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Résumé : Depuis ses débuts, l’objectif de l’intelli-
gence artificielle est de concevoir des systèmes ca-
pables d’apprendre aussi efficacement que les hu-
mains pour résoudre ou aider à résoudre des pro-
blèmes difficiles qui nécessitent une certaine forme
d’intelligence humaine. La discipline a connu ré-
cemment un essor spectaculaire grâce aux réseaux
de neurones profonds et ses extensions qui ont
montré des performances sur tout un ensemble
de tâches jusqu’alors considérées complexes. Ce-
pendant, ce paradigme dominant nécessite une
grande quantité de données étiquetées, qui sont
souvent coûteuses et difficiles à acquérir. Ces don-
nées peuvent également contenir des biais cachés
et des erreurs d’annotation, ce qui limite l’applica-
tion de tels systèmes dans de nombreux domaines.
Pourtant, les humains font preuve d’une remar-

quable capacité à apprendre efficacement dans de
nouveaux et divers contextes, en tirant en grande
parti de leur expérience à s’adapter à de nou-
veaux cas et acquérir rapidement de nouvelles com-
pétences. Cette divergence soulève une question
évidente : pouvons-nous concevoir des systèmes
dotés de capacités similaires ? Dans cette thèse,
notre objectif est de développer des algorithmes
d’apprentissage efficaces avec une quantité limi-
tée d’étiquettes pour résoudre de diverses tâches
pour différentes modalités. A cette fin, cette thèse
couvre des travaux qui : i) développent des mé-
thodes d’apprentissage pour des paradigmes avec
différents degrés de supervision, ii) présentent des
résultats pour différentes modalités, notamment
l’image et le texte, et iii) qui gèrent différentes
tâches.

Title : Learning with Limited Labeled Data
Keywords : Deep Learning, Label Efficient Learning, Computer Vision, Natural Language Processing.

Abstract : Since its inception, the north star of
artificial intelligence was to design systems ca-
pable of learning as efficiently (i.e. with limited
training signal) and effectively (i.e. demonstrating
good performances) as humans to solve challen-
ging problems that require human-like intelligence.
Deep neural networks and the collection of popular
deep learning ingredients used to produce systems
usable in the real world, such as optimization al-
gorithms, novel architectures, objective functions,
and large annotated datasets, have shown remar-
kable performances across various tasks in recent
years. However, this dominant paradigm requires
a large amount of fully labeled data, which is of-
ten expensive and difficult to acquire. It might also
contain annotation errors and hidden biases, which
limits the applicability and adoption of such sys-
tems. Yet humans demonstrate a remarkable abi-
lity to learn effectively across diverse settings, using

limited supervision and leveraging prior experience
to adapt to novel cases and gain new skills qui-
ckly. This discrepancy raises an obvious question,
can we design systems with similar capabilities ? In
this thesis, we aim to develop label-efficient lear-
ning algorithms that are effective with a limited
or no amount of annotated examples for various
tasks, over different modalities and multiple levels
of abstraction. To this end, this thesis cover works
that : i) develop learning methods for paradigms
with varying degrees of supervision, ii) present re-
sults for different modalities, notably vision and
text, and iii) different tasks across various levels
of abstraction (e.g. image level and pixel level).
We hope these works can help further advance the
state of the field and aid in developing systems ca-
pable of learning efficiently and adapting effectively
across a wide range of environments.
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Résumé
Depuis ses débuts, l’objectif de l’intelligence arti�cielle est de concevoir des systèmes capables

d’apprendre aussi e�cacement que les humains pour résoudre ou aider à résoudre des problèmes
di�ciles qui nécessitent une certaine forme d’intelligence humaine. La discipline a connu récem-
ment un essor spectaculaire grâce aux réseaux de neurones profonds et ses extensions qui ont mon-
tré des performances sur tout un ensemble de tâches jusqu’alors considérées complexes.

Cependant, ce paradigme dominant nécessite une grande quantité de données étiquetées, qui
sont souvent coûteuses et di�ciles à acquérir. Ces données peuvent également contenir des biais
cachés et des erreurs d’annotation, ce qui limite l’application de tels systèmes dans de nombreux
domaines. Pourtant, les humains font preuve d’une remarquable capacité à apprendre e�cace-
ment dans de nouveaux et divers contextes, en tirant en grande parti de leur expérience à s’adapter
à de nouveaux cas et acquérir rapidement de nouvelles compétences. Cette divergence soulève une
question évidente : pouvons-nous concevoir des systèmes dotés de capacités similaires ?

Dans cette thèse, notre objectif est de développer des algorithmes d’apprentissage e�caces avec
une quantité limitée d’étiquettes pour résoudre de diverses tâches pour di�érentes modalités. A
cette �n, tout au long de cette thèse, nous présenterons di�érentes contributions pour atteindre
cet objectif pour des paradigmes d’apprentissage qui considère le problème d’apprentissage une
quantité limitée d’étiquettes et leurs tâches correspondantes. Plus précisément, cette thèse est di-
visée en deux parties : Part I fournit les informations de base nécessaires, tandis que Part II présente
les principales contributions de ce travail. En termes de contenu, chaque chapitre couvrira les su-
jets suivants :

• Au chapitres 2, 3, et 4, nous posons les bases sur lesquelles nous construirons le reste de
la thèse. Nous dé�nissons d’abord le cadre général d’apprentissage basé sur l’apprentissage
profond pour résoudre un problème donné. Ensuite, nous présentons les di�érents paradigmes
d’apprentissage qui considèrent le problème d’apprentissage avec des données étiquetées
limitées. En�n, nous introduisons les tâches, architectures de modèles et ensembles de don-
nées pertinents à utiliser dans les parties contributions de ce travail.

• Au chapitre 5, nous abordons la tâche de segmentation d’image dans le cadre de l’apprentissage
semi-supervisé. Nous commençons par analyser la régularité des caractéristiques apprises
pour examiner l’hypothèse de cluster au niveau des pixels. Ensuite, nous introduisons Cross-
Consistency Training (CCT), une nouvelle méthode d’apprentissage semi-supervisée adap-
tée à la tâche de segmentation d’image. Grâce à des expériences approfondies, nous mon-
trons que CCT obtient des résultats de pointe sur plusieurs benchmarks.

• Au chapitre 6, nous réduisons encore le niveau de supervision et explorons le cadre en-
tièrement non supervisé pour la tâche de segmentation d’image. En nous basant sur les
avancées récentes dans l’apprentissage non supervisé et la modélisation générative autoré-
gressive, nous proposons une nouvelle méthode de génération de vues basée sur le niveau
des pixels. Elle est conçue spéci�quement pour la segmentation d’image, sur laquelle nous
basons notre méthode de segmentation autorégressive. L’approche proposée peut être ap-
pliquée aux objectifs de clustering et d’apprentissage de représentation dans le contexte de
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la segmentation d’image. Grâce à des expériences approfondies, nous montrons que notre
approche surpasse les méthodes non supervisées existantes pour la segmentation d’image.

• Au chapitre 7, en tant qu’extension naturelle du paradigme semi-supervisé, nous consid-
érons changement de distribution entre les ensembles étiquetés et non étiquetés, c’est-à-dire
le cadre Unsupervised Domain Adaptatio (UDA). En étudiant la robustesse des méthodes
UDA standard sous le prisme de l’hypothèse du clustering, nous montrons que cette hy-
pothèse n’est pas entretenu sur l’ensemble non étiqueté malgré son maintien dans l’ensemble
étiqueté, indiquant un manque de robustesse sur ce dernier. Pour résoudre ce problème,
nous renforçons l’hypothèse de cluster sur l’ensemble non étiqueté tout en alignant les car-
actéristiques entre les deux ensembles de manière spéci�que à chaque classe. L’approche
proposée se traduit par une amélioration notable des résultats pour les benchmarks de clas-
si�cation et de segmentation d’images.

• Au chapitre Chapter 8, nous abandonnons le cadre de tâche unique et partagée et con-
sidérons le paradigme Few-shot Learning (FSL) qui optimise l’adaptabilité rapide sur de
nombreuses sous-tâches. Pour favoriser une telle adaptabilité rapide, nous examinons un
nouvel objectif d’entraînement pour apprendre des caractéristiques plus générales et trans-
férables en utilisant le contrastive learning comme régularisateur dépendant des données
pendant la phase d’entraînement. Plus précisément, nous présentons un nouvel objec-
tif spatial basé sur le mecanisme d’attention pour apprendre des caractéristiques locale-
ment discriminatives et indépendantes des classes. Grâce à des expériences approfondies,
nous montrons que la méthode proposée surpasse les approches de pointe, con�rmant
l’importance d’apprendre de bonnes représentations transférables pour l’apprentissage en
situation de faible supervision.

• Au chapitre Chapter 9, nous passons du domaine visuel au domaine textuel et consid-
érons le cadre Few-Sample Fine-Tuning (FSFT). Nous nous appuyons sur le travail récent
Parameter-e�cient Fine-tuning et présentons une nouvelle méthode de réglage �n du biais
qui est à la fois e�cace et performante. Elle consiste en une reformulation de l’opération
d’attention en injectant de nouveaux biais relatifs pour augmenter la capacité du modèle
pendant la phase d’ajustement �n. Nous montrons son e�cacité avec de nombreuses ex-
périences sur diverses tâches en aval de textuel. Ce chapitre est basé sur un travail qui n’a
pas encore été publié.

• En�n, au chapitre Chapter 10, nous concluons en discutant des dé�s ouverts dans la con-
ception d’algorithmes nécessitant un nombre limité d’étiquettes. Nous examinons égale-
ment des possibles travaux futurs pour concevoir des algorithmes plus communs qui peu-
vent être appliqués à un plus large éventail de tâches et dans diverses applications.

En résumé, cette thèse explore diverses contributions et méthodes pour aborder les problèmes
d’apprentissage profond avec des données étiquetées limitées. Chaque chapitre se concentre sur
un aspect spéci�que, allant de l’apprentissage semi-supervisé à l’apprentissage non supervisé, en
passant par l’adaptation aux domaines non supervisés et l’apprentissage en situation de faible su-
pervision dans les domaines visuels et textuels. Les résultats de ces travaux ont été publiés dans
divers articles et ont conduit à des implémentations open-source et à des projets liés au DL qui
ont été adoptés par la communauté.
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Abstract
Since its inception, the north star of arti�cial intelligence was to design systems capable of learn-

ing as e�ciently (i.e. with limited training signal) and e�ectively (i.e. demonstrating good per-
formances) as humans to solve challenging problems that require human-like intelligence. Deep
neural networks and the collection of popular deep learning ingredients used to produce systems
usable in the real world, such as optimization algorithms, novel architectures, objective functions,
and large annotated datasets, have shown remarkable performances across various tasks in recent
years. However, this dominant paradigm requires a large amount of fully labeled data, which
is often expensive and di�cult to acquire. It might also contain annotation errors and hidden
biases, which limits the applicability and adoption of such systems. Yet humans demonstrate a
remarkable ability to learn e�ectively across diverse settings, using limited supervision and lever-
aging prior experience to adapt to novel cases and gain new skills quickly. This discrepancy raises
an obvious question, can we design systems with similar capabilities? In this thesis, we aim to
develop label-e�cient learning algorithms that are e�ective with a limited or no amount of an-
notated examples for various tasks, over di�erent modalities and multiple levels of abstraction.
To this end, this thesis cover works that: i) develop learning methods for paradigms with vary-
ing degrees of supervision, ii) present results for di�erent modalities, notably vision and text, and
iii) di�erent tasks across various levels of abstraction (e.g. image level and pixel level). We hope
these works can help further advance the state of the �eld and aid in developing systems capable
of learning e�ciently and adapting e�ectively across a wide range of environments.
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1 Introduction

Constraints are not restraints

At every design and creation endeavor, true abundance, a state in which we have access to an un-
limited or large amount of the desired resource, is only encountered in the theoretical realm, and
it is often used to identify an unattainable performance upper bound of a given system we wish
to converge to under ideal conditions. However, the empirical realm is �lled with various limita-
tions and constraints, rendering such idealistic systems impractical1. As a result, such restrictions
must be incorporated into a given system’s design to make it practically feasible. For human-made
systems, concepts, or structures, these constraints might �rst appear as either self-imposed condi-
tions or arise by virtue of the system itself and its physical limitations. They nevertheless can be
used as an incentive to sti�e creativity and design better overall systems.

The engineering discipline as a whole can also be seen from this lens; the creative application of
scienti�c principles under a given set of constraints to design systems, structures, and machines
for some desired application or use case. Similarly, when it comes to the �eld of computer science,
and as Frederick Brooks points out in quot.1, we �nd that di�erent types of restrictions and lim-
itations dictate the design of many systems at di�erent levels of the hardware and software stack:
from the transistors that constitute the building block of computers that are constrained by phys-
ical limitations, to everyday consumer-facing applications where we encounter di�erent types of
constraints, be it economical, societal, or time-related limitations.

“Computer architecture, like other architecture, is the art of determining the needs of the user

of a structure and then designing to meet those needs as e�ectively as possible within economic

and technological constraints. Architecture must include engineering considerations, so that

the design will be economical and feasible.” — Frederick Brooks2. 1

Following along such footsteps, this thesis, and the contributions therein, can be viewed as our
attempt to build e�cient yet e�ective learning methods under the constraint of data with limited
labels. For each one of the settings and tasks we will tackle in this work, we will try to view this
constraint not as a hindrance or a restraint, but as an opportunity to design better and enhanced
systems.

1For instance, while the laws of physics deal largely with ideal conditions, the reality is messy. The laws that hold in
a perfect vacuum or frictionless environments will not be useful for real-world applications that deal with settings
full of friction and other suboptimal conditions.

2Frederick Brooks is a computer architect, software engineer, and computer scientist known for developing IBM’s
System/360.
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1 Introduction

AI, and the rise of DL

As a sub�eld of computer science, the goal of Arti�cial Intelligence (AI) is to develop machines
and systems that exhibit human-like intelligence. However, this ambitious goal has proven to be
highly challenging and remains far from being reached to this day. After the initial enthusiasm
for AI, the �eld experienced two periods of skepticism, known as “AI winters,” in the 1970s and
1990s. These periods were mainly due to the mismatch between the expectations and promises
of AI and what the early methods were able to deliver in terms of performance and results. These
setbacks showed that the discipline was still in its infancy, with many limitations in terms of the
methods, paradigms, training data, and computational resources available for solving tasks that
require human-like pattern recognition.

Today, after many advances under the umbrella of Deep Learning (DL), from the learning al-
gorithms (e.g., back-propagation Rumelhart et al. 1986 and ADAM Kingma et al. 2014a), the neural
architectures (e.g., CNNs LeCun et al. 1998 and Transformers Vaswani et al. 2017), specialized inte-
grated circuits (e.g., Graphical Processing Units cite Tensor Processing Units), to the availability
of large scale datasets (e.g., ImageNet Deng et al. 2009), many of the previous limitations were
almost overcome. As a result, DL now dominates the discipline of AI with its unprecedented suc-
cess across many applications (e.g., image classi�cation K. He et al. 2016, image segmentation L.-C.
Chen et al. 2017a and natural language understanding Devlin et al. 2019).

The success of many deep learning (DL)-based applications is partly due to the adoption of
the supervised learning (SL) paradigm. In SL, a model is trained to perform a desired task by
presenting it with inputs and their corresponding labels or targets. The inputs are the data we
wish to analyze, and the labels are the desired predictions or outcomes we want to infer. The
model is then trained using a pool of labeled examples to learn a mapping from input patterns to
the correct output values. This mapping is often a complex and non-linear function that deep
neural networks can approximate well. The learned features re�ect the important qualities of
the inputs that are useful for making the correct predictions for the task at hand. If a model with
su�cient capacity is trained on a large and diverse enough dataset, the SL paradigm often produces
a well-performing model at inference time. This model can then be deployed for a given real-world
application, provided that the data is similar to those seen during training. But can we improve
upon the SL paradigm? And what are its main limitations that might guide us in designing better
DL-based systems?

Label-efficient DL

In order to identify the main limitations of the popular SL paradigm, we can take inspiration from
how humans learn. Throughout the history of AI in general, and DL in particular, humans often
played a joint role of serving as both a challenging benchmark for currently solvable tasks and
guiding the design and conception of novel AI systems. For instance, the learning procedure that
consists of adapting the connectivity weights of the model, one iteration at a time over a subset
of input-output pairs, draws strong inspiration from how the brain works. So what are the main
di�erences between human-like learning and SL-based DL methods?

If we compare the goal of AI, which is to develop machines with human-like intelligence, to the
current popular SL-based methods, a clear divergence emerges, as pointed out by François Chollet
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1.1 Concrete Motivations

in quot. 2. Humans are able to adapt to novel environments with limited or no supervision or
feedback mechanism (Piaget 1976), using their prior knowledge and experience to perform well
across a wide variety of tasks. However, SL-based methods are often limited to a narrow set of
tasks that require a large amount of high-quality labeled data, and they fail to adapt as e�ectively
and e�ciently to changes in inference conditions or to new tasks. In most real-world scenarios,
collecting and creating such large and high-quality labeled sets is infeasible, requiring signi�cant
e�ort and resources. This makes the SL framework inapplicable in many settings, in which the
availability of labeled data is limited.

“The promise of the field of AI, spelled out explicitly at its inception in the 1950s and repeated

countless times since, is to develop machines that possess intelligence comparable to that of hu-

mans. But AI has since been falling short of its ideal: although we are able to engineer systems

that perform extremely well on specific tasks, they have still stark limitations, being brittle,

data-hungry, unable to make sense of situations that deviate slightly from their training

data or the assumptions of their creators.” — François Chollet3. 2

Given such limitations, one wonders if it is possible to design well-performing DL-based meth-
ods that are capable of showing good generalization in scenarios where only limited or no amount
of labeled data is available. In this work, we focus on answering this question and set to develop
novel learning methods that are label-e�cient, all while being e�ective and performant.

The Aim of this thesis

To summarize, and based on the aforementioned limitations and practical motivations,
our aim is to develop e�ective and �exible learning algorithms and methods across a variety
of conditions, under the constraint of limited labeled data, for di�erent modalities and
tasks.

1.1 ConcreteMotivations

To concretely motivate the need for e�ective and �exible deep learning methods under the con-
straint of limited labeled data, we present an illustrative application that sheds light on the limita-
tions of the standard SL approach. This will help us de�ne the goals and desired properties of the
label-e�cient methods we will discuss later.

An Illustrative Application

In the medical �eld, a large amount of clinical data and medical records are collected and stored
for each patient. Traditionally, these documents were stored in a written form on paper, but in
recent years, this data is often saved electronically as Electronic Health Records, or EHRs (Evans
2016). As illustrated in Fig. 1.1, these EHRs contain the patient’s information, from administrative

3François Chollet is a software engineer and arti�cial intelligence researcher known for creating the Keras deep-
learning library.
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EHRs

Lab Results & Data
CT/MRIs Scans &

Radiology Reports
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Doctor-Patient
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Trackers
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Electronic Health Records

Figure 1.1: ElectronicHealthRecords. An illustration of the di�erent types of data and the various
information that can be stored in EHRs.

and billing data to health-related information such as medical histories, progress notes, radiology
images, diagnoses, and medications. Using such digital records makes the storage process easier
and more e�cient, the patient’s data readily available, and most importantly, in our case, easily
usable to train and deploy DL-based methods.

To begin, let’s think about how a medical professional might use such documents. First, they
would likely quickly review the document to ensure it is of the relevant one and to identify the
di�erent sections of the document. Next, they would move on to the analysis and understanding
phase, where they would examine the relevant sections of the document separately. For example,
they might look at the section on the patient’s medical history, then review the patient’s latest
diagnosis and analyze any related data such as MRI or CT scans, blood test results, and doctor’s
notes. As they do this, they may identify any inconsistencies or biases in the data that should be
overlooked or corrected. Finally, the professional can use the identi�ed relevant information to
construct a mental model of the patient’s medical condition and determine how to use it for the
speci�c situation at hand.

The Drawbacks of a Fully-Supervised Approach

The way a medical professional examines the document can be described as a global-local-global
approach. They �rst analyze the document’s structure and identify relevant sections, then delve
into these sections in detail to understand them, and �nally synthesize all of the extracted infor-
mation to develop a holistic understanding of the document. How can we design a DL system
with similar capabilities to assist medical professionals with the automatic analysis of EHRs of
a given patient, thus helping streamline their work processes, lighten workloads, and reduce any
potential errors? To design a system with similar functionalities (see Fig. 1.2) , it must :

1. Operate over di�erent levels of abstractions, both globally at the document level and locally
at the section and item level.

2. Accept input data of various modalities i.e., multi-modal inputs, mainly visual and textual
inputs.

3. Produce outputs at di�erent levels of abstraction and over the di�erent input modalities.
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EHRs

Doctor's Notes

Medical HistoryRadiology Reports

Patient's Information
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Disease Classi�cation

Feature Extraction
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Figure 1.2: EHRsAnalysis System. A sketch of a possible implementation of an EHRs analysis system.
Note that this design is not intended to be realistic or practical, but only to highlight the need
for a �exible DL-based method capable of processing various data types and modalities.

Based on these requirements, one potential implementation of this system could use a SL ap-
proach, with di�erent sub-models for each level of abstraction and modality. Optional fusion
models could be used to combine the outputs of these sub-models for predictions that require
a cross-level, holistic view of the documents. Under this paradigm, we would need to construct
input-label pairs in advance for all possible inputs the system might encounter, along with their
corresponding desired targets. While conceptually straightforward and simple to implement, this
approach has the following critical limitations:

• Expensive labels. To achieve acceptable performances, the training set must be large enough
to accurately represent the underlying data distribution and include all possible input-
output combinations. This requires creating a large dataset with high-quality labels, which
can be time-consuming and resource-intensive. Additionally, while the annotation process
for simple tasks like image classi�cation of common objects with one or few labels per in-
put can be straightforward, more complex tasks often require expert knowledge and careful
attention to detail. In our example, for MRI scans, labeling at the pixel level requires pre-
cise annotations of various anatomical and pathological structures, which is much more
expensive and labor-intensive than labeling at the region (i.e., bounding boxes) or global
level (i.e., document type). This makes such �ne-grained annotations notably more expen-
sive and laborious (T.-Y. Lin et al. 2014), with a cost that can be up to 15 times higher than
region-level labeling and 60 times higher than global-level labeling4.

• Erroneous and biased labels. In addition to being expensive, the annotation task is often
an ambiguous and subjective process. In it, the annotator’s mental and physical state at the
time of annotation, background, biases, and level of expertise are implicitly, and sometimes

4Additionally, in terms of annotation time, it takes up to 1h30min to �nely annotate a single image of an urban
scene of Cityscapes dataset (Cordts et al. 2016a) for instance, which can be used to train driverless car systems
(Richter et al. 2016a).
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explicitly, re�ected in the produced labels. This can result in noisy and biased annotations
that are hard to detect and �lter out during the annotation process since such errors are
often plausible yet incorrect (Paullada et al. 2021). In our example, the annotation of med-
ical data is very susceptible to such errors, often requiring an independent annotation of
the data by a group of experts or raters to mitigate such subjective biases and other pos-
sible errors such as the negligence of subtle symptoms (Joskowicz et al. 2019; S. Kumar et al.
2007; Schaekermann et al. 2019). This makes the annotation process even more expensive and
cumbersome and might require the development of novel methods to take into account the
inter-annotator variability.

• Limited applicability. The use of deep learning models in the SL paradigm is often lim-
ited by the need for a large and fully labeled dataset. This can be challenging in cases where
the data is rare, the predictions are complex, or the annotation cost is high, such as in the
�ne-grained identi�cation of rare plant species (Tan et al. 2019). In the case of medical di-
agnosis example, if a patient’s health records indicate a rare disease that is not represented
in the training data, the system may fail to detect this signal, leading to missed or incorrect
diagnoses (Schaefer et al. 2020).

• Limited scalability. One of the simple and e�ective conventions in DL is that the bigger
the scale, the better the results. A simple increase in the size of the training set, the model’s
capacity, and the computational resources will improve the system’s performance (Hestness
et al. 2017). However, this simple scaling law is not applicable in the context of SL, where
the need for a fully labeled training set can make it impractical to increase the size of the
dataset. In such cases, any scaling of the training set would require a corresponding increase
in the annotation cost. This limitation is particularly relevant in the internet age, where
vast amounts of data are readily available but often lack appropriate labels for SL-based DL
methods. In our example, and similar to the rest of DL applications related to the medical
domain, large quantities of data in the form of EHRs are readily available but with rare and
sparse expert annotations.

• Limited transferability. To be well-performing and highly useful, a model must be able
to adapt and generalize to a variety of examples from di�erent tasks and domains. However,
in a fully supervised setting, achieving this requires a large number of labels for each new
scenario in order to adapt the model. This is impractical, as real-world data is complex
and there are an in�nite number of possible cases. Transfer Learning (Caruna 1993) tries to
improve upon this by transferring knowledge from domains with a large amount of labeled
data to those with less labeled data, but this approach can fail if the di�erences between the
domains are signi�cant and there is only a limited amount of labeled data available. In our
example, in addition to the aforementioned rarity of good-quality labeled data, the domain
gap problem is widespread in medical data (Guan et al. 2021) due to di�erent equipment,
measurement parameters, subject cohorts, etc. These factors thus limit the transferability
of trained models from one domain to the other under the supervised paradigm.

• Overly rigid learning objective. In a supervised setting, de�ning an output label space
that re�ects the desired functionality is not always a simple and straightforward process. We
may also wish to condition and change the outputs with respect to some external factors
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(e.g., open-set recognition Bendale et al. 2016) in which a model must not only distinguish
between the training classes, but also identify novel classes not yet encountered. Moreover,
assigning a single or few labels to a given input (e.g., this is an image of a car) might be too
restrictive as a training signal, pushing the model to focus only on the factors of the data
that are related to the desired targets while disregarding the rest of the factors that might
be as important. In our example, labeling the doctor’s notes and the associated clinical
tests with a single label corresponding to the identi�ed disease might push the model to
overlook some consequential aspects of the data, such as focusing on simple keywords in
the input and disregarding the more complex relationships between the symptoms and the
diagnosis. Additionally, some tasks, such as the association between the di�erent sections
of the medical document, cannot be easily represented using a pre-de�ned set of targets,
and can change by use case and from one document to the other.

• Biologically implausible. As previously noted, AI aims to mimic the capabilities of hu-
mans who can learn new concepts and tasks e�ciently from a limited set of examples and
with minimal or no explicit supervision (Lake et al. 2017). This remarkable ability is often
the result of humans’ ability to repurpose and reutilize their experience and knowledge and
use it as a seed to facilitate the learning process in novel settings. Yet, if we look back to the
formulation of the SL paradigm, learning each new task using a distinct and speci�c dataset
seems to be orthogonal to how humans learn. In our example, when a medical professional
consults the patient’s records, they draw from their expertise and years of education and
experience to assist the patient, even if it is a rare case.

While SL su�ers from all of the above limitations, it must be noted that these drawbacks are
not associated exclusively with this paradigm. Many of such drawbacks still permeate the �eld of
DL at large, with various active areas of research that seek to solve them. For instance, learning
without any labels does not guarantee the removal of all biases (Steed et al. 2021), since some biases
can still come from other sources unrelated to the annotators, such as the data collection process,
e.g., geographic biases (Shankar et al. 2017).

Learning under the constraint of limited labeled data

If we revisit the requirements of our automatic EHRs analysis system and based on the enumer-
ated drawbacks of the standard supervised approach, adding the constraint of limited labeled data
becomes a fundamental and necessary design choice. Although a constraint, training with limited
supervision adds a signi�cant amount of �exibility to our system, since now, instead of requiring
labels at every level of abstraction and for all modalities, we can design and train our sub-models
with the appropriate learning paradigm for each task based on the amount of supervision available.
For instance, at the document level, where we may obtain labels easily, we might use a fully super-
vised approach. If labels are scarce at the local level, but there is plenty of unlabeled data available,
a semi-supervised learning paradigm may be used. In the absence of labels, unsupervised learning
may be the best option. If the data is scarce and the target classes are likely to change quickly,
a few-shot learning approach that focuses on fast learning and rapid adaptation with only a few
training examples may be appropriate.
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Note that in this section, we used the EHRs analysis system as an example to motivate the need
for label-e�cient methods and to guide our selection of the tasks and the learning paradigms to
be considered in this thesis. However, while it is worth exploring, designing such a system is not
the focus of this thesis. Nonetheless, we hope that the contributions to be presented in this work
can make the conception and implementation of similar systems more feasible and a�ordable in
the future.

1.2 Objectives

As motivated in the previous section, this thesis studies the problem of learning e�ectively under
the constraint of limited labeled data, for di�erent modalities and tasks, and over various levels
of abstraction5. Speci�cally, in settings where the amount of available labeled training examples
is not su�cient to build a well-performing model under the supervised or the transfer learning
(i.e., when a pertained model is used as a starting point) paradigm, we set out to develop training
methods that perform better than the supervised baseline. To this end, we start with the following
simple hypothesis:

For a given task and under a given constraint of limited labeled training data, a new set

of appropriate inductive biases
6
can be defined to prioritize solutions that better leverage the

provided training data and better reflect the task objective, resulting in better generalization

and performance.

Such a hypothesis is perfectly in line with current popular DL methods, where several key in-
ductive biases (i.e., a set of preferences) over the space of all learnable functions are introduced
to induce good generalization and acceptable performances (Goyal et al. 2020). The need for such
preferences can be inferred from the no-free lunch theorem of machine learning (Baxter 2000;
Wolpert et al. 1995). It states that for any given task with a �nite set of training examples, many
possible solutions exist that have equal generalization on the training set but di�er on new and
unseen examples. As such, given the complexities of the true underlying data distribution, which
cannot be fully captured with a �nite training set, some inductive biases are necessary to prioritize
solutions with properties we deem appropriate for the task in question (e.g., the use of CNNs
LeCun et al. 1995 for applications where translation invariance is desirable).

From this perspective, the goal of this thesis can be reformulated as opting to adjust and adapt
the standard inductive biases popularized under the SL paradigm to better match settings with
limited or no labeled examples and the di�erent tasks and modalities to be tackled. As such, in
this work, we set the following the desiderata:

• E�ective and e�cient learning. Our �rst objective is to de�ne better inductive biases
to train models in settings where only a limited or no amount of direct supervision can be

5Here, we use “level of abstraction” to refer to the degree of granularity in which the inputs will be processed. For
instance, an input might be processed at the image scale for classi�cation or the pixel scale for segmentation.

6In this thesis, the set of inductive biases we will focus on will be limited mainly to the training objective and model
architecture.
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extracted from the training set to obtain better generalization and performance than the
supervised baseline.

• Considering multiple modalities. As humans, our understanding of the world is inher-
ently multi-modal (Edelman 1987; L. Smith et al. 2005), and our experiences are rarely limited
to a single sensory stream. When we see an object, we often infer its name, texture, �avor,
sounds, etc. Such a multi-modal understanding might be one of the pillars behind the
e�ciency humans demonstrate when learning new skills. Additionally, many real-world
applications (e.g., Section 1.1) also require processing di�erent modalities. As such, in this
thesis, our objective is to develop label-e�cient learning methods for di�erent modalities
(i.e., vision and text)7.

• Considering multiple levels of abstraction. Across the many applications, DL methods
have become the go-to approach, the set of chosen inductive biases (e.g., model architecture
and loss function) depends heavily on the task and its level of abstraction. For instance, in
computer vision, classi�cation at the image level requires a di�erent model formulation
than a classi�cation at the pixel level. The new inductive biases to be introduced under
the constraint of limited labeled data must also be conditioned on the task and its level
of abstraction. Additionally, under the same modality, our objective is also to consider
di�erent tasks that operate over di�erent levels of abstraction (e.g., image classi�cation and
segmentation), making the set of the proposed methods more diverse and more readily
applicable to systems that require such capabilities (e.g., Section 1.1).

• Conceptually simple and computationally e�cient methods. One of the main advan-
tages of the SL approach is its simplicity, and with the appropriate hardware, its compu-
tational e�ciency, making it the �rst choice for many real-world applications. Since our
objective is to de�ne better-performing methods suitable for real-world use cases, the pro-
posed approaches must maintain these properties.

1.3 Scope

Tasks andModalities

To ful�ll the aforementioned high-level objectives de�ned in Section 1.2, we �rst need to narrow
the scope of this thesis and focus on speci�c modalities and speci�c tasks within each modality.
In terms of modalities, we consider both visual and textual tasks, given that vision and text are
the two most popular modalities within the DL community, with many established methods and
baselines that facilitate the evaluation of novel approaches, and with a broad number of real-world
applications, making the impact of novel and e�ective methods more direct. For the speci�c tasks,
we tackle the following ones:

• Visual tasks. For the visual domain, we consider two visual tasks: image classi�cation and
segmentation, thus covering di�erent levels of abstraction, i.e., both the image or instance
level and the sub-instance or pixel level.

7Note that in this thesis we only consider a separate modality each time. We do not consider multi-modal settings
where multiple modalities are used simultaneously.
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• Textual tasks. For the textual domain, we consider the popular tasks within Natural lan-
guage processing (NLP), which aims to map a given input text to outputs in the form of
linguistic structures that encode its meaning (N. A. Smith 2011). For example, the sentiment
analysis task consists of an N-way classi�cation over N levels of polarization, or Natural
language Inference (NLI) (MacCartney 2009) that consists of identifying the relationship
between two given input sentences.

Learning paradigms

While reducing the application scope to cover the current popular tasks and modalities is relatively
straightforward, de�ning the learning settings under the constraint of limited labeled data is more
challenging, given the many variables and dimensions that can be considered. In this thesis, we
consider the following angles of attack:

• The type of data available. The training data can contain either labeled examples only,
unlabeled examples only, or both simultaneously.

• The amount of data available. In terms of the size of the labeled set, and by virtue of the
constraint we impose, the amount of labeled data available must be limited compared to
the standard supervised setting. However, the number of labeled examples can still have an
outsized impact on the performance, even if limited, making it worth studying. Acquiring
unlabeled data might also be an expensive process that impacts performance, but studying
it is outside this thesis’s scope.

• The number of sub-tasks. In many cases, only one sub-task is considered at a time. How-
ever, we may want to consider a setting with di�erent sub-tasks for applications that require
quick adaptation to novel and unseen sub-tasks at test time. For example, we can de�ne
multiple sub-classi�cation tasks under the classi�cation task, each consisting of classifying
di�erent breeds of a speci�c animal. By training the model to adapt quickly at test time, it
can classify a new breed with only a few training samples and still have acceptable perfor-
mance.

• Distribution shift. When evaluating a trained model, the standard procedure consists of
a testing phase on examples that come from the same source (i.e., the same underlying data
distribution) as that of the training examples. In real-world applications, the trained model
is often deployed on data with di�erent characteristics (e.g., di�erent image backgrounds),
and such a discrepancy, even small and unnoticeable, can signi�cantly impact the accuracy
of the predictions. As a result, this discrepancy must also be considered during the training
phase to avoid any signi�cant performance degradation at test time.

Based on these angles of attack, we consider the following learning paradigms (see Fig. 1.3):

• Semi-supervised Learning (SSL). In this setting, we have limited access to both labeled
training examples and a larger number of unlabeled training examples. The training and
testing sets share the same sub-task and underlying data distribution. The task of focus for
this paradigm is image segmentation given its importance as a visual task and the limited
SSL works tackling it.
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Figure 1.3: An illustrative map of the different learning paradigms. We show the di�erent
characteristics of each learning paradigm we consider in this thesis compared to the standard
Supervised Learning (SL) paradigm. Note that the sole intent behind this �gure is to provide a
mental representation highlighting the main di�erences between the paradigms.

• Unsupervised Learning (UL). In this setting, we only have access to unlabeled training
examples and no labeled examples. The training and testing share the same sub-task and the
underlying data distribution. Similar to SSL, the task of focus for this paradigm is image
segmentation.

• Unsupervised Domain Adaptation (UDA). In this setting, we consider the possible dis-
tributional shifts between labeled and unlabeled examples. Speci�cally, during the training
phase, we are provided with both labeled and unlabeled sets, but each set is collected from a
di�erent domain (i.e., source and target, respectively). The testing is then done on the same
sub-task but only on examples from the target distribution. Note that in UDA, the amount
of available labeled examples, while still limited, is generally larger than its SSL counterpart.
The tasks of focus for this paradigm are image classi�cation and segmentation given the
�exibility of the approach and popularity of both tasks within the UDA community.

• Few-Shot Learning (FSL). In this setting, we consider many training and testing sub-
tasks, in which we have access to a minimal amount of labeled training examples for each
individual sub-task. The examples of both the training and testing sub-tasks share the same
underlying data distribution. The task of focus for this paradigm is image classi�cation
given its popularity within the FSL community. In this case, it is worth noting that in the
literature, the word task can have a dual meaning, referring both to the overall application
(e.g., image classi�cation) and to the di�erent sub-tasks (e.g., the di�erent sub-classi�cation
tasks). We use the term sub-task in this introductory chapter to avoid this confusion.

• Few-Sample Fine-Tuning (FSFT). In this setting, we consider a transfer learning scenario
but with minimal labeled training examples available. The training and testing share the
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Figure 1.4: Thesis contributions and their corresponding chapters. We show the learning
paradigms and the corresponding tasks tackled in each contribution to be presented in this the-
sis, together with their corresponding chapters.

Task Modality Learning Paradigm Contribution Venue

Segmentation Vision SSL CCT (Ouali et al. 2020c) CVPR’2020
Segmentation Vision UL AS (Ouali et al. 2020b) ECCV’2020
Segmentation & Classi�cation Vision UDA TC (Ouali et al. 2020d) CaP’2020
Classi�cation Vision FSL SCL (Ouali et al. 2021) ECML-PKDD’2021
NLP tasks Language FSFT RelBitFit To-be-published

Survey articles
An Overview of Deep Semi-Supervised Learning (Ouali et al. 2020a) arXiv e-Print

Table 1.1: Thesis Contributions. The contributions proposed in our thesis, categorized by the task,
the modality and the learning paradigm.

same sub-task and underlying data distribution. The tasks of focus for this paradigm are
NLP tasks in order to tackle the textual modality.

Note that overall, the choice of the task to focus on for each paradigm is based on the availabil-
ity of benchmarks to evaluate our methods on the amount of computational resources required
to avoid excessive costs. In addition, the state-of-the-art at the time of the introduction of the pro-
posed methods impacted the choice of tasks that might have been overlooked in the literature. For
instance, when we set out to explore the semi-supervised paradigm, almost all of the methods were
focused solely on image classi�cation and, to a lesser extent, object detection, but only a handful
of works tackled the task of image segmentation, which motivated the choice of this task in our
work.

1.4 Outline and Contributions

Throughout the rest of this thesis, we will introduce the di�erent proposed contributions to ful�ll
the objectives de�ned in Section 1.2 under the scope set in Section 1.3, i.e., the identi�ed learning
paradigms and their corresponding tasks. These contributions are listed in Table 1.1, and each
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1.4 Outline and Contributions

Project Description Project URL

pytorch-segmentation PyTorch Framework for Semantic Segmentation pytorch-segmentation
Notes Notes of various DL papers related to this thesis ml-paper-notes
SSL-papers Up to date SSL Papers awesome-semi-supervised-learning

CCT O�cial Implementation of CCT (Ouali et al. 2020c) CCT
SCL O�cial Implementation of SCL (Ouali et al. 2021) SCL

Table 1.2: ThesisOpen Source Projects. The open-sourced projects produced during the time of this
thesis.

contribution will be detailed in its respective chapter as illustrated in Fig. 1.4. Additionally, the
works presented in this thesis resulted in various open-source implementations and DL-related
projects that gained relative success within the community. Refer to Table 1.2 for a brief overview.

Speci�cally, the rest of this thesis is divided into two parts: Part I provides the necessary back-
ground information, while Part II presents the main contributions of this work. In terms of con-
tent, each chapter will cover the following topics:

• In Chapters 2 to 4, we start by laying out the foundations we will build upon in the
rest of the thesis. We �rst de�ne the general DL-based learning framework used to solve a
given problem. This is be followed by a presentation of the di�erent learning paradigms
that consider the learning problem under the constraint of limited labeled data. Finally, we
conclude by introducing the relevant tasks, model architectures, and datasets to be used in
the contributions parts of this work.

• In Chapter 5, we tackle the image segmentation task in the SSL setting. We start with an
analysis of the smoothness of the learned features to examine the cluster assumption (i.e.,
the inputs form clusters that correspond to the output classes) at the pixel level. Then,
based on the observed behavior, we introduce Cross-Consistency Training (CCT), a novel
semi-supervised learning method tailored for the image segmentation task. With extensive
experiments, we demonstrate that CCT achieves state-of-the-art results in several bench-
marks. We published this contribution in (Ouali et al. 2020c).

• In Chapter 6, we further reduce the level of supervision and explore the fully unsuper-
vised setting for the image segmentation task. Based on recent advancements in UL and
autoregressive generative modeling, we propose a novel view generation method rooted
at the pixel level. It is designed speci�cally for image segmentation upon which we base
our autoregressive segmentation method. The proposed can be applied for both cluster-
ing and representation learning objectives in the context of image segmentation. Through
comprehensive experimentation, we demonstrate that our approach outperforms existing
unsupervised methods for image segmentation. We published this contribution in (Ouali
et al. 2020b).

• In Chapter 7, and as a natural extension to the SSL paradigm, we consider the possible
distributional shift between the labeled and unlabeled sets, i.e., the UDA setting. By in-
vestigating the robustness of standard UDA methods under the prism of the cluster as-
sumption, we show that the cluster assumption is violated on the unlabeled set despite
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being maintained in the labeled set. This indicates a lack of robustness on the latter. To
address this problem, we enforce the cluster assumption on the unlabeled set while align-
ing the features between the two sets in a per-class manner. The proposed approach results
in a notable improvement in both image classi�cation and segmentation benchmarks. We
published this contribution in (Ouali et al. 2020d).

• In Chapter 8, we abandon the single and shared task setting (i.e., a single sub-task), and
consider the FSL paradigm that optimizes for fast adaptability over many sub-tasks. To pro-
mote such fast adaptability, we examine a new training objective to learn more general and
transferable features using contrastive learning (i.e., the direct optimization of the features
so that semantically similar inputs are mapped close by in the representation space and vice-
versa) as a data-dependent regularizer during the training phase. Speci�cally, we present a
novel attention-based spatial contrastive objective to learn locally discriminative and class-
agnostic features. With extensive experiments, we show that the proposed method outper-
forms state-of-the-art approaches, con�rming the importance of learning good and trans-
ferable embeddings for few-shot learning. We published this contribution in (Ouali et al.
2021).

• In Chapter 9, we shift from the visual domain to the textual domain and consider the
FSFT setting. Given that large pre-trained language models have become the starting block
for many NLP tasks, we position ourselves in the transfer learning phase, and set to �nd
more label-e�cient ways to adapt such models to the desired downstream tasks in a label-
constrained environment. We build on the recently introduced work of parameter-e�cient
�ne-tuning, and present a novel bias �ne-tuning method that is both e�cient and perfor-
mant. It consists of a reformulation of the attention operation by injecting new relative-
biases to increase the model’s capacity during the �ne-tuning phase. We show its e�ective-
ness with multiple experiments on various NLP downstream tasks. This chapter is based
on yet-to-be-published work.

• Finally, in Chapter 10, we conclude by discussing open challenges in designing algorithms
requiring a limited amount of labels. We also examine possible future works to conceive
more common algorithms that can be applied to a broader range of tasks and across diverse
applications.
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Foundations
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Part I

Foundations
Machine learning, in general, and deep learning, in particular, consist of equipping ma-
chines with a narrow form of intelligence tailored for a speci�c yet complex application
using some form of past experience (i.e., training data in our case). The essence of deep
learning lies in the construction of many-layered neural networks, resulting in end-to-end
systems where all the operations at each layer are learned jointly from training data. So
what techniques, models, problem formulations, and applications make deep learning so
popular and successful? In the �rst part of this thesis (i.e., Chapters 2 to 4), we present the
necessary deep learning-related background knowledge upon which Part II of this thesis
is built (i.e., the contributions presented in Chapters 5 to 9).

Note that for brevity and conciseness, the presented background is strictly limited to in-
formation related to the contributions of this thesis and is intended only to refresh the
reader’s memory rather than providing a comprehensive introduction. For a detailed
overview, we refer the reader to the appropriate resources such as (Goodfellow et al. 2016)
and (A. Zhang et al. 2021).



A Learning Machine
CHAPTER 2



2 A LearningMachine

First, we start by presenting the standard building blocks and design procedure followed when
solving a given task of interest using a deep learning (DL) based system. For many practical prob-
lems, the desired objective is transformed into a prediction task to �t the DL framework, requiring
a computer or, more speci�cally, a model to consume some input data we wish to process and pro-
duce the desired output (e.g., taking as input a set of pixel values and predicting the category of the
object they depict). To this end, a model is designed as a mapping from the inputs to the desired
outputs, and since it is infeasible to specify the desired mapping manually given the task di�culty
and the complexity of real-world data, the model is constructed as a many-layered network with
learnable parameters to be learned from the data directly. In DL, the standard structure the model
takes is a deep neural network consisting of multiple layers. In its simplest form, each layer involves
a linear matrix-vector product followed by a non-linearity function (i.e., a multi-layer perceptron
Pal et al. 1992). Then, a learning procedure is conducted to update the model’s parameters and
obtain the desired mapping. It consists of returning an updated version of the parameters so that
the behavior aligns with the desired task using some form of training data provided as input by
the user. The ideal behavior is often speci�ed using a loss or an objective function, which is used
to compute a given performance measure. The desired and ideal behavior of the model can then
be inferred by updating its parameters to minimize this loss over the training data. Finally, after
training, an evaluation setup is often conducted to probe the model and verify that its behavior is
consistent with the desired one. This step generally consists of testing the trained model on sam-
ples unseen in their exact form during the training phase, producing an evaluation measure that
provides a proxy of the eventual performances we can expect from the model during deployment.
If the results are satisfactory, the model can be applied to solve the desired application. Otherwise,
the model design, the learning procedure, and the training data must be revised to improve perfor-
mance. Next, we de�ne this learning problem more formally and detail its di�erent instantiations
that consider the label-e�cient learning problem.

2.1 Problem statement and terminology

In this section, and while the statistical learning theory (Bousquet et al. 2003; James et al. 2013; Vap-
nik 1999) is vast and detailed, we take a more practical and narrow view of the learning problem.
Generally, the problem of learning and inference is that of knowledge extraction, prediction gener-
ation, decision-making, or model construction based on a set of data. This learning and inference
process consists broadly of the following steps (Bousquet et al. 2003):

• Observing a given phenomenon of interest.
• Constructing a model of that phenomenon.
• Making predictions and decisions based on this model.
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2 A Learning Machine

In this thesis, we are interested in a machine learning, or speci�cally, a DL-based learning frame-
work that tries to automate parts of this process (i.e., learning and inference). Under this frame-
work, and in a practical setting, the observations are provided as training data consisting of many
data points that encode some knowledge about a task of interest. First, we de�ne a learnable map-
ping from the input instances to the desired outputs as our inference function. Then, from a
collection of possible models, the learning procedure selects the model that best �ts the provided
training data. This model is then evaluated on some previously unseen data to probe its degree of
generalization.

2.1.1 The Standard Framework: Supervised Learning

Formally, we consider an input spaceX and output spaceY , and we assume that an input instance
or observationx belongs to this input spaceX , i.e., x ∈ X , and that an output or desired target y
belongs to the output spaceY , i.e., y ∈ Y . We assume there exists a �xed unknown joint data dis-
tribution p(x, y) according to which the data are identically and independently distributed (iid).
We also assume that this distribution factorizes as p(x, y) = p(x)p(y | x), with the conditional
distribution p(y | x) describing the relation between the inputs and targets, and the marginal
distribution p(x) modeling the uncertainty in sampling the input instances.

The goal of a learning procedure is to estimate the best input-output mapping to solve a given
task of interest. This is done via an inference function1 fθ : X → Y that maps the inputs x to
the desired outputs y and consists of learnable parameters θ ∈ Θ, with Θ as the parameter space
de�ned by our choice of the neural architecture (e.g., CNNs LeCun et al. 1995 or transformers
Vaswani et al. 2017).

In its simplest form, the task we wish to solve is described by a set of labeled training data
points (i.e., a supervised learning setting) and a task-speci�c loss function. The learning proce-
dure consists of �nding the optimal parameters so that the produced inference function is capa-
ble of generating the correct predictions over unseen examples, Formally, a given task T is often
speci�ed by its corresponding dataset D and task-speci�c loss function L : Y × Y → R. The
dataset D = {Dtr,Dtest} consists of a training dataset Dtr = {(xi, yi)}Ni=1 containing N
input-target pairs sampled iid from the joint probability distribution p(x, y), and a test dataset
Dtest = {(xi, yi)}N

′
i=1 containingN ′ unseen examples sampled iid from the same distribution2.

The loss functionL is a point-wise measure of the prediction errorL(y, fθ(x)) that incurs when
the inference function predicts ŷ instead of y, with ŷ = fθ(x). It is worth noting that in many
cases, the loss functionLwe care about (e.g., classi�cation error) is an intractable loss that cannot
be optimized e�ciently, so we typically optimize a tractable surrogate loss function (e.g., cross-
entropy loss) instead, that acts as a proxy for the original loss function (Goodfellow et al. 2016).

The learning problem consists of �nding the optimal the parameters θ∗ so that the behavior
of the inference function fθ(x) minimizes the population riskR[fθ] = E(x,y)∼p[L(fθ(x), y)].
However, since we only have access to the distribution p(x, y) via our training dataset Dtr, the

1In this thesis, we also refer to it as the predictive function, the representation function, or simply, the model
2In this thesis, we regard the validation set as either a testing set if the testing set is not explicitly provided or otherwise

as an extension of the training set used for hyperparameter tuning.
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learning procedure consists of �nding the optimal parameters θ∗ by minimizing the empirical risk
Remp[fθ] as follows (Vapnik 1999):

θ∗ = arg min
θ
Remp[fθ]

with Remp[fθ] =
1

N

N∑
i=1

L(yi, fθ(xi))
(2.1)

By solving the optimization problem of Eq. (2.1), we hope that the learned parameters θ∗ also
minimize the average test error over unseen test samplesDtest so that the inference function can
be reliably used to solve the task of interest.

2.1.2 AMore Flexible Framework

In this thesis, we are interested in a more general learning problem than the supervised setting, i.e.,
learning under the constraint of limited labeled data. Thus, we introduce a more �exible learning
framework that we will use to express the di�erent learning paradigms to be considered in this
work. Precisely, we introduce the following notions and extensions:

• Multiple Domains. The �rst extension consists of considering multiple domains or en-
vironments. Each domain D is de�ned by a datasetD(.)

D containing iid examples from its
corresponding probability distribution pD(x, y). Speci�cally, we consider either a single
domain, falling back to the standard setting, or two domains, the source domain Ds and
the target domainDt, with their corresponding probability distributions ps and pt, respec-
tively.

• Multiple training subsets. We consider that a given training datasetDtr = {Dtr
l ,Dtr

u }
consists of two subsets, a labeled subset Dtr

l = {(xi, yi)}NLi=1 consisting of NL input-
label pairs and an unlabeled subsetDtr

u = {xi}NUi=1 consisting ofNU input instances only
without any labels, withN = NL + NU . As such, a datasetD = {Dtr

l ,Dtr
u ,Dtest} of a

given task T consists of three subsets: a labeled training setDtr
l , an unlabeled training set

Dtr
u , and a test setDtest. Each of these three subsets can be from a di�erent domainD, i.e.,

sampled from a di�erent probability distribution pD.

• Multiple Tasks. We extend the learning objective to many tasks sampled from a task dis-
tribution p(T ). The training stage then consists of training our inference function to learn
to adapt to this task distribution. In this case, the tasks of interest are divided into training
tasks I = {Dt}Tt=1 and testing tasks S = {Dq}Qq=1, and the datasetD(.) of each task con-
sists of a labeled training and testing subsets (i.e., no unlabeled training set). All the subsets
come from the same domain, i.e., single domain setting.

Based on such an extension, the learning problem becomes more �exible and can take into account
di�erent paradigms that deal with label-e�cient learning. For an overview of the terminology and
notation introduced in this section, refer to Table 2.1
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2 A Learning Machine

Symbol Notation Description

T Task The task we want to solve via an inference function. It is described
with its corresponding datasetD.

fθ
3 Inference function (model) A learnable mapping from the inputs x ∈ X to the desired outputs

y ∈ Y , with learnable parameters θ.

L Loss function
A point-wise measure of the prediction error that incurs when
the inference function produces incorrect outputs. The choice of the
loss function will often depend on the task and paradigm considered.

D Dataset

A dataset corresponding to a given task and consisting of
two subsets:
- The training set: Dtr.
- The test set: Dtest.

Dtr Training set
A training set of a given dataset consisting of two subsets:
- The labeled training set: Dtr

l .
- The unlabeled training set: Dtr

u .

D Domain A domain (or an environment) de�ned by a datasetD(.)
D

containing iid examples from its corresp. distribution pD.

p(T ) Task distribution
In a setting with multiple tasks, we consider a task distribution
p(T ) from which the training I = {Dt}Tt=1 and testing
tasks S = {Dq}Qq=1 are sampled.

Table 2.1: Notation Summary. A summary of the di�erent notations and terminology used in this the-
sis.

2.2 Scenarios and Variations

In this section, we consider various paradigms that deal with the learning problem under the con-
straint of limited labeled data, which are special cases of the �exible learning framework intro-
duced in Section 2.1.2. Refer to Table 2.2 for a summary of these paradigms and to Fig. 2.1 for a
visual description of them.

The Supervised Setting. In the classical supervised setting, we are interested in a single task T
with its corresponding dataset D = {Dtr,Dtest} from domain D, and we are provided with a
su�cient number of labeled training examples Dtr = Dtr

l speci�c to this task and domain. We
then de�ne the neural architecture of our model fθ with randomly initialized parameters θ, and
then train it on the labeled training set. This is the standard Supervised Learning paradigm.

Knowledge Transfer. In this case, we have access to two tasks, a source Ts task and a target Tt
task, both with their corresponding labeled training sets. The source training samples are from the
source domainDs, and the target training samples are from the target domainDt. The objective
is to learn a prediction function that performs well on the target’s test set, i.e., solve the target task
Tt. If the two tasks are su�ciently similar and have a small enough target-source domain gap, we
can use the source training set to better initialize some or all of the model’s parameters θ. Then

3We will use f to refer to fθ , and both notations will be used interchangeably in this thesis.
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Learning Paradigm Task(s) Domain(s) Training Data (Domain) Test Data (Domain)

Supervised Learning T D Dtr
l (D)4 Dtest(D)

Semi-Supervised Learning T D Dtr
l (D) andDtr

u (D) Dtest(D)

Unsupervised Learning T D Dtr
u (D) Dtest(D)

Unsupervised Domain Adaptation T Ds,Dt Dtr
l (Ds) andDtr

u (Dt) Dtest(Dt)

Few-Shot Learning T ∼ p(T ) D {Dt}Tt=1 withDt(D) {Dq}Qq=1 withDq(D)

Transfer Learning Ts, Tt Ds,Dt Dtr
l (Ds) andDtr

l (Dt) Dtest(Dt)

Table 2.2: Learning Paradigms. A summary of the di�erent learning paradigms we consider in this
work.

we proceed to the Fine-Tuning stage, where we train and evaluate our model following the classic
supervised scenario on the target domain. This process, which we refer to as Transfer Learning,
results in a sequential knowledge transfer from the source domain to the target domain, which
can help with convergence speed and reduce to some extent, the amount of labeled training data
required. In recent years, initializing the model’s parameters from some source domain has be-
come a standard practice given the availability and ease of use of pre-trained models on various
large-scale datasets. Most DL methods consider it as the natural starting point regardless of the
task or setting being considered. Note that in cases with few labeled target data, knowledge trans-
fer coupled with the standard supervised �ne-tuning method becomes insu�cient. This results
in over�tting of the target samples and poor generalization, thus requiring a di�erent solution to
such a problem. In this work, we refer to this scenario as Few-Sample Fine-Tuning (FSFT).

Abundant Data but Few Labels. Disregarding a minority and rare type of data where the col-
lection process is costly (e.g., in the medical �eld), unlabeled data is available in large quantities
for most applications. However, this is not the case for labeled data, for which the annotation
process quickly becomes expensive or even infeasible, in addition to being highly prone to errors
and biases. As such, many areas of DL focus on developing label-e�cient methods to overcome
such hurdles while maintaining a good degree of generalization. In a setting similar to supervised
learning with a single task and domain, if the provided training set only contains unlabeled exam-
ples, i.e.,Dtr = Dtr

u , then we are in a fully Unsupervised Learning setting. Otherwise, if a small
portion of the training set is labeled while the rest is unlabeled, i.e.,Dtr = {Dtr

l ,Dtr
u }, we are in

a Semi-Supervised Learning setting.

With a Distribution Shift. When deploying a trained model for a given application on real-
world data, the data encountered will likely have some dissimilarity compared to the training data,
resulting in noticeable performance degradation. As such, many DL settings consider a setup
with similar conditions to tackle this problem. For a given task T , we consider two domains, a
source domainDs and a target domainDt. The target domain will simulate real-world data via a
distribution shift with respect to the source data, i.e., the marginal probability distributions of the
source and target domains are di�erentps(x) 6= pt(x). Given this setup, many possible variations

4Here the notationD(.)(D) is used to convey that the examples of the setD(.) originate from domain D, i.e., they
are sampled iid from the probability distribution pD of domain D.
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Figure 2.1: Learning paradigms. We show the structure of the provided training sets for each of the
learning paradigms we tackle in this thesis.

can be constructed: Do we have access to both target and source data available during training, or
only the target data and a model trained on source data? Do we have access to labeled target data,
or are the labels available only for the source data? These variations and others not mentioned
fall under the Domain Adaptation setting. In this thesis, we consider the Unsupervised Domain

Adaptation setup, in which we have access to labeled examplesDtr
l from the source domain but

only unlabeled training examplesDtr
u from the target domain. The model is evaluated solely on

data from the target domain at test time.

Meta-Learning. In all the cases above, we considered a single task. The learning task consisted
of �nding the optimal parameters of the model at training time, �xing them, and deploying the
model at test time. But what if our objective is to quickly solve new tasks that will be encountered
at test time? In this case, rather than being fed a single example and providing the corresponding
prediction in return, during testing, we will encounter a new task, with its training and testing
sets. The objective is to quickly adapt our model to this task using the provided training set and
then returning the predictions over the test set. In this case, we go from a learning problem to
a meta-learning problem, where instead of a training stage on a single task T using its training
set, we will adapt our model to a distribution of tasks p(T ) during a meta-training set. This set
consists of many training tasksI = {Dt}Tt=1, and each task has its corresponding datasetDt with
its labeled trainingDtr

t and testingDtest
i sets5. The overall objective becomes training a model that

5In a meta-learning setting, the training and testing sets of each task are also called the support and query sets, respec-
tively.
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can quickly adapt to new tasks. This adaptability is often evaluated during a meta-testing stage
with a set of novel tasksQ = {Dq}Qq=1 unseen during meta-training. In this thesis, we consider
the Few-Shot Learning scenario, where the training set of each task consists of only a handful of
data points (e.g., 1 to 5 examples per class for each task), which is often referred to as a K-shot
learning setting where the model is adapted to a novel task using only K training samples per
class. Additionally, in its standard form, all the tasks share the same domain and fall under the
same underlying general classi�cation task. As such, to avoid confusion, we also refer to them
as sub-tasks to di�erentiate them from the main classi�cation task in cases where confusion may
arise, as mentioned in Section 1.3.

2.2.1 Generalization

Under the previously highlighted settings, the learning problem becomes more elaborate and in-
volves many possible variations, but regardless of the paradigm and setting to be considered, the
goal remains the same: generalization. For all these settings, the goal of the learning process is not
limited to producing an inference function that models the training data well, but also consists of
the ability to generalize well to data unseen during training. However, it would be unreasonable
to seek an unconstrained generalization to unseen and unspeci�ed examples from a �nite training
data sample since any form of generalization cannot arise in a vacuum, but only as a by-product of
many prior assumptions and helpful information explicitly chosen for the task(s), the domain(s),
and the setting at hand. As a result, the problem of generalization becomes a selection and design
process to specify the optimal and appropriate priors that will maximize the test performances on
the task(s) and domain(s) being considered.

In DL, the set of priors, or inductive biases, consists broadly of the neural architecture used to
construct the model fθ (i.e., the parameter space Θ), the objective function L, and the learning
procedure. All of them are chosen based on the setting being tackled. Similarly, in this thesis, our
contribution process will generally consist of the following two steps:

• We consider one of the paradigms de�ned in Section 2.2 that deals with the problem of
label-e�cient learning.

• We introduce the appropriate set of priors (i.e., mainly the loss function and the model’s
architecture) that better re�ects the setting tackled and produces better generalization than
previous works.

Next, we brie�y introduce the standard steps to be followed in the prior selection and training
stages.

2.3 In Practice

To summarize, let us present the standard steps one might consider when implementing a DL
system to solve a given task under one of the previously de�ned �exible settings. When it comes
to the design and implementation process, the most crucial step is the careful selection of the
appropriate priors that best match the setting and task(s). Overall, this process consists of the
following steps (see Fig. 2.2):
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Objective Function
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Learning Procedure
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Figure 2.2: DL Pipeline. We show the main steps one must follow to implement a DL-based solution for
a given application of interest. In this thesis, we will focus mostly on the design stage of the
objective function and the model’s architecture to de�ne revised inductive biases that better
re�ect the learning paradigm and the task we are interested in.

• De�ning the neural architecture of the prediction function fθ, i.e., the parameter space Θ
of all possible inference functions.

• Finding a good model initialization via transfer learning if such a possibility is available.
• Specifying the loss function L, which is a scalar-valued function that measures the mis-

match between the desired output and the model’s prediction.
• Selecting the learning procedure to optimize the model’s parameters θ.
• Choosing the appropriate task-speci�c metric for evaluation.
• Designing the overall pipeline, from the data manipulation and pre-processing step to the

training, evaluation, post-processing, and even the system deployment.

After these choices are made, the next step is to train the model, i.e., �nding the optimal param-
eters θ∗ that minimizes the loss L over the training set, which is then followed by an evaluation
step, i.e., computing the task-speci�c metric(s) over the unseen examples of the testing set to get
an indication of the generalization capabilities of the model. While all the above steps are impor-
tant, in this thesis, we mostly focus on the prior selection related steps, i.e., model architecture,
objective function, and learning procedure.

While the testing stage is often simple to implement and follows the same procedure as prior
works, the training stage is the most important step since it involves the task of �nding the optimal
parameters that will then determine the degree of generalization the model will exhibit. It involves
solving an optimization problem in Eq. (2.1), i.e., , θ∗ = arg minθRemp[fθ]. In DL, and since
such a problem is often solved using �rst-order methods6, the neural architecture of choice must
be constrained to only using di�erentiable functions to be able to compute the gradients ∇θL
with backpropagation. These gradients are then used to obtain slightly better parameters θ by
adding a small negative amount of them to achieve a slightly lower loss. This method, which con-
sists of alternating between computing the gradients with backpropagation and updating the pa-
rameters following the direction of the negative gradients is what constitutes the backbone of the

6Methods that iteratively update the model’s parameters in order to minimize a given objective function using only
the �rst derivative of the objective function with respect to the learnable parameters.
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learning algorithms in DL, i.e., the gradient descent algorithm. Practically, and since the datasets
used in DL are often very large, computing the gradients over all examples is infeasible. As a result,
we iterate over the whole dataset, computing them over only a limited number of examples (i.e.,
a mini-batchB) each time, i.e., the Stochastic Gradient Descent (SGD) algorithm. In addition to
SGD, there also exist other neural network optimizers (e.g., SGD with momentum Sutskever et al.
2013, ADAM Kingma et al. 2014a, and SAM Foret et al. 2021) that di�er in the manner in which
the gradients are computed to promote additional properties, such as faster convergence, better
robustness or more stable training.

To summarize, the learning procedure in DL consists overall of the following steps, which are
repeated until convergence:

1. Sample a mini-batch B ∼ Dtr ofNB training datapoints.

2. Forward each input data point xi ∈ B through the prediction function to get the predic-
tion fθ(xi).

3. Compute the average loss over the mini-batch between the predictions and the desired out-
puts, i.e., 1

NB

∑NB
i=1 L(f(yi, fθ(xi)).

4. Compute the gradients of each parameter of the model with respect to the loss using back-
propagation.

5. Apply a gradient step to update the parameters with a neural network optimizer such as
SGD.

Note that the above steps only describe a standard learning procedure. While the process is
very similar in a meta-learning setting, some additional steps are needed. For instance, the �rst
step consists of sampling a mini-batch of tasks, then sampling a mini-batch of examples for each
one of the sampled tasks. Additionally, some meta-learning methods such as MAML (C. Finn et al.
2017) are based on second-order methods, where the model’s parameters are meta-learned so that
the model is easily adaptable at test time.

Key Takeaways

• DL consists broadly of designing inference functions based on deep neural net-
works trained in an end-to-end manner to solve a given task of interest.

• When designing a DL-based system, the aim is to equip it with a good degree of
generalization that is su�cient for the system to be deployed on real-world data
while maintaining acceptable performances.

• The design stage of a given DL system often consists of selecting the appropriate set
of inductive biases (e.g., model architecture, learning objective, and learning pro-
cedure) that are appropriate to the setting and task(s) we are tackling so that the
desired degree of generalization can be attained.
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• After the design stage, the DL model is then trained on the provided training data
under the pre-de�ned inductive priors and then evaluated on held-out test data to
provide a proxy measure of the eventual performance during its deployment.

Usage

In this thesis, we will follow this same DL pipeline and set to introduce better and more ap-
propriate inductive biases for various settings we consider under the constraint of limited
labeled data and for various tasks.

Conclusion
In this �rst chapter, we presented the reader with the standard formulation of a learning
problem, the di�erent learning paradigms we consider in this thesis, and the standard DL-
based pipeline to be followed to solve a given task.
Next, we introduce these learning paradigms in more detail in Chapter 3. It is then fol-
lowed in Chapter 4 by an introduction of the tasks we consider, with their de�nitions, the
models used to solve them, and the data used to train and evaluate the proposed methods.
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3 Learning Paradigms

This second chapter presents the di�erent DL approaches that leverage the scenarios introduced
in Chapter 2, i.e., the type of training data available, the domains the data belong to, and the
task(s) to be solved.

Speci�cally, we detail the popular methods for the di�erent learning paradigms that tackle the
learning problem under limited labeled data constraints. These methods set to de�ne the correct
priors, mainly the objective function and the learning procedure that best matche the setting at
hand. Generally, for each paradigm, we try to formulate the learning problem as a prediction task
and train a model to produce predictions that match a given target set, even if the actual underlying
targets are unavailable or inaccessible. This process enable us to extract a training signal even if the
labels are unavailable.

3.1 Supervised Learning

Supervised Learning (SL) remains to this day, the most widely used method to solve many predic-
tion problems for various applications that require complex mappings from the observations to
the desired targets. While currently very popular, this paradigm has existed for decades and was
used for di�erent commercial applications. However, such applications were limited to straight-
forward and elementary problems.

SL is a learning paradigm in which we assume that a su�cient and representative amount of
labeled data consisting of input-target pairs (i.e., the input x and its corresponding desired out-
put or target y) is provided to us in advance. This data enables us to learn an optimal inference
function to solve the problem of interest. Common SL problems consist of classi�cation tasks
where we learn a mapping from the inputs to classes or category IDs and regression tasks where
the outputs are real-valued. In this work, we are mainly interested in classi�cation tasks.

To solve a classi�cation task over C classes or categories we are interested in using SL, we �rst
design our modelf as a deep neural network so that its output ŷ = f(x) is a vector ofC values per
a given inputx. In this case, ŷ is interpreted as probabilities over theC classes, i.e., ŷ ∈ [0, 1]C and
ŷc as the probability of predicting class c ∈ {1, . . . , C}. The standard choice to cast the outputs
into probabilities is either a softmax layer (i.e., softmax(ŷc) = eŷc∑C

j=1 e
ŷj

) forC-way single-label

classi�cation, or a sigmoid activation function (i.e., sigmoid(ŷc) = 1
1+e−ŷc

) for binary or a C-
way multi-label classi�cation. Then, to train our model to assign the correct classes to each input
data point, we need to optimize its weights so that it assigns 1 to the true class(es) and 0 to all
the rest. This is generally done using the Cross-Entropy (CE) loss as the objective function. The
CE loss measures the di�erence between the output ŷ, which is interpreted as probabilities over
theC desired classes, and the corresponding ground-truth label y, which is the true distribution
that has all probability mass on the correct class(es). With ŷc and yc are the output probabilities
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approximated using the model’s output and ground-truth label for a given class c ∈ {1, . . . , C},
respectively, the CE loss is de�ned as follows:

LCE(y, ŷ) = −
C∑
c=1

yc log(ŷc) (3.1)

Starting from randomly initialized parameters θ, and by minimizing the average CE loss over
a batch of examples during the training stage, and by following the standard SGD-based training
procedure (e.g., Section 2.3), we obtain the optimal parameters so that the model produces the
correct classi�cations over the unseen examples. Note that optimizing Eq. (3.1) is equivalent to
maximizing the likelihood of data where one seeks to �nd the parameters of the model that max-
imize the probability of the data under such a con�guration (Goodfellow et al. 2016), making the
CE loss a theoretically sound choice in such a setting.

3.1.1 A Related Setting: Transfer Learning

Transfer Learning (TL) (Pan et al. 2009) aims to improve the learning of an inference function on
the target domainDt to better solve the target task TT using knowledge from the source, even if
the source and target domains or tasks di�er. Under such a de�nition, the two possible supervised
variations of TL are:

• Inductive TL, in which the source and target tasks are di�erent, thus requiring labeled
data in the target domain to learn the inference function. If we have access to source data,
both tasks can be simultaneously learned using multi-task learning (Y. Zhang et al. 2018).
Otherwise, if the source data is unavailable, we must �nd an alternative method to trans-
fer knowledge from the source. A possible choice is initializing some or all of the model’s
parameters before the SL-based training (i.e., �ne-tuning) on the target domain.

• Transductive TL, in which the tasks are the same, but the two domains are di�erent. La-
beled target data is not required, while source-labeled data is necessary to train the model.
This scenario also requires an adaptation step to consider the source-target domain gap.
This scenario is often investigated in detail under the Domain Adaptation setting.

In this thesis, the usage of TL will always refer to the inductive case of TL. Instead of randomly
initializing the model’s parameters, we often transfer some knowledge from a related source task
by initializing a relatively large portion of model’s parameters from a model trained to solve the
source task on the source domain1 While still requiring ample target-labeled data, this initializa-
tion scheme often helps in reducing the amount of labeled data needed to train the model, result-
ing in faster convergence and more stable training.

1In image segmentation, for instance, the model consists of two submodules: an encoder or a feature extractor and a
decoder. The encoder is often initialized from a pre-trained classi�cation model trained on a given source classi�-
cation task, such as ImageNet, while the decoder is often initialized randomly and trained from scratch.
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3.1.2 A Related Setting: Few-Sample Fine-Tuning

If the source and target tasks and domains are su�ciently similar, TL can be a simple and e�ective
method to overcome the scarcity of labeled data on target by transferring knowledge from a re-
lated source task with readily available labels. In recent years, with the introduction of large-scale
standardized datasets (e.g., ImageNet Deng et al. 2009, Kinetics Carreira et al. 2017, COCO T.-Y. Lin
et al. 2014, or WMT16 Bojar et al. 2016) and the availability of pre-trained models on such datasets
in open source access2, the TL procedure has become very popular and almost synonymous with
the standard SL approach.

However, if the target and source tasks are su�ciently di�erent (e.g., image classi�cation and
image segmentation) or the domain gap between the source and target is considerable (e.g., from
synthetic to real images), the TL scheme3 fails and can even lead to performance degradation.
This phenomenon is known as negative transfer (Z. Wang et al. 2019). In this case, we fall back to
the standard SL setting, requiring signi�cant supervision to obtain a good model. Additionally,
even in cases where TL might be helpful, if the amount of labeled data is minimal, the classic �ne-
tuning optimization process can be very unstable and sensitive to the di�erent hyperparameters,
often leading to degenerate models (Dodge et al. 2020), and making it insu�cient to obtain good
performances. In this thesis, we refer to this scenario as a Few-Sample Fine-Tuning (FSFT) set-
ting, and set to develop a stable and well-performing �ne-tuning method that better leverages the
knowledge transferred from the source but with minimal target supervision.

Key Takeaways

• In SL, we are provided with a su�cient amount of labeled training data that consists
of input-label pairs corresponding to the task we want to solve.

• The model is often trained with a CE loss with this large labeled training data and
is then evaluated on unseen test data from the same distribution.

• In cases where a pre-trained model on a related source task and from a relatively
similar source domain is available, we can follow the TL paradigm and transfer the
knowledge from such a source to the desired target. This is done by initializing
part or all of our model’s parameters from a pre-trained version. It often results in
faster convergence, more stable training during �ne-tuning, and a reduction in the
amount of labeled data required.

• Under the TL paradigm, and in cases where the source and target tasks and domains
are su�ciently di�erent, and the labeled data target is minimal, the standard �ne-
tuning method becomes insu�cient and requires adjustments to adapt it to such a
setting, which we refer to as FSFT.

2For example: https://pytorch.org/serve/model_zoo.html
3More speci�cally, the inductive TL scheme in which: i) the source and target tasks are di�erent, e.g., language mod-

eling and text classi�cation and ii) we have sequential access to labeled data in both the source and target domains.
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(a) Low density region (b) Supervised Decision

Boundary

(c) Semi-supervised Decision

Boundary

(d) Adversarial Perturbation

Labeled Data Unlabeled Data

Figure 3.1: Effect of SSL on the learned decision boundary. An illustration of the di�erent
learned decision boundaries. The red and blue circles represent labeled data points of di�er-
ent classes. The gray circles represent unlabeled data points. (a) The two classes are separated
by a low-density region illustrated in gray, providing additional clearance when placing the de-
cision boundary while maintaining optimal performance. (b) The learned decision boundary
if only labeled examples are used. (c) The learned decision boundary when unlabeled data are
leveraged using a semi-supervised technique. (d) An example of an adversarial perturbation over
the unlabeled data points. From all the ε spheres of possible transformations to be applied to
the unlabeled data, the adversarial perturbation r is chosen to alter the example class by crossing
the decision boundary, i.e., in the direction of the decision boundary.

Usage

In this thesis, our objective is to introduce methods that can produce well-performing
models similar to those that could be obtained using SL but under the constraint of limited
labeled data. Additionally, we will often use the SL or TL approaches as starting points for
developing new methods or as baselines when evaluating them. For instance, in Chapter 5,
we will use SL as our baseline in an SSL paradigm. In Chapter 8, we will cast the few-shot
classi�cation problem as a TL one and set to develop a better pre-training objective.

3.2 Semi-supervised Learning

In Semi-supervised Learning (SSL), we are provided with a dataset containing labeled and unla-
beled examples to solve a task of interest. The portion of labeled examples is usually small com-
pared to the unlabeled examples (e.g., 1% to 10% of the total number of examples). The goal is
to extract an additional and useful learning signal from the unlabeled examples to obtain a better
generalization. This setting’s training and testing data come from the same domain, i.e., a single
domain setting.

More formally, given a training dataset Dtr, divided into a labeled Dtr
l and an unlabeled Dtr

u

subsets, the objective is to leverage the unlabeled set to train a better-performing model than the
one obtained using only the labeled portion with the SL baseline, and hopefully, get closer to the
optimal performance that could be obtained if the entirety of the training dataset was labeled. In
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terms of the learning objective, the goal of SSL is to leverage the unlabeled data Dtr
u to produce

a better prediction function f than what could have been obtained using the labeled data Dtr
l

only. For instance,Dtr
u might provide us with additional information about the structure of the

data distribution p(x) to better estimate the decision boundary between the di�erent classes. As
shown in Fig. 3.1 (a-c), when the data points with distinct labels are separated with a low-density
region, leveraging unlabeled data with an SSL approach can provide us with additional informa-
tion about the shape of the decision boundary between two classes, thus reducing the ambiguity
present in the supervised case in which only the labeled examples are used.

3.2.1 Main Assumptions.

Before introducing the popular SSL approaches, the �rst question we need to answer is under
what assumptions or conditions can we apply SSL algorithms? SSL algorithms are only e�ec-
tive if some assumptions about the data structure hold for both the unlabeled and labeled sets.
Otherwise, without such assumptions, it would not be possible to extract any meaningful train-
ing signal from the unlabeled examples and learn a better model that generalizes well. The main
assumptions in SSL are as follows:

• The Smoothness Assumption. If two input data points x and x′ that reside in a high-
density region are close, so should their corresponding outputs y and y′ (Chapelle et al.
2009). It means that if two inputs are near each other in a high-density region of the input
space, then their corresponding outputs cannot be arbitrarily di�erent from each other.

• The Cluster Assumption. If two points belong to the same cluster, they are likely to be
of the same class (Chapelle et al. 2009). It can be viewed as a special case of the smooth-
ness assumption, where we suppose that input data points form clusters, and each cluster
corresponds to one of the desired output classes.

• The Manifold Assumption. The high-dimensional data lies roughly on a low-dimensional
manifold (Chapelle et al. 2009). If our input data lies on some lower-dimensional manifold
within the high dimensional space, we can try to discover such low dimensional represen-
tation using the unlabeled data, then use the labeled data to solve a simpli�ed learning task
in the lower dimensional space.

3.2.2 Dominant Approaches.

Under one of these assumptions, many SSL methods and approaches have been introduced over
the years to leverage the unlabeled examples and obtain better performances compared to the su-
pervised baseline. These algorithms can be broadly divided into the following categories:

• Consistency Training or Consistency Regularization. Such methods (Laine et al. 2016;
Miyato et al. 2018; Verma et al. 2022; Xie et al. 2020) are based on the conjecture that if a
realistic perturbation4 is applied to an unlabeled data point, the model’s prediction on this

4Realistic perturbations are the set of perturbations that can occur naturally during the data collection, processing and
transmission steps, e.g., di�erent lighting conditions, various orientations, and viewing angles, or a small amount
of Gaussian noise.
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perturbed version should not change signi�cantly compared to the clean one. The model
can then be trained to have consistent predictions on unlabeled and perturbed examples.

• Pseudo-Labeling. Such methods (D.-H. Lee 2013; Pham et al. 2021; Shi et al. 2018; Sohn et al.
2020) leverage a trained model on the labeled set and use it as a labeling function to produce
additional training examples by labeling instances of the unlabeled set. If these pseudo-
labeled examples satisfy a given set of heuristics (e.g., threshold based selection), they can
be added to the existing labeled training set, and the model can then be �ne-tuned using
this newly expanded set.

• Generative Models. Such methods (Kingma et al. 2014b; A. Kumar et al. 2017; Odena 2016)
are based on the assumption that if a generative model is capable of generating realistic
images from the data distribution p(x) learned based on unlabeled data, then it must also
learn useful and transferable features that can be leveraged to solve a discriminative task
using the labeled examples.

• Graph-Based SSL. Such methods (Iscen et al. 2019; B. Jiang et al. 2019; Subramanya et al. 2014;
Z. Yang et al. 2016; Zhu 2005) consider the labeled and unlabeled data points as nodes of a
graph. They then focus on introducing methods to propagate the labels from the labeled
nodes to the unlabeled ones on the constructed graph. For instance, label propagation can
be based on the similarity between two nodes x and x′, which representations the edge
weight between them, to assign labels to the unlabeled nodes.

In this thesis, we focus on Consistency Training and Pseudo-Labeling based methods since
they use similar architectures and training procedures as the supervised case, with only minor ad-
justments to leverage the unlabeled dataDtr

u . Broadly, while sharing a common framework, such
methods di�er in their loss formulation by using an additional unsupervised auxiliary loss to be
computed over the unlabeled examples. In this case, the total lossL consists of such an unsuper-
vised lossLu, in addition to the traditional supervised lossLs computed only over the labeled set
Dtr
l . The standard CE loss is often chosen as the supervised loss as formulated in Eq. (3.1). The

total training loss L is then de�ned as a simple summation of the two losses, with an unsuper-
vised loss weighting ωu ∈ R+ to control the contribution of Lu. As such, the total loss to be
minimized can be computed as follows:

L = Ls + ωuLu =
1

|Dtr
l |

∑
xi,yi∈Dtr

l

LCE(yi, f(xi)) + ωuLu (3.2)

3.2.3 Consistency Training

Consistency Training based-SSL methods favor inference functions that give consistent predic-
tions over similar unlabeled data points. Rather than minimizing the classi�cation cost at the
zero-dimensional data points of the input space, the model is trained to minimize the cost on a
manifold around each data point. It thus pushes the decision boundaries away from the unlabeled
data points and smoothing the manifold on which the data reside (Zhu 2005). Concretely, in its
simplest form, given an unlabeled data point xi ∈ Dtr

u and a slightly perturbed version of it x̃i,
the unsupervised loss measures the distance d between the two corresponding outputs produced
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by a given inference function f , i.e., d(f(xi), f(x̃i)). Therefore, given two outputs f(xi) and
f(x̃i) in the form of a probability distribution over theC classes, we consider f(xi) as the target
and force f(x̃i) to be similar to it. In this case, the lossLu to be minimized is computed as follows:

Lu =
1

|Dtr
u |

∑
xi∈Dtr

u

d(f(xi), f(x̃i)) (3.3)

In this case, the distance measure d(., .) is often chosen as either a Mean Squared Error (MSE) or
a Kullback-Leibler (KL) divergence, de�ned as follows:

dMSE(y, y′) =
1

C

C∑
c=1

(yc − y′c)2

dKL(y, y′) =
C∑
c=1

yc log
yc
y′c

(3.4)

with y and ŷ as any two output probability distributions over theC desired classes, and yc and ŷc
as the probability of predicting class c ∈ {1, . . . , C}. Note that the loss in Eq. (3.3) can also take
di�erent forms based on the same concept. For instance, the perturbed output can be obtained
using perturbed features instead of a perturbed input. Additionally, instead of using the clean
output as the target, the perturbed output can be considered as the target, i.e., f(x̃) as the target
and force the clean prediction f(x) to be similar to it.

Furthermore, under this framework, the various consistency training-based SSL methods di�er
along two axes: i) the choice of the perturbation method applied to the unlabeled examples and
ii) how the target for a given unlabeled input is obtained. In the following, we list some possible
choices for both of these two variables:

• Perturbation method. In terms of the choice of perturbations, Ladder Network (Rasmus
et al. 2015) injects Gaussian noise into the intermediate features instead of the inputs, while
Virtual Adversarial Training (VAT) (Miyato et al. 2018) tries to make the predictions invari-
ant to small transformations by choosing additive perturbations r in the adversarial direc-
tion of a given unlabeled input, i.e., so that the predicted class changes as illustrated in
Fig. 3.1 (d).

• Target generation. For the generation of the targets, the proposed methods try to improve
over the the naive approach of using the model’s output as a target, i.e., f(xi), to avoid
noisy targets that change from one iteration to the other. Temporal Ensembling (Laine et
al. 2016), for example, proposed to maintain an Exponential Moving Average (EMA) of
the targets for more stable training. Speci�cally, for each unlabeled training sample xi, we
maintain a EMA of its prediction noted yema

i , then, at a given training iteration, yema
i is

updated using the model’s current prediction f(xi) as yema
i ← αyema

i + (1 − α)f(xi)
which is then used as the target, with α as a momentum term that controls how far the
current targets reach past target values. On the other hand, Mean Teacher (Tarvainen et al.
2017) maintains an EMA of the model’s weights instead of the outputs. Speci�cally, with
θ as the model’s weights at the latest training iteration, the EMA version of its weights is
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computed as θema ← αθema + (1− α)θ. The target for a given unlabeled data point can
then be obtained using this EMA version of the model (i.e., fθema(x)) and used to compute
the unsupervised loss.

3.2.4 Pseudo-Labeling

Pseudo-Labeling (D.-H. Lee 2013; Shi et al. 2018), and related methods such as Self-Training (Mc-
Closky et al. 2006; Rilo� 1996), are the class of SSL algorithms that produce pseudo-labels (i.e., au-
tomatically generated ground truths) for the unlabeled data points. These pseudo-labels can then
be used to train a new version of the prediction function over both the original labeled set and the
unlabeled examples with newly generated pseudo-labels following the standard CE-based super-
vised training. These pseudo-labels are often generated using the prediction function itself, either
online where we pick the class with the maximum probability at each training iteration (D.-H. Lee
2013) and use it as a pseudo-label simultaneously, or sequentially where we �rst train the model
on the labeled set, use it to generate the pseudo labels, and then re-train the model with both the
labeled set and the newly labeled portion of the unlabeled set. They can also be generated with
more elaborate methods such as neighborhood graphs (Iscen et al. 2019) or with models trained on
di�erent data views as in Multi-View learning (A. Kumar et al. 2011). However, while these pseudo-
labels provide some additional and useful training information, the performance might degrade if
the produced labels are very noisy and do not re�ect the ground truth. As a result, many methods
(Rizve et al. 2021; Shi et al. 2018) try to add a �ltering step to only use the con�dent and clean predic-
tions as pseudo-labels. Precisely, in its simplest and most popular form, pseudo-labeling consists
of using the inference function f itself (i.e., often initially pre-trained on the small labeled setDtr

l )
to assign pseudo-labels to the unlabeled data points xi ∈ Dtr

u provided that the model’s predic-
tions pass some �ltering step. Speci�cally, given a prediction f(xi) corresponding to an unlabeled
data pointxi in the form of a probability distribution over theC classes we are interested, the pair
{xi, argmax(f(xi))}5 is considered a newly labeled data point if some heuristic is met, e.g., the
probability assigned to the most likely class is higher than a predetermined threshold τ . The unsu-
pervised loss can then be computed using the standard CE loss over the unlabeled examples that
satisfy the chosen heuristic:

Lu =
1

|Dtr
u |

∑
xi∈Dtr

u

1max(f(xi))>τ LCE(argmax(f(xi)), f(xi)) (3.5)

with 1cond ∈ {0, 1} as an indicator function evaluating to 1 i� cond is satis�ed, and where the
application of the argmax(.) operation over the output probabilities results in a valid one-hot
probability distribution where all of its mass is assigned to the class with the maximum probabil-
ity. Note that pseudo-labeling with its use of hard labels (i.e., one-hot vectors) is similar to that
of entropy minimization (Grandvalet et al. 2005). In both cases, the network is forced to output
low-entropy (i.e., con�dent) predictions. While simple and often e�ective, the main downside of

5Here, we abuse the argmax notation, and follow previous works by considering that argmax(ŷ) results in a one-
hot vector, with 1 set to the class cmax with the maximal assigned probability, i.e., cmax = argmax

1≤c≤C
(ŷc) with ŷc

as the probability assigned to class c ∈ {1, . . . , C}.
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such methods is that the model is unable to correct its own mistakes, and any biased and wrong
classi�cations can be quickly ampli�ed, resulting in con�dent but erroneous pseudo-labels.

3.2.5 A Related Setting: Weakly-Supervised Learning

In Weakly-Supervised Learning (WSL), we are provided with weaker and coarse annotations in-
stead of a ground-truth labeled training set with the exact �ne annotations we desire. These an-
notations could come from crowd workers, be the output of heuristic rules, or be the result of
distant supervision (Mintz et al. 2009). The objective, in this case, is to extract a training signal
useful for the actual desired task with �ne predictions. For instance, for the task of image segmen-
tation (i.e., assigning a class to each pixel of the input image), weakly-supervised segmentation
methods consist of leveraging a weaker level of supervision (e.g., image-level annotations) to train
the segmentation network instead of the expensive per pixel (i.e., pixel-wise) annotations. Such
weak labels can come in di�erent forms, such as bounding boxes (J. Dai et al. 2015b), scribbles (D.
Lin et al. 2016), points (Bearman et al. 2016) or image-level labels (Papandreou et al. 2015a). Bounding
boxes are the conventional representation of object positions and their classes used for object de-
tection. Scribbles refer to earmarking each type of semantics as a mark. Points imply the object’s
central location in the image. Image-level labels are simply the category IDs of the objects in the
input image. Among all these di�erent levels of supervision, image-level supervision remains the
weakest one, in which the labels can be obtained more easily and e�ciently than the rest. Using
image-level supervision, related methods generally involve two consecutive steps:

• Generation. The weakly labeled examples are �rst used to generate sparse and often impre-
cise pixel-level labels, which are then re�ned to correct the wrongly labeled regions, result-
ing in cleaner and more precise �ne-grained pseudo-pixel-level labels.

• Training. The generated and re�ned pseudo labels can then be used to train a segmentation
network following the standard CE-based SL setting.

Note that the weakly labeled setDtr
w can also be accompanied with a smaller �nely annotated

setDtr
l , i.e.,Dtr = Dtr

l ∪ Dtr
w . It thus makes such a version of WSL closely related to the setting

of SSL where the unlabeled set Dtr
w is replaced with a weakly labeled set Dtr

w . In this setup, we
can combine SSL and WSL approaches to extract a better training signal from the weakly labeled
set by generating �ne pseudo-labels in addition to using an SSL approach using the inputs only
without their weak labels. In Section 5.4.4, we investigate this scenario and show that it leads to
better results.

Key Takeaways

• In SSL, the training set we are provided with consists of a small labeled set and a
larger unlabeled set, both from the same distribution.

• The goal of SSL is to leverage the available unlabeled data to obtain better-
performing models than what could have been obtained using only the labeled set.

• The two lines of work relevant to us under the SSL setting are consistency training
and pseudo-labeling methods.
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• In consistency training, the model is trained on a given unlabeled data by forcing it
to have consistent predictions, with and without some perturbation. The decision
boundary is thus forced to lie in low-density regions of the input space.

• In pseudo-labeling, the model itself is used to generate pseudo-labels on the unla-
beled data. The newly generated pseudo-labeled data points are then added to the
training set to train the model further.

• In WSL, we are provided with a weakly labeled set, i.e., the provided labels do not
correspond to the desired targets, and the objective is to leverage this weak set to
train a model capable of solving the desired task.

Usage

In Chapter 5, we consider the setting of SSL and develop a new approach for image seg-
mentation. Speci�cally, we introduce Cross-Consistency Training (CCT), a consistency-
based SSL approach tailored for the image segmentation task. Additionally, we use a form
of pseudo-labeling to leverage weakly-labeled data (i.e., image-level labels) in cases where
they are available to improve the performance of the proposed CCT approach. In Chap-
ter 7, we propose integrating consistency training into a UDA framework and show that
this leads to better performances.

3.3 Unsupervised Learning

Unsupervised Learning (UL) can be generally de�ned as the set of methods attempting to extract
useful information from the data without any explicit supervised signal. In this work, we di�er-
entiate between two lines of UL work:

• Generative UL. It aims to extract useful information from the underlying data distribution.

• Discriminative UL with two possible objectives:

– Clustering: directly predicting class assignments that correspond to some semanti-
cally meaningful aspects of the data.

– Representation Learning: learning useful and general-purpose representations that
can be used on a downstream task of interest.

Alternatively, these two types of UL can also be categorized based on their learning objective.
In unsupervised generative methods, we want to learn a maximum likelihood estimation of the
true data distribution. In unsupervised discriminative methods, we want to learn a one-to-one
mapping for solving some unsupervised prediction task, which can be de�ned based on either a
clustering or a representation learning objective.
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3.3.1 Generative UL

In deep generative UL, a.k.a. deep generative modeling, we are primarily interested in a parametric
approximation of the data distribution, which summarizes all the information about a datasetD
with a �nite set of parameters. For instance, given access to a datasetD drawn from some underly-
ing and unknown distribution pdata, the objective is to learn a generative model with parameters
θ within the space of possible models, such that the model pθ6 provides a good approximation
of the data distribution pdata. Formally, with pdata as the data distribution accessed through the
empirical dataD and d as a distance measure between two probability distributions, the training
objective is de�ned as follows:

min
θ

d(pdata, pθ) (3.6)

During inference and with a learned joint distribution over the entire data, generative models
can be used for either i) density estimation, i.e., given an example x, we can approximate its like-
lihood of being drawn from the same data distribution pdata as the training samples with pθ(x),
a measure that can be useful in detecting outliers and other data anomalies. ii) sampling, i.e., we
can generate novel examples from the model distribution xnew ∼ pθ, or iii) feature extraction,
while not their primary usage of such models, we can also use them as feature extractors to extract
useful representations of a given example x.

In this thesis, we take inspiration from the structure of a speci�c and popular type of generative
models called autoregressive models (X. Chen et al. 2018; Salimans et al. 2017; Van den Oord et al.
2016) that are applied to the image domain. With an autoregressive model, the joint probability
distribution of high-dimensional data, or more speci�cally images, is decomposed as a product
of conditionals over its sub-components (i.e., the pixels) for tractable likelihood computation.
Concretely, the joint probability p(x) of an image x is factorized as a product of conditionals
over its n pixel xi as follows:

p(x) =
n∏
i=1

p(xi|x1, . . . , xi−1) (3.7)

The model p(xi|x1, . . . , xi−1) is then trained to predict the current pixel xi based on the past
values x≤i−1 in a raster scan fashion (i.e., left-to-right and top-down) using masked convolutions
(Van den Oord et al. 2016) as illustrated in Fig. 3.2. After being trained, the model can either be used
for likelihood estimation by computing the product of conditions, or for generation by producing
new images one pixel at a time, starting from pixel x0 up to xn, and at each time step, the current
pixel xi being generated is conditioned on the previously generated pixels.

In terms of speci�c implementations of these autoregressive models, there is a large body of
work (X. Chen et al. 2018; Salimans et al. 2017; Van den Oord et al. 2016) proposing various modeling
methods in the domain of natural images. The standard PixelCNN model (A. v. d. Oord et al. 2016;
Van den Oord et al. 2016) speci�es the conditional distribution of a sub-pixel, or color channel of a
pixel, as a full 256-way softmax. While PixelCNN++ (Salimans et al. 2017) models the conditional

6For a more accurate notation, in generative modeling, we often denote the learnable function as pθ instead of fθ ,
since the model pθ can be viewed as a probability density function or a probability mass function on the input
space.
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Figure 3.2: An example of an autoregressive model. An illustration of some components of the
autoregressive model PixelCNN. (a) The outputs of PixelCNN at a given spatial location. The
model predicts the color information of the input pixel at a given location based solely on the
pixels to the left and above its position, illustrated in light red. In this case, the output layer is
a 256-way softmax assigning a probability over all possible 8-bit colors for each channel sepa-
rately. (b) An example of 3× 3 kernel of a masked convolution operation. The masking main-
tains the correct dependencies between the inputs and the outputs. (c) By applying a series of
convolutions with the causal masking shown in (b), we obtain the desired receptive �eld where
each feature only depends on the input pixels at positions above it and to the left of it.

distribution as a mixture of logistics. In both cases, causal convolutions are used to process the
initial image x in an autoregressive manner. In contrast, Image (Parmar et al. 2018) and Sparse
(Child et al. 2019) transformers use self-attention (Vaswani et al. 2017) over the input pixels. While
PixelSNAIL (X. Chen et al. 2018) combines both attention and masked convolutions for a larger
receptive �eld and more e�cient likelihood estimation.

3.3.2 Discriminative UL

Clustering

Clustering aims to group semantically similar data into the same cluster based on some similar-
ity measure. Although e�ective when applied to simple problems, conventional methods usually
perform poorly on high-dimensional data due to the ine�ciency of the similarity measures used
in these methods, which often su�er from high computational complexity on large datasets. To
overcome this, DL models can be used to transform the high-dimensional input data into a lower
dimensional space, in which the representations are more clustering-friendly. For instance, Deep
Clustering Network (P. Huang et al. 2014) combines an auto-encoder with the k-means algorithm.
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First, the auto-encoder is pre-trained with a reconstruction objective, followed by joint optimiza-
tion of both the reconstruction and the k-means-based clustering loss. Based on a similar frame-
work, Deep Embedding Network (DEN) (B. Yang et al. 2017) proposes adding a locality-preserving
constraint to preserve the original data’s local structure.

In recent years, a growing line of work based on Invariant Information Clustering (IIC) (Ji et al.
2019) proposes end-to-end clustering methods based on Mutual Information (MI) maximization,
in which the cluster assignments are directly learned without an intermediate dimensionality re-
duction step. Speci�cally, for a given input image x ∈ X , the goal of IIC is to learn a an inference
function fθ that preserves what is in common between two di�erent views or augmentations of
the input x while discarding instance-speci�c details. In terms of the optimization objective, this
can be achieved by maximizing the MI I between the model’s predictions fθ(x1) and fθ(x2) as
follows:

max
θ
I(fθ(x1); fθ(x2)) (3.8)

where the two predictions fθ(x1) and fθ(x2) are in in the form of a probability distribution over
the K desired clusters and with x1 and x2 as two augmented versions of the input x. In Chap-
ter 6, we will present this MI maximization-based learning objective in more detail and propose
an adaptation of it for the task of unsupervised image segmentation.

Representation Learning.

In representation learning (Bengio et al. 2013), the main goal is to train a model, or more accu-
rately a feature extractor, that maps the raw input data into a feature space that only captures the
useful concepts and patterns in a compact representation. These learned features should contain
su�cient knowledge to solve a wide variety of downstream tasks while disregarding the rest of
the irrelevant information. From the view of generalization, its goal is to learn general-purpose
features that generalize well to several diverse and a priori unknown downstream tasks.

In this context, DL-based representation learning methods often consist of reformulating the
task of learning useful features as a discriminative task. It consists of solving a pretext or a surrogate
task that requires some complex understanding of the inputs. As a result of surrogate solving this
task, we hope that the learned features will be helpful in solving the desired downstream tasks.
This way, starting from a fully unsupervised setting and by de�ning some prediction task where
the labels are generated from the data itself, we fall back to a setting similar to that of SL. As a
result, we often refer to this setting as Self-Supervised Learning. One of the main bene�ts of such
a learning objective is the possibility of reusing popular and e�ective SL methods and techniques
and applying them to raw data without any human annotations.

In recent years, self-supervised representation learning has become a popular research topic
within the DL community following the downstream performances it demonstrated. This re-
sulted in the introduction and investigation of a wide variety of surrogate tasks to determine the
ones that give rise to the most valuable features downstream. We propose the following non-
exhaustive categorization of these methods:

• Input Completion. Such tasks consist of masking or removing some portions or aspects of
the inputs and tasking the model with predicting them. For instance, for the task of image
colorization (Larsson et al. 2016; R. Zhang et al. 2016), theRGB images are �rst transformed
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intoLab color space. The model then takes the lightness channelL as input and is trained
to predict the color channels ab. Other examples are Masked Language Modeling (MLM)
used in BERT (Devlin et al. 2019), where the model is tasked with predicting the masked
input tokens, and image inpainting (Pathak et al. 2016), where the model must reconstruct
the masked patch in the input image.

• Predicting Transformations. Another popular set of self-supervised tasks is the predic-
tion of the transformation applied to the input. Such transformations can be simple geo-
metric transformations such as 4 type of rotation resulting in a 4-way classi�cation prob-
lem (i.e., 4 possible rotations: {0◦, 90◦, 180◦, 270◦}), in which the model must predict
the type of rotations applied to the input image (Gidaris et al. 2018c). Similarly, other tasks
consist of predicting the relative position of one patch with respect to the others within
the input image (Doersch et al. 2015), the type of permutation applied to the input patches
(Noroozi et al. 2016), or the camera transformation between a pair of images (Agrawal et al.
2015).

• Invariant Features. Motivated by the fact that di�erent inputs depicting the same objects
or referring to similar concepts should have similar representations, these methods try to
learn features invariant to super�uous aspects of the input while highlighting common and
semantically rich patterns that are meaningful downstream. In an unsupervised setting, a
simple and popular way to generate such super�uous aspects is the use of data augmenta-
tions (e.g., rotation, translation, color jittering, cropping, or more complex combinations
of these elementary transformations, such as AutoAugment (Cubuk et al. 2019a) and Ran-
dAugment (Cubuk et al. 2019b)). Instead of using them as a training regularizer, they are
used to generate two or more augmented versions of a single input. The model is then
tasked with producing similar representations of these inputs. This objective can be for-
mulated as an N -way classi�cation problem (Dosovitskiy et al. 2014), with N as the size of
the data, where each original input represents its own class. The model can then be trained
to assign the correct class to each input’s augmented version. Another set of approaches
(Bachman et al. 2019; K. He et al. 2020; Hjelm et al. 2018a; A. v. d. Oord et al. 2018a; Tian et al.
2019, 2020b), known as contrastive methods, drops theN -way classi�er and optimizes the
features directly, pulling features of similar inputs (i.e., di�erent augmentations of a given
input) closer in the feature space while pushing away the dissimilar examples (i.e., any two
distinct examples). In this thesis, such methods are of interest to us and will be detailed
below.

Contrastive Representation Learning.

Although many of the previously mentioned self-supervised representation methods demonstrated
promising results downstream, contrastive representation learning methods remain the most com-
petitive and best-performing methods for learning useful representations. As illustrated in Fig. 3.3,
the objective in contrastive representation learning is to learn a function that maps semantically
similar data points (i.e., positive pairs) close together in the embedding space while pushing apart
dissimilar points (i.e., negative pairs). One of the major design choices in contrastive learning is
how to select positive and negative pairs. The standard approach for generating positive pairs
without human annotations is creating multiple views of each example. For instance, these views
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Figure 3.3: Contrastive Learning. A schematic view of visual contrastive representation learning. (a)
First, we need to select a positive pair and a set of negative pairs before encoding them and com-
puting the loss. Given an input image, its corresponding positive pair is a transformed version
of itself in the fully unsupervised case, while the negatives are inputs sampled randomly from
the dataset. (b) The contrastive learning objective can then be computed over the encoded fea-
tures, pushing the model to produce similar representations for the positive pairs while simul-
taneously encoding the negatives di�erently.

can be generated by splitting the image into luminance and chrominance (Tian et al. 2019), ap-
plying di�erent random crops and data augmentations (T. Chen et al. 2020; Z. Wu et al. 2018b), or
using di�erent patches within a single image (A. v. d. Oord et al. 2018a). Negative pairs, on the other
hand, can be generated by randomly sampling images and patches from the rest of the dataset.

Formally, we consider a single input mini-batch B = {x,x+,x−1 ,x
−
2 , . . .}, consisting of an

unlabeled input example x in addition to a K + 1 corresponding inputs with a single positive
sample x+ which is an augmented version of x, and K negatives x−i , ∀i ∈ {1, . . . ,K} which
are randomly sampled instances from the training dataset. Using an inference function f , which
we refer to as our encoder since it encodes each example into a code or a feature vector, we obtain
the representations of each example, i.e., f(x) = z for the original input. Similarly, we obtain
the (K+1) corresponding representations {z+, z−1 , z

−
2 , . . .} for the rest of the mini-batch. The

contrastive objective then consists of maximizing the similarity between the input example’s rep-
resentation z and its positive z+, while minimizing its similarity with all of the other negatives
z−i ,∀i ∈ {1, . . . ,K}. Using cosine as our similarity measure (i.e., we often consider that the
representations are L2 normalized, thus only requiring the computation of the dot product to
measure the cosine similarity), the unsupervised contrastive lossLu can be computed as follows:

Lu = − log
exp(z · z+/τ)

exp(z · z+/τ) +
∑K

i=1 exp(z · z−i /τ)
(3.9)

with τ as a temperature hyperparameter (Z. Wu et al. 2018b) that controls the relative importance
of the distances between pairs of points. For instance, at low temperatures, the loss will be dom-
inated by the small distances, while the distances between widely separated representations will
be deemed almost irrelevant. Intuitively, this loss is the log loss of a (K + 1)-way softmax-based
classi�er that tries to classify x as x+.

After training using the objective in Eq. (3.9), the model f learns rich and useful features that
can then be transferred to downstream tasks, such as image segmentation, in which the model
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can be �ne-tuned to the desired performances using a reduced amount of labels. Note that for
simplicity, the loss in Eq. (3.9) represents the loss computed for a single input x. In practice,
for a mini-batch ofN examples, each input within it is augmented to generate its corresponding
positive sample, resulting in a mini-batch of 2N examples. The total loss is then computed over
allN examples, and each time, the 2N − 2 remaining examples are considered as negatives.

Key Takeaways

• In UL, only unlabeled data is available, and the objective is to extract useful infor-
mation from the data without any explicit supervision generated by human labor.

• In UL, we di�erentiate between generative UL, i.e., extracting useful information
from the underlying data distribution, and discriminative UL, i.e., solving some
intermediate tasks to leverage the provided unlabeled data.

• For generative UL, we focus on autoregressive models that try to model the data
distribution with a tractable likelihood computation, in which a given data point is
factorized as a product of conditionals over its sub-components (e.g., an image and
its pixels, respectively).

• For discriminative UL, we di�erentiate between a clustering objective, i.e., predict-
ing class assignments directly, and a representation learning objective, i.e., learning
useful and transferable features.

• For representation learning, we focus on contrastive methods that try to directly
optimize the learned features so that two views of the same input have similar rep-
resentations while also being distinct from the rest of the data samples.

Usage

In Chapter 6, we consider the UL paradigm and introduce a discriminative UL method for
the task of image segmentation. Speci�cally, we will leverage the structure of autoregressive
models and use them as view generators for both a clustering objective (i.e., autoregressive
clustering) and representation learning (i.e., autoregressive representation learning). Ad-
ditionally, in Chapter 8, we will use a novel contrastive learning-based objective for the task
of few-shot classi�cation (i.e., to be introduced in the next section) to learn more general-
purpose and transferable features.

3.4 Unsupervised Domain Adaptation

Despite the empirical success of SL, a critical limitation is often overlooked; the possible distribu-
tional mismatch between the labeled training setDtr and the testing setDtest. In the case of SSL,
we can have the labeledDtr

l and unlabeledDtr
u sets drawn from di�erent distributions. These two

scenarios are often encountered in real-world scenarios and applications, making it a case worth
studying. A popular framework that deals with such a scenario is Domain Adaptation (DA). As
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Figure 3.4: An example of a UDA benchmark. In a UDA setting, we are often provided with a
benchmark consisting of many domains containing the same classes but sampled from a rel-
atively di�erent data distribution. In this �gure, we show examples from O�ce-Home dataset
(Venkateswara et al. 2017) consisting of four domains: Art, Clip Art, Product, and Real World,
with each one containing images depicting 45 everyday objects. When evaluating on such a
benchmark, we often consider all possible pairs of source-target domains, i.e., 6 possible pairs.
We keep the source labels each time, disregard the target labels, and then report the accuracy
obtained on the target examples at the end of training.

opposed to SL, in which the model is tested on examples drawn from the same data distribution
as that of the labeled training set, domain adaptation takes into consideration this distributional
mismatch and adapts the model to a di�erent test distribution than the training distribution.
Note that while the two distributions are di�erent, they remain related and share some common
factors, otherwise, the adaptation task will be infeasible since any form of learning on the training
distribution would not be helpful at test time.

In DA, we consider two domains, a source domain Ds and a target domain Dt with di�erent
marginal probability distributions ps 6= pt. The goal is then to learn a well-performing model on
the target since we postulate that the new examples to be encountered at test time will be more
similar to those of the target domain. Under this de�nition, various subsets of DA deal with
di�erent variations of this problem. For instance, in the supervised case and at training time, we
have access to labels in both the target and source domains. For the unsupervised version (i.e.,
Unsupervised Domain Adaptation or UDA), which will be the focus of this thesis, we only have
a labeled source domain but an unlabeled target domain. For an example of a UDA benchmark,
see Fig. 3.4.

Considering this unsupervised variation (i.e., UDA) of the DA problem, we would like to draw
the reader’s attention to its similarity with the (SSL) setting. In both cases, we have access to a train-
ing set in the form of labeled and unlabeled subsets. In UDA, the two sets are drawn from distinct
data distributions, and the labeled set size is generally more signi�cant than in the SSL case. Such
a similarity might point us to the possibility of leveraging SSL methods and integrating them into
the UDA framework to exploit the unlabeled examples and obtain better target generalization.
We will explore this case in detail as part of one of our contributions in Chapter 6.

Now, given a labeled source and an unlabeled target under the UDA setting, the obvious ques-
tion to be raised is how we can adapt the model to the target domain using the provided unlabeled
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Figure 3.5: Domain-Invariant Representations. The general framework of domain-invariant rep-
resentations based UDA methods. (a) During training, the whole model (i.e., the feature ex-
tractor and the classi�er) is trained on the source-labeled data with the standard CE loss, while
the feature extractor is trained with an additional alignment loss to enforce an invariance of fea-
tures across the two domains. (b) At inference, we fall back to the standard usage in which the
model is used to classify the unseen examples from the target domain.

target sample, while also leveraging the source labels to learn a well-performing classi�er. Largely,
UDA methods solve this problem with two main types of approaches (Ruder 2019):

• Representation methods. Such methods (Ganin et al. 2015; Gretton et al. 2007; M. Long
et al. 2015) try to cast both source and target data into a shared low-dimensional feature
space containing the common factors and aspects of the two domains, so that a classi�er
trained on the source features will be directly usable on the target features, i.e., learning
Domain-Invariant Representations.

• Weighting and Selection methods. Such methods try to correct for the source-target
distributional discrepancy by either re-weighting (J. Huang et al. 2006; J. Jiang et al. 2007;
Sugiyama et al. 2008; Tsuboi et al. 2009) the source samples so that this discrepancy is mini-
mized, or by applying a binary weighting (Plank et al. 2011; Remus 2012) where the possible
harmful examples are completely ignored.

In this thesis, we focus on domain-invariant representation-based methods and detail the most
popular ones in the following.

Domain-Invariant Representations

Methods that fall under this category try to solve the source-target discrepancy by enforcing an
invariance of their representations. A feature representation can be considered domain-invariant
if the features follow the same distribution regardless of whether the input comes from the source
or target domain (H. Zhao et al. 2019). In this case, if a classi�er can be trained to do well on source
using domain invariant features, then such a classi�er may generalize well to the target domain.
However, such methods assume that a possible shared representation space exists and that the
marginal label distributions are relatively similar in both domains. Otherwise, the adaptation fails.

As illustrated in Fig. 3.5, domain-invariant-based methods can be described using a shared
framework. Precisely, the model consists of two components, a feature extractor (e.g., a standard
deep neural network) and a shallow classi�er (e.g., a linear classi�cation layer). At training time,
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in addition to training on the labeled source data following the standard CE-based SL approach,
an alignment loss is also used to impose the invariance of the representations over the feature ex-
tractor. Then, at inference, the model can be used directly to infer the labels of the data coming
from the target distribution. Under this framework, the popular UDA methods are:

• Divergence. A possible approach for aligning the source and target distributions is mini-
mizing a divergence that measures the distance between them at the feature level. Examples
of such divergence measures are Maximum Mean Discrepancy (MMD) (Gretton et al. 2007),
correlation alignment (B. Sun et al. 2015) and the Wasserstein distance (Bhushan Damodaran
et al. 2018).

• Adversarial. Another popular approach relevant to our work is adversarial alignment
(Ganin et al. 2015). It consists of enforcing a source-target distributional alignment using
a domain classi�er in an adversarial setting. The domain classi�er takes as input the output
representations of the feature extractor and predicts whether these representations come
from the source or the target domain. In this case, and similar to the Generative Adver-
sarial Network (GAN) framework (Goodfellow et al. 2020), the domain classi�er plays the
role of the discriminator that tries to di�erentiate between the two distributions. During
training, the domain classi�er is trained to correctly classify the domain of the features, the
feature extractor is trained to fool the domain classi�er, i.e., generating similar features for
both domains, thus making the classi�er incapable of distinguishing between them. With
a su�ciently low adversarial loss, we can expect that the representations produced by the
feature extractor are aligned across the two domains. Then, the domain classi�er can be
disregarded at test time, and the source classi�er can be applied to the produced target fea-
tures.

Formally, we consider a model f = g ◦ h consisting of a feature extractor h : X → Z
that maps the inputs into a feature spaceZ , a classi�er g : Z → Y that maps the features
into the label space Y , and a binary domain classi�er d : Z → [0, 1] that di�erentiates
between the source and target features. We de�ning the source and target domains by their
speci�c joint distributions of inputs x and labels y, noted ps(x, y) and pt(x, y), respec-
tively. The typical domain adversarial training procedure consists of a min-max objective
as formulated as follows:

max
d

min
h,g

(Ls − λLadv) = E(x,y)∼psLCE(g(h(x), y))

+ λEx∼ps log d(h(x)) + λEx∼pt log(1− d(h(x)))
(3.10)

with λ ∈ R+ as a weighting hyperparameter that controls the contribution of the ad-
versarial loss. Note that objective in Eq. (3.10) can be optimized by either: i) alternating
between training the model f and the domain classi�er d following the GAN framework,
i.e., training the model f to minimize the objective, then training the domain classi�er d to
maximize it, or ii) by negating the gradients of the domain classi�er with a gradient reversal
layer (Ganin et al. 2015) when performing backpropagation to update the feature extractor’s
weights.
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Figure 3.6: The structure of data in FSL. In FSL, we are provided with a meta-training and a meta-
testing set, each containing a set of tasks. Each task consists of its training or support set con-
tainingK×C training examples, withK examples per each class of theC classes used to adapt
the model to solve this task. In addition, we have a test or query set containing N test samples
that are used to evaluate the adapted model on this task.

Key Takeaways

• In UDA, the training set consists of two sets coming from two distinct domains, a
labeled set from a source domain and an unlabeled set from the target domain.

• In UDA, the objective is to leverage the labeled source to learn a well-performing
model while simultaneously leveraging the unlabeled target so that the source-target
distributional mismatch is also corrected, given that the end goal is to deploy the
model on target test data.

• In this work, we focus on UDA methods based on learning domain-invariant rep-
resentations. Such methods solve the source-target discrepancy by enforcing an in-
variance of their representations on some low-dimension feature space.

Usage

In Chapter 7, we consider the UDA paradigm and set to develop a better domain
invariance-based method by taking inspiration from SSL methods. Speci�cally, we enforce
a form of consistency regularization on the target domain and show that the proposed ap-
proach o�ers a notable performance gain when coupled with the appropriate representa-
tion alignment method.

3.5 Few-shot Learning

In all the learning paradigms we detailed above, we were always interested in solving a singular
task, de�ned beforehand and a priori known. However, another important setting went unex-
plored, a case where the data as a whole is scarce, with only a few labeled training examples (e.g.,
1 or 5 examples per class) available. The objective at test time is to adapt our model quickly to a
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new and unseen task at training time. In such a scenario, referred to as Few-shot Learning (FSL),
the conventional DL paradigm of training the model to solve a novel task by optimizing an ap-
propriate loss on the training set and then deploying the model on the test set becomes infeasible
given the rarity of the data. In this case, the training goal becomes a meta or a high-level objec-
tive of equipping the model with the capability to quickly adapt to a new task using a few labeled
training data points and limited training iterations. But how can we set up a training procedure
to quickly equip the model to generalize to new and unseen tasks? And how can we then conduct
the testing procedure to validate that the model demonstrates some degree of fast adaptability?

In FSL, the learning problem becomes a meta-learning or a learning-to-learn problem (C. B.
Finn 2018). In previous settings, the training set consisted of a datasetDtr sampled from a training
data distribution pdata which is then used to train the model f to solve a singular and �xed task
T using a proper loss function L. In FSL, our model needs to be trained for fast adaptability
over many tasks, so we consider a distribution over tasks p(T ) that we want our model to learn
to adapt to and our training and testing set become meta-training and meta-testing sets of tasks
sampled from p(T ). The meta-training set I = {Dt}Tt=1 consists of several training tasks and
each task consists of its own training set (i.e., support set) Dtr

t and its testing set (i.e., query set)
Dtest
t . The meta-training stage then consists of training the model to e�ectively leverage the small

task-speci�c training setDtr
t so that its predictions on the corresponding test setDtest

t are correct.
Then, for evaluation, the meta-testing step is conducted, where we are provided with a meta-
testing setS = {Dq}Qq=1 consisting of new and unseen testing tasks which are also sampled from
p(T ), and the model’s performance is measured on the test set of each one of these tasks.

It is also worth noting that the taxonomy used in FSL can change depending on the modality
and problem at hand. In computer vision, and speci�cally for classi�cation problems, the FSL
problem of interest is often de�ned by the number of classes and the number of labeled training
samples per class that are provided in the training setDtr

t for each mate-training task. For instance,
aC-wayK-shot classi�cation problem, each training setDtr

t containsK ×C samples withC as
the number of classes andK as the number of training examples per class as depicted in Fig. 3.6.
In NLP, the FSL problem is often de�ned solely by the number of examples or demonstrations
that are fed into the model for adaptation, e.g., GPT 3 (Brown et al. 2020).

Regarding the learning procedure in FSL that equips the learner with a fast adaptation ability
to novel tasks, the popular methods propose the following approaches:

• Transfer Learning. Rather than designing a learning algorithm speci�c to the FSL set-
ting, transfer learning, or learning-to-fine-tune based methods, transform the FSL problem
into a standard supervised TL problem, which is then solved following the pre-training,
then �ne-tuning pipeline. First, to cast the FSL training problem into an SL one, all of the
meta-training tasks are merged into a singular task by combining their training set into a
common one, i.e.,Dtr = ∪{Dtr

1 , . . . ,Dtr
T }. The meta-training stage then consists of pre-

training our model, which consists of a feature extractor and a shallow classi�er, on this
merged training set following the standard CE-based SL training procedure. Then, at the
meta-testing stage, the shallow classi�er is removed. For a given unseen testing task, a newly
initialized classi�er is trained on top of the pre-trained feature extractor using this unseen
task training set, and the adapted model is evaluated on its test set.
Note that at test time, the pre-trained feature extractor can either be �ne-tuned together
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Figure 3.7: Transfer Learning based FSL methods. TL-based FSL methods cast the few-shot clas-
si�cation problem as a standard pre-train, then �ne-tune problem. First, the training sets of
all meta-training tasks are merged into a single training set is then used to pre-train the feature
extractor following the standard CE-based SL approach. At test time and for a given novel test
task, a newly initialized classi�er is trained on top of the pre-trained feature extractor using the
task’s support set and is then used to produce the predictions over its query set.

with the classi�er (Afrasiyabi et al. 2020; Dhillon et al. 2020), or �xed and used as a frozen fea-
ture extractor (W.-Y. Chen et al. 2019; Tian et al. 2020a). Additionally, the shallow classi�er
can take di�erent forms, either a simple linear (i.e., dense) layer (Tian et al. 2020a), or more
elaborate implementations such as a cosine classi�er (Gidaris et al. 2018a; Qi et al. 2018). We
note that in this work, our contribution within the FSL framework presented in Chapter 8
will follow this line of work and try to improve upon it.

• Meta-learning. These approaches design learning procedures tailored speci�cally for the
FSL problem. While there is not a clear de�nition of what makes an FSL approach a meta-
learning one (Vinyals et al. 2016), if the predictions on the test (i.e., query) set of a given task
is explicitly conditioned on its corresponding training (i.e., support) set, then the proposed
method can be considered as a meta-learning approach. Given this de�nition, the various
meta-learning based FSL methods can be distinguished via the strategies they propose to
condition the query predictions on their corresponding support set (W.-Y. Chen et al. 2019).
Speci�cally, we di�erentiate between the following two categories of meta-learning based
FSL methods:

– Metric learning based or learning-to-compare methods. With methods such as Match-
ingNet (Vinyals et al. 2016) and ProtoNet (Snell et al. 2017), the prediction on a given
query sample is based on comparing the distance between its features and the features
of each support sample. RelationNet (F. Sung et al. 2018) proposes a similar method
but uses a relation module for sample comparison instead of a distance measure.

– Optimization based or learning-to-learn methods. Methods such as MAML (C. Finn
et al. 2017) explore optimizing the model for good initialization of its parameters that
facilitate fast test-time adaptation. Thus, when a new task is encountered, its support
set can be e�ciently used to adapt these parameters to this new task with only a few
gradient updates before using it to make a prediction on its query set.

Note that in this thesis, we limit ourselves to the standard setting of FSL, i.e., inductive FSL.
While the transductive FSL setting is a popular and growing line of work (Boudiaf et al. 2020;
S. X. Hu et al. 2020; Y. Liu et al. 2018; Y. Liu et al. 2020; Qiao et al. 2019) in which we have access
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to the unlabeled test (i.e., query) sets at training time that can then be used to get substantial
improvements in performances over inductive inference, in this work, we do not consider this
setting, and any reference to FSL will always refer to the inductive setting.

Key Takeaways

• In FSL, the objective is to equip a model with the capability of fast adaptability to
novel and previously unseen tasks with very few labeled training samples.

• In FSL, we are provided with a set of tasks divided into a meta-training set of seen
tasks and a meta-testing set of unseen tasks. To solve each task, we are provided with
its own task-speci�c training and testing sets. The �rst is used to adapt the model
to this task, while the latter is used to evaluate the adapted model.

• The meta-training set is used to train the model and equip it with the required
knowledge so that it can quickly adapt to the meta-testing task using only the task-
speci�c training sets.

• In this work, we focus on the simple transfer learning based baseline for few-show
classi�cation. It transforms the meta-learning setting into a standard TL setup by
merging the training set of all the meta-training sets. The model is then pre-trained
on it, and at meta-testing, a per-task shallow classi�er is trained on top of the pre-
trained model to solve a given novel testing task.

Usage

In Chapter 8, we consider the FSL paradigm and set to introduce a novel few-shot classi-
�cation method based on the transfer learning framework. Speci�cally, we will introduce
a novel contrastive learning based pre-training objective to learn more transferable and
general-purpose representations, thus making the model better at test-time adaptation on
novel and unseen tasks. In Chapter 9, we consider a closely similar setup where we want
to adapt a pre-trained model to a new setting using a limited labeled set, i.e., FSFT, and
similar to Chapter 8, we will rely heavily on transfer learning during the adaption.

Conclusion
In this second foundations’ chapter (i.e., Chapter 3), we introduced the learning
paradigms that fall under the problem of learning under the constraint of limited labeled
data.
Next, in the last foundations’ chapter (i.e., Chapter 4), we will introduce the tasks we
consider, both their de�nitions in Section 4.1 and the models used to solve them in Sec-
tion 4.2 Finally, the data used to train and evaluate our proposed methods is presented in
Section 4.3.

53



Tasks, Models, and Data
CHAPTER 4



4 Tasks, Models, and Data

One of the bene�ts of the Deep Learning (DL) framework, as detailed in Chapter 2, is its univer-
sality. The overall scheme of de�ning the appropriate set of inductive biases, training the model,
evaluating it, and deploying it remains the same regardless of the target application. However, the
application or task we wish to solve has a great impact on the details of each step of this overall
scheme and on the associated design choices. These choices range from the corresponding neu-
ral architecture, the loss function, the data used, the training procedure and the selection of the
suitable evaluation metric to test the generalization capabilities of the model correctly. In this last
foundations chapter, we present the details of the tasks, models, and data of interest to us, which
are used in the contributions part of this work. First, we start in Section 4.1.1 by introducing
some of the popular design choices for the di�erent tasks we will address in the upcoming chap-
ters, starting with their de�nition, their corresponding training pipelines and the metrics used
for evaluation. The di�erent neural architectures and benchmarks used for these tasks be later
introduced in Section 4.2 and Section 4.3, respectively.

4.1 Tasks

4.1.1 Image Classification

The task of image classi�cation consists of recognizing the objects and instances depicted in a given
image by assigning it one or several category IDs from a set of prede�ned classes (Rawat et al. 2017).
Despite its conceptual simplicity, it is considered as the backbone of computer vision upon which
other popular tasks, such as localization, detection, and segmentation, are built. Additionally,
given how natural and intuitive visual perception feels, it can be easy to overlook the complexity
of visual data, making such a classi�cation task daunting. Two images with di�erent low-level
statistics (e.g., brightness and color values) can represent the same object (e.g., various dog breeds).
Conversely, with similar low-level statistics, the depicted objects can be di�erent (e.g., a dog and
a cat). Such a semantic gap (Smeulders et al. 2000) highlights the di�culty of building a computer
vision algorithm capable of producing the correct classi�cations.

The traditional methods attempted to solve this task with a dual-stage approach. First, by ex-
tracting a set of handcrafted features using feature descriptors such Scale-Invariant Feature Trans-
form (SIFT) (Lowe 2004), Speeded Up Robust Features (SURF) (Bay et al. 2006) or Oriented FAST
and Rotated BRIEF (ORB) (Rublee et al. 2011). The extracted features are then used to train a
shallow classi�er e.g., a Support Vector Machine (SVM) classi�er. However, while being rela-
tively successful, such methods depend heavily on the extracted features’ quality and the feature
descriptor’s design, therefore requiring a considerable amount of domain-speci�c feature engi-
neering to obtain acceptable performances. Fortunately, with the resurgence of DL (Goodfellow
et al. 2016) and its related techniques and architectures such as Convolutional Neural Networks
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(CNNs) (LeCun et al. 1998), we have witnessed rapid progress in image recognition (K. He et al.
2016). It makes the task of image classi�cation under normal conditions and with ample labeled
examples (i.e., SL setting) to be almost considered as a solved problem. The pipeline to follow to
solve the classi�cation task using a DL-based method is detailed next.

Pipeline

Compared to the traditional dual-stage approaches, the pipeline of DL-based methods used for
solving image classi�cation type tasks is relatively straight forward, and consists of the following
steps:

• Preprocessing. The preprocessing step for image classi�cation, which is also closely fol-
lowed in many other vision tasks, generally consists of fetching the input images from stor-
age, applying some data augmentation to each image (e.g., resizing all images to the same
size, cropping, and a random horizontal �ip), followed by a normalization step for faster
convergence. Then, the images are batched to construct a single mini-batching for parallel
processing and are placed in the GPU for the next training step.

• Training. Overall, this step follows the standard DL training procedure. The input mini-
batch is passed through the model for a single training iteration, where intermediate activa-
tions and the �nal outputs are computed in the forward pass. Then, the loss is computed
using the predictions and the ground truths. The gradients of the model’s weights with re-
spect to the loss are evaluated during the backward pass, and the weights are �nally updated
using the selected neural network optimizer.

• Postprocessing. For image classi�cation, and since the outputs of the model are already
in the correct form (i.e., category IDs can be obtained by an argmax operation over the
output probabilities), a post-processing step is often unnecessary. However, an ensembling
step can be conducted to obtain better results at test time. The original test image is �rst
augmented into many images using crops centered at di�erent locations and horizontal
�ips. Then, the �nal prediction is computed as either the average or the max over all the
predictions obtained using the augmented images.

Metrics

The most natural way to evaluate models trained to solve some image classi�cation problem is
Accuracy (Acc) de�ned as follows:

Acc =

∑N
i=1 1f(xi)=yi

N
(4.1)

where f(xi) represents the model’s output for the i-th image xi, yi represents the ground truth
label for the i-th image,N represents the total number of images, and with the function 1cond ∈
{0, 1} evaluating to 1 i� cond is satis�ed. Note Acc can also be referred to it as top 1 accuracy
since we count a prediction as correct i� the class with the maximum probability corresponds to
the correct class. In the context of large labeling spaces, we might also report the top k accuracy,
where we count a prediction as correct if the correct class belongs to topk predicted classes ordered
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(a) Input Image (b) Semantic Segmentation (c) Instance Segmentation (d) Panoptic Segmentation

Figure 4.1: Scene segmentation tasks. For a given input image (a), we show the desired output for
(b) image or semantic segmentation: pixel-level classi�cation, (c) instance segmentation: object-
level segmentation and classi�cation, and (c) panoptic segmentation: per-object and per-pixel
segmentation and classi�cation. In this work, we are interested in the task of image segmenta-
tion. Image source: (Kirillov et al. 2019)

by their probability in descending order. For instance, in the ImageNet challenge (Russakovsky et
al. 2015), top 5 accuracy is often reported together with the top 1 measure. Additionally, for some
particular cases, such as classi�cation with imbalanced data (J. M. Johnson et al. 2019), other met-
rics that focus more on per-class performances, such as sensitivity-speci�city or precision-recall
metrics can be used. In this thesis, we generally report the top 1 accuracy when conducting image
classi�cation experiments. Note that for few-shot image classi�cation, and since we compute the
accuracy over each test set of each unseen meta-testing task separately, the reported accuracy is
computed as the mean over all the accuracies obtained over all the meta-testing tasks.

4.1.2 Image Segmentation

Image segmentation, a.k.a., semantic segmentation or pixel-wise classi�cation, was always consid-
ered one of the big challenges in the long history of computer vision. It consists of automatically
extracting information from images by producing dense per-pixel class assignments. It thus pro-
vides a more �ne-grained understanding of the inputs and leads to a better scene understanding.
The task of image segmentation jointly solves localization (i.e., detecting all visible objects), classi-
�cation (i.e., specifying the category they belong to), and segmentation (i.e., their position at the
pixel level). Speci�cally, given an input image, an image segmentation algorithm assigns a class la-
bel to each input pixel from a set of prede�ned classes. The classes can be associated with speci�c
object types in a supervised case or refer to some semantic meaning in an unsupervised setting. For
general usage, a blank or a background class can be added to the label set to detect novel classes
that might appear during the inference phase.

Speci�cally, in scene segmentation tasks, we di�erentiate between the following three possible
variations:

• Image segmentation. The standard task of image segmentation consists of recognizing
homogeneous regions of the image, i.e., amorphous areas of similar texture or material (e.g.,
grass, sky, road), or countable objects (e.g., animals, tools, people), but without di�erenti-
ating between the individual instances. As a result, if an image contains two objects of the
same class, the pixels within both objects are assigned the same label.

• Instance segmentation. On the other hand, instance segmentation recognizes countable
objects, with each instance detected separately. Each object instance is �rst detected inde-
pendently using an object detector, and then localized within the bounding box by a follow-
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ing per-instance segmentation step. In scene segmentation literature, image segmentation
studies stu� (i.e., regions of similar texture) based recognition, while instance segmentation
studies things (i.e., countable objects) based recognition.

• Panoptic segmentation. To reconcile between recognizing both stu� and things for a uni-
�ed vision system, panoptic segmentation (Kirillov et al. 2019) leverages both image segmen-
tation for localizing and segmenting amorphous and uncountable regions, and instance
segmentation for detecting and segmenting countable objects. It thus creating a more com-
prehensive framework.

Fig. 4.1 for an example of the desired outputs for each scene segmentation task. In this work, we
limit the scope of applications to image segmentation for simplicity and e�ciency. However, the
proposed methods are �exible and can easily be extended to another scene segmentation tasks and
various pixel-wise prediction tasks.

Traditional image segmentation algorithms (Coleman et al. 1979; Fan et al. 2001; Shih et al. 2005),
such as thresholding, clustering, and region growing, are based on handcrafted low-level features
(e.g., contours, edges, and blobs) to locate object boundaries in images. For instance, in the sim-
plest case, satellite image segmentation can often be successfully performed by clustering pixels
based on their wavelengths and their spatial position within the image. However, recent DL-based
methods have made many of the older methods obsolete. DL-based methods are considered state-
of-the-art and became the go-to techniques for image segmentation, achieving top benchmark
performance across a wide range of well-known datasets and benchmarks. The pipeline to follow
to solve the segmentation task using a DL-based method is detailed next.

Pipeline

To solve a segmentation task, the traditional image segmentation pipeline consists of receiving
some raw pixels, applying a preprocessing step like scaling and feature extraction, which is then
followed by the �nal training step. This training step often consists of training a shallow classi�er
on patches of the input image using raw pixels and the previously extracted features. However,
with the introduction of end-to-end DL methods, and similar to image classi�cation, this pipeline
has become more straightforward, and consists broadly of the following steps:

• Preprocessing. The preprocessing step is similar to that of image classi�cation, with data
augmentation, normalization, and then the construction of a mini-batch of examples for
the next training iteration. Compared to image classi�cation, additional attention must be
paid to the type of data augmentations used. For instance, applying geometric transfor-
mations (e.g., rotation or translation) will result in a change of the input coordinate space,
and in this case, the targets should also be transformed correspondingly to keep the correct
per-pixel matching.

• Training. This step is the same as other DL systems, consisting of a forward pass to pro-
duce the predictions, followed by loss calculation, a backward pass to compute the gradients
and an update of the model’s parameters.

• Postprocessing. In image segmentation, an optional postprocessing step might be bene�-
cial to re�ne the segmentation maps. It can consist of an inference step based on an image
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pyramid of the input. The model �rst generates segmentation maps over di�erent scales of
the input image, that are then resized to the same original size and ensembled into a �nal
prediction. Another possibility is the usage of a dense Conditional Random Field (CRF)
(Krähenbühl et al. 2011) explicitly designed for the re�nement step.

Metrics

For image segmentation, de�ning the correct metrics can be challenging mainly because we need
to measure two values simultaneously: classi�cation and localization. Classi�cation measures the
pixel-wise class labels, while localization measures the set of correctly classi�ed pixels that enclose
a given object. Di�erent metrics are used to measure either or both of these values. In this thesis,
we use the mean Intersection over Union (mIoU) for semi-supervised methods and pixel-wise
Accuracy (Acc) for unsupervised methods.

Let C ∈ N be the number of classes we wish to recognize, nij ∈ N be the number of pixels
predicted by the model to belong to class i but labeled as class j, and ti =

∑C
j=1 nij as the

total number of pixels predicted as class i, both computed over all the images in the dataset. The
following is a brief explanation of these two measures:

• Pixel-wise Accuracy (Acc). This measure, a.k.a., global accuracy (Badrinarayanan et al.
2017) or per-pixel rate (Thoma 2016), is similar to the image classi�cation accuracy, but with
the correct predictions counted at the pixel level instead of the image level:

Acc =

∑C
i=1 nii∑C
i=1 ti

(4.2)

However, while the pixel-wise accuracy measures the classi�cation performance, it does
not take into account the localization aspect of the prediction. For example, if our dataset
contains many images with large regions of the same class, e.g., sky, the system might super-
�cially learn to always assign the same class to this speci�c region of the image, resulting in
overall higher accuracy, despite the model’s defect.

• Mean Intersection over Union (mIoU). To overcome the limitations of the pixel-wise
accuracy measure, mIoU can be used as a measure of both classi�cation and localization.
By leveraging per-class IoU used for comparing the similarity and diversity between the
predictions and ground truths, the mIoU is computed as the class-averaged IoU:

mIoU =
1

C

C∑
i=1

nii∑C
j=1(nij + nji)− nii

(4.3)

4.1.3 NLP tasks

The �eld of Natural Language Processing (NLP) aims to equip computers with the ability to
understand human languages. It is a collection of computational methods conceived to analyze
and process languages through di�erent NLP tasks automatically. Each task generally consists of a
mapping from the input text to a di�erent linguistic form that encodes or extracts some meaning
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Figure 4.2: Popular NLP paradigms. We show the popular paradigms that can be followed to solve
a given NLP task. (a) Extract and train consists of manual feature extraction and then per-
task shallow classi�er training. (b) End-to-end SL-based training with task-speci�c deep neural
networks. (c) Pre-train then �ne-tune pipeline, in which a large LM is �rst pre-trained on a
substantial amount of text in an unsupervised manner, and then �ne-tuned for each task by
adding task-speci�c layers on top of it.

from it (N. A. Smith 2011). However, extracting meaningful information from raw text that bears
some degree of resemblance to the capabilities demonstrated by humans is extremely challenging,
and requires a deep understanding of natural language (Chowdhary 2020).

To solve such tasks, and mirroring to some degree traditional image recognition approaches,
early NLP methods (La�erty et al. 2001; Och et al. 2004; Y. Zhang et al. 2011) relied heavily on feature
engineering that requires domain knowledge of specialists and researchers to design feature extrac-
tion methods from raw data. The extracted features are then used as inputs to task-speci�c models
trained to solve distinct NLP tasks with the corresponding labeled training data. The next wave of
DL-based NLP methods (Bahdanau et al. 2014; Y. Chen 2015; J. Chung et al. 2014; Kalchbrenner et al.
2014) consisted of designing neural architectures (i.e., some variation of Feed-forward, CNN, or
RNN-based networks) with the appropriate inductive biases to solve a given NLP task under the
standard SL paradigm with fully labeled and task-speci�c datasets. However, while demonstrat-
ing a noticeable performance boost, such methods su�er from limited applicability since they are
designed with a single or few NLP tasks in mind. Compared to vision applications, where most
downstream tasks start from an often pre-trained image classi�cation backbone, these di�erent
task-speci�c NLP architectures and their pre-trained parameters are not easily transferable from
one task to the other.

In recent years, and after the introduction of the transformer architecture (Vaswani et al. 2017)
which is more appropriate for NLP-like tasks, almost all state-of-the-art NLP methods switched
to the pre-train then �ne-tune framework. It consists of building a transformer-based model,
which is �rst pre-trained as a large Language Model (LM) in an unsupervised manner on a massive
amount of textual data that can be scraped easily from the web (e.g., The Pile dataset L. Gao et al.
2020 containing 825 GiB of diverse textual data). After pre-training, the LM will have acquired
robust, and general-purpose features (Clark et al. 2019; Ettinger 2020; Rogers et al. 2020) that re�ect
an elaborate understanding of the language necessary to solve the various downstream NLP-tasks.
Then, to solve a given task, few task-speci�c parameters can be added to the model if necessary (e.g.,
a linear layer for classi�cation), followed by a supervised �ne-tuning step with the appropriate loss
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function to adapt the model to the data and task of interest. For an illustration of these three
paradigms, see Fig. 4.2.

Since the pre-train then fine-tune paradigm has demonstrated very good performances and the
resulting large pre-trained LM are also available in open-source access1, we adopt this paradigm in
this thesis. Our work with NLP tasks assumes a pre-trained model, and we focus on the improve-
ment of the �ne-tuning step in the context of limited labeled data.

Pre-training Task

As discussed above, in the chosen paradigm, the pre-training step is the basis of all the downstream
tasks. As such, the pre-training task must be carefully selected and designed to ensure that:

• The model acquires the general linguistic knowledge necessary for downstream during pre-
training.

• The pre-training must be learned in an unsupervised manner to leverage the vast amount
of available unlabeled raw text data.

The most popular task that satis�es these requirements is the task of language modeling (Qiu
et al. 2020). Its objective is to learn a probability distribution over a given sequence of tokens
(i.e., the input text is represented as a sequence of elementary units we call tokens) corresponding
to a language. i.e., the probability assigned to a given input text x re�ects its linguistic validity.
For transformer based-models, this task is generally modeled and solved using one the following
training objectives (P. Liu et al. 2021):

• Autoregressive LM. Such models (Fig. 4.3 (a)) directly optimize the LM objective, i.e.,
the joint probability of the input sequence p(x), by factorizing it as the product of the
conditional probabilities of its tokens xi using the chain rule, i.e., p(x) =

∏n
i=1 p(xi |

x1, . . . , xi−1), making it a linguistically appropriate representation since human languages
have a natural sequential order. Moreover, since most languages follow a left-to-right writ-
ing style, the tokens are often indexed similarly. and the autoregressive model is considered
a Left-to-right LM. These models, and similar to image-based autoregressive models pre-
sented in Section 3.3.1, are trained to predict each input token based on the tokens ordered
before it. Then, at test time, they can be used for both understanding and generation-
based tasks. They are however principally used for generation tasks since the downstream
task matches the pre-training objective of sequential token prediction. The most popular
examples of such transformer-based models are GPT models (i.e., GPT-1 Radford et al. 2018,
GPT-2 Radford et al. 2019, and GPT-3 Brown et al. 2020).

• Masked LM. While autoregressive LMs are appropriate for language generation-based down-
stream tasks (e.g., paraphrasing, sentence completion, machine translation, or text sum-
marization), they are not optimal for other tasks that require more optimal, holistic, and
bidirectional representations of the input sequence, such as classi�cation. As such, Masked
LMs (Fig. 4.3 (b)) popularized by BERT (Devlin et al. 2019), take a di�erent approach. They
de�ne a denoising-based pre-training objective aiming to reconstruct the clean version x

1For instance: https://huggingface.co/models
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Figure 4.3: Typical training objectives for transformer-based LMs. To pre-train a
transformer-based LM, one of the following popular training objectives could be used. (a) Au-
toregressive LM consists of reconstructing the input token autoregressively, from left-to-right,
where each output prediction depends only on the input tokens that came before it. (b) Masked
LM consists of denoising the input, but only by predicting the clean version of the perturbed,
i.e., masked, input tokens. (c) Conditional LM reconstructs the whole clean input autoregres-
sively, from left-to-right, but conditioned on the whole perturbed input sequence.

of the corrupted input sequence x̃, i.e., predicting p(x|x̃). Speci�cally, in Masked LMs
(MLMs), a subset of the input tokens are �rst masked by replacing them with some special
token (e.g., [MASK]), resulting in a noisy input sequence. The model is then trained to only
predict these masked tokens based on the whole input sequence (i.e., bidirectional process-
ing). After pre-training, the model can be �ne-tuned to solve the task of interest over the
clean inputs.

• Conditional LM. Although MLM can produce more optimal representations with their
bidirectional processing, they cannot be directly used for generation tasks contrary to au-
toregressive models. Conditional LMs (Fig. 4.3 (c)) try to de�ne a framework that solves
the issues of both of these approaches while maintaining their bene�ts. They consist of
two stages. First, an encoding step processes the input sequence bidirectionally similar to
MLM. Then, a decoding step predicts the outputs autoregressively from left-to-right sim-
ilar to Autoregressive LM, but this time conditioned on all of the encoded input. During
pre-training, the model consumes the full corrupted input in the �rst step (i.e., corrup-
tion methods can be either masking as in MLM, deletion of some tokens, random token
replacement or permutation of a subset of tokens), and then is trained to predict, from left-
to-right, the full clean input conditioned on the full corrupted input. These two steps can
be either conducted by a shared model (i.e., Pre�x LM) as in UniLM 1-2 (Bao et al. 2020; P.
Liu et al. 2021) and ERNIE-M (Ouyang et al. 2020), or by two separate models (i.e., Encoder-
Decoder LM) as in T5 (Ra�el et al. 2020), BART (Lewis et al. 2019) and MASS (K. Song et al.
2019). Then, at the �ne-tuning stage, the encoding and the decoding stages of the model
can be adapted and used appropriately based on the nature of the downstream task.
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Downstream Tasks

In NLP, the downstream tasks play an important dual role. They provide many realistic task
formulations that mirror many language-based real-world applications, and they can be used to
quantify and measure the general language learning abilities of pre-trained LM, which can help
us choose and develop better NLP models and training objectives. However, given the many pos-
sible use cases of a language-based system, NLP tasks must cover a diverse set of scenarios, which
has resulted in the development of many downstream tasks that explore di�erent problems (Qiu
et al. 2020). They range from standard tasks such as classi�cation or generation to more unique
ones that are particular to NLP, such as knowledge-probing tasks that try to quantify how much
factual (Petroni et al. 2019) and linguistic (Ettinger 2020) knowledge is contained in the internal
representation of a pre-trained LM. Other examples are reasoning tasks (B. Y. Lin et al. 2019; Wal-
lace et al. 2019) that examine if these large pre-trained LM are capable of performing some form
of complex reasoning and are not based mostly on memorizing the patterns encountered during
pre-training (P. Liu et al. 2021; Niven et al. 2019).

The standard NLP downstream tasks that are commonly used to measure the e�ectiveness of
the �ne-tuning stage can be broadly categorized into the following:

• Classi�cation Tasks. They consist of assigning a single or multiple categories IDs to the
input sequence as a whole. They can be simple text classi�cation tasks such as topic classi-
�cation or sentiment analysis, where the output of the model directly re�ects some prop-
erties of the input text that we are evaluating the model on. Furthermore, they can also
consist of more elaborate tasks such as in Natural Language Inference (NLI)2, which is
used as an indirect way to probe the model’s language understanding capabilities. In NLI,
the model takes as input a contiguous sequence of text containing two sentences, a premise,
and a hypothesis, and the model is trained to solve a 3-way multi-class classi�cation prob-
lem predicting the relationship between these two sentences. The 3 possible relationships
are entailment where the premise entails the hypothesis, contradiction where the premise
contradicts the hypothesis, or neutral, where the premise is unrelated to the hypothesis.

• Question Answering. Another task that probes the language understanding capabilities
of the model is the Question Answering (QA) task, which can also be referred to as a read-
ing comprehension or a machine comprehension task. It predicts the answer to a given
input question, often based on a context document. This task can be solved using di�erent
formulations: i) multi-choice QA that solves a multi-way classi�cation, where the model
chooses the correct answer from multiple choices provided as input. ii) Extractive QA that
tasks the model with �nding the span corresponding to the answer from the context docu-
ment. Or iii) free-form QA that takes a more natural way of solving the task by generating
the answer as an arbitrary textual string produced by the model.

• Generation Tasks. They consist of generating some forms of text that is coherent and
human-readable. The generated text is often based on task-speci�c information provided
as input to the model on which it will be conditioned on. Common generation based NLP
tasks (Celikyilmaz et al. 2020) are text summarization (e.g., summarization of single or multi

2Natural Language Inference (NLI) can also be referred to as Recognizing Textual Entailment (RTE) (MacCartney
2009)
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documents, news, screen-plays, web-based text, and tables), machine translation, dialog
response generation (i.e., chatbot), paraphrasing, prompt-based text generation and data-
to-text generation.

• Extraction tasks. They consist of �nding and extracting a speci�c and prede�ned struc-
tured information from an unstructured input text. Examples of such tasks are relation ex-
traction that predicts the semantic relationship between two entities in the input sentence,
and Named Entity Recognition (NER) that consists of identifying entities and assigning
each one its corresponding type from a set of prede�ned categories (e.g., person, location,
name).

In this work, we will limit ourselves mostly to classi�cation-based tasks.

Pipeline

In NLP, the DL-based pipeline to solve a given task of interest is more involved and consists of
preprocessing and postprocessing steps tailored for text-based inputs which are are not required
in the previously discussed vision task. In NLP, the raw text inputs cannot be directly processed
by our model of choice, so they must be converted into the appropriate representation at the
preprocessing stage before the training step. Then, depending on the NLP task we are tackling,
the outputs must also be converted into the desired format, such as a sequence of generated text.
In the following, we will detail the essential steps conducted during a standard NLP DL-based
training pipeline.

• Preprocessing. The objective of this step is to convert a batch of input sequences from
raw text to a set of same-length sequences of unique integer IDs. Each ID represents the
index of a given input token in a vocabulary of unique tokens found in the training cor-
pus. As such, the �rst step that must be conducted once before the start of training is the
construction of the tokenizer. To build it, all our training data, or corpus, is processed by
a sub-word segmentation algorithm (e.g., Byte Pair Encoding (BPE) (Y. Wu et al. 2016) or
WordPiece (Sennrich et al. 2015)) to segment the input text into its elementary units, called
tokens (i.e., words, sub-words, and symbols). Then, the vocabulary can be constructed by
only considering the unique tokens in our vocabulary as its entries 3.
Now that the vocabulary is built, we can start the training process. At each iteration, we
fetch the input sequences, tokenize them using a chosen sub-word segmentation algorithm,
and then replace each token with its index in the vocabulary (i.e., token IDs). Finally, all
the input sequences are either padded to build a mini-batch of same length input sequences
that can be fed into the model.

• Training. At a given training iteration, the batch of input sequences must �rst be con-
verted into a sequence of learnable embeddings, where each token has its unique learnable
representation. This can be done by simply passing the token IDs through an embedding
layer, and the produced outputs are the learnable feature vectors (i.e., word embedding)

3Note that the vocabulary construction step is done only during the pre-training stage. When we �ne-tune on a
given downstream task, the same vocabulary used for pre-training is also used down-stream, i.e., reusing the same
tokenizer.
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corresponding to each input token ID. Then, we fall back to the standard DL-based train-
ing step, where this batch of embeddings is passed through the transformer-based model,
resulting in a set of predictions. The latter are then used to compute the loss function,
apply backpropagation, and update the model’s weights and the learnable embeddings.

• Postprocessing. This step is often dependent on the target NLP task. For instance, for
understanding tasks such as text classi�cation, the process is straightforward and consists
mostly of transforming the probability distribution over the classes into a category ID or
a category name. However, this step can be critical for generation tasks since it directly af-
fects the quality of the generated text. In such tasks, at each decoding step (i.e., left-to-right
generation, one token at a time), the probability distribution over the vocabulary must be
converted into a token ID, and then the sequence of tokens into raw text. A simple ap-
proach consists of choosing in a greedy manner the token with the maximum probability
at each step. Nevertheless, it often results in sub-optimal sequences. Indeed, while each
token is chosen as the most likely one, the sequence as a whole might note be. An alterna-
tive to this simple approach is Beam search (Freitag et al. 2017) that keeps track of the most
likely output sequences at each decoding step, and then chooses the one with the highest
combined probability as the �nal prediction. Although it is memory intensive and compu-
tationally expensive, the quality, diversity, and coherence of the generated text are notably
higher.

Metrics

The evaluation metric of a given NLP system depends on the downstream task we are tackling.
For instance, for a multi-way classi�cation task, Accuracy (Acc) is often chosen as the measure of
choice. For binary classi�cation, in addition to accuracy, the F1 score is usually also reported to
better estimate the overall quality of the model. This measure is de�ned as the harmonic mean of
Precision (P) and Recall (R) and is computed as follows:

F1 = 2
P · R
P + R

, with P =
TP

TP + FP
and R =

TP

TP + FN
(4.4)

where TP, TN, FP, and FN are the number of True Positives, True Negatives, False Positives, and
False Negatives, respectively. While the accuracy and F1 score remain the most popular measures
for binary classi�cation, they can, however, give overly optimistic results if the evaluation dataset
is imbalanced. In such a scenario, it is often preferred to report Matthews Correlation Coe�cient
(MCC) (Chicco et al. 2020) instead, since it gives good results only if they are also re�ected in all
the four measures (i.e., TP, TN, FP, and FN).

For generation tasks, the evaluation becomes harder since a correct response can be formulated
or expressed in multiple equally correct ways. For such tasks, the evaluation metric is often chosen
as the classical BLEU score metric which has a transparent decision process, but it is of low quality.
Another choice is BERTScore (T. Zhang et al. 2020) metric which is based on a pre-trained LM and
o�ers a higher quality measure with a strong resemblance to the way humans judge the quality of
the generated text, but remains as a black-box method, making it hard to explain, understand and
improve upon. The exact de�nitions of these metrics are omitted since generation-type NLP tasks
are not the focus of this thesis.
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Key Takeaways

• For visual tasks, we focus on two tasks, image classi�cation, and image segmenta-
tion. For image classi�cation, the objective is to predict the correct class assignments
for a given input image. The model’s performance is often measured using the ac-
curacy metric. For image segmentation, the objective is to predict the correct class
assignments for each pixel in the input image. The model’s performance is often
measured using pixel-wise accuracy or mIoU.

• For textual tasks, we focus on various NLP downstream tasks that solve for a map-
ping from the provided input text to outputs in the form of linguistic structures
that encode some form meaning and knowledge contained in it. To solve such
downstream tasks, recent NLP methods often follow the pre-trained then �ne-tune
framework, in which a large model is �rst pre-trained on a language modeling task
in an unsupervised manner and then �ne-tuned on the downstream task of interest
using a task-speci�c labeled set.

Usage

This thesis tackles one or two of these tasks for each learning paradigm we consider. Re-
garding the modalities, for the visual modality, image classi�cation is tackled in Chapters 7
and 8, and image segmentation in Chapters 5 to 7. For the textual modality, Chapter 9
tackles various NLP downstream tasks. Speci�cally, the downstream NLP tasks we con-
sider are mostly classi�cation tasks, and depending on the task, we use one of the above
metrics for evaluation (i.e., either Acc, F1, or MCC)4.

4.2 Models

This section presents the neural architectures and the set of design choices or inductive biases
used to build our inference function f . Since the architecture is both modality-dependent and
task-speci�c, we introduce the popular choices followed in the main applications we are interested
in. First, we start with a brief overview of image classi�cation networks which have become com-
mon for such tasks. Then, we present image segmentation networks that require more specialized
designs and methods. Finally, we introduce the transformer architecture, which has become the
backbone of most NLP tasks.

4.2.1 Image Classification

In this thesis, all of our neural architectures used to solve image classi�cation tasks are CNN-based,
and more speci�cally, ResNet (K. He et al. 2016) based. CNNs (Rawat et al. 2017) consist of a stack
of modules or blocks, with each block containing a sequence of convolutional, normalization,

4Note that in Chapter 9, and in order to follow previous works, one of the downstream tasks if of regression type,
and in this case, we will exceptionally report the Spearman Correlation as our regression measure.
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(a) Classi�cation Network
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Figure 4.4: Replacing the fully connected layers. The fully connected layers of a classi�cation
network (a) are turned into convolution layers (b), enabling the classi�cation network to out-
put a heatmap containing sparse information about the object’s locations. With additional
upsampling layers, the outputs can be turned into segmentation maps for an end-to-end image
segmentation system. Image source: (J. Long et al. 2015).

non-linearities, and pooling layers. Within each block, the convolutional layer (Conv) serves as a
features extractor with its learnable kernels. Its inputs are convolved by its kernel weights, result-
ing in updated feature maps in which each output neuron is only connected to a local region of
the input volume by way of the layer’s kernel. A normalization operation follows this, often con-
ducted using Batch Normalization (BN) (Io�e et al. 2015) that adjusts the mean and variance of the
features to make the training more stable and less sensitive to changes in the parameter initializa-
tion and the learning rate. These normalized feature maps are then passed through a non-linearity
layer (e.g., ReLU (Nair et al. 2010) or GELU (Hendrycks et al. 2016)) to extract non-linear features.
Finally, a pooling layer, usually maximum based, reduces the spatial dimension of the features
maps, achieving spatial invariance and decreasing the computational requirements to be able to
increase the depth of the feature maps. After a stack of such blocks, the �nal feature maps are
usually �attened into a feature vector, and passed through a �nal fully connected layer to produce
the classi�cation scores.

ResNet (K. He et al. 2016) follows the same overall design, where each block consists of a series of
{3×3 Conv - BN - ReLU}, but with an additional residual connection that adds the input of the
block to its output before passing the �nal feature maps to the next residual block. This residual
design simpli�es the learning procedure by requiring each block to only learn adjustments to its
input rather than full input transformations. It also makes building very deep networks (e.g., 152
ResNet model with 152 layers) feasible by allowing the errors to backpropagate directly to earlier
layers, making the optimization procedure more stable.

Throughout this thesis, we use di�erent ResNet-based variations, and which will usually be
refereed to as R-N withN as the number of layers (e.g., R-18, R-34, R-50), for both image clas-
si�cation tasks as our classi�cation model, and for image segmentation tasks as our base model
upon which the segmentation model is built.

4.2.2 Image Segmentation

Prior to the introduction of specialized neural architectures designed speci�cally for tasks that
required dense predictions, e.g., pixel-wise classi�cation, the �rst iterations of DL-based segmen-
tation networks (Ciresan et al. 2012; Ganin et al. 2014) consisted of converting the classi�cation ar-
chitectures, such as AlexNet (Krizhevsky et al. 2012) and VGG (Simonyan et al. 2014), to segmen-
tation networks by swapping and �ne-tuning the last fully connected layers for image segmenta-
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Figure 4.5: AFullyConvolutionalNetwork (FCN). FCN consists of sequential upsampling inter-
twined with skip connections to learn to combine coarse and semantic information with �ne
and local details for more detailed and accurate segmentations. In this �gure, we illustrate the
FCN-8s version, where the output features are combined starting from pool3 of a VGG classi-
�cation backbone.

tion. However, these attempts su�ered from over�tting and were not su�ciently deep to create
abstract and rich features for a coherent segmentation. Subsequent works proposed alternative
solutions to fully connected layers such as recurrent architectures (Pinheiro et al. 2014) and hier-
archical features (Farabet et al. 2012). Since these �rst attempts were based on the standard deep
neural architectures that are capable of extracting abstract and rich local features, but cannot uti-
lize the global context, the obtained segmentation maps were often of low quality, lacked global
coherence, and required a heavy post-processing step to re�ne them.

To improve these architectures, CNN architecture tailored for image segmentation were pro-
posed following their success in image classi�cation. Fully Convolutional Network (FCN) (J. Long
et al. 2015) proposed such an architecture by converting classi�cation architectures into fully con-
volutional networks as illustrated in Fig. 4.4. Therefore, the resulting FCN is a classi�cation net-
work capable of processing images of arbitrary sizes and producing spatial feature maps with the
correct corresponding sizes instead of classi�cation scores. Then, these feature maps can be con-
verted into pixel-wise classi�cation scores using a classi�er applied at each spatial location. Ad-
ditionally, to capture both global and local context for joint localization and classi�cation and
produce more precise segmentations, an upsampling module can be added on top before the clas-
si�cation layer, upscaling and merging the feature maps from the �nal layers of the model with
feature maps of earlier layers (see Fig. 4.5), resulting in more globally coherent results.

The introduction of FCNs has spurred a wave of novel segmentation approaches that proposed
various techniques to better address the need for �ne-grained localization of class labels at the pixel
level while maintaining a global coherence at the object level. We describe in the following the
set of popular methods and techniques that have demonstrated their e�ectiveness when they are
integrated into a given segmentation architecture:

• Encoder-Decoder Architecture. Such models are one of the most popular architectures
for image segmentation. As the name suggests, the model consists of two components:
(a) an encoder where the spatial dimension of feature maps is gradually reduced, captur-
ing long-range interactions and more global and semantic information, and (b) a decoder
where object details and spatial dimensions are gradually recovered. The encoder is usu-
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Figure 4.6: UpsamplingLayers. Popular choices of upsampling layers in the decoder part of an encoder-
decoder segmentation network. (a) Deconvolution, which consists of applying a transposed
convolution. Such an operation is similar to the standard upsampling operation but with
learned weights. (b) Unpooling, which applies the inverse operation of a pooling layer and con-
sists of copying the input values to the same output positions used during the corresponding
pooling layer in the encoder. (c) Pixel shu�e, which �rst applies a1×1 Conv to adjust the depth
with the desired upsampling rate, then the outputs at the same spatial location are rearranged
spatially to get the correct upsampled output.

ally a standard pre-trained network on a classi�cation task (e.g., VGG, AlexNet, ResNet)
to be �ne-tuned for segmentation. The decoder, on the other hand, consists mostly of up-
sampling layers. Instances of such layers are shown in see Fig. 4.6. Speci�cally, they can be
based on deconvolutions (Zeiler et al. 2011) (i.e., transposed convolutions that can be seen as
an upsampling operation with learned weights), unpooling (Badrinarayanan et al. 2017) (i.e.,
the inverse of a pooling operation), or pixel shu�ing (Shi et al. 2016) (i.e., 1 × 1 Conv fol-
lowed by a rearrangement of the features). For example, FCN (J. Long et al. 2015) employs
deconvolutions to learn the upsampling of low-resolution features. SegNet (Badrinarayanan
et al. 2017) stores the pooling indices when a pooling layer is used in the encoder and em-
ploys them in the decoder for upsampling together with convolutional layers to increase
the density of the upsampled feature maps. U-Net (Ronneberger et al. 2015) is a symmetric
encoder-decoder network with skip connections from encoder features to the correspond-
ing decoder activations. After de�ning the decoder’s architecture, it is then trained from
scratch on top of the pre-trained backbone network (i.e., the encoder). In this thesis, we
often build our segmentation models following such an encoder-decoder structure.

• Atrous convolution. The long-range information captured with CNNs is often limited
by the output’s receptive �eld, which depends on the network depth and the convolution
kernel size. As a result, the long-range information that can be captured is upper bounded
by the available GPU memory and overall computational resources. To circumvent this,
standard convolutions of the encoder can be replaced with atrous convolutions (L.-C. Chen
et al. 2017b; Yu et al. 2015), i.e., dilated convolutions. Speci�cally, atrous convolutions are
characterized by a dilation rate, where a rate of r consists of uniformly enlarging the kernel
of the convolution from size k× k to k+ 2(r− 1)× k+ 2(r− 1). This is done by zero
padding with r−1 in between each pair of kernel weights. For an example, refer to Fig. 4.7
(a). With large dilation rates, we enlarge the model’s �eld of view, enabling object encoding
at multiple scales while also maintaining an acceptable e�ciency. In this thesis, we often
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Figure 4.7: Atrous Convolutions and Spatial Pyramid Pooling. (a) shows examples of atrous
convolutions (a.k.a., dilated convolution) for a 3× 3 kernel for three Dilation Rates (DR). In
each example, we pad the original kernel with DR−1 zero weights between each pair. Note
that for DR= 1, we fall back to the standard convolution. (b) shows an example of a Spatial
Pyramid Pooling module used to generate multi-scale features in PSPNet (H. Zhao et al. 2017).
The input features are �rst pooled at various rates to capture di�erent scales, passed through a
Conv layer, then upsampled to return to the original spatial input size. The �nal features are
then obtained by concatenating all the upscaled and input features.

deploy dilated convolutions, but only in the last few blocks of our backbone, where the
strided 3× 3 Conv layers are replaced by their dilated counterparts, but without any stride
(i.e., stride s = 1).

• Spatial pyramid pooling. This method (Grauman et al. 2005; Lazebnik et al. 2006) presents
an e�cient alternative to the standard image pyramid (L.-C. Chen et al. 2016) approach (i.e.,
applying the same model to multiple scales of the input image) by conducting the multi-
scale processing at the feature level instead of the input level. The multi-scale processing
consists of applying pooling operations with di�erent kernel sizes or atrous convolutions
with various dilation rates. It thus capturing contexts at several ranges and di�erent scales.
For instance, DeepLabv2 (L.-C. Chen et al. 2017a) uses this scheme with atrous spatial pyra-
mid pooling, where parallel atrous convolutions with di�erent dilation rates are used to
capture multi-scale information. PSPNet (H. Zhao et al. 2017) performs spatial pooling at
several grid scales and demonstrates outstanding performance on several image segmenta-
tion benchmarks (see Fig. 4.7 (b)). In this thesis, we follow PSPNet and use their proposed
module for pyramid pooling.

In the upcoming contributions chapters, and depending on the use case and the learning paradigm,
we employ various combinations and di�erent variations of these techniques. The segmentation
architecture and the techniques employed are detailed in the experimental section of the relevant
chapters.
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Figure 4.8: The Building blocks of the transformer architecture. We show the standard
blocks used to build transformer-based models, in addition to the attention mask applied in
a masked attention operation. (a) The encoder block used in either encoder-only models for
bidirectional processing or decoder-encoder models for a conditional generation. (b) The de-
coder block used in decoder-encoder models in which the decoder features are updated based
on the encoder’s features. (c) The decoder block used in decoder-only models, which are often
autoregressive LMs. (d) An example of the attention mask for an input sequence of 4 tokens
to be applied to the attention weights during a masked self-attention operation in left-to-right
autoregressive models. It forces each token xi at position i to only attend to tokens to the left
of it, i.e., x≤i−1.

4.2.3 NLP

The transformer architecture (Vaswani et al. 2017), which was originally introduced for machine
translation, has become the standard architecture in NLP under the pre-train then �ne-tune frame-
work (Section 4.1.3). It is a sequence-to-sequence model consisting of two main components, an
encoder, and a decoder, with a similar number of blocks, and each block is composed of two or
three modules. For the encoder, each block (Fig. 4.8 (a)) contains an attention module in which
a self-attention operation is applied followed by layer normalization (LN) (Xu et al. 2019) and a
residual connection, and a feed-forward module with a fully-connected layer, LN, and a residual
connection as well. For the decoder, each block (Fig. 4.8 (b)) has an additional attention module
with a cross-attention operation inserted after the �rst self-attention-based. With such a design,
the model architecture is quite �exible and general-purpose. In each block, we gather global in-
formation from all the contexts conditioned on the local value using the attention operation, fol-
lowed by an FC layer to merge the updated local information. This provides the model with the
ability to learn structures and patterns that are data and task appropriate with a minimal amount
of explicitly speci�ed inductive biases (e.g., self-attention can learn to perform operations similar
to convolutions Cordonnier et al. 2020b).

71



4 Tasks, Models, and Data

In the transformer model, the self-attention operation used is a modi�ed version of the original
operation (Bahdanau et al. 2014). Speci�cally, Let z ∈ RL×d be a set of d-dimensional features
corresponding to an input sequence of lengthL. The self-attention operation starts by projecting
the features into query, key and value vectors qi,ki,vi ∈ Rd at each input location i ∈ [1, L]
using linear projections Wq,Wk,Wv ∈ Rd×d. The self-attention then consists of comparing
the query qi to every key across the whole input sequence to get per-location weights, which are
then used as a weighted sum of all the values to obtain the updated features zi at location i:

zi =
N∑
j

vj
exp(qik

>
j )∑N

k exp(qik>k )
(4.5)

Note that the equation above only presents the single-head formulation and omits the dot prod-
uct scaling by 1√

d
. For self-attention with H heads, i.e., multi-head self-attention, the input fea-

tures are �rst divided into H features of dimension d
H , and the operation in Eq. (4.5) is applied

to every one of them separately. The results are concatenated and then passed through a linear
output layer to get the �nal output of the attention layer. For the cross-attention operation in the
decoder, the procedure remains the same, but the set of queries are generated from the decoder’s
features, while the keys and values are generated from the features of the encoder (i.e., the features
produced by the last layer of the encoder). Additionally, the self-attention in the decoder consists
of an additional masking operation (Fig. 4.8 (d)) so that a given prediction at position i depends
only on the inputs at positions j to the left of it, i.e., j ≤ i − 1, resulting in a left-to-right type
processing of the inputs.

Based on this original encoder-decoder architecture, transformer-based models can take di�er-
ent forms based on the NLP task we wish to solve. They can follow the original architecture for
conditional sequence-to-sequence generation tasks (e.g., T5 (Ra�el et al. 2020), BART (Lewis et al.
2019)). They can be based on the encoder part only for bidirectional processing of the input se-
quence. Such models (e.g., BERT (Devlin et al. 2019), RoBERTa (Y. Liu et al. 2019)) are mostly used
for classi�cation and sequence labeling tasks. They can also be based solely on the decoder, where
in this case, the cross-attention module is removed (Fig. 4.8 (c)), resulting in a model convenient
for language modeling (e.g., GPT models (Brown et al. 2020; Radford et al. 2018, 2019)).

In this thesis, and as detailed in Section 4.1.3, we follow the popular pre-train then �ne-tune
the framework in NLP, starting from an already designed and pre-trained transformer-based LM
(i.e., RoBERTa), and set to develop better �ne-tuning methods under the constraint of limited
labeled data.

Key Takeaways

• For image classi�cation, we focus on CNN-based and, more speci�cally, ResNet-
based models. ResNet models are built as a series of residual blocks. Each block is
built using convolutional blocks of {3 × 3 Conv - BN - ReLU} and residual con-
nections for stable training and faster convergence.
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• For image segmentation, we focus on encoder-decoder-based models. The encoder
is often initialized using a pre-trained image classi�cation model, with additional
adjustments such as using atrous convolutions to obtain larger receptive �elds or
adding a spatial pyramid pooling module for multi-scale processing. For the de-
coder, it consists of either a simple bilinear upsampling and a linear classi�cation
layer, or elaborate designs with learnable upsampling, Conv layers, skip connec-
tions, and a �nal classi�cation layer.

• For NLP tasks, we focus on transformer-based models, which are built using at-
tention and feed-forward blocks, with residual connections and LN layers inter-
leaved between them. We di�erentiate between three types of such models, encoder
only for bidirectional processing, encoder-decoder for conditional generation, and
decoder-only for language modeling.

Usage

In this thesis, we use the previously mentioned models as our starting point based on
the task we tackle in each chapter. Then, we apply minor adjustments depending on the
paradigms we consider and the method we propose.

4.3 Data

In DL, most methods are trained in an end-to-end manner, in which the useful features are de-
termined by and learned from the data itself. Therefore, the training data becomes an intrinsic
and important component of the system. Additionally, when testing the performances of novel
approaches, the data must be selected carefully to mimic real-world settings so that the obtained
performances can eventually be replicated during the system’s deployment.

Broadly, popular datasets used in DL can be categorized based on either i) their use cases or ii)
their data format and type. In terms of the use case, for visual tasks, the data can be generic for
standard tasks, or more specialized such as images of urban settings, satellite imagery, or medical
imaging. Similarity for language, we have either a general-purpose corpus or a more specialized
text such as speci�c writings of a given author, medical transcripts, or legal documents. For the
data type, for visual data, the inputs can be 2D RGB or gray-scale images, RGB-D images with
depth information, 2D stereo images to replicate the human optical system, or 3D volumetric data
such as X-ray scans. For language, the inputs can correspond to human languages, either single or
multi-lingual, but can also be used to describe other types of information in language form such
as tabular data, mathematical formulations, chemical symbols, or sequences of amino acids.

In this thesis, and to demonstrate the generality of the proposed algorithms, we apply them to
various datasets with di�erent use cases and data types based on the task, modality, and learning
paradigm we consider in each given chapter. The details of the data used are presented in the
experimental sections of each chapter.

73



4 Tasks, Models, and Data

As a precursor, we present the procedure we will follow to set up the training and testing data
for each one of the learning paradigms we are interested in:

• SSL (Chapter 5). To imitate the SSL setting, we start from a fully labeled dataset often
used in the SL setup, and only consider a portion (e.g., 1% to 10%) of its training set as
labeled while the rest is considered as unlabeled samples (i.e., by disregarding their labels).
For testing, the methods can be evaluated on the original test set of the dataset.

• UL (Chapter 6). In a fully unsupervised scenario, and since in this thesis we are interested in
predicting the class assignments directly as opposed to representation learning, we train our
model on simpli�ed versions of the original datasets to create easier and more appropriate
learning objectives compared to the supervised case. For example, for the task of image
segmentation, we start from the challenging COCO-Stu� (Caesar et al. 2018) dataset, and
simplify it by only considering a 15 coarse labels variant instead of the original 80 �ne labels
variant, and further reduced it to 52k examples from 164k by taking images with at least
75% stu� pixels. The number of classes can also be merged and reduced to simplify the
learning objective further. To evaluate the methods using a labeled test set, �rst, we �nd
the best one-to-one matching between the outputs and ground-truth classes, given that
the model’s class IDs do not correspond to the ground-truth ones. Then, with the optimal
matching one-to-one already found, we can compute the chosen evaluation metrics as in
the SL case and evaluate our method.

• UDA (Chapter 7). As the example in Fig. 3.4 shows, in a given UDA benchmark, the
distributional shift between the two sets (i.e., the labeled source data and the unlabeled
target data) is often simulated by considering two training sets with compatible class labels
but with di�erent characteristics. For instance, the source can contain synthetic labeled
images generated from computer games in which the annotation can be easily generated,
while the target is composed of real images in which the model will eventually be deployed.
We train on the labeled source and the unlabeled target and then report and obtained the
result on the target set itself.

• FSL (Chapter 8). For the task of few-shot classi�cation, datasets are organized based on
their classes. They are divided into seen classes to be used in the meta-training set and un-
seen classes to be used for meta-testing (refer to Fig. 3.6 for an illustration). Then, the
training and testing sets of each task can be constructed depending on the classi�cation
problem we choose to solve (i.e., aC-wayK-shot classi�cation problem). For a given task,
its support (i.e., train) set containsK ×C examples, withK examples per each one of the
C classes, while its query (i.e., test) is often constructed using a larger number of examples
per each of the C classes to get more representative evaluation results in very low K-shot
settings (e.g., in our case, we will use 15 examples per class, resulting in 15×C test examples
for each task). We train our model on the meta-training tasks and report the average of the
accuracies obtained over each test set of the meta-testing tasks.

• FSFT (Chapter 9). In this setting, we follow the standard TL-based training and testing
procedures in NLP. We start from a pre-trained model (e.g., RoBERTa) and then set �ne-
tune it on the labeled training set of each one of the downstream tasks of a given NLP
benchmark (e.g., GLUE benchmark (A. Wang et al. 2018)). This is followed by an evaluation
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step on each one of the provided test sets. However, in our case, we constrain ourselves
to cases where only a limited amount of labeled training data is available, which can be
simulated by simply considering only a small portion of the original labeled training data
as our training set.

Conclusion
This chapter concludes Part I of this thesis. In it, we presented the reader with the back-
ground knowledge required for the second part of this work. Speci�cally, in Chapter 2, we
introduce the main ideas behind DL and its main building blocks. Then, in Chapter 3, we
introduced the learning paradigms tackled in the contribution chapters. In this chapter,
we established the tasks we consider, starting by their de�nitions in Section 4.1, the mod-
els used to solve them in Section 4.2 and �nally, the data we use to train and evaluate the
proposed methods in Section 4.3.

Next, in Part II of this thesis, Chapters 5 to 9 present the main contribution of this work.
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Part II

Contributions
After introducing the necessary background in Part I of this thesis, this second part
presents the main contributions of this work. In each of one upcoming chapters, we
tackle one of the presented learning paradigms that consider some variant of the label-
e�cient learning setup, and develop a novel method to solve the tasks previously described.

Speci�cally, the next �ve chapters consider the following paradigms and tasks:

• In Chapter 5, we tackle the semi-supervised learning paradigm and the image seg-
mentation task.

• In Chapter 6, we tackle the unsupervised learning paradigm and the image segmen-
tation task.

• In Chapter 7, we tackle the unsupervised domain adaptation paradigm and the
tasks of image classi�cation and segmentation.

• In Chapter 8, we tackle the few-shot learning paradigm and the image classi�cation
task.

• In Chapter 9, we tackle the few-sample �ne-tuning paradigm and classi�cation-
based natural language processing tasks.

Each one of these subsequent chapters presented with the following structure:
Introduction→ Related Work→ Preliminaries→Method→ Experimental Results→
Conclusion.
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5 Cross-Consistency Training

Chapter’s Background

In this chapter, we consider:

• The Semi-Supervised Learning (SSL) paradigm (Section 3.2).

• The task of image segmentation (Sections 4.1.2 and 4.2.2).

We chose the SSL setting since it is a well-established setting in ML, and at the time of this
contribution, it was gaining popularity in the DL research community. Additionally, it
deals with the problem of label-e�cient learning and is a �exible and practical framework.
We choose the task of image segmentation motivated by two points. First, when we set
to tackle the SSL setting, there were already a few established DL-based semi-supervised
methods for image classi�cation and object detection, while the SSL segmentation meth-
ods were mostly GAN-based and did not leverage the traditional SSL approaches, thus
making it worth studying. Second, at the beginning of the thesis, the MICS aboratory
was involved in many projects that focused on the image and document segmentation task
with a limited amount of labeled data, and while not motivated by a speci�c application,
it naturally oriented us to the task of image segmentation.

Chapter’s Summary

In this chapter, we start with a preliminary analysis of cluster assumption at the pixel level
for the image segmentation task. We show that the low-density regions are more appar-
ent within the hidden representations than within the inputs for image segmentation. We
thus propose Cross-Consistency Training (CCT), where an invariance of the predictions
is enforced over di�erent perturbations applied to the outputs of the encoder (i.e., repre-
sentation level). Concretely, a shown in Fig. 5.1, a shared encoder and a main decoder are
trained in a supervised manner using the available labeled examples. To leverage the unla-
beled examples, we enforce consistency between the main decoder predictions and those of
the auxiliary decoders, taking as inputs di�erent perturbed versions of the encoder’s out-
put, and consequently, improving the encoder’s representations. The proposed method
is simple and can easily be extended to use additional training signal, such as image-level
labels or pixel-level labels across di�erent domains. We perform an ablation study to tease
apart the e�ectiveness of each component, and conduct extensive experiments to demon-
strate that our method achieves state-of-the-art results in several datasets.
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Figure 5.1: Cross-Consistency training (CCT). The encoder and the main decoder are trained in a
supervised manner for the labeled examples. For the unlabeled examples, a consistency between
the main decoder’s predictions and those of the auxiliary decoders is enforced over di�erent
types of perturbations, which are applied to the inputs of the auxiliary decoders. Note that in
practice, both steps are conducted in a single forward-backward pass using a mini-batch con-
taining both labeled and unlabeled examples.

5.1 Introduction

In recent years, growing attention has been drawn to deep SSL to take advantage of availability of
unlabeled data and limit the need for labeled examples. However, at the time of this contribution,
the progress in SSL was con�ned to classi�cation tasks. And its application in image segmenta-
tion is still limited. Dominant approaches (Z. Huang et al. 2018; J. Lee et al. 2019; Y. Wei et al. 2017,
2018) focus on weakly-supervised learning, which principle is to generate pseudo-pixel-level labels
by leveraging the weak labels that can then be used, together with the limited strongly labeled
examples, to train a segmentation network in a supervised manner. Generative Adversarial Net-
works (GAN) were also adapted for SSL setting (Hung et al. 2018; Souly et al. 2017) by extending
the generic GAN framework to pixel-level predictions. The discriminator is then jointly trained
with an adversarial loss on all examples and a supervised loss over the labeled examples. Neverthe-
less, these approaches su�er from some limitations. Weakly-supervised methods require weakly
labeled examples and pixel-level labels. Hence, they do not exploit the unlabeled data to extract
additional training signal. Methods based on adversarial training on the other hand exploit the
unlabeled data, but they can be harder to train.

To address these limitations, we propose a simple consistency-based SSL method for image seg-
mentation. The objective of consistency training is to enforce an invariance of the model’s pre-
dictions over small perturbations applied to the inputs. As a result, the learned model will be
robust to such small changes. The e�ectiveness of consistency-based training depends heavily on
the behavior of the data distribution, i.e., the cluster assumption, where low-density regions must
separate the classes. In image segmentation, we do not observe the presence of such low-density
regions separating the classes in input space, but rather within the encoder’s outputs. Based on
this observation, we propose enforcing the consistency over di�erent perturbations applied to
the encoder’s output. Speci�cally, we consider a shared encoder and a main decoder which are
trained using the labeled examples. To leverage unlabeled data, we then consider multiple aux-
iliary decoders whose inputs are perturbed versions of the output of the shared encoder. The
consistency is then imposed between the main decoder’s predictions and that of the auxiliary de-
coders (see Fig. 5.1). This way, the shared encoder’s representations are enhanced by using the
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additional training signal extracted from the unlabeled data. The added auxiliary decoders have a
negligible amount of parameters compared to the encoder. Additionally, only the main decoder
is used during inference, thus reducing the computation overhead both in training and inference.

Chapter’s Contributions

To summarize, this chapter’s contributions are:

• We propose a Cross-Consistency Training (CCT) method for semi-supervised im-
age segmentation, where the invariance of the predictions is enforced over di�erent
perturbations injected into the encoder’s output.

• We propose and conduct an exhaustive study of various types of perturbations.

• We extend our approach to use weakly-labeled data and exploit pixel-level labels
across di�erent domains to jointly train the segmentation network.

• We demonstrate the e�ectiveness of our approach with an extensive and detailed
experimental results, including a comparison with the state-of-the-art, as well as an
in-depth analysis of our approach with a detailed ablation study.

5.2 RelatedWork

Semi-Supervised Learning. Recently, many e�orts have been made to adapt classic SSL meth-
ods to deep learning, such as pseudo labeling (D.-H. Lee 2013), entropy minimization (Grandvalet
et al. 2005) and graph based methods (Kipf et al. 2016; B. Liu et al. 2019). This chapter focuses mainly
on consistency training methods introduced in Section 3.2.3. Consistency training methods are
based on the assumption that if a realistic form of perturbation is applied to the unlabeled exam-
ples, the predictions should not change signi�cantly. It thus favors models with decision bound-
aries that reside in low-density regions, giving consistent predictions for similar inputs. For exam-
ple, Π-Model (Laine et al. 2016) enforces a consistency over two perturbed versions of the inputs
under di�erent data augmentations and dropout. A weighted moving average of either the pre-
vious predictions (i.e., Temporal Ensembling (Laine et al. 2016)), or the model’s parameters (i.e.,
Mean Teacher (Tarvainen et al. 2017)), can be used to obtain more stable predictions over unla-
beled examples. Instead of relying on random perturbations, Virtual Adversarial Training (VAT)
(Miyato et al. 2018) approximates the perturbations that alter the model’s predictions the most.
Similarly, our proposed method enforces a consistency of predictions between the main decoder
and the auxiliary decoders over di�erent perturbations that are applied to the encoder’s outputs
rather than the inputs. The proposed CCT is also loosely related to Multi-View learning (J. Zhao
et al. 2017) and Cross-View training (Clark et al. 2018), where each input to the auxiliary decoders
can be viewed as an alternate but corrupt representation of the unlabeled examples.

Semi-Supervised Image Segmentation. A signi�cant number of approaches uses a limited
number of pixel-level labels together with a larger number of inexact annotations, e.g., region-
level (J. Dai et al. 2015a; C. Song et al. 2019) or image-level labels (J. Lee et al. 2019; K. Li et al. 2018;
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Y. Wei et al. 2018; B. Zhou et al. 2016). For image-level based weak-supervision, primary localization
maps are generated using Class Activation Mapping (CAM) (B. Zhou et al. 2016). After re�ning the
generated maps, they can then be used to train a segmentation network together with the available
pixel-level labels. Generative modeling can also be used for semi-supervised image segmentation
(Hung et al. 2018; Souly et al. 2017) to take advantage of the unlabeled examples. Under the GAN
framework, the discriminator’s predictions are extended over pixel classes, and can then be jointly
trained with a CE loss over the labeled examples and an adversarial loss over the whole dataset.
In comparison, our proposed method exploits the unlabeled examples by enforcing a consistency
over multiple perturbations on the hidden representations level, enhancing the encoder’s repre-
sentations and the overall performance with a small additional cost in terms of computation and
memory requirements.

5.3 Preliminaries

We start with our observation and analysis of the cluster assumption in image segmentation, mo-
tivating the proposal of our CCT approach. A simple way to examine it is to estimate the local
smoothness by measuring the local variations between the value of each pixel and its local neigh-
bors. To this end, we compute the average euclidean distance at each spatial location and its 8
intermediate neighbors, for both the inputs and the hidden representations (i.e., the ResNet’s
(K. He et al. 2016) outputs of a DeepLab v3 (L.-C. Chen et al. 2017b) trained on COCO (T.-Y. Lin
et al. 2014)). For the inputs, following (French et al. 2019), we compute the average distance of a
patch centered at a given spatial location and its neighbors to simulate a realistic receptive �eld.
For the hidden representations, we upsample the feature map to the input size, and then compute
the average distance between the neighboring activations (i.e., 2048-dimensional feature vectors).
The results are shown in Fig. 5.2. We observe that the cluster assumption is violated at the input
level, given that the low-density regions do not align with the class boundaries. On the contrary,
at the representation level, i.e., the output of the encoder of a segmentation network, the cluster
assumption is maintained where the class boundaries have high average distance, thus correspond-
ing to low-density regions. Additionally, while the learned feature of a CNNs are generally more
homogeneous and at higher layers, the network learns to compose low-level features into semanti-
cally meaningful representations while discarding high-frequency information (e.g., texture). We
observe that the learned features in a segmentation network seem to have a unique property; the
class boundaries correspond to low-density regions. The same behavior is not observed in net-
works trained on other visual tasks (e.g., classi�cation and object detection). This observation
motivates the proposed CCT approach, in which the perturbations are applied to the encoder’s
outputs rather than the inputs.

5.4 Method

5.4.1 ProblemDefinition

In SSL, we are provided with a small set of labeled training examples and a larger set of unlabeled
training examples. LetDtr

l = {(xl1, y1), . . . , (xlN , yN )} represent the N labeled examples and
Dtr
u = {xu1 , . . . ,xuM} represent theM unlabeled examples, with xui as the i-th unlabeled input
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Figure 5.2: The cluster assumption in image segmentation. (a) Examples from PASCAL VOC
2012 train set. (b) Pixel-level ground-truths. (c) Input level. We show the average euclidean
distance between each patch of size 20× 20 centered at a given spatial location extracted from
the input images, and its 8 neighboring patches. (d) Hidden representations level for a segmen-
tation network. We show the average euclidean distance between a given 2048-dimensional
activation at each spatial location and its 8 neighbors. Similarly, we show the results at the rep-
resentations level for both an image classi�cation (e) and an object detection (f) network. The
darker the regions, the higher the average distance.

image, andxli as the i-th labeled input image with spatial dimensionsH×W and its correspond-
ing pixel-level label yi ∈ RC×H×W , whereC is the number of classes.

In SSL, the objective is to exploit the larger number of unlabeled examples (M � N ) to train
a segmentation network f to perform well on the test data drawn from the same distribution as
the training data. In this chapter, our architecture (see Fig. 5.3) is composed of a shared encoderh
and a main decoder g, which constitute the segmentation network f = g ◦ h. We also introduce
a set of K auxiliary decoders gka , with k ∈ [1,K]. While the segmentation network f is trained
on the labeled setDtr

l in a traditional supervised manner, the auxiliary networks gka ◦h are trained
on the unlabeled setDtr

u by enforcing a consistency of predictions between the main decoder and
the auxiliary decoders. Each auxiliary decoder takes as input a perturbed version of the encoder’s
output while and the main encoder is fed the uncorrupted intermediate representations. This way,
the representation learning of the encoderh is further enhanced using the unlabeled examples and,
subsequently, that of the segmentation network f .

5.4.2 ProposedMethod

As stated above, to extract additional training signal from the unlabeled setDtr
u , we rely on enforc-

ing a consistency between the outputs of the main decoder gm and those of auxiliary decoders gka .
Formally, for a labeled training example xli, and its pixel-level label yi, the segmentation network
f is trained using a Cross-Entropy (CE) based supervised lossLs:

Ls =
1

|Dtr
l |

∑
xli,yi∈Dl

LCE(yi, f(xli)) (5.1)
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Figure 5.3: Atraining iteration ofCCT. For one training iteration, we sample a labeled input image
xl and its pixel-level label y together with an unlabeled imagexu. We pass both images through
the encoder and main decoder, obtaining two main predictions ŷl and ŷu. We compute the
supervised loss using the pixel-level label y and ŷl. We apply various perturbations to z, the
output of the encoder forxu, and generateK auxiliary predictions using the perturbed versions
of the encoder’s features. The unsupervised loss is then computed between the K outputs of
these auxiliary decoders and that of the main decoder.

For an unlabeled example xui , an intermediate representation of the input is computed using the
shared encoder zi = h(xui )1. Let us considerR stochastic perturbations functions, denoted as pr
with r ∈ [1, R], where one perturbation function can be assigned to multiple auxiliary decoders.
With various perturbation settings, we generateK perturbed versions z̃ki of the intermediate rep-
resentation zi, so that the k-th perturbed version is to be fed to the k-th auxiliary decoder. For
consistency, we consider the perturbation function as part of the auxiliary decoder, (i.e., gka can be
seen as gka ◦ pr with pr as the perturbation function). The training objective is then to minimize
the unsupervised loss Lu, which measures the discrepancy between the main decoder’s output
and that of the auxiliary decoders:

Lu =
1

|Dtr
u |

1

K

∑
xui ∈Dtr

u

K∑
k=1

d(g(zi), g
k
a(zi)) (5.2)

with d(., .) as a distance measure between two output probability distributions (i.e., the outputs
of a softmax function applied over the channel dimension). In this chapter, we choose to use
Mean Squared Error (MSE) as a distance measure.

The combined lossL for consistency-based SSL is then computed as:

L = Ls + ωuLu (5.3)

where ωu is an unsupervised loss weighting function. Following (Laine et al. 2016), to avoid using
the initial noisy predictions of the main encoder,ωu ramps up starting from zero along a Gaussian
curve up to a �xed weight λu.

1Throughout this chapter, z will refer to the output of the encoder corresponding to an unlabeled input image xu.
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Concretely, at each training iteration, an equal number of examples are sampled from the la-
beledDtr

L and unlabeledDtr
U sets. The supervised loss is computed using the main encoder’s out-

put and pixel-level labels. While for the unlabeled examples, we compute the MSE between the
prediction of each auxiliary decoder and that of the main decoder. The total loss is then computed
and back-propagated to train the segmentation network f and the auxiliary networks gka ◦ h.
Note that the unsupervised lossLu is not back-propagated through the main-decoder g, only the
labeled examples are used to train g.

5.4.3 MethodDetails

Perturbation Functions

An important factor in consistency training is the perturbations to be applied to the hidden rep-
resentation, i.e., . the encoder’s output z. Next, we will introduce the three types of perturbation
functions pr we propose: feature-based, prediction-based, and random perturbations.

Feature-based perturbations. They consist of either injecting noise into or dropping some of
the activations of the encoder’s output feature maps z.

• F-Noise. We uniformly sample a noise tensor N ∼ U(−0.3, 0.3) of the same size as z.
After adjusting its amplitude by multiplying it with z, the noise is then injected into the
encoder’s output z to get z̃ = (z � N) + z with � as the element-wise multiplication
operation. This way, the injected noise is proportional to each activation.

• F-Drop. We �rst uniformly sample a threshold γ ∼ U(0.6, 0.9). After summing over
the channel dimension and normalizing the feature map z to get z′, we generate a mask
Mdrop = 1z′<γ

2, which is then used to obtain the perturbed version z̃ = z �Mdrop.
This way, we mask 10% to 40% of the most active regions in the feature map.

Prediction-based perturbations. They consist of adding perturbations based on the main de-
coder’s prediction ŷ = g(z) or that of the auxiliary decoders. We consider masking-based pertur-
bations (Con-Msk, Obj-Msk and G-Cutout) in addition to adversarial perturbations (I-VAT).

• Guided Masking. Given the importance of context relationships for complex scene under-
standing (Oliva et al. 2007), the network might be too reliant on these relationships. To limit
them, we create two perturbed versions of z by masking the detected objects (Obj-Msk)
and the context (Con-Msk). Using the predicted masks ŷ, we generate an object mask
Mobj to mask the detected foreground objects and a context mask Mcon = 1 −Mobj,
which are then down-sampled to match spatial dimensions of the encoder’s features z and
are then applied to them to get its two perturbed versions, i.e., z̃1 = z � Mobj and
z̃2 = z�Mcon.

• Guided Cutout (G-Cutout). In order to reduce the reliance on speci�c parts of the objects,
and inspired by Cutout (Devries et al. 2017) that randomly masks some parts of the input
image, we �rst �nd the possible spatial extent (i.e., . bounding box) of each detected object

2
1cond ∈ {0, 1} as an indicator function evaluating to 1 i� cond is satis�ed
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using ŷ. We then zero out a random crop within each object’s bounding box from the
corresponding feature map z.

• Intermediate VAT (I-VAT). To further push the output distribution to be isotropically
smooth around each data point, we investigate using VAT (Miyato et al. 2018) as a pertur-
bation function to be applied to z instead of the unlabeled inputs. For a given auxiliary
decoder, we �nd the adversarial perturbation radv that will alter its prediction the most.
The noise is then injected into z to obtain the perturbed version z̃ = radv + z.

Random perturbations. (DropOut) Spatial dropout (Tompson et al. 2015) is also applied to z
as a random perturbation.

Practical considerations

At each training iteration, we sample an equal number of labeled and unlabeled samples. As a
consequence, we iterate on the set Dtr

l more times than on its unlabeled counterpart Dtr
u given

thatM � N withM andN as the number of unlabeled and labeled training data, respectively.
We thus risk over�tting the labeled setDtr

l . As such, to avoid over�tting, and motivated by Pohlen
et al. (Pohlen et al. 2017) who observed improved results by sampling only 6% of the hardest pixels
and Xie et al. (Xie et al. 2019) who showed an improvement when gradually releasing the super-
vised training signal in an SSL setting. We propose an annealed version of the bootstrapped-CE
(ab-CE) in (Pohlen et al. 2017). With an output f(xli) ∈ RC×H×W in the form of a probability
distribution over the pixels, we only compute the supervised loss over the pixels with a probability
less than a threshold η:

Ls =
1

|Dtr
l |

∑
xli,yi∈Dl

1f(xli)<η
LCE(yi, f(xli)) (5.4)

During the beginning of training, the threshold parameter η is gradually increased from 1
C to 0.9,

with C as the number of output classes. This way, we restrict the supervised training signal to
examples in which the model is not overly con�dent.

5.4.4 Extensions

Exploitingweak-labels

In some cases, we might be provided with additional training data that is less expensive to acquire
compared to pixel-level labels, e.g., image-level labels. Formally, instead of an unlabeled set Du,
we are provided with a weakly labeled set Dtr

w = {(xw1 , yw1 ), . . . , (xwm, y
w
m)} alongside a pixel-

level labeled set Dtr
l , i.e., the unlabeled training set is replaced with a weakly labeled set, with

ywi is the i-th image-level label corresponding to the i-th weakly labeled input image xwi . The
objective is to extract additional information from the weak labeled set Dw to further enhance
the representations of the encoder h. To this end, we add a classi�cation branch gc consisting
of a global average pooling layer followed by a classi�cation layer, and pre-train the encoder for a
classi�cation task using binary CE loss.
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Figure 5.4: CCT with weak-labels. In case image-level labels are available, they can be leveraged to
generated pseudo pixel-level labels where only con�dent regions are assigned a given class. These
labels can then be used to train the aux. decoders together with the standard unsupervised
consistency loss. Note that in this �gure, the white regions of the generated pseudo label refer
to ambiguous regions of the image that are not used during training.

Following previous works (Ahn et al. 2018; Z. Huang et al. 2018; J. Lee et al. 2019), the pre-trained
encoder and the added classi�cation branch can then be exploited to generate pseudo-pixel-level
labels yp. We start by generating the CAMs (i.e.,M ∈ RC×H×W ) as in (B. Zhou et al. 2016), then
we re�ne them to obtain the �nal pseudo labels yp. To do this, �rst, we de�ne two thresholds, a
background τbg and a foreground τfg thresholds. Then, the pixels with attention scores less than
τbg (e.g., 0.05) are considered as background, while the pixels with an attention score larger than
τfg (e.g., 0.30) are assigned the class with the maximal attention score, and the rest of the pixels are
ignored. After generating yp, we conduct a �nal re�nement step using dense CRF (Krähenbühl
et al. 2011).

As illustrated in Fig. 5.4, in addition to considering Dtr
w as an unlabeled set and imposing a

consistency over its examples, i.e., enforcing a consistency of predictions at the encoder’s level, the
generated pseudo-labels are used to train the auxiliary networks gka ◦ h using a weakly supervised
lossLw. In this case, the loss in Eq. (5.3) becomes:

L = Ls + ωuLu + ωwLw (5.5)

with

Lw =
1

|Dtr
w |

1

K

∑
xwi ∈Dtr

w

K∑
k=1

LCE(yp, g
k
a(zi)) (5.6)

CCT onMultiple Domains

In this section, we extend the proposed framework to a semi-supervised multi-domain setting. We
consider the case in which two datasets {D(1),D(2)}with partially or fully non-overlapping label
spaces are available. Each domain has its labeled and unlabeled sets, i.e.,D(i) = D(i)

l ∪D
(i)
u . The

objective is to simultaneously train a segmentation network to do well on the test data of both
datasets, which are drawn from the di�erent distributions.

We assume that enforcing a consistency over both unlabeled setsD(1)
u andD(2)

u might impose
an invariance of the encoder’s representations across the two domains. To this end, on top of
the shared encoder h, we add domain-speci�c main decoder g(i) and auxiliary decoders gk(i)

a .
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Figure 5.5: CCT on multiple domains. On top of a shared encoder, we add domain speci�c main de-
coder andK auxiliary decoders. During training, we alternate between the two domains, sam-
pling labeled and unlabeled examples and training the corresponding decoders and the shared
encoder at each iteration.

Speci�cally, as show in Fig. 5.5, we add two main decoders and 2K auxiliary decoders on top of
the encoder h. During training, we alternate between the two datasets, and at each iteration, we
sample an equal number of labeled and unlabeled examples from each one, we compute the loss
in Eq. (5.3) and train the shared encoder and the corresponding main and auxiliary decoders.

5.5 Experimental Results

We conduct detailed experiments to evaluate the proposed method and investigate its e�ective-
ness in di�erent settings. In Section 5.5.2, we present an extensive ablation study to highlight
the contribution of each component within the proposed framework. Then in Section 5.5.3, we
compare our method to state-of-the-art methods in semi-supervised and semi-supervised multi-
domain settings, and show performances above previous methods.

5.5.1 Experimental Details

Network Architecture. In this chapter, we use an encoder-decoder based segmentation network
(Section 4.2.2). The encoder is based on a ResNet-50 (K. He et al. 2016) pre-trained on ImageNet
(Deng et al. 2009) provided by (You et al. 2019), and consists additionally of a PSP module (H. Zhao
et al. 2017) for multi-scale processing. Following previous works (Ahn et al. 2018; Z. Huang et al.
2018; H. Zhao et al. 2017), the last two strided convolutions of ResNet are replaced with dilated
convolutions. As for the decoders, taking the e�ciency and the number of parameters into con-
sideration, we choose to only use 1 × 1 Convs. After an initial 1 × 1 Conv to adapt the depth
to the number of classesC , we apply a series of three sub-pixel convolutions (Shi et al. 2016) with
ReLU non-linearities to upsample the outputs to the original input size.

Datasets. In a semi-supervised setting, we evaluate the proposed method on PASCAL VOC (Ev-
eringham et al. 2010), consisting of 21 classes (i.e., with the background included) and three splits,
training, validation, and testing, with 1464, 1449, and 1456 images, respectively. Following the
common practice (Z. Huang et al. 2018; H. Zhao et al. 2017), we augment the training set with addi-
tional images from (Hariharan et al. 2011). Note that the pixel-level labels are only extracted from
the original training set. For semi-supervised multi-domain experiments, for partially overlapping
label spaces, we train on both Cityscapes (Cordts et al. 2016a) and CamVid (Brostow et al. 2009).
Cityscapes is a �nely annotated autonomous driving dataset with 19 classes. We are provided
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Figure 5.6: Ablation Studies on CamVid with 20, 50 and 100 labeled images. With di�erent
types of perturbations and a variable number of auxiliary decodersK , we compare the individ-
ual and the combined e�ectiveness of the perturbations to the baseline in which the model is
trained only on the labeled examples. CCT full refers to using all of the 7 perturbations, i.e., .
the number of auxiliary decoders isK × 7.

with three splits, training, validation, and testing with 2975, 500, and 1525 images, respectively.
CamVid contains 367 training, 101 validation, and 233 testing images. Although originally the
dataset is labeled with 38 classes, we use the 11 classes version (Badrinarayanan et al. 2017). For ex-
periments over non-overlapping label spaces, we train on Cityscapes, and SUN RGB-D (S. Song
et al. 2015). SUN RGB-D is an indoor segmentation dataset with 38 classes containing two splits,
training and validation, with 5285 and 5050 images respectively. Similar to (Kalluri et al. 2019), we
train on the 13 classes version (Handa et al. 2016).

Evaluation Metrics. For all of the datasets, we report the mIoU, i.e., mean of class-wise intersec-
tion over union de�ned in Eq. (4.3).

Training Settings. Our implementation is based on the PyTorch 1.1 (Paszke et al. 2019) frame-
work. For optimization, we train for 50 epochs using SGD with a learning rate of 0.01 and a
momentum of 0.9. During training, the learning rate is annealed following the poly learning rate
policy, where at each iteration, the base learning rate is multiplied by 1 − (iter /max_iter)0.9.
For PASCAL VOC, we take crops of size 321 × 321 and apply random rescaling in the range
of [0.5, 2.0] and random horizontal �ips. For Cityscapes, Cam-Vid and SUN RGB-D, following
(Hung et al. 2018; Kalluri et al. 2019), we resize the input images to 512 × 1024, 360 × 480 and
480× 640 respectively, without any further data-augmentation.

Inference Settings. For PASCAL VOC, Cityscapes, and SUN RGB-D, we report the results
obtained on the validation set and on the test set of CamVid dataset.

Reproducibility. All the experiments are conducted on a V-100 GPUs. The implementation is
available at https://github.com/yassouali/CCT.

5.5.2 Ablation Results

Aux. Decoders and Perturbation Functions

The proposed method consists of several types of perturbations and a variable number of auxil-
iary decoders. We thus start by studying the e�ect of the perturbation functions with di�erent
numbers of auxiliary decoders to provide additional insights into their individual performance
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Figure 5.7: Ablation study on PASCAL
VOC. Ablation study results with
1000 labeled examples using di�er-
ent perturbations and various num-
bers of auxiliary decodersK .

Splits N = 500 N = 1000

Baseline 51.4 59.2

Mean Teachers 51.3 59.4
VAT 50.0 57.9
CCT 58.6 64.4

Table 5.1: CCT and Traditional Consis-
tency Methods. We compare the
performance of the baseline to the
proposed method CCT, VAT, and
Mean Teachers on PASCAL VOC.
N represents the number of labeled
examples.

and combined e�ectiveness. Precisely, we measure the e�ect of di�erent numbers of auxiliary de-
coders K (i.e., K = 2, 4, 6 and 8) of a given perturbation type. We refer to this setting of our
method as CCT {perturbation type}, with seven possible perturbations. We also measure the com-
bined e�ect of all perturbations resulting in K × 7 auxiliary decoders in total and refer to it as
CCT full. Additionally, CCT full+ab-CE indicates the usage of the annealed-bootstrapped CE
as a supervised loss function. We compare the obtained results to the baseline, in which the model
is trained only using the labeled examples.

CamVid. We carried out the ablation on CamVid with 20, 50 and 100 labels; the results are
shown in Fig. 5.6. We �nd that each perturbation outperforms the baseline, with the most dra-
matic di�erences in the 20-label setting with up to 21 points. Surprisingly, we also observe an
insigni�cant overall performance gap among di�erent perturbations, con�rming the e�ectiveness
of enforcing the consistency over the hidden representations for image segmentation, and high-
lighting the versatility of CCT and its success with numerous perturbations. IncreasingK results
in a modest improvement overall, with the smallest change for Con-Msk and Obj-Msk due to
their lack of stochasticity. Interestingly, we also observe a slight improvement when combining
all of the perturbations, indicating that the encoder is able to generate representations that are
consistent over many perturbations and, subsequently, improving the overall performance. Ad-
ditionally, gradually releasing the training signal using ab-CE helps increase the performance with
up to 8%, which con�rms that over�tting of the labeled examples can cause a signi�cant drop in
performance.

PASCAL VOC. In order to investigate the success of CCT on larger datasets, we conduct ad-
ditional ablation experiments on PASCAL VOC using 1000 labeled examples, The results are
summarized in Fig. 5.7. We see similar results, where the proposed method shows notable im-
provement compared to the baseline with di�erent perturbations, from 10 to 15 points. The
combined perturbations yield a small increase in the performance, with the most signi�cant dif-
ference obtained using K = 6. Furthermore, and similar to CamVid, when using the ab-CE
loss, we see a signi�cant gain with up to 7 points compared to CCT full.
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Splits N = 500 N = 1000

Baseline 51.4 59.2

CCT KL 54.0 62.5
CCT JS 58.4 64.3
CCT MSE 58.6 64.4

Table 5.2: CCT with different distance
measures. We compare the perfor-
mance of MSE to the KL divergence
and the JS-divergence on PASCAL
VOC dataset.

N mIoU

CCT 1000 67.3 (+3.3)
CCT 1500 73.4 (+4)
CCT +9k Image-lvl labels 1500 75.1 (+2.9)

Table 5.3: CCT results with multi-scale
inference. The obtains gains in
mIoU when we apply multi-scale in-
ference on PASCAL VOC val set.

Based on the conducted ablation studies, for the rest of the experiments, we use the setting of
CCT full withK = 2 for Con-Msk and Obj-Msk due to their lack of stochasticity,K = 2 for
I-VAT given its high computational cost, andK = 6 for the rest of the perturbations, and refer
to it as “CCT”.

Comparisonwith Traditional Consistency TrainingMethods

In this section, we present the experiments to validate the observation that for image segmenta-
tion, enforcing a consistency over di�erent perturbations applied to the encoder’s outputs rather
than the inputs is more aligned with the cluster assumption. To this end, we compare the pro-
posed method with traditional consistency-based SSL methods. Speci�cally, we conduct exper-
iments using VAT (Miyato et al. 2018) and Mean Teachers (Tarvainen et al. 2017). In VAT, at each
training iteration, the unsupervised loss is computed as the KL divergence between the model’s
predictions with xu and its perturbed version xu + radv as inputs. For Mean Teachers; the dis-
crepancy is measured using MSE between the prediction of the model and the prediction using
an exponentially weighted version of it. In this case, the noise is sampled at each training step with
SGD. The results are presented in Table 5.1. We see that applying the adversarial noise to inputs
with VAT results in lower performance compared to the baseline. When using Mean Teachers,
in which the noise is not implicitly added to the inputs, we obtain a similar performance to the
baseline. These results con�rm our observation that enforcing a consistency over perturbations
applied to the hidden representations is more aligned with the cluster assumption, thus yielding
better results.

DistanceMeasures

In all of the other experiments, we used MSE as the distance measure d(., .) for the unsupervised
lossLu to measure the discrepancy between the main and auxiliary predictions. This section inves-
tigates the e�ectiveness of other distance measures between the output probability distributions.
Speci�cally, we compare the performance of MSE to the KL divergence and the JS-divergence.
The comparison results are shown in Table 5.2. We observe similar performances with dMSE and
dJS, while we only obtain 2.6 and 3.3 points gain forN = 500 andN = 1000 respectively over
the baseline when using dKL. The low performance of dKL might be due to its non-symmetric
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Method Pixel-level Labeled Examples Image-level Labeled Examples Val

WSSL (Papandreou et al. 2015b) 1.5k 9k 64.6
GAIN (K. Li et al. 2018) 1.5k 9k 60.5
MDC (Y. Wei et al. 2018) 1.5k 9k 65.7
DSRG (Z. Huang et al. 2018) 1.5k 9k 64.3
Souly et al. (Souly et al. 2017) 1.5k 9k 65.8
FickleNet (J. Lee et al. 2019) 1.5k 9k 65.8

Souly et al. (Souly et al. 2017) 1.5k - 64.1
Hung et al. (Hung et al. 2018) 1.5k - 68.4

CCT 1k - 64.0
CCT 1.5k - 69.4
CCT 1.5k 9k 73.2

Table 5.4: Comparison with the-state-of-the-art SSL methods. CCT performance on PAS-
CAL VOC compared to other semi-supervised segmentation approaches.

nature. With dKL, the auxiliary decoders are heavily penalized over sharp but wrong predictions,
thus pushing them to produce uniform and uncertain outputs and reducing the amount of train-
ing signal that can be extracted from the unlabeled examples. However, with dJS, which is a sym-
metrized and smoothed version of dKL, we can bypass the zero avoidance nature of the KL diver-
gence. Similarly, dMSE can be seen as a multi-class Brier score (Berthelot et al. 2019), which is less
sensitive to completely incorrect predictions, giving it properties similar to dJS, but with a lower
computational cost.

Multi-scale Inference

To further enhance the predictions of our segmentation network, we conduct additional eval-
uations on PASCAL VOC using multi-scale inference (i.e., image pyramid-based inference) to
simulate a similar situation to training where we apply random scaling between 0.5 and 2, ran-
dom cropping and random horizontal �ip. For a given test image, we create 5 versions of it using
5 scales: 0.5, 0.75, 1, 1.25, and 1.5, and then also horizontal �ips to each one, resulting in 10
versions of the original test image. The model’s predictions are computed for each image, rescaled
to the original size, and then aggregated by pixel-wise average pooling. The �nal segmentation
maps are obtained by taking the argmax over the classes for each spatial location. In Table 5.3,
we report the results obtained with multi-scale inference and show that with better preprocessing,
we can obtain even better results under the CCT framework.

5.5.3 Quantitative Results

Semi-Supervised Setting

To further explore the e�ectiveness of our framework, we quantitatively compare it with previous
semi-supervised image segmentation methods on PASCAL VOC. Table 5.4 compares CCT with
such approaches. Our approach outperforms previous works relying on the same level of super-
vision and even methods that exploit image-level labels. We also observe an increase of 3.8 points
when using additional image-level labels, a�rming the �exibility of CCT, and the possibility of
using it with di�erent types of labels without any learning con�icts.
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Method N = 50 N = 100

CS CVD Avg. CS CVD Avg.

Kalluri, et al. (Kalluri et al. 2019) 34.0 53.2 43.6 41.0 54.6 47.8

Baseline 31.2 40.0 35.6 37.3 34.4 35.9
CCT 35.0 53.7 44.4 40.1 55.7 47.9

Table 5.5: CCT applied to CS+CVD.
CCT performance when training
simultaneously on two datasets
with overlapping label spaces, which
are Cityscapes (CS) and CamVid
(CVD).

Method Labeled
Examples

CS SUN Avg.

SceneNet (McCormac et al. 2017) Full (5.3k) - 49.8 -
Kalluri, et al. (Kalluri et al. 2019) 1.5k 58.0 31.5 44.8

Baseline 1.5k 54.3 38.1 46.2
CCT 1.5k 58.8 45.5 52.1

Table 5.6: CCT applied to CS+SUN. CCT
performance when trained on both
datasets Cityscapes (CS) and SUN
RGB-D (SUN) datasets for the case
of non-overlapping label spaces.

Semi-SupervisedMulti-Domain Setting

In real-world applications, we are often provided with pixel-level labels collected from various
sources, thus distinct data distributions. To examine the e�ectiveness of CCT when applied to
multiple domains with a variable degree of labels overlap, we train our model simultaneously on
two datasets, Cityscapes (CS) + CamVid (CVD) for partially overlapping labels, and Cityscapes
+ SUN RGB-D (SUN) for the disjoint case.

Cityscapes + CamVid. The results for CCT on Cityscapes and CamVid datasets with 50 and
100 labeled examples are given in Table 5.5. Similar to the SSL setting, CCT outperforms the base-
line signi�cantly, where the model is iteratively trained using only the labeled examples, with up to
12 points forN = 100. We even see a modest increase compared to previous work. This con�rms
our hypothesis that enforcing a consistency over di�erent datasets does indeed push the encoder
to produce invariant representation across di�erent domains. And consequently, it increases the
performance over the baseline while delivering similar results on each domain individually.

Cityscapes + SUN RGB-D. In the case of two domains with disjoint label spaces, we train on
both Cityscapes and SUN RGB-D to demonstrate the capability of CCT to extract useful visual
relationships and perform knowledge transfer between dissimilar domains, even in completely
di�erent settings. The results are shown in Table 5.6. Interestingly, despite the distribution mis-
match between the datasets and the high number of labeled examples (N = 1500), CCT still
provides a meaningful boost over the baseline with 5.9 points di�erence and 7.3 points boost
compared to previous work. It show that by enforcing a consistency of predictions on the unla-
beled sets of the two datasets over di�erent perturbations, we can extract additional training signal
and enhance the representation learning of the encoder. It is true even in the extreme case with
non-overlapping label spaces and without any notable performance drop when an invariance of
representations across both datasets is enforced at the level of the encoder’s outputs.

5.5.4 Qualitative Results

Fig. 5.8 shows some qualitative results of the methods proposed in this chapter. Speci�cally,
Fig. 5.8 (a) shows the generated pseudo-pixel-level labels using the available image-level labels that
were generated following the method described in Section 5.4.4. We observe that when consid-

93



5 Cross-Consistency Training

Input Image Ground-truth CCT

(b)

Pseudo-labelsInput Image Ground-truth

(a)

Figure 5.8: Qualitative Results. In (a), we show instances of the generated pseudo-pixel-level labels
from PASCAL VOC train set. The white regions correspond to the ignored pixels. In (b), we
show image segmentation results on the PASCAL VOC val images with CCT trained with 1.5k
pixel-level and 9k image-level labels.

ering regions with high attention scores (i.e., > 0.3), the assigned classes do correspond in most
cases to true positives. In Fig. 5.8 (b), we show the obtained segmentation maps on PASCAL VOC
val images with CCT trained on 1.5k pixel-level labels and 9k image-level labels. We observe that
CCT is able to produce high-quality predictions that approach the correct ground-truth segmen-
tations, further con�rming the e�ectiveness of the proposed CCT.

Conclusion
In this chapter, we presented cross-consistency training (CCT), a simple, e�cient, and
�exible method for a consistency based semi-supervised image segmentation, yielding
state-of-the-art results. For future works, a possible direction worth exploring is the usage
of other perturbations to be applied at di�erent levels within the segmentation network.
It would also be interesting to adapt and examine the e�ectiveness of CCT in other vi-
sual tasks and learning settings, such as unsupervised domain adaptation, a case we will
investigate in Chapter 7.
In the next chapter, we will tackle a di�erent learning paradigm, that of unsupervised
learning, and set to propose a novel method for the same task of image segmentation.
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6 Autoregressive Segmentation

Chapter’s Background

In this chapter, we consider:

• The Unsupervised Learning (UL) paradigm (Section 3.3) .

• The task of image segmentation (Sections 4.1.2 and 4.2.2).

When it comes to label-e�cient learning, UL presents itself as the ideal setup by not re-
quiring any labeled training data during the learning process. Additionally, the UL setting
is a logical continuation of the setting in Chapter 5 since it is a natural extension of the SSL
paradigm, i.e., consists of removing the labeled training set. The choice of the image seg-
mentation task was based on motivations similar to that Chapter 5. At the time of this
contribution, DL-based unsupervised learning methods were under-studied in the con-
text of segmentation compared to classi�cation. Moreover, our aim is to be able to tackle
a various visual tasks and not limit our applications to the standard classi�cation task so
that our contributions can be applicable complex tasks such as the document understand-
ing such as the system presented in the introduction.

Chapter’s Summary

In this chapter, we propose a new unsupervised image segmentation approach based on
Mutual Information (MI) maximization between di�erent constructed views of the in-
puts. Taking inspiration from autoregressive generative models (Section 3.3.1) that predict
the current pixel from past pixels in a raster-scan ordering created with masked convolu-
tions (Fig. 3.2), we propose to use di�erent orderings over the inputs using various forms
of masked convolutions to construct di�erent views of the data. For a given input, and as
shown in Fig. 6.1, the model produces a pair of predictions with two valid orderings, and
is then trained to maximize the MI between the two outputs. These outputs can either
be low-dimensional features for representation learning or output clusters corresponding
to semantic labels for clustering. While masked convolutions are used during training, in
inference, no masking is applied, and we fall back to the standard convolution where the
model has access to the full input. The proposed method outperforms the current state-
of-the-art on unsupervised image segmentation. It is simple and easy to implement, can be
extended to other visual tasks, and can be integrated seamlessly into existing UL methods
requiring di�erent data views.

97



6 Autoregressive Segmentation

Objective: Similar representations

(b) Autoregressive Representation
Learning (ARL)

(a) Autoregressive Clustering (AC)

Objective: Similar cluster assignments

Ordering

Ordering

(c) Orderings

Cluster
Prob.

Output
Features

Figure 6.1: Autoregressive Segmentation. Given an encoder-decoder type network f and two valid
orderings (o1, o2) as illustrated in (c), the goal is to maximize the mutual information between
the two outputs over the di�erent views, i.e., di�erent orderings. (a) For Autoregressive Clus-
tering (AC), we output the cluster assignments in the form of a probability distribution over
pixels, and the goal is to have similar assignments regardless of the applied ordering. (b) For Au-
toregressive Representation Learning (ARL), the objective is to have similar representations at
each corresponding spatial location and its neighbors over a window of small displacements Ω.

6.1 Introduction

As detailed in Section 3.3.2, recent discriminative UL works mainly focus on unsupervised repre-
sentation learning and clustering. Representation learning aims to learn semantic features useful
for downstream tasks, be it classi�cation, regression or visualization. In clustering, the unlabeled
data points are directly grouped into semantic classes. In both cases, recent works showed the ef-
fectiveness of maximizing MI between di�erent views of the inputs to learn useful and transferable
features (Federici et al. 2020; Hjelm et al. 2018a; A. v. d. Oord et al. 2018a; Tian et al. 2019) or discover
clusters that accurately match semantic classes (Z. He et al. 2008; Ji et al. 2019). Another line of study
in unsupervised learning is generative modeling. In particular, for image modeling, generative au-
toregressive models (X. Chen et al. 2018; A. v. d. Oord et al. 2016; Salimans et al. 2017; Van den Oord
et al. 2016), such as PixelCNN (Fig. 3.2), are powerful generative models with tractable likelihood
computation. In this case, the high-dimensional data, e.g., an image x, is factorized as a product
of conditionals over its pixels. The generative model is then trained to predict the current pixel xi
based on the past values x≤i−1 in a raster scan fashion using masked convolutions (Van den Oord
et al. 2016) (Fig. 6.3 (a)).

Instead of using a single left-to-right, top-to-bottom ordering, our method proposes to use sev-
eral orderings obtained with di�erent forms of masked convolutions and attention mechanism.
The various orderings over the input pixels, or the intermediate representations, are then consid-
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ered as di�erent views of the input image1. The model is then trained to maximize the MI between
the outputs over these di�erent views. Our approach is generic and can be applied for both clus-
tering and representation learning (see Fig. 6.1).

For a clustering task (Fig. 6.1 (a)), we apply a pair of distinct orderings over a given input image,
producing two pixel-level predictions in the form of a probability distribution over the semantic
classes. We then maximize the MI between the two outputs at each corresponding spatial location
and its intermediate neighbors. Maximizing the MI helps avoid degenerate (e.g., uniform output
distributions) and trivial solutions (e.g., assigning all of the pixels to the same cluster). For repre-
sentation learning (Fig. 6.1 (b)), we maximize a lower bound of MI between the two output feature
maps over the di�erent views. We evaluate the proposed method using standard image segmenta-
tion datasets: Potsdam (Gerke 2014), and COCO-stu� (Caesar et al. 2018), and show competitive
results. We present an extensive ablation study to highlight the contribution of each component
within the proposed framework, emphasizing the method’s �exibility.

Chapter’s Contributions

To summarize, this chapter’s contributions are:

• We propose a novel unsupervised method for image segmentation based on autore-
gressive models and MI maximization.

• We propose various forms of masked convolutions to generate di�erent orderings.

• We propose an attention-augmented version of masked convolutions for a larger
receptive �eld and a larger set of possible orderings.

• We demonstrate improved performances above previous state-of-the-art on unsu-
pervised image segmentation.

6.2 RelatedWork

Autoregressive models. Many autoregressive models (X. Chen et al. 2018; Child et al. 2019; Ger-
main et al. 2015; Larochelle et al. 2011; Parmar et al. 2018; Salimans et al. 2017; Van den Oord et al. 2016)
for natural image modeling have been proposed. They model the joint probability distribution
of high-dimensional images as a product of conditionals over the pixels. PixelCNN (A. v. d. Oord
et al. 2016; Van den Oord et al. 2016) speci�es the conditional distribution of a sub-pixel (i.e., a color
channel of a pixel) as a full 256-way softmax, while PixelCNN++ (Salimans et al. 2017) considers
a continuous univariate distribution through a mixture of logistic distributions. In both cases,
masked convolutions are used to process the initial image x in an autoregressive manner. In Im-
age (Parmar et al. 2018) and Sparse (Child et al. 2019) transformers, self-attention (Vaswani et al. 2017)
is used over the input pixels, while PixelSNAIL (X. Chen et al. 2018) combines both attention and
masked convolutions.

1Throughout this chapter, a view refers to the application of a given ordering. Both are used interchangeably.
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Clustering and unsupervised representation learning. Recent works in clustering aim at
combining traditional clustering algorithms (Hartigan 1972) with deep learning, such as using K-
means style objectives when training deep nets training (Caron et al. 2018; Fard et al. 2020; Haeusser et
al. 2018). However, such an objective can lead to trivial and degenerate solutions (Caron et al. 2018).
IIC (Ji et al. 2019) proposed to use a MI-based objective that is intrinsically more robust to such
trivial solutions. Unsupervised learning of representations (Bachman et al. 2019; Gidaris et al. 2018b;
Hjelm et al. 2018a; A. v. d. Oord et al. 2018a) rather aims to train a model, mapping the unlabeled
inputs into some lower-dimensional space, while preserving semantic information and discarding
instance-speci�c details. The pre-trained model can then be �ne-tuned on a downstream task with
fewer labels.

Unsupervised learning and MI maximization. Maximizing MI for unsupervised learning is
not a new idea (Becker et al. 1992; Hartigan 1972), and recent works demonstrated its e�ectiveness for
unsupervised learning. For representation learning, the training objective is to maximize a lower
bound of MI over continuous random variables between distinct views of the inputs. These views
can be the input image and its representation (W. Hu et al. 2017), the global and local features (Hjelm
et al. 2018a), the features at di�erent scales (Bachman et al. 2019), a sequence of extracted patches
from an image in some �xed order (A. v. d. Oord et al. 2018a) or di�erent modalities of the image
(Tian et al. 2019). For a clustering objective with discrete random variables as outputs, the exact
MI can be maximized over the di�erent views such as IIC (Ji et al. 2019) that maximizes the MI
between the image and its augmented version.

Unsupervised Image Segmentation. Fully unsupervised segmentation approaches can be cat-
egorized in three families as follows: i) GAN-based methods (Bielski et al. 2019; M. Chen et al. 2019)
that extract and redraw the main object in the image for object segmentation. Such methods are
limited to only instances with two classes, a foreground, and a background; ii) Iterative methods
(Hwang et al. 2019) consisting of a two-step process. The features produced by a CNN are �rst
grouped into clusters using spherical K-means. The CNN is then trained for better feature ex-
traction to discriminate between the clusters. iii) MI maximization based methods (Ji et al. 2019)
where the MI between two views of the same instance at the corresponding spatial locations is
maximized.

6.3 Method

6.3.1 ProblemDefinition

We aim to learn a representation that maximizes the MI, denoted as I , between di�erent input
views. These views are generated using various orderings, capturing di�erent aspects of the inputs.
Following the same notation as in Part I, let x ∼ X be an unlabeled data point, and f : X → Y
be a deep representation to be learned as a mapping between the inputs and the outputs. For clus-
tering, Y is the set of possible clusters corresponding to semantic classes, and for representation
learning, Y corresponds to a lower-dimensional space of the output features. Let (oi, oj) ∈ O
be two orderings oi and oj obtained from the set of possible and valid orderingsO (Fig. 6.2). For
two outputs y ∼ f(x; oi) and y′ ∼ f(x; oj), the objective is to maximize the predictability of
y from y′ and vice-versa, where f(x; oi) corresponds to applying the learning function f with
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Figure 6.2: Orderings. We show the set of possible orderings O used in the proposed autoregressive
segmentation. The set of possible orderings can contain either raster-type ordering (a), in which
the pixels are processed one row at a time, or zigzag-type orderings (b), in which the pixels are
processed diagonally or both. (c) By applying a series of convolutions with the correct causal
masking, we obtain the desired receptive �eld where each feature only depends on the input
pixels that comes before it depending on the ordering being used. Here we show the receptive
�elds for two ordering; o1 and o2.

a given ordering oi to process the image x. This objective is equivalent to maximizing the MI
between the two encoded variables:

max
f

I(f(x; oi); f(x; oj)) (6.1)

By maximizing Eq. (6.1) between the corresponding spatial locations of the two outputs, we push
the neural network f to discard instance-speci�c details and high-frequency information, and
generate similar and semantically meaningful representations regardless of the applied ordering.

6.3.2 ProposedMethod

Orderings

In neural autoregressive modeling (X. Chen et al. 2018; Salimans et al. 2017; Van den Oord et al. 2016),
for an input imagex ∈ RH×W×3 with 3 color channels, a raster-scan ordering is �rst imposed on

101



6 Autoregressive Segmentation

the image (see Fig. 6.2 (a), ordering o1), where the rows are processed top-to-bottom and the pixels
of each row are processed from left to right. Such an ordering, where the pixelxi only depends on
the pixels that come before it, is maintained using masked convolutions2 (A. v. d. Oord et al. 2016;
Van den Oord et al. 2016).

Our proposition is to use all 8 possible raster-scan type orderings as the set of valid orderingsO
as illustrated in Fig. 6.2 (a). Additionally, to add more expressiveness and variability to our model,
we extend this set with zigzag type orderings (Fig. 6.2 (b)). With zigzag orderings, the outputs
at each spatial location will be mostly in�uenced by the values of the neighboring input pixels.
Which can give rise to more semantically meaningful representations than raster-scan orderings.
These orderings can be generated either based solely on masked convolutions for raster-scan type
orderings, or with an additional attention operation for zigzag type orderings. The generation
procedure will be detailed in Section 6.3.3 For an illustration of how the receptive �eld of a given
feature grows using such masked convolutions to obtain the desired ordering, see Fig. 6.2 (c).

Training Objectives

In information theory, the MI I(X;Y ) between two random variables X and Y measures the
amount of information learned from the knowledge of Y aboutX and vice-versa. The MI can be
expressed as the di�erence of two entropy terms:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (6.2)

with H(.) as the marginal entropy and H(.|.) as the conditional entropy. Intuitively, I(X;Y )
can be seen as the reduction of uncertainty in one of the variables when the other one is observed.
IfX and Y are independent, knowing one variable exposes nothing about the other, in this case,
I(X;Y ) = 0. Inversely, if the state of one variable is deterministic when the state of the other
is revealed, the MI is maximized. Such an interpretation explains the goal behind maximizing
Eq. (6.1). The neural network f must be able to preserve information and extract semantically
similar representations regardless of the applied ordering oi, and learn representations that en-
code the underlying shared information between the di�erent views. The objective can also be
interpreted as having a regularization e�ect, forcing the function f to focus on the di�erent views
and subparts of the input x to produce similar outputs, reducing the reliance on speci�c objects
or parts of the image.

Let p(y, y′) be the joint distribution produced by sampling examples x ∼ X and then sam-
pling two outputs y ∼ f(x; oi) and y′ ∼ f(x; oj) with two possible orderings oi and oj . In this
case, the MI in Eq. (6.1) can be de�ned as the KL divergence between the joint and the product
of the marginals:

I(y, y′) = DKL(p(y, y′)‖p(y)p(y′)) (6.3)

To maximize Eq. (6.3), we can either maximize the exact MI for a clustering task over discrete
predictions, or maximize a lower bound of it for unsupervised learning of representations over
the continuous outputs. Next, we formulate the loss functionsLAC andLARL of both objectives
for a segmentation task.

2Note that for a convolution weight tensor of shape [F, F, din, dout], the masking in applied over all values of both
channels, din and dout.
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6.3 Method

- Autoregressive clustering (AC). In a clustering task, the goal is to train a neural network f
to predict a cluster assignment corresponding to a given semantic class c ∈ {1, . . . , C} with
C possible clusters at each spatial location. In this case, the encoder-decoder type network f is
terminated with a C-way softmax, outputting y ∈ [0, 1]H×W×C of the same spatial dimen-
sions as the input. Concretely, for a given input image x and two valid orderings (oi, oj) ∈ O,
we forward pass the input through the network producing two output probability distributions
p(y|x, oi) = f(x; oi) and p(y′|x, oj) = f(x; oj) over the C clusters and at each spatial lo-
cation. After reshaping the outputs into two matrices of shape HW × C , with each element
corresponding to the probability of assigning pixel xl with l ∈ {1, . . . ,HW} to cluster c, we
can compute the joint distribution p(y, y′) of shapeC × C as follows:

p(y, y′) = f(x; oi)
>f(x; oj) (6.4)

The marginals p(y) and p(y′) can then be obtained by summing over the rows and columns of
p(y, y′). Similar to IIC (Ji et al. 2019), we symmetrize p(y, y′) using [p(y, y′) + p(y, y′)>]/2 to
maximize the MI in both directions. The clustering lossLAC in this case can be written as follows:

LAC = Ex∼X

[
Ep(y,y′) log

p(y, y′)

p(y)p(y′)

]
(6.5)

In practice, instead of only maximizing the MI between two corresponding spatial locations,
we maximize it between each spatial location and its intermediate neighbors over small displace-
ments u ∈ Ω (see Fig. 6.1). This can be e�ciently implemented using a convolution operation as
demonstrated in (Ji et al. 2019).

- Autoregressive representation learning (ARL). Although the clustering objective in Eq. (6.5)
can also be used as a pre-training objective for f , Tschannen et al. (Tschannen et al. 2019) showed
that maximizing the MI does not often result in transferable and semantically meaningful fea-
tures, especially when the downstream task is a priori unknown. To this end, we follow MI
maximization-based representation learning works (Bachman et al. 2019; Hjelm et al. 2018a; A. v. d.
Oord et al. 2018a; Tian et al. 2019), where a lower bound estimate of MI (e.g., InfoNCE (A. v. d.
Oord et al. 2018a), NWJ (Nguyen et al. 2010)) is maximized between di�erent views of the inputs.
These estimates are based on the simple, intuitive idea that, if a critic f is able to di�erentiate be-
tween samples drawn from the joint distribution p(y, y′) and samples drawn from the marginals
p(y)p(y′), then the true MI is maximized.

In our case, with image segmentation as the target downstream task, we maximize the InfoNCE
estimator (A. v. d. Oord et al. 2018a) over the continuous outputs. Speci�cally, with two outputs
(y, y′) ∈ RH×W×d as d-dimensional feature maps, The training objective is to maximize the
infoNCE based lossLARL:

LARL = Ex∼X

[
log

ef(yl,y
′
l)

1
N

∑N
m=1 e

f(yl,y′m)

]
(6.6)

For more details about this objective, refer to Section 3.3.2. For an input image x and two
outputs y and y′, let yl and y′m correspond to d-dimensional feature vectors at spatial positions
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6 Autoregressive Segmentation

l and m in the �rst and second outputs, respectively. We start by creating N pairs of feature vec-
tors (yl, y

′
m), with one positive pair drawn from the joint distribution andN − 1 negative pairs

drawn from the marginals. A positive pair is a pair of feature vectors corresponding to the same
spatial locations in the two outputs, i.e., a pair (yl, y

′
m) with m = l. The negatives are pairs

(yl, y
′
m) corresponding to two distinct spatial positions m 6= l. In practice, we also consider

small displacements Ω (Fig. 6.1) when constructing positives. Additionally, the negatives are gen-
erated from two distinct images, since two feature vectors might share similar characteristics even
with di�erent spatial positions. By maximizing Eq. (6.6), we push the model f to produce similar
representations for the same spatial location regardless of the applied ordering so that the critic
function f is able to give high matching scores to the positive pairs and low matching to the neg-
atives. We follow (Hjelm et al. 2018a) and use separable critics f(y, y′) = φ1(y)>φ2(y′), where
the functionsφ1 andφ2 non-linearly transform the outputs to a higher vector space to learn more
complex representations that capture the underlying similarities of the features, so that f(yl, y

′
m)

produces a scalar corresponding to a matching score between the two representations at two spa-
tial positions l andm of the two outputs.

Note that both lossesLAC andLARL can be applied interchangeably for both objectives, a case we
investigate in our experiments (Section 6.4.2). For LAC, we can consider the clustering objective
as an intermediate task for learning useful representations. ForLARL, during inference, K-means
(J. Johnson et al. 2017) algorithm can be applied over the outputs to obtain the cluster assignments.

6.3.3 MethodDetails

Orderings Generation

- Generating Raster-scan Type Orderings. A simple way to generate raster-scan type order-
ings is to use a single ordering o1 with the standard masked convolution (Fig. 6.3 (a)), along with
geometric transformations g (i.e., image rotations by multiples of 90 degrees and horizontal �ips),
resulting in 8 versions of the input image. We can then maximize the MI between the two out-
puts, i.e., I(y; g−1(y′)) with y′ ∼ f(g(x); oj), assuming the transformation g is reversible. In
this case, since the masked weights are never trained, we cannot fall back to the normal convo-
lution where the function f has access to the full input during inference, greatly limiting the
performance of such an approach.

This point motivates our approach. Our objective is to learn all the weights of the masked
convolution during training and use an unmasked version during inference. This can be achieved
by using a regular convolution, and for a given ordering oi, we mask the corresponding weights
during the forward pass to construct the desired view of the inputs. Then in the backward pass,
we only update the unmasked weights, and the masked weights remain unchanged. In this case, all
the weights will be learned, and we will converge to a normal convolution given enough training
iterations. During inference, no masking is applied, giving the function f full access to the inputs.

A straightforward way to implement this is to use 8 versions of the standard masked convolu-
tion to create the setO (Fig. 6.3 (d)). However, for each forward pass, the majority of the weights
are masked, resulting in a reduced receptive �eld and a fewer number of weights will be learned at
each iteration, leading to some disparity between them.
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PaddingUnmaskded Weights Shifts as paddingMasked Weights Input

ConvA Shift2 ConvB Shift3 ConvC Shift3 ConvD Shift4

Standard Masked

Convolution

(a)

Simpli�ed Version

(c)

(d) (e)

Access to the current

pixel

(b)

Shift1ConvA ConvC Shift4 ConvD Shift2ConvB Shift1

Figure 6.3: MaskedConvolutions. (a) Standard masked convolution used in autoregressive generative
modeling, yielding an ordering o1. (b) A relaxed version of standard masked convolution where
we have access to the current pixel at each step. (c) A simpli�ed version of masked convolution
with fewer masked weights. (d) The 8 versions of the standard masked convolution to construct
all of the possible raster-scan type orderings. (e) The proposed types of masked convolutions
with the corresponding shifts to obtain all of the 8 desired raster-scan types orderings. Here, we
show a convolutional kernel of size F = 3.

Given that we are interested in a discriminative task rather than generative image modeling
where access to the current pixel is not allowed we start by relaxing the conditional dependency
and allow the model to have access to the current pixel, reducing the number of masked loca-
tions by one (Fig. 6.3 (b)). To further reduce the number of masked weights, for an F × F con-
volution, instead of masking the lower rows, we can shift the input by the same amount (i.e.,
bF/2c) and only mask the weights of the last row. We thus reduce the number of masked weights
from bF 2/2c (Fig. 6.3 (b)) to bF/2c (Fig. 6.3 (c)). With four possible masked convolutions:
{ConvA,ConvB,ConvC,ConvD} and four possible shifts:3 {Shift1,Shift3, Shift2, Shift4},
we can create all 8 raster-scan orderings as illustrated in Fig. 6.3 (e). The proposed masked convolu-
tions do not introduce any additional computational overhead, neither in training nor inference,
making them easy to implement and integrate into existing architectures with minor changes.

- Attention Augmented Masked Convolutions. As pointed out by (Van den Oord et al. 2016),
the proposed masked convolutions are limited in terms of expressiveness since they create blind
spots in the receptive �eld (Fig. 6.5). In our case, by applying di�erent orderings, we will have
access to all of the inputxover the course of training, and this bug can be seen as a feature where the
blind spots can be considered as an additional restriction. This restricted receptive �eld, however,
can be overcome using the self-attention mechanism (Vaswani et al. 2017). Similar to previous works
(Bello et al. 2019; X. Wang et al. 2018; H. Zhang et al. 2018a), we propose to add attention blocks to
model long-range dependencies that are hard to access through standalone convolutions. Given

3
e.g., for Shift1 and a 3× 3 convolution, an image of spatial dimensions H ×W is �rst padded on the top resulting

in (H + 1)×W , the last row is then cropped, going back to H ×W .
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6 Autoregressive Segmentation

Raster-Scan Mask

MaskedUnmasked

Zigzag Mask

Figure 6.4: Attention Masks. Examples of
the di�erent attention masks Moi

of shape HW ×HW applied for a
given ordering oi. WithHW = 9.

Blind Spots Receptive Field of

Ordering Ordering

Figure 6.5: Blind Spots. Blind spots in the
receptive �eld of pixel as a result
of using a masked convolution for a
given ordering oi.

an input tensor of shape (H,W, din), after reshaping it into a matrix X ∈ RHW×din , we can
apply a masked version of attention (Vaswani et al. 2017) in a straightforward manner. The output
of the attention operation is:

A = Softmax((QK>)�Moi)V (6.7)

with Q = XWq , K = XWk and V = XWv , where Wq,Wk ∈ Rdin×d′ and Wv ∈ Rdin×d′

are learned linear transformations that map the inputX to queriesQ, keysK and values V , and
Moi ∈ RHW×HW corresponds to a masking operation to maintain the correct ordering oi.

The output is then projected into the output space using a learned linear transformationWO ∈
Rd′×din obtaining Xatt = AWO. The output of the attention operation Xatt is concatenated
channel wise with the input X , and then merged using a 1 × 1 Conv resulting in the output of
the attention block.

- Generating Zigzag Type Orderings. Using attention gives us another bene�t, we can extend
the set of possible orderings to include zigzag type orderings introduced in (X. Chen et al. 2018) (see
Fig. 6.2 (b)). With zigzag orderings, the pixels are processed in a diagonal order, where each output
at a given spatial location will be mostly in�uenced by the values of its neighboring pixels, which
is a more natural way to build pixel dependencies compared to that of raster-scan orderings. This
is done by simply using a mask Moi corresponding to the desired zigzag ordering oi. Resulting
in a setO of 16 possible and valid orderings oi with i ∈ {1, . . . , 16} in total. See Fig. 6.4 for an
example.

Model

The representation f can be implemented in a general manner using three sub-parts, i.e., f =
h ◦ gar ◦ d, with a feature extractor h, an autoregressive encoder gar and a decoder d. With
such a formulation, the function f is �exible and can take di�erent forms. With h as an identity
mapping, f becomes a fully autoregressive network, where we apply di�erent orderings directly
over the inputs. Inversely, if gar is an identity mapping, f becomes a generic encoder-decoder
network, where h plays the role of an encoder. Additionally, h can be a simple convolutional
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stem that plays an important role in learning local features such as edges or even multiple residual
blocks (K. He et al. 2016) to extract higher representations. In this case, the orderings are applied
over the hidden features using gar. gar is similar to h, containing a series of residual blocks, with
two main di�erences, the proposed masked convolutions are used, and the batch normalization
(Io�e et al. 2015) layers are omitted to maintain the autoregressive dependency, with an optional
attention block. The decoder d can be a simple 1× 1 Conv to adapt the channels to the number
of clustersC , followed by bilinear upsampling and a softmax operation for a clustering objective.
For representation learning, d consists of two separable critics,φ1 andφ2, which are implemented
as a series of {3 × 3 Convs - BN - ReLU} and a �nal 1 × 1 Conv for projecting the features to a
higher dimensional space. In the experimental section, we will investigate di�erent versions of f .

6.4 Experimental Results

After stating the experimental details, we present an extensive ablation study of the proposed au-
toregressive segmentation method and its various parts and di�erent formulations. We then com-
pare the method to state-of-the-art approaches to unsupervised image segmentation, followed by
qualitative results.

6.4.1 Experimental Details

Datasets. The experiments are conducted on the following datasets: i) Potsdam (Gerke 2014) with
8550 RGB-IR satellite images of size 200×200, of which 3150 are unlabeled. We experiment on
both the 6-labels variant (roads and cars, vegetation and trees, buildings and clutter) and Potsdam-
3, a 3-label variant formed by merging each of the pairs. ii) COCO-Stu� (Caesar et al. 2018), a
dataset containing stu� classes. Similarly, we use a reduced version of COCO-Stu� with 164k
images and 15 coarse labels, reduced to 52k by taking only images with at least 75% stu� pixel. In
addition to COCO-Stu�-3 with only 3 labels, sky, ground, and plants.

Evaluation Metrics. We report the pixel classi�cation Accuracy (Acc) (refer to Eq. (4.2)). For
a clustering task with a mismatch between the learned and ground truth clusters, we follow the
standard procedure and �nd the best one-to-one permutation to match the output clusters to
ground truth classes using the Hungarian algorithm (Kuhn 1955). The Acc. is then computed
over the labeled examples.

Implementation Details. The di�erent variations of f are trained using ADAM with a learning
rate of 10−5 to optimize both objectives in Eqs. (6.5) and (6.6). We train on 200 × 200 crops
for Potsdam and 128 × 128 for COCO. The training is conducted on NVidia V100 GPUs and
implemented using the PyTorch framework (Paszke et al. 2019).

6.4.2 Ablation Results

We start by performing comprehensive ablation studies on the di�erent components and varia-
tions of the proposed method. Table 6.1 and Fig. 6.6 show the ablation results for AC, and Ta-
ble 6.2 shows a comparison between AC and ARL, analyzed as follows:
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6 Autoregressive Segmentation

(c) Attention: we add a single attention block at a shallow

level, and change the applied masks to get the desired order-

ings. Output stride = 4 in this instance.

Orderings

Raster-Scan Zigzag Attention POS POS3

× × 45.2 61.0

× 47.9 66.3

× 47.8 66.5
49.3 65.4

(d) Sampling of oi: we compare dif-

ferent possible sampling procedures

of the orderings oi during training.

Sampling oi POS POS3

Random 46.4

No Rep. 48.6 64.8

Hard 48.9 65.2

66.4

(e) Transformations: we apply a given transformation

to the inputs of the second forward pass during a single

training iteration.

Type Transf. POS POS3

None - 46.4 66.4

Photometric Col. Jittering 47.9 65.5

Geometric Flip 46.7 68.0

Geometric Rot. 48.5 68.3

Geo. & Pho. All 48.5 68.3

(f) Dropout: we inspect the

addition of dropout to the in-

ner activations of a residual

block.

p POS POS3

0 46.4 66.4
0.1 47.9 64.7

0.2 46.9 65.1

(a) Variation of f : we compare different variants of the net-

work f using different feature extractors f and autoregressive

encoders gar. The decoder d is

Network f = h◦gar ◦d

h gar POS POS3

Random 28.5 38.2
f1 Id 5 Res. blocks 39.3 56.3

f2 Stem 5 Res. blocks 46.4 66.4
f3 Res. block 4 Res. blocks 47.9 64.5

f4 5 Res. blocks Id 35.1 63.4

f5 ResNet-18 Id 40.7 51.9

fixed

(b) Number of orderings: we compare differ-

ent sizes of the set O. For = 2 and = 4

we report the mean and std over 4 runs us-
ing different possible pairs and quadruples

respectively.

POS POS3

2 43.2 2.19 59.5 5.12

4 45.6 3.22 63.55 3.52

8 46.4 66.4

Table 6.1: AC Ablations. Ablations studies conducted on Potsdam (POS) and Potsdam-3 (POS3) for
Autoregressive Clusterings. We show the pixel classi�cation accuracy (%).
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Figure 6.6: Overclustering. The Acc. (%) obtained when using a number of output clusters greater
than the number of ground truth classesC > Cgt. We show in the x-axis a variable number of
images is used to �nd the best many-to-one matching between the outputs and targets.

Variations of f . Table 6.1 (a) compares di�erent variations of the networkf . With a �xed decoder
d (i.e., a 1 × 1 Conv followed by bilinear upsampling and a softmax function), we adjust h and
gar going from a fully autoregressive model (f1) to a normal decoder-encoder network (f4 and
f5). When using masked versions, we see an improvement over the normal case, with up to 8
points for Potsdam, and to a lesser extent for Potsdam-3 where the task is relatively easier with
only three ground truth classes. When using a fully autoregressive model (f1), and applying the
orderings directly over the inputs, maximizing the MI becomes much harder, and the model fails
to learn meaningful representations. Inversely, when no masking is applied (f4 and f5), the task
becomes comparatively more straightforward, and we see a drop in performance. The best results
are obtained when applying the orderings over low-level features (f2 and f3). Interestingly, the
unmasked versions yield results better than random and perform competitively with 3 output
classes for Potsdam-3, validating the e�ectiveness of maximizing the MI over small displacements
u ∈ Ω. For the rest of the experiments, we use f2 as our model.

Attention and di�erent orderings. Table 6.1 (c) shows the e�ectiveness of adding attention
blocks to our model. With a single attention block added at a shallow level, we observe an im-
provement over the baseline for both raster-scan and zigzag orderings and their combination, with
up to 4 points for Potsdam. In this case, given the quadratic complexity of attention, we used an
output stride of 4 (i.e., the spatial dimensions of the output segmentation maps are 1/4 of that
input’s dimensions).

Data augmentations. For a given training iteration, we pass the same image two times through
the network, applying two di�erent orderings at each forward pass. We can, however, pass a trans-
formed version of the image as the second input. We investigate using photometric (i.e., color
jittering) and geometric (i.e., rotations and H-�ips) transformations. We bring the outputs back
to the input coordinate space for geometric transformations before computing the loss. Results
are shown in Table 6.1 (e). As expected, we obtain relative improvements with data augmenta-
tions, highlighting the �exibility of the approach.

Dropout. To add some degree of stochasticity to the network and as an additional regularization,
we apply dropout to the intermediate activations within residual blocks of the network. Table 6.1
(f) shows a slight increase in Acc. for Potsdam.
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6 Autoregressive Segmentation

Clustering

Method POS POS3

Random CNN 28.5 38.2
AC 46.4 66.4

ARL 45.1 57.1

Linear Evaluation

Method POS POS3

AC 23.7 41.4
ARL 23.7 38.5

Non-Linear Evaluation

Method POS POS3

AC 68.0 81.8
ARL 47.6 63.5

Table 6.2: ComparingARLandAC.We compare ARL and AC on a clustering task (left). We investigate
the quality of the learned representations by freezing the trained model, and reporting the test
Acc. obtained when training a linear (center) and non-linear (right) functions trained on the
labeled training examples. We show the pixel classi�cation accuracy (%).

COCO-Stu�-3 COCO-Stu� Potsdam-3 Potsdam

Random CNN 37.3 19.4 38.2 28.3
K-means (Pedregosa et al. 2011a) 52.2 14.1 45.7 35.3
SIFT (Lowe 2004) 38.1 20.2 38.2 28.5
Doersch 2015 (Doersch et al. 2015) 47.5 23.1 49.6 37.2
Isola 2016 (Isola et al. 2015) 54.0 24.3 63.9 44.9
DeepCluster 2018 (Caron et al. 2018) 41.6 19.9 41.7 29.2
IIC 2019 (Ji et al. 2019) 72.3 27.7 65.1 45.4

AC 72.9 30.8 66.5 49.3

Table 6.3: Unsupervised image segmentation. Comparison of AC with state-of-the-art methods on
unsupervised segmentation. We show the pixel classi�cation accuracy (%).

Orderings. Until now, at each forward pass, we sample a pair of possible orderings with replace-
ment from the set O. With such a sampling procedure, we might end up with the same pair of
orderings for a given training iteration. As an alternative, we investigate two other sampling pro-
cedures. First, with no repetition (No Rep.), where we choose two distinct orderings for each
training iteration. Second, using hard sampling, choosing two orderings with opposite receptive
�elds (e.g., o1 and o6). Table 6.1 (d) shows the obtained results. We see 2 points of improvement
when using hard sampling for Potsdam. For simplicity, we use random sampling for the rest of
the experiments.

Additionally, to investigate the e�ect of the number of orderings (i.e., the cardinality ofO), we
compute the Acc. over di�erent choices and sizes of O. Table 6.1 (b) shows that better results
can be obtained when using all 8 raster-scan orderings. Interestingly, we observe better results for
some choices, which may be due to selecting orderings that do not share any receptive �elds, like
those used in hard sampling.

Overclustering. To compute the Acc. for a clustering task using linear assignment, the output
clusters are chosen to match the ground truth classes, i.e.,C = Cgt. Nonetheless, we can choose
a higher number of output clusters, i.e.,C > Cgt, and then �nd the best many-to-one matching
between the output clusters and ground truths based on a given number of labeled examples. In
this case, however, we are not in a fully unsupervised case, given that we extract some information,
although limited, from the labels. Fig. 6.6 shows that even with a very limited number of labeled
examples used for mapping, we can obtain better results than the fully unsupervised case.
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AC and ARL. To compare AC and ARL, we apply them interchangeably on both clustering
and representation learning objectives. For clustering, while with AC, we obtain the assignment
directly, with ARL, we need to apply K-means over the output features after PCA Whitening to
get the cluster assignments. As for representation learning, we evaluate the quality of the learned
representations for both methods. We use linear and non-linear separability as a proxy for disen-
tanglement and as a measure of MI between representations and class labels. Table 6.2 shows the
obtained results, which are as follows:

• Clustering. As expected, AC outperforms ARL on a clustering task, given that the clusters
are directly optimized by computing the exact MI during training.

• Quality of the learned representations. Surprisingly, AC outperforms ARL on both lin-
ear and non-linear classi�cations. We hypothesize that unsupervised representation learn-
ing objectives that work well on image classi�cation fail in image segmentation due to the
dense nature of the task. The model, in this case, needs to output distinct representations
over pixels rather than the whole image, which is a more challenging task to optimize. This
might also be due to using only a small number of features (i.e., N pairs) for each train-
ing iteration. We note that the �ndings are only preliminary results and are worth further
exploration.

6.4.3 Quantitative Results

After a detailed ablation study, we now present a comparison with the state-of-the-art unsuper-
vised image segmentation in Table 6.3. As shown in the results, AC outperforms previous work,
and by a good margin for more challenging segmentation tasks with a large number of output
classes (i.e., Potsdam and COCO-Stu�), highlighting the e�ectiveness of maximizing the MI be-
tween the di�erent orderings as a training objective. We note that no regularization or data aug-
mentation are used, and we expect that better results can be obtained by combining AC with
other procedures as demonstrated in the ablation studies.

6.4.4 Qualitative Results

Fig. 6.7 shows some qualitative results of Autoregressive Clustering (AC) on COCO-stu� 3 test

set. In Fig. 6.7 (a), we observe that the proposed fully unsupervised method can produce high-
quality results and approaches the desired ground-truth results. However, as shown in Fig. 6.7
(b), we present some instances where AC fails. We notice that the model depends heavily on
appearance and colors for making predictions. In certain settings, like tennis courts with grass or
asphalt �oors, the model predicts green or sky classes, and the correct prediction is ground. We
postulate that these errors can be corrected with the usage of more elaborate data augmentations
to push the model to be invariant to more cases and appearances. In the case where a small amount
of labeled data is available, we can utilize either the over clustering approach shown Fig. 6.6, or
conduct a small �ne-tuning step to explicitly train the model to correct such mistakes.
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Figure 6.7: QualitativeResults. We show segmentation results on COCO-Stu� 3 (Caesar et al. 2018;
Ji et al. 2019) test set with Autoregressive Clustering (AC). In (a), we show examples of good-
quality segmentation results, while in (b), we show some failure cases of the proposed method.

Conclusion
In this chapter, we presented a novel method to create di�erent views of the inputs using
di�erent orderings. We showed the e�ectiveness of maximizing the MI over these views for
unsupervised image segmentation. We demonstrated that for image segmentation, opti-
mizing over the discrete outputs by computing the exact MI works better for both cluster-
ing and unsupervised representation learning due to the dense nature of the task. Given
the method’s simplicity and ease of adoption, we hope that the proposed approach can be
adapted for other visual tasks and used in future works.
In the next chapter, we tackle a di�erent learning paradigm, that of unsupervised domain
adaptation, and set to propose a novel method for both image classi�cation and segmen-
tation tasks.
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7 Target Consistency

Chapter’s Background

In this chapter, we consider:

• The Unsupervised Domain Adaptation (UDA) paradigm (Section 3.4).

• The tasks of image classi�cation (Sections 4.1.1 and 4.2.1) and image segmentation
Sections 4.1.2 and 4.2.2).

In the �rst two contributions chapters, the test data was considered to be collected from
the same domain as the training data. Thus, it is unrealistic and not aligned with what we
encounter in practice. As such, in this chapter, we consider the UDA paradigm that deals
with such a setup. UDA can also be seen as a natural extension of Chapter 5, where we
take into account a distribution shift between the labeled and unlabeled training sets. Fur-
thermore, under the UDA setting, the amount of human labor required in the annotation
process can be signi�cantly reduced by using a synthetic label set for which the labels can
be automatically generated. Thus resulting in an annotation process that is expeditious
and inexpensive, and making it relevant to us as a label-e�cient setting. In terms of the
tasks, and given the proposed approach’s �exibility, we opted for both image classi�cation,
which is very popular in the UDA with strong benchmarks. In addition to the segmenta-
tion task, which is an important visual and relevant task for our document understanding
use case.

Chapter’s Summary

In this chapter, we start by investigating the robustness of domain invariant UDA meth-
ods under the prism of the cluster assumption. We bring new evidence that invariance
with a low source risk does not guarantee a well-performing target classi�er. More pre-
cisely, we show that the cluster assumption is violated in the target domain despite being
maintained in the source domain, indicating a lack of robustness of the target classi�er. To
address this problem, we demonstrate the importance of enforcing the cluster assumption
in the target domain, named Target Consistency (TC), especially when paired with Class-
Level InVariance (CLIV). The proposed approach shows a notable performance improve-
ment in image classi�cation and segmentation benchmarks over state-of-the-art methods
based on invariant representations. Importantly, our approach is �exible and easy to im-
plement, making it a complementary technique to existing approaches for improving the
transferability of representations.

115



7 Target Consistency

7.1 Introduction

Deep learning (DL) models often show a weak ability to generalize on samples signi�cantly di�er-
ent from those seen during training (Arjovsky et al. 2019; Beery et al. 2018; Geva et al. 2019). This in-
ability to generalize out of the training distribution presents a signi�cant obstacle to a controlled
and safe deployment of DL models in real-world systems (Amodei et al. 2016; Marcus 2020). To
bridge such a distributional gap, UDA (Section 3.4) leverages labeled samples from a well-known
domain, referred to as source, to generalize on a target domain, where only unlabeled samples
are available. If the labeling functions are equal across domains, a situation known as the covari-
ate shift, adaptation can be performed by weighting sample contributions in the loss (Gretton et
al. 2012; Quionero-Candela et al. 2009; Sugiyama et al. 2007, 2008). However, for high-dimensional
data, such as text or images, it is unlikely that the source and the target distributions share enough
statistical support to compute weights (Johansson et al. 2019). Learning domain invariant represen-
tations, i.e., representations for which it is impossible to distinguish the domain they were sampled
from, can bring together two domains in some feature space which are di�erent in the input space
(Ganin et al. 2015; M. Long et al. 2015), thus helping bridge the gap between the source and target
domains.

Nevertheless, the invariance of representations does not always guarantee a low target risk. For
instance, in the case of images, aligning source and target backgrounds reduces domain discrep-
ancy of representations but is unlikely to improve the model in the target domain. Even worse,
it may incorrectly align source and target classes if the background is incorrectly correlated with
a given class due to some collection bias (Arjovsky et al. 2019; Beery et al. 2018), a phenomenon
known as negative transfer (Torrey et al. 2010). One example of one of the negative impacts do-
main invariance-based methods can have is its e�ect on the learned classi�er when applied to the
target domain, i.e., a sensitive target classi�er.

In this chapter, we aim to provide a new understanding of the transferability of representations
through the prism of the cluster assumption. The cluster assumption states that if samples are of
the same cluster in the input space, they are likely to be of the same output class. When enforced
on unlabeled samples, the model bene�ts from a signi�cant gain in generalization (Chapelle et al.
2009; Sohn et al. 2020; Xie et al. 2019) and robustness (Carmon et al. 2019; Hendrycks et al. 2020).
We show that enforcing the cluster assumption in the target domain, coupled with a per-class
domain invariant representations (i.e., Class-Level Invariance, or CLIV), we can obtain notable
performance gains on various image classi�cation and segmentation UDA benchmarks, thus con-
�rming the e�ectiveness of our proposed approach.

Chapter’s Contributions

To summarize, this chapter’s contributions are:

• We show that domain invariance induces a model with signi�cant sensitivity to per-
turbations in the target domain through an in-depth empirical analysis, indicating
that invariance is achieved by disregarding principles of robustness. Such evidence
motivates our interest in enforcing the cluster assumption on target and further
improving the transferability of domain invariant representations.
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• We propose Target Consistency (TC) used to explicitly enforce a consistency of
predictions over the target domain and with respect to a set of carefully chosen per-
turbations.

• We perform a per-class representation alignment with a Class-Level InVariance
(CLIV) objective while enforcing the cluster assumption to amplify the e�ect of
TC. This results in a positive feedback loop between decision boundary updates
and representation alignment.

• We show, with extensive experiments on both classi�cation and segmentation
datasets, that we reach state-of-the-art performances for methods based on invariant
representations.

7.2 RelatedWork

In this chapter, we focus on two lines of works that are relevant to us: i) Consistency regularization-
based methods. Which are SSL approaches that train the prediction function to produce simi-
lar outputs for similar inputs, and by enforcing such a constraint, the resulting decision bound-
ary will lie in low-density regions, echoing a more robust model (Section 3.2). And ii) invariant
representation-based method. Which are UDA approaches that force the feature extractor to pro-
duce similar representations regardless of the domain the inputs come from. Such that a classi�er
trained on the source features is applicable on target (Section 3.4). In this context, the most rele-
vant methods for us are those that integrate consistency-based methods with invariant represen-
tations for UDA. To our knowledge, DIRT-T (Shu et al. 2018) is the �rst work that proposed such
a method. Our work di�ers from it by exploring the connection between class-level invariance
and target consistency without enforcing a source consistency. Transferable Adversarial Training
(H. Liu et al. 2019) also explored the role of consistency in the representation space for bridging the
distributional gap without hurting transferability. Our approach investigates consistency w.r.t

perturbations in the input space as a strong inductive bias for improving the transferability of
representations.

7.3 Preliminaries

7.3.1 ProblemDefinition

Domain adaptation introduces two domains, the source and the target domains, on the product
spaceX × Y whereX is the input pace and Y is the label space. These two domains are de�ned
by their speci�c joint distributions of inputs x ∈ X and labels y ∈ Y , noted ps(xs, ys) and
pt(x

t, yt), respectively. Considering a hypothesis class H, a subset of functions from X to Y ,
domain adaptation aims to learn an inference function f ∈ H which performs well in the target
domain, i.e., has a small target risk εt(f) = E(xt,yt)∼pt [L(f(xt), yt)] where L is a given loss to
be minimized. UDA considers the case where labeled samples are available in the source domain,
while the target domain is only represented with unlabeled samples. To tackle such a setting,
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many methods start from the theoretical analysis of domain adaptation presented by (Ben-David
et al. 2010) in which a lower bound of the target error for any hypothesis f ∈ H is introduced:

εt(h) ≤ εs(h) + dH∆H + inf
h∈H
{εt(h) + εs(h)} (7.1)

wheredH∆H is a domain dissimilarity metric known as the symmetric di�erence hypothesis diver-
gence, and consists of �nding a pair of classi�ers f and f ′ with the largest disagreement between
the source and the target domains:

dH∆H = 2 sup
f,f ′∈H

|Exs∼ps [f(xs) 6= f ′(xs)]− Ext∼pt [f(xt) 6= f ′(xt)]| (7.2)

One of the most popular UDA approaches for reconciling two non-overlapping data distribu-
tions (Ganin et al. 2015; M. Long et al. 2015) is learning domain invariant representations. It consists
of adversarially training a deep feature extractor such that a domain discriminator can not distin-
guish the target’s representations and those of source (Ganin et al. 2015). Speci�cally, our model
f = g ◦ h is composed of a feature extractor g : X → Z and a classi�er h : Z → Y , in addition
to a domain classi�er d : Z → [0, 1]. As speci�ed in Eq. (3.10), the domain adversarial training
objective then consists of training the whole model (i.e., the feature extractor and the classi�er)
to minimize the source Cross-Entropy (CE) loss. While the domain classi�er and the feature ex-
tractor are trained adversarially to learn a feature extractor that minimizes the Jensen-Shannon
divergence between the features of the two domains. When both the source error and the feature
divergence are minimized, we can expect a reasonable degree of target generalization and su�cient
adaptation. However, as Eq. (7.2) shows, to obtain adequate adaptation and minimize dH∆H, we
need to �nd a good trade-o� between hypotheses with low target and source errors. But since our
feature extractor g is often a deep neural network with very high capacity, it can apply arbitrary
transformations to the target domain to reduce the feature divergence, while still maintaining the
optimal low source error, which does not imply a better target generalization (Shu et al. 2018) nor
su�cient adaptation. Thus, such a training objective is not su�cient for acceptable target gener-
alization. Next, we will empirically con�rm such an intuition by measuring the model’s sensitivity
in the target domain, showing that the obtained classi�er is indeed not the optimal target classi-
�er. Based on these �ndings, we will then propose TC as a way to enforce the cluster assumption
in the target domain to reject target hypotheses that are clearly suboptimal. Resulting in a more
optimal source-target trade-o�, better target performances, and overall lower domain divergence.

7.3.2 Target Sensitivity

For target sensitivity analysis, we will compare the robustness of a model trained to minimize
either the source error, i.e., standard CE-based training using the labeled source data solely, or the
source error and the domain adversarial loss1 This comparison will be conducted by measuring the
model’s outputs sensitivity to small perturbations in the input space. To measure this sensitivity,

1We will also refer to this domain adversarial loss as Domain Adversarial Neural Networks or DANN objective.
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Figure 7.1: Sensitivity Analysis. (a) An illustration of the circular trajectory passing through three
images of di�erent classes. (b) Jacobian norm of source (D) and target (A) as the input traverses
two elliptical trajectories: Trajectory 1: di�erent classes. Trajectory 2: same classes, for a ResNet-
50 trained on source only. (c) and (d) The mean Jacobian norm on target and source domains
of a ResNet-50 when trained on source only and with a DANN objective on three O�ce-31
tasks.

we follow (Novak et al. 2018) and compute the mean Jacobian norm as a proxy measure of the local
sensitivity of the model on target examples xt sampled from the target distribution pt:

Ext∼pt
[∥∥J(xt)∥∥

F

]
where J(x) =

(
∂ŷ

∂x

)>
(7.3)

where Jij(x) = ∂ŷi/∂xj is the Jacobian matrix, ‖J‖F is the Frobenius norm, xj is a pixel in the
input image x and ŷi is the output probability for class i. For comparison, the sensitivity in the
source domain can be computed similarly over source instances.

In this section, we will use the O�ce-31 dataset (Saenko et al. 2010). In O�ce-31, we are pro-
vided with labeled examples depicting 31 object categories from three domains, A (Amazon), (D)
DSLR, and W (Webcam), giving us the possibility to construct 6 possible UDA tasks. For a given
task, two of the three domains are considered as a labeled source domain and an unlabeled target
domain. E.g., A→ D signi�es a task where the Amazon domain is the source, and the DSLR
domain is the target. Speci�cally, we will present the sensitivity analysis on 3 transfer tasks: A
→ D, W→ A and D→W, which are shown in Fig. 7.1 (a) and Fig. 7.1 (b). As suspected, the
target sensitivity is signi�cantly higher than the source sensitivity. Importantly, when enforcing
an invariance of representations with DANN, sensitivity in the target domain decreases for tasks
W→ A and D→W while remaining signi�cantly higher than the source sensitivity. This vali-
dates our concern that even after feature alignment, the resulting classi�er still violates the cluster
assumption in the target domain.

To further investigate the regions of sensitivity, we examine the behavior of the function on and
o� the data manifold as it approaches and moves away from three anchor points. Following No-
vak et al. (Novak et al. 2018), we analyze the behavior of the model near and away from target and
source data along two types of trajectories: i) an ellipse passing through three data points of dif-
ferent classes as illustrated in Fig. 7.1 (c), and ii) an ellipse passing through three data points of the
same class. Since linear combinations of images of the same class are likely to look more like realis-
tic images, the second trajectory is expected to traverse closer to the data manifold overall. Fig. 7.1
(d) shows the obtained results. According to the Jacobian norm, we observe that the model’s sen-
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Source CE Source CE +DANN Source CE + DANN + TC

Source, Class A

Source, Class B

Target

Decision

Boundary

Figure 7.2: Effect of TC on a toy dataset. E�ect of TC on two moons dataset. Red and green
points are the instances of the two classes of the source domain. Blue points are target samples
generated by rotating source samples. The black line shows the learned decision boundary with
three training objectives: source CE, with a DANN objective, and with target consistency.

sitivity in the vicinity of target data is comparable to its sensitivity o� the data manifold. Inversely,
the model remains relatively stable in the neighborhood of source data, and becomes unstable only
away from them, further con�rming our hypothesis that the target classi�er’s decision boundary
is not well placed.

7.4 Method

7.4.1 ProposedMethod

Target Consistency. To promote a more robust model and mitigate target sensitivity, we regu-
larize the model’s predictions to be invariant to a set of perturbations applied to inputs from the
target domain. Concretely, we add to the objective function an additional TC loss term de�ned
as follows:

LTC = LVAT + LAUG

= Ext∼pt

[
max
‖r‖≤ε

||(f(xt)− f(xt + r)||2
]

+ Ext∼pt
[
||(f(xt)− f(x̃t)||2

] (7.4)

Similar to (Shu et al. 2018), the �rst term incorporates the locally-Lipschitz constraint by applying
Virtual Adversarial Training (VAT) (Miyato et al. 2018) which forces the model to be consistent
within the norm-ball neighborhood of each target samplext. Additionally, the second term forces
the model to embed a target instancext and its augmented version x̃t similarly to push for smooth
network responses in the vicinity of each target data. With a carefully chosen set of augmentations,
such a constraint makes sense since the semantic content of a transformed image is approximately
preserved. Note that for more stable training, we follow Mean Teachers (MT) (Tarvainen et al.
2017) and use of an exponential moving average of the model to compute the target pseudo-labels
(i.e., f(xt)). Overall, LTC is in line with the cluster assumption since it promotes a consistency
of predictions over a various set of input perturbations, thus forcing the decision boundary to not
cross the high-density regions.

To illustrate the e�ect of TC on the decision boundary, we conduct a toy experiment on the
rotating two moons dataset. The target samples are obtained by rotating the source points by 45◦.
We compare the learned decision boundary when training with source CE only, with a source CE
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Original image Augmented image

+ + =

rotate(  ) color(  )equalize(  )

Figure 7.3: Mixing Augmentations. An example of an augmented image with K = 3. We start by
sampling 3 operations, rotate, equalize, and color, which are then applied to the original image.
The augmented image can then be obtained using an element-wise convex combination of the
augmented images, resulting in a semantically similar image while injecting a higher degree of
noise.

& DANN objective, and when adding a TC (i.e., using only Gaussian noise) term to both. As
shown in Fig. 7.2, the TC term helps push the decision boundary away from dense target regions,
resulting in a more optimal target classi�er.

Augmentations. For visual domain adaptation, and based on the recent success of supervised
image augmentations (Cubuk et al. 2019a,b; Lim et al. 2019) in semi-supervised learning (Sohn et al.
2020; Xie et al. 2019) and robust deep learning (Hendrycks et al. 2020; Yin et al. 2019), we propose to
use a rich set of state-of-the-art data augmentations to inject noise and enforce consistency of pre-
dictions on the target domain. Speci�cally, we use augmentations from AutoAugment (Cubuk
et al. 2019a). Upon each application, we sample a given augmentation aug from all possible aug-
mentations Augs = {equalize, . . . , brightness}. If the augmentation aug is applicable with
varying severities, we also uniformly sample the severity, and apply aug to obtain the augmented
target image, i.e., x̃t = aug(xt). However, applying a single operation might be solved easily
with a high-capacity model by memorizing the speci�c perturbations. To overcome this, we gen-
erate more diverse augmentations by mixing multiple augmented images (see Fig. 7.3). We start
by randomly sampling K operations from Augs and K convex coe�cients αi sampled from a
Dirichlet distribution, i.e., (α1, . . . , αK) ∼ Dir(1, . . . , 1). The augmented image x̃t can then
be obtained with an element-wise convex combination of the K augmented instances of xt, i.e.,
x̃t =

∑K
i=1 αi augi(x

t), impelling the model to be stable, consistent, and insensitive across a
more diverse range of inputs (Hendrycks et al. 2020; Kannan et al. 2018; Zheng et al. 2016).

7.4.2 Extensions

E�ects of Target Consistency. Enforcing the target consistency gives us the ability to control
the trade-o� between a low target sensitivity, i.e., a low violation of the cluster assumption on
target, and a low source risk. As described in (Shu et al. 2018), adding LTC to the objective func-
tion reduces the hypothesis classH to only include classi�ers that are robust on both target and
source domains, notedHTC. Through the lenses of domain adaptation theory (i.e., Eq. (7.2)), by
constraining the hypothesis spaceH to contain stable classi�ers across domains, small changes to
the hypothesis in the source domain will not induce large changes in the target domain (Shu et al.
2018), which reduces the domain discrepancy dHTC∆HTC

≤ dH∆H given thatHTC ⊂ H.
However, viewing the e�ect of TC as a constraint on the hypothesis space does not explain

the hidden interactions between TC and invariant representations. To this purpose, consider a

121



7 Target Consistency

Feature Space

(a) Before Target Consistency (b) After Target Consistency
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Figure 7.4: TC and domain discriminators. We illustrate the e�ect of TC on the learned representa-
tions for two cases, i) with the standard DANN loss, and ii) with the proposed per-class domain
discriminator. Mugs and pens from the source (Amazon, A) and target (DSLR, D) domains
of O�ce-31 are pictured. At �rst (a), the blue squared pen, a target sample, is incorrectly clas-
si�ed as a mug due to spurious correlations e.g., upward orientation and black color. Input
augmentations wipe out spurious correlations induced by the orientation, and the TC pushes
the decision boundary to low-density regions, correcting the predicted class (b). Before the TC
update, the per-class discriminator encourages the pen to reach the high-density region of the
incorrect class, i.e., the mug class. However, the TC update allows the sample to cross the deci-
sion boundary and change the discriminator used for feature alignment, which now correctly
aligns the pen’s features. Thus resulting in a positive feedback loop between TC and CLIV.
Comparatively, the gradient of a vanilla domain discriminator (i.e., DANN) interacts poorly
with the TC update since it does leverage the e�ect of TC when aligning the features.

target sample xt near the decision boundary which is hard to adapt. Thus, its augmented ver-
sion x̃t, is also likely to have a di�erent predicted class. By enforcing TC, the model embeds xt
and x̃t similarly to push the decision boundary far from class boundaries incrementally. Such
incremental change might result in correcting the predicted class label. However, the underlying
representations remain approximately the same, and the discriminator feedback does not re�ect
the predicted labels change. Now, consider that domain invariance is achieved by leveraging one
discriminator per a given class, i.e., class-level invariance. The change of the predicted label due to
the TC update will result in a switch of the discriminator used, subsequently re�ecting the label
change in the domain adversarial loss. This interaction between class-level invariance and decision
boundary update is the key to the success of the proposed TC. See Fig. 7.4 for an illustration of
such an interaction.

Per-class domain discriminators. Similar to (Pei et al. 2018) and (Cicek et al. 2019) that jointly
align the input distributions and output classes for �ne-grained alignment. We introduce CLIV,
a well-suited Class-Level InVariance adversarial loss for our use case, which leverages one discrim-
inator per given class. Let us rede�ne our domain discriminator d to be a set ofC discriminators,
i.e., d = (dc)1≤c≤C for z ∈ Z, d(z) ∈ [0, 1]C , and noting · as the scalar product in RC , CLIV
is de�ned as follows:

LCLIV = E(zs,ys)∼ps [y
s · log(d(zs))] + Ezt∼pt [ŷ

t · log(1− d(zt))] (7.5)

where a given sample x, with representation z = g(x) and prediction ŷ = h(z), we weight the
importance of discriminator dc in the adversarial loss using the output ŷ. This action results in a
class conditioning of the domain adversarial loss, where the ground truths are used in the source
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domain and the predictions in the target domain. For a theoretical analysis of this loss, see (Bouvier
et al. 2021).

Total Training Objective. To summarize, our model is trained by minimizing a trade-o� be-
tween source CE, CLIV and TC, withλCLIV andλTC as tunable hyperparameters to control the
contributions of each term:

L = LCE + λCLIVLCLIV + λTCLTC (7.6)

7.5 Experimental Results

We consider both image classi�cation and segmentation tasks for the experiments in this chapter.
First, we present details about the experimental setup we consider. We then o�er a comprehensive
ablation study and a set of qualitative and quantitative results of the proposed method.

7.5.1 Experimental Details

Network Architecture. For image classi�cation, we use the same architecture as CDAN (M.
Long et al. 2018) and adopt ResNet-50 (K. He et al. 2016) as a base network pre-trained on ImageNet
dataset (Deng et al. 2009). For image segmentation, we follow ADVENT (Vu et al. 2019) and use
Deeplab-V2 (L.-C. Chen et al. 2017a) as the base image segmentation architecture with a ResNet-
101 backbone and a DCGAN as our domain discriminator (Radford et al. 2015).

Datasets. For image classi�cation, we will conduct experiments on 4 UDA benchmarks, O�ce-
31, ImageCLEF-DA, O�ce-Home and VisDA-2017. O�ce-31 (Saenko et al. 2010) is the standard
dataset for visual domain adaptation, containing 4652 images depicting 31 categories divided
across three domains: Amazon (A), Webcam (W), and DSLR (D). We use all six possible trans-
fer tasks to evaluate our model. ImageCLEF-DA2 is a dataset with 12 classes and 2400 images
assembled from three public datasets: Caltech-256 (C), ImageNet (I), and Pascal VOC 2012 (P),
where each one is considered as a separate domain. We evaluate all six possible pairs of the three
domains. O�ce-Home (Venkateswara et al. 2017) is a more di�cult dataset compared to O�ce-31,
consisting of 1500 images across 65 categories in o�ce and home settings. The dataset consists
of four widely di�erent domains: Artistic images (Ar), Clip Art (Ca), Product images (Pr), and
Real-World images (Rw), see Fig. 3.4 for some examples. We conduct experiments on all twelve
transfer tasks. VisDA-2017 (Peng et al. 2017) presents a challenging synthetic-to-real dataset with
two very distinct domains. Synthetic, with renderings of 3D models with di�erent lighting con-
ditions and from many angles. And Real, containing real-world images. We conduct evaluations
on the Synthetic→Real task. For image segmentation experiments, we evaluate our method on
the challenging GTA5→Cityscapes VisDA-2017 segmentation task with 19 categories. The syn-
thetic source domain is GTA5 (Richter et al. 2016b) dataset with 24966 labeled images, while the
real target domain is Cityscapes (Cordts et al. 2016b) dataset consisting of 5000 images.

2https://www.imageclef.org/2014/adaptation
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Ar→Cl Cl→Ar Pr→Ar Pr→Cl Rw→Cl Avg

LCLIV 52.6 60.1 60.6 52.1 58.3 56.7
+LVAT 52.4 60.1 61.2 53.1 58.9 57.1
+LAUG 53.1 62.3 62.6 53.1 59.5 58.1
+LVAT + LAUG 53.0 62.8 62.8 53.8 60.8 58.6
+LVAT + LAUG w/ MT 53.1 62.6 63.8 54.4 60.4 58.9

Table 7.1: TC loss ablations. We show the obtained Acc. (%) on the 5 hardest O�ce-Home tasks for
di�erent variations of the TC loss.

Ladv = LDANN LCDAN LCLIV

Ladv 47.6 53.4 56.7
+LVAT 48.0 55.1 57.1
+LAUG 51.3 55.7 58.1
+LVAT + LAUG 51.4 56.9 58.6
+LVAT + LAUG w/ MT 51.0 56.0 58.9

Table 7.2: Adversarial loss ablations. We show the avg Acc. (%) obtained on the 5 hardest O�ce-
Home tasks with the TC loss, but coupled with di�erent types of adversarial losses. Mainly the
standard DANN loss, CDAN loss (M. Long et al. 2018), and the proposed CLIV loss.

Evaluation Metrics. For image classi�cation, we report either per-task accuracy or average ac-
curacy over all tasks for compactness. As for image classi�cation, we report the standard per-task
mean Intersection-over-Union (mIoU) metric de�ned in Eq. (4.3).

Training details. For the training procedure, we follow the standard protocols for UDA (L.-C.
Chen et al. 2017a; M. Long et al. 2017, 2018). We train on all labeled source samples and unlabeled
target samples. In terms of hyperparameters, overall, we follow CDAN (M. Long et al. 2018) and
ADVEN (Vu et al. 2019), and use their setup for all parameters not related to our proposed method
for a fair comparison. As for method speci�c hyperparameters, i.e., the loss weights λCLIV and
λTC for both CLIV and TC and the number of mixed augmentations K . Speci�cally, we set
K = 4, λCLIV = 1 and λTC = 10. We note that our method performs comparatively on a
wide range of hyperparameter values, making it robust to hyperparameter selection and easier to
deploy in practical applications.

Reproducibility. We employ PyTorch (Paszke et al. 2019) and base our implementation on the
o�cial and publicly available implementations of CDAN (M. Long et al. 2018) and ADVEN (Vu
et al. 2019), and conduct all experiment on NVidia V100 GPUs.

7.5.2 Ablation Results

To examine the e�ect of each component of our proposed method, we conduct several ablations
on the 5 most challenging tasks of O�ce-Home, with and without the TC term, and with dif-
ferent variations of the TC loss. The results are reported in Table 7.1. We observe that adding a
consistency term, either VAT, or AUG, results in a higher accuracy across tasks, with better results
when smoothing in the vicinity of each target data point within the data manifold with AUG in-

124



7.5 Experimental Results

stead of the adversarial direction using VAT. Their combination with Mean Teacher (MT) results
in an overall more performing model.

Most importantly, to show the importance of coupling TC with CLIV, we pair TC with DANN
and CDAN losses. The obtained results in Table 7.2 show lower average accuracy and minimal
gains when enforcing the cluster assumption in conjunction with such adversarial losses, con�rm-
ing the importance of imposing class-level invariance when applying TC.

We also conduct an ablation study on the e�ect of varying the mixing number K to produce
more diverse target images. Fig. 7.6 shows the results. Overall, we observe a slight improvement
and more stable results when K is increased. Still, over a certain threshold, the degree of noise
becomes signi�cant, heavily modifying the semantic content of the inputs and hurting the model’s
performance.

DeepLab v2
Method mIoU

Adapt-SegMap (Tsai et al. 2018) 42.4
AdvEnt (Vu et al. 2019) 43.8
Ours 44.9

AdvEnt+MinEnt* (Vu et al. 2019) 45.5

Figure 7.5: Image Segmentation Results.
We show the obtained mIoU on
the GTA5→Cityscapes adaptation
task of the proposed approach. Ad-

vEnt+MinEnt* is an ensemble of
two models.
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Figure 7.6: Mixing augmentations.
We show the e�ect of the num-
ber of mixed augmentations
K on the obtained accuracy
on VisDA Synthetic → Real
task.

7.5.3 Quantitative Results

Method O�ce-31 ImageCLEF-DA O�ce-Home VisDA VisDA (ResNet-101)

ResNet 76.1 80.7 46.1 45.6 52.4
DANN (Ganin et al. 2016) 82.2 85.0 57.6 55.0 57.4
CDAN (M. Long et al. 2018) 87.7 87.7 65.8 70.0 73.7
TAT (H. Liu et al. 2019) 88.4 88.9 65.8 71.9 -
BSP (X. Chen et al. 2019) 88.5 - 66.3 - 75.9
TransNorm (X. Wang et al. 2019) 89.3 88.5 67.6 71.4 -

Ours 89.6 89.5 69.0 77.5 79.0

Table 7.3: Classification Results. Average accuracy (%) of all tasks on image classi�cation bench-
marks for UDA. We compare our approach with similar methods based on invariant representa-
tions, evaluated using the same protocol. Results are obtained with a ResNet-50 unless speci�ed
otherwise.

For image classi�cation results, we will present the results of the average accuracy obtained over
all the tasks on each one of the 4 standard UDA classi�cation benchmarks. These results are
reported in Table 7.3. The proposed method outperforms previous adversarial methods on all
datasets. The gains are substantial when the source and target domain are more dissimilar, as in
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7 Target Consistency

Target Images Ground Truth OursSource Only

Figure 7.8: Segmentation results. We show segmentation results on the GTA5→ Cityscapes seg-
mentation task.

VisDA dataset. We conjuncture that this is a result of a large number of target instances available,
enabling us to extract a signi�cant amount of training signal with TC objective term to enforce
the cluster assumption. Additionally, the method performs well with a large number of categories,
as is the case for O�ce-Home dataset. Such gain results from the class-level invariance, which is
empowered as the number of classes grows. We observe overall smaller improvements on O�ce-
31 due to its limited size and ImageCLEF-DA since the three domains are visually more similar.
For image segmentation results and to demonstrate the generality of the proposed method, we
conduct additional experiments on GTA5→ Cityscapes. The results are shown in Fig. 7.5, and
we observe that the proposed method provides similar gains as the classi�cation task, with a 2.5
points increase over the competitive baseline Adapt-SegMap (Tsai et al. 2018), further con�rming
the �exibility of TC and its applicability across various visual tasks.
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Figure 7.7: Qualitative analyses. We show (a) the error rate of the ideal joint hypothesis, (b) the A-
distance as a measure of domain discrepancy, both on the A→W O�ce-31 task, and in (c) we
show the e�ect of TC on the target and source sensitivity for A→W and A→ D O�ce-31
tasks.

7.5.4 Qualitative Results

Ideal Joint Hypothesis. We evaluate the performances of the ideal joint hypothesis, which can
be found by training a linear classi�er on top of a frozen features extractor on the source and the
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7.5 Experimental Results

target data with the ground-truth labels on both domains. Fig. 7.7 (a) provides empirical evidence
that TC produces a better joint hypothesis, thus more transferable representations.

Distributions Discrepancy. As proxy measure of domain discrepancy (Ben-David et al. 2010), we
compute the A-distance, de�ned as dA = 2(1 − 2ε), with ε as the error rate of a domain classi-
�er trained to discriminate source and target domains. Fig. 7.7 (b) shows that TC decreases dA,
implying a better invariance of the features under the proposed CLIV and TC training objective,
con�rming the positive feedback we have hoped for between these two losses.

Sensitivity Analysis. To revisit the sensitivity analysis of Section 7.3.2, we investigate the impact
of TC on the model’s sensitivity and compare the mean Jacobian norm of models trained with
various objectives. As shown in Fig. 7.7 (c), TC coupled with CLIV greatly improves the model’s
robustness on target, with a small increase in source sensitivity.

Segmentation Results. Fig. 7.8 shows some qualitative segmentation results of the proposed
method. Speci�cally, we show the segmentation maps obtained with the baseline trained solely
using the source CE, nd our proposed method, both on the GTA5→Cityscapes adaptation task,
The obtained segmentation maps show that the proposed approach help obtain segmentation
results with high-quality, showing both locally consistent and globally coherent predictions.

Conclusion
In this chapter, we presented TC, a new approach to address the lack of target robustness
under the domain invariant UDA setting by enforcing the cluster assumption in the target
domain. Crucially, we show that TC interacts strongly with a per-class alignment of repre-
sentations, substantially improving their transferability. Through extensive experiments,
our approach outperforms other methods based on invariant representations, validating
our analysis and our approach. Finally, TC has the advantage of being orthogonal to re-
cent UDA works (X. Chen et al. 2019; H. Liu et al. 2019) for improving the transferability
of invariant representations, making the idea of coupling TC with other UDA methods a
research direction worth exploring.
In the next chapter, we will tackle a di�erent learning paradigm, that of few-shot learning,
and propose a novel method for the task of few-shot classi�cation.
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8 Spatial Contrastive Learning

Chapter’s Background

In this chapter, we consider:

• The Few-Shot Learning (FSL) paradigm (Section 3.5).

• The task of image classi�cation (Sections 4.1.1 and 4.2.1).

The FSL setting deals with the learning problem under conditions with a minimal amount
of labeled data. Thus, it perfectly complements the setting we tackled in previous chapters.
It considers the rarity of the data as a whole, a case that was not considered under the UL
setup, and the rarity of labeled data with no access to unlabeled data, which is a case that
was not considered under the SSL and UDA setups. For the task, and since most of the
popular FSL benchmarks are classi�cation-based, we chose the image classi�cation task
to train and evaluate our method and compare it with established prior works. However,
the proposed method was designed with the image segmentation task in mind and can be
directly applied to a few-shot segmentation task with minimal changes.

Chapter’s Summary

In this chapter, we investigate the usage of contrastive learning for few-shot classi�ca-
tion. We propose to use it as an additional auxiliary training objective acting as a data-
dependent regularizer to promote more general and transferable features. In particular,
we present a novel attention-based spatial contrastive objective to learn locally discrimi-
native and class-agnostic features. As a result, our approach overcomes some limitations
of the cross-entropy loss, such as its excessive discrimination toward seen classes, which
reduces the transferability of features to unseen classes. With extensive experiments, we
show that the proposed method outperforms state-of-the-art approaches, con�rming the
importance of learning good and transferable embeddings for few-shot learning.

8.1 Introduction

FSL (Section 3.5) has emerged as an alternative to SL to simulate more realistic settings that mimic
human capabilities, and in particular, it consists of reproducing the learner’s ability to rapidly
and e�ciently adapt to novel tasks. In this chapter, we tackle the problem of few-shot image
classi�cation, which aims to equip a learner with the ability to learn novel visual concepts and
recognize unseen classes with limited supervision.
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Figure 8.1: Spatial Contrastive Learning (SCL). To learn more locally class-independent discrimi-
native features, we propose to measure the similarity between a given pair of samples using their
spatial features as opposed to their global features. We �rst apply an attention-based alignment,
aligning each input with respect to the other. Then, we measure the one-to-one spatial similar-
ities and compute the Spatial Contrastive (SC) loss.

A popular paradigm to solve this problem is meta-learning (Naik et al. 1992; Thrun 1998) con-
sisting of two disjoint stages, meta-training, and meta-testing. During meta-training, the goal is
to acquire transferable knowledge from a set of tasks sampled from the meta-training tasks so that
the learner can quickly adapt to novel tasks. This fast adaptability to unseen classes is evaluated at
test time by the average test accuracy over several meta-testing tasks. Such transferable knowledge
can be acquired from the meta-training tasks with optimization-based methods (C. Finn et al. 2017;
Ravi et al. 2017) or metric-based methods (Snell et al. 2017; F. Sung et al. 2018; Vinyals et al. 2016).

Recently, a growing line of work (W.-Y. Chen et al. 2019; Dhillon et al. 2020; Tian et al. 2020a)
showed that learning good representations results in fast adaptability at test time, suggesting that
feature reuse (Raghu et al. 2019) plays a more important role in few-shot classi�cation than the
meta-learning aspect of existing algorithms. Such methods consider an extremely simple transfer
learning baseline (see Fig. 3.7), in which the model is �rst pre-trained using the standard CE loss
on the meta-training set. Then, at test time, a linear classi�er is trained on the meta-testing set
on top of the pre-trained model. The pre-trained model can either be �ne-tuned (Afrasiyabi et al.
2020; Dhillon et al. 2020) together with the classi�er, or �xed and used as a feature extractor (W.-Y.
Chen et al. 2019; Tian et al. 2020a). While promising, we argue that using the CE loss during the
pre-training stage hinders the quality of the learned representations since the model only acquires
the necessary knowledge to solve the classi�cation task over seen classes at train time. As a result,
the learned visual features are excessively discriminative against the training classes, rendering them
sub-optimal for test time classi�cation tasks constructed from an arbitrary set of unseen and novel
classes.

To alleviate these limitations, we propose to leverage contrastive representation learning (Sec-
tion 3.3.2) as an auxiliary objective, where instead of only mapping the inputs to �xed targets,
we also optimize the features, pulling together semantically similar (i.e., positive) samples in the
embedding space while pushing apart dissimilar (i.e., negative) samples. By integrating the con-
trastive loss into the learning objective, we give rise to discriminative representations between dis-
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8.2 Related Work

similar instances while maintaining an invariance towards visual similarities. Subsequently, the
learned representations are more transferable and capture more prevalent patterns outside of the
seen classes. Additionally, by combining both losses, we leverage the stability of the CE loss and
its e�ectiveness on small datasets and small batch sizes, while also leveraging the bene�ts of the
contrastive loss as a data-dependent regularizer promoting more general-purpose embeddings.

Speci�cally, we propose a novel attention-based spatial contrastive loss (see Fig. 8.1) as the aux-
iliary objective to further promote class-agnostic visual features and avoid suppressing local dis-
criminative patterns. It consists of measuring the local similarity between the spatial features of a
given pair of samples after an attention-based spatial alignment mechanism instead of the global
features (i.e., avg., pooled spatial features) used in the standard contrastive loss. We also adopt the
supervised formulation (P. Khosla et al. 2020) of the contrastive loss to leverage the provided label
information when constructing the positive and negative samples.

However, directly optimizing the features and promoting the formation of clusters of similar
instances in the embedding space might result in extremely disentangled representations. Such an
outcome can be undesirable for few-shot learning, where the testing tasks can be notably di�erent
from the tasks encountered during training, e.g., training on generic categories, and testing on
�ne-grained sub-categories. To solve this, we propose feature distillation to reduce the compact-
ness of the features in the embedding space and provide additional re�nement of the representa-
tions.

Chapter’s Contributions

To summarize, this chapter’s contributions are:

• We propose a novel Spatial Contrastive Learning (SCL) objective with an attention-
based alignment mechanism to spatially compare a pair of features, further promot-
ing class-independent discriminative patterns.

• We employ feature distillation to avoid excessive disentanglement of the learned em-
beddings and improve the performances.

• We demonstrate the e�ectiveness of the proposed method with extensive experi-
ments on standard and cross-domain few-shot classi�cation benchmarks, achieving
state-of-the-art performances.

• We show the universality of the proposed method by applying it to a standard met-
ric learning approach, resulting in a notable performance boost.

8.2 RelatedWork

Few-Shot Classi�cation. In (inductive) few-shot classi�cation, the objective is to learn to rec-
ognize unseen novel classes with few labeled examples in each class. Meta-learning remains the
most popular paradigm to tackle this problem. As detailed in Section 3.5, such approaches can
be divided into two categories. Optimization-based, or learning to learn methods (Andrychowicz
et al. 2016; C. Finn et al. 2017; K. Lee et al. 2019; Ravi et al. 2017; Rusu et al. 2019; Q. Sun et al. 2019;
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Y.-X. Wang et al. 2016) integrate the �ne-tuning process in the meta-training algorithm to rapidly
adapt to model to the unseen classes with limited supervision. Metric-based, or learning to com-

pare methods (Doersch et al. 2020; Oreshkin et al. 2018; Scott et al. 2018; Snell et al. 2017; F. Sung et al.
2018; Vinyals et al. 2016), that learn a common embedding space in which the similarities between
the data can help distinguish between di�erent novel categories with a given distance metric. Most
relevant to our work are the methods that follow the standard transfer learning strategy (Afrasiyabi
et al. 2020; W.-Y. Chen et al. 2019; Dhillon et al. 2020; Tian et al. 2020a). They consist of two stages, a
pre-training stage with the CE loss on the meta-training set, then a �ne-tuning stage on the meta-
testing set. Despite their apparent simplicity, Tian et al. (Tian et al. 2020a) showed that such a
strategy yields state-of-the-art results on standard benchmarks.

Cross-Entropy Loss. The CE loss continues to be the prominent SL objective used for train-
ing deep networks, in which the model is trained to predict the corresponding class label in the
form of a one-hot vector (Section 3.1). However, despite its success, some works showed many
possible drawbacks (P. Khosla et al. 2020), e.g., noise sensitivity (Sukhbaatar et al. 2014; Z. Zhang et
al. 2018), adversarial examples (Nar et al. 2019), and suboptimal margins (K. Cao et al. 2019; Elsayed
et al. 2018). Other works proposed some alternative approaches, such as changing the label distri-
bution (Müller et al. 2019; Szegedy et al. 2016; Yun et al. 2019; H. Zhang et al. 2018b) or leveraging the
contrastive losses (P. Khosla et al. 2020).

Contrastive Learning. Instead of training the network to match the input to a �xed target,
contrastive learning acts directly on the low-dimensional representations with contrastive losses
(Gutmann et al. 2010; Hadsell et al. 2006; Salakhutdinov et al. 2007), and consist of measuring the simi-
larities of di�erent samples in the embedding space. Recently, contrastive learning-based methods
have emerged as the state-of-the-art approaches for self-supervised representation learning (Sec-
tion 3.3.2). The main di�erence between them is the way they construct and choose the positive
samples. In this chapter, we di�erentiate between self-supervised contrastive methods (T. Chen
et al. 2020; K. He et al. 2020; Hena� 2020; Hjelm et al. 2018b; A. v. d. Oord et al. 2018b; Tian et al. 2019;
Z. Wu et al. 2018b) that leverage data augmentations to construct the positive pairs and supervised
contrastive methods (Kamnitsas et al. 2018; P. Khosla et al. 2020; Salakhutdinov et al. 2007; Z. Wu et al.
2018a) that leverage the provided labels to sample the positive examples.

Self-Supervised Learning and Few-Shot Classi�cation. Relevant to us in this chapter are
methods that try to build on the insights and advances in contrastive learning, or more broadly
self-supervised learning, to improve the few-shot classi�cation task. Such methods (Doersch et al.
2015; Y. Gao et al. 2021; Gidaris et al. 2019; Medina et al. 2020; J.-C. Su et al. 2020) integrate various
types of self-supervised training objectives into di�erent few-shot learning frameworks to learn
more transferable features and improve the few-shot classi�cation performance. In this paper, we
propose a novel contrastive learning objective based on the spatial features to further promote gen-
eral purpose and robust representations suited for few-shot classi�cation. In this context, a similar
idea was proposed in (Doersch et al. 2015). In their approach, a contrastive pre-training stage is �rst
conducted followed by the standard ProtoNet (Snell et al. 2017) �ne-tuning stage, where spatial
features are used to compute the similarity between the training and testing instances. In our
proposed method, contrary to (Doersch et al. 2015), we integrate the spatial information directly
into the contrastive learning loss. The proposed loss is then incorporated into the training as an
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8.3 Preliminaries

(a) k-Nearest Neighbors (b) Grad-CAM

Nearest NeighborsTest Image Predicted Class True Class

Figure 8.2: Analysis of the Learned Representations. (a) k-Nearest Neighbors Analysis. For a
given test image from mini-ImageNet dataset, we compute the nearest neighbors in the em-
bedding space on the test set, and we observe that they are semantically dissimilar. This sug-
gests that the learned embeddings are excessively discriminative towards features used to solve
the training classi�cation tasks (e.g., the beer bottles in the second test image), which are not
useful for recognizing the novel classes at test time. (b) GradCAM results. To obtain the class
activation maps (CAMs) explaining such an outcome, we train a linear classi�er on the whole
test set on top of the frozen embedding model and compute the CAMs. We see that the domi-
nant discriminative features are not the ones useful for test-time classi�cation.

auxiliary loss, resulting in a far more e�ective, �exible, and general framework usable in various
few-shot learning scenarios.

8.3 Preliminaries

8.3.1 ProblemDefinition

Few-shot classi�cation usually involves a meta-training setI and a meta-testing setS with disjoint
label spaces. The meta-training set discerns seen classes, while the meta-testing set discerns novel
and unseen classes. Each one of the meta sets consists of several classi�cation tasks where each
task describes a pair of training (i.e., support) and testing (i.e., query) sets with few examples,
i.e., I = {(Dtr

t ,Dtest
t )}Tt=1 and S = {(Dtr

q ,Dtest
q )}Qq=1, with each dataset containing pairs of

images x and their ground-truth labels y.
The goal of few-shot classi�cation is to learn a classi�er fθ parametrized by θ capable of exploit-

ing the few training examples provided by the datasetDtr to correctly predict the labels of the test
examples fromDtest for a given task. However, given the high dimensionality of the inputs and
the limited number of training examples, the classi�er fθ su�ers from high variance. As such, the
training and testing inputs are replaced with their corresponding features, which are produced by
an embedding model fφ parametrized by φ and then used as inputs to the classi�er fθ.

To this end, the objective of meta-training algorithms is to learn a good embedding model fφ
so that the average test error of the classi�er fθ is minimized. This usually involves two stages:
�rst, a meta-training stage inferring the parameters φ of the embedding model using the meta-
training set I , followed by a meta-testing stage evaluating the embedding model’s performance
on the meta-testing set S .
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Figure 8.3: SpectralAnalysis. Results of the spectral analysis on the embedding matrix. Plot (a) shows
the explained cumulative variance of the learned features as the number of principal compo-
nents used. We observe that 80% of the variance can be explained with only 30 components,
indicating that embeddings lie in a lower dimensional space and are discriminative towards a
small number of visual structures. Similarly, by computing the singular values of the embed-
ding matrix, we see in (b) that the �rst singular values dominate the rest, indicating the same
behavior.

8.3.2 Transfer Learning Baseline

In this chapter, we consider the simple transfer learning baseline of (Tian et al. 2020a), in which,
as explained in Section 3.5, the embedding model fφ is �rst pre-trained on the merged tasks from
the meta-training set using the CE loss. Then, the model is carried over to the meta-testing stage
and �xed during evaluation. Concretely, we start by merging all the meta-training tasksDtr

t from
I into a single training setDnew of seen classes, i.e.,Dnew = ∪{Dtr

1 , . . . ,Dtr
t , . . . ,Dtr

T }. Then,
during the meta-training stage, the embedding model fφ can be pre-trained on the resulting set
of seen classes using the standard CE lossLCE:

φ = arg min
φ

LCE(Dnew;φ). (8.1)

The pre-trained model fφ is then �xed (i.e., no �ne-tuning is performed) and leveraged as a feature
extractor during the meta-testing stage. For a given task (Dtr

q ,Dtest
q ) sampled from S , a linear

classi�er fθ is �rst trained on top of the extracted features to recognize the unseen classes using
the training datasetDtr

q :

θ = arg min
θ

LCE(Dtr
q ; θ, φ) +R(θ), (8.2)

where R is a regularization term and the parameters θ = {W,b} consist of weight and bias
terms, respectively. The predictor fθ can then be used on the features of the test datasetDtest

q to
obtain the class predictions and evaluate fφ.

8.3.3 Analysis of the Learned Representations

Although the baseline of Section 8.3.2 delivers impressive results, we hypothesize that the usage
of the CE loss during the meta-training stage can hinder performances. Our intuition is that the
learned representations lack general discriminative visual features since the CE loss induces em-
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8.4 Method

beddings tailored for solving the classi�cation task over the seen classes. As a result, their transfer-
ability to novel domains with unseen classes is reduced, and especially if the domain gap between
the training and testing stages is signi�cant.

To empirically validate this hypothesis, we conduct a k-nearest neighbor search (J. Johnson et
al. 2017) on the learned embedding space. First, we train a model with the CE loss on the meta-
training set of mini-ImageNet (Vinyals et al. 2016) as in Eq. (8.1). Then, we search for its neighbors
from the meta-testing set for a given test image. The results are shown in Fig. 8.2. For a fast
test-time adaptation of the predictor fθ, the desired outcome is to have visually and semantically
similar images adjacent in the embedding space. However, we observe that the neighboring im-
ages are semantically dissimilar. Using Grad-CAM (Selvaraju et al. 2017), we notice that dominant
discriminative features acquired during training might not be useful for discriminating between
unseen classes at test time. In the case of mini-ImageNet, this observation is reinforced by the
fact that the meta-training and meta-testing sets are closely related, in which better transferabil-
ity of the learned features is expected when compared to other benchmarks. We note that similar
behavior was also observed by (Doersch et al. 2015) for metric-learning based approaches.

We conduct a spectral analysis of the learned features to investigate this behavior further. As
shown in Fig. 8.3, we inspect the variance explained by a varying number of principal components
and notice that almost all of the variance can be captured with a limited number of components,
indicating that the CE loss only preserves the minimal amount of information required to solve
the classi�cation task. Similarly, by applying singular value decomposition to compute the eigen-
values of the feature matrix, we observe that the maximal singular values are signi�cantly larger
than the remaining ones, diminishing the amount of informative signal that can be captured.

8.4 Method

8.4.1 ProposedMethod

Contrastive Learning

We explore contrastive learning as an auxiliary pre-training objective. Speci�cally, we wish to use it
to learn general-purpose visual embeddings capturing discriminative features usable outside of the
meta-training set. Thus facilitating the test time recognition of unseen classes. In FSL, and given
that we are provided with the class labels in such a setting, we examine the supervised formulation
(P. Khosla et al. 2020) of the contrastive loss which leverages the label information to construct the
positive and negative samples.

Formally, letfφ be an embedding model mapping the inputsx to spatial featureszs ∈ RHW×d,
followed by an average pooling operation to obtain the global features zg ∈ Rd, which are then
mapped into a lower dimensional space using a projection head h, i.e., f = h(zg) with f ∈ Rd′ .
Additionally, let a global similarity function simg be de�ned as the cosine similarity between a
pair of projected global features fi and fj (i.e., dot product between theL2 normalized features).
First, we sample a batch ofN pairs of images and labels from the merged meta-training setDnew

and augment each example in the batch, resulting in 2N data points. Then, the supervised con-
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Figure 8.4: Attention-based Spatial Alignment. To compute the spatial similarity between a pair
of features (purple and blue), we �rst spatially align the �rst features (purple) with respect to
the second (blue) features with the attention mechanism (see Eq. (8.4)). Then we can compare
the aligned value of the �rst features with the value of the second features. Note that the same
process is applied in reverse to compute the �nal spatial similarity (see Eq. (8.5)).

trastive loss (P. Khosla et al. 2020), referred to as the Global Contrastive (GC) loss, can be computed
as follows:

LGC =
2N∑
i=1

1

2Nyi − 1

2N∑
j=1

1i 6=j · 1yi=yj · `ij (8.3)

where `ij = − log
exp(simg(fi, fj)/τ)∑2N

k=1 1i 6=k · exp(simg(fi, fk)/τ)

with 1cond ∈ {0, 1} as an indicator function evaluating to 1 i� cond is satis�ed, Nyi as the
total number of images with the same label yi, and τ as a scalar temperature parameter. By using
the GC loss of Eq. (8.3) as an additional pre-training objective with the CE loss, we push the
embedding model fφ to learn the visual similarities between instances of the same class. Instead
of only maintaining the useful features for the classi�cation task over the seen classes results in
more useful and transferable embeddings.

Spatial Contrastive Learning

Although the GC loss is capable of producing good embeddings, using the global features zg

might suppress some local discriminative features present in the spatial features zs that can be
informative at the meta-testing stage (e.g., suppressing object-speci�c features while overempha-
sizing the irrelevant background features). Additionally, encoding the relevant spatial information
into the learned representations can play a critical role in increasing the robustness of the embed-
dings and reducing their sensitivity to domain changes, which is a highly desirable property for
few-shot tasks. To this end, we propose a novel SC loss as an alternative objective, leveraging the
spatial features zs to compute the similarity between a given pair of examples. However, to lo-
cally compare a pair of spatial features zs

i and zs
j and compute the SC loss, we �rst need to de�ne a

mechanism to align them spatially. To this end, we employ the attention mechanism (Vaswani et al.
2017) to compute the spatial attention weights to align the features zs

i with respect to zs
j and vice-

versa. Then, we measure the one-to-one spatial similarity and compute the SC loss. See Fig. 8.4
for an illustration of this process.
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Attention-based Spatial Alignment. Let hv , hq , and hk denote the value, query, and key pro-
jection heads, taking as input the spatial features zs and outputting the value v, query q and key
k of d′-dimensional features, i.e., v,q,k ∈ RHW×d′ . Given a pair of spatial features zs

i and zs
j

of two instances i and j, we want to compute the aligned values of i with respect to j, denoted
as vi|j . Such an alignment can be obtained using the key ki and the query qj to compute the
attention weights aij ∈ RHW×HW , which can then be applied to vi to obtain vi|j . Concretely,
this can be computed as follows:

vi|j = aijvi where aij = softmax

(
qjk

>
i√
d′

)
(8.4)

Similarly, we computevj|i aligning the value of j with respect to i using the key kj and the query
qi.

Time Complexity. The spatial alignment mechanism has a time complexity ofO(N2H2W 2d′2),
which varies with the batch size, the size of the spatial features, and the dimensionality of the
values v. To avoid excessive cost, for large input images, we apply an adaptive average pooling to
reduce the size of the spatial features, in addition to using a small dimensionality d′ and relatively
small batches.

Spatial Similarity. Given a pair of valuesvi andvj , together with their two aligned versionsvi|j
andvj|i computed using the attention mechanism detailed above, and withvr∗ denoting a feature
vector at a spatial location r ∈ [1, HW ], we �rst perform anL2 normalization step of the values
vr∗ at each spatial location r. Then, we compute the total spatial similarity sims(z

s
i , z

s
j) between

a pair of spatial features as follows:

sims(z
s
i , z

s
j) =

1

HW

HW∑
r=1

[
(vri )

>vrj|i + (vrj )
>vri|j

]
(8.5)

Spatial Contrastive Learning. With the spatial similarity function sims de�ned in Eq. (8.5),
and similar to the GC loss in Eq. (8.3), the SC loss can be computed as follows:

LSC =
2N∑
i=1

1

2Nyi − 1

2N∑
j=1

1i 6=j · 1yi=yj · `ij (8.6)

where `ij = − log
exp(sims(z

s
i , z

s
j)/τ

′)∑2N
k=1 1i 6=k · exp(sims(zs

i , z
s
k)/τ

′)

with τ ′ as a scalar temperature parameter.

Pre-training Objective

Based on the contrastive objectives in Eq. (8.3) and Eq. (8.6), the pre-training objective can take
di�erent forms. We mainly consider the case where the pre-training objectiveLT is the summation
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Figure 8.5: Degree of Clustering. The plot shows the evolution of the intra-class variation using the
Davies-Bouldin index (Davies et al. 1979) during the course of training on mini-ImageNet
when using the contrastive loss. We see that the learned embeddings of each class are signi�-
cantly over-clustered. An outcome that might be undesirable in many few-shot classi�cation
scenarios.

of the CE and SC losses, with λCE and λSC as scaling weights to control the contribution of each
term:

LT = λCELCE + λSCLSC (8.7)

However, we also explore other alternatives, such as replacing LSC with LGC or training with
both LGC and LSC as auxiliary losses with their corresponding weighting terms. Additionally,
we also consider the self-supervised formulations of the GC and SC losses, where the label infor-
mation is discarded and the only positives considered are the augmented versions of each example
(i.e., yi = i mod N ). We refer to them as SS-GC and SS-SC (Self-Supervised Global and Spatial
Contrastive) losses, respectively.

Using the total loss LT, the embedding model fφ can be trained together with the projection
head and the attention modules during the meta-training stage. Speci�cally, let ψ represent the
parameters of the projection head p and the attention modules hv , hq and hk. The parameters
are obtained as follows:

{φ, ψ} = arg min
{φ,ψ}

LT(Dnew; {φ, ψ}) (8.8)

After the pre-training stage, the parametersψ are discarded, and the embedding model fφ is then
�xed and carried over from the meta-training to the meta-testing stage.

8.4.2 Extensions

Since the contrastive objectives encourage closely aligned embeddings of instances of the same
class while distributing all of the normalized features uniformly on the hypersphere (T. Wang et al.
2020), we have to consider a possible over-clustering of the features of the same class (see Fig. 8.5).
Such an outcome can be desired for closed-set recognition. But in a few-shot setting, in which
the discrepancy between the meta-training and meta-testing sets might di�er signi�cantly from
one case to the other (e.g., training on coarse seen categories and testing on �ne-grained unseen
sub-categories), and this might lead to sub-optimal performances. As such, to avoid an excessive
disentanglement of the learned features and to further improve the generalization of the embed-
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ding model, we propose Feature Distillation (FD) to reduce the compactness of the features in the
embedding space.

Feature Distillation. Given a teacher model fφt pre-trained with the objective in Eq. (8.7), we
transfer its knowledge to a student model fφs using the standard knowledge distillation (Hinton
et al. 2015) objective LKL (i.e., the KL divergence between the student’s predictions and the soft
targets predicted by the teacher), but with an additional feature distillation loss LCD. This loss
consists of maximizing the inner dot product between the L2 normalized global features of the
teacher zgt and that of the student zgs, which corresponds to minimizing the squared Euclidean
distance, formally:

LFD =
1

N

N∑
i=1

‖zgt
i − zgs

i ‖
2
2 (8.9)

To summarize, the student’s parameters are learned as follows:

φs = arg min
φs

λCDLFD(Dnew;φs, φt) + λKLLKL(Dnew;φs, φt) (8.10)

As a result of using this distillation loss, we will only maximize the similarity between the pairs
of features without using any negatives, thus relaxing the uniformity constraint of the contrastive
loss, which in turn reduces the disentanglement of the learned embeddings.

8.5 Experimental Results

8.5.1 Experimental Details

Network Architecture. For the embedding model fφ, we follow (Tian et al. 2020a) and use a
ResNet-12 consisting of 4 residual blocks with Dropblock as a regularizer and 640-dimensional
output features (i.e., d = 640). For the projection head and the attention modules, we use
an MLP with one hidden layer and a ReLU non-linearity similar to SimCLR, outputting 80-
dimensional features (i.e., d′ = 80).

Training Setup. For optimization, we use SGD with a momentum of 0.9, a weight decay of
5 × 10−4, a learning rate of 5 × 10−2, and a batch size of 64. For the loss functions, we set the
temperature parameters τ and τ ′ to 0.1 and the scaling weightsλCE,λSC, andλGC to 1.0, except
for CIFAR-FS where we set them to 0.5. For distillation, we set λCD to 10.0 and λKL to 1.0 and
use a temperature of 4.0 for the KL loss. All the experiments are conducted on a V-100 GPUs.
The implementation is available at https://github.com/yassouali/SCL.

Data Augmentation. During meta-training, for a given augmented batch of 2N examples, and
consistent with other approaches (K. Lee et al. 2019; Tian et al. 2020a), the �rst N instances are
obtained using standard augmentations, i.e., random crop, color jittering and random horizontal
�ip. The remaining N instances are obtained with SimCLR-type augmentations, i.e., random
resized crop, color jittering, random horizontal �ips and random grayscale conversion. During the
meta-testing stage, we follow (Tian et al. 2020a) and create 5 augmented versions of each training
image to overcome the problem of data insu�ciency and train the linear classi�er fθ.
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Loss Function Aug. mini-ImageNet, 5-way CIFAR-CS, 5-way
1-shot 5-shot 1-shot 5-shot

CE 61.8± 0.7 79.7± 0.6 71.3± 0.9 86.1± 0.6
CE 61.8± 0.8 78.6± 0.5 71.9± 0.9 86.3± 0.5
CE + SS-GC 62.7± 0.7 81.0± 0.6 70.9± 0.9 84.5± 0.6
CE + SS-SC 64.0± 0.8 81.5± 0.5 72.1± 0.8 86.2± 0.6
CE + SS-GC + SS-SC 62.8± 0.8 81.1± 0.6 69.0± 0.9 85.0± 0.6
CE + GC 65.0± 0.8 81.6± 0.5 74.0± 0.8 87.3± 0.6
CE + SC 65.7± 0.8 82.5± 0.5 75.0± 0.9 87.4± 0.6
CE + GC + SC 65.0± 0.8 81.3± 0.5 76.0± 0.7 87.5± 0.5

Table 8.1: Loss Function. Comparison of the mean Acc. obtained on mini-ImageNet and CIFAR-FS
with di�erent training objectives.“Aug.” indicates the usage of SimCLR type augmentations.

Evaluation Setup. During meta-testing, and given a pre-trained embedding model fφ, we follow
(Tian et al. 2020a) and consider a linear classi�er as the predictor fθ, implemented in scikit-learn
(Pedregosa et al. 2011b) and trained on theL2 normalized features produced by fφ. Speci�cally, we
sample a number ofC-wayK-shot testing classi�cation tasks constructed from the unseen classes
of the meta-testing set, withC as the number of classes andK as the number of training examples
per class. After training fθ on the train set, the predictor is then applied to the features of the test
set to obtain the prediction and compute the accuracy. In our case, we evaluate the model over
600 randomly sampled tasks and report the median accuracy over 3 runs with 95% con�dence
intervals, wherein each run, the accuracy is the mean accuracy of the 600 sampled tasks.

8.5.2 Ablation Results

We start by conducting detailed ablation studies to analyze the contribution of each component
of the proposed method, from the choices of the loss function to the hyperparameters of the SC
loss.

Loss Functions. To investigate the e�ect of the contrastive losses when used as auxiliary training
objectives, we evaluate the performances obtained with various loss functions as detailed in Sec-
tion 8.4.1. The results are shown in Table 8.1. We observe a notable gain in performance when
adopting auxiliary contrastive losses, be it supervised or self-supervised, with better improvements
when using the supervised formulation, highlighting the bene�ts of using the label information
when constructing the positive and negative samples. More importantly, the SC loss outperforms
the standard GC loss, con�rming the e�ectiveness of using spatial rather than global features. Ad-
ditionally, using both the SC and GC losses does not result in distinct gains over the SC loss. Thus,
we adopt the SC as a sole auxiliary loss for the rest of this section.

Spatial Contrastive Loss. Next, we examine di�erent variations and hyperparameters of the SC
loss when used as an auxiliary objective along with the CE loss. In particular, we consider the
following variations:
- Hyperparameters. To inspect the SC loss’s hyperparameter stability, we conduct experiments
with di�erent batch sizes and temperature values. As can be seen in Fig. 8.6, by combining the
CE and the SC losses, we leverage the stability of the CE and obtain consistent results across several

140



8.5 Experimental Results

32 64 96 128 196 256
55

60

65

70

75

80

85

1-shot 5-shot

0.02 0.04 0.08 0.12 0.16 0.2
55

60

65

70

75

80

85

Batch Size

M
et

a-
T

es
t 

A
cc

ur
ac

y 
(%

)

M
et

a-
T

es
t 

A
cc

ur
ac

y 
(%

)

Temperature

Figure 8.6: Hyperparameters. Comparison of the mean Acc. obtained on mini-ImageNet across vari-
ous batch sizes and SC loss temperatures.

Augmentation mini-ImageNet, 5-way CIFAR-CS, 5-way
1-shot 5-shot 1-shot 5-shot

Standard 64.3± 0.7 80.6± 0.5 74.9± 0.8 86.3± 0.6
SimCLR 65.7± 0.8 82.5± 0.5 75.0± 0.9 87.4± 0.6
AutoAugment 65.2± 0.7 82.1± 0.5 74.0± 0.9 86.7± 0.6
Stacked RandAug. 64.9± 0.8 81.6± 0.6 75.0± 0.9 87.6± 0.6

Table 8.2: Data Augmentation. Comparison of the mean Acc. obtained on mini-ImageNet and
CIFAR-FS with di�erent augmentation strategies used to obtain the additional N augmented
instances within a minibatch.

batch sizes, circumventing the need for very large batches when training with only the contrastive
losses, as is the case in the unsupervised representation learning setting. For the temperatures, dis-
regarding the low temperatures in which the SC loss is dominated by the small distances, rendering
the actual distances between widely separated representations almost irrelevant, we see compara-
ble performances for temperatures above 0.05, further con�rming the stability of the approach.

- Augmentations. Although we mainly use SimCLR-type augmentations to produce the addi-
tionalN augmented examples within a given batch, other augmentations can also be used. Specif-
ically, we consider the standard augmentations used when training with only the CE loss, Au-
toAugment (Cubuk et al. 2019c) and Stacked RandAugment (Tian et al. 2020b). Table 8.2 shows
that the SimCLR type augmentations yield the best results overall. We speculate that for the stan-
dard augmentation, without any novel transformations that the model is forced to be invariant
under the gains are minimal. As for strong augmentations (i.e., AutoAugment and Stacked Ran-
dAugment), the augmented inputs might be substantially deformed, making the spatial align-
ment insu�cient and reducing the e�ect of the SC loss.

- Aggregation Function. Table 8.3 presents the results obtained with various aggregation functions
used to aggregate the one-to-one spatial similarities into an overall measure. We observe that when
using the mean as the aggregate, we obtain overall better performances across the di�erent datasets
and settings.

Distillation. To improve the generalization of the embedding model, we investigate the e�ect
of knowledge distillation by training a new (i.e., student) model using a pre-trained (i.e., teacher)
network with various training objectives. Table 8.4 shows a clear performance gain with the pro-
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Aggregation mini-ImageNet, 5-way CIFAR-CS, 5-way
1-shot 5-shot 1-shot 5-shot

Sum 65.2± 0.8 81.2± 0.5 75.3± 0.8 87.3± 0.5
Mean 65.7± 0.8 82.5± 0.5 75.0± 0.9 87.4± 0.6
Maximum 65.5± 0.7 82.0± 0.5 73.4± 0.8 86.4± 0.6
LogSumExp 64.8± 0.8 81.7± 0.6 74.2± 0.8 87.0± 0.6

Table 8.3: Aggregation Function. Comparison of the mean Acc. obtained on mini-ImageNet and
CIFAR-FS with di�erent aggregation functions used to amount the total similarity from the
one-to-one spatial similarities.

Loss Function mini-ImageNet, 5-way CIFAR-CS, 5-way
1-shot 5-shot 1-shot 5-shot

Teacher 65.7± 0.8 82.5± 0.5 75.0± 0.9 87.4± 0.6

KL 66.0± 0.8 82.5± 0.5 75.9± 0.9 87.4± 0.6
KL+FD 67.4± 0.8 82.7± 0.5 76.5± 0.9 87.6± 0.6

Table 8.4: Distillation. Comparison of the mean Acc. obtained on mini-ImageNet and CIFAR-FS
with di�erent distillation objectives.

posed FD objective as an additional loss term, con�rming the bene�ts of optimizing the learned
features and relaxing the compactness of the embedding space.

Additionally, we explore sequential self-distillation similar to Born-again networks (Furlanello
et al. 2018), where we consider the student model as the teacher and repeat the distillation process.
As detailed in Fig. 8.7, we notice a clear drop in performances beyond a single distillation step. We
suspect this might result from an over-disentanglement of the features induced by the FD loss. As
such, for the rest of the paper, we only apply a single distillation step to re�ne the features further
while preserving the learned structures.

Evaluation. Until now, we primarily trained a linear classi�er on top of the global features during
the meta-testing stage. Nonetheless, given that we explicitly optimize the spatial features during
training, which increases their discriminability, we investigate their usage as inputs to the linear
classi�er. To this end, we compare the performance when training over the global, spatial, or both
features, where we train two classi�ers and aggregate their predictions. Table 8.5 shows the eval-
uation results. Overall, using the global features to train the linear classi�er o�ers slightly better
results than the spatial features. We suspect this might result from slight over�tting of the clas-
si�er given that the spatial features increase the number of parameters to be learned, negatively
impacting the performances. However, when leveraging both the spatial and global features, we
obtain better results con�rming the usefulness of the spatial feature even during the meta-testing
stage.

8.5.3 Quantitative Results

Few-shot Classification

For a comparison with state-of-the-art, and based on the results of the ablation studies, we �x the
training objective as SC+CE during the meta-training stage and use both the spatial and global
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Figure 8.7: SequentialDistillation. Comparison of the mean Acc. obtained on mini-ImageNet and
CIFAR-FS with sequential distillation.

Features Used mini-ImageNet, 5-way CIFAR-CS, 5-way
1-shot 5-shot 1-shot 5-shot

Spatial 64.5± 0.8 82.1± 0.5 75.0± 0.9 87.1± 0.6
Global 65.7± 0.8 82.5± 0.5 75.0± 0.9 87.4± 0.6
Glo. & Spa. (Max) 65.6± 0.8 82.1± 0.5 74.2± 0.8 87.3± 0.5
Glo. & Spa. (Sum) 65.7± 0.8 83.1± 0.5 75.6± 0.9 87.6± 0.6

Table 8.5: Features Used at Test-Time. Comparison of the mean Acc. obtained on mini-ImageNet
and CIFAR-FS with di�erent evaluation settings, in which we use either the global features, the
spatial features, or both.

mini-ImageNet, 5-way tiered-ImageNet, 5-wayMethod Backbone 1-shot 5-shot 1-shot 5-shot

MAML (C. Finn et al. 2017) 32− 32− 32− 32 48.70± 1.84 63.11± 0.92 51.67± 1.81 70.30± 1.75
Matching Networks (Vinyals et al. 2016) 64− 64− 64− 64 43.56± 0.84 55.31± 0.73 - -
Prototypical Networks† (Snell et al. 2017) 64− 64− 64− 64 49.42± 0.78 68.20± 0.66 53.31± 0.89 72.69± 0.74
Relation Networks (F. Sung et al. 2018) 64− 96− 128− 256 50.44± 0.82 65.32± 0.70 54.48± 0.93 71.32± 0.78
SNAIL (N. Mishra et al. 2018) ResNet-12 55.71± 0.99 68.88± 0.92 - -
TADAM (Oreshkin et al. 2018) ResNet-12 58.50± 0.30 76.70± 0.30 - -
Shot-Free (Ravichandran et al. 2019) ResNet-12 59.04± n/a 77.64± n/a 63.52± n/a 82.59± n/a
MetaOptNet (K. Lee et al. 2019) ResNet-12 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.53
Diversity w/ Coop. (Dvornik et al. 2019) ResNet-18 59.48± 0.65 75.62± 0.48 - -
Boosting (Gidaris et al. 2019) WRN−28− 10 63.77± 0.45 80.70± 0.33 70.53± 0.51 84.98± 0.36
Fine-tuning (Dhillon et al. 2020) WRN−28− 10 57.73± 0.62 78.17± 0.49 66.58± 0.70 85.55± 0.48
LEO-trainval† (Rusu et al. 2019) WRN−28− 10 61.76± 0.08 77.59± 0.12 66.33± 0.05 81.44± 0.09
RFS (Tian et al. 2020a) ResNet-12 62.02± 0.63 79.64± 0.44 69.74± 0.72 84.41± 0.55
RFS-Distill (Tian et al. 2020a) ResNet-12 64.82± 0.60 82.14± 0.43 71.52± 0.69 86.03± 0.49

Ours ResNet-12 65.69± 0.81 83.10± 0.52 71.48± 0.89 86.88± 0.53
Ours-Distill ResNet-12 67.40± 0.76 83.19± 0.54 71.98± 0.91 86.19± 0.59

Table 8.6: State-of-the-art comparisonon ImageNetderivatives. Comparison with prior few-
shot classi�cation works on ImageNet derivatives. We show the mean Acc. and 95% con�dence
interval. †results obtained by training on both train and validation sets.

feature during the meta-testing phase with a sum aggregate, and compare our approach with other
popular few-shot classi�cation methods on both ImageNet and CIFAR derivatives.

ImageNet derivatives. The mini-ImageNet benchmark is a standard dataset used for few-shot
image classi�cation. It consists of 100 randomly selected classes from ImageNet (Russakovsky et al.
2015). Following (Ravi et al. 2017), the classes are split into 64, 16, and 20 classes for meta-training,
meta-validation, and meta-testing, respectively. Each class contains 600 images of size 84 × 84.
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CIFAR-FS, 5-way FC100, 5-wayMethod Backbone
1-shot 5-shot 1-shot 5-shot

MAML (C. Finn et al. 2017) 32− 32− 32− 32 58.9± 1.9 71.5± 1.0 - -
Relation Networks (F. Sung et al. 2018) 64− 96− 128− 256 55.0± 1.0 69.3± 0.8 - -
R2D2 (Bertinetto et al. 2019) 96− 192− 384− 512 65.3± 0.2 79.4± 0.1 - -
TADAM (Oreshkin et al. 2018) ResNet-12 - - 40.1± 0.4 56.1± 0.4
Shot-Free (Ravichandran et al. 2019) ResNet-12 69.2± n/a 84.7± n/a - -
TEWAM (Qiao et al. 2019) ResNet-12 70.4± n/a 81.3± n/a - -
Prototypical Networks† (Snell et al. 2017) ResNet-12 72.2± 0.7 83.5± 0.5 37.5± 0.6 52.5± 0.6
Boosting (Gidaris et al. 2019) WRN-28-10 73.6± 0.3 86.0± 0.2 - -
MetaOptNet (K. Lee et al. 2019) ResNet-12 72.6± 0.7 84.3± 0.5 41.1± 0.6 55.5± 0.6
RFS (Tian et al. 2020a) ResNet-12 71.5± 0.8 86.0± 0.5 42.6± 0.7 59.1± 0.6
RFS-Distill (Tian et al. 2020a) ResNet-12 73.9± 0.8 86.9± 0.5 44.6± 0.7 60.9± 0.6

Ours ResNet-12 75.6± 0.9 87.6± 0.6 44.4± 0.8 60.8± 0.8
Ours-Distill ResNet-12 76.5± 0.9 88.0± 0.6 44.8± 0.7 61.4± 0.7

Table 8.7: State-of-the-artcomparisononCIFARderivatives. Comparison with prior few-shot
classi�cation works on CIFAR-10 derivatives. We show the mean Acc. and 95% con�dence
interval. †results obtained by training on both train and validation sets.

The tiered-ImageNet (Ren et al. 2018) benchmark presents a larger subset of ImageNet, with 608
classes and images of size 84 × 84 assembled into 34 super-categories. These are split into 20
categories for meta-training and 6 categories for both meta-validation and meta-testing, aiming
to minimize the semantic similarity between the split.

CIFAR derivatives. CIFAR-CS (Bertinetto et al. 2019) and FC100 (Oreshkin et al. 2018) are both
CIFAR-100 (Krizhevsky et al. 2010) derivatives, containing 100 classes and images of size 32 ×
32. For CIFAR-CS, the classes are divided into 64, 16, and 20 classes for meta-training, meta-
validation, and meta-testing, respectively. For FC100, the classes are grouped into 20 super-categories,
split into 12 categories for meta-training and 4 for meta-validation and meta-testing.

Results. The results of 5-way classi�cation are summarized in Table 8.6 and Table 8.7 for Ima-
geNet and CIFAR derivatives respectively. Our method outperforms previous works and achieves
state-of-the-art performances across di�erent datasets and evaluation settings. This suggests that
our attention-based SCL approach, coupled with the CE loss, improves the transferability of the
learned embeddings without any meta-learning techniques. With additional improvements using
a feature distillation step. These results also show the potential of integrating contrastive losses as
auxiliary objectives for various few-shot learning scenarios.

8.5.4 Cross-Domain Few-shot Classification

To further a�rm the improved transferability of the learned embedding with our approach, we
explore the e�ects of an increased domain di�erence between the seen and unseen classes, i.e., the
discrepancy between the meta-training and meta-testing stages. Precisely, we follow the same pro-
cedure as (Tseng et al. 2020) where we �rst train on the whole mini-ImageNet dataset using the
same setting as detailed above. Then, we evaluate the embeddings model on four di�erent do-
mains: CUB (Welinder et al. 2010), Cars (Krause et al. 2013), Places (B. Zhou et al. 2017), and Plantae
(Van Horn et al. 2018). We show the obtained results in Table 8.8, and see a notable gain in perfor-
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Method CUB, 5-way Cars, 5-way Places, 5-way Plantae, 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet (Vinyals et al. 2016) 35.89± 0.5 51.37± 0.7 30.77± 0.5 38.99± 0.6 49.86± 0.8 63.16± 0.8 32.70± 0.6 46.53± 0.6
MatchingNet w/ FT (Tseng et al. 2020) 36.61± 0.6 55.23± 0.8 29.82± 0.4 41.24± 0.6 51.07± 0.7 64.55± 0.7 34.48± 0.5 41.69± 0.6
RelationNet (F. Sung et al. 2018) 42.44± 0.7 57.77± 0.7 29.11± 0.6 37.33± 0.7 48.64± 0.8 63.32± 0.8 33.17± 0.6 44.00± 0.6
RelationNet w/ FT (Tseng et al. 2020) 44.07± 0.7 59.46± 0.7 28.63± 0.6 39.91± 0.7 50.68± 0.9 66.28± 0.7 33.14± 0.6 45.08± 0.6
GNN (Garcia et al. 2018) 45.69± 0.7 62.25± 0.6 31.79± 0.5 44.28± 0.6 53.10± 0.8 70.84± 0.6 35.60± 0.5 52.53± 0.6
GNN w/ FT (Tseng et al. 2020) 47.47± 0.6 66.98± 0.7 31.61± 0.5 44.90± 0.6 55.77± 0.8 73.94± 0.7 35.95± 0.5 53.85± 0.6

Ours 49.58± 0.7 67.64± 0.7 34.46± 0.6 52.22± 0.7 59.37± 0.7 76.46± 0.6 40.23± 0.6 59.38± 0.6
Ours-Distill 50.09± 0.7 68.81± 0.6 34.93± 0.6 51.72± 0.7 60.32± 0.8 76.51± 0.6 39.75± 0.8 59.91± 0.6

Table 8.8: State-of-the-art comparison on cross-domain few-shot benchmarks. Compari-
son with prior works on cross-domain few-shot classi�cation benchmarks. We train the model
on the mini-ImageNet domain and evaluate the trained model on other domains. We show the
mean Acc. and 95% con�dence interval.
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Figure 8.8: ProtoNet ablations. The
obtained improvement when
adding the contrastive objec-
tives as auxiliary losses. We
show the mean Acc. and 95%
con�dence interval for 5-way
5-shot classi�cation across Im-
agetNet derivatives.

Method Image Size Backbone Aux. Loss Acc. (%)

ProtoNet
(J.-C. Su et al. 2020)

224× 224 ResNet-18

- 75.2
Rotation 76.0

Jigsaw 76.2
Rot.+Jig. 76.6

- 74.0
GC 75.2
SC 75.2

SS-GC 77.3
SS-SC 77.2

Ours 224× 224 ResNet-18

SS-GC+SS-SC 77.6

Table 8.9: ProtoNet experiments on mini-
ImageNet. Comparison with prior
works on mini-ImageNet. We report the
mean Acc. for 5-shot 5-way classi�cation
with implementation details including
image size, backbone model, and auxiliary
training losses for each method.

mance using the proposed method, from 2% gain on CUB dataset, up to 7% gain on Cars dataset,
indicating a clear enhancement in terms of the generalization of the embedding model.

ProtoNet Experiments

To demonstrate the generality of the proposed approach and its applicability in di�erent settings,
in this section, we provide additional metric-learning based experiments in which we integrate
the contrastive losses into the ProtoNet (Snell et al. 2017) framework. ProtoNet is a distance-based
learner trained in an episodic manner, so that both the meta-training and meta-testing stages have
matching conditions. During meta-training, for a C-way K-shot setting, we construct a meta-
training set I = {(Dtr

t ,Dtest
t )}Tt=1 where each given task (Dtr

t ,Dtest
t ) depictsC randomly cho-

sen classes from the seen classes, with K images per class for the training (i.e., support) set Dtr
t ,

and N images per classes for the test (i.e., query) setDtest
t . At each training iteration, after sam-

pling a given task fromI , we �rst compute the class prototypes for classi�cation using the support
set. Then, the embeddings model is trained to minimize the CE loss where each query example
is classi�ed based on its distance with respect to the support’s class prototypes. To add the con-
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8 Spatial Contrastive Learning

(a) CE

Test Image Nearest Neighboors

(b) CE + SC

Test Image Nearest Neighboors

Figure 8.9: Nearest Neighbors Analysis. For a given test image from mini-ImageNet dataset, we
compute 5 of its nearest test set neighbors in the embedding space for two cases, when a model
is trained with either, (a) the standard CE, or (b) the proposed SC as an additional auxiliary
objective. We observe that the neighboring images in the embedding space found when the SC
loss is used are more semantically similar compared to the standard case with the CE loss. This
suggests that the quality of the learned embeddings is increased with the usage of the SC as an
auxiliary loss as a result of optimizing for more general-purpose features.

trastive objectives as auxiliary losses to the ProtoNet training objective, we simply merge the query
and support set, augment each exampled within it, and compute the contrastive losses detailed in
Section 8.4 over this merged and augmented set.

Experimental Details. For the experimentation, we follow (W.-Y. Chen et al. 2019) and base our
implementation on their few-shot learning code base. In particular, we use a ResNet-18 network as
the embedding model with 512-dimensional output features. We train on ImagetNet derivatives
using ADAM optimizer with a learning rate of 10−3 for 60, 000 episodes and use 5-way (classes)
5-shot (examples per-class) with 16 query images. For contrastive learning, similar to transfer
learning experiments, we use a two-layer MLP for the projection head and the attention modules
with an output dimensionality of 64, and set λCE to 1.0, and λGC and λSC to 0.5. For meta-
testing, we report the mean accuracy and 95% con�dence interval over 600 randomly sampled
tasks, where each class consists of 5 support images and 16 query images.

Results. To investigate the impact of the contrastive losses on the performances of ProtoNet, we
report the obtained results for a 5-way 5-shot classi�cation task on ImageNet derivatives with dif-
ferent training objectives. The results in Fig. 8.8 show a notable performance gain over the Pro-
toNet baseline. Surprisingly, when disregarding the labels and training with the self-supervised
formulation of the contrastive objectives, we obtain better results. The SS-SC and SS-GC losses
perform comparatively on mini-ImageNet with a 3.2% gain, and with the SS-SC loss perform-
ing slightly better on tiered-ImageNet with a 2.2% gain. We suspect that the obtained gain when
using the self-supervised formulation might be a result of using a larger number of negatives as op-
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Figure 8.10: Spectral Analysis with SCL. Results of the spectral analysis on the embedding matrix
using CE or CE+SC as training objectives. Plot (a) shows the explained cumulative variance
of the learned features as the number of principal components used and (b) shows the max-
normalized singular values. We observe that the SC loss increases the number of dominant
principal components and the weight of the remaining singular values, indicating that the SC
loss does indeed help retain more informative signals that might be useful outside the meta-
training classi�cation tasks.

posed to the supervised formulation, since each batch of examples only contains 5 unique classes.
Additionally, we compare the performances of our approach with other self-supervised auxiliary
losses, i.e., rotation prediction (Gidaris et al. 2018c) and jigsaw puzzle solving (Noroozi et al. 2016),
for which Su et al. (J.-C. Su et al. 2020) provided their integration into the ProtoNet framework.
As shown in Table 8.9, we observe that a larger performance gain can be obtained with the con-
trastive objectives as auxiliary losses compared to other self-supervised objectives, especially when
using both the SS-SC and SS-GC losses with a 3.6% gain over the baseline, which further con�rms
the e�ectiveness of the proposed SC loss.

8.5.5 Qualitative Results

In this section, we revisit the analysis conducted in Section 8.3.3 to qualitatively show the im-
provement of the learned representations. Speci�cally, we conduct an empirical analysis of the
embeddings to assess the quality of the learned features in two cases: i) when the model is trained
with only the CE loss, and ii) when adding the SC as an additional auxiliary objective. Figs. 8.9
and 8.10 show the results. We observe a clear improvement in terms of the obtained nearest neigh-
bors when using the SC loss. We also see an increase in terms of the amount of informative signal
retrained within the embedding matrix, indicating an enhancement in the quality of the learned
embeddings.

Conclusion
In this chapter, we investigated contrastive losses as auxiliary training objectives along the
CE loss to compensate for its drawbacks and learn richer and more transferable features.
With extensive experiments, we showed that integrating contrastive learning into existing
few-shot learning frameworks results in a notable boost in performance, especially with
our spatial contrastive learning objective. Future work could investigate the spatial con-
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8 Spatial Contrastive Learning

trastive method extension for other few-shot learning scenarios and adapt it for di�erent
visual tasks, such as unsupervised representation learning.
In the next chapter, we will tackle a di�erent learning paradigm, that of few-sample �ne-
tuning, building upon the pre-train, then �ne-tune framework by proposing a novel �ne-
tuning method for the various NLP tasks.
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9 Relative Bias Fine-tuning

Chapter’s Background

In this chapter, we consider:

• The Few-Sample Fine-Tuning (FSFT) setting (Section 3.1.2),

• Natural Language Processing (NLP) tasks (Section 4.1.3).

Up until now, all the tasks we considered were visual tasks. However, the textual modality
is also an important component of many real-world DL-based systems (e.g., the examples
in Chapter 1). We thus choose to consider it in this chapter and set to solve various pop-
ular NLP downstream tasks. For the learning paradigm, we consider the label-e�cient
version of the �ne-tuning stage, i.e., the FSFT setting. As explained in the introduction,
this paradigm is currently very popular for both its simplicity and practicality: large pre-
trained language models (LMs), which are becoming readily available, can �ne-tuned to
solve the desired downstream NLP task. Speci�cally, in this chapter, we start from a pre-
trained LM and set to introduce a label-e�cient �ne-tuning method to adapt the model
to a given downstream task of interest.

Chapter’s Summary

In this chapter, we consider the pre-train, then �ne-tune paradigm based on large pre-
trained LMs. In recent years, �ne-tuning large pre-trained models has demonstrated its
e�ectiveness in many NLP downstream tasks. However, the standard supervised �ne-
tuning approach su�ers many drawbacks and limitations. First, when provided with few
labeled samples, the �ne-tuning process becomes brittle and prone to instability, over-
�tting, and representation collapse, leading to sub-optimal performances. Additionally,
�ne-tuning is extremely parameter and compute-ine�cient, requiring an entire model to
be �ne-tuned for every task. To solve this, we introduce RelBitFit, a method that builds on
the recently introduced BitFit (Zaken et al. 2021). Instead of only �ne-tuning the model’s
biases as in BitFit, the proposed RelBitFit consists of: i) �rst, introducing relative biases
into the attention operation as new parameters, and ii) then, sparse �ne-tuning of all bias
terms of the model, i.e., the newly introduced relative biases, and the model’s pre-trained
biases. With this simple and e�cient approach, we demonstrate competitive performances
with limited labeled data on the popular GLUE benchmark (A. Wang et al. 2018) consisting
of a diverse set of NLP tasks.
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9 Relative Bias Fine-tuning

9.1 Introduction

After the introduction of the transformer architecture (Section 4.2.3), large pre-trained LMs have
become the go-to approach for solving most NLP tasks, thanks mainly to the pre-train then �ne-
tune strategy. This strategy takes advantage of the large quantities of unlabeled textual data avail-
able to train large LMs in an unsupervised manner. These pre-trained models are then �ne-tuned
on the downstream tasks of interest, resulting in both a reduction of the amount of target labeled
data necessary and in a better performing model.

However, while this transfer learning-based approach is highly e�ective and have produced
many state-of-the-art results (Brown et al. 2020; Devlin et al. 2019; Y. Liu et al. 2019; Radford et al.
2019), it su�ers from some critical drawbacks. First, the �ne-tuning process can often be volatile
and easily disposed to over-�tting and representation collapse (Aghajanyan et al. 2021a; Mosbach et
al. 2020), especially on small datasets (T. Zhang et al. 2021). As a consequence, the �ne-tuned mod-
els are prone to spurious biases in the training data (Niven et al. 2019), limiting their generalization
to unseen examples. Additionally, given the size of such large LMs and the resources required for
�ne-tuning and storing them, this approach becomes infeasible and impractical as the number of
downstream tasks increases

This chapter focuses on Parameter-E�cient Fine-Tuning (PEFT) approaches, which were �rst
popularized by (Houlsby et al. 2019). Instead of updating all the parameters of the pre-trained LM
where we optimize the model to learn and acquire new task-related knowledge, PEFT approaches
argue that large pre-trained LMs already contain all the desired knowledge, and at the �ne-tuning
stage, the goal should be limited to simply extracting and exposing the knowledge to solve the
downstream task (Zaken et al. 2021). To this end, PEFT approaches consist of only updating few
parameters for new tasks, while the majority of the model’s weights remain unchanged, i.e., taking
their pre-trained values. The updated parameters can either be: i) newly introduced weights and
modules, such as adapter (Houlsby et al. 2019) or hypernetwork (Mahabadi et al. 2021) modules or
low-rank weights (E. J. Hu et al. 2022), or ii) can consist of �ne-tuning a small subset of the pre-
trained weights, e.g., BitFit (Zaken et al. 2021) which consists of �ne-tuning the biases only, which
are less than 1% of the overall number of parameters. As a result, the �ne-tuning process becomes
more stable and less prone to over-�tting in low label regimes. Additionally, �ne-tuning becomes
computationally e�cient and requires less storage to save a �ne-tuned model for a given task since
we only need to store the newly introduced modules or the �ne-tuned weights instead of the whole
model.

Given the e�ectiveness demonstrated by BitFit under the constraint of limited labeled data and
given its computational e�ciency, we build upon it and propose an improved version named Rel-
BitFit (RELative BIas-Term FIne-Tuning). RelBitFit is based on a straightforward analysis where
we show, using a simple expansion of the attention operation, that the key bias term does not con-
tribute to the computation, thus rendering it unuseful and unutilized since it does not receive any
gradients during �ne-tuning. To solve this, we propose a reformulation of the attention compu-
tation, where we replace the absolute key bias-related terms with relative biases. As a result, all of
the model’s biases become trainable, thus adding to its �exibility during the �ne-tuning stage. It
also results in a more performing model, while retaining the computational e�ciency of the orig-
inal approach. With extensive experiments using the popular RoBERTa model (Y. Liu et al. 2019)
on the diverse GLUE benchmark (A. Wang et al. 2018), we show that the proposed approach o�ers
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better performances compared to the vanilla �ne-tuning approach and other PEFT methods in
limited labeled data regimes.

Chapter’s Contributions

To summarize, this chapter’s contributions are:

• A straightforward analysis of the attention operation thats a portion of the model’s
biases remains untrained, thus used during the �ne-tuning stage.

• A new method, named RelBitFit, where we reformulate the attention operation
by replacing the absolute key bias-related terms with relative biases, making them
trainable and increasing the model’s �exibility at the �ne-tuning stage.

• Extensive experiments that show that RelBitFit, despite its simplicity and e�ciency,
outperforms previous methods on the popular GLUE benchmark.

9.2 RelatedWork

Pre-training, then Fine-tuning. With the advance of large-scale self-supervised pre-training of
large language models (Devlin et al. 2019; Lewis et al. 2019; Y. Liu et al. 2019), the two-stage NLP
pipeline of joint pre-training then task-speci�c �ne-tuning has become standard practice. Such
a process is often capable of delivering impressive performances by leveraging the knowledge ac-
quired when a network, generally transformer-based (Vaswani et al. 2017), is �rst trained on raw text
with self-supervision, then �ne-tuned on the downstream task. The �ne-tuning stage consists gen-
erally of adding a fully connected layer on top of the contextualized embeddings produced by the
network, e.g., embeddings of the [CLS] token for sentence-level classi�cation. For more details,
please refer to Sections 4.1.3 and 4.2.3. We follow a similar process in this work and use a pre-
trained language model, i.e., RoBERTa (Y. Liu et al. 2019), as a starting point for our few-sample
�ne-tuning approach.

The Limitations of Fine-tuning. Despite its inherent simplicity and competitiveness, the �ne-
tuning process still has some shortcomings. As pointed by (Aghajanyan et al. 2021a; Dodge et al.
2020; Mosbach et al. 2020), these large pre-trained LM models can su�er from instability caused
by optimization di�culties, possible over-�tting to the training data limiting the model’s trans-
ferability, and representation collapse. Moreover, �ne-tuning such large models1 to be used over
a large set of diverse tasks requires an enormous amount of computing to adapt the model for
every single task and large amount of disk storage to save the �ne-tuned weights. It thus makes
this strategy expensive, and renders it infeasible and impractical in many real-world scenarios.

Parameter-E�cient Fine-Tuning. To solve some limitations above, PEFT methods consist of
updating or adding only few parameters per task instead of updating all the pre-trained parameters

1State-of-the-art models contain hundreds of billions of parameters. GPT-3 (Brown et al. 2020), for instance, is a
175B parameter model and requires more than 350GB of memory for storage.
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9 Relative Bias Fine-tuning

of the model. This way, the �ne-tuning process is constrained to extract and expose the task-
speci�c knowledge already learned by the model to solve a given task. As a result, the optimization
process becomes more stable, given that only a limited number of parameters is learned. The
�rst PEFT method proposed to add adapters (Houlsby et al. 2019; Rebu� et al. 2017), which are
feed-forward networks injected into each layer of a given pre-trained network. Follow-up work
investigated various e�cient �ne-tuning methods such as:

• Updating a sparse subset of the pre-trained parameters (Guo et al. 2020; Y.-L. Sung et al. 2021).

• Learning low-rank updates of the model’s weights (E. J. Hu et al. 2022).

• Performing the �ne-tuning in a low-dimensional space (Aghajanyan et al. 2021b).

• Replacing the adapter modules by hypernetworks (Mahabadi et al. 2021).

• Limiting the weight updates to only the bias terms of each layer of the pre-trained model,
while the rest remains frozen, i.e., BitFit (Zaken et al. 2021).

In this chapter, we propose an improved version of BitFit, named RelBitFit, where we intro-
duce relative biases to replace key biased-based terms that are not learned during �ne-tuning.

9.3 Preliminaries

BitFit: Bias-Term Fine-Tuning

To start, we introduce BitFit. With BitFit, the �ne-tuning approach is simple and straightfor-
ward. For a given new task of interest, all the parameters of the pre-trained models are frozen, and
only the bias terms are updated in addition to the output classi�cation layer. This way, the �ne-
tuning stage becomes computationally e�cient, all while matching or even surpassing the results
obtained under the standard �ne-tuning approach, where all parameters are updated.

Concretely, and as detailed in Section 4.2.3, each transformer block consists of three main com-
ponents: attention, Layer Normalization (LN) (Xu et al. 2019), and the feed-forward network. Let
z ∈ RL×d be a set of d-dimensional input features to a given transformer block corresponding
to an input sequence ofL tokens. First, before updating the features via the attention operation,
the features are mapped into a set of queries q, keys k, and values v using the corresponding
feed-forward layers as follows2:

q = zWq + bq

k = zWk + bk

v = zWv + bv

(9.1)

where each feed-forward layer is parameterized by its weight matrix W(.) ∈ Rd×d and its bias
term b(.) ∈ Rd. After the computation of the keys, queries, and values, the features z can then
be updated via the self-attention operation as follows:

Att(q,k,v) = softmax

(
qk>√
d

)
v

h1 = Att(q,k,v)

(9.2)

2Note that for conciseness and clarity, we only present the computation used for a single attention head.
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The updated features h1 are then fed into the output feed-forward layer, followed by a LN
with a skip connection, which is parameterized by two weights, the gaingLN(.)

∈ Rd and the bias
bLN(.)

∈ Rd:
h2 = h1Wo + bo

h3 = gLN1 �
(h2 + z)− µ

σ
+ bLN1

(9.3)

where� is a dot product operation, and µ and σ are the per token mean and standard deviation
of input h2.

Finally, the outputsh3 are passed through the feed-forward network, i.e., the application of two
feed-forward layers with weights WFF1 and WFF2 and biases bFF1 and bFF2 , and with a GELU
non-linearity (Hendrycks et al. 2016) in between, followed by an LN and skip connection as in
Eq. (9.3), resulting in the �nal outputs z′ of the transformer block, to then be fed into the next
block:

h4 = GELU(h3WFF1 + bFF1)

h5 = h4WFF2 + bFF2

z′ = gLN2 �
(h5 + h3)− µ

σ
+ bLN2

(9.4)

During the �ne-tuning stage, and in addition to the output classi�cation layer3, all the origi-
nal weights of the pre-trained model are frozen, and only the bias terms b(.), indicated in red in
Eqs. (9.1), (9.3) and (9.4), are �ne-tuned. For a given model withM transformer blocks, and since
the bias vectors are additive and are d-dimensional, except bFF1 which is 4d-dimensional4, the to-
tal number of weights that is updated and that will need to be stored for a given task of interest is
11dM . This number is small and negligible, consisting of less than 1% of total parameters. Thus,
BitFit, in addition to being stable and performant in low-label settings, is extrelely e�cient

Attention and the key bias bk

In this section, we investigate the attention operation described in Eq. (9.2) via a simple expansion,
and show that the key bias term bk does not contribute to the attention computation and is thus
unused. This results in a reduction of the expressiveness and e�ectiveness of the BitFit approach.

While in the original implementation of attention (Vaswani et al. 2017), the biases were omitted,
many of the following implementations, such as BERT (Devlin et al. 2019) and RoBERTa (Y. Liu
et al. 2019), used an attention version with key and query bias terms, resulting in di�erent queries-
keys dot product. To investigate the contribution of these biases, we replace q and k in the dot
product of Eq. (9.2) with their formulas in Eq. (9.1), obtaining the following expression:

qk> = (zWq + bq)(zWk + bk)
>

= zWqW
>
k z
>︸ ︷︷ ︸

1

+bqW
>
k z
>︸ ︷︷ ︸

2

+ zWqb
>
k︸ ︷︷ ︸

3

+bqb
>
k︸ ︷︷ ︸

4

(9.5)

3Which is a single weight matrix Wcls ∈ Rd×C , mapping the representations of the sentence-level token [CLS] into
logits over the C output classes.

4This is due to the expansion factor in the feed-forward network, which is generally set to 4 for transformer models.
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(a) Standard Attention Computation (b) Attention Computation with Relative Biases

Input Features

Output Features

softmax

Figure 9.1: TheAttentionOperation forBitFit andRelBitFit. We show the di�erence between
(a) the standard attention operation, which is used in BitFit, and its proposed adjustment in (b).
The version used in the proposed RelBitFit consists of replacing the key bias with two relative
biases, content biased relative bias Ri−j , and �xed relative biases si−j .

After the decomposition of the attention dot product shown in Eq. (9.5), we obtain four terms.
The �rst term (1) is the standard dot product similarity, comparing the content of each query with
the content of the rest of the keys. The second term (2) is �xed addressing where the attention is
computed based only on the content of keys. However, for the remaining two terms, (3) and (4),
we �nd that for a given query at position i, the contribution of these two terms to its attention
score with the rest of the keys at positions j ∈ [1, L] is �xed. And since the softmax operation is
shift invariant (i.e., softmax(a + const) = softmax(a), ∀const), the key-bias related terms do
not contribute to the attention weights and are thus not learned and can be disabled without any
impact on the model’s activations. Note that this behavior was also observed empirically in BitFit,
and was also previously documented by (Cordonnier et al. 2020a). Nonetheless, in PEFT where
each parameter must be carefully selected to be maximally useful during the �ne-tuning stage,
this simple analysis shows a large portion of the �ne-tuning parameters in BitFit is not unused.
To solve this, in the next section, we propose a simple reformulation of attention computation by
replacing the two terms, (3) and (4), with relative biases (Z. Dai et al. 2019; Shaw et al. 2018).

9.4 Method

In this section, and based on the analysis presented in Section 9.3, we propose RelBitFit, an exten-
sion of BitFit. It consists of leveraging relative embeddings introduced in (Z. Dai et al. 2019; Shaw
et al. 2018), and using them as relative biases for a plugin replacement of the two key-bias related
terms in the attention computation (i.e., terms (3) and (4) in Eq. (9.5)). In RelBitFit, instead of
addressing all the key positions for a given query position with the same absolute value, which
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Input Feaures (         ) Relative Biases  for Relative Biases  for 

Figure 9.2: The Construction of The Content-based Relative Biases Ri−j . We show an il-
lustrative example describing how content-based relative biases are constructed. For an input
sequence consisting of 4 tokens, i.e., L = 4, our learnable matrixR will be of size 7 × d, con-
sisting of all possible relative distances, from−3 up to 3. Then, during the attention operation,
and for each query position i, we construct a set of relative biases Ri−j , where each column
r(.) of Ri−j is fetched from the learnable matrixR.

renders the contribution of the key-bias terms futile, we propose relative biases that depend on
the relative distance between position i of the query and position j of a given key. In Fig. 9.1, we
show the standard version and the proposed modi�ed version. Concretely, we propose to rewrite
the dot product of the attention computation in Eq. (9.2) as follows:

qk> = zWqW
>
k z
> + bqW

>
k z
> + zWqRi−j + si−j (9.6)

with Ri−j ∈ Rd×L and si−j ∈ RL as the two newly introduced relative bias terms. These
two terms are constructed from two learnable parameters, the content-based relative bias matrix
R ∈ Rd×(2L−1) and the �xed relative bias vectorS ∈ R2L−1. The two learnable parameters have
sizes of 2L−1 in order to cover all possible relative distances i−j, from−L up toL. Speci�cally,
before computing the dot product in Eq. (9.6), we �rst construct Ri−j for each possible query
position i by considering all possible relative distances to all the keys at positions j ∈ [1, L]. To
construct this matrix at position i, we fetch L d-dimensional vectors from the columns of R,
starting from index k = max(0, i − L), and up to index l = min(L, i + L), i.e., using tensor-
style slicing, we haveRi−j = R[:,k:l]. The same process is also applied toS to construct si−j , i.e.,
si−j = S[k:l]. For an illustration of this process, see Fig. 9.2.

To summarize, RelBitFit consists of two main points: 1) the introduction of two newly learn-
able parameters,R andS, which replace the key bias terms in BitFit and are trained from a random
initialization for each new task of interest. 2) Similar to BitFit, all the rest of the biases (i.e., the
remaining 7 biases, see Section 9.3 for details), are updated together with theR and S, while the
rest of the model’s parameters are frozen. As such, RelBitFit maintains the e�ciency of BitFit, all
while having more �exibility and expressiveness due to the newly introduced relative biases.
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An increased efficiency

While the current formulation of RelBitFit is more expressive, it su�ers from an in�ated number
of trainable parameters. In BitFit, the total number of learnable parameters outside the output
classi�cation layer is 11dM for d-dimensional biases and with M transformer blocks. However,
with RelBitFit, this number increases to (10d + (2L − 1)(d + 1)) ×M . This increase is due
to the size of the learnable matrix R used to construct the relative biases Ri−j . To solve this, we
propose the following tricks to reduce its size:

• Parameter Tying (PT). Instead of learning separate relative biases per-each layer, we pro-
pose to learn single joint parametersR andS for the whole model. This reduces the number
of learnable parameters by a factor ofL.

• Low Rank (LR). In order to reduce the size of R, we propose to decompose it into sep-
arate smaller matrices, i.e., R = R1R2. The �rst matrix R1 ∈ Rd×d′ , with d′ < d, is
shared between all layers, while the second matrix R2 ∈ Rd′×(2L−1) can either be shared
(i.e., parameter tying) or learned on a per-layer basis. At a given layer, the matrixR can be
reconstructed using these two matrices. Then, the attention computation can be done as
described in Eq. (9.6). This reduces the number of learnable parameters by almost a factor
of d/d′.

• Clipping the Relative Distances (Clip.). Instead of learning a matrix R consisting of
(2L − 1) d-dimensional columns taking into consideration all possible relative distance
i − j, we follow (Shaw et al. 2018), and only consider Lmax < (2L − 1) possible relative
distances, i.e., R ∈ Rd×Lmax . Then, during the construction of the relative biases Ri−j ,
we set its columns to either the minimal or maximal value if the relative distance is outside
the range Lmax. This reduces the number of learnable parameters by a factor of (2L −
1)/Lmax

5.

Depending on the downstream task of interest, and the available computational resources, one or
all of the tricks mentioned above can be used to signi�cantly reduce the number of learnable pa-
rameters required in the proposed RelBitFit. They all while maintaining acceptable performances
as we demonstrate in the next experimental section.

9.5 Experimental Results

To evaluate the proposed �ne-tuning method and investigate its e�ectiveness under the constraint
of limited labeled data, we carry out various experiments on di�erent NLP downstream tasks.
First, in Section 9.5.1, we present the experimental details of RelBitFit. Then, in Section 9.5.2,
we o�er an ablation study to investigate the e�ectiveness of the parameter reduction tricks and
the performance of RelBitFit under a variable number of labeled data. Finally, in Section 9.5.3,
we compare our method to the standard Fine-tuning method, and with BitFit, and show perfor-
mances above previous methods.

5Note that the same process is also applied over S, resulting in a smaller vector S ∈ RLmax .
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9.5 Experimental Results

Dataset Task Domain #Train #Classes

RTE Textual Entailment News/Wikipedia 2.5k 2
MRPC Paraphrase News 3.7k 2
STS-B Textual Similarity News/Others 7k Reg.
CoLA Grammatical Correctness Linguistic Publications 8.5k 2
SST-2 Sentiment Analysis Movie Reviews 67k 2
QNLI Question Answering/Textual Entailment Wikipedia 105k 2
QQP Question Answering/Semantic Equivalence Quora 364k 2
MNLI Textual Entailment Multi-domain 393k 3

Table 9.1: GLUEBenchmark. Details about the various NLP downstream datasets present in the GLUE
Benchmark that we consider in this chapter.

Dataset Metric

QNLI Accuracy
SST-2 Accuracy
MNLI Matched Accuracy and Mismatched Accuracy
CoLA Matthews Correlation
MRPC F1
STS-B Spearman Correlation
RTE Accuracy
QQP F1

Table 9.2: GLUEEvaluationMetrics. We list the metrics used for evaluation on the di�erent datasets
of the GLUE Benchmark. Note that for MNLI dataset, we have two evaluation sets, MNLIm
denoted MNLI Matched, MNLImm denoted MNLI Mismatched. We report the Accuracy on
both of these sets.

9.5.1 Experimental Details

Network Architecture. In this chapter, we will use RoBERTaBASE (Y. Liu et al. 2019) as our pre-
trained model, and then we �ne-tune for a given downstream task following the proposed RelBit-
Fit approach. RoBERTaBASE is an encoder-based transformer consisting ofM = 12 transformer
blocks, and with hidden size d = 768, and taking as input a sequence of length L = 128. For
the implementation, we use HuggingFace (Wolf et al. 2020) open-source interface, and implement
our RelBitFit method with their framework.

Datasets. For the NLP downstream datasets, we train and evaluate on the set of available datasets
on the widely used GLUE benchmark (A. Wang et al. 2018). Consistent with previous work (Houlsby
et al. 2019; Zaken et al. 2021), we use all the datasets except WNLI, on which BERT-like models do
not perform well. Table 9.1 presents a brief summary of the GLUE dataset we will use in this
chapter.

Note that since we are interested in scenarios with a low number of labeled examples, i.e., FSFT,
and since most of the GLUE datasets contain a relatively large number of examples, we opt to
use a reduced version of them. Speci�cally, for a given dataset, we sample a reduced number N
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9 Relative Bias Fine-tuning

Method Num. of trainable params. % of the model’s total params.

Full Fine-tuning ≈ 124× 106 100%
BitFit ≈ 0.7× 106 0.55%

RelBitFit ≈ 1.8× 106 1.5%
RelBitFit with Clip. (Lmax = 64) ≈ 1.2× 106 1%
RelBitFit with Clip. (Lmax = 32) ≈ 0.98× 106 0.8%
RelBitFit with PT ≈ 0.78× 106 0.63%
RelBitFit with LR (d′ = 64) ≈ 0.76× 106 0.8%
RelBitFit with PT+LR+Clip.(Lmax = 32) ≈ 0.73× 106 0.59%

Table 9.3: NumberofTrainable Paramters. We list the number of trainable parameters for the base-
lines and for di�erent variations of the proposed RelBitFit. PT: Parameter Tying. Clip.: Clip-
ping the Relative Distance. LR: Low Rank. Refer to Section 9.4 for details.

Method QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg.

Size of training set: N = 2000
No parm. red. trick 83.4 91.7 73.8 75.1 51.3 91.0 88.8 71.5 79.8 78.5
Clip. (Lmax = 64) 84.2 91.4 75.0 75.9 52.1 91.3 89.1 72.2 80.3 79.1
Clip. (Lmax = 32) 84.2 91.6 74.7 75.9 52.3 91.5 89.2 72.6 80.6 79.2
PT 84.1 91.7 74.4 75.4 50.8 91.0 88.8 71.1 80.0 78.6
LR (d′ = 64) 84.8 91.6 75.1 76.4 52.9 92.1 89.1 72.9 80.0 79.4
All (Lmax = 64) 83.9 91.7 74.3 75.4 53.2 91.4 89.3 72.9 80.3 79.2

Size of training set: N = 1000
No parm. red. trick 82.7 91.3 69.9 70.6 48.6 89.2 87.3 66.8 78.8 76.1
Clip. (Lmax = 64) 82.1 90.5 71.6 72.1 48.9 88.6 87.6 64.6 78.9 76.1
Clip. (Lmax = 32) 82.1 91.5 70.7 72.0 49.1 90.5 87.1 64.6 78.7 76.3
PT 81.7 90.9 69.1 69.6 48.7 88.5 87.7 65.3 79.0 75.6
LR (d′ = 64) 82.6 90.5 69.2 70.0 47.7 89.3 87.3 63.9 78.6 75.5
All (Lmax = 64) 82.5 91.1 69.9 71.0 47.5 88.2 87.5 64.3 78.6 75.6

Table 9.4: Parameter Reduction. We show the obtained results over the di�erent tasks and for di�er-
ent parameters reduction methods. We train all methods using eitherN = 2000 orN = 1000
labeled training examples. PT: Parameter Tying. Clip.: Clipping the Relative Distance. LR:
Low Rank. All: PT+Clip.+LR. Refer to Section 9.4 for details.

of training examples from the original set while maintaining the same label distribution as the
original set and use it as our new training.

Training Details. In order to adapt our pre-trained RoBERTaBASE model on the various tasks of
the GLUE benchmark, we follow the standard practice, removing the �nal classi�cation layer over
the vocabulary (i.e., used for pre-training) and attaching a new classi�cation layer that producesC
logits for a given input, withC as the desired number of output classes. Since all the GLUE tasks
are sentence-level tasks, the classi�cation layer takes as input the d-dimensional representation
corresponding to the [CLS] token, which encodes the whole input sequence.

For optimization, we use AdamW (Loshchilov et al. 2018) optimizer, and use a �xed learning rate
of 1e−4 and a batch size of 8 for all experiments and for all datasets. For RelBitFit experiment, we
ran a limited sweep for each dataset to �nd the best con�guration of the method, mainly the task
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Method QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg.

Size of training set: N = 2000
Full Fine-tuning 50.5 58.9 35.4 35.2 N/A 81.2 58.6 52.7 63.2 54.5
BitFit 83.5 91.6 74.0 75.4 51.1 91.1 88.9 71.8 80.4 78.6
RelBitFit 84.8 91.7 75.1 76.4 55.7 92.1 89.4 74.4 80.6 80.0

Size of training set: N = 1000
Full Fine-tuning 50.5 50.9 35.4 35.2 N/A 81.2 83.0 52.7 66.9 57.0
BitFit 81.5 91.3 70.4 71.7 49.3 88.2 86.5 66.8 78.4 76.0
RelBitFit 82.7 91.5 71.6 72.1 51.3 90.5 87.7 66.8 79.2 77.0

Table 9.5: Comparaison with Relevant Works on Low-label Settings We show the obtained
results over the di�erent tasks and for di�erent parameter reduction methods. We train all meth-
ods using either N = 2000 or N = 1000 labeled training examples. For CoLA task, the full
�ne-tuning was too unstable to report representative results.

Method QNLI SST-2 MNLIm MNLImm Avg.

Size of training set: N = 500
Full Fine-tuning 52.1 72.6 35.4 35.2 48.8
BitFit 78.4 89.7 63.9 64.5 74.1
RelBitFit 80.7 90.8 64.1 64.6 75.0

Size of training set: N = 100
Full Fine-tuning 50.5 79.6 35.4 35.2 50.2
BitFit 56.4 84.3 35.3 35.2 52.8
RelBitFit 64.3 84.4 36.4 36.2 55.3

Table 9.6: A Further Reduction of Labeled Training Data. We show the obtained results over
the di�erent tasks and for di�erent parameters reduction methods. We train all methods using
eitherN = 500 orN = 100 labeled training examples.

appropriate parameter reduction method (i.e., either parameter tying, low rank with d′ = 64, or
both), and the appropriate range of the maximal relative distanceLmax ∈ {32, 64}.

Evaluation Metrics. For evaluation, we follow the standard practice and report the appropriate
metric for each one of the GLUE datasets on their corresponding validation sets. For details about
the metrics used for each dataset, see Table 9.2.

9.5.2 Ablation Results

In this ablation section, we investigate the parameter e�ciency and e�ectiveness of the di�erent
variations of the proposed RelBitFit method. In Table 9.3, we show the number of training pa-
rameters of each of these variations and notice that both BitFit and RelBitFit consume a minimal
amount of parameters for a given task of interest. Additionally, we see that the proposed tricks
reduce the number of parameters required for RelBitFit, making it on par with BitFit in terms of
e�ciency, i.e., both consume≈ 0.05% of total parameters.

In terms of performances, Table 9.5 shows the obtained results for sing di�erent variations of
RelBitFit. Overall, we notice that the parameter reduction methods do not impact the perfor-
mances in any noticeable way and can even help obtain better results on some datasets, indicating
that using the full parameter range of RelBitFit might be unnecessary under the FSFT setting and
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Figure 9.3: Learned Biases. We show the change in the values of the di�erent biases after �ne-tuning
compared to their initial/pre-trained values. The changes are shown per layer and per bias for
both BitFit and RelBitFit when trained on two GLUE tasks: RTE and MRPC.

can help avoid over�tting. For the rest of the results, we use the appropriate parameter reduction
method for each one of the GLUE datasets.

9.5.3 Quantitative Results

In this section, we compare RelBitFit with the full �ne-tuning baseline (i.e., �ne-tuning the whole
model), and BitFit, the state-of-the-art parameter-e�cient �ne-tuning method. The results on the
GLUE tasks for N = 2000 and N = 1000 are shown in Table 9.5. We observe that under the
constraint of limited labeled data, our method, RelBitFit, which consists of a simple adjustment
of the e�cient BitFit method, results in a notable performance boost over both the baseline and
BitFit itself.

Additionally, to further reduce the number of labeled examples N used for �ne-tuning, and
since full �ne-tuning becomes unstable in low-label settings, we follow previous FSFT approaches
(Gunel et al. 2021) and only use three classi�cation GLUE datasets: QNLI, SST-2, and MNLI. The
results obtained N = 500 and N = 100 are shown in Table 9.6. We observe that the proposed
RelBitFil continues to outperform, and sometimes by noticeable margins, when the amount of
labeled training data is further reduced. It thus con�rms its e�ectiveness under the constraint of
limited labeled data.
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9.5 Experimental Results

9.5.4 Qualitative Results

Finally, following (Zaken et al. 2021), we investigate the �ne-tuned biases by computing the amount
of change between their initial pre-trained values and their values after �ne-tuning. Speci�cally,
for each bias b(.) we compute the change 1

dim(b)

∥∥∥b0
(.) − bF(.)

∥∥∥
1

, between the initial b0
(.) and the

�nal values bF(.). Fig. 9.3 shows the results obtained on per bias term and layer basis for both
BitFit and RelBitFit trained on two GLUE tasks, RTE and MRPC. First, for BitFit, we observe
that the key bias terms bk remain unchanged, empirically validating the observation presented
in Section 9.3. For RelBitFit, we observe that all the parameters are learned and utilized by the
model. And more importantly, the newly added relative biases change the most, indicating that
they might play an important role in the �nal �ne-tuned model.

Conclusion
In this chapter, we focused on the textual modality and tackled the setting of FSFT. Specif-
ically, we considered interested in the pre-train the �ne-tune parameter and set to develop
a more performant method during the �ne-tuning stage under the constraint of limited
labeled data. To this end, we started with BitFit, and proposed a simple improvement by
reformulating the attention computation and injecting learnable relative biases. With de-
tailed experiments, we showed that the proposed approach is highly e�ective and produces
better downstream results.
This chapter culminates the contributions part of this thesis. In the next chapter, we con-
clude this thesis.
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10 Conclusion and perspectives

In this thesis, we tackled the learning problem under limited labeled data. Speci�cally, we were in-
terested in the set of problems seeking acceptable generalization for a given task of interest in con-
ditions where some human labor supervision is unavailable. All these problems tackle the same
general objective: learning a model from some empirically observed data with a limited amount
of task-speci�c labels so that its performances are maximized on a superset inaccessible during
training. Tackling this general objective compelled us to consider simpler and more constrained
learning paradigms popular within DL tasks. As such, we considered di�erent popular paradigms
that explore the learning problem under the constraint of limited labeled data. Such paradigms
contemplate either settings with a variable degree of supervision (i.e., SSL, UL, and FSFT), with
a distributional shit (i.e., UDA), or a meta-learning problem with many training sub-tasks (i.e.,
FSL). By tackling them, we built upon their previous methods, proposed incremental improve-
ments to produce better results, and increased the likelihood of adopting such practices in real-
world applications. In our work, we also consider di�erent popular vision and language tasks in
order to build on existing models and benchmarks and increase their usage prospects. Thus facil-
itating the training and evaluation process of the proposed methods by utilizing existing models
and benchmarks and further increasing their usage prospects.

Revisiting the contributions

Overall, the contributions presented in Chapters 5 to 9 of this thesis focused mostly on introduc-
ing a novel set inducting biases, i.e., training objectives, learning procedures, and model architec-
tures, that are more appropriate to the learning paradigms and tasks we addressed. Speci�cally,
after presenting the necessary background knowledge in Chapters 2 to 4, we presented the fol-
lowing contributions:

• In Chapter 5, we introduced CCT for semi-supervised image segmentation, which is a
novel loss that enforces a consistency of predictions at the pixel level over perturbations
injected at the encoder’s level. The learning procedure consisted of simultaneously training
on the labeled set with a CE loss and the unlabeled set with the CCT loss. The encoder-
decoder based model was augmented with auxiliary decoders used over the unlabeled set to
compute the proposed CCT objective.

• In Chapter 6, we introduced autoregressive segmentation for unsupervised image segmen-
tation, in which we leveraged the structure of autoregressive models to propose a novel view
generation method rooted at the pixel level and speci�c to dense visual tasks such as image
segmentation. The learning objective consisted of maximizing the MI between the model’s
outputs over two views of a given input. These outputs can correspond to either class prob-
abilities (i.e., autoregressive clustering or AC) or feature representations (i.e., autoregressive
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representation learning or ARL). The models were built using masked convolution and op-
tional attention blocks to produce these autoregressive views.

• In Chapter 7, we introduced TC for the setting of UDA and the tasks of image classi�ca-
tion and segmentation. With the TC training objective, we trained explicitly on the target
samples by applying a consistency regularization over them, resulting in a more robust and
optimal target classi�er. Additionally, by coupling TC with a per-class representation align-
ment (i.e., CLIV objective), we showed further performance improvements. The learning
procedure, in this case, incorporates source CE over the labeled source, TC over the unla-
beled target, and CLIV over the representations of both sets. For the model, the changes
were minimal and consisted of simply using a per-class domain discriminator instead of a
single joint one for all classes.

• In Chapter 8, we introduced SCL, a contrastive learning-based objective designed to be
used during the pre-training stage for TL-based few-show image classi�cation methods.
The proposed SCL pushes for similar spatial features for instances of the same classes and
for dissimilar features with the rest. When used during pre-training (i.e., meta-training), the
learned model exhibits a superior degree of generalization over the unseen meta-testing task.
The pre-training learning procedure follows the standard supervised pre-training strategy,
but with the SCL objective as an additional auxiliary objective. Regarding the model archi-
tecture, the base classi�cation network is augmented with an attention-based spatial align-
ment module used for spatial alignment and subsequent computation of the SCL objective.

• In Chapter 9, we introduce a novel �ne-tuning method for large pre-trained LM with
a minimal amount of labeled examples available at the �ne-tuning stage. The proposed
method, dubbed RelBitFit, consisted of reformulating the attention operation by intro-
ducing a set of learnable relative biases into the pre-trained model. These new relative biases
and the rest of the pre-trained biases are then updated to adapt the model for a given task.
It results in a simple, e�cient, and e�ective �ne-tuning approach.

Being critical

In this concluding chapter, and to present a set of possible improvements to the proposed meth-
ods, viable research directions, and potential future challenges, we �rst need to reexamine the
proposed approaches. But this time, with a critical eye, which will help us layout the groundwork
for potential future works and guide us when considering upcoming research objectives. To this
end, we highlight the following limitations of the previously presented contributions:

• Lack of �exible learning paradigms. In this work, to simulate various settings covering
the many possible variations under the constraint of limited labeled data given the gener-
ality of the latter, each chapter considered a di�erent paradigm with its pre-existing struc-
tures, assumptions, methods, and benchmarks. While the tackled paradigms cover numer-
ous real-world scenarios, being limited to already existing paradigms does ignore a lot of
practical cases that do not �t into one of these pre-de�ned setups. It also opens the door
for introducing more general and �exible paradigms in future works, incorporating the dif-
ferent settings we considered into a single and joint one.
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• Lack of appropriate benchmarks. Throughout this thesis, the training and evaluation
process often consisted of converting a dataset, or a benchmark, conceived for the SL setting
into a dataset usable for the paradigm of choice under the constraint of limited labeled data.
However, such a process results in unrealistic training and evaluation procedures.

– For SSL, we kept the labels of a subset of the training dataset, discarded the rest of the
annotations, and then evaluated the model on the original test/validation set. How-
ever, in realistic settings, the unlabeled set might contain noisy and corrupted data or
simply data unusable for the desired task. Additionally, we might not have access to
large amounts of labels to build test sets big enough to give representative evaluation
results.

– For UL, we have similar issues. During training, we used SL datasets, but without
their labels, that contain clean and curated data. Yet, in real-world scenarios, the un-
labeled data is often �lled with uncurated and un�ltered examples, often resulting in
a signi�cant downgrade in performance. For the evaluation, we also used the corre-
sponding test set, making the application of the proposed method unrealistic. Since,
in a truly UL setup, we do not have access to such a labeled test set, and even if such
a set is available, its size will be very limited.

– For UDA, the target and source domains were often quite aligned (e.g., both de-
picting centered image objects or urban scenes from a vehicle’s camera) and with a
�xed domain gap over all examples. But practically, the domain gap might vary from
one example to the other. Some have subtle super�uous variations, while others have
more extreme deviations across domains. As for evaluation, we reported the results
on the labeled target set, making it an unreasonable setup since, practically, we would
only have access to unlabeled target data points.

– For FSL, we used SL datasets adapted for this setting by simply dividing their classes
into seen ones to be used during meta-training and unseen ones to be used during
meta-testing. For each subclassi�cation task, a �xed number of classes and a then
�xed number of examples per class were sampled randomly. This setup points to
many drawbacks, such as the random sampling of the classes of each task. The tasks
have limited variability since all classes come from the same original dataset and with
a �xed number of classes and examples across all tasks.

– Finally, for FSFT, in addition to some problems previously mentioned, during train-
ing, the model is adapted for a single task at a time with a �xed training set. Nonethe-
less, in a development setup, we might want to adapt the same model to multiple tasks
simultaneously and update it continuously over time with newly obtained data. Both
of these cases were considered in the training process.

All of these limitations point to the need for new benchmarks tailored for the di�erent
paradigms that consider more realistic and practical learning settings under the constraint
of limited labeled data.

• Lack of multi-modality. For each one of the paradigms we considered, we limited our-
selves to single-modality tasks and datasets. However, leveraging multiple modalities simul-
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taneously to solve a given task might be necessary to equip systems with the desired level of
label e�ciency.

• Lack of multi-tasking. For each one of the paradigms we tackled, we set to solve a single
task at a given time. But, multi-tasking or solving multiple tasks concurrently under the
same framework might also be instrumental for label-e�cient learning. It also might help
solve many tasks with scarce data and expensive labels by transferring the learned knowledge
from the ones with ample data and/or labels to them.

• Lack of theoretically sound methods and novel research directions. If one wishes to
describe a common thread between the methods we presented in this thesis, it is that they
are heavily intuition-based. We often started with an empirical analysis of the previous
methods under a given paradigm which showed their limitations. Based on the intuition
gained with such an analysis, we presented a novel and improved method. Additionally, the
presented contributions are incremental in nature and were constrained to existing research
frameworks. These two critics, however, should motivate our future work to take more
risks when exploring upcoming research directions, while also taking more theoretically
sound approaches during the development process.

• Lack of biological relevancy. When we introduced our work and presented its overarch-
ing objective, we set to build label-e�cient methods that demonstrated e�ective learning
capabilities similar to that of humans. In this concluding chapter, it is safe to say that our
methods did not display such a capability, nor did they contribute to the introduction and
advancement of such biologically inspired methods. However, this criticism can often be
extended to the most popular DL methods. As the statistician George Box succinctly puts
it, “all models are wrong; some models are useful”. The presented methods are undoubtedly
�awed, but they are, to some degree, useful.

• Lack of fairness and explainability. The presented methods lack any analysis of their
ethical impact, the fairness of their predictions, or their explainability. In future works,
any methods to be developed, especially those to be applied to real-world systems, must
consider such questions and incorporate them into the development stage.

A glance into the future

Based on the drawbacks mentioned above and limitations, we propose the following possible re-
search directions that can be considered in future works:

• A single model, multiple tasks. Instead of training a model to solve a singular task, and
with the recent advances in transformer-based models, a promising research direction is to
design massive multi-tasking models that solve many tasks jointly under the same sequence-
to-sequence framework without needing task-speci�c layers or heads (i.e., weights shared
across all tasks), e.g., Gato (Reed et al. 2022).

• A single model, multiple modalities. Similarly, instead of using one model per modality
to solve single or multiple tasks, a better alternative is to design, train and deploy a single-
joint model capable of taking as input multiple modalities. Either multi-modal inputs (e.g.,
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videos, images and their captions, a document and its illustrations) or single-modality in-
puts (e.g., standalone text and image). In this case, the desired targets correspondingly.

• A single model, di�erent levels of e�ciency. If such multi-task multi-modality mod-
els were to be conceived and developed (i.e., we are starting to see a growing line of work
investigating such models e.g., PalM Chowdhery et al. 2022 and e.g., Gato Reed et al. 2022)
they must also be designed with di�erent levels of computational e�ciency. Depending on
the computational environment the model will be deployed on, it might be bene�cial to
reduce its capabilities to gain some degree of computational e�ciency.

• A single framework, multiple learning paradigms. Instead of considering particular
learning paradigms (e.g., SL, UL, and SSL), either separately or sequentially (i.e., UL for
pre-training, then SL for �ne-tuning), it might both more helpful and realistic to introduce
novel learning settings that study the integration of such paradigms into a single and joint
framework. For instance, when training a multi-task model, some tasks might be trained in
an unsupervised manner, others in a semi-supervised way, while the rest might follow the
supervised approach.

• A single framework, multiple data sources. Instead of training on clean and curated
training samples originating from a single or a few data distributions, a more realistic train-
ing setup might consider di�erent data sources for the same task. Each data source can
provide examples from a di�erent data distribution and with di�erent types of noise, both
in terms of the inputs and the labels.

• A single pipeline. If we consider developing some of the previously mentioned methods,
such as multi-task, multi-modal, or �exible learning-based methods, the standard training
and evaluation pipeline must also be signi�cantly adjusted and redesigned. Take, for in-
stance, the simple augmentation set during pre-processing. The data augmentations must
also be rede�ned when we have inputs from multiple modalities, by either considering gen-
eralized and modality agnostic transformations (e.g., feature level augmentation) or by pre-
de�ning a set of per-modality augmentations.

• A single benchmark, multiple settings, and realistic setups. As we have detailed in
the previous section, most of the paradigms outside SL often build their corresponding
training and testing sets using fully supervised datasets. However, this results in unrealistic
benchmarks that do not re�ect real-world scenarios. As such, there is an apparent demand
to be �lled in terms of DL benchmarks that satisfy the conditions of practicality and re-
alism. For instance, in a UL setting, the training procedure must consider di�erent data
sources. The evaluation setup must also be de�ned based solely on unlabeled data points
(e.g., feature inversion or input reconstruction).

Final words

Every real story is a never ending story.

— Michael Ende, The Neverending Story.
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10 Conclusion and perspectives

To conclude, while the presented contributions still su�er from many limitations, the road ahead
is still long, and a Ph.D. is the start of a research journey in which we will hopefully be able to
introduce more constructive, bene�cial, and impactful works.
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Acronyms

ab-CE Annealed & Bootstrapped Cross Entropy
AC Autoregressive Clustering
ARL Autoregressive Representation Learning
BitFit BIas-Term FIne-Tuning
CAM Class Activation Map/Mapping
CCT Cross-Consistency Training
CE Cross Entropy
CLIV Class-Level InVariance
CNN Convolutional Neural Network
EMA Exponential Moving Average
FD Features Distillation
FSFL Few-Sample Fine-Tuning
FSL Few-Shot Learning
GAN Generative Adversarial Network
LM Language Model
MI Mutual Information
MLP Multi-Layer perceptron
MSE Mean Squared Error
PEFT Parameter-E�cient Fine-Tuning
RelBitFit RELative BIas-Term FIne-Tuning
RNN Recurrent Neural Network
SCL Spatial Contrastive Learning
SL Supervised Learning
SSL Semi-supervised Learning
TC Target Consistency
UDA Unsupervised Domain Adaptation
UL Unsupervised Learning
VAT Virtual Adversarial Training
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