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Dans cette thèse, nous considérons deux types d'équations de Schrödinger non linéaires (NLS), à savoir une classe d'équations de Schrödinger non linéaire avec une non linéarité de type mixed powers sur R N et une classe d'équations non linéaires de Schrödinger-Poisson-Slater sur R 3 . Ces deux types de NLS apparaissent dans divers modèles mathématiques et physiques et ont attiré beaucoup d'attention ces dernières années.

Du point de vue physique, puisque, en plus d'être une quantité conservée pour l'équation de l'évolution, la masse a souvent une signification physique claire; par exemple, elle représente l'alimentation électrique en optique non linéaire, ou le nombre total d'atomes dans la condensation de Bose-Einstein, etc., nous nous concentrons sur l'étude des solutions ayant une masse prescrite, à savoir les solutions normalisées. Des questions d'existence, de multiplicité et de stabilité de ces solutions sont examinées dans cette thèse. Nous nous occupons à la fois de cas sous-critiques de Sobolev et de cas critiques de Sobolev. Une attention particulière est accordée aux cas critiques de Sobolev dans lesquels de nombreux problèmes restent ouverts. Puisque les solutions normalisées sont obtenues comme points critiques, sous containte, d'une fonctionnelle, les principaux ingrédients de nos preuves sont variationnels.

La thèse se compose de quatre chapitres. Le Chapitre 1 est une introduction à cette thèse contenant une brève présentation des questions traitées et des résultats obtenus. Dans le Chapitre 2, nous étudions une classe d'équations non linéaires de Schrödinger sur R N avec une nonlinéarité mixte Sobolev critique. Dans une situation o ù la fonctionnelle associée est non bornée inférieurement sur la contrainte, nous prouvons l'existence de deux points critiques sur la contrainte, un minimiseur local, et un point selle se trouvant au niveau d'un col de montagne. Nous montrons également que les ondes stationnaires associées à l'ensemble des miminiseurs locaux sont orbitalement stables et que celles associées aux point selles situés au niveau du col sont fortement instables. La principale difficulté est la présence de l'exposant critique de Sobolev. En ce qui concerne les minimiseurs locaux, il n'est pas possible d'utiliser de manière standard le principe de concentration par compacité dévelopé par P. L. Lions. Par ailleurs même en ayant obtenu la compacité de l'ensemble des suites minimisantes, l'existence globale du problème d'évolution associée reste à montrer pour établir la stabilité orbitale. En ce qui concerne le point selle, nous avons besoin d'une estimation stricte sur le niveau du col associé et celle-ci est obtenue en utilisant des fonctions de test.

Dans le Chapitre 3 nous étudions une classe d'équations de Schrödinger-Poisson-Slater sur R 3 . Nous considérons plusieurs classes de paramètres, certains impliquant que la fonctionelle sera non bornée inférieurement sur la contrainte. Dans le cas o ù la structure géométrique des fonctionelles associées suggère l'existence de minima locaux ou globaux, nous développons un argument pour traiter simultanément les cas sous-critiques de Sobolev et v les cas critiques de Sobolev. Dans le cas o ù la structure géométrique des fonctionnelles associées suggère l'existence d'un point selle, nous avons besoin de deux arguments distincts pour traiter les cas Sobolev sous-critique et Sobolev critique. Enfin, au Chapitre 4, nous présentons quelques remarques finales sur les deux équations examinées dans cette thèse et aussi nous proposons quelques problèmes ouverts.

The thesis consists of four chapters. Chapter 1 is an introduction to this thesis containing a brief presentation of issues treated and obtained results. In Chapter 2, we study Sobolev critical nonlinear Schrödinger equations with mixed power nonlinearities in R N . In a situation where the associated functional is unbounded from below on the constraint, we prove the existence of two constrained critical points, one local minimizer, and one saddle point lying at a mountain pass level. We also show that the standing waves associated with the local minimizer are orbitally stable and the associated standing waves corresponding with saddle points lying at mountain pass levels are strongly unstable. The main difficulty is the presence of the Sobolev critical exponent. Concerning the local minimizer, it is not possible to use in a standard way the compactness by concentration approach developed by P. L. Lions. Even having the compactness, the global existence in evolution is still unknown. For the existence of the saddle point, we need a strict upper estimate of the associated mountain pass level that we derive using testing functions.

In Chapter 3, we study Schrödinger-Poisson-Slater equations in R 3 . We deal with some range of parameters under which the associated functional restricted on the constraint will sometimes be bounded, sometimes be unbounded. In the case where the geometric structure of the associated functional suggests the existence of local minima or global minima, we develop an argument to deal with both Sobolev sub-critical and Sobolev critical cases. In the case where the geometric structure of the associated functional suggests the existence of a saddle point, we need two different arguments to deal with Sobolev sub-critical and Sobolev critical cases. Finally, in Chapter 4, we present some concluding remarks about the two equations considered in this thesis and also we propose some open problems. 

Notations

We list below the notations that we use throughout the thesis:

(1) R, C denote respectively the set of real numbers, complex numbers. R + denotes the interval (0, ∞).

(2) R N denotes the N -dimensional real Euclidean space, and the typical point in

R N is x = (x 1 , x 2 , • • • , x N ).
(3) ∇u denotes the gradient of a differentiable function u, namely ∇u = (∂

x 1 u, ∂ x 2 u, • • • , ∂ x N u).
(4) ∆u denotes the Laplacian operator of a twice-differentiable function u , namely

∆u = N i=1 ∂ 2 u ∂x 2 i .
(5) 2 * denotes the critical exponent of the Sobolev embedding, namely

2 * = 2N N -2 if N ≥ 3 and 2 * = +∞ if N = 1, 2.
(6) 2 α and 2 * α denote lower and upper critical exponents respectively that come from the Hardy-Littlewood-Sobolev inequality (see [START_REF] Lieb | Analysis[END_REF]Chapter 4]), namely

2 α := N + α N , 2 * α :=        +∞ if N = 1, 2, N +α N -2
if N ≥ 3 with α ∈ (0, N ).

(7) L ∞ (R N ) denotes the set of almost everywhere bounded functions defined in R N .

(8) For any 1 ≤ q < ∞, we write L q (R N ) as the usual Lebesgue space endowed with the norm

∥u∥ q L q (R N ) := R N |u| q dx.
(9) H 1 := H 1 (R N , R) denotes the usual Hilbert space of functions defined from R N into R with the norm

∥u∥ H 1 (R N ) = ∥∇u∥ L 2 (R N ) + ∥u∥ L 2 (R N ) ,
and H := H 1 (R N , C) denotes the Hilbert space of functions defined from R N into C. ix [START_REF] Bartsch | Normalized solutions of mass supercritical Schrödinger equations with potential[END_REF] S denotes the best constant in the Sobolev inequality, see (2.2.1). [START_REF] Bartsch | Multiple normalized solutions for a competing system of Schrödinger equations[END_REF] For convenience, we denote for u ∈ H 1 (R 3 ) the following quantities A(u) := ( [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF] The open ball in R 3 with center at 0 and radius R > 0 is denoted by B R .

Chapter 1

Introduction

The thesis which collects some works obtained during my Ph.D is devoted to the study of normalized solutions for two types of nonlinear elliptic partial differential equations, namely a class of nonlinear Schrödinger equations in R N and a class of Schrödinger-Poisson-Slater equations in R 3 . Chapter 2 corresponds to the paper [START_REF] Jeanjean | Orbital stability of ground states for a Sobolev critical Schrödinger equation[END_REF] in collaboration with Louis Jeanjean, Jacek Jendrej (Université Sorbonne Paris Nord) and Nicola Visciglia (Università Degli Studi di Pisa) and the paper [START_REF] Jeanjean | Multiple normalized solutions for a Sobolev critical Schrödinger equation[END_REF] in collaboration with Louis Jeanjean. Chapter 3 corresponds to the work with Louis Jeanjean in the paper [START_REF] Jeanjean | Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation[END_REF].

Normalized solutions for a Sobolev critical nonlinear Schrödinger equation

In Chapter 2, we study the existence and stability of standing waves of prescribed mass for the time-dependent nonlinear Schrödinger equations with mixed power nonlinearities i∂ t v + ∆v + µv|v| q-2 + v|v| 2 * -2 = 0, (t, x) ∈ R × R N , (1. 1.1) where N ≥ 3, v : R × R N → C, µ > 0, 2 < q < 2 + 4 N and 2 * = 2N N -2 .

The nonlinear Schrödinger equation (NLS) with pure and mixed power nonlinearities has attracted much attention in the last decades. The local existence result for the pure power energy critical NLS has been established in [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]. The corresponding global existence and scattering for defocusing quintic NLS in dimension N = 3 has been established in the papers [START_REF] Bourgain | Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case[END_REF][START_REF] Colliander | Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3[END_REF] respectively in the radial and non-radial case. We also quote the concentrationcompactness/rigidity approach introduced in [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF] in order to study global existence and scattering in the focusing energy critical NLS below the ground state. Concerning the case of NLS with mixed nonlinearities let us quote [START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF][START_REF] Akahori | Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth[END_REF][START_REF] Cheng | Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case[END_REF][START_REF] Coles | Solitary waves and dynamics for subcritical perturbations of energy critical NLS[END_REF][START_REF] Lewin | The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications[END_REF][START_REF] Miao | The dynamics of the 3D radial NLS with the combined terms[END_REF][START_REF] Miao | On the 4D nonlinear Schrödinger equation with combined terms under the energy threshold[END_REF][START_REF] Tao | The nonlinear Schrödinger equation with combined power-type nonlinearities[END_REF].

We recall that standing waves to (1.1.1) are solutions of the form v(t, x) = e -iλt u(x), λ ∈ R. Then the function u(x) satisfies the equation -∆uλu -µ|u| q-2 u -|u| 2 * -2 u = 0 in R N .

(1.1.2)

When looking for solutions to (1.1.2) a possible choice is to consider λ ∈ R fixed and to search for solutions as critical points of the action functional

A λ,µ (u) := 1 2 ∥∇u∥ 2 L 2 (R N ) - λ 2 ∥u∥ 2 L 2 (R N ) - µ q ∥u∥ q L q (R N ) - 1 2 * ∥u∥ 2 * L 2 * (R N ) .
In this case one usually focus on the existence of minimal action solutions, namely of solutions minimizing A λ,µ among all non-trivial solutions. In that direction, we refer to [START_REF] Claudianor | Existence of a ground state solution for a nonlinear scalar field equation with critical growth[END_REF] where, relying on the pioneering work of Brezis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], the existence of positive real solutions for equations of the type of (1.1.2) is addressed in a very general setting; to [START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF][START_REF] Akahori | Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth[END_REF] which concerns the case where q > 2 + 4/N and µ > 0; to [START_REF] Cheng | Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case[END_REF][START_REF] Miao | The dynamics of the 3D radial NLS with the combined terms[END_REF] where the fixed λ ∈ R problem is analyzed for q = 2 + 4/N and µ < 0; see also [START_REF] Lewin | The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications[END_REF] and the reference therein.

Alternatively, we can search for solutions to (1.1.2) having a prescribed L 2 -norm. Defining on H := H 1 (R N , C) the Energy functional

F µ (u) := 1 2 ∥∇u∥ 2 L 2 (R N ) - µ q ∥u∥ q L q (R N ) - 1 2 * ∥u∥ 2 * L 2 * (R N )
it is standard to check that F µ is of class C 1 and that a critical point of F µ restricted to the (mass) constraint S(c) := {u ∈ H :

∥u∥ 2 L 2 (R N ) = c}
gives rise to a solution to (1.1.2), satisfying ∥u∥ 2 L 2 (R N ) = c. In this approach the parameter λ ∈ R arises as a Lagrange multiplier. In particular, λ ∈ R does depend on the solution and is not a priori given. This approach, that we shall follow here, is relevant from the physical point of view, in particular, since the L 2 norm is a preserved quantity of the evolution and since the variational characterization of such solutions is often a strong help to analyze their orbital stability, see for example, [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF][START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]. Depending on the range of parameters we shall consider m(c) will be finite or not. If, following the introduction of the Compactness by Concentration Principle of P. L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF], the search of normalized solutions corresponding to a global minimizer of a functional restricted to an L 2 norm constraint is now a classical topic, the search of critical points when the functional is unbounded from below on the constraint remained for a long time much less studied. In the frame of this thesis, namely for a functional corresponding to an autonomous equation lying on all the space R N , [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF] was for a long time the sole contribution. This direction of research was likely brought to the attention of the community by the papers [START_REF] Bartsch | Normalized solutions of nonlinear Schrödinger equations[END_REF][START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF] both published in 2013. Since then numerous contributions flourished within this topic and we just mention, among many possible choices, the works, [START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF][START_REF] Bartsch | Multiple normalized solutions for a competing system of Schrödinger equations[END_REF][START_REF] Bartsch | Normalized solutions for a coupled Schrödinger system[END_REF][START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF][START_REF] Bieganowski | Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth[END_REF][START_REF] Cingolani | Stationary waves with prescribed L 2 -norm for the planar Schrödinger-Poisson system[END_REF][START_REF] Gou | Normalized solutions to the Chern-Simons-Schrödinger system[END_REF][START_REF] Jeanjean | A mass supercritical problem revisited[END_REF]. We also refer to [START_REF] Bartsch | Normalized solutions of mass supercritical Schrödinger equations with potential[END_REF][START_REF] Molle | Normalized solutions to mass supercritical Schrödinger equations with negative potential[END_REF] for non-autonomous problems set on R N and to [START_REF] Noris | Normalized solutions for nonlinear Schrödinger systems on bounded domains[END_REF][START_REF] Pellacci | Normalized concentrating solutions to nonlinear elliptic problems[END_REF][START_REF] Pierotti | Normalized bound states for the nonlinear Schrödinger equation in bounded domains[END_REF] for contributions when the underlying equation is set on a bounded domain of R N . In the above-mentioned papers, the involved nonlinearities were Sobolev subcritical. It was only in 2020 that was first treated in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] a problem involving a Sobolev critical nonlinearity.

For future reference, we now recall some definitions:

Definition 1.1.1. We say that u c ∈ S(c) is a ground state solution to (1.1.2) if it is a solution having minimal Energy among all the solutions which belong to S(c). Namely, if

F µ (u c ) = inf F µ (u), u ∈ S(c), F µ S(c) ′ (u) = 0 .
Definition 1.1.2. Z ⊂ H is stable if : Z ∅ and for any v ∈ Z and any ε > 0, there exists a δ > 0 such that if ϕ ∈ H satisfies ||ϕ -v|| H < δ then u ϕ (t) is globally defined and inf z∈Z ||u ϕ (t) -z|| H < ε for all t ∈ R, where u ϕ (t) is the solution to (1.1.1) corresponding to the initial condition ϕ.

A standing wave e -iλt u(x) is strongly unstable if for every ε > 0 there exist ϕ ∈ H such that ∥u -ϕ∥ H < ε, and u ϕ (t) blows-up in finite time.

It is well-known that the study of problems with mixed nonlinearities and the type of results one can expect, depend on the behavior of the nonlinearities at infinity, namely on the value of the various power exponents. In particular, this behavior determines whether the functionnal is bounded from below on S(c). One speaks of a mass subcritical case if it is bounded from below on S(c) for any c > 0, and of a mass supercritical case if the functional is unbounded from below on S(c) for any c > 0. One also refers to a mass critical case when the boundedness from below does depend on the value c > 0. To be more precise, consider an equation of the form i∂ t v + ∆v + µv|v| p 1 -2 + v|v| p 2 -2 = 0, (t, x) ∈ R × R N , (1.1.3) where it is assumed that 2 < p 1 ≤ p 2 ≤ 2 * . The threshold exponent is the so-called L 2 -critical exponent

p c = 2 + 4 N .
A very complete analysis of the various cases that may happen for (1.1.3), depending on the values of (p 1 , p 2 ), has been provided recently in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]. Let us just recall here some rough elements. If both p 1 and p 2 are strictly less than p c then the associated Energy functional is bounded from below on S(c) and to find a ground state (see Definition 1.1.1) one looks for a global minimum on S(c). The problem then directly falls into the setting covered by the Compactness by Concentration Principle introduced by P.L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF] which, for more complicated equations, in particular non autonomous ones, is still a very active field. Such solutions are expected to be orbitally stable, see Definition 1.1.2. If p c ≤ p 1 ≤ p 2 ≤ 2 * , then the Energy functional is unbounded from below on S(c) but it is possible to show that a ground state exists. This ground state is characterized as a critical point of mountain-pass type and it lies at a strictly positive level of the Energy functional. Such ground states are expected to be strongly unstable, see Definition 1.1.2. We refer, for the link between the variational characterization of a solution and its instability, to the classical paper [START_REF] Berestycki | Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires[END_REF], and to [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF][START_REF] Le | A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] for more recent developments.

In the case we consider here : 2 < p 1 < p c < p 2 = 2 * , the Energy functional is thus unbounded from below on S(c) but, as we shall see, the presence of the lower order, mass subcritical term -µ∥u∥ q L q (R N ) created, for sufficiently small values of c > 0, a geometry of local minima on S(c). The presence of such geometry, in problems which are mass supercritical, had already been observed in several related situations. In [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF][START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF] for related scalar problems, in [START_REF] Gou | Multiple positive normalized solutions for nonlinear Schrödinger systems[END_REF] in the case of a system or [START_REF] Noris | Normalized solutions for nonlinear Schrödinger systems on bounded domains[END_REF] for an evolution problem set on a bounded domain. Actually, Soave studied the equation (1.1.3) in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] and derived, for any small c > 0 depending on µ > 0, the existence of a ground state solution as a local minimizer to (1.1.3) in the case 2 < p 1 < p c < p 2 = 2 * . Soave also raised two open problems: to obtain the orbital stability of the set Z, following the classical approach laid down in [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], two ingredients are essential. First, the relative compactness, up to translation, of all minimizing sequences for F µ on V (c). Secondly, the global existence of solutions to (1.1.1) for initial data close to Z. It does not seem possible to use [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.1] as a starting point to prove the orbital stability of Z, since the existence of a ground state in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.1] is obtained through the study of one particular (locally) minimizing sequence which is radially symmetric and hence, the relative compactness of all minimizing sequences for F µ on V (c) is not guaranteed.

2. Since F µ | S(c) is unbounded from below, it could be natural to expect that there exists a second critical point lying at a mountain pass level. To obtain such solution, following the approach in [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF], one constructs a special bounded Palais-Smale sequence and then proves this sequence strongly convergence. In the Sobolev critical case, the existence of a bounded Palais-Smale sequence can be proved, however, the convergence of such sequence is a very delicate problem.

The motivation for our study originated from the above two open problems. To solve the first open problem, for any fixed µ > 0, we shall find an explicit value c 0 = c 0 (µ) > 0 such that, for any c ∈ (0, c 0 ), there exists a set V (c) ⊂ S(c) having the property that

m(c) := inf u∈V (c) F µ (u) < 0 < inf u∈∂V (c) F µ (u).
(

The sets V (c) and ∂V (c) are given by

V (c) := {u ∈ S(c) : ∥∇u∥ 2 L 2 (R N ) < ρ 0 }, ∂V (c) 
:= {u ∈ S(c) : ∥∇u∥ 2 L 2 (R N ) = ρ 0 } for a suitable ρ 0 > 0, depending only on c 0 > 0 but not on c ∈ (0, c 0 ). We also introduce the set

M c := {u ∈ V (c) : F µ (u) = m(c)}.
Our first result is, Theorem 1.1.3. Let N ≥ 3, 2 < q < 2 + 4 N . For any µ > 0 there exists a c 0 = c 0 (µ) > 0 such that, for any c ∈ (0, c 0 ), F µ restricted to S(c) has a ground state. This ground state is a (local) minimizer of F µ in the set V (c) and any ground state for F µ on S(c) is a local minimizer of F µ on V (c). In addition, if (u n ) ⊂ V (c) is such that F µ (u n ) → m(c) then, up to translation, u n → u ∈ M c in H.

To obtain the relative compactness of all minimizing sequences, the fact that one minimizes only on a subset of S(c), in contrast to a global minimization on all S(c), increases the difficulty to rule out a possible dichotomy. Different strategies have been recently implemented to deal with this issue [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF][START_REF] Gou | Multiple positive normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF], all relying on a suitable choice of the set where the local minima is searched. In the presence of a Sobolev critical term an additional difficulty arises. In a Sobolev subcritical setting, if a sequence (v n ) ⊂ S(c) is vanishing in the sense of P.L. Lions, see [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF]Lemma I.1], one would immediately get

lim inf n→∞ F µ (v n ) = lim inf n→∞ 1 2 ∥∇v n ∥ 2 L 2 (R N ) ≥ 0.
Thus the vanishing can directly be rule out knowing that m(c) < 0. Here [65, Lemma I.1] does not apply anymore; the term ||v n || 2 * may not go to 0 if (v n ) is vanishing. Thus we need a better understanding of this possible loss of compactness and this leads to our definition of the set V (c). This is presented in Section 2.3 where we prove the below theorem which will both imply the existence of a ground state (see Theorem 1.1.3) but also, as it may be expected, will be a crucial step to derive the orbital stability of the set M c .

Theorem 1.1.4. For any c ∈ (0, c 0 ), if (u n ) ⊂ {u ∈ H : ∥∇u∥ 2 L 2 (R N ) < ρ 0 } is such that ∥u n ∥ 2 L 2 (R N ) → c and F µ (u n ) → m(c) then, up to translation, u n H → u ∈ M c . In particular the set M c is compact in H, up to translation.
We shall now focus on the (orbital) stability of the set M c . The fact that ground states are characterized as local minima suggests, despite the problem being mass supercritical, that the set M c could be orbitally stable. Actually, such orbital stability results have now been proved, on related problems (but always Sobolev subcritical) in several recent papers [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF][START_REF] Gou | Multiple positive normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF]. Along this line we now present the following result:

Theorem 1.1.5. Let N ≥ 3, 2 < q < 2 + 4
N , µ > 0 and c 0 = c 0 (µ) > 0 be given in Theorem 1.1.3. Then, for any c ∈ (0, c 0 ), the set M c is compact, up to translation, and it is orbitally stable.

As to the global existence of solutions to (1.1.1), it is also affected by the presence of the Sobolev critical exponent. In Sobolev subcritical cases, it is well known [START_REF] Thierry | Semilinear Schrödinger equations[END_REF] that if, for an initial datum ϕ ∈ H, the maximum time of existence T max ϕ > 0 is finite then necessarily the corresponding solution v satisfies ||∇v(t)|| 2 → +∞ as t → T max ϕ . Thus, a uniform a priori bound on ||∇v(t)|| 2 yields global existence. Note that, by conservation of the Mass and Energy, in view of (1.1.4), for an initial datum in V (c)∩{u ∈ S(c) : F µ (u) < 0}, the evolution takes place in the (bounded) set V (c). Thus, in a subcritical setting, the global existence would follow directly. However, in our case it is unknown if the previous blow-up alternative holds and hence, we cannot deduce global existence just since the evolution takes place in V (c), see [START_REF] Thierry | Semilinear Schrödinger equations[END_REF]Theorem 4.5.1] or [START_REF] Tao | The nonlinear Schrödinger equation with combined power-type nonlinearities[END_REF]Proposition 3.2] for more details. To overcome this difficulty, building on the pioneering work of Cazenave-Weissler [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF], see also [START_REF] Thierry | Semilinear Schrödinger equations[END_REF]Section 4.5] , we first derive an upper bound on the propagator e it∆ which provides a kind of uniform local existence result, see Section 2.4. Next, using the information that all minimizing sequences are, up to translation, compact and also specifically and crucially that M c is compact, up to translation, we manage to show that, for initial data sufficiently close to the set M c the global existence holds and this leads to the orbital stability of M c , proving Theorem 1.1.5.

To solve the second open problem, we search for a solution lying at a mountain pass level. This type of solution has indeed been obtained recently on related problems, see, for example, [START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF][START_REF] Cingolani | Stationary waves with prescribed L 2 -norm for the planar Schrödinger-Poisson system[END_REF][START_REF] Noris | Normalized solutions for nonlinear Schrödinger systems on bounded domains[END_REF]. In particular, on (1.1.3) the existence of such a mountain pass geometry had been observed in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF] in a Sobolev subcritical setting, namely when p 2 < 2 * , and a corresponding solution had been obtained. However, when one considers the Sobolev critical case p 2 = 2 * , an additional difficulty arises due to the fact that to prove the existence of such a solution one needs a precise upper estimate of the associated mountain pass level. Roughly speaking this upper estimate is crucial to guarantee that a Palais-Smale sequence at the mountain pass level does not carry a bubble which, by vanishing when passing to the weak limit, would prevent its strong convergence in H 1 (R N ).

The need to obtain, in problem involving a Sobolev critical term, a sharp estimate on some minimax levels is known since the pioneering work of Brezis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] and the usual way to derive such strict upper bound is through the use of testing functions. It will also be the case here but we shall need, in this context, to overcome non-standard difficulties due to the fact that we search for a solution with a prescribed norm. In [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] such difficulties were first encountered and overcome but under the assumption that p c ≤ p 1 ≤ p 2 ≤ 2 * . In that case there is no solution at an energy level below the mountain pass level. In the problem we are considering, the need to respect L 2 -constraint, combined with the existence of a ground state solution makes things more complex. Indeed, it appears necessary for proving the strict inequality that we need, see (1.1.8) in Proposition 1.1.9, to control precisely the interaction between standard truncated extremal Sobolev functions, as recalled in Lemma 2.7.1, with a suitable sequence of ground states for m(c n ) with c n → c.

Let S denote the best constant in the Sobolev inequality, see (2.2.1). We now state the following result.

Theorem 1.1.6. Let N ≥ 4, 2 < q < 2 + 4 N , µ > 0 and c 0 = c 0 (µ) > 0 be given in Theorem 1.1.3. Then, for any c ∈ (0, c 0 ), there exists a second solution v c ∈ S(c) which satisfies

0 < F µ (v c ) < m(c) + S N 2 N .
In particular, v c ∈ S(c) is not a ground state.

Theorem 1.1.6 can be complemented in the following way.

Theorem 1.1.7. Under the assumptions of Theorem 1.1.6 we have, (i) For any fixed µ > 0 and assuming that c ∈ (0, c 0 (µ)),

∥∇v c ∥ 2 L 2 (R N ) → S N 2 and F µ (v c ) → S N 2 N as c → 0.
(ii) For any fixed c > 0, v c ∈ S(c) exists for any µ > 0 sufficiently small and

∥∇v c ∥ 2 L 2 (R N ) → S N 2 and F µ (v c ) → S N 2 N as µ → 0.
Let us now give some elements of the strategy of the proof of Theorem 1.1.6 which is presented in Section 2.5. We define

Q µ (u) := ∥∇u∥ 2 L 2 (R N ) -µγ q ∥u∥ q L q (R N ) -∥u∥ 2 * L 2 * (R N )
where

γ q := N (q -2) 2q . (1.1.5)
It is well known, see, for example, [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF]Lemma 2.7], that all critical points of F µ restricted to S(c) and thus any solution to (1.1.2) satisfies Q µ (u) = 0. Introducing the set

Λ(c) := {u ∈ S(c) : Q µ (u) = 0}.
we shall show that it admits the decomposition into the disjoint union

Λ(c) = Λ + (c) ∪ Λ -(c)
, where

Λ + (c) := {u ∈ Λ(c) : F µ (u) < 0}, and Λ -(c) := {u ∈ Λ(c) : F µ (u) > 0}. (1.1.6)
The ground state u c ∈ S(c) obtained in Theorem 1.1.3, see also [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF], lies on Λ + (c) and can be characterized by

F µ (u c ) = inf u∈Λ + (c) F µ (u) = inf u∈V (c) F µ (u) = m(c).
1.1. Normalized solutions for a Sobolev critical nonlinear Schrödinger equation

The critical point v c ∈ S(c) obtained in Theorem 1.1.6 will satisfy

F µ (v c ) = inf u∈Λ -(c) F µ (u).
We denote by H 1 r (R N ) the subspace of functions in H 1 (R N ) which are radially symmetric with respect to 0, and we define S r (c) := S(c) ∩ H 1 r (R N ). Accordingly, we also set

Λ + r (c) = Λ + (c) ∩ H 1 r (R N ) and Λ - r (c) = Λ -(c) ∩ H 1 r (R N ). Let M 0 (c) := inf g∈Γ 0 (c) max t∈[0,∞) F µ (g(t)) (1.1.7)
where

Γ 0 (c) := {g ∈ C([0, ∞), S r (c)) : g(0) ∈ Λ + r (c), ∃t g s.t. g(t) ∈ E c ∀t ≥ t g } with E c := {u ∈ S(c) : F µ (u) < 2m(c)} ∅.
The proof of Theorem 1.1.6 will follow directly from the three below propositions.

Proposition 1.1.8. Let N ≥ 3. For any c ∈ (0, c 0 ), there exists a Palais-Smale sequence

(u n ) ⊂ S r (c) for F µ restricted to S(c) at level M 0 (c), with Q µ (u n ) → 0 as n → ∞. Proposition 1.1.9. Let N ≥ 3. For any c ∈ (0, c 0 ), if it holds that M 0 (c) < m(c) + S N 2 N (1.1.8)
then the Palais-Smale sequence obtained in Proposition 1.1.8 is, up to subsequence, strongly convergent in H 1 r (R N ).

Proposition 1.1.10. For any c ∈ (0, c 0 ), if N ≥ 4 it holds that

M 0 (c) < m(c) + S N 2 N .
If, as a consequence of Ekeland variational principle, the geometry of the mountain pass implies the existence of a Palais-Smale sequence (a PS sequence for short) at the mountain pass Energy level it is now a well-identified difficulty that such sequences may not be bounded. To obtain a bounded PS sequence one needs to explicit a sequence having additional properties. Hence, we first prove that the existence of a PS sequence u n which satisfies

Q µ (u n ) → 0 as n → ∞ in Proposition 1.1.8. The condition that Q µ (u n ) → 0 as n → ∞,
incorporated into the variational procedure the information that any solution must satisfy the Pohozaev type identity Q µ (u) = 0, see [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF] in that direction. The convergence of such PS sequence is proved in Proposition 1.1.9 under the assumption of the strict upper bound of mountain pass level M 0 (c), see (1.1.8). To establish Proposition 1.1.9, we shall make use of arguments first presented in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Proposition 3.1]. It is important to notice that the strong convergence is only obtained by working in H 1 r (R N ). Proposition 1.1.10 is the heart of the proof of Theorem 1.1.6 where the strict inequality (1.1.8) is proved by using test functions. We construct test functions that could be viewed as the sum of a truncated extremal function of the Sobolev inequality on R N translated far away from the origin. This choice of testing functions are sufficient to prove our strict inequality when N ≥ 4 but we miss it in the case N = 3.

Finally, we state the strongly unstable of the standing waves obtained in Theorem 1.1.6. Actually this result is a direct consequence of the variational characterization of the solution obtained in Theorem 1.1.6, combined with recent advances on the subject of instability by blow-up contained in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF].

Theorem 1.1.11. Under the assumptions of Theorem 1.1.6 the associated standing wave e -λt v c (x) is strongly unstable.

Normalized solutions for a Schrödinger-Poisson-Slater equation

In Chapter 3, we consider the following Schrödinger-Poisson-Slater equations:

i∂ t v + ∆v + γ(|x| -1 * |v| 2 )v + a|v| p-2 v = 0 in R × R 3 , (1.2.1)
where v : R × R 3 → C, γ ∈ R, a ∈ R and p ∈ ( 10 3 , 6]. We look for standing wave solutions to (1.2.1), namely to solutions of the form v(t, x) = e iλt u(x), λ ∈ R. Then the function u(x) satisfies the equation

-∆u + λu -γ(|x| -1 * |u| 2 )u -a|u| p-2 u = 0 in R 3 . (1.2.2)
Motivated by the fact that the L 2norm is a preserved quantity of the evolution we focus on the search of solutions to (1.2.2) with prescribed L 2norm. It is standard that for some prescribed c > 0, a solution of (1.2.2) with ∥u∥ 2 L 2 (R 3 ) = c can be obtained as a critical point of the Energy functional

F(u) := 1 2 R 3 |∇u| 2 dx - γ 4 R 3 R 3 |u(x)| 2 |u(y)| 2 |x -y| dxdy - a p R 3 |u| p dx restricted to S(c) := {u ∈ H 1 (R 3 ) : ∥u∥ 2 L 2 (R 3 ) = c}.
Then the parameter λ ∈ R in (1.2.2) appears as a Lagrange multiplier, it is an unknown of the problem. As we know, F(u) is a well-defined and C 1 functional on S(c) for any p ∈ (2, 6] (see [START_REF] Ruiz | The Schrödinger-Poisson equation under the effect of a nonlinear local term[END_REF] for example).

Let us define

m(c) = inf u∈S(c) F(u). (1.2.3)
Depending on the range of parameters we shall consider m(c) will be finite or not. The case where γ < 0 and a > 0 in (1.2.2) has been the most studied so far. When p ∈ (2, 10 3 ) it can been shown that m(c) ∈ (-∞, 0] for any c > 0 and it is also the case when p = 10 3 and c > 0 is small. It is shown in [START_REF] Bellazzini | Stable standing waves for a class of nonlinear Schrödinger-Poisson equations[END_REF] that minimizer exists if p ∈ (2, 3) and c > 0 is small enough, see also [START_REF] Sánchez | Long-time dynamics of the Schrödinger-Poisson-Slater system[END_REF] for the special case p = 8 3 . The case p ∈ (3, 10 3 ) was considered in [START_REF] Bellazzini | Scaling properties of functionals and existence of constrained minimizers[END_REF][START_REF] Jeanjean | Sharp nonexistence results of prescribed L 2 -norm solutions for some class of Schrödinger-Poisson and quasi-linear equations[END_REF], see also [START_REF] Kikuchi | Existence and stability of standing waves for Schrödinger-Poisson-Slater equation[END_REF] for a closely related problem. In [START_REF] Jeanjean | Sharp nonexistence results of prescribed L 2 -norm solutions for some class of Schrödinger-Poisson and quasi-linear equations[END_REF] the existence of a threshold value c 0 > 0 such that m(c) has a minimizer if and only if c ∈ [c 0 , ∞) was established. It was also proved in [START_REF] Jeanjean | Sharp nonexistence results of prescribed L 2 -norm solutions for some class of Schrödinger-Poisson and quasi-linear equations[END_REF] that a 1.2. Normalized solutions for a Schrödinger-Poisson-Slater equation minimizer does not exist for any c > 0 if p = 3 or p = 10 3 . We also refer to [START_REF] Catto | Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentrationcompactness principle[END_REF] for related results. When p ∈ ( 10 3 , 6] a scaling argument reveals that m(c) = -∞ but nevertheless it was proved in [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF] that, when p ∈ ( 10 3 , 6) there exists, for c > 0 small enough a critical point of F constrained to S(c) at a strictly positive level. In this work we complement the result of [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF] by showing that when p = 6 and for any c > 0 there does not exist positive solutions, see Theorem 1.2.5.

Even if some open problems remain when γ < 0 and a > 0, we shall mainly concentrate here on the others cases: (γ < 0, a < 0), (γ > 0, a > 0) and (γ > 0, a < 0). We define, for short, the following quantities

A(u) := R 3 |∇u| 2 dx, B(u) := R 3 R 3 |u(x)| 2 |u(y)| 2 |x -y| dxdy, C(u) := R 3 |u| p dx.
For u ∈ S(c), we set u t (x) := t 3 2 u(tx), t > 0, then

u t ∈ S(c), A(u t ) = t 2 A(u), B(u t ) = tB(u), C(u t ) = t σ C(u),
where

2 < σ := 3(p -2) 2 ≤ 6, (1.2.4) 
due to p ∈ ( 10 3 , 6]. For u ∈ S(c), we define the fiber map

t ∈ (0, ∞) → g u (t) := F(u t ) = 1 2 t 2 A(u) - γ 4 tB(u) - a p t σ C(u).
Hence, we have

g ′ u (t) = tA(u) - γ 4 B(u) - aσ p t σ -1 C(u) = 1 t Q(u t ),
where

Q(u) = A(u) - γ 4 B(u) - aσ p C(u).
Actually the condition Q(u) = 0 corresponds to a Pohozaev identity and the set

Λ(c) := {u ∈ S(c) : Q(u) = 0} = {u ∈ S(c) : g ′ u (1) = 0}
appears as a natural constraint. Indeed, if u ∈ S(c), then t > 0 is a critical point for g u if and only if u t ∈ Λ(c). In particular, u ∈ Λ(c) if and only if 1 is a critical point of g u . First we briefly consider the case γ < 0, a < 0. For any u ∈ S(c), we have that g ′ u (t) > 0 for all t > 0, hence the fiber map g u (t) is strictly increasing and so we can state the following non-existence result: Theorem 1.2.1. Assume that γ < 0, a < 0. Then F(u) has no critical point on S(c).

Next, we consider the case γ > 0, a > 0. In this case, let

c 1 := 4 γK H σ -2 σ -1 3p-10 4(p-3) p aσ (σ -1)K GN 1 2(p-3) > 0, (1.2.5)
where σ is defined by (1.2.4) and K H , K GN are some suitable constants. We also introduce the decomposition of Λ(c) into the disjoint union

Λ(c) = Λ + (c) ∪ Λ 0 (c) ∪ Λ -(c), where Λ + (c) := {u ∈ Λ(c) : g ′′ u (1) > 0} = {u ∈ S(c) : g ′ u (1) = 0, g ′′ u (1) > 0}, Λ 0 (c) := {u ∈ Λ(c) : g ′′ u (1) = 0} = {u ∈ S(c) : g ′ u (1) = 0, g ′′ u (1) = 0}, Λ -(c) := {u ∈ Λ(c) : g ′′ u (1) < 0} = {u ∈ S(c) : g ′ u (1) = 0, g ′′ u (1) < 0}.
For any c ∈ (0, c 1 ) we can prove that Λ 0 (c) = ∅ and Λ + (c) ∅, Λ -(c) ∅. Since F is bounded from below on Λ(c), we can define

γ + (c) := inf u∈Λ + (c) F(u) and γ -(c) := inf u∈Λ -(c) F(u). (1.2.6)
Our first main result is Theorem 1.2.2. Let p ∈ ( 10 3 , 6]. Assume that γ > 0, a > 0 and let c 1 > 0 be defined by (1.2.5). For any c ∈ (0, c 1 ), there exist If the geometrical structure of F restricted to S(c) is identical in the Sobolev subcritical case p ∈ ( 10 3 , 6) and in the Sobolev critical case p = 6, the proof that the levels γ + (c) and γ -(c) are indeed reached requires additional, more involved, arguments in the case p = 6. In particular, showing that γ -(c) is attained requires to check that the following inequality holds

u + c ∈ Λ + (c) such that F(u + c ) = γ + (c) and u - c ∈ Λ -(c) such that F(u - c ) = γ -(c
γ -(c) < γ + (c) + 1 3 √ aK GN . (1.2.7)
It is known since the pioneering work of Brezis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] that the way to derive such a strict upper bound is through the use of testing functions. In Chapter 2, considering the equation

-∆u -λu -µ|u| q-2 u -|u| 2 * -2 u = 0 in R N , (1.2.8)
with N ≥ 3, µ > 0, 2 < q < 2+ 4 N and 2 * = 2N N -2 we face the need to establish a similar inequality. We constructed test functions which could be viewed as the sum of a truncated extremal function of the Sobolev inequality on R N centered at the origin and of u + c translated far away from the origin. This choice of testing functions was sufficient to prove our strict inequality when N ≥ 4 but we missed it in the case N = 3. Very recently, in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF] the authors introduced an alternative choice of testing functions which allowed to treat, in a unified way, the case N = 3 and N ≥ 4 for (1.2.8). The strategy in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF], recording of the one introduced by G. Tarantello in [START_REF] Tarantello | On nonhomogeneous elliptic equations involving critical Sobolev exponent[END_REF], is on the contrary, to located the extremal functions where the solution u + c takes its greater values (the origin thus). The idea behind the proof is that the interaction decreases the value of the Energy with respect to the case where the supports would be disjoint. Since (1.2.2) is set on R 3 , we believe in view of our experience on (1.2.8), more appropriate to follow the approach of [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF] to check the inequality (1.2.7) for any c ∈ (0, c 1 ).

The results of Theorem 1.2.2 are complemented in several directions. First, we show that the solution u + (c) obtained in Theorem 1.2.2 can be characterized as a local minima for F restricted to S(c). We treat here the full range p ∈ ( [START_REF] Claudianor | Existence of a ground state solution for a nonlinear scalar field equation with critical growth[END_REF]. Assume that γ > 0, a > 0 and let c ∈ (0, c 1 ). Then we have Λ + (c) ⊂ V (c) and

γ + (c) = inf u∈Λ + (c) F(u) = inf u∈V (c) F(u)
where

V (c) := {u ∈ S(c)|A(u) < k 1 }
for some k 1 > 0 independent of c ∈ (0, c 1 ). In addition, any minimizing sequence for F on V (c) is, up to translation, strongly convergent in H 1 (R 3 ).

As we shall see γ + (c) < γ -(c) and combined with the property that any critical point lies in Λ(c) it implies that the solution u + c obtained in Theorem 1.2.2 is a ground state. Following [START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF] a ground state is defined as a solution v ∈ S(c) to (1.2.2) which has minimal Energy among all the solutions which belong to S(c). Namely, if

F(v) = inf F(u), u ∈ S(c), F S(c) ′ (u) = 0 .
Let us now denote

M c := {u ∈ V (c) : F(u) = γ + (c)}.
Hence, M c is the set of all ground states. The property that any minimizing sequence for F restricted to V (c) is, up to translation, strongly converging is known to be a key ingredient to show that the set M c is orbitally stable. If p ∈ ( 10 3 , 6) the orbital stability of M c indeed follows directly from Theorem 1.2.3 by the classical arguments of [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. In the case p = 6 the situation is more delicate as the existence of a uniform H 1 (R 3 ) bound on the solution of (1.2.1) during its lifespan is not sufficient to guarantee that blow-up may not occurs. We refer to [START_REF] Thierry | Semilinear Schrödinger equations[END_REF] for more details. We do not prove anything in that direction but strongly believe that the set M c is orbitally stable. Actually, such a result has been obtained on the equation (1.2.8) in Chapter 2.

We also discuss the behavior of the associated Lagrange multipliers in Chapter 3 and show that if the behavior of λ + c is essentially the same for the cases p ∈ ( 10 3 , 6) and p = 6, there is a distinct behavior for λ - c . Besides, we also establish the property that the map c → γ -(c) is strictly decreasing.

Next, we consider the case γ > 0, a < 0. Recalling the definition of m(c) given in (1.2.3) we shall show that -∞ < m(c) < 0 and then we prove the following result. Theorem 1.2.4. Let p ∈ ( 10 3 , 6], γ > 0 and a < 0. For any c > 0, the infimum m(c) is achieved and any minimizing sequence for (1.2.3) is, up to translation, strongly convergent in H 1 (R 3 ) to a solution of (1.2.2). In addition, the associated Lagrange multiplier is positive.

Even if the proof of Theorem 1.2.4 follows the lines of the proof of Theorem 1.2.3, the change of sign in front of the power term requires some adaptations. Here again the orbital stability of the set of minimizers should follow directly from the classical arguments of [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] if p ∈ ( 10 3 , 6) and it should also be the case when p = 6 by adapting the arguments of Chapter 2. Note that the behavior of the associated Lagrange multipliers is also studied.

In the last part of Chapter 3 we consider the case γ < 0, a > 0 and p = 6. Based on Liouville-type result which are proved for exterior domain of R N by [7, Theorem 2.1], we obtain the following result: Theorem 1.2.5. Let p = 6, γ < 0 and a > 0. For any c > 0, we have that 3 ) is a non-trivial solution to (1.2.2) then the associated Lagrange multiplier λ is negative and No positive solution a saddle point, see [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF] for any c > 0 γ > 0, a < 0 One solution for any c > 0: a global minimizer γ > 0, a > 0 Two solutions for c small enough: one local minimizer, one saddle point

(i) If u ∈ H 1 (R
F(u) > 1 3 √ aK GN . (ii)

Introduction

In this chapter, we study the existence and orbital stability of ground state standing waves of prescribed mass for the nonlinear Schrödinger equation with mixed power nonlinearities

i∂ t v + ∆v + µv|v| q-2 + v|v| 2 * -2 = 0, (t, x) ∈ R × R N , (2.1.1)
where

N ≥ 3, v : R × R N → C, µ > 0, 2 < q < 2 + 4 N and 2 * = 2N N -2 .
We recall that standing waves to (2.1.1) are solutions of the form v(t, x) = e -iλt u(x), λ ∈ R. Then the function u(x) satisfies the equation

-∆u -λu -µ|u| q-2 u -|u| 2 * -2 u = 0 in R N . (2.1.2)
Motivated by the fact that the L 2norm is a preserved quantity of the evolution we focus on the search of solutions to (2.1.2) having a prescribed L 2 -norm. Defining on

H := H 1 (R N , C) the Energy functional F µ (u) := 1 2 ∥∇u∥ 2 L 2 (R N ) - µ q ∥u∥ q L q (R N ) - 1 2 * ∥u∥ 2 * L 2 * (R N )
it is standard to check that F µ is of class C 1 and that a critical point of F µ restricted to the (mass) constraint

S(c) := {u ∈ H : ∥u∥ 2 L 2 (R N ) = c}
gives rise to a solution to (2.1.2), satisfying ∥u∥ 2 L 2 (R N ) = c. In this approach the parameter λ ∈ R arises as a Lagrange multiplier. In particular, λ ∈ R does depend on the solution and is not a priori given.

We shall focus on the existence of ground state solutions. 

F µ (u c ) = inf F µ (u), u ∈ S(c), F µ S(c) ′ (u) = 0 .
Note that this definition keeps a meaning even in situations where the Energy F µ is unbounded from below on S(c). Implicit in [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF], this definition was formally introduced, on a related model, in [START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF] and is now becoming standard.

It is well-known that the study of problems with mixed nonlinearities and the type of results one can expect, depend on the behavior of the nonlinearities at infinity, namely on the value of the various power exponents. In particular, this behavior determines whether the functionnal is bounded from below on S(c). One speaks of a mass subcritical case if it is bounded from below on S(c) for any c > 0, and of a mass supercritical case if the functional is unbounded from below on S(c) for any c > 0. One also refers to a mass critical case when the boundedness from below does depend on the value c > 0. To be more precise, consider an equation of the form

i∂ t v + ∆v + µv|v| p 1 -2 + v|v| p 2 -2 = 0, (t, x) ∈ R × R N , (2.1.3)
where it is assumed that 2 < p 1 ≤ p 2 ≤ 2 * . The threshold exponent is the so-called L 2 -critical exponent

p c = 2 + 4 N .
A very complete analysis of the various cases that may happen for (2.1.3), depending on the values of (p 1 , p 2 ), has been provided recently in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]. Let us just recall here some rough elements. If both p 1 and p 2 are strictly less than p c then the associated Energy functional is bounded from below on S(c) and to find a ground state one looks for a global minimum on S(c). The problem then directly falls into the setting covered by the Compactness by Concentration Principle introduced by P.L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF] which, for more complicated equations, in particular non autonomous ones, is still a very active field. Such solutions are expected to be orbitally stable, see Definition 2.1.5 below. If p c ≤ p 1 ≤ p 2 ≤ 2 * , then the Energy functional is unbounded from below on S(c) but it is possible to show that a ground state exists. This ground state is characterized as a critical point of mountain-pass type and it lies at a strictly positive level of the Energy functional. Such ground states are expected to be orbitally unstable. We refer, for the link between the variational characterization of a solution and its instability, to the classical paper [START_REF] Berestycki | Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires[END_REF], and to [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF][START_REF] Le | A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] for more recent developments.

In the case we consider here : 2 < p 1 < p c < p 2 = 2 * , the Energy functional is thus unbounded from below on S(c) but, as we shall see, the presence of the lower order, mass subcritical term -µ∥u∥ q L q (R N ) created, for sufficiently small values of c > 0, a geometry of local minima on S(c). The presence of such geometry, in problems which are mass supercritical, had already been observed in several related situations. In [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF][START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF] for related scalar problems, in [START_REF] Gou | Multiple positive normalized solutions for nonlinear Schrödinger systems[END_REF] in the case of a system or [START_REF] Noris | Normalized solutions for nonlinear Schrödinger systems on bounded domains[END_REF] for an evolution problem set on a bounded domain. Actually, it was already observed on (2.1.1) in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF].

Precisely, for any fixed µ > 0, we shall find an explicit value c 0 = c 0 (µ) > 0 such that, for any c ∈ (0, c 0 ), there exists a set V (c) ⊂ S(c) having the property that

m(c) := inf u∈V (c) F µ (u) < 0 < inf u∈∂V (c) F µ (u).
(2.1.4)

The sets V (c) and ∂V (c) are given by

V (c) := {u ∈ S(c) : ∥∇u∥ 2 L 2 (R N ) < ρ 0 }, ∂V (c) := {u ∈ S(c) : ∥∇u∥ 2 L 2 (R N ) = ρ 0 }
for a suitable ρ 0 > 0, depending only on c 0 > 0 but not on c ∈ (0, c 0 ). We also introduce the set

M c := {u ∈ V (c) : F µ (u) = m(c)}.
Our first result is,

Theorem 2.1.2. Let N ≥ 3, 2 < q < 2 + 4 N .
For any µ > 0 there exists a c 0 = c 0 (µ) > 0 such that, for any c ∈ (0, c 0 ), F µ restricted to S(c) has a ground state. This ground state is a (local) minimizer of F µ in the set V (c) and any ground state for (iv) The map c → m(c) is non-increasing and that m(c) → 0 as c → 0, see Lemma 2.3.5.

F µ on S(c) is a local minimizer of F µ on V (c). In addition, if (u n ) ⊂ V (c) is such that F µ (u n ) → m(c) then, up to translation, u n → u ∈ M c in H 1 (R N , C). Remark 2.1.3. The value of c 0 = c 0 (µ) > 0 is
(iv) More globally, under the assumption of Theorem 2.1.2 it can be proved that, for any c ∈ (0, c 0 ), M c has the following structure:

M c = {e iθ u, for some θ ∈ R, u ∈ Mc , u > 0}, where Mc = {u ∈ S(c) ∩ H 1 (R N , R), F µ (u) = m(c)}.
Indeed, this description directly follows from the convergence, up to translation, of the minimizing sequences of F µ restricted to V (c), applying the argument of [START_REF] Hajaiej | On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation[END_REF]Section 3]. We leave the details to the interested reader.

We shall now focus on the (orbital) stability of the set M c . Following the terminology of [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], see also [START_REF] Hajaiej | On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation[END_REF], we give the following definition. Definition 2.1.5. Z ⊂ H is stable if : Z ∅ and for any v ∈ Z and any ε > 0, there exists a δ > 0 such that if ϕ ∈ H satisfies ||ϕ -v|| H < δ then u ϕ (t) is globally defined and inf z∈Z ||u ϕ (t) -z|| H < ε for all t ∈ R, where u ϕ (t) is the solution to (2.1.1) corresponding to the initial condition ϕ.

Notice that the orbital stability of the set Z implies the global existence of solutions to (2.1.1) for initial datum ϕ close enough to the set Z. We underline that this fact is non trivial due to the critical exponent that appears in (2.1.1), even if the H norm of the solution is uniformly bounded on the lifespan of the solution.

The fact that ground states are characterized as local minima suggests, despite the problem being mass supercritical, that the set M c could be orbitally stable. Actually, such orbital stability results have now been proved, on related problems (but always Sobolev subcritical) in several recent papers [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF][START_REF] Gou | Multiple positive normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF]. Along this line we now present the main result of this chapter.

Theorem 2.1.6. Let N ≥ 3, 2 < q < 2 + 4 N , µ > 0 and c 0 = c 0 (µ) > 0 be given in Theorem 2.1.2. Then, for any c ∈ (0, c 0 ), the set M c is compact, up to translation, and it is orbitally stable.

In [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF], Soave studied equation (2.1.1) and derived, for any small c > 0 depending on µ > 0, an existence result which is very similar to the one contained in Theorem 2.1.2, see [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.1]. However, it does not seem possible to use [81, Theorem 1.1] as a starting point to prove Theorem 2.1.6. The existence of a ground state in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.1] is obtained through the study of one particular (locally) minimizing sequence which is radially symmetric. As already explained in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF], to obtain the orbital stability of the set M c , following the classical approach laid down in [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], two ingredients are essential. First, the relative compactness, up to translation, of all minimizing sequences for F µ on V (c), as guaranteed by our Theorem 2.1.2. Secondly, the global existence of solutions to (2.1.1) for initial data close to M c .

To obtain the relative compactness of all minimizing sequences, the fact that one minimizes only on a subset of S(c), in contrast to a global minimization on all S(c), increases the difficulty to rule out a possible dichotomy. Different strategies have been recently implemented to deal with this issue [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF][START_REF] Gou | Multiple positive normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF], all relying on a suitable choice of the set where the local minima is searched. In the presence of a Sobolev critical term an additional difficulty arises. In a Sobolev subcritical setting, if a sequence (v n ) ⊂ S(c) is vanishing then applying [65, (2.1.4), for an initial datum in V (c)∩{u ∈ S(c) : F µ (u) < 0}, the evolution takes place in the (bounded) set V (c). Thus, in a subcritical setting, the global existence would follow directly. However, in our case it is unknown if the previous blow-up alternative holds and hence, we cannot deduce global existence just since the evolution takes place in V (c), see [START_REF] Thierry | Semilinear Schrödinger equations[END_REF]Theorem 4.5.1] or [START_REF] Tao | The nonlinear Schrödinger equation with combined power-type nonlinearities[END_REF]Proposition 3.2] for more details. To overcome this difficulty, building on the pioneering work of Cazenave-Weissler [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF], see also [START_REF] Thierry | Semilinear Schrödinger equations[END_REF]Section 4.5] , we first derive an upper bound on the propagator e it∆ which provides a kind of uniform local existence result, see Proposition 2.4.3. Next, using the information that all minimizing sequences are, up to translation, compact and also specifically and crucially that M c is compact, up to translation, we manage to show that, for initial data sufficiently close to the set M c the global existence holds and this leads to the orbital stability of M c , proving Theorem 2.1.6.

Remark 2.1.7. We point out that, in order to prove Theorem 2.1.6, we have only established the global existence of solutions for initial data close to M c . We believe it would be interesting to inquire if the global existence holds away from M c , typically for any initial data in V (c) ∩ {u ∈ S(c) : F µ (u) < 0}. If so, investigating the long time behavior of these solutions would be worth to. Our guess is that these solutions evolve toward the sum of an element of M c and a part which scatter. However, so far nothing is known in that direction. Now, we focus on the second solution to (2.1.1). We observe that the structure of local minima, for a functional which is unbounded from below, suggests the possibility to search for a solution lying at a mountain pass level. This type of solution has indeed been obtained recently on related problems, see, for example, [START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF][START_REF] Cingolani | Stationary waves with prescribed L 2 -norm for the planar Schrödinger-Poisson system[END_REF][START_REF] Noris | Normalized solutions for nonlinear Schrödinger systems on bounded domains[END_REF]. In particular, on (2.1.3) the existence of such a mountain pass geometry had been observed in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF] in a Sobolev subcritical setting, namely when p 2 < 2 * , and a corresponding solution had been obtained. However, when one considers the Sobolev critical case p 2 = 2 * , an additional difficulty arises due to the fact that to prove the existence of such a solution one needs a precise upper estimate of the associated mountain pass level. Roughly speaking this upper estimate is crucial to guarantee that a Palais-Smale sequence at the mountain pass level does not carry a bubble which, by vanishing when passing to the weak limit, would prevent its strong convergence in H 1 (R N ).

The need to obtain, in problem involving a Sobolev critical term, a sharp estimate on some minimax levels is known since the pioneering work of Brezis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] and the usual way to derive such strict upper bound is through the use of testing functions. It will also be the case here but we shall need, in this context, to overcome non-standard difficulties due to the fact that we search for a solution with a prescribed norm. In [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] such difficulties were first encountered and overcome but under the assumption that p c ≤ p 1 ≤ p 2 ≤ 2 * . In that case there is no solution at an energy level below the mountain pass level. In the problem we are considering, the need to respect L 2 -constraint, combined with the existence of a ground state solution makes things more complex. Indeed, it appears necessary for proving the strict inequality that we need, see (2.1.8) in Proposition 2.1.13, to control precisely the interaction between standard truncated extremal Sobolev functions, as recalled in Lemma 2.7.1, with a suitable sequence of ground states for m(c n ) with c n → c, see the proof of Proposition 2.1.18 for more details. Actually, the existence of a second solution to (2.1.2) was proposed in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] as an open problem.

From here until the end of the thesis, S denotes the best constant in the Sobolev inequality, see (2.2.1). We now state the main result.

Theorem 2.1.8. Let N ≥ 4, 2 < q < 2 + 4
N , µ > 0 and c 0 = c 0 (µ) > 0 be given in Theorem 2.1.2. Then, for any c ∈ (0, c 0 ), there exists a second solution v c ∈ S(c) which satisfies

0 < F µ (v c ) < m(c) + S N 2 N .
In particular, v c ∈ S(c) is not a ground state.

Theorem 2.1.8 can be complemented in the following way.

Theorem 2.1.9. Under the assumptions of Theorem 2.1.8 we have, (i) For any fixed µ > 0 and assuming that c ∈ (0, c 0 (µ)),

∥∇v c ∥ 2 L 2 (R N ) → S N 2 and F µ (v c ) → S N 2 N as c → 0.
(ii) For any fixed c > 0, v c ∈ S(c) exists for any µ > 0 sufficiently small and

∥∇v c ∥ 2 L 2 (R N ) → S N 2 and F µ (v c ) → S N 2 N as µ → 0.
Remark 2.1.10. Theorem 2.1.9 (ii) can be set in parallel with [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.4 2)]. Note that a particular emphasis is given in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] on the behavior of the solutions as µ → 0, in the spirit of the so-called Brezis-Nirenberg problem. In that direction, but for a fixed λ ∈ R problem, we also refer to [START_REF] Coles | Solitary waves and dynamics for subcritical perturbations of energy critical NLS[END_REF].

Theorem 2.1.11. Under the assumptions of Theorem 2.1.8 the associated standing wave e -λt v c (x) is strongly unstable.

We do not claim any originality in Theorem 2.1.11. Actually this result is a direct consequence of the variational characterization of the solution obtained in Theorem 2.1.8, combined with recent advances on the subject of instability by blow-up contained in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF].

Let us now give some elements of the strategy of the proof of Theorem 2.1.8. We define

Q µ (u) := ∥∇u∥ 2 L 2 (R N ) -µγ q ∥u∥ q L q (R N ) -∥u∥ 2 * L 2 * (R N )
where

γ q := N (q -2) 2q . (2.1.5)
It is well known that all critical points of F µ restricted to S(c) and thus any solution to (2.1.2) satisfies Q µ (u) = 0, see Lemma 2.2.1. Introducing the set

Λ(c) := {u ∈ S(c) : Q µ (u) = 0}.
we shall show, see Lemma 2.2.3, that it admits the decomposition into the disjoint union

Λ(c) = Λ + (c) ∪ Λ -(c),
where

Λ + (c) := {u ∈ Λ(c) : F µ (u) < 0}, and Λ -(c) := {u ∈ Λ(c) : F µ (u) > 0}. (2.1.6)
The ground state u c ∈ S(c) obtained in Theorem 2.1.2, see also [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF], lies on Λ + (c) and can be characterized by

F µ (u c ) = inf u∈Λ + (c) F µ (u) = inf u∈V (c) F µ (u) = m(c).
The critical point v c ∈ S(c) obtained in Theorem 2.1.8 will satisfy, see Remark 2.5.4,

F µ (v c ) = inf u∈Λ -(c) F µ (u).
The proof of Theorem 2.1.8 will follow directly from the three propositions below.

We denote by H 1 r (R N ) the subspace of functions in H 1 (R N ) which are radially symmetric with respect to 0, and we define S r (c) := S(c) ∩ H 1 r (R N ). Accordingly, we also set

Λ + r (c) = Λ + (c) ∩ H 1 r (R N ) and Λ - r (c) = Λ -(c) ∩ H 1 r (R N ). Let M 0 (c) := inf g∈Γ 0 (c) max t∈[0,∞) F µ (g(t)) (2.1.7)
where

Γ 0 (c) := {g ∈ C([0, ∞), S r (c)) : g(0) ∈ Λ + r (c), ∃t g s.t. g(t) ∈ E c ∀t ≥ t g } with E c := {u ∈ S(c) : F µ (u) < 2m(c)} ∅.
Proposition 2.1.12. Let N ≥ 3. For any c ∈ (0, c 0 ), there exists a Palais-Smale sequence

(u n ) ⊂ S r (c) for F µ restricted to S(c) at level M 0 (c), with Q µ (u n ) → 0 as n → ∞. Proposition 2.1.13. Let N ≥ 3. For any c ∈ (0, c 0 ), if it holds that M 0 (c) < m(c) + S N 2 N (2.1.8)
then the Palais-Smale sequence obtained in Proposition 2.1.12 is, up to subsequence, strongly convergent in H 1 r (R N ).

Proposition 2.1.14. For any c ∈ (0, c 0 ), if N ≥ 4 it holds that

M 0 (c) < m(c) + S N 2 N .
Remark 2.1.15. If, as a consequence of Ekeland variational principle, the geometry of the mountain pass implies the existence of a Palais-Smale sequence (a PS sequence for short) at the mountain pass Energy level it is now a well-identified difficulty that such sequences may not be bounded. To obtain a bounded PS sequence one needs to explicit a sequence having additional properties. The condition that Q µ (u n ) → 0 as n → ∞, incorporated into the variational procedure the information that any solution must satisfy the Pohozaev type identity Q µ (u) = 0, see [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF] in that direction.

Remark 2.1.16. To establish Proposition 2.1.13, we shall make use of arguments first presented in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Proposition 3.1]. It is important to notice that the strong convergence is only obtained by working in

H 1 r (R N ). Indeed the strong convergence in L q (R N ) of any weakly converging sequence in H 1 r (R N ) is crucially used.
The proof of Proposition 2.1.14, which is the heart of the proof of Theorem 2.1.8, can be divided into two parts whose proofs require different types of arguments. Let

M(c) := inf h∈Γ (c) max t∈[0,∞) F µ (h(t))
where

Γ (c) := {h ∈ C([0, ∞), S(c)) : h(0) ∈ V (c) ∩ {u : F µ (u) < 0}, ∃t h s.t. h(t) ∈ E c ∀t ≥ t h }. Proposition 2.1.17. Let N ≥ 3. For any c ∈ (0, c 0 ), it holds that M 0 (c) ≤ M(c). Proposition 2.1.18. For any c ∈ (0, c 0 ), if N ≥ 4 we have that M(c) < m(c) + S N 2 N . (2.1.9)
Even if the conclusion of Proposition 2.1.17 may somehow been expected, the proof of this result is rather involved. Due to the fact that the symmetric rearrangement map is not continuous from H 1 + (R N ), the subspace of non negative functions in [START_REF] Almgren | Symmetric decreasing rearrangement can be discontinuous[END_REF][START_REF] Almgren | Symmetric decreasing rearrangement is sometimes continuous[END_REF], it is not possible to replace a given path (of non negative functions which is not restrictive) by a path which would be a Schwarz rearrangement (elements by elements) of the initial path, see [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF]Remark 5.2] for a discussion in that direction. Actually, if the strict inequality of (2.1.4) guarantees that the functional has a mountain pass geometry, it is not a sufficient information to prove that M 0 (c) ≤ M(c). A better understanding of the geometry of the functional F µ is required and, for this purpose, we introduce a set W (c), directly connected with the decomposition Λ(c) = Λ + (c) ∪ Λ -(c) and study its relation with

H 1 (R N ), to H 1 + (R N ) if N ≥ 2, see
V (c), see Lemma 2.2.4.
Note that we need to prove that M 0 (c) ≤ M(c) because, on one hand the compactness of the Palais-Smale sequence at the mountain pass level can only be obtained by working in H 1 r (R N ), on the other hand to show the strict inequality in Proposition 2.1.18 we need to work with testing functions, testing paths actually, which are not radial. The idea of using non-radial test functions to estimate a mountain pass level defined on a radial space seems to be new. Remark 2.1.19. It is only in Proposition 2.1.18 that appears the need to restrict ourselves to N ≥ 4 in Theorem 2.1.8, Theorem 2.1.9 and Theorem 2.1.11. The strict inequality in Proposition 2.1.18 is proved by using test functions. We construct test functions that could be viewed as the sum of a truncated extremal function of the Sobolev inequality on R N translated far away from the origin. This choice of testing functions are sufficient to prove our strict inequality when N ≥ 4 but we miss it in the case N = 3.

Chapter 2 is organized as follows. Section 2.2 is devoted to some preliminaries. In particular we clarify the structure of the set Λ(c) and introduce our set W (c) which will prove essential in the proof of Proposition 2.1.17. We shall study the existence of ground state solutions and prove Theorem 2.1.2 in Section 2.3. The orbital stability of the ground state solutions corresponded Theorem 2.1.6 will be proved in Section 2.4. In Section 2.5, the proofs of the existence of standing waves lying at mountain pass levels are given. More specifically, the proof of Proposition 2.1.12, Proposition 2.1.13 and Proposition 2.1.14 are given in Subsection 2.5.1, Subsection 2.5.2 and Subsection 2.5.3 respectively and finally Subsection 2.5.4 presents the proof of Theorem 2.1.6 and additional properties. The strong instability of such standing waves are studied in Section 2.6.

Preliminary results

We shall make use of the following classical inequalities : For any N ≥ 3 there exists an optimal constant S > 0 depending only on N , such that

S∥f ∥ 2 2 * ≤ ∥∇f ∥ 2 2 , ∀f ∈ H 1 (R N ), (Sobolev inequality) (2.2.1) see [23, Theorem 9.9]. If N ≥ 2 and p ∈ [2, 2N N -2 ) then ∥f ∥ p ≤ C N ,p ∥∇f ∥ β 2 ∥f ∥ (1-β) 2 , with β = N 1 2 - 1 p (Gagliardo-Nirenberg inequality), (2.2.2)
for all f ∈ H 1 (R N ), see [START_REF] Nirenberg | On elliptic partial differential equations[END_REF]. Now, let u ∈ S(c) be arbitrary but fixed. For s ∈ R + we set

u s (x) := s N 2 u(sx).
Clearly u s ∈ S(c) for any s ∈ R + . We define on R + the fiber map,

ψ u (s) := F µ (u s ) = s 2 2 ∥∇u∥ 2 L 2 (R N ) - µ q s qγ q ∥u∥ q L q (R N ) - s 2 * 2 * ∥u∥ 2 * L 2 * (R N ) , (2.2.3)
where γ q is given in (2.1.5). Note that γ q ∈ (0, 1) and qγ q ∈ (0, 2). We also have

ψ ′ u (s) = s∥∇u∥ 2 L 2 (R N ) -µγ q s qγ q -1 ∥u∥ q L q (R N ) -s 2 * -1 ∥u∥ 2 * L 2 * (R N ) = 1 s Q µ (u s ), (2.2.4) 
where

Q µ (u) = ∥∇u∥ 2 L 2 (R N ) -µγ q ∥u∥ q L q (R N ) -∥u∥ 2 * L 2 * (R N ) . Lemma 2.2.1. Let N ≥ 3. If (u, λ) ∈ H 1 (R N )\{0} × R is a solution to -∆u -µ|u| q-2 u -|u| 2 * -2 u = λu, (2.2.5)
then Q µ (u) = 0 and λ < 0.

Proof. The fact that any solution to (2.2.5) satisfies Q µ (u) = 0 is a direct consequence of the Pohozaev identity see, for example, [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF]Lemma 2.7]. Now we deduce from (2.2.5) that

∥∇u∥ 2 L 2 (R N ) -µ∥u∥ q L q (R N ) -∥u∥ 2 * L 2 * (R N ) = λ∥u∥ 2 L 2 (R N ) . (2.2.6) Combining (2.2.6) with Q µ (u) = 0 we obtain that λ∥u∥ 2 L 2 (R N ) = -µ(1 -γ q )∥u∥ q L q (R N )
which proves the lemma since γ q ∈ (0, 1).

Lemma 2.2.2. Let N ≥ 3. For any µ > 0 and any c ∈ (0, c 0 ), if m(c) is reached then (i) m(c
) is also reached by a positive, radially symmetric non-increasing function, denoted u c that satisfies, for a λ c ∈ R,

-∆u c -µ|u c | q-2 u c -|u c | 2 * -2 u c = λ c u c in R N . (2.2.7) (ii) any ground state is contained in V (c).
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-∆u 0 -µ|u 0 | q-2 u 0 -|u 0 | 2 * -2 u 0 = λ 0 u 0 in R N ,
for a λ 0 ∈ R. Now, let u c be the Schwarz rearrangement of |u 0 |. Hence u c is a positive, radially symmetric non-increasing function. We also have that

∥u c ∥ 2 L 2 (R N ) = ∥u 0 ∥ 2 L 2 (R N ) = c, ∥∇u c ∥ 2 L 2 (R N ) ≤ ∥∇u 0 ∥ 2 L 2 (R N ) < ρ 0 and F µ (u c ) ≤ F µ (u 0 ).
This implies that u c ∈ V (c) and hence

F µ (u c ) = F µ (u 0 ). Thus, m(c) is reached by u c that satisfies (2.2.7) for a λ c ∈ R. (ii) By Lemma 2.2.1, all critical points u of F µ restricted to S(c) satisfies Q µ (u) = ∥∇u∥ 2 L 2 (R N ) -µγ q ∥u∥ q L q (R N ) -∥u∥ 2 * L 2 * (R N ) = 0.
By (2.2.4), for any v ∈ S(c) and any s ∈ (0, ∞),

ψ ′ v (s) = 1 s Q µ (v s ). (2.2.8)
We observe that any u ∈ S(c) can be written as

u = v s with v ∈ S(c), ||∇v|| 2 = 1 and s ∈ (0, ∞). We deduce from (2.2.8) that if w ∈ S(c) is a ground state there exists a v ∈ S(c), ||∇v|| 2 2 = 1 and a s 0 ∈ (0, ∞) such that w = v s 0 , F µ (w) = ψ v (s 0 ) and ψ ′ v (s 0 ) = 0. Namely, s 0 ∈ (0, ∞) is a zero of the function ψ ′ v . Now, since ψ v (s) → 0 -, ||∇v s || 2 → 0, as s → 0 and ψ v (s) = F µ (v s ) ≥ 0 when v s ∈ ∂V (c) = {u ∈ S(c) : ||∇u|| 2 2 = ρ 0 }, necessarily ψ ′ v has a first zero s 1 > 0 corresponding to a local minima. In particular, v s 1 ∈ V (c) and F(v s 1 ) = ψ v (s 1 ) < 0. Also, from ψ v (s 1 ) < 0, ψ v (s) ≥ 0 when v s ∈ ∂V (c) and ψ v (s) → -∞ as s → ∞, ψ v has a second zero s 2 > s 1 corresponding to a local maxima of ψ v . Since v s 2 satisfies F(v s 2 ) = ψ v (s 2 ) ≥ 0, we have that m(c) ≤ F(v s 1 ) < F(v s 2 )
. In particular, since m(c) is reached, v s 2 cannot be a ground state.

To conclude the proof of (ii) it then just suffices to show that ψ ′ v has at most two zeros, since this will imply s 0 = s 1 and w = v s 0 = v s 1 ∈ V (c). However, this is equivalent to showing that the function

s → ψ ′ u (s) s has at most two zeros. We have θ(s) := ψ ′ u (s) s = ∥∇u∥ 2 L 2 (R N ) - µN (q -2) 2q s α 0 ∥u∥ q L q (R N ) -s α 2 ∥u∥ 2 * L 2 * (R N )
and

θ ′ (s) = -α 0 µN (q -2) 2q s α 0 -1 ∥u∥ q L q (R N ) -α 2 s α 2 -1 ∥u∥ 2 * L 2 * (R N ) ,
where

α 0 := N (q -2) 2 -2 < 0, and 
α 2 := 4 N -2 > 0.
Since α 0 < 0 and α 2 > 0, the equation θ ′ (s) = 0 has a unique solution, and θ(s) has indeed at most two zeros.

Lemma 2.2.3. Let N ≥ 3 and c ∈ (0, c 0 ). For every u ∈ S(c), the function ψ u has exactly two critical points s + u and s - u with 0 < s + u < s - u . Moreover:

(i) s + u is a local minimum point for ψ u , F µ (u s + u ) < 0 and u s + u ∈ V (c). (ii) s - u is a global maximum point for ψ u , ψ ′ u (s) < 0, for all s > s + u and F µ (u s - u ) ≥ inf u∈∂V (c) F µ (u) > 0. (iii) ψ ′′ u (s - u ) < 0 and the map u ∈ S(c) → s + u ∈ R is of class C 1 . Proof. Let u ∈ S(c) be arbitrary. Since ψ u (s) → 0 -, ∥∇u s ∥ L 2 (R N ) → 0, as s → 0 and ψ u (s) = F µ (u s ) > 0 when u s ∈ ∂V (c) = {v ∈ S(c) : ∥∇v∥ 2 L 2 (R N ) = ρ 0 }, necessarily ψ ′ u has a first zero s + u > 0 corresponding to a local minima. In particular, u s + u ∈ V (c) and F(u s + u ) = ψ u (s + u ) < 0. Now, from ψ u (s + u ) < 0, ψ u (s) > 0 when u s ∈ ∂V (c) and ψ u (s) → -∞ as s → ∞, ψ ′ u has a second zero s - u > s + u corresponding to a local maxima of ψ u with F µ (u s - u ) ≥ inf u∈∂V (c) F µ (u) > 0.
To conclude the proofs of (i) and (ii), it just suffices to show that ψ ′ u has at most two zeros. However, this is equivalent to showing that the function

s → ψ ′ u (s) s
has at most two zeros. We have

θ(s) := ψ ′ u (s) s = ∥∇u∥ 2 L 2 (R N ) -µγ q s qγ q -2 ∥u∥ q L q (R N ) -s 2 * -2 ∥u∥ 2 * L 2 * (R N )
and θ ′ (s) = -µ(qγ q -2)γ q s qγ q -3 ∥u∥

q L q (R N ) -(2 * -2)s 2 * -3 ∥u∥ 2 * L 2 * (R N ) .
Since qγ q -2 < 0 and 2 * -2 > 0, the equation θ ′ (s) = 0 has a unique solution and hence θ(s) has indeed at most two zero points.

To establish (iii) let us first show that ψ ′′ u (s + u ) < 0. In this aim, first note that in view of (i) and (ii), ψ ′′ u (s) has a zero s 0 u ∈ (s - u , s + u ). Now, by direct calculations

ψ ′′ u (s) = ∥∇u∥ 2 L 2 (R N ) -µγ q (qγ q -1)s qγ q -2 ∥u∥ q L q (R N ) -(2 * -1)s 2 * -2 ∥u∥ 2 * L 2 * (R N ) .
We distinguish two cases. If qγ q -1 ≤ 0 then ψ ′′ u (s) has at most one zero and we are done. If qγ q -1 > 0, then, knowing that ψ ′′ u (s) has a zero we deduce that ψ ′′ u (s) has exactly two zeros that we denote by s 1 u < s 2 u . To conclude it suffices to show that s 0 u = s 2 u since this would imply that s + u cannot be a zero of ψ ′′ u (s). To show this, we assume by contradiction that s 0 u = s 1 u . Then, since ψ ′′ u (s) < 0 for s ∈ (0, s 1 u ) and recording that ψ ′ u (s) < 0 for s > 0 small we deduce that ψ ′ u (s) < 0 for s ∈ (0, s 0 u ). This contradicts the fact that s + u < s 0 u satisfies ψ ′ (s + u ) = 0. At this point we have proved that ψ ′′ u (s + u ) < 0. Now (iii) follows from a direct application of the Implicit Function Theorem to the

C 1 function Ψ : R × S(c) → R defined by Ψ (s, u) = ψ ′ u (s), taking into account that Ψ (s + u , u) = 0 and ∂ s Ψ (s + u , u) = ψ ′′ u (s + u ) < 0.
In view of Lemma 2. 

W (c) := {u ∈ S(c) : s - u > 1} it holds that (i) Λ + (c) ⊂ W (c). (ii) ∂W (c) = Λ -(c) and inf u∈∂W (c) F µ (u) > 0. (iii) V (c) ∩ {u : F µ (u) < 0} ⊂ W (c). (iv) If m(c) is reached then inf u∈W (c) F µ (u) is reached and inf u∈W (c) F µ (u) = m(c).
Proof. Points (i) and (ii) are direct consequence of Lemma 2.2.3 and of the definition of W (c).

To prove (iii) we assume by contradiction that there exists a v ∈ V (c) ∩ {u : 

F µ (u) < 0} with v W (c). Since v W (c), then by Lemma 2.2.3 (ii) we know that ψ ′ v (s) < 0 for all s ≥ 1. Thus, for all s ≥ 1, F µ (v s ) = ψ v (s) ≤ ψ v (1) = F µ (v) < 0. (2.2.9) But, since v ∈ V (c) there exists a s 0 > 1 such that v s 0 ∈ ∂V (c). Recording that F µ (u) > 0 for any u ∈ ∂V (c)
F µ (u) = inf u∈Λ + (c) F µ (u).
(2.2.10) Also, we know from Lemma 2.2.2(ii) that Λ + (c) ⊂ V (c) and since any minimizer for F µ on V (c) must belong to Λ + (c) it follows that 

m(c) = inf u∈V (c) F µ (u) = inf u∈Λ + (c) F µ (u). ( 2 

Existence of ground state solutions

Now, letting

α 0 := N (q -2) 2 -2, α 1 := 2N -q(N -2) 2 , α 2 := 4 N -2 , we consider the function f (c, ρ) defined on (0, ∞) × (0, ∞) by f (c, ρ) = 1 2 - µ q C q N ,q ρ α 0 2 c α 1 2 - 1 2 * 1 S 2 * 2 ρ α 2 2 ,
and, for each c ∈ (0, ∞), its restriction g c (ρ) defined on (0, ∞) by ρ → g c (ρ) := f (c, ρ).

For future reference, note that for any

N ≥ 3, α 0 ∈ (-2, 0), α 1 ∈ 4 N , 2 and α 2 ∈ (0, 4].
Lemma 2.3.1. For each c > 0, the function g c (ρ) has a unique global maximum and the maximum value satisfies

                 max ρ>0 g c (ρ) > 0 if c < c 0 , max ρ>0 g c (ρ) = 0 if c = c 0 , max ρ>0 g c (ρ) < 0 if c > c 0 ,
where

c 0 := 1 2K N 2 > 0, (2.3.1)
with

K := µ q C q N ,q         - α 0 α 2 µC q N ,q 2 * S 2 * 2 q         α 0 α 2 -α 0 + 1 2 * 1 S 2 * 2         - α 0 α 2 µC q N ,q 2 * S 2 * 2 q         α 2 α 2 -α 0 > 0. (2.3.2)
Proof. By definition of g c (ρ), we have that

g ′ c (ρ) = - α 0 2 µ q C q N ,q ρ α 0 2 -1 c α 1 2 - α 2 2 1 2 * 1 S 2 * 2 ρ α 2 2 -1 .
Hence, the equation g ′ c (ρ) = 0 has a unique solution given by

ρ c =         - α 0 α 2 µC q N ,q 2 * S 2 * 2 q         2 α 2 -α 0 c α 1 α 2 -α 0 . (2.3.3)
Taking into account that g c (ρ) → -∞ as ρ → 0 and g c (ρ) → -∞ as ρ → ∞, we obtain that ρ c is the unique global maximum point of g c (ρ) and the maximum value is

max ρ>0 g c (ρ) = 1 2 - µ q C q N ,q         - α 0 α 2 µC q N ,q 2 * S 2 * 2 q         α 0 α 2 -α 0 c α 0 α 1 2(α 2 -α 0 ) c α 1 2 - 1 2 * 1 S 2 * 2         - α 0 α 2 µC q N ,q 2 * S 2 * 2 q         α 2 α 2 -α 0 c α 1 α 2 2(α 2 -α 0 ) = 1 2 - µ q C q N ,q         - α 0 α 2 µC q N ,q 2 * S 2 * 2 q         α 0 α 2 -α 0 c α 1 α 2 2(α 2 -α 0 ) - 1 2 * 1 S 2 * 2         - α 0 α 2 µC q N ,q 2 * S 2 * 2 q         α 2 α 2 -α 0 c α 1 α 2 2(α 2 -α 0 ) = 1 2 -Kc 2 N .
By the definition of c 0 , we have that max ρ>0 g c 0 (ρ) = 0, and hence the lemma follows.

Lemma 2.3.2. Let (c 1 , ρ 1 ) ∈ (0, ∞) × (0, ∞) be such that f (c 1 , ρ 1 ) ≥ 0. Then for any c 2 ∈ (0, c 1 ], we have that

f (c 2 , ρ 2 ) ≥ 0 if ρ 2 ∈ c 2 c 1 ρ 1 , ρ 1 .
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Proof. Since c → f (•, ρ) is a non-increasing function we clearly have that f (c 2 , ρ 1 ) ≥ f (c 1 , ρ 1 ) ≥ 0. (2.3.4)
Now taking into account that α 0 + α 1 = q -2 > 0 we have, by direct calculations, that

f c 2 , c 2 c 1 ρ 1 ≥ f (c 1 , ρ 1 ) ≥ 0. (2.3.5)
We observe that if g c 2 (ρ ′ ) ≥ 0 and g c 2 (ρ ′′ ) ≥ 0 then 

f (c 2 , ρ) = g c 2 (ρ) ≥ 0 for any ρ ∈ [ρ ′ , ρ ′′ ]. (2.3.6) Indeed, if g c 2 (ρ) < 0 for some ρ ∈ (ρ ′ , ρ ′′ )
F µ (u) ≥ ∥∇u∥ 2 L 2 (R N ) f (c, ∥∇u∥ 2 L 2 (R N ) ).
Proof. Applying the Gagliardo-Nirenberg inequality (2.2.2) and the Sobolev inequality (2.2.1) we obtain that, for any u ∈ S(c),

F µ (u) = 1 2 ∥∇u∥ 2 L 2 (R N ) - µ q ∥u∥ q L q (R N ) - 1 2 * ∥u∥ 2 * L 2 * (R N ) ≥ 1 2 ∥∇u∥ 2 L 2 (R N ) - µ q C q N ,q ∥∇u∥ α 0 +2 2 ∥u∥ α 1 2 - 1 2 * 1 S 2 * 2 ∥∇u∥ 2 * L 2 (R N ) = ∥∇u∥ 2 L 2 (R N ) 1 2 - µ q C q N ,q ∥∇u∥ α 0 2 ∥u∥ α 1 2 - 1 2 * 1 S 2 * 2 ∥∇u∥ α 2 L 2 (R N ) = ∥∇u∥ 2 L 2 (R N ) f (∥u∥ 2 2 , ∥∇u∥ 2 L 2 (R N ) ).
The lemma is proved. Now let c 0 > 0 be given by (2.3.1) and ρ 0 := ρ c 0 > 0 being determined by (2.3.3). Note that by Lemma 2.3.1 and Lemma 2.3.2, we have that f (c 0 , ρ 0 ) = 0 and f (c, ρ 0 ) > 0 for all c ∈ (0, c 0 ). We define

B ρ 0 := {u ∈ H : ∥∇u∥ 2 L 2 (R N ) < ρ 0 } and V (c) := S(c) ∩ B ρ 0 .
We shall now consider the following local minimization problem: for any c ∈ (0, c 0 ),

m(c) := inf u∈V (c) F µ (u) (2.3.7)
and also consider the set

M c := {u ∈ V (c) : F µ (u) = m(c)}. (2.3.8)
The main aim of this section is the following result.

Theorem 2.3.4. For any c ∈ (0, c 0 ), if (u n ) ⊂ B ρ 0 is such that ∥u n ∥ 2 L 2 (R N ) → c and F µ (u n ) → m(c) then, up to translation, u n H → u ∈ M c . In particular the set M c is compact in H, up to translation.
Theorem 2.3.4 will both imply the existence of a ground state but also, as it may be expected, will be a crucial step to derive the orbital stability of the set M c .

In order to prove Theorem 2.3.4 we collect some properties of m(c) defined in (2.3.7).

Lemma 2.3.5. It holds that (i) For any c ∈ (0, c 0 ),

m(c) = inf u∈V (c) F µ (u) < 0 < inf u∈∂V (c) F µ (u).
(2.3.9)

(ii) c ∈ (0, c 0 ) → m(c) is a continuous mapping.
(iii) For any c ∈ (0, c 0 ), we have for all α ∈ (0, c) :

m(c) ≤ m(α) + m(c -α) and if m(α) or m(c -α)
is reached then the inequality is strict.

(iv) For any c ∈ (0, c 0 ), there exists a d = d(c) > 0 such that m(c-α) ≤ m(c)+dα for any α ∈ (0, c).

Proof. (i) For any u ∈ ∂V (c) we have ∥∇u∥ 2 L 2 (R N ) = ρ 0 . Thus, using Lemma 2.3.3, we get

F µ (u) ≥ ∥∇u∥ 2 L 2 (R N ) f (∥u∥ 2 2 , ∥∇u∥ 2 L 2 (R N ) ) = ρ 0 f (c, ρ 0 ) > 0.
Now let u ∈ S(c) be arbitrary but fixed. Recall from Section 2.2 that for any s ∈ (0, ∞), we have u s ∈ S(c) and

ψ u (s) = F µ (u s ) = s 2 2 ∥∇u∥ 2 L 2 (R N ) - µ q s qγ q ∥u∥ q L q (R N ) - s 2 * 2 * ∥u∥ 2 * L 2 * (R N ) .
Taking into account that qγ q < 2 and 2 * > 2 we see that ψ u (s) → 0 -, as s → 0. Therefore, there exists s 0 > 0 small enough such that ∥∇(u

s 0 )∥ 2 L 2 (R N ) = s 2 0 ∥∇u∥ 2 L 2 (R N ) < ρ 0 and F µ (u s 0 ) = ψ µ (s 0 ) < 0. This implies that m(c) < 0.
(ii) Let c ∈ (0, c 0 ) be arbitrary and (c n ) ⊂ (0, c 0 ) be such that c n → c. From the definition of m(c n ) and since m(c n ) < 0, see (i), for any ε > 0 sufficiently small, there exists

u n ∈ V (c n ) such that F µ (u n ) ≤ m(c n ) + ε and F µ (u n ) < 0.
(2.3.10)

We set y n := c c n u n and hence y n ∈ S(c). We have that 

y n ∈ V (c). Indeed, if c n ≥ c, then ∥∇y n ∥ 2 L 2 (R N ) = c c n ∥∇u n ∥ 2 L 2 (R N ) ≤ ∥∇u n ∥ 2 L 2 (R N ) < ρ 0 . If c n < c,
∥∇y n ∥ 2 L 2 (R N ) = c c n ∥∇u n ∥ 2 L 2 (R N ) < c c n c n c ρ 0 = ρ 0 . Since y n ∈ V (c) we can write m(c) ≤ F µ (y n ) = F µ (u n ) + [F µ (y n ) -F µ (u n )]
where 

F µ (y n ) -F µ (u n ) = - 1 2 ( c c n -1)∥∇u n ∥ 2 L 2 (R N ) - µ q ( c c n ) q 2 -1 ∥u n ∥ q L q (R N ) - 1 2 * [( c c n ) 2 * 2 -1]∥u n ∥ 2 * L 2 * (R N ) . Since ∥∇u n ∥ 2 L 2 (R N ) < ρ 0 , also ∥u n ∥ q L q (R N ) and ∥u n ∥ 2 * L 2 * (R N ) are uniformly bounded. Thus, we have that as n → ∞, m(c) ≤ F µ (y n ) = F µ (u n ) + o n (1
m(c) ≤ m(c n ) + ε + o n (1). Now, let u ∈ V (c) be such that F µ (u) ≤ m(c) + ε and F µ (u) < 0. Set u n := c n c u and hence u n ∈ S(c n ). Clearly, ∥∇u∥ 2 2 < ρ 0 and c n → c imply ∥∇u n ∥ 2 2 < ρ 0 for n large enough, so that u n ∈ V (c n ). Also, F µ (u n ) → F µ (u). We thus have m(c n ) ≤ F µ (u n ) = F µ (u) + [F µ (u n ) -F µ (u)] ≤ m(c) + ε + o n (1).
Therefore, since ε > 0 is arbitrary, we deduce that m(c n ) → m(c). The point (ii) follows. (iii) Note that, fixed α ∈ (0, c), it is sufficient to prove that the following holds

∀θ ∈ 1, c α : m(θα) ≤ θm(α) (2.3.12)
and that, if m(α) is reached, the inequality is strict. Indeed, if (2.3.12) holds then we have

m(c) = c -α c m(c) + α c m(c) = c -α c m c c -α (c -α) + α c m c α α ≤ m(c -α) + m(α),
with a strict inequality if m(α) is reached. To prove that (2.3.12) holds, note that in view of (i), for any ε > 0 sufficiently small, there exists a u ∈ V (α) such that 

F µ (u) ≤ m(α) + ε and F µ (u) < 0. ( 2 
m(θα) ≤ F µ (v) = 1 2 θ∥∇u∥ 2 L 2 (R N ) - µ q θ q 2 ∥u∥ q L q (R N ) - 1 2 * θ 2 * 2 ∥u∥ 2 * L 2 * (R N ) < 1 2 θ∥∇u∥ 2 L 2 (R N ) - µ q θ∥u∥ q L q (R N ) - 1 2 * θ∥u∥ 2 * L 2 * (R N ) = θ 1 2 ∥∇u∥ 2 L 2 (R N ) - µ q ∥u∥ q L q (R N ) - 1 2 * ∥u∥ 2 * L 2 * (R N ) = θF µ (u) ≤ θ(m(α) + ε).
Since ε > 0 is arbitrary, we have that m(θα) ≤ θm(α). If m(α) is reached then we can let ε = 0 in (2.3.13) and thus the strict inequality follows.

(iv) Let u ∈ V (c) be a minimizer of m(c) and set

y α := c -α c • u. Since y α ∈ V (c -α) we have m(c -α) ≤ F µ (y α ) = m(c) + [F µ (y α ) -F µ (u)]
with

F µ (y α ) -F µ (u) = - α 2c ∥∇u∥ 2 L 2 (R N ) - µ q c -α c q -1 ∥u∥ q L q (R N ) - 1 2 * c -α c 2 * -1 ∥u∥ 2 * L 2 * (R N ) .
The result now follows from the observation that α

→ F µ (y α )-F µ (u) is of class C 1 on (0, c). Lemma 2.3.6. Let (v n ) ⊂ B ρ 0 be such that ∥v n ∥ L q (R N ) → 0.
Then there exists a β 0 > 0 such that

F µ (v n ) ≥ β 0 ||∇v n || 2 2 + o n (1).
Proof. Indeed, using the Sobolev inequality (2.2.1), we obtain that

F µ (v n ) = 1 2 ∥∇v n ∥ 2 L 2 (R N ) - 1 2 * ∥v n ∥ 2 * L 2 * (R N ) + o n (1) ≥ 1 2 ∥∇v n ∥ 2 L 2 (R N ) - 1 2 * 1 S 2 * 2 ∥∇v n ∥ 2 * L 2 (R N ) + o n (1) = ∥∇v n ∥ 2 L 2 (R N ) 1 2 - 1 2 * 1 S 2 * 2 ∥∇v n ∥ α 2 L 2 (R N ) + o n (1) ≥ ∥∇v n ∥ 2 L 2 (R N ) 1 2 - 1 2 * 1 S 2 * 2 ρ α 2 2 0 + o n (1).
Now, since f (c 0 , ρ 0 ) = 0, we have that

β 0 := 1 2 - 1 2 * 1 S 2 * 2 ρ α 2 2 0 = µ q C q N ,q ρ α 0 2 0 c α 1 2 0 > 0. Lemma 2.3.7. For any c ∈ (0, c 0 ), let (u n ) ⊂ B ρ 0 be such that ∥u n ∥ 2 L 2 (R N ) → c and F µ (u n ) → m(c). Then, there exist a β 1 > 0 and a sequence (y n ) ⊂ R N such that B(y n ,R) |u n | 2 dx ≥ β 1 > 0,
for some R > 0.

(2.3.15)

Proof. We assume by contradiction that (2.3.15) does not hold. By ( [START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF]. This contradict the fact that m(c) < 0 and the lemma follows.

u n ) ⊂ B ρ 0 and ∥u n ∥ 2 L 2 (R N ) → c, the sequence (u n ) is bounded in H. From [65, Lemma I.1] and since 2 < q < 2 * , we deduce that ∥u n ∥ L q (R N ) → 0, as n → ∞. At this point, Lemma 2.3.6 implies that F µ (u n ) ≥ o n
Proof of Theorem 2.3.4. We know from Lemma 2.3.7 and Rellich compactness theorem that there exists a sequence (y n ) ⊂ R N such that

u n (x -y n ) ⇀ u c 0 in H. Our aim is to prove that w n (x) := u n (x -y n ) -u c (x) → 0 in H. Clearly ∥u n ∥ 2 L 2 (R N ) = ∥u n (x -y n )∥ 2 L 2 (R N ) = ∥u n (x -y n ) -u c (x)∥ 2 L 2 (R N ) + ∥u c ∥ 2 L 2 (R N ) + o n (1) = ∥w n ∥ 2 L 2 (R N ) + ∥u c ∥ 2 L 2 (R N ) + o n (1).
Thus, we have

∥w n ∥ 2 L 2 (R N ) = ∥u n ∥ 2 L 2 (R N ) -∥u c ∥ 2 L 2 (R N ) + o n (1) = c -∥u c ∥ 2 L 2 (R N ) + o n (1). (2.3.16)
By a similar argument,

∥∇w n ∥ 2 L 2 (R N ) = ∥∇u n ∥ 2 L 2 (R N ) -∥∇u c ∥ 2 L 2 (R N ) + o n (1). (2.3.17)
More generally it is direct to show, using the Brezis-Lieb lemma [24, Theorem 1], that the other terms in F µ also enjoy a the splitting property, and thus we have

F µ (w n ) + F µ (u c ) = F µ (u n (x -y n )) + o n (1),
and, by the translational invariance, we obtain

F µ (u n ) = F µ (u n (x -y n )) = F µ (w n ) + F µ (u c ) + o n (1). (2.3.18)
Now, we claim that

∥w n ∥ 2 L 2 (R N ) → 0. (2.3.19)
In order to prove this, let us denote c 1 := ∥u c ∥ 2 L 2 (R N ) > 0. By (2.3.16), if we show that c 1 = c then the claim follows. We assume by contradiction that c 1 < c. In view of (2.3.16) and (2.3.17), for n large enough, we have

∥w n ∥ 2 L 2 (R N ) ≤ c and ∥∇w n ∥ 2 L 2 (R N ) ≤ ∥∇u n ∥ 2 L 2 (R N ) < ρ 0 . Hence, we obtain that w n ∈ V (∥w n ∥ 2 L 2 (R N ) ) and F µ (w n ) ≥ m ∥w n ∥ 2 L 2 (R N ) . Recording that F µ (u n ) → m(c), in view of (2.3.18), we have m(c) = F µ (w n ) + F µ (u c ) + o n (1) ≥ m ∥w n ∥ 2 L 2 (R N ) + F µ (u c ) + o n (1).
Since the map c → m(c) is continuous (see Lemma 2.3.5(ii)) and in view of (2.3.16), we deduce that

m(c) ≥ m(c -c 1 ) + F µ (u c ). (2.3.20)
We also have that u c ∈ V (c 1 ) by the weak limit. This implies that

F µ (u c ) ≥ m(c 1 ). If F µ (u c ) > m(c 1 )
, then it follows from (2.3.20) and Lemma 2.3.5(iii) that

m(c) > m(c -c 1 ) + m(c 1 ) ≥ m(c -c 1 + c 1 ) = m(c),
which is impossible. Hence, we have F µ (u c ) = m(c 1 ), namely u c is a local minimizer on V (c 1 ). So, using Lemma 2.3.5(iii) with the strict inequality, we deduce from (2.3.20) that

m(c) ≥ m(c -c 1 ) + F µ (u c ) = m(c -c 1 ) + m(c 1 ) > m(c -c 1 + c 1 ) = m(c),
which is impossible. Thus, the claim (2.3.19) follows and from (2.3.16) we deduce that

∥u c ∥ 2 L 2 (R N ) = c.
Let us now show that ||∇w n || 2 2 → 0. This will prove that w n → 0 in H and completes the proof. In this aim first observe that in view of (2.3.17) and since u c 0, we have

∥∇w n ∥ 2 L 2 (R N ) ≤ ∥∇u n ∥ 2 L 2 (R N ) < ρ 0 ,
for n large enough. Hence (w n ) ⊂ B ρ 0 and in particular it is bounded in H. Then by using the Gagliardo-Nirenberg inequality (2.2.2), and by recalling ||w n || 2 2 → 0 we also have ||w n || q q → 0. Thus Lemma 2.3.6 implies that

F µ (w n ) ≥ β 0 ∥∇w n ∥ 2 L 2 (R N ) + o n (1) where β 0 > 0. (2.3.21)
Now we remember that

F µ (u n ) = F µ (u c ) + F µ (w n ) + o n (1) → m(c).
Since u c ∈ V (c) by weak limit, we have that F µ (u c ) ≥ m(c) and hence F µ (w n ) ≤ o n [START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF]. In view of (2.3.21), we then conclude that ∥∇w n ∥ 2 L 2 (R N ) → 0.

We end this section with,

Proof of Theorem 2.1.2. The fact that if (u n ) ⊂ V (c) is such that F µ (u n ) → m(c) then, up to translation, u n → u ∈ M c in H follows from Theorem 2.3.4.
In particular, it insures the existence of a minimizer for F µ on V (c). The fact that this minimizer is a ground state and that any ground state for F µ on S(c) belongs to V (c) was proved in Lemma 2.2.2.

Orbital stability of the ground state solutions

Now, we focus on the local existence of solutions to the following Cauchy problem

       i∂ t u + ∆u + µu|u| q-2 + u|u| 2 * -2 = 0, (t, x) ∈ R × R N , N ≥ 3 u(0, x) = ϕ(x) ∈ H. (2.4.1)
Denoting g : C → C by g(u) := µu|u| q-2 + u|u| 2 * -2 , (2.4.1) reads as

i∂ t u + ∆u + g(u) = 0.
Next we give the notion of integral equation associated with (2.4.1). In order to do that first we give another definition. 

2 p + N r = N 2 , p, r ∈ [2, ∞].
We shall work with two particular admissible pairs (see Lemma 2.4.5):

(p 1 , r 1 ) := 4q (q -2)(N -2) , N q q + N -2 , and (p 2 , r 2 ) := 4 × 2 * (2 * -2)(N -2) , N × 2 * 2 * + N -2 .
Along with those couples we introduce the spaces Y T := Y p 1 ,r 1 ,T ∩ Y p 2 ,r 2 ,T and X T := X p 1 ,r 1 ,T ∩ X p 2 ,r 2 ,T equipped with the following norms:

∥w∥ Y T = ∥w∥ Y p 1 ,r 1 ,T + ∥w∥ Y p 2 ,r 2 ,T , and ∥w∥ X T = ∥w∥ X p 1 ,r 1 ,T + ∥w∥ X p 2 ,r 2 ,T . (2.4.2)
where for a generic function w(t, x) defined on the time-space strip [0, T ) × R N we have defined: 

||w(t, x)|| Y p,r,T = T 0 ∥w(t, •)∥ p L r (R N ) dt
1. u ∈ C([0, T ], H) ∩ X T ; 2. for all t ∈ (0, T ) it holds u(t) = e it∆ ϕ -i t 0 e i(t-s)∆ g(u(s))ds.
The first main result of this section is the following local existence result. We do not claim a real originality here, related versions already exist in the literature, see for example [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF]Theorem 2.5]. However, we believe convenient to the reader to provide a version specifically adapted to our problem and to give a proof of this result as self-contained as possible.

Proposition 2.4.3. There exists γ 0 > 0 such that if ϕ ∈ H and T ∈ (0, 1] satisfy ∥e it∆ ϕ∥ X T ≤ γ 0 , then there exists a unique integral solution u(t, x) to (2.4.1) on the time interval [0, T ]. Moreover u(t, x) ∈ X p,r,T for every admissible couple (p, r) and satisfies the following conservation laws:

F µ (u(t)) = F µ (ϕ), ∥u(t)∥ L 2 (R N ) = ∥ϕ∥ L 2 (R N ) , for all t ∈ [0, T ].
(2.4.3)

In order to prove Proposition 2.4.3 we need some preliminary results.

Let us recall Strichartz's estimates that will be useful in the sequel (see for example [27, Theorem 2.3.3 and Remark 2.3.8] and [START_REF] Keel | Endpoint Strichartz estimates[END_REF] for the endpoint estimates). Proposition 2.4.4. Let N ≥ 3 then for every admissible pairs (p, r) and ( p, r), there exists a constant C > 0 such that for every T > 0, the following properties hold:

(i) For every ϕ ∈ L 2 (R N ), the function t → e it∆ ϕ belongs to Y p,r,T ∩ C([0, T ], L 2 (R N )) and e it∆ ϕ Y p,r,T ≤ C∥ϕ∥ 2 .
(ii) Let F ∈ Y p′ ,r ′ ,T , where we use a prime to denote conjugate indices. Then the function

t → Φ F (t) := t 0 e i(t-s)∆ F(s)ds belongs to Y p,r,T ∩ C([0, T ], L 2 (R N ))
and

∥Φ F ∥ Y p,r,T ≤ C∥F∥ Y p′ ,r ′ ,T .
(iii) For every ϕ ∈ H, the function t → e it∆ ϕ belongs to X p,r,T ∩ C([0, T ], H) and

e it∆ ϕ X p,r,T ≤ C∥ϕ∥ H .
The following result will be useful in the sequel.

Lemma 2.4.5. Let N ≥ 3 and 2 < α ≤ 2 * be given. Then the couple (p, r) defined as follows

p := 4α (α -2)(N -2)
and r := N α α + N -2 is admissible. Moreover for every admissible couple ( p, r) there exists a constant C > 0 such that for every T > 0 the following inequalities hold:

t 0 e i(t-s)∆ [∇g α (u(s))]ds Y p,r,T ≤ CT µ ∥∇u∥ α-1 Y p,r,T , (2.4.4) t 0 e i(t-s)∆ [g α (u(s)) -g α (v(s))]ds Y p,r,T ≤ CT µ (∥∇u∥ α-2 Y p,r,T + ∥∇v∥ α-2 Y p,r,T )∥u -v∥ Y p,r,T , (2.4.5)
where g α (u) := u|u| α-2 and µ :=

(N -2)(2 * -α) 4 ≥ 0.
Proof. By direct calculations, one can check that

2 p + N r = N 2 and p, r ≥ 2.
Hence, (p, r) is an admissible pair. Also it is easy to check that there exists a C > 0 such that :

|g ′ α (u)| ≤ C|u| α-2 , (2.4.6) |g α (u) -g α (v)| ≤ C|u -v|(|u| α-2 + |v| α-2 ). (2.4.7)
Combining (2.4.6) and the Chain Rule, gives

|∇g α (u)| = |g ′ α (u)∇u| ≤ C|∇u||u| α-2 .
Using Hölder's inequality, we obtain that

∥∇g α (u)∥ L r ′ (R N ) ≤ C∥|∇u||u| α-2 ∥ L r ′ (R N ) ≤ C∥|∇u|∥ L r (R N ) ∥u∥ α-2 L r * (R N ) ≤ C∥∇u∥ α-1 r ,
where we also used the Sobolev embedding of W 1,r (R N ) into L r * (R N ) with r * := N r Nr , see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Theorem 9.9]. Hence, using Hölder's inequality,

∥∇g α (u)∥ Y p ′ ,r ′ ,T = T 0 ∥∇g α (u)∥ p ′ L r ′ (R N ) dt 1 p ′ ≤ C T 0 ||∇u|| (α-1)p ′ r dt 1 p ′ ≤ CT (α-1) 1 (α-1)p ′ -1 p T 0 ||∇u|| p r dt α-1 p = CT µ ∥∇u∥ α-1 Y p,r,T .
At this point (2.4.4) follows by applying Proposition 2.4.4 (ii). To establish (2.4.5) note that by (2.4.7) and the Hölder's inequality, we have

∥g α (u) -g α (v)∥ L r ′ (R N ) ≤ C∥|u -v|(|u| α-2 + |v| α-2 )∥ L r ′ (R N ) ≤ C∥u -v∥ L r (R N ) ∥|u| + |v|∥ α-2 L r * (R N ) .
Hence, we can deduce that

∥g α (u) -g α (v)∥ Y p ′ ,r ′ ,T = T 0 ∥g α (u) -g α (v)∥ p ′ L r ′ (R N ) dt 1 p ′ ≤ C T 0 ∥u -v∥ p ′ L r (R N ) ∥|u| + |v|∥ (α-2)p ′ L r * (R N ) dt 1 p ′ ≤ C T 0 ∥u -v∥ p L r (R N ) dt 1 p       T 0 ∥|u| + |v|∥ (α-2)pp ′ p-p ′ L r * (R N ) dt       p-p ′ pp ′ ≤ CT µ ∥u -v∥ Y p,r,T T 0 ∥|u| + |v|∥ p L r * (R N ) dt α-2 p = CT µ ∥|u| + |v|∥ α-2 Y p,r * ,T ∥u -v∥ Y p,r,T ≤ CT µ ∥u∥ Y p,r * ,T + ∥v∥ Y p,r * ,T α-2 ∥u -v∥ Y p,r,T .
The inequality (2.4.5) follows by applying the previous Sobolev embedding and Proposition 2.4.4 (ii).

In order to prove Proposition 2.4.3 we shall need two lemmas from Functional Analysis.

Lemma 2.4.6. For all 1 < p, r < ∞, X p,r,T is a separable reflexive Banach space.

Proof. This is a direct consequence of Phillips' theorem, see [ It remains to show that u ∈ B R,T . By taking a subsequence, we can assume that l 1 := lim n→∞ ∥u n ∥ X p 1 ,r 1 ,T and l 2 := lim n→∞ ∥u n ∥ X p 2 ,r 2 ,T exist. By Lemma 2.4.6, there exists a subsequence of (u n ) which converges weakly in X p 1 ,r 1 ,T . In particular, this sequence converges in the sense of distributions and hence the limit equals u. Thus,

∥u∥ X p 1 ,r 1 ,T ≤ l 1 .
Similarly,

∥u∥ X p 2 ,r 2 ,T ≤ l 2 .
Taking the sum, we get ∥u∥

X T ≤ l 1 + l 2 ≤ R.
Proof of Proposition 2.4.3.

Step 1. Existence and uniqueness in B 2γ 0 ,T for γ 0 small enough.

For any u ∈ X T and t ∈ [0, T ], we define

Φ(u)(t) := e it∆ ϕ + i t 0 e i(t-s)∆ g(u(s))ds. (2.4.8)
We claim that, if γ 0 > 0 is small enough, then Φ defines a contraction on the metric space (B 2γ 0 ,T , d) (see Lemma 2.4.7).

Let u ∈ B 2γ 0 ,T and consider any admissible pair ( p, r). Let T ∈ (0, 1] and apply Lemma 2.4.5. We deduce from (2.4.4) and (2.4.8) that

∥∇Φ(u) -e it∆ ∇ϕ∥ Y p,r,T ≤ C∥∇u∥ q-1 Y p 1 ,r 1 ,T + C∥∇u∥ 2 * -1 Y p 2 ,r 2 ,T ≤ C2 q γ q-1 0 , ∀u ∈ B 2γ 0 ,T .
Similarly, we deduce from (2.4.5) (applied with v = 0) that

∥Φ(u) -e it∆ ϕ∥ Y p,r,T ≤ C∥∇u∥ q-2 Y p 1 ,r 1 ,T ∥u∥ Y p 1 ,r 1 ,T + C∥∇u∥ 2 * -2 Y p 2 ,r 2 ,T ∥u∥ Y p 2 ,r 2 ,T ≤ C2 q γ q-1 0 , ∀u ∈ B 2γ 0 ,T .
In particular if we choose ( p, r) = (p 1 , r 1 ) and ( p, r) = (p 2 , r 2 ) then

∥Φ(u)∥ X T ≤ γ 0 + C2 q γ q-1 0
and hence if γ 0 > 0 is small enough in such a way that C2 q+2 γ q-1 0 ≤ γ 0 , then B 2γ 0 ,T is an invariant set of Φ. Now, let u, v ∈ B 2γ 0 ,T . By (2.4.5), we have for every admissible pair ( p, r)

∥Φ(u) -Φ(v)∥ Y p,r,T ≤ C ∥∇u∥ q-2 Y p 1 ,r 1 ,T + ∥∇v∥ q-2 Y p 1 ,r 1 ,T ∥u -v∥ Y p 1 ,r 1 ,T + C ∥∇u∥ 2 * -2 Y p 2 ,r 2 ,T + ∥∇v∥ 2 * -2 Y p 2 ,r 2 ,T ∥u -v∥ Y p 2 ,r 2 ,T ≤ C2 q γ q-2 0 (∥u -v∥ Y p 1 ,r 1 ,T + ∥u -v∥ Y p 2 ,r 2 ,T ), ∀u, v ∈ B 2γ 0 ,T .
In particular if we choose ( p, r) = (p 1 , r 1 ) and ( p, r) = (p 2 , r 2 ) then

∥Φ(u) -Φ(v)∥ Y T ≤ C2 q+1 γ q-2 0 ∥u -v∥ Y T
and if we choose γ 0 > 0 small enough in such a way that C2 q+1 γ q-2 0 < 1 2 then Φ is a contraction on (B 2γ 0 ,T , d). In particular Φ has one unique fixed point in this space. The property u ∈ C([0, T ], H) and u ∈ X p,r,T for every admissible couple (p, r) is straightforward and follows by Strichartz estimates.

Step 2. Uniqueness in X T . Assume u 1 (t, x) and u 2 (t, x) are two fixed points of Φ in the space X T . We define T 0 = sup{ T ∈ [0, T ]| sup i ∥u i (t, x)∥ X T ≤ 2γ 0 }. It is easy to show that T 0 ∈ (0, T ] and arguing as in step 1 the operator Φ is a contraction on (B 2γ 0 ,T 0 , d). Hence by uniqueness of the fixed point in this space necessarily u 1 (t, x) = u 2 (t, x) in X T 0 . Moreover since u i (t, x) ∈ C([0, T 0 ]; H) we have u 1 (T 0 , x) = u 2 (T 0 , x) = ψ(x). Hence at time T 0 the solutions coincide and starting from T 0 (that we can also identify with T 0 = 0 by using the traslation invariance w.r.t. to time of the equation), we can apply again the step 1 in the ball (B 2γ 0 , T , d) with initial condition ψ(x), where T > 0 is such that ∥e it∆ ψ∥ X T ≤ γ 0 . Again by uniqueness of the fixed point of Φ in the space (B 2γ 0 , T , d) we deduce that u 1 (t, x) = u 2 (t, x) in X T 0 + T , hence contradicting the definition of T 0 unless T 0 = T .

Step 3. Conservation laws. The proof of (2.4.3) is rather classical. In particular it follows by Proposition 1 and Proposition 2 in [START_REF] Ozawa | Remarks on proofs of conservation laws for nonlinear Schrödinger equations[END_REF]. Another possibility is to follow the proof of Propositions 5.3 and 5.4 in [START_REF] Ginibre | Introduction aux équations de Schrödinger non linéaires[END_REF], that can be repeated mutatis mutandis in the context of (2.4.1). The minor modification compared with [START_REF] Ginibre | Introduction aux équations de Schrödinger non linéaires[END_REF] is that we use the end-point Strichartz estimate in order to treat the Sobolev critical nonlinearity.

We shall prove that the set M c defined in (2.3.8) is orbitally stable. In particular a nontrivial point concerns the fact that the local solutions, whose existence has been established in Proposition 2.4.3, can be extended to global solutions provided that the initial datum is close to M c . The main difficulty is related to the criticality of the nonlinearity in (2.4.1).

To simplify the next statement we denote by u ϕ (t) the integral solution associated with (2.4.1) and we denote by T max ϕ its maximal time of existence.

Theorem 2.4.8. Let v ∈ M c . Then, for every ε > 0 there exists δ > 0 such that:

∀ϕ ∈ H s.t. ||ϕ -v|| H < δ =⇒ sup t∈[0,T max ϕ ) dist H 1 (u ϕ (t), M c ) < ε.
(2.4.9)

In particular we have

u ϕ (t) = m c (t) + r(t), ∀t ∈ [0, T max ϕ ), where m c (t) ∈ M c , ∥r(t)∥ H < ε. (2.4.10)
Proof. Suppose the theorem is false. Then there exists (δ n ) ⊂ R + a decreasing sequence converging to 0 and (ϕ n ) ⊂ H satisfying

||ϕ n -v|| H < δ n and sup t∈[0,T max ϕ n ) dist H 1 (u ϕ n (t), M c ) > ε 0 ,
for some ε 0 > 0. We observe that ||ϕ n || 2 2 → c and, by continuity of F µ , F µ (ϕ n ) → m(c). By conservation laws, for n ∈ N large enough, u ϕ n will remains inside of B ρ 0 for all t ∈ [0, T max ϕ n ). Indeed, if for some time t > 0 ||∇u ϕ n (t)|| 2 2 = ρ 0 then, in view of Lemma 2.3.5 (i) we have that F µ (u ϕ n (t)) ≥ 0 in contradiction with m(c) < 0. Now let t n > 0 be the first time such that dist

H 1 (u ϕ n (t n ), M c ) = ε 0 and set u n := u ϕ n (t n ). By conservation laws, (u n ) ⊂ B ρ 0 satisfies ∥u n ∥ 2 L 2 (R N ) → c and F µ (u n ) → m(c)
and thus, in view of Theorem 2.3.4, it converges, up to translation, to an element of M c . Since M c is invariant under translation this contradicts the equality dist

H 1 (u n , M c ) = ε 0 > 0.
The rest of this section is devoted to show that T max ϕ = ∞ and it will conclude the proof of Theorem 2.1.6.

Proposition 2.4.9. Let K ⊂ H \ {0} be compact up to translation and assume that (p, r) is an admissible pair with p ∞. Then, for every γ > 0 there exists ε = ε(γ) > 0 and T = T (γ) > 0 such that

sup {ϕ∈H|dist H 1 (ϕ,K)<ε} e it∆ ϕ X p,r,T < γ.
Proof. We first claim, for every γ > 0, the existence of a T > 0 such that sup ϕ∈K e it∆ ϕ X p,r,T < γ 2 .

(2.4.11)

If it is not true then there exists sequences (ϕ n ) ⊂ K and (T n ) ⊂ R + such that T n → 0 and

e it∆ ϕ n X p,r,T n ≥ γ (2.4.12)
for a suitable γ > 0. Since K is compact up to translation, passing to a subsequence, there exists a sequence (

x n ) ⊂ R N such that φn (•) := ϕ n (• -x n ) H → ϕ(•)
for a ϕ ∈ H. By continuity (induced by Strichartz's estimates) we have, for every T > 0, e it∆ φn X p,r, T → e it∆ ϕ X p,r, T .

(2.4.13) Also, recording the translation invariance of Strichartz's estimates we get from (2.4.12) that e it∆ φn X p,r,T n = e it∆ ϕ n X p,r,T n ≥ γ.

(2.4.14)

Now, by Proposition 2.4.4 (iii), we have e it∆ ϕ ∈ X p,r,1 , namely the function

[0, 1] ∋ t → g(t) := ||e it∆ ϕ|| p W 1,r (R N ) belongs to L 1 ([0, 1]).
Then by applying the Dominated Convergence Theorem we get Summarizing, we get that, for all ϕ ∈ K and all η ∈ H such that ||η|| H < ε, e it∆ (ϕ + η) X p,r,T ≤ e it∆ ϕ X p,r,T + e it∆ η X p,r,T < γ.

∥χ [0, T ] (t)g(t)∥ L 1 ([0,1]) → 0 as T → 0,
This implies the proposition.

Proposition 2.4.10. Let K ⊂ H \ {0} be compact up to translation. Then, for every γ > 0 there exists ε = ε(γ) > 0 and T = T (γ) > 0 such that

sup {ϕ∈H|dist H 1 (ϕ,K)<ε} e it∆ ϕ X T < γ.
Proof. We apply Proposition 2.4.9 twice with the admissible pairs (p 1 , r 1 ) and (p 2 , r 2 ). Then, the proposition follows from the definition of the norm X T given in (2.4.2).

Theorem 2.4.11. Let K ⊂ H \ {0} be compact up to translation. Then there exist ε 0 > 0 and T 0 > 0 such that the Cauchy problem (2.4.1), where ϕ satisfies dist H 1 (ϕ, K) < ε 0 , has a unique solution on the time interval [0, T 0 ] in the sense of Definition 2.4.2.

Proof. We apply Proposition 2.4.10 where γ = γ 0 is given in Proposition 2.4.3. Then Proposition 2.4.3 guarantees that the theorem holds for ε 0 = ε(γ 0 ) > 0 and T 0 = min{T (γ 0 ), 1} > 0.

Theorem 2.4.12. Let M c be defined in (2.3.8). Then there exists a δ 0 > 0 such that, if ϕ ∈ H satisfies dist H 1 (ϕ, M c ) < δ 0 the corresponding solution to (2.4.1) satisfies T max ϕ = ∞.

Proof. We make use of Theorem 2.4.11 where we choose K = M c . By Theorem 2.4.8, we can choose a δ 0 > 0 such that (2.4.9) and (2.4.10) holds for ε = ε 0 where ε 0 > 0 is given in Theorem 2.4.11. Then Theorem 2.4.8 guarantees that the solution u ϕ (t) where dist H 1 (ϕ, M c ) < δ 0 satisfies dist H 1 (u ϕ (t), M c ) < ε 0 up to the maximum time of existence T max ϕ ≥ T 0 . Since, at any time in (0, T max ϕ ) we can apply again Theorem 2.4.11 that guarantees an uniform additional time of existence T 0 > 0, this contradicts the definition of

T max ϕ if T max ϕ < ∞.

At this point we can give,

Proof of Theorem 2.1.6. The fact that M c is compact, up to translation, was established in Theorem 2.3.4. The orbital stability of M c , in the sense of Definition 2.1.5 follows from Theorem 2.4.8 and Theorem 2.4.12.

Existence of standing waves lying at mountain pass levels 2.5.1 The proof of Proposition 2.1.12

We follow the strategy introduced in [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF] and consider the functional Fµ :

R + × H 1 (R N ) → R defined by Fµ (s, u) := F µ (u s ) = ψ u (s) = s 2 2 ∥∇u∥ 2 L 2 (R N ) - µ q s qγ q ∥u∥ q L q (R N ) - s 2 * 2 * ∥u∥ 2 * L 2 * (R N ) . Note that ∂ s Fµ (s, u) = ψ ′ u (s) = 1 s Q µ (u s ) (2.5.1)
and, for any v ∈ H 1 (R N ),

∂ u Fµ (s, u)(v) = s 2 R N ∇u∇vdx -µs qγ q R N |u| q-2 uvdx -s 2 * R N |u| 2 * -2 uvdx = F ′ µ (u s )(v s ).
(2.5.2)

We recall that the tangent space at a point u ∈ S(c) is defined as

T u S(c) = {v ∈ H 1 (R N ) : ⟨u, v⟩ L 2 (R N ) = 0},
and that, for any u ∈ S(c) and any v ∈ T u S(c),

⟨F µ ′ |S(c) (u), v⟩ = ⟨F ′ µ (u), v⟩.
(2.5.3) Lemma 2.5.1. Let N ≥ 3. For u ∈ S(c) and s > 0, the map

T u S(c) → T u s S(c), φ → φ s is a linear isomorphism with inverse T u s S(c) → T u S(c), ψ → ψ 1 s .
Proof. We follow the approach in [11, Lemma 3.6]. For φ ∈ T u S(c) and for t > 0, we have

R N u t (x)φ t (x)dx = R N t N u(tx)φ(tx)dx = R N u(y)φ(y)dy = 0.
As a consequence, φ t ∈ T u t S(c) and the map is well defined. Clearly it is linear. Taking into account that, for every t, s > 0 and w ∈ H 1 (R N ),

w ts = (ts) N 2 w(tsx) = (w t ) s ,
we obtain that the map is linear isomorphism.

Definition 2.5.2. Given c > 0, we say that Fµ has a mountain pass geometry on

R + ×S r (c) at level M(c) if M(c) := inf h∈ Γ (c) max t∈[0,∞) Fµ ( h(t)) > max{ Fµ ( h(0)), Fµ ( h(th))}
where

Γ (c) := { h ∈ C([0, ∞), R + × S r (c)) : h(0) ∈ (1, Λ + r (c)), ∃th > 0 s.t. h(t) ∈ (1, E c ) ∀t ≥ th}.
Recording that the definition of M 0 (c) is given in (2.1.7), we have, Proof. Let h ∈ Γ 0 (r), since h(t) = (1, h(t)) ∈ Γ (c) and Fµ ( h(t)) = F µ (h(t)) for all t ∈ R + , we have that M 0 (c) ≥ M(c). Next, we shall prove that M(c) ≥ M 0 (c). For all h(t) = (s(t), v(t)) ∈ Γ (c), we have s(0) = 1, v(0) ∈ Λ + r (c) and there exists a th > 0 such that s(t) = 1, v(t) ∈ E c for all t ≥ th. Setting h(t) = v(t) s(t) , we have that h is continuous from [0, ∞) into S r (c) and

h(0) = v(0) s(0) = v(0) ∈ Λ + r (c), h(t) = v(t) s(t) = v(t) ∈ E c ∀t ≥ th.
Hence, h ∈ Γ 0 (r) and Fµ ( h(t)) = F µ (v(t) s(t) ) = F µ (h(t)). Thus, M(c) ≥ M 0 (c) and finally M 0 (c) = M(c). Now we claim that M 0 (c) > 0 for any c ∈ (0, c 0 ).

(2.5.4) Indeed, let g ∈ Γ 0 (c) be arbitrary. Since g(0) ⊂ Λ + r (c) in particular g(0) ∈ V (c). Now for t > 0 large, since F µ (g(t)) < 2m(c), necessarily in view of (2.3.9), g(t) V (c). By continuity of g there exists a t 0 > 0 such that g(t 0 ) ∈ ∂V (c) and using again (2.3.9) we conclude.

At this point observing that max{ Fµ ( h(0)), Fµ ( h(t h ))} = max{F µ (h(0)), F µ (h(t h ))} < 0 it follows that Fµ has a mountain pass geometry at level M(c) for all 0 < c < c 0 .

Proof of Proposition 2.1.12. Following [37, Section 5], we set (2.5.5)

1. F = h([0, ∞)) : h ∈ Γ (c) .
For any A ∈ F , there exists a h 0 ∈ Γ (c) such that A = h 0 ([0, ∞)) and

M(c) = inf h∈ Γ (c) max t∈[0,∞) Fµ ( h(t)) ≤ max t∈[0,∞)
Fµ (h 0 (t)).

Hence, there exists a t 0 ∈ [0, ∞) such that M(c) ≤ Fµ (h 0 (t 0 )). This means that h 0 (t 0 ) ∈ F and consequently,

A ∩ F \ B ∅, ∀A ∈ F . (2.5.6)
Now, for all (s, u) ∈ R + × S r (c), we have

Fµ (s, u) = F µ (u s ) = F µ (|u| s ) = Fµ (1, |u| s ).
Hence, for any minimizing sequence (z n = (α n , β n )) ⊂ Γ (c) for M(c), we have that the sequence (y n = (1,

|β n | α n )
) is also a minimizing sequence for M(c).

Using the terminology in [37, Section 5], it means that F is a homotopy stable family of compact subset of R × S r (c) with extended closed boundary B and the superlevel set F is a dual set for F . By (2.5.5) and (2.5.6), we can apply [37, Theorem 5.2] with the minimizing sequence {y n = (1, |β n | α n )}. This implies that there exists a Palais-Smale sequence (s n , w n ) ⊂ R + × S r (c) for Fµ restricted to R + × S r (c) at level M(c), that is, as n → ∞,

∂ s Fµ (s n , w n ) → 0, (2.5.7) 
and

∥∂ u Fµ (s n , w n )∥ (T w n S(r)) * → 0, (2.5.8)
with the additional property that

|s n -1| + ∥w n -|β n | α n ([0, ∞))∥ H 1 (R N ) → 0.
(2.5.9) By (2.5.1), (2.5.7) and since (s n ) is bounded due to (2.5.9), we obtain

Q µ ((w n ) s n ) → 0 as n → ∞.
Also, by (2.5.2), the condition (2.5.8) implies that

F ′ µ ((w n ) s n )((φ) s n ) → 0, (2.5.10)
as n → ∞, for every φ ∈ T w n S r (c). Let then u n := (w n ) s n . By (2.5.3), (2.5.10) and Lemma 2.5.1, we obtain that (u n ) ⊂ S r (c) is a Palais-Smale sequence for F µ restricted to S r (c) at level M 0 (c), with Q µ (u n ) → 0. Since the problem is invariant under rotations, (u n ) ⊂ S r (c) is also the Palais-Smale sequence for F µ restricted to S(c) at level M 0 (c), with Q µ (u n ) → 0.

The proof of Proposition 2.1.13

Now, we give the Proof of Proposition 2.1.13. Let (u n ) ⊂ H 1 r (R N ) be given by Proposition 2.1.12. To show its convergence we proceed in three steps.

Step 1:

(u n ) ⊂ H 1 r (R N ) is bounded. Since Q µ (u n ) → 0, we have, using the Gagliardo-Nirenberg inequality (2.2.2), F µ (u n ) = 1 N ∥∇u n ∥ 2 L 2 (R N ) - µ q 1 - qγ q 2 * ∥u n ∥ q L q (R N ) + o n (1) ≥ 1 N ∥∇u n ∥ 2 L 2 (R N ) - µ q C q N ,q 1 - qγ q 2 * c (1-γ q )q ∥∇u n ∥ qγ q L 2 (R N ) + o n (1),
where o n (1) → 0 as n → ∞. Since F µ (u n ) → M 0 (c) < ∞ and qγ q < 2 the conclusion follows.

Step 2:

(u n ) ⊂ H 1 r (R N ) has a non-trivial weak limit. Since (u n ) ⊂ H 1 r (R N
) is a bounded sequence, by the compact embedding of H 1 r (R N ) into L q (R N ), there exists a u ∈ H 1 r (R N ) such that, up to a subsequence, u n ⇀ u weakly in H 1 r (R N ), u n → u strongly in L q (R N ) and a.e in R N .

Let us assume now, by contradiction, that u is trivial. Then, ∥u n ∥ L q (R N ) → 0 and since Q µ (u n ) → 0, using the Sobolev embedding, see (2.2.1), we deduce that

S∥u n ∥ 2 L 2 * (R N ) ≤ ∥∇u n ∥ 2 L 2 (R N ) ≤ ∥u n ∥ 2 * L 2 * (R N ) + o n (1). ( 2 

.5.11)

We distinguish the two cases

either (i) ∥u n ∥ 2 * L 2 * (R N ) → 0 or (ii) ∥u n ∥ 2 * L 2 * (R N ) → ℓ > 0.
If (i) holds then, in view of (2.5.11), we also have that ∥∇u n ∥ 2 L 2 (R N ) → 0 which implies that F µ (u n ) → 0 contradicting the fact that M 0 (c) > 0, see (2.5.4). If (ii) holds we deduce from (2.5.11) that

∥u n ∥ 2 * L 2 * (R N ) ≥ S N 2 + o n (1)
and thus, recording that Q µ (u n ) → 0 and ∥u n ∥ L q (R N ) → 0, it follows that

∥∇u n ∥ 2 L 2 (R N ) = ∥u n ∥ 2 * L 2 * (R N ) + o n (1) ≥ S N 2 + o n (1).
(2.5.12) From (2.5.12) we deduce that

F µ (u n ) = 1 N ∥∇u n ∥ 2 L 2 (R N ) + o n (1) ≥ 1 N S N 2 + o n (1). But, since m(c) < 0, necessarily M 0 (c) < S N 2
N and we also have a contradiction.

Step 3: Lemma 3], we know that

(u n ) ⊂ H 1 r (R N ) strongly converges. Since (u n ) is bounded, following [19,
F µ S(c) ′ (u n ) → 0 in H -1 (R N ) ⇐⇒ F ′ µ (u n ) - 1 c ⟨F ′ µ (u n ), u n ⟩u n → 0 in H -1 (R N ).
Thus, for any w ∈ H 1 (R N ), we have

o n (1) = F ′ µ (u n ) - 1 c ⟨F ′ µ (u n ), u n ⟩u n , w = R N ∇u n • ∇w -µ|u n | q-2 u n w -|u n | 2 * -2 u n w -λ n u n w dx, (2.5.13) 
where o n (1) → 0 as n → ∞ and

c λ n = ∥∇u n ∥ 2 L 2 (R N ) -µ∥u n ∥ q L q (R N ) -∥u n ∥ 2 * L 2 * (R N ) + o n (1). (2.5.14)
In particular (λ n ) ⊂ R is bounded and, up to a subsequence, λ n → λ ∈ R. Now, passing to the limit in (2.5.13) by weak convergence, we obtain that -∆u -µ|u| q-2 u -|u| 2 * -2 u = λu.

(2.5.15)

Thus in view of Lemma 2.2.1, Q µ (u) = 0 and λ < 0. Let (v n ) ⊂ H 1 r (R N ) be such that v n = u n -u. We have that v n ⇀ 0 weakly in H 1 r (R N ), v n → 0 strongly in L q (R N ) and a.e. in R N . Thus

∥∇u n ∥ 2 L 2 (R N ) = ∥∇u∥ 2 L 2 (R N ) + ∥∇v n ∥ 2 L 2 (R N ) + o n (1)
and also, by the Brezis-Lieb Lemma [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF],

∥u n ∥ 2 * L 2 * (R N ) = ∥u∥ 2 * L 2 * (R N ) + ∥v n ∥ 2 * L 2 * (R N ) + o n (1).
(2.5.16)

In particular,

F µ (u n ) = F µ (u) + F µ (v n ) + o n (1).
(2.5.17)

and

Q µ (u n ) = Q µ (u) + Q µ (v n ) + o n (1).
(2.5.18)

Here again we distinguish the two cases

either (i) ∥v n ∥ 2 * L 2 * (R N ) → 0 or (ii) ∥v n ∥ 2 * L 2 * (R N ) → ℓ > 0.
Assuming that (ii) holds, and since Q µ (u) = 0, we deduce from (2.5.18) that

∥v n ∥ 2 * L 2 * (R N ) = ∥∇v n ∥ 2 L 2 (R N ) + o n (1).
Then, reasoning as in Step 2, it follows that

F µ (v n ) ≥ S N 2 N + o n (1)
which leads, in view of (2.5.17), to

F µ (u n ) ≥ F µ (u) + S N 2 N + o n (1).
At this point, recording from Remark 2.1.4 that c → m(c) is non increasing, using Q µ (u) = 0 and since, by property of the weak limit, ∥u∥ 2 L 2 (R N ) ≤ c, we get that

F µ (u) ≥ m ∥u∥ 2 L 2 (R N ) ≥ m(c). Thus, F µ (u n ) → M 0 (c) satisfies F µ (u n ) ≥ m(c) + S N 2 N + o n (1)
which contradicts our assumption on M 0 (c).

It remains to show that if (i) holds then (u n ) ⊂ H 1 r (R N ) converges strongly. Since (i) holds, we get from (2.5.16) that

∥u n ∥ 2 * L 2 * (R N ) → ∥u∥ 2 * L 2 * (R N ) .
Choosing w = u n in (2.5.13) we deduce since u is solution to (2.5.15) that

∥∇u n ∥ 2 L 2 (R N ) -λ n ∥u n ∥ 2 L 2 (R N ) -µ∥u n ∥ q L q (R N ) -∥u n ∥ 2 * L 2 * (R N ) → ∥∇u∥ 2 L 2 (R N ) -λ∥u∥ 2 L 2 (R N ) -µ∥u∥ q L q (R N ) -∥u∥ 2 * L 2 * (R N ) = 0.
Therefore, taking into account that

∥u n ∥ q L q (R N ) → ∥u∥ q L q (R N ) due to (u n ) ⊂ H 1 r (R N ) and since λ n → λ, we obtain that ∥∇u n ∥ 2 L 2 (R N ) -λ∥u n ∥ 2 L 2 (R N ) → ∥∇u∥ 2 L 2 (R N ) -λ∥u∥ 2 L 2 (R N ) .
By λ < 0 (since u is non trivial), see Lemma 2.2.1 we conclude that u n → u strongly in H 1 r (R N ). At this point the proposition is proved.

The proof of Proposition 2.1.14

As announced in the Introduction to show that Proposition 2.1.14 holds we shall rely on Proposition 2.1.17 and Proposition 2.1.18.

Proof of Proposition 2.1.17. We shall proceed into three steps.

Step 1: For any c ∈ (0, c 0 ), it holds that

M(c) ≥ inf u∈Λ -(c) F µ (u).
Let h ∈ Γ (c). We have h(0) ∈ V (c) ∩ {u : F µ (u) < 0} and thus, in view of Lemma 2.2.4(iii), h(0) ∈ W (c) or equivalently s + h(0) > 1. Since h ∈ Γ (c), we also have that for t large enough,

F µ (h(t)) ≤ 2m(c) < m(c).
Thus, from Lemma 2.2.4(iv), we get that h(t) W (c) for t large enough or equivalently that s + h(0) < 1 for such t > 0. By the continuity of h and of u → s + u , see Lemma 2.2.3(iii), we deduce that there exists a t 0 > 0 such that s + h(t 0 ) = 1, namely such that h(t 0 ) ∈ ∂W (c). Thus we have that

M(c) ≥ inf u∈∂W (c) F µ (u) = inf u∈Λ -(c) F µ (u) due to Lemma 2.

2.4(ii).

Step 2: For any c ∈ (0, c 0 ), it holds that

inf u∈Λ -(c) F µ (u) ≥ inf u∈Λ - r (c) F µ (u).
For any u ∈ Λ -(c), let v be the Schwarz rearrangement of |u|. We claim that ψ v (s) ≤ ψ u (s) for all s ≥ 0. Indeed, we have

ψ v (s) = s 2 2 ∥∇v∥ 2 L 2 (R N ) - µ q s N (q-2) 2 ∥v∥ q L q (R N ) - s 2 * 2 * ∥v∥ 2 * L 2 * (R N ) ≤ s 2 2 ∥∇u∥ 2 L 2 (R N ) - µ q s N (q-2) 2 ∥u∥ q L q (R N ) - s 2 * 2 * ∥u∥ 2 * L 2 * (R N ) = ψ u (s).
Recording, see Lemma 2.2.3, that s - u is the unique global maximum point for ψ u , we deduce from the above claim that

ψ u (s - u ) ≥ ψ u (s + v ) ≥ ψ v (s + v ).
Since u ∈ Λ -(c), we have that s - u = 1 and hence

F µ (u) = ψ u (1) = ψ u (s - u ) ≥ ψ v (s - v ) = F µ (v s - v ). Recording that v s + v ∈ Λ - r (c), we deduce that inf u∈Λ -(c) F µ (u) ≥ inf u∈Λ - r (c)
F µ (u).

Step 3: For any c ∈ (0, c 0 ), it holds that

inf u∈Λ - r (c) F µ (u) ≥ M 0 (c).
Let u ∈ Λ - r (c) and s 1 > 0 be such that u s 1 ∈ E c . Let us consider the map

g u : t ∈ [0, ∞) → u (1-t)s + u +ts 1 ∈ S r (c).
We have that g u ∈ C([0, ∞), S r (c)) and

g u (0) = u s + u ∈ Λ + r (c) and g u (1) = u s 1 ∈ E c .
Hence, we get g u ∈ Γ 0 (c) and

F µ (u) = max s>0 F µ (u s ) ≥ max t∈[0,∞) F µ (g u (t)) ≥ inf g∈Γ 0 (c) max t∈[0,∞) F µ (g(t)) = M 0 (c).
Finally, from Steps 1, 2 and 3 we deduce that Proposition 2.1.17 holds.

Remark 2.5.4. Trivially, since Γ 0 (c) ⊂ Γ (c), one has M(c) ≤ M 0 (c). Thus, from Proposition 2.1.17 we deduce that

M 0 (c) = M(c) = inf u∈Λ -(c) F µ (u).
In the rest of this subsection, we shall prove Proposition 2.1.18. Firstly, we need some lemmas.

Lemma 2.5.5. Let N ≥ 3. For any c ∈ (0, c 0 ), the following property holds

M(c) ≤ inf h∈G(c) max t∈[0,∞) F µ (h(t))
where

G(c) := h ∈ C([0, ∞), ∪ d∈[ c 2 ,c] S(d)) : h(0) ∈ M d for some d ∈ c 2 , c , ∃t 0 = t 0 (h) s.t. h(t) ∈ E c ∀t ≥ t 0 .
Proof. Let any h ∈ G(c). We define the function

t → θ(t) := ∥h(t)∥ 2 L 2 (R N ) c .
Note that θ is the continuous function from [0, ∞) into R and θ(t) ≤ 1 for all t. Now we set

g(t)(x) := θ(t) N 2 -1 h(t)(θ(t)x). (2.5.19)
By direct computations, we obtain that

∥g(t)∥ 2 L 2 (R N ) = 1 [θ(t)] 2 ∥h(t)∥ 2 L 2 (R N ) = c, ∥∇g(t)∥ 2 L 2 (R N ) = ∥∇h(t)∥ 2 L 2 (R N ) , ∥g(t)∥ q L q (R N ) = [θ(t)] ( N 2 -1)q-N ∥h(t)∥ q L q (R N ) , ∥g(t)∥ 2 * L 2 * (R N ) = ∥h(t)∥ 2 * L 2 * (R N ) .
Hence,

F µ (g(t)) = 1 2 ∥∇g(t)∥ 2 L 2 (R N ) - µ q ∥g(t)∥ q L q (R N ) - 1 2 * ∥g(t)∥ 2 * L 2 * (R N ) = 1 2 ∥∇h(t)∥ 2 L 2 (R N ) - µ q [θ(t)] ( N 2 -1)q-N ∥h(t)∥ q L q (R N ) - 1 2 * ∥h(t)∥ 2 * L 2 * (R N ) ≤ 1 2 ∥∇h(t)∥ 2 L 2 (R N ) - µ q ∥h(t)∥ q L q (R N ) - 1 2 * ∥h(t)∥ 2 * L 2 * (R N ) = F µ (h(t))
due to θ(t) ≤ 1 for all t and N 2 -1 q -N < 0. Noting that F µ (g(0)) ≤ F µ (h(0)) < 0 and that

∥∇g(0)∥ 2 L 2 (R N ) = ∥∇h(0)∥ 2 L 2 (R N )
< ρ 0 we deduce that g(0) ∈ V (c) ∩ {u : F µ (u) < 0} and hence that g ∈ Γ (c). At this point the lemma is proved.

Let u ε be an extremal function for the Sobolev inequality in R N defined by

u ε (x) := [N (N -2)ε 2 ] N -2 4 [ε 2 + |x| 2 ] N -2 2 , ε > 0, x ∈ R N . (2.5.20) Let ξ ∈ C ∞ 0 (R N ) be a radially non-increasing cut-off function with ξ ≡ 1 in B 1 , ξ ≡ 0 in R N \B 2 . Setting U ε (x) = ξ(x)u ε (x)
we shall prove the following lemma. Lemma 2.5.6. Let N ≥ 3 and u ∈ H 1 (R N ) be a nonnegative function. For every ε > 0 and every t > 0 we have

F µ (u + tU ε ) ≤ F µ (u) + t R N ∇u(x) • ∇U ε (x) dx + t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - µt q q ∥U ε ∥ q L q (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) .
Proof. We have, for any ε > 0 and any t > 0,

∥∇(u + tU ε )∥ 2 L 2 (R N ) = ∥∇u∥ 2 L 2 (R N ) + 2t R N ∇u(x) • ∇U ε (x) dx + t 2 ∥∇U ε ∥ 2 L 2 (R N ) .
Also, since both u ∈ H 1 (R N ) and U ε are non negative,

∥u + tU ε ∥ 2 * L 2 * (R N ) ≥ ∥u∥ 2 * L 2 * (R N ) + t 2 * ∥U ε ∥ 2 * L 2 * (R N )
and

∥u + tU ε ∥ q L q (R N ) ≥ ∥u∥ q L q (R N ) + t q ∥U ε ∥ q L q (R N ) .
Therefore, we obtain that

F µ (u + tU ε ) ≤ 1 2 ∥∇u∥ 2 L 2 (R N ) + 2t R N ∇u(x) • ∇U ε (x) dx + t 2 ∥∇U ε ∥ 2 L 2 (R N ) - µ q ∥u∥ q L q (R N ) + t q ∥U ε ∥ q L q (R N ) - 1 2 * ∥u∥ 2 * L 2 * (R N ) + t 2 * ∥U ε ∥ 2 * L 2 * (R N ) = F µ (u) + t R N ∇u(x) • ∇U ε (x) dx + t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - µt q q ∥U ε ∥ q L q (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) .
From now we fix a sequence (ε n ) ⊂ R + such that ε n → 0.

Lemma 2.5.7. Let N ≥ 3. There exists 0 < t 0 < t 1 < ∞ such that, for any sequence

(u n ) ⊂ H 1 (R N ) satisfying R N ∇u n (x) • ∇U ε n (x) dx ≤ 1, ∀n ∈ N, (2.5.21) setting I n (t) := t R N ∇u n (x) • ∇U ε n (x) dx + t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - µt q q ∥U ε ∥ q L q (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) ,
we have, for any n ∈ N large enough,

(i) if I n (t) ≥ 1 2N S N 2 then necessarily t ≥ t 0 , (ii) I n (t) ≤ 2m(c) for any t ≥ t 1 .
Proof. Observe that

I n (t) ≤ t R N ∇u n (x) • ∇U ε n (x) dx + t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) .
We have that

∥∇U ε ∥ 2 L 2 (R N ) → S N 2 > 0, see Lemma 2.7.1.
Thus in view of (2.5.21), if t → 0 then

I n (t) < 1 2N S N 2 .
Hence, there exists t 0 > 0 such that if I n (t) ≥ 1 2N S N 2 then necessarily t ≥ t 0 and point (i) holds. We also have

I(t) ≤ t R N ∇u n (x) • ∇U ε n (x) dx + t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) with ∥∇U ε ∥ 2 L 2 (R N ) → S N 2 > 0 and ∥U ε ∥ 2 * L 2 * (R N ) → S N 2 > 0, see Lemma 2.7.1.
Thus, in view of (2.5.21), there exists a t 1 > 0 such that I n (t) ≤ 2m(c), for all t ≥ t 1 , if n ∈ N is large enough. Thus point (ii) also holds.

We define by M 0 c the set of elements of M c which have the properties guarantee by Lemma 2.2.2.

Lemma 2.5.8. Let N ≥ 3, c ∈ (0, c 0 ) and u c ∈ M 0 c . For any ε > 0 there exists a y ε ∈ R N such that 2 R N u c (x -y ε )U ε (x) dx ≤ t 1 ∥U ε ∥ 2 L 2 (R N ) (2.5.22)
where t 1 > 0 is provided by Lemma 2.5.7 and 

R N ∇u c (x -y ε ) • ∇U ε (x) dx ≤ ∥U ε ∥ 2 L 2 (R N ) . ( 2 
R N u c (x -y)U ε (x) dx ≤ C(N ) √ c R N |x -y| -N 2 U ε (x) dx. (2.5.25)
Using that the function U ε is compactly supported in B 2 , we have that, for |y| large enough,

R N |x -y| -N 2 U ε (x)dx ≤ B 2 y 2 -N 2 U ε (x)dx.
At this point, we deduce from (2.5.25) that, for |y| large enough,

R N u c (x -y)U ε (x) dx ≤ C(N ) √ c y 2 -N 2 R N U ε (x) dx.
Using Hölder's inequality, we obtain that

∥U ε ∥ L 1 (R N ) ≤ |B 2 | 1 2 ∥U ε ∥ L 2 (R N
) and (2.5.22) follows. Now, since for any y ∈ R N , u c (•y) ≥ 0 is solution to the equation

-∆u -µ|u| q-2 u -|u| 2 * -2 u = λ c u in R N , (2.5.26)
for some λ c < 0, we have that 

R N ∇u c (x -y) • ∇U ε (x) dx ≤ µ R N |u c (x -y)| q-1 U ε (x) dx + R N |u c (x -y)| 2 * -1 U ε (x) dx. (2.5.27) Since, both |u c (z)| q-1 ≤ |u c (z)| and |u c (z)| 2 * -1 ≤ |u c (z)|
c n := c -2t 2 1 ∥U ε n ∥ 2 L 2 (R N )
(2.5.28)

where t 1 > 0 is given in Lemma 2.5.7. Clearly, c n → c as n → ∞. Now, for each n ∈ N, we fix a u c n ∈ M 0 c n . Lemma 2.5.9. Under the setting introduced above, for any n ∈ N large enough, there exists a

y n ∈ R N such that c n ≤ ∥u c n (• -y n ) + tU ε n ∥ 2 L 2 (R N ) ≤ c, ∀t ∈ [0, t 1 ], (2.5.29) and R N ∇u c n (x -y n ) • ∇U ε n (x) dx ≤ max{1, ∥U ε n ∥ 2 L 2 (R N ) }.
(2.5.30)

Proof. For any n ∈ N, according to Lemma 2.5.8, we can choose a

y n ∈ R N such that 2 R N u c n (x -y n )U ε n (x) dx ≤ t 1 ∥U ε n ∥ 2 L 2 (R N ) .
Now, for t ∈ [0, t 1 ], we have,

∥u c n (• -y n ) + tU ε n ∥ 2 L 2 (R N ) = ∥u c n (• -y n )∥ 2 L 2 (R N ) + 2t R N u c n (x -y n )U ε n (x) dx + t 2 ∥U ε ∥ 2 L 2 (R N ) ≤ c n + 2t 1 R N u c n (x -y n )U ε n (x) dx + t 2 1 ∥U ε n ∥ 2 L 2 (R N ) ≤ c n + 2t 2 1 ∥U ε n ∥ 2 L 2 (R N ) = c
where for the last inequality we have used the definition of c n given in (2.5.28). The first inequality in (2.5.29) is obvious by the positivity of u c n and U ε n . Finally note that (2.5.30) directly holds in view of (2.5.23) and since

∥U ε n ∥ 2 L 2 (R N ) → 0 as n → ∞.
Lemma 2.5.10. Under the setting introduced above, we define,

γ n (t) =        u c n (• -y n ) + tU ε n if t ∈ [0, t 1 ], γ n (t 1 ) if t ≥ t 1 .
Then γ n ∈ G(c), for any n ∈ N large enough. In addition

M(c) ≤ max t∈[0,∞) F µ (γ n (t)) ≤ max max t∈[t 0 ,t 1 ] F µ (γ n (t)), m(c) + 2 3N S N 2 .
(2.5.31)

Proof. Let n ∈ N be arbitrary fixed and large. To show that γ n ∈ G(c) we first observe that

γ n ∈ C([0, ∞), H 1 (R N ))
. Also, by (2.5.29), we get that

γ n (t) ⊂ d∈[ c 2 ,c] S(d)
since c n → c. Now, note that by Lemma 2.5.6

F µ (γ n (t)) ≤ m(c n ) + t R N ∇u c n (• -y n ) • ∇U ε n (x) dx + t 2 2 ∥∇U ε n ∥ 2 L 2 (R N ) - µt q q ∥U ε n ∥ q L q (R N ) - t 2 * 2 * ∥U ε n ∥ 2 * L 2 * (R N ) .
(2.5.32)

In view of (2.5.30) we can apply Lemma 2.5.7 to deduce that, for t ≥ t 1

F µ (γ n (t)) ≤ m(c n ) + 2m(c) ≤ 2m(c). (2.5.33)
We conclude that γ n ∈ G(c) for any n ∈ N large enough. In particular the first inequality in (2.5.31) holds because of Lemma 2.5.5. Now, considering again (2.5.32) and recording that (2.5.30) apply, we deduce from Lemma 2.5.7 that, if t ∈ [0, t 0 ],

F µ (γ n (t)) ≤ m(c n ) + 1 2N S N 2 ≤ m(c) + 2 3N S N 2
(2.5.34) since c n → c. Gathering (2.5.33) and (2.5.34) we see that the second inequality in (2.5.31) holds.

Proof of Proposition 2.1.18. We assume the setting above. In view of Lemma 2.5.10 to show that

M(c) < m(c) + 1 N S N 2 it suffices to show that max t∈[t 0 ,t 1 ] F µ (u c n (• -y n ) + tU ε n ) < m(c) + 1 N S N 2 .
From Lemma 2.3.5(iv), Lemma 2.5.6, Lemma 2.5.9 and the definition of c n given in (2.5.28) we can write max

t∈[t 0 ,t 1 ] F µ (u c n (• -y n ) + tU ε n ) ≤ m(c n ) + max t∈[t 0 ,t 1 ] t∥U ε ∥ 2 L 2 (R N ) + t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - µt q q ∥U ε ∥ q L q (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) ≤ m(c) + d(c -c n ) + t 1 ∥U ε ∥ 2 L 2 (R N ) + max t∈[t 0 ,t 1 ] t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - µt q q ∥U ε ∥ q L q (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) ≤ m(c) + 2t 2 1 d∥U ε n ∥ 2 L 2 (R N ) + t 1 ∥U ε ∥ 2 L 2 (R N ) + max t∈[t 0 ,t 1 ] t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - µt q q ∥U ε ∥ q L q (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) .
To complete the proof it suffices to show, for n ∈ N sufficiently large,

J n := (2t 2 1 d + t 1 )∥U ε n ∥ 2 L 2 (R N ) + max t∈[t 0 ,t 1 ] t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - µt q q ∥U ε ∥ q L q (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) < 1 N S N 2 .
In this aim first note that

J n ≤ (2t 2 1 d + t 1 )∥U ε n ∥ 2 L 2 (R N ) + max t>0 t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) - µt q 0 q ∥U ε ∥ q L q (R N ) .
But it holds, in view of the estimates of Lemma 2.7.1(i), that

max t>0 t 2 2 ∥∇U ε ∥ 2 L 2 (R N ) - t 2 * 2 * ∥U ε ∥ 2 * L 2 * (R N ) = 1 N S N 2 + O(ε N -2 n ).
Summarizing, the proof of Proposition 2.1.18 will be completed if we manage to show that, for n ∈ N large enough,

(2t 2 1 d + t 1 )∥U ε n ∥ 2 L 2 (R N ) - µt q 0 q ∥U ε ∥ q L q (R N ) + O(ε N -2 n ) < 0.
At this point we distinguish two cases.

Case 1 N ≥ 5: By Lemma 2.7.1 we have that, for some

K 1 > 0, K 2 > 0, as n → ∞, ∥U ε n ∥ 2 L 2 (R N ) = K 1 ε 2 n + o(ε N -2 n ) and ∥U ε n ∥ q L q (R N ) = K 2 ε N - (N -2)q 2 n + o(ε N - (N -2)q 2 n ).
Thus, for some constants, K1 > 0, K2 > 0, for n ∈ N sufficiently large,

(2t 2 1 d + t 1 )∥U ε n ∥ 2 L 2 (R N ) - µt q 0 q ∥U ε ∥ q L q (R N ) + O(ε N -2 n ) = K1 ε 2 n -K2 ε N - (N -2)q 2 n + O(ε N -2 n ) ≤ -K2 2 ε N - (N -2)q 2 n < 0 since N - (N -2)q 2 < min{N -2, 2} ⇐⇒ q > 2.
Case 2 N = 4: By Lemma 2.7.1 we have that as n → ∞, for some K 4 > 0,

∥U ε n ∥ 2 L 2 (R N ) = ωε 2 n | log ε n | + O(ε 2 n ) and ∥U ε n ∥ q L q (R N ) = K 4 ε 4-q n + o(ε 4-q n ).
Thus, for some constants, K3 > 0, K4 > 0, for n ∈ N sufficiently large,

(2t 2 1 d + t 1 )∥U ε n ∥ 2 L 2 (R N ) - µt q 0 q ∥U ε ∥ q L q (R N ) + O(ε 2 n ) = K3 ε 2 n | log ε n | -K4 ε 4-q n + O(ε 2 n ) ≤ -K4 2 ε 4-q n < 0 since 4 -q < 2.
In view of Cases 1 and 2 we deduce that the conclusion of Proposition 2.1.18

holds if N ≥ 4.
Remark 2.5.11. Our analysis of the interaction between a solution characterized as a local minima and a suitable family of truncated extremal functions for the Sobolev inequality reminds us of the approach developed by G. Tarantello in [START_REF] Tarantello | On nonhomogeneous elliptic equations involving critical Sobolev exponent[END_REF]. However, in [START_REF] Tarantello | On nonhomogeneous elliptic equations involving critical Sobolev exponent[END_REF], the extremal functions are located in a set where the local minima solution takes its greater values. The idea being to prove, through delicate estimates, that this interaction does decrease the mountain pass value of the associated functional with respect to the case where the two supports would be fully disjoint. Here, on the contrary, our construction aims at separating sufficiently the regions where the functions concentrate and to show that the remaining interaction (remember our functions u c ∈ S(c) lie on all R N ) can be assumed sufficiently small.

2.5.4

The proofs of Theorem 2.1.8 and Theorem 2.1.9

Proof of Theorem 2.1.8. The proof follows directly combining Proposition 2.1.12, Proposition 2.1.13 and Proposition 2.1.14.

Proof of Theorem 2.1.9. For µ > 0 fixed, let us prove that

F µ (v c ) → S N 2 N as c → 0. (2.5.35)
First, using that Q µ (v c ) = 0, we can write, using the Gagliardo-Nirenberg inequality (2.2.2)

F µ (v c ) = 1 N ∥∇v c ∥ 2 L 2 (R N ) - µ q 1 - qγ q 2 * ∥u n ∥ q L q (R N ) ≥ 1 N ∥∇v c ∥ 2 L 2 (R N ) - µ q C q N ,q 1 - qγ q 2 * c (1-γ q )q ∥∇v c ∥ qγ q L 2 (R N ) .
(2.5.36)

Since

F µ (v c ) = M 0 (c) < m(c) + S N 2 N ≤ S N 2 N (2.5.37)
and qγ q < 2 we deduce that (v c ) ⊂ H 1 r (R N ) is uniformly bounded with respect to c ∈ (0, c 0 ). Thus, still using the Gagliardo-Nirenberg inequality, we deduce that

∥v c ∥ q L q (R N ) ≤ C N ,q ∥v c ∥ q(1-γ q ) L 2 (R N ) ∥∇v c ∥ qγ q L 2 (R N ) → 0 as c → 0.
(2.5.38)

Hence, recording that Q µ (v c ) = 0, we have that

ℓ := lim c→0 ∥∇v c ∥ 2 L 2 (R N ) = lim c→0 ∥v c ∥ 2 * L 2 * (R N ) ≤ 1 S 2 * 2 lim c→0 ∥∇v c ∥ 2 * L 2 (R N ) = 1 S 2 * 2 ℓ 2 * 2 .
Therefore, either ℓ = 0 or ℓ ≥ S N 2 . We claim that ℓ = 0 is impossible. Indeed, since v c ∈ Λ -(c), we have that

∥∇v c ∥ 2 L 2 (R N ) -µγ q ∥v c ∥ q L q (R N ) -∥v c ∥ 2 * L 2 * (R N ) = 0 (2.5.39)
and

∥∇v c ∥ 2 L 2 (R N ) -µγ q (qγ q -1)∥v c ∥ q L q (R N ) -(2 * -1)∥v c ∥ 2 * L 2 * (R N ) ≤ 0. (2.5.40)
Combining (2.5.39), (2.5.40) and using the Sobolev inequality, we get

∥∇v c ∥ 2 L 2 (R N ) ≤ 2 * -qγ q 2 -qγ q ∥v c ∥ 2 * L 2 * (R N ) ≤ 2 * -qγ q 2 -qγ q 1 S 2 * 2 ∥∇v c ∥ 2 * L 2 (R N )
proving the claim. At this point, in view of (2.5.38), using that Q µ (v c ) = 0, we have

M 0 (c) = F µ (v c ) = 1 N ∥∇v c ∥ 2 L 2 (R N ) - µ q 1 - qγ q 2 * ∥v c ∥ q L q (R N ) = 1 N ∥∇v c ∥ 2 L 2 (R N ) + o c (1) ≥ S N 2 N + o c (1),
where o c (1) → 0 as c → 0. Taking into account that m(c) → 0 as c → 0, see Remark 2.1.4, and that

M 0 (c) < m(c) + S N 2 N
we obtain (2.5.35). Clearly also the above proof shows that ∥∇v c ∥ 2 L 2 (R N ) → S N 2 . This proves (i).

To show that (ii) holds we start to observe that, since c 0 (µ) → ∞ as µ → 0, see Remark 2.1.3, v c ∈ S(c) exists for any µ → 0 sufficiently small. Now, (2.5.36)-(2.5.37) imply that (v c ) ⊂ H 1 r (R N ) is uniformly bounded as µ → 0 and thus, using the Gagliardo-Nirenberg inequality, we have that

µ∥v c ∥ q L q (R N ) ≤ µC N ,q ∥v c ∥ q(1-γ q ) L 2 (R N ) ∥∇v c ∥ qγ q L 2 (R N ) → 0 as µ → 0.
From here the rest of the proof is identical to the one of (i).

Strong instability of the standing waves lying at mountain pass levels

To prove the strong instability of the standing waves, we use the recent advances on the subject of instability by blow-up contained in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]. Now, we recall [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.6] which in our notation reads as Theorem 2.6.1. Under the assumptions of Theorem 2.1.8, let u ∈ S(c) be such that F µ (u) < inf Λ + (c) F µ . Then, if s + u < 1 and |x|u ∈ L 2 (R N , C), the solution φ of (2.1.1) with initial datum u blows-up in finite time.

Appendix

Proof of Theorem 2.1.11. Since, by Remark 2.5.4

F µ (v c ) = inf u∈Λ -(c) F µ (u)
and ψ v c (s) has a unique global maximum at s ⋆ = 1, see Lemma 2.2.3, we have that

v t := (v c ) t satisfies F µ (v t ) < inf u∈Λ -(c) F µ (u)
for any t > 1. Clearly s + v t = 1 t < 1 for any t > 1 and also v t → v c as t → 1 + . Now, since λ c < 0, by a classical decay argument, we have that v c and thus v t satisfies |x|v t ∈ L 2 (R N , C). At this point, applying Theorem 2.6.1, we deduce that v c ∈ S(c) gives rise to an unstable standing wave. See for more details [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.3] or [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF]Theorem 1.4].

Remark 2.6.2. Theorem 2.6.1, see also [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF]Theorem 1.13], is remarkable because it permits to detect a finite time blow-up occurs just by considering the 1-variable function ψ u . We refer, for earlier results on the link between the variational characterization of a solution and its instability, to the classical paper [START_REF] Berestycki | Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires[END_REF], and to [START_REF] Le | A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations[END_REF] for more recent developments.

Appendix

Let N ≥ 3, u ε be the extremal functions for the Sobolev inequality in R N defined in (2.5.20) and ξ ∈ C ∞ 0 (R N ) be a radially non-increasing cut-off function with

ξ ≡ 1 in B 1 , ξ ≡ 0 in R N \B 2 .
Lemma 2.7.1. Setting U ε := ξu ε and denoting by ω the area of the unit sphere in R N , we have, for N ≥ 3,

(i) ∥∇U ε ∥ 2 L 2 (R N ) = S N 2 + O(ε N -2 ) and ∥U ε ∥ 2 * L 2 * (R N ) = S N 2 + O(ε N ),
(ii) For some positive constant K > 0,

∥U ε ∥ q L q (R N ) =                    Kε N -(N -2) 2 q + o(ε N -(N -2) 2 q ) if N N -2 < q < 2 * , ωε N 2 | log ε| + O(ε N 2 ) if q = N N -2 , ω 2 0 ξ q (r) r (N -2)q-(N -1) dr ε N -2 2 q + o(ε N -2 2 q ) if 1 ≤ q < N N -2 .
Proof. The point (i) is standard. See, for example, [83, pages 163-164]. We shall thus concentrate on point (ii). We have

∥U ε ∥ q L q (R N ) = R N ξ q (x) ε ε 2 + |x| 2 N -2 2 q dx.
Passing to radial coordinates, we get

∥U ε ∥ q L q (R N ) = ω ε N -2 2 q 2 0 ξ q (r)r N -1 (ε 2 + r 2 ) N -2 2 q dr (2.7.1)
that can be decomposed as

∥U ε ∥ q L q (R N ) = ωε N -2 2 q 2 0 (ξ q (r) -1)r N -1 (ε 2 + r 2 ) N -2 2 q dr + ωε N -2 2 q 2 0 r N -1 (ε 2 + r 2 ) N -2 2 q dr := I 1 (ε) + I 2 (ε). (2.7.2)
Since ξ(r) ≡ 1 on [0, 1], the integral in I 1 (ε) is converging and thus

I 1 (ε) = O(ε N -2 2 q
). Now, by making a change of variable, we rewrite I 2 (ε) as

I 2 (ε) = ω ε N -N -2 2 q 2 ε 0 r N -1 (1 + r 2 ) N -2 2 q dr.
The integral in I 2 (ε) is converging, as ε → 0, to a finite value if and only if q > N N -2 . Thus, when q > N N -2 , we have that, for some constant K > 0,

I 2 (ε) = Kε N -N -2 2 q + o(ε N -N -2 2 q )
and recording that

I 1 (ε) = O(ε N -2 2 q
), we have

∥U ε ∥ q L q (R N ) = I 1 (ε) + I 2 (ε) = Kε N -N -2 2 q + o(ε N -N -2 2 q ).
This proves point (ii) for N N -2 < q < 2 * . Now, assuming that q = N N -2 , and proceeding as in (2.7.2), we get that

||U ε || q L q (R N ) = ω ε N 2 2 0 (ξ q (r) -1)r N -1 (ε 2 + r 2 ) N 2 dr + ωε N 2 2 0 r N -1 (ε 2 + r 2 ) N 2 dr := I 1 (ε) + I 2 (ε) (2.7.3) 
with

I 1 (ε) = O(ε N 2 )
. Also,

I 2 (ε) = ωε N 2 2 ε 0 r N -1 (1 + r 2 ) N 2 dr = ωε N 2 | log ε| + O(1) .
Summarizing, we obtain for q = N N -2 that

∥U ε ∥ q L q (R N ) = ωε N 2 | log ε| + O(ε N 2 ).
It remains to study the case 1 ≤ q < N N -2 . Under this assumption, we observe that, for all r > 0,

lim ε→0 ξ q (r)r N -1 (ε 2 + r 2 ) N -2 2 q = ξ q (r)r N -1 r (N -2)q = ξ q (r) r (N -2)q-(N -1)
and also that, for all ε > 0, for some constant D > 0

ξ q (r)r N -1 (ε 2 + r 2 ) N -2 2 q ≤ D r (N -2)q-(N -1) ∈ L 1 ([0, 2]).
Thus, from Lebesgue's theorem, we deduce from (2.7.1) that

∥U ε ∥ q L q (R N ) = ω 2 0 ξ q (r) r (N -2)q-(N -1) dr ε N -2 2 q + o(ε N -2 2 q ).
This ends the proof of the lemma.

Introduction

In this chapter, we consider the following Schrödinger-Poisson-Slater equation:

i∂ t v + ∆v + γ(|x| -1 * |v| 2 )v + a|v| p-2 v = 0 in R × R 3 , (3.1.1) 
where v : R × R 3 → C, γ ∈ R, a ∈ R and p ∈ ( 10 3 , 6]. We look for standing wave solutions to (3.1.1), namely to solutions of the form v(t, x) = e iλt u(x), λ ∈ R. Then the function u(x) satisfies the equation

-∆u + λu -γ(|x| -1 * |u| 2 )u -a|u| p-2 u = 0 in R 3 . (3.1.2)
Motivated by the fact that the L 2norm is a preserved quantity of the evolution we focus on the search of solutions to (3.1.2) with prescribed L 2norm. It is standard that for some prescribed c > 0, a solution of (3.1.2) with ∥u∥ 2 L 2 (R 3 ) = c can be obtained as a critical point of the Energy functional

F(u) := 1 2 R 3 |∇u| 2 dx - γ 4 R 3 R 3 |u(x)| 2 |u(y)| 2 |x -y| dxdy - a p R 3 |u| p dx restricted to S(c) := {u ∈ H 1 (R 3 ) : ∥u∥ 2 L 2 (R 3 ) = c}.
Then the parameter λ ∈ R in (3.1.2) appears as a Lagrange multiplier, it is an unknown of the problem. As we know, F(u) is a well-defined and C 1 functional on S(c) for any p ∈ (2, 6] (see [START_REF] Ruiz | The Schrödinger-Poisson equation under the effect of a nonlinear local term[END_REF] for example).

Let us define

m(c) = inf u∈S(c) F(u). (3.1.3)
Depending on the range of parameters we shall consider m(c) will be finite or not. The case where γ < 0 and a > 0 in (3.1.2) has been the most studied so far. When p ∈ (2, 10 3 ) it can been shown that m(c) ∈ (-∞, 0] for any c > 0 and it is also the case when p = 10 3 and c > 0 is small. It is shown in [START_REF] Bellazzini | Stable standing waves for a class of nonlinear Schrödinger-Poisson equations[END_REF] that minimizer exists if p ∈ (2, 3) and c > 0 is small enough, see also [START_REF] Sánchez | Long-time dynamics of the Schrödinger-Poisson-Slater system[END_REF] for the special case p = 8 3 . The case p ∈ (3, 10 3 ) was considered in [START_REF] Bellazzini | Scaling properties of functionals and existence of constrained minimizers[END_REF][START_REF] Jeanjean | Sharp nonexistence results of prescribed L 2 -norm solutions for some class of Schrödinger-Poisson and quasi-linear equations[END_REF], see also [START_REF] Kikuchi | Existence and stability of standing waves for Schrödinger-Poisson-Slater equation[END_REF] for a closely related problem. In [START_REF] Jeanjean | Sharp nonexistence results of prescribed L 2 -norm solutions for some class of Schrödinger-Poisson and quasi-linear equations[END_REF] the existence of a threshold value c 0 > 0 such that m(c) has a minimizer if and only if c ∈ [c 0 , ∞) was established. It was also proved in [START_REF] Jeanjean | Sharp nonexistence results of prescribed L 2 -norm solutions for some class of Schrödinger-Poisson and quasi-linear equations[END_REF] that a minimizer does not exist for any c > 0 if p = 3 or p = 10 3 . We also refer to [START_REF] Catto | Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentrationcompactness principle[END_REF] for related results. When p ∈ ( 10 3 , 6] a scaling argument reveals that m(c) = -∞ but nevertheless it was proved in [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF] that, when p ∈ ( 10 3 , 6) there exists, for c > 0 small enough a critical point of F constrained to S(c) at a strictly positive level. In this work we complement the result of [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF] by showing that when p = 6 and for any c > 0 there does not exist positive solutions, see Theorem 3.1.9.

Even if some open problems remain when γ < 0 and a > 0, we shall mainly concentrate here on the others cases: (γ < 0, a < 0), (γ > 0, a > 0) and (γ > 0, a < 0). We define, for short, the following quantities

A(u) := R 3 |∇u| 2 dx, B(u) := R 3 R 3 |u(x)| 2 |u(y)| 2 |x -y| dxdy, C(u) := R 3 |u| p dx.
For u ∈ S(c), we set u t (x) := t 3 2 u(tx), t > 0, then

u t ∈ S(c), A(u t ) = t 2 A(u), B(u t ) = tB(u), C(u t ) = t σ C(u),
where

2 < σ := 3(p -2) 2 ≤ 6, (3.1.4) 
due to p ∈ ( 10 3 , 6]. For u ∈ S(c), we define the fiber map

t ∈ (0, ∞) → g u (t) := F(u t ) = 1 2 t 2 A(u) - γ 4 tB(u) - a p t σ C(u).
Hence, we have

g ′ u (t) = tA(u) - γ 4 B(u) - aσ p t σ -1 C(u) = 1 t Q(u t ),
where

Q(u) = A(u) - γ 4 B(u) - aσ p C(u).
Actually the condition Q(u) = 0 corresponds to a Pohozaev identity and the set

Λ(c) := {u ∈ S(c) : Q(u) = 0} = {u ∈ S(c) : g ′ u (1) = 0}
appears as a natural constraint. Indeed, if u ∈ S(c), then t > 0 is a critical point for g u if and only if u t ∈ Λ(c). In particular, u ∈ Λ(c) if and only if 1 is a critical point of g u . First we briefly consider the case γ < 0, a < 0. For any u ∈ S(c), we have that g ′ u (t) > 0 for all t > 0, hence the fiber map g u (t) is strictly increasing and so we can state the following non-existence result:

It is known since the pioneering work of Brezis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] that the way to derive such a strict upper bound is through the use of testing functions. In Chapter 2, considering the equation

-∆u -λu -µ|u| q-2 u -|u| 2 * -2 u = 0 in R N , ( 3.1.8) 
with N ≥ 3, µ > 0, 2 < q < 2+ 4 N and 2 * = 2N N -2 we face the need to establish a similar inequality. We constructed test functions which could be viewed as the sum of a truncated extremal function of the Sobolev inequality on R N centered at the origin and of u + c translated far away from the origin. This choice of testing functions was sufficient to prove our strict inequality when N ≥ 4 but we missed it in the case N = 3. Very recently, in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF] the authors introduced an alternative choice of testing functions which allowed to treat, in a unified way, the case N = 3 and N ≥ 4 for (3.1.8). The strategy in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF], recording of the one introduced by G. Tarantello in [START_REF] Tarantello | On nonhomogeneous elliptic equations involving critical Sobolev exponent[END_REF], is on the contrary, to located the extremal functions where the solution u + c takes its greater values (the origin thus). The idea behind the proof is that the interaction decreases the value of the Energy with respect to the case where the supports would be disjoint. In this chapter, where (3.1.2) is set on R 3 , we believe in view of our experience on (3.1.8), more appropriate to follow the approach of [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF] to check the inequality (3.1.7) for any c ∈ (0, c 1 ).

The results of Theorem 3.1.2 are complemented in several directions. First, we show that the solution u + (c) obtained in Theorem 3.1.2 can be characterized as a local minima for F restricted to S(c). We treat here the full range p ∈ ( 10 3 , 6] with a single proof. More precisely we show, Theorem 3.1.5. Let p ∈ ( 10 3 , 6]. Assume that γ > 0, a > 0 and let c ∈ (0, c 1 ). Then we have Λ + (c) ⊂ V (c) and

γ + (c) = inf u∈Λ + (c) F(u) = inf u∈V (c) F(u)
where (3.3.45) for the definition of k 1 > 0). In addition, any minimizing sequence for F on V (c) is, up to translation, strongly convergent in H 1 (R 3 ). Remark 3.1.6. The proof of Lemma 3.3.20 which is a key step to established Theorem 3.1.5, reveals some additional properties of the set V (c). Indeed, we have that V (c) ⊂ S(c)\Λ -(c) and thus V (c) is separating the sets Λ + (c) and Λ -(c). Also, for any 0 < c, c < c 1 , we have that Remark 3.1.7. To prove that the minimizing sequences for F on V (c) are, up to translation, strongly convergent in H 1 (R 3 ) we follow an approach due to [START_REF] Ikoma | Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions[END_REF] that has already been used several times, see, for example, [START_REF] Gou | Existence and orbital stability of standing waves for nonlinear Schrödinger systems[END_REF][START_REF] Luo | Multiplicity and asymptotics of standing waves for the energy critical half-wave[END_REF]. The first step in this approach is to show that the sequences do not vanish. When p = 6, we rely for this, in an essential way, on the fact that c 1 > 0 is sufficiently small, see Lemma 3.3.22. This fact is also used to end the proof. Finally, note that since we allow the possibility that inf u∈∂V (c) F(u) < 0 where ∂V (c) := {u ∈ S(c)|A(u) = k 1 } we must check that the minimizers do ly in V (c). This chapter is organized as follows. In Section 3.2 we present some preliminary results. Section 3.3 is devoted to the treatment of the case γ > 0, a > 0 and p ∈ ( 10 3 , 6]. In Subsection 3.3.1 we make explicit the geometrical structure of F on S(c) and show the existence of a bounded Palais-Smale sequence (u + n ) ⊂ Λ + (c) at the level γ + (c) and of a bounded Palais-Smale sequence (u - n ) ⊂ Λ -(c) at the level γ -(c). In Subsection 3.3.2 we give the proof of Theorem 3.1.2 in the Sobolev subcritical case. Subsection 3.3.3 is devoted to the proof of Theorem 3.1.2 in the critical case. In Subsection 3.3.4 we prove the convergence of all minimizing sequences associated to γ + (c), namely Theorem 3.1.5. The behavior of the Lagrange multipliers and the property of the map c → γ -(c) are studied in Subsection 3.3.5. In Section 3.4 we treat the case γ > 0, a < 0 and p ∈ ( 10 3 , 6] and we prove Theorem 3.1.8. Finally, in Section 3.5, we consider the case γ < 0, a > 0 and p = 6, and prove Theorem 3.1.9

V (c) := {u ∈ S(c)|A(u) < k 1 } for some k 1 > 0 independent of c ∈ (0, c 1 ) (see
A(u) < k 1 < A(v) for all u ∈ Λ + (c), v ∈ Λ -( c), see (3.

Preliminary results

In this section we present various preliminary results. When it is not specified they are assumed to hold for γ ∈ R, a ∈ R, p ∈ 10 3 , 6 and any c > 0. Firstly, we present the definitions of Λ(c), Λ + (c), Λ 0 (c), Λ -(c) via A(u), B(u) and C(u):

Λ(c) =        u ∈ S(c) : A(u) = γ 4 B(u) + aσ p C(u)        , Λ + (c) =        u ∈ S(c) : A(u) = γ 4 B(u) + aσ p C(u), A(u) > aσ (σ -1) p C(u)        , Λ 0 (c) =        u ∈ S(c) : A(u) = γ 4 B(u) + aσ p C(u), A(u) = aσ (σ -1) p C(u)        , Λ -(c) =        u ∈ S(c) : A(u) = γ 4 B(u) + aσ p C(u), A(u) < aσ (σ -1) p C(u)        . Lemma 3.2.1. Let u ∈ S(c), there exists (i) a constant K H > 0 such that B(u) ≤ K H A(u)c 3 2 . (ii) a constant K GN > 0 such that C(u) ≤ K GN [A(u)] σ 2 c 6-p 4 .
Proof. We first recall the Hardy-Littlewood-Sobolev inequality (see [START_REF] Lieb | Analysis[END_REF]Chapter 4]):

R N R N f (x)g(y) |x -y| λ dxdy ≤ C(N , λ, p, q)∥f ∥ L p (R N ) ∥g∥ L q (R N ) , (3.2.1) 
where f ∈ L p (R N ), g ∈ L q (R N ), p, q > 1, 0 < λ < N and

1 p + 1 q + λ N = 2.
Let us also recall the Gagliardo-Nirenberg inequality (see [START_REF] Nirenberg | On elliptic partial differential equations[END_REF]) and the Sobolev inequality (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Theorem 9.9]) in the unified form: if

N ≥ 3 and p ∈ [2, 2N N -2 ] then ∥f ∥ L p (R N ) ≤ C(N , p)∥∇f ∥ β L 2 (R N ) ∥f ∥ (1-β) L 2 (R N ) , with β = N 1 2 - 1 p .
Applying the Hardy-Littlewood-Sobolev inequality we obtain

B(u) = R 3 R 3 |u(x)| 2 |u(y)| 2 |x -y| dxdy ≤ K 1 ∥u∥ 4 L 12 5 (R 3 ) (3.2.2)
and thus using the Gagliardo-Nirenberg inequality, we get

B(u) ≤ K 1 ∥u∥ 4 L 12 5 (R 3 ) ≤ K 1 K 2 ∥∇u∥ L 2 (R 3 ) ∥u∥ 3 L 2 (R 3 ) = K H A(u)c 3 2 .
Finally, applying the Sobolev, Gagliardo-Nirenberg inequality, we have

C(u) = ∥u∥ p L p (R 3 ) ≤ K GN ∥∇u∥ σ L 2 (R 3 ) ∥u∥ 6-p 2 L 2 (R 3 ) = K GN [A(u)] σ 2 c 6-p 4 . Lemma 3.2.2. Let p ∈ ( 10 3 , 6]. Assume that γ ∈ R and a ∈ R. If u ∈ H 1 (R 3 ) is a weak solution to -∆u + λu -γ(|x| -1 * |u| 2 )u -a|u| p-2 u = 0, (3.2.3 
)

then Q(u) = 0. Moreover, if u 0 then we have (i) λ > 0 if γ > 0 and p ∈ ( 10 3 , 6], (ii) λ < 0 if γ < 0 and p = 6.
Proof. Our proof is inspired by [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF]Lemma 4.2]. The following Pohozaev type identity holds for u ∈ H 1 (R 3 ) weak solution of (3.2.3) ( [START_REF] Mugnai | Non-existence results for the coupled Klein-Gordon-Maxwell equations[END_REF], also see [77, Theorem 2.2]),

1 2 A(u) + 3λ 2 D(u) - 5γ 4 B(u) - 3a p C(u) = 0, where D(u) = ∥u∥ 2 L 2 (R 3 ) . ( 3.2.4) 
By multiplying (3.2.3) by u and integrating, we derive a second identity

A(u) + λ c D(u) -γB(u) -aC(u) = 0. (3.2.5) 
Combining (3.2.4) and (3.2.5), we get

A(u) - γ 4 B(u) - aσ p C(u) = 0.
This means that Q(u) = 0. Using (3.2.4) and (3.2.5) again, we obtain

2(6 -p)A(u) + (5p -12)γB(u) = 2(3p -6)λD(u). (3.2.6)
If γ > 0 and p ∈ ( 10 3 , 6], we have 2(6p) ≥ 0, (5p -12)γ > 0, 2(3p -6) > 0.

Hence, λ > 0. If γ < 0 and p = 6, we have

2(6 -p) = 0, (5p -12)γ = 18γ < 0, 2(3p -6) = 24 > 0.
This implies that λ < 0.
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Lemma 3.2.3. Let p ∈ ( 10 3 , 6]. Assume that γ ∈ R and a ∈ R. If u ∈ H 1 (R 3 ) is a weak solution to -∆u + λu -γ(|x| -1 * |u| 2 )u -a|u| p-2 u = 0, (3.2.7 
)

then u ∈ L ∞ (R 3 ) ∩ C(R 3 )
. Moreover, in case γ > 0, a > 0 we have that if u 0 and u ≥ 0 then u > 0.

Proof. Applying [62, Theorem 2.1], we get that u ∈ W 2,r loc (R 3 ) for every r > 1 and hence u ∈ C(R 3 ). Since u ∈ H 1 (R 3 ), the Sobolev embedding (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Corollary 9.10]) implies that |u| 2 ∈ L q (R 3 ) for every q ∈ [1, 3]. Now, setting K := |x| -1 , we write

K := K 1 + K 2 where K 1 := K on B(0, 1), K 1 := 0 on R 3 \ B(0, 1) and K 2 := K -K 1 . Clearly K 1 ∈ L 2 (R 3 ) and K 2 ∈ L 4 (R 3 ). Applying [63, Lemma 2.20] with K 1 ∈ L 2 (R 3 ), |u| 2 ∈ L 2 (R 3 ) and with K 2 ∈ L 4 (R 3 ), |u| 2 ∈ L 4 3 (R 3 ), we obtain that K 1 * |u| 2 and K 2 * |u| 2 are continuous. Also lim |x|→∞ (K 1 * |u| 2 )(x) = 0 and lim |x|→∞ (K 2 * |u| 2 )(x) = 0.
Hence, we get that K * |u| 2 is continuous and

lim |x|→∞ (K * |u| 2 )(x) = 0. (3.2.8) Therefore, K * |u| 2 is bounded. At this point, we deduce from [81, Proposition B.1] that u ∈ L ∞ (R 3
). Now, if we assume that γ > 0, a > 0, u 0, u ≥ 0, setting v := -u ≤ 0 we get

-∆v + λv = γ(|x| -1 * |v| 2 )v + a|v| p-2 v ≤ 0.
By Lemma 3.2.2, we have that λ > 0. We assume that there exists x 0 ∈ R 3 such that v(x 0 ) = 0. For all R > |x 0 |, we have that v ∈ W 2,r (B R ) for every r > 1, Lv := -∆v + λv ≤ 0 in B R with λ > 0 and M := max x∈B R v = 0. At this point, applying [START_REF] Maria | Elliptic differential equations and obstacle problems[END_REF]Theorem 3.27], in the particular case where Γ = ∅, we obtain that v ≡ 0 in B R , and hence u ≡ 0 in B R . The value R > 0 being arbitrarily large, this contradicts our assumption that u 0 and we conclude that u > 0.

Following [START_REF] Berestycki | Nonlinear scalar field equations. II. Existence of infinitely many solutions[END_REF], we recall that, for any c > 0, S(c) is a submanifold codimension 1 of H 1 (R 3 ) and the tangent space at a point u ∈ S(c) is defined as 

T u S(c) = {ϕ ∈ H 1 (R 3 ) : ⟨u, ϕ⟩ L 2 (R 3 ) = 0}. The restriction F |S(c) : S(c) → R is a C 1 functional
We recall the following result, see Lemma 2.5.1, Lemma 3.3.2. For any c ∈ (0, c 1 ) and any u ∈ S(c), we have g ′ u (t ⋆ u ) > 0.

Proof. Let u ∈ S(c) be arbitrary. By the definition of t ⋆ u and by g ′′ u (t ⋆ u ) = 0, we have

g ′ u (t ⋆ u ) = t ⋆ u A(u) - γ 4 B(u) - aσ p (t ⋆ u ) σ -1 C(u) = t ⋆ u A(u) - γ 4 B(u) - 1 σ -1 t ⋆ u A(u) = σ -2 σ -1 t ⋆ u A(u) - γ 4 B(u) = σ -2 σ -1 pA(u) aσ (σ -1)C(u) 1 σ -2 A(u) - γ 4 B(u) = A(u)        σ -2 σ -1 pA(u) aσ (σ -1)C(u) 1 σ -2 A(u) - γ 4 B(u) A(u)        = A(u)         σ -2 σ -1 p[A(u)] σ 2 aσ (σ -1)C(u) 1 σ -2 - γ 4 B(u) A(u)         .
Applying Lemma 3.2.1, we obtain

g ′ u (t ⋆ u ) ≥ A(u)          σ -2 σ -1        p[A(u)] σ 2 aσ (σ -1)K GN [A(u)] σ 2 c 6-p 4        1 σ -2 - γ 4 K H A(u)c 3 2 A(u)          = A(u)          σ -2 σ -1        p aσ (σ -1)K GN c 6-p 4        1 σ -2 - γ 4 K H c 3 2         
.

By direct computations, we now have

σ -2 σ -1        p aσ (σ -1)K GN c 6-p 4        3 , 6]
In order to prove Lemma 3.3.7 we define the functions

I + : S(c) → R, I + (u) = F(u s + u ), I -: S(c) → R, I -(u) = F(u s - u ).
Note that since the maps u → s + u and u → s - u are of class C 1 , see Lemma 3.3.4, the functionals I + and I -are of class C 1 . Lemma 3.3.8. For any c ∈ (0, c 1 ), we have that dI

+ (u)[ψ] = dF(u s + u )[ψ s + u ] and dI -(u)[ψ] = dF(u s - u )[ψ s - u ] for any u ∈ S(c), ψ ∈ T u S(c).
Proof. We first give the proof for I + . Let ψ ∈ T u S(c), then ψ = h ′ (0) where h : (-ϵ, ϵ) → S(c) is a C 1 -cure with h(0) = u. We consider the incremental quotient

I + (h(t)) -I + (h(0)) t = F(h(t) s t ) -F(h(0) s 0 ) t , ( 3.3.7) 
where s t := s + h(t) , and hence s 0 = s + u . Recalling from Lemma 3.3.4 that s 0 is a strict local minimum of s → F(u s ) and u → s 0 is continuous, we get

F(h(t) s t ) -F(h(0) s 0 ) ≥ F(h(t) s t ) -F(h(0) s t ) = s 2 t 2 A(h(t)) -A(h(0)) - γs t 4 B(h(t)) -B(h(0)) - as σ t p C(h(t)) -C(h(0)) =s 2 t R 3 ∇h(τ 1 t) • ∇h ′ (τ 1 t)tdx -γs t R 3 R 3 |h(τ 2 t)(x)| 2 h(τ 2 t)(y)h ′ (τ 2 t)(y) |x -y| dxdy -as σ t R 3 |h(τ 3 t)| p-2 h(τ 3 t)h ′ (τ 3 t)dx,
for some τ 1 , τ 2 , τ 3 ∈ (0, 1). Analogously

F(h(t) s t ) -F(h(0) s 0 ) ≤ F(h(t) s 0 ) -F(h(0) s 0 ) = s 2 0 R 3 ∇h(τ 4 t) • ∇h ′ (τ 4 t)tdx -γs 0 R 3 R 3 |h(τ 5 t)(x)| 2 h(τ 5 t)(y)h ′ (τ 5 t)(y) |x -y| dxdy -as σ 0 R 3 |h(τ 6 t)| p-2 h(τ 6 t)h ′ (τ 6 t)dx,
for some τ 4 , τ 5 , τ 6 ∈ (0, 1). Now, from (3.3.7) we deduce that

lim t→0 I + (h(t)) -I + (h(0)) t =(s + u ) 2 R 3 ∇u∇ψdx -γ(s + u ) R 3 R 3 |u(x)| 2 u(y)ψ(y) |x -y| dxdy -a(s + u ) σ R 3 |u| p-2 uψdx = R 3 ∇u s + u ∇ψ s + u dx -γ R 3 R 3 |u s + u (x)| 2 u s + u (y)ψ s + u (y) |x -y| dxdy -a R 3 |u s + u | p-2 u s + u ψ s + u dx =dF(u s + u )[φ s + u ],
for any u ∈ S(c), ψ ∈ T u S(c). The proof for I -is similar.

Let G be the set of all singletons belonging to S r (c). It is clearly a homotopy stable family of compact subsets of S r (c) with closed boundary (an empty boundary actually) in the sense of [START_REF] Ghoussoub | Duality and perturbation methods in critical point theory[END_REF]Definition 3.1]. In view of Lemma 3. Proof. We first treat the case of e + G . Let (D n ) ⊂ G be such that max

u∈D n I + (u) < e + G + 1 n ,
and consider the homotopy

η : [0, 1] × S(c) → S(c), η(t, u) = u 1-t+ts + u .
From the definition of G, we have Therefore, E n is another minimizing sequence for e + G . Applying [START_REF] Ghoussoub | Duality and perturbation methods in critical point theory[END_REF]Theorem 3.2], in the particular case where the boundary B = ∅, there exists a Palais-Smale sequence (y n ) for I + on S(c) at level e + G such that

E n := η({1} × D n ) = {u s + u : u ∈ D n } ∈ G.
dist H 1 (R 3 ) (y n , E n ) → 0 as n → ∞. (3.3.8) 
Now writing s n := s + y n we set u + n := y s n n ∈ Λ + (c). We claim that there exists a constant C > 0 such that

1 C ≤ s 2 n ≤ C (3.3.9)
for n ∈ N large enough. Indeed, notice first that

s 2 n = A(u + n ) A(y n )
.

By F(u + n ) = I + (y n ) → e + G = γ + (c) < 0 we deduce from (3.3.1) that there exists M > 0 such that

1 M ≤ A(u + n ) ≤ M. (3.3.10)
On the other hand, since E n ∈ Λ + (c) is a minimizing sequence for e + G and F is H 1 (R 3 ) coercive on Λ + (c), we obtain that E n is uniformly bounded in H 1 (R 3 ) and thus from (3.3.8), it implies that sup n A(y n ) < ∞. Also, since E n is compact for every n ∈ N, there exist a v n ∈ E n such that ∥v ny n ∥ H 1 (R 3 ) → 0 as n → 0 due to (3.3.8). Using Lemma 3.3.1 again, we have, for a δ > 0,

A(y n ) ≥ A(v n ) -A(v n -y n ) ≥ δ 2 .
This proves the claim (3.3.9). From (3.2.9), and by Lemma 3.2.4, Lemma 3.3.8, we have Proof. Since F restricted to Λ(c) is coercive on H 1 (R 3 ) (see Lemma 3.3.1), (u n ) is bounded. Hence, up to translation, u n ⇀ u c weakly in H 1 (R 3 ). Let us argue by contradiction assuming that u c = 0, this means that (u n ) is vanishing. By [65, Lemma I.1], we have, for 2 < q < 6,

∥dF |S(c) (u + n )∥ * = sup ∥ψ∥≤1,ψ∈T u S(c) dF(u + n )[ψ] = sup ∥ψ∥≤1,ψ∈T u S(c) dF(u + n ) ψ 1 s n s n = sup ∥ψ∥≤1,ψ∈T u S(c) dI + (y n ) ψ 1 s n . This implies that (u + n ) ⊂ Λ + (c)
∥u n ∥ L q (R 3 ) → 0, as n → ∞.

This implies that

C(u n ) → 0, and B(u n ) ≤ K 1 ∥u n ∥ 4 L 12 5 (R 3 )
→ 0, due to (3.2.2). Since (u n ) ⊂ Λ(c), we have Q(u n ) = 0, and hence

A(u n ) = γ 4 B(u n ) + aσ p C(u n ) → 0. (3.3.11)
If we assume that (u n ) ⊂ Λ -(c) we recall that by Lemma 3.3.5, there exists α > 0 such that

A(u n ) ≥ α > 0, ∀n ∈ N,
contradicting (3.3.11). If we assume that (u n ) ⊂ Λ + (c) then since

F(u n ) = 1 2 A(u n ) - γ 4 B(u n ) - a p C(u n ) → 0
we reach a contradiction with the fact that

F(u n ) → γ + (c) = inf u∈Λ + (c) F(u) < 0.
The lemma is proved. Proof. Since the embedding H 1 r (R 3 ) ⊂ L q (R 3 ) is compact for q ∈ (2, 6), see [START_REF] Walter | Existence of solitary waves in higher dimensions[END_REF] and, up to translation, u n ⇀ u c weakly in H 1 r (R 3 ), we have, up to translation, u n → u c strongly in L q (R 3 ) for q ∈ (2, 6) and a.e in R 3 .

Since (u n ) ⊂ H 1 (R 3 ) is bounded, following [19, Lemma 3], we know that

F ′ |S(c) (u n ) → 0 in H -1 (R 3 ) ⇐⇒ F ′ (u n ) - 1 c ⟨F ′ (u n ), u n ⟩u n → 0 in H -1 (R 3 ).
Thus, for any w ∈ H 1 (R 3 ), we have

o n (1) = F ′ (u n ) - 1 c ⟨F ′ (u n ), u n ⟩u n , w = R 3 ∇u n ∇wdx + λ n R 3 u n wdx -γ R 3 R 3 |u n (x)| 2 u n (y)w(y) |x -y| dxdy -a R 3
|u n | p-2 u n wdx, (3.3.12) where o n (1) → 0 as n → ∞ and

λ n = -1 c [A(u n ) -γB(u n ) -aC(u n )] = 1 c 3γ 4 B(u n ) + a 1 - σ p C(u n ) , due to Q(u n ) = 0. Since u n ∈ H 1 r (R 3 ), we have C(u n ) → C(u c ) and B(u n ) → B(u c ) (see Lemma 3.2.5
). Hence, we obtain that

λ n → λ c = 1 c 3γ 4 B(u c ) + a 1 - σ p C(u c ) .
Now, using [92, Lemma 2.2], the equation (3.3.12) leads to

R 3 ∇u c ∇wdx + λ c R 3 u c wdx -γ R 3 R 3 |u c (x)| 2 u c (y)w(y) |x -y| dxdy -a R 3 |u c | p-2 u c wdx = 0 (3.3.13)
due to the weak convergence in H 1 r (R 3 ) and λ n → λ c ∈ R. This implies that (u c , λ c ) satisfies

-∆u c + λ c u c -γ(|x| -1 * |u c | 2 )u c -a|u c | p-2 u c = 0 in H -1 (R 3 ).
By the assumption u c 0 and by Lemma 3.2.2, we obtain that Q(u c ) = 0 and λ c > 0. Now choosing w = u n in (3.3.12) and choosing w = u c in (3.3.13), we obtain that

R 3 |∇u n | 2 dx + λ n R 3 |u n | 2 dx -γB(u n ) -aC(u n ) → R 3 |∇u c | 2 dx + λ c R 3 |u c | 2 dx -γB(u c ) -aC(u c ).
We can deduce from

B(u n ) → B(u c ), C(u n ) → C(u c ) and λ n → λ c that R 3 |∇u n | 2 dx + λ c R 3 |u n | 2 dx → R 3 |∇u c | 2 dx + λ c R 3 |u c | 2 dx.
Since λ c > 0, we conclude that u n → u c strongly in H 1 r (R 3 ). The lemma is proved.

Proof of Theorem 3.1.2 in the subcritical case p ∈ ( 10 3 , 6). We give the proof for γ + (c), the treatment for γ -(c) is identically. For any c ∈ (0, c 1 ), by Lemma Then u c 0 and we have the following alternative:

(i) either

F(u c ) ≤ m - 1 3 √ aK GN , (3.3.15) (ii) or u n → u c strongly in H 1 r (R 3 ). (3.3.16)
Proof. Since u n ⇀ u c weakly in H 1 r (R 3 ), we have, up to subsequence, u n → u c strongly in L q (R 3 ) for q ∈ (2, 6) and a.e in R 3 .

Let us first show that u c 0. We argue by contradiction assuming that u c = 0, this means that (u n ) is vanishing. By [65, Lemma I.1], we have, for 2 < q < 6,

∥u n ∥ L q (R 3 ) → 0, as n → ∞.
This implies from (3.2.2) that [START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF].

B(u n ) ≤ K 1 ∥u n ∥ 4 L 12 5 (R 3 ) → 0. Since (u n ) ⊂ Λ(c), we have A(u n ) = aC(u n ) + o n
Passing to the limit as n → ∞, up to subsequence we infer that

lim n→∞ A(u n ) = lim n→∞ aC(u n ) := ℓ ≥ 0.
Using Lemma 3.2.1(ii), we have

ℓ = lim n→∞ aC(u n ) ≤ lim n→∞ aK GN [A(u n )] 3 = aK GN ℓ 3 . Therefore, either ℓ = 0 or ℓ ≥ (aK GN ) -1 2 . If (u n ) ⊂ Λ + (c), we have A(u n ) > 5aC(u n )
, and then ℓ = 0. This implies that F(u n ) → 0 and this contradicts the assumption that m 0. Also, if (u n ) ⊂ Λ -(c), Lemma 3.3.5(ii) ensure that ℓ ≥ (aK GN ) -1 2 . Hence, we have [START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF], which contradicts our assumption (3.3.14). Thus, we have that u c 0. Now, since (u n ) ⊂ H 1 (R 3 ) is bounded, following [START_REF] Berestycki | Nonlinear scalar field equations. II. Existence of infinitely many solutions[END_REF]Lemma 3], we know that

m + o n (1) = F(u n ) = σ -2 2σ A(u n ) - γ(σ -1) 4σ B(u n ) = 1 3 A(u n ) + o n (1) = 1 3 ℓ + o n (1) ≥ 1 3 √ aK GN + o n
F ′ |S(c) (u n ) → 0 in H -1 (R 3 ) ⇐⇒ F ′ (u n ) - 1 c ⟨F ′ (u n ), u n ⟩u n → 0 in H -1 (R 3 ).
Thus, for any w ∈ H 1 (R 3 ), we have

o n (1) = F ′ (u n ) - 1 c ⟨F ′ (u n ), u n ⟩u n , w = R 3 ∇u n ∇wdx + λ n R 3 u n wdx -γ R 3 R 3 |u n (x)| 2 u n (y)w(y) |x -y| dxdy -a R 3 |u n | p-2 u n wdx, (3.3.17)
where o n (1) → 0 as n → ∞ and 

λ n = -1 c [A(u n ) -γB(u n ) -aC(u n )] = 3γ 4c B(u n ), due to Q(u n ) = 0. By B(u n ) → B(u c ) (
R 3 ∇u c ∇wdx + λ c R 3 u c wdx -γ R 3 R 3 |u c (x)| 2 u c (y)w(y) |x -y| dxdy -a R 3 |u c | p-2 u c wdx = 0 (3.3.19)
due to the weak convergence in H 1 r (R 3 ) and λ n → λ c ∈ R. This implies that (u c , λ c ) satisfies

-∆u c + λ c u c -γ(|x| -1 * |u c | 2 )u c -a|u c | p-2 u c = 0 in H -1 (R 3 ).
By Lemma 3.2.2, we obtain that Q(u c ) = 0 and λ c > 0.

Let

v n := u n -u c ⇀ 0 in H 1 r (R 3
). It is direct to show, using the Brezis-Lieb lemma [24, Theorem 1], that

A(u n ) = A(u c ) + A(v n ) + o n (1), C(u n ) = C(u c ) + C(v n ) + o n (1). (3.3.20)
By B(u n ) → B(u c ) (see Lemma 3.2.5) and by Q(u n ) = 0, we have

A(u c ) + A(v n ) - γ 4 B(u c ) -a[C(u c ) -C(v n )] = o n (1).
Taking into account that Q(u c ) = 0, we get A(v n ) = aC(v n ) + o n [START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF]. Passing to the limit as n → ∞, up to subsequence we infer that

lim n→∞ A(v n ) = lim n→∞ aC(v n ) := k ≥ 0.
Using Lemma 3.2.1(ii), we have

k = lim n→∞ aC(v n ) ≤ lim n→∞ aK GN [A(v n )] 3 = aK GN k 3 .
Therefore, either k = 0 or k ≥ (aK GN ) -1 2 . If k ≥ (aK GN ) -1 2 , then by (3.3.20) and by B(u n ) → B(u c ), we have

m = lim n→∞ F(u n ) = lim n→∞ 1 2 A(u n ) - γ 4 B(u n ) - a 6 C(u n ) = lim n→∞ 1 2 A(u c ) + 1 2 A(v n ) - γ 4 B(u c ) - a 6 C(u c ) - a 6 C(v n ) = F(u c ) + 1 3 k ≥ F(u c ) + 1 3 (aK GN ) -1 2 .
This implies that alternative (i) holds.

If instead k = 0, then by (3.3.20), we have A(u n ) → A(u c ) and C(u n ) → C(u c ). Choosing w = u n in (3.3.17) and w = u c in (3.3.19), we obtain that

A(u n ) + λ n ∥u n ∥ 2 L 2 (R 3 ) -γB(u n ) -aC(u n ) → A(u c ) + λ c ∥u c ∥ 2 L 2 (R 3 ) -γB(u c ) -aC(u c ).
This implies that ∥u n ∥ L 2 (R 3 ) → ∥u c ∥ L 2 (R 3 ) . Thus, we conclude that u n → u c strongly in H 1 r (R 3 ).

Proof of Theorem 3.1.2 in the critical case p = 6 for γ + (c). Since γ + (c) < 0, the fact that it is reached is a direct consequence of Lemma 3.3.7, Lemma 3.3.12 and of the property, which is established in Lemma 3.3.21(iii) to come, that the map c → γ + (c) is non-increasing. The rest of the proof is identical to the one in the case p ∈ ( 10 3 , 6).

Proof. On one hand, since u + c is bounded, we have that

R 3 |u + c (x)| p |U ε (x)| q dx ≤ ∥u + c ∥ p L ∞ (R 3 ) R 3 |U ε (x)| q dx.
On the other hand, since u + c > 0 on R 3 is continuous and the function U ε is compactly supported in B 2 , we have that

R 3 |u + c (x)| p |U ε (x)| q dx = B 2 |u + c (x)| p |U ε (x)| q dx ≥ min x∈B 2 |u + c (x)| p B 2 |U ε (x)| q dx = min x∈B 2 |u + c (x)| p R 3 |U ε (x)| q dx.
The lemma is proved.

For any ε > 0 and any t > 0, we have

A(u + c + tU ε ) = ∥∇(u + c + tU ε )∥ 2 L 2 (R 3 ) = A(u + c ) + 2 R 3 ∇u + c (x) • ∇(tU ε (x)) dx + A(tU ε ) (3.3.23) and ∥u + c + tU ε ∥ 2 L 2 (R 3 ) = c + 2 R 3 u + c (x)(tU ε (x))dx + ∥tU ε ∥ 2 L 2 (R 3 ) . ( 3.3.24) 
Using that, for all a, b ≥ 0, (a + b) 6 ≥ a 6 + 6a 5 b + 6ab 5 + b 6 , and that both u + c ∈ H 1 (R N ) and U ε are non negative, we readily derive that 5 dx.

C(u + c + tU ε ) = ∥u + c + tU ε ∥ 6 L 6 (R 3 ) ≥ C(u + c ) + C(tU ε ) + 6 R 3 (u + c (x)) 5 (tU ε (x))dx + 6 R 3 u + c (x)(tU ε (x))
(3.3.25) Also, still using that u + c ∈ H 1 (R N ) and U ε are non negative, we get by direct calculations that

B(u + c + tU ε ) = R 3 R 3 |u + c (x) + tU ε (x)| 2 |u + c (y) + tU ε (y)| 2 |x -y| dxdy ≥ B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy. (3.3.26)
Finally, since u + c is solution of the following equation 

-∆u + λ + c u -γ(|x| -1 * |u| 2 )u -a|u| p-2 u = 0 in R 3 for a λ + c > 0, we have that -λ + c R 3 u + c (x)(tU ε )(x)dx = R 3 ∇u + c (x)∇(tU ε )(x)dx -γ R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy -a R 3 (u + c (x)) 5 (tU ε (x))dx. ( 3 
F(w ε,t ) < γ + (c) + 1 3 √ aK GN ,
for any ε ∈ (0, ε 0 ] where ε 0 and t 0 , t 1 are provided by Lemma 3.3.18.

Proof of Lemma 3.3.17. By direct calculation we get

A(w ε,t ) = A(w ε,t ), C(w ε,t ) = C(w ε,t ), (3.3.28) and ∥w ε,t ∥ 2 L 2 (R 3 ) = θ -2 ∥w ε,t ∥ 2 L 2 (R 3 ) , B(w ε,t ) = θ -3 B(w ε,t ). (3.3.29) Since θ 2 = 1 c ∥w ε,t ∥ 2 L 2 (R 3 )
, we have that w ε,t ∈ S(c). By Lemma 3.3.4 there exists s - ε,t > 0 such that (w ε,t ) s - ε,t ∈ Λ -(c). We claim that s - ε,t → 0 as t → +∞ uniformly for ε > 0 sufficiently small. Indeed, we have

A((w ε,t ) s - ε,t ) = γ 4 B((w ε,t ) s - ε,t ) + aC((w ε,t ) s - ε,t ) or equivalently (s - ε,t )A(w ε,t ) = γ 4 B(w ε,t ) + a(s - ε,t ) 5 C(w ε,t ).
This implies that

A(w ε,t ) ≥ a(s - ε,t ) 4 C(w ε,t ). (3.3.30)
In view of (3.3.23), (3.3.28), Lemma 3.3.15(i) and using Hölder's inequality, we have

A(w ε,t ) = A(w ε,t ) = A(u + c ) + 2 R 3 ∇u + c (x) • ∇(tU ε (x))dx + A(tU ε ) ≤ A(u + c ) + 2t∥∇u + c ∥ L 2 (R 3 ) ∥∇U ε ∥ L 2 (R 3 ) + t 2 A(U ε ) → A(u + c ) + 2J A(u + c ) t + Jt 2 as ε → 0. (3.3.31)
In view of (3.3.25), (3.3.28) and Lemma 3.3.15(i), we also have 

C(w ε,t ) = C(w ε,t ) ≥ C(tU ε ) = t 6 C(U ε ) → Lt 6 as ε → 0. ( 3 
F(w ε,t ) ≤ 1 2 A(u + c ) + 2 R 3 ∇u + c (x) • ∇(tU ε (x)) dx + A(tU ε ) - γ 4 θ -3 B(u + c ) - a 6 C(u + c ) + C(tU ε ) = F(u + c ) + γ 4 (1 -θ -3 )B(u + c ) + R 3 ∇u + c (x) • ∇(tU ε (x)) dx + 1 2 A(tU ε ) - a 6 C(tU ε ) ≤ F(u + c ) + γ 4 (1 -θ -3 )B(u + c ) + t∥∇u + c ∥ L 2 (R 3 ) ∥∇U ε ∥ L 2 (R 3 ) + 1 2 t 2 A(U ε ) - a 6 t 6 C(U ε ) := I(t).
By Lemma 3.3.15(i), we have that, uniformly for ε > 0 small, I(t) → -∞ as t → +∞ and I(t) → F(u + c ) as t → 0 due to θ → 1. Hence, there exists ε 0 > 0 and 0 < t 0 < t 1 < ∞ such that

F(w ε,t ) < γ + (c) + 1 6 √ aK GN
for t [t 0 , t 1 ] and ε ∈ (0, ε 0 ]. The lemma is proved.

Proof of Lemma 3.3.19. We assume throughout the proof that t ∈ [t 0 , t 1 ]. By using (3.3.26), we can write,

F(w ε,t ) = 1 2 A(w ε,t ) - γ 4 θ -3 B(w ε,t ) - a 6 C(w ε,t ) ≤ 1 2 A(w ε,t ) - γ 4 θ -3 B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy - a 6 C(w ε,t ) = I 1 + I 2 , ( 3.3.33) 
where

I 1 := 1 2 A(w ε,t ) - γ 4 B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy - a 6 C(w ε,t ),
and

I 2 := γ 4 (1 -θ -3 ) B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy . (3.3.34)
In view of (3.3.23), (3.3.25) and using crucially (3.3.27), we have 

I 1 ≤ 1 2 A(u + c ) + 2 R 3 ∇u + c (x) • ∇(tU ε (x)) dx + A(tU ε ) - γ 4 B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy - a 6 C(u + c ) + C(tU ε ) + 6 R 3 (u + c (x)) 5 (tU ε (x))dx + 6 R 3 u + c (x)(tU ε (x)) 5 dx = F(u + c ) + F(tU ε ) -λ + c R 3 u + c (x)(tU ε (x))dx -a R 3 u + c (x)(tU ε (x)) 5 dx. ( 3 
θ 2 = ∥w ε,t ∥ 2 L 2 (R 3 ) c = 1 + 2 c R 3 u + c (x)(tU ε (x))dx + t 2 c ∥U ε ∥ 2 L 2 (R 3 ) = 1 + 2 c R 3 u + c (x)(tU ε (x))dx + t 2 c ω 2 0 ξ(r)dr ε + O(ε 2 ) = 1 + 2 c R 3 u + c (x)(tU ε (x))dx + O(ε). (3.3.36)
Note that, by Lemma 3.3.15(ii) and Lemma 3.3.16,

R 3 u + c (x)(tU ε (x))dx ∼ ∥∇U ε ∥ L 1 (R 3 ) = O(ε 1 2 ). (3.3.37) 
Observing that the Taylor expansion of (1 + x) -3 2 around x = 0 is given by

(1 + x) -3 2 = 1 - 3 2 x + O(x 2 ),
we get, in view of (3.3.36) and (3.3.37), that

1 -θ -3 = 1 -(θ 2 ) -3 2 = 1 -1 + 2 c R 3 u + c (x)(tU ε (x)) + O(ε) -3 2 = 1 -1 - 3 c R 3 u + c (x)(tU ε (x)) + O(ε) = 3 c R 3 u + c (x)(tU ε (x)) + O(ε). (3.3.38)
Concerning the term B(tU ε ), in view of (3.2.2) and Lemma 3.3.15(ii), we have

B(tU ε ) = t 4 B(U ε ) ≤ t 4 K 1 ∥U ε ∥ 4 L 12 5 (R 3 ) = t 4 K 1 ∥U ε ∥ 12 5 L 12 5 (R 3 ) 10 6 = t 4 K 1 K 2 ε 6 5 + o(ε 6 5 ) 10 6 
= O(ε 2 ).

( 

R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy ≤ K 2 ∥u + c ∥ 2 L 12 5 (R 3 ) ∥u + c U ε ∥ L 6 5 (R 3 ) ≤ K 3 ∥U ε ∥ L 6 5 (R 3 )
= O(ε 

B(u + c ) + B(tU ε ) + 4 R 3 R 3 |u + c (x)| 2 u + c (y)(tU ε (y)) |x -y| dxdy = B(u + c ) + O(ε 3 5 ). ( 3 
I 2 ≤ 3γ 4c B(u + c ) R 3 u + c (x)(tU ε (x))dx + O(ε) = λ + c R 3 u + c (x)(tU ε (x))dx + O(ε). ( 3 
F(w ε,t ) ≤ F(u + c ) + F(tU ε ) -a R 3 u + c (x)(tU ε (x)) 5 dx + O(ε) ≤ F(u + c ) + F(tU ε ) -at 5 0 R 3 u + c (x)(U ε (x)) 5 dx + O(ε). ( 3 
F(tU ε ) = max t∈[t 0 ,t 1 ] 1 2 A(tU ε ) - γ 4 B(tU ε ) - a 6 C(tU ε ) ≤ max t∈[t 0 ,t 1 ] 1 2 A(tU ε ) - a 6 C(tU ε ) ≤ max t>0 1 2 A(tU ε ) - a 6 C(tU ε ) = 1 3 √ aK GN + O(ε). ( 3 
-at 5 0 R 3 u + c (x)(U ε (x)) 5 dx ∼ -∥U ε (x)∥ 5 L 5 (R 3 ) = -Kε 1 2 + o(ε 1 2 ).
Proof of Theorem 3.1.2 in the critical case p = 6 for γ -(c). We conclude that γ -(c) is reached by combining Lemma 3.3.7, Lemma 3.3.13 and Lemma 3.3.14. The rest of the proof is identical to the one in the case p ∈ ( 10 3 , 6).

3.3.4

The compactness of any minimizing sequence associated to γ + (c) for p ∈ ( 10 3 , 6] In this subsection we give the proof of Theorem 3.1.5. For short we introduce the following notations, (i) If u ∈ Λ + (c) then we have 

M := p aσ (σ -1)K GN , N := 4(σ -2) γ(σ -1)K H , k 0 := N -2 ,
A(u) < k 0 c 3 . (3.3.46) (ii) Λ + (c) ⊂ V (c) and γ + (c) = inf u∈Λ + (c) F(u) = inf u∈V (c) F(u). (iii) If u c is a minimizer for the minimization problem inf u∈V (c) F(u) then u c ∈ V (c) and γ + (c) is reached. Proof. i) Since u ∈ Λ + (c), A(u) = γ 4 B(u) + aσ p C(u) and A(u) > aσ (σ -1) p C(u). Using Lemma 3.2.1(i), we have σ -2 σ -1 A(u) < γ 4 B(u) ≤ γ 4 K H A(u)c 3 2 , which implies that A(u) < γ(σ -1)K H 4(σ -2) 2 c 3 = N -2 c 3 = k 0 c 3 < k 0 c 3 1 = k 1 . ( 3 
F(u) ≥ inf u∈V (c)

F(u).

To prove the point (ii), it is sufficient to show that inf

u∈Λ + (c) F(u) ≤ inf u∈V (c) F(u). (3.3.48) Firstly, we claim that Λ -(c) ∩ V (c) = ∅. Indeed, let v ∈ Λ -(c). Taking into account that A(v) < aσ (σ -1) p C(v),
and using Lemma 3.2.1(ii), we obtain that

A(v) < aσ (σ -1) p K GN c 6-p 4 [A(v)] σ 2 = M -1 c 6-p 4 [A(v)] σ 2 .
Proof. Point (i) follows from Lemma 3.3.5. To prove (ii), let c ∈ (0, c 1 ) be arbitrary and (c n ) ⊂ (0, c 1 ) be such that c n → c. From the definition of γ + (c n ), for any ε > 0, there exists 

u n ∈ Λ + (c n ) such that F(u n ) ≤ γ + (c n ) + ε. ( 3 
A(y n ) = c c n A(u n ) < c c n k 0 c 3 n = k 0 c 2 n c < k 0 c 3 1 = k 1 .
This implies that y n ∈ V (c). Taking into account that c c n → 1, we have 

γ + (c) ≤ F(y n ) = F(u n ) + o n (1). ( 3 
γ + (c) ≤ γ + (c n ) + ε + o n (1).
Reversing the argument we obtain similarly that

γ + (c n ) ≤ γ + (c) + ε + o n (1).
Therefore, since ε > 0 is arbitrary, we deduce that γ + (c n ) → γ + (c). The point (ii) follows.

iii) Note that, fixed α ∈ (0, c), it is sufficient to prove that the following holds

∀θ ∈ 1, c α : γ + (θα) ≤ θγ + (α) (3.3.53) 
and that, if γ + (α) is reached, the inequality is strict. Indeed, if (3.3.53) holds then it follows directly that

γ + (c) = c -α c γ + (c) + α c γ + (c) = c -α c γ + c c -α (c -α) + α c γ + c α α ≤ γ + (c -α) + γ + (α)
with a strict inequality if γ + (α) is reached. To prove that (3.3.53) holds, note that for any ε > 0 sufficiently small, there exist u ∈ Λ + (α) such that

F(u) ≤ γ + (α) + ε. (3.3.54) By (3.3.46), we have A(u) < k 0 α 3 . Consider now v := √ θu, we have ∥v∥ L 2 (R 3 ) = θ∥u∥ L 2 (R 3 ) , A(v) = θA(u), B(v) = θ 2 B(u), C(v) = θ 3 C(u).
Therefore, we obtain that v ∈ S(θα) and

A(v) = θA(u) < k 0 θα 3 < k 0 (θα) 3 ≤ k 0 c 3 < k 1 .
Hence, v ∈ V (θα) and we can write

γ + (θα) ≤ F(v) = 1 2 A(v) - γ 4 B(v) - a p C(v) = 1 2 θA(u) - γ 4 θ 2 B(u) - a p θ 3 C(u) < 1 2 θA(u) - γ 4 θB(u) - a p θC(u) = θF(u) ≤ θ(γ + (α) + ε).
Since ε > 0 is arbitrary, we have that γ + (θα) ≤ θγ + (α). If γ + (α) is reached then we can let ε = 0 in (3.3.54) and thus the strict inequality follows.

Lemma 3.3.22. Let (v n ) ⊂ H 1 (R 3 ) be such that B(v n ) → 0 and A(v n ) ≤ k 1 . Then there exists a b > 0 such that F(v n ) ≥ bA(v n ) + o n (1). (3.3.55)
Proof. Indeed, using B(v n ) → 0 and Lemma 3.2.1(ii), we have

F(v n ) = 1 2 A(v n ) - a p C(v n ) + o n (1) ≥ 1 2 A(v n ) - a p K GN c 6-p 4 [A(v n )] σ 2 + o n (1) = bA(v n ) + o n (1), where b := 1 2 -lim sup n→∞ a p K GN c 6-p 4 [A(v n )] σ 2 -1 ≥ 1 2 - a p K GN c 6-p 4 1 k σ 2 -1 1 = 1 2 - 1 σ (σ -1)
.

Hence, b > 0 due to σ > 2. The lemma is proved.

Lemma 3.3.23. For any c ∈ (0, c 1 ), any minimizing sequence (u n ) for F on V (c) is, up to translation, strongly convergent in H 1 (R 3 ). In addition all minimizers lie in V (c). In particular γ + (c) is reached.

Proof. Since (u n ) ⊂ V (c), it is bounded in H 1 (R 3 ). Also, from γ + (c) < 0 we deduce from Lemma 3.3.22 that there exists a β 0 > 0 and a sequence (y n ) ⊂ R 3 such that

B(y n ,R) |u n | 2 dx ≥ β 0 > 0, for some R > 0.
This implies that u n (xy n ) ⇀ u c 0 in H 1 (R 3 ), for some u c ∈ H 1 (R 3 ).

Our aim is to prove that w n (x) := u n (xy n )u c (x) → 0 in H 1 (R 3 ). Clearly

∥u n ∥ 2 L 2 (R 3 ) = ∥u n (x -y n )∥ 2 L 2 (R 3 ) = ∥u n (x -y n ) -u c (x)∥ 2 L 2 (R 3 ) + ∥u c ∥ 2 L 2 (R 3 ) + o n (1) = ∥w n ∥ 2 L 2 (R 3 ) + ∥u c ∥ 2 L 2 (R 3 ) + o n (1).
Thus, we have

∥w n ∥ 2 L 2 (R 3 ) = ∥u n ∥ 2 L 2 (R 3 ) -∥u c ∥ 2 L 2 (R 3 ) + o n (1) = c -∥u c ∥ 2 L 2 (R 3 ) + o n (1). (3.3.56)
By the similar argument,

A(w n ) = A(u n ) -A(u c ) + o n (1). (3.3.57)
More generally it is direct to show, using the Brezis-Lieb lemma [24, Theorem 1] for terms A and C, and using [92, Lemma 2.2] or [17, Proposition 3.1] for term B, that any term in F also enjoy a the splitting property, and thus we have

F(u n -u c ) + F(u c ) = F(u n ) + o n (1),
and by the translational invariance, we obtain

F(u n ) = F(u n (x -y n )) = F(u n (x -y n ) -u c (x)) + F(u c ) + o n (1) = F(w n ) + F(u c ) + o n (1). (3.3.58) 3 , 6]
Proof. By Lemma 3.3.20(i), we have

A(u + c ) < N -2 c 3 = γ(σ -1)K H 4(σ -2) 2 c 3 .
Hence, we can deduce from Lemma 3.2.1(i) that

B(u + c ) ≤ K H A(u + c )c 3 2 < γ(σ -1)K 2 H 4(σ -2) c 3 .
Therefore, we have

|γ + (c)| = |F(u + c )| = σ -2 2σ A(u + c ) - γ(σ -1) 4σ B(u + c ) ≤ σ -2 2σ A(u + c ) + γ(σ -1) 4σ B(u + c ) < σ -2 2σ γ(σ -1)K H 4(σ -2) 2 c 3 + γ(σ -1) 4σ γ(σ -1)K 2 H 4(σ -2) c 3 = 3γ 2 (σ -1) 2 K 2 H 32σ (σ -2) c 3 := K 1 c 3 . We deduce from (3.2.6) that 2(3p -6)cλ + c = 2(6 -p)A(u + c ) + (5p -12)γB(u + c ) < 2(6 -p) γ(σ -1)K H 4(σ -2) 2 c 3 + (5p -12)γ γ(σ -1)K 2 H 4(σ -2) c 3 .
This implies that there exists a constant K 2 > 0 such that λ + c ≤ K 2 c 2 . The lemma is proved.

Lemma 3.3.25. Let p ∈ ( 10 3 , 6). There exist two constants K 1 > 0 and K 2 > 0 such that is λ - c denotes the Lagrange parameter associated to a solution u - c lying at the level γ -(c),

|γ -(c)| > K 1 c - 6-p 3p-10 and λ - c > K 2 c - 2p-4 3p-10 . Proof. By u - c ∈ Λ -(c), we have A(u - c ) < aσ (σ -1) p C(u - c ).
Using Lemma 3.2.1(ii), we obtain that

A(u - c ) < aσ (σ -1) p K GN c 6-p 4 [A(u - c )] σ 2 ,
which implies that

A(u - c ) > p aσ (σ -1)K GN 2 σ -2 c - 6-p 3p-10 . We have that |γ -(c)| = |F(u - c )| = - 1 2 A(u - c ) + a(σ -1) p C(u - c ) > σ -2 2σ A(u - c ) > σ -2 2σ p aσ (σ -1)K GN σ -2 2 c - 6-p 3p-10 := K 1 c - 6-p 3p-10 .
We deduce from (3.2.6) that

λ - c = 1 c 1 2(3p -6) [2(6 -p)A(u - c ) + (5p -12)γB(u - c )] > 1 c 6 -p 3p -6 A(u - c ) > 1 c 6 -p 3p -6 p aσ (σ -1)K GN σ -2 2 c - 6-p 3p-10 := K 2 c - 2p-4 3p-10 .
The lemma is proved.

Lemma 3.3.26. Let p = 6. There exists a constant K 1 > 0 such that if λ - c denote the Lagrange parameter associated to a solution u - c lying at the level γ -(c) then we have

γ -(c) → 1 3 √ aK GN as c → 0 and λ - c ≤ K 1 c 1 2 .
Proof. Since F(u) restricted to Λ(c) is coercive on H 1 (R 3 ) (see Lemma 3.3.1) we have that A(u - c ) remains bounded. We deduce from (3.2.6) and Lemma 3.2.1(i) that

λ - c = 1 c 3γ 4 B(u - c ) ≤ 1 c 3γ 4 K H A(u - c )c 3 2 := K 1 c 1 2 . We have that B(u - c ) → 0 as c → 0 due to B(u - c ) ≤ K H A(u - c )c 3 2 . Since Q(u - c ) = 0, we have A(u - c ) = aC(u - c ) + o c (1),
where o c (1) → 0 as c → 0. Passing to the limit as c → 0, up to subsequence we infer that

lim c→0 A(u - c ) = lim c→0 aC(u - c ) := ℓ ≥ 0.
Using Lemma 3.2.1(ii), we have

ℓ = lim c→0 aC(u - c ) ≤ lim c→0 aK GN [A(u - c )] 3 = aK GN ℓ 3 .
Therefore, either ℓ = 0 or ℓ ≥ (aK GN ) -1 2 . Using Lemma 3.3.5(ii), we ensure that ℓ ≥ (aK GN ) - Now observe that, since θ < 1, for all t > 0, 

F(v t )
A(u s + u ) < k 1 < A(v s - v ),
and thus s + u < s - v due to A(v) = A(u). Hence, we can deduce from (3.3.63) that

F(v s - v ) < max s + u <t F(u t ) = F(u) = γ -(c 2 ).
This implies that γ -(c 3 ) < γ -(c 2 ) and hence, the lemma is proved.

3.4

The case γ > 0, a < 0 and p ∈ ( 10 3 , 6] Throughout this section, we assume that γ > 0, a < 0 and p ∈ ( Proof. Let u ∈ S(c). Using Lemma 3.2.1(i), we obtain

F(u) = 1 2 A(u) - γ 4 B(u) - a p C(u) ≥ 1 2 A(u) - γ 4 K H A(u)c 3 2 - a p C(u).
Since γ > 0, a < 0, this concludes the proof.

In what follows, we collect some basic properties of m(c) defined in (3.1.3). We observe that g u (t) → 0 and g ′ u (t) → -γ 4 B(u) < 0 as t → 0. Therefore, there exists t 0 > 0 such that F(u t 0 ) = g u (t 0 ) < 0. Thus, we have m(c) < 0.

ii) We assume that c n → c. From the definition of m(c n ), for any ε > 0, there exists u n ∈ S(c n ) such that Proof. Since F restricted to S(c) is coercive on H 1 (R 3 ) (see Lemma 3.4.1), the sequence (u n ) is bounded. Now, we assume that (3.4.4) does not hold. By [65, Lemma I.1], we have, for q ∈ (2, 6), ∥u n ∥ L q (R 3 ) → 0, as n → ∞. This implies that

F(u n ) ≤ m(c n ) + ε. ( 3 
B(u n ) ≤ K 1 ∥u∥ 4 L 12 5 (R 3 )
→ 0, due to (3.2.2). Hence, we obtain

F(u n ) = 1 2 A(u n ) - γ 4 B(u n ) - a p C(u n ) → 1 2 A(u n ) - a p C(u n ) ≥ 0,
due to a < 0. This contradicts F(u n ) → m(c) < 0, see Lemma 3.4.2(i).

Lemma 3.4.4. Any minimizing sequence (u n ) ⊂ S(c) for m(c) is, up to translation, strongly convergent in H 1 (R 3 ).

Proof. Since F restricted to S(c) is coercive on H 1 (R 3 ) (see Lemma 3.4.1), the sequence (u n ) is bounded in H 1 (R 3 ). We deduce from the weak convergence in H 1 (R 3 ), the local compactness in L 2 (R 3 ) and Lemma 3.4.3 that u n (xy n ) ⇀ u c 0 in H 1 (R 3 ).

Our aim is to prove that w n (x) := u n (xy n )u c (x) → 0 in H 1 (R 3 ). Now, it is direct to show, using the Brezis-Lieb lemma and [START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF].

∥u n ∥ 2 L 2 (R 3 ) = ∥u n (x -y n )∥ 2 L 2 (R 3 ) = ∥u n (x -y n ) -u c (x)∥ 2 L 2 (R 3 ) + ∥u c ∥ 2 L 2 (R 3 ) + o n (1) = ∥w n ∥ 2 L 2 (R 3 ) + ∥u c ∥ 2 L 2 (R 3 ) + o n
Thus, we have Thus, the lemma is proved.

∥w n ∥ 2 L 2 (R 3 ) = ∥u n ∥ 2 L 2 (R 3 ) -∥u c
3.5 The case γ < 0, a > 0 and p = 6

Throughout this section, we assume that γ < 0, a > 0 and p = 6. To prove the non-existence of the positive solution to (3. Using again Q(u) = 0 we have that

F(u) = 1 2 A(u) - γ 4 B(u) - a 6 C(u) = 5a 6 C(u) - 1 2 A(u) > 1 3 A(u) > 1 3 √ aK GN ,
proving point (i). To prove point (ii), we assume by contradiction that there exists a positive solution u ∈ H 1 (R 3 ) to (3.1.2). Then, by point (i), the associated Lagrange multiplier λ is strictly negative. In view of (3.2.8), there exists R 0 > 0 large enough such that Then (3.5.2) has no solution in view of Kato's result [52, page 404], also see [START_REF] Simon | Tosio Kato's work on non-relativistic quantum mechanics, Part 2[END_REF] which states that Schrödinger operator H = -∆ + p(x) has no positive eigenvalue with an L 2 -eigenfunction if p(x) = o(|x| -1 ).

Remark 3.5.3. One may wonder if a non-existence result for radial solutions also holds for (3.1.2) under the assumptions of Theorem 3.1.9. The difficulty one faces is that, for any u ∈ H 1 (R N ), (|x| -1 * |u| 2 )(x) ≥ C|x| -1 for |x| > R for some C, R > 0 (see [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF] or [START_REF] Moroz | A guide to the Choquard equation[END_REF]Appendix A.4]). Thus, the result of Kato used in Remark 3.5.2 cannot be directly applied and the non-existence of radial solutions to (3.1.2) when γ < 0, a > 0 and p = 6 is an open problem.

proof is that the interaction decreases the value of the Energy with respect to the case where the supports would be disjoint. The approach in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF] was applied in some different equations, see for example [START_REF] Li | Nonexistence, existence and symmetry of normalized ground states to Choquard equations with a local perturbation[END_REF][START_REF] Luo | Normalized solutions for Schrödinger system with quadratic and cubic interactions[END_REF] and the Schrödinger-Poisson-Slater equation studied in Chapter 3. However, in [START_REF] Li | Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability[END_REF] our approach is more useful in some cases.

(ii) In the case where 2 < q < 2 + 4/N , it was proved in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] that for and µ > 0 small, (4.1.1) has a ground state as a local minimizer, however the stability of the associated standing wave is unknown. In Chapter 2, we develop a new argument to prove the existence of ground state for µ > 0 small, which is useful to prove that the associated standing wave is orbital stable. To prove the stability, we have only established the global existence of solutions for initial data close to M c , the set containing all ground states. We believe it would be interesting to inquire if the global existence holds away from M c . If so, investigating the long time behavior of these solutions would be worth to. Our guess is that these solutions evolve toward the sum of an element of M c and a part which scatter. However, so far nothing is known in that direction, see Remark 2.1.7 for more detail.

(iii) The above existence results hold for µ > 0 small enough (equivalent c > 0 small enough), what happens if µ is large? If 2 < q < 2 + 4/N , it was proved that (4.1.1) has no ground state for µ large enough in [START_REF] Wei | On some nonlinear Schrödinger equations in R N[END_REF], where the authors suggested a new method using the relations between fixed-frequency solutions and normalized solutions. In [START_REF] Claudianor | Multiplicity of normalized solutions for a Schrödinger equation with critical growth in R N[END_REF], the authors established the existence of many solutions of mountain pass type for µ large and 2 < q < 2 + 4/N by using a minimax theorem found in [START_REF] Jeanjean | Nonradial normalized solutions for nonlinear scalar field equations[END_REF] and truncation argument made in [START_REF] García Azorero | Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[END_REF]. It was proved in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF] that if q = 2 + 4/N then (4.1.1) has no ground state for µ large enough. In the case where 2 + 4/N < q < 2 * , (4.1.1) has a ground state for all µ > 0, see [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF] and [START_REF] Li | Existence of normalized ground states for the Sobolev critical Schrödinger equation with combined nonlinearities[END_REF] with different proof, in particular, different choices of test functions in proving the upper estimate of the associated mountain pass level. Does (4.1.1) have many solutions of mountain pass type for 2 + 4/N ≤ q < 2 * ? Since in this case, there exists a ground state for any µ > 0, a second solution if exists must have an energy level greater than the ground state. Thus, it is difficult to prove the strict upper bound of the energy level of the second solution, and we conjecture the negative answer to the above question. However, so far nothing is known in that direction.

(iv) In the case where µ < 0, it was proved in [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] that for 2 < q < 2 * , (4.1.1) has no positive solution u ∈ H 1 (R N ) if N = 3, 4 or if N ≥ 5 under the additional assumption u ∈ L p (R N ) for some p ∈ 0, N N -2 . We improve the above result showing that (4.1.1) has no positive solution in H 1 (R N ) for all N ≥ 3 and no non-trivial radial solution for N ≥ 3 and q > 2 + 2 N -1 , see Remark 3.5.2 for more detail. If 2 < q < 2 + 2 N -1 , the non-existence of radial solutions is an open problem. Now, let us mention a non-autonomous equation on all the space R N . Recently, in [START_REF] Bartsch | Normalized solutions of mass supercritical Schrödinger equations with potential[END_REF] and [START_REF] Molle | Normalized solutions to mass supercritical Schrödinger equations with negative potential[END_REF], the following equation was studied

       -∆u + V (x)u -λu = f (u) in R N , u ∈ H 1 (R N ), ∥u∥ 2 L 2 (R N ) = c, (4.1.2)
where V is a fixed potential, f (u) = |u| p-2 p with 2 + 4/N < p < 2 * . Besides, the general nonlinearity of the mass sub-critical case was studied in [START_REF] Ikoma | Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities[END_REF]. Under some assumptions on the
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R 3 |∇u| 2 3 |u| p dx. ( 12 )

 32312 dx, B(u) :=R 3 R 3 |u(x)| 2 |u(y)| 2 |x -y| dxdy, C(u) := R The notation a ∼ b means that Cb ≤ a ≤ C ′ b for some C, C ′ > 0.

  2.3, the set Λ(c) := {u ∈ S(c) : Q µ (u) = 0} admits the decomposition into the disjoint union Λ(c) = Λ + (c) ∪ Λ -(c), see (2.1.6) for the definitions of Λ + (c) and Λ -(c).

Lemma 2 . 2 . 4 .

 224 Let N ≥ 3. Introducing, for any c ∈ (0, c 0 ), the set

Definition 2 . 4 . 1 .

 241 If N ≥ 3 the pair (p, r) is said to be (Schrödinger) admissible if

1 p

 1 and ||w(t, x)|| X p,r,T = give a definition of an integral solution to (2.4.1) on the time interval (for more detail we refer to [27, Chapter 2]): Definition 2.4.2. Let T > 0. We say that u(t, x) is an integral solution of the Cauchy problem (2.4.1) on the time interval [0, T ] if:

Lemma 2 . 5 . 3 .

 253 Let N ≥ 3. For any c ∈ (0, c 0 ), Fµ has a mountain pass geometry at the level M(c). Moreover, M 0 (c) = M(c).

2 .

 2 B = (1, Λ + r (c)) ∪ (1, E c ). 3. F = {(s, u) ∈ R + × S r (c) : Fµ (s, u) ≥ M(c)}. Since Fµ has a mountain pass geometry at level M(c) (see Lemma 2.5.3) and by the definition of the superlevel set F, we obtain F \ B = F and sup (1,u)∈B Fµ (s, u) ≤ M(c) ≤ inf (s,u)∈F Fµ (s, u).

  3.46) and(3.3.49).

Remark 3 . 1 . 11 .

 3111 We propose as an open problem to investigate if there are radial solutions under the assumptions of Theorem 3.1.9. See Remark 3.5.3 in that direction.

  on S(c) and for any u ∈ S(c) and any v ∈ T u S(c), we have ⟨F ′ |S(c) (u), ϕ⟩ = ⟨F ′ (u), ϕ⟩. We use the notation ∥dF |S(c) ∥ * to indicate the norm in the cotangent space T u S(c) ′ , i.e the dual norm induced by the norm of T u S(c), i.e ∥dF |S(c) (u)∥ * := sup ∥ϕ∥≤1,ϕ∈T u S(c) |dF(u)[ϕ]|.

FLemma 3 . 3 . 9 .

 339 (u) = γ -(c). For any c ∈ (0, c 1 ), there exists a Palais-Smale sequence (u + n ) ⊂ Λ + (c) for F restricted to S r (c) at level e + G and a Palais-Smale sequence (u - n ) ⊂ Λ -(c) for F restricted to S(c) at level e - G .

Lemma 3 . 3 .

 33 4 implies that E n ⊂ Λ + (c) for all n ∈ N. Let v ∈ E n , i.e. v = u s + u for some u ∈ D n ,and hence I + (v) = I + (u). So, we have max v∈E n I + (v) = max u∈D n I + (u).

  is a Palais-Smale sequence for F restricted to S(c) at level e + G since (y n ) is a Palais-Smale sequence for I + at level e + G and and ψ 1 s n≤ C 1 ∥ψ∥ ≤ C 1 due to (3.3.9). For the case of e - G the proof is identical except that we use Lemma 3.3.5(ii) along with (3.3.1) to conclude that there exists a M > 0 such that (3.3.10) holds forA(u - n ) replacing A(u + n ).Proof of Lemma 3.3.7. Applying Lemma 3.3.9, we deduce that there exists a Palais-Smale sequence(u + n ) ⊂ Λ + r (c) for F restricted to S(c) at level e + G = γ + (c) and a Palais-Smale sequence (u - n ) ⊂ Λ - r (c) for F restricted to S(c) at level e - G = γ -(c).In both cases the boundedness of these sequences follows from Lemma 3.3.1.

3. 3 . 2 6 ) 3 . 3 . 10 .

 3263310 The compactness of our Palais-Smale sequences in the Sobolev subcritical case p ∈ (10 3 ,Lemma Let p ∈ ( 10 3 , 6). For any c ∈ (0, c 1 ), if either (u n ) ⊂ Λ + (c) is a minimizing sequence for γ + (c) or (u n ) ⊂ Λ -(c) is a minimizing sequence for γ -(c), it weakly converges, up to translation, to a non-trivial limit.

Lemma 3 . 3 . 11 .

 3311 Let p ∈ (10 3 , 6). Assume that a bounded Palais-Smale sequence (u n ) ⊂ Λ r (c) for F restricted to S(c) is weakly convergent, up to translation, to the nonzero function u c . Then, up to translation, u n → u c ∈ Λ r (c) strongly in H 1 r (R 3 ). In particular u c is a radial solution to (3.1.2) for some λ c > 0 and ∥u c ∥ 2 L 2 (R 3 ) = c.

3. 3 . 3

 33 The compactness of our Palais-Smale sequences in the Sobolev critical case p = 6 Our next lemma is directly inspired from [81, Proposition 3.1]. Lemma 3.3.12. Let c ∈ (0, c 1 ) and (u n ) ⊂ Λ + r (c) or (u n ) ⊂ Λ - r (c) be a Palais-Smale sequence for F restricted to S(c) at level m ∈ R which is weakly convergent, up to subsequence, to the function u c . If (u n ) ⊂ Λ + r (c) we assume that m 0 and if (u n ) ⊂ Λ - r (c) we assume that

From ( 3 . 3 .

 33 39) and (3.3.40) we deduce that

and k 1 := k 0 c 3 1 .Lemma 3 . 3 . 20 .

 113320 Let p ∈ ( 10 3 , 6] and c ∈ (0, c 1 ).

.3. 51 )

 51 By (3.3.46), we have A(u n ) < k 0 c 3 n . We set y n := c c n • u n . Hence, we have y n ∈ S(c) and

Lemma 3 . 3 . 27 . 2 c 3 < 1 . 2 - 3 C

 332723123 have γ -(c) + o c (1) = F(u - γ -(c) ≥ 1 3 √ aK GN as c → 0. Recording Lemma 3.3.14, the lemma is proved. When p ∈ ( 10 3 , 6], the function c → γ -(c) is strictly decreasing on (0, c 1 ). Proof. Let 0 < c 2 < c 3 < c 1 , Since γ -(c 2 ) is reached, there exists u ∈ S(c 2 ) such that F(u) = γ -(c 2 ). We define v ∈ S(c 3 ) by v(x) = √ θu(θx) where θ = c By direct calculations we have A(v) = A(u), B(v) = θ -3 B(u) and C(v) = θ p (u). (3.3.62)

10 3 ,

 3 6]. Lemma 3.4.1. F restricted to S(c) is coercive on H 1 (R 3 ) and bounded from below.

Lemma 3 . 4 . 2 .

 342 It holds that (i) m(c) < 0, ∀c > 0. (ii) c → m(c) is a continuous mapping. (iii) For any c 2 > c 1 > 0, we have c 1 m(c 2 ) ≤ c 2 m(c 1 ). If m(c 1 ) is reached then the inequality is strict. (iv) For any c 2 , c 1 > 0, we have m(c 1 + c 2 ) ≤ m(c 1 ) + m(c 2 ). If m(c 1 ) or m(c 2 ) is reached then the inequality is strict.Proof. i) For any u ∈ S(c), we recall that u t ∈ S(c) and g u (t) = F(u t ) (u) and also g ′ u (t) = tA(u) -

.4. 1 ) 2 c 1 > 1 . 1 3 5 3=Lemma 3 . 4 . 3 .

 121115343 We set y n := c c n • u n . Taking into account that y n ∈ S(c) and c c n → 1, we have m(c) ≤ F(y n ) = F(u n ) + o n (1). (3.4.2) Combining (3.4.1) and (3.4.2), we getm(c) ≤ m(c n ) + ε + o n (1).Reversing the argument we obtain similarly thatm(c n ) ≤ m(c) + ε + o n (1).Therefore, since ε > 0 is arbitrary, we deduce that m(c n ) → m(c). The point (ii) follows.iii) Let t := c For any ε > 0, there exist u ∈ S(c 1 ) such thatF(u) ≤ m(c 1 ) + ε. (3.4.3) Let v := u(t -1 3 x). Then we have ∥v∥ 2 L 2 (R 3 ) = t∥u∥ 2 L 2 (R 3 ) = c 2 , hence v ∈ S(c 2 ). Moreover, we haveA(v) = t A(u), B(v) = t B(u), C(v) = tC(u).Therefore, we havem(c 2 ) ≤ F(v) tF(u) ≤ t(m(c 1 ) + ε) Since ε > 0 is arbitrary, we have c 1 m(c 2 ) ≤ c 2 m(c 1 ). If m(c 1) is reached then we can let ε = 0 in (3.4.3) and thus the strict inequality follows. iv) Assume first that 0 < c 1 ≤ c 2 . Then, by (iii), we have thatm(c 1 + c 2 ) ≤ c 1 + c 2 c 2 m(c 2 ) = m(c 2 ) + c 1 c 2 m(c 2 ) ≤ m(c 2 ) + c 1 c 2 c 2 c 1 m(c 1 ) = m(c 1 ) + m(c 2 ).If m(c 1 ) or m(c 2 ) is reached, then we can use the strict inequality in (iii) and thus the strict inequality follows. The case 0 < c 2 < c 1 can be treated reversing the role of c 1 and c 2 . Let (u n ) ⊂ S(c) be any minimizing sequence for m(c). Then, there exist a β 0 > 0 and a sequence (y n ) ∈ R 3 such that B(y n ,R)|u n | 2 dx ≥ β 0 > 0, for some R > 0.(3.4.4)

[ 24 ,

 24 Theorem 1] for terms A and C, and using[START_REF] Zhao | On the existence of solutions for the Schrödinger-Poisson equations[END_REF] Lemma 2.2] or[START_REF] Bellazzini | Stable standing waves for a class of nonlinear Schrödinger-Poisson equations[END_REF] Proposition 3.1] for term B, that any term in F also enjoy a the splitting property, and thus we haveF(u nu c ) + F(u c ) = F(u n ) + o n (1),and by the translational invariance, we obtainF(u n ) = F(u n (xy n )) = F(u n (xy n )u c (x)) + F(u c ) + o n (1) = F(w n ) + F(u c ) + o n[START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF],(3.4.5) 

∥ 2 L 2 ( 3 L 2 (R 3 ) 9 ) 2 ,2 c 3 2 .

 22323922 R 3 ) + o n (1) = c -∥u c ∥ 2 L 2 (R 3 ) + o n[START_REF] Akahori | Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth[END_REF].(3.4.6) We claim that∥w n ∥ 2 L 2 (R 3 ) → 0 as n → ∞. (3.4.7)In order to prove this, let us denote c 1 := ∥u c ∥ 2 L 2 (R 3 ) > 0. By(3.4.6), if we show that c 1 = c then the claim follows. We assume by contradiction that c 1 < c. Recording that F(u n ) → m(c), in view of (3.4.5), we havem(c) = F(w n ) + F(u c ) ≥ m ∥w n ∥ 2 L 2 (R 3 ) + F(u c ).Since the map c → m(c) is continuous (see Lemma 3.4.2(ii)) and (3.4.6), we deduce thatm(c) ≥ m(cc 1 ) + F(u c ). (3.4.8) If F(u c ) > m(c 1 ), then it follows from Lemma 3.4.2(iv) that m(c) > m(cc 1 ) + m(c 1 ) ≥ m(cc 1 + c 1 ) = m(c),which is impossible. Hence, we have F(u c ) = m(c 1 ), namely u c is global minimizer with respect to c 1 . So, we can using Lemma 3.4.2(iv) with the strict inequality and we deduce from (3.4.8) thatm(c) ≥ m(cc 1 ) + F(u c ) = m(cc 1 ) + m(c 1 ) > m(cc 1 + c 1 ) = m(c),which is impossible. Thus, the claim follows and ∥u c ∥ 2 L 2 (R 3 ) = c. At this point, since w n is a bounded sequence in H 1 (R 3 ) and by Lemma 3.2.1(i), we haveB(w n ) ≤ K H A(w n )∥w n ∥On the other hand, since ∥u c ∥ 2 L 2 (R 3 ) = c, we deduce from (3.4.5) thatF(u n ) = F(w n ) + F(u c ) + o n (1) ≥ F(w n ) + m(c) + o n (1), and by F(u n ) → m(c), we have that lim sup n→∞ F(w n ) ≤ 0. (3.4.10) Combining (3.4.9) and (3.4.10), we obtain that F(w n ) → 0. Hence, by (3.4.9) and a < 0, we have A(w n ) → 0 and C(w n ) → 0. Thus, we get w n → 0 in H 1 (R 3 ). The lemma is completed. Proof of Theorem 3.1.8. The proof follows directly from Lemma 3.4.4 for the convergence of the minimizing sequence and from Lemma 3.2.2 for the sign of the Lagrange parameter. Lemma 3.4.5. There exist three constants K 1 , K 2 , K 3 > 0 such that if λ c denote the Lagrange parameter associated to a solution u c lying at the level m(c) then we have |m(c)| ≤ K 1 c 3 + K 2 c 2p-3 and λ c ≤ K 3 c 2 . Proof. By the fact that m(c) < 0 and by using Lemma 3.2.1(i), we get that 0 > m(c) = F(u c ) due to our assumption γ > 0 and a < 0. This implies that A(u c ) < γK H Therefore, using again Lemma 3.2.1, we obtain that |m(c)| = |F(u c )K 1 c 3 + K 2 c 2p-3 . K 3 c 2 .

Proposition 3 . 5 . 1 .Chapter 3 .

 3513 1.2), we first recall a Liouville-type result, see[START_REF] Armstrong | Nonexistence of positive supersolutions of elliptic equations via the maximum principle[END_REF] Theorem 2.1], Assume that N ≥ 3 and the nonlinearity f : (0, ∞) → (0, ∞) is continuous and satisfieslim inf s→0 s -N N -2 f (s) > 0.Then the differential inequality -∆u ≥ f (u) has no positive solution in any exterior domain of R N .Proof of Theorem 3.1.9. Let u ∈ H 1 (R 3 ) be a non-trivial solution to (3.1.2). By Lemma 3.2.2, we have λ < 0 and Q(u) = 0. Hence,aC(u) = A(u) -γ 4 B(u) > A(u)and using Lemma 3.2.1(ii), we obtain thatA(u) < aC(u) ≤ aK GN [A(u)]3 . Multiple normalized solutions for the Schrödinger-Poisson-Slater equation 92 This implies that A(u) > 1 aK GN .

(|x| - 1 *Remark 3 . 5 . 2 . 2 u 1 2 2 N

 1352212 |u| 2 )(x) ≤ -λ 2γfor |x| > R 0 .Therefore, we get that-∆u(x) = -λ + γ(|x| -1 * |u| 2 )(x) + a|u(x)| 4 u(x) ≥ -λ + γ(|x| -1 * |u| 2 )(x) u(x) ≥ -λ 2 u(x) for |x| > R 0 .By applying Proposition 3.5.1 with f (s) = -λ 2 s, we obtain a contradiction, and thus point (ii) holds. In[START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] Theorem 1.2], the author considers the equation-∆uλu -µ|u| q-2 u -|u| 2 * -2 u = 0 in R N , (3.5.1) with N ≥ 3, 2 < q < 2 * and µ < 0. If u ∈ H 1 (R N )is a non-trivial solution to (3.5.1) then by [81, Theorem 1.2], the associated Lagrange multiplier λ is positive and following the arguments in [81, Proof of Theorem 1.2], one obtains that -∆u ≥ λ for |x| > R 1 , with R 1 > 0 large enough. Hence, by applying Proposition 3.5.1, we see that (3.5.1) has no positive solution u ∈ H 1 (R N ) for all N ≥ 3, improving slightly the conclusions of [81, Theorem 1.2]. Actually, borrowing an observation from [18], the non-existence results of [81, Theorem 1.2] can be further extended by showing that (3.5.1) has no non-trivial radial solutions in H 1 (R N ) when N ≥ 3 and q > 2 + 2 N -1 . Indeed, if u ∈ H 1 (R N ) is a radial function by [18, Radial Lemma A.II], there exist constants C > 0 and R 2 > 0 such that |u(x)| ≤ C|x| -Nfor |x| > R 2 . Setting V (x) = -µ|u(x)| q-2 -|u(x)| 2 * -2, we obtain that any radial solution u ∈ H 1 (R N ) satisfies -∆u(x) + V (x)u(x) = λu(x), (3.5.2)where, since q > 2 +

  explicit and is given in (2.3.1)-(2.3.2). In particular c 0 > 0 can be taken arbitrary large by taking µ > 0 small enough.

	Remark 2.1.4.
	(i) If u ∈ S(c) is a ground state then the associated Lagrange multiplier λ ∈ R in (2.1.2) satisfies
	λ < 0, see Lemma 2.2.1.
	(ii) There exists a ground state which is a real valued, positive, radially symmetric decreasing
	function, see Lemma 2.2.2.

  then there exists a local minimum point on (ρ 1 , ρ 2 ) and this contradicts the fact that the function g c 2 (ρ) has a unique critical point which has to coincide necessarily with its unique global maximum (see Lemma 2.3.1). By (2.3.4), (2.3.5), we can choose ρ ′ = (c 2 /c 1 )ρ 1 and ρ ′′ = ρ 1 , and (2.3.6) implies the lemma.

Lemma 2.3.3. For any u ∈ S(c), we have that

  35, Chapter IV, Corollary 2]. Let (u n ) be a Cauchy sequence. Since Y T is a Banach space, there exists u ∈ Y T such that lim

	Lemma 2.4.7. For all R, T > 0 the metric space (B R,T , d), where
	B R,T := {u ∈ X

T : ∥u∥ X T ≤ R}, and d(u, v) := ∥u -v∥ Y T is complete. Proof. n→∞ ∥u n -u∥ Y T = 0.

  L 2 (R 3 ) . The proof of Lemma 3.3.14 will follow directly from the three lemmas below.

	Lemma 3.3.17. It holds that		
	γ -(c) ≤ sup	F(w ε,t )
	t≥0		
	for ε > 0 sufficiently small.		
	Lemma 3.3.18. There exist a ε 0 > 0 and 0 < t 0 < t 1 < ∞ such that
	F(w ε,t ) < γ + (c) +	√ 6	1 aK GN
	for t [t 0 , t 1 ] and any ε ∈ (0, ε 0 ].		
	Lemma 3.3.19. It holds that		
	max t∈[t 0 ,t 1 ]		

.3.27) Now, we define for t > 0, w ε,t = u + c +tU ε and w ε,t (x) = √ θw ε,t (θx) with θ 2 = 1 c ∥w ε,t ∥ 2

  Lt 6 , which implies the claim. Since w ε,0 = w ε,0 = u + c and u + c ∈ Λ + (c) we obtain, see Lemma 3.3.4, that s - ε,0 > 1. Still by Lemma 3.3.4, the map t → s - ε,t is continuous which implies that there exists t ε > 0 such that s - ε,t ε = 1. It follows that w ε,t ε ∈ Λ -(c) and thus

	sup t≥0	F(w ε,t ) ≥ F(w ε,t ε ) ≥ γ -(c).
	The lemma is proved.						
	Proof of Lemma 3.3.18. In view of (3.3.28) and (3.3.29), we have that
	F(w ε,t ) =	1 2	A(w ε,t ) -	γ 4	θ -3 B(w ε,t ) -	a 6	C(w ε,t ).
	Hence, by (3.3.23), (3.3.25) and (3.3.26), we get that	

.3.32) Combining (3.3.30)-(3.3.32), we obtain that, for ε > 0 sufficiently small

A(u + c ) + J A(u + c ) t + Jt 2 ≥ a(s - ε,t ) 4

  .3.35) Now, we shall evaluate I 2 . By (3.3.24) and Lemma 3.3.15(ii), we get that

This chapter is precisely the results in the paper[START_REF] Jeanjean | Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation[END_REF]. For the convenience of reading, this chapter is presented self-contained with the rest of the thesis.

σ -2

3.3. The case γ > 0, a > 0 and p ∈ ( 10

Theorem 3.1.1. Assume that γ < 0, a < 0. Then F(u) has no critical point on S(c).

Next, we consider the case γ > 0, a > 0. In this case, let

> 0, (3.1.5) where σ is defined by (3.1.4) and K H , K GN are defined in Lemma 3. Our first main result is Theorem 3.1.2. Let p ∈ ( 10 3 , 6]. Assume that γ > 0, a > 0 and let c 1 > 0 be defined by (3.1.5). For any c ∈ (0, c 1 ), there exist u + c ∈ Λ + (c) such that F(u + c ) = γ + (c) and u - c ∈ Λ -(c) such that F(u - c ) = γ -(c). The functions u + c , u - c are bounded continuous positive Schwarz symmetric functions. In addition there exist λ + c > 0 and λ - c > 0 such that (u + c , λ + c ) and (u - c , λ - c ) are solutions to (3.1.2).

Remark 3.1.3. In Theorem 3.1.2, borrowing an approach first introduced in [START_REF] Cingolani | Stationary waves with prescribed L 2 -norm for the planar Schrödinger-Poisson system[END_REF], an effort is made to optimize the limit value c 1 > 0. As a consequence, compared to the works [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities[END_REF][START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF] and our work in Chapter 2, we do not benefit from the property that γ -(c) ≥ 0 = sup u∈Λ + (c) F(u). Such property is a help to show the convergence of the Palais-Smale sequences in these works. Also, the fact that we may have γ -(c) < 0 makes somehow more involved to prove that the level γ -(c) is reached by a radially symmetric function, a Schwartz function actually, see Lemma 3.3.6. It is not clear to us if c 1 > 0 is optimal. Nevertheless, we conjecture that there exists a c 0 ≥ c 1 > 0 such that one solution exists when c = c 0 and that, at least positive solutions, do not exist when c > c 0 .

Remark 3.1.4. As we shall see γ + (c) < γ -(c) and combined with the property that any critical point lies in Λ(c) it implies that the solution u + c obtained in Theorem 3.1.2 is a ground state. Following [START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF] a ground state is defined as a solution v ∈ S(c) to (3.1.2) which has minimal Energy among all the solutions which belong to S(c). Namely, if

If the geometrical structure of F restricted to S(c) is identical in the Sobolev subcritical case p ∈ ( 10 3 , 6) and in the Sobolev critical case p = 6, the proof that the levels γ + (c) and γ -(c) are indeed reached requires additional, more involved, arguments in the case p = 6. In particular, showing that γ -(c) is attained requires to check that the following inequality holds

Let us now denote

In view of Remark 3.1.4, M c is the set of all ground states. The property that any minimizing sequence for F restricted to V (c) is, up to translation, strongly converging is known to be a key ingredient to show that the set M c is orbitally stable. If p ∈ ( 10 3 , 6) the orbital stability of M c indeed follows directly from Theorem 3.1.5 by the classical arguments of [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. In the case p = 6 the situation is more delicate as the existence of a uniform H 1 (R 3 ) bound on the solution of (3.1.1) during its lifespan is not sufficient to guarantee that blow-up may not occurs. We refer to [START_REF] Thierry | Semilinear Schrödinger equations[END_REF] for more details. We do not prove anything in that direction but strongly believe that the set M c is orbitally stable. Actually, such a result has been obtained on the equation (3.1.8) in Chapter 2.

We also discuss the behavior of the associated Lagrange multipliers and show that if the behavior of λ + c is essentially the same for the cases p ∈ ( Next, we consider the case γ > 0, a < 0. Recalling the definition of m(c) given in (3.1.3) we show in Lemma 3.4.1, that -∞ < m(c) < 0 and then we prove the following result. Theorem 3.1.8. Let p ∈ ( 10 3 , 6], γ > 0 and a < 0. For any c > 0, the infimum m(c) is achieved and any minimizing sequence for (3.1.3) is, up to translation, strongly convergent in H 1 (R 3 ) to a solution of (3.1.2). In addition, the associated Lagrange multiplier is positive.

Even if the proof of Theorem 3.1.8 follows the lines of the proof of Theorem 3.1.5, the change of sign in front of the power term requires some adaptations, see Lemma 3.4.2 and Lemma 3.4.4. Here again the orbital stability of the set of minimizers should follow directly from the classical arguments of [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] if p ∈ ( 10 3 , 6) and it should also be the case when p = 6 by adapting our arguments in Chapter 2. Note that we also study the behavior of the associated Lagrange multipliers in Lemma 3.4.5.

In the last part of the chapter we consider the case γ < 0, a > 0 and p = 6. Theorem 3.1.9. Let p = 6, γ < 0 and a > 0. For any c > 0, we have that 3 ) is a non-trivial solution to (3.1.2) then the associated Lagrange multiplier λ is negative and

(ii) Equation (3.1.2) has no positive solution in H 1 (R 3 ).

Remark 3.1.10. In [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.2], considering the equation

with N ≥ 3, 2 < q < 2 * and µ < 0, it was proved that (3.1.9) has no positive solution u ∈ H 1 (R N ) if N = 3, 4 or if N ≥ 5 under the additional assumption u ∈ L p (R N ) for some p ∈ 0, N N -2 . In Remark 3.5.2, partly using arguments used in the proof of Theorem 3.1.9, we improve [START_REF] Soave | Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[END_REF]Theorem 1.2] showing that (3.1.9) has no positive solution in H 1 (R N ) for all N ≥ 3 and no non-trivial radial solution for N ≥ 3 and q > 2 + 2 N -1 .

3.3. The case γ > 0, a > 0 and p ∈ ( 10 3 , 6] Lemma 3.2.4. For u ∈ S(c) and t > 0, the map

is a linear isomorphism with inverse

Next, we recall a result concerning the convergence of the term B, see [77, Lemma 2.1],

Lemma 3.2.5. Let (u n ) be a sequence satisfying u n ⇀ u weakly in H 1 r (R 3 ). Then we have B(u n ) → B(u).

3.3

The case γ > 0, a > 0 and p ∈ ( 10 3 , 6] 3.3.1 The geometrical structure and the existence of bounded Palais-Smale sequences for p ∈ ( 10 3 , 6] In this subsection, we follow the approach first introduced in [START_REF] Cingolani | Stationary waves with prescribed L 2 -norm for the planar Schrödinger-Poisson system[END_REF]. We shall always assume that γ > 0, a > 0 and p ∈ ( 10

and using Lemma 3.2.1(i), we obtain

This concludes the proof.

For any u ∈ S(c), we recall that

For any u ∈ S(c), we set

This implies that t ⋆ u is the unique solution of equation g ′′ u (t) = 0. So, we have

Thus, we obtain that if 0

Proof. We assume that there exists u ∈ Λ 0 (c). Since g ′′ u (1) = 0 and t ⋆ u is the unique solution of equation g ′′ u (t) = 0, we have

For any c ∈ (0, c 1 ) and any u ∈ S(c), there exists

Proof. Taking into account that

Therefore, the equation g ′ u (t) = 0 has at least two solutions 3.3. The case γ > 0, a > 0 and p ∈ ( 10 3 , 6]

2), we have g ′′ u (t) > 0 for all 0 < t < t ⋆ u . Hence, g ′ u (t) is strictly increasing function on (0, t ⋆ u ) and consequently s + u ∈ (0, t ⋆ u ) is the unique local minimum point for g u and u s

Lemma 3.3.5. For any c ∈ (0, c 1 ), it holds that

Proof. Let u ∈ Λ + (c), taking into account that

we obtain

Since σ > 2, we have F(u) < 0. The point (i) is proved. Let u ∈ Λ -(c), taking into account that

and using Lemma 3.2.1, we obtain that

Since σ > 2, the point (ii) follows.

We define

Here Λ ± (c) denotes either Λ + (c) or Λ -(c).

Lemma 3.3.6. For any c ∈ (0, c 1 ) it holds that

Also, if inf u∈Λ ± (c) F(u) is reached, it is reached by a Schwarz symmetric function.
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Therefore, it suffices to prove that inf

In this aim we start to note that inf 

Observe that, for any w ∈ S(c),

Thus we have

This implies that 0 < s 

In view of (3.3.5), the inequality (3.3.4) holds. Now if

. Hence, in view of the above arguments, we get 

√ aK GN .

As already indicated our proof is inspired by [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF]Lemma 3.1]. Let u ε be an extremal function for the Sobolev inequality in R 3 defined by 

(ii) For some positive constant K > 0,

In the rest of the subsection we assume that c ∈ (0, c 1 ) is arbitrary but fixed. Let u + c be as provided by Theorem 3.1.2. We recall that u + c ∈ Λ + (c) satisfies F(u + c ) = γ + (c) and is a bounded continuous positive Schwarz symmetric function.

Lemma 3.3.16. For any 1 ≤ p, q < ∞, it holds that

This implies that

By direct computations, we can check that

which implies that for all 0 < c < c 1 , 

Since g ′ u (t) > 0 for all t ∈ (s + u , s - u ), we get that g ′ u (t) > 0 for all t ∈ (s + u , t 1 u ] and hence

Since s + u is the unique local minimum point for g u on (0, s - u ), we have that F(u s + u ) ≤ F(u t ) for all t ∈ (0, t 1 u ]. Therefore, we obtain that

In particular, if u ∈ V (c) we have

This implies (3.3.48) and the point (ii) is proved.

iii) If we assume that u c ∈ ∂V (c), namely A(u c ) = k 1 and (ii) c ∈ (0, c 1 ) → γ + (c) is a continuous mapping.

(iii) Let c ∈ (0, c 1 ), for all α ∈ (0, c), we have γ + (c) ≤ γ + (α) + γ + (cα) and if γ + (α) or γ + (cα) is reached then the inequality is strict.

Now, we claim that

In order to prove this, let us denote c := ∥u c ∥ 2 L 2 (R 3 ) > 0. By (3.3.56), if we show that c = c then the claim follows. We assume by contradiction that c < c. In view of (3.3.56) and (3.3.57), for n large enough, we have

Hence, we obtain that

, in view of (3.3.58), we have

Since the map c → γ + (c) is continuous (see Lemma 3.3.21(ii)) and in view of (3.3.56), we deduce that

We also have that u c ∈ V ( c) by the weak limit. This implies that F(u c ) ≥ γ + ( c). If F(u c ) > γ + ( c), then it follows from (3.3.60) and Lemma 3.3.21(iii) that

which is impossible. Hence, we have F(u c ) = γ + ( c), namely u c is local minimizer on V ( c). So, we can using Lemma 3.3.21(iii) with the strict inequality and we deduce from (3.3.60) that

which is impossible. Thus, the claim follows and ∥u c ∥ 2 L 2 (R 3 ) = c. Let us now show that A(w n ) → 0. This will complete the proof of the lemma. In this aim first observe that since (w n ) is a bounded sequence in H 1 (R N ) we have, using Lemma 3.2.1(i), not only that ∥w n ∥ 2 L 2 (R 3 ) → 0 but also that B(w n ) → 0. Now we remember that 

for some b > 0. Hence, we conclude A(w n ) → 0 and thus that u n → u c ∈ V (c) strongly in H 1 (R 3 ). Finally, by Lemma 3.3.20(iii), we have u c ∈ V (c) and γ + (c) is reached. The lemma is proved. 

Asymptotic behavior of the

Chapter 4

Concluding remarks and some open problems

In this chapter, we present some concluding remarks about the two equations considered in this thesis and also we propose some open problems.

On the Sobolev critical nonlinear Schrödinger equation

Concerning the Sobolev critical nonlinear Schrödinger equation with mixed power nonlinearities

where N ≥ 3, µ ∈ R, 2 < q < 2 * , we present below some concluding remarks and also we propose open problems.

(i) Let us begin with a remark about the existence of the second solution of mountain pass type in the case 2 < q < 2 + 4/N . We proved in Chapter 2 the existence of a second solution lying at mountain pass level for µ > 0 small enough and N ≥ 4. Moreover, it is not a ground state and the associated standing wave is strongly unstable. A key step in the proof of the existence of such a solution is that one needs a precise upper estimate of the associated mountain pass level. The need to obtain, in a problem involving a Sobolev critical term, a sharp estimate on some minimax levels is known since the pioneering work of Brezis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] and the usual way to derive such strict upper bound is through the use of testing functions. We constructed test functions that could be viewed as the sum of a truncated extremal function of the Sobolev inequality on R N translated far away from the origin. This choice of testing functions was sufficient to prove our strict inequality when N ≥ 4 but we missed it in the case N = 3. Note that our approach proved nevertheless adequate to deal with the energy critical halfwave equation that was studied in [START_REF] Luo | Multiplicity and asymptotics of standing waves for the energy critical half-wave[END_REF]. Very recently, in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF] the authors introduced an alternative choice of testing functions which allowed to treat, in a unified way, the case N = 3 and N ≥ 4 for (4.1.1). The strategy in [START_REF] Wei | Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities[END_REF], recording of the one introduced by G. Tarantello in [START_REF] Tarantello | On nonhomogeneous elliptic equations involving critical Sobolev exponent[END_REF], is on the contrary, to locate the extremal functions where the ground state solution takes its greater values (the origin thus). The idea behind the 4.2. On the Schrödinger-Poisson-Slater equation potential V and the mass constraint c > 0, some existence results of solutions to (4.1.2) are obtained. The main difficulty is the existence of the potential term V (x). One loses the information on the geometric structure of the associated functional since the scaling argument can not apply to V (x). The Pohozaev identity is complex and not really useful. The compactness issue is complex and becomes more complex if one assumes that V is not radial. To overcome these difficulties, the authors of the above-mentioned papers put some strong assumptions on V which help them can apply the technical arguments of autonomous problems. There is no really new idea to treat the potential term V (x). Moreover, to our knowledge, the case where f (u) is critical growth has not been considered yet. This is the reason that we are now interested in the non-autonomous problem, more specific, we consider (4.1.2) with mixed power nonlinearities f (u) = µ|u| q-2 q + |u| p-2 p with 2 < q < p ≤ 2 * . We expect that our experience in mixed power nonlinearities can be useful to treat this problem.

On the Schrödinger-Poisson-Slater equation

Concerning the Schrödinger-Poisson-Slater equation

with γ ∈ R, a ∈ R, p ∈ ( 10 3 , 6] and f (u) := a|u| p-2 u, we propose the following open questions: (i) We proved in Chapter 3 that there exists c 1 > 0 such that (4.2.1) has two solutions for any 0 < c < c 1 in the case γ > 0 and a > 0. However, we don't know if the value c 1 > 0 is optimal and what happens if c ≥ c 1 . We conjecture that there exists a c 0 ≥ c 1 > 0 such that one solution exists when c = c 0 and that, at least positive solutions, do not exist when c > c 0 . Nevertheless, so far nothing is known in that direction, see Remark 3.1.3 for more detail.

(ii) In the case p = 6, γ < 0 and a > 0, it was proved that (4.2.1) has no positive solution in H 1 (R 3 ) for any c > 0. We also expect the non-existence of non-trivial radial solutions. The difficulty one faces is that, for any u ∈ H 1 (R N ), (|x| -1 * |u| 2 )(x) ≥ C|x| -1 for |x| > R for some C, R > 0. Thus, the result of Kato [START_REF] Kato | Growth properties of solutions of the reduced wave equation with a variable coefficient[END_REF] cannot be directly applied and the non-existence of radial solutions is an open problem, see Remark 3.5.3 for more detail.

(iii) Let us mention the mixed nonlinear case f (u) = a|u| q-2 u + µ|u| p * -2 u with 2 < q < p ≤ 2 * . The main difficult is that there are three nonlinear terms (|x| -1 * |u| 2 )u, |u| q-2 u and |u| p * -2 u. Firstly, the geometric structure of the associated functional is more complex. Secondly, in the frame of this the thesis, namely for two nonlinear terms, we usually use the properties of the Pohozaev manifold keep only one nonlinear term, which helps us in some estimates. Thus, it seems difficult to apply in the mixed nonlinear case and the study of this case is an open problem. Now, we introduce a general version of (4.2.1) which is usually called the Choquard equation

α and 2 < q ≤ 2 * with notations: 2 α and 2 * α are lower and upper critical exponents respectively that come from the Hardy-Littlewood-Sobolev inequality (see [START_REF] Lieb | Analysis[END_REF]Chapter 4]), namely

and L 2 -critical exponents p := N +α+2 N , q := 2 + 4 N . Recently, (4.2.2) was studied in [59-61, 90, 91] for some range of parameters; and several the nonexistence, existence, multiple and stability results are obtained. We now present below some open problems.

In [START_REF] Yao | Normalized solutions for the Schrödinger equation with combined Hartree type and power nonlinearities[END_REF], the authors considered (4.2.2) with N ≥ 2, 2 α < p < 2 * α and 2 < q < 2 * . Depending on the range of parameters γ, µ, p and q, the corresponding functionals are bounded or unbounded. Hence, many cases were considered in the paper and there are also some open cases proposed in [START_REF] Yao | Normalized solutions for the Schrödinger equation with combined Hartree type and power nonlinearities[END_REF]Remark 1.9].

Let us now focus on the two special cases: the lower and upper critical cases. The lower critical case p = 2 α was studied in [START_REF] Yao | Normalized Solutions for Lower Critical Choquard Equations with Critical Sobolev Perturbation[END_REF] with the assumptions γ > 0 and µ > 0. It was proved that (4.2.2) has a ground state if N ≥ 2, 2 < q < q and µ > 0 large; if N ≥ 2, q < q < 2 * , c > 0 small and µ > 0 large; and if N ≥ 3, q = 2 * c > 0 small, γ > 0 large and µ > 0 large. In the case N ≥ 2, q = q, there is no solution if µ > 0 is small. The authors also proposed some open problems in [START_REF] Yao | Normalized Solutions for Lower Critical Choquard Equations with Critical Sobolev Perturbation[END_REF]Remark 1.7] concerning the stability issue of these solutions and the existence of solutions if µ > 0 small. Recently, the authors in [START_REF] Li | Applications of extremal functions in studies of normalized solutions to lower critical Choquard equation[END_REF] treated the case 2 < q < q where the existence of a ground state holds for any µ > 0.

The upper critical case p = 2 * α was studied in [START_REF] Li | Nonexistence, existence and symmetry of normalized ground states to Choquard equations with a local perturbation[END_REF][START_REF] Li | Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability[END_REF] with the assumptions γ = 1, µ > 0 and N ≥ 3. It was proved in [START_REF] Li | Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability[END_REF] that (4.2.2) has two solutions: one ground state and one mountain pass type if 2 < q < q and µ > 0 small; and the stability issue was also considered. In [START_REF] Li | Nonexistence, existence and symmetry of normalized ground states to Choquard equations with a local perturbation[END_REF], the author proved the existence of a ground state if q = q and µ > 0 small; and if q < q < 2 * . In the case q = q and µ large, there is no ground state. If µ is large and 2 < q < q, the existence of solutions to (4.2.2) is unknown.

We observe that if p = 2 α or p = 2 * α then the case γ > 0 and µ > 0 in (4.2.2) has been the most studied so far. Other cases where γ < 0 or µ < 0 are open problems. Especially, the Sobolev critical case q = 2 * only studied in [START_REF] Yao | Normalized Solutions for Lower Critical Choquard Equations with Critical Sobolev Perturbation[END_REF] with assumptions N ≥ 3, p = 2 α , c > 0 small, γ > 0 large and µ > 0 large. So, it remains many open problems in the Sobolev critical case q = 2 * . We expect that our technical arguments in Chapter 3 which were applied only partially in [START_REF] Yao | Normalized Solutions for Lower Critical Choquard Equations with Critical Sobolev Perturbation[END_REF] can be used to deal with these problems.

Résumé

Dans cette thèse, nous considérons deux types d'équations de Schrödinger non linéaires (NLS), à savoir une classe d'équations de Schrödinger non linéaire avec une non linéarité de type mixed powers sur R N et une classe d'équations non linéaires de Schrödinger-Poisson-Slater sur R 3 . Ces deux types de NLS apparaissent dans divers modèles mathématiques et physiques et ont attiré beaucoup d'attention ces dernières années.

Du point de vue physique, puisque, en plus d'être une quantité conservée pour l'équation de l'évolution, la masse a souvent une signification physique claire; par exemple, elle représente l'alimentation électrique en optique non linéaire, ou le nombre total d'atomes dans la condensation de Bose-Einstein, etc., nous nous concentrons sur l'étude des solutions ayant une masse prescrite, à savoir les solutions normalisées. Des questions d'existence, de multiplicité et de stabilité de ces solutions sont examinées dans cette thèse. Nous nous occupons à la fois de cas sous-critiques de Sobolev et de cas critiques de Sobolev. Une attention particulière est accordée aux cas critiques de Sobolev dans lesquels de nombreux problèmes restent ouverts. Puisque les solutions normalisées sont obtenues comme points critiques, sous containte, d'une fonctionnelle, les principaux ingrédients de nos preuves sont variationnels. Mots clefs: Equations de Schrödinger, équations de Schrödinger-Poisson-Slater, exposant critique de Sobolev, masse prescrite, solution normalisée, multiplicité de solutions, état fondamental, stabilité orbitale, instabilité forte par blow-up, minimiseur local ou global, point selle au niveau du col, méthodes variationnelles, identité de type Pohozaev.