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Résumé long
Motivés par les scénarios de diffusion de l’information et de publicité dans le les réseaux sociaux,

nous étudions un problème de maximisation de l’influence (MI) dans lequel on suppose que l’on

en sait peu sur le réseau de diffusion ou sur lemodèle qui détermine comment l’information peut

se propager. Dans un tel environnement incertain, on peut se concentrer sur des campagnes

de diffusion à plusieurs tours, avec l’objectif de maximiser le nombre d’utilisateurs distincts qui

sont influencés ou activés, à partir d’une base de nœuds influents. Au cours d’une campagne,

les graines de propagation sont sélectionnées séquentiellement lors de tours consécutifs, et les

commentaires sont collectés sous la forme des nœuds activés à chaque tour. L’impact (récom-

pense) d’un tour est alors quantifié par le nombre de nœuds nouvellement activés. En général,

il faut maximiser la propagation totale de la campagne, comme la somme des récompenses

des tours. Nous considérons deux sous-classes de d’IM, Contextual Influence Maximization with

Persistence (CIMP) et Episodic Contextual Influence Maximization with Persistence (ECIMP), où (i) la

récompense d’un tour d’une campagne en cours consiste uniquement en de nouvelles activa-

tions (non observées lors des tours précédents de cette campagne), (ii) le contexte du tour et les

données historiques des tours précédents peuvent être exploités pour apprendre la meilleure

politique, et (iii) ECIMP est CIMP répété plusieurs fois, ce qui permet d’apprendre également des

campagnes précédentes. Ce problème est directement motivé par les scénarios du monde réel

de la diffusion de l’information dans le marketing d’influence, où (i) seule la première / unique

activation d’un utilisateur cible présente un intérêt (et cette activation persistera comme une acti-

vation acquise, latente, tout au long de la campagne). (ii) de précieuses informations secondaires

sont disponibles pour l’agent d’apprentissage. Dans ce contexte, une approche d’exploration-

exploitation pourrait être utilisée pour apprendre les principaux paramètres de diffusion sous-

jacents, tout en exécutant les campagnes. Pour CIMP, nous décrivons et comparons deux méth-

odes de bandits à bras multiples contextuels, avec des limites supérieures de confiance sur le

potentiel restant des influenceurs, l’une utilisant un modèle linéaire généralisé et l’estimateur de

Good-Turing pour le potentiel restant (GLM-GT-UCB), et l’autre adaptant directement l’algorithme

LinUCB à notre cadre (LogNorm-LinUCB).
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Afin d’estimer le potentiel restant des influenceurs dans un contexte, GLM-GT-UCB modifie

l’estimateur Good-Turing avec une fonction externe du contexte de la ronde, du vecteur carac-

téristique de l’influenceur et du nombre de sélections dans la campagne. Chaque vecteur est a

priori inconnu et estimé à partir des feedback reçus à la fin de chaque tour. Les intervalles de con-

fiance des estimateurs reposent sur l’hypothèse que la distribution sous-jacente du nombre de

nœuds influencés est une distribution de Poisson. Selon l’hypothèse log-normale, les paramètres

inconnus sont estimés par rapport à l’échelle des récompenses et des garanties théoriques pour

les estimateurs à l’échelle logarithmique. Pour ECIMP, nous proposons l’algorithme LSVI-GT-UCBqui

implémente le principe d’optimisme face à l’incertitude pour l’apprentissage par renforcement,

avec approximation linéaire. L’agent d’apprentissage estime pour chaque nœud de départ son

potentiel restant avec un estimateur de Good-Turing, modifié par une fonction Q estimée. Nous

avons également présenté une solution Deep Reinforcement Learning pour ECIMP, qui estime

la fonction Q de chaque influenceur à l’aide d’intégration de nœuds. Nous montrons qu’ils sur-

passent les performances des méthodes de base utilisant les idées les plus récentes, sur des

données synthétiques et réelles, tout en présentant un comportement différent et complémen-

taire, selon les scénarios dans lesquels ils sont déployés.
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Chapter 1

Introduction

Social media advertising is a booming domain, gradually replacing advertising over traditional

channels (TV, radio, print, mail). It is enabled by the highly effective word-of-mouth mechanisms

that are embedded in social applications, such as likes, shares, reposts, or notifications. Social

networking applications are therefore an unprecedentedmedium for advertising, be it with com-

mercial intent or not, as products, news, ideas, political manifests, etc., can propagate easily to a

large yet well-targeted audience.

But the interest of social media for marketers is not only that it enables them to easily and

rapidly reach a large user base, but also, and foremost that it brings credibility to the messages

that are being conveyed. Indeed, many studies show that people are more inclined to pay atten-

tion to a message or referral from a known individual, e.g., a friend or an influencer whom she

follows [Ewing (2019); Buchin (2015)].

Motivated by advertising in social media, the class of algorithmic problems under the generic

name of Influence Maximization [Kempe et al. (2003)] encompasses all scenarios that aim to max-

imize the spread of information in a diffusion network, by identifying the most influential nodes

fromwhich the diffusion of a specificmessage should start. InfluenceMaximizationmirrors an in-

creasingly used and highly effective formofmarketing in social media, targeting a sub-population

of influential people, instead of all users of interest, known as influencer marketing [Brown and

Fiorella (2013)]. It is one of the most studied problems in the literature due to its applicability not

11



12 CHAPTER 1. INTRODUCTION

only to viral marketing [Chen et al. (2010)], but also to ad placement [Tang and Yuan (2016)], or

personalized recommendation [Song et al. (2006); Guo et al. (2013)].

Influence Maximization usually has as objective the expected spread under a stochastic dif-

fusion model, which describes diffusion as a probabilistic process. From a simple perspective,

given a diffusion network represented as a directed, weighted (probabilistic) graphG = (V,E, p),

the Influence Maximization problem to solve is that of finding L seed nodes (influencers), from

which to initiate an information diffusion process, with the objective of maximizing the number

of influenced (activated) nodes, i.e., the reward. The seminal work of Kempe et al. (2003) proposed

two models for the information diffusion process, the Independent Cascade model and the Lin-

ear Threshold one. Under the formermodel, the process develops in discrete steps, starting with

the selection of L seed nodes, where at each step the newly activated nodes attempt to influence

and activate their neighbors, succeedingwith a probability pij,∀(i, j) ∈ E. In the Linear Threshold

model, at any step in the diffusion process, a node becomes active if the sum of the weights of

its active incoming neighbors is above that node’s own activation threshold. Both models have

been adopted by most of the literature, see the survey of Li et al. (2018). However, under both

diffusion models, the Influence Maximization problem has been shown to be NP-hard, reducing

to the Set-Cover problem and the Vertex-Cover problem respectively [Karp (1972)], see Theorems

2.4. and 2.7 of Kempe et al. (2003).

Approximation algorithms that exploit the objective’s monotonicity and sub-modularity have

been studied extensively, yet scaling Influence Maximization to realistic graphs remains difficult.

While most of the Influence Maximization literature focuses on improving efficiency and scal-

ability – see the benchmarks Arora et al. (2019, 2017), other major obstacles have limited the

practical impact of this research. First, it is hard to obtain meaningful influence probabilities, as it

is hard and data-intensive to learn them from past diffusions [Hu et al. (2019); Gomez-Rodriguez

et al. (2012); Du et al. (2013)]. Also, the effectiveness of most Influence Maximization algorithms

depends on diffusion models and their key parameters – whether known or learned in an online

manner – aspects that are most often hard to align with real-life diffusion dynamics. It is com-

monly agreed that such parametric diffusionmodels represent elegant yet coarse interpretations
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of a reality that is complex and uncertain.

For these reasons, the focus of the Influence Maximization literature has shifted recently to-

wards online and diffusion-model independentmethods [Lagrée et al. (2018); Vaswani et al. (2017b);

Wen et al. (2017); Lei et al. (2015a)] where, during a multi-round influence campaign, a learning

agent sequentially selects at each round seeds from which a new diffusion of the campaign’s

message is initiated and observed in the network. A round’s feedback is then used to update the

learning agent’s knowledge. To balance between exploration (of uncertain aspects of the diffu-

sion environment) and exploitation (e.g., focusing on the most promising seeds), such methods

rely on sequential learning, either without state information – Multi-Armed Bandits [Thompson

(1933)], or with state – Reinforcement Learning. In this way, Online Influence Maximization (OIM)

over multiple rounds allows dealing with problem settings having (partially) unknown diffusion

specifications (i.e., network and/or diffusion model). Therein, starting from a known base of few

influential nodes, one can discover and learn the diffusion environment whilemaximizing spread,

over multiple rounds of a learn & spread campaign. Consequently, the Influence Maximization

objective shifts from a per-diffusion (round) one to a per-campaign one, e.g., by maximizing the

total number of activations or, alternatively, the total number of distinct activations.

Lagrée et al. (2018) introduced the Online Influencer Marketing (or Influence Maximization) with

Persistence (OIMP) problem, with the particularity that the reward consists of only the new/distinct

activations; a (basic) user activated in one round remains activated for the rest of the rounds. In

other words, only a target user’s first activation is of interest and, once acquired, it will persist; e.g.,

as in political endorsements or subscriptions to a media service, hence the persistence notion.

This variation of the OIM problem reflects the real-world scenarios where even though a user’s

activations may influence the spread of information, it is only its first activation that is counted as

part of the reward; e.g., an influencer Bob may sway a user Alice to sign a petition (activate) and

share its link, the signature (activation) is counted only once, but the link may be shared multiple

times by Alice at the influencer’s impel, enhancing the chances for other new activations.

This type of reward exhibits the diminishing returns property, i.e., the expected number of new

activations for an influencer decreases with each of its selections as the seed node in a diffusion
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process. The expected spread is not constant over the entire campaign as inmost OIM problems,

thus the learning agentmustmake decisions based on the influencer’s expected remaining poten-

tial of activating new users. Because the diffusion environment is unknown, this quantity is also

unknown a priori, so the learning agent must estimate it from the feedback received from the en-

vironment. The Good-Turing estimator [Good (1953)] has been proven to be efficient for unseen

unique entities [McAllester and Schapire (2000); Bubeck et al. (2013b); Lagrée et al. (2018)]. More

in-depth details of how this estimator may be used in an OIMP context are provided in Chapter

2.

Besides the OIM problems where the seeds are selected by an online approach [Lei et al.

(2015a)], instead of the classical select-then-spread offline one, or where the diffusion process

may be repeated over multiple rounds (a diffusion campaign), with the objective being the cumu-

lative new activations [Lagrée et al. (2018)], many other instances of the Influence Maximization

problem have been considered in recent years, for diverse problem settings, application scenar-

ios, or performance objectives. E.g., the diffusion network may be a bipartite graph, modeling

any-path diffusion from influencers to target nodes [Alon et al. (2012)], or the diffusions may be

topic-aware [Aslay et al. (2014); Chen et al. (2015)].

Inspired by these works, we study in Chapter 3 an OIMP problem in which the diffusion topol-

ogy, the influence probabilities, and the model that determines how information may spread are

all assumed to be unknown. Instead, what is known are the potential spread initiators, a set of

few influential nodes called hereafter the influencers. In such a highly uncertain environment, un-

der budget limitations (number of seedings and number of rounds), the diffusion campaign aims

to maximize the number of distinct users that are influenced or activated, starting from the influ-

encers. Seeds are selected sequentially (at each round) among the influencers, and an influencer

may be re-seeded, i.e., selected at multiple rounds. After a round’s diffusion, the assumed feed-

back is all the activated nodes from that round, i.e., only the diffusion’s effects are observed (the

who), but not their causes (the why). Generically, this feedback is used to refine the estimations

for the influencers’ remaining spread potential, which will guide future seeding decisions. Match-

ing the overall objective, a round’s reward is the number of newly activated nodes, i.e., those that
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were not already activated at previous rounds. The campaign’s objective is to maximize the sum

of rounds’ rewards. Regarding the influencers’ aptitude to spread information and their remain-

ing potential, we are assuming that contextual information is known and exploitable, as features

of influencers or of the information being diffused. The intuition is that within a campaign, whose

overall goal is to get a specific “message” to as many users as possible, the ways in which that

messagemaybe formulated, presented, or diffusedmay vary from round to round, and such con-

textual variations will lead to different propagation dynamics. E.g., the campaign’s message may

be a political manifesto, while the to-be-diffused items may pertain to different aspects thereof,

to connections with societal issues, or it may be framed in news, op-eds, data analysis, multime-

dia content, etc. Thus, we consider an OIMP problem setting that connects many of the recently

considered Influence Maximization assumptions for practical purposes, namely (i) an unknown

diffusionmedium and an influencer-target node bipartite graph abstraction thereof, (ii) diffusion

model-independent spread over multiple rounds of an influence campaign, (iii) topic/context de-

pendent diffusions, and finally (iv) a spread objective given by the campaign’s total number of

distinct activations.

We formally define this problem, Contextual Influence Maximization with Persistence (CIMP), in

Chapter 3. In short, CIMP is the optimization problem of choosing a number of 1 ≤ L ≤ K in-

fluencers from a given set to be activated in each of the budgeted T rounds, with the objective

of maximizing the cumulative spread at the end of all rounds, assuming that the probability that

influencer k activates basic node j depends on the round’s context, the number of k’s selections

within that campaign, and the node’s j unknown inner probability of activating itself. We stress

that this is directly motivated by (but not limited to) the real-world scenarios of information dif-

fusion in influencer marketing, where (i) the diffusion medium is highly uncertain and only a few

influencer nodes may be known in advance, (ii) only a target user’s first activation is of interest

and, once acquired, it will persist, and (iii) valuable side-informationmay be available to the learn-

ing agent.

To solve the CIMP problem, we extend the recent state-of-the-art research which has consid-

ered Topic-Aware / Contextual Influence Maximization in uncertain environments, by sequential
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learning approaches formulated in terms of Contextual Multi-Armed Bandits [Chu et al. (2011);

Agarwal et al. (2014); Slivkins (2019); Lattimore and Szepesvári (2020)], assuming that contextual

information is known and exploitable in the learning process. Contextual Multi-Armed Bandits

are rather versatile approaches, providing both formal guarantees and effective approximation

algorithms. Our solutions to the CIMP problem, presented in detail in Chapter 3, are based on

them and proven theoretically and empirically to be effective.

However, Contextual Multi-Armed Bandits fail to capture many realistic scenarios, where ac-

tions are influenced by other factors than the context and the previously sampled i.i.d. reward

random variables. In particular, for information diffusion with persistent activations – i.e., where

only the new activations are rewarded – repeatedly selecting the same seemingly optimal seed

node(s) may lead to non-optimal policies for seed selection. This important aspect may be cap-

tured by a modifier to the estimated remaining potential for Contextual Multi-Armed Bandits,

or by Reinforcement Learning states, thus preserving the i.i.d. requirement for the rewards. To

enable decision-making based on the seed’s number of selections, in Chapter 4 we propose a

sequential learning method based on Episodic Reinforcement Learning, called Episodic Contextual

Influence Maximization with Persistence (ECIMP).

In short, Episodic Contextual Influence Maximization with Persistence (ECIMP) is the optimization

problem extending CIMP to multi-campaign diffusions for a budget of T campaigns, each con-

sisting of H rounds, the objective being to maximize the cumulative spread at the end of all the

campaigns. The novelty of an activation and the selections of an influencer are reset at the be-

ginning of each campaign, which means that an ECIMP campaign proceeds just like a CIMP one,

but can benefit from information learned during the previous campaigns.

Contribution. For the CIMP problem, we propose two algorithms based on Upper Confidence

Bound, GLM-GT-UCB and LogNorm-LinUCB, and one algorithm LSVI-GT-UCB for the ECIMP prob-

lem. Both problems address selecting influencers in advertising campaigns, where newly acti-

vated nodes make up the reward. The algorithms follow optimism in the face of uncertainty in

sequential learning [Bubeck and Cesa-Bianchi (2012)], deriving an Upper Confidence Bound on

the estimator of the remaining spread potential of each influencer. This enables us to alternate
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in a principled way between exploration and exploitation steps when taking seeding decisions

at the campaign’s rounds. Our solutions are diffusion-model agnostic and follow different as-

sumptions on the rewards distribution: Poisson for GLM-GT-UCB and LSVI-GT-UCB, log-normal

for LogNorm-LinUCB.

In Chapter 3, published in Iacob et al. (2022), we formally introduce the CIMP problem, the so-

lutionbasedonUpper ConfidenceBoundusing Poissondistribution assumption, i.e., GLM-GT-UCB,

and the LinUCB-based solution that assumes a log-normal distribution, i.e., LogNorm-LinUCB.

GLM-GT-UCB uses a Good-Turing estimator [Good (1953); Bubeck et al. (2013a)] for new activa-

tions, to which it applies an external factor functionmodeling an influencer’s fatigue (diminishing

returns) and potential in a given context. The parameter of the external factor is assumed to

be a linear combination of the context and an unknown feature vector learned through linear

regression. Theoretical guarantees are provided under the Poisson distribution of rewards as-

sumption. LogNorm-LinUCB assumes a linear structure for the scale of rewards, estimated by the

inner product of the context and the influencer’s learned feature vector, and it has theoretical

guarantees at a logarithmic scale.

In Chapter 4, recently submitted for publication, we formally introduce the ECIMP problem,

which allows a solution based on Reinforcement Learning and Upper Confidence Bound –

LSVI-GT-UCB. With respect to CIMP, the focusmoves here from one of sequential learning during

a single campaign with multiple rounds to one of learning frommultiple campaigns with multiple

rounds. Not only each influencer’s number of selections can inform the decision-making process,

but also the historical data from previous campaigns can be exploited for the learned policy. In

the Reinforcement Learning terminology, a diffusion episode will be the equivalent of a diffusion

campaign, and its horizon will be the equivalent of the number of rounds.

Due to the contextual information provided by the environment at the beginning of each

round, the state space may be extremely large. For such cases, the recent works of [Wang et al.

(2019, 2020); Jin et al. (2020)] have successfully used (generalized) linear function approximations

to estimate the value function or the policy, a direction we also adopt here.

If we assign to each potential seed node its own episodic Markov Decision Process, then the
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value function in each state represents the respective seed’s remaining potential. Assuming that

an activation’s novelty is relative to one campaign, and knowing that the Good-Turing estimator

is just an average of new activations, we use the historical data from previous campaigns for

computing the average Good-Turing estimator for the round over the episodes.

In summary, in this thesis, we formally describe two Online Influence Maximization problems

under uncertainty, namely the CIMP and ECIMP problems, jointly drawing motivation from sev-

eral up-to-now disjoint recent studies in the area of Online Influence Maximization, for learning

seed selection policies in unknown diffusion environments. We propose the algorithms

GLM-GT-UCB, LogNorm-LinUCB, and LSVI-GT-UCB, which implement the optimism in the face of un-

certainty principle for Multi-Armed Bandits, and Episodic Reinforcement Learning with linear ap-

proximation, respectively.

We experimented with synthetic and real-world data, comparing with state-of-the-art solu-

tions adapted to our problem. The experiments show that our methods successfully learn from

the available side information and achieve higher cumulative rewards. These results are comple-

mented by theoretical regret guarantees for a LogNorm-LinUCB variant that learns from indepen-

dent samples.

We believe that our studies can help in bridging the gap between Influence Maximization

research and practical scenarios for information diffusion and advertising in social media, by

proposing effective solutions for scenarios of informationdiffusionwhere (i) the diffusionmedium

is highly uncertain and only a few influencer nodes may be known in advance, (ii) activated users

(instead of activations) represent the objective to be maximized, and (iii) side-information (con-

textual information) about the influencers’ aptitude to spread information can be exploited by

the learning agent.

The relevant papers are:
1. Contextual bandits for advertising campaigns: A diffusion-model independent approach. In Pro-

ceedings of the 2022 SIAM International Conference on Data Mining, SDM 2022.

2. Sequential Learning Algorithms for Contextual Model-Free Influence Maximization. In Proceed-

ings of the 29th ACM SIGKDD Conference on knowledge discovery and data mining, KDD

2023.



Chapter 2

Preliminaries

In this chapter, we establish the basic theoretical foundations for our contributions presented in

Chapters 3 and 4 and in Appendix A. In Section 2.1 we give a general definition for graphs, the

Influence Maximization and Online Influence Maximization problems, and two well-known diffu-

sion processes, and justify our choice for diffusion-model independent approaches. In Section

2.2 we present a short history of Multi-Armed Bandits, the most known application scenarios,

and proceed with introducing the most common classes of problems. We explain how an On-

line Influence Maximization problem is an instantiation of the Multi-Armed Bandit problem. We

continue to introduce the type of reward we use in our work, i.e., new activations, inspired by

Online InfluenceMaximization with Persistence. Before presenting the Upper Confidence Bound

algorithms in Section 2.3, we mention a few simple heuristics and Thompson Sampling. We then

present the intuition behind the Upper Confidence Bound and its advantageous handling of the

exploration-exploitation trade-off, along with solutions based on Upper Confidence Bound for

the Multi-Armed Bandit and Influence Maximization problems introduced previously. The per-

sistence in the reward used by CIMP and ECIMP can be intuitively captured by Good-Turing esti-

mators. Therefore, in Section 2.4 we present the estimator in its original design context and then

in the various ways it has been adapted for different problems, including the Influence Maxi-

mization problem. We conclude this chapter with an introduction to Reinforcement Learning,

which is necessary for solving the ECIMP problem. After an overview of Reinforcement Learning

19
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and Markov Decision Processes, we identify the challenge of a very large state space for Markov

Decision Processes due to the large variety of possible contexts in ECIMP and choose the (gen-

eralized) linear function approximation for the Q-function. We also present Deep Reinforcement

Learning, a different approach to solving ECIMP with Reinforcement Learning.

2.1 Diffusion Process Models

The Influence Maximization [Kempe et al. (2003)] problem aims to maximize the spread of infor-

mation in a diffusion network, by identifying the most influential nodes from which the diffusion

of a specificmessage should start. The diffusion network can be formally represented by a graph.

We use the definitions of Trudeau (2013) for graphs, as follows: a graph G is an object of two

sets called its nodes set V and its edge set E; a set is a collection of distinct objects, none of which

is the set itself. The node set is a finite nonempty set. The edge set may be empty, but otherwise,

its elements are two-element subsets of the nodes set.

The InfluenceMaximization problem is thus formalized as the optimization problem of select-

ing the subset I ⊆ V of seed nodes which maximizes the expected number of activated nodes

at the end of the diffusion process started from the selected seed nodes:

Problem 1 (Influence Maximization). Given a graph G = (V,E) with the nodes V and the edges E,

the objective is to solve the following optimization problem:

argmax
I⊆V,|I|=L

E |S(I)| ,

where S(I) is the spread started from the seed nodes in set I of size L.

Online InfluenceMaximization (OIM) extends InfluenceMaximization by repeating the diffusion

process for T rounds, in each round t choosing the seed nodes It ⊆ V and observing the spread

S(It) started from them.

Problem 2 (Online Influence Maximization). Given a graph G = (V,E) with the nodes V and the
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edges E, a budget of T rounds, the objective is to solve the following optimization problem:

argmax
It⊆V,|It|=L,1≤t≤T

E

∣∣∣∣∣ ⋃
1≤t≤T

S(It)

∣∣∣∣∣ ,
where S(It) is the spread, i.e., number of activations, of the chosen seed nodes for round t.

Kempe et al. (2003) introduced two stochastic diffusionmodels generally assumed in the liter-

ature when designing solutions for the InfluenceMaximization problem Li et al. (2018), the Linear

Threshold and the Independent Cascade models. The activation is carried out in discrete steps.

The Linear Threshold model assigns an activation threshold θv,∀v ∈ V to every node in the

graph, and an influence weight bv,w,∀v, w ∈ V of node w over node v. The threshold is chosen

uniformly at random from [0, 1], and the influence weights must satisfy
∑

w active neighbor of v bv,w ≤

1. The process starts with only the chosen seed nodes being activated. At every subsequent step

t in the diffusion process, for every node v it is checked if the sum of all the weights of its active

neighbors is larger than the threshold θv. The node becomes active when this condition is met:

∑
w active neighbor of v

bv,w ≥ θv.

The process stops when no more nodes get activated.

The Independent Cascade model assigns an activation probability pv,w to every node in the

graph. The diffusion process starts with only the chosen seed nodes being activated. At every

step t, if a node v becomes active for the first time, it also has its only chance of attempting to

activate its inactive neighborw with a probability of pv,w. If several neighbors of nodew are active

in step t, the model does not specify any order of their attempts to activate node w. The process

stops when no more nodes get activated.

These diffusion processmodels are coarse generalizations of real diffusion processes, leaving

out details, e.g., Independent Cascade does not specify the order in which newly activated nodes

attempt to activate their neighbors. They are based on certain assumptions, e.g., the activation

probabilities are uniformly distributed or all known a priori, which may not necessarily be true.
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Both models assume that the structure of the graph is known to the learning agent. This is not

necessarily the case in many settings.

The Influence Maximization problem remains NP-hard under either Independent Cascade or

Linear Threshold diffusion process model. Under the Linear Threshold model it can be reduced

to the vertex cover problem, while under the Independent Cascade model, it can be reduced to

the set cover problem. Heuristics and approximation algorithms are used instead to solve this

type of problem.

In our work, we simplify the solutions even more assuming that the diffusion network can

still be represented by a graph, but without knowing its structure, and knowing only the set of

potential seed nodes, i.e., influential, and another set of activated basic nodes, i.e., users. A

bipartite graph is a graphwhose nodes are separated into two disjoint and independent sets, and

every edge connects a node in one set to one in the other set. A digraph is a graph whose edges

have direction. The diffusion network can be viewed as a bipartite digraph, with the direction of

edges following the direction of information spread, from influencers to basic users. The diffusion

processmodel simply assumes that the influencers could activate the basic users and the learning

agent only sees the end result. With this in mind, our solutions are actually independent of the

diffusion model.

The formulation of the (Online) InfluenceMaximization problem in terms ofMulti-Armed Ban-

dits, with the influencers being the arms and the number of activations being the reward, offers

the possibility of solving it with approximation algorithms based on Upper Confidence Bound,

both of which are presented in the next two sections.

2.2 Multi-Armed Bandits

TheMulti-ArmedBandit problem is a commonly used formalization of real-world scenarioswhere

there is a learning agent that sequentially interacts with an environment. The decision maker,

i.e., the learning agent, observes the results of each action over time, learns which action is more

effective, and adjusts its decisions based on all the data available up to that point; the idea pre-
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sented abstractly in Figure 2.1. Thompson (1933) introduced the Multi-Armed Bandit problem to

study the exploration/exploitation trade-off in sequential decision problems, that is, the trade-

off between choosing to explore with new actions and learning more about the environment or

choosing to exploit the best action known so far to get the best result/reward, e.g., the number

of cured patients in a clinical trial. Greedily choosing the action known to offer the best reward

could be beneficial for a short period of time, while choosing to explore new actions could be

beneficial in the long term as it increases the chances of discovering better actions. All this is due

to the lack of complete knowledge about the environment.

Agent

Environment

kt

rt+1

rt

Figure 2.1: Multi-Armed Bandit.

Most knownapplication scenarios forMulti-ArmedBandits are clinical trials [Thompson (1933);

Berry (1978); Villar et al. (2015); Durand et al. (2018); Bastani and Bayati (2020)], recommender

systems [Mary et al. (2015); Tang et al. (2014); Lagrée et al. (2016); Li et al. (2016, 2017); Wang et al.

(2017); Herbster et al. (2021); Xie et al. (2021)], influence maximization [Lei et al. (2015b); Vaswani

et al. (2017a); Wen et al. (2017); Lagrée et al. (2018); Li et al. (2020); Dong et al. (2022)]. The Multi-

Armed Bandit problem can be applied to virtually any discrete-step sequential decision-making

problem where a learning agent must choose the best action.

In more formal terms, the Multi-Armed Bandit problem involves sequential interactions of

a learning agent with the environment for a horizon T ∈ N+, each interaction taking place in

discrete steps called rounds. In each round t the agent chooses an action/arm kt ∈ K, |K| =

K , and the environment returns a reward rt ∈ R. Both the environment and the agent may

randomize their decisions. Typically, the goal of the learning agent is to maximize the cumulative

reward at the end of all rounds
∑T

t=1 rt. To this end, the agent tries to learn the optimal policy

π∗ ∈ Π, π∗ : {k1, r1, . . . , kt−1, rt−1} → K for choosing the most rewarding arm kt ∈ K in each

round t ≤ T , where Π is the competitor class, i.e., a set of policies which includes the optimal
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policy for all the environments in an environment class E .

The cumulative reward for a policy π ∈ Π can be converted into the learning agent’s regret

with respect to the optimal policy π∗. The regret RT at the end of all T rounds is the difference

between the expected cumulative reward for the optimal policy and the expected cumulative

reward for the policy π used by the learning agent:

RT = E

[
T∑
t=1

max
k∈K

rk,t

]
− E

[
T∑
t=1

rt

]
,

where rk,t is the reward for choosing k in round t, and rt is the reward for the arm chosen by

policy π in round t.

Thus, the objective is either to maximize cumulative reward or, similarly, to minimize regret.

The optimal policy depends on the environment with which the learning agent interacts. The

environment is unknown, but assumptions can be made about its true nature to facilitate the

learning process. Usually, the environment is assumed to belong to a certain class E .

The Adversarial Bandits are a general type of bandit that makes very few assumptions about

the reward generation process. The environment can be seen as an adversary because it can

choose rewards based on the learning agent’s algorithm and past decisions, to which it can also

add independent randomization. The only way for the learning agent to minimize the cumulative

regret RT is to randomize its strategy such that the action kt and the reward rt are random

variables, and to aim to not perform worse than an assumed set of constant policies Π. If the

adversary doesn’t use independent randomization, then the only source of randomness in the

regret RT is the one from the learner’s actions. Auer et al. (2002b) obtain a regret of O(T−1/2)

with their algorithm Exp3 for the adversarial bandit problem.

The Stochastic Multi-Armed Bandits work with environment classes that assume that the re-

ward for any arm kt ∈ K is distributed according to the same distribution law, e.g., Bernoulli,

Uniform, Gaussian, etc., with each of these distribution types defining the respective environ-

ment class. For an assumed class, each arm kt has its own reward distribution νkt with its mean

reward µkt . If the bandit is also assumed to be stationary, then the reward distribution is defined

for the chosen arm, regardless of the history of actions and rewards so far. In this thesis, we do
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not study the non-stationary environments, i.e., environments that change over time (c.f. Chap-

ter 31 from Lattimore and Szepesvári (2020)). Thus, the reward function can be assumed to be

r(kt) = µkt + ϵt, r : K → R, where ϵt is some normally distributed noise. However, the learning

agent has no knowledge of the reward distributions νkt and all it observes is each instantiation of

the reward random variable r(kt) of the chosen arm kt in round t. The regret for the Stochastic

Multi-Armed Bandit is defined as follows:

RT = T max
k∈K

µk − E

[
T∑
t=1

r(kt)

]
= Tµ∗ − E

[
T∑
t=1

r(kt)

]
,

or

RT =
∑
k∈K

∆kE[nk(T )],

where ∆k = µk∗ − µk is the sub-optimality gap, and nk(T ) =
∑T

t=1 I(kt = k) is the number of

arm k’s selections. Since the agent learns from the observed rewards for its previous actions and

adapts its decision-making process accordingly, the number of selections for each arm is also a

random quantity.

The Stochastic LinearMulti-ArmedBandits assume that the expected reward is givenby a linear

function r(kt) = ⟨kt, θ⟩+ ϵt, where θ ∈ Rd is an unknown parameter which gives the true reward

in combination with the arm k’s feature vector kt ∈ Kd ⊂ Rd, and ϵt is some noise. The learning

agent tries to learn the unknown parameter θ so as to minimize regret:

RT = E

[
T∑
t=1

max
k∈Kd

⟨k− kt, θ⟩

]

Aswith themore general case of StochasticMulti-ArmedBandits, the Linear ones also assume that

the reward is well captured by a function, but the learning agent only observes the instantiations

of the reward random variable r(kt), which in turn brings randomness in the formula of regret.

The Stochastic Contextual Multi-Armed Bandits assume that the environment provides side-

information Yt ∈ Rd at the beginning of each round. This side-information, combined with each

arm’s feature vector forms the round’s context ϕ(Yt, k), ϕ : Rd×K → Rd. The learning agentmust



26 CHAPTER 2. PRELIMINARIES

now choose the arm that best fits the context, i.e., maximizing the reward. The reward can be

linearly represented by the function r(Yt, k) = ⟨ϕ(Yt, k), θ⟩,∀(Yt, k) ∈ Rd ×K, θ ∈ Rd. The agent’s

policy can be evaluated with the regret formula in the equation:

RT = E

[
T∑
t=1

max
k∈K

(r(Yt, k)− r(Yt, kt))

]
.

The Stochastic Linear/Contextual Multi-Armed Bandit assumes that the reward is normally

distributed. If there are other distributions that may fit better, then the Generalized Linear Model

could be a better representation [see Filippi et al. (2010b)]. The reward is assumed to follow the

rule r(Yt, k) = µ(⟨ϕ(Yt, k), θ⟩) + ϵt, where µ is the inverse link function. Its definition depends on

the presumed distribution, e.g., for Poisson the inverse link function is µ = e⟨ϕ(Yt,k),θ⟩,∀k ∈ K, θ ∈

Rd, Yt ∈ Rd.

The Influence Maximization problem 1 and the Online Influence Maximization problem 2 are

instantiations of the Multi-Armed Bandit problem, since the set of arms K can be the potential

seed nodes, and the reward can be the spread/number of activations.

The learning agent may not receive the reward directly, but feedback which can be used to

determine the reward. Assumptions on the feedback provided by the environment can be as

relaxed as expecting only the count of the activated nodes, i.e., full-bandit feedback, or stronger,

as in the case of semi-bandit feedback. The node semi-bandit feedback is the set of activated node

IDs, and the edge semi-bandit one is when the influence path is also known.

In the case of OIM, the reward is the number of activations, or the number of new activations

for the Online Influence Maximization with Persistence (OIMP) problem [Lagrée et al. (2018)].

Hence, one can assume the reward to be normally distributed and defined as a linear function,

respectively distributed according to a Poisson or Log-Normal distribution and defined according

to the generalized linear model with the appropriate inverse link function. Furthermore, if side

information is assumed to be available, then the problem falls into the category of Stochastic

Contextual Multi-Armed Bandits. These, all linked, form the tools for our problem CIMP, detailed
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in Section 3.

The Influence Maximization optimization problems of finding the optimal policy π∗ are NP-

hard. More feasible solutions involve approximating the expected cumulative reward for a policy

π and choosing the best-known one. Expressing these problems as Multi-Armed Bandits enables

the utilization of various known heuristics and approximation algorithms.

A simple heuristic is ϵ-greedy, i.e., choosing to explore with a probability ϵ by selecting the

arm at random, otherwise exploiting the best arm known up to that round. Another heuristic is

the Boltzmann exploration [Sutton et al. (1998)], i.e., the probability of employing influencer k in

round t is proportional to an exponential function of the empirical mean of the reward of that

influencer pk,t ∝ eηtµ̂k,t , where µ̂k,t is the estimated expected reward for k in round t, and ηt > 0 is

the learning rate. Cesa-Bianchi et al. (2017) proposed a variant that uses different learning rates

for different influencers, with a distribution-dependent regret guaranteed to be of order K log2 T
∆

,

where K = |K| is the size of the set of seed nodes and ∆ is the sub-optimality gap, and another

distribution independent one of order
√
KT logK. One of the basic approximation algorithms

is Thompson Sampling, proposed by Thompson (1933), i.e., playing the arm with the highest

estimated probability to be the best arm. Agarwal et al. (2017) proved Thompson Sampling to

have a logarithmic expected regret for the stochasticMulti-ArmedBandit problem. Finally, we use

algorithms based onUpper Confidence Bound [Auer et al. (2002a)], which implement the principle

of optimism in the face of uncertainty, relying on theoretically determined confidence bounds for

the estimated expected reward, and able to achieve a regret of O(log T ).

2.3 The Upper Confidence Bound Algorithms

As previously explained, the learning agent begins its sequential interactions with the environ-

ment without much knowledge about the potential expected reward of each arm. With each

interaction, it can better estimate the expected reward. However, each round, it is faced with the

challenge of choosing between an arm that it knows has performed well so far, and other arms

that it may not have played enough to have good insight into their performance. This is known
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Algorithm 1 Upper Confidence Bound (UCB)
1: Input: arms K, confidence δ.
2: Initialization: play each arm k ∈ K once.
3: for t = K + 1, . . . , T do
4: Play arm kt = argmaxk∈K UCBk(t− 1, δ).
5: end for

as Exploration - Exploitation trade-off.

An elegant solution for balancing the exploration of new arms with the exploitation of the

ones known to performwell is to build each arm’s Upper Confidence Bound (UCB) index computed

from its estimated expected reward and the corresponding estimator’s confidence width (also

known as the exploration bonus); with small probability δ ∈ (0, 1), the true expected reward

is not within the confidence interval. The former implements the exploitation factor, while the

latter implements the exploration one. Algorithm 1 presents the basis for most UCB algorithms.

Typically, the learning agent starts with an initialization phase where it plays each arm once to

get an initial estimate of their potential and then, for the rest of the rounds, chooses the armwith

the highest UCB index.

Choosing the arm with the highest UCB index implements the principle of optimism in the face

of uncertainty. This principle performs well in practice because an initial overestimation of the

UCB of a suboptimal arm is corrected by playing that arm, gathering more data, and computing

a progressively more accurate estimate. The confidence interval gets tighter around the esti-

mated expected reward which in turn gets closer to the true expected reward of the arm. Thus,

eventually, the optimal arm has an increased chance of being discovered.

In Figure 2.2 we present an example of an initial underestimation for the expected reward of

an arm, k2 here, but with a large enough confidence interval such that a UCB-based algorithm

would choose this arm in order to explore it more; LCB stands for Lower Confidence Bound. Let’s

assume that k1 and k3 have been chosen in previous steps, and their expected reward is better

estimated. Upon further exploration of k2, it may be discovered that this arm’s true potential is

higher than initially estimated, e.g., Figure 2.3. In this case, the UCB of arm k2 remains larger than

the UCBs of the other arms, so the algorithm would continue to play the same arm, but this time
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exploits the better-known one.

k1

k2 k3

exploration bonus
confidence interval

UCB

LCB

Figure 2.2: UCB example – under-explored a2.

k1

k2

k3

exploration bonus
confidence interval

UCB

LCB

Figure 2.3: UCB example – high confidence for the expected reward from a2.

Considering the case of Stochastic Multi-Armed Bandits, Auer et al. (2002a) in Theorem 1 and

Lattimore and Szepesvári (2020) in Theorem 7.1 prove that the regret for an UCB algorithm is

sublinear:

RT ≤
∑

k:µk<µ∗

8 ln(T )

∆k

+

(
1 +

π2

3

)(∑
k∈K

∆k

)

RT ≤
∑

k:µk>0

16 ln(T )

∆k

+ 3

(∑
k∈K

∆k

)

Having a sublinear regret in the number of rounds T implies that the agent learns at a fast

rate, and the distance from the optimal policy is gradually smaller because the increase in regret

is smaller over time.

Stochastic Linear/Contextual Multi-Armed Bandits have LinUCB [Auer (2002)] as a base algo-

rithm, with a regret of only Õ(
√
T ). Inspired by it, other solutionswere developed, Li et al. (2010a);
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Chu et al. (2011); Li et al. (2017). Wen et al. (2017) solves an OIM problem with an UCB-type algo-

rithm IMLinUCB, with regret polynomial in all quantities of interest.

2.4 The Good-Turing Estimator

Some problems solved by UCB-type algorithms need to estimate the potential to encounter new

entities. This is also the case for our two problems, CIMP and ECIMP, as we are interested in

estimating the potential of each influencer to activate new nodes. For a different problem but

with similar requirements, Good (1953), in a groundbreaking work on population frequency es-

timators that still influences state-of-the-art work today, introduced an estimator for the total

probability mass of the entities that are not in a sample. Among the proposed solutions are es-

timators for the population frequencies of each species being represented r times in a sample

of size N , denoted by qr. Its expected value is estimated by E[qr] = (r+1)nr+1

Nnr
, where nr is the

number of distinct species that are each represented r times in the sample. More importantly,

the total probability massM0 of the entities not in the sample is proved to be well estimated by

the proportion of entities seen exactly once in the sample:

G0 =
n1

N
.

In linguistics, the elements seen exactly once are called hapaxes. This probability that the next

sample belongs to a new species is also known as the missing mass.

McAllester and Schapire (2000) studied the convergence rate for the Good-Turing estimator

G0 for the missing mass, and computed a confidence interval for the actual missing mass:

P

{
M0 ≤ G0 + 2(

√
2 +

√
3)

√
ln 3/δ

N

}
≤ δ

Bubeck et al. (2013b) use the Good-Turing missing mass estimator for estimating the expert’s

probability of identifying new interesting items from an underlying population A. In terms of a

Multi-Armed Bandit problem, the experts are the arms, and the reward is the number of new
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items discovered by the chosen arm k ∈ K. The goal is to maximize the cumulative count of such

hapaxes F (T ):

F (T ) =
∑
x∈A

I
{
x ∈ {X1,1, . . . , X1,nl,T

, . . . , XK,1, . . . , XK,nK,T
}
}
,

where Xk,nk,t
is an i.i.d random variable for the interesting item given by the expert k ∈ K at its

nk,t’s selection in round t.

The proposed algorithm Good-UCB estimates in each round t the probability of each expert

k to identify new items R̂k,nk,t−1
, calculates the UCB based on the actual probability confidence

interval, and chooses the expert with the highest UCB index:

UCBk,t = R̂k,nk,t−1
+ C

√
log 4t

nk,t−1

=
Uk,nk,t−1

nk,t−1

+ C

√
log 4t

nk,t−1

=
1

nk,t−1

∑
x∈A

I

{
nk,t−1∑
t=1

I{Xk,t = x} = 1

}
+ C

√
log 4t

nk,t−1

,

where C is a tuning parameter.

The regret is proved to be of an order
√
T the assumption of non-overlapping support for

the arms [see Theorem 4 of Bubeck et al. (2013b)]. Under the same assumption, Good-UCB is

close to an omniscient oracle strategy in terms of the waiting time T (λ), λ ∈ (0, 1), which is the

time at which every expert has the missing mass of interesting items less than λ for every expert

[see Theorem 5 of Bubeck et al. (2013b)]. Empirically, the algorithm performs well without this

assumption.

Lagrée et al. (2018) have recently used the Good-Turing estimator for the missing mass to

estimate an influencer’s remaining potential for activating new nodes in an influence diffusion

campaign. Contrary to the problem treated in Bubeck et al. (2013b), an influencer can activate

more than one new basic node in a round. The remaining potential is given by the equation:
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Rk(t) =
∑
u∈Ak

I

{
u /∈

t⋃
s=1

S(s)

}
pk(u),

where Ak is the set of basic nodes reachable from influencer k, S(s) is the spread observed at

the end of round s, and pk(u) is the probability of basic node u to be influenced by k.

The Good Turing estimator of the remaining potential is given by the equation:

R̂k,nk,t−1
=

1

nk,t−1

∑
u∈Ak

Uk,nk,t−1
(u)
∏
l ̸=k

Zl,t−1(u)

=
1

nk,t−1

∑
u∈Ak

I{Xk,1(u) = · · · = Xk,nk,t−1
(u) = 0, Xk,s(u) = 1}

·
∏
l ̸=k

I{Xl,1(u) = · · · = Xl,nl,t−1
(u) = 0}

Given the real-world scenario where selecting too many times the same influencer might re-

sult in poor performance, Lagrée et al. (2018) propose also a Good-Turing estimator which cap-

tures the influencer’s fatigue. This characteristic is implemented by applying a time-dependent

decreasing function γ(nk,t) to the fraction of hapaxes. Theoretically guaranteed confidence inter-

vals are provided for both estimators [see Theorem4.2 and C.4 Lagrée et al. (2018)]. The solutions

perform well under various diffusion models compared to multiple baselines, on both synthetic

and real-world datasets.

2.5 Reinforcement Learning

Reinforcement Learning (RL) is one of the basic types of machine learning, along with supervised

and unsupervised learning. Reinforcement Learning is useful for real-world scenarios where the

agent makes decisions through trial and error, and learns from its experience. The agent repeat-

edly interacts with an unknown environment with the objective of maximizing the cumulative

reward received from that environment. We have seen in Section 2.2 that Multi-Armed Bandits

fit the same application scenarios. In fact, Multi-Armed Bandits are a special case of Reinforce-

ment Learning with horizon H = 1. In Reinforcement Learning, the agent interacts with the
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environment in episodes with a certain horizon H .

Agent

Environment

kh

rh+1

rh

sh+1

sh

Figure 2.4: Reinforcement Learning.

Sutton and Barto (2018) define the environment as a finite automata entity that is in a certain

state at a given time and changes its state upon receiving an action from a learning agent, while

also returning a reward to that agent. Figure 2.4 is a rough representation of the dynamics in

Reinforcement Learning. At each step h in the horizon, the agent is in a different state sh. As-

suming that it previously received the reward rt, the agent makes the decision, e.g., choosing kh,

based on both the current state sh and the last seen reward rh. After this action, the environment

moves to the next state sh+1 and returns the reward rh+1; the process continues until the horizon

is reached. The long-term reward is the sum of the immediate reward and the prospective re-

ward from the new state. Thus, each state’s value depends on the values of the states which can

be reached from it. The learning agent takes an action for a state of the environment according

to a policy it attempts to improve with each feedback/reward it receives from the environment.

In contrast, the bandits have no state transitions. While bandits have the advantage of simplic-

ity, Reinforcement Learning with state transitions can be more effective due to the possibility of

using more information to improve the action selection policy. This motivates the definition of

the ECIMP problem, and its solution RL-GLM-GT-UCB, with more details in Section 4.

The problem is usually represented as a Markov Decision Process (MDP) M(S,K,P, r). For

episodic MDPs, an agent interacts with an environment in episodes of length H ∈ Z+, and for

each episode the initial states s1 are drawn from an initial distribution µ ∈ S , where S is the

state space. The action space is K, P = {Ph}Hh=1,Ph : S × K → ∆(S) are the state transition

probabilities with ∆(·) being the probability simplex, and r = {rh}Hh=1, rh : S × K → [0, 1] are

the reward functions. MDPs assume that the current state and the taken action are sufficient
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information to determine the next state.

The learning agent searches for the optimal policy. For an episodic MDP, the decision rule

in a stationary (stochastic) policy is a function π : S × [H] → ∆(K). The agent learns the best

policy from the state values or state-action values. However, these values depend on the agent’s

decisions. Thus, the algorithm must compute and aims to improve at each step both the value

function and the optimal policy.

For a finite horizon, the state value function is:

V π
h (s) = E

[
H∑

τ=h

rh(sτ , π(sτ , τ))|sh = s; π

]
,where V π

h : S → R,

and the optimal state value is V ∗
h = maxπ V

π
h .

The state-action value function, also known as the Q-function, is:

Qπ
h(s, k) = E

[
H∑

τ=h

r(sτ , π(sτ , τ))|sh = s, kh = k; kh:H ∼ π

]
.

The Bellman equations for a stationary policy π,∀s ∈ S:

V π
h (s) = rh(s, π(s)) +

H∑
τ=h

Ph(sτ |s, π(s, h))V π
h+1(sτ ) (2.1)

Qπ
h(s, k) = rh(s, k) +

H∑
τ=h

Ph(sτ |s, π(s, h))Qπ
h+1(sτ , π(sτ , τ) (2.2)

The Optimal Bellman equation is:

Q∗
h(s, k) = rh(s, k) +

H∑
τ=h

Ph(sτ |s, k)max
k′∈K

Q∗
h(sτ , k

′) (2.3)

Equation 2.3 implies that the optimal policy π∗ can be expressed as a greedy policy over the

optimal state-value function:

π∗(s, h) = argmax
k′∈K

[
rh(s, k

′) +
H∑

τ=h

Ph(sτ |s, k′))Q∗
h(s, k

′)

]
.
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Thus, by estimating the optimal action-state value function the learning agent is able to esti-

mate the optimal policy as well.

Equation 2.3 can be rewritten as the Optimal Bellman (update) Operator:

T (Qh)(s, k) = Q′
h(s, k) = rh(s, k) +

H∑
τ=h

Ph(sτ |sh = s, kh = k)max
k′∈K

Qh+1(sτ , k
′),

where T : (S × K → R) → (S × K → R).

This transformation enables the estimation of the state-action value function by applying Q-

iteration, i.e., starting from a random Q-function, repeatedly updating it with Q′
h = T (Qh), and

using a greedy policy based on it. Another dynamic programming solution is to estimate the

policy by applying policy iteration, i.e., starting from a random policy, computing the Q-function

based on it, and repeatedly improving the policy based on the new values. Either approach has

the shortcomings of requiring the transition probabilities and the reward function and being

applicable only to tabular MDPs.

In this thesis, the ECIMP problem 4 in Section 4.2.1, poses the challenge of very large state

space due to the nature of the context – themessage diffused in a round can be virtually anything.

The solution is approximate Reinforcement Learning. The options are either to approximate the

value function, Equation 2.1 or 2.2, or to approximate the policy, π : S × [H] → ∆(K). Estimating

the Q-function requires more parameters to learn, but enables an easier computation of the

value function V ∗
h (s) = maxa Q

∗
h(s, k) and of the policy π∗(s, h) = argmaxa Q

∗
h(s, k).

There are different methods to approximate the Q-function. However, each of them requires

certain assumptions for the MDP.

In order to approximate theQ-functionwith a linear function, theMDP is assumed to be linear

in a feature map ϕ : S × K → Rd [Bradtke and Barto (1996); Melo and Ribeiro (2007); Jin et al.
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(2020); Yang and Wang (2020)]:

Ph(·|s, k) = ⟨ϕ(s, k), µh(·)⟩,

rh(s, k) = ⟨ϕ(s, k), θh⟩,

Qπ
h(s, k) = ⟨ϕ(s, k), wπ

h⟩,

(2.4)

where d is the dimension of the feature space, µh ∈ Sd, θh ∈ Rd, and wπ
h = θh+

∫
S V

π
h (s)dµ(s),

∀h ∈ [1, H].

When the linearity assumption is too restrictive, the Q-function can be assumed to belong to

a class of generalized linear models G = {(s, k) 7−→ f(⟨ϕ(s, k), θh⟩) : θh ∈ Rd,∀h ∈ [H]}, where

f : [−1, 1] 7−→ [−1, 1] is the chosen inverse link function [Filippi et al. (2010b); Li et al. (2017); Wang

et al. (2019)].

A specific branch of Reinforcement Learning of particular interest for us is Deep Reinforcement

Learning. Deep learning is itself a type of machine learning, like Reinforcement Learning, this one

using neural networks to transform an input, e.g., state and reward, into an output, e.g., next ac-

tion. Deep Reinforcement Learning is well suited to our challenge of having a prohibitively large

state space, often learning to represent the policy π as a neural network. Deep networks are able

to generalize by the learning sub-structure. E.g., Andrychowicz et al. (2016) leveraged this power

in a meta-learning problem, learning how to design optimization algorithms, i.e., learning an up-

date rule for gradient descent. Khalil et al. (2017) proposed a framework for learning algorithms

for different classes of problems, problems from the same class sharing the same structure. This

framework is also applicable to the OIM problem.



Chapter 3

Contextual Influence Maximization with

Persistence

In this chapter we introduce the Contextual Influence Maximization with Persistence (CIMP) problem

which leverages available side-information for maximazing the cumulative count of new activa-

tions in a multi-round campaign starting from a set of seed nodes. We begin by setting the scene

in Section 3.1 by presenting the state-of-the-art work related to each aspect of this problem. We

then present in Section 3.2 the formal definition of the CIMP problem. Since the objective of

the problem is cumulative new activations, we consider two separate assumptions about the re-

ward distribution, Poisson and Log-Normal. We describe in Section 3.3 the solution based on

the first assumption, GLM-GT-UCB, which estimates each influencer’s remaining potential with a

Good-Turing estimator and it adjusts it with an external factor which is a function of the round’s

context and the influencer’s number of selections. GLM-GT-UCB is an UCB algorithm, with theo-

retically guaranteed upper confidence bound presented in short in Section 3.3.4, and extensively

in Appendix A. In Section 3.4 we present the solution based on the assumption that the scale

of the reward is normally distributed, LogNorm-LinUCB, with log-scale regret logarithmic in the

number of rounds. The algorithms are also empirically proven to perform better than state-of-

the-art methods on two real-world datasets and a synthetically generated one. The setup of the

experiments and their results are discussed in Section 3.5.

37
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3.1 Main Related Work

Dye (2000) highlights the importance of the choice of people to spread the information, as well as

the potential of word-of-mouth in a successful marketing campaign. Domingos and Richardson

(2001) further refine this type of viral marketing by exploiting the network value of the customers,

i.e. the expected profit from further influencing potentially new customers. Their solution is to

model together the inner expected profit from activating itself and the influence it has on others,

which proved to be more efficient than traditional direct marketing in the domain of marketing

motion pictures.

The work of Li et al. (2017) proposed a solution for the generalized linear contextual ban-

dit problem, earlier considered also in a practical scenario of news recommendation [Li et al.

(2010b)]. The solution is based on the work of Filippi et al. (2010b) – considering non-linear re-

wards for the MAB problem – and it improves it by adapting the algorithm of Auer (2002) to use

Maximum Likelihood Estimation for estimating the unknown parameters, and uses the same

approach to create the independent samples.

InWen et al. (2017), the authors proposed anUCB-based algorithm, IMLinUCB for the online in-

fluence maximization problem in social networks. They assume that the diffusion of information

follows the Independent Cascade (IC) edge semi-bandit model. The algorithm selects multiple

influencers per round without suffering from an exponential increase in the combinatorial ac-

tion space due to the cardinality of the source node set. Efficiency is obtained through the linear

generalization of a probability weight function that yields the activation probabilities.

The cumulative regret bounds for IMLinUCB are topology dependent; this is also confirmed

by the experiments performed on different types of graph topologies.

In Levine et al. (2017), the authors consider the weariness of an influencer’s effectiveness over

time and introduce the so-called rotting bandits. It assumes that the expected reward decays as

a function of the number of times an arm has been selected, thus the optimal policy being one

of choosing different arms. Our problem bears similarities to the non-parametric rotting bandit

problem of Levine et al. (2017), as we also do not make assumptions about the structure of the



3.1. MAIN RELATED WORK 39

reward, but only about its non-increasing nature in the number of selections. To this end, Levine

et al. (2017) proposed the Sliding-Window Average (SWA) algorithm. In the initialization phase,

each arm is chosen a fixed number of times, and for the rest of the ”campaign”, their empirical

average reward is adjusted by a given quantity. SWA is thus able to detect early the significantly

sub-optimal arms while preserving theoretical guarantees.

The work that is most related to ours is Lagrée et al. (2018). Placed in a similar setting, it fo-

cuses onOnline InfluenceMaximization with Persistence (OIMP). Lagrée et al. (2018) has a similar

objective formulation, and proposes an algorithm called GT-UCB (for Good-Turing Upper Confi-

dence Bound). The approach is inspired by the work of Bubeck et al. (2013a), which used the

Good-Turing estimator in a setting where a learning agent needs to sequentially select experts

that only sample one of their potential elements at each round. Similar to rotting bandits, an

adaptation of GT-UCB (called FAT-GT-UCB) is considered for scenarios where influencers may ex-

perience fatigue, i.e., a diminishing tendency to activate their user base as they are re-seeded

during a campaign. The key aspect that distinguishes our study from the one of Lagrée et al.

(2018) is that we assume contextual information is known and exploitable in the sequential learning

process, as features of the influencers or of the information being diffused. In doing so, we pro-

vide solutions that are no longer agnostic to the information being diffused nor to the profiles of

influencers, as was the case in Lagrée et al. (2018). The contextual assumption leads to entirely

different theoretical and algorithmic constructions and is supported by our empirical evaluation.

FAT-GT-UCB is one of our experimental baselines.

Finally, we stress that in our bandit approach the parameters to be estimated throughout

a campaign must capture how good an influencer still is (its remaining potential). Hence a key

difference with other multi-armed bandit studies for IM [Wu et al. (2019); Wen et al. (2017); Chen

et al. (2016); Vaswani et al. (2017b)] is that they look for a constant optimal seed set, while in our

setting a round’s best action (choice of seeds) depends on the number of previous rounds and

the context.
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Table 3.1: Summary of notations.

T total number of rounds in a campaign
K total number of available influencers
Yt the d-dimensional context in round t
It the set of L influencers selected in round t
Ak set of basic nodes reachable by influencer k
S(It, Yt) the spread given by the environment in round t
pk,j(t) the probability of influencer k to activate basic node j in round t
θk,j feature vector that explains the probability of influencer k

to activate basic node j in round’s context Yt

nk(t) the history of number of selections of influencer k in round t
p(j) the basic node’s j intrinsic probability of activating itself
α the external factor function which adjusts the basic node’s

activation probability; e.g. defined as in Equation 3.12.
Ft the set of IDs of the activated basic nodes at the end of round t
rt the reward at the end of round t
r′k(t) the reward for the external factor’s linear regression problem
Cj(t) the cumulative Poisson count of activations for node j in round t
θk the influencer k’s feature vector
θ̂k(t) the estimator of the influencer k’s feature vector in round t
λj the Poisson intensity of activations for basic node j
λk the Poisson intensity of activations due to influencer k
Rk(t) the influencer k’s remaining potential (i.e. the feasible reward) in round t
Gk(t) Good-Turing estimator of the remaining potential for influencer k
Vk(t) design matrix updated by the context vectors in rounds when influencer k is played
sk(t) the rewards history factor for linear regression
γ the regularization factor for linear regression
bk(t) the UCB computed for influencer k in round t

3.2 Problem Statement

We formalize the IM problem, set in a discrete-time campaign consisting of T rounds, with K

influencers among which the algorithm chooses seeds at each round.

We model each influencer k as having access to Ak basic nodes, each one being influenced

by k with a probability pk,j(t),∀j ∈ [1, . . . , Ak]. We assume that pk,j(t) depends on each basic

node’s inner probability p(j) of activating itself, on some d-dimensional profile θk,j , and on the

round’s context. In each round, a d-dimensional context Yt ∈ [0, 1]d is provided by the environ-

ment, similar to the contextual multi-armed bandit setting [Slivkins (2019)]. Considering that in
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our setting the reward is the number of newly activated nodes, we assume also the impact of

the number of selections of the influencer up to round t, nk(t), on the probability pk,j(t). There-

fore, the probability of a basic node j to be influenced by influencer k is well-approximated by

a function α(⟨θk,j, Yt⟩, nk(t)) applied as a modifier to the basic node’s inner activation probability

p(j). The modifier α is a function of the relation between the influencer, the basic node, and the

round’s context. Formally, the problem we study in this chapter is defined as follows:

Problem 3 (Contextual Influence Maximization with Persistence). Given a set of influencers K =

{1, . . . , K}, |K| = K , a budget of T rounds (or trials), and a number 1 ≤ L ≤ K of influencers to be

activated at each round, the objective is to solve the following optimization problem:

argmax
It⊆K,|It|=L,∀1≤t≤T

E|
⋃

1≤t≤T

S(It, Yt)|, (3.1)

where S(It, Yt) is the spread of the chosen set of influencers for round t, and the probability that

influencer k activates basic node j depends on the round’s context Yt and the number of k’s selections

nk(t):

pk,j(t) = α(⟨θk,j, Yt⟩, nk(t))p(j). (3.2)

A similar variant of this problem, which does not use contexts, was proven to be NP-hard in

Lagrée et al. (2018), and this hardness result immediately transfers to our problem (e.g., with a

constant context for all rounds).

We now formulate the problem in a contextual bandit setting. We assume a semi-bandit

feedback at the end of each round, denoted Ft, consisting of the set of IDs of the activated basic

nodes. The reward for the round is the number of new activations:

rt =

⋃
k∈It

Ak∑
j=1

I{Cj(t) > 0} − rt−1; r0 = 0, (3.3)

where Cj(t) =
∑t

s=1 I{j ∈ Fs} denotes for each basic node the number of times it has been

activated. When L > 1 influencers are selected per round, Ft can be separated per influencer

if such information is available in the feedback. E.g., it is common in influencer marketing for
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basic nodes to use a code specific to the influencer that reached them when they activate them-

selves; this still qualifies as semi-bandit feedback as it does not require full information about

the influence propagation. In the absence of such additional information, the feedback Ft can be

randomly divided equally among the selected influencers; the agent only uses the quantitative

aspect of the reward in the learning process.

Given that the reward in each round is the number of newly activated basic nodes, Problem 3

exhibits a diminishing returns property: for each influencer, the expected number of new basic

nodes it can activate decreases with each of its selections.

For each basic node j, its cumulative count of activations Cj(t) up to round t is a random

quantity depending on the node’s probability pk,j(t) of being activated by the played influencer;

these activation probabilities are assumed to be unknown. As estimating all user profiles θk,j is

computationally expensive, our goal will be instead – given that the objective is to select the best

influencer(s) at each round – to directly estimate the influencers’ potential based on the context

at each round, as a proxy for the probabilities of individual nodes.

To achieve this, we propose two algorithms that both assume a generalization θk of the un-

known parameters θk,j , and two different assumptions on the distribution of new activations for

each influencer. More precisely, we assume that activations follow either (i) a Poisson distribu-

tion, given that they are counts of nodes, or (ii) a Log-Normal distribution, assuming that the

scales of the rewards are normally distributed (in line with observations on the distribution of

real-world social phenomena [Sala et al. (2010)]). In Section 3.3 we present the UCB-based so-

lution that uses the Poisson distribution assumption, and in Section 3.4 we present the LinUCB-

based solution that assumes a log-normal distribution.

3.3 GLM-GT-UCB Algorithm

Themain idea behind the GLM-GT-UCB algorithm is to estimate the potential of each influencer, at

each round, by some proxy measure. Here, by an influencer’s potential we understand the num-

ber of nodes that it can still activate (i.e., the reward); more formally, each influencer’s remaining
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potential of activating new basic nodes in round t is:

Rk(t) = Ak −
Ak∑
j=1

I{Cj(t− 1) > 0} (3.4)

The stochasticity of Cj(t− 1)means that the remaining potential is a random variable too. While

this has been analyzed in the non-contextual case [Lagrée et al. (2018)], the challenge here is to

account for the contextual dimension. The proxy we choose is the Good-Turing estimator [Good

(1953)], estimating the proportion of unseen items in a random process as the fraction of items

seen only once (hapaxes).

There are two main technical challenges to modeling the remaining potential using Good-

Turing estimators: (i) we are counting only new activations, so a fatigue factor needs to be added

to the estimator, and (2) the contextual case forces us to make an assumption on the model – in

our case, we opted for a generalized linear model using a Poisson distribution.

3.3.1 Good-Turing with Poisson and External Factor

An influencer’s remaining potential is an unknown random variable. The Good-Turing estima-

tor [Good (1953)], adjusted with a fatigue function, was shown to successfully model an influ-

encer’s fatigue [Lagrée et al. (2018)]. The fatigue function, non-increasing in the number of influ-

encer’s selections, does not explicitly model an influencer’s potential w.r.t. the diffused content.

We thus propose a Good-Turing estimator adjusted by a function of the diffused content.

For each basic node j, its activation probability pk,j(t) is a function of (a) the linear combina-

tion of the node’s feature vector θk,j and the round’s context, and (b) the number of influencer’s

selections nk(t). The assumption we make is that the underlying distribution of each node’s cu-

mulative count of activations Cj(t) is Poisson with intensities λj

∑t
s=1

∑
k∈Is α(⟨θk,j, Ys⟩, nk(s)).

Our approach is then to assume that the underlying distribution for the entire remaining poten-

tial of an influencer is Poissonwith intensitiesα(⟨θk, Yt⟩, nk(t))λk, k ∈ K, where the individual user

response probabilities are small: λk ≥
∑Ak

j=1 λj ≪ Ak. Recall the true feature vector θk is initially

unknown, so its estimation becomes a sub-problem of our problem. The classical solution is to



44 CHAPTER 3. CONTEXTUAL INFLUENCE MAXIMIZATION WITH PERSISTENCE

use the regularized least-squares estimator:

θ̂k(t) = argmin
θ∈Rd

t−1∑
s=1

(r
′

k(s)− ⟨θ, Yt⟩)2 + γ∥θ∥22), (3.5)

where r
′

k(s) is the round’s reward (adapted for the sub-problem) and γ is the penalty factor that

ensures the solution’s uniqueness; more details are given in Sec. 3.3.2.

After t rounds, we observe the cumulative Poisson counts Cj(t) of activations of each basic

node j ∈ {1, . . . , Ak} by the corresponding influencer. The cumulative counts are distributed at

the rate

λj

t∑
s=1

∑
k∈Is

α(⟨θk,j, Ys⟩, nk(s)), (3.6)

and in estimation with rate

λj

t∑
s=1

∑
k∈Is

α(⟨θk, Ys⟩, nk(s)). (3.7)

Thus, the remaining potential can be expressed as the conditional expectation of cumulative

counts of new basic nodes that would be influenced in round t:

Rk(t) =

Ak∑
j=1

λjα(⟨θk, Yt⟩, nk(t))I{Cj(t− 1) = 0}. (3.8)

The discrete random variable Cj(t− 1) has a Poisson distribution with parameter

λj

∑t−1
s=1

∑
k′∈Is α(⟨θk′ , Ys⟩, nk′(s)) and the probability that node j is not activated:

P (Cj(t− 1) = 0) = e
−λj

∑t−1
s=1

∑
k
′∈Is

α(⟨θ
k
′ ,Ys⟩,n

k
′ (s)). (3.9)

The expectation of k’s remaining potential in round t is:

E[Rk(t)] = α(⟨θk, Yt⟩, nk(t))

Ak∑
j=1

λje
−λj

∑t−1
s=1

∑
k
′∈Is

α(⟨θ
k
′ ,Ys⟩,n

k
′ (s)). (3.10)
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GLM-GT-UCB estimates k’s remaining potential by:

Gk(t) =
α(⟨θ̂k(t), Yt⟩, nk(t))

nk(t)

Ak∑
j=1

t−1∑
s=1

I{Xs,j,k = 1, {Xs,j,k′ = 0}k′∈Is\{k}, {Xl,j,k′ = 0}l ̸=s,k′∈Il}
α(⟨θ̂k(s), Ys⟩, nk(s))

,

(3.11)

where nk(t) is the number of selections of influencer k up to round t, Xs,j,k is a binary random

variable equal to 1 when j is activated in round s by influencer k, l ∈ {1, 2, . . . , t− 1}, k′ ∈ Il ⊆ K.

We discuss next the external factor estimated through regular linear regression, used to regulate

the proportion of hapaxes in the cascades generated by influencer k.

3.3.2 The External Factor

The external factor, as stated before, is a sub-problem of Problem 3. The remaining potential

of an influencer is modeled by the combination of the external factor and the average count of

hapaxes from the Good-Turing estimator. Under the assumption of a Poisson distribution for

the rewards, and their property of diminishing returns, the external factor can be chosen as an

adaptation of the inverse link function (mean function) for the Poisson distribution:

α(⟨θk, Yt⟩, nk(t)) = ef(nk(t))⟨θk,Yt⟩ (3.12)

The f(nk(t)) function is assumed to be non-increasing, models the influencer’s fatigue, and de-

pends on the influencer’s selections. By combining the two estimators, the predicted values for

this sub-problem are:

r′k(t) =

ln

(
rtnk(t)∑Ak

j=1

∑t−1
s=1

hapaxs,j,k
α(⟨θ̂k(s),Ys⟩,nk(s))

)
f(nk(t))

,where (3.13)

hapaxs,j,k = I{Xs,j,k = 1, {Xs,j,k′ = 0}k′∈Is\k, {Xl,j,k′ = 0}l ̸=s,k′∈Il} (3.14)

The argument of the external factor function is a random variable r′k(t) = ⟨θk, Yt⟩ + ηt. The
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noise ηt is assumed conditionally 1-subgaussian. The regularized least-squares estimator for the

feature vector is:

θ̂k(t) = V −1
k (t)

t−1∑
s=1

Ysr
′

k(s)I{k ∈ Is}, (3.15)

where Vk(t) = γId +
∑t−1

s=1 YsY
T
s I{k ∈ Is}; γ ≥ 0 is the penalty factor that ensures an unique

solution. The design matrix Vk(t) is computed from the contexts of the rounds in which the

corresponding influencer was played, adjusted by its number of selections.

3.3.3 Upper-Confidence Bound

UCB algorithms provide a disciplined balance between the exploitation of the options that are

known as best up to the decision round and the exploration of the ones for which the learning

agent has not acquired enough information yet. The GLM-GT-UCB algorithm follows themain lines

of an UCB-based algorithm, and its flow is presented in Algorithm 2. It starts with an initialization

phase, where each influencer is played once in a random context. The observed rewards are

used to initialize the influencer’s statistics, necessary for further decisions. For the Good-Turing

estimator, we maintain the number of selections nk(t) and the history of the discounted rewards

for computing this estimator, as well as the sample-mean new activations for computing the UCB

index. For the linear regression of the external factor, we maintain a history of the rewards and

the design matrix for each influencer:

Vk(t) = γId +
t−1∑
s=1

YsY
T
s I{k ∈ Is} (3.16)

sk(t) =
t−1∑
s=1

Ysr
′
k(s)I{k ∈ Is}. (3.17)

In each subsequent round, the agent gets the context from the environment. It estimates for each

influencer its feature vector, by the regularized least-square estimator in the stochastic linear

bandit θ̂k(t), which is then used to compute the estimator of the remaining potential. The UCB
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bk(t) is obtained by adding the confidence factor βk(t). The agent plays the influencers with the

highest UCBs, observes and divides the reward equally among them, and updates their statistics.

The UCB index computed on the adapted Good-Turing estimator captures both the confi-

dence in the unmodified Good-Turing estimator and the one in the estimator of the influencer’s

true unknown vector θk:

bk(t) = Gk(t) + βk(t) + λ̂k(t)

(
1− e

−2+Ck(t)

nk(t)
1

nk(t)

t−1∑
s=1

e
−2−Ck(s)

nk(s)

)
, where (3.18)

βk(t) =

√√√√2λ̂k(t)e
3+2Ck(t)

nk(t)
∑t−1

s=1 e
2−2Ck(s)

nk(s)

n2
k(t)

ln
1

δ
+

√√√√ e2/nk(t)λ̂k(t) ln(1/δ)∑t−1
s=1

∑
k′∈Is e

−1/n
k
′ (s)

+
e

1+Ck(t)

nk(t)
∑t−1

s=1 e
1+Ck(s)

nk(s)

3nk(t)
ln

1

δ
,

(3.19)

Ck(t) = γ∥Yt∥V −1
k (t) is the contextual UCB for the external factor and the sample-mean number

of influencer k’s new activations is:

λ̂k(t) =
α(⟨θk(t), Yt⟩nk(t))

nk(t)

t−1∑
s=1

|Ss|I{k ∈ Is}
α(⟨θk(s), Ys⟩nk(s))L

. (3.20)

3.3.4 Theoretical Analysis

The UCB index is chosen as the maximum difference that can occur between the GT estima-

tor and the true remaining potential with some chosen confidence. Theorem 3.3.1 provides the

confidence interval for the estimated remaining potential. Its proof has three steps: the concen-

tration of the true remaining potential, the concentration of the Good-Turing estimator, and the

bias of the estimator.

Theorem 3.3.1. With probability at least 1 − δ, having the expected activations λk =
∑Ak

j=1 pk,j(t),

and βk(t) set as in Equation 3.19 , we have

1r′k(1) =
1

f(1) ln

(
rt∑Ak

j=1

∑t−1
s=1

hapaxs,j,k
α(⟨θ̂k(s),Ys⟩,1)

)
.
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Algorithm 2 GLM-GT-UCB

1: Input: influencers K, rounds budget T, external factor function α, regularization factor γ,
fatigue function f , number of selections L

2: Initialization: play each influencer k ∈ K once in given random contexts Yt, observe the re-
ward rt, t ∈ K, and update the statisticsnk(1) = 1, andVk(1) = γId+YtY

T
t , sk(1) = Ytr

′
k(1)

1 for
the external factor.

3: for t = K + 1, . . . , T do
4: Get the context Yt

5: for k ∈ K do
6: Estimate the unknown vector:

θ̂k(t) = V −1
k (t)sk(t) (3.21)

7: Compute UCB for remaining potential estimator

bk(t) = Gk(t) + βk(t), (3.22)

Gk(t) = α(⟨θ̂k(t), Yt⟩, nk(t))
1

nk(t)

Ak∑
j=1

t−1∑
s=1

hapaxs,j,k
α(⟨θ̂k(s), Ys⟩, nk(s))

(3.23)

and βk(t) is given by the confidence interval, and hapaxs,j,k by Equation 3.14.
8: end for
9: Choose set It of L influencers with largest UCB.
10: Play the chosen influencers, observe spread, divide it equally among influencers, and up-

date their statistics:
11: for k′ ∈ It do
12: Update rk′ (t) by Eq. (3.13).; nk′ (t+1) = nk′ (t)+1;Vk′ (t+1) = Vk′ (t)+YtY

T
t ; sk′ (t+1) =

sk′ (t) + Ytr
′
k′
(t)

13: end for
14: end for

−βk(t) + Ω

(
Tλk(T )

nk(T )
e

Ck(T )

nk(T )

)
≤ Rk(t)−Gk(t) ≤ βk(t) +O

(
T
λk(T )

nk(T )
e

Ck(T )

nk(T )

)
(3.24)

Proof. See the complete proof in Appendix A.

3.4 Log-normal Distribution

We now consider the second alternative, that the underlying distribution is a log-normal one.

A log-normal distribution of rewards is equivalent to a normal distribution of the reward scale.
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Now, the influencemaximization problem can be solved by an adapted LinUCB [Chu et al. (2011)].

LinUCB computes the expected reward of each arm by finding a linear combination of the previ-

ous rewards of the arm. It estimates the unknown parameter θt of the current round as a linear

combination of the previously seen feature vectors and rewards, and it estimates the expected

reward on the current round by linearly combining it with the current feature vector. The adap-

tation of LinUCB to our problem consists in maintaining a design matrix per influencer, which is

updated by the context of the round in which the influencer has been played. This change implies

that a separate parameter is estimated for each influencer, and its linear combination with the

current round’s context will estimate the reward at a logarithmic scale. Note that the linear com-

bination estimates the scale of the reward since we assume that the rewards are log-normally

distributed. The main flow is presented in Algorithm 3. It is similar to the one of LinUCB [Chu

et al. (2011)], in that at each step it chooses the best reward in terms of the linear combination of

the context and the learned profile plus confidence bound. In general linear models – of which

LogNorm-LinUCB is part of – this bound is based on a design matrix Vk and the given context Yt.

3.4.1 Regret analysis

The regret analysis is performed at a logarithmic scale; this restriction stems from having the log-

arithm of the new activations being normally distributed. In Chu et al. (2011), theoretical guar-

antees for LinUCB were challenging, due to the lack of independence of the random variables

for the rounds’ rewards. The solution was to use a supporting algorithm, SupLinUCB, estimating

the unknown parameter only from the feature vectors and rewards from the rounds in which

the agent performs random exploration. Each round is split into levels, and each level maintains

an index set used for learning, comprising the indices of the rounds with independent rewards.

When exploring, the round is added to the index set of the corresponding level.

We designed similarly IM-SupLinUCB and its sub-routine IM-BaseLinUCB, preserving the steps

of SupLinUCB [Chu et al. (2011)] and SupLinRel [Auer (2002)]. Each influencer’s UCB is com-

puted for the scale of the reward – new activations. We skip the analysis of IM-BaseLinUCB and

IM-SupLinUCB’s, as it is similar to Chu et al. (2011); Auer (2002). Regret for stochastic linear bandits
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Algorithm 3 LogNorm-LinUCB
1: Input: influencersK , selections L, γ ∈ R+, d ∈ N
2: Vk(1) = Id, ∀k ∈ K and sk(1) = 0d,∀k ∈ K
3: for t=1,. . . ,T do
4: Get context Yt.
5: for k ∈ K do
6: θ̂k(t) = V −1

k (t)sk(t)

7: bk(t) = ⟨θ̂k(t), Yt⟩+ γ
√
Y T
t V −1

k (t)Yt

8: end for
9: Choose set It of L influencers with largest UCB bk(t).
10: Observe spread, compute reward r by discounting previously activated basic nodes and dividing

by L.
11: for k′ ∈ It do
12: Vk′ (t)(t+ 1) = Vk′ (t)(t) + YtY

T
t

13: sk′ (t)(t+ 1) = sk′ (t)(t) + ln(r)Yt

14: end for
15: end for

is generally defined as:

R̂t =
t∑

s=1

max
k∈[K]

⟨θk, Yt⟩ −
t∑

s=1

rs (3.25)

Rt = E[R̂t] = E

[
t∑

s=1

max
k∈[K]

⟨θk, Yt⟩ −
t∑

s=1

rs

]
(3.26)

We have the following Õ(
√
T ) regret bound for the supporting algorithm on logarithms of

rewards:

Theorem 3.4.1. If IM-SupLinUCB uses parameter γ =
√

1
2
ln(2TK

δ
), with probability 1− δ the regret

of LogNorm-LinUCB at logarithmic scale is

R̂t ≤ 2
√
T + 44K (1 + ln (2TK ln(T )/δ) /2)

3
2

√
Td (3.27)

Proof. Proof similar to that of (Auer, 2002, Theorem 6.).
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Figure 3.1: Synthetic - Cumulative rewards, full plot (left column), plot zoomed to last 100 rounds
(right column).
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54 CHAPTER 3. CONTEXTUAL INFLUENCE MAXIMIZATION WITH PERSISTENCE

3.5 Experiments

We tested GLM-GT-UCB and LogNorm-LinUCB on synthetically generated data, on data we collected

from Twitter, and on a publicly available dataset from Sina Weibo [Zhang et al. (2013)]. All the

results are averaged over 100 runs.

Synthetic data experiments. The synthetic data is generated starting from the premise that each

basic node’s activation probability is known. Therefore, all the edges and nodes are assumed

to be known as well. The synthetic graph is randomly generated following the Barabási-Albert

preferential attachment model [Barabási et al. (2016)]. The model’s parameters are chosen as

follows: 30,000 nodes and, at each step, one new edge to be attached from new nodes to existing

ones. Then, the 10 nodes having the maximum degrees are chosen to be the influencers.

Activation probabilities are computed as a sigmoid function of the inner product of the con-

text, sampled from a normal distribution N (1, 1), and the basic node’s feature vector, sampled

from N (1, 3), plus some random small noise. This is preferable in order to project the results

into probability thresholds, i.e., the value over which the node is considered activated - 0.999 in

our experiments. The inner product captures the linear relationship between context and hid-

den profile. For each node, its feature vector is randomly generated from a normal distribution.

Then, the context of a campaign’s round is generated from another normal distribution. A given

round is chosen to be viral with a 50% probability, i.e., the distribution from which the context is

drawn is chosen such that its inner product with most of the basic user feature vectors results in

higher values for the activation function. For these rounds, only L+ 1 influencers are chosen to

use the viral context. The diffusion model is assumed to be Independent Cascade [Kempe et al.

(2003)], a campaign consisting of 500 rounds, and the results are averaged over 100 runs. γ is

set to
√

1/2 ln (
√

2TK/δ) everywhere, the external factor α is defined in Equation 3.12, and λk is

estimated by the sample-mean defined in Equation 3.20.

Baselines methods. We compare against Random, UCB1 [Auer et al. (2002a)], LinUCB [Chu et al.

(2011)], and FAT-GT-UCB [Lagrée et al. (2018)]. The random policy chooses a random influencer

in each round. UCB1 is a well-known algorithm in the bandit literature, one which does not model
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contexts. The FAT-GT-UCB algorithm models the influencer’s fatigue in a context-free setting.

The results (Fig. 3.1) show that GLM-GT-UCB and LogNorm-LinUCB are both capable of learning the

remaining potential of influencers from their performance in different contexts. Making decisions

based on the available information about the round’s context has a clear added value, compared

to only considering the time-based fatigue of approaches such as FAT-GT-UCB.

Twitter dataset. We extracted from Twitter logs a collection of retweets. These can be viewed

as belonging to basic nodes, representing successful activations of the original tweets from influ-

encers. To test the capability of the algorithms to choose the right influencers for a given context,

we extracted from the tweet the round’s context. As in Shin et al. (2015), a tweet is encoded into

a multi-dimensional vector. The encoding represents the distribution of the tweets’ words over a

predefined number of centroids (24 in our experiments). The centroids are obtained via cluster-

ing (K-means) on the public vocabulary glove-twitter-2002 from theword embedding open-source

library Gensim3. Each word is assigned to its closest centroid, thus obtaining the distribution. The

largest cluster is split into 5 smaller clusters.

In Twitter andWeibo, we improve the learning rate of GLM-GT-UCB by adding 10/L activations

only when learning the external factor via linear regression. The plotted results are with the true

values of activations.

The campaigns are created by randomly choosing the context for each round to be one of the

available centroid distributions in the dataset. We chose the set of influencers to be the userswith

the highest degrees. In each round, each algorithm chooses which influencers it wants to play.

Due to the sparsity in the data, we implemented the bandit to sample with replacement from the

set of all tweets with the round’s context matching their centroid distribution and the algorithm’s

chosen influencer as the original user id. If there is no log for this tuple, we consider that no

basic node has been activated. The reward is computed by discounting previously activated basic

nodes.

The results are in Fig. 3.2, for either the entire campaign of 500 rounds or zoomed on rounds

450 to 500; the shaded areas represent the uncertainty.
2https://nlp.stanford.edu/projects/glove/
3https://github.com/RaRe-Technologies/gensim-data

https://nlp.stanford.edu/projects/glove/
https://github.com/RaRe-Technologies/gensim-data
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Weibo dataset. Using a public dataset from the popular Chinese microblogging platform, we

designed the experiment as in the Twitter scenario. The topic distributions created by Zhang

et al. (2013) are used as contexts. There are 100 topics, and for each post, the distribution of

topics is computed by using Latent Dirichlet Allocation [Heinrich (2005)]. Once again, in Fig. 3.3

we can see that ourmethodsmanage to perform better by using the round’s context information

when selecting influencers. The relative performance can depend on time: GLM-GT-UCB seems

to initially learn faster.

From both experiments on real-world datasets, we can conclude that our approaches – es-

pecially LogNorm-LinUCB – are capable of learning viral cascades in different datasets and cas-

cade settings, which increases their potential in spread maximization (visible in the “steps” of the

plots); this is not the case with other approaches, which seem to work best when the cascades

have fewer outliers in terms of size; hence, they do not learn quickly enough to adapt.

3.6 Conclusion

We presented in this chapter the problem of designing advertising campaigns from the point

of view of contextual influence maximization when the exact diffusion model is not fully ex-

ploitable. By adapting approaches from the contextual bandit literature, we designed algorithms

GLM-GT-UCB and LogNorm-LinUCB, using different assumptions on the underlying distributions of

the number of influenced nodes: Poisson and log-normal respectively. We showed both the-

oretically and experimentally that our approaches have the potential to learn the influencers’

potential, leading to improved IM campaigns compared to other state-of-the-art methods.



Chapter 4

Episodic Contextual Influence

Maximization with Persistence

In this chapter, we extend the CIMP problem to the Episodic Contextual Influence Maximization with

Persistence(ECIMP) problem to also consider the state of the environment whenmaking decisions

and with the benefit of also learning from previous campaigns. As in Chapter 3, we begin by pre-

senting the state of the art related to our problem in Section 4.1, which is then formally defined

in Section 4.2. After extending the CIMP problem to the multi-campaign scenario from ECIMP,

we formalize the latter in terms of MDPs for episodic RL. For this problem, we propose in Section

4.3 LSVI-GT-UCB which learns from previous campaigns and for the context of the round with a

Least-Squares Value Iteration estimator, which we modify with the Good-Turing estimator with

fatigue for a more efficient representation of the diminishing returns property of the reward. In

Section 4.4 we compare the performance of LSVI-GT-UCB with the two algorithms it is based

on, LSVI-UCB and Fat-GT-UCB , on synthetic and real datasets, and demonstrate that the sum of

cumulative rewards over all campaigns is significantly improved by the optimistic combination of

the two estimators. Finally, in Section 4.5 we propose a research direction for solving ECIMP with

deep RL. We detail the adaptation of an existing framework for learning combinatorial optimiza-

tion algorithms over graphs [Khalil et al. (2017)] to our problem.

57
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4.1 Main Related Work

Li et al. (2020) study the OIM problem in social networks under the assumptions of the LT model

and node-level feedback. The proposed algorithmic solution is called LT-LinUCB. It exploits the

linearity of node activations in the LT model, obtaining an O(poly(m)
√
T log T ) regret, where

m is the number of edges and T is the number of rounds. They propose also the model-free

OIM-ETC algorithm, with an O(poly(m)T
2
3 ) regret bound. Zhang et al. (2022) propose an Õ(

√
T )

algorithm, called IC-UCB, for the OIM problem, assuming the IC model and node-level feedback.

IC-UCB uses a standard offline IM oracle to find the best seed set, and estimates the IC model’s

edge parameters p by transforming them into another parameter; this leads to an instance of

the generalized linear model problem [Filippi et al. (2010b)], which is solved with MLE.

Khalil et al. (2017) designed a generic framework for learning graph heuristics and finding

approximate solutions for various NP-hard combinatorial optimization problems. The frame-

work is a greedy meta-algorithm, Q-learning for the Greedy Algorithm, learned over multi-

ple episodes of RL over different problem instances sampled from a given graph distribution.

For each problem type, one must provide specific helper and cost functions, as well as the termi-

nation criteria which enable the meta-learning algorithm to solve the problem. E.g., for the Set-

Cover problem, the helper function would be the identity one, as there is no need for a combina-

torial structure on the partial solution, the cost function would be the size of the partial solution,

and the termination criteria would be either when all nodes are covered or the budget is spent. At

each step within the episode’s horizon, Q-learning for the Greedy Algorithm chooses a seed

node either randomly with probability ϵ, or the one which maximizes the estimated Q-function

Q̂(h(St), v; Θ),∀v ∈ V,G = (V,E). For each node v ∈ V in the graph, the algorithm uses struc-

ture2vec (S2V) [Dai et al. (2016)] to encode its neighborhood, given the current partial solution St.

This framework is quite versatile and applicable to a wide range of combinatorial optimization

problems on graphs. However, it requires knowledge about the graph’s topology, as the em-

bedding of the potential new seed node and the pooled embedding over the entire graph are

combined to provide the estimated Q-function. The approximator’s parameters are updated in
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batches, which allows delayed rewards. The algorithm is experimentally proven to be successful

for various types of NP-hard problems, graph types, and graph sizes. Li et al. (2019) have later

adapted this approach, in the DISCO framework for influence maximization.

Jin et al. (2020) address the challenge of RL with a very large number of states, by incorpo-

rating function approximation in the learning process. The proposed algorithm, called LSVI-UCB,

models the problem as an episodic Markov Decision Process (MDP), with the assumption that the

transition dynamics and the reward function are linear. It is proven that the action-value function

is consequently linear as well, and the algorithm is designed to approximate well this quantity.

Inspired by the linear bandits literature, the algorithm implements the "optimism in the face of un-

certainty" principle – it encourages exploration by adding aUCB bonus. It achieves Õ(
√
d3H3T ) re-

gret, where d is the ambient dimension of the feature space,H denotes the horizon (i.e., length of

each episode), and T is the total number of steps. LSVI-UCB runs in polynomial time (O(d2AKT )),

where A is the size of the action space and K is the number of episodes. The algorithm bene-

fits from the sample complexity guarantees, in the sense that with a constant probability, it can

learn an ϵ−optimal policy π which satisfies V ∗(x1)−V π(x1) ≤ ϵ, using Õ(d3H4/ϵ2) samples, when

the initial state x1 is fixed for all episodes. The algorithm is shown to be robust to small model

variations, under the condition of using a different hyper-parameter β from the UCB in different

episodes. The main drawback of Jin et al. (2020) is that their solution remains limited to “almost”

linear MDPs.

Under weaker assumptions than Jin et al. (2020), the work of Wang et al. (2019) proposes

an efficient least-squares dynamic programming algorithm for episodic RL, also called LSVI-UCB,

which approximates the Q-function with a Generalized LinearModel. The approximator overesti-

mates the optimal Q-function, implementing the “optimism in face of uncertainty” principle. The

statistical efficiency is theoretically provenwith a regret bound of Õ(
√
d3T ), where d is the feature

dimension, and T is the number of episodes. For these results, an optimistic closure concerning

the Bellman operator assumption is made. The assumption is proven to be strictly weaker than

the one of linearity, by providing an MDP which meets the former but not the latter. Optimistic

closure also implies realizability, which is typical for the contextual multi-armed bandits setting,
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where the horizon is H = 1.

4.2 Problem Formulation

The IM problem addressed in this Ph.D. work is aimed at information diffusion scenarios – e.g.,

in a social network, but generally in any medium that may exhibit stochastic / epidemic diffusion

– wheremultiple attempts of spreading the information are made, and the new activations make

up the reward. The diffusion network can be naturally represented as a graph G = (V,E) where

V are the nodes (users, profiles) and E are the edges (relationships). In our setting, this topology

is assumed to be unknown.

Instead, a set ofK potential influencers (among the nodes in V ) is assumed to be known, and

the influence process can only start from them, with the effect of activating certain nodes among

those from an unknown overall set of basic (influenced) nodes. While we make no assumptions

on the diffusionmodel that leads to activations, we assume to get semi-bandit feedback after each

round that spreads a given “message”, as the set influenced nodes (a set of node Ids).

Over a campaign, consisting of a number of H rounds, the reward is defined as the number

of new activations.

The message that is to be spread at each round h ∈ [H] is encoded as a vector Yh ∈ Rd and

the probability that each target (or basic) node j adopts it – or gets influenced/activated by it –

depends linearly on j ’s hidden profile relative to the influencer k seeded at that round, denoted

θk,j , and themessage (plus some noise). So the response of a target node j is given by ⟨θk,j, Yh⟩+ϵ.

This response of node j, along with the number of times the influencer k was seeded to send

a message in the campaign, denoted nk, are used in a generalized linear function α, called the

external factor. The role of the external factor α is to modulate the default (inherent) propensity

of node j to activations, denoted as p(j).

The single-campaign problem, CIMP, formulated in Chapter 3, can be used as an intermedi-

ary step to introduce the more general ECIMP setting we study in this chapter. The solution to

CIMP, Problem 3, relies on upper-confidence bound approaches (UCB), which need to estimate
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at each step the remaining potential of influencers. Applying the Good-Turing estimator, where

the remaining potential can be estimated via the hapaxes, coupled with a theoretically derived

upper-confidence bound, has been shown to work well in practice when the distribution on the

number of newly activated nodes follows a Poisson distribution (Algorithm GLM-GT-UCB).

We describe next how the Problem 3 can be extended to the episodic case of multiple cam-

paigns, each having multiple rounds, to learn between campaigns.

4.2.1 Reinforcement Learning Setting

In the episodic, i.e., multi-campaign setting, the problem becomes:

Problem 4 (Episodic Contextual Influence Maximization with Persistence (ECIMP)). Given a set of

influencersK = {1, . . . , K}, a budget of T campaigns, each consisting ofH rounds, and a number 1 ≤

L ≤ K of influencers to be activated at each round, the objective is to solve the following optimization

problem:

argmax
Ih,t⊆K,|Ih,t|=L,∀1≤h≤H,∀1≤t≤T

E|
⋃

1≤h≤H,1≤t≤T

S(Ih,t, Yh,t)|, (4.1)

where S(Ih,t, Yh,t) is the spread of the chosen set of influencers for round h in campaign t, and the

probability that an influencer k activates some basic node j depends on the round’s context Yh,t and

the number of k’s selections nk(h, t) in campaign t:

pk,j(h, t) = α(⟨θk,j, Yh,t⟩, nk(h, t))p(j). (4.2)

(In what follows, we will use the terms campaign and episode interchangeably. The former is

closer to the terminology of the application scenario, the latter is common from episodic RL.)

The problem can be naturallymodeled asK episodicMarkov decision processes, one for each

influencer k ∈ K, namely MDP(Sk,Ak, Hk,Pk, rk), where Sk is the state space, Ak is the set of

possible actions,Hk is the horizon within each episode, Pk = {PH
k,h=1} is the set of state transition

probability measures, and rk = {rHk,h=1} is the set of reward functions. The state space of such an

MDP can be very large, possibly infinite. The action spaces, given that an MDP is maintained for
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each influencer, is the binary set for each influencer being selected or not, i.e., Ak = {0, 1} and

A = {0, 1}K . The reward is assumed to be uniquely defined by rk,h(sk, ak, s
′

k),∀sk, s
′

k ∈ Sk, ak ∈

Ak, which can further be bounded and simplified to rk,h(sk, ak). Recall the reward is the count of

new activations, which is naturally bounded by the total number of users.

As in the RL literature in general, at the beginning of each episode, the initial states sk,1,∀k ∈ K

are given and thereon the learning agent interacts with the episodic MDPs. It observes the states

sk,h ∈ Sk at each step h ∈ [H] and proceeds to take an overall action ah ∈ A. The MDPs of

the selected influencers are transitioning according to their transition dynamics Pk to the new

states sk,h+1. When an influencer is not selected, i.e., ak,h = 0, the state remains the same,

Pk,h(s|s, 0) = 1. The state transition dynamics are stochastic and unknown upon selecting an

influencer. The final state of each MDP is sk,H+1, where no action can be taken anymore and the

reward is consequently zero. Obviously, in this setup, the MDPs may not reach their final state

before the total campaign budget H is spent.

The goal is to maximize the number of distinct activations at the end of a campaign, as de-

fined in Problem 4, leveraging information from previous rounds and previous campaigns. This

optimization problem expressed in terms of episodic MDPs has as the solution the optimal policy

π∗ ∈ argmaxπ∈Π V π(s), ∀s ∈ S , where Π is the policy set, and S =
⋃

k∈K Sk. The agent aims to

learn the optimal policy π∗ : S × [H] → A.

The policies are evaluated by their corresponding value functions or their action-value func-

tions. The Bellman equations for these values are the following :

V π
k (h, sk) = E

[
H−1∑
τ=h

rk,τ (sk,τ , π(sk,τ , τ))|sk,h = sk

]
,

∀sk ∈ Sk,∀h ∈ [H].

Qπ
k(h, sk, ak) = rk,h(sk, ak)+

E

[
H−1∑
τ=h

rk,τ (sk,τ , π(sk,τ , τ))|sk,h = sk, ak,h = ak

]
,

∀(sk, ak) ∈ Sk ×Ak,∀h ∈ [H].
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The optimal value function is

V ∗(h, s) = max
ak∈Ak,k∈K

Q∗
k(h, s, ak), ∀s ∈ S.

So the learning agent chooses its actions according to the greedy policy with respect to the

estimated action-value functions:

π(h, s) = argmax
ak∈Ak,k∈K

Qπ
k(h, s, ak).

The flow of this learning process hence depends on how the Q function is estimated, as de-

tailed next.

4.3 RLwith average GT estimators and LSVI learnedmodifiers

TheMulti-Armed Bandit problem, andmany of its well-known variants such as stochastic bandits,

contextual bandits [Lattimore and Szepesvári (2020)], contextual banditswith linear rewards [Chu

et al. (2011)], with generalized linear rewards [Filippi et al. (2010a)], or with Good-Turing reward

estimators [Lagrée et al. (2018)], restrict the reward random variables to be independent and

identically distributed, i.e. independent of the previous action choices and rewards. However,

the choice of actions may alter the state of the environment. In more general Reinforcement

Learning problems, theoretical guarantees for the estimators can be obtained without ignoring

the state of the environment.

4.3.1 The Good-Turing estimator

[Lagrée et al. (2018)] have used the GT estimator for the potential new activations to be seen

in online influence maximization campaigns. In this work, the influencer’s diminishing reward is

modelled as a function of the number of selections γ(nk,t), and applied it as a modifier to the GT
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estimator (denoted Fat-GT, for Fatigue-aware Transformation of the Good-Turing estimator):

R̂k,h =
1

nk,h

∑
j∈Ak

Uγ
nk,h

(j) (4.3)

where

Uγ
nk,h

(j) =
∑

1≤s≤nk,h

I{Xk,1(j) = · · · = Xk,s−1(j) = Xk,s+1(j) =

· · · = Xk,nk,h
(j) = 0, Xk,s(j) = 1} × γ(nk,h + 1)

γ(s)
,

while nk,h is the number of selections of influencer k at round h, Ak is the set of basic nodes

reachable by influencer k, γ(nk,h) is the fatigue function (e.g., 1
nk,h

), Xk,s(j) is the i.i.d. random

variable equal to 1 if influencer k activates basic node j at round s.

In short, the influencer k’s estimated remaining potential R̂k,h at round h is the average num-

ber of discounted hapaxes.

In Chapter 3, we adapted the Good-Turing estimator to the new activations in the scenario

where context information would be available at the beginning of each round in the campaign.

To this end, the modifier to the GT estimator is replaced by a function of both the influencer’s

number of selections and the round’s context: γ(⟨θ̂k,t, Yt⟩, nk,t). The influencer’s potential within

a given context is assumed to be well-represented by the scalar product of the round’s context

Yt and an estimated unknown quantity θ̂k,t for that influencer.

4.3.2 LSVI-GT-UCB

Motivated by the potential gain from using available historical information when choosing ac-

tions, we propose the novel algorithm LSVI-GT-UCB.

The state of each influencer’s MDP is composed by concatenating the context given by the

environment at the beginning of each step in the horizon Yt,h ∈ Rd, and the reward received by

the respective influencer upon its previous selection within the current episode rk,t,nk,t,h
.

At a high level, LSVI-GT-UCB combines the LSVI algorithm of [Jin et al. (2020)], based on linear
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regression estimation, to which we add the Good-Turing estimator approach. For each influencer

we have an MDP (Sk,Ak, H,Pk, rk), assumed to be linear via a feature map ϕk : Sk × Ak → Rd

[Bradtke and Barto (1996); Melo and Ribeiro (2007); Jin et al. (2020)]. Since each influencer has

their own MDP, their action set is binary, i.e. Ak = {0, 1}.

The linear regression data is created for each influencer, based on its historical selections and

rewards:

yk,τ,h = rk,τ,nk,τ,h
+ V̂ LSV I

k,t,h+1(sk,τ,h+1), τ ∈ [1, t], (4.4)

where V̂ LSV I
k,t,h+1(·) = maxa∈Ak

Q̂LSV I
k,t,h+1(·, a). The data is used in the linear regression estimator to

which an UCB bound is added:

Q̂LSV I
k,t,h (·, ·) = ⟨ϕk(·, ·), θ̂k,t,h⟩+ ζ

√
ϕk(·, ·)TΣ−1

k,t,hϕk(·, ·),where

θ̂k,t,h = Σ−1
k,t,h

t−1∑
τ=1

ϕk(sk,τ,h, ak,τ,h)yk,τ,h,

Σk,t,h = η · Id +
t−1∑
τ=1

ϕk(sk,τ,h, ak,τ,h)ϕk(sk,τ,h, ak,τ,h)
T ,

(4.5)

where ζ = cdH
√
log(2dTH

δ
) as in [Jin et al. (2020)][Theorem 3.1], with an absolute constant c > 0,

ensures with probability 1− δ a total regret of O
(√

d3H4T log2(2dTH
δ

)
)
, and the penalty factor η

ensures a unique minimizer for the regularized least-squares estimator.

In parallel, the Good-Turing estimator for the remaining potential is computed for each step

in each influencer’s MDP as well. The Fat-GT estimator for the remaining potential, previously

introduced in Equation (4.3), is adapted to Problem ?? by maintaining an independent estimator

for each episode, as follows:

R̂k,t,h =
1

nk,t,h

∑
j∈Ak

Uγ
nk,t,h

(j), where

Uγ
nk,t,h

(j) =
∑

1≤i≤nk,t,h

I{Xk,t,1(j) = . . .

· · · = Xk,t,h(j) = 0, Xk,t,i(j) = 1}γ(nk,t,h + 1)

γ(i)
,

(4.6)
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with its respective confidence bound index provided by [Lagrée et al. (2018)][Theorem C.2]:

βk,t,h = (1 +
√
2)

√
λ̂k,t,h log 4h

nk,t,h

+
log 4h

3nk,t,h

, where

λ̂k,t,h =
γ(nk,t,h + 1)

nk,t,h

nk,t,h∑
s=1

rk,t,s
γ(s)

.

(4.7)

Furthermore, in order to learn from historical data, an average of the Fat-GT estimators for the

given step over the previous and current episodes is computed, as follows:

Q̂GT
k,t,h =

1

t

t∑
τ=1

R̂k,τ,h, (4.8)

implementing our interpretation that the state-action value function (Q-function) in an MDP is

the influencer’s remaining potential:

QGT
k,t,h = Rk,t,h

=
∑
j∈Ak

I

{
j /∈

h⋃
i=1

S(It,i, Yt,i)

}
γ(nk,t,h + 1)pk,j(t, h).

(4.9)

We derive the optimism bonus for the Q-function estimator in the following theorem:

Theorem 4.3.1. With probability at least 1 − δ, for λk,t,h = γ(nk,t,h)
∑

j∈Ak
p(j) and βk,t,h = (1 +

√
2)
√

λk,t,h+1 log 4/δ

nk,t,h
+ 1

3nk,t,h
log 4

δ
, the following holds:

−1

t

t∑
τ=1

(
βk,τ,h +

(nk,τ,h + 1)λk,τ,h

nk,τ,h

)
≤ QGT

k,t,h − Q̂GT
k,t,h

≤ λk,t,h +
1

t

t∑
τ=1

βk,τ,h.

Proof. Estimating the Q-function with the averaged Fat-GT estimators as in Equation (4.8), the

estimator’s confidence interval is:

QGT
k,t,h − Q̂GT

k,t,h = Rk,t,h −
1

t

t∑
τ=1

R̂k,τ,h.
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We know from [Lagrée et al. (2018)][Theorem C.2 ] that:

−βk,τ,h −
λk,τ,h

nk,τ,h

≤ Rk,τ,h − R̂k,τ,h ≤ βk,τ,h, ∀τ ∈ [1, t].

Aggregating the confidence bounds from all episodes, we obtain:

−1

t

t∑
τ=1

(
βk,τ,h +

λk,τ,h

nk,τ,h

)
≤ 1

t

t∑
τ=1

(
Rk,τ,h − R̂k,τ,h

)
≤ 1

t

t∑
τ=1

βk,τ,h

⇔ −1

t

t∑
τ=1

(
βk,τ,h +

λk,τ,h

nk,τ,h

)
+Rk,t,h −

1

t

t∑
τ=1

Rk,τ,h

≤ Rk,t,h −
1

t

t∑
τ=1

R̂k,τ,h ≤ Rk,t,h −
1

t

t∑
τ=1

Rk,τ,h +
1

t

t∑
τ=1

βk,τ,h.

Having the remaining potential of influencer k at round h of episode t defined as in Equation

(4.9), we can obtain that:

0 ≤ Rk,t,h ≤ λk,t,h

⇔ −1

t

t∑
τ=1

λk,τ,h ≤ Rk,t,h −
1

t

t∑
τ=1

Rk,τ,h ≤ λk,t,h.

Therefore,
−1

t

t∑
τ=1

(
βk,τ,h +

(nk,τ,h + 1)λk,τ,h

nk,τ,h

)
≤ QGT

k,t,h − Q̂GT
k,t,h

≤ λk,t,h +
1

t

t∑
τ=1

βk,τ,h.

which concludes our proof.

TheQ-function is finally estimated by optimistically choosing from the linear regression-based

Q estimator and the GT estimators for each potential influencer:

Q̂k,t,h(·, ·) = max

{
Q̂LSV I

k,t,h (·, ·), Q̂GT
k,t,h + λk,t,h +

1

t

t∑
τ=1

βk,τ,h

}
. (4.10)

The L influencers having the highest value of Q̂k,t,h(·, ·) are then chosen. This process is outlined
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in Algorithm 4, whose flow is briefly described next.

We assume that the environment provides a context at the beginning of each step, and each

MDP’s state is computed by concatenating (i) the influencer’s number of selections, and (ii) the

reward resulting from playing that influencer at its last selection. LSVI-GT-UCB starts the first

episodeby playing each influencer once in order to gather initial information. Then, for the follow-

ing steps, it proceeds by computing for each influencer k the two Q-function estimators: Q̂LSV I
k,t,h

and Q̂GT
k,t,h. The former is computed using regularized least squares, as in [Jin et al. (2020)]. The

latter is computed with the formula from Equation (4.8), with its optimism bonus given by Theo-

rem 4.3.1. Finally, the learning agent chooses to play theL influencers with the highest estimated

Q-functions, observes the reward, and updates the statistics.

By this flow, LSVI-GT-UCB learns in parallel the linear and the GT estimators from feedback

collected by either of them, and chooses its action with optimism not only from the estimator’s

UCB, but also from the highest estimated remaining potential with either method.

4.4 Experiments

The algorithm LSVI-GT-UCB is tested on three datasets: one with synthetically generated data,

and two based on real-world data. Its performance is compared to LSVI-UCB [Jin et al. (2020)],

and Fat-GT-UCB [Lagrée et al. (2018)]. LSVI-UCB is originally designed to use upper confidence

bounds for linear function approximation MDPs, and can be adapted to Problem 4 by equat-

ing an episode with a campaign. Fat-GT-UCB, on the othe hand, is run independently between

episodes. As a comparison metric, we use the total sum of cumulative rewards over all cam-

paigns. In addition to these two state-of-the-art solutions, we can also design two other base-

lines: RL-Fat-GT-UCB is created by adapting Fat-GT-UCB to learn from the previous episodes

by averaging the GT estimators over the episode, for each step in the horizon; and LSVI-UCB -

separate thetas is created by adapting LSVI-UCB to learn an estimator per influencer. This

modification enables the combination of the estimator of the Q-function with the GT estimator
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Algorithm 4 LSVI-GT-UCB
1: Input: Number of influencers L per round, penalty factor η, the ambient dimension d of the feature

space, feature maps ϕk.
2: Initialize Q̂k,1,h(sk,t,h, ak,t,h) = 0, ∀(sk,t,h, ak,t,h) ∈ Sk ×Ak.
3: for episodes t = 1, . . . , T do
4: if first episode t = 1 then
5: for step k = 1, . . . ,K do
6: Receive the arbitrary context Yt,h,and create the state
7: sk,t,h = [Yt,h|0|0].
8: Play influencer k.
9: Observe rewards rt,h, and next state sk,t,h+1.
10: Update nk,t,h = 1,Σk,t,h = η · Id + ϕk(sk,t,h, 1)ϕk(sk,t,h, 1)

T .
11: end for
12: else
13: for step h = H, . . . , 1 (or untilK , for the first episode) do
14: Receive the arbitrary context Yt,h.
15: for influencer k = 1, . . . ,K do
16: Create the state sk,t,h = [Yt,h|nk,t,h|rk,t,nk,t,h

], and set
17: θ̂k,t,H+1 = 0,
18: Q̂LSV I

k,t,H+1(sk,t,h, ak,t,h) = ⟨ϕk(sk,t,h, ak,t,h), θ̂k,t,H+1⟩ = 0.
19: Compute the linear regression data yk,τ,h, ∀τ ∈ [1, t]
20: (as in Equation (4.4)).
21: Calculate the regularized least-squares estimator (as in Equation (4.5)).
22: end for
23: end for
24: for step h = 1, . . . ,H do
25: for influencer k = 1, . . . ,K do
26: Compute Fat-GT estimator Q̂GT

k,t,h as in Equation (4.8).
27: Compute the influencer k’s Q-function estimator
28: (as in Equation (4.10)).
29: end for
30: Play action at,h made of the L influencers with the highest
31: estimated Q-functions Q̂k,t,h.
32: Update nk,t,h = nk,t,h−1 + 1,∀at,h[k] = 1.
33: Observe reward rt,h, and next states sk,t,h+1.
34: end for
35: end if
36: end for
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in order to estimate an influencer’s remaining potential.

4.4.1 Real-world Datasets

Experiments are run on two real-world datasets, Sina Weibo [Zhang et al. (2013)] and Twitter

(Section 3.5). The dataset statistics are presented in Table A.2.

The Sina Weibo dataset containts a log of posts (equivalent to tweets) with each posts’s text

being encoded as a distribution over 100 topics computed using Latent Dirichlet Allocation. The

dataset contains the topic distribution for each post, the reposting logs containing the list of

unique users which had reposted the post, and information about the original author. We pro-

cessed and merged this information in order to obtain in the end a file containing the original

post, its author/the influencer’s ID, the set of basic user IDs which reposted that message, and

the topic distribution for the message. The set of influencers is found by taking the ones having

the highest number of reposts, and all the tweets of the other influencers are filtered out. During

the experiments, random contexts, i.e. topic distributions, are chosen for each round from all

the available contexts in the dataset. At the beginning of each round the context is provided by

the environment, an algorithm chooses the influencer(s), and a post for the pair (influencer ID,

context) is sampled from the log. The new activations are given by discounting the previously seen

basic user IDs from the sampled post’s set of user IDs.

The Twitter dataset is created from a crawled dataset from Twitter with tweets from August

2012. We have extracted, using K-means, 24 centroids from the glove-twitter-2001 vocabulary,

and each tweet’s text was processed by encoding each word and replacing it with its nearest

centroid. The original tweet text is then replaced by a distribution over 24 centroids. Each tweet

contains a set of node IDs representing the users which retweeted it. The set of influencers, as

in the case of Sina Weibo, are chosen as the ones containing the highest number of retweeting

users. The experimental simulation process is the same as the one described for Sina Weibo.

1https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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4.4.2 Synthetic Data

We also generated a synthetic dataset in the following way. First, a graph is generated using the

Albert-Barabàsi model [Barabási et al. (2016)] for 30,000 nodes, each influecer is chosen using

their degree, i.e., the K highest degrees in the graph. Then, the activation probability of each

node attached to these influencers is computed using a sigmoid function of the scalar product of

the randomly generated context and a randomly chosen feature vector, specific to the node. are

chosen with MaxDegree, each nodes activation probability is computed with a sigmoid function

of the scalar product of the round’s randomly generated context and the node’s randomly chosen

feature vector. For each dimension, the feature vectors are sampled from a normal distribution

N (1, 3), and the contexts are sampled from another normal distribution N (1, 0.1). The variance

in the distribution of user profiles is greater than that in the distribution of contexts to mark the

greater difference that can appear between users compared to differences between messages

from a campaign. The diffusion model is assumed to be the Independent Cascade [Kempe et al.

(2003)].

4.4.3 Results

The results of the experiments are averaged over 50 runs, and the algorithms are run for 50

episodes each with a horizon of 30 rounds, i.e. 1500 rounds in the end. For all the LSVI based

algorithms the exploration factor is β = c · dH
√

log(2dT
p
), where c > 0 is an absolute constant,

T = 50 is the number of episodes, H = 30 is the number of steps, d is the dimension of the

feature space. For Sina Weibo and the synthetic dataset, an absolute constant c = 1 performs

well. However, for the Twitter dataset we had to choose a much smaller absolute constant, c =

0.0005, to have an exploration factor suitable for the scale of the reward. The dimension of the

feature space d depends on the how the state is constructed for each algorithm. This follows the

theoretical results of Theorem 3.1 in Jin et al. (2020), with probability set as 1− p = 0.99.

The results of SinaWeibo – Figure 4.1 – show that, in termsof cumulative reward, LSVI-GT-UCB out-

performs the other methods for L = 2 and L = 5 especially. For L = 1 it is competitive with
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Figure 4.1: SinaWeibo - Cumulative rewards, full plot (left column), plot zoomed to last 100 rounds
(right column).
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RL-Fat-GT-UCB, but it exhibits much lower variance in the rewards, making it a more reasonable

choice in practice.

On the other hand , in the Twitter dataset – Figure 4.2 –, our algorithm clearly outperforms

other algorithms for L = 1. For L = 2 and L = 5 it seems that the results of several algorithms

– including ours – are essentially identical, with low variance. This may indicate that the dataset

characteristics lead to a saturation of the rewards when more influencers are chosen. The algo-

rithms Fat-GT-UCB and RL-Fat-GT-UCB perform similarly.

On the synthetic dataset – Figure 4.3 –, we see results similar to the ones on the Twitter

dataset. Our algorithm outperforms the other algorithms for L = 1, and L = 2. For L = 5

the LSVI-based algorithm with an estimator for each influencer is stronger than the Good-Turing

based estimator. We witness again a saturation of the rewards when more influencers are cho-

sen, which explains the periodical flattening in the graphs of the reward functions. The large final

cumulative rewards are possible due to the reset of counting the new activations at the start of

each episode.

4.5 Deep Reinforcement Learning for ECIMP

In this section, we present a third direction of research for solving the (Episodic) Contextual In-

fluence Maximization with Persistence problem. This work is inspired by the solution provided by

Khalil et al. (2017); Li et al. (2019). Li et al. (2019) later adapted it tomaximize influence, proposing

the DISCO framework (albeit with rather incomplete and unclear presentation and evaluation).

4.5.1 Generic framework

Khalil et al. (2017) designed a framework for learning approximate solutions to various NP-hard

combinatorial optimization problems. The framework is an ϵ-greedymeta-algorithm, Q-learning

for the Greedy Algorithm, which estimates aQ-function by learning a predefined set of param-

eters Θ from different instances of the same problem, i.e. one of the NP-hard problems.

Once the problem to solve is chosen, the algorithm is run for T episodes eachwith the horizon
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Figure 4.2: Twitter - Cumulative rewards, full plot (left column), plot zoomed to last 100 rounds
(right column).
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Figure 4.3: Synthetic - Cumulative rewards, full plot (left column), plot zoomed to last 100 rounds
(right column).
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H . At the beginning of each episode, a graphG(V,E) is sampled from a graph distributionD, the

learning agent makes decisions and learns from its experience until the horizon or termination

criteria is met. At each step h within the episode’s horizon H , and the learning agent chooses

a seed node kh either randomly with probability ϵ, or the one which maximizes the estimated

Q-function:

vh =

 random node v ∈ S̄h w.p. ϵ,

argmaxk∈S̄h
Q̂(ι(Sh), v; Θ) otherwise,

(4.11)

where Sh is the partial solution at step h and S̄h = V \Sh is its complement. The function ι(S) is a

helper function needed only for some NP-hard problems when a combinatorial structure of the

partial solution is required, e.g. the insertion operation for the Traveling Salesman Problem. The

Q-function estimator is a function of the parameters Θ = (θ1, . . . , θ7) to be learned. It estimates

the value of selecting the seed node v for state ι(Sh) as follows:

Q̂(ι(Sh), v; Θ) = ⟨θ5, relu([θ6
∑
u∈V

µ(H)
u , θ7µ

(H)
v ])⟩, (4.12)

where θ5 ∈ R2d, θ6, θ7 ∈ Rd×d, andµ(H)
v ,∀v ∈ V is node v’s embedding at stepH , d is the dimension

of the feature space of nodes, xv = 1 if v ∈ S is a binary variable indicating whether v is already

in the partial solution or not, and relu(x) = max(0, x). The node embeddings are updated at each

step according to the structure2vec graph embedding model [Dai et al. (2016)]:

µh+1
v = relu(θ1xv + θ2

∑
u∈N (v)

µ(t)
u + θ3

∑
u∈N (v)

relu(θ4w(v, u))), (4.13)

θ1 ∈ Rd, θ2, θ3 ∈ Rd×d, θ4 ∈ Rd are the model used by this These embeddings are updated in

each step and capture each node’s properties in the context of its graph neighborhood. The

parameters Θ are updated either at each step or periodically, based o a batch sampled from

history, with stochastic gradient decent over:

(y − Q̂(ι(S), vh; Θ))2,
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where y = r(Sh, vh) + maxv′ Q̂(ι(Sh+1, v
′; Θ).

The reward function r(S, v) = c(ι(S ∪{v}), G)− c(ι(S), G) is defined as the change in the cost

function. The choice of the cost function, in turn, depends on the problem being solved. De-

pending on the problem, there may also be a termination criterion, e.g. for TSP the tour/solution

includes all nodes.

4.5.2 Contribution

The ECIMP problem can be reduced to the Set Covering Problem (SCP), and the RL components

are defined as in Table 4.1.

Problem Set Covering Problem (SCP) ECIMP
State subset of nodes selected so

far
list of influencers selected so
far

Action add node to subset (re)add node to list
Helper function none none
Reward -1 new activations
Termination all nodes in G have been cov-

ered
budget of T ×H rounds

Table 4.1: Definition of RL components.

ECIMP assumes that a context Yh ∈ Rd is provided by the environment at each step. We

incorporate this side-information in the Equation 4.13 as follows:

µh+1
v = relu(Yh + θ1xv + θ2

∑
u∈N (v)

µ(t)
u + θ3

∑
u∈N (v)

relu(θ4w(v, u))), (4.14)

Yh, θ1 ∈ Rd, θ2, θ3 ∈ Rd×d, θ4 ∈ Rd. One of the limitations we face is that structure2vec requires

the topology of the graph, whereas we assume that we do not have such information. One way

to overcome this obstacle is to construct an initial bipartite graph, if logs are available, or to start

from scratch and, in either case, update the graph structure from feedback. We retain the as-

sumption for ECIMP that a set of seed nodes, i.e. potential influencers, is available. Considering

this assumption and this graphic structure, node embeddings for influencers can still be calcu-

lated with Equation 4.14, but the formula is different for basic user embeddings, being reduced
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to a single weighted binary decision variable µ
(h+1)
u = relu(Yh + θ1xu),∀u ∈ V \ K. In this case, it

indicates whether the basic user is enabled, compared to its meaning in the work of Khalil et al.

(2017) where it indicates whether the node has been selected by the greedy policy. In this design,

information is quite limited. To overcome this issue, we construct a synthetic neighborhood for

basic nodes by adding a new edge between all nodes that share an influencer, e.g. Figures 4.4.

This allows Equation 4.14 to be used for basic nodes as well.

i1

i2

i3

b1

b2

b3

b4

b5

Figure 4.4: Bipartite graph extension for structure2vec.

We adapt Q-learning for the Greedy Algorithm from Khalil et al. (2017) to maximize influ-

ence by building our solution for ECIMP for a model framework that closely resembles the one of

DISCO. Unlike the SCP problem, ECIMP allows the re-selection of the same influencer in multiple

rounds. Thus the learning agent makes the decision according to the following:

vh =

 random node v ∈ S̄h w.p. ϵ,

argmaxk∈K Q̂(Sh, v; Θ) otherwise,
(4.15)

We implemented the Algorithm 5 and performed initial experiments on the Twitter dataset.

We separated the Twitter logs into two sets, one to create a bipartite graph as in Fig. 4.4, and

the other to extract the side information for the diffusion campaigns. The campaigns are divided

into 1000 initial ones for training the parameters, and the next 1000 ones for evaluating the so-

lution. From the initial results, presented in Figure 4.5, it does not seem that the average reward
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Algorithm 5 Deep RL for ECIMP
1: Input: Batch of training network, a positive numberH , experience replay memoryMwith capacityN .
2: Output: parameters Θ = {θ1, . . . , α7}
3: for episodes t = 1, . . . , T do
4: Given a network G (which includes the potential influencers) and set seed set S = ∅;
5: for step h = 1, . . . ,H do
6: Get the context Yh.
7: Compute with Equation 4.14 the embedding for each node v ∈ V ;
8: Calculate with Equation 4.12 the Q value of each potential influencer K;
9: Choose with Equation 4.15 the influencer to play;
10: Add kh to S. Update S, S̄;
11: if h ≥ δ then
12: Add tuple ⟨Sh, kh,

∑h+δ
h Rh, Sh+δ⟩ toM ;

13: Sample random batch from B ∼ M ;
14: Update Θ by SGD with B;
15: end if
16: end for
17: end for

Figure 4.5: Average cumulative new activations.

improves from one campaign to another. This may be due to the small size of the created graph,

from which the algorithm samples an even smaller graph, which can quickly lead to reward sat-

uration. A possible improvement in the results can be obtained by allocating more data from

the logs to create the distribution of graphs and by using an entire graph for each episode. For

future work, Algorithm 5 would be better contrasted to competitors, e.g., a potential one being

LSVI-GT-UCB.
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4.6 Conclusions

We presented in this chapter a new algorithm, LSVI-GT-UCB– a combination of the LSVI approach

for linear function approximation and theGood-Turing estimator used inmulti-armed bandits for

estimatingmissingmass – with an application to contextual influencemaximization overmultiple

influence campaigns. LSVI-GT-UCB runs the two estimators in parallel, and makes the optimistic

choice between them when deciding which influencers to select at each step of the campaign

– thus implementing the optimism in the face of uncertainty principle. The experimental study,

performed on two real-world datasets – Sina Weibo and Twitter – and a synthetically generated

one, shows that LSVI-GT-UCB is competitive to state-of-the-art baselines, is less susceptible to

noise, while allowing learning over multiple campaigns.



Chapter 5

Conclusions and perspectives

5.1 Conclusions

Influence Maximization is a notoriously difficult problem to solve. Under different assumptions

about the underlying diffusion process model, it can be reduced to either the Set Covering prob-

lem or the Minimum Vertex Cover problem. Both are NP-hard problems, which leads us to look

for heuristic or approximation algorithms to solve Influence Maximization problems. Inspired by

recent years’ trends in social media, we consider a particular scenario for maximizing influence,

whichmirrors influencermarketing, andwe derive from there the characteristics of the problems

addressed in this thesis.

We aim to learn online, i.e., on the fly, how to select the best influencers to spread the desired

informationwithin a diffusion network. An influence campaign is divided into several rounds, and

in this thesis, we set the reward at the end of each round to be the number of newly activated

basic nodes. Assuming no knowledge of the diffusion topology nor of the diffusion probabili-

ties, but knowing the set of potential influencers to be engaged in an influence campaign and

the message to be disseminated, the objective is to find the most suitable influencers for each

round, so that the cumulative final reward is maximized. We first formally define this problem

in terms of Multi-Armed Bandits (sequential learning without state information), i.e., Contextual

Influence Maximization with Persistence, and then in terms of Reinforcement Learning withMarkov

81
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Decision Processes (sequential learning with state information), i.e., Episodic Contextual Influence

Maximization with Persistence. We solve both of these problems with Upper Confidence Bound

approximation algorithms, as we want to strike a good balance between exploiting influencers

known to perform well and exploring other influencers to uncover more of their potential.

Since the reward consists only of new activations per round and due to the lack of other

topology and diffusion probability information, we focus on directly estimating every influencer’s

remaining potential for activating new nodes. This quantity is easier to calculate and is ultimately

what we are interested in for selecting the influencers, alleviating the scalability limitations of all

state-of-the-art methods that try to directly estimate each influencer’s probability of activating a

basic node (hence facing a huge parametric space).

We provide a first solution in this direction, for the Multi-Armed Bandit formulation, namely

the LogNorm-LinUCB algorithm. Under the assumption that the reward scale is normally dis-

tributed, this algorithm approximates with linear regression the expected reward scale for each

potential influencer; the scale of the reward is the inner product between the disseminated mes-

sage and the unknown parameter to be estimated for the influencer.

We then present a second, alternative approach for solving the Contextual Influence Maximiza-

tion with Persistence problem, called GLM-GT-UCB. We have found the Good-Turing estimator to

be versatile in estimating the probability mass of entities from a population not yet seen in the

sample, and have adapted it for both online learning problems. To this end, we assigned a Good-

Turing estimator to each potential influencer and updated these statistics with each feedback we

received from the environment. These estimators are powerful in themselves but are unable to

capture side information available for the round, e.g., the message to be disseminated. For this,

we apply a side information modifier function to the Good-Turing estimator. GLM-GT-UCB as-

sumes that the rewards follow a Poisson distribution and defines this modifier function accord-

ingly.

For the Episodic Contextual Influence Maximization with Persistence problem, we assign to each

influencer a Good-Turing estimator and a Markov Decision Process that incorporates any infor-

mation available in the states of that round. Our algorithm, LSVI-GT-UCB, selects the influencers
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of each round optimistically, between the estimated Q-function and the Good-Turing estimated

remaining potential.

All three algorithms, GLM-GT-UCB, LogNorm-LinUCB, and LSVI-GT-UCB are based on theoreti-

cally guaranteed Upper Confidence Bounds. Their performance is tested on a synthetically gen-

erated dataset and two real-world datasets, one constructed from Twitter logs and one based

on publicly available data from Sina Weibo. For GLM-GT-UCB and LogNorm-LinUCB, we observe

that the Good-Turing estimators perform better on the Sina Weibo dataset, while the linearly ap-

proximated estimators tend to perform better on the Twitter dataset. There are two differences

between the two datasets that could explain the results, (i) the latter has a smaller reward scale

compared to the former, and (ii) the latter uses word2vec to create the topics, while the former

uses Latent Dirichlet Allocation. LSVI-GT-UCB proves to successfully alternate between the two

types of estimators when making decisions.

5.2 Perspectives

Given the empirical results, one direction of further development for solving the Contextual Influ-

ence Maximization with Persistence problem is to design a framework that allows us to learn which

estimator to use from the observed data.

For the Episodic Contextual InfluenceMaximizationwith Persistenceproblem, LSVI-GT-UCB might

have better results with generalized linear function approximation. In this direction, the first step

would be analyzing the distribution of the data used at each step in each episode to estimate the

Q-function. Another promising research direction for ECIMP is Deep Reinforcement Learning. An

immediate improvement to our solution along these lines, Algorithm 5, is to either provide more

graphs for the learning process or to remove the graph sampling part entirely since the bipar-

tite graph is already small. Given that the initial graph may not fully reflect the complete social

network, i.e. new basic nodes could be discovered with each diffusion campaign, the framework

can be extended to update the graph with new knowledge.

Finally, we stress that both the CIMP and ECIMP problems and their respective solutions are
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initially motivated by influencer marketing, but are by no means limited to this application sce-

nario. The algorithms proposed in this Ph.D. thesis generically solve Influence Maximization,

abstracting away from any online marketing or advertising-related aspects. Therefore, other dif-

fusion problems in an unknown environment, such as anomaly propagation in an electrical grid,

may also benefit from the ideas and algorithms proposed here.



Appendix A

GLM-GT-UCB

A.1 Other empirical results

As additional empirical support for assuming in GLM-GT-UCB a Poisson distribution for each influ-

encer’s rewards, we inspected the reward distributions per influencer and context, in the Twitter

dataset. Given that the reward is a dynamic quantity – as it depends onpreviously activated nodes

– we generate random campaigns and use an Oracle to select the influencer with the highest re-

ward for each round. Then we plot for each influencer and context the empirical distribution of

its rewards and the Poisson fit. The results support the assumption for the underlying distribu-

tions. Fig. A.1 (supplementary material) illustrates the distributions with the largest number of

samples. Note that we cannot perform a similar test in Weibo, due to the large dimensionality of

contexts (100 topics), and thus higher contextual diversity, leading to too few samples to create

an empirical distribution of rewards for an influencer in a given context.

A.2 GLM-GT-UCB - Theoretical analysis

Proof. The theoretical analysis is performed for one influencer k; it follows the same steps for

any other influencer.

Preliminaries:

85
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Figure A.1: Reward distributions in Twitter.

Table A.1: Assumptions

θk,j ≈ θk (the influencer’s unkown vector θk captures
the basic node’s trend in activating in a context
along its inner probability p(j))
α(⟨θk, Yt⟩, nk(t)) = ef(nk(t))⟨θk,Yt⟩

f(nk(t)) =
1

nk(t)

∥θk∥ ≤ 1
∥Yt∥ ≤ 1

pk,j(t) = α(⟨θk, Yt⟩, nk(t))p(j) (A.1)



A.2. GLM-GT-UCB - THEORETICAL ANALYSIS 87
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′ (l)) (A.3)

Rk(t) = α(⟨θk, Yt⟩, nk(t))

Ak∑
j=1

λjI{Cj(t− 1) = 0} (A.4)

E[Rk(t)] = α(⟨θk, Yt⟩, nk(t))
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Gk(t) = α(⟨θ̂k(t), Yt⟩, nk(t))
1

nk(t)
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(A.6)
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(A.7)

The bias of the remaining potential estimator:
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∥Yt∥ ≤ 1

∥θk∥ ≤ 1, ∥θ̂k(t)∥ ≤ 1

Cauchy-Schwarz:
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(A.10)

Denote: E[Rk(t)] = λk.
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The concentration of the remaining potential:

Theorem A.2.1. Concentration of the remaining potential with external factors:

E
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By denoting, pj = e
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Using Chernoff we finally have,
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The concentration of the estimator of the remaining potential:
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For overlapping influencer supports, is the independence of the reward random variables

preserved if L is constant per campaign and the reward is obtained by randomly dividing the

feedback to each chosen influencer?

Uα
t (j) =

t−1∑
s=1

α(⟨θ̂k(t), Yt⟩, nk(t))

α(⟨θ̂k(s), Ys⟩, nk(s))
I{Xs,j,k = 1, {Xl,j,k′ = 0}k′∈Is\{k}, {Xl,j,k′ = 0}l ̸=s,k′∈Il}

=
t−1∑
s=1

e

⟨θ̂k(t),Yt⟩+γ∥Yt∥
V −1
k

(t)

nk(t)
−

⟨θ̂k(s),Ys⟩+γ∥Ys∥
V −1
k

(s)

nk(s)

· I{Xs,j,k = 1, {Xl,j,k′ = 0}k′∈Is\{k}, {Xl,j,k′ = 0}l ̸=s,k′∈Il}

(A.17)

Gk(t) =
t−1∑
s=1

I
{
Xs,j,k = 1, {Xl,j,k′ = 0}l ̸=s,k′∈Il , {Xs,j,k′ = 0}k′∈Is\{k}

}
nk(t)

· e
⟨θ̂k(t),Yt⟩+γ∥Yt∥

V −1
k

(t)

nk(t)
−

⟨θ̂k(s),Ys⟩+γ∥Ys∥
V −1
k

(s)

nk(s)

(A.18)

For Bennett’s inequality:

Denote Xt(j) =
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.
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The confidence interval:
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Table A.2: Data statistics.

Net. # Users #Edges
Weibo 1,776,950 308M
Twitter 11.6M 309M

Net. #Orig.-microblogs #Retweets
Weibo 300,000 23,755,810
Twitter 242M 341,811,085

A.3 Twitter dataset statistics

Random tweets Random campaign
count 705586 705586
mean 0.6 3.5
std 6.68 16.37
min 0 0
25% 0 1
50% 0 2
75% 1 4
max 4581 10676

Table A.3: The rewards distribution in the datasets.

The statistics for both types of simulation are presented in Table A.3.

A.4 GLM-GT-UCB with MLE - Theoretical analysis

In this Section, we present a variant of GLM-GT-UCB , GLM-GT-UCB with MLE presented in Algo-

rithm 6, which assumes the generalized linear model for the external factor with the exponential

inverse link function, and usesMaximum Likelihood Estimation to learn it relative to the historical

rewards within their contexts. The difference between the two algorithms is that in the latter, the

unknown influencer parameter θk is estimated with MLE instead of RLSE.

Theorem A.4.1. With probability at least 1 − δ, having the expected activations λk =
∑Ak

j=1 pk,j(t),

βk(t) =
√

α2(⟨θk,Yt⟩,nk(t))λk ln(1/δ)∑t−1
l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l))
+

√
2e5f(nk(t))λk

∑t−1
s=1

1
f(nk(s))

n2
k(t)

ln 1
δ
+

e2f(nk(t))
∑t−1

s=1
1

f(nk(s))

3nk(t)
ln 1

δ
, and

ρ(t) =
√

2kµ
cµ

log(t), with the Lipschitz constant kµ and cµ = infθ∈Θ µ̇(⟨θ, Y ⟩) > 0 for the link func-
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Algorithm 6 GLM-GT-UCB with MLE

1: Input: influencers K, rounds budget T, external factor function α, regularization factor γ,
fatigue function f , number of selections L per round.

2: Initialization: play each influencer k ∈ K once in given random contexts Yt, observe the
reward rt, t ∈ K, and update the statistics nk(1) = 1 for the Good-Turing estimator, and
Vk(1) = γId + YtY

T
t , sk(1) = Ytr1

3: for t = K + 1, . . . , T do
4: Get the context Yt.
5: for k ∈ K do
6: Estimate the unknown parameter in the GLM by solving:

nk(t)−1∑
s=1

(rs − e⟨θ̂k(t),Ys⟩)Ys = 0 (A.30)

7: Compute UCB for remaining potential estimator

bk(t) = Gk(t) + βk(t), (A.31)

Gk(t) = α(⟨θ̂k(t), Yt⟩, nk(t))
1

nk(t)

Ak∑
j=1

t−1∑
s=1

hapaxs,j,k
α(⟨θ̂k(s), Ys⟩, nk(s))

(A.32)

and βk(t) is given by the confidence interval, and hapaxs,j,k by Equation 3.14.
8: end for
9: Choose set It of L influencers with largest UCB.
10: Play the chosen influencers, observe spread, divide it equally among influencers, and up-

date their statistics:
11: for k′ ∈ It do
12: Update rk′ (t) by Eq. (3.13).; nk′ (t+ 1) = nk′ (t) + 1;Vk′ (t+ 1) = Vk′ (t) + YtY

T
t .

13: end for
14: end for

tion µ : R → R for the Poisson regression model µ(x) = ex , we have

− βk(t) + λk

(
1−

ρk(t)∥Yt∥V −1
k (t) + 1

nk(t)

t−1∑
s=1

(ρk(s)∥Ys∥V −1
k (s) + 1)

)
≤

Rk(t)−Gk(t) ≤ βk(t) + λk

(
1− 1

nk(t)(ρk(t)∥Yt∥V −1
k (t) + 1)

t−1∑
s=1

1

ρk(s)∥Ys∥V −1
k (s) + 1

)
, (A.33)

Proof. The theoretical analysis is performed for one influencer k; it follows the same steps for

any other influencer.

Preliminaries:
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Table A.4: Assumptions

θk,j ≈ θk (the influencer’s unknown vector θk captures
the basic node’s trend in activating in a context
along its inner probability p(j))
α(⟨θk, Yt⟩, nk(t)) = e⟨θk,Yt⟩f(nk(t))
e.g. f(nk(t)) =

1√
nk(t)

∥θk∥ ≤ 1
∥Yt∥ ≤ 1

pk,j(t) = α(⟨θk, Yt⟩, nk(t))p(j) (A.34)

P (Cj(t− 1) = 0) = e
−λj

∑t−1
s=1

∑
k
′∈Is

α(⟨θ
k
′ ,Ys⟩,n

k
′ (s)) (A.35)

P (Ck,j(t− 1) = 1) =
t−1∑
s=1

λjα(⟨θk, Ys⟩, nk(s))e
−λj

∑t−1
l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l)) (A.36)

Rk(t) = α(⟨θk, Yt⟩, nk(t))

Ak∑
j=1

λjI{Cj(t− 1) = 0} (A.37)

E[Rk(t)] = α(⟨θk, Yt⟩, nk(t))

Ak∑
j=1

λje
−λj

∑t−1
s=1

∑
k
′∈Is

α(⟨θ
k
′ ,Ys⟩,n

k
′ (s)) (A.38)

Gk(t) = α(⟨θ̂k(t), Yt⟩, nk(t))
1

nk(t)

Ak∑
j=1

t−1∑
s=1

I{Xs,j,k = 1, {Xl,j,k′ = 0}k′∈Is\{k}, {Xl,j,k′ = 0}l ̸=s,k′∈Il}
α(⟨θ̂k(s), Ys⟩, nk(s))

(A.39)
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E[Gk(t)] = α(⟨θ̂k(t), Yt⟩, nk(t))
1

nk(t)

Ak∑
j=1

t−1∑
s=1

α(⟨θk, Ys⟩, nk(s))λje
−λj

∑t−1
l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l))

α(⟨θ̂k(s), Ys⟩, nk(s))

=
α(⟨θ̂k(t), Yt⟩, nk(t))

α(⟨θk, Yt⟩, nk(t))nk(t)

Ak∑
j=1

α(⟨θk, Yt⟩, nk(t))λje
−λj

∑t−1
l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l))
t−1∑
s=1

α(⟨θk, Ys⟩, nk(s))

α(⟨θ̂k(s), Ys⟩, nk(s))

=
α(⟨θ̂k(t), Yt⟩, nk(t))

α(⟨θk, Yt⟩, nk(t))nk(t)

t−1∑
s=1

α(⟨θk, Ys⟩, nk(s))

α(⟨θ̂k(s), Ys⟩, nk(s))
α(⟨θk, Yt⟩, nk(t))

Ak∑
j=1

λje
−λj

∑t−1
l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l))

=
α(⟨θ̂k(t), Yt⟩, nk(t))

α(⟨θk, Yt⟩, nk(t))

E[Rk(t)]

nk(t)

t−1∑
s=1

α(⟨θk, Ys⟩, nk(s))

α(⟨θ̂k(s), Ys⟩, nk(s))

(A.40)

The bias of the remaining potential estimator:

E[Rk(t)]− E[Gk(t)] = E[Rk(t)]−
E[Rk(t)]

nk(t)

α(⟨θ̂k(t), Yt⟩, nk(t))

α(⟨θk, Yt⟩, nk(t))

t−1∑
s=1

α(⟨θk, Ys⟩, nk(s))

α(⟨θ̂k(s), Ys⟩, nk(s))
(A.41)

E[Rk(t)]− E[Gk(t)] = E[Rk(t)]

(
1− e⟨θ̂k(t)−θk,Yt⟩

nk(t)

t−1∑
s=1

e⟨θk−θ̂k(s),Ys⟩

)
(A.42)

∥Yt∥ ≤ 1 (A.43)

∥θk∥ ≤ 1, ∥θ̂k(t)∥ ≤ 1 (A.44)

Cauchy-Schwarz:

|⟨Yt, θk⟩| ≤ ∥Yt∥∥θk∥ ≤ 1 (A.45)

|⟨Yt, θ̂k(t)⟩| ≤ ∥Yt∥∥θ̂k(t)∥ ≤ 1 (A.46)
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From Filippi et al. (2010b):

|e⟨θk,Yt⟩ − e⟨θ̂k(t),Yt⟩| ≤ ρk(t)∥Yt∥V −1
k (t), (A.47)

where ρ(t) =
√

2kµ
cµ

log(t), with the Lipschitz constant kµ and cµ = infθ∈Θ µ̇(⟨θ, Y ⟩) > 0 for the link

function µ : R → R for the Poisson regression model µ(x) = ex.

e|⟨θk−θ̂k(t),Yt⟩| − 1 ≤ |e⟨θk,Yt⟩ − e⟨θ̂k(t),Yt⟩| ≤ ρk(t)∥Yt∥V −1
k (t) (A.48)

e|⟨θk−θ̂k(t),Yt⟩| ≤ ρk(t)∥Yt∥V −1
k (t) + 1 (A.49)

Denote: E[Rk(t)] = λk.

λk

(
1−

ρk(t)∥Yt∥V −1
k (t) + 1

nk(t)

t−1∑
s=1

(ρk(s)∥Ys∥V −1
k (s) + 1)

)
≤ E[Rk(t)]− E[Gk(t)]

≤ λk

(
1− 1

nk(t)(ρk(t)∥Yt∥V −1
k (t) + 1)

t−1∑
s=1

1

ρk(s)∥Ys∥V −1
k (s) + 1

)
(A.50)

The concentration of the remaining potential:

Theorem A.4.2. The concentration of the remaining potential with external factors:

E
[
es(Rk(t)−E[Rk(t)]

]
≤ exp

(
s2λkα

2(⟨θk, Yt⟩, nk(t))

4
∑t−1

l=1

∑
k′∈Il α(⟨θk′ , Yl⟩, nk′ (l))

)
(A.51)

Proof.

E
[
es(Rk(t)−E[Rk(t)]

]
=

ΠAk
j=1

(
1− e

−λj
∑t−1

l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l))
)
e−sλjα(⟨θk,Yt⟩,nk(t))e

−λj
∑t−1

l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l))

+ e
−λj

∑t−1
l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l))
e
sλjα(⟨θk,Yt⟩,nk(t))

(
1−e

−λj
∑t−1

l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l))
) (A.52)
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By denoting, pj = e
−λj

∑t−1
l=1

∑
k
′∈Il

α(⟨θ
k
′ ,Yl⟩,nk

′ (l)) and

tj = sλjα(⟨θk, Yt⟩, nk(t)), we have,

E
[
es(Rk(t)−E[Rk(t)]

]
= ΠAk

j=1(1− pj)e
−pjtj + pje

tj(1−pj)

≤ ΠAk
j=1exp

(
1− 2pj

4 ln((1− pj)/pj)
t2j

)
[Theorem 3.2Berendet al. (2013)]

≤ ΠAk
j=1exp

(
1

4 ln(1/pj)
t2j

)
[Lemma 3.5Berendet al. (2013)]

≤ ΠAk
j=1exp

(
s2λjα

2(⟨θk, Yt⟩, nk(t))

4
∑t−1

l=1

∑
k′∈Il α(⟨θk′ , Yl⟩, nk′ (l))

)

≤ exp

(
α2(⟨θk, Yt⟩, nk(t))

4
∑t−1

l=1

∑
k′∈Il α(⟨θk′ , Yl⟩, nk′ (l))

s2λk

)
(A.53)

Using Chernoff we finally have,

P (Rk(t) > E[Rk(t)] +

√
α2(⟨θk, Yt⟩, nk(t))λk ln(1/δ)∑t−1
l=1

∑
k′∈Il α(⟨θk′ , Yl⟩, nk′ (l))

) ≤ δ (A.54)

The concentration of the estimator of the remaining potential:

Gk(t) =
1

nk(t)

Ak∑
j=1

Uα
t (j, k) (A.55)

Uα
t (j) =

t−1∑
s=1

α(⟨θ̂k(t), Yt⟩, nk(t))

α(⟨θ̂k(s), Ys⟩, nk(s))
I{Xs,j,k = 1, {Xl,j,k′ = 0}k′∈Is\{k}, {Xl,j,k′ = 0}l ̸=s,k′∈Il}

=
t−1∑
s=1

f(nk(s))

f(nk(t))
e⟨θ̂k(t),Yt⟩−⟨θ̂k(s),Ys⟩I{Xs,j,k = 1, {Xl,j,k′ = 0}k′∈Is\{k}, {Xl,j,k′ = 0}l ̸=s,k′∈Il} (A.56)
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Gk(t) =
f(nk(t))

nk(t)

t−1∑
s=1

I
{
Xs,j,k = 1, {Xl,j,k′ = 0}l ̸=s,k′∈Il , {Xs,j,k′ = 0}k′∈Is\{k}

} e⟨θ̂k(t),Yt⟩−⟨θ̂k(s),Ys⟩

f(nk(s))

(A.57)

For Bennett’s inequality:

Denote i.i.d r.v. Xt(j) =
Uα
t (j)

nk(t)
,∀j ∈ Ak.

Xt(j) =
t−1∑
s=1

f(nk(t)

nk(s)
e⟨θ̂k(t),Yt⟩−⟨θ̂k(s),Ys⟩

I
{
Xs,j,k = 1, {Xl,j,k′ = 0}l ̸=s,k′∈Il , {Xs,j,k′ = 0}k′∈Is\{k}

}
nk(t)

≤ e2f(nk(t))

nk(t)

t−1∑
s=1

1

f(nk(s))

(A.58)

v =

Ak∑
j=1

E[X2
t (j)]

=

Ak∑
j=1

E
[
Uα
t (j)

2

nk(t)2

]

=

∑Ak

j=1 E[Uα
t (j)

2]

n2
k(t)

=

Ak∑
j=1

t−1∑
s=1

12P (Cj(t− 1) = 1)

n2
k(t)

f 2(nk(t)

f 2(nk(s))
e2⟨θ̂k(t),Yt⟩−2⟨θ̂k(s),Ys⟩

=

Ak∑
j=1

t−1∑
s=1

λjf(nk(t))

n2
k(t)f(nk(s))

e
−λj

∑t−1
l=1

∑
k
′∈Il

e
⟨θ

k
′ ,Yl⟩f(n

k
′ (l))

e⟨θk,Ys⟩+2⟨θ̂k(t),Yt⟩−2⟨θ̂k(s),Ys⟩

(A.59)

v ≤
e5f(nk(t))

∑Ak

j=1 λj

∑t−1
s=1

1
f(nk(s))

n2
k(t)

(A.60)

Ak∑
j=1

λj ≤ λk << Ak (A.61)
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v ≤
e5f(nk(t))λk

∑t−1
s=1

1
f(nk(s))

n2
k(t)

(A.62)

P

Gk(t)− E[Gk(t)] >

√
2e5f(nk(t))λk

∑t−1
s=1

1
f(nk(s))

n2
k(t)

ln
1

δ
+

e2f(nk(t))
∑t−1

s=1
1

f(nk(s))

3nk(t)
ln

1

δ

 ≤ δ

(A.63)

The confidence interval:

Rk(t)−Gk(t) ≤
√

α2(⟨θk, Yt⟩, nk(t))λk ln(1/δ)∑t−1
l=1

∑
k′∈Il α(⟨θk′ , Yl⟩, nk′ (l))

+

√
2e5f(nk(t))λk

∑t−1
s=1

1
f(nk(s))

n2
k(t)

ln
1

δ

+
e2f(nk(t))

∑t−1
s=1

1
f(nk(s))

3nk(t)
ln

1

δ
+ λk

(
1− 1

nk(t)(ρk(t)∥Yt∥V −1
k (t) + 1)

t−1∑
s=1

1

ρk(s)∥Ys∥V −1
k (s) + 1

)
.

(A.64)

− βk(t) + λk

(
1−

ρk(t)∥Yt∥V −1
k (t) + 1

nk(t)

t−1∑
s=1

(ρk(s)∥Ys∥V −1
k (s) + 1)

)
≤

Rk(t)−Gk(t) ≤ βk(t) + λk

(
1− 1

nk(t)(ρk(t)∥Yt∥V −1
k (t) + 1)

t−1∑
s=1

1

ρk(s)∥Ys∥V −1
k (s) + 1

)
, (A.65)

where:

βk(t) =

√
α2(⟨θk, Yt⟩, nk(t))λk ln(1/δ)∑t−1
l=1

∑
k′∈Il α(⟨θk′ , Yl⟩, nk′ (l))

+

√
2e5f(nk(t))λk

∑t−1
s=1

1
f(nk(s))

n2
k(t)

ln
1

δ

+
e2f(nk(t))

∑t−1
s=1

1
f(nk(s))

3nk(t)
ln

1

δ

(A.66)
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A.4.1 Experiments

For the sake of comparison, we run the experiments for GLM-GT-UCB with MLE with the same

configuration as in section 3.5. GLM-GT-UCB with MLE does not seem to perform better than

GLM-GT-UCB on the synthetic dataset (Figure A.2) or on the Twitter dataset (Figure A.3). How-

ever, it surpasses all the other solutions on the Sina Weibo dataset when multiple influencers

are selected per round, see Figure A.4. This result indicates a high performance for this solution

especially when the reward scale is greater than 20K and can be explained by the new confidence

bound for the remaining potential estimators.
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Figure A.2: Synthetic - Cumulative rewards, full plot (left column), plot zoomed to last 100 rounds
(right column).
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Figure A.3: Twitter - Cumulative rewards, full plot (left column), plot zoomed to last 100 rounds
(right column).
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Titre: Apprentissage séquentiel pour la diffusion d’information
Mots clés:maximisation de l’influence, apprentissage par renforcement, bandits à plusieurs
bras, borne supérieure de confiance

Résumé: Motivés par les scénarios de dif-
fusion de l’information et de publicité dans
le les réseaux sociaux, nous étudions un
problème demaximisation de l’influence (MI)
dans lequel on suppose que l’on en sait peu
sur le réseau de diffusion ou sur le mod-
èle qui détermine comment l’information
peut se propager. Dans un tel environ-
nement incertain, on peut se concentrer
sur des campagnes de diffusion à plusieurs
tours, avec l’objectif de maximiser le nombre
d’utilisateurs distincts qui sont influencés ou
activés, à partir d’une base de nœuds influ-
ents. Au cours d’une campagne, les graines
de propagation sont sélectionnées séquen-
tiellement lors de tours consécutifs, et les
commentaires sont collectés sous la forme
des nœuds activés à chaque tour. L’impact
(récompense) d’un tour est alors quantifié
par le nombre de nœuds nouvellement ac-
tivés. En général, il faut maximiser la prop-
agation totale de la campagne, comme la
somme des récompenses des tours. Nous
considérons deux sous-classes de d’IM, Con-
textual Influence Maximization with Persistence
(CIMP) et Episodic Contextual Influence Max-
imization with Persistence (ECIMP), où (i) la
récompense d’un tour d’une campagne en
cours consiste uniquement en de nouvelles
activations (non observées lors des tours
précédents de cette campagne), (ii) le con-
texte du tour et les données historiques
des tours précédents peuvent être exploités
pour apprendre la meilleure politique, et
(iii) ECIMP est CIMP répété plusieurs fois,
ce qui permet d’apprendre également des
campagnes précédentes. Ce problème est

directement motivé par les scénarios du
monde réel de la diffusion de l’information
dans le marketing d’influence, où (i) seule
la première / unique activation d’un util-
isateur cible présente un intérêt (et cette
activation persistera comme une activa-
tion acquise, latente, tout au long de la
campagne). (ii) de précieuses informations
secondaires sont disponibles pour l’agent
d’apprentissage. Dans ce contexte, une ap-
proche d’exploration-exploitation pourrait
être utilisée pour apprendre les principaux
paramètres de diffusion sous-jacents, tout
en exécutant les campagnes. Pour CIMP,
nous décrivons et comparons deux méth-
odes de bandits à brasmultiples contextuels,
avec des limites supérieures de confiance
sur le potentiel restant des influenceurs,
l’une utilisant un modèle linéaire généralisé
et l’estimateur de Good-Turing pour le po-
tentiel restant (GLM-GT-UCB), et l’autre adap-
tant directement l’algorithme LinUCB à notre
cadre (LogNorm-LinUCB). Pour ECIMP, nous
proposons l’algorithme LSVI-GT-UCB qui im-
plémente le principe d’optimisme face à
l’incertitude pour l’apprentissage par ren-
forcement, avec approximation linéaire.
L’agent d’apprentissage estime pour chaque
nœud de départ son potentiel restant avec
un estimateur de Good-Turing, modifié
par une fonction Q estimée. Nous mon-
trons qu’ils surpassent les performances des
méthodes de base utilisant les idées les plus
récentes, sur des données synthétiques et
réelles, tout en présentant un comportement
différent et complémentaire, selon les scé-
narios dans lesquels ils sont déployés.



Title: Scalable Model-Free Algorithms for Influencer Marketing
Keywords: influence maximization, reinforcement learning, multi-armed bandits, upper
confidence bound

Abstract: Motivated by scenarios of in-
formation diffusion and advertising in so-
cial media, we study an influence maximiza-
tion (IM) problem in which little is assumed
to be known about the diffusion network or
about the model that determines how infor-
mation may propagate. In such a highly un-
certain environment, one can focus onmulti-
round diffusion campaigns, with the objective
tomaximize thenumber of distinct users that
are influenced or activated, starting from a
known base of few influential nodes. Dur-
ing a campaign, spread seeds are selected se-
quentially at consecutive rounds, and feed-
back is collected in the form of the acti-
vated nodes at each round. A round’s im-
pact (reward) is then quantified as the num-
ber of newly activated nodes. Overall, one
must maximize the campaign’s total spread,
as the sum of rounds’ rewards. We con-
sider two sub-classes of IM, Contextual In-
fluence Maximization with Persistence (CIMP)
and Episodic Contextual Influence Maximiza-
tion with Persistence (ECIMP), where (i) the re-
ward of a given round of an ongoing cam-
paign consists of only the new activations
(not observed at previous rounds within that
campaign), (ii) the round’s context and the
historical data from previous rounds can be
exploited to learn the best policy, and (iii)
ECIMP is CIMP repeated multiple times, of-
fering the possibility of learning from pre-
vious campaigns as well. This problem is

directly motivated by the real-world scenar-
ios of information diffusion in influencer mar-
keting, where (i) only a target user’s first /
unique activation is of interest (and this ac-
tivation will persist as an acquired, latent one
throughout the campaign), and (ii) valuable
side-information is available to the learning
agent. In this setting, an explore-exploit ap-
proach could be used to learn the key un-
derlying diffusion parameters, while running
the campaigns. For CIMP, we describe and
compare two methods of contextual multi-
armed bandits, with upper-confidence bounds
on the remaining potential of influencers,
one using a generalized linear model and the
Good-Turing estimator for remaining poten-
tial (GLM-GT-UCB), and another one that di-
rectly adapts the LinUCB algorithm to our
setting (LogNorm-LinUCB). For ECIMP, we
propose the algorithm LSVI-GT-UCB, which
implements the optimism in the face of un-
certainty principle for episodic reinforcement
learning with linear approximation. The
learning agent estimates each seed node’s
remaining potential with a Good-Turing esti-
mator, modified by an estimated Q-function.
We show that they outperform baseline
methods using state-of-the-art ideas, on syn-
thetic and real-world data, while at the same
time exhibiting different and complemen-
tary behavior, depending on the scenarios in
which they are deployed.
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