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Résumé

Dans cette thèse, nous considérons deux types d’équations de Schrödinger non linéaires
(NLS), à savoir une classe d’équations de Schrödinger non linéaire avec une non linéarité de
type mixed powers sur R

N et une classe d’équations non linéaires de Schrödinger-Poisson-
Slater sur R

3. Ces deux types de NLS apparaissent dans divers modèles mathématiques et
physiques et ont attiré beaucoup d’attention ces dernières années.

Du point de vue physique, puisque, en plus d’être une quantité conservée pour l’équation
de l’évolution, la masse a souvent une signification physique claire; par exemple, elle repré-
sente l’alimentation électrique en optique non linéaire, ou le nombre total d’atomes dans la
condensation de Bose-Einstein, etc., nous nous concentrons sur l’étude des solutions ayant
une masse prescrite, à savoir les solutions normalisées. Des questions d’existence, de multi-
plicité et de stabilité de ces solutions sont examinées dans cette thèse. Nous nous occupons
à la fois de cas sous-critiques de Sobolev et de cas critiques de Sobolev. Une attention par-
ticulière est accordée aux cas critiques de Sobolev dans lesquels de nombreux problèmes
restent ouverts. Puisque les solutions normalisées sont obtenues comme points critiques,
sous containte, d’une fonctionnelle, les principaux ingrédients de nos preuves sont varia-
tionnels.

La thèse se compose de quatre chapitres. Le Chapitre 1 est une introduction à cette thèse
contenant une brève présentation des questions traitées et des résultats obtenus. Dans le
Chapitre 2, nous étudions une classe d’équations non linéaires de Schrödinger sur RN avec
une nonlinéarité mixte Sobolev critique. Dans une situation où la fonctionnelle associée est
non bornée inférieurement sur la contrainte, nous prouvons l’existence de deux points cri-
tiques sur la contrainte, un minimiseur local, et un point selle se trouvant au niveau d’un col
de montagne. Nous montrons également que les ondes stationnaires associées à l’ensemble
des miminiseurs locaux sont orbitalement stables et que celles associées aux point selles
situés au niveau du col sont fortement instables. La principale difficulté est la présence de
l’exposant critique de Sobolev. En ce qui concerne les minimiseurs locaux, il n’est pas possi-
ble d’utiliser de manière standard le principe de concentration par compacité dévelopé par
P. L. Lions. Par ailleurs même en ayant obtenu la compacité de l’ensemble des suites min-
imisantes, l’existence globale du problème d’évolution associée reste à montrer pour établir
la stabilité orbitale. En ce qui concerne le point selle, nous avons besoin d’une estimation
stricte sur le niveau du col associé et celle-ci est obtenue en utilisant des fonctions de test.

Dans le Chapitre 3 nous étudions une classe d’équations de Schrödinger-Poisson-Slater
sur R3. Nous considérons plusieurs classes de paramètres, certains impliquant que la fonc-
tionelle sera non bornée inférieurement sur la contrainte. Dans le cas où la structure géomé-
trique des fonctionelles associées suggère l’existence de minima locaux ou globaux, nous
développons un argument pour traiter simultanément les cas sous-critiques de Sobolev et
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les cas critiques de Sobolev. Dans le cas où la structure géométrique des fonctionnelles as-
sociées suggère l’existence d’un point selle, nous avons besoin de deux arguments distincts
pour traiter les cas Sobolev sous-critique et Sobolev critique. Enfin, au Chapitre 4, nous
présentons quelques remarques finales sur les deux équations examinées dans cette thèse et
aussi nous proposons quelques problèmes ouverts.

Mots clefs

Equations de Schrödinger, équations de Schrödinger-Poisson-Slater, exposant critique de
Sobolev, masse prescrite, solution normalisée, multiplicité de solutions, état fondamental,
stabilité orbitale, instabilité forte par blow-up, minimiseur local ou global, point selle au
niveau du col, méthodes variationnelles, identité de type Pohozaev.



Abstract

In this thesis, we consider two types of nonlinear Schrödinger equations (NLS), namely
a class of nonlinear Schrödinger equations with mixed power nonlinearities in R

N and a
class of Schrödinger-Poisson-Slater equations in R

3. These two types of NLS arise in various
mathematical and physical models and have drawn wide attention in recent years.

From the physical point of view, since, in addition to being a conserved quantity for the
evolution equation, the mass often has a clear physical meaning; for instance, it represents
the power supply in nonlinear optics, or the total number of atoms in Bose-Einstein con-
densation, etc, we focus on studying solutions having prescribed mass, namely normalized
solutions. The existence, multiplicity, and stability issues of such solutions are considered
in this thesis. We deal with both Sobolev sub-critical and Sobolev critical cases. Particular
attention is paid to Sobolev critical cases in which many open problems remain. Since nor-
malized solutions are found as critical points of an associated functional on a constraint, the
main ingredients of our proofs are variational methods.

The thesis consists of four chapters. Chapter 1 is an introduction to this thesis containing
a brief presentation of issues treated and obtained results. In Chapter 2, we study Sobolev
critical nonlinear Schrödinger equations with mixed power nonlinearities in R

N . In a situa-
tion where the associated functional is unbounded from below on the constraint, we prove
the existence of two constrained critical points, one local minimizer, and one saddle point
lying at a mountain pass level. We also show that the standing waves associated with the
local minimizer are orbitally stable and the associated standing waves corresponding with
saddle points lying at mountain pass levels are strongly unstable. The main difficulty is the
presence of the Sobolev critical exponent. Concerning the local minimizer, it is not possible
to use in a standard way the compactness by concentration approach developed by P. L. Li-
ons. Even having the compactness, the global existence in evolution is still unknown. For
the existence of the saddle point, we need a strict upper estimate of the associated mountain
pass level that we derive using testing functions.

In Chapter 3, we study Schrödinger-Poisson-Slater equations in R
3. We deal with some

range of parameters under which the associated functional restricted on the constraint will
sometimes be bounded, sometimes be unbounded. In the case where the geometric structure
of the associated functional suggests the existence of local minima or global minima, we
develop an argument to deal with both Sobolev sub-critical and Sobolev critical cases. In
the case where the geometric structure of the associated functional suggests the existence
of a saddle point, we need two different arguments to deal with Sobolev sub-critical and
Sobolev critical cases. Finally, in Chapter 4, we present some concluding remarks about the
two equations considered in this thesis and also we propose some open problems.
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Notations

We list below the notations that we use throughout the thesis:

(1) R, C denote respectively the set of real numbers, complex numbers. R+ denotes the
interval (0,∞).

(2) R
N denotes the N -dimensional real Euclidean space, and the typical point in R

N is
x = (x1,x2, · · · ,xN ).

(3) ∇u denotes the gradient of a differentiable function u, namely∇u = (∂x1
u,∂x2

u, · · · ,∂xNu).

(4) ∆u denotes the Laplacian operator of a twice-differentiable function u , namely

∆u =
N∑
i=1

∂2u

∂x2
i

.

(5) 2∗ denotes the critical exponent of the Sobolev embedding, namely

2∗ =
2N
N − 2

if N ≥ 3 and 2∗ = +∞ if N = 1,2.

(6) 2α and 2∗α denote lower and upper critical exponents respectively that come from the
Hardy-Littlewood-Sobolev inequality (see [63, Chapter 4]), namely

2α :=
N +α
N

, 2∗α :=

+∞ if N = 1,2,
N+α
N−2 if N ≥ 3

with α ∈ (0,N ).

(7) L∞(RN ) denotes the set of almost everywhere bounded functions defined in R
N .

(8) For any 1 ≤ q < ∞, we write Lq(RN ) as the usual Lebesgue space endowed with the
norm

∥u∥qLq(RN ) :=
∫
R
N
|u|qdx.

(9) H1 := H1(RN ,R) denotes the usual Hilbert space of functions defined from R
N into R

with the norm

∥u∥H1(RN ) = ∥∇u∥L2(RN ) + ∥u∥L2(RN ),

and H := H1(RN ,C) denotes the Hilbert space of functions defined from R
N into C.
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(10) S denotes the best constant in the Sobolev inequality, see (2.2.1).

(11) For convenience, we denote for u ∈H1(R3) the following quantities

A(u) :=
∫
R

3
|∇u|2dx, B(u) :=

∫
R

3

∫
R

3

|u(x)|2|u(y)|2

|x − y|
dxdy, C(u) :=

∫
R

3
|u|pdx.

(12) The notation a ∼ b means that Cb ≤ a ≤ C′b for some C,C′ > 0.

(13) The open ball in R
3 with center at 0 and radius R > 0 is denoted by BR.
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Chapter 1

Introduction

The thesis which collects some works obtained during my Ph.D is devoted to the study
of normalized solutions for two types of nonlinear elliptic partial differential equations,
namely a class of nonlinear Schrödinger equations in R

N and a class of Schrödinger-Poisson-
Slater equations in R

3. Chapter 2 corresponds to the paper [46] in collaboration with Louis
Jeanjean, Jacek Jendrej (Université Sorbonne Paris Nord) and Nicola Visciglia (Università
Degli Studi di Pisa) and the paper [48] in collaboration with Louis Jeanjean. Chapter 3 cor-
responds to the work with Louis Jeanjean in the paper [47].

1.1 Normalized solutions for a Sobolev critical nonlinear Schrödinger
equation

In Chapter 2, we study the existence and stability of standing waves of prescribed mass for
the time-dependent nonlinear Schrödinger equations with mixed power nonlinearities

i∂tv +∆v +µv|v|q−2 + v|v|2
∗−2 = 0, (t,x) ∈R×RN , (1.1.1)

where N ≥ 3, v : R×RN →C, µ > 0, 2 < q < 2 +
4
N

and 2∗ =
2N
N − 2

.

The nonlinear Schrödinger equation (NLS) with pure and mixed power nonlinearities has
attracted much attention in the last decades. The local existence result for the pure power
energy critical NLS has been established in [29]. The corresponding global existence and
scattering for defocusing quintic NLS in dimension N = 3 has been established in the pa-
pers [22,33] respectively in the radial and non-radial case. We also quote the concentration-
compactness/rigidity approach introduced in [54] in order to study global existence and
scattering in the focusing energy critical NLS below the ground state. Concerning the case
of NLS with mixed nonlinearities let us quote [1, 2, 30, 32, 57, 68, 69, 84].

We recall that standing waves to (1.1.1) are solutions of the form v(t,x) = e−iλtu(x),λ ∈R.
Then the function u(x) satisfies the equation

−∆u −λu −µ|u|q−2u − |u|2
∗−2u = 0 in R

N . (1.1.2)

When looking for solutions to (1.1.2) a possible choice is to consider λ ∈ R fixed and to
search for solutions as critical points of the action functional

Aλ,µ(u) :=
1
2
∥∇u∥2L2(RN ) −

λ
2
∥u∥2L2(RN ) −

µ

q
∥u∥qLq(RN ) −

1
2∗
∥u∥2

∗

L2∗ (RN ).

1



Chapter 1. Introduction 2

In this case one usually focus on the existence of minimal action solutions, namely of so-
lutions minimizing Aλ,µ among all non-trivial solutions. In that direction, we refer to [6]
where, relying on the pioneering work of Brezis-Nirenberg [25], the existence of positive real
solutions for equations of the type of (1.1.2) is addressed in a very general setting; to [1, 2]
which concerns the case where q > 2 + 4/N and µ > 0; to [30, 68] where the fixed λ ∈ R

problem is analyzed for q = 2 + 4/N and µ < 0; see also [57] and the reference therein.

Alternatively, we can search for solutions to (1.1.2) having a prescribed L2-norm. Defin-
ing on H :=H1(RN ,C) the Energy functional

Fµ(u) :=
1
2
∥∇u∥2L2(RN ) −

µ

q
∥u∥qLq(RN ) −

1
2∗
∥u∥2

∗

L2∗ (RN )

it is standard to check that Fµ is of class C1 and that a critical point of Fµ restricted to the
(mass) constraint

S(c) := {u ∈H : ∥u∥2L2(RN ) = c}

gives rise to a solution to (1.1.2), satisfying ∥u∥2L2(RN ) = c.
In this approach the parameter λ ∈R arises as a Lagrange multiplier. In particular, λ ∈R

does depend on the solution and is not a priori given. This approach, that we shall follow
here, is relevant from the physical point of view, in particular, since the L2 norm is a pre-
served quantity of the evolution and since the variational characterization of such solutions
is often a strong help to analyze their orbital stability, see for example, [15, 28, 80, 81].

Let us define
m(c) := inf

u∈S(c)
Fµ(u).

Depending on the range of parameters we shall consider m(c) will be finite or not. If, follow-
ing the introduction of the Compactness by Concentration Principle of P. L. Lions [64,65], the
search of normalized solutions corresponding to a global minimizer of a functional restricted
to an L2 norm constraint is now a classical topic, the search of critical points when the func-
tional is unbounded from below on the constraint remained for a long time much less stud-
ied. In the frame of this thesis, namely for a functional corresponding to an autonomous
equation lying on all the space R

N , [45] was for a long time the sole contribution. This direc-
tion of research was likely brought to the attention of the community by the papers [8, 15]
both published in 2013. Since then numerous contributions flourished within this topic and
we just mention, among many possible choices, the works, [9,11,12,14,21,31,41,50]. We also
refer to [10,70] for non-autonomous problems set on R

N and to [73,75,76] for contributions
when the underlying equation is set on a bounded domain of RN . In the above-mentioned
papers, the involved nonlinearities were Sobolev subcritical. It was only in 2020 that was
first treated in [81] a problem involving a Sobolev critical nonlinearity.

For future reference, we now recall some definitions:

Definition 1.1.1. We say that uc ∈ S(c) is a ground state solution to (1.1.2) if it is a solution
having minimal Energy among all the solutions which belong to S(c). Namely, if

Fµ(uc) = inf
{
Fµ(u),u ∈ S(c),

(
Fµ

∣∣∣
S(c)

)′
(u) = 0

}
.



3 1.1. Normalized solutions for a Sobolev critical nonlinear Schrödinger equation

Definition 1.1.2. Z ⊂ H is stable if : Z , ∅ and for any v ∈ Z and any ε > 0, there exists a δ > 0
such that if ϕ ∈ H satisfies ||ϕ − v||H < δ then uϕ(t) is globally defined and infz∈Z ||uϕ(t)− z||H < ε
for all t ∈R, where uϕ(t) is the solution to (1.1.1) corresponding to the initial condition ϕ.
A standing wave e−iλtu(x) is strongly unstable if for every ε > 0 there exist ϕ ∈ H such that
∥u −ϕ∥H < ε, and uϕ(t) blows-up in finite time.

It is well-known that the study of problems with mixed nonlinearities and the type of
results one can expect, depend on the behavior of the nonlinearities at infinity, namely on
the value of the various power exponents. In particular, this behavior determines whether
the functionnal is bounded from below on S(c). One speaks of a mass subcritical case if it is
bounded from below on S(c) for any c > 0, and of a mass supercritical case if the functional
is unbounded from below on S(c) for any c > 0. One also refers to a mass critical case when
the boundedness from below does depend on the value c > 0. To be more precise, consider
an equation of the form

i∂tv +∆v +µv|v|p1−2 + v|v|p2−2 = 0, (t,x) ∈R×RN , (1.1.3)

where it is assumed that 2 < p1 ≤ p2 ≤ 2∗. The threshold exponent is the so-called L2-critical
exponent

pc = 2 +
4
N
.

A very complete analysis of the various cases that may happen for (1.1.3), depending on
the values of (p1,p2), has been provided recently in [81]. Let us just recall here some rough
elements. If both p1 and p2 are strictly less than pc then the associated Energy functional is
bounded from below on S(c) and to find a ground state (see Definition 1.1.1) one looks for
a global minimum on S(c). The problem then directly falls into the setting covered by the
Compactness by Concentration Principle introduced by P.L. Lions [64, 65] which, for more
complicated equations, in particular non autonomous ones, is still a very active field. Such
solutions are expected to be orbitally stable, see Definition 1.1.2. If pc ≤ p1 ≤ p2 ≤ 2∗, then
the Energy functional is unbounded from below on S(c) but it is possible to show that a
ground state exists. This ground state is characterized as a critical point of mountain-pass
type and it lies at a strictly positive level of the Energy functional. Such ground states are
expected to be strongly unstable, see Definition 1.1.2. We refer, for the link between the
variational characterization of a solution and its instability, to the classical paper [20], and
to [45, 56, 80, 81] for more recent developments.

In the case we consider here : 2 < p1 < pc < p2 = 2∗, the Energy functional is thus un-
bounded from below on S(c) but, as we shall see, the presence of the lower order, mass
subcritical term −µ∥u∥qLq(RN ) created, for sufficiently small values of c > 0, a geometry of
local minima on S(c). The presence of such geometry, in problems which are mass supercrit-
ical, had already been observed in several related situations. In [13, 14] for related scalar
problems, in [40] in the case of a system or [73] for an evolution problem set on a bounded
domain. Actually, Soave studied the equation (1.1.3) in [81] and derived, for any small c > 0
depending on µ > 0, the existence of a ground state solution as a local minimizer to (1.1.3)
in the case 2 < p1 < pc < p2 = 2∗. Soave also raised two open problems:

1. If a set Z ⊂ H denotes all ground states to (1.1.3), is Z orbitally stable? In the sub-
critical Sobolev case (p2 < 2∗), the set Z is orbitally stable, see [80], however, this was
an open problem in the Sobolev critical case (p2 = 2∗). As already explained in [81],
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to obtain the orbital stability of the set Z, following the classical approach laid down
in [28], two ingredients are essential. First, the relative compactness, up to translation,
of all minimizing sequences for Fµ on V (c). Secondly, the global existence of solutions
to (1.1.1) for initial data close to Z. It does not seem possible to use [81, Theorem 1.1]
as a starting point to prove the orbital stability of Z, since the existence of a ground
state in [81, Theorem 1.1] is obtained through the study of one particular (locally)
minimizing sequence which is radially symmetric and hence, the relative compactness
of all minimizing sequences for Fµ on V (c) is not guaranteed.

2. Since Fµ|S(c) is unbounded from below, it could be natural to expect that there exists a
second critical point lying at a mountain pass level. To obtain such solution, following
the approach in [45], one constructs a special bounded Palais-Smale sequence and then
proves this sequence strongly convergence. In the Sobolev critical case, the existence
of a bounded Palais-Smale sequence can be proved, however, the convergence of such
sequence is a very delicate problem.

The motivation for our study originated from the above two open problems. To solve the
first open problem, for any fixed µ > 0, we shall find an explicit value c0 = c0(µ) > 0 such
that, for any c ∈ (0, c0), there exists a set V (c) ⊂ S(c) having the property that

m(c) := inf
u∈V (c)

Fµ(u) < 0 < inf
u∈∂V (c)

Fµ(u). (1.1.4)

The sets V (c) and ∂V (c) are given by

V (c) := {u ∈ S(c) : ∥∇u∥2L2(RN ) < ρ0}, ∂V (c) := {u ∈ S(c) : ∥∇u∥2L2(RN ) = ρ0}

for a suitable ρ0 > 0, depending only on c0 > 0 but not on c ∈ (0, c0). We also introduce the set

Mc := {u ∈ V (c) : Fµ(u) =m(c)}.

Our first result is,

Theorem 1.1.3. Let N ≥ 3, 2 < q < 2 + 4
N . For any µ > 0 there exists a c0 = c0(µ) > 0 such that,

for any c ∈ (0, c0), Fµ restricted to S(c) has a ground state. This ground state is a (local) minimizer
of Fµ in the set V (c) and any ground state for Fµ on S(c) is a local minimizer of Fµ on V (c). In
addition, if (un) ⊂ V (c) is such that Fµ(un)→m(c) then, up to translation, un→ u ∈Mc in H.

To obtain the relative compactness of all minimizing sequences, the fact that one min-
imizes only on a subset of S(c), in contrast to a global minimization on all S(c), increases
the difficulty to rule out a possible dichotomy. Different strategies have been recently imple-
mented to deal with this issue [13,40,80], all relying on a suitable choice of the set where the
local minima is searched. In the presence of a Sobolev critical term an additional difficulty
arises. In a Sobolev subcritical setting, if a sequence (vn) ⊂ S(c) is vanishing in the sense of
P.L. Lions, see [65, Lemma I.1], one would immediately get

liminf
n→∞

Fµ(vn) = liminf
n→∞

1
2
∥∇vn∥2L2(RN ) ≥ 0.

Thus the vanishing can directly be rule out knowing thatm(c) < 0. Here [65, Lemma I.1] does
not apply anymore; the term ||vn||2∗ may not go to 0 if (vn) is vanishing. Thus we need a better
understanding of this possible loss of compactness and this leads to our definition of the set
V (c). This is presented in Section 2.3 where we prove the below theorem which will both
imply the existence of a ground state (see Theorem 1.1.3) but also, as it may be expected,
will be a crucial step to derive the orbital stability of the setMc.
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Theorem 1.1.4. For any c ∈ (0, c0), if (un) ⊂ {u ∈H : ∥∇u∥2L2(RN ) < ρ0} is such that ∥un∥2L2(RN )→ c

and Fµ(un)→ m(c) then, up to translation, un
H→ u ∈Mc. In particular the setMc is compact in

H , up to translation.

We shall now focus on the (orbital) stability of the set Mc. The fact that ground states
are characterized as local minima suggests, despite the problem being mass supercritical,
that the set Mc could be orbitally stable. Actually, such orbital stability results have now
been proved, on related problems (but always Sobolev subcritical) in several recent papers
[13, 40, 80]. Along this line we now present the following result:

Theorem 1.1.5. Let N ≥ 3, 2 < q < 2 + 4
N , µ > 0 and c0 = c0(µ) > 0 be given in Theorem 1.1.3.

Then, for any c ∈ (0, c0), the setMc is compact, up to translation, and it is orbitally stable.

As to the global existence of solutions to (1.1.1), it is also affected by the presence of
the Sobolev critical exponent. In Sobolev subcritical cases, it is well known [27] that if, for
an initial datum ϕ ∈ H , the maximum time of existence Tmaxϕ > 0 is finite then necessarily
the corresponding solution v satisfies ||∇v(t)||2→ +∞ as t→ Tmaxϕ . Thus, a uniform a priori
bound on ||∇v(t)||2 yields global existence. Note that, by conservation of the Mass and En-
ergy, in view of (1.1.4), for an initial datum in V (c)∩{u ∈ S(c) : Fµ(u) < 0}, the evolution takes
place in the (bounded) set V (c). Thus, in a subcritical setting, the global existence would
follow directly. However, in our case it is unknown if the previous blow-up alternative holds
and hence, we cannot deduce global existence just since the evolution takes place in V (c),
see [27, Theorem 4.5.1] or [84, Proposition 3.2] for more details. To overcome this difficulty,
building on the pioneering work of Cazenave-Weissler [29], see also [27, Section 4.5] , we
first derive an upper bound on the propagator eit∆ which provides a kind of uniform local
existence result, see Section 2.4. Next, using the information that all minimizing sequences
are, up to translation, compact and also specifically and crucially that Mc is compact, up
to translation, we manage to show that, for initial data sufficiently close to the set Mc the
global existence holds and this leads to the orbital stability ofMc, proving Theorem 1.1.5.

To solve the second open problem, we search for a solution lying at a mountain pass
level. This type of solution has indeed been obtained recently on related problems, see,
for example, [14, 31, 73]. In particular, on (1.1.3) the existence of such a mountain pass
geometry had been observed in [80] in a Sobolev subcritical setting, namely when p2 < 2∗,
and a corresponding solution had been obtained. However, when one considers the Sobolev
critical case p2 = 2∗, an additional difficulty arises due to the fact that to prove the existence
of such a solution one needs a precise upper estimate of the associated mountain pass level.
Roughly speaking this upper estimate is crucial to guarantee that a Palais-Smale sequence
at the mountain pass level does not carry a bubble which, by vanishing when passing to the
weak limit, would prevent its strong convergence in H1(RN ).

The need to obtain, in problem involving a Sobolev critical term, a sharp estimate on
some minimax levels is known since the pioneering work of Brezis-Nirenberg [25] and the
usual way to derive such strict upper bound is through the use of testing functions. It will
also be the case here but we shall need, in this context, to overcome non-standard difficulties
due to the fact that we search for a solution with a prescribed norm. In [81] such difficulties
were first encountered and overcome but under the assumption that pc ≤ p1 ≤ p2 ≤ 2∗. In that
case there is no solution at an energy level below the mountain pass level. In the problem we
are considering, the need to respect L2-constraint, combined with the existence of a ground
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state solution makes things more complex. Indeed, it appears necessary for proving the strict
inequality that we need, see (1.1.8) in Proposition 1.1.9, to control precisely the interaction
between standard truncated extremal Sobolev functions, as recalled in Lemma 2.7.1, with a
suitable sequence of ground states for m(cn) with cn→ c.

Let S denote the best constant in the Sobolev inequality, see (2.2.1). We now state the
following result.

Theorem 1.1.6. Let N ≥ 4, 2 < q < 2 + 4
N , µ > 0 and c0 = c0(µ) > 0 be given in Theorem 1.1.3.

Then, for any c ∈ (0, c0), there exists a second solution vc ∈ S(c) which satisfies

0 < Fµ(vc) < m(c) +
S

N
2

N
.

In particular, vc ∈ S(c) is not a ground state.

Theorem 1.1.6 can be complemented in the following way.

Theorem 1.1.7. Under the assumptions of Theorem 1.1.6 we have,

(i) For any fixed µ > 0 and assuming that c ∈ (0, c0(µ)),

∥∇vc∥2L2(RN )→S
N
2 and Fµ(vc)→

S
N
2

N
as c→ 0.

(ii) For any fixed c > 0, vc ∈ S(c) exists for any µ > 0 sufficiently small and

∥∇vc∥2L2(RN )→S
N
2 and Fµ(vc)→

S
N
2

N
as µ→ 0.

Let us now give some elements of the strategy of the proof of Theorem 1.1.6 which is
presented in Section 2.5. We define

Qµ(u) := ∥∇u∥2L2(RN ) −µγq∥u∥
q
Lq(RN ) − ∥u∥

2∗
L2∗ (RN )

where

γq :=
N (q − 2)

2q
. (1.1.5)

It is well known, see, for example, [45, Lemma 2.7], that all critical points of Fµ restricted to
S(c) and thus any solution to (1.1.2) satisfies Qµ(u) = 0. Introducing the set

Λ(c) := {u ∈ S(c) :Qµ(u) = 0}.

we shall show that it admits the decomposition into the disjoint union Λ(c) = Λ+(c)∪Λ−(c),
where

Λ+(c) := {u ∈Λ(c) : Fµ(u) < 0}, and Λ−(c) := {u ∈Λ(c) : Fµ(u) > 0}. (1.1.6)

The ground state uc ∈ S(c) obtained in Theorem 1.1.3, see also [81], lies on Λ+(c) and can be
characterized by

Fµ(uc) = inf
u∈Λ+(c)

Fµ(u) = inf
u∈V (c)

Fµ(u) =m(c).
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The critical point vc ∈ S(c) obtained in Theorem 1.1.6 will satisfy

Fµ(vc) = inf
u∈Λ−(c)

Fµ(u).

We denote by H1
r (RN ) the subspace of functions in H1(RN ) which are radially symmetric

with respect to 0, and we define Sr(c) := S(c) ∩H1
r (RN ). Accordingly, we also set Λ+

r (c) =
Λ+(c)∩H1

r (RN ) and Λ−r (c) = Λ−(c)∩H1
r (RN ).

Let

M0(c) := inf
g∈Γ 0(c)

max
t∈[0,∞)

Fµ(g(t)) (1.1.7)

where

Γ 0(c) := {g ∈ C([0,∞),Sr(c)) : g(0) ∈Λ+
r (c),∃tg s.t. g(t) ∈ Ec∀t ≥ tg }

with

Ec := {u ∈ S(c) : Fµ(u) < 2m(c)} , ∅.

The proof of Theorem 1.1.6 will follow directly from the three below propositions.

Proposition 1.1.8. LetN ≥ 3. For any c ∈ (0, c0), there exists a Palais-Smale sequence (un) ⊂ Sr(c)
for Fµ restricted to S(c) at level M0(c), with Qµ(un)→ 0 as n→∞.

Proposition 1.1.9. Let N ≥ 3. For any c ∈ (0, c0), if it holds that

M0(c) < m(c) +
S

N
2

N
(1.1.8)

then the Palais-Smale sequence obtained in Proposition 1.1.8 is, up to subsequence, strongly con-
vergent in H1

r (RN ).

Proposition 1.1.10. For any c ∈ (0, c0), if N ≥ 4 it holds that

M0(c) < m(c) +
S

N
2

N
.

If, as a consequence of Ekeland variational principle, the geometry of the mountain pass
implies the existence of a Palais-Smale sequence (a PS sequence for short) at the moun-
tain pass Energy level it is now a well-identified difficulty that such sequences may not be
bounded. To obtain a bounded PS sequence one needs to explicit a sequence having addi-
tional properties. Hence, we first prove that the existence of a PS sequence un which satisfies
Qµ(un) → 0 as n → ∞ in Proposition 1.1.8. The condition that Qµ(un) → 0 as n → ∞, in-
corporated into the variational procedure the information that any solution must satisfy the
Pohozaev type identity Qµ(u) = 0, see [45] in that direction. The convergence of such PS
sequence is proved in Proposition 1.1.9 under the assumption of the strict upper bound of
mountain pass level M0(c), see (1.1.8). To establish Proposition 1.1.9, we shall make use of
arguments first presented in [81, Proposition 3.1]. It is important to notice that the strong
convergence is only obtained by working in H1

r (RN ). Proposition 1.1.10 is the heart of the
proof of Theorem 1.1.6 where the strict inequality (1.1.8) is proved by using test functions.
We construct test functions that could be viewed as the sum of a truncated extremal function
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of the Sobolev inequality on R
N translated far away from the origin. This choice of testing

functions are sufficient to prove our strict inequality when N ≥ 4 but we miss it in the case
N = 3.

Finally, we state the strongly unstable of the standing waves obtained in Theorem 1.1.6.
Actually this result is a direct consequence of the variational characterization of the solution
obtained in Theorem 1.1.6, combined with recent advances on the subject of instability by
blow-up contained in [80, 81].

Theorem 1.1.11. Under the assumptions of Theorem 1.1.6 the associated standing wave e−λtvc(x)
is strongly unstable.

1.2 Normalized solutions for a Schrödinger-Poisson-Slater equa-
tion

In Chapter 3, we consider the following Schrödinger-Poisson-Slater equations:

i∂tv +∆v +γ(|x|−1 ∗ |v|2)v + a|v|p−2v = 0 in R×R3, (1.2.1)

where v : R ×R3 → C, γ ∈ R, a ∈ R and p ∈ (10
3 ,6]. We look for standing wave solutions

to (1.2.1), namely to solutions of the form v(t,x) = eiλtu(x), λ ∈ R. Then the function u(x)
satisfies the equation

−∆u +λu −γ(|x|−1 ∗ |u|2)u − a|u|p−2u = 0 in R
3. (1.2.2)

Motivated by the fact that the L2−norm is a preserved quantity of the evolution we focus
on the search of solutions to (1.2.2) with prescribed L2 − norm. It is standard that for some
prescribed c > 0, a solution of (1.2.2) with ∥u∥2L2(R3) = c can be obtained as a critical point of
the Energy functional

F(u) :=
1
2

∫
R

3
|∇u|2dx −

γ

4

∫
R

3

∫
R

3

|u(x)|2|u(y)|2

|x − y|
dxdy − a

p

∫
R

3
|u|pdx

restricted to

S(c) := {u ∈H1(R3) : ∥u∥2L2(R3) = c}.

Then the parameter λ ∈ R in (1.2.2) appears as a Lagrange multiplier, it is an unknown of
the problem. As we know, F(u) is a well-defined and C1 functional on S(c) for any p ∈ (2,6]
(see [77] for example).

Let us define
m(c) = inf

u∈S(c)
F(u). (1.2.3)

Depending on the range of parameters we shall consider m(c) will be finite or not. The case
where γ < 0 and a > 0 in (1.2.2) has been the most studied so far. When p ∈ (2, 10

3 ) it can been
shown that m(c) ∈ (−∞,0] for any c > 0 and it is also the case when p = 10

3 and c > 0 is small.
It is shown in [17] that minimizer exists if p ∈ (2,3) and c > 0 is small enough, see also [78]
for the special case p = 8

3 . The case p ∈ (3, 10
3 ) was considered in [16, 51], see also [55] for

a closely related problem. In [51] the existence of a threshold value c0 > 0 such that m(c)
has a minimizer if and only if c ∈ [c0,∞) was established. It was also proved in [51] that a
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minimizer does not exist for any c > 0 if p = 3 or p = 10
3 . We also refer to [26] for related

results. When p ∈ (10
3 ,6] a scaling argument reveals that m(c) = −∞ but nevertheless it was

proved in [15] that, when p ∈ (10
3 ,6) there exists, for c > 0 small enough a critical point of F

constrained to S(c) at a strictly positive level. In this work we complement the result of [15]
by showing that when p = 6 and for any c > 0 there does not exist positive solutions, see
Theorem 1.2.5.

Even if some open problems remain when γ < 0 and a > 0, we shall mainly concentrate
here on the others cases: (γ < 0, a < 0), (γ > 0, a > 0) and (γ > 0, a < 0). We define, for short,
the following quantities

A(u) :=
∫
R

3
|∇u|2dx, B(u) :=

∫
R

3

∫
R

3

|u(x)|2|u(y)|2

|x − y|
dxdy, C(u) :=

∫
R

3
|u|pdx.

For u ∈ S(c), we set ut(x) := t
3
2u(tx), t > 0, then

ut ∈ S(c), A(ut) = t2A(u), B(ut) = tB(u), C(ut) = tσC(u),

where

2 < σ :=
3(p − 2)

2
≤ 6, (1.2.4)

due to p ∈ (10
3 ,6]. For u ∈ S(c), we define the fiber map

t ∈ (0,∞) 7→ gu(t) := F(ut) =
1
2
t2A(u)−

γ

4
tB(u)− a

p
tσC(u).

Hence, we have

g ′u(t) = tA(u)−
γ

4
B(u)− aσ

p
tσ−1C(u) =

1
t
Q(ut),

where

Q(u) = A(u)−
γ

4
B(u)− aσ

p
C(u).

Actually the condition Q(u) = 0 corresponds to a Pohozaev identity and the set

Λ(c) := {u ∈ S(c) :Q(u) = 0} = {u ∈ S(c) : g ′u(1) = 0}

appears as a natural constraint. Indeed, if u ∈ S(c), then t > 0 is a critical point for gu if and
only if ut ∈Λ(c). In particular, u ∈Λ(c) if and only if 1 is a critical point of gu .

First we briefly consider the case γ < 0, a < 0. For any u ∈ S(c), we have that g ′u(t) > 0 for
all t > 0, hence the fiber map gu(t) is strictly increasing and so we can state the following
non-existence result:

Theorem 1.2.1. Assume that γ < 0, a < 0. Then F(u) has no critical point on S(c).

Next, we consider the case γ > 0, a > 0. In this case, let

c1 :=
(

4
γKH

σ − 2
σ − 1

) 3p−10
4(p−3)

(
p

aσ (σ − 1)KGN

) 1
2(p−3)

> 0, (1.2.5)
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where σ is defined by (1.2.4) and KH ,KGN are some suitable constants. We also introduce
the decomposition of Λ(c) into the disjoint union Λ(c) = Λ+(c)∪Λ0(c)∪Λ−(c), where

Λ+(c) := {u ∈Λ(c) : g ′′u (1) > 0} = {u ∈ S(c) : g ′u(1) = 0, g ′′u (1) > 0},
Λ0(c) := {u ∈Λ(c) : g ′′u (1) = 0} = {u ∈ S(c) : g ′u(1) = 0, g ′′u (1) = 0},
Λ−(c) := {u ∈Λ(c) : g ′′u (1) < 0} = {u ∈ S(c) : g ′u(1) = 0, g ′′u (1) < 0}.

For any c ∈ (0, c1) we can prove that Λ0(c) = ∅ and Λ+(c) , ∅, Λ−(c) , ∅. Since F is bounded
from below on Λ(c), we can define

γ+(c) := inf
u∈Λ+(c)

F(u) and γ−(c) := inf
u∈Λ−(c)

F(u). (1.2.6)

Our first main result is

Theorem 1.2.2. Let p ∈ (10
3 ,6]. Assume that γ > 0, a > 0 and let c1 > 0 be defined by (1.2.5). For

any c ∈ (0, c1), there exist u+
c ∈ Λ+(c) such that F(u+

c ) = γ+(c) and u−c ∈ Λ−(c) such that F(u−c ) =
γ−(c). The functions u+

c ,u
−
c are bounded continuous positive Schwarz symmetric functions. In

addition there exist λ+
c > 0 and λ−c > 0 such that (u+

c ,λ
+
c ) and (u−c ,λ

−
c ) are solutions to (1.2.2).

If the geometrical structure of F restricted to S(c) is identical in the Sobolev subcritical
case p ∈ (10

3 ,6) and in the Sobolev critical case p = 6, the proof that the levels γ+(c) and
γ−(c) are indeed reached requires additional, more involved, arguments in the case p = 6.
In particular, showing that γ−(c) is attained requires to check that the following inequality
holds

γ−(c) < γ+(c) +
1

3
√
aKGN

. (1.2.7)

It is known since the pioneering work of Brezis-Nirenberg [25] that the way to derive such
a strict upper bound is through the use of testing functions. In Chapter 2, considering the
equation

−∆u −λu −µ|u|q−2u − |u|2
∗−2u = 0 in R

N , (1.2.8)

withN ≥ 3, µ > 0, 2 < q < 2+ 4
N and 2∗ = 2N

N−2 we face the need to establish a similar inequality.
We constructed test functions which could be viewed as the sum of a truncated extremal
function of the Sobolev inequality on R

N centered at the origin and of u+
c translated far away

from the origin. This choice of testing functions was sufficient to prove our strict inequality
when N ≥ 4 but we missed it in the case N = 3. Very recently, in [89] the authors introduced
an alternative choice of testing functions which allowed to treat, in a unified way, the case
N = 3 and N ≥ 4 for (1.2.8). The strategy in [89], recording of the one introduced by G.
Tarantello in [85], is on the contrary, to located the extremal functions where the solution u+

c
takes its greater values (the origin thus). The idea behind the proof is that the interaction
decreases the value of the Energy with respect to the case where the supports would be
disjoint. Since (1.2.2) is set on R

3, we believe in view of our experience on (1.2.8), more
appropriate to follow the approach of [89] to check the inequality (1.2.7) for any c ∈ (0, c1).

The results of Theorem 1.2.2 are complemented in several directions. First, we show that
the solution u+(c) obtained in Theorem 1.2.2 can be characterized as a local minima for F
restricted to S(c). We treat here the full range p ∈ (10

3 ,6] with a single proof. More precisely
we show,
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Theorem 1.2.3. Let p ∈ (10
3 ,6]. Assume that γ > 0, a > 0 and let c ∈ (0, c1). Then we have

Λ+(c) ⊂ V (c) and

γ+(c) = inf
u∈Λ+(c)

F(u) = inf
u∈V (c)

F(u)

where

V (c) := {u ∈ S(c)|A(u) < k1}

for some k1 > 0 independent of c ∈ (0, c1). In addition, any minimizing sequence for F on V (c) is,
up to translation, strongly convergent in H1(R3).

As we shall see γ+(c) < γ−(c) and combined with the property that any critical point lies
in Λ(c) it implies that the solution u+

c obtained in Theorem 1.2.2 is a ground state. Following
[14] a ground state is defined as a solution v ∈ S(c) to (1.2.2) which has minimal Energy
among all the solutions which belong to S(c). Namely, if

F(v) = inf
{
F(u),u ∈ S(c),

(
F
∣∣∣
S(c)

)′
(u) = 0

}
.

Let us now denote

Mc := {u ∈ V (c) : F(u) = γ+(c)}.

Hence,Mc is the set of all ground states. The property that any minimizing sequence for F
restricted to V (c) is, up to translation, strongly converging is known to be a key ingredient
to show that the set Mc is orbitally stable. If p ∈ (10

3 ,6) the orbital stability of Mc indeed
follows directly from Theorem 1.2.3 by the classical arguments of [28]. In the case p = 6
the situation is more delicate as the existence of a uniform H1(R3) bound on the solution
of (1.2.1) during its lifespan is not sufficient to guarantee that blow-up may not occurs. We
refer to [27] for more details. We do not prove anything in that direction but strongly believe
that the setMc is orbitally stable. Actually, such a result has been obtained on the equation
(1.2.8) in Chapter 2.

We also discuss the behavior of the associated Lagrange multipliers in Chapter 3 and
show that if the behavior of λ+

c is essentially the same for the cases p ∈ (10
3 ,6) and p = 6, there

is a distinct behavior for λ−c . Besides, we also establish the property that the map c 7→ γ−(c)
is strictly decreasing.

Next, we consider the case γ > 0, a < 0. Recalling the definition of m(c) given in (1.2.3)
we shall show that −∞ < m(c) < 0 and then we prove the following result.

Theorem 1.2.4. Let p ∈ (10
3 ,6], γ > 0 and a < 0. For any c > 0, the infimum m(c) is achieved

and any minimizing sequence for (1.2.3) is, up to translation, strongly convergent in H1(R3) to a
solution of (1.2.2). In addition, the associated Lagrange multiplier is positive.

Even if the proof of Theorem 1.2.4 follows the lines of the proof of Theorem 1.2.3, the
change of sign in front of the power term requires some adaptations. Here again the orbital
stability of the set of minimizers should follow directly from the classical arguments of [28] if
p ∈ (10

3 ,6) and it should also be the case when p = 6 by adapting the arguments of Chapter 2.
Note that the behavior of the associated Lagrange multipliers is also studied.

In the last part of Chapter 3 we consider the case γ < 0, a > 0 and p = 6. Based on
Liouville-type result which are proved for exterior domain of R

N by [7, Theorem 2.1], we
obtain the following result:
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Theorem 1.2.5. Let p = 6, γ < 0 and a > 0. For any c > 0, we have that

(i) If u ∈ H1(R3) is a non-trivial solution to (1.2.2) then the associated Lagrange multiplier λ
is negative and

F(u) >
1

3
√
aKGN

.

(ii) Equation (1.2.2) has no positive solution in H1(R3).

Summarizing, the known results concerning the existence of solutions to (1.2.2) are col-
lected in the following table:

Sobolev subcritical case
10
3
< p < 6 Sobolev critical case p = 6

γ < 0, a < 0 No solution for any c > 0

γ < 0, a > 0
One solution for c small enough: No positive solution

a saddle point, see [15] for any c > 0

γ > 0, a < 0 One solution for any c > 0: a global minimizer

γ > 0, a > 0
Two solutions for c small enough:

one local minimizer, one saddle point

Table 1.1: The existence of solutions to (1.2.2)



Chapter 2

Multiple normalized solutions for the
Sobolev critical Schrödinger equation

This chapter is precisely the results in the papers [46] and [48] combined. For the conve-
nience of reading, this chapter is presented self-contained with the rest of the thesis.

2.1 Introduction

In this chapter, we study the existence and orbital stability of ground state standing waves
of prescribed mass for the nonlinear Schrödinger equation with mixed power nonlinearities

i∂tv +∆v +µv|v|q−2 + v|v|2
∗−2 = 0, (t,x) ∈R×RN , (2.1.1)

where N ≥ 3, v : R×RN →C, µ > 0, 2 < q < 2 +
4
N

and 2∗ =
2N
N − 2

.

We recall that standing waves to (2.1.1) are solutions of the form v(t,x) = e−iλtu(x),λ ∈R.
Then the function u(x) satisfies the equation

−∆u −λu −µ|u|q−2u − |u|2
∗−2u = 0 in R

N . (2.1.2)

Motivated by the fact that the L2 − norm is a preserved quantity of the evolution we
focus on the search of solutions to (2.1.2) having a prescribed L2-norm. Defining on H :=
H1(RN ,C) the Energy functional

Fµ(u) :=
1
2
∥∇u∥2L2(RN ) −

µ

q
∥u∥qLq(RN ) −

1
2∗
∥u∥2

∗

L2∗ (RN )

it is standard to check that Fµ is of class C1 and that a critical point of Fµ restricted to the
(mass) constraint

S(c) := {u ∈H : ∥u∥2L2(RN ) = c}

gives rise to a solution to (2.1.2), satisfying ∥u∥2L2(RN ) = c. In this approach the parameter
λ ∈ R arises as a Lagrange multiplier. In particular, λ ∈ R does depend on the solution and
is not a priori given.

We shall focus on the existence of ground state solutions.
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Chapter 2. Multiple normalized solutions for the Sobolev critical Schrödinger equation 14

Definition 2.1.1. We say that uc ∈ S(c) is a ground state solution to (2.1.2) if it is a solution
having minimal Energy among all the solutions which belong to S(c). Namely, if

Fµ(uc) = inf
{
Fµ(u),u ∈ S(c),

(
Fµ

∣∣∣
S(c)

)′
(u) = 0

}
.

Note that this definition keeps a meaning even in situations where the Energy Fµ is un-
bounded from below on S(c). Implicit in [45], this definition was formally introduced, on a
related model, in [14] and is now becoming standard.

It is well-known that the study of problems with mixed nonlinearities and the type of
results one can expect, depend on the behavior of the nonlinearities at infinity, namely on
the value of the various power exponents. In particular, this behavior determines whether
the functionnal is bounded from below on S(c). One speaks of a mass subcritical case if it is
bounded from below on S(c) for any c > 0, and of a mass supercritical case if the functional
is unbounded from below on S(c) for any c > 0. One also refers to a mass critical case when
the boundedness from below does depend on the value c > 0. To be more precise, consider
an equation of the form

i∂tv +∆v +µv|v|p1−2 + v|v|p2−2 = 0, (t,x) ∈R×RN , (2.1.3)

where it is assumed that 2 < p1 ≤ p2 ≤ 2∗. The threshold exponent is the so-called L2-critical
exponent

pc = 2 +
4
N
.

A very complete analysis of the various cases that may happen for (2.1.3), depending on the
values of (p1,p2), has been provided recently in [80, 81]. Let us just recall here some rough
elements. If both p1 and p2 are strictly less than pc then the associated Energy functional is
bounded from below on S(c) and to find a ground state one looks for a global minimum on
S(c). The problem then directly falls into the setting covered by the Compactness by Con-
centration Principle introduced by P.L. Lions [64,65] which, for more complicated equations,
in particular non autonomous ones, is still a very active field. Such solutions are expected to
be orbitally stable, see Definition 2.1.5 below. If pc ≤ p1 ≤ p2 ≤ 2∗, then the Energy functional
is unbounded from below on S(c) but it is possible to show that a ground state exists. This
ground state is characterized as a critical point of mountain-pass type and it lies at a strictly
positive level of the Energy functional. Such ground states are expected to be orbitally un-
stable. We refer, for the link between the variational characterization of a solution and its
instability, to the classical paper [20], and to [45, 56, 80, 81] for more recent developments.

In the case we consider here : 2 < p1 < pc < p2 = 2∗, the Energy functional is thus un-
bounded from below on S(c) but, as we shall see, the presence of the lower order, mass
subcritical term −µ∥u∥qLq(RN ) created, for sufficiently small values of c > 0, a geometry of
local minima on S(c). The presence of such geometry, in problems which are mass supercrit-
ical, had already been observed in several related situations. In [13, 14] for related scalar
problems, in [40] in the case of a system or [73] for an evolution problem set on a bounded
domain. Actually, it was already observed on (2.1.1) in [81].

Precisely, for any fixed µ > 0, we shall find an explicit value c0 = c0(µ) > 0 such that, for
any c ∈ (0, c0), there exists a set V (c) ⊂ S(c) having the property that

m(c) := inf
u∈V (c)

Fµ(u) < 0 < inf
u∈∂V (c)

Fµ(u). (2.1.4)
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The sets V (c) and ∂V (c) are given by

V (c) := {u ∈ S(c) : ∥∇u∥2L2(RN ) < ρ0}, ∂V (c) := {u ∈ S(c) : ∥∇u∥2L2(RN ) = ρ0}

for a suitable ρ0 > 0, depending only on c0 > 0 but not on c ∈ (0, c0). We also introduce the set

Mc := {u ∈ V (c) : Fµ(u) =m(c)}.

Our first result is,

Theorem 2.1.2. Let N ≥ 3, 2 < q < 2 + 4
N . For any µ > 0 there exists a c0 = c0(µ) > 0 such

that, for any c ∈ (0, c0), Fµ restricted to S(c) has a ground state. This ground state is a (local)
minimizer of Fµ in the set V (c) and any ground state for Fµ on S(c) is a local minimizer of Fµ on
V (c). In addition, if (un) ⊂ V (c) is such that Fµ(un)→m(c) then, up to translation, un→ u ∈Mc

in H1(RN ,C).

Remark 2.1.3. The value of c0 = c0(µ) > 0 is explicit and is given in (2.3.1)-(2.3.2). In particular
c0 > 0 can be taken arbitrary large by taking µ > 0 small enough.

Remark 2.1.4.

(i) If u ∈ S(c) is a ground state then the associated Lagrange multiplier λ ∈R in (2.1.2) satisfies
λ < 0, see Lemma 2.2.1.

(ii) There exists a ground state which is a real valued, positive, radially symmetric decreasing
function, see Lemma 2.2.2.

(iv) The map c 7→m(c) is non-increasing and that m(c)→ 0 as c→ 0, see Lemma 2.3.5.

(iv) More globally, under the assumption of Theorem 2.1.2 it can be proved that, for any c ∈
(0, c0),Mc has the following structure:

Mc = {eiθu, for some θ ∈R,u ∈ M̃c,u > 0},

where
M̃c = {u ∈ S(c)∩H1(RN ,R),Fµ(u) =m(c)}.

Indeed, this description directly follows from the convergence, up to translation, of the min-
imizing sequences of Fµ restricted to V (c), applying the argument of [42, Section 3]. We
leave the details to the interested reader.

We shall now focus on the (orbital) stability of the set Mc. Following the terminology
of [28], see also [42], we give the following definition.

Definition 2.1.5. Z ⊂ H is stable if : Z , ∅ and for any v ∈ Z and any ε > 0, there exists a δ > 0
such that if ϕ ∈ H satisfies ||ϕ − v||H < δ then uϕ(t) is globally defined and infz∈Z ||uϕ(t)− z||H < ε
for all t ∈R, where uϕ(t) is the solution to (2.1.1) corresponding to the initial condition ϕ.

Notice that the orbital stability of the set Z implies the global existence of solutions to
(2.1.1) for initial datum ϕ close enough to the set Z. We underline that this fact is non trivial
due to the critical exponent that appears in (2.1.1), even if the H norm of the solution is
uniformly bounded on the lifespan of the solution.
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The fact that ground states are characterized as local minima suggests, despite the prob-
lem being mass supercritical, that the setMc could be orbitally stable. Actually, such orbital
stability results have now been proved, on related problems (but always Sobolev subcritical)
in several recent papers [13, 40, 80]. Along this line we now present the main result of this
chapter.

Theorem 2.1.6. Let N ≥ 3, 2 < q < 2 + 4
N , µ > 0 and c0 = c0(µ) > 0 be given in Theorem 2.1.2.

Then, for any c ∈ (0, c0), the setMc is compact, up to translation, and it is orbitally stable.

In [81], Soave studied equation (2.1.1) and derived, for any small c > 0 depending on
µ > 0, an existence result which is very similar to the one contained in Theorem 2.1.2,
see [81, Theorem 1.1]. However, it does not seem possible to use [81, Theorem 1.1] as a
starting point to prove Theorem 2.1.6. The existence of a ground state in [81, Theorem 1.1]
is obtained through the study of one particular (locally) minimizing sequence which is ra-
dially symmetric. As already explained in [81], to obtain the orbital stability of the setMc,
following the classical approach laid down in [28], two ingredients are essential. First, the
relative compactness, up to translation, of all minimizing sequences for Fµ on V (c), as guar-
anteed by our Theorem 2.1.2. Secondly, the global existence of solutions to (2.1.1) for initial
data close toMc.

To obtain the relative compactness of all minimizing sequences, the fact that one min-
imizes only on a subset of S(c), in contrast to a global minimization on all S(c), increases
the difficulty to rule out a possible dichotomy. Different strategies have been recently imple-
mented to deal with this issue [13, 40, 80], all relying on a suitable choice of the set where
the local minima is searched. In the presence of a Sobolev critical term an additional dif-
ficulty arises. In a Sobolev subcritical setting, if a sequence (vn) ⊂ S(c) is vanishing then
applying [65, Lemma I.1] one would immediately get

liminf
n→∞

Fµ(vn) = liminf
n→∞

1
2
||∇vn||22 ≥ 0.

Thus the vanishing can directly be rule out knowing thatm(c) < 0. Here [65, Lemma I.1] does
not apply anymore; the term ||vn||2∗ may not go to 0 if (vn) is vanishing. Thus we need a better
understanding of this possible loss of compactness and this leads to our definition of the set
V (c). As to the global existence of solutions to (2.1.1), it is also affected by the presence of
the Sobolev critical exponent. In Sobolev subcritical cases, it is well known [27] that if, for
an initial datum ϕ ∈ H , the maximum time of existence Tmaxϕ > 0 is finite then necessarily
the corresponding solution v satisfies ||∇v(t)||2→ +∞ as t→ Tmaxϕ . Thus, a uniform a priori
bound on ||∇v(t)||2 yields global existence. Note that, by conservation of the Mass and Energy,
in view of (2.1.4), for an initial datum in V (c)∩{u ∈ S(c) : Fµ(u) < 0}, the evolution takes place
in the (bounded) set V (c). Thus, in a subcritical setting, the global existence would follow
directly. However, in our case it is unknown if the previous blow-up alternative holds and
hence, we cannot deduce global existence just since the evolution takes place in V (c), see [27,
Theorem 4.5.1] or [84, Proposition 3.2] for more details. To overcome this difficulty, building
on the pioneering work of Cazenave-Weissler [29], see also [27, Section 4.5] , we first derive
an upper bound on the propagator eit∆ which provides a kind of uniform local existence
result, see Proposition 2.4.3. Next, using the information that all minimizing sequences
are, up to translation, compact and also specifically and crucially that Mc is compact, up
to translation, we manage to show that, for initial data sufficiently close to the set Mc the
global existence holds and this leads to the orbital stability ofMc, proving Theorem 2.1.6.
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Remark 2.1.7. We point out that, in order to prove Theorem 2.1.6, we have only established the
global existence of solutions for initial data close to Mc. We believe it would be interesting to
inquire if the global existence holds away from Mc, typically for any initial data in V (c)∩ {u ∈
S(c) : Fµ(u) < 0}. If so, investigating the long time behavior of these solutions would be worth to.
Our guess is that these solutions evolve toward the sum of an element of Mc and a part which
scatter. However, so far nothing is known in that direction.

Now, we focus on the second solution to (2.1.1). We observe that the structure of local
minima, for a functional which is unbounded from below, suggests the possibility to search
for a solution lying at a mountain pass level. This type of solution has indeed been obtained
recently on related problems, see, for example, [14, 31, 73]. In particular, on (2.1.3) the exis-
tence of such a mountain pass geometry had been observed in [80] in a Sobolev subcritical
setting, namely when p2 < 2∗, and a corresponding solution had been obtained. However,
when one considers the Sobolev critical case p2 = 2∗, an additional difficulty arises due to
the fact that to prove the existence of such a solution one needs a precise upper estimate
of the associated mountain pass level. Roughly speaking this upper estimate is crucial to
guarantee that a Palais-Smale sequence at the mountain pass level does not carry a bubble
which, by vanishing when passing to the weak limit, would prevent its strong convergence
in H1(RN ).

The need to obtain, in problem involving a Sobolev critical term, a sharp estimate on
some minimax levels is known since the pioneering work of Brezis-Nirenberg [25] and the
usual way to derive such strict upper bound is through the use of testing functions. It will
also be the case here but we shall need, in this context, to overcome non-standard difficulties
due to the fact that we search for a solution with a prescribed norm. In [81] such difficulties
were first encountered and overcome but under the assumption that pc ≤ p1 ≤ p2 ≤ 2∗. In that
case there is no solution at an energy level below the mountain pass level. In the problem we
are considering, the need to respect L2-constraint, combined with the existence of a ground
state solution makes things more complex. Indeed, it appears necessary for proving the strict
inequality that we need, see (2.1.8) in Proposition 2.1.13, to control precisely the interaction
between standard truncated extremal Sobolev functions, as recalled in Lemma 2.7.1, with a
suitable sequence of ground states for m(cn) with cn→ c, see the proof of Proposition 2.1.18
for more details. Actually, the existence of a second solution to (2.1.2) was proposed in [81]
as an open problem.

From here until the end of the thesis, S denotes the best constant in the Sobolev inequal-
ity, see (2.2.1). We now state the main result.

Theorem 2.1.8. Let N ≥ 4, 2 < q < 2 + 4
N , µ > 0 and c0 = c0(µ) > 0 be given in Theorem 2.1.2.

Then, for any c ∈ (0, c0), there exists a second solution vc ∈ S(c) which satisfies

0 < Fµ(vc) < m(c) +
S

N
2

N
.

In particular, vc ∈ S(c) is not a ground state.

Theorem 2.1.8 can be complemented in the following way.

Theorem 2.1.9. Under the assumptions of Theorem 2.1.8 we have,
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(i) For any fixed µ > 0 and assuming that c ∈ (0, c0(µ)),

∥∇vc∥2L2(RN )→S
N
2 and Fµ(vc)→

S
N
2

N
as c→ 0.

(ii) For any fixed c > 0, vc ∈ S(c) exists for any µ > 0 sufficiently small and

∥∇vc∥2L2(RN )→S
N
2 and Fµ(vc)→

S
N
2

N
as µ→ 0.

Remark 2.1.10. Theorem 2.1.9 (ii) can be set in parallel with [81, Theorem 1.4 2)]. Note that a
particular emphasis is given in [81] on the behavior of the solutions as µ→ 0, in the spirit of the
so-called Brezis-Nirenberg problem. In that direction, but for a fixed λ ∈ R problem, we also refer
to [32].

Theorem 2.1.11. Under the assumptions of Theorem 2.1.8 the associated standing wave e−λtvc(x)
is strongly unstable.

We do not claim any originality in Theorem 2.1.11. Actually this result is a direct con-
sequence of the variational characterization of the solution obtained in Theorem 2.1.8, com-
bined with recent advances on the subject of instability by blow-up contained in [80, 81].

Let us now give some elements of the strategy of the proof of Theorem 2.1.8. We define

Qµ(u) := ∥∇u∥2L2(RN ) −µγq∥u∥
q
Lq(RN ) − ∥u∥

2∗
L2∗ (RN )

where

γq :=
N (q − 2)

2q
. (2.1.5)

It is well known that all critical points of Fµ restricted to S(c) and thus any solution to (2.1.2)
satisfies Qµ(u) = 0, see Lemma 2.2.1. Introducing the set

Λ(c) := {u ∈ S(c) :Qµ(u) = 0}.

we shall show, see Lemma 2.2.3, that it admits the decomposition into the disjoint union
Λ(c) = Λ+(c)∪Λ−(c), where

Λ+(c) := {u ∈Λ(c) : Fµ(u) < 0}, and Λ−(c) := {u ∈Λ(c) : Fµ(u) > 0}. (2.1.6)

The ground state uc ∈ S(c) obtained in Theorem 2.1.2, see also [81], lies on Λ+(c) and can be
characterized by

Fµ(uc) = inf
u∈Λ+(c)

Fµ(u) = inf
u∈V (c)

Fµ(u) =m(c).

The critical point vc ∈ S(c) obtained in Theorem 2.1.8 will satisfy, see Remark 2.5.4,

Fµ(vc) = inf
u∈Λ−(c)

Fµ(u).

The proof of Theorem 2.1.8 will follow directly from the three propositions below.
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We denote by H1
r (RN ) the subspace of functions in H1(RN ) which are radially symmetric

with respect to 0, and we define Sr(c) := S(c) ∩H1
r (RN ). Accordingly, we also set Λ+

r (c) =
Λ+(c)∩H1

r (RN ) and Λ−r (c) = Λ−(c)∩H1
r (RN ).

Let

M0(c) := inf
g∈Γ 0(c)

max
t∈[0,∞)

Fµ(g(t)) (2.1.7)

where

Γ 0(c) := {g ∈ C([0,∞),Sr(c)) : g(0) ∈Λ+
r (c),∃tg s.t. g(t) ∈ Ec∀t ≥ tg }

with

Ec := {u ∈ S(c) : Fµ(u) < 2m(c)} , ∅.

Proposition 2.1.12. Let N ≥ 3. For any c ∈ (0, c0), there exists a Palais-Smale sequence (un) ⊂
Sr(c) for Fµ restricted to S(c) at level M0(c), with Qµ(un)→ 0 as n→∞.

Proposition 2.1.13. Let N ≥ 3. For any c ∈ (0, c0), if it holds that

M0(c) < m(c) +
S

N
2

N
(2.1.8)

then the Palais-Smale sequence obtained in Proposition 2.1.12 is, up to subsequence, strongly
convergent in H1

r (RN ).

Proposition 2.1.14. For any c ∈ (0, c0), if N ≥ 4 it holds that

M0(c) < m(c) +
S

N
2

N
.

Remark 2.1.15. If, as a consequence of Ekeland variational principle, the geometry of the moun-
tain pass implies the existence of a Palais-Smale sequence (a PS sequence for short) at the mountain
pass Energy level it is now a well-identified difficulty that such sequences may not be bounded. To
obtain a bounded PS sequence one needs to explicit a sequence having additional properties. The
condition that Qµ(un)→ 0 as n→∞, incorporated into the variational procedure the information
that any solution must satisfy the Pohozaev type identity Qµ(u) = 0, see [45] in that direction.

Remark 2.1.16. To establish Proposition 2.1.13, we shall make use of arguments first presented
in [81, Proposition 3.1]. It is important to notice that the strong convergence is only obtained by
working in H1

r (RN ). Indeed the strong convergence in Lq(RN ) of any weakly converging sequence
in H1

r (RN ) is crucially used.

The proof of Proposition 2.1.14, which is the heart of the proof of Theorem 2.1.8, can be
divided into two parts whose proofs require different types of arguments. Let

M(c) := inf
h∈Γ (c)

max
t∈[0,∞)

Fµ(h(t))

where

Γ (c) := {h ∈ C([0,∞),S(c)) : h(0) ∈ V (c)∩ {u : Fµ(u) < 0},∃th s.t. h(t) ∈ Ec∀t ≥ th}.
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Proposition 2.1.17. Let N ≥ 3. For any c ∈ (0, c0), it holds that

M0(c) ≤M(c).

Proposition 2.1.18. For any c ∈ (0, c0), if N ≥ 4 we have that

M(c) < m(c) +
S

N
2

N
. (2.1.9)

Even if the conclusion of Proposition 2.1.17 may somehow been expected, the proof of
this result is rather involved. Due to the fact that the symmetric rearrangement map is not
continuous from H1

+(RN ), the subspace of non negative functions in H1(RN ), to H1
+(RN ) if

N ≥ 2, see [3,4], it is not possible to replace a given path (of non negative functions which is
not restrictive) by a path which would be a Schwarz rearrangement (elements by elements)
of the initial path, see [80, Remark 5.2] for a discussion in that direction. Actually, if the
strict inequality of (2.1.4) guarantees that the functional has a mountain pass geometry, it
is not a sufficient information to prove that M0(c) ≤ M(c). A better understanding of the
geometry of the functional Fµ is required and, for this purpose, we introduce a set W (c),
directly connected with the decomposition Λ(c) = Λ+(c)∪Λ−(c) and study its relation with
V (c), see Lemma 2.2.4.

Note that we need to prove that M0(c) ≤M(c) because, on one hand the compactness of
the Palais-Smale sequence at the mountain pass level can only be obtained by working in
H1
r (RN ), on the other hand to show the strict inequality in Proposition 2.1.18 we need to

work with testing functions, testing paths actually, which are not radial. The idea of using
non-radial test functions to estimate a mountain pass level defined on a radial space seems
to be new.

Remark 2.1.19. It is only in Proposition 2.1.18 that appears the need to restrict ourselves toN ≥ 4
in Theorem 2.1.8, Theorem 2.1.9 and Theorem 2.1.11. The strict inequality in Proposition 2.1.18
is proved by using test functions. We construct test functions that could be viewed as the sum of a
truncated extremal function of the Sobolev inequality on R

N translated far away from the origin.
This choice of testing functions are sufficient to prove our strict inequality when N ≥ 4 but we
miss it in the case N = 3.

Chapter 2 is organized as follows. Section 2.2 is devoted to some preliminaries. In par-
ticular we clarify the structure of the set Λ(c) and introduce our set W (c) which will prove
essential in the proof of Proposition 2.1.17. We shall study the existence of ground state so-
lutions and prove Theorem 2.1.2 in Section 2.3. The orbital stability of the ground state so-
lutions corresponded Theorem 2.1.6 will be proved in Section 2.4. In Section 2.5, the proofs
of the existence of standing waves lying at mountain pass levels are given. More specifically,
the proof of Proposition 2.1.12, Proposition 2.1.13 and Proposition 2.1.14 are given in Sub-
section 2.5.1, Subsection 2.5.2 and Subsection 2.5.3 respectively and finally Subsection 2.5.4
presents the proof of Theorem 2.1.6 and additional properties. The strong instability of such
standing waves are studied in Section 2.6.

2.2 Preliminary results

We shall make use of the following classical inequalities : For any N ≥ 3 there exists an
optimal constant S > 0 depending only on N , such that

S∥f ∥22∗ ≤ ∥∇f ∥
2
2, ∀f ∈H1(RN ), (Sobolev inequality) (2.2.1)
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see [23, Theorem 9.9]. If N ≥ 2 and p ∈ [2, 2N
N−2 ) then

∥f ∥p ≤ CN,p∥∇f ∥
β
2∥f ∥

(1−β)
2 , with β =N

(
1
2
− 1
p

)
(Gagliardo-Nirenberg inequality),

(2.2.2)

for all f ∈H1(RN ), see [72].
Now, let u ∈ S(c) be arbitrary but fixed. For s ∈R+ we set

us(x) := s
N
2 u(sx).

Clearly us ∈ S(c) for any s ∈R+. We define on R+ the fiber map,

ψu(s) := Fµ(us) =
s2

2
∥∇u∥2L2(RN ) −

µ

q
sqγq∥u∥qLq(RN ) −

s2
∗

2∗
∥u∥2

∗

L2∗ (RN ), (2.2.3)

where γq is given in (2.1.5). Note that γq ∈ (0,1) and qγq ∈ (0,2). We also have

ψ′u(s) = s∥∇u∥2L2(RN ) −µγqs
qγq−1∥u∥qLq(RN ) − s

2∗−1∥u∥2
∗

L2∗ (RN ) =
1
s
Qµ(us), (2.2.4)

where
Qµ(u) = ∥∇u∥2L2(RN ) −µγq∥u∥

q
Lq(RN ) − ∥u∥

2∗
L2∗ (RN ).

Lemma 2.2.1. Let N ≥ 3. If (u,λ) ∈H1(RN )\{0} ×R is a solution to

−∆u −µ|u|q−2u − |u|2
∗−2u = λu, (2.2.5)

then Qµ(u) = 0 and λ < 0.

Proof. The fact that any solution to (2.2.5) satisfies Qµ(u) = 0 is a direct consequence of the
Pohozaev identity see, for example, [45, Lemma 2.7]. Now we deduce from (2.2.5) that

∥∇u∥2L2(RN ) −µ∥u∥
q
Lq(RN ) − ∥u∥

2∗
L2∗ (RN ) = λ∥u∥2L2(RN ). (2.2.6)

Combining (2.2.6) with Qµ(u) = 0 we obtain that

λ∥u∥2L2(RN ) = −µ(1−γq)∥u∥
q
Lq(RN )

which proves the lemma since γq ∈ (0,1).

Lemma 2.2.2. Let N ≥ 3. For any µ > 0 and any c ∈ (0, c0), if m(c) is reached then

(i) m(c) is also reached by a positive, radially symmetric non-increasing function, denoted uc
that satisfies, for a λc ∈R,

−∆uc −µ|uc|q−2uc − |uc|2
∗−2uc = λcuc in R

N . (2.2.7)

(ii) any ground state is contained in V (c).
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Proof. (i) Assuming that m(c) is reached at u0 that satisfies

−∆u0 −µ|u0|q−2u0 − |u0|2
∗−2u0 = λ0u0 in R

N ,

for a λ0 ∈R. Now, let uc be the Schwarz rearrangement of |u0|. Hence uc is a positive, radially
symmetric non-increasing function. We also have that

∥uc∥2L2(RN ) = ∥u0∥2L2(RN ) = c, ∥∇uc∥2L2(RN ) ≤ ∥∇u0∥2L2(RN ) < ρ0 and Fµ(uc) ≤ Fµ(u0).

This implies that uc ∈ V (c) and hence Fµ(uc) = Fµ(u0). Thus, m(c) is reached by uc that
satisfies (2.2.7) for a λc ∈R.

(ii) By Lemma 2.2.1, all critical points u of Fµ restricted to S(c) satisfies

Qµ(u) = ∥∇u∥2L2(RN ) −µγq∥u∥
q
Lq(RN ) − ∥u∥

2∗
L2∗ (RN ) = 0.

By (2.2.4), for any v ∈ S(c) and any s ∈ (0,∞),

ψ′v(s) =
1
s
Qµ(vs). (2.2.8)

We observe that any u ∈ S(c) can be written as u = vs with v ∈ S(c), ||∇v||2 = 1 and s ∈ (0,∞).
We deduce from (2.2.8) that if w ∈ S(c) is a ground state there exists a v ∈ S(c), ||∇v||22 = 1

and a s0 ∈ (0,∞) such that w = vs0 , Fµ(w) = ψv(s0) and ψ′v(s0) = 0. Namely, s0 ∈ (0,∞) is a zero
of the function ψ′v .

Now, since ψv(s)→ 0−, ||∇vs||2→ 0, as s→ 0 and ψv(s) = Fµ(vs) ≥ 0 when vs ∈ ∂V (c) = {u ∈
S(c) : ||∇u||22 = ρ0}, necessarily ψ′v has a first zero s1 > 0 corresponding to a local minima. In
particular, vs1 ∈ V (c) and F(vs1) = ψv(s1) < 0. Also, from ψv(s1) < 0, ψv(s) ≥ 0 when vs ∈ ∂V (c)
and ψv(s)→ −∞ as s→∞, ψv has a second zero s2 > s1 corresponding to a local maxima of
ψv . Since vs2 satisfies F(vs2) = ψv(s2) ≥ 0, we have that m(c) ≤ F(vs1) < F(vs2). In particular,
since m(c) is reached, vs2 cannot be a ground state.

To conclude the proof of (ii) it then just suffices to show that ψ′v has at most two zeros,
since this will imply s0 = s1 and w = vs0 = vs1 ∈ V (c). However, this is equivalent to showing
that the function

s 7→
ψ′u(s)
s

has at most two zeros. We have

θ(s) :=
ψ′u(s)
s

= ∥∇u∥2L2(RN ) −
µN (q − 2)

2q
sα0∥u∥qLq(RN ) − s

α2∥u∥2
∗

L2∗ (RN )

and

θ′(s) = −α0
µN (q − 2)

2q
sα0−1∥u∥qLq(RN ) −α2s

α2−1∥u∥2
∗

L2∗ (RN ),

where

α0 :=
N (q − 2)

2
− 2 < 0, and α2 :=

4
N − 2

> 0.

Since α0 < 0 and α2 > 0, the equation θ′(s) = 0 has a unique solution, and θ(s) has indeed at
most two zeros.
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Lemma 2.2.3. Let N ≥ 3 and c ∈ (0, c0). For every u ∈ S(c), the function ψu has exactly two
critical points s+u and s−u with 0 < s+u < s

−
u . Moreover:

(i) s+u is a local minimum point for ψu , Fµ(us+
u
) < 0 and us+

u
∈ V (c).

(ii) s−u is a global maximum point for ψu , ψ′u(s) < 0, for all s > s+u and

Fµ(us−u ) ≥ inf
u∈∂V (c)

Fµ(u) > 0.

(iii) ψ′′u (s−u) < 0 and the map u ∈ S(c) 7→ s+u ∈R is of class C1.

Proof. Let u ∈ S(c) be arbitrary. Since ψu(s) → 0−, ∥∇us∥L2(RN ) → 0, as s → 0 and ψu(s) =
Fµ(us) > 0 when us ∈ ∂V (c) = {v ∈ S(c) : ∥∇v∥2L2(RN ) = ρ0}, necessarily ψ′u has a first zero s+u > 0
corresponding to a local minima. In particular, us+

u
∈ V (c) and F(us+

u
) = ψu(s+u ) < 0. Now, from

ψu(s+u ) < 0, ψu(s) > 0 when us ∈ ∂V (c) and ψu(s)→−∞ as s→∞, ψ′u has a second zero s−u > s
+
u

corresponding to a local maxima of ψu with Fµ(us−u ) ≥ infu∈∂V (c)Fµ(u) > 0.
To conclude the proofs of (i) and (ii), it just suffices to show that ψ′u has at most two zeros.

However, this is equivalent to showing that the function

s 7→
ψ′u(s)
s

has at most two zeros. We have

θ(s) :=
ψ′u(s)
s

= ∥∇u∥2L2(RN ) −µγqs
qγq−2∥u∥qLq(RN ) − s

2∗−2∥u∥2
∗

L2∗ (RN )

and

θ′(s) = −µ(qγq − 2)γqs
qγq−3∥u∥qLq(RN ) − (2∗ − 2)s2

∗−3∥u∥2
∗

L2∗ (RN ).

Since qγq − 2 < 0 and 2∗ − 2 > 0, the equation θ′(s) = 0 has a unique solution and hence θ(s)
has indeed at most two zero points.

To establish (iii) let us first show that ψ′′u (s+u ) < 0. In this aim, first note that in view of (i)
and (ii), ψ′′u (s) has a zero s0u ∈ (s−u , s

+
u ). Now, by direct calculations

ψ′′u (s) = ∥∇u∥2L2(RN ) −µγq(qγq − 1)sqγq−2∥u∥qLq(RN ) − (2∗ − 1)s2
∗−2∥u∥2

∗

L2∗ (RN ).

We distinguish two cases. If qγq − 1 ≤ 0 then ψ′′u (s) has at most one zero and we are done. If
qγq − 1 > 0, then, knowing that ψ′′u (s) has a zero we deduce that ψ′′u (s) has exactly two zeros
that we denote by s1u < s

2
u . To conclude it suffices to show that s0u = s2u since this would imply

that s+u cannot be a zero of ψ′′u (s). To show this, we assume by contradiction that s0u = s1u .
Then, since ψ′′u (s) < 0 for s ∈ (0, s1u) and recording that ψ′u(s) < 0 for s > 0 small we deduce
that ψ′u(s) < 0 for s ∈ (0, s0u). This contradicts the fact that s+u < s

0
u satisfies ψ′(s+u ) = 0. At

this point we have proved that ψ′′u (s+u ) < 0. Now (iii) follows from a direct application of the
Implicit Function Theorem to the C1 function Ψ : R × S(c) 7→ R defined by Ψ (s,u) = ψ′u(s),
taking into account that Ψ (s+u ,u) = 0 and ∂sΨ (s+u ,u) = ψ′′u (s+u ) < 0.

In view of Lemma 2.2.3, the set Λ(c) := {u ∈ S(c) : Qµ(u) = 0} admits the decomposition
into the disjoint union Λ(c) = Λ+(c)∪Λ−(c), see (2.1.6) for the definitions of Λ+(c) and Λ−(c).
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Lemma 2.2.4. Let N ≥ 3. Introducing, for any c ∈ (0, c0), the set

W (c) := {u ∈ S(c) : s−u > 1}

it holds that

(i) Λ+(c) ⊂W (c).

(ii) ∂W (c) = Λ−(c) and inf
u∈∂W (c)

Fµ(u) > 0.

(iii) V (c)∩ {u : Fµ(u) < 0} ⊂W (c).

(iv) If m(c) is reached then inf
u∈W (c)

Fµ(u) is reached and inf
u∈W (c)

Fµ(u) =m(c).

Proof. Points (i) and (ii) are direct consequence of Lemma 2.2.3 and of the definition ofW (c).
To prove (iii) we assume by contradiction that there exists a v ∈ V (c)∩ {u : Fµ(u) < 0} with
v <W (c). Since v <W (c), then by Lemma 2.2.3 (ii) we know that ψ′v(s) < 0 for all s ≥ 1. Thus,
for all s ≥ 1,

Fµ(vs) = ψv(s) ≤ ψv(1) = Fµ(v) < 0. (2.2.9)

But, since v ∈ V (c) there exists a s0 > 1 such that vs0 ∈ ∂V (c). Recording that Fµ(u) > 0 for
any u ∈ ∂V (c) we get a contradiction with (2.2.9). This proves (iii). Now, still in view of
Lemma 2.2.3 and the definition of W (c) we have that

inf
u∈W (c)

Fµ(u) = inf
u∈Λ+(c)

Fµ(u). (2.2.10)

Also, we know from Lemma 2.2.2(ii) that Λ+(c) ⊂ V (c) and since any minimizer for Fµ on
V (c) must belong to Λ+(c) it follows that

m(c) = inf
u∈V (c)

Fµ(u) = inf
u∈Λ+(c)

Fµ(u). (2.2.11)

Gathering (2.2.10) and (2.2.11) and recording thatm(c) is reached the conclusion follows.

2.3 Existence of ground state solutions

Now, letting

α0 :=
N (q − 2)

2
− 2, α1 :=

2N − q(N − 2)
2

, α2 :=
4

N − 2
,

we consider the function f (c,ρ) defined on (0,∞)× (0,∞) by

f (c,ρ) =
1
2
−
µ

q
C
q
N,qρ

α0
2 c

α1
2 − 1

2∗
1

S
2∗
2

ρ
α2
2 ,

and, for each c ∈ (0,∞), its restriction gc(ρ) defined on (0,∞) by ρ 7→ gc(ρ) := f (c,ρ).

For future reference, note that for any N ≥ 3, α0 ∈ (−2,0), α1 ∈
[ 4
N
,2

)
and α2 ∈ (0,4].
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Lemma 2.3.1. For each c > 0, the function gc(ρ) has a unique global maximum and the maximum
value satisfies 

max
ρ>0

gc(ρ) > 0 if c < c0,

max
ρ>0

gc(ρ) = 0 if c = c0,

max
ρ>0

gc(ρ) < 0 if c > c0,

where

c0 :=
( 1

2K

)N
2
> 0, (2.3.1)

with

K :=
µ

q
C
q
N,q

−α0

α2

µC
q
N,q2

∗S
2∗
2

q


α0

α2−α0

+
1
2∗

1

S
2∗
2

−α0

α2

µC
q
N,q2

∗S
2∗
2

q


α2

α2−α0

> 0. (2.3.2)

Proof. By definition of gc(ρ), we have that

g ′c(ρ) = −α0

2
µ

q
C
q
N,qρ

α0
2 −1c

α1
2 − α2

2
1
2∗

1

S
2∗
2

ρ
α2
2 −1.

Hence, the equation g ′c(ρ) = 0 has a unique solution given by

ρc =

−α0

α2

µC
q
N,q2

∗S
2∗
2

q


2

α2−α0

c
α1

α2−α0 . (2.3.3)

Taking into account that gc(ρ)→ −∞ as ρ→ 0 and gc(ρ)→ −∞ as ρ→∞, we obtain that ρc
is the unique global maximum point of gc(ρ) and the maximum value is

max
ρ>0

gc(ρ) =
1
2
−
µ

q
C
q
N,q

−α0

α2

µC
q
N,q2

∗S
2∗
2

q


α0

α2−α0

c
α0α1

2(α2−α0) c
α1
2 − 1

2∗
1

S
2∗
2

−α0

α2

µC
q
N,q2

∗S
2∗
2

q


α2

α2−α0

c
α1α2

2(α2−α0)

=
1
2
−
µ

q
C
q
N,q

−α0

α2

µC
q
N,q2

∗S
2∗
2

q


α0

α2−α0

c
α1α2

2(α2−α0) − 1
2∗

1

S
2∗
2

−α0

α2

µC
q
N,q2

∗S
2∗
2

q


α2

α2−α0

c
α1α2

2(α2−α0)

=
1
2
−Kc

2
N .

By the definition of c0, we have that max
ρ>0

gc0
(ρ) = 0, and hence the lemma follows.

Lemma 2.3.2. Let (c1,ρ1) ∈ (0,∞)× (0,∞) be such that f (c1,ρ1) ≥ 0. Then for any c2 ∈ (0, c1], we
have that

f (c2,ρ2) ≥ 0 if ρ2 ∈
[
c2

c1
ρ1,ρ1

]
.
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Proof. Since c→ f (·,ρ) is a non-increasing function we clearly have that

f (c2,ρ1) ≥ f (c1,ρ1) ≥ 0. (2.3.4)

Now taking into account that α0 +α1 = q − 2 > 0 we have, by direct calculations, that

f

(
c2,
c2

c1
ρ1

)
≥ f (c1,ρ1) ≥ 0. (2.3.5)

We observe that if gc2
(ρ′) ≥ 0 and gc2

(ρ′′) ≥ 0 then

f (c2,ρ) = gc2
(ρ) ≥ 0 for any ρ ∈ [ρ′ ,ρ′′]. (2.3.6)

Indeed, if gc2
(ρ) < 0 for some ρ ∈ (ρ′ ,ρ′′) then there exists a local minimum point on (ρ1,ρ2)

and this contradicts the fact that the function gc2
(ρ) has a unique critical point which has to

coincide necessarily with its unique global maximum (see Lemma 2.3.1). By (2.3.4), (2.3.5),
we can choose ρ′ = (c2/c1)ρ1 and ρ′′ = ρ1, and (2.3.6) implies the lemma.

Lemma 2.3.3. For any u ∈ S(c), we have that

Fµ(u) ≥ ∥∇u∥2L2(RN )f (c,∥∇u∥2L2(RN )).

Proof. Applying the Gagliardo-Nirenberg inequality (2.2.2) and the Sobolev inequality (2.2.1)
we obtain that, for any u ∈ S(c),

Fµ(u) =
1
2
∥∇u∥2L2(RN ) −

µ

q
∥u∥qLq(RN ) −

1
2∗
∥u∥2

∗

L2∗ (RN )

≥ 1
2
∥∇u∥2L2(RN ) −

µ

q
C
q
N,q∥∇u∥

α0+2
2 ∥u∥α1

2 −
1
2∗

1

S
2∗
2

∥∇u∥2
∗

L2(RN )

= ∥∇u∥2L2(RN )

[
1
2
−
µ

q
C
q
N,q∥∇u∥

α0
2 ∥u∥

α1
2 −

1
2∗

1

S
2∗
2

∥∇u∥α2
L2(RN )

]
= ∥∇u∥2L2(RN )f (∥u∥22,∥∇u∥

2
L2(RN )).

The lemma is proved.

Now let c0 > 0 be given by (2.3.1) and ρ0 := ρc0
> 0 being determined by (2.3.3). Note that

by Lemma 2.3.1 and Lemma 2.3.2, we have that f (c0,ρ0) = 0 and f (c,ρ0) > 0 for all c ∈ (0, c0).
We define

Bρ0
:= {u ∈H : ∥∇u∥2L2(RN ) < ρ0} and V (c) := S(c)∩Bρ0

.

We shall now consider the following local minimization problem: for any c ∈ (0, c0),

m(c) := inf
u∈V (c)

Fµ(u) (2.3.7)

and also consider the set

Mc := {u ∈ V (c) : Fµ(u) =m(c)}. (2.3.8)

The main aim of this section is the following result.
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Theorem 2.3.4. For any c ∈ (0, c0), if (un) ⊂ Bρ0
is such that ∥un∥2L2(RN ) → c and Fµ(un)→ m(c)

then, up to translation, un
H→ u ∈Mc. In particular the setMc is compact in H , up to translation.

Theorem 2.3.4 will both imply the existence of a ground state but also, as it may be ex-
pected, will be a crucial step to derive the orbital stability of the setMc.

In order to prove Theorem 2.3.4 we collect some properties of m(c) defined in (2.3.7).

Lemma 2.3.5. It holds that

(i) For any c ∈ (0, c0),

m(c) = inf
u∈V (c)

Fµ(u) < 0 < inf
u∈∂V (c)

Fµ(u). (2.3.9)

(ii) c ∈ (0, c0) 7→m(c) is a continuous mapping.

(iii) For any c ∈ (0, c0), we have for all α ∈ (0, c) : m(c) ≤m(α) +m(c−α) and if m(α) or m(c−α)
is reached then the inequality is strict.

(iv) For any c ∈ (0, c0), there exists a d = d(c) > 0 such thatm(c−α) ≤m(c)+dα for any α ∈ (0, c).

Proof. (i) For any u ∈ ∂V (c) we have ∥∇u∥2L2(RN ) = ρ0. Thus, using Lemma 2.3.3, we get

Fµ(u) ≥ ∥∇u∥2L2(RN )f (∥u∥22,∥∇u∥
2
L2(RN )) = ρ0f (c,ρ0) > 0.

Now let u ∈ S(c) be arbitrary but fixed. Recall from Section 2.2 that for any s ∈ (0,∞), we
have us ∈ S(c) and

ψu(s) = Fµ(us) =
s2

2
∥∇u∥2L2(RN ) −

µ

q
sqγq∥u∥qLq(RN ) −

s2
∗

2∗
∥u∥2

∗

L2∗ (RN ).

Taking into account that qγq < 2 and 2∗ > 2 we see that ψu(s)→ 0−, as s→ 0. Therefore, there
exists s0 > 0 small enough such that ∥∇(us0)∥2L2(RN ) = s20∥∇u∥

2
L2(RN ) < ρ0 and Fµ(us0) = ψµ(s0) <

0. This implies that m(c) < 0.
(ii) Let c ∈ (0, c0) be arbitrary and (cn) ⊂ (0, c0) be such that cn→ c. From the definition of

m(cn) and since m(cn) < 0, see (i), for any ε > 0 sufficiently small, there exists un ∈ V (cn) such
that

Fµ(un) ≤m(cn) + ε and Fµ(un) < 0. (2.3.10)

We set yn :=
√
c
cn
un and hence yn ∈ S(c). We have that yn ∈ V (c). Indeed, if cn ≥ c, then

∥∇yn∥2L2(RN ) =
c
cn
∥∇un∥2L2(RN ) ≤ ∥∇un∥

2
L2(RN ) < ρ0.

If cn < c, by Lemma 2.3.2, we have f (cn,ρ) ≥ 0 for any ρ ∈
[cn
c
ρ0,ρ0

]
. Hence, we deduce from

Lemma 2.3.3 and (2.3.10) that f (cn,∥∇un∥22) < 0, thus ∥∇un∥22 <
cn
c ρ0 and

∥∇yn∥2L2(RN ) =
c
cn
∥∇un∥2L2(RN ) <

c
cn

cn
c
ρ0 = ρ0.
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Since yn ∈ V (c) we can write

m(c) ≤ Fµ(yn) = Fµ(un) + [Fµ(yn)−Fµ(un)]

where

Fµ(yn)−Fµ(un) = −1
2

(
c
cn
− 1)∥∇un∥2L2(RN ) −

µ

q

[
(
c
cn

)
q
2 − 1

]
∥un∥

q
Lq(RN ) −

1
2∗

[(
c
cn

)
2∗
2 − 1]∥un∥2

∗

L2∗ (RN ).

Since ∥∇un∥2L2(RN ) < ρ0, also ∥un∥
q
Lq(RN ) and ∥un∥2

∗

L2∗ (RN ) are uniformly bounded. Thus, we have
that as n→∞,

m(c) ≤ Fµ(yn) = Fµ(un) + on(1). (2.3.11)

Combining (2.3.10) and (2.3.11), we get

m(c) ≤m(cn) + ε+ on(1).

Now, let u ∈ V (c) be such that

Fµ(u) ≤m(c) + ε and Fµ(u) < 0.

Set un :=
√
cn
c u and hence un ∈ S(cn). Clearly, ∥∇u∥22 < ρ0 and cn→ c imply ∥∇un∥22 < ρ0 for n

large enough, so that un ∈ V (cn). Also, Fµ(un)→ Fµ(u). We thus have

m(cn) ≤ Fµ(un) = Fµ(u) + [Fµ(un)−Fµ(u)] ≤m(c) + ε+ on(1).

Therefore, since ε > 0 is arbitrary, we deduce that m(cn)→m(c). The point (ii) follows.
(iii) Note that, fixed α ∈ (0, c), it is sufficient to prove that the following holds

∀θ ∈
(
1,
c
α

]
:m(θα) ≤ θm(α) (2.3.12)

and that, if m(α) is reached, the inequality is strict. Indeed, if (2.3.12) holds then we have

m(c) =
c −α
c
m(c) +

α
c
m(c) =

c −α
c
m

( c
c −α

(c −α)
)

+
α
c
m

( c
α
α
)
≤m(c −α) +m(α),

with a strict inequality if m(α) is reached. To prove that (2.3.12) holds, note that in view of
(i), for any ε > 0 sufficiently small, there exists a u ∈ V (α) such that

Fµ(u) ≤m(α) + ε and Fµ(u) < 0. (2.3.13)

In view of Lemma 2.3.2, f (α,ρ) ≥ 0 for any ρ ∈
[α
c
ρ0,ρ0

]
. Hence, we can deduce from

Lemma 2.3.3 and (2.3.13) that

||∇u||22 <
α
c
ρ0. (2.3.14)

Consider now v =
√
θu. We first note that ||v||22 = θ||u||22 = θα and also, because of (2.3.14),

||∇v||22 = θ||∇u||22 < ρ0. Thus v ∈ V (θα) and we can write

m(θα) ≤ Fµ(v) =
1
2
θ∥∇u∥2L2(RN ) −

µ

q
θ

q
2 ∥u∥qLq(RN ) −

1
2∗
θ

2∗
2 ∥u∥2

∗

L2∗ (RN )

<
1
2
θ∥∇u∥2L2(RN ) −

µ

q
θ∥u∥qLq(RN ) −

1
2∗
θ∥u∥2

∗

L2∗ (RN )

= θ
(

1
2
∥∇u∥2L2(RN ) −

µ

q
∥u∥qLq(RN ) −

1
2∗
∥u∥2

∗

L2∗ (RN )

)
= θFµ(u) ≤ θ(m(α) + ε).
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Since ε > 0 is arbitrary, we have that m(θα) ≤ θm(α). If m(α) is reached then we can let ε = 0
in (2.3.13) and thus the strict inequality follows.

(iv) Let u ∈ V (c) be a minimizer of m(c) and set yα :=

√
c −α
c
· u. Since yα ∈ V (c −α) we

have

m(c −α) ≤ Fµ(yα) =m(c) + [Fµ(yα)−Fµ(u)]

with

Fµ(yα)−Fµ(u) = − α
2c
∥∇u∥2L2(RN ) −

µ

q

[(c −α
c

)q
− 1

]
∥u∥qLq(RN ) −

1
2∗

[(c −α
c

)2∗

− 1
]
∥u∥2

∗

L2∗ (RN ).

The result now follows from the observation that α 7→ Fµ(yα)−Fµ(u) is of classC1 on (0, c).

Lemma 2.3.6. Let (vn) ⊂ Bρ0
be such that ∥vn∥Lq(RN )→ 0. Then there exists a β0 > 0 such that

Fµ(vn) ≥ β0||∇vn||22 + on(1).

Proof. Indeed, using the Sobolev inequality (2.2.1), we obtain that

Fµ(vn) =
1
2
∥∇vn∥2L2(RN ) −

1
2∗
∥vn∥2

∗

L2∗ (RN ) + on(1) ≥ 1
2
∥∇vn∥2L2(RN ) −

1
2∗

1

S
2∗
2

∥∇vn∥2
∗

L2(RN ) + on(1)

= ∥∇vn∥2L2(RN )

[
1
2
− 1

2∗
1

S
2∗
2

∥∇vn∥
α2
L2(RN )

]
+ on(1) ≥ ∥∇vn∥2L2(RN )

[
1
2
− 1

2∗
1

S
2∗
2

ρ
α2
2

0

]
+ on(1).

Now, since f (c0,ρ0) = 0, we have that

β0 :=
[

1
2
− 1

2∗
1

S
2∗
2

ρ
α2
2

0

]
=
µ

q
C
q
N,qρ

α0
2

0 c
α1
2

0 > 0.

Lemma 2.3.7. For any c ∈ (0, c0), let (un) ⊂ Bρ0
be such that ∥un∥2L2(RN )→ c and Fµ(un)→ m(c).

Then, there exist a β1 > 0 and a sequence (yn) ⊂R
N such that∫

B(yn,R)
|un|2dx ≥ β1 > 0, for some R > 0. (2.3.15)

Proof. We assume by contradiction that (2.3.15) does not hold. By (un) ⊂ Bρ0
and ∥un∥2L2(RN )→

c, the sequence (un) is bounded in H . From [65, Lemma I.1] and since 2 < q < 2∗, we deduce
that ∥un∥Lq(RN ) → 0, as n→∞. At this point, Lemma 2.3.6 implies that Fµ(un) ≥ on(1). This
contradict the fact that m(c) < 0 and the lemma follows.

Proof of Theorem 2.3.4. We know from Lemma 2.3.7 and Rellich compactness theorem that
there exists a sequence (yn) ⊂R

N such that

un(x − yn)⇀uc , 0 in H.
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Our aim is to prove that wn(x) := un(x − yn)−uc(x)→ 0 in H. Clearly

∥un∥2L2(RN ) = ∥un(x − yn)∥2L2(RN ) = ∥un(x − yn)−uc(x)∥2L2(RN ) + ∥uc∥2L2(RN ) + on(1)

= ∥wn∥2L2(RN ) + ∥uc∥2L2(RN ) + on(1).

Thus, we have

∥wn∥2L2(RN ) = ∥un∥2L2(RN ) − ∥uc∥
2
L2(RN ) + on(1) = c − ∥uc∥2L2(RN ) + on(1). (2.3.16)

By a similar argument,

∥∇wn∥2L2(RN ) = ∥∇un∥2L2(RN ) − ∥∇uc∥
2
L2(RN ) + on(1). (2.3.17)

More generally it is direct to show, using the Brezis-Lieb lemma [24, Theorem 1], that the
other terms in Fµ also enjoy a the splitting property, and thus we have

Fµ(wn) +Fµ(uc) = Fµ(un(x − yn)) + on(1),

and, by the translational invariance, we obtain

Fµ(un) = Fµ(un(x − yn)) = Fµ(wn) +Fµ(uc) + on(1). (2.3.18)

Now, we claim that

∥wn∥2L2(RN )→ 0. (2.3.19)

In order to prove this, let us denote c1 := ∥uc∥2L2(RN ) > 0. By (2.3.16), if we show that
c1 = c then the claim follows. We assume by contradiction that c1 < c. In view of (2.3.16)
and (2.3.17), for n large enough, we have ∥wn∥2L2(RN ) ≤ c and ∥∇wn∥2L2(RN ) ≤ ∥∇un∥

2
L2(RN ) <

ρ0. Hence, we obtain that wn ∈ V (∥wn∥2L2(RN )) and Fµ(wn) ≥ m
(
∥wn∥2L2(RN )

)
. Recording that

Fµ(un)→m(c), in view of (2.3.18), we have

m(c) = Fµ(wn) +Fµ(uc) + on(1) ≥m
(
∥wn∥2L2(RN )

)
+Fµ(uc) + on(1).

Since the map c 7→m(c) is continuous (see Lemma 2.3.5(ii)) and in view of (2.3.16), we deduce
that

m(c) ≥m(c − c1) +Fµ(uc). (2.3.20)

We also have that uc ∈ V (c1) by the weak limit. This implies that Fµ(uc) ≥ m(c1). If Fµ(uc) >
m(c1), then it follows from (2.3.20) and Lemma 2.3.5(iii) that

m(c) > m(c − c1) +m(c1) ≥m(c − c1 + c1) =m(c),

which is impossible. Hence, we have Fµ(uc) =m(c1), namely uc is a local minimizer on V (c1).
So, using Lemma 2.3.5(iii) with the strict inequality, we deduce from (2.3.20) that

m(c) ≥m(c − c1) +Fµ(uc) =m(c − c1) +m(c1) > m(c − c1 + c1) =m(c),
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which is impossible. Thus, the claim (2.3.19) follows and from (2.3.16) we deduce that
∥uc∥2L2(RN ) = c.

Let us now show that ||∇wn||22 → 0. This will prove that wn → 0 in H and completes the
proof. In this aim first observe that in view of (2.3.17) and since uc , 0, we have ∥∇wn∥2L2(RN ) ≤
∥∇un∥2L2(RN ) < ρ0, for n large enough. Hence (wn) ⊂ Bρ0

and in particular it is bounded in H .

Then by using the Gagliardo-Nirenberg inequality (2.2.2), and by recalling ||wn||22 → 0 we
also have ||wn||

q
q→ 0. Thus Lemma 2.3.6 implies that

Fµ(wn) ≥ β0∥∇wn∥2L2(RN ) + on(1) where β0 > 0. (2.3.21)

Now we remember that

Fµ(un) = Fµ(uc) +Fµ(wn) + on(1)→m(c).

Since uc ∈ V (c) by weak limit, we have that Fµ(uc) ≥ m(c) and hence Fµ(wn) ≤ on(1). In view
of (2.3.21), we then conclude that ∥∇wn∥2L2(RN )→ 0.

We end this section with,

Proof of Theorem 2.1.2. The fact that if (un) ⊂ V (c) is such that Fµ(un) → m(c) then, up to
translation, un → u ∈ Mc in H follows from Theorem 2.3.4. In particular, it insures the
existence of a minimizer for Fµ on V (c). The fact that this minimizer is a ground state and
that any ground state for Fµ on S(c) belongs to V (c) was proved in Lemma 2.2.2.

2.4 Orbital stability of the ground state solutions

Now, we focus on the local existence of solutions to the following Cauchy problemi∂tu +∆u +µu|u|q−2 +u|u|2∗−2 = 0, (t,x) ∈R×RN , N ≥ 3

u(0,x) = ϕ(x) ∈H.
(2.4.1)

Denoting g : C→C by g(u) := µu|u|q−2 +u|u|2∗−2, (2.4.1) reads as

i∂tu +∆u + g(u) = 0.

Next we give the notion of integral equation associated with (2.4.1). In order to do that
first we give another definition.

Definition 2.4.1. If N ≥ 3 the pair (p,r) is said to be (Schrödinger) admissible if

2
p

+
N
r

=
N
2
, p, r ∈ [2,∞].

We shall work with two particular admissible pairs (see Lemma 2.4.5):

(p1, r1) :=
(

4q
(q − 2)(N − 2)

,
Nq

q+N − 2

)
,
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and

(p2, r2) :=
(

4× 2∗

(2∗ − 2)(N − 2)
,
N × 2∗

2∗ +N − 2

)
.

Along with those couples we introduce the spaces YT := Yp1,r1,T ∩Yp2,r2,T and XT := Xp1,r1,T ∩
Xp2,r2,T equipped with the following norms:

∥w∥YT = ∥w∥Yp1 ,r1 ,T
+ ∥w∥Yp2 ,r2 ,T

, and ∥w∥XT = ∥w∥Xp1 ,r1 ,T
+ ∥w∥Xp2 ,r2 ,T

. (2.4.2)

where for a generic function w(t,x) defined on the time-space strip [0,T ) ×RN we have de-
fined:

||w(t,x)||Yp,r,T =
(∫ T

0
∥w(t, ·)∥pLr (RN )dt

) 1
p

and ||w(t,x)||Xp,r,T =
(∫ T

0
||w(t, ·)||pW 1,r (RN )dt

) 1
p

.

Now, we give a definition of an integral solution to (2.4.1) on the time interval (for more
detail we refer to [27, Chapter 2]):

Definition 2.4.2. Let T > 0. We say that u(t,x) is an integral solution of the Cauchy problem
(2.4.1) on the time interval [0,T ] if:

1. u ∈ C([0,T ],H)∩XT ;

2. for all t ∈ (0,T ) it holds u(t) = eit∆ϕ − i
∫ t

0 e
i(t−s)∆g(u(s))ds.

The first main result of this section is the following local existence result. We do not claim
a real originality here, related versions already exist in the literature, see for example [54,
Theorem 2.5]. However, we believe convenient to the reader to provide a version specifically
adapted to our problem and to give a proof of this result as self-contained as possible.

Proposition 2.4.3. There exists γ0 > 0 such that if ϕ ∈H and T ∈ (0,1] satisfy

∥eit∆ϕ∥XT ≤ γ0,

then there exists a unique integral solution u(t,x) to (2.4.1) on the time interval [0,T ]. Moreover
u(t,x) ∈ Xp,r,T for every admissible couple (p,r) and satisfies the following conservation laws:

Fµ(u(t)) = Fµ(ϕ), ∥u(t)∥L2(RN ) = ∥ϕ∥L2(RN ), for all t ∈ [0,T ]. (2.4.3)

In order to prove Proposition 2.4.3 we need some preliminary results.

Let us recall Strichartz’s estimates that will be useful in the sequel (see for example [27,
Theorem 2.3.3 and Remark 2.3.8] and [53] for the endpoint estimates).

Proposition 2.4.4. Let N ≥ 3 then for every admissible pairs (p,r) and (p̃, r̃), there exists a con-
stant C > 0 such that for every T > 0, the following properties hold:

(i) For every ϕ ∈ L2(RN ), the function t 7→ eit∆ϕ belongs to Yp,r,T ∩C([0,T ],L2(RN )) and∥∥∥eit∆ϕ∥∥∥
Yp,r,T
≤ C∥ϕ∥2.
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(ii) Let F ∈ Yp̃′ ,r̃ ′ ,T , where we use a prime to denote conjugate indices. Then the function

t 7→ ΦF(t) :=
∫ t

0
ei(t−s)∆F(s)ds

belongs to Yp,r,T ∩C([0,T ],L2(RN )) and

∥ΦF∥Yp,r,T ≤ C∥F∥Yp̃′ ,r̃′ ,T .

(iii) For every ϕ ∈H, the function t 7→ eit∆ϕ belongs to Xp,r,T ∩C([0,T ],H) and∥∥∥eit∆ϕ∥∥∥
Xp,r,T

≤ C∥ϕ∥H .

The following result will be useful in the sequel.

Lemma 2.4.5. Let N ≥ 3 and 2 < α ≤ 2∗ be given. Then the couple (p,r) defined as follows

p :=
4α

(α − 2)(N − 2)
and r :=

Nα
α +N − 2

is admissible. Moreover for every admissible couple (p̃, r̃) there exists a constant C > 0 such that
for every T > 0 the following inequalities hold:∥∥∥∥∥∥

∫ t

0
ei(t−s)∆[∇gα(u(s))]ds

∥∥∥∥∥∥
Yp̃,r̃ ,T

≤ CT µ∥∇u∥α−1
Yp,r,T

, (2.4.4)∥∥∥∥∥∥
∫ t

0
ei(t−s)∆[gα(u(s))− gα(v(s))]ds

∥∥∥∥∥∥
Yp̃,r̃ ,T

≤ CT µ(∥∇u∥α−2
Yp,r,T

+ ∥∇v∥α−2
Yp,r,T

)∥u − v∥Yp,r,T , (2.4.5)

where gα(u) := u|u|α−2 and µ :=
(N − 2)(2∗ −α)

4
≥ 0.

Proof. By direct calculations, one can check that

2
p

+
N
r

=
N
2

and p,r ≥ 2.

Hence, (p,r) is an admissible pair. Also it is easy to check that there exists a C > 0 such that :

|g ′α(u)| ≤ C|u|α−2, (2.4.6)

|gα(u)− gα(v)| ≤ C|u − v|(|u|α−2 + |v|α−2). (2.4.7)

Combining (2.4.6) and the Chain Rule, gives

|∇gα(u)| = |g ′α(u)∇u| ≤ C|∇u||u|α−2.

Using Hölder’s inequality, we obtain that

∥∇gα(u)∥Lr′ (RN ) ≤ C∥|∇u||u|α−2∥Lr′ (RN ) ≤ C∥|∇u|∥Lr (RN )∥u∥α−2
Lr∗ (RN ) ≤ C∥∇u∥

α−1
r ,
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where we also used the Sobolev embedding ofW 1,r(RN ) into Lr
∗
(RN ) with r∗ :=

Nr
N − r

, see [23,

Theorem 9.9]. Hence, using Hölder’s inequality,

∥∇gα(u)∥Yp′ ,r′ ,T =
(∫ T

0
∥∇gα(u)∥p

′

Lr′ (RN )
dt

) 1
p′

≤ C
(∫ T

0
||∇u||(α−1)p′

r dt

) 1
p′

≤ CT (α−1)
(

1
(α−1)p′ −

1
p

) (∫ T

0
||∇u||pr dt

) α−1
p

= CT µ∥∇u∥α−1
Yp,r,T

.

At this point (2.4.4) follows by applying Proposition 2.4.4 (ii). To establish (2.4.5) note that
by (2.4.7) and the Hölder’s inequality, we have

∥gα(u)− gα(v)∥Lr′ (RN ) ≤ C∥|u − v|(|u|α−2 + |v|α−2)∥Lr′ (RN ) ≤ C∥u − v∥Lr (RN )∥|u|+ |v|∥α−2
Lr∗ (RN ).

Hence, we can deduce that

∥gα(u)− gα(v)∥Yp′ ,r′ ,T =
(∫ T

0
∥gα(u)− gα(v)∥p

′

Lr′ (RN )
dt

) 1
p′

≤ C
(∫ T

0
∥u − v∥p

′

Lr (RN )∥|u|+ |v|∥
(α−2)p′

Lr∗ (RN )dt

) 1
p′

≤ C
(∫ T

0
∥u − v∥pLr (RN )dt

) 1
p
∫ T

0
∥|u|+ |v|∥

(α−2)pp′
p−p′

Lr∗ (RN )dt


p−p′
pp′

≤ CT µ∥u − v∥Yp,r,T

(∫ T

0
∥|u|+ |v|∥pLr∗ (RN )dt

) α−2
p

= CT µ∥|u|+ |v|∥α−2
Yp,r∗ ,T

∥u − v∥Yp,r,T

≤ CT µ
(
∥u∥Yp,r∗ ,T + ∥v∥Yp,r∗ ,T

)α−2
∥u − v∥Yp,r,T .

The inequality (2.4.5) follows by applying the previous Sobolev embedding and Proposi-
tion 2.4.4 (ii).

In order to prove Proposition 2.4.3 we shall need two lemmas from Functional Analysis.

Lemma 2.4.6. For all 1 < p,r <∞, Xp,r,T is a separable reflexive Banach space.

Proof. This is a direct consequence of Phillips’ theorem, see [35, Chapter IV, Corollary 2].

Lemma 2.4.7. For all R,T > 0 the metric space (BR,T ,d), where

BR,T := {u ∈ XT : ∥u∥XT ≤ R},

and
d(u,v) := ∥u − v∥YT

is complete.



35 2.4. Orbital stability of the ground state solutions

Proof. Let (un) be a Cauchy sequence. Since YT is a Banach space, there exists u ∈ YT such
that

lim
n→∞

∥un −u∥YT = 0.

It remains to show that u ∈ BR,T .
By taking a subsequence, we can assume that l1 := limn→∞ ∥un∥Xp1 ,r1 ,T

and l2 := limn→∞ ∥un∥Xp2 ,r2 ,T

exist. By Lemma 2.4.6, there exists a subsequence of (un) which converges weakly in Xp1,r1,T .
In particular, this sequence converges in the sense of distributions and hence the limit equals
u. Thus,

∥u∥Xp1 ,r1 ,T
≤ l1.

Similarly,
∥u∥Xp2 ,r2 ,T

≤ l2.

Taking the sum, we get ∥u∥XT ≤ l1 + l2 ≤ R.

Proof of Proposition 2.4.3. Step 1. Existence and uniqueness in B2γ0,T for γ0 small enough.
For any u ∈ XT and t ∈ [0,T ], we define

Φ(u)(t) := eit∆ϕ + i
∫ t

0
ei(t−s)∆g(u(s))ds. (2.4.8)

We claim that, if γ0 > 0 is small enough, then Φ defines a contraction on the metric space
(B2γ0,T ,d) (see Lemma 2.4.7).

Let u ∈ B2γ0,T and consider any admissible pair (p̃, r̃). Let T ∈ (0,1] and apply Lemma 2.4.5.
We deduce from (2.4.4) and (2.4.8) that

∥∇Φ(u)− eit∆∇ϕ∥Yp̃,r̃ ,T ≤ C∥∇u∥
q−1
Yp1 ,r1 ,T

+C∥∇u∥2
∗−1
Yp2 ,r2 ,T

≤ C2qγq−1
0 , ∀u ∈ B2γ0,T .

Similarly, we deduce from (2.4.5) (applied with v = 0) that

∥Φ(u)− eit∆ϕ∥Yp̃,r̃ ,T ≤ C∥∇u∥
q−2
Yp1 ,r1 ,T

∥u∥Yp1 ,r1 ,T
+C∥∇u∥2

∗−2
Yp2 ,r2 ,T

∥u∥Yp2 ,r2 ,T
≤ C2qγq−1

0 , ∀u ∈ B2γ0,T .

In particular if we choose (p̃, r̃) = (p1, r1) and (p̃, r̃) = (p2, r2) then

∥Φ(u)∥XT ≤ γ0 +C2qγq−1
0

and hence if γ0 > 0 is small enough in such a way that C2q+2γ
q−1
0 ≤ γ0, then B2γ0,T is an

invariant set of Φ .
Now, let u,v ∈ B2γ0,T . By (2.4.5), we have for every admissible pair (p̃, r̃)

∥Φ(u)−Φ(v)∥Yp̃,r̃ ,T
≤C

(
∥∇u∥q−2

Yp1 ,r1 ,T
+ ∥∇v∥q−2

Yp1 ,r1 ,T

)
∥u − v∥Yp1 ,r1 ,T

+C
(
∥∇u∥2

∗−2
Yp2 ,r2 ,T

+ ∥∇v∥2
∗−2
Yp2 ,r2 ,T

)
∥u − v∥Yp2 ,r2 ,T

≤C2qγq−2
0 (∥u − v∥Yp1 ,r1 ,T

+ ∥u − v∥Yp2 ,r2 ,T
), ∀u,v ∈ B2γ0,T .

In particular if we choose (p̃, r̃) = (p1, r1) and (p̃, r̃) = (p2, r2) then

∥Φ(u)−Φ(v)∥YT ≤ C2q+1γ
q−2
0 ∥u − v∥YT
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and if we choose γ0 > 0 small enough in such a way that C2q+1γ
q−2
0 < 1

2 then Φ is a contrac-
tion on (B2γ0,T ,d). In particular Φ has one unique fixed point in this space. The property
u ∈ C([0,T ],H) and u ∈ Xp,r,T for every admissible couple (p,r) is straightforward and follows
by Strichartz estimates.

Step 2. Uniqueness in XT . Assume u1(t,x) and u2(t,x) are two fixed points of Φ in
the space XT . We define T0 = sup{T̄ ∈ [0,T ]|supi ∥ui(t,x)∥XT̄ ≤ 2γ0}. It is easy to show that
T0 ∈ (0, T̄ ] and arguing as in step 1 the operator Φ is a contraction on (B2γ0,T0

,d). Hence by
uniqueness of the fixed point in this space necessarily u1(t,x) = u2(t,x) in XT0

. Moreover
since ui(t,x) ∈ C([0,T0];H) we have u1(T0,x) = u2(T0,x) = ψ(x). Hence at time T0 the solutions
coincide and starting from T0 (that we can also identify with T0 = 0 by using the traslation
invariance w.r.t. to time of the equation), we can apply again the step 1 in the ball (B2γ0,T̃

,d)
with initial condition ψ(x), where T̃ > 0 is such that ∥eit∆ψ∥XT̃ ≤ γ0. Again by uniqueness of
the fixed point of Φ in the space (B2γ0,T̃

,d) we deduce that u1(t,x) = u2(t,x) in XT0+T̃ , hence
contradicting the definition of T0 unless T0 = T .

Step 3. Conservation laws. The proof of (2.4.3) is rather classical. In particular it follows
by Proposition 1 and Proposition 2 in [74]. Another possibility is to follow the proof of
Propositions 5.3 and 5.4 in [38], that can be repeated mutatis mutandis in the context of
(2.4.1). The minor modification compared with [38] is that we use the end-point Strichartz
estimate in order to treat the Sobolev critical nonlinearity.

We shall prove that the setMc defined in (2.3.8) is orbitally stable. In particular a non-
trivial point concerns the fact that the local solutions, whose existence has been established
in Proposition 2.4.3, can be extended to global solutions provided that the initial datum is
close toMc. The main difficulty is related to the criticality of the nonlinearity in (2.4.1).

To simplify the next statement we denote by uϕ(t) the integral solution associated with
(2.4.1) and we denote by Tmaxϕ its maximal time of existence.

Theorem 2.4.8. Let v ∈Mc. Then, for every ε > 0 there exists δ > 0 such that:

∀ϕ ∈H s.t. ||ϕ − v||H < δ =⇒ sup
t∈[0,T maxϕ )

distH1(uϕ(t),Mc) < ε. (2.4.9)

In particular we have

uϕ(t) =mc(t) + r(t), ∀t ∈ [0,Tmaxϕ ), where mc(t) ∈Mc, ∥r(t)∥H < ε. (2.4.10)

Proof. Suppose the theorem is false. Then there exists (δn) ⊂ R
+ a decreasing sequence con-

verging to 0 and (ϕn) ⊂H satisfying

||ϕn − v||H < δn

and
sup

t∈[0,T maxϕn )
distH1(uϕn(t),Mc) > ε0,

for some ε0 > 0. We observe that ||ϕn||22 → c and, by continuity of Fµ, Fµ(ϕn) → m(c). By
conservation laws, for n ∈N large enough, uϕn will remains inside of Bρ0

for all t ∈ [0,Tmaxϕn ).
Indeed, if for some time t > 0 ||∇uϕn(t)||

2
2 = ρ0 then, in view of Lemma 2.3.5 (i) we have

that Fµ(uϕn(t)) ≥ 0 in contradiction with m(c) < 0. Now let tn > 0 be the first time such
that distH1(uϕn(tn),Mc) = ε0 and set un := uϕn(tn). By conservation laws, (un) ⊂ Bρ0

satisfies
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∥un∥2L2(RN ) → c and Fµ(un) → m(c) and thus, in view of Theorem 2.3.4, it converges, up to
translation, to an element ofMc. SinceMc is invariant under translation this contradicts the
equality distH1(un,Mc) = ε0 > 0.

The rest of this section is devoted to show that Tmaxϕ =∞ and it will conclude the proof
of Theorem 2.1.6.

Proposition 2.4.9. Let K ⊂ H \ {0} be compact up to translation and assume that (p,r) is an
admissible pair with p ,∞. Then, for every γ > 0 there exists ε = ε(γ) > 0 and T = T (γ) > 0 such
that

sup
{ϕ∈H|distH1 (ϕ,K)<ε}

∥∥∥eit∆ϕ∥∥∥
Xp,r,T

< γ.

Proof. We first claim, for every γ > 0, the existence of a T > 0 such that

sup
ϕ∈K

∥∥∥eit∆ϕ∥∥∥
Xp,r,T

<
γ

2
. (2.4.11)

If it is not true then there exists sequences (ϕn) ⊂ K and (Tn) ⊂R
+ such that Tn→ 0 and∥∥∥eit∆ϕn∥∥∥Xp,r,Tn ≥ γ (2.4.12)

for a suitable γ > 0. Since K is compact up to translation, passing to a subsequence, there
exists a sequence (xn) ⊂R

N such that

ϕ̃n(·) := ϕn(· − xn)
H→ ϕ(·)

for a ϕ ∈H. By continuity (induced by Strichartz’s estimates) we have, for every T̄ > 0,∥∥∥eit∆ϕ̃n∥∥∥Xp,r,T̄ → ∥∥∥eit∆ϕ∥∥∥
Xp,r,T̄

. (2.4.13)

Also, recording the translation invariance of Strichartz’s estimates we get from (2.4.12) that∥∥∥eit∆ϕ̃n∥∥∥Xp,r,Tn =
∥∥∥eit∆ϕn∥∥∥Xp,r,Tn ≥ γ. (2.4.14)

Now, by Proposition 2.4.4 (iii), we have eit∆ϕ ∈ Xp,r,1, namely the function

[0,1] ∋ t→ g(t) := ||eit∆ϕ||pW 1,r (RN )

belongs to L1([0,1]). Then by applying the Dominated Convergence Theorem we get

∥χ[0,T̃ ](t)g(t)∥L1([0,1])→ 0 as T̃ → 0,

namely
∥∥∥eit∆ϕ∥∥∥p

Xp,r,T̃
→ 0 as T̃ → 0. Hence, we can choose T̄ > 0 such that∥∥∥eit∆ϕ∥∥∥

Xp,r,T̄
< γ. (2.4.15)

At this point gathering (2.4.13)- (2.4.15) we get a contradiction and the claim holds. Now,
fix a T > 0 such that (2.4.11) holds. By Proposition 2.4.4 (iii), we have∥∥∥eit∆η∥∥∥

Xp,r,T
≤ C||η||H , ∀η ∈H.
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Thus, assuming that ||η||H <
γ

2C
:= ε, we obtain that∥∥∥eit∆η∥∥∥

Xp,r,T
<
γ

2
.

Summarizing, we get that, for all ϕ ∈ K and all η ∈H such that ||η||H < ε,∥∥∥eit∆(ϕ + η)
∥∥∥
Xp,r,T

≤
∥∥∥eit∆ϕ∥∥∥

Xp,r,T
+
∥∥∥eit∆η∥∥∥

Xp,r,T
< γ.

This implies the proposition.

Proposition 2.4.10. Let K ⊂ H \ {0} be compact up to translation. Then, for every γ > 0 there
exists ε = ε(γ) > 0 and T = T (γ) > 0 such that

sup
{ϕ∈H|distH1 (ϕ,K)<ε}

∥∥∥eit∆ϕ∥∥∥
XT
< γ.

Proof. We apply Proposition 2.4.9 twice with the admissible pairs (p1, r1) and (p2, r2). Then,
the proposition follows from the definition of the norm XT given in (2.4.2).

Theorem 2.4.11. Let K ⊂H \{0} be compact up to translation. Then there exist ε0 > 0 and T0 > 0
such that the Cauchy problem (2.4.1), where ϕ satisfies distH1(ϕ,K) < ε0, has a unique solution
on the time interval [0,T0] in the sense of Definition 2.4.2.

Proof. We apply Proposition 2.4.10 where γ = γ0 is given in Proposition 2.4.3. Then Proposi-
tion 2.4.3 guarantees that the theorem holds for ε0 = ε(γ0) > 0 and T0 = min{T (γ0),1} > 0.

Theorem 2.4.12. Let Mc be defined in (2.3.8). Then there exists a δ0 > 0 such that, if ϕ ∈ H
satisfies distH1(ϕ,Mc) < δ0 the corresponding solution to (2.4.1) satisfies Tmaxϕ =∞.

Proof. We make use of Theorem 2.4.11 where we choose K =Mc. By Theorem 2.4.8, we can
choose a δ0 > 0 such that (2.4.9) and (2.4.10) holds for ε = ε0 where ε0 > 0 is given in Theo-
rem 2.4.11. Then Theorem 2.4.8 guarantees that the solution uϕ(t) where distH1(ϕ,Mc) < δ0
satisfies distH1(uϕ(t),Mc) < ε0 up to the maximum time of existence Tmaxϕ ≥ T0. Since, at any
time in (0,Tmaxϕ ) we can apply again Theorem 2.4.11 that guarantees an uniform additional
time of existence T0 > 0, this contradicts the definition of Tmaxϕ if Tmaxϕ <∞.

At this point we can give,

Proof of Theorem 2.1.6. The fact that Mc is compact, up to translation, was established in
Theorem 2.3.4. The orbital stability of Mc, in the sense of Definition 2.1.5 follows from
Theorem 2.4.8 and Theorem 2.4.12.

2.5 Existence of standing waves lying at mountain pass levels

2.5.1 The proof of Proposition 2.1.12

We follow the strategy introduced in [45] and consider the functional F̃µ : R+ ×H1(RN )→R

defined by

F̃µ(s,u) := Fµ(us) = ψu(s) =
s2

2
∥∇u∥2L2(RN ) −

µ

q
sqγq∥u∥qLq(RN ) −

s2
∗

2∗
∥u∥2

∗

L2∗ (RN ).
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Note that

∂sF̃µ(s,u) = ψ′u(s) =
1
s
Qµ(us) (2.5.1)

and, for any v ∈H1(RN ),

∂uF̃µ(s,u)(v) = s2
∫
R
N
∇u∇vdx −µsqγq

∫
R
N
|u|q−2uvdx − s2

∗
∫
R
N
|u|2

∗−2uvdx

= F′µ(us)(vs).
(2.5.2)

We recall that the tangent space at a point u ∈ S(c) is defined as

TuS(c) = {v ∈H1(RN ) : ⟨u,v⟩L2(RN ) = 0},

and that, for any u ∈ S(c) and any v ∈ TuS(c),

⟨Fµ′|S(c)
(u),v⟩ = ⟨F′µ(u),v⟩. (2.5.3)

Lemma 2.5.1. Let N ≥ 3. For u ∈ S(c) and s > 0, the map

TuS(c)→ TusS(c), φ 7→ φs

is a linear isomorphism with inverse

TusS(c)→ TuS(c), ψ 7→ ψ 1
s
.

Proof. We follow the approach in [11, Lemma 3.6]. For φ ∈ TuS(c) and for t > 0, we have∫
R
N
ut(x)φt(x)dx =

∫
R
N
tNu(tx)φ(tx)dx =

∫
R
N
u(y)φ(y)dy = 0.

As a consequence, φt ∈ TutS(c) and the map is well defined. Clearly it is linear. Taking into
account that, for every t, s > 0 and w ∈H1(RN ),

wts = (ts)
N
2 w(tsx) = (wt)s,

we obtain that the map is linear isomorphism.

Definition 2.5.2. Given c > 0, we say that F̃µ has a mountain pass geometry on R+×Sr(c) at level
M̃(c) if

M̃(c) := inf
h̃∈Γ̃ (c)

max
t∈[0,∞)

F̃µ(h̃(t)) >max{F̃µ(h̃(0)), F̃µ(h̃(th̃))}

where

Γ̃ (c) := {h̃ ∈ C([0,∞),R+ × Sr(c)) : h̃(0) ∈ (1,Λ+
r (c)),∃th̃ > 0 s.t. h̃(t) ∈ (1,Ec)∀t ≥ th̃}.

Recording that the definition of M0(c) is given in (2.1.7), we have,

Lemma 2.5.3. Let N ≥ 3. For any c ∈ (0, c0), F̃µ has a mountain pass geometry at the level M̃(c).
Moreover, M0(c) = M̃(c).
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Proof. Let h ∈ Γ 0(r), since h̃(t) = (1,h(t)) ∈ Γ̃ (c) and F̃µ(h̃(t)) = Fµ(h(t)) for all t ∈ R+, we have
that M0(c) ≥ M̃(c). Next, we shall prove that M̃(c) ≥M0(c). For all h̃(t) = (s(t),v(t)) ∈ Γ̃ (c), we
have s(0) = 1, v(0) ∈ Λ+

r (c) and there exists a th̃ > 0 such that s(t) = 1, v(t) ∈ Ec for all t ≥ th̃.
Setting h(t) = v(t)s(t), we have that h is continuous from [0,∞) into Sr(c) and

h(0) = v(0)s(0) = v(0) ∈Λ+
r (c), h(t) = v(t)s(t) = v(t) ∈ Ec ∀t ≥ th̃.

Hence, h ∈ Γ 0(r) and F̃µ(h̃(t)) = Fµ(v(t)s(t)) = Fµ(h(t)). Thus, M̃(c) ≥M0(c) and finally M0(c) =
M̃(c).

Now we claim that
M0(c) > 0 for any c ∈ (0, c0). (2.5.4)

Indeed, let g ∈ Γ 0(c) be arbitrary. Since g(0) ⊂ Λ+
r (c) in particular g(0) ∈ V (c). Now for t > 0

large, since Fµ(g(t)) < 2m(c), necessarily in view of (2.3.9), g(t) < V (c). By continuity of g
there exists a t0 > 0 such that g(t0) ∈ ∂V (c) and using again (2.3.9) we conclude.

At this point observing that

max{F̃µ(h̃(0)), F̃µ(h̃(th))} = max{Fµ(h(0)),Fµ(h(th))} < 0

it follows that F̃µ has a mountain pass geometry at level M̃(c) for all 0 < c < c0.

Proof of Proposition 2.1.12. Following [37, Section 5], we set

1. F =
{
h̃([0,∞)) : h̃ ∈ Γ̃ (c)

}
.

2. B = (1,Λ+
r (c))∪ (1,Ec).

3. F = {(s,u) ∈R+ × Sr(c) : F̃µ(s,u) ≥ M̃(c)}.

Since F̃µ has a mountain pass geometry at level M̃(c) (see Lemma 2.5.3) and by the definition
of the superlevel set F, we obtain F \B = F and

sup
(1,u)∈B

F̃µ(s,u) ≤ M̃(c) ≤ inf
(s,u)∈F

F̃µ(s,u). (2.5.5)

For any A ∈ F , there exists a h0 ∈ Γ̃ (c) such that A = h0([0,∞)) and

M̃(c) = inf
h̃∈Γ̃ (c)

max
t∈[0,∞)

F̃µ(h̃(t)) ≤ max
t∈[0,∞)

F̃µ(h0(t)).

Hence, there exists a t0 ∈ [0,∞) such that M̃(c) ≤ F̃µ(h0(t0)). This means that h0(t0) ∈ F and
consequently,

A∩F \B , ∅, ∀A ∈ F . (2.5.6)

Now, for all (s,u) ∈R+ × Sr(c), we have

F̃µ(s,u) = Fµ(us) = Fµ(|u|s) = F̃µ(1, |u|s).

Hence, for any minimizing sequence (zn = (αn,βn)) ⊂ Γ̃ (c) for M̃(c), we have that the sequence
(yn = (1, |βn|αn)) is also a minimizing sequence for M̃(c).
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Using the terminology in [37, Section 5], it means that F is a homotopy stable family of
compact subset of R × Sr(c) with extended closed boundary B and the superlevel set F is a
dual set for F . By (2.5.5) and (2.5.6), we can apply [37, Theorem 5.2] with the minimizing
sequence {yn = (1, |βn|αn)}. This implies that there exists a Palais-Smale sequence (sn,wn) ⊂
R+ × Sr(c) for F̃µ restricted to R+ × Sr(c) at level M̃(c), that is, as n→∞,

∂sF̃µ(sn,wn)→ 0, (2.5.7)

and

∥∂uF̃µ(sn,wn)∥(TwnS(r))∗ → 0, (2.5.8)

with the additional property that

|sn − 1|+ ∥wn − |βn|αn([0,∞))∥H1(RN )→ 0. (2.5.9)

By (2.5.1), (2.5.7) and since (sn) is bounded due to (2.5.9), we obtainQµ((wn)sn)→ 0 as n→∞.
Also, by (2.5.2), the condition (2.5.8) implies that

F′µ((wn)sn)((φ)sn)→ 0, (2.5.10)

as n→∞, for every φ ∈ TwnSr(c). Let then un := (wn)sn . By (2.5.3), (2.5.10) and Lemma 2.5.1,
we obtain that (un) ⊂ Sr(c) is a Palais-Smale sequence for Fµ restricted to Sr(c) at level M0(c),
with Qµ(un) → 0. Since the problem is invariant under rotations, (un) ⊂ Sr(c) is also the
Palais-Smale sequence for Fµ restricted to S(c) at level M0(c), with Qµ(un)→ 0.

2.5.2 The proof of Proposition 2.1.13

Now, we give the

Proof of Proposition 2.1.13. Let (un) ⊂ H1
r (RN ) be given by Proposition 2.1.12. To show its

convergence we proceed in three steps.

Step 1: (un) ⊂H1
r (RN ) is bounded.

Since Qµ(un)→ 0, we have, using the Gagliardo-Nirenberg inequality (2.2.2),

Fµ(un) =
1
N
∥∇un∥2L2(RN ) −

µ

q

(
1−

qγq
2∗

)
∥un∥

q
Lq(RN ) + on(1)

≥ 1
N
∥∇un∥2L2(RN ) −

µ

q
C
q
N,q

(
1−

qγq
2∗

)
c(1−γq)q ∥∇un∥

qγq
L2(RN ) + on(1),

where on(1)→ 0 as n→∞. Since Fµ(un)→M0(c) <∞ and qγq < 2 the conclusion follows.

Step 2: (un) ⊂H1
r (RN ) has a non-trivial weak limit.

Since (un) ⊂ H1
r (RN ) is a bounded sequence, by the compact embedding of H1

r (RN ) into
Lq(RN ), there exists a u ∈H1

r (RN ) such that, up to a subsequence, un⇀u weakly in H1
r (RN ),

un→ u strongly in Lq(RN ) and a.e in R
N .

Let us assume now, by contradiction, that u is trivial. Then, ∥un∥Lq(RN ) → 0 and since
Qµ(un)→ 0, using the Sobolev embedding, see (2.2.1), we deduce that

S∥un∥2L2∗ (RN ) ≤ ∥∇un∥
2
L2(RN ) ≤ ∥un∥

2∗
L2∗ (RN ) + on(1). (2.5.11)
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We distinguish the two cases

either (i) ∥un∥2
∗

L2∗ (RN )→ 0 or (ii) ∥un∥2
∗

L2∗ (RN )→ ℓ > 0.

If (i) holds then, in view of (2.5.11), we also have that ∥∇un∥2L2(RN ) → 0 which implies that

Fµ(un) → 0 contradicting the fact that M0(c) > 0, see (2.5.4). If (ii) holds we deduce from
(2.5.11) that

∥un∥2
∗

L2∗ (RN ) ≥ S
N
2 + on(1)

and thus, recording that Qµ(un)→ 0 and ∥un∥Lq(RN )→ 0, it follows that

∥∇un∥2L2(RN ) = ∥un∥2
∗

L2∗ (RN ) + on(1) ≥ S
N
2 + on(1). (2.5.12)

From (2.5.12) we deduce that

Fµ(un) =
1
N
∥∇un∥2L2(RN ) + on(1) ≥ 1

N
S

N
2 + on(1).

But, since m(c) < 0, necessarily M0(c) <
S

N
2

N
and we also have a contradiction.

Step 3: (un) ⊂H1
r (RN ) strongly converges.

Since (un) is bounded, following [19, Lemma 3], we know that(
Fµ

∣∣∣
S(c)

)′
(un)→ 0 in H−1(RN ) ⇐⇒ F′µ(un)− 1

c
⟨F′µ(un),un⟩un→ 0 in H−1(RN ).

Thus, for any w ∈H1(RN ), we have

on(1) =
〈
F′µ(un)− 1

c
⟨F′µ(un),un⟩un,w

〉
=

∫
R
N
∇un · ∇w −µ|un|q−2unw − |un|2

∗−2unw −λnunwdx,
(2.5.13)

where on(1)→ 0 as n→∞ and

cλn = ∥∇un∥2L2(RN ) −µ∥un∥
q
Lq(RN ) − ∥un∥

2∗
L2∗ (RN ) + on(1). (2.5.14)

In particular (λn) ⊂R is bounded and, up to a subsequence, λn→ λ ∈R. Now, passing to the
limit in (2.5.13) by weak convergence, we obtain that

−∆u −µ|u|q−2u − |u|2
∗−2u = λu. (2.5.15)

Thus in view of Lemma 2.2.1, Qµ(u) = 0 and λ < 0.
Let (vn) ⊂H1

r (RN ) be such that vn = un−u. We have that vn⇀ 0 weakly in H1
r (RN ), vn→ 0

strongly in Lq(RN ) and a.e. in R
N . Thus

∥∇un∥2L2(RN ) = ∥∇u∥2L2(RN ) + ∥∇vn∥2L2(RN ) + on(1)
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and also, by the Brezis-Lieb Lemma [24],

∥un∥2
∗

L2∗ (RN ) = ∥u∥2
∗

L2∗ (RN ) + ∥vn∥2
∗

L2∗ (RN ) + on(1). (2.5.16)

In particular,

Fµ(un) = Fµ(u) +Fµ(vn) + on(1). (2.5.17)

and

Qµ(un) =Qµ(u) +Qµ(vn) + on(1). (2.5.18)

Here again we distinguish the two cases

either (i) ∥vn∥2
∗

L2∗ (RN )→ 0 or (ii) ∥vn∥2
∗

L2∗ (RN )→ ℓ > 0.

Assuming that (ii) holds, and since Qµ(u) = 0, we deduce from (2.5.18) that

∥vn∥2
∗

L2∗ (RN ) = ∥∇vn∥2L2(RN ) + on(1).

Then, reasoning as in Step 2, it follows that

Fµ(vn) ≥ S
N
2

N
+ on(1)

which leads, in view of (2.5.17), to

Fµ(un) ≥ Fµ(u) +
S

N
2

N
+ on(1).

At this point, recording from Remark 2.1.4 that c 7→m(c) is non increasing, using Qµ(u) = 0
and since, by property of the weak limit, ∥u∥2L2(RN ) ≤ c, we get that

Fµ(u) ≥m
(
∥u∥2L2(RN )

)
≥m(c).

Thus, Fµ(un)→M0(c) satisfies

Fµ(un) ≥m(c) +
S

N
2

N
+ on(1)

which contradicts our assumption on M0(c).
It remains to show that if (i) holds then (un) ⊂H1

r (RN ) converges strongly. Since (i) holds,
we get from (2.5.16) that ∥un∥2

∗

L2∗ (RN ) → ∥u∥
2∗
L2∗ (RN ). Choosing w = un in (2.5.13) we deduce

since u is solution to (2.5.15) that

∥∇un∥2L2(RN ) −λn∥un∥
2
L2(RN ) −µ∥un∥

q
Lq(RN ) − ∥un∥

2∗
L2∗ (RN )

→∥∇u∥2L2(RN ) −λ∥u∥
2
L2(RN ) −µ∥u∥

q
Lq(RN ) − ∥u∥

2∗
L2∗ (RN ) = 0.

Therefore, taking into account that ∥un∥
q
Lq(RN ) → ∥u∥

q
Lq(RN ) due to (un) ⊂ H1

r (RN ) and since
λn→ λ, we obtain that

∥∇un∥2L2(RN ) −λ∥un∥
2
L2(RN )→ ∥∇u∥

2
L2(RN ) −λ∥u∥

2
L2(RN ).

By λ < 0 (since u is non trivial), see Lemma 2.2.1 we conclude that un → u strongly in
H1
r (RN ). At this point the proposition is proved.
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2.5.3 The proof of Proposition 2.1.14

As announced in the Introduction to show that Proposition 2.1.14 holds we shall rely on
Proposition 2.1.17 and Proposition 2.1.18.

Proof of Proposition 2.1.17. We shall proceed into three steps.

Step 1: For any c ∈ (0, c0), it holds that

M(c) ≥ inf
u∈Λ−(c)

Fµ(u).

Let h ∈ Γ (c). We have h(0) ∈ V (c)∩ {u : Fµ(u) < 0} and thus, in view of Lemma 2.2.4(iii),
h(0) ∈W (c) or equivalently s+h(0) > 1. Since h ∈ Γ (c), we also have that for t large enough,

Fµ(h(t)) ≤ 2m(c) < m(c).

Thus, from Lemma 2.2.4(iv), we get that h(t) <W (c) for t large enough or equivalently that
s+h(0) < 1 for such t > 0. By the continuity of h and of u 7→ s+u , see Lemma 2.2.3(iii), we deduce
that there exists a t0 > 0 such that s+h(t0) = 1, namely such that h(t0) ∈ ∂W (c). Thus we have
that

M(c) ≥ inf
u∈∂W (c)

Fµ(u) = inf
u∈Λ−(c)

Fµ(u)

due to Lemma 2.2.4(ii).

Step 2: For any c ∈ (0, c0), it holds that

inf
u∈Λ−(c)

Fµ(u) ≥ inf
u∈Λ−r (c)

Fµ(u).

For any u ∈Λ−(c), let v be the Schwarz rearrangement of |u|. We claim that ψv(s) ≤ ψu(s)
for all s ≥ 0. Indeed, we have

ψv(s) =
s2

2
∥∇v∥2L2(RN ) −

µ

q
s
N (q−2)

2 ∥v∥qLq(RN ) −
s2
∗

2∗
∥v∥2

∗

L2∗ (RN )

≤ s
2

2
∥∇u∥2L2(RN ) −

µ

q
s
N (q−2)

2 ∥u∥qLq(RN ) −
s2
∗

2∗
∥u∥2

∗

L2∗ (RN ) = ψu(s).

Recording, see Lemma 2.2.3, that s−u is the unique global maximum point for ψu , we deduce
from the above claim that

ψu(s−u) ≥ ψu(s+v ) ≥ ψv(s+v ).

Since u ∈Λ−(c), we have that s−u = 1 and hence

Fµ(u) = ψu(1) = ψu(s−u) ≥ ψv(s−v ) = Fµ(vs−v ).

Recording that vs+
v
∈Λ−r (c), we deduce that

inf
u∈Λ−(c)

Fµ(u) ≥ inf
u∈Λ−r (c)

Fµ(u).
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Step 3: For any c ∈ (0, c0), it holds that

inf
u∈Λ−r (c)

Fµ(u) ≥M0(c).

Let u ∈Λ−r (c) and s1 > 0 be such that us1 ∈ Ec. Let us consider the map

gu : t ∈ [0,∞) 7→ u(1−t)s+
u+ts1 ∈ Sr(c).

We have that gu ∈ C([0,∞),Sr(c)) and

gu(0) = us+
u
∈Λ+

r (c) and gu(1) = us1 ∈ Ec.

Hence, we get gu ∈ Γ 0(c) and

Fµ(u) = max
s>0

Fµ(us) ≥ max
t∈[0,∞)

Fµ(gu(t)) ≥ inf
g∈Γ 0(c)

max
t∈[0,∞)

Fµ(g(t)) =M0(c).

Finally, from Steps 1, 2 and 3 we deduce that Proposition 2.1.17 holds.

Remark 2.5.4. Trivially, since Γ 0(c) ⊂ Γ (c), one hasM(c) ≤M0(c). Thus, from Proposition 2.1.17
we deduce that

M0(c) =M(c) = inf
u∈Λ−(c)

Fµ(u).

In the rest of this subsection, we shall prove Proposition 2.1.18. Firstly, we need some
lemmas.

Lemma 2.5.5. Let N ≥ 3. For any c ∈ (0, c0), the following property holds

M(c) ≤ inf
h∈G(c)

max
t∈[0,∞)

Fµ(h(t))

where

G(c) :=
{
h ∈ C([0,∞),∪d∈[ c2 ,c]S(d)) : h(0) ∈Md for some d ∈

[ c
2
, c
]
,∃t0 = t0(h) s.t. h(t) ∈ Ec∀t ≥ t0

}
.

Proof. Let any h ∈ G(c). We define the function

t 7→ θ(t) :=

√
∥h(t)∥2L2(RN )

c
.

Note that θ is the continuous function from [0,∞) into R and θ(t) ≤ 1 for all t. Now we set

g(t)(x) := θ(t)
N
2 −1h(t)(θ(t)x). (2.5.19)

By direct computations, we obtain that

∥g(t)∥2L2(RN ) =
1

[θ(t)]2 ∥h(t)∥2L2(RN ) = c, ∥∇g(t)∥2L2(RN ) = ∥∇h(t)∥2L2(RN ),

∥g(t)∥qLq(RN ) = [θ(t)](
N
2 −1)q−N ∥h(t)∥qLq(RN ), ∥g(t)∥2

∗

L2∗ (RN ) = ∥h(t)∥2
∗

L2∗ (RN ).
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Hence,

Fµ(g(t)) =
1
2
∥∇g(t)∥2L2(RN ) −

µ

q
∥g(t)∥qLq(RN ) −

1
2∗
∥g(t)∥2

∗

L2∗ (RN )

=
1
2
∥∇h(t)∥2L2(RN ) −

µ

q
[θ(t)](

N
2 −1)q−N ∥h(t)∥qLq(RN ) −

1
2∗
∥h(t)∥2

∗

L2∗ (RN )

≤ 1
2
∥∇h(t)∥2L2(RN ) −

µ

q
∥h(t)∥qLq(RN ) −

1
2∗
∥h(t)∥2

∗

L2∗ (RN ) = Fµ(h(t))

due to θ(t) ≤ 1 for all t and
(N

2
− 1

)
q −N < 0. Noting that Fµ(g(0)) ≤ Fµ(h(0)) < 0 and that

∥∇g(0)∥2L2(RN ) = ∥∇h(0)∥2L2(RN ) < ρ0 we deduce that g(0) ∈ V (c)∩ {u : Fµ(u) < 0} and hence that
g ∈ Γ (c). At this point the lemma is proved.

Let uε be an extremal function for the Sobolev inequality in R
N defined by

uε(x) :=
[N (N − 2)ε2]

N−2
4

[ε2 + |x|2]
N−2

2

, ε > 0, x ∈RN . (2.5.20)

Let ξ ∈ C∞0 (RN ) be a radially non-increasing cut-off function with ξ ≡ 1 in B1, ξ ≡ 0 in
R
N\B2. Setting Uε(x) = ξ(x)uε(x) we shall prove the following lemma.

Lemma 2.5.6. Let N ≥ 3 and u ∈ H1(RN ) be a nonnegative function. For every ε > 0 and every
t > 0 we have

Fµ(u + tUε) ≤ Fµ(u) + t
∫
R
N
∇u(x) · ∇Uε(x)dx+

t2

2
∥∇Uε∥2L2(RN ) −

µtq

q
∥Uε∥

q
Lq(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN ).

Proof. We have, for any ε > 0 and any t > 0,

∥∇(u + tUε)∥2L2(RN ) = ∥∇u∥2L2(RN ) + 2t
∫
R
N
∇u(x) · ∇Uε(x)dx+ t2∥∇Uε∥2L2(RN ).

Also, since both u ∈H1(RN ) and Uε are non negative,

∥u + tUε∥2
∗

L2∗ (RN ) ≥ ∥u∥
2∗
L2∗ (RN ) + t2

∗
∥Uε∥2

∗

L2∗ (RN )

and

∥u + tUε∥
q
Lq(RN ) ≥ ∥u∥

q
Lq(RN ) + tq∥Uε∥

q
Lq(RN ).

Therefore, we obtain that

Fµ(u + tUε) ≤
1
2

[
∥∇u∥2L2(RN ) + 2t

∫
R
N
∇u(x) · ∇Uε(x)dx+ t2∥∇Uε∥2L2(RN )

]
−
µ

q

[
∥u∥qLq(RN ) + tq∥Uε∥

q
Lq(RN )

]
− 1

2∗
[
∥u∥2

∗

L2∗ (RN ) + t2
∗
∥Uε∥2

∗

L2∗ (RN )

]
= Fµ(u) + t

∫
R
N
∇u(x) · ∇Uε(x)dx+

t2

2
∥∇Uε∥2L2(RN ) −

µtq

q
∥Uε∥

q
Lq(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN ).
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From now we fix a sequence (εn) ⊂R+ such that εn→ 0.

Lemma 2.5.7. Let N ≥ 3. There exists 0 < t0 < t1 <∞ such that, for any sequence (un) ⊂H1(RN )
satisfying ∫

R
N
∇un(x) · ∇Uεn(x)dx ≤ 1, ∀n ∈N, (2.5.21)

setting

In(t) := t
∫
R
N
∇un(x) · ∇Uεn(x)dx+

t2

2
∥∇Uε∥2L2(RN ) −

µtq

q
∥Uε∥

q
Lq(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN ),

we have, for any n ∈N large enough,

(i) if In(t) ≥ 1
2N S

N
2 then necessarily t ≥ t0,

(ii) In(t) ≤ 2m(c) for any t ≥ t1.

Proof. Observe that

In(t) ≤ t
∫
R
N
∇un(x) · ∇Uεn(x)dx+

t2

2
∥∇Uε∥2L2(RN ).

We have that ∥∇Uε∥2L2(RN )→S
N
2 > 0, see Lemma 2.7.1. Thus in view of (2.5.21), if t→ 0 then

In(t) < 1
2N S

N
2 . Hence, there exists t0 > 0 such that if In(t) ≥ 1

2N S
N
2 then necessarily t ≥ t0 and

point (i) holds. We also have

I(t) ≤ t
∫
R
N
∇un(x) · ∇Uεn(x)dx+

t2

2
∥∇Uε∥2L2(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN )

with ∥∇Uε∥2L2(RN ) → S
N
2 > 0 and ∥Uε∥2

∗

L2∗ (RN ) → S
N
2 > 0, see Lemma 2.7.1. Thus, in view of

(2.5.21), there exists a t1 > 0 such that In(t) ≤ 2m(c), for all t ≥ t1, if n ∈N is large enough.
Thus point (ii) also holds.

We define by M0
c the set of elements of Mc which have the properties guarantee by

Lemma 2.2.2.

Lemma 2.5.8. Let N ≥ 3, c ∈ (0, c0) and uc ∈M0
c . For any ε > 0 there exists a yε ∈RN such that

2
∫
R
N
uc(x − yε)Uε(x)dx ≤ t1∥Uε∥2L2(RN ) (2.5.22)

where t1 > 0 is provided by Lemma 2.5.7 and∫
R
N
∇uc(x − yε) · ∇Uε(x)dx ≤ ∥Uε∥2L2(RN ). (2.5.23)

Proof. Since uc ∈M0
c is a radial, non-increasing function, we know from [18, Radial Lemma

A.IV] that
|uc(z)| ≤ C(N )|z|−

N
2
√
c, ∀|z| ≥ 1, (2.5.24)
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and thus, ∫
R
N
uc(x − y)Uε(x)dx ≤ C(N )

√
c

∫
R
N
|x − y|−

N
2 Uε(x)dx. (2.5.25)

Using that the function Uε is compactly supported in B2, we have that, for |y| large enough,∫
R
N
|x − y|−

N
2 Uε(x)dx ≤

∫
B2

∣∣∣∣y2 ∣∣∣∣−N2 Uε(x)dx.

At this point, we deduce from (2.5.25) that, for |y| large enough,∫
R
N
uc(x − y)Uε(x)dx ≤ C(N )

√
c
∣∣∣∣y2 ∣∣∣∣−N2 ∫

R
N
Uε(x)dx.

Using Hölder’s inequality, we obtain that ∥Uε∥L1(RN ) ≤ |B2|
1
2 ∥Uε∥L2(RN ) and (2.5.22) follows.

Now, since for any y ∈RN , uc(· − y) ≥ 0 is solution to the equation

−∆u −µ|u|q−2u − |u|2
∗−2u = λcu in R

N , (2.5.26)

for some λc < 0, we have that∫
R
N
∇uc(x − y) · ∇Uε(x)dx ≤µ

∫
R
N
|uc(x − y)|q−1Uε(x)dx+

∫
R
N
|uc(x − y)|2

∗−1Uε(x)dx. (2.5.27)

Since, both |uc(z)|q−1 ≤ |uc(z)| and |uc(z)|2
∗−1 ≤ |uc(z)| for |z| large, see (2.5.24), reasoning as in

the proof of (2.5.22) we readily check that (2.5.23) also holds.

Now we define the sequence (cn) ∈
[ c
2
, c
)

as follows

cn := c − 2t21∥Uεn∥
2
L2(RN ) (2.5.28)

where t1 > 0 is given in Lemma 2.5.7. Clearly, cn→ c as n→∞. Now, for each n ∈N, we fix
a ucn ∈M

0
cn .

Lemma 2.5.9. Under the setting introduced above, for any n ∈ N large enough, there exists a
yn ∈RN such that

cn ≤ ∥ucn(· − yn) + tUεn∥
2
L2(RN ) ≤ c, ∀t ∈ [0, t1], (2.5.29)

and ∫
R
N
∇ucn(x − yn) · ∇Uεn(x)dx ≤max{1,∥Uεn∥

2
L2(RN )}. (2.5.30)

Proof. For any n ∈N, according to Lemma 2.5.8, we can choose a yn ∈RN such that

2
∫
R
N
ucn(x − yn)Uεn(x)dx ≤ t1∥Uεn∥

2
L2(RN ).

Now, for t ∈ [0, t1], we have,

∥ucn(· − yn) + tUεn∥
2
L2(RN ) = ∥ucn(· − yn)∥2L2(RN ) + 2t

∫
R
N
ucn(x − yn)Uεn(x)dx+ t2∥Uε∥2L2(RN )

≤ cn + 2t1

∫
R
N
ucn(x − yn)Uεn(x)dx+ t21∥Uεn∥

2
L2(RN )

≤ cn + 2t21∥Uεn∥
2
L2(RN ) = c
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where for the last inequality we have used the definition of cn given in (2.5.28). The first
inequality in (2.5.29) is obvious by the positivity of ucn and Uεn . Finally note that (2.5.30)
directly holds in view of (2.5.23) and since ∥Uεn∥

2
L2(RN )→ 0 as n→∞.

Lemma 2.5.10. Under the setting introduced above, we define,

γn(t) =

ucn(· − yn) + tUεn if t ∈ [0, t1],

γn(t1) if t ≥ t1.

Then γn ∈ G(c), for any n ∈N large enough. In addition

M(c) ≤ max
t∈[0,∞)

Fµ(γn(t)) ≤max
{

max
t∈[t0,t1]

Fµ(γn(t)), m(c) +
2

3N
S

N
2

}
. (2.5.31)

Proof. Let n ∈ N be arbitrary fixed and large. To show that γn ∈ G(c) we first observe that
γn ∈ C([0,∞),H1(RN )). Also, by (2.5.29), we get that

γn(t) ⊂
⋃

d∈[ c2 ,c]
S(d)

since cn→ c. Now, note that by Lemma 2.5.6

Fµ(γn(t)) ≤m(cn) + t
∫
R
N
∇ucn(· − yn) · ∇Uεn(x)dx

+
t2

2
∥∇Uεn∥

2
L2(RN ) −

µtq

q
∥Uεn∥

q
Lq(RN ) −

t2
∗

2∗
∥Uεn∥

2∗
L2∗ (RN ).

(2.5.32)

In view of (2.5.30) we can apply Lemma 2.5.7 to deduce that, for t ≥ t1

Fµ(γn(t)) ≤m(cn) + 2m(c) ≤ 2m(c). (2.5.33)

We conclude that γn ∈ G(c) for any n ∈N large enough. In particular the first inequality in
(2.5.31) holds because of Lemma 2.5.5. Now, considering again (2.5.32) and recording that
(2.5.30) apply, we deduce from Lemma 2.5.7 that, if t ∈ [0, t0],

Fµ(γn(t)) ≤m(cn) +
1

2N
S

N
2 ≤m(c) +

2
3N
S

N
2 (2.5.34)

since cn → c. Gathering (2.5.33) and (2.5.34) we see that the second inequality in (2.5.31)
holds.

Proof of Proposition 2.1.18. We assume the setting above. In view of Lemma 2.5.10 to show
that

M(c) < m(c) +
1
N
S

N
2

it suffices to show that

max
t∈[t0,t1]

Fµ(ucn(· − yn) + tUεn) < m(c) +
1
N
S

N
2 .
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From Lemma 2.3.5(iv), Lemma 2.5.6, Lemma 2.5.9 and the definition of cn given in (2.5.28)
we can write

max
t∈[t0,t1]

Fµ(ucn(· − yn) + tUεn)

≤m(cn) + max
t∈[t0,t1]

[
t∥Uε∥2L2(RN ) +

t2

2
∥∇Uε∥2L2(RN ) −

µtq

q
∥Uε∥

q
Lq(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN )

]
≤m(c) + d(c − cn) + t1∥Uε∥2L2(RN ) + max

t∈[t0,t1]

[
t2

2
∥∇Uε∥2L2(RN ) −

µtq

q
∥Uε∥

q
Lq(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN )

]
≤m(c) + 2t21d∥Uεn∥

2
L2(RN ) + t1∥Uε∥2L2(RN )

+ max
t∈[t0,t1]

[
t2

2
∥∇Uε∥2L2(RN ) −

µtq

q
∥Uε∥

q
Lq(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN )

]
.

To complete the proof it suffices to show, for n ∈N sufficiently large,

Jn := (2t21d + t1)∥Uεn∥
2
L2(RN ) + max

t∈[t0,t1]

[
t2

2
∥∇Uε∥2L2(RN ) −

µtq

q
∥Uε∥

q
Lq(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN )

]
<

1
N
S

N
2 .

In this aim first note that

Jn ≤ (2t21d + t1)∥Uεn∥
2
L2(RN ) + max

t>0

[
t2

2
∥∇Uε∥2L2(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN )

]
−
µt
q
0
q
∥Uε∥

q
Lq(RN ).

But it holds, in view of the estimates of Lemma 2.7.1(i), that

max
t>0

[
t2

2
∥∇Uε∥2L2(RN ) −

t2
∗

2∗
∥Uε∥2

∗

L2∗ (RN )

]
=

1
N
S

N
2 +O(εN−2

n ).

Summarizing, the proof of Proposition 2.1.18 will be completed if we manage to show that,
for n ∈N large enough,

(2t21d + t1)∥Uεn∥
2
L2(RN ) −

µt
q
0
q
∥Uε∥

q
Lq(RN ) +O(εN−2

n ) < 0.

At this point we distinguish two cases.

Case 1 N ≥ 5: By Lemma 2.7.1 we have that, for some K1 > 0,K2 > 0, as n→∞,

∥Uεn∥
2
L2(RN ) = K1ε

2
n + o(εN−2

n ) and ∥Uεn∥
q
Lq(RN ) = K2ε

N− (N−2)q
2

n + o(ε
N− (N−2)q

2
n ).

Thus, for some constants, K̃1 > 0, K̃2 > 0, for n ∈N sufficiently large,

(2t21d + t1)∥Uεn∥
2
L2(RN ) −

µt
q
0
q
∥Uε∥

q
Lq(RN ) +O(εN−2

n ) = K̃1ε
2
n − K̃2 ε

N− (N−2)q
2

n +O(εN−2
n )

≤ − K̃2

2
ε
N− (N−2)q

2
n < 0

since N − (N−2)q
2 <min{N − 2,2} ⇐⇒ q > 2.
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Case 2 N = 4: By Lemma 2.7.1 we have that as n→∞, for some K4 > 0,

∥Uεn∥
2
L2(RN ) =ωε2

n| logεn|+O(ε2
n) and ∥Uεn∥

q
Lq(RN ) = K4ε

4−q
n + o(ε4−q

n ).

Thus, for some constants, K̃3 > 0, K̃4 > 0, for n ∈N sufficiently large,

(2t21d + t1)∥Uεn∥
2
L2(RN ) −

µt
q
0
q
∥Uε∥

q
Lq(RN ) +O(ε2

n) = K̃3 ε
2
n| logεn| − K̃4 ε

4−q
n +O(ε2

n) ≤ − K̃4

2
ε

4−q
n < 0

since 4− q < 2. In view of Cases 1 and 2 we deduce that the conclusion of Proposition 2.1.18

holds if N ≥ 4.

Remark 2.5.11. Our analysis of the interaction between a solution characterized as a local min-
ima and a suitable family of truncated extremal functions for the Sobolev inequality reminds us
of the approach developed by G. Tarantello in [85]. However, in [85], the extremal functions are
located in a set where the local minima solution takes its greater values. The idea being to prove,
through delicate estimates, that this interaction does decrease the mountain pass value of the as-
sociated functional with respect to the case where the two supports would be fully disjoint. Here,
on the contrary, our construction aims at separating sufficiently the regions where the functions
concentrate and to show that the remaining interaction (remember our functions uc ∈ S(c) lie on
all RN ) can be assumed sufficiently small.

2.5.4 The proofs of Theorem 2.1.8 and Theorem 2.1.9

Proof of Theorem 2.1.8. The proof follows directly combining Proposition 2.1.12, Proposi-
tion 2.1.13 and Proposition 2.1.14.

Proof of Theorem 2.1.9. For µ > 0 fixed, let us prove that

Fµ(vc)→
S

N
2

N
as c→ 0. (2.5.35)

First, using that Qµ(vc) = 0, we can write, using the Gagliardo-Nirenberg inequality (2.2.2)

Fµ(vc) =
1
N
∥∇vc∥2L2(RN ) −

µ

q

(
1−

qγq
2∗

)
∥un∥

q
Lq(RN )

≥ 1
N
∥∇vc∥2L2(RN ) −

µ

q
C
q
N,q

(
1−

qγq
2∗

)
c(1−γq)q ∥∇vc∥

qγq
L2(RN ).

(2.5.36)

Since

Fµ(vc) =M0(c) < m(c) +
S

N
2

N
≤ S

N
2

N
(2.5.37)

and qγq < 2 we deduce that (vc) ⊂ H1
r (RN ) is uniformly bounded with respect to c ∈ (0, c0).

Thus, still using the Gagliardo-Nirenberg inequality, we deduce that

∥vc∥
q
Lq(RN ) ≤ CN,q∥vc∥

q(1−γq)
L2(RN ) ∥∇vc∥

qγq
L2(RN )→ 0 as c→ 0. (2.5.38)

Hence, recording that Qµ(vc) = 0, we have that

ℓ := lim
c→0
∥∇vc∥2L2(RN ) = lim

c→0
∥vc∥2

∗

L2∗ (RN ) ≤
1

S
2∗
2

lim
c→0
∥∇vc∥2

∗

L2(RN ) =
1

S
2∗
2

ℓ
2∗
2 .
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Therefore, either ℓ = 0 or ℓ ≥ S
N
2 . We claim that ℓ = 0 is impossible. Indeed, since vc ∈Λ−(c),

we have that

∥∇vc∥2L2(RN ) −µγq∥vc∥
q
Lq(RN ) − ∥vc∥

2∗
L2∗ (RN ) = 0 (2.5.39)

and

∥∇vc∥2L2(RN ) −µγq(qγq − 1)∥vc∥
q
Lq(RN ) − (2∗ − 1)∥vc∥2

∗

L2∗ (RN ) ≤ 0. (2.5.40)

Combining (2.5.39), (2.5.40) and using the Sobolev inequality, we get

∥∇vc∥2L2(RN ) ≤
2∗ − qγq
2− qγq

∥vc∥2
∗

L2∗ (RN ) ≤
2∗ − qγq
2− qγq

1

S
2∗
2

∥∇vc∥2
∗

L2(RN )

proving the claim.
At this point, in view of (2.5.38), using that Qµ(vc) = 0, we have

M0(c) = Fµ(vc) =
1
N
∥∇vc∥2L2(RN ) −

µ

q

(
1−

qγq
2∗

)
∥vc∥

q
Lq(RN ) =

1
N
∥∇vc∥2L2(RN ) + oc(1) ≥ S

N
2

N
+ oc(1),

where oc(1)→ 0 as c→ 0. Taking into account that m(c)→ 0 as c→ 0, see Remark 2.1.4, and
that

M0(c) < m(c) +
S

N
2

N

we obtain (2.5.35). Clearly also the above proof shows that ∥∇vc∥2L2(RN ) → S
N
2 . This proves

(i).
To show that (ii) holds we start to observe that, since c0(µ) → ∞ as µ → 0, see Re-

mark 2.1.3, vc ∈ S(c) exists for any µ → 0 sufficiently small. Now, (2.5.36)- (2.5.37) imply
that (vc) ⊂ H1

r (RN ) is uniformly bounded as µ→ 0 and thus, using the Gagliardo-Nirenberg
inequality, we have that

µ∥vc∥
q
Lq(RN ) ≤ µCN,q∥vc∥

q(1−γq)
L2(RN ) ∥∇vc∥

qγq
L2(RN )→ 0 as µ→ 0.

From here the rest of the proof is identical to the one of (i).

2.6 Strong instability of the standing waves lying at mountain pass
levels

To prove the strong instability of the standing waves, we use the recent advances on the
subject of instability by blow-up contained in [80, 81]. Now, we recall [81, Theorem 1.6]
which in our notation reads as

Theorem 2.6.1. Under the assumptions of Theorem 2.1.8, let u ∈ S(c) be such that Fµ(u) <
infΛ+(c)Fµ. Then, if s+u < 1 and |x|u ∈ L2(RN ,C), the solution φ of (2.1.1) with initial datum
u blows-up in finite time.
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Proof of Theorem 2.1.11. Since, by Remark 2.5.4

Fµ(vc) = inf
u∈Λ−(c)

Fµ(u)

and ψvc(s) has a unique global maximum at s⋆ = 1, see Lemma 2.2.3, we have that vt := (vc)t
satisfies

Fµ(vt) < inf
u∈Λ−(c)

Fµ(u)

for any t > 1. Clearly s+vt = 1
t < 1 for any t > 1 and also vt → vc as t→ 1+. Now, since λc < 0,

by a classical decay argument, we have that vc and thus vt satisfies |x|vt ∈ L2(RN ,C). At this
point, applying Theorem 2.6.1, we deduce that vc ∈ S(c) gives rise to an unstable standing
wave. See for more details [81, Theorem 1.3] or [80, Theorem 1.4].

Remark 2.6.2. Theorem 2.6.1, see also [80, Theorem 1.13], is remarkable because it permits to
detect a finite time blow-up occurs just by considering the 1-variable function ψu . We refer, for
earlier results on the link between the variational characterization of a solution and its instability,
to the classical paper [20], and to [56] for more recent developments.

2.7 Appendix

Let N ≥ 3, uε be the extremal functions for the Sobolev inequality in R
N defined in (2.5.20)

and ξ ∈ C∞0 (RN ) be a radially non-increasing cut-off function with ξ ≡ 1 in B1, ξ ≡ 0 in
R
N\B2.

Lemma 2.7.1. Setting Uε := ξuε and denoting by ω the area of the unit sphere in R
N , we have,

for N ≥ 3,

(i)

∥∇Uε∥2L2(RN ) = S
N
2 +O(εN−2) and ∥Uε∥2

∗

L2∗ (RN ) = S
N
2 +O(εN ),

(ii) For some positive constant K > 0,

∥Uε∥
q
Lq(RN ) =


KεN−

(N−2)
2 q + o(εN−

(N−2)
2 q) if

N
N − 2

< q < 2∗,

ωε
N
2 | logε|+O(ε

N
2 ) if q =

N
N − 2

,

ω
(∫ 2

0

ξq(r)

r(N−2)q−(N−1)
dr

)
ε
N−2

2 q + o(ε
N−2

2 q) if 1 ≤ q < N
N − 2

.

Proof. The point (i) is standard. See, for example, [83, pages 163-164]. We shall thus con-
centrate on point (ii). We have

∥Uε∥
q
Lq(RN ) =

∫
R
N
ξq(x)

( ε

ε2 + |x|2
)N−2

2 q
dx.

Passing to radial coordinates, we get

∥Uε∥
q
Lq(RN ) =ωε

N−2
2 q

∫ 2

0

ξq(r)rN−1

(ε2 + r2)
N−2

2 q
dr (2.7.1)



Chapter 2. Multiple normalized solutions for the Sobolev critical Schrödinger equation 54

that can be decomposed as

∥Uε∥
q
Lq(RN ) =ωε

N−2
2 q

∫ 2

0

(ξq(r)− 1)rN−1

(ε2 + r2)
N−2

2 q
dr +ωε

N−2
2 q

∫ 2

0

rN−1

(ε2 + r2)
N−2

2 q
dr := I1(ε) + I2(ε). (2.7.2)

Since ξ(r) ≡ 1 on [0,1], the integral in I1(ε) is converging and thus I1(ε) = O(ε
N−2

2 q). Now, by
making a change of variable, we rewrite I2(ε) as

I2(ε) = ωεN−
N−2

2 q
∫ 2

ε

0

rN−1

(1 + r2)
N−2

2 q
dr.

The integral in I2(ε) is converging, as ε → 0, to a finite value if and only if q > N
N−2 . Thus,

when q > N
N−2 , we have that, for some constant K > 0,

I2(ε) = KεN−
N−2

2 q + o(εN−
N−2

2 q)

and recording that I1(ε) =O(ε
N−2

2 q), we have

∥Uε∥
q
Lq(RN ) = I1(ε) + I2(ε) = KεN−

N−2
2 q + o(εN−

N−2
2 q).

This proves point (ii) for
N

N − 2
< q < 2∗. Now, assuming that q =

N
N − 2

, and proceeding as in

(2.7.2), we get that

||Uε||
q
Lq(RN ) =ωε

N
2

∫ 2

0

(ξq(r)− 1)rN−1

(ε2 + r2)
N
2

dr +ωε
N
2

∫ 2

0

rN−1

(ε2 + r2)
N
2

dr := I1(ε) + I2(ε) (2.7.3)

with I1(ε) =O(ε
N
2 ). Also,

I2(ε) = ωε
N
2

∫ 2
ε

0

rN−1

(1 + r2)
N
2

dr =ωε
N
2
(
| logε|+O(1)

)
.

Summarizing, we obtain for q =
N

N − 2
that

∥Uε∥
q
Lq(RN ) =ωε

N
2 | logε|+O(ε

N
2 ).

It remains to study the case 1 ≤ q < N
N − 2

. Under this assumption, we observe that, for all
r > 0,

lim
ε→0

ξq(r)rN−1

(ε2 + r2)
N−2

2 q
=
ξq(r)rN−1

r(N−2)q
=

ξq(r)

r(N−2)q−(N−1)

and also that, for all ε > 0, for some constant D > 0∣∣∣∣ ξq(r)rN−1

(ε2 + r2)
N−2

2 q

∣∣∣∣ ≤ D

r(N−2)q−(N−1)
∈ L1([0,2]).

Thus, from Lebesgue’s theorem, we deduce from (2.7.1) that

∥Uε∥
q
Lq(RN ) =ω

(∫ 2

0

ξq(r)

r(N−2)q−(N−1)
dr

)
ε
N−2

2 q + o(ε
N−2

2 q).

This ends the proof of the lemma.



Chapter 3

Multiple normalized solutions for the
Schrödinger-Poisson-Slater equation

This chapter is precisely the results in the paper [47]. For the convenience of reading, this
chapter is presented self-contained with the rest of the thesis.

3.1 Introduction

In this chapter, we consider the following Schrödinger-Poisson-Slater equation:

i∂tv +∆v +γ(|x|−1 ∗ |v|2)v + a|v|p−2v = 0 in R×R3, (3.1.1)

where v : R ×R3 → C, γ ∈ R, a ∈ R and p ∈ (10
3 ,6]. We look for standing wave solutions

to (3.1.1), namely to solutions of the form v(t,x) = eiλtu(x), λ ∈ R. Then the function u(x)
satisfies the equation

−∆u +λu −γ(|x|−1 ∗ |u|2)u − a|u|p−2u = 0 in R
3. (3.1.2)

Motivated by the fact that the L2−norm is a preserved quantity of the evolution we focus
on the search of solutions to (3.1.2) with prescribed L2 − norm. It is standard that for some
prescribed c > 0, a solution of (3.1.2) with ∥u∥2L2(R3) = c can be obtained as a critical point of
the Energy functional

F(u) :=
1
2

∫
R

3
|∇u|2dx −

γ

4

∫
R

3

∫
R

3

|u(x)|2|u(y)|2

|x − y|
dxdy − a

p

∫
R

3
|u|pdx

restricted to

S(c) := {u ∈H1(R3) : ∥u∥2L2(R3) = c}.

Then the parameter λ ∈ R in (3.1.2) appears as a Lagrange multiplier, it is an unknown of
the problem. As we know, F(u) is a well-defined and C1 functional on S(c) for any p ∈ (2,6]
(see [77] for example).

Let us define
m(c) = inf

u∈S(c)
F(u). (3.1.3)

55
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Depending on the range of parameters we shall consider m(c) will be finite or not. The case
where γ < 0 and a > 0 in (3.1.2) has been the most studied so far. When p ∈ (2, 10

3 ) it can been
shown that m(c) ∈ (−∞,0] for any c > 0 and it is also the case when p = 10

3 and c > 0 is small.
It is shown in [17] that minimizer exists if p ∈ (2,3) and c > 0 is small enough, see also [78]
for the special case p = 8

3 . The case p ∈ (3, 10
3 ) was considered in [16, 51], see also [55] for

a closely related problem. In [51] the existence of a threshold value c0 > 0 such that m(c)
has a minimizer if and only if c ∈ [c0,∞) was established. It was also proved in [51] that a
minimizer does not exist for any c > 0 if p = 3 or p = 10

3 . We also refer to [26] for related
results. When p ∈ (10

3 ,6] a scaling argument reveals that m(c) = −∞ but nevertheless it was
proved in [15] that, when p ∈ (10

3 ,6) there exists, for c > 0 small enough a critical point of F
constrained to S(c) at a strictly positive level. In this work we complement the result of [15]
by showing that when p = 6 and for any c > 0 there does not exist positive solutions, see
Theorem 3.1.9.

Even if some open problems remain when γ < 0 and a > 0, we shall mainly concentrate
here on the others cases: (γ < 0, a < 0), (γ > 0, a > 0) and (γ > 0, a < 0). We define, for short,
the following quantities

A(u) :=
∫
R

3
|∇u|2dx, B(u) :=

∫
R

3

∫
R

3

|u(x)|2|u(y)|2

|x − y|
dxdy, C(u) :=

∫
R

3
|u|pdx.

For u ∈ S(c), we set ut(x) := t
3
2u(tx), t > 0, then

ut ∈ S(c), A(ut) = t2A(u), B(ut) = tB(u), C(ut) = tσC(u),

where

2 < σ :=
3(p − 2)

2
≤ 6, (3.1.4)

due to p ∈ (10
3 ,6]. For u ∈ S(c), we define the fiber map

t ∈ (0,∞) 7→ gu(t) := F(ut) =
1
2
t2A(u)−

γ

4
tB(u)− a

p
tσC(u).

Hence, we have

g ′u(t) = tA(u)−
γ

4
B(u)− aσ

p
tσ−1C(u) =

1
t
Q(ut),

where

Q(u) = A(u)−
γ

4
B(u)− aσ

p
C(u).

Actually the condition Q(u) = 0 corresponds to a Pohozaev identity and the set

Λ(c) := {u ∈ S(c) :Q(u) = 0} = {u ∈ S(c) : g ′u(1) = 0}

appears as a natural constraint. Indeed, if u ∈ S(c), then t > 0 is a critical point for gu if and
only if ut ∈Λ(c). In particular, u ∈Λ(c) if and only if 1 is a critical point of gu .

First we briefly consider the case γ < 0, a < 0. For any u ∈ S(c), we have that g ′u(t) > 0 for
all t > 0, hence the fiber map gu(t) is strictly increasing and so we can state the following
non-existence result:
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Theorem 3.1.1. Assume that γ < 0, a < 0. Then F(u) has no critical point on S(c).

Next, we consider the case γ > 0, a > 0. In this case, let

c1 :=
(

4
γKH

σ − 2
σ − 1

) 3p−10
4(p−3)

(
p

aσ (σ − 1)KGN

) 1
2(p−3)

> 0, (3.1.5)

where σ is defined by (3.1.4) and KH ,KGN are defined in Lemma 3.2.1. We also introduce
the decomposition of Λ(c) into the disjoint union Λ(c) = Λ+(c)∪Λ0(c)∪Λ−(c), where

Λ+(c) := {u ∈Λ(c) : g ′′u (1) > 0} = {u ∈ S(c) : g ′u(1) = 0, g ′′u (1) > 0},
Λ0(c) := {u ∈Λ(c) : g ′′u (1) = 0} = {u ∈ S(c) : g ′u(1) = 0, g ′′u (1) = 0},
Λ−(c) := {u ∈Λ(c) : g ′′u (1) < 0} = {u ∈ S(c) : g ′u(1) = 0, g ′′u (1) < 0}.

By Lemma 3.3.3 and Lemma 3.3.4, for any c ∈ (0, c1) we have that Λ0(c) = ∅ and Λ+(c) , ∅,
Λ−(c) , ∅. Since F is bounded from below on Λ(c) due to Lemma 3.3.1, we can define

γ+(c) := inf
u∈Λ+(c)

F(u) and γ−(c) := inf
u∈Λ−(c)

F(u). (3.1.6)

Our first main result is

Theorem 3.1.2. Let p ∈ (10
3 ,6]. Assume that γ > 0, a > 0 and let c1 > 0 be defined by (3.1.5). For

any c ∈ (0, c1), there exist u+
c ∈ Λ+(c) such that F(u+

c ) = γ+(c) and u−c ∈ Λ−(c) such that F(u−c ) =
γ−(c). The functions u+

c ,u
−
c are bounded continuous positive Schwarz symmetric functions. In

addition there exist λ+
c > 0 and λ−c > 0 such that (u+

c ,λ
+
c ) and (u−c ,λ

−
c ) are solutions to (3.1.2).

Remark 3.1.3. In Theorem 3.1.2, borrowing an approach first introduced in [31], an effort is
made to optimize the limit value c1 > 0. As a consequence, compared to the works [80, 81] and
our work in Chapter 2, we do not benefit from the property that γ−(c) ≥ 0 = supu∈Λ+(c)F(u). Such
property is a help to show the convergence of the Palais-Smale sequences in these works. Also, the
fact that we may have γ−(c) < 0 makes somehow more involved to prove that the level γ−(c) is
reached by a radially symmetric function, a Schwartz function actually, see Lemma 3.3.6. It is not
clear to us if c1 > 0 is optimal. Nevertheless, we conjecture that there exists a c0 ≥ c1 > 0 such that
one solution exists when c = c0 and that, at least positive solutions, do not exist when c > c0.

Remark 3.1.4. As we shall see γ+(c) < γ−(c) and combined with the property that any critical
point lies in Λ(c) it implies that the solution u+

c obtained in Theorem 3.1.2 is a ground state.
Following [14] a ground state is defined as a solution v ∈ S(c) to (3.1.2) which has minimal
Energy among all the solutions which belong to S(c). Namely, if

F(v) = inf
{
F(u),u ∈ S(c),

(
F
∣∣∣
S(c)

)′
(u) = 0

}
.

If the geometrical structure of F restricted to S(c) is identical in the Sobolev subcritical
case p ∈ (10

3 ,6) and in the Sobolev critical case p = 6, the proof that the levels γ+(c) and
γ−(c) are indeed reached requires additional, more involved, arguments in the case p = 6.
In particular, showing that γ−(c) is attained requires to check that the following inequality
holds

γ−(c) < γ+(c) +
1

3
√
aKGN

. (3.1.7)
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It is known since the pioneering work of Brezis-Nirenberg [25] that the way to derive such
a strict upper bound is through the use of testing functions. In Chapter 2, considering the
equation

−∆u −λu −µ|u|q−2u − |u|2
∗−2u = 0 in R

N , (3.1.8)

withN ≥ 3, µ > 0, 2 < q < 2+ 4
N and 2∗ = 2N

N−2 we face the need to establish a similar inequality.
We constructed test functions which could be viewed as the sum of a truncated extremal
function of the Sobolev inequality on R

N centered at the origin and of u+
c translated far away

from the origin. This choice of testing functions was sufficient to prove our strict inequality
when N ≥ 4 but we missed it in the case N = 3. Very recently, in [89] the authors introduced
an alternative choice of testing functions which allowed to treat, in a unified way, the case
N = 3 and N ≥ 4 for (3.1.8). The strategy in [89], recording of the one introduced by G.
Tarantello in [85], is on the contrary, to located the extremal functions where the solution u+

c
takes its greater values (the origin thus). The idea behind the proof is that the interaction
decreases the value of the Energy with respect to the case where the supports would be
disjoint. In this chapter, where (3.1.2) is set on R

3, we believe in view of our experience on
(3.1.8), more appropriate to follow the approach of [89] to check the inequality (3.1.7) for
any c ∈ (0, c1).

The results of Theorem 3.1.2 are complemented in several directions. First, we show that
the solution u+(c) obtained in Theorem 3.1.2 can be characterized as a local minima for F
restricted to S(c). We treat here the full range p ∈ (10

3 ,6] with a single proof. More precisely
we show,

Theorem 3.1.5. Let p ∈ (10
3 ,6]. Assume that γ > 0, a > 0 and let c ∈ (0, c1). Then we have

Λ+(c) ⊂ V (c) and

γ+(c) = inf
u∈Λ+(c)

F(u) = inf
u∈V (c)

F(u)

where

V (c) := {u ∈ S(c)|A(u) < k1}

for some k1 > 0 independent of c ∈ (0, c1) (see (3.3.45) for the definition of k1 > 0). In addition,
any minimizing sequence for F on V (c) is, up to translation, strongly convergent in H1(R3).

Remark 3.1.6. The proof of Lemma 3.3.20 which is a key step to established Theorem 3.1.5,
reveals some additional properties of the set V (c). Indeed, we have that V (c) ⊂ S(c)\Λ−(c) and
thus V (c) is separating the sets Λ+(c) and Λ−(c). Also, for any 0 < c, c̃ < c1, we have that A(u) <
k1 < A(v) for all u ∈Λ+(c),v ∈Λ−(c̃), see (3.3.46) and (3.3.49).

Remark 3.1.7. To prove that the minimizing sequences for F on V (c) are, up to translation,
strongly convergent in H1(R3) we follow an approach due to [43] that has already been used several
times, see, for example, [39, 67]. The first step in this approach is to show that the sequences do
not vanish. When p = 6, we rely for this, in an essential way, on the fact that c1 > 0 is sufficiently
small, see Lemma 3.3.22. This fact is also used to end the proof. Finally, note that since we allow
the possibility that infu∈∂V (c)F(u) < 0 where ∂V (c) := {u ∈ S(c)|A(u) = k1} we must check that the
minimizers do ly in V (c).



59 3.1. Introduction

Let us now denote

Mc := {u ∈ V (c) : F(u) = γ+(c)}.

In view of Remark 3.1.4,Mc is the set of all ground states. The property that any minimizing
sequence for F restricted to V (c) is, up to translation, strongly converging is known to be a
key ingredient to show that the setMc is orbitally stable. If p ∈ (10

3 ,6) the orbital stability
of Mc indeed follows directly from Theorem 3.1.5 by the classical arguments of [28]. In
the case p = 6 the situation is more delicate as the existence of a uniform H1(R3) bound on
the solution of (3.1.1) during its lifespan is not sufficient to guarantee that blow-up may not
occurs. We refer to [27] for more details. We do not prove anything in that direction but
strongly believe that the setMc is orbitally stable. Actually, such a result has been obtained
on the equation (3.1.8) in Chapter 2.

We also discuss the behavior of the associated Lagrange multipliers and show that if the
behavior of λ+

c is essentially the same for the cases p ∈ (10
3 ,6) and p = 6, see Lemma 3.3.24,

there is a distinct behavior for λ−c , see Lemmas 3.3.25 and 3.3.26. Finally, in Lemma 3.3.27,
we establish the property that the map c 7→ γ−(c) is strictly decreasing.

Next, we consider the case γ > 0, a < 0. Recalling the definition of m(c) given in (3.1.3)
we show in Lemma 3.4.1, that −∞ < m(c) < 0 and then we prove the following result.

Theorem 3.1.8. Let p ∈ (10
3 ,6], γ > 0 and a < 0. For any c > 0, the infimum m(c) is achieved

and any minimizing sequence for (3.1.3) is, up to translation, strongly convergent in H1(R3) to a
solution of (3.1.2). In addition, the associated Lagrange multiplier is positive.

Even if the proof of Theorem 3.1.8 follows the lines of the proof of Theorem 3.1.5, the
change of sign in front of the power term requires some adaptations, see Lemma 3.4.2 and
Lemma 3.4.4. Here again the orbital stability of the set of minimizers should follow directly
from the classical arguments of [28] if p ∈ (10

3 ,6) and it should also be the case when p = 6 by
adapting our arguments in Chapter 2. Note that we also study the behavior of the associated
Lagrange multipliers in Lemma 3.4.5.

In the last part of the chapter we consider the case γ < 0, a > 0 and p = 6.

Theorem 3.1.9. Let p = 6, γ < 0 and a > 0. For any c > 0, we have that

(i) If u ∈ H1(R3) is a non-trivial solution to (3.1.2) then the associated Lagrange multiplier λ
is negative and

F(u) >
1

3
√
aKGN

.

(ii) Equation (3.1.2) has no positive solution in H1(R3).

Remark 3.1.10. In [81, Theorem 1.2], considering the equation

−∆u −λu −µ|u|q−2u − |u|2
∗−2u = 0 in R

N , (3.1.9)

with N ≥ 3, 2 < q < 2∗ and µ < 0, it was proved that (3.1.9) has no positive solution u ∈ H1(RN )
if N = 3,4 or if N ≥ 5 under the additional assumption u ∈ Lp(RN ) for some p ∈

(
0, N
N−2

]
. In

Remark 3.5.2, partly using arguments used in the proof of Theorem 3.1.9, we improve [81, Theo-
rem 1.2] showing that (3.1.9) has no positive solution in H1(RN ) for all N ≥ 3 and no non-trivial
radial solution for N ≥ 3 and q > 2 + 2

N−1 .
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Remark 3.1.11. We propose as an open problem to investigate if there are radial solutions under
the assumptions of Theorem 3.1.9. See Remark 3.5.3 in that direction.

This chapter is organized as follows. In Section 3.2 we present some preliminary results.
Section 3.3 is devoted to the treatment of the case γ > 0, a > 0 and p ∈ (10

3 ,6]. In Subsec-
tion 3.3.1 we make explicit the geometrical structure of F on S(c) and show the existence of
a bounded Palais-Smale sequence (u+

n ) ⊂ Λ+(c) at the level γ+(c) and of a bounded Palais-
Smale sequence (u−n ) ⊂ Λ−(c) at the level γ−(c). In Subsection 3.3.2 we give the proof of
Theorem 3.1.2 in the Sobolev subcritical case. Subsection 3.3.3 is devoted to the proof of
Theorem 3.1.2 in the critical case. In Subsection 3.3.4 we prove the convergence of all mini-
mizing sequences associated to γ+(c), namely Theorem 3.1.5. The behavior of the Lagrange
multipliers and the property of the map c 7→ γ−(c) are studied in Subsection 3.3.5. In Sec-
tion 3.4 we treat the case γ > 0, a < 0 and p ∈ (10

3 ,6] and we prove Theorem 3.1.8. Finally, in
Section 3.5, we consider the case γ < 0, a > 0 and p = 6, and prove Theorem 3.1.9

3.2 Preliminary results

In this section we present various preliminary results. When it is not specified they are
assumed to hold for γ ∈ R, a ∈ R, p ∈

(
10
3 ,6

]
and any c > 0. Firstly, we present the definitions

of Λ(c), Λ+(c), Λ0(c), Λ−(c) via A(u), B(u) and C(u):

Λ(c) =

u ∈ S(c) : A(u) =
γ

4
B(u) +

aσ
p
C(u)

,
Λ+(c) =

u ∈ S(c) : A(u) =
γ

4
B(u) +

aσ
p
C(u),A(u) >

aσ (σ − 1)
p

C(u)

,
Λ0(c) =

u ∈ S(c) : A(u) =
γ

4
B(u) +

aσ
p
C(u),A(u) =

aσ (σ − 1)
p

C(u)

,
Λ−(c) =

u ∈ S(c) : A(u) =
γ

4
B(u) +

aσ
p
C(u),A(u) <

aσ (σ − 1)
p

C(u)

.
Lemma 3.2.1. Let u ∈ S(c), there exists

(i) a constant KH > 0 such that B(u) ≤ KH
√
A(u)c

3
2 .

(ii) a constant KGN > 0 such that C(u) ≤ KGN [A(u)]
σ
2 c

6−p
4 .

Proof. We first recall the Hardy-Littlewood-Sobolev inequality (see [63, Chapter 4]):∣∣∣∣∣∣
∫
R
N

∫
R
N

f (x)g(y)
|x − y|λ

dxdy

∣∣∣∣∣∣ ≤ C(N,λ,p,q)∥f ∥Lp(RN )∥g∥Lq(RN ), (3.2.1)

where f ∈ Lp(RN ), g ∈ Lq(RN ), p,q > 1, 0 < λ < N and

1
p

+
1
q

+
λ
N

= 2.
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Let us also recall the Gagliardo-Nirenberg inequality (see [72]) and the Sobolev inequality
(see [23, Theorem 9.9]) in the unified form: if N ≥ 3 and p ∈ [2, 2N

N−2 ] then

∥f ∥Lp(RN ) ≤ C(N,p)∥∇f ∥βL2(RN )∥f ∥
(1−β)
L2(RN ), with β =N

(
1
2
− 1
p

)
.

Applying the Hardy-Littlewood-Sobolev inequality we obtain

B(u) =
∫
R

3

∫
R

3

|u(x)|2|u(y)|2

|x − y|
dxdy ≤ K1∥u∥4

L
12
5 (R3)

(3.2.2)

and thus using the Gagliardo-Nirenberg inequality, we get

B(u) ≤ K1∥u∥4
L

12
5 (R3)

≤ K1K2∥∇u∥L2(R3)∥u∥3L2(R3) = KH
√
A(u)c

3
2 .

Finally, applying the Sobolev, Gagliardo-Nirenberg inequality, we have

C(u) = ∥u∥pLp(R3) ≤ KGN ∥∇u∥
σ
L2(R3)∥u∥

6−p
2

L2(R3) = KGN [A(u)]
σ
2 c

6−p
4 .

Lemma 3.2.2. Let p ∈ (10
3 ,6]. Assume that γ ∈R and a ∈R. If u ∈H1(R3) is a weak solution to

−∆u +λu −γ(|x|−1 ∗ |u|2)u − a|u|p−2u = 0, (3.2.3)

then Q(u) = 0. Moreover, if u , 0 then we have

(i) λ > 0 if γ > 0 and p ∈ (10
3 ,6],

(ii) λ < 0 if γ < 0 and p = 6.

Proof. Our proof is inspired by [15, Lemma 4.2]. The following Pohozaev type identity holds
for u ∈H1(R3) weak solution of (3.2.3) ( [34], also see [77, Theorem 2.2]),

1
2
A(u) +

3λ
2
D(u)−

5γ
4
B(u)− 3a

p
C(u) = 0, where D(u) = ∥u∥2L2(R3). (3.2.4)

By multiplying (3.2.3) by u and integrating, we derive a second identity

A(u) +λcD(u)−γB(u)− aC(u) = 0. (3.2.5)

Combining (3.2.4) and (3.2.5), we get

A(u)−
γ

4
B(u)− aσ

p
C(u) = 0.

This means that Q(u) = 0. Using (3.2.4) and (3.2.5) again, we obtain

2(6− p)A(u) + (5p − 12)γB(u) = 2(3p − 6)λD(u). (3.2.6)

If γ > 0 and p ∈ (10
3 ,6], we have

2(6− p) ≥ 0, (5p − 12)γ > 0, 2(3p − 6) > 0.

Hence, λ > 0. If γ < 0 and p = 6, we have

2(6− p) = 0, (5p − 12)γ = 18γ < 0, 2(3p − 6) = 24 > 0.

This implies that λ < 0.
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Lemma 3.2.3. Let p ∈ (10
3 ,6]. Assume that γ ∈R and a ∈R. If u ∈H1(R3) is a weak solution to

−∆u +λu −γ(|x|−1 ∗ |u|2)u − a|u|p−2u = 0, (3.2.7)

then u ∈ L∞(R3)∩C(R3). Moreover, in case γ > 0, a > 0 we have that if u . 0 and u ≥ 0 then
u > 0.

Proof. Applying [62, Theorem 2.1], we get that u ∈ W2,r
loc(R

3) for every r > 1 and hence u ∈
C(R3). Since u ∈H1(R3), the Sobolev embedding (see [23, Corollary 9.10]) implies that |u|2 ∈
Lq(R3) for every q ∈ [1,3]. Now, setting K := |x|−1, we write K := K1 +K2 where K1 := K on
B(0,1), K1 := 0 on R

3\ B(0,1) andK2 := K−K1. ClearlyK1 ∈ L2(R3) andK2 ∈ L4(R3). Applying
[63, Lemma 2.20] with K1 ∈ L2(R3), |u|2 ∈ L2(R3) and with K2 ∈ L4(R3), |u|2 ∈ L

4
3 (R3), we

obtain that K1 ∗ |u|2 and K2 ∗ |u|2 are continuous. Also

lim
|x|→∞

(K1 ∗ |u|2)(x) = 0 and lim
|x|→∞

(K2 ∗ |u|2)(x) = 0.

Hence, we get that K ∗ |u|2 is continuous and

lim
|x|→∞

(K ∗ |u|2)(x) = 0. (3.2.8)

Therefore, K ∗ |u|2 is bounded. At this point, we deduce from [81, Proposition B.1] that
u ∈ L∞(R3).

Now, if we assume that γ > 0, a > 0, u . 0, u ≥ 0, setting v := −u ≤ 0 we get

−∆v +λv = γ(|x|−1 ∗ |v|2)v + a|v|p−2v ≤ 0.

By Lemma 3.2.2, we have that λ > 0. We assume that there exists x0 ∈R3 such that v(x0) = 0.
For all R > |x0|, we have that v ∈ W2,r(BR) for every r > 1, Lv := −∆v + λv ≤ 0 in BR with
λ > 0 and M := maxx∈BR v = 0. At this point, applying [87, Theorem 3.27], in the particular
case where Γ = ∅, we obtain that v ≡ 0 in BR, and hence u ≡ 0 in BR. The value R > 0 being
arbitrarily large, this contradicts our assumption that u . 0 and we conclude that u > 0.

Following [19], we recall that, for any c > 0, S(c) is a submanifold codimension 1 of
H1(R3) and the tangent space at a point u ∈ S(c) is defined as

TuS(c) = {ϕ ∈H1(R3) : ⟨u,ϕ⟩L2(R3) = 0}.

The restriction F|S(c) : S(c) → R is a C1 functional on S(c) and for any u ∈ S(c) and any
v ∈ TuS(c), we have

⟨F′|S(c)(u),ϕ⟩ = ⟨F′(u),ϕ⟩.

We use the notation ∥dF |S(c)∥∗ to indicate the norm in the cotangent space TuS(c)′, i.e the dual
norm induced by the norm of TuS(c), i.e

∥dF |S(c)(u)∥∗ := sup
∥ϕ∥≤1,ϕ∈TuS(c)

|dF(u)[ϕ]|. (3.2.9)

We recall the following result, see Lemma 2.5.1,
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Lemma 3.2.4. For u ∈ S(c) and t > 0, the map

TuS(c)→ TutS(c), ψ 7→ ψt

is a linear isomorphism with inverse

TutS(c)→ TuS(c), φ 7→ φ
1
t .

Next, we recall a result concerning the convergence of the term B, see [77, Lemma 2.1],

Lemma 3.2.5. Let (un) be a sequence satisfying un⇀u weakly in H1
r (R3). Then we have

B(un)→ B(u).

3.3 The case γ > 0, a > 0 and p ∈ (10
3 ,6]

3.3.1 The geometrical structure and the existence of bounded Palais-Smale se-
quences for p ∈ (10

3 ,6]

In this subsection, we follow the approach first introduced in [31]. We shall always assume
that γ > 0, a > 0 and p ∈ (10

3 ,6].

Lemma 3.3.1. For any c ∈ (0,∞), F restricted to Λ(c) is coercive on H1(R3), namely when (un) ⊂
H1(R3) satisfies ||un|| → +∞ then F(un)→ +∞. In particular F restricted to Λ(c) is bounded from
below.

Proof. Let u ∈Λ(c). Taking into account that

a
p
C(u) =

1
σ
A(u)−

γ

4σ
B(u),

and using Lemma 3.2.1(i), we obtain

F(u) =
1
2
A(u)−

γ

4
B(u)− a

p
C(u) =

1
2
A(u)−

γ

4
B(u)− 1

σ
A(u) +

γ

4σ
B(u)

=
σ − 2
2σ

A(u)−
γ(σ − 1)

4
B(u) ≥ σ − 2

2σ
A(u)−

γ(σ − 1)
4

KH
√
A(u)c

3
2 .

(3.3.1)

This concludes the proof.

For any u ∈ S(c), we recall that

gu(t) = F(ut) =
1
2
t2A(u)−

γ

4
tB(u)− a

p
tσC(u),

g ′u(t) = tA(u)−
γ

4
B(u)− aσ

p
tσ−1C(u) =

1
t
Q(ut),

g ′′u (t) = A(u)− aσ (σ − 1)
p

tσ−2C(u).

For any u ∈ S(c), we set

t⋆u :=
(

pA(u)
aσ (σ − 1)C(u)

) 1
σ−2

.

This implies that t⋆u is the unique solution of equation g ′′u (t) = 0. So, we have

g ′′u (t⋆u) = 0, g ′′u (t) > 0 if 0 < t < t⋆u , g ′′u (t) < 0 if t > t⋆u . (3.3.2)
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Lemma 3.3.2. For any c ∈ (0, c1) and any u ∈ S(c), we have g ′u(t⋆u) > 0.

Proof. Let u ∈ S(c) be arbitrary. By the definition of t⋆u and by g ′′u (t⋆u) = 0, we have

g ′u(t⋆u) = t⋆uA(u)−
γ

4
B(u)− aσ

p
(t⋆u)σ−1C(u) = t⋆uA(u)−

γ

4
B(u)− 1

σ − 1
t⋆uA(u)

=
σ − 2
σ − 1

t⋆uA(u)−
γ

4
B(u) =

σ − 2
σ − 1

(
pA(u)

aσ (σ − 1)C(u)

) 1
σ−2

A(u)−
γ

4
B(u)

=
√
A(u)

σ − 2
σ − 1

(
pA(u)

aσ (σ − 1)C(u)

) 1
σ−2 √

A(u)−
γ

4
B(u)√
A(u)


=

√
A(u)

σ − 2
σ − 1

(
p[A(u)]

σ
2

aσ (σ − 1)C(u)

) 1
σ−2

−
γ

4
B(u)√
A(u)

 .
Applying Lemma 3.2.1, we obtain

g ′u(t⋆u) ≥
√
A(u)

σ − 2
σ − 1

 p[A(u)]
σ
2

aσ (σ − 1)KGN [A(u)]
σ
2 c

6−p
4


1
σ−2

−
γ

4
KH

√
A(u)c

3
2√

A(u)


=

√
A(u)

σ − 2
σ − 1

 p

aσ (σ − 1)KGN c
6−p

4


1
σ−2

−
γ

4
KHc

3
2

 .
By direct computations, we now have

σ − 2
σ − 1

 p

aσ (σ − 1)KGN c
6−p

4


1
σ−2

−
γ

4
KHc

3
2 > 0 ⇐⇒ c < c1.

Thus, we obtain that if 0 < c < c1 then g ′u(t⋆u) > 0.

Lemma 3.3.3. For any c ∈ (0, c1), it holds that Λ0(c) = ∅.

Proof. We assume that there exists u ∈ Λ0(c). Since g ′′u (1) = 0 and t⋆u is the unique solution
of equation g ′′u (t) = 0, we have t⋆u = 1. So, we have g ′u(t⋆u) = g ′u(1) = 0. This contradicts with
g ′u(t⋆u) > 0 in Lemma 3.3.2. Thus, we obtain Λ0(c) = ∅.

Lemma 3.3.4. For any c ∈ (0, c1) and any u ∈ S(c), there exists

(i) a unique s+u ∈ (0, t⋆u) such that s+u is a unique local minimum point for gu and us
+
u ∈Λ+(c).

(ii) a unique s−u ∈ (t⋆u ,∞) such that s−u is a unique local maximum point for gu and us
−
u ∈Λ−(c).

Moreover, the maps u ∈ S(c) 7→ s+u ∈R and u ∈ S(c) 7→ s−u ∈R are of class C1.

Proof. Taking into account that

g ′u(t) = tA(u)−
γ

4
B(u)− aσ

p
tσ−1C(u),

we have g ′u(t) → −γ4B(u) < 0 as t → 0 and g ′u(t) → −∞ as t → +∞ due to σ − 1 > 1. By
Lemma 3.3.2, we have g ′u(t⋆u) > 0. Therefore, the equation g ′u(t) = 0 has at least two solutions
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s+u and s−u with 0 < s+u < t
⋆
u < s

−
u . By (3.3.2), we have g ′′u (t) > 0 for all 0 < t < t⋆u . Hence,

g ′u(t) is strictly increasing function on (0, t⋆u) and consequently s+u ∈ (0, t⋆u) is the unique local
minimum point for gu and us

+
u ∈Λ+(c) due to g ′′

us
+
u
(1) = g ′′u (s+u ) > 0. By the same argument, we

obtain that s−u ∈ (t⋆u ,∞) is a unique local maximum point for gu and us
−
u ∈Λ−(c).

In order to prove that u 7→ s−u are of class C1, we follow the argument in [80, Lemma 5.3].
It is a direct application of the Implicit Function Theorem on C1-function ϕ(t,u) = g ′u(t).
Taking into account that ϕ(s−u ,u) = g ′u(s−u) = 0, ∂tϕ(s−u ,u) = g ′′u (s−u) < 0 and Λ0(c) = ∅, we obtain
u 7→ s−u is of class C1. The same argument proves that u 7→ s+u is of class C1.

Lemma 3.3.5. For any c ∈ (0, c1), it holds that

(i) F(u) < 0 for all u ∈Λ+(c),

(ii) there exists α := α(c) > 0 such that A(u) ≥ α for all u ∈Λ−(c).

Proof. Let u ∈Λ+(c), taking into account that

A(u) =
γ

4
B(u) +

aσ
p
C(u), A(u) >

aσ (σ − 1)
p

C(u),

we obtain

F(u) =
1
2
A(u)−

γ

4
B(u)− a

p
C(u) =

1
2
A(u)−

γ

4
B(u)− aσ

p
C(u) +

a(σ − 1)
p

C(u)

<
1
2
A(u)−A(u) +

1
σ
A(u) =

2− σ
2σ

A(u).

Since σ > 2, we have F(u) < 0. The point (i) is proved.
Let u ∈Λ−(c), taking into account that

A(u) <
aσ (σ − 1)

p
C(u),

and using Lemma 3.2.1, we obtain that

A(u) <
aσ (σ − 1)

p
KGN c

6−p
4 [A(u)]

σ
2 .

Since σ > 2, the point (ii) follows.

We define

Sr(c) := S(c)∩H1
r (R3), Λr(c) := Λ(c)∩H1

r (R3), Λ±r (c) := Λ±(c)∩H1
r (R3).

Here Λ±(c) denotes either Λ+(c) or Λ−(c).

Lemma 3.3.6. For any c ∈ (0, c1) it holds that

inf
u∈Λ±r (c)

F(u) = inf
u∈Λ±(c)

F(u).

Also, if infu∈Λ±(c)F(u) is reached, it is reached by a Schwarz symmetric function.
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Proof. Since Λ±r (c) ⊂Λ±(c), we directly have

inf
u∈Λ±r (c)

F(u) ≥ inf
u∈Λ±(c)

F(u). (3.3.3)

Therefore, it suffices to prove that

inf
u∈Λ±r (c)

F(u) ≤ inf
u∈Λ±(c)

F(u). (3.3.4)

In this aim we start to note that

inf
u∈Λ+(c)

F(u) = inf
u∈S(c)

min
0<t≤s+

u

F(ut) and inf
u∈Λ−(c)

F(u) = inf
u∈S(c)

max
s+
u<t≤s−u

F(ut). (3.3.5)

Now let u ∈ S(c) and v ∈ Sr(c) be the Schwarz rearrangement of |u|. Taking into account that
A(v) ≤ A(u), C(v) = C(u), and by the Riesz’s rearrangement inequality (see [63, Section 3.7]),
B(v) ≥ B(u), we have for all t > 0,

F(vt) =
1
2
t2A(v)−

γ

4
tB(v)− a

p
tσC(v) ≤ 1

2
t2A(u)−

γ

4
tB(u)− a

p
tσC(u) = F(ut). (3.3.6)

Observe that, for any w ∈ S(c),

g ′w(t) = tA(w)−
γ

4
B(w)− aσ

p
tσ−1C(w) and g ′′w(t) = A(w)− aσ (σ − 1)

p
tσ−2C(w).

Thus we have

g ′v(0) ≤ g ′u(0) < 0 and g ′′v (t) ≤ g ′′u (t), ∀t > 0.

This implies that 0 < s+u ≤ s+v < s−v ≤ s−u . Hence, we deduce from (3.3.6) that

min
0<t≤s+

v

F(vt) ≤ min
0<t≤s+

u

F(ut) and max
s+
v<t≤s−v

F(vt) ≤ max
s+
u<t≤s−u

F(ut).

In view of (3.3.5), the inequality (3.3.4) holds. Now if u0 ∈ Λ+(c) is such that F(u0) =
infu∈Λ+(c)F(u) we see that v, the Schwarz rearrangement of |u0|, belongs to Λ+

r (c). Indeed,
if either A(v) < A(u0) or B(v) > B(u0) then F(vt) < F(ut0). Hence, in view of the above argu-
ments, we get

inf
u∈Λ+(c)

F(u) = inf
u∈S(c)

min
0<t≤s+

u

F(ut) ≤ min
0<t≤s+

v

F(vt) < min
0<t≤s+

u0

F(ut0) = inf
u∈Λ+(c)

F(u)

a contradiction. Thus A(v) = A(u0), B(v) = B(u0) and C(v) = C(u0) from which we deduce
that v ∈ Λ+

r (c) and F(v) = F(u0). The case of u0 ∈ Λ−(c) such that F(u0) = infu∈Λ−(c)F(u) is
treated similarly. This ends the proof of the lemma.

Recalling that γ+(c) and γ+(c) are defined in (3.1.6) we have

Lemma 3.3.7. For any c ∈ (0, c1), there exists a bounded Palais-Smale sequence (u+
n ) ⊂Λ+

r (c) for F
restricted to S(c) at level γ+(c) and a bounded Palais-Smale sequence (u−n ) ⊂Λ−r (c) for F restricted
to S(c) at level γ−(c).
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In order to prove Lemma 3.3.7 we define the functions

I+ : S(c)→R, I+(u) = F(us
+
u ),

I− : S(c)→R, I−(u) = F(us
−
u ).

Note that since the maps u 7→ s+u and u 7→ s−u are of class C1, see Lemma 3.3.4, the functionals
I+ and I− are of class C1.

Lemma 3.3.8. For any c ∈ (0, c1), we have that dI+(u)[ψ] = dF(us
+
u )[ψs

+
u ] and dI−(u)[ψ] =

dF(us
−
u )[ψs

−
u ] for any u ∈ S(c), ψ ∈ TuS(c).

Proof. We first give the proof for I+. Let ψ ∈ TuS(c), then ψ = h′(0) where h : (−ϵ,ϵ) 7→ S(c) is
a C1-cure with h(0) = u. We consider the incremental quotient

I+(h(t))− I+(h(0))
t

=
F(h(t)st )−F(h(0)s0)

t
, (3.3.7)

where st := s+h(t), and hence s0 = s+u . Recalling from Lemma 3.3.4 that s0 is a strict local
minimum of s 7→ F(us) and u 7→ s0 is continuous, we get

F(h(t)st )−F(h(0)s0) ≥ F(h(t)st )−F(h(0)st )

=
s2t
2

[
A(h(t))−A(h(0))

]
−
γst
4

[
B(h(t))−B(h(0))

]
−
asσt
p

[
C(h(t))−C(h(0))

]
=s2t

∫
R

3
∇h(τ1t) · ∇h′(τ1t)tdx −γst

∫
R

3

∫
R

3

|h(τ2t)(x)|2h(τ2t)(y)h′(τ2t)(y)
|x − y|

dxdy

− asσt
∫
R

3
|h(τ3t)|p−2h(τ3t)h

′(τ3t)dx,

for some τ1, τ2, τ3 ∈ (0,1). Analogously

F(h(t)st )−F(h(0)s0) ≤ F(h(t)s0)−F(h(0)s0) = s20

∫
R

3
∇h(τ4t) · ∇h′(τ4t)tdx

−γs0
∫
R

3

∫
R

3

|h(τ5t)(x)|2h(τ5t)(y)h′(τ5t)(y)
|x − y|

dxdy − asσ0
∫
R

3
|h(τ6t)|p−2h(τ6t)h

′(τ6t)dx,

for some τ4, τ5, τ6 ∈ (0,1). Now, from (3.3.7) we deduce that

lim
t→0

I+(h(t))− I+(h(0))
t

=(s+u )2
∫
R

3
∇u∇ψdx −γ(s+u )

∫
R

3

∫
R

3

|u(x)|2u(y)ψ(y)
|x − y|

dxdy − a(s+u )σ
∫
R

3
|u|p−2uψdx

=
∫
R

3
∇us

+
u∇ψs

+
udx −γ

∫
R

3

∫
R

3

|us+
u (x)|2us+

u (y)ψs
+
u (y)

|x − y|
dxdy − a

∫
R

3
|us

+
u |p−2us

+
uψs

+
udx

=dF(us
+
u )[φs

+
u ],

for any u ∈ S(c), ψ ∈ TuS(c). The proof for I− is similar.

Let G be the set of all singletons belonging to Sr(c). It is clearly a homotopy stable family
of compact subsets of Sr(c) with closed boundary (an empty boundary actually) in the sense
of [37, Definition 3.1]. In view of Lemma 3.3.6 we have that
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e+
G := inf

A∈G
max
u∈A

I+(u) = inf
u∈Sr (c)

I+(u) = inf
u∈Λ+

r (c)
F(u) = inf

u∈Λ+(c)
F(u) = γ+(c).

e−G := inf
A∈G

max
u∈A

I−(u) = inf
u∈Sr (c)

I−(u) = inf
u∈Λ−r (c)

F(u) = inf
u∈Λ−(c)

F(u) = γ−(c).

Lemma 3.3.9. For any c ∈ (0, c1), there exists a Palais-Smale sequence (u+
n ) ⊂ Λ+(c) for F re-

stricted to Sr(c) at level e+
G and a Palais-Smale sequence (u−n ) ⊂ Λ−(c) for F restricted to S(c) at

level e−G.

Proof. We first treat the case of e+
G . Let (Dn) ⊂ G be such that

max
u∈Dn

I+(u) < e+
G +

1
n
,

and consider the homotopy

η : [0,1]× S(c) 7→ S(c), η(t,u) = u1−t+ts+
u .

From the definition of G, we have

En := η({1} ×Dn) = {us
+
u : u ∈Dn} ∈ G.

Lemma 3.3.4 implies that En ⊂ Λ+(c) for all n ∈N. Let v ∈ En, i.e. v = us
+
u for some u ∈ Dn,

and hence I+(v) = I+(u). So, we have

max
v∈En

I+(v) = max
u∈Dn

I+(u).

Therefore, En is another minimizing sequence for e+
G . Applying [37, Theorem 3.2], in the

particular case where the boundary B = ∅, there exists a Palais-Smale sequence (yn) for I+ on
S(c) at level e+

G such that

distH1(R3)(yn,En)→ 0 as n→∞. (3.3.8)

Now writing sn := s+yn we set u+
n := ysnn ∈ Λ+(c). We claim that there exists a constant C > 0

such that

1
C
≤ s2n ≤ C (3.3.9)

for n ∈N large enough. Indeed, notice first that

s2n =
A(u+

n )
A(yn)

.

By F(u+
n ) = I+(yn)→ e+

G = γ+(c) < 0 we deduce from (3.3.1) that there exists M > 0 such that

1
M
≤ A(u+

n ) ≤M. (3.3.10)
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On the other hand, since En ∈Λ+(c) is a minimizing sequence for e+
G and F is H1(R3) coercive

on Λ+(c), we obtain that En is uniformly bounded in H1(R3) and thus from (3.3.8), it implies
that supnA(yn) <∞. Also, since En is compact for every n ∈N, there exist a vn ∈ En such that
∥vn − yn∥H1(R3)→ 0 as n→ 0 due to (3.3.8). Using Lemma 3.3.1 again, we have, for a δ > 0,

A(yn) ≥ A(vn)−A(vn − yn) ≥ δ
2
.

This proves the claim (3.3.9). From (3.2.9), and by Lemma 3.2.4, Lemma 3.3.8, we have

∥dF |S(c)(u
+
n )∥∗ = sup

∥ψ∥≤1,ψ∈TuS(c)

∣∣∣dF(u+
n )[ψ]

∣∣∣
= sup
∥ψ∥≤1,ψ∈TuS(c)

∣∣∣∣∣dF(u+
n )

[(
ψ

1
sn

)sn]∣∣∣∣∣ = sup
∥ψ∥≤1,ψ∈TuS(c)

∣∣∣∣∣dI+(yn)
[
ψ

1
sn

]∣∣∣∣∣.
This implies that (u+

n ) ⊂ Λ+(c) is a Palais-Smale sequence for F restricted to S(c) at level e+
G

since (yn) is a Palais-Smale sequence for I+ at level e+
G and and

∥∥∥∥ψ 1
sn

∥∥∥∥ ≤ C1∥ψ∥ ≤ C1 due to

(3.3.9). For the case of e−G the proof is identical except that we use Lemma 3.3.5(ii) along
with (3.3.1) to conclude that there exists a M > 0 such that (3.3.10) holds for A(u−n ) replacing
A(u+

n ).

Proof of Lemma 3.3.7. Applying Lemma 3.3.9, we deduce that there exists a Palais-Smale se-
quence (u+

n ) ⊂ Λ+
r (c) for F restricted to S(c) at level e+

G = γ+(c) and a Palais-Smale sequence
(u−n ) ⊂ Λ−r (c) for F restricted to S(c) at level e−G = γ−(c). In both cases the boundedness of
these sequences follows from Lemma 3.3.1.

3.3.2 The compactness of our Palais-Smale sequences in the Sobolev subcritical
case p ∈ (10

3 ,6)

Lemma 3.3.10. Let p ∈ (10
3 ,6). For any c ∈ (0, c1), if either (un) ⊂Λ+(c) is a minimizing sequence

for γ+(c) or (un) ⊂Λ−(c) is a minimizing sequence for γ−(c), it weakly converges, up to translation,
to a non-trivial limit.

Proof. Since F restricted to Λ(c) is coercive on H1(R3) (see Lemma 3.3.1), (un) is bounded.
Hence, up to translation, un⇀uc weakly in H1(R3). Let us argue by contradiction assuming
that uc = 0, this means that (un) is vanishing. By [65, Lemma I.1], we have, for 2 < q < 6,

∥un∥Lq(R3)→ 0, as n→∞.

This implies that

C(un)→ 0, and B(un) ≤ K1∥un∥4
L

12
5 (R3)

→ 0,

due to (3.2.2). Since (un) ⊂Λ(c), we have Q(un) = 0, and hence

A(un) =
γ

4
B(un) +

aσ
p
C(un)→ 0. (3.3.11)

If we assume that (un) ⊂Λ−(c) we recall that by Lemma 3.3.5, there exists α > 0 such that

A(un) ≥ α > 0, ∀n ∈N,
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contradicting (3.3.11). If we assume that (un) ⊂Λ+(c) then since

F(un) =
1
2
A(un)−

γ

4
B(un)− a

p
C(un)→ 0

we reach a contradiction with the fact that

F(un)→ γ+(c) = inf
u∈Λ+(c)

F(u) < 0.

The lemma is proved.

Lemma 3.3.11. Let p ∈ (10
3 ,6). Assume that a bounded Palais-Smale sequence (un) ⊂Λr(c) for F

restricted to S(c) is weakly convergent, up to translation, to the nonzero function uc. Then, up to
translation, un→ uc ∈Λr(c) strongly in H1

r (R3). In particular uc is a radial solution to (3.1.2) for
some λc > 0 and ∥uc∥2L2(R3) = c.

Proof. Since the embedding H1
r (R3) ⊂ Lq(R3) is compact for q ∈ (2,6), see [82] and, up to

translation, un⇀uc weakly in H1
r (R3), we have, up to translation, un→ uc strongly in Lq(R3)

for q ∈ (2,6) and a.e in R
3.

Since (un) ⊂H1(R3) is bounded, following [19, Lemma 3], we know that

F′|S(c)(un)→ 0 in H−1(R3) ⇐⇒ F′(un)− 1
c
⟨F′(un),un⟩un→ 0 in H−1(R3).

Thus, for any w ∈H1(R3), we have

on(1) =
〈
F′(un)− 1

c
⟨F′(un),un⟩un,w

〉
=

∫
R

3
∇un∇wdx+λn

∫
R

3
unwdx

−γ
∫
R

3

∫
R

3

|un(x)|2un(y)w(y)
|x − y|

dxdy − a
∫
R

3
|un|p−2unwdx,

(3.3.12)

where on(1)→ 0 as n→∞ and

λn =
−1
c

[A(un)−γB(un)− aC(un)] =
1
c

[
3γ
4
B(un) + a

(
1− σ

p

)
C(un)

]
,

due toQ(un) = 0. Since un ∈H1
r (R3), we haveC(un)→ C(uc) and B(un)→ B(uc) (see Lemma 3.2.5).

Hence, we obtain that

λn→ λc =
1
c

[
3γ
4
B(uc) + a

(
1− σ

p

)
C(uc)

]
.

Now, using [92, Lemma 2.2], the equation (3.3.12) leads to∫
R

3
∇uc∇wdx+λc

∫
R

3
ucwdx −γ

∫
R

3

∫
R

3

|uc(x)|2uc(y)w(y)
|x − y|

dxdy − a
∫
R

3
|uc|p−2ucwdx = 0

(3.3.13)

due to the weak convergence in H1
r (R3) and λn→ λc ∈R. This implies that (uc,λc) satisfies

−∆uc +λcuc −γ(|x|−1 ∗ |uc|2)uc − a|uc|p−2uc = 0 in H−1(R3).
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By the assumption uc , 0 and by Lemma 3.2.2, we obtain that Q(uc) = 0 and λc > 0.
Now choosing w = un in (3.3.12) and choosing w = uc in (3.3.13), we obtain that∫

R
3
|∇un|2dx+λn

∫
R

3
|un|2dx −γB(un)− aC(un)

→
∫
R

3
|∇uc|2dx+λc

∫
R

3
|uc|2dx −γB(uc)− aC(uc).

We can deduce from B(un)→ B(uc), C(un)→ C(uc) and λn→ λc that∫
R

3
|∇un|2dx+λc

∫
R

3
|un|2dx→

∫
R

3
|∇uc|2dx+λc

∫
R

3
|uc|2dx.

Since λc > 0, we conclude that un→ uc strongly in H1
r (R3). The lemma is proved.

Proof of Theorem 3.1.2 in the subcritical case p ∈ (10
3 ,6). We give the proof for γ+(c), the treat-

ment for γ−(c) is identically. For any c ∈ (0, c1), by Lemma 3.3.7, there exists a bounded
Palais-Smale sequence (u+

n ) ⊂Λ+
r (c) for F restricted to S(c) at level γ+(c). From Lemma 3.3.10

and Lemma 3.3.11, we deduce that u+
n → u+

c ∈ Λr(c) strongly in H1
r (R3) and that there ex-

ists λ+
c > 0 such that (u+

c ,λ
+
c ) is a solution to (3.1.2). Since Λ0(c) = ∅ (see Lemma 3.3.3), we

conclude that u+
c ∈Λ+

r (c). From Lemma 3.3.6 we can thus assume that u+
c is a Schwarz sym-

metric function. Hence, u+
c is non-negative. At this point, we can deduce from Lemma 3.2.3

that u+
c is a bounded continuous positive function.

3.3.3 The compactness of our Palais-Smale sequences in the Sobolev critical
case p = 6

Our next lemma is directly inspired from [81, Proposition 3.1].

Lemma 3.3.12. Let c ∈ (0, c1) and (un) ⊂ Λ+
r (c) or (un) ⊂ Λ−r (c) be a Palais-Smale sequence for F

restricted to S(c) at level m ∈R which is weakly convergent, up to subsequence, to the function uc.
If (un) ⊂Λ+

r (c) we assume that m , 0 and if (un) ⊂Λ−r (c) we assume that

m <
1

3
√
aKGN

. (3.3.14)

Then uc , 0 and we have the following alternative:

(i) either

F(uc) ≤m−
1

3
√
aKGN

, (3.3.15)

(ii) or

un→ uc strongly in H1
r (R3). (3.3.16)

Proof. Since un ⇀ uc weakly in H1
r (R3), we have, up to subsequence, un → uc strongly in

Lq(R3) for q ∈ (2,6) and a.e in R
3.
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Let us first show that uc , 0. We argue by contradiction assuming that uc = 0, this means
that (un) is vanishing. By [65, Lemma I.1], we have, for 2 < q < 6,

∥un∥Lq(R3)→ 0, as n→∞.

This implies from (3.2.2) that

B(un) ≤ K1∥un∥4
L

12
5 (R3)

→ 0.

Since (un) ⊂Λ(c), we have

A(un) = aC(un) + on(1).

Passing to the limit as n→∞, up to subsequence we infer that

lim
n→∞

A(un) = lim
n→∞

aC(un) := ℓ ≥ 0.

Using Lemma 3.2.1(ii), we have

ℓ = lim
n→∞

aC(un) ≤ lim
n→∞

aKGN [A(un)]3 = aKGN ℓ
3.

Therefore, either ℓ = 0 or ℓ ≥ (aKGN )−
1
2 . If (un) ⊂ Λ+(c), we have A(un) > 5aC(un), and then

ℓ = 0. This implies that F(un)→ 0 and this contradicts the assumption that m , 0. Also, if
(un) ⊂Λ−(c), Lemma 3.3.5(ii) ensure that ℓ ≥ (aKGN )−

1
2 . Hence, we have

m+ on(1) = F(un) =
σ − 2
2σ

A(un)−
γ(σ − 1)

4σ
B(un)

=
1
3
A(un) + on(1) =

1
3
ℓ + on(1) ≥ 1

3
√
aKGN

+ on(1),

which contradicts our assumption (3.3.14). Thus, we have that uc , 0.
Now, since (un) ⊂H1(R3) is bounded, following [19, Lemma 3], we know that

F′|S(c)(un)→ 0 in H−1(R3) ⇐⇒ F′(un)− 1
c
⟨F′(un),un⟩un→ 0 in H−1(R3).

Thus, for any w ∈H1(R3), we have

on(1) =
〈
F′(un)− 1

c
⟨F′(un),un⟩un,w

〉
=

∫
R

3
∇un∇wdx+λn

∫
R

3
unwdx

−γ
∫
R

3

∫
R

3

|un(x)|2un(y)w(y)
|x − y|

dxdy − a
∫
R

3
|un|p−2unwdx,

(3.3.17)

where on(1)→ 0 as n→∞ and

λn =
−1
c

[A(un)−γB(un)− aC(un)] =
3γ
4c
B(un),

due to Q(un) = 0. By B(un)→ B(uc) (see Lemma 3.2.5), we obtain that

λn→ λc =
3γ
4c
B(uc). (3.3.18)
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Now, using [92, Lemma 2.2], the equation (3.3.17) leads to∫
R

3
∇uc∇wdx+λc

∫
R

3
ucwdx −γ

∫
R

3

∫
R

3

|uc(x)|2uc(y)w(y)
|x − y|

dxdy − a
∫
R

3
|uc|p−2ucwdx = 0

(3.3.19)

due to the weak convergence in H1
r (R3) and λn→ λc ∈R. This implies that (uc,λc) satisfies

−∆uc +λcuc −γ(|x|−1 ∗ |uc|2)uc − a|uc|p−2uc = 0 in H−1(R3).

By Lemma 3.2.2, we obtain that Q(uc) = 0 and λc > 0.
Let vn := un − uc ⇀ 0 in H1

r (R3). It is direct to show, using the Brezis-Lieb lemma [24,
Theorem 1], that

A(un) = A(uc) +A(vn) + on(1), C(un) = C(uc) +C(vn) + on(1). (3.3.20)

By B(un)→ B(uc) (see Lemma 3.2.5) and by Q(un) = 0, we have

A(uc) +A(vn)−
γ

4
B(uc)− a[C(uc)−C(vn)] = on(1).

Taking into account that Q(uc) = 0, we get A(vn) = aC(vn) + on(1). Passing to the limit as
n→∞, up to subsequence we infer that

lim
n→∞

A(vn) = lim
n→∞

aC(vn) := k ≥ 0.

Using Lemma 3.2.1(ii), we have

k = lim
n→∞

aC(vn) ≤ lim
n→∞

aKGN [A(vn)]3 = aKGNk
3.

Therefore, either k = 0 or k ≥ (aKGN )−
1
2 .

If k ≥ (aKGN )−
1
2 , then by (3.3.20) and by B(un)→ B(uc), we have

m = lim
n→∞

F(un) = lim
n→∞

[1
2
A(un)−

γ

4
B(un)− a

6
C(un)

]
= lim
n→∞

[1
2
A(uc) +

1
2
A(vn)−

γ

4
B(uc)−

a
6
C(uc)−

a
6
C(vn)

]
= F(uc) +

1
3
k ≥ F(uc) +

1
3

(aKGN )−
1
2 .

This implies that alternative (i) holds.
If instead k = 0, then by (3.3.20), we have A(un)→ A(uc) and C(un)→ C(uc). Choosing

w = un in (3.3.17) and w = uc in (3.3.19), we obtain that

A(un) +λn∥un∥2L2(R3) −γB(un)− aC(un)→ A(uc) +λc∥uc∥2L2(R3) −γB(uc)− aC(uc).

This implies that ∥un∥L2(R3)→ ∥uc∥L2(R3). Thus, we conclude that un→ uc strongly in H1
r (R3).

Proof of Theorem 3.1.2 in the critical case p = 6 for γ+(c). Since γ+(c) < 0, the fact that it is reached
is a direct consequence of Lemma 3.3.7, Lemma 3.3.12 and of the property, which is estab-
lished in Lemma 3.3.21(iii) to come, that the map c 7→ γ+(c) is non-increasing. The rest of
the proof is identical to the one in the case p ∈ (10

3 ,6).
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In the rest of this subsection, we shall prove Theorem 3.1.2 in the critical case p = 6 for
γ−(c).

Lemma 3.3.13. Let c ∈ (0, c1). If

γ−(c) < γ+(c) +
1

3
√
aKGN

(3.3.21)

then there exists a uc ∈ Λ−r (c) with F(uc) = γ−(c) which is a radial solution to (3.1.2) for some
λc > 0 with ∥uc∥2L2(R3) = c.

Proof. By Lemma 3.3.7 there exists a Palais-Smale sequence (un) ⊂ Λ−(c) for F restricted to
S(c) at the level γ−(c). If (3.3.21) holds then necessarily (3.3.14), with m = γ−(c) holds, and
(3.3.15) cannot holds. We deduce from Lemma 3.3.12 that un→ uc strongly in H1(RN ) and
the conclusions follow.

Now we shall show that

Lemma 3.3.14. For any c ∈ (0, c1), we have that

γ−(c) < γ+(c) +
1

3
√
aKGN

.

As already indicated our proof is inspired by [89, Lemma 3.1]. Let uε be an extremal
function for the Sobolev inequality in R

3 defined by

uε(x) :=
[N (N − 2)ε2]

N−2
4

[ε2 + |x|2]
N−2

2

, ε > 0, x ∈R3. (3.3.22)

Let ξ ∈ C∞0 (RN ) be a radial non-increasing cut-off function with ξ ≡ 1 in B1, ξ ≡ 0 in R
N\B2.

Setting Uε(x) = ξ(x)uε(x) we recall the following result, see Lemma 2.7.1.

Lemma 3.3.15. Denoting ω the area of the unit sphere in R
3, we have

(i)

∥∇Uε∥2L2(R3) =

√
1

KGN
+O(ε) and ∥Uε∥2

∗

L2∗ (R3) =

√
1

KGN
+O(ε3).

(ii) For some positive constant K > 0,

∥Uε∥
q
Lq(R3) =


Kε3− q2 + o(ε3− q2 ) if q ∈ (3,6),

ωε
3
2 | logε|+O(ε

3
2 ) if q = 3,

ω
(∫ 2

0
ξq(r)
rq−2 dr

)
ε
q
2 + o(ε

q
2 ) if q ∈ [1,3).

In the rest of the subsection we assume that c ∈ (0, c1) is arbitrary but fixed. Let u+
c be

as provided by Theorem 3.1.2. We recall that u+
c ∈ Λ+(c) satisfies F(u+

c ) = γ+(c) and is a
bounded continuous positive Schwarz symmetric function.

Lemma 3.3.16. For any 1 ≤ p,q <∞, it holds that∫
R

3
|u+
c (x)|p|Uε(x)|qdx ∼

∫
R

3
|Uε(x)|qdx.



75 3.3. The case γ > 0, a > 0 and p ∈ (10
3 ,6]

Proof. On one hand, since u+
c is bounded, we have that∫

R
3
|u+
c (x)|p|Uε(x)|qdx ≤ ∥u+

c ∥
p
L∞(R3)

∫
R

3
|Uε(x)|qdx.

On the other hand, since u+
c > 0 on R

3 is continuous and the function Uε is compactly sup-
ported in B2, we have that∫

R
3
|u+
c (x)|p|Uε(x)|qdx =

∫
B2

|u+
c (x)|p|Uε(x)|qdx ≥min

x∈B2

|u+
c (x)|p

∫
B2

|Uε(x)|qdx

= min
x∈B2

|u+
c (x)|p

∫
R

3
|Uε(x)|qdx.

The lemma is proved.

For any ε > 0 and any t > 0, we have

A(u+
c + tUε) = ∥∇(u+

c + tUε)∥2L2(R3) = A(u+
c ) + 2

∫
R

3
∇u+

c (x) · ∇(tUε(x))dx+A(tUε) (3.3.23)

and

∥u+
c + tUε∥2L2(R3) = c+ 2

∫
R

3
u+
c (x)(tUε(x))dx+ ∥tUε∥2L2(R3). (3.3.24)

Using that, for all a,b ≥ 0, (a+ b)6 ≥ a6 + 6a5b + 6ab5 + b6, and that both u+
c ∈H1(RN ) and Uε

are non negative, we readily derive that

C(u+
c + tUε) = ∥u+

c + tUε∥6L6(R3)

≥ C(u+
c ) +C(tUε) + 6

∫
R

3
(u+
c (x))5(tUε(x))dx+ 6

∫
R

3
u+
c (x)(tUε(x))5dx.

(3.3.25)

Also, still using that u+
c ∈H1(RN ) and Uε are non negative, we get by direct calculations that

B(u+
c + tUε) =

∫
R

3

∫
R

3

|u+
c (x) + tUε(x)|2|u+

c (y) + tUε(y)|2

|x − y|
dxdy

≥ B(u+
c ) +B(tUε) + 4

∫
R

3

∫
R

3

|u+
c (x)|2u+

c (y)(tUε(y))
|x − y|

dxdy.

(3.3.26)

Finally, since u+
c is solution of the following equation

−∆u +λ+
c u −γ(|x|−1 ∗ |u|2)u − a|u|p−2u = 0 in R

3

for a λ+
c > 0, we have that

−λ+
c

∫
R

3
u+
c (x)(tUε)(x)dx =

∫
R

3
∇u+

c (x)∇(tUε)(x)dx

−γ
∫
R

3

∫
R

3

|u+
c (x)|2u+

c (y)(tUε(y))
|x − y|

dxdy − a
∫
R

3
(u+
c (x))5(tUε(x))dx.

(3.3.27)

Now, we define for t > 0, wε,t = u+
c +tUε and wε,t(x) =

√
θwε,t(θx) with θ2 =

1
c
∥wε,t∥2L2(R3). The

proof of Lemma 3.3.14 will follow directly from the three lemmas below.
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Lemma 3.3.17. It holds that
γ−(c) ≤ sup

t≥0
F(wε,t)

for ε > 0 sufficiently small.

Lemma 3.3.18. There exist a ε0 > 0 and 0 < t0 < t1 <∞ such that

F(wε,t) < γ
+(c) +

1
6
√
aKGN

for t < [t0, t1] and any ε ∈ (0, ε0].

Lemma 3.3.19. It holds that

max
t∈[t0,t1]

F(wε,t) < γ
+(c) +

1
3
√
aKGN

,

for any ε ∈ (0, ε0] where ε0 and t0, t1 are provided by Lemma 3.3.18.

Proof of Lemma 3.3.17. By direct calculation we get

A(wε,t) = A(wε,t), C(wε,t) = C(wε,t), (3.3.28)

and
∥wε,t∥2L2(R3) = θ−2∥wε,t∥2L2(R3), B(wε,t) = θ−3B(wε,t). (3.3.29)

Since θ2 =
1
c
∥wε,t∥2L2(R3), we have that wε,t ∈ S(c). By Lemma 3.3.4 there exists s−ε,t > 0 such

that (wε,t)s
−
ε,t ∈Λ−(c). We claim that s−ε,t→ 0 as t→ +∞ uniformly for ε > 0 sufficiently small.

Indeed, we have
A((wε,t)

s−ε,t ) =
γ

4
B((wε,t)

s−ε,t ) + aC((wε,t)
s−ε,t )

or equivalently

(s−ε,t)A(wε,t) =
γ

4
B(wε,t) + a(s−ε,t)

5C(wε,t).

This implies that

A(wε,t) ≥ a(s−ε,t)
4C(wε,t). (3.3.30)

In view of (3.3.23), (3.3.28), Lemma 3.3.15(i) and using Hölder’s inequality, we have

A(wε,t) = A(wε,t) = A(u+
c ) + 2

∫
R

3
∇u+

c (x) · ∇(tUε(x))dx+A(tUε)

≤ A(u+
c ) + 2t∥∇u+

c ∥L2(R3)∥∇Uε∥L2(R3) + t2A(Uε)

→ A(u+
c ) + 2J

√
A(u+

c ) t + Jt2 as ε→ 0.

(3.3.31)

In view of (3.3.25), (3.3.28) and Lemma 3.3.15(i), we also have

C(wε,t) = C(wε,t) ≥ C(tUε) = t6C(Uε)→ Lt6 as ε→ 0. (3.3.32)

Combining (3.3.30)-(3.3.32), we obtain that, for ε > 0 sufficiently small

A(u+
c ) + J

√
A(u+

c ) t + Jt2 ≥ a(s−ε,t)
4Lt6,
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which implies the claim. Since wε,0 = wε,0 = u+
c and u+

c ∈ Λ+(c) we obtain, see Lemma 3.3.4,
that s−ε,0 > 1. Still by Lemma 3.3.4, the map t 7→ s−ε,t is continuous which implies that there
exists tε > 0 such that s−ε,tε = 1. It follows that wε,tε ∈Λ

−(c) and thus

sup
t≥0

F(wε,t) ≥ F(wε,tε ) ≥ γ
−(c).

The lemma is proved.

Proof of Lemma 3.3.18. In view of (3.3.28) and (3.3.29), we have that

F(wε,t) =
1
2
A(wε,t)−

γ

4
θ−3B(wε,t)−

a
6
C(wε,t).

Hence, by (3.3.23), (3.3.25) and (3.3.26), we get that

F(wε,t) ≤
1
2

[
A(u+

c ) + 2
∫
R

3
∇u+

c (x) · ∇(tUε(x))dx+A(tUε)
]
−
γ

4
θ−3B(u+

c )− a
6

[
C(u+

c ) +C(tUε)
]

= F(u+
c ) +

γ

4
(1−θ−3)B(u+

c ) +
∫
R

3
∇u+

c (x) · ∇(tUε(x))dx+
1
2
A(tUε)−

a
6
C(tUε)

≤ F(u+
c ) +

γ

4
(1−θ−3)B(u+

c ) + t∥∇u+
c ∥L2(R3)∥∇Uε∥L2(R3) +

1
2
t2A(Uε)−

a
6
t6C(Uε) := I(t).

By Lemma 3.3.15(i), we have that, uniformly for ε > 0 small, I(t) → −∞ as t → +∞ and
I(t)→ F(u+

c ) as t→ 0 due to θ→ 1. Hence, there exists ε0 > 0 and 0 < t0 < t1 <∞ such that

F(wε,t) < γ
+(c) +

1
6
√
aKGN

for t < [t0, t1] and ε ∈ (0, ε0]. The lemma is proved.

Proof of Lemma 3.3.19. We assume throughout the proof that t ∈ [t0, t1]. By using (3.3.26),
we can write,

F(wε,t) =
1
2
A(wε,t)−

γ

4
θ−3B(wε,t)−

a
6
C(wε,t)

≤ 1
2
A(wε,t)−

γ

4
θ−3

[
B(u+

c ) +B(tUε) + 4
∫
R

3

∫
R

3

|u+
c (x)|2u+

c (y)(tUε(y))
|x − y|

dxdy
]
− a

6
C(wε,t)

= I1 + I2,
(3.3.33)

where

I1 :=
1
2
A(wε,t)−

γ

4

[
B(u+

c ) +B(tUε) + 4
∫
R

3

∫
R

3

|u+
c (x)|2u+

c (y)(tUε(y))
|x − y|

dxdy
]
− a

6
C(wε,t),

and

I2 :=
γ

4
(1−θ−3)

[
B(u+

c ) +B(tUε) + 4
∫
R

3

∫
R

3

|u+
c (x)|2u+

c (y)(tUε(y))
|x − y|

dxdy
]
. (3.3.34)
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In view of (3.3.23), (3.3.25) and using crucially (3.3.27), we have

I1 ≤
1
2

[
A(u+

c ) + 2
∫
R

3
∇u+

c (x) · ∇(tUε(x))dx+A(tUε)
]

−
γ

4

[
B(u+

c ) +B(tUε) + 4
∫
R

3

∫
R

3

|u+
c (x)|2u+

c (y)(tUε(y))
|x − y|

dxdy
]

− a
6

[
C(u+

c ) +C(tUε) + 6
∫
R

3
(u+
c (x))5(tUε(x))dx+ 6

∫
R

3
u+
c (x)(tUε(x))5dx

]
= F(u+

c ) +F(tUε)−λ+
c

∫
R

3
u+
c (x)(tUε(x))dx − a

∫
R

3
u+
c (x)(tUε(x))5dx.

(3.3.35)

Now, we shall evaluate I2. By (3.3.24) and Lemma 3.3.15(ii), we get that

θ2 =
∥wε,t∥2L2(R3)

c
= 1 +

2
c

∫
R

3
u+
c (x)(tUε(x))dx+

t2

c
∥Uε∥2L2(R3)

= 1 +
2
c

∫
R

3
u+
c (x)(tUε(x))dx+

t2

c

[
ω
(∫ 2

0
ξ(r)dr

)
ε+O(ε2)

]
= 1 +

2
c

∫
R

3
u+
c (x)(tUε(x))dx+O(ε).

(3.3.36)

Note that, by Lemma 3.3.15(ii) and Lemma 3.3.16,∫
R

3
u+
c (x)(tUε(x))dx ∼ ∥∇Uε∥L1(R3) =O(ε

1
2 ). (3.3.37)

Observing that the Taylor expansion of (1 + x)−
3
2 around x = 0 is given by

(1 + x)−
3
2 = 1− 3

2
x+O(x2),

we get, in view of (3.3.36) and (3.3.37), that

1−θ−3 = 1− (θ2)−
3
2 = 1−

[
1 +

2
c

∫
R

3
u+
c (x)(tUε(x)) +O(ε)

]− 3
2

= 1−
[
1− 3

c

∫
R

3
u+
c (x)(tUε(x)) +O(ε)

]
=

3
c

∫
R

3
u+
c (x)(tUε(x)) +O(ε).

(3.3.38)

Concerning the term B(tUε), in view of (3.2.2) and Lemma 3.3.15(ii), we have

B(tUε) = t4B(Uε) ≤ t4K1∥Uε∥4
L

12
5 (R3)

= t4K1

(
∥Uε∥

12
5

L
12
5 (R3)

) 10
6

= t4K1

(
K2ε

6
5 + o(ε

6
5 )
) 10

6
=O(ε2).

(3.3.39)

Also, we can deduce from the Hardy-Littlewood-Sobolev inequality (3.2.1) and Lemma 3.3.16,
Lemma 3.3.15(ii) that∫

R
3

∫
R

3

|u+
c (x)|2u+

c (y)(tUε(y))
|x − y|

dxdy ≤ K2∥u+
c ∥2

L
12
5 (R3)

∥u+
c Uε∥L 6

5 (R3)

≤ K3∥Uε∥L 6
5 (R3)

=O(ε
3
5 ).

(3.3.40)
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From (3.3.39) and (3.3.40) we deduce that

B(u+
c ) +B(tUε) + 4

∫
R

3

∫
R

3

|u+
c (x)|2u+

c (y)(tUε(y))
|x − y|

dxdy = B(u+
c ) +O(ε

3
5 ). (3.3.41)

Taking into account, see (3.3.18), that

cλ+
c =

3γ
4
B(u+

c )

we obtain, combining (3.3.34), (3.3.37), (3.3.38) and (3.3.41), the following evaluation of I2

I2 ≤
3γ
4c
B(u+

c )
∫
R

3
u+
c (x)(tUε(x))dx+O(ε) = λ+

c

∫
R

3
u+
c (x)(tUε(x))dx+O(ε). (3.3.42)

At this point, in view of (3.3.33), (3.3.35) and (3.3.42) we deduce that

F(wε,t) ≤ F(u+
c ) +F(tUε)− a

∫
R

3
u+
c (x)(tUε(x))5dx+O(ε)

≤ F(u+
c ) +F(tUε)− at50

∫
R

3
u+
c (x)(Uε(x))5dx+O(ε).

(3.3.43)

In view of Lemma 3.3.15(i), a direct calculation shows that

max
t∈[t0,t1]

F(tUε) = max
t∈[t0,t1]

[1
2
A(tUε)−

γ

4
B(tUε)−

a
6
C(tUε)

]
≤ max
t∈[t0,t1]

[1
2
A(tUε)−

a
6
C(tUε)

]
≤max

t>0

[1
2
A(tUε)−

a
6
C(tUε)

]
=

1
3
√
aKGN

+O(ε).

(3.3.44)

In view of (3.3.43) and (3.3.44), by Lemma 3.3.15(ii) and Lemma 3.3.16, we conclude by
observing that

−at50
∫
R

3
u+
c (x)(Uε(x))5dx ∼ −∥Uε(x)∥5L5(R3) = −Kε

1
2 + o(ε

1
2 ).

Proof of Theorem 3.1.2 in the critical case p = 6 for γ−(c). We conclude that γ−(c) is reached by
combining Lemma 3.3.7, Lemma 3.3.13 and Lemma 3.3.14. The rest of the proof is identical
to the one in the case p ∈ (10

3 ,6).

3.3.4 The compactness of any minimizing sequence associated to γ+(c) for p ∈
(10

3 ,6]

In this subsection we give the proof of Theorem 3.1.5. For short we introduce the following
notations,

M :=
p

aσ (σ − 1)KGN
, N :=

4(σ − 2)
γ(σ − 1)KH

, k0 :=N−2, and k1 := k0c
3
1. (3.3.45)

Note that

c1 =N
3p−10
4(p−3)M

1
2(p−3) .
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Lemma 3.3.20. Let p ∈ (10
3 ,6] and c ∈ (0, c1).

(i) If u ∈Λ+(c) then we have

A(u) < k0c
3. (3.3.46)

(ii) Λ+(c) ⊂ V (c) and

γ+(c) = inf
u∈Λ+(c)

F(u) = inf
u∈V (c)

F(u).

(iii) If uc is a minimizer for the minimization problem

inf
u∈V (c)

F(u)

then uc ∈ V (c) and γ+(c) is reached.

Proof. i) Since u ∈Λ+(c),

A(u) =
γ

4
B(u) +

aσ
p
C(u) and A(u) >

aσ (σ − 1)
p

C(u).

Using Lemma 3.2.1(i), we have

σ − 2
σ − 1

A(u) <
γ

4
B(u) ≤

γ

4
KH

√
A(u)c

3
2 ,

which implies that

A(u) <
[
γ(σ − 1)KH

4(σ − 2)

]2

c3 =N−2c3 = k0c
3 < k0c

3
1 = k1. (3.3.47)

Hence, the point (i) holds.
ii) By (3.3.47), we obtain that Λ+(c) ⊂ V (c) and hence

inf
u∈Λ+(c)

F(u) ≥ inf
u∈V (c)

F(u).

To prove the point (ii), it is sufficient to show that

inf
u∈Λ+(c)

F(u) ≤ inf
u∈V (c)

F(u). (3.3.48)

Firstly, we claim that Λ−(c)∩V (c) = ∅. Indeed, let v ∈Λ−(c). Taking into account that

A(v) <
aσ (σ − 1)

p
C(v),

and using Lemma 3.2.1(ii), we obtain that

A(v) <
aσ (σ − 1)

p
KGN c

6−p
4 [A(v)]

σ
2 =M−1c

6−p
4 [A(v)]

σ
2 .
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This implies that

A(v) >M
4

3p−10 c−
6−p

3p−10 .

By direct computations, we can check that

N−2c3
1 =M

4
3p−10 c

− 6−p
3p−10

1 ,

which implies that for all 0 < c < c1,

k1 =N−2c3
1 =M

4
3p−10 c

− 6−p
3p−10

1 <M
4

3p−10 c−
6−p

3p−10 < A(v). (3.3.49)

Therefore, the claim holds. Next, let u ∈ S(c). Since the mapping t 7→ A(ut) is continuous
increasing, there exists a unique t1u > 0 such that A(ut

1
u ) = k1. By Lemma 3.3.4 and (3.3.47),

(3.3.49), we have

A(us
+
u ) < A(ut

1
u ) < A(us

−
u ),

which implies that

s+u < t
1
u < s

−
u .

Since g ′u(t) > 0 for all t ∈ (s+u , s
−
u), we get that g ′u(t) > 0 for all t ∈ (s+u , t

1
u] and hence

F(us
+
u ) = gu(s+u ) < gu(t) = F(ut) ∀t ∈ (s+u , t

1
u]. (3.3.50)

Since s+u is the unique local minimum point for gu on (0, s−u), we have that F(us
+
u ) ≤ F(ut) for

all t ∈ (0, t1u]. Therefore, we obtain that

F(us
+
u ) = min{F(ut)|0 < t ≤ t1u} = min{F(ut)|t ∈R,A(ut) ≤ k1}.

In particular, if u ∈ V (c) we have

F(us
+
u ) = min{F(ut)|t ∈R,A(ut) ≤ k1} = min{F(u)|u ∈ V (c)} ≤ F(u).

This implies (3.3.48) and the point (ii) is proved.
iii) If we assume that uc ∈ ∂V (c), namely A(uc) = k1 and

F(uc) = min{F(u)|u ∈ V (c)} = min{F(ut)|t ∈R,A(ut) ≤ k1},

and we have a contradiction with (3.3.50). Thus, we have uc ∈ V (c). Now, since the minimizer
uc lies in the open (with respect to S(c)) set V (c), we deduce from Lemma 3.2.2 that uc ∈Λ(c).
By Λ−(c)∩V (c) = ∅ and Λ0(c) = ∅, we conclude that uc ∈Λ+(c) and thus γ+(c) is reached.

Lemma 3.3.21. It holds that

(i) γ+(c) < 0, ∀c ∈ (0, c1).

(ii) c ∈ (0, c1) 7→ γ+(c) is a continuous mapping.

(iii) Let c ∈ (0, c1), for all α ∈ (0, c), we have γ+(c) ≤ γ+(α) +γ+(c−α) and if γ+(α) or γ+(c−α)
is reached then the inequality is strict.
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Proof. Point (i) follows from Lemma 3.3.5. To prove (ii), let c ∈ (0, c1) be arbitrary and (cn) ⊂
(0, c1) be such that cn→ c. From the definition of γ+(cn), for any ε > 0, there exists un ∈Λ+(cn)
such that

F(un) ≤ γ+(cn) + ε. (3.3.51)

By (3.3.46), we have A(un) < k0c
3
n. We set yn :=

√
c
cn
·un. Hence, we have yn ∈ S(c) and

A(yn) =
c
cn
A(un) <

c
cn
k0c

3
n = k0c

2
nc < k0c

3
1 = k1.

This implies that yn ∈ V (c). Taking into account that
c
cn
→ 1, we have

γ+(c) ≤ F(yn) = F(un) + on(1). (3.3.52)

Combining (3.3.51) and (3.3.52), we get

γ+(c) ≤ γ+(cn) + ε+ on(1).

Reversing the argument we obtain similarly that

γ+(cn) ≤ γ+(c) + ε+ on(1).

Therefore, since ε > 0 is arbitrary, we deduce that γ+(cn)→ γ+(c). The point (ii) follows.
iii) Note that, fixed α ∈ (0, c), it is sufficient to prove that the following holds

∀θ ∈
(
1,
c
α

]
: γ+(θα) ≤ θγ+(α) (3.3.53)

and that, if γ+(α) is reached, the inequality is strict. Indeed, if (3.3.53) holds then it follows
directly that

γ+(c) =
c −α
c
γ+(c) +

α
c
γ+(c) =

c −α
c
γ+

( c
c −α

(c −α)
)

+
α
c
γ+

( c
α
α
)
≤ γ+(c −α) +γ+(α)

with a strict inequality if γ+(α) is reached. To prove that (3.3.53) holds, note that for any
ε > 0 sufficiently small, there exist u ∈Λ+(α) such that

F(u) ≤ γ+(α) + ε. (3.3.54)

By (3.3.46), we have A(u) < k0α
3. Consider now v :=

√
θu, we have

∥v∥L2(R3) = θ∥u∥L2(R3), A(v) = θA(u), B(v) = θ2B(u), C(v) = θ3C(u).

Therefore, we obtain that v ∈ S(θα) and

A(v) = θA(u) < k0θα
3 < k0(θα)3 ≤ k0c

3 < k1.

Hence, v ∈ V (θα) and we can write

γ+(θα) ≤ F(v) =
1
2
A(v)−

γ

4
B(v)− a

p
C(v) =

1
2
θA(u)−

γ

4
θ2B(u)− a

p
θ3C(u)

<
1
2
θA(u)−

γ

4
θB(u)− a

p
θC(u) = θF(u) ≤ θ(γ+(α) + ε).

Since ε > 0 is arbitrary, we have that γ+(θα) ≤ θγ+(α). If γ+(α) is reached then we can let
ε = 0 in (3.3.54) and thus the strict inequality follows.
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Lemma 3.3.22. Let (vn) ⊂ H1(R3) be such that B(vn)→ 0 and A(vn) ≤ k1. Then there exists a
b > 0 such that

F(vn) ≥ bA(vn) + on(1). (3.3.55)

Proof. Indeed, using B(vn)→ 0 and Lemma 3.2.1(ii), we have

F(vn) =
1
2
A(vn)− a

p
C(vn) + on(1) ≥ 1

2
A(vn)− a

p
KGN c

6−p
4 [A(vn)]

σ
2 + on(1) = bA(vn) + on(1),

where

b :=
1
2
− limsup

n→∞

a
p
KGN c

6−p
4 [A(vn)]

σ
2 −1 ≥ 1

2
− a
p
KGN c

6−p
4

1 k
σ
2 −1
1 =

1
2
− 1
σ (σ − 1)

.

Hence, b > 0 due to σ > 2. The lemma is proved.

Lemma 3.3.23. For any c ∈ (0, c1), any minimizing sequence (un) for F on V (c) is, up to transla-
tion, strongly convergent in H1(R3). In addition all minimizers lie in V (c). In particular γ+(c) is
reached.

Proof. Since (un) ⊂ V (c), it is bounded in H1(R3). Also, from γ+(c) < 0 we deduce from
Lemma 3.3.22 that there exists a β0 > 0 and a sequence (yn) ⊂R

3 such that∫
B(yn,R)

|un|2dx ≥ β0 > 0, for some R > 0.

This implies that

un(x − yn)⇀uc , 0 in H1(R3), for some uc ∈H1(R3).

Our aim is to prove that wn(x) := un(x − yn)−uc(x)→ 0 in H1(R3). Clearly

∥un∥2L2(R3) = ∥un(x − yn)∥2L2(R3) = ∥un(x − yn)−uc(x)∥2L2(R3) + ∥uc∥2L2(R3) + on(1)

= ∥wn∥2L2(R3) + ∥uc∥2L2(R3) + on(1).

Thus, we have

∥wn∥2L2(R3) = ∥un∥2L2(R3) − ∥uc∥
2
L2(R3) + on(1) = c − ∥uc∥2L2(R3) + on(1). (3.3.56)

By the similar argument,

A(wn) = A(un)−A(uc) + on(1). (3.3.57)

More generally it is direct to show, using the Brezis-Lieb lemma [24, Theorem 1] for terms
A and C, and using [92, Lemma 2.2] or [17, Proposition 3.1] for term B, that any term in F
also enjoy a the splitting property, and thus we have

F(un −uc) +F(uc) = F(un) + on(1),

and by the translational invariance, we obtain

F(un) = F(un(x − yn)) = F(un(x − yn)−uc(x)) +F(uc) + on(1) = F(wn) +F(uc) + on(1). (3.3.58)
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Now, we claim that

∥wn∥2L2(R3)→ 0 as n→∞. (3.3.59)

In order to prove this, let us denote c̃ := ∥uc∥2L2(R3) > 0. By (3.3.56), if we show that c̃ = c then
the claim follows. We assume by contradiction that c̃ < c. In view of (3.3.56) and (3.3.57),
for n large enough, we have ∥wn∥2L2(R3) ≤ c and A(wn) ≤ A(un) ≤ k1. Hence, we obtain that

wn ∈ V (∥wn∥2L2(R3)) and F(wn) ≥ γ+
(
∥wn∥2L2(R3)

)
. Recording that F(un) → γ+(c), in view of

(3.3.58), we have

γ+(c) = F(wn) +F(uc) ≥ γ+
(
∥wn∥2L2(R3)

)
+F(uc).

Since the map c 7→ γ+(c) is continuous (see Lemma 3.3.21(ii)) and in view of (3.3.56), we
deduce that

γ+(c) ≥ γ+(c − c̃) +F(uc). (3.3.60)

We also have that uc ∈ V (c̃) by the weak limit. This implies that F(uc) ≥ γ+(c̃). If F(uc) > γ+(c̃),
then it follows from (3.3.60) and Lemma 3.3.21(iii) that

γ+(c) > γ+(c − c̃) +γ+(c̃) ≥ γ+(c − c̃+ c̃) = γ+(c),

which is impossible. Hence, we have F(uc) = γ+(c̃), namely uc is local minimizer on V (c̃). So,
we can using Lemma 3.3.21(iii) with the strict inequality and we deduce from (3.3.60) that

γ+(c) ≥ γ+(c − c̃) +F(uc) = γ+(c − c̃) +γ+(c̃) > γ+(c − c̃+ c̃) = γ+(c),

which is impossible. Thus, the claim follows and ∥uc∥2L2(R3) = c.

Let us now show that A(wn)→ 0. This will complete the proof of the lemma. In this aim
first observe that since (wn) is a bounded sequence inH1(RN ) we have, using Lemma 3.2.1(i),
not only that ∥wn∥2L2(R3)→ 0 but also that B(wn)→ 0. Now we remember that

F(un) = F(uc) +F(wn) + on(1)→ γ+(c). (3.3.61)

Since uc ∈ V (c) by weak convergence property, we have, by Lemma 3.3.20(ii), that F(uc) ≥
γ+(c). Thus from (3.3.61) we deduce, on one hand, that necessarily F(wn) ≤ o(1). On the
other hand, since A(wn) ≤ A(un) ≤ k1, Lemma 3.3.22 implies that F(wn) ≥ bA(wn) + on(1)
for some b > 0. Hence, we conclude A(wn) → 0 and thus that un → uc ∈ V (c) strongly in
H1(R3). Finally, by Lemma 3.3.20(iii), we have uc ∈ V (c) and γ+(c) is reached. The lemma is
proved.

3.3.5 Asymptotic behavior of the Lagrange multipliers and the monotonicity of
the map c 7→ γ−(c)

Lemma 3.3.24. Let p ∈ (10
3 ,6]. There exist two constants K1 > 0 and K2 > 0 such that for any

c ∈ (0, c1), if λ+
c is the Lagrange parameter associated to a solution u+

c lying at the level γ+(c) then
we have

|γ+(c)| ≤ K1c
3 and λ+

c ≤ K2c
2.
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Proof. By Lemma 3.3.20(i), we have

A(u+
c ) < N−2c3 =

[
γ(σ − 1)KH

4(σ − 2)

]2

c3.

Hence, we can deduce from Lemma 3.2.1(i) that

B(u+
c ) ≤ KH

√
A(u+

c )c
3
2 <

γ(σ − 1)K2
H

4(σ − 2)
c3.

Therefore, we have

|γ+(c)| = |F(u+
c )| =

∣∣∣∣∣σ − 2
2σ

A(u+
c )−

γ(σ − 1)
4σ

B(u+
c )

∣∣∣∣∣ ≤ σ − 2
2σ

A(u+
c ) +

γ(σ − 1)
4σ

B(u+
c )

<
σ − 2
2σ

[
γ(σ − 1)KH

4(σ − 2)

]2

c3 +
γ(σ − 1)

4σ
γ(σ − 1)K2

H

4(σ − 2)
c3

=
3γ2(σ − 1)2K2

H

32σ (σ − 2)
c3 := K1c

3.

We deduce from (3.2.6) that

2(3p − 6)cλ+
c = 2(6− p)A(u+

c ) + (5p − 12)γB(u+
c )

< 2(6− p)
[
γ(σ − 1)KH

4(σ − 2)

]2

c3 + (5p − 12)γ
γ(σ − 1)K2

H

4(σ − 2)
c3.

This implies that there exists a constant K2 > 0 such that λ+
c ≤ K2c

2. The lemma is proved.

Lemma 3.3.25. Let p ∈ (10
3 ,6). There exist two constants K1 > 0 and K2 > 0 such that is λ−c

denotes the Lagrange parameter associated to a solution u−c lying at the level γ−(c),

|γ−(c)| > K1c
− 6−p

3p−10 and λ−c > K2c
− 2p−4

3p−10 .

Proof. By u−c ∈Λ−(c), we have

A(u−c ) <
aσ (σ − 1)

p
C(u−c ).

Using Lemma 3.2.1(ii), we obtain that

A(u−c ) <
aσ (σ − 1)

p
KGN c

6−p
4 [A(u−c )]

σ
2 ,

which implies that

A(u−c ) >
[

p

aσ (σ − 1)KGN

] 2
σ−2

c−
6−p

3p−10 .
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We have that

|γ−(c)| = |F(u−c )| =
∣∣∣∣∣−1

2
A(u−c ) +

a(σ − 1)
p

C(u−c )
∣∣∣∣∣

>
σ − 2
2σ

A(u−c ) >
σ − 2
2σ

[
p

aσ (σ − 1)KGN

] σ−2
2

c−
6−p

3p−10 := K1c
− 6−p

3p−10 .

We deduce from (3.2.6) that

λ−c =
1
c

1
2(3p − 6)

[2(6− p)A(u−c ) + (5p − 12)γB(u−c )]

>
1
c

6− p
3p − 6

A(u−c ) >
1
c

6− p
3p − 6

[
p

aσ (σ − 1)KGN

] σ−2
2

c−
6−p

3p−10 := K2c
− 2p−4

3p−10 .

The lemma is proved.

Lemma 3.3.26. Let p = 6. There exists a constant K1 > 0 such that if λ−c denote the Lagrange
parameter associated to a solution u−c lying at the level γ−(c) then we have

γ−(c)→ 1
3
√
aKGN

as c→ 0 and λ−c ≤ K1c
1
2 .

Proof. Since F(u) restricted to Λ(c) is coercive on H1(R3) (see Lemma 3.3.1) we have that
A(u−c ) remains bounded. We deduce from (3.2.6) and Lemma 3.2.1(i) that

λ−c =
1
c

3γ
4
B(u−c ) ≤ 1

c

3γ
4
KH

√
A(u−c )c

3
2 := K1c

1
2 .

We have that B(u−c )→ 0 as c→ 0 due to B(u−c ) ≤ KH
√
A(u−c )c

3
2 . Since Q(u−c ) = 0, we have

A(u−c ) = aC(u−c ) + oc(1),

where oc(1)→ 0 as c→ 0. Passing to the limit as c→ 0, up to subsequence we infer that

lim
c→0

A(u−c ) = lim
c→0

aC(u−c ) := ℓ ≥ 0.

Using Lemma 3.2.1(ii), we have

ℓ = lim
c→0

aC(u−c ) ≤ lim
c→0

aKGN [A(u−c )]3 = aKGN ℓ
3.

Therefore, either ℓ = 0 or ℓ ≥ (aKGN )−
1
2 . Using Lemma 3.3.5(ii), we ensure that ℓ ≥ (aKGN )−

1
2 .

Hence, we have

γ−(c) + oc(1) = F(u−c ) =
σ − 2
2σ

A(u−c )−
γ(σ − 1)

4σ
B(u−c ) =

1
3
A(u−c ) + oc(1)

=
1
3
ℓ + oc(1) ≥ 1

3
√
aKGN

+ oc(1),

which implies that

γ−(c) ≥ 1
3
√
aKGN

as c→ 0.

Recording Lemma 3.3.14, the lemma is proved.
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Lemma 3.3.27. When p ∈ (10
3 ,6], the function c 7→ γ−(c) is strictly decreasing on (0, c1).

Proof. Let 0 < c2 < c3 < c1, Since γ−(c2) is reached, there exists u ∈ S(c2) such that F(u) =

γ−(c2). We define v ∈ S(c3) by v(x) =
√
θu(θx) where θ =

√
c2
c3
< 1. By direct calculations we

have
A(v) = A(u), B(v) = θ−3B(u) and C(v) = θ

p
2−3C(u). (3.3.62)

Now observe that, since θ < 1, for all t > 0,

F(vt) =
1
2
t2A(v)−

γ

4
tB(v)− a

p
tσC(v)

=
1
2
t2A(u)−

γ

4
tθ−3B(u)− a

p
tσθ

p
2−3C(u) < F(ut).

(3.3.63)

By (3.3.46) and (3.3.49), we have that

A(us
+
u ) < k1 < A(vs

−
v ),

and thus s+u < s
−
v due to A(v) = A(u). Hence, we can deduce from (3.3.63) that

F(vs
−
v ) <max

s+
u<t

F(ut) = F(u) = γ−(c2).

This implies that γ−(c3) < γ−(c2) and hence, the lemma is proved.

3.4 The case γ > 0, a < 0 and p ∈ (10
3 ,6]

Throughout this section, we assume that γ > 0, a < 0 and p ∈ (10
3 ,6].

Lemma 3.4.1. F restricted to S(c) is coercive on H1(R3) and bounded from below.

Proof. Let u ∈ S(c). Using Lemma 3.2.1(i), we obtain

F(u) =
1
2
A(u)−

γ

4
B(u)− a

p
C(u) ≥ 1

2
A(u)−

γ

4
KH

√
A(u)c

3
2 − a

p
C(u).

Since γ > 0, a < 0, this concludes the proof.

In what follows, we collect some basic properties of m(c) defined in (3.1.3).

Lemma 3.4.2. It holds that

(i) m(c) < 0, ∀c > 0.

(ii) c 7→m(c) is a continuous mapping.

(iii) For any c2 > c1 > 0, we have c1m(c2) ≤ c2m(c1). If m(c1) is reached then the inequality is
strict.

(iv) For any c2, c1 > 0, we have m(c1 + c2) ≤m(c1) +m(c2). If m(c1) or m(c2) is reached then the
inequality is strict.
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Proof. i) For any u ∈ S(c), we recall that ut ∈ S(c) and

gu(t) = F(ut) =
1
2
t2A(u)−

γ

4
tB(u)− a

p
tσC(u) and also g ′u(t) = tA(u)−

γ

4
B(u)− aσ

p
tσ−1C(u).

We observe that gu(t)→ 0 and g ′u(t)→ −γ4B(u) < 0 as t → 0. Therefore, there exists t0 > 0
such that F(ut0) = gu(t0) < 0. Thus, we have m(c) < 0.

ii) We assume that cn → c. From the definition of m(cn), for any ε > 0, there exists un ∈
S(cn) such that

F(un) ≤m(cn) + ε. (3.4.1)

We set yn :=
√

c
cn
·un. Taking into account that yn ∈ S(c) and c

cn
→ 1, we have

m(c) ≤ F(yn) = F(un) + on(1). (3.4.2)

Combining (3.4.1) and (3.4.2), we get

m(c) ≤m(cn) + ε+ on(1).

Reversing the argument we obtain similarly that

m(cn) ≤m(c) + ε+ on(1).

Therefore, since ε > 0 is arbitrary, we deduce that m(cn)→m(c). The point (ii) follows.
iii) Let t := c2

c1
> 1. For any ε > 0, there exist u ∈ S(c1) such that

F(u) ≤m(c1) + ε. (3.4.3)

Let v := u(t−
1
3 x). Then we have ∥v∥2L2(R3) = t∥u∥2L2(R3) = c2, hence v ∈ S(c2). Moreover, we have

A(v) = t
1
3A(u), B(v) = t

5
3B(u), C(v) = tC(u).

Therefore, we have

m(c2) ≤ F(v) =
1
2
A(v)−

γ

4
B(v)− a

p
C(v) =

1
2
t

1
3A(u)−

γ

4
t

5
3B(u)− a

p
tC(u)

<
1
2
tA(u)−

γ

4
tB(u)− a

p
tC(u) = t

(
1
2
A(u)−

γ

4
B(u)− a

p
C(u)

)
= tF(u) ≤ t(m(c1) + ε) =

c2

c1
m(c1) +

c2

c1
ε.

Since ε > 0 is arbitrary, we have c1m(c2) ≤ c2m(c1). If m(c1) is reached then we can let ε = 0 in
(3.4.3) and thus the strict inequality follows.

iv) Assume first that 0 < c1 ≤ c2. Then, by (iii), we have that

m(c1 + c2) ≤ c1 + c2

c2
m(c2) =m(c2) +

c1

c2
m(c2) ≤m(c2) +

c1

c2

c2

c1
m(c1) =m(c1) +m(c2).

If m(c1) or m(c2) is reached, then we can use the strict inequality in (iii) and thus the strict
inequality follows. The case 0 < c2 < c1 can be treated reversing the role of c1 and c2.
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Lemma 3.4.3. Let (un) ⊂ S(c) be any minimizing sequence for m(c). Then, there exist a β0 > 0
and a sequence (yn) ∈R3 such that∫

B(yn,R)
|un|2dx ≥ β0 > 0, for some R > 0. (3.4.4)

Proof. Since F restricted to S(c) is coercive on H1(R3) (see Lemma 3.4.1), the sequence (un)
is bounded. Now, we assume that (3.4.4) does not hold. By [65, Lemma I.1], we have, for
q ∈ (2,6), ∥un∥Lq(R3)→ 0, as n→∞. This implies that

B(un) ≤ K1∥u∥4
L

12
5 (R3)

→ 0,

due to (3.2.2). Hence, we obtain

F(un) =
1
2
A(un)−

γ

4
B(un)− a

p
C(un)→ 1

2
A(un)− a

p
C(un) ≥ 0,

due to a < 0. This contradicts F(un)→m(c) < 0, see Lemma 3.4.2(i).

Lemma 3.4.4. Any minimizing sequence (un) ⊂ S(c) for m(c) is, up to translation, strongly con-
vergent in H1(R3).

Proof. Since F restricted to S(c) is coercive on H1(R3) (see Lemma 3.4.1), the sequence (un) is
bounded in H1(R3). We deduce from the weak convergence in H1(R3), the local compactness
in L2(R3) and Lemma 3.4.3 that

un(x − yn)⇀uc , 0 in H1(R3).

Our aim is to prove that wn(x) := un(x − yn)− uc(x)→ 0 in H1(R3). Now, it is direct to show,
using the Brezis-Lieb lemma [24, Theorem 1] for terms A and C, and using [92, Lemma 2.2]
or [17, Proposition 3.1] for term B, that any term in F also enjoy a the splitting property, and
thus we have

F(un −uc) +F(uc) = F(un) + on(1),

and by the translational invariance, we obtain

F(un) = F(un(x − yn)) = F(un(x − yn)−uc(x)) +F(uc) + on(1) = F(wn) +F(uc) + on(1), (3.4.5)

and

∥un∥2L2(R3) = ∥un(x − yn)∥2L2(R3) = ∥un(x − yn)−uc(x)∥2L2(R3) + ∥uc∥2L2(R3) + on(1)

= ∥wn∥2L2(R3) + ∥uc∥2L2(R3) + on(1).

Thus, we have

∥wn∥2L2(R3) = ∥un∥2L2(R3) − ∥uc∥
2
L2(R3) + on(1) = c − ∥uc∥2L2(R3) + on(1). (3.4.6)

We claim that

∥wn∥2L2(R3)→ 0 as n→∞. (3.4.7)
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In order to prove this, let us denote c1 := ∥uc∥2L2(R3) > 0. By (3.4.6), if we show that c1 = c then
the claim follows. We assume by contradiction that c1 < c. Recording that F(un)→ m(c), in
view of (3.4.5), we have

m(c) = F(wn) +F(uc) ≥m
(
∥wn∥2L2(R3)

)
+F(uc).

Since the map c 7→m(c) is continuous (see Lemma 3.4.2(ii)) and (3.4.6), we deduce that

m(c) ≥m(c − c1) +F(uc). (3.4.8)

If F(uc) > m(c1), then it follows from Lemma 3.4.2(iv) that

m(c) > m(c − c1) +m(c1) ≥m(c − c1 + c1) =m(c),

which is impossible. Hence, we have F(uc) = m(c1), namely uc is global minimizer with
respect to c1. So, we can using Lemma 3.4.2(iv) with the strict inequality and we deduce
from (3.4.8) that

m(c) ≥m(c − c1) +F(uc) =m(c − c1) +m(c1) > m(c − c1 + c1) =m(c),

which is impossible. Thus, the claim follows and ∥uc∥2L2(R3) = c.

At this point, since wn is a bounded sequence in H1(R3) and by Lemma 3.2.1(i), we have

B(wn) ≤ KH
√
A(wn)∥wn∥3L2(R3)→ 0.

Thus, we obtain that

liminf
n→∞

F(wn) = liminf
n→∞

[
1
2
A(wn)− a

p
C(wn)

]
≥ 0. (3.4.9)

On the other hand, since ∥uc∥2L2(R3) = c, we deduce from (3.4.5) that

F(un) = F(wn) +F(uc) + on(1) ≥ F(wn) +m(c) + on(1),

and by F(un)→m(c), we have that

limsup
n→∞

F(wn) ≤ 0. (3.4.10)

Combining (3.4.9) and (3.4.10), we obtain that F(wn)→ 0. Hence, by (3.4.9) and a < 0, we
have A(wn)→ 0 and C(wn)→ 0. Thus, we get wn → 0 in H1(R3). The lemma is completed.

Proof of Theorem 3.1.8. The proof follows directly from Lemma 3.4.4 for the convergence of
the minimizing sequence and from Lemma 3.2.2 for the sign of the Lagrange parameter.

Lemma 3.4.5. There exist three constants K1,K2,K3 > 0 such that if λc denote the Lagrange
parameter associated to a solution uc lying at the level m(c) then we have

|m(c)| ≤ K1c
3 +K2c

2p−3 and λc ≤ K3c
2.
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Proof. By the fact that m(c) < 0 and by using Lemma 3.2.1(i), we get that

0 > m(c) = F(uc) =
1
2
A(uc)−

γ

4
B(uc)−

a
p
C(uc)

≥ 1
2
A(uc)−

γ

4
KH

√
A(uc)c

3
2 − a

p
C(uc) ≥

1
2
A(uc)−

γ

4
KH

√
A(uc)c

3
2 ,

due to our assumption γ > 0 and a < 0. This implies that√
A(uc) <

γKH
2

c
3
2 .

Therefore, using again Lemma 3.2.1, we obtain that

|m(c)| = |F(uc)| =
∣∣∣∣12A(uc)−

γ

4
B(uc)−

a
p
C(uc)

∣∣∣∣ ≤ 1
2
A(uc) +

γ

4
B(uc)−

a
p
C(uc)

≤ 1
2
A(uc) +

γKH
4

√
A(uc)c

3
2 − aKGN

p
[A(uc)]

σ
2 c

6−p
4

≤
γ2K2

H

8
c3 − aKGN

p

[γKH
2

]σ
c

3σ
2 c

6−p
4 := K1c

3 +K2c
2p−3.

We deduce from (3.2.6) that

λc =
6− p

3p − 6
1
c
A(uc) +

γ(5p − 12)
2(3p − 6)

1
c
B(uc) ≤

6− p
3p − 6

1
c
A(uc) +

γ(5p − 12)KH
2(3p − 6)

1
c

√
A(uc)c

3
2

≤
6− p

3p − 6
1
c

γ2K2
H

4
c3 +

γ(5p − 12)KH
2(3p − 6)

1
c

γKH
2

c
3
2 c

3
2 := K3c

2.

Thus, the lemma is proved.

3.5 The case γ < 0, a > 0 and p = 6

Throughout this section, we assume that γ < 0, a > 0 and p = 6. To prove the non-existence
of the positive solution to (3.1.2), we first recall a Liouville-type result, see [7, Theorem 2.1],

Proposition 3.5.1. Assume that N ≥ 3 and the nonlinearity f : (0,∞) 7→ (0,∞) is continuous
and satisfies

liminf
s→0

s−
N
N−2 f (s) > 0.

Then the differential inequality −∆u ≥ f (u) has no positive solution in any exterior domain of RN .

Proof of Theorem 3.1.9. Let u ∈ H1(R3) be a non-trivial solution to (3.1.2). By Lemma 3.2.2,
we have λ < 0 and Q(u) = 0. Hence,

aC(u) = A(u)−
γ

4
B(u) > A(u)

and using Lemma 3.2.1(ii), we obtain that

A(u) < aC(u) ≤ aKGN [A(u)]3.
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This implies that

A(u) >

√
1

aKGN
.

Using again Q(u) = 0 we have that

F(u) =
1
2
A(u)−

γ

4
B(u)− a

6
C(u) =

5a
6
C(u)− 1

2
A(u) >

1
3
A(u) >

1
3
√
aKGN

,

proving point (i). To prove point (ii), we assume by contradiction that there exists a positive
solution u ∈ H1(R3) to (3.1.2). Then, by point (i), the associated Lagrange multiplier λ is
strictly negative. In view of (3.2.8), there exists R0 > 0 large enough such that

(|x|−1 ∗ |u|2)(x) ≤ − λ
2γ

for |x| > R0.

Therefore, we get that

−∆u(x) =
(
−λ+γ(|x|−1 ∗ |u|2)(x) + a|u(x)|4

)
u(x)

≥
(
−λ+γ(|x|−1 ∗ |u|2)(x)

)
u(x) ≥ −λ

2
u(x) for |x| > R0.

By applying Proposition 3.5.1 with f (s) = −λ
2
s, we obtain a contradiction, and thus point (ii)

holds.

Remark 3.5.2. In [81, Theorem 1.2], the author considers the equation

−∆u −λu −µ|u|q−2u − |u|2
∗−2u = 0 in R

N , (3.5.1)

with N ≥ 3, 2 < q < 2∗ and µ < 0. If u ∈ H1(RN ) is a non-trivial solution to (3.5.1) then by [81,
Theorem 1.2], the associated Lagrange multiplier λ is positive and following the arguments in [81,
Proof of Theorem 1.2], one obtains that

−∆u ≥ λ
2
u for |x| > R1,

with R1 > 0 large enough. Hence, by applying Proposition 3.5.1, we see that (3.5.1) has no positive
solution u ∈ H1(RN ) for all N ≥ 3, improving slightly the conclusions of [81, Theorem 1.2].
Actually, borrowing an observation from [18], the non-existence results of [81, Theorem 1.2] can
be further extended by showing that (3.5.1) has no non-trivial radial solutions in H1(RN ) when
N ≥ 3 and q > 2 + 2

N−1 . Indeed, if u ∈ H1(RN ) is a radial function by [18, Radial Lemma A.II],
there exist constants C > 0 and R2 > 0 such that

|u(x)| ≤ C|x|−
N−1

2 for |x| > R2.

Setting V (x) = −µ|u(x)|q−2 − |u(x)|2∗−2, we obtain that any radial solution u ∈H1(RN ) satisfies

−∆u(x) +V (x)u(x) = λu(x), (3.5.2)
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where, since q > 2 + 2
N−1 ,

lim
|x|→∞

|x||V (x)| ≤ lim
|x|→∞

[
−µC|x|−

(N−1)(q−2)
2 +1 +C|x|−

(N−1)(2∗−2)
2 +1

]
= 0.

Then (3.5.2) has no solution in view of Kato’s result [52, page 404], also see [79] which states
that Schrödinger operator H = −∆ + p(x) has no positive eigenvalue with an L2-eigenfunction if
p(x) = o(|x|−1).

Remark 3.5.3. One may wonder if a non-existence result for radial solutions also holds for (3.1.2)
under the assumptions of Theorem 3.1.9. The difficulty one faces is that, for any u ∈ H1(RN ),
(|x|−1 ∗ |u|2)(x) ≥ C|x|−1 for |x| > R for some C,R > 0 (see [15] or [71, Appendix A.4]). Thus,
the result of Kato used in Remark 3.5.2 cannot be directly applied and the non-existence of radial
solutions to (3.1.2) when γ < 0, a > 0 and p = 6 is an open problem.
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Chapter 4

Concluding remarks and some open
problems

In this chapter, we present some concluding remarks about the two equations considered in
this thesis and also we propose some open problems.

4.1 On the Sobolev critical nonlinear Schrödinger equation

Concerning the Sobolev critical nonlinear Schrödinger equation with mixed power nonlin-
earities −∆u −λu −µ|u|q−2u − |u|2∗−2u = 0 in R

N ,

u ∈H1(RN ), ∥u∥2L2(RN ) = c,
(4.1.1)

where N ≥ 3, µ ∈ R, 2 < q < 2∗, we present below some concluding remarks and also we
propose open problems.

(i) Let us begin with a remark about the existence of the second solution of mountain pass
type in the case 2 < q < 2 + 4/N . We proved in Chapter 2 the existence of a second so-
lution lying at mountain pass level for µ > 0 small enough and N ≥ 4. Moreover, it is
not a ground state and the associated standing wave is strongly unstable. A key step in
the proof of the existence of such a solution is that one needs a precise upper estimate
of the associated mountain pass level. The need to obtain, in a problem involving a
Sobolev critical term, a sharp estimate on some minimax levels is known since the pi-
oneering work of Brezis-Nirenberg [25] and the usual way to derive such strict upper
bound is through the use of testing functions. We constructed test functions that could
be viewed as the sum of a truncated extremal function of the Sobolev inequality on
R
N translated far away from the origin. This choice of testing functions was sufficient

to prove our strict inequality when N ≥ 4 but we missed it in the case N = 3. Note
that our approach proved nevertheless adequate to deal with the energy critical half-
wave equation that was studied in [67]. Very recently, in [89] the authors introduced
an alternative choice of testing functions which allowed to treat, in a unified way, the
case N = 3 and N ≥ 4 for (4.1.1). The strategy in [89], recording of the one introduced
by G. Tarantello in [85], is on the contrary, to locate the extremal functions where the
ground state solution takes its greater values (the origin thus). The idea behind the
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proof is that the interaction decreases the value of the Energy with respect to the case
where the supports would be disjoint. The approach in [89] was applied in some dif-
ferent equations, see for example [59, 66] and the Schrödinger-Poisson-Slater equation
studied in Chapter 3. However, in [60] our approach is more useful in some cases.

(ii) In the case where 2 < q < 2 + 4/N , it was proved in [81] that for and µ > 0 small, (4.1.1)
has a ground state as a local minimizer, however the stability of the associated standing
wave is unknown. In Chapter 2, we develop a new argument to prove the existence of
ground state for µ > 0 small, which is useful to prove that the associated standing wave
is orbital stable. To prove the stability, we have only established the global existence of
solutions for initial data close toMc, the set containing all ground states. We believe
it would be interesting to inquire if the global existence holds away from Mc. If so,
investigating the long time behavior of these solutions would be worth to. Our guess
is that these solutions evolve toward the sum of an element of Mc and a part which
scatter. However, so far nothing is known in that direction, see Remark 2.1.7 for more
detail.

(iii) The above existence results hold for µ > 0 small enough (equivalent c > 0 small enough),
what happens if µ is large? If 2 < q < 2 + 4/N , it was proved that (4.1.1) has no ground
state for µ large enough in [88], where the authors suggested a new method using the
relations between fixed-frequency solutions and normalized solutions. In [5], the au-
thors established the existence of many solutions of mountain pass type for µ large and
2 < q < 2 + 4/N by using a minimax theorem found in [49] and truncation argument
made in [36]. It was proved in [89] that if q = 2 + 4/N then (4.1.1) has no ground state
for µ large enough. In the case where 2 + 4/N < q < 2∗, (4.1.1) has a ground state for
all µ > 0, see [89] and [58] with different proof, in particular, different choices of test
functions in proving the upper estimate of the associated mountain pass level. Does
(4.1.1) have many solutions of mountain pass type for 2 + 4/N ≤ q < 2∗? Since in this
case, there exists a ground state for any µ > 0, a second solution if exists must have
an energy level greater than the ground state. Thus, it is difficult to prove the strict
upper bound of the energy level of the second solution, and we conjecture the negative
answer to the above question. However, so far nothing is known in that direction.

(iv) In the case where µ < 0, it was proved in [81] that for 2 < q < 2∗, (4.1.1) has no positive
solution u ∈H1(RN ) if N = 3,4 or if N ≥ 5 under the additional assumption u ∈ Lp(RN )
for some p ∈

(
0, N
N−2

]
. We improve the above result showing that (4.1.1) has no positive

solution in H1(RN ) for all N ≥ 3 and no non-trivial radial solution for N ≥ 3 and
q > 2 + 2

N−1 , see Remark 3.5.2 for more detail. If 2 < q < 2 + 2
N−1 , the non-existence of

radial solutions is an open problem.

Now, let us mention a non-autonomous equation on all the space R
N . Recently, in [10]

and [70], the following equation was studied−∆u +V (x)u −λu = f (u) in R
N ,

u ∈H1(RN ), ∥u∥2L2(RN ) = c,
(4.1.2)

where V is a fixed potential, f (u) = |u|p−2p with 2 + 4/N < p < 2∗. Besides, the general non-
linearity of the mass sub-critical case was studied in [44]. Under some assumptions on the
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potential V and the mass constraint c > 0, some existence results of solutions to (4.1.2) are
obtained. The main difficulty is the existence of the potential term V (x). One loses the
information on the geometric structure of the associated functional since the scaling argu-
ment can not apply to V (x). The Pohozaev identity is complex and not really useful. The
compactness issue is complex and becomes more complex if one assumes that V is not ra-
dial. To overcome these difficulties, the authors of the above-mentioned papers put some
strong assumptions on V which help them can apply the technical arguments of autonomous
problems. There is no really new idea to treat the potential term V (x). Moreover, to our
knowledge, the case where f (u) is critical growth has not been considered yet. This is the
reason that we are now interested in the non-autonomous problem, more specific, we con-
sider (4.1.2) with mixed power nonlinearities f (u) = µ|u|q−2q+ |u|p−2p with 2 < q < p ≤ 2∗. We
expect that our experience in mixed power nonlinearities can be useful to treat this problem.

4.2 On the Schrödinger-Poisson-Slater equation

Concerning the Schrödinger-Poisson-Slater equation−∆u +λu −γ(|x|−1 ∗ |u|2)u = f (u) in R
3,

u ∈H1(R3), ∥u∥2L2(R3) = c,
(4.2.1)

with γ ∈R, a ∈R, p ∈ (10
3 ,6] and f (u) := a|u|p−2u, we propose the following open questions:

(i) We proved in Chapter 3 that there exists c1 > 0 such that (4.2.1) has two solutions for
any 0 < c < c1 in the case γ > 0 and a > 0. However, we don’t know if the value c1 > 0 is
optimal and what happens if c ≥ c1. We conjecture that there exists a c0 ≥ c1 > 0 such
that one solution exists when c = c0 and that, at least positive solutions, do not exist
when c > c0. Nevertheless, so far nothing is known in that direction, see Remark 3.1.3
for more detail.

(ii) In the case p = 6, γ < 0 and a > 0, it was proved that (4.2.1) has no positive solution in
H1(R3) for any c > 0. We also expect the non-existence of non-trivial radial solutions.
The difficulty one faces is that, for any u ∈ H1(RN ), (|x|−1 ∗ |u|2)(x) ≥ C|x|−1 for |x| > R
for some C,R > 0. Thus, the result of Kato [52] cannot be directly applied and the
non-existence of radial solutions is an open problem, see Remark 3.5.3 for more detail.

(iii) Let us mention the mixed nonlinear case f (u) = a|u|q−2u +µ|u|p∗−2u with 2 < q < p ≤ 2∗.
The main difficult is that there are three nonlinear terms (|x|−1 ∗ |u|2)u, |u|q−2u and
|u|p∗−2u. Firstly, the geometric structure of the associated functional is more complex.
Secondly, in the frame of this the thesis, namely for two nonlinear terms, we usually
use the properties of the Pohozaev manifold keep only one nonlinear term, which helps
us in some estimates. Thus, it seems difficult to apply in the mixed nonlinear case and
the study of this case is an open problem.

Now, we introduce a general version of (4.2.1) which is usually called the Choquard
equation −∆u +λu −γ(Iα ∗ |u|p)|u|p−2u −µ|u|q−2u = 0 in R

N ,

u ∈H1(RN ), ∥u∥2L2(RN ) = c,
(4.2.2)
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where N ≥ 1, α ∈ (0,N ), Iα = C
|x|N−α with C > 0, γ,µ ∈ R, 2α ≤ p ≤ 2∗α and 2 < q ≤ 2∗ with

notations: 2α and 2∗α are lower and upper critical exponents respectively that come from the
Hardy-Littlewood-Sobolev inequality (see [63, Chapter 4]), namely

2α :=
N +α
N

, 2∗α :=

+∞ if N = 1,2,
N+α
N−2 if N ≥ 3,

and L2-critical exponents p̄ := N+α+2
N , q̄ := 2 +

4
N

. Recently, (4.2.2) was studied in [59–61,

90, 91] for some range of parameters; and several the nonexistence, existence, multiple and
stability results are obtained. We now present below some open problems.

In [91], the authors considered (4.2.2) with N ≥ 2, 2α < p < 2∗α and 2 < q < 2∗. Depending
on the range of parameters γ , µ, p and q, the corresponding functionals are bounded or
unbounded. Hence, many cases were considered in the paper and there are also some open
cases proposed in [91, Remark 1.9].

Let us now focus on the two special cases: the lower and upper critical cases. The lower
critical case p = 2α was studied in [90] with the assumptions γ > 0 and µ > 0. It was proved
that (4.2.2) has a ground state if N ≥ 2, 2 < q < q̄ and µ > 0 large; if N ≥ 2, q̄ < q < 2∗, c > 0
small and µ > 0 large; and if N ≥ 3, q = 2∗ c > 0 small, γ > 0 large and µ > 0 large. In the
case N ≥ 2, q = q̄, there is no solution if µ > 0 is small. The authors also proposed some
open problems in [90, Remark 1.7] concerning the stability issue of these solutions and the
existence of solutions if µ > 0 small. Recently, the authors in [61] treated the case 2 < q < q̄
where the existence of a ground state holds for any µ > 0.

The upper critical case p = 2∗α was studied in [59, 60] with the assumptions γ = 1, µ > 0
and N ≥ 3. It was proved in [60] that (4.2.2) has two solutions: one ground state and one
mountain pass type if 2 < q < q̄ and µ > 0 small; and the stability issue was also considered.
In [59], the author proved the existence of a ground state if q = q̄ and µ > 0 small; and if
q̄ < q < 2∗. In the case q = q̄ and µ large, there is no ground state. If µ is large and 2 < q < q̄,
the existence of solutions to (4.2.2) is unknown.

We observe that if p = 2α or p = 2∗α then the case γ > 0 and µ > 0 in (4.2.2) has been
the most studied so far. Other cases where γ < 0 or µ < 0 are open problems. Especially,
the Sobolev critical case q = 2∗ only studied in [90] with assumptions N ≥ 3, p = 2α, c > 0
small, γ > 0 large and µ > 0 large. So, it remains many open problems in the Sobolev critical
case q = 2∗. We expect that our technical arguments in Chapter 3 which were applied only
partially in [90] can be used to deal with these problems.
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Résumé

Dans cette thèse, nous considérons deux types d’équations de Schrödinger non linéaires
(NLS), à savoir une classe d’équations de Schrödinger non linéaire avec une non linéarité de
type mixed powers sur R

N et une classe d’équations non linéaires de Schrödinger-Poisson-
Slater sur R

3. Ces deux types de NLS apparaissent dans divers modèles mathématiques et
physiques et ont attiré beaucoup d’attention ces dernières années.

Du point de vue physique, puisque, en plus d’être une quantité conservée pour l’équation
de l’évolution, la masse a souvent une signification physique claire; par exemple, elle repré-
sente l’alimentation électrique en optique non linéaire, ou le nombre total d’atomes dans la
condensation de Bose-Einstein, etc., nous nous concentrons sur l’étude des solutions ayant
une masse prescrite, à savoir les solutions normalisées. Des questions d’existence, de multi-
plicité et de stabilité de ces solutions sont examinées dans cette thèse. Nous nous occupons
à la fois de cas sous-critiques de Sobolev et de cas critiques de Sobolev. Une attention par-
ticulière est accordée aux cas critiques de Sobolev dans lesquels de nombreux problèmes
restent ouverts. Puisque les solutions normalisées sont obtenues comme points critiques,
sous containte, d’une fonctionnelle, les principaux ingrédients de nos preuves sont varia-
tionnels.
Mots clefs: Equations de Schrödinger, équations de Schrödinger-Poisson-Slater, exposant
critique de Sobolev, masse prescrite, solution normalisée, multiplicité de solutions, état fon-
damental, stabilité orbitale, instabilité forte par blow-up, minimiseur local ou global, point
selle au niveau du col, méthodes variationnelles, identité de type Pohozaev.

Abstract

In this thesis, we consider two types of nonlinear Schrödinger equations (NLS), namely
a class of nonlinear Schrödinger equations with mixed power nonlinearities in R

N and a
class of Schrödinger-Poisson-Slater equations in R

3. These two types of NLS arise in various
mathematical and physical models and have drawn wide attention in recent years.

From the physical point of view, since, in addition to being a conserved quantity for the
evolution equation, the mass often has a clear physical meaning; for instance, it represents
the power supply in nonlinear optics, or the total number of atoms in Bose-Einstein con-
densation, etc, we focus on studying solutions having prescribed mass, namely normalized
solutions. The existence, multiplicity, and stability issues of such solutions are considered
in this thesis. We deal with both Sobolev sub-critical and Sobolev critical cases. Particular
attention is paid to Sobolev critical cases in which many open problems remain. Since nor-
malized solutions are found as critical points of an associated functional on a constraint, the
main ingredients of our proofs are variational methods.
Keywords: Nonlinear Schrödinger equation, Schrödinger-Poisson-Slater equation, Sobolev
critical exponent, prescribed mass, normalized solution, multiplicity of solutions, ground
states, orbital stability, strong instability by blow-up, local or global minimizer, saddle point
lying at mountain pass level, variational methods, Pohozaev type identity.
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