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Abstract

In France, aerial ropeways are mostly present in mountain areas but their urban implantation
is starting slowly by slowly. Although their static design seems well established, the under-
standing of the dynamical behavior remain a challenge.
This work aim at modeling and simulating the dynamical behavior of a translating cable sub-
jected to unilateral constraint, friction and punctual loads. The interaction between the cable,
the tower and the sheaves is modeled via frictional contact in order to satisfy a given line speed.
This work first focuses on the development of system equations according to Lagrangian me-
chanics. The latter is believed more applicable to any constitutive law and any constraints
including obstacles.
Those same equations are used to derive a versatile cable element that can be used for any
cable system. The treatment of contact and friction is realized thanks to the Siconos platform.
Ritz-Galerkin methods are often used in the literature to treat the nonlinear dynamics of ca-
bles. Here we proposed a general derivations of the latter which we compare to finite element
methods.
Some applications focused on the dynamics of aerial ropeways are proposed to model the pos-
sible scenarios leading to global instabilities ate the scale of an installation.
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Résumé long en français
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Section 0.0

Ce manuscrit comporte six chapitres rapportant les avancées scientifiques faites durant trois
années de travail.

Le chapitre 1 présente la littérature scientifique dans lequel s’inscrit les travaux. Deux prin-
cipaux blocs existent séparemment : les méthodes analytiques et les méthodes numériques.
Le manque de lien direct et de mélange entre les deux implique que les modèles disponibles
sont soit trop simplistes pour le cas du téléphérique ou comportent trop de paramètres pour
permettre des études paramériques à grande plus-value. Le positionnement de cette thèse est
hybride dans la mesure où les deux approches peuvent se combiner pour étudier la réalité.

Le chapitre 2 développe des principes lagrangiens pour la mécanique d’un câble. Cette
approche permet d’inclure des conditions aux limites sophistiquées et des lois de comporte-
ments sophistiquées tout en permettant de généraliser les modèles existants dans la littérature.
Les représentations classiques du câble parabolique et de la caténaire sont présentées dans ce
chapitre tout en élargissant les perspectives de résultats analytiques au cas du contact persis-
tant d’un câble inextensible sur un obstacle convexe.

Le chapitre 3 traite des éléments finis appliqués au câble. Les difficultés numériques inhérentes
à ce problème sont présentées objectivement et traitées en formulant un élément de câble
n’admettant pas la compression. Ce même élément est utilisé pour intégrer une dynamique
non-régulière avec impact et frottement. Ces développements permettent de simuler la dy-
namique de courroie, l’enroulement d’une amarre ou le rebond d’un câble sur un obstacle.

Le chapitre 4 reprend le cas de la théorie des vibrations pour le câble pour les petites vi-
brations autour d’un équilibre. Ce cas est écrit dans la base locale -dite de Frenet- et utilisé
pour formaliser l’écriture de modèles réduits numériques pour la réponse non-linéaire d’un câble
bi-appuyé. Ces développements sont utilisés conjointement avec la continuation par longueur
d’arc afin d’obtenir des tendances de réponses. D’autres méthodes sont aussi utilisées pour
comparer cet outil : les éléments finis et la méthode des échelles multiples, permettant d’avoir
des critères objectifs de validité et d’utilisation pratiques des approches proposées.

Les chapitres 5 et 6 sont des applications spécifiques de la thèse au cas du télephérique. Des
équations pour la dynamique d’une travée en translation sont proposées pour traiter le cas du
”pompage”. Il est montré que la vitesse seule ne peut expliquer une apparition soudaine d’une
grosse amplitude. L’entrée d’une cabine dans une travée semble jouer un rôle prépondérant
dans ce phénomène ce qui peut aussi être étudié par élément fini.
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Introduction

Context

This thesis is financed by the French Ministry, namely ’Ministère de la Transition Écologique’.
This opportunity granted me with three years of research about the modeling of cable dynamics
with a particular focus on the dynamics of cable-car installations. In France, the ’lois Grenelle
de l’Environnement’ states that these transportation infrastructures may be an alternative to
existing transportation solution [1]. Today, building such systems are at the heart of urban
planning configurations which require more knowledge about their dynamic behavior [2].

Objectives

This work aims at developing a cable model which takes into account the correct geometry of
the cable and the complex interactions between the cable and its supports. The model takes
into account the point and distributed loads, the friction occurring between the cable and its
supports and also the friction between the cable and the driving pulleys. The cable is in motion
due to an imposed velocity at one of its boundaries. The thesis deals with the modeling of the
described system associated with robust procedures for its numerical treatments. The reliability
and applicability of each approaches will be discussed.

Results and Scientific Contributions

PhD Results

In this work several models and scenarios have been investigated to catch potential critical
dynamic scenarios for ropeways. The main results are the following:

• Derive a robust basis for the cable model based upon the principle of variation and
constrained optimization: Chapter 2;

• Develop a versatile cable element which can both ensure a non-compression condition for
each cable segment and which can be used for nonsmooth analysis: Chapter 3;

• Propose a methodology to compute modes and reduced-order models to trace the essential
features of the nonlinear dynamics of single-span cable (translating or not) 4: Chapter 4
and Chapter 5;

• Investigate a global methodology to model a whole ropeway. The latter considers the
effect of friction, point loads, control velocity and the cable: Chapter 6.

All approaches have been considered to find clues about the proper way of simulating the
dynamics of such cable systems. However, the developed tools are not strictly reserved for
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ropeways and can be applied to other domain including cable networks, belt-sheave or off-shore
cables.

Scientific Production

This work led to various type of scientific communication including:

• Publications dealing with:

– The effects of friction on the amplitude of oscillations [3]

– The modal response of translating cables [4]

– The robustness of finite element methods for cable systems [5]

– The generalization of reduced-order-model for cable nonlinear dynamics and its com-
parison with finite element method [6]

• Conferences:

– About the modal response of mobile cables, Recent Advances in Nonlinear
Mechanics (RANM), May 2019 Lodz, Poland

– Equilibrium of a non-compressible cable subjected to unilateral constraints,
European Nonlinear Oscillation Conference (ENOC), 17-22 July 2022, Lyon, France

– A robust numerical implementation of cable finite elements, International
Congress of Theoretical and Applied Mechanics (ICTAM), 23-28 August 2020+1,
Milano, Italy

– Numerical dynamics of a cable subjected to frictional impact, Conference on
the Numerical Solution of Differential and Differential-Algebraic Equations (NUMD-
IFF), 6-10 September 2021, Halle, Germany

• Vulgarization events

– Rencontres Interdisciplinaires Doctorales de l’Architecture et de l’Aménagement
durable (RIDAAD), February 2019, Vaulx-en-Velin, France

– Café des Sciences, October 2019, Vaulx-en-Velin, France

Organization of the manuscript

Outline

This PhD work is organized as follows:
The equations are developed from calculus of variation in Chapter 2. This chapter provides
with the general cable equations that can be used for any situation. Some classical results are
recalled in the framework proposed in this work. Chapter 3 presents a finite element method to
tackle the computation of cable nonlinear dynamics while imposing a non-compression condition
for each element. The latter is combined to nonsmooth dynamics in order to treat impact and
friction numerically. Chapter 4 provides the equations for the dynamics of cables for single
span problems. The modal analysis and the nonlinear dynamics are tackled via Ritz-Galerkin
procedure. Those analyses are hybrid since they are mostly analytical but need a computer to
evaluate the final results. Chapters 5 and 6 consist of applications of result of previous chapters
to the case of ropeways. The single-span approach and the FEM approach are both discussed
in the context of those infrastructures.
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Suggestions for reading

Chapter 2 presents the essential equations of the cable mechanics. Chapter 3 and Chapter 4
can be read separately even though some comparisons are given in Chapter 4. They cannot be
skipped at first reading. Chapters 5 and 6 consist on applications and extension of the results
of Chapters 3-4 to the particular case of an aerial ropeway. Chapters 1, 5 and 6 can be skipped
at first reading.
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Introduction en Français

Contexte

Cette thèse est financée par le ’Ministère de la Transition Énergétique’. Cette opportunité m’a
offert trois ans de recherche sur la dynamique des installations de téléphériques. En France,
les lois ’Grenelle de l’Environnement’ placent le téléphérique comme une alternative durable à
d’autres moyens de transport en commun [1]. Il s’avère que ces installations sont au coeur de
réflexions pour redéfinir les constructions des réseaux urbains mais que la simulation de leur
comportement dynamique nécessite davantage de connaissances [2].

Objectifs

Ce travail a pour objectif de construire des modèles de câble qui prennent en compte la géométrie
exacte ainsi que les interactions qui existent entre le câble et ses divers supports. Les modèles
traiteront, dans la mesure du possible, des charges ponctuelles, des charges distribuées et du
frottement entre le câble et ses roulements/poulies. Une vitesse est imposée au câble sous la
forme d’une donnée de vitesse d’exploitation à la poulie motrice. Cette thèse traitera tout
autant de la robustesse numérique que de la fiabilité des démarches proposées.

Résultats et Communication Scientifique

Résultats de la Thèse

Ce travail entend présenter plusieurs modélisations et scénarios pouvant aboutir à des scénarios
critiques pour les installations de téléphériques. Les résultats principaux sont les suivants :

• Développements des équations fondamentales servant à la modélisation des câbles en
partant des principes variationnels et de l’optimisation sous contraintes : Chapitre 2;

• Fabrication d’un élement fini de câble passe-partout assurant une condition de non-
compression pour chaque élement du maillage et compatible avec des calculs non-lisses :
Chapitre 3;

• Proposition d’une méthodologie de calcul des modes et des modèles réduits numériques
pour capturer les comportements dynamiques non-linéaires d’un câble bi-appuyé, en
translation ou non : Chapitres 4 et 5;

• Présentation d’un premier jet de modèle intégré d’une installation complète de téléphérique.
Cette dernier comprend les effets du frottements sur pylônes et poulies, les charges
ponctuelles, la vitesse d’entrâınement et le câble : Chapitre 6.
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Toutes les approches proposées permettent de choisir en âme et conscience la meilleure option
de modélisation de la dynamique des systèmes à câbles. De plus, les outils présentés dans ce
travail ne sont pas circonscrits aux seules installations à câbles mais reste assez générales pour
s’appliquer aux courroies, aux câbles marins et aux réseaux de câbles.

Communication Scientifique

Ce travail a abouti à plusieurs publications dans des journaux à comité de lecture ayant pour
sujet :

• L’effet du frottement sur une amplitude d’oscillation [3]

• Les modes de câble en translation [4]

• La robustesse des méthodes éléments finis appliquées aux systèmes à câbles [5]

• La généralisation des modèles réduits pour la dynamique nonlinéaire d’un câble et un
comparatif de performance avec la méthode éléments finis [6]

Plusieurs conférences internationales ont permis de communiquer les résultats de thèse :

• About the modal response of mobile cables, Recent Advances in Nonlinear Me-
chanics (RANM), May 2019 Lodz, Poland

• Equilibrium of a non-compressible cable subjected to unilateral constraints,
European Nonlinear Oscillation Conference (ENOC), 17-22 July 2022, Lyon, France

• A robust numerical implementation of cable finite elements, International Congress
of Theoretical and Applied Mechanics (ICTAM), 23-28 August 2020+1, Milano, Italy

• Numerical dynamics of a cable subjected to frictional impact, Conference on
the Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF),
6-10 September 2021, Halle, Germany

Deux évènements de vulgarisation scientifique ont permis de communiquer les résultats à des
publics larges :

• Rencontres Interdisciplinaires Doctorales de l’Architecture et de l’Aménagement
durable (RIDAAD), February 2019, Vaulx-en-Velin, France

• Café des Sciences, October 2019, Vaulx-en-Velin, France

Organisation du document

Plan

La thèse est organisée comme suit :
Les équations du mouvements sont déduites de principes généraux de mécanique dans le
Chapitre 2. Ce chapitre présente des équations générales pouvant être appliquées à de nom-
breuses situations. Le Chapitre 3 présente un élément fini de câble permettant de calculer
la dynamique nonlinéaire d’un câble tout en assurant une condition de non-compression pour
tous les éléments composant le maillage. Cet élément peut être utilisé dans le cas d’une dy-
namique à impact et pour le frottement. Le Chapitre 4 traite les équations de la dynamique
d’un câble bi-appuyé. La théorie des vibrations linéaires est rappelée et un traitement de la
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dynamique nonlinéaire par une méthode de Ritz-Galerkin est proposé. Ces méthodes sont dites
analytico-numériques car elles reposent principalement sur des développements analytiques qui
nécessitent une évaluation numérique à la toute fin des développements. Les Chapitres 5 et 6
sont des pplications des autres chapitres au cas des téléphériques. Les approches sur portée
isolée et sur système complet sont toutes les deux présentées.

Suggestions de lecture

Le Chapitre 2 présente l’essentiel des équations utilisées dans tout le document. Les Chapitres 3 et 4
peuvent être lus séparémment et sont relativement indépendants. Ils ne peuvent pas être sautés
en première lecture. Les Chapitres 5 et 6 sont des applications des autres chapitres donc doivent
être lus en dernier. Les Chapitres 1, 5 et 6 peuvent être ignorés à la première lecture.
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Chapter 1

Literature review

This chapter starts with some few basic information about ropeways. Then some historical
milestones in the cable mechanics are highlighted. Eventually, the positioning of this work is
clarified and the global plan is provided.

1.1 Ropeways and French context

Ropeways refer to a circulating cable where cabins or chairs are carried from a bottom to a top
station. This transportation devices were often dispatched in places with a limiting topography.
Nowadays its usage is studied for urban optimization which is changing the context of the
installation. This is the case in mountain areas but also when a river is crossing a city or
when existing building are restraining the available space. The cable is constrained to move
axially at a given velocity in the motor station which is often (not always) coinciding with the
top station. The cable tension is ensured via hydraulic actuators (or counter-weight for some
installations). A simplified illustration for such systems is provided in Figure 1.1. Cables are
used to pull the cabins to the top or to bear the cabins. As suggested, several cables may be
combined to fulfill the pulling or bearing tasks. Sometimes a single cable is used to do both
tasks, i.e. carrying the cabins and pulling them to the top. The installations often cover large
distances, then pylons are required to constrain the cable to a given path. The top of each
pylon is composed of an assembly of rollers called a roller battery. A simplified drawing of the
latter is provided in Figure 1.2. Those roller batteries constrain the cable in a unilateral way
(Figures 1.3a and 1.3b) or in a bilateral way (Figure 1.3c). Sometimes cabins are equipped
with a detachable grip to help people getting in/out easier. Comfort and safety reasons explain

Empty cabin

Bottom station

Full cabin

Top station
One span

Tension

Actuators

Velocity

Figure 1.1: Simplified schematic of a ropeway
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Figure 1.2: Drawing of a roller battery constraining a cable

(a) Compression roller
battery - TSD4 Les pyramides

/ Les trois vallées

(b) Support roller battery -
TSF4 Bisorne /
Ax-les-Thermes

(c) Support/compression
roller battery - TSD6

L’Oursière / Les sept Laux

Figure 1.3: Different kind of roller battery - Photo credit ’www.remontees-mecaniques.net’

most of improvements made on these devices. Among them is the axial speed is imposed to
the cable which is provided by the French legislation depending on the type of installation as
provided in Table 1.1. The ropeways are supposed to work with a constant axial velocity in the
ordinary conditions. The velocity range is prescribed by law and tolerance levels can be found
in [1]. Different braking situations exist. Most of the time, the cable revs up with a linear or
parabolic profile. A lot of engineering data related to motor, brakes, actuators, cabins and way
of operating these devices are available in [2].

1.2 Historical background of cable engineering related

to ropeways

The cables in ropeways serve a precise function in a very particular context. Let us state a simple
but very important fact: Their usage in this domain are far more different than in suspended
bridges. Then, drawing parallel between these two disciplines must be done with special care.
Indeed, cables in bridges are hopefully designed to stay in place and are not subjected to
translating motion. For ropeways, cables are systematically in motion and their position is
constantly varying. Moreover, a bridge cable is often designed to satisfy a given profile while a
chair-lift cable is designed for a given tension [3]. In addition to that, environmental constraints

Table 1.1: In-line maximal velocities for ropeways [1]

Type of installation Maximum authorized velocity Maximum proposed velocity (constructor)

Reversible bicable aerial ropeway 12.5 m/s 12.5 m/s

Uni-directional bicable aerial ropeway 7.5-8 m/s 7 - 8 m/s

Double-monocable aerial ropeway 8 m/s 7 - 8 m/s

Monocable aerial ropeway 6 m/s 5 - 6 m/s
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(a) A wire (b) A core (c) A strand (d) A wirerope

(e) A complex stranded rope (f) A complex stranded rope

Figure 1.4: Cable compositions and examples

are very different (wind, chemical reactions, temperature gradient) but most of them are out
of the scope of this thesis.
A cable is an assembly of wires (Figure 1.4a) twisted into an helix which is called a strand
(Figure 1.4c). A cable is often twisted into a circular shape. These wires are often coupled
with an elastomere core (Figure 1.4b) and the process can be repeated: twisting wirerope
(Figure 1.4d) into a stranded rope. Depending on the way the wires are twisted and on the
core used there is a lot of possibilities for creating cables (Figures 1.4e and 1.4f).
Due to their slenderness, cables are often considered as a one-dimensional continuum. It is
mostly considered that cables produce a force along their axial direction which is the only non
trivial force that exists inside this continuum. This force is denoted as tension. Some approaches
may take into account resisting moments or torques close to anchorage since they influence the
local rotations. However, the simplest model for a cable is an assembly of infinitesimal segments
which are freely rotating with each other. As cables are composed of elastomere and iron, the
influence of temperature is often considered. Due to the combine effect of the elastomere core
and the internal friction between elementary wires, the constitutive law of a cable remains a
deep research subject. In this work, a linear elastic constitutive law is taken into account and
the effects of temperature are discarded since our focus is drawn on the coupling between the
geometrical nonlinearity and the contacting surfaces existing on rolls.
Nowadays, the design of ropeway relies on static analyses coupled to safety coefficients [3]
and design guidelines1. When the cable is subjected to dynamic loads, quasi-static analysis is
often performed in softwares [4] or simple models are considered to evaluate their maximum
deflection. It has been more than eighty years that cable dynamics have a renewed interest
but a lot of questions remain about the transient dynamics of complex cable structures. The
latter is the most important factor for the safety and comfort of the ropeway. Moreover, those
considerations will open the gate to a better understanding on the amplitude of vibrations
during braking, acceleration or when cabins are crossing a roller battery.

1.3 Roadmap on cable modeling

In this section, a review about modeling the cable taking into account its correct geometry
is proposed. The review is divided into the treatment of the dynamic analyses and then the

1Prescriptions de sécurité pour les installations à câbles destinées au transport de personnes - Calculs, NF
EN 12930, Nov 2015, EU
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numerical treatment of cable related problems. Until today, improvements, simplifications,
clarifications, modifications and extensions never ceased.

Since the first observations about the equilibrium of a rope with non negligible self-weight
dates from late XVII century with Galileo [5]. First theorems appeared in the work of Huygens
who proved that the hanging rope profile was not a parabola [6]. Bernouilli and Leibniz
[7, 8] characterize the profile of the catenary as we know it today via introducing logarithms
operator to treat the equations of an inextensible cable. Those results were even taught in
French applied mathematics classes [9] in the mid-eighteenth for the inextensible and elastic
catenary. The static of cable has been very fast considered as well established including the
use of approximation [10] depending on the type of situation:

• The cable exhibits large deflection (i.e. span depth ratio > 1
8
) or inclined supports →

Catenary solution is used

• The cable exhibits small deflection (i.e. span depth ration < 1
8
) and aligned supports →

Parabolic approximation is used

1.3.1 Cable dynamics

Linear free vibrations of cables

The first steps in the domain of the dynamics were made by Rohrs [11] who derived equations to
approximate the frequencies of a inextensible cable which mass is uniformly distributed with a
small sag to span length ratio. Routh [12] extended these equations later on for a heterogeneous
mass distribution. However, this model was not asymptotically reproducing the results known
for taut strings obtained by Kirchfoff [13]. The first engineering formulae appeared in the work
of Pugsley [14] who derived approximation for the frequencies of a chain and compared them
with experimental results. Mathematical solutions for the oscillation of a catenary were given
for the first time by Saxon and Chan [15]. To the knowledge of the authors, the very first work
which performed the asymptotic validity for the vibrating string case were the works of Soler
[16] and Simpson [17] where the oscillations are investigated as a dynamic perturbation of a
steady-state.
Various methods have been proposed for the evaluation of frequencies of the cable for the
domain of bridges [18, 19, 20].
One of the most notable contributions is the one of Irvine and Caughey who unified all known
developments and clarified the transition from the sagged elastic cable frequencies towards the
vibrating string frequencies [10, 21] and validated experimentally their results. The work of
Irvine [10] had so much impact that one the most remarkable parameter for the analysis of
cable is now referred as Irvine’s parameter and reads

λIrv =
ρgd

H

√
EA

H
∫ L

0
cos(α(S))3dS

(1.1)

where ρ is linear density of the cable, g is the gravity constant, d the horizontal span distance
between two supports, H the horizontal constant component of the tension, EA is the cross-
section rigidity of the cable, S the curvilinear abscissa and α the angle between the horizontal
axis and the cable.
This parameter is often used in current literature as a fundamental cable parameter. It is
often found in frequency plots in order to locate some zones where the cable modes exchange
their nature. These zones have been called ’cross-overs’ since the frequency curve for one mode
gives the impression to cross another curve (see Figure 1.5). However their developments for
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Figure 1.5: Illustration of the cross-over phenomenon

the inclined cable have been precised later on by Triantafyllou [22] who showed that taking
into account the dynamic increment of the tension results into hybrid modes zones which is
the biggest extension of the modal representation of cable modes. Before this, Routh [12]
and Rannie and von Karman [18] respectively found that cable modes to be anti-symmetric
or symmetric modes. From this point, cable modes are expected as being anti-symmetric or
symmetric far from the bifurcating zones but close to bifurcation they are not symmetric and
not anti-symmetric either (hybrid then). Wu et al. [23] proved that Irvine theory can be
extended to account for those hybrid modes via considering a geometrical parameter:

β =
µg cos θ

√
d2 + h2

8H
(1.2)

where h the vertical span distance between two supports and θ is the angle between the hori-
zontal and the straight line joining the supports. All the parameters introduced in this section
are presented on Figure 1.6. There are tremendous research works in this domain which we
omit in this part of the review. More focus is given to newer subject as nonlinear dynamics.

Nonlinear vibrations of cables

Until the early 1980, only the linearized dynamics of cables were treated. Although the equa-
tions proposed by Irvine and Caughey [21] were nonlinear, the first work tracing a nonlinear
response is from Hagedorn and Schäfer [24]. Their approach is the milestone of the nonlinear
dynamics of cables as they introduced the combined use of Ritz-Galerkin and perturbation
methods to treat the nonlinear terms in original system equations. This approach results in
condensing the dynamics on some selected modes. Global methodology consists on using a Tay-
lor truncated series of system variables and then decomposition of displacement along modes.
The resulting equation (or its equivalent in higher dimension) has been studied for the last
forty years

q̈ + q + c2q
2 + c3q

3 = f(t) (1.3)

A cluster of Italian researchers studied in detail the information contained in (1.3). The work
of Luongo et al. [25] opened the discussion via a two degree of freedom model for an elastic
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Figure 1.6: Illustration of an inclined cable with all parameters

cable with full geometrical nonlinearity. They showed how cubic and quadratic nonlinearities
could alter the frequencies of the linear cable. The parameters which influence the nonlinear
responses of the cable have been investigated by Rega et al. [26] and precised two years later by
Luongo et al. [27]. Benedettini et al. [28] showed that the cable exhibits strong coupled oscil-
lations and that the slacker the cable is, the more exchanges exists between the two first modes
of the cable. The following year, Benedettini and Rega [29] highlighted a notable difference
between the cable and the string: a cable exhibits softening-hardening behavior contrary to a
string. Today this observation seems to find an explanation in the presence of both quadratic
and cubic nonlinearities. The same duo found feature of subharmonic resonances in 1989 [30].
In 1991, Visweswara Rao and Iyengar [31] investigated the behavior of the cable when the two
first modes are highly coupled to each other and they subjected the system to internal and
external resonance. They arrived to the conclusion that chaotic behavior needs more investi-
gations for the cable since Hopf bifurcation type was found. Meanwhile, the joined work of Lee
and Perkins [32, 33] about the nonlinear oscillations of suspended cable near a 2:1 internal res-
onance was quite complete on the matter. Indeed, numerical simulations and experiments have
been joined to investigate the stability of the cable system. Analytical and numerical studies
were made with a two dof system composed of one symmetric mode and one out-of-plane mode.
In 1995, two works have been published almost simultaneously from Benedettini et al. [34] who
performed the bifurcation analysis of a four dof cable model (two symmetric in-plane modes
and two out-of-plane modes) and of Lee and Perkins [35] for a three dof cable model where
internal resonances have been deeply investigated. Lee and Perkins presented leads about the
link between two modes resonance (resp. three modes resonance) and the quadratic (resp.
cubic) nonlinearity.
In year 1996, Rega [36] investigated thoroughly the relevance of several cable models depending
on the number and nature of dof retained in the computations. In-depth comparisons between
those choices of models are given and are supplemented with experiments to testify for their
possible applications. Moreover, Rega [36] gave a complete zoology of phenomenons hidden in
the equations obtained from a condensed model such as chaos, periodic regime, subharmonic
resonance or quasi-periodic response. Moreover, the contributions made two years later by
Rega et al. [37, 38] showed complex internal resonance for a cable system and also some prac-
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tical conditions to obtain those in experimental study.
In 2003, Srinil et al. [39, 40] proposed a numerical approach for the cable vibrations of arbitrary
sagged inclined cable. Until this work, nonlinear vibrations were not considered for inclined
arbitrarily sagged cable. However they depicted the traced phenomenons obtained on reduce
order models. Later on, Rega [41] published the biggest cable oriented review with more than
two hundreds references. Meanwhile, nonlinear dynamics of inclined cables continued to be
investigated for example by Berlioz and Lamarque [42] who proposed a two dof model for an
inclined cable and its treatment via the method of multiple scale to obtain the cable response
in resonant regimes. They also exhibited examples of situation where cable systems are very
sensitive to rounding errors making the experimental calibration particularly tedious. Rega et
al. [43] also proposed a model for nonlinear vibrations of an inclined cable treated by finite
differences and supplemented by experiments. Meanwhile, cable dynamics have been enriched
with singularity as in the works of Sofi and Muscolino [44, 45] who proposed a model for an in-
clined cable carrying moving oscillators. They introduced modified series expansion to capture
correctly the singularities due to point solicitations and improved it in their second work.
A lot of modeling aspects for cable have been collected, investigated and precised by Lacar-
bonara and Pacitti [46] who depicted a cable model with flexural stiffness and a visco-elastic
constitutive law. It was also one of the very first work to emphasis on the non-compression
condition inherent to cable equilibrium. Same modeling context was chosen by Arena et al [47]
who studied the nonlinear vibrations of a cable derived from Cosserat theory with inclusion of
the torsional stiffness. Other models have been proposed in the literature as for example the
one of Pai and Nayfeh [48] where Poisson effects were considered.
Investigations about transient regimes of a cable carrying moving masses have been done by
Wand and Rega [49] and they discussed about adaption of the condensed model for non-shallow
cables. In 2016, Warminski et al. [50] revisited in details the four dof model of Benedettini [28]
dating from 1995. They exhibits multiple resonances and primary resonance and improved the
stability analysis done previously for this cable model.
Current considerations in nonlinear vibration of cables are for galloping phenomenon in shallow
cables (e.g see the work of Ferretti [51]) or also complex structures where a cable is bonding
two other structural elements for example the beam-cable-beam structure studied by Gatulli et
al. [52].

Vibrations of translating continuum

A way of simplifying the ropeway at its simplest representation is to consider one span where
there is an infinite flow of cable prescribed at a given tension and axial velocity. This scientific
domain is what we could refer as axially moving continuum.
Its origin dates from 1897 with the early work of Skutch [53] who derived the frequencies of
a string which is translating with a constant velocity between two eyelets. He was the first
to investigate the response of a continuum media via the characteristics curves. Provided
a suitable change of variable involving the velocity of translation, he proposed a method to
derive analytical solutions. In 1954, Sack [54] proved that when a velocity of translation is
considered, a change of phase in the vibration occurs then the nonlinear vibrations of a string
cannot be represented with a sine function. His observations remain true for damped systems.
Belt drives have been investigated via using the equations of axially moving beam between ideal
supports solved via characteristics curves. Indeed Chubachi [55] also showed that the equations
were relatively similar to the one of a continuous flow inside a pipe or solid-fluid interaction. In
1960, Miranker [56] developed equations from the principle of variations for a tape moving at
arbitrary velocity between two ideal sheaves and investigated on the forced vibrations of a tape
moving at constant velocity. In 1966, Mote [57, 58] studied the nonlinear oscillations of a string

24 BERTRAND Charlélie
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and concluded that in presence of velocity of translation, the behavior of vibrating string cannot
be interpolated to the one of the translating string. He even showed that the linear analysis
is not relevant in the case of low tension combined to high velocities. Ames et al. [59, 60]
studied the dynamics of a moving threadline in a three dimensional framework considered all
string nonlinearities. They studied the response of the latter when subjected to boundary
excitation and illustrated the notion of critical velocity with analytical developments validated
by experimental results. Moreover, they re-developed governing equations to account for a
general case. Shih [61] explored the elliptic ballooning for a three dimensional nonlinear string
in 1971, which grossly means that the cable response to a planar boundary excitation is three-
dimensional. He also investigated the existence of a steady-state regime for the nonlinear string
subjected to axial velocity. One year later, Simpson [17] first studied the existence of modes
for a translating elastic cable. He showed that for cables, the modal response consists on two
waves traveling the cable upstream and downstream as Skutch [53] wrote for the linear string.
His results were asymptotically valid for strings. Then Perkins and Mote [62] investigated on
the vibrations of a three dimensional cable subjected to an axial velocity and extended their
analysis to arbitrarily sagged cables. A lot of parallel between ropeways and belt drives can
be drawn, thus the review of Abrate [63] about belts and drives gives insight about possible
phenomenons in ropeway and also limit cases for the cable case. Recently, one can notice
a renewed interest for derivations of system equations from general principles of continuum
mechanics. It is the case with the works of O’Reilly and Varadi [64] who discussed the possible
equilibria for a translating elastic cable and later with Luo and Mote [65] for an arbitrarily
sagged cable. The incremental dynamics equations have been derived in three dimensions from
continuum mechanics by Wang and Luo [66]. Several other domain exploit those situation
where a system is translating between specific boundaries for example with lifts in the work of
Gaiko and van Horssen [67].

1.3.2 Numerical methods for cable equilibrium

As it was explained, the research community of bridge cables deeply investigated on the ana-
lytical aspects of cable dynamics as they consider those approaches more relevant to extract
key mechanisms and influences of parameters on the statics or dynamics. The statement of
design suitability may be relevant for a bridge where vibrations around an equilibrium state
are considered. However, some applications require to trace large displacements, slack cables,
non-uniformity and combinations of various types of loading which general case is untraceable
even in statics. Sub-marine cables, mooring lines or tethered satellites (for instance) cannot
rely on incremental dynamics or intermediate configurations and require numerical approaches.
The rise of Finite Element (FE) Methods (FEM) [68] in the mid-twentieth century also leads
to advances in the domain of cables. Until now, researches never ceased to look for answers
to overcome the geometrical nonlinearity of cable system as did Ernst [69] by introducing a
correction to the Young modulus depending on the geometry. A lot of different cable elements
have been developed aiming at the most versatility with Henghold and Russel [70] who pro-
posed a FEM being able to catch cable modes already consistent with the results of Irvine [10]
but are valid for arbitrary sag and any elastic deformation. Due to the cable slenderness, those
models are often an assembly of segments which are able to trace finite motions for example
in the work of Winget and Huston [71] for towed cables. These approaches allow to consider
complex loading settings as the one of crane partially submerged and subjected to point loads.
The latter have been extended also for pre-stressed cable nets in the work of Gambhir and de
Batchelor [72] with applications to cable-roof structures and modal analyses. The nonlinear
frequency is, according to their work, still to be investigated via FEM. The dynamics have also
been studied via interpolating nodes and segments with different interpolation by Ozdemir [73].
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The linearization of the stiffness matrix is used to build iterations and get the three-dimensional
equilibrium configuration. Here, the statement of Irvine [10] is not confirmed in the review of
Choo and Casarella [74]. Indeed FEM are considered as the best solutions in terms of versatility
and in the framework of large displacement. However a kind of hybrid method appeared in 1979
with the work of Peyrot and Goulois [75] who first proposed a catenary based element which
relies on the static equations of cable (elastic catenary equation). The main idea is to use the
static solution of one cable to build a cable assembly. The following year, investigations on the
energy functional linked to the formulation of two-nodes elements were made by Monforton and
El-Hakim [76]. Cable truss elements were able to perform analysis for networks with a lot of
joints and their low interpolation order allows to perfectly account for stress discontinuity. It is
often pointed out that those approaches need a lot of elements to converge [77] but it is the case
for any FE approach and for any system. Early approaches in dynamics of extensible cables
suffered from this so-called limitation since computers capacities were not able to perform fast
and heavy computations despite their applicability. See for example the work of Fried [78] who
derived quadratic elements for the dynamics of cable. At that time, less than twenty elements
were used which created fictitious compression out of Gauss points. However the physics of the
problem were well reconstituted and experiments were there to supplement the numerical data.
It appears that numerical approaches were intensively developed in the domain of mooring lines
and as soon as the solicitation becomes sophisticated, for instance Tuah and Leonard [79] who
subjected a cable to nonlinear load as drag, lift and inertial forces of the report about towed
cable dynamics of Kamman and Nguyen [80].
Very few advances in FEM applied to cables were carried out by the beginning of current
century. Investigation of absolute nodal coordinate formulation non-incremental procedures
were carried out by Sugiyama et al. [81]. The latter allows to compute nonlinear FE analysis
without using a local frame and comparisons with the results obtained by analytical tools are
reproduced with FE without simplifying assumptions. Among other developments, catenary
based approaches were still under investigation (e.g. [82]) until improvements able to trace
responses to dynamics loading (e.g. earthquake) have been pursued by Thai and Kim in [83].
These approaches are very interesting to include cable as a super-element in a complex struc-
ture FE analysis. However, they rely on the analytic solution of the hanging catenary which is
challenging for complex FE analysis when it comes to couple them to other kind of elements.
Some interesting information lies on the work done by Tur et al [84]. Indeed cable networks
FE analysis coupled to equality constraint seems to have a better convergence properties than
complex assembly procedure. They were also able to connect cable elements to nonlinear bar
elements which is quite encouraging for studying the cables systems via FE applied to cable.
Moreover it appears that mixed formulation couple to a generalized α-method can definitely
arrange numerical robustness of cable analysis as shown by Crussels-Girona et al [85]. Despite
all these advances it appears that there is a lack of knowledge and practice on cable finite
element applied to frictional cases even though theoretical results exists in the infinitesimal
displacement domain [86].
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Section 1.3
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moving mass. International Journal of Solids and Structures, 47:2733–2744, 2010.

[50] J. Warminski, D. Zulli, G. Rega, and J. Latalski. Revisited modelling and multimodal
nonlinear oscillations of a sagged cable under support motion. Meccanica, 51:2541–2575,
2016.

[51] M. Ferretti, D. Zulli, and A. Luongo. A continuum approach to the nonlinear in-plane
galloping of shallow flexible cables. Advances in Mathematical Physics, 2019, 2019.

[52] V. Gatulli, M. Lepidi, F Potenza, and U. di Sabatino. Modal interactions in the nonlinear
dynamics of a beam–cable–beam. Nonlinear dynamics, 96:2547–2566, 2019.

[53] R. Skutch. Annalen der Physik und Chemie, 61, 1897.

[54] R.A. Sack. Transverse oscillations in traveling strings. British Journal of applied Physic,
5, 1954.

[55] T. Chubachi. Lateral vibration of axially moving wire or belt form materials. Bulletin of
JSME, 1, 1958.

[56] W.L. Miranker. The wave equation in a medium in motion. IBM Journal, 1960.

[57] C.D.Jr. Mote. On the nonlinear oscillation of an axially moving string. Journal of Applied
Mechanics, 33:463–464, 1966.

[58] A.L. Thurman and C.D.Jr. Mote. Free, periodic, nonlinear oscillation of an axially moving
strip. Journal of Applied Mechanics, 36:83–91, 1966.

LTDS-INRIA 29



Chapter 1

[59] W.F. Ames, S.Y. Lee, and J.N. Zaiser. Non-linear vibration of a traveling threadline I.
International Journal of Non-linear Mechanics, 3:449–469, 1968.

[60] W.F. Ames, S.Y. Lee, and A.A.Jr. Vicario. Non-linear vibration of a traveling threadline
II. International Journal of Non-linear Mechanics, 5:413–426, 1970.

[61] L.Y. Shih. Three-dimensional non-linear vibration of a traveling string. International
Journal of Non-linear Mechanics, 6:427–434, 1971.

[62] N.C. Perkins and C.D.Jr. Mote. Three-dimensional vibration of travelling elastic cables.
Journal of Sound and Vibrations, 114, 1987.

[63] S. Abate. Vibrations of belts and belt drives. Mechanics and Machine Theory, 27:645–659,
1992.

[64] O.M. O’Reilly and P. Varadi. Elastic equilibria of translating cables. Acta mechanica,
108:189–206, 1995.

[65] A.C.J. Luo and C.D.Jr. Mote. Equilibrium solutions and existence for traveling, arbitrarily
sagged elastic cables. Transactions of the ASME, 67:148–154, 2000.

[66] Y. Wang and A.C.J. Luo. Dynamics of traveling, inextensible cables. COmmunications in
Nonlinear Science and Numerical Simulation, 9:531–542, 2004.

[67] N.V. Gaiko and W.T. van Horssen. On transversal oscillations of a vertically translat-
ing string with small time-harmonic length variations. Journal of Sound and Vibrations,
383:339–348, 2016.

[68] O. C. Zienkiewicz and R. L. Taylor. The finite element method. Vol. 1: The basis.
Butterworth-Heinemann, Oxford, 5. ed., reprinted edition, 2002. OCLC: 249013082.

[69] H. J. Ernst. Der e-modul von seilen unter berücksichtigung des durchhanges. Der Bauin-
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Cable mechanics

This chapter is presenting cable equations. A brief history of developments of such equations
is provided. Although the subject is old, deep understanding of cable mechanics remains hard
to grasp. Here we momentously step aside the ropeway applications to focus on a very specific
structural element: the cable.
This chapter spans the following subjects:

• The cable statics main characteristics are highlighted from the 2D case for simplicity;

• Lagrangian mechanics are derived to introduce the 3D-dynamics of the cable;

• Analytical developments are performed for the case the statics and modal analysis of
cables;

2.1 Description of a cable

A cable is a a very slender structure, meaning that it resembles a very long cylinder which cross-
section dimensions are very small compare to its axial dimension. Our world is filled with those
structural elements as suggested by Figure 2.1. In another words, cables can be assimilated
to a curve. This simplification which shrinks spatial dependencies to a single spatial variable
does not suffice to make everything clear and simple so that further vocabulary and geometrical
description is needed.

2.1.1 Geometry of the cable

We consider the three-dimensionnal Cartesian space, R3, given by the Euclidean basis (O,x,y, z)
where x, y and z respectively stands for the horizontal, vertical and transversal unit vectors.
The geometry of the cable is given by an application S −→ q(S) where q ∈ R3 represents the
cartesian coordinates of the position of the sections and S is an arc-length coordinate called
the Lagrangian curvilinear abscissa of the cable. This coordinate should be understood as a

Figure 2.1: Various examples of cables (Engineering or not)
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marker which skims from one tip of the cable the other. For practical and sensible reasons, this
coordinate spans from 0 to L where L corresponds to the length of the cable when it is free of
any action. This length is also referred as Lagrangian length, reference length, natural length
or unstretched length.
The continuity condition of the system is assumed, i.e. we will assume that the cable is not
broken neither splitted into pieces so that q is a continuous function of S, angular points may
exists so that dq

dS
= q′ admits a left and right limits for every S.

q ∈ C1
pw =

{
q̃ ∈ (0, L) −→ R3, Piecewise differentiable

}
(2.1)

From the last statements, it appears natural to describe the direction where the cable is pointing
to. This direction is the main orientation of the cable and it is called the tangent vector. The
latter is given by

e(S) =
q′(S)

‖q′(S)‖ , (2.2)

where ‖·‖ is the euclidean norm of R3. For an arbitrary vector u it reads

‖u‖ =
√

u2
x + u2

y + u2
z . (2.3)

It can be easily checked that e(S) has unit length but we also need to ensure that

‖q′(S)‖ 6= 0 . (2.4)

The tangent vector is the first member of a local frame sometimes denoted as Frenet frame.
Another vector providing a normal direction is necessary to obtain a complete local frame. A
choice should be made at this stage, a right oriented local frame is obtained by considering
(e(S),n(S), z) where

n(S) = z ∧ e(S) . (2.5)

This choice keeps the local plane (q(S), e(S),n(S)) contained into the Cartesian plane (O,x,y)
and will be justified later. The relationship between the local frame and the Eulerian frame is
made by the tangent angle α(S) and the latter is connecting (x,y, z) with (e,n, z) as follows

e(S) = cos (α(S)) x + sin (α(S)) y , (2.6)

n(S) = − sin (α(S)) x + cos (α(S)) y . (2.7)

The spatial derivative of the angle α is called the curvature of the domain. The latter is difficult
to interpret physically but it is the inverse of the best fitting circle to the domain at the abscissa
S and also links the spatial derivative of e and n as follows:

{
e′(S) = K(S)n(S)

n′(S) = −K(S)e(S)
where K(S) = α′(S) . (2.8)

2.1.2 Deformations of a cable

The cable is expected to move and to change of geometry when actions are applied. The
description of its movements recquires to track the main characteristics of the motion. In
another words, we need a proper way to measure its strain and displacements.
The idea of motion and deformations is associated to the transformation of the domain from a
reference configuration to its current configuration. In this section, the quantities associated to
the reference configuration will be subscripted with a 0 while the quantities associated to the
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q0(S)

q(S)

α0(S)

α(S)

u(S)

⊗
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ey

Figure 2.2: Reference and current configuration of a cable undergoing the displacement u

current reference are kept unsubscripted.
Following the notations of Section 2.1.1, the reference configuration is fully given by:





S −→ q0(S)

e0(S) =
q′0(S)

‖q′0(S)‖ = cos (α0(S)) x + sin (α0(S)) y

n0(S) = z ∧ e0(S) = − sin (α0(S)) x + cos (α0(S)) y

K0(S) = α′0(S)

. (2.9)

One notable fact is that the current configuration is kept as a function of the Lagrangian curvi-
linear abscissa. One could have chosen the current curvilinear abscissa but the latter implies
difficulties to impose boundary conditions or loads since it changes during the transformation.
The current length is computed as

∫ L

0

‖q′(S)‖ dS . (2.10)

Applying (2.10) to a segment of arbitrary length L∗, it appears that any segment could be
shrunk to a point if the condition ‖q′(S)‖ > 0 is not enforced. We will further assume that the
cable is non-degenerate, i.e. q is such that ‖q′(S)‖ > 0 for all S in (0, L).
The transformation of the domain can be interpreted as the combination of a displacement
u and a rotation ω, as depicted in Figure 2.2. The expressions of the displacement and the
rotation are

u(S) = q(S)− q0(S) , (2.11)

ω(S) = α(S)− α0(S) . (2.12)

2.1.3 Rigid-body motion (strainless deformation)

A first type of transformation of notable interest are the congruent transformations of the cable.
In another words, it is the case when the cable is only subjected to a rotation. Rotation are
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operations that preserve the distance between two points. It is suitable, in physics at least, to
restrain ourself to the rotations that also preserves the orientation of the curvilinear domain
(i.e. we discard symmetries). We will denote the set of operator as SO. This a group called the
special orthogonal group. To lighten notations, the operator of SO will be directly assimilated
to their representation in matricial form (vectorial form or quaternion form).
Rigid body motions are obtained in the form of

q(S) = d + Qq0(S) (2.13)

where d ∈ R3 is constant with S and Q ∈ SO is uniform for the domain. This leads to

q′(S) = Qq′0(S) . (2.14)

As Q ∈ SO, q′(S) is still a unit vector and the curvilinear abscissa is left unchanged in the
motion. The tangent vector is obtained via a simple rotation of the reference tangent vector:

e(S) = Qe0(S) (2.15)

In this case, the displacement field, u(S), and the rotation, ω(S), are both given by

u(S) =d + (Q− I) q0(S) , (2.16)

ω(S) =α(S)− α0(S) . (2.17)

It follows that

‖q′(S)‖ = 1 , (2.18)

ω′(S) = 0 . (2.19)

The extensional strain, ε, is therefore introduced via considering how far the slope’s norm is
from unity while and the flexural strain, ζ, is the derivative of the rotation. The latter reads

ε(S) = ‖q′(S)‖ − 1 , (2.20)

ζ(S) = ω′(S) . (2.21)

However, the cable behavior is dominated by its axial forces and therefore no moment can
be applied to it. It follows that it does not have any flexural stiffness and does not resist to
torques. When it comes to beams, ζ has an important role to play and the three-dimensionnal
(3D) representation of rotations is of major importance. This fact is highligthed by all the
contributions in the domain of geometrically exact beams [6]. But for the cable, the 2D case
directly extend to the 3D case since the balance of momentum induces that only the axial forces
govern the equilibirum. In practice, the rotation is not regarded in cable mechanics since every
mechanical information is contained in one position q(S = S0) and the slope of the cable q′(S)
including the angle of rotation.

2.1.4 Why axial forces govern the cable equilibrium ?

We will first build the equilibrium of the cable from a local point of view. Let us write the
equilibrium of the segment (S1, S2) in terms of forces and moments. For the forces, we will
assume that the cable produces a force denoted as fi and that the cable is subjected to external
forces density fe. It implies that the equilibrium of a segment with S ∈ (S1, S2) is given by





0 = −fi(S1) +

∫ S2

S1

fe(S)dS + fi(S2)

0 = −q(S1) ∧ fi(S1) +

∫ S2

S1

q(S) ∧ fe(S)dS + q(S2) ∧ fi(S2)

. (2.22)
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From (2.22) we can deduce that





0 =

∫ S2

S1

(
dfi
dS

(S) + fe(S)

)
dS

0 =

∫ S2

S1

(
d (q ∧ fi)

dS
(S) + q(S) ∧ fe(S)

)
dS

. (2.23)

The local form of the equilibrium reads

{
0 =f ′i(S) + fe(S)

0 = (q ∧ fi)
′ (S) + q(S) ∧ fe(S) = q′(S) ∧ fi(S) + q(S) ∧ [f ′i(S) + fe(S)]

. (2.24)

Injecting the first equation in the second leads to

q′(S) ∧ fi(S) = 0 , (2.25)

which means that internal forces are necessarily directed along the axial direction. The internal
forces are therefore named tension and assimilated to a scalar. In another words we have

fi(S) = (Te) (S) . (2.26)

2.2 Energy principles of a cable

Cable equations are often derived intuitively via a balance between internal forces and exter-
nal forces. Newton’s law of motions or the equilibrium of an infinitesimal segment are indeed
enough to have every information about the cable equilibrium. However, the latter requires a
constitutive law which is unnecessary for the case of cable.
This section demonstrates how Lagrangian mechanics and calculus of variations (see Ap-
pendix B) lead to the same equilibrium.
First, we are deriving general Lagrangian Mechanics based upon calculus of variations. The
latter is developped in the particular case of curvilinear domains. Then applications to various
cable related cases are proposed.

2.2.1 Calculus of variations for curvilinear domains

Unconstrained case

In this section, q ∈ R3 is a function of S and t. Its derivatives with regards to S and t are
denoted as q′ and q̇ respectively. We consider the following functional

S(f) =

∫ t=t1

t=t0

∫ S=L

S=0

L(q,q′, q̇, S, t) dSdt . (2.27)

We are concerned with finding extremal values of S for the set of functions that are satisfying
the following boundary conditions

q(S = 0, t) = q(0, t) , q(S = L, t) = q(L, t) , (2.28)

q(S, t = t0) = q(S, t0) , q(S, t = t1) = q(0, t1) , (2.29)

The idea is to apply S to a function q + εg such that

g(S = 0, t) = 0 , g(S = L, t) = 0 g(S, t = t0) = 0 , g(S, t = t1) = 0 (2.30)
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The first order variation of S reads

dS = S(q + εg)− S(q) . (2.31)

At first order in ε the latter expands as follows

dS = ε

∫ t=t1

t=t0

∫ S=L

S=0

∂L
∂q
· g +

∂L
∂q′
· g′ + ∂L

∂q̇
· ġ dSdt+O(ε2) . (2.32)

Using integral by part with the second and third integral term yields

∫ S=L

S=0

∂L
∂q′
· g′dS =

[
∂L
∂q′
· g
]S=L

S=0

−
∫ S=L

S=0

d

dS

(
∂L
∂q′

)
· gdS , (2.33)

∫ t=t1

t=t0

∂L
∂q̇
· ġdt =

[
∂L
∂q̇
· g
]t=t1

t=t0

−
∫ t=t1

t=t0

d

dt

(
∂L
∂q̇

)
· gdt . (2.34)

Using the conditions on g and factorizing by g inside the integral yields

dS = ε

∫ t=t1

t=t0

∫ S=L

S=0

[
∂L
∂q
− d

dS

(
∂L
∂q′

)
− d

dt

(
∂L
∂q̇

)]
· g dSdt+O(ε2) . (2.35)

If f is an extreme point of S, then dS should vanish at first order for all g. As a consequence,
q should satisfy the following differential equation

∂L
∂q
− d

dS

(
∂L
∂q′

)
− d

dt

(
∂L
∂q̇

)
= 0 . (2.36)

The latter is a vector equation and it can be enriched with constraints which is th etopic of
next section.

Constrained case

We want to extend the last result to the case where the domain is subjected to a constraint of
the form

a(q,q′, q̇) = 0 . (2.37)

We consider a modified Lagrangian given by

L∗ (q, λ,q′, q̇, S, t) = L (q,q′, q̇, S, t)− a(q,q′, q̇) · λ(S, t) , (2.38)

and we define

S∗(f) =

∫ t=t1

t=t0

∫ S=L

S=0

L∗ (q, λ,q′, q̇, S, t) dSdt . (2.39)

We are concerned with finding extremal values of S∗ for the set of functions that are satisfying
the following boundary conditions

q(S = 0, t) = q(0, t) , q(S = L, t) = q(L, t) , (2.40)

q(S, t = t0) = q(S, t0) , q(S, t = t1) = q(0, t1) . (2.41)

We derive the first order linearization of S∗. This time, we use a 2-uplet (g,gλ) such that both
satisfy homogeneous boundary conditions. The variation of S∗ is given by

dS∗ = dS − d

(∫ t=t1

t=t0

∫ S=L

S=0

a(q,q′, q̇) · λ(S, t) dSdt

)
, (2.42)

LTDS-INRIA 37



Chapter 2

and reads at first-order in ε

dS∗ =ε

∫ t=t1

t=t0

∫ S=L

S=0

∂L
∂q
· g +

∂L
∂q′
· g′ + ∂L

∂q̇
· ġ dSdt

−ε
∫ t=t1

t=t0

∫ S=L

S=0

∂a

∂q
· g +

∂a

∂q′
· g′ + ∂a

∂q̇
· ġ + a(q,q′, q̇) · gλ dSdt+O(ε2) .

(2.43)

Using the integral by part as in previous subsection, we have that

dS∗ =ε

∫ t=t1

t=t0

∫ S=L

S=0

[
∂L
∂q
− d

dS

(
∂L
∂q′

)
− d

dt

(
∂L
∂q̇

)]
· g dSdt

−ε
∫ t=t1

t=t0

∫ S=L

S=0

[
∂a

∂q

>
λ− d

dS

[
∂a

∂q′

>
λ

]
− d

dt

[
∂a

∂q̇

>
λ

]]
· g dSdt

−ε
∫ t=t1

t=t0

∫ S=L

S=0

a(q,q′, q̇) · gλ dSdt+O(ε2)

(2.44)

The function g and gλ being arbitrary, we have the following coupled differential equations
satisfied by q and λ





0 =
∂L
∂q
− d

dS

(
∂L
∂q′

)
− d

dt

(
∂L
∂q̇

)
− ∂a

∂q

>
λ+

d

dS

[
∂a

∂q′

>
λ

]
+

d

dt

[
∂a

∂q̇

>
λ

]

0 = a(q,q′, q̇)

(2.45)

2.2.2 Inextensible cable

We are modeling a cable which linear density at rest is ρ. The reference length of the cable is
denoted as L and the cable is assumed perfectly flexible (no resistance to moment and torques).
The particle positions are represented via q and the velocity of the cable is denoted by q̇. The
global energy of the cable is given by the sum of its kinetic energy and its potential energy:

S(q) =

∫ t1

t0

∫ L

0

(ρ
2
q̇ · q̇ + fe · q

)
dSdt (2.46)

We further assume that the cable is subjected to an inextensibility constraint:

a(q′) = ‖q′‖ − 1 = 0 (2.47)

We can build an augmented functional as follows:

S∗(q, λ) =

∫ t1

t0

∫ L

0

(ρ
2
q̇ · q̇ + fe · q

)
dSdt−

∫ t1

t0

∫ L

0

a(q′)λdSdt (2.48)

Equation (2.48) is similar to the case provided in Appendix B. As a consequence, the equations
of motions reads: 




d

dt
(ρq̇) =

d

dS

(
λ

q′

‖q′‖

)
+ fe

0 = ‖q′‖ − 1

(2.49)

We clearly see that the tension is in fact the Lagrange multiplier associated to the inextensibility
constraint. In another words, the constraint enforcement induces a reaction force directed along
the tangent vector. The latter can be illustrated clearly with (2.24) where internal forces are
explicitly written as

fi(S) = Te = T
q′

‖q′‖ , (2.50)
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leading to 



d

dt
(ρq̇) =

d

dS

(
T

q′

‖q′‖

)
+ fe

0 = ‖q′‖ − 1

. (2.51)

Often, the constraint ‖q′‖ = 1 is directly used to arrange system equations leading to the
equation known as the ’catenary’ equation.

2.2.3 Non-compressible cable

It is often stated that a cable cannot be compressed. It is interesting to see the implication of
this assumption on the structure of the dynamical problem. The inextensibility constraint can
be modified by a non-compression condition which reads

g(q′) = ‖q′‖ − 1 > 0 . (2.52)

The same methodology can by applied to this constraint. In this case, the Signorini law [17]
appears naturally, as explained in Appendix B.





d

dt
(ρq̇) =

d

dS

(
λ

q′

‖q′‖

)
+ fe

0 6 ‖q′‖ − 1 ⊥ λ > 0

. (2.53)

In this case it is clear that elongation is permitted whereas compression is forbidden. However
the choice of rigidity is not possible and we see that the satisfaction of the Signorini law
implies that tension and elongation cannot happen simultaneously. If the cable is elongated
then λ vanishes and if the cable does not elongate then there is an axial force. In the case
where elasticity is significant, the introduction of an elastic potential is required, however the
equilibrium is reduced to the classical inextensible case with one more information: λ, the
tension, is positive.

2.2.4 The elastic cable

If now the cable is assumed elastic and to obey the Hooke’s law, its global energy of the cable
is given by the sum of its kinetic energy and its potential energy

S(q) =

∫ t1

t0

∫ L

0

ρ

2
q̇ · q̇ +

EA

2
(‖q′‖ − 1)

2
+ fe · qdSdt . (2.54)

Equation (2.54) is similar to the case provided in Appendix B. As a consequence, the equations
of motions reads

d

dt
(ρq̇) =

d

dS

(
EA (‖q′‖ − 1)

q′

‖q′‖

)
+ fe . (2.55)

This derivation highlights the fact the governing equations of the elastic and the inextensible
cable are way different. Even though the elastic case is stated to be asymptotically valid for
the inextensible one, both systems derive from different functional. Particular attention must
be paid to the elastic cable case since the latter admits intrinsically several solutions (see 2.2.5)
while the inextensible cable only admits one.
We recall that in this case we have

T (S) = EAε(S) = EA (‖q′‖ − 1) . (2.56)
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Figure 2.3: A cable at rest holding a mass

2.2.5 An example of multiple solutions for the elastic case

Considering the static case, i.e. q̇ = 0, solving (2.55) consists of the following minimization
problem:

min
q∈Ca

(
1

2

∫ L

0

EA (‖q′‖ − 1)
2

dS +

∫ L

0

q · fe dS

)
, (2.57)

where Ca refers to the set of admissible solutions. The latter will be precised just below.
Indeed, for a cable, the existence of compressive internal actions is not admitted. The latter
means that the condition ε > 0 should be enforced in the research of an equilibrium. Therefore,
the admissible solutions set is given as:

Ca =
{
q ∈ C1

pw, ‖q′‖ − 1 > 0
}
. (2.58)

The latter set can be understood as the set of tension-only cable. In preparation of a FE code
for cable, the conditions described in (2.58) should be included and supervised carefully. As
an example, let us consider the following cable composed of two equal length linear elements.
A concentrated mass has been considered at the connection points of the two segments. This
case is illustrated in Figure 2.3. This example is not just a simple counter-example, it is what
can actually happen in typical finite element simulations. Let x and y denote for the horizontal
and vertical position of cable particles. Due to the symmetry of the presented case, we consider
the following parametrization

x(S) =
S

L
(2.59)

y(S) =





2a

L
S , 0 6 S 6 L/2

2a(L− S)

L
, L/2 6 S 6 L

. (2.60)

It follows that:

ε =
√
x′(S)2 + y′(S)2 − 1 =

√
1 + 4a2

L
− 1 . (2.61)

For a given length L, one should find a that solves (2.57), i.e.

min
a


L

2
EA

(√
1 + 4a2

L
− 1

)2

−mga


 . (2.62)
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Figure 2.4: (solid line ) E(a) without ε > 0 condition; (dashed line ) E(a) with ε > 0
condition; (solid line ) E ′(a); (solid line ) ε

An equivalent minimization can be written as

min
a


1

2

(√
1 + 4a2

L
− 1

)2

−Ga


 = min

a
E(a) , G =

mg

EAL
. (2.63)

The first order Karush-Kuhn-Tucker (KKT) optimality conditions [8] reads

0 =
4a

L2
√

1 + 4a2

(√
1 + 4a2 − L

)
−G . (2.64)

Without imposing the given non-compressibility conditions in (2.58), this equation admits one,
two or three zeros. Additional features is needed to ensure the uniqueness of the solution. One
way to do it is to enforce the tension state, i.e. ε > 0. To illustrate this claim, the plot of
(2.63), its gradient and the associated strain are depicted in Figure 2.4. One can see, that two
local minima exist and both are locally stable. However, only one corresponds to the global
minimum. When the condition ε > 0 is enforced, it destroys the local stability of the non-
global equilibrium. This example will be remembered as the reason why the no-compression
condition should be enforced in numerical investigations. We see in the case presented here that
we manage to create a convex potential which is more likely to converge toward the downward
state (a < 0) whatever the initial condition is. Let us formalize the problem in terms of
constrained optimization. The method of Lagrangian multipliers is used here via defining the
following functional

L(a, λ) =
1

2

(√
1 + 4a2

L
− 1

)2

−Ga− λ
(√

1 + 4a2

L
− 1

)
. (2.65)
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In this case Karush-Kuhn-Tucker conditions read:




0 =
4a

L2
√

1 + 4a2

(√
1 + 4a2 − L

)
−G− λ 4a

L
√

1 + 4a2

0 6 λ ⊥
(√

1 + 4a2

L
− 1

)
> 0

. (2.66)

When the constraint is active, meaning that λ > 0, the functional reduces to a linear function
as shown in the dashed part of the plot (Figure 2.4). When the constraint is not active, meaning
that λ = 0, the elastic part of the potential is activated. In this case, the feasible directions are
given by the ones pointing outward the gray zone.
An equivalent analysis can be performed via considering the following functional

L∗(a) =
1

2

[
max

(
0,

√
1 + 4a2

L
− 1

)]2

−Ga , (2.67)

which directly provides with the convex envelope of the functional (2.63). The latter has been
widely discussed and experimented by Souza de Cursi in [18] where the lack of numerical
convergence drew the author to investigate the existence and uniqueness of the solution for
cable problems.

2.2.6 The unilateral cable

As a concluding remark, we introduce a unilateral formulation of the cable. The latter requires
to introduce one elastic potential plus a non-compressible constraint. It can be seen as the
Lagrangian mechanics associated to the elastic cable with an inequality constraint. In other
words, we consider the following Lagrangian

L∗ =
ρ

2
q̇ · q̇ +

EA

2
(‖q′‖ − 1)

2
+ fe · q− λ (‖q′‖ − 1) . (2.68)

Applying the Calculus of Variations on the latter provides with





d

dt
(ρq̇) =

d

dS

(
[EA (‖q′‖ − 1) + λ]

q′

‖q′‖

)
+ fe

0 6 ‖q′‖ − 1 ⊥ λ > 0

, (2.69)

or, written in terms of strain, as




d

dt
(ρq̇) =

d

dS

(
[EAε+ λ]

q′

‖q′‖

)
+ fe

0 6 ε ⊥ λ > 0

ε = ‖q′‖ − 1

(2.70)

The formulation given by (2.69) is similar to the no-tension formulation used in brick assemblies
[1, 15] of similar to the no-compression formulation used in truss network available in [11].
As a conclusion, particular attention must be paid to the physical and mathematical modeling
of cables. Without this particular care, numerical applications can lead to spurious solutions as
shown in several works for cable structures [14, 19]. The numerical problems inherent to cable
systems encouraged a lot of approximate analytical developments which are more suitable to
enforce tension state and then derived various analysis as static analysis, modal analysis, linear
stability or nonlinear dynamics.
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2.3 The elastic catenary and the parabolic cable

This section briefly presents the derivations of the catenary and the parabola which have been
used a lot for the design of cables. The catenary choice will be assessed via a comparison with
the parabola. Using the elastic catenary rather than the inextensible one does not add any
more difficulty and accounts for more generic cases.
For cable car application, the elasticity consideration is required as soon as the span gets long
and that tensions are expected to vary a lot span-wise.

2.3.1 Equations for the fixed-fixed cable and its non-dimensional
form

The name elastic catenary refers to the position taken by an elastic cable acting under its
self-weight only and which ends are imposed. Usually, a nonlinear problem is to be solved to
obtain this configuration since the tension or the length is unknown.
From last section, it has been shown that the dynamics of a cable reads:

d

dt
(ρq̇) =

d

dS

(
[EA (‖q′‖ − 1)]

q′

‖q′‖

)
+ fe . (2.71)

For the case of interest, we further assume that the cable has a homogeneous linear density ρ
and a homogeneous rigidity EA. The cable is pinned in S = 0 and S = L such that:

q(0) =

[
0
0

]
, q(L) =

[
d
h

]
. (2.72)

The external forces read

fe =

[
0
−ρg

]
+ f(t) = −ρgy + +f(t) , (2.73)

where y is the unit vector in the vertical direction.
Moreover, some structural damping is added, resulting in

ρq̈ + αq̇ = EA [(‖q′‖ − 1) e]
′
+ fe . (2.74)

The latter is made non-dimensional via the following mappings

q̃ 
q

d
, S̃  

S

d
, t̃ 

t

d
√

ρ
H

, (2.75)

providing with the following dynamical equilibrium ,

¨̃q + α̃ ˙̃q =
1

ε
[(‖q̃′‖ − 1) ẽ]

′ − δy + f̃ (2.76)

where we have set

α̃ =
d√
ρH

α , ε =
H

EA
, δ =

ρgd

H
, f̃ =

d

H
f , l =

L

d
. (2.77)

In the sequel, the ·̃ are removed but we are working with the non-dimensional system of equa-
tions.
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Figure 2.5: Elastic catenary position

2.3.2 The elastic catenary

Here is provided a detailed derivation of the elastic catenary equation. This can be obtained
when no inertial effects are considered and when the cable is subjected to its self-weight only.
In the literature and also in this work, we will coin this situation as the static situation and we
denote by x the profile taken by the cable in this case. Equation (2.76) simplifies as

0 =
1

ε
[(‖x′(S)‖ − 1) e(S)]

′ − δy , (2.78)

where we have set

e(S) =
x′(S)

‖x′(S)‖ . (2.79)

The initial slope is given as

e(0) =
1√

1 + η2

[
1
η

]
, (2.80)

that corresponds to the case of an imposed tension which reads

T (0)e(0) = T0e(0) =

[
H
V

]
(2.81)

in the physical domain.
No transverse load is applied so the equilibrium is planar. Due to the non-dimensional form
of equations, the first extremity of the cable is pinned in (0, 0) and the second extremity in
(1, h∗ = h

d
). This physical situation is depicted in Figure 2.5. Equation (2.78) implies that the

horizontal component of the internal forces is constant. The strain field and tangent vector are
obtained via integrating (2.78) between 0 and 0 6 S 6 l

‖x′(S)‖ − 1 = ε

√
1 + (η + δS)2 (2.82)

e(S) =
1√

1 + (η + δS)2

[
1

η + δS

]
, (2.83)

where η is the ratio of the vertical component of the internal forces by its horizontal counterpart.
The latter is also linked to the sine of (2.6) at S = 0 and l is the non-dimensional length of the
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cable.
To obtain the profile of the cable, we use the following relation which can be derived by
combination of (2.82) with (2.79)

x′(S) = ‖x′(S)‖ e(S) . (2.84)

Using (2.82)-(2.83) while integrating x′ between 0 6 S 6 l and l yields the following:

1− x(S) = ε (l − S) +
sinh−1 (η + δl)− sinh−1 (η + δS)

δ
, (2.85)

h∗ − y(S) = εη (l − S) +
δε

2

(
l2 − S2

)
+

√
1 + (η + δl)2 −

√
1 + (η + δS)2

δ
. (2.86)

Equations (2.85)-(2.86) provide with the non-dimensional profile of the cable. Admissibility
conditions are obtained via solving the nonlinear system obtained via setting S = 0. The latter
produces the elastic catenary equation which reads

[
0
0

]
=

[
x(0)
y(0)

]
=




1− εl − sinh−1 (η + δl)− sinh−1 (η)

δ

h∗ − εηl − δε

2
l2 −

√
1 + (η + δl)2 −

√
1 + η2

δ


 . (2.87)

Depending on the domain of application, variables can change. Indeed for a ropeway the couple
(l, η) is unknown while for a bridge cable (δ, η) or (ε, η) is unknown.
The normal vector n and the curvature K, are obtained via expressions given in (2.5) and (2.8),
we have:

n(S) = − 1√
1 + (η + δS)2

[
η + δS
−1

]
, (2.88)

K(S) =
δ

1 + (η + δS)2 . (2.89)

The following procedure accounts for the inextensible cable via setting EA → +∞ or ε = 0
which yields

[
0
0

]
=

[
x(0)
y(0)

]
=




1− sinh−1 (η + δl)− sinh−1 (η)

δ

h∗ −

√
1 + (η + δl)2 −

√
1 + η2

δ


 . (2.90)

A remark on numerical treatments of the elastic catenary equation

This problem can meet some numerical difficulties but for carefully chosen starting points,
Newton-Raphson procedure succeeds to solve it. Problem (2.87) can also be formulated using
log function instead of sinh−1 but this has to be considered carefully to avoid numerical errors
in the process.
The problem can also be formulated via using T0 instead of H, however the latter is trickier to
tackle numerically especially with sagged cable. Alternative formulations and Jacobians used
in Newton-Raphson methods are given in Appendix A.
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2.3.3 The parabolic cable

A handy approximation is often made for cables which is called the parabolic cable. The
latter consists on assuming that the vertical position of the cable is a parabolic function of its
horizontal position. Moreover, this configuration is often accompanied with an inextensibility
condition (i.e. EA = +∞). Writing system equations (2.78) for an inextensible cable, following
system is obtained





d

dS

[
T (S)

dx

dS

]
= 0

d

dS

[
T (S)

dy

dS

]
= δ

, (2.91)

where the inextensibility condition directly have been substituted into equations.
The horizontal component of tension is constant according to the first equation of (2.91) and
unit due to the non-dimensional form of the system equation. The second equation is therefore
manipulated as follows

d

dS

[
T (S)

dy

dS

]
=

d

dS

[
dS

dx

dy

dS

]
≈ d2y

dx2
, (2.92)

where dS is assimilated with dx.
No numerical solvers is required to access this static solution. This approximation provides the
exact solution when the vertical load is proportional to cosα [9]. The parabolic profile and
tension are therefore obtained as

y(x) =

(
h∗ − δ

2

)
x+

δ

2
x2 ,

T (x) =

√
1 +

((
h∗ − δ

2

)
+ δx

)2

.

(2.93)

The maximum deflection of the cable is therefore obtained by setting

xmin =
1

2
− h∗

δ
=⇒ ymin = −δ

2

(
h∗

δ
− 1

2

)2

,

(2.94)

while for the inextensible catenary, we have the following expression

ymin = h∗ −

√
1 + (η + δl)2 − 1

δ
. (2.95)

Comparisons with the catenary can be endowed from the latter. It is interesting to account
for the differences between both solutions. The main one is the sag difference which becomes
significant. Several references state the limit sag-to-span ratio to be 1/8. The latter is shown on
Figure 2.6. We recall that δ stands for the ratio of the self-weight of the cable by the horizontal
component of internal forces. The depart from the parabolic approximation from the exact
value of it obtained via catenary becomes bigger when the load increases which is critical for
the case of ropeways subjected to double their self-weight when cabins or chairs are fully loaded
and dispatched along the span. In this work, the catenary is used rather than the parabola.
Moreover, the further need of precision for long span installations where the elasticity plays a
significant role in the sag justifies this strategy.
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Figure 2.6: Maximum non-dimensional deflection for the inextensible catenary (solid line )
and the parabola (dashed line ) as a function of δ
(a) Aligned cable ; (b) Inclined cable with h∗ = 1/4

2.4 Cables in the presence of obstacles

In the following sections space and time variables are removed for the sake of conciseness.
This section is dealing with simple properties that can be derived from the cable equations
(inextensible case - (2.49)) when the domain is subjected to the presence of obstacles. The
latter is embedded into an inequality constraint

g(q) > 0 . (2.96)

When g = 0 the gap is closed meaning that a reaction force is applied to the domain to ensure
non-penetration.
The proposed results are given in the framework of the inextensible cable of constant linear
density, i.e. for the following governing equations:





ρ
d

dt
(q̇) =

d

dS
(Tq′) + fe − λ̄

∂g

∂q

0 = ‖q′‖ − 1

0 6 g(q) ⊥ λ̄ > 0

, (2.97)

where T denotes the tension of the cable, that plays the role of the multiplier associated to the
constraint ‖q′‖ = 1.

2.4.1 Persistent contact

Let us assume that a segment of the domain, S ∈ [S0, S1], remains in contact of the obstacle,
g(q) = 0,∀S ∈ [S0, S1], for a time interval [tc, t

∗
c ] where tc < t∗c . Let us decompose the velocity

q̇ as a normal and tangent velocity as follows

q̇ = uee + unn , (2.98)

where e and n are the directors defined in (2.2) and (2.5). Then the derivative of the velocity
reads

dq̇

dt
= (u̇e − α̇un) e + (u̇n + α̇ue) n (2.99)
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As the contact is persistent, we have that

∀t ∈ [tc, t
∗
c ], ∀S ∈ [S0, S1],

d

dt
g(q) =

∂g

∂q
q̇ = 0 , (2.100)

which means that from the cable perspective we have

∀t ∈ [tc, t
∗
c ], ∀S ∈ [S0, S1], q̇ · n = un = 0 , (2.101)

and that n and ∂g
∂q

are aligned but not necessarily sharing the same sign.

This implies from (2.8) and (2.97) that

∀t ∈ [tc, t
∗
c ], ∀S ∈ [S0, S1],





ρ u̇e = T ′ + fe · e

ρ α̇ue = KT + fe · n− λ̄
∂g

∂q
· n . (2.102)

As a preliminary result, we obtain the fact that the reaction is contained in the plane given by
the directors of the cable. The latter results gives an interesting conclusion for the case of a
string of negligible weight, i.e. T ′ = 0 and fe = 0, since it results into the following condition
for the persistent contact

∀t ∈ [tc, t
∗
c ], ∀S ∈ [S0, S1], λ̄

∂g

∂q
· n = KT , (2.103)

which can be interpreted as the fact that the obstacle and the string should share the same
convexity for the contact to persist. This result have been first shown in a weightless case to
prove that contact cannot persists when the obstacle has the opposite convexity of the cable [5].
Indeed, as λ̄ > 0 and KT > 0, if ∂g

∂q
·n < 0 the equation is trivially violated making impossible

for a vibrating string to remain in contact of a concave obstacle.

2.4.2 Inextensible cable contacting a sheave

The equilibrium of a cable contacting a sheave has been quite investigated in the past years.
The static equilibrium of a cable contacting a sheave has been well studied [4, 7, 12, 13, 16] for
applications in transportation and in electric lines. The key idea is to consider the cable-sheave
assembly as a super-element connected to two other cables.
In this section, the general equations are derived and the Capstan Law is endowed to accom-
modate for the tension loss in the contacting zone. Several cases are considered depending on
the sheave orientation. Then, the 3D equations for connecting a cable-sheave element to an-
other cable systems are given. Every derivations are done with the inextensibility assumption.
Indeed, elasticity requires additional assumptions about the contact between the cable and the
sheave that are not in the scope of analytical derivations.

Equations for the cable-sheave contact with Capstan law

The sheave is viewed as a cylindrical obstacle of radius R around which the cable is wrapped.
The contacting part of the cable is subjected to a left force T1 and a right force T2. Those
tension are assumed known here but are unknown in general application. Even though the
description of this equilibrium when the cable is partially in contact, we will assume that all
the cable is in contact all along the cylinder frontier given by the contacting angle θ1 + θ2.
We further assume that the cable is in a persistent contact case. The situation is depicted on
Figure 2.7. Equation (2.97) can be applied to this case and after projection on the local basis
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x
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θ1 θ2
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T0
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Figure 2.7: Cable segment with end forces in contact with a cylinder

we have {
r̂T − sin(α)ρg =T ′

r̂N + cos(α)ρg =KT  
{
rT =T ′

rN =KT , (2.104)

where rT and rN respectively stand for the equivalent tangent and normal reaction applied to
the cable by the cylinder. Assuming a Coulomb friction law [3] for the cable-sheave interface,
we have

|rT | 6 µrN (2.105)

where µ is the Coulomb coefficient.
We can obtain the following differential inequality satisfied by the tension

−µKT 6 T ′ 6 µKT . (2.106)

As the cable is inextensible, the integration can be performed via using the change of variable
S = θ

K where 1
K = R since the section of the cylinder is a circle. This yields

T1e
−µ(θ2−θ1) 6 T2 6 T1e

+µ(θ2−θ1) . (2.107)

The equilibrium is achieved for T2 satisfying (2.107), if not the cable is slipping on the sheave.

The cable-sheave super-element

With in mind the objective of building an assembly of cables and sheaves, we need to describe
the sheave-cable element which is joining two cables derived via the inextensible catenary
equations. The assembly is illustrated by Figure 2.7. The sheave is located in qp and has
radius R. The relative position of the whole cable should be inferred to avoid spurious or
multiple solutions. We assume that we are in a critical equilibrium configuration given by the
equality case of (2.107). Both cable segments should satisfy the catenary equations and should
satisfy the joint condition

T2 = T1e
µ(θ2−θ1) , (2.108)

where µ is the coulomb friction of the sheave.
Two possible configurations are of notable interest:

• The cable is above the sheave (Support configuration)

• The cable is below the sheave (Compression configuration)

The detailed derivations are given for the support configuration. Other derivations are direct
fall-out of the derived case. All configurations are given in Appendix C including 3D-equations
without proof. These derivations are equivalent to the work done in previous research [2, 4, 13]
with a small 3D-extension to the frictional case done in [10]. The equations consists in an
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Figure 2.8: Two cables connected via a sheave

inextensible catenary for the left and right part. The sheave satisfies the profile continuity and
the Capstan law for the tension. The latter reads:

(C1):





0 = d1 −
H1

ρg

(
sinh−1(η1 +

ρg

H1

L1)− sinh−1(η1)

)

0 = h1 −
H1

ρg



√

1 +

(
η1 +

ρg

H1

L1

)2

−
√

1 + η2
1




(P):





d1 = (xp −R sin (θ1))− x0

h1 = (yp +R cos (θ1))− y0

d2 = x2 − (xp +R sin (θ2))

h2 = y2 − (yp +R cos (θ2))

T2 = T1e
µ(θ2−θ1)

(C2):





0 = d2 −
H2

ρg

(
sinh−1(η2 +

ρg

H2

L2)− sinh−1(η2)

)

0 = h2 −
H2

ρg



√

1 +

(
η2 +

ρg

H2

L2

)2

−
√

1 + η2
2




(2.109)

The geometric compatibility between θ1 and η1 and also between θ2 and η2 reads

cos(θ1) =
1√

1 +
(
η1 + ρg

H1
L1

)2
, sin(θ1) =

η1 + ρg
H1
L1√

1 +
(
η1 + ρg

H1
L1

)2
(2.110)

cos(θ2) =
1√

1 + η2
2

, sin(θ2) = − η2√
1 + η2

2

(2.111)
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Table 2.1: Parameters used for the comparison of the cable sheave and the catenary

ρ (kg/m) L (m) Ends(m) sheave Radius (m) sheave position

5.56 50.5 (0, 0, 0) ; (50, 0, 0) 3 (25,−3, 0)

5.56 50.5 (0, 0, 0) ; (50, 0, 0) 3 (37.5,−4, 0)

5.56 51 (0, 0, 0) ; (50, 8, 0) 3 (25,−1, 0)

Combining and reducing (2.109-2.111), provides with the following set of nonlinear equations:

(C1):





0 = xp −
R
(
η1 + ρg

H1
L1

)

√
1 +

(
η1 + ρg

H1
L1

)2
− x0 −

H1

ρg

(
sinh−1(η1 +

ρg

H1

L1)− sinh−1(η1)

)

0 = yp +
R√

1 +
(
η1 + ρg

H1
L1

)2
− y0 −

H1

ρg



√

1 +

(
η1 +

ρg

H1

L1

)2

−
√

1 + η2
1




(P):

{
H2

√
1 + η2

2 = H1

√
1 +

(
η1 +

ρg

H1

L1

)2

eµ(tan−1(−η2)−tan−1(η1))

(C2):





0 = x2 − xp +
Rη2√
1 + η2

2

− H2

ρg

(
sinh−1(η2 +

ρg

H2

L2)− sinh−1(η2)

)

0 = y2 − yp −
R√

1 + η2
2

− H2

ρg



√

1 +

(
η2 +

ρg

H2

L2

)2

−
√

1 + η2
2




(2.112)
The small angles assumptions is not done here which explains the presence of radicals in (2.112).
Those equations constitute the simplest way of implementing the cable-sheave super-element
in any code. Although we may simplify (2.112), it makes implementation more tedious. The
latter considerably change the behavior of the numerical algorithms. Both tension or length
can be used as an unknown for this problem. However, using the tension as an unknown seems
more unstable since multiple solutions exist for this problem [7]. Some example are given on
Figure 2.9 via using (2.112) with parameters in Table 2.1.

LTDS-INRIA 51



Chapter 2

0 10 20 30 40 50
-4

-2

0

x (m)

y (m)

0 10 20 30 40 50
-4

-2

0

x (m)

y (m)

0 10 20 30 40 50
-2

0

2

4

6

8

x (m)

y (m)

Figure 2.9: Profile obtained via using the cable-sheave solution (solid line ) versus the
same cable not subjected to the obstacle (dashed line )
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Conclusion of the chapter

This chapter provides with the essential tools and models that can be endowed to derive the
cable equations and to prepare both analytical and numerical application. Main contributions
and results are

• The different model derivation via Lagrangian mechanics including unilateral models;

• A first illustration about possible multiple solutions;

• The illustration of the precision superiority of the elastic catenary compared to the
parabolic cable;

• Preliminary results about the cables subjected to the presence of obstacles.

Some perspectives can already be pointed out such as:

• Develop more sophisticated models which embed visco-elastic behavior and torsion (mainly
for fatigue analysis) or thermo-mechanical coupling;

• Proving mathematically the existence and the non-uniqueness of the solutions of the
different cable model provided in the chapter;

• Investigate more sophisticated geometries for the obstacle;

• Develop a geometrically exact beams model suitable for comparisons with the presented
models and the presence of obstacles.

References

[1] Angelillo, M. (1994). A finite element approach to the study of no-tension structures. Finite
Elements in Analysis and Design, 17(1):57–73.

[2] Aufaurre, M. (1991). A finite elemen of cable passing through a pulley. Computers and
Structures, 46:807–812.

[3] Bastien, J., Bernardin, F., and Lamarque, C.-H. (2003). Non-Smooth Deterministic or
Stochastic Discrete Dynamical Systems: Applications to models with Friction or Impacts.
Wiley.

[4] Bruno, D. and Leonardi, A. (1999). Nonlinear structural models in cableway transport
systems. Simulation Practice and Theory, 7(3):207–218.

[5] Cabannes, H. (1984). Cordes vibrantes avec obstacles. Acta Acustica united with Acustica,
pages 14–20.

[6] Cardona, A. and Geradin, M. (1988). A beam finite element non-linear theory with finite
rotations. International Journal for Numerical Methods in Engineering, 26(11):2403–2438.

[7] Crusells-Girona, M., Filippou, F. C., and Taylor, R. L. (2017). A mixed formulation for
nonlinear analysis of cable structures. Computers & Structures, 186:50–61.

[8] Fletcher, R. (1993). Practical Methods of Optimization.

LTDS-INRIA 53



Chapter 2

[9] Fuss, N. (1796). Chapter x: On strings of a treatyise on analytical statics by Routh.
University press.

[10] Ju, F. and Choo, Y. (2005). Super element approach to cable passing through multiple
pulleys.

[11] Kanno, Y. and Ohsaki, M. (2003). Minimum principle of complementary energy of cable
networks by using second-order cone programming. International Journal of Solids and
Structures, 40(17):4437–4460.
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Finite element method for cable
systems

Equilibria and dynamics of cable systems continue to be studied until now as it is reported
in the detailed review of Rega [32] with a focus on the modal analyses and the dynamics of
cable systems. However, those studies often rely on reduced-order models which are neither
applicable to generic situations nor to non-smooth phenomenons. This chapter deals with the
FEM applied to cable structures.

A truss formulation [14] has been proposed in the early stage of FE investigations about
cables. The latter is considering an apparent rigidity for a truss element in order to take
into account geometrical nonlinearities. The possibility of doing modal analysis (e.g.[19]) and
studying the dynamics (e.g. [18]) is an ongoing investigation in the domain of cable structures.
In most cases, cable problems are ill-conditioned, badly scaled and the convergence results of
the FE are compromised [43]. Numerical damping, load control step and a smart initial guess
[15] or also constrained optimization [25] can be combined to increase the robustness of those
methods. However, spurious solutions continue to be observed [15, 41] or the criteria on the
positive internal actions (i.e. tension) are not satisfied out of Gauss integration points [18].

More sophisticated cable systems and cable dynamics are often studied for nets and mooring
lines. Indeed, the complex shape taken by the system in its current state requires a minimum
number of assumption and to consider all the effects of the geometrical nonlinearity.

Geometrically nonlinear aspects of the problem have been tackled using the nodal coordinate
formulations [39] or also using co-rotational formulation [16] rather than displacement-based
computations. This method is endowed since the small displacement assumption produces
wrong tension estimates and potential instabilities [42]. In a recent work [10], a proper mixed
FE formulation is proposed for a neo-Hookean cable material with the possibility of having a
discontinuous axial force. Further discussion about the robustness of finite element procedure
for cable systems composed of a large number of nodes is still needed. Our purpose is to expose
the numerical problems that can be encountered with such systems and to propose bypasses
for the occurrence of compressive solutions during the calculations.

The main assumption for cables is that they cannot bear compression stresses. In other
words, the strains and stresses should remain positive. Proof of existence of mentionned condi-
tions has been given via a complementary energy principles in the work of Kanno [22]. Moreover
dual formulation also provides with the possibility of imposing tension only as presented in the
work of Santos and Almeida [36]. The statics of cables or cable networks is then well established
however there is a lack of formalism for the dynamics even if this problem is addressed in [38]
where the dynamic increment is modified to ensure a positive strain.

A proper formalism can be endowed to impose a given sign to stresses [3, 31], coined as
no-tension materials with application for masonry structures. For nonlinear cable structures,
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there is the lack of a problem formulation with a no-compression formulation, although a
formalism exists for bar/truss elements [22], no work currently treats this aspect combined to
other constraints, geometrical non linearity and dynamics.

A lot of work have been carried out by the community of computer graphics. It often involves
various implementations of geometrically exact beams combined with a rotation parametriza-
tion via quaternions, parallel transport, rotation vector or Euler angles. It is often stated that
those methods are very satisfying for materials subjected to small stresses and not so stiff.
Those models already have some industrial implementation (IPS cable for instance) allowing
interactivity which requires real-time integration of the dynamics. This can be performed at
the cost of having critical or almost critical modal damping combined to a behavior which is
dominated by flexural stiffness which is unfortunately not acceptable to describe dynamics of
a slender structure which behavior is dominated by its axial forces with extra light damping.

In this chapter, we will present a FE formulation of the cable which is able to trace the
statics and the dynamics of cable systems. Focus will be drawn to the viable strategies to
overcome the no-compression condition.
A self-standing presentation is available in [6]. Here the focus is drawn to pedagogy and details
that made the approach efficient.

3.1 Formulation of a Cable Finite Element

Let us consider the equilibrium of an elastic cable of rigidity EA and of length L. The cable is
located via the positions of its particles q and the velocity of its particles v. The linear density
of the cable, ρ, is assumed constant along the curvilinear abscissa S. Its local undamped
dynamics are given by

ρ
dv

dt
= [Te]′ + b . (3.1)

We also need to emphasize on the fact that cables are materials which can resist only to
tensile forces. Indeed, the cable in its simplest representation can be tensed or slack. As a
consequence, the internal forces produced by a cable can only be positive and oriented along
the axial direction, e, of one cable segment leading to the following formulation of cable tension

T =

{
EA (‖q′‖ − 1) if ‖q′‖ − 1 > 0

0 if ‖q′‖ − 1 < 0
. (3.2)

A particular attention is given to (3.2) since unexpected numerical behavior can happen due to
this mechanical inconsistency. The position of cable sections are kept as unknown rather than
displacements. This strategy allows to keep the current orientation and length of each cable
segment arbitrary.
Choosing nodal positions instead of displacements in the case of cable is of major relevance.
Indeed, the motion of a cable often exhibits large displacements combined to small strain. As a
consequence, the full geometrical non linearity must be kept in developments to avoid spurious
estimations of the strain. An interesting illustration is provided by Zhu [42], injecting the
strain-displacement relationship into a quadratic strain approximation yields

ε̃ = cos(ω)− 1 +
1

2
sin2(ω) , (3.3)

which is non-zero in the case of pure rigid body motion. For this reason, approximations of
the strain and rotations cannot be used in the sequel. The latter is true for other order of
expansion used.
Unknown functions q and v are assumed to belong to the following Sobolev space

v , q ∈ H1 =
{
u ∈ R3 s.t. u ∈ L2 ([0, L]) ,u′ ∈ L2 ([0, L])

}
, (3.4)
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Figure 3.1: Linear interpolation of a cable eth element

accompanied with its norm

‖u‖1 =

[∫ L

0

u · u + u′ · u′dS
] 1

2

. (3.5)

Equation (3.1) is multiplied by an arbitrary function ϕ ∈ H1 and integrated by parts over the
spatial domain

∫ L

0

ρ
dv

dt
· ϕdS +

∫ L

0

Te · ϕ′dS = [Te · ϕ]L0 +

∫ L

0

b · ϕdS . (3.6)

This manipulation highlights the fact the the boundary condition in force should be given in
this case. However the latter is an unknown of this problem in general. Thus, the global
equilibrium reads
∫ L

0

ρ
dv

dt
· ϕdS +

∫ L

0

Te · ϕ′dS = T (L)e(L) · ϕ(L)− T (0)e(0) · ϕ(0) +

∫ L

0

b · ϕdS , (3.7)

where T (L)e(L) and T (0)e(0) are given or a consequence of boundary conditions. The most
compliant and versatile approach is to include those boundary condition as a reaction to a
constraint in the form of

a(q) = 0 , ∇qa = A , (3.8)

which implies that a reaction force is directed along the direction given by ∇qa = A.
The Sobolev space is approximated via linear polynomials p1 [43]. Then, the cable is described
as an assembly of N cable segments. In another words, the interval [0, L] is parted into sub-
intervals [Se, Se + Le] such that

∑
e L

e = L. Positions and velocities are approximated as
follows

q(S) ≈
N∑

e=1

N(S)qe , (3.9)

v(S) ≈
N∑

e=1

N(S)ve , (3.10)

where N is a linear interpolation matrix

N(S) =




1− ξe 0 0 ξe 0 0
0 1− ξe 0 0 ξe 0
0 0 1− ξe 0 0 ξe


 , ξe =

S − Se
Le

. (3.11)

Vectors qe and ve are respectively the nodal positions and the nodal velocities associated to
the eth cable segment. The element considered is depicted in Figure 3.1. This choice implies
that the tension and the orientation are constant element-wise.
Let us consider an arbitrary weight function ϕ approximated the same way over one cable
segment, meaning

ϕ(S) ≈
N∑

e=1

N(S)ϕe . (3.12)
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The global equilibrium given by (3.7) can be reformulated into the following equation in the
approximate H1

1-space as

N∑

e=1

ϕe>
[
Medve

dt
+ Ke(qe)qe − f e

]
= ϕ>

[
A>λ

]
, (3.13)

where

Me =ρ

∫ Le

0

N(S)>N(S)dS , (3.14)

Ke(qe) =EA

∫ Le

0

(‖N′(S)qe‖ − 1)
N′(S)>N′(ξ)

‖N′(S)qe‖ dS , (3.15)

f e =

∫ Le

0

N(S)>b dS , (3.16)

which read in matrix forms




Me =
ρLe

6




2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1
1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2




, f e =
Le

2




bx

by

bz

bx

by

bz




>

Ke(qe) =
EA

L

‖N′(ξ)qe‖ − 1

‖N′(ξ)qe‖




1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1




. (3.17)

Once assembled into a global problem the latter yields the dynamics of a cable. Structural
damping may be considered for practical reasons which is added to the global problem as
follows 




0 = M
dv

dt
+ C(q,v)v + K(q)q− f −A>λ

0 = a(q)
. (3.18)

The expression of a should be supplied in accordance with the system physics.
The form of the matrix C(q,v) is left general since the latter depends on the domain considered.
The equilibrium given by (3.18) is nonlinear and non regular if we consider that the cable can
only support tensile forces.
Eventually the assembly process, the boundary conditions and the numerical methods should
be adapted for the study at stake. Among the possibilities is

• A linear assembly with fixed end nodes (Bridge cables, cable vibrations)

• A linear assembly with one fixed endpoint (Elastic n-pendulums, mooring lines)

• A closed-loop composed of n-segment (Belt-sheaves)

• An arbitrary assembly of segments whose ends are connected to another segment or
anchored-fixed (Cable nets)
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Figure 3.2: (a) Fixed cable configuration, (b) closed-loop configuration and (c) mooring Line
(or n-pendulum) configuration with their given boundary condition in blue
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A quick insight of various possibilities are illustrated in Figure 3.2. Some investigations about
the consequence of the mesh on the integrability of such system have already been done by
Kozlov in [26]. Statics and dynamics of a general cable system are two different challenges.
Indeed, the static problem is to find the shape of the system at rest and to estimate its tension
while the dynamics aims to predict the accurate system response when subjected to a dynamic
load.

3.2 Statics of cables

The statics of cable systems are given by the following general equation

K(q)q− f = 0 , (3.19)

coupled to some boundary conditions or more generally

{
K(q)q− f = A>λ

0 = a(q)
. (3.20)

Performing the static analysis of cable structures has at least three following interests

• Finding the shape of a given system

• Tension estimation of cables

• Provide suitable initial conditions for dynamics analyses

Following difficulties may be encountered during numerical treatment of cables

• Ill-conditioning of the residual equation

• Inaccurate topology of the cable (knots, folds or arches)

• Singularity of the stiffness matrix (due to the possible slackness of cable segments)

First, this section highlights the weaknesses of the direct solving of the residual equation ob-
tained by FEM. Then, various numerical strategies to compute the equilibrium of tensed cables
are presented. Eventually, a summary about Dynamic Relaxation Method (DRM) is given
since it had a significant impact on the community of cable network and cable-roof structures.

3.2.1 Direct solving via FEM

Let us give the expressions for the stiffness and tangent stiffness matrices





Ke = EA

∫ Le

0

(‖N′(S)qe‖ − 1)
N′(S)>N′(ξ)

‖N′(S)qe‖ dS

∆Ke = Ke + EA

∫ Le

0

N′(S)>N′(S)qeqe>N′(S)>N′(S)

‖N′(S)qe‖3 dS

. (3.21)

Without precautions, it allows for compression since a compressed segment still produce forces.
This can lead to the situation explained in Section 2.2.5. When it comes to study the rest
position of a hanging cable, non acceptable shapes can be obtained such as knots, arches or
folds. A plot of a ”wrong” solution obtained by solving (3.19) using a direct Newton-Raphson
algorithm is provided in Figure 3.3. Facing this example, two solutions may be thought of
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Figure 3.3: A numerical equilibrium obtained by naive implementation of FEM relying on
(3.21) instead of its modified version. The compressed parts are zoomed in.

• Change the initial guess

• Change the nature of the internal forces so that compression is forbidden

The first choice relies mostly on experience and the physical sense of the user. As an example,
initial guesses relatively close to the final equilibrium are also subjected to those phenomenon
(for instance the parabolic profile). Moreover, the rest shape of complex structures cannot
be so easily inferred. The second choice could be applied for a wider variety of problems.
Some pioneering work for a truss assembly already has viable implementation and proof of
convergence [21].
The system needs a bypass in order to have a physically acceptable solution which is the topic
of next section.

3.2.2 Numerical strategies to avoid compressed segments

The key explanation for the situation depicted in Figure 3.3 relies on Figure 2.4. It has been
shown in Section 2.2.5 that the elastic problem has several solutions when both traction and
compression are allowed. The idea is to introduce a bias in the numerical computations that
bents the simulation towards the tensed cable configuration.
One simple way to favor tensed configurations is to have a modified constitutive law which
decrease the internal compressive forces. Several approaches may be endowed but the theoret-
ically perfect one is the unilateral law which case has already been discussed in (2.68). The
perfect unilateral law can be approximated by a piecewise linear law with a very small slope for
negative strain as depicted in Figure 3.4. The ideal physical choice is of course the unilateral
law since it simply discards locally the internal forces when it corresponds to a compressed
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Figure 3.4: (a) Classic Hooke’s law (solid line ) , (b) Unilateral Hooke’s law (solid line )
and (c) linear-by-part Hooke’s law (solid line )

cable segment. However, the tangent stiffness matrix is no longer invertible due to a multi-
diagonal slot of zeros. This encourages to investigate further the piecewise linear case. The
latter leads to the matrice given in (3.17) where a small stiffness is considered when a segment
is compressed. Even though this approach slightly increases the success rate of the numerical
procedures it still has the drawback of presenting compressed equilibrium or convergence issues.
A interesting way of searching equilibrium is to discard elastic forces corresponding to com-
pression. The stiffness matrix, K, and the tangent stiffness matrix, ∆K, must be adapted in
order to choose a descent direction which is consistent with the physics expected of a cable and
also to provide with an invertible problem. Moreover, as we investigate tensed configuration
the latter should hold

ε(S) = |ε(S)| ⇐⇒ ‖N′(S)qe‖ − 1 = |‖N′(S)qe‖ − 1| , (3.22)

Then we should have

ε(S)

ε(S) + 1
=
|ε(S)|
|ε(S)|+ 1

. (3.23)

We therefore use the latter to enforce a tensed equilibrium. In this case, a vanishing residual
equation implies that ε > 0. For one cable segment the latter reads

εe(S) = ‖N′(S)qe‖ − 1 , (3.24)

Ke =




EA

∫ Le

0

N′(S)>N′(S)

1 + |εe(S)|−1
dS ; εe(S) > 0

0 ; εe(S) < 0

, (3.25)

∆Ke =





Ke + EA

∫ Le

0

N′(S)>N′(S)qeqe>N′(S)>N′(S)

(|εe(S)|+ 1)3 dS ; εe(S) > 0

EA

∫ Le

0

N′(S)>N′(S)

1 + |εe(S)|−1
dS ; εe(S) < 0

. (3.26)

The parallel between this formulation and the particular case given in Section 2.2.5 is clear.
The contribution of compressive forces is discarded so that only tensile forces will be considered
in the equilibrium.
Some researchers developed several approaches among which penalty methods formulation,
pendulums assembly [35] or constrained optimization [21] in order to fully account for the
non-compressibility of cable systems.
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Section 3.2

1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

: Direct FEM
: Proposed Strategy

τ

ρs(τ )

Figure 3.5: Performance profiles for naive approach (3.17) and the proposed approach (3.26)

3.2.3 Comparisons between the direct FEM and the proposed ap-
proach

The direct FEM given by (3.21) is not of practical interest for the computation of cable equi-
librium compared to an approach based on the matrices given in (3.26). In order to assess for
the following statement, an efficiency test has been ran for our approach [13]. According to p
random problems, we can define an objective indicator of efficiency for each method possible
denoted by subscript s which is the number of iterations (or CPU-time) needed to reach a
numerical equilibrium penalized with the number of compressed segments in the domain

critp,s = nit + nε<0 ×maxit or crit∗p,s = CPU-time + nε<0 × t∗ , (3.27)

where nit and nε<0 respectively stand for the number of iterations and the number of compressed
segments in the domain. A performance ratio is defined as follows

rp,s =
critp,s

min
s

(critp,s)
. (3.28)

We can build the probability that a performance ratio for a given method s is within a factor
τ of the best possible method, which reads

ρs(τ) =
1

p
card ({p̃ , rp̃,s 6 τ}) . (3.29)

We used this methodology to compare objectively the robustness of our approach. We randomly
selected p = 1600 static configurations problems over the set of parameters (ρ, L,EA, q0, qL)
and ran the direct FEM (3.17) and the proposed strategy (3.26) on all problems. More details
and strategies are available in our published work [6]. The main result is that a nonlinear
approach based on formulation given by (3.26) instead of (3.21) is a better choice in the sense
that it statistically improves the numerical success as illustrated by Figure 3.5. For large τ we
see that all problem are solved since ρs(τ) → 0. Furthermore, the proposed approach is more
computationally efficient.

3.2.4 Dynamic relaxation method

The Dynamic Relaxation Method (DRM) is a method endowed to compute static or quasi-static
solutions for structures where large displacements are expected. Its name is due to the fact
that the actual rest position of one system is obtained as the fixed point of a fictitious temporal
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evolution. A lot of work have been done in order to optimize the choice for the fictitious time
parameters: the mass matrix, the damping matrix and the time-step. The main advantages are
the better conditioning of the time-evolution problem, the equilibrium obtained is an actual
fixed-point of the dynamics and it can be applied to complex structures. Moreover the fictitious
matrices are often diagonal and the evaluations of the fictitious dynamics are explicit which
makes memory requirement smaller than actual nonlinear dynamics.
Its first developments [11, 23, 30, 40] have considerably improved until today [4, 33] to cite a
few. This method is very suitable for systems subject to large motions and large deformations.
Although this method has been used a lot and has been proven reliable, it does not explain
the observed numerical instability. A very practical summary and review is accessible in this
research note [34].
As stated just above, the idea is to compute a fictitious transient for the cable system over⋃n
k=0(tk, tk+1] where the mass matrix and the damping matrix are chosen to accelerate the

convergence towards the rest position. The time-step h is also to be chosen to fasten the
computation.
Applying the Wilson θ-Method to (3.18) with the particular choice θ = 1/2 we have the
following





[
Mk +

h

2
Ck

]
vk+1 +

h

2
Kk+1qk+1 = Mkvk −

h

2
Ckvk −

h

2
Kkqk +

h

2
fk+1 +

h

2
fk

qk+1 = qk +
h

2
vk+1 +

h

2
vk

, (3.30)

which can also be written as
[
Mk + h

2
Ck

h
2
Kk+1

−h
2
Mk Mk

](
vk+1

qk+1

)
=

[
Mk − h

2
Ck

h
2
Kk

h
2
Mk Mk

](
vk
qk

)
+
h

2

(
fk+1 + fk

0

)
. (3.31)

The subscripts •k+1 and •k respectively refer to a quantity evaluated in t = tk+1 and t = tk.
The detailed derivations of the θ-method is given in Section 3.3.1.
The fictitious mass and damping matrices are taken diagonal most of the time. Popular choices
are often the following

• Mass matrix:

– Mk = αI where α is an arbitrary constant

– Mk = βKk where β is an arbitrary constant

– (Mk)ii =
∑

j | (Kk)ij |
– (Mk)ii >

h2

4

∑
j | (Kk)ij | (Gerschgorin’s theorem)

• Damping matrix is always supposed to be diagonal with form ckI:

– Proportional to the lowest frequency ck = 2ω0

– ck = 2
[

ωk
1+ωk

]1/2

where ωk = qk
>∆Kkqk

qk>Mkqk
[37]

– ck = 2
[
qk
>Kkqk

qk>Mkqk

]1/2

– Adaptative damping [40] obtained from Rayleigh theory ck = 2
[
qk
>K̂k+1qk
qk>Mqk

]1/2

where

M is taken as the Gerschgorin’s theorem and K̂k+1 = 2
h
diag

(
[Kk+1qk+1]i−[Kkqk]i

[vk+1−vk]i

)
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Section 3.3

• Time-step h:

– A constant time-step is often used when the frequency content is known h 6 2
ωmax

or
even 1 to avoid the computation of the system’s eigenvalues

– When the mass and damping matrices are taken via Gerschgorin’s theorem and

Rayleigh’s theorem, we set hk = 2√
1+ωk

where ωk = qk
>∆Kkqk

qk>Mkqk
[37]

This calculation tool is used in this work to obtain initial condition for the dynamics of complex
systems especially the ones subjected to unilateral constraints, see (2.97).

3.2.5 Tension estimation of cable networks

This section entails the application of our proposed methodology for the computation of some
various cable structures. The developed tools is applicable to any structure composed totally
or partially of cables. The assembly process can be very tedious. As an example, we formed
a spider web made of 26 segments. Each segment has a density of at least four nodes per
meter. The parameters for the spider web are given in Table 3.1. The unknowns in this case
are 9126 dof, 21 Lagrange multipliers for the clamped boundary conditions and 375 Lagrange
multipliers for the connections between the different cables. For the starting configuration, each
sub-cable was given a random straight configuration inside of the final center of the net. The
presented example remains academic but suffices to illustrate the case of slack assembly. Any
further application could be enhanced with a better interface to facilitate the assembly and the
matrices building.
We see that the proposed FEM is able to trace the catenary shape and to build tension estima-
tions for the cable net. The robustness of the gradient direction proposed in (3.26) is assessed
by this difficult numerical example. We insist on the fact that the DRM was not used for the
presented examples, proving that the approach suffices to compute complex cable equilibriums.
Moreover we see that the method is able to trace combined slack and taut cables in a complex
assembly. Some perspectives to improve DRM associated to nets form-finding problems are
open by the usage of the proposed approach. The final obtained equilibrium are depicted in
Figure 3.6. The tension equilibrium is visible on each views, even though some cable are way
slacker than other we are still able to catch this equilibrium and to evaluate the tension in each
cable segment.

3.3 Dynamic analyses

The time-evolution of a cable is of utmost interest to predict the responses to dynamic loads
and the stability of a given equilibrium. As we are mainly interested into the response of a
constrained cable, the numerical scheme has to be adapted. Its derivation and use will be
presented in the next section.

The nonlinear dynamics of cable systems are a major issue and challenging task. Contrary
to analytical methods that trace a small displacement around and equilibrium, FEM is more
adapted to compute the full dynamics of cable systems [35, 42]. In this section, we describe
the detailed treatment of the non-smooth time evolution via the suitable θ-method. Then a
qualitative validation of the performed integration is proposed. Eventually, a time-stepping
scheme for cables subjected to frictional impact is derived.
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Table 3.1: Parameters used for the spider web examples

Cable index EA (MN) ρ (kg/m) L(m) N Clamped to ... Connected to cables ...

0 1.5 0.8 4.1 60 (0, 0, 0) 7, 13, 14

1 1.5 0.8 2.336 30 (5, 0, 7) 7, 8, 15

2 1.5 0.8 2.336 30 (13, 0, 7) 8, 9, 16

3 1.5 0.8 3.262 45 (18, 0, 1) 9, 10, 17

4 1.5 0.8 2.549 30 (16, 0,−8) 10, 11, 18

5 1.5 0.8 4.1 60 (8, 0, 12) 11, 12, 19

6 1.5 0.8 3.706 45 (2, 0,−8) 12, 13, 20

7 1.5 0.8 6.503 90 None 0, 1, 13, 14, 15

8 1.5 0.8 6.1 90 None 1, 2, 7, 9, 15, 16

9 1.5 0.8 5.931 75 None 2, 3, 8, 10, 16, 17

10 1.5 0.8 6.183 90 None 3, 4, 9, 11, 17, 18

11 1.5 0.8 6.425 90 None 4, 5, 10, 12, 18, 19

12 1.5 0.8 5.485 75 None 5, 6, 11, 13, 19, 20

13 1.5 0.8 6.183 90 None 0, 6, 7, 12, 14, 20

14 1.5 0.8 4.223 60 None 0, 7, 13, 15, 21, 22

15 1.5 0.8 4.1 60 None 1, 7, 8, 14, 21, 22

16 1.5 0.8 5.1 75 None 2, 8, 9, 22, 23

17 1.5 0.8 4.572 60 None 3, 9, 10, 18, 23, 24

18 1.5 0.8 5.1 75 None 4, 10, 11, 17, 23, 24

19 1.5 0.8 4.223 60 None 5, 11, 12, 24, 25

20 1.5 0.8 4.343 60 None 6, 12, 13, 21, 25

21 1.5 0.8 4.1 60 None 14, 15, 20, 22, 25

22 1.5 0.8 3.1 45 None 14, 15, 16, 21, 23

23 1.5 0.8 3.706 45 None 16, 17, 18, 22, 24

24 1.5 0.8 2.928 30 None 17, 18, 19, 23, 25

25 1.5 0.8 3.262 45 None 19, 20, 21, 24
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Figure 3.6: Static equilibrium of a cable net and its tension estimates computed via FEM
under different views - Parameters in Table 3.1

LTDS-INRIA 67



Chapter 3

3.3.1 θ-Method applied to cable dynamics

We suppose that the velocity v is a function of local bounded variation. In another words, the
discontinuity occurrences of v are finite and countable. Some jumps can occur at some time
ti such that the left and right limit of the velocity are always defined. We take the following
notations to refer to the right and left limits respectively

v+ = v(t+i ) = lim
ε→0

v(ti + ε) , v− = v(t−i ) = lim
ε→0

v(ti − ε) . (3.32)

Besides, the positions are assumed to be absolutely continuous and are obtained via considering
the Lebesgue integral of the velocity

q = q(t = 0) +

∫ t

0

v dt . (3.33)

The dynamics are recast into the following differential measure equality





Mdv +
[
C(q)v+ + K(q)q

]
dt = fdt

dq

dt
= v+

(I.C.) : q(0) = q0 , v−(0) = v0

, (3.34)

where we have that
dv = γdt+

∑

i

[
v+ − v−

]
δti + dvs , (3.35)

where γ is the acceleration in the classical sense and

• dt is the Lebesgue measure

• δti is the Dirac measure at discontinuity times ti

• dvs is a singular measure with respect to dt+
∑

i δti that will be neglected in the sequel

The differential measure equality is integrated over a time segment (tk, tk+1] which yields





M (v(tk+1)− v(tk)) +

∫ tk+1

tk

[
C(q)v+ + K(q)q

]
dt =

∫ tk+1

tk

fdt

q(tk+1) = q(tk) +

∫ tk+1

tk

v+dt

. (3.36)

The Wilson θ-Method is used to approximated integral quantities as follows

∫ tk+1

tk

f(t)dt ≈ θhf(tk+1) + (1− θ)hf(tk) . (3.37)

As a consequence we have that

∫ tk+1

tk

[
C(q)v+

]
dt ≈ θhC(q(tk+1))v(tk+1) + (1− θ)hC(q(tk))v(tk) , (3.38)

∫ tk+1

tk

[K(q)q] dt ≈ θhK(q(tk+1))q(tk+1) + (1− θ)hK(q(tk))q(tk) , (3.39)

∫ tk+1

tk

fdt ≈ θhf(tk+1) + (1− θ)hf(tk) . (3.40)
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Figure 3.7: Stations of a falling cable (solid line ) starting without velocity from rest
position (solid line ) and final equilibrium (solid line )

This provides with the following problem

[M + hθC(tk+1)] v(tk+1) + hθK(q(tk+1))q(tk+1) = Mv(tk)

− (1− θ)hC(q(tk))v(tk)− (1− θ)hK(q(tk))q(tk) + θhf(tk+1) + (1− θ)hf(tk)
, (3.41)

q(tk+1) = q(tk) + θhv(tk+1) + (1− θ)hv(tk) , (3.42)

which is an implicit method in (v(tk+1),q(tk+1)). The latter can be used to trace the dynamics
of cable systems or also to derive the statics via Dynamic Relaxation Methods as explained in
Section 3.2.4. Several classical cases can be obtained as it follows

Method Explicit Euler Crank-Nicholson Finite Difference Method Implicit Euler

θ 0 1/2 1

3.3.2 Application to the cable pendulum and qualitative validation

A benchmark example, is the falling cable pendulum. A fixed-free cable is released at time t = 0
without initial velocity. The latter is oscillating in a pendulum-like motion until it converges
to the vertical position.
The discrete equations of motion given in (3.18) are injected with the approximations of time
derivatives given in Section 3.3.1. Some simplifications in the case θ = 1/2 are made to obtain
the following nonlinear problem in qn+1

[
M +

h

2
C + h2K

(
qn+1

)]
qn+1 − h2fn+1 −M

(
2qn − qn−1

)
− h

2
Cqn−1 = 0 , (3.43)

This test is typical of a situation with large displacements with small strains. The whipping
effect of the cable tip is a good indicator of the nonlinear response of the system. The latter
is easily comparable with a light experimental set-up [18]. Our own simulation reproduced
correctly this phenomenon (see Figure 3.7) but a qualitative comparison with reality is therefore
more interesting. An elastic cable of linear density ρ = 3.324 × 10−2 kg.m−1 and rigidity
EA = 750.77N has been considered. The rigidity of the cable has been estimated via a simple
traction test. A picture of the considered cable in a tensed state is given in Figure 3.8 and
the strain has been measured compared with an initial pre-stressed cable to ensure the uniform
tension distribution in the domain. 30 measure points have been taken with different load paths
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Figure 3.8: Extension of a linear elastic cable-type material

to check the linear elasticity assumption. The least-square method [7] has been endowed to
estimate the cable rigidity as implied by Figure 3.9. We obtained the following results

∆T = 750.77∆ε ; R2 = 0.9692 . (3.44)

The experiment consists on a 1.8 m cable hanged between two hinges which is released without
initial velocity. We set up some targets that can be followed by a rapid/speed camera and the
planar motion of the cable have been tested and ensured via using a suitable hinge which can be
seen on Figure 3.10. The trajectory of the cable has been built according to video-correlation
technique [24]. The software Kilonewton has been used to build back the 2D motion of the
system. Some frames of the cable fall are depicted for illustration purpose only in Figure 3.11.
The presence of the targets has been modeled with additional punctual masses dispatched
along the reference curvilinear abscissa. Using a logarithmic decrement technique (details in
Appendix D), we could estimate an acceptable value for the damping. Then prediction given
by FEM can be compared with an actual trajectory which is given in Figure 3.12.
We can see the qualitative agreement between the motion of the targets and the motion com-
puted via FEM. This simple test allows to validate the ability of the model to trace large
displacements with small strain.
Current limitations of the protocol are listed below:

• The planar motion have been imposed roughly. Even though the motion remained planar,
it has induced high dissipation in the hinged end of the cable

• The effect of initial curvature (torsional and flexural) of the material were neglected

• Even though every measure have been taken in the same room, no temperature test has
been done to ensure the material was evolving in the same environment
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Figure 3.9: Measure points ( ) and linear regression (solid line ) obtained from the
traction test - R2 = 0.9692

Figure 3.10: Hinge and target used for the experiment - Cable with targets mounted on
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Figure 3.11: Snapshots of the falling cable obtained with a high speed camera (Illustration
purpose only)
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Figure 3.12: Trajectories of targets 1,2,3,4,5 and 8 obtained with a high speed camera (solid
line ) and with FEM (solid line )
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3.4 Dynamics of a constrained cable

3.4.1 Discrete dynamics formulated as an inclusion

We assume that the cable is now subjected to inequality constraints which are given by

g(j)(q, t) > 0 ; j = 1, ...,mi . (3.45)

For instance, g can model the presence of an obstacle or friction.
The goal of the present approach is to take those constraints into account in the numerical
process. The latter are considered at nodes of the system. Provided the finite element dis-
cretization, we can consider the vector of inequality constraints

g(q, t) > 0 , (3.46)

Each component of this vector is denoted as g(j) and corresponds to the jth constraint applied
to the system. Let us introduce the following subset

C(t) = {q, g(q, t) > 0} , (3.47)

where the dynamics are constrained to evolve in.
The smooth dynamics of the constrained cable is given as





M
dv

dt
+ Cv + K(q)q = f

dq

dt
= v

q ∈ C(t)

. (3.48)

For perfect unilateral constraints, the reaction force is directed along the normal vector and
when g(j) > 0 the reaction force is zero. This consideration leads to the Signorini formalism

g(j)(q, t) > 0, λ̄
(j)
> 0, λ̄

(j)
g(j)(q, t) = 0, j = 1, ...,mi , (3.49)

which is denoted concisely as
0 6 g(q, t) ⊥ λ̄ > 0 . (3.50)

As the system is subjected to unilateral conditions, the evolution of the general velocity is no
longer smooth. Instead, we use the right limit of v denoted as v+ and the evolution problem
is recast into the Karush-Kuhn-Tucker formalism as follows





M
dv

dt
+ Cv+ + K(q)q = f + (∇qa)>λ + (∇qg)>λ̄

dq

dt
= v+

a(q, t) = 0

0 6 g(q, t) ⊥ λ̄ > 0

, (3.51)

where the vectors λ and λ̄ collects components λ(j) and λ̄
(j)

.
The vector given by ∇qg

(j) is a normal vector to the frontier of C(t) and it is directed toward
the admissible region C(t). In another words, the gradient of the constraints describes the
outward normal cone to C(t) as

NC(t)(q) =





s ∈ Rn such that s = −
mi∑

j

λ̄
(j)∇qg

(j)

λ̄
(j)
> 0 for every j s.t. g(j) = 0





. (3.52)
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The smooth dynamics can be written as an inclusion into NC(t)(q)

M
dv

dt
+ Cv+ + K(q)q− f ∈ NC(t)(q) , (3.53)

and the global discrete problem can be recast into a measure differential equation




Mdv +
[
Cv+ + K(q)q− f

]
dt = ds

dq = v+dt

ds ∈ −NC(t)(q)

. (3.54)

It is difficult in practice to satisfy the latter. This is the reason why we also define the tangent
cone to the set C(t) as

TC(t)(q) =
{
s ∈ Rn , s>∇qg

α(q, t) > 0 ,∀α ∈ A
}
, (3.55)

where we set
A = {α ∈ [1, ..., n],gα(q, t) 6 0} . (3.56)

According to Moreau Viability Lemma[29], the inclusion into NC(t) can be replaced by the
inclusion into NTC(t)(q)(v

+) if the time evolution starts with an admissible intial condition since
in this case

NTC(t)(q)(v
+) ⊂ TC(t)(q) , (3.57)





Mdv +
[
Cv+ + K(q)q− f

]
dt = ds

dq = v+dt

ds ∈ −NTC(t)(q)(v
+)(q)

. (3.58)

In this section, we only considered unilateral condition since the difficulty is mainly due to
treatment of the latter.
Injecting the measures expressions into (3.58) and splitting the dynamics with regards to mea-
sures yields {

M
[
v+ − v−

]
= p

Mγ+ +
[
Cv+ + K(q)q− f

]
= 0

. (3.59)

3.4.2 Deriving a time-stepping scheme for the evolution problem

This section presents a time-integration scheme for the non-smooth time evolution problem
given in (3.58). It can be seen at a particular update of a right-hand side via a One Step
Non-Smooth Problem (OSNSP). The latter is obtained via discretizing the Moreau’s Sweeping
Process [29, Moreau] and computing the discrete evolution of the system between the step k
and k + 1.
A θ-method is endowed to approximate integrals with regards to Lebesgue measure over [tk, tk+1]
i.e. ∫ tk+1

tk

ζ(t)dt ≈ (tk+1 − tk) [θζ(tk) + (1− θ)ζ(tk+1)] . (3.60)

We will refer to quantities evaluated in tk (resp. tk+1) as •k (resp. •k+1) and the time step
(tk+1 − tk) will be denoted h. The left hand side of (3.58) is obtained as

∫ tk+1

tk

Mdv +

∫ tk+1

tk

[
Cv+ + K(q)q− f

]
dt =

M (vk+1 − vk) + hθ
[
Cv+ + K(q)q− f

]
k

+ h(1− θ)
[
Cv+ + K(q)q− f

]
k+1

.

(3.61)
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The integral of the impulse is given by

∫ tk+1

tk

ds = pk+1 . (3.62)

The compatibility condition for position and velocity yields

qk+1 = qk + hθvk + h(1− θ)vk+1 . (3.63)

The overall dynamics in the global coordinate system reads

{
M̂k (vk+1 − vk)− f̂k = pk+1

qk+1 = qk + hθvk + h(1− θ)vk+1

, (3.64)

where we have set

M̂k = M + hθC + h2θ2∆Kk , (3.65)

f̂k = hθfk+1 + h(1− θ)fk − hCvk − hKkqk − h2θ∆Kkvk , (3.66)

pk+1 =

∫ tk+1

tk

ds . (3.67)

The velocity at the end of the time step is taken as

vk+1 = vf + ∆vk+1 , (3.68)

where vf denotes the free velocity, i.e. the velocity of the system when the impact are null.
The correction term ∆vk+1 is computed via pk+1 which corresponds to unilateral constraints
enforcement. Everything is gathered just below





vk+1 = vf + M̂−1
k p

vf = vk + M̂−1
k f̂k

qk+1 = qk + hθvk + h(1− θ)vk+1

p ≈
∫ tk+1

tk

ds

. (3.69)

We clearly see that the velocity computed as the end of the time step is a correction of the
free-velocity, vf , due to the impact occurring at t ∈ (tk, tk+1]. If no impact occurs, i.e. p = 0,
then v1 = vf . Moreover, this scheme benefits of the unconditional stability of the θ-method
for 0.5 < θ 6 1.
Depending of the nature of the measure ds, several physical situations are described. Two
cases are presented in the following sections: the impact dynamics (with Newton’s law) and
the frictional impact (with Newton’s law and Coulomb friction) cases. Indeed, the value of
pk+1 is the only value that has been left ambiguous in the above derivations but the latter need
adequate developments.

3.4.3 Local kinematics and Delassus operator

This section is mainly designed to introduce some vocabulary and operators that will be of
notable use in the sequel.
We are going to described the kinematics locally for a contacting point, i.e. a particle of the
domain that is likely to close the distance between the studied system and an exterior geometry.
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Figure 3.13: Cartesian and local frame of a ball, (S) , impacting an inclined plane, (P)

We are assuming that the distance between the studied domain (S) and exterior geometries
(P) is given by a function g(·). The function g is assumed to provide directly with the distance
between (S) and (P) , i.e. the minimum distance existing between (S) particles and (P)
particles. Denoting by M and M ′ the points at concern, the relative velocity of (S) with
respect to (P) reads

u = v(M)− v(M ′) . (3.70)

Those points are sometimes denoted as proximal points. A local frame is defined via the
distance function g. Indeed, as the latter is a signed distance between (S) and (P) , a unit
normal vector, n is given as the unit vector oriented in the direction M ′M . Then, one or two
tangential vectors are used to trace tangential components of the relative velocity.
The relative velocity is parted along its normal and tangential components and the subscript
N and T will refer to normal and tangential components respectively. A 2D-representation of
the local frame of a ball impact an inclined plane is visible in Figure 3.13.
Situations where a collection of contacting points are at stake will be accompanied with a
superscript α which assesses for the ’active’ contact between (S) and (P) at the considered
time t. Transpose linear mapping which links the velocity in the reference frame and in the
local frame are denoted as

uN = HN(q)v , Normal velocity at t , (3.71)

uT = HT (q)v , Tangential velocity at t . (3.72)

The local reaction forces (rN , rT ) can be projected back to the reference frame by using the
transpose of HN and HT so that the forces created during contact are projected in the correct
basis as

p = HN
>rN + HT

>rT . (3.73)

When we go back to dynamics, equations of the form

M
d

dt
v = f + p , (3.74)

can be expressed with local variables by pre-multiplying by HNM−1 or HTM−1. This passage
from reference to local frame is done via the Delassus operator which is defined as

W =

[
WNN WNT

WTN WTT

]
=

[
HNM−1HN

> HNM−1HT
>

HTM−1HN
> HTM−1HT

>

]
. (3.75)
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Using the Delassus operator, the Cartesian dynamics can be projected into local dynamics as
follows

M
d

dt
v = f + p ⇐⇒ d

dt
u = f̃ + Wr . (3.76)

3.4.4 Dynamics with frictionless contact

The impact term is obtained via considering the following inclusion




p ∈ −NTC(t)(q̂)

(
vk+1 + evk

1 + e

)

q̂ = qk + γhvf , 0 6 γ 6 1

, (3.77)

where e is a restitution coefficient describing an elastic impact law. The velocity of the particle
subjected to the contact is restored with amplitude ev0 in the normal direction of the contact-
ing surface.
The need for a restitution coefficient remains unclear for the case of continuum mechanics. How-
ever, finite element model are intrinsically discrete so that the usage of e is required. Moreover,
the case of a finitely represented admissible domain can be written as a complementarity prob-
lem which is tractable numerically [1].
The kinematics at contacting points are described with local coordinates, namely tangent and
normal velocities respectively associated to tangent and normal reactions. The latter will be
denoted as follows

uN,k+1 = HN(qk+1)vk+1 , Normal velocity at t=tk+1 , (3.78)

uNk = HN(qk)vk , Normal velocity at t=tk , (3.79)

uT ,k+1 = HT (qk+1)vk+1 , Tangential velocity at t=tk+1 , (3.80)

uTk = HT (qk)vk , Tangential velocity at t=tk , (3.81)

where the operators HN and HT are transpose linear mappings which project a vector along the
corresponding component of the local basis centered at the contacting point (see Section 3.4.3
for details).
The use of the local kinematics is essential for all α ∈ A, the outward normal to the surface is
given by the gradient of the unilateral constraints Hα

N(q) = ∇qg
α(q). The velocity along this

normal direction can be approximated as follows

uαNk = ∇qg
α(qk)

>vk , (3.82)

uαN,k+1 = ∇qg
α(qk)

>vk+1 , (3.83)

where the active set is predicted according to g(q̂) = g (q0 + γhvf ), the latter corresponds to
a discretized description of the tangent cone at q0 + γhvf

A = {α, gα(q̂) 6 0} . (3.84)

All α are collected and we can build a Linear Complemantarity Problem (LCP)

0 6 rαN,k+1 ⊥ uαN0 + euαN1 > 0 , ∀α ∈ A . (3.85)

The reaction forces vector is built and the velocity at tk+1 is recovered as



vf = M̂−1
k fk

rN,k+1 =

{
0 , α /∈ A
rαN,k+1 , α ∈ A

p = ∇qg(qk)rN,k+1

vk+1 = vf + M̂−1
k pk+1

. (3.86)
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The methodology described in the previously is coined as a OSNSP [1] and can be written in
the form of a Linear Complementarity Problem (LCP). In the case of pure impact, reactions
are purely normal. The key idea is to manipulate the equation so that the Delassus Operator
appears in equation. Indeed, we have that

(vk+1 − vf ) = M̂−1
k pk+1

=⇒ HNvk+1 = HNvf + HNM̂−1
k pk+1

=⇒ HNvk+1 = HNvf + HNM̂−1
k HN

>rN,k+1

=⇒ uNk+1 = uNf + ŴNNrN,k+1

The latter can be directly injected into the impact law so that

0 6 rαN,k+1 ⊥ uαN,k+1 + euαNk > 0

=⇒ 0 6 rαN,k+1 ⊥ ŴNNrαN,k+1 + uαNf + euαNk > 0

=⇒ 0 6Mlcpzlcp + qlcp ⊥ zlcp > 0

where

Mlcp = ŴNN , qlcp = uαNf + euαNk , zlcp = rαN,k+1 .

A summary of the OSNSP, given in the process of computation reads





vf = vk + M̂−1
k f̂k

uαNf = HN(tk)
αvf

uαNk = HN(tk)
αvk

∀α ∈ A , Solve LCP:{
0 6 rαN,k+1 ⊥ ŴNNrαN,k+1 + uαNf + euαNk > 0

pk+1 =

{
rαN,k+1HN

>∀α ∈ A
0 , ∀α /∈ A

M̂k (vk+1 − vf ) = pk+1

. (3.87)

3.4.5 Dynamics with frictional contact

This section gives insights about the treatment of the frictional impact. Even though ap-
plications of this PhD work are directed toward cables, the formulation presented here stays
applicable for any discrete mechanical system. First, generalities about Coulomb friction is
recalled. Then the simplified case of the two-dimensional friction problem is presented. Even-
tually, a formulation for treating the general frictional contact is provided.
Numerical treatments are done with the Siconos1 software developed by the INRIA-Tripop
[2, Iniria-tripop]. Although various implementations of friction exist, the focus is drawn to
a velocity-level formulation without any guidance imposed to the algorithm. Indeed, several
works investigated the applications of this formulation and assessed for its robustness and
versatility.

1Siconos is an open-source scientific software primarily targeted at modeling and simulating nonsmooth
dynamical systems in C++ and in Python.
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General aspects about the friction

The Coulomb friction model [5] has been written down as a series of observations to an exper-
imental setup. It has been highlighted that when an object contacting a surface starts sliding
along the surface, the tangential force applied on the object is proportional to the weight of
the object and opposed to the object motion. The proportionality coefficient has been named
later the Coulomb friction coefficient and the latter is only dependent on the kind of material
considered.
The state of the art formulation is done via considering the following second-order cone

K =
{
r ∈ R3 , ‖rT‖ 6 µrN

}
, (3.88)

where u is the relative velocity at a contacting point. The tangential component of u, denoted
by uT , belongs to the plane which is orthogonal to the out-pointing normal vector to the
contacting surface.
If a contact is active between (S) and (P) , then (P) exerts a reaction force on (S) given by r
and (S) moves with relative velocity u with respect to (P). The Coulomb law states that at
least one the following statements is correct

• (S) leaves the contact then r = 0 and uN > 0;

• (S) sticks to (P) then r ∈ K and u = 0;

• (S) slides along (P) then r ∈ ∂K− {0}, uT = 0 and ∃α > 0, rT = −αuT .

If a couple (u, r) satisfies the Coulomb law, we will write (u, r) ∈ C. This formulation contains
every possible scenario. In this work, we will rather keep the sophisticated structure of this
problem without regularization and without rough simplifications.
Two approaches are used in the numerical process, therefore a quick oversight is proposed.
First, the two dimensional case and its resolution via a LCP are detailed. Then, the general
formulation of the frictional contact problem via a cone complementarity problem is given. The
key references about its numerical treatment are provided.

Frictional contact formulated as a LCP (2D case)

The friction is added into consideration via considering a Coulomb friction law. The latter
states that the tangential reaction is contained into a circle whose radius is proportional to the
normal reaction. When the equality case is reached, i.e. the tangential reaction is on the circle,
the relative velocity is non-zero. The latter can be written as follows for the time step t = tk+1.
The superscript ·α are dropped for conciseness

{
|rT ,k+1| 6 µrN,k+1 then uT ,k+1 = 0

|rT ,k+1| = µrN,k+1 then uT ,k+1 ∝ −rT ,k+1

. (3.89)

Here we present a derivation that enriches (3.87) with the friction law. The inequality (3.89)
can be reformulated into the following

|rT ,k+1| 6 µrN,k+1

{
0 6 µrN,k+1 − rT ,k+1 ⊥ u−T ,k+1 > 0

0 6 µrN,k+1 + rT ,k+1 ⊥ u+
T ,k+1 > 0

, (3.90)

where the superscripts ·+ and ·− refer to the positive part and negative part respectively.
The following change of variable is used

{
λ̄1 = µrN,k+1 − rT ,k+1

λ̄2 = µrN,k+1 + rT ,k+1

so that we have

{
rT ,k+1 = µrN,k+1 − λ̄1

λ̄2 = 2µrN,k+1 − λ̄1

. (3.91)
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A similar manipulation on the tangential relative velocity is performed as

uT ,k+1 = u+
T ,k+1 − u−T ,k+1 ⇐⇒ u−T ,k+1 = u+

T ,k+1 − uT ,k+1 . (3.92)

The LCP given in (3.90) can be reformulated as

{
0 6 u+

T ,k+1 − uT ,k+1 ⊥ λ̄1 > 0

0 6 2µrN,k+1 − λ̄1 ⊥ u+
T ,k+1 > 0

. (3.93)

A fully detailed derivation of the LCP with frictional impact is given for the reader understand-
ing. The developments done in Section 3.4.4 are done again in the presence of friction. In this
case, the tangential forces are non-zero so that

(vk+1 − vf ) = M̂−1
k pk+1

=⇒ HNvk+1 = HNvf + HNM̂−1
k pk+1

=⇒ HNvk+1 = HNvf + HNM̂−1
k

(
HN

>rN,k+1 + HT
>rT ,k+1

)

=⇒
{

uNk+1 = uNf + ŴNNrN,k+1 + ŴNT rT ,k+1

uTk+1 = uTf + ŴTNrN,k+1 + ŴTT rT ,k+1

Lagrange multipliers associated to the tangential reaction are substituted to the other variables
presented into (3.91). So that we have

{
uNk+1 = uNf + ŴNNrN,k+1 + ŴNT

(
µrN,k+1 − λ̄1

)

uTk+1 = uTf + ŴTNrN,k+1 + ŴTT

(
µrN,k+1 − λ̄1

) . (3.94)

The latter can be substituted jointly into the impact law and the friction law, then (3.94) is
substituted so that





0 6 uN,k+1 + euNk ⊥ rN,k+1 > 0

0 6 u+
T ,k+1 − uT ,k+1 ⊥ λ̄1 > 0

0 6 2µrN,k+1 − λ̄1 ⊥ u+
T ,k+1

=⇒





0 6 ŴNNrN,k+1 + ŴNT

(
µrN,k+1 − λ̄1

)
+ uNf + euNk ⊥ rN,k+1 > 0

0 6 −ŴTNrN,k+1 − ŴTT

(
µrN,k+1 − λ̄1

)
+ u+

T ,k+1 − uTf ⊥ λ̄1 > 0

0 6 2µrN,k+1 − λ̄1 ⊥ u+
T ,k+1

=⇒ 0 6Mlcpzlcp + qlcp ⊥ zlcp > 0

where

Mlcp =




ŴNN + µŴNT −ŴNT 0

−ŴTN − µŴTT ŴTT I
2µI −I 0


 , qlcp =




uNf + euNk
−uTf

0


 , zlcp =




rN,k+1

λ̄1

u+
T ,k+1


 .
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The OSNSP problem for frictional impact reads




vf = vk + M̂−1
k f̂k

uαNf = HN(tk)
αvf

uαNk = HN(tk)
αvk

uαTf = HT (tk)
αvf

∀α ∈ A , Solve LCP:



0 6 ŴNN λ̄
α
N,k+1 + ŴNT

(
µλ̄

α
N,k+1 − λ̄

α
1

)
+ uαNf + euαNk ⊥ rαN,k+1 > 0

0 6 −ŴTNrαN,k+1 − ŴTT

(
µrαN,k+1 − λ̄

α
1

)
+ u+,α

T ,k+1 − uαTf ⊥ λ̄
α
1 > 0

0 6 2µrαN,k+1 − λ̄
α
1 ⊥ u+,α

T ,k+1 > 0

pk+1 =

{
rαN,k+1HN

> +
(
µrαN,k+1 − λ̄

α
1

)
HT

> , ∀α ∈ A
0 , ∀α /∈ A

M̂k (vk+1 − vf ) = pk+1

. (3.95)

If the geometry is simple enough, this 2D friction case can be used to simulate the friction
occurring at the interface between the cable and its surroundings.

Another choice of variables

We derive Mlcp as a consequence of the choice of zlcp. Another choice possible is

Mlcp =




ŴNN − µŴNT ŴNT 0

ŴTN − µŴTT ŴTT I
2µI −I 0


 , qlcp =




uNf + euNk
uTf
0


 , zlcp =




rN,k+1

λ̄2

u−T ,k+1


 .

By this choice, one should also compute the impact as follows

pk+1 =

{
rαN,k+1HN

> +
(
λ̄
α
2 − µrαN,k+1

)
HT

> , ∀α ∈ A
0 , ∀α /∈ A

.

Solving the LCPs corresponding to the OSNSP

In order to solve the LCP, we used the library provided in the Siconos platform developed at
the INRIA [2].
The preferred numerical alternative is the Lemke pivot [27] since it solves exactly the LCP
provided that a solution exists.

Frictional impact formulated as a cone complementarity problem (3D Case)

Let us introduce the dual cone to K given by

K∗ =
{
u ∈ R3 , ∀r ∈ K , u · r > 0

}
. (3.96)

In their paper, De Saxcé and Feng [12] proved the following theorem

(u, r) ∈ C ⇐⇒ K∗ 3 ũ ⊥ r ∈ K , (3.97)

where the following change of variable is performed

ũ = u + µ ‖uT‖n . (3.98)
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Section 3.5

The proof of (3.97) is done via the bipotential for the contact law. This theorem opens with the
possibility of computing fast and accurate solution for time-evolution problem with frictional
impact for instance in [1, 8].
Numerical solutions to this formulation are sought in the following form





uk+1 = Ŵrk+1 + ũf

ũk+1 = uk+1 +



µ ‖uT ,k+1‖

0
0




K∗ 3 ũk+1 ⊥ rk+1 ∈ K

. (3.99)

Although some practical implementations still rely on unproved algorithms, this formulation
appears far more robust than other approaches and a lot of solvers use this formulation. Later
on the manuscript, frictional contact will be solved with the solver fc2d (or fc3d) available in
the Siconos software2.

3.4.6 Equality constraints embedding

The cable can also be subjected to equality constraints. But it is computationally heavy to
trace all Lagrange multipliers and constraints satisfaction. It is more interesting to project the
generalized positions and velocities into the kernel of the gradient of the equality constraints.
Indeed, if we consider the equality constraints given by a in vector form, we have

0 = a(qk+1) = a(qk + (qk+1 − qk)) ≈ a(qk) +∇qa(qk) (qk+1 − qk) , (3.100)

0 =
d

dt
(a(qk+1)) = ∇qa(qk)

d

dt
qk+1 ≈ ∇qa(qk)vk+1 . (3.101)

The latter provides with 2 inclusions that can be used to project the dynamics suitably
[
qk+1 − qk +∇qa(qk)

−1a(qk)
]
∈ ker (∇qa(qk)) , (3.102)

vk+1 ∈ ker (∇qa(qk)) . (3.103)

3.4.7 Possible applications

The possibility offered by unilateral constraints including frictions are numerous. Among re-
search examples one could cite the cable-pendulum falling against a wall, the bouncing of
a cable against a circular obstacle, the shape-finding of a fish-net, the rockfall problem, the
bouncing-ball paradigm, the mooring line knots, the sliding of a cable against a sheave. The
scope of this work is way beyond the case of cable-cars. Every single system in this list is an
ode to complexity and sophisticated dynamics. For each possible situation where impact and
friction are considered, there is a wide variety of behavior and phenomenon. Although every
single system are interesting, we present here different examples which illustrate key aspects of
the dynamics that should be rendered in our future developments in the cable-car domain.

3.5 Applications to various systems with frictional con-

tact

This section is dedicated to the application of the described numerical procedures in several
cases. Those cases are mostly academic examples to illustrate the method and the interaction
between the cable FE and the non-smooth dynamics.

2Documentations and basic formulations can be found online here https://nonsmooth.gricad-pages.

univ-grenoble-alpes.fr/siconos/users_guide/problems_and_solvers/friction_contact.html
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v(t)
g

t1 t

v0

Figure 3.14: (Left) Dragged cable contacting the floor - (Right) Driving velocity

3.5.1 Cable dragged against the floor

This simulation consists on three phases. Starting from an initial position where the cable takes
a catenary shape, then the left tip is released and falls in a pendulum-like motion. When the
cable is set on the floor, the right tip of the cable is pulled with a controlled velocity. All along
the motion, the contact mechanics may be activated and friction is considered.
The situation is simple and allows us to see how the friction and the cable finite element interact.
The effect of meshing and time-steps can be investigated on this simple model before moving
to more sophisticated situations and geometries.
The simulation is performed in a two-dimensional framework and the floor is modeled via a
linear function g(q) = Gq which selects the vertical dofs of the cable. The piecewise definition
of the driving velocity is

v(t) =




v0
t

t1
, 0 6 t 6 t1

v0 , t1 < t 6 t2

. (3.104)

The situation is illustrated in Figure 3.14. The main goal of this simple test is to assess the
ability of the FE to trace a large displacement motion with a global translation motion. We
want to check if the FEM is valid to trace both the global translation and the small vibration
around it in particular. This first example highlights the idea that two displacement mechanisms
are at stake and that the scaling between both does not affect the FEM precision. Here the
parameters used for this example are given in Table 3.2. We see in Figure 3.15 that the ratio rT

rN
is varying a lot during the transient dynamics. The latter is erratic which displays the interest
of including the friction as a nonsmooth problem. Those complex behaviors could explain some
tension fluctuation at contact for the cable that cannot be explained by the freefall and the
vibration alone. The evolution of the ratio may be smooth or non-smooth (jumps) however
there is a common trend to converge toward a purely resisting friction. This goes in favor of
assuming the friction equality case for established regime.

3.5.2 The conveyor-belt system

The conveyor-belt system is the perfect example of a system with an imposed velocity with
friction along the pulling zone. Indeed, the sheaves are known to exhibit at least one slipping-
contact zone and one stick-contact zone [9].
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Figure 3.15: Ratio of the tangential by the normal component of the ground reaction for the
1st, 5th, 9th, 14th and 15th node of the cable versus time in seconds - Nodes are represented

on the cable by a ?

Table 3.2: Parameters used for the simulation of a dragged cable with a contacting floor

Attributes Values Attributes Values

EA (N) 30400 h (s) 6.67× 10−5

ρ (kg.m−1) 0.15 µ 1

α (kg.m−1.s−1) 0.011 θ 1

L (m) 1.2 γ 0

x0 (m) [0, 0.03]> e 0

xL (m) [1.2, 0.04]>
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v(t)v(t)

Figure 3.16: A cable pulled by a driving sheave at velocity v(t)

Table 3.3: Parameters used for the simulation of a conveyor belt

Attributes Values Attributes Values

EA (N) 30400 h (s) 3.33× 10−4

ρ (kg.m−1) 0.096 µ 1

α (kg.m−1.s−1) 0.011 θ 1

L (m) 1.2 γ 0

xP1 (m) [0, 0]> R1 (m) 0.05

xP2 (m) [0.45, 0]> R2 (m) 0.05

e 0

However, the modeling of the latter remains an open question of computing. The majority
of the approaches tends to ignore the direct modeling of the sheaves and rather focus on the
influence of the driven and driving velocities on the vibration of the belt. It leads to interpret
the dynamics as a perturbation of a rigid-body motion directly imposed by the sheave. FEM
allow to embody the sheaves, the velocities of every sheave and the interaction between the
belt and each interface (friction).
Here we modeled the sheaves as perfect circles of given radius and the belt is composed of
cable elements. Parameters are given in Table 3.3. The system is closed in the sense that the
first and last nodes are the same. The velocity of the sheaves are inputs and the combined
effect of tension, friction and the velocity should suffice to create a flow of cable as illustrated
in Figure 3.16. This modeling choice avoids the dilemma of imposing a status to each nodes
(contacting, slipping, sticking or free of the contact) and allows to trace sophisticated mecha-
nisms on the sheave interface.
Several observations can be made on that system:

• Once the stationary regime is reached, the global energy of the system remains the same.
However the kinetic energy of one given node follows a cycle of progressive energy de-load
until entering the driving sheave again;

• Along the sheave interface, a very stiff stick-slip phenomenon seems to appear which
creates some oscillations and may cause numerical errors if not treated with a very refined
time step size;

• The overall motion looks like a vibration around a mean position of the belt which goes in
favor of some simplification of the dynamics in analytical or pseudo-analytical treatments
of the PDEs. The vibration seems directly related to the driving velocity. Indeed, each
moment where a cable segment leaves the contact creates a periodic excitation due to the
tension variation rate at the sheave exit;

• The increase (or decrease) of the tension due to the resistant effect of the friction can
be traced. Moreover the tension of the belt does not vary significantly around the static
equilibrium which is visible in Figure 3.17.

86 BERTRAND Charlélie
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The simple model shows effectively the bias in the choice of representation of the system.
Indeed, one can choose to represent the motion in a local or global way. If we look at the
trajectory of one given node, the motion looks strongly modulated and erratic whereas if we
look at the global trajectory, i.e. screenshots of the whole belt at given moment, the motion
seems more fluid and to follow an overall path. This is exactly the difference between the
Lagrangian and Eulerian viewpoint which is illustrated in Figure 3.18. This highlights the pros
and the cons of each representation:

• The Lagrangian viewpoint access to the particular dynamics with accuracy and permits
to trace friction forces. The latter is not adapted to have an idea about the overall system
since it only accounts for the motion of a node;

• The Eulerian viewpoint access the global dynamics of the system and the envelope of
the motion. This representation seems adapted to the visualization of the global system
trend which carries an information about the design of a physical system.

Depending on the application both formulations remain of interest. The Eulerian viewpoint
seems more transportable to analytical developments in the means of reduced-order-model.
The different possible representation choices should be adapted to the situation although the
Eulerian viewpoint seems more likely to be used for design purpose and engineering. The La-
grangian viewpoint is more adapted for local information which can be of interest if a particular
point of a system is at stake. Focus can be drawn to a specific node or cable segment which is
essential if we want to follow the grip of a cabin for example.

3.6 Modes of constrained cables

A wide-range of mechanical applications relies on the concept of modes. Even though the
constrained dynamics can be computed, an overall understanding of the system physics and its
basic responses remains a strong tool for design. In order to simplify the analysis and to reduce
the number of dofs, a basis suitable for projecting the dynamics is needed. This is why deriving
modes is at stake in dynamics. The closer the mode is to the physics, the more accurate the
prediction is.
We can take advantage of the constrained formalism to build an associated linear system.
Indeed, let us consider that q corresponds to an equilibrium of (3.51) i.e.





0 = M
dv

dt
+ Cv + K(q)q− f − (∇qa)>λ− (∇qg)>λ̄

0 =
dq

dt
− v

0 = a(q)

0 6 g(q) ⊥ λ̄ > 0

. (3.105)

We use here a subscript A to refer to active constraints. If q corresponds to an equilibrium,
we can simplify the latter as





0 = K(q)q− f − (∇qa)>λ− (∇qg)>λ̄

0 = a(q)

0 = gA(q) and 0 = λ̄Ā

, (3.106)

where we can assume

g(q) =

[
gA(q)
gĀ(q)

]
; λ̄ =

[
λ̄A
λ̄Ā

]
(3.107)
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Figure 3.17: Strain along the belt; Axis in meters; A snapshot every five seconds
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Figure 3.18: Differences between the Lagrangian (one node followed for the whole simulation -
left) and Eulerian viewpoint (a belt snapshot every second - right) for a belt-sheave; Axis in

meters; The zoomed area correspond to the red rectangle

We are now interested into a small undamped vibration around this equilibrium. The latter
reads





0 = Mü + K(q + u)(q + u)− f − (∇qa)>(λq + λu)− (∇qg)>(λ̄q + λ̄u)

0 = a(q + u)

0 = gA(q + u) and 0 = λ̄Ā

. (3.108)

Linearizing around q and injecting (3.106) gives




0 = Mü + ∆K(q)u− (∇qa)>λu − (∇qg)>λ̄u

0 = ∇qa u

0 = ∇qgA u

. (3.109)

In order to correctly embed the constraints into modes, we should suitably project the first
equation on the kernels of ∇qa and ∇qgA. Then, we will search for u in the following form

u = QPũ , (3.110)

where P is an orthogonal basis of ∇qa and Q is an orthogonal basis of (∇qgAP). Therefore, if
the first equation is premultiplied by P>Q>, the following equation is obtained

0 = P>Q>MQP¨̃u + P>Q>∆K(q)QPũ−P>Q>(∇qa)>λu −P>Q>(∇qg)>λ̄u . (3.111)

Due to the properties of Q and P, it simplifies to

0 = M̃¨̃u + ∆̃K(q)ũ , (3.112)

where {
M̃ = (QP)>M (QP)

∆̃K(q) = (QP)>∆K(q) (QP)
, (3.113)

which corresponds to a classical eigenvalue problem
(
M̃−1∆̃K(q)− ω2I

)
ũ = 0 . (3.114)
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Table 3.4: Parameters used for the arc-length continuation example (Physical value of a
ropeway span)

Attributes Values

EA (N) 1× 108

ρ (kg.m−1) 5.56

d (m) 300

h (m) 10

H (N) 26141 - 1750775

This methodology remains true and applicable for very simple cases since it consists of an
extension of the theory of linear vibrations to a system subjected to both unilateral and bilateral
constraints [17].

3.6.1 Modes and frequencies of the fixed-fixed cable

The modes of the fixed-fixed cable are usually derived as three families of solutions: the out-of-
plane modes, the symmetric modes and the anti-symmetric modes. Here we proposed to show
that the FE reproduces these analytical results accurately. A standard representation is to plot
the frequencies versus the ’Irvine’ parameter given by

λIrv =
ρgd

H

√
EA

H
∫ L

0
cos(α(S))3dS

. (3.115)

Here we use the horizontal component of cable tension as the parameter and the frequencies are
collected along the way. The frequency plot is known to exhibit crossover between the different
continuums. At those intersections, modes exchange their symmetry so that the modal content
is considerably altered. Moreover, the configurations leading to those cross-overs lead to severe
resonance issues since three modes share approximately the same frequency. The latter might
be interesting to study from a theoretical point of view although this case should be avoided
if possible in engineering applications. To account for the FEA ability to reproduce the modal
content of the cable, we challenged it with the solutions obtained via the finite differences and
via the analytical approximation of frequencies.
The cable considered is given in Table 3.4. The comparison between FEM versus analytical
approximation and also FEM versus FDM is illustrated in Figure 3.19. The FEA is shown able
to reproduce the cross-over phenomenon and to predict accurately the frequencies in low-tension
zones. Moreover the FEM can trace easier the frequencies than the FDM which often requires
manual manipulation in low tension zone to sort complex frequencies (even though there is no
damping or centrifugal forces in the case considered here) arising from the numerical process.
It is worth noting that for relatively high-tension, which is often the case for fixed-fixed cable
in engineering application, the three approaches are accurate and provide with very similar
results.

3.6.2 Modes of a cable net

Here is provided an example of applying (3.114) to the cable net given in Table 3.1. This case
corresponds to a linearly constrained system so that we have

a(q) = 0 ⇐⇒ Aq = 0 . (3.116)
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FEM VS Analytical FEM VS FDM
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Figure 3.19: Frequencies versus horizontal component of tension. The FEM solution is
classified along in-plane frequencies (dashed line ) and out-of-plane frequencies (dashed

line )
The analytical and the FDM solution are parted along in-plane frequencies (solid line )

and out-of-plane frequencies (solid line )

Figure 3.20 illustrates the motion by superimposing the position of highest displacement to
the rest position. The three different views of the system are provided to highlight the three-
dimensional aspect of the vibration mode. This approach allows to trace which part of a cable
structure is the more subjected to large motions. Here it seems that the slacker subpart of
the net are more inclined to exhibit large displacement. Even though there is no decoupling
between directions (as it is for the hanged cable), the modes are a good tool to simulated the
dynamics quicker and accurately. Indeed, building reduced order model is an efficient way to
decrease significantly the number of dofs. In the case of a this spider web, the total mesh is
composed of 9126 dofs while a ROM version of it could be composed of less dofs considering the
modes that are prone to reply to the solicitation. This direction has to be investigated further
when it comes to complex cable structures and even more when the constraints applied to the
system require high CPU-time.

3.6.3 Cable contacting a sheave

We already presented some analytical developments for an inextensible cable contacting a
cylinder in Section 2.4.2. However those developments are true when it comes to an inextensible
cable. The developed methodology gives the opportunity of investigating the case of an elastic
cable contacting a cylinder. The flexibility of our approach is that FEM does not require to
choose a law to wrap the cable around the sheave.

Obtaining the static profile of a cable contacting a sheave

The example developed here is a cable pinned at both ends. The parameters given in Table 3.6
are used. This system is subjected to the presence of a cylinder obstacle located at (xp, yp, 0)
given by the following constraint

gi(q) =

√
(q(3i) − xp)2

+ (q(3i+1) − yp)2
, i ∈ nodes . (3.117)

This constraint is applied to every node of the cable. The static configuration is obtained
via combined usage of DRM (3.2.4) and the Cone Complementarity Problem (3.99). The
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Figure 3.20: First three modes of a spider web computed via (3.114) - Parameters in Table 3.1
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Table 3.5: Parameters used for the cable contacting a sheave - Static analysis

Method EA (GN) H (kN) ρ (kg/m) L (m) N Ends(m) Radius (m) sheave

FEM 1.5 N.A. 5.56 301 1500 (0, 0, 0) ; (300, 0, 0) 10 (150,−8, 0)

FEM 1.5 N.A. 5.56 301 1500 (0, 0, 0) ; (300, 0, 0) 10 (50,−5, 0)

Analytic 1.5 28.937 5.56 N.A. 1500 (0, 0, 0) ; (300, 0, 0) 10 (150,−8, 0)

Analytic 1.5 52.294 5.56 N.A. 1500 (0, 0, 0) ; (300, 0, 0) 10 (50,−5, 0)

Table 3.6: Parameters used for the cable contacting a sheave - Modal analysis

EA (MN) ρ (kg/m) L (m) N Clamped to ... Radius (m)

1.5 5.56 300.6 1500 (0, 0, 0) and (300, 0, 0) 10

internal forces obtained by such computations are consistent with the analytical prediction.
The parameters used in the statics applications are gathered in Table 3.5. In order to compare
fairly both approach, we consider a case of near inextensibility (high EA and relatively ’low’
tension). We are looking to the static profile of an aligned cable which is likely to be supported
by the sheave along the span. Two configurations are presented: one symmetrical with a
centered sheave and one asymmetrical where the sheave is located arbitrarily on one end. The
interest in using the DRM is that we obtain a dynamical equilibrium that is also a static
equilibrium. We cannot be sure that this equilibrium is unique [10] however we are relatively
close to the analytical solution. Indeed, the profiles obtained by both methods are pretty
similar. The difference lies in the tension field: the analytical solution relies on the principle
that tension is perfectly balanced (µ = 0 here) whereas no assumption is made for FEM. This is
the reason why we can see a difference only along the sheave. The FEM allows to catch tension
variations along contacting zones which is more accurate and closer to the physics. This is
shown in Figure 3.21 where static quantities obtained from analytical solutions and FEM are
superimposed. We even see that limiting cases for the analytical solution are smoothed by the
numerical approach. The global trend of having the same tension in and out is still obtained by
our numerical tool and the almost linear variation of the vertical forces are well caught which
is satisfying and encouraging to explore more sophisticated geometries instead of a cylinder.

Modes of a cable contacting a sheave

Then the frequencies and modes are computed via (3.114). We investigate the changes on
the first frequencies of this particular cable when the obstacle translates along the horizontal
axis. The situation is depicted in Figure 3.22. The horizontal span is meshed from 15m to
285m with a step size of 0.5m. The coupling between direction appears for every position of
the obstacle and the planar modes always come by pairs. Two different natures of modes are
found, some involve only one span and others involve the two parts of the span as shown in
Figures 3.23-3.24. The latter case is interesting to explain instabilities that could be initiated
from another span in complex cable structures. Indeed, the dynamics are explained by both
single-span and double-span modes. Moreover, the sensitivity of the modes and frequency is
shown by the abrupt changes in mode natures and frequencies. We see here that the design of
this type of structures should be endowed very cautiously to avoid resonant scenarios.
The plotted examples considered a configuration where the normal displacement is blocked but
the tangential displacement is still allowed. The analysis is linear in the sense that we used the
methodology described in (3.114) with a configuration requiring prior nonsmooth computations.
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Figure 3.21: Profile and internal forces (T is the tension and V is the vertical component of
the internal forces) of a cable contacting a sheave computed via an analytical solution (solid

line ) and via FEM (dotted line )
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Figure 3.22: Change of the cable frequencies and variation of its profile with the translation of
the obstacle
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Figure 3.23: First four modes of the cable when the cylinder is at midspan (x = 150)m -
Planar modes (solid line ) and transversal modes (solid line )
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Figure 3.24: First four modes of the cable when the cylinder is not centered (x = 50m) -
Planar modes (solid line ) and transversal modes (solid line )

Conclusion of the chapter

This chapter highlights the key point to the finite element method applied to cable systems.
Every part of this chapter can be applied to a large panel of system which is a powerful tool
for research. Main contributions are:

• A general finite element framework applicable to any cable systems;

• A strategy to overcome compression in any cable segment;

• The dynamics are treated in a very general way with application to impact and friction;

• A methodology to compute the statics and the modes of any cable systems.

The limitations are the following:

• The numerical procedure relies on low-order schemes and therefore requires high CPU-
time;

• The ill-conditioning and stiff nature of the ODE built according to our approach consid-
erably affect the numerical accuracy;

• The methodology and tools developed in this section is rather difficult for practical engi-
neers and its applications are not direct. The output data need more post-processing and
analyses which requires more investigations. Indeed the methodology should be detailed
and challenged with experiments which has not been done in this work.

Following improvements could be done:

• Investigate the possibility of faster numerical results via generalization of a α- generalized
time integration scheme specific for cable subjected to unilateral constraint;

• Improve the accuracy via developing a suitable (and probably cunning) conditioning tool
adapted to those problems;

• Confront the obtained results with robust and reliable experiment to validate or invalidate
the proposed methods;

• Open the computations to more sophisticated constitutive law and mechanisms. A partic-
ular focus could be given to the extension of this work to visco-elastic behaviors, thermo-
mechanical coupling and to geometrically-exact beams in order to trace torsion variations;
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• Self-contact are ignored in this work, the latter may be included for the sake of generality
and a wider range of application.
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Chapter 4

Cable vibrations

In this chapter the equations for the dynamics of a pinned-end cable are presented. It is often
assumed that the main dynamics of a cable is dominated by the first modes. For this reason, we
recall the derivations of cable modes in the particular framework of curvilinear mechanics and
in the Frenet basis. Then, the nonlinear equations are developed and treated via Ritz-Galerkin
procedure. Several applications of the obtained equations are proposed.

4.1 Free vibrations of the elastic catenary

In this section we are looking to the free vibrations problem of a cable. A lot of investigations
have been already carried out in the literature, as detailed in Chapter 1. Here we present the
equations for the free vibrations and the modes are obtained in the local basis. Often modes are
obtained as vibrations around a parabolic cable position which means that the displacement is
computed along the Cartesian frame.
We seek for the cable vibration around the current catenary equilibrium in the local basis.
First, the incremental dynamics will be derived, then an analytical approximate treatment will
be proposed and validation will be performed numerically.

4.1.1 Rescaling of the system

The dynamics of the cable in a undamped case and without any additional forces are given in
a non-dimensional form by

q̈ =
1

ε
[(‖q′‖ − 1) e]

′ − δy , (4.1)

ε =
H

EA
, δ =

ρgd

H
. (4.2)

Nota: Be careful, ε 6= ε in this work.
With this particular form, the domain spans for 0 6 S 6 l = L

d
and the boundary conditions

in S = l now reads x(l) = 1 and y(l) = h∗ = h
d
. The physical representation of the situation is

given in Figure 2.5. Let us recall the cable static profile given by x = [x, y]> (see Section 2.3.2)
and notations just below

x = 1− ε (l − S)− sinh−1 (η + δl)− sinh−1 (η + δS)

δ
, (4.3)

y = h∗ − εη (l − S)− δε

2

(
l2 − S2

)
−

√
1 + (η + δl)2 −

√
1 + (η + δS)2

δ
, (4.4)

‖x′‖ =1 + ε
√

1 + (η + δS)2 . (4.5)
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Table 4.1: Parameters value for the example cases used throughout this chapter

Name Type EA (MN) ρ (kg/m) d (m) h (m)

Case 1 Track rope 235 12.94 100 0 - 33

Case 2 Carrying hauling rope 40 6 100 0 - 33

Case 3 Fictitious cable 1 3 100 0 - 33

The local frame is given by

e =
1√

1 + (η + δS)2

[
1

η + δS

]
, n = − 1√

1 + (η + δS)2

[
η + δS
−1

]
. (4.6)

The latter also obeys the following rule

e′ = Kn , n′ = −Ke , K =
δ

1 + (η + δS)2 , ε = ε
√

1 + (η + δS)2 . (4.7)

Compatibility curves can be plotted for any given cable described by the uplet (EA, ρ, h
d
), some

examples are given in Figure 4.1. These examples will be continuously used in the manuscript
since they are drawing differences between archetypal cable structures, see Table 4.1. The two
first lines correspond to typical values of a cable-car installation and a hauling-rope respectively
whereas the last line is a fictitious cable which exaggerates sag in low tension zones and where
longitudinal waves can propagate easily.

4.1.2 Incremental Dynamics

In this section, we are interested in the linearized dynamics of the cable given by the rescaled
equation (4.1). We consider a small displacement u around the static position given by x, i.e.
q = x + u. As x is a position defined from the statics, we have that

q̈ = ẍ + ü = ü . (4.8)

The geometrical nonlinearity is linearized up to first order O (‖u‖) which reads

q′

‖q′‖ =
x′ + u′

‖x′ + u′‖ ≈
x′

‖x′‖ +
u′

‖x′‖ −
(x′ · u′)
‖x′‖3 x′ (4.9)

= e +
1

‖x′‖ (u′ − (e · u′)e) . (4.10)

It is therefore more tractable to decompose the displacement u along the local basis as follows

u = u e + v n + w z , (4.11)

where (e,n, z) corresponds to the local basis in the configuration associated to x. Using (2.8),
we can obtain the following relations

u′ = (u′ −Kv) e + (v′ +Ku) n + w′ z , (4.12)

u′′ =
[
(u′ −Kv)

′ −K (v′ +Ku)
]

e +
[
(v′ +Ku)

′
+K (u′ −Kv)

]
n + w′′ z . (4.13)

LTDS-INRIA 101



Chapter 4

Case 1 Case 2 Case 3

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 0

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 0

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 0

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 1/8

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 1/8

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 1/8

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 1/4

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 1/4

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 1/4

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 1/3

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 1/3

ε

δ

10−4 10−3 10−2 10−1

−0.5

0

0.5

1

h/d = 1/3

ε

δ

Figure 4.1: Relationship between ε and δ (solid line ) and relationship between ε and η
(solid line ) with an increasing slope h/d and various cable type
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Injecting the relations (4.10-4.13) into (4.1) yields in compact manner

ü =
1

ε

[
(u′ −Kv)

′ − ε

1 + ε
K (v′ +Ku)

]
, (4.14)

v̈ =
1

ε

[(
ε

1 + ε
(v′ +Ku)

)′
+K (u′ −Kv)

]
, (4.15)

ẅ =
1

ε

[
ε

1 + ε
w′
]′
, (4.16)

where we recall that ε = ‖x′‖ − 1 .
Equations (4.14 - 4.16) is a set of linear equations with continuous coefficients. Even though
these equations are linear in u, v and w, the non-constant nature of the coefficients makes it
difficult to solve exactly. However, we see that in the linear regime, 3D dynamics of the cable
are the superposition of a planar vibration (4.14 -4.15 ) and a transverse vibration (4.16 ) which
corresponds to the linear vibrations of a string with varying tension. The theory of linear free
vibrations of cable is quite extensive and treated a lot in the literature. For simplicity, we give
the extensive set of assumptions that leads to find approximate frequencies and mode-shapes
for the hanging cable.

4.1.3 Out-of-plane vibrations

We first focus on (4.16). This kind of motion is a modified pendulum motion. The reader may
imagine the bouncing of a hammock suspended between two trees as an illustration for these
motions. Let us assume that the transverse displacement is given by

w(S, t) = W (S)eiωt ; i2 = −1 , (4.17)

which can be inserted into (4.16) and yields

ω2W +
1

ε

[
ε

1 + ε
W ′
]′

= 0 . (4.18)

Numerical studies have shown that
ε

1 + ε
is almost a constant function of S for high values of

EA (which is often true in reality) then its derivative is neglected. This claim is supported by
Figure 4.2. It results into the following differential equation

ω2W + k2W ′′ = 0 , (4.19)

where we have set the following

k2 =
1

ε

ε

1 + ε
. (4.20)

If we take into account the positiveness of physical parameters, it leads to the following solution

W = b1 cos
(ω
k
S
)

+ b2 sin
(ω
k
S
)

; (b1, b2) ∈ R2 . (4.21)

Once the boundary conditions are injected, constants b1 and b2 are found and the frequencies
are obtained as

sin
(ω
k
l
)

= 0 ⇐⇒ ω = n
kπ

l
, (4.22)

and the normalized solutions (L2-norm) are given by

Wn =
√

2 sin
(nπ
l
S
)

;n ∈ N∗ . (4.23)
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Figure 4.2: Highlights of the fact that ε
1+ε

is almost constant with S for ε ∈ [10−4, 1] and
h∗ = 1/8

The validity of the current development should be checked carefully, indeed we must have the
following condition (

ε

1 + ε

)′
≈ 0 , (4.24)

which is often true in practice as shown in Figure 4.2. Further developments provide with a set
of orthogonal modes i.e. 




(∫ l

0

W 2
ndS

) 1
2

= 1

∫ l

0

Wn1Wn2dS = 0 , n2 > n1

. (4.25)

4.1.4 In-plane normal vibrations

Let us focus on (4.14) and (4.15). This set of equations is a coupled set of linear equations with
continuous coefficients. We assume that the planar displacement is given by

u = U(S)eiωt , (4.26)

v = V (S)eiωt , (4.27)

which can be inserted into (4.14) and (4.15) and yields:





0 = ω2U +
1

ε

[
(U ′ −KV )

′ −K ε

1 + ε
(V ′ +KU)

]

0 = ω2V +
1

ε

[
K (U ′ −KV ) +

(
ε

1 + ε
(V ′ +KU)

)′ ] . (4.28)

In earlier developments for an aligned cable, in-plane modes were sorted by symmetry with
regard to the half-span. Two types of vibrations are named in the literature:
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• ’Anti-symmetric’ ones that result in no increment of tension τ along the cable span at
first order in ‖u′‖ and create a node at S = l

2
;

• ’Symmetric’ by opposition to the ’anti-symmetric’ ones since they do produce an incre-
ment of tension at first order in ‖u′‖.

Usually, the longitudinal vibrations are discarded. Indeed compressive waves are not regarded
in the literature although they can be found numerically of for cable with high tension. In this
work, we will consider it.

Anti-symmetric modes

Anti-symmetric modes have been obtained historically via assuming that the increment of
tension due to vibration is negligible and that the vibration is mainly in the normal direction.
Let us make following formal assumptions:

• ‖q′‖−1
‖q′‖ can be considered constant with S;

• The normal vibration given by V are of primary interest in (4.28) so that U can be
considered of second order;

• The variation of the curvature function K are neglected so we make a first order approx-
imation of it;

• The vibration does not produce any tension variation so that EA (U ′ −KV ), correspond-
ing to the additional tension (see (4.12)) is zero.

Then, our assumptions allows to simplify (4.28) as follows:

ω2V + k2V ′′ = 0 , (4.29)

where k2 =
1

ε

ε

1 + ε
.

As done in previous paragraph, V admits as solution

V = q1 cos
(ω
k
S
)

+ q2 sin
(ω
k
S
)

; (q1, q2) ∈ R2 . (4.30)

From the homogeneous boundary conditions, the normal vibration is given by

Vk = q1 sin
(nπ
l
S
)

; n ∈ N∗ , q1 ∈ R . (4.31)

The geometric compatibility condition is given by

U ′ −KV = 0 . (4.32)

Then

U = p1 − q1
Kl
nπ

cos (nπS) , (p1, q1) ∈ R2 . (4.33)

Applying homogeneous boundary conditions to U yields

U(0) = 0 ⇐⇒ p1 = q1
Kl
nπ

, (4.34)

and then

U(l) = 0 ⇐⇒ 0 = q1
Kl
nπ

[1− cos (nπ)] . (4.35)
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Then n must be even to satisfy U(l) = 0 creating a normal vibration which possesses a vibration
node at S = l

2
. This is the reason why those vibrations are often denoted as anti-symmetric

modes.
As a summary, a mode is given by

ωn =2n
kπ

l
; n ∈ N , (4.36)

Vn =q1,n sin

(
2nπ

l
S

)
, (4.37)

Un =q1,n
Kl
nπ

sin
(nπ
l
S
)2

, (4.38)

q1,n =
2
√

2nπ√
4ln2π2 + 3l3K2

. (4.39)

In this case the constant q1,k normalizes the modes in the sense of the L2-norm i.e.

(∫ l

0

V 2
n + U2

ndS

) 1
2

= 1 . (4.40)

Note that those modes are not orthogonal in the sense of the L2 norm. Indeed, for n2 > n1, we
have that ∫ l

0

Vn1Vn2 + Un1Un2dS =
2l3K2

√
4n2

1π
2 + 3l3K2

√
4n2

2π
2 + 3l3K2

. (4.41)

When the longitudinal displacement is discarded, those modes become orthogonal. This as-
sumption is often coined as the ’condensed cable’ assumption in the literature but the latter is
not considered in this work.

Symmetric modes

Let us make following assumptions:

• ‖q′‖−1
‖q′‖ can be considered constant with S;

• The normal vibration given by V is of primary interest in (4.28) so that U can be con-
sidered of second order;

• The variation of the curvature function K are neglected so that we make a first order
approximation of it;

• The vibration produces a tension variation which is only a function of time. Then the
function 1

ε
(U ′ −KV ), corresponding to the rescaled additional tension, can be considered

as constant with space and its non-vanishing value is given by τ .

The assumptions made allows to consider a simplified version of (4.28) which is

ω2V + k2V ′′ = −Kτ , (4.42)

where k2 = 1
ε

(
ε

1+ε

)
.

The latter implies that

V = q1 cos
(ω
k
S
)

+ q2 sin
(ω
k
S
)
− K
ω2
τ ; (q1, q2) ∈ R2 . (4.43)
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Section 4.1

From compatibility condition, we have that

U = p1 + q1
kK
ω

sin
(ω
k
S
)
− q2

kK
ω

cos
(ω
k
S
)

+

(
ε− K

2

ω2

)
Sτ , (4.44)

where (q1, q2, p1) ∈ R3.
Homogeneous boundary conditions lead to the following system




1 0 0 − K
ω2

cos
(
ω
k
l
)

sin
(
ω
k
l
)

0 − K
ω2

0 −kK
ω

1 0
kK
ω

sin
(
ω
k
l
)
−kK

ω
cos
(
ω
k
l
)

1
(
ε− K2

ω2

)
l







q1

q2

p1

τ


 =M




q1

q2

p1

τ


 =




0
0
0
0


 . (4.45)

We are searching for non trivial solutions, then the system can be recast into the following
transcendental equation

det (M) = 0 ⇐⇒ 0 =
2kK2

(
1− cos

(
ω
k
l
))
− lω (K2 − εω2) sin

(
ω
k
l
)

ω3
. (4.46)

The case ω = 0 is rejected due to singularity. A famous transcendental equation [6] can be
obtained by algebraic manipulations via assuming that ω 6= kπ

F(ω) = 2kK2 tan

(
ωl

2k

)
− lω

(
K2 − εω2

)
= 0 . (4.47)

From a practical point of view, only the very first solutions will be of interest since the cubic
function rapidly intersects the infinite branch of the tan function. For numerical purposes,
using (4.46) instead of (4.47) with a dichotomy scheme appears more reliable.
Once a candidate for ω is found, one can evaluate coefficients as follows





q1 =
sin
(
ω
k

)

1− cos
(
ω
k

)q2

p1 =
kK
ω
q2

τ =
ω2

K q1

. (4.48)

Then q1 (or q2) should be tuned so that

∫ 1

0

V 2 + U2 dS = 1 . (4.49)

As τ is assumed to be non-vanishing, the case 1− cos
(
ω
k

)
= 0 is impossible which is the main

difference with the other type of planar vibration. It is noteworthy that anti-symmetric mode
can also be found numerically when using equation (4.46), to avoid some mistakes in the process
we warn the reader about the importance of checking the condition on τ .

Treatment of the transcendental equation

This equation is numerically challenging, especially with Newton’s method. A way to tackle it,
is to perform dichotomy on intervals where the tan function changes its sign.
The graphs of the two functions are depicted in Figure 4.3. It can be seen that for X close to
2‘k+1

2
π, tanX is greater than the cubic function of X so that dichotomy can be applied in a

vicinity of it. The algorithm applied to (4.47) is given in Algorithm 1.
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- tan
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π
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3π
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2

Figure 4.3: Transcendental equation (4.47) for various values of system parameters for various
values of slope

1 Needed: ;
2 Number of expected solutions: N ;
3 Coefficient: c ;
4 Initialize: ;

5 X ← (0, ..., 2N+3
2
π) (small mesh) ;

6 X+ ← X[2; ; end] ;
7 X− ← X[1; ; end− 1] ;
8 X∗ ← X+ ×X− ;
9 ω ← X+[k such that X∗k <= 0] ;

10 ω̄ ← X−[k such that X∗k <= 0] ;
11 Limit ω and ω̄ to their first N th components ;
12 for 1 ≤ i ≤ 50 do
13 f+ ← F(ω+ω̄

2
) (size N);

14 f− ← F(ω̄) (size N);
15 if f+

k × f−k <= 0 then
16 ωk ← ω+ω̄

2

17 end
18 if f+

k × f−k > 0 then
19 ω̄k ← ω+ω̄

2

20 end

21 end
22 Return ω

Algorithm 1: Dichotomy approach for the frequency equation

Longitudinal vibrations (Compression waves)

Longitudinal vibrations are often discarded when it comes to the modal analysis of cables.
However, the latter exists. Those modes are often high frequency modes for moderately tensed
cables but when cables are very taut, those modes are likely to be contained in the low frequency
range. When δ is almost negligible and ε becomes larger, the assumption of preponderant vi-
brations is in default.
We can adapt the developments made for the normal vibrations via assuming following condi-
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tions:

• ‖q′‖−1
‖q′‖ can be considered constant with S;

• The longitudinal vibration given by U is of primary interest in (4.28) so that V can be
considered of second order;

• The variation of the curvature function K are neglected so we make a first order approx-
imation of it;

• The vibration produces a slope variation which is a function of time only. Then the
function (V ′ +KU), corresponding to the rescaled additional tension, can be considered
to be constant with space and its non-trivial value is given by τ .

These assumptions allow to consider to simplified system





0 = ω2U +
1

ε
U ′′ −Kk2τ

0 = τ − (V ′ +KU)
. (4.50)

As done previously the latter results into a determinant equation which reduces in

det
(
M̃
)

= 0 ⇐⇒ 0 =
2k2K2 (cos (

√
εω)− 1)−√εω (ω2 − k2K2) sin (

√
εω)√

εω3
, (4.51)

that can be recast in the following transcendental form

F∗(ω) = 2k2K2 tan

(√
εω

2

)
−√εω

(
ω2 − k2K2

)
= 0 . (4.52)

The treatment of the latter can be done via the dichotomy approach similarly to the case (4.46).
However, for a lot of practical applications subjected to longitudinal vibrations the following
approximation provides with an acceptable precision

ωk =
kπ√
ε

, k ∈ N . (4.53)

Summary

An analytical approximation for the modes of a pinned-pinned cable have been proposed. The
assumptions made are of practical interest since the majority of cables are designed in a way
that the strains are very small compared to unity. Moreover the assumptions of small (but
non-zero) displacements is valid for most tensed cables in practical engineering structures. The
influence of the inclination of the cable via the cubic terms in (4.47).

4.1.5 Comparisons with numerical computations

The idea of this section is to compare the analytical approximations proposed and the modes
captured by numerical procedures. This also allows to characterize and to quantify the relevance
of analytical treatment of the linear vibrations of cable compared to their numerical treatments.
One could argue that assumptions are too restrictive and that addressing (4.14-4.16) directly
via a numeric solver is the best way to check the quality of the approximation. First a finite
difference approach to tackle the modal analysis will be described, then comparisons with our
analytical prediction will be performed.
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Finite difference method applied to frequency tracing

The Finite Difference Method (FDM) is used to treat (4.14-4.16). First, we assume that
separation of spatial and temporal variables holds and that the unknowns are harmonic with
regards to time so that 




u = Ueiωt

v = V eiωt

w = Weiωt
. (4.54)

Injecting (4.54) into (4.14)-(4.16) yields the following system of equations:




0 = ω2 U +
1

ε

[
U ′′ − 1 + 2ε

1 + ε
KV ′ − ε

1 + ε
K2U −K′V

]

0 = ω2 V +
1

ε

[
ε

1 + ε
V ′′ +

1 + 2ε

1 + ε
KU ′ +

(
ε

1 + ε

)′
V ′ +

(
ε

1 + ε
K
)′
U −K2V

]

0 = ω2 W +
1

ε

[
ε

1 + ε
W ′′ +

(
ε

1 + ε

)′
W ′
]

(4.55)

The FDM is used with regard to spatial variable only. It consists of defining a grid over the
domain 0 6 S 6 1 with a constant step ∆S = 1

N
where N ∈ N is the number of segments

used to sample the domain. The unknowns are then approximated by a vector of their value
for each point of the grid, in another words:





U(Sk) ≈ Uk

V (Sk) ≈ Vk

W (Sk) ≈Wk

, Sk = k∆S , k = 0, ..., N (4.56)

The spatial derivatives are approximated by central difference quotients:

∂f

∂S
(Sk) ≈

fk+1 − fk−1

2∆S
,

∂2f

∂S2
(Sk) ≈

fk+1 − 2fk + fk−1

(∆S)2
(4.57)

for any arbitrary function f in the set of the unknowns.
For the value in S = 0 and S = 1, (4.57) are taken as such by setting that f−1 = 0 and fN+1 = 0
respectively.
Reporting the approximations (4.56) and (4.57) into (4.55) yields the following eigenvalue
problem:

ω2Y + K̃(ε, ε,K,∆S)Y = 0 (4.58)

where the value of ε, K and their derivatives are computed analytically via using (4.7). The

matrix K̃ is an equivalent of the tangent stiffness matrix which size is (3(N + 1)× 3(N + 1)).
The vector Y is taken as follows:

Y = (U0,V0,W0, ...,UN ,VN ,WN)> (4.59)

Solving the eigenvalue problem in (4.58) provides with a set of natural frequencies ωk and a set
of eigenvectors Yk. In practical implementations, the homogeneous boundary conditions are
implicitly imposed via discarding the three first and last rows and columns of K̃.

Comparisons with analytical developments

The Irvine parameter given as:

λIrv =
ρgd

H

√
EA

H
∫ L

0
cos(α(S))3dS

=

√
δ

ε

(
η + δl√

1 + (η + δl)2
− η√

1 + η2

)1/2

(4.60)
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is often used as a plotting parameter for the frequency since the crossovers are related to mul-
tiples of πλIrv. The latter is also used here since it gives an indicator of both the contribution
of the elasticity and the static geometry on the cable frequencies.
When the assumptions given in Section 4.1.4 are satisfied, the predictions of system frequencies
are accurate. The veering phenomenon is well reconstituted by both approaches. However,
the effect of inclination is not totally caught by the analytical approximations. As a result,
analytical approximations do not predict the real system responses for an inclined and near-
inextensible cable yet. The qualitative aspect of the frequency curve are well-described and the
dynamic content changes are captured, even when modes are switching between normal and
longitudinal vibration. Hopefully, those cases are out of the scope when it comes to ropeways.
This claim is illustrated in Figures 4.4 and 4.5. One can see that a wide range of tension is
well approximated by our analytical approximation. The inclination of the cable does not have
significant influence on the precision if the horizontal span remains bigger than the vertical
distance. One should outline the fact that higher the frequency is, the less accurate is the
analytical approximation. Of course, for most civil engineering studies, low frequencies are of
bigger interest so that the comparisons should focus on first modes.

The prediction of frequencies is only one part of the prediction. Indeed the mode-shapes
obtained by the analytical prediction and their numerical twins should be compared. Different
cases are analyzed to highlight pros and cons of the analytical approximations. The solution
computed via FDM is superimposed to the analytically obtained ones. For the cases satisfying
our simplifying assumptions, the agreements are qualitatively good. However, the combined
effect of the inclination and the inextensibility is not caught by the analytical approxima-
tion. This claim is illustrated in Figures 4.6-4.8. Even though the transversal vibrations are
well-described, the planar vibration approximation is not always well-suited, especially for the
combined case of near-inextensible and inclined cable. The latter is very unfortunate for the
case of ropeways in general for recent and practical applications. For this reason, numerical
approximation of frequencies and mode shapes seems more reliable and flexible. It should be
preferred to describe accurately the physics of chair lifts.
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Case 1 with h/d = 0 Case 1 with h/d = 1/4
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Figure 4.4: Normalized frequency of the out-of-plane modes versus normalized λIrv parameter
; Computed via analytical approximation (dashed line ) and FDM (solid line )
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Case 1 with h/d = 0 Case 1 with h/d = 1/4
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Figure 4.5: Normalized frequency of the in-plane modes versus normalized λIrv parameter ;
Computed via analytical approximation (solid line ) and FDM (solid line )
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Case 1 with h/d = 0 Case 1 with h/d = 1/4
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Figure 4.6: Normalized transversal component for the first three out-of-plane modes for
h/d = 0 and h/d = 1/4 for cables given in Table 4.1 ; Computed via analytical approximation

(dashed line ) and FDM (solid line )
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Figure 4.7: Normalized axial component for the first three in-plane modes for h/d = 0 and
h/d = 1/4 for cables given in Table 4.1 ; Computed via analytical approximation (solid line

) and FDM (solid line )
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Figure 4.8: Normalized normal component for the first three in-plane modes for h/d = 0 and
h/d = 1/4 for cables given in Table 4.1 ; Computed via analytical approximation (solid line

) and FDM (solid line )
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4.2 Nonlinear oscillations

In this section the equations for the nonlinear dynamics of a hanged cable are presented.
Our choice is to keep the influence of the longitudinal motions in the projection and to use
numerical based methods that can be applied to general cases with an arbitrary number of
degree of freedom.

4.2.1 Ritz-Galerkin procedure

From this statement, one can choose to project the nonlinear dynamics on a family of chosen
modes of the linear case computed in Section 4.1. Then the displacement is given by

u(S, t) =
N∑

k=1

Φk(S)ϕk(t) , (4.61)

where Φk is a cable mode shape. Note that, projections can be performed on arbitrary modes.
The current internal forces are expanded up to third order in ‖u′‖ as follows

1

ε
(‖q′‖ − 1)

q′

‖q′‖ =
1

ε
(‖q′‖ − 1)e

+
1

ε

‖x′‖ − 1

‖q′‖ u′ +
1

ε

1

‖x′‖(e · u′)e

+
1

ε

1

2 ‖x′‖2

([
u′ · u′ − 3(e · u′)2

]
e + 2 [e · u′] u′

)

+
1

ε

1

2 ‖x′‖3

([
5(e · u′)3 − 3(e · u′)(u′ · u′)

]
e

+
[
u′ · u′ − 3(e · u′)2

]
u′

)

. (4.62)

The right hand-side of (4.62) can be seen as the superposition of static elastic forces, fe(x),
and incremental elastic forces due to the vibration, ∆fe(x,u), i.e.

1

ε
(‖q′‖ − 1)

q′

‖q′‖ = fe(x) + ∆fe(x,u) . (4.63)

Both are recast in the Frenet basis as follow

fe(x) =
1

ε



‖x′‖ − 1

0
0


 , (4.64)

∆fe(x,u) =
1

ε



u′ −Kv

0
0


+

1

ε

‖x′‖ − 1

‖x′‖




0
v′ +Ku

w




+
1

ε

1

2 ‖x′‖2




(v′ +Ku)2 + w2

2 (u′ −Kv) (v′ +Ku)
2 (u′ −Kv)w




−1

ε

1

2 ‖x′‖3




2 (u′ −Kv)
[
(v′ +Ku)2 + w2

]
[
2 (u′ −Kv)2 − (v′ +Ku)2 − w2

]
(v′ +Ku)[

2 (u′ −Kv)2 − (v′ +Ku)2 − w2
]
w




. (4.65)

The full nonlinear governing equation reads

q̈ + αq̇ = [fe(x) + ∆fe(x,u)]′ + b + f , (4.66)
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where we recall that f(S, t) is the other forces applied to the cable presented in (2.73).
Simplifying (4.66) thanks to (2.78) yields

ü + αu̇− [∆fe(x,u)]′ = f . (4.67)

A Ritz-Galerkin procedure is performed with regards to the inner-product given in (4.25). Here
we do not assume any type of dynamics, every terms are retained in the projection. A set of
N equations is obtained as follows

∫ L

0

(ü + αu̇) · ΦjdS +

∫ L

0

∆fe(q,u) · Φ′jdS =

∫ L

0

f · ΦjdS , 1 6 j 6 N , (4.68)

where the differentiation of vectors with regards to S is done via (2.8).
Depending on the family used for the projection, the mass matrix and stiffness matrix can be
full or diagonal. As modes are not necessarily orthogonal, the stiffness matrix can be non-
symmetric and the mass matrix non-diagonal. The discrete system is obtained as

Mjkϕ̈k + Cjkϕ̇k + Kjkϕk +Qjklϕkϕl + Cjklmϕkϕlϕm = fj , 1 6 j 6 N , (4.69)

where Einstein convention has been used. The formal expression of each tensor is given in (4.76-
4.78). To lighten numerical computations, we multiplied by the inverse of the mass matrix and
the time is rescaled so that

ϕ̈j + ξjϕ̇j︸︷︷︸
No summation

+Kjkϕk +Qjklϕkϕl + Cjklmϕkϕlϕm = fj , 1 6 j 6 N ,

t =
τ

ω0

,

(4.70)

for conciseness we did not change the notation for K, Q, C and f in (4.70). This kind of models
are often coined as reduced-order-models (ROM).
The formal value of the tensors built with the Ritz-Galerkin procedure are given considering
that Φ refers to a mode and its subscript refers to its index. The latter can be decomposed in
the Frenet basis as follows

Φj =



Pj
Qj
Bj


 (4.71)

Mjk =

∫ L

0
Φj · ΦkdS (4.72)

Cjk = α

∫ L

0
Φj · ΦkdS (4.73)

fj(t) =

∫ L

0
Φj · fdS (4.74)

As we work in the Frenet basis, the derivative of a given mode reads

Φ′j =



P ′j −KQj
Q′j +KPj

B′j


 (4.75)
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The latter allows to take into account the curvature into the first, second and third order
expansion of the elastic forces in the nonlinear equations of the motion (4.65) .

Kjk =
1

ε

∫ l

0

P ′k −KQk0
0

+
‖q′‖ − 1

‖q′‖

 0
Q′k +KPk

Bk

 ·
P ′j −KQjQ′j +KPj

B′j

 dS (4.76)
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ε
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0
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(Q′k +KPk
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 dS (4.77)
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(
Q′l +KPl
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(Q′m +KPm)−B′lB′m
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B′k
[
2
(
P ′l −KQl

)
(P ′m −KQm)−

(
Q′l +KPl

)
(Q′m +KPm)−B′lB′m
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·

 1

‖q′‖3

P ′j −KQjQ′j +KPj
B′j

dS

(4.78)

4.2.2 Tracking frequency response with arc-length continuation tech-
nique

The set of equations given by (4.70) can be numerically treated with the arc-length method
[3, 8]. The key idea is to follow the response curve assuming that the latter is smooth and that
the system response is periodic. An overview of the method is available in Appendix E. The
system is harmonically forced with an arbitrary frequency Ω, in another words we set

f(S, t) = F (S) sin (Ωt) . (4.79)

To obtain the system response, we track orbits that remain unchanged by the application of
the monodromy matrix [5] and the stability of the response is estimated via evaluating the
eigenvalues of the same matrix at a converged state. Indeed, considering an initial condition
ϕ∗ the problem reads

M(ϕ∗,Ω) ϕ∗(0) = ϕ∗
(

2π

Ω

)
. (4.80)

When a couple (ϕ∗,Ω) satisfies (4.80), then we can judge on the stability of the periodic orbit.
The latter will be:

• Stable if all eigenvalues are contained in the unit circle.

• Unstable if at least one eigenvalue is out of the unit circle.

As an example, we are considering the system given by (4.70) where N = 5. The latter
corresponds to a system where the dynamics are projected on the first five modes of the cable.
The dofs entitled as ϕ1, ϕ3 and ϕ5 are corresponding to out-of-plane modes while the dofs
entitled as ϕ2, ϕ4 are corresponding to in-plane modes. The parameters of the application are
given in Table 4.2. The response curves are plotted in Figure 4.9. The response is sophisticated
and multi-valued, therefore the design of cable requires in-depth analysis of their frequency
responses. This simple example also depicts potential large displacements close to resonance.
The components of the various tensors in (4.70) are given in (4.76-4.78). To have an idea
of the amplitude of displacement for the physical system, (4.61) should be used before any
comparison.
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Table 4.2: Parameters used for the arc-length continuation example (Physical value of a chair
lift span)

EA (MN) T0 (kN) ρ (kg/m) d (m) h (m) µ F (S) (N)

400 80 6 250 10 0.08 0.8 (e + n + z)
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Figure 4.9: Frequency response curves obtained with arc-length continuation technique for a 5
dof system

(dotted line ) Stable solutions ; (dotted line ) Unstable solutions
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4.2.3 Comparison with finite element method

The usage of ROM is mainly driven by its computational efficiency and the possibility of
studying analytically small-dofs systems. However, very few comparisons between results of
finite element and those of ROM are available.
FEM has been already developed to ensure admissible and accurate solutions [2]. The results
obtained via FEM and ROM are different, here we list some differences:

• In FEM, the nonlinear dynamics are integrated with the self-weight effects retained and
the assumption of a small displacement is not made.

• In the ROM, amplitudes correspond to modal coordinates so that the displacement profile
needs to be built back.

• In the ROM, the vibration around the rest position is an elastic vibration, therefore
inextensible/inelastic motions could be roughly approximated.

The goal of this subsection is to compare the predictions made by both methods and to claim
on the validity of the ROM. To do such comparisons, we propose the following methodology:

• With the same set of parameters, compute the dynamics of the cable via the ROM and
the FEM.

• Build back the cable profile from the ROM according to (4.61)

• Compare the transient trajectories for some given points in the physical domain.

• Compare the evaluation of system amplitude at first and last quarter span and at mid-span
in the physical domain with different forcing amplitudes. The latter will be performed via
continuation technique on the ROM while the NFEM dynamics will be integrated until
a stationary point is reached.

The idea behind this methodology is to compare the same system in the physical domain. As the
frequency response corresponds to an asymptotic behavior, we check that the FEM approach
and the ROM are providing with similar asymptotic responses for a single span cable. In the
end, we are comparing the same system under the same solicitation but with two approaches.
The latter comparisons allows to verify the accuracy of the FEM in the nonlinear regimes and
also the validity of the assumptions done for the ROM.

Comparisons of transient dynamics

The transient dynamics are of deep interest for engineering applications due to potential high
displacements. The ability of reduced-order-model to track such responses could avoid costful
computations via refined mesh in NFEM.
Different scenarios are investigated here. We will check system amplitudes close and far from
resonances and with different configurations (highly tensed and not so tensed). The set of
parameters depicted in Table 4.3 are used for the results depicted in Figures 4.10 - 4.13. The
idea between those two different scenarios is that the first case corresponds to a linear regime
in the sense that nonlinearities cannot have significant impact on the response whereas in the
second case, the geometry and forcing amplitude lead to a response where the nonlinearities
are essential to describe the system response. The first (resp. second) case corresponds to the
first (resp. second) line of the Table 4.3.
For the quasi-linear regime (taut cable with small forcing amplitude), we see a qualitatively
good agreement between both approaches as illustrated in Figure 4.10. The overall motion
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Table 4.3: Parameters used for the comparisons between transient dynamics caught via FEM
and ROM

Case EA (MN) T0 (kN) ρ (kg/m) d (m) h (m) α (IS) ~F (S) (N) Ω (rad/s)

Quasi linear 400 111.58 5.56 300 10 0.08 0.0001 (x + y + z) 2.22

Nonlinear 100 80 5.56 300 15 0.08 0.8 (x + y + z) 2.25

Table 4.4: Parameters used for the comparisons between asymptotic dynamics caught via
FEM and ROM

Case EA (MN) T0 (kN) ρ (kg/m) d (m) h (m) α (IS) ~F (S) (N)

Quasi linear 400 111.58 5.56 300 10 0.2 0.0001 (x + y + z)

Nonlinear 100 80 5.56 300 15 0.2 0.8 (x + y + z)

of the cable is described similarly so that the maximum amplitudes of vibrations is the same.
However, the ROM is way faster in terms of CPU-time due to its low number of dof. The
envelop of the cable motion is also well approximated as shown in Figure 4.11. Indeed, both
FEM and ROM provide with the same displacement amplitude in this case although it is
transient dynamics.
When it comes to the nonlinear case, the qualitative agreement between the two methods
holds. However, discrepancies in the longitudinal direction arise. The small differences can be
explained by the difference in the treatment of the geometrical nonlinearity since it is linearized
up to third order in the ROM. Unfortunately, there is not a method which produce larger values
of displacement so that we cannot prefer a method for safer designs.
Computational efficiency is the key parameter to choose one of the approaches, although FEM
may be more flexible when it comes to compute the response of more complicated systems
(e.g. cable networks, hybrid boundary conditions, beam-cable structures, ...). One could say
that ROM allows analytical derivations of the system responses but it relies on very practical
knowledge of cable nonlinear dynamics and behaviors [1, 9]. Moreover, the more dofs are of
interest, the less intuitive are the analytical derivations. In this case, FEM is a reliable tool to
investigate nonlinear dynamics of an unknown cable system and to determine the applicability
of the ROM.

Comparisons of asymptotic dynamics

Dynamic simulations are costful especially with NFEM. The ROM is therefore a valuable tool
to describe rich dynamical behaviors due to the light computational effort required and its
qualitative accuracy. Due to the system dimension, continuation techniques are not practical
for tracing the NFEM asymptotic dynamic responses. This is why ROM is better suited for
arc-length continuation. A comparison between asymptotic responses of the NFEM dynamics
and the ROM response computed via continuation method is proposed here. The goal of this
comparison is to assess for the reliability of designs relying of ROM and also for the NFEM
ability to trace nonlinear behaviors.
The parameters, used for the computations are given in Table 4.4. Every computations have
been performed with a time step such that the smallest period at stake is divided into 2000
intervals.

In Figures 4.14 and 4.15, we can see that the linear regimes are well reconstituted by both

122 BERTRAND Charlélie



Section 4.3

-0.1 -0.05 0 0.05 0.1

-0.01

-0.005

0

0.005

0.01

uz(S)

uy(S)

-0.1 -0.05 0 0.05 0.1

-0.01

-0.005

0

0.005

0.01

uz(S)

uy(S)

-0.1 -0.05 0 0.05 0.1

-0.01

-0.005

0

0.005

0.01

uz(S)

uy(S)

Figure 4.10: Vertical displacement versus transverse displacement (mm) for the first quarter
span, mid-span and last quarter span obtained via FEM (solid line ) and via ROM (dashed
line ) for a transient dynamics in a quasi-linear regime - Parameters are given in Table 4.3

approaches. In this case, the assumptions made for obtaining the ROM do not have any
impact on the obtained amplitudes. However the highly-nonlinear regime responses obtained
from FEM and the ROM are different. For low frequencies, the two predictions of amplitude
are still qualitatively in agreement, but with higher frequencies come more discrepancies. It
appears that coupling between modes are not always traced by the ROM and that the latter
tends to overestimate the amplitude of displacement. Additional modes may be added in the
continuation to catch further details about the nonlinear dynamics however some discrepancy
subsist between both approaches in the nonlinear case. Even though the modes obtained via
FEM and ROM are the same, it is difficult to keep a good match between dynamic responses
when the cable is slacker, inclined and subjected to moderate loads. To accommodate this
issue, the usage of ROM should be always supported by another tool, especially in the latter
case.
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Figure 4.11: Displacement (mm) versus curvilinear abscissa (m) for the x direction, y
direction and z direction obtained via FEM (solid line ) and via ROM (dashed line )

for a transient dynamics in a quasi-linear regime- Parameters are given in Table 4.3
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Figure 4.12: Vertical displacement versus transverse displacement (mm) for the first quarter
span, mid-span and last quarter span obtained via FEM (solid line ) and via ROM (dashed
line ) for a transient dynamics in a nonlinear regime - Parameters are given in Table 4.3
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Figure 4.13: Displacement (mm) versus curvilinear abscissa (m) for the x direction, y
direction and z direction obtained via FEM (solid line ) and via ROM (dashed line )

for a transient dynamics in a nonlinear regime - Parameters are given in Table 4.3

4.3 Approximate treatment via the method of multiple

scales

A treatment of the equations (4.70) is proposed via the method of the multiple scales [7]. The
latter consists on seeking a solution in the form of a series expansion considering an arbitrary
small book-keeping parameter ε

ϕj(t, ε) =
N∑

k=0

εkϕj,k (T0, ..., TN) , (4.81)

where the parameter ε artificially connects the physical time t to different time scale as follows

T0 = t , Tk = εkt , k = 1, ..., N , (4.82)

where the time T0 is coined as the fast-time scale and other time scales are coined as slow-time
scales. All those time scales are assumed to be independent and the time differentiation reads

d

dt
=

N∑

k=0

εk
∂

∂Tk
=

N∑

k=0

εkDk (4.83)

d2

dt2
=

N∑

k=0

N∑

l=0

εk+l ∂2

∂Tk∂Tl
=

N∑

k=0

N∑

l=0

εk+lDkDl , (4.84)

where the partial differentiation with respect to a time-scale Tk is denoted Dk for conciseness.
We further assume that Dk and Dj commute for all k and j. After having injected the series
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Figure 4.14: Displacement (mm) versus frequency of forcing (rad/s) for the y direction and z
direction obtained via FEM (dots ) and (dots ) and via arc-length continuation endowed in
the ROM (solid line ) and (solid line ) in a linear regime - (a) Vertical amplitude at

midspan (b) Transversal amplitude at midspan (c) Vertical amplitude at last quarter span (d)
Transversal amplitude at last quarter span - Undamped frequencies are plotted vertically -

Parameters are given in Table 4.4
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Figure 4.15: Displacement (m) versus frequency of forcing (rad/s) for the y direction and z
direction obtained via FEM (dots ) and (dots ) and via arc-length continuation endowed in
the ROM (solid line ) and (solid line ) in a nonlinear regime - (a) Vertical amplitude
at midspan (b) Transversal amplitude at midspan (c) Vertical amplitude at last quarter span
(d) Transversal amplitude at last quarter span - Undamped frequencies are plotted vertically -

Parameters are given in Table 4.4
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expansion into the governing equation, one vanishes every coefficient of the obtained series.
Generally speaking, this method accommodates very well for stationary solutions that can be
seen as perturbations of a linear vibration. For this reason, the actual nonlinear dynamics (4.70)
is mapped to the following equation

ϕ̈j + εξ ξ̂jϕ̇j︸︷︷︸
No summation

+Kjkϕk + εQQ̂jklϕkϕl + εC Ĉjklmϕkϕlϕm = εf f̂j , 1 6 j 6 N , (4.85)

where the exponents in εξ, εQ, εC and εf have to be specified depending on the application.
A lot of cases can be considered depending on the amplitude of vibration, number and nature
of modes used for obtaining the reduced-order model, nature of the forcing and value of the
coefficients of the nonlinear terms. In the following, the general case of a primary resonance
with N -dofs is detailed and an application to a single-dof projection is done as an example.

4.3.1 General treatment at primary resonance

We are treating here the scenario of an excitation around a main frequency. To treat the latter,
assumptions are made so that we remain close to the physics of the cables:

• The motion is incremental so that the amplitude of the incremental displacement is first
order in ε i.e. ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3;

• Low damping so that its influence only comes at high order of ε. In this work, we consider
it at second order i.e. εξ = ε2;

• The nonlinear dynamics prevail in the behavior so that both quadratic and cubic terms
influence should be traced the earliest possible in the solution. In another words, we
consider that εQ = ε0 and εC = ε0 ( O(1));

• The external forcing relatively small compared to the static tension i.e. εf = ε2 with a
frequency close to the frequency of the mode considered Ω = ω + ε2σ. As an example we
take here a cosine;

• The cable is relatively highly tensed so that most of the modes are favorable to a internal
resonance scenario.

The latter set of assumptions results in the following equation

ϕ̈j + ε2ξ̂jϕ̇j + Kjkϕk + Q̂jklϕkϕl + Ĉjklmϕkϕlϕm = ε2f̂j , 1 6 j 6 N , (4.86)

where we have for all 1 6 j 6 N

ϕj =εϕj,1 + ε2ϕj,2 + ε3ϕj,3 +O(ε4) (4.87)

ϕ̇j =εD0ϕj,1 + ε2 (D0ϕj,2 +D1ϕj,1) + ε3 (D0ϕj,3 +D1ϕj,2 +D2ϕj,1) +O(ε4) (4.88)

ϕ̈j =εD2
0ϕj,1 + ε2

(
D2

0ϕj,2 + 2D0D1ϕj,1
)

+ ε3
(
D2

0ϕj,3 + 2D0D1ϕj,2 + 2D0D2ϕj,1
)

+O(ε4)
(4.89)

A set of N detuning parameters should be introduced as follows

ω1 = Ω + σ1ε
2 , (4.90)

ωj = kjω1 + σjε
2 , 2 6 j 6 N . (4.91)
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Note that for 2 6 j 6 N , all σj should be evaluated and used as a given input data. The
actual parameter is σ1, namely the main detuning. The first order equations are obtained via
considering the terms at order ε1 in (4.86), which reads:

D2
0ϕj,1 + Kjkϕk,1 = 0 , 1 6 j 6 N . (4.92)

The latter can be solved exactly via considering the linear system given by

D0

[
D0ϕ
ϕ

]
=

[
0 −K
I 0

] [
D0ϕ
ϕ

]
. (4.93)

The latter can be solved exactly with the matrix exponential. However, most of the applications
does not require such a tool and often simplifies drastically since the in-plane and out-of-plane
dynamics are decoupled at first order.
The first order solutions often consists on a linear combination of harmonics where coefficients
are depending of T1 and T2 time scales. The second order equations are obtained via considering
the terms up to ε2 in (4.86)

D2
0ϕj,2 + Kjkϕk,2 = −

(
2D0D1ϕj,1 + Q̂jklϕk,1ϕl,1

)
, 1 6 j 6 N . (4.94)

For this set of equations, the secular terms are removed. The latter corresponds to a non-
resonance condition so that the motion remains bounded. A strategy that works on every
computer or algebraic manipulation, is to re-use the equations obtained here for higher order
equations. As a consequence, for each j, two pieces of information are gathered: the particular
solution and the non-resonance condition. The particular solution is obtained via considering
the particular solution of (4.94) where every secular terms is removed. The non resonance
condition is obtained via applying solvability conditions

0 =
(

2D0D1ϕj,1 + Q̂jklϕk,1ϕl,1
)

, 1 6 j 6 N , (4.95)

where we only keep the resonant term in the blue term. Sometimes, the latter can be done
automatically via applying Fredholm alternative [4].
The last step consists on treating the third order part of (4.86) which reads

D2
0ϕj,3 + Kjkϕk,3 =

fj
2

(
eiΩT0 + e−iΩT0

)
, 1 6 j 6 N

−
(

2D0D1ϕj,2 +D2
1ϕj,1 + 2D0D2ϕj,1 + ξ̂jD0ϕj,1

)

−
(
Q̂jklϕk,1ϕl,2 + Q̂jklϕk,2ϕl,1 + Ĉjklmϕk,1ϕl,1ϕm,1

)
. (4.96)

The only information needed is the non-resonance condition obtained via:

• Writing Ω as a function of ωj;

• Selecting the secular terms and setting them to 0;

• Injecting the non-resonant conditions obtained from (4.94);

• Using the polar form for every complex coefficients;

• Parting real and imaginary parts;

• Searching for equilibrium points.

Of course each configuration is different and some small adjustments should be done when using
the method of multiple scales. The described methodology can be adapted for every primary
resonance scenario.
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4.3.2 Single-dof projection at primary resonance

We are considering here the case of the projection along a single mode. One should state that
if the mode is an in-plane mode then softening or hardening behavior can be expected whereas
if the mode is an out-of-plane mode the behavior is strictly hardening.
Indeed, due to the expression of the quadratic tensor given in (4.77), only the planar motion are
subjected to quadratic terms whereas out-of-plane motion are only subjected to cubic terms.
Our study consists on a particular case of (4.85) where the following assumptions are taken:

• The motion is incremental so that the amplitude of the incremental displacement is first
order in ε i.e. ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3;

• The damping influence is considered at second order i.e. εξ = ε2 so that damping only
appears in equations at order ε3;

• The quadratic term influence should be traced at order ε2 so that we consider εQ = ε0;

• The cubic term influence should be traced at order ε3 so that we consider εC = ε0;

• The external forcing term is considered at third order i.e. εf = ε2 with a frequency close
to the frequency of the mode considered Ω = ω+ε2σ. Here we use a cosine as an example.

where the subscript •j has been removed since only one mode is considered for the projection.
In this particular case, (4.85) reduces to

ϕ̈+ εξϕ̇+ ω2ϕ+Qϕ2 + Cϕ3 = ε3f . (4.97)

In the presented case, we have

d

dt
= D0 + εD1 + ε2D2 + ... , (4.98)

d2

dt2
= D2

0 + 2εD1D0 + ε2
(
D2

1 + 2D0D2

)
+ ... (4.99)

Injecting all our assumptions in (4.85) yields

D2
0ϕ1 + ω2ϕ1 = 0 , (4.100)

D2
0ϕ2 + ω2ϕ2 = −2D0D1ϕ1 −Qϕ2

1 , (4.101)

D2
0ϕ3 + ω2ϕ3 =

f

2

(
eiωT0+iσT2 + e−iωT0−iσT2

)
− Cϕ3

1 − 2Qϕ1ϕ2 −D2
1ϕ1

− ξD0ϕ1 − 2D0D2ϕ1 − 2D1D0ϕ2

. (4.102)

Let us note that the equation at order ε0 is trivially satisfied. Equation (4.100) gives

ϕ1(T0, T1, T2) = A(T1, T2)eiωT0 + A∗(T1, T2)e−iωT0 , (4.103)

where A∗ stands for the complex conjugate of A.
Injecting the solution in (4.101) yields

D2
0ϕ2+ω2ϕ2 = −2iωD1Ae

iωT0+2iωD1A
∗e−iωT0−Q

(
A2e2iωT0 + 2|A|2 + (A∗)2e−2iωT0

)
, (4.104)

The stationary solution can be met if D1A = 0. In another words, as we are looking for periodic
motions, the solution cannot be unbounded in time.
It results into the following particular solution

ϕ2(T0, T2) =
Q

3ω2

(
(A(T2))2 e2iωT0 − 6|A(T2)|2 + (A∗(T2))2 e−2iωT0

)
. (4.105)
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The last equation given by (4.102) is only used to obtain a non-secularity condition. Considering
only the terms in factor of eiωT0 gives

iξωA+

(
3C − 10Q2

3ω2

)
A2A∗ + 2iωA′ =

f

2
eiσT2 . (4.106)

The vibration amplitude is taken in polar form, i.e. A (T2) = r (T2) eiθ(T2). Equation (4.106) is
multiplied by e−iθ

iξωr +

(
3C − 10Q2

3ω2

)
r3 + 2iωr′ − 2ωrθ′ =

f

2
eiσT2−θ . (4.107)

The real and imaginary parts of (4.107) are separated as follows





rθ′ =

(
3C
2ω
− 5Q2

3ω3

)
r3 − f

4ω
cos (σt2 − θ)

r′ =
f

4ω
sin (σt2 − θ)−

ξ

2
r

. (4.108)

The following change of variable is performed: θ̃ = σt2 − θ so that we have eventually




rθ̃′ = rσ +

(
5Q2

3ω3
− 3C

2ω

)
r3 +

f

4ω
cos
(
θ̃
)

r′ =
f

4ω
sin
(
θ̃
)
− ξ

2
r

. (4.109)

The stationary points are obtained for r′ = θ̃′ = 0. Squaring and adding both equations give
the following relation

f 2

16ω2
=

[
ξ2

4
+

(
σ −

(
3C
2ω
− 5Q2

3ω3

))2

r2

]
r2 . (4.110)

The latter may be written otherwise as

σ =

(
3C
2ω
− 5Q2

3ω3

)
r2 ±

√
f 2

16r2ω2
− ξ2

4
. (4.111)

Solving (4.110) or (4.111) for the couple (r, σ) gives the frequency curve. The sign of 3C
2ω
− 5Q2

3ω3

determines if hardening or softening behavior appears in the system.
An application for the first out-of-plane and first in plane mode is proposed and challenged
via the arc-length method. The parameters used are given in Table 4.5. The latter results in
rescaled parameters according to (4.85) which are given in 4.6. We compare the response curve
obtained via MMS and the arc-length method in Figure 4.16.

4.4 Stability investigations via Hill equation

The stability of a solution of (4.70) is of many interest for mechanical engineering. For most
applications, the orbital stability is the correct definition that one can expect of a stable solution.
The latter can be defined as a solution whose slightly perturbed trajectory remains in a small
neighborhood of its periodic orbit. In another words, when the initial condition is perturbed
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Table 4.5: Parameters used for the arc-length continuation versus MMS

Attributes Values

EA (MN) 400

ρ (kg.m−1) 5

d (m) 300

h (m) 10

H (kN) 100

C (IS) 0.08

F (N) 0.3

Table 4.6: Coefficients obtained according to the methodology proposed

Attributes Values for first OOP mode Values for first IP mode

ξ 0.0216 0.0216

ω 1.0044 2.0076

Q 0 −0.02489

C 0.0011 0.01749

f 0.4283 0.0320
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Figure 4.16: Response curves for the first OOP mode and the first IP mode obtained via
arc-length method (solid line ) and MMS (dotted line ) for a single-dof projection -

Parameters are given in Tables 4.5 - 4.6
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Section 4.4

slightly, the perturbed orbit remains contained in a torus which centered on the periodic orbit.
This behavior can be investigated via setting ϕ̃ = ϕ + δ where ϕ satisfies (4.70) and injecting
this function into (4.70). Then, the equations are expanded at first order so that an equation
on δ is obtained

δ̈j + ξj δ̇j︸︷︷︸
No summation

+Kjkδk +Qjkl (ϕkδl + ϕlδk) +Cjklm (ϕlϕmδk + ϕkϕmδl + ϕkϕlδm) = 0

1 6 j 6 N

.

(4.112)
where the Einstein convention is used for sum.
As ϕ is a periodic function, equation (4.112) corresponds to a multi-dimensional Hill equation
with constant damping. The latter can easily be exploited numerically via the computation of
the eigenvalues of the monodromy matrix.
When N = 1, the latter simplifies in the following:

δ̈ + ξδ̇ +
(
K + 2Qϕ+ 3Cϕ2

)
δ = 0 . (4.113)

When quadratic terms are negligible and when the oscillation is mainly composed of the first
harmonic which is typical from out of plane cable vibrations close to the main resonance, the
latter can be directly mapped to the Mathieu equation as follows

δ̈ + ξδ̇ +

(
K +

3CΦ2

2
+

3CΦ2

2
cos (2Ωt)

)
δ = 0 . (4.114)

For practical applications, the Mathieu equation holds phenomenological mechanisms of insta-
bility. Under some rough approximations, the latter can be applied also to in-plane vibrations
which opens the possibility of a better design of cable relying on dynamical analysis, see Ap-
pendix G for details.
However, practical designs of cable systems require more developments around the questions
of Hill equations. Although numerical tools can track any situations, it does not produce the
knowledge to better understand the mechanisms of instability intrinsic to the cable dynamics.
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Conclusion of the chapter

This chapter gathers most of the known development and provide with essential features of
cable simulation. Main results and contributions are:

• The developments of system equations in a unified way with the statics and the linear
vibrations;

• Several way of computing modes and frequencies are gathered: analytical approximations,
finite difference and finite element and their comparisons;

• A general way to derive a reduced order model more suitable to analytical developments
and faster numerical integration;

• A general methodology to catch instability via two tools: the arc-length continuation
technique and the use of Hill equations;

• A canvas to derive the method of multiple scales applied to the particular case of an aerial
ropeway.

The limitations are the following:

• We lack some experimental validation for the choice of the modes selected in our work;

• Very few applications were done due to a lack of knowledge about the usual solicitation
of the aerial ropeway. Every illustration and application are relying on pure assumption
and old engineering examples;

• The extension to more sophisticated systems is not straightforward and requires tedious
numerical manipulations.

Following improvements could be done:

• More complex cases could be investigated such as including more dofs in the system
treated via the method of multiple scales or considering energy exchange with another
system (Nonlinear Energy Sink perhaps);

• The general application of Hill equation could be implemented to provide with a predictive
tool for engineering;

• Defining criteria to prevent instabilities to happen in reality by the combined use of
experiments and the method of multiple scales;
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Applications to aerial ropeways:
One-span model

This chapter is concerned with the applications of the developed methodology in Chapter 2
to the particular cases of aerial ropeways. Although the context seems like an engineering
application, essential features of discussion are not omitted. Limitations are clearly stated and
discussed.
The motivation here is to derive analytical tools for the study of the translating cable mechan-
ics. Our inspiration mainly comes from the suspended bridge community (see review from [2])
which we coupled to a mixed Eulerian-Lagrangian viewpoint. The history of axially moving
cable has been detailed in Chapter 1.
First, the equation of motion for an inclined moving cable which is suspended between two eye-
lets provided a given tension on one eyelet are derived. Then derivations inherent to steady-state
solution and linear vibrations of this system are given. Eventually, the parametric instabilities
due to axial velocity are discussed.

5.1 Context and modeling choices

We are interested into the equilibrium of a cable which axial velocity is prescribed as v. As the
cable flows throughout the span, the studied domain does not remain between boundaries. To
bypass this, the following change of coordinate is endowed

S(S̃, t) = S̃ +

∫ t

0

v(t∗)dt∗ . (5.1)

This change of space variable forces the curvilinear abscissa to span between 0 and L and allows
to apply boundary conditions on the particles located respectively at the beginning and at the
end of the span. This leads to a mixed Eulerian-Lagrangian description. Moreover the chain
rule implies a change for time differentiation, indeed

d•
dt

=
∂•
∂t

+ v(t)
∂•
∂S

. (5.2)

Main assumptions of Chapter 2 remain true. Here we give a simple recalling. The domain
is contained in the cartesian space R3 with the basis (O,x,y, z) and we have in the cartesian
space

q = x x + y y + z z , (5.3)

where the variable S allows to access to every particles of the domain and defines the orientation
of it. The tangent vector can be defined for almost every S∗ in the sense of the Lebesgue measure
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Figure 5.1: Elastic cable translating at velocity v between two ideal supports in the
gravitational field g with axial velocity v

as

e(S) =
q′(S)

‖q′(S)‖ , (5.4)

where •′ denotes the differentiation with regards to S. As the cable flows, the word equilibrium
stands for a steady-state of the structure. The current cable which spans between q0 and qL
has an unstretched length L. The cable is assumed to be uniform i.e. is linear density ρ and
its rigidity EA are constant along all the span. An initial tension, T0 is enforced in q0 and the
cable lies in the gravitational field given by g. We further assume that there is no point load
applied to the cable. The system of interest is depicted in Figure 5.1. The three-dimensional
Cartesian space is equipped with the Euclidean normal basis (x,y, z). Due to the geometry of
the system and the gravitational field taken along y, we can assume that the steady-state lies
into the plane given by z = 0. Moreover, with a suitable translation we can assume without
loss of generality

q0 =




0
0
0


 ; qL =



d
h
0


 ; q =



x
y
z


 . (5.5)

Again, the cable is assumed perfectly flexible, therefore it cannot resist any moment or torque.
Only its internal tensile force ensure the balance of forces. The latter is given by the product
of a positive scalar quantity called tension, T , and a vector indicating the axial direction in the
cable, q′(S,t)

‖q′(S,t)‖ . Moreover, the cable is taken linear elastic and all geometrical non-linearities are
kept, then

T (S, t) = EA (‖q(S, t)‖ − 1) > 0 . (5.6)
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For the sake of conciseness, S and t dependencies of variables are removed from system equa-
tions. Motion equations can be derived following indefinite equation of equilibrium

(
T

q′

‖q′‖

)′
+ b = ργ , (5.7)

where b is the distributed load applied to the cable and γ the Eulerian acceleration. Due to
the change of variable, we have

γ = q̈ + v̇q′ + 2vq̇′ + v2q′′ , (5.8)

where •̇ stands for the time differentiation.
Considering that damping, referred as α̃, might be added in the sequel, the full dynamics of
such a system are given by

ρ
(
q̈ + 2vq̇′ + v2q′′ + v̇q′

)
+ α̃q̇ = EA

(
(‖q′‖ − 1)

q′

‖q′‖

)′
+ b . (5.9)

The governing equations (5.9) can be rescaled via considering a non-dimensional time t∗ = Ht
ρd2

and a non-dimensional variable q∗ = q
d
. After dropping the superscripts (·)∗, the rescaled

equations are recast in the following form

q̈ + 2νq̇′ + ν2q′′ + νq′ + αq̇ =
1

ε

(
(‖q′‖ − 1)

q′

‖q′‖

)′
+ b̃ , (5.10)

where the following notations are taken

ν2 =
ρv2

H
, ε =

H

EA
, b̃ =

d

H
b , α =

d√
ρH

α̃ , l =
L

d
. (5.11)

Equation (5.10) corresponds to the dynamics of a translating cable. The additional terms
compared to (2.76) are due to inertial forces i.e. centripedal and coriolis forces. The latter can
be met also in rotor dynamics [6]. One can expect the behaviors of rotating systems plus the
behaviors of cable dynamics.

5.2 Steady-state regime

Most of the time, the cable is assumed to move with a given velocity which is not varying with
time. The profile is given by x. The latter case is obtained via setting ν = ν0 so that ν̇ = 0
and b̃ = −δy in (5.10) and reads

ν2
0x′′ =

1

ε

[
(‖x′‖ − 1)

x′

‖x′‖

]
− δy . (5.12)

It is clear that (5.12) is a modified elastic catenary equation, the latter is more visible if we
write the following [(

1

ε
(‖x′‖ − 1)− ν2

0 ‖x′‖
)

e

]′
= δy . (5.13)

No transverse load is applied so that the equilibrium is planar. Without loss of generality,
we can assume the cable first extremity to be pinned in (0, 0) and the second extremity to be
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pinned in (1, h∗ = h
d
). This physical situation at stake is depicted in Figure 5.1.

Assuming the following boundary condition

‖x′(0)‖ =
T0

EA
=
√

1 + η2
H

EA
= ε
√

1 + η2 , e(0) =
1√

1 + η2

[
1
η

]
(5.14)

x(0) =

[
0
0

]
, x(L) =

[
1
h∗

]
, (5.15)

where H is the tension imposed at S = 0 and η = V
H

is the ratio of the vertical component of
the internal forces by H. The latter is also linked to the sine of (2.6) at S = 0 and L is the
reference length of the cable.
It can be shown via direct integration of (5.13) that

e =
1

ξ

[
1

η + δ
β
S

]
, ‖x′‖ =

1 + εβξ

1− εν2
0

, (5.16)

ξ =

√
1 +

(
η +

δ

β
S

)2

, β = 1− εν2
0 −

ν2
0√

1 + η2
. (5.17)

To obtain the profile of the cable, we use the following relation which can be derived by
combination of (5.16) with (5.17)

x′ = ‖x′‖ e =

[
ξ−1

1− εν2
0

+
εβ

1− εν2
0

] [
1

η + δ
β
S

]
. (5.18)

Integrating q′ between 0 6 S 6 L and L yields the following

1− x(S) =
βε

1− εν2
0

(l − S) +
1

1− εν2
0

β

δ

(
sinh−1(η +

δ

β
l)− sinh−1(η +

δ

β
S)

)
, (5.19)

h∗ − y(S) =
βεη

1− εν2
0

(l − S) +
1

2

εδ

1− εν2
0

(l2 − S2)

+
1

1− εν2
0

β

δ



√

1 +

(
η +

δ

β
l

)2

−
√

1 +

(
η +

δ

β
S

)2


. (5.20)

Equations (5.19)-(5.20) provide with the profile of the cable. Admissibility conditions are
obtained via solving the nonlinear system obtained via setting S = 0





1 =
βεl

1− εν2
0

+
1

1− εν2
0

β

δ

(
sinh−1(η +

δ

β
l)− sinh−1(η)

)

h∗ =
βεηl

1− εν2
0

+
1

2

εδl2

1− εν2
0

+
1

1− εν2
0

β

δ



√

1 +

(
η +

δ

β
l

)2

−
√

1 + η2




. (5.21)

Eventually, the Frenet basis of the rest configuration reads

e =
1

ξ

[
1

η + δ
β
S

]
, n = −1

ξ

[
η + δ

β
S

−1

]
. (5.22)

The latter obeys the following rule

e′ = Kn , n′ = −Ke , K =

δ
β

1 +
(
η + δ

β
S
)2 .

(5.23)
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Table 5.1: Critical velocity for some typical parameters and a fictitious unfavorable case

Type EA (MN) ρ (kg/m) vcrit (m/s)

Ropeway 235 12.94 4261.5

Carrying hauling rope 40 6 2582

Fictitious cable 1 3 577.4

5.2.1 Remarks

Problem (5.21) reduces to the elastic catenary problem when ν0 = 0. The extension to the
translating elastic catenary proposed here is valid if

ε 6= 1

ν2
0

⇐⇒ EA 6= ρv2
0 , (5.24)

which corresponds to the case of a critical axial velocity. Physically speaking, it means that the
domain travels faster than longitudinal elastic waves creating an apparent vanishing tension.
For ropeways, this situation is not expected at all as shown in the Table 5.1 where we added the
critical axial velocity. Indeed the maximum in-line velocity in France is 12.5 m/s. Moreover,
the introduction of the velocity induces a slight change in the profile and the tension. A first
order development shows that both the profile and the tension difference between a translating
and a fixed cable order is proportional to εν2

0 which tremendously small.
Even though the translating cable is interesting for its similarities with solid-fluid interaction
and the rotor dynamics, the velocity does not change the behavior of the cable much.

5.3 Extension of free vibrations for a translating cable

This section presents the direct extension of the analysis of linear free vibrations to the case of
a translating cable. First, the rescaled equations are presented, then the linearized equations
are derived briefly in a similar manner than in Chapter 4. Next, we present how to adapt our
developed analytical and finite differences methodology for the case of a translating cable.

5.3.1 Undamped vibrations

As presented in details in Chapter 4, the linear vibrations equations for the translating cable
are derived. The damping, α, is discarded and we consider the case where ν = ν0 so that ν̇ = 0
and b̃ = −δy.
Here we develop the modal analysis of the translating cable as an extension of the theory of
free vibrations of cables. An incremental dynamics around the established regime is considered
by setting q = x + u where x is the rest profile of the cable.
The displacement u is decomposed on the Frenet basis taken at the rest configuration as

u = u e + v n + w z . (5.25)

By using (5.2), we obtain that

u̇ = u̇ e + v̇ n + ẇ z , (5.26)

u′ = (u′ −Kv) e + (v′ +Ku) n + w′ z , (5.27)

ü = ü e + v̈ n + ẅ z , (5.28)

u̇′ = (u̇′ −Kv̇) e + (v̇′ +Ku̇) n + ẇ′ z , (5.29)

u′′ =
[
(u′ −Kv)

′ −K (v′ +Ku)
]

e +
[
(v′ +Ku)

′
+K (u′ −Kv)

]
n + w′′ z . (5.30)
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Moreover the current axial vector is linearized at first order as done previously as follows

x′ + u′

‖x′ + u′‖ = e +
1

‖x′‖ (u′ − (e · u′)e) . (5.31)

Equations (5.26)-(5.30) and (5.31) are injected into (5.10). Then the established regime given
by (5.12) is used to simplify the expression so that we obtain in a condensed form

ü+ 2ν0 (u̇′ −Kv̇) =
1− εν2

0

ε

[
(u′ −Kv)

′ − ε

1 + ε
K(v′ +Ku)

]
, (5.32)

v̈ + 2ν0 (v̇′ +Ku̇) =
1− εν2

0

ε

[
K (u′ −Kv) +

(
ε

1 + ε
(v′ +Ku)

)′ ]
, (5.33)

ẅ + 2ν0ẇ
′ =

1− εν2
0

ε

[
ε

1 + ε
w′
]′
, (5.34)

where ε = ‖x′‖ − 1.
Again, the system of equations given by (5.32)-(5.34) can be seen as an in plane motion super-
imposed with an out of plane motion. However, an additional term due to the velocity appears
in equation and the latter is likely to provoke complex modes. This possibility is presented
briefly in Appendix F or detailed the mathematical paper of Lallement and Inman [1].

5.3.2 Treatment via finite difference method

The Finite Difference Method (FDM) is used again to treat (5.32)-(5.34). We assume that
separation of spatial and temporal variables holds and that the unknowns are in the following
form 




u = Ueλt

v = V eλt

w = Weλt
. (5.35)

Injecting (5.35) into (5.32)-(5.34) and simplifying by eλt yields the following system of equations





0 = λ2 U + 2ν0λ (U ′ −KV )− 1− εν2
0

ε

[
U ′′ − 1 + 2ε

1 + ε
KV ′ − ε

1 + ε
K2U −K′V

]

0 = λ2 V + 2ν0λ (V ′ +KU)− 1− εν2
0

ε




ε

1 + ε
V ′′ +

1 + 2ε

1 + ε
KU ′ +

(
ε

1 + ε

)′
V ′

+

(
ε

1 + ε
K
)′
U −K2V




0 = λ2 W + 2ν0λW
′ − 1− εν2

0

ε

[
ε

1 + ε
W ′′ +

(
ε

1 + ε

)′
W ′
]

. (5.36)

The FDM is used with regard to spatial variable only. The latter has been previously presented
in (4.56) and (4.57). In the case treated here, the system takes the following form

0 = λ2MY + λCY + KY . (5.37)

The latter can be reorganized into a standard eigenvalue problem as

[
0 I

−M−1K −M−1C

] [
Y
λY

]
= λ

[
Y
λY

]
. (5.38)
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As a consequence, λ is a complex value occurring in complex conjugate pairs. Eigenvectors
also occur in complex conjugate pairs and are denoted in the literature as complex modes [1]
or sometimes damped modes. The natural frequency and the modal damping ratio obtained
via considering respectively

ωk = |λk| , αk = −re (λk)

ωk
. (5.39)

5.3.3 Analytical treatment of out-of-plane vibrations

We first focus on (5.34). Due to numerical investigations, we assume the separation of spatio-
temporal variables as follows

w(S, t) = W (S)eiωt ; i2 = −1 , (5.40)

which can be inserted into (5.34) and yields

ω2W − 2iν0ωW
′ +

1− εν2
0

ε

[
ε

1 + ε
W ′
]′

= 0 . (5.41)

The claim made earlier on
ε

1 + ε
is still valid for the translating case and results into the

following differential equation

ω2W − 2iν0ωW
′ + a2W ′′ = 0 , (5.42)

where we have set the following

a2 =
1− εν2

0

ε

ε

1 + ε
. (5.43)

Once homogeneous boundary conditions are imposed, the system can be solved as follows

W = W0 exp

(
i
ω

a2

(
ν0 +

√
ν2

0 + a2

)
S

)[
1− exp

(
−2i

ω

a2

√
ν2

0 + a2S

)]

where ωk =
a2kπ√
ν2

0 + a2
, k ∈ N

. (5.44)

The modes can be made unit with respect to the following norm

(∫ L

0

g · g∗dS
)1/2

, (5.45)

where (·)∗ stands for the complex conjugate of (·). Then we have

Wk =
√

2i exp

[
iν0kπ√
ν2

0 + a2
S

]
sin (kπS) . (5.46)

However, those modes are no longer orthogonal due to the fictitious damping added by the axial
velocity that breaks the symmetry of the system. We obtained complex mode shapes that can
be interpreted as the superposition of two waves that travel forward and backward respectively

at celerity kπ

(
ν0√
ν2

0 + a2
+ 1

)
and kπ

(
ν0√
ν2

0 + a2
− 1

)
. Moreover, from (5.42) we can see

that W ∗
k also satisfies the equation. When the velocity vanishes, we recover the obtained modes

for the classic case given by (4.23).
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5.3.4 Analytical treatment of in-plane vibrations

Let us focus on (5.32) and (5.33). This set of equations is a coupled set of linear equations with
continuous coefficients. We assume that the planar displacement is given by

u = U(S)eiωt , (5.47)

v = V (S)eiωt , (5.48)

which can be inserted into (4.14) and (4.15) and yields




0 = ω2U − 2iν0ω (U ′ −KV ) +
1− εν2

0

ε

[
(U ′ −KV )

′ −K ε

1 + ε
(V ′ +KU)

]

0 = ω2V − 2iν0ω (V ′ +KU) +
1− εν2

0

ε

[
K (U ′ −KV ) +

(
ε

1 + ε
(V ′ +KU)

)′ ] . (5.49)

We have seen in Chapter 4 that two different types of mode exist which are the symmetric
and anti-symmetric modes. The following developments show that as soon as the velocity of
translation is considered, modes are necessarily accompanied by a tension increment so that
anti-symmetric modes, that result in no increment of tension at first order, no longer exist.

Non-existence of anti-symmetric modes

We show here that one classical result of the theory of linear vibrations for cables does not hold
when axial velocity is considered. Let us make following formal assumptions:

• ‖q′‖−1
‖q′‖ can be considered constant with S;

• The normal vibration given by V is of primary interest in (5.49) so that U can be con-
sidered of second order;

• The variation of the curvature function K are neglected so we make a first order approx-
imation of it;

• The vibration does not produce any tension variation so that EA (U ′ −KV ), correspond-
ing to the additional tension (see (4.12)) is zero.

Then, our assumptions allows to simplify (5.49) as follows

ω2V − 2iν0ωU
′ + a2V ′′ = 0 , (5.50)

where a2 =
1− εν2

0

ε

ε

1 + ε
.

As done in the previous paragraph, V admits as solution

V = V0 exp

[
iν0kπ√
ν2

0 + a2
S

]
sin (kπS) . (5.51)

The geometric compatibility condition is given by

U ′ −KV = 0 , (5.52)

then

U = U0 − V0K
exp

[
iν0kπ√
ν20+a2

S

]

a2kπ

[
(ν2

0 + a2) cos (kπS)− iν0

√
ν2

0 + a2 sin (kπS)

]
. (5.53)
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Applying homogeneous boundary condition to U yields

U(0) = 0 ⇐⇒ U0 = V0K
ν2

0 + a2

a2kπ
, (5.54)

and then

U(1) = 0 ⇐⇒ 0 = exp

[
iπkν0√
a2 + ν2

0

](
iν0

√
a2 + ν2

0 sin(πk)−
(
a2 + ν2

0

)
cos(πk)

)
+ a2 + ν2

0 .

(5.55)
which cannot be satisfied unless ν0 = 0. This causes the so-called veering in the frequency
curves. Indeed, as the anti-symmetric mode no longer exist, the curves no longer intersect each
other and the continuum of frequency are separated.
The latter can also be explained by the fact that damping shift vibration nodes positions which
breaks the possibility of symmetry. The latter was stated in earlier works as a follow-up from
observations of the obtained solutions [3, 7].

In-plane normal vibrations

Let us make following assumptions:

• ‖q′‖−1
‖q′‖ can be considered constant with S;

• The normal vibration given by V is of primary interest in (5.49) so that U can be con-
sidered of second order;

• The variation of the curvature function K are neglected so we make a first order approx-
imation of it;

• The vibration produces a tension variation which is a function of time alone. Then the

function
1−εν20
ε

(U ′ −KV ), corresponding to the rescaled additional apparent tension, can
be considered to be constant with space and its non-trivial value is given by τ .

Then, system (5.49) simplifies as follows

0 = a2V ′′ − 2iν0ωV
′ + ω2V +Kτ

0 =
1− εν2

0

ε
(U ′ −KV )− τ

a2 =
1− εν2

0

ε

ε

1 + ε

. (5.56)

The latter results in

V = V0 exp

[
iω

a2

(
ν0 +

√
ν2

0 + a2

)
S

]
+ V1 exp

[
iω

a2

(
ν0 −

√
ν2

0 + a2

)
S

]
− Kτ
ω2

, (5.57)

U = U0 + τ

(
ε

1− εν2
0

− K
2

ω2

)
S − i a2K (V0/ω)√

ν2
0 + a2 + ν0

exp

[
iω

a2

(
ν0 +

√
ν2

0 + a2

)
S

]

+ i
a2K (V1/ω)√
ν2

0 + a2 − ν0

exp

[
iω

a2

(
ν0 −

√
ν2

0 + a2

)
S

]
.

(5.58)
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The homogeneous boundary conditions are imposed via the following matrix equation




V (0)
V (1)
U(0)
U(1)


 = 0 ⇐⇒




1 1 0 − K
ω2

e
iω
a2

(
ν0+
√
ν20+a2

)
e
iω
a2

(
ν0−
√
ν20+a2

)
0 − K

ω2

−ia2K
ω(
√
ν20+a2+ν0)

ia2K
ω(
√
ν20+a2−ν0)

1 0

−ia2Ke
iω
a2

(
ν0+
√

ν20+a2
)

ω(
√
ν20+a2+ν0)

ia2Ke
iω
a2

(
ν0−
√

ν20+a2
)

ω(
√
ν20+a2−ν0)

1 ε
1−εν20

− K2

ω2







V0

V1

U0

τ


 = 0 .

(5.59)
The frequencies are obtained when the kernel of the matrix is non-trivial. By imposing its
determinant to be zero and simplifying equations we have




0 = cos
(ν0ω

a2

)
− cos

(
ω
√
a2 + ν2

0

a2

)
− ω (K2 (1− ν2

0ε)− εω2)

2K2
√
a2 + ν2

0 (1− ν2
0ε)

sin

(
ω
√
a2 + ν2

0

a2

)

ω 6= 0

. (5.60)

We clearly see that our development directly extend the case without velocity. By setting ν0 = 0
in (5.60) we obtain the classical transcendental equation for the cable in plane frequencies (4.46).

In-plane longitudinal vibrations

The normal vibrations are often considered preponderant in cable dynamics, however scenar-
ios involving highly tensed cable or high frequency responses require the consideration of the
longitudinal displacement.
The longitudinal vibrations can also be traced via assuming the following:

• ‖q′‖−1
‖q′‖ can be considered constant with S.

• The longitudinal vibration given by U are of primary interest in (5.49) so that V can be
considered of second order.

• The variation of the curvature function K are neglected so we make a first order approx-
imation of it.

• The vibration produces a slope variation which is a function of time only. Then the
function (V ′ +KU), corresponding to the rescaled additional tension, can be considered
to be constant with space and its non-trivial value is given by τ .

These assumptions allow to consider to simplified system




0 = ω2U − 2iν0ωU
′ + c2U ′′ − a2Kτ

0 = τ − (V ′ +KU)

a2 =
1− εν2

0

ε

ε

1 + ε

c2 =
1− εν2

0

ε

, (5.61)

then

U = U0 exp

[
iω

c2

(
ν0 +

√
ν2

0 + c2

)
S

]
+ U1 exp

[
iω

c2

(
ν0 −

√
ν2

0 + c2

)
S

]
+
a2Kτ
ω2

, (5.62)

V = V0 + τ

(
1− a2K2

ω2

)
S + i

c2K (U0/ω)√
ν2

0 + c2 + ν0

exp

[
iω

c2

(
ν0 +

√
ν2

0 + c2

)
S

]

− i c2K (U1/ω)√
ν2

0 + c2 − ν0

exp

[
iω

c2

(
ν0 −

√
ν2

0 + c2

)
S

]
.

(5.63)
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As done previously, applying homogeneous boundary conditions results into a determinental
equation which reduces in

F∗(ω) =

ω(ω − aK)(aK + ω) sin

(
ω
√
c2+ν20
c2

)

a2K2
√
c2 + ν2

0

−2 cos

(
ω
√
c2 + ν2

0

c2

)
+2 cos

(ν0ω

c2

)
= 0 . (5.64)

The treatment of the latter can be done via the dichotomy approach similarly to the case (4.46).
However, for a lot of practical applications subjected to longitudinal vibrations the following
approximation provides an acceptable precision

ωk =
c2kπ√
ν2

0 + c2
, k ∈ N . (5.65)

5.3.5 Numerical applications and comparisons with analytical re-
sults

For the purpose of comparing analytic treatments and numerical solution, Table 4.1 contains the
parameters used to check our methodology. As a reminder, the first case is a near-inextensible
case, the second is typical for a ropeway and the last one is chosen since it corresponds to a
fictitious cable for which the dynamical behavior is equally parted between longitudinal and
normal vibrations. As visible on Figures 5.2 and 5.3, the prediction is accurate for the frequen-
cies. The proposed analytical approach is able to trace the modal content accurately. Small
discrepancies happen similarly to the fixed-cable approximation proposed when the assump-
tions are not relevant for the case considered especially for the case of the modal shape which
partition in real and imaginary part is not caught in the combined case of an inclined and near
inextensible cable.

Type EA (MN) ρ (kg/m) d (m/s) h (m) v0 (m/s)

Case 1 Ropeway 235 12.94 100 {0, 33} 8

Case 2 Carrying hauling rope 40 6 100 {0, 33} 8

Case 3 Fictitious cable 1 3 100 {0, 33} 8

5.3.6 Cross-overs for the translating cable case

As explained previously, the translating cable only exhibits modes accompanied with a constant
tension increment. This phenomenon comes with a stalling in the cross-over zones depicted for
the fixed cable in Figure 3.19. The cross over phenomenon is annihilated by the velocity
and curves depart from each other. The latter is made visible on Figure 5.4 where the non-
dimensional frequencies are plotted versus the Irvine parameter (cf (3.115)). We see that the
bigger the velocity is, the larger the stall between frequencies becomes. Those veering phe-
nomenon, where two curves approaches from each other are accompanied by a abrupt variation
of the eigenvector shape in those zones.

Although the frequency plot is changing slightly in the presence of a translating velocity, the
modal shape exchanges and abrupt variations of the modes in the zones where curves are close to
each other remains similar. The main difference relies in the complex values of the eigenvectors
and the eigenvalues.
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Figure 5.2: Normalized frequency of the out-of-plane modes versus normalized λIrv parameter
; Computed via analytical approximation (dashed line ) and FDM (solid line )
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Figure 5.3: Normalized frequency of the in-plane modes versus normalized λIrv parameter ;
Computed via analytical approximation (solid line ) and FDM (solid line )
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Figure 5.4: Non-dimensional frequencies versus Irvine’s parameter. Out-of-plane modes (solid
line ) and in-plane modes (solid line ) are depicted with varying velocities and

parameters given in Table 5.2. (a) v0 = 0, (b) v0 = 3, (c) v0 = 5, (d) v0 = 8, (e) v0 = 10 and
(f) v0 = 12
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Table 5.2: Parameters used for the calculation of the frequency plot examples

EA (MN) T0 (kN) ρ (kg/m) d (m) h (m) v0 (m/s)

100 85 5 100 5 ∈ {0, 3, 5, 8, 10, 12}

Table 5.3: Parameters used for the calculation of the Campbell diagram example

EA (MN) T0 (kN) ρ (kg/m) d (m) h (m) v0 (m/s)

100 85 5 100 5 ∈ [0, 120]

5.3.7 Discussion about the translating cable modes

Frequencies and modes of the translating cable are an extension of the fixed cable vibrations.
However the physical interpretation and its applicability for the cable-car should be discussed.
The eigenvalues λk are complex and come as conjugate pairs. As for rotating systems, the
triplet (ν2

0 , re (λk) , im (λk)) gives access to the Campbell diagram and the decay rate of the
translating cable [6, 9]. In theory, one can identify critical speed for which the system exhibits
unbounded amplitude. In the case of cable-cars, the critical speed obtained is far from any
velocity used in realistic application, see Figure 5.5 where the critical speed is obtained when
singularities are met or when a non-zero real part is met. In the case depicted here with the
set of parameters given in Table 5.3, the critical speed obtained numerically is 89.86 m/s.
Moreover, those modes are not practical for studying the nonlinear dynamics of a translating
cable since the original system is a real-valued system and the Ritz-Galerkin projection pro-
cedure is a sesquilinear form. The latter transforms the real system into a complex system
which has not been shown to converge numerically and not being tractable by the means of the
method of multiple scales.
Although the proposed analysis is straightforward, its usage for realistic cable-car situations
is irrelevant. Then instabilities should be traced with a nonlinear analysis of the dynamics.
The modes used for the projection should be the fixed-cable modes so that the system remains
real-valued and the methodology described in Section 4.2 is applicable.

5.4 Nonlinear dynamics of the translating cable

In this section, we discuss the possibility of tracing the dynamic response of a translating cable
given in (5.10) by the means of the methodology described in Section 4.2.
We assume the following:

• q = x+u where x is the permanent regime given by (5.9) and u is a dynamic perturbation
of the stationary profile

• the non-dimensional velocity of translation ν = ν0 + ν1(t) corresponds to a fluctuation ν1

around a mean value ν0
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Figure 5.5: Complex frequencies versus non-dimensional velocity parameter. The real part
(dotted line ) and imaginary part (dotted line ) are plotted for the (a) planar modes

and the (b) transversal modes

For the sake of the reader we recall every equations needed just below




q̈ + 2νq̇′ + ν2q′′ + νq′ + αq̇ =
1

ε

(
(‖q′‖ − 1)

q′

‖q′‖

)′
+ δy + f

[(
1

ε
(‖x′‖ − 1)− ν2

0 ‖x′‖
)

e

]′
= δy ; ẋ = 0

q = x + u

ν = ν0 + ν1(t)

. (5.66)

All the latter can be simplified and expanded at third order as

ü + 2(ν0 + ν1)u̇′ + ν̇1(x′ + u′) + αu̇ =
1

ε

(
u′ − u′

‖x′‖

)′
− (ν0 + ν1)2u′′ + ∆fe(x,u)′ + f ,

(5.67)
where the expression of ∆fe(x,u) is given in (4.65) and corresponds to the incremental elastic
forces induced by the dynamic perturbation.
Physically speaking, this equation describes the vibration around the stationary regime of the
cable. In order to treat it, we apply the methodology detailed in Section 4.2. The incremental
motion is taken as follows

u(S, t) =
N∑

k=1

Φk(S)ϕk(t) ; N ∈ N∗ , (5.68)

where (Φk)k∈N is the family of the fixed-cables modes obtained from the stationary regime x.
The modes are computed via (4.14)-(4.16), the latter are used for two main reasons. The first
one is the fact that the system of equation remains a system with real coefficient and the second
one is that the differences between the fixed and translating case are relatively small when ν0

remains in the domain of engineering applications.
Using the same projection technique presented in (4.68), we can obtain the following system of
equations

Mjkϕ̈k +
[
Cjk + Cν0

jk + Cν1
jk(t)

]
ϕ̇k +

[
Kjk + Kν0

jk + Kν1
jk(t)

]
ϕk

+Qjklϕkϕl + Cjklmϕkϕlϕm = fν1j (x, t) + fj(t)
, 1 6 j 6 N , (5.69)
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where the Einstein convention is used and where

Mjk =

∫ l

0

Φj · ΦkdS , (5.70)

Cjk = α

∫ l

0

Φj · ΦkdS , (5.71)

Cν0
jk = 2ν0

∫ l

0

Φj · Φ′kdS , (5.72)

Cν1
jk(t) = 2ν1(t)

∫ l

0

Φj · Φ′kdS , (5.73)

Kjk =
1

ε

∫ l

0





P ′k −KQk

0
0


+
‖q′‖ − 1

‖q′‖




0
Q′k +KPk

Bk




 ·



P ′j −KQj

Q′j +KPj
B′j


 dS , (5.74)

Kν0
jk = −ν2

0

∫ l

0

Φ′k · Φ′jdS , (5.75)

Kν1
jk(t) = ν̇1(t)

∫ l

0

Φ′k · ΦjdS +
(
2ν0ν1(t) + ν2

1(t)
) ∫ l

0

Φ′k · Φ′jdS , (5.76)

Qjkl =
1

ε

∫ l

0

 1

‖q′‖2

(Q′k +KPk
) (
Q′l +KPl

)
+B′kB

′
l

2
(
P ′k −KQk

) (
Q′l +KPl

)
2
(
P ′k −KQk

)
B′l

 ·
P ′j −KQjQ′j +KPj

B′j

 dS , (5.77)

Cjklm = − 1

2ε

∫ l

0

 2
(
P ′k −KQk

) [(
Q′l +KPl

)
(Q′m +KPm) +B′lB

′
m

](
Q′k +KPk

) [
2
(
P ′l −KQl

)
(P ′m −KQm)−

(
Q′l +KPl

)
(Q′m +KPm)−B′lB′m

]
B′k
[
2
(
P ′l −KQl

)
(P ′m −KQm)−

(
Q′l +KPl

)
(Q′m +KPm)−B′lB′m

]


·

 1

‖q′‖3

P ′j −KQjQ′j +KPj
B′j

 dS

, (5.78)

fν1j (x, t) =
(
2ν0ν1(t) + ν2

1(t)
) ∫ l

0

x′ · Φ′jdS − ν̇1(t)

∫ l

0

x′ · ΦjdS , (5.79)

fj(t) =

∫ l

0

Φj · fdS . (5.80)

Once ν1(t) is chosen, several cases can be investigated. Two main scenarios are of interest:

• A periodic fluctuation around the mean value which creates a parametric excitation

• A breaking or accelerating scenario

The first scenario paves the way to stability analysis both analytically and numerically.

5.4.1 Periodic solicitations for the ropeway

The possible periodic solicitations for the ropeway are due to the following main mechanisms:

• A periodic fluctuation of the in-line velocity. The latter comes from the command of the
motor station. The axial velocity is decomposed as a constant part ν0 and a fluctuation
ν1(t) = V sin(Ωt) and f = 0.
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Figure 5.6: Response curves of each modes (solid line ) for a cable translating at velocity
ν(t) = ν0 + V sin(Ωt) - OOP frequencies (solid line ) and IP frequencies (solid line )

are plotted vertically - Parameters in Table 5.4

• The charge and discharge of the cable by the car. Indeed each time the car enters the line
it creates an increment of force (idealized view). It can also be seen as a force moving
along the curvilinear abscissa. The force f is specified afterwards.

• External solicitation that can be approximated by a periodic function of time. The latter
has already been studied in Section 4.2.

The first case is a direct fallout of Section 5.4. Typical time-integration profiles of the non-
dimensional system are provided in Figures 5.7-5.10 and an example of frequency response is
available in Figure 5.6. As visible in Figures 5.7-5.10 and 5.6, the displacement is dominated
by the planar modes. However the amplitudes of fluctuation are not enough to produce strong
nonlinear phenomena. The response is mostly linear in the sense that amplitude peaks are
centered around the linear frequencies. However, the out-of-plane modes remain important for
the dynamics since without it, we could lose some resonance phenomenon for transverse modes.
As a conclusion, sudden large amplitudes of oscillation are not directly due to the fluctuation
of the velocity. We clearly see in the case presented that the amplitude is not enough to be
considered as big. Moreover, the amplitude of the fluctuation is less likely to increase much.

Those observations go in favor of the investigation of other scenarios as a source of sudden large
oscillations. The most likely is the periodic load and deload of the cable. The latter is intrinsic
to the cable-car, indeed each vehicle is distant from a given length of the following one. The
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Table 5.4: Parameters used to plot the frequency curves of the translating cable with
fluctuating velocity

EA (MN) ρ (kg/m) H (kN) d (m) h (m) v0 (m/s) v1 (m/s) α (IS)

100 5 80 80 5 5 0.1 0.2

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

(rad/s) 1 1.114 1.999 1.999 2.998 3.003 3.996 3.996 4.992

Table 5.5: Parameters used to plot the response of the translating cable due to braking

EA (MN) ρ (kg/m) H (kN) d (m) h (m) v0 (m/s) Rayleigh damping

100 5 80 80 5 5 8%

ratio of this distance by the in-line velocity provide with the period of forcing. The amplitude
of forcing is the weight of the car in first approach.
A more precise and complex model is to trace the motion of the car along the curvilinear ab-
scissa in order to catch the influence of the mobile mass on the dynamics [4, 5]. The latter
approach is not done here but an alternative via FEM is proposed in Chapter 6.
The external forcing is very general. It can be wind, temperature variations (if thermo-
mechanical coupling is considered), passenger behavior or any periodic event that would cause
a displacement or an applied force to the cable. Most of those cases are a fallout of the method-
ology presented in Sections 4.2 and 5.4.

5.4.2 Emergency braking

The case of an emergency braking is studied here. We assume that the cable is flowing at a
velocity ν0 and that suddenly the cable is stopped via imposing the following velocity

ν : t −→





ν0 , −∞ < t 6 0

t

ta
ν0 , 0 < t 6 ta

0 , ta < t < +∞

, (5.81)

which plot is given in Figure 5.11 via using the parameters set available in Table 5.5.
We see that the model proposed is not able to explain the sudden large amplitude of oscillations
when physical values are used. The braking should be further investigated via more complete
models and FEM approach which can include friction and the presence of obstacles.

5.5 Dynamical analysis: a case study

In this section we investigate the stability of the translating cable. As explained in last section,
the situation where the axial velocity exhibits a fluctuation around its mean value is not a
valuable scenario to explain large oscillations in cable-car engineering.
We are investigating here the possibility given by periodic load and deload of the cable combined
to a constant velocity of translation. The stability of the system can be investigated by the
means of evaluating the eigenvalues of the monodromy matrix for the periodic solutions found
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Figure 5.11: Amplitude of the first quarter span (solid line ) , the midspan (solid line )
and the last quarter span (solid line ) when the braking is applied to the cable

via the arc-length method (see Appendix E for details).
It should be noted that in engineering situations, the term ’stability’ is misunderstood and
misused. Indeed, it often implies that the system undergoes sudden large oscillations. This
mechanism that can be explained by the coexistence of two attractive solutions ; one which
exhibits small amplitudes and another one whose amplitude is large. The other mechanism
that could explain the sudden large amplitudes of displacement is the possibility of parametric
resonance made possible by the term (5.76) in the equation.
This section presents some application of (5.69) which illustrates both possibilities. In order to
simulate the excitation of the cable by the car, we assume that a periodic force is applied to
the ”left end” of the cable. We simplified the solicitation drastically but still believe the latter
to represent the key mechanism at stake. We consider

f : (S, t) −→
{
F0 sin(Ωt) , 0 6 S 6

l

20
, 0 6 S 6

l

20

}
. (5.82)

Following our methodology we obtain f(t) which allows to investigate the sensibility of the
span to this kind of solicitation. We could also investigate a sum of atoms such that at every
tk = 2kπ

Ω
the force F0 is applied to the first meters of the span. This is out of the scope of the

study led here.
The situation is illustrated in Figure 5.12.

5.5.1 Coexistence of multiple solutions and internal resonance

The parameters used are given in Table 5.6. In this particular case, we used a Rayleigh damp-
ing of 8%: C = 8%M + 8%K. The six first modes were used to build the ROM. The response
curves are plotted mode per mode in Figure 5.13. The main component of the response is
the first planar mode given by ϕ2. This prediction via arc-length is challenged via direct-time
integration and both responses are superimposed. We only plot the location of the system in
the amplitude domain when the transient regime stops, we see here that high jumps may occur
in this kind of situations, see Figure 5.16. Those jumps are likely to occur close to unstable
zones. The amplitude of motion can be multiplied by 4 close to the main peak. The same plot
in terms of kinetic energy is depicted in Figure 5.15 where we see that different energy levels
are coexisting at the same frequency.
The internal resonance is always difficult to represent. Plots can suggest that curves are buck-
ling, looping or crossing each other. However, depending on the dimension of the plot, complex
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Figure 5.12: Real life illustration of the studied case - Bad Gastein aerial ropeway - Photo
credits: https://www.seilbahn.net/sn/index1.php

Table 5.6: Parameters used to plot the response curves of the translating cable with punctual
forcing

EA (MN) ρ (kg/m) H (kN) d (m) h (m) v0 (m/s) P (kN) Rayleigh damping

40 4 84 80 5 5 1962 8%

ω1 ω2 ω3 ω4 ω5 ω6

(rad/s) 1 1.0264 1.9995 1.9997 2.9985 2.9994

Type OOP IP IP OOP OOP IP

connections between branches are revealed. 2D-plots can mislead our judgment and even occult
part of the dynamics as shown in the 3D-representation of the response curves in Figure 5.14.
The internal resonance is therefore more visible when response curves are plotted on a 3D-axis
(Ω, ϕj, ϕk) with k 6= j. In the case presented here we see a connection between every modes
in the zone given by 3 6 Ω 6 4. The classical representation of a loop should therefore be
interpreted in a twisted shape in a 7 dimensional space formed by the frequency range and the
space of amplitudes.
The latter illustrates the multiple internal resonances the cable is subjected to. The latter
makes the analysis a real challenge and the dynamic design of cable structures a hard task.
In first approach, we could try to find ways to avoid the huge jumps maybe via the use of a
tune-mass damper or a nonlinear energy sinks [8]. The latter is left for further research.
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Figure 5.13: Frequency response curves obtained with arc-length continuation technique for
the cable subjected to punctual forcing

(dotted line ) Stable solutions ; (dotted line ) Unstable solutions
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Frequency response curves plotted in 3D plots
(dotted line ) Stable solutions ; (dotted line ) Unstable solutions ; (a-b) First and

second modes, (c-d) third and fourth modes, (e-f) fifth and sixth modes
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Figure 5.15: Frequency response curves obtained with arc-length continuation technique for
the cable subjected to punctual forcing (Kinetic energy of the whole system)

(dotted line ) Stable solutions ; (dotted line ) Unstable solutions
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Figure 5.16: All Frequency response curves obtained with arc-length continuation technique
and solution obtained from time integration (solid line )

(dotted line ) Stable solutions ; (dotted line ) Unstable solutions

Conclusion of the chapter

This chapter consists mainly on extension and applications of the tools developed in the Chap-
ter 4. We have seen that even in a simplified manner, the cable-car installation remains a
challenge for design. Main contributions and results are:

• The extension of the classical theory of vibration for the translating cable case;

• A proof for the non-existence of anti-symmetric modes when the axial velocity is non-zero;

• A strategy to simulate the influence of the velocity on the dynamics of cables;

• Preliminary results about the instability occurring on a single span due to velocity related
solicitations;

• We have shown that the velocity in itself does not suffice to produce instability and that
the solicitation explaining instability is much more complex.

The limitations are the following:

• No experimental data are available to validate the model and there is not a straightforward
way of obtaining them;

• The proposed methodology is accurate to trace when an instability occurs in the mathe-
matical sense, the link with sudden large amplitude should be done with care;

• The single-span view lacks the global view of the installation which could occult some
interesting phenomenon.

Some research perspectives are:

• Exploring the other ways opened with the translating cable modes;

• Enriching the methodology to account for multiple spans;

• Including the moving mass as a solicitation;

• Pumping the energy of instabilities with active or passive strategy.
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Applications to aerial ropeways:
Full-installation model

This chapter is dedicated to a global application of all the presented tools in this manuscript.
The main component is Chapter 3. However, some small pieces of the manuscript are used here
to propose a methodology believed to be applicable to a carrying hauling rope.
As it is difficult to make it general due to the numerous parameter at play, the focus is drawn
to a particular chair-lift installation known to be problematic and subjected to huge sudden
large displacements.
This installation denominated the ”TSD du Bouquet” was subjected to sudden large oscil-
lations. This phenomenon is often called in french ”pompage” in engineering studies. This
installation has been dismantled but we have access to the line geometry and to the mechan-
ical properties of the cable. All along this chapter, we use it as an illustration to provide a
methodology on the modeling of a global installation using the tools of the previous chapters.

6.1 Context and modeling choices

Let us consider the equilibrium of the installation. Four main components can be listed:

• The cable

• The carriers (punctual masses)

• The stations (sheaves)

• The roller batteries (obstacles)

Each element is described independently from the other. Here we model the system with a
tension station at the bottom and a drive station at the top. Every component is visible in
Figure 6.1.

6.1.1 The cable

The cable is considered to be uniform with linear density ρ constant along the curvilinear
abscissa. The same consideration holds for its rigidity EA. The cable at rest is L meters
long. We use a given nominal tension T0 at the bottom station so that the top tension remains
bounded by a maximum value Tmax.
The damping α is always critical to infer for FEM applications. As a matter of fact, the latter
should be small compared to the tension at play so that its influence remains low but still

165



Chapter 6

Table 6.1: Parameters of the cable used in the ”TSD des Bouquetins”

EA (MN) ρ (kg/m) v0 (m/s) T0 (kN) α (IS) mveh (kg) dveh (m) µ (NA)

40 4 4 84 4.8 400 36.6 0.1

avoids numerical instabilities1. The cable is discretized in element with two nodes. The vector
of node displacements is given by q.

6.1.2 The carriers

The carriers are modeled as punctual masses mveh. Vehicles are separated by a given cable seg-
ment of dveh. In the model each vehicle is directly attached satisfying the distance requirement.
The physical values of the cable and the vehicles are gathered in Table 6.1.

6.1.3 The stations

The stations are modeled as horizontal sheaves. They are given namely by (Γ1,Γ2). The top
station, Γ2, is considered to be the drive station which pulls the cable at a driven velocity v(t).
The drive sheave has a RΓ2 radius. The bottom station, Γ1, is a return sheave of a given radius
RΓ1 . Sheaves’ centers are respectively located at (xΓ1 , yΓ1 , zΓ1) and (xΓ2 , yΓ2 , zΓ2).
In our simulation, the sheaves are modeled with the following constraints

g(q) =

√(
q(3i) − xΓj

)2
+
(
q(3i+2) − zΓj

)2 −RΓj > 0 and q
(3i+1)
Γj

= yΓj ,
i ∈ nodes

j = 1, 2
, (6.1)

or

g(q) =

√(
q(3i) − xΓj

)2
+
(
q(3i+2) − zΓj

)2 −RΓj > 0 and |q(3i+1)
Γj

− yΓj | 6 ε ,
i ∈ nodes

j = 1, 2
,

(6.2)
where ε maintains the cable in place.
Friction is considered for both sheaves. More realistic models could embed the motion of the
return sheave so that the tension remains equal to the nominal tension. This constraint is out
of the scope here.

6.1.4 Roller batteries

The cable is being supported or compressed by roller batteries to guide it. As a mean of
simplification, the roller batteries are not represented as an assembly of cylinder but as a global
cylinder. Each roller batteries is identified by the tower holding it namely (pk)k∈towers. Most of
the installation are parallel in the sense that each tower on the way up has a twin on the way
down. Friction is supposed to occur on the roller batteries.
In our simulation, the roller batteries are modeled as the following constraints

g(q) =

√(
q(3i) − xpj

)2
+
(
q(3i+1) − ypj

)2 −Rpj > 0 and q3i+2
pj

= zpj ,
i ∈ nodes

j = 1, 2
, (6.3)

1The author admits that long sessions of trial and error allowed to eventually find parameters that were
physically reasonable and numerically practicable
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Table 6.2: Geometric parameters of the installation ”TSD du Bouquet”

Structural element Γ1 p0 p1 p2 p3 p4 p5 p6 p7 Γ2

x (m) 25 40 79.71 146.56 222.57 394.98 479.37 623.41 694.13 709.13

y (m) 0 0 16.86 41.03 67.96 126.17 154.04 195.99 212.67 212.67

R (m) 2.5 12 12 12 12 12 12 12 12 2.5

Ω1

Ω′
1

Ω2

Ω′
2

Ωn

Ω′
n

p1

p′1

p0

p′0

pn

p′n

ω̇

Γ1

Γ2

e

n

z

x

y

z q

Figure 6.1: Example of carrying hauling rope heaved by its top station at angular velocity ω̇ -
The carriers are located via ( )

or

g(q) =

√(
q(3i) − xpj

)2
+
(
q(3i+1) − ypj

)2 −Rpj > 0 and ||q3i+2
pj
− zpj || 6 ε ,

i ∈ nodes

j = 1, 2
,

(6.4)
where ε maintains the cable in place.
More realistic model could embed different shape of roller batteries which is out of the scope
of the following application.
The parameters used for both the stations and the roller batteries are given in Table 6.2.

6.1.5 Friction considerations

We choose here to model the friction via a Coulomb law. In the particular cases of an aerial
ropeway, the design often relies on the assumption of constant line speed. As a result, the static
equilibrium of a tower given by (2.108) directly simplifies

T2 = T1e
µp∗∆θ , (6.5)

where ∆θ is the wrapped angle. We see here that radius does not enter into the tension
variation. In engineering application, the coulomb coefficient of a roll, µpj is arbitrarily taken
at 10%. This value is kept in the whole study. For the sheaves, we need to have µ > 1 to
guarantee enough tension continuity and the cable to be pulled.
We know that those values are high compared to engineering values but this example aims also
to assess for the robustness of the model. In our study, the friction is modeled as proposed in
(3.95) which is believed more general.
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6.1.6 Imposed velocity

In order to impose the velocity in Γ2, we formulate the friction problem thanks to (3.95) or
(3.99) on the relative tangent velocity which is

uT ,k+1 = HTvk+1 − v(tk+1) . (6.6)

Two possibilities comes with this formulation:

• The cable sticks to the drive sheave so the cable moves at velocity v

• The cable slips so the cable moves with a lower velocity than v

6.2 Initialization of the model

A critical steps for the evolution problem to work is a good initial condition. In this section
we describe each steps required to obtain an acceptable initial cable profile. The proposed
methodology is the following:

• Initialize with joined catenary

• Set the roller batteries and the sheaves

• Initialize the FEM mesh

• Stabilize the statics with the DRM

6.2.1 The 3D cable element

As we are developing a three-dimensional application, we used the inextensible catenary equa-
tion in the 3D-space. For a homogeneous cable of length L whose tips are hinged on q0 and qL
The latter reads

qL − q0 =




H
ρg

log

(
η + ρg

H
+

√
1 +

(
η + ρgL

H

)2
+ ζ2

)
− log

(
η +

√
1 + η2 + ζ2

)

H
ρg

(√
1 +

(
η + ρgL

H

)2
+ ζ2 −

√
1 + η2 + ζ2

)

Hζ
ρg

log

(
η + ρg

H
+

√
1 +

(
η + ρgL

H

)2
+ ζ2

)
− log

(
η +

√
1 + η2 + ζ2

)



, (6.7)

where η = V
H

and ζ = Z
H

are the ratio of the initial vertical and transversal component of the
cable forces by the horizontal component of the cable forces.
The elasticity does not matter for the mesh initialization. However it is considered for the rest
of the computation.
Note that (6.7) can be directly transformed into an equivalent system where T0 is imposed via
setting H = T0√

1+η2+ζ2
.

6.2.2 Initialization with joined catenary

The ropeway works at a given nominal tension T0. We can use (6.7) in a sequence of problems
which starts at the first cable located between Γ1 and p0, then we solve for each cable located
between pk and pk+1 and for p5 and Γ2.
The same goes for the down stream part. As a result, we have two lines: one going upstream
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Figure 6.2: Initialization of the upstream part of the line via the 3D-catenary equation (solid
line ) . The towers are the junction between cables (dots )

Table 6.3: Main characteristics of the cables for the upstream part of the line ”TSD du
Bouquet”

Span Γ1 → p0 p0 → p1 p1 → p2 p2 → p3 p3 → p4 p4 → p5 p5 → p6 p6 → p7 p7 → Γ2

T0 (kN) 84 84 88.13 94.04 100.63 114.87 121.68 131.94 136.01

L (m) 14.97 43.07 71.02 80.57 182.7 88.73 150.04 72.47 14.95

η −0.022 0.358 0.261 0.247 0.118 0.234 0.141 0.168 −0.013

and one going downstream. The result is plotted in Figure 6.2. For the first guess, the weight
of the vehicles are averaged on each span. The latter results for the studied case in a ρ =
ρcable + ρveh = 25 kg/m. This is only temporarily to shoot a first guess for the system.
The results obtained for the considered installation given by Tables 6.1 and 6.2 are gathered in
Table 6.3.

6.2.3 Set the roller batteries and the sheaves

We can also access to the theoretical support reaction via the internal forces of each cables.
The vertical component is important to chose whether the roller battery is a compression or a
supporting one. The profile of the internal forces are plotted in Figure 6.3. The latter allows
to access the jump of vertical forces which corresponds to the opposite of the force exerted by
the roller batteries on the cable.

Rpk = V (p−k )− V (p+
k ) (6.8)

If the reaction is positive (resp. negative), the roller battery is below (resp. above). The
table 6.4 presents the reaction force of the roller batteries for the upstream line. Indeed, the
location given in Table 6.2 are the location of the summit of the tower. So the cylinder playing
the role of obstacle is placed above or below in accordance with the nature of the roller battery
(compression or support).
As the sheaves are used as starting and finishing points for the sequence of catenary problems,

they do not represent an additional problem
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Figure 6.3: Internal forces of the upstream line versus curvilinear abscissa - Horizontal
component (dotted line ) and vertical component (dotted line )

Table 6.4: Roller battery reaction for the upstream part of the line ”TSD du Bouquet”

Structural element Γ1 p0 p1 p2 p3 p4 p5 p6 p7 Γ2

R (kN) 1.84 −26.5 16.68 17.06 30.5 30.48 30.98 31.89 41.45 1.83

Roller batteries (C or S) S C S S S S S S S S

6.2.4 Initialize the FEM mesh

Another result coming from the calculations, is the length of each cable. The whole length of
the installation is built by summation. The latter is used to equally part the cable into FE
segments. Around each sheaves (Γ1 and Γ2) the profile is imposed via considering a wrapped
angle of π. The cable segments wrapped along the sheaves are directly connected to the other
segments building a global mesh. At the first step, the cable possibly penetrates locally the
cylinders used as obstacle. In order to rectify it, we used the gradient of the constraints (6.3)
to have an admissible guess as follows

q←− q− (1 + ε)∇qg
>q , (6.9)

where ε > 0 is a small positive parameter. The procedure is illustrated in Figure 6.4. The
external load vector can be decomposed as the self-weight of the cable and the added weight
of the chairs. The latter is built according to the formulas given in (3.17) where we have set

b(S) = ρcable + δSveh
(S)mveh , (6.10)

A visualization of this external force vector is proposed in Figure 6.5. The assembly is done
straightforwardly via building a diagonal per block matrix. Only the last element is treated
separately, the later assembly embeds a constraint of equality between the first and last node.
Therefore for the first N − 1 elements

K[3e : 3e+ 6, 3e : 3e+ 6]←− K[3e : 3e+ 6, 3e : 3e+ 6] + Ke , e ∈ elements−N , (6.11)
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(a) (b)

Figure 6.4: Mesh in the vicinity of p4 - (a) Before and (b) after the mesh correction

Figure 6.5: Vertical component of the load vector for the FEM application of the carrying
hauling rope
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and for the last element, e = N , we set

K[3N : 3N + 3, 3N : 3N + 3]←− K[3N : 3N + 3, 3N : 3N + 3] + KN [0 : 3, 0 : 3] , (6.12)

K[3N : 3N + 3, 0 : 3]←− K[3N : 3N + 3, 0 : 3] + KN [0 : 3, 3 : 6] , (6.13)

K[0 : 3, 0 : 3]←− KN [3 : 6, 3 : 6] , (6.14)

K[0 : 3, 3N : 3N + 3]←− KN [3 : 6, 0 : 3] . (6.15)

6.2.5 Stabilize the statics with the DRM

Using the technique described in 3.2.4, the actual static configuration is obtained. The FEM
combined with the frictional dynamics 3.4.5 allows to get the influence of the friction and
the obstacle on both the profile and the tension. Moreover the presence of punctual masses
instead of distributed weight induces more sophisticated tension profile that are not analytically
tractable.
In the proposed application, a very simplistic application of the DRM is endowed to fasten the
computation of the damping matrix. We use

Ck = 0.6M + 0.4Kk (6.16)

The latter is sufficient to obtain the static position of the ropeway without computing modes at
each iteration which is computationally expensive in the presented case. The obtained profile
is plotted in Figures 6.6 and 6.7.

6.3 Dynamic analysis

This section briefly presents one example of transient dynamics and modal analysis applied to
the presented installation.

6.3.1 Transient dynamics of the ropeway

The ropeway is taken from its static position and the top station is driven at 4 m/s.
To do so, the relative velocity of a contacting point to the sheave is computed as

uT ,k+1 = HTvk+1 − v(tk+1) . (6.17)

The velocity of the drive sheave, v(tk+1), may be specified differently in order to account for
another scenario which includes acceleration or braking.
The time profiles can be obtained via using (3.95). With this numerical scheme, one can access
to the trajectory of one carrier, the force at each roller battery and also the force developed by
the sheaves via the Lagrange multipliers.

6.3.2 Modal analysis of the ropeway

According to Section 3.6, we can compute the modes of the installation. The latter is made via
constraining the motion in the tangent manifold of the dynamics. In another word we apply
the given methodology to g as given in (6.1) and (6.3). The equalities are taken explicitly in
the form of

a(q) = Aq , (6.18)

where A selects the vertical dofs that remain stucked in the stations and the transversal dofs
that remain stucked in the roller batteries.
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Global modes can be caught by this methodology. Interestingly, the modes can still be parted
into a family of planar modes (contained in the x− y plane) and a family of transversal modes
(contained in the x− z plane). For the transversal modes, the behavior of each span seems in-
dependent because no vibrations are coexisting on different spans. Moreover the span with the
biggest sag seem to respond at lowest frequencies. However for planar modes, the spans seem
to be connected with their neighbor span and with the parallel span. The latter is interesting
to explain to unexpected growth that happen in reality and goes in favor of complex interaction
between spans. This claim is illustrated by Figures 6.8 and 6.9 which are representing the first
fifteen modes of the hauling rope. Other application of those modes can lead to qualitative
estimation of the instability observed in reality. For instance, modes can be used to build a
linear system associated to the ropeway. Although the behavior is nonsmooth and nonlinear,
it can be used to get a first idea of the possible displacement of a span.
The idea is to build a one-dof undamped oscillator with one mode. The latter is done via con-
sidering a first-order expansion of system variable around the equilibrium as done in Section 3.6.
The latter results in

0 = M̃q̈ + ∆̃K(q)q + f̃ , (6.19)

where 



M̃ = (QP)>M (QP)

∆̃K(q) = (QP)>∆K(q) (QP)

f̃ = (QP)>f

, (6.20)

and P is an orthogonal basis of ∇qa and Q is an orthogonal basis of (∇qgAP). The nodal force
vector in (6.19) should be constructed so that it is consistent with the excitation the ropeway
is subjected to. Then (6.19) can be projected on one given mode as follows

0 = Φ>j M̃Φjq̈Φj + Φ>j ∆̃K(q)ΦjqΦj + Φ>j f̃ , (6.21)

where Φj is one chosen mode and qΦj is the amplitude associated to this chosen mode.
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Figure 6.8: Modes contained in the x− y plane obtained for the presented installation
according to the methodology given in Section 3.6
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Figure 6.9: Modes contained in the x− z plane obtained for the presented installation
according to the methodology given in Section 3.6
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Conclusion of the chapter

This chapter is dedicated to the applications of the Chapter 3 to the particular case of the
full installation. Here, efforts are made to remain as general as possible for a single cable
structure. First, modeling choices are given in detail. Then an application of the DRM 3.2.4
for the case of a unilaterally constrained cable is presented. Subsequently, we give an example of
transient dynamics of a full-installation closer to the actual physics of the ropeways. Eventually,
Section 3.6 is used to derive global modes for the hauling rope and a methodology to trace
growing oscillation is given. Main interests are:

• The development of a sketch of methodology to simulate a hauling cable installation;

• A complex application of the tools developed in the presented research works.

The limitations are the following:

• The numerical procedure relies on low-order schemes and therefore requires high CPU-
time;

• No simple guidelines have been developed for the generic installations and the proposed
simplified tools rely on linear dynamics.

Following improvements could be done:

• Investigate the possibility of faster numerical results via generalization of a α- general-
ized time integration scheme specific for the dynamic relaxation method applied to this
constraint cable systems;

• Include more nonsmooth dynamics content for the simplified tools;

• Confront the obtained results with robust and reliable experiment to validate or invalidate
the proposed methods;

• Include the flexural and torsional stiffness in order to model the physics more accurately.
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Conclusion and perspectives

This PhD dissertation presents our investigations on the modeling of aerial ropeways including
the influence of punctual loads, the interaction between the cable and the roller batteries and
the interaction between the cable and the sheaves.

7.1 Results

Chapter 1 is a literature review which presents the existing trends in terms of cable modeling
and simulations. Two main blocks are existing separately which are the analytical methods and
the numerical methods. The lack of mix between those two aspects induces that models are too
simplistic to model complex phenomenons or too sophisticated to study the influences of some
parameters on the simulation results. Both approaches may be complementary if incorporated
properly into one work which was the initial purpose of this dissertation.

Chapter 2 presents the mechanics of inextensible and elastic cables in a very general way.
The derivations of system equations according to the principle of calculus of variations allows to
obtain complex system models including a formalism for non-compressible cable. The classical
results of the catenary solution and the parabolic approximations are recalled in this particular
framework and prospective developments about impact and friction are introduced.

Chapter 3 gives some insights about the use of finite element method applied to the par-
ticular case of cable. The numerical challenges inherent to the problem of cable are addressed
in order to formulate a cable finite element which can undergo large displacements without any
compression. The latter is coupled to the nonsmooth dynamics culture to show its compatibil-
ity with impact and friction. Those developments are innovative since the interaction between
the cable and sheave are formulated and treated via an inclusion. This allows to simulate a lot
of practical situations including belt-drive simulation, cable-roll interaction or impacts along a
convex obstacle for which the finite element method is one of the only tool able to compute
equilibriums.

Chapter 4 recalls the classical theory of linear vibrations for cables. The latter is valid for
incremental vibrations around an equilibrium. The latter is presented in the framework of the
Frenet basis and is used to introduce a methodology to derive arbitrary reduced-order-models
for tracing the nonlinear dynamics of a fixed-fixed cable. The application of the arc-length
method for those has been endowed to show the ability of the method to catch sophisticated
dynamical mechanisms. Moreover basic developments have been recalled to treat system equa-
tions via the method of multiple scales. The finite element method applied to cable dynamics
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and this historical way of computing the cable responses are compared in several situations. It
has been shown that in the framework of fixed-fixed cable undergoing incremental displacement
and simple loads, the finite element is unnecessarily complicated.

Chapters 5 and 6 are specific applications of the developed tools. A generalization of free
vibrations to the case of translating cable is proposed even though it is shown unable to explain
the self-excitation or large amplitude in real applications. The ”pompage” phenomenon seems
to be initiated by the entry and exit of carriers on each span which is directly linked to the
line speed. The latter can be simulated with reduced-order-models in a simplified manner or
via the finite element method which is also able to compute reaction forces, friction and the
support/cable interactions.

This PhD lead to the following publications:

• C. Bertrand, A. Ture Savadkoohi, and C.-H. Lamarque. Nonlinear oscillations of a pen-
dulum cable with the effects of the friction and the radius of the support. Nonlinear
Dynamics, 96:1303–1315, 2019 ;

• C. Bertrand, C. Plut, A. Ture Savadkoohi, and C.-H. Lamarque. On the modal response
of mobile cables. Engineering Structures, 210, 2020 ;

• C. Bertrand, V. Acary, A. Ture Savadkoohi, and C.-H. Lamarque. A robust and efficient
numerical finite element method for cables. International Journal for Numerical Method
in Engineering, 121, 2020 ;

• C. Bertrand, A. Ture Savadkoohi, V. Acary, and C.-H. Lamarque. Reduced-order model
for the non-linear dynamics of cables [accepted]. Journal of Engineering Mechanics, 2022.

and the following international congresses:

• About the modal response of mobile cables, Recent Advances in Nonlinear Me-
chanics (RANM), May 2019 Lodz, Poland

• Equilibrium of a non-compressible cable subjected to unilateral constraints,
European Nonlinear Oscillation Conference (ENOC), 17-22 July 2022, Lyon, France

• A robust numerical implementation of cable finite elements, International Congress
of Theoretical and Applied Mechanics (ICTAM), 23-28 August 2020+1, Milano, Italy

• Numerical dynamics of a cable subjected to frictional impact, Conference on
the Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF),
6-10 September 2021, Halle, Germany

7.2 Perspectives

Several aspects of this work could be improved. Some improvements are research related while
some are linked with engineering and practical adaptations.

7.2.1 Perspectives for modeling

• The developed cable models could be further investigated in an algebraic manner to
investigate the existence and (non-)uniqueness of solutions. Indeed the equations given
in (2.49), (2.53) and (2.69) have not been investigated thoroughly
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• The cable constitutive law used is a Hooke’s law. The latter could be switch to more
sophisticated constitutive law to account for thermal gradients, viscous phenomenon and
also torsion. The torsion is the most interesting for engineering application since its
coupling with traction could lead to explanation of dynamical instabilities observed in
reality

• The conditions of existence and (non-)uniqueness have not been investigated enough in
the author opinion for the case of a cable subjected to an obstacle. The latter could first
be addressed with given geometries and then more general conditions.

• Comparing the obtained results with in-depth analysis of experimental results could dras-
tically improve the modeling issues of this work. Some real-scale experimental test would
enhance every further work on the subject.

7.2.2 Perspectives for analytical approaches

• The reduced-order-models developed here are relying on the theory of linear vibrations
of cables. The latter could be enriched with the complex modes obtained in the last
chapters. Moreover, the nonlinear effects linked to the geometry could be investigated
via nonlinear modes instead of linear ones.

• Some analytical treatments of system equations could be developed to have engineering
design tools for the case of multi-span installation. Further investigations via the method
of multiple scales or perturbation method could provide interesting tools for design.

• A question to be answered is also the relevance of the nonlinear terms kept in the deriva-
tions. The quintic nonlinearity could be introduced in reduced-order-model at least to
verify its futility with regard ti the cubic one.

• Investigate the influence of a nonlinear energy sinks on the large amplitude responses of
the cable in order to control it. The latter can be done with or without the presence of
obstacles.

7.2.3 Perspectives for numerical approaches

• Despite the efforts made, the dynamics captured by finite element method requires very
thin time steps to ensure stability and robustness. Some other numerical schemes as
HHT-schemes of α-generalized method could be implemented to further improve the
quality of the obtained time profiles. The latter could work in the sense that a lot of the
high-frequency content could be cut from the responses.

• Developing a full installation model that could cope with the actuators displacements and
charge/discharge of passengers would improve the realism of the model. The geometry
of the line could be precised for the tower and the sheaves to account for more complex
obstacle geometries.

• A comparison with the geometrical exact beams could lead to further improvements of
the simulations. Those models can cope with torsion and flexion so that the relevance of
those mechanical phenomena in the case of aerial ropeways could be set once and for all.
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Appendix A

Computation of the admissibility
conditions for the extensible catenary

This appendix is a reminder of the extensible catenary equations. Depending on parameters,
two cases are proposed:

• Case 1 = Inputs: initial horizontal component of tension H, linear density ρ, cross-section
rigidity EA, horizontal span length d and vertical span length h. Unknowns: L and η

• Case 2 = Inputs: initial axial tension T0, linear density ρ, cross-section rigidity EA,
horizontal span length d and vertical span length h. Unknowns: L and η

• Case 3 = Inputs: reference length L, linear density ρ, cross-section rigidity EA, horizontal
span length d and vertical span length h. Unknowns: H and η

• Case 4 = Inputs: reference length L, linear density ρ, cross-section rigidity EA, horizontal
span length d and vertical span length h. Unknowns: T0 and η

To prepare some Newton iterations, the nonlinear system and the Jacobian are presented. The
derivations made here are valid for a physical system which has not been made non-dimensional.

Case 1

We recall here the notable quantity of the catenary. The details of derivations are available in
the main part of the manuscript (chapter 2).
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The admissibility condition are to be formulated as follows





0 = d− HL

EA
− H

ρg

(
sinh−1(η +

ρg

H
L)− sinh−1(η)

)

0 = h− ηHL

EA
− ρg L2

2EA
− H

ρg

(√
1 +

(
η +

ρg

H
L
)2

−
√

1 + η2

)
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The Jacobian matrix of F is given by
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η + ρgL

H

)2




Case 2

The admissibility condition are to be formulated as follows





0 = d− T0L

EA
√

1 + η2
− T0

ρg
√

1 + η2

(
sinh−1(η +

ρg
√

1 + η2

T0

L)− sinh−1(η)

)

0 = h− ηT0L

EA
√

1 + η2
− ρg L2

2EA
− T0

ρg
√

1 + η2




√√√√1 +

(
η +

ρg
√

1 + η2

T0

L

)2

−
√

1 + η2




↔ 0 = F (L, η)

The Jacobian matrix of F is given by

J (L, η) =

[
∂F1

∂L
(L, η) ∂F1

∂η
(L, η)

∂F2

∂L
(L, η) ∂F2

∂η
(L, η)

]
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where

∂F1

∂L
(L, η) =− T0

EA
√

1 + η2
− 1√

1 +

(
η +

ρg
√
η2+1L

T0

)2

∂F1

∂η
(L, η) =

ηT0L

EA
√

1 + η2
3 −

T0

ρg
√

1 + η2




1 + ρgLη

T0
√

1+η2√
1 +

(
η +

ρg
√

1+η2L

T0

)2
− 1√

1 + η2




+
ηT0

ρg
√

1 + η2
3

(
sinh−1

(
η +

ρg
√

1 + η2L

T0

)
− sinh−1 (η)

)

∂F2

∂L
(L, η) =− ηT0

EA
√

1 + η2
− ρgL

EA
−

η +
ρg
√
η2+1L

T0√
1 +

(
η +

ρg
√
η2+1L

T0

)2

∂F2

∂η
(L, η) =−

L


EA

√
1 + η2 + T0

√
1 +

(
η +

g
√
η2+1Lρ

T0

)2



EA
√

1 + η2
3

√
1 +

(
η +

g
√
η2+1Lρ

T0

)2

Case 3

The admissibility condition are to be formulated as follows





0 = d− HL

EA
− H

ρg

(
sinh−1(η +

ρg

H
L)− sinh−1(η)

)

0 = h− ηHL

EA
− ρg L2

2EA
− H

ρg

(√
1 +

(
η +

ρg

H
L
)2

−
√

1 + η2

)

↔ 0 = F (H, η)

The Jacobian matrix of F is given by

J (L, η) =

[
∂F1

∂H
(H, η) ∂F1

∂η
(H, η)

∂F2

∂H
(H, η) ∂F2

∂η
(H, η)

]
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where

∂F1

∂H
(H, η) =− L

EA
− 1

ρg

(
sinh−1(η +

ρg

H
L)− sinh−1(η)

)
− L

H

1√
1 +

(
η + ρgL

H

)2

∂F1

∂η
(H, η) =

H

ρg


 1√

1 + η2
− 1√

1 +
(
η + ρgL

H

)2




∂F2

∂H
(H, η) =− ηL

EA
− 1

ρg

(√
1 +

(
η +

ρg

H
L
)2

−
√

1 + η2

)
+
L

H

η + ρgL
H√

1 +
(
η + ρgL

H

)2

∂F2

∂η
(H, η) =− HL

EA
+
H

ρg


 η√

1 + η2
− η + ρgL

H√
1 +

(
η + ρgL

H

)2




Case 4





0 = d− T0L

EA
√

1 + η2
− T0

ρg
√

1 + η2

(
sinh−1(η +

ρg
√

1 + η2

T0

L)− sinh−1(η)

)

0 = h− ηT0L

EA
√

1 + η2
− ρg L2

2EA
− T0

ρg
√

1 + η2




√√√√1 +

(
η +

ρg
√

1 + η2

T0

L

)2

−
√

1 + η2




↔ 0 = F (T0, η)

The Jacobian matrix of F is given by

J (L, η) =

[
∂F1

∂T0
(T0, η) ∂F1

∂η
(T0, η)

∂F2

∂T0
(T0, η) ∂F2

∂η
(T0, η)

]
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where

∂F1

∂T0

(T0, η) =− L

EA
− 1

ρg

(
sinh−1(η +

ρg
√

1 + η2

T0

L)− sinh−1(η)

)

− L
√

1 + η2

T0

1√
1 +

(
η +

ρgL
√

1+η2

T0

)2

∂F1

∂η
(T0, η) =

H

ρg


 1√

1 + η2
− 1√

1 +
(
η + ρgL

H

)2




∂F2

∂T0

(T0, η) =− ηL

EA
− 1

ρg




√√√√1 +

(
η +

ρg
√

1 + η2

T0

L

)2

−
√

1 + η2




+
L
√

1 + η2

T0

η +
ρgL
√

1+η2

T0√
1 +

(
η +

ρgL
√

1+η2

T0

)2

∂F2

∂η
(T0, η) =− T0L√

1 + η2EA
+

T0

ρg
√

1 + η2




η√
1 + η2

−
η +

ρgL
√

1+η2

T0√
1 +

(
η +

ρgL
√

1+η2

T0

)2



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Appendix B

Calculus of variations

This Appendix is a reminder about Calculus of Variations. The notations used here are specific
to this appendix.
Two cases are presented: the first one is the one dimensional case and the second is its extension
to the curvilinear domains to Rd.

B.1 One-Dimensional Case

In this section, x ∈ R is a variable and f is a scalar function such that:

f :

[
x −→ f(x)

]a, b[ −→ R

]
(B.1)

and f is assumed continuously differentiable. We assume that the values of f are given in a
and b. Let us consider the following functional:

S(f) =

∫ b

a

L(f(x), f ′(x), x)dx (B.2)

We are concerned with finding extremal values of S for the set of functions that are satisfying
the boundary conditions in a and b. The idea is to apply S to a function f + εg such that
g(a) = g(b) = 0 and ε is an arbitrary small parameter. The first order variation of S reads:

dS = S(f + εg)− S(f) (B.3)

We may develop at first order in ε the latter as follows

dS = ε

∫ b

a

∂L
∂f

g +
∂L
∂f ′

g′dx+O(ε2) (B.4)

Using integral by part with the second integral term yields:

∫ b

a

∂L
∂f ′

g′(x) dx =

[
∂L
∂f ′

g

]b

a

−
∫ b

a

d

dx

(
∂L
∂f ′

)
g dx (B.5)

Using the fact that g(a) = g(b) = 0 and factorizing by g inside the integral yields:

dS = ε

∫ b

a

[
∂L
∂f
− d

dx

(
∂L
∂f ′

)]
g dx+O(ε2) (B.6)
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If f is an extreme point of S, then dS should vanish at first order for all g. Thus,

∀g ∈ C1(]a, b[) s.t.g(a) = g(b) = 0 ,

∫ b

a

[
∂L
∂f
− d

dx

(
∂L
∂f ′

)]
g dx = 0 (B.7)

As a consequence, f should satisfy the following differential equation:

∂L
∂f
− d

dx

(
∂L
∂f ′

)
= 0 (B.8)

The latter is often coined as the Lagrange-Euler equation and the L is called the Lagrangian
of the system.
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Computation of the admissibility
conditions for the cable-pulley
super-element

This appendix regroups the compatibility conditions for the cable-pulley super-element. Con-
figurations provided here are the following:

• Equilibrium contained in the (x,y)-plane

– The cable is above the pulley (Support Configuration)

– The cable is below the pulley (Compression Configuration)

• Equilibrium is 3D and contained in the (x,y)-plane

– The cable is above the pulley (3D - Support Configuration)

– The cable is below the pulley (3D - Compression Configuration)

Support configuration

The admissibility is given by

(C1):





0 = xp −
R
(
η1 + ρg

H1
L1

)

√
1 +

(
η1 + ρg

H1
L1

)2
− x0 −

H1

ρg

(
sinh−1(η1 +

ρg

H1

L1)− sinh−1(η1)

)

0 = yp +
R√

1 +
(
η1 + ρg

H1
L1

)2
− y0 −

H1

ρg



√

1 +

(
η1 +

ρg

H1

L1

)2

−
√

1 + η2
1




(P):

{
H2

√
1 + η2

2 = H1

√
1 +

(
η1 +

ρg

H1

L1

)2

eµ(tan−1(−η2)−tan−1(η1))

(C2):





0 = x2 − xp +
Rη2√
1 + η2

2

− H2

ρg

(
sinh−1(η2 +

ρg

H2

L2)− sinh−1(η2)

)

0 = y2 − yp −
R√

1 + η2
2

− H2

ρg



√

1 +

(
η2 +

ρg

H2

L2

)2

−
√

1 + η2
2




(C.1)
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(xp, yp)

x

y

z

q0

qL

R

θ1 θ2

(H1, L1, η1)

(H2, L2, η2)

Compression configuration

The admissibility is given by

(C1):





0 = xp −
R
(
η1 + ρg

H1
L1

)

√
1 +

(
η1 + ρg

H1
L1

)2
− x0 −

H1

ρg

(
sinh−1(η1 +

ρg

H1

L1)− sinh−1(η1)

)

0 = yp −
R√

1 +
(
η1 + ρg

H1
L1

)2
− y0 −

H1

ρg



√

1 +

(
η1 +

ρg

H1

L1

)2

−
√

1 + η2
1




(P):

{
H2

√
1 + η2

2 = H1

√
1 +

(
η1 +

ρg

H1

L1

)2

eµ(tan−1(η2)−tan−1(−η1))

(C2):





0 = x2 − xp −
Rη2√
1 + η2

2

− H2

ρg

(
sinh−1(η2 +

ρg

H2

L2)− sinh−1(η2)

)

0 = y2 − yp −
R√

1 + η2
2

− H2

ρg



√

1 +

(
η2 +

ρg

H2

L2

)2

−
√

1 + η2
2




(C.2)
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(xp, yp)

x

y

zq0

qL

R

θ1 θ2
(H1, L1, η1)

(H2, L2, η2)

3D - Support configuration

The admissibility is given by

(C1):





0 = xp −
R
(
η1 + ρg

H1
L1

)

√
1 +

(
η1 + ρg

H1
L1

)2
− x0 −

H1

ρg

(
sinh−1(η1 +

ρg

H1

L1)− sinh−1(η1)

)

0 = yp +
R√

1 +
(
η1 + ρg

H1
L1

)2
− y0 −

H1

ρg



√

1 +

(
η1 +

ρg

H1

L1

)2

−
√

1 + η2
1




(P):

{
H2

√
1 + η2

2 = H1

√
1 +

(
η1 +

ρg

H1

L1

)2

eµ(tan−1(−η2)−tan−1(η1))

(C2):





0 = x2 − xp +
Rη2√
1 + η2

2

− H2

ρg

(
sinh−1(η2 +

ρg

H2

L2)− sinh−1(η2)

)

0 = y2 − yp −
R√

1 + η2
2

− H2

ρg



√

1 +

(
η2 +

ρg

H2

L2

)2

−
√

1 + η2
2




(C.3)
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3D - Compression configuration

The admissibility is given by

(C1):





0 = xp −
R
(
η1 + ρg

H1
L1

)

√
1 +

(
η1 + ρg

H1
L1

)2
− x0 −

H1

ρg

(
sinh−1(η1 +

ρg

H1

L1)− sinh−1(η1)

)

0 = yp −
R√

1 +
(
η1 + ρg

H1
L1

)2
− y0 −

H1

ρg



√

1 +

(
η1 +

ρg

H1

L1

)2

−
√

1 + η2
1




(P):

{
H2

√
1 + η2

2 = H1

√
1 +

(
η1 +

ρg

H1

L1

)2

eµ(tan−1(η2)−tan−1(−η1))

(C2):





0 = x2 − xp −
Rη2√
1 + η2

2

− H2

ρg

(
sinh−1(η2 +

ρg

H2

L2)− sinh−1(η2)

)

0 = y2 − yp −
R√

1 + η2
2

− H2

ρg



√

1 +

(
η2 +

ρg

H2

L2

)2

−
√

1 + η2
2




(C.4)
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Log-decrement technique

Notations used here are specific to this chapter and only used in the following.

We are interested in the solution of the following differential equation

mẍ(t) + 2ξẋ(t) + kx(t) = 0 (D.1)

The latter can be recast into

ẍ(t) + 2ξωẋ(t) + ω2x(t) = 0 (D.2)

We are looking to a system which is freely vibrating with damping then we must have

∆ = 4ω2
(
ξ2 − 1

)
< 0 (D.3)

The solution is given as

x(t) = A0 exp(−ξωt) cos(ω
√

1− ξ2t+ Φ) (D.4)

We want to quantity the rate of decay between two successive maximum of amplitude. The
pseudo period of the motion is given by

Td =
2π

ω
√

1− ξ2
(D.5)

We can evaluate the wanted ratio as

x(t+ Td)

x(t)
= exp (−ξωTd) (D.6)

Composing by Neperian logarithm we have

log
x(t+ Td)

x(t)
= −ξωTd = − 2ξπ√

1− ξ2
(D.7)

The latter formulae is of practical interest to identify damping from experimental data. The
decrease of the amplitude is depicted in Figure D.1.
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t t+ Td

x(t+ Td)

x(t)

Figure D.1: A damped oscillation (solid line ) accompanied with its envelop (dashed line
)
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Appendix E

Computation of periodic solutions via
the arc-length method

The notations used in this chapter are valid for this chapter only. The latter is self-standing
and can be read independently from the manuscript.

Governing Equations

Let us consider a general evolution problem under state-space formalism as

ż = f(z, t) (E.1)

where the state-space variable belongs to Rd with d ∈ N.
Considering arbitrary initial condition z0 ∈ Rd, the latter can be numerically integrated for
t ∈ [0, T ] with any suitable numerical scheme.

Periodic Solutions under Period Forcing

A particular case of (E.1) is obtained when a periodic forcing is applied to a given mechanical
system. In this case, it is assumed that the system response will be periodic with the same
period, T , as the forcing applied with pulsation Ω to the system. Mathematically speaking

∀t > 0, z(z0, T + t) = z(z0, t) ; T =
2π

Ω
(E.2)

These solutions are given by by (E.2). The unknowns of this problem are the tuple given by
the initial condition z0 and the frequency of forcing Ω. The frequency-curve, which consists
on plotting the maximum amplitude of the periodic motion versus the frequency, is a common
representation of the solution to this problem.

Monodromy Matrix

When studying the periodic solution of an ODE, the monodromy matrix appears naturally
when computing the Jacobian of (E.2) with regards to the initial condition. Indeed,

∂

∂z0

(z(z0, T )− z0) =
∂z

∂z0

(z0, T )− I (E.3)
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The monodromy matrix is therefore obtained as

M(z0, T ) =
∂z

∂z0

(z0, T ) (E.4)

The latter is not easy to derive especially when it comes to nonlinear multi-dimensional prob-
lems. That is the reason why it often computed numerically via numerical differentiation as

Mij(z0, T ) ≈ zi(z0 + δej, T )− zi(z0, T )

δ
, ej = (0, ..., 0, 1, 0, ..., 0)> (E.5)

At a converged state, this matrix also gives insight about the stability of a periodic solution.
Indeed, it is interesting to know how the system reacts to a small perturbation. The system
variable may remain in a torus centered on the periodic orbit or the system behavior could
change radically. This information is contained in the eigenvalues of M. Those eigenvalues are
called Floquet multipliers and two cases are of major interest

• ∀i |λi| < 1 : The motion is stable

• ∃i |λi| > 1 : The motion is unstable

Arc-length Continuation Technique

Obtaining the frequency-curve requires to solve the following nonlinear problem

{
ż = f(z, t)

h(z0,Ω) = z(z0, t = T,Ω)− z0 = 0
(E.6)

Several approaches may be endowed to solve (E.6) among which brutal computations and
shooting methods. We are here interested into the arc-length continuation technique which is
suitable to trace continuum of periodic solutions. The latter resides in the introduction of a
path to follow when searching for periodic solutions. An arc-length coordinate, s, is introduced
in order to impose the solution to follow a path. In another words, the curve given by (z0,Ω) is
assumed continuous and differentiable so that a tangent direction to this curve may be defined
almost everywhere in the Lebesgue sense. The philosophy is as follows

• Start from an admissible point (z0,Ω)

• Advance forward in the tangent direction given by v with a step-length ∆s : Prediction
step

• Correct the prediction by following the orthogonal direction to v : Correction Step

This methodology is illustrated by schematic E.1

Prediction Step

Let us assume that we have a solution of (E.6) given by (z0,Ω), a tangent direction is computed
as follows

v =
(

∆z†0,∆Ω†
)

such that





0 =
∂h

∂z0

∆z†0 +
∂h

∂Ω
∆Ω†

1 =
(

∆z†0

)> (
∆z†0

)
+
(
Ω†
)2

(E.7)
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Ω0

z0

⊥

‖
∆s

Ω

z

Figure E.1: Illustration of the prediction and correction process in the Arc-length
Continuation method

First equation corresponds to the tangent derivation and second one is the unit constraint. The
unit constraint is obtained by setting

{
a = ∆Ω†

a∆z = ∆z†0
→ a = ±

(
1 + (∆z)> (∆z)

)− 1
2

(E.8)

and the expression of the tangent direction is obtained by solving

∂h

∂z0

∆z = − ∂h
∂Ω

(E.9)

We can obtain the next guess as
[
zk+1

0

Ωk+1

]
=

[
zk0
Ωk

]
+ ∆s v (E.10)

where ∆s is a step-length parameter chosen by the user.
It is clear from (E.8) that two choices arise for the value of a. As the continuation technique is
designed to follow a path, we should choose the one that conserves the path direction, i.e. we
should impose

vk+1 · vk > 0 (E.11)

As a consequence, the sign of a is given by

sign(a) = sign
(

(∆z0)k · (∆z) + ∆Ωk
)

(E.12)

Correction Step

A correction should be performed on the prediction done in the previous step. We are solving
the following nonlinear equation

h(z0 + ∆z0,Ω + ∆z0) = 0 (E.13)
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with the orthogonality constraint as follows

v ·
[
∆z0

∆Ω

]
= 0 i.e. ∆z†0 ·∆z0 + ∆Ω†∆Ω = 0 (E.14)

Endowing a Newton-Raphson procedure leads to the following problem

[ ∂h
∂z0

∂h
∂Ω

∆z†0 ∆Ω†

] [
∆z0

δΩ

]
= −

[
−h(z0,Ω)

0

]
(E.15)

or equivalently [
M(z0,Ω)− I ∂h

∂Ω

∆z†0 ∆Ω†

] [
∆z0

δΩ

]
= −

[
−h(z0,Ω)

0

]
(E.16)

which is a problem of dimension d+ 1.
A convergence criteria should be chosen by the user, for instance

‖h(z0,Ω)‖
‖z0‖

6 ε or
‖∆z0‖
‖z0‖

6 ε (E.17)

The computation of ∂h
∂Ω

is done numerically and we have

∂h

∂Ω
=
∂z

∂Ω
(z0, T ) +

∂T

∂Ω

∂z

∂t
(z0, T ) (E.18)

which takes sense numerically as

∂z

∂Ω
(z0, T ) ≈ z(z0, T,Ω + δ)− z(z0, T,Ω− δ)

2δ
(E.19)

∂T

∂Ω

∂z

∂t
(z0, T ) ≈ −2π

Ω2
f(z(T ), T ) (E.20)
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Appendix F

Damped oscillations: 1-dof analysis

Notations used here are specific to this chapter and only used in the following.

We are interested in the solution of the following differential equation

ẍ(t) + 2ξωẋ(t) + ω2x(t) = 0 ; 0 ≤ ξ ≤ 1/
√

2 (F.1)

If seek for x in the following form

x = eλt (F.2)

then (F.1) reduces to solve

λ2 + ξωλ+ ω2 = 0 (F.3)

The determinant of (F.3) reads

∆ = 4(ξ2 − 1)ω2 < 0 (F.4)

The solution of (F.1) is then given by

x(t) = X1e
λ1t +X2e

λ2t (F.5)

where

λ1 = −ξω + iω
√

1− ξ2 (F.6)

λ2 = −ξω − iω
√

1− ξ2 (F.7)

We see that the eigenfrequencies of the differential equation do not coincide with the expected
system frequency ω but we have following properties

|λi| = ω ; i = 1, 2 (F.8)

Re(λi)

|λi|
= ξ ; i = 1, 2 (F.9)

Since eigenfrequencies of the system depart from physical frequencies, one can ask the frequency
of resonance of the system. To have an idea, let us excite the system given by (F.1) with an
arbitrary harmonic forcing at frequency Ω

ẍ(t) + 2ξωẋ(t) + ω2x(t) = AeΩt (F.10)

We can take a look at the transfer function of the latter as

X = H(Ω)A (F.11)
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where

H(Ω) =
1

ω2 + 2iξωΩ− Ω2
(F.12)

The modulus of the latter is given by

|H(Ω)| = 1√
(ω2 − Ω2)2 + 4(ξωΩ)2

(F.13)

Even if the amplification remains finite when ξ 6= 0, the maximum of amplitude can be deter-
mined when the derivative of |H| is zero which means

Ω = ω
√

1− 2ξ2 (F.14)

Of course the latter is consistent for the undamped case but we seen than the maximum
amplification will not arise at ω but it is shifted to Ω. Then following frequencies can be
considered

(Undamped/natural frequency) : ω (F.15)

(Damped frequency) : λ = −ξω ± iω
√

1− ξ2 (F.16)

(Resonant frequency) : Ω = ω
√

1− 2ξ2 (F.17)
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Appendix G

Mathieu type equation

Notations used here are specific to this chapter and only used in the following.

We are interested into the stability of the solution of the following differential equation

ẍ(t) + [δ + 2ε cos(2t)]x(t) = 0 , ε� 1 (G.1)

By stability we mean that the solution obtained should remain periodic and bounded. This
problem is treated via an expansion of system variable x as

x(t) = x0(t) + εx1(t) + ε2x2(t) +O(ε2) (G.2)

Moreover it is assumed that δ can be expansed into

δ = δ0 + εδ1 + ε2δ2 +O(ε2) (G.3)

In pratical application, δ often corresponds to a multiple of a frequency perturbed by a small
quantity. In other words, δ0 corresponds to 0, 1, 22, ..., k2 and δi are perturbation at order εi.
Equations (G.1-G.3) can be combined to obtain the following set of equations

ẍ0(t) + δ0x0(t) =0 (G.4)

ẍ1(t) + δ0x1(t) =− [δ1 + 2 cos(2t)]x0(t) (G.5)

ẍ2(t) + δ0x2(t) =− [δ1 + 2 cos(2t)]x1(t)− δ2x0(t) (G.6)

From (G.4), it is seen that

x0(t) = A0 cos(
√
δ0t) +B0 sin(

√
δ0t) (G.7)

The solution for x0 can be injected into (G.5). However, we are interested into solutions that
remains bounded in time t. So resonant terms should be eliminated from the right-hand side.
Before going any further we should split our study into different cases which are δ0 = 0, δ0 = 1
and the rest. The key idea is to build one curve for cos and another one for sin giving δ as a
function of ε.

Case δ0 = 0

When δ0 is set to 0, x0 = 1. The system at order ε1 reads

ẍ1(t) = − [δ1 + 2 cos(2t)]x0(t) (G.8)
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The latter imposes that δ1 = 0 and that

x1(t) =
cos(2t)

2
(G.9)

It can be injected into (G.6) which yields

ẍ2(t) =− cos(2t)2 − δ2 (G.10)

=− cos(4t)

2
−
(
δ2 +

1

2

)
(G.11)

Then we have to set δ2 = −1
2
. This first investigation yields the first transition curve as

δ = −ε
2

2
(G.12)

Case δ0 = 1

When δ0 = 1, x0(t) = A0 cos(t) + B0 sin(t). The equations for particular solutions at order ε1

reads

ẍ1(t) + x1(t) = − [δ1 + 2 cos(2t)] cos(t) = −(δ1 + 1) cos(t)− cos(3t) (G.13)

ẍ1(t) + x1(t) = − [δ1 + 2 cos(2t)] sin(t) = −(δ1 − 1) sin(t)− sin(3t) (G.14)

The particular solution for x1 is obtained as

δ1 = −1→ x1(t) =
cos(3t)

8
(G.15)

δ1 = 1→ x1(t) =
sin(3t)

8
(G.16)

The latter is injected into (G.6) and provides

ẍ2(t) + δ0x2(t) = [1− 2 cos(2t)]
cos(3t)

8
− δ2 cos(t) (G.17)

ẍ2(t) + δ0x2(t) =− [1 + 2 cos(2t)]
sin(3t)

8
− δ2 sin(t) (G.18)

i.e.

ẍ2(t) + δ0x2(t) =
cos(3t)

8
− cos(5t)

8
−
(

1

8
+ δ2

)
cos(t)→ δ2 = −1

8
(G.19)

ẍ2(t) + δ0x2(t) =− sin(3t)

8
− sin(5t)

8
−
(

1

8
+ δ2

)
sin(t)→ δ2 =

1

8
(G.20)

which gives two transition curves as

δ =1− ε+
1

8
ε2 (G.21)

δ =1 + ε+
1

8
ε2 (G.22)

LTDS-INRIA 203



Chapter G

Case δ0 = k2 with k > 1

In order to remain bounded we have the following conditions for δ1

ẍ1(t) + k2x1(t) = −δ1 cos(kt)− cos ((2− k)t)− cos ((2 + k)t) (G.23)

ẍ1(t) + k2x1(t) = −δ1 cos(kt) + sin ((2− k)t)− sin ((2 + k)t) (G.24)

The particular solution for x1 is obtained as

δ1 = 0→ x1(t) =
cos ((2 + k)t)

4(1 + k)
+

cos ((2− k)t)

4(1− k)
(G.25)

δ1 = 0→ x1(t) =
sin ((2 + k)t)

4(1 + k)
− sin ((2− k)t)

4(1− k)
(G.26)

The latter is injected into (G.6) and provides

ẍ2(t) + k2x2(t) =− cos ((4− k)t)

4(1− k)
− cos ((4 + k)t)

4(1 + k)
−
(
δ2 +

1

2(1− k2)

)
cos(kt) (G.27)

ẍ2(t) + k2x2(t) =
sin ((4− k)t)

4(1− k)
− sin ((4 + k)t)

4(1 + k)
−
(
δ2 +

1

2(1− k2)

)
sin(kt) (G.28)

We see here that two cases occur for k = 2 and for k ≥ 3. If k = 2 then The first term of the
right hand side is secular in addition to the last one, yielding

δ2 =
5

12
(G.29)

δ2 = − 1

12
(G.30)

The latter depicts two transition curves as

δ =4 +
5

12
ε2 (G.31)

δ =4− 1

12
ε2 (G.32)

Otherwise transition curves are given by

δ = k2 +
ε2

2(k2 − 1)
(G.33)

The unstable zones are often represented onto a δ − ε graph, see Figure G.1.
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Figure G.1: Stable (S) and unstable (U) zones of the Mathieu type equation
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