓ vϕ 2 ( 2itch∇i c )e itL c ⇣ e itL c v ⌘ 2 vϕ 2 ( 2itch∇i c )v 2 ◆ + O ⇣ t 2 C [ f cub (•, •, •), L c ](v, v, v) ⌘ .
Proof. Again we define the three scale expansion

N (s, s 1 , s 2 , L c , v)=e is 1 L c  ⇣ e is 1 L c v ⌘ e 2isL c e is 1 L c e is 2 L c ⇣ e is 2 L c v ⌘ 2
such that (cf. proof of Lemma 3.3.6)

Z t 0 e is(c 2 +L c )  ⇣ e is(c 2 +L c ) v ⌘ 2 e is(c 2 +L c ) v ds = Z t 0 e 2isc 2 N (s, s, s, L c , v)ds = Z t 0 ve 2is(L c +c 2 ) v 2 ds+ Z t 0 s ✓ ∂ s 1 N (s, 0, s, L c , v)+∂ s 2 N (s, 0, 0, L c , v)ds 2 ◆ ds + O ⇣ ∂ 2 s 1 N ⌘ + O ⇣ ∂ 2 s 2 N ⌘ = Z t 0 ve 2is(L c +c 2 ) v 2 ds+ Z t 0 s ✓ ∂ s 1 N (s, 0, 0, L c , v)+∂ s 2 N (s, 0, 0, L c , v)ds 2 ◆ ds + O ⇣ t 3 ∂ 2 s 1 N ⌘ + O ⇣ t 3 ∂ 2 s 2 N ⌘ + O ⇣ t 3 ∂ s 1 ∂ s 2 N ⌘ .
Next we use that

∂ s 1 N (s, 0, 0, L c , v)= 1 t N (s,t, 0, L c , v) N (s, 0, 0, L c , v) + O ⇣ t∂ 2 s 1 N ⌘ ∂ s 2 N (s, 0, 0, L c , v)= 1 t N (s, 0,t, L c , v) N (s, 0, 0, L c , v) + O ⇣ t∂ 2 s 2 N ⌘ as well as that N (s,t, 0, L c , v) N (s, 0, 0, L c , v)=e itL c  ⇣ e itL c v ⌘ e 2isL c e itL c v 2 ve 2isL c v 2 N (s, 0,t, L c , v) N (s, 0, 0, L c , v)=ve 2isL c e itL c ⇣ e itL c v ⌘ 2 ve 2isL c v 2 .
This implies the assertion.

Lemma 3.4.4 (Approximation of the integral (3.4.15)). It holds that

Z t 0 e is(c 2 +L c ) ⇣ e is(c 2 +L c ) v ⌘ 3 ds = tϕ 1 ( 2it(ch∇i c + c 2 ))v 3 + t ✓ e itL c ϕ 2 ( 2it(ch∇i c + c 2 )) ⇣ e itL c v ⌘ 3 ϕ 2 ( 2it(ch∇i c + c 2 ))v 3 ◆ + O ⇣ t 3 C 2 [ f cub (•, •, •), L c ](v, v, v) ⌘ .
Proof. The assertion follows similarly to the previous lemmata by choosing the appropriate filtered function

N (s, s 1 , L c , v)=e is 1 L c e 2isL c ⇣ e is 1 L c v ⌘ 3 .
Plugging the above lemmata into (3.4.11) yields together with the double commutator bound of Lemma 3.3.3

that for v = u(0) u(t)=e itch∇i c v i 1 8 ch∇i 1 c e itch∇i c ⇢ tϕ 1 (2ic 2 t)v 3 + tϕ 2 (2ic 2 t) ✓ e itL c ⇣ e itL c v ⌘ 3 v 3 ◆ + 3tv 2 ϕ 1 ( 2itL c )v + 3t e itL c  ⇣ e itL c v ⌘ 2 e itL c ϕ 2 ( 2itL c )v v 2 ϕ 2 ( 2itL c )v ! + 3tvϕ 1 ( 2itch∇i c )v 2 + 3t ✓ e itL c  ⇣ e itL c v ⌘ ϕ 2 ( 2itch∇i c )e itL c v 2 vϕ 2 ( 2itch∇i c )v 2 ◆ + 3t ✓ vϕ 2 ( 2itch∇i c )e itL c ⇣ e itL c v ⌘ 2 vϕ 2 ( 2itch∇i c )v 2 ◆ + tϕ 1 ( 2it(ch∇i c + c 2 ))v 3 + t ✓ e itL c ϕ 2 ( 2it(ch∇i c + c 2 )) ⇣ e itL c v ⌘ 3 ϕ 2 ( 2it(ch∇i c + c 2 ))v 3 ◆ + 3 4 ∑ j=1 M j (t, c 2 , v)+6M 5 (t, c 2 , v)+6M 6 (t, c 2 , v)+B 3 (t, u), (3.4.18)
where the remainder B 3 (t, u) satisfies (3.4.4). The expansion (3.4.18) motivates the second order uniformly accurate low regularity scheme

u n+1 = e iτch∇i c u n iτ 1 8 ch∇i 1 c e iτch∇i c ⇢ ϕ 1 (2ic 2 τ)(u n ) 3 + ϕ 2 (2ic 2 τ) ✓ e iτL c ⇣ e iτL c u n ⌘ 3 (u n ) 3 ◆ + 3(u n ) 2 ϕ 1 ( 2iτL c )u n + 3 e iτL c  ⇣ e iτL c u n ⌘ 2 e iτL c ϕ 2 ( 2iτL c )u n (u n ) 2 ϕ 2 ( 2iτL c )u n ! + 3u n ϕ 1 ( 2iτch∇i c )(u n ) 2 + 3 ✓ e iτL c  ⇣ e iτL c u n ⌘ ϕ 2 ( 2iτch∇i c )e iτL c (u n ) 2 u n ϕ 2 ( 2iτch∇i c )(u n ) 2 ◆ + 3 ✓ u n ϕ 2 ( 2iτch∇i c )e iτL c ⇣ e iτL c u n ⌘ 2 u n ϕ 2 ( 2iτch∇i c )(u n ) 2 ◆ + ϕ 1 ( 2iτ(ch∇i c + c 2 ))(u n ) 3 + ✓ e iτL c ϕ 2 ( 2iτ(ch∇i c + c 2 )) ⇣ e iτL c u n ⌘ 3 ϕ 2 ( 2iτ(ch∇i c + c 2 ))(u n ) 3 ◆ + 3 4 ∑ j=1 M j (τ, c 2 , u n )+6M 5 (τ, c 2 , u n )+6M 6 (τ, c 2 , u n ) (3.4.19)
where M 1,2,3,4,5,6 (τ, c 2 , u n ) are defined in (3.4.5)u pt o( 3.4.10). The following global error estimates holds true for the second order scheme (3.4.19).

Theorem 3.4.5. Fix r > d/2 and assume that the solution of (3.1.1) satisfies u 2 C ([0, T ]; H r+2 ).T h e nt h e r e exists a τ 0 > 0 such that for all 0 < τ  τ 0 the following global error estimate holds for u n defined in (3.4.19)

ku(t n ) u n k r  τ 2 K sup 0tt n ku(t)k r+2 ! ,
where K depends on t n and the H r+2 norm of the solution u, but can be chosen independently of c.

Proof. The proof follows the line of argumentation as the proof of Theorem 3. 

⇣ kz(0)k r+2 , kc 1 h∇i 1 c z 0 (0)k r+2 ⌘ > 0 such that u 2 C ([0, T ]; H r+2 ).
Remark 3.4.7. Again we can show that the scheme (3.4.19) asymptotically (in the limit c ! ∞) converges to a second order low regularity integrator for NLS (3.1.3) in the sense that for sufficiently smooth solutions

ku n e ic 2 t n u n ⇤,∞ k r  kc 1
where u n ⇤,∞ is a second order low regularity approximation of the NLS limit equation (3.1.3) (see (BS22))

u n+1 ⇤,∞ = e iτ 1 2 ∆ u n ⇤,∞ iτ 3 8 e iτ 1 2 ∆  ⇣ u n ⇤,∞ ⌘ 2 ⇣ ϕ 1 (iτ∆) ϕ 2 (iτ∆) ⌘ u n ⇤,∞ + ⇣ e iτ 1 2 ∆ u n ⇤,∞ ⌘ 2 ϕ 2 (iτ∆)e iτ 1 2 ∆ u n ⇤,∞ 9τ 2 2 • 64 |u n ⇤,∞ | 4 u n ⇤,∞ .
(3.4.21)

Numerical Experiments

In this section we numerically underline our theoretical findings. In particular we observe the uniform accuracy in c and low regularity approximation of the schemes as stated in Theorem 3.3.11 and Theorem 3.4.5.

In the convergence order experiments we consider the Klein-Gordon equation (3.1.1)e q u i p p e dw i t hp e r i o d i c boundary conditions, that is x 2 T and approximate the spatial differential operators via a standard Fourier pseudo-spectral method, choosing M = 200 as the highest Fourier mode, which corresponds to ∆x = 0.005.W e considered randomly generated H 1 and H 2 initial data respectively (see for instance (OS18)) and we integrate them up to t = 1.T h es t e ps i z eτ we have chosen to be 2 i ,w h e r ei = 6,...,16.

In Figure 3.5.1 we plot the convergence of the first order scheme (3.3.20) for various values of c for a rough initial data u(0) 2 H 1 . In Figure 3.5.3 we plot the convergence of the second order scheme (3.4.19) for various values of c for a rough initial data u(0) 2 H 2 . For the spatial discretisation we use a classical Fourier pseudo spectral method. Our numerical findings underline the uniform accuracy of the schemes for rough data. In addition, we plot the long time behaviour of the energy (with the rest mass subtracted)

E(z(t)) = Z T ✓ 1 c 2 ∂ t z(t, x) 2 + ∇z(t, x) 2 + c 2 z(t, x) 2 + 1 2 z(t, x) 4 ◆ dx c 2 ku(t)k 2 L 2
under our numerical scheme. In Figure 3.5.6 we plot the energy deviation |E(z n ) E(z 0 )| for smooth and in 

UNIFORMLY ACCURATE INTEGRATORS FOR KLEIN-GORDON-SCHR ÖDINGER SYSTEMS

This chapter is based on (CC23).

Introduction

We consider the Klein-Gordon-Schrödinger system

c 2 ∂ tt z(t, x) ∆z(t, x)+c 2 z(t, x)=|ψ(t, x)| 2 , i∂ t ψ(t, x)+ 1 2 ∆ψ(t, x)+ψ(t, x)z(t, x)=0, (4.1.1)
given by a Klein-Gordon equation coupled nonlinearly with a classical Schrödinger equation. This setting arises in quantum field theory, representing the dynamics of the interaction between a complex-valued scalar nucleon field ψ : R ⇥ R d ! C with a neutral real-valued scalar meson field z : R ⇥ R d ! R.F o re x i s t e n c ea n du n i q u e n e s s of global smooth solutions see [START_REF] Fukuda | On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions[END_REF], [START_REF] Fukuda | On coupled Klein-Gordon-Schrödinger equations, ii[END_REF].

The parameter c, proportional to the speed of light, plays a very important role in the behaviour of the solution and gives rise to two different regimes. We distinguish between the so-called relativistic regime,w h e r e c = 1,a n dt h enon-relativistic regime with c 1.The former regime is well studied numerically, for instance see [START_REF] Bao | Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations[END_REF], as its solution is slowly varying. The non-relativistic, on the other hand, brings in a significant additional challenge in terms of its numerical treatment, given the highly oscillatory nature of its solution. It causes classical numerical methods to collapse, as they fail to capture the rapid oscillations, leading to large errors or, in turn, severe time step size restrictions and thus very intense computational efforts. This is even the case for Gautschytype methods (see (BD12), (HLW06)), which were specifically designed to numerically solve highly oscillatory problems. Splitting methods fail to deal with these rapid oscillations in a similar way, see for instance [START_REF] Faou | Geometric numerical integration and Schrödinger equations[END_REF] for their analysis in the context of Schrödinger equations.

In (BZ17), an unconditionally stable method was developed, based on a multi-scale expansion technique, that achieves uniform linear convergence in time, for sufficiently smooth solutions. Quadratic convergence was achieved in this setting, yet only in the case where either c = O(1) or cτ 1.

In (BKS18) an approach was presented that succeeded to capture all regimes in c, providing error bounds that were independent of this parameter and without requiring any step size restrictions. This was done by means of the introduction of the so-called twisted variables, that were already well known both in physics as "interaction picture", and in the study of partial differential equations at low regularity. The main idea therein was to explicitly filter out the highly oscillatory phases, approximate the slowly varying parts, which does not produce dependency on c in the error constants, and integrate the interacting highly oscillatory phases exactly. In addition, this approach achieves asymptotic consistency, meaning that it preserves the NLS limit on the discrete level.

In comparison to (BKS18), we propose a novel class of exponential-type integrators that equally manages to capture all regimes of c, without any time step size restrictions, and is asymptotically consistent. We introduce a new construction, exploiting the structure of the leading differential operators 1 2 ∆ and ch∇i c ,w h i c ha l l o w su s to establish an explicit relation between a gain of negative powers of the potentially very large parameter c in the error constant versus a loss of derivative. In other words, a gain in accuracy, in the non-relativistic regime, in exchange of a loss in derivative. In addition to this, in the first order scheme, we require one derivative less in the Klein-Gordon part than pre-existing methods up to our knowledge. We achieve this by employing techniques introduced in (CCS22a) (the previous Chapter) in the context of the Klein-Gordon equation.

The underlying strategy is the expansion of suitable filtered functions that allows the embedding of the full spectrum of oscillations into the numerical scheme. Here, the commutator structure of the leading operator 1 2 ∆ is studied (see Lemma 4.3.1), as it plays a crucial role in the achievement of low regularity approximations that do not produce powers of c in our error estimates. In addition to this, we study the asymptotic behaviour of the leading operator ch∇i c in order to resolve the nonlinear frequency interaction caused by the coupled nature of this system.

In the present setting, however, the fact that the equations are coupled non-linearly supposes an additional challenge. It makes the analysis much more involved, since one has to consider the non-linear interaction of highly oscillatory parts. This rises the need of new, adapted techniques.

Outline of the chapter. We begin by expressing (4.1.1) as a first order system in time in Section 2. In Section 3 we motivate the new first order scheme and its second order counterpart will be derived in Section 4.

We prove their uniform convergence in Theorems 4.3.6 and 4.4.10, respectively. In Section 5 we briefly present the limit system, show that, as c ! ∞ formally, we recover the solution to the limit system. Finally, numerical experiments are presented in Section 6, confirming our theoretical results.

Formulation as a first order system

Following techniques introduced in Section 3.2 we may now rewrite (4.1.1)asafirstordersystemintime,recalling the definition (3.2.1) of h∇i c ,b ys e t t i n g

u = z ic 1 h∇i 1 c ∂ t z, v = z ic 1 h∇i 1 c ∂ t z. (4.2.1)
Recall that z can be easily recovered by z = 1 2 (u + v) and that, if we assume that z(t, x) 2 R,w eh a v e z = 1 2 (u + u). (4.2.2)

In the following we will restrict our attention to this case purely for the purpose of presenting our main ideas as clearly as possible. Note, however, that this does not impose any significant restriction. Having said this, a short calculation shows that the corresponding first order system in (u, ψ) reads

i∂ t u + ch∇i c u ch∇i 1 c |ψ| 2 = 0, u(0)=z(0) ic 1 h∇i 1 c ∂ t z(0), (4.2.3) i∂ t ψ + 1 2 ∆ψ + 1 2 ψ(u + u)=0, ψ(0)=ψ 0 . (4.2.4)

Afi r s to r d e ri n t e g r a t o r

In this section we proceed to give a detailed derivation of the numerical scheme for u n+1 ⇡ u(t n+1 ) with t n+1 = t n +τ, followed by a less detailed derivation of the numerical scheme for ψ n+1 ⇡ ψ(t n+1 ) that employs analogous ideas.

Duhamel's formula for (4.2.3)r e a d s

u(t n + τ)=e iτch∇i c u(t n ) ich∇i 1 c e iτch∇i c Z τ 0 e isch∇i c |ψ(t n + s)| 2 ds.
Iterating Duhamel's formula for (4.2.4)l e a d st o

u(t n + τ)=e iτch∇i c u(t n ) ich∇i 1 c e iτch∇i c Z τ 0 e isch∇i c |e i 1 2 s∆ ψ(t n )| 2 ds+ R 1 , (4.3.1)
where R 1 fulfills a bound of the form

kR 1 k r  ich∇i 1 c e iτch∇i c Z τ 0 e isch∇i c ⇣ e i 1 2 s∆ ψ(t n ) ⌘ I ψ (s) ds r + ich∇i 1 c e iτch∇i c Z τ 0 e isch∇i c ⇣ e i 1 2 s∆ ψ(t n ) ⌘ I ψ (s) ds r + ich∇i 1 c e iτch∇i c Z τ 0 e isch∇i c I ψ (s) 2 ds r  τ 2 K, (4.3.2) for some K = K ⇣ sup 0ξ τ , ku(t n + ξ )k r , sup 0ξ τ kψ(t n + ξ )k r ⌘ > 0,w h e r e I ψ (s)= i 2 e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ ψ(t n + σ ) ⇣ u(t n + σ )+u(t n + σ ) ⌘ dσ , (4.3.3) thanks to Lemma 3.3.1.
It is left to approximate the present oscillatory integral in a suitable way and, to this end, we will employ the crucial commutator term introduced in the previous chapter, in Definition 3.3.2, which will appear in our local error estimates. We now establish the necessary bounds for the commutator type terms that we introduced in the previous Chapter, see (3.3.2).

Lemma 4.3.1. We have that

kC [ f quad (•, •), ∆](v, w)k r  K 1 kvk r+1 kwk r+1 , kC 2 [ f quad (•, •), ∆](v, w)k r  K 2 kvk r+2 kwk r+2 for some K 1 , K 2 > 0.
Proof. We will show the first assertion in detail, the second assertion can be proven iterating this argument. By definition,

C [ f quad (•, •), ∆](v, w)= ∆(vw)+w∆v + v∆w.
The assertion follows by the product rule of the Laplacian

∆(vw)=v∆w + 2∇v • ∇w + w∆v.
We now aim to capture the oscillatory integral in (4.3.1) in a way that does not trigger dependency on c in the error terms and allows a low regularity approximation. The technique is captured in the following lemma.

Lemma 4.3.2 (First order approximation of the integral in (4.3.1)). It holds that

Z τ 0 e isch∇i c |e i 1 2 s∆ v| 2 ds = τvϕ 1 (iτ(∆ c 2 ))v + O ⇣ τ 2 (C [ f quad (•, •), ∆](v, v)+c 2α ∆ 1+α v) ⌘ .
Proof. We introduce the following filtered function defined by

N (s, s 1 , ∆, v) := e i 1 2 s 1 ∆ ⇣ e i 1 2 s 1 ∆ e is∆ v ⌘⇣ e i 1 2 s 1 ∆ v ⌘ . (4.3.4)
This function captures the nonlinear frequency interactions and, as we will see, its derivatives with respect to s 1 have a particular commutator structure that will be the key of low regularity approximation.

The then integral reads

Z τ 0 e isch∇i c |e i 1 2 s∆ v| 2 ds = Z τ 0 e isch∇i c e i 1 2 s∆ N (s, s, ∆, v)ds.
At this point one needs to first tackle the interactions between the differential operators ch∇i c and 1 2 ∆. Note that, as it can be shown via fractional Taylor series expansion of the function x ! c 2 p c 2 + x 2 , it holds

ch∇i c = c 2 1 2 ∆ + O ⇣ ∆ 1+α c 2α ⌘ , 0  α  1, (4.3.5)
and thus,

Z τ 0 e isch∇i c e i 1 2 s∆ N (s, s, ∆, v)ds = Z τ 0 e isc 2 N (s, s, ∆, v)ds+ R 1 (v),
where R 1 (v)=τ 2 c 2α R1 (v) and, using (4.3.5), we see that R1 (•) is a bounded operator from H r+2(α+1) to H r .

From this point forward, for the sake of clarity of presentation, we will abuse the notation and, in turn, express this point as follows

kR 1 k r  τ 2 c 2α K, 0  α  1, (4.3.6) 
for some K = K(kvk r+2(1+α) ) > 0 independent of c.

On the other hand, Taylor series expansion gives the following approximation

N (s, s, ∆, v)=N (s, 0, ∆, v)+ Z s 0 ∂ s 1 N (s, s 1 , ∆, v)ds 1 .
Thus, plugging in this expansion and then integrating exactly we obtain

Z τ 0 e isch∇i c e i 1 2 s∆ N (s, s, ∆, v)ds = Z τ 0 e isc 2 N (s, 0, ∆, v)ds+ R 1 + R 2 = Z τ 0 e isc 2 ⇣ e is∆ v ⌘ vds + R 1 + R 2 = τvϕ 1 (iτ(∆ c 2 ))v + R 1 + R 2 ,
where R 2 can be bounded as follows. By Lemma 3.3.1 and the remark

∂ s 1 N (s, s 1 , ∆, v) |s 1 =s = e i 1 2 s 1 ∆ C [ f quad (•, •), i 1 2 ∆](e i 1 2 s∆ e is∆ v, e i 1 2 s∆ v).
it holds

kR 2 k r  Z τ 0 e isch∇i c e i 1 2 s∆ Z s 0 ∂ s 1 N (s, s 1 , ∆, v)ds 1 ! ds r  τ 2 K, for some K = K ⇣ C [ f quad (•, •), i 1 2 ∆](v, v) ⌘ > 0 independent of c.
The expansion (4.3.1) together with Lemma 4.3.2 lead to the following first order uniformly accurate integrator

u n+1 = e iτch∇i c u n iτch∇i 1 c e iτch∇i c ψ n ϕ 1 (iτ(∆ c 2 ))ψ n . (4.3.7)
Finally, given u n+1 by (4.3.7), one can very easily find z n+1 ,v i a( 4.2.2),

z n+1 = 1 2 ⇣ u n+1 + u n+1
⌘ .

Now we proceed as follows for ψ n+1 .D u h a m e l ' sf o r m u l af o r( 4.2.4)r e a d s

ψ(t n + τ)=e i 1 2 τ∆ ψ(t n )+i 1 2 e i 1 2 τ∆ Z τ 0 e i 1 2 s∆ ψ(t n + s) ⇣ u(t n + s)+u(t n + s) ⌘ ds.
Iterating Duhamel's formula for (4.2.3)a n d( 4.2.4)r e s p e c t i v e l yl e a d st o

ψ(t n + τ)=e i 1 2 τ∆ ψ(t n )+ i 2 e i 1 2 τ∆ Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ ψ(t n ) ⌘⇣ e isch∇i c u(t n )+e isch∇i c u(t n ) ⌘ ds+ R 3 , (4.3.8) 
where R 3 fulfills the bound

kR 3 k r kR 3,1 k r + kR 3,2 k r , with R 3,1 = i 2 e i 1 2 τ∆ Z τ 0 e i 1 2 s∆ I ψ (s) ⇣ e isch∇i c u(t n )+e isch∇i c u(t n ) ⌘ ds,
with I ψ given by (4.3.3)a n d

R 3,2 = i 2 e i 1 2 τ∆ Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ ψ(t n ) ⌘⇣ I u (s)+I u (s) ⌘ ds, I u (s)=ich∇i 1 c e isch∇i c Z s 0 e iσ ch∇i c |ψ(t n + σ )| 2 dσ . (4.3.9)
Thus, we conclude by Lemma 3.3.1 that

kR 3 k r  τ 2 K, (4.3.10) for some K = K ⇣ sup t n tt n+1 ku(t)k r , sup t n tt n+1 kψ(t)k r ⌘ > 0 independent of c.
It is left to approximate the highly oscillatory integral in (4.3.8) and to this end we proceed analogously as in Lemma 4.3.2.

Lemma 4.3.3 (First order approximation of the integral in (4.3.8)). It holds that

Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ v ⌘⇣ e isch∇i c w + e isch∇i c w ⌘ ds = τv ⇣ ϕ 1 (iτ(ch∇i c 1 2 ∆))w + ϕ 1 ( iτ(ch∇i c + 1 2 ∆))w ⌘ + O(τ 2 C [ f quad (•, •), i∆](v, w)).
Proof. We define the following filtered functions

N (s, s 1 , ∆, v, w)=e i 1 2 s 1 ∆ ⇣ e i 1 2 s 1 ∆ v)(e i 1 2 s 1 ∆ e i 1 2 s∆ (e isch∇i c w + e isch∇i c w) ⌘ .
Taylor series expansion around the point s 1 = 0 yields the following first order approximation

Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ v ⌘⇣ e isch∇i c w + e isch∇i c w ⌘ ds = Z τ 0 N (s, s, ∆, v, w)ds = Z τ 0 N (s, 0, ∆, v, w)ds+ R = τv ⇣ ϕ 1 (iτ(ch∇i c 1 2 ∆))w + ϕ 1 ( iτ(ch∇i c + 1 2 ∆))w ⌘ + R.
Once again we find a bound for R thanks to the observation

∂ s 1 N (s, s 1 , ∆, v, w)=e i 1 2 s 1 ∆ C [ f quad (•, •), i 1 2 ∆](e i 1 2 s 1 ∆ v, e i 1 2 s 1 ∆ (e is 1 ch∇i c w + e is 1 ch∇i c w)), thus kRk r  τ 2 K,

Global error

Theorem 4.3.6. Fix r > d 2 and assume that the solution (u, ψ) of (4.2.3)-(4.2.4)

satisfies u 2 C ([0, T ], H r+1 ), ψ 2 C ([0, T ], H r+2(1+α) ), 0  α  1.
T h e nt h e r ee x i s t saτ 0 > 0 such that for all 0 < τ  τ 0 the following estimate holds for (u n , ψ n ) defined in (4.3.7) and (4.3.11)

ku(t n ) u n k r + kψ(t n ) ψ n k r  τK 1 ⇣ sup t n tt n+1 ku(t)k r+1 , sup t n tt n+1 kψ(t)k r+1 ⌘ +τc 2α K 2 ⇣ sup t n tt n+1 kψ(t)k r+2(1+α) ⌘ ,
where, in particular, K 1 and K 2 can be chosen independently of c.

Proof. The proof follows by means of a Lady Windermere's fan argument (see appendix), after plugging in the results obtained in Lemmata 4.3.4 and 4.3.5.

Remark. We note that, in the fully discrete setting, after having fixed a spatial discretization with mesh size N x , for the discrete Sobolev norm we have

kψk 2 N x ,r+2+2α = Nx 2 ∑ k= Nx 2 +1 (1 + |k|) 2(r+2+2α) | ψk | 2  1 + N x 2 ! 2(2+2α) Nx 2 ∑ k= Nx 2 +1 (1 + |k|) 2r | ψk | 2 = 1 + N x 2 ! 2(2+2α) kψk 2 N x ,r .
This means that in the non-relativistic regime, if the highest Fourier frequency fulfills N x 2 ⌧ c 2α , then the second term in the global error estimate presented above becomes negligible, as the contribution of the higher Sobolev norm is nearly cancelled by the very small parameter c 2α . In this case the error constant is then lead by the H r+1 norm of the solution, thus allowing for lower regularity assumptions than in pre-exisiting methods in practice.

As e c o n do r d e ri n t e g r a t o r

We dedicate this section to the derivation of a second order counterpart of the uniformly accurate low regularity integrator we have obtained in the previous section. Iterating Duhamel's formula for (4.2.4)y i e l d s

u(t n + τ)=e iτch∇i c u(t n ) ich∇i 1 c e iτch∇i c Z τ 0 e isch∇i c |e is 1 2 ∆ ψ(t n )| 2 ds ich∇i 1 c e iτch∇i c Z τ 0 e isch∇i c ⇣ e is 1 2 ∆ ψ(t n ) ⌘ I ψ (s)ds ich∇i 1 c e iτch∇i c Z τ 0 e isch∇i c ⇣ e is 1 2 ∆ ψ(t n ) ⌘ I ψ (s)ds+ R 0 3 , (4.4.1) 
where, if we once again iterate Duhamel's formula, we obtain

I ψ (s)=i 1 2 e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ ψ(t n + σ ) ⇣ u(t n + σ )+u(t n + σ ) ⌘ dσ = i 1 2 e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ ⇣ e i 1 2 σ ∆ ψ(t n ) ⌘⇣ e iσ ch∇i c u(t n )+e iσ ch∇i c u(t n ) ⌘ dσ + R 00 3 = Ĩψ (s)+R 00 3 . (4.4.2)
For the remainder terms R 0 3 and R 00 3 ,u s i n gL e m m a3.3.1,w efi n dt h a t

kR 0 3 k r  ich∇i 1 c Z τ 0 e isch∇i c |I ψ (s)| 2 ds r  τ 3 K, (4.4.3) for some K = K ⇣ sup 0ξ τ ku(t n + ξ )k r , sup 0ξ τ kψ(t n + ξ )k r
⌘ > 0 independent of c and, similarly,

kR 00 3 k r  e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ I ψ (σ ) ⇣ e iσ ch∇i c u(t n )+e iσ ch∇i c u(t n ) ⌘ dσ r + e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ ⇣ e i 1 2 σ ∆ ψ(t n ) ⌘⇣ I u (σ )+I u (σ ) ⌘ dσ r + e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ I ψ (σ ) ⇣ I u (σ )+I u (σ ) ⌘ dσ r  s 2 K, (4.4.4) 
for some K = K ⇣ sup 0ξ τ ku(t n + ξ )k r , sup 0ξ τ kψ(t n + ξ )k r ⌘ > 0 independent of c,a n dw h e r eI u is given in (4.3.9). Now, after these considerations, the expansion given in (4.4.1)r e a d s

u(t n + τ)=e iτch∇i c u(t n ) ich∇i 1 c e iτch∇i c I u (u(t n ), ψ(t n )) + R 3 , (4.4.5) 
where

I u (u(t n ), ψ(t n )) = Z τ 0 e isch∇i c |e i 1 2 s∆ ψ(t n )| 2 ds (4.4.6) + Z τ 0 e isch∇i c ⇣ e i 1 2 s∆ ψ(t n ) ⌘ Ĩψ (s)ds (4.4.7) + Z τ 0 e isch∇i c ⇣ e i 1 2 s∆ ψ(t n ) ⌘ Ĩψ (s)ds, (4.4.8) 
recall the definition of Ĩψ is given in (4.4.2). Using (4.4.3)a n d( 4.4.4), we see that

kR 3 k r  τ 3 K, (4.4.9) for some K = K ⇣ sup 0ξ τ ku(t n + ξ )k r , sup 0ξ τ kψ(t n + ξ )k r ⌘ > 0 chosen independently of c.
Prior to treating the three highly oscillatory integrals separately, we recall the definition (1.2.6) of the function

Ψ 2 (ξ ).
Lemma 4.4.1 (Second order approximation of the integral (4.4.6)). For 0  α  1 it holds that

I 1 (w, v)= Z τ 0 e isch∇i c |e i 1 2 s∆ v| 2 ds = τ h vϕ 1 (iτ(∆ c 2 ))v + e i 1 2 τ∆ ⇣ e i 1 2 τ∆ Ψ 2 (iτ(∆ c 2 ))v ⌘⇣ e i 1 2 τ∆ v ⌘ vΨ 2 (iτ(∆ c 2 ))v i iτ 2 ϕ 1 (iτ(ch∇i c c 2 + 1 2 ∆))(ch∇i c c 2 + 1 2 ∆) ⇣ vΨ 2 (iτ(ch∇i c c 2 + 1 2 ∆))v ⌘ + O ⇣ τ 3 (C 2 [ f quad (•, •), i∆](v, v)+c 4α ∆ 2+2α C [ f quad (•, •), i∆](v, v) ⌘ = Ĩ1 (w, v)+O ⇣ τ 3 (C 2 [ f quad (•, •), i∆](v, v)+c 4α ∆ 2+2α C [ f quad (•, •), i∆](v, v) ⌘ .
Proof. For N defined in (4.3.4)w es e et h a t

I 1 (v)= Z τ 0 e isch∇i c e i 1 2 s∆ N (s, s, ∆, v)ds = Z τ 0 e isc 2 e i 1 2 s(ch∇i c c 2 + 1 2 ∆) N (s, s, ∆, v)ds = Z τ 0 e isc 2 (1 is(ch∇i c c 2 + 1 2 ∆))N (s, s, ∆, v)ds+ R 1 = Z τ 0 e isc 2 N (s, s, ∆, v)ds Z τ 0 e isc 2 is(ch∇i c c 2 + 1 2 ∆)N (s, s, ∆, v)ds+ R 1 , (4.4.10) 
where, by (4.3.6), it holds

kR 1 k r  τ 3 K, for some K = K ⇣ c 4α ∆ 2+2α |v| 2 ⌘ > 0.
We tackle the first integral in (4.4.10). A second order expansion of N reads

N (s, s, ∆, v)=N (s, 0, ∆, v)+s∂ s 1 N (s, s 1 , ∆, v) s 1 =0 + Z s 0 Z σ 0 ∂ 2 s 1 N (s, s 1 , ∆, v) ds 1 dσ , where ∂ 2 s 1 N (s, s 1 , ∆, v) obeys ∂ 2 s 1 N (s, s 1 , ∆, v)=e i 1 2 s 1 ∆ C 2 [ f quad (•, •), i 1 2 ∆](e i 1 2 s 1 ∆ e is∆ v, e i 1 2 s 1 ∆ v),
recall the notation

C 2 [ f quad (•, •), i 1 2 ∆](v, w)=C [C [ f quad (•, •), i 1 2 ∆], i 1 2 ∆](v, w).
In order to guarantee the stability of this scheme, we employ a finite difference approximation of

∂ s 1 N (s, 0, ∆, v), namely, for 0  τ  s, ∂ s 1 N (s, 0, ∆, v)= N (s, τ, ∆, v) N (s, 0, ∆, v) τ + O(τ∂ 2 s 1 N (s, s 1 , ∆, v)).
With this in mind and using definition (1.2.6), we see that (4.4.10)r e a d s

Z τ 0 e isc 2 N (s, s, ∆, v)ds = Z τ 0 e isc 2 N (s, 0, ∆, v)+ s τ ⇣ N (s, τ, ∆, v) N (s, 0, ∆, v) ⌘ ! ds+ R 1 + R 2 = τ h vϕ 1 (iτ(∆ c 2 ))v + e i 1 2 τ∆ ⇣ e i 1 2 τ∆ Ψ 2 (iτ(∆ c 2 ))v ⌘⇣ e i 1 2 τ∆ v ⌘ vΨ 2 (iτ(∆ c 2 ))v i + R 1 + R 2 , (4.4.11)
where R 2 satisfies

kR 2 k r  τ 3 K, for some K = K ⇣ C 2 [ f quad (•, •), i∆](v, v) ⌘ > 0.
As for the second integral in (4.4.10), we note that it suffices to carry out a Taylor expansion up to first order in s. We obtain

Z τ 0 e isc 2 is(ch∇i c c 2 + 1 2 ∆)N (s, s, ∆, v)ds = Z τ 0 e isc 2 is(ch∇i c c 2 + 1 2 ∆)N (s, 0, ∆, v)ds+ R 3 = iτ 2 (ch∇i c c 2 + 1 2 ∆) ⇣ vΨ 2 (iτ(ch∇i c c 2 + 1 2 ∆))v ⌘ + R 3 = iτ 2 ϕ 1 (iτ(ch∇i c c 2 + 1 2 ∆))(ch∇i c c 2 + 1 2 ∆) ⇣ vΨ 2 (iτ(ch∇i c c 2 + 1 2 ∆))v ⌘ + R 3 + R 4 (4.4.12)
where, given (4.3.6) and the above first order Taylor expansion of N(s, s, ∆, v), R 3 satisfies

kR 3 k r  τ 3 K, for some K = K ⇣ c 2α ∆ 1+α C [ f quad (•, •), i∆](v, v) ⌘ > 0.
We note that in the last step of (4.4.12)wehaveintroduced the factor ϕ 1 (iτ(ch∇i c c 2 + 1 2 ∆)) in order to ensure stability and, by (1.2.5), (4.3.6) and the estimate obtained for R 3 , R 4 satisfies

kR 4 k r  τ 3 K, for some K = K ⇣ c 4α ∆ 2+2α C [ f quad (•, •), i∆](v, v) ⌘ > 0.U s i n g( 4.
4.11)and(4.4.12) we achieve the desired second order approximation of (4.4.10).

Lemma 4.4.2 (Second order approximation of the integral (4.4.7)). For 0  α  1 it holds that

I 2 (w, v)= Z τ 0 e isch∇i c ⇣ e i 1 2 s∆ v ⌘ Ĩψ (s)ds = τ 2c 2 v h (ϕ 1 (it(∆ + 2c 2 )) ϕ 1 (it(∆ + c 2 )))vw (ϕ 1 (it∆) ϕ 1 (it(∆ + c 2 )))vw i + O ⇣ τ 3 (C [ f quad (•, •), i∆](v, w)+∆w + c 2α ∆ 1+α (vw)) ⌘ = Ĩ2 (w, v)+O ⇣ τ 3 (C [ f quad (•, •), i∆](v, w)+∆w + c 2α ∆ 1+α (vw)) ⌘ .
Proof. Applying the result found in (4.3.11)w i t h i n Ĩψ (s),w efi n dt h a t

I 2 (w, v)= Z τ 0 e isch∇i c ⇣ e i 1 2 s∆ v ⌘ Ĩψ (s)ds = i 1 2 Z τ 0 e isch∇i c ⇣ e i 1 2 s∆ v ⌘⇣ se i 1 2 s∆ v(ϕ 1 (is(ch∇i c 1 2 ∆))w + ϕ 1 ( is(ch∇i c + 1 2 ∆))w) ⌘ ds + R 1 ,
where, by Lemma 4.3.3 and Lemma 3.3.1, it holds for R 1 that

kR 1 k r  τ 3 K, ⇣ C [ f quad (•, •), i 1 2 ∆](v, w) ⌘ > 0.
Note that, by (4.3.6) it holds formally that

sϕ 1 (is(ch∇i c 1 2 ∆)) = Z s 0 e iσ (ch∇i c 1 2 ∆) dσ = sϕ 1 (isc 2 )+s 2 O(∆ + c 2α ∆ 1+α ).
(4.4.13) Thus,

I 2 (w, v)=i 1 2 Z τ 0 e isch∇i c ⇣ e i 1 2 s∆ v ⌘⇣ se i 1 2 s∆ v(ϕ 1 (isc 2 )w + ϕ 1 ( isc 2 )w) ⌘ ds+ R 1 + R 2 ,
and, by (4.4.13), R 2 fulfills the bound

kR 2 k r  τ 3 K, for some K = K(v(∆ + c 2α ∆ 1+α )w) > 0.W en o wl e t N (s, s 1 , v, w)=e i 1 2 s 1 ∆ ⇣ e i 1 2 s 1 ∆ v ⌘⇣ e is∆ e i 1 2 s 1 ∆ v(ϕ 1 (isc 2 )w + ϕ 1 ( isc 2 )w) ⌘ ,
and the assertion is obtained following the same line of argumentation as in Lemma 4.4.1. obtaining

I 2 (w, v)=i 1 2 Z τ 0 e is(ch∇i c + 1 2 ∆) N (s, s, v, w)ds+ R 1 + R 2 = i 1 2 Z τ 0 se isc 2 N (s, s, v, w)ds+ R 1 + R 2 + R 3 , with kR 3 k r  t 3 K ⇣ c 2α ∆ 1+α (vw)
⌘ , by (4.3.6). Now, it suffices to carry out Taylor series expansion of N (s, s 1 , v, w) up to order one, which yields

I 2 (w, v)=i 1 2 Z τ 0 se isc 2 N (s, 0, v, w)ds+ R 1 + R 2 + R 3 + R 4 = i 1 2 Z τ 0 se isc 2 v ⇣ e is∆ v(ϕ 1 (isc 2 )w + ϕ 1 ( isc 2 )w) ⌘ ds+ R 1 + R 2 + R 3 + R 4 = τ 2c 2 v h (ϕ 1 (iτ(∆ + 2c 2 )) ϕ 1 (iτ(∆ + c 2 )))vw (ϕ 1 (iτ∆) ϕ 1 (iτ(∆ + c 2 )))vw i + R 1 + R 2 + R 3 + R 4 ,
where

kR 4 k r  t 3 K ⇣ C [ f quad (•, •), i 1 2 ∆](v, w) ⌘ .
As for the third integral, following analogous steps as the ones that lead to the approximation of (4.4.7), we obtain the following second order approximation of (4.4.8)f o r0  α  1

I 3 (w, v)= Z τ 0 e isch∇i c ⇣ e i 1 2 s∆ v ⌘ i 1 2 e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ ⇣ e i 1 2 σ ∆ v ⌘⇣ e iσ ch∇i c w + e iσ ch∇i c w ⌘ dσ ! ds = τ 2c 2 h vw(ϕ 1 (iτ∆) ϕ 1 (iτ(∆ c 2 )))v + vw(ϕ 1 (iτ(∆ 2c 2 )) ϕ 1 (iτ(∆ c 2 )))v i + O ⇣ τ 3 (C [ f quad (•, •), i∆](v, w)+∆w + c 2α ∆ 1+α (vw)) ⌘ = Ĩ3 (w, v)+O ⇣ τ 3 (C [ f quad (•, •), i∆](v, w)+∆w + c 2α ∆ 1+α (vw))
⌘ . Corollary 4.4.3. For 0  α  1 it holds that

I u (w, v)= Ĩ1 (w, v)+ Ĩ2 (w, v)+ Ĩ3 (w, v)+O(τ 3 (∆w)(∆v)) = Ĩu (w, v)+O ⇣ τ 3 ((∆w)(∆v)+c 2α ∆ 1+α (vw)+c 4α ∆ 2+2α ∂ x v) ⌘ ,
Finally, Corollary 4.4.3 leads to the following second order approximation based on (4.4.5):

u n+1 = e iτch∇i c u n ich∇i 1 c e iτch∇i c Ĩu (u n , ψ n ). (4.4.15) 
We may now consider Duhamel's formula for (4.2.4), where we iterate Duhamel's formula for (4.2.3)a n d (4.2.4)r e s p e c t i v e l y .

ψ(t n + τ)=e i 1 2 τ∆ ψ(t n )+i 1 2 e i 1 2 τ∆ I ψ (u(t n ), ψ(t n )) + R 4 ,
where R 4 fulfills

kR 4 k r  Z τ 0 e i 1 2 s∆ I ψ (s)(I u (s)+I u (s))ds r  τ 3 K, (4.4.16) 
for some K = K ⇣ sup 0ξ τ ku(t n + ξ )k r , sup 0ξ τ kψ(t n + ξ )k r ⌘ > 0, and the integral I ψ reads

I ψ (w, v)= Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ ψ(t n ) ⌘⇣ e isch∇i c u(t n )+e isch∇i c u(t n ) ⌘ ds (4.4.17) + Z τ 0 e i 1 2 s∆ I ψ (s) ⇣ e isch∇i c u(t n )+e isch∇i c u(t n ) ⌘ ds (4.4.18) + Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ ψ(t n ) ⌘ (I u (s)+I u (s))ds. (4.4.19)
Recall that I u is given by (4.3.9)a n dI ψ by (4.3.3). We may now tackle the three highly oscillatory integrals separately.

Lemma 4.4.4 (Second order approximation of the integral (4.4.17)). It holds

J 1 (w, v)= Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ v ⌘⇣ e isch∇i c w + e isch∇i c w ⌘ ds = τ h vϕ 1 (iτ(ch∇i c 1 2 ∆))w + vϕ 1 ( iτ(ch∇i c + 1 2 ∆))w + e i 1 2 τ∆ ⇣ e i 1 2 τ∆ v ⌘h e i 1 2 τ∆ Ψ 2 (iτ(ch∇i c 1 2 ∆))w + e i 1 2 τ∆ Ψ 2 ( iτ(ch∇i c + 1 2 ∆))w i vΨ 2 (iτ(ch∇i c 1 2 ∆))w vΨ 2 ( iτ(ch∇i c + 1 2 ∆))w i + O(τ 3 C 2 [ f quad (•, •), i 1 2 ∆](v, w)) = J1 (w, v)+O(τ 3 C 2 [ f quad (•, •), i 1 2 ∆](v, w)).
Proof. We define the following filter functions:

N (s, s 1 , v, w)=e i 1 2 s 1 ∆ ⇣ e i 1 2 s 1 ∆ v ⌘⇣ e i 1 2 s 1 ∆ e i 1 2 s∆ [e isch∇i c w + e isch∇i c w] ⌘ .
Now, via a second order expansion of these two filter functions and a finite difference approximation of their first derivative with respect to s 1 , we obtain the assertion.

As for the integral (4.4.18), iterating Duhamel's formula yields

J 2 (u(t n ), ψ(t n )) = Z τ 0 e i 1 2 s∆ i 2 e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ ⇣ e i 1 2 σ ∆ ψ(t n ) ⌘⇣ e iσ ch∇i c u(t n ) ⌘ dσ ! ⇣ e isch∇i c u(t n ) ⌘ ds + Z τ 0 e i 1 2 s∆ i 2 e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ ⇣ e i 1 2 σ ∆ ψ(t n ) ⌘⇣ e iσ ch∇i c u(t n ) ⌘ dσ ! ⇣ e isch∇i c u(t n ) ⌘ ds + Z τ 0 e i 1 2 s∆ i 2 e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ ⇣ e i 1 2 σ ∆ ψ(t n ) ⌘⇣ e iσ ch∇i c u(t n ) ⌘ dσ ! ⇣ e isch∇i c u(t n ) ⌘ ds + Z τ 0 e i 1 2 s∆ i 2 e i 1 2 s∆ Z s 0 e i 1 2 σ ∆ ⇣ e i 1 2 σ ∆ ψ(t n ) ⌘⇣ e iσ ch∇i c u(t n ) ⌘ dσ ! ⇣ e isch∇i c u(t n ) ⌘ ds + R 0 4 = J 2,1 (u(t n ), ψ(t n )) + J 2,2 (u(t n ), ψ(t n )) + J 2,3 (u(t n ), ψ(t n )) + J 2,4 (u(t n ), ψ(t n )) + R 0 4 , where R 0 4 fulfills kR 0 4 k r  τ 3 K, (4.4.20) for some K = K ⇣ sup 0ξ τ ku(t n + ξ )k r , sup 0ξ τ kψ(t n + ξ )k r ⌘ > 0 independent of c.
We now handle the first term in J 2 in detail and the remaining three terms can be handled analogously.

Lemma 4.4.5 (Second order approximation of the integral (4.4.21)). For 0  α  1 it holds that

J 2,1 (w, v)= τ 2c 2 h vw ⇣ ϕ 1 (iτ(c 2 + ch∇i c 1 2 ∆)) ϕ 1 (iτ(ch∇i c 1 2 ∆)) ⌘ w i + O(τ 3 (∆(vw)+c 2α ∆ 1+α (vw))) = J2,1 (w, v)+O(τ 3 (∆(vw)+c 2α ∆ 1+α (vw))).
Proof. Proceeding as in the derivation of (4.3.11)a n du s i n g( 4.4.13), we obtain

J 2,1 (w, v)= i 2 Z τ 0 sϕ 1 (isc 2 )e i 1 2 s∆ ⇣ e i 1 2 s∆ vw ⌘⇣ e isch∇i c w ⌘ ds+ R, (4.4.21)
where R fulfills kRk r  τ 3 K,

for some K = K ⇣ ∆(vw)+c 2α ∆ 1+α (vw) ⌘ > 0.
Finally, the assertion follows with the definition of the filtered function

N (s, s 1 , v, w)=e i 1 2 s 1 ∆ ⇣ e i 1 2 s 1 ∆ vw ⌘⇣ e i 1 2 s 1 ∆ e i 1 2 s∆ e isch∇i c w ⌘ ,
via a Taylor expansion up to order one.

Analogously, we obtain that, for 0  α  1,

J 2,2 (w, v)= τ 2c 2 h vw ⇣ ϕ 1 (iτ(c 2 ch∇i c 1 2 ∆)) ϕ 1 ( iτ(ch∇i c + 1 2 ∆)) ⌘ w i + O(τ 3 (∆(vw)+c 2α ∆ 1+α (vw))) = J2,2 (w, v)+O(τ 3 (∆(vw)+c 2α ∆ 1+α (vw))), (4.4.22) J 2,3 (w, v)= τ 2c 2 h vw ⇣ ϕ 1 (iτ( c 2 + ch∇i c 1 2 ∆)) ϕ 1 (iτ(ch∇i c 1 2 ∆)) ⌘ w i + O(τ 3 (C [ f quad (•, •), i 1 2 ∆](v, w)+c 2α ∆ 1+α (vw))) = J2,3 (w, v)+O(τ 3 (C [ f quad (•, •), i 1 2 ∆](v, w)+c 2α ∆ 1+α (vw))) (4.4.23) and J 2,4 (w, v)= τ 2c 2 h vw ⇣ ϕ 1 ( iτ(c 2 + ch∇i c + 1 2 ∆)) ϕ 1 ( iτ(ch∇i c + 1 2 ∆)) ⌘ w i + O(τ 3 (C [ f quad (•, •), i 1 2 ∆](v, w)+c 2α ∆ 1+α (vw))) = J2,4 (w, v)+O(τ 3 (C [ f quad (•, •), i 1 2 ∆](v, w)+c 2α ∆ 1+α (vw))).
(4.4.24)

Finally, we may approximate the last integral (4.4.19) as follows. We iterate Duhamel's formula, obtaining

J 3 (u(t n ), ψ(t n )) = Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ ψ(t n ) ⌘ ich∇i 1 c e isch∇i c Z s 0 e iσ ch∇i c |e i 1 2 σ ∆ ψ(t n )| 2 dσ ! ds + Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ ψ(t n ) ⌘ ich∇i 1 c e isch∇i c Z s 0 e iσ ch∇i c |e i 1 2 σ ∆ ψ(t n )| 2 dσ ! ds+ R 00 4 = J 3,1 (u(t n ), ψ(t n )) + J 3,2 (u(t n ), ψ(t n )) + R 00 4 ,
where R 00 4 fulfills kR 00 4 k r  τ 3 K, (4.4.25)

for some K = K ⇣ sup 0ξ τ ku(t n + ξ )k r , sup 0ξ τ kψ(t n + ξ )k r ⌘ > 0 independent of c.
Lemma 4.4.6. For 0  α  1 it holds that

J 3,1 (w, v)= τ c 2 h v ⇣ ϕ 1 (iτ(ch∇i c c 2 1 2 ∆)) ϕ 1 (iτ(ch∇i c 1 2 ∆)) ⌘ ch∇i 1 c |v| 2 i + O(τ 3 w∆v) = J3,1 (w, v)+O(τ 3 (∆v + c 2α ∆ 1+α v)).
(4.4.26)

Proof. As for the first term, proceeding as in the derivation of (4.3.7) and arguing similarly as in (4.4.13), we obtain

J 3,1 (w, v)= Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ v ⌘⇣ isch∇i 1 c e isch∇i c vϕ 1 ( is(c 2 + ∆))v ⌘ ds+ R 1 = Z τ 0 e i 1 2 s∆ ⇣ e i 1 2 s∆ v ⌘⇣ isch∇i 1 c e isch∇i c vϕ 1 ( isc 2 )v ⌘ ds+ R 1 + R 2 , with kR 1 k r  τ 3 K ⇣ C [ f quad (•, •), ∆](v, v)+c 2α ∆ 1+α v ⌘ ,
by Lemma 4.3.2 and

kR 2 k r  τ 3 K,
for some K = K(∆v) > 0,b y( 4.3.6). We define

N (s, s 1 , v)=e i 1 2 s 1 ∆ ⇣ e i 1 2 s 1 ∆ v ⌘⇣ e i 1 2 s 1 ∆ e i 1 2 s∆ e isch∇i c v
⌘ and obtain the assertion similarly as in Lemma (4.4.5), via a first order Taylor expansion of N (s, s 1 , v) at s 1 = 0.

Analogously we obtain the second term

J 3,2 (w, v)= τ c 2 h v ⇣ ϕ 1 (iτ( ch∇i c + c 2 1 2 ∆)) ϕ 1 ( iτ(ch∇i c + 1 2 ∆)) ⌘ ch∇i 1 c |v| 2 i + O(τ 3 w∆v)
= J3,2 (w, v)+O(τ 3 w∆v). Corollary 4.4.7. For 0  α  1 it holds that

I ψ (w, v)= J1 (w, v)+ J2,1 (w, v)+ J2,2 (w, v)+ J2,3 (w, v)+ J2,4 (w, v)+ J3,1 (w, v)+ J3,2 (w, v) + O(τ 3 (∆wv + c 2α ∆ 1+α vw)) = Ĩψ (w, v)+O(τ 3 (∆wv + c 2α ∆ 1+α vw)).
These considerations collected in Corollary 4.4.7 lead to the second order uniformly accurate low regularity integrator:

ψ n+1 = e i 1 2 τ∆ ψ n + i 2 e i 1 2 τ∆ Ĩψ (u n , ψ n ).
(4.4.28)

In the sections that follow we aim to carry out the error analysis of the scheme in (u n , ψ n ) given by (4.4.15) and (4.4.28). We recall that we denote by ϕ t K , ϕ t S the exact flows of (4.2.3)a n d( 4.2.4)r e s p e c t i v e l ya n dw el e t Φt K , Φt S be the numerical flows corresponding to (4.4.15)and(4.4.28) respectively, such that in particular it holds

u n+1 = Φτ K (u n , ψ n ), ψ n+1 = Φτ S (u n , ψ n ).

Local error analysis

Lemma 4.4.8. Fix r > d 2 . The local error given by the di↵erences

ϕ τ K (u(t n ), ψ(t n )) Φτ K (u(t n ), ψ(t n )) and ϕ τ S (u(t n ), ψ(t n )) Φτ S (u(t n ), ψ(t n )) satisfies ϕ τ K (u(t n ), ψ(t n )) Φτ K (u(t n ), ψ(t n )) = O ⇣ τ 3 (∆u(t n )ψ(t n )+c 2α ∆ 1+α u(t n )ψ(t n )+c 4α ∆ 2+2α ∂ x ψ(t n )) ⌘ and ϕ τ S (u(t n ), ψ(t n )) Φτ S (u(t n ), ψ(t n )) = O ⇣ τ 3 (∆u(t n )ψ(t n )+c 2α ∆ 1+α u(t n )ψ(t n )) ⌘ ,
where 0  α  1.

Proof. 

v i , w i 2 H r , i 2{1, 2} that k Φτ K (v 1 , w 1 ) Φτ K (v 2 , w 2 )k r kv 1 v 2 k r + τM 1 (kv 1 v 2 k r + kw 1 w 2 k r ), k Φτ S (v 1 , w 1 ) Φτ S (v 2 , w 2 )k r kw 1 w 2 k r + τM 2 (kv 1 v 2 k r + kw 1 w 2 k r ),
where M 1 and M 2 can be chosen independently of c.

Proof. This claim follows by Lemma 3.3.1 and Corollary 1.2.3.

Global error

Theorem 4.4.10. Fix r > d 2 and assume that the solution (u, ψ) of (4.2.3)-(4.2.4) satisfies u 2 C ([0, T ], H r+2+2α ) and ψ 2 C ([0, T ], H r+5+4α ), 0  α  1.T h e nt h e r ee x i s t saτ 0 > 0 such that for all 0 < τ  τ 0 the following estimate holds for (u n , ψ n ) defined in (4.4.15) and (4.4.28)

ku(t n ) u n k r  τ 2 K 1 ⇣ sup t n tt n+1 ku(t)k r+2 , sup t n tt n+1 kψ(t)k r+2 ⌘ + τ 2 c 2α K 2 ⇣ sup t n tt n+1 ku(t)k r+2α+2 , sup t n tt n+1 kψ(t)k r+2α+2 ⌘ + τ 2 c 4α K 3 ⇣ sup t n tt n+1 kψ(t)k r+4α+5 ⌘ , and 
kψ(t n ) ψ n k r  τ 2 K 4 ⇣ sup t n tt n+1 ku(t)k r+2 , sup t n tt n+1 kψ(t)k r+2 ⌘ + τ 2 c 2α K 5 ⇣ sup t n tt n+1 ku(t)k r+2+2α , sup t n tt n+1 kψ(t)k r+2+2α ⌘
where 0  α  1 and, in particular, K i > 0 (i = 1,...,5), can be chosen independently of c.

Proof. The proof follows by means of a Lady Windermere's fan argument (see appendix), after plugging in the results obtained in Lemmata 4.4.8 and 4.4.9 and using the regularity estimates for the commutator terms obtained in Lemma 4.3.1.

Asymptotic consistency

In this section we show that our novel class of first and second order integrators are asymptotically consistent, meaning that in the limit c ! ∞ we recover the solution of the limit system.

The limit system can be for instance derived via Modulated Fourier Expansion techniques, see for example (CHL08b), (FS14), (HL12), [START_REF] Haier | Geometric Numerical integration: structurepreserving algorithms for ordinary di↵erential equations[END_REF]. We refer to (BKS18) for the details of this derivation.

Indeed, as c ! ∞, for sufficiently smooth initial data, the solution to (4.1.1) admits an expansion of the form

z(t, x)= 1 2 e ic 2 t u ∞ (t, x)+e ic 2 t u ∞ (t, x) ! + O(c 2 )=z ∞ (t, x)+O(c 2 )
where (u ∞ , ψ ∞ ) solve the following free Schrödinger limit system.

∂ t u ∞ (t, x)= i 2 ∆u ∞ (t, x), u ∞ (0)=z(0) ∂ t ψ ∞ = i∆ψ ∞ , ψ ∞ (0)=ψ 0 . (4.5.1)
Note that this is a decoupled linear system, thus it can be solved exactly in time, however we will express its solution in terms of a numerical integration scheme that reads as follows

u n+1 ∞ = e 1 2 iτ∆ u n ∞ , u 0 ∞ = z(0) ic 2 ∂ t z(0), ψ n+1 ∞ = e iτ∆ ψ n ∞ , ψ 0 ∞ = ψ 0 .
(4.5.2)

We then easily recover z n+1 ∞ by

z n+1 ∞ = 1 2 e ic 2 t n+1 u n+1 ∞ + e ic 2 t n+1 u n+1 ∞ ! .

Asymptotic convergence of the first order method

In this section we motivate why the method given by (4.3.7)a n d( 4.3.11) converges towards the solution of the limit system as c ! ∞.

We see that formally it holds

e iτch∇i c = e iτ(c 2 + 1 2 ∆) + O(c 2 ∆ 2 ), (4.5.3)
as Taylor series expansion of the function x 7 ! c p x + c 2 around the point zero shows

ch∇i c f ⇣ c 2 1 2 ∆ ⌘ f r  Kc 2 k f k r+4 , (4.5.4)
for some K > 0 independent of c. Note that this particular asymptotic bound requires additional regularity for u.

It follows by Lemma 3.3.1, the observation

|τϕ 1 (±iτc 2 )| 2 c 2 , (4.5.5)
and by (4.4.13), that for u n given by (4.3.7) it holds

u n+1 = e 1 2 iτ∆ u n + O(c 2 ).
As for ψ n given by (4.3.11), we see by (4.5.5)t h a t

ψ n+1 = e iτ∆ ψ n + O(c 2 ).

Asymptotic convergence of the second order method

Analogously to the previous section, using Lemma 3.3.1,( 4.5.3)a n d( 4.5.5) together with

τΨ 2 (iτc 2 ) r  2 c 2 (4.5.6)
and (4.4.13), we are able to see that indeed Ĩu given in Corollary 4.4.3 fulfills

ich∇i 1 c Ĩu (u n , ψ n )=O(c 2 ),
Note that, by (4.5.4), we also require here H 4 for u.S i m i l a r l y ,w i t h( 4.5.5)a n d( 4.5.6), we obtain that Ĩψ given in Corollary 4.4.7 fulfills

Ĩψ (u n , ψ n )=O(c 2 ).
This implies that the second order method given by (4.4.15)a n d( 4.4.28) also converges to the corresponding solution of the limit system with order c 2 formally.

Numerical Experiments

We dedicate this last section to the numerical verification of our results. We mainly concentrate on the convergence of the first order method in order to illustrate the explicit relation in our error estimates between gain in c 2α , 0  α  1, for large c, and consequent loss in derivative. In particular, we observe uniform accuracy and improvement in convergence for more regular initial data and large c,a sd e p i c t e di nT h e o r e m4.3.6.T h e n we briefly present the convergence results for the second order method, which verify second order convergence and uniform accuracy, as obtained in Theorem 4.4.10. We leave out the experiments for different regularity assumptions in this case for the sake of brevity.

For the spatial discretisation we use a standard Fourier pseudospectral method, choosing M = 200 as the 

INTEGRATORS FOR DISPERSIVE EQUATIONS IN THE LOW WAVE REGIME

This chapter is based on (CCRS22).

Introduction

As a model problem we consider

∂ t u(t, x)+∂ x m L ( p ε∂ x )u(t, x)+ε∂ x m Q ( p ε∂ x )u 2 (t, x)=0 (t, x) 2 R ⇥ T, (5.1.1) 
where u(t, x) 2 R and m L , m Q are smooth symbols satisfying for

ξ 2 R m L (iξ ) 2 R, m L (iξ )=m L ( iξ ), m Q (iξ ) 2 R, m Q (iξ )=m Q ( iξ ), m (4) 
L (iξ )  c L 1 + |ξ | β L , m Q (iξ )  1 1 + |ξ | β Q , m 0 Q (iξ )  1 1 + |ξ | (5.1.2)
for some β L , β Q , c L 0, where we use the notation f (`) (x)= d dx `f (x) for `2 N. The class of equations (5.1.1) includes a large variety of models such as the Benjamin-Bona-Mahony (BBM) equation with P(∂ x )=∂ x (cf.

Section 2)

m L (iξ )=m Q (iξ )= 1 1 + ξ 2 ,
(5.1.3) the Korteweg-de Vries (KdV) equation

m L (iξ )=1 ξ 2 , m Q (iξ )=1 (5.1.4)
and the Whitham equation

m L (iξ )= s tanh(ξ ) ξ , m Q (iξ )=1.
The model (5.1.1) can be rigorously derived in the long wave regime from many physical models including water waves, plasma, etc., see, e.g., (ASL08; CR10; Cra85; GR19; GP14). In particular, rigorous error estimates between the solution of (5.1.1) and the solution of the original model are established on the natural time scale t = O( 1 ε ). In this chapter we introduce a novel class of numerical integrators for (5.1.1) based on the long wave behaviour of the function that defines the dispersion relation iξ 0 @ m L (0) m

(2) L (0) 2 ξ 2 1 A + higher order terms with ξ = p εk, k 2 Z.

(5.1.5)

At first order the long wave limit preserving (LWP) scheme takes the form

u n+1 = e τ∂ x m L ( p ε∂ x ) " u n 1 3α m Q ( p ε∂ x ) ✓ e ταε∂ 3 x ✓ e ταε∂ 3 x ∂ 1 x u n ◆ 2 ✓ ∂ 1 x u n ◆ 2 ◆ # , (5.1.6)
where we have set α = m

(2)

L (0) 2
and assume without loss of generality (see Remark 5.1.1)t h a t û0 (0)= b u n 0 = 0. For v(x)=∑ k2Z vk e ikx we furthermore define the operator ∂ 1

x as follows

∂ 1 x v(x) := ∑ k6 =0 1 
ik vk e ikx . Details on the construction of the LWP scheme (5.1.6) will be given in Section 5.2.1.T h es c h e m e( 5.1.6) (and its second order counterpart, see (5.3.1)) will allow us to reproduce the dynamics of the solution u(t, x) of (5.1.1) up to long wave regimes ε ⌧ 1 on the natural long time scale t = O( 1 ε ). More precisely, at first (σ = 1) and second-order (σ = 2) we will establish the global error estimates

ku(t n ) u n k L 2  τ σ t n ε 2 c 0 e c 1 t n ε on long time scales t n  1 ε , σ = 1, 2,
where c 0 , c 1 depend on certain Sobolev norms of u (depending on β L and β Q ). We refer to Theorem 5.2.6 and Theorem 5.3.4 for the precise error estimates. Note that the time scale t = O( 1 ε ) is also the natural time scale on the continuous level, i.e., for the PDE (5.1.1)i t s e l f . Compared to classical schemes, e.g., splitting or exponential integrator methods, our long wave limit preserving integrators in particular

• allow for approximations on large natural time scales t = O( 1 ε )

• converge with rates at order τ σ ε 2 t.

Surprisingly, we can even achieve convergence of order τε, i.e., a gain in ε, over long times t = 1 ε .T h i sr e s u l ti s new compared to existing literature. For the first time we exploit the advantage of methods based on the iteration of Duhamel's formula on long time scales which were so far restricted to low regularity data on short times (that is T = 1). Surprisingly, we observe an actual gain in powers of ε due to the iteration process: Note that classical schemes, e.g., exponential integrators, based on Taylor series expansion of the solution

u(t)=u(0)+O ⇣ t∂ x m L ( p ε∂ x )u ⌘ + O ⇣ tε∂ x m Q ( p ε∂ x )u 2 ⌘
do not allow a gain in ε as only the nonlinear term scales with ε. Our new schemes, on the other hand, do embed the central oscillations triggered by the linear part ∂ x m L ( p ε∂ x ) on the discrete level. This is achieved by introducing the manipulation

∂ x m L ( p ε∂ x )=m L (0)∂ x + αε∂ 3 x + O c L ε 2 ∂ 5 x 1 +( p ε|∂ x |) β L ! (5.1.7)
and allows us for the first time to handle KdV, BBM and Whitham equation on the natural time scale t = O( 1 ε ). In this manuscript, we introduce essential stability estimates in Lemma 5.2.4 and Lemma 5.2.5 to overcome the loss of derivative on long time scales. In addition, our novel framework allows us to address in a unified way a large class of dispersive equations (5.1.1).

For the analysis of long-time energy conservation for Hamiltonian partial differential equation with the aid of Modulated Fourier Expansion and Birkhoff normal forms we refer to (HLW06; CHL08a; HL01; FG11; FGP10; FGP10) and the references therein. Here, we in contrast prove long time error estimates on the solution itself.

In case of the nonlinear Klein-Gordon equation with weak nonlinearity ε 2 u 3 long time error estimates of splitting methods were recently established in [START_REF] Bao | Uniform error bounds of time-splitting spectral methods for the long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity[END_REF].

The main challenge in the theoretical and numerical analysis of (5.1.1) on long time scales t = O( 1 ε ) lies in the loss of derivative in the nonlinearity. This loss of derivative is clearly seen in case of the KdV equation (5.1.4)f o r which we face a Burger's type nonlinearity ε∂ x u 2 and up to now convergence (even on short time intervals T = 1) of classical methods such as splitting schemes could only be achieved for semi-discrete approximations, assuming that the Burger's part is solved exactly (see, e.g., (HLR13; HKRT11)) or with the aid of discrete Bourgain spaces under severe CFL conditions (see, e.g., (RS22)). In addition, even in case of the BBM equation (5.1.3),wherewe expect some regularisation through the structure of the leading operators (note that β L = β Q = 2), the smoothing only holds with loss in ε ε∂

x m Q ( p ε∂ x )u 2 r  min ⇣ p εku 2 k r , 2ku∂ x uk r ⌘ .
(5.1.8)

For BBM this may allow first order error estimates at order τ p ε for classical splitting or exponential integrator methods up to time t = O( 1 p ε ), but not on the natural time scale of the PDE that is t = O( 1 ε ). Our new long wave limit adapted discretisation (5.1.6) in contrast allows for long time error estimates at order τε on the natural time scale t = O( 1 ε ). In case of the BBM equation with a regularising nonlinearity (β L = β Q = 2)w ec a n ,t h a n k st ot h ee s t i m a t e , (5.1.8) play with the gain in ε and loss of derivatives. This will allow error bounds also for non-smooth solutions, however, only on time scales t = O(1). More precisely, one could prove first-order convergence in H r for solutions in H r (r > 1/2), i.e., without any loss of derivative, for short times t = O(1) at the cost of no longer gaining in ε.

Such low regularity estimates on short time scales without gain in ε also hold true for classical schemes, see for instance [START_REF] Cabrera | Uniformly accurate splitting schemes for the Benjamin-Bona-Mahony equation with dispersive parameter[END_REF] for the analysis in case of splitting discretisations.

Our idea for LWP schemes can be extended to higher order. We will give details on the second order integrator on long time scales in Section 5.3. Note that for the classical KdV equation (that is ε = 1 and without transport term ∂ x ), and nonlinear Schrödinger equations resonance based schemes were recently introduced in (HS17; OS18) and (short time) error estimates for time t = 1 were proven. We also refer to (HLR13; HKRT11; CLR20; OS20) for splitting, finite difference and Lawson-type methods for the classical KdV equation on time scales t = 1.

Outline of the chapter. In Section 5.2 and Section 5.3 we introduce the first-and second-order LWP scheme and carry out their convergence analysis over long times t = O ⇣ 1 ε

⌘

. Numerical experiments in Section 5.4 underline our theoretical findings.

Notation and assumptions. In the following we will assume, to simplify notation, that m L (0)=1 and m

(2) L (0)=2 which implies (as α = m

(2) L (0)/2)t h a tα = 1 in (5.1.5). Our analysis can be easily extended to the general case m L (0), m

(2) L (0) 2 R. For practical implementation issues we will impose periodic boundary conditions that is . For simplicity we will assume that û0 (0)= 1 2π R T u(0, x)dx = 0.T h a n k st om a s s conservation we can conclude that û0 (t)=0 for all t 2 R. The general setting û0 (0) 6 = 0 then follows by Remark 5.1.1.

Remark 5.1.1. In case of û0 (0)=κ 6 = 0 we set ũ = u κ and consider the modified dispersive equation

∂ t ũ + ∂ x e m L ( p ε∂ x ) ũ + ε∂ x m Q ( p ε∂ x ) ũ2 = 0, e m L ( p ε∂ x ) := m L ( p ε∂ x )+2εκm Q ( p ε∂ x ).
(5.1.9)

The latter satisfies b ũ0 (0)=0 such that our framework can be applied as in particular, the oscillations e t∂ x e m L ( p ε∂ x )

of the modified equation (5.1.9) allow a similar expansion as (5.1.7), see Remark 5.2.3 below.

Afi r s t -o r d e rl o n gw a v el i m i tp r e s e r v i n gs c h e m e

In a first section we will formally derive the LWP scheme (5.1.6) (see Section 5.2.1). Then we will carry out its convergence analysis and establish a long time error estimate (see Section 5.2.2).

Derivation of the scheme

Recall Duhamel's formula of (5.1.1)

u(t)=e t∂ x m L ( p ε∂ x ) u(0) ε∂ x m Q ( p ε∂ x )e t∂ x m L ( p ε∂ x ) Z t 0 e s∂ x m L ( p ε∂ x ) u 2 (s)ds.
Iterating the above formula, i.e., using that

u(s)=e s∂ x m L ( p ε∂ x ) u(0)+O ⇣ sε∂ x m Q ( p ε∂ x )u 2 ⌘ we see that formally u(t) ⇡ e t∂ x m L ( p ε∂ x )  u(0) ε∂ x m Q ( p ε∂ x ) Z t 0 e s∂ x m L ( p ε∂ x ) ⇣ e s∂ x m L ( p ε∂ x ) u(0) ⌘ 2 ds .
The key point lies in embedding the long wave limit behaviour (cf. (5.1.5))

D L = ∂ x m L ( p ε∂ x ) (∂ x + ε∂ 3 x )=O ⇣ ε 2 ∂ 5 x m (4) L ( p ε∂ x )
⌘ into our numerical discretisation. The above expansion of D L will be derived below (see (5.2.4)) and motivates (for sufficiently smooth solutions) the following approximation

u(t) ⇡ e t∂ x m L ( p ε∂ x )  u(0) ε∂ x m Q ( p ε∂ x ) Z t 0 e s(∂ x +ε∂ 3 x ) ⇣ e s(∂ x +ε∂ 3 x ) u(0) ⌘ 2 ds .
We may solve the oscillatory integral by the observation that (see also (5.2.8))

ε∂ x Z t 0 e s(∂ x +ε∂ 3 x ) ⇣ e s(∂ x +ε∂ 3 x ) v ⌘ 2 ds = 1 3 e tε∂ 3 x h e tε∂ 3 x (∂ 1 x v) i 2 1 3 (∂ 1 x v) 2 .
Based on the long wave limit behaviour we thus find the following approximation

u(t) ⇡ e t∂ x m L ( p ε∂ x ) " u(0) m Q ( p ε∂ x ) ✓ 1 3 e tε∂ 3 x ⇣ e tε∂ 3 x (∂ 1 x u(0)) ⌘ 2 1 3 (∂ 1 x u(0)) 2 ◆ #
which builds the basis of our LWP scheme (5.1.6).

Local error analysis

In this section we carry out the error analysis of the filtered scheme (5.1.6) over long times

t = O ⇣ 1 ε ⌘ .W es t a r t
with the local error analysis. For this purpose we will denote by ϕ t the exact flow of (5.1.1)a n db yΦ τ the numerical flow defined by the scheme (5.1.6)s u c ht h a t u(t n + τ)=ϕ τ (u(t n )) and u n+1 = Φ τ (u n ).

We will exploit the following estimate which regularises for

β Q > 1/2. Lemma 5.2.1. Let f 2 H r+1 β Q (T). It holds that kε∂ x m Q ( p ε∂ x ) f k r  ε 1 β Q 2 k f k r+1 β Q .
Proof. The assertion follows thanks to the estimate

kε∂ x m Q ( p ε∂ x ) f k 2 r  ∑ k2Z (1 + |k|) 2r εik 1 + | p εk| β Q 2 | fk | 2  ε 2 β Q k f k 2 r+1 β Q ,
where we have used that for k 6 = 0 we have that

εik 1 + | p εk| β Q  εk | p εk| β Q . Lemma 5.2.2. Fix r 0.T h e n ,t h el o c a le r r o rϕ τ (u(t n )) Φ τ (u(t n )) satisfies for β := min(2, β L + β Q ) the estimate kϕ τ (u(t n )) Φ τ (u(t n ))k r  τ 2 ε 2 c sup t n tt n+1 ku(t)k r+2 ! + c L τ 2 ε 3 β 2 c sup t n tt n+1 ku(t)k r+6 β ! .
Proof. Iterating Duhamel's formula of (5.1.1)y i e l d st h a t

u(t n + τ)=e τ∂ x m L ( p ε∂ x ) u(t n ) ε∂ x m Q ( p ε∂ x )e τ∂ x m L ( p ε∂ x ) Z τ 0 e s∂ x m L ( p ε∂ x ) u 2 (t n + s)ds = e τ∂ x m L ( p ε∂ x ) u(t n ) ε∂ x m Q ( p ε∂ x )e τ∂ x m L ( p ε∂ x ) Z τ 0 e s∂ x m L ( p ε∂ x ) ⇣ e s∂ x m L ( p ε∂ x ) u(t n ) ⌘ 2 ds + R 1 (ε, τ, u) (5.2.1)
with the remainder

R 1 (ε, τ, u)=ε∂ x m Q ( p ε∂ x )e τ∂ x m L ( p ε∂ x ) Z τ 0 e s∂ x m L ( p ε∂ x )  ⇣ e s∂ x m L ( p ε∂ x ) u(t n ) ⌘ 2 u 2 (t n + s) ds. (5.2.2)
Thanks to the observation that

u(t n + s)=e s∂ x m L ( p ε∂ x ) u(t n ) ε∂ x m Q ( p ε∂ x )e s∂ x m L ( p ε∂ x ) Z s 0 e s 1 ∂ x m L ( p ε∂ x ) u 2 (t n + s 1 )ds 1 the remainder R 1 (ε, τ, u) is of the following form R 1 (ε, τ, u)=O τ 2 ε∂ x m Q ( p ε∂ x ) ✓ u(t)ε∂ x m Q ( p ε∂ x ) ⇣ u 2 (t) ⌘ ◆ ! .
Thanks to assumption (5.1.2) (which guarantees the boundedness of the symbol m Q ) we can thus conclude that

kR 1 (ε, τ, u)k r  τ 2 ε 2 c sup t n tt n+1 ku(t)k r+2 ! .
(5.2.3)

Taylor series expansion of the symbol m L (δ ) around δ = 0 yields that

m L (δ )=m L (0)+δ m 0 L (0)+ δ 2 2 m 00 L (0)+ δ 3 3! m (3) L (0)+ Z δ 0 (δ δ ) 3 3! m (4) L ( δ )d δ = 1 + δ 2 + Z δ 0 (δ δ ) 3 3! m (4) L ( δ )d δ ,
where in the last step we have used the assumptions (5.1.2)(whichimpliesthatm (2`+1) (0)=0) and the assumption that (without loss of generality) m

(2) L (0)=2. Together with the assumption that m (4)

L (iξ )  c L 1+|ξ | β L (see again (5.1.2)) we thus find that D L = ∂ x m L ( p ε∂ x ) (∂ x + ε∂ 3 x )=O c L ε 2 ∂ 5 x 1 +( p ε|∂ x |) β L ! . ( 5 

.2.4)

This allows the following expansion of the oscillations

e ±s∂ x m L ( p ε∂ x ) = e ±s(∂ x +ε∂ 3 x ) + O s • c L ε 2 ∂ 5 x 1 +( p ε|∂ x |) β L ! .
(5.2.5)

Next we will employ these expansions to handle the oscillations in the integral term in (5.2.1). Together with Lemma 5.2.1 this yields that

u(t n + τ)=e τ∂ x m L ( p ε∂ x ) u(t n ) ε∂ x m Q ( p ε∂ x )e τ∂ x m L ( p ε∂ x ) Z τ 0 e s(∂ x +ε∂ 3 x ) ⇣ e s(∂ x +ε∂ 3 x ) u(t n ) ⌘ 2 ds +R 1 (ε, τ, u)+R 2 (ε, τ, u), (5.2.6)
where the remainder R 2 (ε, τ, u) is thanks to (5.1.2) of type

O c L τ 2 ε 2 ∂ 5 x 1 +( p ε|∂ x |) β L ε∂ x m Q ( p ε∂ x )u 2 ! = O c L τ 2 ε 2 ∂ 5 x 1 +( p ε|∂ x |) β L ε∂ x 1 +( p ε|∂ x |) β Q u 2 ! such that kR 2 (ε, τ, u)k r  c L τ 2 ε 3 β 2 c sup t n tt n+1 ku(t)k r+6 β ! , β := min(2, β L + β Q ).
(5.2.7)

In the last bound (5.2.7)w eu s e dt h a tt h a n k st ot h ee s t i m a t e

1 1 + |a|  min ✓ 1, 1 |a| γ ◆ , 0  γ  1
we have with the definition β := min(2,

β L + β Q ) that ε 2 ∂ 5 x 1 +( p ε|∂ x |) β L ε∂ x 1 +( p ε|∂ x |) β Q u 2 r  ε 3 β /2 ∂ 6 β x u 2 r .
Next we exploit the Fourier transform v(x)=∑ k2Z vk e ikx and the definition

∂ 1 x v(x)= ∑ k6 =0 1 ik vk e ikx .
Together with the observation that

e s∂ x ⇣ e s∂ x v ⌘ 2 = ∑
`+m=k e ikx v`vm e isk e is`e ism = v 2 we obtain for any v0 = 0 that (see also (HS17))

I (τ, ε, v) := ε∂ x Z τ 0 e s(∂ x +ε∂ 3 x ) ⇣ e s(∂ x +ε∂ 3 x ) v) ⌘ 2 ds = ε ∑ `+m=k `,m6 =0 e ikx v`vm (ik) Z τ 0 e 3isεk`m ds = ∑ `+m=k `,m6 =0 e ikx v`vm ⇣ e 3iτεk`m 1 ⌘ 1 3(i`)(im) = 1 3 e τε∂ 3 x h e τε∂ 3 x (∂ 1 x v) 2 i 1 3 (∂ 1 x v) 2 .
(5.2.8)

Plugging the above relation into (5.2.6) we obtain

ϕ τ (u(t n )) = Φ τ (u(t n )) + ∑ i=1,2 R i (ε, τ, u),
where R 1 satisfies (5.2.3)a n dR 2 satisfies (5.2.7). This concludes the proof.

Remark 5.2.3. The oscillations e ±s∂ x mL ( p ε∂ x ) in the modified equation (5.1.9) satisfy a similar expansion as (5.2.5) assuming in addition that m

(2)

Q (iξ )  c Q 1+|ξ | γ Q for some c Q , γ Q 0.
Indeed, under the assumptions given in (5.1.2) we find that

ε∂ x m Q ( p ε∂ x )=ε∂ x m Q (0)+ε 3/2 ∂ x m 0 Q (0)+O ⇣ ε 2 ∂ x m 00 Q ⌘ = ε∂ x m Q (0)+O c Q ε 2 ∂ 3 x 1 +( p ε|∂ x |) γ Q ! .
Together with the expansion of ∂ x m L ( p ε∂ x ) given in (5.2.4) we thus obtain

∂ x mL ( p ε∂ x )=∂ x m L ( p ε∂ x )+2εκ∂ x m Q ( p ε∂ x ) =(1 + 2εκm Q (0))∂ x + ε∂ 3 x + O c L ε 2 ∂ 5 x 1 +( p ε|∂ x |) β L ! + O c Q ε 2 ∂ 3 x 1 +( p ε|∂ x |) γ Q ! .
Hence, with the notation α := 1 + 2κεm Q (0) we can conclude that e ±s∂ x mL (

p ε∂ x ) = e ±s( α∂ x +ε∂ 3 x ) + O s • c L ε 2 ∂ 5 x 1 +( p ε|∂ x |) β L ! + O s • c Q ε 2 ∂ 3 x 1 +( p ε|∂ x |) γ Q ! .

Stability analysis

In this section we will use that the k-th Fourier coefficient of [m Q , w]∂ x Λ r v,r e c a l lt h a tΛ =(1 ∆) 1 2 , is given by

[m Q ( p ε∂ x ), w]∂ x Λ r v V k = ∑ l ŵk l  m Q ( p εil) m Q ( p εik) il(1 + l 2 ) r 2 vl .
(5.2.9)

In order to carry out the stability analysis we need the following Lemma.

Lemma 5.2.4. Let r 0 and r 0 > 1/2.A s s u m i n gt h a t|m Q (iξ )|1 and |m 0

Q (iξ )| 1 1+|ξ | there exists a constant C > 0 such that for all w 2 H r 0 +1 and v 2 H r k[m Q ( p ε∂ x ), w]∂ x Λ r vk L 2  Ckwk r 0 +1 kvk r .
Proof. Next we note that as

|m 0 Q (iξ )| 1 1+|ξ | we have (i) if |l|2|k l| that |m Q ( p εil) m Q ( p εik)|2 (ii) if |l| > 2|k l| that |m Q ( p εil) m Q ( p εik)| p ε|k l| Z 1 0 1 1 + p ε|l + s(k l)| ds  p ε|k l| 1 + 1 2 p ε|l|  2 |k l| |l| ,
where we have used that 0  s  1 and |l| > 2|k l| as well as the estimate

|l + s(k l)| |l| s|k l| |l| |k l| 1 2 |l|. Hence, m Q (wΛ r ∂ x v), Λ r v = 1 2 (∂ x w)Λ r v, m Q Λ r v 1 2 Λ r v, [m Q , w]∂ x Λ r v
which implies thanks to Lemma 5.2.4 and the assumptions (5.1.2) on m Q that for any r 0 > 1/2

m Q (wΛ r ∂ x v), Λ r v k∂ x wk L ∞ kvk 2 r + kvk r k[m Q , w]∂ x Λ r vk L 2  ckvk 2 r kwk r 0 +1 .
Hence, as r > 3/2 we have that 

m Q (wΛ r ∂ x v), Λ r v  ckvk 2 r kwk r . ( 5 
(w∂ x v), Λ r v  ckvk 2 r kwk r+1
which by (5.2.12)i m p l i e st h ed e s i r e de s t i m a t e( 5.2.11).

In order to show the stability bound (5.2.10)w e r e w r i t et h en u m e r i c a lfl o w( 5.1.6) back in its integral form.

Thanks to (5.2.8) we observe that

Φ τ ( f )=e τ∂ x m L ( p ε∂ x ) f ε∂ x m Q e τ∂ x m L ( p ε∂ x ) Z τ 0 e sε∂ 3 x h e sε∂ 3 x f i 2 ds.
Hence,

Λ r Φ τ ( f ) Φ τ (g) 2 L 2 = Λ r ( f g) 2 L 2 2ε Λ r e τ∂ x m L ( p ε∂ x ) ( f g) , Λ r ∂ x m Q e τ∂ x m L ( p ε∂ x ) Z τ 0 e sε∂ 3 x ✓ ⇣ e sε∂ 3 x f ⌘ 2 ⇣ e sε∂ 3 x g ⌘ 2 ◆ ds ! + ε 2 Λ r ∂ x m Q Z τ 0 e sε∂ 3 x ✓ ⇣ e sε∂ 3 x f ⌘ 2 ⇣ e sε∂ 3 x g ⌘ 2 ◆ ds 2 L 2 =: Λ r ( f g) 2 L 2 + I 1 + I 2 .
(5.2.16)

In the following we will establish the estimates on I 1 and I 2 .

For I 1 (see also [START_REF] Hofmanová | An exponential-type integrator for the KdV equation[END_REF] for a Fourier based analysis for KdV) we have that

|I 1 |2ε Λ r ( f g) , Λ r ∂ x m Q Z τ 0 e sε∂ 3 x ✓ ⇣ e sε∂ 3 x f ⌘ 2 ⇣ e sε∂ 3 x g ⌘ 2 ◆ ds ! = 2ε Z τ 0 Λ r e sε∂ 3 x ( f g) , Λ r ∂ x m Q ✓ ⇣ e sε∂ 3 x f ⌘ 2 ⇣ e sε∂ 3 x g ⌘ 2 ◆ ! ds .
With the notation v = e sε∂ 3 x ( f g), w = 2e sε∂ 3 x g we can conclude that

⇣ e sε∂ 3 x f ⌘ 2 ⇣ e sε∂ 3 x g ⌘ 2 = ⇣ e sε∂ 3 x ( f g) ⌘⇣ e sε∂ 3 x ( f + g) ⌘ = v(v + w).
Hence, we obtain that

|I 1 | = 2ε Z τ 0 ✓ Λ r v, Λ r ∂ x m Q v(v + w) ◆ ds  2ε Z τ 0 ✓ Λ r v, Λ r ∂ x m Q v 2 ◆ ds+ 2ε Z τ 0 ✓ Λ r v, Λ r ∂ x m Q (vw) ◆ ds.
(5.2.17)

Thanks to the key estimate (5.2.11) (with the stronger norm on w) we can conclude that

✓ Λ r v, Λ r ∂ x m Q (vw) ◆ kwk r+1 kvk 2 r .
(5.2.18) Furthermore, we observe that

1 2 ✓ Λ r v, Λ r ∂ x m Q v 2 ◆ = ✓ Λ r v, Λ r m Q (v∂ x v) ◆  ✓ Λ r v, m Q (v∂ x Λ r v) ◆ + ✓ Λ r v, m Q ([Λ r , v]∂ x v) ◆ .
In order to bound

✓ Λ r v, m Q ([Λ r , v]∂ x v)
◆ we use the gain in derivative in the commutator [Λ r , v] and for the bound on

✓ Λ r v, m Q (v∂ x Λ r v)
◆ we exploit the estimate in (5.2.15)w i t hw = v.T h i sy i e l d st h a t 

1 2 ✓ Λ r v, Λ r ∂ x m Q v 2 ◆  ckvk 3 r . ( 5 
Z τ 0 ε ⇣ kvk 3 r + kwk r+1 kvk 2 r ⌘ ds  cτε ⇣ k f gk 3 r + kgk r+1 k f gk 2 r ⌘ .
(5.2.20)

Next we establish the bound on I 2 in (5.2.16). Resolving one of the two integrals in the scalar product of I 2 with the relation (5.2.8) we obtain that

I 2 = 1 3 ε ✓ Λ r ∂ x m Q Z τ 0 e sε∂ 3 x ✓ ⇣ e sε∂ 3 x f ⌘ 2 ⇣ e sε∂ 3 x g ⌘ 2 ◆ ds, Λ r m Q e τε∂ 3 x ✓ e τε∂ 3 x ⇣ (∂ 1 x f ) 2 (∂ 1 x g) 2 ⌘ ◆ (∂ 1 x f ) 2 +(∂ 1 x g) 2 ! ◆ = 1 3 ε ✓ Λ r m Q Z τ 0 e sε∂ 3 x ✓ ⇣ e sε∂ 3 x f ⌘ 2 ⇣ e sε∂ 3 x g ⌘ 2 ◆ ds, Λ r ∂ x m Q e τε∂ 3 x ✓ e τε∂ 3 x ⇣ (∂ 1 x f ) 2 (∂ 1 x g) 2 ⌘ ◆ (∂ 1 x f ) 2 +(∂ 1 x g) 2 ! ◆
, where in the last equality we used integration by parts to distribute the derivative ∂ x on the side of regularised terms which all involve ∂ 1 x . Hence, we can conclude that 

|I 2 |cτε ⇣ k f gk 3 r + kgk r k f gk 2 r ⌘ . ( 5 

Global error analysis

Theorem 5.2.6. Fix β := min(2, β L + β Q ),l e t0 < ε  1 and assume that the solution u of (5.1.1) satisfies u 2 C ([0, T ]; H 6 β ).T h e nt h e r ee x i s t saτ 0 > 0 such that for all 0 < τ  τ 0 and t n  T the global error estimate holds for u n defined in (5.1.6)

ku(t n ) u n k L 2  t n τε 2 c sup 0tt n ku(t)k 2 ! e ct n ε + c L t n τε 2 ε 1 β 2 c sup 0tt n ku(t)k 6 β ! e ct n ε ,
where c depends on the H 3 norm of the solution u.

Proof. for some δ = δ (β L , β Q , γ) > 0.T h a n k st ot h ee s t i m a t e ku n k H σ ku(t n ) u n k H σ + ku(t n )k H σ this will give us a priori the boundedness of the numerical solution in H 3/2+γ over long times t n = 1 ε .F o rd e t a i l s on the latter approach in case of short time (t = 1) estimates for splitting methods for cubic Schrödinger we refer to (Lub08).

As e c o n d -o r d e rl o n gw a v el i m i tp r e s e r v i n gs c h e m e

Our second order LWP scheme for (5.1.1)t a k e st h ef o r m

u n+1 = e τ∂ x m L ( p ε∂ x ) " u n 1 3α m Q ( p ε∂ x ) ✓ e ταε∂ 3 x ✓ e ταε∂ 3 x ∂ 1 x u n ◆ 2 ✓ ∂ 1 x u n ◆ 2 ◆ # + τ 2 ε 2 ∂ x m Q ( p ε∂ x )Ψ m Q ✓ u n Ψ m Q ∂ x m Q ( p ε∂ x )(u n u n ) ◆ τ 2 2 ε∂ x m Q ( p ε∂ x )Ψ D L ,m Q D L (u n u n )+τ 2 ε∂ x m Q ( p ε∂ x )Ψ D L ,m Q (u n D L u n ) ,
(5.3.1)

where we recall that α = m For stability issues we have introduced the filter functions

Ψ m Q ( p ε∂ x ) and Ψ D L ,m Q = Ψ D L ,m Q ( p ε∂ x ) satisfying τΨ m Q ( p ε∂ x )∂ x m Q ( p ε∂ x )v r kvk r , Ψ m Q ( p ε∂ x )v v r  τk∂ x m Q ( p ε∂ x )vk r τ∂ x m Q ( p ε∂ x )D L Ψ D L ,m Q ( p ε∂ x )v r kvk r , Ψ D L ,m Q ( p ε∂ x )v v r  τk∂ x m Q ( p ε∂ x )D L vk r .
(5.3.2)

For an introduction to filter functions we refer to [START_REF] Haier | Geometric Numerical integration: structurepreserving algorithms for ordinary di↵erential equations[END_REF].

In a first section we will derive the LWP scheme (5.3.1) (see Section 5.3.1). Then we will carry out its long time error estimate (see Section 5.3.2). We will again assume without loss of generality that α = 1. 

Derivation of the scheme

p ε∂ x ) ⇣ u(t n )ε∂ x m Q ( p ε∂ x )u 2 (t n ) ⌘ + R 1 (τ, ε, u).
(5.3.3)

The remainder R 1 (τ, ε, u) is thereby of order

O(s 2 ε 2 ∂ x m L ( p ε∂ x )∂ x m Q ( p ε∂ x )∂ x m Q ( p ε∂ x )u 2 )
which implies by assumption (5.1.2) together with (5.2.4) the following bound kR 1 (τ, ε, u)k r  τ 3 ε 2 c sup Next we state a lemma which will allow us to handle the remaining integral in (5.3.3)n u m e r i c a l l y . ⇣ e s(∂ x +ε∂ 3 x ) v

⌘ 2 ds+ τ 2 2 D L v 2 τ 2 vD L v + O c L τ 3 ε 4 ∂ 10 x 1 +( p ε|∂ x |) 2β L p(v) ! + O τ 3 c L ε 2 ∂ 6 x 1 +( p ε|∂ x |) β L p(v)
! for some polynomials p of degree 2 in v. This yields together with the properties on the filter functions (cf.

(5.3.2))

Ψ m Q ( p ε∂ x )=1 + O(τm Q ( p ε∂ x )), Ψ D L ( p ε∂ x )=1 + O(τD L ( p ε∂ x ))
that the remainder R 2 (τ, ε, u) is of the form

R 2 (τ, ε, u)=O c L τ 3 ε∂ x 1 +( p ε|∂ x |) β Q ε 4 ∂ 10 x 1 +( p ε|∂ x |) 2β L p(v) ! + O τ 3 c L ε∂ x 1 +( p ε|∂ x |) β Q ε 2 ∂ 6 x 1 +( p ε|∂ x |) β L p(v) ! .
Next we set β 1 = min(2, β Q + β L ) and β 2 = min(6, β Q + 2β L ). Using the bound

1 1 + |a|  min ✓ 1, 1 |a| γ ◆ , 0  γ  1
allows us to obtain the following estimates

ε∂ x 1 +( p ε|∂ x |) β Q ε 4 ∂ 10 x 1 +( p ε|∂ x |) 2β L p(v) r  ε 2 ε 3 β 2 /2 k∂ 11 β 2 x p(v)k r ε∂ x 1 +( p ε|∂ x |) β Q ε 2 ∂ 6 x 1 +( p ε|∂ x |) β L p(v) r  ε 2 ε 1 β 1 /2 k∂ 7 β 1 x p(v)k r .
This concludes the proof.

Using Lemma 5.3.1 in the expansion of the exact solution (5.3.3) yields together with (5.2.8) and the definition of the numerical flow Φ τ in (5.3.1)t h a t u(t n + τ)=Φ τ (u(t n )) + R 1 (τ, ε, u)+R 2 (τ, ε, u), (5.3.6)

where the remainders R 1 and R 2 satisfy the bounds (5.3.4)a n d( 5.3.5), respectively.

Local Error analysis

Let us again denote by ϕ t the exact flow of (5.1.1)a n db yΦ τ the numerical flow defined by the scheme (5.3.1), such that u(t n + τ)=ϕ τ (u(t n )) and u n+1 = Φ τ (u n ). Proof. The assertion follows from the expansion of the exact solution given in (5.3.6) together with the error bounds on R 1 and R 2 in (5.3.4)a n d( 5.3.5).

Stability analysis

Lemma 5.3.3. Fix r > 3/2.T h en u m e r i c a lfl o wd e fi n e db yt h es c h e m e(5.1.6) is ε-stable in H r in the sense that for two functions f 2 H r and g 2 H r+1 we have that kΦ τ ( f ) Φ τ (g)k r  e τεB k f gk r , B = B(k f k r , kgk r+1 ),

where the constant B depends on the H r norm of f and H r+1 norm of g.

Proof. Thanks to Lemma 5.2.5 it remains to prove the stability estimate only on the last three terms in (5.3.1).

The latter holds true thanks to the properties (5.3.2) of the filter functions Ψ m Q and Ψ D L .

Global error estimate

Theorem 5.3.4. Let β 0 = min(1, β Q ), β 1 = min(2, β Q + β L ), β 2 = min(6, β Q + 2β L ) and let u 2 C ([0, T ]; H σ ) with σ = max (7 2β 0 , 7 β 1 , 11 β 2 ).T h e nt h e r ee x i s t saτ 0 > 0 such that for all 0 < τ  τ 0 and t n  T the global error estimate holds for u n defined in (5.3.1) Proof. The assertion follows by the local error bound given in Lemma 5.3.2 together with the stability estimate in Lemma 5.3.3 via a Lady Windermere's fan argument (see appendix), and the proof of Theorem 5.2.6.

ku(t n ) u n k L 2  τ 2 t n ε 2

Numerical experiments

We underline our theoretical results with numerical experiments. As a model problem we take the BBM equation

(5.1.3) under periodic boundary conditions that is x 2 T and solve it with our first-and second-order long wave limit preserving schemes (5.1.6)a n d( 5.3.1), respectively, for various values of ε on long time scales, i.e., up to T = 1 ε with initial value u 0 (x)=sin(2x). For the spatial discretisation we employ a standard pseudo spectral method with spatial mesh ∆x = π 100 . The numerical findings confirm the convergence order stated in Theorem 5.2.6 and Theorem 5.3.4,r e s p e c t i v e l y .

OUTLOOK

This chapter is dedicated to the possible new routes to explore, we will cite some inspiring results and name some open questions that could be considered when thinking about possible extensions of the theory presented in this thesis.

Current limitations of low regularity uniformly accurate methods for Klein-Gordon related systems

This section is based on (CCS21).

A natural question would be how can one extend the methods of low regularity uniformly accurate approximation we are not able to fully exploit the commutator structure of the local error terms in a way that higher order derivatives consistently drop.

Similarly, considering coupled Klein-Gordon systems of the form c 2 1 ∂ tt z 1 (t, x) ∆z 1 (t, x)+c 2 1 z 1 (t, x)=|z 2 (t, x)| 2 , c 2 2 ∂ tt z 2 (t, x) ∆z 2 (t, x)+c 2 2 z 2 (t, x)=|z 1 (t, x)| 2 , (z 1 , ∂ t z 1 )(t = 0)=(z 0 1 , c 2 1 z 1 1 ), (z 2 , ∂ t z 2 )(t = 0)=(z 0 2 , c 2 2 z 1 2 ), (6.1.2)

we notice a similar limitation, given the behaviour e isc 1 h∇i c 1 e isc 2 h∇i c 2 = e is(c

2 1 c 2 2 ) + O ∆ 2 min{c 2 1 , c 2 2 } ! , (6.1.3)
where only in the case c 1 = c 2 we have cancellation of higher order derivatives.

Note that even with these limitations, in practice, in the fully discrete case and for large values of the parameter c, one could still profit from these methods while having rough initial data (cf. Remark after Theorem 4.3.6).

However, theoretically, the observations (6.1.1)a n d( 6.1.3) still suppose roadblocks in the construction of low regularity uniformly accurate methods for Klein-Gordon related systems, leaving this an open question.

More general domains and boundary conditions and fully discrete methods

In this thesis, we have restricted all numerical simulations to the Torus T d ,asw ehaveemplo y edspectralmethods for the spatial discretization. This was advantageous because we produced global error plots of the fully discrete scheme where the error of the spatial discretization turns out to be negligible compared to that of the time stepping, allowing these plots to very clearly illustrate our theoretical results for the semi-discrete methods.

A natural question could be to consider more general boundary conditions, as well as domains, that may be more pertinent to the context of the equations.

Recently, in (IKSW21), the authors propose a numerical method in the context of the linear semiclasical Schrödinger equation on the real line. This method is based on the analysis and careful choice of certain orthonormal bases, as the spatial discretization employed is a spectral method that relies on the transforms with respect to these particular bases.

As for approximations on more general domains, an idea would be to pair these methods that are semi-discrete in time with other types of spatial discretization that are robust when it comes to working on more general bounded domains, such as finite difference or finite element methods. Note that in these cases, however, the quality of the approximation may rely on additional regularity assumptions that depend on this choice of alternative spatial discretization, which is something we were able to bypass by restricting to spectral methods on the Torus, in our case.

This also raises the question of the necessity for error estimates of fully discrete methods, where one would also consider the error of the spatial discretization and provide a rigurously complete theoretical footing that is able to fully explain our numerical experiments. In the context of the nonlinear Schrödinger equation on the one dimensional Torus, a fully discrete explicit low regularity scheme was proposed in (OY22).

Other types of nonlinearity

In Chapters 2, 3 and 4 of this thesis thesis we have dealt with polynomial nonlinearities. A way to expand the development of the techniques we have discussed, based on the formula of variation of constants, could be to tackle other types of nonlinearities.

In Chapter 3 we saw most clearly that, when it comes to these techniques, the local error structure is heavily governed by the nature of the nonlinearity we consider. And it remains to be studied how one could adapt these techniques to approximate other particular types of nonlinearity that appear within the formula of variation of constants in a way that allows for lower regularity assumptions.

Other types of nonlinearities that have been considered so far in the context of these techniques of low regularity approximation are for example that of the Gross-Pitaevskii equation, in [START_REF] Alama | Error analysis of a class of semi-discrete schemes for solving the grosspitaevskii equation at low regularity[END_REF]. In addition, in [START_REF] Rousset | A general framework of low regularity integrators[END_REF] the authors develop a theory of low regularity approximation aimed at a wide class of nonlinear evolution equations that comprise a larger class of nonlinearities that includes for instance that of Sine-Gordon.

Structure preservation

In Chapters 2, 3 and 4 we have proposed exponential type integrators as well as splitting methods that preserve the asymptotic behaviour of the solution. In addition, we carried out numerical experiments that illustrate energy preservation in Chapter 3. This brings into question to what extent do these low regularity highly oscillatory integrators generally preserve the structure of the PDE.

Giant strides have been made in the development of structure preserving methods for ODEs, most notably in the book (HLW06). However, when it comes to structure preservation in the numerical analysis of PDEs, often ODE theory is applied to semi-discretized equations. So far, some important efforts have been made in [START_REF] Faou | Geometric numerical integration and Schrödinger equations[END_REF] to understand structure preservation properties of splitting methods for Schrödinger equations. Other results can be found in (CCO08)a n d( GL10) for the nonlinear Schrödinger equation and in [START_REF] Cohen | Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations[END_REF] for Hamiltonian nonlinear PDE.

The approaches mentioned so far, however, rely on high regularity assumptions. In fact, it remains open how the concepts of low regularity approximation and structure preservation can cohabitate in general. Recently, there has been efforts to interrelate these two concepts. In (MS22), a symplectic exponential-type integrator for the KdV equation that exactly preserves the momentum was developed. Additionally, in (BMS22), the authors present a symmetric low-regularity exponential-type integrator for the NLS equation, that they then apply to compute the isotropic Landau-Lifschitz equation. This method, in turn, preserves the energy of the equation well over long times in numerical experiments.

It remains open how one could rigorously analyse the structure preserving elements low regularity numerical methods for PDE. This is a very interesting and compelling direction one could take to further develop methodology presented in this thesis. for some K 0 = K 0 (sup 0tT ky(t)k r+δ ), K = K(sup 0tT ky(t)k r+δ ) > 0 and M = M(M ⇤ ) > 0.

As for the numerical flow at step t n+1 , we see that adding and subtracting the exact flow in terms of zero, we obtain, using the global error estimate derived above and the boundedness assumption, that it holds ky n+1 k r kΦ τ (y(t n )) ϕ τ (y n )k r + kΦ τ (y(t n ))k r

 τ p K + M ⇤  2M ⇤ , for 0  τ  τ 0 .
This result tells us that, assuming local wellposedness of the solution and given a stability estimate, as well as a local error estimate of order p + 1, these two estimates can be interwoven in a telescopic identity that yields global convergence of order p.

Figure 1

 1 Figure 1.1.1: Plot of the approximation to the solution of the Klein-Gordon equation (c = 10)v i aac l a s s i c a lE xponential integrator and our uniformly accurate low regularity integrator at time t = 0.12.

Figure 1

 1 Figure 1.1.2: Plot of the approximation to the solution of the Klein-Gordon equation (c = 10)v i aac l a s s i c a lE xponential integrator and our uniformly accurate low regularity integrator at time t = 0.31.
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  .5.7) for some linear operators. Note that therefore we have four nested commutators in the remainder with two factors of D 1 and L ε,λ respectively. Note that we loose regularity under the action of L ε,λ ,b yL e m m a2.2.4,w h e r e a s the action of D 1 allows us to gain in regularity, respectively, powers of ε,s e eL e m m a2.2.1. This allows a bound of the form

  The above stability estimate together with the local error estimate (2.5.10)a l l o w su st oc o n c l u d eb yaL a d y Windermere's fan argument (see appendix).

e

  itch∇i c = e itc 2 + O(t∆) (3.1.5) reducing the full spectrum of high frequencies to only one single oscillation e itc 2 . The aim of this chapter lies in closing this gap: We will develop a new class of uniformly accurate schemes for the Klein-Gordon equation (3.1.1) which resolve the time oscillations in c and at the same time allow for a low regularity approximation in space (in the spirit of (RS21)). The central idea to achieve this lies in embedding the full spectrum of oscillations -in space and in time -into the numerical discretisation. The new schemes will in particular (I) allow convergence for rougher data than splitting or exponential integrator methods (involving only first instead of second order derivatives in the local error) (II) converge uniformly in c with error bounds independent of c (allowing us to capture non-oscillatory classical c = 1 up to highly-oscillatory non-relativistic regimes c 1), and (III) preserve the NLS limit (3.1.3) on the discrete level.

  τϕ 1 ( miτch∇i c ) ! 0 for m 6 = 0 such that our scheme (3.3.20)f o r m a l l yr e d u c e st o

Figure 3

 3 Figure 3.5.1: Convergence plot of the first order scheme (3.3.20)

Figure 3

 3 Figure 3.5.5 for H 2 initial data up to t = 100 for various values of c using our second order method (3.4.19).

Figure 3 Figure 3 Figure 3 Figure 3 Figure 3

 33333 Figure 3.5.2: H 1 initial data used for the first order scheme (3.3.20)

  from Lemma 4.4.1,Lemma4.4.2 and (4.4.14), together with the bound proven in Lemma 4.3.1, yields the following second order approximation of the oscillatory integral I u (w, v) in (4.4.5).

  our results, namely Lemma 4.4.4,Lemma4.4.5,(4.4.22), (4.4.23), (4.4.24), Lemma 4.4.6 and (4.4.27), leads to the following Corollary, where we use in addition the bound found in Lemma 4.3.1.

Figure 4

 4 Figure 4.6.2: Convergence plot of the first scheme given by (4.3.11). The blue, orange, yellow, purple and green lines correspond to the values of c = 1, c = 10, c = 100, c = 1000 and c = 10000 respectively. The black thick lines are reference lines of slope one. Dotted, dashed and mixed lines correspond to the convergence scheme with H 2 , H 3 and H 4 initial data respectively.

Figure 4

 4 Figure 4.6.3: Convergence plot of the second order scheme given by (4.4.15) with smooth initial data. The blue, orange, yellow, purple and green lines correspond to the values of c = 1, c = 10, c = 100, c = 1000 and c = 10000 respectively. The black thick lines are reference lines of slope two.

x 2 T

 2 =[ π, π].O u rr e s u l tc a nb ee x t e n d e dt ot h ef u l ls p a c ex 2 R. We denote by (•, •) the standard scalar product ( f , g)= R T f gdx. Let us also define Λ =(1 ∆) 1 2

L

  (0)/2 andD L ( p ε∂ x )=∂ x m L ( p ε∂ x ) (∂ x + αε∂ 3 x ).

p

  Iterating Duhamel's formula (5.1.1)y i e l d st h a tu(t n + τ)=e τ∂ x m L ( p ε∂ x ) u(t n ) ε∂ x m Q ( p ε∂ x )e τ∂ x m L ( p ε∂ x ) Z τ 0 e s∂ x m L ( p ε∂ x ) u 2 (t n + s)ds = e τ∂ x m L ( p ε∂ x ) u(t n ) ε∂ x m Q ( p ε∂ x )e τ∂ x m L ( m L ( p ε∂ x ) u(t n ) ε∂ x m Q ( p ε∂ x )e s∂ x m L ( p ε∂ x ) Z s 0 e s 1 ∂ x m L ( p ε∂ x ) u 2 (t n + s 1 )ds 1 ◆ 2 ds.Employing the approximationε∂ x m Q ( p ε∂ x )e s∂ x m L ( p ε∂ x ) Z s 0 e s 1 ∂ x m L ( p ε∂ x ) u 2 (t n + s 1 )ds 1 = sε∂ x m Q ( p ε∂ x )u 2 (t n )+O(s 2 ε∂ x m L ( p ε∂ x )∂ x m Q ( p ε∂ x )u 2 )we obtain thatu(t n + τ)=e τ∂ x m L ( p ε∂ x ) u(t n ) ε∂ x m Q ( p ε∂ x )e τ∂ x m L ( ε∂ x ) u(t n ) ⌘ 2 ds + τ 2 ε∂ x m Q ( p ε∂ x )e τ∂ x m L (

t n tt n+1 kuk r+5 !+

 r+5 τ 3 ε 2 ε 1 β 0 c sup t n tt n+1 kuk r+7 2β 0 ! (5.3.4) with β 0 = min(1, β L ).

Lemma 5.3. 1 .=c sup t n tt n+1 kuk r+7 β 1 !

 11 Fix r 0 and let β 1 := min(2, β Q + β L ) and β 2 := min(6, β Q + 2β L ). Then it holds thatε∂ x m Q ( p ε∂ x )e τ∂ x m L ( ε∂ x m Q ( p ε∂ x )e τ∂ x m L ( p ε∂ x ) Q ( p ε∂ x )Ψ D L D L v 2 τ 2 ε∂ x m Q ( p ε∂ x )Ψ D L (vD L v)+R 2 (τ, ε, u),where the remainder R 2 (τ, ε, u) satisfies the estimatekR 2 (τ, ε, u)k r  c L τ 3 ε 2 ε 1 β 1 /2 + c L τ 3 ε 2 ε 3 β 2 /2 c sup t n tt n+1 ku(t)k r+11 β 2 x m L ( p ε∂ x ) e s(∂ x +ε∂ 3 x ) ⌘⇣ e s∂ x m L ( p ε∂ x ) v ⌘⇣ e s∂ x m L ( p ε∂ x ) e s(∂ x+ε∂ 3 x ) (5.2.4) together with the expansions e s∂ x m L ( p ε∂ x ) = 1 + O(s∂ x m L ( p ε∂ x )), e ±s(∂ x +ε∂ 3 x ) = 1 + O ⇣ s(∂ x + ε∂ 3 x )

Lemma 5.3. 2 .!+ τ 3 ε 2 ε 1 β 0 c sup t n tt n+1 kuk r+7 2β 0 !+ c L τ 3 ε 2 ε 1 β 1 /2 c sup t n tt n+1 kuk r+7 β 1 !+ c L τ 3 ε 2 ε 3 β 2 /2 c sup t n tt n+1 kuk r+11 β 2 !

 2012 Fix r 0 and letβ 0 = min(1, β Q ), β 1 = min(2, β Q + β L ) and β 2 = min(6, β Q + 2β L ).T h e n ,t h e local error ϕ τ (u(t n )) Φ τ (u(t n )) satisfies kϕ τ (u(t n )) Φ τ (u(t n ))k r  τ 3 ε 2 c sup t n tt n+1 kuk r+5.

2 4 c sup t n tt n+1 kuk 5 !+ ε 1 β 0 c sup t n tt n+1 kuk 7 2β 0 !+ c L ε 1 β 1 /2 c sup t n tt n+1 kuk 7 β 1 !+ c L ε 3 β 2 /2 c sup t n tt n+1 kuk 11 β 2 ! 3 5 e c 1 t n ε , where c 1

 5011 depends on the H 3 norm of u.

  developped in Chapter 3 to Klein-Gordon type systems. We address that question in Chapter 4 in the context of Klein-Gordon-Schrödinger systems. Comparing the main result of Chapter 3 with that of Chapter 4,h o w e v e r , we notice one limitation right away. Due to the following behaviour e isch∇i c e is 1 2 ∆ = e isc 2 + O

τ p+1 K 0 ==

 0 kΦ τ (y(t n )) ϕ τ (y n )k r  ne TM τ p+1 K 0 Te TM τ p K 0  τ p K,
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  . The proof follows by the local error estimate in Lemma 3.3.9 together with the stability estimate in Lemma 3.3.10 by a Lady Windermere's fan argument (see appendix).

	Remark 3.3.12. Note that by (3.2.5)w eh a v et h a tu(0) 2 H r+1 if	
	z(0) 2 H r+1 and c 1 h∇i 1 c z 0 (0) 2 H r+1 .	(3.3.21)

Hence, if the solution z of (3.1.1)s a t i s fi e s( 3.3.21) we can conclude by local wellposedness of (3.2.4)t h a tt h e r e exists a T = T

  The assertion in H r , r > 3/2, follows by the local error bound given in Lemma 5.2.2 together with the stability estimate in Lemma 5.2.5 (with the stronger norm placed on the exact solution u(t n ))v i aaL a d y Windermere's fan argument (see appendix). Then under the given regularity assumptions on the exact solution (which imply that u is at least in H 4 ) we can prove the corresponding L 2 error bound by first proving convergence (with reduced order in τ but full gain of at least one factor ε)i nH 3/2+γ (γ > 0 arbitrary small), i.e., ku(t n ) u n k H 3/2+γ  t n τ δ εc sup

		!	
	0tt n	ku(t)k 4	e ct n ε
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for some

Plugging our findings from Lemmata 4.3.2 and 4.3.3 into the expansion (4.3.8) motivates the following scheme for ψ n+1 .

In the sections that follow we aim to carry out the error analysis of the scheme in (u n , ψ n ) given by (4.3.7)a n d (4.3.11). Before we begin we denote by ϕ t K , ϕ t S the exact flows of (4.2.3)a n d( 4.2.4)r e s p e c t i v e l ya n db yΦ t K , Φ t S the numerical flows corresponding to (4.3.7)a n d( 4.3.11) respectively, such that in particular it holds

Local error analysis

Lemma 4.3.4. Fix r > d 2 . The local error given by the di↵erences

and

Proof. This assertion follows by the bounds we have found for the remainder terms in (4. 

where

Proof. This claim follows by Lemma 3.3.1 and Corollary 1.2.3.

highest Fourier mode, in our domain [ π, π]. We run the simulation up to the end time T = 1, the smooth initial data we use is

, ∂ t z(0, x)=c 2 1 2 sin(x) cos(x) 2 cos(x) , ψ(0, x)=1 + i sin(x) 2 cos(x) , (4.6.1) and we have generated our H i -initial data, (i = 2, 3, 4), as explained in Section 6 of (KOS19).

In Finally, in Figures 4.6.5 and 4.6.6 we illustrate the asymptotic convergence of the first and second order schemes respectively. More precisely, for different values of c, we plot the difference between the numerical solutions and the solution of the limit system measured in the L 2 -norm. In this last numerical experiment, we have used a time step size of τ = 2 9 and the initial data (4.6.1).

Furthermore, we have carried out some experiments generated with H i initial data, i 2{1, 2, 3, 4}.I np a r t i c u l a r , we see the necessity of H 4 initial data for the Klein-Gordon component in order to achieve order c 2 asymptotic convergence. Nonetheless, our numerical experiments hint at asymptotic convergence for less regular data albeit with a slower rate. Hence we can conclude that

Plugging the above estimate into (5.2.9) we obtain that

which implies the assertion by Sobolev embedding.

Lemma 5.2.5. Fix r > 3/2.

T h en u m e r i c a lfl o wd e fi n e db yt h es c h e m e(5.1.6

) is ε-stable in H r in the sense that for two functions f 2 H r and g 2 H r+1 we have that

where the constant B depends on the H r norm of f and H r+1 norm of g.

Proof. First we need to show the key estimate

where for shortness we write

Let us note that

where thanks to the boundedness of m Q (see (5.1.2)) we have that Λ r m Q (v∂ x w), Λ r v kvk r kv∂ x wk r kvk 2 r kwk r+1 .

Thus we obtain that

(5.2.12) and it remains to derive a suitable bound on Λ r m Q (w∂ x v), Λ r v . For this purpose let us note that

(5.2.13)

For the second term in (5.2.13)w es e et h a t

(5.2.14)

For the first term in (5.2.13) we observe that as 

APPENDIX .1 Lady Windermere's fan argument

We will know discuss the telescopic identity that relates the local error and stability estimates to the global error estimate, that has been used as a pillar throughout this thesis. For further details on this type of argument we refer to (HLW06).

We suppose that y(t) is the exact solution to our partial differential equation, whose numerical approximation we call y n . We denote by

the exact and numerical flows respectively. The goal of this appendix is to prove that this numerical method is of order p, meaning, we aim to prove a claim of the following form.

T h e nt h e r ee x i s t sa1 > τ 0 > 0 such that for all 0  τ  τ 0 and t n  T the following estimate holds for y n given by the numerical flow ϕ τ (•) ky(t n ) y n k r  τ p K, for some constant K = K(sup 0tT ky(t)k r+δ ) > 0.

To this end, first, we assume boundedness of the solution, that is, fixing r > d 2 ,w ea s s u m et h a tt h e r ee x i s t sa T > 0 such that it holds sup 0tT ky(t)k r+δ  M ⇤ , for some M ⇤ > 0.

Additionally, we suppose that we have two types of estimates available for this numerical method. Firstly, a local error estimate of the form

for any f (t) in a sufficiently high Sobolev space H r+δ and some K = K(sup 0tT k f (t)k r+δ ) > 0 and we fix the smallest such δ 0. Then, we assume we have a stability bound of the following form available to us

for any f , g 2 H r and for some M = M(k f k r , kgk r ) > 0.

We will conduct an inductive proof by showing that we may bound the global error at step t n+1 by means of the global error at step t n . Furthermore we will show the telescopic identity that yields the desired global error bound pulling from local error and stability estimates in an iterative way.

At n = 1,w es e et h a t ky(t 1 ) y 1 k r = kΦ τ (y(0)) ϕ τ (y(0))k r  Kτ p+1 , for some K = K(sup 0tτ ky(t)k r+δ ) > 0,b yt h el o c a le r r o re s t i m a t e . Furthermore it holds, adding and subtracting the exact flow in terms of zero,

where the second inequality follows by the local error estimate and boundedness assumption and the third inequality follows if we choose 1 > τ 0 > 0 small enough and 0 < τ  τ 0 . Now, we assume there exists a 1 > τ 0 > 0 such that for all 0  τ  τ 0 all 1  k  n and t k  T we have ky(t k ) y k k r  τ p K and ky k k r  2M ⇤ , for some K = K(sup 0tT ky(t)k r+δ ) > 0. Now, at step t n+1 ,a d d i n ga n ds u b t r a c t i n gt h et e r mϕ τ (y(t n )) and applying the triangle inequality we obtain ky(t n+1 ) y n+1 k r kΦ τ (y(t n )) ϕ τ (y(t n ))k r + kϕ τ (y(t n )) ϕ τ (y n )k r .

We now are able to recognize that the a local error estimate may be applied to the former expression and we obtain kΦ τ (y(t n )) ϕ τ (y(t n ))k r  τ p+1 K, for some K = K(sup 0tT ky(t)k r+δ ) > 0, which is bounded by assumption.

As for the latter expression, one can see that it can be bounded via a stability estimate, which yields kΦ τ (y(t n+1 )) ϕ τ (y n+1 ))k r  τ p+1 K +(1 + Mτ)ky(t n ) y n k r , where M = M(ky(t n )k r , ky n k r ) > 0. By assumption, we know that the exact flow is bounded in H r .T h en u m e r i c a l flow at step t n is bounded by induction hypothesis.

If we carry out this iterative estimate until n = 0, we obtain