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Abstract 

Environmental benefits lie in reducing direct air pollution and greenhouse gas emissions. In contrast to 

thermal vehicles, electric vehicles (EVs) have zero tailpipe emissions, but their contribution in reducing 

global air pollution is highly dependent on the energy source they have been charged with. Thus, the energy 

system depicted in this manuscript is a photovoltaic (PV)-powered charging station (PVCS) based on a DC 

microgrid and includes stationary storage and public grid connection as power source backups. The goal is 

to identify the preliminary requirements and feasibility conditions for PV-powered EV charging stations 

leading to PV benefits growth. Simulation results of different scenarios prove that slow charging with long 

park time could increase PV benefits for EVs and may reduce the charging price, therefore, EV users should 

be more willing to stay at charging stations. Whereas, for fast charging, EV users should accept the high 

charging price since it depends on the public energy grid. For all these scenarios, the energy system 

distribution and EV’s energy distribution regarding its charge are well presented. 

On the other hand, the PVCS has to control the whole system considering the energy cost optimization; so, 

that it becomes an intelligent infrastructure for recharging EVs. The energy cost optimization problem is 

studied taking into account the intermittent arrival and departure of each EV, meaning that the energy 

optimization is operated in real-time power management. For this, a mixed-integer linear programming is 

formulated as an optimization problem to minimize the total energy cost, taking into consideration the 

physical limitations of the system. The interaction with the human-machine interface provides EV data in 

real-time operation, Regarding the prediction data, only PV power profile is required; the interface 

communicates the PV power prediction based on the solar irradiation prediction provided by the national 

meteorological institute in France. The optimization is executed at each EV arrival, with the actualized data 

in the DC microgrid. Simulation and real-time experimental results of different meteorological conditions 

show that the EV user demands are satisfied while the PV benefits grow and the energy cost is minimized, 

proving the feasibility of the proposed optimization problem for real-time power management. 

Furthermore, the deployment of EVs in a large scale will increase load demand and the burden on the public 

grid. However, vehicle-to-grid (V2G) service is promising and can bring benefits to the public grid 

operators and to the EV users, who will be rewarded. The goal is to study the energy management and to 

analyze the energy cost of the PVCS with the implementation of V2G service, taking into account the 

interaction of EV users with the human-machine interface. Simulation results show that the proposed 

energy management satisfies the EV user demands under V2G service, proving its feasibility. The energy 

cost analysis highlights the benefits of the V2G service, where the variable power scenario can make profits 

and the energy discharged of EVs into the grid is 75% of the total energy injected into the grid in peak 

hours. 

Lastly, based on a life cycle assessment mixed with carbon impact methodology, the carbon impact of the 

PVCS is studied and then compared with a grid-powered charging station. The obtained results show that 
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the carbon impact of the PVCS is highly dependent on the PV system, thus levers action are proposed with 

recent data and recycled materials. The proposed scenarios show a reduction in the carbon impact of a 

PVCS, as for the grid-connected charging station, the carbon impact is highly dependent on the electricity 

mix of energy. 

Keywords: carbon impact; charging station; electric vehicle; energy distribution; energy management; 

feasibility conditions; human-machine interface; microgrid; energy cost optimization; photovoltaic energy; 

power flow management; real-time experiment; vehicle-to-grid. 
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Résumé 

Les bénéfices environnementaux résident dans la diminution de la pollution atmosphérique directe et la 

réduction des émissions de gaz à effet de serre. Contrairement aux véhicules thermiques, les véhicules 

électriques (VEs) n'ont aucune émission d'échappement, mais leur contribution à la réduction de la pollution 

atmosphérique mondiale dépend fortement de la source d'énergie avec laquelle ils ont été chargés. Ainsi, 

le système énergétique décrit dans ce manuscrit est une station de recharge photovoltaïque (PV) (PVCS en 

anglais) basée sur un micro-réseau DC et comprend un stockage stationnaire et une connexion au réseau 

public comme sources d'alimentation de secours. L'objectif est d'identifier les exigences préliminaires et 

les conditions de faisabilité pour les stations de recharge de VE alimentées par PV menant à la croissance 

des avantages PV. Les résultats de simulation de différents scénarios prouvent qu'une charge lente avec une 

longue durée de stationnement pourrait augmenter les avantages du PV pour les VEs et réduire le prix de 

la charge. Par conséquent, les utilisateurs de VE devraient être plus disposés à rester à la station de recharge, 

alors que pour une recharge rapide, les utilisateurs de VE doivent accepter le prix de recharge élevé puisqu'il 

dépend du réseau électrique public. Pour tous ces scénarios, la distribution des énergies du système et la 

distribution des énergies dans la recharge des véhicules électriques sont bien présentées. 

De l’autre part, la PVCS doit contrôler l'ensemble du système en tenant compte de l'optimisation des coûts 

énergétiques afin qu'il devienne une infrastructure intelligente pour recharger les VEs. Le problème 

d'optimisation des coûts énergétiques est étudié en tenant compte de l'arrivée et du départ intermittents de 

chaque VE, ce qui signifie que l'optimisation énergétique est opérée en gestion de la puissance en temps 

réel. Pour cela, une programmation linéaire en nombres entiers mixtes est formulée comme un problème 

d'optimisation pour minimiser le coût énergétique total, en tenant compte des limitations physiques du 

système. L'interaction avec l'interface homme-machine fournit des données des VEs en temps réel. En ce 

qui concerne les données de prédiction, seul le profil de puissance PV est requis ; l'interface communique 

la prévision de puissance PV basée sur la prévision d'irradiation solaire fournie par l'institut national de 

météorologie en France. L'optimisation est exécutée à chaque arrivée d’un VE, avec les données actualisées 

dans le micro-réseau DC. La simulation et les résultats expérimentaux en temps réel de différentes 

conditions météorologiques montrent que les demandes des utilisateurs de VE sont satisfaites, tandis que 

les avantages du PV augmentent et que le coût de l'énergie est minimisé, prouvant la faisabilité du problème 

d'optimisation proposé pour la gestion de l'énergie en temps réel. 

De plus, le déploiement des VEs à grande échelle augmentera la demande de la recharge et l’impact sur le 

réseau public. Cependant, le service véhicule-vers-réseau (V2G) est prometteur et peut apporter des 

avantages aux opérateurs de réseaux publics et aux utilisateurs de VE, qui seront récompensés. L'objectif 

est d'étudier la gestion de l'énergie et d'analyser le coût énergétique du PVCS avec la mise en œuvre du 

service V2G, en tenant compte de l'interaction des utilisateurs de VE avec l'interface homme-machine. Les 

résultats de la simulation montrent que la gestion de l'énergie proposée répond aux demandes des 
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utilisateurs de VE sous le service V2G, prouvant sa faisabilité. L'analyse des coûts énergétiques met en 

évidence les avantages du service V2G, où le scénario de puissance variable peut générer des bénéfices et 

où l'énergie rejetée par les VE dans le réseau représente 75% de l'énergie totale injectée dans le réseau aux 

heures de pointe. 

Enfin, sur la base d'une analyse de cycle de vie couplée à une méthodologie d'impact carbone, l'impact 

carbone du PVCS est étudié puis comparé à une borne de recharge alimentée uniquement par le réseau. Les 

résultats obtenus montrent que l'impact carbone du PVCS est fortement dépendant de l'impact carbone du 

système PV, ainsi des leviers d'action sont proposés avec des données récentes et des matériaux recyclés. 

Les scénarios proposés montrent une réduction de l'impact carbone d'un PVCS. Toutefois, l’étude met en 

exergue que l'impact carbone des stations de recharge, alimentées par le réseau et/ou un micro-réseau basé 

sur de l’énergie PV, est fortement dépendant du mix énergétique électrique du pays où la station est 

implantée et où les composants du système ont été fabriqués. 

Mot-clés : conditions de faisabilité ; distribution d'énergie ; énergie photovoltaïque ; essais expérimentaux 

en temps réel ; gestion d'énergie ; gestion des flux de puissance ; interface homme-machine ; impact 

carbone ; micro-réseau ; optimisation des coûts énergétiques ; station de charge ; véhicule électrique ; V2G 

(véhicule-vers-réseau). 
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General introduction 

The world’s population is rapidly growing, in addition to the advancement in civilization, has led to a 

massive increase in energy demand. Despite the fact that fossil fuels are not sustainable, which have 

significant health and environmental impacts, they remain the largest source to the energy sector [1], [2]. 

During the combustion process of fossil fuel, greenhouse gases (GHG), as methane, carbon dioxide (CO2), 

and nitrous oxide are released in big quantities, which it also expected to increase over the time. These 

emissions will cause serious health problems, ice melting and rising sea level, climate change [3], which 

will endanger the human beings, their public health, and the food supply chain [4], [5]. The Paris agreement 

on climate change aims to limit the global warming to 1.5°C by 2050 [3], [6]. With the increasing concern 

of climate change, most countries have started implementing different strategies to avoid such scenarios. 

The Paris agreement sets a path to limit global rise in temperature by adopting bold steps to reduce GHG 

and enhance resilience to climate change’s irreversible effects [7]. Various strategies have been proposed 

to mitigate GHG emissions, such as improving the efficiency of existing technologies [8], [9], introducing 

new devices more efficient and have greater impact on the environment [10], [11], and increasing the 

penetration level of renewable energy sources (RES), which seems to be the most promising strategy to 

replace fossil fuels [12], [13]. RES are reliable, environmental friendly as they can produce energy with a 

nearly zero emissions of GHG [14]. 

However, RES have to get over many barriers and challenges, as infrastructure, feasibility, availability, 

sustainability, capacity, connectivity, and technical experience and skills of human labor. Among the most 

difficult challenges of RES is their grid integration, due to their intermittency [15]. Therefore, storage 

systems has long been recognized as an ideal solution to mitigate the intermittency of RES [16]. The 

transport industry is the origin for a large part of pollution [17], with a 56% of GHG emissions in Europe 

[18]. Therefore, the transition towards electromobility could be a promising solution. Electric vehicle (EV) 

is defined as a vehicle powered by electric motor, it could be a car, a bus, a scooter, a bus, etc... In this 

section, EV is narrowed to hybrid EV (HEV), plug-in hybrid EV (PHEV), and battery EV (BEV) [19]. 

HEV has an internal combustion engine (ICE) with a small electric battery pack, recharged by ICE and 

regenerative braking. PHEV is a HEV with higher electric battery capacity and can be recharged by plug it 

in. BEV has only an electric battery pack, it must be recharged by plug it in. EV has many advantages as it 

has no noise, no vibration, no smell, and easy gear transmission relatively to ICE vehicle (ICEV). 

In the recent report [20] about energy pathways to 2050, the French transmission system operator “RTE”  

has discussed the strategies to abandon fossil fuel and reach carbon neutrality in 2050 as of Paris agreement. 

The pathway will imply major changes on the economy and other sectors heavily dependent on fossil fuels. 

Despite the low carbon emission of the French power grid, however, it remains higher than world average 

when considering the carbon impact of imports. Alternatives are proposed as reducing energy consumption, 

increase in the share of electricity mix, and increase the reliance on RES. Many scenarios were studied and 
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analyzed based on four axes: technical, economic, environmental, and societal. The scenarios for the 

consumption trajectories as cited in the report are: sufficiency, extensive reindustrialization, rapid 

electrification, less electrification, less energy efficiency, and hydrogen. As for the scenarios for the 

generation mix are: 100% RES in 2050, distributed, large RES, RES and new nuclear level 1, RES and new 

nuclear level 2, RES and new nuclear level 3. They concluded that by 2030, France must develop more 

RES and extend the lifetime of the existing nuclear reactor to reduce the carbon emission by 55%. By 2050, 

it is possible to reach carbon neutrality with cost-effective but most importantly action should be taken 

immediately. It is worth mentioning that the baseline projection regarding the energy consumption for the 

transport section goes from 15 TWh nowadays to 100 TWh in 2050. Moreover, the 100% RES needs a 

massive increase in development rates to phase out nuclear plants by 2050, thus solar capacity should be 

increased from 30 GW to 70 GW or 200 GW in the highest projection, which is costly. 

As for the French distribution network operator “ENEDIS” in its report [21] shows no difficulties in the 

integration of electromobility into the French grid, yet the growth of EV charging infrastructure remains 

slow. As per ENEDIS, in 2020, there were 70 k EVs sold which is the double of EVs sold in 2019 despite 

the COVID pandemic and around 30 k public charging stations. In 2021, there are around 500 k EVs on 

the roads in France. Moreover, optimizing the charging of EVs could bring savings to the user and reduce 

the negative impact of the public grid. Three possibilities to optimize the charging management: shifting 

the charging time where the energy tariff is advantageous, adjusting the charging power to reduce the 

charging demand, and management to maximize photovoltaic (PV) benefits during the day. Furthermore, 

a fleet of EVs could offer flexibility by discharging the stored energy in the EVs’ batteries to the public 

grid when needed. 

In light of growing concerns of global warming and pollution from fossil-fuel power plants, renewable 

energies can therefore reduce carbon emissions and GHG. Furthermore, the energy transition promotes the 

growth of renewable energy sources, but these can involve the complexity of the electrical grid, in the sake 

of reliability and quality. Thus, the concept of microgrid (MG), which is based on RES, storage devices, 

load and a public grid connection, could solve these problems, balance the production and consumption of 

energy, and bring benefits to the end user by reducing electricity costs, transmission costs as well as lower 

distribution, and also less energy loss for long transmission lines. 

Moreover, electromobility related to the emergence of EVs in cities will no longer be a complexity to the 

power grid but will instead involve providing services associated with the grid such as flexibility and multi-

energy resources. In this context, the following issues are discussed: renewable energy, design and sizing 

of the energy system, charging EVs, power grid availability, load stations analysis. An advanced search in 

Scopus with a filter on microgrid in the abstracts, titles, keywords, and specifically searching within EV 

charging station from 2010 to 2021 shows an increasing interest in this field, as illustrated in Figure 1, yet 

still not a lot of research as the number of publications is not significant. 
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Figure 1: Electric vehicle charging station publications with the microgrid context. 

Therefore, this thesis aims to investigate an energy system capable of optimizing energy flows and 

facilitating interaction between an intelligent infrastructure for recharging EVs (IIREVs), EVs, and a 

connection to a nearby building, as shown in Figure 2. 

 

Figure 2: Innovative energy system [22]. 

This IIREVs is conceived as MG that considers the vehicle-to-grid (V2G), which is the discharge of EV 

batteries in the public grid, vehicle-to-home (V2H), which is the discharge of EV batteries in the building, 

and infrastructure-to-home (I2H), where the energy produced by the IIREVs but not used by EVs feeds 

directly into the building appliances, as shown in Figure 3. The research work aims at developing the MG 

and facilitate the interaction between the IIREVs, the public grid, EV users and the nearby building. 
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Figure 3: Strategies proposed by the IIREVs [22]. 

The research work aims at developing a technical-economic optimization methodology and tool that take 

into account the intermittent arrival of EVs and the services mentioned above for the IIREVs, with respect 

to various constraints. The simulation is operated under Matlab/Simulink environment, the optimization 

problem is solved by CPLEX in C++, and then the real-time experiments are conducted in different 

meteorological conditions in the experimental platform STELLA, as shown in Figure 4. 

 

Figure 4: Experimental platform–STELLA. 

The goal of this thesis is to design and develop an intelligent energy management system that optimizes 

power transfer in the IIRVEs, adapts to limits imposed by the grid, considers the various constraints 

imposed by users, and minimizes both the final energy cost for the EV user and the negative impact on the 

public grid. 

To accomplish these objectives, this thesis is structured into six chapters as shown in Figure 5. 
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Figure 5: Thesis outline. 

Chapter one ‘Photovoltaic-powered charging station’ gives a general overview of the electromobility 

transition in order to combat the climate change. Then, it introduces the EV charging station that is powered 

by PV sources and it is called PV-powered charging station (PVCS), giving an overview of EV charging 

station over the world. Literature review and the status in France are presented. Later on, the positioning of 

this manuscript is compared with the previous work at Avenues and the literature review and the main 

contribution is this thesis. 

Chapter two ‘PV-powered charging station: preliminary requirements and feasibility conditions’ introduces 

the driving characteristics, the charging profiles, and the PVCS in order to identify the preliminary 

requirements and feasibility conditions. On this basis, simulation tests are conducted, for several scenarios, 

taking into account various EV charging profiles and the data of the least monthly PV energy production 

in Compiegne, France. The goal is to identify the conditions to maximize PV benefits while charging the 

EVs. 

Chapter three ‘Intelligent infrastructure for recharging electric vehicles: energy management and cost 

optimization’ presents the IIREVs that is a PVCS but with an intelligent energy management system to 

optimize the power flow, aiming at PV benefits growth, and minimize the energy cost. The supervisory 

control system is introduced that includes four layers: prediction, human-machine interface (HMI), energy 

cost optimization, and operation layer. The optimization problem formulation is presented with its 

constraints and simulation cases, conducted in different weather conditions, prove the effectiveness of the 

proposed optimization algorithm. 

Chapter four ‘Real-time power management including optimization problem for PV-powered electric 

vehicle charging station’ describes the experimental platform STELLA, where real-time experimental tests 

are conducted. Various cases are studied; different EV power profiles interacting with HMI and in different 

weather conditions to prove the superiority of the proposed optimization algorithm. 
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Chapter five ‘PV-powered charging station: energy management with V2G operation and energy cost 

analyses’ investigates the implementation of V2G operation in the PVCS. The energy management is 

presented, simulation cases are conducted with different EV power profiles and weather conditions and 

their results are analyzed. 

Chapter six ‘PV-powered charging station: carbon impact methodology’ presents the carbon impact 

methodology for a PVCS. The carbon impact is detailed for each component in the PVCS. Then, the carbon 

impact of the PVCS is compared with the charging station only powered by the public grid in France and 

other countries. 

Lastly, general conclusion and the perspectives of this research are given. 
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 Photovoltaic-powered charging station 

This chapter gives a general overview of the electromobility, the description on the charging EV and its 

characteristics, and introduces the PVCS that is powered by PV sources presenting some existing PVCS 

over the world. Literature review and the current status in France regarding the PVCS are presented. Later 

on, the positioning of this manuscript is compared with the literature review and previous work at Avenues 

laboratory. This chapter is constructed as follows: Section I.1 introduces the transition towards 

electromobility. Section I.2 presents the PVCS. Section I.3 is a literature review on the PVCS. Section I.4 

presents the EV and PVCS research work in France. Section I.5 outlines the previous research work in 

Avenues laboratory and the main contributions in this thesis. Section I.6 concludes the chapter. 

I.1. Electromobility 

The section is based on the recent report of Global EV Outlook 2021 [23] of the International Energy 

Agency (IEA) stated that despite the pandemic, there are 10 M EVs, deployed worldwide by the end of 

2020, as shown in Figure 6. A 43% increase to 2019, after a decade of fast growth, due to national policies 

and international efforts. The expansion of EVs fleet will keep reducing GHG emissions, with the net saving 

over ICEVs increasing with the time, depending on how fast the power production decarbonizes. Although 

the current success of EV penetration, achieving the climate targets is still challenging and needs further 

actions and policies from all governments to promote EV charging infrastructure. The cost of EVs will keep 

decreasing manufacturing materials and battery technology improve. 

  

(a) (b) 

Figure 6: Stock of EVs in the market by (a) region and (b) transport mode, based on [23]. 

In Europe, the car market has dropped by 22% in 2020. However, new EV registrations has increased to 

1.4 M, representing 10% of car sales. The highest registration of EVs was in Germany with 395 k, followed 

by France with 185 k, and the United Kingdom (UK) with 176 k. Whereas, in Norway, 75% of car sales 

were EVs, followed by 50% in Iceland, 30% in Sweden, and 25% in the Netherlands. BEVs represent 54% 
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of EVs registered in 2020, exceeding the PHEVs. The highest share of BEVs registered was 82% in the 

Netherlands, followed by 73% in Norway, 62% in UK, and 60% in France. 

In China, the car market has dropped by only 9% as they were less impacted by the pandemic. However, 

new EV registrations have increased from 4.8% in 2019 to 5.7% of car sales. BEVs represent 80% of EVs 

registered in 2020. In the United States of America (USA), the car market has dropped by 23%. However, 

new EV registrations has increased 2% of car sales, to register 295 k new EVs. BEVs represent 78% of 

EVs registered in 2020. 

Fuel cell EVs are zero-emission vehicles, using fuel cell to convert hydrogen stored onboard into power. 

Fuel cell EVs were available on the market in 2014, their registrations still are 3 times lower than EVs due 

to the lack of hydrogen recharging stations among others. The Fuel cell EV stock has increased 40% in 

2020, where Korea leads the way with 29% of fuel cell EV stock, followed by 27% in the USA, 24% in 

China, and 12% in Japan. 

Although most EV charging is performed at home and at workplace, installing public chargers will be 

crucial for leading countries in EV adoption to make it simpler and provide autonomy for EV users. In 

2020, there were 1.3 M public chargers deployed, 30% were fast chargers. The deployment of these public 

chargers has increased by 45% over 2018, but had a slower rate by 85% over 2019 due to the pandemic. 

China leads with the most public available chargers in slow and fast modes. 

In 2020, the deployment of slow chargers (charging power less than 22 kW) has increased in China by 65% 

to reach 500 k public slow charger, which represents more than half of the globe’s stock of slow chargers. 

While, Europe comes in second place with 250 k public slow chargers, and increase of a third by 2020. In 

the USA, the deployment of public slow chargers has increased by 28% to reach 82 k by 2020. Whereas, 

the deployment of fast chargers (charging power greater than 22 kW) has increased in China by 44% to 

reach 310 k public fast charger. Whilst, Europe increased the rate of deployment of fast chargers more than 

slow chargers by 38 k public fast chargers, and increase of a 55% by 2020. In France, there are only 2 k 

public fast chargers. In the USA, the deployment of public fast chargers has increased to reach 17 k by 

2020, 60% are Tesla superchargers. As for private chargers, there are 9.5 M chargers for low duty vehicles 

in 2020, where 7 M chargers are deployed at homes. 

In 2020, EVs helped in reducing GHG emissions worldwide by more than 50 Mt CO2, eq. Yet, to reduce 

even more GHG emissions, EV deployment should be accompanied by decarbonizing the power grid. BEVs 

have 20-30% lower GHG emissions over ICEVs, throughout their manufacturing, use, and end of life. This 

advantage is more evident in countries where their grid energy mix is more decarbonized, as in European 

Union (EU) and especially France. As EV fleet is growing and expanding rapidly, it is expected to increase 

significantly the charging load on the grid over the years. Therefore, ensuring security and reliability of the 

grid is critical and possible solutions could be investing in smart charging, or charging EVs with renewable 

energies to reduce the burden on the grid. 
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I.2. PV-powered charging stations 

The following subsections describe the type of charging process, type of EV charger, charging levels, 

microgrid based charging station architecture, hierarchical control and overview of PVCS. 

I.2.1. Type of charging process 

The types of charging process of EV batteries are conductive charging, wireless charging, and battery 

swapping [24], shown in Figure 7. Conductive charging requires an electrical outlet having two connectors, 

one is plugged in the charging terminal to transmit power and the other is plugged in the EV to receive 

power. This charging is suitable for slow and fast charging as well as the efficiency is high. Wireless 

charging can be either inductive or capacitive coupling, where no standard cables and connectors are 

required. The wireless charging can be dynamic, yet the losses increase and the cost of coils will increase 

also the price of the EV. Moreover, as wireless charging is slow and the efficiency is low, the charging 

process will take longer time than if it is conductive charging with the same charging power. Therefore, the 

CO2 emissions will increase. Electronic devices in the charging device will increase also its complexity. In 

the static wireless charging, the device can not be displaced and must be left on a surface, therefore the 

charging area is limited. Battery swapping is based on battery replacement, which is done in less than a 

minute. Standard battery size and type are required and charging stations should be able to handle many 

batteries. In this research work, conductive charging is the type of charging applied. 
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(a) (b) 

 

(c) 

Figure 7: (a) Conductive charging, (b) Battery swapping [25], and (c) Wireless charging [26]. 

I.2.2. Type of EV chargers 

There is two types of EV chargers [24], shown in Figure 8, on-board charger, where the charger is inside 

the EV, and off-board charger, where the charger is outside the EV and its weight is reduced. On-board 

charging is dedicated for slow charging power and EVs are charged with AC sources, whereas, off-board 

charging is dedicated for fast DC charging and the possibility to participate in V2G. The main disadvantage 

of on-board charger is the maximum power charging and it does not offer the possibility of vehicle-to-x; 

on the other hand, off-board charger has to face challenges of battery heating and the cost of charging is 

therefore high. 
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Figure 8: On-board and off-board chargers. 

I.2.3. Charging levels 

The charging stations are classed based on the voltage level that correspond to the power rating, where level 

1 and level 2 corresponds mostly to the on-board charging and level 3 corresponds to the off-board charging. 

The charging rate determine the charging time, charging cost, charging equipment, and public grid 

utilization. The different levels of charging stations are presented in Table 1 [24]. 

Table 1: Charging station levels. 

Supply type Levels Voltage range Current range Power rating Charger type 

Single phase AC Level 1 
120 V 

240 V 

16 A 

13-16 A 

1.9 kW 

3 kW 
On-board 

Single/three 

phase AC 
Level 2 208-240 V 80 A 20 kW On-board 

Three phase / 

combo charging 
Level 3 300-600 V 400 A max 120-240 kW Off-board 

DC Level 1 200-500 V <80 A 40 kW Off-board 

DC Level 2 200-500 V <200 A 100 kW Off-board 

DC Level 3 200-600 V <400 A 240 kW Off-board 

The DC charging is preferred over AC charging as the PV and stationary storage are DC sources, the energy 

flow in EVs is DC, easier implementation of V2G with DC charging. 

I.2.4. Microgrid-based charging station architecture 

A MG-based charging station could have three architectures based on the type of the common bus [24], AC 

MG, DC MG, and hybrid MG. 

In the AC MG-based charging station architecture, as shown in Figure 9, all the sources and loads are 

connected through their dedicated converters to the common AC bus. PV sources are connected to a DC/AC 

inverter including maximum power point tracking (MPPT), the stationary storage is connected to a 

bidirectional DC/AC converter. Whereas, wind turbines are connected to AC/AC converters, the EV 
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chargers are connected to AC/DC inverters and the grid connection does not require any inverter where it 

can provide more flexibility for charging/discharging the stationary storage but it requires power 

compensation to measure the active power at the point of common coupling. This architecture gives an 

option for sizing independently each component, and by controlling reactive and active power separately 

can yield to stabilize the bus voltage. In case of fault or grid failure, the MG is isolated by switching off the 

point of common coupling on the AC bus and it continues supplying the loads. 

 

Figure 9: AC microgrid-based charging station architecture. 

In the DC MG-based charging station architecture, as shown in Figure 10, all the sources and loads are 

connected through their dedicated converters to the common DC bus.  

 

Figure 10: DC microgrid-based charging station architecture. 

The PV sources are connected to a DC/DC converter working with the MPPT, the stationary storage is 

connected to a bidirectional DC/DC converter, and the EV chargers are connected to DC/DC converters, 

they could be bidirectional if V2G is applicable. Whereas, wind turbines are connected to AC/AC 

converters, and the grid connection requires a bidirectional AC/DC inverter, which is essential to ensure 
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the continuity of the charging as the PV source is intermittent. As EV charging is DC, thus DC MG 

architecture is more efficient due to lower conversion stages. Usually, the droop control is used to maintain 

the stability of the bus voltage. 

Hybrid MG-based charging station architecture, as shown in Figure 11, combines both AC and DC MG 

where there are two buses feeding AC and DC loads. It combines the advantages of both AC and DC MG, 

where DC sources are connected to a DC/DC converter as PV sources and the stationary storage are 

connected to DC/DC converters, and the EV chargers are connected to DC/DC buck converters. Whereas, 

the grid connection does not require any inverter and maintains its AC voltage to supply AC loads. The 

interlinked converter is essential to link AC and DC parts, it transmits power in both directions, and can 

work in both modes to ensure the power balance between the two parts based on the actual demands. 

 

Figure 11: Hybrid microgrid-based charging station architecture. 

DC MGs have become recently more attractive and popular than AC MG in industrial sites, commercial 

buildings and households as the difficulty for AC MGs lie in stabilizing the bus voltage and the frequency. 

The following are the main advantages of the DC MG: 

 DC based RES need only one stage conversion to be connected to the DC bus, while, they need 

single or three phase inverters to be connected to the AC bus. Whereas, AC based RES need two 

stage conversions to be connected to the AC bus. This reduction in conversion stages can result in 

system cost reduction; 

 DC sources are highly reliable and efficient; 

 No reactive power in DC sources, therefore, low power loss and high transmission capacity are 

attained; 

 Controlling DC MG can be simply done by controlling the power source on the DC bus. 
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I.2.5. Hierarchical control 

The hierarchical control is also an important subject to evoke for MGs. There are three control levels; 

primary control, secondary control, and tertiary control, which are depicted in this section. 

The primary control is the primary level of the control structure, which includes the current and voltage 

droop controllers, and proportional-integral controllers. The primary level is driven by reference signals 

generated by the secondary control level, which is represented by the energy management system. It 

regulates the dynamic response of each component connected through their dedicated converters. The main 

goal of the energy management system is to maximize RES utilization, minimize the energy cost with 

respect to imposed constraints, and reduce the negative impact on the stationary storage and public grid. 

The main concern is the economic operation, where dynamic electricity tariffs, ancillary services, and 

controllable EV charging could be the main parameters to be used to minimize the operation cost. 

Moreover, energy management system can offer possible revenues in case of extra power generation of 

RES. The tertiary control is the upper level that gives reference signals to the secondary control considering 

the state of the public grid. This level should coordinate the global power management between different 

charging stations. The main goal is to plan the charging of EVs in a smart way, which depends on various 

parameters and characteristics of the EVs, to provide some merits to the public grid as peak load reduction. 

I.2.6. PV-powered charging stations overview  

Therefore, charging EVs with RES, especially with PV sources, help increasing the environmental benefits 

of EVs and is a key element in reducing their GHG emissions [27]. PV systems can be installed on car 

parking shades or building rooftops and dedicated for EV charging, where they are called by PVCS and 

they can operate in island mode or grid-connected mode. Figure 12 shows a typical PVCS, where they 

consist of: 

 PV sources installed on the parking’s area; 

 Power electronic devices represented by dedicated converters as DC-DC converters including 

MPPT or DC-AC converters; 

 Storage system used to compensate the difference of PV power production and charging load. 

lithium-ion batteries are widely used as well as lead acid batteries can also be used; 

 EV supply equipment needed to connect EV to the charging terminal as power cable, connector 

plug-in, protection devices, and user interface of the charging station; 

 Other materials as mounting structures for PV arrays, switches, and wires. 
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Figure 12: Typical PVCS [27]. 

Energy management system is needed to control and monitor the flows of energy in the PVCS to ensure a 

defined objective as minimize the charging cost and satisfy the EV user with full charging process. These 

PV-powered infrastructures are dedicated for charging EVs, or feeding energy to buildings, or injecting 

power into the grid. The following shows an overview and some existing infrastructures for PVCS in 

several countries. 

Beam Global have installed EV ARCTM 2020 [28] as a free public charging unit for EV in San Diego, USA, 

as shown in Figure 13. It is compact in area, sustainable, powered by PV, off-grid, and transportable, where 

it can be transported and installed anywhere in minutes, as it does not require any construction or electrical 

work. 

 

Figure 13: EV ARCTM 2020, Global Beam charging unit [28]. 

The PV arrays can reach 4.3 kWp, a storage system is integrated into the charging unit with an energy 

capacity up to 43 kWh, which allows EV to charge up to 426 km and in all circumstances, including 

nighttime and bad weather, and even blackout. It can charge any brand charger up to 4.3 kW and up to six 

EVs at a time, withstand wind speed up to 193 km/h and flood level up to 2.89 m. However, when the 

storage is empty, charging of EV will be limited to the PV power and will last long.  

Fastned [29], a Dutch company, installs charging stations fully powered by PV sources and wind turbines, 

as shown in Figure 14. Their infrastructures are standalone, without storage systems, and their charging 

power can reach up to 350 kW in DC. 
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Figure 14: Fastned charging point [29]. 

Paired Power have their DC SEVO SunStationTM [30], as in Figure 15, fully powered by standalone PV 

sources that can provide up to 16.8 kWp with 48 PV panels and charge six EVs. 

 

Figure 15: SEVO SunStationTM [30]. 

Secar Technologie have their E-port [31], which is made of carbon fiber and 360° bifacial PV cell 

technology, as shown in Figure 16. It can be connected to the grid and can have a storage system. It can 

provide up to 3.78 kWp and 5.67 kWp with 12 and 18 PV panels respectively and charging power of 22 

kW with the assistance of the grid and the storage system. 

 

Figure 16: Secar Technologie E-port [31]. 

MDT-tex presents the Solar Carport [32], which is made of PVC material covering two parking lots with a 

square of 5.3x5.3 m in two formats symmetrical and asymmetrical mast, as shown in Figure 17. These 
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shapes help storing rainwater in a covered water tank after going into the drainage pipes, and through the 

filtration system. It can provide up to 5.4 kWp with 15 PV panels and have lithium-ion as storage system 

with 8.5 kWh, it is grid-connected and can charge electric bikes and EVs with a maximum charging power 

of 22kW using Mennekes AMTRON Premium type 2. 

 

Figure 17: MDT-tex Solar Carport [32]. 

Tesla have their new supercharger V3 [33], as shown in Figure 18, which can provide up to 250 kW. Their 

infrastructures have PV sources and lithium-ion batteries as powerpack [34], with up to 232 kWh AC as 

the grid charges them mainly. 

 

Figure 18: Tesla Supercharger V3 [33]. 

IRISOLARIS has installed its FLEXSUN with mixed energy solutions as part of the renovation of the 

Gardanne’s train station, offering free charging terminals for EVs in protected parking zones [35], as shown 

in Figure 19. The energetic renovation has started in February 2020, to be operational in summer 2020, 

undertaken by Aix-Marseille-Province metropolis. The park provides 352 parking places, where EV users 

can come to park and charge their EVs freely to encourage them to use public transport in favor of the 

environment, over an area of 950 m2 covered by PV panels providing an energy of 130 kWp capable of 

charging 16 EVs and 56 electric bikes. EVs are charged mainly by the PV sources, and a storage system 

can store excess PV energy and may take over the EVs charging; also, part of PV energy is injected into 

the grid and sold. 



-44/227- 
 

 

Figure 19: PV-powered infrastructure at Gardanne’s train station [35]. 

Transdev, the public transport operator in southeast Queensland, Australia, has announced that it will test 

a 39 seater electric bus charged only by PV sources [36], as shown in Figure 20. 

 

Figure 20: Transdev electric bus PV-powered depot [36]. 

Two hundred and fifty PV panels, producing an average of 438 kWh/day, cover the depot, equipped with 

10 Tesla Powerwall batteries with 135 kWh energy capacity. The stored energy is used to charge the electric 

buses, having 348 kWh battery capacity per bus and giving an average range up to 300 km per bus. Further 

improvements are desirable, as the storage system is only capable of charging around one third of an electric 

bus energy capacity. 

A PVCS is implemented in SAP Labs in the south of France, where EVs can charge in workplace and it 

includes a power management system and parking time management [27], as shown in Figure 21. SAP 

Labs France are a subsidiary of SAP SE company, and are interested in the electromobility transition. In 

the context of energy transition and reducing GHG emissions, SAP Labs are installing PV sources to 

generate clean energy and reduce its dependency on the public, along with implementing software to 

optimize the peak load consumption. They are increasing the PV installation over the car parking as their 

EV fleet is expanding. 
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Figure 21: PVCS at SAP Labs Mougins, France [27]. 

There are 252 PV panels installed on the roof, occupying an area of 428 m2, with an optimal inclination of 

10° and oriented to the east west. They can produce around 80 kW and an estimated annual production of 

78 080 kWh. A second-life batteries are used as storage system with an energy capacity of 150 kWh. The 

software, e-mobility, allows an intelligent communication between the operators and the EV users, as 

receiving information regarding the remaining charging time and notifications when charging is completed, 

it allows a better management and optimizes the energy costs. The charging stations is composed of three 

parts, classed by their location: 

 North: it comprises ten charging terminals at 7 kW each; 

 South: it comprises 24 charging terminals at 22 kW each; 

 Building: it comprises two charging terminals at 50 kW each, and one charging terminal at 150 kW 

with two electrical outlets. 

Most of these infrastructures have slow charging, whereas, Tesla and Fastned have ultra-fast chargers with 

250 kW and 300 kW respectively. Only Fastned is grid independent, while the other infrastructures depend 

on the grid to either charge EVs or the storage system. Despite the fact that these EV charging stations are 

PV-powered, yet their PV power is limited even if they are equipped with stationary storage, they depend 

mainly on public grid power. Even more, there is no optimization of energy cost or power flow and no 

smart or intelligent charging based on algorithms to increase PV benefits or reduce the energy cost. 

Thereafter, this research work presents a PVCS, which is an intelligent infrastructure that optimizes the 

power flow of sources to minimize the energy cost. 
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I.3. Literature review 

A feasibility study has been conducted in [37] for a PVCS, as shown in Figure 22, in a technical, economic, 

and environmental aspects in four cities in Australia, Brazil, Norway, and The Netherlands. They 

investigate how a PVCS can contribute in charging EVs with different grid energy mix, and compares the 

CO2 emissions of charging EVs solely from the grid, with charging EVs from the PVCS, as well as ICEVs. 

Technically, in the countries with high irradiance over the year, PVCS performed more efficiently than in 

countries with high variability of irradiance over the year. Economically, PVCS still not feasible as the cost 

of storage system remains expensive. Environmentally, PVCS can reduce CO2 emissions in countries where 

their grid CO2 footprint is high, where it is significant with high annual average irradiance. 

 

Figure 22: PVCS as proposed by [37]. 

In [38], a supervision control system has been studied for a smart charging of a fleet of EVs in a PVCS 

research based building. Their strategy is based on a real-time operation to satisfy EV users using PV 

forecast and EV charging historical records over 4 years in the research to predict the EV power profiles. 

A user-friendly smart charging has been developed in [39], where the EV user is a key player in the process 

of choosing the best scenario among uncoordinated charging, smart charging, and bidirectional smart 

charging control. The proposed methodology is based on a real-time rule-based controller and a linear 

optimization model predictive control. Different scenarios were examined, where input data are received 

for PV power prediction and electricity prices, as well as data received from the EV user. Afterwards, the 

EV user has to choose his final scenario after comparing the results of the scenarios presented. The results 

showed that bidirectional had the best cost reduction, then comes smart charging, compared to 

uncoordinated charging control. When the EV discharges into the grid, their user gain profits and 

considering the overall operation charging/discharging, it can reduce the charging bill up to 50% compared 

to uncoordinated charging. A novel linear technique has been presented in [40] to limit the number of 

discharging cycles of EVs in V2G operation using model predictive control based optimization. The 

proposed constraint was actually nonlinear, thus the used technique linearized the constraint. The 

simulation cases were considered for different values of discharging cycles, where it is supposed that the 

EV user will choose his discharging cycle, and the results showed that the novel linear technique performed 
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in all cases and is satisfied. The reward gained by V2G was high as the discharging cycles become bigger, 

however, even with one discharging cycle, the reward is still interesting as the discharging cycle was done 

during peak energy price. An overview in [41] has been given on the smart charging studies, taking into 

consideration PV power and electricity consumption. They have presented the different actors involved in 

the smart charging system, the interaction with the grid and its impact, the expected outcomes from the 

smart charging and the optimization algorithms applied to achieve these objectives, and the different spatial 

configurations applied for smart charging; in residential buildings, in non-residential buildings, and in 

charging stations. 

A mixed integer linear programming (MILP) optimization problem has been presented in [42] to optimize 

the scheduling of charging/discharging of EVs in a charging station, which integrates PV sources and 

storage system, based on the EV user priorities and electricity tariff. The simulation results showed that the 

proposed optimization problem have maximized the satisfaction of EV users and minimized the operation 

cost of the charging station. An energy management system design has been proposed in [43] to predict PV 

power production, using autoregressive integrated moving average model, and to optimize the power flow 

between PV sources, grid, and EVs in a workplace. Moreover, a MILP has been presented in [43] to reduce 

charging costs, grid energy, increase PV self-consumption. An optimal energy management algorithm has 

been investigated in [44] to minimize the peak load consumption in a university campus, which integrates 

PV sources, storage system, and smart parking lot for EVs. They have proposed a time allocation method 

to prioritize the charging/discharging of EV based on priority and rules that take into account decision 

factors set by the user and EV data. Simulation results proved the efficiency of the proposed method and 

outperformed the conventional charging scheme, which has a significant impact on the peak load 

consumption. An EV aggregator optimization problem using the alternating direction method of multipliers 

has been proposed in [45], which is a scalable distributed convex optimization framework. This method 

allows evaluating up to 1 million EVs to solve the valley filling problem and minimize the charging cost. 

The results showed the computational time increases linearly with the number of EVs and performs better 

than the centralized optimization as the number of EVs increases. The authors in [46] have addressed a 

real-time charging scheme in an EV charging station for a demand response application. They have aimed 

to minimize the energy cost paid to the grid and to maximize the number of designated EVs for charging. 

They have also proposed a modified convex relaxation algorithm to solve the computational problem and 

to be appropriate for real-time calculations. Their results proved the efficiency of the proposed method and 

their goals are satisfied. Mixed integer programming has been studied in [47] to minimize the cost of energy 

traded to the PVCS, where the intermittency of PV power can be compensated and green classed EVs can 

discharge energy to the PVCS. The EVs were classed in three categories and the results showed that the 

increase of green EVs, only this category of EVs where their users can allow discharging of energy into the 

charging station, can reduce the total cost of the PVCS. MILP has been used in [48] to optimize the sizing 

of a PVCS, to minimize the investment cost and the operational cost, considering the uncertainties of PV 

and EV charging power profiles, in which it has been modeled using probability distribution function. The 
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results showed that EV charging station powered by PV are more cost-effective than EV charging station 

powered by the grid. 

A fuzzy logic method has been described in [49] to arrange charging/discharging of EVs in a charging 

station with fair and optimal approach, based on the EV state of charge (SOC), charging time, electricity 

tariff. They have proposed also a scheduling optimization problem formulated as linear programming (LP) 

to optimize the charging/discharging level of the connected EVs. Their results proved the efficiency of the 

proposed method by introducing V2G service to reduce the charging cost. LP has been presented in [50] 

for static EV charging scenario, where the charging power is constant based on EV demands that are known 

in advance, and heuristic algorithm has been proposed for dynamic EV charging scenario where EV can 

leave anytime. The objective was to increase the revenue of the aggregator and reduce the charging cost for 

the EV users. 

Dynamic programming (DP) has been formulated in [51] for a hierarchical management scheme in a 

distribution network to coordinate charging of EV fleet, to reduce peak loads and charging cost with respect 

to constraints. DP has been also proposed in [52] to reduce computational load of EV charging fleet, studied 

as an aggregate battery, than the results of the charging cost were compared to heuristic algorithm. An 

approximate DP based energy management system has been described in [53] to reduce the operation costs 

of an EV charging station with different types of chargers, then the DP algorithm is combined with 

evolution algorithm to find the ideal charging start time for each EV. DP has been investigated in [54] to 

find the optimal charging schedule as a smart charging for EVs in order to reduce the charging cost 

considering behavior of EV users. 

Quadratic programming (QP) has been used in [55] for a distribution grid with a fully decentralized mode 

integrating vast PV sources and EVs to optimize the power flow, to reduce the losses in the distribution 

grid, to reduce PV curtailment, to provide high satisfaction for EV users. QP has been studied in [56] to 

reduce the total grid power for utilities, where PHEVs can operate in smart charging/discharging. In V2G 

mode, the PHEVs achieved peak load shaving and benefits to the power grid. QP has been introduced in 

[57] for a fleet of electric buses to optimize the charging based on scheduling charging, the objective was 

to reduce the charging cost and the load power variations. Robust optimization has been presented in [58] 

to schedule the EVs’ regulation capacity while maximizing the profits, considering market rules of the 

independent system operator in the US, the random arrival and departure of EVs. Stochastic programming 

has been proposed in [59] to study the uncertainties of EVs and electricity tariffs for the optimal behavior 

of EVs in a parking lots and to optimize the participation level of each EV in demand response program. A 

game theoretical approach has been studied in [60] to solve the charging scheduling problem of EVs in a 

parking lot, considering transformer capacity constraints and other constraints. A genetic algorithm has 

been presented in [61] to optimize the charging time of PHEVs in a PVCS and to reduce the charging cost. 

A MILP optimization problem has been proposed in [62] to find the optimal sizing of PV and storage 

system for an EV ultra-fast charging station. Simulation results proved that the proposed optimization 
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problem can reduce the annualized cost of the charging station, taking into consideration investment and 

maintenance cost of PV and storage system, and grid energy cost. A nonlinear programming optimization 

has been presented in [63] to minimize battery aging of electric bus by proposing overnight charging, taking 

into account grid power, electric vehicle supply equipment, and electric bus operating conditions as 

constraints. A dynamic wireless power transfer for charging EV has been described in [64], which consists 

of many stationary ground side coils and a moving vehicle side coil. The results showed that the dynamic 

wireless power transfer is equivalent to the stationary system. Solenoid coils were used instead of circular 

coils for better performance. An energy management architecture for PV battery charging station has been 

presented in [65], where individual and parallel charging are studied to reduce the charging cost and time. 

The proposed method prioritizes the charging depending on the highest SOC or a voltage threshold, then 

the next battery is charged to the same threshold, and in the final stage, all batteries are charged in parallel.  

To sum up all the above cited references, despite the various optimization methods used in the literature 

such as MILP to minimize the charging cost of EVs, DP to coordinate the charging of EVs, QD to reduce 

the losses in the distribution grid, and other heuristic and stochastic algorithms, they did not evoke the real-

time optimization for a PVCS. Firstly, preliminary requirements and feasibility conditions were not well 

identified for such PVCS in order to increase PV benefits. Secondly, the optimization problem formulated 

in the above references were based on EV prediction profiles, whereas, real-time optimization was not 

studied to extent to our knowledge and no human-machine interface existed to exchange and communicate 

information with the PVCS. Therefore, EV uncertainties such as time of arrival, time of departure, SOC of 

arrival, SOC at departure, charging power, were not well considered in most considered and they were 

predefined. Moreover, the real-time optimization will be validated in simulation and experimental test in 

the STELLA platform. In addition, V2G service is studied to reduce energy cost during peak periods. 

Lastly, the carbon impact methodology is presented and compared with a charging station powered by the 

grid. 

I.4. EV and PVCS research work in France 

In [66], Femto-ST laboratory has studied the system control and economic operation optimization of a 

charging station. The coordinated control techniques, for the primary control, has been addressed with 

implementation of PV sources and storage system to ensure the stability in real-time operation of an EV 

charging station. MPPT method is applied to extract maximum power from PV sources, which are modelled 

as an ideal diode, the stationary storage is connected to a bidirectional DC/DC converter, and the grid is 

connected to a 3-phase AC/DC converter, where all these components are connected to a DC bus. A phase 

lock loop is applied to synchronize the AC part with the public grid. An event-triggering-driven energy 

management has been proposed to perform coordinated control. The charging sport of each EV is allocated 

based on a fuzzy logic guiding system based on its urgency. Thereafter, an approximate DP based energy 

management system has been proposed to reduce the charging station operation costs, then the optimization 
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algorithm is combined with the evolution algorithm to find the optimal charging start time for each EV. 

Lastly, a finite-horizon Markov decision process has been presented for the optimal operation of the EV 

charging station powered by PV, using V2G service to provide ancillary services, considering uncertain 

behaviors of EV users and dynamic electricity tariffs. Their proposed DP method can reduce operational 

costs to 50% compared to the uncoordinated charging. Furthermore, as approximated DP only determines 

the charging start time of the EV, this has offered an autonomy to provide the optimal charging profile, 

which can improve battery lifetime. As for V2G operation, the total operation cost is reduced and the battery 

lifetime is considered as the charging/discharging cycles are reduced. 

In [67], a literature review on installation frameworks, highlighting the key features, has been conducted in 

an non electrical perspective for EV charging station. In addition, it has identified the trade-offs between 

various power charging infrastructure and the BEV users demands, taking into account: BEV asset and 

range, private charging accessibility, public infrastructure accessibility, BEV adaptability with the charger 

in terms of technical limitations. Also, it has addressed the optimal BEV battery capacity for rural and urban 

usage, as well as the deployment of fast chargers. Furthermore, it has investigated, using mixed-effects 

regression, the impact of economic, socio-demographic, and technical aspects on EV penetration in France. 

The mixed-effects regression is an extension to linear models that considers time-variant and constant 

covariates to analyze EV adoption. As well, it has outlined the policy recommendations to hasten the 

transition towards electromobility. 

In [68], Femto-ST laboratory has proposed an efficient hierarchical energy management strategy for a 

hybrid charging system that is based on PV sources, storage system, and grid connection to fulfill the 

demands of EVs. It has been implemented to maximize PV energy, to respond to the variable load of EVs, 

taking into account the fast response of the storage system, and to mitigate the stress on the grid. The PV 

sources are modelled using the ideal diode model, where MPPT is used to extract maximum power and 

applied to interleaved boost converter to regulate PV output voltage. The stationary storage and EV charger 

are interfaced with a 3-phase interleaved bidirectional converters. This strategy has improved the overall 

performance, the reliability, and the energy cost. Moreover, to enhance the power quality, an efficient 

energy conversion step has been proposed using interleaved buck-boost converters, and an extended 

Kalman filter has been studied to estimate the SOC of a lithium-ion stationary battery. Their proposed 

charging system with the interleaved converter has a high efficiency and improved power quality, as well 

as the extended Kalman filter helped estimated SOC value near real value. 

I.5. Previous work in Avenues laboratory 

The research unit Avenues, team of “Energy management and urban microgrid”, has more than 10 years of 

expertise in the fields of renewable energy, DC MG, and energy management. They have directed nine 
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PhDs until this day. This part shows the previous work done in Avenues laboratory that is only relevant to 

DC MG, optimization, and PVCS. 

Issam Houssamo was the first PhD student who started working on DC MG. The objectives in his thesis 

[69] were to study, investigate, and implement a multisource system in a DC MG considering some aspects 

of power quality. He developed a purely experimental model of PV source and a classical MPPT algorithm 

was upgraded to obtain the maximum PV power. The storage priority was proposed as first energy 

management system, proved the technical feasibility of the DC MG PV based, where the appliances in a 

building were taken as the load, and experimental tests were realized. The main findings proved the 

applicability of the experimental model of the PV sources and the improved perturb and observe method to 

extract the maximum power. As for the stationary storage, the dynamic model, which depends on various 

parameters, was not the best model to use as the parameters change and the static model could be used as a 

simplified model of the stationary storage, which neglects the temperature and internal resistance. As for 

the grid connection, phase lock loop and resonant corrector were used to improve the quality of the DC bus 

voltage and to insure the synchronization of the AC part to the public grid. 

Then, Baochao Wang in his thesis [70] has proposed a building integrated DC MG, for on-grid operating 

mode, and a multi-layer supervision system was developed to optimize the energy cost using prevision data. 

The supervision system provides power balance, and real-time experimental tests were conducted to prove 

the feasibility of the proposed system, considering uncertainties. The supervision system can interact with 

the end-users through an interface, exchange information with the smart grid, receive meteorological 

previsions, and perform day-ahead energy management. The proposed supervisory control can operate in 

on-grid and off-grid and the optimization problem was proved to be cost-effective for a building integrated 

DC MG in both simulation and experimental tests. 

Later on, Leonardo Trigueiro Dos Santos continued in his thesis [71] the study of the energy management 

to keep the stability of the DC bus voltage, to optimize the energy cost using improved prediction methods 

to predict more accurately PV power. Moreover, he has proposed a demand side management by applying 

a knapsack method to maximize the use of electric appliances when load shedding is required to keep the 

DC bus voltage stable. The proposed methods were proven by real-time experimental tests. The proposed 

load shedding algorithm was validated in simulation and experimental tests as well as the supervisory 

control to operate and to optimize the energy cost for on-grid and off grid for a DC MG. 

Furthermore, Changie Yie in his thesis [72] has studied the impact of diesel generation integration in a 

standalone DC MG with the application of supercapacitors to mitigate the slow startup of the diesel 

generator and to maintain the power quality. A control strategy has then been proposed to keep the DC bus 

stable of the MG and it is been validated in simulation and experimental tests. In addition, an optimization 

problem has been proposed to reduce the energy cost of the diesel generator, fuel cost, and the total energy 

cost of the DC MG. The results found have proved that supercapacitors mitigate the slow startup of the 

diesel generator and the proposed control strategy was able to maintain the stability of the DC MG bus and 
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to coordinate between the power sources. Even more, the optimization problem in comparison with the 

normal operation mode is proved cost-effective, which is validated in simulation and experimental tests. 

More after, Hongwei Wu in his thesis [73] has focused on the study and analysis of the losses in the DC 

MG and energy models of converters were conceived to analyze the variation of losses in the different 

operating points. The implementation of models and the use of dynamic yields improve the overall 

performance of the MG. Real-time experimental tests were carried out to validate the application on the 

converters in the DC MG. The results found showed that the efficiency of the PV converter is in the range 

of 80-90%. The losses considered in the study are related to the conduction and commutation for the 

transistor, diode, and the copper losses in the inductance, thereafter, the estimated efficiency of each 

converter is acceptable. The dynamic converter efficiency method has improved the energy quality and the 

global efficiency of the DC MG, which has been validated in simulation and experimental tests. 

Lastly, Wenshuai Bai in his thesis [74] continued the study of a building integrated DC MG in urban area 

in a full operation mode, combining the advantages of on-grid and off-grid modes. Therefore, the full DC 

MG integrates PV sources, stationary storage, grid connection, backup diesel generator, and supercapacitors 

to mitigate the slow startup of the diesel generator. Dynamic efficiency and power losses of the converters 

have been also considered in the full DC MG. The main results showed that the proposed supervisory 

control system for full MG performed better than on-grid or off-grid and has a lower load shedding cost. 

Dian Wang in her thesis [75] has proposed an rule based algorithm for the PVCS that interacts with the 

human-machine interface, considering EV user uncertain behaviors and their random choices. Simulation 

results were conducted to prove the feasibility of the proposed algorithm along with a shedding and 

restoration algorithm where it is not possible to fully charge the EVs in the station. Then V2G service was 

proposed in the PVCS to reduce peak power problems during peak periods and to reduce the public grid 

energy cost. The proposed algorithm had a good performance and the PVCS can interact with EV users and 

satisfy their demands. In addition, V2G service can bring benefits to EV users in the meantime satisfying 

the users. 

A survey on the social acceptance of an PVCS has been conducted in [22]; a case study in France. The 

results showed that vast majority accept the PVCS, yet have some concerns that have to be taken into 

consideration in the implementation of some urban cases. Youssef Krim, post-doctoral position, in his 

research work [76] has focused on a quantitative assessment of the PV benefits obtained from PVCS. A 

technical-economic tool based on Visual Basic for Applications on Excel has been developed for the 

proposed methodology in three phases to help PVCS owners in determining the preliminary requirements 

and feasibility conditions of a PVCS, considering local constraints. 

In [75], a PVCS has been designed and modelled that interact with EV users and it was simulated with a 

proper power management, however, the real-time optimization was not a center of interest in the thesis. 

As for the prior theses done in Avenues laboratory and related to the optimization, neither the EVs nor the 

PVCS were evoked as their load was mainly on the building load. Therefore, this manuscript focus on 
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proposing a real-time optimization algorithm for a PVCS to minimize the total energy cost. As for the 

literature review, many papers have proposed optimization problem for charging stations, yet they have not 

highlighted the interaction with EV users in a user interface. Moreover, their optimization algorithm is 

based on EV prevision profiles. Our novelty lies in proposing an optimization problem that interacts with 

EV users using the HMI in a real-time operation and is validated in experimental tests. 

In chapter two, the goal is to define the preliminary requirements and feasibility conditions for PVCS in an 

urban area and to emphasize the importance of a business model that can influence the EV users’ behavior. 

The main contributions are: 

 A PVCS model is proposed, which consists of PV sources, stationary storage system, public grid 

connection, and EVs. This model satisfies the EV user demands while improving PV-benefits for 

EVs if the following requirements and feasibility conditions are considered: 

 On user behavior/flexibility: 

a. Prefer daily charging over weekly charging; 

b. Accept long and slow charging when possible; 

c. Limit charging to the number of kWh required for the daily trip, or charge more when 

PV power is available; 

 On technical aspects: 

a. Limit charging power and stationary storage power to about 7 kW; 

b. Choose an optimal size for stationary storage; 

c. Give priority to charging stationary batteries by PV over charging from the grid. 

In chapter three and four, the objective is to perform a real-time control under optimization for the minimum 

energy cost and the maximum PV energy for each EV for IIREVs considering the intermittent and random 

arrival of the EVs, featuring the EV users’ interaction. The main contributions are: 

 Proposing a new real-time power management, including energy cost and PV energy optimization 

for the IIREVs considering the intermittent and random arrival of EVs, where the optimization is 

performed at each EV arrival; 

 The analysis of the energy distribution by source category for EV charging and the entire station 

energy system; 

 The validation of the proposed control under optimization in simulation and real-time experimental 

tests in different weather conditions and different random EV power profiles. 

Chapter five focuses on a PVCS equipped with five chargers that could support slow, average and fast 

charging. It highlights the importance of participating in V2G in peak hour in terms of energy share among 

other sources and the income in variable power charging/discharging. The main contributions are: 

 An energy management system conceived so that the PVCS can operate to charge EVs as well as 

V2G service; 
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V2G service can bring benefits to the PVCS by either reducing its energy cost or by selling energy 

to the public grid; however, the energy discharged from EVs into the public grid is significant 

comparing to the PV energy injected into the public grid during peak periods. 

In chapter six, the carbon impact estimation of PVCS is detailed; the PVCS is a car parking shade equipped 

with PV sources, stationary storage, and grid connection. Then, a comparison with a grid powered charging 

station (PGCS) is presented and analyzed. The main contributions in this chapter are:  

 Presenting a methodology to calculate the carbon impact for PVCS; 

 Comparing the results with a PGCS considering the electricity mix of several public grids. 

I.6. Conclusions 

The growing concerns on climate change and its repercussions on the planet has forced to act and find 

solutions to combat climate change. As transport sector is considered one of the major contributors to emit 

CO2, therefore, the transition towards electromobility is seen as a promising path to reduce carbon emission. 

Even though when EVs are rolling on the roads emit zero or low carbon emissions, their global carbon 

emission throughout their life cycle depend highly on the production phase, power charging phase and end 

of life phase. Thus, combining zero-emission EVs with clean energy sources as PV can reduce the carbon 

emission compared to ICEVs. Thereafter, EV charging station powered by PV is a growing research topic. 

This chapter has started with an overview on the electromobility and its recent outlook report that shows 

the expansion of EVs and its infrastructure over the world. Then, a description on the charging is evoked 

as type of charging process, type of chargers, level of charging, architecture of MG-based charging station 

and the hierarchical control. Later on, the PVCS is described, which is based on MG concept and some 

existing infrastructure has been addressed. A literature review about the PVCS has been presented in this 

chapter and the positioning of this thesis has been identified regarding the literature review and the previous 

work done in Avenues laboratory. 

The next chapter will introduce the PVCS and the driving characteristics of the EV users. First, a Simulink 

model of the PVCS was developed and then case studies were realized in order to identify the preliminary 

requirements and feasibility conditions. 
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 PV-powered charging station: 

preliminary requirements and feasibility conditions 

This chapter presents the preliminary requirements and feasibility conditions for a PVCS aiming at 

increasing PV benefits. Based on a DC MG, the charging station integrates PV sources, stationary storage, 

and public grid connection. Following the description and simulation validation, PV benefits increase for 

EVs charging when the park time for EVs is long, the charging mode is slow, and the charging power is 

variable. This chapter, presented in [77], is constructed as follows: Section II.1 gives an introduction. 

Section II.2 presents the literature review. Section II.3 describes the charging infrastructures for an electric 

vehicle. Section II.4 presents the driving characteristics and charging load profiles. Section II.5 represents 

the PVCS simulation results and discussion. Section II.6 concludes the chapter. 

II.1. Introduction 

Nowadays, the problems related to electrical energy are emerging worldwide and all countries are facing 

challenges, whether for its management, operation, production, or even transport. Fossil fuels are the major 

source of energy production. Therefore, electric-powered vehicles are a promising alternative to fossil-fuel-

powered vehicles, in the automotive industry. EVs have been the center of attraction due to their 

environmental and health benefits. 

The charging of EVs will become a serious issue and will increase the burden on the public grid, as EV 

stock continues to grow and expand. The charging of EVs during the day will increase the peak load, as 

shown in Figure 1a. However, EVs are considered a flexible load unlike uncontrollable loads; therefore, 

the charging of EVs can be controlled and shifted to other times to prevent the peak load by implementing 

a smart charging framework, for example, overnight charging as shown in Figure 23b. However, this can 

constrain EV users, whose behavior is hard to predict and control. 
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(a) (b) 

Figure 23: (a) EVs charging and peak load; (b) Shifted EVs charging to overnight. 

To overcome this constraint, the EVs can charge with PV energy which is a reliable and effective option, 

to reduce the burden on the public grid [78]. Thus, while the EVs are being charged with green energy [79], 

[80], the EV market will be encouraged since EVs contribute to minimizing the impact of transportation on 

the environment [50], [79], [81]. 

Different charging/discharging frameworks of EVs exist [82]: 

– Uncontrolled charging: the EV starts charging immediately until its battery is fully charged or the 

EV user unplugs their vehicle [83]. This framework can be expressed as uncoordinated charging 

or immediate charging where the EV is charged at maximum power with no restrictions [84], [85]. 

In this framework, there is not any interaction between the EV users and the electrical grid. This is 

the worst scenario since it charges the EV with the maximum power to be fully charged in the 

shortest time imposing difficulties on the grid and peak load [86]. 

– Delayed charging: when the park time (time duration for an EV parked in a station) is longer than 

the actual required time of charging, therefore, the EV charging can be delayed taking into account 

the time of use price and can be charged during the low-cost and off-peak energy period [83], [84]. 

– Average charging: the EV is charged at constant power depending on the park time in which the 

EV is able to meet the requested SOC or full SOC, where it is not necessary to charge with full 

power [84]–[86]. 

– Smart charging: the EV users provide the public grid with information regarding the park time and 

the requested charge that must be supplied before leaving the station. Therefore, renewable energies 

are used first to supply the load then the public grid will control and shape the EV charging profiles 

and minimize the charging costs [83]. 

– Smart discharging: known as V2G, the EVs act as stationary storage allowing to discharge power 

back to the public grid [83]. This will improve the electrical grid efficiency and reliability. 

Delayed charging can be considered as a smart charging framework, since it changes the charging start 

time, charging end time, and charging power, yet most importantly delivering the requested energy to the 

Increase power peak
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EV. Additionally, the average charging can be considered as an uncoordinated charging framework, since 

it starts charging immediately when the EV is plugged-in but with limited power [86]. The delayed charging 

profile is similar to the uncontrolled charging profile but the peak load is shifted to overnight/dawn (around 

5:00 am and 9:00 am). Whereas, in average charging, the profile is flattened instead of having a peak [84]. 

Uncoordinated charging of EVs may increase the peak load, imposing a heavy burden on the public grid 

leading to more losses. Therefore, through smart charging or coordinated charging, EVs can be an asset for 

the grid by helping to increase penetration of renewable energies, balancing the energy system, and 

improving the efficiency of the system while satisfying EV user demands [87]. Coordinated charging is 

classified into two types, time coordinated charging and power coordinated charging as in [88]. In time 

coordinated charging, the number of EVs that can charge is controlled to ensure the total load demand is 

within the available power for EV charging. Whereas, in power coordinated charging, the power of EV 

charging is controlled to ensure the total load demand is within the available power for EV charging. 

The most important parameters in EV modeling are the charging/discharging rate, initial SOC, battery 

capacity, charge depleting distance, and user behavior, which is hard to predict in advance. In addition, the 

arrival time at the charging station, the departure time, and the driving distance of the EV are variables, 

depending on user habits. They can, however, be assumed and follow probability distribution functions 

[85], [89]. For this purpose, probability distribution functions are generated to determine the arrival time at 

the charging station, the departure time, and the driving distance of the EV. Then, the energy needed to 

fully charge the EV is calculated and the total charging time of the EV is the energy needed to fully charge 

the EV over the charging rate [85], [89], [90]. 

II.2. Literature review 

Since the EV market is growing vastly, many research studies are expanding, in this field, especially 

regarding the charging process for EVs. A home-scale EV charging station based on hydrogen has been 

proposed in [91]. They have compared, environmentally and financially, their scheme with a conventional 

vehicle, fossil fuel-based, having the same characteristics and with an EV charged directly from the public 

grid. They have shown that with the EV charged with hydrogen, no fossil fuel is required, it has zero carbon 

emissions, and the EV charged by hydrogen or electricity is cheaper than oil/petrol over a year. In [92], the 

minimum size and cost of a charging station for EV fleets has been studied in two urban areas in Europe, 

as well as the impact of the charging station on the electrical grid in terms of power and energy demand. 

Their analysis has identified some policies and highlighted that the critical barrier for charging station 

deployment in urban areas could be the time required to implement charging stations. In [93], the authors 

have proposed an EV charging control scheme from the grid operator perspective rather than the EV user. 

They have proposed a method to change indirectly the route of the EV using dynamic pricing to improve 

the system operation, keep the voltage stable, and meet charging demands. The optimal operation of a DC 
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MG-based EV charging station using mixed-integer linear programming has been studied in [94]. The 

operation aimed to optimize the daily operating cost, based on PV production forecast and EV needs. In 

[95], the authors have studied a bi-level planning model of charging stations, by establishing a travel pattern 

model based on a Monte Carlo simulation and driving data of EVs. They aimed at satisfying the needs of 

EV users and minimizing the total social cost. The authors of [96] have designed the aspects and presented 

the practical implementation of a solar-assisted EV charging station. A smart charging strategy has been 

presented in [97] for a plug-in EV network that provides different charging options; battery swapping 

facilities at the charging station, AC level 2 charging, and DC fast charging. The strategy aimed at finding 

the optimal charging station considering the minimum driving time, charging cost, and charging time. In 

[98], the authors have evaluated the factors affecting the EV charging demand and predicted the charging 

demand of various EVs under different circumstances; such factors are driver behavior, electricity pricing, 

location of charging stations, social characteristics of the EV user, and economic elements. Their results 

contributed to identifying optimal locations for charging stations to maximize their utilization. The authors 

of [99] have analyzed competitive interactions for different EV charging stations with renewable energy 

sources using a game-theoretical analysis. The objective is to maximize the revenue of each EV charging 

station, subject to physical constraints. Their results have shown that EV charging stations equipped with 

renewable energy sources decrease the electricity price and increase the revenue of the EV charging station. 

An EV charging station based on PV sources, stationary storage, diesel generator, and a public grid 

connection has been implemented in [100]; so it can operate in three modes: grid-connected, islanded 

operation, and diesel generator set connected. Their test results have proved the capability of the EV 

charging station under different conditions. In [101], a real-time rule-based algorithm has been proposed 

for the operation of a DC MG-based EV charging station with imposing charging power limit depending 

on power availability. They have focused on the management strategy for the EV charging station, 

highlighting the interaction with EV users. Their results have proved the feasibility of the intelligent 

management proposed, including EV shedding and EV restoration priority, and its efficiency in considering 

user choices. 

In [102], the authors have proposed an optimization problem to reduce the stress on the grid and to reduce 

the cost of consumed energy. They have proposed a model predictive to forecast EV’s power demand. They 

have proposed to charge the EVs by PV, storage, and grid instead of directly feeding the EVs from the grid. 

In [103], the authors have investigated peak load reduction using PV, storage, and a vehicle-to-grid strategy 

for EVs. They have focused on increasing the capacity of the storage to decrease the grid dependency. The 

authors of [104] have investigated the charging of EVs using PV energy in the workplace. They have 

studied the optimal sizing of storage to make the charging station grid-independent. However, these articles 

did not propose different charging modes for the EVs, they have focused on reducing peak load demand or 

reducing the cost of energy consumed by the grid rather than increasing the PV benefits for the EV users. 

Moreover, the energy distribution system and energy distribution for each EV are not depicted in these 

papers. 
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However, to the extent of our knowledge, the previously cited references have not discussed the preliminary 

requirements and feasibility conditions for an EV charging station, while satisfying EV user needs and the 

factors that can influence their choice to increase PV benefits and lower their charging cost from the public 

grid. 

In previous studies, home charging represents 75% of EV charging time, the longest duration of vehicle 

dwelling time, and workplace charging represents 14% of EV charging time. These two locations have the 

largest opportunity for charging [84]. EV users tend to charge their EV based on their convenient time and 

place rather than what the public grid operators prefer and when the electricity price is cheap to prevent 

negative impact on the public grid [86]. In this chapter, the goal is to define the preliminary requirements 

and feasibility conditions for PV-powered EV charging stations in an urban area and to emphasize the 

importance of a business model that can influence the EV users’ behavior. 

II.3. Charging infrastructure for electric vehicle 

The charging infrastructures rely on the relations between driving needs, charging equipment usage, EV 

stock, and technical capabilities. Population density, driving range, and charging behavior are specific 

factors that have direct implications on the geographical location of the EV supply equipment and on the 

charging rates, for electric low-duty vehicles. Two charging modes, slow and fast charging [105], [106], 

are presented in this paper, which denotes the charging rate for an EV. 

Slow charging is mostly rated at 3 kW, but in reality, it is ranged between 1.8 kW and 6 kW. Charging time 

depends on the charging rate and the EV energy capacity, thus, a full charge takes 6–12 h for 3 kW. Slow 

chargers are common for most EVs, they can be found everywhere, e.g., at home, workplace, and public 

places. EV users tend to charge at home overnight for long charging. 

Fast charging is typically rated from 7 kW up to 22 kW (single or three-phase 32A), where charging an EV 

with 40 kWh capacity takes 4–6 h with 7 kW and 1–2 h with 22 kW. The majority of fast chargers provide 

AC charging, however, some infrastructures are equipped with 25 kW DC chargers with CHAdeMO 

connectors. Fast chargers can be found in public places, such as shopping centers, car parks, workplaces, 

supermarkets, train stations, and airport parking. 

The sizing and characteristics of PVCS depend on the PV installation (parking shade or building-integrated 

PV), solar irradiation potential, stationary storage, and the adopted business model. The viability of well-

designed PV-powered EV charging stations depends on social acceptance, PV benefits, and the business 

model. 

Private chargers stand for 90% of global EV chargers in 2019, as profitability, convenience, and various 

supports and incentives are the main motivations of the universality of private chargers [107]. The preferred 

locations are home and private workplaces to charge the EV. The infrastructure for home charging is a 
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compatible electric socket and charger plug, which already exists in homes. Nearly 60% of EV users have 

access to private chargers in China based on The China EV Charging Infrastructure Promotion Agency 

recent report published in 2019 [106]. The EVs consume approximately 75% of energy from private 

charging at home and at the workplace, in the United States, United Kingdom, and the European Union 

[108]. 

II.4. Driving characteristics and charging power profiles 

People have different attitudes and living styles, and therefore, they differ in their driving patterns, which 

significantly affects the spatial-temporal distribution of the charging load (e.g., EV battery). However, the 

EV charging load profiles vary and depend mainly on the type of charging preferences, EV user habits, and 

energy consumption rates. In [109] the driving data for different users are analyzed in time and space 

dimensions to understand driving patterns of different populations, grouped by age as a demographic 

attribute. The daily driving distance is the factor to compare the behavior of different EV users. The U.S. 

National Household Travel Survey dataset, as in [109], shows the daily driving distance and where the 

elderly drive for a short distance. 

Based on these data, the daily average urban/peri-urban trip can be deduced as 20–40 km. With two driving 

modes, normal drive with 15 kWh/100 km and eco-drive with 10 kWh/100 km, therefore, the daily energy 

consumption rate is 3–6 kWh for a normal drive and 2–4 kWh for an eco-drive. Considering the above and 

an average EV battery, e.g., 50 kWh, Figure 24 shows the required time for 80% of EV’s SOC charging 

(green lines) and 10% of EV’s SOC charging (orange lines), depending on power delivered by the terminal 

and accepted by the EV battery. 
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Figure 24: Required time for EV charging based on demand charge and delivered/accepted power. 

For delivered and accepted power of 1.8 kW, the time required is more than 24 h to charge 80% and around 

3 h to charge 10% of EV battery capacity. On the other hand, the time required is around 1 h to charge 80% 

and around 6 min to charge 10% of EV battery capacity, for delivered power of 100 kW and accepted power 

of 50 kW. Thus, a 10% increase of charge, e.g., 5 kWh, is possible with reasonable charging time depending 

on delivered/accepted power. Therefore, an EV charging load profile must be built to increase PV benefits 

for PVCS. 

II.5. PV-powered charging station power flow management 

The PVCS considered in this chapter and illustrated in Figure 25, includes stationary storage and public 

grid connection and is modeled using MATLAB/Simulink R2015b. 
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Figure 25: PVCS scheme. 

In Figure 25 PV  MPPTp  is the PV power in maximum power point tracking (MPPT) mode, PVp  is the PV 

power, Gp  is the public grid power, Sp  is the stationary storage power, EVs Dp  the EVs total demand 

power, and EVsp  is the total EVs power. 

The public grid can absorb or supply power. The capacitor C represents a common DC bus, where the 

components of the charging station are coupled through their dedicated converters. PV sources are 

connected to the DC bus through the DC/DC converter to extract the MPPT power. 

The stationary storage is needed to construct the DC MG and it is connected through a reversible DC/DC 

converter. The DC load, represented by the EVs’ batteries, is connected through the DC/DC converter. The 

public grid connection is required to ensure power at all times and mitigate the power difference between 

the power production and the load demand; it is connected through a three-phase bidirectional AC/DC 

converter. The stationary storage is charged by PV sources only and can discharge power to the DC 

common bus. 

The energy management strategy, as shown in Figure 26, follows the priorities: PV is the first energy source 

to charge EVs, then stationary storage is the second energy source, and the public grid is the last energy 

source to charge EVs. Stationary storage is charged with excess energy produced by PV sources and the 

public grid by excessive energy from PV sources when the stationary storage reaches its maximum limits 

(power or state of charge). 
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Figure 26: Flowchart for the power flow management of the PVCS. 

The design of the PVCS is based on a DC MG, as shown in Figure 25. Therefore, it is required to keep the 

power balance [110] given by (2.1): 

 0 0 0( ) ( ) ( ) ( ), ={ , , 2 ,..., },PV i EVs i S i G i i Fp t p t p t p t  with t t t t t t t       (2.1) 

where it , 0t , t , and Ft  are continuous time, initial time instant, time interval between two samples, and 

time instant at the end of time operation respectively. 

The PV power is calculated in MPPT mode, PV  MPPTp , [111] as given by (2.2) and (2.3): 
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where _PV STCP  is the PV power under standard test conditions (STC), g  is the solar irradiation, 

= 0.29% / C   is the power temperature coefficient, PVT  is the PV cell temperature, PVN  is the number 

of PV panels, ambT  is the ambient temperature, 41.5NOCT C   is the nominal operating cell temperature, 

= 20air testT C  is the fixed air temperature, and 
2= 800 /testG W m  is the fixed solar irradiation for testing. 

A simplified state of charge of the stationary storage [112], Ssoc , is used as in (4) for its simplicity, where 

self-discharge and temperature are not taken into account, and the over-charging/discharging protections 

[35] are expressed by (2.5) and (2.6): 
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 _ _( ) ,S min S i S maxSOC soc t SOC   (2.5) 

 _ _( ) ,S max S i S maxP p t P    (2.6) 

where 
0SSOC  is the initial Ssoc , SE  is the energy capacity (kWh) of the stationary storage, _S maxSOC , 

_S minSOC  are Ssoc  maximum and minimum limits, and _S maxP  is the stationary storage power limit. 

Regarding the EV battery, its dynamic state of charge, 
vEVsoc , is given by (2.7): 

 1 _
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where v  is the index of the EV, 
vEVsoc  is the state of charge of v  vehicle, _ vEV arrSOC  is arrival state of 

charge of v  vehicle, vN  is the EVs total number,
vEVp  is the EV charging power of v  vehicle, vE  is the 

energy capacity of v  vehicle, 
varrt  and 

vdept  are the arrival and departure time of v  vehicle respectively. 

The EVs are charged using the PV energy, stationary storage energy, and grid energy. The distribution of 

these energies is calculated as follow by (2.8), (2.9), and (2.10) respectively: 
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where 
vPVE , 

vSE , and 
vGE  are the PV energy, stationary storage energy, and public grid energy 

respectively consumed by v  vehicle during the charging period. 

II.6. PV-powered charging station power flow management 

simulation results and analyses 

This paper presents two case studies for the PVCS: PV parking shade for one private charger and PV 

parking shade for nine chargers at the workplace. The two cases are simulated under the same solar 

irradiation profile. Regarding the EVs, lithium-ion batteries were considered and it was assumed they have 
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the same EV’s battery capacity of 50 kWh, while the driving characteristics and charging profiles covered 

a daily needed charge of 2–6 kWh, as described in Section 3, but they are not exclusive. 

For all scenarios, the following assumptions were considered: 

– Charging station location is in Compiegne, France, where the yearly average solar irradiation is not 

very high; 

– PV panel is Sunpower SPR X21-345 with 21% efficiency under STC; 

– Mounting position is fixed and optimized as follows: slope angle 38° and azimuth angle −2°; 

– System loss was estimated at 14% system loss; 

– Lithium-ion batteries were considered for the stationary storage and its limits were chosen as 20% 

and 80% for _S minSOC  and _S maxSOC  respectively. 

With the objective of determining preliminary requirements and feasibility conditions of PVCS that may 

bring some PV benefits, the following subsections present and analyze several scenarios as well as 

simulation results. 

II.6.1. Case 1—private charging station: PV parking shade for one 

private charger 

Case 1 considered a PV parking shade of nine PV panels, i.e., 3.1 kWp, like the example illustrated in 

Figure 27.  

 

Figure 27: PV parking shade. 

In this case, the lowest monthly PV production is in December, as shown in Figure 28, with an average 

daily of 3.88 kWh. To reach 2–6 kWh, stationary storage and public grid connection are required for 

complementary energy. PV can either charge directly the EV or the stationary storage during the day and 

thereafter, the stationary storage can charge the EV during the evening/night. For this case, the public grid 

power limit was set to 9 kVA, the stationary storage capacity and its power limit were chosen 4 kWh and 

5 kW respectively. 
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Figure 28: Monthly PV production - Case 1. 

Figure 29 shows the solar irradiation g (W/m2) and PV  MPPTp  for 24 December 2019 in Compiegne. 

 

Figure 29: Solar irradiation and PV MPPT power - Case 1. 

II.6.1.1. Scenario 1a 

The hypotheses for the scenario 1a are shown in Table 2. 

Table 2: Hypotheses for Scenario 1a. 

EV 
number 

Arrival 
time 

SOC at 
arrival 

Desired SOC 
at departure 

Charging 
mode/Power 

EV1 10:30 60% 68% Slow/1.8 kW 

Figure 30 shows the system power flows and the stationary storage SOC evolution. 
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Figure 30: Scenario 1a, system power flows and stationary storage SOC evolution. 

As PV power was insufficient to fully charge the EV with a constant power of 1.8 kW, the stationary storage 

charges the EV until it becomes empty, reaching its capacity limit around 11:30, and then the public grid 

supplies the EV from 11:30 until EV departure. In this scenario, PV energy is not invested well since it 

charges the EV for a period and the rest of the time, charges the stationary storage. Therefore, scenario 1b 

proposes a known parking time for the EV to see the impact of PV energy on the EV charging. 

II.6.1.2. Scenario 1b 

The hypotheses for scenario 1b is shown in Table 3. The parking time is the time when the EV is in the 

charging station. 

Table 3: Hypotheses for Scenario 1b. 

EV 

number 

Arrival 

time 

SOC at 

arrival 

Desired SOC 

at departure 

Park 

time 

Charging 

mode/Power 

EV1 10:30 60% 68% 06:30 Slow/0.615 kW 

Based on the hypotheses presented in Table 3, including the parking time as a known variable, the charging 

power 
vEVp  is calculated based on (7). Figure 31 shows the system power flows and the stationary storage 

SOC evolution. 
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Figure 31: Scenario 1b, system power flows and stationary storage SOC evolution. 

As the parking time is known and longer than in scenario 1a, the recharging portion from PV has increased, 

and the stationary storage lasts longer, preventing its fast discharge, thus the dependency on the public grid 

has reduced. The stationary storage becomes empty, reaching its capacity limit around 16:10 and then the 

public grid supplies the EV, from 16:10 until EV departure. 

II.6.1.3. Scenario 1a versus scenario 1b 

Figure 32 shows the EV charging power and EV SOC evolution for the two scenarios (a) and (b). It shows 

that the desired SOC at departure for the EV is respected in the two scenarios, while for scenario 1b the 

charging power is lower than in scenario 1a and the charging period is longer as well. 

  

(a) (b) 

Figure 32: (a) EV charging power and EV SOC evolution for scenario 1a; (b) EV charging power and EV SOC evolution 

for scenario 1b. 

Figure 33 shows a comparison between the two scenarios and the superiority of scenario 1b, where the EV 

is charged with more than 50% of PV and only 11.50% of public grid power, whereas, in scenario 1a, the 

EV is charged with 24.50% of PV and more than 40% of public grid power. 
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(a) (b) 

Figure 33: (a) Energy system distribution; (b) EV energy distribution for scenarios 1a and 1b. 

In conclusion, when the park time is known and long, PV benefits increase for the EV charging and the 

dependency on the public grid is reduced. 

II.6.2. Case2—publicly accessible charging station: PV parking shade 

with nine spots and nine chargers 

Figure 34 shows the installation of the PV parking shade, which consisted of 84 PV panels in the Innovation 

Center of the Université de Technologie de Compiègne, i.e., 29.8 kWp.  

 

Figure 34: PV parking shade installation for nine spots. 

The stationary storage system has an energy capacity of 17.76 kWh, and the storage power limit was chosen 

at 7 kW to not exceed the maximum charging power in slow mode. However, no public grid power limit 

was set in this case. The lowest monthly PV production is in December, as shown in Figure 35, with an 

average daily of 36.22 kWh. If the nine EVs are connected, then one EV may receive 4.02 kWh, which 

represents the average energy needed to charge an EV with a daily trip of 20–40 km. 
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Figure 35: Monthly PV production - Case 2. 

Figure 36 shows the solar irradiation g (W/m2) and PV  MPPTp  for 24 December 2019 in Compiegne. 

 

Figure 36: Solar irradiation and PV MPPT power - Case 2. 

Different scenarios and simulation results are considered and analyzed to define the preliminary 

requirements and feasibility conditions for a PV-powered EV charging station with PV benefits increased 

in the following subsections. 

II.6.2.1. Scenario 2a 

The hypotheses for the scenario 2a are shown in Table 4. 
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Table 4: Hypotheses for Scenario 2a. 

EV# 
Arrival 

Time 

SOC at 

Arrival 

Desired SOC 

at Departure 

Charging 

Mode/Power 

EV1 09:30 65% 75% Slow/1.8 kW 

EV2 10:30 62% 70% Slow/1.8 kW 

EV3 12:00 61% 66% Slow/1.8 kW 

EV4 13:00 58% 66% Slow/1.8 kW 

EV5 14:30 57% 68% Slow/1.8 kW 

The total EVs demand energy is 21 kWh. Figure 37 shows the system power flows and the stationary 

storage SOC evolution. PV and stationary storage share power to charge the EVs, without the need for the 

public grid supply. When the PV production is higher than the EV’s demand power, PV charges the 

stationary storage so it can supply further power afterward. 

 

Figure 37: Scenario 2a, system power flows and stationary storage SOC evolution. 

II.6.2.2. Scenario 2b 

The hypotheses for the scenario 2b are shown in Table 5. 

Table 5: Hypotheses for Scenario 2b. 

EV# 
Arrival 

time 

SOC at 

arrival 

Desired SOC 

at departure 

Departure 

time 

Charging 

Mode/Power 

EV1 09:30 65% 75% 15:00 Slow/0.909 kW 

EV2 10:30 62% 70% 16:00 Slow/0.727 kW 

EV3 12:00 61% 66% 14:00 Slow/1.25 kW 

EV4 13:00 58% 66% 14:30 Slow/2.66 kW  

EV5 14:30 57% 68% 17:00 Slow/2.2 kW  

Then, the total EVs demand energy is 21 kWh. Figure 38 shows the system power flows and the stationary 

storage SOC evolution. 
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Figure 38: Scenario 2b, system power flows and stationary storage SOC evolution. 

PV and stationary storage share power to charge the EVs, without the need for the public grid supply. When 

the PV production is higher than the EV’s demand power, PV charges the stationary storage so it can supply 

further power afterward. The stationary storage becomes full, reaching its maximum capacity around 12:50, 

therefore, PV injects power into the public grid. The EVs charging power and EVs SOC evolution for the 

two scenarios 2a and 2b are shown in Figure 39. 

  

(a) (b) 

Figure 39: (a) EVs charging power and EVs SOC evolution for Scenario 2a; (b) EVs charging power and EVs SOC 

evolution for Scenario 2b. 

A comparison between the two scenarios is shown in Figure 40. All EVs are charged mainly with PV 

energy, except for the last EV, i.e., EV5, where it comes in the late afternoon and the PV production is low. 

As the charging mode is slow for all EVs, the public grid is not required. 
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(a) (b) 

Figure 40: (a) Energy system distribution; (b) EVs energy distribution for Scenarios 2a and 2b. 

In conclusion, scenario 2b may be superior to scenario 2a and may improve the PV benefits for the EVs 

when the park time is known and longer than the time actually needed for charging in scenario 2a. It should 

be noted that when the park time is longer, some EVs charge simultaneously so the PV production is shared 

between them thus reducing the portion of PV energy. 

These two scenarios are focused on slow charging mode only. The next scenarios will consider slow and 

fast charging mode and more than 10% of energy charge to analyze the impact of fast charging on the EVs 

and their PV benefits. 

II.6.2.3. Scenario 2c 

The hypotheses for the scenario 2c are shown in Table 6. 

Table 6: Hypotheses for Scenario 2c. 

EV# 
Arrival 

Time 

SOC at 

Arrival 

Desired SOC 

at Departure 

Charging 

Mode/Power 

EV1 09:40 64% 75% Slow/1.8 kW 

EV2 10:00 58% 65% Fast/22 kW 

EV3 10:50 57% 63% Slow/1.8 kW 

EV4 14:40 60% 66% Slow/1.8 kW 

EV5 15:00 57% 64% Fast/22 kW 

The total EVs energy demand is 18.50 kWh. Figure 41 shows the system power flows and the stationary 

storage SOC evolution. 

0

5

10

15

20

25

PV energy Storage
discharging

energy

Storage
charging
energy

Grid supply
energy

Grid
injection
energy

EVs demand
energy

kWh
System_a System_b

75.80
88.20 82.75 83.50

91.20
78.00

93.00

71.75

49.09 52.36

24.20
11.80 17.25 16.50

8.80
22.00

7.00

28.25

50.91 47.64

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

EV1_a EV1_b EV2_a EV2_b EV3_a EV3_b EV4_a EV4_b EV5_a EV5_b

PV energy Storage discharging energy Grid supply energy



-74/227- 
 

 

Figure 41: Scenario 2c, system power flows and stationary storage SOC evolution. 

PV and stationary storage share power to charge the EVs in slow mode. However, when an EV comes to 

charge in fast mode and the stationary storage has reached the power limit of 7 kW, the public grid supplies 

the EVs, at 10:00–10:10 and 15:00–15:10. When the PV production is higher than the EV’s power demand, 

PV charges the stationary storage so it can supply further power afterward. Moreover, PV injects power 

into the public grid, when the stationary storage reaches its capacity limit, a SOC of 80% around 13:50–

15:00, and when it reaches the power limit, around 12:50 and 13:10. 

II.6.2.4. Scenario 2d 

The hypotheses for the scenario 2d are shown in Table 7. 

Table 7: Hypotheses for Scenario 2d. 

EV# 
Arrival 

time 
SOC at 
arrival 

Desired SOC 
at departure 

Departure 
time 

Charging 
Mode/Power 

EV1 09:40 64% 75% 13:00 Slow/1.65 kW 

EV2 10:00 58% 65% 10:25 Fast/8.39 kW  

EV3 10:50 57% 63% 11:50 Slow/2.99 kW 

EV4 14:40 60% 66% 16:40 Slow/1.49 kW  

EV5 15:00 57% 64% 15:20 Fast/10.49 kW  

The total EV’s energy demand is 18.50 kWh. Figure 42 shows the system power flows and the stationary 

storage SOC evolution. The stationary storage is charged only by PV energy, therefore, its power must be 

limited to not exceed the slow charging power of 7 kW. 
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Figure 42: Scenario 2d, system power flows and stationary storage SOC evolution. 

PV and stationary storage share power to charge the EVs in slow mode. However, when an EV comes to 

charge in fast mode and the stationary storage has reached the power limit of 7 kW, the grid supplies the 

EVs, at 10:00–10:10 and 15:00–15:10. When the PV production is higher than the EV’s power demand, 

PV charges the stationary storage so it can supply further power afterward. Moreover, PV injects power 

into the grid when stationary storage reaches its capacity limit, SOC of 80% around 14:10–15:00, and when 

stationary storage reaches the power limit, around 13:10. 

The EVs charging power and EVs SOC evolution for the two scenarios 2c and 2d are shown in Figure 43. 

  

(a) (b) 

Figure 43: (a) EVs charging power and EVs SOC evolution for Scenario 2c; (b) EVs charging power and EVs SOC 

evolution for Scenario 2d. 

Figure 44 shows a comparison between the two scenarios. All EVs in slow mode are charged mainly with 

PV energy, except for EV4, where it comes in the late afternoon and the PV production is low. Whereas, 

EV2 and EV5 in fast mode are charged mainly with the public grid and a small portion with PV. Moreover, 

EV2 and EV5, since they charge in fast mode, will affect negatively EV1 and EV4 respectively. 
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(a) (b) 

Figure 44: (a) Energy system distribution; (b) EVs energy distribution for Scenarios 2c and 2d. 

In conclusion, scenario 2d shows that EV2 and EV5 consume more PV energy than in scenario 2c and the 

public grid dependency has been reduced. This shows that the variable charging power based on time 

duration availability can improve the PV benefits and the EVs can depend more on PV and less on the 

public grid. The stationary storage could be emptied quickly, if its power is not limited, since for EVs 

charging in fast mode their charging power could reach up to 22 kW. Thus, in scenario 2c, EV2 and EV5 

charge with a greater percentage of public grid energy. However, since the stationary storage is charged by 

PV sources only, as mentioned earlier, this could prove the superiority of scenario 2d over scenario 2c, as 

the PV energy and stationary storage energy combined are higher than scenario 2c, as shown in Figure 22d. 

II.6.2.5. Scenario 2e 

The hypotheses for scenario 2e are shown in Table 8. 

Table 8: Hypotheses for Scenario 2e. 

EV# 
Arrival 

time 

SOC at 

arrival 

Desired SOC 

at departure 

Charging 

Mode/Power 

EV1 09:40 64% 75% Slow/1.8 kW 

EV2 10:00 58% 100% Fast/22 kW  

EV3 10:50 57% 63% Slow/1.8 kW 

EV4 14:40 60% 66% Slow/1.8 kW  

EV5 15:00 57% 64% Fast/22 kW  

The total EVs demand energy is 36 kWh. Figure 45 shows the system power flows and the stationary 

storage SOC evolution. 

0

5

10

15

20

25

PV energy Storage
discharging

energy

Storage
charging
energy

Grid supply
energy

Grid
injection
energy

EVs demand
energy

kWh
System_c System_d

84.18 80.36

4.86
16.00

91.33
82.33

69.67
61.67

11.71
21.14

12.36 17.82

29.43

69.71

8.67
17.67

24.67 35.00

29.43

58.29

3.45 1.82

65.71

14.29
5.67 3.33

58.86

20.57

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

EV1_c EV1_d EV2_c EV2_d EV3_c EV3_d EV4_c EV4_d EV5_c EV5_d

PV energy Storage discharging energy Grid supply energy



-77/227- 
 

 

Figure 45: Scenario 2e, system power flows and stationary storage SOC evolution. 

PV and stationary storage share power to charge the EVs in slow mode. However, when an EV comes to 

charge in fast mode and the stationary storage has reached the power limit of 7 kW, the grid supplies the 

EVs at 10:00–10:50 and 15:00–15:10. At 10:50, the stationary storage has reached its capacity limit, SOC 

of 20%, so the public grid supplies more power to the EVs since PV production is insufficient. When the 

PV production is higher than the EV’s power demand, PV charges the stationary storage so it can supply 

further power afterward. Moreover, PV injects power into the grid when stationary storage has reached the 

power limit, around 12:50 and 13:10. 

The EVs charging power and EVs SOC evolution for scenarios 2e is shown in Figure 46. 

 

Figure 46: EVs charging power and EVs SOC evolution for Scenario 2e. 

Figure 47 shows a comparison between the two scenarios. The difference in scenario 2e with scenario 2c 

is that EV2 wanted to charge 42% of its battery capacity in fast mode. Therefore, EV2 is charged mainly 

with the public grid and a small portion with PV. Moreover, EV2 will affect negatively EV1 and EV3 and, 
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therefore, the PV benefits for EV1 and EV3 have reduced since EV2 charges in fast mode for around 1 h 

and the three EVs charge simultaneously for a while. 

 

Figure 47: EVs energy distribution for Scenarios 2c and 2e. 

In conclusion, scenario 2e shows how fast charging mode affects negatively the other EVs currently in 

charge and their dependency on the public grid. The stationary storage could be emptied quickly, if its 

power is not limited, since for EVs charging in fast mode their charging power could reach up to 22 kW. 

In contrast to scenario 2d, in scenario 2e, EV2 charges with 22 kW, and the requested SOC at departure is 

100%. Therefore, the percentage of stationary storage energy remains low. So, the main issue for PV-

powered EV charging stations, is how to increase PV penetration for EVs charging? In what conditions? 

What is the appropriate sizing of the system? 

II.6.3. Discussion 

In scenario 1, only one EV is charged in slow mode with a private charger. It is shown that the known park 

time could bring PV benefits and reduce public grid dependency, which will decrease the charging price 

for the EV user. In Scenario 2, there are five EVs that are charged with public chargers. Regarding scenario 

2a versus 2b, where all EVs are charged in slow mode, it is shown that scenario 2b may be superior to 

scenario 2a, where PV benefits are greater since the park time is known for each EV. Regarding scenario 

2c versus 2d, where three EVs are charged in slow mode and two EVs are charged in fast mode, it is shown 

that EVs charged in fast mode depend mainly on the public grid and stationary storage energy while EVs 

charged in slow mode depend on PV energy. However, when the park time is known and longer than the 

time actually needed to charge, PV benefits could increase and public grid dependency could be reduced. 

Regarding scenario 2e, the same conditions as for scenario 2c are applied but EV2 requests full charge 

(100%) in fast mode. It is shown that EV2 affects negatively EV1 and EV3 since they coincide some of the 

time, this will reduce PV benefits for EV1 and EV3. Moreover, EV2 is largely dependent on the public grid 

and stationary storage energy. The stationary storage power is limited to 7 kW, so it will not be emptied 

quickly if some EVs want to charge in fast mode. 
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The simulation results show, for fast charging mode, that EVs depend mainly on public grid energy. 

Moreover, the public grid energy tariff is dynamic in reality and it is high in peak times. Therefore, EV 

users who want to charge in fast mode are supposedly willing to pay higher bills. However, knowing that 

charging the EV in fast mode is costly, EV users will tend to change their behavior and choose to charge in 

slow mode since it is cheaper. Hence, an economic model is necessary for the PV-powered charging station 

to optimize the EV charging power, have the best power distribution for energy sources, and have the lowest 

cost for charging EVs, which is the key factor to influence EV users. 

Nevertheless, uncertainties always exist in the real world. However, in the present study, the uncertainty of 

the demand profile by EVs is always ensured by first, the stationary storage and then by the public grid 

when there is uncertainty in PV generation to ensure power at all times. Regarding the EV’s capacity, it is 

assumed that all EVs are the same. For EV’s SOC and operating schedules, these are taken as hypotheses, 

where they represent the data and choices of EV users that they choose through the human-system interface. 

The demand profile of EVs is hard to predict as it depends on various factors (type of user, charging 

preference, and energy demand). Therefore, the arrival time of the EV, SOC of the EV at arrival, and its 

requested SOC at departure are assumed arbitrarily but cover many cases. 

Finally, to increase PV benefits, the preliminary requirements and feasibility conditions for a PV-powered 

charging station may be summarized as follows: 

Slow charging is characterized by: 

– Charging power up to 7 kW; 

– Based on PV energy and stationary storage, which is charged by PV sources only; 

– Stationary storage should be well designed and its power should be limited; 

– EV battery filling up to 6 kWh; 

– User acceptance for long and slow charging. 

For fast charging mode: 

– Charging power from 7 kW up to 22 kW; 

– Based on public grid energy; 

– Stationary storage should be well designed and its power should be limited at 7 kW; 

– User acceptance for high charging price. 

Moreover, PV power generation depends on the geographical location and weather conditions, as solar 

irradiation and the temperature of the PV modules. Proper sizing of the stationary storage is required. A 

user interface is required to facilitate the interaction between the EV users and the charging station and to 

take into consideration EV user choices. The parking time, which is the time availability of the EV in the 

charging station, is better to be known and longer to increase PV benefits. The system limitations could be 
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presented as low PV energy production throughout the year due to geographical location for the scenarios 

taken into study. The stationary storage physical limits and proper sizing must be studied and well adjusted 

to fit the charging station dimensions. However, the public grid can always provide energy or can buy 

energy when there is an excess of PV production as for case 2 where no grid limits have been imposed. 

II.7. Conclusions 

This study focuses on the preliminary requirements, feasibility conditions, and business model of PV-

powered EV charging stations in an urban area. The simulation results show that the EV charging demand 

are not constrained; the EV user can charge from slow to fast mode, and no restrictions for EV battery 

capacity (10% 100%
vEVsoc  ). However, the PV benefits have increased when the average daily 

urban/peri-urban trip of 20–40 km is considered, with an EV consumption of 10–15 kWh/km, which gives 

the daily charge needed of 2–6 kWh. In addition, the maximum PV benefits are proved for the daily EV 

charging instead of weekly and when the park time is known. 

For the requirements and feasibility conditions, two charging modes are possible; slow mode up to 7 kW 

based mainly on PV energy and storage and EV filling capacity up to 6 kWh, fast mode from 7 kW and up 

to 22 kW based mainly on public grid energy. Proper sizing of the stationary storage system is required and 

social acceptance relative to longer charging duration for slow mode and higher charging price for fast 

mode, so a business model is important. 

The two main concerns, highlighted in the case studies, are the control-command of the system, i.e., PVCS 

based on stationary storage and public grid, and the business model that is able to influence consumer 

behavior through price charging. 
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 Intelligent infrastructure for recharging 

electric vehicles: energy management and cost 

optimization 

This chapter presents real-time power management including an optimization problem, formulated as 

MILP, for a MG-based intelligent infrastructure for recharging EVs (IIREVs). The IIREVs is a PVCS as 

described in the previous chapter, yet called intelligent as the optimization algorithm has the objective to 

minimize the total energy cost. Simulation results under different meteorological conditions prove the 

feasibility of the proposed control and its superiority over the storage priority strategy. This chapter, 

presented in [114], is constructed as follows: Section III.1 gives an introduction. Section III.2 presents the 

literature review. Section III.3 describes the control system for the IIREVs, then the MILP optimization 

problem is detailed with the constraints and the objective function. Section III.5 concludes the chapter. 

III.1. Introduction 

As EV stock continues to grow and expand, thus the charging of EVs will become a serious issue and will 

increase the burden on the public grid. Uncoordinated charging of EVs during the day will increase the 

peak load. However, as the preliminary requirements have been identified in the previous chapter in the 

context of PVCS, therefore, intelligent infrastructure, in which smart charging or optimization algorithms 

are implemented in the PVCS, could be a key element to manage EV charging and reduce the energy cost. 

These optimization algorithms are based on predictions, such as PV power prediction and EV charging 

prediction, and depend on energy tariffs. In this chapter, the optimization algorithm proposed is based only 

on PV power prediction, and EV charging profiles are communicated in real-time through an interface. 

III.2. Literature review 

Recent studies have aimed to design MGs for EV charging. The authors of [94] have proposed MILP for 

an EV charging station integrated into a DC MG to determine the optimal operation planning. They have 

focused on optimizing the daily operational costs based on forecasting PV production and EV operation. A 

hybrid optimization problem for energy storage management has been proposed in [115] to minimize the 

EV charging cost in a PVCS using time-of-use wholesale electricity pricing. The authors in [116] have 

presented meta-heuristic methods, such as binary particle swarm optimization and binary grey wolf 

optimization. They have studied an optimal charging coordination strategy for a random arrival of plug-in 

EVs. A MILP optimization has been proposed in [117] to minimize the MG operation cost by having an 
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aggregated EV charging station for an islanded MG and in [118] to minimize the energy generation cost 

and load shedding considering various constraints in a MG that integrates battery EV charging station. A 

heuristic operation problem has been proposed in [119] for a commercial building MG that integrates EVs 

and a PV system to study a strategy to acquire data in real-time rather than forecasting EV charging demand 

or PV production. A genetic algorithm optimization has been studied in [120] for the multi-criteria 

optimization problem to minimize the charging costs of the EV, maximize the use of PV and the storage 

device and minimize the degradation of the storage device. A MILP optimization has been proposed in 

[121] to solve the day-ahead optimization problem and to find the optimal scheduling and operation of a 

prosumer who owns renewable energy sources and a plugged-in EV. They have used a feed-forward 

artificial neural network for the weather prediction module in the energy management system. LP and QP 

optimization problems have been addressed in [122] to minimize the total operating costs for building a 

MG that integrates a heterogeneous fleet of EVs. A multi-objective scheduling optimization problem based 

on genetic algorithms has been presented in [123] for MGs including EVs to reduce grid loss and charging 

costs considering various constraints of the MG sources and EV charging characteristics. The authors in 

[124] have presented an optimal model for an energy management strategy in a real MG, which integrates 

a PV system with storage devices, smart buildings and a plug-in EV. They have minimized the total costs 

of energy consumption by reducing the power supplied from the grid. A robust optimization has been 

described in [125] and compared with stochastic optimization to minimize the economic and environmental 

costs of a MG, which integrates PV and EVs. They have proposed a mathematical model to study the 

uncertainty of EV charging behavior and PV power. A model predictive control has been depicted in [126] 

using a smart charging strategy that takes into account the future EV charging demand. Their goal is to 

reduce the peak energy demand for an EV parking lot with PV sources. A multi-objective evolutionary 

particle swarm optimization problem has been presented in [127] to minimize the costs and the overloading 

for high demands of grid energy for EV scheduling based on a day-ahead scenario. 

A novel convex quadratic objective function has been proposed in [128] to minimize the power loss of a 

MG in a two-stage optimization method with different penetration levels of plug-in hybrid EVs, studying 

the behavior of the plug-in hybrid EVs. The authors of [129] have proposed a stochastic planning model as 

a convex programming problem to optimize the component sizes by minimizing the total cost of the EV 

charging station considering the uncertainties of PV production, EV charging demand, and different 

constraints. An improved optimal sizing methodology of a typical residential MG integrating RES and EVs 

has been proposed in [89] to lower greenhouse gases emissions and minimize the cost. An annealing 

mutation particle swarm optimization problem has been studied in [130] for MG optimal dispatching to 

minimize the environmental protection cost and the operation and maintenance cost of a MG in a multi-

objective economic dispatch model. A multi-agent particle swarm optimization problem has been addressed 

in [131] for a grid-connected PV, energy storage system and EV charging station to size the PV and the 

energy storage system and to set the charging/discharging pattern of the energy storage system. The EV 

charging station integrates PV, an energy storage system and a grid connection. A machine learning-based 
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approach has been proposed in [132] for energy management in a MG, taking into account a reconfigurable 

structure based on remote switching of ties and sectionalizing. They have also proposed a new modified 

optimization problem based on dragonfly due to the complexity of the problem. An optimal configuration 

of PVCS in [133] has been studied economically and technically under different solar irradiation profiles 

in Vietnam using the HOMER Grid program. An optimization model based on a genetic algorithm has been 

proposed in [134] to optimize the use and scheduling of energy sources for an intelligent hybrid energy 

system, including EVs and a micro-combined heat and power system. In [135], a bi-level robust 

optimization has been proposed to optimize the design of an EV charging station with distributed energy 

resources. The authors of [136] have proposed an optimization model for a battery-swapping station to 

minimize the charging cost of EVs by optimizing the charging schedule for swapped EV batteries. An 

optimal charging profile has been proposed in [137] for EVs to minimize battery degradation and extend 

their lifetime. 

A robust optimal power management system has been presented in [138] for a standalone hybrid AC/DC 

MG. The optimization problem, formulated as a MILP problem, is responsible for supervising the power 

flow in the hybrid MG, with the objective to satisfy the load demand while maximizing the usage of 

renewable sources (PV and wind), minimizing the usage of diesel generation, extending battery life, and 

limiting the utilization of the converter between the AC and DC MGs. An energy management system for 

a grid-connected MG has been addressed in [139] based on a MILP problem to minimize the total energy 

cost over 24 h, taking into account load demand, grid tariffs, and renewable energy sources production. A 

long short-term memory network has been proposed in their paper to deal with the power prediction of the 

renewable energy sources and the load demand, where each hour, it predicts the profiles for the next 24 h. 

Then, real-time implementation is enabled by the receding horizon strategy, which is used to minimize the 

prediction error and gives commands for the first hour; then, each hour, the data are actualized. The 

proposed strategy in [139] proved its cost reduction in comparison with an offline optimization after 

conducting simulation tests. In [140], a novel modular modeling method has been described for an energy 

management system for urban multi-energy sources, including cooling, heating and renewable sources, that 

allow complex system topologies to be modeled. They have conducted various case studies with different 

climate conditions and electrical loads. They have also compared the results with a rule-based algorithm to 

compare the annual cost reductions. In [141], the authors have investigated the technical, economic, and 

environmental aspects of renewable energy sources in a MG. An equilibrium optimization problem was 

developed to minimize the operational cost of the MG, which includes PV, wind turbines, and a biomass 

generator. The simulation results proved the benefits of using the proposed algorithm in reducing 

operational costs and emissions. An equilibrium optimization problem has been addressed in [142] for 

optimum PV-storage system integration in a radial distribution network. Multi-objective functions have 

been addressed to minimize the cost of investment in PV and storage system installations, their cost of 

operation, the cost of energy not supplied, the power losses in the distribution lines, and the CO2 emissions 

by the PV and the grid. The proposed method is compared with various techniques to prove its effectiveness. 
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In [143], the authors have proposed an equilibrium algorithm to optimally find the lithium-ion battery 

parameters, formulated as a nonlinear optimization problem. The proposed method was compared with 

various recent techniques to prove its accuracy; also, it has proved its closeness to the experimental 

measurement. An artificial hummingbird optimization technique has been presented in [144] to find the 

unknown parameters of lithium-ion batteries used in EVs. The proposed method is compared with various 

recent techniques to prove its value and effectiveness. An experimental test was conducted, and the 

proposed technique had the highest degree of precision among the other techniques. 

In the previously cited references, the optimization was performed knowing the EV charging prediction 

profile for the entire day as day-ahead planning. Knowing an EV charging prediction profile is based on 

contextual assumptions, e.g., schedule according to the occupancy of a car park or the average EV 

autonomy, which are not yet validated in the real world. In this work, the objective is to perform a real-time 

control under optimization for the minimum energy cost and the maximum PV energy for each EV for an 

IIREVs considering the intermittent and random arrival of the EVs, featuring the EV users’ interaction. For 

the current work, the optimization is performed more realistically at every random arrival of an EV. 

Therefore, when a new EV comes to the station, the state of charge ( Ssoc ) of the stationary storage and the 

current state of charge of EVs (
vEVsoc ) in charge are actualized for suitable optimization. 

III.3. Supervisory control system based on real-time power 

management 

Figure 48 shows the DC MG, denoted as IIREVs, and includes PV sources, stationary storage, power grid 

connection, and EVs as DC loads. Two operation modes exist for the PV sources: MPPT, where maximum 

power is drawn using a perturb and observe algorithm, and PV power limitation, where PV power is limited 

in case of a surplus of PV power production [145] because the excess power can no longer be fully injected 

into the storage and/or into the grid. The stationary storage is a backup source acting as an energy reservoir 

when there is insufficient PV power to charge the EVs. When there is insufficient PV power to charge the 

EVs, the grid ensures the security of the system by injecting power to the EVs if the stationary storage has 

reached its lower limits (empty or minimum discharge power). On the other hand, the DC MG can sell 

power to the grid by injecting it when there is a surplus of PV power production and the stationary storage 

has reached its higher limits (full or maximum charging power) [146]. Regarding the EVs charging, they 

can operate in two modes: fully charging as requested by their users and EV shedding when it is not possible 

to fully supply the EVs. 
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Figure 48: Power flow for the intelligent infrastructure for recharging EVs. 

The power flow for IIREVs is shown in Figure 48, where PV  MPPTp  is the PV MPPT power, PVp  is the 

PV power, _PV Sp  is the PV shed power, _G Ip  is the grid injection power, _G Sp  is the grid supply power, 

_S Cp  is the stationary storage charging power, _S Dp  is the stationary storage discharging power, 

IIREVs Dp  is the IIREVs’ total demand power, IIREVsp  is the IIREVs’ total power, and IIREVs Sp  is the 

IIREVs’ shed power. The components of the IIREVs are coupled through their dedicated converters to the 

common DC bus. PV sources are connected to the DC bus through the DC/DC converter to draw the MPPT 

power. The stationary storage is connected through a reversible DC/DC converter. The EVs’ batteries, as 

DC loads, are connected through the DC/DC converter. The grid is connected through a three-phase 

bidirectional AC/DC converter. It is necessary to ensure power at all times and mitigate the power 

difference between the power production and the EVs’ demand. 

The supervisory control system for the IIREVs is shown in Figure 49. The supervisory and control system 

consists of four layers: prediction, energy cost optimization, operation, and HMI. The design and 

implementation of the IIREVs’ control are based on the interaction between the EV users and DC MG. 

Energy cost optimization and operation layers form the control block that should keep the power balanced. 

The prediction layer is based on weather forecasts. The energy cost optimization is based on the production 

prediction and consumption profile. They are calculated based on data from the prediction layer and the 

interaction with the HMI. From the prediction layer, messages from the smart grid about energy system 

limits, grid power limits, and dynamic energy pricing are communicated. From the interaction with the 

HMI, the EV users choose their charging mode ( vM ), desired state of charge of their EV at departure            

( _ vEV desSOC ) in real-time, and get the state of charge of their EV at arrival ( _ vEV arrSOC ). MILP 

optimization is used for the technical-economic dispatching of the MG sources and load. This supervisory 

control has the advantage of interacting with the EV users to perform the optimization; however, if the 

choices of the EV users are not feasible, they have to change them in order to perform the optimization 

[147]. 



-86/227- 
 

 

Figure 49: Supervisory control system for the IIREVs. 

The main challenge lies in dealing with the discrete events coming from the HMI. The optimization results 

communicate the predictive control settings to the operation layer and update the smart grid about the power 

references of the stationary storage and the power grid. The operation layer holds the algorithm that keeps 

the power balanced with respect to the constraints of the system and its physical limits [148]; it sets the PV 

power limitation and performs EV shedding if needed. 

III.3.1. Prediction layer 

Météo France provides hourly predictions allowing the calculation of PV power prediction, which is based 

on solar irradiation (g) and ambient temperature ( ambT ) forecast data [149]. The PV power prediction 

PV  MPPT  predp  is calculated in MPPT mode for each time instant it  [150] as given in following equations 

(3.1) and (3.2): 
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where _PV STCP  is the PV power under standard test conditions (STC),   is the power temperature 

coefficient (−0.29%/°C), PVT  is the PV cell temperature, PVN  is the number of PV panels, 0t , t , and Ft  

are the initial time instant, time interval between two samples, and time instant at the end of time operation, 

respectively, NOCT  is the nominal operating cell temperature (41 °C), air testT   is the fixed air temperature 

(20 °C), and testG  is the fixed solar irradiation (800 W/m2). 

III.3.2. Human-machine interface 

As for the EVs, it is possible to charge them in three modes: slow, average, and fast. All EVs can handle 

up to fast mode, and they are considered to have the same energy capacity. The HMI allows the EV users 

to set their _ vEV arrSOC , vM , and _ vEV desSOC , and, therefore, the estimated charging time, _ vest cht , 

which is the required time to reach _ vEV desSOC , is calculated as given in (3.3): 
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where E  is the EV’s battery capacity, and _ vEV maxP  is the maximum charging power based on the charging 

mode set by the EV user. The HMI for the IIREVs is shown in Figure 50 and is well explained in detail in 

[151]. 

 

Figure 50: Human-machine interface for the IIREVs [151]. 
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III.3.3. Energy cost optimization 

The energy cost optimization layer interacts with the prediction layer and the HMI to run the optimization. 

The objective of the optimization is to find the lowest energy cost and the maximum PV power for each 

EV. The sharing power between the stationary storage and the grid is represented by the power distribution 

coefficient Dk  that is calculated from this layer using the power references obtained in the optimization. 

The benefits of optimization lie in many aspects: reducing the grid peak power consumption, minimizing 

the energy cost, deciding which of the stationary storage or grid may have the better contribution, and 

avoiding EV and PV shedding. The communication with the smart grid informs the system about grid power 

limits for injection and supply, which are set by a contract with the grid operators, and the energy pricing 

in real-time. Additionally, stationary storage physical limits should be known. The objective is to minimize 

the total energy cost with respect to different constraints [149]. 

The constraints and the objective function are represented in the following subsections. 

III.3.3.1. PV sources 

The two operation modes for the PV are MPPT and limited power. The PV power that must be shed is 

noted as _PV Sp . Therefore, PVp  is calculated [149] as given by (3.4): 

 _( ) = ( ) ( ),PV i PV  MPPT i PV S ip t p t p t  (3.4) 

where _PV Sp = 0 is in MPPT mode; it should not be negative in power limitation mode. Thus, constraints 

(3.5) and (3.6) are added as follows: 

 ( ) 0,PV ip t   (3.5) 

 _0 ( ) ( ).PV S i PV  MPPT ip t p t   (3.6) 

III.3.3.2. Stationary Storage 

The stationary storage, represented by lithium-ion batteries, must be protected from overcharging and over-

discharging; thus the maximum storage power _S maxP  and the maximum and minimum state of charge of 

the storage _S maxSOC  and _S minSOC  must be respected to extend the storage lifetime [149], [152] as given 

by (3.7) and (3.8). The simplified state of the charge of the storage Ssoc  evolution [146] is given by (3.9) 

for simplicity, where self-discharge and temperature are not considered: 

 _ _( ) ,S max S i S maxP p t P    (3.7) 
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 _ _( ) ,S min S i S maxSOC soc t SOC   (3.8) 
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where 
0SSOC  is the initial Ssoc , and BatE  is the storage energy capacity (kWh) and the storage power

_ _( ) = ( ) ( )S i S C i S D ip t p t p t . The PV power should not be limited if _S maxSOC  is not reached; this 

constraint is given by (3.10): 

 _ _( ) = 0 ( ) < .PV S i S i S maxp t if SOC t SOC  (3.10) 

III.3.3.3. Grid connection 

The smart grid transmits messages to IIREVs to respect the maximum grid supply _ _G S maxP  and injection 

_ _G I maxP  limits set by the grid [149], as in (3.11), where _ _( ) = ( ) ( )G i G I i G S ip t p t p t : 

 _ _ _ _( ) .G S max G i G I maxP p t P    (3.11) 

III.3.3.4. Electric vehicles 

EV batteries, seen as the entire MG’s load, can be shed, _IIREVs Sp , when IIREVs Dp  cannot be fully supplied 

due to deficient in power, e.g., the storage and grid have reached their limits [149]. Hence, IIREVsp  is given 

by Equation (3.12), and knowing that _IIREVs Sp  should not be negative, thus, constraints Equations (3.13) 

and (3.14) are added as follows: 

 ( ) = ( ) ( ),IIREVs i IIREVs D i IIREVs S ip t p t p t  (3.12) 

 ( ) 0,IIREVs ip t   (3.13) 

 _0 ( ) ( ).IIREVs S i IIREVs D ip t p t   (3.14) 

No PV shedding power is required when PV power can be fully used, and no EV shedding power is imposed 

when EVs can be fully charged. Thus, the constraints of Equations (3.15) and (3.16) must be respected. 
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The EV users can select their charging mode and other choices that are expressed in the IIREVs’ interface. 

The following EV constraints given in (3.17)–(3.31) represent the EV users’ interaction: 

(a) EV charging mode: 

 
_ _=1 0 ( ) [ , ]

={1,2,..., },

v v vv EV i EV fast max i arr dep

v

if M then p t P t t t  

with v N

   
 (3.17) 

 _ _= 2 0 ( ) [ , ],
v v vv EV i EV aver max i arr depif M then p t P t t t     (3.18) 

 _ _= 3 0 ( ) [ , ],
v v vv EV i EV slow max i arr depif M then p t P t t t     (3.19) 

 ( ) = 0 [ , ],
v v vEV i i arr depp t t t t   (3.20) 

where v is the index of the EV, 
vEVp  is the EV charging power of v vehicle, 

varrt  and  are the arrival and 

departure time of v vehicle, respectively, and vN  is
vdept  the total number of EVs. 

(b) Total EV charging power: 

 ( ) = ( ) [ , ].
v

v v v

N

IIREVs D i EV i i arr dep

v

p t p t t t t   (3.21) 

(c) EV state of charge: 

 _ _( ) [ , ],
v v vEV min EV i EV max i arr depSOC soc t SOC t t t     (3.22) 

 ( ) = 0 [ , ],
v v vEV i i arr depsoc t t t t   (3.23) 

 _( ) = ( ) = ,
v v vEV i EV arr i i arrsoc t SOC t t t  (3.24) 

 _ _( ) = ,
v vEV arr i EV min i arrSOC t SOC t t   (3.25) 

 _( ) ( ) [ , ],
v v v vEV i EV arr i i arr depsoc t SOC t t t t    (3.26) 

 _ _( ) ( ) = ,
v v vEV dep i EV des i i depSOC t SOC t t t   (3.27) 

 1 _

( ).
( ) = ( ) [ , ],v

v v v v

EV i i

EV i EV arr i i arr dep

p t t
soc t soc t t t t

E



    (3.28) 

 _ ( ) = ( ) = ,
v v vEV dep i EV i i depSOC t soc t t t  (3.29) 

where 
vEVSOC  is the state of charge of v vehicle, _EV minSOC , _EV maxSOC , and _ vEV depSOC  are the 

minimum, maximum, and departure state of charge of v vehicle, respectively; 

(d) Acceptance criteria: 
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The estimated charging time of the EV set by the user is 
vcht , given by (3.30). 

 = ,
v v vch dep arrt t t  (3.30) 

 
_ _( ( ) ).

[ , ].v v

v v v

v

EV des EV arr i

ch i arr dep
EV

SOC SOC t E
t t t t

p


    (3.31) 

If the constraints defined by (3.30) and (3.31) are not qualified, then the EV user must change their choices, 

e.g., estimated charging time and/or desired soc  of EV at the departure time and charging mode. It is worth 

mentioning that _ vest cht  is the minimum charging time imposed by the IIREVs, which is calculated based 

on the choices of the EV user. 
vcht  is the time of the EV spent at the IIREVs, which is set by its user. 

Therefore, 
vcht  should be equal to or greater than _ vest cht . The dynamic soc  evolution of v vehicle, 

vEVSOC , is given by (3.28). 

III.3.3.5. Power balancing 

All power signs are assigned positives, and the physical law of power balancing [149] can be given by 

(3.32): 

 _ _ _ _( ) ( ) ( ) ( ) ( ) ( ).PV i S D i G S i IIREVs i S C i G I ip t p t p t p t p t p t      (3.32) 

As previously noted, Dk  is the coefficient representing the sharing power between the stationary storage 

and the grid, given by (3.33): 

 
_ _

_ _ _ _

( ) ( )
( ) =

( ) ( ) ( ) ( )

S C i S D i
D i

S C i S D i G I i G S i

p t p t
k t

p t p t p t p t




  
 (3.33) 

III.3.3.6. Objective function 

The total energy cost, totalC , takes into account the cost of the supplied power from the grid, the profit of 

injected power into the grid, the cost of the storage degradation when operating, the penalty cost if the EV 

at departure has not reached its desired SOC, and the cost of the PV shedding power, which represents the 

PV power that has not taken advantage of it. Therefore, the objective function is to minimize totalC , given 

by Equations (3.34)–( 3.38): 

 _= ,total G S PVS EV penaltyC C C C C    (3.34) 
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0=

= [ ( ) ( )],

i

t
F

PVS PVS i PVS i

t t

C  c t t p t    (3.37) 

 _ _ _ _= [ ( ) ],
v v

N
v

EV penalty EV p EV des EV dep

v

C  c SOC SOC E    (3.38) 

where GC , SC , PVSC , and _EV penaltyC  are the grid, storage, PV shedding energy costs, and EV penalty 

cost, respectively, and Gc , Sc , PVSc , and _EV pc  are the grid, storage, PV shedding energy tariffs, and EV 

penalty tariff, respectively. Lastly, the final optimization problem is given by (3.39): 
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The decision variables in this optimization problem are 
vEVp , IIREVs Sp , Gp , _PV Sp , Sp , Ssoc , and 

vEVsoc , in which they are continuous variables. As the decision variables are continuous and the constraints 

are linear, therefore, the optimization problem as MILP over any other optimization techniques [153]. 

III.3.4. Operation layer 

The energy optimization layer finds the optimal power flow of the sources and the EVs based on 

PV  MPPT  predp  and IIREVs Dp . The coefficient Dk  is calculated based on the optimized power flow obtained 

by CPLEX [154]. This coefficient controls the operational layer for the IIREVs in real-time operation. The 

advantage of Dk  is balancing the power flows, coupling the energy management easily while respecting 

all constraints [149]. 

The operational layer must consider optimized power flow in real operating conditions, PV  MPPTp  and 

IIREVs Dp . In addition, the operation management must ensure robustness and withstand uncertainties in 

the forecast data. Then, this layer calculates the power references and performs PV shedding or EV 

shedding when necessary. The actual operating conditions lead to a reference power refp  to stabilize the 

DC bus voltage, defined by (3.40) and (3.41): 

 ( ) = ( ) ( ) ( ),ref i PV  MPPT i IIREVs D i P ref DC busp t p t p t C V v    (3.40) 

 _ _( ) = ( ) ( ),ref i G ref i S ref ip t p t p t  (3.41) 

where PC , refV  and DC busv  are the proportional controller gain, reference voltage, and the actual voltage 

of the DC bus, respectively. The stationary storage power reference can be calculated as in (3.42): 

 _ ( ) = ( ) ( ),S ref i D i ref ip t k t p t  (3.42) 

where Dk  is defined in the interval [0, 1]. 

The grid power reference _G refp  is calculated taking into account the stationary storage physical limit, 

which means _ 0S refp   if the storage reaches its maximum _ maxSSOC  or minimum _ minSSOC  limits 

or its maximum power _ maxSP , and the grid power reference becomes _G ref refp p . Figure 51 shows the 

control algorithm of the power balancing strategy for the IIREVs. 
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Figure 51: Control algorithm for IIREVs. 

To prove the feasibility of the optimization problem, it is compared with a storage priority algorithm 

simulation without optimization “Sim w/o opt”, where Dk  is one in this operation mode. Moreover, these 

operation modes are compared with an ideal case, “Opt for real conditions”, which is based on real PV 

MPPT and IIREV powers. 

III.4. Simulation results and analyses 

A Simulink model is developed to simulate the IIREVs with a step time of 0.01 s, which contains five 

chargers with three charging modes in real-time operation and balances the power of DC bus. vM ,

_ vEV arrSOC , _ vEV desSOC , and 
varrt  are randomly generated. _ vEV arrSOC  and _ vEV desSOC  are generated 

in the interval (20%, 50%) and (70%, 100%), respectively. Regarding the EV batteries, lithium-ion batteries 

were considered, and their capacities are assumed to be capable of handling up to fast charge. Sunpower 

SPR X21-345 with 21% efficiency under STC is considered as PV panels, and the system loss was 

estimated at 14%. 
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Table 9 provides the parameters used for optimization and power balancing control, and 

Table 10 provides the options assumed by the EV users, randomly generated in MATLAB, where five EVs 

are expected to come for charging. The grid peak hours are arbitrarily assumed to be 12:00–13:00 and 

15:00–16:00. The energy tariffs are chosen arbitrarily in a way to prioritize the sources used for the EV 

charging as given by (3.43). The energy tariffs are only considered for their operational and no maintenance 

or levelized cost of energy are taken into consideration as the life cycle of the sources is not considered in 

this study. 

 _ .S G PVS EV penaltyc c c c    (3.43) 

Table 9: Optimization and simulation parameter values. 

_S minSOC  20% _ _G I maxP  50 kW Sc  0.01€/kWh 

_S maxSOC  80% _ _G S maxP  50 kW PVSc  1.2€/kWh 

_EV minSOC  20% _S maxP  34.5 kW refV  400 V 

_EV maxSOC  100% PVN  84 PV BatE  90 kWh 

0SSOC  50% PV  MPPTp  28.98 kWp E  50 kWh 

_ _EV fast maxP  50 kW _G NHc  0.1€/kWh   

_ _EV aver maxP  22 kW _G PHc  0.7€/kWh   

_ _EV slow maxP  7 kW _EV penaltyc  2.5€/kWh   

 

Table 10: Assumed options by the EV users. 

EVs _EV arrSOC  _EV desSOC  arrt  _est cht  M  

EV1 29% 74% 09:10 03:13 Slow 

EV2 23% 78% 09:40 01:15 Average 

EV3 22% 88% 12:20 04:43 Slow 

EV4 32% 78% 14:20 03:18 Slow 

EV5 29% 70% 14:30 00:25 Fast 

At each event, like EV arrival, the optimization is executed. Then, the corresponding Dk  is calculated as 

in (3.33) from the optimized power flow for the corresponding EV arrival event. The obtained Dk  is then 

inserted into the Simulink model, which runs in real-time conditions. At each EV arrival, the desired 

parameters, Ssoc  and 
vEVsoc  currently in charge, are actualized and inserted; then, the supervisory control 

of the IIREVs executes the optimization, and the EV starts charging. 

The following subsections present different case studies to prove the feasibility of the optimization problem 

formulated as MILP under different meteorological conditions. 
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III.4.1. Case 1—high irradiation profile without fluctuations 

The case of 29 June 2019, in Compiegne, France, is considered. Figure 52 shows PV  MPPT  predp  and 

PV  MPPTp . 

 

Figure 52: PV MPPT real and predicted powers—case 1. 

In this case, the PV power production is considered significant since the weather is sunny and clear, so the 

irradiation is high, and there are no fluctuations. The IIREVs demand power is based on the data given in 

Table 10. Figure 53 shows the power flow and storage state of charge for “Sim w/o opt” and simulation 

with optimization “Sim with opt” for case 1, which is based on introducing the Dk , which is calculated in 

the optimization layer, into the real-time operation algorithm in Simulink. 

 

(a) 
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(b) 

Figure 53: Power flow and storage state of charge in (a) “Sim w/o opt” and (b) “Sim with opt”—case 1. 

In Figure 53a, the storage has priority over the grid either to be discharged or to be charged. However, when 

EV5 arrives, the IIREVs demand power greater than the PV and storage powers that they can supply, where 

the black dotted lines represent the maximum storage power and the red dotted lines represent the maximum 

grid power that can be reached. Therefore, the grid supplies power to charge the EVs. On the other hand, 

in Figure 53b, the power flow of the storage and the grid is based on the coefficient Dk . Since between 

12:00 and 13:00 is considered a peak period, by selling energy to the grid operator, it is possible to make 

profits and, thus, reduce the total cost of energy. However, after 13:00, the storage can be recharged to be 

able to charge the future EVs with sufficient storage energy. Therefore, when EV5 arrives, the PV, storage 

and grid can together supply the EVs. 

Figure 54 shows the EV energy distribution for “Sim w/o opt” and “Sim with opt”. The calculation of EV 

energy distribution is detailed in [77]. 
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(a) (b) 

Figure 54: EV energy distribution in (a) “Sim w/o opt” and (b) “Sim with opt”—case 1. 

EV1, EV3, and EV4 depend mainly on PV energy since they charge in slow mode. EV2 depends on PV 

and storage with a slightly equal percentage. EV5 depends on the PV, storage and grid energy. The 

percentage of grid energy is significantly greater than the other EVs, since it is charging in fast mode. 

Figure 55a shows the energy system distribution for “Sim w/o opt”, “Sim with opt” and “Opt for real 

conditions”. There is no grid injection in the “Sim w/o opt”, while for the “Sim with opt” and “Opt for real 

conditions”, there is grid injection, which indicates that selling energy to the grid and the charging energy 

of the storage was sufficient to get the best energy distribution for the EVs. 

The percentage of accuracy is the ratio of the total cost over the total cost of the “Opt for real conditions”. 

The closer the percentage to 100%, the more accurate it is. If the percentage is greater than 100%, the total 

cost is greater than “Opt for real conditions”, while if the percentage is below 0%, the total cost is the 

opposite case of “Opt for real conditions”. Figure 55b shows the energy system cost, where the energy costs 

in “Sim with opt” are closer to the ideal case “Opt for real conditions”, resulting in profits with 99.95% 

accuracy. Conversely, it is the opposite situation in “Sim w/o opt” with −11.96% accuracy. Thus, this 

proves the superiority of the optimization algorithm over the storage priority algorithm. The negative sign 

implies that the IIREV operators make a profit in particular by selling energy to the grid. 

 

Case 

Operation 

Grid Cost 

(c€) 

Storage 

Cost (c€) 

Total Cost 

(c€) 

% of 

Accuracy 

Sim w/o opt 48.22 84.47 132.69 −11.96% 

Sim with opt −1152.69 43.69 −1109.01 99.95% 

Opt for real 

conditions 

−1152.97 43.44 −1109.53 - 

 

(a) (b) 

Figure 55: (a) Energy system distribution and (b) energy system cost—case 1. 
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III.4.2. Case 2—low irradiation profile without fluctuations 

The case of 5 October 2018, in Compiegne, France, is considered. Figure 56 shows PV  MPPT  predp , 

PV  MPPTp . 

 

Figure 56: PV MPPT real and predicted powers—case 2. 

In this case, the weather is clear, so there are no fluctuations; however, the PV power production is not very 

high. The IIREV demand power is based on the data in Table 10. Figure 57 shows the power flow and 

storage state of charge for “Sim w/o opt” and simulation with optimization “Sim with opt” for case 2. 

 

(a) 
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(b) 

Figure 57: Power flow and storage state of charge in (a) “Sim w/o opt” and (b) “Sim with opt”—case 2. 

In Figure 57a, the storage always has priority over the grid. However, when EV5 arrives, the grid supplies 

power with the PV and the storage to charge the EVs, where the black dotted lines represent the maximum 

storage power and the red dotted lines represent the maximum grid power that can be reached. On the other 

hand, in Figure 57b, the power flow of the storage and the grid is based on the coefficient Dk . Since the 

PV production is not high, the storage reached its lower limit at the departure of EV2. Therefore, the storage 

is required to be recharged to be able to charge the future EVs with sufficient storage energy. Therefore, 

when EV5 arrives, the PV, storage and grid can together supply the EVs. However, between 12:00 and 

13:00 is considered a peak period, so by selling a little energy to the grid operator, it is possible to make 

small profits. Additionally, between 15:00 and 16:00 is a peak period, so in “Sim with opt”, the power flow 

is better distributed since the storage is kept to supply power instead of grid power, while in “Sim w/o opt”, 

the storage reached its lower limit before 16:00, and the grid continued to supply power to the EVs. 

Figure 58 shows the EV energy distribution for “Sim w/o opt” and “Sim with opt”. 

  

(a) (b) 

Figure 58: EV energy distribution in (a) “Sim w/o opt” and (b) “Sim with opt”—case 2. 
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EV1, EV3, and EV4 depend mainly on PV energy since they charge in slow mode. EV2 depends on PV 

and storage. Figure 58 shows that EV5, which is in fast mode, is charged from the grid with a high 

percentage. This will increase the charging price for the EV user. In Figure 58b, EV5 is charged from the 

grid with a higher percentage than in “Sim w/o opt”, while EV3 and EV4 have been charged from the 

storage with a higher percentage than in “Sim w/o opt”, based on Dk  giving a better energy cost as shown. 

Figure 59a shows the energy system distribution for “Sim w/o opt” and “Sim with opt”. There is no grid 

injection in the “Sim w/o opt”, while for the “Sim with opt”, there is a little bit of grid injection, which 

refers to selling energy to the grid and having approximately the same storage charging energy. Figure 59b 

shows the energy system cost, where the energy costs in “Sim with opt” are closer to the ideal case “Opt 

for real conditions” with 99.37% accuracy and lower cost than in “Sim w/o opt” with 164.04% accuracy 

(overpriced). In this case, the PV production is not high; however, selling a little bit of energy to the grid 

during the peak time could reduce the total cost of the system. Thus, it proves the superiority of the 

optimization algorithm over the storage priority algorithm. 

 

Case 

operation 

Grid cost 

(c€) 

Storage 

cost (c€) 

Total cost 

(c€) 

% of 

accuracy 

Sim w/o opt 196.59 64.75 261.34 164.04% 

Sim with opt 97.82 60.49 158.31 99.37% 

Opt for real 

conditions 

102.36 56.94 159.31 - 

 

(a) (b) 

Figure 59: (a) Energy system distribution and (b) energy system cost—case 2. 

III.4.3. Case 3—high irradiation profile with high fluctuations 

The case of 12 May 2019, in Compiegne, France, is considered. Figure 60 shows PV  MPPT  predp , and

PV  MPPTp . 
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Figure 60: PV MPPT real and predicted powers and IIREV demand power—case 3. 

In this case, the irradiations are high, and the weather is cloudy, so there are high fluctuations. The IIREVs 

demand power is based on the data in Table 10. Figure 61 shows the power flow and storage state of charge 

for “Sim w/o opt” and simulation with optimization “Sim with opt” for case 3. 

 

(a) 
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(b) 

Figure 61: Power flow and storage state of charge in (a) “Sim w/o opt” and (b) “Sim with opt”—case 3. 

In Figure 61a, the storage always has priority over the grid, either to be discharged or to be charged. 

However, when EV5 arrives, the IIREV demand power is greater than the PV and storage power that can 

be supplied, where the black dotted lines represent the maximum storage power and the red dotted lines 

represent the maximum grid power that can be reached. Therefore, the grid supplies power to charge the 

EVs. On the other hand, in Figure 61b, the power flow of the storage and the grid is based on the coefficient 

Dk . Since between 12:00 and 13:00 is considered a peak period, by selling energy to the grid operator, it 

is possible to make profits. However, after 13:00, the storage can be recharged to be able to charge the 

future EVs with sufficient storage energy. Therefore, when EV5 arrives, the PV, storage and grid can 

together supply the EVs. 

Figure 62 shows the EV energy distribution for “Sim w/o opt” and “Sim with opt”. 

  

(a) (b) 

Figure 62: EV energy distribution in (a) “Sim w/o opt” and (b) “Sim with opt”—case 3. 

 



-105/227- 
 

EV1, EV3, and EV4 depend mainly on PV energy since they charge in slow mode. EV2 depends on PV 

and storage with a slightly equal percentage. Figure 62 shows that EV5, which is in fast mode, is charged 

from the grid with a high percentage. This will increase the charging price for the EV user. In Figure 62b, 

EV3, EV4, andEV5 are charged from the grid with a higher percentage than in “Sim w/o opt”; due to the 

high fluctuations, the power distribution was not as suitable. However, the energy cost obtained from 

optimization stays better than in “Sim w/o opt” and returns profits due to selling energy to the grid.  

Figure 63a shows the energy system distribution for “Sim w/o opt” and “Sim with opt”. There is no grid 

injection in the “Sim w/o opt”, while for the “Sim with opt”, there is grid injection, which is referred to 

selling energy to the grid and maintaining a little storage charging energy. Figure 63b shows the energy 

system cost; due to the high fluctuations in the real PV profile, the prediction profile was not so accurate. 

However, the energy costs in “Sim with opt” are closer to the ideal case “Opt for real conditions” with 

75.45% accuracy and return profits, while it is the opposite situation in “Sim w/o opt” with −26.46% 

accuracy. Thus, it proves the superiority of the optimization algorithm over the storage priority algorithm. 

 

Case 

operation 

Grid cost 

(c€) 

Storage 

cost (c€) 

Total cost 

(c€) 

% of 

accuracy 

Sim w/o opt 81.32 85.96 167.29 −26.46% 

Sim with opt −522.01 45.1 −476.92 75.45% 

Opt for real 
conditions 

−676.51 44.4 −632.12 - 

 

(a) (b) 

Figure 63: (a) Energy system distribution and (b) energy system cost—case 3. 

III.4.4. Case 4—low irradiation profile with low fluctuations 

The case of 29 September 2018, in Compiegne, France, is considered. Figure 64 shows PV  MPPT  predp , and

PV  MPPTp . 
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Figure 64: PV MPPT real and predicted powers—case 4. 

In this case, the irradiations are not high and the weather is a bit cloudy, so there is low fluctuations. The 

IIREVs demand power is based on the data in Table 10. Figure 64 shows the power flow and storage state 

of charge for “Sim w/o opt” and simulation with optimization “Sim with opt” for case 4. 

 

(a) 
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(b) 

Figure 65: Power flow and storage state of charge in (a) “Sim w/o opt” and (b) “Sim with opt”—case 4. 

In Figure 64a, the storage is always prioritized. However, when EV5 arrives, the grid supplies power with 

the PV and the storage to charge the EVs, where the black dotted lines represent the maximum storage 

power and the red dotted lines represent the maximum grid power that can be reached. On the other hand, 

in Figure 64b, the power flow of the storage and the grid is based on the coefficient Dk . Since, the PV 

production is not high, the storage reached its lower limit at the departure of EV2. Therefore, the storage is 

required to be recharged to be able to charge the future EVs with sufficient storage energy Therefore, when 

EV5 arrives, PV, storage and grid can together supply the EVs. However, between 12:00 and13:00 it is 

considered a peak period, so by selling a little energy to the grid operator, it is possible to make small 

profits. Also, between 15:00 and 16:00 it is a peak period, so in “Sim with opt” the storage is saved to this 

period to supply power instead of grid power. 

Figure 66 shows the EVs energy distribution for “Sim w/o opt” and “Sim with opt”. 
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(a) (b) 

Figure 66: EVs energy distribution in (a) “Sim w/o opt” and (b) “Sim with opt”—case 4. 

In Figure 66, the EVs energy distribution are approximately identical. EV1, EV3, and EV4 depend mainly 

on PV energy since they charge in slow mode. EV2 depends on PV and storage. EV5, which is in fast mode, 

is charged from the grid with high percentage. This will increase the charging price on the EV user. 

Figure 67a shows the energy system distribution for “Sim w/o opt” and “Sim with opt”. There is no grid 

injection in the “Sim w/o opt” while for the “Sim with opt” there is a little bit of grid injection, which is 

referred to selling energy to the grid and storage charging energy. Figure 67b shows the energy system cost, 

where the energy costs in “Sim with opt” are closer to the ideal case “Opt for real conditions” with 166%.61 

accuracy and lower cost than in “Sim w/o opt” with 217.31% accuracy. In this case, the PV production is 

not high, however, selling a little bit of energy to the grid in the peak time could reduce the total cost of the 

system. Thus, it proves the superiority of the optimization algorithm over the storage priority algorithm. 

 

Case 
operation 

Grid cost 
(c€) 

Storage 
cost (c€) 

Total cost 
(c€) 

% of 
accuracy 

Sim w/o opt 123 67.01 190.45 217.31% 

Sim with opt 83.15 62.86 146.02 166.61% 

Opt for real 

conditions 

27.32 60.31 87.64 - 

 

(a) (b) 

Figure 67: (a) Energy system distribution and (b) Energy system cost—case 4. 

III.4.5. Discussion 

In case 1, the PV production is high without fluctuations. In “Sim with opt”, selling energy to the grid is 

preferred to make profits. Moreover, charging the storage a little bit could be interesting to get the same 

EVs energy distribution in “Sim with opt” as in “Sim w/o opt”. 
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In case 2, the PV production is low without fluctuations. The energy distribution especially for EV5 is 

better in “Sim w/o opt” since it is charged with a lower percentage of grid energy than in “Sim with opt”. 

This could be explained by the fact that in “Sim w/o opt”, the storage is always used until it reaches its 

limits, while in “Sim with opt”, the power flow is based on the coefficient Dk  to minimize the total cost. 

Therefore, the total cost in “Sim with opt” is lower than “Sim w/o opt”. Moreover, charging the storage is 

necessary after the departure of EV2, since the storage has reached its limit. 

In case 3, the PV production is high with high fluctuations. In “Sim with opt”, selling energy to the grid is 

preferred to make profits. Moreover, charging the storage a little bit could be interesting to get a closer EV 

energy distribution in “Sim with opt” as in “Sim w/o opt”. Since there are high fluctuations, the power 

distribution is not that accurate; however, the total cost for “Sim w/o opt” brings profits to the IIREVs 

operator, and it is better than “Sim w/o opt”. 

In case 4, the PV production is low with low fluctuations. In “Sim with opt”, charging the storage is 

necessary after the departure of EV2 since the storage has reached its limit. Therefore, the EVs energy 

distribution is approximately the same in “Sim with opt” as in “Sim w/o opt”. Moreover, the total cost in 

“Sim with opt” is lower than Sim w/o opt” due to selling energy to the grid in “Sim with opt”. 

To summarize the four cases studied, “Sim with opt” performs better than “Sim w/o opt” in minimizing the 

total cost of the IIREVs with high accuracy in case 1 and case 2, where they are without fluctuations. For 

the EV energy distribution, in “Sim with opt”, the results are satisfying in case 1 and case 4 as they are 

approximately identical, while in case 2, the coefficient Dk  gives better energy distribution for the system 

to have a lower cost than “Sim w/o opt” instead of giving a better energy distribution for EVs. Therefore, 

the EV user charging in fast mode should be willing to pay a high price. In case 3, due to high fluctuations, 

the optimization is not very accurate, as the PV prediction is hourly coming from Météo France. However, 

the total cost in “Sim with opt” is still better than “Sim with opt” due to selling energy to the grid and 

making profits, yet the EV energy distribution is not as well distributed in “Sim with opt” as in “Sim with 

opt”. 

In optimization, it is always preferred to sell energy to the grid to make profits. However, the goal, besides 

minimizing the total cost, is to have better EV energy distribution by reducing the grid energy consumed 

by the EVs. Therefore, it is important to recharge the storage. For the four cases taken in this study, after 

the departure of EV2, SSOC  decreases, even more in case 2 and case 4, it has reached the lower limit. It is 

expected for three more EVs to come for recharging at the IIREVs, and it is supposed that at least one EV 

could charge in fast mode. The average energy demand for each EV is 25 kWh, and so it is 75 kWh for the 

three EVs to come. Based on the data from Table 2, the capacity of the storage that can be used is 27 kWh 

(30% of 90 kWh). After the departure of EV2, if SSOC  is 20%, then it is empty, and if it is 30%, then only 

9 kWh with PV and grid energy could be used to charge 75 kWh. This will result in increasing the energy 

supplied by the grid to charge the coming EVs. Thus, after the departure of EV2, if PV power is higher than 
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the IIREV demand power, the storage should be recharged. Hence, the interest is to minimize the total cost 

of the IIREVs and to have the best EV energy distribution. 

III.5. Conclusions 

The simulation results prove the superiority of the optimization problem formulated as MILP and solved 

by CPLEX over the storage priority algorithm. The results also show the feasibility of the proposed 

supervisory control of the IIREVs, which contains the HMI and the energy management with power 

balancing and interacts with the smart grid. The proposed supervisory control executes efficiently with 

respect to the constraints and fulfilling the EV user demands. Furthermore, the EVs that charge in slow 

mode depend mainly on PV energy, while for average or fast charging, they depend on the PV, storage and 

grid power sources. The EV energy distribution is considered good compared to the storage priority; only 

in the case with high fluctuations was the EV energy distribution better in storage priority. In addition, 

selling energy to the grid returns profits to the IIREV operator and makes optimization better than the 

storage priority algorithm.  
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 Real-time power management 

including optimization problem for PV-powered 

electric vehicle charging stations 

This chapter presents real-time experimental tests including an optimization problem, formulated as MILP, 

for a MG-based IIREVs. The DC MG includes PV sources, stationary storage, a power grid connection, 

and EV batteries as load. The objective of the optimization problem is to minimize the total energy cost. 

Experimental results under different meteorological conditions prove the feasibility of the proposed control 

and its superiority over the storage priority strategy. This chapter, presented in [114] is constructed as 

follows: Section IV.1 gives a description of the experimental platform, Section IV.2 presents the 

experimental tests including the optimization problem, and Section IV.3 concludes the chapter. 

IV.1. Description of the experimental platform 

The real-time experimental tests were done in the testbed presented in Figure 68a that emulates the IIREVs, 

having a step time of 1/14 kHz. The chargers are emulated with two DC emulators having each 6 kW, 

designated by charging terminals equipped with multi-electrical outlets as shown in Figure 68b. It is 

considered that the DC emulator 1 is a charging terminal with two electrical outlets to emulate EV1 and 

EV2 and the DC emulator 2 is a charging terminal with three electrical outlets to emulate EV3, EV4, and 

EV5.  

 

 

(a) (b) 

Figure 68: Testbed for the IIREV experimental platform (a) and representative image of the multi-outlet charging 

terminals (b). 

The existing testbed allows the PV power profile to be emulated, which permits it to repeat the experimental 

test and compare it in two scenarios, with and without optimization. One notes that vM , _ vEV arrSOC , 

_ vEV desSOC , and 
varrt  are randomly generated. 
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In the real-time experiment, at each EV arrival, the optimization was executed when the EV user came to 

the charging station and inputs their preferences, which were communicated with the dSPACE. Then, 

Python read the data from dSPACE and created the files required to run the optimization in C++, solved by 

CPLEX. Then, Python calculated Dk  and sent it in dSPACE to be read in a real-time experimental model. 

Figure 69 shows the flowchart of the optimization solving for the “real-time exp”. The corresponding Dk  

was calculated as in (33) from the optimized power flow for the corresponding EV arrival event. The 

obtained Dk  was then updated into the Simulink model. 

 

Figure 69: Flowchart of optimization solving. 

To be specific, at the start of the real-time experimental test, when there were no EVs, the optimization 

algorithm was executed for the first time, using only the prediction of PV power. Then, when the first EV 

arrived at the station, the EV data were acknowledged, and the EV user chose his desired SOC and charging 

mode. These data were communicated instantly by the real-time experimental model and were sent through 

a real-time target via a fiber optic cable that ensured communication with analog input/output ports. After 

that, dSPACE received the EV data as an analog input; next, Python read these data and created the files 

required, including the parameters and the profiles of PV predicted power and EV power profiles acquired 

from the HMI. Later on, Python called C++ to resolve the optimization problem using the CPLEX solver, 

which the optimum solution is found within a fraction of a second (0.1-0.15 second). Once the problem 

was resolved, Python calculated Dk  and sent it as analog output to the dSPACE; in turn, it sent it to the 

real-time experimental model. When another EV came to the station, the same procedure was performed 

with the actualized data of the DC microgrid (thus, the SOC of the stationary storage and SOC of the current 

EVs charging were actualized). The whole process takes around 60-90 seconds, the charging of EV starts 

directly when the start button is activated and when the optimization result is found, the power sources are 

used based on Dk  as calculated. 

The following subsections present two case studies to prove the feasibility of the optimization problem in 

real-time experimental tests formulated as MILP under different meteorological conditions. 



-113/227- 
 

IV.2. Real-time experimental tests 

The following subsections presents real-time experimental test in different meteorological conditions and 

different EV charging profiles. 

IV.2.1. Experimental test 1 

Table 11 provides the parameters used for real-time experimental test (“real-time exp”) and power 

balancing control for experimental tests 1, 2, 3, and 4. 

Table 11: Real-time experiment parameter values for experimental tests 1, 2, and 3. 

_S minSOC  35% _ _G I maxP  5 kW Sc  0.01€/kWh 

_S maxSOC  60% _ _G S maxP  5 kW PVSc  1.2€/kWh 

_EV minSOC  20% _S maxP  3.45 kW refV  400 V 

_EV maxSOC  100% PVN  12 PV BatE  37.44 kWh 

0SSOC  50% PV  MPPTp  4.14 kWp E  5 kWh 

_ _EV fast maxP  5 kW _G NHc  0.1€/kWh   

_ _EV aver maxP  2.2 kW _G PHc  0.7€/kWh   

_ _EV slow maxP  0.7 kW _EV penaltyc  2.5€/kWh   

The parameter values used in Table 11 were chosen with a scale divided by ten, compared to the simulation, 

due to the physical limitations of the available sources and equipment. The existing stationary storage had 

an energy capacity of 37.44 kWh, which is considered high; therefore, the SOC limits were chosen to be 

between 60% and 35% instead of 80% and 20%, to be able to present some periods where the storage is 

full or empty. 

The case of 27 October 2021, in Compiegne, France, is considered. Figure 70 shows   PV MPPT predp , and 

 PV MPPTp , where the irradiations are intermediate and the weather is a bit cloudy, so there are low 

fluctuations. The IIREV demand power is based on the data in Table 12. 

Table 12: Assumed options by the EV users for experimental test 1. 

EVs _EV arrSOC  _EV desSOC  
arrt  _est cht  M  

EV1 29% 74% 09:10 03:13 Slow 

EV2 23% 78% 09:40 01:15 Average 

EV3 22% 88% 12:20 04:43 Slow 

EV4 32% 78% 14:20 03:18 Slow 

EV5 29% 70% 14:30 00:25 Fast 
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Figure 70: PV MPPT real and predicted powers—experimental test 1. 

Figure 71 shows the power flow and storage state of charge for “real-time exp” without optimization and 

the DC bus voltage—experimental test 1a. 

 

(a) 
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(b) 

Figure 71: Power flow and storage state of charge for “real-time exp” without optimization (a) and (b) storage state of 

charge and DC bus voltage—experimental test 1a. 

In Figure 71a, the storage is always prioritized to be either charged or discharged. When EV5 arrives, the 

IIREV demand power is greater than the PV and storage power that they can supply. Therefore, the grid 

supplies power to charge the EVs. The grid continues supplying power to the IIREVs as the storage is 

empty around 15:10. Figure 71b shows the evolution of the storage SOC, where it is always discharging 

almost all the time until it is empty around 15:10, and the stability of the DC bus voltage is present even 

with small fluctuations. Spikes of a few voltages (0.5%) happen when each EV starts charging and when it 

finishes charging. 

Figure 72 shows the power flow and storage state of charge for “real-time exp” with optimization and the 

DC bus voltage—experimental test 1b. 

 

(a) 
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(b) 

Figure 72: Power flow and storage state of charge for “real-time exp” with optimization (a) and (b) the storage state of 

charge and DC bus voltage—experimental test 1b. 

In Figure 72a, the power flow of the storage and the grid is based on the coefficient Dk . From 12:00 until 

14:20, the PV injects little energy to the grid during the peak hour, yet some fluctuations still happen where 

the grid supplies power. However, when EV5 arrives, the IIREV demand power is greater than the PV and 

storage power that they can supply. Therefore, the grid supplies power to charge the EVs with maximum 

power, and the storage is preserved. From 15:15 to 16:15, the storage discharges energy until it is empty to 

avoid the high cost of grid supply power, as it is considered a peak period. After 16:15, the grid supplies 

power, regardless of the Dk  value. Figure 72b shows the evolution of the storage SOC, where the storage 

discharges energy from 09:10 to 10:50, 14:25 to 14:50 and around 15:15 to 16:15. Figure 72b also shows 

the stability of the DC bus voltage even with small fluctuations, which are due to the switching of DC 

converters, and the spikes of a few voltages (1 %) happen when each EV starts charging and when it finishes 

charging. 

Table 13 shows the energy system cost for “real-time exp” without optimization, where the energy costs 

are higher than in optimization due to the cost of EV shedding. The real-time experiment with optimization 

is closer to the optimization for real conditions, as it avoids EV shedding and gives better energy costs of 

56.69 c€. In “Opt for real conditions”, where the optimization is performed without uncertainties, it gives 

the optimal energy cost without error, which is 39.50 c€. It avoids EV shedding and grid supply energy, 

and when EV5 arrives, the storage is discharged to the maximum power, then becomes empty around 14:45, 

provoking EV shedding. However, in “Opt for real conditions”, the grid supplies its maximum power when 

EV5 arrives, and the storage is preserved to discharge at peak hours from 15:00 to 16:00. This explains the 

difference in the grid cost and the total cost for both cases. 



-117/227- 
 

Table 13. Energy system cost—experimental test 1. 

Case operation Grid cost (c€) Storage cost (c€) Total cost (c€) 

Real-time exp w/o opt 83.86 6.75 90.98 

Real-time exp with opt 50.69 6.00 56.69 

Opt for real conditions 33.88 5.61 39.50 

Figure 73 shows the energy system distribution for “real-time exp” with and without optimization. 

 

Figure 73: Energy system distribution—experimental test 1. 

Figure 73 shows the energy system distribution for “Real-time w/o opt” and “Real-time with opt”. There is 

no grid injection but a little of storage charging in the “Real-time w/o opt”, while for the “Real-time with 

opt”, there is a little bit of grid injection, which refers to selling energy to the grid and having approximately 

the same storage discharging energy. 

Figure 74 shows the EV energy distribution for “real-time exp” with and without optimization. 

  

(a) (b) 

Figure 74: EV energy distribution for “real-time exp” (a) without optimization and (b) with optimization—experimental 

test 1. 

In Figure 74, the share of PV energy is not significant even for EVs charging in slow mode. Thus, the share 

of storage energy is high for EV1 and EV2, while the share of grid energy is high for EV3, EV4, and EV5 

as the storage is empty early, around 15:15 in Figure 74a. Figure 74b shows a better EV energy distribution 

than in Figure 74a, where EV3 and EV4 were charged by the storage instead of the grid, whereas for EV5, 
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the storage was preserved to discharge at the peak hour from 15:00 to 16:00, and therefore EV5, charging 

in fast mode, was charged mainly by the grid. 

IV.2.2. Experimental test 2 

The case of 22 Mars 2022, in Compiegne, France, is considered. Figure 75 shows   PV MPPT predp , and 

 PV MPPTp , where the irradiations are high and the weather is a globally sunny. The IIREV demand power is 

based on the data in Table 14. 

Table 14: Assumed options by the EV users for experimental test 2 and 3. 

EVs _EV arrSOC  _EV desSOC  
arrt  _est cht  M  

EV1 33% 82% 09:20 03:30 Slow 

EV2 35% 75% 10:00 00:24 Fast 

EV3 30% 80% 12:05 03:34 Slow 

EV4 25% 78% 13:45 01:12 Average 

EV5 29% 72% 14:25 03:04 Fast 

 

Figure 75: PV MPPT real and predicted powers—experimental test 2. 

Figure 76 shows the power flow and storage state of charge for “real-time exp” without optimization and 

the DC bus voltage—experimental test 2a. 



-119/227- 
 

 

(a) 

 

(b) 

Figure 76: Power flow and storage state of charge for “real-time exp” without optimization (a) and (b) storage state of 

charge and DC bus voltage—experimental test 2a. 

In Figure 76a, the storage is always prioritized to be either charged or discharged. when EV2 arrives, the 

IIREV demand power is greater than the PV and storage power that they can supply. Therefore, the grid 

supplies power to charge the EVs. Figure 76b shows the evolution of the storage SOC, where it starts 

recharging right after the departure of EV2 until the arrival of EV4 and discharges again until the end, and 

the stability of the DC bus voltage is present even with small fluctuations. Spikes of a few voltages (0.5%) 

happen when each EV starts charging and when it finishes charging. 

Figure 77 shows the power flow and storage state of charge for “real-time exp” with optimization and the 

DC bus voltage—experimental test 2b. 
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(a) 

 

(b) 

Figure 77: Power flow and storage state of charge for “real-time exp” with optimization (a) and (b) the storage state of 

charge and DC bus voltage—experimental test 2b. 

In Figure 77a, the power flow of the storage and the grid is based on the coefficient Dk . Right after the 

departure of EV2 until the arrival of EV4, the PV injects energy to the grid, especially during the peak hour, 

yet some fluctuations still happen where the grid supplies power. However, when EV2 arrives, the IIREV 

demand power is greater than the PV and storage power that they can supply. Therefore, the grid supplies 

power to charge the EVs. From 15:00 to 15:45, peak hour, and then again from 16:00 until the end, the 

storage discharges energy to avoid the high cost of grid supply power. Figure 77b shows the evolution of 

the storage SOC, where the storage discharges energy from 10:00 to 10:25, 13:45 to 14:50, 15:00 to 15:45 

and 16:00 until the end. Figure 77b also shows the stability of the DC bus voltage even with small 

fluctuations, which are due to the switching of DC converters, and the spikes of a few voltages (1.5%) 

happen when each EV starts charging and when it finishes charging. 
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Table 15 shows the energy system cost for “real-time exp” with optimization is closer to the optimization 

for real conditions, as it injects energy to the grid and gives better energy costs of -18.10 c€. In “Opt for 

real conditions”, where the optimization is performed without uncertainties, it gives the optimal energy cost 

without error, which is -67.35 c€. It avoids EV shedding and grid supply energy, and when EV2 arrives, 

the storage is discharged to the maximum power. However, in “Opt for real conditions”, the storage 

discharge from 15:45 to 16:00. This explains the difference in the grid cost and the total cost for both cases. 

Table 15. Energy system cost—experimental test 2. 

Case operation Grid cost (c€) Storage cost (c€) Total cost (c€) 

Real-time exp w/o opt 5.29 7.24 12.55 

Real-time exp with opt -22.96 4.84 -18.10 

Opt for real conditions -71.37 4.02 -67.35 

Figure 78 shows the energy system distribution for “real-time exp” with and without optimization. 

 

Figure 78: Energy system distribution—experimental test 2. 

Figure 78 shows the energy system distribution for “Real-time w/o opt” and “Real-time with opt”. There is 

no grid injection in the “Real-time w/o opt”, while for the “Real-time with opt”, there is a little bit of grid 

injection, which refers to selling energy to the grid and having approximately the same storage charging 

energy. 

Figure 79 shows the EV energy distribution for “real-time exp” with and without optimization. 
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(a) (b) 

Figure 79: EV energy distribution for “real-time exp” (a) without optimization and (b) with optimization—experimental 

test 2. 

In Figure 79, EV1 and EV3 depend mainly on PV energy since they charge in slow mode. EV2 depends on 

PV, storage and grid energy. The percentage of grid energy is significantly greater than the other EVs since 

it is charging in fast mode. EV4 depends on storage more than PV. The energy distribution in both cases is 

very similar and is considered good as only EV2, charging in fast mode, has been charged with 23% and 

28% in Figure 79a and Figure 79b respectively. 

IV.2.3. Experimental test 3 

The case of 8 November 2021, in Compiegne, France, is considered. Figure 80 shows   PV MPPT predp , and 

 PV MPPTp , where the irradiations are low with fluctuations and the sundown is between 16:00 and 17:00. 

 

Figure 80: PV MPPT real and predicted powers—experimental test 3. 

In this case, the IIREV demand power is based on the data in Table 14. Figure 81 shows the power flow 

and storage state of charge for “real-time exp” without optimization and the DC bus voltage—experimental 

test 3a. 
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(a) 

 

(b) 

Figure 81: Power flow and storage state of charge for “real-time exp” without optimization (a) and (b) storage state of 

charge and DC bus voltage—experimental test 3a. 

In Figure 81a, the storage is always prioritized to be either charged or discharged. when EV2 arrives, the 

IIREV demand power is greater than the PV and storage power that they can supply. Therefore, the grid 

supplies power to charge the EVs. The grid continues supplying power to the IIREVs as the storage is 

empty around 14:40. Figure 81b shows the evolution of the storage SOC, where it always discharges until 

its empty around 14:40, and the stability of the DC bus voltage is present even with small fluctuations. 

Spikes of a few voltages (1.5%) happen when each EV starts charging and when it finishes charging. 

Figure 82 shows the power flow and storage state of charge for “real-time exp” with optimization and the 

DC bus voltage—experimental test 3b. 
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(a) 

 

(b) 

Figure 82: Power flow and storage state of charge for “real-time exp” with opt (a) and (b) storage state of charge and DC 

bus voltage—experimental test 3b. 

In Figure 82a, the power flow of the storage and the grid is based on the coefficient Dk . Right after the 

departure of EV2 the grid supplies power, falsely as calculated by Dk . However, when EV2 arrives, the 

IIREV demand power is greater than the PV and storage power that they can supply. Therefore, the grid 

supplies power to charge the EVs. When EV4 arrives, the storage discharges until around 14:20, to preserve 

the storage until peak period at 15:00 until 16:00 to avoid the high cost of grid supply power. Figure 82b 

shows the evolution of the storage SOC, where the storage discharges energy from 09:20 to 10:25, 12:05 

to 12:50, 13:45 to 14:20, 15:00 to 16:00 and 16:15 to 16:40 where its empty. Figure 82b also shows the 

stability of the DC bus voltage even with small fluctuations, which are due to the switching of DC 

converters, and the spikes of a few voltages (1.25%) happen when each EV starts charging and when it 

finishes charging. 
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Table 16 shows the energy system cost for “real-time exp” with optimization is closer to the optimization 

for real conditions, as it avoids grid supply in peak hours and gives better energy costs of 73.26 c€. For 

“real-time exp” without optimization, the energy cost is higher than in optimization as the storage emptied 

before 15:00 to 16:00 and so the grid supplied power in this period. As shown in Figure 80, the PV power 

prediction is overestimated and much higher than the real PV power. However, in “Opt for real conditions”, 

the grid supplies its maximum power when EV2 arrives, and the storage is preserved to discharge at peak 

hours from 12:00 to 13:00 and15:00 to 16:00, giving an energy cost of 32.35 c€. This explains the difference 

in the grid cost and the total cost for both cases. 

Table 16: Energy system cost—experimental test 3. 

Case operation Grid cost (c€) Storage cost (c€) Total cost (c€) 

Real-time exp w/o opt 132.15 5.60 137.75 

Real-time exp with opt 67.77 5.49 73.26 

Opt for real conditions 26.74 5.61 32.35 

Figure 83 shows the energy system distribution for “real-time exp” with and without optimization. 

 

Figure 83: Energy system distribution—experimental test 3. 

Figure 83 shows the energy system distribution for “Real-time w/o opt” and “Real-time with opt”. There is 

neither grid injection nor storage charging in the “Real-time w/o opt”, and “Real-time with opt”, whereas  

the storage discharging energy and grid supply energy are approximately the same, but the time of user of 

these sources is different. 

Figure 84 shows the EV energy distribution for “real-time exp” with and without opt. 
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(a) (b) 

Figure 84: EV energy distribution for “real-time exp” (a) without opt and (b) with opt—experimental test 3. 

In Figure 84, the share of PV energy is not significant even for EVs charging in slow mode. Thus, the share 

of storage energy is high for EV1 and EV3, while the share of grid energy is high for EV2, EV4, and EV5. 

Figure 84b shows a better EV energy distribution than in Figure 84a, where EV3 and EV5 were charged 

by the storage instead of the grid, whereas for EV4, the storage was preserved to discharge at the peak hour 

from 15:00 to 16:00, and therefore EV4, charging in average mode, was charged mainly by the grid. 

IV.2.4. Experimental test 4 

Table 17 provides the parameters used for “real-time exp” and power balancing control for experimental 

tests 4, 5, 6, and 7. 

Table 17: Real-time experiment parameter values for experimental tests 4, 5, 6 and 7. 

_S minSOC  35% _ _G I maxP  10 kW Sc  0.01€/kWh 

_S maxSOC  60% _ _G S maxP  10 kW PVSc  1.2€/kWh 

_EV minSOC  20% _S maxP  3.5 kW refV  400 V 

_EV maxSOC  100% PVN  12 PV BatE  37.44 kWh 

0SSOC  50% PV  MPPTp  4.14 kWp E  5 kWh 

_ _EV fast maxP  5 kW _G NHc  0.1€/kWh   

_ _EV aver maxP  2.2 kW _G PHc  0.7€/kWh   

_ _EV slow maxP  0.7 kW _EV penaltyc  2.5€/kWh   

The parameter values used in Table 17 were chosen to allow charging of more than one EV in fast or 

average mode, therefore, the grid limits are increased. 

The case of 10 April 2022, in Compiegne, France, is considered.  Figure 85 shows   PV MPPT predp , and 

 PV MPPTp , where the irradiations are high and the weather is a partially sunny with low fluctuations. The 

IIREV demand power is based on the data in Table 18. 
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Table 18: Assumed options by the EV users for experimental test 4 and 5. 

EVs _EV arrSOC  _EV desSOC  
arrt  _est cht  M  

EV1 25% 80% 09:15 03:55 Slow 

EV2 23% 85% 09:50 00:37 Fast 

EV3 35% 90% 10:05 01:15 Average 

EV4 30% 75% 13:20 03:13 Slow 

EV5 26% 82% 14:00 00:34 Fast 

 

Figure 85: PV MPPT real and predicted powers—experimental test 4. 

Figure 86 shows the power flow and storage state of charge for “real-time exp” without optimization and 

the DC bus voltage—experimental test 4a. 

 

(a) 
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(b) 

Figure 86: Power flow and storage state of charge for “real-time exp” without optimization (a) and (b) storage state of 

charge and DC bus voltage—experimental test 4a. 

In Figure 86a, the storage is always prioritized to be either charged or discharged. when EV2 arrives, the 

IIREV demand power is greater than the PV and storage power that they can supply. Therefore, the grid 

supplies power to charge the EVs. Figure 86b shows the evolution of the storage SOC, where it starts 

recharging right after the departure of EV3 until the arrival of EV5 and recharges again after the departure 

of EV5, and the stability of the DC bus voltage is present even with small fluctuations. Spikes of a few 

voltages (0.5%) happen when each EV starts charging and when it finishes charging. 

Figure 87 shows the power flow and storage state of charge for “real-time exp” with optimization and the 

DC bus voltage—experimental test 4b. 

 

(a) 
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(b) 

Figure 87: Power flow and storage state of charge for “real-time exp” with optimization (a) and (b) the storage state of 

charge and DC bus voltage—experimental test 4b. 

In Figure 87a, the power flow of the storage and the grid is based on the coefficient Dk . However, when 

EV2 and EV3 comes to charge in fast and average mode respectively, the IIREV demand power is greater 

than the PV and storage power that they can supply, and therefore, storage and grid supply power. Right 

after the departure of EV3 until the arrival of EV5, the PV injects energy to the grid, especially during the 

peak hour. Despite the high demand power of IIREV in this case, yet the PV production is high, allowing 

grid injection most of the time. Figure 87b shows the evolution of the storage SOC, where the storage 

discharges energy from 09:50 to 11:20, and 14:00 to 14:34 when EV5 lefts the PVCS. Figure 87b also 

shows the stability of the DC bus voltage even with small fluctuations, which are due to the switching of 

DC converters, and the spikes of a few voltages (1.5%) happen when each EV starts charging and when it 

finishes charging. 

Table 19 shows the energy system cost for “real-time exp” with optimization is closer to the optimization 

for real conditions, as it injects energy to the grid and gives better energy costs of -142.73 c€. In “Opt for 

real conditions”, where the optimization is performed without uncertainties, it gives the optimal energy cost 

without error, which is -148.67 c€. It avoids grid supply energy when the storage can discharge energy 

instead, which explains the big difference in the grid cost and the total cost for both cases. 

Table 19. Energy system cost—experimental test 4. 

Case operation Grid cost (c€) Storage cost (c€) Total cost (c€) 

Real-time exp w/o opt 18.73 11.55 30.28 

Real-time exp with opt -148.27 5.54 -142.73 

Opt for real conditions -154.19 5.52 -148.67 

Figure 88 shows the energy system distribution for “real-time exp” with and without optimization. 
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Figure 88: Energy system distribution—experimental test 4. 

Figure 88 shows the energy system distribution for “Real-time w/o opt” and “Real-time with opt”. There is 

no grid injection in the “Real-time w/o opt” but more than 5.5 kWh of storage charging, while for the “Real-

time with opt”, there is around 5 kWh of grid injection, which refers to selling energy to the grid and having 

approximately the same storage discharging energy. 

Figure 89 shows the EV energy distribution for “real-time exp” with and without optimization. 

  

(a) (b) 

Figure 89: EV energy distribution for “real-time exp” (a) without optimization and (b) with optimization—experimental 

test 4. 

In Figure 89, EV1 and EV4 depend mainly on PV energy since they charge in slow mode. EV2 and EV5 

depend on PV, storage and grid energy. The percentage of grid energy is significantly greater than the other 

EVs since it is charging in fast mode. EV3 depends on storage more than PV. The energy distribution in 

both cases is very similar and is considered good. 

IV.2.5. Experimental test 5 

The case of 22 September 2021, in Compiegne, France, is considered. Figure 90 shows   PV MPPT predp , and 

 PV MPPTp , where the irradiations are intermediate with fluctuations. 
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Figure 90: PV MPPT real and predicted powers—experimental test 5. 

In this case, the IIREV demand power is based on the data in Table 18. Figure 91 shows the power flow 

and storage state of charge for “real-time exp” without optimization and the DC bus voltage—experimental 

test 5a. 

 

(a) 
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(b) 

Figure 91: Power flow and storage state of charge for “real-time exp” without optimization (a) and (b) storage state of 

charge and DC bus voltage—experimental test 5a. 

In Figure 91a, the storage is always prioritized to be either charged or discharged. when EV2 arrives, the 

IIREV demand power is greater than the PV and storage power that they can supply. Therefore, the grid 

supplies power to charge the EVs. Figure 91b shows the evolution of the storage SOC, where it starts 

recharging right after the departure of EV3 until the arrival of EV5 and recharges again after the departure 

of EV5, and the stability of the DC bus voltage is present even with small fluctuations. Spikes of a few 

voltages (0.5%) happen when each EV starts charging and when it finishes charging. 

Figure 92 shows the power flow and storage state of charge for “real-time exp” with optimization and the 

DC bus voltage—experimental test 5b. 

 

(a) 
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(b) 

Figure 92: Power flow and storage state of charge for “real-time exp” with opt (a) and (b) storage state of charge and DC 

bus voltage—experimental test 5b. 

In Figure 92a, the power flow of the storage and the grid is based on the coefficient Dk . However, when 

EV2 and EV3 comes to charge in fast and average mode respectively, the IIREV demand power is greater 

than the PV and storage power that they can supply, and therefore, storage and grid supply power. Right 

after the departure of EV3 until the arrival of EV5, the PV injects energy to the grid, especially during the 

peak hour. Despite the high demand power of IIREV in this case, yet the PV production is high, allowing 

grid injection most of the time. Figure 92b shows the evolution of the storage SOC, where the storage 

discharges energy from 09h15 to 09:40 and from 09:50 to 11:20, and 14:00 to 14:34 when EV5 lefts the 

PVCS, whereas, it has been charging from around 15:40 to around 16:30. Figure 92b also shows the stability 

of the DC bus voltage even with small fluctuations, which are due to the switching of DC converters, and 

the spikes of a few voltages (1.5%) happen when each EV starts charging and when it finishes charging. 

Table 20 shows the energy system cost for “real-time exp” with optimization is closer to the optimization 

for real conditions, as it injects energy to the grid and gives better energy costs of -47.57 c€. In “Opt for 

real conditions”, where the optimization is performed without uncertainties, it gives the optimal energy cost 

without error, which is -63.60 c€. It avoids grid supply energy when the storage can discharge energy 

instead and injects PV energy into the grid instead of charging the storage, which explains the difference 

in the grid cost and the total cost for both cases. 

Table 20: Energy system cost—experimental test 5. 

Case operation Grid cost (c€) Storage cost (c€) Total cost (c€) 

Real-time exp w/o opt 23.73 9.74 33.47 

Real-time exp with opt -53.89 6.32 -47.57 

Opt for real conditions -69.22 5.61 -63.60 

Figure 93 shows the energy system distribution for “real-time exp” with and without optimization. 
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Figure 93: Energy system distribution—experimental test 5. 

Figure 93 shows the energy system distribution for “Real-time w/o opt” and “Real-time with opt”. There is 

no grid injection in the “Real-time w/o opt” but around 3.5 kWh of storage charging instead, while for the 

“Real-time with opt”, there is around 2.5 kWh of grid injection, which refers to selling energy to the grid 

and having nearly the same storage discharging energy. 

Figure 94 shows the EV energy distribution for “real-time exp” with and without opt. 

  

(a) (b) 

Figure 94: EV energy distribution for “real-time exp” (a) without opt and (b) with opt—experimental test 5. 

In Figure 94, EV1 and EV4 depend mainly on PV energy since they charge in slow mode. EV2 and EV5 

depend on PV, storage and grid energy. The percentage of grid energy is significantly greater than the other 

EVs since it is charging in fast mode. EV3 depends on storage more than PV. The energy distribution in 

both cases is very similar and is considered good. 
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IV.2.6. Experimental test 6 

The case of 14 May 2022, in Compiegne, France, is considered. Figure 95 shows   PV MPPT predp ,  PV MPPTp , 

where the irradiations are high and the weather is a partially sunny with low fluctuations. The IIREV 

demand power is based on the data in Table 21. 

Table 21: Assumed options by the EV users for experimental test 6 and 7. 

EVs _EV arrSOC  _EV desSOC  
arrt  _est cht  M  

EV1 22% 79% 09:15 04:04 Slow 

EV2 35% 88% 09:35 03:47 Slow 

EV3 24% 82% 09:55 04:08 Slow 

EV4 33% 77% 10:20 03:09 Slow 

EV5 36% 90% 11:00 03:51 Slow 

 

Figure 95: PV MPPT real and predicted powers—experimental test 6. 

Figure 96 shows the power flow and storage state of charge for “real-time exp” without optimization and 

the DC bus voltage—experimental test 6a. 
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(a) 

 

(b) 

Figure 96: Power flow and storage state of charge for “real-time exp” without optimization (a) and (b) storage state of 

charge and DC bus voltage—experimental test 6a. 

In Figure 96a, the storage is always prioritized to be either charged or discharged. All EVs are charging in 

slow mode, therefore, only the storage discharged power into the EVs. Figure 96b shows the evolution of 

the storage SOC, where it starts recharging right after the departure of EV3 until 18:00, and the stability of 

the DC bus voltage is present even with small fluctuations (0.25%). 

Figure 97 shows the power flow and storage state of charge for “real-time exp” with optimization and the 

DC bus voltage—experimental test 6b. 
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(a) 

 

(b) 

Figure 97: Power flow and storage state of charge for “real-time exp” with optimization (a) and (b) the storage state of 

charge and DC bus voltage—experimental test 6b. 

In Figure 97a, the power flow of the storage and the grid is based on the coefficient Dk . All EVs are 

charging in slow mode, therefore, only the storage discharged power into the EVs. Right after the departure 

of EV3 until the arrival of EV5, the PV injects energy to the grid, especially during the peak hour. Despite 

the high demand power of IIREV in this case, yet the PV production is high, allowing grid injection most 

of the time. In Figure 97a b shows the evolution of the storage SOC, where it starts recharging right after 

the departure of EV3 until 18:00, and the stability of the DC bus voltage is present even with small 

fluctuations (0.25%). 

Table 22 shows the energy system cost for “real-time exp” with optimization is closer to the optimization 

for real conditions, as it injects energy to the grid and gives better energy costs of -156.63 c€. In “Opt for 
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real conditions”, where the optimization is performed without uncertainties, it gives the optimal energy cost 

without error, which is -167.46 c€. It avoids grid supply energy when the storage can discharge energy 

instead, which explains the difference in the grid cost and the total cost for both cases. 

Table 22. Energy system cost—experimental test 6. 

Case operation Grid cost (c€) Storage cost (c€) Total cost (c€) 

Real-time exp w/o opt 0 1.54 11.54 

Real-time exp with opt -161.80 5.17 -156.63 

Opt for real conditions -172.65 5.19 -167.46 

Figure 98 shows the energy system distribution for “real-time exp” with and without optimization. 

 

Figure 98: Energy system distribution—experimental test 6. 

Figure 98 shows the energy system distribution for “Real-time w/o opt” and “Real-time with opt”. There is 

no grid injection in the “Real-time w/o opt” but around 6.5 kWh of storage charging instead, while for the 

“Real-time with opt”, there is around 5.5 kWh of grid injection, which refers to selling energy to the grid 

and having nearly the same storage discharging energy. 

Figure 99 shows the EV energy distribution for “real-time exp” with and without optimization. 
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(a) (b) 

Figure 99: EV energy distribution for “real-time exp” (a) without optimization and (b) with optimization—experimental 

test 6. 

In Figure 99, all EVs charged in slow mode, therefore, they are charged mainly by PV and the storage as 

second source. The energy distribution in both cases is very similar and is considered good. 

IV.2.7. Experimental test 7 

The case of 27 October 2022, in Compiegne, France, is considered. Figure 70 shows   PV MPPT predp , and 

 PV MPPTp , where the irradiations are intermediate and the weather is a bit cloudy, so there are low 

fluctuations. The IIREV demand power is based on the data in Table 21. 

Figure 71Figure 100 shows the power flow and storage state of charge for “real-time exp” without 

optimization and the DC bus voltage—experimental test 7a. 

 

(a) 
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(b) 

Figure 100: Power flow and storage state of charge for “real-time exp” without optimization (a) and (b) storage state of 

charge and DC bus voltage—experimental test 7a. 

In Figure 100a, the storage is always prioritized to be either charged or discharged. All EVs are charging 

in slow mode, however, the storage is empty around 11:45 where the grid continues charging the EVs. After 

the departure of all EVs except for EV5, the storage regain charging a bit and then discharges afterwards 

until the end. Figure 100b shows the evolution of the storage SOC, where it starts recharging right after the 

departure of EV3 until 18:00, and the stability of the DC bus voltage is present even with small fluctuations 

(1.5%). 

Figure 101 shows the power flow and storage state of charge for “real-time exp” with optimization and the 

DC bus voltage—experimental test 7b. 

 

(a) 
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(b) 

Figure 101: Power flow and storage state of charge for “real-time exp” with optimization (a) and (b) the storage state of 

charge and DC bus voltage—experimental test 7b. 

In Figure 101a, the power flow of the storage and the grid is based on the coefficient Dk . All EVs are 

charging in slow mode, however, the grid supplied power when all EVs are charging to preserve the storage 

for the peak hour (12:00 until 13:00) but the storage becomes empty around 12:30. After the departure of 

all EVs except for EV5, the PV injects energy to the grid, especially during the peak hour (15:00 until 

16:00). In Figure 101b shows the evolution of the storage SOC, and the stability of the DC bus voltage is 

present even with small fluctuations (1.5%). 

Table 23 shows the energy system cost for “real-time exp” with optimization is closer to the optimization 

for real conditions, as it injects energy to the grid and gives better energy costs of 115.05 c€. In “Opt for 

real conditions”, where the optimization is performed without uncertainties, it gives the optimal energy cost 

without error, which is 24.13 c€. It avoids grid supply energy when the storage can discharge energy instead, 

which explains the difference in the grid cost and the total cost for both cases. 

Table 23. Energy system cost—experimental test 7. 

Case operation Grid cost (c€) Storage cost (c€) Total cost (c€) 

Real-time exp w/o opt 219.86 7.18 227.04 

Real-time exp with opt 109.4 5.64 115.05 

Opt for real conditions 18.51 5.61 24.13 

Figure 102 shows the energy system distribution for “real-time exp” with and without optimization. 
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Figure 102: Energy system distribution—experimental test 7. 

Figure 102 shows the energy system distribution for “Real-time w/o opt” and “Real-time with opt”. There 

is no grid injection in the “Real-time w/o opt” but around 1 kWh of storage charging instead, while for the 

“Real-time with opt”, there is around 0.5 kWh of grid injection, which refers to selling energy to the grid 

and having nearly the same storage discharging energy and grid supply energy. 

Figure 103 shows the EV energy distribution for “real-time exp” with and without optimization. 

  

(a) (b) 

Figure 103: EV energy distribution for “real-time exp” (a) without optimization and (b) with optimization—experimental 

test 7. 

In Figure 103, all EVs charged in slow mode, however, as PV production is not that high, they are charged 

with the three sources. The energy distribution in both cases is very similar. 

IV.2.8. Discussion 

For “real-time exp” with optimization, selling energy to the grid is preferred to make profits based on the 

coefficient Dk  to minimize the total cost. Thus, the test with optimization gives better energy cost than 

without optimization. Furthermore, the EV energy distribution can be considered for “real-time exp” with 

optimization to be better than without optimization. 
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To sum up, “with opt” performs better than “w/o opt” in minimizing the total cost of the IIREVs, and for 

the EV energy distribution, the results are satisfying with optimization, which is not the case without 

optimization, as the share of storage and grid energies are higher than the share of PV energy. For the 

experimental test, where all EVs are charged in slow mode and the PV production is high, the PV benefits 

are highlighted in this case, where EVs are mainly charged with PV energy and storage as secondary source, 

this reinforce the results found in chapter II. 

IV.3. Conclusions 

The real-time experimental results prove the superiority of the optimization problem formulated as MILP 

and solved by CPLEX over the storage priority algorithm. The results also show the feasibility of the 

proposed supervisory control of the IIREVs, which contains the HMI and the energy management with 

power balancing and interacts with the smart grid. The proposed supervisory control executes efficiently 

with respect to the constraints and fulfilling the EV user demands. Furthermore, the EVs that charge in slow 

mode depend mainly on PV energy, while for average or fast charging, they depend on the PV, storage and 

grid power sources. The EV energy distribution is considered good compared to the storage priority; only 

in the case with high fluctuations was the EV energy distribution better in storage priority. In addition, 

selling energy to the grid returns profits to the IIREV operator and makes optimization better than the 

storage priority algorithm. 
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 PV-powered charging station: energy 

management with V2G operation and energy cost 

analyses 

As the adoption of EVs is increasing, the charging of EVs in large scale will increase the load demand on 

the public grid. However, EVs are mostly all the time in idle positions, so by the implementation of V2G 

service, they could be a promising solution to overcome grid challenges due to their various advantages. In 

this chapter, a PVCS equipped with five chargers that could support slow, average and fast charging. The 

PVCS integrates PV sources, storage system, connection to the public grid and EVs as a controllable load 

as they could operate in V2G mode. The HMI lets the EV users, who come arbitrarily at the PVCS, interacts 

with the PVCS which allows them to choose their preferences; desired SOC at departure, charging mode, 

participation in V2G service. This chapter, presented in [155], is constructed as follows: Section V.1 gives 

an introduction. Section V.2 presents the literature review. Section V.3 represents the PVCS design and its 

power management. Section v.4 represents some case studies with the implementation of V2G service. 

Section V.5 shows the energy cost results and analyses. Section V.6 concludes the chapter. 

V.1. Introduction 

The integration of RES into the grid needs storage system. Storage system is a vital element to overcome 

the intermittency of RES and ensure grid stability. The charging of EVs in a large scale will impose 

challenges on the grid. Since, they are most of the time idles, therefore, when plugged-in they can be used 

as energy storage system and reduce the burden on the grid. They can charge in off-peak periods and 

discharge in peak periods to support the public grid or the MG. Thus, EVs are considered as controllable 

loads and act as a distributed energy resources (DER). Hence, V2G is a promising feature in smart grid 

technologies [156]–[158]. The users of these EVs can be rewarded when participating in V2G service [159]. 

V2G service can offer voltage support, increase electricity reliability, shift the load demand, increase 

renewable energy integration, and improve power quality [160], [161]. It can, also, provide grid services, 

as voltage and frequency regulation, peak load shaving and valley filling, and spinning reserve [162]. The 

increased number of charging/discharging cycles may affect the battery of an EV and lead to its degradation. 

However, new studies are being realized proving that EV can operate in V2G service without battery 

degradation [163]. While in [164], the benefits are classed as follows; for the EV users, participating in 

V2G service can decrease the total ownership cost of EVs, V2G is seen as an alternative energy source to 

use for local utilization for home. For the grid operator, V2G is seen as a power source, mitigate fluctuations 

due to the intermittence of RES, and provides ancillary services. For the government, V2G improves the 

reliability and security of the power grid, increases the penetration of RES and greener environment. For 
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the EV operator, V2G service provides grid balancing services. For the office and business entities, V2G 

service can provide peak shaving and valley filling, balance load demand, which leads to reduce the total 

energy cost. The benefits of V2G service are summarized in [165] as: 

– an alternative energy source at peak periods; 

– improving reliability of the system; 

– decreasing the total cost of the system; 

– reducing voltage drops and line losses in the distribution grid; 

– reducing power quality problems; 

– reducing frequency fluctuations; 

– reducing voltage stability problems; 

– providing ancillary services; 

– providing benefits for users who participate in V2G service. 

Moreover, Some advantages of V2G services are [166]: 

– providing power to home appliances in peak periods or when there is loss of electricity and later 

on EV can be recharged during the night when the electricity prices are low; 

– providing flexibility which allows EVs to be recharged from renewable energy making it more 

environmentally friendly; 

– handling fluctuations in load demand more efficiently; 

offering incentive cost for participants of EV users that can help them reduce their energy bill. 

V.2. Literature review 

In [167], the authors have developed a charging and discharging strategy for EVs in different cities in China, 

proving the effectiveness of their V2G operation in different cities with different trip patterns. Their 

objective is to minimize the cost of the distribution grid. The impacts of providing V2G service have been 

identified on the total cost of ownership of EVs in the Flanders region of Belgium [168]. The V2G service 

was balancing the peaks and valleys of electricity demands and ensuring grid stability. A grid-connected 

battery swapping station has been proposed in [169] with the implementation of V2G service to improve 

the reliability of supply in the future distribution grids. In [170], the authors have predicted, using automated 

machine learning, the potential location for EV charging and their participation to V2G service. The authors 

in [171] have demonstrated that the participation of EVs in the V2G service when they are idles in the EV 

charging station can alleviate the increase demand of EV charging. An improved harmony particle swarm 
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optimization algorithm has been proposed in [172] to solve a bi-level model to find the optimal allocation 

of distributed generation and EV charging station with the V2G service. The optimized model can satisfy 

the charging demand of EV users, improve the voltage quality, mitigate load fluctuations, encourage the 

use of renewable energy and improve the global performance of the planning scheme. An optimization 

framework has been developed in [173] to reduce GHG-intensive electricity imports in the Switzerland 

power system with a controlled charging/discharging of EVs. In [174], the authors have proposed a PV 

based off grid charging station with two bidirectional converters for charging and discharging the EVs and 

the storage system. An optimization model has been proposed in [175] to jointly install EV charging station 

and DER, where V2G service is considered with minimized annual social costs in a distribution system in 

China. An optimization problem has been modeled in [176] as a nonlinear stochastic programming with 

uncertainty of PV energy and it is solved by GAMS software. The EVs can operate in V2G mode, where 

they can charge during off-peak periods and discharge during peak periods to minimize the cost of energy. 

The proposed problem can optimize the operation of EVs in charging and discharging and minimize their 

batteries’ cycles to avoid battery degradation. A novel control system has been presented in [177] to 

underpin V2G service by deploying a fleet of EVs, which allows the V2G aggregator to support voltage 

and frequency services to the grid, reduces the charging cost, maximizes the benefits of V2G service and 

minimizes the battery level degradation. A case study of an EV charging station MG based in a university 

campus in Jordan has been presented in [178], which investigates the feasibility of the V2G service of the 

EVs to minimize the global consumption of energy drawn from the public grid. A computational model of 

an EV with battery degradation has been studied in [179] to supply power to the grid, gaining profit for the 

EV owner, alleviates the load on the grid. The results show that the potential benefits from V2G is greater 

than the cost of battery degradation. 

Some research studies have focused on charging EVs in a PVCS with the implementation of V2G service. 

In [78], the authors have presented a PVCS for EVs with V2G operation. They have proposed a dynamic 

searching peak and valley algorithm where the optimal charging and discharging start time of EVs is 

determined, in consideration to their charging mode, arrival time, initial SOC, departure time, and peak 

periods of electricity. Their objective is to lessen the burden on the public grid and reduce its energy cost. 

The authors in [180] have proposed a grid-connected inverter for a PVCS to improve the voltage and 

frequency stability of the DC MG with the integration of V2G operation. The proposed inverter can detect 

unusual malfunctions of the MG and operates in islanding mode. The modeling of a PVCS to provide 

ancillary services has been described in [181] where EV owners can be rewarded by providing frequency 

response services to the grid. An energy management strategy has been proposed in [182] for real-time 

control of a multi-source EV charging station considering DER to minimize the operating cost considering 

battery degradation of stationary storage and EVs for storing energy at off-peak periods and reinjecting it 

at peak periods. A PVCS is modeled with the implementation of V2G service in [183] to reduce the stress 

on the public grid and improve its stability during peak hours. Moreover, the authors have discussed the 

potential financial incentives needed to encourage EV users to participate in the demand response operation. 
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An energy management and control system of an EV charging station has been presented in [184], where 

V2G operation is implemented. The EV charging station is a hybrid power system, which integrates a wind 

turbine, PV system, a controlled solid oxide fuel cell and a connection to the public grid. 

Some research studies have focused on the impact of V2G on the power system and ancillary services. A 

case study in Japan was conducted in [185] to study the marginal value of V2G ancillary services to balance 

the Japanese power system. The authors in [186] have presented a novel primary frequency control with 

V2G operation in coordination of the charging station operator, EV operator, and EV aggregator. In [187], 

the authors have studied the impact of the PHEVs on the primary frequency regulation with the participation 

of EVs in the V2G operation in an isolated grid of Cyprus island. Using the local flexibility resources, as 

stationary storage, smart charging of EV, local generation, and V2G service, the authors in [188] have 

discussed the optimal mix of flexibility resources to reduce grid challenged in a charging station in Norway. 

Some research studies have focused on optimization problems with V2G service. In [189], the authors has 

investigated the optimal EV coordination with V2G service for the cost-benefit analysis, where the battery 

degradation of EV is considered and the firefly algorithm has been applied to optimize the system cost. The 

authors in [190] have proposed an effective strategy using adjustable robust optimization to enhance the 

security and economy of the MG. EVs can operate in V2G mode to discharge in peak periods and valley 

filling to lower the cost of operation under various constraints. A comprehensive multi-objective 

optimization model has been proposed in [191] for the energy management with the operation of V2G for 

EVs. Their objectives are to maximize the profit of the system operator and to minimize the CO2 emissions. 

The optimization problem is formulated as LP model and solved by CPLEX, considering office buildings 

in Italy. An MILP model has been proposed in [192] for a parking lot of EVs powered with 

PV/wind/hydrogen energy and storage system to minimize the total sustainability cost. The EVs can operate 

in V2G mode, to participate in demand response and encourage EV users to charge in off-peak periods 

instead of peak periods. An optimal day-ahead operation planning has been proposed in [193] for a MG 

integrating EVs with V2G service to minimize the daily operation costs. A heuristic optimization problem 

has been studied in [194] to find the optimal sizing of a hybrid PV-battery-diesel generator for an EV 

parking lot with V2G service, where EVs are considered as a controllable load. A multi-objective 

optimization model has been proposed in [195] for a MG integrating EVs with V2G service to minimize 

grid load fluctuation, maximize the use of renewable energy, and maximize the benefits for EV users. A 

two-stage smart charging algorithm has been proposed in [196] for buildings integrating EVs, PV sources, 

storage system and heat pump. The optimization problem is formulated as a non-linear programming model 

to optimize the charging of EVs. The results show the benefits of V2G service as primary frequency 

regulation reserve, the reduction of the energy cost, however, the degradation of Li-ion battery is non-

negligible. 

The development of V2G technology puts forward higher needs for chargers. In [197], the authors have 

designed an optimization problem to reduce the bidirectional DC-DC LLC resonant converter cost and to 

enhance the control frequency feasibility zone. A new on-board charging – driving integrated topology has 
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been designed in [198], which can improve the power, the performance of the system and reduce 

significantly the charging/discharging times of the EV battery. An off-board multi-functional EV charging 

station is presented in [199], which has a single AC interface and two DC interfaces to be able to perform 

DC charging and discharging of the EVs in a smart home and in a smart grid. In [200], the authors have 

studied the optimal charging/discharging scheduling strategies of EVs and storage system for EV charging 

station, considering the conversion efficiency of bidirectional chargers to maximize the profits of each EV 

and storage system based on electricity tariffs and demand response. A sustainable bidirectional EV 

charging station in the distribution network has been designed in [201] to enhance the quality of the 

charging station using an adaptive neuro-fuzzy controller and to reduce the grid current harmonics using a 

distribution static compensator. 

Some research studies have focused on the V2G service for homes. In [202], the authors have proposed a 

charging and discharging scheme in a home energy management system that integrates PV, storage system, 

and EV, to reduce the energy cost, extend the battery life, maximize the load demand and the user’s needs. 

An efficient home energy management approach has been proposed in [203] for a PVCS to support the 

distribution grid, by using the battery of the EV as a storage system. The proposed system with the 

application of V2G service can reduce the peak load demand in the residence, improve grid stability in peak 

periods and help supply the critical loads in the residence during a loss of power from the public grid. 

[204] is a chronological literature review from 1973 to 2019 that presents the interaction between EVs and 

power grids, such topics are power quality, demand response, power system stability, demand management, 

electricity markets, study of scenarios, V2G service, and optimal location battery swap and charging 

stations. [205] is a review paper that gives an overview of MG technology in recent years, considering 

distributed energy resources, storage system, loads, and EVs with V2G service. 

V.3. PV-powered charging station with V2G energy 

management 

The PVCS considered in this chapter as illustrated in Figure 104 integrates PV sources, stationary storage 

and public grid connection, modeled using MATLAB/Simulink R2015b. 
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Figure 104: PV-powered charging station scheme with V2G service. 

In Figure 104, PV  MPPTp  is the PV power in MPPT mode, PVp  is the PV power, Gp  is the public grid 

power, Sp  is the stationary storage power, EVs Dp  the EVs total demand power, and EVsp  is the total EVs 

power. The public grid can feed or absorb power. The components of the PVCS are coupled to the DC bus, 

represented by the capacitor C, through their dedicated converters. PV sources are connected to the DC bus 

through the DC/DC converter to extract the MPPT power. The stationary storage is required to set up the 

DC MG and it is connected through a bidirectional DC/DC converter. The DC load, represented by the 

EVs’ batteries, is a controllable load as the EVs can be charged or discharged. Therefore, it is connected 

through a bidirectional DC/DC converter. The public grid connection should provide power at all times and 

reduce the power difference between the power production and the load demand; it is connected through a 

three-phase bidirectional AC/DC converter. The stationary storage is charged only by PV sources and can 

discharge power to the DC bus. 

Figure 105 shows the energy management strategy, where EVs as load are firstly charged by PV sources, 

by stationary storage as second source, and by the public grid as the last energy source. PV sources charge 

the stationary storage with the excess energy and then inject power to the public grid when the stationary 

storage is full or has reached its power limit. If EV user accepts to participate in V2G service, EV can 

discharge during the peak periods for a short duration, 30 minutes or until it is fully discharged, then regain 

charging after V2G operation to its desired SOC at departure, with the possible charging power regardless 

of the charging mode chosen at the start. 
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Figure 105: Energy management strategy of the PV-powered charging station with V2G service. 

The design of the PV-powered charging station is a DC MG based, as shown in Figure 104. Therefore, the 

power balance is achieved by (2.1). The PV power is calculated in MPPT mode, PV  MPPTp , by (2.2) and 

(2.3). A simplified state of charge of the stationary storage, Ssoc , is given by (2.4) for its simplicity, where 

temperature and self-discharge are not considered, and the over-charging/discharging protections are 

expressed by (2.5) and (2.6). Regarding the EV battery, the dynamic state of charge, 
vEVsoc , is used as in 

(2.7), where 
vEVp  is the EV charging power of v  vehicle as. When the EV is charging 

vEVp  is positive, 

while, when the EV operates in V2G mode 
vEVp  is negative. 

V.4. PV-powered charging station with V2G simulation cases 

This section presents four case studies for the PVCS equipped with five chargers for nine parking places at 

the university campus. The four cases were simulated under different solar irradiation profiles. Regarding 

the EVs, lithium-ion batteries were considered and it was assumed they have the same battery capacity of 

50 kWh. 
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For all scenarios, the following assumptions were considered: 

– PVCS is located in Compiegne, France, where the yearly average solar irradiation is not 

significantly high; 

– Sunpower SPR X21-345 is used as PV panels with 21% efficiency under STC; 

– mounting position is fixed and optimized with a slope angle 38° and azimuth angle −2°; 

– system loss was estimated at 14%, 

– for the stationary storage, lithium-ion batteries were considered and its limits were considered as 

20% and 80% for _S minSOC  and _S maxSOC  respectively. 

Figure 106 shows the installation of the PVCS, which consists of 84 PV panels in the Innovation Center of 

the Université de Technologie de Compiègne, i.e., 29.8 kWp. The stationary storage system has an energy 

capacity of 37.44 kWh. However, no power injection limit for the public grid was set in the V2G operation. 

Table 24 shows the parameters used in the following scenarios for the PVCS with V2G service. 

  

Figure 106: PV-powered charging station installation for nine spots. 

Table 24: Simulation parameter values for the V2G service. 

_ _G I maxP  - 
_S minSOC  20% _G NHc  0.1 €/kWh 

_ _G S maxP  50 kW 
_S maxSOC  80% _G PHc  0.7 €/kWh 

_S maxP  7 kW 
_EV minSOC  20% Sc  0.01 €/kWh 

_ _EV fast maxP  50 kW _EV maxSOC  100% PVSc  1.2 €/kWh 

_ _EV aver maxP  22 kW 
0SSOC  50% _EV penaltyc  2.5 €/kWh 

_ _EV slow maxP  7 kW BatE  37.44 kWh 
PV  MPPTp  28.98 kWp 

E  50 kWh 
PVN  84 PV   
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With the objective of proving the benefits of the V2G service can bring to a PVCS, the following 

subsections present and analyze several scenarios as well as simulation results. 

V.4.1. Case 1—PVCS with V2G service in a sunny day 

Figure 107 shows the solar irradiation g  and PV  MPPTp  for 29 June 2019 in Compiegne, which is a 

perfectly sunny day with high irradiations. Table 25 shows the data and preferences of EV users. 

 

Figure 107: Solar irradiation and PV MPPT power—case 1. 

Table 25: Data and preferences of EV users in V2G service – case 1, 2, and 3. 

EVs _EV arrSOC  _EV desSOC  arrt  _est cht  M  V2G 

EV1 31% 85% 09:20 03:52 Slow Yes 

EV2 35% 75% 10:00 00:24 Fast No 

EV3 50% 80% 12:05 02:08 Slow Yes 

EV4 25% 78% 13:45 01:13 Average No 

EV5 29% 72% 14:25 03:05 Slow No 

Only two EV users accept participating in V2G service: 

– EV1 arrives at the PVCS at 09:20 and choses slow mode with 7 kW charging power, it stays at the 

charging station approximately 4 hours. At 12:00, it will start discharging into the grid for 30 

minutes or until it is fully discharged, 

– EV3 arrives at the PVCS at 12:05 and choses slow mode with 7 kW charging power, it stays at the 

charging station 02:08. Directly, it will start discharging into the grid for 30 minutes or until it is 

fully discharged. 

In case 1, two scenarios are considered: 
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– Scenario 1: the EVs start discharging at peak periods with a constant power then recharge again 

after V2G with the same constant charging power as chosen by the EV user until the time of 

departure, 

– Scenario 2: the EVs start discharging at peak periods with a maximum power at 50 kW then 

recharge again after V2G with a variable charging power regardless of the charging mode chosen 

by the EV to reach its desired SOC at departure. 

V.4.1.1. Scenario 1a – PV and EVs inject to the grid 

In this scenario, only PV and EVs can inject power into the grid at peak periods. Figure 108 shows the 

power flow of the PVCS with V2G service in constant power, the stationary storage SOC and the DC bus 

voltage for scenario 1a. 

 

 

 

(a) 



-154/227- 
 

 

(b) 

Figure 108: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — scenario 1a. 

Figure 108a, EV1 starts to discharge at 12:00 for 30 minutes and EV3 starts to discharge directly as it comes 

at the station at12:05 during the peak period and continue to discharge for 30 minutes. Both EVs chose 

slow charging mode, therefore, when operating in V2G mode, they will discharge with the same power and 

then recharge after V2G with the slow charging mode. In Figure 108b, the stationary storage is full around 

11:30 and then again around 16:00, where charging the storage has stopped and the excess of PV power is 

injected into the grid as shown in Figure 108a. During V2G operation, the storage remains idle. The DC 

bus is stable at 400 V, as shown in Figure 108b. The losses and the switching of the dedicated converters 

are neglected. 

V.4.1.2. Scenario 1b – PV, storage and EVs inject to the grid 

In this scenario, PV, storage and EVs can inject power into the grid at peak periods. Figure 109 shows the 

power flow of the PVCS with V2G service in constant power, the stationary storage SOC and the DC bus 

voltage for scenario 1b. 
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(a) 

 

(b) 

Figure 109: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — scenario 1b. 

In Figure 109a, similarly to the scenario 1a but the stationary storage discharges at peak periods for 30 

minutes. In Figure 109b, during V2G operation, the storage discharges from 12:00 until 12:30. The DC bus 

is stable at 400 V, as shown in Figure 109b. 

Figure 110 shows the charging/discharging power of each EV and their SOC for case 1 scenario 1a and 

scenario 1b. 
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(a) 

 

(b) 

Figure 110: (a) Charging/discharging power of EVs and (b) the SOC of EVs – scenario 1. 

In Figure 110a, EV1 and EV3 start discharging at peak periods until 12:30 and then regain charging after 

V2G directly until their departure time. Since the users of these two EVs chose slow mode, their charging 

and discharging power will remain constant at 7 kW. Therefore, EV1 and EV3 did not reach their desired 

SOC at departure, as shown in Figure 110b, where EV1 reaches 71% instead of 85% and EV2 reaches 

68.33% instead of 80% at departure. 

V.4.1.3. Scenario 2a – PV and EVs inject to the grid 

In this scenario, only PV and EVs can inject power into the grid at peak periods. Figure 111 shows the 

power flow of the PVCS with V2G service in variable power, the stationary storage SOC and the DC bus 

voltage for scenario 2a. 
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(a) 

 

(b) 

Figure 111: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — scenario 2a. 

In Figure 111a, EV1 starts to discharge at 12:00 for 30 minutes and EV3 starts to discharge directly as it 

comes at the station at12:05 during the peak period and continues to fully discharge. Both EVs chose slow 

charging mode, However, when operating in V2G mode, they will discharge with the maximum power 50 

kW and then recharge after V2G with the suitable charging power to satisfy the EV user, in consideration 

of the remaining parking time. In Figure 111b, the stationary storage is full around 11:30 and then again 

around 16:50, where charging the storage has stopped and the excess of PV power is injected into the grid 

as shown in Figure 111a. During V2G operation, the storage remains idle. The DC bus is stable at 400 V, 

as shown in Figure 111b. 
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V.4.1.4. Scenario 2b – PV, storage and EVs inject to the grid 

In this scenario, PV, storage and EVs can inject power into the grid at peak periods. Figure 112 shows the 

power flow of the PVCS with V2G service in variable power, the stationary storage SOC and the DC bus 

voltage for scenario 2b. 

 

(a) 

 

(b) 

Figure 112: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — scenario 2b. 

In Figure 112a, similarly to the scenario 2a but the stationary storage discharges at peak periods for 30 

minutes into the grid. Then, it continues discharging but into the EVs to recharge them as they require high 

charging power after V2G. In Figure 112b, during V2G operation, the storage discharges from 12:00 until 

12:30. The DC bus is stable at 400 V, as shown in Figure 112b. 

Figure 113 shows the charging/discharging power of each EV and their SOC for case 1 scenario 2a and 

scenario 2b. 
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(a) 

 

(b) 

Figure 113: (a) Charging/discharging power of EVs and (b) the SOC of EVs – scenario 2. 

In Figure 113a, EV1 starts discharging with 50 kW from 12:00 until 12:30 and then regain charging with 

50 kW after V2G directly until its departure time. In addition, EV3 starts discharging directly until it is 

fully discharged (less than 30 minutes). After V2G, EV1 charges with 50 kW to compensate the discharging 

time, which allows the EV to reach its desired SOC at departure. While the remaining charging of EV3 

after V2G allows the charging with 22 kW. Figure 113b shows that all EVs have reached their desired SOC 

at departure. 

Scenario 1 with the constant charging/discharging power prove its unfeasibility, as EVs will never reach 

their desired SOC at departure. For the rest of the case studies, only scenario 2 is applied where EVs 

recharge after V2G operation with a variable power regardless of their chosen charging mode initially to 

satisfy the EV user after participating in V2G service. 
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V.4.2. Case 2—PVCS with V2G service in a partial sunny day with low 

irradiations 

Figure 114 shows the solar irradiation g  and PV  MPPTp  for 29 September 2018 in Compiegne, which is a 

partially sunny day with low irradiations. The data and preferences of EV users are the same as in Table 

25. 

 

Figure 114: Solar irradiation and PV MPPT power—case 2. 

V.4.2.1. Case 2a – PV and EVs inject to the grid 

In this scenario, only PV and EVs can inject power into the grid at peak periods. Figure 115 shows the 

power flow of the PVCS with V2G service in variable power, the stationary storage SOC and the DC bus 

voltage for case 2a. 

 

(a) 
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(b) 

Figure 115: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — case 2a. 

In Figure 115a, EV1 starts to discharge at 12:00 for 30 minutes and EV3 starts to discharge directly as it 

comes at the station at12:05 during the peak period and continues to fully discharge. Both EVs chose slow 

charging mode, However, when operating in V2G mode, they will discharge with the maximum power 50 

kW and then recharge after V2G with the suitable charging power to satisfy the EV users. In Figure 115b, 

the stationary storage is full around 12:00. After 12:30, it discharges into the EVs as the charging power is 

high. It is empty around 14:30 until 15:00, where the public grid supply power to the EVs. During V2G 

operation, the storage remains idle. The DC bus is stable at 400 V, as shown in Figure 115b. 

V.4.2.2. Case 2b – PV, storage and EVs inject to the grid 

In this scenario, PV, storage and EVs can inject power into the grid at peak periods. Figure 116 shows the 

power flow of the PVCS with V2G service in variable power, the stationary storage SOC and the DC bus 

voltage for case 2b. 
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(a) 

 

(b) 

Figure 116: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — case 2b. 

In Figure 116a, similarly to the case 2a but the stationary storage discharges at peak periods for 30 minutes 

into the grid. Then, it continues discharging but into the EVs to recharge them as they require high charging 

power after V2G. In Figure 116b, during V2G operation, the storage discharges from 12:00 until 12:30. It 

is empty around 14:00 until 15:00, where the public grid supply power to the EVs. The DC bus is stable at 

400 V, as shown in Figure 116b. 

Figure 117 shows the charging/discharging power of each EV and their SOC for case 2. 
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(a) 

 

(b) 

Figure 117: (a) Charging/discharging power of EVs and (b) the SOC of EVs – case 2. 

In Figure 117a, EV1 starts discharging with 50 kW from 12:00 until 12:30 and then regain charging with 

50 kW after V2G directly until its departure time. In addition, EV3 starts discharging directly until it is 

fully discharged (less than 30 minutes). After V2G, EV1 charges with 50 kW to compensate the discharging 

time, which allows the EV to reach to its desired SOC at departure. While the remaining charging time of 

EV3 after V2G allows it to recharge with 22 kW. Figure 117b shows that all EVs have reached their desired 

SOC at departure. 
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V.4.3. Case 3—PVCS with V2G service in a cloudy day with high 

fluctuations 

Figure 118 shows the solar irradiation g  and PV  MPPTp  for 10 October 2019 in Compiegne, which is a 

cloudy day with high fluctuations. The data and preferences of EV users are the same as in Table 25. 

 

Figure 118: Solar irradiation and PV MPPT power—case 3. 

V.4.3.1. Case 3a – PV and EVs inject to the grid 

In this scenario, only PV and EVs can inject power into the grid at peak periods. Figure 119 shows the 

power flow of the PVCS with V2G service in variable power, the stationary storage SOC and the DC bus 

voltage for case 3a. 

 

(a) 
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(b) 

Figure 119: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — case 3a. 

In Figure 119a, EV1 starts to discharge at 12:00 for 30 minutes and EV3 starts to discharge directly as it 

comes at the station at12:05 during the peak period and continue to fully discharge. Both EVs chose slow 

charging mode, However, when operating in V2G mode, they will discharge with the maximum power 50 

kW and then recharge after V2G with the suitable charging power to satisfy the EV users. In Figure 119b, 

the stationary storage, at 12:30, starts to discharge into the EVs as the charging power is high. It is empty 

around 15:20, where the public grid supply power to the EVs. During V2G operation, the storage remains 

idle. The DC bus is stable at 400 V, as shown in Figure 119b. 

V.4.3.2. Case 3b – PV, storage and EVs inject to the grid 

In this scenario, PV, storage and EVs can inject power into the grid at peak periods. Figure 120 shows the 

power flow of the PVCS with V2G service in variable power, the stationary storage SOC and the DC bus 

voltage for case 3b. 
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(a) 

 

(b) 

Figure 120: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — case 3b. 

In Figure 120a, similarly to the case 3a but the stationary storage discharges at peak periods for 30 minutes 

into the grid. Then, it continues discharging but into the EVs to recharge them as they require high charging 

power after V2G. In Figure 120b, during V2G operation, the storage discharges from 12:00 until 12:30. It 

is empty around 14:30, where the public grid supply power to the EVs. The DC bus is stable at 400 V, as 

shown in Figure 120b. 

Figure 121 shows the charging/discharging power of each EV and their SOC for case 3. 
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(a) 

 

(b) 

Figure 121: (a) Charging/discharging power of EVs and (b) the SOC of EVs – case 3. 

In Figure 121a, EV1 starts discharging with 50 kW from 12:00 until 12:30 and then regain charging with 

50 kW after V2G directly until its departure time. In addition, EV3 starts discharging directly until it is 

fully discharged (less than 30 minutes). After V2G, EV1 charges with 50 kW to compensate the discharging 

time, which allows the EV to reach to its desired SOC at departure. While the remaining charging time of 

EV3 after V2G allows it to recharge with 22 kW. Figure 121b shows that all EVs have reached their desired 

SOC at departure. 
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V.4.4. Case 4—PVCS with V2G service in a cloudy day with multiple 

EVs 

The solar irradiation profile and the PV MPPT power are the same as in case 3. The data and preferences 

of EV users are shown in Table 26. 

Table 26: Data and preferences of EV users in V2G service – case 4. 

EVs _EV arrSOC  _EV desSOC  arrt  _est cht  M  V2G 

EV1 31% 85% 10:30 03:52 Slow Yes 

EV2 35% 75% 11:50 00:24 Fast Yes 

EV3 40% 90% 12:05 01:09 Average Yes 

EV4 25% 78% 13:45 01:13 Average No 

EV5 31% 85% 10:30 03:52 Slow Yes 

Three EV users accept participating in V2G service: 

– EV1 arrives at the PVCS at 10:30 and choses slow mode with 7 kW charging power, it stays at the 

charging station approximately 4 hours. At 12:00, it will start discharging into the grid for 30 

minutes or until it is fully discharged, 

– EV2 arrives at the PVCS at 11:50 and choses fast mode with 50 kW charging power, it stays at the 

charging station 24 minutes. At 12:00, it may discharge into the grid, 

– EV3 arrives at the PVCS at 12:05 and choses average mode with 22 kW charging power, it stays 

in the charging station 01:09. Directly, it will start discharging into the grid for 30 minutes or until 

it is fully discharged. 

V.4.4.1. Case 4a – PV and EVs inject to the grid 

In this scenario, only PV and EVs can inject power into the grid at peak periods. Figure 122 shows the 

power flow of the PVCS with V2G service in variable power, the stationary storage SOC and the DC bus 

voltage for case 4a. 
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(a) 

 

(b) 

Figure 122: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — case 4a. 

In Figure 122a, EV1 starts to discharge at 12:00 for 30 minutes and EV3 starts to discharge directly as it 

comes at the station at12:05 during the peak period and continues to fully discharge. However, EV2 could 

not participate in V2G as the parking time will not allow to discharge and recharge again with 50 kW and 

satisfy the EV user. EV1 and EV3, when operating in V2G mode, they will discharge with the maximum 

power 50 kW and then recharge after V2G with the suitable charging power to satisfy their EV users. In 

Figure 122b, the stationary storage is full around 11:15. After 12:30, it discharges into the EVs as the 

charging power is high. When the stationary storage discharges at it maximum power, the public grid supply 

power to the EVs. During V2G operation, the storage remains idle. The DC bus is stable at 400 V, as shown 

in Figure 122b. 
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V.4.4.2. Case 4b – PV, storage and EVs inject to the grid 

In this scenario, PV, storage and EVs can inject power into the grid at peak periods. Figure 123 shows the 

power flow of the PVCS with V2G service in variable power, the stationary storage SOC and the DC bus 

voltage for case 4b. 

 

(a) 

 

(b) 

Figure 123: (a) Power flow with V2G service and (b) the stationary storage SOC and the DC bus voltage — case 4b. 

In Figure 123a, similarly to the case 4a but the stationary storage discharges at peak periods for 30 minutes 

into the grid. Then, it continues discharging but into the EVs to recharge them as they require high charging 

power after V2G. In Figure 123b, during V2G operation, the storage discharges from 12:00 until 12:30. It 

is empty around 17:15, where the public grid supply power to the EVs. The DC bus is stable at 400 V, as 

shown in Figure 123b. 

Figure 124 shows the charging/discharging power of each EV and their SOC for case 4. 
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(a) 

 

(b) 

Figure 124: (a) Charging/discharging power of EVs and (b) the SOC of EVs – case 4. 

In Figure 124a, EV1 starts discharging with 50 kW from 12:00 until 12:30 and then regain charging with 

50 kW after V2G directly until its departure time. In addition, EV3 starts discharging directly until it is 

fully discharged (less than 30 minutes). After V2G, EV1 charges with 50 kW to compensate the discharging 

time, which allows the EV to reach to its desired SOC at departure. While the remaining charging time of 

EV3 after V2G allows it to recharge with 22 kW. Even though, EV2 accepts participating into V2G service 

but the limited parking time did not allow the EV to discharge. Figure 124b shows that all EVs have reached 

their desired SOC at departure. 
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V.5. PV-powered charging station with V2G energy cost 

analyses 

Table 27 presents the energy injected into the grid for case 1. 

Table 27: Energy injected into the grid – case 1. 

Operation case  PV 

(kWh) 
EVs 

(kWh) 
Sto 

(kWh) 
Total energy 

during V2G 
(kWh) 

% 

EVs/V2G 
(kWh) 

% 

PV/V2G 
(kWh) 

Total 

energy 
during the 

day (kWh) 

Constant 

(scenario 1) 

EVs only  6.41  6.41    

PV+EVs 8.88 6.41 0 15.29 41.92% 58.08% 49.87 

PV+Sto+EVs 8.88 6.41 3.5 18.79 34.11% 47.26% 49.87 

Variable 
(scenario 2) 

EVs only  36.97  36.97    

PV+ EVs 8.57 36.97 0 45.54 81.18% 19.82% 65.7 

PV+Sto+EVs 8.57 36.97 3.38 48.92 75.57% 17.52% 65.7 

The two scenarios in case 1 are presented, where the energy injected into the grid from EVs in scenario 2 

is greater than scenario 1. In scenario 1, the percentage of energy injected from the EVs into the grid is less 

than the percentage of energy injected from PV into the grid. In scenario 2, the percentage of energy injected 

from EVs into the grid, which is greater than 75%, is higher than then percentage of energy injected from 

PV into the grid. 

Table 28 presents the energy cost for case 1. 

Table 28: Energy cost – case 1. 

Operation case  Grid (c€) Storage (c€) EV penalty (c€) Total (c€) 
Constant 

(scenario 1) 
PV+EVs -1514.44 32.50 3208.82 1726.88 

PV+Sto+EVs -1598.89 39.50 3208.82 1649.42 
Variable 

(scenario 2) 
PV+EVs -1624.13 42.77 0 -1581.36 

PV+Sto+EVs -1827.13 49.53 0 -1777.59 

The two scenarios in case 1 are presented, where the energy cost in scenario 1 is much higher than in 

scenario 2 due to the EV penalties as they did not reach their desired SOC at departure. In scenario 2, the 

total energy cost is negative referring to selling energy to the grid. The energy cost is more profitable when 

the storage also discharges into the grid during peak periods. 

Table 27 and Table 28 prove the unfeasibility of scenario 1, as in scenario 1, the energy injected into the 

grid from EVs are not very significant as they discharge in constant power. Moreover, the total energy cost 

is high due to the penalties, as the EVs did not recharge to their desired SOC. 

Table 29 presents the energy injected into the grid for case 2. 
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Table 29: Energy injected into the grid – case 2. 

Operation case  PV 

(kWh) 
EVs 

(kWh) 
Sto 

(kWh) 
Total energy 

during V2G 

(kWh) 

% 

EVs/V2G 

(kWh) 

% 

PV/V2G 

(kWh) 

Total 

energy 

during the 

day (kWh) 

Variable 
EVs only  36.97  36.97    

PV+ EVs 6.16 36.97 0 43.13 85.72% 14.28% 43.13 

PV+Sto+EVs 6.16 36.97 3.38 46.51 79.48% 13.24% 46.51 

The percentage of energy injected from EVs into the grid, which is greater than 79%, is higher than then 

percentage of energy injected from PV into the grid. 

Table 30 presents the energy cost for case 2. 

Table 30: Energy cost – case 2. 

Operation case  Grid (c€) Storage (c€) EV penalty (c€) Total (c€) 

Variable 
PV+EVs -860.07 34.10 0 -825.97 

PV+Sto+EVs -1063.07 34.10 0 -1018.97 

The total energy cost is higher, when stationary storage discharges into the grid during V2G period, 

referring to selling more energy to the grid. The energy cost is more profitable when the storage also 

discharges into the grid during peak periods. 

Table 31 presents the energy injected into the grid for case 3. 

Table 31: Energy injected into the grid – case 3. 

Operation case  PV 
(kWh) 

EVs 
(kWh) 

Sto 
(kWh) 

Total energy 
during V2G 

(kWh) 

% 
EVs/V2G 

(kWh) 

% 
PV/V2G 

(kWh) 

Total 
energy 

during the 

day (kWh) 

Variable 

EVs only  36.97  36.97    

PV+ EVs 8.99 36.97 0 45.96 80.44% 19.56% 47.47 

PV+Sto+EVs 8.99 36.97 3.38 49.34 74.93% 18.22% 50.85 

The percentage of energy injected from EVs into the grid, which is greater than 74%, is higher than then 

percentage of energy injected from PV into the grid. 

Table 32 presents the energy cost for case 3. 

Table 32: Energy cost – case 3. 

Operation case  Grid (c€) Storage (c€) EV penalty (c€) Total (c€) 

Variable 
PV+EVs -1118.29 26.41 0 -1091.87 

PV+Sto+EVs -1280.45 26.41 0 -1254.03 

The total energy cost is higher, when stationary storage discharge into the grid during V2G period, referring 

to selling more energy to the grid. The energy cost is more profitable when the storage also discharges into 

the grid during peak periods. 

Table 33 presents the energy injected into the grid for case 4. 
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Table 33: Energy injected into the grid – case 4. 

Operation case  PV 

(kWh) 
EVs 

(kWh) 
Sto 

(kWh) 
Total energy 

during V2G 

(kWh) 

% 

EVs/V2G 

(kWh) 

% 

PV/V2G 

(kWh) 

Total 

energy 

during the 

day (kWh) 

Variable 
EVs only  12.5  12.5    

PV+ EVs 5.96 12.5 0 18.46 67.71% 32.29% 22.31 

PV+Sto+EVs 5.96 12.5 2.24 20.7 60.38% 28.79% 24.55 

The percentage of energy injected from EVs into the grid, which is greater than 60%, is higher than then 

percentage of energy injected from PV into the grid. 

Table 34 presents the energy cost for case 4. 

Table 34: Energy cost – case 4. 

Operation case  Grid (c€) Storage (c€) EV penalty (c€) Total (c€) 

Variable 
PV+EVs 961.36 34.38 0 995.74 

PV+Sto+EVs 817.09 35.37 0 852.46 

The total energy cost is less, when stationary storage discharge into the grid during V2G period, reducing 

the energy cost. The energy cost is more profitable when the storage also discharges into the grid during 

peak periods. 

In case 4, multiple EVs with different charging mode, accept to participate in V2G service. Despite EV2 

accepts to participate in V2G, which it charges with fast mode, it could not participate in V2G operation as 

the charging time is insufficient to discharge and recharge again after V2G. Therefore, EV2 continues 

charging while EV1 and EV3 participate in V2G service. In this case, not all the energy discharged from 

the EVs were injected into the grid but a part of this energy was injected into EV2, as some sort of vehicle-

to-vehicle. This explains the difference of energy injected from EVs into the grid between case 4 and the 

previous cases. The total energy cost is positive, paying for energy consumption, is due to the high energy 

consumption from EVs in a cloudy day with high fluctuations. 

V.6. Conclusions 

This chapter presents a PVCS and its energy management with the application of V2G service. Various 

case studies with different meteorological conditions and EV profiles have been conducted to highlight the 

advantages of the V2G service. Simulation results show the significance of energy injected from EVs into 

the grid, where this will reduce the burden on the public grid operator as the EVs are considered as DER 

and in the meantime will reduce the energy cost or may even bring profits on the PVCS operator. 

For the EVs to be able to participate in the V2G operation, despite their charging mode, the charging 

terminals should allow bidirectional flow of energy with variable charging power. This will allow EVs to 

charge with their chosen charging mode, discharge in V2G with a maximum 50 kW, recharge again with a 
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suitable power to satisfy the EV users, in consideration of the remaining parking time, and to reach their 

desired SOC at departure. 
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 PV-powered charging station: Carbon 

impact methodology 

EVs are expanding vastly since they are carbon free during a part of their life cycle, therefore, they are 

considered as a promising solution to combat climate change and environmental pollution as in [1]. Among 

the most well-known GHG are CO2 and methane. The accumulation of CO2 and other air pollutants in the 

atmosphere, which absorb sunlight and solar radiation that have bounced off the earth’s surface, is at the 

origin of the current global warming. This chapter investigates the carbon impact of a PVCS, based on a 

life cycle assessment (LCA) mixed with carbon impact methodology, the goal is to assess the carbon impact 

of the PVCS and then to compare with a grid-powered charging station (PGCS). The obtained results show 

that the carbon impact of the PVCS is reduced, but this strongly depends on the electricity mix of the public 

grid. This chapter, presented in [206], [207] is constructed as follows: Section VI.1 gives an introduction. 

Section VI.2 presents the literature review. Section VI.3 describes the methodology for carbon impact 

calculation for the PVCS. Section VI.4 presents the comparison of the carbon impact between the PVCS 

and PGCS. Section VI.5 concludes the chapter. 

VI.1. Introduction 

The CO2 is a major GHG and requires an accounting methodology to estimate its impact. However, the 

main issues related to GHG accounting are available databases, availability of recent data, data quality and 

data uncertainty, and available methodologies. To increase consistency and transparency in CO2 accounting 

and reporting several organizations provide methodologies for the GHG balance accounting: GHG Protocol 

[208], Bilan Carbone® France and its base carbon database [209], EcoInvent - Switzerland [210], European 

Life Cycle Database [211], and standards ISO 14064, ISO 14067 [212]. These methodologies are often 

recommended to GHG accounting related to organizations, territories, and products. However, estimating 

the CO2 emissions of a complex technological system, based on unit processes as well as on benchmarks 

for each category of technology, is a very complicated GHG accounting. Hence, even some recent research 

work emphases on the environmental footprint for the EV charging infrastructure, its carbon impact 

estimation is not consistently reported by the literature today. 

VI.2. Literature review 

In [213], the authors have focused to maximize the usage of PV energy in EVs charging and to minimize 

the GHG emissions in a university campus in Bangladesh. A LCA has been used in [214] to compare the 

carbon footprint of an EV and a hydrogen fuel cell car. LCA has been used also to study the impact of an 
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EV public charging infrastructure on the GHG emissions in comparison with internal combustion engine 

vehicles (ICEVs) across China in [215] and California in [216]. The authors in [217] have used the LCA to 

study the environmental impact of chargers in an EV charging infrastructure in China. In [218], a 

comparative study using the LCA has been considered in California and Detroit to measure the carbon 

impact of different regional energy mixes for EVs and ICEVS. The authors in [219] have compared the 

GHG emission costs in universal EV charging infrastructure with only residential charging in Australia. In 

[220], the authors have studied the life cycle carbon emissions for a PHEV and battery EV in the USA 

under marginal versus average grid emission factors. Other authors have compared in [221] the carbon 

emissions in different EV charging strategies in the UK in perspective to 2030 and 2040 targets. In [222] 

various passenger vehicle technologies have been studied and the GHG emissions have been compared 

using the LCA across 50 states in the USA. 

A LCA for a PV-powered vehicles, or called vehicle integrated PV, has been presented in [223], taking into 

consideration shadowing factor. This study has been done in Cologne, Germany, where the energy mix is 

highly dependent on coal. The environmental impact is compared for charging the vehicle from PV and 

from the grid, the results show how the location, the annual irradiation and carbon emissions from the grid 

may affect the outcomes. An analysis of directed emissions of CO2 generated by ICEVS and indirect 

emissions CO2 from EVs has been proposed in [224] in Poland, where the energy mix is highly dependent 

on solid fossil fuels. The results showed that the indirect emissions of CO2 from EVs are higher than the 

direct emission of CO2 from ICEVS for a daily usage. However, increasing the share of RES in energy 

production will have a positive effect on the carbon impact of EVs in Poland. An analysis of CO2 emissions 

in different scenarios for the electrification of the vehicle fleet in Finland has been presented in [225]. The 

results showed that in the high adoption of EVs will reduce CO2 emissions but not to their ambitions, set 

by the European Union and the Finnish government. A comparative analysis of CO2 emissions  based on 

LCA has been presented in [226] for EVs and ICEVS in China, considering energy mix composition. The 

results showed that under the existing energy mix of the Chinese grid, which is highly dependent on fossil 

fuels, the CO2 emissions of the EVs are higher than the ICEVS. However, with the increase of RES in the 

energy mix composition in the Chinese grid, the impact of the EVs on the CO2 emissions will be highlighted. 

A cradle-to-grave LCA has been studied in [227], considering energy mix for the USA states and more 

integration of RES from 2020 to 2050, on CO2 emissions in EVs and gasoline vehicles. The results showed 

that EVs can bring benefits in comparison with gasoline vehicles nearly in all the states. A comparative 

environmental cradle-to-grave LCA has been presented in [228] between EVs and ICEVS in Lithuania, 

where various scenarios of energy mix is studied until 2050. The results showed that EVs are advantageous 

over ICEVS for their eco-environmental impacts with the increase penetration of RES in the energy mix of 

the national grid. 

In [229], a LCA on CO2 emissions of EVs, PHEVs, and ICEVS for the USA, japan, China, European Union, 

and Canada has been studied, under various grid energy mix and under a large-scale of adoption. The results 

showed that EVs have a positive impact on the CO2 emissions reduction. In addition, the grid energy mix 
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has an impact on the CO2 emissions, as in China the CO2 emissions are still intense as they highly depend 

on coal. A LCA has been used in [230] for energy consumption and CO2 emissions in China for EVs and 

ICEVS under various driving cycles from manufacturing, to usage and to the recycling phases. The results 

showed that EVs have lower CO2 emissions than ICEVS, but with higher cost due to the high retail cost 

without incentives. The recycling reduce the CO2 emissions but will increase the cost, which is related to 

the high cost of battery recycling. An adaptive LCA has been studied in [231] for CO2 emissions for EVs, 

hybrid EVs, PHEVs, fuel cell EVs, and ICEVS. This study was conducted in different provinces in Canada, 

where grid energy mix is different, and considering battery chemistry, battery capacity, and mileage. A 

LCA for CO2 emissions has been studied in [232] for EV charging based on marginal emissions in Great 

Britain in comparison with European countries. The CO2 emissions is correlated with the percentage of 

fossil fuel energy in the grid energy mix. A LCA of electric bus charging station in [233] has been studied 

in Australia, particularly in Sydney city and Inner West regions, for CO2 emissions through manufacturing, 

transportation, operation, decommissioning phases. The results showed that the CO2 emissions has 

increased as the Australian grid energy mix is predominated by fossil fuels. A LCA on CO2 emissions for 

EVs through production, transportation, and use phases has been studied in [234] in 10 countries, with the 

highest EV sales, for current and future of grid energy mix. The results showed that China present the worse 

CO2 emissions for EVs, while France, Sweden, Norway presents actually lower CO2 emissions for EVs and 

Sweden and Norway presents in 2030 the best scenario with the increase of cleaner energy. 

The best approach to our work is presented in [235], where a PVCS has been studied in a technical, 

financial, and environmental perspective in two US cities in comparison with two Chinese cities with 

different scenarios of PV shares. The results proved that PVCS has lower CO2 emissions than a charging 

station only grid-connected, which depends on the energy mix in each city. Whereas, the installation of a 

PVCS has lower net present cost than a charging station only grid-connected due to the high initial cost of 

the storage system, which remains a key element in a PVCS. However, The CO2 emissions were not well 

detailed and their project lifetime is considered 10 years. 

The previously cited references have not discussed the carbon impact of a PVCS as a French case study. In 

this chapter, the carbon impact of a PVCS is detailed; the PVCS is a car parking shade equipped with PV 

sources, stationary storage, and grid connection. Then, a comparison with a PGCS is presented and 

analysed. 

VI.3. Carbon impact methodology for PVCS 

The transition to electro-mobility is a promising solution towards a carbon free for transport sector. 

However, the environmental impact of the EVs depends on the manufacturing of EVs’ components and 

their charging energy sources. Therefore, EVs could be charged with RES as the PVCS that integrates PV 

sources, Li-Ion batteries as stationary storage, public grid connection, inverter, and charging terminals 
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(CTs). Although the PVCS is based on renewable energies, its life cycle emits indirectly GHG through its 

manufacturing, maintenance, and recycling. Therefore, it is important to evaluate the carbon impact of the 

PVCS to analyze its value in comparison with charging stations only connected to the public grid. 

This study is carried out using the LCA method, based on ISO 14067 [236], and, thus, considering the 

manufacturing and recycling of PV, of CTs, and of stationary storage based on Li-Ion, as well as the 

materials for construction of the PVCS and the traveling for maintenance of the PV and CTs. As mentioned 

above, the PVCS involves also a public grid connection; therefore, the carbon impact for the electricity grid 

is considered. Figure 125 shows the global overview of the methodology for this study. 

 

Figure 125: Global overview of the study methodology. 

This study is based on carbon emissions coefficient issued by the Base Carbon ® of the French Agency for 

ecological transition, ADEME, [209] and EcoInvent database [210]. Each component of the PVCS has a 

specific coefficient. The carbon impact is calculated based on PV’s life cycle, which is the largest one 

among all components. In this study, the PV’s life cycle is considered 30 years, whereas, the life cycle of 

the Li-Ion battery, the inverter, and the CT are 10, 15 [237], and 10 years respectively. The following 

subsections presents the carbon impact of each component of the PVCS, whose estimations are based on 

[238], which is the benchmark database for LCA. 

The carbon impact for any component, nImp , is given by the general equation (6.1): 

 2,n n nImp CO Q  , (6.1) 

where 2,nCO  and nQ  are the carbon emission coefficient (kgCO2,eq/unit) and quantity of n component. 

PVCS
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VI.3.1. Carbon Impact of PV System 

The carbon emissions coefficient for the PV differs from one country of manufacturing to another. It also 

depends on the installation and uninstallation, the use, the maintenance and the recycling of the PV system. 

Figure 126 shows the different factors of the PV system that influence the carbon impact calculation. 

 

Figure 126: PV system’s factors influencing the carbon impact calculation. 

The considered PV system is based on monocrystalline silicon PV panels. Its carbon impact depends on the 

energy produced by the PV system. The carbon emissions coefficient of PV system, 2,PVCO  

(kgCO2,eq/kWh) is given by (6.2): 

 2,PV PV PVCO Imp E , (6.2) 

where PVImp  is the carbon impact of PV (kgCO2,eq) and PVE  is the energy produced by PV (kWh) during 

analysis period. The PVImp  is calculated as in (6.3): 

 ,PV Infra  PV site mtnImp Imp Imp Imp   , (6.3) 

where ,Infra  PVImp , siteImp , and mtnImp  are the carbon impacts of the PV infrastructure, construction site, 

and maintenance of PV infrastructure respectively (kgCO2,eq). Each of these three impacts is calculated as 

the sum of the impacts of the corresponding subgroups shown in Figure 126. 

The ,Infra  PVImp  is given by (6.4): 

 ,Infra  PV PV  panels inv supp wiringImp Imp Imp Imp Imp     (6.4) 

 , 2, 2, , 2, , 2, 2,( )Infra  PV PV  panels p inv a inv inv b supp PV wiring pImp CO P CO P CO CO S CO P          (6.4) 

where PV  panelsImp , invImp , suppImp , and wiringImp  are the carbon impact of PV panels, inverters, PV 

panels support and wiring connections respectively (kgCO2,eq), 2,PV  panelsCO , 2, ,inv aCO , 2, ,inv bCO , 

2,suppCO , and 2,wiringCO  are the carbon emissions coefficient of PV panels (kgCO2,eq/kWp), inverter a 



-181/227- 
 

(kgCO2,eq/kVA), inverter b (kgCO2,eq), PV panels support (kgCO2,eq/m
2), and wiring connections 

respectively (kgCO2,eq/kWp), pP , invP , and PVS  are the PV pic power (kWp), inverter power (kVA) and 

PV surface area (m2) respectively. 

The siteImp  is given by (6.5): 

 site instal uninstalImp Imp Imp  , (6.5) 

 2, 2,site instal p uninstal pImp CO P CO P    , (6.5) 

where instalImp , and uninstalImp , are the carbon impact of PV system installation and uninstallation 

respectively, (kgCO2,eq), 2,instalCO , and 2,uninstalCO  are the carbon emissions coefficient of PV system 

installation and uninstallation respectively (kgCO2,eq/kWp). 

The mtnImp  is given by (6.6): 

 mtn clean servicingImp Imp Imp  , (6.6) 

 2, 2,mtn clean PV servicingImp CO S CO d q     , (6.6) 

where cleanImp , and servicingImp , are the carbon impact of PV system cleaning and servicing of transport 

agents for PV system maintenance respectively, (kgCO2,eq), 2,cleanCO , 2,servicingCO , d , and q  are the 

carbon emissions coefficient of PV system cleaning (kgCO2,eq/m
2), servicing of transport agents for PV 

system maintenance (kgCO2,eq/km), annual distance travelled by the maintenance agents (km/year), and the 

lifetime of PV panels (years) respectively. 

VI.3.2. Carbon Impact of Li-Ion Batteries 

The carbon emissions coefficient of Li-Ion battery includes its manufacturing and recycling. Equation (6.7) 

shows the carbon emissions coefficient of Li-Ion, 2,Li IonCO  (kgCO2,eq/kWh):  

 2, 2, , 2, ,Li Ion Li Ion man Li Ion recyCO CO CO    , (6.7) 

where 2, ,Li Ion manCO   and 2, ,Li Ion recyCO   are the carbon emissions coefficients of the Li-Ion manufacturing 

and recycling respectively (kgCO2,eq/kWh) [239]. The 2, ,Li Ion manCO   depends on the type of Li-Ion [240]. 

Two recycling methods exist in France [240], pyrometallurgy and hydrometallurgy. The carbon impact of 

Li-Ion batteries Li IonImp   (kgCO2,eq) is given by (6.8): 

 2, ( 1)Li Ion Li Ion Li Ion Li IonImp CO C r       , (6.8) 
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where Li IonC   is the Li-Ion batteries’ capacity (kWh) and Li Ionr   is the number of Li-Ion replacement in 

the study period. 

VI.3.3. Carbon Impact of the Charging Terminals 

The carbon emissions coefficient of the CTs depends on their type implementation, suspended on the 

infrastructure’s beam or grounded. 

VI.3.3.1. Suspended Charging Terminals 

The carbon emissions coefficient for the suspended type is based on EVLink Wallbox Plus [17]. This device 

is considered as similar to an electrical wallbox. The carbon impact of the suspended CT, ,CT susImp , is 

given by (6.9): 

 , 2, , , ,( 1)CT sus CT sus CT sus CT CT mtnImp CO N r Imp     , (6.9) 

where 2, ,CT susCO  is the carbon emissions coefficient for one suspended CT, ,CT susN  is the number of 

suspended CT, CTr  is the number of CT replacement in this study period and ,CT mtnImp  (kgCO2,eq) is the 

maintenance impact. 

VI.3.3.2. Grounded Charging Terminals 

The carbon emissions coefficient for the grounded type is based as EVLink City [4]. The maintenance 

impact for the grounded CT is the same as suspended CT. the carbon emissions coefficient for the grounded 

2, ,CT gndCO  (kgCO2,eq/CT) is given by (6.10): 

 2, , 2, , , ,CT gnd CT sus CT gnd CT susCO CO m m  , (6.10) 

where ,CT gndm , ,CT susm  are the weight of the CT grounded and suspended respectively (kg). 

The carbon impact of the civil engineering work for the installation of CTs CEImp  (kgCO2,eq) is given by 

(6.11): 

 2,CE c cc c CTImp V CO N    , (6.11) 

where cV , 2,ccCO , c , CTN  are the concrete volume (m3), carbon emissions coefficient of concrete cement 

(kgCO2,eq/ton), density of concrete (kg/m3), and number of CTs respectively. 

Therefore, and the carbon impact of the grounded CT ,CT gndImp  (kgCO2,eq) is given by (6.12): 

 , 2, , ( 1)CT gnd CT gnd CT CT mtn CEImp CO N r Imp Imp      , (6.12) 
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VI.3.4. Carbon Impact of the Infrastructure 

The carbon impact of the infrastructure, infraImp , is represented by the carbon impact of the car parking 

shades. The car parking shades is dedicated to several parking places. The dimensions of the infrastructure 

are known, therefore, the volume of reinforced concrete (RC) needed for the foundation of one shade, RCV  

(m3), is given by (6.13): 

 RC found found found polesV L W H N    , (6.13) 

where foundL , foundW , foundH , polesN  are the length, width, height of the reinforced concrete for the 

foundation in (m) and number of poles respectively. Thereafter, the carbon impact of RC for the foundations 

of m car parking shades, ,RC foundImp , (kgCO2,eq) is given by (6.14): 

 , 2,RC found RC c RCImp CO V m    , (6.14) 

where 2,RCCO  is the carbon emissions coefficient of RC (kgCO2,eq/m
3). 

The carbon impact of the steel used in the metallic structure SteelImp  (kgCO2,eq) is given by (6.15): 

 2,Steel Steel SteelImp m CO  , (6.15) 

where Steelm  is the weight of the steel used (kg) and 2,SteelCO  is the carbon emissions coefficient of the 

steel given by ADEME (2211 kgCO2,eq/ton). Thus, the carbon impact for m car parking shades,  

_m shadesImp , (kgCO2,eq) is given by (6.16): 

 _ ,m shades RC found SteelImp Imp Imp   (6.16) 

Hence, the carbon emissions coefficient for one parking place 2,shadeCO  and infraImp  are given by (6.17) 

and (6.18): 

 2, _shade m shadesCO Imp m , (6.17) 

 2,infra shade placesImp CO N  , (6.18) 

where placesN  is the number of parking places. 
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VI.3.5. Carbon Impact of the Public Grid 

The carbon emissions coefficient of a public grid 2,PGCO  depends on the production modes of electricity. 

The primary energy sources mostly used are as in [243]: nuclear, hydro, coal, and gas. Each primary energy 

source has a different carbon emissions coefficient. The carbon impact of a public grid, PGImp , (kgCO2,eq) 

is given by (6.19): 

 2,PG PG PGImp E CO  , (6.19) 

where PGE  is the energy supplied by the public grid (kWh) for the considered time duration. However, the 

2,PGCO  depends on the electricity mix of each country; its value varies for a country to another. As stated 

in [220], marginal grid emission can help to assess robustness, while considering the exchange of energy 

from another regions or countries. The reference [244] is a data source for marginal emissions. However, 

in the present study, average grid emissions are considered, as in France, where 2,PGCO  is 0.0599 

kgCO2,eq/kWh. This coefficient is very low as the majority of electricity in France is generated by nuclear 

energy, having a very low carbon emissions coefficient of 0.006 kgCO2,eq/kWh. 

VI.4. Analysis of the carbon impact for the PVCS 

The following subsection present the carbon impact evaluation for the PVCS and is compared with the 

PGCS. Then, based on the results obtained, the action levers that should be taken. 

VI.4.1. Carbon impact evaluation for the PVCS 

The carbon emissions coefficients and the carbon impacts described earlier are used to calculate the carbon 

impact of the PVCS PVCSImp  (kgCO2,eq) for 30 years, as in (6.20): 

 ,PVCS PV Li Ion CT sus infra PGImp Imp Imp Imp Imp Imp     . (6.20) 

As numerical application, an existing French PVCS is considered with the following characteristics: 10 car 

parking places, 5 suspended CTs, 22 kWh Li-Ion battery’s capacity and recycled by pyromettalurgy 

method, 28 kWp of 70 PV panels for the PV power installed on an infrastructure surface space of 124 m2. 

The inverter average efficiency is taken as 90% and therefore 25.2invP  kVA . For an average annual 

irradiation of 1309.11 kWh/m2 in the north of France and an optimal angle of PV panels, an estimation of 

the electricity produced and used by the PVCS for 30 years is 1.257 GWh, including 307.476 MWh from 

the public grid which maximum power is considered 200 kW. This estimation is based on the study 

presented in [21] following the realistic scenario considering an eco-drive profile as well as a normal drive 
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profile and EV battery capacity being the same at 50 kWh for all EVs. The occupancy rate of CTs is 

arbitrarily fixed and distributed by time slot of two hours, reflecting the arrivals and departures of 10 EVs 

throughout the day as given here below: 

 between 08:00 and 10:00: two EVs at 2.3 kW; 

 between 10:00 and 12:00: one EV at 22 kW, four EVs at 2.3 kW; 

 between 12:00 and 14:00: two EVs at 2.3 kW; 

 between 14:00 and 16:00: one EV at 22 kW, four EVs at 2.3 kW; 

 between 16:00 and 18:00: one EV at 22 kW, three EVs at 2.3 kW. 

The carbon emission coefficient of the PV panels is 40 gCO2,eq/kWh and it is taken from the national 

renewable energy laboratory [245] based on the LCA harmonization project. 

Table 35 show the results of the carbon impact of the PVCS. 

Table 35: Carbon impact of the PVCS. 

PVCS   Imp (kgCO2,eq) 

PV sys 

PV infra 

PV panels 37,996 
Inverter 1,501 
Support 7,087 
Wiring 1,962 

Site 
Installation 1 

Uninstallation 1 

Maint 
Cleaning 23 

Servicing 424 

CT sus 
Maint  1,023 

Fabrication  1,095 

Li-Ion   5,869 

Infra   15,439 

Public grid   13,540 

Total   85,961 

Thus, the global carbon emission of the PVCS could be find based on the power supplied of all the 

components in the PVCS and it is equivalent to 0.068 kgCO2,eq/kWh. Hence, it is interesting to compare 

these values with a PGCS. 

VI.4.2. Comparison of Carbon Impact with the French Public Grid 

The carbon impact of the PVCS is compared with PGCS for which, the carbon impacts considered are 

PGImp  and ,CT susImp  for 30 years since there is no need to consider the infrastructure of PV installation 

neither the Li-Ion batteries. 

Therefore, for 1.257 GWh the carbon impact of the PGCS, PGCSImp , is 77,436 kgCO2,eq. In comparison 

with the PVCS, the rate variation is given by (6.21): 
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 100%PVCS PGCS

PGCS

Imp Imp
Rate variation

Imp


    (6.21) 

Thus, the rate variation for the PVCS is 11% higher than that of PGCS. One notes that when comparing 

these two cases, the carbon impact of CTs could be neglected since it is a common element. 

VI.4.3. Discussion 

The difference of carbon impact could be surprising since the PVCS is considered as a promising levitate 

to reduce carbon emissions. This could be referred for high nuclear energy use, as in France, the PGCS has 

a lower carbon impact than the PVCS. The PGImp  is different from one country to another; it depends 

mainly on the distribution of the nuclear energy, thermal power plants, and renewable energies capacities. 

For example, in Greece where 2,PGCO  is 718 gCO2,eq/kWh [246], a PVCS becomes much less polluting in 

CO2 than that of PGCS. However, although the calculation principle is known, each country displays its 

coefficient without giving details concerning the life cycle of each category of power plant. It can be noticed 

also that the PV system is the most impacting element, yet the data are not very recent. However, PV 

technology is growing fast and its carbon impact is decreasing. Therefore, as given in following, the carbon 

impact of the PVCS is reduced with recent data. 

VI.4.4. Levers of action to improve the carbon impact of PVCS 

The carbon impact of PV panels has reduced from 409 gCO2,eq/kWh in 1986 to 25 gCO2,eq/kWh in 2016, 

i.e. 93% less carbon emissions [247], while the previous value used in this study based on [245] database 

is 40 gCO2,eq/kWh. Moreover, the infrastructure is the second most impacting element in the PVCS. 

Therefore, their carbon impact could be reduced by using recycled materials. 

Two scenarios are presented below: 

 scenario 1: 2,PV  panelsCO  is considered 25 gCO2,eq/kWh, 

 scenario 2: 2,PV  panelsCO  is considered 25 gCO2,eq/kWh and the infrastructure of PVCS is based 

on recycled materials. 

Scenario 1: by reducing the carbon emissions coefficient to 25 gCO2,eq/kWh, the carbon impact of the PV 

panels has reduced from 37,996 kgCO2,eq to 23,748 kgCO2,eq and the new carbon impact of the PVCS has 

reduced from approximately 85,961 kgCO2,eq to 71,713 kgCO2,eq; 17.2% reduction. In comparison with the 

PGCS, the rate variation becomes -7.4%, which means that the carbon impact of the PVCS is lower than 

of the PGCS. 

Scenario 2: by reducing the carbon emissions coefficient to 25 gCO2,eq/kWh, and using recycled materials 

for the infrastructure of PVCS, the carbon impact of the infrastructure has reduced from 15,439 kgCO2,eq 
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to 8,616 kgCO2,eq and the new carbon impact of the PVCS has reduced from approximately 85,961 kgCO2,eq 

to 64,890 kgCO2,eq; 24.5% reduction. In comparison with the PGCS, the rate variation becomes -16.2%, 

which means that the carbon impact of the PVCS is lower than of the PGCS. 

Figure 127 compares the carbon impact of different scenarios of the PVCS. Both scenarios 1 and 2 have 

lower carbon impact than of the PGCS, but the scenario 2 is the lowest. 

 

Figure 127: Carbon impact of the PVCS in different scenarios. 

This study proves that, despite the highly French decarbonized energy mix, the PVCS could reduce the 

emission of GHG. With the fast growth and development of PV technology, the carbon emissions of PV 

panels are reduced significantly. 

Based on ADEME database [246], Figure 128 shows the carbon impact of the PVCS, in comparison with 

the energy mix of different countries and Europe (EU), including France that is highly decarbonized. The 

carbon impact of the PVCS, even calculated with 2014 data, is 0.0516 kgCO2,eq/kWh and is lower than the 

energy mixes of different countries even including France. 

 

Figure 128: Carbon impact of PVCS in comparison with the energy mix of different countries. 
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VI.5. Conclusions 

The LCA is used in this chapter to study the carbon impact of a PVCS. The carbon impact of the PVCS is 

then compared with a PGCS. The results show that PGCS has a higher carbon impact than the PVCS in 

several countries whose electricity mix depend less on nuclear energy and use more of thermal power plants. 

Although, for high nuclear energy use, as in France, the PGCS has a low carbon impact while the PVCS's 

carbon impact approaches the latter with recent improvements in PV technologies. However, the 

radioactive waste issued from nuclear energy production is not considered in the whole environmental 

impact of a public grid. Also, the PV system has the largest part of the carbon impact in the PVCS and with 

the recent technologies and using more recent data, therefore, the carbon impact will be even more reduced. 
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General conclusion and perspectives 

As climate change is a major problem that will affect lives on the planet and do major changes, thus, the 

transformation towards RES can help reducing the dependency of the fossil fuel energy. RES are a key 

factor in the future power system as they are considered environmentally friendly and more efficient than 

traditional sources. Moreover, the transport sector is one of the major sources of CO2 emissions, therefore, 

the transition towards electromobility is considered as an alternative solution to combat climate change and 

reduce CO2 emissions. It is important to highlight that EVs when rolling on the roads emit zero or low 

carbon emissions, yet their global carbon emission pass from their production phase through charging 

process and to their end-of-life phase. Hence, the transition towards electromobility combined with the 

transition towards RES as being the main source of energy for charging is a promising solution towards 

carbon neutrality. This manuscript presented a PVCS based on a DC MG, which includes PV sources, 

stationary storage, public grid connection, and EVs as load. 

The first chapter began with a global overview on the electromobility and the recent data in different regions 

and countries showing the trend of evolution in the stock market as well their charging infrastructure. Then, 

charging process, chargers’ type, charging levels were described. Further, a MG-based charging station was 

presented along with its three architecture and hierarchical control. Thereafter, PVCS is introduced and 

presenting some existing charging station and the positioning of the thesis with the current state of the art. 

The second chapter started by giving the driver characteristics and charging profiles and then the PVCS is 

modeled and simulation scenarios were studied in the lowest month of PV production. The main objective 

of chapter two was to identify the preliminary requirements and feasibility conditions of the PVCS in an 

urban area. The simulation results show that the EV charging is not constrained; slow and fast charging are 

possible with no restriction on the EV charging capacity. PV benefits increased when the average daily trip 

is considered 20-40 km, and the EV consumption is considered 10-15 kWh/km, resulting in daily charge of 

2-6 kWh. The preliminary requirements and feasibility conditions can be summed as follows: slow charging 

is done by PV sources and stationary storage, which is charged only by the stationary storage, and it is up 

to 7 kW and EV battery can be filled up to 6 kWh. Proper sizing of the stationary storage is required and 

its power should be limited. EV user should be willing to stay long time and accept slow charging to 

increase PV benefits. Fast charging depends highly on public grid and is from 7 kW up to 22 kW. Also, the 

stationary storage should be well sized and its power should be limited. However, EV user should be willing 

to pay high charging cost. 

The third chapter described the intelligent infrastructure for recharging EVs, which is the same PVCS 

presented in the previous chapter but it optimizes the energy flow to get the minimum energy cost with 

respect to constraints. The supervisory control system is outlined as it consists of four layers: Prediction 

layer, human-machine interface, energy cost optimization, and operation layer. Simulation results were 

conducted under different meteorological conditions and proved the feasibility of the optimization 
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algorithm and its superiority over the storage priority algorithm. Simulation results showed that for cases 

when there is no fluctuations, the optimization performs efficiently, whereas, with high fluctuations, the 

optimization is not very accurate which is impacted by the time-horizon of the previsions. The supervisory 

control system performs efficiently with the interaction of EV users and their demands. In optimization, 

selling energy to the grid in peak hours is preferable allowing making profits to the IIREVs operator. 

The fourth chapter presented the experimental platform STELLA, where real-time experimental test were 

conducted under different meteorological conditions and different EV profiles. Similarly to the simulation, 

experimental results proved the efficiency of the supervisory control and the optimization algorithm with 

respect to constraints and meeting the EV demands as requested. 

The fifth chapter studied the implementation of V2G service in the PVCS and its energy management 

system. Different simulation cases were considered under different meteorological conditions and EV 

profiles to highlight the benefits of V2G service. Simulation results showed the benefits of discharging the 

energy in EVs into the grid, where it reduced the impact on the public grid in peak hours, and could offer 

profits to participants in V2G service. 

The six chapter presented the carbon impact methodology of a PVCS based on a LCA and compared it to 

PGCS. Results showed that the carbon impact of a PGCS is highly depending on the electricity energy mix 

of each country. Moreover, PV system is the major contributor on the carbon impact of a PVCS, thus after 

applying recent data and recycled materials for the PV, the carbon impact of a PVCS is lower than PGCS. 

The work done in this thesis opens up new perspectives, which are also essentials that need to be improved: 

For the requirement and feasibility conditions, two charging modes are possible; slow mode up to 7 kW 

based mainly on PV energy and storage and EV filling capacity up to 6 kWh, fast mode from 7 kW and up 

to 22 kW based mainly on public grid energy. Proper sizing of the stationary storage system is required and 

social acceptance relative to longer charging duration for slow mode and higher charging price for fast 

mode, so a business model is important. The two main concerns, highlighted in the case studies, are the 

control-command of the system, i.e., PV-powered EV charging station based on stationary storage and 

public grid, and the business model that is able to influence consumer behavior through price charging. 

Furthermore, defining the barriers, solutions for PV-powered EV charging stations, and a survey on social 

acceptance must be conducted, and proposing new services vehicle-to-x associated with PV-powered EV 

charging stations. 

For the real-time optimization, the optimum energy cost highly depends highly on the accuracy of the 

previsions. As, human-machine interface provides EV data in real-time, thus, the prevision is only 

considered for the PV power profile. Météo France provides hourly solar irradiation, long-term, where in 

between passing clouds, represented by fluctuations, could not be well predicted. Therefore, solar 

irradiation previsions should be more accurate. Clear sky algorithm could be used to predict solar 

irradiations in short-term could but this may not predict clouds passage. Another technique is applying 

some machine learning technique based on the sensor capturing the solar irradiations on STELLA platform. 
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Moreover, the complexity of the problem should be taken care of and the time of calculation to give the 

optimization results in real-time. 

For the EVs to be able to participate in the V2G operation, despite their charging mode, the charging 

terminals should allow bidirectional flow of energy with variable charging power. This will allow EVs to 

charge with their chosen charging mode, discharge in V2G with a maximum 50 kW, recharge again with a 

suitable power to satisfy the EV users, in consideration of the remaining parking time, and to reach their 

desired SOC at departure. For future research, an optimization problem could be studied on the PVCS with 

V2G service. Different case studies should be carried out to validate the optimization problem and prove 

its feasibility. 

For the carbon impact, it would be possible to deepen the calculation of the carbon emissions of each 

subsystem of the PVCS based on any more recent data, to consider second-life batteries, and by completing 

the methodology of the global cost by providing updated prices and by rectifying the evolution of 

technologies related to PVCS. 

Finally, the intelligent infrastructure for recharging EVs is dedicated to offer services as V2G, V2H, and 

I2H. Therefore, it would be interesting to study these services along with the optimization algorithm as well 

for a complete day scenario. 
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Appendix A 

The case of 26 October 2021, in Compiegne, France, is considered. Figure A.1 shows   PV MPPT predp , and 

 PV MPPTp , where it is a cloudy and rainy day thus the irradiations are very low with fluctuations. 

 

Figure A.1: PV MPPT real and predicted powers—experimental test App A. 

In this case, the IIREV demand power is based on the data in Table 14. Figure A.2 shows the power flow 

and storage state of charge for “real-time exp” without optimization and the DC bus voltage—experimental 

test App Aa. 

 

(a) 
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(b) 

Figure A.2: Power flow and storage state of charge for “real-time exp” without optimization (a) and (b) storage state of 

charge and DC bus voltage—experimental test App Aa. 

Figure A.3 Figure 82shows the power flow and storage state of charge for “real-time exp” with optimization 

and the DC bus voltage—experimental test App Ab. 

 

(a) 
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(b) 

Figure A.3: Power flow and storage state of charge for “real-time exp” with opt (a) and (b) storage state of charge and DC 

bus voltage—experimental test App Ab. 

Table A shows the energy system cost for App A. 

Table A: Energy system cost—experimental test App A. 

Case Operation Grid cost (c€) Storage cost (c€) Total cost (c€) 

Real-time exp w/o opt 163.46 5.90 169.36 

Real-time exp with opt 210.66 5.66 216.33 

Opt for real conditions 90.26 5.61 95.88 

Figure A.4 shows the energy system distribution for “real-time exp” with and without optimization. 

 

Figure A.4: Energy system distribution—experimental test App A. 

Figure A.5 shows the EV energy distribution for “real-time exp” with and without opt. 
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(a) (b) 

Figure A.5: EV energy distribution for “real-time exp” (a) without opt and (b) with opt—experimental test App A. 
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Appendix B 

The case of 27 October 2021, in Compiegne, France, is considered. Figure B.1 shows   PV MPPT predp , and 

 PV MPPTp , where the irradiations are intermediate and the weather is a bit cloudy, so there are low 

fluctuations. 

 

Figure B.1: PV MPPT real and predicted powers—experimental test App B. 

In this case, the IIREV demand power is based on the data in Table 18. Figure B.2 shows the power flow 

and storage state of charge for “real-time exp” without optimization and the DC bus voltage—experimental 

test App Ba. 

 

(a) 
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(b) 

Figure B.2: Power flow and storage state of charge for “real-time exp” without optimization (a) and (b) storage state of 

charge and DC bus voltage—experimental test App Ba. 

Figure B.3 Figure 82shows the power flow and storage state of charge for “real-time exp” with optimization 

and the DC bus voltage—experimental test App Bb. 

 

(a) 
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(b) 

Figure B.3: Power flow and storage state of charge for “real-time exp” with opt (a) and (b) storage state of charge and DC 

bus voltage—experimental test App Bb. 

Table B shows the energy system cost for App B. 

Table B: Energy system cost—experimental test App B. 

Case operation Grid cost (c€) Storage cost (c€) Total cost (c€) 

Real-time exp w/o opt 48.87 6.12 54.90 

Real-time exp with opt 61.91 6.57 68.48 

Opt for real conditions 47.55 5.61 53.17 

Figure B.4 shows the energy system distribution for “real-time exp” with and without optimization. 

 

Figure B.4: Energy system distribution—experimental test App B. 

Figure B.5 shows the EV energy distribution for “real-time exp” with and without opt. 
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(a) (b) 

Figure B.5: EV energy distribution for “real-time exp” (a) without opt and (b) with opt—experimental test App B. 
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Appendix C 

  

(a) (b) 

  

(c) (d) 

  

(e)  (f) 
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(g) (h) 

 

 

(i)  

Figure C: Power coefficient distribution Dk —experimental test with opt (a) test 1, (b) test 2, (c) test 3, (d) test 4, (e) test 5, 

(f) test 6, (g) test 7, (h) App A, and (i) App B. 
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