
HAL Id: tel-04128256
https://theses.hal.science/tel-04128256v1

Submitted on 14 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Optimization of Recursive Plan Enumeration
with an Application to Property Graph Queries

Amela Fejza

To cite this version:
Amela Fejza. On the Optimization of Recursive Plan Enumeration with an Application to Property
Graph Queries. Web. Université Grenoble Alpes [2020-..], 2023. English. �NNT : 2023GRALM003�.
�tel-04128256�

https://theses.hal.science/tel-04128256v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Sur l'optimisation de l'énumération de plans récursifs avec une
application aux requêtes de graphes de propriétés

On the Optimization of Recursive Plan Enumeration with an
Application to Property Graph Queries

Présentée par :

AMELA FEJZA
Direction de thèse :

Pierre GENEVES
Directeur de recherche, Université Grenoble Alpes

Directeur de thèse

Rapporteurs :
MOHAND-SAÏD HACID
Professeur des Universités, UNIVERSITE LYON 1 - CLAUDE BERNARD
LADJEL BELLATRECHE
Professeur, ECOLE SUP DE MECANIQUE ET AEROTECHNIQUE

Thèse soutenue publiquement le 11 janvier 2023, devant le jury composé de :
PIERRE GENEVES
Directeur de recherche, CNRS DELEGATION ALPES

Directeur de thèse

MOHAND-SAÏD HACID
Professeur des Universités, UNIVERSITE LYON 1 - CLAUDE
BERNARD

Rapporteur

LADJEL BELLATRECHE
Professeur, ECOLE SUP DE MECANIQUE ET AEROTECHNIQUE

Rapporteur

SOPHIE DUPUY-CHESSA
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Présidente

STEFANIA GABRIELA DUMBRAVA
Maître de conférences, ENSIIE

Examinatrice

Abstract

Graph data structures containing massive interrelated data are omnipresent
nowadays. Recursive queries constitute a powerful means to extract valuable in-
formation from graphs. For example, by enabling navigation along edge sequences
of arbitrary length, regular path queries make it possible to analyze relations
between distant graph entities. However, recursion often makes query answering
very expensive, sometimes even hardly feasible in practice. Methods for recursive
query optimization are crucial. The difficulty of the query optimization problem
in the presence of recursion is notoriously known.

This thesis describes the theoretical and practical foundations of the recursive
logical query directed acyclic graph (RLQDAG) for efficiently enumerating recur-
sive query plans in transformation-based query optimizers; and an application for
extracting information from property graphs. The RLQDAG extends earlier tech-
niques developed for recursion-free queries and recent developments in recursive
relational algebra, for the purpose of optimizing the plan enumeration phase in
transformation-based query optimizers. This phase is crucial as it may produce
plans which are drastically more efficient, with a direct impact on the feasibility
and efficiency of recursive query answering in practice.

This dissertation starts with a thorough litterature review on query languages
for graphs, methods for query optimization, and their limits in the presence of
recursion. Then, in a contribution part, the RLQDAG is introduced by formalizing
and extending important concepts such as subterm-sharing in order to capture
and enable grouped transformations of recursive query plans. A subsequent
Chapter studies the application of the RLQDAG for recursive query answering
with property graphs. A prototype implementation of the RLQDAG is shown to
provide significant performance gains compared to the state-of-the-art.

3

Résumé

Les graphes contenant des masses d’information interreliées sont des structures
de données omniprésentes de nos jours. Les requêtes récursives constituent un
moyen puissant pour extraire des informations potentiellement précieuses de ces
graphes. Par exemple, en permettant la navigation le long de séquences d’arêtes
de longueur arbitraire, les requêtes de chemins réguliers permettent d’analyser
les relations entre des entités distantes du graphe. Cependant, la récursivité
rend souvent la réponse aux requêtes très coûteuse, parfois même difficilement
réalisable en pratique. Les méthodes d’optimisation des requêtes récursives sont
cruciales. La difficulté du problème de l’optimisation des requêtes en présence de
récursion est notoirement connue.

Cette thèse décrit les fondements théoriques et pratiques du graphe acyclique
dirigé logique récursif de requêtes (RLQDAG) pour énumérer efficacement les plans
de requêtes récursives dans les optimiseurs basés sur le principe de transformation ;
ainsi qu’une application pour extraire de l’information de graphes de propriétés. Le
RLQDAG étend les techniques précédemment développées pour les requêtes non
récursives ainsi que les derniers développements en algèbre relationnelle récursive,
dans le but d’optimiser la phase d’énumération de plans dans les optimiseurs de
requêtes. Cette phase est cruciale car elle peut produire des plans d’évaluation
qui sont drastiquement plus efficaces, avec un impact direct sur la faisabilité et
l’efficacité de l’évaluation de requêtes récursives en pratique.

Cette thèse commence par une étude approfondie de la littérature sur les
langages de requêtes pour les graphes, les méthodes d’optimisation de requêtes et
leurs limites en présence de récursion. Ensuite, dans une partie de contribution,
le RLQDAG est introduit en formalisant et en étendant des concepts importants
tels que le partage de sous-termes afin de capturer et de permettre des trans-
formations groupées de sous-plans de requêtes récursives. Un chapitre suivant
étudie l’application du RLQDAG pour l’évaluation de requêtes récursives avec
des graphes de propriétés. Un prototype d’implémentation du RLQDAG permet
d’obtenir des gains de performance significatifs par rapport à l’état de l’art.

5

Remerciements

Je tiens à remercier mon encadrant de thèse Pierre Genevès pour l’encadrement et
la disponibilité tout au long de cette thèse. Je lui suis profondément reconnaissante
pour m’avoir poussé au mieux de mes capacités, pour avoir toujours cru en moi,
et pour m’avoir montré que la recherche peut aussi être cool. Je tiens également à
remercier Nabil Layaïda pour son encouragement et son aide pendant cette thèse.

Je tiens ensuite à remercier tous les membres du jury: Mohand-Saïd Hacid
et Ladjel Bellatreche, pour avoir accepté de rapporter mon manuscrit de thèse;
Sophie Dupuy-Chessa et Stefania Dumbrava pour avoir accepté d’examiner mon
manuscrit de thèse. Je suis honorée de votre participation.

Un grand merci à ceux avec qui j’ai partagé cette aventure de thèse: Sarah,
pour sa positivité et l’intelligence; Muideen, pour sa modestie; Luisa, la grande
sportive de notre équipe. Je voudrais aussi remercier Ugo, mon collègue de bureau
pour avoir toujours été gentil, même quand le bureau est trop chaud pour une
personne normale. Un grand merci à Laurent, pour toutes les conversations sur
le foot; Nils et tous les stagiaires de l’équipe Tyrex de l’année dernière. Merci a
tous les membres de l’équipe Tyrex pour l’ambiance et l’atmosphère de travail
très agréable.

Je voudrais remercier Orestia, mon amie depuis collège que j’ai si rarement
rencontrée ces dernières années, mais qui est toujours proche de mon cœur; Lina,
pour l’amitié sans faille et pour être un exemple à suivre pour moi; Doni et Anto,
mes compagnons de voyage qui étaient toujours intéressés par mon doctorat;
Xheni, qui est devenu une amie très proche ces dernières années en France; tous
mes amis albanais en France et tous mes amis et collègues que j’ai rencontrés
pendant mes études de master et mon doctorat ici en France.

Finalement, je voudrais remercier mes parents et mes deux sœurs, Sarah et
Aymes pour leur amour inconditionnel et leur soutien pas seulement tout au long
de cette thèse, mais tout au long de ma vie. Je suis vraiment reconnaissante à
mes parents de rendre possible pour moi de faire toujours les bons choix dans la
vie. Je remercie tout particulièrement mes sœurs pour s’être occupées de moi ces
deux dernières années, je sais que ce n’est pas facile de vivre avec une personne
qui fait un doctorat.

7

Introduction

Recursive queries enable powerful information extraction, especially from linked
data structures such as trees and graphs.

Graphs data structures containing huge amounts of information are ubiquitous
nowadays, from social networks to bioinformatics, e-commerce, research on ex-
plainable artificial intelligence, etc. Graph datasets found in practice often contain
valuable information to be extracted from interrelated data. Such information
might be found by following not only direct links but indirect ones as well. i.e.
by exploring sequences of links. This is where recursion comes in handy. Using
recursive queries such as regular path queries, one can navigate in depth in the
graph to extract valuable information between distant nodes. However, powerful
recursive queries often come with a price: they are most often difficult to evaluate
and are very prone to lead to inefficient information extraction. Depending on
graph instances, the evaluation of recursive queries can be very costly or even
infeasible in practice.

Most data management systems are designed to support primar-
ily non-recursive queries, as also noticed in [Wang et al., 2022]. Many
query optimizers are based on the transformation-based Volcano framework
[Graefe and McKenna, 1993] which was designed specifically for optimizing non-
recursive query plans. A typical transformation-based query optimizer operates
by (i) translating a query into a relational algebraic term, (ii) applying algebraic
transformations in order to search for equivalent yet more efficient evaluation
plans, during a so-called plan enumeration phase, (iii) executing the query by
running one of the explored plans.

Works on extending relational algebra (RA) with recursion
[Abiteboul et al., 1995, Bancilhon and Ramakrishnan, 1986] resulted in pow-
erful recursive relational algebras [Aho and Ullman, 1979, Agrawal, 1988,
Jachiet et al., 2020], capable of capturing queries with transitive clo-
sures [Agrawal, 1988] and even more general forms of recursion
[Aho and Ullman, 1979, Jachiet et al., 2020]. This line of works recently
led to µ-RA [Jachiet et al., 2020] which provides a rich set of rewrite rules for
recursive terms enabling efficient recursive evaluation plans not available with
earlier approaches.

The enumeration phase is crucial as it may produce terms which are drastically
more efficient. It has been heavily researched for recursion-free queries. It is
common practice to allocate a time budget for this enumeration phase, as it is
notoriously known that exhaustive plan space explorations may not be feasible in

9

10

practice for certain queries. The faster we generate the space of equivalent plans,
the more likely we will be able to find terms with more efficient evaluation.

With recursion, plan spaces are often significantly larger than in the non-
recursive setting, due to new interplays between recursive and non-recursive
operators. The efficiency of recursive plan enumeration becomes critical. The
speed of plan enumeration directly determines whether query evaluation plans
enabled by, e.g. µ-RA [Jachiet et al., 2020], are within range or theoretically
reachable, but still out of reach for a practical query optimizer. This motivates
the search for efficient methods for enumerating recursive plans.

Thesis Contributions. The main contribution of this thesis is the re-
cursive logical query dag (RLQDAG), which extends Volcano’s LQDAG
[Graefe and McKenna, 1993] and the µ-RA framework [Jachiet et al., 2020] for
the purpose of efficiently enumerating recursive query plans. Contributions in-
clude the first extension of the LQDAG with the support of recursive terms; a
formalization of important RLQDAG concepts in terms of formal syntax and
semantics, with a particular focus on the sharing of common subterms in the
presence of recursion; RLQDAG transformations that generalize rewrite rules
for individual recursive terms of [Jachiet et al., 2020] for enabling efficient and
grouped transformations of sets of recursive terms. The RLQDAG relies on a
concept of annotated equivalence nodes with incremental updates, used for guiding
transformations of recursive subterms. Contributions also include a complete
prototype implementation of the proposed approach; the syntax of a high-level
query language fragment (UCRPQPG) specifically designed for property graphs;
its automated translation for generating an RLQDAG from a given query; and a
complete experimental assessment of the whole approach using third-party regular
path queries on synthetic and real datasets.

Thesis Outline. This dissertation is structured in two main parts: state-of-
the-art and contribution.

The first part focuses on the state-of-the-art about graph data models and
query optimizers. First, we present the most important graph data models and
the most popular and richest query languages. Then, we investigate the different
approaches used in query optimizers and review the attempts of extending them
with recursion.

The second part focuses on the contribution. The RLQDAG is presented as
an extension of the LQDAG widely used in query optimizers, with the support
of recursion, and appropriate techniques to efficiently transform recursive terms.
We also propose an extended query language fragment (a variant of UCRPQs)
for property graphs that allows to support more expressive queries on these
graphs. We define a syntax and show how this fragment can be translated into the
RLQDAG. We report on practical experiments with a prototype implementation
of the RLQDAG in a query optimizer. Finally we conclude and comment on
several perspectives for further research opened by these works.

Contents

Introduction 9

Contents 11

I State of the art 15

1 Graph data models and query languages 17
1.1 Graph data models . 17

1.1.1 Knowledge graphs . 17
1.1.2 Property graphs . 19

1.2 Graph query languages . 20
1.2.1 Important design choices on query languages 20
1.2.2 The SPARQL standard for knowledge graphs 20
1.2.3 Query languages for property graphs 22
1.2.4 Query language comparisons 26
1.2.5 Recursive query language fragments of particular interest 26
1.2.6 Query shapes . 28

1.3 Complexity of the query evaluation problem 30

2 Foundations of query optimization 33
2.1 Introduction . 33
2.2 Relational algebra . 34

2.2.1 Relations . 34
2.2.2 Data model formalisation 34
2.2.3 Operations . 35
2.2.4 Rewrite rules . 36

2.3 Query optimization . 37
2.3.1 Plan space . 38
2.3.2 Properties of plan enumeration algorithms 38
2.3.3 Algorithmic Techniques for Plan Enumeration 39
2.3.4 Join Enumeration . 40
2.3.5 Computational complexity of plan enumeration 42
2.3.6 Union in transformation-based query optimizers 43

2.4 Implementations of transformation-based optimizers 46
2.4.1 Background on bottom-up approaches 46

11

12 CONTENTS

2.4.2 Background on top-down approaches 48
2.5 Zoom on the LQDAG approach 48
2.6 Recursion . 49

2.6.1 Approaches not based on relational algebra 49
2.6.2 Recursion in SQL . 51
2.6.3 Extensions of relational algebra with recursion 51
2.6.4 Rewrite rules concerning fixpoint 56
2.6.5 Application of µ-RA for recursive query optimization on

knowledge graphs . 57
2.7 Summary . 58
2.8 Challenges in extending the LQDAG to support Recursion 59

II Contribution 63
Summary of Contribution . 65

3 RLQDAG 67
3.1 Introduction . 67
3.2 Recursive structure in the RLQDAG: principles 68
3.3 Syntax of RLQDAG terms . 72
3.4 Semantics of RLQDAG terms . 74
3.5 Recursive terms and rule applicability 75

3.5.1 Preliminary definitions of auxiliary functions in RLQDAG 76
3.5.2 Annotated equivalence node 78

3.6 Generalized rewrite rules for transforming sets of recursive terms 80
3.7 The overall expansion algorithm 90
3.8 Correctness and completeness . 91
3.9 Implementation Techniques . 93
3.10 Example of unification steps in RLQDAG 95
3.11 Non-regular queries . 98

4 Application to property graph queries 101
4.1 Property graph representation in RA data model 101
4.2 A recursive query language fragment suited for property graphs . 103

4.2.1 Idea . 103
4.2.2 Syntax of UCRPQPG . 103
4.2.3 Translation into RLQDAG 105
4.2.4 Example of RLQDAG generated from UCRPQPG 107

4.3 Experimental setup for the RLQDAG 110
4.3.1 Datasets . 110
4.3.2 Queries . 110
4.3.3 Hardware setup . 111

4.4 Experimental Results . 111
4.4.1 Results for enumeration phase 112
4.4.2 Results for query evaluation phase 116

4.5 Conclusion . 118

CONTENTS 13

5 Conclusion and Perspectives 119
5.1 Conclusion . 120
5.2 Perspectives . 120

5.2.1 Normal form for RLQDAG terms 120
5.2.2 Cost estimations . 121
5.2.3 Directed plan enumeration 121
5.2.4 More expressive query language fragments 121
5.2.5 Benchmark on experiments 121
5.2.6 Leverage RLQDAG formalisation for theorem proving . . 121
5.2.7 Characterization of Complexity of Expansion Algorithm . 122

Appendix Queries 123

Bibliography 125

Part I

State of the art

15

Chapter 1

Graph data models and
query languages

1.1 Graph data models

Nowadays, two main graph data models can be found in practice: the Resource
Description Framework (RDF) and the property graph model (PG). There exist
several query languages to manipulate the data formulated in each data model.
In this section we first review the main differences between the two popular graph
data models and then we discuss the corresponding query languages.

1.1.1 Knowledge graphs

Resource Description Framework (RDF) [Cyganiak et al., 2014] is a standard
defined by the World Wide Web Consortium (W3C) that represents interconnected
data. The RDF data model allows one to describe a network of entities and the
relationships between them by expressing statements about resources. The most
basic statement is expressed as a RDF triple: (subject, predicate, object). Such a
triple expresses the fact that the two resources subject and object are connected
by the relation predicate. This relation is represented as a labelled directed edge,
as illustrated in Figure 1.1. RDF defines the concept of knowledge graph as a set
of such triples.

Figure 1.1: RDF example

The subject designates a resource and can be expressed as an IRI (Interna-
tionalized Resource Identifier) or as a blank node. An IRI is a string of characters
that identifies a ressource. In addition to URI (Uniform Resource Identifier)
scheme which allowed just ASCII characters, IRI scheme extends to any unicode
character. An IRI has the form scheme:path and an example can be the follow-
ing: "https://www.univ-grenoble-alpes.fr". It looks like an url, but it does not

17

18 CHAPTER 1. GRAPH DATA MODELS AND QUERY LANGUAGES

necessarily need to be an internet accessible address. In RDF technology, data is
accessed by using ontologies, which can be described as sets of rules encoded in
RDF that model the relationships between objects. To author ontologies there
exists the family of knowledge representation languages known as Web Ontology
Language (OWL).

More formally, a knowledge graph can be defined as a pair (V,E), where V is
a finite set of vertices and E is a finite set of labelled edges. Each edge e ∈ E is
labelled with a label taken from a finite set Labelled of labels. In other terms,
E ⊂ V × Labelled× V .
An example of a knowledge graph is shown in Figure 1.2:

Ryan Tim

Jane

Forum of
SingersForum of

Actors

Avengers

follows

follows

member_of

has_interest

ha
s_

ta
g

mem
be

r_o
f

Figure 1.2: Knowledge graph example

A representation in a table for the graph example is illustrated in Figure 1.3.

src label trg

Jean livesIn Paris

France isLocatedIn Europe

Jim worksAt Inria

Jim knows Jean

...

Figure 1.3: A possible knowledge graph representation using tables.

An well-known knwoledge graph in practice that we will use later for exper-
iments is Yago [YAGO, 2019], which includes general knowledge about people,
movies, cities, countries, and organizations.

1.1. GRAPH DATA MODELS 19

1.1.2 Property graphs

Property graphs constitute another type of graph data model where the
relationships are also labelled, but can carry more information than in knowledge
graphs. In property graphs both nodes and edges are labelled and each of them
can be annotated with a list of key-value pairs. More formally, a property graph
is represented as follows (V,E, β, η, γ):

• V is a finite set of vertices.

• E is a finite set of edges.

• β : E → (V × V) is a function that assigns to each edge the pair of vertices
that constitute the source and target vertices.

• η : V ∪E → Labelled is a function that assigns to each vertex and edge an
element in the finite set Labelled.

• γ : (V ∪ E)×K → L is a partial function that assigns a value to a given
key of a vertex or an edge, where K is a set of property keys and L is a set
of values.

An example of a property graph is illustrated in Figure 1.4. Each node and
edge contains specific properties.

u1: User u2: User u3: User

u4: Userf: Forumt: Tag

name: Bob
lastname: Dylan
age: 35

name: John
lastname: Doe
age: 26

name: Eve
lastname: Lauren
age: 24

title: Pandemic

follows follows

follows

since: 2018

since: 2016since: 2013

member_of

since: 2017
has_interest

member_of

since: 2020

has_tag

name: Alice
lastname: Hawke
age: 30

subject: Vaccination
createdOn: 2015

since: 2020

since: 2019

Figure 1.4: Property graph example.

Considering the property graph above a possible representation using tables
can be the example shown in Figure 1.5.

20 CHAPTER 1. GRAPH DATA MODELS AND QUERY LANGUAGES

src trg since ...

101 202 2015

102 203 2019

103 201 2017

...

vid name lastname age ...

101 Bob Dylan 35

102 Alice Hawke 30

103 John Doe 26

...

vid subject createdOn ...

201 Vaccination 2019

202 Sports 2018

203 Fashion 2020

...

User

member_of

Forum

src trg since ...

101 302 2020

102 301 2017

103 303 2016

...

vid title ...

301 Football

302 Pandemic

303 Astronomy

...

Tag

has_interest
src trg since ...

201 303 2019

202 302 2018

203 301 2020

...

has_tag
src trg since ...

101 103 2015

101 102 2016

102 103 2015

...

follows

Figure 1.5: A possible property graph representation using tables.

1.2 Graph query languages

We first introduce some preliminary notions before we present graph query
languages.

1.2.1 Important design choices on query languages

Set semantics returns an answer with the set of bindings that are solutions;
Bag semantics returns the same answers but allowing multiplicity.

No-repeated-node semantics - The same node cannot occur more than once in
the result set of a graph navigation query [Sharma et al., 2021].

No-repeated-edge semantics - Only paths that have distinct edges are allowed.
In cases where cycles exist in a graph database, infinite paths are not returned in
the evaluation of a graph navigation query [Angles et al., 2017].

As shown in [Sharma et al., 2021], there are two types of evaluation semantics
for graph pattern matching:

• homomorphism based semantics - all possible sub-graphs that answer the
query are returned in the result set. Multiple node and/or edge variables in
a graph pattern can match to same node and/or edge in the graph database.

• isomorphism based semantics - in this case there are restrictions on the
result set based on conditions that either a node variable match to a single
node (no-repeated-node semantics) or an edge variable only match to a
single edge (no-repeated-edge semantics) or both node and/or edge variable
match a single node and/or edge in a graph database (no-repeated-anything
semantics) [Angles et al., 2017].

1.2.2 The SPARQL standard for knowledge graphs

SPARQL [Seaborne et al., 2008] is the query language for RDF graphs standard-
ized by the W3C (World Wide Web Consortium).

1.2. GRAPH QUERY LANGUAGES 21

SPARQL is a declarative query language. For example, the following SPARQL
query is written against the RDF graph example shown in Figure 1.2:

SELECT ?user, ?forum
WHERE {

?user : follows Jane .

?user : member_of ?forum
}

Figure 1.6: Simple SPARQL query example.

This query returns the set of pairs consisting in a user and a forum such that
the user is a direct follower of Jane and is a member of the given forum.

A typical SPARQL query consists in a SELECT block and a WHERE block.
In the SELECT block the variables to be extracted are declared. These variables
represent the query results. Variables are written with a “?” as a prefix.

The goal of the WHERE block is to define a set of conditions that relate the
variables to be extracted by the SELECT block. For this purpose, the WHERE
block consists in a set of conjuncts regrouped in a so-called basic graph pattern
(BGP). Each conjunct is a triple pattern. A triple pattern is essentially an
RDF triple where the subject or object can be a variable (whose value is to be
extracted).

For example, the triple patterns expressed in the query above are:

?user: follows Jane

and

?user: member_of ?forum.

Based on the SELECT and WHERE blocks, the above query asks for users that
follow Jane directly and are members of a forum. When evaluated on the graph
instance shown in Figure 1.2 the result is the pair (Tim, Forum of Singers).

In version 1.1 of the SPARQL standard, triple patterns are extended to
support property paths. A property path adds the possibility of using regular
expressions to match paths of arbitrary lengths. A simple example is shown in
the following query:

That query uses the transitive closure follows+ in order to match sequences
of arbitrary length of edges labeled with follows. This allows, for example, query
of Figure 1.7 to retrieve direct or indirect followers of Jane (not only direct).
More generally, SPARQL property paths also allow constructs such as UNION,
FILTER and OPTIONAL.

For example, the evaluation of the query of Figure 1.7 on the graph of
Figure 1.2 returns the following results (that are all the possible bindings of

22 CHAPTER 1. GRAPH DATA MODELS AND QUERY LANGUAGES

SELECT ?user, ?forum
WHERE {

?user : follows+ Jane .

?user : member_of ?forum
}

Figure 1.7: SPARQL query example with property path.

?user and ?forum):

(Tim, Forum of Singers)
(Ryan, Forum of Actors).

We see more result tuples are being returned because not only direct followers
of Jane are considered, but the indirect ones as well. The graph considered is a
really small example, but on a much bigger graph this is much more visible.

1.2.3 Query languages for property graphs

Unlike for RDF graphs there is no standard query language for property graphs
(neither standardized by some standardization organization nor de facto standard
used in practice). In this section, we review the most advanced query languages
for property graphs.

Gremlin Gremlin [Gremlin, 2022] is a query language developed in the graph
computing framework Apache TinkerPop [TinkerPop, 2022]. Gremlin is a func-
tional graph traversal language which is Turing complete. The traversal in the
graph is made of steps that can transform the objects, filter or remove them or
compute statistics on them. Gremlin traversals can be written in programming
languages that support function composition and nesting. Traversals can be
written in an imperative manner, a declarative manner, or in a hybrid manner
that considers them both. The following Gremlin example illustrates this:

G.V().hasLabel(‘User’).has(‘age’, ‘30’)

.out(‘member_of’).hasLabel(‘Forum’)

Figure 1.8: Query example using Gremlin.

In addition to this possible way of expressing graph traversals, Gremlin also
offers pattern matching features similar to the ones found in SPARQL. Like
SPARQL, it has homomorphism-based bag semantics. Nowadays there exist some
variants such as: Gremlin-Java, Gremlin-Python, Gremlin-Scala, Gremlin-Groovy
etc.

1.2. GRAPH QUERY LANGUAGES 23

The query example of Figure 1.8 is written against the property graph shown
in Figure 1.4. The evaluation of the query returns all Users of age 30 years old that
are members of a Forum. The first part G.V().hasLabel(‘User’).has(‘age’,
‘30’) retrieves all nodes with label User and aged 30 years old. The out com-
mand retrieves all nodes that are reached by the edge labelled ‘member_of’ and
hasLabel(‘Forum’) gets all nodes labelled with Forum.
Going a little further on what Gremlin is able to express we give an example that
contains the match command.

G.V().match(

__.hasLabel(‘User’).has(‘age’, ‘30’)

.repeat(in(‘follows’).hasLabel(‘User’)).emit().as(‘x’),

__.as(‘x’).out(‘member_of’).hasLabel(‘Forum’).as(‘y’)

)

Figure 1.9: Query example using Gremlin.

The example shown in Figure 1.9 uses match command to join the two
traversals in the graph and to return the values for x and y variables. repeat
command is used to repeat the operation the amount of times it is needed, with
no fixed number of iterations. as command declares a variable and ‘__’ operator
considers that the following operation is applied on the parent traversal one level
before.

Cypher Cypher is a declarative graph query language [Francis et al., 2018a].
At first it was developed in Neo4j [Neo4j, 2007], and it has been used in several
other products like: SAP HANA Graph, Redis Graph etc. It is widely used in
the industry. One reason for its success is that it provides a formal semantics
in [Francis et al., 2018b].

In Cypher, a query consists in a sequence of MATCH clauses followed by a
RETURN clause. The RETURN clause specifies the values to be extracted. This
is accomplished through the use of variables that can match either nodes or edges,
and the properties associated with those variables.

Each MATCH clause contains a graph pattern which expresses constraints
that must be satisfied by variables.

Variables provide a handy way of naming a node or edge so that it can be
referred multiple times in the same query. For example, in the query written in
Figure 1.10 the occurrence of the variable "u" in the second MATCH clause refers
directly to the variable definition "u" of the first MATCH clause.

Cypher uses a semantics based on no-repeated-edge isomorphism. Once this
variable is denoted with all specifications, no adjustments (no further variable
affectation) can be made later. As seen in the given query, we can write follows*,
where * is the Kleene star. In Cypher, we can specify the length of the path.
Instead of the Kleene star we can specify as well a number such as: 2, 3, 4 etc...

24 CHAPTER 1. GRAPH DATA MODELS AND QUERY LANGUAGES

MATCH (u:User) -[follows*]-> (x:User {age:"30"})

MATCH (u) -[member_of {since:"2020"}]-> (f:Forum {createdOn:"2015"})

RETURN u.name, f.subject

Figure 1.10: Query example using Cypher.

This query returns the name of users that follow directly or indirectly a user
aged 30 and the subject of a forum these users are members of.

PGQL PGQL [van Rest et al., 2016] is a query language for property graphs
based on SQL and it is developed by Oracle. It provides a form of pattern
matching similar to the one of Cypher. A PGQL query is composed of three main
clauses: SELECT, FROM and WHERE. It can also contain optional clauses like ORDER
BY, GROUP BY and LIMIT. The result set of a PGQL query is a set of variables
and their bindings.

PGQL provides a notation for expressing paths between nodes using regular
expressions over sequences of edges. In PGQL we do not only find reachability
queries, but also path finding queries. Reachability queries check if a path between
pairs exists or not, while path finding queries add the possibility of computing
and doing comparisons along the way. In other terms, PQGL allows for encoding
graph reachability (transitive closure) queries as well as shortest and cheapest
path finding queries.

A PGQL query example is shown in Figure 1.11. In this query, the FROM clause
accesses the graph information provided under the name social-network-graph
which refers to the graph shown in Figure 1.4.

SELECT u.name

FROM social-network-graph

WHERE (u:User) -[follows*]-> (x:User),

x.age="30"

Figure 1.11: PGQL Query example.

This query returns the names of users that follow directly or indirectly a user
aged 30.

G-Core G-Core [Angles et al., 2018] is a graph language designed by LDBC
Graph Query Language Task Force whose members come from industry and
academia. The intent is to gather the best of both worlds in order to guide the
evolution of graph query languages, and to make them more expressive and useful.
As of 2022, G-Core is a proposition of a language which is not yet implemented
by a system in practice. Two important aspects characterize G-Core and makes

1.2. GRAPH QUERY LANGUAGES 25

its originality: (i) Composability - the input and output is a graph; (ii) Paths as
first-class-citizens.

A query in G-Core starts with a CONSTRUCT clause that denotes the result
graph to be returned. For example, the query shown in Figure 1.12 is written
against the graph social-network-graph shown in Figure 1.4. It returns a graph
consistsing of nodes (with no edges). The nodes returned are those of Users aged
30 years old along with the properties these nodes have in social-network-graph.
The MATCH..ON..WHERE clause matches graph patterns on a named graph.

CONSTRUCT (u)

MATCH (u:User)

WHERE social-network-graph

WHERE u.age=’30’

Figure 1.12: Query example using G-Core.

The other example of Figure 1.13 shows the particularity of G-Core, the
treatment of paths as first-class citizens.

CONSTRUCT (u) -@p:followers{distance:=c} /->(m)

MATCH (u)-/3 SHORTEST p<:follows*> COST c/-> (m)

WHERE u:USER AND m:USER

AND u.name=‘Bob’AND u.lastname=‘Dylan’

AND (u)-[:member_of]->()<-[:member_of]-(m)

Figure 1.13: Query example with path storage.

In the query illustrated in Figure 1.13, the clause ON is omitted because we are
considering the default graph social-network-graph and this simplifies as we
want to focus on paths for this example. Paths are written using this notation ‘-/
/-’. The shortest path is bound by the notation p<:follows*> between User ‘u’
(for example: User named Bob Dylan) and all Users m, under the restriction that
both Users are members of the same Forum. In this case only 3 of the shortest
paths are returned since this is what is specified in the query. The shortest path
cost is bound to variable c by the following expression: p<:follows*> COST c/->.
The cost of the path is its length or hop-count, but it can be defined differently if
needed. If the length is not a priority in the result, then COST c could be left out.
@p is a bound path variable of CONSTRUCT (u) -@p:followers{distance:=c}
/->(m) that specifies a stored path. Each one of the paths is saved with the
label :followers and with the cost as property (distance in this example). This
query returns a graph that inculdes all nodes and edges involved in these stored
paths.

26 CHAPTER 1. GRAPH DATA MODELS AND QUERY LANGUAGES

1.2.4 Query language comparisons

We have described the main graph query languages, where they come from, their
originalities and their main particularities. From a fundamental perspective,
there are basically two interesting dimensions on which they can be compared:
semantics and expressivity. Each query language design relies on choices on those
two dimensions. We summarize the main differences between the languages due
to the choices made in each proposal:

Semantics.

• Cypher is considered as more restrictive because it has a no-repeated-edge
based semantics, while PGQL considers a homomorphism based semantics
[Sharma et al., 2021, Angles et al., 2017]. In other words, in the result set
of a query written in PGQL are found all valid matches even in cases where
a variable is used for several mappings of different nodes or edges. SPARQL
is built around a homomorphism based semantincs as well.

• An important choice in terms of semantics is the choice made for the return
type of the queries. While the majority of languages return sets or sequences
of tuples, G-core can return nodes and edges as well, thus a full graph. This
is an interesting particularity as it can be unioned with the original graph
taken as input.

Expressivity. When considering expressivity of graph navigation queries, PGQL
is considered as more expressive than Cypher because it can consider the Kleene
star on path expressions [Angles et al., 2017]. This is made possible by the
presence of the PATH clause in PGQL. The current version of Cypher (version 9)
considers the Kleene star only over edge labels. This limitation is expected to be
removed in the next Cypher version (10), not released yet. On the other hand, for
graph pattern matching queries, Cypher is considered as more expressive because
of the presence of the UNION clause.

1.2.5 Recursive query language fragments of particular interest

Several query language fragments for expressing path traversals in graphs have
been studied and characterized in the litterature. Their study contributes to the
development of the aforementioned fully-fledged practical query languages. We
review the main recursive query language fragments and summarize the main
results known on them.

Regular Path Queries (over knowledge graphs). A class of queries which
has been well-studied over knowledge graphs is the class of Regular Path Queries
(RPQs). RPQs express paths between nodes using a set of regular expres-
sion operators. They are one of the most well-studied fragments for querying
graphs [Consens and Mendelzon, 1990, Libkin et al., 2016, Barceló et al., 2012,
Barceló et al., 2013, Bonifati et al., 2018].

1.2. GRAPH QUERY LANGUAGES 27

An RPQ is a query of the form r(x, y) where x and y are variables that denote
graph nodes, and r is the relation that connects them. In a RPQ, r is a regular
expression over edge labels, whose syntax is defined as follows:

r ::=
v a single edge label

| r1/r2 concatenation
| r1|r2 alternative
| r−1 reverse
| r+ transitive closure

Notice that this definition of RPQs contains the reverse operator. In the
litterature sometimes this fragment is also denoted as 2RPQ to insist on that
aspect.

The result of the evaluation of an RPQ r(x, y) is the set of all pairs of vertices
x and y that are connected by a sequence of edges that matches the path expressed
by r.

For example, the path a+/b in the RPQ ?x a+/b ?y describes all the sequences
of edges between ?x and ?y that start with one or more successive a edges followed
by exactly one b edge.

CRPQ. Conjunctive regular path queries (CRPQs) are basically extensions of
RPQs with conjunction. Specifically, a CRPQ is composed of a head and a body.
The head is a non-empty set of vertex variables that are to be extracted, whereas
the body is a conjunction of RPQs. An example of a CRPQ is the following:

?y, ?z ← ?x : User follows+ ?y : User,

?y : User has_interest ?z : Forum

This CRPQ can be evaluated on the graph of Figure 1.4. It retrieves all users
followed directly or indirectly by a certain user (i.e. x in this case), who are
members of a Forum.

UCRPQ. Unions of conjunctions of regular path queries (UCRPQs) further
extend CRPQs with unions at top level. Specifically, an UCRPQ can be written
as H ← C1 ∪ ... ∪ Cn where H is the head that represents the set of variables
being extracted and Ci is a CRPQ.

Expressivity of UCRPQs. Notice that the only form of recursion found in
RPQs is transitive closure. An important consequence for RPQs (as well as for
their CRPQs and UCRPQs extensions) is that they cannot express other forms of
recursion like non-regular paths (eg. anbn) or the more general ones that compute
shortest paths, for example.

28 CHAPTER 1. GRAPH DATA MODELS AND QUERY LANGUAGES

1.2.6 Query shapes

Besides language expressivity considerations, studies have identified another
important factor that has an impact on the complexity of the graph query
evaluation problem. This factor is the “query shape” which refers to the shape of
the dependances between the variables in a query.

Specifically, for a given query, the notion of variable dependency graph focuses
only on the variables that occur in the query, and how these occurrences are
connected together using paths (abstracting away from the detail of each path).

Studies in the litterature have identified four shapes that have a direct impact
on the computational complexity of the query evaluation problem. We review
below each one of these shapes, along with examples.

Person

knows

Country

University

ha
sD

is
tin
gu

is
he

dS
ta
ff

w
orksAt

livesIn

isF
ou
nd
In

Figure 1.14: Graph example.

1.2.6.1 Linear (chain) queries

Linear queries are queries whose variable dependency graph is a simple path
between vertices (i.e. 1–2–3–...–n) where each two consecutive vertices have an
edge that connects them (all vertices are of degree 2) except the first and the last
one, as illustrated in Figure 1.15.

Figure 1.15: Shape of variable dependency graph of a linear query.

Below we give an example of a query written using UCRPQ and based in the
graph shown in Figure 1.14. In this example, the query retrieves the acquaintances
of a Person with people who work at a university.

?x, ?z ← ?x : Person knows ?y : Person,

?y : Person worksAt ?z : University

1.2.6.2 Cyclic queries

Cyclic queries can be seen as linear queries with the same starting and ending
node. More precisely, a cyclic query is defined as follows: each two consecutive

1.2. GRAPH QUERY LANGUAGES 29

vertices in its variable dependency graph are connected by an edge between them.
An example of such a shape is shown in Figure 1.16.

Figure 1.16: Shape of variable dependency graph of a cyclic query.

Below we show an example written in UCRPQ based on the graph illustrated
in Figure 1.14. We show the dependences of variables x and y and how they are
interrelated. The first conjunct describes a relation between x and y, stating
that a person works at a university. The second conjunct describes a reciprocal
relation between the same variables, asking whether the person is part of the
distinguished staff of that university.

?x, ?y ← ?x : Person worksAt ?y : University,

?y : University hasDistinguishedStaff ?x : Person

1.2.6.3 Star queries

A star query is defined as a query whose variable dependency graph contains a
central vertex that is connected to each one of the vertices. An example of this
query shape is shown in Figure 1.17.

Figure 1.17: Shape of variable dependency graph of a star query.

An example of a query of this shape is written below using UCRPQ and
based on the graph shown in Figure 1.14. The central vertex is a person which is
connected with each other vertex. These other vertices in this case are a person,
an university and a country.

?x, ?y, ?z, ?w ← ?x : Person knows ?y : Person,

?x : Person worksAt ?z : University,

?x : Person livesIn ?w : Country

30 CHAPTER 1. GRAPH DATA MODELS AND QUERY LANGUAGES

The first conjunct describes a relation between two persons, x and y. The
second conjunct describes a reciprocal relation between person x and the university
he works at, while the third conjunct describes a reciprocal relation between
person x and the country he lives in.

1.2.6.4 Clique queries

A clique query is when each two vertices are adjacent in the variable dependency
graph. In other words, each two vertices are connected between them by an edge.
An example of this query shape is shown in Figure 1.18.

Figure 1.18: Shape of variable dependency graph of a clique query.

An example of a clique query is written below using UCRPQ notation and
based on the graph shown in Figure 1.14. Each two variables have a relation
between them, making this a clique query and one of the most complicated queries
to evaluate.

?x, ?y, ?z, ?w ← ?x : Person knows ?y : Person,

?x : Person worksAt ?z : University,

?x : Person livesIn ?w : Country,

?y : Person worksAt ?z : University,

?y : Person livesIn ?w : Country,

?z : University isFoundIn ?w : Country

All these conjucts show relations between different variables that represent
persons, universities and countries.

1.3 Complexity of the query evaluation problem

The query evaluation problem Given a graph database G of size n and a
query q of size m the query evaluation problem consists in computing the set of
all results of q in G.

In practice m ≪ n and this is the reason why there are three main perspectives
on the computational complexity of the query evaluation problem:

1.3. COMPLEXITY OF THE QUERY EVALUATION PROBLEM 31

• data complexity where the input is only the graph (the query is considered
fixed);

• query complexity where the input is only the query;

• combined complexity where both the graph and the query are considered as
inputs.

As mentioned earlier in Section 1.2.2 basic graph pattern (bgp) is considered
to be a set of triple patterns and complex graph patterns (cgp) are bgp aug-
mented with other (relational-like) features like: projection, union, optional, and
difference [Angles et al., 2017].

Query complexity has been studied for SPARQL fragments. As discussed
in [Angles et al., 2017], the combined complexity when using set semantics and
considering complex graph patterns with projection, join, union and filter is NP-
complete. It goes to PSPACE-complete When allowing difference and optional
operations, it has the same operators as relational algebra, hence the combined
complexity is considered to be PSPACE-complete [Vardi, 1982]. As mentioned
in [Angles et al., 2017], when considering bag-semantics it remains PSPACE-
complete. To the best of our knowledge, the complexity when considering graph
query patterns for other query languages for property graphs like the ones we
mentioned in Section 1.2.3 has not been studied yet and remains an open question.

The evaluation of RPQs (as defined in Section 1.2.5) is NP-hard in data com-
plexity [Casel and Schmid, 2021] (and therefore in combined complexity). The
evaluation of UCRPQs is NL-complete in data complexity and NP-complete
in query complexity (and thus combined complexity) [Reutter et al., 2017,
Casel and Schmid, 2021].

In practice, it is often useful to identify subclasses of queries that are simpler
to evaluate. One of the main results found in [Angles et al., 2017] indicates that,
intuitively, the more cyclical the shape of the variable dependency graph (see
Section 1.2.6) (i.e., the less it resembles a tree), the more difficult the query is to
evaluate.

Given that recursive query evaluation over graphs is a complex problem, it is
worth investigating query optimization methods. The goal of those methods is to
search for better evaluation strategies for a given query, at the expense of some
additional static analysis that can also be complex. This is especially relevant
since query optimization methods depend almost only on the query (with few
dependence on the graph instance, if any, and anyway m ≪ n). The next Chapter
reviews the main theories and methods developed for optimizing recursive graph
queries.

Chapter 2

Foundations of query
optimization

2.1 Introduction

In practice, graph instances can be very large with thousands or even millions of
nodes or edges. In such graphs, the evaluation of even relatively simple queries
can become very costly. The evaluation of recursive queries is yet much more
expensive and difficult. This is because recursive queries may need to process
intermediate subquery results whose size can be an order of magnitude bigger
than the size of the graph. For this reason, the evaluation of recursive queries
can quickly become prohibitively expensive, even on graphs of rather moderate
size (depending on their topology). Since recursion brings major benefits for
extracting information from graphs (as illustrated in Chapter 1), the optimization
of recursive graph queries has attracted a lot of attention lately.

In this Chapter, we review fundamental theories and state-of-the-art methods
for query optimization. We start by describing essential theories for optimizing
queries without recursion and then methods supporting recursive queries. One
of the most fundamental theory for query optimization is Relational Algebra.
We describe how it gave birth to different query optimization methods and their
specificities. We discuss in particular transformation-based optimization, and
the main properties of the different plan enumeration methods and algorithms.
We start from the very first attempts of query optimizers creation to the latest
propositions. There were a lot of approaches explored with various properties,
resulting in some of them being more relevant than others for recursive graph
queries. We report on computational complexity of state-of-the-art approaches
found in the litterature and we summarize the most relevant results in a graphi-
cal representation. We also discuss algebraic and non-algebraic approaches for
handling recursion in query optimizers.

33

34 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

2.2 Relational algebra

The relational model dates back to the ’70s, introduced by [Codd, 1970].
This refers to a data model where relations are considered as data struc-
tures [Abiteboul et al., 1995, Garcia-Molina et al., 2008], and where there exists
a relational algebra (RA) in order to specify queries.
The particularities of the relational model are the storage model and the presence
of a high-level query language. Data is stored in relational tables. Using relational
algebra, operators can be defined and complex queries can be written to transform
input relations to one output relation. As mentioned in [Abiteboul et al., 1995],
the simplicity that characterizes the relational model has turned it into one of
the fundamentals of databases because of two reasons: (i) many theoretical issues
that are relevant to other models can be described using this model and (ii)
several techniques help to understand other models in a profound way. There
exists a standard language that manages data in a RDBMS (Relational Database
Management System) called SQL.

2.2.1 Relations

In the relational model a database is a set of relations (tables). A relation is a
table composed of rows and columns. Each row contains information about a
given object and is called a tuple. Each column has a specific name which is
called an attribute (e.g. age). A schema of a relation is the relation name and its
set of attributes.
The following example presents the relation Actors. Its schema is Actors(name,
lastname, age, gender). For example, one tuple of relation Actors is: (Blake,
Lively, 34, F) which corresponds to a value for each column attribute.

name lastname age gender
Ryan Reynolds 45 M
Blake Lively 34 F
Sandra Bullock 57 F
Hilary Duff 34 F
Stephen Amell 41 M

In the native RA, each component of each tuple should be atomic and
of a given type, such as: integer, string etc. This is associated to each attribute
of the given relation [Garcia-Molina et al., 2008]. The schema including the type
of this description for the relation Actors is as follows: Actors(name:string,
lastname:string, age:integer, gender:string).

2.2.2 Data model formalisation

In accordance with the aforementioned explanations, the relation is defined as a
set of tuples. It is also classic to see tuples as functions, where for each attribute
name a value is returned. This function that takes an attribute name and returns

2.2. RELATIONAL ALGEBRA 35

a value is called a mapping. The relation in this case is defined as a set of
mappings. (see Definition 1 and Definition 2 below).

Definitions
We consider:

• B is a set of values

• C is a set of column names

• R is a set of relation names

Definition 1: A mapping or tuple is a partial function m: C → B whose
domain is finite. If dom(m) = c1, ..., cn, m can also be seen as the set
{c1 → m(c1), ..., cn → m(cn)}.

Definition 2: A relation is a finite set of mappings which share the same
domain D. The type of the relation is D. Throughout this thesis we will always
use this definition. In other terms, when we refer to the type of a relation, we
refer to the set of attribute names of that relation.

2.2.3 Operations

Operations in relational algebra are used to perform queries. They can manipulate
a given relation and create others. Operations can be either unary or binary.
The basic unary operators are:

• Selection σf (φ): when applied to a term φ, the selection σf (φ) returns the
tuples satisfying the filter condition f . Considering the relation Actors given
in the example above, f can be a boolean expression such as: age=34. The
result tuples in this case would be {(Blake, Lively, 34, F) , (Hilary,
Duff, 34, F)}.

• Projection πθ(φ): θ is a list of attributes that can be separated using
comma. πθ(φ) is applied to relation φ which must have θ as attributes. θ
are a subset of attributes found in relation φ. From the totality of attributes
of relation φ all are removed except those in θ. Considering the example
above, if we want to project only on names and lastnames of the relation
Actors we must write the following expression: πname, lastname(Actor).

• Renaming ρba(φ): corresponds to the relation φ for which the attribute a
has been renamed into b. The attributes of φ must contain the attribute a
but not b.

The basic binary operators are:

• Union φ1 ∪ φ2: simply corresponds to the union of the set of solutions of
φ1 with those of φ2. Union is only defined for terms that share the same
type (set of attributes).

36 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

• Natural join φ1 ▷◁ φ2: The natural join is a specific case of join which
combines two relations based on all their common attributes. It can be
seen as the cartesian product of the two relations, followed by a filter that
eliminates tuples in which common columns have different values.

• Antijoin ▷ The relation φ1 ▷ φ2 is the result calculated by removing all the
rows joined between φ1 and φ2 from the rows of φ1.

2.2.4 Rewrite rules

One major interest of relational algebra, is that once a term is written in relational
algebra, it can be rewritten into semantically equivalent terms. This rewriting
is useful to reorder operations and potentially find equivalent terms that can be
evaluated more efficiently.

Such a rewriting process is done using rewrite rules. For example, let’s consider
two relations Actor and Movie. Then, let’s join them and filter the age of Actors.
One possibility will be the following: σage=34(Actor ▷◁ Movie). This means that
the join between two tables is computed first and then the selection. In this
case, it would be more efficient to apply the selection first (hence the size of
the table is reduced) and then compute the join between them. The query is as
follows: (σage=34(Actor) ▷◁ Movie). Both these two queries are equivalent because
they compute the same set of solutions, but one is more efficient than the other.
Term rewriting by the application of the set of rewrite rules is considered an
optimization strategy. Below we show a list of rewrite rules. They are written
in the form t→ t′, where t is the first term and t′ is the term created after the
rewrite rule is applied.

We use an auxiliary function filt(f) that takes some filter f as input and
returns the set of columns used in f .

2.2.4.1 Rewrite rules for Join

φ ▷◁ (ψ ▷◁ χ)→ (φ ▷◁ ψ) ▷◁ χ [Left Associativity of Joins]

φ ▷◁ ψ → ψ ▷◁ φ [Commutativity of Joins]

φ ▷◁ (ψ ∪ γ)→ (φ ▷◁ ψ) ∪ (φ ▷◁ γ) [Distributivity of Join over Union]

As shown in [Pellenkoft et al., 1997] for a rule set where the commutativity
of joins is considered along with the left associativity, the right commutativity is
redundant because it can be deducted by the first two. This is why we do not
include the right associativity rule in this list.

2.3. QUERY OPTIMIZATION 37

2.2.4.2 Rewrite rules for Union

φ ∪ (ψ ∪ χ)→ (φ ∪ ψ) ∪ χ [Left Associativity of Unions]

φ ∪ ψ → ψ ∪ φ [Commutativity of Unions]

2.2.4.3 Rewrite rules for Selection

filt(f) ⊆ type(φ) ∧ filt(f) ⊈ type(ψ)

σf (φ ▷◁ ψ)→ σf (φ) ▷◁ ψ
[Push Selection in Join]

filt(f) ⊆ type(φ) ∧ filt(f) ⊆ type(ψ)
σf (φ ▷◁ ψ)→ σf (φ) ▷◁ σf (ψ)

[Push Selection in Join]

σf (φ ∪ ψ)→ σf (φ) ∪ σf (ψ) [Push Selection in Union]

σa(σb(φ))→ σb(σa(φ)) [Commutativity of Selections]

2.2.4.4 Rewrite rules for Projection

type(φ) ∩ type(ψ) ⊆ S
πS(φ ▷◁ ψ)→ πS∩type(φ)(φ) ▷◁ πS∩type(ψ)(ψ)

[Push Projection in Join]

type(φ) = type(ψ)

πS(φ ∪ ψ)→ πS(φ) ∪ πS(ψ)
[Push Projection in Union]

πS1(πS2(φ))→ πS2(πS1(φ)) [Commutativity of Projections]

As an important purely logical optimization strategy, notice that pushing
selections and projections always improve performance, since these two operations
reduce the size of intermediate results, so the earlier (closer to the source) the
better. For the other rewrite rules the situation changes. Some examples where
the performance improvement is unclear and is dependant on the sizes of relations
of each example might be the case of changing the order of join operations, or the
distributivity of joins over unions. For this reason, query optimizers also need to
rely on other metrics to assess whether the rewriting is actually an optimisation,
based on e.g. data cardinality estimations.

2.3 Query optimization

Query optimization is a complex phase because many aspects must be taken into
account. Many choices must be made. For instance, the considered set of rewrite
rules might be more or less rich; how to apply rewrite rules to minimize redundant
computations, etc.

38 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

In this section we focus on the different plan enumeration techniques (i.e. how
to properly apply a set of rewrite rules) found in the litterature. We explain
important considerations during optimization phase and what are the current
approaches used in modern query optimizers. For this purpose, we start by
defining some important concepts, such as the plan space.

2.3.1 Plan space

For a given term t and a given set R of rewrite rules the plan space is the set of
all terms semantically equivalent to t that can be obtained by the application of
an arbitrary sequence of rewrite rules in R.

An ideal optimization method relies on generating the plan space exhaustively,
however this is often made very complicated in practice due to heavy combinatorial
issues. Plan spaces are usually very large. For complex queries, we might need to
apply some guidance during plan exploration. Various forms of heuristics have
been proposed in the litterature.

One of most known heuristic is to explore only left-deep plans1, which is
implemented in one of the first query optimizers [Selinger et al., 1979]. Then
there can be other ways of searching like: right-deep, zig-zag etc. The idea is
to have some sort of restriction of the plan space when generating equivalent
plans, so as to lower the burden. Also, another type of guidance has been
proposed in the so-called cost-based optimizers. The idea is to direct the plan
space exploration based on the cheapest plan found at a given moment. For
example, when enumerating the plan space, the search can be directed in a certain
way such that it always follows the direction of the less estimated expensive plan.

The goal when generating the plan space is to be as efficient as possible and
to avoid redundant calculations. To achieve this not only we can follow the afore-
mentioned types of guidances, but we can also rely on the analysis of the sequence
of transformation rules as well. This has been studied in [Pellenkoft et al., 1997],
where the history of the application of rewrite rules is somehow recorded in order
to retain which rules have already been applied and which ones are still useful to
apply. This way one can avoid generating duplicates, to a certain extent.

2.3.2 Properties of plan enumeration algorithms

We identify three interesting properties for an algorithm that generates plan
spaces:

• Correctness: the generated plan space must only have semantically equiv-
alent plans. The correctness is ensured by the individual rewrite rule
application. For each one of the rewrite rules, we make sure that when
applied, the semantics of the term is preserved.

• Completeness: The ability to enumerate the whole plan space possible
when considering an initial query q and a given set of rewrite rules r is called
completeness. This property ensures that every rewrite rule is triggered

1i.e. omit the exploration of bushy plans for instance.

2.3. QUERY OPTIMIZATION 39

when necessary for completely expanding the plan space when possible. This
property is proved in [Roy, 2001] for an algorithm that applies rewrite rules
on select-project-join (SPJ) queries. The proof is done by contradiction:
there cannot exist a plan created by the application of a given set of rewrite
rules r in a given query q that is not generated by the algorithm of rewrite
rule application.

• Efficiency: plan enumeration phase can become very tricky (complex)
because of its high computational complexity. Plan enumeration is costly
in space and time (we will review complexities in Section 2.3.5).
For different query shapes (See Chapter 1), the complexity varies.
The worst cases are known to be the cases of star and clique
queries [Ono and Lohman, 1990]. Star queries have a higher practical im-
portance since they are really common (e.g. UCRPQs), while cliques do not
have much practical value. Also some algorithms can be better for certain
query topologies than others. As shown in [Moerkotte and Neumann, 2006],
one of the algorithms DPsize is superior to DPsub for chain and cycle queries,
while DPsub is better when considering star and clique queries.

2.3.3 Algorithmic Techniques for Plan Enumeration

Plan enumeration phase is one of the crucial steps of a query optimizer. There
are several ways to enumerate plans in query optimization phase. The ap-
proaches used in traditional query optimizers are bottom-up [Selinger et al., 1979],
top-down [Graefe and McKenna, 1993, Graefe, 1995] and randomized algo-
rithms [Steinbrunn et al., 1997]. In Figure 2.1 we show these sub-groups, which
will be detailed further.

Enumeration
algorithms

top-down

randomized
 algorithms

bottom-up

Figure 2.1: Enumeration algorithms.

• In the case of randomized algorithms there are two algorithms: Iterative
Improvement (II) and Simulated Annealing (SA) or even Two Phase Opti-

40 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

misation (2PO) that considers them both. II is an algorithm that starts
at a random state, goes for the local optimization by accepting random
downhill moves until it reaches a local minimum. This is repeated until the
stopping condition is met. Moving through to SA, which in difference with
II accepts uphill moves using probability, but avoiding a high cost local
minimum. Then there is the 2PO which is a combination of both of them.
Phase one follows II idead, where some local minimums are found, and then
is the other phase that takes charge.

• Bottom-up approaches generate the plan space by starting from the leaves
(initial relations) and going up in the tree of operators when progressively
exploring alternate combinations of operators. Plan enumeration phase is as
follows: Each relation is completely optimized in the moment it is accessed.
For example: if we need to optimize A ▷◁ B ▷◁ C, the optimization will be
in the order where first [A], [B], [C] will be fully optimized, then is [AB],
[AC], [BC] and in the end it is [ABC].

• Top-down approaches start from the root and recursively explore sub-
branches in search for possible alternatives. In the top-down approach the
optimization is done in a different order and using a different structure. It
is structured in a particular way to group all semantically equivalent terms.
It starts from the initial query and continues optimizing the subgroups in
order. If we refer to the previous example of the bottom-up approach the
inital term is [ABC] and then it optimises the other smaller subgroups.

2.3.4 Join Enumeration

1979

Selinger
(bottom-up)

1996

Vance, Meier
(bottom-up)

Neumann
(bottom-up)

2006

De Haan
(top-down)

2007

Neumann
(bottom-up)

2008

Fender
& Merkoette
(top-down)

2011

Fender
(top-down)

2012

Fender
& Merkoette
(top-down)

2013

Shanbhag
(top-down)

2014

Figure 2.2: Timeline of works on join order optimization for bottom-up and
top-down approaches.

2.3. QUERY OPTIMIZATION 41

The most studied queries in the litterature are select-project-join (SPJ) queries.
In both bottom-up and top-down approaches, the main focus goes on join
enumeration because of its high processing cost. Join ordering has been proven
to be a NP-hard problem [Ibaraki and Kameda, 1984]. There have been several
studies throughout the years to optimize join ordering. In Figure 2.2 there can
be found some of these works conducted through the years. We focus on works
that consider bottom-up and top-down approaches.
Joins are referred as the backbone of the query optimization
in [Neumann and Radke, 2018], thus highlighting its importance. Queries
considered almost anywhere in litterature are the ones containing selections,
projections and joins. Since selection and projection do not add in the
combinatorics, they are "ignored" and the main attention is put into join
enumeration because of its complexity. More details on how a separate phase of
join enumeration is considered can be found in Section 2.3.6.
Further we discuss for the works conducted divided into two big subgroups,
bottom-up and top-down.
In bottom-up approaches we start with the pioneer in this
field [Selinger et al., 1979] that proposes a dynamic programming algo-
rithm for join ordering by generating the optimal partial plans in the order
of increasing size. They limit the search space by considering only left-deep
trees which speeds up the optimization. However, bushy plans are often more
efficient in practice. In [Vance and Maier, 1996] they propose an algorithm
considering different partial table sets that not only search the left-deep plans,
but also includes cartesian products to create optimal bushy join trees. Both
these approaches apply operations to checkif subgraphs are connected. By
these two, the lower bound in [Ono and Lohman, 1990] was not achieved. The
work found in [Moerkotte and Neumann, 2006] proposes a graph based dynamic
programming algorithm that generates the connected subgraph and organizes
the search by the graph structure. This way, it does not need to calculate the
combinations and connections that are not part of the final result. Hence it can
perform in a more efficient way. Some improvement of the previous algorithm
is made in [Moerkotte and Neumann, 2008] by the same authors by including
non-inner joins and generalizing it for hyper graphs.

In top-down approaches in [Pellenkoft et al., 1997], they propose a way to
lower the complexity of the enumeration process and achieve the lower bound of
O(3n) given by [Ono and Lohman, 1990] by avoiding the generation of duplicates.
This approach considers cross products. To reach this, they enable or disable
the transformation rules based on their usage. For example, considering the
commutativity rule of joins, there is no need to re-apply it after being triggered
once, because it will generate the original term.
In [DeHaan and Tompa, 2007] a top-down join enumeration algorithm using the
idea of the minimal cuts to generate the connected subgraphs is proposed. They
avoid exhaustive enumeration by using the strategy of branch-and-bound. Hence,
the algorithm performs faster. This method shows that the top-down methods
can be efficient as well. The research continues with the algorithm proposed
in [Fender and Moerkotte, 2011] which is easier to implement than the algorithm

42 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

proposed in [DeHaan and Tompa, 2007]. Also they consider all possible bushy
join trees, but cut out all cross products from the search. The following year,
the same authors proposed another top-down method in [Fender et al., 2012]
which has better runtime performance and with improved pruning techniques.
Then in [Fender and Moerkotte, 2013b, Fender and Moerkotte, 2013a] the same
authors continue on the same path by presenting an algorithm that handles non-
inner joins and is made for hyper graphs as well. An interesting algorithm based
on [Fender et al., 2012] is proposed in [Shanbhag and Sudarshan, 2014], which
enumerates cross-product free trees of join operators in a complete manner.

To conclude, similar results are achieved from both these approaches,
making them competitive between each-other. As we can observe in Fig-
ure 2.2 research at first was mainly focused on bottom-up approaches, until
[DeHaan and Tompa, 2007] showed that similar works for top-down approaches
can be efficient as well. Then, the focus was shifted towards studying join order
optimization for top-down approaches.

2.3.5 Computational complexity of plan enumeration

One of the biggest issues of query optimizers are their costs in terms of resources:
memory and computation. During the plan enumeration phase we should find
and gather all the possible plans to be able to find the optimal one in the end.
With the application of rewrite rules the amount of plans keeps growing until
it reaches a combinatorics explosion. In this case it is especially relevant to
study the computational complexity, and in this case lower complexity bounds in
particular. Defining lower bounds gives an insight on the expected behavior of a
query optimizer. There have been a lot of studies for space and time complexity,
defining upper and lower bounds for the bottom-up or top down approaches;
general case (exhaustive search) or when considering just left-deep plans, with or
without bushy plans or cross products; even when considering different queries
like linear, star or clique. One of the earliest mentions for the complexity is
in [Ono and Lohman, 1990], where it is reported on time complexity for the
bottom-up approach with cartesian products. Complexities are expressed in
terms of the query size n which implicity corresponds to the number of joins in
SPJ queries. Complexities are as follows: O(3n) (with bushy trees) and O(n ∗ 2n)
(without bushy trees). Because of the cartesian products, the shape of the query
does not change the complexity.
When removing the cartesian products, the shape of the query matters. They
report on the worst case for linear queries (with bushy trees) which is O(n3),
in contrast to O(n2) (without bushy trees). The complexity of star queries is
O(n ∗ 2n) and the presence of bushy trees does not change the complexity in this
case, since the form is a "hub", and the center is part of all joins.
In [DeHaan and Tompa, 2007] a lower bound is reported for space complexity
for top-down approaches Ω(n ∗ 2n) when considering left-deep plans and Ω(3n)
when including bushy plans. For bottom-up approaches they report on a lower
bound of Ω(2n) for left-deep/bushy plans storage.
In Figure 2.3 we have presented some of the results considering time complexity.

2.3. QUERY OPTIMIZATION 43

There we have illustrated the complete picture of where the bottom-up
approaches stand. We have shown the results of the most promising approaches
proposed in the litterature when considering SPJ queries. There we indicate the
complexity of three approaches presented in [Moerkotte and Neumann, 2006],
where it is shown that for different query topologies, different approaches must
be chosen. For example, DPsize algorithm [Moerkotte and Neumann, 2006]
performs better for chain(linear) and cycle queries, whereas DPsub algo-
rithm [Moerkotte and Neumann, 2006] performs better for star and clique ones.
A new approach is presented in the same paper with more promising results,
especially for star queries which are very much used in a lot of data warehouses.
For top-down approaches one of the most advanced is RS-
Graph [Shanbhag and Sudarshan, 2014], a Volcano based approach with
cross-product suppression, but which includes bushy plans. The worst-case
complexity is for clique queries and is calculated as O(3n).
To conclude, as shown in Figure 2.3 the bottom-up and top-down approaches
match for the worst-case time complexity considering the query topology (clique
queries). The studies for complexity are conducted for SPJ queries, considering
the complexity of join enumeration.

Q
ue

ry
 sh

ap
e

Time complexity

O(n2) O(n3) O(2n) O(n*2n) O(3n)

linear

chain

cycle

star

star &
recursive

bushy

bottom-up, Selinger

bottom-up with CP, Selinger

bushy

bushy

bushy

bushy

DPsize

Ω(2n) Ω(3n)Ω(n*2n) O(4n)O(n4)

clique

DPsub

DPccp

Neumann Moerkotte (’06) RS-Graph [Shanbhag (‘14)]

Figure 2.3: Complexity of bottom-up and top-down approaches.

2.3.6 Union in transformation-based query optimizers

Principles and limits of SPJ optimization techniques Most of the works
on query optimization focus on select-project-join (SPJ) queries. In order to
report on the optimization of SPJ queries we introduce a separation in 3 stages:

Stage1 refers to the phase of pulling selection and projection operators in order to
reach a stratified form where selections and projections only occur at top level
(and joins remain underneath). In order to reach that stratification, some

44 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

rewrite rules to pull those operators are used (specifically they correspond
to the reciprocal rules of Pushing selection in Join or Pushing Projection
in Join found in Section 2.2.4). Pulling Selection from Join is as follows:
φ ▷◁ σθ(ψ) → σθ(φ ▷◁ ψ). The same works for projections: πa(φ) ▷◁ ψ →
πa(φ ▷◁ ψ). Figure 2.4b illustrates the stratified form reached after Stage1.

Stage2 is the optimization phase of join enumeration, which is the topic of most
approaches found in the litterature. This is the part shown in the red square
in Figure 2.4b.

Stage3 Lastly, once the most efficient join ordering is found after the join enu-
meration phase, selections and projections are pushed back to the bottom
of the optimized form. This is done using the rules of pushing selections
and projections as in Section 2.2.4. This stage is called Stage3 and an
illustration of the form reached after this stage can be found in Figure 2.4c.

The way to optimize SPJ queries is to apply all these stages, in order, one after
the other: first the pulling of Stage1, then the join enumeration of Stage2, and
finally Stage3. One example is illustrated in Figure 2.4 for each stage application.

Most works found in the litterature address Stage2 because it is, by far, the
most complex one. This is because Stage1 and Stage3 only consist in a linear
traversal of the tree of operators, that do not add any combinatorics. This makes
them negligible in front of the complexity of join enumeration which is exponential,
and widely known to trigger explosive combinatorics in practice todo:cite the
paper a partir de 10 joins on oublie.

Union in query optimization. Unions have been largely neglected in these
studies, they are usually simply not taken into account at all as pointed out
by [Chaudhuri, 1998]. It is unclear how the complexity studied for SPJ can
be transferred or not for SPJU (queries in which union can appear anywhere
as well; and not only at top-level). If we add unions in a given query the
combinatorics grow just by triggering the rewrite rule of distributivity of join over
union φ ▷◁ (ψ ∪ γ)→ (φ ▷◁ ψ) ∪ (φ ▷◁ γ). As shown in this rule, new terms being
joined are created. In these terms, selections and projections are present as well.
More importantly in this case we cannot apply a Stage1 for pulling selections
and projections. The reason is that the classic type system is too restrictive. The
typing allowed for union is as follows:

Γ ⊢ φ1 : τ Γ ⊢ φ2 : τ

Γ ⊢ φ1 ∪ φ2 : τ

Given a schema Γ, the typing judgment Γ ⊢ φ : τ means that when evaluated in
an environment conforming the schema Γ, φ yields a relation of type τ . For the
union to be allowed, both terms φ1 and φ2 must be of the same type τ . In this
case, the type system of union is too strict to allow for Stage1. Let’s consider an
example where a rewrite rule considering selection and union is applied. When
applying the rewrite rule of pulling selections on a term t = φ ∪ πa(ψ), a new

2.3. QUERY OPTIMIZATION 45

term t′ = πa(φ ∪ ψ) will be created. When selection is pulled from t, the type of
the second operand of the union changes (the new type contains column a). When
the strict type system for union is considered, the creation of t′ is not allowed
since the two operands of the union in t′ have different types, which violates the
above typing judgment.

In order to be able to reuse results from the litterature on SPJ queries, one
would first need to transform a term into a stratified form (like in Figure 2.4b)
where only join operators occur in subtrees so as to apply Stage2 on them.
However, the presence of unions makes this complicated: when unions are present,
it is not clear how to overcome the aforementioned barrier since a join enumeration
optimization phase (Stage2) would not apply directly anymore.

We see two possible approaches to overcome this problem: (i) Continuing
with the strict type system and as a consequence do not allow a first phase of
pulling and a separate optimization considering only joins, or (ii) Disabling the
strict type system and allow rewrite rules to generate unions in which operands
can have different type for the purpose of pulling the projections. Each approach
has its advantages and drawbacks and we comment on them:

• In the first approach, an optimization phase considering only join enumera-
tion cannot happen because of the strict type system which would block
a first phase of pulling for certain operators. This basically means that
SPJ approaches from the litterature are hardly reusable, if resuable at all.
They would need to be revisited and probably heavily modified due to the
presence of unions.

• In the second approach, one possible way to enable a separate phase for
join enumeration is to adapt the type system so as to be able to perform
Stage1 (pull all the other operators except join). A separate phase for
join enumeration for SPJ could then happen: this would allow to reuse
algorithms from the litterature with interesting complexity bounds for this
stage. However, this would require investigating techniques to be able to
track the projected columns to push them back in a correct Stage3 that
preserves semantics.

In practice, recent cost-based query optimizers [Begoli et al., 2018,
Soliman et al., 2014] support many operators, including union. For in-
stance [Begoli et al., 2018] and [Soliman et al., 2014] do not leverage known join
enumeration optimization techniques and trigger rewrite rules directly when
possible. As a consequence, they do not leverage the best complexity results for
join enumeration known in the litterature (they cannot for the aforementioned
reasons).

In conclusion, there are many papers studying SPJ queries that provide
enumeration techniques with interesting complexity bounds. However to the best
of our knowledge, the complexity of plan enumeration with SPJU queries has not
been studied so far. In practice, optimization techniques for SPJU queries have
been implemented, but the complexity of plan enumeration is unclear since it
cannot be derived directly from the techniques developed for SPJ queries.

46 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

A

⋈

B

C

⋈

D

⋈

πg , πh

σa σb σd

(a) Inital term.

A

⋈

B C

⋈

D

⋈

σa , σb , σd

πg , πh

(b) Term after Stage1, ready for
join enumeration.

A

⋈

D

C

⋈

B

⋈

πg , πh

σa σd
σb

(c) A sample term obtained after
join enumeration and Stage3.

Figure 2.4: Example of a simple query.

2.4 Implementations of transformation-based
optimizers

In this section we review the main system implementations of the fundamental
studies on transformation-based optimizations found in the litterature. The first
part is focused on implementation of bottom-up approaches, whereas the second
part is focused on implementations of top-down approaches.

2.4.1 Background on bottom-up approaches

2.4.1.1 System R

System R [Selinger et al., 1979] is a database management system that is based
on the relational model of data. The SQL statement passes through 4 phases of
processing: Parsing, Optimization, Code Generation and Execution.

Plan of query optimization Relations are stored in the storage system as
a collection of tuples with physically contiguous columns. Tuples are stored in
pages; pages are organised in segments (logical units). The way to acces a tuple
in a relation is from scans, which are of two types: segment scan and index scan.
Segment scan finds all the tuples of the given relation. All pages that contain
tuples are examined and the tuples belonging to the given relation are returned.
Index scan: The index is created by the System R user on one or more columns of
a relation. Indexes and relation tuples are saved on separate pages. These indexes
are implemented as B-trees, with leaves that are pages which contain keys and
identifiers of tuples that contain that key.

Enumeration of Alternative Plans There are two different types:

• Single-relation plans

• Multiple-relation plans

2.4. IMPLEMENTATIONS OF TRANSFORMATION-BASED OPTIMIZERS47

Queries over a single relation are composed of select, project and aggregate.
Access paths with the lowest cost are chosen. Different operations are made
together, like for example when an index is used for a selection, projection is
performed for each retrieved tuple, and all these tuples are pipelined into the
aggregate computation.
Whereas for queries over multiple relations, a fundamental decision is done in
System R where only left-deep join trees are considered. Search space pruning
becomes a necessity as the number of joins grows very fast. Left-deep plans differ
only in the order of relations, the access method for each relation and the join
method for each join. For each subset of relations, only the cheapest plans are
retained. A join operator is chosen over a Cartesian product. Left-deep trees are
preferred by the system because they generate almost all fully pipelined plans.
Intermediate results are not written to temporary files. All single-relation plans
are first enumerated (selections and projections are taken into account as early as
possible) and then other operators like Order By, Group By, aggregates etc. are
handled as a final step.

2.4.1.2 Starburst

Query optimization in the Starburst project [Haas et al., 1989] starts with a
structural representation of the SQL query that is used during optimization,
called the Query Graph Model (QGM). In the QGM, a box represents a query
block and labeled arcs between boxes represent table references across blocks.
Each box contains information on the predicate structure as well as on whether
the data stream is ordered.
In the query rewrite phase of optimization [Pirahesh et al., 1992], rules are used
to transform a QGM into another equivalent QGM. Transformation rules are
applied only after being checked on conditions of applicability. Rules may be
grouped in rule classes and it is possible to tune the order of evaluation of rule
classes to focus search. Since any application of a rule results in a valid QGM, any
set of rule applications guarantee query equivalence (assuming rules themselves
are valid). The query rewrite phase does not have the cost information available,
so it either retains alternatives obtained through rule application or it applies a
heuristic way (by compromising optimality).
Then, in the plan optimization phase, given a QGM, an execution plan (operator
tree) is chosen. In Starburst, the physical operators (called LOLEPOPs) may
be combined in a variety of ways to implement higher level operators and they
are expressed in a grammar production-like language [Lohman, 1988]. While
doing these combinations, comparable plans that represent the same physical and
logical properties but have higher costs, are pruned. Each plan has a relational
description that corresponds to the algebraic expression it represents, an estimated
cost, and physical properties. These properties are propagated as plans are built
bottom-up. Thus, with each physical operator, a function is associated that shows
the effect of the physical operator on each of the above properties.

48 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

2.4.2 Background on top-down approaches

2.4.2.1 Volcano/Cascades

Given a specific logical algebra, physical algebra and rules, Vol-
cano [Graefe and McKenna, 1993] generates a top-down query optimizer.
Volcano integrates both logical and physical steps into a single top-down
application of transformations. When the DBMS is operational and a query
is entered, the query is passed to the optimizer, which generates an optimized
plan for it. It starts with one logical expression and apply transformation
rules to obtain new expressions. It keeps the cheapest physical expression that
implements a logical expression and physical properties. The output of the
optimizer is a plan, which is a physical expression.

Logical Space Generation The data structure used is Logical Query Directed
Acyclic Graph (LQDAG), which we will describe more in detail in Section 2.5.
The algorithm for plan space generation expands LQDAG by applying all possible
transformation rules.

The enumeration phase is handled in a top-down, depth-first search using
recursive algorithm. It uses a memoization structure to cache best plans for each
equivalence node for future re-use and prunes choices whenever they exceed cost
limit.

Cascades [Graefe, 1995] is an extension of Volcano, where one of the novelties
is that it allows to use operators that are both logical and physical for predicates.
In Cascades search strategy some guidance is applied to rule sets. In the cases
where guidance cannot be used, the Volcano search strategy is applied instead.
Some recent query optimizers that are based on Volcano/Cascades strategy are
Orca [Soliman et al., 2014] and Calcite [Begoli et al., 2018].

2.5 Zoom on the LQDAG approach

In this section we present in more details the Logical Query DAG (LQDAG)
approach [Graefe and McKenna, 1993] because this is a main building block
used in the contributions of this thesis. The LQDAG is a directed acyclic
graph data structure used to represent and generate the logical plan space.
This representation allows the sharing of common subparts. It was introduced
in [Graefe and McKenna, 1993] and improved in [Graefe, 1995] by the same
authors. It is also well described as the AND-OR-DAG in [Roy et al., 2000,
Shanbhag and Sudarshan, 2014] where it is used for detecting and unifying com-
mon subexpressions for multi-query optimization [Roy et al., 2000]; and for gener-
ating the space of cross-product free join trees [Shanbhag and Sudarshan, 2014].

Definition of data structure The LQDAG contains nodes of two different
types: equivalence nodes and operation nodes. Equivalence nodes can only

2.6. RECURSION 49

⋈

A B

AB

⋈

ABC

C

Figure 2.5: An initial LQDAG.

⋈

A B

AB

⋈

C

BC

⋈

AC

⋈ ⋈

⋈

ABC

Figure 2.6: An expanded LQDAG.

have operation nodes as children and vice versa: operation nodes can only have
equivalence nodes as children. The purpose of an equivalence node is to explicitly
regroup equivalent subterms. An operation node corresponds to an algebraic
operation like: join (▷◁), filter (σθ) etc. The LQDAG can be seen as a factorized
representation of a set of terms.

Inspired from [Roy et al., 2000], Figure 2.5 illustrates a sample LQDAG, and
Figure 2.6 depicts its expansion obtained after the application of commutativity
and associativity rules for the join operator.

2.6 Recursion

As illustrated in Chapter 1, recursion in graph queries is very powerful and essential
as it allows one to extract information from direct and indirect connections in the
graph. Over the years, several works have attempted to optimize recursive queries
over graphs. In this section, we review the main approaches and classify them
into two main sub-groups: Non-relational and relational algebra approaches.

2.6.1 Approaches not based on relational algebra

2.6.1.1 Datalog.

Datalog is a declarative logic programming language based on Prolog and is
focused on data. It is well-known as a language designed for recursive queries.

The Datalog line of works [Alvaro et al., 2010, Fan et al., 2019,
Francis-Landau et al., 2020, Huang et al., 2011, Seo et al., 2015,
Shkapsky et al., 2016, dat, 2021, Wang et al., 2015] developed methods
for optimizing recursive queries formulated in Datalog: magic-sets
[Bancilhon et al., 1985, Saccà and Zaniolo, 1985, Gardarin, 1987], demand trans-
formations [Tekle and Liu, 2011], automated reversals [Naughton et al., 1989],
and the FGH rule [Wang et al., 2022]. Datalog has some stratification restrictions
when using negation and recursion.
A Datalog program is composed of facts and rules. An example of a fact is
considered A(X,Y) and it can be read as: Y is in relation A with X.
The rule itself is composed by the head and the body. The head is on the left

50 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

side, and the body is on the right side. A variable of the left side should always
be found in the right side. An example of a rule can be as following:
ancestor(X, Y) :- parent(X, Y)
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y). This can be read as: X
is an ancestor of Y if X is a parent of Y. X is an ancestor of Y if X is a parent of
some Z, and Z is an ancestor of Y.
In Datalog, only the loop body is optimized, not the whole loop. One system that
does that is Souflée, but limited optimization techniques are applied (magic-sets
and semi-naive evaluation) and are mainly restricted to positive Datalog queries.
Below, we list optimization techniques in Datalog:
(1) Magic Sets [Bancilhon et al., 1985, Saccà and Zaniolo, 1985] - are used as
a technique to reduce the number of not used tuples. These are removed by
considering the constraints. For a given query, the datalog program can detect a
certain behavior and will avoid calculating several times the same one.
(2) Right and left linear programs - For a transitive closure R+ there can
be two different translations, from the left or from the right. As shown
in [Naughton et al., 1989], for a Datalog term that computes a binary relation as
A (x, y), when in right-linear program the filter can be pushed on the right side
(y in this case) and vice versa, on the left side (x in this case) when in left-linear
program.
(3) Demand transformation [Tekle and Liu, 2011] - is an improvement over the
Magic Sets. It uses the same idea as the improvements of Magic Sets: it pushes
filters to not compute useless facts. Even though it performs better than Magic
Sets, being based on them it has the same issues, for example: sensitivity to
programs that are right or left.
(4) The optimization framework proposed in [Wang et al., 2022] gathers magic-
sets, semi-naive evaluation and proposes a new FGH rule for optimizing recursive
Datalog programs with aggregations. They focus on a framework that uses
methods from program synthesis. They are able to express the other techniques
as: magic-sets and semi-naive evaluation and some new optimizations. FGH-Rule
optimization allows directly the computation of the connected component label of
every node x as the minimum of its own label and the smallest component of its
neighbors by using a single recursive rule with min-aggregation. The application
of FGH-Rule is considered as an instance of query rewriting using views. This is
an heuristics based approach and is currently implemented for linear programs.

Although the syntax of Datalog greatly differs from RA, the effects of magic-
sets [Bancilhon et al., 1985, Saccà and Zaniolo, 1985, Gardarin, 1987] and of de-
mand transformations [Tekle and Liu, 2011] are comparable to pushing certain
kinds of selections and projections. These techniques are very sensitive to whether
the Datalog program is written in a left-linear or right-linear manner, but one
can use the automated reversal technique proposed in [Naughton et al., 1989] to
fully exploit them.

Datalog engines do not explore plan spaces but use heuristics to find a good
plan to evaluate queries. However, currently, no matter which combination of
existing Datalog optimizations a Datalog engine implements, it will not be able to
find plans where recursions have been merged automatically similar to those found

2.6. RECURSION 51

by the µ-RA approach [Jachiet et al., 2020] (detailed more in Section 2.6.3.3).
This is because, currently, in a Datalog program corresponding to the optimized
translation of A+/B+ at least one of the two transitive closures A+ or B+ will
be fully materialized (even if there is no solution to A+/B+). On real datasets,
this can make Datalog query evaluation an order of magnitude slower than query
evaluation with RA-based systems, as noticed in [Jachiet et al., 2020].

2.6.1.2 Automata based approaches.

Automata based approaches [Goldman and Widom, 1997] translate individual
RPQs to automata and then join or union these results. This line of work considers
in regular expressions. Regular expressions are possible to be expressed in the
forms of an automaton. For a regular expression r it is possible to construct an
automaton that recognizes the language of r. The query can be evaluated with
an automaton and can manipulate tuples to show that there exists a path p from
a1 to a2 and can be denoted as (a1, a2, p). A graph database can be converted
into an automaton and show the possible paths between nodes. This is how a
regular expression is expressed using an automaton.

2.6.2 Recursion in SQL

SQL is a standard query language that is used to manage and manipulate data in
a RDBMS. Recursion in SQL is not represented by an algebraic operator. In fact,
recursion is stands as “a barrier” in SQL. It means that it will be detected, but it
cannot be optimized. There are no rewrite rules that would produce new plans
considering the new information added to the query for each iteration of recursion.

Meanwhile, there are some other approaches that optimize recursion in rela-
tional algebra.

2.6.3 Extensions of relational algebra with recursion

α-RA [Agrawal, 1988] - is an extension of relational algebra which is noted as α.
It is able to represent transitive closure R+ of a given term R. If we consider the
expressive power over graphs, it corresponds to regular path queries (and their
conjuctions and unions) but it struggles in expressing an/bn queries (non-regular).
It is not able to express a query that contains the same number n for a and b (in
this case).

2.6.3.1 LFP-RA

LFP-RA [Aho and Ullman, 1979] - Another extension of relation algebra is LFP-
RA. It is equipped with a "least fixpoint" construct. When considering the relation
X and a given term R, the least fixpoint is calculated by adding the results in
each iteration i when the relation X is filled by Xi. It has the same expressivity
as linear Datalog (with stratified negation) as shown in [Jachiet et al., 2020].

52 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

2.6.3.2 Waveguide

Waveguide [Yakovets et al., 2015a] - A combination of finite state machines and
α-RA, where plans are found by first starting on one side and matching the other
side as well. The idea is to start from the left and then match the right one, or vice
versa, first the right one and then the left one. The computation can even start
in the middle and then go both ways to compute the RPQ. Other extensions to
this work are made in [Abul-Basher et al., 2017a] where disjunctions of RPQs are
treated, where some computations can be shared; and [Godfrey et al., 2017] that
focuses on conjunctions of RPQs. But all these works are focused on conjuctions
or unions of RPQs. It cannot express non-regular queries, for example: An/Bn.

2.6.3.3 µ-RA

µ-RA is an extension of relational algebra with a fixpoint operator to represent
recursion. Below, we recall important definitions from [Jachiet et al., 2020].

2.6.3.4 Syntax of µ-RA

Below is the syntax of classical Relational Algebra introduced by
Codd [Codd, 1970] equipped with the fixpoint operator introduced by
[Jachiet et al., 2020].

a, b → columns

φ ::= term
|c→ v| constant

| σθ(φ) filter
| φ1 ▷◁ φ2 join
| φ1 ▷ φ2 antijoin
| φ1 ∪ φ2 union
| ρba(φ) rename
| π̃a(φ) antiprojection
| X relation variable
| µX.φconst ∪ φrec fixpoint

2.6.3.5 Preliminaries of [Jachiet et al., 2020]

Relations are considered as set of mappings that associate column names to
values as mentioned in Section 2.2.2 of Relational Algebra.

2.6.3.6 Semantics

In this section, we show the semantics for each algebraic operator, including the
fixpoint one.

2.6. RECURSION 53

Constant J|c→ v|KV = {{c→ v}}

Relation Variable JXKV = V (X)

Filter Jσf (φ)KV = {m |m ∈ JφKV ∧ f(m) = ⊤}

Join Jφ1 ▷◁ φ2KV = {m1 +m2 |m1 ∈ [[φ1]]V ∧m2 ∈ [[φ2]]V ∧m1 ∼ m2}

AntiJoin Jφ1 ▷ φ2KV = {m ∈ [[φ1]]V | ∀m′ ∈ [[φ2]]V ¬(m′ ∼ m)}

Union Jφ1 ∪ φ2KV = Jφ1KV ∪ Jφ2KV

Rename Jρba(φ)KV = {{c→ v ∈ m | c ̸= a} ∪ {b→ v | a→ v ∈ m} | m ∈ JφKV }

AntiProjection Jπ̃a(φ)KV = {{c→ v ∈ m | c ̸= a} |m ∈ [[φ]]V }

Fixpoint Jµ(X = φ)KV = JXKV [X/U∞] where

= U0 = ∅, Ui+1 = Ui ∪ JφKV [X/Ui], and U∞ =
⋃
n∈N Ui

2.6.3.7 Type system

FC(θ) is the set of filtered columns based on filter f. Its definition is as follows:

• FC(c = v) = {c}

• FC(θ1 ∧ θ2) = FC(θ1) ∪ FC(θ2)

• FC(θ1 ∨ θ2) = FC(θ1) ∪ FC(θ2)

• FC(¬θ) = FC(θ)

• FC(θ1 eq f2) = FC(θ1) ∪ FC(θ2)

54 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

Γ ⊢ |c 7→ v| : {c}
Γ(X) = τ

Γ ⊢ X : τ

Γ ⊢ φ1 : τ Γ ⊢ φ2 : τ

Γ ⊢ φ1 ∪ φ2 : τ

Γ ⊢ φ1 : τ Γ ⊢ φ2 : τ

Γ ⊢ φ1 − φ2 : τ

Γ ⊢ φ1 : τ1 Γ ⊢ φ2 : τ2

Γ ⊢ φ1 ▷◁ φ2 : τ1 ∪ τ2

Γ ⊢ φ1 : τ1 Γ ⊢ φ2 : _
Γ ⊢ φ1 ▷ φ2 : τ1

Γ ⊢ φ : τ FC(f) ⊆ τ
Γ ⊢ σf (φ) : τ

Γ ⊢ φ : τ a ∈ τ b /∈ τ
Γ ⊢ ρba (φ) : (τ \ {a}) ∪ {b}

Γ ⊢ φ : τ a ∈ τ
Γ ⊢ π̃a(φ) : t \ {a}

Γ ⊢ κ : τ Γ ∪ {X → τ} ⊢ ψ : τ

Γ ⊢ µX = (κ ∪ ψ) : τ

Figure 2.7: Type rules

2.6.3.8 µ-RA properties

Definition 1. Given a term φ, we say that φ is constant in X when X is not a
free variable of φ.

Definitions are taken from [Jachiet et al., 2020].
Below, we show the syntactical properties a fixpoint term being constant or

recursive.
A fixpoint term µ(X = φ) is considered to be:

• positive: for all subterms φ1 ▷ φ2 of φ, φ2 is constant in X;

• linear : for all subterms of φ of the form φ1 ▷◁ φ2 or φ1 ▷ φ2, either φ1 or
φ2 is constant in X;

• mutually recursive: there exists a subterm µ(X = ψ) of φ with X free in ψ.

Now we show the semantic interpretation of the above syntactical properties.
When considering a term φ:

• If φ is recursive in X then for all V , JφKV [X/∅] = ∅.

• If φ is constant in X, then φ does not depend on X, i.e. for all S and V ,
JφKV [X/S] = JφKV [X/∅].

A decomposed fixpoint term µ(X = κ ∪ ψ) has its constant part κ constant
in X and its recursive part ψ recursive in X.

2.6. RECURSION 55

Example Considering a binary relation R represented as a table with two
columns: {src, trg}. Its closure is the following:

µX. R ∪ π̃m(ρmtrg (R) ▷◁ ρmsrc (X))

The above term is a decomposed fixpoint with R as its constant part and
π̃m(ρ

m
trg (R) ▷◁ ρ

m
src (X) as its recursive part.

The type system for µ-RA concerning fixpoints shows that the type of the constant
part of a fixpoint term is actually the type of its recursive part as well.

2.6.3.9 Auxiliary functions for rule application in µ-RA

In µ-RA, new rewrite rules concerning fixpoints are introduced. For these rewrite
rules to be applied, some criteria need to be verified. These criteria are introduced
in [Jachiet et al., 2020].
One criteria is based on the columns that are part or not of the iteration. A
criteria called stabilizer is defined, which returns the set of columns that are not
changed by the iteration. In order to find this set of columns, a set of derivations
is defined. These derivations are shown in the follwing definition.

Definition 2. The set of derivations d(ψ,X) is:

d(ψ1 ∪ ψ2, X) = d(ψ1, X) ∪ d(ψ2, X)

d(ψ1 ▷ ψ2, X) = d(ψ1, X)

d(ψ1 ▷◁ ψ2, X) = d(ψ1, X) ∪ d(ψ2, X)

d(ρba(ψ), X) = {p ◦ (b→ a, a→⊥) | p ∈ d(ψ,X)}

d(π̃a(ψ), X) = {p ◦ (a→⊥) | p ∈ d(ψ,X)}

d(σf (ψ), X) = d(ψ,X)

d(µ(Y = ψ), X) = ∅

d(X,X) = {()} (a singleton identity)

d(X,R) = ∅

d(|c→ c|, X) = ∅

Where ◦ repre-

sents the composition and (a1 → b1, ..., an → bn) represents the function that
maps each ai to its bi and every other column name to itself. Note that this
definition manipulates functions with an infinite domain, but the domain where
they do not coincide with the identity is finite and they are thus computable.

56 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

Definition of stabilizer is as follows:

Definition 3. Given a term φ linear and positive in a variable X, we
define the stabilizer of X in ψ as the following set of column names:
stab(ψ,X) = {c ∈ C| ∀p ∈ d(ψ,X) p(c) = c}.

The other criteria defined for fixpoints is to check if a column can be added
or removed when an iteration happens. These columns should play no role in the
recursive computation of the term. This is calculated by the set of derivations
that can be found in the following definition.

Definition 4. We say that a column c ∈ C can be added to or removed from a
term ψ ∈ F [Γ] recursive in X when add(ψ,X, c) = ⊤ holds, with add defined as:

add(ψ1 ∪ ψ2, X, c) = add(ψ1, X, c) ∧ add(ψ2, X, c)

add(ψ1 ▷◁ ψ2, X, c) = add(ψ1, X, c) ∧ add(ψ2, X, c)

add(ψ1 ▷ ψ2, X, c) = add(ψ1, X, c) ∧ add(ψ2, X, c)

add(ρba(ψ), X, c) = add(ψ,X, c) ∧ c /∈ {a, b}

add(π̃a(ψ), X, c) = add(ψ,X, c) when c ̸= a

add(π̃c(ψ), X, c) = X /∈ free(ψ)

add(σf (ψ), X, c) = add(ψ,X, c) ∧ c /∈ FC(f)

add(µ(Y = ψ), X, c) = add(ψ,X, c)

add(R,X, c) = c /∈ Γ(R) when X ̸= R

add(X,X, c) = ⊤

add(|c′ → v|, X, c) = c ̸= c′

2.6.4 Rewrite rules concerning fixpoint

Considering the syntax presented and the addition of the fixpoint operator
in relational algebra, in [Jachiet et al., 2020] they propose new rewrite rules
concerning fixpoints. These rewrite rules can be applied only when criteria using
the auxiliary functions presented earlier are satisfied. We recall the rewrite rules
containing criteria to be verified from [Jachiet et al., 2020]:

Theorem 1 (Pushing Filter inside a Fixpoint). Let µ(X = κ ∪ ψ) be a
decomposed fixpoint term, V an environment and f a filter condition with

2.6. RECURSION 57

FC(f) ⊆ stab(ψ,X). Then we have [[σf (µ(X = κ∪ψ))]]V = [[µ(X = σf (κ)∪ψ)]]V .

Theorem 2 (Pushing Anti-Join inside a Fixpoint). Let µ(X = κ ∪ ψ) be a
decomposed fixpoint term, V an environment and ξ a term of type t ⊆ stab(ψ,X)
(we suppose that X is not a free variable of ξ). Then we have [[µ(X = κ∪ψ)∩ ξ]]V
= [[µ(X = (κ ∩ ξ) ∪ ψ)]]V .

Theorem 3 (Pushing Join inside a Fixpoint). Let µ(X = κ∪ψ) be a decomposed
fixpoint of type tk, and φ ∈ F [Γ] (with X /∈ free(φ)) a term of type tφ such that:
(1) tφ ⊆ stab(ψ,X)
(2) ∀c ∈ tφ \ tk ∈ add(ψ,X, c)
Then we have Γ ⊢ µ(X = κ ▷◁ φ ∪ ψ) : tφ ∪ tκ for all V compatible with Γ:
Jφ ▷◁ µ(X = κ ∪ ψ)KV = Jµ(X = κ ▷◁ φ ∪ ψ)KV
Theorem 4 (Merging fixpoints). Given two decomposed fixpoints µ(X = κ1 ∪ ψ1)
and µ(X = κ2 ∪ ψ2) of types t1 and t2 such that:
(1) t1 ∩ t2 ⊆ stab(ψ2, X,C2) ∩ stab(ψ1, X,C1)
(2) ∀c ∈ t1 \ t2 add(ψ2, X, c)
(3) ∀c ∈ t2 \ t1 add(ψ1, X, c) then we have:
Jµ(X = κ1 ∪ ψ1) ▷◁ µ(X = κ2 ∪ ψ2)KV = Jµ(X = κ1 ▷◁ κ2 ∪ ψ1 ∪ ψ2)KV .

Theorem 5 (Pushing antiprojections inside a fixpoint). Let µ(X = κ ∪ ψ) ∈ F [Γ]
be a decomposed fixpoint of type tκ. Let b ∈ C be such that add(ψ,X, b). Then:
Jπ̃c(µ(X = κ ∪ ψ))KV = Jµ(X = π̃c(κ ∪ ψ))KV

2.6.5 Application of µ-RA for recursive query optimization on
knowledge graphs

One possible application of µ-RA is the optimization of queries on knowledge
graphs. We start by explaining how knowledge graphs can be represented in RA’s
data model. A knowledge graph can be represented by a table that contains all
the graph edges. This table has three columns: source and target nodes and one
column, label, for the predicate that labels the edge.

Figure 2.8 illustrates an example of a relation of this type.

src label trg

Jean livesIn Paris

France isLocatedIn Europe

Jim worksAt Inria

Jim knows Jean

...

Figure 2.8: Representation of a knowledge graph in µ-RA.

58 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

To extract information from these graphs we can write queries in the form of
a UCRPQ. We show the following example:

?y ← ?x : knows+ ?y : Jean

This query returns the totality of people that know Jean directly or indirectly.

2.7 Summary

Above we introduced the main approaches (algebraic or not) that consider re-
cursion. Among those there are several that treat the transitive closure and the
main optimization rules like: the possibility to push selection and projection in
the fixpoint.

In terms of expressivity there is one approach that stands among them all.
This is µ-RA, the approach presented in [Jachiet et al., 2020]. Thanks to the
rewrite rules made possible from this addition, in particular the possibility of
merging fixpoints which can be expressed as the path (a+ /b+), it is possible to
reach new plans that were not reachable before. This is why the plan space is
bigger. Since for the other approaches it is not possible to reach these plans, we
focus on µ-RA approach.

Limitations of µ-RA. µ-RA [Jachiet et al., 2020] provides a rich set of rewrite
rules for recursive terms enabling efficient recursive evaluation plans not avail-
able with earlier approaches. However [Jachiet et al., 2020] does not study plan
enumeration with the new rules.

The enumeration phase is crucial as it may produce terms which are drastically
more efficient. It has been heavily researched for recursion-free queries. It is
common practice to allocate a time budget for this enumeration phase, as it is
notoriously known that exhaustive plan space explorations may not be feasible in
practice for certain queries. The faster we generate the space of equivalent plans,
the more likely we will be able to find terms with more efficient evaluation.

With recursion, plan spaces are often significantly larger than in the non-
recursive setting, due to new interplays between recursive and non-recursive
operators. The efficiency of recursive plan enumeration becomes critical. The
speed of plan enumeration directly determines whether query evaluation plans
enabled by, e.g. µ-RA [Jachiet et al., 2020], are within range or theoretically
reachable, but still out of reach for a practical query optimizer. This motivates
the search for efficient methods for enumerating recursive plans.

Limitations of plan enumeration approaches and of the LQDAG ap-
proach in particular. The different approaches found in the litterature, either
bottom-up or top-down, are mostly interested in join enumeration optimization.
No previous approach treats recursion.

LQDAG is a factorized representation used for recursion-free queries. No
earlier work treats recursion in a LQDAG based approach.

2.8. CHALLENGES IN EXTENDING THE LQDAG TO SUPPORT
RECURSION 59

Specific problem considered in this thesis. This thesis seeks methods for
the efficient enumeration of recursive plans.

2.8 Challenges in extending the LQDAG to support
Recursion

In Section 2.3.6 we explained how the optimization of SPJ queries are handled
in query optimization. In the classical SPJ setting, selections and projections
do not add to the combinatorics and this is why the litterature focuses on
join enumeration. We will refer to some definitions of Section 2.3.6 to explain
the different stages of optimization in SPJ setting. For an AST with only
(select-project-join) SPJ the optimization is done following the example illustrated
in Figure 2.4 for each stage. We discussed about the strict type system and
showed an example there.

A

⋈

B C

⋈

D

⋈

E F

⋈

⋈

G

U

σa , σb , σc

πg , πh

Figure 2.9: Union as a binary operator in the optimization phase.

Now we will continue the discussion where we left off in Section 2.3.6. Starting
from an initial query where the operators such as: join, selection, projection and
union can be found anywhere, can we achieve an AST as in Figure 2.9 without
breaking the strict typing rule:

Γ ⊢ φ1 : τ Γ ⊢ φ2 : τ

Γ ⊢ φ1 ∪ φ2 : τ

It is not immediate to transfer all the results considering join enumeration to
queries that include union operator as well. Selections and projections cannot be
easily pushed without breaking the types of the query if we use the same strict
type system. The example of Figure 2.9 is a proposition of the napplication of
optimization methods used in the litterature for join enumeration separately to

60 CHAPTER 2. FOUNDATIONS OF QUERY OPTIMIZATION

lower the complexity to the maximum. To consider this we have to unplug the
type system and allow the selections projections and unions to be pulled, no
matter where they can be found in the AST. Considering the strict type system,
for union to be considered correct, only operands of the same type are allowed.
This is a barrier for the pulling stage to happen. This means that if we need to
allow this phase of pulling we need to modify the type system. What will be the
consequences of this adaptation? Below, we propose an adapted type system for
union:

Γ ⊢ φ1 : τ
′ Γ ⊢ φ2 : τ

′′

Γ ⊢ φ1 ∪ φ2 : τ
′ ∪ τ ′′

This typing rule adaptation allows us to consider union as correct even when
type of φ1 is different to the type of φ2. After applying apply the pulling
stage of selections, projections and unions we are in a situation like the one
presented in Figure 2.9. The rewrite rules allowed here are (without restrictions):
Pulling Selection from Join is as follows: φ ▷◁ σθ(ψ) → σθ(φ ▷◁ ψ); Pulling
Projection from Join: σf (φ) ▷◁ ψ → σf (φ ▷◁ ψ); Pulling Union from Join:
(φ ▷◁ ψ) ∪ (φ ▷◁ γ) → φ ▷◁ (ψ ∪ γ); Pulling Selection from Union is as follows:
φ ∪ σθ(ψ)→ σθ(φ ∪ ψ); Pulling Projection from Union: σf (φ) ∪ ψ → σf (φ ∪ ψ).
One benefit of the adapted type system is that we could be able
to optimize the join enumeration, for example using an algorithm as
in [Shanbhag and Sudarshan, 2014] used for top-down approaches and then push
all the other operators to the maximum.

Challenges for adding recursion Let’s consider adding the fixpoint operator
that represents recursion. Like in the case of union, we will consider a less strict
type system:

Γ ⊢ κ : τ ′ Γ ∪ {X → τ} ⊢ ψ : τ ′′

Γ ⊢ µX = (κ ∪ ψ) : τ ′ ∪ τ ′′

Selections and projections would be allowed to be pulled at a first stage. The
considered rewrite rules would be the following (without restrictions):
Pulling Selection from Fixpoint: µ(X.σf (κ) ∪ ψ)→ σf (µ(X = κ ∪ ψ))
Pulling Projection from Fixpoint: µ(X.πc((κ ∪ ψ))) → πc((µ(X = κ ∪ ψ))).
Given that in the case of recursion new columns are presented for each iteration,
allowing this stage of pulling is not "safe". For each iteration of the recursion we
would not be certain for the columns present or that are possible to be introduced
at a given time. We would not keep count on the columns being added and
cannot control the type of the fixpoint. To ensure the validity of rewrite rule
application there has to be some stricter type system that allows checking the
columns that we are certainly present and columns that might be added to the
recursion. Anyways, the above adaptation of type system when introducing
fixpoints needs to be checked in practice as well.

2.8. CHALLENGES IN EXTENDING THE LQDAG TO SUPPORT
RECURSION 61

A stricter type system, which is used in recursion in this study is the following:

Γ ⊢ φ1 : τ Γ ⊢ φ2 : τ

Γ ⊢ φ1 ∪ φ2 : τ

In conclusion, each approach has its own difficulties. On one hand, without a
strict type system we would lose control over the columns that are present, or will
be introduced at a given time, but allow a proper stage of operator pulling. On
the other hand, with the strong type system we cannot allow a stage of operator
pulling, but we have more control over columns that are present for each iteration.

In the next chapter, we present the main contribution of this thesis which
proposes an approach for efficiently enumerating recursive plan spaces, keeping
the strict type rules for union and fixpoint.

Part II

Contribution

63

2.8. CHALLENGES IN EXTENDING THE LQDAG TO SUPPORT
RECURSION 65

Summary and Outline of Contribution

In the previous state-of-the-art part, we outlined the interests of the rich plan
spaces recently made possible by the µ-RA approach for recursive queries. We also
outlined the current limits and difficulties for efficiently enumerating non-recursive
plan spaces in actual query optimizers.

A clear gap remains: how to benefit from rich plan spaces for recursive
queries in actual query optimizers? Or in other terms, how to extend the most
advanced plan enumeration methods so as to efficiently enumerate recursive plans?

This part of the manuscript describes the contribution of this thesis, which
aims at filling this gap. The contribution part is structured into two chapters:

Chapter 3 presents the theory and algorithmic techniques of a new
RLQDAG approach. Contributions include the first extension of the LQDAG
with the support of recursive queries; the first formalization of important LQDAG
concepts in terms of formal syntax and formal semantics, with a particular focus
on the sharing of common subterms and recursion; generalized rewrite rules
enabling grouped transformations of sets of recursive terms (instead of individual
terms); and the complete technical machinery with algorithmic techniques for their
implementation, including the incremental propagation of annotations required
for guiding transformations of sets of recursive subterms.

Chapter 4 reports on an experimental assessment of this new approach
applied in the setting of recursive graph queries. Contributions include a complete
prototype implementation of the RLQDAG; an application for property graph
queries, including a direct translation of a recursive query language fragment
for property graphs into RLQDAG; and lessons learned from extensive practical
experiments using synthetic and real datasets.

Chapter 3

RLQDAG

3.1 Introduction

In this Chapter we present the main contribution of this thesis which is a novel
method for efficiently enumerating plan spaces in recursive relational algebra.

Specifically, we propose an extended logical query DAG, named recursive
logical query dag (RLQDAG), to support recursive algebraic terms. The main
purpose of the RLQDAG is to introduce a compact representation of recursive
terms that allows for their rewriting as sets of terms instead of individual terms.
The goal is to enable a much faster exploration of equivalent recursive plans. This
exploration phase is crucial as it may produce recursive terms which are drastically
more efficient. The faster we generate the space of equivalent plans, the more
likely we will be able to find terms with more efficient evaluation. Ultimately,
if we manage to explore the entire space of recursive plans, we find the optimal
term faster. This is particularly important for recursive terms since their rule
sets usually generate huge plan spaces. It is common practice to allocate a time
budget for this exploration phase, as it is notoriously known that exhaustive
explorations may not be feasible in practice for certain queries. The exploration
phase is a prerequisite for query evaluation in any transformation-based query
optimizer that first needs to find an optimal – or best estimated – term. For
all these reasons, the speed of plan space exploration represents one of the most
critical aspect in recursive query optimization.

Outline. We first give intuitions of the RLQDAG before we introduce it formally.
We present a syntax and semantics for the RLQDAG. To the best of our knowledge,
it is the first time a syntax and formal semantics are defined for LQDAG. This
is useful to facilitate the development and presentation of the theory of sharing
subterms in the presence of recursion. In particular it is useful for presenting
the generalized rewrite rules that enable the transformation of sets of recursive
subterms at once (instead of individual subterms); to facilitate proofs, and to
describe the transformations of RLQDAG subparts more precisely and more
rigorously.

67

68 CHAPTER 3. RLQDAG

3.2 Recursive structure in the RLQDAG: principles

The RLQDAG extends the LQDAG with the ability to capture and transform sets
of recursive terms. We introduce a binary operator that models the µ decomposed
fixpoint operator, as illustrated in Figure 3.1.

µ
const rec

Different equivalent
plans in an Equivalence

Node

Node
representing the

recursion

Annotated
Equivalence NodeEquivalence

Node

D
R

Plans in which the recursive
variable bound by the

fixpoint operation node can
appear free

Figure 3.1: Structure of a recursive term in the RLQDAG.

One of the operands models the constant part of the fixpoint operator. It is
expressed as an equivalence node that regroups all the semantically equivalent
subterms of the constant part. The other operand models the recursive part. The
major difference brought by the recursive part is that in this branch we will find
at least one explicit occurrence of the recursive variable which is bound by the
fixpoint operator. This aspect will lead to a number of discussions, choices, new
definitions and developments. This is because depending on how the recursive
variable is used in that branch,the transformation and sharing of subterms may –
or may not – be allowed. All these concepts will be described in the following
sections.

Using the representation illustrated in 3.1, we will define and apply rewrite
rules that will transform and create new fixpoint operators, with their respective
constant and recursive parts, while maximizing the sharing of the existing subparts.

For example, Figure 3.2 and Figure 3.3 illustrate sample RLQDAG structures
obtained after the process of expansion, that consists in populating the space
of equivalent plans obtained by applying possible transformations. Expanded
RLQDAGs can represent large sets of algebraic terms, while sharing common
subterms. Figures 3.2 and 3.3 respectively illustrate sample expanded RLQDAGs
obtained for two UCRPQ queries taken from [Jachiet et al., 2020]. The query
corresponding to Figure 3.2 is:

?area ← <wikicategory_Capitals_in_Europe>

-rdf:type/(<isLocatedIn>+/<dealsWith>|<dealsWith>)

?area

3.2. RECURSIVE STRUCTURE IN THE RLQDAG: PRINCIPLES 69

and the query corresponding to Figure 3.3 is:

?a← ?a <isLocatedIn>+/<isConnectedTo>+/<dealsWith>+ <Japan>

The RLQDAG shown in Figure 3.2 represents 296 terms, and the one of Fig-
ure 3.2 represents 436 terms. Some equivalence nodes are shared between several
terms. This can be noticed by the many arrows that point to the same equivalence
nodes. The rewrite rules used to generate these factorized representations of plan
spaces are the ones of relational algebra described in Section 2.2.4 adapted to
operate on the RLQDAG, and the ones concerning fixpoints that will be presented
in Section 3.6.

In the sequel, we introduce the RLQDAG more formally.

70 CHAPTER 3. RLQDAG

π
(s
rc
)

π
(s
rc
)

∪
∪

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

π
(c
o
l3
)

∪

π
(c
o
l3
)

∪

⋈
∪

π
(p
re
d
ic
at
e)

σ
(p
re
d
ic
at
e=
'r
d
f:
ty
p
e'
)

ρ
_
{
sr
c→
co
l3
;
tr
g
→
sr
c}
y
ag
o
fa
ct
s_
w
it
h
_
id

∪

π
(c
o
l2
)

⋈ μ

π
(p
re
d
ic
at
e)

σ
(p
re
d
ic
at
e=
'<
is
L
o
ca
te
d
In
>
')

ρ
_
{
sr
c→
co
l3
;
tr
g
→
co
l2
}
y
ag
o
fa
ct
s_
w
it
h
_
id

π
(c
o
l1
)

⋈

π
(p
re
d
ic
at
e)

σ
(p
re
d
ic
at
e=
'<
is
L
o
ca
te
d
In
>
')

ρ
_
{
sr
c→
co
l1
;
tr
g
→
co
l2
}
y
ag
o
fa
ct
s_
w
it
h
_
id

ρ
_
{
co
l2
→
co
l1
}
X
1

π
(p
re
d
ic
at
e)

σ
(p
re
d
ic
at
e=
'<
d
ea
ls
W
it
h
>
')

ρ
_
{
sr
c→
co
l2
;
tr
g
→
ar
ea
}
y
ag
o
fa
ct
s_
w
it
h
_
id

π
(p
re
d
ic
at
e)

σ
(p
re
d
ic
at
e=
'<
d
ea
ls
W
it
h
>
')

ρ
_
{
sr
c→
co
l3
;
tr
g
→
ar
ea
}
y
ag
o
fa
ct
s_
w
it
h
_
id

⋈
⋈

π
(c
o
l3
)

π
(c
o
l3
)

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

⋈

∪

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

π
(p
re
d
ic
at
e)

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

σ
(p
re
d
ic
at
e=
'r
d
f:
ty
p
e'
)

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

⋈
σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

⋈

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

π
(c
o
l3
)

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

π
(c
o
l3
)

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

∪
π
(c
o
l3
)

π
(c
o
l3
)

∪

⋈
∪

∪

π
(c
o
l2
)

μ

⋈
μ

μ π
(c
o
l1
)

⋈

π
(p
re
d
ic
at
e)

σ
(p
re
d
ic
at
e=
'<
is
L
o
ca
te
d
In
>
')

ρ
_
{
sr
c→
co
l3
;
tr
g
→
co
l1
}
y
ag
o
fa
ct
s_
w
it
h
_
id

ρ
_
{
co
l3
→
co
l1
}
X
1

⋈
π
(c
o
l1
)

⋈

ρ
_
{
co
l3
→
co
l1
}
X
1

π
(c
o
l2
)

π
(c
o
l1
)

⋈

ρ
_
{
co
l3
→
co
l1
}
X
1

⋈

π
(c
o
l3
)

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

π
(c
o
l3
)

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

⋈

σ
(s
rc
=
'<
w
ik
ic
at
eg
o
ry
_
C
ap
it
al
s_
in
_
E
u
ro
p
e>
')

⋈

∪

π
(s
rc
)

π
(s
rc
)

π
(s
rc
)

F
ig

ur
e

3.
2:

E
xp

an
de

d
R

LQ
D

A
G

ex
am

pl
e.

3.2. RECURSIVE STRUCTURE IN THE RLQDAG: PRINCIPLES 71

π(
trg
)

π(
trg
)

π(
trg
)

μ
π(
trg
)

π(
trg
)

μ
π(
trg
)

μ
π(
trg
)

μ

π(
trg
)

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

μ

π(
co
l5)

μ
μ

μ

⋈

μ
μ

μ

π(
co
l3)

μ
μ

μ

⋈

μ
μ

μ

μ

π(
pr
ed
ica
te)

σ(
pr
ed
ica
te=
'<i
sL
oc
ate
dI
n>
')

ρ_
{s
rc→

a;
trg
→
co
l3}
ya
go
fac
ts_
wi
th_
id

π(
co
l1)

⋈

π(
pr
ed
ica
te)

σ(
pr
ed
ica
te=
'<i
sL
oc
ate
dI
n>
')

ρ_
{s
rc→

a;
trg
→
co
l1}
ya
go
fac
ts_
wi
th_
id

ρ_
{a
→
co
l1}
X1

μ

π(
pr
ed
ica
te)

σ(
pr
ed
ica
te=
'<i
sC
on
ne
cte
dT
o>
')

ρ_
{s
rc→

co
l3;

 tr
g→

co
l5}
ya
go
fa
cts
_w
ith
_id

π(
co
l2)

⋈

π(
pr
ed
ica
te)

σ(
pr
ed
ica
te=
'<i
sC
on
ne
cte
dT
o>
')

ρ_
{s
rc→

co
l2;

 tr
g→

co
l5}
ya
go
fa
cts
_w
ith
_id

ρ_
{c
ol5

→
co
l2}
X2

⋈
μ

⋈
π(
co
l1)

⋈

ρ_
{a
→
co
l1}
X1

π(
co
l2)

⋈

ρ_
{c
ol5

→
co
l2}
X2

∪

π(
co
l2)

⋈

ρ_
{c
ol5

→
co
l2}
X1

⋈
μ

π(
co
l3)

μ

π(
co
l3)

π(
co
l1)

⋈

ρ_
{a
→
co
l1}
X1

π(
co
l2)

⋈

ρ_
{c
ol5

→
co
l2}
X2

π(
co
l3)

μ
∪

π(
co
l2)

⋈

ρ_
{c
ol5

→
co
l2}
X1

μ

π(
pr
ed
ica
te)

σ(
pr
ed
ica
te=
'<d
ea
lsW

ith
>')

ρ_
{s
rc→

co
l5}
ya
go
fac
ts_
wi
th_
id

π(
co
l4)

⋈

π(
pr
ed
ica
te)

σ(
pr
ed
ica
te=
'<d
ea
lsW

ith
>')

ρ_
{s
rc→

co
l4}
ya
go
fac
ts_
wi
th_
id

ρ_
{tr
g→

co
l4}
X3

⋈
μ ⋈

π(
co
l4)

⋈

ρ_
{tr
g→

co
l4}
X3

π(
co
l1)

⋈

ρ_
{a
→
co
l1}
X1

⋈
μ

∪

π(
co
l4)

⋈

ρ_
{tr
g→

co
l4}
X1

π(
co
l5)

∪

π(
co
l1)

⋈

ρ_
{a
→
co
l1}
X1

π(
co
l4) ⋈

ρ_
{tr
g→

co
l4}
X1

π(
co
l5)

μ

π(
co
l4) ⋈

ρ_
{tr
g→

co
l4}
X3

π(
co
l5)

μ

σ(
trg
='<
Ja
pa
n>
')

⋈

μ

σ(
trg
='<
Ja
pa
n>
')

σ(
trg
='<
Ja
pa
n>
')

⋈

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

π(
co
l5)

μ

⋈
μ

π(
co
l3)

μ

⋈
μ

μ

π(
co
l1) ⋈

π(
pr
ed
ica
te)

σ(
pr
ed
ica
te=
'<i
sL
oc
ate
dI
n>
')

ρ_
{s
rc→

co
l1;

 tr
g→

co
l3}
ya
go
fa
cts
_w
ith
idρ
{c
ol3

→
co
l1}
X1

⋈

π(
co
l3)

⋈

π(
co
l5)

σ(
trg
='<
Ja
pa
n>
')

⋈

σ(
trg
='<
Ja
pa
n>
')

μ
π(
co
l5)

π(
co
l5)

μ

⋈
μ

μ

π(
co
l4)

⋈

π(
pr
ed
ica
te)

σ(
pr
ed
ica
te=
'<d
ea
lsW

ith
>')

ρ_
{s
rc→

co
l5;

 tr
g→

co
l4}
ya
go
fa
cts
_w
ith
_id

ρ_
{c
ol5

→
co
l4}
X3

⋈

π(
co
l5)

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

σ(
trg
='<
Ja
pa
n>
')

⋈

σ(
trg
='<
Ja
pa
n>
')

μ

σ(
trg
='<
Ja
pa
n>
')

π(
pr
ed
ica
te)

σ(
trg
='<
Ja
pa
n>
')

σ(
pr
ed
ica
te=
'<d
ea
lsW

ith
>')

σ(
trg
='<
Ja
pa
n>
')

σ(
trg
='<
Ja
pa
n>
')

⋈

μ

π(
trg
)

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

π(
co
l5)

⋈

π(
co
l3)

⋈ μ

π(
co
l2)

⋈

π(
pr
ed
ica
te)

σ(
pr
ed
ica
te=
'<i
sC
on
ne
cte
dT
o>
')

ρ_
{s
rc→

co
l3;

 tr
g→

co
l2}
ya
go
fa
cts
_w
ith
_id

ρ_
{c
ol3

→
co
l2}
X2

σ(
trg
='<
Ja
pa
n>
')

⋈

π(
co
l1)

⋈

ρ_
{a
→
co
l1}
X1

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

π(
co
l5)

⋈

π(
co
l3)

⋈

σ(
trg
='<
Ja
pa
n>
')

⋈

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

μ

π(
co
l5)

μ
μ

μ

⋈

μ
μ

μ

π(
co
l3)

μ

⋈

μ

⋈
μ

⋈

⋈
μ

π(
co
l5)

μ

π(
co
l5)

π(
co
l5)

μ

σ(
trg
='<
Ja
pa
n>
')

μ

⋈
σ(
trg
='<
Ja
pa
n>
')

⋈

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

π(
trg
)

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

π(
co
l5)

⋈

σ(
trg
='<
Ja
pa
n>
')

⋈

π(
trg
)

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

π(
co
l5)

μ

⋈
μ

⋈

π(
co
l5)

σ(
trg
='<
Ja
pa
n>
')

⋈

π(
trg
)

σ(
trg
='<
Ja
pa
n>
')

π(
co
l5)

μ

π(
co
l5)

μ

⋈
μ

σ(
trg
='<
Ja
pa
n>
')

⋈

μ

F
ig

ur
e

3.
3:

A
no

th
er

ex
pa

nd
ed

R
LQ

D
A

G
ex

am
pl

e.

72 CHAPTER 3. RLQDAG

3.3 Syntax of RLQDAG terms

The syntax of RLQDAG terms is presented in Figure 3.4, where a, b denote
column names and f is a filter expression. The entrypoint syntactic construct is
an equivalence node

[
α
]
. This means that every RLQDAG is an

[
α
]

at top-level.
An equivalence node is a node that regroups several operation nodes d, possibly

with binders. The binder construct “let Y = α1 in α2” enables the explicit sharing
of a common equivalence node α1 within the branches of another equivalence
node α2. For that purpose, it assigns a new fresh name Y to α1, and allows Y
to be used multiple times in α2 as a reference to α1. The general definition of
an equivalence node γ is either an equivalence node

[
α
]

or a reference Y to an
existing equivalence node.

Operation nodes are defined by the variable d in the abstract syntax. Operation
nodes include the main algebraic operations of recursive relational algebra. Each
operand of an operation node d is in turn an equivalence node γ.

The rename operator ρba (γ) renames column a into column b in the equivalence
node1. γ. The filter operator σf (γ) applies the filtering expression f to the
equivalence node γ. The antiprojection operator π̃a(γ) removes column a from
the equivalence node γ.

Recursive terms can be expressed using fixpoint operation nodes. The principle,
inspired from earlier works in recursive relational algebras [Aho and Ullman, 1979,
Jachiet et al., 2020], consists in the introduction of a least-fixpoint binder oper-
ation node (µ) that binds a fresh variable X to some expression in which the
variable X can appear, thus explicitly denoting recursion. In the RLQDAG, as
defined in the abstract syntax of Fig. 3.4 and illustrated in Fig. 3.1, a fixpoint
operator node is written µX. γ ∪ αrec. The first operand γ is an equivalence node
that models the constant part (the base case) of the recursion. X cannot occur
within γ. The other equivalence node αrec is the recursive part. An important
aspect is that αrec contains at least one free occurrence of the recursive variable
X. This is a major difference between the fixpoint operation node and the other
operation nodes. This aspect will lead to a number of new definitions and formal
developments. This is because depending on how the recursive variable is used in
that branch, the transformation and sharing of subterms in the RLQDAG may,
or may not, be allowed.

For example, the following RLQDAG term corresponds to the transitive closure
of some relation A:

µX.
[
A
]
∪
[[
A
]
▷◁
[
X
]]R

D

In this case, the equivalence node for the constant part contains the relation
variable A, and the equivalence node for the recursive part is composed of the join
between A and X. In a RLQDAG, the recursive equivalence node of each fixpoint
operation node is annotated (with annotations D and R). These annotations will

1As a slight discrepancy between the theory and its implementation, in the prototype
implementation we automatically push, combine and simplify renamings so that they appear
only in front of variables X. So the core syntax for the rename operator in the implementation
is ρ{a7→b,...,w 7→z}(X). The implementation also provides a way to denote ρba (γ) as a syntactic
sugar that is automatically translated into the core syntax.

3.3. SYNTAX OF RLQDAG TERMS 73

γ ::= Pointer to equivalence node[
α
]

Equivalence node

| Y Reference

α ::= Equivalence node internals

d Operation node

| d, α Operation nodes

| let Y = α1 in α2 Reference binder

d ::= Operation node

X Relation variable

| ρba(γ) Rename

| σf (γ) Filter

| γ ▷◁ γ′ Join

| γ ▷ γ′ Antijoin

| γ ∪ γ′ Union

| π̃a(γ) Antiprojection

| µX. γ ∪ αrec Fixpoint (recursion)

αrec ::= Annotated equivalence node[
α
]R
D

Figure 3.4: Syntax of RLQDAG terms.

74 CHAPTER 3. RLQDAG

be useful for guiding the application of transformations and will be defined and
explained in Section 3.5.1.

One major difference between the fixpoint operator and the other binary
operators is that terms present in the recursive part of the fixpoint (αrec) contain
free occurences of the recursive variable. There are two reasons why we distinguish
αrec from a general equivalence node α in the abstract syntax. The first reason is
that those equivalence nodes for recursive parts are equipped with annotations
(detailed in Section 3.5.2.) that will be useful to control subterm transformation
and in particular to guide the application of generalized rewrite rules. The second
reason is that we want to allow a maximum level of sharing while preventing the
sharing of subterms with free occurences of a recursive variable. We thus forbid
the use of the binding construct to share subterms with free variables.

Furthermore, we consider the following (usual) restrictions over the abstract
syntax presented in Figure 3.4: we consider only positive, linear and non mutually
recursive RLQDAG terms:

• positive means that recursive variables only appear in the left-hand operand
of an antijoin;

• linear means that one of the operands in a join or antijoin operation is
constant in the free variable;

• Non-mutually recursive terms means that fixpoint terms are properly nested
in such a way that there is only one free variable in any fixpoint subterm
(this does not prevent this same variable to occur one or more times).

3.4 Semantics of RLQDAG terms

The interpretation of a RLQDAG term is the set of all µ-RA terms that it
represents. Formally, the semantics of a RLQDAG [α] is given by the functions
SαJK and SγJK presented in Figure 3.5, where E denotes a variable environment
used to keep track of the variable definitions introduced by binders for the sharing
of subterms. SαJαK∅ returns the interpretation of a RLQDAG [α].

Notion of well-formedness. A well-formed RLQDAG is a RLQDAG whose
interpretation is a set of semantically equivalent µ-RA terms:

Definition 5 (Well-formedness). A RLQDAG
[
α
]

is well-formed if and only if
∀t, t′ ∈ SαJαK∅, JtK∅ = Jt′K∅.

In this definition JtK∅ returns the interpretation of the individual recursive
relational algebraic term t (i.e. the set of mappings returned by t; or in other
terms the resulting relational table of t), as returned by the formal semantics
function JtKV of µ-RA terms defined in Chapter 2.

Types. The type of an operation node d is the set of column names obtained in
the result of the evaluation of any subbranch of d. In a well-formed RLQDAG, all
di under the same equivalence node are semantically equivalent, and thus have
the same type. For this reason, we also define the type of an equivalence node:

3.5. RECURSIVE TERMS AND RULE APPLICABILITY 75

Relation Variable SdJXKE = {X}

Filter SdJσf (γ)KE = { σf (t) | t ∈ SγJγKE}

Join SdJγ1 ▷◁ γ2KE = { t1 ▷◁ t2 | t1 ∈ SγJγ1KE ∧ t2 ∈ SγJγ2KE}

AntiJoin SdJγ1 ▷ γ2KE = { t1 ▷ t2 | t1 ∈ SγJγ1KE ∧ t2 ∈ SγJγ2KE}

Union SdJγ1 ∪ γ2KE = { t1 ∪ t2 | t1 ∈ SγJγ1KE ∧ t2 ∈ SγJγ2KE}

Rename SdJρba(γ)KE = { ρba(t) | t ∈ SγJγKE}

AntiProjection SdJπ̃a(γ)KE = { π̃a(t)| t ∈ SγJγKE}

Fixpoint SdJµX. γ ∪ αrecKE = {µX. t ∪ trec | t ∈ SγJγKE

∧ trec ∈ SαJαrecKE}

Equivalence node SαJdKE = SdJdKE

Equivalence node SαJd, αKE = SdJdKE ∪ SαJαKE

Equivalence node SαJlet Y = α1 in α2KE = SαJα2KE′ with E′ = E ⊕ {y 7→ α1}

Equivalence node SγJ[α]KE = SαJαKE

Equivalence node SγJY KE = SαJE(Y)KE

Figure 3.5: Formal semantics of RLQDAG terms.

type(γ) as the type of one of its operation nodes. Notice that the type of an
annotated equivalence node of some fixpoint operation node d corresponds to the
type of the equivalence node of the constant part of d. For a given filter operation
node σf (γ), we denote by filt(f) ⊆ type(σf (γ)) the subset of column names used
in the filtering function f .

3.5 Recursive terms and rule applicability

A significant novelty introduced by recursion when compared to the classical
setting of non-recursive algebraic terms resides in the criteria used to trigger
rewrite rules. In the classical non-recursive setting these criteria are trivial in
the sense that they only depend on top-level operators. For example, when
applying join distributivity over union, the applicability of the rewrite rule
A ▷◁ (B ∪ C) −→ (A ▷◁ B) ∪ (A ▷◁ C) can be determined by examining
only the combination of the two top-most operators, i.e. the top-level (▷◁) with
the operator immediately underneath (i.e. ∪). For some other rewrite rules,

76 CHAPTER 3. RLQDAG

applicability criteria may also include some additional verifications such as (non)-
interaction between e.g. the set of columns being filtered, or the columns being
removed (in the cases of filter and antiprojection, respectively). In any case of the
non-recursive setting, these verifications need only to look at the two top-most
algebraic operators under scrutiny (and their potential immediate parameters).
No further traversal of subtrees of operators are required. For instance, in the
previous example of join distributivity over union, B and C do not need to be
traversed at all when determining rule applicability.

In sharp contrast, rules for transforming recursive terms rely on criteria that are
significantly more sophisticated as they sometimes require a whole traversal of the
recursive part of a fixpoint term. This is because opportunities for rule application
with recursive terms depend on how the recursive variable is used within the
recursive parts of fixpoints. It is known since the works of [Aho and Ullman, 1979,
Kifer and Lozinskii, 1990, Jachiet et al., 2020] that criteria for rule application
are significantly more sophisticated in the presence of recursion as they need to
examine how the recursive variables are used. We show that it is still possible to
apply rules over sets of recursive terms at once, using the concept of annotated
equivalence nodes, that we define in § 3.5.2, and for which we need some preliminary
definitions.

3.5.1 Preliminary definitions of auxiliary functions in RLQDAG

Definition 6 (Unfolding). Let α be an equivalence node. The unfolding of α,
denoted unfold(α) is α in which all occurrences of equivalence node variable
names Y are replaced by their definitions (binders are simply unfolded).

We now define two auxiliary functions over RLQDAG terms, that generalize
the definitions for individual algebraic terms found in [Jachiet et al., 2020]. These
functions will be used for defining annotated equivalence nodes in Section 3.5.2.

Inspired from [Jachiet et al., 2020] we define the destabilizer (destab()) as the
set of columns that can be changed during an iteration of the fixpoint. destab()
can be seen as the complement of the stabilizer calculated for individual terms in
µ-RA [Jachiet et al., 2020], which is generalized for RLQDAG terms (i.e. sets of
µ-RA terms). The calculation of destab() relies on a set of derivations, and it
needs to traverse term subtrees in order to analyze how the occurrence of free
variables are used.

Definition 7. For a fixpoint operation node µX. γ ∪ αrec we consider α′ =
unfold(αrec) and we define destab(α′, X) as the following set of column names:

destab(α′, X) = {c ∈ C | ∃p ∈ d(α′, X) p(c) ̸= c}

where d(·, ·) computes the set of derivations [Jachiet et al., 2020] over a
RLQDAG term:

3.5. RECURSIVE TERMS AND RULE APPLICABILITY 77

d((d, α), X) = d(d,X)

d(
[
α1

]
∪
[
α2

]
, X) = d(α1, X) ∪ d(α2, X)

d(
[
α1

]
▷
[
α2

]
, X) = d(α1, X)

d(
[
α1

]
▷◁
[
α2

]
, X) = d(α1, X) ∪ d(α2, X)

d(ρba(
[
α
]
), X) = {p ◦ (b→ a, a→⊥) | p ∈ d(α,X)}

d(π̃a(
[
α
]
), X) = {p ◦ (a→⊥) | p ∈ d(α,X)}

d(σf (
[
α
]
), X) = d(α,X)

d(µ(Z. γ ∪
[
α
]R
D
), X) = ∅

d(X,X) = {()} (a singleton identity)

d(R,X) = ∅
and where ◦ represents the composition and (a1 → b1, ..., an → bn) denotes the
function that maps each ai to its bi and every other column name to itself.

Notion of rigidity in RLQDAG We define a function rigid () that computes
the set of columns that cannot be added nor removed from a fixpoint operation
node. Intuitively, rigid () can be thought as the “complement” of the boolean
predicate add (introduced for individual terms in µ-RA [Jachiet et al., 2020]) but
which is generalized for a RLQDAG term, and returns a set of columns (instead
of a boolean). A column c ∈ C cannot be added nor removed from an annotated
equivalence node αrec (recursive in X) when c ∈ rigid(unfold(α), X) and
rigid () is defined as follows:

Definition 8 (Rigidity).
rigid((d, α), X) = rigid(d,X)

rigid(
[
α1

]
∪
[
α2

]
, X) = rigid(α1, X) ∪ rigid(α2, X)

rigid(
[
α1

]
▷◁
[
α2

]
, X) = rigid(α1, X) ∪ rigid(α2, X)

rigid(
[
α1

]
▷
[
α2

]
, X) = rigid(α1, X) ∪ rigid(α2, X)

rigid(ρba(
[
α
]
), X) = rigid(α,X) ∪ {a, b}

rigid(π̃a(
[
α
]
), X) = ∅ when X /∈ free(α)

= rigid(α,X) ∪ {a} otherwise

rigid(σf (
[
α
]
), X) = rigid(α,X) ∪ filt(f)

rigid(µ(Z.γ∪
[
α
]R
D
), X) = rigid(α,X) ∪ rigid(γ,X)

rigid(R,X) = type(R) when X ̸= R

rigid(X,X) = ∅

78 CHAPTER 3. RLQDAG

3.5.2 Annotated equivalence node

An annotated equivalence node (αrec in the abstract syntax of RLQDAG terms
given in Fig. 3.4) is an equivalence node of a recursive part of a fixpoint, which is
annotated with information that characterize how the recursive variable is used.
Specifically:

Definition 9. Given a RLQDAG operation node d = µX. γ ∪ αrec , the
annotated equivalence node αrec is defined as:

[
α
]R
D

where D = destab(α,X) and R = rigid(α,X).

Annotations D and R are intended to characterize all the subterms of the
annotated equivalence node (thanks to definition 10). The goal of annotated equiv-
alence nodes is to guide and maximize the grouped application of transformations,
while also maximizing the sharing of common subterms.

In the sequel, we detail RLQDAG transformations, by introducing new rewrite
rules that are capable of transforming sets of subterms at once.

Intuition. Annotations play a crucial role for the application of rewrite rules in
RLQDAG. Rewrite rules apply only for RLQDAG branches that satisfy criteria
depending on annotations. For example, in Figure 3.6, an initial RLQDAG
is shown with two recursive terms (in black color) that are joined together.
Annotations D,R and D′,R′ are shown in the Figure for the two annotated
equivalence nodes. It may happen that some of these annotations prevent rule
applicability. For example, in this case D and R do not allow the join operator
to be pushed in the fixpoint of the first term, whereas for the second term,
annotations D′ and R′ allow it to be pushed. Annotations let us guide rewrite
rule application in RLQDAG. By this rule application, the term shown in green
color is generated and added to the set of terms of the same initial equivalence
node as the first two terms. The new term is created, and some of its subparts are
shared. Another annotated equivalence node is created with potentially different
annotations D′′ and R′′. In the sequel, we detail RLQDAG transformations, by
introducing new rewrite rules that are capable of transforming sets of subterms
at once.

3.5. RECURSIVE TERMS AND RULE APPLICABILITY 79

µ rec1µ
rec

⋈

⋈⋈

const

D
D'

R
R'

µ

rec2

⋈

D''

R''

⋈

co
ns
t 2

con
st 1

Figure 3.6: Sample of a recursive term and rewrite rule application.

Notion of consistency Intuitively, a RLQDAG is consistent iff it is well-formed
and in addition, for any of its annotated equivalence node

[
α2

]R
D

, the annotations
D and R are the same for all operation nodes directly underneath (no matter
on which subbranch of the equivalence node they are computed, they coincide).
More formally:

Definition 10 (Consistency). A RLQDAG
[
α
]

is consistent iff:

1. it is well-formed;

2. for all fixpoint operator node µX. γ∪
[
α2

]R
D

occurring in α, we have cons(α2, X)RD

where:

cons(
[
d
]
, X)RD = destab(d,X) = D

∧ rigid(d,X) = R

cons(
[
d, α

]
, X)RD = destab(d,X) = D

∧ rigid(d,X) = R

∧ cons(
[
α
]
, X)RD

In the remaining, we only consider consistent RLQDAGs2.

2In particular in Chapter 4 where we introduce functions that generate RLQDAGs, we pay
attention that all generated RLQDAGs are consistent RLQDAGs.

80 CHAPTER 3. RLQDAG

3.6 Generalized rewrite rules for transforming sets of
recursive terms

We now propose RLQDAG transformations whose purpose is to efficiently build
the space of equivalent recursive plans. RLQDAG transformations generalize the
rewrite rules proposed in [Jachiet et al., 2020] for individual µ-RA terms so that
they can operate on the RLQDAG representation: i.e. on sets of µ-RA terms
at once (instead of successively on individual terms). RLQDAG transformations
leverage annotated equivalence nodes to guide the transformation of subterms.
They also update the RLQDAG structure with new annotations when needed,
in an incremental manner. The incremental aspect for updating annotations is
important as it avoids numerous subterm traversals, thus enabling more efficient
grouped transformations.

For each fixpoint transformation operation, we describe which parts are shared,
how new generated terms are attached and what happens with the other plans
already present in the equivalence node. The creation of new combinations of
operation nodes may in turn generate more opportunties for transformations that
are also explored.

For each fixpoint transformation operation, we show which parts are shared,
where new terms created are added and what happens with the other plans already
present in the equivalence node. Even though some subterms are not changed
by the rewrite rule, some require to be explored in search for more opportunities
for transformation. Furthermore, the creation of new combinations of operators
may in turn generate more opportunties for transformations that also need to be
properly explored.

We formalize all these ideas by introducing RLQDAG rewrite rules, based on
the syntax of RLQDAG terms introduced in Section 3.3. Specifically, RLQDAG
rewrite rules are formalized as functions that take an equivalence node γ and
return another equivalence node γ′ obtained after applying transformations.

Pushing filters into fixpoint operation nodes For pushing filters into
sets of recursive terms, we introduce a function pf(), defined by considering all
the syntactic decomposition cases of the input γ. Fig. 3.7 focuses on the two
main cases that correspond to potential opportunities of pushing filters, i.e. the
cases pf(

[
d
]
) and pf(

[
d, α

]
) where d filters an equivalence node which contains

a recursive subterm. For all the other cases, pf() does not reorder operation
nodes in the RLQDAG structure but simply traverses it in search for further
transformation opportunities underneath3.

3For instance, two sample cases are the following:

pf(µX. γ ∪
[
α
]R
D
) = µX. expand(γ) ∪

[
expand(α)

]R
D

pf(
[[
A
]

▷◁
[
B
]]
) = expand(

[
A
]
) ▷◁ expand(

[
B
]
)

where the expand() function, defined in Section 3.7, simply traverses subterms in search for
more transformation opportunities. pf() is defined similarly for all the other syntactic cases of γ.

3.6. GENERALIZED REWRITE RULES FOR TRANSFORMING SETS OF
RECURSIVE TERMS 81

pf(
[
σf (

[
µX. γ ∪

[
α
]R
D

]
)
]
) =

•
[
µX ′. expand(

[
σf (γ)

]
) ∪

[
expand(α{X/X′})

]R′

D

]
when filt(f) ∩D = ∅

•
[
σf (expand(

[
µX. γ ∪

[
α
]R
D

]
))

]
otherwise

pf(
[
σf (

[
µX. γ ∪

[
α
]R
D
, α2

]
)
]
) =

•
[
µX ′. expand(

[
σf (γ)

]
) ∪

[
expand(α{X/X′})

]R′

D
,

expand(
[
σf (

[
α2

]
)
]
)

]
when filt(f) ∩D = ∅

•
[
σf (expand(

[
µX. γ ∪

[
α
]R
D
, α2

]
)) ,

expand(
[
σf (

[
α2

]
)
]
)

]
otherwise

where R′ = R ∪ filt(f) and α{X/X′} denotes α in which all occurrences of X are
replaced by X ′.
Figure 3.7: Pushing a filter in an equivalence node containing a fixpoint operation
node.

In Fig. 3.7, whenever the filter can be pushed through the fixpoint operation
node, pf() generates a new RLQDAG in which the filter operation node is put
within the constant part of the fixpoint operation node. In the resulting equivalence
node, the initial (suboptimal) term is replaced by the new term where filtering
is done earlier (hence more efficient). For this transformation to happen, the
criteria (on the last line of Fig. 3.7) must be satisfied. Whenever it is not the
case, the RLQDAG structure is not reordered but simply recursively traversed in
search for more transformation opportunites. The creation of new combinations
of operation nodes may in turn provide new opportunities for other rewritings
(for instance, new opportunities for pushing filters even further, or even other
kinds of rewritings). This is the role of the expand() function, formally defined in
section 3.7. Intuitively, a call to expand() on an equivalence node may further
populate the equivalence node with new subterms. The expand() function is in
charge of exploring all opportunities for transformations. This is useful because
other rewrite rules may apply, and the expand() function basically triggers all
possible applications of all rewrite rules.

Fig. 3.8 illustrates graphically a RLQDAG before transformation, and Fig. 3.9
depicts its updated structure obtained after the transformation defined in Fig. 3.7.

Notice that when γ is a reference Y , there is no need to introduce a new binder, the reference
name is used directly.

82 CHAPTER 3. RLQDAG

σ(f)

constrec

μ

α2

D

R

Figure 3.8: Initial RLQDAG before ex-
pansion with opportunity to apply pf().

co
ns

t

σ(f)

μ
rec

D'
R'

σ(f)

α2

Figure 3.9: Expansion of a RLQDAG by
pushing a filter in a fixpoint operation
node, with branches added by pf() in
blue color.

New branches created by pf() are represented in blue color (on both figures).
The new term is added in the same equivalence node as the previous term, since
they are semantically equivalent. Notice the incremental update of annotations
performed by pf() in Fig. 3.7: the annotations of the newly created term (in blue)
are obtained from the annotations of the initial term. In that case D is simply
propagated whereas R′ = R ∪ filt(f).

Pushing joins into fixpoint operation nodes For pushing joins into sets
of recursive terms we define a function pj(). pj() takes an equivalence node γ as
input and returns an expanded equivalence node γ′ that contains all the subterms
in γ with, in addition, all the subterms where all joins pushable in fixpoint
operation nodes have been pushed. We define pj() for all possible syntactic
decompositions of a RLQDAG. Fig. 3.10 presents the definition of pj() for the
two main cases of interest. Again, other cases are defined without structure
rearrangement but involving recursive calls to expand() in search for further
transformation opportunites underneath.

Notice that whenever a join can be pushed within a fixpoint operation node
(see Fig. 3.10), it is possible to share the constant part of the fixpoint operation
node. This is made explicit by the creation of the outermost “let” binder whose
goal is to define and associate a name to the equivalence node, so that it can be
refered multiple times (thus explicitly showing the sharing of subterms). Fig. 3.11
illustrates graphically the RLQDAG generated in Fig. 3.10. It shows that the
newly created branch (in blue color) extends the set of semantically equivalent
terms of the existing equivalence node.

3.6. GENERALIZED REWRITE RULES FOR TRANSFORMING SETS OF
RECURSIVE TERMS 83

pj(
[
β ▷◁

[
µX. γ ∪

[
α
]R
D

]]
) =

• let const = γ in[[
expand(β) ▷◁ expand(

[
µX. const ∪

[
α
]R
D

]
)
]
,

µX ′. expand(
[
β ▷◁

[
const

]]
) ∪

[
expand(α{X/X′})

]R′

D′

]
when type(β) ∩D = ∅ and type(β)\type(γ) ∩R = ∅

•
[
expand(β) ▷◁ expand(

[
µX. γ ∪

[
α
]R
D

]
)
]

otherwise

pj(
[
β ▷◁

[
µX. γ ∪

[
α
]R
D
, α2

]]
) =

• let const = γ in[[
expand(β) ▷◁ expand(

[
µX. const ∪

[
α
]R
D
, α2

]
)
]
,

µX ′. expand(
[
β ▷◁

[
const

]]
) ∪

[
expand(α{X/X′})

]R′

D′ ,[
expand(β) ▷◁ expand(

[
α2

]
)
]]

when type(β) ∩D = ∅ and type(β)\type(γ) ∩R = ∅

•
[[
expand(β) ▷◁ expand(

[
µX. γ ∪

[
α
]R
D
, α2

]
)
]
,[

expand(β) ▷◁ expand(
[
α2

]
)
]]

otherwise

where we define4 D′ = D ∪ destab(β,X) and R′ = R ∪ rigid(β,X).
Figure 3.10: Pushing join in an equivalence node containing a fixpoint operation
node.

84 CHAPTER 3. RLQDAG

⋈

constrec

μ
const

⋈

μ

βα2

Figure 3.11: Expansion of a RLQDAG by pushing a join in a fixpoint operation
node. The initial RLQDAG is in black color, and parts added by pj() are in blue
color.

Merging fixpoint operation nodes The function mf() defined in Fig. 3.12
takes an input γ and returns an equivalence node γ′ containing all the subterms
in γ with, in addition, all the terms in which recursions that can be merged
are merged. A merging happens whenever (i) two recursions are joined and
(ii) their annotated equivalence nodes allow them to be merged into a single
recursion, as described in Fig. 3.12. The constant part of the new recursive term
created is the join of the constant parts of the two initial fixpoints, and a new
recursive part is created. Since the constant part has changed, a new recursive
variable is introduced and recursive parts are also new (and cannot be shared5).
New equivalence nodes are created. Fig. 3.13 illustrates the new recursive term
produced, using subterm-sharing, after the transformation.

5This does not prevent the sharing of potential subparts with no occurrence of a free variable.

3.6. GENERALIZED REWRITE RULES FOR TRANSFORMING SETS OF
RECURSIVE TERMS 85

mf(
[[
µX1. γ1 ∪

[
α1

]R1

D1

]
▷◁

[
µX2. γ2 ∪

[
α2

]R2

D2

]]
) =

• let const1 = γ1 in

let const2 = γ2 in[
expand(

[
µX1. const1 ∪

[
α1

]R1

D1

]
) ▷◁ expand(

[
µX2. const2 ∪

[
α2

]R2

D2

]
) ,

µX. expand(
[
const1 ▷◁ const2

]
) ∪ expand(

[
α1{X1/X} ∪ α2{X2/X}

]R
D
)

]
when (type(γ1) ∩ type(γ2)) ∩ (D1 ∪D2) = ∅ and type(γ1)\type(γ2) ∩R2 = ∅

and type(γ2)\type(γ1) ∩R1 = ∅

• expand(
[
µX1. const1 ∪

[
α1

]R1

D1

]
) ▷◁ expand(

[
µX2. const2 ∪

[
α2

]R2

D2

]
) otherwise

mf(
[[
µX1. γ1 ∪

[
α1

]R1

D1
, α3

]
▷◁

[
µX2. γ2 ∪

[
α2

]R2

D2
, α4

]]
) =

• let const1 = γ1 in

let const2 = γ2 in[
expand(

[
µX1. const1 ∪

[
α1

]R1

D1

]
) ▷◁ expand(

[
µX2. const2 ∪

[
α2

]R2

D2

]
) ,

µX. expand(
[
const1 ▷◁ const2

]
) ∪ expand(

[
α1{X1/X} ∪ α2{X2/X}

]R
D
) ,

expand(
[
α3

]
) ▷◁ expand(

[
µX2. γ2 ∪

[
α2

]R2

D2
, α4

]
) ,

expand(
[
α4

]
) ▷◁ expand(

[
µX1. γ1 ∪

[
α1

]R1

D1
, α3

]
)

]
when (type(γ1) ∩ type(γ2)) ∩ (D1 ∪D2) = ∅ and type(γ1)\type(γ2) ∩R2 = ∅

and type(γ2)\type(γ1) ∩R1 = ∅

•
[
expand(

[
µX1. γ1 ∪

[
α1

]R1

D1
, α3

]
) ▷◁ expand(

[
µX2. γ2 ∪

[
α2

]R2

D2
, α4

]
) ,

expand(
[
α3

]
) ▷◁ expand(

[
µX2. γ2 ∪

[
α2

]R2

D2
, α4

]
) ,

expand(
[
α4

]
) ▷◁ expand(

[
µX1. γ1 ∪

[
α1

]R1

D1
, α3

]
)

]
otherwise

where6 D = D1 ∪ D2 and R = R1 ∪ R2 and αi{Xi/X} denotes αi in which all
occurrences of Xi are replaced by X.

Figure 3.12: Merging fixpoint operation nodes.

86 CHAPTER 3. RLQDAG

⋈

const1rec
1 μ1 ⋈

μ

const2rec
2 μ2

U

α4

co
ns
t rec

α3

Figure 3.13: RLQDAG structure after merging fixpoint operation nodes.

3.6. GENERALIZED REWRITE RULES FOR TRANSFORMING SETS OF
RECURSIVE TERMS 87

pp(
[
π̃a

[
µX. γ ∪

[
α
]R
D

]]
) =

•
[
µX ′. expand(

[
π̃a(γ)

]
) ∪

[
expand(α{X/X′})

]R′

D′

]
when a /∈ R

•
[
π̃a(expand(

[
µX. γ ∪

[
α
]R
D

]
))

]
otherwise

pp(
[
π̃a (

[
µX. γ ∪

[
α
]R
D
, α2

]
)
]
) =

•
[
µX ′. expand(

[
π̃a(γ)

]
) ∪

[
expand(α{X/X′})

]R′

D′ ,

expand(
[
π̃a(

[
α2

]
)
]
)

]
when a /∈ R

•
[
π̃a(expand(

[
µX. γ ∪

[
α
]R
D
, α2

]
)) ,

expand(
[
π̃a(

[
α2

]
)
]
)

]
otherwise

where D′ = D ∪ {a} and R′ = R ∪ {a}.
Figure 3.14: Pushing antiprojection in an equivalence node containing at least
one fixpoint operation node.

constrec

μ

α2

Figure 3.15: Initial RLQDAG before
expansion with opportunity to apply
pp().

co
ns
t

μ

rec

α2

Figure 3.16: Expansion of a RLQDAG
by pushing an antiprojection in a fix-
point operation node. The part added
by pp() is in blue color.

Pushing antiprojections into fixpoint operation nodes For pushing an-
tiprojections into fixpoint operation nodes we introduce a function pp() that takes
an equivalence node γ as input and returns an expanded equivalence node γ′

where all pushable antiprojections have been pushed. pp() is defined in Fig. 3.14.

The antiprojection is pushed when the criteria allows it, and this results in the

88 CHAPTER 3. RLQDAG

creation of a new term which replaces the initial one in the existing equivalence
node. Whenever the criteria is not satisfied, the initial term is left unchanged,
but traversed in search for more transformation oppotunities.

Fig. 3.15 illustrates graphically the RLQDAG before the transformations.
Fig. 3.16 shows the graphical representation of the RLQDAG obtained by the
transformation of Fig. 3.14.

Pushing antijoins into fixpoint operation nodes For pushing antijoins into
fixpoints we introduce a function pa() that takes an equivalence node γ as input
and returns an expanded equivalence node γ′ that contains all the subterms in γ
with, in addition, all the subterms where all pushable antijoins have been pushed
in fixpoint operation nodes. pa() is defined in Fig. 3.17. Again, Fig. 3.17 focuses
on the syntactic cases that correspond to when an antijoin might be pushed in
a fixpoint. When criteria are satisfied, the antijoin is pushed in the constant
part of the fixpoint operation node and the newly created term is added to the
set of equivalent terms along with the rest. Fig. 3.18 illustrates graphically the
RLQDAG created by the transformations of Fig. 3.18.

3.6. GENERALIZED REWRITE RULES FOR TRANSFORMING SETS OF
RECURSIVE TERMS 89

pa(
[[
µX. γ ∪

[
α
]R
D

]
▷ β

]
) =

• let const = γ in[[
expand(

[
µX. const ∪

[
α
]R
D

]
) ▷ expand(β)

]
,

µX ′. expand(
[
const ▷ β

]
) ∪

[
expand(α{X/X′})

]R′

D

]
when type(β) ∩D = ∅

•
[

expand(
[
µX. γ ∪

[
α
]R
D

]
) ▷ expand(β)

]
otherwise

pa(
[[
µX. γ ∪

[
α
]R
D
, α2

]
▷ β

]
) =

• let const = γ in[[
expand(

[
µX. const ∪

[
α
]R
D
, α2

]
) ▷ expand(β)

]
,[

µX ′. expand(
[
const ▷ β

]
) ∪

[
expand(α{X/X′})

]R′

D

]
,[

expand(
[
α2

]
) ▷ expand(β)

]]
when type(β) ∩D = ∅

•
[

expand(
[
µX. γ ∪

[
α
]R
D
, α2

]
) ▷ expand(β) ,[

expand(
[
α2

]
) ▷ expand(β)

]]
otherwise

where R′ = R ∪ rigid(β,X).
Figure 3.17: Pushing antijoin in an equivalence node containing a fixpoint opera-
tion node.

90 CHAPTER 3. RLQDAG

constrec

μ
const

μ

β

▷

▷

α2

Figure 3.18: Expansion of a RLQDAG by pushing an antijoin in a fixpoint
operation node. The initial RLQDAG is in black color, and parts added by pa()
are in blue color.

Notice that RLQDAG rules can be divided into two groups. The first group
is composed of rewrite rules pj(), pa() and mf(). The application of these rules
always preserve preexisting terms in an equivalence node. These rules can only
perform additions of new operation nodes in an equivalence node7. The second
group is composed of the rules pf() and pp() that perform logical optimizations.
The application of these rules can replace terms in an equivalence node by more
optimal variants (i.e. they discard logically suboptimal variants).

3.7 The overall expansion algorithm

We can now describe the overall RLQDAG expansion algorithm. We define the
function expand() that takes an equivalence node γ and returns the equivalence
node γ′ which contains all the terms obtained by transformations.

The expand function is simply defined as follows:

expand(
[
d
]
) = applyAll(

[
d
]
)

expand(
[
d, α

]
) = applyAll(

[
d
]
) ∪ expand(α)

where applyAll() is in charge of applying all possible transformations on each
operation node. This includes applying all rewrite rules defined in Section 3.6 in

7One operation node will then be selected using cost estimation heuristics depending on
statistics on the cardinalities of the database instance.

3.8. CORRECTNESS AND COMPLETENESS 91

pfj(
[
σf (

[
γ1 ▷◁ γ2, α

]
)
]
) =

•
[
exp(

[
σf (γ1)

]
) ▷◁ exp(γ2), exp(

[
σf (α)

]
)
]

when filt(f) ⊆ type(γ1) ∧ filt(f) ⊈ type(γ2)

•
[
exp(γ1) ▷◁ exp(

[
σf (γ2)

]
), exp(

[
σf (α)

]
)
]

when filt(f) ⊈ type(γ1) ∧ filt(f) ⊆ type(γ2)

•
[
exp(

[
σf (γ1)

]
) ▷◁ exp(

[
σf (γ2)

]
), exp(

[
σf (α)

]
)
]

when filt(f) ⊆ type(γ1) ∧ filt(f) ⊆ type(γ2)

•
[
σf (exp(

[
φ ▷◁ ψ

]
), exp(

[
σf (α)

]
))

]
otherwise

Figure 3.19: Pushing a filter in an equivalence node composed of at least one join
operation node and other operation nodes (exp() stands for expand()).

combination with the more classical ones of relational algebra8:

applyAll(
[
d
]
) = pf(

[
d
]
) ∪ pa(

[
d
]
) ∪ pj(

[
d
]
) ∪mf(

[
d
]
)

∪ pp(
[
d
]
) ∪ allCodd(

[
d
]
)

where allCodd() applies all rewrite rules concerning classical (non-recursive)
relational algebra adapted for RLQDAG. For example: pfj() for pushing filters
in join operation nodes, paj() for pushing antiprojections in a join operation
node, jassoc() (for join associativity), dju() (for distributivity of join over union
operation nodes) etc.

allCodd(
[
d
]
) = pfj(

[
d
]
) ∪ paj(

[
d
]
)∪

jassoc(
[
d
]
) ∪ ... ∪ dju(

[
d
]
)

For instance, pfj() is defined as shown in Fig. 3.19 for an RLQDAG in which a
filter precedes an equivalence node which contains a join operation node. In other
cases, pfj() recursively traverses the structure with appropriate calls to expand()
in search for further transformation opportunities. Other rewrite rules of non-
recursive relational algebra (rewrite rules of Section 2.2.4) are also implemented
in a similar way in the RLQDAG.

3.8 Correctness and completeness

An important property for the RLQDAG is correctness, which ensures that all
structural transformations and terms generated during the expansion process
preserve the semantics of the initial term:

Proposition 1 (Correctness). Let
[
α
]

be a consistent RLQDAG, and α′ =
expand(

[
α
]
), then we have SγJ

[
α
]
K∅ ⊆ SγJα′K∅ and α′ is consistent.

8As a slight discrepancy between the theory and the implementation, the implementation of
the RLQDAG expansion avoids some redundant calls to the expand() function by implementing
the applyAll() function in an imperative-style double nested for loop, so as to implement a
single case analysis and to trigger expand() once only when needed.

92 CHAPTER 3. RLQDAG

Proof Sketch. The proof of correctness is done by induction on the structure of
α′, using a case-by-case analysis of syntactic decompositions (i.e. by considering
separately each RLQDAG subcase and the corresponding case of the generalized
rewrite rule that applies to it). The complete formal proof is too large to be listed
here (with many straightforward subcases). We summarize the main principles as
well as useful auxiliary properties. When proving correctness for each RLQDAG
rewrite rule, (i) we focus on each newly created recursive term added by the
expansion, and (ii) use the consistency hypothesis on the recursive term before
transformation to apply the theorems for individual terms of [Jachiet et al., 2020]
to each rearrangement of fixpoint operation node. We also need to show that
the incremental updates of annotations performed by the RLQDAG rewrite rules
preserve consistency. This is done for each update by leveraging the properties
that both destab () and rigid () are distributive over union.

Additional properties of interest ensure that the expansion process does not
miss any interesting plan. The following properties state that there is no more
unrealized opportunity for transformation in an expanded RLQDAG.

Proposition 2 (Completeness properties). Let R be a set of RLQDAG rewrite
rules such that R contains the 5 RLQDAG rewrite rules for recursive terms
presented in Section 3.6, we consider

[
α
]
= unfold(expandR(

[
α′
]
)) where α′ is a

consistent RLQDAG, and expandR() is the expand() function in which rules in
R are activated. The following properties hold:

Property 1 (No pushable filter left unpushed).
∀ σf (γ) ∈

[
α
]
, ∄d ∈ γ | d = µX.

[
κ
]
∪
[
α2

]R
D

and filt(f) ⊆ D.

Property 2 (No pushable antiprojection left unpushed).
∀ π̃a(γ) ∈

[
α
]
, ∄d ∈ γ | d = µX.

[
κ
]
∪
[
α2

]R
D

and a ̸∈ R.

Property 3 (All pushable joins have been pushed).
∀ (β ▷◁ γ) ∈

[
α
]
, if ∃d ∈ γ such that d = µX.

[
κ
]
∪
[
α2

]R
D

and type(β) ∩D = ∅
and type(β)\type(γ) ∩ R = ∅ then ∃d′ ∈

[
α
]

such that d′ = µX ′.
[[
β
]
▷◁[

κ
]]
∪
[
α2{X/X′}

]R′

D′ .

Property 4 (All mergeable fixpoints have been merged).
∀ (γ1 ▷◁ γ2) ∈

[
α
]
, if µX1.

[
κ1

]
∪
[
α1

]R1

D1
∈ γ1 and µX2.

[
κ2

]
∪
[
α2

]R2

D2
∈ γ2 and we

have γ1 ≠ γ2 and (type(γ1)∩ type(γ2))∩ (D1 ∪D2) = ∅ and type(γ1)\type(γ2)∩
R2 = ∅ and type(γ2)\type(γ1) ∩ R1 = ∅ then there exists d ∈

[
α
]

such that
d = µX.

[[
κ1

]
▷◁

[
κ2

]]
∪
[[
α1

]
∪
[
α2

]]R
D
.

Property 5 (All pushable antijoins have been pushed).
∀ (

[
µX. γ ∪

[
α
]R
D

]
▷ β) ∈

[
α
]
, if type(β) ∩ D = ∅ then ∃d ∈

[
α
]

such that

d =
[
µX ′.

[
γ ▷ β

]
∪

[
α{X/X′}

]R′

D

]
Proof Sketch. These properties are proved by contradiction: (i) assuming the
existence of a missed transformation opportunity in the expansion, which (ii)

3.9. IMPLEMENTATION TECHNIQUES 93

necessarily implies some unrealized rule application (whereas the rule was appli-
cable), and (iii) showing that the systematic structure traversal performed by
expandR() leaves no room for such a missed opportunity, thus (iv) leading to a
contradiction.

Importance of the RLQDAG syntax. Notice that the formal syntax and
semantics that we propose (in Sections 3.3 and 3.4) provide a convenient – if not
instrumental – means to develop formal proofs9. This formalization helped us to
detect and fix an intricate completeness issue (caused by a misplaced recursive
call) in an earlier version of the RLQDAG.

3.9 Implementation Techniques

In the preceding sections all rewrite rules and functions for applying them have
been described in a functional manner. In the prototype implementation, we
adopt a more imperative programming style which makes it easier to avoid some
redundant computations. In particular, we avoid some redundant calls to the
expand() function when implementing applyAll(). For this purpose, we use the
two nested for loop system as shown in Algorithm 1. There we make a call to the
imperative variant of the expand() function after the first for loop in order to call
all rewrite rules to be applied (when criteria are satisfied). And then with the
second for loop we examine the other operator to determine which rewrite rule
can be called.

9This formalization even opens the way for the use of a proof assistant (like Coq) in this
context: see the perspectives in Chapter 5.2.

94 CHAPTER 3. RLQDAG

Algorithm 1 ExpandLQDAG
Require: The input is an equivalence node.
Ensure: The output is the expanded equivalence node.
1: new_set_terms = Set.empty
2: terms = Set.empty

for algOp ∈ child(eqNode) do
3: case Filter(fCond, inner_eqNode):

4: eqNode = ExpandLQDAG(inner_eqNode)
5: terms += Filter(filterCond, eqNode)

for inpEq ∈ input(algOp) do
6: case DecomposedMu (αconst, αrec, criteria):

7: if criteria(destab(αrec, X), rigid (col(fCond), αrec, X)) then
8: pf(eqNode)
9: end if

end case
10: case another operator :

11: ...
end case

end for
end case

12: case JoinRecursiveTerms(α1, α2):
13: left = ExpandLQDAG(α1)
14: right = ExpandLQDAG(α2)
15: terms += Join(left, right)
16: /* Cross product only when finding fixpoint terms */
17: possibilities = crossProduct(keepRecTerms(left), keepRecTerms(right))

for inpEq ∈ possibilities do
18: case DecomposedMu(αconst, αrec), DecomposedMu(αconst’, αrec’) :

19: new_term =
mf(DecomposedMu(αconst, αrec), DecomposedMu(αconst’, αrec’))

20: new_set_terms += new_term
end case

end for
end case

21: case another LQDAG:
22: ...

end case
end for
new_set_terms += terms
return new_set_terms

Expansion algorithm in an imperative style. The ExpandLQDAG algo-
rithm takes as input a root equivalence node and generates as output the fully
expanded LQDAG. The fully expanded LQDAG represents the full plan space, i.e.
the set of all plans reachable from the initial term by the application of a given
set of transformation rules. Algorithm 1 is mainly composed of two iterations.
The first iteration (between lines 2 & 3) visits all the algebraic operators that
are direct children of a root equivalence node. For the expansion to be complete
potential recombinations of the initial inner branches need to be explored first
hence the recursive call in line 4 (just after first iteration). The second iteration

3.10. EXAMPLE OF UNIFICATION STEPS IN RLQDAG 95

traverses all the inner operators. This amounts to traversing each pair of outer
and inner operator. For each such pair any applicable transformation rule is
applied. Potential new equivalence nodes on the new terms found are explored by
a recursive call on line 10 of the algorithm. When the recursive call happens, not
only the new term is created, but at the same time we use a hashing function to
check if the term already exists and merge it when possible. Each application of
a transformation rule may generate new equivalence nodes or populate existing
ones. If the application of a transformation rule results in the creation of an
equivalence set that already exists, they are merged. This will be explained more
in section 3.10.

We focus on some main cases: pushing filter in a fixpoint and the merging
fixpoints. For the first case, we make a call to pf() when criteria are validated.
For the second case, we check each two terms, find the cross product between
them when both are fixpoint terms and if criteria are validated we make a call to
mf() function. To show these cases we use the generalization of 5 rewrite rules
concerning fixpoint presented in Section 3.6. When the criteria are verified we
can apply the rewrite rules concerning recursion. For each one of the initial terms
found in an equivalence node, we make a call to expand(). In this case, since we
are using the algorithm in an imperative way, the calls to expand fpr the term
already in the equivalence node is handled by the call to expand after the first
for loop. This way, we remove the redundant call to expand() function. When
this rule is applied, in the newly created equivalence node we call recursively the
expand() function. As shown in the adaptation of these rules, the expand function
is called recursively in the other plans already present in the equivalence node
where the rewrite rule concerning fixpoint is applied. This allows the application
of other rewrite rules of relational algebra that might not contain recursion. Using
the two for loops and criteria verification, all the equivalence nodes are visited
and the totality of rewrite rules are applied.

3.10 Example of unification steps in RLQDAG

When a rewrite rule is applied new equivalence nodes can be created and others
can be further populated. When an equivalence node is created, a check verifies
whether there already exists an equivalent node (regrouping exactly the same set
of subterms). For that purpose, in the implementation, each equivalence node
has a unique hash code. This hash code is used to prevent the creation of a new
instance of an already existing equivalence node. Instead, it is merged directly
with the existing one.

For example, Figure 3.20 illustrates a RLQDAG that corresponds to a query
that finds all the Users of a social network that are followed directly or undirectly
by a young User of 20 years old. Figure 3.20 shows only the translation in rl form
(for the sake of brevity). When the rewrite rule that pushes joins in fixpoints is
applied, it first creates a new equivalence operation node (a fixpoint) at the same
level as the join operation node being pushed (i.e. under the same equivalence
node). In that particular case, one equivalence node is being populated whilst
other equivalence nodes are being created. Each one of them is checked for

96 CHAPTER 3. RLQDAG

pre-existence at the moment of creation to avoid duplicates. In this example we
focus on the creation of a whole branch for the sake of clarity and simplification.
In RLQDAG, the application of rewrite rules occurs for each equivalence node
separately. The first branch created is the one illustrated in Figure 3.21a. The
join operator is pushed in the constant part of the fixpoint operator and that is
the first branch to be created. The term in green (on the left side) is the one
being created, and the green one on the right side is the pre-existing one. Both
subparts are detected as equal (based on hash codes) and are thus merged. This
results in two operation nodes at upper level pointing to the same equivalence
node. This is depicted in Figure 3.21b. Then, in a subsequent step, the other
operand of join at the same level is created. This is shown in blue on the left
side of Figure 3.22a. Again, as in the previous example, a duplicate subpart is
identified and merged in a single one. This is illustrated in Figure 3.22b. In a
later step, a similar situation happens with the creation of the yellow branch, as
illustrated in Figure 3.23a which is also unified with its preexisting version. In the
end, all the nodes created by this rewrite rule application are expanded and the
final RLQDAG is the one shown in Figure 3.23b. As we can observe, the cascade
of unifications results in the creation of only the red part. More generally, plan
enumeration is conducted with all rewrite rules in a recursive top-down manner.
We showed only some “macro” steps on RLQDAG expansion. This means that
other equivalence nodes in the deeper levels are visited and expanded as well.

⋈

⋈

μ constrec

 (X)

(follows)⋈

 (follows)

σ(age<=20)

 (User)

 (User)

Figure 3.20: RLQDAG example of a graph query.

3.10. EXAMPLE OF UNIFICATION STEPS IN RLQDAG 97

⋈

⋈

μ constrec

 (X)

(follows)⋈

 (follows)

σ(age<=20)

 (User)

 (User)

μ

⋈

const

rec

σ(age<=20)

 (User)

(a) Branch creation.

⋈

⋈

μ constrec

 (X)

(follows)⋈

 (follows)

σ(age<=20)

 (User)

 (User)

μ

⋈

constrec

(b) Unification of constant parts of recursive
term.

Figure 3.21: Creation and unification of constant parts of the recursive term.

⋈

⋈

μ constrec

 (X)

(follows)⋈

 (follows)

σ(age<=20)

 (User)

 (User)

μ

⋈

const

rec

(follows)

(a) Another tree branch creation.

⋈

⋈

μ constrec

 (X)

(follows)⋈

 (follows)

σ(age<=20)

 (User)

 (User)

μ

⋈

constrec

(b) Unification of branches.

Figure 3.22: Creation and unification of branches on the recursive term.

98 CHAPTER 3. RLQDAG

⋈

⋈

μ constrec

 (X)

(follows)⋈

 (follows)

σ(age<=20)

 (User)

 (User)

μ

⋈

const

rec

 (X)

⋈

 (follows)

(a) Recursive branch creation.

⋈

⋈

μ constrec

 (X)

(follows)⋈

 (follows)

σ(age<=20)

 (User)

 (User)

μ

⋈

constrec

(b) Final unification.

Figure 3.23: Recursive branch creation and final unification.

3.11 Non-regular queries

The RLQDAG can not only express regular expressions, but non-regular ones as
well. One example of a non-regular term is Rn1Rn2 , where R1 and R2 are relations.

Rn1R
n
2 written as RLQDAG

µ(X.
[
π̃m

([
ρmtrg

([
R1

])]
▷◁
[
ρmtrg

([
R2

])])]
∪
[
π̃m

(
π̃n

([[
ρmtrg

([
R1

])]
▷◁
[
ρmtrg

([
ρnsrc (X)

]])
▷◁
[
ρnsrc

([
R2

])])])]{src,trg,m,n}
{src,trg})

Pushing a filter in Rn1R
n
2

Generalized rewrite rules apply to any RLQDAG terms, in particular to
non-regular terms.

Below we show an example where a filter is pushed in the previous RLQDAG.
The filter is pushed in the constant part of the recursive term when criteria are
satisfied. This new term is added to the existing equivalence node. We explain
this as follows: Let’s suppose an equivalence node that contains term t below:

[
σf (

[
µ(X.

[
π̃m

([
ρmtrg

([
R1

])]
▷◁
[
ρmtrg

([
R2

])])]
∪
[
π̃m

(
π̃n

([[
ρmtrg

([
R1

])]
▷◁
[
ρmtrg

([
ρmsrc (X)

]])
▷◁
[
ρnsrc

([
R2

])])])]{src,trg,m,n}
{src,trg})

]
)
]

3.11. NON-REGULAR QUERIES 99

This equivalence node can be written as
[
t
]
. When the rewrite rule of pushing

a filter in a fixpoint is applied, the equivalence node is expanded with term t′,
written below:

[
µ(X.

[
σf (

[
π̃m

([
ρmtrg

([
R1

])]
▷◁
[
ρmtrg

([
R2

])])]
)
]

∪
[
π̃m

(
π̃n

([[
ρmtrg

([
R1

])]
▷◁
[
ρmtrg

([
ρmsrc (X)

]])
▷◁
[
ρnsrc

([
R2

])])])]{src,trg,m,n}
{src,trg})

]
Now the equivalence node contains both terms

[
t, t′

]
.

In the next Chapter 4, we describe an application to graph queries in which
regular RLQDAG terms are automatically generated from a higher-level graph
query language.

Chapter 4

Application to property
graph queries

This Chapter presents an application of the RLQDAG (introduced in Chapter 3)
for extracting information from property graphs. It presents the experimental
assesment of all concepts and algorithmic techniques proposed in Chapter 3, using
a complete RLQDAG prototype implementation. We first present a recursive
query language fragment (UCRPQPG) adapted for property graphs. We propose a
direct translation of queries in this fragment into the RLQDAG. We then conduct
and report on experiments using real and synthetic property graphs.

4.1 Property graph representation in RA data model

We first explain how property graphs can be represented so as to be exposed
to relational queries. In the property graph data model, nodes and edges are
labeled and they can also carry a list of properties with values, as described
in Section 1.1.2 of Chapter 1. In relational algebra, a property graph can be
represented as a set of relations, with one relation per edge type and one relation
per node type. Each relation encodes the specific properties of each node (or edge
respectively) using one column per property. Figure 4.1 illustrates an example of
a possible representation of a social network property graph. The table on the
left of Figure 4.1 encodes nodes where each node corresponds to a person. We
can see that this table has a column vid and several other columns that can be
subject to filtering based on values. The table on the right of Figure 4.1 illustrates
an example of a relation encoding edges in this social network property graph,
where we can see columns src and trg along with other columns giving more
information on the nature of the relation that connects two nodes.

101

102 CHAPTER 4. APPLICATION TO PROPERTY GRAPH QUERIES

vid name lastname age ...

101 Bob Dylan 35

102 Alice Hawke 30

103 John Doe 26

...

src trg since suggested_from ...

101 202 2015 family

102 203 2019 friend

103 201 2017 cousin

...

Figure 4.1: Possible relational encoding of a social network property graph, with
vertices on the left and edges on the right.

Figure 4.2 illustrates an example of a social graph schema. There is one
relation for each type of nodes (User, Forum, Tag) and one relation for each type
of edges (follows, member_of, has_interest, has_tag). Each of these relations
has a list of properties with respective values.

User Forum

Tag

member_of

ha
s_
tag

has_interest

src trg since ...

201 303 2019

202 302 2018

203 301 2020

...

src trg since ...

101 302 2020

102 301 2017

103 303 2016

...

src trg since ...

101 202 2015

102 203 2019

103 201 2017

...

vid name lastname age ...

101 Bob Dylan 35

102 Alice Hawke 30

103 John Doe 26

...

vid subject createdOn ...

201 Vaccination 2019

202 Sports 2018

203 Fashion 2020

...

vid title ...

301 Football

302 Pandemic

303 Astronomy

...

fo
llo
ws

src trg since ...

101 103 2015

101 102 2016

102 103 2015

...

Figure 4.2: Representation of a social network property graph.

This representation comes with several assumptions to ensure consistency when
exposed to relational queries. In particular, nodes must be uniquely identified
(the vid column) and those identifiers must be disjoint between node types. For
each edge type, the corresponding relation contains at least the source and target
nodes (which are foreign keys to node’s vids). A knowledge graph is simply a
particular case of a property graph with no particular property beyond source
and target vids in edge relations.

4.2. A RECURSIVE QUERY LANGUAGE FRAGMENT SUITED FOR
PROPERTY GRAPHS 103

4.2 A recursive query language fragment suited for
property graphs

4.2.1 Idea

To support recursive queries on property graphs, we consider a query language
fragment for property graphs, named UCRPQPG, that we propose. This fragment
is inspired from the recursive query language fragments reviewed in Chapter 1:
it is a variant of UCRPQs which is slightly generalized to offer specific filtering
capabilities suited for the rich property graph data model. In the knowledge
graph data model used earlier in µ-RA [Jachiet et al., 2020], it was possible to
filter based on the values found in the label column of the table. For example, in
the knowledge graph representation, in order to consider only the edge “livesIn”,
we had to filter the value “livesIn” on label column (label=“livesIn”). Using the
property graph representation, we consider separate tables for each node and edge
type and we want to offer the ability to filter based on (key:value) pairs for each
property. Given the above example of the graph in Figure 4.2, when finding users
aged 30 years old, we would like to filter directly on column age=30. UCRPQPG
queries make this possible. For instance, if one wants to express a UCRPQPG
query that considers the members who joined since 2015, it suffices to filter on
column since=2015 of table member_of and consider this as the query along with
the nodes and other requirements if any. One query example is the query that
finds the totality of users followed by Bob (directly or indirectly) since 2013 and
that are also members of a given Forum y since 2020. We can formulate this as a
UCRPQPG query, as follows:

?x, ?y ← ?b : User[name:Bob] follows[since = 2013]+ ?x : User,

?x : User member_of[since = 2020] ?y : Forum

In this formulation, expressions between brackets denote filters on nodes and
edges and it corresponds to the example of Figure 4.2.

In general, UCRPQPG queries typically contain many more filters (and joins)
than queries on knowledge graphs, as they are specifically suited for the richer
property graph data model. When these additional filtering capabilities are
combined with recursion, we will see that this can create significantly bigger plan
spaces during the plan exploration phase. As such, UCRPQPG queries represent
a particularly relevant and challenging baseline for an experimental assessment of
the RLQDAG introduced in Chapter 3. We first introduce an abstract syntax
for UCRPQPG queries and we propose direct formal translations of UCRPQPG
queries into the RLQDAG representation.

4.2.2 Syntax of UCRPQPG

We define UCRPQPG queries as the set of expressions that can be formed using
the abstract syntax shown in Figure 4.3. One core component is the syntax of
regular expressions r over edges. The base case for a regular expression r is
an edge label which can also be further refined using a set of keys filtered with

104 CHAPTER 4. APPLICATION TO PROPERTY GRAPH QUERIES

constant values. Nodes can also be filtered similarly. Nodes can be named by
introducing fresh variables names (?var), that might be reused in the query to
express sophisticated connections between nodes.

Node
node_pattern ::=

?var : nodeLabel map
| ?var : label_list
| ∗

Relation
rel_pattern ::= r

r ::= reg. exp. over edges
edgeLabel map?

| r r concatenation
| r | r alternative
| -r reverse
| r+ transitive closure

Properties
map ::= {prop_list}

prop_list ::= k:v | k:v, prop_list

Conjunct (c)
c ::=

node_pattern rel_pattern node_pattern
| c, node_pattern rel_pattern node_pattern

Figure 4.3: Syntax of a query language on property graphs.

Formally, a CRPQPG query is of the form H ← C, where the query head H
is a non-empty set of vertex variables to be extracted by the query, and C is
a conjunction that describes how those vertex variables are connected to other
vertex variables or to constants. More formally:

• H is a sequence of variables of the form (z1, ..., zm) which is not empty
(we do not consider boolean queries). These variables are taken from the
variables specified in each one of the nodes of a conjunction ci.

• C is a non-empty conjunction c1, c2..., cn in which each conjunct ci has the
form

x : vartype1 map? r y : vartype2 map?

4.2. A RECURSIVE QUERY LANGUAGE FRAGMENT SUITED FOR
PROPERTY GRAPHS 105

where:

– x (and respectively y) is a variable

– vartype is the name of the label which decides the R:ℓ used in each
node

– r follows the syntax defined previously for expressing a regular expres-
sion over edges in the property graph.

UCRPQPG queries extend CRPQPG with union at top level. They have the
syntax H ← C1 ∪ ... ∪ Cn in which each disjunct Ci is a conjunction as defined
previously.

4.2.3 Translation into RLQDAG

UCRPQPG queries can be supported in the RLQDAG. We show how UCRPQPG
queries can be directly translated into the RLQDAG, based on the assumptions
introduced in Section 4.2.3.1 and that we specify more formally below.

4.2.3.1 Assumptions

As mentioned previously, a property graph is represented as a set of relational
tables (in contrary to a knowledge graph that is represented by a single table).
The formal translation of UCRPQPG relies on a few assumptions on the way the
property graph is represented as a set of relations. It assumes that the following
hypotheses are satisfied:

• there exists a µ-RA relation R:ℓ for each label :ℓ in label_list

• there exists a µ-RA relation Rt for each label t in type_list

• each relation R:ℓ contains one column named vid (at least)

• each relation Rt contains one column src and one column trg (at least)

• V is a set of column names (that start with a leading ‘?’) which are reserved
for the translation. V is assumed to be disjoint from the set of column
names used in any of the relations Rt and R:ℓ.

• each relation R:ℓ has distinct vid values. There is no intersection of vid
values between different Ri. In other terms, for any two Ri and Rj with
i ̸= j, vidRi ∩ vidRj = ∅

4.2.3.2 Translation functions

In order to translate UCRPQPG queries into RLQDAG, we use a set of formal
translation functions defined below. First of all, we define the function trr(·) that
takes as input an expression r over edges (as defined in Figure 4.3), and builds
the corresponding RLQDAG:

106 CHAPTER 4. APPLICATION TO PROPERTY GRAPH QUERIES

trr(edgeLabel) =
[
edgeLabel

]
trr(edgeLabel map) = g(

[
edgeLabel

]
) with g = trmap(map)

trr(r r′) =
[
trr(r) ▷◁ trr(r′)

]
trr(r | r′) =

[
trr(r) ∪ trr(r′)

]
trr(-r) =

[
ρtrgm

([
ρsrctrg

([
ρmsrc (trr(r))

])])]
trr(r+) = let rel = trr(r) in[

µX. rel ∪
[
π̃m(

[
ρmtrg(

[
rel

]
)
]
▷◁
[
ρmsrc(

[
X
]
)
]
)
]{src,trg,m}
{src} ,

µX. rel ∪ {π̃m(
[
ρmsrc(

[
rel

]
)
]
▷◁
[
ρmtrg(

[
X
]
)
]
)}{src,trg,m}{trg}

]
Two initial translations of transitive closure. trr(r+) returns a RLQDAG
which contains two different forms for translating the transitive closure R+ of a
basic relation R. Intuitively, these two forms correspond to two possible directions
with which a fixpoint term can compute R+. The first form amounts to computing
R+ in the right to left direction (rl), whereas the second form computes the
same relation in the reverse direction, left to right (lr).

It is useful to keep track of both forms as transformation rules apply differently
on each form. For example: a filter on the src column can be pushed in the form
that navigates from left to right, but not on the other one. Similarly a filter on
the trg column can be pushed only in the form that navigates to the left.

The two forms are semantically equivalent (they eventually return the same set
of results). For this reason, they are thus grouped under the same equivalence node
in the generated RLQDAG. The above translation shows explicitly the annotations
carried by annotated equivalence nodes, that are used by the RLQDAG rewriting
rules presented in Chapter 3.

Filtering of properties based on key values. Filtering based on properties
is applied both in nodes and in edges. For each label_list in the case of nodes
and for each type_list in the case of edges there is a specific list of properties.
The idea is the same, in both cases, since the filtering is applied in the list of
properties. That is why the following translations are valid for both nodes and
edges. The list in the translation example is a label_list in case of nodes, or a
type_list in case of edges.

The function trmap(map) returns a filtering function:

trmap({prop_list}) = trprop_list(prop_list)
trprop_list(k:v) = λx.σk=v(

[
x
]
)

trprop_list(k:v, prop_list) = λx.σk=v(trprop_list(prop_list)(
[
x
]
))

Pattern composition in CRPQPG. The translation of pattern composition
shows the connection between the nodes and the relation pattern. In the following
translations we use vari for denoting variables used on nodes and these ones are

4.2. A RECURSIVE QUERY LANGUAGE FRAGMENT SUITED FOR
PROPERTY GRAPHS 107

projected on (shown) at the end. Below we show all possibilities, even when a
node is not specified.

trpattern(node_pattern rel_pattern node_pattern) = {trn(node_pattern)
▷◁?var1 ρ

?var1
src (ρ?var2trg (φ))

▷◁?var2 trn(node_pattern)
| φ ∈ trr(rel_pattern)}

trpattern(node_pattern rel_pattern ∗) = trn(node_pattern)
▷◁?var1 ρ

?var1
src (trr(rel_pattern))

trpattern(∗ rel_pattern node_pattern) = ρ?var2trg (trr(rel_pattern))
▷◁?var2 trn(node_pattern)

trpattern(∗ rel_pattern ∗) = trr(rel_pattern)

The initial RLQDAGis created thanks to these translation functions. Then
we can apply the generalized rewrite rules presented in Chapter 3 in order to
efficiently explore the plan space for a given query.

4.2.4 Example of RLQDAG generated from UCRPQPG

Let us consider the query we already presented in the preceding section:

?u, ?f ← ?b : User[name:Bob] follows[since = 2013]+ ?u : User,

?u : User member_of[since = 2020] ?f : Forum

This UCRPQPG query is meant to be evaluated on the graph presented in
Figure 4.2. The translation generates the RLQDAG term shown in Figure 4.4.

let rel = σsince=2013(
[
follows

]
) in

let cst = ρbsrc
([
ρutrg (rel)

])
in

let user_u = ρuvid
([
User

])
in[[[

ρbvid
([
σname=Bob(

[
User

]
)
])]

▷◁[
µX. cst ∪

[
π̃m(

[
ρmtrg(rel)

]
▷◁
[
ρmsrc(

[
X
]
)
]
)
]{src,trg,m}
{src} ,

µX. cst ∪
[
π̃m(

[
ρmtrg(rel)

]
▷◁
[
ρmtrg(

[
X
]
)
]
)
]{src,trg,m}
{trg}

]]
▷◁ user_u

]
▷◁[[

user_u ▷◁
[
ρusrc

([
ρftrg

([
σsince=2020(

[
member_of

]
)
])])]]

▷◁
[
ρfvid

([
Forum

])]]]]
Figure 4.4: RLQDAG term obtained by the translation of a sample UCRPQPG.

The red part corresponds to the navigation from right to left rl in a recursive
term, whereas the blue one illustrates the one from left to right lr. In the
above translation we also show the generated annotations carried by annotated
equivalence nodes. This RLQDAG term is also depicted graphically in Figure 4.5.
The annotations for lr are D and R in blue. D contains {src} whilst R is

108 CHAPTER 4. APPLICATION TO PROPERTY GRAPH QUERIES

{src, trg, m}. The annotations for rl are D1 and R1 in red. D1 is {src} whilst
R1 is {src, trg, m}.

⋈

⋈ (Forum)⋈

μ

co
ns

t rec

σ(age<=20)

 (member_of)

 (User)

⋈

⋈

σ(name=Bob)

 (User)

⋈

⋈

⋈

μ
rec

 (X)

⋈

 (follows)

co
ns

t

 (X)

⋈

 (follows)

D
R

D1
R1

 (follows)

σ(since=2013)

Figure 4.5: Graphical representation of the RLQDAG term obtained from the
translation.

Pushing a Join in RLQDAG. In Figure 4.6 the rewrite rule that pushes a
join into a fixpoint operation node is applied. Its graphical illustration is shown in
Figure 4.7. The annotations are different for rl and lr, hence the terms allowed
to be pushed in each one of the forms will be different. With the rewrite rule
application, the new terms formed trigger an incremental update of annotations
from the previous annotations of recursive terms. For the sake of simplicity, in
both Figure 4.6 and Figure 4.7 only the new terms created are shown, the terms
initial present in the equivalence node are not shown.

4.2. A RECURSIVE QUERY LANGUAGE FRAGMENT SUITED FOR
PROPERTY GRAPHS 109

let rel = σsince=2013(
[
follows

]
) in

let cst = ρbsrc
([
ρutrg (rel)

])
in

let user_u = ρuvid
([
User

])
in

let user_b = ρbvid
([
σname=Bob(

[
User

]
)
])

in[[
user_b ▷◁[

µX.
[
user_u ▷◁ cst

]
∪
[
π̃m(

[
ρmtrg(rel)

]
▷◁
[
ρmsrc(

[
X
]
)
]
)
]{src,trg,m,vid,u}
{src}

]]
,[[

µX.
[
user_b ▷◁ cst

]
∪
[
π̃m(

[
ρmtrg(rel)

]
▷◁
[
ρmtrg(

[
X
]
)
]
)
]{src,trg,m,vid,b}
{trg}

]
▷◁ user_u

]]
▷◁[[

user_u ▷◁
[
ρusrc

([
ρftrg

([
σsince=2020(

[
member_of

]
)
])])]]

▷◁
[
ρfvid

([
Forum

])]]]
Figure 4.6: RLQDAG term obtained after pushing a join into a fixpoint operation
node.

⋈

⋈ (Forum)⋈

μ

co
ns

t rec

σ(since=2020)

 (member_of)

 (User)

⋈

 (follows)

σ(name=Bob)

 (User)

⋈

⋈

μ
rec

 (X)

⋈

 (follows)

co
ns

t

 (X)

⋈

 (follows)

⋈
⋈

D'
R'

D1'
R1'

σ(since=2013)

Figure 4.7: RLQDAG term graphical representation after join is pushed into a
fixpoint operation node.

110 CHAPTER 4. APPLICATION TO PROPERTY GRAPH QUERIES

In lr, the term in green corresponding to the User named Bob is pushed in
the fixpoint. We will consider Db the destab of user_b, its rigid is considered
as Rb. Based on derivations of destab, D′ = D ∪Db. Db is emptyset (destab is
the one of User which is considered in this case), hence D′ is still trg. Based on
rigid, R′ = R ∪Rb. Rb = vid, b, hence R′ = {src, trg, m, vid, b}. The same
calculations are done for rl, but there is user_u being pushed so D′1 and R′1 are
updated in accordance.

4.3 Experimental setup for the RLQDAG

In order to assess the efficiency of the RLQDAG approach in practice, we imple-
mented a prototype of the RLQDAG in the µ-RA system [Jachiet et al., 2020],
which is, as described in Section 2.7 of Chapter 2, one of the most advanced
relational-based system for recursive query optimization; and the system with
the richest plan spaces for recursive terms, that are explored using a dynamic
programming strategy [Jachiet et al., 2020]. We compare the performance of our
RLQDAG prototype implementation with the performance of the unmodified
µ-RA system.

4.3.1 Datasets

In order to assess the efficiency of the RLQDAG in practice, we consider recursive
graph queries formulated against various real and generated datasets:

• Yago [YAGO, 2019], a knowledge graph containing 62, 643, 951 edges,
42, 832, 856 nodes and 83 predicates.

• Bahamas Leaks [Bahamas-Leaks, 2017], a property graph that provides
names of directors and owners of Bahamian companies, trusts and founda-
tions registered between 1990 and 2016, together with their connections. It
contains 202, 242 nodes and 249, 190 edges.

• Airbnb [Airbnb, 2022], a property graph with 24, 840 nodes and 14000 edges.

• LDBC social network [Boncz, 2013], a property graph with 908, 224 nodes
and 1, 960, 654 edges.

4.3.2 Queries

Queries are chosen to reflect a variety of patterns commonly found in practice when
querying property graphs. Property graph queries are written using UCRPQPG.
Queries for Yago are mainly third-party regular path queries already considered
in earlier papers in the litterature [Jachiet et al., 2020, Abul-Basher et al., 2017b,
Yakovets et al., 2015b, Gubichev et al., 2013], and chosen because they are repre-
sentative of the variety of possible recursive optimizations that can apply to them.
Queries over the Airbnb dataset are inspired from [Sharma et al., 2021]. We
added more queries formulated over the Bahamas and LDBC datasets. Queries

4.4. EXPERIMENTAL RESULTS 111

and datasets used in experiments are available at [Tyrex-repository, 2022] and
shown as well as in the appendix of this thesis.

We systematically compare results obtained with the RLQDAG with
those obtained using the state-of-the-art µ-RA system implementation
[Jachiet et al., 2020].

Since RLQDAG is focused on recursive queries, we want to show different
ways of application of recursion. For this reason we present a classification of
recursive queries in seven classes, inspired from [Chlyah et al., 2022].

• C0: recursion-free queries (for which only classical rewrite rules for non-
recursive terms will be triggered).

• C1: Single recursion, e.g. ?x, ?y ←?x a+ ?y

• C2: Filter to the right of a recursion, e.g. ?x ←?x a + C. In the
case of property graphs (our representation), C can be expressed as:
x : colName[prop1 = value1].

• C3: Filter to the left of a recursion, e.g. ?x← C a+ ?x.

• C4: Concatenation of a non recursive term to the right of a recursion, e.g.
?x, ?y ←?x a+ /b ?y.

• C5: Concatenation of a non recursive term to the left of a recursion, e.g.
?x, ?y ←?x b/a+ ?y.

• C6: Concatenation of recursions, e.g. ?x, ?y ←?x a+ /b+ ?y.

The classification for queries used in experiments is shown in Table 4.1. All
queries over the different datasets are chosen such that they belong to more than
one category in this classification. Queries cover all classification possibilities.

4.3.3 Hardware setup

The experiments were conducted using a machine with a 2,8 GHz Quad-Core
Intel Core i7; 16GB memory DDR3. The version of postgres used is 10.5, run on
Docker 19.03.

4.4 Experimental Results

In this section we report on the results obtained in two phases: (i) the plan
enumeration phase of RLQDAG, during which we assess the efficiency of the
exploration of the space of recursive plans; (ii) the query evaluation phase where
we assess to which extent the efficiency of enumeration is beneficial when running
the best estimated term from the explored plan space.

112 CHAPTER 4. APPLICATION TO PROPERTY GRAPH QUERIES

Query C0 C1 C2 C3 C4 C5 C6
Q1 + + + +
Q2 + + + +
Q3 + + + +
Q4 + + + +
Q5 + + + +
Q6 + + + +
Q7 + + + +
Q8 + + +
Q9 + +
Q10 + + + +
Q11 + + + +
Q12 + +
Q13 + +
Q14 + + +
Q15 + +
Q16 + +
Q17 + +
Q18 + +
Q19 + +
Q20 + +
Q21 + + +
Q22 + + +
Q23 + + +
Q24 + + + +
Q25 + + + +
Q26 + + + +
Q27 + + +

Query C0 C1 C2 C3 C4 C5 C6
Q28 + + +
Q29 + + +
Q30 + + + +
Q31 + + +
Q32 + + +
Q33 + +
Q34 + + +
Q35 + + + +
Q36 + + +
Q37 + + +
Q38 + + + +
Q39 + + + +
Q40 + + +
Q41 + + + +
Q42 + + +
Q43 + + +
Q44 + +
Q45 + + + + +
Q46 + +
Q47 + +
Q48 + + + +
Q49 + + + +
Q50 + + +
Q51 + + +
Q52 + + + +
Q53 + + +
Q54 + + +

Table 4.1: Classification of all queries (Q1- Q54).

4.4.1 Results for enumeration phase

First, we measure the enumeration capability of the RLQDAG in terms of the
number of plans explored per second for each query. The goal is to explore the
plan space exhaustively, by finding every possible plan given the set of rewrite
rules. Figures 4.8, 4.9, 4.10 and 4.11 respectively show the results obtained for
the queries over each dataset. In these figures, the y axis (in log scale) indicates
the number of plans per second explored by each approach for a given query (on
the x axis). Results suggest that the RLQDAG approach always enumerates
plans much faster (up to two orders of magnitude) when compared to the µ-RA
system1.

1Cases where histogram bars look very similar correspond to situations where both systems
completed the plan space exploration in a very short time duration, which makes the difference
hardly visible with the log scale.

4.4. EXPERIMENTAL RESULTS 113

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Queries

102

103

104

105

106

P
la

n
s

p
e
r

se
co

n
d
 (

lo
g
 s

ca
le

)

µ−RA
RLQDAG

Figure 4.8: Plan space explored for Yago queries.

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33

Queries

102

103

104

105

106

107

108

P
la

n
s

p
e
r

se
co

n
d
 (

lo
g
 s

ca
le

)

µ−RA
RLQDAG

Figure 4.9: Plan space explored for Bahamas Leaks queries.

114 CHAPTER 4. APPLICATION TO PROPERTY GRAPH QUERIES

Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47

Queries

102

103

104

105

106

107

108

P
la

n
s

p
e
r

se
co

n
d
 (

lo
g
 s

ca
le

)

µ−RA
RLQDAG

Figure 4.10: Plan space explored for Airbnb queries.

Q48 Q49 Q50 Q51 Q52 Q53 Q54

Queries

102

103

104

105

106

107

108

P
la

n
s

p
e
r

se
co

n
d
 (

lo
g
 s

ca
le

)

µ−RA
RLQDAG

Figure 4.11: Plan space explored for LDBC queries.

Plan space exploration in a time budget of 0.5 seconds.
Now, we set a time budget t (in seconds) for the plan space exploration and let
the two systems generate plan spaces for that time budget. This means that after
t elapsed seconds we stop the two explorations and look at the portions of plan
spaces obtained by the two systems. Figure 4.12 shows the results obtained for a
time budget of t = 0.5 seconds. The y axis (in log scale) indicates the number of
plans found. Figure 4.12 also indicates the size of the complete (exhaustive) plan
space obtained without any time restriction for the plan exploration (t = ∞).
For example, for query Q31, the complete plan space contains more than 21.4
million plans. In 0.5 seconds, the RLQDAG prototype explored 1,019,026 plans
whereas the µ-RA system explored only 5,751 plans. This is because although
µ-RA uses dynamic programming techniques, it is not capable of benefitting from
the RLQDAG’s grouping effect when applying complex rewrite rules on sets of

4.4. EXPERIMENTAL RESULTS 115

recursive terms at once, thus rules are significantly more costly to apply. Seen from
another perspective, this means that the RLQDAG’s approach is more effective in
avoiding redundant subcomputations. We have conducted extensive experiments
and overall results indicate that, for a given time budget, the RLQDAG prototype
explores many more terms in comparison to the µ-RA system, in all cases. In
some cases, the RLQDAG generates a number of plans which is greater by up to
two orders of magnitude (for the same time budget). Such a speedup sometimes
enables a complete exploration of the whole plan space in some cases (as shown
e.g. for Q32, Q51, Q53, Q54 in Figure 4.12).

Q31 Q32 Q34 Q37 Q38 Q39 Q51 Q53 Q54
Queries

102

103

104

105

106

107

108

P
la

n
s

(l
o
g
 s

ca
le

)

µ−RA
RLQDAG

Complete plan space

Figure 4.12: Plan spaces explored in a fixed time budget (0.5 s).

Plan space explored in a given time budget (Q31)

We study how the plan space explored evolves when given different time
budgets.

In the example of Figure 4.13, we check the plan space portion explored after
each increment of 100ms of the exploration time budget, starting from 100ms
and up to 1s. In this example we considered Q31 because the number of plans
explored is relatively big and therefore we can study the evolution of the plan
space portions explored by each system. In Figure 4.13, we observe that the ratio
between the number of plans explored by RLQDAG and µ-RA prototypes is up
to 3 orders of magnitude (9̃99.000), which is significant. Even with the increase
of the exploration time budget, this ratio stays stable.

116 CHAPTER 4. APPLICATION TO PROPERTY GRAPH QUERIES

100 200 300 400 500 600 700 800 900 1000

0.0

0.2

0.4

0.6

0.8

1.0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Exploration time (ms)

102

103

104

105

106

107

108
N

u
m

b
e
r

o
f

p
la

n
s

e
x
p
lo

re
d
 (

lo
g
 s

ca
le

)

Complete plan space
µ−RA
RLQDAG

Figure 4.13: Plan space generation in a given time budget.

In the next experiments we study to which extent these additional plan space
portions explored are useful in practice.

4.4.2 Results for query evaluation phase

We want to assess the impact of the usage of RLQDAG in the complete query
evaluation process. We compare the RLQDAG and µ-RA systems while using
the same heuristics for cost estimations [Lawal et al., 2020], thus making relevant
a head to head comparison.

Best estimated term in a generated plan space for several queries
Figure 4.14 illustrates the time spent in evaluating the best estimated plan taken
from each of the explored plan space portions of Figure 4.12. Results presented
in Figure 4.14 show the benefits of exploring a much larger plan space: the
RLQDAG approach always provides similar or better performance, which is a
direct consequence of the availability of more efficient recursive plans in the larger
explored portion of the plan space.

Best estimated term for different time budgets
We now report on experiments of exploring plan spaces with varying and

increasing time budgets for the same query. To illustrate this, we consider two
queries from two different datasets. For instance, Figure 4.15a presents the number
of plans explored (on the y axis) for different time budgets shown on the x axis for
query Q31. Figure 4.15b shows the time spent in evaluating the best estimated

4.4. EXPERIMENTAL RESULTS 117

Q31 Q32 Q34 Q37 Q38 Q39 Q51 Q53 Q54
Queries

0

500

1000

1500

2000

2500

3000
E
v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

µ−RA
RLQDAG

Figure 4.14: Evaluation of the most efficient plan found in the explored space for
the given queries.

plan selected from each plan space explored with the time budget shown on the x
axis. Again, results shown in Figure 4.15a indicate that the RLQDAG explores
significantly more plans than the other system for all considered time budgets
(the y axis is in log scale). We can also observe that the difference between the
amount of plans explored by each system stays of the same order, even when
exploration time increases. Results shown in Figure 4.15b illustrate the benefits
of exploring larger plan spaces since the best estimated term selected from the
larger plan space is indeed more efficiently evaluated. Similar results are obtained
for other queries on other datasets, as shown by e.g. in Figures 4.16a and 4.16b.
This confirms the interest of efficiently exploring recursive plan spaces, since this
shows that, in practice, larger plan spaces are very prone to contain more efficient
recursive plans.

100 200 300 400 500
Exploration time (ms)

100

101

102

103

104

105

106

107

N
u
m

b
e
r

o
f

p
la

n
s

(l
o
g
 s

ca
le

)

µ−RA
RLQDAG

(a) Plans explored for different time budgets.

100 200 300 400 500
Exploration time (ms)

100

101

102

E
v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

µ−RA
RLQDAG

(b) Most efficient plan evaluated in the explored space.

Figure 4.15: Results on exploration and evaluation phases for Q31 in different time
budgets.

118 CHAPTER 4. APPLICATION TO PROPERTY GRAPH QUERIES

100 200 300 400 500
Exploration time (ms)

100

101

102

103

104

105

106

107
N

u
m

b
e
r

o
f

p
la

n
s

(l
o
g
 s

ca
le

)
µ−RA
RLQDAG

(a) Plans explored for different time budgets.

100 200 300 400 500
Exploration time (ms)

100

101

102

E
v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

µ−RA
RLQDAG

(b) Most efficient plan evaluated in the explored space.

Figure 4.16: Results on exploration and evaluation phases for Q53 in different time
budgets.

4.5 Conclusion

We introduced a high-level query language fragment for property graphs. We
presented a syntax and translation functions for generating RLQDAG from a
given query. We experiment the RLQDAG with queries on real and synthetic
datasets, and compare the results obtained against a state-of-the-art baseline
(µ-RA). Results show that the RLQDAG is able to enumerate plans much faster
(sometimes up to 3 orders of magnitude) than the unmodified baseline system.
Then, we show that the additional plans enumerated are useful because for the
same time budget the RLQDAG is able to find a plan which is more efficient. In
practice, this translates into performance gains when evaluating recursive queries
over property graphs.

Chapter 5

Conclusion and Perspectives

119

120 CHAPTER 5. CONCLUSION AND PERSPECTIVES

5.1 Conclusion

In this thesis we have studied plan enumeration in the presence of recursion.
We proposed the RLQDAG for capturing and efficiently transforming sets of
recursive relational terms. This is done by introducing annotated equivalence
nodes, and a formal syntax and semantics for RLQDAG terms that enable the
development of RLQDAG rewrite rules on a solid ground. RLQDAG rewrite rules
transform sets of recursive terms while precisely describing how new subterms
are created, attached, shared, and how new structural annotations are obtained
with incremental updates.

The proposed formalisation of the RLQDAG in terms of syntax and semantics
provided a convenient – if not instrumental – means to develop transformations. It
helped in detecting and fixing intricate transformational issues (due to misplaced
recursive calls) in an earlier version of the RLQDAG. We believe that this
formalization can also serve in other and further (R)LQDAG extensions, thus
contributing to the extensibility of the top-down transformational approach.

We have introduced a formal syntax and translation functions for a direct trans-
lation of a recursive query language fragment for property graphs (UCRPQPG)
into RLQDAG. Practical experiments with a prototype implementation of the
RLQDAG show that it efficiently generates the rich plan spaces introduced in the
µ-recursive relational algebra. Experiments show significant performance gains
compared to the state-of-the-art µ-RA system. Experiments are conducted on
knowledge and property graphs. This suggests that the RLQDAG represents a
promising approach for the efficient enumeration of recursive relational query
plans. Based on these experiments we show how plan enumeration using RLQDAG
approach can be beneficial in finding the best estimated term for a given query.

5.2 Perspectives

These works open several perspectives for future work, in different directions. We
comment below on some of the main perspectives opened for further research:

5.2.1 Normal form for RLQDAG terms

Another idea is to consider a normal form of RLQDAG terms to simplify the
combinatorics when enumerating recursive terms. For example, in a RLQDAG
in normal form, antiprojections could be allowed to appear only at the top-
level of operands of union and fixpoint operation nodes. Such a normal form
could be reached by a pulling phase where antiprojections are pulled until they
reach these “barriers” in the tree of operators: they would not be allowed to
be pulled through these “barriers”. Enumeration would then consist applying a
restricted set of rewrite rules on the normal form, that thus does not need to
deal with antiprojections anymore (hence decreasing the combinatorics). Finally,
antiprojections would be pushed as close to the leaves (the sources) as possible.
This would probably help in investigating computional complexity bounds of
recursive plan enumeration, because it would be possible to have a phase of

5.2. PERSPECTIVES 121

stratification for certain operators and maybe allow an optimization considering
only joins. Another idea in the same direction might be the one of disabling
the strict typing system for unions and fixpoints and allow a stratification phase.
This would mean we could consider an optimization phase only for join operators
and we could directly compare to the propositions found in the litterature for
join optimization and complexity. But disabling the strict typing system comes
with huge costs that need to be considered carefully.

5.2.2 Cost estimations

An interesting perspective for further work is to investigate refinements of the
cost estimation model for individual terms [Lawal et al., 2020] used to choose the
most efficient plan in the setting of the RLQDAG.

5.2.3 Directed plan enumeration

As a perspective for future work it would be worth investigating the possibility to
enumerate plans using the branch and bound technique. This means using a cost
estimation model during the plan enumeration phase. Cost estimations would
serve as a guidance for the plan enumeration phase and would allow to consider
only the most efficient plans. With this, we would leverage cost estimations to
prune portions of the plan space directly during the enumeration phase. This
would also allow to investigate trade-offs between exhaustive plan enumeration
and heuristics-based plan enumeration, in particular for fixed time budgets of
optimization.

5.2.4 More expressive query language fragments

Another area of perspectives would be the consideration of more expressive
fragments of high-level query languages (more expressive than UCRPQPG). This
might include features found in different query languages available like: Cypher,
PGQL, G-Core etc.

5.2.5 Benchmark on experiments

An interesting perspective is to setup a benchmark for even more advanced ex-
periments with the RLQDAG. For now, our experiments are made against µ-RA
system. This system was compared and shown to be more efficient than other sys-
tems like: neo4j, Virtuoso, LogicBlox etc. By transitivity, since RLQDAG performs
better that µ-RA system we consider it as superior to these other systems. How-
ever, it would be interesting to compare it to other state-of-the-art systems. For
example, there are other systems that came out very recently [Vrgoc et al., 2021]
and it would be interesting to create benchmarks with them.

5.2.6 Leverage RLQDAG formalisation for theorem proving

The formal syntax and semantics proposed for RLQDAG pave the way for formal
proofs for correctness and completeness using proof assistants, such as: Coq.

122 CHAPTER 5. CONCLUSION AND PERSPECTIVES

pf(
[
d
]
) =

[
d
]

when d̸= σf (.)

pf(
[
d, α

]
) =

[
d, α

]
when d̸= σf (.)

pf(
[
σf (

[
µX. γ ∪ αrec(X)

]
)
]
) =

[
µX ′. σf (expand(

[
γ
]
)) ∪ αrec(X

′)
]

pf(
[
σf (

[
µX. γ ∪ αrec(X), α

]
)
]
) = let const = γ in[

σf (
[
µX. const ∪ αrec(X), α

]
),[

µX ′. σf (
[
const

]
) ∪ αrec(X

′)
]
,

pf(
[
σf (

[
α
]
)
]
)

]
when d= σf (.)

pf(
[
σf (

[
d, α

]
)
]
) =

[[
σf (

[
d, α

]
), σf (α)

]]
when d is not a fixpoint

pf(
[
σf (

[
d
]
)
]
) =

[
σf (

[
d
]
)
]

when d is not a fixpoint
pf(

[
let Y = α1 in α2

]
) = let Y = pf(α1) in pf(α2)

5.2.7 Characterization of Complexity of Expansion Algorithm

The computational complexity of plan enumeration was discussed in Section 2.3.5.
Based on earlier results for SPJ queries, we can infer a lower complexity bound
for plan enumeration with the RLQDAG, as illustrated in Figure 5.1.

Q
ue

ry
 sh

ap
e

Time complexity

O(n2) O(n3) O(2n) O(n*2n) O(3n)

linear

chain

cycle

star

star &
recursive

bushy

bottom-up, Selinger

bottom-up with CP, Selinger

bushy

bushy

bushy

bushy

DPsize

Recursive (sigmod’20)

?Ω(2n) Ω(3n)Ω(n*2n) O(4n)O(n4)

clique

DPsub

DPccp

Neumann Moerkotte (’06)
RS-Graph [Shanbhag (‘14)]

Figure 5.1: Recursive queries placement in the complexity window.

Indeed, the only thing certain for now are the lower bounds achieved when
considering SPJ, but the exact complexity of plan enumeration for recursive
queries is still to be studied. So far, only join relations were considered for
complexity studies. If we want to study the computational complexity of recursive
queries we need to take into account unions and fixpoints as well. It becomes
more complicated because of rewrite rules and new possibilities generated from
the interplay between operators. It would be interesting to investigate complexity
upper bounds in this context.

Appendix

Queries

Queries used in experiments [Tyrex-repository, 2022] with graph datasets are
shown below:

?x ← ?x isMarriedTo/livesIn/isLocatedIn+/dealsWith+ Argentina Q1

?x ← ?x hasChild/livesIn/isLocatedIn+/dealsWith+ Japan Q2

?x ← ?x influences/livesIn/isLocatedIn+/dealsWith+ Sweden Q3

?x ← ?x livesIn/isLocatedIn+/dealsWith+ United_States Q4

?x ← ?x hasSuccessor/livesIn/isLocatedIn+/dealsWith+ India Q5

?x ← ?x hasPredecessor/livesIn/isLocatedIn+/dealsWith+ Germany Q6

?x ← ?x hasAcademicAdvisor/livesIn/isLocatedIn+/dealsWith+ Netherlands Q7

?x ← ?x isLocatedIn+/dealsWith+ United_States Q8

?x ← ?x (actedIn/-actedIn)+ Kevin_Bacon Q9

?area ← wikicategory_Capitals_in_Europe -rdf:type/(isLocatedIn+/dealsWith|dealsWith) ?area Q10

?person ← person isMarriedTo+/owns/isLocatedIn+|owns/isLocatedIn+ United_States Q11

?a, ?b ← ?a isLocatedIn+/dealsWith ?b Q12

?a, ?b ← ?a isLocatedIn+/dealsWith+ ?b Q13

?a, ?b, ?c ← ?a wasBornIn/isLocatedIn+ ?b,
?b isConnectedTo+ ?c Q14

?a, ?b, ?c ← ?a (isLocatedIn|isConnectedTo)+ ?b,
?c wasBornIn ?a Q15

?a, ?c ← ?a wasBornIn/IsLocatedIn+ Japan,
?a rdf:type/rdfs:subClassOf ?c Q16

?a ← ?a isLocatedIn+/(isConnectedTo|dealsWith)+ Japan Q17

?a, ?c ← ?a IsLocatedIn+ Japan,
?a isConnectedTo+ ?c Q18

?a ← ?a isLocatedIn+/isLocatedIn Japan Q19

?a ← ?a isLocatedIn+/isConnectedTo+/dealsWith+ Japan Q20

Figure .1: Queries over the Yago dataset.

?x, ?z, ?w ← ?x: person[firstName=Carmen gender=female] person_knows_person[creationDate=2010]+/person_likes_comment[creationDate=2008] ?z: comment[browserUsed=Opera] Q48

?x, ?y, ?z ← ?x: person[firstName=Carmen gender=female] person_knows_person[creationDate=2010]+ ?y: person[lastName=Rodriguez place=726],
?x: person[firstName=Carmen gender=female] person_likes_comment[creationDate=2006] ?z: comment[browserUsed=Opera] Q49

?x, ?y, ?w ← ?x: person[lastName=Muller gender=male] person_knows_person+ ?y: person,
?x: person[lastName=Muller gender=male] person_likes_comment ?w: comment Q50

?x, ?y, ?w ← ?x: person[lastName=Ivanov birthday=1986-06-08] person_likes_comment[creationDate=2012-07-31T11:25:02.077+0000] ?w: comment[browserUsed=Firefox place=57],
?x: person[lastName=Ivanov birthday=1986-06-08] person_knows_person+ ?y: person Q51

?x, ?p, ?t ← ?x: person[firstName=Jun place=409] person_knows_person+/person_likes_post ?p: post[language=tk],
?p: post[language=tk] post_hasTag_tag ?t: tag Q52

?x, ?y, ?w ← ?x: person[firstName=Kirill lastName=Ivanov birthday=1986-06-08] person_studyAt_organisation ?w: organisation,
?x: person[firstName=Kirill lastName=Ivanov birthday=1986-06-08] person_knows_person+ ?y: person Q53

?x, ?p, ?y ← ?x: person[firstName=Jun place=409] person_likes_post ?p: post[language=tk],
?x: person[firstName=Jun place=409] person_knows_person+ ?y: person Q54

Figure .2: Queries over the LDBC dataset.

123

124 APPENDIX . QUERIES

?x, ?w ← ?x: officer[name_off= ALPHA DIRECTION LTD] same_name_as+/ registered_address ?w: address Q21

?x, ?o ← ?x: officer[name_off= MONTAGUE EAST LTD.] same_name_as+ ?o: officer Q22

?x, ?o ← ?x: officer[name_off= PANTILES S.A.] same_name_as+/officer_of+ ?o: officer Q23

?x, ?o, ?w ← ?x: officer[name_off= SAMSON DANIEL SIMON] same_name_as+/officer_of+ ?o: officer,
?x: officer[name_off= PANTILES S.A.] registered_address ?w: address[address_add=P.O. BOX N-9306, NASSAU, BAHAMAS] Q24

?x, ?o, ?w ← ?x: officer[name_off= SAMSON DANIEL SIMON] same_name_as+/officer_of+ ?o: officer,
?x: officer[name_off= PANTILES S.A.] registered_address ?w: address[address_add=P.O. BOX N-9306, NASSAU, BAHAMAS] Q25

?x, ?o, ?w ← ?x: officer[name_off= ALPHA DIRECTION LTD.] same_name_as+/registered_address ?w: address[country_codes_add=BHS] Q26

?x, ?o, ?w ← ?x: officer[name_off= PANTILES S.A.] same_address_as/same_name_as+ ?o: officer Q27

?x, ?o ← ?x: officer[name_off= MARTEL JULIEN D.] same_address_as[sourceid_s_add_as =Bahamas Leaks]/same_name_as+ ?o: officer Q28

?x, ?y, ?z ← ?x: officer[name_off= WESTLAW LIMITED] officer_of ?y: entity[incorporation_date_ent = 09-MAR-1990],
?z: intermediary intermediary_of+ ?y: entity[incorporation_date_ent = 14-AUG-1992] Q29

?x, ?y, ?z, ?w ← ?x: officer[name_off= ZANETTI LUIGI] officer_of+ ?y: entity[incorporation_date_ent = 14-AUG-1992],
?z: intermediary intermediary_of ?y: entity[incorporation_date_ent = 08-JAN-1992],
?x: officer[name_off= ZANETTI LUIGI] registered_address ?w: address Q30

?x, ?o, ?y, ?z ← ?x: officer[name_off=ALPHA DIRECTION LTD.] same_name_as+ ?o: officer,
?x: officer[name_off=ALPHA DIRECTION LTD.] officer_of ?y: entity,
?z: intermediary intermediary_of ?y: entity Q31

?x, ?o, ?y, ?z ← ?x: officer[name_off= ALPHA DIRECTION LTD.] same_name_as+ ?o: officer,
?x: officer[name_off= ALPHA DIRECTION LTD.] officer_of ?y: entity,
?y: entity same_company_as+ ?z: entity Q32

?x, ?y, ?z, ?w ← ?y: entity same_company_as+ ?z: entity,
?x: officer[name_off= ALPHA DIRECTION LTD.] officer_of ?y: entity,
?w: intermediary intermediary_of ?y: entity Q33

Figure .3: Queries over the Bahamas Leaks dataset.

?x, ?z, ?w ← ?x: user[user_id=11959525 user_name=Michael] friend_of+/knows+ ?z: host,
?x: user[user_id=11959525 user_name=Michael] wrote ?w: review[review_id=15264060] Q34

?x, ?z, ?w, ?l ← ?x: user[user_id=97890 user_name=Zane] friend_of+ ?z: user,
?x: user[user_id=97890 user_name=Zane] knows+ ?w: host[host_name=Nathan],
?w: host owns ?l: listing Q35

?x, ?z, ?w, ?l ← ?x: user[user_id=97890 user_name=Zane] friend_of+ ?z: user[user_name=Phoebe user_id=74571593],
?x: user[user_id=97890 user_name=Zane] wrote ?w: review[review_id=32236],
?w: review[review_id=32236] reviews_for ?l: listing[listing_id=11551] Q36

?x, ?z, ?w, ?l ← ?x: user[user_id=97890 user_name=Zane] knows+ ?z: user,
?z: user wrote ?w: review[review_id=32236],
?l: listing[listing_id=11551] -reviews_for ?w: review[review_id=32236] Q37

?x, ?z, ?w, ?l ← ?x: host[host_id=2405795] knows+ ?z: user[user_name=Phoebe user_id=74571593],
?x: host[host_id=2405795] friend_of+ ?w: host,
?z: user[user_name=Phoebe user_id=74571593] wrote ?l: review Q38

?x, ?z, ?a, ?l ← ?x: host[host_id=2405795] knows+ ?z: user[user_name=Phoebe user_id=74571593],
?x: host[host_id=2405795] owns ?l: listing,
?l: listing has ?a: amenity[bedrooms=3 beds=3] Q39

?x, ?z, ?w ← ?x: user[user_id=93896] friend_of+/wrote ?z: review,
?x: user[user_id=93896] knows+ ?w: host[host_location=England host_since=2009-12-05] Q40

?x, ?z ← ?x: user[user_name=Monique] friend_of+|wrote ?z: review[comment=Super perfect 5 star place to stay] Q41

?x, ?y ← ?x: user[user_id=100872 user_name=Sarah] friend_of+/-friend_of ?y: user Q42

?x, ?y ← ?x: host friend_of+/owns ?y: listing Q43

?x, ?y ← ?x: host friend_of+/owns[hostID=43039 listID=11551] ?y: listing Q44

?x, ?y ← ?x: host[host_name=Adriano] owns[hostID=43039 listID=11551]/friend_of+ ?y: listing[name=NICE FAMILY HOME opposite NATURAL LANDSCAPED PARK] Q45

?x, ?y, ?l, ?z ← ?x: user knows+ ?y: host,
?y: host owns ?l: listing,
?l: listing -reviews_for ?z: review[comment = The flat was bright review_id=30672] Q46

?x, ?y, ?l, ?w ← ?x: host knows+ ?y: host,
?x: host owns ?l: listing[name=Arty],
?l: listing[name=Arty] has ?w: booking_details[listing_id=1000127] Q47

Figure .4: Queries over the Airbnb dataset.

Bibliography

[dat, 2021] (2021). PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, New York, NY, USA.
Association for Computing Machinery.

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Founda-
tions of Databases. Addison-Wesley.

[Abul-Basher et al., 2017a] Abul-Basher, Z., Yakovets, N., Godfrey, P., Ghajar-
Khosravi, S., and Chignell, M. H. (2017a). Tasweet: optimizing disjunctive
regular path queries in graph databases. In EDBT/ICDT 2017 joint conference
20th international conference on extending database technology. https://doi.
org/10.5441/002/edbt.

[Abul-Basher et al., 2017b] Abul-Basher, Z., Yakovets, N., Godfrey, P., Ghajar-
Khosravi, S., and Chignell, M. H. (2017b). Tasweet: optimizing disjunctive
regular path queries in graph databases. In EDBT/ICDT 2017 joint conference
20th international conference on extending database technology. https://doi.
org/10.5441/002/edbt.

[Agrawal, 1988] Agrawal, R. (1988). Alpha: an extension of relational algebra to
express a class of recursive queries. IEEE Transactions on Software Engineering,
14(7):879–885.

[Aho and Ullman, 1979] Aho, A. V. and Ullman, J. D. (1979). Universality of
data retrieval languages. In Proceedings of the 6th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’79, pages 110–119,
New York, NY, USA. ACM.

[Airbnb, 2022] Airbnb (2022). Airbnb. http://insideairbnb.com/
get-the-data.html.

[Alvaro et al., 2010] Alvaro, P., Marczak, W., Conway, N., Hellerstein, J., Maier,
D., and Sears, R. (2010). Dedalus: Datalog in time and space. pages 262–281.

[Angles et al., 2018] Angles, R., Arenas, M., Barceló, P., Boncz, P., Fletcher, G.,
Gutierrez, C., Lindaaker, T., Paradies, M., Plantikow, S., Sequeda, J., et al.
(2018). G-core: A core for future graph query languages. In Proceedings of the
2018 International Conference on Management of Data, pages 1421–1432.

125

http://insideairbnb.com/get-the-data.html
http://insideairbnb.com/get-the-data.html

126 BIBLIOGRAPHY

[Angles et al., 2017] Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter,
J., and Vrgoč, D. (2017). Foundations of modern query languages for graph
databases. ACM Comput. Surv., 50(5).

[Bahamas-Leaks, 2017] Bahamas-Leaks (2017). Bahamas leaks. https://www.
kaggle.com/datasets/zusmani/paradisepanamapapers.

[Bancilhon et al., 1985] Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D.
(1985). Magic sets and other strange ways to implement logic programs (ex-
tended abstract). In Proceedings of the Fifth ACM SIGACT-SIGMOD Sympo-
sium on Principles of Database Systems, PODS ’86, page 1–15, New York, NY,
USA. Association for Computing Machinery.

[Bancilhon and Ramakrishnan, 1986] Bancilhon, F. and Ramakrishnan, R.
(1986). An amateur’s introduction to recursive query processing strategies. In
Proceedings of the 1986 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’86, page 16–52, New York, NY, USA. Association for
Computing Machinery.

[Barceló et al., 2013] Barceló, P., Figueira, D., and Libkin, L. (2013). Graph
Logics with Rational Relations. Logical Methods in Computer Science, 9(3).

[Barceló et al., 2012] Barceló, P., Libkin, L., Lin, A. W., and Wood, P. T. (2012).
Expressive languages for path queries over graph-structured data. ACM Trans.
Database Syst., 37(4).

[Begoli et al., 2018] Begoli, E., Camacho-Rodríguez, J., Hyde, J., Mior, M. J.,
and Lemire, D. (2018). Apache calcite: A foundational framework for optimized
query processing over heterogeneous data sources. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18, page 221–230,
New York, NY, USA. Association for Computing Machinery.

[Boncz, 2013] Boncz, P. (2013). Ldbc: Benchmarks for graph and rdf data
management. In Proceedings of the 17th International Database Engineer-
ing ; Applications Symposium, IDEAS ’13, page 1–2, New York, NY, USA.
Association for Computing Machinery.

[Bonifati et al., 2018] Bonifati, A., Fletcher, G., Voigt, H., and Yakovets, N.
(2018). Querying graphs. Morgan & Claypool Publishers.

[Casel and Schmid, 2021] Casel, K. and Schmid, M. L. (2021). Fine-grained
complexity of regular path queries. In Yi, K. and Wei, Z., editors, 24th
International Conference on Database Theory, ICDT 2021, March 23-26, 2021,
Nicosia, Cyprus, volume 186 of LIPIcs, pages 19:1–19:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

[Chaudhuri, 1998] Chaudhuri, S. (1998). An overview of query optimization in
relational systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS ’98, page 34–43,
New York, NY, USA. Association for Computing Machinery.

https://www.kaggle.com/datasets/zusmani/paradisepanamapapers
https://www.kaggle.com/datasets/zusmani/paradisepanamapapers

BIBLIOGRAPHY 127

[Chlyah et al., 2022] Chlyah, S., Gesbert, N., Genevès, P., and Layaïda, N. (2022).
On the Optimization of Iterative Programming with Distributed Data Collec-
tions. working paper or preprint.

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387.

[Consens and Mendelzon, 1990] Consens, M. P. and Mendelzon, A. O. (1990).
Graphlog: A visual formalism for real life recursion. In Proceedings of the
Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS ’90, page 404–416, New York, NY, USA. Association for
Computing Machinery.

[Cyganiak et al., 2014] Cyganiak, R., Wood, D., Lanthaler, M., Klyne, G., Car-
roll, J. J., and McBride, B. (2014). Rdf 1.1 concepts and abstract syntax. W3C
recommendation, 25(02):1–22.

[DeHaan and Tompa, 2007] DeHaan, D. and Tompa, F. W. (2007). Optimal top-
down join enumeration. In Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’07, page 785–796, New York,
NY, USA. Association for Computing Machinery.

[Fan et al., 2019] Fan, Z., Zhu, J., Zhang, Z., Albarghouthi, A., Koutris, P., and
Patel, J. M. (2019). Scaling-up in-memory datalog processing: Observations
and techniques. Proc. VLDB Endow., 12(6):695–708.

[Fender and Moerkotte, 2011] Fender, P. and Moerkotte, G. (2011). A new, highly
efficient, and easy to implement top-down join enumeration algorithm. pages
864 – 875.

[Fender and Moerkotte, 2013a] Fender, P. and Moerkotte, G. (2013a). Counter
strike: Generic top-down join enumeration for hypergraphs. Proc. VLDB
Endow., 6(14):1822–1833.

[Fender and Moerkotte, 2013b] Fender, P. and Moerkotte, G. (2013b). Top down
plan generation: From theory to practice. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pages 1105–1116.

[Fender et al., 2012] Fender, P., Moerkotte, G., Neumann, T., and Leis, V. (2012).
Effective and robust pruning for top-down join enumeration algorithms. In
2012 IEEE 28th International Conference on Data Engineering, pages 414–425.

[Francis et al., 2018a] Francis, N., Green, A., Guagliardo, P., Libkin, L., Lin-
daaker, T., Marsault, V., Plantikow, S., Rydberg, M., Selmer, P., and Taylor,
A. (2018a). Cypher: An evolving query language for property graphs. In
Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference, pages 1433–1445. ACM.

[Francis et al., 2018b] Francis, N., Green, A., Guagliardo, P., Libkin, L., Lin-
daaker, T., Marsault, V., Plantikow, S., Rydberg, M., Selmer, P., and Taylor,

128 BIBLIOGRAPHY

A. (2018b). Cypher: An evolving query language for property graphs. In
Proceedings of the 2018 International Conference on Management of Data, SIG-
MOD ’18, page 1433–1445, New York, NY, USA. Association for Computing
Machinery.

[Francis-Landau et al., 2020] Francis-Landau, M., Vieira, T., and Eisner, J.
(2020). Evaluation of logic programs with built-ins and aggregation: A calculus
for bag relations.

[Garcia-Molina et al., 2008] Garcia-Molina, H., Ullman, J. D., and Widom, J.
(2008). Database systems: The complete book.

[Gardarin, 1987] Gardarin, G. (1987). Magic functions: A technique to optimize
extended datalog recursive programs. pages 21–30.

[Godfrey et al., 2017] Godfrey, P., Yakovets, N., Abul-Basher, Z., and Chignell,
M. H. (2017). WIREFRAME: Two-phase, cost-based optimization for conjunc-
tive regular path queries. In AMW.

[Goldman and Widom, 1997] Goldman, R. and Widom, J. (1997). Dataguides:
Enabling query formulation and optimization in semistructured databases.
Technical report, Stanford.

[Graefe, 1995] Graefe, G. (1995). The cascades framework for query optimization.
Data Engineering Bulletin, 18.

[Graefe and McKenna, 1993] Graefe, G. and McKenna, W. J. (1993). The vol-
cano optimizer generator: Extensibility and efficient search. In Proceedings
of the Ninth International Conference on Data Engineering, pages 209–218,
Washington, DC, USA. IEEE Computer Society.

[Gremlin, 2022] Gremlin (2022). Gremlin. https://tinkerpop.apache.org/
gremlin.html.

[Gubichev et al., 2013] Gubichev, A., Bedathur, S. J., and Seufert, S. (2013).
Sparqling kleene: fast property paths in rdf-3x. In First International Workshop
on Graph Data Management Experiences and Systems, pages 1–7.

[Haas et al., 1989] Haas, L. M., Freytag, J. C., Lohman, G. M., and Pirahesh, H.
(1989). Extensible query processing in starburst. In Proceedings of the 1989
ACM SIGMOD International Conference on Management of Data, SIGMOD
’89, page 377–388, New York, NY, USA. Association for Computing Machinery.

[Huang et al., 2011] Huang, S. S., Green, T. J., and Loo, B. T. (2011). Datalog
and emerging applications: An interactive tutorial. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11,
page 1213–1216, New York, NY, USA. Association for Computing Machinery.

[Ibaraki and Kameda, 1984] Ibaraki, T. and Kameda, T. (1984). On the optimal
nesting order for computing n-relational joins. ACM Trans. Database Syst.,
9(3):482–502.

https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html

BIBLIOGRAPHY 129

[Jachiet et al., 2020] Jachiet, L., Genevès, P., Gesbert, N., and Layaïda, N. (2020).
On the optimization of recursive relational queries: Application to graph queries.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 681–697.

[Kifer and Lozinskii, 1990] Kifer, M. and Lozinskii, E. L. (1990). On compile-
time query optimization in deductive databases by means of static filtering.
ACM Trans. Database Syst., 15(3):385–426.

[Lawal et al., 2020] Lawal, M., Genevès, P., and Layaïda, N. (2020). A cost
estimation technique for recursive relational algebra. Proceedings of the 29th
ACM International Conference on Information & Knowledge Management.

[Libkin et al., 2016] Libkin, L., Martens, W., and Vrgoč, D. (2016). Querying
graphs with data. J. ACM, 63(2).

[Lohman, 1988] Lohman, G. M. (1988). Grammar-like functional rules for repre-
senting query optimization alternatives. SIGMOD Rec., 17(3):18–27.

[Moerkotte and Neumann, 2006] Moerkotte, G. and Neumann, T. (2006). Anal-
ysis of two existing and one new dynamic programming algorithm for the
generation of optimal bushy join trees without cross products. In Proceedings
of the 32nd International Conference on Very Large Data Bases, VLDB ’06,
page 930–941. VLDB Endowment.

[Moerkotte and Neumann, 2008] Moerkotte, G. and Neumann, T. (2008). Dy-
namic programming strikes back. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, page 539–552,
New York, NY, USA. Association for Computing Machinery.

[Naughton et al., 1989] Naughton, J. F., Ramakrishnan, R., Sagiv, Y., and Ull-
man, J. D. (1989). Efficient evaluation of right-, left-, and multi-linear rules. In
Proceedings of the 1989 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’89, page 235–242, New York, NY, USA. Association
for Computing Machinery.

[Neo4j, 2007] Neo4j (2007). Neo4j. https://neo4j.com/.

[Neumann and Radke, 2018] Neumann, T. and Radke, B. (2018). Adaptive opti-
mization of very large join queries. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, page 677–692, New York,
NY, USA. Association for Computing Machinery.

[Ono and Lohman, 1990] Ono, K. and Lohman, G. M. (1990). Measuring the
complexity of join enumeration in query optimization. In Proceedings of the
16th International Conference on Very Large Data Bases, VLDB ’90, page
314–325, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Pellenkoft et al., 1997] Pellenkoft, A., Galindo-Legaria, C., and Kersten, M.
(1997). The complexity of transformation-based join enumeration. pages
306–315.

https://neo4j.com/

130 BIBLIOGRAPHY

[Pirahesh et al., 1992] Pirahesh, H., Hellerstein, J. M., and Hasan, W. (1992).
Extensible/rule based query rewrite optimization in starburst. In Proceedings
of the 1992 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’92, page 39–48, New York, NY, USA. Association for Computing
Machinery.

[Reutter et al., 2017] Reutter, J. L., Romero, M., and Vardi, M. Y. (2017). Reg-
ular queries on graph databases. Theor. Comp. Sys., 61(1):31–83.

[Roy, 2001] Roy, P. (2001). Multi Query Optimization and Applications. PhD
thesis, PhD thesis, Indian Institute of Technology, Bombay.

[Roy et al., 2000] Roy, P., Seshadri, S., Sudarshan, S., and Bhobe, S. (2000).
Efficient and extensible algorithms for multi query optimization. SIGMOD
Rec., 29(2):249–260.

[Saccà and Zaniolo, 1985] Saccà, D. and Zaniolo, C. (1985). On the implementa-
tion of a simple class of logic queries for databases. In Proceedings of the Fifth
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS
’86, page 16–23, New York, NY, USA. Association for Computing Machinery.

[Seaborne et al., 2008] Seaborne, A., Manjunath, G., Bizer, C., Breslin, J., Das,
S., Davis, I., Harris, S., Idehen, K., Corby, O., Kjernsmo, K., et al. (2008).
Sparql/update: A language for updating rdf graphs. W3c member submission,
15.

[Selinger et al., 1979] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie,
R. A., and Price, T. G. (1979). Access path selection in a relational database
management system. In Proceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’79, pages 23–34, New York,
NY, USA. ACM.

[Seo et al., 2015] Seo, J., Guo, S., and Lam, M. S. (2015). Socialite: An efficient
graph query language based on datalog. IEEE Transactions on Knowledge and
Data Engineering, 27(7):1824–1837.

[Shanbhag and Sudarshan, 2014] Shanbhag, A. and Sudarshan, S. (2014). Op-
timizing join enumeration in transformation-based query optimizers. Proc.
VLDB Endow., 7(12):1243–1254.

[Sharma et al., 2021] Sharma, C., Sinha, R., and Johnson, K. (2021). Practi-
cal and comprehensive formalisms for modelling contemporary graph query
languages. Information Systems, 102:101816.

[Shkapsky et al., 2016] Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie,
T., and Zaniolo, C. (2016). Big data analytics with datalog queries on spark.
In Proceedings of the 2016 International Conference on Management of Data,
SIGMOD ’16, page 1135–1149, New York, NY, USA. Association for Computing
Machinery.

BIBLIOGRAPHY 131

[Soliman et al., 2014] Soliman, M. A., Antova, L., Raghavan, V., El-Helw, A., Gu,
Z., Shen, E., Caragea, G. C., Garcia-Alvarado, C., Rahman, F., Petropoulos,
M., Waas, F., Narayanan, S., Krikellas, K., and Baldwin, R. (2014). Orca: A
modular query optimizer architecture for big data. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, SIGMOD
’14, page 337–348, New York, NY, USA. Association for Computing Machinery.

[Steinbrunn et al., 1997] Steinbrunn, M., Moerkotte, G., and Kemper, A. (1997).
Heuristic and randomized optimization for the join ordering problem. The
VLDB Journal, 6(3):191–208.

[Tekle and Liu, 2011] Tekle, K. T. and Liu, Y. A. (2011). More efficient datalog
queries: Subsumptive tabling beats magic sets. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD
’11, page 661–672, New York, NY, USA. Association for Computing Machinery.

[TinkerPop, 2022] TinkerPop, A. (2022). Apache tinkerpop. https://tinkerpop.
apache.org/.

[Tyrex-repository, 2022] Tyrex-repository (2022). Datasets and queries used in
experiments with the µ-LQDAG. https://gitlab.inria.fr/tyrex-public/
rlqdag.

[van Rest et al., 2016] van Rest, O., Hong, S., Kim, J., Meng, X., and Chafi, H.
(2016). Pgql: A property graph query language. In Proceedings of the Fourth
International Workshop on Graph Data Management Experiences and Systems,
GRADES ’16, New York, NY, USA. Association for Computing Machinery.

[Vance and Maier, 1996] Vance, B. and Maier, D. (1996). Rapid bushy join-order
optimization with cartesian products. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’96, page 35–46,
New York, NY, USA. Association for Computing Machinery.

[Vardi, 1982] Vardi, M. Y. (1982). The complexity of relational query languages.
In Proceedings of the fourteenth annual ACM symposium on Theory of comput-
ing, pages 137–146.

[Vrgoc et al., 2021] Vrgoc, D., Rojas, C., Angles, R., Arenas, M., Arroyuelo, D.,
Aranda, C. B., Hogan, A., Navarro, G., Riveros, C., and Romero, J. (2021).
Millenniumdb: A persistent, open-source, graph database. arXiv preprint
arXiv:2111.01540.

[Wang et al., 2015] Wang, J., Balazinska, M., and Halperin, D. (2015). Asyn-
chronous and fault-tolerant recursive datalog evaluation in shared-nothing
engines. Proc. VLDB Endow., 8(12):1542–1553.

[Wang et al., 2022] Wang, Y. R., Khamis, M. A., Ngo, H. Q., Pichler, R., and
Suciu, D. (2022). Optimizing recursive queries with program synthesis. arXiv
preprint arXiv:2202.10390.

https://tinkerpop.apache.org/
https://tinkerpop.apache.org/
https://gitlab.inria.fr/tyrex-public/rlqdag
https://gitlab.inria.fr/tyrex-public/rlqdag

132 BIBLIOGRAPHY

[YAGO, 2019] YAGO (2019). Yago: A high-quality knowledge base. https:
//www.mpi-inf.mpg.de/yago-naga/yago/.

[Yakovets et al., 2015a] Yakovets, N., Godfrey, P., and Gryz, J. (2015a). WAVEG-
UIDE: Evaluating SPARQL property path queries. In EDBT, volume 2015,
pages 525–528.

[Yakovets et al., 2015b] Yakovets, N., Godfrey, P., and Gryz, J. (2015b). Waveg-
uide: Evaluating SPARQL property path queries. In EDBT, volume 2015,
pages 525–528.

https://www.mpi-inf.mpg.de/yago-naga/yago/
https://www.mpi-inf.mpg.de/yago-naga/yago/

	Introduction
	Contents
	State of the art
	Graph data models and query languages
	Graph data models
	Knowledge graphs
	Property graphs

	Graph query languages
	Important design choices on query languages
	The SPARQL standard for knowledge graphs
	Query languages for property graphs
	Query language comparisons
	Recursive query language fragments of particular interest
	Query shapes

	Complexity of the query evaluation problem

	Foundations of query optimization
	Introduction
	Relational algebra
	Relations
	Data model formalisation
	Operations
	Rewrite rules

	Query optimization
	Plan space
	Properties of plan enumeration algorithms
	Algorithmic Techniques for Plan Enumeration
	Join Enumeration
	Computational complexity of plan enumeration
	Union in transformation-based query optimizers

	Implementations of transformation-based optimizers
	Background on bottom-up approaches
	Background on top-down approaches

	Zoom on the LQDAG approach
	Recursion
	Approaches not based on relational algebra
	Recursion in SQL
	Extensions of relational algebra with recursion
	Rewrite rules concerning fixpoint
	Application of -RA for recursive query optimization on knowledge graphs

	Summary
	Challenges in extending the LQDAG to support Recursion

	Contribution
	Summary of Contribution
	RLQDAG
	Introduction
	Recursive structure in the RLQDAG: principles
	Syntax of RLQDAG terms
	Semantics of RLQDAG terms
	Recursive terms and rule applicability
	Preliminary definitions of auxiliary functions in RLQDAG
	Annotated equivalence node

	Generalized rewrite rules for transforming sets of recursive terms
	The overall expansion algorithm
	Correctness and completeness
	Implementation Techniques
	Example of unification steps in RLQDAG
	Non-regular queries

	Application to property graph queries
	Property graph representation in RA data model
	A recursive query language fragment suited for property graphs
	Idea
	Syntax of UCRPQPG
	Translation into RLQDAG
	Example of RLQDAG generated from UCRPQPG

	Experimental setup for the RLQDAG
	Datasets
	Queries
	Hardware setup

	Experimental Results
	Results for enumeration phase
	Results for query evaluation phase

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives
	Normal form for RLQDAG terms
	Cost estimations
	Directed plan enumeration
	More expressive query language fragments
	Benchmark on experiments
	Leverage RLQDAG formalisation for theorem proving
	Characterization of Complexity of Expansion Algorithm

	Queries
	Bibliography

